Biyolojiye gercekci yaklasimin tek adresi.

Arama Sonuçları..

Toplam 460 kayıt bulundu.
Genomda İnsan Beyni İçin Önemli Endojenik Retrovirüsler

Genomda İnsan Beyni İçin Önemli Endojenik Retrovirüsler

Brattas ve ark. ERV'lerin insan sinir öncü hücrelerinde TRIM28 ile bağlandığını bildirmiştir. Bu, gelişmekte olan insan beynindeki transkripsiyonel ağların kontrolünde ERV'ler için bir rol teşkil ederek, yakın gen ekspresyonunu etkileyen yerel heterokromatin oluşturulmasına neden olur.

http://www.biyologlar.com/genomda-insan-beyni-icin-onemli-endojenik-retrovirusler

Kongo Nehri Balıklarının Hızlı Evrimi

Kongo Nehri Balıklarının Hızlı Evrimi

Fotoğrafta bir çift akvaryum çiklet balığı türü olan Telegramma brichardi bulunmaktadır. Fotoğraf:Oliver Lucanus

http://www.biyologlar.com/kongo-nehri-baliklarinin-hizli-evrimi

Bilim adamlari nesli tukenen bir virusu canlandirdi

Bilim adamlari nesli tukenen bir virusu canlandirdi

Temel bir organizmayı sentezlemek artık imkansız değil. Üstelik bir grup bilim insanı bu çalışmayı bir adım daha ileri taşımış. Decade3d via Getty Images

http://www.biyologlar.com/bilim-adamlari-nesli-tukenen-bir-virusu-canlandirdi

İnsan Gen Terapisi  '' İlaç Olarak Genlerin Kullanımı '' Kaderimiz Genlerimizde Mi?

İnsan Gen Terapisi '' İlaç Olarak Genlerin Kullanımı '' Kaderimiz Genlerimizde Mi?

Gen terapisi, hastalıkların tedavi edilmesi ya da hastalıkları önlemek amacıyla çeşitli insan genlerinin hedef hücrelere etkili bir şekilde aktarılmasına ve ekspresyonuna dayanan bir yöntemdir.

http://www.biyologlar.com/insan-gen-terapisi-ilac-olarak-genlerin-kullanimi-kaderimiz-genlerimizde-mi

Virüslerin Kesifi

Virüs latince zehir anlamına gelir. Virüsler 19. Yüzyılın sonlarına doğru keşfedilmiştir. Robert KOCH, Louis PASTAEUR ve diğer bakteriyologlar , canlılarda görülen birçok hastalıklara bakterilerin sebep olduğunu bulmuşlardır. Fakat bazı hastalıklar onları çok şaşırtıyordu. Çünkü hastalığın meydana geldiği organizmada, bu hastalığa sebep olabilecek bir bakteri bulunamıyordu. Araştırmacıların dikkatini çeken böyle bir hastalığa tütün yaprağında rastlanmıştı. Hasta bitkinin yaprakları , mozayik bir şekilde lekelenip buruştuğu için , bu hastalığa tütün mozaiyik hastalığı adı verilmiştir. Virüsler önceleri bakterilerin salgıladığı bir zehirli madde olarak kabul ediliyordu. Daha sonra, virüsün bir organizmaya bulaşarak bakterilerin salgıladığıbir zehirli madde olarak kabul ediliyordu. Daha sonra, virüsün bir organizmaya bulaşarak hastalık yapabileceği gösterildi. Hasta olan tütün bitkisinden çıkarılan özüt, porselen bir filtreden geçirilerek bakteriler tutuldu. Süzülen özüt, sağlıklı tütün bitkisinin yapraklarına sürüldüğünde, bitkinin hastalandığı görüldü. Hollandalı mikrobiyolog M.W. BEIJERINCK hastalığın kısa zamanda bitkinin bütün organlarına yayıldığını tespit etmiştir. Özütte hiç bakteri kalmadığı halde, sağlıklı bitkiyi hastalandıran bu faktöre, BEIJERINCK, “hastalık yapan canlı sıvı” adını vermiştir. 20. yüzyılın başlarında, tütün mozayik virüsünden başka, bitki, insan ve hayvanlarda çeşitli hastalıklar yapan virüsler keşfedilmiştir. Mesela bunlar arasında salatalık, marul ve patateste mozayik hastalığı yapan virüsler sayılabilir. Ayrıca insanlarda sarı humma, çocuk felci, grip, kızamık, kızamıkçık, kabakulak ve suçiçeği gibi hastalıklara sebeb olan virüsler de bilinmektedir. 1930 yılına kadar, virüslerin sebeb olduğu bir çok hastalık tanımlanmasına rağmen, virüslerin yapısı ve özellikleri hakkında fazla bilgi elde edilememiştir. Amerikalı mikrobiyolog Wendell M. STANLEY, 1935 yılında tütün mozayik virüsünü, yaşadığı bitkiden ayırmayı başarmıştır. Bu araştırmacı, saf olarak elde ettiği virüs kitlesini mikroskopta incelediğinde, iğne şeklinde kristaller görmüştür. Daha sonra bu kristallerin nükloproteinler olduğu anlaşılmıştır. Aynı yıllarda STANLEY, izole ettiği tütün mozayik virüsü (TMV) kristallerini elektron mikroskobunda inceleyerek çubuk şeklinde yapılar olduğunu görmüştür. İzole edilmiş tütün mozayik virüsleri cansız gibi görünmesine rağmen, suda biraz bekletilerek tütün yaprağına sürüldüğünde, bitkinin hastalandığı tespit edilmiştir. Bu çalışmalarla, virüslerin ancak canlı hücrelere üreyebildiği anlaşılmıştır. Virüsler, canlı hücrelerde yaşayan mecburi parazitler olup, içinde yaşadığı hücrenin metabolik mekanizmasını kendi hesabına kullanabilen canlılardır. Gerçekten, bir virüs konukçu hücreye girdikten sonra, kendisi için gerekli proteinleri ve nükleik asitleri üretebilmektedir. Yani virüsler, girdiği hücrelerde, metabolizma makinasının direksiyonunu ele geçirmekte ve onu kendi lehine yönlendirebilmektedir. Virüslerin Özelikleri genom: Bir organizmanın sahip olduğu genleri taşıyan DNA’nın tamamıdır. Her organizmanın kendi genomu vardır. Kalıtım maddeleri (genomları) DNA veya RNA olabilir. Sadece proteinkılıf + DNA dan oluşurlar. Bu yapılarından dolayı kopmuş kromatin parçasına benzerler. Hücre organelleri, sitoplazmaları, enerji üretim sistemleri ve metabolizma enzimleri yoktur.Hem canlı hem cansız olarak sayılırlar. Virüslerin canlı sayılmasının nedeni cnalı bir hücre içine girdiğinde DNA eşlemesi yapabilmeleridir. Virüslerin cansız sayılmalarının nedeni hücre dışında cansızların özelliği olan kristal yapıda bulunmalarıdır. Bazı virüslerde virüsün bir hücrenin içine girmesini sağlayan enzimlerde buluna bilir.virüsün üremesi için canlı bir hücreye girmesi şarttır. Virüs girdiği hücrenin ATP’sini ,enzimlerini, nükleotitlerini kısaca herşeyini kendi leyhine kullanan tam bir parazittir. Virüs DNA sının içine girdiği bakteri DNA sından baskın olması ve bu bakteriyi kendi hesabına yönetmesi DNA nın yönetici özelliğine en iyi örnektir.bakteri içine girenvirüse bakteriyofaj denir. Virüs bir hayvan hücresine girdiğinde interferon denilen hormon benzeri bir madde salgılar. Bu madde diğer hücrelere vücutta virüs bulunduğunu haber vererek korumayı sağlar. Virüslerin Büyüklüğü ve Şekli Bütün virüsler o kadar küçüktür ki , bunlar ışık mikroskobunda ayrı parçalar halinde görülemezler. Ancak elektron mikroskobunda belirli şekilde görülmektedir. Büyüklükleri genel olarak 15-450 milimikron arasında değişir. Çocuk felci virüsünün elektron mikroskobuyla alınan fotoğrafı, virüs parçacıklarının pinpon topuna benzer minik yuvarlaklar halinde olduğunu göstermiştir. Virüslerin Yapısı Biyologlar virüslerin canlı tabiatının eşiğinde yani en alt basamağında bulunan varlıklar olarak kabul ederler. Çok küçük çok ilksel organizmalardır. Bu bakımdan virüsler hakkındaki bilgilerimiz henüz çok değildir. Biyologlar çok ince ve dikkatli araştırmaları sonucu virüslerin bir nükleit asit RNA öz maddesi ile bunu saran bir protein kılıftan meydana geldiğini bulmuşlardır. Öz madde virüsün çeşidine göre bir RNA veya DNA olabilir. Yapısında DNA bulunan bir virüs çeşidi vardır ki, bunlar bakteri hücrelerine girer, onların içinde çoğalırlar. Bu virüslere Bakteriyofaj (bakteri yiyen virüs) denir. Bakteriyofajlar bakterileri yiyerek yaşarlar. Bakterilerin içinde ürer ve en sonunda içinde yaşadıkları hücreleri yok ederler. İnsan ve hayvanlarda hastalık yapan virüslerin çoğu da, etrafı protein kılıf ile çevrili DNA ipliğinden başka bir şey değildir. Yapısında DNA bulunan bir virüs çeşidi vardır ki, bunlar bakteri hücrelerine girer ve onların içinde çoğalırlar. Bu virüslere bakteriyofaj veya kısaca faj (faj virüsleri) denir. Faj bakteri yiyen anlamına gelir. Virüslerin Yaşama Şekilleri Canlı hücrelerden alınan virüsler hücre dışında yaşayamazlar; fakat, yeniden bir hücreye bulaştırılırlarsa hemen çoğalmaya başlarlar. Şu halde, virüsler mecburi parazit olup, ancak canlı hücrelerin içinde yaşayabilirler. Virüsler; çiçekli bitkilerde, böceklerde, bakterilerde, hayvan ve insan hücrelerinde yaşarlar. Bazen çeşitli hastalıklara sebep olurlar. Hattâ bir görüşe göre, bazı kanserlerin bile sebebi virüslerdir. Çiçekli bitkilerden tütün, patates, domates, şeker kamışı ve şeftali gibi faydalı bitkilerin hastalıkları üzerinde yapılan çalışmalarda, 100’den fazla değişik bitki virüsü bulunmuştur. Arı, sinek ve kelebek gibi bazı böcek takımlarının bir çok türlerinde yaşayan virüsler vardır. Bu virüsler, özellikle böcek larvalarında hastalıklara sebep olurlar. Böceklerde hastalık yapan virüsler, zararlı böcveği ortadan kaldırmak için biyolojik mücadelede de kullanılmaktadır. Birçok bakteri ve bazı mantarlarda yaşayan fajlar bulunmuştur. Omurgalılardan sadece balıklarda, kurbağalarda, memelilerde, kuşlarda ve bihassa kümes hayvanlarında yaşayan virüsler tespit edilmiştir. Her virüs çeşidi çoğunlukla vücudun belli bir kısmına girer ve belirli hücreler içinde çoğalabilir. Sarı humma virüsleri karaciğerde;kuduz virüsleri beyinde ve omurilikte; çiçek, kızamık, siğil virüsleri ise deride çoğalır. Virüsler sadece hücre içinde faaliyet gösterdiklerinden hücreye zarar verir ve antibiyotiklerden etkilenmez. Belli bazı virüslerin bulaştığı hücreler, aynı tipten ikinci bir virüs enfeksiyonuna karşı bağışıklık kazanır. Hücre, canlı veya sıcaklıktan öldürülmüş bir virüsle muamele edilince “interferon” denilen bir madde salgılar. İnterferon bazı hastalıklar için hücrelerde bağışıklık meydana getirir. Meselâ kızamık, kabakulak ve kızıl gibi hastalıkları geçirenler, kolay kolay bu hastalığa yeniden yakalanmazlar. Vücudun ve virüslerin bu özelliğine dayanarak bazı virüs hastalıklarına karşı aşılar geliştirilmiştir. Çiçek, sarı humma ve kuduz aşıları belli başlı virütik aşılardır Virüslerin Üremesi Virüsün canlılığını sürdürmek için bulunduğu canlıya konak canlı adı verilir. Virüs konak canlıya girdiğinde konak canlının DNA sı virüsün hesabına çalışmaya başlar. Yani virüs girdiği canlıyı yönetimi altına alır. Artık konak canlı kendi eşlenmesi yerine virüsün yönetici maddesini eşler. Ribozomlarıyla virüsün proteinlerini sentezler. Konak canlıda sayısı hızla artar. Konak canlının hücre zarı parçalanarak virüsler açığa çıkar. Kendilerine yeni konak canlı ararlar. Eğer canlı bir hücre yoksa kristaller meydana getirirler. Devamlı üreyen virüslere Litik Virüs denir.bazı hallerde virüs girdiği konak canlıya zarar vermeden kalabilir. Virüsün yönetici maddesi konak canlının yönetici maddesine yapışırsa konak canlı virüsün yönetimine girmez. Konak canlının yönetici maddesinin bir parçası haline gelebilir. Virüs çoğalamadığı içinde konak canlıya zarar veremeyecektir. Böyle virüslere Lizogenik Virüs denir. Virüsler bitkilerde ve hayvanlarda hastalık meydana getirirler. Ancak bu zarar girdikleri bitki veya hayvan hücresinde yönetimi ele geçirirlerse mümkündür. Virüslerin nükleik asitlerindemutasyonlar meydana gelebilir. Biyolojik açıdan eniyi incelenen virüsler “Bakteriyofaj”lardır. Bunlara bakteri yiyen virüslerde denilebilir. Birde kuyrukları vardır. Kuyruk bakteriye deydiğinde bakterinin o bölgesini eritir. Yönetici molekülü böylece bakteriye geçer. Lizogenik virüsse bakteri kromozomuna yapışır, orada profajı oluşturur.(Girdiği bakterinin kromozomuna yapışarak üremeden kalabilen Lizogenik virüs kromozomuna profaj denir.) Özet Olarak Virüsler 1-Canlı ve cansız arasında geçit oluştururlar. 2-Protein kılıf ve nükleik asitten oluşurlar.(DNA veya RNA) 3-Kristalleşebilirler 4-Kompşex enzim sstemleri yoktur. 5-DNA taşıyanlar bakterileri yiyebilir bunlara bakteriyofaj veya faj denir. 6-Grip, nezle, kızamık, frengi, kabakulak gibi hastalıkları yaparlar. 7-Virüs bir canlı hücrenin (örneğin bakterinin) çeperine yapışır. 8-Virüs DNA’si bakterinin içine enjekte olur. 9-Bakteri DNA’sının eşlenmesi durur. 10-Virüs DNA’sı bakterinin bütün biyokimyasal sistemlerini kullanarak kendini eşlemeye başlar. 11-Bakterinin protein sentezi sistemi virüs için gerekli protein kılıfı v.s. gibi yapıları bakteri malzemesi kullanılarak sentezlenir.bu yolla 100’den fazla virüs oluşur. 14-Bakterinin hücre duvarını delici enzimlerinde sentezlenmesi ve hücre duvarının erimesiyle virüsler dışarı çıkar.

http://www.biyologlar.com/viruslerin-kesifi

HIV virüsünün seyrini etkilemek için hem virüsün hem de hastanın genetiği birlikte çalışıyor!

HIV virüsünün seyrini etkilemek için hem virüsün hem de hastanın genetiği birlikte çalışıyor!

Yayınlanan yeni araştırmaya göre, insan immün yetmezlik virüsü (HIV) ile enfekte olmuş kişiler arasında görülen hastalık ilerleme oranlarındaki farklılıkların yaklaşık üçte biri viral ve insan genetiğidir .

http://www.biyologlar.com/hiv-virusunun-seyrini-etkilemek-icin-hem-virusun-hem-de-hastanin-genetigi-birlikte-calisiyor

Kanserle hayatta kalma konusundaki yeni atlas, yeni tedavilerin bulunmasını sağlayabilir.

Kanserle hayatta kalma konusundaki yeni atlas, yeni tedavilerin bulunmasını sağlayabilir.

Yeni atlas, bazı hastaların neden bu hastalıkla diğerlerine göre daha uzun yaşadığını açıklamaya yardımcı olabilir. Photo: Shutterstock

http://www.biyologlar.com/kanserle-hayatta-kalma-konusundaki-yeni-atlas-yeni-tedavilerin-bulunmasini-saglayabilir-

Üçüncü nesil DNA dizileme

Üçüncü nesil DNA dizileme

Üçüncü nesil DNA dizileme teknolojileriyle bir genomu dizilemek artık daha hızlı, daha ucuz ve kolay bir süreç haline geldi. Image credit: Shutterstock

http://www.biyologlar.com/ucuncu-nesil-dna-dizileme

Ökaryotik Kromatinin Fonksiyonu

Ökaryotik Kromatinin Fonksiyonu

Vücudunda belirgin bulan genetik özellikler uzak atalarınızdan miras alınmıştır; milyonlarca yıl geriye uzanan kesintisiz bir nesil kuşağından gelmektedir.

http://www.biyologlar.com/okaryotik-kromatinin-fonksiyonu

Evrim Nedir

“Bilimler, düşündügümüzün tam tersi bir düzen içinde geliştiler. Bize en uzak olan şeylerin yasalari en önce bulundu, sonra yavaş yavaş daha yakinlara sira geldi: Ilkin gökler, arkadan yer, sonra hayvanlarla bitmkilerin yaşami, sonra insan gövedesi en sonra da (Yine de en yarim yamala) insan zihni. Bu durumun anlaşilamayaca bir yani yoktur... Yalniz teme doga yasalarinin bulunmasi degil, dünyanin uzun süreli gelişmesiyle ilgil ögretinin kurulmasi da gökbilimle başladi; ama bu ikinci öncekinden ayri bir konuya gezegenimizde yaşamin başlayip gelişmesi konusunua uygulaniyordu daha çok. Şimdi gözden geçirecegimiz evrim ögretisi gökbilimle başlamişsa da yerbilim ile biyoloji açilarindan daha büyük bir önem kazanmiş, ayrica Copernicus sisteminin zaferinden sonra gökbilimin karşisina dikilen daha rinegen tanribilimsel önyargilarla savaşmak zorunda kalmiştir. Modern kafanın, uzun süreli bir gelişme kavramının ne denli yeni olduğunu görmes güçtür; gerçekte de bütünüyle Newton’dan sonraki bir düyşüncedir bu. Kutsal Kitap ’a dayanan inanca göre evren altı günde yaratılmış, o zamandan beri, şimdi içinde bulanan bütün göklü yaratıklara, bütün phayvanlarla bitkilere, Büyük Sel’in yokettiği daha başka birçok canlııya yurtluk etmişti.Birçok tanrıbilimcinin söylediklerine, bütün Hıristiyanların inandıklarına göre Düşüşş zamanında evrene yasa olabilecek bir gelişme şöyle dursun, her türlü kötülüğün korkunç bir kaynaşması görülüyordu. Tanrı, Adem ile Havva’ya belli bir ağacın meyvesini yememesini söyledi; ama onlar dinlemeyip yediler.Bunun üzerine Tanrı , onların, kendi soylarından gelecekelerin bütünüyle birlikte ölümlü olmalarını, küçük bir azınlık bir yana, en uzak torunlarının bile cehennemde sonsuz ceza çekmelerini emretti; bu küçük azınlığın da neye göre seçileceği tartışmalıydı. Adem, günahı işler işlemez, hayvanlar birbirlerini avlamaya, dikenler göğermeye başlamış, birbirinden ayrı mevsimler ortaya çıkmış, toprak da lanetlenmiş, ağır bir emek karşılığı olmadıkça insanoğluna hiçbir şey vermemesi emredilmişti. İnsanlar öyelesine azalmışlardı ki, Tanrı, Nuh ile üç oğlu ve karılarından başka hepsini Büyük Sel’de boğmuştu. Bu cezadan sonra da uslandıkları sanılmıyordu; ama Tanrı, artık başka bir evrensel felaket göndermeyeceğine söz vermişti ancak arasıra yaptığı su basıknlarıyla, depremlerle yetiniyordu. Bilmeliyiz ki bütün bunlar ya doğrudan doğruya Kutsal Kitap ’ta yer alan, ya da Kutsal Kitap ’takilerden, tümdengelimden çıkarılan kesin gerçekler olarak benimseniyorlardı. Dünya’nın yaratılış yılı, Oluş (Genesis ) da adı anılan her atanın, en büyük oğlu doğduğunda kaç yaşında olduğunu söyleyen soy dizilerinden çıkarılabilir. Bu konularda,İ brani yazması ile Septuagint yazması (Tevrat’ın İÖ 270 yılında 70 kişi tarafından başlanılan Yunanca çevirisi) arasındaki ayrılıklardan ya da anlaşılma güçlüklerinden doğan karıştıtlıklar da ortaya çıkabilyordu; sonunda Protestanlar genel olarak başpiskopos Usher’in ileri sürdüğü İÖ 4004 yılını dünanın yaratılış yılı kabul ettiler. Cambridge Üniversitesi’nin Yardımcı Başkanı Dr. Lightfood yaratıtılış yılı konusunda bu bilgiyi benimsemiş, Oluş’un yakından incelenmesiyle daha başka bir çok konunun da büyük bir seçiklik kazanacağını düyşünmüştü; onun söylediğine göre insan 23 Ekim sabahı saat 9'da yaratılmıştır; ama bu da bir inanç sorunuydu;Oluş’tan çıkaracağınız birtakım kanıtlara dayanarak, Adem ile Havva’nın, 16 Ekim’de ya da 30 Ekim’de varedildiklerine inanmanızda, dinsiz sayılma sakıncası yoktur. Yaratılış gününün Cuma olduğu da biliniyordu tabi, çünkü Tanrı, Cumartesi günü dinlenmişti. Bilimin de bu dar sınırlar içinde kalması istenmiş, gördüğümüz evrenin 6000 yıllık değil çok daha yaşlı olduğunu düşünenler alay konusu olmuşlardır. Gerçi böyle kimseler artık yakılmıyor, hapsedilmiyorlardı; ama tanrıbilimciler bunlarını yaşamalaranı zehir etmek, öğretilerinin yayılmasına engel olmak için ellerinden geleni geri koymuyorlardı. Newton, Copernicus sistemi kabul edildikten sonra, dinsel inançları sarsacak bir şey yapmış olmuyordu. Kendisi de koyu bir Hıristiyan, Kutsal Kitap ’a inanan bir kimseydi. Onun evreni, içinde gelişmeler bulunmayan bir evren değildi, söylediklerinde bu konuya hiç rastlamıyoruz; ama herhalde bütün evrenin tek parçadan yaratıldığına inanıyordu. Gezegenlerin Güneşin çekiminden kurtulmalarını sağlayan teğetsel hızlarını açıklarken, hepsinin başlangıçta Tanrı eliyle boşluğa fırlatılmış olduklarının tasarlıyordu; bundan sonra olup bitenler de genel çekim yasasıyla açıklanıyordu. Newton’un, Bentley’e yazmış olduğu özel bir mektupta bütün evrenin Güneş sisteminin ilkel bir parçalanmasından doğmuş olabileceğini ileri sürdüğü doğrudur; ama topluluk karşısında ya da resmi olarak söylediklerine bakılırsa, Güneş ile gezegenlerin birdenbire yaratılmış olduklarını benimseyen, evrensel evrime hiçbir şey tanımayan bir düşünceden yana olduğu görülür. 18. yüzyılın özel inanç biçim Newton’dan alınmadır; buna göre evrenin ilk yaratıcısı olan Tanrı, temel yasalar da koymuş, yaptığı kurallarla da gelecekteki bütün olayları kendisinin bir daha araya girmesini gerektirmeyecek biçimde belirlemiştir. Koyu dinciler göre yasalarla açıklanamayacak durumlar da vardı: dinle ilgili mucizeler. Ama yaratancılara göre herşey doğal yasalarla yönetiliyordu. Pope’ un İnsan Üstüne Deneme iki görüşle de karşılaşırız. Bir parçada: Her şeye yeterli ilk güç, ayri ayri degil, genel yasalarla hareket eder, pek azdir bunun dişinda kalan. Ama dinsel bağın unutulduğu anlarda, hiçbir duruma ayrıcalık tanımaz: Doğa’nğın zincirinden hangi halkayı koparsanız, onuncu olsun, on birinci olsun fark etmez, kırılıverir zincir. Aşamalı sistemler, şaşkınlık veren o bütüne uyarak, hep birbirleri gibi yuvarlanıp giderlerken en küzük bir karışıklık koca bir sistemi yıkmakla kalmaz, bütünü de yıkar. Yer dengesini yitirir, fırlar yörengesinden; gezgenler, güneşler, yasasız koşarlar gökyüzünde; yönetici melekler göklerinden uğrarlar, varlık varlık üstüne dünya dünya üstüne yığılır; bütün temelleri göklerin eğilir merrkeze doğru. Doğa titrer tahtı önünde Tanrının! Yasaların Yetkisi sözünden, Kraliçe Anne zamanında olduğu gibi, politik durulma anlaşılıyor, devrimler çağının geçtiğine inanılıyordu. İnsanlar yeniden değişiklik istemeye başlayınca, doğal yasaların işlyeşi ikonusundaki görüşleri de kural olmaktan çıktı. Güneşin gelişimi konusunda ciddi bir bilimsel kuram koymaya girişen ilk kimse 1755 yilinda Göklerin Genel Doga Tarihi ile Kurami ya da Newton Ilkelerini Uygulayarak Evrenin Bütün Yapisinin Kuruluşu ve Mekaki Kynagi Üzerinde Araştirma adli kitabiyla Kant olmuştur. Bu kitap, kimi yönleriyle modern gökbilimin sonuçlarini önceden gören çok önemli bir yapittir. Çiplak gözle görülebilen bütün yildizlarin tek sisteme, Samanyolu’na bagli olduklarini söyleyerek başlar. Bütürn bu yildizlar hemen hemen bir düzlemde yer alirlar. Kant’a göre bunlar arasinda da tipki Güneşş sistemindekine benzer bir birlik göze çarpar. Olagaüstü bir düşsel karayişla Nebula’nin da sonsuz uzaklikta yildiz kümelerinden başka bir şey olmadigini söylemiştir; bugün de genellikle tutulan görüş budur. Nebula’nin, Samanyolu’nun, yildizlarin, gezegenlerin takimyildizlarinin gerçekte dağınık olan bir maddenin küme küme yoğunlaşmasından ortaya çıktıklarını ileri süren-yer yer, matematik kanıtlara dayanmamakla birlikte, daha sonraki buluşların eşiğine dayanmış- bir kuramı vardır. maddesel evrenin sınırsızlığına inanır, bunun Yaratıcı’nın sınırsızlığına yaraşacak tek görüş olduğunu söyler. Kant’ın düşüncesine göre karışıklıktan örgütlenmeye doğru aşamalı bir geçiş evrenin çekim merkezinden başlar, yavaş yavaş bu noktadan en uzak kesimlere değin yayılır; sonsuz bir uzayda olup biten sonsuz zaman isteyen bir işledir bu. Kant’ın yapıtının önemli yönlerinden birincisi maddesel evreni bir bütün, Samanayoluyla Nebula’nın da bu bütünün birimleri olarak düşünen görüş; ikincisi de uzaydaki hemen hemen anlaşılmaz bir madde dağılmasından doğan aşamalaı gelişim fikridir. Bu, birden yaratılma düşüncesi yerine evrimi koyan ilk adaımdır, böyle bir görüşün Dünya’yla değil de göklerle ilgili bir kuramla ortaya çıkmış olması da ilgi çekicidir. Türlü nedenlerden dolayı Kant’ın yapıtına ilgi azdı. (B.Russel, Din ile Bilim s: 35-39) Kitap yayımlandığı zaman Kant otuz bir yaşındaydı., büyük bir üne ulaşmış değildi daha. Bir matematikçi ya da fizikçi değil, filozoftu; kendi başına olan bir sistemin, durup dururken bir dönme kazanacağını tasarlaması, dinamik konusundaki yetersizliğini gösterir. Ayrıca, kuramı yer yer katıksız bir düştü; örneğin bir gezegen Güneşten ne denli uzaksa içinde yaşayanlar da o denli daha üstündür diye düşünüyordu; bu görüş insan soyu konusunda gösterdiği alçakgönülüllükle birlikte, bilimsel dayanaklardan yoksundur. Bu nedenlerden dolayı Laplace aynı konuda daha yetkili bir kuram ortaya koyuncaya dek Kant’ın yapıtı hemen hemen göze çarpmamıştır bile. Laplace’ın ünlü varsayımı ilk olarak, 1796'da Dünya Sisteminin Açıklaması adlı kitabın yayımlanmasıyla ortaya çıktı; Laplace, söylediklerinin çoğunun daha önce Kant tarafından söylenmiş oluduğunu bilmiyordu bile. Söylediğinin bir varsayımdan başka hiçbir şey olmadığına inanıyor; bunu “gözlem ya da hesap sonucu olmayan herşeydeki güvensizlik” diyen bir notla belirtiyordu; ama şimdi değişmiş olan bu varsalyım o zaman bütün bir yüzyıl boyunca düşünce alanına egemen oldu. Laplace’a göre Güneş sistemi ile gezeneler sistemi bu zamanlar çok geniş bir nebulaydı; bu nebula yavaş yavaş büzüldü. Büzülünce de daha hızlı dönmeye başladı; merkeçkaç gücü ile koparak uçan topraklar gezegen oldular; aynı işlemin tekrarlanmasıyla gezegenlerin uyduları ortaya çıktı. Laplace, Fransız Devrimi çağında yaşadığı için tam bir özgür düşünürdü. Yaratılışı bütünüyle yadsıyordu. Göklü bir hükümdara beslenen inancın yeryüzü hükümdarlarına da saygı uyandıracağına inanan Napoleon, Laplace’ın büyük yapıtı Celestial Mechanics ’de Tanrı adının neden hiç anılmadığını sorunca, büyük gökbilimci, “Efendimiz, o varsayımla işim yok benim ” diye karşılık vermişti. Tanrıbilimciler diş biliyorlardı tabii; ama Laplace’a olan öfkeleri, tanrıtanımazlık akımı ile devrim Fransa’sının türlü azgınlıkları karşısında duydukları korku yanında hiç kalıyordu. Hem o güne dek gökbilimcilere açtıkları her savaş boşuna çaba olmuştu. Yerbilimsel görüşün gelişmesi, bir bakima gökbilimdekinin tam tersi oldu. Gökbilimde göksel cizsimlerin degişmezi oldugu kanisi, yerini göksel cisimlerin aşamali bir gelişim geçirdiklerini söyleyen kurama birakti; ama yerbilimde, hizli, karmakarişik degişikliklerin geçirilmiş oldugu eski bir dönemin varligina inanilirken, bilim ilerledikçe, degişikliklerin her zaman için, uzun bir süreyi gerektirdikleri inanci yerleşti. Oysa daha önce, bütün dünya tarihini alti bin yila sigdirmak gerekiyordu. Tortul kayalardan, lav birikintilerinden elde edilen kanitlar incelenirken, bunlarin ilgili bulundugu felaketlerin eskiden çok yaygin olduklari tasarlaniyordu, çünkü sinirli bir zaman içinde olup bitmişti hepsi. Bilimsel gelişme yönünden yerbilimin gökbilimden ne denli geri kaldigi,Newton zamanindaki durumundan anlaşilabilir. 1695'te Woodward “yer kabugundaki bütün kalinti katmanlari birkaç ay içinde birikmiştir” diyordu. On dört yil önce (1681'de) sonralari Charterhouse’a başkanlik etmiş olan Thomas Burnet, Yer’in Aslini Şimdiye Dek Geçirmiş Oldugu ya da Her şey Bütünleniceye Dek Geçirecegi Degişiklikleri Açiklayan Kutsal Yer Kurami adili kitabini yayimlamişti. Büyük Sel’den önce Güneş yörengesi düzleminde bulunan Ekvator’un, selden sonra şimdiki egik duruma geldigine inaniyordu (Bu degişikligin Düşüş sirasinda oldugunu düşünen Milton’un görüşü tanribilimsel yönden daha dogrudur) Burnet’in düşüncesine göre, güneşin isisiyla yerkabugu çatlamiş, yeraltindaki sularin bu yariklardan fişkirmasiyla sel olmuştur. Ikinci bir felaketin, büyük selden bin yil sonra görüldügüne inaniyordu. Görüşlerini incelerken yine de dikkatli olmak gerekir, örnegin tanrisal cezaya inanmiyordu. Daha da kötsü, Düşüşü’ün ders alinacak bir öyküden başka bir şey olmadigin söylüyordu. Encylpaedia Britannicca’dan ögrendigimize göre, bu ininçlarindan dolayi “kral onu saray rahipliginden uzaklaştirmak zorunda kalmiştir”. Whiston 1696'da yayimladigi kitabinda Burnet’in Ekvator’la ilgili yanliş görüşüyle öbür yanlişlarindan kaçinmaya çalişmiştir. Bu kitabin yazilmasinda bir bakima 1680 kuyrukluyildizinin payi olmuştur; bu belki de Whiston’a, Büyük Sel’in de bir kuyruklu yildizdan ileri gelmiş olabilecegini düşündürmüştür. Bir noktada, Kutsal Kitap ’a bagliligin derecesi tartişma götürür; yaratiliştaki alti günün bildigimiz günlerden daha uzun olduklarini düşünüyordu. Woodward, Burnet ve Whiston’un, çağlarının öbür yerbilimcilerinden daha aşağı oldukları sanılmamalıdır. Tam tersine zamanlarını en iyi yerbilimcileriydiler; Whiston, Locke’un çok büyük övgülerine konu oluşturmuştur. 18. yy’da, hemen hemen her şeyin sudan geldigini söyleyen Neptün’cü okulla, her şeyi yanardaglarla depremlere baglayan Volakanci okul arasinda uzun bir çatişma görülür. Birinciler durmadan Büyük Sel’in kanitlarini topluyorlar, daglarin yüksek kesimlerinde bulunan taşil (fosil) kalintilara büyük bir önem yüklüyorlardi. Dinsel görüşe daha çok bagliydilar, bundan dolayi bu görüşün düşmanlari, bulununa taşillarin gerçek hayvan kalinilari olamayacagini söylemeye kalkiştilar. Voltaire aşiri şüpheyle davrandi bu konuda; bu taşillarin gerçekten yaşamiş hayvanlardan kalma olduklarını yadsımayacak duruma gelince, bunların dağlardan yolu geçen hacılarca atılmış, düşürülmüş olduklarını ileri sürdü. Bu örenkte, dogmatik özgür düşünce, bilime aykırılıkla dinsel düşünceden daha baskın çıkmıştır. Büyük doğacı Buffon, 1749'da yayımladığı Doğal Tarih adıl kitabında, Paris’teki Sorbonne Tanrıbilim Fakültesinin “Kilise öğretisine aykırı” olmakla suçlandırdığoı on dört önerme ileri sürdü. Bu önermelerden biri, yerbilimle ilgili olarak: “ Şimdi yeryüzünde bulunan dağlar, vadiler ikincil nedenlerden doğmuştur, aynı nedenler zamanla bütün kıtaları, tepeleri, vadileri yok ederek yerlerine yenilerini getireceklerdir” diyordu. Burada “ikincil nedenler” Tanrı’ın yaratıcı emirleri dışında kalan büün öbür nedenler anlamındadır; oysa 1749'da dinsel görüş, dağlarıyla, vadileriyle, denizlerinin, karalarının, dağılışıyla bütün dünyanın, şimdi gördüğümüz biçimde yaratılmış olduğuna inanmayı gerektiriyordu; yalnız bir mucize ile değişikliğe uğramış olan Lut Gölü bunun dışında sayılıyordu. Buffon, Sorbonne ile bir çatışmaya girişmenin iyi olmayacağını düşündü. Sözlerini geri alarak şu itirafı yayımlamak zorunda kaldı: “Kutsal Kitap ’a aykırı şeyler söylemek amacında olmadığımı; Kutsal Kutap’ta yaratışı konusunda söylenenlerin gerçekliğine, belirtilen sürelerin doğruluğuna bütün gücümle inandığımı; kitabımda, yerin oluşumu konusunda bütün söyledilerimden, genel olarak Musa’nın söyledikleriyle çelişebilecek bir şeyden vazgeçtiğimi açıklarım.” Burada açıkça görüldüğü gibi, tanrıbilimcilerin Galilei ile olan çatışmadan aldıkları ders gökbilim sınırları içinde kalmıştı. Yerbilim konusunda modern bir bilimsel görüş ortaya koyan ilk yazar, ilkin 1788'de, sonra daha genişleterek 1795'te yayimladigi Yer Kurami adli kitabi ile Hutton olmuştur.Söyledigine göre, geçmiş çaglarda yer yüzeyinin geçirmiş oldugu degişiklikler bugün de sürüp gitmekte olan nedenlerden ileri gelmişti, bu nedenlerin eski çaglarda şimdikinden daha etkili olduklarini düşünmek yersizdi.Bu, temel bakimdan saglam bir görüşse de, Hutton bu görüşün kimi yönlerini çok geliştirmiş, kimi yönleri üzerinde de geregi ölçüsünde durmamiştir. Deniz dibinde biriken tortulara bakarak, kitalarin ortadan kalkişini aşinmaya bagliyordu; ama yeni kitalarin ortaya çikişini,birden gelmiş büyük degişikliklerle açikliyordu. karalarin birden bire batmasini ya da yavaş bir süreyle yükselmesini, gerektigi ölçüde anlayamamiştir. Ama onun gününden beri bütün yerbilimciler, geçmişteki degişiklikleri yapan etkenlerin bugün kiyilarin yavaş yavaş degişmelerinde, dag yüksekliklerinin artip eksilmesinde, deniz dibinin yükselip alçalmasinda payi olan etkenlerden ayri olmadiklarini söyleyen yöntemi benimsemişlerdir. (B. Russel, Din ile Bilim s:40-43 ) İnsanların bu görüşü daha önce benimsememiş olmaları, yalnızca Musa’cı zaman bilgisi yüzündendir. Oluş’a bağlı kimseler, Hutton ile öğrencisi Playfair’e çok ağır saldırılarda bulunmuşlardır.Lyell “Din tutkusu Hutton öğretilerine karşı coşmuştu, bu çatışmada başvurulan hileler, aşırılıklar inanılacak gibi değildir, İngilliz halkının düşüncelerinin o zamanlar nasıl ateşli bir heyecanla kamçılandığını anımsayamayan okur bütün bunları anlayamaz.” diyor. “Fransa’da birtakım yazarlar yıllardır bütün güçleriyle Hıristiyan inancının temellerini çökertmeye çalışıyorlardı; bir yandan bu yazarların başarıları, bir yandan da Devrim’in sonuçları, en gözüpek kafaları uyandırmıştı; ama daha yüreksiz olanların kafalarında yenilik korkusu, korkunç bir düş gibi sürüp gidiyordu.” 1795 İngiltere’sinde hemen hemen bütün zenginler Kutsal Kutap’a karşıt her öğretiyi mallarına yönelmiş bir saldırı, bir giyotin tehditi olarak görüyorlardı. İngiliz düşüncesi yıllarca, Devrim’den önceki özgürlüğünden bile yoksun kaldı. Taşillarin soyu tükenmiş canlilara, yaşam biçimlerine birer kanit olduklari düşünülerek yerbilimin daha sonraki gelişimi biyolojininki ile karişti.Dünyanin ilkçaglari söz konusu olunca, yerbilim il e tanribilim alti “gün”ün alti “çag” sayilmasi gerektigini söyleyerek uzlaşiyorlardi. Ama canlilar konusunda tanribilimin ileri sürdügü bir sürü kesinlemeyi, bilimle uzlaştirmak gitgide daha güç bir iş oldu. Düşüş zamanina dek hayvanlardan hiçbiri öbürünü yememişti; şimdi varolan hayvanlar Nuh’un gemisine alinan hayvanlarin soyundandirlar(Dip not: Bu düşüncenin de güçlükleri yok degildi. St Augustine tanri’nin sinekleri yaratmasindaki nedeni bilmedigini söylmek zorunda kalmişti. Luther daha da ileri giderek, sineklerin, iyi kitaplar yazarken kendisini rahatsiz etsinler diye Şeytan tarafindan yaratildiklarini söylemiştir. Bu ikinci düşünce daha degerlidir kuşkusuz), şimdi soyu tükenmiş olanlar ise selde bogulmuşlardir. Yaratilan türler hiçbir degişiklige ugrayamazlardi; herbiri ayri bir yaratma eyleminin sonucuydu. Bu önermelerin herhangibiriyle ilgili bir soru sormak, tanribilimcileri öfkelendirmek demekti. Güçlükler Yeni Dünya’nın bulunmasıylla başlamıştı. Amerika, Ağrı Dağından çok uzakta bir ülkeydi; ama yine de aradaki ülkelerin hiçbirinde görülmeyen birçok hayvan yaşıyordu orada. Bu hayvanlar bunca uzak yoldan nasıl gelmişlerdi, üstelik, türlerinden bir tekini bile yolda bırakmamışlardı. Kimileri onları denizcilerin getirmiş olduklarını düşündüler ama kendisini Kızılderilileri dine sokmaya adayan, sonra kendi inancını da güç kurtarabilen sofu Jesuit Joseph Acosta böyle bir varsayımı şaşkınlıkla karşılamıştı. Kızılderililerin Doğal ve Töresel Tarihi (1590) adlı yapıtında bu sorunu çok olumlu bir biçimde tartışır der ki: “ İnsanların bunca uzak bir yolculukta, Peru’ya tilkiler götürmek için başlarını derde sokmuş olduklarını kim düşünüebilir, hele şimdiye dek gördüklerimin en pisi olan o ‘Acias’ türünü? Kaplanlar ya da aslanlar götürmüş olduklarını kim söyleyebilir? Böyle düşünenlere gülünse yeridir doğrusu. Bir fırtınayla ellerinde olmaksızın, bunca uzun, bilinmez bir yolculuğa sürüklenmiş olan insanlar kendi canlarının derdine düşmüşlerdir herhalde, yoksa başlarına gelenler yetmiyormuş gibi kurtlar, tilkiler götürmeye kalkışıp iki taşın arasında, bir de onları beslemekle uğraşmamışlardır. Bunun üzerine tanrıbilimciler pis Acias’la benzeri hayvanların Güneş etkisiyle kendiliklerinden, bataklıklardan türemiş olduklarına inandılar; ne yazık ki Nuh’un gemisinde bununla ilgili hiçbir ipucu yoktu. Ama başka çıkar yol da yoktu. Örneğin, adlarının da belirtildiği gibi, yerlerinden zor kımıldayan Sloth’lar (Sloth, Amerika’da yaşayan, ağır ağır yürür, ağaçlara tırmanır hayvanlar, Bu sözcük ayrıca tembellik anlamına da gelir.) nasıl Ağrı Dağı’ndan yola çıkıp hep birlikte Amerika’ya ulaşmış olabilirler? Başka bir güçlük de hayvanbilimin gelişmesiyle elde edilen, hayvan türlerinin sayisindan dogdu. Şimdi bu sayi iki imilyonu bulmuştu, her türden iki hayvanin gemiye alindigi göz önünde tutulunca, geminin biraz fazlaca kalabalik olabilecegi düşünüldü. Hem, Adem hepsine ayri ayri ad takmişti; bunca çok sayida hayvani adlandirmak yaşamin tam başlangicinda biraz agir bir iş olurdu. Avusturalya’nin bulunmasi yeni güçlükler çikardi. Neden bütün kangurular Torres Bozagi’ndan atlamişlar, geride bir çift bile kalmamişti? Biyoloji alanindaki gelişmeler yüzünden, Güneş’in etkisiyle batakliklardan bir çift kangurunun türemiş oldugunu düşünmek de pek güçtü artik; ama böyle bir kuram her zamankinden daha gerekliydi. Bu türden güçlükler, bütün 19. yy boyunca din adamlarının kafalarını oyaladı durdu. Örneğin, Tanrı’nın Zorunlu Varlığı ’nın yazarı William Gillespie’nin Hugh Miller ve Başkalarından Verilmiş Örneklerle Yerbilimcilerin Tanrıbilimi adlı kitapçığı okuyunuz Bir İskoç tanrıbilimcisinin yazdığı bu kitap 1859'da Darwin’in Türlerin Kökeni ile aynı yılda çıktı. Yerbilimcilerin korkunç önermeleri üzerinde durur, onyların “düşünülmesi bile korkunç günahların öncüleri” olduklarını söyler. Yazarın üzerinde durduğu ana sorun, Hugh Miller’in Kayaların Tanıklığı adlı kitabında ileri sürdüğü “insan ilk günahı işleyip acı çekmeye başlamadan önce de hayvanlar arasında şimdiki savaş vardı” düşüncesidir. Hugh Miller, insanın yaratılışından önce yaşayıp soyları tükenmiş hayvan türlerini birbirlerine karşı başvurdukları ölüm, işkence yollarını bütün korkulu yanlarıyla, canlı bir biçimde anlatır. Dine bağlı bir kimse olduğu için tanrı’nın günahsız yaratıklara neden böyle acı çektirdiğini bir türlü anlayamıyordu. Mr. Gillespie, kanıtlara gözlerini kapayarak, küçük hayvanların insanın ilk günahından dolayı acı çektiklerini, yine bundan dolayı öldüklerini söyleyen dinsel görüşü körükörüne savunuyor; Kutsal Kitap’tan aldığı “insanla geldi ölüm” sözleriyle, Adem’in elmayı yediği zamana değin hiçbir hayvanın ölmemiş olduğunu tanıtlamaya kalkışıyordu(Dip not: Bütün eski öğretilerin ortak görüşüydü bu. tıpkı bunun gibi Wesley, Düşüş’ten önce “Örümcek de sinek gibi dokuncasızdı, kan için pusuda beklemiyordu” der). Hugh Miller’in, soyu tükenmiş hayvanların boğuşmaları konusunda söylediklerini göstererek, İyiliksever bir Yaratıcı böyle canavarlar yaratmış olamaz diyordu. Bütün bunlara peki diyelim Ama daha aşırı düşünceleri pek gariptir. Herhalde yerbilimin kanıtlarını yadsımaya yeltenmiş, ama yiğitliği daha baskın çıkmıştır. Belki de vardı böyle canavarlar, ama onlar doğrudan doğruya Tanrı eliyle yaratılmamışlardır, diyordu. Başlangıçta iyi yaratıklardı, sonradan şeytan ayarttı onları; ya da belki Gadarene domuzu gibi, cinleri barındıran hayvan gövdeleriydi bunlar. Tevrat’ın, birçokları için sürçme-taşı olan Gadarene domuzu öyküsüne neden yer verdiği anlaşılır burda. Biyoloji alanında, dinsel görüşü kurtarmak için, Edmund Gosse’un babası, doğa bilgini Gosse garip bir yelteni gösterdi.Dünyanın eskiliği konusunda yerbilimcilerin ileri sürmüş oldukları bütün kanıtları kabul etti; ama Yaratılış sırasında herşeyin eskiymiş gibi yapılmış olduğunu ileri sürdü. Kuramının gerçek olmadığını tanıtlayacak, mantığa uygun bir yol yoktur. Tanrıbilimciler, Adem’le Havva’nın tıpkı doğumla dünyaya gelen insanlar gibi göbekleri olduğunu söylüyorlardı.(Belki de Gosse kitabına Omphalos adını bunun için vermiştir) Bunun gibi, öbür yaratılanla da eski bir biçimde yaratılmışlardı belki.Kayalar taşıl kanıtlarla doldurulmuş volkanların ya da tortul birikmelerin etkisine uğramış gibi yapılmış olabilirlerdi. Ama böyle olanaklar bir kez benimsendi mi, dünya şu zaman ya da bu zaman yaratılmıştır diye tartışmanın hiçbir anlamı kalmaz. Hepimiz anılarla, çoraplarımızda delikler, saçımız sakalımız uzamış bir halde bir halde beş dakika önce dünyaya gelmiş olabiliriz. Mantıkça olağan bu duruma, kimse inanamazdı; Gosse umduğunun tam tersine , din ile bilim arasında yaptığı, mantık yönünden eşsiz uzlaştırmaya, hiçmkmisenin inanmadığını gördü. Onun oüşüncelerini tanımayan tanrıbilimciler, daha önceki öfkelerinin çoğunu bırakıp azıyla durumlarını kurtarmaya çalıştılar. Bitkilerle hayvanların üreme, değişme yoluyla uzun süreli bir evrim geçirdiklerini söyleyen öğreti biyolojiye yerbilimden geldi daha çok; bu kuram üçe ayrılabilir..İlk gerçek,-ancak, uzak çağlarla ilgili bir gerçekten umulabilecek kesinlikte bir gerçek bu- küçük canlıların daha eski oldukları, daha karmaşık bir bir yapı taşıyan canlıların ise gelişmenin sonlarına doğru ortaya çıktıklarıdır. İkincisi, daha sonraki, çok daha üstün yapılı canlılar kendiliklerinden ortaya çıkmamışlar, bir değişmeler dizisinden geçerek daha önceki canlılardan türemişlerdir; biyolojide “evrim” ile söylenmek istenen budur. Üçüncüsü, bütünlükten uzak olkala birlikte, evrimin işleyişini, örneğin değişmenin belli canlıların yaşayıp öbürlerinin silinip gitmlerinin nedenlerini araştıran bir çalışma vardır. İşleyşişkonusunda daha birçok karanlık noktalar bulunmakla birlikte, evrim öğretisi bugün bütün evrence benimsenmiştir. Darwin’in başlıca tarihsel evrimi daha olağan gösteren bir işleyiş- doğal seçim- ileri sürmüş olmasıdır; ama ileri sürdüğü, kendisinden hemen sonra gelenlerce kolay benimsenmişse de, yirminci yüzyılın bilim adamlarına göre pek yetersizdir. Evrim öğrtisine önem veren ilk biyoloji bilgini Lamarck (1744-1829) oldu. Öğretileri kabul edilmedi, çünkü türlerin değişmezliği konusundaki önyargı geçerlikteydi daha, üstelik ileri sürdüğü değişim süreci de bilimsel kafaların benimseyebileceği gibi değildi. Bir hayvanın gövdesinde beliren yeni bir organın, duyulan yeni bir istekten ileri geldiğine inanıyor, tek örnekte görülen bu yeniliğin, sonra bütün soya geçtiğini düşünüyordu. İkinci varsayım olmadan, birincisi evrim için pek yetersiz bir açıklamaydı Birinci varsayımın, yeni türlerin gelişiminde önemli bir öğe olmayacağını söyleyen Darwin, kendi issteminde pek geniş bir yer tutmamasına karşın, ikinciyi benimsiyordu. Tek örneklerde ortaya çıkan değişikliklerin bütün bir soya geçktiğini söyleyen ikinci varsayıma Weissmann bütün gücüyle karşı koydu, bu çekişme bugün bile sürüp gitmektedir, ama elde edilen kanıtlar bir kaç ayırıcı durum dışında, soya geçen bütün yeni özeliklerin yumurta hücdresiyle ilgili değişiklikler olduğunu göstermektedir. Bu bakımdan Lamarck’ın evrimi işleyişi konusunda söyledikleri kabul edilemez. Lyell’in yeryuvarlağı ile yaşamın eskiliğini sağlam kanıtlarla savunan Yerbilimin (Jeolojinin) İlkeleri adlı kitabı 1839'da ilk baıldığı zaman dine bağlı kimseler arasında büyük bir yaygarayla karşılandı, oysa kitabın ilk basıkıılarında canlıların evrimi varbsayımını savunan çok şey yoktu. Lamarck’ın kuramlarını titizlikle eleştiriyor, bilimsel kanıtlara dayanarak çürütyordu. Darwin’in Türlerin Kökeni (1859) çıkışından sonra yaptığı yeni baskılarda ise evrim kuramını savunuyordu. Darwin’in kuramı, laisser-faire ekonomi düzeniyle işleyen bitki hayvan dünyasını da kavramaktaydı, Malthus nüfus kuramı da Darwin kuramına dayanıyordu. Bütün canlıların büyük bir hızla yayılmalarından dolayı, her kuşağın büyük çoğunluğunun daha çoğalma çağına varmadan ölmesi gerekmektedir. Dişi bir morina balığı yılda 9 milyon yumurta yumurtlar. Bu yumurtaların hepsinden yeni morina balıkları çıksa, birkaç yıla varmaz bütün deniz silme morinayla dolar, karalar yeni bir sele uğrardı. Fillerden başka, öbür hayvanların hepsinden daha yavaş artan insan topluluklarının da her yirmi beş yıl içinde iki kat olduklarıbilinmektedir. Bütün dünyadaki insanlar bu hızla çoğalsalar, önümüzdeki iki yüz yıl içinde insan sayısı beşyüzbin milyonu bulur. Oysa, hayvan-bitki topluluklarının gerçekte, bir kural gereği sayıca hep aynı düzeyde kaldıklarını görüyoruz; birçok dönemlerde insan toplulukları için de durum aynı olmuştur. Buradan çıkan sonuca göre bir türün, kendilerine üstünlük sağlayan bir yanlarıyla öbürlerinden ayrılan kimi üyelerinin, süreklilikleri daha olağandır. Ayrılan özellik sonradan kazanılma ise arkadan gelen kuşaklara geçmez ama doğuştansa yeni kuşaklarda, küçük bir oran da olsa bile izler bırakabilir.Lamarck zürafanın boyunun yüksek dallara ulaşabilme çabasından dolayı uzadığını, bu çabanın sonucunun da soydan soya geçtiğini düşünüyordu; Weismann’ın yaptığı değişikliklerle Darwinci görüş, zürafaların, uzun boyunluluğa doğuştan bir eğilim taşıdıklarını, böylece açlıktan ölebilme sakıncasından kurtulduklarını, bundan dolayı kendilerinden sonraya da yine uzun boyunlu, daha çok sayıda zürafa bıraktıklarını, kimilerini anne babalarından da daha uszun boyunlu olduklarını söylüyordu. Böylece zürafanın bu özelliği, daha çok uzamanın hiçbir yarar sağlamayacağı zamanına dek gitgide gelişecekti. Darwinin kuramı, nedenelri bilinmeyen tek tük değişikliklerin görülmesine dayanıyordu.Ele alınan herhangi bir çiftin bütün çocuklarının aynı olmadıkları bir gerçekti. Evcil hayvanlar yapay seçmeler sonucunda büyük bir değişikliğe uğruyorlardı: İnsanın aracılığı ile inekler daha çok süt vermeye başlıyor, yarış atları daha hızlı koşuyorlar, koyunlar daha çok yün veriyorlardı. Böyle olgular, seçmenin ne sonuçlar doğurabileceği konusunda Darwin’e en açık kanıtları sağlıyorlardı. Yetiştiricilerin bir balığı keseli bir hayvana, keseli bir hayvanı bir maymuna dönüştüremeyecekleri açıktır; ama bu gibi büyük değişikliklerin, yerbilimcilerin söylediği sayısız çağlar sonucunda ortaya çıkmaları olağan bir şeydir. Hem birçok durumlarda ataların ortaklığına kanıtlar da vardır.Taşıllar, geçmiş çağlarda şimdi çok yaygın olan türlerin karışımı hayvanların yaşadıklarını gösteriyorlar; Pterodaktil, örneğin, yarı kuş yarı sürüngendi. Döllenme konusunda çalışan bilginler, gelişme evreleri sırasında, kimi olgunlaşmamış hayvanlarda daha önceki biçimlerin yeniden ortaya çıktıklarını göstermişlerdir; belli bir dönemde bir memelide, iyice gelişmemiş balık solungaçları göze çarpar; bunlar bütünüyle yarasızdırlar, ancak soyla ilgili tarihsel değişikliklerin başlıca etkenlerinin evrim ile doğal seçme olduğunu göstermek için, türlü yollardan kanıtlar ileri sürüldü. Darwincilik, tanrıbilime Copernicus’culuktan geri kalmayan bir tokat oldu. Yalnızca Oluş’ta ileri sürülen ayrı ayrı yaratma eylemlerini, türlerin değişmezliklerini çürütmekle; yaşamın başlangıcından beri, dinsel görüşe taban tabana karşıt, usa sığmaz bir sürenin geçmiş olduğunu söylemekle; Tanrı’nın iyilikseverliği ile açıklanan, canlıların çevreye uyumunu, doğal seçmeye bağlamakla kalmıyor; hepsinden kötüsü, evrimciler insanın daha aşağı hayvan soylarından türediğini savunuyorlardı. Tanrıbilimcilerle öğrenimsiz kimseler, gerçekte kuramın bu noktasına takılıyorlardı. “Darwin insanın maymun soyundan geldiğini söylüyor!” diye bir yaygara koptu dünyada. Bir ara, kendisinin maymuna benzerliğinden dolayı böyle bir şeye inandığı söylendi( oysa benzemiyordu). Çocukken, öğretmenlerimden biri büyük bir ciddiyetle şu sözleri söylemişti bana: “Darwinci olursan acırım sana, bir kimse hem Darwinci hem Hıristiyan olamaz ” Bugün bile Tennessee’de evrim öğretisini yaymak yasalara aykırıdır, çünkü bu öğreti Tanrı Sözü’ne karşıt sayılmaktadır. Her zaman olduğu gibi tanrıbilimciler, yeni öğretinin doğuracağı sonuçları, bu öğretiyi savunanlardan daha çabuk kavradılar, ileri sürülen kanıtlara inanmakla birlikte dine bağlılıkla dirediler, önceki inançlarını ellerinden geldiğince korumaya çabaladılar.Özellikle 19. yy’da yeni öğreti, savunucularının düşüncesizliğinden dolayı büyük bir hız gösterdi, bu yüzden, daha ağır bir değişikliğe alışılmadan arkadan öbürü bastırdı.Bir yeniliğin bütün sonuçları bir arada ileri sürülürse, alışkanlıkların tepkisi öyle büyük olur ki bu tepkiyle yeniliğin bütünü birden terslenir; oysa her on ya da yirmi yılda bir atılacak yeni adımlarla, gelişme yolu boyunca büyük bir direnmeyle karşılaştırılmadan, alışkanlıklar yavaş yavaş uyutabilirdi. 19. yy’ın büyük adamları gerekliği sugötürmez bir devrimi başarıya ulaştırmak istiyorlardı ama kafaları ya da politikaları yönünden devrimci görünmüyorlardı Yenilikçilerin bu yolda davranışları 19. yy’ın önemli bir gelişme çağı olmasına yardım etti. Tanrıbilimciler yine de neyin olup bittiğini halktan daha iyi biliyorlardı. İnsanların ruhlarının ölümsüz olduğunu, maymunlarda ise böyle bir özelliğin bulunmadığını;İsa’nın maymunları değil insanları kurtarmak için öldüğünü; insanlarda tanrıca bir iyiyi kötüyü ayırt etme duygusu varken, maymunların yalnızca içgüdülerle hareket ettiklerini söylemeye başladılar.İnsanlar kavranamayacak ölçüde uzun süreli bir değişme sonunda maymundan türedilerse, tanrıbilimce önemli olan bu özellikleri ne zaman kazandılar ansızın? 1860'ta, Türlerin Kökeni ’nin yayımlanmasından bir yıl sonra, Bishop Wilberforce Darwinciliğe karşı gürleyerek bayrak açtı: “Bu doğal seçme ilkesi bütünüyle Tanrı Sözü’ne aykırıdır” Ama bütün parlak sözler bir işe yaramadı, Darwin’i başarıyla savunan Huxley bu sözleri herkesin anlayabileceği biçimde çürüttü. Artık kilisenin kızgınlığına kimse aldırmıyşordu., Chichester başpapazı bir ünversite vaazında: “İlk anne-babamızın yaratılış tarihini, anlamındaki bütün açıklığa karşın kabul etmeyip, yerine şu modern evrim düşünü koymak isteyenler isnoğlunun kurtuluşu konusundaki bütün düşünceleri çökertmlektedirler diyerek Oxford’u uyarmaya çalıştı; öte yandan Kutsal Kitap’ın öğretisine bağlı olmamakla birlikte dinsel görüşü destekleyen Carlyle, Darwin için “kirli bir dinin peygamberi” dedi, ama bunların hepsi etkisiz kaldı, hayvan-bitki türlerinin evrimi kısa zamanda biyoloji bilginlerinin de benimsedikleri bir öğreti oldu. Bilim çevreleri dışındaki laik Hıristiyanların tutumuna, Gladstone’un davranışı iyi bir örnektir. Bu özgür önder bütün çabalarına karşın, çağının özgür bir çağ olmasını önleyemedi.1864'te tanrısal adalete inanmadıklarından dolayı cezalandırılmaları istenen iki din adamıyla ilgili karar, Kral’ın Danışma Kurulu’nun yargıçları tarafından bozulunca, Gladstone öfkelenerek, böyle olursa “Hıristiyanlığa inanmak ya da inanmamak konusunda büyük bir umursamazlık”çıkar ortaya demişti. Darwin’in kuramı ilk basıldığında, yöneticiliğe alışmış bir kimsenin halden anlarlığıyla: “ ... evrim diye adlandırılan gerçek ile, Tanrı’nın yaratma işine son verilmiş; dünyayı değişmez yasalar uyarınca yönetmekten uzaklaştırılmıştır” demişti. Ama Darwin’e özel bir kızgınlığı yoktu. Yavaş yavaş tutumunu değiştirdi, 1877'de Darwin’le görüşmeye bile gitti, bütün görüşme sırasında da durmadan Bulgar zulmünden söz etti Ayrıldığında Darwin büyük bir saflıkla : “ Böyle büyük bir adamın beni görmeye gelmesi ne onur!” diyordu. Gladstone’da Darwin’le ilgili izlenim kalıp kalmadığı konusunda ise tarih bir şey söylemiyor. Günümüzde din, evrim öğretisine göre kendisine çekidüzen vermiş, yeni yeni düşünceler bile sürmüştür ortaya. “Çağlar içinden akıp gelen, büyüyen bir amaç vardır.” Evrim de Tanrı’nın kafasındaki bir düşüncenin çağlar boyunca açılmasıdır. Bütün bunlardan, Hugh Miller’i uzun uzun uğraştıran, hayvanların, birbirlerine korkunç boynuzlarla, can alıcı iğnelerle işkence ettikleri o çağlarda her şeye yeterli tanrının elini kolunu bağlayıp daha da çetin işkence yollarıyla gitgide daha artan zorbalığıyla, eninde sonunda insanoğlunun ortaya çıkmasını beklediği anlaşılıyordu. Büyük Yaratıcı, neden böyle birtakım işlemlere başvurdu da doğrudan doğruya gerçekleştirmedi isteğini, bunu söylemiyorlar modern tanrıbilimciler. Bu konudaki şüphelerimizi giderecek çok şey de söylemiyorlar. Alfabeyi öğrendikten sonra, elde ettiği şeyin bunca emeğe değmediğini düşünen bir çocuk gibi duyuyoruz kendimizi ister istemez. Ama bu bir beeni sorunudur ne de olsa. Evrim üzerine kurulmuş herhangi bir tanribilim ögretisine yöneltilebilecek daha agir bir itiraz vardir. Bin sekiz yüz altmiş, yetmiş siralarinda, evrimin geçen moda oldugu siralarda, gelişim, dünyanin bir yasasi sayiliyordu. Her yil daha zengin olmuyor muyduk, azalan vergilere karşin bütçemiz gitgide kabarmiyor muydu? Bizim kurdugumuz düzen dünyaya parmak isirtan bir düzen, parlamentomuz bütün yabanci aydinlarin öykündügü bir örnek degil miydi? Gelişimin hep böyle sürüp gideceginden şüphe den var miydi? Böyle bir dünyada evrim, günlük yaşamin bir genellemesinden başka bir şey degildi sanki. Ama zaman bile daha düşünceli olanlar, öbür yani görebiliyordu. Gelişim saglayan yasalar çöküşü de hazirlar. Bir gün Güneş soguyacak, yeryüzünde yaşam sona erecektir. Bütün bu hayvanlar, bitkiler tarihi, çok sicak çaglarla çok soguk çaglar arasinda bir geçiş dönemi olacaktir. Evrensel gelişim yasasi olmayacak, yalniz enerji dagilimi yüzünden dünyada hafifçe aşagiya egimli, yukari aşagi bir salinma görüleceketir. Bugünkü bilimin çok olagan saydigi, bizim umutlari kirilmiş kuşagimizin da kolayca inanacagi bir sondur bu. Şimdiki bilgimizle kavrayabildigimiz ölçüde evrimden, iyimser sonuçlara baglayabilecegimiz bir felsefe çikarilamaz. (B. Russel, Din ile Bilim s: 44-53) “1953'te, AmerikalıJ ames Watson ve İngiliz Francis Crick tarafından DNA’nın ikili sarmal yapısına, ardından, 60'lı yıllarda, genetik kodlama mekanizmasına ilişkin olağanüstü keşiflerden sonra, moleküler biyoloji yerinde saymıştı. Vaatlerini tutar gibi görünmüyordu. Öyle ki bakterilerin genomu (genetik programın bütünü) üzerindeki çalışmalardan hayvana ve a fortiori insana gidecek olan yol, geçit vermez görünüyordu. Bakteri genomonon işlevi hakkında çok şey bilinyordu; ama gelişmiş hayvanların DNA’sı ile çalışılmaya geçildiğinde bir bilmece silsilesiyle karşılaşıylıyordu. Genetiğin pratik uygulamalarının belirsiz bir geleceğe itelenmiş olmasından kaygı duyulabilirdi. Derken 70'lı yıllarda, Amerikalı araştırmacılardan oluşan küçük bir ekipten, hayvan ya da insan geninin bir bakteri aracılığıyla yeniden üretimine olanak sağlayan bir bilim kurgu tekniği çıkageldi. Bir geni ya da insan genomunun bir kısmını parçalara ayırıp sonra da bunu bir bakterini içine yerleştirmek mümkün oluyordu. Bakteri, birkaç saatte, içine yerleştirilmiş genin kopyasıyla birlikte, milyarlarca örnek halinde çoğalıyordu (bu işlem, genlerin klonajı diye adlandırılır). Ve bu milyarlarca bakteriden yola çıkarak, bir okadar sayıdaki gen saf halre eldeediliyordu. Araştirmacilar daha da iyisini başardilar: bir insan genini bir bakteri içinde klonlamayi başardiklari andan itibaren, o genin bakterinin içinde faaileyt göstermesini sagladilar, yani sonuçta, bakteriye, genin kodladigi proteini büyük miktarlarda üretebildiler. Aslinda, bakterideki bir genin açiga çikarilmasi çok özel koşullar gerektirir ve genellikle işlem çok hassastir. Böylece, istenen genlerin ve iyi belirlenmiş genom parçalarinin tükenmez mitarlarina ulaşilmasi, genetik araştirmasinda yepyeni ufuklar açiyordu. Ve tip alaninda dogrudan DNA üzerinde çalişilabilecegi düşüncesi dogmaya başliyordu. Bugün moleküler biyoloji diye kutsanana terim, sözü uzatmaktan başka bir terim degildir. Eger biyoloji moleküler degilse, o zaman başkaca nasil bir biyoloji olabilecegini sormak gerekir. Ama bu her zaman böyle degildi. 1940'li yillarda DNA molekülü keşfedildiginde, bazilari , başlangiçta, hiçbir işe yaramayan kimyasal bir maddenin söz konusu oldugunu düşündü! 1978'de Jean Dausset’in laboratuvari, DNA konusundaki çalişmaya henüz bütünüyle yabanciydi... Genetik etkenler (DNA’nın taşıdığı bilgiler), tıpkı otuz yıl önce Jean Dausset’nin yaptığı gibi hücreler, daha doğrusu hücre yüzeyleri incelenerek, hep dolaylı bir biçimde çözümlenirdi. Çok uzun bir süre bir antite olarak kalan genin kendisi üzerinde hiç çalışılmazdı. Yalnız şu da var: hiçbir şey, bir proteini çözümlemektendaha zor değildir. Gen, ince ve uzun bir iplikçikten başka bir şey değilken protein en sık olarak küresel bir biçimle karşımıza çıkar. Aslında, proteinin kendisi de bir iplikçiktir; ama az çok düzensiz bir küre biçimini alacak şekilde kıvrılmış ve yumaklaşmış bir iplikçik. Birbirine çok benzer yapıdaki iki alel (bir bakıma iki kardeş gen) ile kodlanmış iki proteni birbirinden ayırmak, özellikle nankör bir iş demektir. Buna karşilik, genetik dehanin en yeni araçlari yakindan bilindigi anda DNA molekülünü oluşturan kimyasal elementler zincirini okumanin da çok daha kolay oldugu ortaya çikiyordu. Çünkü DNA tipki manyetik bir bant gibi, çizgisel tarzda okunur... Proteinler üzerndeki araştirma, kazanilmiş bir alandi. Üstelik çok önemli bir alan. Birilerinin, bu alana incelemeyi sürdürmesi zorunluydu. Zaten bugün arayştirma teknikleri de daha etkin bir hale gelmişti. Proteinlerin yapi ve işlevlerini çözümlemeye olanak saglayan biyolojik araçlar, hele bir tümüyle yetkinleşsinler, yakin bir gelecekte, genetik işlemlerdeki patlamadan sonra proteinleri kullanma çalişmasindan da benzer bir patlamayla pekala karşilaşilabilirdi. Araştirmanin yollari da tipki yaşaminkiler gibi, çogu zaman gereginden fazla uzundur. DNA’ya duyulan hayranlık, onun olağanüstü bir kolaylıkla çözümlenebilmesinden kaynaklanır. Bir kez tekniklerde ustalaştınız mı, kolayca başarılı olursunuz.Her şeyin kökeni olarak görülen bu tanrısal moleküle dokununca, kendinizi sihirbaz sanırsınız. Gerçekte bu, ölü, haretesiz bir molekül, bir kayıt kütüğüdür. Protein ise tersine, olağanüstü duyarlı ve tepki veren canlı bir maddedir. Toprak ve taş için bitkiler ne ise DNA için de proteinler odur. toprağa temel atıp tuğlaları döşemek, yaşamın bahçesini ekip, bakımını yapmaktan daha kolaydır. (Daniel Cohen, Umudun Genleri, s: 25-29 )

http://www.biyologlar.com/evrim-nedir

Bakteriyofaj Nedir ?

Bakteri yiyen canlı bakterilerin büyümesine engel olan onları eriten ve ancak elektron mikroskopla görülebilen bir ültravirüs. Süzgeçlerden geçen ve kültürden kültüre nakledilmesi mümkün olan bu ultra- virüs bakteri kolonilerinde görülebilen değişiklikler yapabilmekte ve bakteri hücrelerini hiç bir artık bırakmadan eritebilmektedir. bakteriyofajlar ın bilhassa zararlı bakterilerden meydana gelen çeşitli salgınlarda bakterileri yok etmek suretiyle önemli rolleri vardır Synechococcus bakterisinin fajı S-PM2 elektron mikroskobu fotoğrafı Bakteriyofaj bakteri ve Yunanca phagein yemek fiilinden tÜretme bakterileri enfekte eden bir virüstür. Terim genelde kısaltılmış hali olan faj olarak kullanılır. Ökaryotları hayvan bitki ve mantarları enfekte eden virüsler gibi fajlarda da büyük bir yapısal ve işlevsel çeşitl ilik vardır. Tipik olarak proteinden oluşan bir kabuk ve içinde yer alan genetik malzemeden oluşurlar. Genetik malzeme dna veya RNA olabilir ama genelde 5 – 500 kilo baz çifti uzunluğunda çift sarmallı dnadan oluşur. Bakteriyofajlar genelde 20 ila 200 nm arası büyüklükte olurlar. Fajlar her yerde mecutturlar ve bakterilerin yaşadığı ortamlarda örneğin Toprakta veya hayvan bağırsaklarında bulunabilirler. Faj ve diğer virüslerin en yoğun doğal kaynaklarından biri deniz suyudur. Deniz yüzeyinde mililitrede 109 etkin faj taneciği virion bulunmuştur ve deniz bakterilerinin %70i fajlar tarafından enfekte olmuş olabilirler Tarihçe 1913te Britan yalı bakteriyolog Frederick Twort bakterileri enfekte edip öldüren bir etmen keşfetmiş ama konuyu daha fazla ta kip etmemiştir. Fransız-Kanadalı mikrobiyolog Felix dHérelle 3 eylül 1917de dizanteri basilinin düşmanının görünmez bir mikrobunu keşfettiğini açıklayıp ona bakteryofaj adını verdi Çoğalması bakteriyofajların, litik veya lizogenik hayat döngüleri olabilir bazılarında her ikisi de olur. T4 fajı gibi öldürücü fajlarda görülen litik döngüde virionun çoğalmasının hemen ardından konak hücre parçalanır ve ölür. Hücre ölür ölmez virionların kendilerine yeni bir konak bulmaları gerekir. Lizo genik döngü buna tezat olarak konak hücrenin parçalanmasına neden olmaz. Lizogenik olabilen fajlara ılımlı fajlar temperate phage denir. Viral genom konak genoma dahil olur ve oldukça zararsız bir şekilde onunla beraber eşlenir. Konak hücrenin sağlığı yerinde olduğu sürece Virüs sessiz bir şekilde varlığını sürdürür ama konağın şartları bozulursa örneğin besin kaynaklarının tükenmesi durumunda endojen fajlar profaj olarak adlandırılırlar etkinleşirler. Bir çoğalma süreci başlar sonucunda konak hücre parçalanır. ilginç bir şekilde lizogenik döngü konak hücrenin çoğalmasına izin verdiği için hücrenin yavrularında da virüs varlığını devam ettirir. Bazen profajlar inaktif oldukları dönemde bakteri genomuna yeni işlevler kazandırarak konak bakteriye fayda sağlarlar bu olguya lizogenik dönüşüm lysogenic conversion denir. Bunun iyi bilinen bir örneği Vibrio cholera nın zararsız bir suşunun bir faj tarafından enfekte edilerek kolera hastalığı etmenine dönüşümüdür. Bağlanma ve giriş T4 bakteriyofajının yapısı. 1. baş 2. Kuyruk 3. Nükleik asit 4. Kapsit 5. Yaka 6. Kın 7. Kuyruk lifleri 8. Ekserler 9. Taban plakası.Konak hücreye girmek için bakteryofajlar bakterinin yüzeyindeki öz gül reseptörlere bağlanırlar bunlar arasında lipoPolisakkaritler teikoik asitler proteinler sayılabilir. Bu nedenle bir bakteryofaj ancak bağlanabileceği reseptörler taşıyan bakterileri enfekte edebilirler. Faj virionları kendiliklerinde hareket etmediklerinden dolayı kendi reseptörleriyle solüsyondayken rassal olarak buluş up bağlanırlar. Karmaşık bakteryofajlar örneğin T-çift fajları genetik malzemelerini hücrenin içine enjekte etmek için şırınga benzeri bir hareket kullanırlar. Uygun reseptörle temas kurduktan sonra kuyruk lifleri taban plakasını hücre yüzeyine yaklaştırırlar. iyice bağlandıktan sonra kuyruk büzülür bu da genetik malzemenin dışarı itilmesine neden olur. Bazı fajlar nükleik asiti hücre zarından içeri iter bazıları hücre yüzeyine birakır. Başka yöntemlerle genetik malzemlerini içeri sokan bakterifajlar da vardır. protein ve Nükleik asit sentezi Kısa süre bazen Dakikalar içinde bakteri ribozomları viral mrnanın Proteine çevirimine translasyonuna başlarlar. RNA-fajlarında RNA-replikaz bu sürecin başlarında sentezlenir. Erken sentezlenen proteinler ve virionla gelen bazı proteinler bakterinin RNA polimerazını modifiye edip onun viral mrnayı tercihen çevirmesine neden olabilirler. Konağın kendi Protein ve nükleik asit sentezi de bozularak viral ürünlerin sentezine yönlendirilir. Bu ürünler ya hücreyi parçlamaya yarayacaklaklar ya yeni virionların oluşmasına yardımcı olacaklar veya yeni virionları oluşturacalardır. Virion oluşumu T4 fajları durumunda yeni fajların inşası özel yardımcı molekülleri gerektiren karmaşık bir süreçtir. Önce taban plakası oluşur kuyruk onun üzerinde büyür. kafa kapsidi ayrı olarak oluşup kendiliğinden kuyruk ile birleşir. Henüz bilinmeyen bir şekilde dna kafanın içine sıkı bir şekilde yerini alır. Bütün süreç yaklaşık 15 dakika alır. Virionların salınımı Fajlar ya hücre parçalanması lizis veya salgılanma yoluyla salınırlar. T4 fajları durumunda hücre içine girmelerinden 20 Dakikadan biraz sonra hücre parçalanması yoluyla sayıları 300ü bulabilen faj salınır. Bunun gerçekleşmesi hücre duvarındaki peptidoglikanı parçalayan endolizin adlı enzim sayesinde olur Bazı virüler ise parazite dönüşüp konak hücrenin sürekli olarak yeni virüs tanecikleri salgılamasına neden olabilirler. Yeni virionlar hücre zarından tomurcuklanarak koparlar beraberlerinde hücre zarının bir kısmını da götüren bu fajlar örtülü virüse olarak ortama salınırlar. Salınan virionların her biri yeni bir bakteriyi enfekte edebilir. Faj terapisi Bir bakteriyi enfekte etmek üzere ona bağlanmakta olan bakterilerin şematik gösterimiKeşiflerinin ardında fajlar anti-bakteriyel etmen olarak denenmişlerdir. Ancak antibiyotikler keşfedilince bunların fajlardan daha kullanışlı oldukları görülmüştür ve Batıda faj tedavisi üzerine yapılan araştırmalar bırakılmıştır. Bun karşın Sovyetler Birliğinde 1940lardan beri antibiyotiklere alternatif olarak kullanımı devam etmiştir. Bakteri suşlarında doğal seleksiyon yoluyla antibiyotik direncinin oluşması bazı tıbbi araştırmacıları faj tedavisini antibiyotik tedavisine bir alternatif olarak tekrar değerlendirmeye sevketmiştir. Antibiyotiklerden farklı olarak fajlar milyonlarca yıldır süregeldiği gibi bakterilerle beraber evrimleştikleri için sürekli bir direncin oluşma olasılığı yok sayılabilir. Ayrıca etkili bir faj özgül bakterisini tamamen bitene kadar enfekte etmeye devam edecektir. Belli bir faj genelde ancak belli bir bakteri tipini enfekte edebildiği için ki bu birkaç bakteri türü olabileceği gibi bir türün sadece bazı alt türleri de olabilir bakteri tipinin doğru tanımlandığından emin olmak gerekebilir bu da 24 saat sürebilir. Faj terapisinin bir diğer avantajı başka bakterilere zarar gelmeyeceğinden dar spektrumlu antibiyotik terapisine benzemesidir. Ancak sıkça olduğu gibi birden fazla bakterinin beraberce neden oldukları enfeksiyonlarda bu bir dezavantaj oluşturabilir. Bakteryofajların bir diğer sorunu vücudun bağışıklık sisteminin saldırısına uğramalarıdır. Fajlar enfeksiyonla doğrudan temas durumunda etki gösterirler onun için açık bir yaraya uygulanmaları en iyi Sonuç doğurur. Sistemik enfeksiyonlarda bu pratik olarak mümkün değildir. Sovyetler birliğinde diğer tedavilerin çalışmadığı durumlarda gözlenen başarılı sonuçlara rağmen çoğu araştırmacı faj terapisinin tibbi bir geçerliliğe ulaşacağına şüphe ile bakmaktadır. Faj tedavisinin etkinliğini belirlemek için büyük ölçekli klink testler yapılmamıştır ama antibiyotik dirençli bakteri türlerinin çoğalmasından dolayı bu konuda araştırmalar sürmektedir. Ağustos 2006da ABD gıda ve ilaç idaresi Food and Drug Administration bazı etlerde Listeria monocytogenes bakterisinin öldürülmesi için bakteryofaj kullanımını onaylamıştır.  

http://www.biyologlar.com/bakteriyofaj-nedir-

Yatay gen transferi

Yatay gen transferi, bir organizmanın, ikinci bir organizmadan türemeden, o ikinci organizmaya ait genetik malzeme edinmesini sağlayan herhangi bir süreçtir. Buna karşın, dikey transfer bir organizmanın kendi atalarından (yani ebeveynlerinden) genetik malzeme edinmesidir. Genetik bilmi bu iki transfer biçiminden daha yaygını olan dikey transfere odaklanmış olmakla beraber, yakın zamanda yatay transferin de anlamlı bir olgu olduğu bilincine varılmıştır. Yatay gen transferinin yapay biçimi bir genetik mühendislik şeklidir. Yatay gene transferi ilk defa 1959'da, farklı bakteri türleri arasında antibiyotik direncinin aktarılabildiğinin gösterilmesi ile keşfedilmiştir. Japon araştırmacılar tarafından yapılan bu buluşunun ne anlama geldiği Batı bilimcileri tarafından anlaşılması için bir 10 yıl geçti. Michael Syvanen bu konuda çalışmış ilk batılı araştırmacılardandır. Syvanen, 1984'ten itibaren yatay gen transferi üzerine bir dizi makale yayınlamış, yatay gen trasnferinin olduğunu öngörmüş, yeryüzünde yaşamın başlangıcından itibaren evrim tarihini etkilemiş olan bir süreç olduğunu belirtmiştir. Gen ve genom çalışmaları prokaryotlar arasında önemli miktarda yatay gen transferi olduğunu göstermekteler. Bu olgunun tek hücreli ökaryotlar için de anlamlı olduğu görülmektedir. Bulgular, protistaların evriminde de yatay gen transferinin önemli bir rol oynadığını göstermektedir. Bitki ve hayvanların da bu olgudan etkilendiğine dair belirtiler vardır, ama bunun ne derece önemli olduğu açık değildir Virüsler Mimivirüs adı verilen virüs, sputnik adlı uydu virüs tarafından enfekte edilebilir. Sputnik virüsünün genlerinde 13'ü herhangi başka hiçbir gene benzemekle beraber, 3 tanesi mimivirüs ve mamavirüs genleriyle yakın ilişkilidir. Bu genlerin mimivirüsün kendini paketlemesi sırasında edinilmiş olduğu tahmin edilmektedir. Bu bulgular, bazı uydu virüslerin, virüsler arasında yatay gen transferi yapabileceğini göstermektedir. Bakteriyofajların bakteriler arasında gen taşıması da buna benzetilebilir. Prokaryotlar Yatay gen transferi birbirine uzak akraba olan bakteriler arasında dahi yaygındır. Bu süreç, antibiyotik direncinin baçlıca nedeni olarak sayılmaktadır; bir bakteri direnç edinince, direnç genini kısa sürede başka türlere de aktarabilmektedir. Enterik bakteriler, içinde bulundukları bağırsaktaki diğer bakterilerle genetik alışverişte bulunurlar. Yatay gen transferi için başlıca üç mekanizma vardır: Transformasyon, hücre içine yabancı genetik malzeme (DNA veya RNA) girmesi sonucu hücrenin kalıtsal değişime uğramasıdır. Bu süreç bakterilerden göreceli olarak yaygındır, ama ökaryotlarda daha enderdir. Transformasyon, deneysel, endüstriyel amaçlar için bakterilere yeni genlerin sokulması için sıkça kullanılır. Bakınız moleküler biyoloji ve biyoteknoloji maddeleri. Transdüksiyon (genetik), bakteri DNA'sının bir virüs (bakteriyofaj, veya kısaca faj) aracılığıyla bir bakteriden diğerine taşınması. Bakteriyel konjugasyon, bir bakterinin hücresel temas yoluyla DNA'sını bir diğer bakteriye aktarması. Ökaryotlar DNA dizilerinin analizi ökaryotların içinde, mitokondri ve kloroplast genomlarından çekirdek genomuna, yatay gen transferinin olmuş olduğuna işaret etmektedir. Endosimbiyoz teorisinde belirtildiği gibi, kloroplast ve mitokondrilerin kaynağı, ökaryotik hücrelerin atası bir hücrenin içindeki bakteriyel endosimbiyontlardı. DNA dizi karşılaştırmaları farklı türler arasında pek çok genin yatay transferini göstermiştir, bu transferlerin bazıları farklı üst-alemler arasında dahi gerçekleşmiştir. Bakterilerden bazı mantarlara, özellikle Saccharomyces cerevisiae mayasına yatay gen transferi iyi belgelenmiştir. Aduki fasulya kınkanatlısının kendi endosimbiyontu Wolbachia 'dan genetik malzeme edindiğine dair de kanıtlar vardır. Wolbachia bakterilerini artropod ve filaria nematodlarında önemli bir genetik malzeme kaynağı olduğu gösterilmiştir Rafflesiaceae bitki ailesinin parazitlerinin, konak bitkiden bazı mitokondri genlerini yatay transfer yapmış olduğu da gösterilmiştir. Ayrıca, henüz kimliği bilinmeyen bir bitkinin kloroplastından Phaseolus fasulyasının mitokondrisine transfer olduğu gösterilmiştir.  

http://www.biyologlar.com/yatay-gen-transferi

BİYOTEKNOLOJİK GELİŞMELER

BİYOTEKNOLOJİK GELİŞMELER

Bu makale iki bölümden oluşmuştur. Birinci bölümünde, biyoteknoloji ile değişen dünya düzeninde olası devrimsel gelişmeler ve söz konusu gelişmelerin eğitim bilimleri açısından öngörülen doğurgusu ele alınmıştır.

http://www.biyologlar.com/biyoteknolojik-gelismeler

Virüsler Hakkında Bilgi

Virüsler Hakkında Bilgi

Virüs, canlı hücreleri enfekte edebilen mikroskopik taneciktir. Virüsler ancak bir konak hücreyi enfekte ederek çoğalabilirler.

http://www.biyologlar.com/virusler-hakkinda-bilgi

Antikorlar: Mutasyonlara Hiç Bu Kadar İhtiyaç Duyulmamıştı

İnsanoğlu tarihi boyunca hastalıklardan pek çok sıkıntı çektiği gibi, hala bu sıkıntıları aşmak için yollar aramakta. Kimi zaman ciddi enfeksiyonlar, kimi zamanda basit enfeksiyonlar geçirsek de, hepimiz hemfikiriz ki; hastalıklar can sıkıcıdır! Peki bizim için can sıkıcı bu sürece sebep olan virüsler ve bakteriler gibi dış etmenleri vücudumuz nasıl önce nasıl tanıyor ve nasıl hafızasında tutuyor? Hastalıklar konusunda büyük bir avantajımız var ki, geçirdiğimiz bir hastalığa genelde tekrar yakalanmıyoruz. Bu görevi üstlenen kazanılmış bağışıklık sistemi elemanları, görevlerini şaşırtıcı bir teknikle yerine getiriyor ve bizi aynı hastalığa tekrar yakalanmaktan koruyor. Gelin, bunun için önce bağışıklık sistemimizin kısaca nasıl çalıştığını tekrar hatırlayıp, bu ajanların lenfositler üzerinde gerçekleştirilen genetik rekombinasyonlarla (yeniden düzenlenme) nasıl tanındığına ve bunun hayati önemine bir bakalım. Vücudumuz ile dışarıdan gelen tehditlerin ilk karşılaşması ilk olarak deri ve ağız-burun açıklıklarımızın iç yüzeyini örten mukoza zarlarında gerçekleşir. Bu yapılarımız da koruma için özelleşmiş salgılar üretir. Normal koşullarda; yaralanma ve benzeri bir durum yoksa, buralardan vücudumuza mikropların girmesi bir hayli zordur. Fakat tabii ki bu her zaman işe yaramamakta ve bu ilk savunma hattından içeriye mikroplar girmekte. İşte bu noktadan sonra bağışıklık sistemimiz devreye girer ve bu ilk savunma hattını aşan mikroplara karşı amansız savaşına başlar. Öncelikli olarak mikropların girdiği bölgedeki vücut hücreleri çeşitli moleküller salgılayarak o bölgede bir yangı oluşmasını ve bölgedeki kılcal kan damarlarının genişleyerek daha fazla geçirgenlik kazanmalarını sağlar. Ayrıca yaralı bölgedeki kan damarları yine bazı molekülleri salgılayarak fagositik (hücre yiyen) akyuvarların bölgeye çağırılmasında rol oynar. Böylece alarm verilen bölgeye akyuvarlarımız hızla ulaşır. Dışarıdan gelen mikropların dış yapılarında bulunan çeşitli proteinleri tanıma özelliğine sahip ve fagositoz yapabilen akyuvarlarımız sayısını arttırır tanıdığı bütün davetsiz misafirleri yutmaya başlar. Bağışıklık sistemimizin bu kısmı çok özelleşmiş tanıma sistemleri kullanılmadığı için ve sonradan kazanılan tanıma sistemleri olmadığı için kalıtsal bağışıklık sistemi olarak adlandırılır. Peki, buraya kadar kısaca gözden geçirdiğimiz kalıtsal bağışıklık sistemimizin gözünden kaçan ya da bu savunma sisteminin yok etmekte zorlandığı mikroplar yok mu? Tabii ki var. Peki bunları kim, nasıl tanıyor? İşte asıl soruya şimdi geldik. Bildiğimiz gibi kanımızda fagositoz yapan akyuvarlar dışında başka akyuvar tipleri de var. Bu akyuvar tiplerinden biri; T hücrelerini, NK (doğal öldürücü) hücrelerini ve B hücrelerini kapsayan lenfositlerdir. Lenfositler; diğer kan hücreleri gibi fetusun kemik iliğindeki ya da karaciğerindeki pluripotent denilen kök hücrelerinden oluşur ve gelişimlerini tamamladıkları yere göre işlev kazanarak T veya B hücreleri olarak adlandırılırlar. Bu lenfositler edinilmiş bağışıklık sistemimizin yapı taşlarını oluşturular. Burada ele alıp inceleyeceğimiz temel lenfosit “B hücreleri” olacak. B hücrelerinin dış yüzeyinde yabancı yapıları tanıyan ve onlara bağlanan ‘antikor’ olarak adlandırdığımız glikoprotein yapılar vardır. Bu antikorlar immunoglobulinler (Igs) olarak da adlandırılır. Tipik bir antikor molekülü Y şeklinde bir yapıdadır ve 4 polipeptid zincirinden oluşur. İç taraftaki diğerine göre uzun olan zincire ağır zincir, dıştaki kısa zincirlere ise hafif zincir denir. Antikorun bu temel yapısı yabancı proteinlere bağlanmak için hayati önem taşır. Çünkü ağır ve hafif zincirin ucundaki bağlanma bölgesi ‘antijen’ tanıma özelliğine sahiptir. (Şekil 1) Şekil 1. Tipik bir antikor yapısı. Bu özel yapılara sahip B hücreleri yoğun olarak dalakta konumlanarak kan içerisinde önüne gelen her yapıya dokunur ve antikor yapısının bağlanabildiği antijeni arar. İşte bu noktada bu antikor yapılarının hangi antijenleri tanıyabildiği çok önemlidir. Kanda dolaşan farklı antijenleri tanımak için farklı antikorlar üretmek gerekmektedir ve B hücreleri bu işte gerçekten çok ustadır! Peki nasıl? Yukarıda bahsettiğimiz antikor yapısının uç bölgelerinde tanıma bölgeleri olduğunu söylemiştik. Bu uçların sürekli ve rastgele olarak değişmesi, herhangi bir antijeni tanıma ve yakalama olasılığı yüksek antikorların üretilmesi hayati önem taşır. Tek tip üretilen antikorlardan çok fayda göremeyeceğimiz belli! B hücreleri bu çeşitliliği sağlamak için, normal vücut hücrelerinde göremeyeceğimiz bir mekanizmayla tanıma bölgelerini kodlayan, yeri ve sayısı belirli olan çok sayıdaki genleri çok farklı yerlerden ve farklı biçimlerde kesip-biçerek ortaya tamamen yeni bir DNA dizisi çıkarır! Bu kesip çıkarılan bölgeler o kadar farklı şekillerde yeniden yapılandırılır ki, ortaya çıkan olasılık şaşırtıcı düzeyde olur. Ve bu genomdan kodlanan tanıma bölgeleri bir öncekinden farklı bir yapı kazanıp, farklı antijenler tanıyabilir. (şekil 2) Şekil 2. B hücrelerinin genomunda kalın zinciri kodlayan gen bölgelerindeki V, D, J bölgeleri ve bu bölgelerin yeniden düzenlenmeleri. Normalde bütün hücrelerimizdeki DNA’ların aynı olduğunu bilirdik, değil mi? Evet ama B hücrelerin buna dahil olmadığını söylebiliriz! B hücrelerindeki bu rekombinasyonal mutasyonlar hayat kurtarıcı özelliğe sahipler. Ve B hücreleri bu rekombinasyonu özel olarak idare eden ve özellikle hata yapmaya eğilimli enzimler üretirler. Son olarak; çok farklı şekillerde dizayn edilen bu antikorlar bütün vücudumuzda devriye gezer ve antijen arar. Antijenleri bulduğu zaman ise, bir kısmı büyük bir hızla kendilerini çoğaltır ve yüzeyindeki antikorları hücre dışına salgılar. Hücre dışına çıkan antikorlar yüzeyi ile yabancı maddelere tutunur ve onları işaretleyerek etkisiz hale getirmeleri için fagositik hücrelere sunar. (Bu antikor salgılayan değişime uğramış B hücrelerine plazma hücreleri de denir.) Aynı antikoru içeren bir kısım B hücresi ise kendini bellek hücreleri olarak ayırır ve uzun süre kanımızda kalırlar. Daha sonra aynı antijenle karşılaştığında bellek hücreleri bu antijeni tanır. Böylece vücudun erken ve hızlı tepki üretmesini sağlarlar. Önceden hastalık simülasyonları: Aşı Yukarıda son olarak sarfettiğim cümle size de bir şeyleri çağrıştırmış olmalı diye düşündüm ve bu mekanizmayı kullanarak üretilen aşılardan kısaca bahsetmek istedim. Aşı; çocukların korkulu rüyası! Siz de çocukken kızamık aşısı oldunuz değil mi? Ya çiçek aşısı? Peki siz korkup bağıran çocuklardan mıydınız? Yoksa korktuğunu belli etmeyen, sınıfta kahraman olma umuduyla en öne atlayanlardan mı? Çocukken çok fazla kafa yormadığımız ya da anlayamadığımız aşı olayı tam olarak savunma sistemize karşılacağı tehlikeler için önceden bir uyarı ve destek niteliğinde. Aşı dediğimiz şeyin aslında kulaktan dolma da olsa ‘zayıflatılmış mikrop’lar olduğunu biliyoruz hepimiz. Aslında tam olarak öyle olmasa da, temel olarak aynı etki mekanizması kullanılır. Aşı ile birlikte savunma sistemini uyarmak için sadece mikroplar verilmeyebilir. Örneğin bu mikropların salgıladığı toksik proteinler de verilebilir. Ya da hastalık yapıcı virüslerin dış yapılarında bulunan proteinler. Sonuç olarak vücdumuza giren, çok güçlü hastalık etkisi göstermeyen bu yapılar yukarıda bahsettiğimiz özel B hücreleri tarafından tanınır ve hafızaya alınır. B hücreleri artık aynı mikropların saldırısına çok hızlıca yanıt verip yok edebilecek teknik bilgiye sahiptir! Kaynaklar: Cell and Molecular Biology: Concepts and Experiments, 6th Edition, Gerald Karp Biology, 6th Ed., Campbell and Reece www.wikipeda.org Şekil 1.: http://en.wikipedia.org/wiki/File:Antibody.svg Şekil 2.: http://en.wikipedia.org/wiki/File:VDJ_recombination.png Şekil 3.:http://www.visualphotos.com RF Image no: SMP0011755 Yazar : Konuk Yazarlar Açık Bilim Haziran Sayısı http://www.acikbilim.com/2012/06/genel/antikorlar-mutasyonlara-hic-bu-kadar-ihtiyac-duyulmamisti.html

http://www.biyologlar.com/antikorlar-mutasyonlara-hic-bu-kadar-ihtiyac-duyulmamisti

Genetik Yapımız ve Davranışlarımız Arasındaki İlişki

Daha doğum anından itibaren bebeğin annesine mi yoksa babasına mı benzediğini merak ederiz. Yeni doğan bebeği görenler, öncelikle bu benzerlik konusundaki kanaatlerini açıklama gereği hissederler ya da gerçekten ortada öylesine bir benzerlik vardır ki, kendilerini bu konuda bir şey söylemekten alıkoyamazlar. Çoğu zaman "Hıh, deyip birisinin burnundan düşmüş"üzdür Kime benzediğimiz, fiziksel özelliklerimizi, bazı huylarımızı kimden aldığımız yaşamımızın sonraki dönemlerinde de insan ilişkilerindeki temel ilgi alanlarından birisi olmakta devam eder. Çocuk ya da genç, hoşa giden veya gitmeyen bir tutum gösterdiğinde, bu tutumun hep hesapta tutulan sorumlularından biri de kalıtımsal mirasıdır. Baba, matematikten "pekiyi" alan oğlunun başarısında, biraz da kendi kalıtımsal mirasını etken olarak gördüğü için öğünür. Eşine kimi huylarından dolayı kızgın olan anne, kızı bu baba huylarından bazılarını gösterse, öfkesini yönelttiği kaynaklardan birisi de eşinin kalıtımsal mirasıdır; o yüzden açık ya da gizli "çekmez olasıca!" diye hayıflanır. Şöyle ya da böyle kalıtım, gündelik yaşamımızda büyük ve büyülü bir yer tutar. Gündelik yaşamımızda böylesine önemli bir yeri olan kalıtım, doğal olarak tarihte, toplumsal ve politik yaşamda da "soy sop sorunu" şeklinde hak ettiği yeri almıştır. Evlilikler, politik tercihler sırasında, soyaçekimin bu büyüsel etkisi kendisini çoğu zaman hemen hissettirir. "Kız anasına bakılarak alınır"; soyun gücüne inanç, mezhepsel farklılıklara, babadan oğula geçen dinsel ve politik iktidar biçimlerine yol açar; demokratik söylemin başat olduğu modern zamanlarda bile partilerin başına soyaçekimin büyüsünden faydalanılacak liderler seçilmeye çalışılır. Kalıtımsal miras ve soyaçekim konusunun şüphesiz bilimsel tecessüsü uyandırması gecikmemiş, "genetik", bilim dünyasının en önemli alanlarından birisi haline gelmiştir. Bu yüzyılın ortalarında kalıtımsal mirasın geçiş yolu olan kromozomların, genlerin ve genetik şifrenin taşıyıcısı DNA'nın yapısının keşfiyle, insanlık tarihinde belki etkisi gelecekte çok daha belirginleşecek olan "genetik devrim" ortaya çıkmıştır. Genetik şifre hakkındaki artan bilgi, DNA'ların ayrıştırılıp yeni yapılar elde etmek üzere yeniden birleştirilmesi (rekombinant DNA teknolojisi), insanlığı diğer tüm devrimlerde olmadık biçimde politik, toplumsal ve etik, yepyeni bir meydan okumayla karşı karşıya bırakmaktadır. Artık tüm canlılarda, bitki, hayvan ve insanda istenilen değişikliklerin ortaya çıkarılması ve kopyalama mümkündür. Moleküler biyoloji ve gen mühendisliği gibi iki temel alandan beslenen yeni bir bilimsel ve teknolojik alan olan biyoteknoloji, insan ve toplum için inanılması güç olumlu vaadlerde bulunmaktadır. 1987'de Amerikalı ve İngiliz bilimcilerin önderliğinde başlatılan "İnsan genomu projesi" tüm hızıyla sürmektedir. Bu projeyle ilk aşamada insan genlerinin, ikinci aşamada tüm DNA dizilimlerinin ayrıntılı bir haritasının çıkarılması hedeflenmektedir. İnsan DNA'sında 3 milyar harf olduğu sanılmakta, projenin başlangıcından beri 76 milyon harfin yerinin saptandığı, 2002 yılında 500 milyon harfin yerinin saptanmış olacağı bildirilmektedir. Halen süren ama bir yandan da gerek bilimsel gerek politik çevrelerin tepki ve eleştirilerine hedef olan bu proje, nihai amacı olan insan genomundaki her noktanın DNA diziliminin elde edilmesini gerçekleştirebilirse, ortaya çıkabilecek imkan ve sorunların bugünden hayal edilmesi bile mümkün değildir. Şu sıralarda İngiltere'de Cambridge'de sürmekte olan "İnsan Genetiği Haritası Araştırması" için insan DNA'sından elde edilen 1 milyon kopya derin dondurucularda saklanmakta, varılan sonuçlar Avrupa Biyoenformasyon Enstitüsü (EBI) tarafından dünyaya açıklanmaktadır. EBI, şimdiye kadar 20 bin organizmanın genetik yapısını bilimcilere açıklamıştır. İnternetteki sayfasına her gün on bin kişi girip biriken bilgiyi elde etmektedir. EBI'nın interteki sayfasını okuyanların sayısı son bir yılda 7 kat artmış durumdadır. Bugün "tıbbi genetik" bilgi sayesinde sağlanan bazı hastalıkların nedenleri ve erken tanınması ile birlikte ortaya çıkan imkanların "müthiş" bir düzeye gelmesi ve daha anne karnında hatalı genlerin hatalı olmayanlarla değiştirilmesi yoluyla kesin etkili olacak "genetik tedavi" ulaşılmak istenen ilk hedeflerdendir. Genetikteki çok hızlı gelişme, yalnızca tıp alanıyla sınırlı değildir. İlaç şirketleri de, genetik mühendislikte araştırma-geliştirmeye giderek aratan oranlarda kaynak ayırmaktadır. Biyoteknolojinin tıp ve eczacılık dışındaki diğer hedefleri arasında tarım ve petrokimya alanlarında pek çok ürünün ucuza ve bol miktarda üretilmesini sağlamak bulunmaktadır. Genetik çalışmaların böylesine gelişme ve tüm toplumsal ve ekonomik alanlara yayılma eğilimi, "genetik araştırmaların ekonomisi"yle uğraşan "genomics" adlı yeni bir bilgi türü bile ortaya çıkarmıştır. Ancak insan söz konusu olduğunda, genetik devrimdeki ve biyoteknolojideki tüm bu olumlu gelişmeleri gölgeleyen bazı soru işaretleri ve eleştiriler ortaya çıkmaktadır. Tüm bunların sonucu olarak geçenlerde aralarında ülkemizin de bulunduğu, İngiltere dışındaki 19 Avrupa ülkesi, araştırma amaçlı dahi olsa insan embriyosu üretimini ve kopyalanmasını yasaklayan bir anlaşma imzalamıştır. Bir zamanlar, örneğin matbaanın icadında olduğu gibi, bilimsel ve teknolojik gelişmelere, dinsel ve ahlaki nedenlerle din adamları karşı çıkarlarken bugün benzer gerekçelerle bizzat bazı bilimcilerin kendileri bilimsel etkinliğin sınırlandırılması gerektiğini savunmaktadırlar. İnsanın en bilmecemsi yanı, davranışlarıdır. İnsanla ilgili her türlü bilmeceyi mutlaka çözme (!) azim ve kararlılığında olan genetik bilimciler, uzunca bir süreden beri, felsefenin ve beşeri bilimlerin yıllardır tartıştıkları konulara da el atmışlar; insanın (ve hatta toplumun) karmaşık davranışlarının genetik bakımdan açıklanabilmesi için bugüne kadar birçok araştırma yapmışlardır. Bazı fiziksel hastalıkların genetik nedenlere bağlı olarak ortaya çıktıkları kanıtlanalı beri, önce ruhsal hastalıkların daha sonra işsizlikten çapkınlığa, homoseksüellikten toplumsal şiddete kadar tüm etik, politik, ekonomik sorunların nedenleri DNA dizilimlerinde aranmaya, insanı her türlü davranışının sorumluluğundan muaf tutmaya çalışan bir gayret başlamış, bir nükleotid'in değişimiyle bu sorunların düzelebileceği şeklinde hayaller kurulmuştur. Bu hayal ticaretinin kışkırtılmasında medyanın rolü hiç de azımsanmayacak bir ölçüdedir. Genetik devrimin ve biyoteknolojinin önemi, hem gelişmiş ülkelerin hükümetleri hem de uluslar arası büyük şirketler tarafından çoktandır kavranılmış, bu alanda çok ciddi yatırımlar yapılmıştır. Tüm bunlar nedeniyle, zaten eskiden beri gündelik yaşamda büyük ve büyülü etkiye sahip olan kalıtım ve soyaçekim sorunu, bu kez bilimsel bilgi ve teknolojideki gelişmelerin sonuçları olarak ilerideki günlerde hiçbirimizin kayıtsız kalamayacağı biçimde önümüze gelecektir. Bilgiler yenilenmeli, tüm toplumsal yaşamı derinden sarsacak olan durumlara ve tartışmalara hazır olunmalıdır.

http://www.biyologlar.com/genetik-yapimiz-ve-davranislarimiz-arasindaki-iliski

Mamutun Genomu Birleştirildi

ABD’li ve Rus araştırmacıların oluşturduğu bir grup, mamut genomunun büyük bir bölümünü ortaya çıkarmayı başardı. Uzmanlar Buz Devri’nin bu devasa hayvanının DNA zincirini yeniden oluşturmak için mamutun kıl örneklerinden DNA çıkardılar. Bazı bölümleri eksik olsa da araştırmacıların tahminine göre genomun yaklaşık %80’i tamamlanmış durumda. Çalışma, mamutların soyunun tükenmesi konusuna açıklık getirebileceği gibi uzun süredir var olmayan türlerin klonlanmasının uygulanabilirliği sorusunu da yeniden gündeme getiriyor Bilim insanları bu konuda Sibirya’da donuk topraktan (kutuplarda bulunan donmuş toprak tabakası) çıkarılan çok sayıdaki tüylü mamuttan yararlandılar. Donuk toprak koşulları, çok eski zamanlardan kalan DNA’ların çıkarılmasında özellikle yeğlenen tüy ve kıl gibi parçaların korunması için çok uygun. Bir kıl örneğinde bulunan genetik malzemenin büyük bir bölümü kılın sahibi olan hayvanındır. Buna karşın araştırmacılar kemikten DNA çıkarmaya çalıştıklarında çoğunlukla mantar ve bakterilerinki de örneğe karışıyor. Araştırmada donuk topraktan çıkarılan iki mamutun kıl örnekleri kullanıldı. DNA’nın çıkarılmasının ardından, bunun ne kadarının mamuta ait olduğunun anlaşılması gerekiyordu. Bunun için de araştırmacılar, mamutun en yakın akrabası olan Afrika filinin gen haritasını çıkardılar. Yapılan ilk araştırmalar, mamut genomunun Afrika filininkinden yalnızca %0,6 oranında farklı olduğunu ortaya çıkardı. Bu, insan ve şempanze arasındaki genom farkının yaklaşık yarısı kadar. Afrika fili ve mamutun evrimsel olarak ayrılmasının, insan ve şempanze soyları arasındaki kırılmadan bile daha önce olmasıysa dikkat çekilmesi gereken bir gözlem. Öyle görünüyor ki genler, mamutlar da dahil olmak üzere fillerde, insan ve şempanze soylarında olduğundan daha yavaş evrim geçiriyor. Neden böyle olması gerektiğiyse hâlâ bilinmiyor. Mamutun toplam DNA zincirinin, insanınkinden 1,4 kez daha uzun olduğu tahmin ediliyor. Bir başka tartışma Uzun süredir çok eski zamanlara ait DNA’lardan,günümüzde var olmayan canlıları geri getirmenin hayali kuruluyordu. Ancak birçok bilim insanı bunun gerçekleşebileceği konusunda kuşkulu. Bunun nedeniyse canlının ölümünden sonra, DNA zincirinde oluşan değişimlerin bu durumu çok zorlaştırması. “Bu tıpkı, tüm malzemenin yalnızca %80’iyle bir araba yapmaya benziyor.” diyor Adelaide Üniversitesi’nden Jeremy Austin ve ekliyor: “Elimizde bütün bir genom olsa bile gerçek mutasyona karşılık zincir hatası mı yoksa DNA’nın mı zarar gördüğü konusu hâlâ çözemediğimiz bir sorun. Gen ölçeğinde bu neredeyse aşılamaz bir problem. Bundan sonraki sorunumuzsa yapay kromozomları nasıl oluşturacağımız”. Kanada’da, Ontario’daki McMaster Üniversitesi’nden genetikçi Hendrik Poinar’ın yorumuna göreyse mamutun kaç kromozomu olduğuna ilişkin “henüz” hiçbir fikrimiz yok. Kaynak: Bilim ve Teknik Ocak 2009

http://www.biyologlar.com/mamutun-genomu-birlestirildi

Virüs morfoloji tipleri

Virüs morfoloji tipleri

Bir bütün virüs taneciği, virion olarak da adlandırılır, aslında bir gen taşıyıcısından fazla bir şey değildir; kapsit olarak adlandırılan bir protein örtü ile çevrili nükleik asitten ibarettir.

http://www.biyologlar.com/virus-morfoloji-tipleri

İnsan papilloma virüsü

İnsan papilloma virüsü, insan papilloma virüs ya da human papilloma virus (HPV veya İPV) papillomavirus ailesine mensup, deri ve mukozal yüzeylerdeki bazal epitelyal tabaka hücrelerini enfekte eden bir DNA virusu. 1970'li yıllarla beraber HPV ve kanser ilişkisi üzerinde çalışmalar başlamış ve pozitif bulgularla beraber günümüzde önemli bir bilgi birikimi elde edilmiştir[1]. Şimdiye dek 100'den fazla HPV tipi saptanmıştır[2]. HPV; serviks, penis, vulva, vajina, anüs, ağız, orafarinks ve diğer mukozal bölgeleri tutarak, bu bölgelerde kansere neden olabilmektedir[3]. Özellikle serviks kanseri olgularının neredeyse tümünde (%99,7) HPV DNA izole edilmektedir[4]. HPV enfeksiyonu her yaşta görülebilmektedir. Bununla beraber genç sağlıklı çocuklarda da görüldüğü çeşitli çalışmalarda kanıtlanmıştır[3]. HPV'nin ortalama görülme yaşı 52 olup 35-39 ve 60-64 yaşlarında olmak üzere iki ayrı dönemde pik yapar[1]. HPV virusu bütün dünyada yaygın olarak bulunmaktadır. Sosyokültürel ve ekonomik düzeyinden bağımsız olarak her kadın risk altındadır. Kadınların %70-80'i yaşamları boyunca en az bir kez HPV ile enfekte olduğu gösterilmiştir[5]. Başta servikal kanser ve öncü lezyonlar olmak üzere, diğer genital kanserler (vulva, vajina, penis, anüs), orofaringeal kanserler, genital siğiller, laringeal papillomatozis ve muhtemelen bazı deri kanserinde de etiyolojide rol oynamaktadır[5]. Virusun erkekte ve kadında kanser oluşumuna (penis, vulva, vajina, serviks, anüs, rektum) yol açan türleri arasında 16 ve 18 numaralı genotipleri serviks, vulva, vajina ve penis derisi kanserleri yönünden en fazla potansiyeli olan türlerdir[6]. Özellikle serviks kanseri olgularının neredeyse tümünde (%99,7) HPV DNA izole edilmektedir[4]. Halk arasında rahim ağzı kanseri olarak bilinen serviks kanseri; dünya üzerinde her 2 dakikada bir kadının ölümüne neden olan ve değişik ülkelerde yapılan çalışmalarda kadınlarda meme kanserinden sonra en sık görülen ikinci kanserdir[5]. Bu da HPV enfeksiyonunun önemini göstermektedir. HPV'ye karşı son yıllarda geliştirilmiş olan HPV aşısı, kadınları hayat boyu bu enfeksiyondan koruyabilmektedir. Toplumda HPV'nin onkojenik türlerinin yaygınlığına bağlı olarak aşının HPV enfeksiyonlarını %65-76 oranında önlediği kanıtlanmıştır[6]. HPV 16 ve 18 suşlarına bağlı oluşan hastalıkları önlemede hem tip 6, tip 11, tip 16 ve tip 18 suşlarını içeren (quadrivalan) hem de tip 16 ve tip 18 suşlarını içeren (bivalan) aşının koruyuculuğu %90’ın üzerindedir. Bununla beraber quadrivalan aşının %100 etkin olduğu çeşitli çalışmalarda gösterilmiştir[7]. Hastalıklardan korunma konusunda birincil korunma yaklaşımlarının daha başarılı ve daha doğru olduğu kabul edilmektedir. Enfeksiyona yakalanmayı önlemeyi amaçlayan birincil korunma yaklaşımlarına aşılama örnek verilebilir. Bu nedenle HPV aşısının geliştirilmesi çok önemlidir. Papillomavirus ailesinden olan HPV ikozhedral yapıda, zarfsız, 55 nm boyunda 72 kapsomerli bir virüstür. 100’den fazla tipi olan HPV’nin yaklaşık 40 tipinin mukozal, 60 tipinin ise kutanöz enfeksiyon yaptığı bilinmektedir. Mukozal enfeksiyon yapanlardan yüksek onkojenik potansiyele sahip olan 16 ve 18 suşlarının genital kansere yol açma oranı %70 iken, düşük onkojenik potansiyele sahip 6 ve 11’in genital siğile yol açma oranı %90 olarak bilinmektedir. Virüs genomunun onkojenik mekanizmadan sorumlu tutulan genleri E6 ve E7 olarak bilinmektedir. E6 geni p53'ü yıkarak, E7 ise Rb genini inaktive ederek servikal karsinogenezin gelişmesine neden olmaktadır. HPV enfeksiyonunun persistan olma riski yaşla beraber artmaktadır. HPV enfeksiyonu son derece yaygın bir enfeksiyondur. Amerika Birleşik Devletleri'nde her yıl yaklaşık 6.2 milyon yeni HPV enfeksiyonu ortaya çıktığı bilinmektedir. Amerika Birleşik Devletleri Hastalık Kontrol Merkezi (CDC) verilerine göre dünyada seksüel aktif kadın ve erkeklerin yaşam boyu HPV ile enfekte olma olasılığı en az %50 olarak bildirilmiştir, bununla beraber 50 yaşına varmış kadınların bu enfeksiyonu geçirmiş olma olasılığı en az %80'dir[7][8][9]. HPV enfeksiyonu her yaşta görülebilmektedir ve çeşitli araştırmalarda genç sağlıklı çocuklarda da görüldüğü kanıtlanmıştır[3]. HPV’nin ortalama görülme yaşı 52 olup 35-39 ve 60-64 yaşlarında olmak üzere iki ayrı dönemde pik yapmaktadır[1]. HPV virusu bütün dünyada yaygın olarak bulunmaktadır. Sosyokültürel ve ekonomik düzeyinden bağımsız olarak her kadın risk altındadır. Kadınların %70-80'i yaşamları boyunca en az bir kez HPV ile enfekte olur. Kondom ve bariyer önlemleri riski azalır, ancak tam olarak koruyucu değildir. Daha çok genç yetişkinlerde görülen bu hastalığın cinsel yaşam tarzında ortaya çıkan değişikliklere bağlı olarak son yıllarda arttığı görülmektedir[5]. HPV enfeksiyonu %14,8 oranında hiç cinsel ilişkiye girmemiş kadınlarda da görülebilir. Çocuklarda gerçekleşebilecek HPV transmisyonunun nedenleri arasında otoinokülasyon, kontamine objeler ve yüzeylerden indirekt olarak bulaşma, seksüel kötüye kullanım, vajinal doğum, süt verme, intrauterin hayatta asendan enfeksiyonlar, transplasental geçiş, semen yer almaktadır. 1970'li yıllarla beraber HPV üzerinde çalışmalar başlamış ve pozitif bulgularla beraber günümüzde önemli bir bilgi birikimi elde edilmiştir[1]. Başta servikal kanser ve öncü lezyonlar olmak üzere, diğer genital kanserler (vulva, vajina, penis, anüs), orofaringeal kanserler, genital siğiller, laringeal papillomatozis ve muhtemelen bazı deri kanserinde de etiyolojide rol oynamaktadır[5]. Virusun erkekte ve kadında kanser oluşumuna (penis, vulva, vajina iç yüzü, serviks, anüs, rektum) yol açan 40 türü vardır ve bunlar arasında 16 ve 18 numaralı genotipleri serviks, vulva, vajina ve penis derisi kanserleri yönünden en fazla potansiyeli olan türleridir[6]. Halk arasında rahim ağzı kanseri olarak bilinen serviks kanseri; dünya üzerinde her 2 dakikada bir kadının ölümüne neden olan ve değişik ülkelerde yapılan çalışmalarda kadınlarda meme kanserinden sonra en sık görülen ikinci kanserdir[5]. Gelişmiş ülkelerde kadın kanserlerinin %3,6'sını, gelişmemiş ülkelerde kadın kanserlerinin %15'ini oluşturur. Ölüm sayılarının yaklaşık olgu sayılarının yarısına eşit olduğu kabul edilmektedir[5]. Tüm bu veriler serviks kanserinin önemini kanıtlamaktadır. Epidemiyolojik çalışmalar serviks kanseri için majör risk faktörünün HPV enfeksiyonu olduğunu göstermektedir. Serviks kanseri-HPV enfeksiyonu ilişkisi, akciğer kanseri-sigara ilişkisinden daha sıkı bir ilişkidir. Diğer taraftan HPV enfeksiyonu son derece yaygın bir enfeksiyondur. Amerika Birleşik Devletleri Hastalık Kontrol Merkezleri (CDC, Centers for Disease Control and Prevention) verilerine göre dünyada seksüel aktif kadın ve erkeklerin yaşam boyu HPV ile enfekte olma olasılığı en az %50 olarak bildirilmiştir. Serviks kanseri olgularının neredeyse tümünde (%99,7) HPV DNA izole edilir[4]. Bununla beraber serviksteki HPV enfeksiyonlarının çoğu asemptomatiktir ve saptanan enfeksiyonlarının %90'dan fazlası 2 yıl içeresinde kendiliğinden yok olabilmektedir[3]. Dolayısıyla serviks kanseri sıklığında azalma HPV enfeksiyonlarının tanınması, önlenmesi ve tedavi edilmesi yoluyla mümkün olabilir[4]. HPV aşısı 2006 yılında onaylanmış ve kullanıma sunulmuştur. HPV aşısının lisansı 9-26 yaşlar arasındaki genç kızlara ve kadınlara yapılmak üzere alınmıştır[6]. Günümüzde quadrivalan ve bivalan olmak üzere 2 çeşit HPV aşısı mevcuttur. Quadrivalan aşı HPV'nin 6, 11, 16, 18 suşlarına karşı; bivalan aşı ise 16 ve 18 suşlarına karşı yapılmıştır. Her iki aşının da adölesan dönemde uygulanması en yüksek immun yanıtı oluşturmaktadır. Özellikle 15 yaşından sonra aşıya verilen immun yanıt azalmaktadır. İleriki dönemdeki yanıtı da azaldığından erken dönemde aşılanmak hayati öneme sahiptir. Ayrıca bivalan aşı genç kızlara ek olarak erkeklere de uygulanabilmektedir[3]. Özellikle quadrivalan HPV aşısının 12-13 yaşlarındaki kız çocuklara yapılması amaçlanmaktadır[10]. HPV aşısı 3 doz olarak ve ikinci ile üçüncü dozlarının ilk dozdan 2 ve 6 ay sonra yapılması önerilir. 11-12 yaşındaki kızlara rutin yapılması önerilir. Aşı en erken 9 yaşında başlanabilir ve 13-26 yaşında aşılanmamış olanların aşılanması öngörülür[2]. Toplumda HPV'nin onkojenik türlerinin yaygınlığına bağlı olarak aşının HPV enfeksiyonlarını %65-76 oranında önlediği kanıtlanmıştır[6]. HPV 16 ve 18 suşlarına bağlı oluşan hastalıkları önlemede hem bivalan hem quadravalan aşının koruyuculuğu %90'ın üzerindedir. Bununla beraber quadrivalan aşının %100 etkin olduğu çeşitli çalışmalarda gösterilmiştir[7]. Bucalovirus rekombinan teknolojisi kullanılarak geliştirilen GSK aşısının (Cervarix'in) faz 3 çalışmaları Kuzey Amerika, Latin Amerika, Avrupa ve Asya'da 18.000'in üstünde kadını kapsamıştır ve bu çalışmaların sonunda aşının yeni enfeksiyona karşı %92 ve persistan enfeksiyona karşı %100 koruyuculuğu olduğu saptanmıştır. Merck firması ise HPV tip 6, 11, 16 ve 18'e karşı aşı geliştirmiş (Gardasil) ve bu aşı ile 25.000 kadın aşılanarak persistan enfeksiyondan %100 korunabildiği gösterilmiştir[2]. Halen Amerikan İlaç Gıda Dairesi (FDA) ve Avrupa Komisyonu tip 6, tip 11, tip 16 ve tip 18 içeren insan papillomavirus aşısını servikal kanserlerin, yüksek dereceli servikal displazinin, prekanseröz servikal lezyonun, prekanseröz vulvar displastik lezyonların ve yaygın genital siğillerin (kondiloma akuminata) önlenmesi için onaylamıştır. Bu aşı 11-12 yaşlarında 3 doz olarak uygulanmaktadır. Günümüzde HPV tip 16 ve tip 18, içeren başka bir aşı onaylanmıştır. Profilaktik HPV aşılarının rutin servikal tarama ile birlikte HPV ile ilişkili morbidite ve mortalite üzerinde çarpıcı etkileri olacağı öngörülmektedir[2]. Virus her kadında enfeksiyon ve buna sekonder kansere neden olabildiğinden, HPV aşısı için bir risk grubu söz konusu değildir. Hedef 9-26 yaş grubundaki her kadının mümkünse ilk cinsel ilişkiden önce, değilse mümkün olan en kısa sürede aşılanmasıdır. Hepatit B aşısında risk grubu aşılaması ile hastalık insidansının azaltılamaması deneyimi de HPV aşısının yaygın kullanılması gereksinimini ortaya çıkarmaktadır.[5]. Öte yandan HPV enfeksiyonu erkeklerde de görüldüğünden, aşının yalnızca kız çocuklara yapılmasının yeterli olup olmayacağı, aynı yaş grubundaki erkeklerin de aşılanmasının gerekliliği tartışma konusudur[6]. Kaynaklar ^ a b c d Güner H, Taşkıran Ç. Epidemiology of cervical cancer and the role of human papilloma virus. Türk Jinekoloji ve Obstetrik Derneği Dergisi 2007; 4(1):11-19. ^ a b c d Salman N. İnsan papilloma virus aşısı. ANKEM Derg 2007;21(Ek 2):99-101. ^ a b c d e Cutts FT, Franceschi S, Goldie S, Castellsague X, de Sanjose S, Garnett G, Edmunds WJ, Claeys P, Goldenthal KL, Harper DM, Markowitz L. Human papillomavirus and HPV vaccines: a review. Bulletin of the world health organization 2007; 85:719-726. ^ a b c d Akhan SE. Ülkemizde servikal kanser epidemiyolojisi ve HPV serotipleri. ankem derg 2007; 21(ek 2):96-98. ^ a b c d e f g h Ceyhan M. İnsan papilloma virusu (HPV) aşısı uygulamasında ülkemizde mevcut problemler. ANKEM Derg 2007; 21(Ek 2):102-104. ^ a b c d e f Bilir N. Serviks kanseri kontrolü çalışmaları ve HPV aşısı. Halk sağlığı uzmanları derneği teknik raporları no: 03 / 2007. ^ a b c Ault KA. Epidemiology and natural history of human papillomavirus infections in the female genital tract. Hindawi publishing corporation İnfections disease in obstetrics and gynecology 2006; article id 40470:1-5. ^ Centers for Disease control and prevention. Genital HPV infection-CDC fact sheet. Centers for disease control and prevention. 2004. ^ Akhan SE. Ülkemizde servikal kanser epidemiyolojisi ve HPV serotipleri. ankem derg 2007; 21(ek 2):96-98. ^ Skinner SR, Garland SN, Stanley MA, Pitts M, Quinn MA. Human papillomavirus vaccination fort he prevention of cervical neoplasia: is it appropriate to vaccinate women older than 26? MJA 2008; 188 (4):238-242.

http://www.biyologlar.com/insan-papilloma-virusu

XXXV. Türk Mikrobiyoloji Kongresi

XXXV. Türk Mikrobiyoloji Kongresi

Ana Başlıklar • Enfeksiyon hastalıklarında hızlı tanı yöntemleri• Yeni tanı yöntemleri – yeni bakteri tanımlama yöntemleri• Dev viruslar (büyük DNA virusları) evrimsel ilişkiler ve insan sağlığı açısından önemi• Metagenomik çalışmalar – mikrobiyom ve etkileri• Çevre mikrobiyolojisi ve insan sağlığı açısından önemi• Evcil ve yabanıl hayvanların mikrobiyolojisi• Gıda mikrobiyolojisi• Yeni aşılar• Yeni tedavi yöntemleri (yeni antibiyotikler eski antibiyotikler yeni kombinasyonlar, HIV diğer)• Bağışık yanıtlar ile ilgili eski ve yeniler• Antibiyotik direnci, yeni mekanizmalar ve saptanmaları• Ulusal sürveyans sistemi• Kültür koleksiyonları (Türkiye ve Dünya) ve erişimleri• Mikrobiyoloji lisans üstü eğitimi (YL+ doktora / Tıbbi Mikrobiyoloji uzmanlık eğitimi)• İnsan genomu ve hastalığa yatkınlık ilişkisi• Çalışma grupları önerileriGenel Bilgiler Kongre YeriPine Bay Otel, Kuşadası, AydınKongre Tarihi03-07 Kasım 2012Kongre DiliKongre bilimsel dili Türkçe olacaktır. İngilizce sunumlarda Simultane tercüme yapılacaktır.Bildiri ÖzetleriKongreye gönderilecek bildiri özetleri,elektronik ortamda kongre resmi web sitesi üzerinden toplanacak olup,mail ya da posta yoluyla gönderilecek bildiriler kabul edilmeyecektir.İptallerKayıt ve konaklama ücretlerinde, 31 Temmuz 2012 tarihine kadar yapılacak iptallerde %50’si iade edilir. Bu tarihten sonra yapılacak iptallerde iade yapılmayacaktır. Tüm iadeler kongre bitiminden sonra yapılacaktır.Kongre Danışma ve Kayıt Masası Çalışma Saatleri03 – 07 Kasım 2012 tarihleri arasında, saat 08:00-20:00 süresince açık olacaktır.Yaka KartlarıTüm katılımcı ve refakatçılara yaka kartı dağıtılacaktır. Yaka kartı olmayan misafirler kongre aktivitelerine kesinlikle katılamayacaklardır.KredilendirmeToplantılar Türk Tabipler Birliği tarafından kredilendirilecektir.Katılım SertifikasıTüm katılımcılara katılım sertifikaları 06 Kasım 2012 tarihinde dağıtılacaktır. Önemli Tarihler Erken kayıt için son tarih: 31 Temmuz 2012Bildiri gönderme son tarihi: 31 Temmuz 2012Bildirisi kabul edilen katılımcılardan erken kayıt ücreti alınacaktır.Burs başvurusu: 10 Eylül 2012Kongremize katılan genç araştırmacılar, uzmanlık öğrencileri ve uzmanlara toplam 50konaklama bursu verilecektir.Burs başvuru koşulları: 35 yaşını geçmemiş olmak, önceden başka bir kongrede sunulmamış bir bildiri ile Kongreye katılmak, TMC üyelerine öncelik tanınacaktır).Biyoinformatik Kursu: Kongre öncesinde Dokuz Eylül Üniversitesi Tıbbi Mikrobiyoloji AD’nın katkılarıyla bir “Temel Biyoinformatik Kursu“ düzenlenecektir. Kursta Antibiyotik Direnç Genlerinin analizi, ve virusların (Kanamalı ateş virusları) moleküler epidemiyolojik yöntemler ile tiplendirilmesi konuları ele alınacaktır. Ayrıntılı program daha sonra bildirilecektir.İletişim Bilgileri BİLİMSEL SEKRETERYAKongre BaşkanıProf. Dr. Zeynep GÜLAYDokuz Eylül Üniversitesi, Tıbbi Mikrobiyoloji Anabilim Dalı, 35340, Balçova, İzmirE-posta: gulayz62@gmail.comKongre SekreterleriDoç. Dr. Orhan Cem AktepeAfyon Kocatepe Üniversitesi Tıp Fakültesi Tıbbi Mikrobiyoloji Anabilim Dalı, 03200 AfyonE-posta: aktepef@hotmail.comDoç. Dr. Mehmet Ali ÖktemDokuz Eylül Üniversitesi, Tıbbi Mikrobiyoloji Anabilim Dalı, 35340, Balçova, İzmirE-posta : ali.oktem@deu.edu.tr KONGRE SEKRETERYASIKayıt , Konaklama ve Sponsorluklar ile İlgili Yazışmalar 441. Cadde No: 1, 06610, Birlik-Çankaya – AnkaraTelefon : 0 312 454 00 00 Faks : 0 312 454 00 01E-posta : mikrobiyoloji2012@flaptour.com.trRESMİ WEB SİTESİ : http://mikrobiyoloji2012.org/index.php

http://www.biyologlar.com/xxxv-turk-mikrobiyoloji-kongresi

Maymunlar Cehennemi

Bundan seneler önce evrimcilerin hem fikirde oldukları bir görüş vardı. İnsan şempanzeden yada çağdaş gorilden türemiştir. Ama şimdi bu görüş tamamiyle diğişiti, artık biliniyorki insanın ve şempanzenin atası farklı bir canlıydı. Peki Anti-Darwinistlerin yeni iddları neydi? Evrimcilerin insan ile maymun arasındaki genetik benzerlik konusunda kullandıkları bir diğer örnek ise insanda 46, şempanze ve gorillerde ise 48 kromozom bulunmasıdır. Evrimciler, kromozom sayılarının yakınlığını evrimsel bir ilişkinin göstergesi sayarlar. Bundan seneler önce evrimcilerin hem fikirde oldukları bir görüş vardı. İnsan şempanzeden yada çağdaş gorilden türemiştir. Ama şimdi bu görüş tamamiyle diğişiti, artık biliniyorki insanın ve şempanzenin atası farklı bir canlıydı. Ortak atalrından ayrılma ise 6 milyon yıl önceydi, ayrılmanın ardından bile şempanze ile insanın %99 oranında aynı geni paylaşıyor. Peki Anti-Darwinistlerin yeni iddları neydi? Evrimcilerin insan ile maymun arasındaki genetik benzerlik konusunda kullandıkları bir diğer örnek ise insanda 46, şempanze ve gorillerde ise 48 kromozom bulunmasıdır. Evrimciler, kromozom sayılarının yakınlığını evrimsel bir ilişkinin göstergesi sayarlar. Oysa eğer evrimcilerin kullandığı bu mantık doğru olsaydı, insanın şempanze kadar yakın bir akrabası daha olması gerekirdi: Patates. Çünkü patatesin kromozom sayısı maymununkiyle aynıdır: 48″aslında buna şöyle cavap verebiliriz; İlk olarak şunu belirtmek isterim ki elbette sadece kromozom sayısına bakarak canlılar arasında akrabalık olduğu sonucuna varılamaz. Daha sonra konuya girelim. Normalde kromozonların uçlarında telomer denilen yapılar vardır. Fakat yapılan araştırmalarda insanlardaki 2 numaralı kromozomun ortasında bir yerlerde telomer olduğu görülmüştür. Bu da insanlardaki 2 numaralı kromozomun iki kromozomun birleşmesiyle oluştuğunu göstermektedir. Yani insandaki kromozom 2, şempanzelerin 2A ve 2B kromozomlarının birleşimidir (1). Ama kromozom sayısının da hiçbir anlamı yok diyemeyiz. Mesela insanda 46 krmozom varken şempanzede 146 kromozom olsaydı böyle bir akrabalıktan bahsetmek mümkün olmazdı diye tahmin ediyorum. Ama insandaki 2 numaralı kromozomun iki kromozomun birleşmesiyle oluştuğunun bilinmesi bu akrabalık tezini desteklemektedir. %98-99′luk benzerlik kromozom sayısına bakarak değil, genom üzerinde teker teker nükleotidler incelenerek yapılan uzun araştırmalar sonucunda varılıyor. Yani patatesin veya moli balığının kromozom sayısının konuyla hiçbir ilgisi yok. Önemli olan genom içindeki genetik bilgidir. Şempanzeler ile insanlardaki benzerlik genetik bilgidedir. İnsanlar ile büyük kuyruksuz maymunların ortak atadan evrimleştiği düşünülmektedir. Büyük kuruksuz maymunlar ailesine goriller, orangutanlar, şempanzeler ve insanlar girer. Bunların hepsinin ortak bir atadan evrimleştiği düşünülür. Bunlar içinde de insanlar ile şempanzeler en yakın akrabalardır. Bu türler arasındaki akrabalığı hem fizyolojik hem de genetik benzerliklerinden anlayabiliyoruz. İnsan genomu ile şempanze genomu çok büyük (kaba olarak %98-99 civarında) benzerlikler göstermektedir (2). Ayrıca Şempanze ile İnsanın akraba olarak şu an yeryüzünde yaşamısı evrim bilimcileri için iyi bir örnek oluşturdu. Evrimin düz olamdığı, yani evrimin tek çizgide ilermediği anlaşıldı, çünkü yaratılışçıların bir diğer iddası tanrının evrim ile yaratması sırasında son olarak bizi Homo sapiens sapiens'i yarattığında Homo neandertal'ler gibi türleri ortadan kaldırdı, çünkü onlar gelişmemiş türdü ve bize zarar verebilridi iddasına karşılık verilebilir bir bilimsel kanıta sahibiz. Yani Şempanze ve İnsanın bu yeryüzünde akraba olarak yaşaması mükemmel bir kanıt oluştururken bir diğer saçma yaratılışcı saçma sorusunu ortaya attı, neden maymunlar cehennemi yaşanmıyor? Bu sorunun cevabı basit, şempanze kendi alınında yani pozitif evrim geçirmektedir, ve evrimi bizden %3 oranında hızlıdır. Bir diğer soru ise peki niye akılı diğillerdir, yani keni alanında evrim geçiriyorsa neden kendileri zeki diğildir? çünkü şempanzeler mutasyonu yanlış şekilde gelişmiş yani evrimleşmişdir. Bizimki ise beynimiz ve hücre üzerine evrimleşmedir, yani bizim evrimimiz yavaş ama doğru evrim. Şimdiden biz dünyadan silindiğimizde verim geçirilicek doğal ortamların bir çoğu kalmayacak bile. Kaynak: Genbilim.com

http://www.biyologlar.com/maymunlar-cehennemi

Biyoinformatik Ders Notları

Biyoinformatik Nedir? * Bilgisayar olmadan işleyip veri toplayamayacağımız işlemlerde kullanmak amacı ile ortaya çıkmıştır. ilk insan genom projesi ile başlamıştır. Biyoinformatik, biyolojik sorulara cevap verebilmek amacı ile bilgisayarların bilgisayar yazılımlarının ve biyolojik verilerin birleşmesinden oluşan bir daldır. örneğin 3 milyar nükleotid vardır insan genomunda 3 milyar nükleotid de el ile yazılamayacağından dolayı biyoinformatiğe ihtiyaç duyulmuştur. * Fakat bilgisayarın hızla gelişmesiyle sadece biyoinformatiğin konuları değil her türlü bilgi bilgisayara işlenir oldu. ** Biyoinformatikten faydalanan bilim dallarını şöyle sıralayabiliriz? • Moleküler Biyoloji • Genomik • Fonksiyonel genomik • Sistem Biyolojisi • Protein mühendisliği • Farmasötik araştırmalar • Tıp • Ekoloji/ Populasyon genetiği * Proteinler neden katlanıyor? Proteinlerin enzim substart ilişkisinde 3 boyutlu yapıyı gerçekleştirmek için diyebiliriz. ** Biyoinformatiğin işlevsel temelini oluşturan unsurlar nelerdir? •Bilginin depolanması •Bilgiye ulaşma •Bilgiyi analiz etme * Biyoinformatikte bilgiye veritabanları vasıtasıyla ulaşıyoruz en çok kullanılan ve bizim şimdiye kadar gördüğümüz veri tabanları NCBI: Genel bir veri tabanı Pubmed : Tıbbi biyolojik bilimler OMIM: Genetik temeli oluşturan haritalama ve genetik bilgi örneğin sigara duyarlılığı 5p15,33 yani okunuşu: 5. kromozomun kısa kolunun 15. bandının 33. alt bandı 23q 12,23 okunuşu 23. kromozomun uzun kolunun 12. bandının 23. alt bandı... Taxonamy: Tüm sistematiği her türlü ayrıntısına göre inceler. ** Veri tabanı programlarının bilgi kavramı için önemli sayılan özellikleri nelerdir. 1.Gelişen erişim olanaklarının elvermesi ile bilgi bölünmeden ortaklaşa kullanılabilmektedir. 2. Etkileşimli ortamlarda oluştuğu anda bilgisayara aktarılan bilgi sürekli olarak kendiliğinden artmaktadır. 3. Büyük boyutlardaki bilgi içerisinden gerekli olana erişim gibi oldukça önemli bir problemi ortadan kaldırmaktadır. 4. Veriyi işlemek, yeni bilgi oluşturmak, ondan yararlanabilmek veritabanları ile daha kolay hale gelmektedir. 5. Bilginin güncellenmesi, her her zaman en son durumu göstermesi veri tabanlarının önemli bir özelliğidir. ** Veri tabanının sorunları nelerdir? Vektoriyeldizilerde kirlilik (Yanlış ya da gereksiz veri girişi) Kalabalık (bir gene ait dizi parçasının biden fazla kez girilmesi) Aynı gene ait birden fazla EST (Expressedsequencetag) Bu problemlerin ortadan kalırılmasındagenom projelerinin ileri aşamalarını oluşturan UNIGENE, VecScreengibi projelerden faydalanılacaktır. kromozom nedir = DNA nı histon proteinleri etrafında sarılmasıyla, yoğunlaşarak oluşturduğu, canlılarda kalıtımı sağlayan genetik birim. gen nedir = anlamlı ve foksiyonel proteinler oluşturan DNA dizilerine denir. genom = Bir organizmadaki DNA'ların tümünü tanımlar. proteom = Bir organizmadaki proteinleri tümünü tanımlar. veritabanı nedir = Toplanan bilgileri işleyebilen, istenen sonuçları kolaylıkla hazırlayabilen bilgisayar programıdır. genomik = Genom ile ilgilenen bilim dalı proteomik nedir = Proteom ile ilgilenen bilim dalı ** Bilimsel makale nedir ? nasıl basılır ? Yapılan makalenin uluslar arası A- B- C sınıfına göre bu dergilerde yayınlanması gerekmektedir. Yayınlanmadan önceki aşamalarda makale yazılır dergiye gönderilir --- Dergide önce editör kontrolünden geçer-- eğer geçerse editör hakem heyetine gönderir-- hakem heyetinden geçerse geçer veya düzeltilip geçer veya geçmez daha sonra uygun bi sayısında full text olarak basılır. DNA mikroarreyleri, nükleik asitlerin hibridizasyon özelliklerinden faydalanarak farklı tipte doku ya da hücrelerde genom boyutunda DNA ve ya RNA moleküllerinin varlığı ve miktarını belirlemek için kullanılan bir teknolojidir. her gen 16-20 oligoniklootit ile ifade edilir Tam eş (PM) 25 er oligonüklootit ile ifade elilir. Hatalı eş (MM) oligo: Tam orta noktada yanlış baz taşıyan oligonüklootid. Oligo çifti: PM-MM çiftleri. Her gen için 16-20 oligo çifti bulunur. MM oligo dizaynı ile non-spesifik bağlanma miktarının ve arka plan gürültünün ölçülmesi amaçlanmıştır. DNA microarraylerin üretiminde genelde 3 tip teknoloji kullanılır. - Fotolitografi - Mekanik Mikro dağılım - Ink jets Temel Kullanım Alanları - Transkript miktarının tespit edilmesi (gen ekspresyon seviyesi analizi) - Genotiplendirme (SNP çipleri) - DNA kopya sayısının belirlenmesi - mRNA bozunum hızının ölçülmesi - Protein bağlanma bölgelerinin tanımlanması - Gen ürünlerinin hücre içi lokalizasyonunun tespit edilmesi Transkiriptom: bir yada bir grup hücre tarafından üretilen tüm mRNA moleküllerini ya da transkript varlığını ifade eden bir terimdir. her hangi bir organizmanın tüm transkript durumunu ifade etmek için kullanılabileceği gibi, belli bir hücre tipinde belli bir transkript içinde kullanılabilir. mRNA daki transkript seviyesi - Bulunduğu gelişim evresi - Bulunduğu hücre döngüsü - Hastalık ve sağlık durumlarının genetik seviyedeki etkileri - Tedaviye ve çevresel etkenlere karşı verilen biyolojik cevap. Bicroarrey teknolojisinin Transkriptom bilgileri ile - Kanser araştırmalarında - İmminolojik araştırmalarda - Kompleks metobolik araştırmalarda Kullanılır. **mRNA dan karşılığını alarak DNA nın kodunu çıkartıp oluşturulan DNA ya tanımlayıcı yani cDNA denir. ve mikroarray teknolojisinde kullanılır. PCR ile çoğaltılmış DNA fragmanları farklı metotlar kullanılarak çip yüzeyi üzerine sabitlenerek yapıştırılır. ** Microarrayda işaretleme yapan boyalar Cy3 kırmızı ışıma yapar Cy5 yeşil ışıma yapar. ** Çip/Slayt görüntüleme lazer ile nokta ışıma yapılarak gelen sinyal okunur ve konfokal mikroskop ile görüntülenir. ** Spotlardaki ışımanın şiddetine göre eğer spot yeşil ise yeşil ile işaretlenmiş olan gen diğerine göre fazla eksprese ediliyor demektir. eğer spot kırmızı ise kırmızı ile işaretlenmiş olan gen diğerine göre fazla eksprese ediliyor demektir. eğer spot sarı ise söz konusu gen yada transkript ediliyor anlamına gelir. ** Mikroarrey biyoinformatiği Teknoloji > Bilgisayar gücü > algoritma > Analiz araçları Microarray avantajları: - Aynı anda binlerce genin eksprepyonu hakkında bilgi verir. - Binlerce nokta kullanılarak tüm genom taraması ile detaylı bir genotiplendirme imkanı sunar. - Amaca yönelik olarak farklı dizayn edilebilir. - Laboratuar aşamaları kolay ve hızlıdır. - Teknolojisi ile gelişimini sağladığı biyoinformatik analiz yöntemlerini kullanarak oldukça fazla miktardaki verileri hızlı ve farklı şekillerde analiz edilir. Mikroarrey Önemli Noktaları: - Probun seçilmesi ve hedefin hazırlanması - Spotlamanın düzgün yapılması - Yüksek kalite ve saflıkta RNA izolasyonu - Kaliteli ve sabit işaretleme verimliliği - Housekeeping genler ile normalizasyona gidilmesi - Yeteri kadar tekrar kullanılması ** in slico: bilgisayar ortamlarındaki yapılan araştırma yöntemleri demektir. ** Hastalıklar poligeniktir. ** Moleküler tıp açısından 4 ana parametre bizi olduğmuz şey yapmaktadır bunlar: • DNA düzeyindeki ana genetik dizimiz • Gen ekspresyonu üzerindeki çevresel etkiler • Gen ekspresyonunu etkileyebilen olasılık fonksiyonları • Bireysel hücrelerin genomunu değiştirebilen viral enfeksiyonlar Biyoinformatik ve Dizi Karşılaştırmaları (BLAST) ** Dizilerin karşılaştırılması bize : Yeni geninizi daha iyi anlamak için benzer genleri başka türlerde lokalize etme konusunda fayda sağlar. ** 6. slayt 4 sayfadan dizi sorusu çıkabilir arkadaşlar?? ** BLAST belirli bir diziyi veritabanandaki diğer diziler ile karşılaştırmak üzere hazırlanmış bir algoritmik veritabanıdır. ** BLAST ile bir uygulama yaptığımızda - Hangi bakteri türünde amino asit dizisini bildiğim proteine benzer bir protein üretiliyor olabilir. - Dizinin elde ettiğim DNA nereden geliyor? - Yapısını yeni belirlediğim proteine benzer proteinleri kodlayan başka genler var mı? ** Benzerliği Belirlemede kullanılan Algoritmalar: - Needleman- Wunsch: Global hizalama algoritmasıdır. -Smith Waterman: Needleman a göre daha lokaldir. Maksimum sayıda eşleşme aranır. -BLAST: bu yöntem ise dizi veritabanından benzer olup aynı zamanda anlamlı olanları bulur. ** En yaygın bulunan 5 BLAST programı vardır? - BLASTN: nüklotidler içindir. - BLASTSP, - BLASTX, - TBLASTN, - TBLASTX: protein içindir. BLAST Analizinin Aşamaları: • Temel olarak üç aşama vardır: ekim, uzatma, ve değerlendirme. • Ekim– Eşleşmeye nerden başlanacağının belirlenmesi. • Uzatma– Ekim noktasından itibaren eşleşmenin uzatılarak ilerlemesi. • Değerlendirme– Hangi eşleşmelerin istatistiksel olarak anlamlı olduğunun belirlenmesi.

http://www.biyologlar.com/biyoinformatik-ders-notlari

ORTOMİKSOVİRÜSLER

İnfluenza virüsleri bu grubun tek üyesidir. Mukozalardaki mukoproteinlere (musin) olan afinitelerinden dolayı mikso deyimi kullanılmıştır. Ortomiksovirüslerin paramiksovirüslerden farklılıkları; Ortoda RNA genomu 8 segmentlidir. Parada RNA genomu tek molekül halindedir. Ortomiksovirüslerde dev hücre oluşumu yoktur. Paramiksovirüslerde aynı dikensi çıkıntıda hemaglutinin ve nöraminidaz bulunurken, ortomiksovirüste farklı dikenlerde hemaglutinin ve nöraminidaz bulunur

http://www.biyologlar.com/ortomiksovirusler

İNFLUENZA VİRÜSLERİ

İnfluenza A virüsü bütün dünyayı tutan influenza pandemilerine neden olur. Tek iplikçikli RNA'ya bağımlı (segmentli), RNA polimeraz aktiviteside gösterir. RNA genomu enfektif değildir. Zarfta antijenik yapıdan sorumlu hemaglutinin yada nöraminidaz taşıyan dikensi çıkıntılar bulunur. Hemaglutinin (HA) proteinleri: Virüsün hücreye tutunup içeri girmesinde rol oynar. İnfluenza aşısı, hemaglütinine karşı geliştirilmiştir. Laboratuvarda eritrositleri aglutinasyona uğratır. Nöraminidaz (N) proteinleri: Virüsün patojenitesinden sorumludur. Enfekte hücreden virüsün salınımı için sialik asiti parçalar. Solunum yolundaki koruyucu mukus tabakasını yıkar. HA enfeksiyonun başında, N sonunda iş görür. İnfluenza A virüsü HA ve N proteinlerinin antijenliği değişiklik gösterir. Antijenik yapıdaki değişiklik 2 türlüdür. 1. Nokta mutasyon (Drift) 2. Antijenik shift (ördek, tavuk, hindi influenza virusunun değişmesi) Antijenik shiftte tüm polipeptid yapısı değişir ve daha önceki antikorların koruyuculuğu kalmaz Pandemilere neden olur.İnfluenza A en çok antijenik değişkenlik gösteren tiptir. İnfluenza A hem insan hem de hayvanlarda hastalık yapabilir. İnfluenza B ve C ise sadece insanda patojendir. İnfluenza virüsü çekirdekte replike olan tek RNA virüsüdür. Virüs damlacık yolu ile bulaşır. Patogenezde nadiren viremi görülür. Şiddetli kas ağrısı gibi sistemik belirtiler dolaşımdaki sitokinlere bağlıdır. İnfluenzanın en sık komplikasyonu olan influenza pnömonisi interstisyel tiptedir. Bağışıklıklığın temelini sekretuar IgA oluşturur. Sitotoksik T hücreleride koruyucu bir rol oynar. Klinik Ani ateş yükselmesi Kas ağrısı Baş ağrısı Öksürük ile başlar LAP görülmez Tanı Seroloji Tedavi İnfluenza enfeksiyonlarının (grip) en iyi tedavisi istirahattir. Amantadin influenza A'nın proflaksi ve tedavisinde kullanılabilir. Amantadin virüsün hücrelere penetrasyonunu önler. Aşılara karşı çok az sekretuvar IgA ve IgG geliştiğinden her yıl grip mevsiminden önce (Ekim) rapel yapılması önerilir. (HA-NA glikoprotein içerirler) Amantadin ve Rimantadin Sadece influenza A virusunun çeşitli şuslarına karşı etkilidir. Virusun hücre içine girmesini ve girebilenlerin soyunmasını inhibe eder. Virusa karşı esas olarak proflaksi için kullanılır. Amantadin BOS'a geçer ve değişikliğe uğramadan idrarla atılır. Rimantadin ise BOS'a yeterli oranda geçemez ve değişikliğe uğrayarak metabolitleri idrarla atılır. Rimantadin karaciğerde metabolize edilir. Rimantadin SSS'e az geçtiğinden SSS'ne ait yan etkilere daha nadir rastlanır. Amantadin ise SSS'ne geçtiğinden; Uykusuzluk Baş dönmesi Ataksi Halusinasyonlar (Ciddi) Konvulsiyonlar (Ciddi) oluşabilir. Amantadin Dopamin agonisti etki ile parkinsonda da kullanılır. Zanamivir and oseltamivir Nöraminidaz inhibitörlerdir.

http://www.biyologlar.com/influenza-virusleri

Biyoteknoloji ve Tarım Güvencesi

Hızla artmakta olan dünya nüfusunun 2025 yılı itibariyle 8 milyarı geçmesi ve bu artışın % 95’inin gelişmekte olan ülkelerde oluşması beklenmektedir. Gelişmiş ülkelerde önemli bir tarımsal üretim fazlası bulunmakla beraber, halen 830 milyon insanın yeterli ve dengeli beslenemediği gelişmekte olan bazı ülkeler yeni tarım teknolojilerini kullanarak tarımsal üretimlerini artırmada yeterli olamamaktadırlar. Özet Hızla artmakta olan dünya nüfusunun 2025 yılı itibariyle 8 milyarı geçmesi ve bu artışın % 95’inin gelişmekte olan ülkelerde oluşması beklenmektedir. Gelişmiş ülkelerde önemli bir tarımsal üretim fazlası bulunmakla beraber, halen 830 milyon insanın yeterli ve dengeli beslenemediği gelişmekte olan bazı ülkeler yeni tarım teknolojilerini kullanarak tarımsal üretimlerini artırmada yeterli olamamaktadırlar. Yeşil devrim olarak da isimlendirilen dönemde hastalık ve zararlılara dayanıklı, yüksek verimli çeşitlerin geliştirilmesi, kimyasal gübre ve tarımsal mücadele ilacı kullanımının artması, mekanizasyon ve sulama teknikleri son 5 yıl içerisinde önemli verim artışları sağlamış olmakla beraber bu denli yoğun tarımsal faaliyetler çevre üzerinde de önemli baskılar yaratmıştır. Halen mevcut tarım alanları üzerinde ve kullanılan mevcut tarımsal tekniklerle önümüzdeki 20 yıl içerisinde artacak dünya nüfusuna yetecek gıda maddeleri üretimi mümkün görülmemektedir. Bu itibarla tahıllarda birim alana verimin % 80 oranında artırılması gerekmektedir. Bunun için de modern biyoteknolojik yöntemlerin önemli avantajlar sunduğu görülmektedir.Modern biyoteknolojik yöntemler arasında genetik mühendisliği en fazla umut bağlanan ve aynı ölçüde de tartışılan bir yöntemdir. Ancak, diğer moleküler ıslah yöntemleriyle birlikte kullanıldığında genetik mühendisliği teknikleri hastalık ve zararlılara; kuraklık ve tuzluluk gibi çevre koşullarına dayanıklı, bitki besin maddeleri içeriği iyileştirilmiş yüksek kaliteli ve verimli yeni çeşitlerin geliştirilmesi için bitki ıslahçılarına büyük kolaylıklar sağlayacaktır. Halen A.B.D., Arjantin, Kanada, Brezilya ve Çin gibi 18 gelişmiş ve gelişmekte olan ülkede yetiştirilen transgenik soya, mısır, pamuk ve kolza bitkileri böceklere ve bazı herbisitlere dayanım özelliği taşımaktadırlar. Bu ürünler, insan sağlığı ve çevre üzerindeki olası olumsuz etkileri bilimsel esaslara göre değerlendirildikten sonra yetiştirilmelerine ve tüketilmelerine izin verilmektedir. Türkiye gibi gelişmekte olan ülkelerin modern biyoteknolojik yöntemlerden yararlanarak tarımsal üretimlerini artıracak çeşitleri geliştirmeleri, belirlenecek sorunların çözümüne yönelik güdümlü projelere yeterli araştırma desteği ve altyapı sağlayarak mümkün olabilir. Ancak, bunun için gerek fikri mülkiyet hakları gerekse biyogüvenlik ile ilgili mevzuatın bir an önce hazırlanarak yürürlüğe girmesi de gerekmektedir. Giriş Avcı-toplayıcı kültürden tarımcı kültüre geçen insanlık, binlerce yıldır seçmiş olduğu bitkileri yetiştirip, geliştirerek ve evcilleştirdiği hayvanları daha da iyileştirerek tarımsal üretimi artırma yönündeki çabalarını sürdürmektedir. Dünya üzerindeki nüfusun artmasıyla birlikte bu çabalar daha da hızlanmış, zamanla yeni teknikler geliştirilmiş ve tarımla uğraşan yeni bilim dalları ortaya çıkmıştır. Malthus’un insanların yeterli gıda maddesi bulamayarak büyük bir felakete uğrayacakları öngörüsü (Malthus, 1798) de tarımsal tekniklerin gelişmesi ve üretimdeki artış nedeniyle gerçekleşmemiştir. Geçtiğimiz yüzyıl içerisinde hızla artan dünya nüfusunu beslemeye yetecek kadar tarımsal üretimin sağlanmasında şüphesiz “Yeşil Devrim” olarak da adlandırılan gelişmelerin önemli etkisi olmuştur. Yirminci yüzyıl başlarından itibaren, genetik biliminde meydana gelen gelişmelerin bitki ve hayvan ıslahında yaygın olarak kullanılması yüksek verimli bitki çeşit ve hayvan ırklarının geliştirilmesine olanak sağlamıştır. Bunun yanında tarımda mekanizasyonun gelişmesi, kimyasal gübre kullanımının yaygınlaşması, hastalık ve zararlıların neden olduğu kayıpların kimyasal mücadele ilaçları ile önlenmesi ya da en az düzeye indirilmesi, bitkisel üretimde sulama sistemlerinin yaygınlaştırılması ikinci dünya savaşından sonra bitkisel ve hayvansal üretimde % 100’ü aşan artışlara yol açmış, bunun sonucu özellikle gelişmiş ülkelerde üretim fazlası oluşmuştur. “Yeşil Devrim” sayesinde 1960’lı yıllardan itibaren, bu yeni çeşitler ile yeni tarım teknolojileri Türkiye’ye ve diğer çoğu gelişmekte olan ülkelere de kısa sürede girmiş ve genelde yerel nüfusun ihtiyacı olan gıda maddeleri üretiminde yeterlilik sağlanmıştır. Ülkemizdeki tarımsal üretim özellikle ikinci dünya savaşından sonra önemli ölçüde artmış olmakla beraber, verimlilik artışı oranı ekilebilir alanların artışı oranıyla karşılaştırıldığında bu artışın pek de sağlıklı olmadığı söylenebilir. Tarımsal üretim artışındaki temel öğeler incelendiğinde: 1950’lerden itibaren mekanizasyonun artmasıyla mera alanlarının bozularak tarlaya dönüştürüldüğü, aynı şekilde ormanların tahribiyle tarıma müsait olmayan dik eğimli alanlarda ekim yapıldığı, özellikle 1960’lardan itibaren göllerin ve sulak alanların kurutularak yeni tarım arazilerinin yaratıldığı, sulama ve/veya elektrik üretimi amaçlı göl ve göletler oluşturularak vadi içi habitatların tahrip edildiği ve geniş alanlarda sulu tarıma geçildiği ve böylece doğal dengenin olabildiğince bozulduğu ve biyolojik çeşitliliğimizin olumsuz etkilendiği görülmektedir. Bunların yanında, kimyasal gübrelerin ve tarımsal mücadele ilaçlarının gittikçe artan düzeylerde ve bilinçsizce kullanımı, üretimi artırmış olmakla beraber doğal çevre ve insan sağlığını da olumsuz yönde etkiler hale gelmiştir. Yine bu bağlamda, “Yeşil Devrim” ile birlikte kimyasal gübre kullanımına ve sulamaya iyi tepki veren yeni çeşitlerin kullanılmaya başlamasıyla verim artışı sağlanmış, ancak tarımsal biyoçeşitliliğin belkemiğini oluşturan yerel genotipler verimsiz bulunarak, bunların kullanımı azalmıştır. Dünya genelinde tarımsal üretimin gelişmesine bakıldığında, yine Türkiye’dekine benzer gelişmelerin olduğu ve tarımsal üretimin artırılmasında ekolojik dengenin aleyhine bir gelişme olduğu görülmektedir. Son yıllarda, tarımsal üretim fazlasının olduğu özellikle Avrupa Birliği ve diğer gelişmiş ülkelerde aşırı kimyasal gübre kullanımı ve hastalıklarla mücadele ilaçlarının çevre üzerindeki olumsuz etkileri tartışılmaya ve bu tip tarımsal üretimin kısıtlanmasına yönelik tedbirler alınmaya başlanmıştır. Nüfusun hızla arttığı gelişmekte olan ülkelerde ise durum pek de iç açıcı değildir. Nüfus baskısı nedeniyle tarım alanı açmak için tropik yağmur ormanlarının yakıldığı, suların kirlendiği, toprakların çoraklaşıp çölleşmenin hızla arttığı görülmektedir. Ancak, tarımsal alanların böylesi sağlıksız biçimde artması tarımsal üretimin sürdürülebilir şekilde artırılmasına ve bu yörelerdeki insanların gıda ihtiyacını karşılamaya yetmemiştir (SOFA, 2004). Bu nedenle, 2025 yılında 8 milyarı aşması beklenen dünya nüfusunun beslenmesi gerçekten önemli bir sorun olarak karşımıza çıkmaktadır. Ekilebilir alanları artırmak pek mümkün olmadığı gibi, tarımsal üretimde kullanılabilecek su kaynakları da hızla azalmaktadır. Dolayısı ile artan nüfusu besleyecek miktarda üretim için ekilebilir alanların genişlemesi değil, birim alandan alınan ürün miktarının artırılması gerekmektedir. Bu da, Nobel ödüllü bitki ıslahçısı Norman Borlaug’a göre buğday ve mısır gibi tahıllarda verimin % 80 artırılması demektir (Borlaug, 2003). Klasik ıslah yöntemleriyle elde edilebilecek biyolojik verim artışının da artık sınırlarına gelindiği düşünüldüğünde, bitki ıslah çalışmalarında yeni teknolojilerin kullanılması kaçınılmaz görünmektedir. Son yıllarda önemli gelişmeler gösteren biyoteknolojik yöntemlerin özellikle de moleküler tekniklerin tarımsal üretimi artırmada önemli avantajlar sağladığı bir gerçektir. Genelde biyoteknoloji olarak adlandırılan ve klasik biyoteknolojiden modern biyoteknolojik yöntemlere kadar uzanan ve gittikçe karmaşıklık düzeyi artan bu teknolojilerin (Şekil 1) ülkelerin bilim ve teknolojideki gelişmişlik durumlarına göre tarımda farklı düzeylerde kullanıldığı görülmektedir. Biyolojik azot fiksasyonu gelişmekte olan ülkelerde kolayca kullanılabilmekte, bitki doku kültürü teknikleri ise birçok ülkede hastalıklardan arındırılmış bitki materyali üretiminde yaygın olarak uygulanmaktadır. Genomik çalışmalar, biyoinformatik, transformasyon, moleküler ıslah, moleküler tanı yöntemleri ve aşı teknolojisi olarak gruplandırılabilen modern biyoteknolojiler ya da gen teknolojileri ise Çin ve Hindistan gibi birkaç gelişmekte olan ülke dışında genelde gelişmiş olan ülkelerde etkin olarak kullanılmaktadır (Persley ve Doyle, 1999). Moleküler teknikler halen hayvan, bitki ve mikrobial gen kaynaklarının karakterize edilmesinde yaygın olarak kullanılmaktadır. Aynı teknikler kullanılarak hastalık etmenlerinin tanısının yanında veterinerlikte aşı üretimi de yaygınlaşmış bulunmaktadır. Son yıllarda, genom araştırmaları da önemli bir evrim geçirmektedir. Yeni teknolojilerin kullanımı ile artık tek tek genlerin izole edilip tanımlanması yerine, tüm genlerin ya da gen grupların belirli bir organizma içerisindeki işlevlerini belirlemeye yönelik araştırmalar öne çıkmaya başlamıştır. Bu konularda, büyük ölçekli DNA dizinleme yöntemlerinin geliştirilmesi, bilgisayar ve yazılım programlarının oluşturulması bu ölçekteki verilerin değerlendirilmesini mümkün kılmaktadır. Burada, biyoinformatik ile “DNA yongaları” gibi teknolojiler biyolojik sistemlerin genetik yapılarına ayrıntılı olarak incelemeye olanak sağlamaktadır. Moleküler tekniklerin tarımsal üretimin artırılmasında önemli olanaklar sunduğu yadsınamaz bir gerçektir. Ancak, geçtiğimiz 20 yıl içerisinde yenidenbileşen [rekombinant] DNA ya da genetik mühendisliği teknikleri olarak da adlandırılan modern biyoteknolojik yöntemlerle geliştirilmiş hastalık ve zararlılara dayanıklı bitki çeşitlerinin insan sağlığı ve çevre üzerindeki olası olumsuz etkileri yoğun şekilde tartışılmakta, bu yeni teknolojinin sunduğu olanaklar farklı açılardan sorgulanmaktadır. Bu makalede modern biyoteknolojik yöntemlerle elde edilmiş ve genelde Genetiği Değiştirilmiş Organizmalar (GDO) olarak tanımlanan bu transgenik ürünlerin tarımsal üretimin artırılmasında sunduğu olanaklar, bu ürünlerin insan sağlığı ve çevre üzerindeki olası olumsuz etkilerin yanında GDO’larla ilgili sosyo-ekonomik kaygılar ele alınmaya çalışılacaktır. Transgenik Ürünlerde Dünya’da Mevcut Durum Bitki biyoteknolojisi ve özellikle gen teknolojisi alanındaki gelişmeler 1980’li yıllardan itibaren hız kazanmış, ilk transgenik ürün bitkisi olan uzun raf ömürlü domates FlavrSavr adı ile 1996 yılında pazara sürülmüştür. Bunu gen aktarılmış mısır, pamuk, kolza ve patates bitkileri izlemiştir. 1996 yılından itibaren transgenik ürünlerin ekim alanları hızla artmış ve 2005 yılında 90.0 milyon hektara ulaşmıştır (Çizelge 1). Halen yetiştirilmekte olan transgenik ürünlerin ekim alanları incelendiğinde, bu ekim alanlarının % 99’unun A. B. D., Arjantin, Kanada, Brezilya ve Çin’de olduğu, genetiği değiştirilmiş ürün ekimi yapan ülkelerin sayısı 18’e ulaşmış olmakla beraber (Güney Afrika, Avustralya, Hindistan, Romanya, Uruguay, İspanya, Meksika, Filipinler, Kolombiya, Bulgaristan, Honduras, Almanya ve Endonezya) bu ülkelerde geniş ekim alanları bulunmadığı görülmektedir (James, 2005). Çin’deki ekim alanları ise özellikle Bt içeren pamuk ile hızla artmaktadır. Yine, Hindistan’da Bt içeren pamuk ekimine izin verilmesiyle bu ülkede de transgenik pamuk ekim alanlarının hızla artması beklenmektedir. Transgenik ürünlerin ekim alanları 2005 yılı itibariyle 90.0 milyon hektara ulaşmış olmakla beraber, bu ekim alanlarının artmasındaki şüphesiz en önemli engel özellikle Avrupa Birliği kamu oyunda bu ürünlere karşı oluşan olumsuz tepkiler, dolayısı ile bunun üreticiler üzerinde oluşturduğu olumsuz beklentilerdir. Aynı şekilde, gelişmekte olan ülkelerde aşağıda daha detaylı olarak değerlendirilecek olan biyogüvenlikle ilgili yasal mevzuatın henüz oluşturulmamasının getirdiği belirsizlik de ekim alanlarının genişlemesine engel olmaktadır. OECD BioTrack On-line verilerine göre 2000 yılı itibariyle transgenik ürünlere ait 15 000 üzerinde tarla denemesi yapılmıştır. Bu ürünler arasında tarla bitkileri, sebzeler, meyve ağaçları, orman ağaçları ve süs bitkileri bulunmaktadır. Burada dikkate değer bir husus ise 100’e yakın transgenik ürün çeşidi için ticari üretim izni alınmış olmasına rağmen bunlardan ancak birkaç tanesi pazara sürülmüştür. Buna paralel olarak, geniş ölçekte yetiştiriciliği yapılan türlerin oldukça sınırlı sayıda olduğu, ancak soya, mısır, pamuk ve kolza gibi önemli ürün türleri olduğu görülmektedir (Çizelge 2). Pazara sürülen ilk transgenik ürün olan uzun raf ömürlü FlavrSavr domatesi pazarlama stratejilerindeki yanlışlıklar ve tüketiciler tarafından fazla tutulmaması nedeniyle üretimden kalkmıştır. Bt patates ise çevrecilerin tepkisinden çekinen büyük “Fast Food” gıda zincirlerinin talep etmemeleri nedeniyle pek geniş ekim alanları bulamamıştır. Herbisitlere dayanıklı transgenik buğday çeşidi de gerek çevrecilerin tepkisi gerekse bu ürünü geliştiren çokuluslu şirketin pazarlama kaygıları nedeniyle henüz ticarileştirilmemiştir. Virüse dayanıklı papaya Hawaii adalarındaki papaya endüstrisini kurtarmış olmakla beraber sadece burada yetiştirilmektedir. Geniş ölçekte yetiştirilen tür ve çeşitlerin yine çok uluslu şirketlere ait tohumculuk şirketleri tarafından pazarlanıyor olması ayrıca dikkat çekmekte olup, bunun nedenleri ileriki bölümlerde incelenmeye çalışılacaktır. Halen ticari olarak üretimi yapılmakta olan transgenik ürünlere aktarılmış özellikler incelendiğinde, bunların daha çok girdiye yönelik, yani doğrudan çiftçiyi ilgilendiren herbisitlere dayanıklılık, böceklere dayanıklılık, virüslere dayanıklılık gibi özellikler olduğu görülmektedir (Çizelge 3). En yaygın olarak aktarılan özellik herbisitlere dayanıklılık olup, bu çiftçilerin üretim maliyetlerini önemli ölçüde azaltmaktadır. Yine Lepidopter’lere dayanıklılık sağlayan Bacillus thuringiensis endotoksin geni (Bt), özellikle mısır ve pamuk yetiştiriciliğinde zararlı olan tırtıllara karşı etkili olmakta; dolayısı ile tarımsal mücadele ilaçları kullanımını azaltmakta böylece hem üretim maliyetini düşürmekte hem de kimyasal ilaçların çevre ve insan sağlığı üzerindeki olumsuz etkilerini ortadan kaldırmaktadır. Bundan sonra piyasaya sunulması beklenen transgenik ürünlerin ise üretim maliyetlerini düşürücü özelliklerin yanında tüketicileri doğrudan ilgilendiren özellikler üzerinde de yoğunlaşması beklenmektedir. Bunlara en güncel örnek “altın pirinç” olarak adlandırılan beta karoten/A vitamini içeriği yükseltilmiş çeltiktir. Gelişmiş ülkelerde özellikle Güneydoğu Asya’da A vitamini eksikliği çeken 170 milyon kadar kadın ve çocuğun bu şekilde yeterli A vitamini alması ümit edilmektedir. Greenpeace örgütü ise, Altın Pirinç’in sadece çokuluslu şirketlerin bir pazarlama stratejisi olduğunu, bölgede günlük yaklaşık 300 gram pirinç tüketildiğini, ancak bir insanın önerilen günlük dozda provitamin A alabilmesi için bu miktarın yaklaşık 12 katını yemesi gerektiğini iddia etmektedir. Altın pirinci geliştiren araştırmacılar, Dr. Peter Beyer ve Prof. Ingo Potrykus ise bu hesaplamanın gerçekleri yansıtmadığını söylemektedirler. Onlara göre, çocuklar için günlük tavsiye edilen A vitamini dozajı 0,3 mg/gün’dür. Ancak hastalıklar ve körlükten korunmak için gereken A vitamini miktarı bu dozajın %30-40’ı civarındadır. Altın Pirinç’te bulunan provitamin A miktarı 1,6 – 2,0 mg/kg’dır. Provitamin A’nın A vitaminine dönüşme faktörü Amerikan Ulusal Bilim Akademisi (NAS) Sağlık Enstitüsü’nce (IOH) '12', Dünya Sağlık Örgütü (WHO) ve Gıda ve Tarım Örgütü’nce (FAO) '6', Hindistan Sağlık Araştırma Kurulu’nca '4' olarak alınmaktadır. Bu veriler ışığında ve Altın Pirinç’in biyoyararlılık değerleri %100 veya %50 olarak kabul edildiğinde yapılan hesaplamalarda Çizelge 4'teki rakamlar ortaya çıkmaktadır. Hesaplama için bir örnek verelim: IOH'in dönüşüm faktörü olan '12' esas alınırsa: körlükten korunmak için gereken 0,1 mg A vitamini için gerekli provitamin A miktarı 0,1 X 12 = 1,2 mg'dir. Altın Pirincin 1 kilogramında 2 mg provitamin olması hâlinde ve biyoyararlılık oranı %100 ise, bir günde yenmesi gereken Altın Pirinç miktarı 1,2 / 2 = 0,6 kg çıkar. Ancak, Çizelge 4'ten görülebileceği gibi, dönüşüm faktörü ve biyoyararlılık oranına göre bu miktar çok daha küçük olabilmektedir. Hatta Hindistan Sağlık Araştırma Kurumu’nun hesaplamaları kullanılırsa bu miktarda provitamin A alınabilmesi için gereken Altın Pirinç tüketimi 180 gramdır. Kaldı ki, Altın Pirinç İnsani Yardımlaşma Ağı’na (Humanitarian Golden Rice Network) da üye olan Syngenta firmasının yatırımı ile 2005 yılında “Altın Pirinç 2” adı verilen ve öncekine göre yaklaşık yirmi kat daha fazla provitamin A içeren yeni bir pirinç çeşidi geliştirilmiştir. Firma yıllık 10.000 dolardan düşük gelirli çiftçilere tohumları ücretsiz vermeyi planlamaktadır. Ayrıca bu tohumlara sahip olan çiftçiler ileriki senelerde kendi tohumlarını firmaya bedel ödemeden çoğaltabileceklerdir(*). “Altın Pirinç” örneğinin dışında doymuş yağ asit oranı değiştirilmiş yağlı tohumların, gerekli amino asit içeriği yükseltilmiş tahıl ve patateslerin, mikroelementlerce zenginleştirilmiş tahılların, aroma maddeleri yüksek ancak düşük kalorili ürünlerin yakın gelecekte piyasaya çıkması beklenmektedir. Hepatit B aşısı içeren patates ve muz bitkilerinin yanında, transgenik bitkilerin önemli bir kullanım alanı da ilaç hammaddesi ve monoklonal antikor üretimi için büyük potansiyel sunmalarıdır. Gen aktarılmış bu bitkilerin sera ve tarla denemeleri halen devam etmektedir. Bunlara paralel olarak, üzerinde en fazla araştırma yapılan konular arasında biyotik ve abiyotik stres koşullarına dayanıklı bitki çeşitleri gelmektedir. Yukarıda da değinildiği üzere, şimdiye kadar sağlanan üretim artışı tarım alanlarının genişlemesi, yaygın kimyasal gübreleme ve sulama ile sağlanmış ve bunlar ekolojik dengeyi olumsuz yönde etkilemiştir. Artık herkes tarafından kabul edilen bu sorunlar nedeniyle, bundan böyle tarımsal üretimin artırılmasındaki temel iki hedef sürdürülebilir tarım teknikleri ve birim alandan alınan verimliliğin artırılması yönünde olacaktır. Bunun için de bitkilerin yüksek verimli genotipe sahip olmalarının yanında biyotik ve abiyotik stres koşullarına dayanıklı olmaları da istenmektedir (SOFA, 2004). Bunlar arasında hastalık ve zararlılara dayanıklılık özelliği başta gelmektedir. Zira özellikle gelişmekte olan ülkelerde, bitkisel üretimin yarıya yakın kısmı hatta bazen fazlası üretim sırasında veya hasat sonrası hastalık ve zararlılar nedeniyle kaybolmaktadır. Bunlara karşı tarımsal mücadele ilaçlarının kullanıldığı durumlarda ise bu hem üretim maliyetini artırmakta, hem de insan sağlığını ve çevreyi olumsuz yönde etkileyebilmektedir. Dolayısı ile hastalık ve zararlılara karşı dayanıklılık genleri aktarılmış bitkilerin geliştirilmesi verimliliği artırdığı gibi tarımsal üretimin çevre üzerindeki baskısını da azaltacaktır. Bu alanda şimdiye kadar elde edilmiş en başarılı uygulama Lepidopter’lere dayanıklılık sağlayan Bacillus thuringiensis endotoksin genleri aktarılmış bitkilerden elde edilmiştir. Ancak, bitkisel üretimde zararlı olan çok sayıdaki diğer zararlı böceklere karşı aynı başarı henüz elde edilememiştir. Aynı şekilde, bazı virüs hastalıklarına karşı dayanıklı bitki çeşitleri geliştirilmişse de bunların sayısı pek fazla değildir. Bitkilerde önemli kayıplara neden olan fungal ve bakteriyel hastalıklara karşı direnç kazandırmaya yönelik araştırmalar da yoğun biçimde devam etmektedir. Ancak, bu hastalıklara dayanıklılık mekanizmalarının karmaşıklığı, dayanıklılık mekanizmalarının bitkiler ve patojenler arasında farklılık göstermesi, patojenlerin özellikle fungusların kendi dayanıklılık mekanizmalarını sürekli geliştirme yetenekleri nedeniyle henüz bakteriyel ya da fungal hastalıklara dayanıklı transgenik bitki çeşitleri üretim zincirine girecek aşamaya gelmemiştir. Bilindiği üzere küresel ısınma ve yanlış arazi kullanımı gibi nedenlerle 21. yüzyılda kuraklığın ve çölleşmenin gittikçe artması beklenmektedir. Bu durumdaki arazilerin çoğu ise Afrika gibi nüfus artış hızının en fazla olduğu ülkelerde bulunmaktadır. Bu nedenle, kurağa dayanıklı ya da az suyla yetişebilen bitki çeşitlerinin geliştirilmesi büyük önem taşımaktadır. Aynı şekilde tuzlu veya mikroelement eksikliği ve alüminyum gibi metal fazlalığı sorunu bulunan topraklarda yetişebilen bitkilerin geliştirilmesi de bu gibi ülkelerdeki marjinal tarım alanlarında üretim yapılabilmesine olanak sağlayacaktır. Eldeki bilgiler, dünyada mineral eksikliği ve metal (özellikle alüminyum) toksisitesi nedeniyle bitkisel üretimin sınırlandığı toprakların tüm topraklar içerisindeki payının % 60 dolayında olduğunu göstermektedir (Çakmak, 2002). Hem bu tür toprak sorunlarına hem de olumsuz çevre/iklim koşullarına karşı dayanıklılık kazandırmaya yönelik çalışmalar da yoğun bir şekilde devam etmekle beraber, bu özelliklerin birden fazla gen veya gen grupları tarafından belirleniyor olması, bunların gerek belirlenip klonlanmaları gerekse bitkilere aktarma teknolojilerinin yetersizliği sebebiyle henüz beklenen başarı düzeyine ulaşılamamıştır. Moleküler Bitki Islahı Gen teknolojileri denildiği zaman ilk akla gelen transgenik bitkiler ise de yukarıda belirtilen teknik kısıtların yanında transgenik bitkiler konusunda oluşan olumsuz kamu oyu baskıları da göz önünde bulundurularak, bu teknolojilerin klasik ıslah yöntemlerini geliştirerek daha etkin kılacağı alanlara yönelmek belki de daha akılcı bir yaklaşım olacaktır. Çoğu biyotik ve abiyotik stres koşullarına dayanım birden fazla gen tarafından kontrol edildiğinden bunların klasik ıslah yöntemleriyle belirlenmesi mümkün olmamaktadır. Ancak bu alanda gerek ulusal gerekse uluslararası ıslah kuruluşlarında, önemli miktarda bitki gen bankaları oluşturulmuş ve klasik ıslah konusunda önemli deneyimler kazanılmıştır. İşlevsel genomik çalışmalarının yaygınlaşmasıyla oluşan bilgi birikimini klasik ıslah yöntemleriyle birleştirmek mümkün olduğunda, stres koşullarına dayanıklı bitki ıslahı da yeni bir boyut kazanacaktır. Arabidopsis genetik haritasının yanında, çeltik, domates ve Prunus gibi türlerin genetik haritalarından kaydedilen gelişme, çoğu metabolik tepkimeyle ilgili gen dizinlerinin evrim boyunca korunmuş olması, elde edilen bu bilgi birikiminin diğer türlerde kullanım olanağını artırmaktadır. Yine moleküler işaret genleri konusunda oluşan bilgi birikimi moleküler bitki ıslahında yaygın olarak kullanılmaya başlanmıştır. Bu moleküler teknikler özellikle buğday gibi genomu karmaşık bitki türlerinde hastalıklara dayanım mekanizmaları ve kalite özellikleri açısından ıslahta çok önemli avantajlar sunmaktadır. Benzer şekilde meyve ya da orman ağaçları gibi generatif yaşam evreleri uzun dolayısı ile melezleme ıslah süreçlerinin çok uzun olduğu bitki türlerinde de moleküler işaret genleri çok önemli olmaktadır. Öte yandan, dünyada, özellikle gelişmekte olan ülkelerde insanlarda başta demir ve çinko olmak üzere mikroelement eksiklikleri ve buna bağlı ciddi sağlık sorunları çok yaygın biçimde ortaya çıkmaktadır. Yapılan tahminler problemin dünya nüfusunun yarısını etkilediğini göstermektedir. Sorunun başlıca nedeni olarak, mikroelementlerce çok fakir olan tahıl kökenli gıdaların yoğun biçimde tüketilmesi gösterilmektedir. Tahıllar hem mikroelementlerce fakir hem de mikroelementlerin vücutta kullanımını sınırlayan maddelerce zengindir (Cakmak ve Ark., 2002). Günümüzde birçok araştırma grubu ve konsorsiyumu buğday, çeltik ve mısır gibi bitkilerin mikroelementlerce zenginleştirilmesi için ıslah programları başlatmış ve bu programlarda moleküler markör destekli moleküler teknikler vazgeçilmez bir araç olarak kullanılmaktadır (www.harvestplus.org). Tüketici Tepkileri ve Biyogüvenlik Düzenlemeleri Transgenik bitkilerin insan sağlığı ve çevre üzerindeki olası olumsuz etkileri uzunca süredir tartışılmaktadır. Yukarıda değinildiği üzere, ilk transgenik ürünler A.B.D.’de yetiştirilmeye başlanmış olup, yine en geniş ekim alanları bu ülkede bulunmaktadır. Bu ürünlerin tamamı Amerikan Gıda ve İlaç İdaresi (FDA), Amerikan Tarım Bakanlığı (USDA/APHIS) ve Çevre Koruma Dairesi (EPA) tarafından çok kapsamlı bilimsel incelemeler yapıldıktan sonra ticari üretimleri yapılmakta ve yine bu ülkede insan gıdası ve/veya hayvan yemi olarak tüketilmektedir. Üretim fazlası olan mısır ve soya gibi ürünler ise Avrupa Birliği dahil diğer ülkelere satılmaktadır. Özellikle Avrupa Birliği ve diğer bazı ülkelerde transgenik bitkilerin insan sağlığı ve çevre üzerine olası olumsuz etkileri çok yoğun bir şekilde tartışma konusu olmaktadır. Bunların bilimsel bazlı tartışmalardan ziyade duygusal, kişisel ve ekonomik tercihler ağırlıklı olduğu yadsınamaz. Örneğin, endişe konusu gerekçelerden bir tanesi transgenik ürün geliştirme çalışmaları sırasında kullanılan antibiyotik işaret genleridir. Avrupa Konseyi’nin 1999 yılında uzman bilim adamlarından oluşan bir panele hazırlatmış olduğu rapor, bu endişenin bilimsel nedenlerle açıklanamayacağını bildirmiş, ancak bundan sonra geliştirilecek transgenik bitkilerde antibiyotik işaret genlerinin kullanılmamasını tavsiye etmiştir. Avrupa Gıda Güvenliği Otoritesi (EFSA) GDO Paneli ise 2 Nisan 2004 tarihide yayınlamış olduğu Bilim Paneli Görüş Dokümanı’nda antibiyotik işaret genlerini 3 grupta toplamış ve halen üretilip tüketilmesine izin verilen GD ürünlerde bulunan npt II işaret geninin insan ve çevre sağlığı açısından her hangi bir sorun oluşturmayacağını, klinik tedavide kullanılan diğer antibiyotik işaret genlerinin ise araştırmalarda kullanılmaması gerektiğini bildirmiştir (EFSA, 2004). İnsan sağlığı açısından öne sürülen diğer bir olumsuzluk ise transgenik ürünlere aktarılan genlerin insanlarda alerji yapacağı ve toksik etkileri olabileceğidir. Ancak, bu ürünlerin ticari ekimlerine izin verilmeden önce yoğun ve kapsamlı laboratuar ve klinik testlerin yapılması ve bulguların bağımsız bilim kurulları tarafından inceleniyor olması, bu tip yan etkilerin en az düzeyde olmasını sağlamaktadır. Burada hatırlanması gereken husus, transgenik ürünlerin alerji oluşturma olasılığının klasik ıslah yöntemleri ile elde edilen ürünlerden daha fazla olmamasıdır (König ve ark., 2004) Nitekim, Avrupa Birliği ülkelerindeki yoğun kamuoyu endişelerini giderebilmek amacıyla, 13 AB üyesi ülke’den 65 bilim insanının katılımıyla, 3.5 yıl süren ve 11.5 milyon euro harcanarak yürütülen ENTRANSFOOD projesi, halen üretilip tüketilmekte olan genetiği değiştirilmiş ürünlerin insan sağlığı açısından klasik yöntemlerle elde edilen ürünlerden daha tehlikeli olmadığını ortaya koymuştur (Kuiper ve ark., 2004). Transgenik ürünlerin çevresel etkilerini değerlendirmek ise insan sağlığı üzerindeki etkilerini değerlendirmekten çok daha zor ve karmaşık görünmektedir. Burada şüphesiz tarımsal üretim yapılan ekosistemlerin birbirlerinden çok farklı olması en büyük etkendir. Çevre üzerindeki olası olumsuz etkilerin başında, transgenik bitkilerin ekosistemdeki diğer canlılarla etkileşimi gelmektedir. Örneğin Bt aktarılmış mısır bitkilerini yiyen tırtılların yanında diğer hedef olmayan canlıların örneğin Kral kelebeğinin de olumsuz etkilenebileceği endişesi (Losey, 1999) son birkaç yıldır yoğun tartışma konusu olmuş hatta GDO karşıtı örgütler tarafından hala yaygın olarak kullanılmaktadır. Ancak, Bt mısır polenlerinin Kral kelebeği ve diğer hedef dışı organizmalar üzerindeki olumsuz etkilerini tarla koşullarında incelemek üzere yapılan kapsamlı araştırmalar bu riskin çok düşük bir düzeyde olduğunu ve Kral kelebeklerinin yaşam döngüsünü olumsuz etkilemediğini göstermiştir (Oberhauser ve ark., 2001; Pleasants ve ark., 2001; Sears ve ark., 2001; Zangerl ve ark., 2001). Burada genetiği değiştirilmiş organizmaların çevre üzerindeki etkileri tartışılırken, Bt geni aktarılmış bitkiler yerine normal mısır yetiştiriciliğinde kullanılan kimyasal mücadele ilaçlarının hedef olmayan organizmalar üzerinde çok daha fazla olumsuz etkilerinin bulunduğunu göz önünde bulundurmakta yarar vardır (Gianessi ve ark., 2002). Burada asıl endişe konusu, sürekli Bt aktarılmış mısır ile beslenen tırtılların belirli bir süre içerisinde dayanıklılık mekanizması geliştirmesinin kaçınılmaz olmasıdır. Onun için bu tırtılların dayanıklılık geliştirmelerini geciktiren tedbirler alınmaya çalışılmaktadır. Ancak, bu yine de güncel ve geçerli bir sorun olarak çözüm beklemektedir. Diğer bir husus ise transgenik bitkilerden gen kaçışı yoluyla biyoçeşitliliğin bozulmasıdır. Burada, transgenik bitkilerle akraba türlerin bulunduğu ekosistemlerde transgeniklerin kesinlikle yetiştirilmemesi öngörülmektedir. Ancak, çiftçi eğitim düzeyinin oldukça sınırlı olduğu gelişmekte olan ülkelerde bunun ne şekilde sağlanabileceği hala bilinmemektedir. Nitekim, mısır bitkisinin gen kaynağı olarak bilinen Meksika’da A. B. D.’den kaçak olarak getirilen transgenik mısırların ekilmesi ve bunlardan Meksika’daki yerel mısır çeşitlerine gen kaçışı biyoçeşitlilik üzerinde önemli etkiler yaratacaktır. Transgenik bitkilerin insan sağlığı ve çevre üzerindeki olası olumsuz etkileri yoğun olarak incelenip tartışılmakta olup, buna yönelik çeşitli ulusal, bölgesel ve uluslar arası mevzuat oluşturma çabaları bulunmaktadır. Ancak ülkeler arasında henüz tam bir uyum sağlandığı söylenemez. Örneğin A.B.D.‘deki biyogüvenlik mevzuatı Avrupa Birliği mevzuatından çok farklı olup mevzuatın uygulanmasında bile ülkeler arasında hala uyum sağlanamamıştır. Ancak, yeni oluşturulan European Food Safety Authority ve 2004 yılında yürürlüğe giren genetiği değiştirilmiş ürünlerin etiketlenmesi ve izlenebilirliğini amaçlayan yönetmelikler bu uyumu sağlamada önemli bir adım sayılabilir. Son olarak, Uluslararası Biyolojik Çeşitlilik Anlaşması bağlamında hazırlanan ve uzun görüşme ve tartışmalardan sonra 2000 yılında üzerinde anlaşmaya varılan Uluslararası Biyogüvenlik Protokolü, transgenik ürünlerin sınır ötesi taşınmaları ve kullanımı yönünde olumlu bir gelişmedir. Türkiye’nin de imzalamış olduğu bu Protokol 11 Eylül 2003’te yürürlüğe girmiş olmasına rağmen, Protokol’ün uygulanabilir hale gelmesi daha bir süre alacaktır. Bunun için özellikle gelişmekte olan ülkelerin, kendi biyogüvenlik mevzuatlarını hazırlamalarının yanında, bu mevzuatı uygulayacak laboratuar altyapısını oluşturmaları, bu laboratuarlarda çalışacak teknik elemanları yetiştirmeleri ve en önemlisi karar verici konumdaki bürokratları eğitmeleri gerekmektedir. Aksi takdirde, bu mevzuat transgenik ürünlerin ticaretini engelleme dışında, gelişmekte olan ülkelerin kendi biyolojik kaynaklarını verimli şekilde değerlendirecek bilimsel ortamı yaratmaları açısından olumlu bir etki oluşturmayacaktır. Fikri Mülkiyet Hakları Giriş kısmında bahsedilen ve tarımsal üretimin artırılmasında oldukça başarılı sayılan “Yeşil Devrim”, büyük ölçüde kamu kuruluşları veya kamu yararına çalışan uluslararası araştırma enstitüleri tarafından gerçekleştirilmiştir. Bu nedenle, gerek yüksek verimli çeşitlerin geliştirilmesi gerekse bu tohumlukların çoğaltılarak gelişmekte olan ülke çiftçilerine ulaştırılması normal ticari kurallar içerisinde süregelmiştir. Benzer şekilde, mekanizasyon, kimyasal gübre ve tarımsal mücadele ilaçları kullanımı, sulu tarım teknikleri gibi yeni teknolojilerin transferi hatta sulama projelerinin kurulması gibi konularda uluslararası finans kuruluşları veya yardım kuruluşları önemli katkılarda bulunmuşlardır. Bugünkü “Biyoteknoloji Devrimi” ise büyük ölçüde özel sektör tarafından yapılmaktadır. Halen bu alandaki Ar-Ge çalışmalarının % 80 oranında özel sektör yatırımlarıyla gerçekleştiği tahmin edilmektedir. Hal böyle olunca, özel sektör yatırımcıları tarafından geliştirilen her teknik veya ürünün hemen patent veya benzeri yöntemlerle korunmaya alınması ve bunlardan kısa sürede ticari gelir sağlanması istenmektedir. Aksi halde, özel sektörün gelir getirmeyecek Ar-Ge faaliyetlerine girmesini beklemek pek gerçekçi olmayacaktır. Örneğin, halen ticarete intikal etmiş transgenik ürünlerin mısır, soya ve pamuk gibi büyük ürün gruplarında olması, gelişmekte olan ülkelerdeki tatlı patates ve sorgum gibi ürünlere özel sektör tarafından pek yatırım yapılmaması şaşırtıcı değildir (SOFA, 2004). Son yıllarda, yine uluslararası yardım kuruluşlarının desteği ile veya biyoteknoloji alanında yoğun Ar-Ge faaliyeti olan çokuluslu şirketlerin işbirliği ile kamu araştırma kuruluşlarında yeni transgenik çeşitlerin geliştirilmesine yönelik araştırma faaliyetlerinin arttığı gözlenmektedir. Ancak, burada da fikri mülkiyet haklarına ilişkin sorunların yoğun olarak tartışıldığı görülmektedir. Bunun en güncel örneklerinden birisi de yukarıda sözü edilen “Altın Pirinç”tir. Rockefeller Vakfı tarafından finanse edilen ve Prof. Ingo Potrykus ve Prof. Peter Beyer önderliğindeki araştırmacılar tarafından geliştirilen “Altın Pirinç”te 30 civarında farklı şirket ve üniversiteye ait 70 adet patent bulunması, bu ürünün ticari olarak değerlendirilmesinde ve hatta gelişmekte olan ülkelere transferinde önemli bir sorun olarak ortaya çıkmıştır. Bu konuda, Latin Amerika ülkelerinde yapılan bir çalışma (Cohen ve ark., 1998), bu ülkelerde yürütülen biyoteknolojik araştırmaların ve ürün geliştirme çalışmalarının hepsinde çok sayıda patentli teknik veya materyalin kullanıldığını göstermiştir (Şekil 2). Tüm bunlar, biyoteknolojik araştırmalardan gelişmekte olan ülkelerdeki fakir çiftçilerin ve halkın nasıl yararlanabileceği sorusunu akla getirmektedir. Dünya Ticaret Örgütü’ne (WTO) üye ülkelerin imzalamış oldukları TRIPS (Trade Related Intellectual Property Rights) antlaşması, bazı istisnai hükümlerine rağmen, gelişmiş ülkelerdeki çok uluslu şirketleri korur niteliktedir. Bu nedenle, gelişmekte olan ülkelerdeki araştırma kuruluşlarının, biyoteknolojik araştırmalarını planlarken ve yürütürken fikri mülkiyet haklarıyla ilgili konuları yakından izlemeleri ve ona göre tedbir almaları yararlı olacaktır. Bu bağlamda yine transgenik bitkilerden ziyade moleküler bitki ıslahı yöntemlerinin Türkiye gibi gelişmekte olan ülkeler açısından daha avantajlı olduğu söylenebilir. Yine burada, Türkiye gibi zengin gen kaynaklarına sahip ülkelerin, bu gen kaynaklarını tespit edip karakterize ederek, hatta bunlardaki ticari öneme sahip genleri saptayıp patentleyerek önemli bir konum yakalamaları mümkün olabilir. Bu konuda, FAO örgütü tarafından 2001 yılında kabul edilen Uluslararası Bitki Genetik Kaynakları Antlaşması işlerlik kazandığında, zengin gen kaynağı olan ülkelerin bu kaynaklardan daha etkin yaralanmalarına yardımcı olacaktır. Bu alandaki gerek yasal ve gerekse araştırma altyapısının şimdiden oluşturulması yararlı olacaktır. Şekil 2. Latin Amerika Ülkelerinde Kullanılan Patentli Teknikler ve Materyaller (Cohen ve ark., 1998). Türkiye’de Tarımsal Biyoteknoloji ve Transgenik Ürünlerin Durumu Türkiye zengin gen kaynaklarına sahip olması nedeniyle, tarımsal biyoteknoloji alanında çok önemli bir avantaja sahiptir. Ancak, Türkiye’nin modern biyoteknolojik yöntemlerin sunduğu nimetlerden yararlanabilmesi için dünyadaki gelişmeler ve Türkiye’deki mevcut durum çerçevesinde önceliklerini çok iyi saptaması gerekmektedir. Türkiye’de biyoteknolojinin gelişmesi için mutlak gerekli olan biyoloji, biyokimya, moleküler biyoloji gibi temel bilim alanlarına gerekli önemin verilmemesi, bu alanda yetişmiş eleman sayısının düşük kalmasına ve dolayısı ile kapsamlı araştırmaları yürütebilecek kritik kitleye sahip araştırma birimlerinin oluşturulmasına engel olmuştur. Bu sorun, 1980 yılından beri hazırlanan tüm 5 yıllık kalkınma planlarında vurgulanmış olmasına karşın, bu konuda henüz belirgin bir gelişme sağlandığı ne yazık ki söylenemez. Burada en önemli sorun, belirli düzeyde bilgi birikimine ve tecrübeye sahip araştırmacıları bir araya getirerek “uzmanlık merkezleri” oluşturmak yerine tek tek laboratuvarların oluşturulmasından kaynaklanmaktadır. Son yıllarda, yurt dışında moleküler biyoteknoloji alanında eğitim görmüş ya da moleküler bitki ıslahı konusunda eğitim almış genç araştırmacıların sayısı artıyor olmasına rağmen, bunları bir araya getirerek güdümlü projeler üzerinde çalışacak “uzmanlık merkezleri” ya da laboratuvarları oluşturacak bir çaba görülmemektedir. Gerekli tedbirler alınmadığı taktirde, geçtiğimiz 30 yıldır yapılan girişimlere ve harcanan çok önemli miktarda kaynaklara rağmen Türkiye’nin tarımsal biyoteknoloji alanında, bugün bulunduğu noktadan daha farklı bir konuma gelmesi mümkün olamayacaktır. Burada, Türkiye’de bitki doku kültürü yatırımlarının 1974 yılında başlamış olmasına ve halen hemen hemen tüm Ziraat Fakültelerinde ve Tarım Bakanlığı araştırma enstitülerinde birer doku kültürü laboratuvarı kurulmuş olmasına rağmen Türkiye’nin, son derece basit bir teknoloji gerektiren patates tohumluğu ihtiyacını bile, hemen tamamını her yıl milyonlarca dolar ödeyerek yurt dışından karşılaması en çarpıcı örneklerden birisidir. Türkiye’nin biyoteknolojiye ve tarımsal araştırmalara yaklaşımını ortaya koymak amacıyla, 2001-2005 yıllarını kapsayan VIII. Beş Yıllık Kalkınma Planının ilgili bölümleri incelendiğinde, bilgi toplumu olma amacı doğrultusunda bilimsel ve teknolojik gelişmeler sağlayarak uluslararası düzeyde rekabet gücü kazanmanın esas olduğu ilkesi dikkati çekmektedir. Bu ilke çerçevesinde biyoteknolojinin de içinde bulunduğu bazı yüksek teknolojiler öncelikli konu olarak belirlenmiştir. Ayrıca, ekonomik, sosyal, çevresel boyutunu bütün olarak ele alan rekabet gücü yüksek, sürdürülebilir bir tarım sektörünün oluşturulması temel amaç olarak tespit edilmiştir. Tarımsal araştırmalarda koordinasyonun sağlanmasının ve araştırma konularının belirlenmesinde üretici ve sanayicinin taleplerinin dikkate alınmasının gerekliliği de vurgulanmaktadır. Hedefler bu şekilde belirlenmekle birlikte, Türkiye’nin Ar-Ge konusunda diğer ülkelere oranla oldukça geride olduğu bilinen bir gerçektir. Halen Ar-Ge harcamalarının GSMH içindeki payı % 0,64 düzeyindedir. Üniversiteler toplam Ar-Ge çalışmalarında ve tarımsal araştırmalarda en fazla payı alan kurumdur. Dolayısıyla, diğer gelişmekte olan ülkelere paralel olarak Türkiye’de de özel sektör araştırmaları kısıtlı olup, üniversiteler % 70’lere varan payla en fazla araştırmanın yapıldığı kurum olmaktadır. TÜBA (2003) tarafından gerçekleştirilen “Moleküler Yaşam Bilimleri ve Teknolojileri Öngörü Projesi” kapsamında Türkiye’nin biyoteknoloji ile ilgili altyapısı ortaya konmaktadır. Çalışma, yaklaşık 150 araştırma biriminin ve 2000 araştırıcının biyoteknoloji konusunda çalıştığını göstermektedir. Bu sayının önemli bir insan altyapısını işaret ettiğini vurgulayan çalışma, araştırıcıların verimliliklerinin bir göstergesi olan araştırıcı başına bilimsel yayın verilerine bakıldığında mevcut altyapının etkin bir şekilde kullanılmadığını, kurumsallaşmanın ve teknoloji üretme kaygısının bulunmadığını .belirtmektedir. Türkiye’de biyoteknoloji alanında yapılan bilimsel yayınların yaklaşık % 42’si endüstriyel biyoteknoloji alanında olup tarımsal biyoteknoloji % 11,5 ile en az yayın çıkarılan biyoteknoloji dalı olmuştur. Stres toleransı, rejenerasyon ve propagasyon, farmasötik ve moleküler markörler en fazla çalışılan tarımsal biyoteknoloji konularıdır (Özcengiz, 2003). Biyoteknoloji araştırmaları için devlet TÜBİTAK, kamu kurumları ve üniversitelere destek verdiği gibi özel sektöre de belli oranlarda destekler sağlamaktadır. Kamu yatırım bütçesinden üniversitelere araştırma projelerinin desteklenmesi amacıyla ödenekler tahsis edilmekte olup, desteklenen projeler arasında genetik kaynakların korunması projeleri, transgenik bitki geliştirilmesine ve üniversitelerin altyapılarını geliştirmeye yönelik projeler önde gelmektedir. Öte yandan, firmaların biyoteknoloji araştırma geliştirme faaliyetlerine de TÜBİTAK bünyesindeki Teknoloji İzleme Değerlendirme Birimi (TİDEB) ve Türkiye Teknoloji Geliştirme Vakfı (TTGV) kanalıyla destek sağlanmaktadır. TİDEB firmaların Ar-Ge proje maliyetlerinin en fazla % 60’ı oranında ve hibe şeklinde destek vermektedir. Bu program dahilinde, gen mühendisliği-biyoteknoloji 6 öncelikli konudan biri olarak tespit edilmiş olup biyoteknoloji projelerinin toplam desteklenen projeler içindeki payı % 3,1’dir. TTGV ise proje maliyetinin en fazla % 50’sini karşılamakta ve geri ödemeli bir sistem içinde destek vermektedir. Biyoteknolojinin bu kapsamda desteklenen projeler içerisindeki payı ise % 7’dir. Tarımsal biyoteknolojide gelişme kaydetmiş ülkelerdeki kurumsal yapılanma üniversiteler, kamu Ar-Ge kuruluşları ve özel sektör olmak üzere 3 farklı ayaktan meydana gelmekte ve her bir kurumun kendi kapasiteleri ve görev tanımları içinde belirlenmiş rolleri bulunmaktadır. Örneğin üniversiteler ve kamu Ar-Ge kuruluşları temel araştırma konusunda uzmanlaşırken, özel sektörün uygulamalı araştırma ve ürün geliştirmeye yönelik çalıştığı görülmektedir. Birbirinin tamamlayıcısı olan bu roller içinde bir kurumun eksikliği sistemin iyi çalışmamasına neden olmaktadır. Bu noktadan hareketle Türkiye’deki yapıya baktığımızda, araştırma sistemi içerisinde üniversitelerin temel kuruluş olduğu ve en önemli ayaklardan biri olan özel sektörün sistem içinde yer almadığı dikkati çekmektedir. Dolayısıyla, özel sektörün ve kamu Ar-Ge kuruluşlarının rolünü üstlenecek bir kurumsallaşma olmadığı için hedefe yönelik ve verimli çalışan bir sistem mevcut değildir. Bununla beraber, yukarıda da belirtildiği gibi araştırmaların önemli bir kısmını yürüten üniversitelerin de verim ve etkinlik sorunları bulunmaktadır. Son yıllarda, çok önemli kaynaklar sağlanarak, moleküler biyoloji altyapısına sahip laboratuarların kurulduğu ve yine yeterli yetkin kadroların bulunup bulunmadığı aranmaksızın önemli miktarda proje destekleri sağlandığı görülmektedir. Ancak, bu projeler incelendiği zaman bunların çoğunun gerçekçi hedeflere odaklanmadığı ve ürün geliştirme niteliği taşımadığı da bir gerçektir. Transgenik ürün geliştirmeye yönelik bir kısım araştırma projelerinin başarılı olmaları için gerekli özel sektör katılımı ya da desteğinin olmaması da ayrıca düşünülmesi gereken bir husustur. Yine bu bağlamda, geliştirilmesi muhtemel transgenik ürünlerin risk analizleri ve pazara sunumları için gerekli yasal çerçevenin çizilmemiş olması da bunların uygulamaya geçirilme şansını ortadan kaldırmaktadır. İlk defa 1998 yılında yabancı firmalara ait transgenik çeşitlere ait tarla denemelerinin yapılabilmesi için Tarım ve Köyişleri Bakanlığı tarafından hazırlanarak yürürlüğe sokulan “Transgenik Kültür Bitkilerinin Alan Denemeleri Hakkında Talimat” ise bu amaca hizmet etmekten çok uzaktır. Hal böyle iken, söz konusu çeşitlerin tarla denemelerinin 1998 yılından bu yana bizzat Tarım ve Köyişleri Bakanlığı’na ait Araştırma Enstitü’leri tarafından yürütülüyor olmasına rağmen elde edilen sonuçların resmen açıklanmamış olması da üzerinde durulması gereken önemli bir konudur. Türkiye Cartagena Biyogüvenlik Protokolünü imzalayan ilk ülkelerden biri olmuşsa da buna yönelik yasal mevzuat çalışmalarını aynı hızda yürütememiştir. Aynı şekilde, Avrupa Birliği mevzuatına uyum için gerekli yönetmelikler de henüz hazırlanarak yürürlüğe sokulamamıştır. Biyogüvenlikle ilgili bu mevzuat boşluğunun yanında, fikri mülkiyet hakları kapsamında Bitki Islahçı Haklarıyla ilgili mevzuat yıllar sonra oluşturulmuşsa da UPOV üyeliği henüz gerçekleştirilememiştir. Türkiye’de transgenik ürünlerin ticari olarak ekimlerine izin verilmezken, yurtdışından gıda hammaddesi olarak ithal edilen mısır ve soya ürünlerinin transgenik olma ihtimali oldukça yüksek görünmektedir. Sonuç ve Öneriler Kısaca biyoteknoloji olarak da isimlendirilen modern gen teknolojileri, hızla artan dünya nüfusunun yeterli ve dengeli beslenmesini sağlamak amacıyla tarımsal üretimin artırılmasında önemli olanaklar sunmaktadır. Burada, sürdürülebilir tarım tekniklerinin uygulanmasının yanında biyotik ve abiyotik stres koşullarına dayanıklı, yüksek verimli ve kaliteli bitki çeşitlerinin geliştirilmesi önemli bir önceliktir. Bu bitkilerin geliştirilmesinde sadece transformasyon yoluyla elde edilen transgenik bitkiler değil, ağırlıklı olarak moleküler bitki ıslahı teknikleri üzerinde yoğunlaşmak kısa ve orta vadede daha doğru olacaktır. Türkiye gibi zengin gen kaynaklarına sahip gelişmekte olan ülkelerin, öncelikli alanlarını saptayarak moleküler biyoloji çalışmaları için yeterli altyapıyı oluşturmaları ve kritik kitleyi oluşturacak sayıda yetkin araştırmacı yetiştirmeleri, ellerindeki genetik potansiyeli en iyi şekilde değerlendirmelerine yardımcı olacaktır. Ancak, teknolojik gelişmelere paralel olarak, gerek bu tekniklerin ve ürünlerin geliştirilmesi sırasında gerekse bunların doğaya salımlarında biyogüvenlikle ilgili yasal düzenlemelerin yapılması ve bu mevzuatı uygulayacak yetkin kişilerin eğitilmesi gerekmektedir. Burada, hazırlanacak mevzuatın bilimsel esaslara dayalı olması, yurt içinde yapılacak çalışmaları engelleyici değil kolaylaştırıcı tedbirleri içermesi önem taşımaktadır. Aynı şekilde, biyoteknolojik uygulamalar ve ürünlerle ilgili fikri mülkiyet haklarına yönelik Bitki Islahçı Hakları, Patent Kanunu gibi mevzuatın bir an önce uygulanabilir hale getirilmesi, bu alanlarda araştırmacıları bilgilendirecek ve destekleyecek düzenlemelerin yapılması küreselleşen dünya ticaretinde rekabet edebilecek bir konuma gelebilmemiz için önem taşımaktadır. Prof. Dr. Selim ÇETİNER Sabancı Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi Tuzla, İstanbul

http://www.biyologlar.com/biyoteknoloji-ve-tarim-guvencesi

Evrimleşmeyi Sağlayan Düzenekler

Doğal Seçilim Bir populasyon, kalıtsal yapısı farklı olan birçok bireyden oluşur. Ayrıca, meydana gelen mutasyonlarla, populasyondaki gen havuzuna (türün üreme yeteneğine sahip tüm bireylerinin oluşturduğu genler) yeni özellikler verebilecek genler eklenir. Bunun yanısıra mayoz sırasında oluşan Krossing-Over'lar (Mayoz bölünmede gen parça değişimi) ve rekombinasyonlar, yeni özellikler taşıyan bireylerin ortaya çıkmasını sağlar. İşte bu bireylerin taşıdıkları yeni özellikler (yani genler) nedeniyle, çevre koşullarına daha iyi uyum yapabilme yeteneği kazanmaları, onların, doğal seçilimden kurtulma oranlarını verir. Yalnız çevre koşulları her yerde ve her zaman (özellikle jeolojik devirleri düşünürsek) aynı değildir. Bunun anlamı ise şudur: Belirli özellikleri taşıyan bireyler, belirli çevre koşullarına sahip herhangi bir ortamda, en başarılı tipleri oluşturmalarına karşın, birinci ortamdakinden farklı çevre koşulları gösteren başka bir ortamda, ya da zamanla çevre koşullarının değiştiği bulundukları ortamda, uyum yeteneklerini ya tamamen ya da kısmen yitirirler. Bu ise onların yaşamsal işlevlerinde güçlüklere (döllenmelerinde, embriyonik gelişmelerinde, erginliğe kadar ulaşmalarında, üremelerinde, besin bulmalarında, korunmalarında vs.) neden olur. Böylece erginliğe ulaşanlarının, ulaşsalar dahi fazla miktarda yavru verenlerinin, verseler dahi bu yavruların ayakta kalanlarının sayısında büyük düşmeler görülür. Bu çevre koşulları belirli bir süre (genellikle uzun bir süre) etkilerini sürdürürse, belirli özelliklere (gen yapısına) ahip bireyler devamlı ayıklanacak ve taşıdıkları genlerin gen havuzundan eksilmesiyle, gen frekanslarında (bir özelliğin, bireylerde ortaya çıkış sıklığı) değişmeler ortaya çıkacaktır. Bu seçilim, çoğunluk döller boyunca sürer. Bir zaman sonra da bu gen bileşimindeki bireyler topluluğu tamamen ortadan kalkmış olur. (jeolojik devirlerdeki birçok canlının çevre koşulları nedeniyle soyunun tükenmesi) Buna karşın, başlangıçtaki populasyonlarda bu çevre koşullarına uyum yapabilecek özelliklere (gen bileşimlerine) sahip bireyler korunduğu için sayıları ve dolayısıyla taşıdıkları genlerin frekansı gen havuzunda sürekli artar. Böylece, bir zaman sonra, yeni mutasyonların ve rekombinasyonların meydana gelip, uygun olanlarının ayıklanmasıyla da, başlangıçtaki populasyona benzemeyen, tamamen ya da kısmen değişmiş populasyonlar ortaya çıkar. Burada dikkat edilecek husus, bireylerin ayakta kalmalarının yalnız başına evrimsel olarak birşey ifade etmemesidir. Eğer taşıdıkları genler, gelecek döllere başarılı bir şekilde aktarılamıyorsa, diğer tüm özellikleri bakımından başarılı olsalarda, evrimsel olarak bu niteliklere sahip bireyler başarısız sayılırlar. Örneğin, kusursuz fiziksel bir yapıya sahip herhangi bir erkek, kısırsa ya da çiftleşme için yeterli değilse, ölümüyle birlikte taşıdığı genler de ortadan kalkar ve evrimsel gelişmeye herhangi bir katkısı olmaz. Ya da güçlü ve sağlıklı bir dişi, yavrularına bakma içgüdüsünden yoksunsa, ya da yumurta meydana getirme gücü az ise, populasyonda önemli bir gen frekansı değişikliğine neden olamayacağı için, evrimsel olarak başarılı nitelendirilemez. Demek ki doğal seçilimde başarılı olabilmek için, çevre koşullarına diğerlerinden daha iyi uyum yapmanın yanısra, daha fazla sayıda yumurta ya da yavru meydana getirmek gerekir. Doğal Seçilim çevre koşullarına bağımlı olarak farklı şekillerde meydana gelir; 1.Yönlendirilmiş seçilim 2.Dengelenmiş Seçilim 3.Dallanan Seçilim Yönlendirilmiş Seçilim Doğal seçilimin en iyi bilinen ve en yaygın şeklidir. Özel koşulları olan bir çevreye uzun bir süre içerisinde uyum yapan canlılarda görülür. Genellikle çevre koşullarının büyük ölçüde değişmesiyle ya da koşulları farklı olan bir çevreye göçle ortaya çıkar. Populasyondaki özellikler bireylerin o çevrenin koşullarına uyum yapabileceği şekilde seçilir. Örneğin nemli bir çevre gittikçe kuraklaşıyorsa, doğal seçilim, en az su kullanarak yaşamını sürdüren canlıların yararına olacaktır. Populasyondaki bireylerin bir kısmı daha önce mutasyonlarla bu özelliği kazanmışlarsa, bu bireylerin daha fazla yaşamaları, daha çok döl vermeleri, yani genlerini daha büyük ölçüde populasyonun gen havuzuna sokmaları sağlanır. Bu arada ilgili özelliği saptayan genlerde meydana gelebilecek mutasyonlardan, yeni koşullara daha iyi uyum sağlayabilecekler seçileceğinden, canlının belirli bir özelliğe doğru yönlendirildiği görülür. Bu, doğal seçilimin en önemli özelliğinden biridir. Her çeşit özelliği meydana getirebilecek birçok mutasyon oluşmasına karşın, çevre koşullarının etkisi ile, doğal seçilim, başarılı mutasyonları yaşattığı için, sanki mutasyonların belirli bir amaca ve yöne doğru meydana geldiği izlenimi yaratılır. Yukarıda verdiğimiz örnekte, uyum, suyu artırımlı kullanan boşaltım organlarından, suyu en idareli kullanan böbrek şekline doğru gelişmeyi sağlayacak genler yararına bir seçilim olacaktır. Su buharlaşmasını önleyen deri ve post yapısı, kumda kolaylıkla yürümeyi sağlayan genişlemiş ayak tabanı vs. doğal seçilimle bu değişime eşlik eden diğer özelliklerdir. Önemli olan, evrimde bir özelliğin ilkel de olsa başlangıçta bir defa ortaya çıkmasıdır; geliştirilmesi, mutasyon-doğal seçilim düzeneği ile zamanla sağlanır. Bu konudaki en ilginç örnek, bir zamanlar ingiltere'de fabrika dumanlarının yoğun olarak bulunduğu bir bölgede yaşayan kelebeklerde (Biston betularia) meydana gelmesi evrimsel değişmedir. Sanayi devriminden önce hemen hemen beyaz renkli olan bu kelebekler (o devirden kalma kolleksiyonlardan anlaşıldığı kadarıyla), ağaçların gövdelerine yapışmış beyaz likenler üzerinde yaşıyorlardı. Böylece avcıları tarafından görülmekten kurtulmuş oluyorlardı. Sanayi devrimiyle birlikte, fabrika bacalarından çıkan siyah renkli kurum vs. bu likenleri koyulaştırınca, açık renkli kelebekler çok belirgin olarak görülür duruma geçmiştir. Bunların üzerinde beslenen avcılar, özellikle kuşlar, bunları kolayca avlamaya başlamıştır. Buna karşın sanayi devriminden önce de bu türün populasyonunda çok az sayıda bulunan koyu renkli bireyler bu renk uyumundan büyük yarar sağlamıştır. Bir zaman sonra populasyonun büyük bir kısmı koyu renkli kelebeklerden oluşmuştur. ''Sanayi Melanizmi''. Günümüzde alınan önlemler sayesinde, çevre temizlenince, beyaz renkli olanların sayısı tekrar artmaya başlamıştır. Yönlendirilmiş doğal seçilime, diğer bir ismiyle ''Orthogenezis'' e en iyi örneklerden biri de atın evrimidir. birçok yan dal (cins ve tür düzeyinde) ortama daha az uyum yaptığı için ortadan kalkmış, bugünkü Equus'u yapacak kol başarılı uyumu ile günümüze kadar gelmiştir. Birçok durumda, bazı yapıların gelişmesindeki yönlendirme, yararlı noktadan öteye geçebilir. Örneğin İrlanda geyiğinin boynuzları, kama dişli kaplanın üst kesici dişleri o kadar fazla büyümüştür ki, bir zaman sonra bu türlerin ortadan kalkmalarına neden olmuştur. işte, çok defa bir canlının organları arasında belirli bir oranın bulunması, bu seçilimle düzenlenir ve buna ''Allometrik İlişki'' denir. Yani organlar arasındaki oran her türde kendine özgü ölçüler içinde bulunur. Bu özellikler, daha doğrusu oranlar, sistematikte(Canlıların Sınıflandırılması) ölçü olarak alınır. Yapay Seçme ile çok kuvvetli bir yönlendirme sağlanabilir. islah edilmiş birçok hayvan ırkında bunu açıkça görmek mümkündür. İnsanların gereksinmeleri için yararlı özellikleri bakımından sürekli olarak seçilen bu hayvanlar, bir zaman sonra doğada serbest yaşayamayacak duruma gelmiştir. Nitekim sütü ve eti için ıslah edilen birçok inek ve koyun türü, yumurtası için ıslah edilen birçok tavuk türü, süs hayvanı olarak ıslah edilen birçok kuş, köpek, kedi vs. türü, artık bugün doğada serbest olarak yaşayamayacak kadar değişikliğe uğramıştır. Son zamanlarda tıp bilimindeki gelişmeler ile, normal olarak doğada yaşayamayacak eksiklikler ile doğan birçok birey, yaşatılabilmekte ve üremesi sağlanmaktadır. Böylece taşıdıkları kalıtsal yapı, insan gen havuzuna eklenmektedir. Dolayısıyla bozuk özellikler meydana getirecek genlerin frekansı gittikçe artmaktadır. Örneğin, eskiden, kalp kapakçıkları bozuk, gözleri aşırı miyop ya da hipermetrop olan, gece körlüğü olan, D vitaminini sentezlemede ya da hücre içine alma yeteneğini yitirmiş olan, kan şekerini düzenleyemeyen (şeker hastası), mikroplara direnci olmayan, kanama hastalığı olan; yarık damaklı, kapalı anüslü, delik kalpli ve diğer bazı kusurlarla doğan bireylerin yaşama şansı hemen hemen yoktu. Modern tıp bunların yaşamasını ve üremesini sağlamıştır. Dolayısıyla insan gen havuzu doğal seçilimin etkisinden büyük ölçüde kurtulmayı başarmıştır. Bu da gen havuzunun, dolayısıyla bu gen havuzuna ait bireylerin bir zaman sonra doğada serbest yaşayamayacak kadar değişmesi demektir. Nitekim 10-15bin yıldan beri uygulanan koruma önlemleri, bizi, zaten doğanın seçici etkisinden kısmen kurtarmıştır. Son zamanlardaki tıbbi önlemler ise bu etkiyi çok daha büyük ölçüde azaltmaktadır. Böylece doğal seçilimin en önemli görevlerinden bir olan ''Gen havuzunun yeni mutasyonların etkisinden büyük ölçüde korunmasının sağlanması ve mutasyonların gen havuzunda yayılmalarının önlenmesi, dolayısıyla gen havuzunun dengelenmesi ve kararlı hale geçmesi, insan gen havuzu için yitirilmeye başlanmıştır.'' Dengelenmiş Seçilim Eğer bir populasyon çevre koşulları bakımından uzun süre dengeli olan bir ortamda bulunuyorsa, çok etkili, kararlı ve dengeli bir gen havuzu oluşur. Böylece, dengeli seçilim, var olan gen havuzunun yapısını devam ettirir ve meydana gelebilecek sapmalardan korur. Örneğin, keseliayılar (Opossum) 60 milyon, akrepler (Scorpion) 350 milyon yıldan beri gen havuzlarını hemen hemen sabit tutmuşlardır. Çünkü bulundukları çevrelere her zaman başarılı uyum yapmışlardır. Dengeli seçilimde, üstteki ve alttaki değerleri (aşırı özellikleri) taşıyan bireyler sürekli elendiği için, populasyon dengedeymiş gibi gözükür, Örneğin, bebeklerde kafatasının, dolayısıyla beynin ve keza vücudun büyüklüğü dengeli seçilimin etkisi altındadır. Belirli bir kafatası ve vücut büyüklüğünün üstünde olanlar, doğum sırasında ananın çatı kemiğinden geçemedikleri için elenirler; çok küçük olanları da uyum yeteneklerini yitirdikleri için elenirler. Böylece, örneğin bebeklerde beyin ve vücut büyüklüğü belirli sınırların içinde kalır. Keza serçelerde de kanat uzunluğu/ vücut ağırlığı oranı, belirli bir sayının altında ve üstünde olanlar yönünde seçilime uğradığı saptanmıştır. Bu nedenle serçelerin belirli bir büyüklükte kalmaları sağlanır. Birçok hayvan grubu için (özellikle vücutlarının ve organlarının büyüklükleri için) bu işleyiş geçerlidir. Bu nedenle bazı hayvan gruplarının kalıtsal olarak neden büyük, bazılarının neden küçük olduğu kısmen açıklanabilir. Doğal seçilim, etkisini üç farklı şekilde gösterir: Koşullara uyum gösteren fenotipler kararlı kalır (dengelenmiş seçilim), değişik uyuma sahip olanlar arasında sadece başarılı olanlar seçilir (yönlendirilmiş seçilim); değişik uyuma sahip olanlar arasında, iki ya da daha fazla başarılı fenotip seçilir (dallanan seçilim). Dallanan Seçilim Dengeli seçilimin tersi olan bir durumu açıklar. Bir populasyonda farklı özellikli bireylerin ya da grupların her biri, farklı çevre koşulları nedeniyle ayrı ayrı korunabilir. Böylece aynı kökten, bir zaman sonra, iki ya da daha fazla sayıda birbirinden farklılaşmış canlı gurubu oluşur (ırk--alttür--tür--vs.). Özellikle bir populasyon çok geniş bir alana yayılmışsa ve yayıldığı alanda değişik çevre koşullarını içeren bir çok yaşam ortamı (niş) varsa, yaşam ortamlarındaki çevre koşulları, kendi doğal seçilimlerini ayrı ayrı göstereceği için, bir zaman sonra birbirinden belirli ölçülerde farklılaşmış kümeler, daha sonra da türler ortaya çıkacaktır. Bu şekilde bir seçilim ''Uyumsal Açılımı'' meydana getirecektir. Dallanan seçilim, keza benzer özellikli bireylerin, çiftleşmek için birbirini tercih etmesiyle de ortaya çıkar. Bunun tipik örneğini insanlarda verebiliriz. Yapısal olarak farklı birçok insan ırkı biraraya getirildiğinde, bireyler genellikle kendi ırkından olanlarla evlenmeyi tercih ederler (hatta dil, din, kültür benzerliği ve parasal bakımdan zenginlik bu seçimi daha da kuvvetlendirir.) Üreme Yeteneğine Ve Eeşemlerin Özelliğine Göre Seçilim Populasyonlarda, bireyler arasında şansa dayanmayan çiftleşmelerin ve farklı üreme yeteneklerinin oluşması HARDY - WEINBERG Eşitliğine ters düşen bir durumu ifade eder. Bu özellikleri taşıyan bir populasyonda HARDY - WEINBERG Eşitliği uygula¬namaz. Bireylerin çiftleşmek için birbirlerini rastgele seçmelerinden ziyade, özel nite¬liklerine göre seçmeleri, bir zaman sonra, bu özellikler bakımından köken aldıkları ana populasyondan çok daha kuvvetli olan yeni populasyonların ortaya çıkmasına neden olur. Bu özel seçilim, yaşam kavgasında daha yetenekli olan (beslenmede, korunmada, gizlenmede, yavrularına bakmada vs.) populasyonların ortaya çıkmasını sağlayabilir. Eşemlerin Arasındaki Yapısal Farkların Oluşumu: Dişiler genellikle yavrula¬rını meydana getirecek, koruyacak ve belirli bir evreye kadar besleyebilecek şekilde özellik kazanmıştır. Özellikle memelilerde tam olarak belirlenemeyen bir nedenle dişiler başlangıçta çiftleşmeden kaçıyormuş gibi davranırlar. Dişilerin kuvvetli olduğu bir toplumda çitfleşme çok zor olacağından, seçilim, memelilerde, kuvvetli erkekler yönünden olmuştur. Bugün birçok canlı grubunda, özellikle yaşamları boyunca bir¬kaç defa çiftleşenlerde (insan da dahil), erkekler, dişileri çiftleşmeye zorlar; çok defa da bunun için kuvvet kullanır. Bu nedenle erkekler dişilerinden daha büyük vücut yapısına sahip olur. Buna karşın, yaşamları boyunca bir defa çiftleşenlerde ya da çift¬leştikten sonra erkeği besin maddesi olarak dişileri tarafından yenen gruplarda (pey¬gamberdevelerinde ve örümceklerde olduğu gibi), erkek, çok daha küçüktür. Çünkü seçilim vücut yapısı büyük dişiler, vücut yapısı küçük erkekler yönünde olur. İkincil eşeysel özellikler, çoğunluk eşey hormonları tarafından meydana getirilir (bu nedenle ikincil eşeysel özellikler, bireylerde eşey hormonlarının üretilmeye başla¬masından sonra belirgin olarak ortaya çıkar). Eşeysel gücün bir çeşit simgesi olan bu özellikler, eşemler tarafından sürekli olarak seçilince, özellikler gittikçe kuvvetlenir. Bu nedenle özellikle erkeklerde, yaşam savaşında zararlı olabilecek kadar büyük boy¬nuz (birçok geyikte, keçide vs.'de), büyük kuyruk (tavuskuşunda ve cennetkuşların¬da vs.), hemen göze çarpacak parlak renklenmeler (birçok kuşta, memelide); dişiler¬de, süt meydana getirmek için çok büyük olmasına gerek olmadığı halde dişiliğin simgesi olan büyük meme bu şekilde gelişmiştir. Birçok canlı grubunda bu arzu farklı şekilde geliştiği için, farklı yapılar ortaya çıkmıştır. Örneğin birbirine çok yakın adalar¬da yaşayan Japon ırkı ile Ainu ırkı arasında vücut kılı yönünden büyük farklar vardır. Ainu kadınları çiftleşmek için kıllı erkekleri, buna karşın Japon kadınları kılsız erkek¬leri tercih ettikleri için, Ainu ırkı dünyanın en kıllı, Japon ırkı ise en kılsız erkeklerine sahip olmuştur. Çünkü eşeysel seçim zıt özelliklerin tercihi şeklinde olmuştur. Keza siyah ırklar kalın dudağı, beyaz ırklar ince dudağı daha çekici bulduğu için, seçilim bugünkü siyah ırkıarın kalın dudaklı, beyaz ırkıarın ise ince dudaklı olmasını sağlaya¬cak şekilde olmuştur. Bu arada eşemlerin birbirlerini karşılıklı uyarabileceği birtakım davranış şekilleri (kur, dans, gösteri vs.) gelişmiştir. Özellikle bu davranışları en iyi şekilde yapan erkekler, dişileri tarafından tercih edilir. Davranışların değişmesini sağlayacak etkili bir mutasyon, çok defa, meydana geldiği bireyin eş bulamamasına neden olacağı için, populasyondan elenir. Bu davranış şekillerine, yine genellikle ve çoğunluk erkeklerde eşeysel çiftleşmeden belirli bir süre önce, vücuttaki renklerin değişmesi, özellikle parlaklaşması (kuşları ve memelileri anımsayınız!), değişik kokuların ve fero¬menlerin salgılanması (tekelerin zaman zaman çok keskin olarak koktuğunu anımsa¬yınız!) eşlik eder. Parlak renkler ve keskin kokular dişiyi daha etkili bir şekilde uyara¬cağı için seçim bu özelliklerin kuvvetlendirilmesi yönünde olmuştur. Işte, DARWIN, dişinin erkeği, erkeğin dişiyi uyarabildiği bu özelliklerin seçimine Eşeysel Seçilim = Seksüel seleksiyon ismini verdi. Erkeklerin, erkekliklerini simgeleyen özelliklerine göre seçilimleri, onların, bu özellikleri bakımından, yaşam savaşında etkinlik kazandırmasa dahi kuvvetlenme¬sine neden olmuştur. Nitekim erkeklerin çok daha renkli olması bu nedene dayanır. Ayrıca kuşlarda kuluçkaya yatan dişiler üstten belirgin olarak görünmesin diye, çoğunluk yaşadığı ortamın rengine uyum yapmıştır. Yalnız erkekleri kuluçkaya yatan bir kuş türünde, bu durum tersinedir; bunlarda dişiler parlak renkli, erkekler toprak rengindedir. En güçlü erkeğin, dişileri dölleyebilmesini sağlamak için, evrimsel olarak bir yarışma oluşmuştur ''Erkek Kavgaları'', Bu nedenle geyiklerde, dağ keçilerinde vs.'de kuvvetli boynuz oluşumları meydana gelmiştir. Seçilim her zaman saldırgan ve kuvvetli erkekler yönünde olur. Dişiler, kavgaya katılmadığı için, boynuzları küçük kalmıştır. Çünkü büyük boynuz yönünden herhangi bir seçilim baskısı yoktur. Daha önce öğrendiğimiz gibi bir özelliğin gelişebilmesi için seçilim baskısının sürekli etki etmesi gerekir. Bu arada, güçlerine göre, erkeklerin belirli alanları etkinlikleri altına alma eğilimleri; bir territoryum davranış zincirinin oluşmasına neden olmuştur. Tüm bu eşeysel seçilim etkileri, dişiler ve erkekler arasında belirgin bir yapı ve davranış farklılaşmasına neden olmuştur. Bu farklılaşmaya ''Eşeysel Farklılaşma = Seksüel Dimorfizm" denir. Üreme Yeteneğinin Evrimsel Değişimdeki Etkisi: Daha önce de değindiği¬miz gibi bir bireyin yaşamını başarılı olarak sürdürmesi evrimsel olarak fazla birşey ifade etmez. Önemli olan bu süre içerisinde fazla döl meydana getirmek suretiyle, gen bavuzuna, gen sokabilmesidir. Bir birey ne kadar uzun yaşarsa yaşasın, döl Meydana getirmemişse, evrimsel açıdan hiçbir öneme sahip değildir. Bu nedenle bu bireylerin ölümü 'Genetik Ölüm' olarak adlandırlır. Canlıların çok büyük bir kısmında, canlılığın mayasını oluşturan eşeysel hücre¬lerdeki DNA'nın taşınması, bireylere verilmiş bir görevdir. Tek bir üreme dönemi olan canlılarda, döllenmeden hemen sonra erkekler (birgünsineklerini hatırlayınız!), yumurta bıraktıktan ya da yavru doğurduktan sonra da dişiler ölür. Birçok üreme dönemi olan canlılarda, her iki eşemin de ömrü uzamıştır. Bu sonucu grupta, erkek¬ler, çoğunlukla döllenme sonrası yavru bakımında belirli görevler yüklenmiştir (hatta denizatlarında döllenmiş yumurtayı ortamdan özel keselerine alan erkekler hamile olur). Hemen hemen tüm canlı gruplarında ve ilkel insan topluluklarında, bireyin ya¬şı, eşeysel etkinliğinin süresine denktir. Yalnız gelişmiş insan toplumlarında, kazanıl¬mış deneyimlerin genç kuşaklara aktarılması için, yaşlılar özenle korunur; bu nedenle ömür uzunluğu, eşeysel aktiflik dönemini oldukça aşmıştır. Evrimsel gelişmede en önemli değişim, gen havuzundaki gen frekansının değişimidir. Gen frekansı ise birey sayısıyla saptanır. Bu durumda bir populasyonda, üreyebilecek evreye kadar başarıyla gelişebilen yavruları en çok sayıda meydana getiren bireylerin gen bileşimi bir zaman sonra gen havuzuna egemen olur. Buna 'Farklı Üreme Yeteneği' denir. Farklı üreme yeteneği, meydana getirilen gamet (genellikle yumurta) sayısı de¬ğildir; üreyebilecek olgunluğa ulaşan yayruların sayısıdır. Değişik gametlerin birleş¬mesiyle, gen bileşimi bakımından, daha iyi embriyolojik gelişim (embriyo, larva, pup vs.) yapabilen, daha başarılı uyum sağlayabilen yavruların seçimi yapılır. Bu nedenle fazla sayıda yumurta meydana getiren canlılarda, bu seçilim, çok sayıdaki zigot ara¬sından yapılacağı için, başlangıçta başarılı bir seçim olacaktır ve ayrıca fazla sayıda embriyo ya da yavru ile yaşam kavgasına gireceği için, sonuçta büyük sayılardaki yu¬murtadan, belirli bir sayıda erginleşmiş yavru ortaya çıkabilecektir. Örneğin alabalık¬larda meydana getirilen 1.000.000 yumurtadan, en fazla 20'sinin üreyebilecek yaşa ulaştığı bilinmektedir. Çok yumurta oluşturan canlılarda, yumurtanın korunmuş yer¬lere bırakılması ve embriyoya ya da yavrulara bakım gelişmemiştir (birçok balıkta, parazitte, amfibide, sürüngende vs. 'de). Bu nedenle büyük kayıplar verirler. Halbuki yumurtaya, embriyoya ve yavruya bakımın gelişmesi oranında, yumurta sayısında azalma görülür. Bu sayı, gelişmiş memelilerde bire düşmüştür. Çünkü özenli bir ba¬kımla yavruların olgunluğa ulaşma olasılığı çok yükseltilmiştir. Memelilerde ve kuş¬larda, yavru ve yumurta sayısı optimal sayıda tutulur. Fazla yumurtanın kuluçkada embriyonik olarak gelişmesi ve gelişse de yavruların ana tarafından beslenmesi zor olur. Bu nedenle yumurta sayısı sabit sınırlar içerisinde kalacak şekilde evrimsel seçi¬lim olmuştur. Bunun yanısıra bir canlının diğer yırtıcı hayvanlar tarafından sürekli yenmesi (bunlarda fazla yumurta meydana getirilir) ya da düşmanlarının az olması (bunlarda az yumurta meydana getirilir) yumurta sayısını saptayan faktörlerden biri¬dir. Yalıtımın (=İzolosayonun) Evrimsel Gelişimdeki Etkisi Türlerin oluşumunda, yalıtım, kural olarak, zorunludur. Çünkü gen akımı devam eden populasyonlarda, tür düzeyinde farklılaşma oluşamaz. Bir populasyon, belirli bir süre, birbirlerinden coğrafik olarak yalıtılmış alt populasyonlara bölünürse, bir zaman sonra kendi aralarında çiftleşme yeteneklerini yitirerek, yeni tür özelliği ka¬zanmaya başlarlar. Bu süre içerisinde oluşacak çiftleşme davranışlarındaki farklılaş¬malar, yalıtımı çok daha etkili duruma getirecektir. Kalıtsal yapı açısından birleşme ve döl meydana getirme yeteneklerini koruyan birçok populasyon, sadece çiftleşme davranışlarında meydana gelen farklılaşmadan dolayı, yeni tür özelliği kazanmıştır. Üreme yalıtımının kökeninde, çok defa, en azından başlangıç evrelerinde, coğrafik bir yalıtım vardır. Fakat konunun daha iyi anlaşılabilmesi için üreme yalıtımını ayrı bir başlık altında inceleyeceğiz. Populasyonlar arasında çiftleşmeyi ve verimli döller meydana getirmeyi önleyen her etkileşme 'Yalıtım = izolasyon Mekanizması' denir. Coğrafik YaIıtım (= Allopatrik YaIıtım) Eğer bir populasyon coğrafik olarak iki ya da daha fazla bölgeye yayılırsa, ev¬rimsel güçler (her bölgede farklı olacağı için) yavaş yavaş etki ederek, populasyonlar arasındaki farkın gittikçe artmasına (Coğrafik Irklar) neden olacaktır. Bu kalıtsal farklılaşma, populasyonlar arasında gen akışını önleyecek düzeye geldiği zaman, bir zamanların ata türü iki ya da daha fazla türe ayrılmış olur Allopatrik yalıtım ile tür oluşumu. Eğer bir populasyonun bir parçası coğrafik olarak yalıtılırsa, değişik evrimsel güçler yavaş yavaş bu yalıtılmış populasyonu (keza ana populasyonu) değiştirmeye başlar ve bir zaman sonra her iki populasyon aralarında verimli,döl meydana getiremeyecek kadar farklılaşırlar. Karalar, özellikle çöller, tuz bileşimi ve derişimi farklı sular, buz setleri su hay¬vanları için; denizler, nehirler, yüksek dağlar, büyük sıcaklık farkları, buzlar, kara hayvanları için yalıtım nedenleridir. En iyi coğrafik yalıtım adalarda görülür. Çok yakın bölgelerde yaşayan bazı akraba hayvan gruplarında da bu yalıtım görülebilir. Örneğin suda yaşayan bazı türlerin çok yakın akrabaları, su kenarlarındaki yaprakların altlarında bulunan nemli yerlerde; keza iki yakın akraba populasyondan biri toprak diğeri ağaçlar üzerinde yaşayabilir (Ekolojik Yalıtım). Bu populasyonların birbirleriyle teması çok az olacağından ve her birine farklı evrimsel güçler etki edece¬ğinden, bir zaman sonra aralarında daha büyük farklılaşmalar meydana gelir. Anadolu'daki Pamphaginae'lerin Evrimsel Durumu: Coğrafik yalıtıma en iyi örneklerden biri Anadolu'nun yüksek dağlarında yaşayan, kanatsız, hantal yapılı, kışı çoğunluk 3. ve 4. nimf evrelerinde geçiren bir çekirge grubudur. Özünde, bu hay¬vanlar, soğuk iklimlerde yaşayan bir kökenden gelmedir. Buzul devrinde, kuzeydeki buzullardan kaçarak Balkanlar ve Kafkaslar üzerinden Anadolu'ya girmişlerdir. Bu sı¬rada Anadolu'nun iç kısmında Batı Anadoluyla Doğu Anadolu'yu birbirinden ayıran büyük bir tatlısu gölü bulunuyordu. Her iki bölge arasındaki karasal, bağlantı, yalnız, bugünkü Sinop ve Toros kara köprüleriyle sağlanıyordu. Dolayısıyla Kafkaslar'dan gelenler ancak Doğu Anadolu'ya, Balkanlar'dan gelenler ise ancak Batı Anadolu'ya yayıımıştı. Çünkü Anadolu o devirde kısmen soğumuş ve bu hayvanların yaşayabil¬mesi için uygun bir ortam oluşturmuştu. Bir zaman sonra dünya buzul arası devreye girince, buzullar kuzeye doğru çekilmeye ve dolayısıyla Anadolu da ısınmaya başla¬mıştı. Bu arada Anadolu kara parçası, erezyon sonucu yırtılmaya, dağlar yükselmeye ve bu arada soğuğa alışık bu çekirge grubu, daha soğuk olan yüksek dağların başına doğru çekilmeye başlamıştı. Uzun yıllardır bu dağların başında (genellikle 1500 - 2000 metrenin üzerinde) yaşamlarını sürdürmektedirler. Kanatları olmadığı için uçamazlar; dolayısıyla aktif yayılımları yoktur. Hantal ve iri vücutlu olduklarından rüzgar vs. ile pasif olarak da yayılamamaktadırlar. Belirli bir sıcaklığın üstündeki böl¬gelerde (zonlarda) yaşayamadıklarından, yüksek yerlerden vadilere inerek, diğer dağsilsilelerine de geçemezler. Yüksek dağlarda yaşadıklarından, aşağıya göre daha yoğun morötesi ve diğer kısa dalgalı ışınların etkisi altında kalmışlardır; bu nedenle mutasyon oranı (özellikle kromozom değişmeleri) yükselmiştir. Dolayısıyla evrimsel bir gelişim ve doğal seçilim için bol miktarda ham madde oluşmuştur. Çok yakın mesafelerde dahi meydana gelen bu mutlak ya da kısmi yalıtım, bir zamanlar Ana¬dolu'ya bir ya da birkaç türü olarak giren bu hayvanların 50'de fazla türe, bir o kadar alttüre ayrılmasına neden olmuştur. Bir dağdaki populasyon dahi, kendi aralarında oldukça belirgin olarak birbirlerinden ayrılabilen demelere bölünür. Çünkü yukarıda anlattığımız yalıtım koşulları, bir dağ üzerinde dahi farklı olarak etki etmektedir. Coğrafik uzaklık ile farklılaşmanın derecesi arasında doğru orantı vardır. Birbir¬lerinden uzak olan populasyonlar daha fazla farklılaşmalar gösterir. Bu çekirge gru¬bunun Hakkari'den Edirne'ye kadar adım adım değiştiğini izlemek mümkündür. Batı Anadolu'da yaşayanlar çok gelişmiş timpanik zara (işitme zarına) ve sırt kısmında tarağa sahiptir; doğudakilerde bu zar ve tarak görülmez. Toros ve Sinop bölgelerinde bu özellikleri karışık olarak taşıyan bireyler bulunur. Coğrafik yalıtım populasyonlar arasındaki kalıtsal yalıtımı ve üreme davranışla¬rındaki yalıtımı tam sağlayamamışsa (populasyonlar arasında kısırlık tam oluşmamış¬sa) , bir zaman sonra biraraya gelen bu populasyonlarda, aralarındaki gen akımından dolayı, tekrar bir karışma ve bir çeşit homojenleşme oluşabilir. insan ırkıarı sürekli; ama belirli ölçülerde birbirleriyle temasta bulunduğu için, aralarındaki gen akımı tü¬müyle kesilmemiş, dolayısıyla melezlenme kısırlığı oluşmamış ve böylece ayrı tür özellikleri kazanamamıştır. Bununla beraber gen akımının sınırlı olması ırk özellikleri¬nin kısmen korunmasını sağlamıştır. Her türlü yalıtım mekanizmasında, ilk olarak demelerin, daha sonra alttürlerin, sonunda da türlerin meydana geldiğini unutmamak gerekir. Aynı kökten gelen; fakat farklı yaşam bölgelerine yayılan tüm hayvan gruplarında bu kademeleşme görülür. Ayrıca tüm coğrafik yalıtımları kalıtsal bir yalıtımın izlediği akıldan çıkarılmamalıdır... Üreme işlevlerinde Yalıtım (= Simpatrik Yalıtım) Yalıtımın en önemli faktörlerinden biri de, genellikle belirli bir süre coğrafik yalı¬tımın etkisi altında kalan populasyonlardaki bireylerin üreme davranışlarında ortaya çıkan değişikliklerdir. Bu farklılaşmaların oluşumunda da mutasyonlar ve doğal seçi¬lim etkilidir. Yalnız, üreme işlevlerindeki yalıtımın, coğrafik yalıtımdan farkı, ilke ola¬rak, farklılaşmanın sadece üreme işlevlerinde olması, kalıtsal yapıyı tümüyle kapsa¬mamasıdır. Deneysel olarak döllendirildiklerinde yavru meydana getirebilirler. Çünkü kalıtsal yapı tümüyle farklılaşmamıştır. Coğrafik yalıtım ise hem kalıtsal yapının hem davranışların farklılaşmasını hem de üreme işlevlerinin yalıtımını kapsar. Eşeysel çekim azalınca ya da yok olunca, gen akışı da duracağı için, iki populas¬yon birbirinden farklılaşmaya başlar. Böylece ilk olarak hemen hemen birbirine ben¬zeyen; fakat üreme davranışlarıyla birbirinden ayrılan 'İkiz Türler' meydana gelir. Bir zaman sonra mutasyon - seçilim etkileşimiyle, yapısal değişimi de kapsayan kalıtsal farklılıklar ortaya çıkar. Üreme yalıtımı gelişimin çeşitli kademelerinde olabilir. Bun¬lar; Üreme Davranışlarının Farklılaşması: Birbirlerine çok yakın bölgelerde yaşayan populasyonlarda, mutasyonlarla ortaya çıkan davranış farklılaşmalarıdır. Koku ve ses çıkarmada, keza üreme hareketlerinde meydana gelecek çok küçük farklılaşmalar, bireylerin birbirlerini çekmelerini, dolayısıyla döllemeyi önler. Daha sonra, bu popu¬lasyonlar bir araya gelseler de, davranış farklarından dolayı çiftleşemezler. Üreme Dönemlerinin Farklılaşması: iki populasyon arasında üreme dönemlerinin farklılaşması da kesin bir yalıtıma götürür. Örneğin bir populasyon ilkbaharda öbürüsü yazın eşeysel gamet meydana getiriyorsa, bunların birbirlerini döllemeleri olanaksızlaşır. Üreme Organlarının Farklılaşması: Özellikle böceklerde ve ilkel bazı çok hücreIilerde, erkek ve dişi çiftleşme organları, kilit anahtar gibi birbirine uyar. Meydana gelecek küçük bir değişiklik döllenmeyi önler. Gamet Yalıtımı: Bazı türlerin yumurtaları, kendi türünün bazen de yakın akraba türlerin spermalarını çeken, fertilizin denen bir madde salgılar. Bu fertilizinin farkIılaşması gamet yalıtımına götürür. Melez Yalıtım: Eğer tüm bu kademeye kadar farklılaşma olmamışsa, yumurt ve sperma, zigotu meydana getirir. Fakat bu sefer bazı genlerin uyuşmazlığı, embriyonun herhangi bir kademesinde anormalliklere, ya da uygun olmayan organların ortaya çıkmasına neden olur (örneğin küçük kalp gibi). Embriyo gelişip ergin meydana gelirse, bu sefer, kalıtsal yapılarındaki farklılanmalar nedeniyle erginin eşeysel hücrelerinde, yaşayabilir gametler oluşamayabilir (katırı anımsayınız!). Genlerin kromozomlar üzerindeki dizilişleri farklı olduğu için, sinaps (gen alışveriş yapıları) yapamazlar ya da kromozom sayıları farklı olduğu için dengeli bir kromozom dağılımını sağlayamazlar.. Kalıtsal Sürüklenme Küçük populasyonlarda eşlerin seçimi ve çiftleşme, büyük ölçüde şansa daya¬nır. Böylece gen havuzlarındaki denge, doğal seçilimden ziyade, şansla meydana ge¬len olaylarla değişir. İşte küçük populasyonlarda, şansa bağlı olarak meydana gelen üreme olaylarının evrimsel gelişmelerdeki etkisi, SEWALL WRIGHT tarafmdan 'Genetik Drift = Kahtsal Sürüklenme' olarak adlandırılmıştır. Küçük populasyonlarda, ben¬zer bireyler kendi aralarında çiftleştikleri için, allel genlerden birçoğunun, doğal seçi¬limden ziyade, şansla, heterozigot(karma) halden homozigot(saf) hale geçme eğilimleri vardır. Bu arılaşma, belirli zararlı ya da yararlı özelliklerin fenotipte kendilerini göstermeleri¬ne ve bir zaman sonra da doğal seçilimle o populasyondan elenmelerine ya da korun¬malarına neden olabilir. Bu homozigotlaşma, birçok türde, uyumsal değer gösterme¬mesine karşın, birçok anormal ve anlaşılmaz yapıların nasıl kazanıldığını açıklayabilir. Genetik sürüklenme, HARDY -WEINBERG eşitliğine aykırı bir durumu (HARDY ¬WEINBERG eşitliğinde homozigotların oranı sabitti) yani, homozigot birey sayısının de¬ğişimini ifade eder. Evrimleşmede ne ölçüde önemli rol oynadığı, birçok bilim adamı arasında hala tartışmalıdır. Bununla beraber birçok bitki ve hayvan grubunun, doğa¬da, kalıtsal sürüklenme ile, yani şansa bağlı olaylarla çeşitlendiği ve geliştiği bilin¬mektedir. Öyleki, evrimsel çizgi boyunca, özel koşullara uyum yapmak için izlenen birçok yol, şansa bağlı olarak seçilmiştir. Her kademesinde çatallaşan bir yol gibi. In¬san oluşuncaya kadar, sayısız çatallanmış yoldan şansa bağlı olarak geçilmiş ve bu¬güne gelinmiştir. Koşullar tamamen aynı olsa da, başlangıçtan, hatta bir primat evre¬sinden, tekrar bugünkü insana benzer bir canlının gelişmesi, kural olarak olanaksız¬dır. Çünkü her çatallanmış kavşakta, insana götüren yolun, doğrulukla tekrar seçilmesi çok az bir olasılıkla olabilir. Bunun için çok tipik birkaç örnek verelim: a) Birçok bitki, geçmişte, gerekli olmadığı için petallerini yitirmiştir (örneğin böcekler yerine rüzgarla tozlaşmaya başladıkları için). Bir zaman sonra tekrar bö¬ceklerle tozlaşma zorunluluğunu duyunca, petallerini aynı şekilde oluşturamamış, bunun yerine, üreme zamanlarında çiçeklerine yakın yapraklarını renklendirecek özellikleri kazanmıştır (Atatürk Çiçeğinin kırmızı yapraklarımanımsayınız!). b) Birincil su hayvanları (balık gibi) oldukça etkin bir solunumu yürütebilecek solungaç sistemlerini, karmaşık bir yol izleyerek geliştirmiştir. Kara yaşamına uyum yaptıktan sonra, bir kısım canlı, tekrar suya dönmüştür (balinalar, yunuslar vs.); fa¬kat hiçbiri, embriyonik gelişimlerinde kalıntı halinde solungaç yapısını gösterdikleri halde, tekrar solungaç yapısını geliştirememiştir. Hemen hepsi yine akciğeriyle so¬lunuma devam eder. Fakat bunun yanısıra oksijeni uzun süre tutabilecek ya da depo¬layabilecek yapıları geliştirmişlerdir. Keza hiçbiri balıklardaki gibi yanlardan basılmış kuyruk yüzgecini geliştirememiş; bunun yerine üstten basık kuyruk yüzgeçlerini ge¬liştirebilmişlerdir. Evrimde bir yapının tekrar ortaya çıkma olasılığı yok denecek kadar azdır. Örneğin balıkların kuyruk yüzgeci yanlardan basılmıştır. Kara yaşamından tekrar su yaşamına dönmüş hayvanlar (şekilde yunus) ancak üstten basık kuyruk yüzgecini geliştirebilmişlerdir (Kosswig'den) Ön bacakları kürek şekline dönüşmüştür; fakat hiçbir zaman balık yüzgeçlerine benzemez. Çünkü evrimsel olarak bir kere yitirilen bir yapı¬mn tekrar kazanılması hemen hemen olanaksızdır. ya da çok küçük olasılıklarla tekrar¬lanabilir. Burada yönlendirici unsur çevre koşullarının farklılığı değil, şansa bağlı seçi¬limlerin etkisidir. Mutasyonların bir kısmı dönüşlüdür. (Geri Mutasyonlar); bununla beraber ev¬rimsel gelişmeler geriye dönük değildir (Dollo Yasası). Örneğin bir kuşun, tekrar sü¬rüngene; bir balinanın karada yaşayan atasına dönüşmesi; parazitlerin serbest yaşa¬ması; atın tekrar beş parmaklı olması olanaksızdır. Çünkü gerekli tüm geri mutasyon¬ların şansa bağlı olarak elde edilmesi, olasılık açısından hemen hemen sıfırdır. Keza aynı nedenle, körelmiş organların ve yapıların da tekrar işlev görebilecek eski halleri¬ne dönmesi olanaksızdır. Kalıtsal Sürüklenmenin işleyişi Eğer bir populasyon HARDY - WEİNBERG eşitliğini gösteremeyecek kadar küçük¬se, ya da köken aldığı populasyondan küçük gruplar halinde ayrılmışsa, şansa bağlı döllenmeler sonucu bir zaman sonra köken aldığı populasyonun yapısından belirgin olarak farklılaşır. Kalıtsal sürüklenmeyi sağlayan olayları kısaca görelim. Göç ya da Sürüklenme: Oldukça büyük olan bir populasyondan, küçük bir grup koparak ayrılırsa, bu küçük grubun ileride meydana getireceği yeni populasyo¬nun gen havuzu köken aldığı populasyonunkinden farklı olur. Çünkü bu küçük grup ayrılırken bu grubun gen havuzu, ana populasyonun gen havuzundan belirli bir fark¬lılık gösterir. Örneğin Anadolu'da yaşayan insanlarda mavi göz geni frekansının orta¬lama % 10 olduğunu varsayalım. Mavi göz geni frekansı % 30 olan bir ailenin ya da aşiretin Anadolu'dan Mısır'a göç ettiğini ve orada yıllarca kendi içerisinde çoğaldığını düşünelim. Bir zaman sonra oluşacak bu yeni populasyonda mavi göz geninin fre¬kansı % 30 olmakla ana populasyondan farklılık gösterecektir. Çünkü başlangıç gen frekansı farklıdır. Özellikle insan populasyonlarında bu sürüklenmeler çok görülür. Çünkü göç eden toplumlar uzun yıllar kendi içlerinde evlendikleri için, başlangıçta taşıdıkları gen bileşimlerini koruma ve yaygınlaştırma eğilimi gösterirler. Bir zaman sonra içine göç ettikleri toplumlarla karışmaya, başlangıçta taşıdıkları gen bileşimIe¬rini yitirmeye ve belirli bir derecede göç ettikleri toplumun gen bileşimini değiştirme¬ye başlarlar. Anadolu'ya büyük ve küçük birçok göçün olduğu ve bunların uzun yıllar kendi içlerinde evlendikieri bilinmektedir. Bu nedenle insan toplumuna ilişkin kalıtsal sürüklenmenin en iyi örneklerini Anadolu'da görmek mümkündür. Keza adalara göç etmiş insanlarda da bu kalıtsal sürüklenmeler çok belirgin olarak görülür. Kan grup¬ları üzerinde doğal seçilimin çok büyük etkisi olmadığından, göç eden toplulukların kan grupları incelenmekle koptukları populasyonlar tahmin edilebilir. Eğer bir populasyon sürekli olarak genişliyorsa, bir zaman sonra populasyonun kenarındaki gen bileşimleri, merkezdekilerden daha farklı olmaya başlar ve bu fark gittikçe artabilir. Birçok canlı grubu, küçük populasyonlar halinde yeni ortamları işgal ederek, ana populasyona bağımlı olmadan çoğalabilir ve yeni özellikli populasyonlar oluştu¬rabilir. Küçük populasyonların kendi içinde çiftleşmesiyle meydana gelen evrimsel değişiklikler, doğal seçilimden ziyade şansa dayanır.Bir populasyondan bir parça koptuğunda, o parça, populasyonun gen ortala¬masına etki edecek bir miktar geni de beraberinde götürmüşse, ana populasyonun gen bileşimi bir miktar bozulabilir (ana populasyon çok büyük olmamak koşuluyla). Örneğin demin verdiğimiz misalde, % 30'luk mavi gen göçü, ana populasyonun ortalamasının (% 10) bir miktardüşmesine neden olabilir. Bu nedenle, bir populas¬yondan dışa göç de HARDY - WEiNBERG eşitliğini bozabilir. Afetlerin ve Sığınmaların Etkinliği: Herhangi bir zamanda meydana gelecek bir afet, populasyonun büyük bir kısmını ortadan kaldırabilir ve arta kalan pek az bir kısmından sonunda yeniden bir toplum oluşabilir. Fakat arta kalan küçük parça, eğer önceki toplumun tam özelliğini taşımayan bir gen havuzuna sahipse, yeni meydana gelen toplumun yapısı öncekinden çok farklı olur. Özellikle yangın, fırtına, su bas¬kını, deprem, hatta savaş, bu yeni özellikleri ortaya çıkarabilir. Sığınma: Çoğunlukla kışı saklanarak geçiren canlılarda, bir sonraki yazda yine küçük populasyonların etkisi görülür. Örneğin soğuk bir kış, saklanan bireylerin büyük bir kısmını yok ederken, iyi saklanmış küçük bir grup, bu yıkımdan kurtulur ve ger havuzunu, yazın oluşacak tüm populasyona verir. Bazı böceklerde, bazı özelliklerin en azından bazı yıllarda neden yaygın olduğu bu yolla açıklanabilir. Diğer Sürüklenme Şekilleri Doğal seçilimde ve uyumda başarılı olmasa dahi bazı özelliklerin dölden döle aktarılma olasılığı vardır. Bunu sağlayan kalıtsal mekanizmalar şunlardır. Pleiotropik Sürüklenme (= Özellik Sürüklenmesi): Doğal seçilim, genelolarak tek bir genin fenotipi üzerinde değil, tüm genomun fenotipi üzerinde etkisini gösterir.(yani tek bir geni seçmekten çok o geni bulunduran DNA'yı -yani bireyi- seçer) Bu nedenle bazı özellikler uyumsal değer göstermemesine ve yarar sağla¬mamasına karşın yine de varlığını devam ettirir. Çünkü bu özellikler, bireye çok yarar sağlayan özelliklerle birlikte aynı bireyde bulunur. Yararlı özellikler seçilirken, zararı olanlar da beraberce kalıtılır. Bu tip özelliklerin sürüklenmesinde pleiotropi çok önemlidir. Bilindiği gibi bir gen birden fazla özelliği denetliyorsa, pleiotropik etki gösteriyor demektir. Özelliğin biri canlıya yarar sağlıyorsa ve canlının uyum yeteneğini artırıyorsa, sürekli seçilir, buna bağlı olarak yararsız ve uyum yeteneği olmayan özellik de kalıtılır. Örneğin kır¬mızı renkli soğan insanlar tarafından tercih edilmez ve dikilirken ayıklanır. Fakat kırmızı rengi meydana getiren gen, aynı zamanda mantarlara karşı fungusit bir madde de salgıladığı için, bulunduğu bireylere yaşamsal uyum yeteneği verir; bu nedenle, kırmızı renkli soğanlar, beyaz renkli soğanların arasında varlığını sürekli koruyabilir. Gen Sürüklenmesi (= Kalıp İlkesi): Birçok gen yakınlıklarından dolayı bera¬berce kalıtılma eğilimi gösterir. iki gen birbirine çok yakın ise, parça değişimiyle bir¬birlerinden çok zor ayrılırlar. Işte bu genlerden biri yararlı, diğeri zararlı özellik sağlar¬sa ve yararlı genin özelliği, zararlı genin özelliğinden çok daha fazla öneme sahipse, zararlı özellik meydana getiren gen de yararlı özellik meydana getiren genle birlikte sürekli kalıtılır ve korunur. Buna 'Kalıp İlkesi' denir. Prof.Dr.Ali Demirsoy Kaynak: www.istanbul.edu.tr

http://www.biyologlar.com/evrimlesmeyi-saglayan-duzenekler

BİTKİLERDE UYGULANAN GENETİK MÜHENDİSLİĞİ YÖNTEMLERİNİN SORUNLARI

1- Bitkilerde uygulanan genetik mühendisliği yöntemlerinin en önemli sorunlarından biri, konak genomuna eklenecek yabancı genin bitki DNA’sının tam olarak neresine yerleştirileceğinin belirlenememesidir. Bu güne kadar gen transferi için hangi yöntem kullanılırsa kullanılsın, transfer edilen yabancı genin bitki DNA’sında tam olarak hangi bölgeye yerleştirildiği bilinmemektedir. Genin bitki DNA’sında yerleşeceği bölge tamamen rastlantısaldır. Bu rastlantısallık bitki hücresine ait yapısal ya da düzenleyici genlerin etkinliklerini değiştirerek bitkide metabolik farklılaşmalara yol açabilir. Yani sonuç, yabancı gen aracılığıyla bitki hücresinde üretilmesi istenen proteinin üretimi ve bitkiye kazandırılmak istenen özelliğin aktarılması ile sınırlı kalmayabilir. Roundup Ready soyalarındaki verim gerilemesinin nedeni büyük olasılıkla bu tür beklenmeyen metabolik değişikliklerdir. Bir diğer örnek, soyaya glifosat dayanıklılık geninin aktarılması sonucu RR soyalarda ortaya çıkan ısıya duyarlılık özelliğidir. Toprak sıcaklığı belli bir derecenin üzerine çıktığında soya gövdesinin neredeyse %100 oranında çatladığı görülmüştür. Bu sorunun altında yatan nedenin, yabancı gen transfer edilen RR soyalarda aşırı lignin üretimi olabileceği düşünülmektedir. Bu durumda RR soyaların sıcak iklimlerde yetiştirilmesi mümkün olmayacaktır. 2-Gen teknolojisinin ikinci büyük sorunu aktarılan nükleotid dizisinin kararsızlığı, değişebilirliği ve yeniden düzenlemelere açık olmasıdır. Bu tür değişiklikler allerjik reaksiyonlara neden olan proteinlerin ve toksik maddelerin üretimine yol açabilir. 13 Mayıs 2000 tarihinde Monsanto firması, RR Soya genomunda, işlemin ABD’de onay aldığı 1992 yılından beri soyaya ekledikleri tek gen olduğu iddia edilen CP4EPSPS geni dışında nereden köken aldığı bilinmeyen iki DNA parçacığı daha saptadıklarını açıklamıştır. Söz konusu DNA parçacıkları Monsanto’nun bugüne kadar dağıtımını yaptığı bütün RR soya soylarında bulunmaktadır. Ancak Monsanto firmasına göre “hiçbir zararlı yan etkisi bildirilmemiştir.” 3-Doğada normal koşullarda gerçekleşmeyen prokaryot ve ökaryot genleri arasındaki rekombinasyon da teknolojiye ilişkin belirsizliklerden biridir. Prokaryotlarla ökaryot organizmaların genetik kod translasyonu (protein sentezi sırasında kullanılan mekanizma) bazı açılar.

http://www.biyologlar.com/bitkilerde-uygulanan-genetik-muhendisligi-yontemlerinin-sorunlari

Biyoteknolojinin Tarımda Kullanılması ( Avantajları ve dezavantajları )

Biyoteknoloji özel bir kullanıma yönelik olarak ürün veya işlemleri dönüştürmek veya meydana getirmek için biyolojik sistem ve canlı organizmaları veya türevlerini kullanan teknolojik uygulamalardır. Geleneksel veya modern olmak üzere 2' ye ayrılır. Geleneksel biyoteknoloji; şarap yada peynir yapımındaki maya kullanımı, bazı deterjanlarda enzim kullanımı ve bazı antibiyotiklerin üretimi gibi canlı organizmaların yapılarının değiştirilmeden kullanıldığı teknolojilerdir Modern biyoteknoloji ise rekombinant DNA, nükleik asitlerin hücre veya organellere doğrudan enfeksiyonu, farklı taksonomik gruplar arasında uygulanan hücre füzyonu gibi doğal fizyolojik üreme, çoğalma ve rekombinasyon engellerini ortadan kaldıran ve klasik ıslah ve seleksiyon yöntemlerince kullanılmayan invitro nükleikasit tekniklerinin tamamı olarak adlandırılır. Modern biyoteknoloji 1970' li yıllardan başlayarak klasik ıslah yöntemleriyle, doğal üreme-çoğalma süreçleriyle elde edilemeyen değişikliklerin yapılmasını sağlamıştır. Modern biyoteknoloji teknikleri kullanılarak elde edilen organizmalara genetik yapısı değiştirilmiş organzimalar, gen transferiyle belirli özellikleri değiştirmiş bitki, hayvan yada mikroorganizmalara transgenik denir. Modern biyoteknoloji tıpta gen tedavilerinden, tarımda daha dayanıklı ve verimli ürünlerce, tekstil ve kozmetik sanayine kadar çok geniş bir yelpazede kullanılmaktadır. Modern biyoteknoloji özellikle bitkisel çalışmalarda rutin olarak kullanılabilir hale gelmiş hatta modern biyoteknolojinin son aşaması olan doğrudan gen transferi tekniğide kullanılmaya başlanmıştır. Gen transferi çalışmalarının basamakları sırasıyla, istenen genlerin bulunması, karakterize edilmesi, izolasyonu ve hedef organizmaya aktarılmasıdır. Yakın zamana kadar gen aktarımında kullanılan en önemli vektörler konakçı hücreye girme yolunu kendisi bulan genetik yapısı değiştirilmiş bakteri ve virüslerdi. Bunların herbiri bazı avantaj ve dezavantajlara sahip. Çünkü virüsler her zaman eklenmiş genin yanında kendi genlerinde bir kısmını etkili hale getirler ve bu durum konak hücrede istenmeyen sonuçlara neden olabilir. Bu yüzden bazı metotlar geliştirilmiştir. Bu metotlardan bazıları ağır metal tuzları kullanarak mikro enjeksiyon, organizmada belli bir hücre tipi tarafından alınacak şekilde yapılmış ince yağ kapsüllerinde taşınma, gun bombardment; bu teknikte ilgili genlerin üzerleri altın partikülleriyle kaplanır. Sonra bu yüklenmiş genler "gene-gun" denilen bir aletle bitki hücresine gönderilir. Burda önemli olan kriter, seçilen hücrenin veya dokunun transformasyona veya sonra tüm bitkide rejenerasyona neden olmalıdır. Diğer bir gen transfer tekniğinde gelişmiş bir bakteri olan Agrobacterium tumafaciens kullanılır. Bu bakterinin doğal bir özelliği tümörlü bazı bitkilere plosmid nakletmesidir (T-DNA). Virulant bakterinin bitki genomuyla birleşmesiyle transformasyon sonuçlanır. Bitki genomunda tümöre neden olan genlerle plosmidler yer değiştirir. Modern biyoteknoloji en geniş kullanım alanını tarımda bulmuştur. Bitkilerde bu metodlardan en çok bakteriler, virüsler ve gunbombardment kullanılır. Tarımsal biyoteknolojide başşlıca 2 amaçtan birincisi daha yüksek kalitede, daha sağlıklı ve besleyici değeri yüksek gıdalar üreterek özellikle tedavide kullanılacak gıdaların üretimiyle ilaç masraflarını minimuma indirmektir. Diğer amaç ise ülkelerin artan nüfusu için satın alabilecekleri temel gıdaların üretimi artırmaktır. (8) TARIMSAL BİYOTEKNOLOJİ UYGULAMALARI ve AMAÇLARI Ticari olarak en çok üretimi yapılan Bacillus thuringiensisden gen aktarılan transgenik, zararlılara dayanıkılı bitkiler; sap ve koçan kurduna dayanıklı mısır, yeşil ve pembe kurda dayanıklı pamuk, patates böceğine dayanıklı patates olup ayçiçeği, buğday ve domateste de bu tarz çalışmalar sürmektedir. Herbisitlere dayanıklılık kazandırılan ve ticari üretime sokulan soya, pamuk, mısır ve çeltiği yanı sıra buğday ve şeker pancarında da yakın gelecekte benzer özellikle kazandırılacaktır. Hastalık ve zararlılara dayanıklılığın aktarılmasıyla hem ilaçlama maliyetleri azaltılır hemde bitki strese girmeyeceği için verimde bir artış sağlanır. Herbisitlere dayanıklılığın kazandırılmasıyla tüm yabancı otlar ölürken bitki canlı kalır. Böylece masraflar düşerken verimde de bir artış sağlanır. Tarımsal biyoteknolojinin uygulamalarıyla yüksek oleik asit düşük linolenik asit içerikli soya, ayçiçeği, yer fıstığı çeşitleriyle, sabun ve detrjan yapımı için daha ucuz ham madde sağlayan kolza çeşidi üretime kazandırılmıştır. Sebze ve meyvelerde etilen sentezinin bloke edilmesiyle olgunlaşmanın geciktirilmesi dolayısıyla raf ömrünün uzatılması domateste başarılmıştır. Çilek, kiraz, muz ve ananasta bu tarz çalışmalar sürmektedir. Kaliteye yönelik bir diğer uygulamada ise aromanın arttırılması için kuru madde içeriği yüksek domates elde edilmiştir. Besin değeri yüksek gıda üretimi amacıyla yapılan biyoteknolojik çalışmalarda ise A vitamini ve demir içeriği yüksek çeltik çeşidi, protein içeriği yüksek tatlı patates, antioksidont içeriği yüksek sebze ve meyveler elde edilecektir. Ayrıca yakın gelecekte bitkilerde immunoglobulinlerin üretimi gerçekleşebilecektir. Biyolojik olarak parçalanabilir sentetik plastik üretimi mısır ve kolzoda çalışılmaktadır. Bioreaktör bitkilerin üretimide bu alandaki son gelişmelerden birisini oluşturmaktadır. Diğer taraftan transgenik ürünler kendi türlerine ait olmayan genleri de taşıdıkları için bazı risklerde söz konusudur. Transgenik ürünlerin üzerinde risk oluşturma ihtimali bulunan başlıca alanlar insan ve hayvan sağlığı, biyolojik çeşitlilik, çevre ve sosyo-ekonomik yapıdır. Uygulanan biyoteknolojik yöntemlerle bitkisel ürünlere aktarılan genler bitki, bakteri ve virüs kaynaklıdır. Gen aktarımı veya değişikliğe uğratılması sırasında işaretliyici olarak antibiyotik, herbisit, dayanıklılık genleri kullanılır. Gen aktarımı ile birlikte diğer organizmalardan hastalık ve alerji yapacak özelliklerin taşınması ihtimali transgenik ürünlerin birincil ve ikincil metabolik ürünleri içinde istenmeyen biyokimyasal ürünler bulunması ihtimalini ortaya çıkarır. Ayrıca antibiyotik dayanıklılık genlerinin insan yada hayvan bünyesine geçmesi nedeniyle dayanıklılık oluşması, transfer edilen genlerin insan bünyesindeki bakterilerle birleşme ihtimali, virüs kaynaklı genlerin dayanıklılık genini diğer virüslere transfer etme ihtimali insan ve hayvan sağlığı açısından önemli risklerdendir. Bitkilere aktarılan yeni özellikler, salıverildikleri çevrede bitki sosyolojisinin bozulmasına, doğal türlerde genetik çeşitliliğin kaybına, ekosistemdeki tür dağılımının ve dengenin bozularak genetik kaynakları oluşturan yabani türlerin doğal evoluasyonlarında sapmalara sebep olabilir. Eğer yabani otlara dayanıklılık geni, transgenik bitkinin yabani türlerine geçerse, bu türlerle yapılacak mücadelenin zorluğu açıktır. Ayrıca herbisitlere dayanıklı hale getirilmiş transgenik çeşitlerin üretildiği bir alanda bir yıl sonra kendi gelen bitkiler, o yıl ki diğer bir ürün için yabancı olacak ve herbisitlerle mücadeleleride güç olacaktır. Aktarılan yeni özelliklerden veya kullanılan teknolojide taşıyıcı olan veya değiştirilerek çevreye bırakılan mikroorganizmaların toprak mikroorganizma yapısına etkiside tereddüt yaratır. Eğer geliştirilen mikroorganizmalar çevreye hakim olursa doğal ortam bozulur. Çevreye ve biyo çeşitliliğe olabilecek bir diğer etkide tek yönlü kimyasal kullanılmasından dolayı tek yönlü evoluasyonun teşvik edilmesidir. Böylece ortamda tek yönlü bir flora meydana gelecek ve yine çevrede bir dengesizlik meydana gelecektir. Ekonomik olarakta transgenik tohumlar normal tohumlardan daha pahallıdır ve bu ürünler çoğunlukla tozlaşan hibrit türlerdir. Yani her yıl tohum yenilemesi gerekir. Yüksek fiyat nedeniyle tohumluk alımını uzun süre devam ettiremeyen küçük çiftler bu durumdan zarar görecektir. Diğer bir husuta transgenik ürünlerin tüketiciler tarafından tercihi ve kabul edilmesidir. Yani tüketicinin ne yediğini bilmesi ve ona göre tercihi yapabilmesi için bu ürünlerin etiketlendirilmeleri gerekir.(8) Sonuç olarak transgenik ürünlerin avantaj ve dezavantajları arasında bir oran kurmalı ve gerçekten tarımsal bir soruna çözüm olup olmadığı araştırılmalı ve ülkenin sosyo-ekonomik yapısı göz önüne alınarak, 21. yüzyılda 6 milyarın üzerine çıkacak dünya nüfusunun beslenmesi için tarımsal biyoteknoloji yegane çözüm olarak görülmektedir. Ancak bu alanda, çevremize ve gelecek nesillere etkileri, olabilecek risklerin minimuma indirilmesi ve bunun için gerekli önlemler alınması gerekir. REFERANSLAR: 1. Prof. Dr. F.V. Sukon Biyomühendisliğe Giriş Ders Notları 2. Doç. V. Eser, S. İbiş, N.Sönmez 4. Tüketici Konseyi Toplantısı Tarım Bakanlığı Araştırması 3. T.M. Klein, R. Arentzen, P. A. Lewis and S. Fitzpatrick-McElligott, Transformation of microbes, plants and animals by particle bombardment.Bio/Technoloy 10 ( 1992 ), pp. 286–291. Abstract-EMBASE Abstract-MEDLİNE Abstract-BIOTECHNOBASE 4. M. D. Chilton, M. H. Drummond, D. J. Merlo, D. Sciaky, A. L. Montoya, M. P. Gordon and E. W. Nester, Stable incorporation of plasmid DNA into higher plant cells: the molecular basis of crown gall tumorigenesis. Cell 11 ( 1977 ), pp. 263–271. Abstract-MEDLİNE Abstract-EMBASE 5. P.Zambryski, H. Joss, C. Gentello, J. Leemans, M. Van Montagu and J. Schell, Ti plasmid vector for the introduction of DNA into plant cells without alterationof their normal regeneration capacity. EMBO J. 2 (1983 ), pp. 2146–2150 6. Bevan, Agrobacterium vectors for plant transformation. Nucl.Acids Res. 12 ( 1984 ), pp. 8711–8721. 7. J. Schell, Transgenic plants as tooks to study the molecular organization of plant genes. Science 237 ( 1987 ), pp. 1176–1183 8. Dr. S. Kefi Tarımsal Araştırmalar Hazırlayan: Berna OLTULU   Danışman: Sacide PEHLİVAN

http://www.biyologlar.com/biyoteknolojinin-tarimda-kullanilmasi-avantajlari-ve-dezavantajlari-

Evrim ve Termodinamiğin İkinci Yasası

Evrim kuramına karşı çıkanlar, inançlarını daha bilimsel bir ambalajla sunmak için termodinamiğin ikinci yasasını çarpıtıyorlar.Termodinamiğin ikinci yasası, doğada hangi süreçlerin olup olamayacağını öngörür. Birinci yasanın (enerjinin korunumu yasası) izin verdiği tüm işlemlerde sadece bazı enerji dönüşüm türleri mümkün olabilmektedir. Aşağıdaki süreç örnekleri, termodinamiğin birinci yasası ile uyumludur; fakat ikinci yasayla kontrol edilen bir düzende olmalıdır: (1) Sıcaklığı farklı iki cisim termal olarak temas ettirilirse, sıcak cisimden soğuk cisme doğru ısı akışı olur, fakat soğuktan sıcağa doğru asla ısı akışı olmaz.. (2) Tuz, suda kendiliğinden çözülür, fakat tuzlu sudan tuzu elde etmek için bazı dış işlemler gerekir. (3) Bir lastik top yere düştüğü zaman bir dizi sıçramadan sonra sonuçta durur; olayı tersine çevirmek mümkün değildir. (4) Bir sarkacın salınım genliği, destek noktasındaki sürtünme ve hava molekülleri ile çarpışmadan dolayı zamanlan azalır ve sonuçta durur. Burada sarkacın başlangıç mekanik enerjisi ısı enerjisinie çevrilir. Burada enerjinin ters dönüşümü mümkün değildir. Bu örnekler, tek yönlü süreçlerdir yani tersinmez süreçlerdir. Bu olayların hiçbiri, kendiliğinden ters yönde oluşmaz. Eğer oluşsaydı termodinamiğin ikinci kanununa aykırı olurdu (Dip not:Daha kesin olarak, zaman tersinmezliği anlamında olaylar beklenmedik sırada oluşur. Bu görüşe göre, olayların bir yönde olma olasılığı diğer yönde olma olasılğından çok çok fazladır.)Termodinamik işlemlerin tek yönlü karakteri, zaman için bir yön oluşturur. Ters yönde gösterilen komik hareketlerle dolu bir filmde olaylar, zaman tersinirli bir dünyadan anlamsız bir sıralamada oluşur. Çok çeşitli şekilde ifade edilebilen termodinamiğin ikinci kanunun, pekçok önemli uygulamalara sahiptir. Mühendislik açısından, belki de en önemli uygulama, bir ısı makinasının veriminin sınırlı olmasıdır. Basit ifadeyle, ikinci kanın ısıyı tümüyle, sürekli olarak başka bir enerjiye çeviren bir makinanın yapılmasının mümkün olmadığını söyler. Entropi kavramının asıl yeri termodinamiktir. Fakat önemi istatistik mekanik alanında daha da artmıştır. Çünkü bu inceleme yöntemi, entropi kavramını başka bir yolla açıklar.İstatistiksel mekanikte bir maddenin davranışı, madde içerisindeki atom ve moleküllerin istatistiksel davranışları ile tanımlanır. Bu şekildek incelemenin ana sonuçlarından biri: Yalıtılmış sistemler düzensizliğe eğlimlidir ve entropileri bu düzensizliğin bir ölçüsüdür. Örneğin odanızdaki havadda bulunan gaz moleklüllerini düşününüz. Eğer bütün moleküller askerler gibi düzenli hareket etselerdi, bu çok düzenli bir hal olurdu. Bu pek olağan olmayan bir haldir. Eğer molekülleri görebilseydik onların rastgele, her doğrultuda hareket ettiklerini, birleri ile çarpıştıklarını, çarpışma sırasında hızlarının değiştiğini, bazılarının daha yavaş bazılarını daha hızlı gittiğini izleyecektik. Bu, hayli düzensiz ve hata en muhtemel olan haldir. Bütün fiziksel olaylar, en olası duruma ulaşma eğilimindedi ve böyle düzensiz bir durum, düzensizliğin daima arttığı bir durumdur. Entropi, düzensizlik ölçüsü olduğu için aşağıdaki gibi anlatılabilir: Bütün doğal olaylarda evrenin entropisi artar. Bu, termodinamiğin ikinci yasasının başka bir biçimde anlatımıdır. Peki bu yasayla evrimin ilişkisi nedir? İkinci yasa ısıyı yokuş yukarı itmeyi yani soğuk cisimden sıcak cisme ısı aktarma olayında olduğu gibi, olasılık dışı bırakmaz ya da düzesizlikten düzenli duruma geçeşe de izin vermektedir. Böyle bir işlem için dışardan enerji gerektiği, örneğin sürekli elektrik verilmesi gibi açıkça ifade etmektedir. Bunun kanıtı çok uzağımızda değildir. Örneğin, mutfaktaki buzdolabı elektrikle çalışarak, daha soğuk olan içerden dışarıya ısı atmaktadır.(Serway, Fizik, 22. Bölüm,587-588) Evrim ve Entropi Enerjinin korunumu yasasını ilk olarak bir fizikçi değil bir tıp adamı açıklığa kavuşturmuştu. Bunun için deneyinde o da fareleri kullanmıştır. “Besinler yandığında ne kadar enerji oluştuğunu saptayabilirsiniz. Bir miktar besini farelere yedirirseniz, tıpkı yanmada olduğu gibi, besin oksijen etkisiyle karbon dioksite dönüşür. Enerjiyi, her iki durumdaki enerjiyi ölçerseniz canlı varlıkların cansızlarla aynı şeyi yaptığını görürsünüz. Enerjinin korunumu yasası öbür olgular için geçerli olduğu kadar yaşam için de geçerlidir Şunu da eklemek isterim: “cansız” olan şeyler için doğru olduğunu bildiğimiz her yasanın yaşam denilen o büyük olgu için sınandığında da doğru çıkması çok ilginç bir şey. Fizik yasaları bağlamında, çok daha karmaşık olan canlı varlıklarda olup bitenlerin yaşamayan varlıklarda olup bitenlerden farklı olmasını gerektiren bir bulgu henüz yoktur...” (R. Feynman, FYÜ s: 80-81) “ Canlı varlıkların en küçük molekülleri proteinlerdir. Bunlarda tirbüşon özelliği vardır ve sağa doğru dönerler. Şu kadarını söyleyebiliriz ki, aynı şeyleri kimyasal olarak yapabilirsek ve de sağa değil sola doğru yaparsak, biyolojik olarak işlemezler; çünkü, başka proteinlerle karşılaştıklarında uyumu sağlayamazlar. Sol yönlü bir yiv sol yönlü bir yive uyar; fakat sol ve sağ birbirine uymaz. Kimyasal yapılarında sağ yönlü yivi olan bakteriler “sol ve sağ yönlü” şekeri ayırt edebilirler. Bunu nasıl başarıyorlar? Fizik vi kimya iki tür molekülü de üretebilir; ancak onları ayırt edemez. Ama biyoloji ayır edeilyor. Şöyle bir açıklama akla yakın görünüyor: Çok, çok eskiden, hayat daha yeni başladığında, raslantı sonucu bir molekül ortaya çıktı ve üreyerek yayıldı vs. Uzun yıllar boyunca bu tuhaf görünümlü, çatallı yumruları olan damlacıklar birbirleriyle gevezelik edip durdular İşte bizler de başlangıçtaki bu birkaç molekülün evlatlarından başka bir şey değiliz. Bu ilk moleküllerin öyle değil de böyle bir şekil almaları tesadüf sonucunda oldu. Ya bu ya diğeri ya sağ ya da sol olmak zorundaydı. Sonra kendilerini çoğalttılar ve hala da çoğalmaya devam ediyorlar.Bu, bir atölyedeki vidalara benzer. Sağ yönlü vidalar kullanarak sağ yönlü vidalar yaparsınız, vs. Bu gerçek, yani bütün canlı moleküllerde aynı tür yiv bulunması, moleküler düzeye kadar inen canlı soyunun hep aynı niteliği taşıma özelliğinin belki de en anlamlı ifadesidir.(R. Feynman, FYÜ, s: 113-114) Entropi İki şey aynı sıcaklıkta olduğu zaman bir denge oluştuğunu söyleriz, ancak bu onların enerjilerinin de aynı olduğu anlamına gelmez; sadece, birinden enerji çıkarmanın öbüründen çıkarmak kadar kolay olduğunu belirtir. Sıcaklık “enerji verme kolaylığı” gibi bir şeydir. Onları yanyana koyarsanız, görünürde hiçbir şey olmaz. Enerjiyi eşit olarak ileri geri birbirlerine geçirirler; ancak, net sonuç sıfındır. Öyleyse, nesnelerin hepsi aynı sıcaklığa ulaşınca, bir şey yapmak için kullanabileceğimiz enerji yoktur. Ters-çevrilmezlik ilkesi öyledir ki, eğer cisimlerin sıcaklıkları farklı ise ve kendi hallerine bırakılırsa zaman geçtikçe sıcaklıkları birbirine yaklaşır ve enerjinin kullanılabilirliği giderek azalır. Bu, entropinin durmadan arttığını söyleyen entropi yasasının değişik bir ifadesidir. Sözcükler üstünde durmayalım. Bir başka deyişle, kullanılabilir enerji durmadan azalıyor da diyebeliriz. Bu, düzensiz molekül hareketleri kaosunun yol açtığı bir dünya özelliğidir. Farklı sıcaklıktaki şeyler kendi hallerine bırakılırlarsa aynı sıcaklıkta olmaya yönelirler. Aynı sıcaklıktaki iki şeyiniz, örneğin yanmayan bir ocak üstüne konulmuş su varsa, ocak ısınıp su donmayacaktır. Ancak, yanan bir ocak ve buz varsa tersi olacaktır. Demek ki tek yönlülük, her zaman kullanılabilir enerjinin kaybedilmesine yol açar. Bu konuda söyleyeceklerim bu kadar. Ancak bazı temel özellikler hakında birkaç noktaya da değinmek isitiyorum. Burada ters-çevrilmezlik gibi bir sonucu apaçık olan, ancak yasaların aşikar bir sonucu olmayan, temel yasalardan farklı bir örneğimiz var. Bunun nedenini anlamak birçok analizi gerektirir. Bu sonuç, dünyanın ekonomisi ve aşikar görünen her konudaki gerçek davranışı bakımından çok önemlidir. Belleğim, özelliklerim, geçmiş ile gelecek arasındaki fark tamamen bununla içiçedir. Ancak yasaları bilmek bunu kolayca açıklamaya yetmiyor; birçok analiz de gerekiyor. Fizik yasalarıyla olgular arasında aşikar ve doğrudan bir uyum olmaması sık karışlaşılan bir durumdur. Yasalar, değişik ölçülerde, deneyimlerrden soyutlanmışlardır. Bu özel durumda, yasal ters-çevrilebilir oldukları halde olguların çerilememesi buna örnektir. Ayrıntılı yasalarla gerçek olguların temel özelllikleri arasında çoğu zaman büyük uzaklıklar vardır. Örneğin, bir buzula uzaktan bakıp denize düşen kayaları, buz hareteldreni vb, gördüğünüzde onun küçük altıgen buz kristallerinden oluştuğunu hatırlamanız gerekli değildir. Fakat, buzun yürümesinin gerçekten de altıgen buz kristallerinden kaynaklandığını biliyoruz. Buzulun rdavranışlarını anlamak için uzun zaman gerekir (gerçekte, kristalleri ne ölçüde incelemiş olursa olsun hiç kimse buz hakkkında yeterli bilgi sahibi değildir). Buna karşın, kristalleri gerçekten anlarsak sonunda buzulları da anlayacağımızı umuyoruz. Bu derslerde fizik yasalarının temel öğelerinden sözetmemize karşın, hemen ekleyelim ki temel fizik yasalarını bugün bilebildiğimiz kadar bilmek, herhangi bir şeyi hemen anlamamızı sağlamıyor. Bunun için zaman gerekiyor., yine de ancak kısmen anlayabiliyoruz. Sanki doğa, gerçek dünyadaki en önemli şeylerin, bir sürü yasanın karışık bir rastlantısal sonucuymuş gibi göründükleri bir şekilde düzenlenmiş. Bir örnek gerekirse, proton ve nötron gibi bazı nükleer parçacıkları içeren atom çekirdekleri çok karmaşıktırlar. Enerji düzeyi dediğimiz bir şeylere sahiptirler ve değişik enerji değerleri olan durum veya koyullarda bulunurlar. Farklı çekirdeklerin enerji düzeyleri de birbirinden farklıdır. Enerji düzeylerinin durumunu saptamak karmaşık bir matematiksel problemdir; bunu ancak kısmen çözebiliyoruz. Düzeylerin kesin durumu son derece karmaşık bir şeyin sonucudur. Bu nedenle, içinde 15 parçacık bulunan nitrojen 2.4 milyon voltluk bir düzeyi, bir başkasının da 7.1 düzeyi vb olmasında şaşılacak bir şey yoktur. Doğa hakkında çok ilginç olan bir şey vardır: Tüm evrenin kendine özgü yapısı belirli bir çekirdekteki özel bir enerji düzeyinin durumuna bağımlıdır. Karbon-12 çekirdeğinde 7.82 milyon voltluk bir düzey olduğu saptanmıştır. Bu da akla gelebilecek her şey için çok büyük önem taşımaktadır. Durum şöyledir: Hidrojenle başlayalım. Başlangıçta Dünya neredeyse tümüyle hidrojenmiş gibi görünüyor. Çekimin etkisiyle hidrojen sıkışıp ısınıyor ve nükleer reaksiyon gerçekleşiyor; helyum oluşuyor.. Sonra helyum hidrojenle kısmen birleşerek daha ağır birkaç element oluşturuyor. Ancak, daha ağır olan bu eylementler hemen dağılıp helyuma dönüşyorlar.Bu nedenle bir ara, dünyadaki bütün diğer elementlerin nasıl ortaya çıktıkları anlaşılamıyordu. Çünkü, yıldızlardaki üretim süreci, hidrojenle başlayarak helyum ve yarım düzineden az başka elementten fazlasını ortaya çıkaramazdı. Bu problem karşısında Fred Hoyle (İnrgiliz astoronum) ve Edwin Salpeter (Amerikalı fizikçi), bir çıkış yolu bulunduğunu öne sürdüler. Buna göre, üç helyum atomu bir leşip bir karbon atomu yapabiliyorsa, bir yıldızda bunun ne sıklıkta oluşabileceğini kolayca hesaplayabiliriz. Sonuç şunu ortaya çıkardı: karbon ancak tek bir rastlantısal olanakla oluşabelirdi. Eğer karbonda 7.82 düzeyi olmadığı zamankinden biraz daha uszun bir süre beraber kalabilirlerdi. Biraz daha uzun kaldıklarında, başka bir şeylerin oluşması ve yeni elementler yapılması için gerekli zaman sağlanacaktı. Eğer karbonda 7.82 milyon voltluk bir enerji düzeyi varsa, periyoduk tablodaki diğer elementelerin nereden geldiği anlaşılabilirdi. Böylece dolaylı ve tepetaklak bir irdeleme ile karbonda 7.82 milyon voltluk bir düzey varolduğu tahmin edildi; laboratuvar deneyleri de bunun gerçek olduğunu gösterdi. Bu nedenle dünyada, bütün öbür elementelerin varolaması, karbondaki bu özel düzeyin varlığı ile yakından ilişkilidir. Karbondaki bu üzel düzeyin varlığı ise fizik yasaların bilen bizlere, etkileşim içinde bulununan 12 karmaşık parçacığın çok karmaşık bir rastlanıtsal sonucu olduğu izlenimini veriyor. Bu örnek fizik yasalarını anlamanın dünyadaki önemli şeyleri doğrudan anlamayı gerektirmediğini çok güzel gösteren bir örnektir. Gerçek deneyimler çoğunlukla temel yasalardan çok uzaktırlar. Dünya hakkında tartışırken onu hiyerarşik bir düzen içinde ve muhtelif düzeylerde ele alırız.Bundan kastettiğim, dünyayı sınırları kesin ve belirli düzeylere ayırmak değil. Fikirlerin hiyerarşisinden ne anladığımı bir grup kavramı açıklayarak göstereceğim. Örneğin, bir uçta fiziğin temel yasaları bulunuyor. Kesin açıklamalarının temel yasalarla yapılacağını düşündüğümüz yaklaşık kavramlar için başka başka terimler icat ederiz; örneğin “sıcaklık”. Sıcaklığın titreşim olduğunu düşünüyoruz; sıcak bir şey için kullandığımız sözcük de titreşen atomlar kütlesi için kullandığımız sözcüktür. Fakat sıcaklık hakkında konuşurken titreşen atomları unuttuğumuz da olur. Tıpkı buzullar hakında konuşunrken altıgen buzları ve ilk başta yağan kar taneciklerini unuttuğumuz gibi. Aynı şeye başka bir örnek de tuz kristalleridir.Bunlar temelde bir sürü proton, nötron ve elktrondan oluşur. Ancak bütün temel etkileşim düzenini içeren bir “tuz kristali” kavramımız vardır. Basınç da aynı türden bir kavramdır. Buradan bir üst basamağa çıkarsak, bir başka düzeyde maddelerin özelliklerini buluruz. Örneğin, ışığın bir şey içinden geçerken ne kadar büküldüğünü gösteren “kırılma endeksi” veya suyun kendini biradrada tuttuğunu gösteren “yüzey gerilimi”. Bunların her ikisi de sayılarla ifade edilir. Bunun atolmların çekimlerinden vb. kaynaklandığını görmek için bir çok yasa taramak gerektiğini sizlere hatırlatırım. Ama yine de “yüzey gerilimi” terimini kullanırız ve bunu tartışırken içerilerde ne olup bittiğine her zaman pek aldırlmayız. Hiyerarşide bir basamak daha yukarı çıkalım.Su konusunu ele alırsak dalgalar, bir de fırtına diye bir şey çıkıyor karşımıza. “Fırtına” sözcüğü de çok büyük bir olaylar topluluğunu ifade eder. Sonra “güneş lekeleri”, birer nesneler topluluğu olan “yıldızlar” var. Her zaman fazla geriye giderek düşünmeye değmez. Gerçekten bunu yapamayız da. Çünkü yukarılara çıktıkça araya gittikçe zayıflayan yeni basamaklar girer. Hepsini birden ele alarak düşünmeyi henüz başaramadık. Bu karmaşıklık sıralamasında yukarılara çıktıkça, fiziksel dünhyada son derece karmaşık bir şey olan, maddeyi son derece incelikli bir karmaşıklıkla düzenlemeyi gerektiren, kas-seğirmesi veya sinir uyarısı gibi şeylerle karşılaşırız. Daha sonra da “kurbağa” gibi şeyler gelir. Çıkmaya devam ediyoruz; “insan”, “tarih”, “politika” vb. sözcük ve kavramlara, daha üst düzeydeki şeyleri anlamak için kullanığımız bir dizi kavrama geliyoruz; çıkmayı sürdürerek kötülük, güzellik, umut gibi şeylere ulaşıyoruz. Dinsel bir mecaz yaparsak, hangi uç Tanrı’ya daha yakındır? Güzellik ve umut mu, yoksa temel yasalar mı? Söylenmesi gerekinin şu olduğunu sanıyorum: Varlığın içiçe geçmiş bağlantılarının tümüne bakmamız gerekir. Bütün bilimler, yalnız bilimler değil bütün entellektüel kökenli çabalar, hiyererşik basamaklar arasında aşağıya ve yukarıya doğru olan bağlantıları bulmaya; güzellikle tarih, tarihle insan psikolojisi.insan psikolojisiyle beyinin işlevleri, beyihnsel isinrsel uyarılar, sinirsel uyarılarla kimya vb arasında bağlantı kurmaya yönelik çabalardır. Bugün bunu yapkmıyoruz. kendimiz kandırıp bu şeyin bir ucundan öbüüne uzanan birdoğru çizebileceğimiz sanmanın yararı yoktur; çünkü, böyle bir göreceli hiyerarşinin varolduğunu yeni yeni görmeye başladık. İki uçtan birinin Tanrı’ya daha yakın olduğunu da sanmıyorum. İki uçtan birinde durmak, iskelenin yalnızca o ucunda yürüyüp olan bitenleri tam olarak anlamanın o yönde ggerçekleşeceğine inanmak yanlıştır. Kötülük, güzellik ve umuttan yana veya temel yasalardan yana olmak; bütün dünyayı derinliğine kavramanın yalnız o yolla olacağını ummak doğru değildir. Bir uçta uzmanlaşanın öbür uçta uzmanlaşanı önemsememesi akla uygun değildir. Bu iki ucun arasında çalışan büyük kütle sürekli olarak, bir adımı diğeri ile birleştirerek, dünyayı gittikçe daha iyi anlamamızı sağlıyor. Bu yolla, hem iki uçta hem de ortada çalışarak yavaş yavaş bu içiçe hiyerarşinin olağanüstü büyük dünyasını anlamaya başlıyoruz. (R. Feynman, Fizik YasalarıÜzerine,TÜBİTAK y, s: 140-147) Krallıklar ve Karanlıklar “Demiştik ki, Australantrop ya da türdeşlerinden birinin, artık yalnızca somut ve gerçek deneyini değil de bir öznel deneyini bir kişisel “benzerleştirme” nin içeriğini iletmeyi başardığı gün yeni bir dünya doğmuştu:Düşünler dünyası. Yeni bir evrim, kültür evrimi olanak kazanıyordu.İnsanın fiziksel evrimi, artık dilin evrimiyle sıkı bir bilik içinde, onun ayıklanma koşullarını altüst eden etkisine derinden bağlı larak daha uzun süre devam edecektir. Modern insan bu ortak yaşarlığın ürünüdür. Onu başka yoldan anlamak ya da yorumlamak olanaksızdır. Her canlı varlık bir taşıldır da. İçinde proteinlerinin mikroskopik yapısına dek atalarının damgasını değilse ible, izleri taşır: Bu insanın kalıtçısı olduğu fiziksel ve “düşünsel” ikilikten dolaylı, bütün hayvan türlerinden çok onun için doğrudur. Yüzbinlerce yıl boyunca, düşünsel evrimin, ancak hayatın hemen korunmasına doğrudan bağlı olaylar için önlem almaya elverişli bir beyin kabuğunun yavaş gelişmesinin baskısı altında, fiziksel evrimin ancak çok az önünde yürüdüğü düşünülebilir:Benzerleştirme gücüyle işlemleri ortaya çıkaran dili gelişmeye itecek olan ayıklanmamnın yoğun baskısı burdan gelir. taşılların tanıklık ettiği bu evrdimin şaşırtıcı hızı da yine buradan gelir. Fakat bu birlikte evrim sürdükçe, doğrudan maddi sinir sitmenin gelişmesinin baskıları gtigide yok etmesiyle, düşünsel ibleşimin daha çok bağımsızlık kazanması kaçınılmazdı. Bu evrimin sonucunda insan, insan-altı evrene egemenliğini yayıyor ve orada gizlenen tehlikelerden daha az etkileniyordu. Evrimin birinci aşamasına son veren ayıklama baskısı da artık azalacak, hiç olmazsa başka bir niteliğe bürünecekti. Bir kez çevresine gemen olduktan sonra insanın artık kendinden başka önemli düşmanı kalmıyordu. Doğrudan tür içinde ölümüne kavga artık insan türünde ayıklanmanın başlıca etmeni oldu. Hayvanların evriminde son derece seyrek rastlanan bir olgu. Günümüzde hayvan türleri içinde, belirli ırk ve topluluklar arasında, tür içi savaş bilinmez. Büyük memelilerde erkekler arasında sık görülen çarpışmaların bile, yenilenin ölümüyle sonuçlandığı çok seyrektir. Bütün uzmanlar, doğrudan kavganın yani yani Spencer’ın “struggle for life” ının, türlerin gelişiminde pek küçük bir işlevi olduğunu kabul etme konusunda birleşirler. İnsanda durum böyle değil. türün, hiç olmazsa belli bir gelişme ve yayılma düzeyinden sonra, kabile ya da ırk kavgası, evrim etmeni olarak, kuşkusuz önemli bir iş görür. Neandertal adamının birden bire yok oluşunun, atamız Homo sapiens ‘in uyguladığı bir soy kırımının sonucu olması çok olasıdır. Bunun son olduğu da söylenemez: Bildiğimiçz tarihsel soy kırımlarının sayısı az değil. Bu ayıklanma baskısı insanı hangi yönde etkiler? Bunun daha çok zeka, imgelem, irade ve tutku taşıyan ırkların yayılmasını kolaylaştırması olabileceği açıktır. Fakat bu, bireysel gözüpeklik yerine çete bağlılığını ve takım saldırganlığını, girişkenlikten çok kabile yasalarının sayfın tutulmasını da geliştirmiş olmalı. Bu yalınlaştırıcı şemaya yapılacak bütün eleştirileri kabul ediyorum. İnsan evriminin iki ayrı evreye ayrıldığını da ileri sürmüyorum. Benim yaptığım, insanın yalnız kültürel değil, fizik evriminde de kuşkusuz önemli bir işlevi olan başlıca ayıklanma baskılarını sıralamaya çalışmaktır. Buradaki önemli nokta, yüz binlerce yıl boyunca, kültürel evrimin fiziksel evrimi etkilemekten geri kalamayacağıdır; her tür hayvandan çok insanda ve doğrudan onun sonsuz özerkliği nedeniyle, ayıklama baskısını yönlendiren şey davranıştır . Davranış, genellikle otomaik olmatan çıkıp da kültürel olduktan sonra, kültürel özelliklerin de genomun evrimi üzerine baskı yapması gerekir. Bu da, kültürel evrimin gittikçe artan hızının onu genomdan tümüyle koparmasına dek sürer.(s:145) *** Açıktır ki, modern toplumlarda bu kopma toptandır. Burada ayıklanma ortadan kalkmıştır. Hiç olmazsa Darwinci anlamıyla “doğal” bir yanı kalmamıştır. Bizim toplumlarımızda, ayıklanma, henüz bir işlev gördüğü ölçüde, “en yeterlinin varkalması”nı yani daha çağdaş terimlerle “en yeterli” olanın kalıtsal varkalaşını, soyun daha çok yaylılması yoluyla, kolaylaştırmaz.Zeka, tutku, gözüpeklik ve imgelem gerçi modrn toplumlarda da her zaman başarı öğeleridir. Fakat bu kalıtsal değil kişisel başarıdır. Oysa evrimde önemli olan yalnızca birincidir. tersine, herkesin bildiği gibi istatistikler, zeka bölümü (ya da kültür düzeyi) ile aile başına düşen çocuk sayısı arasında tersi bir ilişki bulunduğunu gösreriyor. Buna karşı aynı istatistikler, evli çiftiler arasındaki zeka bölümü için olumlu bir ilişki bulunduğunu gösteriyor. Bu, en yüksek kalıtsal gizilgücü, göreli sayıları gittikçe azalan bir azınlığa doğru toplama olasılığı gösteren tehlikeli bir durumdur. Dahası var: Yakın zamanlara dek görece “ileri” toplumlarda bile, hem fiziksel hem de düşünsel açıdan en az yeterli olanların elenmesi özdevinimli ve acımasızdı. Çoğu erginlik çağına uluşamazdı. Günümüzde bu kalıtsal sakatlardan birçoğu, döl vermeye yetecek kadar yaşıyor. Bilginin ve toplumsal törenin ilerlemesi sonucurnda, türü, doğal ayıklanmanın yok olmasıyla kaçınılmazlaşan alçalmaya karşı savunun mekanizma, artık eğer en ağır kusurlar dışında işlemez olmuştur. Sık sık sergilenen bu tehlikelere karşı moleküler kalıtımdaki son ilerlemelerden beklenen çareler öne sürülüyor. Kimi yarı-bilginelrden yayılan bu yanılgıyı dağıtmak gerek. belki de kalıtsal kusurlar iyileşirilebilir, fakatbu, kusurlu kişinin yalnızca kendisi içindir, soyundan gelenler için değil. . Çağdaş moleküler kalıtımbilim bize, bir “üstün insan”yaratmak üzere kalıtsal birikimi yeni niteliklerle zenginleştirmek, bir yol göstermek şöyle dursun, böyle bir umudun boşluğunu açıklıyor: Genomun mikroskopik oranları bugün için, kuşkusuz her zaman olduğu gibi, bu tür oyunlara elverişli değildir. Bilimkurgu kuruntuları bir yana, insan türünü “iyileştirme”nin tek yolu, bilinçli ve sıkı bir ayıklama uygulaması olabilir. Bunu kim ister, buna kim yürek bulur? tür için, iler toplumlardaki ayıklanmama ya da ters ayıklanma tehlikesinin sürdüğü bir gerçektir. Ancak tehlikenin önemli boyutlar kazanması uzun bir süreye bakar: Diyelim on ya da on beş kuşak, yan birçok yüzyıl. Oysa modern toplumlar, başka yönden de ivedi ve ağır tehditlerle karşıkarşıyadır.(s:146) *** Burada sözünü ettiğim şey, ne nüfus patlaması, ne doğanın yıkımı, hatta nede megatonlardır (1 milyon ton TNT’ninkine eşit patlama gücü) bu daha derin ve daha ağır bir hastalık ruhun hastalığıdır. Bu, o hastalyğı yaratıp gittikçe de ağırlaştıran düşünsel evrimin en büyük dönüm noktasıdır. Üç yüz yıldan beri bilimde ortaya çıkan olağanüstü gelişmeler, bugün insanı, gerek kendisi ve gerekse evrenle ilişkisi üzerine kurduğu ve on binlerce yıldır kök salmış olan anlayışı, çok acılı biçimde değiştirmeye zorlamaktadır. Oysa ruh hastalığı olsun megatonlar olsun, hepsi de yalın bir düşüncenin sonucudur: Doğa nesneldir, gerçek bilginin tek kaynağı mantıklı deneyin sistematik karşılaşmasıdır. nasıl olmuş da, düşünceler ülkesinde, böylesine yalın ve açık bir düşünce, Homo sapiens’in doğşundan ancak yüz bin yıl sonra gün ışığına çıkabilmiş; nasıl olmuş da Çin’deki gibi çok yüksek uygarlıklar, Batı’dan öğrenmedin önce bunu bilememişler; yine nasıl olmuş da, Batı’da da o düşüncenin, sonunda mekanik sanatların arı pratiği içindeki tutsaklığından krtulabilmesi için Thales ile Pythagoras’tan Galilei, Descartes ve Bacon’a dek 2500 yıla yakın zaman geçmesi gerekmiş, bütün bunları anlamak çok zor.(s:146) Bir biyolog için kavramların evrimiyle canlı katmanlarının (dirimyuvarını) evrimin karşılaştırılması çekici olabilir. çünkü soyutun evreni dirimyuvarını, bunun cansız evreni aştığından daha çok aşmış bile olsa, kavramlar, organizmaların özelliklerinden bir bölümünü saklamıştır. Düşünceler de organizmalar gibi yapılarını yineleyip çoğaltmaya yönelirler; onlar gibi içeriklerini kaynaştırır, yeniden birleştirir ve ayırırlar ve sonunda onlar gibi evrim gösterirler ve kuşkusuz bu evrimde ayıklanmanın payı büyüktür. düşüncelerin evrimi üzerine bir kuram önerme denemesine girişmeyeceğim Fakat hiç olmazsa orada işlev alan başlıca etmenleri tanımlama yoluna gidilebilir. Bu ayıklanmanın, zorunlu olarak, iki düzeyde işlemesi gerekir: Düşüncenin kendi düzeyi, edim (davranış) düzeyi. Bir düşüncenin edim değeri, onu kabul eden bireye ya da topluluğa getirdiği davranış değişikliğine bağlıdır. Kendisini benimseyen insan topluluğuna daha çok tutarlılık, tutku ve kendine güven veren düşünce, bunun sonucu olarak topluluğun yayılma gücünü de artıracaktır ve bu, düşüncenin kendisinin de yükselmesi demektir.Bu yükselme değerinin, düşüncenin içerdiği nesnel doğrunun niceliğiyle zorunlu bir ilişkisi yoktur. Bir dinsel ideolojinin bir toplum için oluşturduğu güçlü dayanak, gücünü kendi yapısından değil, bu yapının kabul edilişinden, kendini benimsetmesinden alır. Bunun için de böyle bir düşüncenin yayılma gücünü edim gücünden ayırmak zordur. Yayılma gücünün kendi içinde çözümlenmesi çok daha zordur.Bu gücün, zihinde daha önceden kurulmuş olan yapılara ve bunlar arasında, daha önce kültürün taşımış olduğu düşüncelere ve kuşkusuz, saptanması bizim için çok zor olan kimi doğuştan yapılara da bağlı olduğunu söylemekle yetinelim. Fakat görülüyor ki, en üstün yayılma gücü taşıyan düşünceler, insanı, içinde bunalımından kurtulabileceği içkin bir yazgıdaki yerini belirleyerek açıklayanlardır (s:147) *** Yüzbinlerce yıl boyunca bir insanın yazgısı, onun dışında hayatını sürdüremeyeceği kendi toplumunun, yani oymağının yazgısından ayrılamazdı. Oymağa gelince, o da yalnızca birliğine dayanarak kendini savunabilir, yaşayabilirdi. Bu birliği örgütleyen ve güvenceye alan yasaların büyük öznel gücü buradan gelir. Birisinin çıkıp bunlara aykırı davrandığı durumlar olabilir; fakat kuşkusuz hiç kimsenin onları yadsıması düşünülemez. Bu tür toplumsal yapıların zorunlu olarak ve öylesine uzun bir süre boyunca kazandığı çok (s:147) büyük açıklayıcı önem düşünüldüğünde, bunların insan beyninin doğuştan kategorilerinin kalıtsal evrimini etkilemediklerini kabul etmek kolay değildir. Bu evrim yalnızca oymak yasasının kabulünü kolaylaşttırmakla kalmayıp, ona üstünlük sağlayarak onu kuran mitik açıklama gereksinimini de yaratmış olmalı. Biz o insanların torunlarıyız. Bu açıklama dileği, varoluşun anlamını bulmaya bizi zorlayan bunalım, kuşkusuz bize onların kalıtıdır. Bütün mitlerin bütün dinlerin, bütün felsefelerin ve bilimin kendisinin yaratıcısı da bunalımdır. Bu buyurucu gereksinimin, doğuştan, kalıtsal yabsanın diliyle bir yerde yazılı olduğundan ve kendi kendine geliştiğinden, ben kandi payıma şüphe etmiyorum. İnsan türünün dışında, karıncalar, beyaz karıncalar ve arılar bir yana, hayvanbal alanın hiçbir yerinde böylesine yüksek düzeyde ayrımlaşmış toplumsal örgütlenmeler bulunmaz. Toplumsal böceklerde kuruluşların değişmezliğini sağlayan hiçbir şey kültürel kalıtımdan gelmez, hepsi kalıtsal aktarımdan gelir. Toplumsal davranış onlarda tümüyle doğuştan, özdevinimseldir. İnsanda toplumsal kuruluşlar, salt kültürel olarak, hiçbir zaman böyle bir dengeliliğe ulaşamayacaktır; ayrıca, bunu kim ister ki? Mitleri ve dinleri bulmak, geniş felsefe sistemleri kurmak, insanın, toplumsal hayvan olarak arı bir özdevinimliliğe boyun eğmeden hayatını sürdürebilmek için ödemek zorunda kaldığı bedeldir. Fakat salt kültrel kalıt, toplumsal yapılara destek vurmak için, kendi başına yeterince güçlü olamazdı. Bu kalıta, düşünce için gerekli besini sağlamak üzere, bu kalıtımsal destek gerekirdi. Eğer böyle olmasaydı, türümüzde, toplumsal yapının temelindeki din olayının evrenselliği nasıl açıklanabilirdi? Yine, mitlerin, dinlerin ve felsefi ideolojilerin tükenmez çeşitliliği içinde hep aynı “biçim” in bulunmasını nasıl açıklamalı? Kolayca görülebilir ki, bunalımı yatıştıracak yasayı kurmaya yönelik “açıklama” ların hepsi de “tarih”, daha doğrusu, bireyoluştur(Ontogenie). İlkel mitlerin hemen hepsi, davranışları, topluluğun kaynaklarınıaçıklayan ve onun toplumsal yapısını dokunulmaz geleneklere oturtan, az ya da çok tanrısal kahramanlarla ilgilidir: tarih yeniden yapılmaz. Büyük dinler de aynı biçimde, esinli bir peygamberin öyküsüne dayanır; peygamber kendisi her şeyin kurucusu değilse de, kurucuyu temsil eder, onun yerine konuşur ve insanların tarihini ve yazgılarını anlatır. Bütün büyük dinler içinde kuşkusuz Yahudi-Hıristiyan geleneği, bir tanrı (s:148) peygamberiyle zenginleşmeden önce bir çöl oymağının davranışlarına doğrudan bağlı olan tarihselci yapısıyla, en “ilkel” olanıdır. Budacılık ise, tersine, daha yüksek dereceden ayırmlaşmıyş olarak, özgün biçimi içinde yalnızca Karma’ya, bireysel yazgıyı yöneten aşkın yasaya bağlanır. Budacılık insanların değil, ruhların öyküsüdür. Platon’dan Hegel ve Marx ’a dek, büyük felsefe sistemlerinin hepsi, hem açıklayıcı hem kuralcı bireyoluşlar önerirler. Gerçi Platon’da bireyoluş terisne dönmüştür. Tarihin akışında; o, ideal biçimlerin gittikçe çözülüşünü görürü ve Devlet ’te özet olarak, bir zamanı geri çevirme makinesi işletmeye çalışır. Hegel gibi Marx için de tarih, içkin, zorunlu ve iyiye yönelik bir tasarıya göre açılır. Marksist ideolojinin ruhlar üzerindeki büyük gücü, yalnızca İnsanın kurtuluşu için verdiği sözden değil, aynı zamanda ve kuşkusuz hepsinden önce, bireyoluşsal yapısından, geçmiş şimdiki ve gelecekteki tarih için yaptığı tam ve ayrıntılı açıklamadan gelir. Bununla birlikte, insan tarihiyle sınırlanmış olarak, “bilim”in verileriyle bezenmiş de olsa, tarihsel maddecilik yine de eksik kalmıştı. Buna, düşüncenin gerekli gördüğü toptan yorumu getirecek diyalektik maddeciliği de eklemek gerekiyordu: Bunda, insanlığın ve evrenin tarihleri aynı öncesiz-sonrasız yasalar altında birleşmiştir. *** Eğer, yokluğu derin bir iç bunalımına neden olacak bir tam açıklama gereksiniminin doğuştan olduğu doğruysa; eğer iç daralmasını yatıştırabilecek tek açıklama biçimi, İnsanın anlamını, ona doğanın tasarı içinde zorunlu bir yer vererek anlatacak olan bir toptan tarih açıklama biçimiyse; eğer doğru, anlamlı ve yatıştırıcı görünmek için “açıklama”nın uzun canlıcı (animist) gelenek içinde erimesi gerekiyorsa; işte o zaman, düşünce dünyasında, tek bozulmamış doğru kaynağı olarak nesnel bilgi kaynağının görülebilmesi için neden binlerce yıl geçmesi gerektiği anlaşılır. Hiçbir açıklama önermeden, başka her türden düşünsel besin karşısında bir çileci vazgeçişe zorlayan bu düyşünce, doğuştan iç daralmasını yatıştıramazdı; tersine onu ağırlaştırırdı. Bu düşünce insan doğasının doğrudan özümsediği yüz bin yıllık bir geleneği bir çırpıda sileceğini öne sürüyordu; insanın doğayla olan eski canlıcı (s: 149) bağlaşmasının bozulduğuhnu bildiriyor; bu değerli bağlaşmanın yerine, yalnızlıktan donmuş bir evrende tasalı bir arayıştan başka bir şey getirmiyordu. Katı etik bir büyüklenme dışında hiçbir desteği görünmeyen böyle bir düşünce nasıl kabul edilebilirdi? kabul edilmedi, kabul edilmiyor da. Her şeye karşın yine de etkinlik gösteriyyorsa, bu yalnızca onun olağanüstü edimsel gücüne dayanıyor. Üç yüz yılda, nesnellik boyutuna göre kurulan bilim, ruhlarda olmasa bile pratikte, toplumdaki yerini buldu. Modern toplumlar bilim üzerine oturur. Bu toplumlar, zenginliklerini, güçlerini ve eğer istenirse insan için daha büyük zenginlik ve güçlülüklerin de olabileceği inancını bilimden alır. Fakat bunun yanında da, nasıl ki bir türün biyolojik evrimindeki ilk “seçim” bütün soy sopunun geleceğini bağlayabildiyse, başlangıçtaki bir bilimsel uygulamanın bilinçsiz seçimi de kültürün evrimini tek yönlü bir yola çevirdi; öyle bir yol ki,19. yy ilericiliği, bunun şaşmaz biçimde insanlığın olağanüstü gelişmesine götürdüğünü düşünüyordu; oysa bugün önümüzde bir cehennem çukuru açıldığını görüyoruz. Modern toplumlar, bilimin kendilerine sağladığı zenginlik ve güçleri aldılar, fakat yine bilimin en derin anlamlı bildirisini almadılar, belki işitmediler bile. Bildirinin istediği: Yeni ve tek bir bilgi kaynağı tanımı, törel temellerin toptan gözden geçirilmesi, canlıcı gelenekten tam bir kopma, “eski bağlaşım” ın kesinlikle bırakılıp yeni bir anlaşmaya gidilmesi zorunluluğunun kabulü. Bilimden aldıkları bütün güçlerle donanmış olarak bütün zenginliklerden yararlanan bu toplumlar, o bilimin temelden yıktığı değer sistemlerine göre yaşamak, çocuklarına onları öğretmek istiyorlar. Bizden önce hiçbir toplum böyle bir acı çekmedi. İlkel kültürlerde de, klasiklerde de, bilgilerle değerlerin kaynakları canlıcı gelenek içinde kaynaşmıştır. tarihte ilk kez uygarlık, bir yandan değerlerini korumak için canlıcı geleneğe umutsuzca bağlı kalıp, bir yandan da bir bilgi ve doğru kaynağı olarak ona sırt çevirmeye ve kendini biçimlendirmeye çalışıyor.Batı’nın “özgürlükçü” toplumlarının, kendi töre kaynakları olarak bugün de yarım ağızla öğrettikleri şeyler, Yahudi-Hıristiyan geleneğinin, bilimci ilericiliğin, insanın “doğal” haklarına inanmanın ve yaratıcı pragmacılığın tiksindirici bir karışımıdır. Marksist toplumlar da sürekli olarak, maddeci ve diyalektik bir tarih dini öğretiyorlar; görünüşte özgürlükçülerinkine göre daha sağlam bir çerçeve, fakat belki de bugüne dek ona gücünü vermiş olan esnemezlik yüzünden; ötekinden (s: 150) daha da çürük. Ne olursa olsun, canlıcılık içinde kök salmış bu sistemlerin hepsi nesnel bilginin dışında, doğrudan dışındadırlar; saygı duymadan ve hizmet etmeden kullanmak istedikleri bilime kesinlikle karşıdırlar .kopma öylesine büyük, yalan öylesine açıktır ki, bu durum, biraz kültürü olan, biraz düşünüebilen ve her türden yaratmanın kaynağındaki törel bunalımı duyabilen herkesin vicdanına saplanmakta ve acı vermektedir. Bu acıyı çekenler, insanlar arasında, toplumun ve kültürün, evrim için izleyecekleri yolun sorumluluğunu duyan ya da duyacak olanlardır. Modern ruhun hastalığı, törel ve toplumsal varlığın kökündeki bu yalandır. Bugün bilimsel kültür karşısında pek çok kimsede, kin değilse bile korku, daha doğrusu yabancılaşma duygusu uyandıran şey, az çok bulanık biçimde tanılanmış olan bu hastalıktır.Çokluk kızgınlık, bilimin teknolojik alt ürünlerine, bombalara; doğanın yıkımına, nüfustan gelen tendide yönelik görünür.Doğal olarak, teknolojinin bilim olmadığı, bir yandan da atom gücünün kullanılmasının insanlığın yaşaması için vazgeçilmez duruma geleceği türünden bir yanıt bulmak kolaydır; doğanın yıkımının, teknolojinin ileri gittiğini değil yetersiszliğini gösterdiği söylenebilir; nüfus patlaması her yıl milyonlarca çocuğun ölümden kurtarılmasının sonucu olduğuna göre, çocukları yeniden ölüme mi bırakmalı, diye sorulabilir. Bunlar, hastalığın belirtileriyle nedenlerini birbirine karıştıran yüzeysel söylevlerdir. karşı çıkma, gerçekte, bilimin esas iletisinedir. korku, günah korkusudur: Kutsal değerleri kirletme korkusu, haklı bir korku. Bilimin değerlere saldırdığı doğrudur. Bunu doğrudan yapmaz, çünkü yargoıç değildir ve onları görmemesi gerekir : Fakat Avusturalya yerlilerinden diyalektik maddecilere dek hepsinde, canlıcı geleneğin, değerleri, töreleri, ödevleri, hakları ve yasakları üzerine oturttuğu mitik ya da felsefi bireyoluşları yıkar. İnsan bu iletiyi bütün anlamıyla kabul ediyorsa, demek binlerce yıllık düşündün iuyanmış ve kendi mutlak yalnızlığı, kökten yabancılığıyla karşı karşıya gelimştir. Artık bir çingene gibi, içinde yaşadığı evrenin bir kıyısında bulunduğunu bilir: müziği karşısında sağır, umutlarına da, acılarına da, suçlarına da ilgisiz bir evren. O zaman da suçu kim tanımlayacak? İyiyi kötüden kim ayıracak? Bütün geleneksel sistemler töreye ve değerleri insanın erimi dışında tutmuşlardır. Değerler insanın değildi: Onlar vardılar ve insana egemendiler. Fakat insan, o değerlerin de, onlara egemen olanın da kendisi olduğunu öğrenince, şimdi de onları, evrenin (s:151) duygusuz boşluğu içinde eriyip dağılmış görüyor. İşte o zaman modern insan, yalnız cisimler değil ruhun kendisi üzerindeki korkunç yıkım gücünü de artık öğrenmiş olduğu bilime dönüyor, daha doğrusu ona karşı çıkıyor. *** Nereye başvurmalı? Nesnel doğru ile değerler kuramının birbirine yabancı, birinden ötekine geçilemeyen iki alan olduğunu bir kez ve kesin olarak kabul mü etmeli? Yazar olsun, filozof olsun, hatta bilim adamı olsun, modern düşünürlerin büyük bölümünün tutumu budur: Ben bu tutumun insanların büyük bölümündeki iç daralmasını besleyip artıracağına, bu yüzden deo onlar için kabul edilmmez olduğuna inanmakla kalmıyorum, aynı zamanda iki önemli açıdan bunu mutlak olarak yanlış buluyorum: -Öncelikle, değerler ile bilginin, gerek eylem, gerekse sylemde, her zaman ve mutlaka birbirine bağlı oluşu. - Sonra ve özellikle de, “doğru” bilginin tanımının, son çözümlemede, etik düzeyde bir koyuta dayanması yüzünden. Bu iki noktadan her biri birer kısa açıklama ister. Etik ile bilgi, eylemde ve eylem yoluyla, kaçınılmaz biçimde birbirine bağlıdır: Eylem, bilgi ile değerleri birlikte ortaya sürer ya da sorguya çeker. her eylem bir etiği anlatır, belli değerlere yarar ya da zarar verir, bir değerler seçimi yapar ya da öyle görünür. Öte yandan, her eylemde bir bilginin bulunması zorunlu görünür ve buna karşı eylem de bilginin iki kaynağından biridir. Bir canlıcı sistemde, etik ile bilginin birbirine karışması çatışma yaratmaz, çünkü canlıcılık bu iki kategori arasındaki her türlü kökten ayırımı ortadan kaldırır, onları aynı gerçeğin iki görünüşü sayar. İnsanın “doğal” sayılan “hak”ları üzerine kurulmuş bir toplumsal etik düşüncesi bu tutumu yansıtır ve bu tutum Marksizmin getirdiği moralin tanımlanması girişimlerinde, hem de çok daha sistemli ve vurgulanmış biçimde ortaya çıkar. Nesnellik koyutunun, bilginin doğruluğunun zorunlu koşulu olduğu bir kez kabul edildiğide, doğrunun kendisinin aranmasında vazgeçilmez olan kökten bir ayırımı, etik alanıyla bilgi alanı arasına yerleşmiş olur. Bilginin kendisi ("epistemolojik değer” dışında) her değer yargısının dışındadır, buna karşı etik, özünde öznel olduğuna göre, bilgi alanının her zaman dışında kalır.(s:152) Bilim son aşamada, bir belit (axiome) olarak konmuş olan bu kökten ayırım yaratmıştır. Burada belirtmekten kendimi alamıyorum, eğer kültür tarihinde biricik olan bu olay, başka bir uygarlıkta değil de Hıristiyan batıda ortaya çıkmışsa; bu belki de bir bölümüyle, kilisenin kutsal alan ile dindışı alan arasındaki ayırımı kabul etmiş olmasındandır. Bu ayırımı yalnızca bilime (dinsel alan sınırı dışında kalarak) kendi yolunu arama olanağı vermekle kalmıyor, düşünceyi, nesnellik ilkesinin ortaya koyduğu çokdaha kökten bir ayrılık için de haırlamış oluyordu. Batılılar kimi dinlerde dinsel ile dindışı arasında bir ayırımı bulunmayışını, bulunamayacağını anlamakta güçlük çekerler. Hinduizmde her şey dinsel alanda kalır; hatta “dindışı” kavramı anlaşılmaz bir şeydir. Bunları ayıraç içinde söylemiştik, konumuza dönelim. Nesnellik koyutu, “eski bağlaşım” ın yıkılışını belirterek, aynı zamanda bilgi yargılarıyla değer yargıları arasındaki her türlü karışıklığı da önlüyor.Fakat geride yine de bu iki kategorinin, söylem de içinde olmak üzere eylemdeki kaçınılmaz birliği kalıyor. İlkeden ayrılmamak için, her türlü söylemin (ya da eylemin) yalnızca, birleştirdiği iki kategorinin ayırımını koruyup açıklaması durumunda ya da ölçüde, anlamlı ya da gerçeğe uygun olduğunu kabul edeceğiz.Böyle tanımlandığında, gerçeğe uygunluk kavramı, etik ile bilginin örtüştükleri ortak alan oluyor; burada değerlerle gerçeklik, birlikte fakat kaynaşmamış olarak, bu sesi duyabilecek dikkatli insana bütün anlamlarını açıklar. Buna karşı, iki kategorinin karışıp kaynaştığı gerçeğe uymayan söylem, en zararlı anlamsızlıkla, bilinçsiz de olsa, en büyük yalandan başka bir yere ulaştırmaz. Görülüyor ki, bu tehlikeli karışımın en sürekli ve en sistemli uygulama alanı ("söylem”i Descartesçı anlamında alarak) “siyasal” söylemdir. Bu yalnız meslekten politikacıların durumu da değildir. Bilim adamaları da, kendi alanları dışında, değerler kategorisiyle bilgi kategorisi arasındaki ayırımı görmekte tehlikeli bir yetersizlik gösterirler. Fakat bu da başka bir ayraçtı. Bilginin kaynağına dönelim. Demiştik ki, canlıcılık, bilgi önermeleriyle değer yargıları arasında bir ayırma yapmak istemez, ayrıca yapamaz da; çünkü Evren’de ne denli özenle gizlenmiş olursa olsun bir amaç bulunduğu kabul edildiğinde böyle bir ayırmanın anlamı kalmaz. nesnel bir sistemdeyse tersine, bilgiyle değerler arasındaki her kaynaşma yasaklanmıştır.(s: 153)Fakat ( bu en önemli noktadır; bilgiyle değerlerin mantıksal olarak kökten bağlantılı olduğu sorunu) b u yasaklama, nesnel bilgiyi kuran bu “ilk buyruk”, kendisi nesnel değildir, olamaz da: Bu bir ahlak kuralı, bir disiplindir. Gerçek bilgi değerleri tanımaz; fakat gerçek bilgiyi kurmak için bir yargı, daha doğrusu, bir değer beliti(axiome) gerekir. Açıktır ki, nesnellik koyutunu doğru bilginin koşulu olarak almak, bir bilgi yargısı değil, bir etik seçimdir, çünkü koyutun kendisine göre bu yargıcılı (arbitral) seçimden önce doğru bilgi bulunamaz.. Nesnellik koyutu, bilginin yasasını belirlemek üzere, bir değer tanımlıyor ve bu değer nesnel bilginin kendisidir. demek nesnellik koyutunu kabul etmek, bir etiğin, yani bilgi etiğinin, temel önermesini ortaya koymak oluyor. Bilgi etiğinde, bilgiyi kuran, bir ilksel değerin etik seçimidir. Onun, hepsi de insanlarca kabul erdillmesi gereken, içkin, dinsel ya da “doğal” bilgi üzerinde kurulduğu savında olan canlıcı etikten kökten ayrıldığı nokta buradadır.Bilgi etiği insana kendini kabul ettirmez, tersine, onu her söylemin ya da her eylemin gerçeğe uygunluğunun belitsel koşulu yaparak kendine kabul ettiren insandır. Discous de la Methode bir kuralcı epistemoloji önerir, ancak herşeyden önce onu bir kez de bir moral düşünme ve meditasyon olarak okumak gerek. Gerçeğe uygun söylem ise bilginin temelidir, insanlara büyük güçler sağlar ve bu güçler günümüz insanını hem zenginleştirip hem de tehdit eder, ona özgürlük sağladığı kadar tutsaklık da getirebilir. Bilimle örülmüş olan ve onun ürünleriyle yaşayan modern toplumlar, aşşırı ilaçtan zehirlenen birisi gibi onun tutsağı olmuşlardır. Maddi güçleri, bilginin temelindeki bu etikten, ahlaki zayıflıkları ise yine de başvurmaktan çekinmedikleri, fakat bilginin bozmuş olduğu değer sistemlerinden gelir. Bu çatışma öldürücüdür. Ayaklarımızın dibinde açıldığını gördüğümüz uçurumun nedeni budur. Modern dünyanın yaratıcısı olan bilgi etiği, o dünya ile uyuşabilecek, kavranmış ve kabul edilmiş duruma geldiğinde de onun evrimine yön verebilecek tek etiktir. *** Kavranmış ve kabul edilmiş dedik. Buna olanak var mı? Eğer yalnızlık kaygısı ve zolayıcı bir toptan açıklmama gerekisnimi, benim sandığım gibi doğuştansa; çağların derinliklerinden gelen bu kalıt yalnız kültürel değil, doğal olarak kalıtımsalsa; bu çetin, soyut ve (Raslantı ve Zorunluluk, s: 154) gururlu etik, kaygıyı yok edebilir, istekleri karşılayabilir mi? Bilemem.Fakat herşeye karşın büsbütün de olanaksız olmadığı düşünülemez mi? İnsanda, bilgi etiğinin sağlayamadığı bir “açıklama”dan da öte, belki bir aşma, bir üstünlük gereksinimi de vardır. Ruhlarda her zaman yaşayan büyük toplumcu düşün gücü bunun tanığı gibi görünüyor. Hiçbir değer sistemi, gereektiğinde uğruna kendini vermesini doğru gösterecek biçimde bireyi aşan bir ülkü önermedikçe, gerçek bir etik oluşturduğunu öne süremez. Bilgi etiği, doğrudan tutkusunun yüksekliği nedeniyle, belki de bu aşma gereksinimini karşılayabilir. Aşkın bir değer olarak doğru bilgiyi tanımlar ve insana, artık onu kullanmayıp, özgür ve bilinçlmi bir seçimle ona hizmet etmeyi önerir. Nedir ki bu da bir insancılıktır(humanisme), çünkü insana, bu aşkınlığın yaratıcısı ve koruyucusu olarak saygı duyar. Bilgi etiği bir anlamda da “etiğin bilgisi” dir, yani tutkuların, dileklerin ve biyolojik varlığın sınırlarının bilgisi: İnsanın içinde, saçma olmasa da olağandışı ve salt bu olağadışılığından dolayı değeril olan hayvanı görür; öyle bir hayvan ki, dirimyuvarı ve düşünceler dünyası gibi iki alanda birden yaşadığı için, einsan sevgisiyle birlikte sanat ve şiirde kendini gösteren bu acılı ikiliğin hem işkencesi altında hem de zenginliği içindedir. Canlıcı sistemlerin hepsi de, tersine, biyolojik insanın görmezden gelinmesini, alçaltılması ya da bastırılmasını, onun hayvanal koşullarına bağlı kimi özelliklerinden tiksinme ve korku duyulmasını az çok yeğlemişlerdir.Buna karşı bilgi etiği, insanı, yerine göre ona egemen olmayı bilmek koşuluyla, bu kalıta saygı gösterip onu kabul etmeye özendirir: İnsanın en yüksek niteliklerine, özgeciliğe, yüce gönüllülüğe ve yaratıcı tutkuya gelince, bilgi etiği bunların hem toplumsal biyolojik kaynaklaranı bilir hem de kendi tanımladığı ülküye yararlı aşkın değerlerini kabul eder. **** Sonuç olarak bilgi etiği benim gözümde, gerçek bir toplumculuğun(sosyalizm) üzerine urulabileceği hem ussal hem de bilinçili olarak ülkücü tek tutumdur. 19. yy’ın bu büyük düşü genç ruhlarda, acı veren bir yoğunlukla yaşamaktadır. Acı vericiliği, bu ülkünün uğradığı ihanetler ve kendi adına işlenen cinayetler yüzündendir. Bu derin özlemin, felsefi öğretisini canlıcı bir (Raslantı ve Zorunluluk, s: 155) ideolojiiçinde bulması acıklı, ancak belki de kaçınılmazdır. Diyalektik maddecilik üzerine kurulan tarihsel kehanetçiliğin, daha doğşundan büyük tehditlerle dolu olduğunu görmek kolaydı, nitekim bunlar gerçekleşmiştir. Diyalektik maddecilik, bütün öteki canlıcıklarından da daha çok, değer ve bilgi kategorilerinin birbiriyle karıştırılmasına dayanmaktadır. Onun, temelden gerçekdışı bir söylem içinde, yokluğa düşmek istemeyen her insanın, önünde boyun eğmekten başka yapacak ya da başvuracak bir şeyinin bulunmadığı tarih yasalarını “bilimsel” olarak kurmuş olduğunu ileri sürebilmesinin nedeni bu karışıklıktır. öLdürücü olmadığı zaman çocukça olan bu yasalardan kesinlikle kurtulmak gerek. Gerçeğe uygun bur toplumculuğun, yandaşlarının ruhuna kök salmış olduğunu savunduğu, bilimin alay konusu ve özünde gerçekdışı olan bir ideoloji üzerine kurulması olanağı var mı? topluculuğun tek umudu, bir yüzyıldanberi kendine egemen olan ideolojinin “düzeltilmesinde” (revizyonunda) değil, bu ideolojinin toptan bırakılmasındadır. Bu durumda gerçekten “bilimsel” bir toplumcu hümanizma, doğrunun kaynağını ve ahlakını eğer bilginin kendisinin kaynaklarında, bilgiyi özgür bir seçimle bütün öteki değerlerin ölçüsü ve güvencesi olarak en büyük değer yapan etikte değilse nerede bulabilir? Bu etiğin ahlaksal sorumluluğu, doğrudan bu beltisel seçimin özgürlüğüne dayanır. toplumsal vi siyasal kurumların temeli ve bu nedenle de onların gerçeğe uygunluğunun ölçüsü olarak, yalnızca bilgi etiği gerçek bir toplumculuğa götürebilir. düşüncenin, bilginin ve yaratıcılığın aşkın cennetinin savunulmasına, genişletilmesine ve zenginleştirilmesine adanmış kurumları o kabul ettirir. İnsan bu cennette oturu. ve canlıcığını hem yalancı tutsaklıklarından hem de maddi baskılarından gitgide kurtularak, kendisine, o cennetin hem uyruğu hem de yaratıcısı diye en değerli ve en biricik özünde hizmet eden kurumların koruyuculuğunda, sonunda gerçeğe uygun olarak yaşayabilir. Bu belki de bir ütopyadır. Fakat tutarsız bir düşde değildir. Bu, bütün gücünü mantıksal tuturlığından alan bir düşüncedir. Bu, gerçeği araşyışın zorunlu olarak varacağı sonuçtur. Eski bağlaşma çözüldü; insan artık bir rastlantıyla içine düştüğü bu evrenin duygusuz enginliği içinde yalnız olduğunu biliyor. Yazgısı gibi görevi de bir yerde yazılı değildir. Bir yanda cennet (krallık), bir yanda cehennem (karanlıklar): Seçmek kendine kalmış.”(Kitap bu satırlarla bitiyor) (J.Monod,Raslantı ve Zorunluluk s:143-156)

http://www.biyologlar.com/evrim-ve-termodinamigin-ikinci-yasasi

IMSI Nedir?

Intrasitoplazmik morfolojiye göre seçilmiş sperm injeksiyonu (IMSI); konvansiyonel IVF mikroskopları ile karşılaştırıldığında özel büyütme teknikleri kullanarak spermlerin incelemesine imkan sağlayan bir yöntemdir. Bu yöntemde, kullanılan büyütmeler 6000 ve üzerine çıkarak morfolojik olarak en iyi spermlerin seçilmesine imkan sağlamaktadır. Bu gelişmiş yöntem sayesinde sperm hücresinde bulunan ve kromatin stabilizasyonunu bozduğu bilinen vakuol (etrafı zarla çevrili boşluklar) gibi bazı hücre içi yapıların tespit edilmesi mümkün hale gelmektedir. Bu defektleri göstermeyen ya da en az defekt gösteren spermler ile ICSI (mikroenjeksiyon) yapılmakta, implantasyon ve gebelik oranları ise artmaktadır. Spermin embriyo gelişimine katkısı insanda iki ya da üçüncü günden sonra artmaktadır. Çünkü embriyo genomu yani sperm ve yumurtanın birleşmesiyle oluşan yeni genetik yapı bu dönemden sonra tam olarak faaliyete geçer. Genomun sağlıklı çalışmasının dolaylı bir göstergesi embriyonun blastosist evresine kadar yaşamını sürdürmesidir. Dolayısıyla IMSI yöntemi ile seçilen ve kromatinin daha stabilize olduğu düşünülen embriyoların blastosist evresine ulaşma oranlarının, IMSI kullanılmadan seçilen spermlerle oluşturulan embriyolara göre daha yüksek olduğu gösterilmiştir.

http://www.biyologlar.com/imsi-nedir

Umudun Genleri

Umudun Genleri, Tunus asıllı Fransız bilimci Daniel Cohen'in(1951-...) kitabının adı. Bir bilimadamının hoş anılarını ve genlerin umudunu açıklayan bu kitaptan ilginç bölümler aktaracağım.Daniel Cohen,1978'den itibaren Profesör Jean Dausset(Nobel,1980) ile birlikte çalışmaya başladı.Daniel Cohen, insanın genetik yap-bozununun ortaya çıkarılma serüvenine katılmış ve bu serüveni bize hoş bir dille anlatıyor. Yeşim Küey'in,çok başarılı bir şekilde Türçe'ye kazandırdığı kitabı,Kesit Yayıncılık yayımlamıştır. Bir Bilim Adamının Anıları :Daniel Cohen Jean Dausset, 1960'lı yıllarda, tüm hücrelerimizin yüzeyinde varolan proteinleri kodlayan genler bütününü keşfetmişti. O zamanlar bu proteinlerin rolü oldukça gizemliydi. Dausset ’nin çalışmaları organ naklini sağladı ve onun sayesinde milyonlarca yaşam kurtarıldı halen de kurtarılıyor... Ben, Nobel Ödülü’nü almasından (1980) bir yıl önce yoluma onunla devam etmeye karar vermiştim. O sıralarda bunun nedenlerini çözümlemeyi hiç düşünmediysem de herhalde çok iyi gerekçelerim vardı. İMKANSIZ denen şey, beni tam da çok heyecanlandıran şeydi. Ben kuşkucuların, fazlasıyla sakınımlı olanların ve bıkkınların düşüncelerinin iflas etmiş olmasından kuşkulanıyordum. Elbette Jean Dausset’nin durumu kesinlikle bu değildi! Benim onda asıl değer verdiğim şey, başkalarının eleştirdikleri şeydi. Düşünüş biçimi rahatsız ediyordu O sıralarda, onu bir naif, bir hayalci, bir garip olarak görüyorlardı. Jean Dausset, klasik düşünce biçimiyle hiç ilgisi olmayan bir düşünce biçimine sahiptir. Onun akıl yürütmeleri alışılmış mantık yollarını izlemez. Yüzeyde görünmediği için bazılarının “yavaş” bulduğu, kendine özgü bir düşünme ritmi vardır. Bunun nedeni, Dausset’nin etkilemek için uğraşmamasıdır. O acele etmemeyi ve sorunların derinlerine inmeyi sever. karşısındakini asla çürütülemez kanıtların yığını altında ezmez. Konuya beklenen yerinden girerek bir mantık çerçevesinde ilerlemek yerine, o, sorunları bir başka yandan ele alır. Bu, çalışma arkadaşlarının ve meslektaşlarının düşünmediği bir yandır. Sorunu bir köşesinden yakalar, sorunlu konunun içine sakince yerleşir ve kafasında, alışılmış düşünce sistemlerinin yolundan gitmeyen bir kavrayış şeması kurar. Kimi zaman şaşırtıcıdır. Size, Kutsal Kitap’takiler kadar basit görünen bir sorunda kilitlenir. Herkesin anlayabileceği ve anladığı bu sorunu, o, anlamaz. Açıklarsınız. Yine anlamaz. tıpkı bir çocuk gibi! Ve sonra, o anlamaya çalışırken bir de bakarsınız ki, sorunu bütünüyle farklı bir biçimde aydınlatmış. konuya yakın olanlar, uzmanlar, böylece hata yaptıklarını anlarlar. Meğer yanlış yoldaymışlar, sorunun temelini görmemişler. O, görü sahibidir. Tümüyle. Onunla tartışan biri, görüşlerini ne kadar dirençle savunursa savunsun, bu özgün kafanın sorunlar her zaman derinlemesine doğru bir tarzda yaklaştığını kabul etmekten kendini alamaz. Onunla aynı düşüncede olmasanız, onunkilerden farklı seçimler yapsanız da bu böyledir. Üstelik, ondaki mizah duygusu yaşama sevinci ve isteği bulaşıcıdır. Onu görmek ve tanımak gerekir. Neşe saçan bir adamdır. Bu estet, bir modern resim tutkunudur. Her şey onun ilgilendirir her şey onun memnun eder. En olağanüstü yanı da tartışma ve düşünce alışverişindeki rahatlığıdır. Jean Dausset mandarinlerin, kendilerin ezip geçmesinler diye çevresine düşünce sahibi olmayanları toplayan büyük patronların tam tersidir. Onun tutumu daima bunun karşıtı olmuştur. Asla kimseyi engellemez. Birinin bir düşüncesi mi var? Onunla birlikte bunu çözümler: “Tamam...Çok iyi..” Güvenir. Ve özellikle de gece demeden, pazar günü demeden, her zaman sizinle birlikte düşünür. Onun hoşuna giden şey budur. Çevresinde düşünce sahibi insanların olmasına gereksinim duyar. Bu onun düşüncelerini zenginleştirir. Aksi takdirde, nasıl “eğlenebilir ki”? Başka konularda olduğu gibi araştırmada da gerçek mutluluklar yalnız yaşanmaz. Aslında, bir büyük patronun, bir gence uyan tutuma sahip olması, hiç de kolay değildir. Sorun, gencin düşünce üretebilmesi için ne yapmak gerektiğini bilmek değil ( böyle şeyler siparişle olmaz) ama daha çok, onun düşüncelerini yansıtması için nasıl davranılacağını bilmektir. Dausset, iş arkadaşların öne çıkarmasını bilir. Asla onların yetkinliklerinden kuşkulanmaz. tersine! “Onu yetiştiren benim, her şeyini bana borçlu... “ biçimindeki bir söylem ona tamamen yabancıdır. Kafasının açıklığı, ona araştırmacıları yönetmede eşsiz bir yaklaşım kazandırır. Onun yaklaşım tarzını anlamadan da kendisinden yararlanmış olabilirdim. Bu tarzı, çözümlenmesinin önemini görecek kadar kavramış ve örnek alabilmiş olmaktan dolayı çok mutluyum. Bizler birbirimizden çok farklıyız. ama ben, kendi öğrencilerime ve kendi ekip üyelerime karşı gösterdiğim belli bir davranış tarzını ona borçluyum. son derece etkili bir tarz. 1979. Onun ekibinde, bağışıklık genetiğine alışarak geçirdiğim bir yıl. Kalıtımın kimyasal desteğini temsil eden, kromozomlarımızı ve genlerimiz oluşturan uzun DNA molekülünü kullanma teknikleriyle birlikte, moleküler biyolojide bir dönüm noktası belirmeye başlıyordu.(s: 23-25) Belli bir anda, bilimcilerden biri, dikkatini, yeni bir yol açabilecek küçük bir şeye yöneltir. Gerçekten yeni düşüncelere gelince, bunlar son derece enderdir. İnsan bunlardan birini bulduğunu sandığında, olağanüstü bir şeylere el atmış olduğunu umduğunda, inceleme ve çözümlemelerden sonra, aynı alanda on kişinin daha çalıştığını ya da aynı şeyi çok önceden düşündüklerini fark eder! O halde sorun, varsayımını sürüncemede bırakmamak, onu deneysel olarak kanıtlamaktadır. Varsayımını doğrulayan, öne geçer. Elbette o her şeyi alt üstü eden düşüncelere sahip biri de çıkabilir, tıpkı Jean Dausset’de olduğu gibi. Ama bu pek nadirdir. Binde bir, bir araştırmacı, kimi kez bir deha özelliği olan, tamamen kendine ait bir esine, bilimde nitel bir sıçrama yaptıracak bir buluşa sahiptir. Buna da ancak on yılda bir rastlanır, rastlanabilirse. Araştırmacının bugünkü üstünlüğü, kafasındaki fikirlerden çok, bunları gerçekleştirmek için ortaya koyduğu yeteneğe .. ve zorunlu araçları bir araya getirmek üzere sürekli dilencilik yapmaya harcadığı enerjiye, sonra da düşüncelerini kanıtlamak için sergilediği yaratıcılığa dayanır. Yeniliklerin çoğunlukla teknolojik olmasının nedeni budur. Bu bir yana, Jean Dausset, DNA üzerinde çalışma önerisine ne kadar olumlu karşıladıysa, ekibinin çoğunluğu da bir o kadar karşıydı. Esasen Cohen (yazarımız), bu toy delikanlı, moleküler genetik konusunda ne biliyordu ki? Neredeyse hiçbir şey! İşin kötüsü bu gerçekten doğruydu.(s:28)..İnsanın Jean Dausset gibi bir patronu olmasının üstünlüğü, onun hiçbir yolu araştırma dışında tutmamasıydı; ister genç ister çok genç olsun, yeter ki, kanıtları olan ve bunlara karşı biraz heyecanla yaklaşan biri çıksın. Bana gelince, benden daha deneyimli olduklarını söyleme gereken arkadaşlarım tarafından pek de iyi gözle bakılmıyordum. Kabul etmeliyim ki, dayanılmaz, tam anlamıyla çekilmez bir kibir içindeydim. Ama bir genç, kesinlikle doğru olduğu önsezisiyle iz sürerken ve deneyimsizlik ona kendinden kıdemlilerin karşı çıkmalarına aldırmama cesaret ve küstahlığı verirken, ister istemez çekilmezdir. Ve ayrıca, o, her zaman bilimsel itirazlarla değil, ama öncelikler ve kazanılmış konumlarla da karşılaştığı duygusuna sahipse, kendine nefret ettirmekten belli bir haz da alır. Gerçekte, ünlü bile olsa, hiçbir araştırmacı kendinden daha genç olanların itirazlarından korunamaz. Eğer gençlerle arasında sorun yoksa ne ala. Ama ilk anlaşmazlık patlak verir vermez, kendi kendini, hemen sorgulama ve ısrarla haklı olduğunu düşünmekten vazgeçme anı gelmiş demektir. Sonuca bağlayıp karar vermezden önce, çoğu zaman kendi kendime, benim yerimde Jean Dausset gibi biri olsa ne yapardı diye sorarım. Onun da Mendes France, Robert Debre ya da Jean Bernard’ı anma alışkanlığı vardı. Herkesin kendi başvuru kaynakları var; ama miras da budur işte. Üstelik bilimcilerin dünyası da kutsal değildir. Her yerde olduğu gibi orada da, neden orada olduklarını unutmuş insanlar vardır; bilimle gerçekten ilgilenmeyen bir grup profesyonel, kendi nüfuzlarını küçük alanını desteklemek için bilimi kullanır. Alınan sonuçlar, onları iktidar oyunundan ve ünlerini artırmaktan daha az coşkulandırır mali açıdan yeterince doyum olmadığından, hepsi de salt bilim ve insanlık yararına tutkulardan kaynaklanmayan doyumlar peşinde koşarlar. Tanınmış olmak isteyenler de vardır. Yoo ille de toplum tarafından, onları çalıştıranlar ve adlarına çalıştıkları insanlar tarafından değil, ama beş on rakip meslektaş tarafından. Neler yaptıklarını anlayan on kişiden fazla insan olmadığı için böyledir bu! Araştırmacının gündelik davranışında, adının, gerginlik içinde bilimsel yayınlarda kovalanması vardır. Bir kongre sırasında, bir bilimci ne bekler? Neyi kollar? -Benden söz edilecek mi? A, benden alıntı yapıldı! Elbette senden de.. Alıntılanmak bir saplantıdır! Bir yayın mı çıktı? Hemen metnin kaynakçasına saldırılır: -Benden alıntı yapmamış! sonra, bilimsel bir makaledeki isimlerin ve imzalayanların sırası! Geleneksel olarak sonuncu ya da birinci sıra, araştırma yöneticisinindir. Ya ikinci imzayı kim attı, üçüncüyü, sonuncuyu... Bu konuda, araştırmacılar üzerine bir antoloji, bir sosyoloji kitabı yazılabilirdi. Bir küçük alem içindeki toplumsal ürünün dayanağı! En gülüncü de bu tür tanınmışlığın yalnızca geçici olması değil, sonuç olarak gönülsüzce verilmiş olmasıdır. Bir gün sizden alıntı yaparlar, hemen sonra unuturlar, çünkü yarışma süreklidir. Ama böylesi bir didişme içinde insanların özsaygısı yaralanır ve kemirilir. Bundan hiç kimse tümüyle kaçamaz; ama bundan kurtulmayı öğrenmek gerekir. Bütün bunları keşfetmek, beni şaşkına çevirmiş ve çileden çıkarmıştı. Jean Dausset bu tür kaygıların çok üstünde ve uzağındaydı. O, bir yaratıcıdır. Hiç durmadan düşün ve üreten bilimcilerden biridir. Düşüncelerinden birinin çalınması, bu insanlar için pek de önemli değildir. Bu da, onların başkalarına karşı alabildiğince açık olmalarını, gerçek anlamda tartışabilmelerin sağlar. Dausset’ye gelince o, hepimize karşı muhteşem bir iyi niyetlilik içindeydi. Bu tutumundan herkesten çok ben yararlandım ve de aşırı ölçüde yararlandım; ama onun bundan ötürü yakındığını asla duymadım. Her koşulda o bana açık çek verdi. Başka yerlerden gelen iki araştırmacı da bana katılmıştı. Biri, diploma sıvanı geçmek zorunda olan, çok zeki, yirmi beş yaşında bir Venezüellalıydı: Luis Ascano. Diğeri, Howard Cann, Amerikalıydı. Elli beş yaşındaydı ve Amerika Birleşik Devletlerinde sağlam bir üne sahipti... Böylece üçümüz birlikte çalıştık. Bir yıl boyunca. Gece ve gündüz!. Aslında biz çalışmıyorduk. Her akşam gece yarılarına ya da sabahın ikisine dek sözcüğün tam anlamıyla bata çıka gidiyorduk. Moleküler genetiği iyi bilmiyorduk ve onu el yordamıyla öğreniyorduk... Gezip durduk, rasgele yürüdük ve olabilecek bütün hataları yaptık. Laboratuvarımız küçücüktü; üç metreye iki metre. Tezgah üstünde çalışacak yer bulamadığım için, araçlarımı lavobanın içine yerleştirmiştim! İlerlemiyorduk, bunalmış durumdaydık. Oldukça gergin dönemlerden geçiyorduk. Bulduğumuz tek rahatlama anı sabahın birine doğruydu: Saint Louis Hastanesi’nin yakınındaki Belleville’den Tunus usulü sandviç ve kuskus getirtirdik... Bizim hikaye uzadıkça uzuyordu. Aylar geçiyor ve hiç bir şey çıkmıyordu. Sekiz ayın sonunda, bizi bunca uğraştıran konu üzerinde Oxford’da bir kongre oldu: HLA bölgesinin, doğrudan DNA düzeyinde çözümlenmesi mümkün müdür? Biz sonuçlarımızdan söz etmek üzere çağrılmıştık Elimizde hiçbir sonuç yoktu. Kesinlikle hiç. Hiç. Yüze yakın insanın önünde konuşmamız bekleniyordu. ve bizimde söz almak için birbirimizle savaştığımız söylenemezdi. -Howard, sen konuşursun. En deneyimlimiz sensin. -Hayır sen! -Evet ama sen İngilizce konuşuyorsun. Oraya gittiğimizde, sonuçta, konuşması gereken bendim. Niyetlerimiz dışında, sunulacak somut bir şey kesinlikle yoktu. Kongrelerde bazen böyle şeyler olur; ama bu asla çok iyi bir şey değildir elbette. Biz hemen bir taktik geliştirdik. kendimizi kurtarmak üzere, tebliğimizi iptal ettirmek iç kongre başkanına şöyle dedik: -Biliyorsunuz, biz herkesle tartıştık. Onlar sonuçlarımızın hepsini bilmektedir, bunları sunmaya gerçekten de gerek yok... Başkan bize inanma inceliğini gösterdi. Onurumuz, şimdilik kurtulmuştu.” Derken aradan dört ay geçiyor. “İlk makaleyi yazıyoruz. çalışmamız olağanüstü bir yol açıyordu. çünkü biz, HLA sistemindeki çeşitliliğin, mutlak bir kesinlikle DNA düzeyinde ayrıştırılabileceğini ileri sürüyorduk. Makaleyi okuduktan sonra, Dausset yalnızca “müthiş” diye mırıldanmıştı.” “Buluş, genellikle Arşimet’in “Eureka!” sındaki gibi yaşanmaz. Bu, mitolojidir. Gerçekte, bir ekip bazı şeyler bulduğunda, bunların çok da fazla farkında değildir. Sonuç o denli beklenmiştir ki, insanlar ona alışmışlardır. Ortaya konduğu zaman, hanidir bilinmektedir ve kimse şaşırmaz. yalnızca, bir dahaki kongrede lafı gevelemek zorunda kalınmayacağı düşüncesiyle rahatlanır. Yeni sonuç, yalnızca onu beklemeyen kişilere gösterdiğiniz zaman bomba etkisi yapar (eğer yapacaksa). (Danile Cohen, Umudun Genleri, Kesit Yayıncılık-1995 s:28-33) “Bu kitapta anlatılan bilimsel serüvenin temel amacı olan genom nedir? Mümkün olan birçok tanımı vardır. Yalınlaştırmak için, işlevsel bakış açısından, genomun hücrelerin çekirdeğinde içerilen bilişimlerin (informations) bütünü olduğunu söyleyelim. Hücreler bölünür, bu bilişim bilgi hücreden hücreye aktarılır. canlı varlıklar ürere ve bu bilişim kuşaktan kuşağa aktarılır. Yapısal bakış açısından genom, her hücrenin çekirdeğindeki birkaç metrelik DNA’dır. DNA, gerçekten de, bu bilişimin elle tutulabilir, fizik kanıtıdır. Bizim bir yumurta ile bir sperm hücresinin karşılaşmasından doğduğumuzu herkes bilir Genetik, en çok insanlığı ilgilendiren bu ilk perdeyle başlar. İnsanın, evrimin ilerlemesine katkıda bulunması için hazzın işe karışması gerekiyordu. Bu birleşmenin sonucu bir başlangıç hücresidir, annenin karnına büzülmüş, döllenmiş bir yumurta. Bu hücrenin ikiye, dörde, sekize, on altıya.. erkek ya da dişi olarak gebelik sırasında türümüzün biçimini almak üzere bir araya gelecek olan milyarlarcasına bölündüğünü göreceğiz. Çünkü şaşırtıcı olan, bireysel farklılıklarımızı ortaya çıkaran şey olduğu kadar, ayaklarımızla, ellerimizle, duyarlı el ve ayak parmaklarımızla, yüz ifadelerimizle, ağlama ve gülme yetilerimiz ve benzerleriyle, hepimize benzer kılan şeydir. Ontogenez ’in (insanın döllenmiş yumurtadan yetişkin oluncaya kadarki gelişimini tanımlar) bu mucizesinin milyonlarca yıldan beri hep aynı biçimde gerçekleşmesi için, bir şeylerin bu üreyebilirliği YÖNETTİĞ İ Nİ kabul etmektedir. İnsan gibi karmaşık bir canlının her kuşakta aynı biçimde üremesine olanak sağlayan şey, bir programın, yani imgelemimizi oldukça aşabilecek keskinlik ve ustalıktaki büyük bir yönerge bütününün içindedir. Bu program genom ‘dur. Genom, bir bilgisayar disketinin ya da dilerseniz, çok uzun bir manyetik bantın rolünü üstlenmiştir. Daha kesin bin anlatımla, biri babadan gelen sperm hücresi diğeriyse anneden gelen yumurta ile dolu olan ve aynı temel yönergeleri taşıyan bir çift disket ya da bir çift manyetik bant gibi iş görür. Ama şu iyi anlaşılmalıdır: anneden gelen ve örneğin kafamız ve kollarımızla ilgili olan, genomumuzun bir yarısı; babadan gelen ve örneğin kalbimiz ve bacaklarımızla ilgili olanı da diğer yarısı değildir. Hayır. Sahip olduğumuz genomun yönergelerinin tümü de çifttir: kafa için iki program, bacaklar, kollar, kalp vb için ikişer program. Bu da sonuçta, oldukça pratik olan bir şeydir. İki yönergeden biri hata yaptığında ya da kötü yazılmış olduğunda, diğeri bu eksikliği giderir. Böylece, iki benzeşik yönerge aynı zamanda zarar görmedikçe bozukluk genellikle dramatik değildir. Çoğu zaman bir çaresi vardır. Yüz milyonlarca yıldan beri bu tip bir genetik düzenleme kendini kanıtlamıştır(eşeyli üreyen canlılara ait, yaklaşık bir milyar yıl öncesinin kalıntıları bulundu.). Yaşamın güvenilebilirliği yinelemelerden geçer gibi görünmektedir. Birey ölçeğinde bu genom, daha doğrusu, genomun neredeyse birbirinin eşi olan iki kopyası, aslında, organizmadaki bir hücrenin bölünmek üzere olduğu her kez kendini milyarlarca kez çoğaltır. Her hücre, yağlı bir kılıfı olan bir keseden oluşmuştur. Bu kese bir başka kese içerir; bu da çekirdektir. Anne ve babadan gelen her genom örneği hücre çekirdeği içinde tek bir sürekli iplikçik biçiminde değil, genellikle birbirine dolaşmış ve gözle fark edilemeyen iplikçik parçaları yığını halinde bulunur. Açıldıklarında, bu parçalardan her birinin uzunluğu birkaç santim kadardır. En büyüğü en küçüğünden beş kez daha uzundur. İpekten bin kat daha ince olan bu iplikçik parçaları uç uca eklenirse, bir metre elli santim olacaktır( ana ve babadan gelen örnekleri birlikte hesaba katarsak, bunun iki katı). Bu iplikçikler çok basit bir molekül olan DNA’dan oluşur. Bunu upuzun bir inci kolyeye benzetebiliriz: ana ve babadan gelen birer örnek için 3'er milyar inciden, her hücre başına topla 6 milyar. Her inci, “baz “diye adlandırılan bir kimyasal maddeye karşılık gelmektedir. Her biri kendi baş harfi ile gösterilen dört tip baz vardır: A (adenin), T ( timin), C (sitozin) ve G (guanin); bunlar genetik alfabenin dört harfini oluşturur. Bölünme anının hemen öncesinde hücre bir biçimde şişmeye ve hem anneden hem de babadan gelen genetik materyalin tümünü ikileştirmek için gerekli maddeleri yapmaya başlayacaktır. İşte tam bu anda, iplikçik yığınının, insan türünde 23 çifti bulunan ve optik mikroskop atında X şeklinde oldukça iyi görülebilen kromozomlar halinde düzeneğe girdiği görülür. Böylece her bir çiftte, bir kromozom anneden, diğeri babadan gelir. Bireyin organizmasındaki tüm hücreler, başlangıç genomunun, yani ana ve babadan gelen ilk yönergelere uygun olarak, embriyon, cenin, sonra da yetişkin organizma halinde farklılaşacak olan yumurta genomunun iki örneğinin de tam bir kopyasına sahiptirler. Böylece insan, çekirdekleri bu küçük iplikçikleri, yani yalnızca hücresel bölünme öncesinde ayrımsanabilen kromozomları içeren yüz milyarlarca hücreden oluşmuştur. Ve genomun her bir kopyası, gördüğümüz gibi, 3 milyar baz içerir. Birkaç on binlik baz içeren tikel bir parça, o sayıdaki harflerden kurulu bir sözcük oluşturur ve buna gen adı verilir. Bu sözcüklerin bütünüyse programı oluşturur. Bunlar, ileride göreceğimiz gibi, kuralları insan dilindekilere tuhaf bir şekilde yakınlık gösteren bir dilin öğeleridir. Dört harfli bir alfabe için 30 000 karakterli sözcükler Genomun bir örneği yaklaşık yüz bin sözcüğe sahiptir, biz yüz bin gen diyelim. Bunların her birinin kendi benzeri, diğer örnek üzerinde yer almaktadır. A,T,C ve G’den oluşan dört bazlı genetik alfabenin gerçekten de yalnızca dört harfi vardır. Ama yalnızca bu dört harfiyle, bizim 26 harfli alfabemizinki kadar zengin bir sözcük dağarcığı oluşturur. On harfli bir sözcük oluşturmak için kuramsal olarak 26 üzeri on birleşim olanaklıdır. Dört harften ibaret bir alfabeyle on harfli bir sözcük oluşturmak için bu kez yalnızca 4 üzeri 10, yani yaklaşık bir milyon olabilirlik vardır. Ne iyi ki, ne milyarlarca Fransızca sözcük ne de milyarlarca gen var! Doğa gibi kültür de daha makul. Alfabetik yazıya sahip insan dilleri, alfabelerinin birleşim potansiyellerinin tümünü kullanmaktan çok uzaktır. Elimin altındaki Petit Larousse’un, en kısasından en uzununa, içerdiği tüm sözcükler sonuçta yalnızca 83 500 gibi oldukça alçak gönüllü bir sayıya (özel isimler dahil) ulaşıyor! Buna, tekniklere, mesleklere ve argoya ilişkin, kullanımı sınırlı, farklı sözcük dağarcıkları da eklense 200 000 sözcükten fazlasına pek ulaşılmaz. İlginç bir rastlantıyla, genomun sözlüğü de benzer sayıda sözcük içermektedir: uzunluğu birkaç bin ile birkaç milyon karakter arasında değişen,50 000 ile 100 000 arasında gen. Genomun inci dizen oyuncuları her türlü şıkta çok fazla sabır göstermek zorundadırlar. Önemi yok. sonuç ortada.: A,T, C ve G harflerinden oluşan on binlerce bireşimiyle ortaya çıkan genom dili, en azından kendi yarattıklarının dili kadar inceliklidir. Her bir gen, hücrenin yaşamını düzenleyen ve bizim kendisinden sıkça söz edeceğimiz gerçek işçi olan bir molekülün, yani proteinin, üretimini harekete geçirecek olan bir komut verir. Bir insan yapmak için yüz bin gen yeterlidir; becerebildiğimiz milyonlarca şeye kıyasla bu sayı azdır ama besbelli ki yeterlidir. Garip ve onur kırıcı olan şey, farenin ve maymunun da bizimki kadar gene sahip görünmeleridir; hayvanlar dünyasının aşamalı-düzeni (hiyerarşi) içinden yükselen bu nanik, gizinin keşfedilmesini bekliyor. Yazım Hataları ve Hoşgörüleri Genlerin, yani genomun sözcüklerinin yazımı, hiçbir gevşekliğe yer bırakmayan Fransız dili yazımının tersine, bir insandan diğerine hafifçe değişiklik gösterebilir. Ama ne de olsa, genomun örneğini izleyen, daha az bütünlükçü başka diller de vardır. Fransız Akademisi 17. yy’da yazım kurallarını düzenlenmesinden önce Fransız dili de esasen bu durumdaydı... Ama elbette her gevşekliğin sınırları vardır. Esnek olmak için ileti yine de anlaşılır kalmak zorundadır. Genomun kabul edilebilir yazım değişiklikleri vardır;saçlara rengini, yüzlere taşıdıkları ifadeyi, dış görünümlere heybetini... yani yaşamı güzelleştiren bütün o çeşitlilikleri, bu yazım değişiklikleri sağlar. Ve hastalıkların kaynağında bulunan, dramatik sonuçlar doğuran yazım değişiklikleri de vardır. Bu iki tip değişikliğin arasındaki sınır, tıpkı normali patolojikten ayıran sınır gibi bulanık hareketlidir. Genlerin yazılışındaki gerçek yazım yanlışları nelerden oluşur? Diyelim ki bir sözcüğün o 30 000 harfinden biri (bazen bir çoğu), genetik alfabenin diğer üç harfinden biriyle yer değiştirebilir ya da ortadan kaybolabilir ya da çiftleşebilir(merhaba’nın merhapa, merhaba, mehaba olması gibi). Bu, mutasyon olarak adlandırılan şeydir(bunun nasıl ortaya çıktığını göreceğiz) ve sonuçları değişkendir: mutlu, iyi huylu, nötr ya da trajik. Mutasyon, genin kendi anlamını kaybettirecek derecedeyse ileti artık yoktur ya da anlaşılmamıştır. Diyeceksiniz ki sorun değil, genomun diğer örneği üstünde yedek bir genim var. Kuşkusuz. Ama göreceğimiz gibi, bu bazen sonuç vermez, bazen verir. Çoğu kez proteindeki değişikliğin zararlı etkisi yalnızca beslenmeye, yaşam tarzına ya da diğer etkenlere bağlı belli bir ortam içinde görülür. Bir bakıma her şey, yanlış yazılmış, bağlamına göre şu ya da bu ölçüde anlaşılan bir sözcükle karşılaşıldığındaki gibi cereyan eder. Özetlersek, mutasyonlar kimi kez iyi bir sağlıkla uyumlu farklılıklara eşlik ederler ve canlıların olağanüstü çeşitliliği böylece ortaya çıkar. Kimi kez bu mutasyonlar özellikle duyarlılık taşıyan noktaları değiştirirler ve gerçek aksaklıklara, amansız hastalıklara neden olurlar; sonuçta kimi kez de mutasyonlar bir şeyleri değiştirirler ama bu, yalnızca belli ortamlarda hastalık etkenidir ve hastalık, ancak ortam uygun olduğunda ortaya çıkar. Biyologların gelecek kuşakları hiç şüphesiz bu mekanizmanın olağanüstü ustalıklarını ve çevreyle etkileşimlerini inceleme olanağı bulacaklardır. Bugün için, biz hala, neredeyse anlaşılmaz olan ama yine de dört harfli alfabesini bildiğimiz ve ne mutlu ki, sözcüklerinin yaklaşık yüzde 1'in de tanıdığımız bir yabancı dile, yani genomun diline ulaşmak zorundayız. Üstelik, o birkaç bin sözcüğün anlamını da hiç şüphesiz kısmen biliyoruz. Bir genin bir işlevinin tanımlanmış olması, onun yalnızca bir işleve sahip olmasını gerektirmiyor. Ama her şeyden önce daha bu dilin sentaks ve gramerini bilmiyoruz, edebiyatından hiç söz etmeyelim! Yine de şimdiden erişebildiğimiz bir şey var: bu dilin sözcüklerinin belli yazım değişiklikleriyle iyice tanılanmış hastalıklar arasındaki bağlantıları kurup, saptamayı giderek daha iyi öğreniyoruz ve gerçekleştirebiliyoruz. Gerçekten de diyabetten kansere, allerjiden romatizmaya dek neredeyse bütün hastalıklar mutasyonlarla ilişkilidir. Bu hastalıklara yol açan genetik değişikliklerin bilinmesi, hastalıkların mekanizmalarının daha iyi anlaşılmasına, önlenmelerine ve hastaların tedavi edilmelerine olanak sağlayabilecektir. İşte günümüz genetiği için ulaşılabilecek hedef en azından budur. Bu, yalnızca bir başlangıç olabilir. Ama şimdiden çok coşku vericidir. (Daniel Cohen, Umudun Genleri, s:36-42) HAYVAN VE İNSAN KOPYALAMA Organ nakli, doğum kontrolü, büyük ameliyatlar derken genetikçiler, hayvan kopyalamayı da başardı. İskoçya’da Ian Wilmut, Dolly adını verdiği kuzuyu kopyaladı. Sonra Hawai’de fare, Kore’de inek, İskoçya’da domuz kopyalandı.Güney Kore de türü azalan bir kaplan türünü kopyalamaya hazırlanıyor (Hürriyet, 24 Mayıs 1999) “... Bizim (biyologların), hapsedilme tehditini de içeren sayısız ve kesin kuralla dizginlenmesi gereken büyük işadamları olduğumuz söylenir. Tüm bunlar genlerimizi oluşturan DNA’nın olası en kötü şeyleri kışkırtabileceğinin düşünülmesi nedeniyledir. Bu tamamen aptalca; çevremizde beni, DNA’dan daha az ürküten başka bir öğe düşünemiyorum.” James Watson, 1977 “Uyarı profesyonellerinin genetikçilerin uğursuz güçlerini lanetlemeleri için, 1970'li yılların başında, biyologların, DNA rekombinasyon tekniklerini oluşturarak laboratuvarlarında doğayı taklit edebileceklerini keşfetmeleri ve böylece moleküler biyolojiyi kuramsal gettosundan çıkarmaları yetti. Bilimi, özellikle de insanın bilinmesiyle ilgili olduğunda, şeytanlaştırmaya çalışan insanlara daima rastlanır. On beş yıldır, genetikçilerin uluslararası küçük topluluğu, bilimsel perhiz, sakınımlılık, otosansür, kendini sınırlama, erteleme, yanı kısacası, Watson’ın bu bölümün epigrafı olan sözlerini kendisinden aldığım, rasyonalizmin canlandırıcısı Fransız filozof Pierre- Andre Taguieff’in güzel bir biçimde söylediği gibi, araştırmaların gönüllü olarak kesilmesini buyuran bir entellektüel baskıyla karşı karşıyadır. Taguieff’in dediği gibi: Fransız usulü bilim karşıtı vahiycilik, birçok açıdan, 60'lı yılların sonunda ABD’de başlatılan büyük “acemi büyücü” avının küçük ve gecikmiş bir yansımasından başka bir şey değildir. Belki gecikmiş yansıma; ama şu son yıllarda Avrupa’da, şimdi de bizi yüzyıl sonu korkularımızdan kurtarmaya yazgılı, ahlaki uzmanlığını tuhaf bir biçimde biyoloji ve tıbba bakmış tüm bu “etik komiteler”i-de Gaulle’ün deyimiyle bu yeni tür “ıvır zıvır”ı- yaratan, bu gecikmiş yansımadır. Sırası gelmişken, tüm sanayileşmiş ülkelerin bilimsel bütçelerinin çok büyük bölümünü yutan nükleer ve askeri araştırmalar gibi diğer gerçek tehlike ve sapmalar konusunda bu komitelere danışmayı düşünen var mı? Oysa bana, insanlığın gen sağaltımından çok askeri elektronikten kaygı duyması gerekirmiş gibi geliyor. Hiç şüphesiz, bilimin şeytanlaştırılmasındaki bu yeni akım amacına ulaşamıyor; perhize çağrı, doğum kontrolünde olduğu gibi bilimsel kontrol için de zavallı bir yöntemdir. Ama gelin de, Taguieff’in terimleriyle, yalnızca kuşkunun mantığına boyun eğen, kaygan zeminden başka kanıt tanımayan ve sapmaları önleme adına, mutlak tutuculuğun biyoloji sapağına, hatta bilimin totaliter denetimine doğru bizzat sapan yeni lanetçilere laf anlatın. Biyolojideki ilerlemeler ve insanın kendi üzerinde edindiği yeni olanaklar, ahlakçıların hayal güçlerini her zaman çalıştırmıştır. Bazıları bizi, geleceğin doktor Frankenştayn’larının korkunç bir “biyokrasi”si olarak betimlemekten çekinmiyorlar. Sanki gerçek bir saygısızlık olanağı varmış gibi, bizi “insan genomuna ve bütünlüğüne saygı”nın kutsal ilkesiyle tehdit ediyorlar. Böyle bir yaklaşım, bu alandaki ilk sorumsuzun bir takım kopyalama hataları yapmadığı, onlarsız biyolojik evrimin asla olamayacağı “mutasyonlar”a başvurmadığı zamanlar, her döllenmede her zaman farklı yeni bir varlık oluşturan ve “ufak tefek düzeltmeler”le yetinen doğa olduğunu unutmak demektir. Ayrıca, aynı zamanda hekim de olan bir başka filozofun, François Dagognet’nin söylediği gibi, bizim genetik konusundaki kaygımız, tek model olarak, türün üreme engeline takıldığı hayvanlara gönderimde bulunmak gibi bir dar görüşlülüğü yansıtmaktadır. Ama bakış tarzı, karışma ve melezleşmenin sıkça görülen fenomenler haline geldiği bitkisel alan da dahil, canlıların bütününe doğru genişletildiğinde söz konusu tabu ortadan kalkmaktadır. Ve nedeni bellidir: çok eski zamanlardan beri insanlar, bitki türleri üzerinde kasıtlı değiştirmeler uyguladılar. İnsanın canlıya ilişkin mantığı bu yolla sarsıldı. Ve sonra, canlının doğal düzenini kutsallaştırmak niye? Biyolojik yönden, programlanmış olmamaya programlanmış insan, niçin başarısızlıkları da dahil olmak üzere, genetik lotarya karşısında diz çökmek ve ona saygı göstermek zorunda olacaktır kı? Genetik kalıtımıza egemen olmak hiç şüphe yok ki, insanın evriminde yeni bir evreyi işaretleyecektir; buna döneceğim. Bu evrimi bir kabusmuşçasına tasarlamak zorunda değiliz. İnsan genomunun bilinmesiyle ortaya çıkan kaygılar şu soruyla özetlenebilir: -Şimdilik bize yalnızca hastaların iyileştirilmesinin söz konusu olduğunu söylüyorsunuz. Çok iyi. Buna karşı çıkmak zor. Ama, siz genetikçilerin az ya da çok yakın bir gelecekte, insanı kendi kararınıza göre dönüştürme erkine, cüce ya da devlerden, güçlü ya da zayıflardan, üstün zekalı ya da ilkel kölelerden oluşacak “ırklar” yaratma erkine sahip olmayacağınızı bize kim garanti ediyor? Megalomaniniz ya da itaatkarlığınız sonucu, davranış genlerimizle, hatta zeka genlerimizle “oynama” eğilimi duymayacağınızı bize kim söylüyor? Şimdiden “gen nakledilmiş” fareler yapıyorsunuz, “gen nakledilmiş insan” cehennemi ne zaman? Bu kaygılar, insanın genetik kalıtına ilişkin olarak geri, kolaycı ve biyolojik bilgiye dayanmayan bir bakışı yansıtır. Son yirmi beş yıldır moleküler biyolojinin gelişimi, bize genetik rekombinasyon mekanizmalarının ve genlerin dışavurumunun iki şeyi güvence altına aldığını öğretti: insanın sonsuz çeşitliliği ve insan fenotipinin(Dip not:Fenotip, bireyin gelişimi sırasında ve çevresel etkenlerin denetimi altında genotipinin-gen kalıtının- gerçekleşmesine uyan belirgin vasıflarının bütünüdür) bozulamayacak karmaşıklığı. Bu iki biyolojik gerçekten bir parçacık haberdar olan herkes, Jim Watson gibi, hiçbir şeyin üzerinde çalıştığımız o molekülden, yani DNA’dan daha az ürkütücü olmadığı ve bunda yeni bir Pandora kutusu(Dip not: Yunan mitolojsinin güzel Pandora’sı. Prometheus’un tanrı katından çaldığı ateşi getirdiği insanları cezalandırmak için dünyaya gönderilmişti. tanrılar Pandora’ya içinde bütün kötülüklerin bulunduğu bir kutu emanet etmişti. Merakını yenemeyen Pandora kutuyu açtı ve böylece tüm kötülükler dünyaya yayıldı. Biraz da acıyarak, bilimin bu yeni engizisyoncularının kafalarının da evrensel ilk günah mitosu tarafından kurcalandığını düşünüyorum!) görmenin gülünç olacağı sonucuna varacaktır.(236-238) Karmaşık tahrip edilebilir; ama onu kolaylaştırmak, onunla “oynamak “, onu azaltmak istemek hiç de gerçekçi değildir. İnsanlığın genetik olarak tekbiçimlileştirilmesi fantezisi bir tür biyolojik anlamsızlıktır. Bunu istesek bile yapamazdık. İnsanlık, genetik yasaları kendi yararına kullanabilir, kullanabilecektir; ama onları değiştiremeyecektir. Anımsatmak gerekir mi; dönemin yaygın yinelemesine uygun biçimde, “bir üstün ırk”ın ayıklanması yoluyla türün iyileştirilmesi anlamındaki Nazi tipi öjenizm, tam bir fiyasko olmuştur.Psikopat diktatörün sanrıları, genetiğin bilgisine hiçbir şey borçlu değildi. Bu sanrılar, toplama kampları ve gaz odaları aracılığıyla girişilen bir soykırımın sözümona bilimsel doğrulanışından başka bir şey değildi. Ekonomik bunalım ve milliyetçiliklerle her türlü karanlıkçıların tırmanış dönemlerinde, ırkçı ve totaliter tüm ideolojik hortlamaları bıkıp usanmadan ifşa etmek, entellektüellerin ve bilimcilerin görevidir. Ama geçmişin vahşeti geleceğin açılımları karşısında bizi dehşetten donakalmış bir halde bırakmamalı, tabu haline gelmiş sözcükler aracılığıyla hedefimizi şaşırtmamalıdır... En son tıbbi tekniklere başvurarak ağır hastalıkları olmayan bir çocuğa sahip olmak, gebeliği önleyebilmek, çocuk düşürme hakkı, yani iyi anlaşılmıyş öjenizm, kuşkusuz bireyin tümüyle özgür seçimiyle uygulandığında iyi bir şeydir. Biz zengin ülke topluluklarının bu tartışmaları, bizim kendi ülkelerimizde yararlandığımız doğum kontrol sisteminin olanaklarına ulaşmaya çamlışan yoksul ülkelerin kadın ve erkeklerine oldukça şaşırtıcı gelebilecektir... Gerçekte, totaliter rejimlerin normalleştirici fantezilerin çok ötesinde, yüzyılın bu son çeyreğinde biyoloji, insan düşüncesini çeşitlilik ve karmaşıklığın mantığına alıştırmak için hiç şüphesiz en fazla uğraşmış olan bilimdir. Kendimi geleceğin ahlaki sorunlarını çözmek için hiçbir şekilde yetkin görmüyorum. Ben daha çok, gelecek kuşakların neyi kabul edilebilir ya da edilemez sayacaklarını bulmek için o kuşakların kendilerine güvenme eğilimindeyim. Ahlakın kendi değişmezleri vardır; ama bunlar, bilim ve bilgiyle birlikte evrimleşirler. Bugün bilgisizlikle kendimize yasakladığılmız şeylere, belki de yarın, daha iyi bir bilmenin ışığında izin vereceğiz. Okuru rahatlatır mı bilmem; ama genetiğin yasalarına egemen olmanın kaygılanacak fazla bir yanı bulunmadığını, buna karşılık umut verecek çok yanı olduğunu bana düşündüren nedenleri, burada gözden geçirmek isterim. Çeşitliliğin Genetiği Buraya kadar patolojilere yol açan mutasyonları, genomun oyunbozanlık rolünü üstlenenleri gördük. Gerçekten de genom programının en acil hedefi, bizi genetik hastalıklara karşı silahlandırmaktıdr. Ama uzun dönemli hedefi daha temellidir ve biyolojik düzenlenişimizin bütününü daha iyi anlamayı amaçlıyor. kuşaklar boyu biriken mutasyonların hepsi (bu ortalama olarak her 300 bazda bir değişiklik noktası, yani genomun bütününde yaklaşık on milyon polimorf nokta eder) hastalıklara yol açmaz. Çok şükür. Kalıtımla aktarılan bu mutasyonların büyük çoğunluğunun hiçbir kötü sonucu yoktur.(Ek Not:Genomun 3 milyar bazı arasından, ortalama olarak 300 bazdan biri insandan insana değişir. Bunlar mutasyon noktalarıdır.Bu noktalırn herbirinde baz “değişir”; ama yine de, genetik alfabenin yalnızca dört harfi olduğundan, seçim yalnızca dört olasılık arasında yapılır: A,T,C,G. Örneğin A harfi yerinde bir T, bir C, ya da bir G olacaktır. Her bir değişiklik bölgesi için, topluluk içinde en fazla yalnızca dört allel vardır..s:291) Öncelikle, mutasyohlardan çoğu basit bir istatistik olgu sonucu genomun kodlayıcı olmayan bölgelerini (DNA’nın yüzde 90'nından fazlası) etkiledikleri ve uslu uslu sessiz kaldıkları için: gözlemlenebildiği üzere fenotipte kendilerini dışa vurmazlar. Sonra da bu kez asıl genlere (protein kodlayan, DNA dizilerinden yaklaşık yüzde 10'una) düşkün mutasyonların çoğu “nötr” oldukları için... Ya ana babanın alleliyle kodlanan proteinlerle aynı işleve sahip “eş anlamlı” bir protein kodlayan geni değişime uğratırlar. Ya da organizmanın düzgün işleyişinde bir değişiklik yapmaksızın, yalnızca insanların çeşitliliğine yol açan farklı proteinleri kodlarlar. En sonunda, geriye genomu bozan mutasyonlar kalır. Yüz bin genimizi etkileyen yaklaşık bir milyon mutasyon noktası olduğu varsayılabilirken, tek ya da çok etkenli, yaklaşık üç bin genetik hazstalık saptanmıştır. Mutasyonların çeşitlendirici rollerinin, bozucu rollerinden daha ağır bastığı görülüyor. Bozuk kabul edilen genlerin sayısı hesaplanmak istenirse, kafanızda genlerimizin bir milyon ya da yalnızca 997 000 polimorf noktasını gönlünüzce birleştirmeye çalışın [Dip not: Bu sayıları yalnızca büyüklüğü göstermek için veriyorum. Gerçekte her genetik hastalık ille de bir nokta mutasyonuna denk gelmez;ama bir mutasyonlar bileşiminin ya da kromozomların rekombinasyonu sırasında ortaya çıkan kazalıarın sonucu da olabilir.)Genetik rulet düşleyemeyeceğimiz kadar çok fazla sayıda bireysel bileşim sağlar. Biz, şu ya da bu deri rengi ya da başka bir yapısal özelliği sağlayan on kadar özel allele ayrıcalık tanımak isteseydik bile geriye kalan milyonlarca allel sonsuz çeşitliliği güvenceye almaya yetecekti. İnsan türünü tekbiçimlileştirmek hiç de kolay değildir. En fazlası ve biraz kötü bir şansla, bazı çekinik hastalıkları kolaylaştırmayı başaracaktık ki, bu da esasen, çok sınırla bir topluluk içinde kuşaklar boyu uygulanan her endogamide ortaya çıkan bir şeydir ve değişkenliğin, potansiyel mozayikliği de diyebileceğimiz genel kaynağına gerçek bir zarar vermez. Bireysel değişiklikle her türlü genetik akıl yürütmenin başlangıç noktasıdır. Bu temel gözlem verisi Darwin’in ilk esin kaynağı oldu; bu veri olmaksızın onun doğal ayıklanma kuramının hiçbir anlamının olmayacağı çoğu kez unutulur.”En uygun olanın ayıklanması”na gelince, türün ortamın sonsuz çeşitliliğine uyum sağlamasına izin vermesi nedeniyle, Darwin’den sonra ileri sürüldüğünün tersine, çok daha az tekbiçimlileştiricidir. Evet, biz farklı olmaya mecburuz! Birkaç saniye için (daha fazlasına dayanılmaz) tamamen özdeş varlıklarla dolu bir dünya düşlemeye çalışalım! Rahatlayalım. Böyle bir olasılık, bir biyolojik olanaksızlıktır. Sonuçta kendimizi paylamaya, farklılık “hakkı”mızı ileri sürmeye, bizi sağduyuya zorlaması için tüm etik kaynakları harekete geçirmeye hiç gerek yok. Hoşumuza gitsin ya da gitmesin, her birimiz insan türünü aynı büyük izleği üzerindeki farklı birer değişikliğiz. Şu son yirmi otuz yıllık biyolojik araştırmanın en şaşırtıcı keşiflerinden biri (60'lı yıllarda Jean Dausset’nin öncülüğünü yaptığı HLA sisteminin aydınlatılmasıyla), yalnızca protein düzeyinde değil, genlerimiz düzeyinde de söz konusu olduğu anlaşılan bu olağanüstü insani polimorfizmdir. Mutasyonlar ve DNA rekombinasyonları bizim en iyi korumalarımız, normalleştirici heveslerimizin karşısındaki en etkili engellerdir. Farklılığa ve dolaysıyla bireye saygı içinde özgürlük, bundan böyle bir hümanist talepten daha fazla bir şeydir: haklılığını genlerimizde bulmuştur. Genetik kalıtımızın olağanüstü değişkenliğinin keşfi, yalnızca ırk kavramını değil, türe özgü temel özellikler dışındaki biyolojik “norm” kavramını da sonsuza kadar yıktı. Leonardo da Vinci güzelliğin ölçütü olacak bir altın sayı bulunduğuna inanıyordu. Çabalarına rağmen onu asla bulamadı. Çok mükemmel bir nedenden dolayı: ideal norm, bizim basitleştirici zihnimizce yaratılmış bir soyutlamadan başka bir şey değildir. Mükemmellik gibi güzelliğe atfettiğimiz kurallar da bir kültürden diğerine, bir dönemden diğerine, hatta bir bireyden diğerine göre değişir. İnsanın özdeş baskısı yoktur! Kuşkusuz, evrim her yeni türe ait yeni işlevlerin ortaya çıkmasına katkıda bulunur. Ama her türün ne bir ana öbeği ne de modeli vardır. Büyük evrim kuramcılarından biri olan Theeodosius Dobzansky’nin yazdığı gibi, genetik koşullanma yalnızca, tek bir insan doğası değil, ama insan doğaları olduğu anlamına gelir . Norm, norm olmamasıdır. Bu biyolojik gerçek, evrimin mantığını dile getirmekten başka bir şey yapmaz.(S:243) Farklılık, türün devamı için zorunludur. Öğrencilerimle beraberken daima şu düşüncenin üzerinde dururum: hepimiz farklı olduğu için hala buradayız. Aksi halde, ne iz ne de ben olacaktık. Burada olmamı, benim gibi olmamış (bugün de benim gibi olmayan ), ama belki de benim bizzat dayanamayacak olduğum bir saldırıdan sağ kalabilmiş olan ötekine borçluyum. Doğada saf soy yoktur. Olsaydı, hayatta kalamazdı. Laboratuvarda üretilenler, iste hücreler, ister drosofiller (sirke sineği) ya da beyaz fareler söz konusu olsun, özgürlüğün bedelini hemen yaşamlarıyla öderler. Eğer sivri sinekler farklı böcekölrüncülerine karşı şeytansı bir direnç gösteriyorlarsa, bu onların genetik polimorfizmlerinin her defasında bazılarının kendilerini kurtarmalarını, sonra da gelecek yok edici bombardımana kadar büyüyüp çoğalmalarını sağlaması nedeniyledir. Gelecek, dirençli azınlıklarda, marjinallerde ve uyum göstermeyenlerdedir! Buna göre, insan sivri sinekten daha az polimorf değildir. Yoksa, dünyanın bizzat yaratmış olduğu çetrefil karmaşıklıklarına nasıl uyum sağlardı? Bu polimorfizm, elli bin ya da yüz bin yıl önce homo sapiens ’in ilk marifetleri döneminde olduğu gibi, bugün için de doğrudur. küçük avcı-toplayıcı gruplar neden yaşamlarını sürdürebildiler? Tüm erkekler av için uygun bacaklara ve gözlere, tüm kadınlar yenebilecek ot ve taneleri kesin olarak tanıma yeteneğine ve hep birlikte ateşi ya da barutu yeniden icat etme becerisine sahip olmaları nedeniyle mi? Tam olarak böyle değil. Bunu iyi biliyoruz. Her insan grubu, tıpkı bugünkü gibi, miyoplarına, artiritlilerine, keskin gözlülerine ya da koşu şampiyonlarına; yavaş düşünenlerine, hızlı düşünenlerine, liderlerine ve diplomatlarına, melankoliklerine ve neşelilerine, sanatçılarına ve eylem adamlarına, serserilerine ve ahlak hocalarına vb.. sahipti. kısacası her türden ve özellikle de her konumdan insanlar bulunuyordu. Dönemin küçük sürüleri, en azından benim gibi Roy Lewis’in olağanüstü romanı Babamı Niçin Yedim’ e inanırsanız, muhtemelen kendi “tutucular”ına ve “ilerlemeciler”ine bile sahipti. Onların da, Vanya dayı gibi, toplanma çığlığı(s:244) “Ağaçlara Dönüş!” olan kendi tepkicileri ve baba Edouard gibi ateşi icat edip çayırları yaktıktan sonra, “Olanaklar olağanüstü !” diye haykırmaktan geri durmayan dirençli icatçıları vardı. Tarihöncesine dair çalakalem yazılmış bu gülünç yapıtta bilerek başvurulmuş anakronik öğelerin ardında, yazarın derin bir antropolojik gerçekliğe parmak bastığına inanıyorum. Hiç şüphe yok ki, yazarın kendilerine atfettiği bilgece dilin ötesinde, ilkel (ve yine de biyolojik olarak bizim kadar ya da az farkla evrimleşmiş) insanlar, Roy Lewis’in yeniden keşfettiği gibi, bugün bizi bölen davranışlarımızı aratmayan farklılık ve incelikteki davranışlarıyla insani entrika ve gülünçlüklere sahip bir çeşitlilik içindeydiler. Musee de l’Homme’ un son sergilerinden birinin, Hepimiz akrabayız, hepimiz farklıyız şeklindeki güzel başlığını açıklamak gerekirse, biz birbirimize benzeriz ve hepimiz farklıyız. Evet. Bunan yakınmak için ve bunun gizlenmesi için hiçbir neden yok. Mavi gözlü mü kara gözlü mü, ince-uzun mu kısa mı, beyaz tenli mi siyah ya da esmer mi.. olmak daha iyidir? Herkesin, en azından bir parça uygar olduğunu ileri süren herkesin hemfikir olacağı gibi, bunlar saçma sapan sorulardır. Ama zihinsel yeteneklerle, zekayla ve davranışlarla ilgili sorunlara gelince, karışıklık genel bir hal alır. Bazıları, yetenek ve zeka farklılıklarında genetik bir kökeni kabul etmekle insanlığa karşı bir suç işlediklerini düşüneceklerdir. Diğerleri, genlerimizin bazı sorumlulukları olduğunu bahane ederek tüm güçleriyle herkesin zekasını kendi ölçütlerine göre ölçmek ve davranışlarımızın tüm gizini hayvanlarda keşfetmek isteyeceklerdir. Gerçekte bunlar nedir? Örneğin zeka diye adlandırılan şey, doğal ya da insanın yarattığı çevrenin kavranmasını hedefleyen bir yetenekler mozayiğidir. Bu yeteneklerin bireşim mekanizması hiç şüphesiz tükenmez olanaklara sahiptir. Bir zeka geni değil, ama daha çok her insanın zekasının tek, karmaşık ve dinamıik düzenlenişini oluşturan on binlerce özellik temelindeki bir gen yığınının olması, gerçeği daha uygundur. Akla uygun tek çıkarsama bir zeka bulunmadığı, zekanın sayısız biçimlerinin olduğudur. Ortam burada fazlasıyla rol oynar. Bazı halklar, diğerleri tarafından ayrıcalıklı kılınandan farklı zeka biçimleri geliştirmek zorunda kalabilirler. Bir grup insana yaşamını Kalahari çölünde ya da Ekvator ormanlarında sürdürmesi için gereken zeka, elbette New York ya da Paris’teki bir büroda çalışmak için gereken zkanın eşi değildir. Aynı zeka değildir; ama kesinlikle eşdeğeridir. Boşimanların ya da Pigmelerin gözünde bizler cahil kişileriz. Boşimanların birbirinden ince farkları olan ve sabah ya da akşam çiğinin damıtılabileçcceği bsayısız bitkileri ayrıştırdıkları yerde, biz yalnızca çöl görürüz. Pigmeler ise, Joseph Conrad’ın Karanlığın Yüreği ’nden (Çev: Sinan Fişek, İletişim Yay: 1994) başka bir şey görmediği yerde, ormanı kolayca okurlar. Ama genetik çeşitlilik aynı kültür içindeki bireyler arasında da rol oynar. Zeka burada da,genetikçilerin polimorf diyecekleri gibi çok biçimlidir. Müzisyenin zekası matematikçinin zekasıyla belli bir benzerliğe sahip görünür;ama matematikçilerin ve müzisyenlerin kendileri çok çeşitli mizaçlara sahiptiler. Ressamın zekası yöneticinin, organizatörün, diplomatın, düzenbazın,filozofun, deneycinin,çalgı yapımcısının,icatçının, hatibin, eğitimcinin vb zekalarından başka ve şairinkiyle biraz benzerliği olabilen romancınınkiyle aynı değildir. Diğerlerinin zekasından yararlanabilme zekasına da sahip olmak ve bu durumda, anlaşılacağı üzere, en büyük çoğulculuğu savunmak mümkündür! Çevre ve kültür her şeyi açıklamaz,sonuçta genlere de başvurmak gerekir. Bir zeka biçiminde mükemmel ve ne yapılırsa yapılsın,öğrenmeye ne kadar çalışılırsa çalışılsın,bir diğerinde düz ahmak olunabilir. Kuşkusuz kültürel çevreme de eğitimime de borçlu olmadığım kendime ait bir sorun karşısında,uzun süre ben de çılgına döndüm:çabuk anlayamama sorunum var;askere çağrılan lise mezunlarının IQ ortalaması 100 görünürken,o dönem bana söylenene göre 80 civarında,çok kötü bir IQ ile değerlendirilmeme yol açan bir tür yavaşlıktan şikayetçiyim! Tıp eğitiminin sonuna gelmiş tecilli bir öğrenci olarak,keyfim yerindeydi! Ve bunu bir dram haline getirdiysem de,bazılarının,olayın anlamını kavramak için çok zaman harcadığım için böyle davrandığımı söyleyeceklerini biliyorum. (Daniel Cohen, Umudun Genleri'1993),Çeviri: Yeşim Küey,Kesit yayıncılık(1995) s:236-247)

http://www.biyologlar.com/umudun-genleri

Bilkent Evrimde Yeni Ufuklar Sempozyumu

Bilkent Evrimde Yeni Ufuklar Sempozyumu

Bilkent Genetik Topluluğu (BilGenT) olarak okulumuzda bir ilk olacak Bilkent Evrimde Yeni Ufuklar Sempozyumu’nu duyurmaktan gurur duyarız. 22 Mart Cumartesi 2014 – 23 Mart Pazar 2014 tarihlerinde gerçekleştirilecek olan etkinliğimize konularında uzman 8 değerli bilim insanının katılımını gerçekleştireceğiz. Evrim konseptine gerek doğa bilimleri, felsefe, tıp ve antropoloji gibi çeşitli disiplinlerin gerek popüler bilimin perspektifinden bakacağımız bu ulusal sempozyumumuzda amacımız genel olarak ülkemizce ü...zerinde birçok bilgi eksikliği ve yanılgılar olan “Evrim Teorisi” ni BilGenT olarak bilimsel metot ve gerçeklere dayandırarak bütünüyle ve başarılı bir şekilde sunmaktır. Tüm Türkiye’ye açık olarak gerçekleştireceğimiz bu iki günlük etkinliğimizde siz, tüm değerli katılımcılarınızın hem olabildiğince yararlanmasını hem de güzel bir haftasonu geçirmesini dileriz. ETKİNLİK PROGRAMI CUMARTESİ1. Oturum: 10.00-11.00 Konuk: Prof. Dr. Aslı Tolun Konu: Evrimin Genetik Temeli Prof. Dr. Aslı Tolun, lisans derecesini fizik alanında 1971 yılında Robert Kolej’de; yüksek lisans derecesini de biyofizik alanında 1973’te Pennsylvania Eyalet Üniversitesi’nde almıştır. Daha sonra 1979 yılında Uppsala Üniversitesi’nde bilimsel mikrobiyoloji alanında doktorasını tamamlamıştır. Doktora sonrası Kaliforniya Üniversitesi’nde çalışan Prof. Dr. Aslı Tolun, daha sonrası Boğaziçi Üniversitesi Moleküler Biyoloji ve Genetik Bölümü’nde doçentlik yapmış ve 1989’dan beridir aynı bölümde profesör olarak çalışmalarını sürdürmektedir. Aynı zamanda 1996-2002 yılları arası bölüm başkanlığı görevini yerine getirmiş olan Prof. Dr. Aslı Tolun TÜBİTAK Teşvik Ödülü, Boğaziçi Üniversitesi Kıdemli Araştırıcı Ödülü gibi ödüllerin sahibi ve birçok akademik etkinlik ve kurulun üyesidir. Prof. Dr. Aslı Tolun’un çalışma alanları arasında yeni nörolojik ve nörodejeneratif hastalık genlerini arama, insan genomu ve toplum genetiği gibi konular bulunmaktadır. 11.00-11.15 Kahve Molası2.Oturum: 11.15-12.30 Konuk: Doç. Dr. Ergi Deniz Özsoy Konu: Biyolojik Değişkenlik ve Evrimsel Biyoloji Doç. Dr. Ergi Deniz Özsoy, lisans derecesini 1993 yılında Hacettepe Üniversitesi Biyoloji Bölümü’nden almıştır. Daha sonra yine aynı bölümde, 1996 yılında master tezini tamamlamış ve 2002 yılında doktorasını tamamlamıştır. 2007 yılında doçent ünvanını aldıktan sonra doktorası sırasında Groningen Üniversite’sinde ve daha sonra NCSU Genetik ve UCSD Evrimsel Biyoloji bölümlerinde çalışmıştır. Yurt içinde ve yurt dışında Biogerontology, Nature Genetics ve Turkish J. Zool gibi dergilerde birçok makalesi yayınlanmış olan Doç. Dr. Ergi Deniz Özsoy’un çalışma alanları arasında genetik, evrimsel genetik, kantitatif genetik, genomik, evrimsel biyoloji ve istatistiksel genetik yer almaktadır. Ayrıca kendisi çalışma hayatı boyunca birçok akademik danışmanlık ile jüri üyeliği yapmış ve uluslararası sözlü bildirilere katılmıştır. _________________________________________________ Öğle Arası_________________________________________________3.Oturum: 13.30-14.30 Konuk: Doç. Dr. Ömür Dilek Erdal Konu: Ana Hatlarıyla İnsan Evrimi Doç. Dr. Ömür Dilek Erdal, lisans eğitimini A.Ü. D.T.C.F. Paleoantropoloji Bölümü’nde bitirmiş ve master tezini Hacettepe Üniversitesi Antropoloji Bölümü’nde tamamlamıştır. Daha sonra yine aynı bölümde doktorasını tamamlayarak 2012’de Hacettepe Üniversitesi Antropoloji Bölümü’nde doçentlik ünvanını almıştır. Aşıklı Höyük, Heraion Teichos, Demre/Aziz Nikolaos Kilisesi, Perge, Ani ve daha birçok kazı çalışması ve projesinde çalışmış ve çalışmakta olan Doç. Dr. Ömür Dilek Erdal’ın çalışma alanları arasında eski toplumların yaşam biçimlerinin analizi, bu topluluklarda görülen çeşitli hastalıklar, davranış biçimleri ve iskelet anatomileri gibi konularda antropolojik, paleoepidemiyolojik ve demografik analizler bulunmaktadır. Şu an biyolojik antropoloji, insan evrimi, paleodemografi ve kültürel değişim gibi dersler veren Doç. Dr. Ömür Dilek Erdal’ın birçok ulusal ve uluslararası yayını bulunmaktadır. 14.30-14.45 Kahve Molası4.Oturum: 14.45-15.45 Konuk: Op. Dr. Metin Berberoğlu Konu: Evrimsel Tıp Op. Dr. Metin Berberoğlu, 1981 yılında Ankara Üniversitesi Tıp Fakültesi’nden mezun olup 1983-1987 yılları arasında Ankara Numune Hastanesi’nde cerrahi ihtisasını yapmıştır. Daha sonraları 1994 yılında Menlopark California’da (A.B.D.) temel laparoskopik cerrahi temel eğitimlerini alıp 1995 yılında İ.T.E.M. Laparoskopik Cerrahi Eğitim Merkezi’ni kurmuştur. 2008 yılından itibaren Ankara Akropol Hastanesi’nde Laparoskopik Cerrahi uygulamalarını sürdürmekte olan Op. Dr. Metin Berberoğlu’nun, Türk Cerrahi Derneği, Türkiye Endoskopik Laparoskopik Cerrahi Derneği, EAES, SAGES ve FACS gibi kuruluşlarda üyelikleri bulunmaktadır. Ulusal ve uluslararası alanlarda yayınları bulunan Op. Dr. Metin Berberoğlu’nun çalışma alanları arasında endoskopik ve laparoskopik cerrahi bulunmaktadır. Kendisi, etkinliğimizde insan evriminin bir sonucu olarak anatomik ve fizyolojik temelde ortaya çıkan hastalıklardan örnekler verecek ve evrimsel tıp alanındaki bilgileriyle evrim konseptine ışık tutacaktır. PAZAR 1. Oturum: 10.00-11.00 Konuşmacı ve konusu en kısa zamanda açıklanacaktır. 11.00-11.15 Kahve Molası2.Oturum: 11.15-12.30 Konuk: Prof. Dr. Namık Kemal Pak Konu: Büyük Patlama ve Evrenin Evrimi Prof. Dr. Namık Kemal Pak, lisans eğitimini TÜBİTAK Şeref Bursiyeri olarak Ankara Üniversitesi Fen Fakültesi Fizik Bölümü'nden 1968 yılında mezun olarak bitirdikten sonra 1972 yılında Berkeley-Kaliforniya Üniversitesi Fizik Bölümü’nde doktorasını tamamlamıştır. Daha sonra 1977 yılında Hacettepe Üniversitesi Fizik Bölümü’nden doçentlik ve 1988 yılında ODTÜ Fizik Bölümü’nden de profesörlük ünvanını almıştır. Şu an halen bu bölümde profesörlük görevini sürdürmekte olan Prof. Dr. Namık Kemal Pak’ın çalışma alanları arasında kuantum mekaniği ve anomalileri, bilim felsefesi ve tarihi, Hosoani mekanizması, baryogenez ve kuantum dolaşıklığı gibi konular bulunmaktadır. Kendisi CERN, SLAC ve ICTP gibi kuruluşlarda çalışmalarda bulunmuş olmakla birlikte TWAS, TÜBA, TÜBİTAK (Başkan), JRC ve ICTP gibi kurumlarında üst düzey üyelikleri bulunmaktadır. Ulusal ve uluslararası alanda yaklaşık 1000 alıntılanma sayısına ulaşmış 100 kadar makalesi bulunan Prof. Dr. Namık Kemal Pak, aynı zamanda Bilim ve Ütopya gibi popüler bilim dergilerinde de yazmakta ve TÜBİTAK Teşvik ve TÜBİTAK Bilim ödüllerinin de sahibidir. _________________________________________________ Öğle Arası_________________________________________________3.Oturum: 13.30-14.30 Konuk: Prof. Dr. H. Tuğrul Atasoy Konu: Dilin Evrimi Lisans eğitimini 1991 yılında Hacettepe Üniversitesi Tıp Fakültesi’nden mezun olan Prof. Dr. H. Tuğrul Atasoy, 1992-1997 yılları arasında Ankara Eğitim ve Araştırma Hastanesi Nöroloji Kliniği'nde ihtisasını tamamlamıştır. 2006 yılında Gazi Üniversitesi Tıp Fakültesi Nöroloji Bölümün’den doçent ünvanını aldıktan sonra 2012 yılında da Zonguldak Karaelmas Üniversitesi Nöroloji Bölümü’nde profesör olmuştur. Şu an da Bülent Ecevit Üniversitesi Tıp Fakültesi Nöroloji Kliniği'nde profesör olarak çalışmaya devam eden Prof. Dr. H. Tuğrul Atasoy’un çalışma alanları arasında nörofizyoloji, başağrıları ve davranış fizyolojisi bulunmaktadır. Ayrıca kendisinin, European Journal of Pain, Neurol. India, Headache ve Neurol Psychiatry & Brain Research gibi ulusal ve uluslararası dergilerde yayınlanan birçok makalesi bulunmaktadır. 4.Oturum: 14.45-15.45 Konuşmacı ve konusu en kısa zamanda açıklanacaktır.İLETİŞİM Bilkent Genetik Topluluğu BaşkanıAli Cihan Usluel 0531 505 72 97 Bilkent Ulusal Evrim Sempozyumu Genel Koordinatörü Onur Özer 0538 565 33 27 Bilkent Genetik Topluluğu Başkan Yardımcısı İlker Ali Deniz 0537 252 27 32 ÖNEMLİ BİLGİ VE DETAYLAR * Salon: Bilkent Üniversitesi Mithat Çoruh Amfi Tarih: 22-23 Mart 2014 Saat: 09.30-16.00 GE250/251: 160 PUANDIR!!! *Etkinliğimiz tüm Türkiye çapında ilgilenen herkese açıktır. *Etkinlik ücreti 15 TL'dir. Kontenjan 180 kişi ile sınırlıdır. *Bilkent dışından katılanlar için bilet alımı aşağıdaki linkten yapılabilir. Kampüs içinde A Binası’nın önünde etkinlik haftası boyunca; yani 17-21 Mart 2014 tarihleri arası bilet satışı olacaktır. Cumartesi ve Pazar günü etkinlik sırasında da Bilkent Üniversitesi Mithat Çoruh Amfi kapısı önünde de biletler alınabilecektir. Kayıt Formu Linki: http://goo.gl/1eoPSQ Banka İsmi: Yapı Kredi BankasıHesap Sahibi: İlker Ali Deniz IBAN Numarası: TR480006701000000090664164 Hesap Numarası: 90664164Şube Kodu: 641 - BİLKENT ŞUBESİ İnternet Sitemiz: http://www.bilgent.net/

http://www.biyologlar.com/bilkent-evrimde-yeni-ufuklar-sempozyumu

Drosophila melanogaster ( Sirke Sineği )

Drosophila melanogaster ( Sirke Sineği )

Alem: Animalia Şube: Arthropoda Sınıf: Insecta Takım: Diptera Familya: Drosophilidae Alt familya: Drosophilinae Cins: Drosophila Alt cins: Sophophora Tür grup: melanogaster grup Tür alt grup: melanogaster altgrup Tür kompleks: melanogaster complex Tür: D. melanogaster Drosophila melonogaster halk arasında sirke sineği olarak bilinir.Boyutu 3 e mm’dir ve genelde bozulan meyvelerin üzerinde birikir. Drosophila melonogaster’in avantajları ve dezavantajları nelerdir? Drosophila melonogaster gelişmiş canlıları anlamada kullanılan bir model organizmadır. Drosophila melonogaster üzerinde birçok araştırmacı geçmişten bu yana araştırmalarını sürdürdüğü için bugün bu organizma akındaki bilgiler gelişmiştir. Drosophila’nın küçük bir hayvan olması,kısa hayat döngüsü,ucuz üretilmesi ve saklanmasın kolay olması pek çok araştırma için bir avantajdır.Genetik çalışmalarda Gen dizisinin tanınması ve karakterize edilmesi tercih sebebidir.Ayrıca Drosophila melonogaster’in küçük bir genom hacmine sahiptir ve mutasyonların incelenmesi kolaydır.Dezavantajı ise mutant populasyondaki eklemeli mutasyonların bazen bazı fenotiplerin kaybolmasına sebep olmasıdır, bu yüzden araştırma labarotuvarlarında orijinal fenotiplere sahip bireyleri veya bunların dondurulmuş yumurtalarının saklanması gerekir. Drosophila melonogaster genellikle genetik çalışmalarda kalıtımın kurallarının incelenmesi için kullanılır.Drosophila X-Y eşey gonozomlarına ve 2, 3, ve 4, otozoma sahiptir yani 2n=8 Kromozom taşır.Genomu 165 milyon baz taşır ve 14000 gen taşıdığı tahmin edilmektedir.DNA dizisi hemen hemen 2000 yılında tamamlanmıştır ve bilgilerinin analizi yapılmıştır Embriyonik gelişim Drosophila melonogaster eşeyli üreme gösterir ve bireyler eşey bakımından dioiktir.Dişi Drosophila melonogastr’in meydana getirdiği yumurtanın erkek bireyin meydana getirdiği sperm ile döllenmesi ile gelişimi başlar.Olgun yumurtanın içinde döllenmeden önce özel molekuler gradiyentler oluşur.Döllenmiş yumurtada anne ve babadan gelen iki atasal özellik çekirdek döllenerek 2n kromozoma sahip zigotu oluştururlar.Zigot arka arkaya dokuz tane bölünme geçirerek “sinsitiyumé denilen yapıyı oluşturur;fakat bu sırada sitokinez gözlenmez.Bu bölünmeler /sırasında yedinci bölünme sonrası bazı çekirdekler kuyruk(polar //uca) göç ederek burada bölünür ve yumurta çevresinde bir //tman oluştururlar.Daha sonra ise geriye kalan hücrelergöçer ve 1sinistral blastodermi”oluştururlar:çekirdekler en son 4 kez daha bölünerek her biri çevresinde mebran oluştururlar ve somatik hücreleri meydana getirirler, bu somatik hücrelerin yaklaşık 4000 tanesi ise hücresel blastodermi oluşturmak üzere farklılaşırlar.vucut yapılarını izleyen gelişim gelişim ise iki olayla ilişkilidir. 1-Molekullerin iki gradiyantı oluşur birisi yumurtanın anteriör-pasterior ekseni boyunca geç embriyolarda segmentler oluşur ve embriyonun nterior ve pasterior ekseni boyunca uzun bantı bir örtü oluşturur.Embriyoni segmentleeden segment dene yapılar gelişir. *Yumuretada ki gradiyentlerden Drosophila’nın segmentleri oluşur ve bu segmentlerde daha sonra vücut parçalarını verirler. Drosophila melonogastre’in gelişimi sperm ile yumurtanın birleşmesi ile başlar. Yumurtadan 1 gün sonra ilk sebaat evresi başlar ve yumurtadan çıkan yavruda kanat,göz,testis ve yumurtalık oluşumu başlamıştır.Yaklaşık iki gün sonra ise larva ikinci evresine geçer ve bu sırada ilk larval deri değişimi başlamıştır ve bireyde hızlı mitotik bölünmeler devam etmektedir. İkinci larval evreden yaklaşık iki gün sonrada üçüncü larval evre başlar ve üçüncü larval evrede Tükürük bezlerinin ve ganglionların gelişimi İzlenebilir.İkinci kez tüyler dökülür Bu sırada biz larvanın besiyerinde hareket ettiğini görebiliriz ve larvamızın kabuğu hafif kahverengimsidir. Lavramz üçüncü larva dönemini tamamladıktan 2 gün sonra ise upa dönemine başlar ve pupa evresi başladıktan yaklaşık 49 saat sonra organlar iyice belirginleşmiiştir ve ilk kez göz pigmentinin oluşumu izlenebilir.Pupa evresinin sonlarına doğru ısık atında sinekler iyice ayır edilecek özelliğe gelmişlerdir.Pupadaki sinek ise pupa oluşumu gözlendikten sonra metomorfoz geçirerek olgun bireyi oluşturur.ergin birey 8-10 saat içerisinden eşeysel olgunluğa ulaşırlar.

http://www.biyologlar.com/drosophila-melanogaster-sirke-sinegi-

ANTİSENS TEKNOLOJİLERİ HAKKINDA BİLGİ

ANTİSENS TEKNOLOJİLERİ HAKKINDA BİLGİ

Antisens teknolojisi insan, hayvan ve bitkilerdeki hastalıkların daha spesifik tedavisi ve yeni keşifleri için ayrıca, fonksiyonel genomik çalışmalar için çok güçlü silahlardan oluşan uygun tekniklerdir. Antisens teknoloji olarak bilinen yöntemde, antisens RNA moleküllerinin hedef genin RNA mesajına spesifik olarak bağlanarak gen ifadesinin moleküler düzenlenişine engel olunmaktadır. Hastalıkların oluşumunda büyük bir paya sahip olan proteinlerin üretimini durdurmak için bu teknoloji, oligonükleotidler olarak adlandırılan modifiye olmuş ya da olmamış DNA/RNA segmentlerinin kullanımını içermekte ve hücre içinde, nukleus ve protein üretim bölgeleri arasındaki genetik bilginin iletimini bloke etmektedir (1). Antisens nükleik asit sekanslarının hedef olacak spesifik mRNA’ ya bağlanması veya hibridizasyonu, genin genetik mesajının kesilmesine yol açmaktadır. Bir genin genetik mesajının hücresel proses ile kesilmesi “Knock - Down” veya “Knock – Out” olarak isimlendirilir. Bu proses, bu genin işleyişini saptamak için araştırıcılara olanak sağlamıştır. Diğer bir önemli antisens teknolojisi ise"RNA interferens" olarak adlandırılır. Antisens alanındaki araştırmalar RNAi (RNA interferens) ’nin keşfi ile hız kazanmıştır. Doğal olarak oluşan bu mekanizma sekansa spesifik olup ilk kez Caenorhabtidis elegans nematodunda keşfedilmiştir. Çoğu ilaç (Drug) proteinlere bağlanırken, antisens moleküller kendilerine komplementer hedef RNA ile eşleşirler. Antisens oligonükleotidler mRNA’ nın translasyonunu bloke eder veya RNAaz – H ile mRNA’ nın degredasyonuna neden olurlarken, ribozim ve DNA enzimleri hedef RNA’ yı keserler. RNAi yaklaşımları, RISC ile etkileşen siRNA (small interfering RNA) molekülleri ile gerçekleştirilir (2). Antisens Oligonükleotidler Oligonükleotid bazlı antisens tekniklerin birçok ortak yanı vardır ve genetik mesajın eleminasyonu veya baskılanması üzerine çok başarılı yöntemler uygulanmıştır. Sentetik oligonükleotid sekansın antisens etkisi 1970 yıllarında Zamecnik ve Stephenson tarafından gösterilmiştir. Bu araştırmacılar Rous Sarcoma virusün (RSV)35SRNA’ sının 5’ ve 3’ uçlu nükleotid sekansını kullanarak viral integrasyonda önemli olarak görünen 21 nükleotidlik tekrarlayıcı sekansları identifiye etmişler ve viral sekansın bir kısmına komplementer olan d(AATGCTAAAATGG)13 mer’ lik oligonükleotidi sentezlemişlerdir. Bu sentetik oligonükleotid sekansı RSV ile enfekte olmuş fibroblast hücre kültürlerine verildiğinde, viral üretim büyük ölçüde inhibe olmuştur. Böylece araştırmacılar önemli sekanslara hibridize olarak onları bloke eden oligonükleotidlerin viral integrasyonu inhibe ettiği sonucuna varmışlardır. Hücreye verilen bu oligonükleotide “hibridon” adı verilir (1). Şekil 1. Farklı antisens stratejilerinin karşılaştırılması Sentetik oligonükleotidler, genetik proseslerde bir ajan olarak kullanılmak isteniyorsa bir takım konular aydınlatılmalıdır. Bu konuların en önemlisi “Kalıcılık”tır. Sentetik oligonükleotidler yabancı bir hücreye verildiklerinde hemen endonükleazlara yem olurlar. Onun için bu oligonükleotidlerin endonükleazlardan korunması gerekir. Mümkün olan koruma modifikasyonları 2003 yılında Kurreck tarafından 3 tip olduğu ortaya çıkmıştır. Birinci sınıf modifikasyon, DNA ve RNA nükleotidlerindeki baz veya fosfat bağlarının değişimidir. DNA nükleotidlerinde olmayan, RNA nükleotidlerindeki 2’(OH) hidroksil grubu olan (Riboz) modifiye edilebilir. Bu modifikasyon, nukleaz degredasyonuna karşı bir tür kamuflajdır. 1969 yılında araştırıcılar fosfat bağlarında köprü oluşturmayan oksijen atomundan birini sülfür ile yer değiştirmişlerdir. Bu modifikasyon insan serumunda 10 saatin üzerinde nükleazlara karşı dayanıklı bir şekilde kalmış, aynı sekansa sahip modifiye olmamış oligonükleotid ancak 1 saat kalabilmiştir. Bu modifikasyona fosforotiat denmiştir. 1990 yıllarında başka araştırıcılar kültüre edilmiş hücrelerde HIV replikasyonuna karşın fosforotiatın etkili bir hibridon olduğunu bulmuşlardır. Diğer yandan, fosforotiatlı nükleotidler azda olsa hibridizasyon kinetiği düşük ve spesifik olmayan proteinlere bağlanarak sitotoksik etkiye neden olan özelliklere sahiptirler (1). İkinci sınıf modifikasyon, Riboz şekerinin 2’ pozisyonundaki alkil modifikasyonlar içeren RNA nükleotidleridir. Bu modifikasyonların en önemli ikisi, 2’-O-metil (OMe) ve 2’-O-metoksi-etil (MOE)RNA’ larıdır. Modifikasyona uğramış antisens oligonükleotidlerin hibridizasyon afinitesi arttırılmış ve daha düşük bir toksik etki yaratmışlardır. 2’-O-alkil modifikasyonlarının en önemli eksikliği, en güçlü antisens mekanizması olan RNAaz-H kesimine elverişli olmamasıdır. Buna karşın avantajı da, istenmeyen çeşitli kesimleri baskılayarak bazı proteinlerdeki beklenen değişik kesimlerin ifadesini arttırmasıdır. Antisens etki için, RNAaz-H kesimi, nukleazlara dayanıklılık için 2’-O-alkil modifikasyonlarının tercih edilmesi araştırıcıları yeni bir modele ihtiyaçları olduğu gerçeğini ortaya çıkarmış ve araştırmacılar, bu her iki karakteristiği bir araya getirerek antisens oligonükleotid formunda hibrid bir oligonükleotid oluşturmuşlardır. Bu oligonükleotid nukleazların degredasyonundan internal bloğu koruyan 2’-O-metil ile modifiye olmuş ribonükleotidler ile, RNAaz-H kesimini uyarmak için deoksinükleotidlerin merkezi bloklarını içermektedir(1). Bu model diğer antisens konularına cevap oluşturmak için henüz gelişmemiştir. Modifiye olmamış oligonükleotidler, DNA : DNA ve DNA : RNA dublekslerini oluştururken , DNA ve RNA hedeflerinin tanınmasına yüksek afinite sağlayan çeşitli modifikasyonların sentezleri büyük çaba gerektirmektedir. Modifiye olmamış DNA:DNA ve DNA:RNA dubleksleri ile karşılaştırıldığında, DNA ve RNA’lara hibridize olduğunda termal stabilitesi yükselmiş bir çeşit nükleik asit analoğu geliştirilmiştir. Bu modifikasyon üçüncü sınıf antisens oligonükleotidleri oluşturur. Bu sınıf 4’e ayrılır. Peptid nükleik asitler (PNAs), 2’-floro N3-P5’-fosforoamidler, 1’, 5’- anhidroheksitol nükleik asitler (HNAs) ve locked nükleik asitler (LNA)’dır. 3.sınıf modifikasyonlar ile hibridizasyonda termal stabilite artmış ve hedefin tanınması zenginleşmiştir. Bu tipler arasında ençok bilinen PNA’dır (1991). Şeker fosfat bağları poliamid bağları ile tümüyle değişmiştir. Bu oluşumlar stabiliteyi arttırıcı ve yüksek hibridizasyon kinetiği sağlarkan, hücreye verilimi ve RNAaz H kesim mekanizması için elverişli değildir. PNA’lar, fosforotiat ve 2’-O-alkil RNA’lardan sonra üzerinde çalışılmış ve başarı sağlanmış oluşumlardır (2002). Bu 3.sınıf oluşumlar arasında en yeni olan LNA’lardır. LNA’larda da termal stabilitenin arttığı ve hedef tanınmasının zenginleştiği görülmüştür (1). RNA İnterferens (RNAi) İlaç sanayi, tedavi amaçlı gen baskılanması için her geçen gün kendini yenilemektedir. Daha önceki araştırmalar, antisens oligonükleotid ve ribozimleri kapsayan sekansa – spesifik RNA baskılanması üzerineydi. Bazı pozitif sonuçlar, bu ilaç platformunda elde edilirken, stabilite, hedefi bloke etme potansiyeli, hücreye iletimi ve hedef sekans seçimi gibi teknik konular, klinik olarak ilaçların etkinliğinin gelişimini yavaşlatmıştır. Son yıllarda, nükleik asit bazlı gen inhibisyon yaklaşımlarının klinik olarak gelişiminde yeniden bir etki yaratma potansiyeline sahip olan RNA interferens (RNAi), gen regülasyonunun yeni bir mekanizması olduğu gerçeğini ortaya çıkarmıştır (3). A. Normal transkripsiyon ve translasyon prosesi B. DNA’yı hedefleyen ajanlar ile transkripsiyonun önlenmesi C. pre–mRNA hedeflenmesi ile olgun mRNA’nın oluşumunun engellenmesi D. Translasyonel aparatürlerin engellenmesi ile translasyonun bloke edilmesi E. RNAaz- H ile mRNA’nın etkileşimi sonucu translasyonun önlenmesi (1). RNAi, bitkilerde, solucanlarda, mayalarda ve insanlar arasında yüksek oranda korunmuş, doğal olarak oluşan biyolojik bir prosestir. Hücre içinde iki bölümden oluşan bir yol izine sahiptir. Hücrede oluşan öncül dubleks RNA molekülü ilk olarak, Dicer endonukleaz ile 21-23 nükleotidlik kısa fragmentlere ayrılır. siRNA (short interfering RNA) olarak bilinen bu effektör RNA’ lar, RNA uyarıcı protein kompleksi ile etkileşir (RNA inducing silencing protein compleks; RISC). Bu protein kompleksi, siRNA’nın bir ipliğini lider sekans olarak kullanarak, hedef homolog RNA’ları kesmektedir. Bitkilerde, RNAi hücre savunmasında rol oynar; virus infeksiyonundan, transpozonlardan (sıçrayıcı gen) ve tekrarlayıcı sekansların uygun olmayan ifadelenmesinden, hücreyi korumaktadır. Memeli hücreleri de benzer savunma sistemine sahiptir. Bu endogenik RNA’lar, veya miRNA (microRNA ), dicer tarafından siRNA effektörlerine dönüştürülür ve çeşitli hücresel proseslerde örneğin, çoğalma, apoptozis ve farklılaşmada görev yapan genlerin ifadesinin düzenlenmesinde rol oynar. siRNA molekülleri, kimyasal olarak sentezlenip ekzogenik olarak memeli hücrelerine verildiğinde, hücresel RISC kompleksine maruz kalır ve siRNA’ya homolog olan RNA’ların parçalanmasına aracılık eder (3). RNAi, gen işleyişinin validasyonu ve hızlı identifikasyonunda, hedef ilaç keşfinde, biyolojik kaynak olarak devrim yapmış, hatta 2002 yılında, “Science Magazine” tarafından “yılın keşfi” olarak nitelendirilmiştir ve bazı şirketler, RNAi bazlı tedaviler geliştirme yönünde adımlar atmıştır (3). RNAi Tedavisinin Avantajları Spesifitesi Sekans bazlı gen inhibisyon teknolojilerinin potansiyel avantajlarından birisi, herhangi bir gen için tedavi amaçlı dizayn edilebilmesidir. Özellikle, tek bir allelde mutasyonla oluşan onkoloji ve genetik nörolojik hastalıklar alanında sadece defektif genin ifadelenmesini seçici olarak bloke etme fırsatı yaratılmıştır. Bunun yanında, tek bir polimorfizim ile ayırd edilebilen hedef sekansı identifiye etmek önemsiz değildir. Ayrıca, optimal siRNA’ nın hedef seçimi limitli olsada, RNAi aktivitesi önemli sayılmaktadır. Kanser ve nörolojik hedefler de, allele spesifik olacak kadar yeterli bir spesifiteye sahiptir (2). Şekil 3. Memeli sistemlerindeki RNA interference mekanizması (4) Potansiyel Etkinliği Optimal dizaynı ve hedef sekans seçiminde kurallardaki farklılıklardan dolayı gen inhibisyon teknolojisinin etkinliğini direk olarak karşılaştırmak zor olmakla birlikte, RNAi bazlı inhibisyon, antisens oligonükleotidler ile başarılmış çalışmalardan daha etkindir (2). Değişkenliği RNAi hedef bölgelerini identifiye etme kolaylığı, RNAi’ nin süper etkinliği ile ilişkili olabilir. Optimal RNAi etkinliliği için gerekli olan kurallar saptanmış olsa da, CG içeriği ve 3’ uçlarının kompozisyonu temel parametreler olarak karşımıza çıkmaktadır. Diğer yandan, ribozim ve antisens oligonükleotid hedef sekanslarını identifiye etmek, kesim için gerekli olan özel sekans motiflerinin uygunluğu ile sınırlandırılmıştır. Bir grup gende bulunan multipli sekansları uyarabilen RNAi – bazlı inhibisyon ile değişkenlik daha kolaydır (2). RNAi Tedavisinde Öne Çıkan Noktalar Hücreye İletimi Hücreye verilim problemi, sadece RNAi tedaviye özgü değildir fakat, RNAi bazlı ilaçların klinik olarak kullanımına önemli bir engel olarak görülmemektedir(2). RNAi Effektörleri RNAi effektörleri, 2 farklı yaklaşımla hücreye verilmektedir. İlki, laboratuvarda sentezlenmiş siRNA’lar bir ilaç gibi verilir. Diğeri ise, gen terapi yaklaşımı yani, shRNA (small hairpin RNA) kodlayan DNA, hücrelere verilir ve böylece shRNA’ nın hücre içi ifadelenmesi başlatılmış olur. Daha sonra shRNA’ lar, konukçu hücre tarafından aktif siRNA’ ya dönüştürülür. DNA yaklaşımının potansiyel avantajı, verilen plasmid DNA’ların yüksek stabilite içermesidir yani, her bireysel DNA kalıbından sentezlenmiş olan shRNA’ ların büyük miktarını içeren hücresel amplifikasyon basamağından oluşmaktadır. İlaveten, ister genoma integre olan, ister epizomal formda replike olabilen DNA’ yı stabil ifade vektörü şeklinde vermek de mümkündür (2). Lokal Verilimi Antisens ilaçların başarılı lokal uygulamasına en iyi örnek olarak “göz” verilebilir. Göz içine direk olarak siRNA’ların lokal injeksiyonu ile, yaşla ilişkili oluşan makular dejenerasyonun RNAi bazlı tedavisi geliştirilmiş ve ayrıca, merkezi sinir sistemi içine direk iletimi de mümkündür (2). Sistemik İletimi Sistemik verilim, siRNA’nın stabilizasyonuna, effektörün istenen dokuyu hedef alması ve hücresel alınımın kolaylığına gereksinim duyar. siRNA ilaçlarının hücresel alınımı ve stabilitesini geliştirmek için gerekli olan yaklaşımlar, nükleik asitin kimyasal değişimi ve koruyucu partiküller içine effektörün çeşitli yöntemler ile paketlenmesini içeren antisens oligonükleotid uygulaması için de geçerlidir. Effektörün özel hücre tiplerini hedef alması için, farklı ligand ve antikorların RNAi effektörü ile konjuge olması gereklidir. Viral vektörlerin kullanımı, RNAi effektörünün sistemik verilmesi için kullanılabilir fakat, viral vektörler klinik olarak hücreye iletilmesi için gerekli olan dokuya spesifik tropizm ve transdüksiyonu sağlasa da, her tip viral vektör, risk ve güvenlik sorunlarını beraberinde getirmektedir (2). Güvenlik İstenen etkilerin oranını en üst düzeye çıkarmak, her tedavinin ana temelini oluşturur. Kemoterapi, interferens tedavisi ve yüksek oranda aktif antiretroviral tedavilerde bu oran ideal değildir ve tedavi ile birlikte toksisite önemli bir seviyeye ulaşabilir. RNAi, hedeflenen genin spesifitesini arttırma yetisine sahip olurken, hücrenin herhangi bir ekzogenik (siRNA veya iletim ajanı) moleküle maruz kalması, normal hücresel işleyişini bozabilir (2). Hedef Dışı Etkileri Spesifite, en önemli avantajlardan biri olmasına karşın, hedef dışındaki etkileri hala sorundur çünkü, genin inhibisyonunda aracılık eden siRNA’ların minumum homoloji seviyesini saptayan parametreler henüz bilinmemektedir. İnhibisyon sonucunda siRNA’nın sekansına bağlı olarak tek iplikli RNA ile 11 baz çiftlik bir homoloji gösterdiği bulunmuştur (2). Spesifik Olmayan Etkileri Spesifik olmayan etkileri konusunda RNAi için toksisite 2 kattır. Çünkü, hem hücreye verilmesi hem de siRNA’nın kendisi beklenmedik hücresel tepkiler doğurabilir. İlk olarak, bazı katyonik lipozomlar, siRNA’nın hücreye verilmesinde kullanılmış ve interferon molekülleri uyarılmış; aynı şekilde, shRNA ifade kasetlerini hücre içine transport etmek için kullanılacak herhangi bir viral vektör, istenmeyen bir tepki ile karşılaşabilir. İkinci olarak, siRNA effektörlerinin kendileri, çift iplikli RNA hücresel savunma mekanizmasını tetikleyebilir. Bazı durumlarda, terapi için interferon indüksiyonu yararlı olmasına karşın; başlangıç defans mekanizmasının kontrolden çıkması durumunda sitotoksik olabilmekte ve bu yüzden sorun yaratmaktadır. Son yıllardaki çalışmalar, siRNA’nın interferonu uyarması ile oluşan farklılıkları sistematik olarak analize etmeye başlamıştır. Örneğin, interferon sinyalini uyaran bir siRNA effektörünün içeriğinde,"tehlikeli motif" olarak adlandırılmış 9 baz çifti identifiye edilmiş ve interferon indüksiyonunu başlatan siRNA’nın 5’ fosfat ucu olduğu belirlenmiştir (2). Stabilitesi Bazı veriler siRNA’nın, serumda ve memeli hücrelerinde antisens oligonükleotid ve ribozimlerden daha stabil olduğunu gösterse de, birçok araştırma in vivo’da siRNA’nın yarı ömrünü arttımak için siRNA’nın farmokinetik özelliğini değiştirmeyi hedeflemiştir. Özellikle, geniş spektrumlu kimyasal modifikasyonlar ile uyumlu siRNA’ların gen ekspresiyonunu inhibe ettiği kanıtlanmıştır. Araştırmacılar, enjekte edilen siRNA’nın %1’inden daha azının hedef organa ulaştığını kaydetmişlerdir (2). Tedavi Amaçlı Uygulamaları Viral İnfeksiyon Birçok şirket viral infeksiyonu inhibe etmek için, RNAi bazlı tedaviler geliştirmeye başlamışlardır (2). Hedeflenen Viral RNA’lar Birçok makalede, invivo ve invitro’da birçok virusun replikasyonunu veya ekspresiyonunu inhibe etmek için virusa spesifik siRNA’ların kullanıldığı belirtilmiştir. Özellikle RNAi’nın potansiyel antiviral yararları üzerine araştırmalar, HIV ve Hepatit viruslarına ışık tutmuştur. Her özelliği tanımlanmış HBV (hepatit B virusu)fare modelleri bu viruslara popüler bir hedef konsepti hazırlamıştır. Başlangıçta invivo’da transfeksiyon deneyleri, fare karaciğerine HBV’ ye spesifik siRNA ve HBV ekspresiyon plazmidlerinin aynı anda verilmesinin HBV’ nin gen ekspresiyonunu ve replikasyonunu bloke ettiğini ortaya çıkarmıştır. Bu çalışmaları genişletmek için, araştırıcılar fare modellerini kullanarak HBV tedavisi için, RNAi’ nin ileri tedavi etkinliğini incelemişlerdir. Bazı viral RNA’lar, baskılanmaya dirençlidir ve HIV’ e benzer bazı memeli virusları, RNAi aktivitesini engelleyen proteinlere sahiptir. HBV konusunda, RNAi effektörlerinin, viral gen ekspresiyonu ve replikasyonunu bloke ettiği görülmüştür. Aynı şekilde İnfluenza virusunun inhibisyonu, coxsackievirus B3 ve respiratör syncytial virus infeksiyonları, farede infeksiyon oluşumundan sonra verilen siRNA ile inhibe olmuşlardır (2). Konukçu Hücre Genlerinin Hedeflenmesi Bunun nedeni, virusların siRNA’lar kendi genomlarını hedeflediklerinde hızlı bir şekilde kaçış mutasyonları oluşturmasıdır; diğer bir potansiyel RNAi antiviral strateji ise, infeksiyonu devam ettiren hücresel faktörlerin ekspresiyonunu inhibe etmeye yöneliktir. Özellikle CD4 ve CCR5 gibi, HIV hücresel reseptörlerinden inhibisyon için yararlanılmaktadır. Viral temizlik için etkinliğe göre RNAi’nin viral RNA’ları parçalaması, viral infeksiyonu tamamen elemine etmeye benzemez. Eğer, konukçu immün yanıt, infeksiyon ile başarılı bir şekilde mücadele ederse, viral replikasyon ve virusun yayılması etkili bir şekilde azaltılmakta, böylece etkili bir antiviral olduğu kanıtlanmış olmaktadır. Örneğin, HBV konusunda, hatta kronik olarak infekte olmuş hastalarda infeksiyon süresince virusa spesifik sitotoksik T-lenfosit üretimi sürmektedir. Bu immün yanıt, virusu temizlemek için güçlü olmasa bile, HBV antijenlerini ifadeleyen hücreleri yok etmektedir (2). Nörolojik Hastalıklar Parkinson, hungtington, amyotrophic lateral sclerosis (ALS) ve spinobulbar muscular atropi, RNAi bazlı terapilerin yararlı olduğunu kanıtlayan sinirsel hastalıkların önde gelenlerindendir. Sekansa spesifik RNAi’ ler, mutant olan hedef genin ifadesini bloke etmektedir. Örneğin, siRNA’ lar, ALS modelinde gösterilmiş mutant ve yabani tip RNA’lar arasındaki farklılıkları tek nükleotidte fark eder. ALS, tedavisi olmayan letal bir motor nöronun dejenere olduğu bir hastalık olup, Cu/Zn süperoksid dismutazı (SOD1) kodlayan gende tek bir nükleotid’teki mutasyon sonucu oluşmaktadır. Diğer bir örnek, Alzheirmer, β – amiloid üretiminde artış ile tetiklenir. β amiloid , β sekretaz (BACE1) tarafından kesilir ve bu enzim, hastaların beyinlerinde yüksek seviyede regüle edilir. β-sekretazın regülasyonunu inhibe eden siRNA’lar, işleyişi bloke eder. Bunu kanıtlamak için, Kao adında bir araştırıcı primer fare nöronlarında β sekretaz ekspresiyonunu bloke etmiş ve böylece, β amiloid üretiminde azalma gözlemlemiştir (2). İnflamasyon ve Apoptozis Bazı hastalıklarda hücresel proseslerin aktivasyonunun neden olduğu patoloji gözlemlenmiş hatta bunun gelişiminde önemli rol oynayan kilit moleküllerin hedeflenmesi ile hücresel proseslerin kontrol altına alınması anlamında RNAi tedavisi yarar sağlayabilmiştir. Örneğin, Tümör nekrozis faktör (TNF-α ), rheumatoid arthritisin kronik patojenitesinde gerekli olan pro-inflatör sitokindir. TNF- α işleyişini bloke etmede kullanılan ilaçlar, inflamasyonun azalmasında etkili olduğu ve hastalığın yavaşladığı gözlemlenmiştir. Bazı riskler tabiki mevcuttur, TNF - α bloke edicilerin kullanılması ile ilişkili ciddi infeksiyonlar, lenfoma, sistemik eritomozus gibi hastalıklarda risk unsuru bulunmuştur. Son yıllarda lokal injeksiyon ve TNF- α’ ya spesifik siRNA’ların elektroporasyonu, faredeki paw inflamasyonunu inhibe ettiği görülmüştür (2). siRNA Gen ifadelenmesini spesifik olarak kesintiye uğratan moleküller, güçlü araştırma kaynaklarıdır. Bu moleküllerin gelişimine yönelik çalışmalar sonucunda farklı potansiyelde ajanlar ortaya çıkmıştır. siRNA’ lar, sekansa spesifik silencing ajanı olarak ortaya çıkan en son keşiftir. Çoğu kilit organizmanın sekansı ortaya konmuş ve nükleik asit bazlı yaklaşımlarla gen işleyişinin incelenmesi için fırsat doğurmuştur. Bu nükleik asit molekülleri, tedavi amaçlı olarak geliştirilmiş ve hastalığa sebep olan virusları hedef almıştır. siRNA’ lar, RNAi yol izinin effektör molekülleridir. Nematodlardaki RNAi’nın keşfi, bitkilerde post-transkripsiyonel gen silencing ve funguslarda "Quelling" gibi prosesler dubleks – RNA ile tetiklenir. Uygulamalarda, uzun dubleks RNA’ lar kullanılmış fakat, bu RNA’ lar çoğu memeli hücreleri için etkin değildir çünkü, antiviral interferon (IFN) yanıtını uyarmaktadır. Antiviral interferon yanıtı, hücre ölümüne neden olur. Farklı organizmalarda var olan RNAi mekanizmasının genetik ve biyokimyasal incelemeleri, bu hücresel mekanizmanın korunduğu gerçeğini ortaya koymaktadır. Bu mekanizma, dubleks RNA’yı keserek 21-28 nükleotid uzunluğundaki, siRNA’ya dönüştürür ve bu siRNA mRNA’ların sekansa spesifik degredasyonuna yol açmaktadır (5). Nükleik – Asit Bazlı Gen Silencing mRNA’ ların spesifik sekanslarını hedefleyerek gen ifadesini inhibe edecek birkaç farklı molekül istenilen düzeyde dizayn edilebilir. Başlıca 3 tip nükleik asit bazlı gen silencing molekülü vardır. Bunlar, kimyasal olarak modifiye olmuş antisens oligodeoksiribonükleik asitler (ODN ), ribozim ve siRNA’lardır (5). Tablo 1. İnvivo'da test edilmiş anti-kanser RNAi hedefleri i.v: intravenöz, i.t: intratumoral, hd: hidrodinamik infeksiyon CEACAM 6: karsinoembriyonik antijen ile ilişkili adhezyon molekül 6 ATA: aurintrikarboksilik asit (3). Antisens ipliği (kırmızı çizgi) içeren RISC’lerin oranını etkileyen siRNA veya siRNA’ların sens ipliklerinin ilk birkaç baz çiftinin termodinamik stabilitesi. Sens ipliğin 5’ ucundaki yüksek termodinamik stabilite (yeşil kutucuk) ile antisens ipliğin 5’ ucundaki düşük termodinamik stabilite (mavi kutucuk) karşılaştırıldığında termodinamik stabilite ile ilişkili olarak antisens iplik RISC ile etkileşime girmek için daha yatkındır. Antisens ipliği içeren birden fazla RISC daha fazla etkili siRNA demektir ve sens ipliğin neden olduğu hedef dışındaki etkinlik şansını azaltmış olur. siRNA’ların 3’ ucundan çok 5’ ucu hedef tanımada etkin rol almaktadırsiRNA ve mRNA ‘nın 5’ ucundan devam eden en az 11 – 14 baz çiftinde hedef genin baskılandığı gözlemlenmiştir. Bir siRNA için minimal substrat merkezinde 13 nükleotidten oluşmaktadır (5). Şekildeki turuncu renkli üçgen; mRNA’nın kesim bölgesini, nt; nükleotid, RISC; RNA’ca indüklenen silencing compleks, siRNA; small interfering RNA. Şekil 4. Etkili ve spesifik siRNA ‘nın özellikleri ODN: Genellikle 20 nükleotid uzunluğunda olup, pre-mRNA ve mRNA’ya hibridize olarak ribonükleaz-H için bir substrat oluştururlar. Bu enzim, RNA – DNA dublekslerinden, RNA ipliğini degrede eder. RNAaz-H aktivitesini engellemek için, modifiye olmuş ODN’ler mRNA’ların translasyonunu veya pre-mRNA’nın kesilmesine mani olmaktadır. ODN’ ler ve modifikasyonları bu yüzden, çift iplikli DNA’yı hedef alarak, 3’ lü heliks oluşumu ile transkripsiyonu inhibe etmek için kullanılmaktadır (5). Uzun çift iplikli RNA (dsRNA) RNAaz pol III enzimi olan Dicer tarafından tanınır ve 21 – 23 nükleotid uzunluğundaki siRNA dublekslerine dönüştürülür (1). Sentetik siRNA (2) veya endogenik siRNA ‘lar (3) RISC ile etkileşirler bundan dolayı Dicer prosesi bypass olmuş olur. siRNA’ lar multiprotein kompleksi olan RISC ile etkileşir (4). RISC kompleksindeki bir helikaz siRNA dubleksini açar ve tek iplikli siRNA’yı içeren RISC mRNA’ya komplementerize olur (5). (6) RISC içinde identifiye olmamış bir RNAaz (silecer) mRNA‘ yı degrede eder (6). Şekil 5. siRNA ‘nın mekanizması Ribozimler: Ribozimler, RNA’ya Watson – Crick modeli ile bağlanır ve fosfodiester bağlarının hidrolizini katalizleyerek, hedef RNA’yı degrede etmektedir. Ribozimler birkaç sınıf olup, en çok kullanılan “çekiç başlı“ adı ile anılan hammerhead ribozimlerdir. Hedef mRNA’ya hibridize olduğunda, tek bir sekonder yapı oluştururlar. Ribozimlerde katalitik olarak önemli parçalar, hedef RNA kesim bölgesinin içinde bulunduğu hedef – komplementer sekans ilişkisi ile bağlantılıdır. Ribozim ile kesim magnezyum gibi divalent iyonlara, hedef RNA yapısına ve hedefe ulaşılabilirliğine gereksinim duyar. Hücre içinde bu hedef RNA ile ribozimin birlikte lokalizasyonu, silencing etkinliğini arttırıcı sinyaller doğurur. Hammerhead ribozimler, kimyasal olarak sentezlenmesi veya vektörlerden transkribe olabilmesi için yeteri kadar kısadır ve hücre de ribozimin devamlı üretimine olanak sağlar (5). siRNA: RNAaz III (Dicer)enzimi ile dubleks RNA’nın stoplazmik prosesinden türevlenmiştir. Dicer, uzun dubleks RNA’yı keserek, 21-28 nükleotid’lik bir siRNA dubleksini oluşturur. Bu dubleks, 5’ fosfat ucunda 2-nükleotid eksik iken, 3’ hidoksil (OH) ucunda 2-nükleotid fazla şeklindedir. RNAi mekanizmasının bileşenleri spesifik olarak siRNA’yı tanır ve (RISC) RNA-uyarıcı silencing kompleksi olarak bilinen protein kompleksi ile siRNA’nın tek ipliği ilişkiye girer. mRNA’ları kesen RISC kompleksi, tek iplikli siRNA’nın 5’ ucundaki 10 nükleotide komplementer sekanslar içerir. Ribozimler gibi, siRNA ‘lar da sentetik olarak üretilebilir veya transkribe olan kısa çift iplikli hairpine benzer RNA’lar vektörlerden ifadelenip, daha sonra siRNA’ya dönüşmektedir. siRNA’lar, ODN ve ribozimler gibi memelilerde hedef pre-mRNA’nın degredasyonunda etkin değildir. Birkaç organizmanın, kromatin modifikasyonlarını ve transkripsiyonel olarak bloke edici genlerini hedef almak için, RNAi ile ilişkili mekanizmaları kullandığı hakkında deliller ortaya çıkmıştır. siRNA’lar, kod oluşturmayan RNA molekülleri olan miRNA’lara benzerler. Bu miRNA’lar, gen ekspresiyonunu regüle etmek için hücreler tarafından doğal olarak kullanılır. Olgun bir miRNA tek iplikli 21-22 nükleotid uzunluğunda ve stoplazmada, 70 nükleotid’lik hairpinden meydana gelir. Olgun miRNA ‘lar, protein kompleksi (miRNP) ile ilişkiye girmekte ve bu kompleks ribozom ile ilişkili olup, miRNA’ya bir kısım komplementer sekanslar içeren mRNA’ların translasyonunu inhibe etmektedir. Mükemmel bir substrat ile sıkı bir komplementerlik oluşursa , miRNA , siRNA gibi davranıp , mRNA degredasyonuna aracılık etmektedir (5). Gen Silencing Yaklaşımlarının Karşılaştırılması Bazı araştırıcılar, kültür modellerinde ODN ve siRNA’nın aracılık yaptığı gen tutuklanmasının farklı yönlerini karşılaştırmışlardır. Bu çalışmalardan çıkan sonuçlar pek belirgin değildir, çünkü gen tutuklanmasının etkinliği, ajanın konsantrasyonuna, transfeksiyon tekniğine, hücre tipine, hedef bölge seçimine, kimyasal modifikasyonlarına ve analize edilecek bilgilerin süresine bağlıdır. RNA’ya bağlanan proteinler ve mRNA’da oluşan tersiyer, quarterner yapılar, ODN’ ler ile hedef RNA molekülü arasındaki hibridizasyonu etkilediği ve bu varyasyonların siRNA’ların etkisini etkilediğine inanan araştırıcılar incelemelere başlamışlardır. Bu çalışmaların çoğunda, mRNA üzerindeki hedef pozisyonuna bağlı olarak ODN ve siRNA’ların etkinliği arasında bir korelasyon bulunmuştur. Modifiye olmuş fosfotiat ODN’ ler toksik olabilir, çünkü, endogenik proteinlere bağlanarak spesifik olmayan bir tavır sergilemektedirler. CpG (sitidin fosfat guanozin) motifi içeren ODN’ ler, IFN’nun ifadesini veya diğer başka immün yanıtta oluşan molekülleri uyardığı görülmüştür. Bu uyarı, Toll – Like reseptör (TLR)’ e bağlanılması ile oluşur. ODN’lerin bu spesifik olmayan özelliği, bazı ODN’lerin tedavi amaçlı olması sonucunda keşfedilmiştir. Ribozimler, ODN’ ler gibi hedeflerine herhangi bir molekülün yardımı olmaksızın hibridize olurlar ve bu hibridizasyon, genlerin baskılanması için ihtiyaç duyulan yüksek konsantrasyon ile ilişkilidir ayrıca, kimyasal olarak modifiye olmuş ribozimler spesifik olmayan etkiler oluştururlar. RNA lokalizasyon sinyallerinden yararlanma veye RNA şaperon’ ları bu problemi çözebilir. Böylece, ribozimin düşük konsantrasyonu ile ilişkili etkili bir gen baskılanmasını sağlamaktadırlar. En son bilgiler, insan ve farelerde ifadelenen TLR’ nin, üridin / guanozin veya üridin bakımından zengin olan tek iplikli RNA oligonükleotidler tarafından aktivite olduğunu ispatlamıştır (5). Tek iplikli RNA ile bu TLR ‘lerin aktivasyonu, plazmositoid dendritik hücrelerin endozomal kısımlarında oluştuğu ve böylece, IFN – γ ve diğer sitokinlerin ifadelenmesine neden olduğu görülmüştür. Kimyasal olarak modifiye olmuş siRNA veya ribozimler, invivo’da hücreye verilip denature olduğunda, siRNA sekansına bağlı olarak, bu özel TLR’leri aktive etmekdedir. Etkili bir gen baskılanması sağlamak için gerekli olan, siRNA’nın düşük konsantrasyonudur. Buna bağlı olarak siRNA’lar spesifik ve hızlı bir şekilde RISC kompleks ile etkileşmekte böylece, spesifik olmayan proteinlere bağlanma potansiyeli azalmaktadır. Bazı çalışmalar, normal konsantrasyondaki siRNA’ların transfeksiyonunun, gen ekspresiyonunda spesifik olmayan global etkilere neden olmadığını göstermiştir. Memelilerdeki RNAi uygulamaları, gen ekspresiyonunu spesifik olmayan şekilde etkiler, tabiki siRNA konsantrasyonuna, hücre tipine, siRNA ekspresiyonunun moduna ve ajanın hücreye veriliş şekline de bağlıdır. Bu spesifik olmayan etkiler, IFN yanıtının oluşmasından sorumlu genlerin stimülasyonunu içerir hatta, bu çalışmalardaki IFN’yi oluşturan genlerin indüksiyonu, hücresel büyümeyi engellemesede böyledir. Eğer, tam bir IFN yanıtı oluşursa, büyümeyi engelleyebilir. Uzun dubleks RNA ile transfekte olmuş, veya IFN tip 1 ile yada yüksek konsantrasyondaki siRNA ile tedavi edilmiş HeLa hücrelerinin mikroarray gen profillerinin bir kısmı birbiri ile çakışmaktadır. Bu çalışmalarda, tedavi ve araştırma çalışmalarındaki siRNA uygulamalarının potansiyel yan etkileri belirlenmiş ve tanımlanmış efektif siRNA’ların önemi üzerinde durulmuştur. Gen baskılanması için mümkün olan en düşük konsantrasyon kullanılmalıdır. Farelerin, kısa RNA hairpini üreten vektörler ile tedavi edildiğinde, IFN oluşturan genleri uyarması çok ilginç bulunmuştur. Spesifik olmayan etkileri yanında, nükleik asit bazlı gen baskılayan moleküller, hedefin etkilerini bloke etmeye hazırdır. Hedef etkilerinin yok edilme seviyesi, nükleik asit hibridinin stabilitesine ve baskının moduna bağlıdır. ODN’ler, hedef etkisini bloke etmeye eğilimlidir, çünkü 6 veya 7 sıralı DNA / RNA baz çiftleri RNAaz-H tarafından tanınmaktadır. Bu problemi çözmek için, antisens oligonükleotid gamper adında bir yapı geliştirilmiş, böylece ODN’lerin yaklaşık 10 nükleotidinden sadece bir tanesi RNAaz – H yanıtı göstermiştir. siRNA’lar dikkatlice seçilmez ise, bir mRNA hedefine kısmen komplementer olan siRNA’lar , endogenik miRNA’lar gibi davranıp translasyonu baskılar. Aynı transkripte karşı hedeflenmiş farklı siRNA’lar ile oluşmuş gen ekspresiyon profilleri karşılaştırıldığında, hem siRNA hem de mRNA ipliklerinin 5’ uçları arasındaki en az 11 – 14 nükleotidlik komplementerlik, transkript düzeyinde hızlı bir düşüşe sebebiyet verir. Antisens sekanslar olarak seçilmiş ODN, ribozim DNAzim ve siRNA’ lar, seçici olarak tek bir nükleotid ile hedefi diğerlerinden ayırabilir (5). siRNA’ların Hücrelere Verilimi ODN’ler ve ribozimler, farklı stratejiler kullanarak in vivo’da başarılı bir şekilde hücrelere verilir. Klinik denemelerde, ODN’lerin en popüler modu, intravenöz injeksiyonudur. siRNA-, siRNA üreten plasmid veya siRNA üreten virüslerin memeli model organizmalara verilmesinde çeşitli yöntemler kullanılmaktadır (5). Bu yöntemler içinde, elektroporasyon ve hem lokal hem de sistemik injeksiyonu yer almaktadır. Çok etkili bir silencing için hücreye verilim yöntemi hakkında genelleme yapmak zordur çünkü hücre içine injeksiyonda, farklı dokuların farklı istekleri söz konusudur. Özellikle farklı boyutlardaki hücreler için fare dokularına siRNA’ ların verilmesinde ilk prosedür, fizyolojik solusyondaki siRNA’ ların, damar ucuna injeksiyonudur. Bu yöntem ile karaciğerde %90 oranında hedef gen ekspresiyonunun azaldığı görülmüştür. Bu oran akciğer, böbrek ve pankreas’ta daha azdır. Silencing süresi, 1 haftadan fazla sürer ve silencing seviyesi tam net değildir çünkü hayvandan hayvana varyasyonlar mevcuttur. siRNA üreten virusların gelişmesi, özellikle insan hastalıkları için gen terapinin alternatif modudur. Birkaç çeşit virus, siRNA’ların üretimi için dizayn edilir. Virus çoğunlukla epizomal form’da bulunur yani, konukçu genomuna entegre olması düşüktür. siRNA üreten AAV (Adeno associated vektör)’nin fare beyni içine injeksiyonundan 7 hafta sonra etkili bir silencing sonucu alınmıştır. siRNA üreten Adenovirusun fare karaciğerine damar yolu ile veya fare beynine direk injeksiyonu ile verilimi gen ekspresiyonunda etkili bir baskılanma yaratmıştır. siRNA’lar tedavi amaçlı deneylerde kullanılıcaksa, in vivo’da siRNA’ların hücreye verilmesinde pozitif sonuç elde edilmesi ve Amerika’da FDA tarafından “yetim ilaç” statüsü verdiği kimyasal olarak modifiye edilmiş ODN’lerin hücreye verilimini de kapsayan yöntemler için çalışmaların sürdürülmesi gerekmektedir. Son yıllarda ODN’lerin de içinde bulunduğu birkaç makromolekülün transdermal penetrasyonunu sağlayacak küçük moleküller keşfedilmiş. Akciğerler içine gen enjeksiyonu için kullanılmış aerosol yöntemler, yakın gelecekte siRNA’ların hücrelere iletiminde de benzer şekilde kullanılacaktır (5). siRNA Bazlı Tedaviler Birkaç ODN ve ribozim molekülleri klinik denemelerde test edilmiştir. Gözdeki sitomegalovirusun infeksiyonunun tedavisi için, FDA tarafından onaylanmış bir antisens ODN (fomivirsen) geliştirilmiştir. Klinik deneylerde kullanılmış antisens oligonükleotidlerin çoğu, modifiye olmuş fosforatiat ODN veya "gamper" dedikleri ODN’lerdir (5). Fakat bunların hedef RNA’lara afinitesi düşük ve yüksek konsantrasyonda toksisiteye neden olan problemleri vardır. Kimyasal modifikasyonların tiplerini içeren ikinci generasyon antisens oluşumlar, klinik deneylerde kullanılmış ve fosforatiat ODN’ ler den daha yararlı olduğu görülmüş. Son çıkan yayınların içerikleri bu farklı ilaçlardan ve onların hedeflerinden bahsetmektedir. siRNA ve onların memeli hücrelerindeki fonksiyonları 3 yıl önce keşfedilmiş fakat henüz klinik denemelerde kullanılması çok erkendir. Klinik programların gelişimi üzerine siRNA bazlı şirketlerin kurulmasından sonra siRNA, tedavi amaçlı gelişimde ODN ve ribozimleri hızlı bir şekilde yakalamıştır. Birkaç deneme siRNA’nın tedavi amaçlı potansiyel yetisini göstermiş; fulminant hepatitlerden, viral infeksiyondan, sepsisden, tümör gelişiminden ve macular dejenerasyondan fareleri koruduğu kanıtlanmış. Yüksek basınç ile damar ucundan verilen siRNA’lar, fare karaciğer hücrelerinde etkilidir hatta, bir grup araştırıcı, çeşitli karaciğer hastalıkları için tedavi amaçlı ajan olarak siRNA’nın potansiyelini test etmişlerdir (5). Karaciğerde ifadelenen apoptozis ile ilgili genler olan caspase 8 ve FAS hücre ölüm reseptörlerinin hedeflenmesi ile fare karaciğerini, çeşitli ajanlar tarafından uyarılmış ani gelişen hastalıklardan korumuştur. Diğer bir grup araştırmacı, virus tarafından direk olarak meydana gelen Hepatit B (HBV) infeksiyonunun tedavisi için siRNA’ların tedavi amaçlı potansiyelinin olup olmadığını araştırmıştır. Protein üretimi ve viral replikasyonu etkili bir şekilde azaltmak için, HBV genomunun bazı kısımlarını hedefleyen siRNA’lar hücrelere verilmiştir (5). siRNA virus oranını azaltsada, infeksiyonu sonlandırıcı etkisi başarısızlıkla sonuçlanmıştır. Bu sonuçlar, siRNA’ların tedavi amaçlı potansiyelini ve uygulamalar için pozitif sonuçlar doğurabilecek yöntemler üzerinde çalışmaların yoğunlaşması gerekliliğini göstermiştir. Nükleik asit bazlı gen baskılanmasının etkinliğini optimize etmek için, birkaç parametreyi incelemek gerekmektedir. Silencing molekül, dokudaki gibi dolaşım sisteminde de stabil olmalı ve toksik etki yaratmadan kan proteinlerine bağlanmalı ancak boşaltım sistemine girmemelidir. Nükleazların etkini azaltmak için kimyasal olarak modifiye olmuş nükleik asitlerin identifikasyonu üzerine denemeler gerçekleşmiş ve bu gerçekleşen denemeler ile tedavi amaçlı gen silencing kullanım sağlanmıştır. Sistemik verilim için yapılan, yapılması gerekli olan oluşumlar, klinik denemelerde modifiye edilmiş fosforatiat ODN’ler için açıklanmıştır. Modifikasyon ODN’nin hedef RNA’sına olan afinitesini azaltsa da in vivoda, stabilite, hücre içinde kalma ve hücresel alınımlarının gelişmesi ile moleküllerin etkinliğini arttırmış. Fosforatiat modifikasyonlar ODN’ lerin kan proteinlerine afinitesini arttırır ve nükleazların aktivitesinden ODN’ leri uzak tutar. Tek iplikli spesifik endonükleazlardan korunmuş, siRNA dubleksleri, serumda hem ODN hem de ribozimlerden daha stabildir. Modifiye olmamış siRNA’lar hücreler tarafından tam olarak alınmaz, hatta kan proteinleri için etkili bir afiniteye sahip olmazlar. siRNA’lar tedavi amaçlı kullanılacak ise, modifiye edilirler. Virusların kullanımını içeren gen terapi bazlı platformlar hariçtir. siRNA’ların modifikasyonu, siRNA’nın RISC kompleksi ile etkileşimini engeller (helikaz aktivitesi ile siRNA dubleksinin açılması hedef kesme oranı ve ürün oluşumunu etkiler). Bazı araştırıcılar, iyi bir silencing etkisi yaratıcı ayrıca, siRNA stabilitesini arttırıcı kimyasal modifikasyonları identifiye etmeye başlamışlar. Fosforatiat modifikasyonları siRNA dublekslerini tolere edebilirler ve siRNA’ ların hücresel alınımlarını kolaylaştırırlar. İn vivo’da kimyasal olarak modifiye olmuş siRNA’ ların etkinliği üzerine bir gelişme yoktur. siRNA’ların yapılarına spesifik olan nükleik asit modifikasyonlarının yeni tiplerini geliştirmek için girişimler başlamıştır (5). miRNA miRNA’lar küçük RNA’nın ikinci sınıfıdır. Bitki ve hayvan genomlarının protein kodu oluşturmayan bölgelerinde kodlanır ve Dicer tarafından proses edilir. miRNA’lar RISC’e benzer bir kompleks ile etkileşirler. Hedef mRNA’ya komplementerizasyon derecesine bağlı olarak translasyonel baskılama veye mRNA kesimi oluşmaktadır (7). Bu gizli genlerin çoğu kod oluşturmayan RNA’ lardır ve protein için kod veya open reading frame (ORF) içermezler (8). Yaklaşık 22 nükleotidlik RNA‘lardır ve RNAi yol izinde gen ekspresiyonunu regüle ederler. miRNA’lar, RNA pol II tarafından (pri – miRNA) primer transkript olarak meydana gelirler. Bu tanskriptler ORF içersin ya da içermesin, splice edilir, poliadenillenir ve mRNA’lara benzerler. Bir intron veya ekzonda lokalize olmuş stem loop yapısı, fonksiyonel komponenttir. Örneğin miRNA genleri olan mir -106b, mir – 93 ve mir-25 protein kodlayan genin intronunda lokalize olmuşlardır. Stem loop yapısı ribonükleaz olan Drosha ve Dicer tarafından proses edilip, olgun miRNA oluştururlar. Bu RNA, RISC kompleksi ile etkileşir ve bu kompleks mRNA’ların baskılanmasını yönlendirir. İnsanda identifiye edilmiş miRNA genlerinin sayısı 300’den yüksek olup, hücre bölünmelerinde ve gelişimsel proseslerde rol alırlar (8). miRNA Genlerinin Kanserdeki Genomik Değişimler ile ilişkisi İnsan miRNA’ların çoğu genomlardaki kırılma noktalarının hemen yakınlarında lokalize oldukları görülmüştür (8). Örneğin, kromozom 13q14’teki delesyon yıllardır çalışılmaktadır, kronik lenfosit lenfoma ve birkaç tümörün oluşumuna neden olmaktadır. Bu lokustaki kansere neden olan şüpheli genlerin çoğu, miRNA diziliminden oluşur. Bu dizilim, mir - 15a ve mir – 16 – 1 içermektedir. Acaba, bu miRNA’ların delesyonu tümör oluşumunu nasıl etkiler? En son datalar, hem miR-15a ve miR-16, anti – apoptik gen olan BCL-2 genini hedeflemesi ile normal apoptik bir yanıt meydana getirdiğini göstermiştir. Bu bakımdan, bu miRNA’ların tümör supresör olarak fonksiyon göstermesi ve limfoma hücrelerindeki miR – 15a – 16‘ nın yeniden ekspresiyonu, apoptozisi ilerlettiği görülmüş. Buna ilaveten, delesyonlar için miRNA lokusları haritalanmıştır. Bunun bir örneği, akciğer, baş, dil, B-hücre ve foliküler limfomada amplifiye edilmiş 13q31 kromozomu çok iyi bir şekilde çalışılmış. Chr13orf25 (kromozom 13, open reading frame 25) genin ifadelenmesi ile hastalıkların ilişkisi vardır. Bu gen protein oluşturmayan küçük ORF’ye sahiptir. Bu transkripteki miRNA öncüleri miR – 17, 18, 19a, 20, 19b ve 92‘ dir. Bu dizilerden 28 miRNA’ların ekspresiyonunun artması, primer limfomada ve tümör oluşturan hücrelerin meydana gelmesini tetikler. Tümör oluşumundaki bu miRNA’ların rolleri, Burkitt’in lenfoma için fare modelinde gösterilmiştir. Tablo – 2 Kanser genlerinin siRNA tedavileri (6) Kök Hücreler, miRNA’lar ve Kanser Bir tümördeki hücrelerin bazı bölümlerini inceleyen tümör oluşum modelinde kök hücre özelliklerine sahip oldukları meydana çıkmıştır (8). Bu kanser kök hücreleri, tümör oluşumunu başlatma ve sürdürme özelliğine sahiptir. Halbuki tümör’deki hücre yığınları bazı farklılıklar gösterip, tümorogenik değildirler. Bunun miRNA’lar ile ilişkisi nedir? Tümörler, kök hücrelerini andıran bir biçimde miRNA profili sergiler. Çoğu miRNA’ların ekspresiyonunu azaltırlar fakat miR–17-92 içeren kök hücre miRNA’ların ekspresiyonunu etkilemezler. RNAi ve kök hücrelerin devamlılığı arasında biyokimyasal bir ilişki vardır. Drosophila ve bitkilerde, kök hücre devamlılığı için RISC komponenti olan Argonaute gereklidir. Dicer – 1 ‘in mutasyonu tarafından miRNA fonksiyonunun kaybı, Drosophiladaki üreme kök hücrelerinin çoğalmasını azaltmıştır. Siklin bağımlı kinaz inhibitörü olan Dacapo’nun ekspresiyonundaki artış, G1 ve S fazı arasındaki tutuklanmaya yol açmıştır (8). Tahmin edilen miRNA hedef bölgeleri, Dacaponun 3’UTR (Translate edilmemiş) kısmında bulunur. Önemli olan bu bölgelerin kök hücrelerde eksprese olmuş miRNA’lara uygunluğudur. Bir S-faz indüksiyon regülatörü olan p27 – Kip1, Dacoponun insandaki homoloğudur. Bu gen memelilerdeki bir miRNA hedefi olup olmadığı bilinmiyor, eğer öyle ise, hücre çoğalmasını ilerletmek için onkogenik miRNA‘ nın ekspresiyonunu engelleyici bir gen sağlanmış olur. Tedavi Amaçlı miRNA’lar İnsandaki kanser için miRNA’lar anahtar yapılar sunarsa, potansiyel tedavi amaçlı olarak gözden geçirilir (8). Tedavi amaçlı molekül hücresel alınımı ve serumdaki stabilitesi için modifiye edilmiş nükleik asit özelliğinde olmalıdır. Bir grup araştırıcı, kültüre olmuş hücrelerde miRNA fonksiyonunun antisens inhibitörü olarak modifiye olmuş 2’-O-metil RNA’ların görev yaptığını gözlemlemişler. Bu moleküller miR – 17, 92 olan hedef onkogenik miRNA’lar için kullanılır. Tümör suppresör miRNA’lar konusunda istenilen tedavi amaçlı strateji hücrelerdeki fonksiyonlarını arttırmak için olabilir. Serumda stabilize olmuş pre – miRNA’lar bunu başarabilir. Buna bir örnek, per–let-7‘nin hücreye verilimi RAS ekspresiyonunu durdurarak tümörün ilerlememesine neden olmasıdır. Ribozim Katalitik RNA’lar olarak bilinen ribozimler, intraselüler ortamda aktivitelerini optimize etmek için dizayn edilirler (10). Aktif ribozimlerin kütüphanelerinin hücre içine verilmesi gen işleyişinin identifikasyonuna olanak sağlar. Gen işleyişini saptamak için siRNA kütüphanelerini baz alan RNA bazlı araçlara, ribozim teknolojisi bir alternatif sunmaktadır. Tablo 3. Hastalıklarda ve hayvanlarda miRNA’ların biyolojik fonksiyonları (9) Pri – miRNA ‘lar nukleusta transkribe olmaktadır (1). dsRNA’ya spesifik olan Drosha nukleustaki pri-miRNA ‘yı degrede ederek stoplazmaya verilmeden önce pre-miRNA’ya dönüştürür (2). Exp5 (exportion-5) pre-miRNA’ların nukleustan stoplazmaya geçişinden sorumludur (3). siRNA’lara benzer olarak miRNA’lar dicer tarafından olgun miRNA‘ ya dönüştürülür ve bir ipliği ribonükleoprotein kompleksi olan miRNP ile etkileşir (4) (RISC kompleksine benzer). miRNA ve hedefi arasındaki baz eşleşmesi RISC kompleksinin mRNA’yı parçalamasına veya proteine translasyonunu durdurmaya sebebiyet verir (6). Şekil 6. miRNA ‘nın mekanizması İnvivo'da Ribozim Ekspresiyonunu Optimize Etmek Sekonder yapısının şeklinden dolayı ismi konan “hammerhead ribozim“, infekte olmuş bitkide orijinal olarak keşfedilmiş katalitik RNA moleküdür (10). Hammerhead ribozimin kendi başına kesim aktivitesi, tek iplikli yaklaşık 350 nükleotidlik, protein kılıfından yoksun RNA olan “virusoid“ moleküllerinin replikasyonu için zorunludur. Hammerhead ribozimler, herhangi bir RNA’yı kesmek için dizayn edilebilir (10). Bu dizayn, ribozimin substrat tanıma kısımlarında yapılır böylece, hedef sekansa komplementer tanıma bölgeleri içerebiliyor. Substrat kesimi, hedef RNA’daki NUX (N, herhangi bir baz ise X, A, C veya U dur.) sekansına göre ayarlanıyor. Dizayn edilen ribozimler, farklı RNA’ları kesebilir. Bu ribozimler, ya hammerhead veya hairpin ribozimlerdir. Ribozimler sentez ve modifikasyonları kolay ve yüksek oranda spesifik durumları ile hedef mRNA’ların ekspresiyonunu regüle ederler. İnvitroda, ribozimlerin kesim aktiviteleri, hücresel ortamdaki aktiviteleri ile koralasyon göstermek zorunda değildir. Bu yüzden memeli hücrelerindeki spesifik RNA’ların kesimi için ribozimlerin uygulamaları ifade sistemlerinin gelişimine gereksinim duyar (10). Tablo 4. Ribozimlerin invivo aktivitesini optimize etmede gerekli olan unsurlar (10) Şekil - 7 Hammerhead ribozimin ifadelenmesi a. Hammerhead ribozimin sekonder yapısı, onun substratı RNA (açık mavi) ve substratın kesim bölgesi gösteriliyor. N herhangi bir baz ve X A , C veya U ‘ yu simgelemektedir. b. Oklar, 3’ tRNaz veya RNaz P tarafından wild-type tRNAVAl (yabani tip)‘nın proses edilen bölgelerini göstermektedir. Transkripsiyon için RNA polimeraz III‘ ün etkileşimde bulunduğu promotor, internal promotordur; transkriptler, tRNA sekanslarının içindeki promotor elementlerini içerir (A ve B kısımları, kırmızı renkli). Ribozim sekansı doğal formdaki tRNA sekansının 3’ ucuna bağlanırsa, 3’ tRNaz ribozim – tRNA transkriptinden ribozim kısmını keser. Sonuçta oluşan ribozim endogenik RNaaz tarafından degrede olur. Bu yüzden modifiye olmuş yapıda, wild – type tRNA ‘nın 3’ kısmının bir bölümü linker sekans ile yer değiştirilir ve stem yapısı oluşur. Stem yapısı ribozimin tRNAval kısmından ayrılmasını bloke etmektedir (10). Yüksek İfade Seviyeleri RNA pol III tarafından tanınan promotorlar, tRNA ve küçük nüklear RNA olan küçük RNA’ların transkripsiyonundan sorumludur(10). Bu sebebten dolayı, Pol III ifade sistemleri, hammerhead, hairpin ribozimler ve siRNA olarak bilinen küçük RNA’ların transkripsiyonunda rol oynar. Pol III transkriptleri, pol II transkriptleri ile karşılaştırıldığında, ekstra sekanslar içermektedir (her transkriptin 3’ ve 5’ uçlarında polyA ve cap yapısı vardır). Bu özellikler, pol III sistemini ribozim ve siRNA’ların ekspresiyonu için ideal yapıyor yani, transkriptlerin yüksek seviyeleri güçlü aktivite için gereklidir ve ekstra sekanslar inhibitör etkisi yapar. tRNAmet tRNAva veya tRNAlys gen promotorunu veya U1, U6 veya adenovirus VA1 promotorunu içeren PoI III ifade sistemleri, hücrelerdeki hammerhead ve hairpin ribozimlerin ifadeleri için gereklidir. U6 promotoru çoğunlukla siRNA ifade vektörleri için kullanılır. Bunun yanında, farklı promotorlardan transkribe olmuş siRNA ve ribozimler sahip oldukları çeşitli özellikleri kendi promotorlarından alırlar (10). Kanser Biyolojisindeki Araştırmalar Tümör hücrelerine, hairpin ribozim transfeksiyonu yapılmış ve transforme olmuş hücreler birkaç hücresel proses olan apoptozis, kontak inhibisyonu ve üreme gibi normal regulasyonunu kaybetmiş (10). Hairpin ribozimleri alan hücrelerde tümör supressör gibi regülatör protein fonksiyonu olan bir gen hedeflenmiş ve biyolojik yol izlerinde birkaç yeni genler identifiye edilmiş. Bunların içinde insandaki gene homoloji gösteren D. melanogaster’de “ppan” ve"Mtert"geni keşfedilmiş. Ppan, hücre büyümesinin inhibitörü olarak, Mtert geni ise fibroblast transformasyonunun supressörü olarak identifiye edilmiş. Metastazi Genlerinin İdentifikasyonu Kanser hücrelerinin metastazisinde görev yapan genleri identifiye etmek için rastgele dizayn edilmiş ribozim kütüphaneleri kullanılmış. Kanserin erken safhalarında genellikle malignant hücreler lokalize olur. Hastalık ilerlediğinde metastazi için hücreleri uyaran çeşitli genler ifadelenir veya baskılanır. İnvaziv kanser hücrelerinin hareketi, invaziv olmayan veya zayıf invaziv özellik gösteren hücrelerden daha fazladır (10). Metastazinin mekanizması, kompleks ve çoğunlukla bilinmeden kalmıştır. Bu yüzden metastatik proseslerdeki basamakları identifiye etmek için, farklı prosedürler keşfetmişler. Bunlardan ilki, kemotaksi denemesi, rastgele dizayn edilmiş 33 genler yüksek oranda hareketli olan HT1080 hücrelerine verilir. Transfeksiyondan 24 saat sonra ekstraselüler matriks jeli ile çevrilmiş porlu filtre ile ayrılmış kemotaksi denemesine maruz bırakılmış. Kemoattranktant olarak fibronectin içeren bu denemede yüksek konsantrasyon içeren kısımdan daha düşük konsantrasyon içeren kısma doğru bir geçiş olur. 24 saat sonra yüksek konsantrasyonda bulunan çok az seviyedeki hücreler incelenmiş (invaziv olmayan hücreler). Ribozim taşıyan vektörleri alan bu hücrelerde migrasyonu tetikleyen genler bloke olmuş. İkinci yaklaşım, hücre invazyon denemesi. Bu deneme ilk denemeye benzer, sadece alt kısımın matriks jeli çevrelenmesi hariçtir. Retroviral vektörler (ribozim genlerini içerir)fare fibroblast NIH3T3 hücrelerine verilir. Bu hücreler jel ile çevrelenmiş filtre içinden çok zor geçer ve matriks jeline penetre olmuş hücrelerden RNA izole edilir. Bu RNA’nın, reverse transkripsiyonundan sonra, fibroblastların invaziv aktivitesini sağlayan 8 ribozim bulunmuş. Hücre kültür koşulları fizyolojik durumu tam olarak yansıtmasada, ribozim teknolojisi fare pulmonar tümörogenezis için bir yoldur. Ribozim kütüphaneleri, viral hayat çemberi, apoptik yol izleri, alzhemier hastalığı, kas ve neuronal farklılaşma fonksiyonu gösteren genleri identifiye etmede yararlanılır. Özellikle ribozim kütüphaneleri sinirsel kök hücrelerin farklılaşmasını regüle eden kod oluşturmayan RNA ‘yı identifiye etmede kullanılır. Şekil – 8 Metastazide görev yapan genlerin identifikasyonu a. Rasgele dizayn edilmiş ribozimler, hareketli HT 1080 hücrelerine veriliyor. b. Transfeksiyondan 24 saat sonra, hücreler ekstraselüler matriks jel ile kaplı porlu bir filtre ile ayrılmış alanda kemotaksi denemesine maruz bırakılmış. Üst kısımdan ekstraselüler matriks yolu ile alt kısma göç eden invaziv hücreler gözlemlenmiş. c. 24 saat sonra üst kısımdan göç edememiş hücreler alınmış. d. Alınan hücrelerdeki ribozimler çıkartılmış ve yeniden daha zor şartlar altında test edilmiş. e. Bu ribozim sekansları kullanılarak databazlı araştırmalarda istenen genler saptanmıştır (10). siRNA ve Ribozim Kütüphanelerinin Karşılaştırılması Son yıllarda RNAi, gen baskılanması için güçlü bir araç olarak dikkatleri üstüne çekmiştir (10). C. elegans hücresine dubleks RNA’nın verilmesi sonucunda ilk gen baskılanması ortaya çıktıktan sonra, bitkilerde, D. melanogaster, protozoa ve memeli türlerindeki varlığı saptanmıştır. RNAi mekanizmasında, ekzogenik dubleks RNA’lar 21-23 nükleotidlik siRNA oluştuktan sonra RISC kompleks ile ilişkiye girer. siRNA – RISC kompleksi, sekansa spesifik olarak hedef mRNA’yı keser. Bu reaksiyon, ribozimler tarafından hedef mRNA’nın kesimine benzemektedir. RNAi ‘nin potansiyel gücü, bilimsel kominitelere, genom analizleri ve gen işleyişleri için işe yarar bir araç olarak bakma cesaretini vermiştir. siRNA ifade vektörlerini ve kütüphanelerini kullanarak memeli genomunun karşılaştırmalı sistemik analizlerini yapılmıştır. siRNA kütüphaneleri ile, TRAIL ile indüklenmiş apoptozis, P53‘ e bağlı üremenin tutuklanması ve fosfadilinositol 3 – kinaz (P13)yol izlerinde yeni komponentler identifiye edilmiştir (10). Etkinliği ve Hedef Spesifitesi Ribozim ve siRNA teknolojileri arasındaki en büyük farklılık, siRNA’lar endogenik proteinler ile iş birliği içindedir (10). Halbuki ribozimlerin aktivitesi hücresel faktörlere bağlı değildir. Bu yüzden, siRNA’lar birçok hücresel enzimi kullanır örneğin helikaz ve RNAaz’lar, hedef mRNA’nın kesiminde görev yaparlar. Bundan dolayı, hedef mRNA’ların baskılanmasında ribozimlerden daha etkili bir araçtır. Her iki teknolojide de, hedef bölgelerin seçimi aktiviteyi belirlese de, daha düzenli bir mRNA’nın yapısı siRNA’dan çok, ribozim aktivitesini daha güçlü etkiler. Buna karşın siRNA’ların baskılayıcı aktivitesi, mRNA’nın düzenli yapısından çok, siRNA ve bir grup endogenik protein arasındaki etkileşime bağlıdır. siRNA’ların en önemli dezavantajı, spesifik olmayan baskılayıcı aktivitesidir. Bu baskılayıcı aktivite interferon üretiminin indüklemesi veya hedef olmayan genlere karşı sekansa spesifik silencing etki anlamına gelmektedir. siRNA’nın bir ipliği (antisens) hedef mRNA’ya komplementer, diğer ipliği (sense) değildir. Sense ve antisense iplikler, hedef olmayan mRNA’nın translasyonunu inhibe edebilir. Hedef olmayan genler üzerindeki etkilerin tahmin edilmesi zor olduğundan, bu konuda ribozimler daha düşük aktiviteye sahip olmalarına rağmen, siRNA’ların bir adım önünde bulunmaktadır. Son yıllarda siRNA alanındaki gelişmeler hız kazanmıştır (10). Örneğin, daha önceleri kullanılan 21 – 23 mer siRNA’ların nanomolar konsantrasyonları yerine günümüzde 27 mer’ lik siRNA’ların pikomolar konsantrasyonları kullanılmaktadır. Bu konsantrasyonun kullanılması, hedef dışındaki etkisini minimize edebilir Ayrıca, siRNA ifade vektörlerini dizayn etmek mümkün; shRNA (short haırpın RNA – sens ve antisens sekansları içermekte, Dicer tarafından shRNA siRNA‘ ya dönüştürülür.)‘ nın sadece sens ipliğinin degrede olacağı vektör düzenlenir ve böylece hedef dışı etkileri minimize edilmiş olur. İnterferon uyarılması, sekansa bağlı olmadan spesifik olmayan etki demektir yani, ekzogenik dubleks RNA tarafından immün yanıtın aktive olması demektir. siRNA’lar bu yanıtı uyarmayabilir. Uzun dubleks RNA 30bp’den büyük olursa bu yanıt oluşmaz. Ayrıca, siRNA ‘nın interferon yanıtını uyardığı ve bu yanıtın oluşmaması için bazı faktörler identifiye edilmiştir. Stem (gövde) bölgesinde bir mutasyonun meydana getirilmesi ile (C→U veya A→G) interferon yanıtı azaltılır. Yalnız bu çözüm dsRNA>100bp olduğu durumlar için geçerlidir. Antisens Teknolojisinin Çözüm Bekleyen Sorunları İlk sorun, genlerin insana verilmesini sağlayacak daha kolay ve etkili yöntemlerin bulunmasıdır. Bir başka sorun ise, nakledilen genin hastanın genetik materyalinin hedeflenen bölgesine yerleşmesini sağlamak ve böylece olası bir kanser ya da başka bir düzensizlik riskini ortadan kaldırmaktır (11). Bu konudaki başka bir sorun da, yerleştirilen yeni genin vücudun normal fizyolojik sinyalleriyle etkin bir biçimde kontrolünün sağlanmasıdır. Örneğin insülin, doğru zamanda ve doğru miktarda üretilmediği zaman, hastaya yarar yerine zarar getirecektir. Şu ana kadar yapılan çalışmalar sonrası iyi sonuçlar alınabilmiş fakat kalıcı tedavi çoğu zaman başarılı olamamıştır (11). Bunun bir nedeni, vektörlerin taşıdıkları genin uzun süreli ekspresyonuna izin vermeyişleri, diğeri ise denemelerde etkinlikten çok güvenliğin ön plana çıkmasıdır. Kanser tedavisi için antisens oligonükleotidleri major kaynak olarak görmeden önce, iki temel zorluğu çözmek gerekmektedir. İlaç verilmesinde en çok aranan özellik basitliktir (12). Oligonükleotidin hücresel alınımı sınırlı ve hücre tipleri arasında varyasyonlar göstermektedir. Örneğin, normal lenfositlerin antisens nükleotidleri çok zayıf aldığı gözlemlenmiştir. Lipozomal taşıyıcılarında içinde bulunduğu çeşitli formulasyonlar sonuçlarına bakılmaksızın denenmiştir. Antisens oligonükleotidlerin direk injeksiyonu en yüksek tümör konsantrasyonlarında verilir fakat sistemik tümör tedavisi için kullanımı limitlidir. Gut epitel hücreleri, antisens oligonükleotidleri çok iyi bir şekilde almaktadır, bu yüzden oral formulasyonu mümkündür ve uygulamalar arasında en çok umut veren olabilir. İkinci çözülmeyen konu, hedef onkogen zaman zaman mı aktif oluyor yoksa, bir tümör hücresi olarak mı kalıyor? Tümör hücreleri bazen hareketsiz kalabiliyor ve büyüme aktivitesi, antisens oligonükleotidin verilmesi ile eş zamanlı olmayabiliyor (12). Şu anki duruma göre, önümüzdeki yıllarda gen tedavisindeki eğilim, genleri istenilen hücrelere en etkin biçimde taşıyabilecek vektörlerin dizayn edilmesi yolunda olacak gibi görünüyor. O zaman, gen tedavisinin daha başarılı sonuçlar vereceği söylenebilir. Kaynaklar 1. IDT Tutorial. 2005. Antisense Technologies, 1-12. 2. Kurreck, J. 2003. Antisense Technologies improvement through novel chemical modifications. Eur. J. Biochem, 270: 1628-1644 3. Uprichard, S. L. 2005. The therapeutic potential of RNA interference. FEBS Letters, 579: 5996-6007. 4. Aigner, A. 2006. Gene silencing through RNA interference (RNAi) in vivo: Strategies based on the direct applications of siRNAs. Journal of Bıotechnology, 124 (1): 12-25. 5. Dorsett, Y and Tuschl, T. siRNAs:2005. Applications in Functional Genomıcs and Potential as Therapeutics. Nature Biotechnology, 40-51. 6. Rychahou, G. P., Jackson, N. L., Farrow, J. B and Evers, M.B. 2006. RNA interference: Mechnanisms of action and therapeutic consideration. Surgery ; 140: 719-25. 7. Matzke, A.M and Birchler, J.A. 2005. RNAi – Mediated Pathways in the Nucleus. Nature Reviews Genetics, 6: 24-35. 8. Hammond, S. M. 2006. MicroRNAs as oncogenes. Current Opinion in Genetics and Development , 16:4-9. 9. Wienholds, E., Plasterk, H.A R.2005. MicroRNA function in animal development. FEBS Letters, 579: 5911-5922. 10. Akashi, H., Matsumoto, S. and Taira, K. 2005. Gene Dıscovery By Rıbozyme and siRNA Libraries. Nature Reviews Molecular Cell Biology, 6: 413-422. 11. Yaşar, Ü. 2006. Gen Tedavisi; Hastalıkların biyolojik temeli III. www.medinfo.hacetttepe.edu.tr/ders. 12. Cunnıngham, C.C. 2002. New modalities in oncology: antisense oligonucleotides. BUMC Proceedings, 15: 125-128.   PDF KAYNAK: documents/tipbil14_3_11.pdf

http://www.biyologlar.com/antisens-teknolojileri-hakkinda-bilgi

BİTKİ HORMONLARI ( fitohormonlar )

Bilimsel Süreç 1880 yılı başlarında, Julius Sachs araştırmaları sonucunda bitkinin farklı parçaları arasındaki gelişimin düzenlenmesini sağlayan “kimyasal mesajcıların” (chemical messengers) varlığını ileri sürmüştür. Ancak, Sachs‟ın düşüncesinin esası Charles Darwin tarafından yazılmış olan “The Power of Movements in Plants” (Bitkilerde Hareketlerin Kaynağı) isimli bir kitaptan gelmektedir. Charles Darwin ve oğlu Francis Darwin tarafından yapılmış olan, kuş yemi (Phalaris canariensis) koleoptillerinde fototropik hareketler üzerinde bazı gözlemleri bu kitapta birleştirmişlerdir. Bu kitap, bitki hormonlarının tanımlanmasına yol gösteren, bir sıçrama tahtası gibi sunulmuştur. Sachs, bitkilerin belli yerlerinde kök, gövde, yaprak, çiçek gibi organların oluşumunda etkili olan kimyasal maddelerin sentezlendiğini ve bunların her birinin, tek bir organın büyümesinden sorumlu olduğunu ileri sürmüştü. Ancak bu gün bir bitki organındaki belli bir kısmın büyümesinde bile çeşitli hormonların birlikte etki ettikleri ve bir hormonun bitkide bir çok fizyolojik olayda rol oynadığı bilinmektedir. (Örneğin; sitokininler, sitokinezi yada hücre bölünmesini uyarırlar. Gövdeden alınan bir parankima doku parçası sitokininler olmaksızın kültüre alındığında, hücreler çok fazla büyürler fakat bölünemezler. Sitokininler tek başlarına etki gösteremezler fakat oksin ile birlikte uygulandıklarında hücreler bölünürler.) Metabolizma, bitki yaşamı için gücü ve yapı taşlarını sağlarken, fitohormonlar (bitki hormonları) ise özel kısımlardaki gelişimin ilerleme hızını düzenlemekte ve bizim bitki olarak tanımlayacağımız yapıyı (formu) üretmek üzere bu kısımları tümleştirmektedir. Ayrıca, fitohormonların bilimsel tarihi günümüzde de ilerlemektedir. Yakın zamana kadar, bitki büyüme ve gelişmesinin oksinler, giberellinler, sitokininler, absisik asit ve etilen olarak adlandırılan, sadece bu beş grup fitohormon tarafından düzenlendiği düşünülmekteydi. Bununla birlikte bu gün, ilk kez kolza bitkisi (Brassica napus L.) poleninden izole edilmiş ve steroidlerin bir grubu olan brassinosteroidleri fitohormonların altıncı bir grubu olarak kabul etmekteyiz. Ek olarak brasinosteroidler kimyasal yapı olarak hayvanlarda bulunan steroid hormonlarına en benzer gruptur; bitki ve hayvan steroid hormonlarının benzer kimyasal yapıları, belirli genlerin ifade olmasında benzer etkiler göstermektedir. Şöyle ki; bitki steroidleri insanlardaki eşey hormonları gibi, aynı olan pek çok şeyi yaparlar. Bir bitkide steroid fazla olduğunda, o bitki daha büyük, daha dayanıklı ve daha kuvvetli olmaktadır. Örneğin; mutasyon nedeniyle bitkiler steroid üretmediklerinde cüceleşirler. Steroidler aynı zamanda bitkide eşeyli üremeyi düzenlemektedirler (burada; belirli bir molekül grubunun farklı organizmalarda sinyal molekülleri olarak iş görmesi ilginçtir). Bir bitkinin steroid sentezlemek için kullandığı enzimlerin çoğu, kendi steroid çeşitlerini üreten hayvanlarda da bulunmaktadır. Dolayısıyla bu enzimlerle ilgili bazı genlerin, bitkiler ve hayvanların bir milyar yıldan daha uzun bir süre önce ortak bir atadan dallanmaları sebebiyle korunmuş olma olasılığı vardır. Buna karşın, steroidlere yanıtlarla ilgili sinyal yolundaki moleküller, bitki ve hayvanlarda çok büyük bir farklılık göstermektedir. Bilimsel süreçte geçmişten bu güne gelen gelişmeleri incelerken, Arabidopsis genomunun sekansının çıkartılmasıyla bu gün ve gelecekte olacak çarpıcı gelişmelere değinerek, süreci tamamlıyacağız. Bitki biyoteknolojisinde kobay fareleri gibi kullanılan bitki Arabidopsis „tir. Şu an Arabidopsis genomu sekanslanmıştır. Bir sonraki aşama ise, yaklaşık 26.000 gen bulunan Arabidopsis‟te, bu genlerin ne yaptıklarının bulunmasıdır. Bu plan, 2010 yılına kadar 26,000 Arabidopsis geninin işlevini belirleme amaçlarını ve stratejilerini kapsamaktadır. Plan, bitkinin yaşam döneminde her bir genin ne zaman ve hangi tip hücrelerde ifade olacağını kapsamaktadır. Sonuçta her şeyi bilinen gerçek bir bitkiye sahip olunacaktır. Burada, gerçek bir bitki elde etmek için Arabidopsis kullanılmasının bir çok sebebi vardır; Yaşam döngüsü çok hızlıdır. Tohumdan tohuma yedi haftada geçebilir. Ayrıca, kendine dölektir. Her bir bitki 10.000 ila 50.000 tohum üretebilir. Bu, kalıtsal olarak aynı olan çok sayıda bitki üretebileceğimiz anlamına gelebilir. Arabidopsis aynı zamanda iyi bir araştırma bitkisidir. Çünkü bilinen en küçük bitki genomuna sahiptir. Çok sayıda gereksiz DNA‟ya sahip değildir. Meyve olgunlaşmasında etilen hormonunun nasıl iş gördüğü, bir Arabidopsis mutantından öğrenilmiştir. Arabidopsis‟te etilen yolundan sorumlu olan aynı genler, domateste de bulunmuştur; ve bu genlerin nasıl çalıştığını anlamak olgunlaşma sürecini kontrol etmeyi sağlamaktadır. Diğer bir uygulama ise; Arabidopsis‟te genlerin belirlenmesi sayesinde kültür bitkisi ıslahçıları, yararlı varyetelerin seçici olarak üretilmesi işleminde belirli mutasyonları nasıl kullanacaklarını anlayacaklardır. Örneğin; yabani darı normalde Texas‟ta yetişmez. Ancak ıslahçılar, Arabidopsis araştırmasına dayalı olarak, bitkide fotoreseptörü etkileyen bir mutasyonu seçmişlerdir. Bu, yabani darının, Texas‟taki tarlalarda yaşam döngüsünü tamamlamasına izin verecektir. Yani, bir referans bitkisi ve kültür bitkileri arasında bu tür bağlayıcı bilgiler çok kullanışlıdır. Dünya nüfüsunun 2050 yılında 10 milyara ulaşacağı düşünülmektedir. Şu an bile, 6 milyar insandan 800 milyonu, kronik yetersiz beslenme ile karşı karşıyadır. Dünyadaki beslenmeyi artırmanın tek yolu kültür bitkisi ırklarının ıslahından geçmektedir. Verimlilik artışı, ya daha etkili ıslah yapmak yada genetiksel olarak değişime uğratılmış (mutant) bitkiler üretmek suretiyle, moleküler genetik uygulamalara bağlı olacaktır. İleriki yıllarda bu gibi bilimsel verilerin geliştirilmesiyle moleküler ve genetik düzeyde bilmeceler çözülecek ve insan yaşamındaki sorunlara çözümler bulunacaktır. Fototropizma: Bir bitki sürgününün ışığa doğru yada ışıktan uzaklaşarak büyümesi. Sitokinez: Mitozdan hemen sonra, iki kardeş hücre meydana getirmek üzere sitoplazmanın bölünmesidir. Steroid: Çeşitli fonksiyonel grupların bağlandığı dört halkından oluşmuş bir karbon iskelet ile karakterize edilen lipit çeşiti. Gen: DNA‟daki (yada bazı virüslerde RNA‟daki) özgül bir nükleotit dizisinden (sekansından) meydana gelmiş kalıtsal bilgiyi taşıyan birim. Genler (DNA) ve bunların ürünleri (proteinler) bir organizmanın kalıtsal gelişimini belirler. Genom: Bir organizmanın genlerinin tamamı; bir organizmanın genetik materyali. Mutasyon: Bir genin DNA‟sında ortaya çıkan değişiklik, bu değişiklik sonunda genetik çeşitlilik meydana gelir. Mutant fenotip: Yabanil tipe alternatif olan özellik. Katalizör: Kendisi harcanmaksızın tepkime hızını değiştiren bir kimyasal ajandır. Enzim: Katalitik bir proteindir. Bir Bitki Hormonunun Tanımı Hormon kelimesi uyarma anlamındadır. Tüm çok hücreli organizmalarda bulunan hormonlar, organizmanın kısımlarını kontrol eden kimyasal sinyallerdir. Salisbury ve Ross tarafından 1992‟de yazılan Bitki Fizyolojisi (Plant Physiology) kitabının 4‟üncü baskısında bir bitki hormonu için şu tanım yapılmaktadır; “Bir bitki hormonu, bitkinin belirli bir kısmından sentezlenen organik bir bileşiktir ve çok düşük konsantrasyonlarda bitkinin başka bir kısmına taşınabilir, ve taşındığı yerde fizyolojik etkilere neden olabilir.”

http://www.biyologlar.com/bitki-hormonlari-fitohormonlar-

Bakteriyofaj Nedir

Bakteriyofaj (bakteri ve Yunanca phagein, ‘yemek’ fiilinden türetme), bakterileri enfekte eden bir virüstür. Terim genelde kısaltılmış hali olan faj olarak kullanılır. Ökaryotları (hayvan, bitki ve mantarları) enfekte eden virüsler gibi fajlarda da büyük bir yapısal ve işlevsel çeşitlilik vardır. Tipik olarak proteinden oluşan bir kabuk ve içinde yer alan genetik malzemeden oluşurlar. Genetik malzeme DNA veya RNA olabilir, ama genelde 5 - 500 kilo baz çifti uzunluğunda çift sarmallı DNA’dan oluşur. Bakteriyofajlar genelde 20 ila 200 nm arası büyüklükte olurlar. Fajlar her yerde mecutturlar ve bakterilerin yaşadığı ortamlarda, örneğin toprakta veya hayvan bağırsaklarında bulunabilirler. Faj ve diğer virüslerin en yoğun doğal kaynaklarından biri deniz suyudur. Deniz yüzeyinde mililitrede 109 etkin faj taneciği (virion) bulunmuştur ve deniz bakterilerinin %70′i fajlar tarafından enfekte olmuş olabilirler. Tarihçe 1913′te Britanyalı bakteriyolog Frederick Twort bakterileri enfekte edip öldüren bir etmen keşfetmiş ama konuyu daha fazla takip etmemiştir. Fransız-Kanadalı mikrobiyolog Felix d’Hérelle 3 Eylül 1917′de “dizanteri basilinin düşmanının, görünmez bir mikrobunu” keşfettiğini açıklayıp ona bakteryofaj edını verdi. Çoğalması Bakteriyofajların litik veya lizogenik hayat döngüleri olabilir, bazılarında her ikisi de olur. T4 fajı gibi öldürücü fajlarda görülen litik döngüde virionun çoğalmasının hemen ardından konak hücre parçalanır ve ölür. Hücre ölür ölmez virionların kendilerine yeni bir konak bulmaları gerekir. Lizogenik döngü, buna tezat olarak, konak hücrenin parçalanmasına neden olmaz. Lizogenik olabilen fajlara ılımlı fajlar (temperate phage) denir. Viral genom konak genoma dahil olur ve oldukça zararsız bir şekilde onunla beraber eşlenir. Konak hücrenin sağlığı yerinde olduğu sürece Virüs sessiz bir şekilde varlığını sürdürür, ama konağın şartları bozulursa, örneğin besin kaynaklarının tükenmesi durumunda, endojen fajlar (profaj olarak adlandırılırlar) etkinleşirler. Bir çoğalma süreci başlar, sonucunda konak hücre parçalanır. İlginç bir şekilde lizogenik döngü konak hücrenin çoğalmasına izin verdiği için hücrenin yavrularında da virüs varlığını devam ettirir. Bazen profajlar inaktif oldukları dönemde bakteri genomuna yeni işlevler kazandırarak konak bakteriye fayda sağlarlar, bu olguya lizogenik dönüşüm (lysogenic conversion) denir. Bunun iyi bilinen bir örneği Vibrio cholera ‘nın zararsız bir suşunun bir faj tarafından enfekte edilerek kolera hastalığı etmenine dönüşümüdür. Bağlanma ve Giriş Renklendirilmiş bir elektron mikrografında yanyana dizilmiş bakteriyofajlar Konak hücreye girmek için bakteryofajlar bakterinin yüzeyindeki özgül reseptörlere bağlanırlar, bunlar arasında lipopolisakkaritler, teikoik asitler, proteinler sayılabilir. Bu nedenle bir bakteryofaj ancak bağlanabileceği reseptörler taşıyan bakterileri enfekte edebilirler. Faj virionları kendiliklerinde hareket etmediklerinden dolayı kendi reseptörleriyle solüsyondayken rassal olarak buluşup bağlanırlar. Karmaşık bakteryofajlar, örneğin T-çift fajları, genetik malzemelerini hücrenin içine enjekte etmek için şırınga benzeri bir hareket kullanırlar. Uygun reseptörle temas kurduktan sonra kuyruk lifleri taban plakasını hücre yüzeyine yaklaştırırlar. İyice bağlandıktan sonra, kuyruk büzülür, bu da genetik malzemenin dışarı itilmesine neden olur. Bazı fajlar nükleik asiti hücre zarından içeri iter, bazıları hücre yüzeyine birakır. Başka yöntemlerle genetik malzemlerini içeri sokan bakterifajlar da vardır. Protein ve Nükleik Asit Sentezi Kısa süre, bazen dakikalar içinde, bakteri ribozomları viral mRNA’nın proteine çevirimine (translasyonuna) başlarlar. RNA-fajlarında RNA-replikaz bu sürecin başlarında sentezlenir. Erken sentezlenen proteinler ve virionla gelen bazı proteinler bakterinin RNA polimerazını modifiye edip onun viral mRNA’yı tercihen çevirmesine neden olabilirler. Konağın kendi protein ve nükleik asit sentezi de bozularak viral ürünlerin sentezine yönlendirilir. Bu ürünler ya hücreyi parçlamaya yarayacaklaklar, ya yeni virionların oluşmasına yardımcı olacaklar veya yeni virionları oluşturacalardır. Virion Oluşumu T4 fajları durumunda yeni fajların inşası özel yardımcı molekülleri gerektiren karmaşık bir süreçtir. Önce taban plakası oluşur, kuyruk onun üzerinde büyür. Kafa kapsidi, ayrı olarak oluşup kendiliğinden kuyruk ile birleşir. Henüz bilinmeyen bir şekilde DNA kafanın içine sıkı bir şekilde yerini alır. Bütün süreç yaklaşık 15 dakika alır. Virionların Salınımı Fajlar ya hücre parçalanması (lizis) veya salgılanma yoluyla salınırlar. T4 fajları durumunda, hücre içine girmelerinden 20 dakikadan biraz sonra hücre parçalanması yoluyla sayıları 300′ü bulabilen faj salınır. Bunun gerçekleşmesi, hücre duvarındaki peptidoglikanı parçalayan endolizin adlı enzim sayesinde olur. Bazı virüler ise parazite dönüşüp konak hücrenin sürekli olarak yeni virüs tanecikleri salgılamasına neden olabilirler. Yeni virionlar hücre zarından tomurcuklanarak koparlar, beraberlerinde hücre zarının bir kısmını da götüren bu fajlar örtülü virüse olarak ortama salınırlar. Salınan virionların her biri yeni bir bakteriyi enfekte edebilir. Faj Terapisi Bir bakteriyi enfekte etmek üzere ona bağlanmakta olan bakterilerin şematik gösterimi Keşiflerinin ardında fajlar anti-bakteriyel etmen olarak denenmişlerdir. Ancak antibiyotikler keşfedilince bunların fajlardan daha kullanışlı oldukları görülmüştür ve Batı’da faj tedavisi üzerine yapılan araştırmalar bırakılmıştır. Bun karşın Sovyetler Birliği’nde 1940′lardan beri antibiyotiklere alternatif olarak kullanımı devam etmiştir. Bakteri suşlarında doğal seleksiyon yoluyla antibiyotik direncinin oluşması bazı tıbbi araştırmacıları faj tedavisini antibiyotik tedavisine bir alternatif olarak tekrar değerlendirmeye sevketmiştir. Antibiyotiklerden farklı olarak fajlar, milyonlarca yıldır süregeldiği gibi, bakterilerle beraber evrimleştikleri için, sürekli bir direncin oluşma olasılığı yok sayılabilir. Ayrıca, etkili bir faj, özgül bakterisini tamamen bitene kadar enfekte etmeye devam edecektir. Belli bir faj genelde ancak belli bir bakteri tipini enfekte edebildiği için, ki bu birkaç bakteri türü olabileceği gibi bir türün sadece bazı alt türleri de olabilir, bakteri tipinin doğru tanımlandığından emin olmak gerekebilir, bu da 24 saat sürebilir. Faj terapisinin bir diğer avantajı başka bakterilere zarar gelmeyeceğinden dar spektrumlu antibiyotik terapisine benzemesidir. Ancak, sıkça olduğu gibi, birden fazla bakterinin beraberce neden oldukları enfeksiyonlarda bu bir dezavantaj oluşturabilir. Bakteryofajların bir diğer sorunu vücudun bağışıklık sisteminin saldırısına uğramalarıdır. Fajlar enfeksiyonla doğrudan temas durumunda etki gösterirler, onun için açık bir yaraya uygulanmaları en iyi sonuç doğurur. Sistemik enfeksiyonlarda bu pratik olarak mümkün değildir. Sovyetler birliğinde diğer tedavilerin çalışmadığı durumlarda gözlenen başarılı sonuçlara rağmen çoğu araştırmacı faj terapisinin tibbi bir geçerliliğe ulaşacağına şüphe ile bakmaktadır. Faj tedavisinin etkinliğini belirlemek için büyük ölçekli klink testler yapılmamıştır ama antibiyotik dirençli bakteri türlerinin çoğalmasından dolayı bu konuda araştırmalar sürmektedir. Ağustos 2006′da ABD Gıda ve İlaç İdaresi (Food and Drug Admnistration) bazı etlerde Listeria monocytogenes bakterisinin öldürülmesi için bakteryofaj kullanımını onaylamıştır. Model Bakteriyofajlar Aşağıda ayrıntılı olarak üzerinde çalışılmış olan bakteryofajların bir listesi bulunmaktadır: * λ faj * T4 fajı * T7 fajı * R17 fajı * M13 fajı * MS2 fajı * P1 fajı * P2 fajı * N4 fajı * Φ6 fajı * Ф29 fajı

http://www.biyologlar.com/bakteriyofaj-nedir

Gen Klonlanmasında Rekombinant DNA Teknolojisi

Gen Klonlanmasında Rekombinant DNA Teknolojisi

Daha önceki bölümlerde aşamalarını anlattığım ve oluşturulan rDNA 'ların hücrelere aktarılması sırasında çeşitli yöntemler kullanılır. Rekombinant DNA moleküllerin hücreye aktarılması sırasında(bu hücreler konak hücrelerdir) rekombinant molekülün aktarılacağı organizmaya bağlı olarak çeşitli aktarım (transfer) yöntemleri mevcut olup, aktarım işlemi, "transformasyon" adını alır. Bu yöntemler; 1)Kimyasal teknikler(kalsiyum-fosfat transfeksiyonu) 2)Fiziksel teknikler(mikroenjeksiyon, elektroporasyon ve kimyasal porasyon,biyolistik) 3)Füzyon teknikleri 4)Viral teknikler olarak dört gruba ayrılır. AMAÇ?? istenilen genin, yeni hücreye girip, anlatım yapması!!! Kimyasal Tekniklerden, kalsiyum-fosfat transfeksiyonu; bu yöntem, istenilern geni ve ekspresyon için gerekli elementleri, konak hücre üstüne çöktürme yöntemidir.Plazmit DNA, kalsiyum-fosfat ile çöktürülüp, hedef hücrrnin bu yapıyı endositoz/fagositoz ile içine alması sağlanır.Böylece bu çözeltiyi sindirerek hücre içine alan hücreler, istenilen genin anlatımını gerçekleştirmiş olurlar.Genellikle bu gücrelerdeki plazmit vektörler çoğalmazlar, kalıcı olarak hücre içinde yar alırlar.Genelde seçilen genler, antibiyotiğe karşı direnç genleridir.Bu işlemde plazmit vektör çoğalması söz konusu olmadığından transformasyon değil, transfeksiyon denir.Çünkü transformasyon, hücrenin kontrolsüz büyümesi anlamına gelir. Fiziksel tekniklerden, mikroenjeksiyon; zahmetli fakat verimli bir tekniktir.DNA molekülü, mikroskop altında, çok ince uçlu pipet yardımıyla hücrenin sitoplazmasına veya çekirdeğine doğrudan aktarılır.Memeli hücre ve embriyolarında, bitki protoplast ve dokularında başarıyla uygulanmaktadır.Memeli hayvanların döllenmiş yumurtalarına, bu yolla gen aktarımı yapılarak, transgenik haycan elde edilmiş olunur.Bu işlem sonucunda çok sayıda hücre elde etmek mimkün değildir.Çünkü az sayıda DNA injekte edilebilinir. Fiziksel tekniklerden, elektroporasyon; membrana elektrik akımı verilerek, membranda küçük delikler açılması sağlanır.Bu delikler, nükleik asitlerin geçişine olanak sağlarlar.Bu delikler, her hücrede, farklı elektrik akım gücü ve farklı sürelerde elektrik akımı verilmesiyle gerçekleşir.Bu teknik, insan, bakteri, maya hücrelerinde gen aktarımı için kullanılmakadır. Fiziksel tekniklerden, biyolistik; bu yöntemde, küçük çaptaki metal partiküllerine sarılmış DNA molekülleri bulunur.Bu metal partikğlleri, altın ya da tungsten elementleri olabilir.Bir mikroprojektil denen bir nevi silaha benzeyen alet ile, bu metal partikülleine sarılı DNA 'lar hücreye bombardıman edilir.Böylelikle hücrenin içine giren bu yapılardan bazıları bu metal partüküllerinden ayrılır ve hücre genomu ile birleşir.Mitokontri ve kloroplast organellerinde kullanılan yegane yöntemdir.Ayrıca bitki hücrelerine gen transferi için de kullanılır. Füzyon teknikleri; iki hücrenin, genetik içeriğinin birleştirirlmesi işlermi olup, amaç iki ebeveyinin farklı özellliklerini taşıyan bir hibrit oluşturmaktır.İstenilen iki ebeveyn genlerini, hedef hücreye aktarılmak için iki farklı füzyon tekniği mevcuttur. a)istenilen genleri bazı taşıyıcılar ile( lipozom, eritrosit) hücreye aktarma yöntemi; bu yöntemde örneğin lipozomlar, duvarsız hücre ile etkileşirler ve lipozom içeriği, hücrenin içine aktarılır.Bu gen aktarımında, memeli hücresinin metafaz evresindeki kromozomlar, lipozomlara bağlanır ve kromozomların hücre içine girmesi sağlanır.Böylece oluşan hibrit hücreler, seçici ortamda üretilerek aktarılan gen yönünden incelenirler.Bu transfekte hücre genleri, DNA' da geçici olarak anlatılabilirler. b)İki farklı hücrenin birleştirilmesi tekniğidir.Monoklonal antikor eldesi için( hibridoma tekniği) kullanılan bir yöntemdir. Viral teknilkler; genetik materyali hücrelere aktarmak için virüslerden yararlanılır.Bu virüsler DNA/RNA genetik materyali taşıyan virüslerdir.Bu yöntemde bakterinin enfekte edilip öldürülmesi söz konusu değildir.Bakterinin genomuna giren, onunla birlikte anlatım yapan ve stabilitesinin korunmasını sağlayan vektör olarak kullanılan virüslerden üretilmiş vektörler "baculovirus" ya da "vaccine" viral vektörleri olabilir.Lambda vektörleri ve çeşitleri en sık kullanılan vektörlerdir. Hayvan hücrelerinde transformasyon(hayvan hücrelerine gen aktarımı); *Mikroenjeksiyon *embriyonik kök hücre *gen terapisi(temelinde, hasta kişinin genlerini, iyileştirici proteinler üretecek şekilde değiştirmek yatıyor)-retroviral transformasyon mikroenjeksiyon; verimli yumurtalar ayrılır ve DNA 'lar(somatik hücredeki DNA'lar)yumurta hücresinin pronüklousunun içine enjekte edilir.(yumurta hücresindeki çekirdek içeriği daha önce çıkarılmıştır)Hücre bölünmesi süresince, DNA, kromozomlara yerleşmiş olur.Enjekte edilmiş genler, sonucu elde edilen emriyo, taşıyıca anneye yani dişi konak canlıya enjekte edilir.Hamilelik dönemi oluşur ve devam eder.Sonunda, soyların, aktarılmış DNA 'ları barındırıp barındırmadığı tespit edilir.En iyi şartlarda, %1-5 arasında bir başarı elde edilir. Embriyonik kök hücre; embriyonik kök hücreler, blostosist dönemindeki hücrenin iç membranından alınan yapılardır.ESC(embriyonik kök hücre), DNA ile mikroenjeksiyona tabi tutulur.ESC, erken embriyo safhasındaki embriyoya injekte edilmiştir.Bu olay "kimera" yani hibrit embriyo olarak adlandırırlır.Transforme edilmiş hücrelerin, germ hücresine gelişmesi beklenir.Bir sonraki kuşaklar "kimera" söz konusu olduğu için (hibrit embriyo) tamamen transgenik soyları oluşturacaktır. Retroviral transformasyon; virüslerden yararlanılır ve virüslerin doğal olarak barındırdığı avantajlardan yararlanılır örneğin, her virüs kendine özgü, infekte edebileceği bir konak hücreye sahiptir.Modifiye edilmiş viral vektörler ile ilgili DNA'lara karşı görevlendirilirler. Bitki hücrelerinde transformasyon ( bitkilere gen aktarımı); *Agrobacterium aracılığı ile; bir toprak bakterisidir.DNA'yı bitkilere yapışarak, doğal olarak aktarır. *Biyolistik *Elektroporasyon *Mikroenjeksiyon Agrobacterium tumefaciens bakterisinin, bitki hücrelerini enfekte edip gebnetik materyalini bitkiye aktaran ve tümor oluşumunu sağlayan yani bitki hücreini enfekte etmesini sağlayan, dairesel plazmit yapısı "Ti plazmit".Ti plazmit, RNA bulundurmaz, GC içeriği %56 oranında olup, içeriğindeki genetik materyalin %81'i gen kodlar.Bu plazmit, transgenik bitki eldesi için önemli olmakla birlikte, dikodiledon bitkilere uygulanan bir işlemdir.Ti plazmit genel olarak bitki genomuna entegre olan bir ya da daha fazla TDNA bölgesi, bir vir bölgesi, bir replikasyon merkezi, konjugatif transferin gerçekleşmesini sağlayan bir bölge ve opin katabolizması için gerekli olan genleri içerirler . İkili vektörler;Vir bölgesi ve gen AYRI vektörler üzerindenir.TDNA kısmı çıkarılmıştır. ko-entegratif vektörler;Vir bölgesi ve gen aynı vektör üzerindedir.TDNA kısmı vektörün üzerindedir. Ti plazmit vektöründe; SOL sınır'a yakın ;selektif genler sol sınıra yakın klonlanır. SAĞ sınır'a yakın;istenilen gen, sağ sınıra yakın klonlanır. Enfekte işlemi; *Enfektif Ti plazmidi hazırdır. *T-DNA bölgesi VirD2' ye bağlı olarak(hareketi sağlar) ayrılır. *TDNA, proteinlerle kaplanır.(VirE2 mevcudiyetinde) *Bakteri T-DNA'sı, kanaldan bitki hücresine geçer. *T-DNA-protein kompleksi bitki sitoplazmasında ilerler *Bitki nükleusuna girerek genoma entegre olur. *Oksin, sitokinin ve opin hormonları sentezi ile hücre sayısında artış görülür.(tümör oluşması kontrolsüz hücre bölünmesidir) *Taç tümörü oluşumu ile süreç sonlanır. kaynak; vikipedi, Gene Cloning and DNA Analysis T.Brown

http://www.biyologlar.com/gen-klonlanmasinda-rekombinant-dna-teknolojisi

Bakteriyofajlar Hakkınmda Bilgi

Bakteriyofaj (bakteri ve Yunanca phagein, ‘yemek’ fiilinden türetme), bakterileri enfekte eden bir virüstür. Terim genelde kısaltılmış hali olan faj olarak kullanılır. Ökaryotları (hayvan, bitki ve mantarları) enfekte eden virüsler gibi fajlarda da büyük bir yapısal ve işlevsel çeşitlilik vardır. Tipik olarak proteinden oluşan bir kabuk ve içinde yer alan genetik malzemeden oluşurlar. Genetik malzeme DNA veya RNA olabilir, ama genelde 5 - 500 kilo baz çifti uzunluğunda çift sarmallı DNA’dan oluşur. Bakteriyofajlar genelde 20 ila 200 nm arası büyüklükte olurlar. Fajlar her yerde mecutturlar ve bakterilerin yaşadığı ortamlarda, örneğin toprakta veya hayvan bağırsaklarında bulunabilirler. Faj ve diğer virüslerin en yoğun doğal kaynaklarından biri deniz suyudur. Deniz yüzeyinde mililitrede 109 etkin faj taneciği (virion) bulunmuştur ve deniz bakterilerinin %70′i fajlar tarafından enfekte olmuş olabilirler. Tarihçe 1913′te Britanyalı bakteriyolog Frederick Twort bakterileri enfekte edip öldüren bir etmen keşfetmiş ama konuyu daha fazla takip etmemiştir. Fransız-Kanadalı mikrobiyolog Felix d’Hérelle 3 Eylül 1917′de “dizanteri basilinin düşmanının, görünmez bir mikrobunu” keşfettiğini açıklayıp ona bakteryofaj edını verdi. Çoğalması Bakteriyofajların litik veya lizogenik hayat döngüleri olabilir, bazılarında her ikisi de olur. T4 fajı gibi öldürücü fajlarda görülen litik döngüde virionun çoğalmasının hemen ardından konak hücre parçalanır ve ölür. Hücre ölür ölmez virionların kendilerine yeni bir konak bulmaları gerekir. Lizogenik döngü, buna tezat olarak, konak hücrenin parçalanmasına neden olmaz. Lizogenik olabilen fajlara ılımlı fajlar (temperate phage) denir. Viral genom konak genoma dahil olur ve oldukça zararsız bir şekilde onunla beraber eşlenir. Konak hücrenin sağlığı yerinde olduğu sürece Virüs sessiz bir şekilde varlığını sürdürür, ama konağın şartları bozulursa, örneğin besin kaynaklarının tükenmesi durumunda, endojen fajlar (profaj olarak adlandırılırlar) etkinleşirler. Bir çoğalma süreci başlar, sonucunda konak hücre parçalanır. İlginç bir şekilde lizogenik döngü konak hücrenin çoğalmasına izin verdiği için hücrenin yavrularında da virüs varlığını devam ettirir. Bazen profajlar inaktif oldukları dönemde bakteri genomuna yeni işlevler kazandırarak konak bakteriye fayda sağlarlar, bu olguya lizogenik dönüşüm (lysogenic conversion) denir. Bunun iyi bilinen bir örneği Vibrio cholera ‘nın zararsız bir suşunun bir faj tarafından enfekte edilerek kolera hastalığı etmenine dönüşümüdür. Bağlanma ve Giriş Renklendirilmiş bir elektron mikrografında yanyana dizilmiş bakteriyofajlar Konak hücreye girmek için bakteryofajlar bakterinin yüzeyindeki özgül reseptörlere bağlanırlar, bunlar arasında lipopolisakkaritler, teikoik asitler, proteinler sayılabilir. Bu nedenle bir bakteryofaj ancak bağlanabileceği reseptörler taşıyan bakterileri enfekte edebilirler. Faj virionları kendiliklerinde hareket etmediklerinden dolayı kendi reseptörleriyle solüsyondayken rassal olarak buluşup bağlanırlar. Karmaşık bakteryofajlar, örneğin T-çift fajları, genetik malzemelerini hücrenin içine enjekte etmek için şırınga benzeri bir hareket kullanırlar. Uygun reseptörle temas kurduktan sonra kuyruk lifleri taban plakasını hücre yüzeyine yaklaştırırlar. İyice bağlandıktan sonra, kuyruk büzülür, bu da genetik malzemenin dışarı itilmesine neden olur. Bazı fajlar nükleik asiti hücre zarından içeri iter, bazıları hücre yüzeyine birakır. Başka yöntemlerle genetik malzemlerini içeri sokan bakterifajlar da vardır. Protein ve Nükleik Asit Sentezi Kısa süre, bazen dakikalar içinde, bakteri ribozomları viral mRNA’nın proteine çevirimine (translasyonuna) başlarlar. RNA-fajlarında RNA-replikaz bu sürecin başlarında sentezlenir. Erken sentezlenen proteinler ve virionla gelen bazı proteinler bakterinin RNA polimerazını modifiye edip onun viral mRNA’yı tercihen çevirmesine neden olabilirler. Protein ve Nükleik asit sentezi Kısa süre, bazen dakikalar içinde, bakteri ribozomları viral mRNA'nın proteine çevirimine (translasyonuna) başlarlar. RNA-fajlarında RNA-replikaz bu sürecin başlarında sentezlenir. Erken sentezlenen proteinler ve virionla gelen bazı proteinler bakterinin RNA polimerazını modifiye edip onun viral mRNA'yı tercihen çevirmesine neden olabilirler. Konağın kendi protein ve nükleik asit sentezi de bozularak viral ürünlerin sentezine yönlendirilir. Bu ürünler ya hücreyi parçlamaya yarayacaklaklar, ya yeni virionların oluşmasına yardımcı olacaklar veya yeni virionları oluşturacalardır. Virion oluşumu T4 fajları durumunda yeni fajların inşası özel yardımcı molekülleri gerektiren karmaşık bir süreçtir. Önce taban plakası oluşur, kuyruk onun üzerinde büyür. Kafa kapsidi, ayrı olarak oluşup kendiliğinden kuyruk ile birleşir. Henüz bilinmeyen bir şekilde DNA kafanın içine sıkı bir şekilde yerini alır. Bütün süreç yaklaşık 15 dakika alır. Virionların salınımı Fajlar ya hücre parçalanması (lizis) veya salgılanma yoluyla salınırlar. T4 fajları durumunda, hücre içine girmelerinden 20 dakikadan biraz sonra hücre parçalanması yoluyla sayıları 300'ü bulabilen faj salınır. Bunun gerçekleşmesi, hücre duvarındaki peptidoglikanı parçalayan endolizin adlı enzim sayesinde olur. Bazı virüler ise parazite dönüşüp konak hücrenin sürekli olarak yeni virüs tanecikleri salgılamasına neden olabilirler. Yeni virionlar hücre zarından tomurcuklanarak koparlar, beraberlerinde hücre zarının bir kısmını da götüren bu fajlar örtülü virüse olarak ortama salınırlar. Salınan virionların her biri yeni bir bakteriyi enfekte edebilir. Faj terapisi Keşiflerinin ardında fajlar anti-bakteriyel etmen olarak denenmişlerdir. Ancak antibiyotikler keşfedilince bunların fajlardan daha kullanışlı oldukları görülmüştür ve Batı'da faj tedavisi üzerine yapılan araştırmalar bırakılmıştır. Bun karşın Sovyetler Birliği'nde 1940'lardan beri antibiyotiklere alternatif olarak kullanımı devam etmiştir. Bakteri suşlarında doğal seleksiyon yoluyla antibiyotik direncinin oluşması bazı tıbbi araştırmacıları faj tedavisini antibiyotik tedavisine bir alternatif olarak tekrar değerlendirmeye sevketmiştir. Antibiyotiklerden farklı olarak fajlar, milyonlarca yıldır süregeldiği gibi, bakterilerle beraber evrimleştikleri için, sürekli bir direncin oluşma olasılığı yok sayılabilir. Ayrıca, etkili bir faj, özgül bakterisini tamamen bitene kadar enfekte etmeye devam edecektir. Belli bir faj genelde ancak belli bir bakteri tipini enfekte edebildiği için, ki bu birkaç bakteri türü olabileceği gibi bir türün sadece bazı alt türleri de olabilir, bakteri tipinin doğru tanımlandığından emin olmak gerekebilir, bu da 24 saat sürebilir. Faj terapisinin bir diğer avantajı başka bakterilere zarar gelmeyeceğinden dar spektrumlu antibiyotik terapisine benzemesidir. Ancak, sıkça olduğu gibi, birden fazla bakterinin beraberce neden oldukları enfeksiyonlarda bu bir dezavantaj oluşturabilir. Bakteryofajların bir diğer sorunu vücudun bağışıklık sisteminin saldırısına uğramalarıdır. Fajlar enfeksiyonla doğrudan temas durumunda etki gösterirler, onun için açık bir yaraya uygulanmaları en iyi sonuç doğurur. Sistemik enfeksiyonlarda bu pratik olarak mümkün değildir. Sovyetler birliğinde diğer tedavilerin çalışmadığı durumlarda gözlenen başarılı sonuçlara rağmen çoğu araştırmacı faj terapisinin tibbi bir geçerliliğe ulaşacağına şüphe ile bakmaktadır. Faj tedavisinin etkinliğini belirlemek için büyük ölçekli klink testler yapılmamıştır ama antibiyotik dirençli bakteri türlerinin çoğalmasından dolayı bu konuda araştırmalar sürmektedir. Ağustos 2006'da ABD Gıda ve İlaç İdaresi (Food and Drug Admnistration) bazı etlerde Listeria monocytogenes bakterisinin öldürülmesi için bakteryofaj kullanımını onaylamıştır

http://www.biyologlar.com/bakteriyofajlar-hakkinmda-bilgi

Doğal seçilim ne denli yaygındır?

Biyologların doğal seçilimle ilgili sorabileceği en basit sorulardan biri de, ilgiçtir, yanıt verilmesi en güç olanlardan biridir. Doğal seçilim, bir popülasyonun genel genetik oluşumunun değişiminden ne derecede sorumludur? Doğal seçilimin canlıların fiziksel özelliklerinin çoğunu oluşturduğundan kimsenin ciddi bir kuşkusu yoktur - gaga, biseps, beyin gibi büyük ölçekteki özelliklerin oluşumunun başka mantıklı bir açıklaması yoktur. Ancak, doğal seçilimin, değişimin moleküler düzeyde yönlendirilmesi üzerindeki rolünün etkinlik derecesi üzerinde ciddi şüpheler duyulmuştur. Acaba DNA'da milyonlarca yıl boyunca gerçekleşen evrimsel değişimin -başka bir sürece göre- ne kadarı doğal seçilim tarafından yönlendirilmiştir? 1960'lara gelene değin, biyologların bu soruya verdiği yanıt, "hemen hepsi" olmuştur, ancak Japon araştırmacı Motoo Kimura, tarafından yönetilen bir grup popülasyon genetikçisi, bu görüşe keskin bir biçimde meydan okumuştur. Kimura -çevre koşullarının başlangıçta az rastlanan bir özelliğin frekansını arttırdığı "olumlu" doğal seçimin- çoğunlukla moleküler evrime etki etmediğini ileri sürdü. Buna karşın Kimura; popülasyonlarda kalıcı olan ya da yüksek frekanslara ulaşan genetik mutasyonların hemen hepsinin seçilim açısından "yansız" olduğunu, yani şu ya da bu şekilde seçilim değeri üzerinde kayda değer etkileri olmadığını söyledi (Doğal olarak, zararlı mutasyonlar yüksek bir oranda oluşmaya devam ederler, ancak popülasyon içinde yüksek frekanslara ulaşamadıkları için, evrimsel açıdan çıkmaz sondurlar.) Şu anki çevre koşullarında yansız mutasyonlar esas olarak görünmez olduklarından, böylesi değişiklikler, genetik derlemeyi zamanla büyük oranda değiştirirken, popülasyon içinde sessiz bir biçimde farkedilmeden evrilirler. 1980'lere gelindiğinde bir çok evrimsel genetikçi "yansız mutasyon" kuramını kabul etmişti. Ancak bu kuram üzerindeki veriler çoğunlukla dolaylıydı; daha doğrudan yapılan kritik testlerden yoksundu. İki ayrı gelişme bu sorunun çözümüne yardım etti. Birincisi, popülasyon genetikçileri, genomdaki yansız değişiklikleri, uyumlu olanlardan ayırt etmeye yarayan basit istatistiksel testler geliştirdiler. İkincisi, yeni teknoloji, bir çok türün genomunun tamamının sıralanmasını olanaklı kıldı, böylelikle bu istatistiksel testlerin uygulanabileceği yüksek miktarda veri edinilmiş oldu. Yeni veriler "yansız mutasyon" kuramının, doğal seçilimin önemini yabana attığını gösterdi. Drosophila melanogaster Kaliforniya Üniversitesi, Davis'den David J. Begun ve Charles H. Langley'in liderliğindeki bir ekip tarafından yapılan bir araştırmaya göre, Drosophila sınıfına ait iki meyve sineği türünün DNA dizileri karşılaştırıldı. Bilim insanları her iki türde yaklaşık 6.000 geni incelediler, ve iki tür ortak bir atadan ıraksadığından beri, hangi genlerin ayrıldığını saptadılar. İstatistiksel bir test uygulayarak, 6.000 genin en az %19'unda yansız evrimin olmadığını ortaya koydular; bir başka deyişle, doğal seçilim, incelenen genlerin beşte birinin evrimsel ıraksamasını yönlendirmişti (uyguladıkları istatistiksel test "ölçülü" (conservative) olduğundan, asıl oran daha yüksek olabilir.) Bu sonuç yansız evrimin önemsiz olduğunu önermiyor -yani genlerin geri kalan %81'i genetik sürüklenmeyle ıraksamış olabilir. Ama doğal seçilimin, çoğu "yansız mutasyon" kuramcısının sanısının aksine, türlerin ıraksamasında daha büyük bir rolü olduğunu kanıtlıyor. Kaynaklar Scientific American: www.sciam.com/article.cfm?id=testing-natural-selection Drosophila Population Genomics Project

http://www.biyologlar.com/dogal-secilim-ne-denli-yaygindir

Çeşitlilik açıklanıyor

Darwin değişkenlerin nereden geldiğini söyleyememenin yanısıra yeni özelliklerin bir sonraki nesillerde nasıl yayıldığını da açıklayamadı. Yavrunun ebeveynlerin özelliklerinin karışımını aldığı karma kalıtıma (blending inheritance) inanıyordu. Ancak Darwin bile bu kuramın sorunlu olduğunu anlamıştı, çünkü eğer özellikler gerçekten karışmış olsaydı, herhangi nadir ve yeni bir özellik, bu özelliği taşımayan bireylerin nesiller boyu çoğalmasıyla giderek seyrelirdi. Karma kalıtımla ilgili karışıklık 1900 yılında, Gregor Mendel'in 1850'lerde ve 1860'larda yürüttüğü ünlü bezelye yetiştirme deneylerinin yeniden ele alınmasıyla ortadan kalktı. Avusturyalı rahibin bahçesinde yetiştirdiği bezelye bitkileri, uzun veya kısa gövdeler, kırışık veya düz tohumlar gibi belirgin biçimsel farklar gösterdiler. Ters özellikleri olan safkan bezelye bitkileri bibiriyle döllendiğinde ortaya çıkan bitki genellikle iki ebeveynden birine benziyordu. Ancak sürdürülen döllenmeler sonucunda, bir özelliğin her iki çeşidi de ileriki nesillerde bozulmamış biçimiyle yeniden ortaya çıkıyordu, bu da değişik biçimlerin genetik blgilerinin karışmamış olduğunu gösteriyordu. Mendel'in deneyleri, kalıtsal değişkenlerin geçici ve birbirine karışabilen öğeler olduğu yolundaki genel kanıyı, görünebilir olmasa da var olan, ve ebeveynlerden yavrulara geçen gizli öğeler olduğu yönünde değiştirdi. Kısa bir süre sonra, Mendel'in "genetik öğelerinin" şaşırtıcı bir biçimde hücrenin çekirdeğindeki kromozomların davranışlarında yansıdığı bulundu. "Türlerin Kökeni Üzerine"nin 50. yıl dönümünde, değişkenlerin kaynağı hala bilinmemesine rağmen, genetik bilgi fiziksel bir varlık haline dönüşüyordu, ve sonunda çekirdek içindeki teller biçiminde görünür hale geldi. Kitabın basımının 100. yıldönümünde, kromozomlardaki kalıtsal bilginin büyük bir asidik polimer olan "deoxyribonucleic acid" yani DNA'ya dayandığı bulundu. James D. Watson ve Francis Crick 1953'de DNA molekülünün yapısını ortaya çıkardılar, bu olayın kalıtımı ve çeşitliliği fiziksel olarak kavramamızda çarpıcı etkileri oldu. DNA, omurgası şeker ve fosfatın yinelenen zincirlerinden yapılmış, uzun ve iki telli bir sarmaldır. Polimerin iki teli, dört olası kimyasal bazın karşılıklı eşlenmesiyle bir arada tutulur, bunlar; adenine, cytosine, guanine ve thymine'dir (A,C,G,T), ve aynı zamanda basit bir genetik dilin de temelini oluşturur. Tıpkı İngiliz alfabesindeki 26 harf gibi, DNA alfabesindeki dört harf, ebeveynden yavruya geçen değişik komutları heceleyerek, sarmalın bir telinde herhangi bir sırada dizilebilir. DNA'nın yapısı Çift telli sarmal yapı aynı zamanda genetik bilginin kopyalanması için de basit bir gereç oluşturur. C'ler her zaman G'lerle, ve A'lar da her zaman T'lerle molekülün ortasında birleşir; bu bağlar birbirini tamamlayan büyüklük, biçim ve karşılıklı kimyasal grupların tutunma özellikleri tarafından tayin edilir. Böylece, DNA sarmalının iki teli ayrıldığında her bir teldeki harflerin dizilimi telin diğerini inşa etmede bir şablon olarak kullanılabilir. Watson ve Crick'in bulduğu DNA yapısı kendiliğinden olan çeşitliliğin fiziksel bir temeli olduğunu derhal gösterdi. Hücre bölünmesinden önce fiziksel zarar görme (örn.radyasyona maruz kalarak), veya DNA molekülünün kopyalanması sırasında gerçekleşen hatalar DNA'nın normal harf dizisini değiştirebilir. Mutasyonlar çok çeşitli biçimler alabilir; polimerin belli bir pozisyonundaki harfin yerine başka bir harf geçmesi, harf kümelerinin silinmesi, harflerin çoğalması ya da yeni harflerin sokulması, harf dizilerinin tersine çevrilmesi veya yerlerinin değişmesi gibi. Böylesi değişiklikler DNA yapısı önerildiğinde (1950'lerde) hala kuramsaldı. Ancak Darwin'in ünlü kitabı "Türlerin Kökeni Üzerine"nin 150. yıldönümü yaklaştığında, büyük ölçekli sıralama yöntemleri genomların tamamının okunmasını ve (Darwin'in önerdiği evrimsel sürecin ham maddesi olduğu anlaşılan genlere dayalı olan) genetik çeşitliliğin analiz edilmesini benzeri görülmemiş bir biçimde olanaklı kıldı. Çeşitli organizmaların ve yavrularının DNA sıralamasını yaparak, ve nesilden nesile geçen uzun DNA zincirinde kendiliğinden olan değişiklikleri inceleyerek bilim adamları, böylesi mutasyonların oldukça düzenli bir biçimde gerçekleştiğini açık bir biçimde gösterdiler. (Doğaldır ki yalnızca tohum hücrelerinde olan mutasyonlar yavruya geçebilir ve bu şekilde saptanabilir.) Mutasyonların mutlak oranları türden türe değişim gösteriyor ancak her bir nükleotid, nesil ve baz-çifti yergeçimi (substitution) başına tipik ortalama 10-8 dir. Bu frekans küçük gibi görünebilir ancak pek çok bitkinin ve hayvanın çok büyük bir genomu vardır. Genomunda 100 milyon ve hatta 10 milyar baz çifti olan çok hücreli hayvanlarda, bazı spontone tek baz-çifti değişikliklerin kalıtsal bilginin bir sonraki nesile geçtiği her durumda gerçekleşmesi kuvvetli bir olasılıktır. Bazı yergeçim tiplerinin diğerlerine göre olma olasılığı daha fazladır, bu durum DNA bazlarının kimyasal dengesine ve yapısal özelliklerine bağlıdır. Buna ek olarak bazı büyük (uzun) dizi değişimleri, tek baz-çifti değişikliklerinin genel ortalama oranından çok daha fazla sıklıkla gerçekleşir. Bir sırada sekiz veya daha fazla aynı harfi içeren ve homopolimer diye bilinen DNA dizileri DNA kopyalanması sırasında kopyalama hatalarına yol açmaya son derece eğilimlidirler. Mikrouydu diye bilinen ve iki, üç, veya daha fazla nükleotid dizisinden oluşan ve sürekli yinelenen bölgeler de böyledir. Genomdaki tüm bu kendiliğinden oluşan değişiklikler, kendi türümüz de dahil olmak üzere, aynı türün içinde bile, eklene eklene çeşitliliğe neden olur. Tarihsel bir dönüm noktası olan 2003 yılında 3 milyar baz çiftinden oluşan insan genomunun tamamının referans dizisi, dört yıl sonra da Watson'un neredeyse tamamlanmış kişisel genomu belgelendi, böylece iki insana ait DNA dizilerinin birbiriyle karşılaştırlması olanaklı oldu, bu örnekler daha sonra Celera'nın kurucusu Craig Venter'in genom dizisi de katıldı. Bu üç dizinin yan yana karşılaştırılması ilginç bulguları ortaya çıkardı. Öncelikle, her bireyin genomu, referans dizisinden yaklaşık olarak 3.3 milyon tek baz-çifti kadar değişim gösteriyordu, bu da ortalama her 1000 bazdan birinin değişik olduğuna karşılık geliyordu. Her ne kadar daha büyük DNA bölgelerindeki silinmeler ve eklemeler tek baz-çifti değişiklikleri kadar sık değilse de (genom başına bir kaç milyon yerine bir kaç yüz bin olay), bu olaylar genomlar arasındaki baz değişikliklerinin çoğunluğunu oluşturdular, yani en az 15 milyon baz-çifti etkilenmişti. Bir çok yeni genom bölgesinin de bireyler arasında değişik sayılarda kopyaları olduğu saptandı, bu da etkileri daha yeni yeni keşfedilmeye başlanan genom yapısındaki görülmemiş yapısal bir değişimi yansıtıyor. Sonuç olarak, insan genomlarının tamamı karşılaştırıldığında görülen dizisel değişimler ya protein kodlamasını ya düzenleme bilgisini ya da insanın 23.000 geninin önemli bir kısmının kopyalanmasını değiştiriyor, bu da bireyler arasında değişim gösteren pek çok özellik için büyük miktarda olası çeşitlilik kaynağı oluşturuyor. Kaynak: evrimolgusu.blogspot.com

http://www.biyologlar.com/cesitlilik-aciklaniyor

Darwin ve Moleküler Evrim

Doğal seçilim aslında bir genetik kuramı. Çünkü doğal seçilim süreci genetik çeşitliliğin varlığını gerektiriyor. Bu çeşitlilik ortamında, Darwin'in deyimiyle "varolma mücadelesi"nde, avantajlı özelliklere sahip bireyler varlıklarını sürdürebiliyor ve bu özelliklerini bir sonraki kuşağa aktarabiliyorlar. Ancak Darwin, genetik süreçlerin nasıl işlediğini özelliklerin bir kuşaktan diğerine nasıl aktarıldığını- bilmiyordu. Ebeveynler ve yavrular arasındaki genel benzerliğin farkında olsa da, kalıtım sürecinin ayrıntılarını anlamamıştı. Oysa, tam da Danvin'in evrim düşüncesini geliştirmekte olduğu sıralar, Gregor Mendel bu ayrıntıları anlama aşamasındaydı. Darwin, Mendel'in makalesini hiç bir zaman okumadı. Sonuç olarak, o sıralar kalıtımla ilgili geçerli yaklaşım olan "karışımsal kalıtım" düşüncesiyle yetinmek zorunda kaldı. Bu düşünceye göre bir yavru, ebeveynlerinin özelliklerinin bir karışımını taşırdı ve genellikle bir özellik, anne ve babanınkilerin ortalaması gibiydi. Ancak, "Türlerin Kökeni"nin yayımlanmasından sekiz yıl sonra (Mendel'in makalesinden bir yıl sonra), 1867'de, bir mühendis olan Fleeming Jenkin. karışımsal kalıtım ve doğal seçilimin bir birleriyle uyumlu olmadığını gösterdi.Biri kırmızı, diğeri beyaz iki kutu boya olduğunu ve doğal seçilimin "kırmızı" özelliği yeğlediğini düşünün. Karışımsal kalıtım durumunda, kırmızı bir birey ile beyaz bir bireyin çiftleşmesi sonucu oluşacak yavrular her zaman pembe olacaktır. Yalnızca kırmızı ile kırmızının çiftleşmesi durumunda kırmızı bireyler ortaya çıkacak, diğer tüm çiftleşmelerdeyse (ör. beyaz x kırmızı: pembe x kırmızı) kırmızılık azalacaktır. Yeni ve yararlı bir özellik olan kırmızı, büyük bir olasılıkla ender olarak ortaya çıkacak ve hakim durumdaki beyaz form ile çiftleşerek pembe yavrular üretecektir. Diğer bir deyişle, karışımsal kalıtım herşeyin orta noktaya yaklaşmasına yol açacak, renk pembeye yaklaştıkça, bir uç nokta olan kırmızı yok olacaktır. Fleeming'in düşüncesi, haklı olarak bunun doğal seçilimin etkisine ters düşen bir süreç olduğuydu. Darwin, Jenkin'in haklılığını görerek kuramını kurtarmak için bir yol aradı ve "pangenesis" adını verdiği kendi kalıtım kuramını ortaya attı. Bu kuram özünde, Jean-Baptiste de Lamarck adlı Fransız biyologun 19. yüzyılda dile getirdiği ve sonradan "Lamarkizm"le tanımlanacak olan kalıtım sürecine benziyordu. Bu süreç, "edinilmiş özelliklerin kalıtımı"nı içeriyordu. Temelde Lamarck. bir canlının, yaşamı süresince edindiği özellikleri yavrularına geçirebileceğine inanıyordu. Lamarck'ın kendisi tarafından kullanılmamış olmasına karşın, bu konudaki en ünlü örnek zürafanın boynuyla ilgili olanıdır. Lamarkizme göre tek tek her zürafa, en üst dallardaki yapraklara ulaşabilmek için yaşamı boyunca boynunu gerdiği için, yaşlı bir zürafanın boynu gençlerinkine göre biraz daha uzundur. Lamarck, zürafanın boyun uzunluğundaki bu değişimin yavrularını da etkileyeceğini düşünüyordu; böylece sonraki kuşağın zürafaları, yaşamlarına önceki kuşaktan daha uzun boyunlarla başlayacaklardı. Darwin'in pangenesis kuramıysa bu süreç için bir mekanizma öneriyordu: Vücudun değişik parçalarında üretilen "gemül"ler, kana karışarak eşey hücrelerine, yani erkekte sperm, dişideyse yumurta hücrelerine taşınıyordu. Her bir gemül, anatomik bir parça ya da bir organa ait özellikleri belirliyordu. Bu durumda bir zürafanın yaşamı boyunca boynunu germesi, "boyun uzunluğu" gemüllerinin sürekli "daha uzun boyun" sinyalleri göndermesine neden olacaktı. Lamarck ve Darwin yanılmışlardı. Darwin'in kurguladığı sistemin yanlışlığını ortaya çıkaran, kendi kuzeni Francis Galton oldu. Galton birkaç kuşak boyunca tavşanlara, başka renk tavşanlardan kan verdi. Darwin haklı olsaydı, kanın içindeki yabancı renk gemülleri nedeniyle alıcı tavşanların en azından birkaç tane 'yanlış renkte' yavru üretmeleri beklenirdi. Oysa Galton, deneyi birçok kuşak boyunca tekrarlamasına karşın, beklenenden farklı bir renk oranı gözlemlemedi. Jenkin'in eleştirilerini yanıtlayabilmek için son çare olarak pangenesise sarılmış olan Darwin'se. Galton'un ortaya koyduğu delilleri kabul etmek istemedi. Sonunda, Darwin'in öldüğü sıralarda Alman biyolog August Weismann, sperm ve yumurta oluşturan eşey hücrelerinin diğer vücut dokularıyla ilişkisi olmadığını ortaya koydu. Yani. bir zürafanın boynuyla sperm/yumurta üreten hücreleri arasında hiç bir iletişim yoktu. Dolayısıyla Lamarkizm ve pangenesis biyolojik olarak olanaksızdı. Talihsiz Darwin! Mendel'in çalışmaları konusunda bilgisi olsaydı, Jenkin'i yanıtlayabilmek için son derece ayrıntılı, üstelik de bütünüyle yanlış olan pangenesis kuramını ortaya atması gerekmeyecekti. Mendel, bezelye bitkilerini üreterek yaptığı gözlemlerine dayanarak, daha sonra "gen" adı verilecek olan kalıtım etkenlerinin, bireyin deneyimlerinden etkilenmedikleri, aksine, kuşaktan kuşağa bir bütün olarak ve değişmeden aktarıldıkları sonucuna vardı. Ayrıca bazı koşullar altında, bir özellik geçici olarak gizli kalabiliyordu. Kırmızı ve beyaz boya kutularımıza dönecek olursak, ilk çiftleşmenin sonucunda pembe bireyler ortaya çıksa bile. bir sonraki kuşakta, örneğin pembe x pembe çiftleşmesinden kırmızı bireyler elde edilebilirdi. Böylece Mendel'in çalışmaları hem doğal seçilimi Jenkin'in eleştirilerinden kurtarıyor, hem de doğal seçilimin işleyebileceği genetik bir temel sağlıyordu. Doğal seçilimin kritik etkeniyle ilgili olarak (önce karışımsal kalıtım, sonra da pangenesis konusunda) Darwin'in iki kez yanıldığı düşünülürse, bu kuramın varlığını sürdürmesi çok olağandışı bir durum. Üstelik, kuruluşundaki hatalara karşın bu kuramın doğruluğu artık kanıtlanmış bulunuyor. Bu olağandışı sonucun nedeni, Darwin'in öncelikli olarak bir 'deneyci' (empiricist) olmasıydı: Onun için önemli olan. gözlemlerini açıklama çabaları değil, gözlemlerin kendisiydi. Evrim biyologu Ernst Mayr'ın da yazdığı gibi, "Darwin, genetik çeşitliliği bir 'kara kutu' gibi ele aldı. Hem bir doğabilimci, hem de hayvan yetiştiriciliğiyle ilgili literatürü izleyen bir okuyucu olarak. çeşitliliğin her zaman var olduğunu biliyordu ve bu onun için yeterliydi. Ayrıca, doğal seçilimin hammaddesi olan çeşitliliğin her kuşakta yenilendiğinden ve dolayısıyla her zaman varolacağından da emindi. Diğer bir deyişle, doğal seçilim kuramının öncülü olarak doğru bir genetik kurama gereksinimi yoktu." (One Long Argument, s. 82. Harvard Univ. Press. 1991) Öte yandan, son 50 yıl içinde moleküler genetik alanında kaydedilen olağanüstü ilerlemeyi gözönüne alırsak, Darvin'in düşüncelerinin varlığını sürdürebilmiş olması daha da şaşırtıcı. Jim Watson ve Francis Crick, DNA'nın sarmal yapısını. "Türlerin Kökeni"nin yayınlanmasından neredeyse 100 yıl sonra ortaya çıkardılar. O zamandan beri moleküler biyolojide kaydedilen ilerlemeleri Darwin'in öngörmesine olanak yoktu. Yine de onun basit kuramı, biyolojide kendisini izleyen tüm gelişmelere ters düşmeden yaşadı. Hatta yeni bulgular, kuramı zayıflatmak bir yana. destekledi bile. Moleküler genetiğin en son zaferini, insanın (ve birçok başka türün) genomundaki dizilimin eksiksiz olarak belirlendiği çalışmayı ele alın: Kendisi de genom projelerinin başlatanlarından olan Jim Watson, projeden bugüne kadar elde edilen en önemli bulgunun ne olduğu konusunda düşüncesi sorulduğunda, "Genom projesi Darwin'in, kendisinin bile inanmaya cesaret edebileceğinden daha haklı olduğunu gösterdi" yanıtını vermişti. Ayrıca Watson. beklenilenin tersine, genom projesinden çıkarılacak tıbbi sonuçlar yerine evrimsel sonuçlan vurgulamayı yeğledi. Çünkü genom projesi, genetik organizasyonun temel özelliklerinin tüm canlılar tarafından ne ölçüde paylaşıldığını ortaya çıkarmış bulunuyordu. Watson haklı olarak, genom çalışmalarıyla birlikte, canlıların evrimsel bağlantılarıyla ilgili yeni ufukların da açılacağı düşüncesinde. Yakın zamanda "Türlerin Kökeni"ni yeniden yazma ve güncelleştirme işini üstlenmiş olan İngiliz bilimci Steve Jones da, Darwin'in çalışmasının sağlamlığından etkilenenlerden: "Sonuç olarak bu kitap (benim beklemediğim kadar) aslına benzeyen bir yapıt oldu. Darwin'in ¤¤¤i. bir asırlık bilimsel gelişmeyi kolayca kaldırabiliyor." (Almost like a whale, s. XXVII Doubleday 1999) Bunu izleyen bölümlerde, yüzyılı aşkın süre boyunca bilimde gerçekleştirilen bu ilerlemenin daha ilginç ve daha yeni sonuçlarından bir kısmını kısaca gözden geçireceğiz. Tüm bulgular, Darwin'in düşleyebileceğinin çok ötesinde olmalarına karşın, "Türlerin Kökeni"nde çizilen çerçeveye rahatça oturuyorlar. Bu modern çağda Darwin gerçekten de "kendisinin bile inanmaya cesaret edebileceğinden daha doğru".Yaprak yiyebilmek için moleküler düzeyde ne gerekli? Doğal seçilimin gücünü en iyi ortaya koyan süreçlerden biri de "benzeştiren evrim"dir. Bu süreç, akrabalıkları olmayan canlı gruplarının, aynı seçilim baskısı sonucunda benzer özellikler edinmesini içerir. Bu yakınlaşma farklı düzeylerde olabilir: Örneğin kuşların ve yarasaların kanatlan, benzeştiren evrim sonucunda oluşmuştur. Her iki çözüm de. bir uçma organı yaratmak şeklindeki evrimsel sorunu paylaşır. Kuş ve yarasa kanatları temelde bütünüyle farklıdır elbette (örneğin, kuş kanadı kuşun yalnızca ön ayağını, yarasa kanadıysa hem ön hem de arka ayakları içerir). Ayrıca bu iki canlı grubunun, uçma yeteneğini birbirlerinden bağımsız olarak kazandıkları da çok açıktır. Taksonomistlerin yarasayı kuş olarak sınıflandırma tehlikesi yoktur; çünkü bu canlılar ortak olan sorunlarını çok farklı yollarla çözmüşlerdir. Ancak, taksonomistler için büyük sorun yaratan doğal seçilim örnekleri de var. Bazı durumlarda benzeşim süreci o kadar etkili oluyor ki, ortaya çıkan benzerliğe dayanarak hiç bir akrabalığı olmayan canlılar, yanlışlıkla aynı gruba konulabiliyorlar. Örneğin, soyu tükenmiş olan keselikurdun, görünürde kurda çok benzemesi, ilk taksonomik değerlendirmeler sonucunda bu iki canlının yakın evrimsel akrabalar olarak sınıflandırılmasına (diğer bir deyişle benzerliklerinin, kurt-benzeri ortak bir atadan evrimleşmiş olmalarından kaynaklandığı düşüncesine) neden olmuş. Oysa daha ayrıntılı bir incelemede, temelde çok farklı iki ayrı memeli grubuna ait oldukları ortaya çıkıyor: Keselikurt bir keseli, kurtsa bir etenli (plasentalı) memeli. Yani bir kurda benzemesine karşın keselikurt, aslında kanguru gibi keseli hayvanlarla daha yakın akraba. Öyle görünüyor ki, iki ayrı bölgede 'köpek'liği yeğleyen seçilim baskısı, biri keseli, diğeri plasentalı olmak üzere iki farklı hayvan çözümüyle sonuçlanmış. Darwin'in bu örneklerle bir sorunu olmayacağı kesin. Ancak DNA devrimi, seçilim sonucu oluşan benzerlikleri çok daha ayrıntılı incelememize olanak tanıyor. Doğal seçilim ne kadar duyarlı? Benzer seçilim baskıları, farklı gruplar arasında moleküler düzeyde benzeşmeyle sonuçlanabilir mi? Diğer bir deyişle, temel bir işlevi yerine getirmek üzere belli bir proteini kullanan çeşitli canlılar arasında, protein dizilimi açısından benzeştiren evrim gelişmesini bekleyebilir miyiz? DNA dizilimi, yaşamın aktif molekülleri olan proteinleri kodlar. Proteinlerin kendileriyse aminoasit adı verilen yapıtaşlarından oluşurlar. Yani bir genin DNA dizilimi, oluşacak aminoasit zincirini belirler. Dolayısıyla DNA diziliminde oluşan bir mütasyon. üretilen proteinin aminoasit dizilimini de etkiler. Öyleyse, belli bir proteinin belli bir biçimde kullanımının yeğlendiği durumlarda, akrabalığı olmayan canlıların aminoasit diziliminde de benzeştiren evrim görmeyi bekleyebilir miyiz? Doğal proteinlerde 20 farklı aminoasit bulunabiliyor. Proteinin belli bir yerinde bu 20 aminoasitten herhangi biri bulunabileceği için, olası farklı dizilim sayısının çok yüksek olduğunu unutmayın. Örneğin, 200 aminoasit uzunluğundaki bir protein için 20 üzeri 200 farklı aminoasit dizilimi bulunabilir. Doğal seçilim, proteinin işlevini en iyi biçimde yerine getirmesini sağlayan dizilimi yeğler. Ama doğal seçilim ne kadar kesin sonuç verebilir? Belli bir işlev için ortak seçilim baskıları olduğunu varsayarsak, farklı canlı gruplarında bağımsız olarak aynı aminoasit dizilimiyle -bütün olasılıklara karşın yeğlenen dizilimle- sonuçlanabilir mi?Belli koşullar altında, "evet". Bunun en iyi örneğini yaprak-yiyen hayvanlarda görebiliriz. Yaprak yemek, besin elde etmenin zahmetli bir yolu; çünkü bitkilerde hücre duvarının temel maddesi olan selülozun parçalanması, özellikle zor. Ve selülozu parçalayamazsanız yaprak hücrelerinin içine ulaşıp gerekli besinleri alamazsınız. Bu nedenle, "geviş getirenler" olarak bilinen, ineğin yanısıra başka evcil hayvanları da içeren memeli grubu, mikroplardan yararlanır. Bu hayvanların bağırsaklarında, selülozu ustaca parcalayabilen bakteri toplulukları yaşar. Kısacası inekler, selülozu parçalayıp bitki hücrelerini açmak için bakterileri kullanırlar. Ama bakteriler bu hücrelerin içindeki besini kendileri kullandıkları için, ineklerin bu kez de besini bakterilerden ayırmanın bir yolunu bulmaları gerekir. Bunu yapabilmek için inekler ve diğer geviş getirenler, "lizozim" adı verilen ve bakterilerin hücre duvarını parçalayan bir enzim (aktif bir protein) kullanırlar. Sonuç olarak, bir ineğin yediği otlardan besin elde etme süreci son derece dolaylı: Otu yiyor, bakteriler bitkinin selüloz hücre duvarını parçalıyor ve hücrenin içindekileri kullanıyor: bundan sonra ineğin bağırsaklarındaki lizozim, bakterileri parçalıyor ve sonunda besinler ineğe ulaşabiliyor. Evrimsel açıdan lizozim, yeni bir sindirim işlevi için kullanılmış oluyor. Enzimin tipik işleviyse, memeli vücudunu bakteri saldırılarına karşı korumak; hayvan için sorun yaratmalarına fırsat vermeden, bakterilerin lizozimler tarafından parçalanması gerekiyor. Örneğin, gözyaşındaki lizozim bu yolla bakteriyel enfeksiyon riskini azaltıyor. Aslında geviş getirenler yaprak yemekte uzmanlaşmış tek memeli grubu değil. Özellikle Asya'da yayılım gösteren ve langur adı verilen bir grup maymun da bu işi yapabiliyor. Peki ama langurlar selülozu sindirme sorununu nasıl çözüyorlar? Şaşırtıcı bir şekilde (ve geviş getirenlerle hiç de yakın akraba olmadıkları için bağımsız olarak) bu sorun için aynı çözümün evrimleştiğini görüyoruz: Onlar da bağırsaklarında, işlevi selülozu parçalamak olan bir bakteri topluluğu barındırıyorlar. Ve onlar da, bakterilerin bitkilerden aldıkları besini elde etmek için, bakterilerin hücre duvarını parçamada lizozimden yararlanıyorlar. Bu olgunun kendisi, benzeştiren evrimin. diğer bir deyişle bütünüyle ayrı iki hayvan grubunun ortak bir evrimsel sorunda aynı çözüme ulaşmasının, güzel bir örneğini oluşturuyor. Ancak benzeşim bununla da kalmıyor: Langur maymunlarına ve geviş getirenlerden biri olarak ineğe ait lizozimlerin aminoasit dizilimlerini karşılaştırdığımızda, bu kadar uzak akraba olan gruplar için bekleyebileceğimizden çok daha yüksek bir benzerlik buluyoruz. Daha ayrıntılı bir inceleme yaptığımızdaysa, geviş getirenlerdeki belli aminoasit değişimlerinin (olasılıkla lizozimin sindirime ilişkin bu yeni işlevi kazanmasını kolaylaştırmak üzere) langurlarda da gerçekleşmiş olduğunu görüyoruz. Bu son derece olağanüstü bir sonuç. Bu iki yaprak-yiyen grup, yalnızca selüloz sorununu çözmek için kirli işlerini bakterilere yaptırmakla kalmadılar, lizozimi genel bir bakteriyel savunma enzimi olmaktan, sindirim işlevinin temel öğesi olmaya dönüştüren aminoasit değişimleri açısından da benzeştiler. Doğal seçilimin, aminoasit diziliminde evrimle sonuçlanması gerçekten dikkate değer bir olgu. Bizim gibi (ya da inekler ya da langur maymunları gibi) karmaşık hayvanların vücudunda üretilen yaklaşık 100 000 farklı protein var. Ve bu örnekte, bu proteinlerden yalnızca bir tanesinde, lizozimde oluşan küçük farklılaşmalar, doğal seçilimin gücünü yönlendirmek için yeterli olmuş. Yakın geçmişte bu öykünün bir başka yanı daha ortaya çıktı. Geviş getirenler ve langur maymunları gibi yaprak yiyen ve dolayısıyla selüloz sorunuyla karşı karşıya olan bir kuş türü incelendiğinde, yalnızca Amazon havzasında bulunan ve son derece garip görünüşlü olan "hoatzin" adlı bu kuşun da, selüloz sorununu bakterilerin yardımıyla çözdüğü ve bakterileri parçalamak içinse lizozim kullandığı bulundu. Evet, yaprak yiyen iki memeli grubuna ait lizozimin ve hoatzin lizoziminin aminoasit diziliminde de benzeşme oluşmuş. Diğer bir deyişle, moleküler düzeydeki bu benzeştiren evrim örneğinin yalnızca memelileri değil, kuşları da içerdiğini görüyoruz. Yüksek uçuş: Yüksek irtifa için moleküler uyum Bir enzimin değişik formları arasındaki işlevsel farklılıklar konusunda yorumlar yapabilmek için, o enzim ve biyolojik etkinliklerinin aynntılarıyla ilgili bilgilere gereksinmemiz var. Aminoasit diziliminde, dört aminoasidin wxyz şeklindeki dizilimini de içeren bir protein düşünün. Başka bir türde aynı işlevi gören proteinde aminoasit dizilmi wxtz olursa, diğer bir deyişle bu kısa dizide 'y' aminoasidi yerine 't' geçmişse, bu önemli bir farklılık mıdır? Bu soruyu, ancak proteinin yapısı ve işlevi konusunda fazlaca bilgimiz varsa yanıtlayabiliriz. Eğer, örneğin "bu protein f fonksiyonu için kullanılıyor" şeklinde genel bir düşünceden daha ayrıntılı bilgimiz yoksa, y --> t değişiminin önemini anlamamız olanaksız. Oysa çok az sayıda protein konusunda gerekli bilgiye sahibiz ve bunun sonucunda moleküler uyumla ilgili çalışmalar zorunlu olarak sınırlı düzeyde kalıyor. Morfolojik düzeydeki uyumla ilgili çalışmalar içinse durum farklı. Örneğin, elin işlevini tam olarak anlamak ve hayvanlar arasında görülen farklı el tiplerinin uyumsal değerini çıkarsamak çok zor değil. Kırmızı kan hücrelerinde bulunan ve oksijenin taşınmasından sorumlu molekül olan hemoglobin, moleküler uyumun evrimsel incelemesi için bulunmaz bir aday. Hemoglobin, akciğerlerde yoğun olan oksijene bağlanır ve vücudun, örneğin çalışan kaslar gibi, oksijen yoğunluğu az olan bölgelerinde bu oksijeni salar. İnsanlarda rastlanan pek çok hastalıkta hemoglobinle ilgili sorunların varlığı ve oksijen taşınımının hayvan fizyolojisinin temel bir öğesi olması nedeniyle hemoglobin, üzerinde çok iyi çalışılmış bir protein: hatta X-ışını yayılımı yöntemi kullanılarak üç boyutlu yapısı belirlenen ilk proteinlerden biri (Proteinler doğrusal aminoasit zincirlerinden oluşurlar; ancak bunlar proteinin işlevi için gerekli olan karmaşık üc-boyutlu yapıları oluşturacak şekilde kendi üstlerine katlanırlar.). Hemoglobinin evrimsel inceleme açısından iyi bir aday olmasının başka bir nedeni de, oksijen taşınımı açısından çok farklı ortamlarda yaşasalar da. tüm canlıların oksijen taşıma gereksinimi için aynı temel molekülü kullanmaları. Örneğin bazı kuşlar, deniz düzeyiyle karşılaştırıldığında oksijen miktarının çok daha az olduğu yüksek irtifalarda yaşarlar. Oysa yalnızca uçmak bile, çok enerji gerektiren ve oksijene bağımlı bir etkinlik. Dolayısıyla, bu molekülün doğal seçilim sonucunda -oksijen açısından- aşırı ortamlara uyum sağlayıp sağlamadığını belirlemek amacıyla, tipik olarak yükseklerde uçan bir kuşla alçaktan uçan bir kuşun hemoglobinlerini birbirleriyle karşılaştırabiliriz. Kuşların çok yükseklerde uçabildiği, bilinen bir olgu. Şimdiye kadar kaydedilmiş en yüksek kuş uçuşu. Fildişi Kıyısı'nda 11.300 m yükseklikteyken bir jet uçağına çarpan Rüppell akbabasına (Gyps rueppellii) ait. Bu yükseklik. Everest Tepesi'nin yüksekliğinden 2000 m daha fazla. Yükseklik arttıkça oksijen yoğunluğunun daha hızlı azalmasına bağlı olarak yüksekte uçan kuşlar oksijen bakımından, alçakta uçan akrabalarından bütünüyle farklı bir ortamda yaşarlar. Göç ederken Himalayalar gibi yüksek dağ sıralarının üzerinden geçen kuşlar da sıklıkla çok yükseklerde uçarlar. Örneğin yazlarını Tibet, kışlarını da Kuzey Hindistan'da geçiren Hint kazı (Anser indicus), mevsim aralarında Himalayalar'ın üzerinden uçar. Hint kazının ve alçak bölgelerde yaşayan en yakın akrabası olan bozkazın hemoglobinlerine bakıldığında, yalnızca 4 amino asit açısından farklı oldukları, bu farklılıkların, molekülün üç boyutlu yapısı üzerindeki etkisi incelendiğinde de, yalnızca bir tanesinin hemoglobinin oksijen tutma yeteneğini artırdığı görülüyor. Buysa, yükseklerde daha az olan oksijene çok daha kolay bağlanabilmesi için Hint kazının hemoglobininde bulunması gerekli olan özellik. Aynı durum, yükseklerde uçan başka bir kaz türü olan And kazı (Chloepahaga melanoptera) için de geçerli. Hint kazında olduğu gibi And kazında da, hemoglobinin oksijen tutma yeteneğinin artmasından tek bir aminoasit değişimi sorumlu. Her iki sonuç da, bu iki kaza ait hemoglobin proteinlerinin, alçak yerlerde yaşayan bozkaza ait olanlarıyla karşılaştırılması, ardından da oksijen-bağlama yeteneğini etkileyecek aminoasit değişimlerinin kimyasal yapıya ilişkin argümanlarla saptanması yöntemiyle elde edilmişti. Oysa bu, birçok açıdan tartışmalı bir yöntem. Oksijen bağlama yeteneğiyle ilgili yorumlarımızın gerçekten doğru olduğunu nasıl bilebiliriz? Hemoglobinin bu kadar iyi çalışılmış bir protein olması nedeniyle bu soru, gerekli deneylerle en iyi şekilde yanıtlanmış durumda. Ancak bu. ilk bakışta göründüğünden çok daha zor bir işlem: Bir insan hemoglobini alınıyor ve oksijen-bağlama yeteneği ölçülüyor; sonra genetik mühendisliği devreye sokularak uygun konumdaki aminoasitin yerine, Hint kazı için kritik olduğu belirlenen aminoasit yerleştiriliyor. Böylece, yeryüzünde olasılıkla daha önce hiç varolmamış, yeni bir hemoglobin molekülü üretilmiş oluyor. Şimdi, yeni üretilen bu molekülün oksijen bağlama yeteneği ölçülebilir. Bu deney, insan hemoglobini ve hem Hint kazı. hem de And kazının yüksek irtifa aminoasitleri kullanılarak gerçekleştirildi. Her iki durumda da, yeni hibrid hemoglobin molekülünün, normal insan hemoglobinine göre belirgin şekilde yüksek bir oksijen bağlama yeteneğine sahip olduğu görüldü. Kısacası deneysel sonuçlar, yapısal bilgilere dayanılarak yapılan çıkarsamaları doğruladı. Deneyler karmaşık olsa da sonuç basit: Moleküler düzeyde doğal seçilim son derece etkili bir unsur. Moleküller, uygun koşullarda en iyi performansı gösterecek ince bir ayara sahipler. Rüppell akbabasının 11.000 m'de uçabilmesini sağlayan unsur ise, hemoglobin molekülü üzerindeki etkisi aracılığıyla doğal seçilim. Moleküller ve biz: Darwin'in insan evriminde bilmedikleri DNA devrimi sonucunda ortaya çıkan evrimsel bulgular arasında belki de en dikkate değer olanları, kendi türümüzü ve onun tarihini ilgilendiren bulgular. Moleküler genetik tekniklerin gelişmesinden önce, insanın geçmişini araştırmak için kullanabileceğimiz fazla malzeme yoktu. Sümer tabletleriyle başlayan yazılı kayıtlar göreceli olarak çok yeniydi; arkeolojik ve fosil kayıtlarsa hem çok az bilgi sağlıyordu, hem de bölük pörçük oldukları için yorumlayanın yaklaşımlarına bağımlıydılar. DNA dizilimi bunların tümünü değiştirdi: Yeryüzünde bugün varolan genetik çeşitliliğe bakarak geçmişle ilgili çıkarsamalarda bulunabiliyoruz artık. Kullanılan mantıksa basit DNA dizilimi zaman içinde yavaş yavaş değişir: dolayısıyla herhangi iki dizilim -ve ait oldukları insanlar- birbirlerinden ne kadar uzun süre yalıtıldılarsa, o kadar farklı olurlar. Şu anda varolan farklı grupların, örneğin Avustralya yerlileri, Amazon yerlileri, Japonlar, Türkler, Kalahari buşmanlarının DNA dizilimlerini karşılaştırarak, kimlerin birbirlerine daha yakın olduğunu belirleyebiliriz. Bu araştırmalardan elde edilen ilk ve en önemli sonuç, basın dünyasında "mitokondriyel Havva" olarak adlandırıldı. Hücrenin içinde, enerji fabrikası işlevini gören ve mitokondri adı verilen küçük bir yapı var. İşte bu yapının içinde bulunan kısa bir DNA molekülünün dizilimini kullanarak tüm insanlar için bir soy ağacı oluşturursak, iki şey buluyoruz: hepimizin ortak atasının yaklaşık 100 000 yıl önce yaşadığı; ve bu ortak atanın Afrika'da olduğu. Buradan çıkaracağımız sonuçsa, modern insanın 100 000 yıl önce Afrika'da ortaya çıktığı ve oradan dünyaya yayıldığı. Bu sonuç, kayda değer bir bulguydu. Uzun zamandır türümüzün 100 000 yıldan çok daha yaşlı olduğu varsayılıyordu. Gerçekten de evrim standartlarına göre 100 000 yıl göz açıp kapayıncaya kadar geçer: bizim türümüz çok genç bir tür. Bu noktayı açıklığa kavuşturmak için bu süreyi, orangutanlar için geçerli olanla karşılaştırmakta yarar var. Orangutanlar Güneydoğu Asya'daki iki adada, Borneo ve Sumatra'da bulunurlar. Mitokondriyel Havva çalışmasında kullanılan genetik teknikler orangutanlara uygulandığında, ortak bir atayı en son olarak 3,5 milyon yıl önce paylaştıkları ortaya çıktı. Diğer bir deyişle, bu adaların her birinden alınacak birer orangutan, birbirlerinden genetik olarak en farklı durumdaki iki insandan ortalama 35 kat daha farklılar. Ve ne ilginçtir ki. büyük bir olasılıkla siz bu iki orangutanı birbirlerinden ayırdedemezsiniz. 3,5 milyon yıllık bir evrimin bile çok önemli farklılaşmalara yol açması gerekmiyor. Yani. ırkçılar tarafından bu kadar sık dile getirilen yüzeysel farklılıklara karşın, bir tür olarak bizler şaşılacak derecede birörneğiz. En siyah Afrikalıyla en beyaz Avrupalı arasındaki genetik farklılık, uzman olmayan birine aynı gibi görünen iki orangutan arasındaki genetik farklılığın yanında çok önemsiz kalıyor. 30.000 yıllık bir iskeletin DNA'sından elde edilen veriler sayesinde artık biliyoruz ki, yakın geçmişimize ait soy ağacının en eski dalı bütünüyle yok oldu. Neandertaller adı verilen bu insanlar 800.000 yıl kadar önce ortaya çıktılar ve yaklaşık 30.000 yıl önce ortadan kayboldular. Neandertallerin bizler, yani modern insanlar tarafından mı yokedildiği. yoksa karışma sonucunda bizim bugün bir ölçüde Neandertal mi olduğumuz sorusu yakın zamana kadar açıklık kazanmamış olan bir konuydu. Oysa şimdi DNA analizlerine bakarak, Neandertal insanının kaderinin, karışma sonucu yokolmak değil, zor kullanılarak soyunun tükenmesi olduğunu açıkça görebiliyoruz. Neandertal DNA'sı tüm modern insanlarınkinden çok farklı: eğer bizimle üremiş olsalardı, bu farklı dizilimlerin modern insan popülasyonlarında da bulunmasını beklerdik. Bulunmaması, Neandertallerin 30.000 yıl önce yokolduklarını ve DNA'larını da beraberlerinde götürdüklerini gösteriyor. İnsanın tarihiyle ilgili modern yaklaşımlar, yalnızca ırkçılık için biyolojik bir temel olasılığını ortadan kaldırmakla ve Neandertallerin kaderini ortaya çıkarmakla kalmadı. En ilginç sonuçlar çok yakın zamanda bulundu. Bu sonuçlar, cinsiyetler arasındaki farklılıklar, özellikle de göç konusundaki farklılıklarla ilgiliydi. Yeryüzündeki herkes için. incelemekte olduğumuz DNA parçasında dizilimin aynı olduğunu ve bu dizilimde, örneğin Güney Afrika'da bir mütasyon oluştuğunu düşünün. Eğer yoğun bir göç hareketi yaşanıyorsa, bu mütasyon hızla yayılır ve belki birkaç kuşak sonra, örneğin İstanbul'da görülebilir. Ancak eğer göç hareketleri çok azsa insanlar oldukları yerlerde kalıyorlarsa mütasyon Güney Afrika'yla sınırlı kalır ya da çok çok yavaş yayılır. Yani, DNA varyantlarının -mütasyonların- yayılım miktarı, göç hareketinin büyüklüğünü belirlemek için dolaylı bir ölçüt olarak kullanılabilir. İnsanlık tarihini (ve göç hareketlerini) kadınlar ve erkekler için ayrı ayrı incelememiz mümkün. Bazı DNA parçaları kuşaktan kuşağa yalnızca kadınlar arasında aktarıldıkları için dişi tarihinin, başka parçalarsa yalnızca erkekten erkeğe aktarıldıkları için erkek tarihinin "işaretleri" olarak kullanılabiliyorlar. Kadınlara özgü olan ve mitokondride bulunan DNA'dan daha önce söz etmiştik. Yalnızca dişinin üretebildiği döllenmemiş bir insan yumurtası mitokondri (ve dolayısıyla mitokondriyel DNA) içerirken, erkeğin sperm hücresiyle yeni bireye yaptığı katkı mitokondri içermez. Yani mitokondriyel DNA yalnızca kadınlar tarafından aktarılır. Öte yandan, yalnızca erkekler tarafından aktarılan küçük bir insan kromozomu var. Erkekleri erkek yapan, bu "Y" kromozomu olduğu için. tanımı gereği "Y" kromozomunu taşıyan tüm insanlar erkek. Yani "Y" kromozomu erkeklere özgü ve yalnızca erkek soyunda aktarılıyor. İnsan popülasyonları arasındaki mitokondriyel DNA çeşitliliğini yapısal olarak incelediğimiz zaman, mütasyonların çoğunluğunun tüm popülasyonlar arasında büyük ölçüde yayılmış olduğunu görüyoruz. Diğer bir deyişle, yalnızca yerel olarak görülen varyantlara hemen hemen hiç rastlamıyoruz; yani popülasyonlar büyük ölçüde karışıyormuş gibi görünüyor. Ve elbette bu karışma, göç hareketinin sonucu. Oysa "Y" kromozomundaki farklılıklarla ilgili olarak yakınlarda yapılan çalışmalar, bunun tam tersi olan sonuçlar ortaya çıkarıyor. Bu sonuçlar, yayılım miktarının aslında çok düşük olduğunu, ve örneğin Güney Afrika'da ortaya çıkan bir mütasyonun genellikle pek uzağa gitmediğini gösteriyor. Acaba neler oluyor? Tek bir tür için, kendi türümüz için nasıl bu kadar çelişkili iki ayrı sonuç elde edilebilir? Aslında bunun açıklaması basit: Erkekler ve kadınlar farklı hızlarda göç ediyorlar ve bunu beklenmedik bir şekilde yapıyorlar. Çok dolaşan erkekler ve evde duran kadınlarla ilgili tüm önyargılarımıza karşın, aslında kadınlar erkeklerden çok daha fazla yer değiştiriyorlar. Hatta birçok kuşak gözönüne alınarak yapılan hesaplamalarda, kadınların erkeklerden ortalama olarak 8 defa daha fazla göç ettiği ortaya çıkıyor. Bu, sezgilerimize bütünüyle aykırı bir sonuç. Büyük İskender'in dizginsiz dolaşan orduları ya da Cengiz Han'in Orta Asya'da savaşan atlılarıyla ilgili öyküleri dinleyerek büyümüş olsak da. erkekleri hareketli avcılar ve gezginler olarak gören önyargılarımızın bütünüyle yanlış olduğu ortaya çıkıyor. Aslında antropologlar bu olguyu kolayca açıklayabilirler. Tüm toplumlarda antropologların "atakonumu" (patrilocality) adını verdikleri bir uygulama görülür: İki ayrı köyden bir çift evlendikleri zaman, kadın erkeğin köyüne taşınır. A köyünden bir kadının B köyünden bir adamla evlendiğini ve B köyüne taşındığını varsayın. Bir kızları ve bir oğulları oluyor. Kızları C köyünden bir adamla evlenerek C köyüne taşınıyor; oğullan da D köyünden bir kadınla evleniyor ve bu kadın B köyüne geliyor. Böylece erkek soyu B köyünde kalırken dişi soyu iki kuşakta A'dan B'ye, sonra da C'ye taşınmış oluyor. Bu sürecin kuşaklar boyunca sürmesi, dişi göçünün çok yaygın, erkek göcününse sınırlı olmasıyla sonuçlanıyor. Erkekler gerçekten de bazen uzak ülkeleri fethetmek için yola çıksalar da. bunlar insan göçünün bütünü içinde önemsiz kalıyor: insanlığın tarihini şekillendiren, kadınların adım adım köyden köye yaptıktan göçler. Darwin'e dönüş: "Darwin'in bile inanmaya cesaret edebileceğinden daha doğru" Darwin'in zamanından bu yana biyolojide olağanüstü ilerlemeler kaydedildi. Bunların birçoğu evrimle doğrudan ilgili ve Darwin'in kur..... ışık tutuyor. Ama Darwin mezannda rahat yatabilir: Evrimsel değişimin mekanizmasını şimdi artık çok daha iyi anlıyoruz ve bu yeni bulgular karşısında Darwin'in görüşlerinin özü hâlâ sağlamlığını koruyor. Daha önce de gördüğümüz gibi. kalıtım, ve mekanizması olan genetik konusundaki bilgisizliğine karşın kuramının yaşayabilmesi. Darwin'in öncelikle bir deneyci olmasından kaynaklanıyor. Doğadaki çeşitliliğin ve bunun bir kuşaktan diğerine -bir şekilde- aktarıldığının farkında olması onun için yeterliydi. Ayrıntılı bir kalıtım kur..... gereksinimi yoktu. Aynı durum çalışmalarının başka yönleri için de geçerli. Örneğin, "Türlerin Kökeni"ninde, hayvan ve bitkilerin coğrafi dağılımını inceleyen biyocoğrafyaya yalnızca iki bölüm ayırmıştı. Darwin kitabını, kıtaların coğrafi tarihini şekillendiren en önemli gücün levha tektoniği olduğunun bulunmasından çok önce yazmış olmasına karşın, gözlemleri bugün hâlâ güncelliğini ve doğruluğunu koruyor. Levha tektoniği konusundaki bilgisizliği, biyocoğrafyaya yaptığı katkıları engellemedi. Hiç bir zaman bildiğinden ayrılmadı ve bir deneyci olarak kaldı. Farklı anlamları olabilecek veriler konusunda spekülasyon yapmak yerine, çok miktarda veriye sahip olduğu ve basit yorumlarla üzerinde çok şey söyleyebileceği konulara ağırlık verdi. Böylece, biyocoğrafya gibi iddialı konulara sapmak yerine, adaların yanısıra üzerlerinde yaşayan hayvan ve bitkiler konusunda da çok ayrıntılı yazılar yazabildi. Darwin'in bu deneyciliği hepimize örnek olmalı. Bu güzel kuramının olağanüstü verimliliği, deneyciliğin, olgulardan sapmamanın gücünü ustaca ortaya koyuyor.

http://www.biyologlar.com/darwin-ve-molekuler-evrim

Nükleik asitlerin biyolojik fonksiyonları

Nukleik asitlerin hücre içindeki en önemli görevlerinden birisi de, kuşkusuz, DNA'nın replikasyonu ve bu sayede genetik bilgilerin nesillere aktarılması ile genlerin ekspresyonu (transkripsiyon ve translasyon)'dur. 02. DNA Replikasyonu Hücreler, tek kromozomlu (prokaryotik) veya çok kromozomlu (ökaryotik) olsunlar, DNA'lar genetik bilgileri taşıdıklarından, her hücre bölünmesinde, bunların da çok az hata ile replike olması ve yeni sentezlenen DNA'nın kardeş hücrelere eşit olarak aktarılması gereklidir. Replikasyon tamamlanıncaya kadar da hücrelerin bölünmemesi lazımdır. Aksi halde, bazı hücreler genetik materyallerden yoksun kalır ve çekirdeksiz hücreler oluşur (anukleer hücreler). Diğer bir önemli nokta da, kromozomun (DNA), dış ve içten kaynaklanan zararlı etkilerden korunması ve DNA'da meydana gelecek bozuklukların da hemen tamir edilerek nesillere aktarılmasının önlenmesidir. Böyle olumsuz durumları gidermek için hücreler yeterli düzeltme ve enzimatik mekanizmalara da sahiptirler. Genetik materyallerin her ne kadar iyi korunmuş olmasına karşın, DNA'nın çok sayıda replikasyonu ve çok değişik nedenler bazı mutasyonların meydana gelmesine yol açmakta ve buna bağlı olarak da değişik karakterde yeni nesiller (mutant) ortaya çıkmaktadır. DNA'nın hücre içinde kısa bir sürede ve minimal bir hata ile nasıl replike olduğuna dair bazı görüşler ileri sürülmüştür. Bunlardan 1) Konservatif (parental iplikçikler birbirlerinden ayrılmadan kopyalarının çıkması) ve Dispersif (parental DNA'da kopmalar meydana gelerek aralarına yeni sentezlenen DNA segmentlerinin girmesi) olan teoriler terk edilerek yerini, Watson-Crick tarafından ileri sürülen ve araştırıcılar tarafından da (Meselson ve Stahl deneyi, E. coli 'de) ispatlanan Semi konservatif modele bırakmıştır. Buna göre, sarmal ve dubleks DNA açılmakta ve her iplikçiğin (parental iplikçik) karşısında enzimler tarafından bir yenisi sentezlenmekte ve parental iplikçikler yeni sentezlenen iplikçikler için bir kalıp görevi yapmaktadırlar. Bu modelde, her bir çift iplikçikli DNA'da bir parental ve bir de yeni sentezlenen iplikçik bulunmaktadır. Prokaryotiklerde (bakterilerde) ispatlanan bu semi konservatif replikasyon modelinin, ökaryotikler, virus ve fajlar için de geçerli olduğu belirlenmiştir. Bu durum, semi konservatif replikasyon tarzının genel (üniversal) bir karakter taşıdığını da ortaya koymaktadır. 03. Prokaryotiklerde Replikasyon E. coli 'ler üzerinde çok fazla deneme yapıldığı için, bu mikroorganizma, replikasyon için de bir model oluşturmuştur. E. coli genomu, sirküler, sarmal ve dubleks bir DNA karakteri taşıyan ve yaklaşık 4.5x106 baz çiftine (bp, base pair) sahip tek bir makro moleküldür (1.1-1.4 mm uzunlukta). Tüm genomun replikasyonu için 20-50 gen'in fonksiyonel olduğu belirtilmektedir. E. coli uygun koşullar altında 15-20 dk. bir generasyon meydana getirmektedir. Genom replikasyonu E. coli 'de tek bir orijinden (oriC) başlayarak bidireksiyonal (iki yöne doğru) olarak devam eder. E. coli 'de replikasyon orijini, konjugasyonla belirlenen dakika durumuna göre, 86. dk'dan iki yöne doğru devam ederek 32. dakikada son bulur (terminus). Bu süre, optimal koşullarda, bakterinin 15-20 dakikada bir bölünmesi süresinden daha kısadır. E. coli 'de, kromozomun replikasyon orijini 86. dk. bölgesi olmasına karşın, diğer bakterilerde hem orijin ve hem de terminus daha değişik yerlerde olabilmektedir. Bu noktalar, bakteri türlerine özeldir. E. coli 'de bile uygun olmayan koşullarda bölünme süresi, optimal limitleri geçebilir. Replikasyonun, kromozomu küçük olan bazı mikroorganizmalarda, tek yönlü (unidireksiyonal) olduğu da belirtilmiştir. Bu durumda, replikasyon, orijinden sadece bir yöne doğru devam eder ve tekrar başlangıç yerinde son bulur. Tek veya çift yönde replikasyonun olma durumu, orijin tarafından tayin edilir. Radyoaktif işaretleme yöntemleriyle, bu özellik saptanabilir. E. coli 'de, replikasyon orijininde yaklaşık 245 bp bulunmakta ve burada A-T bazlarının fazla olması açılmayı kolaylaştırmaktadır. E. coli 'de replikasyon fenomeninin başlangıcında genom sitoplasmik membranda bulunan özel bir bölgeye (mesosom) bağlanır. Burası, bakterinin yaklaşık orta bölgesine isabet eder. Diğer önemli nokta, kromozomun, sitoplasmik membranda bağlantı yerine kuvvetlice tutunmasıdır. Bunlara yardımcı olan bazı özel proteinler de belirlenmiştir. Genom, özel bölgeye bağlandıktan sonra buraya replikasyonda görevi olan bazı spesifik enzimler, proteinler ve dört tür deoksiribonukleotid trifosfat (dNTP) molekülleri birikir. Bunlar arasında, DNA polimerase, DNA ligase, helikase, primase, SSB, primosom, DNA'yı açan proteinler ve topoisomerase en önemlileri arasındadır. Ayrıca, dNTP'ler ve Mg++ iyonlarına gereksinim vardır. Replikasyonu bazı aşamalar halinde incelemek, olayı anlamak bakımından yararlı olacaktır. 1) Replikasyon noktasının belirlenmesi: E. coli 'de kromozom üzerinde 86. dk.'ya isabet eden bölge replikasyon orijinini (oriC) oluşturur ve burası yaklaşık 245 bp'den meydana gelmiştir. DNA, sitoplasmik membrandaki bu özel bölgeyi çeşitli proteinlerin yardımıyla da tanıyarak sıkıca bağlanır. 2) DNA'nın açılması: Bağlanma işlemi gerçekleştikten sonra, DNA'daki replikasyon orijini bölgesinde küçük bir açılma meydana gelir. Bu açılmayı, özel açıcı proteinler (enzimler), DNA iplikçikleri arasını açmak suretiyle genişletirler. Böylece sağa ve sola doğru giderek açılan bir replikasyon çatalı oluşur. Başlangıç bölgesinde DNA'da ilk açılmanın oluşu tam olarak aydınlatılmış değildir. Bir çok bilgilere sahip olunmasına karşın yine de çözüm bekleyen bazı noktalar bulunmaktadır. E. coli 'de 245 bp'den oluşan orijin bölgesinde kolayca açılabilen ve A-T bazlarından zengin 3 tane 13 bp ve 4 tane de 9 bp'lik tekrarlanan sekanslar vardır. Önce, dnaA proteinleri oriC bölgesinde toplanır ve reaksiyon bu iki bölgede (9 bp ve 13 bp) başlatılır. İlk açıklık 13 bp.'lik bölgede 3 yerden başlar ve sonra, dnaB ve dnaC'nin de komplekse katılmasıyla açıklıklar genişletilir ve bidireksiyonal replikasyon çatalı meydana gelir. 3) DNA sentezi (polimerizasyon): Parental iplikçikte açılmanın meydana gelmesiyle oluşan replikasyon çatalında, sentez hemen sağa ve sola doğru ilerlemeye başlar. Sentezi gerçekleştiren DNA polimerase-III enziminin önünde iki önemli enzim daha fonksiyoneldir ve bunlar da sentez yönünde ilerler. Bunlardan biri, eğer, DNA'da süper heliks (super sarmal) varsa bunu açarak genomu istirahat haline getiren topoisomerase (DNA girase) enzimi ve diğeri de istirahat halindeki DNA'da karşılıklı hidrojen bağlarını açarak, devamlı replikasyon çatalı oluşturan helikase (dnaG) enzimidir. Açılan iplikçiklerin tekrar birleşmesi de SSB (single strand binding) protein'lerin replikasyon çatalına yakın yerde iplikçiğe bağlanması ve bunun etkinliği ile önlenir ve böylece ayrılan iplikçikler sentez için daima açık tutulurlar. Sentez, birbirinden ayrılan parental iplikçiklerden 3' ¬ 5' yönünde olanının karşısına, bu iplikçik kalıp olarak kullanılarak, DNA polimerase enziminin katalitik etkinliği ile 5' ®3' yönünde komplementer yeni bir iplikçik çok çabuk olarak sentezlenir ve buna devam edilir (kesintisiz sentez). Bu yön (5' ® 3' ), DNA pol'ün aktivitesine de uygundur ve herhangi bir güçlük meydana gelmez. Ancak, DNA pol enzimlerinin sentez yapabilmesi için bir primer moleküle (başlangıç basamağı) gereksinim vardır. Çünkü, DNA pol., gerek tek iplikçik DNA'da ve gerekse primer olmayan DNA'da polimerizasyon yapamaz. Bu sorun, başlıca 3 tarzda çözümlenebilmektedir. Bunlardan biri ve çok kullanılanı, parental DNA'nın karşısına, 5' ® 3' yönünde ve serbest 3'-OH ucuna sahip 8-14 bazdan oluşan primer RNA'ların sentezleridir. Burası yeni DNA sentezi için başlangıç yeri oluşturur (veya, DNA'da bir çentik açılarak serbest 3' -OH ucu meydana getirilebilir veya RNA primerlerinin yerinde meydana gelen kısa protein primerleri de başlangıç oluşturabilirler). Böylece bu başlangıç noktasından orijin alan ve parental iplik (3'¬ 5' ) kalıp olarak kullanılarak, 3' -OH ucuna nukleotid trifosfatlar ilave edilerek (trifosfatlardan biri bağlanır ve geri kalan iki fosfat molekülü serbest kalır), yeni sentez 5'® 3' yönünde diğer parental iplikçikle birlikte eş zamanlı olarak sürdürülür. Eğer, yanlış bazlar sıraya girmişse, DNA pol. enzimi bunu hemen tanıyarak ekzonuklease aktivitesi ile çıkarır yerine doğrusunu koyar (düzeltme okuması). DNA sentezinin hızı, mRNA sentezinden (transkripsiyon) 10 defa daha çabuktur. Replikasyon çatalının ilerleme hızı dakikada 50.000 bp kadardır. Bu hız, S. cerevisiae 'de 3600 bp/dk olarak hesaplanmıştır. Parental iplikçiğinin 5' ® 3' yönünde olanında, ise, sentez kesintili olarak sürdürülür ve kompleks bir karakter gösterir. Parental iplikçiğinin karşısına sentezlenecek olan yeni iplikçik tersine 3' ¬ 5' yönündedir. Bu istikamet, DNA polimerazın sentez aktivitesine terstir. Bu nedenle, bazı güçlükler ortaya çıkmaktadır. Bu durum mikroorganizmalarda, şöyle çözümlenmektedir.Sentez, replikasyon çatalından başlamakta ve ters yönde, parental iplikçik (5' ® 3' ) boyunca kesintili olarak devam etmektedir. Diğer bir ifade ile, kesintili sentezin yönü, replikasyon çatalının ilerleme yönüne terstir. Açılan parental iplikçiğe SSB proteinleri bağlanarak çatalın devamlı açık tutulmasını ve sentezin devamlı yapılmasını sağlarlar. Primase enzimi (dnaG) yaklaşık 10 bazdan oluşan primer RNA'ları sentezler ve bunun 3' -OH ucu serbesttir. Bu uç basamak olarak kullanılarak yaklaşık 1000-2000 bazdan oluşan kısa bir DNA segmenti (Okazaki fragment) sentezlenir. Her Okazaki fragmenti ayrı bir primerden orijin alır. Bu sentezi, bir protein kompleksi olan primosom başlatır. Primosomlar da replikasyon çatalının ilerlediği yönde, diğer enzimlerle birlikte hareket ederler. Ancak, bunun hareketi de Okazaki fragment'lerinin sentezi yönünün tersi istikametinde olur. Okazaki fragmenti, bir önceki RNA primerlerine kadar uzanır ve burada durur. Primerler DNA pol I'in etkisiyle çıkarıldıktan sonra bunların yerleri aynı enzimle kapatılır ve iki DNA iplikçiği arası da DNA ligase ile birleştirilerek iplikçik kesintili olarak tamamlanmış olur. Primase enziminin çıkarılmasında da DNA pol III'ün rolü vardır. Böylece, 5' ® 3' yönündeki parental iplikçik kalıp olarak kullanılarak, kesintili olarak devam eden ve sonunda tamamlanan 3' ¬ 5' yönünde yeni bir DNA iplikçiği sentezlenmiş olur. Kesintili sentez işlemini de yine DNA pol enzimi yapar. Replikasyon çatalı ilerledikçe, sentez kesintisiz ve kesintili olarak aynı hızda ve sürede tamamlanır. 4) Terminasyon: Sentezin sona ermesi de yine protein komplekslerinin aktivitesi sonu gerçekleşerek iki iplikçik birbirinden tamamen ayrılır. 5) DNA'nın segregasyonu ve hücre bölünmesi: Genomik DNA'nın sitoplasmik membrana bağlandığı yerde, membranın sentezi nedeniyle giderek artan bir açılma meydana gelir. Bu açılma ilerleyerek iki replike olan iplikçiği de birbirinden uzaklaştırır. Bunun sonunda, bakterinin uzun ekseninde bir uzama gözlenir. Sonra, ortadan sirküler tarzda septum formasyonu meydana gelerek bakteri iki hücreye ayrılır. Kromozomun iki hücreye ayrılmasında ve hücre divizyonunda oluşan aksaklıklar, bazı anormal bakteri formlarının meydana gelmesine yol açar. Eğer septum formasyonu çok sık veya yanlış yerden olursa kardeş hücrelerden birinde (küçük olanda) kromozom bulunmaz. Böyle hücrelere çekirdeksiz hücreler (anukleer hücreler) adı verilir. Bazen de böyle hücreler kromozom ayrılmasının anormal olduğu durumlarda da meydana gelir. Bunlarda da, hücrelerde kromozom yoktur. Ancak, septum formasyonu ve boyutları normaldir. Septum formasyonu inhibe olursa, kromozom normal olarak replikasyona devam eder. Ancak, flamentöz formlar oluşur ve içinde birden fazla nukleus bulunur (multinukleer flamentöz formlar). Bazı mutantlarda (fts, flamentöz temperature sensitive), hücre uzun flamentler oluşturur ve içinde çok sayıda nukleusa rastlanır. Buna karşın, par (partition) mutantlarında ise, kromozom segregasyonunda bozukluk vardır. Çünkü, DNA anormal olarak hücrelere dağılır ve bazı hücrelerde çekirdek bulunmaz. Defektler bu olguda DNA'da yerleşmiştir. Septum formasyonuna neden olan gen, ftsZ'dir. Bu gende oluşan mutasyon, septum formasyonunu önler ve flamentöz formların meydana gelmesine yol açar. Mini hücre oluşumunda min B geninin rolü vardır. Bu lokusta meydana gelen mutasyonlar minicell (bunlarda genellikle çekirdeksizdirler) formasyonunu artırır. Kromozomun segregasyonunda da muk geni etkindir. 04.Ökaryotiklerde Replikasyon Ökaryotiklere ait replikasyon mekanizmasının incelenmesinde maya hücrelerinden fazlaca yararlanılmıştır. Ökaryotiklerde de prokaryotiklerde bulunan benzer enzim ve proteinler fonksiyoneldir (DNA pol., DNA ligase, topoisomerase, SSBP, DNA'yı açıcı proteinler, vs.). Ancak, bazıları yapısal farklılıklar gösterirler. Ökaryotiklerde 4 tür DNA polimerase enzimi (a, b, d, e,) vardır, ayrıca bir de gama (g) enzimi (mitokondrial) belirlenmiştir. DNA sentezi sırasında polimerase enzimi fazlalaşmakta ve DNA sentezi hücrenin S-fazında meydana gelmektedir. Pol. b ve g enzimleri daha ziyade hücrenin istirahat halinde iken bulunurlar. Pol. d, ayrıca, mitokondrial DNA'nın replikasyonunda etkilidir. Ökaryotiklerde de replikasyon, prokaryotiklere benzemektedir. Ancak, kromozomun çok uzun olması (bazıları bakterilerin bin katı) ve hücrenin S-fazında sentezin meydana gelmesi gibi nedenler, prokaryotiklerden daha yavaş ve daha zaman alıcı bir DNA sentezine yol açmaktadır. Belli bir süre içinde bu kadar fazla uzun kromozomun replikasyonu için, sadece bir tane replikasyon orijini yeterli olamamakta ve bu nedenle birçok orijinden, aynı anda veya bazen değişik zaman aralıklarında başlayan, bidireksiyonal replikasyon meydana gelmektedir. Replikasyon, sağa ve sola doğru genişleyen orijinlerin birbirine değdiği yerde son bulur. Ökaryotiklerin kromozomları histonla birleşmiştir (nukleosome) ve replikasyon sırasında histondan ayrılırlar. Replikasyonda, DNA sentezi her iki iplikçikte aynen bakterilerde olduğu gibi sürdürülür (biri kesintisiz ve diğeri kesintili). Maya hücrelerinde yaklaşık 400'e yakın orijin (ARS, autonomously replicating sequence) bulunmaktadır. 05. Diğer Replikasyon Modelleri 05.01. Mitokondrial DNA (mt DNA) Replikasyonu Memeli hücrelerinin mitokondrisi yaklaşık 5 µm uzunlukta (MA: 10x106, 15 000 bp) olup sirküler, süper sarmal bir DNA yapı özelliği gösterir. mtDNA'nın replikasyonunda, DNA pol, d enziminin aktif rolü vardır. Fare L-hücreleri mitokondrisi üzerinde yapılan çalışmalarda, mtDNA'nın sentezine her iki iplikçiktede diğer mekanizmaların aksine, kesintisiz olarak devam ettiği ortaya konulmuştur. Ancak, replikasyonda bazı farklı yanlar da bulunmaktadır. Şöyle ki, biri ağır (H) ve diğeri de hafif (L) iplikçiklerde iki replikasyon orijini (OH ve OL) yer almaktadır. DNA'da, önce, H-iplikçiğindeki orijinden (OH) başlayarak bir D-ilmeği meydana gelir ve ilmek genişleyerek unidireksiyonal olarak sentez devam eder. H-sentezi, 2/3 uzunluğa erişince, bu defa L-iplikçiğindeki OL bölgesinde sentez başlar ve H-ye ters olarak bu da unidireksiyonal olarak ve kesintisiz devam eder. Sonra iki sirküler DNA birbirinden ayrılır, sentez tamamlanır ve DNA iplikçiğinde 100'e yakın super sarmal meydana gelir. 05.02. Rolling Circle Replication Bu tür replikasyon modeline bazı fajlarda (ØX174, Lambda) ve F-faktörünü kromozomlarında taşıyan Hfr-hücrelerde rastlanmaktadır. 1) Lambda (l) fajında replikasyon: Bu faj konakçı bakteri içinde başlıca iki formda bulunur. Biri konakçıyı lize eden (litik form) ve diğeri de konakçının kromozomunun belli bir bölgesine (biotin geni ile galaktoz geni arasına) yerleşerek herhangi bir bozukluk oluşturmayan latent form. Böyle formu oluşturan lambda fajına profaj adı verilir. Litik formda faj ürerken, oluşan bazı sirküler formlarında bir iplikçikte meydana gelen kopma nedeniyle 5' -ucu dışa doğru açılarak uzanır. Buna karşın, 3' -ucu ise ortadaki sirküler tek iplikçiğin etrafında yeni komplementer iplikçik sentezler. Ayrılan 5' -ucu, normal boyutuna veya bunun 2-3 katı uzunluğa ulaştığında paketleme enzimi Cos bölgelerinden iplikçiği keserek normal boyutlarda lineer çift iplikçik DNA segmentleri meydana getirir. Bunlar paketleme enzimleri yardımıyla, hücre içinde sentezlenen boş faj başlığı içine girerler ve böylece olgun infektif fajlar meydana gelir. 2) Øx174 fajında replikasyon: Tek iplikçik DNA fajında da rolling circle replikasyon modeli sentez görülmektedir. Faj DNA'sı sirküler tek iplikçik ve (+) polaritelidir. Hücre içinde buna (–) polariteli bir iplikçik daha sentezlenerek çift iplikli hale getirilerek replikatif formlar (RF) oluşturulur. Bu formlar, genellikle, super sarmal bir yapıya sahiptirler. Topoisomerase enzimi süper heliksi açarak istirahat haline getirir. Protein A, (+) polariteli iplikçiğe bağlanarak bir çentik açar ve protein A, 5' -ucuna bağlı olarak iplikçiği ayırır. Diğer 3' -ucu ise sentezi devam ettirir. Ayrılan 5' -ucunun bulunduğu DNA iplikçiğine stabilizan tek iplikçik proteinler (SSB ) bağlanarak bunun (–) polariteli iplikçikle tekrar birleşmesi önlenir. Rep proteinleri de iki iplikçik arasındaki bağları çözerek, DNA' iplikçiklerini birbirinden ayırmaya devam eder. Sentez 3' -ucundan, (–) polariteli iplikçik etrafında ilerler. Ayrılan 5' -ucu tam bir dönüş uzunluğuna ulaşınca serbest uçtaki protein A bu defa (–) iplikçik etrafında yeni sentezlenen (+) iplikçiğe bağlanarak tekrar çentik açar ve replikasyon böylece devam eder. Protein A'dan kurtulan (+) iplikçik sirküler forma dönüştürülerek faj başlığı içine paketlenir. Bu iki fajın replikasyonları hakkında fajlar bahsinde gerekli bilgiler verilmektedir. 3) Hfr hücrelerde replikasyon: E. coli 'lerde bulunan ve seks pilusunun formasyonuna neden olan seks faktörü (F-faktörü) bir plasmiddir. Bu faktör E. coli içinde ya sitoplazmada bulunur ve E. coli 'yi F+ hale getirir veya bakterinin genomu ile birleşerek Hfr (High frequency recombination) oluşturur. Bu son durumda bakteri, kendi kromozomunu ve F-faktörünü transfer için seks pilusu sentezler. Bu pilus, kendisinde F-faktörü bulunmayan (F¯) hücreye genetik materyalin aktarılması için bağlanarak bir köprü görevi yapar. Genetik materyal, oluşan bu konjugasyon köprüsünden geçerek (F¯) hücreye transfer edilir. F plasmidinde, transfer için yaklaşık, 35 kb'lık bir bölge (transfer bölgesi) etkilidir. Pilus formasyonu için de 12 gene (tra gen) ihtiyaç vardır. F+ bir hücre, diğer F+ bir hücre ile pilus aracılığı ile temasa gelemez. Çünkü, tra S ve tra T genleri bakteri yüzey eksklusiyon proteinlerinin sentezine neden olur ve bunlar pilusla sağlanan teması önlerler. Böylece F+ veya Hfr bir hücre ancak, F¯ hücre ile ilişki kurabilir. F-faktörünün transferi oriT (origin transferi) bölgesinden başlar. Burası, transfer orijininin bir ucunda lokalize olmuştur. OriT'de, Tra Y ve/veya Tra I proteinleri tarafından bir çentik oluşturulur. Proteinler, sonra, DNA'ya bağlanır ve yaklaşık 200 bp uzunlukta DNA açılır. TraY/TraI multimeri 5' -ucundan hareket ederek bir saniyede 1200 bp açar ve açmaya devam eder. Sonra, 5' -ucu tekrar alıcı bakteriye yönelir. Konjugasyon köprüsünden alıcıya geçince bu tek iplikçiğe ikinci iplikçik (komplementer) sentezlenerek sirküler bir duruma gelir. 05.03. Plasmidlerde Replikasyon Bakterilerde sitoplazmada serbest olarak bulunan plasmidler replikasyon orijinine sahip olduklarından, bakteri genomuna bağlı olmaksızın, bakteri hücresi içinde otonom olarak kendi replikasyonunu yönetebilirler. Replikasyon tarzları, bakteri kromozomuna benzerdir. Ancak, plasmidler bakterinin kromozomu ile birleşince (episom), aynen profajlar gibi, DNA'nın bir parçası gibi olurlar, onunla birlikte replike olurlar ve kardeş hücrelere transfer edilirler. 05.04. Replikasyon İnhibitörleri DNA replikasyonu, sentez sırasında, çeşitli aşamalarda bazı kimyasal maddeler tarafından inhibe edilirler. Bu inhibitörler çok değişik karakter gösterdikleri gibi etkinlikleri de oldukça farklıdır. Bazıları nukleotid prekürsör sentezini inhibe eder, bir kısmı nukleotid analoğu olarak DNA'ya inkorpore olur ve bazıları da DNA'ya bağlanarak aktivitesine mani olur. Enzimlere, özellikle, DNA polimerase ve replikasyonda fonksiyonu olan diğer enzimlere bağlanarak görevini aksatan ve bozan maddeler de vardır. Bazı fiziksel ajanlar (UV-ışınları, X-ışınları ve gama ışınları) DNA'ya zarar verir ve replikasyonda bozukluklar meydana getirir. Böyle direkt etki yapan ajanların dışında, bazı kimyasal maddeler de sentez inhibitörü olarak indirekt etkiye sahiptirler. Örn. Colchicine ve diğer mikrotubuler parçalayıcıları (Vinca alkaloidleri, vincristine ve vinblastin gibi). Replikasyon inhibitörleri, etkiledikleri bölgelere göre 3 gruba ayrılmaktadırlar. a)Nukleotid biyosentezini inhibe edenler (pürin, pirimidin, folate, deoksiribonukleotid sentez inhibitörleri vb.). b)DNA ile bağlantı kurarak aktivitesini bozanlar (aktinomisin D, akridin, ethidium, vb). c)DNA sentezinde fonksiyonu olan enzimlere bağlanarak aktivitesini bozanlar (thriphosphatase, arylhydrazinopyrimidin, vb). Kaynak: Temel Mikrobiyoloji

http://www.biyologlar.com/nukleik-asitlerin-biyolojik-fonksiyonlari

DNA, Nükleotit, Kromozom, Gen, Canlılık, Cansızlık - Nedir, Ne Değildir?

Nükleotitlere bu özel önemi verme ve en önde anlatma sebebimiz, canlılığın sürerliğinin sağlanabilmesi için var olması gereken DNA yapısının temel yapı birimi olmalarıdır. İleride ayrıntısıyla değineceğimiz gibi canlılık en nihayetinde belirli biyokimyasal fonksiyonların DNA tarafından saklandığı ve gelecek nesillere aktarıldığı bir varlık formundan ibarettir. Dolayısıyla DNA'nın oluşabilmesi, canlılığın büyük oranda oluşabilmesini sağlayacaktır. Kavramların gerçek anlamlarını öğrenebilmemiz gerçekten çok önemli, çünkü ne yazık ki eğitim sistemimiz terimleri doğru bir şekilde öğretebilmekten çok çok uzak. Pek çok kavram, eğitim hayatımız boyunca yanlış ve "sınava yönelik" öğretiliyor. Ne var ki bilim, eğitim sistemimizin sandığından çok ileride. Bu sebeple bazı düzeltmeler yapmamız ve akıllarda oluşturulan bazı anlamsız tabuları kırmamız gerekiyor. Belki de, bu kavramların en başında "canlılık" ile "cansızlık" ayrımı geliyor. Buna Evrim Mekanizmaları ile ilgili yazılarımızda tekrar değineceğiz; orası için ayırdığımız bir açıklamayı, burada, en başından yapmak istiyoruz; çünkü "canlı" ve "cansız" ayrımını anlamak, belki de Biyoloji'yi anlayabilmenin ve Evrimsel Biyoloji'yi kavrayabilmenin başında geliyor. Öyleyse lafı daha fazla uzatmadan başlayalım: İlk olarak, bilimsel olarak hiçbir şey, esasında, ne "canlı"dır, ne de "cansız". Bu sadece, literatür açısından işleri kolaylaştırmak, Biyoloji'nin sahasını belirlemek ve anlaşma kolaylığı sağlamak amacıyla uydurulmuş ve pek bir dayanağı olmayan bir olgudur. İnsanoğlu, etrafına bakıp varlıkları sınıflandırmak istemiş ve belli başlı özellikler taşıdığı için bazı varlıklara "canlı" demiş, bu özellikleri taşımayan varlıklara ise "cansız" demiştir. Bu belli başlı özellikler şöyle sıralanabilir: 1.Uyarana tepki gösterme 2.Üreme 3.Büyüme ve Gelişme 4.İç Dengeyi Koruma 5.Belli bir organizasyona sahip olma 6.Metabolik faaliyetleri gerçekleştirme ve enerji üretme 7.Adapte olabilme Kimi kaynak bunlardan sadece ilk 4'ünü saymakta, diğerlerini elemektedir. Aslında bunları moleküler boyutta düşünürseniz göreceksiniz ki her biri basit kimyasal olaylar sayesinde olabilmektedir ve büyütülecek ya da "canlılığa özel" bir şey olabilecek durumda değildir. Daha çok, sonradan uydurulmuş bir kılıf olarak görülmektedir. Ve temel olarak, bu 7 özelliğe bir arada sahip olabilen varlıklara "canlı" denmektedir, bir ya da birkaçı "cansız" varlıklarda da görülebilir (Tepki örneği: www.vidivodo.com/325487/instant-hot-ice). Aslında temel olarak, binlerce yıl öncesinden beri, yukarıda belirttiğimiz taşıyan varlıklarda bir "can" (insan için "ruh", diğerleri için "can") olması gerektiğini düşünmüştür insanlar. Bu kavramlar o kadar uzun yıllardır insanları etkilemektedir ki, insanlık tarihine göre, göreceli olarak çok yeni olan bilim de bu kavramları olduğu gibi kullanmaktadır; gerek kullanım kolaylığı, gerekse de aramıza yerleşmiş memlerin yıkılmasının güçlüğünden ötürü. Halbuki, Biyoloji'nin derinliklerine inen bilim insanları, önce organlarımızı, sonra dokularımızı, sonra hücrelerimizi keşfetmiştir. Daha da derinlere indiğimizde, hücrelerin içerisindeki neredeyse her olayı gözlemleyebilir hale gelmişizdir. Ve bu boyutta, baktığımız zaman, bir canlı ile cansızı ayırmak olanaksızdır. Çünkü ikisi de belli başlı kimyasal tepkimeler bütünüdür. Bir demir, oksijenin bulunduğu ortamda sürekli tepkimeye girerek paslanmaktadır. Aynı oksijen, hücrelerimiz içerisinde bulunan bir diğer kimyasal olan şekerler ile tepkimeye girerek hücrenin "canlılığını" sürdürmektedir. Peki, demiri "cansız", hücreyi "canlı" yapan nedir öyleyse? Hiçbir şey. İkisi de, sıradan atomlar ve moleküller yığınıdır. Tek fark, bu kimyasal tepkimelerin ("canlılar" içerisinde gerçekleşiyorsa "biyokimyasal" tepkimelerin) toplamı, eğer içerisinde bulunduğu ya da totalde oluşturduğu varlığa yukarıda sayılan belli başlı özellikleri veriyorsa, o varlık "canlı" olmaktadır. Bu, insanın kendince uydurduğu asılsız bir sınıflandırmadır. Bu noktada, daha fazla ilerlemeden anlam bütünlüğü açısından atom ve molekülün yazımız kapsamında ne anlamda kullanıldığını açıklayalım: Atom, bir maddeyi meydana getiren nano-boyuttaki temel parçacıkların adıdır. Temel olarak, periyodik cetvelde element olarak gösterilen bağımsız madde parçacıkları olarak düşünülebilir. Her bir atomun, kendine has fiziksel ve kimyasal özellikleri vardır. Bu özellikler doğrultusunda normalde Kimya dahilinde aynı elementlere ait atomların bir araya gelerek oluşturdukları daha büyük parçalaramolekül denmektedir. Eğer farklı elementlere ait atomlar bir araya gelerek daha büyük bir yapı oluşturuyorlarsa buna Kimya'da bileşik denir. Ne var ki biz bu detaylara girmemek adına, "bileşik" ile "molekül" sözcüklerini eş anlamlı olarak kullanacağız ve hepsine birden "molekül" diyeceğiz. Canlılık/cansızlık olayına dönecek olursak; aşağıdaki yazımızda bunu biraz daha irdelemekteyiz: www.facebook.com/note.php?note_id=164247643633319 Yukarıdaki yazımızda da okuyabileceğiniz gibi, "canlılığın" "cansızlıktan" başlaması oldukça anlaşılır ve mantıklıdır, çünkü aralarında bir fark zaten yoktur. Başlangıçta meydana gelen farklı kimyasal evrimler bazı varlıkların yukarıdaki özelliklere hep birden sahip olmasını, bazılarının da başka türlü özelliklere sahip olmasını sağlamıştır. Örneğin karbon, yüksek basınç altında Dünya'nın en sert malzemesi olan elmasa dönüşür. Bunu hangi canlı yapabilir? Hangisinin daha "önemli" olduğuna nasıl karar vereceğiz? İşte, aslında hiçbiri önemli değildir. Önem sırası, insanlar tarafından rastgele belirlenir ve esasında doğa açısından geçersizdir. İşte canlılık ile cansızlık arasında bir fark olmadığını anlayabilen biri, geri kalan pek çok şeyi kolaylıkla kavrayabilecektir. Bunların başında da, canlıları "canlı" yapan moleküller, bunların yapıları ve görevleri gelmektedir. Canlıları ayırt eden belki de en önemli özellik, çoğalabilmeleri ve kendilerindeki bilgiyi yavrularına aktarabilmeleridir. Bu olay, insanı var olduğundan beri etkilemektedir ve birikerek günümüze gelen bu "büyüleyicilik", günümüz insanlarının genetik materyallere ve genel olarak hücreleri meydana getiren kimyasal moleküllere olduğundan fazla anlam yüklemesine sebep olmaktadır. Kişiler DNA'nın "mükemmel" bir molekül olduğunu sanmakta, enzimlerin "ulaşılamaz" bir iş yaptıklarını düşünmekte, hücrenin içinin "gerçek olamayacak kadar karmaşık" olduğunu iddia etmektedirler. Bunlar, bir yere kadar doğru olsa da, bilimsel olarak açıklanamayacak kadar "mükemmel", "ulaşılamaz" ya da "karmaşık" olan hiçbir yapıya doğada rastlanmaz. Zaten bilim, doğayı anlama sanatıdır ve doğada izah edilemeyecek bir şey bulmayı beklemek anlamsızdır. Şimdi, başlıkta da belirttiğimiz molekülleri tanıtmaya ve incelemeye başlayalım, böylece ne demek istediğimizi kolaylıkla anlayacaksınız: DNA dediğimiz moleküller zincirinin uzun adı; Deoksiribo Nükleik Asit’tir. Kimya konusunda bilgisiz olan biri ilk bakışta anlayamayabilecek olsa da, DNA son derece sıradan, kimyasal bir moleküldür. Kimya bilimi dahilinde bütün moleküller bu şekilde uzun, tanımlayıcı ve bir miktar da "artistik" sayılabilecek isimler alırlar. Örneğin sıradan bir kimyasal olan bir diğer maddenin adını verelim: Trifluoromethanesulfonate. Hele ki eğer DNA'nın adını karmaşık buluyorsanız, bir de her gün yudumladığınız kahvenizin içerisinde bulunan "kafein"in kimyasal adını deneyin: 3,7-dihydro-1,3,7-trimethyl-1H-purine-2,6-dione! Yani DNA, ne özel bir isimdir, ne de özel bir artısı vardır. DNA’yı belki de "özel" kılan tek şey, her kimyasal maddenin kendine ait bir özelliği olduğu gibi, DNA’nın da kendine ait bir özelliği olması ve bu özelliğin, bizim ilgimizi çeken bir şekilde, kalıtıml alanında görev almasıdır. Yani örneğin gözlerinizin ıslak kalmasını sağlayan gözyaşınızın da kimyasal bir formülü bulunur. Tek fark, gözyaşınızın gözlerinizi korumak ve duygularınızı belli etmek gibi görevleri varken, DNA’nın bir sonraki kuşağa aktaracağınız bilgileri taşıma görevi olmasıdır. DNA’yı spot ışıklarının karşısına koyan bu kalıtımsal özelliğidir; ne daha azı, ne daha fazlası. Aslında düşünüldüğünde, bunun da "özel" olmadığı görülecektir. Çünkü zaten "kalıtım" dediğimiz olay da, biyokimyasal bir tepkime sonucunda, bir molekülün kendisini eşlemesi ve çoğalması demektir. Bunun da herhangi bir özel yanı bulunmamaktadır. Aşağıda, temsili ve en sık karşılaşabileceğiniz DNA çizimini görüyoruz. Gördüğünüz gibi DNA, ikili bir sarmaldan oluşur. Yani iki farklı doğru, birbiri etrafında kıvrılarak heliks bir yapıya bürünür: Bu çizim her ne kadar genel yapı hakkında bilgi verse de ve bu şekilde çizilmesi çizerler için oldukça kolay olsa da, molekülleri sanki özel ya da başka varlıklardan farklıymış gibi göstermesinden ötürü, biz bu "kapalı çizim" yöntemini tercih etmiyoruz. Bir aşağıdaki resmi incelerseniz, farkı anlayacaksınız. Aşağıdaki çizimde, DNA’nın gerçek yapısı görülmektedir. DNA da, evren içerisindeki diğer bütün varlıklar gibi, yalnızca ve yalnızca sıradan atomlardan ve bunların farklı kombinasyonları olan moleküllerden oluşur. Bu atomlar temel olarak Karbon (C), Hidrojen (H), Azot (N), Fosfat (P), Oksijen (O) ve benzeridir: Görüyorsunuz… DNA, sadece arka arkaya, birbirlerine zayıf veya kuvvetli kimyasal bağlar ile bağlanmış atomlardan ibarettir. Peki DNA, en küçük kalıtsal yapıtaşımız mıdır? Elbette hayır, DNA zinciri de daha küçük parçalara bölünebilir. Bu daha küçük parçalara “nükleotit” denir ve DNA sarmalını bir merdivene benzetecek olursak, merdivenin basamaklarını oluşturur. Nükleotitler, kalıtım bilimi için oldukça önemlidirler. Çünkü temel olarak, bilgiyi taşıyan parçalar nükleotitlerdir. Nükleotitlerin farklı dizilimi, farklı anlamlar ifade eder. Dolayısıyla nükleotitleri, eğitim hayatımızda da ezberlettikleri gibi "harfler" olarak düşünebiliriz. Bu harfler, farklı şekillerde dizilerek, farklı kelimeler, farklı anlamlar ifade ederler. Tıpkı bizim günümüzde kullandığımız son derece kompleks bilgisayar yazılım dilleri gibi, genetik olarak hücrelerimiz de bir şifreleme kullanırlar. Bu şifreleme dilindeki harf sayısı, günümüz modern dillerine göre çok çok az olmakla birlikte, bu az sayıda harfin kodlayabileceği komut sayısı sınırsızdır. Bunu bilgisayar üzerinden örnek vererek anlatabiliriz: Bilgisayar programcıları, bilgisayarları programlamak için C, C++, Basic, vb. diller kullanırlar. Bu diller, İngilizce’ye oldukça benzerler, çünkü bu programlama dillerini yazan programcılar tarafından, günlük konuşma diline oldukça yakın olacak şekilde ayarlanmışlardır. İlk bilgisayar yazılımları, kesinlikle böyle basit bir dil kullanmamaktaydı ve mühendisler tek tek "1" ve "0"ları kullanarak programlama yapmaktaydılar. Sonrasında, "bilgisayarların evrimi" sırasında yeni programlar yazıldı. Bu programlar, "programı programlamaya" yarıyordu. Temel olarak yaptıkları şuydu: İngilizceye benzer kelimeleri kullanabileceğiniz bir arayüz sağlamak. Programcı, bu arayüze kolay kelimeleri yazmaktadır; arka planda ise program bunu yine "1"ler ve "0"lara çevirip işlemciye gönderir. Örneğin klavyede yazdığınız bir kelimenin ekranda çıkabilmesinin tek nedeni, bastığınız her bir tuşun bilgisayara elektriksel sinyal olarak bir “komut” göndermesi ve bilgisayarın monitörde bulunan küçük, ışık saçan LED’lerden birini, uygun renkte yakmasından ibarettir. Bilgisayar ekranını güçlü bir büyüteçle incelerseniz, ne demek istediğimi anlayabilirsiniz. İşte nükleotitlerin farklı dizilimleri sonucu oluşan "anlamlı bütünler" ise (bunlara "gen" diyeceğiz), farklı işlemleri yapmak için özelleşmiş kodlar gibidir. Buna az sonra geleceğiz, öncelikle bir noktayı aydınlatalım: Tabii ki bilgisayarlar, insanlar tarafından "tasarlanan" makinalar olduğu için, canlılığı betimlemekte kullanmak çok da doğru değildir. Zira canlılık, insan zekası tarafından son 50-60 yılda var edilen bilgisayarın aksine, yaklaşık 600 milyon yıl boyunca, akıl almaz sayıda denemeler sonucunda, adım adım evrimleşerek, elenerek, seçilerek oluşmuştur. "Hurdalıktaki Boeing" benzetmesine ya da "İşte, bilgisayarın da bir yaratıcısı var, canlılığın da olmalı!" iddiasına bir diğer yazımızda zaten değineceğiz, o yüzden aklınızdan geçiyorsa bir miktar sabretmenizi rica edeceğiz. Bu yazımızda bunlara az sonra, kısaca değineceğiz. Bilgisayarda olduğuna benzer bir şekilde, canlılar da da 4 harften oluşan bir dil kullanır ve her bir harf, bir nükleotit tipini temsil eder. Bu harfler, “A” (Adenin), “T” (Timin), “C” (Sitozin) ve “G” (Guanin)'dir. Elbette ki aslında gerçekte bu harflerin hiçbiri ile iletişim olmamaktadır. Bu isimleri onlara biz, sonradan verdik. Zira bu bahsedilen harfler, yalnızca kimyasal bazı yapılardır. Bilgisayar benzetmesinin kötü bir benzetme olmasının bir nedeni de şudur: Canlılara "bilgisayar" olarak baktığınızda, bir grup mühendisin oturup tasarladıkları bir makina olarak düşünürsünüz ve bu sizi yanlış düşüncelere iter. Çünkü bilgisayarlar biyolojik bir evrim geçirmemişler, mühendisler tarafından tasarlanmışlardır. Bu bile tam olarak doğru değildir, çünkü Evrim aslında her yerdedir: Aslında "teknolojinin evrimi" olarak düşünüldüğünde, binlerce yıllık bir geçmiş sonucunda, minik adımlarla bugün "bilgisayar" dediğimiz makinalara ulaştığımızı görürsünüz. Hiçbir ürün, basit adımlar atmadan, olduğu son şekliyle var olamaz. Canlılık da bu şekildedir. Canlılar, bu yazı dizimizde anlatacağımız başlangıçtan, milyarlarca yıllık seçilim ve değişim sonucunda günümüzdeki halini almışlardır. Düşüncelerinize kulak verelim: "Şimdi telleri, dirençleri, transistörleri koysak, milyarlarca yılda bir bilgisayar oluşabilir mi?" diye soracaksınız. Dediğimiz gibi, bunu diğer yazılarımızda ayrıntısıyla inceleyeceğiz. Ancak unutmayınız ki, direnç, transistör vb. varlıklar bizim "canlı" dediğimiz organizmaların oluşmasını sağlayan kimyasal yapıya sahip değillerdir. Dolayısıyla "üreyemezler" ve kendilerindeki bilgiyi yavrularına "aktaramazlar". Bu sebeple daha sonra açıklayacağımız Evrim Mekanizmaları'nın hiçbiri işleyemez. İşte tam olarak bu sebeple, Evrim geçirmezler ve asla bir bilgisayar oluşturmazlar. Ancak eğer ki bu şartları sağlayabilecek kimyasal yapıları olsaydı, üzerlerinde seçilim işleyecekti ve belki de, şu anda düşününce komik gelse de, hiç beklemediğiniz mekanizmalar üretebileceklerdi. Ancak cansızları kullanarak, canlılığı betimlemek, cansızların tanımsal olarak "canlılık" özelliklerini taşımadıkları için doğru değildir. Eğer yukarıdaki açıklamalarımız doğrultusunda canlılık ve cansızlık doğru tanımlanırsa, düzgün betimlemelere ulaşmak daha mümkün olacaktır. Buradan anlaşılması gereken şudur: Evrim'i ve canlılığın başlangıcını anlayabilmemiz için, belli bir grup kimyasal ve fiziksel özelliklere sahip molekül gruplarından bahsetmemiz gerekir. Aklımıza gelen her atom, molekül ya da yapı, canlılık ile paralellik göstermeyecektir. Yoksa tek tip değil, binlerce farklı tipte canlı olurdu, her birinin "canlılık" özellikleri farklı olurdu. Ancak var olmuş, var olan ve var olacak her canlının ortak bir atası vardır ve o ata, var olan Evren'imizin kuralları dahilinde, var olan Dünya'mızın şartları çerçevesinde bizlerin yukarıda saydığımız "canlılık" özelliklerini kazanabilmiş ve aktarabilmişlerdir. Her canlının DNA'sı benzer yapıdadır, her canlının hücreleri üç aşağı beş yukarı birbirini andıracaktır (hatta her canlının genomu, belli bir miktar diğer herhangi bir canlıyla ortaktır, bu da ortak bir atadan geldiğimizi gösterir). Ancak bizi ilgilendiren "canlılık molekülleri", yani canlılığı değerlendirmemiz için kullanabileceğimiz bileşikleri oluşturan moleküller; Karbon (C), Oksijen (O), Hidrojen (H), Nitrojen (N), Fosfor (P), Kükürt (S) ve birkaç diğer atomun farklı bileşimleriyle oluşan sayısız moleküldür. Periyodik cetvelde önünüze gelen her atomla, canlılıktan bahsedemezsiniz. Yani aklımızda şunu tutmamız gerekiyor: Dünya üzerindeki canlılık ve cansızlık, aynı noktadan, 4.5 milyar yıl önce Dünya'nın oluşumuyla başlamıştır. Günümüzdeki canlıların da, cansızların da yapısındaki her şey ama her şey, bu ilk başlangıçta Dünya üzerine yerleşmiştir, bir kısmı da sonradan canlılara ya da cansızlara ait tepkimeler aracılığıyla üretilmiştir. Bu varlıklardan bir grup, aşağıda açıklayacağımız kimyasal bütünlüğünden oluştukları için, daha doğrusu maddeler bu şekilde birleştiği için bugün "canlılık" olarak tanımladığımız varlık grubuna evrimleşeceklerdir. Bir kısmı ise, daha farklı yapıda oldukları için bugün bizim "canlılar" dediğimiz varlıkların özelliklerine sahip olamayacaklardır. Burada bir "üstünlük"ten bahsetmek anlamsızdır. Sadece iki farklı varlık grubundan bahsetmek gerekir. İki grup da tamamen benzer atom ve moleküllerden oluşmaktadır. Sadece bu atom ve moleküllerin dizilimi, içerikleri ve son 4 milyar yılda geçirdikleri kimyasal evrim birbirinden farklıdır. Peki, DNA'daki bilgileri taşıyan yapıtaşları, daha doğrusu "harfler" dediğimiz yapı taşları nelerdir? Bu harfler, nükleotit denen DNA’nın küçük parçalarının, bildiğimiz, kimyasal bir madde olan “baz” kısmında bulunan bir dizilimdir. Bu dizilimde karbon, hidrojen, vb. atomlar bulunur. Bu atomlar belirli bir şekilde dizilirse, ona Adenin (A) deriz. Başka bir şekilde dizilirse Timin (T) deriz. Başka bir şekilde dizilime Guanin (G), bir diğerine ise Sitozin (C, İng: Cytosine) deriz. Ancak biz onlara ne dersek diyelim, aslında bunlar sadece sıradan birer baz grubudur. Birer kimyasaldır. Ancak bu kimyasallar, bizim genetik yapımıza sahiptirler. Aşağıda, bu kodlayıcı “harflerin” ya da kimyasal moleküllerin yapısını görebilirsiniz. Görebileceğiniz üzere sadece sıradan atomların farklı dizilimleri sonucu bu moleküller oluşmaktadır: Ne kadar da birbirlerine benziyorlar değil mi? Tek değişen, atomlarının dizilimi. Ancak bu dizilimlerin farklı farklı olması, bu moleküllerin farklı kısımlarının aktif hale gelmesine ve farklı moleküllerle, farklı tepkimelere girebilmelerine sebep oluyor. bu farklı tepkimelerin toplamı da, bir varlığı "canlı" ya da "cansız" kılıyor. İşte fark burada! Ve anlaşılması gereken nokta da bu! Devam edelim. Nükleotitler, işte bu bazlarına göre isimlendirilirler. Peki bir nükleotitin yapısı nedir? Elbette ki, tıpkı evrendeki diğer tüm maddeler ve varlıklar gibi; atomlardan oluşan sıradan dizilimler. İşte bir nükleotit dizilimi: Gördüğünüz gibi, nükleotit denen ve çocuğunuzun neye benzeyeceğine karar veren moleküller, son derece sıradan atom dizilimlerinden fazlası değil! Bir fosfat (phosphate) grubu, bir şeker (sugar) grubu ve bir baz (base) grubu! Daha fazlası yok. Nükleotit dediğimiz molekül tipleri, sadece genetik materyalimiz ile sınırlı değil. Örneğin size bir diğer nükleotit örneği verelim: ADP. Yani Adenozin Difosfat. Bu da bir nükleotittir; ancak kimyasal evrim sırasındaki ardı arkası kesilmeyen seçilim sırasında, genetik materyali kodlayacak şekilde özelleşmemiştir. Yani cansızlıktan, canlılığı evrimleştirecek olan yapılar içerisinde görevi bu olmamıştır. Dolayısıyla günümüzde de bu yapı, herhangi bir genetik bilgi kodlamaz, enerji ile ilgili işlerde görev alır. Ancak yapısal olarak oldukça benzerlerdir: Buradan anlaşılması gereken şudur: Canlılık, bir "cansızlık çorbası" içerisinde, kimyasalların farklı şekillerde birbirlerine bağlanması, kırılması, birleşmesi, ayrılması sonucunda, 600 milyon yıl süren bir deneme-yanılma ve seçilim süreci sonucunda oluşmuştur. Bu süre zarfında pek çok çeşit "canlı-benzeri bileşim" oluşmuş olabilir. Ancak bunlardan sadece birkaçı dayanıklı olmuş ve seçilmiştir. İşte günümüzdeki her canlının atası olan bu canlıların yapısındaki kimyasal özellikler, günümüzdeki her canlının hücrelerindeki kimyasal özellikleri temsil etmektedir. Eğer onlar farklı şekilde hayatta kalabilseydi, günümüz canlı formlarının hücreleri de farklı yapıda olabilecekti. Bunlara gelecek yazılarımızda zaten döneceğiz. Bir diğer görselle devam edelim. Nükleotitlerin kimyasal yapılarının basit çizimle gösterimi şu şekildedir: İşte nükleotitler, kimyasal özelliklerinden dolayı bağ kurmak zorunda oldukları diğer nükleotitler ile birleşirler ve bu birleşimin tümü, DNA'yı oluşturur. DNA sarmal (heliks) yapısının, bu nükleotitlerin de gösterilerek çizilen hali şu şekildedir: Bu DNA sarmalının en altında dikdörtgene alınmış kısımda, fosfat-şeker-baz üçlüsünü ve dolayısıyla nükleotitleri görebilirsiniz. İşte bu DNA sarmalı, ökaryotlarda (zarla çevrili organelleri ve çekirdeği bulunan hücrelerde), upuzun bir şekilde hücrenin içerisindeki çekirdekte bulunur . Prokaryot (zarla çevrili organelleri bulunmayan ve çekirdeksiz) hücrelerde ise hücrenin içerisinde, genellikle ortada, ancak çekirdek bulunmadığı için daha dağınık bir vaziyette bulunmaktadır. Bu upuzun ve karmakarışık DNA sarmalı yapısına “kromatin ipliği” ya da “kromatin ağı” denir. Bunu da görelim: Yukarıdaki görsel son derece faydalıdır. En solda görülen spagetti tabağına benzeyen yapı, elbette ki bir tabak değildir, içindeki sarı yapı da spagetti değildir. Bu sarı yapı, upuzun olan bir DNA ağıdır. Burada, milyarlarca DNA bulunmaktadır. Karmakarışık bir ağ şeklinde. Mor renkli kap da, hücre çekirdeğidir. Gösterilmemiş olsa da, hücre çekirdeği de, hücre sıvısının içerisinde bulunur. Çıkarılan mavi oku takip ederseniz, DNA Heliks yapısına kadar geçişi görebilirsiniz. Ancak en nihayetinde, hatırlatmak gerekirse, olan tek şey, atomların dizilimidir. Aslında, bu karmaşık ağın içerisinde belirli bir düzen vardır. Bu düzen çok önemlidir, çünkü hücre bölünmesi sırasında genetik bilginin aktarımında bu özel birimler görev alırlar. Bu özel birimlerin adı “kromozom”dur. Kromozomlar, DNA’nın histon proteinleri tarafından sarılarak yoğunlaşması sonucu oluşan genetik birimlerdir. Kromozomlar da şu şekilde görülürler: Bu görsel de son derece açıklayıcıdır. Görebileceğiniz üzere hücre çekirdeğinin içerisinde özelleşmiş olarak bulunan bu DNA yapıları, kromozomlardır. Kromozomlardan yola çıkarak bazlara kadar yapılan açılımı, yukarıdaki görseli takip ederek bulabilirsiniz. Kısaca nükleotitlerin depolanması işlemi içerisindeki farklı genetik birimlere, farklı isimler verilmektedir. Bunlar, şimdilik bizim için çok da önem arz etmiyor; ancak Biyoloji'yi anlamak için elbette kritik öneme sahiptirler. Peki, genler bu adım adım karmaşıklaşan yapının neresindedirler? Genler, nükleotit dizilimlerinin anlam kazandığı bölgelerdir. Burada anlam kazanmaktan kasıt, yine bilim-dışı ya da doğaüstü bir "anlam" değildir. Canlıların, "canlılık özelliklerini" sürdürebilmeleri için üretmek zorunda oldukları çeşitli kimyasallar vardır (aslında dediğimiz gibi, bu kimyasalların varlığının toplamına "canlılık" denir). Genler, bu kimyasalların salgılanma sırasını, biçimini, vb. özelliklerini etkiler ve bu bilgileri depolar. Bu da son derece mantıklıdır: ilk canlılar evrimleşmeye başladıktan sonra, bu canlılığı sürdürebilecek kimyasal sentez işlemlerini saklayan bir diğer molekül biriminin, yani genlerin bulunması, canlılara avantaj sağlayacaktır. Kısaca bir kere genler oluştuktan sonra, canlılık kolayca sürdürülebilecetir. “Gen” denen yapı, aslında DNA’nın sadece belirli bir bölgesidir: Görebileceğiniz üzere genler, DNA sarmalının belirli kısımlardırı. Bu kısımlar, anlamlı ifadeler halindedirler ve hücre tarafından gerektiğinde algılanır ve kullanılırlar. Bilgisayar benzetimimize dönecek olursak, bilgisayarların da 1′ler ve 0′lar ile “konuştuğunu” söylemiştik. Ancak bu 1′ler ve 0′lar tek başlarına hiçbir anlam ifade etmezler. Hatta çoğu zaman, bunların uzun dizilimleri de anlam ifade etmeyebilir. Ancak bunların belirli uzunluktaki dizilimleri, anlamlı bir hal alırlar. Örnek verecek olursak, bir bilgisayar için 1110101001 gibi bir dizilim anlam ifade etmeyebilir. Ancak aynı dizilimin biraz daha uzun bir hali, 11101010010001110 dizilimi, anlamlı olabilecektir, örneğin bu bilgi, klavyeden gelen bir komut sonucu ekranda “A” harfinin çıkmasını sağlayabilir. Bunu bilgisayalarda, 8-bitlik sistem, 16-bitlik sistem, 32-bitlik sistem, 64-bitlik sistem, vs. şeklinde isimlendiririz. Yani anlam bütünleri, 8'er, 16'şar, 32'şer ya da 64'er kümeler halinde okunmaktadır. Aynı şekilde, tek başlarına ATGTTC şeklindeki bir dizilim anlamsız olabilecekken, ATGTTCGTAACGTAC gibi bir dizilim, belirli bir işleve sahip olabilir ve bu “kelime”, hücre için “bölünmeye başla” komutu anlamına gelebilecektir. Elbette bu anlamları şu anda uyduruyorum, ancak temel olarak konunun özünü vereceğini düşünüyorum. Genetikte, "3-bitlik sistem" vardır ve her 3 nükleotit (örneğin GCA) bir aminoasidi kodlar. Bu 3'lü kod sonucunda bir aminoasit üretilir ve bunların birleşimi proteinleri, bunlar enzimleri, enzimler de bizi "canlı" yapan reaksiyonları üretirler veya üretilmesini sağlarlar. Tek bir aminosit, tek başına belli bir anlam taşımayabilir. Ancak aminoasitlerin farklı bileşimleri sayesinde, pek çok işi yapan, sonsuz sayıda protein üretilebilir. İşte bu işi sağlayan, genetik açıdan anlamlı ifadelere de “gen” diyoruz. Genler, sizin boyunuzdan saç renginize, vücudunuzun kıllılığından göz renginize, geçirebileceğiniz hastalıklardan kalıtsal olarak taşıyacağınız hastalıklara kadar her şeyi kod olarak saklarlar. Bu kodlar, anlattığımız gibi A, T, C ve G harflerinin belirli dizilimleriyle saklanırlar. Bu dizilimlerin "nasıl" olacakları ise, milyarlarca yıldır süren evrimle belirlenmekte ve değişmektedir. Yani canlılık, bir başlangıçtan başladıktan sonra, farklı yönlere doğru bizim Evrim Ağacı olarak isimlendirdiğimiz yapıda türleşirken, her canlının barındırdığı genetik dizilim, çevre şartlarının etkisi altında adım adım değişmiştir. Bu değişimler, hücreler içerisinde salgılanan kimyasalların yapısında, miktarında ve çeşidinde farklılıklara sebep olmuştur. Bu farklılıklar da, hücrelerin kendilerinin farklı özellikler edinmesine sebep olmaktadır. İşte bu farklı özelliklere sahip olanlar arasında, çevreye en uygun olanlar varlıklarını sürdürmeye devam edebilirler; böylece kendilerine bu farklı özellikleri veren genleri ürerken yavrularına aktarabilirler. İşte bu şekilde, adım adım bir genetik birikimle türler farklılaşır ve değişirler. Ki biz de buna Evrim diyoruz. Şimdilik konuya burada bir nokta koyacağız, bunlar temel konseptlerdi. Umarız bu temel bilgiler tüm okuyucularımıza faydalı olmuştur. Saygılarımızla. ÇMB (Evrim Ağacı) www.evrimagaci.org

http://www.biyologlar.com/dna-nukleotit-kromozom-gen-canlilik-cansizlik-nedir-ne-degildir

Virüslerde Litik ve Lizogenik Enfeksiyonu Karşılaştırınız

LİTİK EVRE: 1-Virüsün bakteriye tutunması 2-Virüs nükleik asitinin bakteriye girişi 3-Virüs nükleik asitinin çoğlaması 4-Virüs nükleik asitinin yeni sentezlenen protein kılıfla çevrilmesi 5-Bakteri hücre duvarının erimesiyle yeni virüslerin serbest kalması LİZOGENİK EVRE: 1-Virüs nükleik asitinin serbest kalması 2-Virüs DNA'sının bakteri DNA'sına entegre olması 3-Profaj oluşumu 4-Bakteri hücresinin bölünmesi 1913 te Britan yalı bakteriyolog Frederick Twort bakterileri enfekte edip öldüren bir etmen keşfetmiş ama konuyu daha fazla ta kip etmemiştir. Fransız-Kanadalı mikrobiyolog Felix dHérelle 3 eylül 1917de dizanteri basilinin düşmanının görünmez bir mikrobunu keşfettiğini açıklayıp ona bakteryofaj adını verdi Çoğalması bakteriyofajların, litik veya lizogenik hayat döngüleri olabilir bazılarında her ikisi de olur. T4 fajı gibi öldürücü fajlarda görülen litik döngüde virionun çoğalmasının hemen ardından konak hücre parçalanır ve ölür. Hücre ölür ölmez virionların kendilerine yeni bir konak bulmaları gerekir. Lizo genik döngü buna tezat olarak konak hücrenin parçalanmasına neden olmaz. Lizogenik olabilen fajlara ılımlı fajlar temperate phage denir. Viral genom konak genoma dahil olur ve oldukça zararsız bir şekilde onunla beraber eşlenir. Konak hücrenin sağlığı yerinde olduğu sürece Virüs sessiz bir şekilde varlığını sürdürür ama konağın şartları bozulursa örneğin besin kaynaklarının tükenmesi durumunda endojen fajlar profaj olarak adlandırılırlar etkinleşirler. Bir çoğalma süreci başlar sonucunda konak hücre parçalanır. ilginç bir şekilde lizogenik döngü konak hücrenin çoğalmasına izin verdiği için hücrenin yavrularında da virüs varlığını devam ettirir. Bazen profajlar inaktif oldukları dönemde bakteri genomuna yeni işlevler kazandırarak konak bakteriye fayda sağlarlar bu olguya lizogenik dönüşüm lysogenic conversion denir. Bunun iyi bilinen bir örneği Vibrio cholera nın zararsız bir suşunun bir faj tarafından enfekte edilerek kolera hastalığı etmenine dönüşümüdür.

http://www.biyologlar.com/viruslerde-litik-ve-lizogenik-enfeksiyonu-karsilastiriniz

Biyoloji Olimpiyatı Seçme Sınavı Soruları

1. Eşey hormonlarının kimyasal yapısı aşağıdaki bileşiklerden hangisine uyar? A) Karbonhidrat B ) Protein C) Lipit D) Steroit E) Mukopolisakkarit 2. Bir bitki hücresi hipertonik bir çözeltiye konulduğunda ilk olarak aşağıdakilerden hangisi gerçekleşir? A) Hücre porlarının kapanması B ) Hücrenin patlaması C) Plazmoliz D) Ozmotik basıncın dengelenmesi E) Metabolik işlevlerin durması 3. Aşağıdakilerden hangisi prokaryotik hücreler için geçerli değildir? A) Fotosentetik pigmentler zarla çevrilmiştir B ) Bazılarında hücre zarının dışında selüloz içermeyen bir hücre çeperi bulunur C) Bazıları fotosentez yaparlar D) Hücre sitoplazmalarında ribozom birikmelerine rastlanır E) Pek çoğunda gerçek kamçı bulunmaz 4. Ribonukleik asitlerin sentezleri ile ilgili olarak aşağıdakilerden hangisi doğrudur? A) mRNA çekirdekte, rRNA ve tRNA çekirdekçikte sentezlenir B ) mRNA ve rRNA çekirdekte, tRNA çekirdekçikte sentezlenir C) rRNA ve tRNA çekirdekte, mRNA çekirdekçikte sentezlenir D) mRNA, rRNA ve tRNA'nın hepsi çekirdekçikte sentezlenir E) mRNA ve tRNA çekirdekte, rRNA çekirdekçikte sentezlenir 5. Bir DNA molekülünün o yerdeki baz dizilimi 5' ATTGGSTAS 3' ise buna göre mRNA'nın baz dizilimi aşağıdakilerden hangisi olmalıdır? A) 5' TAA SSGA TG 3' B ) 5' UAA SSGA UG 3' C) 3' UAA SS GAUG 5' D) 3' TAA SSGATG 5' E) 3' AAU SSGA UG 5' 6. "Birim zar" ve "Sıvı mozaik model"lerine göre hücresel zarlar için aşağıdakilerden hangisi yanlıştır ? A) Zarlarda görülen asimetri; periferal proteinlerin miktar farkının bir sonucudur B ) Zarların yapı ve işlev farklılıkları zar proteinlerinin çeşitliliğine, yerlerine ve dağılışlarına bağlıdır C) Birim zar kalınlığı plazma zarında hücre içi zarlardan daha fazladır D) Elektron mikroskobunda dışta görülen iki yoğun bant lipit ortadaki açık bant ise proteinlerden oluşmuştur E) Glikoproteinler hücre zarının dış yüzeyinde bulunur 7. Aşağıdaki canlı gruplarından hangisinde sentriyol bulunmaz? A) Hayvan hücrelerinin çoğunda B ) Kırmızı algler dışındaki alglerde C) Mantarlarda D) Yosunlarda E) Çiçekli bitkilerde 8. Mitokondride protein sentezi ile ilgili olarak aşağıdaki ifadelerden hangisi yanlıştır? A) Mitokondri ribozomlarının yapısal proteinlerinin çoğu çekirdekte sentezlenir B ) Mitokondri proteinlerinin büyük bir çoğunluğu hücre çekirdeğindeki DNA ile kodlanır C) Mitokondri rRNA'ları mitokondri DNA'sı tarafından sentezlenir D) Mitokondri ribozomlarının yapısal proteinlerinin çoğu sitoplazmada sentezlenir E) Mitokondri DNA'sı organel içindeki proteinlerin ancak %10-15 kadarını şifrelemeye yeterlidir 9. Aşağıdaki metabolik olaylardan hangisi hem kloroplastlarda ve hem de mitokondride meydana gelir? A) Oksidatif fosforilasyon B ) Fotofosforilasyon C) Fosforilasyon D) Fotorespirasyon E) Lipit yıkımı 10. Plastitlerle ilgili olarak aşağıdaki ifadelerden hangisi yanlıştır? A) Bütün fotosentetik hücrelerde bulunurlar B ) Klorofil ve karotenoid gibi pigmentler içerirler C) Nişasta, protein ve yağ gibi maddelerin sentezini yaparlar D) Nişasta, protein ve yağ depolarlar E) Genellikle proplastit adı verilen yapılardan oluşurlar 11. Kloroplastın içeriği ile ilgili aşağıdaki ifadelerden hangisi yanlıştır? A) Kloroplast DNA'sı daha çok bakteri DNA'sına benzer B ) Sonbaharda klorofil azaldığında bunların yerini karoten ve ksantofil alır C) Kloroplast enzimleri çekirdekte kodlanır D) Kloroplast enzimleri sitoplazmik poliribozomlarda sentezlenir E) Karanlık tepkimeleri enzimleri kloroplastın tilakoid zarlarında yerleşmiştir 12. Aşağıdaki ribozom tiplerinden hangisi hem hayvan ve hem yüksek organizasyonlu bitkilerde bulunur? A) 50 S B ) 60 S C) 70 S D) 80 S E) 90 S 13. Aşağıdakilerden hangisi, yalnız bir çift kolu ve bir terminal sentromeri olan kromozoma verilen addır? A) Metasentrik B ) Submetasentrik C) Akrosentrik D) Telosentrik E) İzokromozom 14. Mitozun sürecini aşağıdaki ifadelerden hangisi tam olarak tanımlar? A) Interfazın sona ermesi ile başlar ve yeni bir interfazın başlaması ile son bulur B ) Interfazın sona ermesi ile başlar, telofaz başlangıcında son bulur C) Interfazın başlaması ile başlar, telofazın sonunda biter D) Profaz ile başlar telofaz başında biter E) Anafazda başlar interfaz ile son bulur 15. Moleküler oksijen yokluğunda, kas hücresi glikozu yıkarken, aşağıdaki maddelerden hangisi üretilmez? A) PGAL B ) ATP C) Pürivik asit D) Laktik asit E) Asetil CoA 16. Bazı bağırsak parazitlerinin gelişme evrelerini konukçunun vücudu dışında tamamlamasının nedeni aşağıdakilerden hangisidir? A) Yayılmayı sağlayabilmek için B ) Eşeysel çiftleşmeyi sağlayabilmek için C) Gelişmesini yapabilmesi için oksijene gereksinme duyduğundan D) Konukçuda gerekli enzimleri bulamadığından E) Konukçuda gerekli besinleri bulamadığından 17. Fermantasyon sonucu net olarak kaç tane ATP molekülü üretilir? A) 4 B ) 2 C) 3 D) 6 E) 8 18. Glikolizin sonunda glikoz molekülündeki karbon atomları aşağıdaki moleküllerden hangisinde yer alır? A) 6 molekül CO2 B ) İki molekül NADH C) İki molekül piruvik asit D) Bir molekül fruktoz E) İki molekül asetil- CoA 19. Kolaylaştırılmış difüzyon ile aktif taşıma için aşağıda verilerden hangisi doğrudur? A) İkisinde de enerji harcanır B ) İkisinde de enerjiye ihtiyaç yoktur C) İkisinde de taşıyıcı proteinler rol oynar D) İkisinde de taşınan madde yüksek konsantrasyonlu ortamdan düşük konsantrasyonlu ortama taşınır E) Hiçbiri 20. Krebs döngüsünün sonunda aşağıdakilerden hangisi meydana gelir? A) Glikozdaki enerji yalnız ATP' de depolanır B ) Glikoz molekülü tamamen oksidasyona uğrar C) Elektronlar glikozdan ATP' ye aktarılır D) Glikozdaki karbon atomları laktik asite aktarılır E) NADPH+ ların hepsi tüketilir 21. Aşağıdakilerden hangisinde, ökaryotik hücrelerde, glikoliz enzimlerinin ve sitrik asit döngüsü enzimlerinin bulundukları yerler doğru olarak verilmiştir? Glikoliz enzimleri Sitrik asit enzimleri A) Mitokondri iç zarında Mitokondri matriksinde B ) Sitozolde Mitokondri matriksinde C) Mitokondri matriksinde Sitozolde D) Sitozolde Mitokondri iç zarında E) Mitokondri iç zarında Sitozolde 22. Aşağıdakilerden hangisi polizomları (poliribozomları) bir arada tutar? A) DNA B ) tRNA C) mRNA D) rRNA E) Protein 23. Tipik bir Prokaryot genomunda DNA'nın % kaçı hem transkripsiyona hem de translasyona uğrar? A) % 90 B ) % 70 C) % 20 D) % 10 E) % 1 24. Aşağıdaki DNA kısımlarından hangisinde her ikisi de transkripsiyona uğramaz? I Regülatör gen II Promotor III Operator gen IV Yapısal gen A) I ve II B ) I ve IV C) I ve III D) II ve IV E) II ve III 25. Ökaryotik hücrelerin organellerindeki translasyon aşağıdaki tanımların hangisine uyar? A) Ökaryotik hücredeki translasyonla aynı şekilde yürür B ) Prokaryotlardaki gibi formillenmiş metionin ile başlar C) Transkripsiyon tamamlanıncaya kadar oluşamaz D) Ökaryotik ribozomlardakilerine benzer ribozomlarda oluşur E) Prokaryotlardaki ve ökaryotlardaki gibi aynı kodları kullanırlar 26. Nukleotit dizilimi 5'-AUGACCCAUUGGUCUCUGUAG- 3' şeklinde olan bir mRNA'nın sentezleteceği polipeptid zinciri kaç aminoasit uzunluğunda olur? A) 7 B ) 6 C) 5 D) 4 E) 3 27. Aşağıdaki eşleşmelerden hangisi doğrudur? a. Peptidil transferaz 1. Amino asidin t-RNA'ya takılmasından sorumlu enzim. b.DNA polimeraz 2. DNA zincirini birleştiren bir enzim. c. Amino açil t-RNA sentetaz 3. RNA'dan DNA sentezliyor. d. Revers Transkriptaz 4. Polipeptidle t-RNA arasındaki bağı hidroliz eder. e. DNA Ligaz 5. DNA sentezinden sorumlu. A) a-4 B ) e-2 C) b-3 D) c-1 E) d-5 28. mRNA'lardan protein sentezlenebilmesi için aşağıdaki koşullardan hangisi yanlış olarak verilmiştir? A) mRNA uyarılmalıdır B ) mRNA'da okumanın yönü 3'den 5'e doğru olmalıdır C) mRNA'nın üzerinde sentezlemeyi durdurucu dizilimler olmalıdır D) mRNA ribozomla temasa geçmelidir E) Gerekli aminoasitler hazır olmalıdır 29. Bir DNA zinciri üzerinde bulunan operatör ile ilgili olarak aşağıdaki açıklamalardan hangisi yanlıştır? A) Operona bitişik olarak bulunur B ) Repressörün bağlandığı yerdir C) Belirli bir nukleotit diziliminden meydana gelmiştir D) Operonun işlevini denetler E) Sadece katabolik tepkimelerde görev yapar 30. Aşağıdakilerden hangisi mutasyonu tanımlar? A) Genetik rekombinasyonlardır B ) Genetik bilgideki kalıtsal değişimlerdir C) Genetik şifrenin hatalı transkripsiyonuyla ortaya çıkan değişikliklerdir D) Bulunduğu bireye çoğu kez yarar sağlayan kalıtsal değişikliklerdir E) Evrimsel gelişmelerin sonucunda ortaya çıkan değişikliklerdir 31. Morötesi ışınlar, çoğunlukla, aşağıdaki etkileşmenin hangisiyle mutasyona yol açar? A) DNA'da tek bir kolu kırması B ) Timini alkil guanine dönüştürmesi C) Kalıcı ya da yeterince tamir edilemeyen timin dimerlerini oluşturması D) DNA segmentlerinin inversiyon uğratması E) DNA segmentlerinde delesyona neden olması 32. Watson-Crick modeline uyan ve %35 adenin içeren bir DNA'nın sitozin oranı aşağıdakilerden hangisidir? A) %15 B ) %30 C) %35 D) %70 E) %60 33. Tek zincirli bir DNA'nın ele alınan bir parçası 5' ATCGGCAT 3' dür. Bu orijinal parça ile aşağıdaki tek-zincirli DNA parçalarından hangisi komplementer çifte-sarmal oluşturur? A) 5' TAGCCGTA 3' B ) 5' ATGCCGAT 3' C) 5' ATCGGCAT 3' D) 5' GATCCGAT 3' E) 5' TACCCTAG 3' 34. Ligaz enzimi aşağıdakilerden hangisi için gereklidir? A) Okazaki fragmentlerini birbirine birleştirmek için B ) Uzayan DNA koluna yeni nukleotitlerin eklenmesi için C) Replikasyon çatalının ortaya çıkarılması amacıyla DNA' nın açılması için D) Bozuk yapılan DNA'ları parçalamak için E) DNA sentezlenmesinde yağlı bir ortam oluşturmak için 35. İnterlokasyon yapıcı ajanlar, aşağıdakilerden hangisinin hızını artıran mutajenlerdir? A) Transisyon mutasyonlarının B ) Transversiyon mutasyonlarının C) Çerçeve kayması mutasyonlarının D) Delesyonların E) X kromozomundaki mutasyonların 36. Bir amino asidin DNA şifresi TAC ise, bu amino asidi taşıyan tRNA molekülündeki antikodon aşağıdakilerden hangisidir? A) ATG B ) UGA C) UAC D) UAG E) AUG 37. Bir bitkinin gövde ucuna çok yüksek konsantrasyonda oksin uygulandığında aşağıdaki olaylardan hangisi olur? A) Çok hızlı uzama olur B ) Gövde büyür fakat kıvrılmaz C) Gövde büyümesi engellenir D) Gövde incelir ve zayıflar E) Kökler daha hızlı büyür 38. Hücre bölünmesi ve hücre farklılaşmasının nisbi hızı aşağıdaki hormon çiftlerinin hangisinin karşılıklı etkileşimi ile belirlenmektedir? A) Giberellin ve zeatin B ) Oksin ve etilen C) Oksin ve absisik asit D) Oksin ve sitokininler E) Etilen ve absisik asit 39. Çiçekte korolla olarak bilinen taç yaprakların ana görevi nedir? A) Erkek gamet oluşturmak B ) Tohum yaymak C) Tozlaşma ve döllenmeyi sağlamak D) Koruma ve polinatörleri cezbetmek E) Dişi gamet oluşturmak 40. Sadece erkek çiçekleri taşıyan bir ağaç için aşağıdakileden hangisi doğrudur? A) Tam çiçekleri taşıyabilir B ) Kesinlikle karpellat çiçekleri taşır C) Dioiktir D) Monoiktir E) Kendi kendine tozlaşabilir 41. Bir angiosperm bitkide aşağıdaki üreme hücrelerinden hangisi bir ya da daha fazla farklı hücre içerir? A) Yumurta hücresi B ) Sperm hücresi C) Triploid endosperm hücresi D) Tüp hücresi E) Megaspor ana hücresi 42. Aşağıdaki terimlerden hangisi, bitki yapraklarındaki stomalar aracılığıyla gaz halinde su yitirilmesini tanımlar? A) Transpirasyon B ) Osmoz C) Eksüdasyon D) Gutasyon E) Basınç akışı 43. Aşağıdaki özelliklerden hangisi monokotil bir bitki için karakteristiktir? A)Ağsı damarlanma B )Kazık köklü C)Gövdede iletim demetleri dağınık D)Çiçekler beş petalli E)Kurak bölgede yaşarlar 44. Işık ortamında fotosentez sisteminde 2 Mol H2O fotolize uğrar, 1 Mol O2 çıkışı olur. Bundan başka aşağıdakilerden hangisi meydana gelir? A) 1 ATP, 1 NADPH. B ) 2 ATP, 2 NADPH C) 4 ATP, 1 NADPH D) 3 ATP, 2 NADPH E) 4 ATP, 2NADPH 45. Bitkide köklerden en uzaktaki yapraklara kadar uzanan ve iletim boruları ile yapılan su iletiminde iş gören en önemli kuvvet aşağıdakilerden hangisidir? A) Kök basıncı B ) Kılcal boru sisteminin kohezyon kuvveti C) Aktif transport D) Havanın emme kuvveti E) Toprağın emme kuvveti 46. Bir saksıdaki bitkinin (sardunya) yapraklarında stoma hücrelerinin pH'ları ölçülmüş ve pH=4 olduğu saptanmıştır. Bu bilgiye dayanarak aşağıdakilerden hangisini söyleyebiliriz? A) Stomalar açıktır B ) Stomalar kapalıdır C) Bir şey diyemem D) Stomalar yarı açıktır E) Transpirasyon çok hızlıdır 47. Mg2+ klorofilin yapısında bulunduğu için fotosentezde önemli rol oynar. Bundan başka aşağıdakilerden hangisinde önemi büyüktür? A) Stomaların açılmasında B ) Transpirasyonda C) Enzimatik reaksiyonlarda D) Elektron transportunda E) Köklere su alınmasında 48. Aşağıdakilerden hangisi C3 bitkilerinde fotosentezde karanlık reaksiyonların ilk enzimidir? A) Aldolaz B ) Transketolaz C) Fosfopento izomoraz D) Fosfotaz E) Ribuloz bifosfat karboksilaz 49. Aşağıdaki elementlerden hangisi oksin sentezinde rol oynar? A) Fe B ) Mg C) Zn D) Mn E) Cu 50. Bitkilerde ışığın varlığını ya da yokluğunu saptayan, aşağıdakilerden hangisidir? A) Auxin B ) Fitokrom C) Klorofil D) Gibberellin E) Florigen CEVAPLAR 1. D 2 C 3 A 4. E 5. C 6. D 7. E 8. A 9. C 10. A 11. E 12. D 13. D 14. A 15. E 16. C 17. B 18. C 19. C 20. B 21. B 22. C 23. E 24. C 25. B 26. B 27. B 28. B 29. D 30. B 31. C 32. A 33. B 34. A 35. C 36. D 37. C 38. D 39. D 40. C 41. D 42. A 43. C 44. D 45. D 46. B 47. C 48. E 49. C 50. B

http://www.biyologlar.com/biyoloji-olimpiyati-secme-sinavi-sorulari

Bakterilerde Okaryotik Prokaryotik Hucre

Mikroorganizmaların Hücre Yapıları Ökaryötik Hücre Nedir; Ökaryötik yapılı canlı hücresinin (alg, maya, mantar, protozoon, ve gelişmiş canlılar) temel özelliği, genetik şifreleri taşıyan DNA’nın bir zarla çevrili olan çekirdekte bulun­masıdır. Prokaryotik Hücre Nedir; Prokaryotik yapıdaki hücrelerde (Bakteriler) ise hücre duvarların kompleks olması ve tek kromozomdan ibaret olan genetik materyalin sitoplazma içerisinde dağınık bir şe­kilde bulunmasıdır. Bakterilerde Hücre Yapısı Bakteri hücresi ışık mikrokobu ile incelendiğinde, yuvarlak (kok), basil (çomak, çu­buk), virgül, filament (uzun saç benzeri) gibi morfolojik yapısı ile, kapsül, flagella ve spor gibi yapıları görülebilir. Gram boyama metodu kullanıldığında hücre duvarı yapı­sı hakkında (Gram pozitif veya Gram negatif) bilgi edinilir Bir bakteri hücresinin ana yapıları merkezden dışa doğru şunlardır: 1- Genetik materyal (kromozom) 2- Sitoplazma 3- Sitoplazmik membran 4- Periplazmik boşluk 5- Hücre duvarı 6- Kapsül (bazılarında) 7- Pilus/fimbria (bazılarında) 8- Flagella (bazılarında) 9- Spor (bazılarında) Genetik Materyal (Çekirdek, DNA) Bakteri hücresi elektronmikroskop ile incelendiğinde; genetik materyalin, memeli hücrelerindeki gibi bir zarla çevrilmediği, fibriler yapıda merkezde olmakla beraber si­toplazma içerisinde dağınık bir şekilde olduğu ve mitotik aygıt bulunmadığı görülür. Bakterilerde DNA yapısındaki genetik yapının 1 kromozomlu olduğu kabul edilir. Yak­laşık 1 mcm boyundaki bir bakteri hücresinin kromozomunun boyu 1 mm (1000 mcm) kadardır. Bu da kromozomun sitoplazma içerisinde ancak katlanarak sığabilece­ğini anlatır. Bakteri kromozomunun moleküler ağırlığı, yaklaşık 2-3 X 109 daltondur. Sitoplazma Nedir ve Sitoplazma İçi Yapılar, Sitoplazma Özellikleri Bakteri hücresinin iç kısmı sitoplazma sıvısı ile doludur. Sitoplazma, saydam, hafif akış­kan kıvamda ve kolloidal karakterdedir. Sitoplazmada bakteri hücresinin yaşlanmasına bağlı olarak artan ve ozmotik olarak inert nötral polimer yapısında bir kısım granüller bulunabilir. Bakteri hücresi bu granülleri rezerv maddeler olarak kullanır. Bazı bakteri­ler protein ve nükleik asit sentezi sırasında bu granülleri karbon kaynağı olarak kullanır. Bazı bakterilerdeki sülfür granüllerini okside ederek hidrojen sülfür (H2S) oluşturur. Sitoplazmada mikrokopla görülemeyen ancak ultra santrifüj teknikleri ile ortaya konabilen bazı yapılar bulunur. Bunların en önemlisi ribozomlardır. Ribozomlar, ribo-nükleik asid ile protein moleküllerinin karışımlarından ibaret enzimleri yapan ünite­ler olarak bilinirler. Ribozomlar bakteri hücresi için gereken her türlü protein ve enzi­min sentezlendiği ünitelerdir. Ribozomlar yaklaşık 10-20 nanometre (nm) çapındadırlar. Bir bakteri hücresinde 10000-15000 kadar bulunabilir. Temel olarak ribozomal PNA’yı oluştururlar. Hücre rRNA’sının % 80-90′ı ribozomlarda bulunur. Bakteri ribo-zomları 70 S’lik ribozomal RNA özelliği gösterirken, ökaryotik hücrelerde 80 S’lik ribozomal RNA bulunur. Bakteri sitoplazmasında sık rastlanan bir yapıda “ekstra kromozomal genetik elementler” olarak tanımlanan plazmidlerdir. Bunlar DNA yapısında olup, bakteri genomundan bağımsız olarak replikasyon (çoğalma) yaparlar. Bir bakteriden diğerine F pilusları va­sıtasıyla aktarılabilen-bulaştırılabilen- plazmidler, toplumda bilinçsiz antibiyotik kullanımı neticesinde artan antibiyotiklere dirençlilikten, enterik bakterilerde enterotoksin sentezinden ve barsaklara tutunma faktörlerinin hücrede sentezinden sorumlu genleri taşımakla sorumludurlar. Bazı bakterilerde bakteri virusları olarak da bilinen bakteriofaj genomlar (DNA veya RNA) da bulunur. Sitoplazmik Membran Nedir Hücre zarı, hücre membranı olarak da bilinen bu yapı, fosfolipid ve protein yapısında­dır. Ökaryotların aksine bakteri sitopiazmik membranında sterol bulunmaz. Sito­piazmik membranın başlıca görevleri, 1- Hücreye girecek-hücreden çıkacak maddelerin taşınması ve seçimi, 2- Sitoplazmanm sarılarak kolloidal yapısının korunması, 3- Enzimlerin birçoğunun depolanması, 4- DNA replikasyonu sırasında mezozom oluşturmak, 5- Hücre için gerekli bir çok protein, lipid, enzim vs’nin sentezinde gerekli madde­lerin taşınması, barındırılmasını sağlamak, 6- Hidrolitik enzimlerin periplazmik aralığa salgılanması ve hücre dışındaki besinle­rin parçalanması ve hücre içine alınacak hale getirilmesinde yardımcı olmaktır. Periplazmik Boşluk Hücre duvarı ile sitopiazmik membran arasında kalan bu kısım, jelimsi karakterde olup peptidoglikan ile doludur. Periplazmik aralık olarak da tanımlanan bölgede bazı proteinler, enzimler ve oligosakkaridler bulunur. Bunlar jel içerisinde serbestçe diffüze olurlar. Periplazmik proteinler arasında, hücre dışından içeriye alınacak besinleri par­çalayacak enzimler bulunur. Periplazmik oligosakkaridler ise ozmoregulasyonda gö­revlidirler. Hücre Duvarı Yapısı, Bakteri Hücre Duvarı Bakteri hücresinin sitopiazmik membranı ile kapsülü arasındaki yapılar (pilus ve flagellalar hariç) hücre duvarını oluştururlar. Hücre duvarının yapısı; Gram negatif ve Gram pozitif bakterilerde birbirinden farklıdır. Bakterilerin Gram negatif veya pozitif olarak sınıflandırılmaları hücre duvarlarındaki yapı farklılarından ötürüdür. Gram po­zitiflerde protein ağırlıklı yapı olduğundan mor, Gram negatiflerde hücre duvarı LP ve LPS ağırlıklı olduğundan pembe boyanırlar. Bu farklılık rutin mikrobiyolojide oldukça pratik bir şekilde bakterilerin tasnifinde işe yarar. Hekimlikte kullanılacak antibi­yotiklerin seçiminde de bu özellik göz önünde tutulur. Gram pozitif bakterilerin hücre duvarları temel olarak başlıca peptidoglikan (PG) ve teikoik asitten ibaret iken, Gram negatif bakterilerde içten dışa doğru peptidoglikan (PG), lipoprotein (LP), dış membran ve lipopolisakkarid (LPS) katmanlardan oluşur. Bakteri cinsleri hatta bazılarında türler arasında hücre duvarlarının antijenik özellik­leri farklıdır. Bu antijenik farklılıklardan faydalanılarak hasta kan serumundan bakteri enfeksiyonları teşhis edilebilmektedir. Gram negatif bakterilerin hücre duvarlarındaki LPS katmanındaki (lipid A ve polisakkarid) lipid A, endotoksin dir. Bu tür bakterilerin inaktive edilmiş (öldürülmüş) hücreleri bile konakçıda pirojenik (vücut ısısını arttıran) etki gösterir. Bakteriler, izotonik bir ortamda tutulurlarsa, dezenfektanlar, antibiyotikler veya bazı kimyasal maddelerin etkileri ile hücre duvarları parçalanabilir veya sentezleri durdu­rulabilir. Böylece hücre duvarsız (involusyon form) kalabilirler. Basiller iç basınçtan ötürü yuvarlak-şekilsiz bir hal alır. Gram pozitiflerde bu duruma protoplast, Gram ne­gatiflerde ise sferoblast adı verilir. Gram pozitiflerde peptidoglikan katman Gram negatiflerden yaklaşık 40 kat daha fazla bulunur. Gram negatiflerde PG sitoplazmik membranm hemen üstünde yerleşmiştir. Peptidoglikan, N-asetil muramik asit (NAMA) ve N-asetil glikoz amin (NAGA) mole­küllerinin B-l, 4 glikozid bağlarıyla birleşmelerinden oluşmuş heteropolimerlerdir. Gram negatiflerdeki Lipoprotein (LP) molekülleri, dış membran ve PG tabakalarını bir­birlerine bağlar. Gram negatif bakteri hücre duvarının en önemli yapı birimi olup, bir molekül LP 57 aminoasitten oluşur. Dış membran, periplazmik proteinlerin sızmasını önler. Özellikle Enterobacteriaceae familyasındaki bakterileri safra tuzlarından ve hidrolitik enzimlerden koruyucu görev ifa eder. Dış membran, sitoplazmik membran gibi yapısında fosfolipid molekülleri ve bazı özel proteinleri sıvı mozaik yapıdadır. Dış membranda proteinimsi porların olması bu katmanın küçük moleküllere karşı per-meable (geçirgen) yapar. Lipopolisakkaridler, dış membrana hidrofobik bağlarla bağ­lanmış olan yüzey yapıları gibi hücre duvarı katmanı olup, bazı işlemlerle saf olarak elde edilebilirler. Lipid A ve polisakkarid olarak 2 temel alt birimden oluşan LPS’lerin Lipid A kısımları Gram negatif bakterilerin enfeksiyon mekanizmasındaki önemli si­lahlarından olan endotoksinler olarak etkirler. Okaryotik hücrelerde bulunan otolitik enzimler, bakteri hücresinde de bulunur. Bun­lar PG’a bağlı olan amidaz, glikosidaz ve peptidaz enzimleridir. Bu enzimler bakteri hücresinin gelişmesinde, bölünmesinde, çoğalmasında ve nihayet ölümünde görev alırlar. PG, lizozim enzimi (tükürük, gözyaşı, vajen akıntısı, ter, yumurta akı, makro-faj hücreleri vs) ile kolaylıkla hidrolize edilir. Kapsül Bakterilerin tümünde kapsül olamamakla beraber önemli bir çoğunluğu doğal orta­mında veya doğala yakın hazırlanmış besiyerlerinde üretildiklerinde kapsül oluşturur­lar. Kapsül, tüm bakterilerde polisakkarid (Bacillus anthracis te ise poli-D-glutamik asit) yapısındadır. Bakteriyi konakçının fagositik hücrelerinden koruyarak daha patojen olmasını sağlarlar. Vücut hücrelerine tutunmada da (adhezyon) işe yarar. Birkaç kat olduğunda gliko-kaliks adını alır. Besiyerlerinde mukoid koloni oluşturarak üreyen bakteriler genellikle kapsüllüdürler. Kapsül bazı bakterilerde mikrokapsül halinde bulunabilir. Bakteri kapsülü negatif bo­yama veya kapsül boyama metotları ile ışık mikroskobunda görülebilir. Değişik cins ve türdeki bakterilerde kapsülün aminoasit dizilişi değişiklik gösterdiğinden antijenik yapıları da farklılık gösterir. Flagella Bakteri flagellası 130 nm çapında protein yapısında ve sitoplazmadan köken alan iplik benzeri uzantılar olup, bakterinin hareketli olmasını sağlar. Her bakteride bulunmaz. Bir bakterideki flagella sayısı, bakterinin cins ve türlerine göre değiştiği gibi yerleşim yerleri de farklılık gösterir. Bulundukları konuma göre monotrik (bir flagellalı), multitrik (çok flagellalı), lofotrik (bir uçta toplanmış flagellalar), amfitrik (karşılıklı iki uçta top­lanmış flagellalar), peritrik (bakteri hücresinin her tarafında flagella bulunması) gibi isimler alır. Bir flagella, flagellin adı verilen alt birim proteinlerden oluşur. Flagellalarm sentezleri, bakteri genomunun kontrolündedir. Sıvı besiyerlerinde üremiş bakterilerin flagellalan çalkalanarak koparılabilir. 3-6 dakikada yeniden sentezlenir. Flagellinlerde türlere göre (hatta aynı tür içerisinde bile) farklı antijenite gösterebilir. Pilus (Fimbria) Flagellalardan daha kısa ve daha ince tüysü yapılar olup, sitoplazmik membrandan kö­ken alırlar. Protein yapısındadırlar. Antijenik farklılıkları vardır. Bakterilerde iki çeşit pilus bulunabilir. 1. Konakçının hücre ve dokularına tutunmaya yarayan piluslar (Escherchia coli’lerdeki Colonisatioıı Factor Antigens I, CFA II, CFA III, üropatojen E. coli’lerdeki P pi­luslar, Streptococcus’lardaki M ve X proteinler gibi). 2. Bakteriyel konjugasyonda verici hücrenin alıcıya tutunmasına ve plazmid akta­rılmasında görevli olan F piluslar. Bakter Serin biı çoğunda pilus sentezi, plaz-midlerin genetik kontrolündedir. Spor Bakterilerde spor, zor çevre şartlarından kendi neslini koruma için geliştirdiği bir form değişikliği olup, bakteri sporlu iken üreyip çoğalamaz ancak yıllarca (örneğin B. anthracis’te 2500 yıl) sonra bile vejetatif hale gelebilecek şekilde, korunabilmektedir. Aerobik bakterilerden Bacillus cinsi (B. anthracis, B. subtilis, B. ccreus, B. megatarium) ile anaerobik bakterilerden Clostridium cinsi (Cl. tetani, Cl botulinum, Cl. perfiringens, Cl. septicum, vs) bakterilerde bulunur. Koklarda (bazı Sarcinia türleri hariç) Gram negatif­lerde ve spiroketlerde spor oluşumu tespit edilmemiştir. Aerob bakterilerde spor sade­ce in vitro gelişirken, anaerob bakterilerde hem in vitro hem de in vivo oluşabilmektedir. Vejetatif bakterilerin % 70′i su iken, bakteri sporlarında su oranı % 5-20 kadardır. Bakteri sporlanacağı zaman, hücre içerisine yeterli besin maddelerini depoladıktan sonra vejetatif hücre için gerekli bazı genlerin çalışmasını durdurarak, spor oluşumun­da görevli genleri faaliyete geçirir. Önce bakteri genomu sporun oluşacağı kısma doğru uzamaya başlar. Çift katmanlı zar oluşması diğer dış katmanların sentezi için pre-kürsör (başlatıcı) görevi görür. İki kat membran arasına PG, dipikolinik asit ve kalsi­yumca zengin maddeler birikerek korteks şekillenir. Spor oluşumu 50 kadar gen tara­fından kontrol edilmektedir. Yukarıda da belirtildiği gibi sporlanmış bakteri uygun or­tamda yıllarca korunabilir. Çevre, bakteri için uygun hale geldiğinde veya sporlu bakte­riler insan veya hayvanlarca alındığında, bakteri vejetatif hale geçer. Bu 3 aşamada olur. 1. Aktivasyon. Sporun ısı, ışık, nem, pH, uygun aminoasitler vs bulunan bir orta­ma kavuşması, vejetatif hale geçmesini uyarır. 2. Jerminasyon. Aktive olmuş sporun bazı aminoasitlere minerallere (özellikle Mn++) ve suya gereksinimi vardır. Bu maddeler aktivasyon sırasında oluşan çatlamalardan içeriye girerek spordaki dipikolinik asit ve kalsiyumun spordan atılmasını sağlar ve bakteri vejetatif hale dönüşür. 3. Basilin boyu uzar ve normal şekle döner. Bakteri sporları genellikle oval veya yuvarlak şekilli olup, basilin uç kısmında (termi­nal), ortasında (sentral) veya ikisi arasında (subterminal) yerleşebilir.

http://www.biyologlar.com/bakterilerde-okaryotik-prokaryotik-hucre

Goril Genomu Dizilenmesi Tamamlandı. Gorillerin Genomu Evrime Işık Tutuyor!!

Geçtiğimiz günlerde araştırmacılar goril genomunu dizilemeyi (sekanslama) bitirdiler. Böylece yaşayan büyük insansı maymun cinslerinin (insan, goril, şempanze ve orangutan) genomlarının dizileme işi de bitmiş oldu. Sonuçlar insanın en yakın akrabasının şempanze olduğu bilgisini doğrulasa da, insan genomunun birçok kısmının goril genomuna benzerliğinin şempanze genomuna benzerliğinden daha çok olduğunu ortaya çıkarıyor. Bilimcilerin 11 yıl önce insan genomunu dizilemelerinin ardından, en yakın akrabalarımız olan diğer büyük insansıların genomları da dizilenmeye başlanmıştı. Günümüzde büyük insansıların dört grubu bulunuyor: şempanze ve bonobolar, insanlar, goriller ve orangutanlar. En yakın akrabamız olan şempanzenin genom analizi 2005′te, orangutan genomu da 2011′in başlarında yayınlanmıştı. Son olarak da San Diego hayvanat bahçesinde yaşayan Kamilah isimli dişi bir gorilinin genomunun analizi geçtiğimiz gün Nature dergisinde yayınlandı. İngiltere’deki Sanger Enstitüsü’nün başını çektiği araştırmacılar, tüm insansıların genomlarının dizilenmiş olmasının büyük önem taşıdığını vurguluyorlar. Bu sayede soyu tehlike altında olan bu türleri daha iyi tanımakla kalmıyoruz, kendi genomumuzdaki, bizleri insan yapan mekanizmaların ve evrimsel geçmişimizin daha iyi anlaşılması da mümkün hale geliyor. Örneğin iki ayak üzerinde yürüme veya konuşma gibi insana mahsus özelliklerin genetik temellerini bulmak için, insan genomunu akraba türlerin genomlarıyla karşılaştırmak şart. Ekip, insan, şempanze ve gorilde bulunan ve genetik farklılıkları evrimsel açıdan önemli olan 11.000 geni araştırdı. İnsan ve şempanzeler genomun büyük kısmında genetik olarak en yakın çıksa da durumun böyle olmadığı birçok bölge de bulundu. İnsan genomunun %15’lik kısmı goril genomuna şempanze genomundan daha yüksek benzerlik gösterirken, şempanze genomunun da %15’lik kısmı goril genomuna insan genomuna olduğundan daha yüksek benzerlik gösteriyor. Pozitif seçilime uğramış genler Makalede yer alan genom karşılaştırmasında diğer insansılar ile insan genomunun çok benzer olduğu doğrulandı: DNA dizilerimiz şempanzelerle yalnızca %1.4, gorillerle %1.8, orangutanlarla ise %3.4 farklı. İki insan arasındaki genom farkı ise %0.1. Makalede ayrıca, insan, şempanze ve goril soylarının her birinde 500′den fazla genin ortalamadan hızlı evrildiği görüldü. Bu genlerdeki mutasyonlar bahsi geçen türlere evrimsel üstünlük sağladıkları için pozitif doğal seçilime uğramış görünüyorlar. Bunun örneklerinden biri, gorillerde derinin sertleşmesiyle ilgili genlerin daha hızlı evrilmesi. Yazarlar, bu genlerin evriminin, gorillerin ellerinin dış yüzeyine basarak yürümelerine izin verdiği tahmin ediyorlar. Araştırmada üreme ve bağışıklıkla ilgili genlerin her üç türde hızlı evrildiği görüldü. Buna ek olarak, işitme ve beyin gelişimi ile ilgili genlerin hem insanlarda hem gorillerde hızlı evrildiği farkedildi. Goril genomu analizinden önce kimi araştırmacılar, insanlarda işitmeyle ilgili genlerin hızlı evriminin dilin evrimiyle ilişkili olduğunu tahmin ediyorlardı. Şimdi goril genomunda da benzer bir yönelimin görülmesiyle bu sav yeniden gözden geçirilebilir. Yazarlar, insan, şempanze ve gorillerin genetik olarak benzer düzeyde pozitif seçilime uğradıklarına işaret ederken, insanın diğer türlerden ‘daha çok evrilmiş’ olmadığını da ima ediyorlar. Öte yandan araştırma sonuçlarına göre, insan ve şempanze genomları ortalamada birbirine gorilden yakın da olsa, insan genomunun %15’inde insan gorile daha yakın (genomun bir diğer %15’inde de gorille şempanze birbirine daha yakın). Bu tip örüntülerin ana sebebi kalıtımın rasgeleliği. İki kardeş arasında genlerin yalnızca %50 aynı olması ve genomun belli bölgelerinde iki kuzenin iki kardeşten daha yakın olması, aynı rasgelelikten kaynaklanıyor. İnsan, şempanze ve goril ne zaman ayrıştı? Tüm büyük insansıların genomlarının karşılaştırılmasıyla, gorillerin, şempanzelerin ve insanların ne zaman evrildikleri, ortak atalarından ne zaman ayrıştıklarına dair tablo da netleşiyor. Geçen yıllarda yapılan genom analizleri, genom farklarını mutasyon hızıyla çarparak, insan ve şempanze soylarının 4.5 milyon yıl önce ayrıştıklarını tahmin etmişlerdi. Öte yandan fosil kayıtlarını inceleyen paleontologlar bu ayrışmayı 7 milyon yıl öncesine kadar geriye götürebiliyorlardı. 48 Kromozomlu Goril genomunu analiz eden ekip ise bu çelişkiye iki olası açıklama öneriyor: Birincisi, mutasyon hızları zamanla azalmış gibi görünüyor (nitekim mutasyon hızı 20 milyon yıl önce genom bazı başına yılda 1/1.000.000.000 iken, daha yakın zamanda yarıya düşmüş). İkincisi, insansılar türleşmeye başladıkları dönemlerde türler arasında çiftleşmeler uzun süre devam etmiş olabilir. İki koşulda da genom karşılaştırmaları, fosil verileriyle aşağı yukarı uyuşuyor. Elbette fosil verilerinde kısmi hata olasılığı da var. Makaledeki genom analizlerine göre goriller insan-şempanze dalından 8 ila 12 milyon yıl önce ayrışmış; daha sonra, yaklaşık 5.5 ila 7 milyon yıl önce de insan ve şempanze soyları ayrışmış. Ekip, daha fazla fosil ve genetik veri biriktikçe bu tarihlerin daha kesin olarak tespit edilebileceğini vurguluyor. Goril türleri ne kadar farklı? Çalışmada genomu dizilenen birey, ataları Gabon ve Kamerun civarında yaşayan bir batı ova goriliydi. Çalışmada Demokratik Kongo Cumhuriyeti’nin doğusunda yaşayan doğu gorillerine ait bireyler de dizilendi. Bu analiz, batı ova gorilleriyle doğu ova gorillerinin 1.75 milyon yıl önce birbirinden ayrıldığı, ancak bir süre daha çiftleşmeye devam ettiklerini gösterdi. Nitekim batı (Gorilla gorilla) ve doğu gorilleri (Gorilla beringei) farklı türler olarak kabul ediliyor. Popülasyon genetiği analizi ayrıca doğu ova gorili populasyonunun genetik çeşitliliğinin batı gorillerinkinden çok daha düşük olduğunu gösterdi. Bu fark manalı, çünkü batı gorillerinin sayısı bugün 200 binken, doğu gorili nüfusunun bunun onda biri olduğu tahmin ediliyor. Ayrıca bu sonuç, doğu gorillerinin nüfusunun uzun zamandır düşük olduğuna ve nüfus azalmasının tamanen insan kaynaklı olmadığını ima ediyor. Zira uzmanlar, nüfus azalmasının genetik çeşitliliği etkilemesinin zaman alacağını vurguluyorlar. Yine de makalenin yazarları, gorillerin yaşam alanlarının korunması gereğini ve bugünkü insan etkisinin olumsuz sonuçlarını vurgulamaktan da geri durmuyorlar. Makalenin bilim kültürü açısından da dikkate değer yanları var. Bir defa söz konusu Naturemakalesinin kamuya açık olması makaleden geniş bir kamuoyunun yararlanmasına imkan veriyor. Goril genomunun ilk sürümünün bundan iki yıl önce, Ensembl ve UCSC Genome Browser gibi kamuya açık veri tabanlarında yayınlanması da önemli. Uzmanlar, genomların ilgili makalelerden önce yayınlanması alışkanlığının genom bilim alanında giderek yaygınlaştığını; bunun da tıp, moleküler biyoloji ve evrim alanlarında çalışmaları hızlandıracağını belirtiyorlar. Hazırlayan : Dr. Deniz Şahin (Yaşamın Kökeni) Kaynakça : Orjinal Kaynak : Bilim ve Gelecek “What have we got in common with a gorilla? ”esciencenews.com/articles/2012/03/07/wha...ommon.with.a.gorilla, (21.03.2012) Scally vd, (2012) "Insights into hominid evolution from the gorilla genome sequence ", Nature 483, 169-175 "www.nature.com/nature/journal/v483/n7388/full/nature10842.html" www.facebook.com/YasaminKokeni

http://www.biyologlar.com/goril-genomu-dizilenmesi-tamamlandi-gorillerin-genomu-evrime-isik-tutuyor

Bakterilerde spor

Bakterilerde spor, zor çevre şartlarından kendi neslini koruma için geliştirdiği bir form değişikliği olup, bakteri sporlu iken üreyip çoğalamaz ancak yıllarca (örneğin B. anthracis’te 2500 yıl) sonra bile vejetatif hale gelebilecek şekilde, korunabilmektedir. Aerobik bakterilerden Bacillus cinsi (B. anthracis, B. subtilis, B. ccreus, B. megatarium) ile anaerobik bakterilerden Clostridium cinsi (Cl. tetani, Cl botulinum, Cl. perfiringens, Cl. septicum, vs) bakterilerde bulunur. Koklarda (bazı Sarcinia türleri hariç) Gram negatif­lerde ve spiroketlerde spor oluşumu tespit edilmemiştir. Aerob bakterilerde spor sade­ce in vitro gelişirken, anaerob bakterilerde hem in vitro hem de in vivo oluşabilmektedir. Vejetatif bakterilerin % 70′i su iken, bakteri sporlarında su oranı % 5-20 kadardır. Bakteri sporlanacağı zaman, hücre içerisine yeterli besin maddelerini depoladıktan sonra vejetatif hücre için gerekli bazı genlerin çalışmasını durdurarak, spor oluşumun­da görevli genleri faaliyete geçirir. Önce bakteri genomu sporun oluşacağı kısma doğru uzamaya başlar. Çift katmanlı zar oluşması diğer dış katmanların sentezi için pre-kürsör (başlatıcı) görevi görür. İki kat membran arasına PG, dipikolinik asit ve kalsi­yumca zengin maddeler birikerek korteks şekillenir. Spor oluşumu 50 kadar gen tara­fından kontrol edilmektedir. Yukarıda da belirtildiği gibi sporlanmış bakteri uygun or­tamda yıllarca korunabilir. Çevre, bakteri için uygun hale geldiğinde veya sporlu bakte­riler insan veya hayvanlarca alındığında, bakteri vejetatif hale geçer. Bu 3 aşamada olur. 1. Aktivasyon. Sporun ısı, ışık, nem, pH, uygun aminoasitler vs bulunan bir orta­ma kavuşması, vejetatif hale geçmesini uyarır. 2. Jerminasyon. Aktive olmuş sporun bazı aminoasitlere minerallere (özellikle Mn++) ve suya gereksinimi vardır. Bu maddeler aktivasyon sırasında oluşan çatlamalardan içeriye girerek spordaki dipikolinik asit ve kalsiyumun spordan atılmasını sağlar ve bakteri vejetatif hale dönüşür. 3. Basilin boyu uzar ve normal şekle döner. Bakteri sporları genellikle oval veya yuvarlak şekilli olup, basilin uç kısmında (termi­nal), ortasında (sentral) veya ikisi arasında (subterminal) yerleşebilir.

http://www.biyologlar.com/bakterilerde-spor

Bakteri flagellası

Bakteri flagellası 130 nm çapında protein yapısında ve sitoplazmadan köken alan iplik benzeri uzantılar olup, bakterinin hareketli olmasını sağlar. Her bakteride bulunmaz. Bir bakterideki flagella sayısı, bakterinin cins ve türlerine göre değiştiği gibi yerleşim yerleri de farklılık gösterir. Bulundukları konuma göre monotrik (bir flagellalı), multitrik (çok flagellalı), lofotrik (bir uçta toplanmış flagellalar), amfitrik (karşılıklı iki uçta top­lanmış flagellalar), peritrik (bakteri hücresinin her tarafında flagella bulunması) gibi isimler alır. Bir flagella, flagellin adı verilen alt birim proteinlerden oluşur. Flagellalarm sentezleri, bakteri genomunun kontrolündedir. Sıvı besiyerlerinde üremiş bakterilerin flagellalan çalkalanarak koparılabilir. 3-6 dakikada yeniden sentezlenir. Flagellinlerde türlere göre (hatta aynı tür içerisinde bile) farklı antijenite gösterebilir.

http://www.biyologlar.com/bakteri-flagellasi

Virusların Genel Özellikleri

Virusların Genel Özellikleri

Viruslar, protein veya kompleks bir yapıdan (glikolipoprotein) oluşan bir muhafaza içine paketlenmiş DNA veya RNA'lardan sadece birine sahip çok küçük infeksiyöz ajanlardır. Latince zehir anlamına gelen virus(lar) bu basit ve çok küçük yapıları ile cansız ortamlarda üreyebilecek yetenekte değildirler. Çünkü, taşıdıkları genetik bilgiler ve buna bağlı olarak gen sayısı kendilerinin bağımsız replikasyonlarını sağlayacak yeterlilik taşımamaktadır. Bu nedenle de canlı hücrelerin ekspresyon mekanizmalarına ve makromoleküllerine gereksinim duyarlar. Diğer bir ifade ile viruslar, bağımsız çoğalmalarını sağlayacak mekanizmalardan ve moleküllerden yoksundurlar. Bunları ancak, infekte ettikleri hücrelerde buldukları için, hücrelere bağımlıdırlar ve birer hücre paraziti olarak kabul edilirler. Bu noksanlıkları nedeniyle de, viruslar, bakteriler gibi tam bir hücre olarak değil "bazı genetik informasyonlara sahip infeksiyöz ajanlar" olarak tanımlanmaktadırlar. Viruslar, infekte ettikleri hücrelerde kendi replikasyonlarını sağlayacak makromolekülleri her zaman hazır bulamazlar. Bulunanlar da replikasyonları için uygun veya yeterli olmayabilir. Böyle dezavantajları gidermek için, bazı viruslarda, replikasyonları için önemli fonksiyonu olan bazı enzimlerin kodlarını taşırlar. Ayrıca, viral genom hücreye (sitoplasma) girdikten sonra, hücrenin bütün mekanizmalarına hakim olmakta ve sadece kendilerinin replikasyonu için programlama ve yönlendirme yapmaktadır. Böylece, viral replikasyon güvence altına alınmaktadır.Litik infeksiyonlarda infekte hücreler, kendileri için değil, sadece virus için bütün olanaklarını (ekspresyon mekanizmaları, makromolekülleri, vs.) seferber eder. Hücrelerde metabolizma, replikasyon ve sentez olguları tamamıyla durur ve sonunda hücreler ölürler. Bakteriler ise, viruslardan çok daha fazla büyüktürler. Genomlarında ve sitoplasmalarında kendi bağımsız replikasyonlarını sağlayabilecek genlere, genetik bilgilere, ekspresyon mekanizmalarına, enerji ve makromolekül oluşturabilecek bütün olanaklara sahiptirler. Bu nedenle de, bakteriler, canlı veya cansız bütün ortamlarda kolayca üreyebilmektedirler. Bakteri olarak kabul edilen, klamidia ve riketsiyalar canlı hücrelerde üremelerine karşın kendilerinde bağımsız replikasyonlarını yapabilecek tüm mekanizmalar bulunmaktadır. Bazı bakteriler de (mikoplasma, riketsiya ve klamidia) boyutları yönünden viruslara yaklaşır bir konumdadır. Diğer bir ifade ile, bakteriler ile viruslar arasında ölçülere sahiptirler. Bunlardan, mikoplasmalar hariç tutulursa, riketsiya ve klamidialar sadece canlı ortamlarda üreyebilmektedirler. Bu özelliğinin dışında, bu iki cinse ait etkenler ile mikoplasmalar tam bir bakteri karakteri gösterirler. Bu nedenlerle de, bakteriler arasında klasifiye edilmektedirler. Bakteriler ile virusların bazı özellikleri aşağıdaki tabloda gösterilmiştir. Viruslardan, çiçek grubuna ait olanlar hariç tutulursa, diğerleri normal ışık mikroskopu ile görülmezler. Ancak, bazılarının hücrelerde meydana getirdiği intrasellüler veya intranükleer inklusiyon cisimleri kolayca gözlenebilir. Virusların morfolojilerini izlemede elektron mikroskoplardan yararlanılır. Virusların aksine, bakterilerde, DNA, RNA ve ribozomların hepsi bulunur. Viruslar antibiyotiklerden etkilenmedikleri halde bakteriler değişik tarzda olmak üzere duyarlılık gösterirler. Bakteriler ortadan bölünerek çoğalırlar ve filtrelerden geçemezler. Hayvan viruslarının etrafında bulunan kapsid veya zarf oluşumuna bazı bitki viruslarında rastlanamamıştır (viroid: tek iplikçik, sirküler RNA). Virusların bakterilere oranla 10-20 kat daha küçük olmaları, bir çok yönlerinin eksik kalmasına yol açmaktadır. Hem viral genom çok küçük olmakta ve hem de içinde bulunan gen sayısı ve buna bağlı olarak genetik informasyonlar bakterilere oranla daha az olmaktadır. Virusların boyutları da 20-300 nm arasında değişmektedir. En küçük virus parvoviruslar (20 nm) ve en büyükleri ise çiçek virusları 300 nm). Çiçek virusları bu ölçüleri ile ışık mikroskobunda kolayca görülmektedirler. Virus gruplarına göre değişmek üzere, infekte hücrelerde çok sayıda (yüzlerce, binlerce) virus partikülü sentezlenebilir. Böyle infeksiyonlar sonunda hücreler parçalanarak olgun viruslar saçılırlar (litik infeksiyon). Hücrelerde oluşan morfolojik bozukluklar (sitopatik efektler, CPE), hücre ve virus türlerine göre bazı değişiklikler ve özellikler gösterebilir. Bazı viruslar da hücrelerde sitopatik etkiler veya lizis oluşturmazlar (nonlitik infeksiyonlar). Böyle karakter gösteren virusların bazıları, hücrelerde yavaş ürerler ve hücrelerden tomurcuklanma ile olgunlaşarak dışarı çıkarlar. Hücrelerde her hangi bir bozukluk görülmez, hücreler hem virus üretmeye ve hem de çoğalmalarına devam ederler (persistent infeksiyonlar). Virusların diğer bir bölümü de, infekte hücrelerde bulunmalarına karşın herhangi bir üreme göstermezler. Böyle viruslar, hücrelerinin genomu ile birleşerek latent döneme girerler (latent infeksiyonlar). Latent infeksiyonlar, hücrelere yeni karakterler ve yeni antijenik determinantlar kazandırabilir. Bakterilerdeki, fajlar tarafından oluşturulan latent infeksiyonlarda toksin sentezi ve antijenik konversiyonlar meydana gelmektedir (C. diphtheriae ve C. botulinum C). Böyle durumlarda insan ve hayvan hücrelerinde de malignansi vs. gelişebilmektedir (retroviruslarda). Canlılar böyle latent viruslarla uzun süre birlikte yaşayabilirler. Viruslar çok geniş bir konakçı spektrumuna sahiptirler. Bazıları (kuduz) zoonotik infeksiyonlara yol açmasına karşın, bir bölümü de sadece insan veya sadece hayvanlara özgü kalmaktadır. Hayvan türlerinin de kendilerine ait viral infeksiyonları bulunmaktadır. Şöyle ki, kızamık, kabakulak, polio vs. viral hastalıklar insanlarda görülmesine karşın hayvanlarda rastlanamamaktadır. Buna karşın hayvan viruslarından, At vebası virusu at ve diğer tek tırnaklılarda, Sığır vebası virusu sığır ve diğer çift tırnaklı hayvanlarda hastalık yapar, insanlarda infeksiyon meydana getiremez. Konakçı affinitesine göre viruslar aşağıdaki tarzda klasifiye edilmektedir.  Virusların Klasifikasyonu Ve İsimlendirilmesi Doğada bulunan bütün organizmaların (hayvan, bitki, mantar, alg, parazit, bakteri, protozoon, vs.) kendine özgü bir veya birkaç virusla infekte olabileceği görüşü eskiden beri bilinmektedir. Bunlar arasında insan, hayvan ve bitkilerde hastalıklara yol açan değişik karakterde ve çeşitli özellikte viruslar saptanmış ve her geçen 5-10 yıl içinde de yeni viruslar ortaya çıkmaktadır. Virusların ilk saptanması, bakterilerden sonra olmuştur. Bu gecikmede, virusların boylarının bakterilerden çok küçük olmaları nedeniyle normal ışık mikroskoplarıyla görülememesi, cansız sıvı ve katı besi yerlerinde ürememesi ve filtreleri geçmesi esas nedeni oluşturmuştur. Bugün, virusların varlığını ortaya koyabilecek, izole ve identifiye edebilecek, üretebilecek bir çok teknik geliştirilmiştir. Elektron mikroskoplar da virusları görüntülemede ve morfolojilerini belirlemede çok yararlı olmaktadırlar. Viruslar hastalık oluşturduğu canlılara göre sınıflandırıldığı gibi (insan, hayvan, bitki, insekt, virusları, vs.) meydana getirdiği bozuklukların lokalizasyonuna göre de bir klasifikasyona tabi tutulmuştur. Şöyle ki, afinitesi (tropizm) olduğu doku ve organlara göre: enterotropik viruslar, neurotropik viruslar, dermatropik viruslar, pneumotropik viruslar, vs. Ayrıca, viruslar enzimatik, immunolojik, bazı kimyasal maddelere duyarlılık, replikasyon stratejileri, vs. özellikleri de dikkate alınarak sınıflandırmalar yapılmıştır. Virusları klasifiye etmede "İnternational Committee on taxonomy of viruses" tarafından önerilen bazı kriterler belirlenmiştir. 1966 ve1982 yıllarında bu komite, 3 önemli kriter üzerinde durmuştur. 1) Nukleik asit karakteri: DNA-RNA, polaritesi, tek-çift iplikçikli, lineer-sirküler, molekül ağırlığı, spesifik enzim kodları, segmentleri, vs. 2) Replikasyon tarzları :Rolling circle, semikonservatif, vs. 3) Virion morfolojisi :Kübik simetri, sarmal simetri, kompleks yapı, çıplak-zarflı oluşu, kapsomer sayısı, büyüklüğü, vs. Ancak, şunu da belirtmek gerekir ki, virusların ayrıntılı incelenmesi sonu ortaya çıkan yeni buluşlar standart ve devamlı geçerli bir klasifikasyona engel olmaktadır. Virus sınıf, familya, alt familya ve cinslerini belirlemede aşağıda açıklanan son ekler kabul edilmiştir. Virus Sınıfları için :-virales son eki Virus familyaları için :-viridae " Virus alt familyaları için :-virinae " Virus cinsleri için :-virus " 03. Başlıca Virus Grupları Başlıca virus familyaları (alfabetik sıraya göre dizilmişlerdir). DNA Virusları Familya-1 : Adenoviridae Cins -1 : Mastadenovirus (memelilerin) Cins -2 : Aviadenovirus (kanatlıların) Familya-2 : Circoviridae Familya-3 : Hepadnaviridae Familya-4 : Herpesviridae Alt familya-1 : Alphaherpesvirinae Cins -1 : Simplexvirus Cins -2 : Varicellavirus Alt familya-2 : Betaherpesvirinae Cins -1 : Cytomegalovirus Cins -2 : Muromegalovirus Alt familya-3 : Gammaherpesvirinae Cins -1 : Lymphocryptovirus Cins -2 : Rhadinovirus Cins -3 : Thetaly phocrytovirus Familya-5 : İridoviridae Familya-6 : Papovaviridae Cins -1 : Papillomavirus Cins -2 : Polyomavirus Familya-7 : Parvoviridae Cins -1 : Parvovirus Cins -2 : Dependovirus Cins -3 : Densovirus Familya-8 : Poxviridae Cins -1 : Orthopoxvirus Cins -2 : Leporipoxvirus Cins -3 : Avipoxvirus Cins -4 : Capripoxvirus Cins -5 : Suipoxvirus Cins -6 : Parapoxvirus Cins -7 : Molluscipoxvirus Cins -8 : Yatapoxvirus RNA Virusları Familya-1 : Arenaviridae Familya-2 : Birnaviridae Familya-3 : Bunyaviridae Cins -1 : Bunyavirus Cins -2 : Phlebovirus Cins -3 : Nairovirus Cins -4 : Hantavirus Familya-4 : Caliciviridae Familya-5 : Coronaviridae Familya-6 : Filoviridae Familya-7 : Flaviviridae Cins -1 : Flavivirus Cins -2 : Pestivirus Familya-8 : Orthomyxoviridae Cins -1 : Influenza Familya-9 : Paramyxoviridae Alt familya -1 : Paramyxovirinae Cins -1 : Paramyxovirus Cins -2 : Morbillivirus Cins -3 : Rubellavirus Alt familya -2 : Pneumovirinae Cins -1 : Pneumovirus Familya-10 : Picornaviridae Cins -1 : Enterovirus Cins -2 : Cardiovirus Cins -3 : Rhinovirus Cins -4 : Aphthovirus Familya-11 : Reoviridae Cins -1 : Orthoreovirus Cins -2 : Orbivirus Cins -3 : Cypovirus Cins -4 : Rotavirus Cins -5 : Fijivirus Familya-12 : Retroviridae Alt familya -1 : Oncovirinae Cins -1 : Oncovirus (C) Cins -2 : Oncovirus ( Cins -3 : Oncovirus ( Alt familya -2 : Lentivirinae Alt familya -3 : Supunavirinae Familya-13 : Rhabdoviridae Cins -1 : Vesiculovirus Cins -2 : Lyssavirus Familya-14 : Togaviridae Cins -1 : Alphavirus Cins -2 : Rubivirus Cins -3 : Pestivirus Cins -4 : Arterivirus Familya-15 :Toroviridae (tam sınıflandırılamadı) Familya-16 : Astroviridae (tam sınıflandırılamadı) Kaynak: Kaynak : Temel Mikrobiyoloji

http://www.biyologlar.com/viruslarin-genel-ozellikleri

 
3WTURK CMS v6.03WTURK CMS v6.0