Biyolojiye gercekci yaklasimin tek adresi.

Arama Sonuçları..

Toplam 176 kayıt bulundu.

Kongo Nehri Balıklarının Hızlı Evrimi

Kongo Nehri Balıklarının Hızlı Evrimi

Fotoğrafta bir çift akvaryum çiklet balığı türü olan Telegramma brichardi bulunmaktadır. Fotoğraf:Oliver Lucanus

http://www.biyologlar.com/kongo-nehri-baliklarinin-hizli-evrimi

Mendel Yasaları

Avusturyalı bir papaz olan Gregor Mendel 'in genetik ilmiyle ilgili olarak bulduğu biyoloji kanunları. Manastırın bahçesinde bezelye leri birbirleriyle çaprazlama|çaprazlayarak (eşleştirerek) kalıtım için ilgi çekici sonuçlar buldu. Bugün bu sonuçlar Mendel kanunları adıyla anılmaktadır. Çalışmalarını yaptığı dönemde kromozom ve genlerin varlığı bilinmemesine rağmen, özelliklerin "faktör" adını verdiği birimlerle nesilden nesile aktarıldığını söyledi. Bugün bu birimlere, gen denmektedir.Bahçe bezelyeleriyle yıllarca yapmış olduğu çalışmalarının sonuçlarını 1865'te yayınladı. ''Bitki Melezleri Üstüne Denemeler'' isimli eseriyle genetik|genetiğin kurucusu olarak kabul edildi. Mendel'in en önemli deneylerinin konusu bezelye idi. Adi bezelye tanelerinin bazıları düz yuvarlak, bazıları buruşuktur, bazı taneler sarıyken, diğerleri yeşildir, bazı bezelye bitkileri uzun, bazıları kısadır. Bu bitkileri düzenli tozlaşmalara tabi tutan Mendel, yukarıdaki özelliklerin dölden döle nasıl aktarıldığını göstermiştir. İki özelliğin bir araya gelmesi sonucunun bir karakteristik ortalaması olabileceği düşünülebilir. Bazı saf karakterlerin birleşmesinden, gerçekte de bu sonuçlar alınabilir; ama Mendel'in deneylerine göre, iki saf karakterin çaprazından, mesela uzunluk ve kısalıktan melez uzunlar çıkmaktaydı. Uzunluk karakteri, kısalık karakterine baskın olduğundan sonuçta melez bireyler uzun görünümdeydi. Bu tip iki uzun melezin çaprazı sonucunda ise, % 25 oranında saf uzun, % 25 saf kısa, % 50 melez uzun çıkmaktaydı. İki eş saf özellik çaprazlandığında, sadece bu saf özellik ortaya çıkmaktaydı. Mendel kanunlarının esası buna dayanmaktaydı.Mendel'in bahçe bezelyeleri ile deneyleriMendel bahçe bezelyeleriyle yaptığı çaprazlamalarda bazı belirli özelliklerin değişmediğini tesbit etti. Bezelyelerin bir kısmı kısa ve çalı tipli (bodur) olduğu halde, bazıları uzun ve tırmanıcı idiler. Yine, bazıları sarı tohum ürettiği halde, bir kısmı yeşil tohum üretirdi. Bazıları renkli çiçeklere sahip olduğu halde, bazıları da beyaz çiçek ihtiva ederdi.Mendel bahçe bezelyelerinin topu topu yedi özelliğinin değişmediğini keşfetti. Ayrıca bezelye çeşitlerinde özelliklerin nesilden nesile kendi kendilerine sürdürdükleri tozlaşma sayesinde korunduğunu gördü.Melezleme tozlaşmasında ise çiçeğin erkek organlarından diğer bitkinin dişi organına çiçek tozu ( polen ) aktarılarak kolaylıkla üretilmekteydi.Farklı yedi özellik (uzunluk, kısalık, sarı tohum, yeşil tohum vs.) görüldüğünden ve melezleme tozlaşması kolaylıkla icra edildiğinden Mendel'in seçtiği konu idealdi. Onun ilk işi, kendisinin takip ettiği ve anne babadan evlatlara devamlı aktarılan yedi özelliği, olsa da olmasa da keşfetmekti. Mendel farklı bitki çeşitlerinin her birinden tohumlar toplayarak onları bahçesinde fidan olarak dikti. Deneylerle ortaya çıkan yedi özelliğin zürriyet meydana getirmede ebeveynlerden (anne babadan) evlatlara aktarıldığını göz önüne almıştı. Bezelye çiçekleri, ancak kendini dölleyebilecek bir yapıya sahip olduğundan saf soylarını devam ettirmeye müsaittir. Mendel ilk deneylerinde bezelyelerin arı döl olup olmadığını araştırmaya başladı. Bunun için aynı bitkiyi birkaç defa arka arkaya tozlaştırarak birçok döl elde etti. Her dölde elde ettiği bireyleri birbirine ve ebeveynlerine benzeyip benzemediklerine göre ayırdı. Böylece özellikleri farklı yedi saf döl elde etti. Bu özelliklerin herbirine saf karakter adını verdi.Mendel'in Dominantlık (Baskınlık) Kanunu'nu keşfetmesiMendel'in bundan sonraki işi, iki farklı karakterli bitkiyi tozlaştırdığında ne olacağını görmekti. Buna uygun olarak bir uzun ve bir kısa ebeveyn bitki seçti. Uzunundan çiçek tozu alarak kısanın dişicik borusunun üzerine serpti. Kısa bitkide tohumlar olgunlaştığında çaprazlamanın sonucunu keşfetmek için tohumları ekti. Acaba yeni bitki kısa ebeveyne mi, uzun ebeveyne mi benzeyecekti? Yoksa her iki ebeveynin karakterinin tesiriyle orta uzunlukta mı olacaktı? Üreyen fidanların hepsinin, çaprazlamayı yapmak için çiçek tozu aldığı bitkiler gibi uzun olduğunu gördü.Mendel'in ikinci adımı, hangi bitkinin farklılığa sebep olduğunu bulmaktı. Çiçek tozunu kullandığı mı, yoksa üretimde tohumlarını kullandığı bitki mi?Buna uygun olarak tozlaşma işlemini ters tatbik ederek polen için kısa bitkileri, tohum üretimi için de uzun bitkileri kullandı. Sonuçlar önceki gibi olup bütün yavru bitkiler uzun meydana gelmişti.Mendel sonra diğer karakterleri çaprazlayarak deneyler yaptı. Sarı tohumlu bitkilerle yeşil tohumlu bitkileri çaprazladı. Çaprazlamanın birinci dölünde (F1 dölünde) hepsinin sarı tohumlu olarak ürediğini gördü. Bunun gibi yuvarlak tohumlu türlerle buruşuk tohumluların çaprazlamasından yuvarlak tohumlular üretti. Mendel yedi farklı karakteri tahlil edene kadar çaprazlama deneylerini tekrar etti ve şaşırtıcı sonuçlar elde etti. Çaprazlama döllerini dikkatle takip ederek birinci çaprazlamada kullandığı ebeveyn bitkileri "P" olarak adlandırdı. Adı geçen dölün çaprazlama sonucuna (ürününe) F1 olarak ad verdi. F1 ilk evladı temsil ediyordu. İki uzun bezelyenin F1 döllerinin çaprazlamasıyla, F2 dölünü (torunları) üretti. Üretimde önceki yolu takip etti. Her ikisi de uzun olan iki F1 bitkisi seçti. Onları çaprazlayarak tozlaştırdı ve F2 dölünü vermesi için tohumları dikti. Bu çaprazlamanın sonuçları gayet dikkat çekiciydi. Bitkilerin bazıları uzun olmasına rağmen diğerleri ise kısaydı. İkisi arası uzunlukta (orta boy) hiçbir bitki meydana gelmemişti. Üretilen bitkilerin 3/4'ü uzun, 1/4'ü ise kısa idi. F2 dölünde kısa bitkilerin tekrar ortaya çıkışı Mendel için büyük bir anlam taşımaktaydı. Demek ki F1 bitkileri görünmeyen kısalık karakterine sahipti. Diğer karakterlere sahip olan F1 neslinin çaprazlamalarıyla da aynı sonuçlar elde edildi. Sarı tohumlu ile yeşil tohumlu ebeveyn bitkileri (P) birbirleriyle çaprazlandığında F2 dölünde 3/4 oranında sarı ve 1/4 oranında yeşil bezelyeler üredi. Mendel bu sonuçlardan "''Dominantlık Kanunu''"nu kurdu.Mendel'in ikinci kanunu olarak bilinen Dominantlık (Baskınlık) Kanunu açık bir ifade ile şöyle tanımlanabilir: "Aynı genetik yapıya sahip iki benzer melez çaprazlandığında meydana gelen dölde, ana-babadan gelen karakterler belirli oranlarda (baskın karakter % 75, çekinik % 25) ortaya çıkar."Mendel'in ilk kalıtım kanunu: Uzun bezelyelerin kısalarla melezlenmesinden (çaprazlanmasından) uzun F1 nesli üredi ve kısa bezelyeler F2 dölünde tekrar ortaya çıktılar. Mendel, karakterlerin meçhul faktörler tarafından kontrol edildiğini ileri sürdü. Bugün bu faktörlere " gen " denilmektedir. Mendel bu temel üzerine kalıtımın birinci kanununu yani Eştiplilik = İzotipi Kanunu'nu kurdu.Eştiplilik (İzotipi) KanunuBu kanun, çeşitli kalıtsal karakterlerin faktörleri (genler) tarafından kontrol edildiğini ve bu faktörlerin çiftler halinde bulunduğunu ifade etmektedir. Mendel'in yaşadığı zamanda gen ve kromozomlar bilinmediği halde onun "Eştiplilik Kanunu" bugün genetiğin temel kurallarını meydana getirmektedir. Eştiplilik (İzotipi) Kanunu açık bir ifade ile şöyle tarif edilebilir: "Birer karakteri farklı iki saf ( homozigot ) ırk çaprazlandığı zaman meydana gelen F1 dölünün bireylerinin hepsi melez ve birbirine benzer olur." Uzun saf bezelye ile kısa saf bezelyelerin çaprazlanmasından % 100 uzun melezler meydana gelir. Mendel uzun F1 dölü bitkilerinin saf uzun ebeveyn bitkileri gibi olmadıklarını ortaya çıkardı. Bu bezelyeler görünmediği halde kısalık faktörünü taşımaktaydılar. Bu faktör bir sonraki dölde tekrar ortaya çıkacaktı. Bu muhakeme, onun kalıtımın ikinci kanununu, yani Baskınlık (dominantlık) Kanunu'nu keşfetmesine öncülük etti. Bu kanuna göre, çiftler halinde bulunan faktörlerden (genlerden) biri diğerini maskeleyebilir veya varlığını göstermesine mani olabilir.Baskınlık (Dominantlık) KanunuBahçe bezelyelerinde olduğu gibi, uzunluk bir çift gen tarafından kontrol edilir. Uzunluk geni kısalık genine baskındır ( dominant tır). Kısalık genine çekinik ( resesif ) denir. Mendel'in çaprazlamalarında ebeveynin biri saf uzun olup, her iki uzunluk genine de sahipti. Diğeri de saf kısa olup, her iki kısalık genine sahipti. Bunların çaprazlama ürünü olan F1 dölünün bireylerinin hepsi uzun, fakat melezdiler. Bunlar bir uzunluk ve bir kısalık geni taşımalarına rağmen, uzunluk geni kısalık genine baskın olduğundan uzun olarak ortaya çıktılar. Mendel, çalışma sonuçlarını tablolar halinde göstermeyi başardı. Günümüzde her karakter en az iki genle ifade edilir. Genetik te her gen bir harf ile temsil edilir. Dominant (baskın) genler büyük harfle, resesif (çekinik) genler aynı harflerin küçükleri ile ifade edilir. Eğer uzunluğu T harfiyle gösterirsek, saf uzun bitki TT olarak yazılacaktı ve uzunluk karakterinin her iki geni böyle gösterilecekti. Büyük T, uzunluğun zıt karakter olan kısalığa baskın olduğunu ifade etmektedir. Aynı usulle, küçük t, kısalığı temsil etmektedir ve yalnız başına saf kısa, tt olarak gösterilecekti. Bütün vücut hücreleri diploit sayıda (2N) kromozom ve gen ihtiva etmelerine rağmen, gamet ler (cinsiyet hücreleri) mayoza uğrayarak kromozom ve gen sayılarını yarıya indirgediklerinden haploit sayıda (N) kromozom ve gen taşırlar. İnsanın vücut hücrelerinde 23 çift (46 adet), gametlerinde ise 23 adet kromozom bulunur.Sonuç olarak bezelyenin tohum taslağındaki yumurta hücresi ve polen tanesinden meydana gelen sperm çekirdekçiği her karakter için yalnız birer gen taşırlar. Saf uzun bezelye bitkisinde, yumurta ve sperm çekirdekleri olgunlaştığında biri T'nin birini, diğeri de diğer T'yi alır. Aynı şekilde bütün vücut hücrelerinde tt genlerini taşıyan saf kısa bitkinin genleri mayoz sonucu t ve t'ye bölünerek şekillenen yumurta veya spermlere geçerler.Mendel Ayrılma Kanunu adı ile kalıtımın üçüncü kanununu kurdu. Bu kanuna göre, bir melezde bulunan gen çiftleri birbirinden bağımsız ayrılarak gametlere gider. Bu demektir ki, gen çiftinin bir tanesini bir gamet, diğerini ise başka bir gamet taşır. Ayrıca bir melezde, dominant genle beraber bulunan resesif gen değişmez. Eğer melezin sonraki döllerinde, iki resesif bir araya gelirse resesif karakter tekrar ortaya çıkar.Mendel çaprazlamalarının çizim metodları: Mendel'in bezelyelerle olan melezleme çalışmaları, dama tahtasına benzeyen tablolarla daha açık olarak gösterilebilir. Gametler, üst ve dikey karelere yerleştirilir. Gametlerin birbiriyle eşlenmesi, diğer karelerde işaretlenir.Tt meydana gelen uzun melez bitkileri ifade eder. T (uzunluk) geni, kısalık (t) genine dominant olduğundan, bireyler uzun olarak gözükür. Eğer Tt melezleri birbiriyle çaprazlanırsa gen birleşimlerinin dört ihtimali rahatlıkla tabloda işaretlenebilir. Durum '''tablo 2'''´de gösterildiği gibi olur.Melez ebeveynlerden T ve t genlerinin birleşme ihtimallerinin sonucunda, F2 dölünde: 1/4'ü saf uzun TT, 1/2 melez uzun Tt ve 1/4'ü saf kısa tt yavru meydana gelir.Mendel'in uzun ve kısa bezelyeleri çaprazlayarak elde ettiği aynı sonuçlar kobay ların renk verasetinde de ispatlandı. Bu durumda siyah renk, beyaz renge dominanttır. Saf bir siyah kobay BB ile, saf bir beyaz kobayı bb çaprazladığımızda ne olacağını görelim. F1 dölünde bütün bireyler (yavrular) siyahtır. Genetik yapılarında ebeveynlerden farklılık arz ederler. Çünkü onlar melez siyahlar Bb'dir. İki melez çaprazlandığında F2 dölü 1/4 oranında saf siyah BB, 1/2 oranında melez siyah Bb ve 1/4 oranı saf beyaz bb olarak gözükebilir. F1 dölünün iki melezi Bb arasındaki çaprazlamadan ortaya çıkan F2 dölü, dağılım gösterir.

http://www.biyologlar.com/mendel-yasalari-2

GENETİK KOPYALAMA

İşçilerin tulumları beyazdı; ellerinde soğuk, kadavra rengi kauçuk eldivenler vardı. Işık donuktu, ölüydü: Bir hayalet sanki!.. Yalnız mikroskopların sarı borularından zengin ve canlı bir öz akıyor, bir baştan bir başa uzanan çalışma masalarının üzerinde tatlı çizgiler yaratarak, parlatılmış tüpler boyunca tereyağ gibi yayılıyordu. "Bu da" dedi Müdür kapıyı açarak, "döllenme odası işte..." Doğal olarak, ilkin döllenmenin cerrahlığa dayanan başlangıcından söz etti, derken "Toplum uğruna seve seve katlanılan bir ameliyattır bu" dedi, "altı maaşlık ikramiyesi de caba... Bir yumurta bir oğulcuk, bir ergin; bu normal... Oysa, Bokanovskilenmiş bir yumurta tomurcuk açar, ürer bölünür. Eş ikizler yalnız insanların doğurduğu o eski zamanlardaki gibi yumurtanın bazen rastlantıyla bölünmesinden oluşan ikiz, üçüz parçaları değil, düzinelerle yirmişer, yirmişer." Müdür "yirmişer" diyerek sanki büyük bir bağışta bulunuyormuş gibi kollarını iki yana açtı; "yirmisi birden!.." Ama öğrencilerden biri bunun yararının ne olduğunu sormak gibi bir sersemlikte bulundu. "İlahi yavrucuğum!" Müdür olduğu yerde ona dönüvermişti. "Görmüyor musun? Görmüyor musun, kuzum?" Bir elini kaldırdı; heybetli bir duruşa geçmişti. "Bokanovski süreci toplumsal dengenin en başta gelen araçlarından biridir! Milyonlarca eş ikiz; toptan üretim ilkesinin sonunda biyolojiye uygulanmış olması..." YUKARIDAKİ PARÇA, Aldous Huxley’in 1930’larda yazdığı, geçtiğimiz ay bilim gündemini birdenbire fetheden "koyun kopyalama" deneyine değinen haberlerde sıkça gönderme yapılan, Brave New World (Cesur Yeni Dünya) romanının girişinden kısaltılarak alınmış bir bölüm. Huxley, olumsuz bir ütopya (distopya) niteliği taşıyan romanında, Alfa, Beta, Gama, Delta ve Epsilon adlarıyla, kendi içinde genetik özdeşlerden oluşan beş farklı sınıfa bölünmüş bir toplum tablosu çiziyor. Özdeş vatandaşların üretildiği bu hayali "Bokanovski Süreci", çağdaş anlamıyla klonlama (veya genetik kopyalama) olmasa da, sürecin yolaçtığı etik (ahlaki) ve toplumbilimsel kaygılar, sekiz ay önce İskoçya’da gerçekleştirilen ve geçtiğimiz ay kamuoyuna duyurulan gelişmelerin doğurduklarına denk düşüyor. Şimdi herkesin tartıştığı, son gelişmelerin insanlık için daha insanca bir dönemin mi yoksa, hızla gerçeğe dönüşen korkunç bir distopyanın mı kapısını araladığı. Şubat ayının 22’sinden itibaren, İskoçya’nın Edinburg kentinde, biyoteknoloji alanında tuhaf bir gelişme kaydedildiği, "Dünyanın sonu", "Frankenstein" gibi ifadeleri de içeren dedikodularla birlikte etrafta konu olmaya başladı. Bilim çevreleri de basın da şaşkındı, çünkü, seçkin yazarların ve bazı bilim adamlarının birkaç gündür zaten haberdar oldukları ve konuyu "patlatmayı" bekledikleri bu gelişme, bir biçimde basına sızmış, dilden dile dolaşmaya başlamıştı bile. Normalde pek de ciddiye alınmayacak böyle bir "dedikodunun" bu denli yayılabilmesi, işin içine çeşitli dallarda makalelere yer veren saygın bilimsel dergi Nature’ın adının karışmasıyla olmuştu. Gerçekten de Nature, dedikodu niteliğini fersah fersah aşan bir bilimsel gelişmeyle ilgili bir makaleyi 27 Şubat’ta yayınlayacağını bilim yazarlarına duyurmuş ve bu tarihe kadar "ambargolu" olan bir basın bülteni dağıtmıştı. Batı ülkelerinde yazarlar normal olarak bu ambargolara uyar, hazırladıkları yazıları, ambargonun bittiği tarihte, aynı anda yayına verirler. Ancak, aralarında ünlü The Observer’ın da bulunduğu bazı dergi ve gazeteler ambargoyu çoktan delmiş, konuyu kamuoyuna duyurmuştu bile. Haberin, kaynağı olan Nature ve ambargoya saygı gösteren çoğu nitelikli dergi ve gazetede yer almaması da, dedikodu trafiğini artırmış, ortaya atılan spekülasyonlarla beklenenden fazla ilgi toplanabilmişti. Hatta, Mart ayının başlarında, koyun klonlama haberinin yarattığı ilgi ortamını değerlendirmek isteyen bazı haberciler, aynı yöntemle Oregon Primat Araştırmaları Merkezi’nde maymunların klonlandığını öne sürdüler. Oysa, Oregon’da gerçekleştirilen, embriyo hücrelerinin oldukça sıradan bir yöntemle çoğaltılmasıyla yapılmış bir deneydi. Klonlama, yetişkin bir canlıdan alınan herhangi bir somatik (bedene ait) hücrenin kullanılmasıyla canlının genetik ikizinin yaratılmasını açıklamakta. Kavramsal temelleri çoktandır hazır olan bu işlemin uygulamada gerçekleştirilemeyeceği düşünülüyordu. Edinburg’daki Roslin Enstitüsünden Dr. Wilmut ve ekibi bunu başarmış gibi görünüyor. "Ben bu filmi daha önce seyretmiştim!" diyenleri rahatlatmak için hemen belirtelim ki, aynı ekip 1995 yılında embriyo hücrelerini kullanarak yine ikiz koyunlar üretmiş ve bunu duyuran makaleyi yine Nature dergisinde yayımlatmıştı. Bu deney de basına yansımış, ancak, son gelişmeler kadar yankı uyandırmamıştı. Ne de olsa bu yöntem, döllenmiş yumurtanın kazayla bölünüp tek yumurta ikizlerine yol açtığı bildik süreçlerden farksızdı. Sıklıkla unutulduğu için tekrarlamakta yarar var ki, Wilmut’un son başarısının önemi, işe somatik bir hücrenin çekirdeğiyle başlamasında yatıyor. Bu başarının ortaklarını anarken PPL Tıbbi Araştırmalar şirketini de atlamamak gerek. Borsalarda tırmanışa geçen hisseleriyle gelişmenin meyvelerini şimdiden yemeye başlayan PPL, projenin hem amaçlarını belirleyerek hem de maddi olanakları yaratarak kuzu Dolly’nin varlığının temel sebebi olmuş. Dr. Wilmut’un gerçekleştirdiği başarı şöyle özetlenebilir: Yetişkin bir koyundan alınan somatik bir hücrenin çekirdeğini dahice bir yöntemle, başka bir koyuna ait, çekirdeği alınmış bir yumurtaya yerleştirmek ve bilinen "tüp bebek" yöntemiyle yeni bir koyuna yaşam vermek. Adını, ünlü şarkıcı Dolly Parton’dan alan kuzu Dolly, isim annesinin değilse de, DNA annesinin genetik ikizi. Dolly, sevimli görünüşüyle kamuoyunun sempatisini kazanmış ve tüm bu süreç ilginç bir bilimsel oyun olarak sunulmuşsa da gerçekte deney oldukça iyi belirlenmiş bilimsel ve maddi hedefleri olan, soğukkanlı bir süreç. Zaten Dolly’nin araştırmacılar arasındaki adı da en az varlığı kadar "soğukkanlıca" seçilmiş: 6LL3... PPL’in idari sorumlusu Dr. Ron James, şirket sırlarını kaybetme kaygısıyla maddi hedeflerini pek açığa vurmamakla birlikte, hemofili hastaları için koyunlara insan kanı pıhtılaşma faktörü ürettirmeyi de içeren pek çok önemli ticari hedefin ipuçlarını veriyor. PPL ve Roslin Enstitüsü’nün çalışmaları, geçmişi çok eskilere dayanan ve önemli gelişmelerin kaydedildiği bir alan olan transjenik (gen aktarılmasıyla ilgili) araştırmaların bir üst aşamaya, nükleer transfer (çekirdek aktarılması) evresine doğru ilerletilmesinden başka birşey değil. Yıllardır başarıyla sürdürülen transjenik çalışmalarda tek boynuzlu keçi, üç bacaklı tavuk gibi görünüşte çarpıcı, yararı kısıtlı çalışmaların yanı sıra, insan proteinlerinin hayvanlara ürettirilmesi gibi, modern tıp için çığır açıcı sayılabilecek başarılar kaydedildi. Son gelişmelere imzasını atan ekip, daha önce insan bünyesince üretilen molekülleri gen transferi yöntemiyle bir koyuna ürettirmeyi başarmıştı. Söz konusu deneyde gerek duyulan moleküllerin koyunun tüm hücrelerinde değil, sadece süt bezlerinde sentezlenmesinin sağlanması, koyunun "ilaç fabrikası" olarak değerlendirilmesini beraberinde getiriyordu. Dolly başarısının en önemli potansiyel yararı da bununla ilgili zaten. Gen transferi yöntemiyle, istediğiniz maddeyi sentezleyebilen bir canlıya sahip olduğunuzda, madde verimini artırmak üzere aynı süreci zaman ve para harcayarak yinelemeye çabalamak yerine elinizdeki canlının genetik ikizlerini yaratabilirseniz, ticari değer arz edebilecek miktarda ilaç hammaddesi üretimine geçebilirsiniz. Elinizde birkaç on tane genetik özdeş canlı biriktikten sonra, bu küçük sürüyü doğal yollardan üremeye bırakacak olursanız, hem "yatırımınız" kendi kendine büyüyecek, hem de genetik çeşitlilik yeniden oluşmaya başlayacağından, tek bir virüs tipinin tüm "fabrikayı" yok etmesinin önünü alacaksınız demektir. Biraz Ayrıntı İskoç ekibin gerçekleştirdiği klonlama deneyinin, dünyanın pek çok bölgesine dağılmış sayısız standart biyoteknoloji laboratuvarında "kolayca" gerçekleştirilebileceği söyleniyor. Yine de uygulanan yöntem, günlük gazetelerdeki basit şemalarda anlatıldığı kadar kolay ve hemen tekrarlanabilir türden değil. İskoç ekibin başarısı ve önceki sayısız benzeri çalışmanın başarısızlığı, Wilmut’un, verici koyundan alınan hücre çekirdeğiyle, kullanılan embriyonik hücrenin "frekanslarını" çok hassas biçimde çakıştırabilmesine dayanıyor. Bu yöntemle araştırmacılar, yetişkin çekirdeğin genetik saatini sıfırlamayı, tüm gelişim sürecini başa almayı becerebilmişler. Yöntemin ayrıntılarına girmeden önce bazı temel kavramlara açıklık getirmekte yarar var. Çoğu memeli canlı gibi insan bedeni de milyarlarca hücreden oluşuyor. Bu hücrelerin milyonlarcası her saniye bölünmeyi sürdürerek beden gelişimini devam ettiriyor ve yıpranmış hücreleri yeniliyor. Bu hücrelerin önemli kısmı bedenimizin belli başlı bölümlerini oluşturan "somatik hücreler." Tek istisna, üreme hücreleri. Eşeyli üreme, gametlerin (sperm ve yumurta) ortaya çıktığı "mayoz bölünme"yle başlıyor. Cinsel birleşme sonucunda, spermin yumurtayı döllemesiyle de yeni bir canlının ilk hücresi "zigot" oluşuyor. Bu noktadan sonra gelişmeye dönük hücre bölünmeleri, "mayoz" değil, "mitoz" yoluyla ilerliyor. Koyun ve insan hücrelerinin de dahil olduğu ökaryotik yani, çekirdeği olan hücreler, farklı gelişim evreleri içeren bir yaşam döngüsü geçiriyorlar. Bu döngüyü, hücrenin görece durağan olduğu "interfaz" ve belirgin biçimde bölünmenin gerçekleştiği mitoz evrelerine ayırmak mümkün. Hücre, yaşam döngüsünün yüzde doksan kadarını interfaz evresinde geçiriyor. Aslında, bu duraklama evresi göründüğü kadar sakin değil; hücre, tüm bileşenlerini DNA’yı sona bırakacak biçimde çoğaltarak, bölünmeye hazırlanıyor. Alt evreleri son derece iç içe girmiş olan interfaz evresini işlevsellik açısından G1, S ve G2 alt evrelerine ayırmak yerleşmiş bir gelenek. Yani, hücrenin yaşam döngüsü bu üç evre ve M (mitoz)’dan oluşuyor. G1 evresi, DNA dışındaki bileşenlerin çoğaldığı bir dinlenme dönemi. S, DNA’nın bölünmesiyle sonuçlanan bir geçiş evresi. G2 ise, iç gelişmenin tamamlanıp, hücrenin mitoz yoluyla bölünmeye hazırlandığı süreci içeriyor. Hücrelerin hangi evreyi ne kadar sürede tamamlayacakları bir biçimde programlanmış durumda. Belli bir organizmanın tüm hücreleri bu evreleri aynı sürede tamamlıyorlar. Yine de, ani çevresel koşul değişiklikleri hücreleri G1 evresinde kıstırabiliyor; sözgelimi, besleyici maddelerin miktarı birdenbire minimum düzeye düştüğünde. G1 evresinin belli bir aşamasında, öncesinde bu duraklamaya izin verilen sabit bir kritik noktası var. Bu kritik nokta aşılırsa, çevresel koşullar ne yönde olursa olsun, DNA replikasyonunun önü alınamıyor. İleride göreceğimiz gibi, bu noktanın denetim altında tutulabilmesi, Wilmut ve ekibinin başarılı bir klonlama gerçekleştirebilmelerinin altın anahtarı olmuştur. Bu noktada bir parantez açarak G1, S, G2 ve M evrelerinin denetim altına alınmasının, hücrenin yaşam döngüsünü olduğu kadar, hücrenin özelleşmesini, sözgelimi beyinden veya kas hücrelerinden hangisine dönüşeceğini de kontrol altına alabilmeyi, bir başka deyişle, hücrenin genetik saatini sıfırlamayı sağladığını ekleyelim. Wilmut ve ekibi Dolly’i klonlayıncaya kadar bu sürecin tersinmez olduğu, söz gelimi, bir defa kas hücresi olmaya karar vermiş bir hücrenin yeniden programlanamayacağı zannediliyordu. Peki Wilmut bunu nasıl başardı? Soruyu tersinden cevaplayacak olursak, diğerlerinin bunu başaramamalarının nedeninin, kullandıkları somatik hücrelerin çekirdeklerini S veya G2 evrelerindeki konakçı hücrelere yerleştirmeleri olduğunu söyleyebiliriz. Eski kuramsal bilgilere göre bu yöntemin işe yaraması gerekiyordu, çünkü çekirdeğin mitoza yaklaşmış olması avantaj olarak görülüyordu. Ancak bu denemelerde, işler bir türlü yolunda gitmedi. Kaynaştırmadan sonra, hücre fazladan bir parça daha mitoz geçiriyor ve yararsız, kopuk kromozom parçaları meydana geliyordu. Bu "korsan" genler, gelişimin normal seyrini sürdürmesi için ciddi bir engel oluşturuyordu. Dersini çok iyi çalışmış olan Wilmut, bu olumsuz deneyleri değerlendirerek hücreyi G1 evresinin kritik noktadan önceki duraksama döneminde, "G0 evresinde" kıstırmaya karar verdi. Verici koyundan alınan meme dokusu hücrelerini kültür ortamında gelişmeye bırakan Wilmut, hücrelerin geçirdiği evreleri sıkı gözetim altında tutarak bir hücreyi G0 evresinde kıstırıp bu haliyle durağanlığa bırakmayı başarmıştı. Bunun için, hücrenin besin ortamını neredeyse öldürme sınırına kadar geriletmiş, tüm süreci dondurarak bir anlamda genetik saati de sıfırlayabilmişti. Üstelik bu evre, kaynaştırılacağı yumurta hücresinin mayoz gelişim sırasında girdiği, bu işlem için en uygun olan metafaz-II evresiyle de mükemmel bir uyum içindeydi. İşlemin diğer kısımları yemek tariflerinde olduğu kadar sıradan ve kolay uygulanabilir nitelikte. G0 evresindeki çekirdek metafaz-II evresindeki yumurtayla kaynaştırılıp, normal besin koşulları ve hafif bir elektrik şoku etkisiyle olağan çoğalma sürecine yeniden sokulduğunda, her şey tüp bebek olarak bilinen, in vitro fertilizasyon sürecindeki işleyişe uygun hale geliyor. Zigot, anne koyunun rahmine yerleştiriliyor ve gerekli hormonlarla normal hamilelik süreci başlatılıyor. Wilmut ve ekibinin gerçekleştirdikleri hakkında bilinenler, yukarıda kaba hatlarıyla anlatılanlarla sınırlı. Sürecin duyurulmayan kritik bir evresi varsa, bu ticari bir sır olarak kalacağa benziyor. Ancak, herkesin olup bitenler hakkında aynı bilgilere sahip olması, deneyin başarısı konusunda kimsenin şüphe duymamasını gerektirmiyor. 277 denemeden sadece birinin başarılı olması başta olmak üzere, çoğu uzmanın takıldığı pek çok soru işareti var. Herşeyin ötesinde, herhangi bir olgunun bilimsel gelişme olarak kabul edilmesi için, sürecin yinelenebilirliğinin gösterilmesi gerekiyor. Bir embriyolog, Jonathan Slack, çok daha temel şüpheleri öne sürüyor: "Araştırmacılar, yumurta hücresindeki DNA’ları tümüyle temizleyememiş olabilirler. Dolayısıyla Dolly, sıradan bir koyun olabilir." Slack, alınan meme hücresinin henüz tamamen özelleşmemiş olabileceğini, böyle vakalara meme hücrelerinde, bedenin diğer kısımlarına göre daha sık rastlanılabildiğini de ekliyor. Zaten Wilmut da, bedenin diğer kısımlarından alınan hücrelerin aynı sonucu verebileceğinden bizzat şüpheli. Örneğin, büyük olasılıkla kas veya beyin hücrelerinin asla bu amaçla kullanılamayacaklarını belirtiyor. Üstüne üstlük, koyun bu deneylerde kullanılabilecek canlılar arasında biraz "ayrıcalıklı" bir örnek. Koyun embriyolarında hücresel özelleşme süreci zigot ancak 8-16 hücreye bölündükten sonra başlıyor. Geleneksel laboratuvar canlısı farelerde ise aynı süreç ilk bölünmeden itibaren gözlenebiliyor. İnsanlarda ise ikinci bölünmeden itibaren... Bu durum, aynı deneyin fare ve insanlarda asla başarılı olamaması olasılığını beraberinde getiriyor. Dile getirilen açık noktalardan biri de, hücrelerde DNA barındıran tek organelin çekirdek olmayışı. Kendi DNA’sına sahip organellerden mitokondrinin özellikle önem taşıdığı savlanıyor. Memeli hayvanlarda mitokondriyal DNA, embriyo gelişimi sırasında sadece anneden alınıyor. Her yumurta hücresi, farklı tipte DNA’lara sahip yüzlerce mitokondriyle donatılmış. Bu mitokondriler zigotun bölünmesinin ileri evrelerinde, embriyo hücrelerine dengeli bir biçimde dağılıyor; ancak, canlının daha ileri gelişim evrelerinde, bu denge belli tipteki DNA’lara doğru kayabiliyor. Parkinson, Alzheimer gibi hastalıkların temelinde bu mitokondriyal DNA kayması sürecinin etkileri var. Bu yüzden kimileri, sağlıklı bir kuzu olarak doğan Dolly’nin, zigot gelişimine müdahele edilmiş olması yüzünden sağlıksız bir koyun olarak yaşlanabileceğini öne sürüyorlar. Şimdilik Dolly’nin tek sağlıksız yönü, basına teşhir edilirken sabit tutulması amacıyla fazla beslenmesi yüzünden ortaya çıkan tombulluğu. Klonlamalı mı? Klonlamanın özellikle de insan klonlama konusunun etik boyutu kamuoyunca, günlük yaşamda kültürün, temel bilimsel birikimin, tarih, siyaset ve toplumbilimin en yaygın ve temel kavramlarıyla tartışılabilir nitelik kazanmıştır. Nükleer enerji kullanımı, hormon destekli tarım, ozon tabakasına zarar veren gazların üretimi gibi, farklı toplum kesimlerince kolayca anlaşılabilir ve tartışılabilir kabul edilen klonlama, şimdiden kamuoyunun gündeminde yerini aldı. Kamuoyunun, bilimsel ve teknolojik gelişmelerin uygulanıp uygulanmaması konusunda birtakım ahlaki gerekçelerle ne şekilde ve ne ölçüde yaptırım uygulayabileceği tartışmalı olsa da, şu anda kamuoyunun isteksizliği klonlama çalışmalarının daha ileri aşamalara taşınmasına en güçlü engel olarak gösteriliyor. Oysa, "tüp bebek" diye bilinen in vitro fertilizasyonun, başlangıçtaki şiddetli tepkilerden sonra kolayca kabullenilmesi, işin içine "çocuk sahibi olma isteği ve hakkı" karıştığı durumlarda (aynı argüman klonlama konusunda da sıkça kullanılıyor) toplumun ne kadar kolay ikna olabileceğinin bir göstergesi. Bilimkurgu romanları ve filmlerinde kaba hatlarıyla çokça tartışılmış olan klonlama konusunda halihazırda belli belirsiz bir kamuoyu "oluşturulmuş" durumda. Şu anda sürmekte olan tartışmaların bilinen yanlışlara yeniden düşmemesi için birkaç temel olguya açıklık getirmek gerekiyor. Olası yanılgıların en sık rastlananı, klonlanmış bir canlının, (tartışmalara sıkça insan da dahil ediliyor) genin alındığı canlının fizyolojik özellikleri bir yana, kişilik özellikleri bakımından özdeşi olacağı kanısı. Kazanılmış özelliklerin kalıtsal yolla taşınabileceği yanılgısı, Philosophie Zooloique (Zoolojinin Felsefesi) adlı ünlü yapıtı 1809 yılında yayınlanmış olan, Fransız zoolog Jean Baptiste Lamarck’a dayanıyor. Lamarck’ın görüşlerinin takipçileri, insanların gözlemlenebilir kişilik özelliklerinin önemli ölçüde kalıtsal nitelik taşıdığını savlayarak, çevresel koşulların gelişim üzerindeki etkilerini neredeyse tamamen yadsıyorlardı. Oysa, genetik, evrim, psikoloji gibi alanların ortaya koyduğu çağdaş ölçütler, kazanılmış karakterlerin kalıtsal nitelik gösteremeyeceğini ortaya koyarak, kişilik oluşumunda çevresel etmenlerin güçlü bir paya sahip olduğunu kanıtlamıştır. Bu bağlamda, basında da yankı bulan "koyunlar zaten birbirlerine benzerler" esprisinin aslında ciddi bilimsel doğrulara işaret ettiğinin altını çizmek gerekiyor. Klonlanmış bir koyunun, genetik annesinin genetik ikizi olduğu ölçülerek gösterilebilir bir gerçektir. Oysa, gözlemlenebilir kişilik özellikleri oldukça kısıtlı olan koyunların birbirlerine benzemeleri kaçınılmazdır. Çok daha karmaşık bir organizma olan insanoğlu, sayısız gözlemlenebilir kişilik özelliği sayesinde, genetik ikizinden kolayca ayırt edilebilir. Tüm bunların ötesinde, klonlanmış bir insanın sadece kişilik bakımından değil, fizyolojik ve bedensel özellikleri bakımından da, genetik ikizinden farklı olacağını peşinen kabullenmek gerekiyor. Bir bebeğin biçimsel özelliklerinin ana rahminde geçirdiği gelişim süreci içerisinde tümüyle DNA’sı tarafından belirlendiği görüşü yaygın bir yanılgı. DNA molekülü, insan geometrisine dair tüm bilgileri en sadeleşmiş biçimiyle bile bütünüyle kapsayamayacak kadar küçük. Çoğu biçimsel özellik, akışkan dinamiği, organik kimya gibi alanlardaki temel evrensel yasaların kontrolünde meydana geliyor. Bu süreçte de, her zaman için rastlantı ve farklılaşmalara yeterince yer var. Bir genetik ikiz, kuramsal açıdan, eşine en fazla eş yumurta ikizlerinin birbirlerine benzedikleri kadar benzeyebilir. Uygulamada ise, benzerlik derecesi çok daha düşük olacaktır; aynı rahimde aynı anda gelişmediği, aynı fiziksel ve kültürel ortamda doğup büyüyemediği için... İşin bu boyutunu da göz önünde bulunduran Aldoux Huxley, romanında, Bokanovski Süreci’yle çoğaltılmış bebekleri, yetiştirme çiftliklerinde psikolojik koşullandırmaya tutma gereği duymuştu. Benzer biçimde, 1976’da yazdığı The Boys from Brazil romanında Adolf Hitler’den klonlanan genç Hitler’lerin öyküsünü kurgulayan Ira Levin, klonları, Adolf Hitler’in kişiliğinin geliştiği tüm olaylar zincirinin benzerine tabi tutma gereğini hissetmişti. Tüm bu "hal çarelerine" rağmen, kopya insanın genetik annesinden çoğu yönden farklı olması kaçınılmaz görünüyor. Diğer tüm koşullar denk olsa bile, kopya birey, aynı zamanda ikizi olan bir anneye sahip olmasından psikolojik bakımdan etkilenecektir. Sağduyumuz bize Hitler’i genlerinin değil, Weimar Cumhuriyeti sonrası sosyo-ekonomik koşulların ve genç Adolf’un kıstırıldığı maddi ve manevi bunalımların yarattığını öğretiyor. Tüm bunların ışığında, klonlama konusundaki popüler tartışmaları, tıkanıp kaldıkları, "beklenmedik bir ikize sahip olma" fobisinden kurtarılıp, daha gerçekçi zeminlere çekilmesi gerekiyor. Gen havuzunun (belli bir topluluktaki genetik çeşitlilik) daralması, hayvancılığın geleneksel yapısından koparılıp biyoteknoloji şirketlerinin güdümüne girmesi, yol açılabilecek genetik bozuklukların kontrolden çıkması, bu alanda çalışan bazı şirketlerin (söz gelimi PPL’in) tüm tekel karşıtı yasal önlemleri delerek ciddi ekonomik dengesizliklere yol açması gibi akla gelebilecek sayısız somut etik sorununun tartışılması gerekiyor. Yoksa, akademik organlardan dini cemaatlere kadar sayısız grup gelişmeleri "kitaba uydurma" çabasıyla, kısır tartışmalara girebilir. Örneğin, Budist bir araştırmacı, Dolly’nin eski yaşamında ne gibi bir kabahat işleyip de bu yaşama klonlanmış olarak gelmeyi hak ettiği üzerine kafa yoruyormuş. Aslında biyoteknolojik tekelcilik tehdidine, Cesur Yeni Dünya’da Aldous Huxley de işaret etmişti: "İç ve Dış Salgı Tröstü alanından hormon ve sütleriyle Fernham Royal’daki büyük fabrikaya hammadde sağlayan şu binlerce davarın böğürtüsü duyuluyordu..." İnsanoğlunun temel kaygıları, şimdilik bazı temel koşullarda klonlamayla çelişiyor gibi görülüyor: Bir çiftçi düşünün ki, kendisi için tüm evreni ifade eden kasabasında herkese hayranlıktan parmaklarını ısırtan bir danaya sahip olsun. Bu danayı klonlayıp tüm sürüsünü özdeş yapmayı ister miydi? Büyük olasılıkla biraz düşündükten sonra bundan vazgeçerdi. Danasının biricik oluşu ve genetik çeşitliliği sayesinde bu danaya yaşam veren sürüsünün daha da güzel bir dana doğurması olasılığı çok daha değerli. Ömrü boyunca aynı dananın ikizlerine sahip olmayı kabullenmiş bir çiftçinin komşusu her an elinde daha güzel bir danayı ipinden tutarak getirebilir. Özgür Kurtuluş Kaynaklar: Biospace Huxley A., Cesur Yeni Dünya, Çev: Gürol E., Güneş Yayınları, 1989 Nash M. J., "The Age of Cloning", Time, 10 Mart 1997 Roslin Enstitüsü Basın Bültenleri Star C., Taggart R., Biology: The Unitiy and Diversity of Life, 1989 Underwood A., "Little Lamb Who Made Thee", Newsweek, 10 Mart 1997 Wilmut I., Schnieke A. E., McWhir J., Kind A. J., Campbell K. H. S., "Viable Offspring Derived From Fetal and Adult Mammalian Cells", Nature, 27 Şubat 1997

http://www.biyologlar.com/genetik-kopyalama

Paleozoyik

(1. Zaman) 545 milyon önce başlamış, 250 milyon yıl önce sona ermiştir. Yaklaşık olarak 295 milyon sürmüştür. Paleozoyik’in ilk döneminde (kambriyen) hayvanlar aleminde hızlı bir evrimleşme ve dolayısıyla çeşitlenme olmuştur. Çoğu kitapta bu çeşitlenme “kambriyen patlaması” olarak ifade edilmektedir. Kambriyen patlamasına (hayvanların çeşitlenmesi) neden olan faktörler çeşitli olabilir. Bunların başında ekolojik faktörler gelir. İkincisi jeolojik faktörler gösterilmektedir. Son yıllarda bir diğer faktör olarak genetik etkenler gösterilmektedir. Genetik faktör olarak Hox genlerinin hayvanlarda evrimleşmesiyle önemli bir etkide bulunduğu sanılmaktadır. Bilinen hayvan şubelerinin bir çoğunun paleozoyikte ortaya çıkmış ve çeşitlenmiştir. Tüm tartışmalara karşın "Kambriyen Patlaması" olarak adlandırılan ve bu süreçte, sadece 25 milyon yıl içinde bugün bilinen hayvan şubelerinin neredeyse hemen hepsi ortaya çıkmış ve hızla evrimleşmişlerdir. Paleozoyik’in ikinci dönemimde (ordovisiyen) ilk omurgalılar (balıklar) oluşmuş, dönemim sonuna doğru bitkiler ve böcekler kara yaşamına geçmişlerdir. Paleozoyik’in devoniyen dönemimde çift yaşamlılar (amphbia) oluşmasıyla omurgalılarda karasal yaşama uyum sağladı. Devoniyen’de balıkların çeşitliliğinden dolayı bu döneme “Balık Çağı” adı da verilmektedir. Kömür devri olarak da bilinen karbonifer döneminde yeryüzünün çoğu kısmında bataklık ormanları şeklinde dev boyutlu bitkiler bulunuyordu. Dünya kömür rezervlerinin büyük bir bölümü bu devire ait olduğundan, devire "karbon içeren" anlamında Karbonifer adı verilmiştir. Karbonifer tüm dünya karalarının ekvatoral düzlemde bir araya toplanmaya başladığı ve büyük bir bölümünün günümüz Amazon ormanlarına benzetilebilecek yağmur ve bataklık ormanlarıyla kaplı olduğu bir devirdi. Dev boyutlu bitki örtüsünün yanı sıra, dev boyutlu böcekler, kırkayaklar ve akrepler ve çeşitli iki yaşamlılar bu devrin önemli canlılarıydı. Yine bu dönemde paleoziyik başında tek olan dünya karaları (Rodinia) parçalanmış ve tekrar birleşmek üzere yeni bir dünya kıtasını (Pangea) oluşturmaya başlamıştır. Karbonifer'in sonuna doğru iklim kuraklaşmaya başladı. Kuraklaşan iklimle birlikte bitkilerin ve ormanların yapısı da değişti ve yeni ortamda sürüngenler kendilerini yavaş yavaş göstermeye başladı. Paleozoyik’in son döneminde (permiyen) pangea tamamen oluştu. Bataklık ormanlarının yok oldu. Sürüngenler yaygınlaşmaya başladı ve dönemim sonunda hayvanlar dünyasında büyük bir yokoluş olmuştur (İlk Kitlesel Biyolojik Yokoluş). Hayvan türlerinin % 90 kadar yol olduğu varsayılmaktadır. İLK KİTLESEL BİYOLOJİK YOKOLUŞ 1. zaman (Paleozoyik) yaklaşık 295 milyon yıl sürdü. Zamanın sonuna kadar omurgalı sınıflardan balıklar, çift yaşamlılar (kurbağalar) ve sürüngenler hızla evrimleşti. zaman sırasındaki en önemli olay canlıların sulardan karalara çıkması ve buralarda kendilerine yeni yaşam alanları bulmasıydı. Bu olay bitkiler - balıklar - çift yaşamlılar - sürüngenler arasındaki evrimsel ilişkilerle gerçekleşti. 1. zaman sonundaki ani iklimsel değişiklikler biyolojik toplu bir yok oluşa neden olmuştur. Tüm türlerin % 90 - 95'i oradan kalktı. Böylece bir çok tür 2. zamana geçemedi.

http://www.biyologlar.com/paleozoyik

Genetik Yapımız ve Davranışlarımız Arasındaki İlişki

Daha doğum anından itibaren bebeğin annesine mi yoksa babasına mı benzediğini merak ederiz. Yeni doğan bebeği görenler, öncelikle bu benzerlik konusundaki kanaatlerini açıklama gereği hissederler ya da gerçekten ortada öylesine bir benzerlik vardır ki, kendilerini bu konuda bir şey söylemekten alıkoyamazlar. Çoğu zaman "Hıh, deyip birisinin burnundan düşmüş"üzdür Kime benzediğimiz, fiziksel özelliklerimizi, bazı huylarımızı kimden aldığımız yaşamımızın sonraki dönemlerinde de insan ilişkilerindeki temel ilgi alanlarından birisi olmakta devam eder. Çocuk ya da genç, hoşa giden veya gitmeyen bir tutum gösterdiğinde, bu tutumun hep hesapta tutulan sorumlularından biri de kalıtımsal mirasıdır. Baba, matematikten "pekiyi" alan oğlunun başarısında, biraz da kendi kalıtımsal mirasını etken olarak gördüğü için öğünür. Eşine kimi huylarından dolayı kızgın olan anne, kızı bu baba huylarından bazılarını gösterse, öfkesini yönelttiği kaynaklardan birisi de eşinin kalıtımsal mirasıdır; o yüzden açık ya da gizli "çekmez olasıca!" diye hayıflanır. Şöyle ya da böyle kalıtım, gündelik yaşamımızda büyük ve büyülü bir yer tutar. Gündelik yaşamımızda böylesine önemli bir yeri olan kalıtım, doğal olarak tarihte, toplumsal ve politik yaşamda da "soy sop sorunu" şeklinde hak ettiği yeri almıştır. Evlilikler, politik tercihler sırasında, soyaçekimin bu büyüsel etkisi kendisini çoğu zaman hemen hissettirir. "Kız anasına bakılarak alınır"; soyun gücüne inanç, mezhepsel farklılıklara, babadan oğula geçen dinsel ve politik iktidar biçimlerine yol açar; demokratik söylemin başat olduğu modern zamanlarda bile partilerin başına soyaçekimin büyüsünden faydalanılacak liderler seçilmeye çalışılır. Kalıtımsal miras ve soyaçekim konusunun şüphesiz bilimsel tecessüsü uyandırması gecikmemiş, "genetik", bilim dünyasının en önemli alanlarından birisi haline gelmiştir. Bu yüzyılın ortalarında kalıtımsal mirasın geçiş yolu olan kromozomların, genlerin ve genetik şifrenin taşıyıcısı DNA'nın yapısının keşfiyle, insanlık tarihinde belki etkisi gelecekte çok daha belirginleşecek olan "genetik devrim" ortaya çıkmıştır. Genetik şifre hakkındaki artan bilgi, DNA'ların ayrıştırılıp yeni yapılar elde etmek üzere yeniden birleştirilmesi (rekombinant DNA teknolojisi), insanlığı diğer tüm devrimlerde olmadık biçimde politik, toplumsal ve etik, yepyeni bir meydan okumayla karşı karşıya bırakmaktadır. Artık tüm canlılarda, bitki, hayvan ve insanda istenilen değişikliklerin ortaya çıkarılması ve kopyalama mümkündür. Moleküler biyoloji ve gen mühendisliği gibi iki temel alandan beslenen yeni bir bilimsel ve teknolojik alan olan biyoteknoloji, insan ve toplum için inanılması güç olumlu vaadlerde bulunmaktadır. 1987'de Amerikalı ve İngiliz bilimcilerin önderliğinde başlatılan "İnsan genomu projesi" tüm hızıyla sürmektedir. Bu projeyle ilk aşamada insan genlerinin, ikinci aşamada tüm DNA dizilimlerinin ayrıntılı bir haritasının çıkarılması hedeflenmektedir. İnsan DNA'sında 3 milyar harf olduğu sanılmakta, projenin başlangıcından beri 76 milyon harfin yerinin saptandığı, 2002 yılında 500 milyon harfin yerinin saptanmış olacağı bildirilmektedir. Halen süren ama bir yandan da gerek bilimsel gerek politik çevrelerin tepki ve eleştirilerine hedef olan bu proje, nihai amacı olan insan genomundaki her noktanın DNA diziliminin elde edilmesini gerçekleştirebilirse, ortaya çıkabilecek imkan ve sorunların bugünden hayal edilmesi bile mümkün değildir. Şu sıralarda İngiltere'de Cambridge'de sürmekte olan "İnsan Genetiği Haritası Araştırması" için insan DNA'sından elde edilen 1 milyon kopya derin dondurucularda saklanmakta, varılan sonuçlar Avrupa Biyoenformasyon Enstitüsü (EBI) tarafından dünyaya açıklanmaktadır. EBI, şimdiye kadar 20 bin organizmanın genetik yapısını bilimcilere açıklamıştır. İnternetteki sayfasına her gün on bin kişi girip biriken bilgiyi elde etmektedir. EBI'nın interteki sayfasını okuyanların sayısı son bir yılda 7 kat artmış durumdadır. Bugün "tıbbi genetik" bilgi sayesinde sağlanan bazı hastalıkların nedenleri ve erken tanınması ile birlikte ortaya çıkan imkanların "müthiş" bir düzeye gelmesi ve daha anne karnında hatalı genlerin hatalı olmayanlarla değiştirilmesi yoluyla kesin etkili olacak "genetik tedavi" ulaşılmak istenen ilk hedeflerdendir. Genetikteki çok hızlı gelişme, yalnızca tıp alanıyla sınırlı değildir. İlaç şirketleri de, genetik mühendislikte araştırma-geliştirmeye giderek aratan oranlarda kaynak ayırmaktadır. Biyoteknolojinin tıp ve eczacılık dışındaki diğer hedefleri arasında tarım ve petrokimya alanlarında pek çok ürünün ucuza ve bol miktarda üretilmesini sağlamak bulunmaktadır. Genetik çalışmaların böylesine gelişme ve tüm toplumsal ve ekonomik alanlara yayılma eğilimi, "genetik araştırmaların ekonomisi"yle uğraşan "genomics" adlı yeni bir bilgi türü bile ortaya çıkarmıştır. Ancak insan söz konusu olduğunda, genetik devrimdeki ve biyoteknolojideki tüm bu olumlu gelişmeleri gölgeleyen bazı soru işaretleri ve eleştiriler ortaya çıkmaktadır. Tüm bunların sonucu olarak geçenlerde aralarında ülkemizin de bulunduğu, İngiltere dışındaki 19 Avrupa ülkesi, araştırma amaçlı dahi olsa insan embriyosu üretimini ve kopyalanmasını yasaklayan bir anlaşma imzalamıştır. Bir zamanlar, örneğin matbaanın icadında olduğu gibi, bilimsel ve teknolojik gelişmelere, dinsel ve ahlaki nedenlerle din adamları karşı çıkarlarken bugün benzer gerekçelerle bizzat bazı bilimcilerin kendileri bilimsel etkinliğin sınırlandırılması gerektiğini savunmaktadırlar. İnsanın en bilmecemsi yanı, davranışlarıdır. İnsanla ilgili her türlü bilmeceyi mutlaka çözme (!) azim ve kararlılığında olan genetik bilimciler, uzunca bir süreden beri, felsefenin ve beşeri bilimlerin yıllardır tartıştıkları konulara da el atmışlar; insanın (ve hatta toplumun) karmaşık davranışlarının genetik bakımdan açıklanabilmesi için bugüne kadar birçok araştırma yapmışlardır. Bazı fiziksel hastalıkların genetik nedenlere bağlı olarak ortaya çıktıkları kanıtlanalı beri, önce ruhsal hastalıkların daha sonra işsizlikten çapkınlığa, homoseksüellikten toplumsal şiddete kadar tüm etik, politik, ekonomik sorunların nedenleri DNA dizilimlerinde aranmaya, insanı her türlü davranışının sorumluluğundan muaf tutmaya çalışan bir gayret başlamış, bir nükleotid'in değişimiyle bu sorunların düzelebileceği şeklinde hayaller kurulmuştur. Bu hayal ticaretinin kışkırtılmasında medyanın rolü hiç de azımsanmayacak bir ölçüdedir. Genetik devrimin ve biyoteknolojinin önemi, hem gelişmiş ülkelerin hükümetleri hem de uluslar arası büyük şirketler tarafından çoktandır kavranılmış, bu alanda çok ciddi yatırımlar yapılmıştır. Tüm bunlar nedeniyle, zaten eskiden beri gündelik yaşamda büyük ve büyülü etkiye sahip olan kalıtım ve soyaçekim sorunu, bu kez bilimsel bilgi ve teknolojideki gelişmelerin sonuçları olarak ilerideki günlerde hiçbirimizin kayıtsız kalamayacağı biçimde önümüze gelecektir. Bilgiler yenilenmeli, tüm toplumsal yaşamı derinden sarsacak olan durumlara ve tartışmalara hazır olunmalıdır.

http://www.biyologlar.com/genetik-yapimiz-ve-davranislarimiz-arasindaki-iliski

110 Soruda Yaratılış ve Evrim Tartışması

Evrim Teorisi ve Yaratılış inancı arasındaki ideolojik kavganın sorularına bu kitapta cevap bulabileceksiniz... Klavyenin tuşlarına saniyede bir defa rast gele basan birinin, yalnızca bir defa `evrim hipotezi` yazabilmesi için yaklaşık 317 milyar yıl uğraşması gerekir... ` diyor Prof. Dr. Arif Sarsılmaz ve bugüne dek bilimselliği tartışılan evrim karşıtı eserlerin tersine evrim dayatmasını bilimsel verilerle sorgulayarak bilime rağmen evrim teroisinin doğruluğunu savunmanın yobazca bir inanç dayatması olduğunu işaret ediyor. Bu kitap niçin yazıldı? Dünyadaki ilmî gelişmeleri yakından takip edenlerin bilebileceği gibi, evrim hipotezi karşısındaki düşünce ve akımlar, bilhassa son 20 yıldır giderek artan bir hızla yükseliştedir. ABD başta olmak üzere birçok ülkede ateist ve materyalist anlayışın elinde, biyolojik vasfından çok ideolojik bir hususiyet kazanan evrim düşüncesine karşı, seslerini yükseltmeye başlayan bilim adamları, vakıflar ve dernekler vasıtasıyla çeşitli yayınlar yapmaktadırlar. Materyalist ve pozitivist bir anlayışla dogma hâline getirilerek insanlara dayatılan evrim teorisinin en katı şekilde okutulduğu ülkemizde bu yüzden yıllarca mağdur edilen öğretim üyeleri tanıyorum. Derslerinde evrimi sorguladığı için meslekten atılanı biliyorum. Buna rağmen sanki mağdur edilenler kendileriymiş gibi `evrim daha fazla okutulsun` diye, yavuz hırsızın ev sahibini bastırmasına benzer şekilde imza kampanyası açanlara karşıbir şeyler söylemenin gerektiğini düşündüm. Otuz yıldan beri çeşitli vesilelerle yazmaya niyetlenip derlediğim notlarımı geniş bir kitap hâlinde sunma düşüncesindeydim. Ancak talebelerimden gelen aşırı talepler, bilhassa lise talebelerinin zaman zaman üniversiteye kadar gelerek sorular sormaları, çeşitli yerlerde konferans tarzında konuşma isteklerine yetişememem gibi unsurlar, bu şekilde bir soru-cevap tekniği ile temel bilgilerin acil olarak yazılması gerektiğini hissettirdi. Evrim hususunda kendi talebeliğimden beri yaşadığım gel-gitlerimin, `sıcak yarada kezzap, beyin zarında sülük` olduğu yıllarda, hakikate giden yolda elimden tutan, îmân-ı tahkiki ile müşerref olmamıza vesile olduğu gibi, her gün yeni bir güzellikle tabiat kitabına bakışımızı tashih eden Muhterem Fethullah Gülen Hocaefendi`nin devamlı olarak üzerinde durduğu bu mühim meselenin daha fazla sürüncemede kalmaması için derhal yazma faaliyetimi hızlandırdım. Bugüne kadar nasıl olsa piyasada bu konuda boşluk yok, birileri nasıl olsa yazıyorlar ve insanlara faydalı oluyorlar diye düşünüyordum. Ancak meslekten ve bizzat bu mevzuyu ders olarak okutmuş birinin yazacağı kitabın getireceği bakış açısının çok daha tesirli olacağını söyleyen arkadaşlarımın istişarî tekliflerine uyarak, yazdım. Biyolojinin temel taşı olarak görülen ve bir dünya görüşü olarak in¬sanlara dayatılan evrim konusunda yazılacak bir kitapta ister istemez bütün fen dallarından hatta sosyoloji ve ekonomi gibi sosyal dallardan bile bahsetmek mecburiyetinde kalmanız kaçınılmazdır. Çok geniş çaplı, bir kitabın ele alınması için birlikte çalıştığımız arkadaşların da kabulüyle daha fazla beklemeden acil olan kısmın hemen çıkarılması düşüncesi bu kitabı ortaya çıkardı. Bununla beraber farklı ilim dallarındaki arkadaşların ortak çalışması olarak sunulacak eser de inşallah tamamlanmak üzeredir. Kitapta ele alınan sorular, değişik zamanlarda karşı karşıya kaldığım hususlardır. Derslerimi hiçbir zaman tek taraflı vermedim ve talebelerimi notla korkutarak, onlara baskı ile hiçbir düşünceyi empoze etme yoluna gitmedim. Çünkü bu yolun çıkmaz olduğunu biliyordum. Ders esnasında şahsıma tevcih edilen sorular karşısında hep talebeliğim sırasında, evrim fırtınası olanca şiddetiyle eserken, sadece merak için sorduğumuz sâfiyâne sorularımızın bile `Sus! Böyle soru mu olur? Evrim artık kesin bir kanundur, ispatlanmıştır, hangi yobazdan öğrendiniz bu soruları?` denerek cevapsız bırakılduğı devirler aklıma gelmiştir. Benzer bir basitliği ve `bilim yobazlığını` kendime yediremediğim için ne kadar saçma olursa olsun talebelerimin sorularını dinledim ve bilebildiğim kadarıyla da cevap verdim. Fıtratımda olmadığı hâlde bu yolu gösteren Muhterem Hocamın hoşgörü telkinlerinin de hep faydasını gördüm. Neticesinde derslerimi dinleyen talebelerim arasındaki ateistler bile gelip takdir ettiler ve şer odaklarının hakkımda kurdukları tuzakları haber verdiler. Kandırdıkları ateist namzedi birkaç öğrenciye teyp verip dersime soktular; çünkü benim objektif bir ders anlattığıma inanmıyorlardı. Fakat bütün planları Allah`ın (c.c.) izniyle akim kaldı. Çünkü aleyhimde konuşacak talebe bulamadılar. Ancak isimsiz mektuplarla YÖK`e ihbarda bulundular. Bütün bunlar evrimin ne kadar ideolojik bir hâle geldiğinin apaçık bir göstergesi değil mi? İşte, bu yüzden kitabımın alt başlığını `Bitmeyen Bir İdeolojik Kavganın Hikâyesi` koydum. Bu kitapta yazılanlar da bu kavgayı bitiremeyecek, zaten bitmesini de beklememeli, ancak insanları yalan yanlış, dayatma ve korku ile sindirerek ateist bir ideolojiyi bilim adına eğitimin temeline koyma teşebbüslerine karşı da sessiz kalamazdım. Ülkemizde giderek güçlenme yoluna giren demokratik ortamın geliştirdiği akademik hürriyetler, zaman içinde her türlü felsefî ve ideolojik düşüncenin sorgulanmasını da gündeme getirecektir. Başta ABD olmak üzere birçok Batı ülkesinde ister `Evrim` başlığı altında, isterse `Biyoloji Felsefesi` adı altında, biyolojinin laboratuara girmeyen ve tekrarlanabilen deneylerle gösterilemeyen, spekülatif yorumlara da¬yanan iddialarının, giderek yaygınlaşan bir süreç içinde aklı selim sahibi ilim adamlarının tenkit sahasına girmemesi mümkün değildir. Aklını ve beş duyusunu kullanan, kalbinin ve vicdanının sesini duyabilen her ilim adamının kaçamayacağı bazı temel soruların artık ülkemizde de sorulması gerekmektedir. `Bu dünyaya nereden ve nasıl geldik, nereye gideceğiz?` sorusu herhâlde düşünen insanların en çok merak ettiği soruların başında gelir. Semavî dinlerin bildirdiği `Yaratılış` bilgileri dışında insanlığın bu sorusunun sadece birinci kısmına cevap olmak üzere ileri sürülmüş ve dünyayıen çok meşgul etmiş düşüncelerin başında da herhâlde `evrim` hipotezi ilk sırada gelir. Yukarıdaki sorular `düşünen insan` olmanın gereğidir. Bu soruların ortaya çıkmasına sebep, insandaki `merak hissi`dir. Bütün icat ve keşif¬lerin, arkasında yatan itici güç, merak hissinden kaynaklanan araştırma ve inceleme aşkıdır. İçinde bulunduğumuz dünyayı ve kâinatı bu merak hissiyle incelemeye koyulur, bilgiler toplar, bunları akıl ve mantık süz¬gecinden geçirerek değerlendiririz. Bu şekilde elde edilen bilgilerin bir kısmı bizim için çok mühim olmayan, hayatımızda müspet veya menfî bir tesiri görülmeyecek, sadece o mevzuda ihtisas yapanları alâkadar edecek mâlumâtlar olabilir. Mesela, radyo dalgalarının nasıl yayıldığı veya uydu antenlerinin nasıl çalıştığı, bir gıda mühendisi için çok önemli değildir. Aynışekilde bir elektronik mühendisi de gıdalarda üreyen bir bakterinin hangi toksinleri salgıladığını çok merak etmez, ancak gıda zehirlenmesine maruz kalırsa tedavi için hekime gider ve ilaçlarını alır. Ancak insan olan herkesi ilgilendiren, bu dünya`daki varlık sebebimiz, nasıl var olduğumuz ve gelecekte ne olacağımız gibi sorular hiçbir zaman gündemimizden düşmez. Değişik zamanlarda farklışekillerde hep karşımıza çıkan bu sorulara karşı verilen cevapları vicdanımızın derinliklerinden gelen çok kuvvetli bir merciye tasdik ettirerek, akıl ve kalb gibi bütün latifelerimizle bir itminan duygusu bekleriz. Vicdanımızla birlikte, aklımızıve mantığımızı kullanarak bütün bir ruh huzuruna kavuşmamız için yuka¬rıdaki soruların sorulması ve doyurucu cevaplar alınması gereklidir. Müsait vasatını bulamadığı için bu tip mevzulara uzak kalmış ve tahsil görmemiş birisi bu sorulara karşı çok fazla merak duymayabilir, büyük¬lerinden duydukları bilgiler kendisine yetecek kadar bir tatmin hissi hâsıl edebilir. İman ettiği kadar huzur bulur. Dininden şüphe etmez, Allah`ın (c.c.) her şeyi istediği gibi yaratıp yok edebileceğine iman eder ve rahat¬lar. Ancak dünyayı küçük bir köy hâline dönüştüren haberleşme vasıtaları, her türlü ilmî tartışmayı ve soruları en ücra köylere kadar yaygınlaştıran eğitim faaliyetleri, bu tip bir insana rastlama ihtimalimizi azaltmaktadır. Artık her türlü bilgi, yalan veya doğru, başta TV olmak üzere her türlü medya vasıtasıyla insanlara ulaşmaktadır. Tabii bu medya bombardımanıaltında bazı sorularımız cevaplanırken, çok hayatî olan ve dünya görüşü¬müzü şekillendirecek, temel düşünce dinamiklerimizle ilgili pek çok yanlışbilgi ve peşin hükümlü yorumlarla da kafalarımız karıştırılmakta, düşünce dünyalarımız altüst edilmektedir. Bütün dünyayı tesiri altına almış bu medya bombardımanının hasıl ettiği havayla birçok insanın zihin dünyası karışmış, temel inanç dinamikleri sarsılmıştır. Aldatıcı propagandalar tesiriyle zihinlerde oluşturulan `Din ve Bilim`in çatıştığı, insan dahil olmak üzere bütün varlıkların kendi kendine, tesadüfen oluştuğu ve evrimleştiği düşüncesi, dünyayı büyük bir çöküşün eşiğine getirmiştir. İnsanoğlunun dünyaya gelişiyle başlayan teizm-ateizm mücadelesinde `bilim ve teknoloji` gibi iki önemli silah, hâkim materyalist felsefî akımlar öncülüğünde, medyanın da desteği ile ateizm için kullanıl¬maktadır. Ateizmin en temel iddiaları olan maddecilik, tesadüf ve tabiat gibi kavramlar Antik Yunan`dan bugüne hiç değişmedi. Sadece `bilim` ile yaldızlanıp kılık değiştirilerek insanlar aldatılmakta, nesiller iman ve inanç boşluğuna atılmakta, neticede bütün bir cemiyet bu inanç bunalımlarıiçine girerek dünyayı felakete sürükleyecek bir sona doğru koşmaktadır. Biyolojik bir hipotez olduğu hâlde bugün tamamen bir dünya görüşü hâline getirilen ve inanmaları için kitlelere dayatılarak bütün bir toplumu sarsan `evrim düşüncesinin` ne kadar ilmî olup olmadığı, içindeki yalanlar ve gerçekler, yapılan çarpıtmalar ve taraflı yorumlar kitabımızda sırasıyla sorular hâlinde ele alınacaktır. Prof. Dr. Arif SARSILMAZ İŞTE KİTAPTA ELE ALINAN KONU BAŞLIKLARI • YARATILIŞ VE EVRİM TARTIŞMASI NİÇİN İMÂN-İNKÂR VEYA TEİZM-ATEİZM TARTIŞMASINA YOL AÇIYOR? • EVRİM BİR BİLİM Mİ, YOKSA BİR İNANÇ KONUSU MUDUR? • EVRİM BİR DİN GİBİİNANÇ MEVZUU İSE, BİLİM KİTAPLARINA NASIL GİRMİŞ VE NASIL SAVUNULMAKTADIR? • EVRİMİN BU DERECE ÖNE ÇIKARILMASINDA DARWİN`İN ROLÜ NE OLDU? • EVRİMİN TEMEL İDDİALARI NELERDİR? • EVRİM DÜŞÜNCESİ, YAPISI BAKIMINDAN BİR HİPOTEZ Mİ, BİR TEORİ Mİ, YOKSA İSPATLANMIŞ BİR KANUN MUDUR? • EVRİM `BİLİMSEL` BİR TEORİ MİDİR? • EVRİM, BİLİMSEL DEĞİLSE, YERYÜZÜNDEKİ HAYATI NASIL İZAH EDEBİLİRİZ? • HAYATIN ORTAYA ÇIKIŞINI İZAH İÇİN ORTAYA ATILAN BİRİNCİİDDİA HANGİSİDİR? • DARWİN`DEN ÖNCE EVRİM DÜŞÜNCESİNİ GÜNDEME GETİRENLERİN BAŞINDA LAMARCK GELİYOR. LAMARCK`IN DÜŞÜNCE ÇERÇEVESİNİ NEREYE KOYABİLİRİZ? • ÇIKIŞINDAN BUGÜNE KADAR EVRİM DÜŞÜNCESİ, TOPLUM KESİMLERİNDE KABUL GÖRMESİ VEYA KARŞI ÇIKILMASI AÇISINDAN HANGİ SAFHALARDAN GEÇMİŞTİR? • EVRİMİN OLDUĞUNU İDDİA EDENLERİN DAYANDIĞI BİYOLOJİK MEKANİZMALAR NELERDİR? • TABİİ SELEKSİYON`UN HAKİKATİ VE MÂHİYETİ NEDİR? • TABİİ SELEKSİYON DÜŞÜNCESİ DARWİN`DE NASIL DOĞMUŞ OLABİLİR? • BİR ORGANİZMADAKİ MİLYONLARCA GENDEN BAZISININ HUSUSİ OLARAK SEÇİLİP MUTASYONA MARUZ KALMASI MÜMKÜN OLABİLİR Mİ? • KALITIM DEDİĞİMİZ, BİYOLOJİK VE FİZİKÎ ÖZELLİKLERİN GENLER VASITASIYLA AKTARILMASI, EVRİME SEBEP OLABİLİR Mİ? • EVRİMCİLERCE ÇOK SIK KULLANILAN`MUTASYON` NEDİR? • MUTASYONLAR EVRİME SEBEP OLABİLİR Mİ? • BAZI MUTASYONLARIN FAYDALI VE EVRİME KATKISI OLABİLECEĞİ İDDİALARI NE DERECE DOĞRUDUR? • MUTASYONLA BAKTERİLER YENİ BİR CANLI TÜRÜNE Mİ DÖNÜŞÜYOR; YOKSA TÜR İÇİNDE YENİ IRKLAR MI MEYDANA GELİYOR? • MEYVE SİNEKLERİİLE YAPILAN DENEYLER HANGİ ÖLÇÜDE BAŞARILI OLMUŞTUR? • MAKROMUTASYONLARLA EVRİM MEYDANA GELEBİLİR Mİ? • DARWİN ZAMANINDA MUTASYONLAR BİLİNMEDİĞİNE GÖRE, TÜRLERDE DEĞİŞİKLİK ORTAYA ÇIKABİLECEĞİ DÜŞÜNCESİNİN SEBEBİ NE OLMUŞTUR? • TABİİ SELEKSİYONLA EVRİMİN İZAHINDA İLERİ SÜRÜLEN DELİLLER NE KADAR İNANDIRICIDIR? • TABİİ SELEKSİYON İLE `İNDİRGENEMEZ KOMPLEKSLİK` ANLAYIŞI TELİF EDİLEBİLİR Mİ? • TABİİ SELEKSİYONUN YARATILIŞ İNANCINA GÖRE YORUMU NASILDIR? • HAYATTA KALANLAR SAHİP OLDUKLARI DEĞİŞİK ÖZELLİKLERİYLE YENİ BİR TÜRE DÖNÜŞEMEZLER Mİ? • SELEKSİYONLA BİRLİKTE İŞ GÖRDÜĞÜ İLERİ SÜRÜLEN ADAPTASYONUN MÂHİYETİ NEDİR? • BİR CANLI GRUBUNUN BELLİ BİR FORMA SAHİP OLUŞU, ONUN DEĞİŞMEDİĞİNİGÖSTERİR Mİ? • BAZI CANLILARDA ZAYIFLARIN DA YAŞAMASINI VE FEDAKÂRLIK DAVRANIŞINI TABİİ SELEKSİYONLA NASIL İZAH EDERİZ? • BUGÜNKÜ GENETİK BİLGİLERİMİZ IŞIĞINDA TABİİ SELEKSİYON VE ADAPTASYO¬NUN EVRİMCİ YORUMU DIŞINDAKİ GERÇEK BİYOLOJİK DEĞERİ NEDİR? • ADAPTASYON VE TABİİ SELEKSİYON MEKANİZMALARI İLE BİRLİKTE İŞLEYEN İZOLASYONUN MAHİYETİ VE CANLILARIN DEĞİŞMESİNE KATKISI NEDİR? • DARWİN`İN İSPİNOZLARI EVRİME DELİL OLABİLİR Mİ? • BİYOLOJİK DEĞİŞMENİN SINIRLARI NEDİR? • MEKANİZMA OLARAK İLERİ SÜRÜLEN BİYOLOJİK PRENSİPLERLE BİR `EVRİM` OLMADIĞINA GÖRE`EVRİME DELİL` OLARAK GÖSTERİLENLER NEDİR? • EVRİMCİLERİN DELİL ADINA EN ÇOK KULLANDIKLARI HUSUSLAR FOSİLLER OLDUĞU İÇİN PALEONTOLOJİ BU HUSUSTA NE DİYOR? • BİRBİRİNDEN TÜREDİĞİİDDİA EDİLEN FARKLI GRUPLAR ARASINDA GEÇİŞ FOSİLLERİ BULUNDU MU? • GEÇMİŞ JEOLOJİK DÖNEMLERE AİT TABAKALARDA DEVAMLILIK VE TÜRLERİN ARDI ARDINA TÜREYİŞİ Mİ, YOKSA KESİKLİKLER VE ÇEŞİTLİ GRUPLARIN BİR ARADA ÂNİYARATILIŞI MI GÖZE ÇARPIYOR? • FOSİL KAYITLARI BİTKİLER HAKKINDA NE SÖYLÜYOR? • BALIKLARIN ORTAYA ÇIKIŞI VE AMFİBİLERLE ORTAK BİR ATADAN GELDİKLERİ HUSUSUNDA FOSİL KAYITLARI YETERLİ Mİ? • KARADAN SUYA VEYA SUDAN KARAYA GEÇİŞ MÜMKÜN MÜ? • KARA HAYATI İLE SU HAYATI ARASINDA GEÇİŞ TÜRLERİ NİÇİN MÜMKÜN OLMASIN? • OMURGASIZLARDAN OMURGALILARA GEÇİŞ MÜMKÜN MÜ? • SADECE KEMİKLERİN FOSİLİ BÜTÜN BİR BİYOLOJİYİİZAHA YETERLİ MİDİR? • FOSİLLERİN TEDRİCİ BİR ŞEKİLDE BİRBİRİNİ TAKİP ETTİĞİNİ SÖYLEYEBİLİR MİYİZ? • SÜRÜNGENLERLE KUŞLAR ARASINDA GEÇİŞ FOSİLİ OLARAK BAHSEDİLEN ARCHAEOPTERYX`İN DURUMU NEDİR? • BAZI FOSİLLERİN MEMELİİLE SÜRÜNGEN ARASI GEÇİŞ OLDUĞU SÖYLENTİSİGERÇEĞİ NE ÖLÇÜDE YANSITMAKTADIR? • ATIN KÖPEK BÜYÜKLÜĞÜNDE BİR HAYVANDAN EVRİMLEŞTİĞİ SÖYLENTİSİGERÇEĞİ NE ÖLÇÜDE YANSITMAKTADIR? • `SIÇRAMALI EVRİM` (PUNCTUATED EQUILIBRIUM) NE DEMEKTİR? • SIÇRAMALI EVRİMİN YANLIŞ OLDUĞUNU NASIL ANLATABİLİRİZ? • KLADİZM VE SIÇRAMALI EVRİM ANLAYIŞI NE GETİRMİŞTİR? • BU DURUMDA TÜRLERİN ÂNİDEN ORTAYA ÇIKIŞI GİBİ DÜŞÜNCEYE GELİNMİYOR MU? • `TÜRLERİN ÂNİDEN ORTAYA ÇIKIŞI` TEORİSİ MARKSİST BİR DÜŞÜNCENİN ÜRÜNÜ MÜ? • EVRİMİİSPAT İÇİN YAPILAN PALEONTOLOJİK ÇALIŞMALAR BİLİMİN ÖLÇÜLERİNE UYUYOR MU? • İNSAN MAYMUN ARASINDAKİ EVRİM TARTIŞMALARININ DURUMU NE GÖSTERİYOR? • HOMİNİD, PRİMAT, HOMO SAPIENES GİBİ TABİRLERİİNSAN İÇİN KULLANMAK NE DERECE DOĞRUDUR? • BİR HOMİNİD`İ DİĞER PRİMATLARDAN AYIRAN HUSUSİYETLER NELERDİR? • İNSANIN MUHAKKAK BİR MAYMUNLA AKRABA OLMASI PEŞİN FİKRİNDEN HAREKETLE YAPILAN YORUMLAR HADDİNİ AŞAN BİR GENELLEME OLMUYOR MU? • DÜNYA`NIN YAŞI EVRİM SÜREÇLERİYLE İNSAN GİBİ BİR TÜRÜN MEYDANA GELİŞİNE İMKÂN VERECEK KADAR UZUN MUDUR? • SIK SIK YENİİNSAN MAYMUN FOSİLLERİ BULUNDUĞU İDDİA EDİLİYOR, BU DURUM BİR KARIŞIKLIK MEYDANA GETİRMİYOR MU? • MOLEKÜLER BİYOLOJİ VE GENETİK NE DİYOR? • AKRABA OLDUĞU İDDİA EDİLEN CANLILAR ARASINDA KROMOZOM SAYISI VE DNA MİKTARLARI BAKIMINDAN BİR YAKINLIK VEYA BENZERLİK OLDUĞU, DOLAYISIYLA BİRBİRİNDEN TÜREYEBİLECEĞİİDDİASI DOĞRU MUDUR? • SON YILLARDA HURDA DNA`LAR VE PSEUDOGENLER(YALANCI GEN) GÜNDEME GELİYOR VE BUNLARIN GEÇMİŞ ATALARDAN KALAN, FAKAT KULLANILMAYAN DNA PARÇALARI OLDUĞUNDAN BAHSEDİLİYOR. BU HUSUSTAKİ BİLGİLER NE DERECE DOĞRUDUR? • CANLILARIN FARKLI ORGANLARININ, GENLERİNİN VEYA PROTEİNLERİNİN BİRBİRİNE BENZER OLMASI NE MÂNÂYA GELİYOR? BUNLAR, BÜTÜN CANLILARIN ORTAK BİR ATADAN GELDİĞİNİ SAVUNAN DARWİNİZM İÇİN BİR DELİL SAYILABİLİR Mİ? • OMURGALI EMBRİYOLARINDA SOLUNGAÇ YARIKLARININ BULUNDUĞU ÖNE SÜRÜLEREK İNSANIN SOYAĞACININ BAŞINDA BALIKLARIN OLDUĞU, DAHA SONRA DA, AMFİBİ, SÜRÜN-GEN VE KUŞ SAFHALARINDAN GEÇTİĞİMİZ İDDİASI NE KADAR DOĞRUDUR? • EMBRİYOLOJİK GELİŞME SIRASINDA MEVCUT BAZI ORGANLARIN KULLANILMADIĞI İÇİN KÖRELDİĞİİDDİALARI HAKKINDA NE DENİLEBİLİR? • KARŞILAŞTIRMALI ANATOMİDE, ATIN AYAĞI İLE İNSANIN AYAĞI, KUŞUN KANADI İLE YARASANIN KANADI VEYA YUNUS BALIĞININ YÜZGECİ HOMOLOG OLARAK BİRBİRİNDEN TÜREMİŞ BİÇİMDE ANLA¬TILIRKEN; BÖCEK KANADI BUNLARLA ANALOG ORGAN OLARAK ANLATILIYOR BU NE DEMEKTİR? • FOSİLLERİN YAŞ TAYİNLERİ HUSUSUNDA ZAMAN ZAMAN FARKLILIKLAR GÖRÜLMEKTEDİR. BUNUN SEBEPLERİ NELERDİR? • HANGİ YAŞ TAYİN METOTLARI VARDIR VE BUNLARIN GERÇEKLİKLERİ NE ÖLÇÜDE DOĞRUDUR? • DİĞER YAŞ TAYİN METOTLARINDAKİ EKSİKLİKLER NELERDİR? • KARBON -14 METODU İLE YAPILAN YAŞ TAYİNLERİ TAMAMEN YANLIŞ MIDIR, YOKSA ÇOK YAKIN TARİHLERİ BELİRLEMEK İÇİN DE KULLANILABİLİR Mİ? • KARBON -14 METODUYLA YAPILAN YAŞ TAYİNLERİ 50.000 YILDAN DAHA GEÇMİŞ DÖNEMLER İÇİN NE KADAR GÜVENİLİRDİR? BİZE GEÇMİŞLE İLGİLİ NE ÖLÇÜDE SIHHATLİ BİLGİ VERMEKTEDİR? • AĞAÇLARIN BÜYÜME HALKALARININ KARBON-14 METODUNU DESTEKLEDİĞİ İDDİASI NEREDEN KAYNAKLANMAKTADIR? • POZİTİF BİR BİLİM OLAN JEOLOJİ, KİMYA VEYA ASTROFİZİK GİBİ KONULAR¬DA ÇARPITMA VEYA SENARYOYA GÖRE ISMARLAMA YAŞ TAYİNLERİNASIL YAPILABİLİR? • DARWİNCİLER YERYÜZÜNDEKİ HAYATIN ORTAYA ÇIKIŞINI DEVAMLI VE KESİKSİZ BİR SÜREÇ OLARAK KABUL ETTİKLERİNDEN `TESADÜFEN` DE OLSA, YAVAŞ YAVAŞ BİR EVRİMLEŞMEYİMÜMKÜN GÖRÜYORLAR. YARATILIŞIN GERÇEKLEŞMESİNDE BİR DEVAMLILIK MI MEVCUT¬TUR? YOKSA KESİKLİKLER VE TOPLU YARATILIŞLAR MI GÖRÜLMEKTEDİR? • TOPLU YOK OLUŞLARIN OLDUĞUNU VE SEBEPLERİNİ GÖSTEREN BİLGİLER MEVCUT MU? • EVRİM HİPOTEZİ SADECE CANLILAR ÂLEMİNDE GEÇERLİ OLARAK GÖRÜLEN BİR DÜŞÜNCE MİDİR? • KÂİNAT TELAKKİSİİLE EVRİM DÜŞÜNCESİ ARASINDA BİR MÜNASEBET VAR MIDIR? • CANLILARIN YARATILMASINDAN ÖNCE CANSIZ TABİATIN BİR ORGANİK EVRİM GEÇİRDİĞİİDDİASININ İSPATI İÇİN UĞRAŞAN EVRİMCİLERİN, KÂİNATIN İLK YARATILMAYA BAŞLAMASINDAN İTİBAREN ORTAYA ÇIKAN BÜTÜN GELİŞMELERİİNCELEYİP HÜKÜM VERMELERİ GEREKMEZ Mİ? • `BİG-BANG` TEORİSİNİN YARATILIŞI DESTEKLEDİĞİ DÜŞÜNCESİNE NASIL VARIYORUZ? • İLK ATOM ÇEKİRDEĞİNİN YARATILIŞI VE ATOMUN DOĞUŞU HANGİ SAFHADA GERÇEKLEŞİYOR? • İLK ATOMLARIN YARATILMASINDAN SONRAKİ TAHMİNİ SÜREÇTE NELER OLDUĞU DÜŞÜNÜLÜYOR? • AMİNOASİT VE PROTEİN GİBİ HÜCREYE GÖRE ÇOK BASİT SAYILABİLECEK MOLEKÜLLER BİLE ŞUURSUZ VE AKILSIZ EVRİM MEKANİZMALARIYLA KENDİKENDİNE ORTAYA ÇIKAMAYACAĞINA GÖRE HÜCRENİN ALT BİRİMLERİ OLAN, ORGANELLER VE HÜCRE NASIL OLUŞABİLİR? • EVRİM TARTIŞMASININ TEMELİ AĞIRLIKLI OLARAK İHTİMAL VE TESADÜF KAVRAMLARI ETRAFINDA MI ŞEKİLLENİYOR? • ACABA MEVCUT CANLILARIN TESADÜFÎ MUTASYONLARLA DEĞİŞME İMKÂNI OLAMAZ MI? • DARWİNİZM`İ BİYOLOJİNİN REDDEDİLEMEZ BİR PARÇASI GİBİ GÖSTERME GAYRETLERİNİN SEBEBİ NEDİR? • DARWİNİZM`E KARŞI ÇIKIŞLAR KARŞISINDA, BU HİPOTEZİ SAVUNANLARIN DA BOŞ DURACAĞI DÜŞÜNÜLEBİLİR Mİ? NE GİBİ YENİ ÇIKIŞLAR YAPABİLİRLER VE KARŞILAŞABİLECEKLERİ EN BÜYÜK SIKINTILARI NELERDİR? • `DARWİNİZM`İ ÇÜRÜTÜYORSUNUZ FAKAT YERİNE BİR MODEL KOYMUYORSUNUZ. EVRİM, VAR OLUŞA DAİR ŞÖYLE VEYA BÖYLE BİR ŞEYLER SÖYLÜYOR; SİZ SADECE YIKIYOR FAKAT YARATILIŞ ADINA BİR MEKANİZMA TESİS ETMİYORSUNUZ!` ŞEKLİNDEKİ TENKİTLERE NASIL CEVAP VERİLEBİLİR? • EVRİME KARŞI ÇIKMA ANLAYIŞININ DÎNÎ KAYNAKLI OLDUĞU, İLMÎ ARAŞTIRMA¬LARDA VE MEDENİYETİN GELİŞMESİNDE ENGELLEYİCİ GÖRÜLDÜĞÜ, İNSANLARI TEMBELLİĞE İTTİĞİ GİBİİDDİALAR NE KADAR GEÇERLİDİR? • EVRİM - YARATILIŞ KAVGASI, İLK ÖNCE BATIDA MUKADDES KİTAP OLAN İNCİL İLE BİLİM ADAMLARI ARASINDA ÇIKMIŞTIR. İSLAM`IN BU AÇIDAN FARKLI YÖNLERİ VE VAAD ETTİKLERİ VAR MI? • BİLHASSA ABD`DE BİRÇOK ÖZEL VAKIF VE ARAŞTIRMA ENSTİTÜSÜNÜN EVRİM DÜŞÜNCE-SİNE KARŞI OLARAK ÇIKARDIĞI CİDDİ BOYUTLARA ULAŞAN BİLGİ VE BELGELER KARŞISIN¬DA DARWİNİZM İNANCI ŞU ANDA TARAFTAR MI TOPLUYOR, YOKSA TERK Mİ EDİLİYOR? • OBJEKTİF VEYA NÖTR OLMASI GEREKEN BİLİMİN ATEİZM İÇİN KULLANILDIĞINI, `YARATILIŞVE EVRİM` TARTIŞMALARININ ALTINDA, İDEOLOJİK VE FELSEFÎ BİR TABANA YASLANAN DÜNYA GÖRÜŞLERİ OLDUĞUNU ANLAMIŞ BULUNMAKTAYIZ. BUNUN YANINDA; ACABA`EVRİM HİPOTEZİ`NİN BİLİM VE DÜŞÜNCE TARİHİ BAKIMINDAN VEYA BİYOLOJİK PRENSİPLER AÇISINDAN BİR KATKISI VAR MIDIR? HİÇ FAYDASI OLMAMIŞTIR DENİLEBİLİR Mİ? • ÜNİVERSİTELERİN BİYOLOJİ BÖLÜMLERİNDE VE ORTA ÖĞRETİMDE EVRİM KONUSU HANGİ AĞIRLIKTA İŞLENMELİ, EVRİMDEN HİÇ Mİ BAHSEDİLMEMELİ? TÜRKİYE`DE BU HUSUSTA SIKINTILAR VAR MI, VARSA SEBEBLERİ NELERDİR VE NE ŞEKİLDE DÜZELTİLEBİLİR?  

http://www.biyologlar.com/110-soruda-yaratilis-ve-evrim-tartismasi

PROBİYOTİKLER HAKKINDA BİLGİ

Değişik sebeplerden ileri gelen ve insan sağlığı üzerinde olumsuz etkileri olan farklı oluşumlara karşı uzun yıllardan beri değişik antibiyotikler kullanılmıştır. Antibiyotiklerin belli periyotlarda ve belli dozlardaki kullanımı neticesinde, metabolizmada gözlenen rahatsızlıklar tedavi edilebilmiştir. Ancak zaman içerisinde kullanılan antibiyotik türleri ve bunların tedavideki dozlarının insan metabolizmasında yararlı faaliyetleri olan (özellikle de intestinal florada) mikroorganizmaları inaktive ettiği ya da populasyonunu azalttığı ve bunun neticesinde de normal floranın bozularak, vücutta antibiyotiklerden kaynaklanan bazı rahatsızlıkların (alerji, diyare, gaz vb. gibi) ortaya çıktığı belirlenmiştir. Bunun yanında araştırıcılar günlük yaşamın getirdiği bazı olumsuzluklardan (çevrede olan ani değişmeler, su ve besinlerin kaliteleri, hayvansal ürünlerin aşırı miktarları, kafein, alkol kullanımı) ve değişik türdeki patojenlerin enfeksiyonlarından dolayı (sinirsel yorgunluk ve stres gibi) vücudun normal florasının etkilendiğini de ortaya koymuşlardır. Vücudun doğal intestinal florasında bulunan ve organizma için yararlı olan bakterilerin gitgide sayılarının azalması, tamamen yok olması karşısında bilim dünyası bu yararlı florayı korumak ya da tekrar geri kazanmak için arayışa girmiş ve “Probiyotik mikroorganizmalar” değişik ürünler (mandıra ürünleri, meyve suları, çikolata ve et ürünleri) ile tüketime sunulmuşlardır. Probiyotikler; yaşayan mikroorganizmalar olup mukozal ve sistemik bağışıklığı ayarlayarak konağa tesir ederler. Ayrıca intestinal sistemdeki mikrobiyal dengeyi sağlarlar. Sağlıklı bir insan vücudunda probiyotik mikroorganizmalar belli oranlarda bulunmaktadır. Probiyotik mikroorganizma florası, vücudun mukoz membranlarında ve sindirim bölgelerinde kolonize olan bakterilerdir. Vücuttaki mikroorganizma florasında 400 ile 500 arasında farklı türde, sindirim bölgesinde yerleşmiş durumda bulunan, gerek patojen gerekse sağlığa yararlı mikroorganizmalar mevcuttur. Sindirim sisteminin önemli bir parçası olan bağırsaklarda, ilaç kullanımı veya hastalıklar sırasında açığa çıkan zararlı bakteriler, aynı ortamda bulunan iyi huylu bakterilere karşı atağa geçerler ve bağırsağa yerleşmeye çalışırlar. Probiyotik bakteri suşları ise bağırsak duvarına tutunarak, bu zararlıların içeriye girmesini önler. Probiyotik Olarak Kullanılan Mikroorganizmalar Probiyotikler esas olarak laktik asit bakterileridir. Bunun yanında araştırmalar mayaların da probitotik özelliğe sahip olduğunu göstermiştir. Yoğurt yapımında kullanılan mikroorganizmalar (Lactobacillus bulgaricus ve Streptococcus thermophilus) dışında tüm laktik asit bakterileri bağırsak florası elemanlarıdır. Bir probiyotik ürün bu mikroorganizmalardan birini ya da birkaçını içerebilir. İçerdiği mikroorganizma sayısı arttıkça probiyotiğin kullanım alanı genişlemektedir. Probiyotik Bakterilerin Özellikleri Probiyotik bakteriler Gram (+), sporsuz, basil şeklindedir. L. acidophilus’un üreme sıcaklığı 35 – 380C ‘dir. Probiyotik bakteriler mide asitliğine diğer bakterilere göre daha dayanıklıdır. Safra tuzuna ve lizozim enzimine daha dirençlidir. Lactobacillus türleri, ince bağırsakta fazla sayıda bulunurken, Bifidobacterium’lar kalın bağırsaktadırlar. Probiyotik bakteriler laktik asit, asetik asit, bakteriyosin gibi antimikrobiyal maddeler üreterek, bağırsaklarda istenmeyen mikroorganizmaların çoğalma hızını kontrol ederler ve doğal floranın denge içinde bulunmasını sağlarlar. Gram (+) bakteriler, bakteriyosinlere çok duyarlıdır. Beslenmede bitkisel besinlerin fazla olması, hayvansal besinlerin aksine bağırsaklardaki probiyotik bakterilerin sayısını artırır. Sağlıklı kişilerin bağırsak florasında probiyotik bakterilerin (örneğin Bifidobacterium’ların) sayısı zaman içerisinde sabitleşmekte; ancak günlük yaşamın getirdiği; antibiyotik kullanımı, stres, sinirsel yorgunluk, dengesiz beslenme, fazla alkol alımı, hastalık ve bağırsak ameliyatları gibi sonuçlar, bu bakterilerin azalmasına neden olur. Bunun sonucunda bağırsaklarda enterik bakteriler çoğalır ve enterik rahatsızlıklar ortaya çıkar. Probiyotik bakterilerin önemli özelliklerinden biri de, bağırsak çeperine tutunabilme yeteneğine sahip olmalarıdır. Bu tutunma en önemli ve hatta biyolojik etki gösterebilmeleri için mutlaka olması gereken bir özellik olarak belirtilmiştir. Probiyotik bakteriler, bağırsak çeperine tutunarak patojen mikroorganizmaların tutunmasını engellerler. Ayrıca sindirim sırasında bağırsak hareketlerinden çok fazla etkilenmeden hızla üreyerek orijinal populasyonda azalmayı engellerler. Bütün bunları maddeleyecek olursak; probiyotik olarak kullanılan mikroorganizmalarda aranan özellikler şunlardır: - Güvenilir olmalıdır, kullanıldığı insan ve hayvanda yan etki oluşturmamalıdır. - Stabil olmalıdır, düşük pH ve safra tuzları gibi olumsuz çevre koşullarından etkilenmeden bağırsakta metabolize olmalıdır. - Bağırsak hücrelerine tutunabilmeli ve kolonize olabilmelidir. - Kanserojenik ve patojenik bakterilere antagonist etkili olmalıdır. - Antimikrobiyal maddeler üretmelidir. - Konakta hastalıklara direnç artışı gibi yararlı etkiler oluşturma yeteneğinde olmalıdır. - Antibiyotiklere dirençli olmalıdır. Antibiyotiğe bağlı (diyare) ortaya çıkan hastalıklarda bağırsak florasını düzeltmek amacı ile kullanılabileceğinden, bağırsaktaki antibiyotiklerden etkilenmemelidir. - Minimum etki dozları bilinmediğinden, canlı hücrelerde büyük miktarlarda bulunabilmelidir. Probiyotik Olarak Kullanılan Mikroorganizmalar Lactobacillus Türleri: Lactobacillus bulgaricus, Lactobacillus cellebiosus Lactobacillus delbrueckii, Lactobacillus lactis Lactobacillus acidophilus, Lactobacillus reuteri Lactobacillus brevis, Lactobacillus casei Lactobacillus curvatus, Lactobacillus fermentum Lactobacillus plantarum, Lactobacillus johsonli Lactobacillus rhamnosus, Lactobacillus helveticus Lactobacillus salivarius, Lactobacillus gasseri Bifidobacterium Türleri: Bifidobacterium adolescentis, Bifidobacterium bifidum Bifidobacterium breve, Bifidobacterium infantis Bifidobacterium longum, Bifidobacretium thermophilum Bacillus Türleri: Bacillus subtilis, Bacillus pumilus, Bacillus lentus Bacillus licheniformis, Bacillus coagulans Pediococcus Türleri Pediococcus cerevisiae, Pediococcus acidilactici Pediococcus pentosaceus Streptococcus Türleri : Streptococcus cremoris, Streptococcus thermophilus Streptococcus intermedius, Streptococcus lactis Streptococcus diacetilactis Bacteriodes Türleri : Bacteriodes capillus,Bacteriodes suis Bacteriodes ruminicola, Bacteriodes amylophilus Propionibacterium Türleri : Propionibacterium shermanii, Propionibacterium freudenreichii Leuconostoc Türleri: Leuconostoc mesenteroides Küfler: Aspergillus niger, Aspergillus oryzae Mayala: Saccharomyces cerevisiae, Candida torulopsis Probiyotikler Tarafından Üretilen Esas Maddeler Vitaminler: K vitamini, folik asit, biotin, B1, B2, B12, Niasin ve priydoksin. Enzimler: Laktaz gibi sindirim enzimleri (esas olarak süt ürünlerin sindiriminde), serbest bölgelerin düzenlenmesine yardımcı olan karbonhidrat enzimleri, sindirim ve protein enzimleri, yağ enzimleri. Uçucu Yağ Asitleri: Besinlere ait yağ asitlerinin kısa zincirleri yardımıyla üretilen bu yağ asitleri sayesinde, optimum düzeyde sindirim için gerekli olan pH dengesinin sağlanması. İnsan sağlığına faydalı etkilerinin olduğu düşünülen canlı bakteri hücreleri üç temel kaynaktan yenmektedir: - Fermente süt ürünleriyle - Gıdalara ve içeceklere bu bakterilerin canlı hücrelerinin eklenmesiyle (meyve suları, çikolata, et ürünleri v.b.) - Probiyotik bakterilerin canlı hücrelerinden hazırlanan farmakolojik ürünler olarak tablet veya kapsüllerin hazırlanmasıyla. Probiyotik Süt Ürünleri En önemli probiyotik süt ürünü yoğurttur. Bununla birlikte, Lactobacillus acidophilus içeren diğer süt ürünleri olan Acidophilus quarkı, Acidophilus’lu süt, Acidophilus’lu tereyağı, Acidophilus’lu süt tozu da bu grupta yer alan diğer ürünlerdir. Probiyotik süt ürünleri ülkemizde yeni üretilmekle birlikte, birçok ülkede bu ürünlerin tüketimi gün geçtikçe artmaktadır. İnsan sağlığı üzerindeki etkileri de dikkate alındığında Lactobacillus acidophilus içeren ürünlerin üretim yöntemleri ile ilgili çalışmaların geliştirilmesi yararlı olacaktır. Bağırsak sisteminde bulunan Lactobacillus türlerinden fermente süt ürünlerinde en çok kullanılanları Lactobacillus acidophilus ve Bifidobacterium bifidum’dur. Lactobacillus acidophilus, yoğurt bakterilerinin aksine, insan sindirim sisteminin doğal bir üyesi olup, sindirim sisteminde bulunan yüksek asitlik ve bir takım enzimlerin inhibe edici etkisine ve safra kesesi tuzlarına dayanıklıdır. Bifidobacterium türlerinin başlangıçta yalnızca bebeklerin bağırsak florasında olduğu düşünülmüşse de, sonraki çalışmalarda bunların erişkin insanlarda ve sıcak kanlı hayvanlarda da bulunduğu ortaya konmuştur. Acidophilus ve Bifidobacterium türleri, ince bağırsaktaki mukoz membran tarafından tutulmakta, burada oluşturdukları asit ve diğer metabolik ürünler ile patojen ve diğer mikroorganizmalara karşı direnç göstermektedir. Bu durumda, Lactobacillus acidophilus ve Bifidobacterium bifidum ile üretilen ürünlerin düzenli olarak tüketilmesi bu bakterilerin bağırsak sistemlerine tutunmasını sağlamakta ve tedavi edici bir özellik göstermesine neden olmaktadır. Bu nedenle, son yıllarda mide – bağırsak enfeksiyonları için klasik antibiyotik tedavilerine alternatif olarak probiyotik ürünler kullanılmaktadır. Nitekim antibiyotik kullanımına bağlı olarak ortaya çıkan diyarenin önlenmesinde, Clostridium difficile ile meydana gelen kolik diyarenin tekrarlama olasılığının düşürülmesinde, fermente süt ürünlerinden yoğurda aşılanan Saccharomyces boulardii’nin, günde 1 g. yenmesi ile Enterococcus faecium SF68 yada Lactobacillus rhamnosus GG suş’unun fermente süt ürünleri ile alınması neticesinde, hastalarda pozitif yönde gelişmeler olduğu tespit edilmiştir. Yoğurt etkisi altında ağız yolu ile yapılan beslenmenin düzenli olarak uygulanması ile organizmaya patojen bakteri bulaşımının azaldığı kesin olarak ispatlanmıştır. Konu ile ilgili olarak çalışan diğer araştırmacılar da ağız yolu ile yapılan bu beslenme sonucunda, vücudun virüslere karşı bir etki oluşturduğunu bildirmektedirler. Günümüzde tıp alanında birçok hastalığın tedavi edilmesinde yada tekrarının önlenmesinde, Probiyotiklerin kullanılma olgusunun ve bunların en yaygın olarak fermente süt ürünleri ile diyetlerde uygulanmasının, tıp alanında yeni tedavi oluşumlarına kaynak teşkil ettiği görülmektedir. Bağırsak Rahatsızlıklarının Önlenmesi Probiyotik bakteriler, barsak hareketlerini hızlandırarak bağırsak içeriğinin kolayca atılmasını sağlar. Bazı koşullar altında (örneğin antiboyotik alımı), bağırsaklarda faydalı bakterilerin azalmasına ve istenmeyen bakterilerin (Clostridium difficile, E. coli gibi) artışıyla enterik enfeksiyonlar ortaya çıkabilir. Bu problem, probiyotik bakterilerin canlı hücrelerinin gıdalarla veya farmakolojik ürünlerin yenmesiyle önlenebilir. Probiyotik bakterilerin bağırsak yüzeyine tutunarak istenmeyen bakterilerin tutunmasını engellemeleri ve ürettikleri antimikrobiyal maddelerle (asitler, bakteriyosinler, reuterin gibi) çoğalmalarını kontrol altına alırlar. Safranın parçalanması safra asidine göre daha fazla antimikrobiyal etki gösterdiğinden, enterik bakterilerin çoğalması inhibe edilir. Yapılan değişik araştırmalarda, probiyotik bakterilerin özellikle çocuklarda enterik enfeksiyonlara karşı etkili olduğu belirtilmiştir. Araştırmalarda probiyotik bakterilerin süt ürünleriyle veya süte eklenerek bir süre yendiklerinde, bireylerin bağırsak florasında, C. perfingens, C. dificile, E. coli, Salmonella gibi enterik bakterilerin sayısında azalma ve buna karşılık probiyotik popülasyonda artış saptanmıştır. Ayrıca probiyotik bakterilerin yaşlı kişilerde görülen kabızlık gibi bağırsak problemlerini ve yine her yaş grubundaki kişilerde çeşitli nedenlere bağlı olarak görülen ishal, kabızlık, gaz oluşumu, karın şişliği gibi bağırsak rahatsızlıklarını önledikleri belirtilmiştir. Probiyotik bakteriler, bağırsak florasında bulunan Bacteroid, Clostridium, Enterobacter, Fusabacterium, Salmonella, Shigella, Campylobacter jejuni, Candida albicans, Staphylococcus aureus gibi patojen bakterilerin biyojenik amin, amonyak fenol gibi tehlikeli bileşikler üretmelerini engellerler. Probiyotik bakterilerin patojenler üzerindeki bu etkisi, bağırsaklarda laktik ve asetik asit üretmeleri ve pH’nın azalması ile açıklanmaktadır. Laktoz Hidrolizi Laktoz intolerant (bağırsak hipolaktemia) kişiler, laktozu hidrolize edecek beta galaktosidaz enzimini genetik rahatsızlık nedeniyle üretemezler. Sadece Kuzey Avrupalılar, beyaz Amerikalılar ve Afrika’da bazı kabileler laktozu parçalayacak beta-galaktosidaz enzimini oluştururlar. Laktoz intolerant kişiler süt veya dondurma ile laktoz yediklerinde, laktoz ince bağırsakta emilmeden kalın bağırsağa geçer. Kalın bağırsakta laktoz değişik bakteriler tarafından glikoz ve galaktoza hidrolize edildikten sonra asit ve gaza dönüştürülür. Asit ve gaz oluşumu bağırsaklardan sıvı emilmesini engeller ve bunun sonucunda bağırsak şişliği şeklinde rahatsızlıklar ortaya çıkar. Yoğurdun, asidophilus eklenmiş sütün (çoğunlukla L. acidophilus) ve probiyotik bakterilerin farmakolojik ürünlerinin yenmesi, ince bağırsaklara laktozu hidrolize edecek canlı bakteri bağladığından, laktozdan kaynaklanan rahatsızlıklar görülmez. Fermente ürünlerde laktoz, laktik asit bakterileri tarafından parçalandığından ve ürünlerde bakterilerin ürettiği beta-galaktosidaz enziminin bulunması nedeniyle fermente gıdaların sağlık üzerine faydaları bulunmaktadır. Lactobacillus bulgaricus ve Streptococcus thermophilus mide asitliğine dayanamaz ve normal bağırsak bakterisi değildirler. Fakat süte göre yoğurttan laktozun azalması, bağırsak rahatsızlıklarının ortaya çıkmasını engeller. Bağırsak bakterileri ve çoğunlukla bazı Lactobacillus türleri, belirli koşullarda ince bağırsaklara yerleşerek yiyeceklerle alınan laktozu hidrolize ederler. Serum Kolesterol Düzeyinin Düşürülmesi Farelerle yapılan bir çalışmada, farelere L. acidophilus içeren süt verilmesi sonucunda düşük serum kolesterol düzeyi bulunmuştur. Probiyotik bakteriler ile üretilen fermente süt ürünlerinin veya bu bakterilerin canlı hücrelerinin yenmesi, insanlarda düşük kolesterol düzeyinin oluşması, olası dört faktörden kaynaklanabilir: Yukarıda belirtilen beta-galaktosidaz enziminin fermente süt ürünlerinde bulunması. Bazı bağırsak bakterilerinin yiyeceklerle alınan kolesterolü metabolize etme yeteneğinde olması. Böylece kana geçmesinin azalmasına neden olur. Bakterilerin bağırsaklarda kolesterol prekürsörlerini veya kolesterolü azaltılır. Bazı Laktobasillerin safra tuzlarını parçalamasıyla safra tuzlarının karaciğer tarafından emilmesi engellenir. Böylece safra tuzu absorbe edemeyen karaciğerin, safra tuzu sentezlemek için fazla miktarda serum kolesterolünü kullanması sonucunda serumda kolesterol miktarını azaltır. Fakat bazı araştırma sonuçları, probiyotik bakterilerin vücutta kolesterol düzeyini azalttığı şeklindeki bulguları desteklememektedir. Bunun farklı deney düzenekleri, farklı mikroorganizma kültürü kullanılması gibi nedenlerden kaynaklanabileceği belirtilmiştir. Örneğin kolesterol hidroliz etmeyen veya safra asidini parçalamayan bakteri türünün kullanılması gibi. Kalın Bağırsak Kanserinin Azaltılması 1962 yılında laktik asit bakterilerinin antikarsinojenik etkiye sahip olduğu ileri sürülmüştür. Daha sonraki yıllarda hayvanlar üzerinde yapılan arıştırmalarda; deney hayvarları yoğurt ve yoğurda L. acidophilus, L.bulgaricus, L. casei, Bifidobakterium’un türleri gibi bakteriler ekleyerek beslenmiş, deney hayvanları üzerinde antikarsinojenik bir etki bulunmuş ve tümör riskinin azaldığı belirtilmiştir. Birçok araştırmada, probiyotik bakterilerin fazla miktarda ağızdan alımı sonucunda, istenmeyen bağırsak bakterilerinin oluşturduğu beta-glucuronidaz, azoredüktaz ve nitroredüktaz enzimlerinin azalmasını sağladığı belirtilmiştir. L. acidophilus’un fermente ürünlerle birlikte yenmesiyle bağırsaklarda kanserojenik maddelerin kanserojen maddelere dönüşümünde rol oynayan beta-glukoronidaz, nitroredüktaz ve azoredüktaz enzimlerinin düzeyinde iki ile dört kat azalma saptanmıştır. Probiyotik bakteriler kanser genlerinin aktivasyonundan sorumlu olan bakterilerin enzimatik aktivitelerinin düzenlenmesinde, kanser genlerinin bileşiminin ve toksik etkilerinin önlenmesinde yararlı oldukları kaydedilmiştir. Süt ürünlerinin, deney hayvanlarında tümör büyümesini baskılayan konjuge linoleik asitten anlamlı miktarlarda içerdikleri belirtilmiştir. İstenmeyen bakteriler, bağırsak normal pH’sının düşmesiyle laktik ve asetik asit ürettiklerinden dolayı, bağırsaklardan aminlerin ve amonyağın emilmesi azalır. Bu da kanser oluşumunda, tansiyon ve kolesterolün yükselişinde etkili olan nitroz aminlerin serumda artışına neden olur. Probiyotik bakteriler enterik bakterilerin aktivitelerini engelleyerek, serumda nitroz aminlerin artışını dolaylı olarak önlerler. İstenmeyen birçok bakteri türünün bağırsaklarda gıdalarla alınan kanserojen preküsörlerini aktive eden enzimleri üreterek, aktif karsinojen maddelerin oluşumuna neden oldukları belirtilmiştir. Probiyotik bakteriler, istenmeyen mikroorganizmaların çoğalmasını inhibe ederek bu enzimlerin oluşmasını engellerler. Bağışıklık Sistemine Etkileri Probiyotik bakterilerin canlı hücrelerinin bağırsaklarda bulunmaları halinde, bağışıklık sistemini uyardıkları ve kuvvetlendirdikleri belirtilmiştir. Spesifik laktik asit bakteri suşları ile fermente edilen süt ürünlerinin tüketilmesiyle bağışıklığı artıran peptidlerin üretiminde artış olduğu ve bunlardan bazılarının antitümör etkinliğe sahip oldukları belirtilmiştir. Bağışıklık sisteminin uyarılmasıyla serumda IgA gibi antikorların artması virüs, Clostridium, E. coli gibi patojenlere karşı vücudun dirençliliğinin arttığı kaydedilmiştir. Metabolizmaya Yardımcı Olmaları Probiyotik bakteriler, gıdaların sindiriminde bağırsaklara yardımcı olurlar ve sağlıklı bir metabolik aktivitenin oluşmasını sağlarlar. Bu şekilde beslenmeye ve büyümeye yardım ederler. Bağırsaklarda selüloz ve diğer sindirilemeyen gıda bileşenlerini parçalayarak sindirim sistemine yardımcı olurlar. Bağırsak Doğal Florasının Korunması Probiyotik bakteriler; yeni doğanlarda, antibiyotik kullanımında veya günlük yaşamın getirdiği koşullara bağlı olarak bozulan bağırsak doğal florasının oluşmasına yardımcı olurlar. İstenmeyen bakterilerin, mayaların ve küflerin çoğalmasını kontrol altında tutarak bağırsak doğal florasının bozulmasını engellerler. Vitamin Üretimi Probiyotik bakteriler bağırsak florasında yeterli sayıda bulunduklarında, vitamin ve amino asit sentezledikleri belirtilmiştir. Bu bakterilerin ürettiği vitaminlerin en önemlileri, tiyamin (B1), riboflavin (B2), piridoksin (B6) ve naftokinin (K)’dır. Bir araştırmada, B. bifidum’un bağırsak florasında bulunduğunda, bağırsaklarda B6 vitaminin %400 artığı belirtilmiştir. Gıdalara Katılması Bifidobacterium gibi probiyotik bakteriler, bebek yiyecek ve içeceklerinde katkı olarak kullanılabilmektedir. Bu bakteriler yeni doğanlarda koruyucu antimikrobiyaller, vitaminler, asetik ve laktik asit üreterek enterik enfeksiyonlara karşı korunmalarına ve beslenmelerine yardımcı olurlar. Probiyotik bakteriler ishalin önlenmesinde, kemoterapik veya diğer amaçlar için gıdalara katılmaktadırlar. Özetle Probiyotiklerin Faydaları Yiyeceklerle alınan toksik (zehirli) maddelerin detoksifiye edilmesine (vücuttan atılmasına), kabızlık sorununun giderilmesine destek olurlar. Ağız kokusu sorununun giderilmesine yardımcı olurlar. İnce ve kalın bağırsaklardaki kötü ve zararlı bakterilerin yerine geçerek, onları kontrol altına alıp, bağışıklık sistemini güçlendirerek bir çok hastalığa karşı vücut direncinin artmasına katkıda bulunurlar. Antibiyotik ilaç kullanımı nedeniyle doğal florası bozulan bağırsakların dengesini düzeltmeye yardımcı olurlar. B grubu ve K vitamini üretimini ve emilimini sağlarlar. Kalsiyumun bağırsaklardan emilimini artırıp; kemik erimesini (osteoporoz) önlerler. Kötü bakterilerin neden olduğu enfeksiyonları yavaşlatırlar. Vajinal florayı dengede tutarak, vajinal enfeksiyonlara sebep olan patojen mikroorganizmaların (Candida) gelişimini baskılarlar. İdrar yolu enfeksiyonlarına ve seyahatlerde ishale sebep olan E. coli bakterisinin gelişimini engellemeye yardımcı olurlar. Alerji belirtisini azaltırlar. Zehirli maddelerin vücuttan atılmasına ve cildin görünümünün iyileşmesine yardımcı olurlar. Sindirim kanalında sağlıklı bir bakteri dengesi oluşturup, bazı gerekli enzimleri üreterek sindirime katkıda bulunurlar. Laktoz ve protein sindirimini kolaylaştırırlar. Probiyotik mikroorganizmalar ile ilgili bazı hususlar henüz aydınlatılabilmiş değildir. Örneğin; probiyotik mikroorganizmaların vücut içerisinde bir organdan başka bir organa geçişleri ile ilgili olarak herhangi bir belge yoktur. Ayrıca, gıdalarla alınan probiyotik bakteriler ile ilgili hiçbir enfeksiyon olgusu literatürde yer almayıp, sadece Sacchoromyces boulardii `ye ait enfeksiyonun raporlarda yer aldığı görülmektedir. Kaynaklar: 1- www.sutas.com.tr 2- forummate.com 3- www.gencbilim.com 4- H.M. Timmerman, C.J.M. Koning, L. Mulder, F.M. Rombouts, A.C. Beynen (2004). Monostrain, multistrain and multispecies probiotics- A comparison of functionality and efficacy, International Journal of Food Microbiology, 96, 219– 233 5- Robert Penner, Richard N Fedorak, Karen L Madsen (2005). Probiotics and nutraceuticals: non-medicinal treatments of gastrointestinal diseases, Current Opinion in Pharmacology, 5(6):596-603.

http://www.biyologlar.com/probiyotikler-hakkinda-bilgi

XXXV. Türk Mikrobiyoloji Kongresi

XXXV. Türk Mikrobiyoloji Kongresi

Ana Başlıklar • Enfeksiyon hastalıklarında hızlı tanı yöntemleri• Yeni tanı yöntemleri – yeni bakteri tanımlama yöntemleri• Dev viruslar (büyük DNA virusları) evrimsel ilişkiler ve insan sağlığı açısından önemi• Metagenomik çalışmalar – mikrobiyom ve etkileri• Çevre mikrobiyolojisi ve insan sağlığı açısından önemi• Evcil ve yabanıl hayvanların mikrobiyolojisi• Gıda mikrobiyolojisi• Yeni aşılar• Yeni tedavi yöntemleri (yeni antibiyotikler eski antibiyotikler yeni kombinasyonlar, HIV diğer)• Bağışık yanıtlar ile ilgili eski ve yeniler• Antibiyotik direnci, yeni mekanizmalar ve saptanmaları• Ulusal sürveyans sistemi• Kültür koleksiyonları (Türkiye ve Dünya) ve erişimleri• Mikrobiyoloji lisans üstü eğitimi (YL+ doktora / Tıbbi Mikrobiyoloji uzmanlık eğitimi)• İnsan genomu ve hastalığa yatkınlık ilişkisi• Çalışma grupları önerileriGenel Bilgiler Kongre YeriPine Bay Otel, Kuşadası, AydınKongre Tarihi03-07 Kasım 2012Kongre DiliKongre bilimsel dili Türkçe olacaktır. İngilizce sunumlarda Simultane tercüme yapılacaktır.Bildiri ÖzetleriKongreye gönderilecek bildiri özetleri,elektronik ortamda kongre resmi web sitesi üzerinden toplanacak olup,mail ya da posta yoluyla gönderilecek bildiriler kabul edilmeyecektir.İptallerKayıt ve konaklama ücretlerinde, 31 Temmuz 2012 tarihine kadar yapılacak iptallerde %50’si iade edilir. Bu tarihten sonra yapılacak iptallerde iade yapılmayacaktır. Tüm iadeler kongre bitiminden sonra yapılacaktır.Kongre Danışma ve Kayıt Masası Çalışma Saatleri03 – 07 Kasım 2012 tarihleri arasında, saat 08:00-20:00 süresince açık olacaktır.Yaka KartlarıTüm katılımcı ve refakatçılara yaka kartı dağıtılacaktır. Yaka kartı olmayan misafirler kongre aktivitelerine kesinlikle katılamayacaklardır.KredilendirmeToplantılar Türk Tabipler Birliği tarafından kredilendirilecektir.Katılım SertifikasıTüm katılımcılara katılım sertifikaları 06 Kasım 2012 tarihinde dağıtılacaktır. Önemli Tarihler Erken kayıt için son tarih: 31 Temmuz 2012Bildiri gönderme son tarihi: 31 Temmuz 2012Bildirisi kabul edilen katılımcılardan erken kayıt ücreti alınacaktır.Burs başvurusu: 10 Eylül 2012Kongremize katılan genç araştırmacılar, uzmanlık öğrencileri ve uzmanlara toplam 50konaklama bursu verilecektir.Burs başvuru koşulları: 35 yaşını geçmemiş olmak, önceden başka bir kongrede sunulmamış bir bildiri ile Kongreye katılmak, TMC üyelerine öncelik tanınacaktır).Biyoinformatik Kursu: Kongre öncesinde Dokuz Eylül Üniversitesi Tıbbi Mikrobiyoloji AD’nın katkılarıyla bir “Temel Biyoinformatik Kursu“ düzenlenecektir. Kursta Antibiyotik Direnç Genlerinin analizi, ve virusların (Kanamalı ateş virusları) moleküler epidemiyolojik yöntemler ile tiplendirilmesi konuları ele alınacaktır. Ayrıntılı program daha sonra bildirilecektir.İletişim Bilgileri BİLİMSEL SEKRETERYAKongre BaşkanıProf. Dr. Zeynep GÜLAYDokuz Eylül Üniversitesi, Tıbbi Mikrobiyoloji Anabilim Dalı, 35340, Balçova, İzmirE-posta: gulayz62@gmail.comKongre SekreterleriDoç. Dr. Orhan Cem AktepeAfyon Kocatepe Üniversitesi Tıp Fakültesi Tıbbi Mikrobiyoloji Anabilim Dalı, 03200 AfyonE-posta: aktepef@hotmail.comDoç. Dr. Mehmet Ali ÖktemDokuz Eylül Üniversitesi, Tıbbi Mikrobiyoloji Anabilim Dalı, 35340, Balçova, İzmirE-posta : ali.oktem@deu.edu.tr KONGRE SEKRETERYASIKayıt , Konaklama ve Sponsorluklar ile İlgili Yazışmalar 441. Cadde No: 1, 06610, Birlik-Çankaya – AnkaraTelefon : 0 312 454 00 00 Faks : 0 312 454 00 01E-posta : mikrobiyoloji2012@flaptour.com.trRESMİ WEB SİTESİ : http://mikrobiyoloji2012.org/index.php

http://www.biyologlar.com/xxxv-turk-mikrobiyoloji-kongresi

Öjeni nedir ? Öjenikler neyi savunurlar ?

İnsan genlerinin kalitesini düzeltmeyi amaçlayan tüm etkinlikler öjenik diye tanımlanırlar. Ancak öjeni (eugenics), incelemeye dayalı bir bilimsel bilgi alanını değil, bir tutumu ve niyeti ortaya koyduğundan, sağlıklı nesiller yetiştirmek için insanlığın hizmetinde olan genetik danışma ve taramaları ondan ayırt etmek gerekmektedir. Kalıtımla ilgili gerçekler bilimsel ilgi alanına girmeye başladığı tarihten bu yana, bilim ve siyaset çevrelerinde öjenik olanlarla, yani insan neslinin soyaçekim yoluyla ıslahının mümkün olduğuna samimiyetle inananlarla, anti-öjenikler yani öjenizmi sahte bilim, öjenikleri bilimci kılığına girmiş kafatasçılar olarak görenler arasında müthiş bir tartışma süregelmektedir. Süregelen yalnızca tartışma değildir; bu alandaki tartışmaların etkileri doğrudan doğruya hükümet politikalarına, istihdamın nasıl düzenleneceğinden, ülkeye göçmen olarak kimlerin kabul edileceğine; kimlerin evlenmeye ve nesillerinin yeniden üretmeye hakları olduğundan kimlerin fırınlarda yakılacağına kadar yansımaktadır. Yıllardan beri, insan davranış genetiği alanında bilimin nerede başlayıp siyasetin nerede bittiğini ayırt edebilmenin imkansız olduğu bir keşmekeş yaşanmaktadır. Davranış genetiği alanında yapılan çalışmaların çoğu zaman araştırmacıların niyetlerinden bağımsız, bazen de apaçık bir biçimde araştırmacının kişisel önyargılarını meşrulaştırma girişimi olarak toplumsal ve hatta politik etkiler yaptıklarını, şimdi de yapabileceklerini gösteren, birçok kanıt ve emare bulunmaktadır. Örneğin Münih Üniversitesi'nde yürütülen psikiyatrik genetik çalışmalarının sonucu olarak, Naziler 1933'te ruhsal rahatsızlığı bulunan insanların kısırlaştırılmaları yasasını çıkarmışlardır. Sözde bilimsel çalışmaların sonucunda, ABD'nde de ruhsal rahatsızlığı olanlar, daha 1950'lere kadar kendi istemlerinin dışında kısırlaştırılıyorlardı. 20. Yüzyılın başlarında Amerikan Psikoloji Birliği'nin kendisine yüklediği en önemli görevlerden birisi, Amerikan toplumunun zeka seviyesini koruyabilmek için beyaz ırkın zencilerle karışmasının önüne geçmeye çalışmaktı. Yıllar geçti, toplumlar demokrasi ve insan hakları konusunda önemli adımlar attılar, bilim çevrelerinde bilim adı altında basbayağı siyaset yapmak zorlaştı ama bilimsel ırkçılık, genetik biliminin arkasına gizlenerek hep varlığını sürdürmesini bildi. Toplumdaki eşitsizliklerin kaynağını genetik yapımızda görerek toplumdaki eşitsizlikleri meşrulaştıran ve yakınlarda ölen Harvard psikoloji profesörlerinden Richard Herrnstein ve yine Harvard'lı bir siyaset bilim profesörü olan Charles Murray, birlikte yazdıkları ABD'nde geçen yıl yayınlanan "Çan Eğrisi: Zeka ve Amerikan Hayatındaki Sınıf Yapısı" adlı kitabta, 1970 ve 1990 yılları arasında sürdürülen Amerikan Ulusal Uzunlamasına Gençlik Araştırması'ndan aldıkları zeka ve eğitim başarısı ile ilgili verilerden yola çıkarak, insanların toplumsal ve etnik özellikleriyle, testlerden aldıkları puanlar arasynda yaptıkları istatistiksel de?erlendirmeler sonucunda, bilim adına şu iddialarda bulunma hakkını kendilerinde görebilmişlerdir: "Suç işleyenlerde ve işsizlerde zeka düzeyleri, toplumun genel ortalamasına göre daha düşüktür. Zeka düzeyi düşük olan toplum kesimlerinde, doğurganlık oranı daha yüksektir. Zeka, eğitimle ve diğer çevresel faktörlerle değil de, daha ziyade kalıtımla ilgili olduğundan, bu durumda toplum, giderek daha düşük zekalılardan meydana gelecek dolayısıyla suç işlemenin ve işsizliğin önüne geçmek imkansızlaşacaktır..." "Toplumsal gruplar arasında zeka yönünden nasıl farklar varsa, ırklar arasında da farklar vardır: En zeki ırklar, Çinliler ve Japonlardır, onların hemen ardından Avrupalılar gelmekte, son sırada ise, oldukça düşük bir yüzdeyle Afrikalılar yer almaktadır...Eğer yoksullar yoksulsa bu her şeyden önce zenginlerden daha az zeki oldukları içindir. Onlara acıyabiliriz, ancak bu hiçbir şeyi değiştirmez. Sonuç olarak sosyal adalet programları savurganlıktan başka bir şey değildir. Üstelik yoksullar daha fazla çocuk yaptıkları için de kötü genlerin yayılmasına neden olurlar. Açıkça görülmektedir ki, eğer yoksul siyahlara yardıma son verilirse, her şey daha iyi olacaktır..." İşte öjeni tam da budur ve günümüzde de etkisini büyük ölçüde sürdürmektedir. Ama öjeniklerin yaptıkları bu araştırmalar, sağduyulu bilimciler tarafından, gerek metodoloji ve gerek sonuçlar açısından topa tutulmakta, en ağır suçlamalar yöneltilmektedir. Örneğin "DNA Doktrini" kitabı dilimize de çevrilen R. D. Lewontin ve arkadaşları yıllardan beri biyolojinin bir toplumsal ideoloji biçimine dönü?mesine karşı mücadele etmektedirler. Yine örneğin 50 yılı alan bir araştırmanın sonucunda ortaya çıkan "İnsan Genlerinin Tarihi ve Coğrafyası" adlı dev eserin yazarları olan genetikçi Luca Cavalli- Sforza, Paolo Menozzi ve Alberti Piazza, ırk kavramının genetik açıdan anlamsızlığını göstermişlerdir.  

http://www.biyologlar.com/ojeni-nedir-ojenikler-neyi-savunurlar-

Bakterilerde Genetik Yapı

Çoğu bakteride tek bir dairesel kromozom bulunur, bunun büyüklüğü endosimbiyotik bir bakteri olan Candidatus Carsonella ruddii de 160.000 baz çiftinden, bir toprak bakterisi olan Sorangium cellulosumda 12,200,000 baz çiftine kadar uzanır. Borrelia cinsine ait spiroketler bu genel özelliğin bir istisnasıdır, Borrelia burgdorferi (Lyme hastalığı etmeni) gibi türlerde tek bir doğrusal kromozom bulunur. Bakteriyel kromozomlardaki genler genelde tek bir sürekli DNA parçasından oluşur, bazı bakterilerde intronlar bulunmuşsa da bunlar ökaryotlarda olduğundan çok daha enderdir. Bakteriler aynı zamanda plazmidler de bulunabilir, bunlar kromozomdan ayrı DNA parçalarıdır, antibiyotik direnç genleri veya virülans faktörleri içerebilirler. Bir diğer tip bakteriyel DNA, kromozoma entegre olmuş virüslere (bakteriyofajlara) aittir. Çeşitli bakteriyofaj türleri vardır, bazıları sadece konak bakterilerini enfekte edip onu parçalar, diğerleri ise hücre içine girdikten sonra DNA'larını bakteriyel kromozoma dahil ederler. Bir bakteriyofaj konak hücresinini fenotipine katkıda bulunan genler taşıyabilir: örneğin Escherichia coli O157:H7'nin evrimi sırasında entegre olmuş bir fajın toksin genleri, zararsız bir atasal bakteriyi ölümcül bir patojene dönüştürmüştür. Bakteriler, eşeysiz organizmalar olarak, ana hücrelerinin genlerinin kopyalarını devralırlar. Ancak tüm bakteriler, DNA'larındaki değişikliklerin (mutasyon ve genetik rekombinasyonun) seçilimi ile evrimleşir. Mutasyonlar DNA ikileşmesi sırasında meydana gelen hatalar veya mutajenlerden kaynaklanır. Mutasyon hızları farklı bakteri türleri ve hatta aynı bakterinin farklı suşları arasında büyük farklılıklar gösterir. Bazı bakteriler ayrıca genetik malzemelerini hücreler arasında aktarabilirler. Bu üç yolla meydana gelebilir. Birincisi, bakteriler ortamlarıdaki yabancı DNA'yı içlerine alabilirler, buna transformasyon denir. Genler ayrıca transdüksiyon yoluyla, bir bakteriyofajın yabancı bir DNA parçasını kromozomun içine yerleştirmesiyle aktarılabilir. Gen aktarımını üçüncü yolu bakteriyel konjügasyondur, bunda DNA doğrudan hücresel temas yoluyla aktarılır. Başka bakteri veya ortamdan gen edinimine yatay gen transferi denir ve doğal şartlarda bu yaygın olabilir. Gen transferi özellikle antibiyotik direncinin oluşmasında önemlidir, çünkü bu, farklı patojenler arasında direnç genlerinin transferini sağlar

http://www.biyologlar.com/bakterilerde-genetik-yapi

Biyoteknoloji ve Tarım Güvencesi

Hızla artmakta olan dünya nüfusunun 2025 yılı itibariyle 8 milyarı geçmesi ve bu artışın % 95’inin gelişmekte olan ülkelerde oluşması beklenmektedir. Gelişmiş ülkelerde önemli bir tarımsal üretim fazlası bulunmakla beraber, halen 830 milyon insanın yeterli ve dengeli beslenemediği gelişmekte olan bazı ülkeler yeni tarım teknolojilerini kullanarak tarımsal üretimlerini artırmada yeterli olamamaktadırlar. Özet Hızla artmakta olan dünya nüfusunun 2025 yılı itibariyle 8 milyarı geçmesi ve bu artışın % 95’inin gelişmekte olan ülkelerde oluşması beklenmektedir. Gelişmiş ülkelerde önemli bir tarımsal üretim fazlası bulunmakla beraber, halen 830 milyon insanın yeterli ve dengeli beslenemediği gelişmekte olan bazı ülkeler yeni tarım teknolojilerini kullanarak tarımsal üretimlerini artırmada yeterli olamamaktadırlar. Yeşil devrim olarak da isimlendirilen dönemde hastalık ve zararlılara dayanıklı, yüksek verimli çeşitlerin geliştirilmesi, kimyasal gübre ve tarımsal mücadele ilacı kullanımının artması, mekanizasyon ve sulama teknikleri son 5 yıl içerisinde önemli verim artışları sağlamış olmakla beraber bu denli yoğun tarımsal faaliyetler çevre üzerinde de önemli baskılar yaratmıştır. Halen mevcut tarım alanları üzerinde ve kullanılan mevcut tarımsal tekniklerle önümüzdeki 20 yıl içerisinde artacak dünya nüfusuna yetecek gıda maddeleri üretimi mümkün görülmemektedir. Bu itibarla tahıllarda birim alana verimin % 80 oranında artırılması gerekmektedir. Bunun için de modern biyoteknolojik yöntemlerin önemli avantajlar sunduğu görülmektedir.Modern biyoteknolojik yöntemler arasında genetik mühendisliği en fazla umut bağlanan ve aynı ölçüde de tartışılan bir yöntemdir. Ancak, diğer moleküler ıslah yöntemleriyle birlikte kullanıldığında genetik mühendisliği teknikleri hastalık ve zararlılara; kuraklık ve tuzluluk gibi çevre koşullarına dayanıklı, bitki besin maddeleri içeriği iyileştirilmiş yüksek kaliteli ve verimli yeni çeşitlerin geliştirilmesi için bitki ıslahçılarına büyük kolaylıklar sağlayacaktır. Halen A.B.D., Arjantin, Kanada, Brezilya ve Çin gibi 18 gelişmiş ve gelişmekte olan ülkede yetiştirilen transgenik soya, mısır, pamuk ve kolza bitkileri böceklere ve bazı herbisitlere dayanım özelliği taşımaktadırlar. Bu ürünler, insan sağlığı ve çevre üzerindeki olası olumsuz etkileri bilimsel esaslara göre değerlendirildikten sonra yetiştirilmelerine ve tüketilmelerine izin verilmektedir. Türkiye gibi gelişmekte olan ülkelerin modern biyoteknolojik yöntemlerden yararlanarak tarımsal üretimlerini artıracak çeşitleri geliştirmeleri, belirlenecek sorunların çözümüne yönelik güdümlü projelere yeterli araştırma desteği ve altyapı sağlayarak mümkün olabilir. Ancak, bunun için gerek fikri mülkiyet hakları gerekse biyogüvenlik ile ilgili mevzuatın bir an önce hazırlanarak yürürlüğe girmesi de gerekmektedir. Giriş Avcı-toplayıcı kültürden tarımcı kültüre geçen insanlık, binlerce yıldır seçmiş olduğu bitkileri yetiştirip, geliştirerek ve evcilleştirdiği hayvanları daha da iyileştirerek tarımsal üretimi artırma yönündeki çabalarını sürdürmektedir. Dünya üzerindeki nüfusun artmasıyla birlikte bu çabalar daha da hızlanmış, zamanla yeni teknikler geliştirilmiş ve tarımla uğraşan yeni bilim dalları ortaya çıkmıştır. Malthus’un insanların yeterli gıda maddesi bulamayarak büyük bir felakete uğrayacakları öngörüsü (Malthus, 1798) de tarımsal tekniklerin gelişmesi ve üretimdeki artış nedeniyle gerçekleşmemiştir. Geçtiğimiz yüzyıl içerisinde hızla artan dünya nüfusunu beslemeye yetecek kadar tarımsal üretimin sağlanmasında şüphesiz “Yeşil Devrim” olarak da adlandırılan gelişmelerin önemli etkisi olmuştur. Yirminci yüzyıl başlarından itibaren, genetik biliminde meydana gelen gelişmelerin bitki ve hayvan ıslahında yaygın olarak kullanılması yüksek verimli bitki çeşit ve hayvan ırklarının geliştirilmesine olanak sağlamıştır. Bunun yanında tarımda mekanizasyonun gelişmesi, kimyasal gübre kullanımının yaygınlaşması, hastalık ve zararlıların neden olduğu kayıpların kimyasal mücadele ilaçları ile önlenmesi ya da en az düzeye indirilmesi, bitkisel üretimde sulama sistemlerinin yaygınlaştırılması ikinci dünya savaşından sonra bitkisel ve hayvansal üretimde % 100’ü aşan artışlara yol açmış, bunun sonucu özellikle gelişmiş ülkelerde üretim fazlası oluşmuştur. “Yeşil Devrim” sayesinde 1960’lı yıllardan itibaren, bu yeni çeşitler ile yeni tarım teknolojileri Türkiye’ye ve diğer çoğu gelişmekte olan ülkelere de kısa sürede girmiş ve genelde yerel nüfusun ihtiyacı olan gıda maddeleri üretiminde yeterlilik sağlanmıştır. Ülkemizdeki tarımsal üretim özellikle ikinci dünya savaşından sonra önemli ölçüde artmış olmakla beraber, verimlilik artışı oranı ekilebilir alanların artışı oranıyla karşılaştırıldığında bu artışın pek de sağlıklı olmadığı söylenebilir. Tarımsal üretim artışındaki temel öğeler incelendiğinde: 1950’lerden itibaren mekanizasyonun artmasıyla mera alanlarının bozularak tarlaya dönüştürüldüğü, aynı şekilde ormanların tahribiyle tarıma müsait olmayan dik eğimli alanlarda ekim yapıldığı, özellikle 1960’lardan itibaren göllerin ve sulak alanların kurutularak yeni tarım arazilerinin yaratıldığı, sulama ve/veya elektrik üretimi amaçlı göl ve göletler oluşturularak vadi içi habitatların tahrip edildiği ve geniş alanlarda sulu tarıma geçildiği ve böylece doğal dengenin olabildiğince bozulduğu ve biyolojik çeşitliliğimizin olumsuz etkilendiği görülmektedir. Bunların yanında, kimyasal gübrelerin ve tarımsal mücadele ilaçlarının gittikçe artan düzeylerde ve bilinçsizce kullanımı, üretimi artırmış olmakla beraber doğal çevre ve insan sağlığını da olumsuz yönde etkiler hale gelmiştir. Yine bu bağlamda, “Yeşil Devrim” ile birlikte kimyasal gübre kullanımına ve sulamaya iyi tepki veren yeni çeşitlerin kullanılmaya başlamasıyla verim artışı sağlanmış, ancak tarımsal biyoçeşitliliğin belkemiğini oluşturan yerel genotipler verimsiz bulunarak, bunların kullanımı azalmıştır. Dünya genelinde tarımsal üretimin gelişmesine bakıldığında, yine Türkiye’dekine benzer gelişmelerin olduğu ve tarımsal üretimin artırılmasında ekolojik dengenin aleyhine bir gelişme olduğu görülmektedir. Son yıllarda, tarımsal üretim fazlasının olduğu özellikle Avrupa Birliği ve diğer gelişmiş ülkelerde aşırı kimyasal gübre kullanımı ve hastalıklarla mücadele ilaçlarının çevre üzerindeki olumsuz etkileri tartışılmaya ve bu tip tarımsal üretimin kısıtlanmasına yönelik tedbirler alınmaya başlanmıştır. Nüfusun hızla arttığı gelişmekte olan ülkelerde ise durum pek de iç açıcı değildir. Nüfus baskısı nedeniyle tarım alanı açmak için tropik yağmur ormanlarının yakıldığı, suların kirlendiği, toprakların çoraklaşıp çölleşmenin hızla arttığı görülmektedir. Ancak, tarımsal alanların böylesi sağlıksız biçimde artması tarımsal üretimin sürdürülebilir şekilde artırılmasına ve bu yörelerdeki insanların gıda ihtiyacını karşılamaya yetmemiştir (SOFA, 2004). Bu nedenle, 2025 yılında 8 milyarı aşması beklenen dünya nüfusunun beslenmesi gerçekten önemli bir sorun olarak karşımıza çıkmaktadır. Ekilebilir alanları artırmak pek mümkün olmadığı gibi, tarımsal üretimde kullanılabilecek su kaynakları da hızla azalmaktadır. Dolayısı ile artan nüfusu besleyecek miktarda üretim için ekilebilir alanların genişlemesi değil, birim alandan alınan ürün miktarının artırılması gerekmektedir. Bu da, Nobel ödüllü bitki ıslahçısı Norman Borlaug’a göre buğday ve mısır gibi tahıllarda verimin % 80 artırılması demektir (Borlaug, 2003). Klasik ıslah yöntemleriyle elde edilebilecek biyolojik verim artışının da artık sınırlarına gelindiği düşünüldüğünde, bitki ıslah çalışmalarında yeni teknolojilerin kullanılması kaçınılmaz görünmektedir. Son yıllarda önemli gelişmeler gösteren biyoteknolojik yöntemlerin özellikle de moleküler tekniklerin tarımsal üretimi artırmada önemli avantajlar sağladığı bir gerçektir. Genelde biyoteknoloji olarak adlandırılan ve klasik biyoteknolojiden modern biyoteknolojik yöntemlere kadar uzanan ve gittikçe karmaşıklık düzeyi artan bu teknolojilerin (Şekil 1) ülkelerin bilim ve teknolojideki gelişmişlik durumlarına göre tarımda farklı düzeylerde kullanıldığı görülmektedir. Biyolojik azot fiksasyonu gelişmekte olan ülkelerde kolayca kullanılabilmekte, bitki doku kültürü teknikleri ise birçok ülkede hastalıklardan arındırılmış bitki materyali üretiminde yaygın olarak uygulanmaktadır. Genomik çalışmalar, biyoinformatik, transformasyon, moleküler ıslah, moleküler tanı yöntemleri ve aşı teknolojisi olarak gruplandırılabilen modern biyoteknolojiler ya da gen teknolojileri ise Çin ve Hindistan gibi birkaç gelişmekte olan ülke dışında genelde gelişmiş olan ülkelerde etkin olarak kullanılmaktadır (Persley ve Doyle, 1999). Moleküler teknikler halen hayvan, bitki ve mikrobial gen kaynaklarının karakterize edilmesinde yaygın olarak kullanılmaktadır. Aynı teknikler kullanılarak hastalık etmenlerinin tanısının yanında veterinerlikte aşı üretimi de yaygınlaşmış bulunmaktadır. Son yıllarda, genom araştırmaları da önemli bir evrim geçirmektedir. Yeni teknolojilerin kullanımı ile artık tek tek genlerin izole edilip tanımlanması yerine, tüm genlerin ya da gen grupların belirli bir organizma içerisindeki işlevlerini belirlemeye yönelik araştırmalar öne çıkmaya başlamıştır. Bu konularda, büyük ölçekli DNA dizinleme yöntemlerinin geliştirilmesi, bilgisayar ve yazılım programlarının oluşturulması bu ölçekteki verilerin değerlendirilmesini mümkün kılmaktadır. Burada, biyoinformatik ile “DNA yongaları” gibi teknolojiler biyolojik sistemlerin genetik yapılarına ayrıntılı olarak incelemeye olanak sağlamaktadır. Moleküler tekniklerin tarımsal üretimin artırılmasında önemli olanaklar sunduğu yadsınamaz bir gerçektir. Ancak, geçtiğimiz 20 yıl içerisinde yenidenbileşen [rekombinant] DNA ya da genetik mühendisliği teknikleri olarak da adlandırılan modern biyoteknolojik yöntemlerle geliştirilmiş hastalık ve zararlılara dayanıklı bitki çeşitlerinin insan sağlığı ve çevre üzerindeki olası olumsuz etkileri yoğun şekilde tartışılmakta, bu yeni teknolojinin sunduğu olanaklar farklı açılardan sorgulanmaktadır. Bu makalede modern biyoteknolojik yöntemlerle elde edilmiş ve genelde Genetiği Değiştirilmiş Organizmalar (GDO) olarak tanımlanan bu transgenik ürünlerin tarımsal üretimin artırılmasında sunduğu olanaklar, bu ürünlerin insan sağlığı ve çevre üzerindeki olası olumsuz etkilerin yanında GDO’larla ilgili sosyo-ekonomik kaygılar ele alınmaya çalışılacaktır. Transgenik Ürünlerde Dünya’da Mevcut Durum Bitki biyoteknolojisi ve özellikle gen teknolojisi alanındaki gelişmeler 1980’li yıllardan itibaren hız kazanmış, ilk transgenik ürün bitkisi olan uzun raf ömürlü domates FlavrSavr adı ile 1996 yılında pazara sürülmüştür. Bunu gen aktarılmış mısır, pamuk, kolza ve patates bitkileri izlemiştir. 1996 yılından itibaren transgenik ürünlerin ekim alanları hızla artmış ve 2005 yılında 90.0 milyon hektara ulaşmıştır (Çizelge 1). Halen yetiştirilmekte olan transgenik ürünlerin ekim alanları incelendiğinde, bu ekim alanlarının % 99’unun A. B. D., Arjantin, Kanada, Brezilya ve Çin’de olduğu, genetiği değiştirilmiş ürün ekimi yapan ülkelerin sayısı 18’e ulaşmış olmakla beraber (Güney Afrika, Avustralya, Hindistan, Romanya, Uruguay, İspanya, Meksika, Filipinler, Kolombiya, Bulgaristan, Honduras, Almanya ve Endonezya) bu ülkelerde geniş ekim alanları bulunmadığı görülmektedir (James, 2005). Çin’deki ekim alanları ise özellikle Bt içeren pamuk ile hızla artmaktadır. Yine, Hindistan’da Bt içeren pamuk ekimine izin verilmesiyle bu ülkede de transgenik pamuk ekim alanlarının hızla artması beklenmektedir. Transgenik ürünlerin ekim alanları 2005 yılı itibariyle 90.0 milyon hektara ulaşmış olmakla beraber, bu ekim alanlarının artmasındaki şüphesiz en önemli engel özellikle Avrupa Birliği kamu oyunda bu ürünlere karşı oluşan olumsuz tepkiler, dolayısı ile bunun üreticiler üzerinde oluşturduğu olumsuz beklentilerdir. Aynı şekilde, gelişmekte olan ülkelerde aşağıda daha detaylı olarak değerlendirilecek olan biyogüvenlikle ilgili yasal mevzuatın henüz oluşturulmamasının getirdiği belirsizlik de ekim alanlarının genişlemesine engel olmaktadır. OECD BioTrack On-line verilerine göre 2000 yılı itibariyle transgenik ürünlere ait 15 000 üzerinde tarla denemesi yapılmıştır. Bu ürünler arasında tarla bitkileri, sebzeler, meyve ağaçları, orman ağaçları ve süs bitkileri bulunmaktadır. Burada dikkate değer bir husus ise 100’e yakın transgenik ürün çeşidi için ticari üretim izni alınmış olmasına rağmen bunlardan ancak birkaç tanesi pazara sürülmüştür. Buna paralel olarak, geniş ölçekte yetiştiriciliği yapılan türlerin oldukça sınırlı sayıda olduğu, ancak soya, mısır, pamuk ve kolza gibi önemli ürün türleri olduğu görülmektedir (Çizelge 2). Pazara sürülen ilk transgenik ürün olan uzun raf ömürlü FlavrSavr domatesi pazarlama stratejilerindeki yanlışlıklar ve tüketiciler tarafından fazla tutulmaması nedeniyle üretimden kalkmıştır. Bt patates ise çevrecilerin tepkisinden çekinen büyük “Fast Food” gıda zincirlerinin talep etmemeleri nedeniyle pek geniş ekim alanları bulamamıştır. Herbisitlere dayanıklı transgenik buğday çeşidi de gerek çevrecilerin tepkisi gerekse bu ürünü geliştiren çokuluslu şirketin pazarlama kaygıları nedeniyle henüz ticarileştirilmemiştir. Virüse dayanıklı papaya Hawaii adalarındaki papaya endüstrisini kurtarmış olmakla beraber sadece burada yetiştirilmektedir. Geniş ölçekte yetiştirilen tür ve çeşitlerin yine çok uluslu şirketlere ait tohumculuk şirketleri tarafından pazarlanıyor olması ayrıca dikkat çekmekte olup, bunun nedenleri ileriki bölümlerde incelenmeye çalışılacaktır. Halen ticari olarak üretimi yapılmakta olan transgenik ürünlere aktarılmış özellikler incelendiğinde, bunların daha çok girdiye yönelik, yani doğrudan çiftçiyi ilgilendiren herbisitlere dayanıklılık, böceklere dayanıklılık, virüslere dayanıklılık gibi özellikler olduğu görülmektedir (Çizelge 3). En yaygın olarak aktarılan özellik herbisitlere dayanıklılık olup, bu çiftçilerin üretim maliyetlerini önemli ölçüde azaltmaktadır. Yine Lepidopter’lere dayanıklılık sağlayan Bacillus thuringiensis endotoksin geni (Bt), özellikle mısır ve pamuk yetiştiriciliğinde zararlı olan tırtıllara karşı etkili olmakta; dolayısı ile tarımsal mücadele ilaçları kullanımını azaltmakta böylece hem üretim maliyetini düşürmekte hem de kimyasal ilaçların çevre ve insan sağlığı üzerindeki olumsuz etkilerini ortadan kaldırmaktadır. Bundan sonra piyasaya sunulması beklenen transgenik ürünlerin ise üretim maliyetlerini düşürücü özelliklerin yanında tüketicileri doğrudan ilgilendiren özellikler üzerinde de yoğunlaşması beklenmektedir. Bunlara en güncel örnek “altın pirinç” olarak adlandırılan beta karoten/A vitamini içeriği yükseltilmiş çeltiktir. Gelişmiş ülkelerde özellikle Güneydoğu Asya’da A vitamini eksikliği çeken 170 milyon kadar kadın ve çocuğun bu şekilde yeterli A vitamini alması ümit edilmektedir. Greenpeace örgütü ise, Altın Pirinç’in sadece çokuluslu şirketlerin bir pazarlama stratejisi olduğunu, bölgede günlük yaklaşık 300 gram pirinç tüketildiğini, ancak bir insanın önerilen günlük dozda provitamin A alabilmesi için bu miktarın yaklaşık 12 katını yemesi gerektiğini iddia etmektedir. Altın pirinci geliştiren araştırmacılar, Dr. Peter Beyer ve Prof. Ingo Potrykus ise bu hesaplamanın gerçekleri yansıtmadığını söylemektedirler. Onlara göre, çocuklar için günlük tavsiye edilen A vitamini dozajı 0,3 mg/gün’dür. Ancak hastalıklar ve körlükten korunmak için gereken A vitamini miktarı bu dozajın %30-40’ı civarındadır. Altın Pirinç’te bulunan provitamin A miktarı 1,6 – 2,0 mg/kg’dır. Provitamin A’nın A vitaminine dönüşme faktörü Amerikan Ulusal Bilim Akademisi (NAS) Sağlık Enstitüsü’nce (IOH) '12', Dünya Sağlık Örgütü (WHO) ve Gıda ve Tarım Örgütü’nce (FAO) '6', Hindistan Sağlık Araştırma Kurulu’nca '4' olarak alınmaktadır. Bu veriler ışığında ve Altın Pirinç’in biyoyararlılık değerleri %100 veya %50 olarak kabul edildiğinde yapılan hesaplamalarda Çizelge 4'teki rakamlar ortaya çıkmaktadır. Hesaplama için bir örnek verelim: IOH'in dönüşüm faktörü olan '12' esas alınırsa: körlükten korunmak için gereken 0,1 mg A vitamini için gerekli provitamin A miktarı 0,1 X 12 = 1,2 mg'dir. Altın Pirincin 1 kilogramında 2 mg provitamin olması hâlinde ve biyoyararlılık oranı %100 ise, bir günde yenmesi gereken Altın Pirinç miktarı 1,2 / 2 = 0,6 kg çıkar. Ancak, Çizelge 4'ten görülebileceği gibi, dönüşüm faktörü ve biyoyararlılık oranına göre bu miktar çok daha küçük olabilmektedir. Hatta Hindistan Sağlık Araştırma Kurumu’nun hesaplamaları kullanılırsa bu miktarda provitamin A alınabilmesi için gereken Altın Pirinç tüketimi 180 gramdır. Kaldı ki, Altın Pirinç İnsani Yardımlaşma Ağı’na (Humanitarian Golden Rice Network) da üye olan Syngenta firmasının yatırımı ile 2005 yılında “Altın Pirinç 2” adı verilen ve öncekine göre yaklaşık yirmi kat daha fazla provitamin A içeren yeni bir pirinç çeşidi geliştirilmiştir. Firma yıllık 10.000 dolardan düşük gelirli çiftçilere tohumları ücretsiz vermeyi planlamaktadır. Ayrıca bu tohumlara sahip olan çiftçiler ileriki senelerde kendi tohumlarını firmaya bedel ödemeden çoğaltabileceklerdir(*). “Altın Pirinç” örneğinin dışında doymuş yağ asit oranı değiştirilmiş yağlı tohumların, gerekli amino asit içeriği yükseltilmiş tahıl ve patateslerin, mikroelementlerce zenginleştirilmiş tahılların, aroma maddeleri yüksek ancak düşük kalorili ürünlerin yakın gelecekte piyasaya çıkması beklenmektedir. Hepatit B aşısı içeren patates ve muz bitkilerinin yanında, transgenik bitkilerin önemli bir kullanım alanı da ilaç hammaddesi ve monoklonal antikor üretimi için büyük potansiyel sunmalarıdır. Gen aktarılmış bu bitkilerin sera ve tarla denemeleri halen devam etmektedir. Bunlara paralel olarak, üzerinde en fazla araştırma yapılan konular arasında biyotik ve abiyotik stres koşullarına dayanıklı bitki çeşitleri gelmektedir. Yukarıda da değinildiği üzere, şimdiye kadar sağlanan üretim artışı tarım alanlarının genişlemesi, yaygın kimyasal gübreleme ve sulama ile sağlanmış ve bunlar ekolojik dengeyi olumsuz yönde etkilemiştir. Artık herkes tarafından kabul edilen bu sorunlar nedeniyle, bundan böyle tarımsal üretimin artırılmasındaki temel iki hedef sürdürülebilir tarım teknikleri ve birim alandan alınan verimliliğin artırılması yönünde olacaktır. Bunun için de bitkilerin yüksek verimli genotipe sahip olmalarının yanında biyotik ve abiyotik stres koşullarına dayanıklı olmaları da istenmektedir (SOFA, 2004). Bunlar arasında hastalık ve zararlılara dayanıklılık özelliği başta gelmektedir. Zira özellikle gelişmekte olan ülkelerde, bitkisel üretimin yarıya yakın kısmı hatta bazen fazlası üretim sırasında veya hasat sonrası hastalık ve zararlılar nedeniyle kaybolmaktadır. Bunlara karşı tarımsal mücadele ilaçlarının kullanıldığı durumlarda ise bu hem üretim maliyetini artırmakta, hem de insan sağlığını ve çevreyi olumsuz yönde etkileyebilmektedir. Dolayısı ile hastalık ve zararlılara karşı dayanıklılık genleri aktarılmış bitkilerin geliştirilmesi verimliliği artırdığı gibi tarımsal üretimin çevre üzerindeki baskısını da azaltacaktır. Bu alanda şimdiye kadar elde edilmiş en başarılı uygulama Lepidopter’lere dayanıklılık sağlayan Bacillus thuringiensis endotoksin genleri aktarılmış bitkilerden elde edilmiştir. Ancak, bitkisel üretimde zararlı olan çok sayıdaki diğer zararlı böceklere karşı aynı başarı henüz elde edilememiştir. Aynı şekilde, bazı virüs hastalıklarına karşı dayanıklı bitki çeşitleri geliştirilmişse de bunların sayısı pek fazla değildir. Bitkilerde önemli kayıplara neden olan fungal ve bakteriyel hastalıklara karşı direnç kazandırmaya yönelik araştırmalar da yoğun biçimde devam etmektedir. Ancak, bu hastalıklara dayanıklılık mekanizmalarının karmaşıklığı, dayanıklılık mekanizmalarının bitkiler ve patojenler arasında farklılık göstermesi, patojenlerin özellikle fungusların kendi dayanıklılık mekanizmalarını sürekli geliştirme yetenekleri nedeniyle henüz bakteriyel ya da fungal hastalıklara dayanıklı transgenik bitki çeşitleri üretim zincirine girecek aşamaya gelmemiştir. Bilindiği üzere küresel ısınma ve yanlış arazi kullanımı gibi nedenlerle 21. yüzyılda kuraklığın ve çölleşmenin gittikçe artması beklenmektedir. Bu durumdaki arazilerin çoğu ise Afrika gibi nüfus artış hızının en fazla olduğu ülkelerde bulunmaktadır. Bu nedenle, kurağa dayanıklı ya da az suyla yetişebilen bitki çeşitlerinin geliştirilmesi büyük önem taşımaktadır. Aynı şekilde tuzlu veya mikroelement eksikliği ve alüminyum gibi metal fazlalığı sorunu bulunan topraklarda yetişebilen bitkilerin geliştirilmesi de bu gibi ülkelerdeki marjinal tarım alanlarında üretim yapılabilmesine olanak sağlayacaktır. Eldeki bilgiler, dünyada mineral eksikliği ve metal (özellikle alüminyum) toksisitesi nedeniyle bitkisel üretimin sınırlandığı toprakların tüm topraklar içerisindeki payının % 60 dolayında olduğunu göstermektedir (Çakmak, 2002). Hem bu tür toprak sorunlarına hem de olumsuz çevre/iklim koşullarına karşı dayanıklılık kazandırmaya yönelik çalışmalar da yoğun bir şekilde devam etmekle beraber, bu özelliklerin birden fazla gen veya gen grupları tarafından belirleniyor olması, bunların gerek belirlenip klonlanmaları gerekse bitkilere aktarma teknolojilerinin yetersizliği sebebiyle henüz beklenen başarı düzeyine ulaşılamamıştır. Moleküler Bitki Islahı Gen teknolojileri denildiği zaman ilk akla gelen transgenik bitkiler ise de yukarıda belirtilen teknik kısıtların yanında transgenik bitkiler konusunda oluşan olumsuz kamu oyu baskıları da göz önünde bulundurularak, bu teknolojilerin klasik ıslah yöntemlerini geliştirerek daha etkin kılacağı alanlara yönelmek belki de daha akılcı bir yaklaşım olacaktır. Çoğu biyotik ve abiyotik stres koşullarına dayanım birden fazla gen tarafından kontrol edildiğinden bunların klasik ıslah yöntemleriyle belirlenmesi mümkün olmamaktadır. Ancak bu alanda gerek ulusal gerekse uluslararası ıslah kuruluşlarında, önemli miktarda bitki gen bankaları oluşturulmuş ve klasik ıslah konusunda önemli deneyimler kazanılmıştır. İşlevsel genomik çalışmalarının yaygınlaşmasıyla oluşan bilgi birikimini klasik ıslah yöntemleriyle birleştirmek mümkün olduğunda, stres koşullarına dayanıklı bitki ıslahı da yeni bir boyut kazanacaktır. Arabidopsis genetik haritasının yanında, çeltik, domates ve Prunus gibi türlerin genetik haritalarından kaydedilen gelişme, çoğu metabolik tepkimeyle ilgili gen dizinlerinin evrim boyunca korunmuş olması, elde edilen bu bilgi birikiminin diğer türlerde kullanım olanağını artırmaktadır. Yine moleküler işaret genleri konusunda oluşan bilgi birikimi moleküler bitki ıslahında yaygın olarak kullanılmaya başlanmıştır. Bu moleküler teknikler özellikle buğday gibi genomu karmaşık bitki türlerinde hastalıklara dayanım mekanizmaları ve kalite özellikleri açısından ıslahta çok önemli avantajlar sunmaktadır. Benzer şekilde meyve ya da orman ağaçları gibi generatif yaşam evreleri uzun dolayısı ile melezleme ıslah süreçlerinin çok uzun olduğu bitki türlerinde de moleküler işaret genleri çok önemli olmaktadır. Öte yandan, dünyada, özellikle gelişmekte olan ülkelerde insanlarda başta demir ve çinko olmak üzere mikroelement eksiklikleri ve buna bağlı ciddi sağlık sorunları çok yaygın biçimde ortaya çıkmaktadır. Yapılan tahminler problemin dünya nüfusunun yarısını etkilediğini göstermektedir. Sorunun başlıca nedeni olarak, mikroelementlerce çok fakir olan tahıl kökenli gıdaların yoğun biçimde tüketilmesi gösterilmektedir. Tahıllar hem mikroelementlerce fakir hem de mikroelementlerin vücutta kullanımını sınırlayan maddelerce zengindir (Cakmak ve Ark., 2002). Günümüzde birçok araştırma grubu ve konsorsiyumu buğday, çeltik ve mısır gibi bitkilerin mikroelementlerce zenginleştirilmesi için ıslah programları başlatmış ve bu programlarda moleküler markör destekli moleküler teknikler vazgeçilmez bir araç olarak kullanılmaktadır (www.harvestplus.org). Tüketici Tepkileri ve Biyogüvenlik Düzenlemeleri Transgenik bitkilerin insan sağlığı ve çevre üzerindeki olası olumsuz etkileri uzunca süredir tartışılmaktadır. Yukarıda değinildiği üzere, ilk transgenik ürünler A.B.D.’de yetiştirilmeye başlanmış olup, yine en geniş ekim alanları bu ülkede bulunmaktadır. Bu ürünlerin tamamı Amerikan Gıda ve İlaç İdaresi (FDA), Amerikan Tarım Bakanlığı (USDA/APHIS) ve Çevre Koruma Dairesi (EPA) tarafından çok kapsamlı bilimsel incelemeler yapıldıktan sonra ticari üretimleri yapılmakta ve yine bu ülkede insan gıdası ve/veya hayvan yemi olarak tüketilmektedir. Üretim fazlası olan mısır ve soya gibi ürünler ise Avrupa Birliği dahil diğer ülkelere satılmaktadır. Özellikle Avrupa Birliği ve diğer bazı ülkelerde transgenik bitkilerin insan sağlığı ve çevre üzerine olası olumsuz etkileri çok yoğun bir şekilde tartışma konusu olmaktadır. Bunların bilimsel bazlı tartışmalardan ziyade duygusal, kişisel ve ekonomik tercihler ağırlıklı olduğu yadsınamaz. Örneğin, endişe konusu gerekçelerden bir tanesi transgenik ürün geliştirme çalışmaları sırasında kullanılan antibiyotik işaret genleridir. Avrupa Konseyi’nin 1999 yılında uzman bilim adamlarından oluşan bir panele hazırlatmış olduğu rapor, bu endişenin bilimsel nedenlerle açıklanamayacağını bildirmiş, ancak bundan sonra geliştirilecek transgenik bitkilerde antibiyotik işaret genlerinin kullanılmamasını tavsiye etmiştir. Avrupa Gıda Güvenliği Otoritesi (EFSA) GDO Paneli ise 2 Nisan 2004 tarihide yayınlamış olduğu Bilim Paneli Görüş Dokümanı’nda antibiyotik işaret genlerini 3 grupta toplamış ve halen üretilip tüketilmesine izin verilen GD ürünlerde bulunan npt II işaret geninin insan ve çevre sağlığı açısından her hangi bir sorun oluşturmayacağını, klinik tedavide kullanılan diğer antibiyotik işaret genlerinin ise araştırmalarda kullanılmaması gerektiğini bildirmiştir (EFSA, 2004). İnsan sağlığı açısından öne sürülen diğer bir olumsuzluk ise transgenik ürünlere aktarılan genlerin insanlarda alerji yapacağı ve toksik etkileri olabileceğidir. Ancak, bu ürünlerin ticari ekimlerine izin verilmeden önce yoğun ve kapsamlı laboratuar ve klinik testlerin yapılması ve bulguların bağımsız bilim kurulları tarafından inceleniyor olması, bu tip yan etkilerin en az düzeyde olmasını sağlamaktadır. Burada hatırlanması gereken husus, transgenik ürünlerin alerji oluşturma olasılığının klasik ıslah yöntemleri ile elde edilen ürünlerden daha fazla olmamasıdır (König ve ark., 2004) Nitekim, Avrupa Birliği ülkelerindeki yoğun kamuoyu endişelerini giderebilmek amacıyla, 13 AB üyesi ülke’den 65 bilim insanının katılımıyla, 3.5 yıl süren ve 11.5 milyon euro harcanarak yürütülen ENTRANSFOOD projesi, halen üretilip tüketilmekte olan genetiği değiştirilmiş ürünlerin insan sağlığı açısından klasik yöntemlerle elde edilen ürünlerden daha tehlikeli olmadığını ortaya koymuştur (Kuiper ve ark., 2004). Transgenik ürünlerin çevresel etkilerini değerlendirmek ise insan sağlığı üzerindeki etkilerini değerlendirmekten çok daha zor ve karmaşık görünmektedir. Burada şüphesiz tarımsal üretim yapılan ekosistemlerin birbirlerinden çok farklı olması en büyük etkendir. Çevre üzerindeki olası olumsuz etkilerin başında, transgenik bitkilerin ekosistemdeki diğer canlılarla etkileşimi gelmektedir. Örneğin Bt aktarılmış mısır bitkilerini yiyen tırtılların yanında diğer hedef olmayan canlıların örneğin Kral kelebeğinin de olumsuz etkilenebileceği endişesi (Losey, 1999) son birkaç yıldır yoğun tartışma konusu olmuş hatta GDO karşıtı örgütler tarafından hala yaygın olarak kullanılmaktadır. Ancak, Bt mısır polenlerinin Kral kelebeği ve diğer hedef dışı organizmalar üzerindeki olumsuz etkilerini tarla koşullarında incelemek üzere yapılan kapsamlı araştırmalar bu riskin çok düşük bir düzeyde olduğunu ve Kral kelebeklerinin yaşam döngüsünü olumsuz etkilemediğini göstermiştir (Oberhauser ve ark., 2001; Pleasants ve ark., 2001; Sears ve ark., 2001; Zangerl ve ark., 2001). Burada genetiği değiştirilmiş organizmaların çevre üzerindeki etkileri tartışılırken, Bt geni aktarılmış bitkiler yerine normal mısır yetiştiriciliğinde kullanılan kimyasal mücadele ilaçlarının hedef olmayan organizmalar üzerinde çok daha fazla olumsuz etkilerinin bulunduğunu göz önünde bulundurmakta yarar vardır (Gianessi ve ark., 2002). Burada asıl endişe konusu, sürekli Bt aktarılmış mısır ile beslenen tırtılların belirli bir süre içerisinde dayanıklılık mekanizması geliştirmesinin kaçınılmaz olmasıdır. Onun için bu tırtılların dayanıklılık geliştirmelerini geciktiren tedbirler alınmaya çalışılmaktadır. Ancak, bu yine de güncel ve geçerli bir sorun olarak çözüm beklemektedir. Diğer bir husus ise transgenik bitkilerden gen kaçışı yoluyla biyoçeşitliliğin bozulmasıdır. Burada, transgenik bitkilerle akraba türlerin bulunduğu ekosistemlerde transgeniklerin kesinlikle yetiştirilmemesi öngörülmektedir. Ancak, çiftçi eğitim düzeyinin oldukça sınırlı olduğu gelişmekte olan ülkelerde bunun ne şekilde sağlanabileceği hala bilinmemektedir. Nitekim, mısır bitkisinin gen kaynağı olarak bilinen Meksika’da A. B. D.’den kaçak olarak getirilen transgenik mısırların ekilmesi ve bunlardan Meksika’daki yerel mısır çeşitlerine gen kaçışı biyoçeşitlilik üzerinde önemli etkiler yaratacaktır. Transgenik bitkilerin insan sağlığı ve çevre üzerindeki olası olumsuz etkileri yoğun olarak incelenip tartışılmakta olup, buna yönelik çeşitli ulusal, bölgesel ve uluslar arası mevzuat oluşturma çabaları bulunmaktadır. Ancak ülkeler arasında henüz tam bir uyum sağlandığı söylenemez. Örneğin A.B.D.‘deki biyogüvenlik mevzuatı Avrupa Birliği mevzuatından çok farklı olup mevzuatın uygulanmasında bile ülkeler arasında hala uyum sağlanamamıştır. Ancak, yeni oluşturulan European Food Safety Authority ve 2004 yılında yürürlüğe giren genetiği değiştirilmiş ürünlerin etiketlenmesi ve izlenebilirliğini amaçlayan yönetmelikler bu uyumu sağlamada önemli bir adım sayılabilir. Son olarak, Uluslararası Biyolojik Çeşitlilik Anlaşması bağlamında hazırlanan ve uzun görüşme ve tartışmalardan sonra 2000 yılında üzerinde anlaşmaya varılan Uluslararası Biyogüvenlik Protokolü, transgenik ürünlerin sınır ötesi taşınmaları ve kullanımı yönünde olumlu bir gelişmedir. Türkiye’nin de imzalamış olduğu bu Protokol 11 Eylül 2003’te yürürlüğe girmiş olmasına rağmen, Protokol’ün uygulanabilir hale gelmesi daha bir süre alacaktır. Bunun için özellikle gelişmekte olan ülkelerin, kendi biyogüvenlik mevzuatlarını hazırlamalarının yanında, bu mevzuatı uygulayacak laboratuar altyapısını oluşturmaları, bu laboratuarlarda çalışacak teknik elemanları yetiştirmeleri ve en önemlisi karar verici konumdaki bürokratları eğitmeleri gerekmektedir. Aksi takdirde, bu mevzuat transgenik ürünlerin ticaretini engelleme dışında, gelişmekte olan ülkelerin kendi biyolojik kaynaklarını verimli şekilde değerlendirecek bilimsel ortamı yaratmaları açısından olumlu bir etki oluşturmayacaktır. Fikri Mülkiyet Hakları Giriş kısmında bahsedilen ve tarımsal üretimin artırılmasında oldukça başarılı sayılan “Yeşil Devrim”, büyük ölçüde kamu kuruluşları veya kamu yararına çalışan uluslararası araştırma enstitüleri tarafından gerçekleştirilmiştir. Bu nedenle, gerek yüksek verimli çeşitlerin geliştirilmesi gerekse bu tohumlukların çoğaltılarak gelişmekte olan ülke çiftçilerine ulaştırılması normal ticari kurallar içerisinde süregelmiştir. Benzer şekilde, mekanizasyon, kimyasal gübre ve tarımsal mücadele ilaçları kullanımı, sulu tarım teknikleri gibi yeni teknolojilerin transferi hatta sulama projelerinin kurulması gibi konularda uluslararası finans kuruluşları veya yardım kuruluşları önemli katkılarda bulunmuşlardır. Bugünkü “Biyoteknoloji Devrimi” ise büyük ölçüde özel sektör tarafından yapılmaktadır. Halen bu alandaki Ar-Ge çalışmalarının % 80 oranında özel sektör yatırımlarıyla gerçekleştiği tahmin edilmektedir. Hal böyle olunca, özel sektör yatırımcıları tarafından geliştirilen her teknik veya ürünün hemen patent veya benzeri yöntemlerle korunmaya alınması ve bunlardan kısa sürede ticari gelir sağlanması istenmektedir. Aksi halde, özel sektörün gelir getirmeyecek Ar-Ge faaliyetlerine girmesini beklemek pek gerçekçi olmayacaktır. Örneğin, halen ticarete intikal etmiş transgenik ürünlerin mısır, soya ve pamuk gibi büyük ürün gruplarında olması, gelişmekte olan ülkelerdeki tatlı patates ve sorgum gibi ürünlere özel sektör tarafından pek yatırım yapılmaması şaşırtıcı değildir (SOFA, 2004). Son yıllarda, yine uluslararası yardım kuruluşlarının desteği ile veya biyoteknoloji alanında yoğun Ar-Ge faaliyeti olan çokuluslu şirketlerin işbirliği ile kamu araştırma kuruluşlarında yeni transgenik çeşitlerin geliştirilmesine yönelik araştırma faaliyetlerinin arttığı gözlenmektedir. Ancak, burada da fikri mülkiyet haklarına ilişkin sorunların yoğun olarak tartışıldığı görülmektedir. Bunun en güncel örneklerinden birisi de yukarıda sözü edilen “Altın Pirinç”tir. Rockefeller Vakfı tarafından finanse edilen ve Prof. Ingo Potrykus ve Prof. Peter Beyer önderliğindeki araştırmacılar tarafından geliştirilen “Altın Pirinç”te 30 civarında farklı şirket ve üniversiteye ait 70 adet patent bulunması, bu ürünün ticari olarak değerlendirilmesinde ve hatta gelişmekte olan ülkelere transferinde önemli bir sorun olarak ortaya çıkmıştır. Bu konuda, Latin Amerika ülkelerinde yapılan bir çalışma (Cohen ve ark., 1998), bu ülkelerde yürütülen biyoteknolojik araştırmaların ve ürün geliştirme çalışmalarının hepsinde çok sayıda patentli teknik veya materyalin kullanıldığını göstermiştir (Şekil 2). Tüm bunlar, biyoteknolojik araştırmalardan gelişmekte olan ülkelerdeki fakir çiftçilerin ve halkın nasıl yararlanabileceği sorusunu akla getirmektedir. Dünya Ticaret Örgütü’ne (WTO) üye ülkelerin imzalamış oldukları TRIPS (Trade Related Intellectual Property Rights) antlaşması, bazı istisnai hükümlerine rağmen, gelişmiş ülkelerdeki çok uluslu şirketleri korur niteliktedir. Bu nedenle, gelişmekte olan ülkelerdeki araştırma kuruluşlarının, biyoteknolojik araştırmalarını planlarken ve yürütürken fikri mülkiyet haklarıyla ilgili konuları yakından izlemeleri ve ona göre tedbir almaları yararlı olacaktır. Bu bağlamda yine transgenik bitkilerden ziyade moleküler bitki ıslahı yöntemlerinin Türkiye gibi gelişmekte olan ülkeler açısından daha avantajlı olduğu söylenebilir. Yine burada, Türkiye gibi zengin gen kaynaklarına sahip ülkelerin, bu gen kaynaklarını tespit edip karakterize ederek, hatta bunlardaki ticari öneme sahip genleri saptayıp patentleyerek önemli bir konum yakalamaları mümkün olabilir. Bu konuda, FAO örgütü tarafından 2001 yılında kabul edilen Uluslararası Bitki Genetik Kaynakları Antlaşması işlerlik kazandığında, zengin gen kaynağı olan ülkelerin bu kaynaklardan daha etkin yaralanmalarına yardımcı olacaktır. Bu alandaki gerek yasal ve gerekse araştırma altyapısının şimdiden oluşturulması yararlı olacaktır. Şekil 2. Latin Amerika Ülkelerinde Kullanılan Patentli Teknikler ve Materyaller (Cohen ve ark., 1998). Türkiye’de Tarımsal Biyoteknoloji ve Transgenik Ürünlerin Durumu Türkiye zengin gen kaynaklarına sahip olması nedeniyle, tarımsal biyoteknoloji alanında çok önemli bir avantaja sahiptir. Ancak, Türkiye’nin modern biyoteknolojik yöntemlerin sunduğu nimetlerden yararlanabilmesi için dünyadaki gelişmeler ve Türkiye’deki mevcut durum çerçevesinde önceliklerini çok iyi saptaması gerekmektedir. Türkiye’de biyoteknolojinin gelişmesi için mutlak gerekli olan biyoloji, biyokimya, moleküler biyoloji gibi temel bilim alanlarına gerekli önemin verilmemesi, bu alanda yetişmiş eleman sayısının düşük kalmasına ve dolayısı ile kapsamlı araştırmaları yürütebilecek kritik kitleye sahip araştırma birimlerinin oluşturulmasına engel olmuştur. Bu sorun, 1980 yılından beri hazırlanan tüm 5 yıllık kalkınma planlarında vurgulanmış olmasına karşın, bu konuda henüz belirgin bir gelişme sağlandığı ne yazık ki söylenemez. Burada en önemli sorun, belirli düzeyde bilgi birikimine ve tecrübeye sahip araştırmacıları bir araya getirerek “uzmanlık merkezleri” oluşturmak yerine tek tek laboratuvarların oluşturulmasından kaynaklanmaktadır. Son yıllarda, yurt dışında moleküler biyoteknoloji alanında eğitim görmüş ya da moleküler bitki ıslahı konusunda eğitim almış genç araştırmacıların sayısı artıyor olmasına rağmen, bunları bir araya getirerek güdümlü projeler üzerinde çalışacak “uzmanlık merkezleri” ya da laboratuvarları oluşturacak bir çaba görülmemektedir. Gerekli tedbirler alınmadığı taktirde, geçtiğimiz 30 yıldır yapılan girişimlere ve harcanan çok önemli miktarda kaynaklara rağmen Türkiye’nin tarımsal biyoteknoloji alanında, bugün bulunduğu noktadan daha farklı bir konuma gelmesi mümkün olamayacaktır. Burada, Türkiye’de bitki doku kültürü yatırımlarının 1974 yılında başlamış olmasına ve halen hemen hemen tüm Ziraat Fakültelerinde ve Tarım Bakanlığı araştırma enstitülerinde birer doku kültürü laboratuvarı kurulmuş olmasına rağmen Türkiye’nin, son derece basit bir teknoloji gerektiren patates tohumluğu ihtiyacını bile, hemen tamamını her yıl milyonlarca dolar ödeyerek yurt dışından karşılaması en çarpıcı örneklerden birisidir. Türkiye’nin biyoteknolojiye ve tarımsal araştırmalara yaklaşımını ortaya koymak amacıyla, 2001-2005 yıllarını kapsayan VIII. Beş Yıllık Kalkınma Planının ilgili bölümleri incelendiğinde, bilgi toplumu olma amacı doğrultusunda bilimsel ve teknolojik gelişmeler sağlayarak uluslararası düzeyde rekabet gücü kazanmanın esas olduğu ilkesi dikkati çekmektedir. Bu ilke çerçevesinde biyoteknolojinin de içinde bulunduğu bazı yüksek teknolojiler öncelikli konu olarak belirlenmiştir. Ayrıca, ekonomik, sosyal, çevresel boyutunu bütün olarak ele alan rekabet gücü yüksek, sürdürülebilir bir tarım sektörünün oluşturulması temel amaç olarak tespit edilmiştir. Tarımsal araştırmalarda koordinasyonun sağlanmasının ve araştırma konularının belirlenmesinde üretici ve sanayicinin taleplerinin dikkate alınmasının gerekliliği de vurgulanmaktadır. Hedefler bu şekilde belirlenmekle birlikte, Türkiye’nin Ar-Ge konusunda diğer ülkelere oranla oldukça geride olduğu bilinen bir gerçektir. Halen Ar-Ge harcamalarının GSMH içindeki payı % 0,64 düzeyindedir. Üniversiteler toplam Ar-Ge çalışmalarında ve tarımsal araştırmalarda en fazla payı alan kurumdur. Dolayısıyla, diğer gelişmekte olan ülkelere paralel olarak Türkiye’de de özel sektör araştırmaları kısıtlı olup, üniversiteler % 70’lere varan payla en fazla araştırmanın yapıldığı kurum olmaktadır. TÜBA (2003) tarafından gerçekleştirilen “Moleküler Yaşam Bilimleri ve Teknolojileri Öngörü Projesi” kapsamında Türkiye’nin biyoteknoloji ile ilgili altyapısı ortaya konmaktadır. Çalışma, yaklaşık 150 araştırma biriminin ve 2000 araştırıcının biyoteknoloji konusunda çalıştığını göstermektedir. Bu sayının önemli bir insan altyapısını işaret ettiğini vurgulayan çalışma, araştırıcıların verimliliklerinin bir göstergesi olan araştırıcı başına bilimsel yayın verilerine bakıldığında mevcut altyapının etkin bir şekilde kullanılmadığını, kurumsallaşmanın ve teknoloji üretme kaygısının bulunmadığını .belirtmektedir. Türkiye’de biyoteknoloji alanında yapılan bilimsel yayınların yaklaşık % 42’si endüstriyel biyoteknoloji alanında olup tarımsal biyoteknoloji % 11,5 ile en az yayın çıkarılan biyoteknoloji dalı olmuştur. Stres toleransı, rejenerasyon ve propagasyon, farmasötik ve moleküler markörler en fazla çalışılan tarımsal biyoteknoloji konularıdır (Özcengiz, 2003). Biyoteknoloji araştırmaları için devlet TÜBİTAK, kamu kurumları ve üniversitelere destek verdiği gibi özel sektöre de belli oranlarda destekler sağlamaktadır. Kamu yatırım bütçesinden üniversitelere araştırma projelerinin desteklenmesi amacıyla ödenekler tahsis edilmekte olup, desteklenen projeler arasında genetik kaynakların korunması projeleri, transgenik bitki geliştirilmesine ve üniversitelerin altyapılarını geliştirmeye yönelik projeler önde gelmektedir. Öte yandan, firmaların biyoteknoloji araştırma geliştirme faaliyetlerine de TÜBİTAK bünyesindeki Teknoloji İzleme Değerlendirme Birimi (TİDEB) ve Türkiye Teknoloji Geliştirme Vakfı (TTGV) kanalıyla destek sağlanmaktadır. TİDEB firmaların Ar-Ge proje maliyetlerinin en fazla % 60’ı oranında ve hibe şeklinde destek vermektedir. Bu program dahilinde, gen mühendisliği-biyoteknoloji 6 öncelikli konudan biri olarak tespit edilmiş olup biyoteknoloji projelerinin toplam desteklenen projeler içindeki payı % 3,1’dir. TTGV ise proje maliyetinin en fazla % 50’sini karşılamakta ve geri ödemeli bir sistem içinde destek vermektedir. Biyoteknolojinin bu kapsamda desteklenen projeler içerisindeki payı ise % 7’dir. Tarımsal biyoteknolojide gelişme kaydetmiş ülkelerdeki kurumsal yapılanma üniversiteler, kamu Ar-Ge kuruluşları ve özel sektör olmak üzere 3 farklı ayaktan meydana gelmekte ve her bir kurumun kendi kapasiteleri ve görev tanımları içinde belirlenmiş rolleri bulunmaktadır. Örneğin üniversiteler ve kamu Ar-Ge kuruluşları temel araştırma konusunda uzmanlaşırken, özel sektörün uygulamalı araştırma ve ürün geliştirmeye yönelik çalıştığı görülmektedir. Birbirinin tamamlayıcısı olan bu roller içinde bir kurumun eksikliği sistemin iyi çalışmamasına neden olmaktadır. Bu noktadan hareketle Türkiye’deki yapıya baktığımızda, araştırma sistemi içerisinde üniversitelerin temel kuruluş olduğu ve en önemli ayaklardan biri olan özel sektörün sistem içinde yer almadığı dikkati çekmektedir. Dolayısıyla, özel sektörün ve kamu Ar-Ge kuruluşlarının rolünü üstlenecek bir kurumsallaşma olmadığı için hedefe yönelik ve verimli çalışan bir sistem mevcut değildir. Bununla beraber, yukarıda da belirtildiği gibi araştırmaların önemli bir kısmını yürüten üniversitelerin de verim ve etkinlik sorunları bulunmaktadır. Son yıllarda, çok önemli kaynaklar sağlanarak, moleküler biyoloji altyapısına sahip laboratuarların kurulduğu ve yine yeterli yetkin kadroların bulunup bulunmadığı aranmaksızın önemli miktarda proje destekleri sağlandığı görülmektedir. Ancak, bu projeler incelendiği zaman bunların çoğunun gerçekçi hedeflere odaklanmadığı ve ürün geliştirme niteliği taşımadığı da bir gerçektir. Transgenik ürün geliştirmeye yönelik bir kısım araştırma projelerinin başarılı olmaları için gerekli özel sektör katılımı ya da desteğinin olmaması da ayrıca düşünülmesi gereken bir husustur. Yine bu bağlamda, geliştirilmesi muhtemel transgenik ürünlerin risk analizleri ve pazara sunumları için gerekli yasal çerçevenin çizilmemiş olması da bunların uygulamaya geçirilme şansını ortadan kaldırmaktadır. İlk defa 1998 yılında yabancı firmalara ait transgenik çeşitlere ait tarla denemelerinin yapılabilmesi için Tarım ve Köyişleri Bakanlığı tarafından hazırlanarak yürürlüğe sokulan “Transgenik Kültür Bitkilerinin Alan Denemeleri Hakkında Talimat” ise bu amaca hizmet etmekten çok uzaktır. Hal böyle iken, söz konusu çeşitlerin tarla denemelerinin 1998 yılından bu yana bizzat Tarım ve Köyişleri Bakanlığı’na ait Araştırma Enstitü’leri tarafından yürütülüyor olmasına rağmen elde edilen sonuçların resmen açıklanmamış olması da üzerinde durulması gereken önemli bir konudur. Türkiye Cartagena Biyogüvenlik Protokolünü imzalayan ilk ülkelerden biri olmuşsa da buna yönelik yasal mevzuat çalışmalarını aynı hızda yürütememiştir. Aynı şekilde, Avrupa Birliği mevzuatına uyum için gerekli yönetmelikler de henüz hazırlanarak yürürlüğe sokulamamıştır. Biyogüvenlikle ilgili bu mevzuat boşluğunun yanında, fikri mülkiyet hakları kapsamında Bitki Islahçı Haklarıyla ilgili mevzuat yıllar sonra oluşturulmuşsa da UPOV üyeliği henüz gerçekleştirilememiştir. Türkiye’de transgenik ürünlerin ticari olarak ekimlerine izin verilmezken, yurtdışından gıda hammaddesi olarak ithal edilen mısır ve soya ürünlerinin transgenik olma ihtimali oldukça yüksek görünmektedir. Sonuç ve Öneriler Kısaca biyoteknoloji olarak da isimlendirilen modern gen teknolojileri, hızla artan dünya nüfusunun yeterli ve dengeli beslenmesini sağlamak amacıyla tarımsal üretimin artırılmasında önemli olanaklar sunmaktadır. Burada, sürdürülebilir tarım tekniklerinin uygulanmasının yanında biyotik ve abiyotik stres koşullarına dayanıklı, yüksek verimli ve kaliteli bitki çeşitlerinin geliştirilmesi önemli bir önceliktir. Bu bitkilerin geliştirilmesinde sadece transformasyon yoluyla elde edilen transgenik bitkiler değil, ağırlıklı olarak moleküler bitki ıslahı teknikleri üzerinde yoğunlaşmak kısa ve orta vadede daha doğru olacaktır. Türkiye gibi zengin gen kaynaklarına sahip gelişmekte olan ülkelerin, öncelikli alanlarını saptayarak moleküler biyoloji çalışmaları için yeterli altyapıyı oluşturmaları ve kritik kitleyi oluşturacak sayıda yetkin araştırmacı yetiştirmeleri, ellerindeki genetik potansiyeli en iyi şekilde değerlendirmelerine yardımcı olacaktır. Ancak, teknolojik gelişmelere paralel olarak, gerek bu tekniklerin ve ürünlerin geliştirilmesi sırasında gerekse bunların doğaya salımlarında biyogüvenlikle ilgili yasal düzenlemelerin yapılması ve bu mevzuatı uygulayacak yetkin kişilerin eğitilmesi gerekmektedir. Burada, hazırlanacak mevzuatın bilimsel esaslara dayalı olması, yurt içinde yapılacak çalışmaları engelleyici değil kolaylaştırıcı tedbirleri içermesi önem taşımaktadır. Aynı şekilde, biyoteknolojik uygulamalar ve ürünlerle ilgili fikri mülkiyet haklarına yönelik Bitki Islahçı Hakları, Patent Kanunu gibi mevzuatın bir an önce uygulanabilir hale getirilmesi, bu alanlarda araştırmacıları bilgilendirecek ve destekleyecek düzenlemelerin yapılması küreselleşen dünya ticaretinde rekabet edebilecek bir konuma gelebilmemiz için önem taşımaktadır. Prof. Dr. Selim ÇETİNER Sabancı Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi Tuzla, İstanbul

http://www.biyologlar.com/biyoteknoloji-ve-tarim-guvencesi

Evrimin Mekanizmalari

Evrimin işleyişi Günümüz organizmaları, geçmişte yaşamış atalarından evrim süreci sonucunda türemişlerdir. Evrim, hem tüm organizmalar tarafından paylaşılan dikkat çekici benzerliklerden hem de yaşamın o inanılmaz çeşitliliğinden sorumludur. Peki bu süreç tam olarak nasıl işler? Evrim sürecinin temelinde genetik çeşitlilik yatar. Seçici kuvvetler genetik çeşitliliğe etki edip evrimin gerçekleşmesini sağlarlar. Bu bölümde evrimin mekanizmalarını incelerken şunlar üzerine yoğunlaşacağız: Türeme ve bir sonraki nesle aktarılan kalıtsal genetik farklılıklar; Değişerek türeme Evrimi, ortak bir atadan değişerek türeme olarak tanımlamıştık. Peki değişen tam olarak nedir? Evrim ancak bir popülasyonun gen sıklığında zamanla bir değişim olduğunda gerçekleşir. Bu genetik farklılıklar kalıtsaldır ve bir sonraki nesle aktarılabilir – ki bu da evrim için asıl önemli olan “uzun vadeli değişim”ler demektir. Böcek popülasyonlarındaki değişimle ilgili verilen şu iki örneği karşılaştırın. Sizce bunlardan hangisi bir evrim örneğidir? 1. Böcekler rejimde Böceklerin yiyebileceği bitkilerin az olduğu bir ya da iki yıl süren bir kuraklık dönemi düşünün. Tüm böcekler üreme ve sağkalım açısından eşit şansa sahipler. Ancak yiyecek miktarının azalması, bu nesildeki bireylerin bir önceki nesile göre biraz daha küçük olmasına yol açmış. 2. Başka bir renkten böcekler Popülasyondaki bireylerin büyük kısmında, örneğin %90'ında, parlak yeşil renk genleri bulunurken, küçük bir kısmında (%10) onları daha kahverengi yapan bir gen bulunmaktadır. Birkaç nesil sonra, durum değişir: Popülasyonda kahverengi böcekler eskiden olduklarından daha yaygınlaşıp, popülasyonun %70’ini oluşturur hale gelmişlerdir. Hangi örnekte değişerek türeme, yani gen sıklıklarındaki bir değişim anlatılıyor? Birinci örnekte, böcek popülasyonunun vücut ağırlığı, genlerin sıklığındaki değişimden dolayı değil, çevresel etkiler (besin miktarındaki azalma) nedeniyle değişmiştir. Bu yüzden birinci örnek evrim değildir. Popülasyonun vücut büyüklüğü genetik olarak belirlenmediği için, küçük vücutlu böcek nesli normal miktarda besin kaynağına sahip olduğunda normal boyutlara ulaşacak nesiller üretecektir. İkinci örnekteki renk değişimi ise açıkça evrimdir: Aynı popülasyonun iki nesli genetik olarak farklıdır. Peki ama, bu nasıl oldu? Değişim mekanizmaları olarak mutasyon, göç (gen akışı), genetik sürüklenme ve doğal seçilim; Değişimin mekanizmaları Buradaki dört sürecin her biri evrimsel değişimin temel mekanizmalarından biridir. Mutasyon Bir mutasyon, parlak yeşil genine sahip ebeveynlerin kahverengi genine sahip olan döller vermesine neden olabilir. Böyle bir durum ise, kahverengi böcek genlerinin popülasyonda daha sık rastlanır hale gelmelerine neden olacaktır. Göç Bir kahverengi böcek popülasyonundaki bazı bireyler başka bir yeşil böcek popülasyonuna katılabilir. Bu durum kahverengi böcek genlerinin yeşil böcek popülasyonunda daha sıklaşmasına neden olacaktır. Genetik sürüklenme Bir nesilde iki kahverengi böceğin, hayatta kalıp üreyebilen dört kahverengi birey oluşturduğunu düşünün. Birkaç yeşil böcekse henüz döl veremeden biri tarafından ezilerek öldürülmüş olsun. Bir sonraki nesilde, bir önceki kuşağa göre biraz daha fazla kahverengi böcek olacaktır – ama bu tümüyle rastlantısaldır. Bu şekilde bir nesilden diğerine ortaya çıkan rastlantısal değişiklikler genetik sürüklenme olarak tanımlanır. Doğal seçilim Yeşil renkli böceklerin kuşlar tarafından fark edilmesinin ve dolayısıyla yenmesinin kahverengi böceklere göre daha kolay olduğunu düşünün. Kahverengi böceklerin hayatta kalıp döl verme şansları biraz daha fazla olacaktır. Böylece, sahip oldukları kahverengi olma genlerini yavrularına aktaracak ve yeni nesilde, kahverengi böcekler bir önceki nesle göre daha yaygın olacaktır. Bu mekanizmaların hepsi genlerin bir popülasyon içindeki sıklığında değişime neden olabilir, dolayısıyla hepsi evrimsel değişimin mekanizmalarıdır. Ancak doğal seçilim ve genetik sürüklenme, popülasyonda genetik çeşitlilik olmadığı, yani popülasyondaki bazı bireyler genetik olarak diğerlerinden farklı olmadığı sürece işlemezler. Eğer böcek popülasyonundaki bireylerin tamamı (%100’ü) yeşil olsaydı, seçilim ve sürüklenmenin hiçbir etkisi olmayacaktı çünkü genetik bileşim değişemeyecekti. Öyleyse, genetik çeşitliliğin kaynakları nelerdir? Genetik çeşitliliğin önemi; Genetik çeşitlilik Evrimsel değişimi sağlayan bazı temel mekanizmalar genetik çeşitlilik olmadan çalışamaz. Genetik çeşitliliğin, ileride hakkında daha fazla şey öğreneceğimiz üç temel kaynağı vardır: 1. Mutasyonlar, DNA’da meydana gelen değişikliklerdir. Tek bir mutasyonun büyük etkileri olabilir, fakat çoğu durumda, evrimsel değişim çok sayıda mutasyonun birikimine dayanır. 2. Gen akışı, genlerin bir popülasyondan diğerine her türlü hareketidir ve evrimsel çeşitliliğin önemli bir kaynağıdır. 3. Eşey, bir popülasyona yeni gen kombinasyonları kazandırabilir. Bu genetik karılma genetik çeşitliliğin bir diğer önemli kaynağıdır. Genetik sürüklenmenin rastlantısal doğası ve genetik çeşitliliğin azalmasının etkileri; Genetik Sürüklenme Genetik sürüklenme; doğal seçilim, mutasyon ve göçle birlikte evrimin temel mekanizmalarından biridir. Her nesilde bazı bireyler, tümüyle rastlantısal olarak, geriye diğer bireylerden biraz daha fazla sayıda torun (ve elbette gen!) bırakabilirler. Bir sonraki neslin genleri “şanslı” bireylerin genleri olacaktır; ancak, bu bireyler daha sağlıklı ya da daha “iyi” bireyler olmak zorunda değildir. Bu olay, kısaca, genetik sürüklenmedir. Bu, TÜM popülasyonlarda gerçekleşen bir olaydır – talihin oyunlarından kaçış yok. Daha önceki örneklerde, bu kurgusal çizimi kullanmıştık. Genetik sürüklenme, popülasyonun genetik yapısını etkilemektedir, ancak bu durum doğal seçilimden farklı olarak tümüyle raslantısal bir biçimde gerçekleşmektedir. Dolayısıyla, genetik sürüklenme her ne kadar evrimsel bir mekanizma olsa da, uyarlanımların oluşmasında işlev görmez. Çeşitlilik, ayrımlı üreme ve kalıtımın, doğal seçilim yoluyla evrime nasıl yol açtığı; ve Farklı türlerin birlikte evrim yoluyla birbirlerinin evrimini nasıl etkilediği. Birlikte evrim Birlikte evrim terimi iki ya da daha fazla türün karşılıklı olarak birbirinin evrimini etkilediği durumları anlatmak için kullanılır. Örneğin, bir bitkinin morfolojisindeki evrimsel bir değişim, bu bitkiyle beslenen bir otçulun morfolojisini de etkileyebilir. Aynı şekilde, otçuldaki bu değişim de bitkinin evrimini değiştirebilir ve bu döngü böylece devam eder. Farklı türler birbirleriyle yakın ekolojik ilişkiler içinde olduğunda birlikte evrimin gerçekleşmesi olasıdır. Bu ekolojik ilişkilerin bazı örnekleri şöyledir: 1. Av/avcı ve parazit/konak 2. Rakip türler 3. Mutualist türler Bitkiler ve böcekler, birlikte evrimin klasik bir örneğini sunarlar; bu örnekler çoğu zaman mutualist bitki ve böceklerden çıkar. Birçok bitki ve bunların tozlaştırıcıları birbirlerine o kadar sıkı bağımlıdır ve ilişkileri o kadar özeldir ki, bu ikililer arasındaki uyumun birlikte evrimin bir sonucu olduğunu düşünmek için biyologların yeterli nedeni vardır. Ama konu tozlaşma olmasa bile bitkiler ve böcekler arasındaki eşsiz uyumun örneklerini görebiliriz. Orta Amerika’da yaşayan bazı akasya türlerinin yapraklarının altında, nektar salgılayan içi boş dikenler ve gözenekler vardır (bkz: sağdaki resim). Bu içi boş dikenler, nektar içen bazı karınca türlerinin yuva yaptığı tek alandır. Ancak, bu karıncalar sadece bitkiden faydalanmakla kalmazlar, aynı zamanda akasyaları otçullara karşı korurlar. Bu sistem muhtemelen birlikte evrimin bir ürünüdür: evrimleri karıncalardan etkilenmeseydi, bitkiler içi boş dikenler ya da nektar gözenekleri geliştirmezlerdi, karıncalarsa evrimleri bitkilerden etkilenmeseydi otçullara karşı savunma davranışları geliştirmezlerdi.

http://www.biyologlar.com/evrimin-mekanizmalari

Vitamin üreten bakteriler

Değişik sebeplerden ileri gelen ve insan sağlığı üzerinde olumsuz etkileri olan farklı oluşumlara karşı uzun yıllardan beri değişik antibiyotikler kullanılmıştır. Antibiyotiklerin belli periyotlarda ve belli dozlardaki kullanımı neticesinde, metabolizmada gözlenen rahatsızlıklar tedavi edilebilmiştir. Ancak zaman içerisinde kullanılan antibiyotik türleri ve bunların tedavideki dozlarının insan metabolizmasında yararlı faaliyetleri olan (özellikle de intestinal florada) mikroorganizmaları inaktive ettiği ya da populasyonunu azalttığı ve bunun neticesinde de normal floranın bozularak, vücutta antibiyotiklerden kaynaklanan bazı rahatsızlıkların (alerji, diyare, gaz vb. gibi) ortaya çıktığı belirlenmiştir. Bunun yanında araştırıcılar günlük yaşamın getirdiği bazı olumsuzluklardan (çevrede olan ani değişmeler, su ve besinlerin kaliteleri, hayvansal ürünlerin aşırı miktarları, kafein, alkol kullanımı) ve değişik türdeki patojenlerin enfeksiyonlarından dolayı (sinirsel yorgunluk ve stres gibi) vücudun normal florasının etkilendiğini de ortaya koymuşlardır. Vücudun doğal intestinal florasında bulunan ve organizma için yararlı olan bakterilerin gitgide sayılarının azalması, tamamen yok olması karşısında bilim dünyası bu yararlı florayı korumak ya da tekrar geri kazanmak için arayışa girmiş ve “Probiyotik mikroorganizmalar” değişik ürünler (mandıra ürünleri, meyve suları, çikolata ve et ürünleri) ile tüketime sunulmuşlardır. Probiyotikler; yaşayan mikroorganizmalar olup mukozal ve sistemik bağışıklığı ayarlayarak konağa tesir ederler. Ayrıca intestinal sistemdeki mikrobiyal dengeyi sağlarlar. Sağlıklı bir insan vücudunda probiyotik mikroorganizmalar belli oranlarda bulunmaktadır. Probiyotik mikroorganizma florası, vücudun mukoz membranlarında ve sindirim bölgelerinde kolonize olan bakterilerdir. Vücuttaki mikroorganizma florasında 400 ile 500 arasında farklı türde, sindirim bölgesinde yerleşmiş durumda bulunan, gerek patojen gerekse sağlığa yararlı mikroorganizmalar mevcuttur. Sindirim sisteminin önemli bir parçası olan bağırsaklarda, ilaç kullanımı veya hastalıklar sırasında açığa çıkan zararlı bakteriler, aynı ortamda bulunan iyi huylu bakterilere karşı atağa geçerler ve bağırsağa yerleşmeye çalışırlar. Probiyotik bakteri suşları ise bağırsak duvarına tutunarak, bu zararlıların içeriye girmesini önler. Probiyotik Olarak Kullanılan Mikroorganizmalar Probiyotikler esas olarak laktik asit bakterileridir. Bunun yanında araştırmalar mayaların da probitotik özelliğe sahip olduğunu göstermiştir. Yoğurt yapımında kullanılan mikroorganizmalar (Lactobacillus bulgaricus ve Streptococcus thermophilus) dışında tüm laktik asit bakterileri bağırsak florası elemanlarıdır. Bir probiyotik ürün bu mikroorganizmalardan birini ya da birkaçını içerebilir. İçerdiği mikroorganizma sayısı arttıkça probiyotiğin kullanım alanı genişlemektedir. Probiyotik Bakterilerin Özellikleri Probiyotik bakteriler Gram (+), sporsuz, basil şeklindedir. L. acidophilus’un üreme sıcaklığı 35 – 380C ‘dir. Probiyotik bakteriler mide asitliğine diğer bakterilere göre daha dayanıklıdır. Safra tuzuna ve lizozim enzimine daha dirençlidir. Lactobacillus türleri, ince bağırsakta fazla sayıda bulunurken, Bifidobacterium’lar kalın bağırsaktadırlar. Probiyotik bakteriler laktik asit, asetik asit, bakteriyosin gibi antimikrobiyal maddeler üreterek, bağırsaklarda istenmeyen mikroorganizmaların çoğalma hızını kontrol ederler ve doğal floranın denge içinde bulunmasını sağlarlar. Gram (+) bakteriler, bakteriyosinlere çok duyarlıdır. Beslenmede bitkisel besinlerin fazla olması, hayvansal besinlerin aksine bağırsaklardaki probiyotik bakterilerin sayısını artırır. Sağlıklı kişilerin bağırsak florasında probiyotik bakterilerin (örneğin Bifidobacterium’ların) sayısı zaman içerisinde sabitleşmekte; ancak günlük yaşamın getirdiği; antibiyotik kullanımı, stres, sinirsel yorgunluk, dengesiz beslenme, fazla alkol alımı, hastalık ve bağırsak ameliyatları gibi sonuçlar, bu bakterilerin azalmasına neden olur. Bunun sonucunda bağırsaklarda enterik bakteriler çoğalır ve enterik rahatsızlıklar ortaya çıkar. Probiyotik bakterilerin önemli özelliklerinden biri de, bağırsak çeperine tutunabilme yeteneğine sahip olmalarıdır. Bu tutunma en önemli ve hatta biyolojik etki gösterebilmeleri için mutlaka olması gereken bir özellik olarak belirtilmiştir. Probiyotik bakteriler, bağırsak çeperine tutunarak patojen mikroorganizmaların tutunmasını engellerler. Ayrıca sindirim sırasında bağırsak hareketlerinden çok fazla etkilenmeden hızla üreyerek orijinal populasyonda azalmayı engellerler. Bütün bunları maddeleyecek olursak; probiyotik olarak kullanılan mikroorganizmalarda aranan özellikler şunlardır: - Güvenilir olmalıdır, kullanıldığı insan ve hayvanda yan etki oluşturmamalıdır. - Stabil olmalıdır, düşük pH ve safra tuzları gibi olumsuz çevre koşullarından etkilenmeden bağırsakta metabolize olmalıdır. - Bağırsak hücrelerine tutunabilmeli ve kolonize olabilmelidir. - Kanserojenik ve patojenik bakterilere antagonist etkili olmalıdır. - Antimikrobiyal maddeler üretmelidir. - Konakta hastalıklara direnç artışı gibi yararlı etkiler oluşturma yeteneğinde olmalıdır. - Antibiyotiklere dirençli olmalıdır. Antibiyotiğe bağlı (diyare) ortaya çıkan hastalıklarda bağırsak florasını düzeltmek amacı ile kullanılabileceğinden, bağırsaktaki antibiyotiklerden etkilenmemelidir. - Minimum etki dozları bilinmediğinden, canlı hücrelerde büyük miktarlarda bulunabilmelidir. Probiyotik Olarak Kullanılan Mikroorganizmalar Lactobacillus Türleri: Lactobacillus bulgaricus, Lactobacillus cellebiosus Lactobacillus delbrueckii, Lactobacillus lactis Lactobacillus acidophilus, Lactobacillus reuteri Lactobacillus brevis, Lactobacillus casei Lactobacillus curvatus, Lactobacillus fermentum Lactobacillus plantarum, Lactobacillus johsonli Lactobacillus rhamnosus, Lactobacillus helveticus Lactobacillus salivarius, Lactobacillus gasseri Bifidobacterium Türleri: Bifidobacterium adolescentis, Bifidobacterium bifidum Bifidobacterium breve, Bifidobacterium infantis Bifidobacterium longum, Bifidobacretium thermophilum Bacillus Türleri: Bacillus subtilis, Bacillus pumilus, Bacillus lentus Bacillus licheniformis, Bacillus coagulans Pediococcus Türleri Pediococcus cerevisiae, Pediococcus acidilactici Pediococcus pentosaceus Streptococcus Türleri : Streptococcus cremoris, Streptococcus thermophilus Streptococcus intermedius, Streptococcus lactis Streptococcus diacetilactis Bacteriodes Türleri : Bacteriodes capillus,Bacteriodes suis Bacteriodes ruminicola, Bacteriodes amylophilus Propionibacterium Türleri : Propionibacterium shermanii, Propionibacterium freudenreichii Leuconostoc Türleri: Leuconostoc mesenteroides Küfler: Aspergillus niger, Aspergillus oryzae Mayala: Saccharomyces cerevisiae, Candida torulopsis Probiyotikler Tarafından Üretilen Esas Maddeler Vitaminler: K vitamini, folik asit, biotin, B1, B2, B12, Niasin ve priydoksin. Enzimler: Laktaz gibi sindirim enzimleri (esas olarak süt ürünlerin sindiriminde), serbest bölgelerin düzenlenmesine yardımcı olan karbonhidrat enzimleri, sindirim ve protein enzimleri, yağ enzimleri. Uçucu Yağ Asitleri: Besinlere ait yağ asitlerinin kısa zincirleri yardımıyla üretilen bu yağ asitleri sayesinde, optimum düzeyde sindirim için gerekli olan pH dengesinin sağlanması. İnsan sağlığına faydalı etkilerinin olduğu düşünülen canlı bakteri hücreleri üç temel kaynaktan yenmektedir: - Fermente süt ürünleriyle - Gıdalara ve içeceklere bu bakterilerin canlı hücrelerinin eklenmesiyle (meyve suları, çikolata, et ürünleri v.b.) - Probiyotik bakterilerin canlı hücrelerinden hazırlanan farmakolojik ürünler olarak tablet veya kapsüllerin hazırlanmasıyla. Probiyotik Süt Ürünleri En önemli probiyotik süt ürünü yoğurttur. Bununla birlikte, Lactobacillus acidophilus içeren diğer süt ürünleri olan Acidophilus quarkı, Acidophilus’lu süt, Acidophilus’lu tereyağı, Acidophilus’lu süt tozu da bu grupta yer alan diğer ürünlerdir. Probiyotik süt ürünleri ülkemizde yeni üretilmekle birlikte, birçok ülkede bu ürünlerin tüketimi gün geçtikçe artmaktadır. İnsan sağlığı üzerindeki etkileri de dikkate alındığında Lactobacillus acidophilus içeren ürünlerin üretim yöntemleri ile ilgili çalışmaların geliştirilmesi yararlı olacaktır. Bağırsak sisteminde bulunan Lactobacillus türlerinden fermente süt ürünlerinde en çok kullanılanları Lactobacillus acidophilus ve Bifidobacterium bifidum’dur. Lactobacillus acidophilus, yoğurt bakterilerinin aksine, insan sindirim sisteminin doğal bir üyesi olup, sindirim sisteminde bulunan yüksek asitlik ve bir takım enzimlerin inhibe edici etkisine ve safra kesesi tuzlarına dayanıklıdır. Bifidobacterium türlerinin başlangıçta yalnızca bebeklerin bağırsak florasında olduğu düşünülmüşse de, sonraki çalışmalarda bunların erişkin insanlarda ve sıcak kanlı hayvanlarda da bulunduğu ortaya konmuştur. Acidophilus ve Bifidobacterium türleri, ince bağırsaktaki mukoz membran tarafından tutulmakta, burada oluşturdukları asit ve diğer metabolik ürünler ile patojen ve diğer mikroorganizmalara karşı direnç göstermektedir. Bu durumda, Lactobacillus acidophilus ve Bifidobacterium bifidum ile üretilen ürünlerin düzenli olarak tüketilmesi bu bakterilerin bağırsak sistemlerine tutunmasını sağlamakta ve tedavi edici bir özellik göstermesine neden olmaktadır. Bu nedenle, son yıllarda mide – bağırsak enfeksiyonları için klasik antibiyotik tedavilerine alternatif olarak probiyotik ürünler kullanılmaktadır. Nitekim antibiyotik kullanımına bağlı olarak ortaya çıkan diyarenin önlenmesinde, Clostridium difficile ile meydana gelen kolik diyarenin tekrarlama olasılığının düşürülmesinde, fermente süt ürünlerinden yoğurda aşılanan Saccharomyces boulardii’nin, günde 1 g. yenmesi ile Enterococcus faecium SF68 yada Lactobacillus rhamnosus GG suş’unun fermente süt ürünleri ile alınması neticesinde, hastalarda pozitif yönde gelişmeler olduğu tespit edilmiştir. Yoğurt etkisi altında ağız yolu ile yapılan beslenmenin düzenli olarak uygulanması ile organizmaya patojen bakteri bulaşımının azaldığı kesin olarak ispatlanmıştır. Konu ile ilgili olarak çalışan diğer araştırmacılar da ağız yolu ile yapılan bu beslenme sonucunda, vücudun virüslere karşı bir etki oluşturduğunu bildirmektedirler. Günümüzde tıp alanında birçok hastalığın tedavi edilmesinde yada tekrarının önlenmesinde, Probiyotiklerin kullanılma olgusunun ve bunların en yaygın olarak fermente süt ürünleri ile diyetlerde uygulanmasının, tıp alanında yeni tedavi oluşumlarına kaynak teşkil ettiği görülmektedir. Bağırsak Rahatsızlıklarının Önlenmesi Probiyotik bakteriler, barsak hareketlerini hızlandırarak bağırsak içeriğinin kolayca atılmasını sağlar. Bazı koşullar altında (örneğin antiboyotik alımı), bağırsaklarda faydalı bakterilerin azalmasına ve istenmeyen bakterilerin (Clostridium difficile, E. coli gibi) artışıyla enterik enfeksiyonlar ortaya çıkabilir. Bu problem, probiyotik bakterilerin canlı hücrelerinin gıdalarla veya farmakolojik ürünlerin yenmesiyle önlenebilir. Probiyotik bakterilerin bağırsak yüzeyine tutunarak istenmeyen bakterilerin tutunmasını engellemeleri ve ürettikleri antimikrobiyal maddelerle (asitler, bakteriyosinler, reuterin gibi) çoğalmalarını kontrol altına alırlar. Safranın parçalanması safra asidine göre daha fazla antimikrobiyal etki gösterdiğinden, enterik bakterilerin çoğalması inhibe edilir. Yapılan değişik araştırmalarda, probiyotik bakterilerin özellikle çocuklarda enterik enfeksiyonlara karşı etkili olduğu belirtilmiştir. Araştırmalarda probiyotik bakterilerin süt ürünleriyle veya süte eklenerek bir süre yendiklerinde, bireylerin bağırsak florasında, C. perfingens, C. dificile, E. coli, Salmonella gibi enterik bakterilerin sayısında azalma ve buna karşılık probiyotik popülasyonda artış saptanmıştır. Ayrıca probiyotik bakterilerin yaşlı kişilerde görülen kabızlık gibi bağırsak problemlerini ve yine her yaş grubundaki kişilerde çeşitli nedenlere bağlı olarak görülen ishal, kabızlık, gaz oluşumu, karın şişliği gibi bağırsak rahatsızlıklarını önledikleri belirtilmiştir. Probiyotik bakteriler, bağırsak florasında bulunan Bacteroid, Clostridium, Enterobacter, Fusabacterium, Salmonella, Shigella, Campylobacter jejuni, Candida albicans, Staphylococcus aureus gibi patojen bakterilerin biyojenik amin, amonyak fenol gibi tehlikeli bileşikler üretmelerini engellerler. Probiyotik bakterilerin patojenler üzerindeki bu etkisi, bağırsaklarda laktik ve asetik asit üretmeleri ve pH’nın azalması ile açıklanmaktadır. Laktoz Hidrolizi Laktoz intolerant (bağırsak hipolaktemia) kişiler, laktozu hidrolize edecek beta galaktosidaz enzimini genetik rahatsızlık nedeniyle üretemezler. Sadece Kuzey Avrupalılar, beyaz Amerikalılar ve Afrika’da bazı kabileler laktozu parçalayacak beta-galaktosidaz enzimini oluştururlar. Laktoz intolerant kişiler süt veya dondurma ile laktoz yediklerinde, laktoz ince bağırsakta emilmeden kalın bağırsağa geçer. Kalın bağırsakta laktoz değişik bakteriler tarafından glikoz ve galaktoza hidrolize edildikten sonra asit ve gaza dönüştürülür. Asit ve gaz oluşumu bağırsaklardan sıvı emilmesini engeller ve bunun sonucunda bağırsak şişliği şeklinde rahatsızlıklar ortaya çıkar. Yoğurdun, asidophilus eklenmiş sütün (çoğunlukla L. acidophilus) ve probiyotik bakterilerin farmakolojik ürünlerinin yenmesi, ince bağırsaklara laktozu hidrolize edecek canlı bakteri bağladığından, laktozdan kaynaklanan rahatsızlıklar görülmez. Fermente ürünlerde laktoz, laktik asit bakterileri tarafından parçalandığından ve ürünlerde bakterilerin ürettiği beta-galaktosidaz enziminin bulunması nedeniyle fermente gıdaların sağlık üzerine faydaları bulunmaktadır. Lactobacillus bulgaricus ve Streptococcus thermophilus mide asitliğine dayanamaz ve normal bağırsak bakterisi değildirler. Fakat süte göre yoğurttan laktozun azalması, bağırsak rahatsızlıklarının ortaya çıkmasını engeller. Bağırsak bakterileri ve çoğunlukla bazı Lactobacillus türleri, belirli koşullarda ince bağırsaklara yerleşerek yiyeceklerle alınan laktozu hidrolize ederler. Serum Kolesterol Düzeyinin Düşürülmesi Farelerle yapılan bir çalışmada, farelere L. acidophilus içeren süt verilmesi sonucunda düşük serum kolesterol düzeyi bulunmuştur. Probiyotik bakteriler ile üretilen fermente süt ürünlerinin veya bu bakterilerin canlı hücrelerinin yenmesi, insanlarda düşük kolesterol düzeyinin oluşması, olası dört faktörden kaynaklanabilir: Yukarıda belirtilen beta-galaktosidaz enziminin fermente süt ürünlerinde bulunması. Bazı bağırsak bakterilerinin yiyeceklerle alınan kolesterolü metabolize etme yeteneğinde olması. Böylece kana geçmesinin azalmasına neden olur. Bakterilerin bağırsaklarda kolesterol prekürsörlerini veya kolesterolü azaltılır. Bazı Laktobasillerin safra tuzlarını parçalamasıyla safra tuzlarının karaciğer tarafından emilmesi engellenir. Böylece safra tuzu absorbe edemeyen karaciğerin, safra tuzu sentezlemek için fazla miktarda serum kolesterolünü kullanması sonucunda serumda kolesterol miktarını azaltır. Fakat bazı araştırma sonuçları, probiyotik bakterilerin vücutta kolesterol düzeyini azalttığı şeklindeki bulguları desteklememektedir. Bunun farklı deney düzenekleri, farklı mikroorganizma kültürü kullanılması gibi nedenlerden kaynaklanabileceği belirtilmiştir. Örneğin kolesterol hidroliz etmeyen veya safra asidini parçalamayan bakteri türünün kullanılması gibi. Kalın Bağırsak Kanserinin Azaltılması 1962 yılında laktik asit bakterilerinin antikarsinojenik etkiye sahip olduğu ileri sürülmüştür. Daha sonraki yıllarda hayvanlar üzerinde yapılan arıştırmalarda; deney hayvarları yoğurt ve yoğurda L. acidophilus, L.bulgaricus, L. casei, Bifidobakterium’un türleri gibi bakteriler ekleyerek beslenmiş, deney hayvanları üzerinde antikarsinojenik bir etki bulunmuş ve tümör riskinin azaldığı belirtilmiştir. Birçok araştırmada, probiyotik bakterilerin fazla miktarda ağızdan alımı sonucunda, istenmeyen bağırsak bakterilerinin oluşturduğu beta-glucuronidaz, azoredüktaz ve nitroredüktaz enzimlerinin azalmasını sağladığı belirtilmiştir. L. acidophilus’un fermente ürünlerle birlikte yenmesiyle bağırsaklarda kanserojenik maddelerin kanserojen maddelere dönüşümünde rol oynayan beta-glukoronidaz, nitroredüktaz ve azoredüktaz enzimlerinin düzeyinde iki ile dört kat azalma saptanmıştır. Probiyotik bakteriler kanser genlerinin aktivasyonundan sorumlu olan bakterilerin enzimatik aktivitelerinin düzenlenmesinde, kanser genlerinin bileşiminin ve toksik etkilerinin önlenmesinde yararlı oldukları kaydedilmiştir. Süt ürünlerinin, deney hayvanlarında tümör büyümesini baskılayan konjuge linoleik asitten anlamlı miktarlarda içerdikleri belirtilmiştir. İstenmeyen bakteriler, bağırsak normal pH’sının düşmesiyle laktik ve asetik asit ürettiklerinden dolayı, bağırsaklardan aminlerin ve amonyağın emilmesi azalır. Bu da kanser oluşumunda, tansiyon ve kolesterolün yükselişinde etkili olan nitroz aminlerin serumda artışına neden olur. Probiyotik bakteriler enterik bakterilerin aktivitelerini engelleyerek, serumda nitroz aminlerin artışını dolaylı olarak önlerler. İstenmeyen birçok bakteri türünün bağırsaklarda gıdalarla alınan kanserojen preküsörlerini aktive eden enzimleri üreterek, aktif karsinojen maddelerin oluşumuna neden oldukları belirtilmiştir. Probiyotik bakteriler, istenmeyen mikroorganizmaların çoğalmasını inhibe ederek bu enzimlerin oluşmasını engellerler. Bağışıklık Sistemine Etkileri Probiyotik bakterilerin canlı hücrelerinin bağırsaklarda bulunmaları halinde, bağışıklık sistemini uyardıkları ve kuvvetlendirdikleri belirtilmiştir. Spesifik laktik asit bakteri suşları ile fermente edilen süt ürünlerinin tüketilmesiyle bağışıklığı artıran peptidlerin üretiminde artış olduğu ve bunlardan bazılarının antitümör etkinliğe sahip oldukları belirtilmiştir. Bağışıklık sisteminin uyarılmasıyla serumda IgA gibi antikorların artması virüs, Clostridium, E. coli gibi patojenlere karşı vücudun dirençliliğinin arttığı kaydedilmiştir. Metabolizmaya Yardımcı Olmaları Probiyotik bakteriler, gıdaların sindiriminde bağırsaklara yardımcı olurlar ve sağlıklı bir metabolik aktivitenin oluşmasını sağlarlar. Bu şekilde beslenmeye ve büyümeye yardım ederler. Bağırsaklarda selüloz ve diğer sindirilemeyen gıda bileşenlerini parçalayarak sindirim sistemine yardımcı olurlar. Bağırsak Doğal Florasının Korunması Probiyotik bakteriler; yeni doğanlarda, antibiyotik kullanımında veya günlük yaşamın getirdiği koşullara bağlı olarak bozulan bağırsak doğal florasının oluşmasına yardımcı olurlar. İstenmeyen bakterilerin, mayaların ve küflerin çoğalmasını kontrol altında tutarak bağırsak doğal florasının bozulmasını engellerler. Vitamin Üretimi Probiyotik bakteriler bağırsak florasında yeterli sayıda bulunduklarında, vitamin ve amino asit sentezledikleri belirtilmiştir. Bu bakterilerin ürettiği vitaminlerin en önemlileri, tiyamin (B1), riboflavin (B2), piridoksin (B6) ve naftokinin (K)’dır. Bir araştırmada, B. bifidum’un bağırsak florasında bulunduğunda, bağırsaklarda B6 vitaminin %400 artığı belirtilmiştir. Gıdalara Katılması Bifidobacterium gibi probiyotik bakteriler, bebek yiyecek ve içeceklerinde katkı olarak kullanılabilmektedir. Bu bakteriler yeni doğanlarda koruyucu antimikrobiyaller, vitaminler, asetik ve laktik asit üreterek enterik enfeksiyonlara karşı korunmalarına ve beslenmelerine yardımcı olurlar. Probiyotik bakteriler ishalin önlenmesinde, kemoterapik veya diğer amaçlar için gıdalara katılmaktadırlar. Özetle Probiyotiklerin Faydaları Yiyeceklerle alınan toksik (zehirli) maddelerin detoksifiye edilmesine (vücuttan atılmasına), kabızlık sorununun giderilmesine destek olurlar. Ağız kokusu sorununun giderilmesine yardımcı olurlar. İnce ve kalın bağırsaklardaki kötü ve zararlı bakterilerin yerine geçerek, onları kontrol altına alıp, bağışıklık sistemini güçlendirerek bir çok hastalığa karşı vücut direncinin artmasına katkıda bulunurlar. Antibiyotik ilaç kullanımı nedeniyle doğal florası bozulan bağırsakların dengesini düzeltmeye yardımcı olurlar. B grubu ve K vitamini üretimini ve emilimini sağlarlar. Kalsiyumun bağırsaklardan emilimini artırıp; kemik erimesini (osteoporoz) önlerler. Kötü bakterilerin neden olduğu enfeksiyonları yavaşlatırlar. Vajinal florayı dengede tutarak, vajinal enfeksiyonlara sebep olan patojen mikroorganizmaların (Candida) gelişimini baskılarlar. İdrar yolu enfeksiyonlarına ve seyahatlerde ishale sebep olan E. coli bakterisinin gelişimini engellemeye yardımcı olurlar. Alerji belirtisini azaltırlar. Zehirli maddelerin vücuttan atılmasına ve cildin görünümünün iyileşmesine yardımcı olurlar. Sindirim kanalında sağlıklı bir bakteri dengesi oluşturup, bazı gerekli enzimleri üreterek sindirime katkıda bulunurlar. Laktoz ve protein sindirimini kolaylaştırırlar. Probiyotik mikroorganizmalar ile ilgili bazı hususlar henüz aydınlatılabilmiş değildir. Örneğin; probiyotik mikroorganizmaların vücut içerisinde bir organdan başka bir organa geçişleri ile ilgili olarak herhangi bir belge yoktur. Ayrıca, gıdalarla alınan probiyotik bakteriler ile ilgili hiçbir enfeksiyon olgusu literatürde yer almayıp, sadece Sacchoromyces boulardii `ye ait enfeksiyonun raporlarda yer aldığı görülmektedir. Kaynaklar: 1- www.sutas.com.tr 2- forummate.com 3- www.gencbilim.com 4- H.M. Timmerman, C.J.M. Koning, L. Mulder, F.M. Rombouts, A.C. Beynen (2004). Monostrain, multistrain and multispecies probiotics- A comparison of functionality and efficacy, International Journal of Food Microbiology, 96, 219– 233 5- Robert Penner, Richard N Fedorak, Karen L Madsen (2005). Probiotics and nutraceuticals: non-medicinal treatments of gastrointestinal diseases, Current Opinion in Pharmacology, 5(6):596-603.

http://www.biyologlar.com/vitamin-ureten-bakteriler

Biyoteknolojinin Tarımda Kullanılması ( Avantajları ve dezavantajları )

Biyoteknoloji özel bir kullanıma yönelik olarak ürün veya işlemleri dönüştürmek veya meydana getirmek için biyolojik sistem ve canlı organizmaları veya türevlerini kullanan teknolojik uygulamalardır. Geleneksel veya modern olmak üzere 2' ye ayrılır. Geleneksel biyoteknoloji; şarap yada peynir yapımındaki maya kullanımı, bazı deterjanlarda enzim kullanımı ve bazı antibiyotiklerin üretimi gibi canlı organizmaların yapılarının değiştirilmeden kullanıldığı teknolojilerdir Modern biyoteknoloji ise rekombinant DNA, nükleik asitlerin hücre veya organellere doğrudan enfeksiyonu, farklı taksonomik gruplar arasında uygulanan hücre füzyonu gibi doğal fizyolojik üreme, çoğalma ve rekombinasyon engellerini ortadan kaldıran ve klasik ıslah ve seleksiyon yöntemlerince kullanılmayan invitro nükleikasit tekniklerinin tamamı olarak adlandırılır. Modern biyoteknoloji 1970' li yıllardan başlayarak klasik ıslah yöntemleriyle, doğal üreme-çoğalma süreçleriyle elde edilemeyen değişikliklerin yapılmasını sağlamıştır. Modern biyoteknoloji teknikleri kullanılarak elde edilen organizmalara genetik yapısı değiştirilmiş organzimalar, gen transferiyle belirli özellikleri değiştirmiş bitki, hayvan yada mikroorganizmalara transgenik denir. Modern biyoteknoloji tıpta gen tedavilerinden, tarımda daha dayanıklı ve verimli ürünlerce, tekstil ve kozmetik sanayine kadar çok geniş bir yelpazede kullanılmaktadır. Modern biyoteknoloji özellikle bitkisel çalışmalarda rutin olarak kullanılabilir hale gelmiş hatta modern biyoteknolojinin son aşaması olan doğrudan gen transferi tekniğide kullanılmaya başlanmıştır. Gen transferi çalışmalarının basamakları sırasıyla, istenen genlerin bulunması, karakterize edilmesi, izolasyonu ve hedef organizmaya aktarılmasıdır. Yakın zamana kadar gen aktarımında kullanılan en önemli vektörler konakçı hücreye girme yolunu kendisi bulan genetik yapısı değiştirilmiş bakteri ve virüslerdi. Bunların herbiri bazı avantaj ve dezavantajlara sahip. Çünkü virüsler her zaman eklenmiş genin yanında kendi genlerinde bir kısmını etkili hale getirler ve bu durum konak hücrede istenmeyen sonuçlara neden olabilir. Bu yüzden bazı metotlar geliştirilmiştir. Bu metotlardan bazıları ağır metal tuzları kullanarak mikro enjeksiyon, organizmada belli bir hücre tipi tarafından alınacak şekilde yapılmış ince yağ kapsüllerinde taşınma, gun bombardment; bu teknikte ilgili genlerin üzerleri altın partikülleriyle kaplanır. Sonra bu yüklenmiş genler "gene-gun" denilen bir aletle bitki hücresine gönderilir. Burda önemli olan kriter, seçilen hücrenin veya dokunun transformasyona veya sonra tüm bitkide rejenerasyona neden olmalıdır. Diğer bir gen transfer tekniğinde gelişmiş bir bakteri olan Agrobacterium tumafaciens kullanılır. Bu bakterinin doğal bir özelliği tümörlü bazı bitkilere plosmid nakletmesidir (T-DNA). Virulant bakterinin bitki genomuyla birleşmesiyle transformasyon sonuçlanır. Bitki genomunda tümöre neden olan genlerle plosmidler yer değiştirir. Modern biyoteknoloji en geniş kullanım alanını tarımda bulmuştur. Bitkilerde bu metodlardan en çok bakteriler, virüsler ve gunbombardment kullanılır. Tarımsal biyoteknolojide başşlıca 2 amaçtan birincisi daha yüksek kalitede, daha sağlıklı ve besleyici değeri yüksek gıdalar üreterek özellikle tedavide kullanılacak gıdaların üretimiyle ilaç masraflarını minimuma indirmektir. Diğer amaç ise ülkelerin artan nüfusu için satın alabilecekleri temel gıdaların üretimi artırmaktır. (8) TARIMSAL BİYOTEKNOLOJİ UYGULAMALARI ve AMAÇLARI Ticari olarak en çok üretimi yapılan Bacillus thuringiensisden gen aktarılan transgenik, zararlılara dayanıkılı bitkiler; sap ve koçan kurduna dayanıklı mısır, yeşil ve pembe kurda dayanıklı pamuk, patates böceğine dayanıklı patates olup ayçiçeği, buğday ve domateste de bu tarz çalışmalar sürmektedir. Herbisitlere dayanıklılık kazandırılan ve ticari üretime sokulan soya, pamuk, mısır ve çeltiği yanı sıra buğday ve şeker pancarında da yakın gelecekte benzer özellikle kazandırılacaktır. Hastalık ve zararlılara dayanıklılığın aktarılmasıyla hem ilaçlama maliyetleri azaltılır hemde bitki strese girmeyeceği için verimde bir artış sağlanır. Herbisitlere dayanıklılığın kazandırılmasıyla tüm yabancı otlar ölürken bitki canlı kalır. Böylece masraflar düşerken verimde de bir artış sağlanır. Tarımsal biyoteknolojinin uygulamalarıyla yüksek oleik asit düşük linolenik asit içerikli soya, ayçiçeği, yer fıstığı çeşitleriyle, sabun ve detrjan yapımı için daha ucuz ham madde sağlayan kolza çeşidi üretime kazandırılmıştır. Sebze ve meyvelerde etilen sentezinin bloke edilmesiyle olgunlaşmanın geciktirilmesi dolayısıyla raf ömrünün uzatılması domateste başarılmıştır. Çilek, kiraz, muz ve ananasta bu tarz çalışmalar sürmektedir. Kaliteye yönelik bir diğer uygulamada ise aromanın arttırılması için kuru madde içeriği yüksek domates elde edilmiştir. Besin değeri yüksek gıda üretimi amacıyla yapılan biyoteknolojik çalışmalarda ise A vitamini ve demir içeriği yüksek çeltik çeşidi, protein içeriği yüksek tatlı patates, antioksidont içeriği yüksek sebze ve meyveler elde edilecektir. Ayrıca yakın gelecekte bitkilerde immunoglobulinlerin üretimi gerçekleşebilecektir. Biyolojik olarak parçalanabilir sentetik plastik üretimi mısır ve kolzoda çalışılmaktadır. Bioreaktör bitkilerin üretimide bu alandaki son gelişmelerden birisini oluşturmaktadır. Diğer taraftan transgenik ürünler kendi türlerine ait olmayan genleri de taşıdıkları için bazı risklerde söz konusudur. Transgenik ürünlerin üzerinde risk oluşturma ihtimali bulunan başlıca alanlar insan ve hayvan sağlığı, biyolojik çeşitlilik, çevre ve sosyo-ekonomik yapıdır. Uygulanan biyoteknolojik yöntemlerle bitkisel ürünlere aktarılan genler bitki, bakteri ve virüs kaynaklıdır. Gen aktarımı veya değişikliğe uğratılması sırasında işaretliyici olarak antibiyotik, herbisit, dayanıklılık genleri kullanılır. Gen aktarımı ile birlikte diğer organizmalardan hastalık ve alerji yapacak özelliklerin taşınması ihtimali transgenik ürünlerin birincil ve ikincil metabolik ürünleri içinde istenmeyen biyokimyasal ürünler bulunması ihtimalini ortaya çıkarır. Ayrıca antibiyotik dayanıklılık genlerinin insan yada hayvan bünyesine geçmesi nedeniyle dayanıklılık oluşması, transfer edilen genlerin insan bünyesindeki bakterilerle birleşme ihtimali, virüs kaynaklı genlerin dayanıklılık genini diğer virüslere transfer etme ihtimali insan ve hayvan sağlığı açısından önemli risklerdendir. Bitkilere aktarılan yeni özellikler, salıverildikleri çevrede bitki sosyolojisinin bozulmasına, doğal türlerde genetik çeşitliliğin kaybına, ekosistemdeki tür dağılımının ve dengenin bozularak genetik kaynakları oluşturan yabani türlerin doğal evoluasyonlarında sapmalara sebep olabilir. Eğer yabani otlara dayanıklılık geni, transgenik bitkinin yabani türlerine geçerse, bu türlerle yapılacak mücadelenin zorluğu açıktır. Ayrıca herbisitlere dayanıklı hale getirilmiş transgenik çeşitlerin üretildiği bir alanda bir yıl sonra kendi gelen bitkiler, o yıl ki diğer bir ürün için yabancı olacak ve herbisitlerle mücadeleleride güç olacaktır. Aktarılan yeni özelliklerden veya kullanılan teknolojide taşıyıcı olan veya değiştirilerek çevreye bırakılan mikroorganizmaların toprak mikroorganizma yapısına etkiside tereddüt yaratır. Eğer geliştirilen mikroorganizmalar çevreye hakim olursa doğal ortam bozulur. Çevreye ve biyo çeşitliliğe olabilecek bir diğer etkide tek yönlü kimyasal kullanılmasından dolayı tek yönlü evoluasyonun teşvik edilmesidir. Böylece ortamda tek yönlü bir flora meydana gelecek ve yine çevrede bir dengesizlik meydana gelecektir. Ekonomik olarakta transgenik tohumlar normal tohumlardan daha pahallıdır ve bu ürünler çoğunlukla tozlaşan hibrit türlerdir. Yani her yıl tohum yenilemesi gerekir. Yüksek fiyat nedeniyle tohumluk alımını uzun süre devam ettiremeyen küçük çiftler bu durumdan zarar görecektir. Diğer bir husuta transgenik ürünlerin tüketiciler tarafından tercihi ve kabul edilmesidir. Yani tüketicinin ne yediğini bilmesi ve ona göre tercihi yapabilmesi için bu ürünlerin etiketlendirilmeleri gerekir.(8) Sonuç olarak transgenik ürünlerin avantaj ve dezavantajları arasında bir oran kurmalı ve gerçekten tarımsal bir soruna çözüm olup olmadığı araştırılmalı ve ülkenin sosyo-ekonomik yapısı göz önüne alınarak, 21. yüzyılda 6 milyarın üzerine çıkacak dünya nüfusunun beslenmesi için tarımsal biyoteknoloji yegane çözüm olarak görülmektedir. Ancak bu alanda, çevremize ve gelecek nesillere etkileri, olabilecek risklerin minimuma indirilmesi ve bunun için gerekli önlemler alınması gerekir. REFERANSLAR: 1. Prof. Dr. F.V. Sukon Biyomühendisliğe Giriş Ders Notları 2. Doç. V. Eser, S. İbiş, N.Sönmez 4. Tüketici Konseyi Toplantısı Tarım Bakanlığı Araştırması 3. T.M. Klein, R. Arentzen, P. A. Lewis and S. Fitzpatrick-McElligott, Transformation of microbes, plants and animals by particle bombardment.Bio/Technoloy 10 ( 1992 ), pp. 286–291. Abstract-EMBASE Abstract-MEDLİNE Abstract-BIOTECHNOBASE 4. M. D. Chilton, M. H. Drummond, D. J. Merlo, D. Sciaky, A. L. Montoya, M. P. Gordon and E. W. Nester, Stable incorporation of plasmid DNA into higher plant cells: the molecular basis of crown gall tumorigenesis. Cell 11 ( 1977 ), pp. 263–271. Abstract-MEDLİNE Abstract-EMBASE 5. P.Zambryski, H. Joss, C. Gentello, J. Leemans, M. Van Montagu and J. Schell, Ti plasmid vector for the introduction of DNA into plant cells without alterationof their normal regeneration capacity. EMBO J. 2 (1983 ), pp. 2146–2150 6. Bevan, Agrobacterium vectors for plant transformation. Nucl.Acids Res. 12 ( 1984 ), pp. 8711–8721. 7. J. Schell, Transgenic plants as tooks to study the molecular organization of plant genes. Science 237 ( 1987 ), pp. 1176–1183 8. Dr. S. Kefi Tarımsal Araştırmalar Hazırlayan: Berna OLTULU   Danışman: Sacide PEHLİVAN

http://www.biyologlar.com/biyoteknolojinin-tarimda-kullanilmasi-avantajlari-ve-dezavantajlari-

Transplantasyon immünolojisi

TRANSPLANTASYON İMMÜNOLOJİSİ VE TARİHÇESİ İmmünoloji İnsan İmmün (Bağışılık) sistemi zararlı olan organizmaları vücuttan uzaklaştırmaktadır. Bu sistem, vücudumuzun yaklaşık iki trilyon hücresini koruyan, antibadi ve sitokinler üreten hareketli askerleridir. Virüs, bakteri ve tümör hücreleri veya transplante edilmiş hücreler gibi yabancı ya da vücuda ait olmayan hücrelerle koordineli bir biçimde hızlıca çok yönlü bir atağa geçmektedir. Her ne kadar çevre immün cevabı stimüle etse de, immüniteyi kontrol eden genlerdir. Genler antibadi ve sitokinlerin hücre yüzeyini spesifik olarak kodlamaktadır. Genler aynı zamanda sitokinleri tutan hücre yüzey proteinlerini kodlamaktadır (Antijen başka bir bireyde immün cevaba neden olan bir moleküldür. Antijenler genellikle protein veya karbohidratlardır). Yabancı antijen, vücuda ait olmadığından dolayı, bir immün cevaba neden olmaktadır. Genler immüniteyi kontrol ettiğinden, oluşan değişiklikler immünolojik fonksiyonları engelleyebilmektedir. Immünitede oluşan bozukluk, otoimmün hastalıklara, allerjiye ve kansere neden olabilmektedir. Genlerin immünitede büyük rol oynamasından dolayı, teknoloji ile birlikte, hastalıkların tedavisi amacıyla immün sistem güçlendirilmeye çalışılmaktadır. Transplantasyon nedir nasıl yapılır Transplantasyon yöntemi günümüzde oldukça yaygındır. Kalp, böbrek ve başka organların bir kişiden diğerine nakledildiğini sık sık duyarız. Dişlerin transplantasyonunda iki yöntem vardır: Aynı kişiden ve başka kişiden transplantasyon. Aynı kişide bir diş bir çene yarısında dizi dışı bulunur ve normal diş sayısına oranla artıklık gösterirken, diğer tarafta herhangi nedenlerle bir dişin dizide eksik olduğu da görülebilir. Bu durumda iki olasılık vardır: Ya bir diş yuvası önceden hazırdır ya da operatör bu dişi transplante edebilmek için ilkin böyle bir yuva oluşturmalıdır. Bu durumda en uygunu, önceden hazır olduğu için yeni çekilmiş bir dişin boş olan alveolüdür. Ayrıca aynı kişiden transplantasyon dışında, dişin başka kişiden alındığı, kişiden – kişiye transplantasyon da vardır. Kişiden – kişiye transplantasyon çok eskidir de. Örneğin, ortaçağda varlıklı bir bayan bir dişini yitirdiğinde bir kölenin benzer dişini çektirttiği sık sık görülürdü; sonra bu yabancı diş çenesine transplante edilirdi. Oysa her zaman uygun dişli bir köle bulunamazdı. Bayan böyle durumlarda da transplantasyon amacıyla uygun dişini çektirtecek olan bir başka kişiye belirli bir tutar para önerirdi. Kişi artık günümüzde transplantasyonda biraz daha dikkatlidir. Benimsenme olasılığı için en uygunu; plantat-vericisi ve plan-tatralıcısının kardeşler, ana-baba, çocuklar gibi yakın akraba olmalarıdır. Ancak yabancı plantat-vericisi plantat-alıcısıyla aynı kan grubundan ise, bu plantat-vericisinin dişi de kullanılabilir. Kan uyuşmazlığının göz önüne alınmaması eskiden bir çok başarısızlıklara neden olurdu. Tüm plantasyonlarda plantat kökünün vücutta yabancı madde sayılarak atılma tehlikesi vardır. Bu nedenle, transplantat’ın sürekliliği olabildiğince uzatılsın diye gereken her şey yapılmalıdır. Genel diş ve kök tedavisi tıpkı replantasyondaki gibi uygulanır. Çoğu zaman başarı replantasyondaki kadar iyi değildir ve atılmazlığı bütünüyle plantat-alıcısmın kendisine bağlıdır. Tüm transplantasyonlarda ope­rasyondan sonra şineleme son derece önemlidir. Transplantasyon Sonrası Immün Sistemin Yeniden Programlanmasında Monoklonal Antikorların Kullanımı Transplantasyon sonrası immün sistemin yeniden yapılanması sürecinde temel amaç, graftı T lenfositlerinin yıkıcı etkilerinden korumaktır. Monoklonal antikorlar da bu amaca yönelik olarak mevcut immünsüpresif ilaçlara yardımcı olarak kullanılmaktadır. Bazıları indüksiyon tedavisinde, rejeksiyon önlenmesine yönelik olarak, bazıları da dirençli akut rejeksiyon tedavisinde kullanılırlar. Monoklonal antikorların en yaygın kullanılanları basiliksimab ve daklizumabdır. Bu IL-2 reseptör blokerleri, akut rejeksiyon oranlarında önemli azalmalar sağlamaları ve yan etkilerinin olmayışı nedeni ile oldukça benimsenen ilaçlardır. Bunların yanında rituksimab (anti-CD20) ve Campath (anti-CD52) gibi ajanlar da giderek daha çok kullanılmaya başlanan monoklonal antikorlardır. Transplantasyon immünolojisinde, T hücre aktivasyonunda görevli, bazı yeni aracı moleküllerin bulunması monoklonal antikorların da giderek çeşitleneceğini göstermektedir. Transplantasyon Hakkında Sık Sorulan Sorular 1. Canlı veya kadavra vericilerden transplantasyon yapılacak adayların hazırlıkları arasında bir fark var mıdır? Hayır, Kadavra böbreği bekleme listesindeki adaylar da tıpkı canlı vericiden transplantasyon yapılacak adaylar gibi incelenir. Ancak bir kadavra böbreği bulunma olasılığının ne zaman gerçekleşeceği belli olmadığı için. zaman geçtikçe önceden yapılmış muayene le bazı laboratuar incelemelerinde değişiklikler olabilir. Bu nedenle kadavra böbreği bekleme listesindeki hastaların belli aralıklarla, fizik muayene ve laboratuar incelemeleri yineletmeleri ger eklidir. Kısaca; kadavra böbreği bekleyen hastalar ameliyata her an hazır durumda olabilir. 2. Transplantasyon adayı hastaların kendi böbreklerine herhangi bir müdahale yapılır mı? Genellikle hastaların kendi böbreklerine dokunulmaz. Ancak, inatçı hipertansiyon, böbreklerde tedaviye dirençli infeksiyon, idrarın mesaneden böbreğe taşması, çok büyük kistik böbrekler söz konusu ise, hastalıklı böbrekler çıkarılır. Bu ameliyat bazı merkezlerde transplantasyondan önce yapılır ve 3-4 hafta sonra yeni böbrek takılır. Bazı merkezlerde ise böbrek nakli ameliyatı yapılırken aynı anda hastanın kendi böbrekleri de çıkarılır. Yalnız her iki ameliyatın aynı seansta yapılması oldukça uzun sürer ve biraz daha risklidir. 3. Kadavra böbrek listesine kayıtlı hastalar için bekleme süresi ne kadardır? ÜIkemizde bugün için kesin bir süre belirtmek mümkün değildir. Listeye çok yeni giren bir hasta, uygun tipte böbrek çıkması ile kısa zamanda transplantasyon şansına kavuşabileceği gibi bazen de uygun bir böbrek çıkmadığı için uzun süre beklenebilir. Olanaklar elverdiğince, uygun böbrek çıktığında daha uzun süre beklemiş olan hastaya öncelik tanınır. Halkımızın bilinçlenerek daha fazla organ bağışında bulunması bekleme süresini kısaltacaktır. Halkımızın bilinçlenerek daha fazla organ bağışında bulunması bekleme süresini kısaltacaktır. 4. Kadavra böbrek bulunduğunda hastalara nasıl haber verilir? Transplantasyon ünitesinde bilgisayarda kadavra böbreği bekleyen tüm hastaların telefon numaraları kayıtlıdır. Uygun bir kadavra böbreği çıktığında günün herhangi bir saatinde size telefonla haber verilere!,, transplantasyon ünitesine gelmeniz istenecektir. Size daha kolay ve kısa sürede haber verebilmemiz için. varsa, birden fazla telefon numaranızı ve yakınlarınızın da telefon numaralarını bildirmeniz faydalıdır. Telefon numaranızda bir değişiklik olduğunda bunu hemen üniteye bildirmelisiniz. 5. Böbrek bulunduğu haberi ile transplantasyon ünitesine çağrılmanız mutlaka böbreğin size takılacağı anlamına mı gelir? Hayır. Bir kadavradan elde edilen iki böbrek için yaklaşık 10 hasta üniteye çağrılmaktadır. Burada, hemen yapılan fizik muayene ve acil laboratuar incelemeleri sonucunda, ünite hekimlerinden oluşan bir kurul tarafından karar verilmekte ve durumu en uygun olan 2 hastaya böbrek takılmaktadır. Böbrek takılmayanlara ise bunun nedenleri açıklanır ve hastalar evlerine gönderilir. 6. Kadavra böbrek, transplantasyon için haber verildiğinde neler yapılmalıdır? Öncelikle bu saatten itibaren hiçbir şey yenilmemeli ve içilmemelidir. Bekleme listesindeki bu hastanın küçük bir çantada, kişisel eşyaları (pijama, terlik gibi) her an hazır olmalıdır. Özelikle şehir dışından gelecek hastaların telaşa kapılmamaları ve hazırlanmakla vakit kaybetmemeleri için önemlidir. Çağrıldığınızda yanınıza eşyaları da alarak en hızlı ulaşım aracı ile. uzak bir şehirde oturmaktaysanız mümkünse uçakla, üniteye gelmelisiniz. 7.Kadavra böbreğin size takılmasına karar verildiğinde ne tür işlemler yapılacaktır? Bu karardan sonra, artık hastanede kalacaksınız. O gün diyalize girmediyseniz acil olarak hemodiyalize alınacak ve bitiminde transplantasyon ünitesine yatırılacaksınız. Gerekli ameliyat hazırlıkları ve transplantasyon öncesi ilaç uygulamalarından sonra böbrek nakli ameliyatına alınacaksınız. Artık yeni böbreğiniz takılacak ve sizin için yeni bir yaşam dönemi başlayacaktır. TRANSPLANTASYON İMMÜNOLOJİSİ TARİHÇESİ Prof.Tbp.Kd.Alb.Ali ŞENGÜL Tarihçe; MÖ 200: Çin?de Kalp nakilleri denemeleri MÖ 600: otolog deri transplantasyonları (Hindu cerrah Sushruta- yüz plastik cerrahisi) Modern transplantasyon dönemi ise 18. Yüzyılın sonlarında deneysel cerrahinin babası olarak da bilinen Hunter tarafından başlatılmış olarak kabul edilmektedir. Carrel 1912?de vasküler anastomoz tekniği ile nobel ödülü almış ve teknik olarak başarılı nakillerin yolunu açmıştır. Daha sonra biyolojik özelliklerden immün sistem üzerine yoğunlaşılmış ve gerçek başarı ancak immünolojik gelişmelerden sonra mümkün olabilmiştir. İlk kan transfüzyonları 17. yy?da hayvanlar ve insanlar arasında denenmiş ve alınan korkunç sonuçlar nedeniyle bu konu 150 yıl boyunca bir daha gündeme gelememiştir. 1900 yılında Landsteiner ve Miller insanları kanlarındaki aglutininlere göre gruplandırarak transfüzyonları tekrar gündeme getirirken, doku tiplendirmesinin de yolunu açmışlardır. 1923 de Williamson homolog ve otolog graftlemeyi kıyaslayarak doku tiplendirmesi için çalışmaların başlamasına sebep olmuştur. 1930 larda moleküler genetikçi George Snell farelerde histokompatibilite lokusu olan H-2 lokusunu keşfetmiştir. 1937 de Gorer insanlarda ilk histokompatibilite antijenini tanımlamış ve self-nonself ayrımını izah etmiştir. 1943 de Medawar tavşanlarda deri grefti çalışmaları yapmış ve otograft-homograft ayrımında akraba olanlarla olmayanların farklılığını ortaya koymuştur. II. Dünya savaşında yanıklı hasların tedavisinde plastik cerrah Gibson ile işbirliği yaparak immün yanıtın 3 temel özelliğini (tanıma, yıkım ve hafıza) tanımlamıştır. 1952 de Dausset multiple kan transfüzyonu yapılanlarda lökoaglutininler oluştuğunu gözlemleyerek insanlarda HLA lokuslarının keşfine giden yolu açmıştır. 1964 de Terasaki ve arkadaşları sitotoksik antikorları kullanarak mikrolenfositotoksisite yöntemi ile antijenlerin serolojik olarak tanımlanmasını sağlamışlardır immünosupresyon 1950 lerde John Loutit tarafından total vücut radyasyonu (TBI) ile farelerde denenmiş, 1958 de Murray (Boston) ve Hamburger (Paris) tarafından ayrı ayrı insanlara uygulanmıştır. 1960 larda AZT geliştirilmiş ve transplantasyonda kullanılmış. Ardından Starzl AZT ile kortikosteroidi kombine ederek başarının artmasını sağlamıştır. 1960 ve 1970 lerden itibaren poliklonal antikor teknolojisi, siklosporinin keşfi, 1980 lerde monoklonal antikor teknolojisinin keşfi ile bu konudaki gelişmeler hız kazanmış, daha modern immünosupressif ajanların keşfi ile neredeyse doku uyumuna bakılmaksızın transplantasyonlar yapılmaya başlamıştır. TANIMLAR Transplantasyon: Donör / verici : Recipient / alıcı: Ortotopik transplantasyon Heterotopik transplantasyon. Rejeksiyon / red Birincil rejeksiyon ikincil rejeksiyon (Hafıza). TANIMLAR (2) Otolog greft / otogreft Oto transplantasyon / otolog transplantasyon Isogreft / syngeneik greft / syngreft Allogeneik greft / allogreft Xenogeneik greft / xenogreft Alloantijen Xenoantijen alloreaktif antikor xenoreaktif antikor ALLOGENEİK TANIMANIN MOLEKÜLER TEMELİ Haplotip identik, inbred farelerde yapılan hücre ve doku nakillerinde rejeksiyon oluşmamaktadır. Farklı inbred fareler arasında yapılan transplantasyonlarda hemen daima rejeksiyon oluşmaktadır. Farklı iki inbred fareden olan F1 dölünde, anne ve babadan alınan greftlerde rejeksiyon oluşmamaktadır. Farklı iki inbred fareden olan F1 dölünden alınan greft, anne ve babaya transplante edildiğinde rejeksiyon oluşmaktadır. MHC / HLA Minör doku uygunluk antijenleri MHC molekülleri dışındaki polimorfik alloantijenler daha zayıf ve daha yavaş bir rejeksiyon reaksiyonu oluştururlar. Bunlara Minör doku uygunluk antijenleri (minor histocompatibility antigens) adı verilmektedir. Birçok minör doku uygunluk antijeni self veya greft MHC molekülleri tarafından işlenip T hücrelerine sunulabilen protein yapısındaki moleküllerdir. MHC moleküllerinden farklı olarak bu minör antijenlerin tanınabilmesi için işlenip MHC molekülleri tarafından sunulmaları gereklidir. ALLOGENEİK TANIMANIN HÜCRESEL TEMELİ Rejeksiyon reaksiyonu, transplante edilen dokuların hem CD4+ ve hem de CD8+ hücreler tarafından tanınması sonucunda gelişir. Değişik T hücre popülasyonlarının alloantijenleri tanımalarını anlamak için mikst lenfosit reaksiyonu (MLR) güzel bir model olarak kullanılmaktadır. MLR ile şu sonuçlara ulaşılabilir: Eğer hücrelerin MHC-sınıf I antijenleri arasında farklılık yoksa CD8+ CTL oluşmayacaktır. Uyarıcı hücrenin MHC-Sınıf-I antijenlerine karşı antikorlar kullanılırsa, hücre lizis’den korunacaktır. Eğer uyarıcı ve uyarılan hücreler arasında MHC Sınıf-II antijen farklılığı varsa alloreaktif CD4+ T hücreleri uyarılacak ve prolifere olarak sitokin üretecektir. Uyarıcı hücre ile aynı MHC sınıf-II antijenlere sahip üçüncü grup hücre kültüre eklenirse alloreaktif CD4+ T hücreleri tekrar uyarılacaktır (İkincil MLR). Uyarıcı hücrenin MHC sınıf–II antijenlerine karşı antikor kullanılırsa, bu antikorlar ikincil MLR’nu önleyecektir. Rejeksiyon Rejeksiyonun değişik formlarının olduğu ve bunların her biri için farklı bulgu ve belirtilerden oluşan tanımlar olduğu bilinmektedir. Ancak çoğu kez bunları biri birinden kesin olarak ayırt edecek kriterler bulunamaz. Gerçekte aynı greftte akut ve kronik rejeksiyon sıklıkla birliktelik gösterir. Sınıflandırmada, transplantasyonu takibeden sürenin uzunluğundan çok, major sınıflandırma kriteri olarak histolojik değişikliklere dikkat etmek gereklidir. Hiperakut rejeksiyon (HAR) : Greft damarlarında hızlı trombotik oklüzyon ile karakterize bir tablodur. Anastomozu takiben dakikalar içerisinde başlar. Özellikle IgM tipi antikorların endotele bağlanarak komplemanı aktive etmesi söz konusudur. Endotelden Von Willebrand faktör sekrete edilir. Kompleman aktivasyonu da endotel hücre hasarına yol açarak koagülasyonu başlatır. Subendotelyal bazal membran proteinlerinin de trombositleri aktive etmesi sonucunda tromboz ve vasküler oklüzyon oluşarak, organda kalıcı iskemik hasar meydana gelir. Hiperakut rejeksiyon (HAR) : (2) IgM türü allo antikorlar: Bu tür antikorlara en iyi örnek ABO kan grubu antikorlarıdır. Normal barsak florasında bulunan bazı bakterilerin karbonhidrat antijenlerine karşı geliştiği düşünülen doğal antikorlar. Doğal Xenoantikorlar. IgG izotipinde alloantikorlar: Eski transplantasyonlar veya multiple gebelik durumlarında oluşurlar. Bu antikorlar Lenfosit Cross Match (LCM) ile ortaya çıkarılabilir. AKUT REJEKSİYON Transplantasyondan sonra 1 hafta ile 4 ay arasında ortaya çıkar ve ilk yıldan sonra da ataklar görülebilir. a) Akut Sıvısal Rejeksiyon : Akut sıvısal rejeksiyon, greft kan damarlarındaki bazı hücrelerde nekroz ile karakterize bir durumdur. Histolojik olarak hiperakut rejeksiyondaki trombotik oklüzyondan çok bir vaskülit sözkonusudur. Akut sıvısal rejeksiyondan endotelyal hücre antijenlerine karşı gelişmiş IgG izotipinde alloantikorlar sorumludurlar. Bu antikorlar kompleman aktivasyonuna da yol açarak etkili olurlar. Bu olaya lenfositlerin de katılması nedeniyle alternatif bir şekilde “akut, vasküler rejeksiyon” olarak da isimlendirilmektedir. Akut Hücresel Rejeksiyon : Bu tip rejeksiyon parenkimal hücrelerde nekroz ile karakterize ve genellikle lenfosit ve makrofaj infiltrasyonu ile birliktedir. Bu infiltrasyondaki lökositler greft parenkim hücrelerinin lizis’inden sorumludurlar. Akut hücresel rejeksiyondan birçok farklı effektör mekanizma sorumlu tutulabilir: CTL’e bağlı lizis, Aktive makrofajlara bağlı lizis (geç tip aşırı duyarlılık reaksiyonunda olduğu gibi), Doğal öldürücü (NK: Natural killer) hücre lizisi. KRONİK REJEKSİYON : Normal organ yapısının kaybolduğu, fibrozis ile karakterize bir durumdur. Patogenezi akut rejeksiyona oranla daha az anlaşılmıştır. Fibrozis, akut rejeksiyondaki hücre nekrozunun iyileşme sürecinde gelişiyor olabilir. Kronik geç tip aşırı duyarlılık reaksiyonunda olduğu gibi aktive makrofajların, trombosit kaynaklı büyüme faktörü gibi mezanşimal hücre büyüme faktörü salgılaması ile ya da kan damarlarındaki hasarlara bağlı olarak ortaya çıkan kronik iskemiye bir yanıt şeklinde gelişmesi ihtimali de vardır. Kronik rejeksiyonun bir başka formu, musküler arterlerde intimal düz kas proliferasyonu ile karakterize olan formdur. Bu düz kas proliferasyonu da geç tip aşırı duyarlılık reaksiyonunun bir sonucu olarak gelişebilmektedir. Greftteki damar duvarlarında bulunan alloatijenlerle uyarılan lenfositlerin makrofajları uyararak, düz kas hücresi büyüme faktörü salgılanmasına yol açtıkları düşünülmektedir Bu form özellikle renal ve kardiyak transplantasyonlarda görülmüştür. Bu şekilde gelişen bir arterioskleroz geç tip greft kayıplarındaki en önemli sebeplerden biridir. Birçok olguda arteriel hasardan önce herhangi bir histolojik bulgu tespit edilmemiştir. ALLOGRAFT REJEKSİYONDAN KORUNMA VE TEDAVİ: İmmün sistemi tam olarak fonksiyonel bir alıcıya aktarılan bir allograft eninde sonunda mutlaka rejeksiyonun bir şekli ile karşılaşacaktır23,24. Rejeksiyondan korunmak ya da rejeksiyonu geciktirmek için gerek klinik çalışmalarda, gerekse deneysel modellerde iki yöntem geliştirilmeye çalışılmıştır: Greftin immünojenitesini azaltmak Alıcının immün sistemini baskılamak Dokuların immünojenitesi Kemik iliği Deri Gastrointestinal kanal Langerhans adacıkları Kalp Böbrek Karaciğer Greftin immünojenitesini azaltmak: İnsanlardaki transplantasyonlarda graft immünojenitesini azaltmak için takip edilen ana strateji, donör ve alıcı arasındaki alloantijenik farklılıkları minimalize edecek bir seçim uygulamaktır. HAR’dan korunmak için donör ve alıcının ABO kan grubu antijenlerinin daima uyumlu olmasına dikkat edilmektedir. MHC moleküllerinin allelik farklılıklarının hem sınıf-I ve hem de sınıf-II lokusları bakımından mümkün olduğu kadar az olmasına ya da tamamen uygun olmasına dikkat edilmekte, bu amaçla donör ve alıcının HLA antijenlerini belirleyen test yöntemleri, moleküler düzeyde analiz yöntemleri ile geliştirilmektedir. Greftin immünojenitesini azaltmak (2) Kan grubu ve HLA tiplemeleri yanında mevcut bir immünizasyon varsa bunun tespiti de çok önemlidir. Bu amaçla hücresel immünizasyonun araştırılması için mikst lenfosit reaksiyonu (MLR) testi yapılmaktadır. Sıvısal bir immünizasyon için ise dolaşan antikorların varlığının araştırılması önemlidir. Lenfosit Cross Match (LCM) Panel reaktif Ab (PRA) Alıcının immün sistemini baskılamak: Greft dokularına karşı reaktif antikorların varlıklarını belirlemek ve plazmaferez gibi yöntemlerle bu antikorları azaltmak. Transplantasyondan önce alloantijenler vererek allografta tolerans oluşturmak: İmmünosupressif tedavilerle T hücrelerini baskılamak veya lizise uğratmak: İMMÜNOSUPRESYON Kortikosteroidler, Metabolik toksinler (azathioprine, cyclophosphamide v.b.), lenfoid dokuların irradiasyonu, spesifik immünosupressif ilaçlar (Cyclosporine, FK506 v.b.), T hücre yüzey moleküllerine spesifik antikorlar kullanılmaktadır. Graft Versus Host Hastalığı (GVHD) İmmünosupressif alıcıda yerleşme fırsatı bulan donör kaynaklı lenfositlerin alıcı dokularına karşı reaksiyon vermesiyle ortaya çıkar. İmmünosupressif kişilere iatrojenik olarak verilmiş immünopotent hücrelerle de ortaya çıkabilir. (Kan transfüzyonu, solid organ transplantasyonları v.b.) Allogenik kemik iliği transplantasyonunun önündeki en büyük engeldir. GVHD Deri, Gastro-intestinal sistem, karaciğer, akciğer başlıca hedef organlardır. Akut reaksiyonlar post-transplant 7-80 günlerde, Kronik formlar ise 3. Aydan sonra ortaya çıkar. Solid organ transplantasyonları sonrasında oluşan GVHD’da transplante organ self kabul edildiğinden o organa karşı reaksiyon oluşmaz. Ortaya çıkan patolojilerin GVHD’na ait olup olmadığını destekleyecek en önemli bulgu periferik kanda kimerizm araştırarak elde edilebilir. Bunun yanında daha invaziv bir yöntem olan Biyopsi de çok değerli bilgiler verebilir. TRANSPLANTASYON ve İMMÜN YANIT Prof. Dr. Mahmut Nezih Çarin İstanbul Tıp Fak. Tıbbi Biyoloji ABD, Transplantasyon Ünitesi MHC gen bölgesi 6. kromozom (6p21.31) üzerinde yerleşmiş olup, yaklaşık olarak 4 Mbp lik bir yer kaplar. En uzun haplotype (110-160 kb) DR53 grup haplotiplerdir. Jan Klein 1977 yılında Sınıf I, II ve III olmak üzere ilk tanımlamayı yapmıştır. Günümüzde HLA sınıf III’ e ait olan bölgenin telomerik ucundaki 0.3 Mbp kısmın sınıf IV bölgesi olarak isimlendirilmesi önerilmektedir. Klasik HLA antijenleri sınıf I geni icindeki HLA-A, -B, -C bölgesinde ve Sınıf II geni içindeki HLA- DR, -DQ, -DP bölgesinde kodlanır. Tüm sınıf I genler 3-6 kb, sınıf II genler ise 4-11 kb uzunluktadır. Klasik antijenleri kodlayan genler dışındaki sınıf I bölgesindeki diğer genler: HLA-E, -F, -G, -H, -J, -K, -L olup, bunlar arasından sadece HLA-E,- F,-G eksprese olmaktadır. Sınıf III bölgesinin ise gen yoğunluğu oldukça fazla olup bunların bir kısmı immün sistem ile ilişkili değildir. Sınıf II bölgesinde klasik antijenleri kodlayan genlerin yanısıra HLA-DM, -DN, -DO, TAP1, TAP2, LMP2 ve LMP7 gibi gen bölgeleride bulunmaktadır. İmmunolojik ve nonimmunolojik fonksiyonu olan bir dizi genden oluşan MHC bölgesi ilk kez farelerdeki transplantasyon çalışmaları ile Peter Gorer tarafından 1937 yılında ortaya çıkarılmıştır. Bu genlerin ürünleri olan moleküller 1958 yılında Jean Dausset tarafından (HLA-A2) tanımlamış, aynı yıl van Rood ve arkadaşları HLA-BW4 ve BW6 antijenlerini ve kan transfüzyonu yapılmış kişilerin ve çok doğum yapmış kadınların serumlarında lökositlere karşı oluşmuş antikorları göstermişlerdir. İlk doku antijenleri lökositlerde saptandığı için insan lökosit antijenleri (Human Leukocyte Antigens = HLA) olarak tanımlanmışlardır. Daha sonraki yıllarda eritrositlerin dışında bütün vücut hücrelerinde bulundukları ve çok önemli oldukları anlaşılarak bu grup antijen sistemi MHC molekülleri veya MHC antijenleri olarakta isimlendirilmiştir. MHC genel bir isimdir ve her bir türün ayrı bir MHC simgesi vardır . MHC molekülleri graft rejeksiyonun temel belirleyicileridirler. Bu nedenle aynı MHC moleküllerini eksprese eden bireyler birbirlerinin doku graftlerini kabul edebilirler veya farklı MHC gen bölgelerine sahip bireyler arasında graft rejeksiyonu gelişir. Bu lokusun keşfinden ancak 20 yıl sonra immun cevapta MHC’nin önemi ortaya çıkarılmıştır. Hugh McDevitt ve arkadaşları 1960’larda kobay ve fareler üzerine yaptıkları çalışmalarda basit polipeptidler ile yapılan immunizasyona karşı antikor oluşmadığını ve gelişen immun yanıtsızlığın MHC bölgesinin haritalanması ile otozomal dominant bir özellik olduğunu buldular. İmmun yanıtı kontrol eden genlere de İmmun yanıt genleri (Immune response =Ir ) adı verildi. Ir genlerinin protein yapıdaki antijenlere antikor yanıtında gerekli olan Th (T helper = yardımcı T) lenfositlerinin aktivasyonunu kontrol ettiğini gösterdiler. 1970’lerin sonunda MHC genlerinin protein antijenlere karşı olan esas rolü anlaşıldı. Her iki HLA antijen yapısı da iki yan yana alfa heliksi tarafından oluşturulan, hücre membranına distal konumda benzer bir girintiye sahiptir. Bu girintilere hem kendi antijenlerinden hem de yabancı antijenlerden kaynaklanan peptid antijenleri bağlanır. Böylece HLA antijenleri hem kendi hem de yabancı peptidleri T lenfositlerine sunma görevindeki moleküller olarak immün yanıt oluşumunda kilit bir fonksiyona sahiptir. Ayrıca HLA antijenlerinin kendileri de allogeneik transplantasyon, transfüzyon ve hamileliklerde güçlü immün yanıtları tetikleyebilen, fazlasıyla immünojenik moleküllerdir. MHC Sınıf I molekülleri Sınıf I molekülü a zincirinin b2 mikroglobulin ile non kovalen bağlanmasıyla oluşmaktadır. Alfa zinciri a1 (N terminal), a2 ve a3 olmak üzere üç adet ekstrasellüler domain içerir. MHC sınıf I molekülleri arasında a3 domaini oldukça korunmuş bir yapıdadır ve T lenfositlerindeki CD8 molekülü ile etkileşime giren bölgeyi oluşturmaktadır. Beta 2 mikroglobulin yapısındaki bir adet disülfit bağı ile stabilize edilmiştir. b2- mikroglobulin yokluğunda sınıf I molekülleri hücre membranında eksprese edilmez. Alfa-1 ve alfa-2 domainler 8 adet anti-paralel b strandı ve 2 adet anti-paralel a strandı ile platform oluşturmaktadır. Genel olarak çekirdekli hücrelerde eksprese edilmektedir. Ancak ekspresyon düzeyleri hücreler arasında değişmektedir. Lenfositlerde en yüksek düzeyde eksprese edilirken, Fibroblastlar, kas hücreleri, hepatositler, sperm, oosit, plasental ve merkezi sinir sistemi hücrelerinde sınıf I moleküllerinin ekspresyonu çok düşük ya da dikkate alınmayacak düzeydedir. HLA- C moleküllerinin hücre yüzeyinde HLA- A ve –B moleküllerinden 10 kat daha düşük düzeyde ortaya çıkmaktadır. Ancak HLA-C molekülleride işlevseldir ve NK (doğal öldürücüler ) tarafından tanınmak üzere ilk hedef noktalardır. MHC Sınıf II molekülleri Sınıf II molekülleri a ağır zinciri ile b hafif zincirinin non-kovalent bağlanması ile oluşan bir heterodimerdir. Alfa zincirinde a1 ve a2, beta zincirinde ise b1 ve b2 domainleri bulunmaktadır. Alfa-1 ve alfa-2 domainleri arasında kalan çukur peptid fragmanlarının bağlandığı bölgeyi oluşturmaktadır. Sınıf II molekülleri dendritik hücre, makrofaj, B ve aktive T lenfosit olmak üzere daha sınırlı sayıda hücrelerde eksprese edilmektedir. Transplantasyonda İmmun Yanıt İmmün sistemin birincil görevleri herhangi bir potansiyel infekte edici yabancı materyali tanımak ve birden çok efektör mekanizma yoluyla yanıt vererek yabancı materyali inaktif hale getirmektir. HLA antijenlerinin görevi hem kendi hem de yabancı proteinlerden türevlenen peptid fragmentlerini sunmaktır. Antijen sunum hücreleri (APCler) olarak görev yapan hücre tipleri dendritik hücreler, monositler, makrofajlar, B lenfositleri ve immün regülatör süreçlere katılan diğer hücreleri içerir. Protein moleküllerinin peptid parçalarına ayrılması ve antijenin T hücrelerine sunulması, immünitenin önemli bir bölümünü oluşturur. Sınıf I molekülleri endojen kaynaklı peptidlerin CD8 (+) T lenfositlerine, sınıf II molekülleri ise eksojen kaynaklı peptidlerin CD4 (+) T lenfositlerine sunumunda rol almaktadırlar. Peptidler önce degradasyona uğrar ve peptid fragmanları hücre içinde HLA sınıf I ve II moleküllerine bağlanır. Bu moleküller, bağlanan peptid ile birlikte hücre yüzeyine gelir. Hücrelerde proteinlerin yıkımını sağlayan iki büyük yol vardır. Bunlardan birisi lizozomal asidik ortamda gerçekleşen lizozomal proteolizis diğeri ise ubiquitin- proteasom yıkım yoludur. Çok sayıda ubiquitin ile işaretlenmiş olan protein, çok sayıda alt birimden oluşmuş olan proteaz kompleksi olan proteasom tarafından yıkılır. Ubiquitinin bağlanması ve işaretlenmesi için ATP enerjisi kullanılır. Endojen proteinler ubiquitin ile bağlanarak proteasoma yönlenirler. LMP2 ve LMP7, proteozom kompleksinin bileşenlerini oluşturan peptidleri kodlamaktadır. Proteozom, kısa ömürlü sitoplazmik proteinlerin çoğunun sindiriminde yer almaktadır. Burada 8-10 aa uzunluğunda kısa peptidlere yıkılan endojen proteinler TAP heterodimeri aracılığı ile ER aktarılırlar. TAP molekülleri zarlar arasında, oligopeptid ve daha büyük proteinler gibi farklı maddelerin taşınmasını sağlamaktadır. TAP1/TAP2 molekülleri ER zarında, sitoplazmadan lümene peptid taşıyıp yerleştiren bir kompleks oluştururlar. Taşınmış olan peptidler sınıf I molekülüne yüklenirler. Endoplasmik retikulumdan ayrılan bu yapılar golgi kompleksine gelir oradan taşıyıcı veziküller ile hücre membranına taşınarak sitotoksik T lenfositlerine sunulurlar. Eksojen kaynaklı proteinler (bakteriler gibi) ASH tarafından hücre içine endositik olarak alınıp lizozom ile birleşir ve lizozomal enzimlerin etkisi ile küçük peptidler haline dönüştürülürler. ER’da yeni sentezlenen sınıf II molekülleri invariant chain (Ii) molekülü ile bağlanarak taşıyıcı veziküller ile lizozoma gelir ve füzyon yaparlar. Lizozom icerisinde Ii molekülü küçük peptid haline dönüştürülür ve HLA-DM molekülüde peptid bağlama oluğunda bulunan parçalanmış Ii molekülü ile eksojen peptidin yer değişimini gerçekleştirir. Peptid yüklenmiş olan sınıf II molekülleri hücre membranına taşınarak CD4(+) T lenfositlerine sunulurlar. İmmün tanıma : İmmün yanıtın oluşumunda ilk basamak, kendi-HLA moleküllerince sunulan yabancı peptidin yardımcı T hücrelerince (CD4+ T hücreleri) tanınmasıdır. Tanınmanın sağlanabilmesi için T-hücre reseptörü (TCR) HLA-antijen kompleksine özgü olmalıdır. Hücrelerin birbiriyle teması üzerine TCR, yabancı peptid ve APC üzerinde yer alan MHC molekülünden oluşan trimoleküler bir kompleks meydana gelir. T hücreleri ve APC arasındaki etkileşim diğer lenfositler ve B7, CD40 gibi T hücreleri üzerinde yer alan CD4, CD8, CD28 VE CD11a/CD18 gibi APC hücre yüzey molekülleri (lökosit fonksiyonuyla bağlantılı antijen 1 [LFA-1]) ve interselüler adhezyon molekülü (ICAM-1) desteği ile sağlanır. Hücre yüzey reseptörleri ve sitokinler gibi immün modülatör molekülleri kodlayan genler uyarılır, transkribe edilir ve aktif ürünler vermek üzere translasyon geçirirler. Aktivasyonun erken evrelerinde yanıtlayıcı T hücrelerinin klonal genişlemesi ile sonuçlanan, interlökin 2 (IL-2) ve interferon-g (IFN-g) sitokinleri üretilir. Makrofajlar ve B hücreleri de ek sitokinler ve kemokinler katılarak çalıştırılmıştır ve böylelikle uyarılmış B hücrelerinin yanıtı genişletilerek olgun antikor oluşturan plazma hücrelerine dönüşmeleri sağlanır. İmmün yanıtın hem hücresel hem de hümoral kolları, nakledilen bir organın yabancı HLA antijenleri ile ilişki halindedir. Transplant yerleştirilmesinde, spesifik alloreaktif T hücrelerinin klonlarının allotanıma ve aktivasyonuna, akut rejeksiyon nöbetlerine, greft fonksiyonlarında aksamaya ve kronik rejeksiyona ve son olarak greft kaybına sebep olabilir. Direkt ya da indirekt allotanıma yolları olarak bilinen iki farklı yol, greftte yer alan yabancı HLA antijenlerin immünojenitesini oluşturur. Direkt yolda, donör MHC antijenlerinin tanınmasında spesifik TCR taşıyan alıcı T hücreler, greftin HLA antijenlerini tanırlar ve onlar tarafından direkt olarak aktive edilirler. Yabancı HLA antijeni kendi-HLA ve yabancı antijenin kombine halini taklit eder böylelikle TCR’ler ile başarılı bir şekilde bağlanırlar. Bu arada donör dendritik hücreleri, gratft ile birlikte “pessenger” lökositler olarak gelirler, ve greftten yuvalarına yani alıcı lenf nodlarına geçerler. Lenf nodlarında alıcı T hücreleri donör APCleri’nce sunulan yabancı MHC ve peptidlere yanıt verirler ve prolifere olurlar. Bu aktive olmuş alıcı hücreler daha sonra süzülerek grefte geçerler ve bozulmakta olan greftin biyopsisi sonucunda kolaylıkla gözle görülebilen red süreçlerini başlatırlar. İndirekt tanıma yolu ile oluşan yanıt, donör antijenlerinin alıcı APCleri tarafından işlenmesini ve sunulmasını gerektirir. Bu hem lenf “pessenger” lökositlerce işgal edilen alıcı lenf nodlarında gelebilir hem de greft antijeninin alıcı APCleri tarafından çıkarılan, geri alınan ve işlenen greft sitlerinde meydana gelebilir. Direkt yol grefte karsi verilen ilk yanıtlarda baskındır, indirekt yolun ise zaman geçtikçe red sürecinin sürmesinde ve yolcu lökositlerin bir uyarı olarak yok olduğu süreçte önemli olduğu var sayılmaktadır. Alloantikor yanıt: Transplantasyonun bir sonucu olarak, aktive edilmiş yardımcı T hücreleri B hücreleri ile etkileşime geçebilirler ve onları spesifik donör HLA antijenlerine yönelik alloantikor üretmeleri için stimule ederler. Transplantasyon sonrası bu tip alloantikorlar saptanması eşlik eden hücresel red yanıtının bir işaretidir. Transplantasyonun oluşturduğu uyarıya ek olarak HLA antijenlerine karşı immün yanıtlar, lökosit içeren kan transfüzyonu ile gelen HLA alloantijenlerine maruz kalma ve hamilelik gibi durumlarda oluşur. Birden fazla transfüzyon alan hastalar ve bazı multipar kadınlar HLA antijenlerine bağışıklık kazanabilirler, ve antikorlar ile spesifik HLA antjenleriyle etkileşime giren aktif T hücre klonları üretirler. Transplantları başarısızlıkla sonuçlanan hastalarda reddedilen greftin HLA antijenlerine karşı yüksek düzeyde antikor üretilmektedir. Potansiyel bir alıcı tarafından antikorlar oluşturulduğunda sensitizasyon (hassasiyet) meydana gelir ki bu da uygun bir organ donörü bulmada engel oluşturur. Hastanın sensitize olduğu belirli HLA antijen/leri içeren bir organın transplantasyonu hiperakut red ile sonuçlanabilir. Bu süreçte alıcı antikorları ile donör antijenlerinin oluşturduğu kompleksler anında greft damarlarında koagülasyonu tetikler, bu da grefte ve greft içindeki kan dolaşımının blokajı ve kesilmesi ile sonuçlanır ve böylelikle greft hızla yok edilir. Böbrek, kalp ve pankreas transplantasyonu bekleyen sensitize hastalar için önceden oluşmuş alloantikorlara hedef antijenlere sahip olmayan donörlerin seçimi kesin şarttır.Yabancı HLA antijenleri immün reddi tetiklediklerinden, alıcı ve verici arasında HLA antijen uyumunun sağlanması transplant başarısı için etkin bir stratejidir. KAYNAK: lokman.cu.edu.tr/anestezi/v_cag/new_page_2.htm VİDEO İLE İLGİLİ LİNGLER www.zaplat.com/video/saglik_videolari/41349/Organ_Nakli_Nedir www.zaplat.com/video/saglik_videolari/34884/Kalp_Nakli www.zaplat.com/video/saglik_videolari/43...alp_Transplantasyonu www.zaplat.com/video/saglik_videolari/28...migi_Tranplantasyonu

http://www.biyologlar.com/transplantasyon-immunolojisi

Bir Zamanlar "Hurda DNA" Masalı Vardı

Bir önceki bölümde incelediğimiz "hatalı" veya "körelmiş" yapılar iddiasının son dayanağı, Hurda DNA (Junk DNA) kavramıydı. Yeni bir konu olduğu -ve çok kısa bir süre önce çöktüğü- için bu kavramı ayrı bir bölüm içinde incelemekte yarar vardır. Körelmiş organlar efsanesi, bir önceki bölümde incelediğimiz gibi, 20. yüzyılın ikinci yarısından itibaren çökmeye başladı. İşlevsiz denen organların önemli işlevleri olduğu keşfedildikçe, bu efsane de savunulamaz hale geldi. Ama bu efsanenin propaganda gücünden mahrum kalmak istemeyen evrimciler bunun yeni bir versiyonuna sarıldılar. Bu yeni versiyon, vücuttaki organların değil, ama organların genetik şifresini içeren genlerin bir kısmının "körelmiş" olduğu şeklindeydi. Kullanılan kavram ise "körelmişlik" değil, "hurdaya çıkmışlık"tı. Söz konusu "hurda" (junk) nitelemesi, tüm canlıların genetik bilgisini kodlayan dev DNA molekülünün bazı kısımları için kullanıldı. Evrimci iddiaya göre DNA'nın oldukça büyük bir bölümü işlevsizdi. Evrimciler bu işlevsiz kısımların, geçmişteki sözde evrim sürecinde bir işe yaradığını ama zamanla "hurdaya çıktığını" ileri sürdüler. İddianın Darwinizm'le olan paralelliği çok belirgindi ve bu nedenle de "Hurda DNA" (Junk DNA) kavramı, kısa sürede bilim literatürünün sık tekrarlanan terimlerinden biri haline geldi. Ancak körelmiş organlar hikayesinin bu yeni versiyonunun ömrü de fazla uzun olmadı. Özellikle 2001 yılında sonuçları açıklanan İnsan Genomu Projesi'yle birlikte, "Hurda DNA" kavramının bir yanılgı olduğu bilim dünyası içinde yüksek sesle ifade edilmeye başlandı. Cleveland Üniversitesi'nden evrimci bilim adamı Evan Eichler "Hurda DNA deyimi bizim bilgisizliğimizin yansımasından başka birşey değil" itirafında bulunuyordu. 82 Bunun nedeni, Hurda DNA denen kısımların da işlevlerinin olduğunun yavaş yavaş anlaşılmasıydı. Şimdi, Hurda DNA efsanesinin nasıl doğduğunu ve çöktüğünü inceleyelim. Kodlamayan DNA'nın Hurda Sanılışı Evrimcilerin bu yanılgısının anlaşılması için öncelikle DNA'nın yapısı hakkında bilgi vermek gerekir. Tüm canlı hücrelerinde yer alan dev bir moleküler zincir olan DNA molekülü, içerdiği genetik bilgiler yüzünden çoğu zaman "bilgi bankası" olarak anılır. Molekül aynı zamanda bu bilgilerin bedensel faaliyetlerde kullanımını düzenleyen bir genetik koda sahiptir. Daha önceki bölümlerde incelediğimiz gibi, DNA molekülünün kökenini açıklama amacıyla yapılan tüm evrimci girişimler sonuçsuz kalmış, bu moleküldeki bilginin rastlantısal olarak oluşamayacağı ortaya çıkmıştır. DNA molekülü ancak bilinçli tasarımla açıklanabilmektedir. DNA üzerinde fiziksel özelliklerimizin ve fizyolojik faaliyetlerimizin bilgisini kodlayan belirli kısımlara "genler" denir. Bu genler farklı farklı proteinlerin kodlanmasında rol oynar ve yaşamımızın devamını sağlar. Ancak genlerimizin tamamı, DNA'mızın yaklaşık %10'unu oluşturur. DNA'nın geriye kalan daha büyük kısmı, protein kodlamadığı için "kodlamayan DNA" olarak isimlendirilir. Kodlamayan DNA'yı da kendi içinde bazı kategorilere ayırmak mümkündür. Kodlamayan DNA, bazen genler arasına sıkıştırılmış vaziyette bulunur ve bunlara "intron" adı verilir. Bir diğer kısım kodlamayan DNA, aynı nükleotid dizisinin art arda sıralanmasıyla oluşmuş daha uzun zincirler meydana getirir. Bunlara "tekrarlı (repetitive) DNA" ismi verilir. Eğer kodlamayan DNA üzerindeki nükleotidler, tekrarlayan diziler yerine, genlerdeki karmaşık dizilimi andıracak şekilde sıralanmışlarsa, bu defa "sahte gen" (pseudogene) olarak isimlendirilirler. Evrimciler protein kodlamayan bu bölümleri genel olarak "Junk DNA" (Çöplük ya da Hurda DNA) adı altında toplamış ve bunların sözde evrimsel süreçten aktarılan gereksiz yığınlar olduğunu ileri sürmüşlerdir. Oysa bunun mantıksal açıdan hatalı bir yaklaşım olduğu açıktır. Çünkü bu DNA yapılarının protein kodlamıyor olması, bunların işlevsiz olduğunu göstermez. Bunların fonksiyonlarını öğrenmek için üzerinde yapılacak araştırmaların sonuçlarını beklemek gerekir. Bilimsel yaklaşım bunu gerektirir. Ancak evrimci önyargılar bu mantığın devreye sokulmasını engellemiş, toplumu yıllarca Hurda DNA iddialarıyla yanıltacak haberlere yol açmıştır. Ancak özellikle son on yılda yapılan araştırmalar bu iddiaların hayalden başka birşey olmadığını göstererek evrimcileri yalanlamıştır. Çünkü kodlamayan DNA kısımlarının, evrimcilerin iddia ettiği gibi "çöplük" değil, tam aksine "genomik hazine" olduğu anlaşılmıştır.83 Chicago Üniversitesi'nden doktora sahibi ve bilinçli tasarım hareketinin önde gelen savunucularından biri olan Dr. Paul Nelson, "Hurdacı Artık Hurda Satmıyor" (The Junk Dealer Ain't Selling That No More) başlıklı makalesinde, evrimcilerin çöplük DNA iddialarının çöküşünü şu cümlelerle açıklar: "[Ateizmin savuncularından]Carl Sagan, Shadows of Forgotten Ancestors (Unutulmuş Ataların Gölgeleri) isimli kitabında, "genetik hurdalığın", DNA'daki "fazlalıkların, kekelemelerin (gereksiz tekrarlar) ve kopya edilemez saçmalıkların", hayatın temelinde derin kusurlar bulunduğunu kanıtladığını öne sürmüştü. Bu tür yorumlara biyoloji literatüründe giderek daha az rastlanmaktadır. Neden mi? Çünkü artık genetikçiler, genetik enkaz olarak bilinen kısımların fonksiyonlarını keşfediyorlar."84 Şimdi 'Hurda DNA'nın aslında hiç de hurda olmadığının nasıl keşfedildiğini inceleyelim.. 1. Kodlamayan DNA'nın nükleotid diziliminde lisan yeteneği ile ilgili bir kodlama kriteri bulundu. 1994 yılında Harvard Tıp Fakültesi moleküler biyologları ile Boston Üniversitesi'nden fizikçilerin gerçekleştirdiği ortak çalışmada kodlamayan DNA ile ilgili çarpıcı bir sonuç elde edildi. Araştırmacılar, çeşitli canlılardan alınan ve 50.000 baz çifti içeren 37 DNA dizilimini incelemiş ve nükleotidlerin sıralamasında belirli kuralların olup olmadığını araştırmışlardı. Bu çalışma sonucunda, insan DNA'sında %90 yer tutmakta olan sözde Hurda DNA'nın, insan diline has bir özelliğe sahip olduğu ortaya çıktı.85 Buna göre, yeryüzünde konuşulmakta olan tüm dillerde görülen ortak bir kodlama kriterine insan DNA'sında sıralanan nükleotidlerde de rastlanmıştı. Şüphesiz bu bulgu sözde Hurda DNA'daki bilginin tesadüfen biriktiği tezine değil, yaşamın temelinde bilinçli tasarım olduğu tezine destek sağlıyordu. 2. Tekrarlı heterokromatin şaşırtıcı bir fonksiyonellik ortaya koydu: Kendi başlarına anlamsız gibi görünen nükleotidler birarada önemli görevleri yerine getiriyor ve mayotik bölünmede rol oynuyor. Yakın bir geçmişte, Hurda DNA olduğu zannedilen, ancak bilim adamlarının fonksiyonlarını yeni keşfetmeye başladığı DNA dizilimlerinden biri heterokromatindir. Bu, DNA'da fazlaca tekrar edilen bir koddur. Herhangi bir proteinin üretiminden sorumlu olduğu tespit edilemediği için uzun zaman "Hurda DNA" olarak tanımlanmıştır. Renauld ve Gasser (İsveç Deneysel Kanser Araştırma Enstitüsü) heterokromatin için şu yorumu yaparlar: Genomda dikkat çekecek şekilde temsil ediliyor olmasına rağmen, (insan hücrelerinin %15'i ve sinek hücrelerinin yaklaşık %30'u), heterokromatin her zaman 'Hurda DNA', yani hücreye hiçbir faydası olmayan DNA olarak kabul edilmiştir.86 Ancak, son çalışmalar heterokromatinin de önemli fonksiyonel görevleri olduğunu ortaya koydu. Moleküler Tıbbi Bilimler Enstitüsü'nden Emile Zuckerland bu konuda şunları söyledi: Tek başına fonksiyonel olmayan nükleotidleri biraraya getirdiğinizde, fonksiyonel hale gelen nükleotidler topluluğu elde edebilirsiniz. Kromatine ait olan nükleotidler ise bunun bir örneğidir. Geçmişte heterokromatinin hurda olduğunu iddia eden görüşlere rağmen, bugün bu alanda aktif olarak çalışan birçok kişi, DNA'nın bu bölümünün çok önemli fonksiyonel görevleri olduğundan şüphe etmiyor... Nükleotidler tek başlarına hurda olabilirler, ancak birarada iken altınlar.87 Heterokromatinin bu tür "kollektif" fonksiyonlarından biri mayotik bölünmede tespit edildi. Aynı zamanda yapay kromozom çalışmaları da, DNA'nın bu bölümünün farklı fonksiyonları olduğunu ortaya çıkardı.88 3. Araştırmacılar kodlamayan DNA ile hücre çekirdeği arasındaki ilişkiyi ortaya çıkardılar. Bu gelişmelerin "Hurda DNA" iddiasını çürüttüğünü ifade ettiler. 1999 yılında yapılan bir çalışma, ökaryot hücrelerdeki protein kodlamayan-DNA'nın (diğer adıyla sekonder DNA) çekirdek içinde işlevsel bir yapı olduğunu ortaya çıkardı. Bu çalışmada, Crytomonad isimli fotosentez yapan tek hücreli canlılar incelendi. Bu canlıların özelliği, boyut açısından geniş bir çeşitlilik ortaya koyuyor olmalarıydı. Ancak hücreler farklı boyutlarda olsalar da, çekirdek büyüklüğü ile hücrenin (canlının) büyüklüğü arasında daima doğrusal bir orantı bulunuyordu. Araştırmacılar kodlamayan DNA'nın miktarının, çekirdeğin büyüklüğüne oranlı olduğunu gördüler ve bu durumu, kodlamayan DNA'nın daha büyük çekirdek için yapısal olarak gerekli olduğuna dair bir gösterge olduğu sonucuna vardılar. Bu yeni araştırma, tasarımı reddeden Hurda DNA -hatta Dawkins'in öne sürdüğü "bencil DNA" 89- gibi kavramlara çok önemli bir darbe oluşturdu. Araştırmacılar yazılarını şöyle bitiriyorlardı: "Dahası, sekonder DNA [kodlamayan DNA] nükleomorfun önemli ölçüde eksik oluşu,... sekonder DNA ile ilgili 'bencil' ve 'çöplük' DNA tezlerini çürütmektedir". 90 4. Kodlamayan DNA'nın, kromozom yapısı için gerekli olduğu ortaya çıktı. Kodlamayan DNA'nın son yıllarda ortaya çıkarılan bir başka önemli rolü de kromozom yapısı ve işlevinde "kesinlikle gerekli" olmasıydı. Bu alanda yapılan çalışmalar, kodlamayan DNA'nın, DNA'nın birçok işlevi yerine getirmesini mümkün kılan yapıyı sağladığını gösterdi. Öyle ki forma sokulmuş bir yapı olmaksızın bu işlevlerin gerçekleştirilmesi imkansızdı. Bilim adamları bira mayasının kromozomlarından birinde, telomerleri (telomerler kromozomların her iki ucunda bulunan ve her hücre bölünmesi sonrası belli ölçüde kısalan DNA-protein kompleksleridir) ortadan kaldırdıklarında hücre bölünmesinin kesintiye uğradığını gördüler.91 O halde telomerler hücrenin, sağlam kromozomları, hasar görmüş DNA'dan ayırmasına yardımcı oluyordu. Bu kesinti halinden kurtulan hücrelerde kromozom sonunda kaybediliyordu. Bu da kodlamayan DNA'ya ait telomerlerin, hücrenin kromozom sabitliğinin korunmasında gerekli olduğunu gösteriyordu. 5. Kodlamayan DNA'nın embriyonun gelişimindeki rolleri ortaya çıkarıldı. Kodlamayan DNA'nın, gelişim sırasında gen ifadesinin (gendeki bilginin okunarak protein üretimi yapılması işleminin) düzenlenmesinde de önemli rol oynadığına dair kanıtlar elde edildi.92 Çeşitli çalışmalarda, kodlamayan DNA'nın, fotoreseptör hücrelerinin 93, üreme bölgesinin 94 ve merkezi sinir sisteminin 95 gelişiminde rol oynadığı gösterildi. Tüm bunlar, kodlamayan DNA'nın gelişim ve embriyojenez (embriyonun gelişimi) sırasında hayati rolleri düzenlediğini gösterdi. 6. Hurda DNA kategorisine dahil edilen intronların hücre faaliyetlerinde hayati roller oynadığı ortaya çıktı. Evrimcilerin uzun yıllar Hurda DNA zannettiği ancak önemli rolleri daha sonra keşfedilen bir başka tür kodlamayan DNA ise intronlardır. İntronların özelliği, fonksiyonel genlerin içine sıkıştırılmış olmalarıdır. İntronlar, protein üretimi ve işlevleri sırasında ayrıştırılarak elenirler. Evrimciler, intronların ilk bakışta protein üretiminde rol oynamamasına aldanmış, bunları Hurda DNA kabul etmişlerdi. Oysa yapılan araştırmalar intronların çok önemli yaşamsal faaliyetlerde rol oynadığını ortaya çıkardı. Günümüzde intronlar artık farklı DNA'lardan meydana gelen ve hücrenin yaşamı açısından hayati derecede önemli rol oynayan kompleks bir karışım olarak kabul ediliyor.96 Ünlü The New York Times gazetesinin bilim köşesinde yayınlanan bir yazı, intronlarla ilgili evrimci yanılgıları ortaya koyması açısından ilgi çekiciydi. C. Claiborne Ray tarafından hazırlanan ve "DNA: Hurda mı, Değil mi?" başlığını taşıyan kısa yazıda, intronlar üzerinde yapılan araştırmaların sonucu şu cümlelerle özetleniyordu: "Yıllar boyu yapılan çalışmalar, intronların hurda olmadığını, bunların aslında genlerin çalışma şeklini etkilediklerini ortaya çıkardı. ...intronlar, şüphesiz, aktif roller oynuyorlar."97 New York Times gazetesindeki bu yazıda, son bilimsel gelişmeler ışığında, intronlar gibi "sözde çöplük DNA"nın gerçekte organizmalara "faydalı" olduğu vurgulanıyordu. Maddeler halinde ele aldığımız tüm bu gelişmeler kodlamayan DNA hakkında yepyeni bilgiler ortaya koymakla birlikte önemli bir gerçeği de açığa çıkarmış oluyordu. Evrimcilerin Hurda DNA kavramı, bilgisizlikten kaynaklanan, uydurma bir kavramdı. Case Western Reserve Üniversitesi'nden Evan Eichler 2001 yılında Science'da yayınlanan bir makalede, durumu şu sözlerle özetliyordu: "Çöplük DNA deyimi bizim bilgisizliğimizin yansımasından başka birşey değil."98 Hurda DNA Efsanesinin Son Dayanağı da Çöktü: Bir "Sahte Gen"in Fonksiyonel Olduğu Ortaya Çıktı 90'lı yıllardan itibaren yaşanan tüm bu önemli bilimsel gelişmeler, Hurda DNA iddiasının bilgisizlikten kaynaklanan bir evrim yanılgısı olduğunu ortaya koydu. Genlerin içine sıkışmış intronlar ve daha uzun sıralar halinde birarada bulunan tekrarlı DNA gibi "kodlamayan DNA"ların aslında işlevsel olduğu gösterilmiş oldu. Bununla birlikte, geriye fonksiyonel olup olmadığı tam bilinmeyen tek bir tür "kodlamayan DNA" kalıyordu: "Sahte genler" anlamına gelen "pseudogenler" (pseudogenes). Nature, 1 Mayıs 2003 Nature dergisinde yayınlanan ve "Pseudogene" adı verilen sözde "işlevsiz" DNA bölümlerinin, mesajcı RNA'yı düzenlediğini anlatan bilimsel makale. Pseudogen, görünürde, mutasyona uğramış fonksiyonel genlerin işlevlerini kaybederek ortaya çıkardıkları DNA parçalarına evrimcilerce verilen isimdir. "Pseudo" kelimesi de İngilizcede "sahte, yanıltıcı" anlamında kullanılır. Pseudogenlerin evrimciler açısından özel bir önemi olduğu söylenebilir. Çünkü mutasyonların evrim meydana getireceği iddiasının geçersizliğini içten içe kabullenmiş, pseudogenlere bir tür göz boyama aracı olarak sarılmışlardır. Kısaca hatırlayacak olursak, canlılar üzerinde yapılan sayısız deneyde, mutasyonların, etkili oldukları zaman canlılarda daima genetik bilgi kaybına neden oldukları görülmüştür. Bir saate yapılan rastgele çekiç darbelerinin saati geliştirmeyeceği gibi, mutasyonlar da organizmaları asla geliştirmemiş, bir diğer deyişle evrimleştirmemişlerdir. Evrim teorisi genetik bilgide artış gerektirdiği halde mutasyonlar hep genetik bilgiyi azaltır, tahrip ederler. Teorilerine destek gösterebilecekleri bir mekanizmadan dahi yoksun olan evrimciler, pseudogenleri hayali evrim sürecinin "hayalet" mekanizmasının işlediğine kanıt gösterdiler. Evrimciler, protein kodlamayan bu DNA parçalarının sözde evrimin moleküler fosilleri olduğunu iddia ettiler. Bu iddianın tek dayanağı, bu genlerin herhangi bir fonksiyonunun bilinmeyişiydi. Ta ki 2003 Mayısı'na kadar. Pseudogenlerin fonksiyonel olduğunu gösteren bir çalışma, ünlü Nature dergisinin 1 Mayıs 2003 tarihli sayısında yayınlandı. Araştırmacılar, "İfade Edilmiş Bir Pseudogen, Homolog Kodlayan Geninin Mesajcı RNA Kararlılığını Düzenliyor" (An expressed pseudogene regulates the messenger-RNA stability of its homologous coding gene) başlıklı yazılarında, bir deneye hazırlanan farelerde gözlemledikleri bir durumu haber veriyorlardı.99 Buna göre bir dizi farenin, Makorin1-p1 ismi verilen pseudogenlerinin, genetik olarak değiştirilmesi sonucu farelerde ölümcül mutasyonlar meydana gelmişti. Farelerin böbrek ve kemiklerinin anormal şekilde geliştiği gözlemlenmişti. Pseudogendeki dizilimde meydana gelen bir değişimin farenin organlarını etkilemesinin açıklaması basitti: Bu pseudogen işlevsiz değil, gerekliydi. Nature dergisinde bu araştırmayı yorumlayan bir makalede bu çalışmanın, evrimin "moleküler fosilleri" gözüyle bakılan pseudogenler hakkındaki yaygın görüşlere meydan okuduğu yazılıyordu.100 Yani, bir evrim efsanesi daha yıkılıyordu. Pseudogenlerle ilgili bir fonksiyon ortaya çıkarıldıktan yalnızca üç hafta sonra, bir diğer ünlü bilim dergisi Science'da yayınlanan bir araştırma, Hurda DNA kavramına bir başka ağır darbe vurdu.101 Derginin 23 Mayıs 2003 tarihli sayısında yayınlanan bir araştırma, kodlamayan DNA ile ilgili yeni bir işlev daha ortaya çıkarıyordu. Yukarıda aktardığımız tüm gelişmelerin farkında olan evrimciler için, uzun süre gündemde tuttukları "Çöplük DNA" kavramının anlamsızlığını açıkça kabul etmekten başka seçenek kalmıyordu. Çöplük DNA kavramının çöpe atılma vakti gelmişti. Pensylvannia Eyalet Üniversitesi'nden Wojciech Makalowski tarafından kaleme alınan yazının başlığı bu değişimi gösterir nitelikteydi: "Not Junk After All" (Artık Hurda Değil). Makalowski durumu şöyle özetliyordu: Özellikle tekrarlayan elemanlarla ilgili olan Hurda DNA görüşü 1990'lı yıllarda değişmeye başladı... Şimdilerde giderek daha fazla sayıda biyolog tekrarlayan elemanlara genomik hazine olarak bakıyor. Bu rapor gösteriyor ki tekrarlayan elemanlar 'Hurda DNA değil', ökaryotik genomların önemli, birleştirici bileşenleri. O halde tekrarlayan DNA "Hurda DNA" olarak isimlendirilmemeli…". 102 Bir zamanlar Hurda DNA kavramını ve buna dayalı evrimci spekülasyonları sık sık duyabilirdiniz. Ama, burada özetlediğimiz gibi, Darwinistlerin son "körelmişlik" iddiası olan Hurda DNA kavramı da tarihe karıştı. Darwinizm'in bu son çırpınışları da boşa çıktı.

http://www.biyologlar.com/bir-zamanlar-hurda-dna-masali-vardi

Embriyogenez

Biyolojinin bütün problemleri arasında en büyüleyici ve en zor olanı embriyogenez yani embriyonun yaratılmasıdır. Embriyogenez; tek hücrenin döllenmiş yumurtanın, hedef aldığı çok hücreli karmaşık organizmaya ulaşırken attığı adımlarla ilgilidir. Bu hedef bütün ince ayrıntılarıyla, gelişme olayının orkestrasyonu üzerine talimatları içeren, DNA'da yazılıdır. Bu harikulade işin nasıl olduğunu henüz anlayamamış olduğumuzu hemen söyleyebilirim, ama en azından çevresinde araştırmalar yapıyoruz. Hücreler Birbirine Yapışır ve Uzmanlaşır Döllenmiş bir yumurta, diğer daha basit tek hücreli yaratıklar gibi yaşamına iki ayrı hücre oluşturmak için bölünerek başlar; bu iki hücre bölünüp dört olur ve bu böyle sürüp gider. Tek hücreli yaratıkları gözlemleyerek, her bölünmeden sonra hücrelerin ayrılacağını umuyoruz. Ama döllenmiş yumurtadan üreyenler ayrılmıyorlar, toplumsal bir girişime katıldıklarını bilirlermiş gibi birbirlerine sıkıca yapışıyorlar. Kısa bir süre sonra başka bir şey açığa çıkıyor. Hücreler birbirlerine benzemeyen ve değişik davranan gruplar oluşturuyorlar. Hücre grupları artık uzmanlaşmaktadırlar. Her grup belirli sayıda özel görevleri yapmakla yükümlüdür. Uzmanlaşma işinin geriye dönüşü yoktur. Erken embriyogenez iki özelliği, hücre yapışması ve hücre uzmanlaşması, bunlar gelişme işleminin temelinde yatıyorlar. Değişkenliğin Kökeni Şimdiye kadar organizmaların nasıl uzun zaman geçtikçe giderek farklılaştığım belirleyen ve bütün canlı yaratıklar için geçerli yasaları öğreniyorduk. Bütün canlı yaratıklar kendilerini oluşturan bilgiyi DNA'da biriktirirler, DNA'yı mesajcı RNA'ya kopya ederler, mesajcı RNA'yı proteine "tercüme ederler". Dahası, DNA'nın mutasyonla veya cinsel karışımla değişmesi proteinlerin kalıcı değişimine neden olur. Böylece organizmalar arasında gittikçe artan farklılıklar ortaya çıkar ve sonunda yeni türler doğar. Bazı bakımlardan embriyogenez, evriminin, kısa bir zaman aralığında ve mikrokosmosta tekrarı gibidir. Hayvan embriyosunun gelişmesini değişik aşamalardan geçerken gözlemleyelim. Embriyo, erişmesi beklenen yetişkin yaratığa benzemeden önce balığa benzer. Balığa benzerlik yalnız görünüşte değildir; erken embriyo oksijen ve besini göbek bağı yoluyla annesinden alır, ama gereksinimi olmadığı halde su altında nefes almaya yarayan solungaçlara da sahiptir. Açıkçası embriyonun evrimsel gelişmenin bir aşamasını yinelemesi için görünürde hiçbir neden yok. Ama embriyogenez süresince farklılık nasıl doğar, hücreler deri hücresi, kas hücresi, sinir hücresi olmaya ne zaman karar verirler diye sorsak, doğa boş bakışlarla cevap verir bize; hücrelerdeki bilgi işleminin evrensel mekanizması üzerine bir sürü şey öğrenmemize izin verdi, ama sıra hücreleri birbirinden farklı yapan nedenlere gelince bilgisizlik içinde oturuyoruz. Bazı bilim adamları embriyogenezin derinliklerine dalabilmek için tümüyle yeni kavramlara ve yöntemlere gereksinimimiz olduğuna inanıyorlar. Bunun böyle olduğundan kuşkuluyum. Yalnızca, hücreleri değişik yapan nedenler şimdiye kadar bulduklarımızdan daha karışığa benziyor. Tıbbın Embriyogenezle İlgisi Tıp bilimi için embriyogenezin anlaşılması önemlidir. Tıp adamlarının ilgilerini başka hiç bir olaya benzemeyen ölçüde bileyen, yalnızca bir tek hücrenin tam bir bireye dönüşebilmesi değil. Tıbbın; hamilelik, doğum kontrolü, çocuk ölümleri, doğuştan itibaren görülen hastalıklar, kalıtım hastalıkları ve kanser gibi problemlerin daha iyi denetlenmesi üzerine araştırmalarıyla da ilişkili. Bilim adamlarının embriyogenezin anlaşılmasının çok sayıdaki tıbbi probleme ışık tutacağı beklentileri var. Hücrelerin Yapışkanlığı Üzerine Birkaç Söz Daha Döllenmiş yumurta bölünmeye başladıktan sonra, hücrelerin birbirinden ayrılmayıp yapıştıklarından söz etmiştim. Yapışmalarını ne sağlıyor? insanın aklına bir yapışkan maddenin varlığı geliyor, ama gerçekte yapışkanlığı sağlayan bir madde değildir. Daha çok hücrelerin yüzeylerinde girintiler, çıkıntılar varmış gibi görünüyor (diğer hücrelerin çengellerine geçebilen ufacık çengeller). Hücrenin DNA'sı, gerçekte protein-yapan makineye, hücrenin dışına doğru göç edip orada girintili çıkıntılı bir yüzeyde çengel gibi davranacak belirli özel proteinler yapması talimatını vermiştir. Hücreler, bedenin değişik kısımlarını oluşturmak için uzmanlaşırken, yüzey protein çengelleri de amaca göre biçimlenirler. Bunlarla hücre tipleri birbirinden ayırt edilir. Embriyogenez İçin Enerji Şimdi bütün yapım işlerinde enerjinin gerekliliğine tümüyle duyarlı hale gelmiş olmalısınız. Hücrelerinin yakılıp ATP üretebilmesi için gelişmekte olan embriyoya şeker verilmelidir. Balıklarda, sürüngenlerde, kuşlarda ve embriyonun bir yumurta içinde büyüdüğü diğer yaratıklarda, yumurtanın sarısı embriyonun besinini sağlar. Annelerinin rahminde büyüyen hayvanlarda başka bir araç kullanılır. Anne iç duvarıyla embriyo arasındaki plasenta denen tabaka embriyo ile aynı hızla büyür. Plasenta, annenin kanıyla gelişen embriyonun kanının karıştığı yerdir. Annenin yediği besini getiren kan burada embriyonun kanına karışır. Yapım projesi için enerji böylece sağlanır. Bütün Hücrelere Aynı Bilgi Dağılmıştır Döllenmiş yumurta, anneden ve babadan aldığı tam büyüklükteki DNA ile yaşama başlar. Bölündükçe, yeni gelen her hücre kuşağı yetişkinliğe ulaşana kadar aynı büyüklükte DNA alır. Sonunda 60 trilyon hücreden oluşan bir insanda 60 trilyon birbirinin aynısı DNA kopyası bulunur! Bedenin her hücresinde, tamamen aynı bilgi bulunur. Yalnız üreme hücreleri diğer hücrelerin yarısı kadar DNA içerirler. Gen İfadesinin Denetlenmesi Embriyogenezin sırrının DNA'nın genlerinin ifadelerinin hücreler tarafından nasıl kontrol edildiğinin bilinmesinde gizli olduğu görülüyor. Bir yetişkini yaratmak için gerekli bütün bilgi hücrededir. Gelişen embriyonun her hücresinin içinin derinliklerini gözlemleyebilseydik, bazı şeylerin oluşumunu izleyebilecektik. Enzimler, döllenmiş yumurtanın DNA'sının genlerinin bazılarını mesajcı RNA'ya kopya etmeye başlayacaklardı. Mesajcı RNA'lar, daha en başta yumurtanın içinde bulunan, embriyoda etkin olan ribosomlara gideceklerdi ve burada gerekli proteinlerin sentezi başlayacaktı. Döllenmiş yumurta, reçetesinde yazılı proteinlerin tümünü biraz daha ribosomla birlikte toparladıktan sonra (ve DNA'sını iki katına çıkardıktan sonra) bölünecekti. Sonuçta oluşan hücre çiftlerinde, şimdi yeni bir tam ölçü DNA, yeni ribosomlar ve yeni her şey bulunacaktı. Kendisinden doğdukları hücrenin tümüyle tıpkısı olacaklardı. Protein sentezi işlemi ve yeni hücre yapımı kendi kendisim, yineleyerek, hücre sayısı dört hücreye ulaştırılacak, sekiz hücreye çıkmak için yeniden... Kısacası bunun böylece sürüp gittiğini görecektik. Buraya kadar işlem, bölünen bakteride sürüp gidenin hemen hemen aynı. Her kuşak hücre kendisinden öncekinin aynen yinelenmesi. Fakat uzmanlaşma başladığı zaman, yeni bir şeyler katılıyor olmalı. Eğer üreyecek hücrelerin bir grubu deri, diğeri kas, bir başkası beyin vb. olacaksa, DNA gerekli yönlendirmeyi sağlamalıdır. Yalnızca hücreler arasındaki sürekli artan farklılığı değil, aynı zamanda farklılığın ne zaman başlayacağını belirlemelidir. Gelişen hücre topluluğu içindeki her bir hücrede tamı tamına aynı ölçüde DNA bulunur. O zaman hücreler nasıl farklı olabilirler? Birincisi şunu hatırlayalım, deri hücresi, kas hücresi, beyin hücresi olsun, belli bir hücrenin karakterini, yaptığı proteinler belirler. Örneğin, deri hücreleri, keratin denilen özel bir protein yönünden zengindirler (deriye bizi koruyan özel yeteneğini veren protein). Kas hücreleri myosin denilen bir proteinle sarılmıştır. Bu proteinin özel yeteneği, bir eş proteinle etkileşip uzunluğunu değiştirebilmesidir. Böylece kas liflerinin kasılmasına yol açarlar. Beyin hücreleri elektrik güçler iletmeye yardımcı proteinler içerirler. Diğer bütün uzmanlaşmış dokuların hücreleri, hücrenin özel karakterini belirleyen kendilerine özgü proteinleri üreteceklerdir. Böylece bazı hücreler deri hücreleri olarak amaçlarını gerçekleştirmek için keratin üretmeye; diğerleri kas hücresi olabilmek için myosin üretmeye başlayacaklardır. Aslında, bütün hücrelerdeki DNA'larda keratin için bir gen myosin için diğer bir gen bulunur. Genler orada hazır bekliyorlar. Öyle görünüyor ki deri hücrelerinde keratin yapılması ifade edilirken, myosin baskı altına alınmak zorunda. Diğer yandan, kas hücrelerinde myosin ifade edilmeli ve keratin geni bastırılmalıdır. Yani deri hücrelerindeki keratin geni, keratin mesajcı RNA'sı olarak okunuyor. Ribosoma gidiyor orada keratin proteinine çevriliyor. Bütün bunlar gerçekleştikten sonra hücre deri hücresi haline geliyor. DNA, embriyo gelişimi sürerken, programlı bir sıralama ile genlerini her birinin sırası geldikçe ifade edip bastırabilmelidir. Belli türden bir hücre oluşumu yüzlerce protein gerektirir, yani bu hücrelerde. bir çok gen ifade edilirken daha çoğu da (başka, hücrelerin proteinlerini kodlayan genler) bastırılır. Gerçekten dikkate değer bir durum! DNA bütün genlerle birlikte, bu genlerin ne zaman işe koşulacağını ne zaman bastırılacağını da biliyor. Klonlar Klon, tek hücreden üremiş hücreler topuluğudur. İlkel kardeşlerimiz bakteriler, sürekli klonlar oluştururlar. Bir bakteri hücresini bir tabak yiyeceğin üzerine koyarsak, hemen bölünüp iki hücre, bu iki hücre bölünüp dört hücre olur ve bu böyle sürüp gider, iki gün içinde bakteri kütlesi çıplak gözle görülebilir hale gelir. Bu kütle bir klondur; bir tek orijinal hücreden üremiş milyonlarca yavru hücreden oluşur. Bu klondan bir tek yeni hücre alıp yine bir tabak yiyeceğin üzerine yerleştirirsek, birincisinde olduğu gibi bir klon oluşana kadar bölünecektir. Klon oluşturmak bakteri için oldukça kolay bir iştir, çünkü bütün hücreler birbirinin aynıdır. Daha gelişmiş bir organizmadan klon yapmak çok daha karmaşıktır. Ama teorik olarak mümkündür. Yaratıkların her hücresinde aynı DNA her şeyiyle tam bir bireyi oluşturmak için gerekli bilgiyi taşıdığına göre, tamamen teorik planda; herhangi bir hayvandan bir hücre alıp onu bir kap besinin üzerine veya beslenebileceği başka bir ortama koysak ve tam bir hayvan organizmasını üretmesini sağlasak, aslının kusursuz bir kopyasını geliştirmek için gerekli bütün bilgi, o tek hücrenin DNA'sında vardır. Bu olasılık, özellikle de insanın klon yoluyla oluşturulabileceği düşüncesi, yani bir tek insan hücresinden geliştirilmiş her şeyi tamam bir insan yaratmak, popüler yazarların hayal gücünü harekete geçirdi. Böyle bir olasılık gerçekleşmekten son derece uzaktır. Diğer yandan bir tek hücrenin aslında tam bir bireyi ortaya çıkarabildiğini biliyoruz; döllenmiş yumurta, tam bir yetişkin varlık olduğu zaman bu gerçekleşiyor. Ama olan biten tek yönlü bir işleme benziyor. Canlı yaratıklar, kolay kolay hücrelerinden herhangi birinin döllenmiş yumurta gibi bölünmeye başlayıp kendi tıpkı kopyalarını oluşturmasını sağlayamazlar, Bizim hücrelerimiz kendi uzmanlaşmış durumları üzerine sıkı bir denetleme uygularlar. Örneğin deri hücreleri deri hücresi olarak kalırlar, tıpkısı tıpkısına ayrı bir birey olmak şöyle dursun, değişip kas hücresi olmaya bile yeltenmezler. Hücrelerimizin, çevrelerinin etkisiyle mi böyle değişmez oldukları tartışılabilir. Bir hücreyi komşularından ayırsak, belki beklenmeyen bir davranışa yönelecektir. Böyle bir deney kurbağa larvası hücreleriyle aşağıda anlattığımız gibi yapılmıştır: Önce, kurbağa yumurtalarındaki hücre çekirdekleri ve dolayısıyla DNA'ları tahrip edilmiş, sonra genç larvaların rasgele bazı hücrelerinden alınmış çekirdekler, DNA'sız kurbağa yumurtası hücrelerine yerleştirilmiştir. Kısa sürede yumurtalardan yeni larvalar, hatta bazen kurbağalar gelişmiştir. Yani larvalar bir tek larva hücresinden üremiş birer klondurlar. Benzer klon yapma deneyleri, fareler ve başka hayvanlar üzerinde de yapılmış, ama başarıya ulaşılamamıştır. Klon başarısızlık, hücre karakterindeki dengeliliğini ortaya çıkartıyor. Her hücrenin DNA'sında bulunan, başka bir hücre olabilme potansiyeline karşın, hücreler bu potansiyel avantajı kullanmazlar. Genlerinin çoğu durdurulmuştur. embriyogenezi derinliğine araştırabilmek için genlerin ifade edilip edilmemesini neyin belirlediğini öğrenmeliyiz. Genlerin Başlatma - Durdurma Mekanizmasının Özelliği Hücreleri farklılaştıran gen çalıştırma mekanizması, insanın aklına keskin bir soru getiren ilginç bir bilinmeyendir. Genler nasıl harekete geçirilip durdurulabilirler? Daha önce de söylediğimiz gibi en açık yanıtlar en basit sistemlerden gelir. Yine, o alelade bakterilerin davranışlarına bakalım. Bazı hücreleri taze bir büyüme solüsyonu içine atıp, şeker olarak örneğin glukoz ekleyelim. Hücreler bölünmeye başlarlar ve sayılan hızla yükselir. Bu, glukoz tüketilene kadar sürer. Sonra büyüme durur. Aynı gözlemi, yine benzer bir hücre grubuyla bu sefer değişik bir şekerle, diyelim galaktozla deneyelim. Hücrelerin sayılan artar, ama glukozla olduğundan daha yavaş artar ve galaktoz bitince büyüme durur. Glukozun, daha hızlı tüketildiği için galaktozdan daha iyi bir besin olduğu sonucuna varırız. Ama her iki şeker de bakteri tarafından kullanılmıştır. Hiçbirini ziyan etmiyor bakteriler. Şimdi deneyi hem glukoz hem galaktoz kullanarak yineleyelim, ilginç birşey olur, glukozun tümü tüketilene kadar nüfus hızla artar. Sonra yirmi dakika kadar artış durur. Ve bu sürenin sonunda yeniden başlayıp galaktoz tüketilene kadar sürer. Hücrelerin glukozu yeğledikleri açıkça görülüyor. Ancak, yirmi dakikalık bir aradan sonra galaktozu kullanabilme yeteneğini kazanıyorlar. Bunun genleri harekete geçirmek ve durdurmakla ne ilgisi var? Bu basit sistemin analizi, 1950'lerin sonuna doğru, Fransız bilim adamları François Jacob ve Jacques Monod'ya gen ifadesinin denetlenmesi üzerine parlak bir ilham verdi. Şimdi bakterilerde mekanizmanın nasıl çalıştırılabildiği kanıtlanmış durumda; bu bizim gibi daha karmaşık organizmalarda da geçerlidir belki ama burası henüz kesinlikle bilinmiyor. Bakteriler, alışık olmadıkları bol şekerle uğraşırken içlerinde ne olup bitiyordu? Bakteri hücrelerinin glukoz kullanacak makineleri olduğu açıkça görülüyor, çünkü bu şeker verilir verilmez yemeye başladılar. Bu makine iki proteinden oluşuyor: Şekerin hücreye girmesini sağlayan bir enzim ve içeri girince onu hazmedecek bir enzim. İki enzim; iki gen. Bu makinenin galaktoz kullanan karşılığı henüz hücrede yok; veya en azından iki şekerin bulunduğu solüsyonda büyüme başladığı zaman yoktu. Glukoz tükenince galaktozu kullanacak makine kuruluyor. Glukozun bulunmaması, galaktoz kullanan makinenin geliştirilmesi için tetiği çekiyor. Glukoz, galaktozu kullanmak için gerekli enzimleri denetleyen genlerin ifadesini önlüyordu ve bastırıyordu. Glukoz bitince baskının etkisi kayboldu ve böylece galaktoz genleri, mesajcı RNA'ları yapmaya başlayıp proteine çevirebildiler. Bütün bunların bakteri için anlamını düşünün. Eli altındaki en iyi besini yiyor ve besin, bakteri içinde enerjinin başka besini kullanmak için enzimler yapılarak ziyan edilmemesini de ayarlıyor, iyi besin tükenince el altında yalnızca daha zayıf besin kalıyor. O zaman bakteri işe girişip bu besini kullanabilmesi için gerekli enzimleri yapıyor. Bakteriler Kendilerine Verilen Şeyleri Üretmezler Bahçenizde kendi kullanımınız için sebze yetiştiriyor olsanız ve birileri size düzenli olarak bu sebzelerden vermeye başlasa, belki de kendiniz yetiştirmekten vazgeçerdiniz. Bakteriler de buna benzer bir şey yaparlar. Kendi gereksindikleri amino asitleri yapabilirler (protein zincirindeki yirmi temel halka). Amino asitler olmadan, doğal olarak protein yapamayacaklardı ve üremeleri duracaktı. Eğer bakterilere hazır yapılmış amino asitler verirsek, içinde yaşadıkları solüsyona amino asitler eklersek, bakteriler kendi amino asitlerini yapmayı durdururlar. Amino asit armağanımız hücrelerin kendilerininkini yaparak enerji harcamalarını gereksizleştirir. Burada bir hayli enerji söz konusudur. Yirmi amino asidin her birini yapmak birkaç enzim gerektirir. Her enzim yapılışında, bir gen harekete geçirilmeli, mesajcı RNA yapılmalı, enzim proteinlerin yapıldığı ribosomlara gönderilmelidir. Genin böylece durdurulması yapı enerjisinde önemli bir tasarruf demektir. Enerji korumak, bütün canlı hücrelerde olduğu gibi, bakterinin de yaşamını sürdürebilmesi için son derece önemlidir. Gen İfadesinin Denetlenmesi İçin Şema İşte bakteriler üzerine çalışmalardan elde edilmiş gen ifadesinin genel resmi; 1. Genler harekete geçirilip durdurulabilirler. Bu, represör denilen protein moleküller tarafından yapılır. 2. Represörler, kendilerini genlerin ucuna bağlarlar. Böylece geni mesajcı RNA'ya geçirecek olan enzimin işini yapmasını engellerler. 3. Bu, genin yapmakla yükümlü olduğu proteinin yapılmasının istenmediği anlamındadır. 4. Represörler iki nedenle DNA'dan serbest bırakılabilirler: a) Glukoz gibi bir şekerin yokluğuyla (demek ki glukoz gene bağlanması için represöre yardım ediyor.) b) Bir amino asidin yokluğuyla. Şimdi daha önce anlattığımız glukoz-galaktoz. deneyinin açıklamasını görebiliriz. Glukoz bakterilerin eli altında bulunduğu sürece, onu yiyecek ve bu da galaktoz genleri represörünün galaktozu kapalı tutmasına yardım edecektir. Glukoz bitince, galaktoz geni represörleri işlevlerini yerine getirmezler, böylece gerekli enzimler yapılabilir ve galaktoz kullanılabilir. Aynı şekilde, bakterilere amino asitler verildiği zaman bu amino asitler, bütün amino asit yapmaya yarayan genlerin represörlerine yardımcı olup, genleri kapattırabilirler. Bakteri içinde işleri düzenleyen bu güzel sistemin insanlar dahil daha yüksek canlı biçimlerinde de işlediği görülüyor. Bu sistem genlerin ifadesini denetlemek için önemli bir yoldur. Ama İnsanlar Bakteri Değildir Bakteri hücreleri ile bizim gibi organizmaları daha karmaşık ve uzmanlaşmış hücrelerin kullandıkları yöntemler arasında, belirgin bir fark vardır. Bakteri hücreleri; çabuk tepki veren, esnek, çevredeki ciddî değişikliklere hızla kendini uydurabilen bir yaşam sürenler. Bu biraz, vahşî ormanlarda savaşarak varlığını sürdürmeye benzer; bir bakteri kendi başının çaresine bakar. Diğer yandan uzmanlaşmış hücrelerin yaşam biçimleri kalıcı olarak belirlenmiştir. Ömür boyu; "deri hücresi" deri hücresi olarak, "kas hücresi" kas hücresi olarak, "beyin hücresi" de beyin hücresi olarak kalır. Her hücre çeşidinde deri mi, kas mı, yoksa beyin mi olduğunu belirleyen bir kaç gen işletilir ve diğer bütün genler (diyelim ciğer, kemik ya da böbrek olmak için) durdurulur ve hücre neyse sonuna kadar da o olarak kalır. Bakteriler, buna göre genleri hızla ve kolayca harekete geçirip durdurabilecek araçlar gereksinirler. Uzmanlaşmış hücrelerde çoğu genler sürekli durdurulmuş, birkaçı da sürekli işletilir durumdadır. Bakterinin bu kolay çalıştırma-durdurma mekanizması, uzmanlaşmış hücrelerde kullanılana benzemeyebilir. Ne var ki şu anda elimizde en iyi anladığımız model, bakteri sistemidir. Hiç olmazsa teorik olarak, temelli durdurmayı veya çalıştırmayı sağlamak için kullanılmasını düşünmek zor değil. Biçimin Oluşumu Embriyogenezde temel problem olarak gen ifadesine bakıyorduk. Oysa ilk göze çarpan yan, biçimin oluşumu; heykel dökme sürecindeki hüner, yumurtadan bebeğe dönüşümün akıl almaz mimarî başarısı. Örneğin, bizi oluşturan tüm özel doku ve organlar, bir iskelete asılmıştır. Kemik, bütün diğer yapının yanı sıra embriyoda gelişir. Sıradan görünüşlü hücrelerden başlayarak, içinde kalsiyumun sert bir yapı oluşturmak için biriktirildiği yeni bir doku belirir. Bu doku sert ve olağanüstü güçlüdür, bir organizmanın ağırlığını ömür boyu taşıyabilecek nitelikte yapılmıştır. Kırıldığı zaman da yeniden kendini onarabilir. Böylesine bir yapısal biçimlendirme süreci nasıl ortaya çıkıyor? Bu anlaşılması zor bir problem ve yine bir model sisteme başvurmamız gerek. Bakteriler, insanlar gibi virüs enfeksiyonuna karşı dirençsizdirler. Her bakteri virüsünün (buna bakteri yiyen anlamında bakteriofaj denir) kutu gibi içinde DNA'nın saklandığı bir kafası ve enjektör iğnesi gibi kullandığı bir kuyruğu bu kuyruğun ucunda da bakterinin yüzeyini yakalayan örümcek gibi bacakları vardır. Sonra virüs kendisi bir enjektörmüşçesine -ki aslında öyledir de- DNA'sını kuyruğundan bakteriye geçirir. Virüsün DNA'sı bakteriye girer girmez idareyi ele alır.Bakterinin protein yapan makinesine, bundan böyle bakteri proteini yapılmayacağını belirten bir sinyal gider. Ribosomlar ve transfer RNA makinesi, virüsün kendi DNA'sından üretilen mesajcı RNA'lar tarafından çabucak kendi yararına işleyecek hale dönüştürülür. Kısa bir süre sonra, bakteri fabrikası virüs proteini parçalan yapmaya başlar. Yeni kafalar, kuyruklar ve bacaklar yapılır. Her şey virüsün DNA'sı tarafından yönetilir. Bundan kısa bir süre sonra, bakterinin içinde virüs kafalarının biriktiği görülür, yeni yapılmış virüs DNA'ları bunların içine yerleştirilir ve tamamlanmış virüsler ortaya çıkar. Her bakteri hücresinin içinde, yüz kadar virüs onu sıkı sıkıya dolduracak biçimde birikir. Zamanı gelince, virüsler bakterinin zarını yarıp, onu. öldüren bir enzim salgılayarak kaçarlar. Bütün bu vahşî yıkım yarım saatten az bir zamanda gerçekleşir. Bu olguda biçimin oluşumunun basit bir modelini görebiliriz. Ele geçirilen fabrikada, virüsün değişik parçaları, kendi DNA'sının verdiği talimatlarla, ufak bir bina yapar gibi bir araya getirilir. Bunun dikkatle programlanmış bir zaman aralığında, ortaklaşa gerçekleştirilen bir işlem olduğu görülebiliyor. Öyle ki genler virüsün değişik parçalarının yapımına bir sırayı izleyerek başlanmasını denetliyorlar. Doğru parçalar doğru sırada yapılıyorsa, belirli biçimin kendiliğinden bir anda oluşması çok güçlü bir olasılık gibi görünüyor. Bu modelin çok daha karmaşık, gerçek embriyogenez olgusuna ne kadar ışık tutacağı belirsiz. Ama modelin yararlılığı, bakteriden çok daha basit bir organizma olan virüsün gen kompozisyonu üzerine oldukça tam bir bilgi sahibi olmamızda yatıyor. Ayrıca, olayların sırasını denetleyip isteğimize göre ayarlayabiliyoruz ve çok karmaşık olmayan üç boyutlu bir biçimin oluşumunu bir elektron mikroskobuyla kolayca izleyebiliyoruz. Hücre Bölünmesini Başlatmak ve Durdurmak Embriyo hızla bölünen bir hücre kütlesidir. Bu korkunç hızlı büyüme işi, doğumdan sonra çocukluk boyunca gittikçe yavaşlayarak yetişkinliğe erişene kadar sürer. Yetişkinlikte hücre bölünmesi durur. Bir organizmanın bütününde; her organın, her dokunun hücreleri, büyümenin tamamlanmasına çok titiz ve dikkatli bir işbirliğiyle katılırlar. Hücreler büyümeyi ne zaman durduracaklarını nereden biliyorlar? Oluşumuna katkıda bulundukları organların tam büyüklüğe eriştiğini onlara söyleyen ne? Bu olgu, normal hücrelerin bedenin dışındaki davranışında da gözlemlenebilir. Birkaç normal hücre, bir cam kabın ortasına bırakıldıklarında, hemen yanlarındaki komşu hücrelerle sürekli ilişkili olarak bölünmeye başlarlar ve en uçtaki hücreler kabın kenarlarına dokununcaya kadar, kabın yüzeyini tek hücre kalınlığında bir tabaka halinde örterler. Kenara ulaşılınca bütün hücreler bölünmeyi durdurur. Bölünmeyi durduran sinyalin özelliği nedir? Bunun cevabını bilmiyoruz, ama araştırmayı sürdürüyoruz. Bilmecenin en azından bir bölümüne cevap getirebilecek, iddialı bir model sistemimiz var. Bu modelin uygulanabilme kolaylığına hayranım, üzerine yıllar harcadığım için ona karşı özel bir düşkünlüğüm var. Regenerasyon: Yenilenme Bir kurbağa yavrusunun kuyruğunu kesip onu yeniden suya bıraksam, yara çabucak iyileşir ve ondan sonraki üç haftada gerçekten ilginç olaylar olur: Tam ve mükemmel bir kuyruk. Bir salamenderin de buna benzer biçimde ayağını koparsam yerine yenisini yapar. Deniz yıldızı ve ıstakoz da öyle. Bu olguya regenerasyon: yenilenme denir. Bunun kendi bedenimizde de örneği vardır. Kopunca kollarımızı, bacaklarımızı yerine getiremeyiz ama karaciğerimiz bir kazada zarar görse, bir parçasının ameliyatla alınması gerekse karaciğer bir iki gün içinde eski büyüklüğüne erişir. Bu özel durumun, laboratuvarda benzerini yapabiliriz. Ameliyatla bir farenin karaciğerinin üçte ikisini alabilirim. Fare anesteziden birkaç dakikada ayılır, bir iki saat içinde yemeye başlar ve üç gün sonra karaciğerinin eksik üçte ikisi, normal ve sağlıklı olarak yerine gelmiştir; bir karaciğerin yapması gereken her şeyi yapmaktadır. Bütün bu olaylarda iki dramatik nokta görülür: Birincisi; hayvanın bir parçasının ayrılması, eskiden her şeyin sakin olduğu bu bölgede çok hızlı bir hücre bölünmesine yol açar. İkincisi; bu parça yerine gelince hücre bölünmesi durur. Şaşırtıcı olan; bu bölgedeki hücrelerin bölünmeye gerek olduğunu iş bitince durmak gerektiğini bilmeleridir! Bu hücrelerin içinde, onlara bölünmeye başlamalarını ve eksik organı tamamlamak için yeterince bölündükleri zaman durmalarım söyleyen nedir? Bir zamanlar bunun cevabım bulmak için, kopan parçanın yerine yeni hücreler üreten bir karaciğerden parçalar alıp, bunları normal, bölünmeyen karaciğer hücrelerine karıştırıyordum. Kopanı yerine getirmek için üreyen hücrelere, daha çok hücre yapmalarını söyleyen bir kimyasal sinyal varsa bunun normal hücreleri de etkileyip, onların daha hızlı protein yapmalarını sağlayacağını düşünüyordum. Diğer yandan, eğer normal hücreler yenileme hücrelerini yavaşlatacak bir kimyasal mesajı içeriyorlarsa, bunu da anlayabilecektim. İyi bir fikir, iyi bir model ama deneyler sonuçsuz kaldı. Sistem henüz çok karmaşık. Olanları bir türlü kavrayamıyoruz. Yaşamın kanunlarını açığa çıkartmakta üst üste sağlanan başarılardan söz eden öykümüzde; bir deneysel başarısızlığın yeri yok gibi gelebilir. Bence tersine; bu öykümüzün gerçekçiliğini arttırır. Aslında, şimdiye kadar bilim adamlarını yaptıkları deneylerin çoğu başarısızlıkla sonuçlanmıştır. Başarısızlıklarımızdan ders alıp, bize sonunda iyi bir ilham sağlayacak daha iyi deneyler tasarlayabiliriz. Meslektaşım Dr. Nancy Bucher, yenilenme olayı üzerine bilgiye belki de diğer bilim adamlarından çok daha fazla katkıda bulunmuştur. Önemli çalışmalarından bazıları, farelerden yapışık ikizler yapmayı içeriyordu İki fareyi iyi bir ortak dolaşımları olacak biçimde birbirine dikiyordu; kan ikisinin arasında kolayca dolaşıyordu. Sonra, farelerden birinin karaciğerinin üçte ikisini alıyor ve bu ciğerin eksik kısmı yerine gelene kadar, diğer farenin karaciğerinin de büyüyüp büyümediğine bakıyordu. Büyüdü! Bu; yenilenme yapan karaciğerin, kan dolaşımına bir şey kattığı ve bunun diğer farenin karaciğerine ulaşınca, onun da büyümesine neden olduğu sonucunu gösterdi. Nancy Bucher ve bir çok başka bilim insanları, bu maddenin ne olabileceğini anlamaya çalıştılar; ama henüz bir başarı elde edilmiş değil. Embriyogenez Üzerine Bilinmeyenler Bilinenlerden Çoktur Yinelersek, embriyogenez konusunda bazı ilginç şeyler üzerinde durduk. Bir arada kalabilecek yapışkanlığı elde etmek için bölünen hücrelerin özel yeteneklerinden; bir organizma oluşturmak için gerekli olan uzmanlaşma konusundan; biçimin oluşumundan ve son olarak uzun embriyogenez, sürecine dur emri veren, çocukluk ve yetişkinliğe ulaşma işleminin bittiğini bildiren sinyalden söz ettik. Bunlar son derece karışık olguların yalnızca bir iki önemli noktası. Cahilliğimiz hâlâ bildiklerimizi kat kat geçiyor. Bu hiç de şaşırtıcı değil. embriyogenez, bütün yeteneklerimizi kullanmamızı gerektiren bir probleme benziyor ve biyoloji biliminin temelinde yatıyor. Biraz heyecanlı, biraz da kışkırtıcı bir konu; çünkü, ilk bakışta çözülemeyecek hiçbir zor yanı yokmuş gibi görünüyor. Kısa bir süre sonra, daha önceki bölümlerde anlattığımız yaşamın evrensel kanunlarını kavradığımız gibi, embriyogenezi de anlayabileceğimize inanıyorum. Embriyogenezin anlamadığımız yanları, kanserin anlamadığımız yanlarına çok benziyor. Gerçekte, bazı araştırmacılar, kanserin açıklamasının, embriyogenezin anlaşılmasını gerektirdiğini düşünüyorlar. Kanser, bazı bakımlardan insanın embriyogenezindeki o çok üstün denetleme yeteneğini yitirdiği zaman ortaya çıkıyor gibi görünüyor. Örneğin, kanser hücrelerinin başıbozuk davranışları, hücre yapışkanlığının yok olmasıyla ilgili olabilir. Şimdi bu konuyu daha yakından incelemeliyiz.

http://www.biyologlar.com/embriyogenez

Denizlerde dinozorlar var mıydı?

Çok büyük boyutlu devler denizlerde yaşıyordu. Bunlar karada da yaşayabiliyor ama avlanmak için denize giriyorlardı. Jura devrinin sonlarında yaşayan 3 metre boyundaki Plesiosaurus, Orta Jura – Üst Jura arasında yaşayan 15 metre uzunluğundaki Liepleurodon, Jura sonlarında yaşayan 14 metre uzunluğundaki Elosmosaurus bu deniz sürüngenlerinin en ünlüleriydiler. Ancak 2006 yılında keşfedilen bir deniz sürüngeni Jura sonlarında okyanuslarda 15 metre uzunluğunda, 45 ton ağırlığındaydı. Predetor-x ismi verilen bu dev deniz sürüngeni denizlerde rakipsizdi.

http://www.biyologlar.com/denizlerde-dinozorlar-var-miydi

Kuşların ve Uçuşun Evrimi Üzerine Teoriler

1861 yılında Almanya`nın Bavyera bölgesindeki Jura dönemine ait kireçtaşında bir asimetrik tüy fosilinin bulunması, kuşların Sürüngenler Çağı`ndan beri var olduklarının kanıtı olarak büyük bir heyecanla karşılanmıştı. Bu fosil tüyün bulunmasının hemen ardından, aynı bölgeden ve yine Jura dönemine ait, hem sürüngen hem de kuş özellikleri taşıyan bir hayvanın eksiksiz iskeletine ait fosilin bulunması ise, yaratılışçı görüşün hakim olduğu o günlerde, kuşkusuz başta Darwin olmak üzere bir çok biliminsanı için büyük önem taşıyordu. Archaeopteryx lithographica olarak adlandırılan bu fosil, bir ara-form olarak Darwin`in ortaya attığı evrim teorisini kanıtlar nitelikteydi ve bu fosilin bulunmasıyla kuşların ve uçuşun kökenine ilişkin günümüze dek süren, evrim biyolojisinin belki de en hararetli tartışmaları başlamış oluyordu. Kuşların evrimsel yolculuğuyla ilgili araştırmalar için çok önemli bir başlangıç noktası olan bu fosil, evrim teorisinin ışığı altında kuşların hangi sürüngen kolundan, nasıl bir evrim geçirerek günümüze geldiğini açıklamada bir anahtar rolü görebilirdi. Nitekim Archaeopteryx fosilleri 1861 yılından günümüze dek bu sorulara yanıt arayan araştırmacılar için her zaman önemli bir referans oldular. Günümüzde paleontologların çoğu, kuşların atasının dinozorların bir kolu olduğunda hemfikir.Yazılan bir çok kitap ve makalede kuşların atasının dinazorlar olduğundan sözedildiğini ve dünyanın önde gelen bir çok müzesinin dinozor bölümlerinin bu görüş doğrultusunda düzenlendiğini görmek mümkün. Almanya`nın Bavyera bölgesi ise yerini, 90`lı yıllarda ortaya çıkarılan tüylü dinozor fosilleriyle ünlenen Çin`in Lianoing bölgesine bırakmış durumda. Liaoning bölgesinde yakın zamanda bulunan dört kanatlı bir dinozor fosili de uçuşun evrimiyle ilgili önemli ipuçları içeriyor. Archaeopteryx: Ne kadar sürüngen, ne kadar kuş? Darwin`in "o tuhaf kuş" diyerek sözünü ettiği Archaeopteryx, gerçekten de özelleşmiş birincil ve ikincil uçuş tüylerinden oluşan çok gelişmiş tüyleriyle modern zaman kuşlarına oldukça benziyordu ve kendini önceleyen uzun bir kuş evrimine dikkat çekiyordu. Archaeopteryx`in hem sürüngen hem de kuş özellikleri, kuşların hangi atadan evrimleşmiş olabileceklerine dair önemli ipuçları verirken, fazlasıyla modern yapıdaki tüyleri, uçuşun ve tüylerin kökenine dair çok az ipucu sağlıyordu. Tüyler ve uçuş kuşların en karakteristik özellikleri olduklarından, kuşların evrimsel yolculuğunun tamamıyla aydınlatılabilmesi için Archaeopteryx fosilleri tek başlarına yeterli değildiler. Daha ilkel yapıda tüylere sahip ara-form fosillerinin de ortaya çıkartılması gerekiyordu. Archaeopteryx, günümüzde olduğu gibi bulunduğu ilk yıllarda da, başta Huxley ve Darwin olmak üzere birçok biliminsanı tarafından kuş evriminde bir yan kol olarak görülüyordu. Bu durum, paleontologların, hem modern kuşlar hem de kuş evriminin modern kuşlara uzanan ana kolunda yer almadığı düşünülen bu eski kuş için ortak bir ata aramaları anlamına geliyordu. Ataya ilişkin kuramlar Kertenkelelerden pterozorlara (uçan sürüngenlere), timsahlardan dinozorlara kadar Mezozoik çağ sürüngenlerinin çoğunun kuşların atası olduğu öne sürülmüş. Ancak günümüze dek ulaşabilen yalnızca iki temel kuram olmuş. Bu iki kuram arasındaki en önemli farklılıklar, kuşların atası olarak hangi sürüngen kolunun görüldüğüne ve ilk kuşun ortaya çıkış zamanına ilişkin görüşlerdir. Bu iki kuramı anlatmaya, sürüngenlerin milyonlarca yıllık tarihlerine göz atarak başlamak gerekiyor. Sürüngenler Çağı`ndan çok önce, geç Paleozoik çağda ortaya çıkmış olan kotilozorlar (köken sürüngenler) tüm sürüngenlerin atası olarak kabul edilirler. Anapsid kafatasları olan bu ilkel sürüngenlerin diapsid kafatasına sahip canlılara evrimleşen kollarından biri ise tekodontlardır. Yaklaşık 245 milyon yıl önce dünyada yaygın bir dağılım göstermiş heterojen bir sürüngen grubu olan tekodontlar, timsahların, pterozorların ve dinozorların atası olarak kabul edilirler. Tekodontların bir kolu olarak evrimleşen pterozorlar, uçma yetenekleri ve kuşlarınkine benzeyen diğer uçuş karakterleri nedeniyle bir zamanlar kuşların atası olarak gösterilmişlerse de, bu görüş hiçbir zaman fazla destekçi bulmamış ve benzerliklerin benzeştiren evrimin sonucu olduğu konusunda görüş birliğine varılmış. Aynı şekilde dinozorların iki ana kolundan biri olan Ornitiskianlar (kuşkalçalı dinozorlar) da, isimlerinden de anlaşılacağı gibi sadece yüzeysel bir benzerlik yüzünden kuşların atası olarak gösterilmiş, ancak bu görüş de fazla taraftar bulmadan unutulmuş. Dinozorların diğer ana kolu olan Sauriskianlar (sürüngen kalçalı dinozorlar) ise, etçil ve otçul olmak üzere iki kola ayrılırlar. Etçil olan teropodlar arasında Jurassic Park filminden hatırlayacağımız dev T-Rex gibi büyük dinozorların yanısıra, Huxley`in Archaeopteryx ile benzerliklerine dikkat çektiği Compsognathus (bkz. Bölüm 1) gibi küçük dinozorlar da yer alırlar. Huxley`in, 1868 yılında yazdığı ve tavuk büyüklüğündeki bir teropod dinozoru olan Compsognathus ile Archaeopteryx arasındaki benzerliklere değindiği makaleleri, kuşların teropod dinozorlardan evrimleştiği yönündeki görüşün ortaya çıkmasına neden olmuştu. Oysa Huxley`in o yıllardaki yazıları incelendiğinde, zaman zaman bu görüşünden geri adım atarak, teropod dinozorlar ve kuşlar için ortak bir atadan söz ettiği görülür. Öte yandan, Huxley`in çağdaşı bazı biliminsanları kuşlara ata olarak otçul dinozorları gösterirken, bazıları dinozorları kuşların atası olamayacak kadar fazla özelleşmiş buluyorlardı. Daha o yıllarda dinozorların ve kuşların sözü edilen benzerliklerini pterozor örneğindeki gibi benzeştiren evrime bağlayan ve yine ortak bir sürüngen atadan söz eden biliminsanları olsa da, kuşların atasını daha ilkel sürüngenlerde arayan hipotezin gerçekten doğuşu ancak bir sonraki yüzyıl içinde oldu. 1913 yılında Güney Afrikalı paleontolog Robert Broom`un, alt Triyas kayaçlarından 230 milyon yıllık fosili çıkartılan küçük bir tekodontun kuşların atası olduğu yolundaki düşünceyi ortaya atmasıyla, tekodont-ata hipotezi de doğmuş oluyordu. Broom`un Euparkeria adını verdiği bu tekodont dört ayaklıydı, ancak iki ayaklılığa doğru bir geçiş sürecindeydi. Broom`a göre dinozorların fazla özelleşmiş sayıldığı noktalarda yeterince ilkel olan Euparkeria, kuşların atası olmak için gerekli tüm anatomik özelliklere sahipti. Danimarkalı paleontolog Gerhard Heilmann`ın 1926 yılında yazdığı "Kuşların Kökeni" adlı kitap da bu hipotezi destekler nitelikteydi. Günümüzde konuyla ilgili bir klasik olarak kabul edilen bu kitap, kuşların kökeni ve evrimiyle ilgili ilk kitaptı ve burada Heilmann, Euparkeria`dan, kuşların kökenini açıklayan anahtar fosil olarak söz ediyordu. Aslında tüm yazdıklarının kuşların teropod dinozorlardan evrimi için de geçerli olabileceğinin görüldüğü kitabında Heilmann, teropod dinozorlarda bir kuş karakteristiği olan lades kemiğine rastlanmamış olduğuna dikkat çekiyor, ilkel formları ve lades kemiğine sahip olmaları nedeniyle tekodontların kuşların atası olduğunu savunuyordu. Aslında Huxley`in makaleleriyle ortaya atılmış olan bu dinozor-ata teorisininin, biraz değişikliğe uğramış olarak tekrar gündeme gelmesi, paleontolog John Ostrom`un 1973 yılından başlayarak yayınladığı makalelerle oldu. Ostrom, 1964 yılında keşfettiği ve bir erken Kretase dönemi teropod dinozoru olan Deinonychus ile Archaeopteryx arasında, benzeştiren evrimden kaynaklanmayacak kadar fazla benzerlik bulmuş ve kuşların teropod dinozorlardan gelmiş olduğunu savunmuştu. Archaeopteryx`den 40 milyon yıl genç olan bu fosille Archaeopteryx`in kol, el, kalça, bilek ve omuz kemikleri üzerinde yaptığı incelemeler sonunda özelleşmiş kemikler açısında çok benzediklerini gören Ostrom, Eichsatt Archaeopteryx`inin 20 sene boyunca bir teropod dinozoru (Compsognathus) zannedildiğini de hatırlatıyordu. 1986 yılına gelindiğinde ise paleontolog Sankar Chatterjee, Teksas`taki geç Triyas dönem katmanlarında bulduğu ve Protoavis olarak adlandırdığı bir fosili bilim dünyasına duyuruyordu. Chatterjee`nin, kafatası ve boyun kemiklerinde modern kuşlarla birçok benzerlik bulduğu ve en eski kuş olarak sözünü ettiği bu tartışma yaratan fosil, Archaeopteryx` den yaklaşık 75 milyon yıl gençti ve benzerlikleri kanıtlandığı takdirde dinozor ata teorisini çürütebilirdi. Ne var ki bu fosil iyi bir şekilde korunmadan günümüze ulaşmıştı ve parçacıklı yapısıyla tek bir bireye değil de, farklı birkaç türe ait bireylerin kemiklerinin biraraya gelmesiyle oluştuğu izlenimini uyandırıyordu. Bütünlükten uzak bulunan bu fosil, günümüze dek kuşkuyla sözü edilen bir fosil olarak kaldı. Kuşların tüylerden sonra en karakteristik özelliği sayılan lades kemiğinin, 20. yüzyılın sonlarına doğru Velociraptor ve Ingenia gibi bazı geç Kretase teropod dinozorlarında da bulunması, kuşların atasının teropod dinozorlar olduğu teorisini güçlendirdi. Hatırlanacağı gibi, Heilmann`ın teropod dinozorlarla kuşlar arasında gördüğü benzerliklere rağmen onların ortak bir atadan geldiklerini söylemekten öteye gitmemesinin nedeni, teropod dinozorlarda Heilmann için de çok önemli bir kuş karakteristiği olan lades kemiğinin bulunmamasıydı. Özetleyecek olursak, kuşların kökeniyle ilgili kuramlardan bir tanesi, Archaeopteryx fosilleriyle teropod dinozorlar arasında homolog olduğu düşünülen benzerlikler nedeniyle, kuşların atasının dinozorların bu kolu olduğu yönündeydi. Teropod dinozorlarla kuşlar arasındaki tüm sonradan edinilen benzerliklerin benzeştiren evrimden kaynaklandığını ve teropod dinozorların kuşların atası olamayacak kadar özelleşmiş olduklarını söyleyen tekodont ata teorisi ise, kuşların atasının teropod dinozorlardan önce yaşamış ilkel bir sürüngen olduğunu savunuyordu. Tüm bunlara ek olarak, fosilleri inceleyen bazı bilimsanlarının dinozorlar ve kuşlar arasındaki benzerlikleri, bazılarının ise farklılıkları vurgulaması, bu iki kuramın savunucularını karşı karşıya getiren önemli bir ayrılma noktasının sistematik yöntem farklılıkları olduğunu ortaya koyuyor. Günümüzde çoğu biliminsanınca kanıtlandığı düşünülen teropod-ata teorisinin uçuşun kökenine ilişkin bölümü, son olarak bulunan ilginç bir fosille birlikte çürütülmüş gibi görünüyor. Bu durum kuşların evrimsel yolculuğunu aydınlatmanın zorluğunu çok iyi anlatıyor olsa gerek. Bu yüzden, günümüz Archaeopteryx`lerine geçmeden önce, uçuşun ve tüylerin kökeniyle ilgili olan ve kuşların atasına ilişkin kuramlara paralel olarak gelişen tartışmalara değinmemiz gerekiyor. Uçuşun kökenine dair Kuşların atasının hangi hayvan kolu olduğuna ve kuşların bu atadan kaç milyon yıl önce ayrıldığına ilişkin araştırmalar ve tartışmalar, doğal olarak tüylerin ve uçuşun kökeniyle de çok yakından ilgilidir. Kuşların en karakteristik özelliği olduğu düşünülen tüyler, omurgalı derisinin en karmaşık türevidir. Morfolojik bir harika olarak tanımlayabileceğimiz tüyler, çok karmaşık yapıları ve sayısız işlevleri olması bakımından çok zengin bir evrimsel geçmişe işaret ederler. Tüylerin bir şekilde sürüngen pullarından evrimleştiği genel olarak kabul edilirken, sürüngen pulundan karmaşık yapıdaki tüye kadar olan evrimsel basamaklarda hangi yapıların ortaya çıktığı ve bu yapıların canlıların çevreye uyumunda nasıl bir değere sahip olduğu konusunda yıllar içinde birçok farklı görüş ortaya atılmıştır. Tüylerin, uçuş dışında, yalıtımdan kamuflaja ve kur davranışına kadar kuşların yaşamında büyük önem taşıyan pek çok işlevi vardır. Ancak kuşkusuz uçuşla ilgili/aerodinamik özellikler tüylerin birincil işlevidir. Uçuşun kökeniyle ilgili görüşlerin ve ortaya atılan senaryoların kimi, tüylerin en başta yalıtım ve iletişim gibi uçmayla ilgisiz bir nedenle evrildiğini savunurken, kimi de tüylerin, birincil işlevleri olan uçuştan farklı bir bağlamda evrimleşmiş olmasının mümkün olmadığını savunur. İlkel sürüngen atanın pullarının hangi işlev doğrultusunda evrim geçirerek ilkel tüylere dönüştüklerini ve buna bağlı olarak uçuşun kökenini açıklamaya çalışan iki temel kuram vardır. Bunlardan ilki uçuş evriminin yerde başladığını savunur. Bu kuramı destekleyenlerin çoğu, kuşların iki ayaklı teropod dinozorlardan geldiğini savunan araştırmacılardır. Kuşların atasının teropod dinozorlardan daha ilkel olan tekodontlar olduğunu savunanlar ise, uçuş evriminin ağaçta başladığını savunurlar. İlkel sürüngenvari kuş atasının ağaçta yaşamış olduğunu varsayan teoriye göre, sürüngen pullarında oluşacak her bir küçük değişiklik (uzama ve çatlama) bu hipotetik canlının aerodinamik yeteneklerinin gelişmesi demek olacaktı. Bu ilkel atanın sürüngen pulları karmaşık yapıdaki uçuş tüylerine dönüşürken, önceleri yerçekiminin sağladığı enerjiyi kullanarak ağaçtan ağaca süzülen canlının süzülme yeteneği zamanla gelişecek, manevra gereği ortaya çıktıkça da kanat ve kuyruk tüyleri karmaşık bir yapıya doğru evrim geçirecekti. En ünlü tekodont ata savunucusu olan Alan Feduccia`nın da desteklediği bu teori, özetle, tüylerin en başta uçuşla ilgili olarak evrildiğini varsayıyor ve kuşların atasının Triyas dönemde yaşamış küçük, dört ayaklı, ağaçta yaşayan bir tekodont olduğunu savunuyordu. Kuşların iki ayaklı, etçil teropod dinozorlardan geldiğini düşünenlerin desteklediği ve uçuş evriminin yerde başladığını savunan teori ise, tüylerin öncelikle ısı düzenleyici olarak evrildiğini varsayıyordu. Diğer bir deyişle, kuşlarda görülen sıcakkanlılığın uçuştan önce evrimleşmiş olması gerektiğini savunuyordu. 1969 yılında bazı dinozor türlerinin sıcakkanlı olmuş olabilecekleri yönündeki görüşü ilk kez ortaya atan ve günümüzün ünlü teropod-ata savunucusu olan John Ostrom`un önderliğindeki bu teoriye göre, kuşların teropod atasındaki ilkel tüyler öncelikle ısı yalıtımını sağlamıştı. Aktif, sıcakkanlı, koşarak avlanan bu etçil yırtıcı dinozorların ilkel tüylerle kaplanacak ön uzuvları, onların böcek ve benzeri küçük avlarını ağızlarına doğru süpürmelerini sağlayacaktı. Bu ilkel atanın avı peşinden koşarken ani manevralar yapabilmesi ya da avcılardan kaçarken tepelerden aşağıya süzülebilmesi de modern, gelişmiş kanat ve kuyruk tüylerinin evrilmesiyle gerçekleşecek ve böylelikle ilk olarak ısı yalıtımı sağlama yönünde evrilmiş olan tüyler sonradan aerodinamik işlevler doğrultusunda evrimlerini tamamlayacaklardı. Tüyleriyle fosilleşmiş olarak bulunan ilk kuş olan Archaeopteryx`in fazla modern yapıdaki tüyleri ise, ne yazık ki ilk tüye ve ilk uçuşa dair pek fazla ipucu vermiyordu. Yine de Archaeopteryx`in nasıl bir uçucu olduğuna ve ne tip bir ortamda yaşadığına ilişkin araştırmalar yapılırsa bazı sorular yanıtlanabilirdi. Asimetrik tüyleri Archaeopteryx`in uçabildiğini gösterirken, fazla çıkıntılı olmayan göğüs kemiği uzun süre kanat çırparak uçamayacağını düşündürüyordu. Feduccia, bir çok farklı ekolojik alandan seçtiği 500`den fazla kuşun pençeleri üzerinde yaptığı ölçümlerle Archaeopteryx`inkileri kıyaslıyor, Archaeopteryx`in pençelerinin yerde yaşamasını mümkün kılmayacak derecede kıvrık olduğuna dikkat çekiyor ve Archaeopteryx`in kesinlikle ağaçlarda yaşadığını savunuyordu. Bu görüşe karşı çıkanlar ise, Archaeopteryx fosillerinin bulunduğu Solhofen bölgesinden hiçbir ağaç fosilinin çıkarılmadığını, Jurassic dönemde bu bölgede ağaçların olmadığını ve dolayısıyla Archaeopteryx` in ağaçlarda yaşamış olmasının mümkün olmadığını ileri sürüyorlardı. 20 metreye ulaşabildiği bilinen Gingko gibi bir çok bitkinin Jura dönemi Avrupa`sında görüldüğü ve Solnhofen fosil kayıtlarında ağaçlara ait izler bulunmamasının bir çok nedeni olabileceği ise, bu itiraza verilen bir yanıttı. Yerde başlayan uçuşu savunanların karşılaştıkları en büyük itiraz ise, teropod atanın yerçekimini yenerek havalanmak için çok fazla kaldırma gücüne ihtiyaç duyacağı idi. Bu gerçekten yerinde bir itirazdı ve bu yüzden de uçuşun yerden başladığı teorisi uçuş evriminin ağaçta başladığını savunan teoriden daha az destekçi buldu. Uçuş evriminin yerde gerçekleştiğini düşünen araştırmacılar, Archaeopteryx`in kanatlarını ve uçuş kapasitesini inceleyerek bu önemli fiziksel problemi çözmeye çalıştılar. Son yıllarda yapılan ve bazı kuş türlerinin henüz uçamayan yavrularının bir tehlike durumunda dik yamaçlarda kanat hareketleriyle destekli olarak koşmalarını inceleyen ilginç bir araştırma ise, ilkel tüylere sahip koşan bir teropod atanın düşünüldüğünden daha fazla hareket özelliği olabileceğini savunuyordu. Uçuşun evrimiyle ilgili teoriler içinde şu günlerde tekrar gündeme gelen bir diğeri ise William Beebe`ye aitti. Beebee, 1915 yılında Berlin Archaeopteryx`inin bacaklarında gördüğü tüy izlerine dayanarak Archaeopteryx` ten önce ağaçlarda süzülen dört kanatlı bir sürüngen formun yaşamış olduğu teorisini ortaya atıyordu. Uçuşun kökeniyle ilgili bir görüşü olan tüm araştırmacılar, Archaeopteryx`in anatomisini ayrıntılı bir şekilde inceleyerek teorilerini kanıtlayacak karakterler ve davranış repertuarı bulmaya çalışırken biyolog Philip Regal, Kaliforniya`da yaşayan bir tür tilkinin sadece böceklerle beslendiğine dikkat çekerek uyarıda bulunuyordu. Regal, hiç bir araştırmacının bu tilkilerin anatomisini inceleyerek bu sonuca varmayacağını belirtirken, bir canlının davranışlarının sadece anatomisine dayanılarak tahmin edilemeyeceğine dikkat çekiyordu. Kuşların ve uçuşun kökeniyle ilgili tüm teoriler Archaeopteryx`in ve hipotetik kuş atalarının yerde veya ağaçta resmediliği bir çok çizimle desteklenmeye çalışılırken, Çin`in Liaoning bölgesi de kuşların kökeniyle ilgili tartışmaların ve hatta fosil ticaretinin merkezi olmaya hazırlanıyordu. Dinozorlar hala yaşıyor mu? Kretase döneminde yaşanan hızlı iklim değişiklikleri ve volkanik kül yağmurları Çin`in kuzeydoğusunda yer alan Liaoning Bölgesi`nde fosilce zengin eski bir göl yatağı oluşmasına neden olmuş. Aralarında dünyanın en eski çiçekli bitki fosilinin de bulunduğu bir çok önemli fosil bu bölgeyi dünyanın doğa tarihine ışık tutan bir merkez haline getirmiş durumda. 1994 yılında burada bulunan saksağan büyüklüğündeki ilkel bir kuş Archaeopteryx`e olan benzerliğiyle dikkat çekiyordu. Confuciusornis adı verilen bu kuş, modern yapıdaki uçuş tüyleriyle belli bir mesafeyi uçabilen ilk kuş olarak kabul edildi. Bu kuşa ait fosillerden bir kısmının kuyruğunda eşeysel dimorfizme işaret eden tüyler bulunuyordu. Modern bir gaga yapısına sahip en eski kuş olarak da büyük önem taşıyan Confuciusornis`in Archaeopteryx gibi 3 kıvrık tırnağı olması ise bazı arştırmacılar için Confuciusornis`in ağaçlarda yaşamış olduğunun kanıtıydı. Öte yandan diğer araştırmacılar Confuciusornis`in el yapısını dinozorların kavrayan elinin uçan ele evriminin bir kanıtı olarak görüyor ve Confuciusornis`i uçabilen, tüylü bir teropod dinozor olarak tanımlıyorlardı. Bu bölgeyi kuş kökeni tartışmalarının merkezi haline getiren fosillerden ilki 1996 yılında çıkarıldı. Sinosauropteryx adı verilen bu fosil çok iyi bir şekilde korunmuştu ve bu fosilde genelde fosilleşmeyen karaciğer gibi yumuşak dokuları bile görmek mümkündü. Ancak fosilin tartışmaları alevlendiren özelliği, başından kuyruğuna dek bir hat boyunca inen ve hav izlenimi veren yelesiydi! Kuşların atasının teropod dinozorlar olduğunu savunanlarca ilkel tüy olduğu düşünülen bu lifler, sıcakkanlılığın uçuştan önce evrimleştiğinin kanıtıydı. Bu fosil hayvanın Compsognathus`a olan benzerliği ise teropod ata teorisi savunucuları için kuşların dinozorlardan gelmiş olduğunun kesin bir kanıtıydı. Ne var ki bazı araştırmacılara göre sırt çizgisiyle sınırlılığı şüphe uyandıran bu lifler tüylerin atası olabilecek bir yapıda değildi ve üstelik bu yapılar bazı modern sürüngenlerde de görüldüğü gibi deri altındaki bir tür kolajen destek yapısı olabilirlerdi. Sinosauropteryx fosilinin yankılarının sürdüğü 1997 yılı içinde yine Lianoing`den bu kez peşisıra iki yeni ilginç fosil daha çıkarıldı. Archaeopteryx`e benzerliğinden dolayı Protarchaeopteryx olark adlandırılan ilk fosil, Archaeopteryx`den daha ilkel yapıda tüylere sahipti ve bu tüylerin simetrik yapısı uçuş yeteneğinin olmadığını gösteriyordu. Caudipteryx adı verilen ikinci fosilde de yine benzer yapıda tüyler bulunuyordu. Bu fosilin kuyruğunda göze çarpan kabarık tüyler ise kur davranışıyla ilgili olarak yorumlanıyordu. Bu iki fosil bir çok araştırmacı tarafından Sinosauropteryx ve Archaeopteryx arasında yer alan tüylü teropod dinozor formları olarak kabul edilirken, Feduccia bu fosilleri dinozorlardan çok uçamayan kuşlara benzetiyortu. Uçamamanın ikincil olarak (sonradan) evrimleştiğini belirten Feduccia, çok iyi korunmuş olduğu halde Caudipteryx fosilinde lades kemiğinin görülmeyişini bu gibi kuşlarda görülen lades kemiği kaybının bir örneği olarak görüyor ve bu kuşları "Mezozoik kivi" olarak tanımlıyordu. Bu iki fosilin uçma kaybının çok eskiden evrimleştiğinin bir kanıtı olduğunu belirten Feduccia, "Şayet Mezozoik kayaçlarda bir emu* (Avustralya`da yaşayan ve devekuşuna benzeyen, uçamayan bir kuş türü) fosiliyle karşılaşsaydık bu kuşta gördüğümüz dejenere olmuş tüyleri modern tüye geçişteki bir basamak olarak mı yorumlayacaktık?" diye sorarak uçmayan kuşların uçuşun kökenini aydınlatmadaki önemini vurguluyordu. 2000`li yıllara girildiğinde ise evrim biyolojisinin bu çok tartışılan konusuyla ilgili kitap ve makalelere yenileri eklenmeye, fosil kayıtları da artmaya devam ediyordu. Arjantin`deki geç Triyas döneme ait depozitlerde kuş ayak izlerine ait olduğu düşünülen fosillerin bulunması yine farklı şekillerde yorumlanırken, Lianoing bölgesinden olay yaratacak bir başka fosil çıkarılıyordu. 77 cm boyutlarındaki küçük bir teropod dinozoruna ait olan bu yeni fosil, W. Beebee adını tekrar gündeme getiriyor ve uçuşun kökeniyle ilgili tartışmaları alevlendiriyordu. Microraptor gui adı verilen bu önemli fosil gerçekten de ön ve arka uzuvlarındaki, asimetrik uçuş tüylerinden oluşan kanatlarıyla Beebee`nin hipotetik 4-kanatlı kuş atasına benziyordu. Bir tür teropod dinozoruna ait olan bu fosil bir yandan uçuşun teropod dinozorlardan evrimleştiğini gösteren bir başka kanıt olarak görülürken diğer taraftan uçuş evriminin ağaçlarda süzülmeyle başlamış olduğu teorisini destekliyordu. İlk Archaeopteryx fosilinin bulunduğu yıldan günümüze kadar yapılan araştırmalar sonucunda kuşların ve uçuşun kökenine dair bir çok bilinmeyenin aydınlatıldığı ve yeni bilgilere ulaşıldığı kesin. Biyolog Richard O. Prum ise tüm bu yeni bilgiler ışığında "kuş" tanımının geçirdiği değişikliğe dikkat çekiyor. Prum, evrim biyolojisi, paleontoloji ve sistematikdeki gelişmelerle kuşları dinozor atalarından ayıran anatomik boşluğun silindiğini söylüyor ve son olarak bulunan 4 kanatlı dinozor fosiliyle birlikte kanat çırparak uçuş dışında kuşlara özgü hiçbir temel karakterin kalmadığını belirtiyor. Sonuç olarak denebilir ki sayıları hiç de az olmayan biliminsanına göre dinozorlar hala yaşıyorlar. İnsanoğlunu da çok etkilemiş olan uçuş, canlıların kazandığı en karmaşık yeteneklerden biri ve bizim kuş tanımlarımızı tekrar gözden geçirmemiz gerekiyor.

http://www.biyologlar.com/kuslarin-ve-ucusun-evrimi-uzerine-teoriler

BİTKİLERDE İÇTEN VE DIŞTAN GELEN SİNYALLERE VERİLEN YANITLAR

Bitki yaşamının her evresinde, çevreye duyarlılık ve yanıtlarında koordinasyon vardır. Bitkinin bir kısmından, diğer kısımlarına sinyaller gönderilebilmektedir. Örneğin; bir sürgün ucundaki tepe tomurcuğu birkaç metre uzaklıktaki yanal tomurcukların büyümesini baskı altına alabilir. Bitkiler, zamanı günlük ve yıllık olarak izlemektedirler. Yer çekimini ve ışığın yönünü algılarlar. Bitkinin morfolojisi ve fizyolojisi, çevresindeki değişkenlere göre sürekli olarak ayarlanır; bu çevresel uyartılar ve içsel sinyaller arasındaki kompleks ilişkilerle sağlanır. SİNYAL İLETİMİ VE BİTKİ YANITLARI Bitkiler dahil tüm organizmalar, özgül çevresel sinyalleri ve içten gelen sinyalleri alma ve bu sinyallere yanıt verme yeteneğindedir; organizmaların bu sinyallere yanıt vermesi, bir bakıma , yaşama ve üreme başarılarını artırır. Bitkiler de çevrelerindeki önemli değişiklikleri saptamak için hücresel reseptörlerini kullanırlar; bu değişiklik büyüme hormonunun konsantrasyonundaki bir artışı, yapraklar üzerinde beslenen bir çekirgenin verdiği zararı yada kış yaklaştıkça gün uzunluğunun azalmasını kapsayabilir. İç yada dış kaynaklı uyartının bir fizyolojik yanıtı başlatabilmesi için, organizmadaki belirli hücrelerin, uygun bir reseptöre sahip olması gerekir. Bir reseptör, özel bir uyartıya duyarlı ve ondan etkilenen bir moleküldür. Reseptör, bir uyartıyı alır. Bundan sonra iletim, bir dizi özel biyokimyasal basamağı, yani; sinyal iletim yolunu başlatır. Sinyal iletim yolu, uyartının algılanmasını organizmanın yanıtıyla eşleştirir. Sinyal iletimi, içten ve dıştan (çevreden) gelen sinyalleri hücresel yanıtlara bağlar Bir sürgün, güneş ışığına ulaşınca çok önemli morfolojik ve biyokimyasal değişiklikler geçirir. Bu değişiklikler yeşillenme olarak adlandırılır. Yeşillenme sırasında gövdelerin uzama hızı yavaşlar, yapraklar genişler, kökler uzamaya ve toprak üstü kısımlar klorofil üretmeye başlar; kısaca sürgün tipik bir bitkiye benzemeye başlar. Bu yeşillenme nasıl olur? Bu soruya cevap ararken; bir sinyalin (örn, ışık) bir bitki hücresi tarafından nasıl alındığını ve bu algılamanın bir yanıta (yeşillenme) nasıl dönüştürüldüğünü göreceğiz. İncelemelerimiz sırasında, mutantlarla yapılan çalışmaların, hücrede sinyal oluşumunun üç farklı evresinde (algılama, iletme ve yanıt verme) çeşitli moleküllerin oynadığı rollere nasıl ışık tuttuklarını göreceğiz Sinyal iletim yollarının genel bir modeli. Özel bir reseptöre bağlanan bir hormon (veya çevreden gelen diğer bir sinyal), sekonder mesajcılar üretmek için hücreyi uyarır. Sekonder mesajcılar, orijinal sinyale karşı hücrenin çeşitli tepkimeler üretmesini sağlar. Yukarıdaki şekilde reseptör, hedef hücrenin yüzeyinde görülmektedir. Diğer durumlarda, hormonlar hücreye girer ve hücre içinde özel reseptörlere bağlanır. Sinyalin Alınması Sinyaller ister içten ister dıştan gelsin, ilk olarak reseptörler tarafından saptanır. Reseptörler, özel bir uyartıya yanıt olarak yapısal değişiklikler geçiren proteinlerdir. Bitkilerde yeşillenmede yer alan reseptör fitokrom olarak adlandırılır. Fitokrom özel bir proteine bağlanmış, ışık absorblayan bir pigmentten oluşmuştur. Plazma zarındaki pek çok pigmentin aksine, yeşillenmede iş gören fitokrom sitoplazmada bulunur. Araştırmacılar, yeşillenme sürecinde fitokromun gerekli olduğunu, aurea isimli bir domates mutantıyla yaptıkları çalışmalarda ortaya çıkarmıştır. Normal düzeyden daha düşük miktarda fitokroma sahip olan bu mutant, ışığa maruz bırakılınca yabani tip domatesten daha az yeşillenmektedir. (Latince aurea altın-renkli anlamındadır. Klorofil yokluğunda, karetenoyit denilen sarı bitki pigmentleri, daha fazla belirginleşirler). Araştırmacılar, diğer bitkilerden elde ettikleri fitokromu mikro iğnelerle (mikro enjeksiyon yoluyla) aurea‟nın yaprak hücrelerine enjekte ettikten sonra bu bitkiyi ışığa maruz bırakarak normal bir yeşillenme yanıtının oluşmasını sağlamışlardır. Bu tür denemeler, yeşillenme sürecinde, ışığın algılanmasında fitokromun iş gördüğü varsayımını desteklemiştir. Sinyal İletilmesi Yeşillenme süreci, çok düşük düzeydeki ışık tarafından başlatılır. Örneğin; birkaç saniyelik ay ışığına eşdeğer ışık düzeyleri, karanlıkta büyüyen çavdar fidelerinin gövde uzamasının yavaşlatmaya yeter. Fitokrom gibi reseptörler, çok zayıf çevresel ve kimyasal sinyallere duyarlıdır. Bu çok zayıf çevresel ve kimyasal sinyallerden gelen bilgi nasıl çoğaltılmakta ve bitki tarafından bu algılama özel bir yanıta nasıl dönüştürülmektedir? Bu sorunun yanıtı, sekonder mesajcılardır (sekonder messenger veya ikincil mesajcılar). Bunlar bitkide üretilen küçük kimyasal maddeler olup sinyali çoğaltarak reseptörden proteine nakleder; bu proteinler özel bir yanıta neden olur. Örneğin; yeşillenmenin ortaya çıkması sırasında etkileşen her bir fitokrom, yüzlerce sekonder mesaj taşıyıcı molekül oluşturabilir. Bunlar da yüzlerce özel enzim molekülünü aktifleştirebilir. Sinyal iletim yolundaki bir sekonder mesajcı, bu tür mekanizmalarla sinyalin hızlı bir şekilde çoğalmasını sağlar. Şimdi, özel olarak sekonder mesajcıların oluşumunu ve yeşillenmenin ortaya çıkmasındaki işlevlerini inceleyelim. Bitkilerde sinyal iletimine bir örnek; yeşillenmede fitokromun rolü. Işık sinyali fitokrom reseptörü tarafından alınır. Daha sonra reseptör G-proteinlerini içeren iki sinyal iletim yolunu aktifleştirir. 1) yollardan biri, bir protein kinaz serisini aktifleştiren bir sekonder mesengera götürür. 2) diğer yol, özel bir protein kinazı aktifleştiren bir Ca+2 – kalmodulin kompleksinin oluşumuna götürür. 3) her iki yol yeşillenmede iş gören proteinlerle ilgili genlerin ifade (yeşillenmede iş görmek için dizilmesini) olmasını sağlar. Pek çok reseptör guanin-bağlı proteinlerle (G-proteinleri) ilişkiye girer. Fitokrom böyle bir reseptördür. Işık fitokromda konformasyonal bir değişikliğe neden olur. Daha sonra fitokrom, özel G-proteini ile ilişkiye girer. Aktifleşme sırasında, inaktif G-proteinine bağlı olan guanozin difosfat (GDP), guanozin trifosfat (GTP) ile yer değiştirir. Böylelikle, aktif hale gelen G-proteini, yeşillenmeyi sağlayan sinyal iletim yolundaki diğer enzimleri aktifleştirir. Örneğin; fitokromun aktifleştirdiği G-proteinleri, ikincil (sekonder) bir mesaj taşıyıcı olarak siklik-GMP‟ı (cGMP) oluşturan enzim olan guanil siklazı aktifleştirir. G-proteini inhibitöreleri, aurea domates hücrelerine, fitokromun mikroenjeksiyon yoluyla verilmesinden sonra yeşillenmeyi durdurur; buna karşılık G-proteini aktivatörleri, yanıtı uyarır. Siklik adenozin monofosfat (cAMP, siklik AMP) ve siklik guanozin monofosfatın (cGMP) dahil olduğu siklik nükleotidler özel protein kinazları (diğer proteinleri fosforlayarak aktifleştiren proteinler) aktifleştirir. Denemeler cGMP‟nin yeşillenme sürecinde yer aldığını göstermektedir. cGMP‟nin aurea domates hücrelerine mikroenjeksiyonu, fitokrom ilavesi olmaksızın bile, yeşillenme işlemini kısmen teşvik etmektedir. Sitoplazmadaki (sitosol) Ca+2 düzeyleri genel olarak çok düşüktür (yaklaşık 10-1M). Bununla bilikte, çok çeşitli hormonal ve çevresel uyartı, sitosoldeki Ca+2 düzeyinde küçük bir artışa sebep olabilir. Daha sonra, Ca+2, kalmodulin olarak isimlendirilen küçük bir proteine doğrudan bağlanır. Bundan sonra Ca+2-kalmodulin kompleksi birkaç enzime bağlanarak, onları aktifleştirir. Protein kinazlar, bu enzimlerin en belirginleridir. Şekilde yeşillenme mekanizması sırasında fitokromun aktifleşmesinin, sekonder mesenger olarak hem cGMP hem de Ca+2-kalmodulinle sonuçlandığına dikkat ediniz. Yanıtın Oluşması Sonuçta, sinyal-dönüştürme yolları, hücrede bir yada daha fazla aktivitenin düzenlenmesine yol açar. Çoğu durumda, özelliklede gelişimdeki değişiklikler söz konusu olduğu zaman, uyartıya (sinyale) karşı verilen bu yanıtlar belirli enzimlerin aktivitesini artırır. Sinyal oluşturan bir yol, bir enzimi iki ana mekanizma ile aktifleştirebilir. Bu mekanizmalardan biri, o enzimle ilgili mRNA‟nın transkripsiyonunun uyarılmasıdır, diğeri ise mevcut enzim molekülünün aktifleştirilmesidir (yani translasyon sonrası modifikasyon). Transkripsiyon: DNA kalıbı üzerinden RNA sentezlenmesi. Translasyon: Bir mRNA molekülü üzerinde kodlanmış genetik bilgiyi kullanarak bir polipeptidin sentezlenmesi. Transkripsiyon faktörü: DNA‟ya bağlanarak özgül genlerin transkripsiyonunu uyaran, düzenleyici protein. Transkripsiyon başlatma kompleksi: Promotere bağlanan RNA polimeraz ve transkripsiyon faktörlerinin tümünün oluşturduğu birlik. Gen: DNA‟daki (yada bazı virüslerde RNA‟daki) özgül bir nükleotit dizisinden (sekansından) meydana gelmiş kalıtsal bilgiyi taşıyan birim. Genler (DNA) ve bunların ürünleri (proteinler) bir organizmanın kalıtsal gelişimini belirler. Genom: Bir organizmanın genlerinin tamamı; bir organizmanın genetik materyali. Transkripsiyon Evresinde Düzenleme Trankripsiyon faktörleri doğrudan özel DNA bölgesine bağlanır ve özel genlerin transkripsiyonunu kontrol eder. Fitokromun teşvik ettiği yeşillenmede, uygun ışık koşullarına yanıt olarak birkaç transkripsiyon faktörü, fosforilasyonla aktifleştirilir. Bu transkripsiyon faktörlerinin bazısı cGMP‟a, buna karşılık diğerlerinin aktifleşmesi ise Ca+2-kalmodulin‟e gereksinim duyar. Bir sinyalin yeni bir gelişim sürecinin başlamasını sağladığı mekanizma, pozitif transkript faktörlerine (özel genlerin transkripsiyonunu artıran faktörler) yada negatif transkript faktörlerinin (transkripsiyonu azaltan proteinler) etkisizleşmesine yada her ikisine birden bağlıdır. Karanlıkta büyütüldüklerinde mat renkli olmalarının dışında, ışıkta büyütülmüş gibi morfolojik özelliklere (geniş yapraklar, kısa ve sağlam gövdeler) sahip Arabidopsis mutantları mevcuttur (bu mutantlar yeşil renkli değildir. Çünkü klorofil üretiminin son basmağında doğrudan ışığa gereksinim duyulur). Bu mutantların bir negatif transkripsiyon faktöründe bozukluklar bulunur. Bu transkripsiyon faktörü, normalde ışık tarafından aktifleştirilen diğer genlerin ifadesini engellemektedir. Negatif faktör, mutasyonla ortadan kalkınca, onu durduran yol aktifleşmektedir. Proteinlerde Translasyon Sonrası Oluşan Değişimler Transkripsiyon ve translasyonla yeni proteinlerin sentezi, yeşillenme ile ilgili önemli moleküler olaylar olmalarına karşın, mevcut proteinlerin translasyon sonrası değişimleri de önemlidir. Bu mevcut proteinlerin çoğu sıklıkla fosforilasyonla, yani proteine bir fosfat grubunun katılmasıyla, değişime uğramaktadır. Protein kinazlar olarak isimlendirilen belirli proteinler hedef proteinlerin fosforilasyonunu katalizlemektedir. cGMP ve bazı fitokrom formları dahil, bazı reseptörlerin kendileri doğrudan protein kinazları aktifleştirir. Tüm bitki genlerinin yaklaşık % 2-3‟ü protein kinazları kodlayabilir. Çoğunlukla bir protein kinaz başka bir protein kinaza, daha sonra diğerine, o da başkalarına fosfor kazandırır. Böylece kinazların ard arda harekete geçirilmesi, sonuçta başlangıçtaki uyartıya gen ifadesi düzeyinde yanıt verilmesini sağlar. Bu, genellikle transkripsiyon faktörlerinin fosforlanmasıyla gerçekleşir. Pek çok sinyal iletim yolu, bu tür mekanizmalarla yeni proteinlerin sentezini düzenler. Bunu, çoğunlukla özgül genlerin açılıp kapanmasını sağlayarak yapar. Fosforilasyon şelalesi. Bir fosforilasyon şelalesinde yer alan farklı moleküller, bu yolda sırasıyla fosforile edilirler. Dizideki her molekül, kendinden sonraki moleküle bir fosfat grubu ekler. Burada gösterilen fosforilasyon şelalesi, protein kinaz 1 olarak adlandırdığımız bir enzimin bir aktarım molekülü tarafından aktive edilmesinden sonra başlar. 1) Aktif protein kinaz 1 bir fosfat grubunu ATP‟den inaktif protein kinaz 2‟ye aktarır. Böylece ikinci kinaz aktifleşir. 2) Aktif protein kinaz 2 daha sonra protein kinaz 3‟ün fosforilasyonunu (ve aktivasyonunu) katalizler. 3) Sonuçta, aktif protein kinaz 3, sinyale verilecek hücresel cevabı ortaya çıkaracak olan proteini (pembe) fosforile eder. Kesikli çizgi ile gösterilen oklar fosforile olmuş proteinlerin inaktivasyonunu temsil etmektedirler. Fosfotaz enzimleri fosfat gruplarının proteinlerden uzaklaştırılmasını katalizler. Böylece bu proteinler yeniden kullanılamazlar. Aktif ve inaktif proteinler farklı yapılarda temsil edilmektedirler. Bunun nedeni, aktivasyonun genellikle molekülün biçim değiştirmesiyle birlikte cereyan ettiğini hatırlatmaktır. Sinyal iletim yolları, başlangıç sinyali ortadan kalkınca kapanma mekanizmasına da sahip olmalıdır. Özgül proteinlerin fosfor yitirmelerini sağlayan fosfataz enzimleri, bu kapama sürecinde yer alır. Herhangi bir anda bir hücrenin aktivitesi, pek çok proteinkinaz ve protein fosfataz enziminin aktivitesindeki dengeye bağlıdır. Yeşillenmeyi Sağlayan Proteinler Yeşillenme sürecinde hangi proteinlerin transkripsiyonu gerçekleşmekte yada fosforilasyonla aktifleştirilmektedir? Bu proteinlerin çoğu doğrudan fotosentezde iş gören enzimlerdir; diğerleri ise klorofil üretimi için gerekli kimyasal öncüllerin temin edilmesinde yer alır; bunların dışındaki enzimler ise, büyümeyi düzenleyen bitkisel hormonların düzeylerini etkiler. Örneğin gövde uzamasını artıran iki hormonun düzeyi sitokromun aktifleşmesinden sonra azalır. Bu nedenle, yeşillenmeyle birlikte gövde uzaması azalır. Yeşillenme gibi yalnızca bir tek sürecin altında yatan biyokimyasal değişikliklerin bile ne denli karmaşık olduğunu açıklamak için bitki yeşillenmesinde yer alan sinyal iletimini ele aldık. Her bitki hormonu ve her bir çevresel uyartı, karmaşık, bir yada daha fazla sinyal iletim yolunu başlatır.

http://www.biyologlar.com/bitkilerde-icten-ve-distan-gelen-sinyallere-verilen-yanitlar

ANTİSENS TEKNOLOJİLERİ HAKKINDA BİLGİ

ANTİSENS TEKNOLOJİLERİ HAKKINDA BİLGİ

Antisens teknolojisi insan, hayvan ve bitkilerdeki hastalıkların daha spesifik tedavisi ve yeni keşifleri için ayrıca, fonksiyonel genomik çalışmalar için çok güçlü silahlardan oluşan uygun tekniklerdir. Antisens teknoloji olarak bilinen yöntemde, antisens RNA moleküllerinin hedef genin RNA mesajına spesifik olarak bağlanarak gen ifadesinin moleküler düzenlenişine engel olunmaktadır. Hastalıkların oluşumunda büyük bir paya sahip olan proteinlerin üretimini durdurmak için bu teknoloji, oligonükleotidler olarak adlandırılan modifiye olmuş ya da olmamış DNA/RNA segmentlerinin kullanımını içermekte ve hücre içinde, nukleus ve protein üretim bölgeleri arasındaki genetik bilginin iletimini bloke etmektedir (1). Antisens nükleik asit sekanslarının hedef olacak spesifik mRNA’ ya bağlanması veya hibridizasyonu, genin genetik mesajının kesilmesine yol açmaktadır. Bir genin genetik mesajının hücresel proses ile kesilmesi “Knock - Down” veya “Knock – Out” olarak isimlendirilir. Bu proses, bu genin işleyişini saptamak için araştırıcılara olanak sağlamıştır. Diğer bir önemli antisens teknolojisi ise"RNA interferens" olarak adlandırılır. Antisens alanındaki araştırmalar RNAi (RNA interferens) ’nin keşfi ile hız kazanmıştır. Doğal olarak oluşan bu mekanizma sekansa spesifik olup ilk kez Caenorhabtidis elegans nematodunda keşfedilmiştir. Çoğu ilaç (Drug) proteinlere bağlanırken, antisens moleküller kendilerine komplementer hedef RNA ile eşleşirler. Antisens oligonükleotidler mRNA’ nın translasyonunu bloke eder veya RNAaz – H ile mRNA’ nın degredasyonuna neden olurlarken, ribozim ve DNA enzimleri hedef RNA’ yı keserler. RNAi yaklaşımları, RISC ile etkileşen siRNA (small interfering RNA) molekülleri ile gerçekleştirilir (2). Antisens Oligonükleotidler Oligonükleotid bazlı antisens tekniklerin birçok ortak yanı vardır ve genetik mesajın eleminasyonu veya baskılanması üzerine çok başarılı yöntemler uygulanmıştır. Sentetik oligonükleotid sekansın antisens etkisi 1970 yıllarında Zamecnik ve Stephenson tarafından gösterilmiştir. Bu araştırmacılar Rous Sarcoma virusün (RSV)35SRNA’ sının 5’ ve 3’ uçlu nükleotid sekansını kullanarak viral integrasyonda önemli olarak görünen 21 nükleotidlik tekrarlayıcı sekansları identifiye etmişler ve viral sekansın bir kısmına komplementer olan d(AATGCTAAAATGG)13 mer’ lik oligonükleotidi sentezlemişlerdir. Bu sentetik oligonükleotid sekansı RSV ile enfekte olmuş fibroblast hücre kültürlerine verildiğinde, viral üretim büyük ölçüde inhibe olmuştur. Böylece araştırmacılar önemli sekanslara hibridize olarak onları bloke eden oligonükleotidlerin viral integrasyonu inhibe ettiği sonucuna varmışlardır. Hücreye verilen bu oligonükleotide “hibridon” adı verilir (1). Şekil 1. Farklı antisens stratejilerinin karşılaştırılması Sentetik oligonükleotidler, genetik proseslerde bir ajan olarak kullanılmak isteniyorsa bir takım konular aydınlatılmalıdır. Bu konuların en önemlisi “Kalıcılık”tır. Sentetik oligonükleotidler yabancı bir hücreye verildiklerinde hemen endonükleazlara yem olurlar. Onun için bu oligonükleotidlerin endonükleazlardan korunması gerekir. Mümkün olan koruma modifikasyonları 2003 yılında Kurreck tarafından 3 tip olduğu ortaya çıkmıştır. Birinci sınıf modifikasyon, DNA ve RNA nükleotidlerindeki baz veya fosfat bağlarının değişimidir. DNA nükleotidlerinde olmayan, RNA nükleotidlerindeki 2’(OH) hidroksil grubu olan (Riboz) modifiye edilebilir. Bu modifikasyon, nukleaz degredasyonuna karşı bir tür kamuflajdır. 1969 yılında araştırıcılar fosfat bağlarında köprü oluşturmayan oksijen atomundan birini sülfür ile yer değiştirmişlerdir. Bu modifikasyon insan serumunda 10 saatin üzerinde nükleazlara karşı dayanıklı bir şekilde kalmış, aynı sekansa sahip modifiye olmamış oligonükleotid ancak 1 saat kalabilmiştir. Bu modifikasyona fosforotiat denmiştir. 1990 yıllarında başka araştırıcılar kültüre edilmiş hücrelerde HIV replikasyonuna karşın fosforotiatın etkili bir hibridon olduğunu bulmuşlardır. Diğer yandan, fosforotiatlı nükleotidler azda olsa hibridizasyon kinetiği düşük ve spesifik olmayan proteinlere bağlanarak sitotoksik etkiye neden olan özelliklere sahiptirler (1). İkinci sınıf modifikasyon, Riboz şekerinin 2’ pozisyonundaki alkil modifikasyonlar içeren RNA nükleotidleridir. Bu modifikasyonların en önemli ikisi, 2’-O-metil (OMe) ve 2’-O-metoksi-etil (MOE)RNA’ larıdır. Modifikasyona uğramış antisens oligonükleotidlerin hibridizasyon afinitesi arttırılmış ve daha düşük bir toksik etki yaratmışlardır. 2’-O-alkil modifikasyonlarının en önemli eksikliği, en güçlü antisens mekanizması olan RNAaz-H kesimine elverişli olmamasıdır. Buna karşın avantajı da, istenmeyen çeşitli kesimleri baskılayarak bazı proteinlerdeki beklenen değişik kesimlerin ifadesini arttırmasıdır. Antisens etki için, RNAaz-H kesimi, nukleazlara dayanıklılık için 2’-O-alkil modifikasyonlarının tercih edilmesi araştırıcıları yeni bir modele ihtiyaçları olduğu gerçeğini ortaya çıkarmış ve araştırmacılar, bu her iki karakteristiği bir araya getirerek antisens oligonükleotid formunda hibrid bir oligonükleotid oluşturmuşlardır. Bu oligonükleotid nukleazların degredasyonundan internal bloğu koruyan 2’-O-metil ile modifiye olmuş ribonükleotidler ile, RNAaz-H kesimini uyarmak için deoksinükleotidlerin merkezi bloklarını içermektedir(1). Bu model diğer antisens konularına cevap oluşturmak için henüz gelişmemiştir. Modifiye olmamış oligonükleotidler, DNA : DNA ve DNA : RNA dublekslerini oluştururken , DNA ve RNA hedeflerinin tanınmasına yüksek afinite sağlayan çeşitli modifikasyonların sentezleri büyük çaba gerektirmektedir. Modifiye olmamış DNA:DNA ve DNA:RNA dubleksleri ile karşılaştırıldığında, DNA ve RNA’lara hibridize olduğunda termal stabilitesi yükselmiş bir çeşit nükleik asit analoğu geliştirilmiştir. Bu modifikasyon üçüncü sınıf antisens oligonükleotidleri oluşturur. Bu sınıf 4’e ayrılır. Peptid nükleik asitler (PNAs), 2’-floro N3-P5’-fosforoamidler, 1’, 5’- anhidroheksitol nükleik asitler (HNAs) ve locked nükleik asitler (LNA)’dır. 3.sınıf modifikasyonlar ile hibridizasyonda termal stabilite artmış ve hedefin tanınması zenginleşmiştir. Bu tipler arasında ençok bilinen PNA’dır (1991). Şeker fosfat bağları poliamid bağları ile tümüyle değişmiştir. Bu oluşumlar stabiliteyi arttırıcı ve yüksek hibridizasyon kinetiği sağlarkan, hücreye verilimi ve RNAaz H kesim mekanizması için elverişli değildir. PNA’lar, fosforotiat ve 2’-O-alkil RNA’lardan sonra üzerinde çalışılmış ve başarı sağlanmış oluşumlardır (2002). Bu 3.sınıf oluşumlar arasında en yeni olan LNA’lardır. LNA’larda da termal stabilitenin arttığı ve hedef tanınmasının zenginleştiği görülmüştür (1). RNA İnterferens (RNAi) İlaç sanayi, tedavi amaçlı gen baskılanması için her geçen gün kendini yenilemektedir. Daha önceki araştırmalar, antisens oligonükleotid ve ribozimleri kapsayan sekansa – spesifik RNA baskılanması üzerineydi. Bazı pozitif sonuçlar, bu ilaç platformunda elde edilirken, stabilite, hedefi bloke etme potansiyeli, hücreye iletimi ve hedef sekans seçimi gibi teknik konular, klinik olarak ilaçların etkinliğinin gelişimini yavaşlatmıştır. Son yıllarda, nükleik asit bazlı gen inhibisyon yaklaşımlarının klinik olarak gelişiminde yeniden bir etki yaratma potansiyeline sahip olan RNA interferens (RNAi), gen regülasyonunun yeni bir mekanizması olduğu gerçeğini ortaya çıkarmıştır (3). A. Normal transkripsiyon ve translasyon prosesi B. DNA’yı hedefleyen ajanlar ile transkripsiyonun önlenmesi C. pre–mRNA hedeflenmesi ile olgun mRNA’nın oluşumunun engellenmesi D. Translasyonel aparatürlerin engellenmesi ile translasyonun bloke edilmesi E. RNAaz- H ile mRNA’nın etkileşimi sonucu translasyonun önlenmesi (1). RNAi, bitkilerde, solucanlarda, mayalarda ve insanlar arasında yüksek oranda korunmuş, doğal olarak oluşan biyolojik bir prosestir. Hücre içinde iki bölümden oluşan bir yol izine sahiptir. Hücrede oluşan öncül dubleks RNA molekülü ilk olarak, Dicer endonukleaz ile 21-23 nükleotidlik kısa fragmentlere ayrılır. siRNA (short interfering RNA) olarak bilinen bu effektör RNA’ lar, RNA uyarıcı protein kompleksi ile etkileşir (RNA inducing silencing protein compleks; RISC). Bu protein kompleksi, siRNA’nın bir ipliğini lider sekans olarak kullanarak, hedef homolog RNA’ları kesmektedir. Bitkilerde, RNAi hücre savunmasında rol oynar; virus infeksiyonundan, transpozonlardan (sıçrayıcı gen) ve tekrarlayıcı sekansların uygun olmayan ifadelenmesinden, hücreyi korumaktadır. Memeli hücreleri de benzer savunma sistemine sahiptir. Bu endogenik RNA’lar, veya miRNA (microRNA ), dicer tarafından siRNA effektörlerine dönüştürülür ve çeşitli hücresel proseslerde örneğin, çoğalma, apoptozis ve farklılaşmada görev yapan genlerin ifadesinin düzenlenmesinde rol oynar. siRNA molekülleri, kimyasal olarak sentezlenip ekzogenik olarak memeli hücrelerine verildiğinde, hücresel RISC kompleksine maruz kalır ve siRNA’ya homolog olan RNA’ların parçalanmasına aracılık eder (3). RNAi, gen işleyişinin validasyonu ve hızlı identifikasyonunda, hedef ilaç keşfinde, biyolojik kaynak olarak devrim yapmış, hatta 2002 yılında, “Science Magazine” tarafından “yılın keşfi” olarak nitelendirilmiştir ve bazı şirketler, RNAi bazlı tedaviler geliştirme yönünde adımlar atmıştır (3). RNAi Tedavisinin Avantajları Spesifitesi Sekans bazlı gen inhibisyon teknolojilerinin potansiyel avantajlarından birisi, herhangi bir gen için tedavi amaçlı dizayn edilebilmesidir. Özellikle, tek bir allelde mutasyonla oluşan onkoloji ve genetik nörolojik hastalıklar alanında sadece defektif genin ifadelenmesini seçici olarak bloke etme fırsatı yaratılmıştır. Bunun yanında, tek bir polimorfizim ile ayırd edilebilen hedef sekansı identifiye etmek önemsiz değildir. Ayrıca, optimal siRNA’ nın hedef seçimi limitli olsada, RNAi aktivitesi önemli sayılmaktadır. Kanser ve nörolojik hedefler de, allele spesifik olacak kadar yeterli bir spesifiteye sahiptir (2). Şekil 3. Memeli sistemlerindeki RNA interference mekanizması (4) Potansiyel Etkinliği Optimal dizaynı ve hedef sekans seçiminde kurallardaki farklılıklardan dolayı gen inhibisyon teknolojisinin etkinliğini direk olarak karşılaştırmak zor olmakla birlikte, RNAi bazlı inhibisyon, antisens oligonükleotidler ile başarılmış çalışmalardan daha etkindir (2). Değişkenliği RNAi hedef bölgelerini identifiye etme kolaylığı, RNAi’ nin süper etkinliği ile ilişkili olabilir. Optimal RNAi etkinliliği için gerekli olan kurallar saptanmış olsa da, CG içeriği ve 3’ uçlarının kompozisyonu temel parametreler olarak karşımıza çıkmaktadır. Diğer yandan, ribozim ve antisens oligonükleotid hedef sekanslarını identifiye etmek, kesim için gerekli olan özel sekans motiflerinin uygunluğu ile sınırlandırılmıştır. Bir grup gende bulunan multipli sekansları uyarabilen RNAi – bazlı inhibisyon ile değişkenlik daha kolaydır (2). RNAi Tedavisinde Öne Çıkan Noktalar Hücreye İletimi Hücreye verilim problemi, sadece RNAi tedaviye özgü değildir fakat, RNAi bazlı ilaçların klinik olarak kullanımına önemli bir engel olarak görülmemektedir(2). RNAi Effektörleri RNAi effektörleri, 2 farklı yaklaşımla hücreye verilmektedir. İlki, laboratuvarda sentezlenmiş siRNA’lar bir ilaç gibi verilir. Diğeri ise, gen terapi yaklaşımı yani, shRNA (small hairpin RNA) kodlayan DNA, hücrelere verilir ve böylece shRNA’ nın hücre içi ifadelenmesi başlatılmış olur. Daha sonra shRNA’ lar, konukçu hücre tarafından aktif siRNA’ ya dönüştürülür. DNA yaklaşımının potansiyel avantajı, verilen plasmid DNA’ların yüksek stabilite içermesidir yani, her bireysel DNA kalıbından sentezlenmiş olan shRNA’ ların büyük miktarını içeren hücresel amplifikasyon basamağından oluşmaktadır. İlaveten, ister genoma integre olan, ister epizomal formda replike olabilen DNA’ yı stabil ifade vektörü şeklinde vermek de mümkündür (2). Lokal Verilimi Antisens ilaçların başarılı lokal uygulamasına en iyi örnek olarak “göz” verilebilir. Göz içine direk olarak siRNA’ların lokal injeksiyonu ile, yaşla ilişkili oluşan makular dejenerasyonun RNAi bazlı tedavisi geliştirilmiş ve ayrıca, merkezi sinir sistemi içine direk iletimi de mümkündür (2). Sistemik İletimi Sistemik verilim, siRNA’nın stabilizasyonuna, effektörün istenen dokuyu hedef alması ve hücresel alınımın kolaylığına gereksinim duyar. siRNA ilaçlarının hücresel alınımı ve stabilitesini geliştirmek için gerekli olan yaklaşımlar, nükleik asitin kimyasal değişimi ve koruyucu partiküller içine effektörün çeşitli yöntemler ile paketlenmesini içeren antisens oligonükleotid uygulaması için de geçerlidir. Effektörün özel hücre tiplerini hedef alması için, farklı ligand ve antikorların RNAi effektörü ile konjuge olması gereklidir. Viral vektörlerin kullanımı, RNAi effektörünün sistemik verilmesi için kullanılabilir fakat, viral vektörler klinik olarak hücreye iletilmesi için gerekli olan dokuya spesifik tropizm ve transdüksiyonu sağlasa da, her tip viral vektör, risk ve güvenlik sorunlarını beraberinde getirmektedir (2). Güvenlik İstenen etkilerin oranını en üst düzeye çıkarmak, her tedavinin ana temelini oluşturur. Kemoterapi, interferens tedavisi ve yüksek oranda aktif antiretroviral tedavilerde bu oran ideal değildir ve tedavi ile birlikte toksisite önemli bir seviyeye ulaşabilir. RNAi, hedeflenen genin spesifitesini arttırma yetisine sahip olurken, hücrenin herhangi bir ekzogenik (siRNA veya iletim ajanı) moleküle maruz kalması, normal hücresel işleyişini bozabilir (2). Hedef Dışı Etkileri Spesifite, en önemli avantajlardan biri olmasına karşın, hedef dışındaki etkileri hala sorundur çünkü, genin inhibisyonunda aracılık eden siRNA’ların minumum homoloji seviyesini saptayan parametreler henüz bilinmemektedir. İnhibisyon sonucunda siRNA’nın sekansına bağlı olarak tek iplikli RNA ile 11 baz çiftlik bir homoloji gösterdiği bulunmuştur (2). Spesifik Olmayan Etkileri Spesifik olmayan etkileri konusunda RNAi için toksisite 2 kattır. Çünkü, hem hücreye verilmesi hem de siRNA’nın kendisi beklenmedik hücresel tepkiler doğurabilir. İlk olarak, bazı katyonik lipozomlar, siRNA’nın hücreye verilmesinde kullanılmış ve interferon molekülleri uyarılmış; aynı şekilde, shRNA ifade kasetlerini hücre içine transport etmek için kullanılacak herhangi bir viral vektör, istenmeyen bir tepki ile karşılaşabilir. İkinci olarak, siRNA effektörlerinin kendileri, çift iplikli RNA hücresel savunma mekanizmasını tetikleyebilir. Bazı durumlarda, terapi için interferon indüksiyonu yararlı olmasına karşın; başlangıç defans mekanizmasının kontrolden çıkması durumunda sitotoksik olabilmekte ve bu yüzden sorun yaratmaktadır. Son yıllardaki çalışmalar, siRNA’nın interferonu uyarması ile oluşan farklılıkları sistematik olarak analize etmeye başlamıştır. Örneğin, interferon sinyalini uyaran bir siRNA effektörünün içeriğinde,"tehlikeli motif" olarak adlandırılmış 9 baz çifti identifiye edilmiş ve interferon indüksiyonunu başlatan siRNA’nın 5’ fosfat ucu olduğu belirlenmiştir (2). Stabilitesi Bazı veriler siRNA’nın, serumda ve memeli hücrelerinde antisens oligonükleotid ve ribozimlerden daha stabil olduğunu gösterse de, birçok araştırma in vivo’da siRNA’nın yarı ömrünü arttımak için siRNA’nın farmokinetik özelliğini değiştirmeyi hedeflemiştir. Özellikle, geniş spektrumlu kimyasal modifikasyonlar ile uyumlu siRNA’ların gen ekspresiyonunu inhibe ettiği kanıtlanmıştır. Araştırmacılar, enjekte edilen siRNA’nın %1’inden daha azının hedef organa ulaştığını kaydetmişlerdir (2). Tedavi Amaçlı Uygulamaları Viral İnfeksiyon Birçok şirket viral infeksiyonu inhibe etmek için, RNAi bazlı tedaviler geliştirmeye başlamışlardır (2). Hedeflenen Viral RNA’lar Birçok makalede, invivo ve invitro’da birçok virusun replikasyonunu veya ekspresiyonunu inhibe etmek için virusa spesifik siRNA’ların kullanıldığı belirtilmiştir. Özellikle RNAi’nın potansiyel antiviral yararları üzerine araştırmalar, HIV ve Hepatit viruslarına ışık tutmuştur. Her özelliği tanımlanmış HBV (hepatit B virusu)fare modelleri bu viruslara popüler bir hedef konsepti hazırlamıştır. Başlangıçta invivo’da transfeksiyon deneyleri, fare karaciğerine HBV’ ye spesifik siRNA ve HBV ekspresiyon plazmidlerinin aynı anda verilmesinin HBV’ nin gen ekspresiyonunu ve replikasyonunu bloke ettiğini ortaya çıkarmıştır. Bu çalışmaları genişletmek için, araştırıcılar fare modellerini kullanarak HBV tedavisi için, RNAi’ nin ileri tedavi etkinliğini incelemişlerdir. Bazı viral RNA’lar, baskılanmaya dirençlidir ve HIV’ e benzer bazı memeli virusları, RNAi aktivitesini engelleyen proteinlere sahiptir. HBV konusunda, RNAi effektörlerinin, viral gen ekspresiyonu ve replikasyonunu bloke ettiği görülmüştür. Aynı şekilde İnfluenza virusunun inhibisyonu, coxsackievirus B3 ve respiratör syncytial virus infeksiyonları, farede infeksiyon oluşumundan sonra verilen siRNA ile inhibe olmuşlardır (2). Konukçu Hücre Genlerinin Hedeflenmesi Bunun nedeni, virusların siRNA’lar kendi genomlarını hedeflediklerinde hızlı bir şekilde kaçış mutasyonları oluşturmasıdır; diğer bir potansiyel RNAi antiviral strateji ise, infeksiyonu devam ettiren hücresel faktörlerin ekspresiyonunu inhibe etmeye yöneliktir. Özellikle CD4 ve CCR5 gibi, HIV hücresel reseptörlerinden inhibisyon için yararlanılmaktadır. Viral temizlik için etkinliğe göre RNAi’nin viral RNA’ları parçalaması, viral infeksiyonu tamamen elemine etmeye benzemez. Eğer, konukçu immün yanıt, infeksiyon ile başarılı bir şekilde mücadele ederse, viral replikasyon ve virusun yayılması etkili bir şekilde azaltılmakta, böylece etkili bir antiviral olduğu kanıtlanmış olmaktadır. Örneğin, HBV konusunda, hatta kronik olarak infekte olmuş hastalarda infeksiyon süresince virusa spesifik sitotoksik T-lenfosit üretimi sürmektedir. Bu immün yanıt, virusu temizlemek için güçlü olmasa bile, HBV antijenlerini ifadeleyen hücreleri yok etmektedir (2). Nörolojik Hastalıklar Parkinson, hungtington, amyotrophic lateral sclerosis (ALS) ve spinobulbar muscular atropi, RNAi bazlı terapilerin yararlı olduğunu kanıtlayan sinirsel hastalıkların önde gelenlerindendir. Sekansa spesifik RNAi’ ler, mutant olan hedef genin ifadesini bloke etmektedir. Örneğin, siRNA’ lar, ALS modelinde gösterilmiş mutant ve yabani tip RNA’lar arasındaki farklılıkları tek nükleotidte fark eder. ALS, tedavisi olmayan letal bir motor nöronun dejenere olduğu bir hastalık olup, Cu/Zn süperoksid dismutazı (SOD1) kodlayan gende tek bir nükleotid’teki mutasyon sonucu oluşmaktadır. Diğer bir örnek, Alzheirmer, β – amiloid üretiminde artış ile tetiklenir. β amiloid , β sekretaz (BACE1) tarafından kesilir ve bu enzim, hastaların beyinlerinde yüksek seviyede regüle edilir. β-sekretazın regülasyonunu inhibe eden siRNA’lar, işleyişi bloke eder. Bunu kanıtlamak için, Kao adında bir araştırıcı primer fare nöronlarında β sekretaz ekspresiyonunu bloke etmiş ve böylece, β amiloid üretiminde azalma gözlemlemiştir (2). İnflamasyon ve Apoptozis Bazı hastalıklarda hücresel proseslerin aktivasyonunun neden olduğu patoloji gözlemlenmiş hatta bunun gelişiminde önemli rol oynayan kilit moleküllerin hedeflenmesi ile hücresel proseslerin kontrol altına alınması anlamında RNAi tedavisi yarar sağlayabilmiştir. Örneğin, Tümör nekrozis faktör (TNF-α ), rheumatoid arthritisin kronik patojenitesinde gerekli olan pro-inflatör sitokindir. TNF- α işleyişini bloke etmede kullanılan ilaçlar, inflamasyonun azalmasında etkili olduğu ve hastalığın yavaşladığı gözlemlenmiştir. Bazı riskler tabiki mevcuttur, TNF - α bloke edicilerin kullanılması ile ilişkili ciddi infeksiyonlar, lenfoma, sistemik eritomozus gibi hastalıklarda risk unsuru bulunmuştur. Son yıllarda lokal injeksiyon ve TNF- α’ ya spesifik siRNA’ların elektroporasyonu, faredeki paw inflamasyonunu inhibe ettiği görülmüştür (2). siRNA Gen ifadelenmesini spesifik olarak kesintiye uğratan moleküller, güçlü araştırma kaynaklarıdır. Bu moleküllerin gelişimine yönelik çalışmalar sonucunda farklı potansiyelde ajanlar ortaya çıkmıştır. siRNA’ lar, sekansa spesifik silencing ajanı olarak ortaya çıkan en son keşiftir. Çoğu kilit organizmanın sekansı ortaya konmuş ve nükleik asit bazlı yaklaşımlarla gen işleyişinin incelenmesi için fırsat doğurmuştur. Bu nükleik asit molekülleri, tedavi amaçlı olarak geliştirilmiş ve hastalığa sebep olan virusları hedef almıştır. siRNA’ lar, RNAi yol izinin effektör molekülleridir. Nematodlardaki RNAi’nın keşfi, bitkilerde post-transkripsiyonel gen silencing ve funguslarda "Quelling" gibi prosesler dubleks – RNA ile tetiklenir. Uygulamalarda, uzun dubleks RNA’ lar kullanılmış fakat, bu RNA’ lar çoğu memeli hücreleri için etkin değildir çünkü, antiviral interferon (IFN) yanıtını uyarmaktadır. Antiviral interferon yanıtı, hücre ölümüne neden olur. Farklı organizmalarda var olan RNAi mekanizmasının genetik ve biyokimyasal incelemeleri, bu hücresel mekanizmanın korunduğu gerçeğini ortaya koymaktadır. Bu mekanizma, dubleks RNA’yı keserek 21-28 nükleotid uzunluğundaki, siRNA’ya dönüştürür ve bu siRNA mRNA’ların sekansa spesifik degredasyonuna yol açmaktadır (5). Nükleik – Asit Bazlı Gen Silencing mRNA’ ların spesifik sekanslarını hedefleyerek gen ifadesini inhibe edecek birkaç farklı molekül istenilen düzeyde dizayn edilebilir. Başlıca 3 tip nükleik asit bazlı gen silencing molekülü vardır. Bunlar, kimyasal olarak modifiye olmuş antisens oligodeoksiribonükleik asitler (ODN ), ribozim ve siRNA’lardır (5). Tablo 1. İnvivo'da test edilmiş anti-kanser RNAi hedefleri i.v: intravenöz, i.t: intratumoral, hd: hidrodinamik infeksiyon CEACAM 6: karsinoembriyonik antijen ile ilişkili adhezyon molekül 6 ATA: aurintrikarboksilik asit (3). Antisens ipliği (kırmızı çizgi) içeren RISC’lerin oranını etkileyen siRNA veya siRNA’ların sens ipliklerinin ilk birkaç baz çiftinin termodinamik stabilitesi. Sens ipliğin 5’ ucundaki yüksek termodinamik stabilite (yeşil kutucuk) ile antisens ipliğin 5’ ucundaki düşük termodinamik stabilite (mavi kutucuk) karşılaştırıldığında termodinamik stabilite ile ilişkili olarak antisens iplik RISC ile etkileşime girmek için daha yatkındır. Antisens ipliği içeren birden fazla RISC daha fazla etkili siRNA demektir ve sens ipliğin neden olduğu hedef dışındaki etkinlik şansını azaltmış olur. siRNA’ların 3’ ucundan çok 5’ ucu hedef tanımada etkin rol almaktadırsiRNA ve mRNA ‘nın 5’ ucundan devam eden en az 11 – 14 baz çiftinde hedef genin baskılandığı gözlemlenmiştir. Bir siRNA için minimal substrat merkezinde 13 nükleotidten oluşmaktadır (5). Şekildeki turuncu renkli üçgen; mRNA’nın kesim bölgesini, nt; nükleotid, RISC; RNA’ca indüklenen silencing compleks, siRNA; small interfering RNA. Şekil 4. Etkili ve spesifik siRNA ‘nın özellikleri ODN: Genellikle 20 nükleotid uzunluğunda olup, pre-mRNA ve mRNA’ya hibridize olarak ribonükleaz-H için bir substrat oluştururlar. Bu enzim, RNA – DNA dublekslerinden, RNA ipliğini degrede eder. RNAaz-H aktivitesini engellemek için, modifiye olmuş ODN’ler mRNA’ların translasyonunu veya pre-mRNA’nın kesilmesine mani olmaktadır. ODN’ ler ve modifikasyonları bu yüzden, çift iplikli DNA’yı hedef alarak, 3’ lü heliks oluşumu ile transkripsiyonu inhibe etmek için kullanılmaktadır (5). Uzun çift iplikli RNA (dsRNA) RNAaz pol III enzimi olan Dicer tarafından tanınır ve 21 – 23 nükleotid uzunluğundaki siRNA dublekslerine dönüştürülür (1). Sentetik siRNA (2) veya endogenik siRNA ‘lar (3) RISC ile etkileşirler bundan dolayı Dicer prosesi bypass olmuş olur. siRNA’ lar multiprotein kompleksi olan RISC ile etkileşir (4). RISC kompleksindeki bir helikaz siRNA dubleksini açar ve tek iplikli siRNA’yı içeren RISC mRNA’ya komplementerize olur (5). (6) RISC içinde identifiye olmamış bir RNAaz (silecer) mRNA‘ yı degrede eder (6). Şekil 5. siRNA ‘nın mekanizması Ribozimler: Ribozimler, RNA’ya Watson – Crick modeli ile bağlanır ve fosfodiester bağlarının hidrolizini katalizleyerek, hedef RNA’yı degrede etmektedir. Ribozimler birkaç sınıf olup, en çok kullanılan “çekiç başlı“ adı ile anılan hammerhead ribozimlerdir. Hedef mRNA’ya hibridize olduğunda, tek bir sekonder yapı oluştururlar. Ribozimlerde katalitik olarak önemli parçalar, hedef RNA kesim bölgesinin içinde bulunduğu hedef – komplementer sekans ilişkisi ile bağlantılıdır. Ribozim ile kesim magnezyum gibi divalent iyonlara, hedef RNA yapısına ve hedefe ulaşılabilirliğine gereksinim duyar. Hücre içinde bu hedef RNA ile ribozimin birlikte lokalizasyonu, silencing etkinliğini arttırıcı sinyaller doğurur. Hammerhead ribozimler, kimyasal olarak sentezlenmesi veya vektörlerden transkribe olabilmesi için yeteri kadar kısadır ve hücre de ribozimin devamlı üretimine olanak sağlar (5). siRNA: RNAaz III (Dicer)enzimi ile dubleks RNA’nın stoplazmik prosesinden türevlenmiştir. Dicer, uzun dubleks RNA’yı keserek, 21-28 nükleotid’lik bir siRNA dubleksini oluşturur. Bu dubleks, 5’ fosfat ucunda 2-nükleotid eksik iken, 3’ hidoksil (OH) ucunda 2-nükleotid fazla şeklindedir. RNAi mekanizmasının bileşenleri spesifik olarak siRNA’yı tanır ve (RISC) RNA-uyarıcı silencing kompleksi olarak bilinen protein kompleksi ile siRNA’nın tek ipliği ilişkiye girer. mRNA’ları kesen RISC kompleksi, tek iplikli siRNA’nın 5’ ucundaki 10 nükleotide komplementer sekanslar içerir. Ribozimler gibi, siRNA ‘lar da sentetik olarak üretilebilir veya transkribe olan kısa çift iplikli hairpine benzer RNA’lar vektörlerden ifadelenip, daha sonra siRNA’ya dönüşmektedir. siRNA’lar, ODN ve ribozimler gibi memelilerde hedef pre-mRNA’nın degredasyonunda etkin değildir. Birkaç organizmanın, kromatin modifikasyonlarını ve transkripsiyonel olarak bloke edici genlerini hedef almak için, RNAi ile ilişkili mekanizmaları kullandığı hakkında deliller ortaya çıkmıştır. siRNA’lar, kod oluşturmayan RNA molekülleri olan miRNA’lara benzerler. Bu miRNA’lar, gen ekspresiyonunu regüle etmek için hücreler tarafından doğal olarak kullanılır. Olgun bir miRNA tek iplikli 21-22 nükleotid uzunluğunda ve stoplazmada, 70 nükleotid’lik hairpinden meydana gelir. Olgun miRNA ‘lar, protein kompleksi (miRNP) ile ilişkiye girmekte ve bu kompleks ribozom ile ilişkili olup, miRNA’ya bir kısım komplementer sekanslar içeren mRNA’ların translasyonunu inhibe etmektedir. Mükemmel bir substrat ile sıkı bir komplementerlik oluşursa , miRNA , siRNA gibi davranıp , mRNA degredasyonuna aracılık etmektedir (5). Gen Silencing Yaklaşımlarının Karşılaştırılması Bazı araştırıcılar, kültür modellerinde ODN ve siRNA’nın aracılık yaptığı gen tutuklanmasının farklı yönlerini karşılaştırmışlardır. Bu çalışmalardan çıkan sonuçlar pek belirgin değildir, çünkü gen tutuklanmasının etkinliği, ajanın konsantrasyonuna, transfeksiyon tekniğine, hücre tipine, hedef bölge seçimine, kimyasal modifikasyonlarına ve analize edilecek bilgilerin süresine bağlıdır. RNA’ya bağlanan proteinler ve mRNA’da oluşan tersiyer, quarterner yapılar, ODN’ ler ile hedef RNA molekülü arasındaki hibridizasyonu etkilediği ve bu varyasyonların siRNA’ların etkisini etkilediğine inanan araştırıcılar incelemelere başlamışlardır. Bu çalışmaların çoğunda, mRNA üzerindeki hedef pozisyonuna bağlı olarak ODN ve siRNA’ların etkinliği arasında bir korelasyon bulunmuştur. Modifiye olmuş fosfotiat ODN’ ler toksik olabilir, çünkü, endogenik proteinlere bağlanarak spesifik olmayan bir tavır sergilemektedirler. CpG (sitidin fosfat guanozin) motifi içeren ODN’ ler, IFN’nun ifadesini veya diğer başka immün yanıtta oluşan molekülleri uyardığı görülmüştür. Bu uyarı, Toll – Like reseptör (TLR)’ e bağlanılması ile oluşur. ODN’lerin bu spesifik olmayan özelliği, bazı ODN’lerin tedavi amaçlı olması sonucunda keşfedilmiştir. Ribozimler, ODN’ ler gibi hedeflerine herhangi bir molekülün yardımı olmaksızın hibridize olurlar ve bu hibridizasyon, genlerin baskılanması için ihtiyaç duyulan yüksek konsantrasyon ile ilişkilidir ayrıca, kimyasal olarak modifiye olmuş ribozimler spesifik olmayan etkiler oluştururlar. RNA lokalizasyon sinyallerinden yararlanma veye RNA şaperon’ ları bu problemi çözebilir. Böylece, ribozimin düşük konsantrasyonu ile ilişkili etkili bir gen baskılanmasını sağlamaktadırlar. En son bilgiler, insan ve farelerde ifadelenen TLR’ nin, üridin / guanozin veya üridin bakımından zengin olan tek iplikli RNA oligonükleotidler tarafından aktivite olduğunu ispatlamıştır (5). Tek iplikli RNA ile bu TLR ‘lerin aktivasyonu, plazmositoid dendritik hücrelerin endozomal kısımlarında oluştuğu ve böylece, IFN – γ ve diğer sitokinlerin ifadelenmesine neden olduğu görülmüştür. Kimyasal olarak modifiye olmuş siRNA veya ribozimler, invivo’da hücreye verilip denature olduğunda, siRNA sekansına bağlı olarak, bu özel TLR’leri aktive etmekdedir. Etkili bir gen baskılanması sağlamak için gerekli olan, siRNA’nın düşük konsantrasyonudur. Buna bağlı olarak siRNA’lar spesifik ve hızlı bir şekilde RISC kompleks ile etkileşmekte böylece, spesifik olmayan proteinlere bağlanma potansiyeli azalmaktadır. Bazı çalışmalar, normal konsantrasyondaki siRNA’ların transfeksiyonunun, gen ekspresiyonunda spesifik olmayan global etkilere neden olmadığını göstermiştir. Memelilerdeki RNAi uygulamaları, gen ekspresiyonunu spesifik olmayan şekilde etkiler, tabiki siRNA konsantrasyonuna, hücre tipine, siRNA ekspresiyonunun moduna ve ajanın hücreye veriliş şekline de bağlıdır. Bu spesifik olmayan etkiler, IFN yanıtının oluşmasından sorumlu genlerin stimülasyonunu içerir hatta, bu çalışmalardaki IFN’yi oluşturan genlerin indüksiyonu, hücresel büyümeyi engellemesede böyledir. Eğer, tam bir IFN yanıtı oluşursa, büyümeyi engelleyebilir. Uzun dubleks RNA ile transfekte olmuş, veya IFN tip 1 ile yada yüksek konsantrasyondaki siRNA ile tedavi edilmiş HeLa hücrelerinin mikroarray gen profillerinin bir kısmı birbiri ile çakışmaktadır. Bu çalışmalarda, tedavi ve araştırma çalışmalarındaki siRNA uygulamalarının potansiyel yan etkileri belirlenmiş ve tanımlanmış efektif siRNA’ların önemi üzerinde durulmuştur. Gen baskılanması için mümkün olan en düşük konsantrasyon kullanılmalıdır. Farelerin, kısa RNA hairpini üreten vektörler ile tedavi edildiğinde, IFN oluşturan genleri uyarması çok ilginç bulunmuştur. Spesifik olmayan etkileri yanında, nükleik asit bazlı gen baskılayan moleküller, hedefin etkilerini bloke etmeye hazırdır. Hedef etkilerinin yok edilme seviyesi, nükleik asit hibridinin stabilitesine ve baskının moduna bağlıdır. ODN’ler, hedef etkisini bloke etmeye eğilimlidir, çünkü 6 veya 7 sıralı DNA / RNA baz çiftleri RNAaz-H tarafından tanınmaktadır. Bu problemi çözmek için, antisens oligonükleotid gamper adında bir yapı geliştirilmiş, böylece ODN’lerin yaklaşık 10 nükleotidinden sadece bir tanesi RNAaz – H yanıtı göstermiştir. siRNA’lar dikkatlice seçilmez ise, bir mRNA hedefine kısmen komplementer olan siRNA’lar , endogenik miRNA’lar gibi davranıp translasyonu baskılar. Aynı transkripte karşı hedeflenmiş farklı siRNA’lar ile oluşmuş gen ekspresiyon profilleri karşılaştırıldığında, hem siRNA hem de mRNA ipliklerinin 5’ uçları arasındaki en az 11 – 14 nükleotidlik komplementerlik, transkript düzeyinde hızlı bir düşüşe sebebiyet verir. Antisens sekanslar olarak seçilmiş ODN, ribozim DNAzim ve siRNA’ lar, seçici olarak tek bir nükleotid ile hedefi diğerlerinden ayırabilir (5). siRNA’ların Hücrelere Verilimi ODN’ler ve ribozimler, farklı stratejiler kullanarak in vivo’da başarılı bir şekilde hücrelere verilir. Klinik denemelerde, ODN’lerin en popüler modu, intravenöz injeksiyonudur. siRNA-, siRNA üreten plasmid veya siRNA üreten virüslerin memeli model organizmalara verilmesinde çeşitli yöntemler kullanılmaktadır (5). Bu yöntemler içinde, elektroporasyon ve hem lokal hem de sistemik injeksiyonu yer almaktadır. Çok etkili bir silencing için hücreye verilim yöntemi hakkında genelleme yapmak zordur çünkü hücre içine injeksiyonda, farklı dokuların farklı istekleri söz konusudur. Özellikle farklı boyutlardaki hücreler için fare dokularına siRNA’ ların verilmesinde ilk prosedür, fizyolojik solusyondaki siRNA’ ların, damar ucuna injeksiyonudur. Bu yöntem ile karaciğerde %90 oranında hedef gen ekspresiyonunun azaldığı görülmüştür. Bu oran akciğer, böbrek ve pankreas’ta daha azdır. Silencing süresi, 1 haftadan fazla sürer ve silencing seviyesi tam net değildir çünkü hayvandan hayvana varyasyonlar mevcuttur. siRNA üreten virusların gelişmesi, özellikle insan hastalıkları için gen terapinin alternatif modudur. Birkaç çeşit virus, siRNA’ların üretimi için dizayn edilir. Virus çoğunlukla epizomal form’da bulunur yani, konukçu genomuna entegre olması düşüktür. siRNA üreten AAV (Adeno associated vektör)’nin fare beyni içine injeksiyonundan 7 hafta sonra etkili bir silencing sonucu alınmıştır. siRNA üreten Adenovirusun fare karaciğerine damar yolu ile veya fare beynine direk injeksiyonu ile verilimi gen ekspresiyonunda etkili bir baskılanma yaratmıştır. siRNA’lar tedavi amaçlı deneylerde kullanılıcaksa, in vivo’da siRNA’ların hücreye verilmesinde pozitif sonuç elde edilmesi ve Amerika’da FDA tarafından “yetim ilaç” statüsü verdiği kimyasal olarak modifiye edilmiş ODN’lerin hücreye verilimini de kapsayan yöntemler için çalışmaların sürdürülmesi gerekmektedir. Son yıllarda ODN’lerin de içinde bulunduğu birkaç makromolekülün transdermal penetrasyonunu sağlayacak küçük moleküller keşfedilmiş. Akciğerler içine gen enjeksiyonu için kullanılmış aerosol yöntemler, yakın gelecekte siRNA’ların hücrelere iletiminde de benzer şekilde kullanılacaktır (5). siRNA Bazlı Tedaviler Birkaç ODN ve ribozim molekülleri klinik denemelerde test edilmiştir. Gözdeki sitomegalovirusun infeksiyonunun tedavisi için, FDA tarafından onaylanmış bir antisens ODN (fomivirsen) geliştirilmiştir. Klinik deneylerde kullanılmış antisens oligonükleotidlerin çoğu, modifiye olmuş fosforatiat ODN veya "gamper" dedikleri ODN’lerdir (5). Fakat bunların hedef RNA’lara afinitesi düşük ve yüksek konsantrasyonda toksisiteye neden olan problemleri vardır. Kimyasal modifikasyonların tiplerini içeren ikinci generasyon antisens oluşumlar, klinik deneylerde kullanılmış ve fosforatiat ODN’ ler den daha yararlı olduğu görülmüş. Son çıkan yayınların içerikleri bu farklı ilaçlardan ve onların hedeflerinden bahsetmektedir. siRNA ve onların memeli hücrelerindeki fonksiyonları 3 yıl önce keşfedilmiş fakat henüz klinik denemelerde kullanılması çok erkendir. Klinik programların gelişimi üzerine siRNA bazlı şirketlerin kurulmasından sonra siRNA, tedavi amaçlı gelişimde ODN ve ribozimleri hızlı bir şekilde yakalamıştır. Birkaç deneme siRNA’nın tedavi amaçlı potansiyel yetisini göstermiş; fulminant hepatitlerden, viral infeksiyondan, sepsisden, tümör gelişiminden ve macular dejenerasyondan fareleri koruduğu kanıtlanmış. Yüksek basınç ile damar ucundan verilen siRNA’lar, fare karaciğer hücrelerinde etkilidir hatta, bir grup araştırıcı, çeşitli karaciğer hastalıkları için tedavi amaçlı ajan olarak siRNA’nın potansiyelini test etmişlerdir (5). Karaciğerde ifadelenen apoptozis ile ilgili genler olan caspase 8 ve FAS hücre ölüm reseptörlerinin hedeflenmesi ile fare karaciğerini, çeşitli ajanlar tarafından uyarılmış ani gelişen hastalıklardan korumuştur. Diğer bir grup araştırmacı, virus tarafından direk olarak meydana gelen Hepatit B (HBV) infeksiyonunun tedavisi için siRNA’ların tedavi amaçlı potansiyelinin olup olmadığını araştırmıştır. Protein üretimi ve viral replikasyonu etkili bir şekilde azaltmak için, HBV genomunun bazı kısımlarını hedefleyen siRNA’lar hücrelere verilmiştir (5). siRNA virus oranını azaltsada, infeksiyonu sonlandırıcı etkisi başarısızlıkla sonuçlanmıştır. Bu sonuçlar, siRNA’ların tedavi amaçlı potansiyelini ve uygulamalar için pozitif sonuçlar doğurabilecek yöntemler üzerinde çalışmaların yoğunlaşması gerekliliğini göstermiştir. Nükleik asit bazlı gen baskılanmasının etkinliğini optimize etmek için, birkaç parametreyi incelemek gerekmektedir. Silencing molekül, dokudaki gibi dolaşım sisteminde de stabil olmalı ve toksik etki yaratmadan kan proteinlerine bağlanmalı ancak boşaltım sistemine girmemelidir. Nükleazların etkini azaltmak için kimyasal olarak modifiye olmuş nükleik asitlerin identifikasyonu üzerine denemeler gerçekleşmiş ve bu gerçekleşen denemeler ile tedavi amaçlı gen silencing kullanım sağlanmıştır. Sistemik verilim için yapılan, yapılması gerekli olan oluşumlar, klinik denemelerde modifiye edilmiş fosforatiat ODN’ler için açıklanmıştır. Modifikasyon ODN’nin hedef RNA’sına olan afinitesini azaltsa da in vivoda, stabilite, hücre içinde kalma ve hücresel alınımlarının gelişmesi ile moleküllerin etkinliğini arttırmış. Fosforatiat modifikasyonlar ODN’ lerin kan proteinlerine afinitesini arttırır ve nükleazların aktivitesinden ODN’ leri uzak tutar. Tek iplikli spesifik endonükleazlardan korunmuş, siRNA dubleksleri, serumda hem ODN hem de ribozimlerden daha stabildir. Modifiye olmamış siRNA’lar hücreler tarafından tam olarak alınmaz, hatta kan proteinleri için etkili bir afiniteye sahip olmazlar. siRNA’lar tedavi amaçlı kullanılacak ise, modifiye edilirler. Virusların kullanımını içeren gen terapi bazlı platformlar hariçtir. siRNA’ların modifikasyonu, siRNA’nın RISC kompleksi ile etkileşimini engeller (helikaz aktivitesi ile siRNA dubleksinin açılması hedef kesme oranı ve ürün oluşumunu etkiler). Bazı araştırıcılar, iyi bir silencing etkisi yaratıcı ayrıca, siRNA stabilitesini arttırıcı kimyasal modifikasyonları identifiye etmeye başlamışlar. Fosforatiat modifikasyonları siRNA dublekslerini tolere edebilirler ve siRNA’ ların hücresel alınımlarını kolaylaştırırlar. İn vivo’da kimyasal olarak modifiye olmuş siRNA’ ların etkinliği üzerine bir gelişme yoktur. siRNA’ların yapılarına spesifik olan nükleik asit modifikasyonlarının yeni tiplerini geliştirmek için girişimler başlamıştır (5). miRNA miRNA’lar küçük RNA’nın ikinci sınıfıdır. Bitki ve hayvan genomlarının protein kodu oluşturmayan bölgelerinde kodlanır ve Dicer tarafından proses edilir. miRNA’lar RISC’e benzer bir kompleks ile etkileşirler. Hedef mRNA’ya komplementerizasyon derecesine bağlı olarak translasyonel baskılama veye mRNA kesimi oluşmaktadır (7). Bu gizli genlerin çoğu kod oluşturmayan RNA’ lardır ve protein için kod veya open reading frame (ORF) içermezler (8). Yaklaşık 22 nükleotidlik RNA‘lardır ve RNAi yol izinde gen ekspresiyonunu regüle ederler. miRNA’lar, RNA pol II tarafından (pri – miRNA) primer transkript olarak meydana gelirler. Bu tanskriptler ORF içersin ya da içermesin, splice edilir, poliadenillenir ve mRNA’lara benzerler. Bir intron veya ekzonda lokalize olmuş stem loop yapısı, fonksiyonel komponenttir. Örneğin miRNA genleri olan mir -106b, mir – 93 ve mir-25 protein kodlayan genin intronunda lokalize olmuşlardır. Stem loop yapısı ribonükleaz olan Drosha ve Dicer tarafından proses edilip, olgun miRNA oluştururlar. Bu RNA, RISC kompleksi ile etkileşir ve bu kompleks mRNA’ların baskılanmasını yönlendirir. İnsanda identifiye edilmiş miRNA genlerinin sayısı 300’den yüksek olup, hücre bölünmelerinde ve gelişimsel proseslerde rol alırlar (8). miRNA Genlerinin Kanserdeki Genomik Değişimler ile ilişkisi İnsan miRNA’ların çoğu genomlardaki kırılma noktalarının hemen yakınlarında lokalize oldukları görülmüştür (8). Örneğin, kromozom 13q14’teki delesyon yıllardır çalışılmaktadır, kronik lenfosit lenfoma ve birkaç tümörün oluşumuna neden olmaktadır. Bu lokustaki kansere neden olan şüpheli genlerin çoğu, miRNA diziliminden oluşur. Bu dizilim, mir - 15a ve mir – 16 – 1 içermektedir. Acaba, bu miRNA’ların delesyonu tümör oluşumunu nasıl etkiler? En son datalar, hem miR-15a ve miR-16, anti – apoptik gen olan BCL-2 genini hedeflemesi ile normal apoptik bir yanıt meydana getirdiğini göstermiştir. Bu bakımdan, bu miRNA’ların tümör supresör olarak fonksiyon göstermesi ve limfoma hücrelerindeki miR – 15a – 16‘ nın yeniden ekspresiyonu, apoptozisi ilerlettiği görülmüş. Buna ilaveten, delesyonlar için miRNA lokusları haritalanmıştır. Bunun bir örneği, akciğer, baş, dil, B-hücre ve foliküler limfomada amplifiye edilmiş 13q31 kromozomu çok iyi bir şekilde çalışılmış. Chr13orf25 (kromozom 13, open reading frame 25) genin ifadelenmesi ile hastalıkların ilişkisi vardır. Bu gen protein oluşturmayan küçük ORF’ye sahiptir. Bu transkripteki miRNA öncüleri miR – 17, 18, 19a, 20, 19b ve 92‘ dir. Bu dizilerden 28 miRNA’ların ekspresiyonunun artması, primer limfomada ve tümör oluşturan hücrelerin meydana gelmesini tetikler. Tümör oluşumundaki bu miRNA’ların rolleri, Burkitt’in lenfoma için fare modelinde gösterilmiştir. Tablo – 2 Kanser genlerinin siRNA tedavileri (6) Kök Hücreler, miRNA’lar ve Kanser Bir tümördeki hücrelerin bazı bölümlerini inceleyen tümör oluşum modelinde kök hücre özelliklerine sahip oldukları meydana çıkmıştır (8). Bu kanser kök hücreleri, tümör oluşumunu başlatma ve sürdürme özelliğine sahiptir. Halbuki tümör’deki hücre yığınları bazı farklılıklar gösterip, tümorogenik değildirler. Bunun miRNA’lar ile ilişkisi nedir? Tümörler, kök hücrelerini andıran bir biçimde miRNA profili sergiler. Çoğu miRNA’ların ekspresiyonunu azaltırlar fakat miR–17-92 içeren kök hücre miRNA’ların ekspresiyonunu etkilemezler. RNAi ve kök hücrelerin devamlılığı arasında biyokimyasal bir ilişki vardır. Drosophila ve bitkilerde, kök hücre devamlılığı için RISC komponenti olan Argonaute gereklidir. Dicer – 1 ‘in mutasyonu tarafından miRNA fonksiyonunun kaybı, Drosophiladaki üreme kök hücrelerinin çoğalmasını azaltmıştır. Siklin bağımlı kinaz inhibitörü olan Dacapo’nun ekspresiyonundaki artış, G1 ve S fazı arasındaki tutuklanmaya yol açmıştır (8). Tahmin edilen miRNA hedef bölgeleri, Dacaponun 3’UTR (Translate edilmemiş) kısmında bulunur. Önemli olan bu bölgelerin kök hücrelerde eksprese olmuş miRNA’lara uygunluğudur. Bir S-faz indüksiyon regülatörü olan p27 – Kip1, Dacoponun insandaki homoloğudur. Bu gen memelilerdeki bir miRNA hedefi olup olmadığı bilinmiyor, eğer öyle ise, hücre çoğalmasını ilerletmek için onkogenik miRNA‘ nın ekspresiyonunu engelleyici bir gen sağlanmış olur. Tedavi Amaçlı miRNA’lar İnsandaki kanser için miRNA’lar anahtar yapılar sunarsa, potansiyel tedavi amaçlı olarak gözden geçirilir (8). Tedavi amaçlı molekül hücresel alınımı ve serumdaki stabilitesi için modifiye edilmiş nükleik asit özelliğinde olmalıdır. Bir grup araştırıcı, kültüre olmuş hücrelerde miRNA fonksiyonunun antisens inhibitörü olarak modifiye olmuş 2’-O-metil RNA’ların görev yaptığını gözlemlemişler. Bu moleküller miR – 17, 92 olan hedef onkogenik miRNA’lar için kullanılır. Tümör suppresör miRNA’lar konusunda istenilen tedavi amaçlı strateji hücrelerdeki fonksiyonlarını arttırmak için olabilir. Serumda stabilize olmuş pre – miRNA’lar bunu başarabilir. Buna bir örnek, per–let-7‘nin hücreye verilimi RAS ekspresiyonunu durdurarak tümörün ilerlememesine neden olmasıdır. Ribozim Katalitik RNA’lar olarak bilinen ribozimler, intraselüler ortamda aktivitelerini optimize etmek için dizayn edilirler (10). Aktif ribozimlerin kütüphanelerinin hücre içine verilmesi gen işleyişinin identifikasyonuna olanak sağlar. Gen işleyişini saptamak için siRNA kütüphanelerini baz alan RNA bazlı araçlara, ribozim teknolojisi bir alternatif sunmaktadır. Tablo 3. Hastalıklarda ve hayvanlarda miRNA’ların biyolojik fonksiyonları (9) Pri – miRNA ‘lar nukleusta transkribe olmaktadır (1). dsRNA’ya spesifik olan Drosha nukleustaki pri-miRNA ‘yı degrede ederek stoplazmaya verilmeden önce pre-miRNA’ya dönüştürür (2). Exp5 (exportion-5) pre-miRNA’ların nukleustan stoplazmaya geçişinden sorumludur (3). siRNA’lara benzer olarak miRNA’lar dicer tarafından olgun miRNA‘ ya dönüştürülür ve bir ipliği ribonükleoprotein kompleksi olan miRNP ile etkileşir (4) (RISC kompleksine benzer). miRNA ve hedefi arasındaki baz eşleşmesi RISC kompleksinin mRNA’yı parçalamasına veya proteine translasyonunu durdurmaya sebebiyet verir (6). Şekil 6. miRNA ‘nın mekanizması İnvivo'da Ribozim Ekspresiyonunu Optimize Etmek Sekonder yapısının şeklinden dolayı ismi konan “hammerhead ribozim“, infekte olmuş bitkide orijinal olarak keşfedilmiş katalitik RNA moleküdür (10). Hammerhead ribozimin kendi başına kesim aktivitesi, tek iplikli yaklaşık 350 nükleotidlik, protein kılıfından yoksun RNA olan “virusoid“ moleküllerinin replikasyonu için zorunludur. Hammerhead ribozimler, herhangi bir RNA’yı kesmek için dizayn edilebilir (10). Bu dizayn, ribozimin substrat tanıma kısımlarında yapılır böylece, hedef sekansa komplementer tanıma bölgeleri içerebiliyor. Substrat kesimi, hedef RNA’daki NUX (N, herhangi bir baz ise X, A, C veya U dur.) sekansına göre ayarlanıyor. Dizayn edilen ribozimler, farklı RNA’ları kesebilir. Bu ribozimler, ya hammerhead veya hairpin ribozimlerdir. Ribozimler sentez ve modifikasyonları kolay ve yüksek oranda spesifik durumları ile hedef mRNA’ların ekspresiyonunu regüle ederler. İnvitroda, ribozimlerin kesim aktiviteleri, hücresel ortamdaki aktiviteleri ile koralasyon göstermek zorunda değildir. Bu yüzden memeli hücrelerindeki spesifik RNA’ların kesimi için ribozimlerin uygulamaları ifade sistemlerinin gelişimine gereksinim duyar (10). Tablo 4. Ribozimlerin invivo aktivitesini optimize etmede gerekli olan unsurlar (10) Şekil - 7 Hammerhead ribozimin ifadelenmesi a. Hammerhead ribozimin sekonder yapısı, onun substratı RNA (açık mavi) ve substratın kesim bölgesi gösteriliyor. N herhangi bir baz ve X A , C veya U ‘ yu simgelemektedir. b. Oklar, 3’ tRNaz veya RNaz P tarafından wild-type tRNAVAl (yabani tip)‘nın proses edilen bölgelerini göstermektedir. Transkripsiyon için RNA polimeraz III‘ ün etkileşimde bulunduğu promotor, internal promotordur; transkriptler, tRNA sekanslarının içindeki promotor elementlerini içerir (A ve B kısımları, kırmızı renkli). Ribozim sekansı doğal formdaki tRNA sekansının 3’ ucuna bağlanırsa, 3’ tRNaz ribozim – tRNA transkriptinden ribozim kısmını keser. Sonuçta oluşan ribozim endogenik RNaaz tarafından degrede olur. Bu yüzden modifiye olmuş yapıda, wild – type tRNA ‘nın 3’ kısmının bir bölümü linker sekans ile yer değiştirilir ve stem yapısı oluşur. Stem yapısı ribozimin tRNAval kısmından ayrılmasını bloke etmektedir (10). Yüksek İfade Seviyeleri RNA pol III tarafından tanınan promotorlar, tRNA ve küçük nüklear RNA olan küçük RNA’ların transkripsiyonundan sorumludur(10). Bu sebebten dolayı, Pol III ifade sistemleri, hammerhead, hairpin ribozimler ve siRNA olarak bilinen küçük RNA’ların transkripsiyonunda rol oynar. Pol III transkriptleri, pol II transkriptleri ile karşılaştırıldığında, ekstra sekanslar içermektedir (her transkriptin 3’ ve 5’ uçlarında polyA ve cap yapısı vardır). Bu özellikler, pol III sistemini ribozim ve siRNA’ların ekspresiyonu için ideal yapıyor yani, transkriptlerin yüksek seviyeleri güçlü aktivite için gereklidir ve ekstra sekanslar inhibitör etkisi yapar. tRNAmet tRNAva veya tRNAlys gen promotorunu veya U1, U6 veya adenovirus VA1 promotorunu içeren PoI III ifade sistemleri, hücrelerdeki hammerhead ve hairpin ribozimlerin ifadeleri için gereklidir. U6 promotoru çoğunlukla siRNA ifade vektörleri için kullanılır. Bunun yanında, farklı promotorlardan transkribe olmuş siRNA ve ribozimler sahip oldukları çeşitli özellikleri kendi promotorlarından alırlar (10). Kanser Biyolojisindeki Araştırmalar Tümör hücrelerine, hairpin ribozim transfeksiyonu yapılmış ve transforme olmuş hücreler birkaç hücresel proses olan apoptozis, kontak inhibisyonu ve üreme gibi normal regulasyonunu kaybetmiş (10). Hairpin ribozimleri alan hücrelerde tümör supressör gibi regülatör protein fonksiyonu olan bir gen hedeflenmiş ve biyolojik yol izlerinde birkaç yeni genler identifiye edilmiş. Bunların içinde insandaki gene homoloji gösteren D. melanogaster’de “ppan” ve"Mtert"geni keşfedilmiş. Ppan, hücre büyümesinin inhibitörü olarak, Mtert geni ise fibroblast transformasyonunun supressörü olarak identifiye edilmiş. Metastazi Genlerinin İdentifikasyonu Kanser hücrelerinin metastazisinde görev yapan genleri identifiye etmek için rastgele dizayn edilmiş ribozim kütüphaneleri kullanılmış. Kanserin erken safhalarında genellikle malignant hücreler lokalize olur. Hastalık ilerlediğinde metastazi için hücreleri uyaran çeşitli genler ifadelenir veya baskılanır. İnvaziv kanser hücrelerinin hareketi, invaziv olmayan veya zayıf invaziv özellik gösteren hücrelerden daha fazladır (10). Metastazinin mekanizması, kompleks ve çoğunlukla bilinmeden kalmıştır. Bu yüzden metastatik proseslerdeki basamakları identifiye etmek için, farklı prosedürler keşfetmişler. Bunlardan ilki, kemotaksi denemesi, rastgele dizayn edilmiş 33 genler yüksek oranda hareketli olan HT1080 hücrelerine verilir. Transfeksiyondan 24 saat sonra ekstraselüler matriks jeli ile çevrilmiş porlu filtre ile ayrılmış kemotaksi denemesine maruz bırakılmış. Kemoattranktant olarak fibronectin içeren bu denemede yüksek konsantrasyon içeren kısımdan daha düşük konsantrasyon içeren kısma doğru bir geçiş olur. 24 saat sonra yüksek konsantrasyonda bulunan çok az seviyedeki hücreler incelenmiş (invaziv olmayan hücreler). Ribozim taşıyan vektörleri alan bu hücrelerde migrasyonu tetikleyen genler bloke olmuş. İkinci yaklaşım, hücre invazyon denemesi. Bu deneme ilk denemeye benzer, sadece alt kısımın matriks jeli çevrelenmesi hariçtir. Retroviral vektörler (ribozim genlerini içerir)fare fibroblast NIH3T3 hücrelerine verilir. Bu hücreler jel ile çevrelenmiş filtre içinden çok zor geçer ve matriks jeline penetre olmuş hücrelerden RNA izole edilir. Bu RNA’nın, reverse transkripsiyonundan sonra, fibroblastların invaziv aktivitesini sağlayan 8 ribozim bulunmuş. Hücre kültür koşulları fizyolojik durumu tam olarak yansıtmasada, ribozim teknolojisi fare pulmonar tümörogenezis için bir yoldur. Ribozim kütüphaneleri, viral hayat çemberi, apoptik yol izleri, alzhemier hastalığı, kas ve neuronal farklılaşma fonksiyonu gösteren genleri identifiye etmede yararlanılır. Özellikle ribozim kütüphaneleri sinirsel kök hücrelerin farklılaşmasını regüle eden kod oluşturmayan RNA ‘yı identifiye etmede kullanılır. Şekil – 8 Metastazide görev yapan genlerin identifikasyonu a. Rasgele dizayn edilmiş ribozimler, hareketli HT 1080 hücrelerine veriliyor. b. Transfeksiyondan 24 saat sonra, hücreler ekstraselüler matriks jel ile kaplı porlu bir filtre ile ayrılmış alanda kemotaksi denemesine maruz bırakılmış. Üst kısımdan ekstraselüler matriks yolu ile alt kısma göç eden invaziv hücreler gözlemlenmiş. c. 24 saat sonra üst kısımdan göç edememiş hücreler alınmış. d. Alınan hücrelerdeki ribozimler çıkartılmış ve yeniden daha zor şartlar altında test edilmiş. e. Bu ribozim sekansları kullanılarak databazlı araştırmalarda istenen genler saptanmıştır (10). siRNA ve Ribozim Kütüphanelerinin Karşılaştırılması Son yıllarda RNAi, gen baskılanması için güçlü bir araç olarak dikkatleri üstüne çekmiştir (10). C. elegans hücresine dubleks RNA’nın verilmesi sonucunda ilk gen baskılanması ortaya çıktıktan sonra, bitkilerde, D. melanogaster, protozoa ve memeli türlerindeki varlığı saptanmıştır. RNAi mekanizmasında, ekzogenik dubleks RNA’lar 21-23 nükleotidlik siRNA oluştuktan sonra RISC kompleks ile ilişkiye girer. siRNA – RISC kompleksi, sekansa spesifik olarak hedef mRNA’yı keser. Bu reaksiyon, ribozimler tarafından hedef mRNA’nın kesimine benzemektedir. RNAi ‘nin potansiyel gücü, bilimsel kominitelere, genom analizleri ve gen işleyişleri için işe yarar bir araç olarak bakma cesaretini vermiştir. siRNA ifade vektörlerini ve kütüphanelerini kullanarak memeli genomunun karşılaştırmalı sistemik analizlerini yapılmıştır. siRNA kütüphaneleri ile, TRAIL ile indüklenmiş apoptozis, P53‘ e bağlı üremenin tutuklanması ve fosfadilinositol 3 – kinaz (P13)yol izlerinde yeni komponentler identifiye edilmiştir (10). Etkinliği ve Hedef Spesifitesi Ribozim ve siRNA teknolojileri arasındaki en büyük farklılık, siRNA’lar endogenik proteinler ile iş birliği içindedir (10). Halbuki ribozimlerin aktivitesi hücresel faktörlere bağlı değildir. Bu yüzden, siRNA’lar birçok hücresel enzimi kullanır örneğin helikaz ve RNAaz’lar, hedef mRNA’nın kesiminde görev yaparlar. Bundan dolayı, hedef mRNA’ların baskılanmasında ribozimlerden daha etkili bir araçtır. Her iki teknolojide de, hedef bölgelerin seçimi aktiviteyi belirlese de, daha düzenli bir mRNA’nın yapısı siRNA’dan çok, ribozim aktivitesini daha güçlü etkiler. Buna karşın siRNA’ların baskılayıcı aktivitesi, mRNA’nın düzenli yapısından çok, siRNA ve bir grup endogenik protein arasındaki etkileşime bağlıdır. siRNA’ların en önemli dezavantajı, spesifik olmayan baskılayıcı aktivitesidir. Bu baskılayıcı aktivite interferon üretiminin indüklemesi veya hedef olmayan genlere karşı sekansa spesifik silencing etki anlamına gelmektedir. siRNA’nın bir ipliği (antisens) hedef mRNA’ya komplementer, diğer ipliği (sense) değildir. Sense ve antisense iplikler, hedef olmayan mRNA’nın translasyonunu inhibe edebilir. Hedef olmayan genler üzerindeki etkilerin tahmin edilmesi zor olduğundan, bu konuda ribozimler daha düşük aktiviteye sahip olmalarına rağmen, siRNA’ların bir adım önünde bulunmaktadır. Son yıllarda siRNA alanındaki gelişmeler hız kazanmıştır (10). Örneğin, daha önceleri kullanılan 21 – 23 mer siRNA’ların nanomolar konsantrasyonları yerine günümüzde 27 mer’ lik siRNA’ların pikomolar konsantrasyonları kullanılmaktadır. Bu konsantrasyonun kullanılması, hedef dışındaki etkisini minimize edebilir Ayrıca, siRNA ifade vektörlerini dizayn etmek mümkün; shRNA (short haırpın RNA – sens ve antisens sekansları içermekte, Dicer tarafından shRNA siRNA‘ ya dönüştürülür.)‘ nın sadece sens ipliğinin degrede olacağı vektör düzenlenir ve böylece hedef dışı etkileri minimize edilmiş olur. İnterferon uyarılması, sekansa bağlı olmadan spesifik olmayan etki demektir yani, ekzogenik dubleks RNA tarafından immün yanıtın aktive olması demektir. siRNA’lar bu yanıtı uyarmayabilir. Uzun dubleks RNA 30bp’den büyük olursa bu yanıt oluşmaz. Ayrıca, siRNA ‘nın interferon yanıtını uyardığı ve bu yanıtın oluşmaması için bazı faktörler identifiye edilmiştir. Stem (gövde) bölgesinde bir mutasyonun meydana getirilmesi ile (C→U veya A→G) interferon yanıtı azaltılır. Yalnız bu çözüm dsRNA>100bp olduğu durumlar için geçerlidir. Antisens Teknolojisinin Çözüm Bekleyen Sorunları İlk sorun, genlerin insana verilmesini sağlayacak daha kolay ve etkili yöntemlerin bulunmasıdır. Bir başka sorun ise, nakledilen genin hastanın genetik materyalinin hedeflenen bölgesine yerleşmesini sağlamak ve böylece olası bir kanser ya da başka bir düzensizlik riskini ortadan kaldırmaktır (11). Bu konudaki başka bir sorun da, yerleştirilen yeni genin vücudun normal fizyolojik sinyalleriyle etkin bir biçimde kontrolünün sağlanmasıdır. Örneğin insülin, doğru zamanda ve doğru miktarda üretilmediği zaman, hastaya yarar yerine zarar getirecektir. Şu ana kadar yapılan çalışmalar sonrası iyi sonuçlar alınabilmiş fakat kalıcı tedavi çoğu zaman başarılı olamamıştır (11). Bunun bir nedeni, vektörlerin taşıdıkları genin uzun süreli ekspresyonuna izin vermeyişleri, diğeri ise denemelerde etkinlikten çok güvenliğin ön plana çıkmasıdır. Kanser tedavisi için antisens oligonükleotidleri major kaynak olarak görmeden önce, iki temel zorluğu çözmek gerekmektedir. İlaç verilmesinde en çok aranan özellik basitliktir (12). Oligonükleotidin hücresel alınımı sınırlı ve hücre tipleri arasında varyasyonlar göstermektedir. Örneğin, normal lenfositlerin antisens nükleotidleri çok zayıf aldığı gözlemlenmiştir. Lipozomal taşıyıcılarında içinde bulunduğu çeşitli formulasyonlar sonuçlarına bakılmaksızın denenmiştir. Antisens oligonükleotidlerin direk injeksiyonu en yüksek tümör konsantrasyonlarında verilir fakat sistemik tümör tedavisi için kullanımı limitlidir. Gut epitel hücreleri, antisens oligonükleotidleri çok iyi bir şekilde almaktadır, bu yüzden oral formulasyonu mümkündür ve uygulamalar arasında en çok umut veren olabilir. İkinci çözülmeyen konu, hedef onkogen zaman zaman mı aktif oluyor yoksa, bir tümör hücresi olarak mı kalıyor? Tümör hücreleri bazen hareketsiz kalabiliyor ve büyüme aktivitesi, antisens oligonükleotidin verilmesi ile eş zamanlı olmayabiliyor (12). Şu anki duruma göre, önümüzdeki yıllarda gen tedavisindeki eğilim, genleri istenilen hücrelere en etkin biçimde taşıyabilecek vektörlerin dizayn edilmesi yolunda olacak gibi görünüyor. O zaman, gen tedavisinin daha başarılı sonuçlar vereceği söylenebilir. Kaynaklar 1. IDT Tutorial. 2005. Antisense Technologies, 1-12. 2. Kurreck, J. 2003. Antisense Technologies improvement through novel chemical modifications. Eur. J. Biochem, 270: 1628-1644 3. Uprichard, S. L. 2005. The therapeutic potential of RNA interference. FEBS Letters, 579: 5996-6007. 4. Aigner, A. 2006. Gene silencing through RNA interference (RNAi) in vivo: Strategies based on the direct applications of siRNAs. Journal of Bıotechnology, 124 (1): 12-25. 5. Dorsett, Y and Tuschl, T. siRNAs:2005. Applications in Functional Genomıcs and Potential as Therapeutics. Nature Biotechnology, 40-51. 6. Rychahou, G. P., Jackson, N. L., Farrow, J. B and Evers, M.B. 2006. RNA interference: Mechnanisms of action and therapeutic consideration. Surgery ; 140: 719-25. 7. Matzke, A.M and Birchler, J.A. 2005. RNAi – Mediated Pathways in the Nucleus. Nature Reviews Genetics, 6: 24-35. 8. Hammond, S. M. 2006. MicroRNAs as oncogenes. Current Opinion in Genetics and Development , 16:4-9. 9. Wienholds, E., Plasterk, H.A R.2005. MicroRNA function in animal development. FEBS Letters, 579: 5911-5922. 10. Akashi, H., Matsumoto, S. and Taira, K. 2005. Gene Dıscovery By Rıbozyme and siRNA Libraries. Nature Reviews Molecular Cell Biology, 6: 413-422. 11. Yaşar, Ü. 2006. Gen Tedavisi; Hastalıkların biyolojik temeli III. www.medinfo.hacetttepe.edu.tr/ders. 12. Cunnıngham, C.C. 2002. New modalities in oncology: antisense oligonucleotides. BUMC Proceedings, 15: 125-128.   PDF KAYNAK: documents/tipbil14_3_11.pdf

http://www.biyologlar.com/antisens-teknolojileri-hakkinda-bilgi

BİTKİ HORMONLARI ( fitohormonlar )

Bilimsel Süreç 1880 yılı başlarında, Julius Sachs araştırmaları sonucunda bitkinin farklı parçaları arasındaki gelişimin düzenlenmesini sağlayan “kimyasal mesajcıların” (chemical messengers) varlığını ileri sürmüştür. Ancak, Sachs‟ın düşüncesinin esası Charles Darwin tarafından yazılmış olan “The Power of Movements in Plants” (Bitkilerde Hareketlerin Kaynağı) isimli bir kitaptan gelmektedir. Charles Darwin ve oğlu Francis Darwin tarafından yapılmış olan, kuş yemi (Phalaris canariensis) koleoptillerinde fototropik hareketler üzerinde bazı gözlemleri bu kitapta birleştirmişlerdir. Bu kitap, bitki hormonlarının tanımlanmasına yol gösteren, bir sıçrama tahtası gibi sunulmuştur. Sachs, bitkilerin belli yerlerinde kök, gövde, yaprak, çiçek gibi organların oluşumunda etkili olan kimyasal maddelerin sentezlendiğini ve bunların her birinin, tek bir organın büyümesinden sorumlu olduğunu ileri sürmüştü. Ancak bu gün bir bitki organındaki belli bir kısmın büyümesinde bile çeşitli hormonların birlikte etki ettikleri ve bir hormonun bitkide bir çok fizyolojik olayda rol oynadığı bilinmektedir. (Örneğin; sitokininler, sitokinezi yada hücre bölünmesini uyarırlar. Gövdeden alınan bir parankima doku parçası sitokininler olmaksızın kültüre alındığında, hücreler çok fazla büyürler fakat bölünemezler. Sitokininler tek başlarına etki gösteremezler fakat oksin ile birlikte uygulandıklarında hücreler bölünürler.) Metabolizma, bitki yaşamı için gücü ve yapı taşlarını sağlarken, fitohormonlar (bitki hormonları) ise özel kısımlardaki gelişimin ilerleme hızını düzenlemekte ve bizim bitki olarak tanımlayacağımız yapıyı (formu) üretmek üzere bu kısımları tümleştirmektedir. Ayrıca, fitohormonların bilimsel tarihi günümüzde de ilerlemektedir. Yakın zamana kadar, bitki büyüme ve gelişmesinin oksinler, giberellinler, sitokininler, absisik asit ve etilen olarak adlandırılan, sadece bu beş grup fitohormon tarafından düzenlendiği düşünülmekteydi. Bununla birlikte bu gün, ilk kez kolza bitkisi (Brassica napus L.) poleninden izole edilmiş ve steroidlerin bir grubu olan brassinosteroidleri fitohormonların altıncı bir grubu olarak kabul etmekteyiz. Ek olarak brasinosteroidler kimyasal yapı olarak hayvanlarda bulunan steroid hormonlarına en benzer gruptur; bitki ve hayvan steroid hormonlarının benzer kimyasal yapıları, belirli genlerin ifade olmasında benzer etkiler göstermektedir. Şöyle ki; bitki steroidleri insanlardaki eşey hormonları gibi, aynı olan pek çok şeyi yaparlar. Bir bitkide steroid fazla olduğunda, o bitki daha büyük, daha dayanıklı ve daha kuvvetli olmaktadır. Örneğin; mutasyon nedeniyle bitkiler steroid üretmediklerinde cüceleşirler. Steroidler aynı zamanda bitkide eşeyli üremeyi düzenlemektedirler (burada; belirli bir molekül grubunun farklı organizmalarda sinyal molekülleri olarak iş görmesi ilginçtir). Bir bitkinin steroid sentezlemek için kullandığı enzimlerin çoğu, kendi steroid çeşitlerini üreten hayvanlarda da bulunmaktadır. Dolayısıyla bu enzimlerle ilgili bazı genlerin, bitkiler ve hayvanların bir milyar yıldan daha uzun bir süre önce ortak bir atadan dallanmaları sebebiyle korunmuş olma olasılığı vardır. Buna karşın, steroidlere yanıtlarla ilgili sinyal yolundaki moleküller, bitki ve hayvanlarda çok büyük bir farklılık göstermektedir. Bilimsel süreçte geçmişten bu güne gelen gelişmeleri incelerken, Arabidopsis genomunun sekansının çıkartılmasıyla bu gün ve gelecekte olacak çarpıcı gelişmelere değinerek, süreci tamamlıyacağız. Bitki biyoteknolojisinde kobay fareleri gibi kullanılan bitki Arabidopsis „tir. Şu an Arabidopsis genomu sekanslanmıştır. Bir sonraki aşama ise, yaklaşık 26.000 gen bulunan Arabidopsis‟te, bu genlerin ne yaptıklarının bulunmasıdır. Bu plan, 2010 yılına kadar 26,000 Arabidopsis geninin işlevini belirleme amaçlarını ve stratejilerini kapsamaktadır. Plan, bitkinin yaşam döneminde her bir genin ne zaman ve hangi tip hücrelerde ifade olacağını kapsamaktadır. Sonuçta her şeyi bilinen gerçek bir bitkiye sahip olunacaktır. Burada, gerçek bir bitki elde etmek için Arabidopsis kullanılmasının bir çok sebebi vardır; Yaşam döngüsü çok hızlıdır. Tohumdan tohuma yedi haftada geçebilir. Ayrıca, kendine dölektir. Her bir bitki 10.000 ila 50.000 tohum üretebilir. Bu, kalıtsal olarak aynı olan çok sayıda bitki üretebileceğimiz anlamına gelebilir. Arabidopsis aynı zamanda iyi bir araştırma bitkisidir. Çünkü bilinen en küçük bitki genomuna sahiptir. Çok sayıda gereksiz DNA‟ya sahip değildir. Meyve olgunlaşmasında etilen hormonunun nasıl iş gördüğü, bir Arabidopsis mutantından öğrenilmiştir. Arabidopsis‟te etilen yolundan sorumlu olan aynı genler, domateste de bulunmuştur; ve bu genlerin nasıl çalıştığını anlamak olgunlaşma sürecini kontrol etmeyi sağlamaktadır. Diğer bir uygulama ise; Arabidopsis‟te genlerin belirlenmesi sayesinde kültür bitkisi ıslahçıları, yararlı varyetelerin seçici olarak üretilmesi işleminde belirli mutasyonları nasıl kullanacaklarını anlayacaklardır. Örneğin; yabani darı normalde Texas‟ta yetişmez. Ancak ıslahçılar, Arabidopsis araştırmasına dayalı olarak, bitkide fotoreseptörü etkileyen bir mutasyonu seçmişlerdir. Bu, yabani darının, Texas‟taki tarlalarda yaşam döngüsünü tamamlamasına izin verecektir. Yani, bir referans bitkisi ve kültür bitkileri arasında bu tür bağlayıcı bilgiler çok kullanışlıdır. Dünya nüfüsunun 2050 yılında 10 milyara ulaşacağı düşünülmektedir. Şu an bile, 6 milyar insandan 800 milyonu, kronik yetersiz beslenme ile karşı karşıyadır. Dünyadaki beslenmeyi artırmanın tek yolu kültür bitkisi ırklarının ıslahından geçmektedir. Verimlilik artışı, ya daha etkili ıslah yapmak yada genetiksel olarak değişime uğratılmış (mutant) bitkiler üretmek suretiyle, moleküler genetik uygulamalara bağlı olacaktır. İleriki yıllarda bu gibi bilimsel verilerin geliştirilmesiyle moleküler ve genetik düzeyde bilmeceler çözülecek ve insan yaşamındaki sorunlara çözümler bulunacaktır. Fototropizma: Bir bitki sürgününün ışığa doğru yada ışıktan uzaklaşarak büyümesi. Sitokinez: Mitozdan hemen sonra, iki kardeş hücre meydana getirmek üzere sitoplazmanın bölünmesidir. Steroid: Çeşitli fonksiyonel grupların bağlandığı dört halkından oluşmuş bir karbon iskelet ile karakterize edilen lipit çeşiti. Gen: DNA‟daki (yada bazı virüslerde RNA‟daki) özgül bir nükleotit dizisinden (sekansından) meydana gelmiş kalıtsal bilgiyi taşıyan birim. Genler (DNA) ve bunların ürünleri (proteinler) bir organizmanın kalıtsal gelişimini belirler. Genom: Bir organizmanın genlerinin tamamı; bir organizmanın genetik materyali. Mutasyon: Bir genin DNA‟sında ortaya çıkan değişiklik, bu değişiklik sonunda genetik çeşitlilik meydana gelir. Mutant fenotip: Yabanil tipe alternatif olan özellik. Katalizör: Kendisi harcanmaksızın tepkime hızını değiştiren bir kimyasal ajandır. Enzim: Katalitik bir proteindir. Bir Bitki Hormonunun Tanımı Hormon kelimesi uyarma anlamındadır. Tüm çok hücreli organizmalarda bulunan hormonlar, organizmanın kısımlarını kontrol eden kimyasal sinyallerdir. Salisbury ve Ross tarafından 1992‟de yazılan Bitki Fizyolojisi (Plant Physiology) kitabının 4‟üncü baskısında bir bitki hormonu için şu tanım yapılmaktadır; “Bir bitki hormonu, bitkinin belirli bir kısmından sentezlenen organik bir bileşiktir ve çok düşük konsantrasyonlarda bitkinin başka bir kısmına taşınabilir, ve taşındığı yerde fizyolojik etkilere neden olabilir.”

http://www.biyologlar.com/bitki-hormonlari-fitohormonlar-

Genetik Mühendisi

Genetik mühendisliği, canlıların kalıtsal özelliklerinin değiştirilerek, onlara yeni işlevler kazandırılmasına yönelik araştırmalar yapan bilim alanıdır. Genetik mühendisleri, genlerin yalıtılması, çoğaltılması, farklı canlılaın genlerinin birleştirilmesi ya da genlerin bir canlıdan başka bir canlıya aktarılması gibi çalışmalarla uğraşırlar. Genetik mühendisliği bir meslek veya mühendislik dalı olmayıp genlerle yapılabilen manipülasyonlar anlamına gelmektedir. Gregor Mendel kurucusu olarak kabul edilip bazı yerlerde "Genetiğin Babası" olarak anılmaktadır. Genetik mühendisliği, kalıtsal hastalıkları bulmayı ve hastalıklara tedavi yöntemleri üretmeyi hedefler. Genler , bir organizmanın özelliklerini belirleyen kimyasal bilgiyi taşır. Genler değiştirilerek bir organizmaya istenilen özellikler kazandırılabilir. Genetik mühendisliği , bilimadamlarının genleri bir organizmadan alıp diğerine aktarmalarına imkan veren bir uygulamadır. Bu tuygulama; nükleik asit hibridizasyonu , rekombinant DNA , PCR , hücre kültürü ve monoklonal antikor tekniklerini içerir . Bunlardan en başarılı ve yaygın olan rekombinant DNA tekniği ; restriksiyon enzimlerini kullanarak “gene splicing” de denilen DNA’nın istenilen bölgesinin kesilip çıkarılması ve kesilen parçanın ligaz enzimi kullanılarak “vektör” adı verilen taşıyıcı bakterinin plazmidine yapıştırılması işlemlerini içerir. Daha sonra plasmid bakteri içine yerleştirilerek rekombinant DNA’nın normal hücresel aktivitesine devam etmesi sağlanır. Bugün genetik mühendisliğinin bitki ve hayvanlarda uygulanmasıyla daha iyi ve sağlıklı yiyecekler, daha güvenli temiz bir çevre ve sağlık alanındaki gelişmeler insanlara sunulmuştur. Kaynak: www.genetikmuhendisi.com

http://www.biyologlar.com/genetik-muhendisi

Evrim Mekanizması

Evrimin önemli ham malzemelerinden biri mutasyonlardır. Mutasyonu açıklamadan önce modifikasyon (ya da diğer adıyla varyasyon) tanımını doğru yapmak gerekir. Modifikasyon, çevre koşullarının etkisiyle canlının genetik yapısındaki şu ya da bu genin zorunlu veya tercihli olarak uyarılması ya da işlevlerin teşvik edilmesi-güçlendirilmesi sonucunda dış görünüşünde (fenotip) ortaya çıkan kalıtsal olmayan değişikliklerdir. Çoğu yayında bunlara kalıtsal olmayan varyasyonlar denir. Evrimsel önemi pek yoktur. Bir çiçeğin farklı sıcaklıklarda farklı renkli çiçek açması, iyi ya da kötü beslenen bir insanın kilosunun fazla ya da eksik olması, değişik sıcaklıklarda yetiştirilen böceklerin farklı renkli olması gibi durumlar, kalıtsal olmayan modifikasyon örnekleridir. Kalıtsal olarak aktarılabilen değişiklikler ise iki ana grupta toplanır 1) Nokta mutasyonları: Başta morötesi, yüksek enerjili X, gama, alfa ve beta ışınları olmak üzere; kimyasal maddeler ve fiziksel etmenler DNA'nın yapısını doğrudan etkileyebilir. En azından DNA'nın yapısındaki tek bir bazın farklılaşmasını sağlayabilir. Bir bazın değişmesi, bazın kromozom üzerindeki yerine göre, canlıya yeni bir özellik, üstünlük sağlayabilir. Bunlara yararlı mutasyonlar denir. Buna karşılık, enzimlerin aktif merkezlerine isabet eden bir değişiklik, canlının üzerinde öldürücü ya da yaşamsal işlevleri azaltıcı etkiye sahip olabilir. Canlılığın evriminde lokomotif görevi üstlenen mutasyonlar "nötr" olanlardır. Bunlar proteinlerin belirli amino asitlerini değiştirirler. Bunlar canlının yaşamı üzerinde belirgin yararı ya da zararı olmayan değişikliklerdir. Ortam değiştiğinde o güne kadar etkisiz olan bu mutasyonlar, yeni ortamda canlının ayakta kalabilmesini sağlayabilir. Örneğin hiç antibiyotikle karşılaşmamış bir bakteri kolonisinden bazı bireyler antibiyotikli bir ortamda yaşamaya devam edebilirler. Bu bakterilerde meydana gelmiş nötr mutasyonlar, daha önceleri kendilerini belli etmeseler dahi, bakterileri antibiyotiklere karşı dirençli hale getirmiştir. 2) Birçok canlı, birçok kitapta mutasyon olarak adlandırılmasına karşın doğru adıyla, kromozom değişimleri ile farklı özelliler kazanır. Yani kromozomların yapısında ya da kromozom sayısında değişiklikler olabilir. Bu sayıda değişme ya aynı türün kromozomunun katları şeklinde (n, 2n, 3n, 4n, 8n ...) artma ya da kromozomlarının tek tek bir veya iki artıp-azalması (2n+1, 2n+2, 2n-1 ...) şeklinde, ya da farklı bir türle döllenmesiyle ortaya çıkar. Bu yeni kombinasyonların bazıları verimlidir; çünkü kromozom ayrışımı sağlanır. Bazen de, katırda olduğu gibi, verimsizdir. Bu yolla çok değişik bitki formları elde edilmiştir. Kararlı ve kararsız populasyonlar dünyanın jeolojik, coğrafi ve iklimsel değişimine bağlı olarak, her dönemde vardı. Dünyadaki değişiklikler, bazı türlerin genetik kombinasyonunun kararlı kalmasını sağlar, bazen de onların darmadağın olmasına yol açar. Birçok tür uyum yapabilme yeteneğini artırabilmek için, herhangi bir özellik üzerinde birden fazla gen çiftinin etki göstermesini sağlayacak kalıtsal bileşime sahip olabilir. Bunların bir kısmı aynı özelliğin aşama aşama güçlendirilmesi şeklinde olabilir (boy uzunluğunu saptayan genler). Bazıları bir özelliğin değişik karakterleri şeklinde ortaya çıkmasını sağlayabilir (A, B, O kan grubu). Bazıları iki farklı özelliğin değişik kombinasyonları şeklinde etkiye sahip olabilir. Bir türe ait genlerin topl..... gen havuzu denir. Bir havuzda aynı özellik üzerine etki eden birden fazla gen bulunsa da, kural olarak bir bireyde bunlardan yalnız bir çifti bulunur (kan gruplarında olduğu gibi). Yaşam ortamındaki koşullar eğer kararlı haldeyse, bu havuzdaki genler belirli bir süre içerisinde o günkü çevre koşullarına en fazla uyum sağlayacak şekilde kararlı bir yapı oluşturur. Bunlara kararlı populasyonlar adı verilir. Dünyada böyle bir populasyon hiçbir zaman tam olarak oluşmamıştır. Böyle bir kararlı populasyonda kuramsal olarak nokta mutasyonu ya da kromozom değişimi olmamalıdır. Doğal koşullar şu ya da bu özelliğin (genin) ortadan kalkmasına ya da yayılmasına neden olacak bir etki yaratmamalıdır. Populasyona, farklı gen frekansına sahip bir başka populasyondan göç olmamalıdır. Benzer şekilde, populasyon içerisinden gen frekansını değiştirecek şekilde, dış ortama herhangi bir göç olmamalıdır. Üreme davranışında, özel bir karakteri daha yaygın duruma getirecek eşeysel seçim olmamalıdır. Hiç bir özelliğin özel olarak seçilmediği ya da elenmediği, döller boyunca genlerin frekansının sabit kaldığı, yeterince büyük olan (eğer populasyon küçük ise frekanslar hızla değişebilir) populasyonlarda, genlerin frekansının toplamı 1'dir ve böylece, kuramsal olarak tüm frekansların sabit olduğu bir populasyon elde edilir. Daha önce evrimin ham malzemeleri olarak adlandırılan süreçler, her koşulda populasyonun kararlılığını bozarlar. Ancak evrimsel ham malzeme hiç var olmamış olsaydı bile, populasyonun kararlı kalmasını sağlayan koşullardan birinin ya da birkaçının değişmesi evrime yol açabilirdi. 1) Koşulların değişmesi: Dünyanın başlangıcından bu yana, iklimde, coğrafi yapıda, hatta biyolojik yapıların diğer unsurlarında (örneğin. av-avcı ilişkisi) meydana gelen (ve gelecek olan) değişiklikler, kararlı diye tanımladığımız populasyonların üzerinde bazı genlerin daha çok seçilmesini sağlayabilir. Zaman içerisinde o genlerin frekansları başlangıç değerlerinden farklılık gösterir. Örneğin bir özellik % 1 oranında tercih ediliyorsa ve o tür senede bir defa döl veriyorsa, kaba bir hesapla en geç 100.000 yıl içerisinde bu frekansın % 99 a ulaşması demektir. Bir tür, yaprakbitleri gibi, senede birden fazla döl veriyorsa, süre 10.000 yıla düşer. İşte kısa yaşayan, çok döl veren populasyonların hızlı evriminin nedeni buna dayanır. Doğal koşullar, bazen bir populasyondaki aşırı uçları eleyerek, orta kısımdakileri daha şanslı kılabilir. Bu genellikle kararlı populasyonlardaki temel işleyiş şeklidir. Bazen doğal koşullar o populasyonlardaki özelliklerin iki aşırı ucunun seçilmesini, ortalamaların ayıklanmasını da sağlayabilir. Buna parçalayıcı değişim denir. Dünyadaki kıtaların kayması, ormanlaşma, çölleşme, stepleşme, tarım arazisine dönüşme gibi fiziksel ve kimyasal değişimler belirli bir doğal seçilim baskısı ortaya çıkarır. Bir tarım arazisine uygulanan ilaçlamanın bile seçilim baskısında etkisi vardır. Birçok gen pleitropiktir, yani canlının birden fazla özelliği üzerinde etkilidir. Doğal seçilim bu özelliklerden birinin yararına, diğerinin zararına da çalışabilir. Sonuçta evrimsel yönlendirilme pleitropik genin kontrol ettiği özelliklerin seçilmesine ya da elenmesine, seçiliminin cebirsel topl..... eşit olur. Örneğin çok tipik olan orak hücreli anemide S geni, bir taraftan oksijen bağlanmasını kısıtlarken, diğer yandan sıtmaya karşı dayanıklılık sağlar. Sıtmanın yaygın olduğu ortamda, doğal seçilim bu ikisinin cebirsel topl..... göre yönlendirilir. 100 bireyin 60'ı sıtmadan; bu gen olduğu zaman da 50'si oksijensizlikten ölüyorsa, o zaman % 10'luk bir kesim avantajlı olduğundan, bu gen o populasyonda korunur. Ortamdan sıtma mikrobu yok edilirse (ya da tersine yaygınlaşırsa) frekans değişir. Bu genin frekansı sıtmalı bölgelerden sağlam bölgelere gidildikçe azalır. Doğal seçilimin etkisinin artırılması, populasyondaki gen çeşitliliğini de artırır. Dolayısıyla parça değişimi, mutasyon her ne kadar populasyon kararlığını karıştırırsa da, doğal seçilim için uygun bir zemin oluşturması nedeniyle evrimsel çeşitlenmede lokomotif görevi yapar. Mutasyonların ve rekombinasyonların fazla oluşması, populasyonun kararlılığını bozacağı için negatif etki yapar. Az oluşması çeşitlilik bakımından seçeneği azaltacağı için etkisi olumsuzdur. Bu nedenle her tür için doğal koşullarda yeterince mutasyon meydana getirecek ve seçilime uğratacak bir düzenek kurulmuştur. Farklı yaşam ortamlarında doğal seçilim baskısı farklı şekilde yürütüldüğünden, zaman içerisinde hem o ortama uygun canlı türleri oluşmuş hem de yaşam ortamları ortaya çıkmıştır. Morötesi ışınlar bilinen mutasyona yol açan en etkili faktörlerden biridir. Yükseklere doğru çıkıldıkça mor ötesi ışınların etkisinin artmasıyla birlikte mutasyon oranında da artmalar ortaya çıkar. Ayrıca dağların tepesine doğru çıkıldıkça, yaşam ortamındaki çeşitlilik de artar. Yani doğal seçilim baskısı çeşitlenir. Yükseklere doğru çıkıldıkça tür çeşitliliğinin artması bu nedenden ötürüdür. Bununla birlikte, yaşam koşullarının aşırıya doğru kayması, türlerin yaygınlaşmasına ya da sıklığının artmasına engel olur. Buna karşılık toprak altında yaşayan ya da çoğunlukla gececi olan (güneş ışınlarından kaçan) birçok hayvan türü ilkel özelliklerini korumuşlardır. Akreplerin uzun yıllardan beri değişmemelerinin 2) Populasyon içine ya da dışına göç: Göç, kararlı populasyonların bozulma nedenlerinden biridir. Aynı türe ait, bazı özellikleri bakımından farklı gen frekansına sahip bir topluluk, herhangi bir yolla bir populasyonun içerisine girerse, o populasyonda bir dalgalanmaya ve frekans değişimine neden olur: Örneğin Türk toplumunda mavi göz frekansı % 16, Almanlarda % 81'dir. Her döl başına (bu, insan soyunda 30-50 yıldır) ne oranda bir göçün gerçekleştiğini ve her iki populasyonun ne miktarda çiftleştiğini biliyorsak, bu sayılardan yola çıkarak, gelecekte, bu populasyonlardaki mavi göz geninin frekansının nasıl değişeceğini öngörebiliriz. Eğer bir populasyon içerisinde, deme, ırk gibi küçük grupların herhangi bir nedenle populasyon dışına göçü sağlanırsa, toplam populasyon frekansında yine önemli değişmeler meydana gelebilir. Doğal populasyonların hiçbirinin sabit kalması mümkün değildir. Çünkü dış ve iç göç engellenemez. 3) Genetik Sürüklenme: Bir populasyon yeterince büyükse, kararlı yapısını koruyabilir. Gen frekansları yönünden ait olduğu populasyondan önemli ölçüde farklı olan, küçük bir birim, o populasyondan ayrılıp, yeni bir populasyonun kurucusu olarak görev yaparsa, zaman içerisinde yeni populasyonların ortaya çıkmasına neden olur. Örneğin Anadolu'da % 80 mavi gözlü olan bir köy (normal frekans %16) bulunduğu yerden sürülüp herhangi başka bir yere yerleştirildiğinde, yeni populasyon ana populasyondan mavi göz geninin frekansı bakımından büyük ölçüde farklı olacaktır. 4) Eşey Seçimi: Kural olarak canlılarda, erginliğe ulaşmış bireylerin bir araya gelmeleri ve çiftleşmeleri aynıdır. Kuramsal olarak her bireyin çiftleşme şansı eşittir. Fakat gametlerde, kalıtsal yapıya bağlı olarak ya da olmayarak, hareket yeteneğinde ve çekici kimyasal maddelerin yapısında değişiklik olursa gamet seçilimi olur. Ancak en önemli eşeysel seçilim, ergenlik dönemindekidir. Bunun nedeni kalıplaşmış davranışlardır (imprinting behaviour). Biyolojik çeşitliliğin korunabilmesi için erkek ve dişi geçişlerinin tam olarak ayrılması ve özelliklerin kesin olarak farklılaşması gerekir. Bunun için de özellikle yalnızca rekombinasyon meydana getiren, çoğunlukla bunun ötesinde başka önemi olmayan, yavru bakımıyla ilgilenmeyen erkeğin güçlendirilmesi daha iyi sonuçlar verir. Dişilerin zemine uygun, gösterişsiz, parlak renklerden arınmış, abartısız bireyler olarak kalması; buna karşılık erkeklerde göze çarpıcı, ancak doğal tehlikelere de açık ikincil eşey özelliklerinin ortaya çıkması sağlanmıştır. İkincil eşeysel özelliklerin gösterimi ile erkeklik genlerinin diziliminin gücü arasında doğrusal bir ilişki mevcuttur. Canlılar aleminde basitten gelişmişe doğru gidildikçe, sağlam genetik yapının bir ifadesi olarak sağlam fiziksel yapının seçilmesi için, aynı eşeyin bireyleri arasında (çoğunlukla da erkekler arasında); kavgalar, danslar gittikçe güçlenmiştir. Bu gösteri sırasında bugün biyolojik olarak çok defa anlam taşımayan renk-şekil-ses özellikleri, kalıplaşmış davranış şekliyle seçilmiştir. Günlük yaşamımızda da kalıplaşmış davranış hiçbir nedeni olmadan işlev görür. Herhangi bir erkeği/kızı sevmemiz ya da ilk defa karşılaşılan bir insanı itici görme davranışı tamamen kalıplaşmış davranıştır. Sonuç olarak bir populasyonda eşeyler, birbirini rasgele seçer desek de, insanlarda ve birçok populasyonda belirli özelliklere sahip bireylerin, belirli özelliklere sahip bireylerce seçildiğini görürüz. Bu da populasyonun bir anlamda dallanması demektir. 5) Aşırı uçların ayıklanması: Tüm canlılarda, her ne yolla olursa olsun yeni özellikler o türün geleceğini tehlikeye atmayacak kadar teşvik edilir. Fakat doğal seçilimle aşırı uçlar çoğunlukla ayıklandığı için sonuçta dengelenmiş polimorfizm dediğimiz, o ortam için en uygun boyutlar elde edilir. Örneğin, insan beyninin büyümesi, başarısı için koşuldur. Fakat sürekli büyümesi teşvik edilen kafanın, ananın çatı kemiğinden geçememesi de söz konusudur. Bu nedenle ananın simfis açıklığı, kafa büyüklüğünün optimum olmasını sağlamıştır. Başka bir örnek ise, kavakların güneşe ulaşmak için boylarını sürekli uzatmalarının, uzun boylu kavakların rüzgârla devrilme seçilimiyle dengelenmesidir. Bu nedenle her bölge için optimum (rüzgar-güneş ilişkisi) boy belirlenir. Biz geniş bir populasyonda en uzun kavağı elde etmek istiyorsak derelere, en kısa olanı istersek dağlara gitmeliyiz. 6) Coğrafi izolasyon: Populasyonlarda genetik çeşitlenme, eşey seçilimi, doğal seçilim olsa da, zaman içerisinde kalıtsal yapının alt tür, tür düzeyinde farklılaşması için, belirli bir süre etkin bir şekilde işlev yapan yalıtım sistemine gereksinim vardır (kara canlıları için su, suda yaşayan canlılar için kara, sıcaklık, kimyasal feromonlar, ses vs.). Bunun en etkin yolu coğrafi yalıtımdır. Coğrafi yalıtım yeterli süre etkili olamamışsa, farklı populasyonlar tekrar bir araya gelebilir. Yalıtılmış populasyonlar arasında sınırlı da olsa gen akışı meydana gelirse alt türler oluşur. Dünyada çoğunlukla doğal koşulların değişimiyle ve buna bağlı olarak doğal seçilimle, ortaya çıkan fenotipler arasında belirli bir denge söz konusudur. Ancak koşullar sürekli şiddetini artıracak şekildeyse ve o koşulların etkisi altında kalan canlının kalıtsal yapısı bu değişimi karşılayacak kalıtsal çeşitlilikten yoksunsa, o tür ortadan kalkar. Kalıtsal varyasyonlar bu değişimi karşılayacak yeterlilikte değilse, bu canlının izleyeceği iki ana yol vardır: Canlı bu koşullardan uzaklaşmak için göç edebilir; küçük ve uygun koşulları barındıran sığınaklara kaçabilir. Populasyonun bir kısmı göç olanağını bulurken, diğer kısmı doğal seçilimle başka bir türe (türlere) dönüşmek suretiyle varlığını sürdürebilir. Biri tükenme, diğeri ise evrimdir. Anadolu bu nedenle tür, alt-tür ve ekotip bakımından bir cennet durumuna ulaşmıştır. Dileriz ki yetkililer ve kamu, bu hazineyi yeterince koruyabilir ve değerlendirebilir. Kaynaklar: Demirsoy, A., Kalıtım ve Evrim, Ankara, 1996 Demirsoy, A., Yaşamın Temel Kuralları, Ankara, 1998

http://www.biyologlar.com/evrim-mekanizmasi

Moleküler Kompleksin Evrimi

‘Moleküler zaman yolculuğu’ kullanılarak karmaşıklığın evrimi tekrar yaratıldı. Canlı hücrelerin çoğunun yaptıkları işler “moleküler makineler”ce gerçekleştirilir. Bunlar biyolojik bir fonksiyonu yerine getirmek için birlikte çalışan özelleşmiş proteinlerin oluşturdukları fiziksel topluluklardır. Bu yapıların oluşumunu sağlayan evrim basamakları uzun zamandır bilim insanlarını şaşırtıyor ve yaratılışçıların da favori hedefleri oluyordu. 8 Ocak’ta Nature’da yayınlanan, Chicago ve Oregon Üniversiteleri’nden bir grup bilim insanı tarafından yapılan bir çalışma; günümüzden 800 milyon yıl önce, yalnızca birkaç küçük, yüksek olasılıklı mutasyonun nasıl bir moleküler makinenin karmaşıklığını artırdığını ortaya koydu. Eski genlerin biyokimyasal olarak “diriltilmesi” ve fonksiyonlarının modern organizmalarda test edilmesiyle, araştırmacılar makineye yeni bir bileşenin katılmasının arkasında yatan nedenin yeni yeteneklerin aniden belirmesinden ziyade seçilimli fonksiyon kaybı olduğunu gösterdiler. Çalışmanın ilk ismi, Chicago Üniversitesi İnsan Genetiği ve Evrimsel Ekoloji ve Oregon Üniversitesi Biyoloji profesörü Joe Thornton şunları söylüyor: “Bizim stratejimiz ‘moleküler zaman yolculuğu’ yaparak, bu moleküler makinede yer alan tüm proteinlerin karmaşıklaşmalarından bir an öncesi ve bir an sonrasındaki hallerini yeniden yapılandırmak ve deneysel olarak karakterize etmek. Makinenin bileşenlerini çok eskide olduğu haliyle yeniden yapılandırarak, her proteinin fonksiyonunun zamanla tam olarak nasıl değiştiğini anlayabilecek ve makinenin daha ayrıntılı olmasını sağlayan özel genetik mutasyonları belirleyebilecektik.” Thornton’ın moleküler evrim laboratuvarı ile Moleküler Biyoloji Enstitüsü üyesi, kimya profesörü Tom Stevens’ın Oregon Üniversitesi’ndeki biyokimya araştırma grubunun işbirliğinden doğan çalışma, V-ATPaz protein pompası denilen ve hücre içindeki bölümlerin uygun asiditeye sahip olmasını sağlayan moleküler kompleks üzerine odaklanmış bulunuyor. Bu pompanın ana bileşenlerinden biri, hidrojen iyonlarının membranlar arasında geçişini sağlayan bir halka. Çoğu türde bu halka iki farklı proteinin toplamda altı kopyasından oluşuyor, fakat mantarlarda bu komplekse üçüncü bir tip protein katılmış durumda. Halkanın karmaşıklaşması konusunu anlamak için Thornton ve meslektaşları üçüncü protein ünitesi katılmadan hemen önce ve edildikten hemen sonra halka proteinlerinin atasal versiyonlarını “dirilttiler”. Bunu yapmak için de, araştırmacılar 139 modern zamana ait halka proteininin gen dizilimlerini çözümlemek için büyük bilgisayar kümeleri kullandılar ve benzer atasal gen dizilimlerini bulmak adına evrimin izini geriye doğru sürdüler. Ardından bu atasal genleri sentezlemek için biyokimyasal yöntemler kullanıp, genlerin modern maya hücrelerinde ifade edilmelerini sağladılar (genlerin transkripsiyonla ürün vermeleri sağlandı). Grup; mantarlardaki halkanın üçüncü bileşeninin, diğer iki eski halka proteininin alt birimlerinden birini kodlayan genin duplikasyonuna (kopyalama-ikileme) dayandığını ve ardından oluşan genlerin kendi evrimsel yollarında farklılaştıklarını buldu. Duplikasyon-öncesi atanın kendi neslinden gelenlerin herhangi birinden daha çok yönlü (becerikli) olduğu ortaya çıktı: Modern mayayı atasal geni ifade etmek kurtardı, aksi olsaydı maya, ileriki nesillere ait halka protein genlerinin birinin veyahut her ikisinin de silinmiş olması dolayısıyla büyüyemeyecekti. Tam aksine, duplikasyon sonrasında her diriltilmiş gen sadece tek bir halka protein geninin kaybını telafi edebilecekti. Böylece araştırmacılar, atasal proteinin işlevlerinin duplike edilmiş kopyalar arasında paylaşıldığı ve karmaşıklaşmadaki artışın, yeni işlevler kazanmaktan ziyade atasal işlevlerin tamamlayıcı kaybından ötürü olduğu sonucuna vardılar. Araştırmacılar zekice işledikleri bir set atasal proteini özel oryantasyonlarda birbirlerine birleştirip, duplike olmuş proteinlerin diğer bazı halka proteinleriyle etkileşme özelliklerini kaybettiklerini gösterdiler. Duplikasyon-öncesi ata halkadaki altı olası pozisyondan beşini doldururken, duplike olmuş her gen bir diğeri tarafından doldurulmuş dilimlerin bazılarını doldurabilme yeteneğini kaybetmiş ve böylelikle iki gen de kompleksin işlev görmesi ve birleşmesi için zorunlu birer bileşen haline gelmiş. Thornton diyor ki: “Bu beklenmeyen fakat basit bir şey: Karmaşıklaşma artıyor çünkü protein işlevleri kazanılmıyor, kaybediliyor. Bu durum aynı toplumdaki gibi: Bireyler ve kurumlar nasıl genelci olmayı unutunca karmaşıklık artar ve gittikçe daralan kapasiteye sahip özelcilere bağlı kalırlar…” Araştırma ekibinin son amacı duplikasyon sonrası nesillerin işlevsel anlamda bozulmalarının sebebi olan özel genetik mutasyonları tanımlamaktı. Ekip, atasal proteini, duplikasyon sonrasında olan mutasyonlara tekrar uğratarak aynı özel işlevi bozmak ve üç- proteinli halkaya ihtiyacı doğurmak için her iki nesilde birer tekli mutasyonun gerçekleşmesinin yeterli olduğunu buldu. “Karmaşıklaşmanın artışında yer alan mekanizmalar aslında inanılamayacak kadar basit ve genel oluşumlar” diyor Thornton. “Hücrelerde gen duplikasyonları sıklıkla gerçekleşir ve DNA’nın kopyalanması esnasında oluşan yanlışlıkların, bir proteinin belirli yapılarla etkileşmesini önlemeleri kolaydır. Ancak bu evrimin, karmaşık yeni işlevler yaratan bazı özel 100 mutasyonluk kombinasyonların üzerinde olması gerektiği gibi bir şey demek değildir”. Thornton uzun zaman aralıkları boyunca basit ve bozucu özellikteki değişimlerin birikiminin, bugünkü organizmalarda bulunan çoğu kompleks moleküler makinelerin oluşumunun sebebi olabileceğini öne sürüyor. Bu tip bir mekanizma, bir akıllı tasarım konsepti olan ve moleküler makinelerin evrim boyunca adım adım oluşamayacak kadar karışık olduğunu iddia eden “indirgenemez karmaşıklık” fikrine karşı çıkıyor. “Umuyorum ki bunun gibi daha çok çalışma yapıldıkça, moleküler komplekslerin evriminde başka benzer dinamikler de gözlemlenecek” diyor Thornton. “Bu moleküler kompleksler hiç de hassas geliştirilmiş makineler gibi değil. Bunlar tesadüfen birbirine yapışmış, evrim esnasında üstünkörü düzeltilerek, aşınarak, biraz da şansla kabaca birleşmiş ve de atalarımızın hayatta kalmalarına yardım ettikleri için korunmuş bir grup molekül!” diye ekliyor.

http://www.biyologlar.com/molekuler-kompleksin-evrimi

İlk plazmid nasıl oluşmuştur

*Plazmidler, çoğu bakteri türünde bulunan,ancak her suşta bulunmayan halkasal veya süper sarmallı DNA molekülleridir. *Plazmitler, küçük moleküllerdir; bu açıdan bir karşılaştırma yapılırsa, bakteriyel kromozomun %20’si ile %4′ü arasında büyüklüklerde olduğu görülür. *Plazmidler, bazı üreme koşullarında konakçı hücre için mutlaka taşınması gereken yapılar değildir. Bununla birlikte, pek çok plazmid, özel koşullara uyum sağlamak için önemli olan genler içerir. Bu genler,çoğu kez bakterinin plazmiti taşıdığına dair temel işaret olurlar. Örneğin R plazmid taşıyıp, çeşitli antibiyotiklere dirençli olan bakteriler, aynı plazmiti taşımayan bakterilerin yaşayamadığı antibiyotikli ortamlarda yaşayarak diğerlerinden ayrılırlar . *Bir çok bakteride plazmid, hücreler arası gen transferinin özel bir tipinden sorumludur. Plazmidlerin bu özellikleri, 1950′lerde ilginç bir çalışma konusu olmalarına sebep olmuştur. Plazmidler, normalde konakçının replikasyon sistemini büyük ölçüde kullanmaları sebebiyle bakteriyel DNA replikasyonunun anlaşılması için iyi modeller olmuşlardır. Ayrıca, mikrobiyal genetikte kısmi diploidlerin yapılmasına yönelik çalışmalarda kullanıldıkları için önemlidirler. ***Başka bir önemleri de, genetik mühendisliğinde klonlama vektörü olarak kullanılmalarıdır. Plazmit Tipleri Farklı tiplerdeki plamitlerle ilgili genel bilgi Plazmitlerin Saptanması Bir bakteri suşunun plazmit taşıyıp taşımadığının, taşıyorsa bu plazmitin ne gibi özelliklerinin olduğunun bakteri genetiği yöntemleri ile belirlenmesi. Plazmitlerin Saflaştırılması Plazmit DNA’nın saflaştırılması: Moleküler biyolojide temel ve vazgeçilmez tekniklerden biri, Alkali lizis yöntemi. Plazmit Transferi Bakterilerde gen aktarımı. Plazmitlerin Replikasyonu Plazmit DNA nasıl çoğalır, yavru hücrelere nasıl dağılır? Önemli Plazmitler Önemli plazmit tipleri hakkında daha ayrıntılı bilgi. F, R, Col; ek olarak Ti ve Degredasyon Plazmitleri Kaynakça PLAZMİD TİPLERİ Çetitli E.coli suşlarında bir çok plazmit tipine rastlanmıştır. Ancak en çok bilinenleri, F, R ve Col plazmidleridir. Bu plazmidler, bazı özellikleri paylaşsalar da, önemli farklılıklara sahiptirler. Bir bakteride F, R ya da Col plazmidinin bulunup bulunmaması aşağıdaki özelliklerden yararlanılarak anlaşılabilir: 1. F ; Fertilite veya Seks Plazmidleri: Bu plazmidler, konakçılarına, kromozomal genlerini F plazmidinden yoksun hücrelere aktarma yeteneği kazandırırlar. F plazmidi, bu gibi durumlarda kendisini de alıcı hücreye transfer edebilir. 2. R ; Direnç Plazmidleri: R plazmidleri, konakçıyı bir veya daha fazla antibiyotiğe karşı dirençli kılar. Bu tip plazmidler, transfer edilerek başka hücrelerin de direnç kazanmasına yol açabilirler. 3. Col; Kolisinojenik Plazmidler: Col plazmidleri, “kolisin” adını alan bir grup proteinin sentezinden sorumlu genleri içerirler.Kolisinler,yakın suşlardan aynı tip Col plazmitini taşımayan bakterileri öldürme özelliğindedirler. Öldürme mekanizmasi, Col plazmidinin tipine göre değişiklik gösterir. Bu plazmit tipleri hakkında daha ayrıntılı bilgi, Önemli Plazmitler bağlantısında bulunabilir. Sonraki Konu: Plazmitlerin Saptanması PLAZMİDLERİN SAPTANMASI Plazmidler,hem genetik,hem de fiziksel yöntemler kullanılarak saptanabilirler.İlk olarak F plazmidi keşfedilmiştir. Met-Bio-Thr+Leu+ fenotipineki bir E.coli sutu (A),Met+Bio+Thr-Leu- fenotipindeki diğer bir suşla karıştırılarak minimal agara ekim yapıldığında minimal agarda yaklaşık 10-7 frekansında koloniler teşekkül etmiştir. Bu koloniler, Met+Bio+Thr+Leu+ fenotipinde; dolayısıyle, rekombinant kolonilerdi. Karıştırma işleminden önce A suşu streptomisinle muamele edilince,rekombinant koloniler yine oluşmuş; ancak ,B suşuna streptomisin uygulanınca koloni gözlenmemiştir. Bu deney, rekombinantların B suşundan türediğini olayın tek yönlü bir genetik bilgi akterımı olduğunu göstermiştir. Başka bir deneyde B’ye genetik bilgi aktaramayan bir suş, “C” suşu, A ile karıştırılıp uzun süre bir arada üretilmiş ve daha sonra karışımdan izole edilen C kolonilerinin B’ye gen aktarımı yaptığı gözlenmiştir.Bu deney sonuçlarından anlaşılmıştır ki, A suşu, B’ye gen transferini sağlayan bir fertilite elementine; “F” faktörüne sahiptir, C suşunda da F faktörü bulunmamaktadır; A ve C suşlarının bir arada üretilmeleri halinde F faktörü, A suşundan C suşuna transfer edilmekte, buna bağlı olarak da, genetik markırları B suşuna aktarabilen yeni bir C suşu ortaya çıkmaktadır. Başlangıç çaprazlaması: F+Met-Bio-Thr+Leu+ X F-Met+Bio+Thr-Leu- şeklindeydi. Transfer tek yönlü olduğu için F faktörü taşıyan hücreye donör (erkek), taşımayan hücreye ise resipient (dişi) adı verilmiştir. F’ adını alan F varyantlerı, plazmid üzerinde kromozomal genler de taşırlar.Bu konudaki ayrıntılı çalışmalardan biri, lac operonu ile ilgilidir ve kısmi diploidlerin elde edilmesimde kullanılmıştır. Bu deneyde, F’ lac bakteriler tasarlanmıştır. F’ ın transferi, bir antibiyotik içeren minimal laktoz katı kültür ortamına duyarlı donör ve dirençli resipient hücrelerin ekilmesiyle kolayca anlaşılabilir. çapraz tekli: F’ lac+ / lac- Strs X lac- Strr Plazmid üzerinde lac+ markırı taşıyan donör hücrelerle kromozomda lac- markırı taşıyan resipient hücreler karıştırılıp streptomisinli minimal laktoz agara ekilince rekombinant koloniler oluşmuştur (F’ lac+ / lac- Strr rekombinantları). Yalnızca donörün ekildiği kontrolde hücreler streptomisine duyarlı oldukları için; yalnız resipientin ekildiği kontrollerde ise hücreler laktozu kullanamadıkları için koloni oluşmamıştır. Burada, streptomisin markırının donör üremesini engelleyici özelliği önemlidir ve böyle markırlara “counterselection” ya da “counterselective” markırlar denir. Counterselective amaçlı olarak antibiyotik resistansı sıklıkla kullanılsa da diğer fenotipler de iyi sonuç verir. Örneğin, F’ transferi, F’ lac+ / met- X lac- met+ çaprazları minimal laktoz katı besiyerine ekilerek kontrol edilebilirler. Donörler, ortamda methionin olmadığı için (methionin eksiklği, counterselectiondur); resipientlerse laktozu karbon kaynağı olarak kullanamadıkları için üreyemezler. Yalnızca, F’ transferi yapan rekombinantlar üreyebilir. Bu durumda seçilmiş markır, lac+ ‘tir. F içeren A ve B suşları arasındaki çaprazlama ve F’ suşlarıyla yapılan deneyler arasında,önemli sayısal farklılıklar gözlenmiştir. Suşlar,ekilmeden önce yarım saat karıştırılırsa A X B deneyinde rekombinantların donör hücreye oranı 10-7; F’ deneyinde ise % 50′dir.Farklılığın sebebi, genetik markırın F’ bakterilerde plazmit üzerinde olmasından kaynaklanır. A X B deneyinde resipientlerin yarısı F faktörünü alsalar da çok az bir kısmı kromozomdaki markırları alabilmiştir. Plazmid Nasıl Transfer Edilir ? F’ lac+ / lac- Strs tsxr X F’ lac- Strr tsxs Eşletmesi gerçeklettirilmit, tsxr taşıyanlara Faj T6′nın absorbe olamadığı gözlenmiştir.Eşleşmeden bir süre sonra, bakteri karışımının bir kısmı streptomisinli laktoz kolorindikatör katı besiyerine ekilmiş ve kolonilerin %90′ından çoğunun lac+ olduğu gözlenmiştir.Bu da, donörlerin büyük kısmının F’ lac+ transferi yaptığını gösterir. F’ lac+ i trensfer eden bakterilerin hala plazmidin bir kopyasını taşıyıp taşımadığını belirlemek için, eşleşme karışımının bir kısmı T6 fajı ile muamele edilmiştir. tsxs bireyler,resipientler gibi viruslar tarafından lizise uğratılmıştır. tsxr donörü olup hayatta kalan hücreler, laktoz indikatör besiyerine ekilince, lac+ koloniler oluşmoştur. Sonuçta, donör hücrenin transferden sonra da plazmidin kopyasını taşıdığı; yani,transferin DNA replikasyonu ile birlikte geçekleştiği görülmüştür. Basit bir fenotip göstermeyen plazmitlerin varlığı ise, başka bir yöntemle saptanır. Hücre kültüründen DNA izole edilerek agaroz jel elektroforezi ile analiz edilir. Bakteri kromozomu büyük olduğu için jele giremez. Oysa plazmid, jelde yürüyecek kadar küçüktür. Eğer plazmid varsa, molekkül ağırlığına göre belirli sınırlar içinde band verir. Band, jelin EtBr ile boyanması durumunda UV ışığında görülür. Plazmid DNA büyüklüğü, molekül ağırlığı bilinen ve aynı jelde yürütülen DNA fragmentleriyle karşılaştırılarak hesaplanabilir. Sonraki Konu: Plazmit DNA’nın Saflaştırılması PLAZMİD DNA’nın SAFLAŞTIRILMASI Plazmid izolasyonu için, bakteriler,deterjan uygulamasıyla parçalanır. Elde edilen solüsyon (hücre lizatı), santrifüj edilir. Protein ve RNA ile kompleks yapmış olarak bulunan bakteri kromozomal DNA’sı, büyük olduğu için, santrifüj tüpünün altındaki tabakada yer alır. Daha küçük olan plazmid DNA ise,temiz süpernatanda (temiz lizat) kalır. Plazmitlerin izolasyonu için kullanılan yöntemler, mini prep ve large scale olmak üzere iki şekilde uygulanır. En çok kullanılanlar, alkali lizis ve boiling lizis yöntemleridir. PLAZMİT DNA İZOLASYONU (ALKALİ LİZİS YÖNTEMİ) 1.Gecelik kültürden bir miktar alınarak 6000rpm.’de 5 dakika santrifüj edilir. 2.Süpernatan atılararak çökeltiye 100 ml.G.T.E.eklenir.(1.çözelti) 1.Çözelti (GTE.): 50 mM Glukoz 25 mM. Tris Cl (pH 10 mM. EDTA (pH 3.Tüpe 200 ml.2. çözelti eklenir. 2. Çözelti: 0.2 N NaOH %1 SDS (2. Çözeltinin taze hazırlanması gerekmektedir.Hazırlandıktan sonra buzda bekletilir.) 0.91 ml. dH2O 0.05 ml. NaOH (5 M stoktan) 0.04 ml. SDS (%20’lik stoktan) 4.Tüpe 150 ml.3. çözelti eklenerek 5 dakika buzda bekletilir. 3.Çözelti: 5M (molar) Potasyum asetat Glecial asetik asit dH2O 5. Tüpler,12000 rpm’de 5 dakika santrifüj edilerek supernatan yeni tüpe alınır.400 ml.fenol ve 400 ml.kloroform eklenerek 12000 rpm’de 2 dakika sanntrifüj edilir. Üst faz yeni bir tüpe alınarak 2 hacim etanol eklenip düşük hızda vortekslenerek 2 dakika oda sıcaklığında bekletilir. 6.12000 rpm’de 5 dakika santrifüj uygulanır,süpernatan atılarak çökeltiye 1 ml. %70′liketanol eklenir. 7.12000 rpm’de 2 dakika santrifüj edilir. 8.Süpernatan atılarak çökelti vakum altında kurutuldu.Kuruduktan sonra distile suda çözülür. Sonraki Konu: Plazmit DNA’nın Transferi PLAZMİD DNA’nın TRANSFERİ Donör ve resipient Hücreler arasındaki rekombinasyona ilişkin ilk bulgulardan biri, rekombinasyon için hücreler arasındaki bir bağlantının gerekliliğidir. Bu durum,F+ ve F- hücre kültürlerinin porlu filtre ile ayrıldığı deneyde gösterilmiştir. Bu durumda, hücre hücreye bağlantı engellenerek rekombinant oluşumunun engellendiği görülmüş ve olay için bakteriyel konjugasyon ya da çiftleşme terimi kullanılmaya başlanmıştır. Bir dizi deneyle, plazmid transferinin dört adımda gerçekleştiği gösterilmiştir. Bu adımlar: 1.Özel donör-resipient etletmesi (efektif kontakt) 2. DNA transferi için hazırlık (mobilizasyon) 3.DNA transferi 4.Replike olabilen fonksiyonel plazmidin resipient içinde tekillenmesi. F ya da F’ içeren hücreler,bir resipientle kontakt kurdukları zaman bu dört adım gerçekleşir. Bazı plazmit tipleri, bu işlemlerin tamamını gerçeklştirmek için genetik olarak yeterli değildirler. Plazmidler, bu özelliklerine göre dört gruba ayrılırlar: · 1. Nontransmissible Plazmitler:Efektif kontakt ve DNA transferi için gerekli olan genleri içermezler. 2. Konjugatif plazmidler: Efektif kontakt itleminin gerçeklettirilmesi için gerekli genleri içerirler. 3. Mobilisable Plazmidler: Plazmid DNA’ sını transfer için hazırlayan genleri taşır. 4. Self Transmissible Plazmidler: Hem konjugatif, hem de mobilize özellik taşırlar (F plazmitler gibi). Konjugatif fonksiyonlar, çoğu kez, plazmide özel değildir ve bundan dolayı, bir plazmid, ikinci bir plazmidin transferine yardımcı olabilir. Örneğin, bir tek hücre, hem F plazmid, hem de Col E1 plazmid taşıyabilir. F plazmid, hem konjugatif hem de mobilisable’dir. Oysa Col E1, mobilisabledir, fakat konjugatif değildir. Bu nedenle,sadece Col E1 plazmidi taşıyan bir hücre, plazmid transferi yapamaz. Her iki plazmidi içeren bir hücrede, F plazmidi,Col E1′de olmayan konjugatif fonksiyonu sağlayabilir, böylece Col E1 plazmiti, her iki plazmitten de yoksun olan bir hücreye aktarılabilir. Bu şekilde nonkonjugatif bir plazmidin, bir konjugatif plazmit sayesinde kurulan efektif kontakt yoluyla transfer edilmesine “donation” denir. Mobilizasyon fonksiyonları ise, genellikle plazmite özeldir; yani, bir self-transmissable plazmid, nonmobilisable bir plazmiti transfer etme yeteneğine sahip değildir. Bununla birlikte, bazı örneklerde, frekans düşük de olsa transfer gerçekleşebilir. Transferin olması için, iki plazmid arasında rekombinasyon yapılarak transfer edilebilir tek bir DNA molekülünün oluşturulması gerekir.Sonuçta, ortaya nonmobilisable plazmidin tamamını taşıyan bir selftransmissible plazmit çıkar. Bu işleme,”kondüksiyon” adı verilir. F aracılığı ile transfer edilen kromozom, kondüksiyonla mobilize edilir. F’teki dizilerle kromozom arasında bir genetik rekombinasyon meydana gelir ve f faktörü, kromozom boyunca resipient hücreye geçer. EFEKTİF KONTAKT ve PİLİ Efektif kontakt için ilk adım, donör ve resipient hücrelerin çift oluşturmasıdır. Çift oluşumu için, donör üzerinde seks pilus adı verilen kıl benzeri bir protein ilaveye ihtiyaç vardır. F içeren ve R içeren hücrelerde, F piluslar ve R piluslar bulunur. F pilus, izole edilmit ve pilin adı verilen tek bir hidrofobik proteinden oluştuğu saptanmıştır. F piliye bağlanan bazı fajlar bulunmaktadır (male spesific fajlar). Bu fajlar iki tiptir.Bir kısmı pilusun ucuna, bir kısmı da dibine bağlanır. Uca bağlananlar, eşleşmeye engel olurken; dibe bağlananlar olmaz.Eşleşme sistemlerinin tümü piliye bağımlı değildir. Örneğin, Streptococcus fecalis, bir selftransmissible plazmit taşır. Plazmitsiz resipientler, dişi böceklerdeki feromona benzer şekilde bir eşleşme proteini üretirler. Bu protein,plazmit içeren (donör) hücrelerde yapılmaz. Feromon, donör hücrede adhesin denilen bir proteinin sentezlenmesine sebep olur.Adhesin, donör hücreyi çevreleyerek donör-reipient çiftinin oluşmasını sağlar. Plazmid transferi tamamlandıktan sonra feromon sentezi durur. MOBİLİZASYON ve TRANSFER Mobilizasyon, plazmitte kodlanıp muhtemelen rilaksasyon kompleksinde nik oluşturan proteinin özel baz dizisine sahip transfer orijininde (oriT) bir tek zincir (single strand) kırık oluşturmasıyla başlar. nik, dönen halka (rolling circle) replikasyonunu başlatır ve dönen halkanın lineer kolu transfer ediliri. Nik oluşturan protein, 5′ ucuna bağlı kalır ve replikasyon şekli, FX 174 fajının rolling circle mekanizmasına benzer. Burada önemli bir özellik, DNA sentezinin hem donör, hem de resipient hücrede gerçekletmesidir. Donördeki sentez, donör konjugal DNA sentezi adını alır ve transfer edilen tek zincirin yerini doldurur. Resipient hücredeki sentez ise (resipient konjugal DNA sentezi), alınan tek zinciri çift zincire çevirir. Genellikle, transfer edilen zincirin donör konjugal sentezle yer değiştirmesi ve resipient hücrede çift zincir DNA’ya çevrilmesi eş zamanlıdır. F PLAZMİDİNİN tra GENLERİ Genetik madde transferi, fin genlerinin kontrolündedir. Temel transfer (tra) fonksiyonları, bir operonda kodlanmaktadır. tra genlerinin çoğu,pili sentezinde görevlidir. Örneğin. tra A geni, pilin proteinini kodlar ve tra B,C,D,E,F,G,H,K,L,Q,U,V,W genleri ise, fonksiyonel bir pilusun oluşması için gereklidir. Diğer genler, eşleşme, transferin başlaması, transferin gerçekleşmesi, oriT’de nik oluşturulması, normal replikasyon orijini oriV’den DNA replikasyonu, iki f+ hücrenin eşleşmesinin engellenmesi (surface exclusion) ve plazmit uyuşmazlığında gereklidir. TRANSFERDE KONAKÇI KISITLAMASI Bazı durumlarda transfer edilen plazmit,konakçının restriksyon endonükleaz enzimleri tarafından parçalanır. Bu gibi durumları engellemek için, transfer edilen DNA, çift zincire çevrildikten sonra metillenmelidir. Bir zincirden metillenen DNA, restriksiyon endonükleaz enzimlerinden etkilenmez. Sonraki Konu: Plazmit Replikasyonu PLAZMİD REPLİKASYONU Bir plazmid, ancak konakçı hücre içinde replike olabilir. Plazmid, hangi tipte olursa olsun,replikasyonun doğru şekilde gerçekleşmesi için “replikasyon orijini ” adını alan belirli dizilere sahip olması gerekir. Plazmitler, replike olabilmek için, konakçının replikasyon proteinlerine gereksinim duyarlar. DNA polimeraz III, E.coli kromozomal DNA’sı için ana replikasyon proteinidir. Ancak, bazı plazmitler, onun yerine DNA polimeraz I’i kullanırlar. Örneğin, pol A mutantlarında, Pol-I düzeyinin düşüklüğünden F plazmitinin replikasyonu etkilenmezken Col E1 plazmiti, replike olamaz. Bunun sebebi, F plazmiti replikasyonunda pol-III; Col E1 replikasyonunda ise pol-I’in kullanılmasıdır. Bazı plazmitler, yalnızca konakçı genlerinin ürünlerini kullanırlar. Col E1 DNA saflaştırıldıktan sonra Col E1 yada diğer bir plazmid taşıyan hücrelerden elde edilen ekstrakta eklenirse replike olabilir. Diğer plazmidlerse, plazmitte kodlanan gen ürünlerine ihtiyaç duyarlar. Tüm plazmitlerin replikasyonu, semikonservatiftir. Farklı plazmitlerin replikasyon modelleri arasında önemli farklar vardır.Bazıları tek yönlü (unidirectional); bazıları çift yönlü (bidirectional) replike olurlar. RK 6 plazmidi, önce bir yönde, sonra da aynı orijinden ters yönde replike olur. Çift yönlü replike olan plazmidlerde, replikasyon iki şekilde sonlanır. Birinci tipte, terminasyon, büyümekte olan çatallar çakıştığı zaman olur. Diğerlerinde ise sabit bir terminasyon bölgesi vardır. Replikasyon halkası tamamlandığı zaman, halkalardan biri, yeni sentezlenen DNA’ların ayrılması için kırılır. Replikasyon sonucunda, bir nik açılmış molekül, bir de süper koil molekül meydana gelir. KOPYA SAYISININ KONTROLÜ Bir plazmid, hangi tipte olursa olsun, replikasyonun başlangıcını,dolayısıyle hücre içindeki sayısını kontrol eden genlere sahiptir. Plazmidler,hücre içindeki sayılarına göre, stringent yani düşük kopya sayılı (hücrede 1-2 kopya) veya relaxed yani, yüksek kopya sayılı (10- 100 kopya) plazmidler olarak iki gruba ayrılırlar. Plazmidler, replikasyonun başlangıcını negatif kontrol eden bir repressör kodlarlar. Bu, kopya sayını denetleyen bir mekanizmadır. Repressörün aktivitesi, konsantrasyonuna bağlıdır. Hücre gelişirke hacim artar, repressör konsantrasyonu düşer ve replikasyonu inhibe edemez. Bu nedenle plazmid sayısı, repressör gen sayısı ve buna bağlı olarak da repressör protein konsantrasyonu iki katına çıkar. Konsantrasyon belirli düzeye erişinde, replikasyon engellenir. Benzer olaylar zinciri, yüksek kopya sayılı plazmidlerin hücrede tek bulunması halinde de cereyan eder ve repressör konsantrasyonu replikasyonu inhibe edecek seviyeye çıkana dek plazmid, çoğalmaya devam eder. Plazmidlerin farklı kopya sayılarında bulunmalarını açıklamak üzere ileri sürülen bir modele göre, yüksek kopya sayılı plazmitlerin represyonu için gereken repressör konsantrasyonu, düşük kopya sayılıların repressör konsantrasyonuna göre daha yüksektir. PLAZMİD AMPLİFİKASYONU Plazmid içeren bir bakteri kültürüne, kloramfenikol gibi protein sentez inhibitörleri eklenecek olursa, kromozomal DNA replikasyonu inhibe edilir, ancak plazmit DNA, hücredeki sayısı bin, hatta daha fazla oluncaya kadar replike olmaya devam eder. Kromozomal DNA replikasyonun durma sebebi, bu reaksiyonların başlaması için protein sentezine gerek olmasıdır. Eğer plazmit, bakteriyel ya da plazmitte kodlanan dayanıklı proteinleri kullanıyorsa replike olmaya devam edebilir. Bunun yanında, konsantrasyona bağlı etki gösteren regülatör proteinlerin sayıları artamayacağı için plazmit replikasyonu baskılanamayacaktır. Plazmit amplifikasyonundan,genetik mühendisliğinde yararlanılır; kullanılacak plazmid, saflaştırılmadan önce bu yöntemle sayısı arttırılabilir. İNKOMATİBLİTE Birbirine yakın, ilişkili plazmidler, aynı hücre içinde stabil kalamazlar. Böyle plazmidlere “incompetable” denir.Plazmid replikasyonunun başlangıcında işlevi olan repressör modeli de bu durumu açıklar. İki plazmid taşıyan bir hücre düşünelim. Bu plazmidler, farklı repressörlere sahip olan F ve Col E1 plazmidleri olsun. Repressörler farklı olduğu için,bir plazmidin repressörü, diğerini regüle edemez ve plazmidler birbirinden bağımsız olarak replike olurlar. Bu durumda,F ve Col E1 plazmidleri uyumludur (competable); başka bir deyişle, farklı inkompatiblite gruplarına aittirler. Çetitli Enterobacteria’lar, bir çok plazmidi aralarında transfer edebilirler.Bu plazmidler, 25 inkompatiblite grubunda sınıflandırılırlar.Plazmidler, oluşturdukları pilus tipine göre de sınıflandırılırlar. AKRİDİNLERLE REPLİKASYONUN İNHİBE EDİLMESİ Çeşitli ajanlar, DNA’daki bazların aralarına girerler. Özellikle akridinler, kromozomal DNA’yı etkilemeden plazmid replikasyonuna engel olurlar. Bu inhibisyonla hücrenin plazmidi kaybetmesi sağlanabilir (acridin curing). Üreme ortamındaki akridin konsantrasyonu çok yüksek olursa kromozomal; düşük olursa plazmid DNA’nın replikasyonu durur. HÜCRE BÖLÜNMESİNDE PLAZMİDLERİN PAYLAŞILMASI Bir dizi deney,düşük kopya sayılı plazmidlerin bölünme sırasında kardeş hücrelere dağılmasının kontrol altında olduğunu göstermiştir. Şöyle ki, bölünmeye hazır bir hücre, plazmid DNA molekülünün iki kopyasını taşır ve yeni oluşan hücrelere bu kopyalardan biri gider (F plazmitte olduğu gibi). Eğer böyle bir kontrol olmasaydı, yeni hücrelerden bazıları plazmit taşımazdı. Plazmitsiz hücre sayısının artışını engellemek için, düşük kopya sayılı plazmidlerde bulunan paylaşım fonksiyonu, yüksek kopya sayılı plazmidler için gerekli değildir. Sonraki Konu: Önemli Plazmitler ÖNEMLİ BAKTERİYEL PLAZMİTLER ve ÖZELLİKLERİ F PLAZMİDLER F plazmidlerin en büyük özellikleri, bakteri kromozomuna entegre olabilmeleridir. Bu integrasyon sonucunda, Hfr hücreler oluşur. İntegrasyon, l fajının bir bakteride lizojenize olmasına benzer; ancak, F’in E.coli kromozomuna integrasyonu, l DNA’nın integrasyonundan farklıdır. F, kromozomal DNA’da bir çok bölgeye bağlanabilir. Kromozom üzerinde yirmiden fazla mamajör ve yaklaşık yüz minür bölge bilinmektedir. F’in her bir bölgeye affinitesi aynı değildir. F’in kromozomdan ayrılması, nadir de olsa gerçekleşir. Ayrılma frekansı, bazı lokalizasyonlarda, diğerlerine göre yüksektir. Çoğu kez, F’in ayrılması hatasız olmaz. Böyle durumlarda, iki kesimden biri entegre olmuş F’in içinde; ikincisi ise kromozomal DNA’nın F’e bitişik parçasında olur. Bu tip ayrılmalar, F’ plazmidlerin orijinini oluşturur. F faktörünün DNA replikasyonunda defekti olan mutant bakteri kromozomuna entegre olması, integratif süpresyon adı verilenolayda artışa sebep olur. F faktörü,replike olmak için E.coli’nin çeşitli replikasyon proteinlerini kullansa da, kromozomal DNA replikasyonunun başlamasını sağlayan dnaA geninin ürününe ihtiyacı yoktur.Yani, F faktörü,dnaA (Ts) mutantında serbest bir protein olarak bulunuyorsa, sıcaklık 42oC’ye yükseltildiği zaman (yükseltmenin amacı,mutant DnaA proteinini inaktive etmektir) kromozomal replikasyonun gerçekleşmesi, pek olası değildir; ancak, F plazmid, hala replike olabilir. F faktörü, dnaA (Ts) mutant suşta kromozoma entegre olmuşsa (hücre Hfr ise) Kromozomal replikasyon,yüksek sıcaklıkta da olur. Böyle bir durumda replikasyon, E.coli replikasyon orijininden değil, F faktörünün oriV bölgesinden başlar. Sonuçta,F faktörünün entegre olması, dnaA (Ts) fenotipini DnaA-bağımsız replikasyon orijini sayesinde baskılar. İntegratif süpresyonun gözlenmesi, F faktörü kromozoma entegre olmuş bir suşu izole etmek için kullanışlı bir yöntemdir. Örneğin, bir F’ Lac+ / Strs sutu, bir lac- DnaA (Ts) Strrsutuyla çiftlettirilebilir ve Lac+ Strr hücreler, 42oC’de streptomisinli minimal laktoz agara ekilerek seçilebilir. Hayatta kalan kolonilerin tümü, entegre olmut F’ lac içeren Hfr koloniler olacaktır. DİRENÇ (R) PLAZMİDLERİ R plazmitleri, ilk defa Japonya’da bir dizanteri salgını sırasında S.dysenteriae bakterilerinden izole edilmit, daha sonra, E.coli ve bir çok bakteride bulunmuştur. R plazmitler, konakçılarına bir grup fungal antibiyotiğe karşı direnç kazandırırlar ve genellikle self-transmissible özelliktedirler. Çoğu R plazmiti, bitişik iki DNA segmentinden ibarettir. Bu fragmentlerden biri, resistans transfer faktör (RTF) olup, DNA replikasyonunu, kopya sayısını, gen transferini ve kimi zaman tetrasiklin resistans genin regüle eder. R determinant olarak da adlandırılabilen öbür segment ise, antibiyotik resistansı için gereken diğer genleri taşır. R plazmitleri, genellikle, bir grup kombinasyonla, ampsilin (amp), kloramfenikol (Cam), streptomisin (Str), kanamisin (Kan) ve sulfonamid (sul) resistans genlerini taşır. İki bileşenli R plazmitleri, F’ plazmitlerden farklı olarak integrasyondan sonra gelen bir eksidasyonla oluşmazlar. Bu mekanizmanın yerine, transpozonlarla resistans genleri taşınabilir. R plazmitler,tıp alanında da büyük öneme sahiptir. Çünkü, bakteriler arasında transfer edilebilme özelliklerinden dolayı, büyük epidemilere sebep olmuşlardır. KOLİSİNOJENİK PLASMİDLER Col plasmidleri , kolisin üretme yeteneği sağlayan E.coli plasmidleridir.Kolisin, Col plasmidi taşımayan duyarlı bakterilerin çoğalmasını engelleyen bir proteindir. Col plasmidleri çeşitli bakteri türlerinde bulunan ve baktriosin üreten bakteriosinojenik plasmidler gurubundadır. Bakteriosinler, ki kolisinler bunlara bir örnektir; duyarlı bakterilerde etkileşime girerek birçok temel işlevi inhibe ederler. DNA replikasyonu, transkripsiyon, translasyon veya enerji metabolizması, kolisinlerin kötü yönde etkilediği işlevlerdendir.Kolisinlerin birçok tipi vardır. Her tip bir harfle belirtilir ve duyarlı hücrelerde özel şekillerde inhibisyona neden olurlar. Kolisin üretiminin saptanması, faj saptanmasına benzer bir yöntemle yapılır. Kolisin üreten hücre, duyarlı hücre kültürü üzerine konulur; kolisin, etraftaki bakterilerin çoğalmasını engeller.Koyu bakteri tabakasında “lacuna” olarak bilinen temiz bir bölge oluşturur. Col plasmidler, konakcılarının , doğada kolisine duyarlı hücrelere göre avantajlı olmalarını sağlar. Saflaştırılan kolisinlerde yapılan çalışmalar,bu proteinlerin gerçek kolisin ve defektif faj partikülleri olmak üzere iki tipte olduğunu göstermiştir. Bazı kolisinler, basit proteinlerdir. Diğerleri, elektron mikroskobu ile incelendikleri zaman faj kuyruklarına benzedikleri görülmüştür.Böyle plazmidler, eski profaj kalıntılarının gen ürünleri olabilirler; replikasyon ve baş ünitelerinin üretiminden sorumlu genleri kaybetmiş, ancak ve bir represör sistem, lizis enzimi ve kuyruk kodlayan gen bozulmadan kalabilmiştir. Faja benzer şekilde , kolisin hücre duvarı üzerinde özel reseptör bölgelere bağlanır.Ek olarak, bazı kolisinlerin ekspirasyonu normalde represe edilmiş olsa da UV ışığı gibi DNA bozan ajanlarla indüklenebilirler. Genellikle kolisinler, Col ilişkili bir hücreye karşı inaktiftirler.Bu olaya immünite denir. Çoğu kez, immünite, salınan küçük bir proteinin büyük kolisin proteinine bağlanması ile gerçekleşir. İmmünite proteini, yalnızca Col + hücrelere immünite sağlamaz, bunun yanında Col- hücrelerin öldürülmesinde degörev yaparlar. Örneğin, kolisin kloasin DF 13 proteini , üç bölgeden meydana gelir. Bu bölgeler, bir reseptöre bağlanan bölge, bir RNase ve immünite proteinine bağlanan bir segmentir. Reseptöre bağlana uç, hidrofobiktir ve hücre zarı ile interaksiyona girmesi olasıdır. İmmünite bağlayan segment, güçlü bir negatif yüke sahiptir; böylece pozitif yüklü immünite proteini ile nötralize olur. Kolisin bir reseptöre bağlandıktan sonra, parçalanır. N terminal bölgesi hücre dışında kalır, RNase segmenti hücreye girer, hücre yüzeyindeki immünite proteininden ayrılır. RNase, ribosomdaki RNA yı etkiler ve böylece duyarlı hücreyi öldürür. Col plasmidler, çok büyük boydadırlar. En çok çalısılan Col plasmidi, Col E1 dir.6646 baz çiftlik tam sekansı bilinmekte ve rekombinant DNA araştırmalarında çok sık kullanılmaktadır. Büyük self transmissible Col plasmidlerin çoğu, küçük Col plazmidler ile F veya F’ plasmidler arası hibritlerdir. Col E1, mobilize olabilen ancak konjugatif olmayan bir plasmittir. Plasmidde kodlanan bir nükleaz( Col E1 için nükleaz, mob geni tarafından kodlanır) ve bom (basis of mobility) adını alan özel baz dizisi üzerinde aktivite gösterir. Bu dizi kolisin bölgesini içerir. Mob geni transkribe edilir, mob ürünü, bom bölgesinde nik açar (nik gerçek kesim bölgesidir) ve süperkoil Col E1 DNA sı niklenmiş bir halkaya dönüşür.Bu olayları gerçekleştiren hücre F- ise, Col E1 plasmidi, pili yapma yeteneğine sahip olmadığı için konjugasyon çifti olusturamaz, transfer gerçekleşmez. Ancak hücrede hem Col E1 hem de F plasmidi varsa, F plasmidi, pilus ve transfer aparatının sentezini sağlayacağı için Col E1 transfer edilebilir. Mob- mutantı Col E1 ler, F plasmidi varlığında da transfer edilemezler. F+ mob+ bom- mutantlarında da transfer gerçekleşmez. Agrabacterium Ti PLAZMİTİ Bir çok Dictyledonus bitkisinde Agrabacterium tumefaciens bakterisinin sebep olduğu bir crown gall tümör bulunur. Tümörü oluşturan özellik, Ti adı verilen bir plazmite bağlıdır. Bitki enfekte olduğu zaman, bazı bakteriler bitki hücrelerinin içlerine girer,orada büyür ve lizise uğrarlar. Bunun sonucunda DNA’lar, hücre içine salınır. Bu noktadan sonra, tümör oluşumu için bakteriye gerek yoktur. Ti plazmitinin, replikasyonds görevli genler içeren küçük bir fragmenti, bitki hücresinin kromozomuna entegre olur ve hormonların etkisiyle hücre bölünmesini kontrol eden sistemin etkisini azaltır. Böylece hücre, tümör hücresine dönüşür.Bu plazmidler, bitki kültürlerinin geliştirilmesinde önemlidir. Özel genler, rekombinant DNA teknikleriyle bu plazmitlere takılabilir ve bu genler,bazen bitki kromozomuna entegre olabilir. Sonuçta,bitkinin genotip ve fenotipi değiştirilebilir. KONAKÇI SINIRI GENİŞ PLAZMİDLER Bazı plazmidler, sadece sınırlı sayıda, ilişkili bakteride bulunabilir. Bu plazmitlere, konakçı sınırı dar plazmitler denir. E.coli Inc P ve Pseudomonas aeruginosa Inc P1 inkompatiblite gruplarındaki self transmissible R plazmidleri ise, çok sayıda bakteri türüne transfer edilebilirler. Bunlar da, konakçı sınırı geniş plazmidler olarak adlandırılırlar. Neden bazı plazmitlerin konakçı sınırı dar, bazısının geniş olduğu bilinmemektedir. Plazmid: Büyüklük (Kb): Kopya Sayısı: Self-Transmissible Fenotipik Özellikler: Col plazmidler ColE1 6.4 10-15 Colicin E1,enerji gradientini parçalar,konakçyya Colicin E1′e ba?y?yklyk sa?lar. ColE2 7.6 10-15 Colicin E2,bir Dnase’dyr;konakçyya Colicin E2 ba?y?ykly?y. ColE3 7.6 10-15 Colicin E3 bir ribozomal Rnase’dyr;konakçyya ColicinE3 ba?y?ykly?y. F plazmid 94.5 1-2 F-pilus , konjugasyon. R plazmidler R100 106.7 1-2 Camr,Strr,Sulr,Tetr RK2 56.0 5-8 Geni? konakçy siniri pSC101 9.0 <5 Faj plazmidler ldv 6.4 50 l genleri cro,cl,O,P Rekominant plazmidler pBR322 4.4 20 Orta kopya sayysy,ColE1 tipi replikasyon,Ampr pUC18 2.7 200-500 Yüksek kopya sayysy,kopya sayysyny yükselten bir mutasyonla ColE1 tipi replikasyon Ampr pACYC184 4.0 10-12 Camr, Tetr DİĞER PLAZMİDLER Kimi plazmitler,zararsız bakterilere girerek onları patojen hale getirirler.E.coli Ent plazmitler, bu gruptadır ve diareye sebep olan enterotoksinlerin sentezini sağlarlar.Hly adında bir plazmid (hemoliz yapan plazmid), domuzdan izole edilen E.coli’lerde bulunmuştur.Hemolizin, kan örneklerindeki eritrositleri yıksa da Hly plazmitinin herhangi bir patojeniteye sebep olduğu görülmemiştir. Çoğu Pseudomonas türü, yüzlerce çeşit organik bileşiği karbon kaynağı olarak -özellikle, toluen, oktan gibi zehirli olanları- kullanabilmektedir. Bu metabolik yetenek, degredasyon plazmidleri tarafından sağlanır. Her bir plazmid,bu bileşikleri yıkmaya yarayan bir veya daha fazla metabolik yolda görevlidir. Bu tipteki bazı plazmitler,bakteriye sentetik bileşikleri yıkma yeteneği kazandırır. Başka bir plazmit grubunun üyeleri ise, toksik metal iyonlarına karşı direnç sağlar. bu plazmidler, direnç sağladıkları iyonun var olduğu ortamda bulunurlar. Hg++ iyonlarına karşı direncin biyokimyasal mekanizması iyi çalışılmıştır. Olay, plazmitte bulunan ve Hg++ iyonlarını metalik merküriye çeviren redüktaz enzimi sayesinde gerçekleşir. KAYNAKLAR: 1.Microbial Genetics; Stanley R.Maloy; John E. Cronom; David Frefeld 2.Biochemistry; Geoffrey Zubay 3.Concepts of Genetics; William S.Klug; Michael R.Cummings 4. Molecular Cloning; J.Sambrook, E.F.Fritsch, T.Maniatis   Plasmid zaten bakteri hücresi içerisinde, bakteri kromozomundan bağımsız genellikle dairesel yapıda, replikasyon yapabilen bir DNA parçası. Yani oluşturulmaktan öte bakterinin kendi doğasında olan bir yapı. Bakteri plasmidlerinden tra genlerini taşıyanlar, bakterinin kromozomuna eklenip, tekrar ayrılabilme özelliğine sahip. Bazıları da fertilizasyon plasmidi olarak, replikasyon sonucu bir kopyasını başka bir bakteriye aktarabiliyorlar. Üzerinde antibiyotik üreten genler( ki bakteriler antibiyotiği diğer bakterilere karşı kendilerini koruma aracı olarak kullanırlar) ya da antibiyotik direnç genleri mevcut. Bu haliyle plasmid bakterinin doğal parçası. Bugün bizim klonlama için kullandığımız yapay plasmidler de, bakterilerdeki doğal plasmidlerden esinlenilerek düşünülmüş. Bakteri plasmidlerinin kendilerini çoğaltabilme özelliği ve antibiyotik direnç genleri klonlama vektörlerinin anahtar kısımlarını oluşturup, bunlar üzerinde çeşitli düzenlemeler ile istenen klonlama plasmidleri elde edilmiş durumda.   Bu konuda plazmidlerin kromozomal DNA'dan koparak oluştuğuna dair bir teori var. bu kopan DNA parçalarının replikasyon orijinleri de mevcut. bazı bakterilerde tekrar kromozom DNA'sına entegre olabilen plazmidler mevcuttur. bunlara epizom denir. umarım sorunuzun cevabı olmuştur.

http://www.biyologlar.com/ilk-plazmid-nasil-olusmustur

Akdeniz anemisi nedir?

Akdeniz anemisi nedir?

Akdeniz anemisi nedir: Tıpta Talasemi adıyla da bilinen Akdeniz anemisi, anne ve babadan çocuklara geçen, Akdeniz ülkelerindeki ırklarda görülen genetik bir tür “kansızlık” hastalığıdır. Kandaki alyuvarlarda yer alan globin geninin yapısındaki bozukluk kansızlığa sebep olur. Eğer anne-babadan geçen gen sağlıklıysa çocuk da sağlıklı, biri yapısal bozukluğa sahipse çocuk taşıyıcı, ikisi de bozuksa çocuk talasemi hastası olur. Kesin tanının koyulabilmesi için, anne, baba ve çocuğun tam kan sayımı, genetik incelemeleri ve hemoglobin elektroforezi yapılmalıdır. Başlıca 3 türü vardırTalasemi minör (Akdeniz anemisi taşıyıcılığı): Kansızlık ve halsizlikle kendini gösteren bu hastalık talasemi majör’e göre daha hafif seyreder. Zaman zaman demir eksikliğiyle karıştırılabilen bu hastalıkta demir eksikliğinin tam tersi olarak eritrosit sayıları normal ya da artmıştır. Talasemi taşıyıcılığı tedavi gerektiren bir hastalık değildir. Hatta taşıyıcıların çoğu ancak sahip oldukları çocuklarda bu hastalık görüldüğünde ya da tarama yapmaları gerektiğinde hastalıklarını öğrenirler.Talasemi intermedia: Yine anne ve babanın taşıyıcı olması sonucu oluşur fakat talasemi majörden farklı, daha hafif bir klinik tabloyla kansızlık oranı daha düşüktür.Talasemi majör (Cooley anemisi): Anne ve babanın taşıyıcı olmasıyla birlikte iki taraftan da çocuğa geçen globin genlerinin yapısal bozukluğu sonucunda oluşan bu talasemi türü hastalığın ağır seyreden türüdür. Belirtiler çoğunlukla bebek 6 aylıkken kansızlıkla kendini gösterir. Düzenli olarak kan nakli yapılmazsa durum ölümle sonuçlanabilecek kalp yetmezliğine kadar gidebilir. Sık yapılan kan nakli sonucunda vücutta demir birikebilir, bu da kalp, dalak, karaciğer, pankreas, tiroid gibi organlarda hücrelerin zarar görmesine sebep olur. Bu durumu önlemek için hastalara deri altından ya da tablet olarak desferrioksamin verilir. Yıllık kan tüketimi normalin üzerindeyse kesin bir tedavi olmasa da dalağın alınması gerekebilir. Kemik iliği nakli doku uyumu ve komplikasyon olmaması durumunda hastalığı tamamen düzeltebilen bir tedavidir. http://www.medikalakademi.com.tr

http://www.biyologlar.com/akdeniz-anemisi-nedir

İnfeksiyonun Mekanizması

Doğada çok yaygın olarak bulunan mikroorganizmalardan ancak çok az bir bölümü insan ve hayvanlar için hastalık yapıcı niteliktedirler (patojenik mikroorganizmalar). Geri kalan büyük bir bölümü ise infeksiyon veya hastalık oluşturamamaktadırlar (apatojenik mikroorganizmalar). Ancak, genellikle hastalık oluşturmadığı bilinen bazı etkenler de, fazla stres nedeniyle konakçının direncinin kırıldığı hallerde veya bazı özel durumlarda, (immun yetmezlik hastalıklarında, immun supresif bireylerde, gizli infeksiyona sahip olanlarda, vs) vücutta ürüyerek ve yayılarak infeksiyonlara ve hastalıklara yol açabilmektedirler (fakültatif patojenler veya oportünist mikroplar). Bunları, yutak, larinks, sindirim, solunum ve ürogenital sistem de, deri ve mukozalarda bulunan mikroorganizmalar örnek olarak gösterilebilir. Bu etkenler, aynı zamanda, bu sistemlerin ve bölgelerin mikroflorasını da oluşturmaktadırlar. Bunların aksine, bazı mikropların patojenitesi (hastalık yapma yeteneği) pasajlarla, mutasyonlarla, doğal seleksiyonlarla veya özel işlemlerle (biyoteknolojik yöntemlerle) azaltılabilmekte ve değiştirilebilmektedir (attenüasyon). İnfeksiyonlar, genellikle, konakçı ile patojenik mikroorganizmaların (patojenler) karşılıklı interaksiyonu sonu ortaya çıkarlar. Eğer bir vücuda patojenik bir mikroorganizma girmiş, lokalize olmuş ve üremişse, o bireyde infeksiyon var demektir. Ancak, bu canlıda her zaman, genel veya özel klinik belirtiler gözlemlenmeyebilir. Eğer, klinik semptomlar ortaya çıkmışsa, o zaman infeksiyona bağlı hastalık meydana gelmiş olur (infeksiyon hastalığı). Mikroorganizmalardan ileri gelen hastalıklara, aynı zamanda, infeksiyöz hastalıklar adı da verilmektedir. Vücudun dış veya iç yüzeyleriyle temasa gelen patojenik etkenler, kendilerinde bulunan çeşitli adhesyon molekülleri ile konakçı hücre yüzeylerinde ki özel reseptörlere (glikoprotein, lipoprotein, glikolipid, vs.) bağlanırlar. Mikroplar, ya sadece yüzeylerde yerleşerek bozukluklar meydana getirebilecekleri gibi (lokalize infeksiyonlar), yüzeylerden daha derinlere, buralardan da kan veya lenf yolu ile bütün vücuda (veya afinitesi olan doku veya organlara) yayılabilir ve tehlikeli infeksiyonlara yol açabilirler (sistemik veya generalize infeksiyonlar). Bazen infeksiyon bir organa (barsak, akciğer, beyin, vs) yerleşmiş de olabilir. Patojenik bir ajan vücuda girdikten hastalık belirtilerinin ortaya çıkıncaya kadar geçen süre (inkubasyon periodu, kuluçka süresi), bazen, çok kısa (birkaç gün), bazen de 1-2 hafta veya daha uzun (aylar, yıllar) olabilir. Bu durum, giren mikroorganizmanın virulensi, miktarı, giriş yolu, yayılış tarzı, konacının duyarlılığı ile çevre koşulları yakından ilişkilidir. Mikroorganizma çok virulent ve yeterli miktarda da vücuda girerse, duyarlı konakcıda inkubasyon süresi kısa olabilir ve hastalık belirtileri (özellikle, genel belirtiler) bir kaç gün içinde ortaya çıkabilir. Böyle hastalıklar, aynı zamanda, kısa seyirli olur (3-6 gün) ve canlının hayatını tehlikeye koyabilir (perakut infeksiyonlar). Perakut seyirli olgulara, genellikle, septisemik infeksiyonlar hallerinde, mikroorganizmaların kana geçmesi, kanda üremesi ve kan yolu ile bütün vücuda yayılması sonunda rastlanılır. Mikroorganizmaların zayıf virulensli ve aynı zamanda az sayıda ve vücudun direnci de orta derecede olduğu durumlarda inkubasyon periodu uzun olduğu gibi, meydana gelen infeksiyon da kronik bir seyir izleyebilir (kronik infeksiyonlar). Perakut ve kronik seyirli infeksiyonlar arasında akut ve subakut seyirli olgulara da rastlanabilir. Perakut seyirli infeksiyonlar, çok kısa süre içinde geliştiklerinden ve aynı zamanda yine kısa sürede sonlandığından, spesifik klinik belirtilerin ortaya çıkması için yeterli bir zamana sahip değildirler. Ancak, genel (belirtiler) arazlar (durgunluk, iştahsızlık, ateş, baş ağrısı, titreme, terleme, bazen ishal vs) görülebilir. Bunlar da hastalığı çoğu zaman tam belirleyemediği için teşhis koymak da oldukça zordur. Bu dönem, aynı zamanda, immun sistemin uyarılması için de yetersiz olduğundan spesifik antikorlar da ya hiç sen¤¤¤lenemez veya oluşsalar da, çoğu zaman, kullanılan serolojik tekniklerle ortaya konulamazlar. Vücutta bir infeksiyonun oluşabilmesinde, mikroorganizmaların virulensleri yanı sıra, belli bir miktardan aşağı olmayan dozda girmesi de gereklidir (minimal infektif doz, MİD). Bu doz, aynı zamanda, %100 infeksiyon oluşturabilecek en az miktarı da ifade eder. Eğer ölümler oluşuyorsa, minimal letal doz (MLD) olarak tanımlanır. Mikroorganizmalar minimal infektif veya minimal letal dozun altında girerlerse infeksiyonlar veya ölümler %100 olarak gerçekleşemez. Bazen, bir hastalık ajanı tarafından başlatılan infeksiyona, sonradan diğer mikroorganizma (lar) da katılabilirler. Böyle durumlarda, hastalığın klinik seyri, semptomlar, prognoz, teşhis ve sağaltımı da değişebilir (sekonder infeksiyonlar). Böyle durumlarda, ikinci etken (sekonder ajan) hakim duruma gelebilir, esas infeksiyonu başlatan primer etken baskılanabilir ve izolasyonu çok zor veya imkansız bir hal alır. Eğer, infeksiyon ilerlemeye devam ederse hayatı tehlikeye sokacak bir sona ulaşabilir. Kesin teşhis de yapılamadığı için, uygun bir sağaltım kürü uygulanamaz. Bazen de infeksiyonun başlaması için bir tür mikroorganizma yeterli olamamakta, birden fazla diğer etkenlerin işbirliği ve sinerjik etkisiyle infeksiyon oluşturulabilmektedir (koinfeksiyon, ortak infeksiyon). İnfeksiyonun bu iki türü, miks infeksiyonlar olarak tanımlanırlar. Koinfeksiyonlar da, aynen sekonder infeksiyonlarda olduğu gibi, bir çok yönü ile teşhiste zorluklar yaratırlar. İnfeksiyonların hepsi, mikroorganizmaların bizzat kendileri tarafından meydana getirilmezler. Toksijenik özellikte olanların salgıladıkları ekzotoksinler ve Gram negatiflerinin endotoksinleri de toksemik infeksiyonlara (toksemi, intoksikasyonlar) yol açarlar ve hatta ölümlere de neden olurlar. Potent ekzotoksinler, ya sporlu bakteriler (C. botulinum, C. tetani, B. anthracis, vs) veya sporsuz bakteriler (C. diphtheriae, stafilokok, vs) ile bazı mantarlar (A. flavus, vs) tarafından sen¤¤¤lenirler. bakteri toksinleri çok iyi antijeniteye sahip olmalarına karşın mikotoksinlerin antikor sen¤¤¤ini uyarma etkinlikleri zayıftır. Bazı infeksiyonlarda, klinik belirtiler ve ortaya çıkan hastalıklar tespit edilemeyebilir görülmeyebilir (subklinik infeksiyonlar, gizli infeksiyonlar). Bazı viral infeksiyonlarda, virus hücrelerde üremelerine ve dışarı çıkmalarına karşın, hücrelerde dejenerasyonlar (CPE, cytopathic effect) oluşturmazlar. Hücreler hem virus üretmelerine ve hücreler de üremelerine devam ederler (persistent infeksiyonlar). Böyle durumlarda klinik belirtiler çok zayıf veya belli-belirsizdir. Bazı durumlarda da virus hücrenin çekirdeği ile birleşir ve onun bir devamı haline gelir, onunla birlikte replike olarak kardeş hücrelere transfer edilir (latent infeksiyon). Böyle infeksiyonlarda da semptomlar meydana gelmez. Bir çok, bakteriyel ve viral kronik infeksiyonlarda da klinik arazlar gözle görülemez ve çoğu zaman da gözden kaçabilir. Bunlarda da klinik belirtiler hastalığı tanımlayacak derecede değildir. İnfeksiyon ajanlarının bir kısmı, vücutta, bazı doku ve/veya organlara karşı özel bir afinitesi bulunmaktadır. Beyin, akciğer, karaciğer, barsaklar, deri, kan dokusu, vs. en fazla hedef teşkil eden organları oluşturmaktadırlar. Örn, kuduz ve menenjitte beyin;kolera ve stafilokokkal enterotoksinlerde barsaklar; S. pneumonia ve K. pneumonia da akciğerler ve N. gonorrhoeae ve bazı mycoplasmalar da da ürogenital sistem hedef organlar arasındadır. İnfeksiyonların ve/veya hastalıkların meydana gelebilmesi için başlıca 3 önemli faktörün işbirliğine gereksinim bulunmaktadır. 1) Mikroorganizmalara ait faktörler 2) Konakçıya ait faktörler 3) Çevresel faktörler 2. Mikroorganizmalara Ait Faktörler İnfeksiyonların oluşmasında mikroorganizmalara ait olan faktörler oldukça önemlidirler. Bu faktörlerden bir veya birkaçı bir arada etkilediklerinde infeksiyonun ilk adımı atılmış veya başlangıcı hazırlanmış olur. Bunlar hakkında aşağıda kısa ve özlü bilgiler verilmektedir. 2.01. Virulens Faktörleri Patojenik mikroorganizmaların (infeksiyon veya hastalık yapma yeteneğine sahip ajanlar, patojenler), insan ve hayvanlarda hastalık yapma şiddetleri, dereceleri veya güçleri oldukça değişiklik göstermektedir (virulens). Duyarlı bireylerde, aynı patojenik etken, bazılarında zayıf ve diğerlerinde de orta veya tehlikeli infeksiyonlara yol açabilir. Bu durum konakçının kondisyon ve konstitüsyonuna bağlı olduğu kadar, mikroorganizmaların virulensi ile de yakından ilişkilidir. Virulens, bakterilerde bir çok faktör tarafından tayin edilmekte ve desteklenmektedir (infektivite+invaziflik+patojenite). Bazı mikroorganizmalar, gerek in vitro ve gerekse in vivo olarak üretildiklerinde birçok türde toksin ve toksik maddeler sen¤¤¤ler. Bunların konakçıyı hastalandırmada etkinlikleri oldukça fazladır. Bu substansların büyük bir bölümü ekstrasellüler bir karakter gösterir. Diğer bir ifade ile, bunlar bakteri hücresinden dışarı çıkarlar (ekzotoksinler). Diğer bir bölümü de yapısal bir özellik taşır ve ancak hücreler eridiklerinde ortama geçerler (endotoksinler). Toksin sen¤¤¤leme yeteneği toksijenite olarak tanımlanmaktadır. Bunlar, hep birlikte etkenlerin patojenik potansiyelini (mikropların hastalık yapma kabiliyetlerini, patojenite) oluştururlar. Etkenlerin vücuda girdikten sonra bir hastalık odağı oluşturabilme yeteneği de infektivitelerini ortaya koyar. Eğer, etken bitişik dokulara veya vücuda yayılma özelliği de (invazyon kabiliyeti) gösteriyorsa infeksiyonlar daha kısa sürede gelişir ve ortaya çıkarlar. 1) Ekzotoksinler: Bu tür toksinler, protein karakterinde, genellikle, ısıya duyarlı ve eriyebilir substanslar olup toksijenik mikroorganizmalar tarafından sen¤¤¤lenirler. Ekzotoksinler, in vivo ve in vitro koşullarda salgılanabilirler. Ekzotoksin sen¤¤¤leyebilen bir çok aerobik, anaerobik, sporlu veya sporsuz bakteriler ve mantarlar bulunmaktadır. B. anthracis, E. coli, C. diphtheriae, S. dysenteriae, S. aureus, V. cholerae, C. botulinum, C. tetani, C. perfringens, A. flavus vs. bunlardan bazılarıdır. Ekzotoksinler ve endotoksinler canlılarda toksemik infeksiyonlara (intoksikasyon, toksemi) neden olurlar. Toksinler, miktarlarına ve etkinliklerine göre canlılarda sadece infeksiyonlara değil aynı zamanda ölümlere de yol açabilirler. Şimdiye dek en etkili bakteriyel toksinler arasında C. botulinum ’un ekzotoksini bildirilmiştir. C. botulinum A ’nın fare için 1 MLD’u (minimum letal doz) 2. 5x10-5 mcg (pürifiye toksin); C. tetani ’nin toksini fare için 1 MLD’u 4x10-5 mcg; difteri toksini kobay için 1 MLD’u 6x10-2 mcg ve S. aureus ’un alfa toksininin tavşan için 1 MLD’u 5 mcg kadar olduğu belirtilmiştir. Ekzotoksinlerin bazı özellikleri kısaca şöyledir: a) Ekzotoksinler, bazı mikroorganizmalarda (B. anthracis, C. tetani) plasmidler; C. diphtheriae ve C. botulinum ’da bakteriyofaj (profaj) ve bazılarında da genomik DNA (kromozom) tarafından spesifiye edilirler. Eğer plasmid veya fajlar bakterilerden çıkarlarsa veya çıkarılırsa, mikroorganizmalar atoksijenik veya apatojenik hale dönüşürler. b) Ekzotoksinler, protein karakterinde olup genellikle ısıya (60-80°C) duyarlıdırlar (termolabil, TL). Buna karşın, S. aureus ’un ve E. coli ‘nin enterotoksinleri, bu derecelerin üstündeki ısıya (100° C) direnç gösterirler (termostabil, TS). c) Ekzotoksinlerin çok az miktarları bile, duyarlı konakcıda hastalık yapıcı güce sahiptirler. Belli bir inkubasyon süresinden sonra, duyarlı deneme hayvanlarında, toksinin etki mekanizmasına göre, spesifik hastalık belirtileri ile karakterize olan intoksikasyonlar meydana gelir. d) Ekzotosinler, aynı zamanda, immunojeniktirler. Vücutta spesifik antikor sen¤¤¤ini uyarırlar (antitoksik antikorlar, antitoksinler). Bu antikorlar in vivo veya in vitro koşullarda toksini nötralize ederek hastalık yapma kabiliyetini giderirler. e) Bazı fiziksel (ısı) ve kimyasal maddeler (formaldehit, iodine, vs) toksini inaktive ederek hastalık oluşturma yeteneğini ortadan kaldırırlar ve toksoid hale gelmesine neden olurlar. Toksoidlerin, hastalık oluşturma güçleri olmamasına karşın, canlılara verildiklerinde antikor sen¤¤¤ini uyarabilirler. Bu nedenle de immunojeniteleri bulunmaktadır ve aşı olarak kullanılırlar. Ekzotoksinler, vücutta etkiledikleri doku ve/veya organlara göre de birkaç kategoriye ayrılmaktadırlar. Nörotoksinler (C. botulinum, C. tetani, S. aureus), Enterotoksinler (S.aureus, E. coli, V. cholerae, S. dysenteriae, C. perfringens, Klebsiella sp, vs) ve Sitotoksinler (bir çok mikroorganizma tarafından sen¤¤¤lenen, hemolizin, leukosidin, dermonekrotoksin, hepatotoksin, vs) gibi. Ancak, bir mikroorganizma birden fazla türde toksin sen¤¤¤lediği gibi, bir toksin birkaç doku veya organa da etkileyebilmektedir. Bu nedenle, bu temel sınıflama zamanla ve gerekli durumlarda değişebilmektedir. Ekzotoksinler birbirlerinden ayrı karakterde ve etkinlikte olmasına karşın bazıları yapı bakımından benzerlik gösterirler. Bu benzerlik, genellikle, “A-B modeli“ olarak tanımlanmaktadır. Bu model aynı zamanda strüktürel dimerik model olarak ta bilinmektedir. Buna göre, bazı toksinler iki alt üniteden oluşmaktadırlar. Bunlardan biri, enzimatik bir özelliğe sahip ve konakçı hücrelerinde toksik etki meydana getiren A fragmenti ve diğeri de, toksinin konakçı hücre yüzeyindeki spesifik reseptörlere bağlanmasını sağlayan B fragmentidir. İzole edilen A alt ünitenin toksik etkisi olmasına karşın hücrelere bağlanma yeteneği bulunmamaktadır. B alt ünitesi ise, hücrelere bağlanabilir, ancak nontoksiktir ve biyolojik olarak inaktiftir. Toksin molekülünün hücre içine girmesinde başlıca iki mekanizma önerilmektedir. Bunlardan biri, toksinin B alt ünitesi, hücre yüzeyindeki spesifik reseptörlere bağlanır. Hücre yüzeyinde bir erime meydana gelerek oluşan spesifik kanallardan, A fragmenti içeri girerek sitoplasmaya ulaşır. B fragmenti ise dışarıda kalır. Diğer görüş ise, toksinin B alt ünitesi hücreye bağlandıktan sonra tüm molekül (A ve B fragmentleri) endositozis ile internalize edilir. Bu tarz giriş bir bakıma pinositozise de benzemektedir. Bu ikinci mekanizmada, tüm molekül vesiküller içinde toplanır ve sonra, B alt ünitesi, A’dan ayrılarak, hücre yüzeyine çıkarılır. A alt ünitesi ise sitoplasmaya girer ve buradan hedef bölgeye giderek etkinliğini gösterir. Her iki mekanizma ile de olsa, önemli olan A fraksiyonunun sitoplasmaya ulaşmasıdır. Burada toksinler moleküler düzeyde başlıca 3 tür etki gösterirler. 1) Hücrelerde protein sen¤¤¤inin inhibisyonu, 2) Sinir snaps fonksiyonunun bozulması, 3) Sitoplasmik membranın parçalanması ve membran transport sisteminin bozulması. Aşağıda bazı önemli A-B modeli, ekzotoksinler ve etki mekanizmaları hakkında kısa özlü bilgiler verilmektedir. Difteri toksini: Bu potent ekzotoksin (MA:62000 A ve 38000 B ), C. diphtheriae ’de bulunan profaj (beta fajı) tarafından spesifiye edilir. Toksin (A-B modeli), hücre içine girdikten sonra A fragmenti hedef bölge olan ribosomlara ve özellikle, zincir uzamasında önemli fonksiyona sahip olan EF2 (elongation factor 2) ile bağlanarak polipeptid zincirinin uzamasını önler ve böylece protein sen¤¤¤ine mani olur. Difteri toksinine karşı oluşan antitoksinler toksini nötralize ederek etkinliğini ortadan kaldırabilir. Eğer hücrelere bağlanma meydana gelmişse nötralizasyon meydana gelememektedir. Toksinin B fraksiyonu hücre yüzeyindeki gangliosid Gml’e bağlanmadan önce antitoksin verilirse, bu alt ünite nötralize edilebilir ve böylece toksinin bağlanması önlenir. Sağaltımda da bu durum dikkate alınarak, mümkün olduğunca erken antitoksik serum verilmesine gayret edilir. Botulinum toksini: C. botulinum tipleri tarafından 7 ayrı tarzda etkinliğe sahip ve hepsinin de konakçı spesifitesi olan ekzotoksinler sen¤¤¤lenir. Bunlardan A, B, E ve F toksinlerine insanlar, C ve D’ye de sığırlar duyarlıdırlar. Bunlardan, C. botulinum C toksini, bakteriyofaj (profaj) tarafından spesifiye edilir. Bu toksinlerin hepsi değişik şiddette paraliz oluştururlar. Toksin, sinirlerle kasların birleştiği bölgelerde, sinirlerden gelen sinyallerin kaslara ulaştıran, kasların kontraksiyonlarında çok önemli rolleri bulunan ve sinir hücrelerince sen¤¤¤lenen asetil kolinin üretimini engellerler. Böylece, sinyaller kaslara ulaşamayınca gerekli reaksiyonları ve kontraksiyonları yapamazlar ve paraliz meydana gelir. Toksin daha ziyade, nöromuskuler bölgeye yakın olan aksonlara bağlanarak bu bölgedeki hücrelerde asetil kolin sen¤¤¤ini önler. Oluşan paraliz göğüs kasları ve diyaframa kadar uzanırsa solunum yetersizliği sonu ölümler meydana gelir. Botulinum ekzotoksini A ve B modeline uyar. Tetanoz toksini: Vücut yüzeyinde bulunan derin kontamine ve içinde yabancı cisim bulunan yaralarda anaerobik koşullarda üreyen C. tetani tarafından sen¤¤¤lenen ekzotoksin bir plasmid tarafından spesifiye edilir. Toksinin başlıca iki etkili komponenti bulunmaktadır. Bunlardan biri sinirlere tesir ederek spasm meydana getirir (tetanospasmin). Diğeri ise alyuvarları parçalayan tetanolizindir. Yaralarda üreyen C. tetani ’nin sen¤¤¤lediği ekzotoksin beyne ulaşınca, hücrelerde, bir amino asit olan glycine sen¤¤¤ine mani olur. Bu durum, vücutta birbirlerine zıt fonksiyonda olan kasların aynı anda kontraksiyonlarına yol açar. Böylece tetanoz spazmları meydana gelir. Bu kasılmalar o kadar şiddetli olur ki kaslar yırtılabilir ve bazen de kemikler kırılabilir. Kas kontraksiyonlarının kontrol edilememesi solunum bozukluklarına da yol açar. Sinire etkileyen toksin, tek bir polipeptid molekül olup 150000 molekül ağırlığına sahiptir. İlk sen¤¤¤lendiğinde inaktif olan molekül, proteolitik enzimlerle iki fraksiyona ayrılır (biri, H zinciri, MA; 100000, ve diğeri L zinciri, MA 50000). Bu iki fraksiyon bir veya iki disulfid bağla birleşmişlerdir. Toksin A-B modeline uyar. Kolera toksini: V. cholerae tarafından sen¤¤¤lenen bu enterotoksinin A fraksiyonu tek molekül olmasına karşın, B fraksiyonu ise 5 molekül halindedir. Toksinin B komponenti barsak epitel hücrelerinin yüzeyindeki gangliosid Gml ile bağlandıktan sonra, A alt bölümü sitoplasmaya girer ve burada ayrışarak A1 formuna dönüşür. Bu fraksiyon hücrelerde adenylate cyclase enzimini aktivitesini kontrol eden regulatör proteinin fonksiyonunu bozarak etkisiz hale getirir ve adenylate cyclase devamlı aktivite gösterir. Fazla sen¤¤¤lenen bu madde, ATP’nin fazla miktarda cyclic AMP (c AMP) haline dönüşmesine neden olur. Bu madde (cAMP) de, barsak epitel hücrelerinden fazla miktarda sıvı ve elektrolitin lumene geçmesine yol açar. Sıvının önemli bir bölümü kandan geldiği için, sıvı ile birlikte bikarbonatın kandan dışarı çıkmasına ve kanın pH’sının düşmesine ve buna bağlı olarak ta asidozun şekillenmesine yol açar. Bu durum ölümlere neden olabilir. Ayrıca, kanın yoğunluğu artar ve dolaşım bozukluğu meydana gelir. Hipovolemik şok ve dolaşım bozukluğu nedeniyle hastanın hayatı tehlikeye girer. Toksin A-B modeline uyar. Anthraks toksini: İnsan ve hayvanlarda hastalık oluşturan ve B. anthracis tarafından sen¤¤¤lenen ekzotoksin, plasmid orijinlidir. Toksin protein karakterinde ve zayıf antijenik olup başlıca 3 kısımdan oluşmaktadır (protektif antijen (PA), ödem faktörü (EF) ve letal faktör (LF). Bu üç toksin geni, pX01 plasmidi tarafından kodlanır. Bunlardan, PA 735 amino asit, LF 776 aa ve EF ise 767 aa 'ten oluşmaktadır. Toksin, kan damarlarının permeabilitesini bozarak hemorajilere neden olur. Bu 3 fraksiyon tek başına tam etkili olmayıp en azından iki tanesi (PA + LF) birlikte letal etki gösterir. Toksin, A ve B modeline uyar. B.anthracis 'te bulunan ikinci bir plasmid, (pX02, 60 MDa) kapsül formasyonunun kodlarına sahiptir. 2) Süperantijenler: Süperantijenler, şimdiye kadar tanımlanan immunojenlerden çok daha az yoğunlukta bile (pikomolar düzeyde) T hücrelerini uyarabilme yeteneğine sahip T hücre mitojenleridir. Stafilokok, streptokok, P. aeruginosa ve M. arthritis tarafından sen¤¤¤lenen bazı ekzotoksinler bu grup substanslar içinde kabul edilmektedirler. Bu antijenlerin (süper antijenler), diğer antijenlerden olan önemli farkları, APC (antijen sunan hücreler) tarafından işlenmeden, MHC II molekülü ile birlikte APC 'lerin yüzeylerine çıkarılır ve buradan T hücrelerine (T4 veya T8) sunulur. T hücrelerinin yüzeylerinde bulunan TCR (T hücre reseptörünün beta zincirinin variable bölgesi (VB ) ile direkt bağlantı kurarak birleşirler. Böylece, T4 hücreleri çok kuvvetli olarak uyarılır ve aynı zamanda çeşitli sitokin sen¤¤¤lemeye başlarlar. Süperantijenler orijinlerine göre başlıca 4 kategoriye ayrılmaktadırlar. Bunlar hakkında gerekli bilgiler “Mikrobial antijenler" bölümünde verilmiştir. 3) Endotoksinler: Endotoksinler, Gram negatif bakterilerinin hücre duvarının (dış membranının) Lipopolisakkarid (LPS) karakterindeki yapısal bir komponentidir. LPS, başlıca 3 kısımdan oluşmaktadır.Bunlardan biri, lipid porsiyonu (lipid A) toksik bir karakter taşır. Buna, merkez polisakkaridleri ile O spesifik karbonhidratlar (0 antijeni) bağlanmıştır. LPS, yapısal bir özellik taşıdığından ekzotoksinler gibi dışarı salgılanamazlar. Ancak, bunlar bakteriler lize oldukları zaman ortama geçerler. LPS'ler endotoksin olarak ta bilinirler. Lipid A'nın aktivitesinde, komplementin alternatif yoldan aktivasyonunun ve sitokin sen¤¤¤inin uyarılmasının rolü oldukça fazladır. Endotoksinlerin bazı özellikleri aşağıda kısaca belirtilmiştir. a) Deneme hayvanlarında toksik etki (letal etki) meydana getirebilmeleri için yüksek dozlarda (ekzotoksinlere oranla) verilmesi gerekir. b) Termostabil bir özelliktedirler ve antijeniteleri de zayıftır. c) Vücuda fazla miktarda verildiğinde, nonspesifik klinik belirtiler meydana getirirler (ateş, septik şok, zafiyet, diare, kan koagulasyonu, intestinal hemorajiler, yangısal reaksiyonlar ve fibrinolizis). d) Endotoksinlerin hücre veya dokulara karşı spesifik afiniteleri zayıftır. e) Toksoid hale dönüştürülemezler. f) Endotoksinler, lipopolisakkarid karakterindedirler. g) Vücuda girdiklerinde belli bir inkubasyon süresine sahip değildirler. Gram negatif mikroorganizmaların hepsi aynı kimyasal yapıda LPS oluşturamazlar. Aralarında farklar bulunmaktadır. Örn, bazılarında 0 spesifik karbonhidratlar kısa ve aynı zamanda değişik yapıda bulunur. Bazılarında da (spriroketalarda) dış membranında, LPS yanı sıra lipoproteinde vardır. Endotoksinlerin vücutta oluşturdukları bazı önemli bozukluklar şöyledir. Ateş (pirojenite): Vücutta, endotoksinlerin etkisi ile kan leukositlerinden (özellikle, makrofajlardan) sen¤¤¤lenen ve salgılanan endojenik pirojenler (Örn, İL-1, İL-6, TNF, vs), vücut ısısını kontrol eden beyin hipotalamusuna etkilemesi ve uyarması sonu ateş yükselmesi meydana gelir. Septik şok: Septik şok, vücutta organlarda meydana gelen fonksiyonel bozukluklarla karakterize olan kompleks bir olgudur. Eğer, Gram negatif bakteriler fazla miktarda kanda bulunursa veya damar içi endotoksinler şırınga edilirse tehlikeli septik şok oluşabilir (kan basıncı düşer, nabız zayıflar, solunumda azalma, yüksek dozlar kan dolaşımında bozukluklar, kollaps ve ölümlere yol açar). Kanda değişiklikler: Endotoksinler deneme hayvanlarına verilince, geçici bir süre için kan leukositlerinde azalma (leukopenia) ve sonra artmalar meydana gelir. Endotoksinler trombositleri zedeleyerek intravasküler kan pıhtılaşmasına yol açarlar. Ayrıca, endotoksinler damar permeabilitesini de artırarak hemorajilere sebep olurlar. Endotoksinler, kanda inaktif bir durumda bulunan Hageman faktörü-XII (kan pıhtılaşma faktörü-XII)nü de stimule ederler. LPS'ler leukositleri ve makrofajları uyararak İL-1, İL-6, İL-8, TNF-alfa, İFN, vs gibi sitokinlerin sen¤¤¤lerine de yol açarlar. 2.02. Diğer Virulens Faktörleri Bu başlık altında toplanan virulens faktörleri de, genellikle, ekstrasellüler niteliktedirler. Bunlar mikroorganizmaların yayılma kabiliyetlerine (invazif özellik) ve hastalık oluşturmalarına yardımcı olurlar. Ekzotoksinler kadar potent olmamakla beraber bazıları oldukça önemli ve ekindirler. Çoğu, enzim niteliğindedir. Bu faktörlerden önemli bazıları aşağıda bildirilmiştir. Hemolizinler: Bir çok Gram pozitif ve negatif mikroorganizma tarafından sen¤¤¤lenen bu toksik substansların alyuvarları parçalama özelliği bulunmaktadır. Hemolizinler alyuvarların membranında zedelenmeler yaparak hemoglobinin dışarı çıkmasına yol açarlar. Protein karakterinde, termolabil ve antijenik bir özellik gösteren ekstrasellüler streptokokkal hemolizinler oksijene olan duyarlılıklarına göre iki kısma ayrılmaktadırlar. Bunlardan Streptolizin O (SLO), oksijene karşı duyarlıdır ve okside olarak tahrip olur. Bu nedenle de anaerobik koşullarda üretilen S. pyogenes suşlarında koloni etrafında beta-hemoliz oluştururlar. Diğeri ise, Streptolizin S (SLS), oksijenden etkilenmez ve aerobik koşullarda üreyen S. pyogenes kolonilerinin etrafında beta-hemoliz alanı görülebilir. SLS, aynı zamanda hücrelere bağımlı durumdadır ve lökosidin etkisine de sahiptir. Eğer mikroorganizma fagosite edilirse, makrofajları veya PNL'leri öldürebilir. Hemolizin oluşturma yeteneği pasajlarla azalır ve kaybolabilir. Hemolizinler protein karakterinde olduklarından da antijeniktirler. S. pyogenes dışında bir çok Gram pozitif streptokok, stafilokok, klostridium ve Gram negatif (E. coli, P. aeruginosa, vs) bakteriler, kanlı agar üzerinde koloni etrafında alfa veya beta hemoliz alanları oluşturan koloniler meydana getirirler. Mikroorganizmaların hemolitik aktiviteleri, kullanılan kan türüne, agarın kalınlığına, ve aynı zamanda kültür koşullarına göre değişebilir. Bazıları, alfa hemoliz (koloni etrafında tam açılma yok, yeşilimsi görünüm) bir kısmı ise tam hemoliz (beta hemoliz) oluşturabilirler. Hyaluronidase (yayılma faktörü): Bazı mikroorganizmalar (streptokok, stafilokok, C. perfringens, vs) tarafından sen¤¤¤lenen bu enzim, bağdokuda bulunan ve sement vazifesi gören hyaluronik asidi hidrolize ederek ayrıştırır ve mikroorganizmaların dokularda kolayca yayılmasını sağlar. Bu enzim, indüklenebilen bir özellik taşıdığından, ancak ortamda hyaluronik asit varsa sen¤¤¤lenir. Streptokoklarda bulunan kapsülün bileşiminde de hyaluronik asit bulunmaktadır. Hyaluronik asit mukopolisakkarid yapısında olup antijenik bir özelliğe sahiptir. Streptokinase (fibrinolizin): Bu substans daha ziyade grup A, C ve G streptokoklar ile stafilokoklar (stafilokinase) tarafından sen¤¤¤lenir. Streptokinase, kan plasminogenini plasmine çevirir. Bu ürün de (plasmin) bir protease olup kan pıhtısı fibrini eritir. Kan pıhtısı eriyince, mikroorganizmalar daha kolay yayılma olanağı bulurlar. Koagulase: S. aureus, koagulase olarak adlandırılan enzim sen¤¤¤ler ve bu enzim plazmadaki aktivatöre etkileyerek koagulasyon meydana getirir. Reaksiyonda, kanda bulunan fibrinogeni, erimez (insoluble) fibrin haline dönüştürür (koagulasyon). Fibrin, aynı zamanda, mikroorganizmaların etrafını sararak fagositozdan ve diğer zararlı etkilerden korur. Koagulase enzimi termostabil ve antijeniktir. S. aureus 'ların patojenite kriterlerinin belirlenmesinde dikkate alınmaktadır. Ancak, koagulase sen¤¤¤lemeyen mutant patojenik S. aureus 'ların bulunması, patojenite tayininde bu faktörün tek olarak kriter alınamayacağını da ortaya koymaktadır. Leukosidinler: Bu substanslar, genellikle, streptokok, stafilokok ve pnömokoklar tarafından sen¤¤¤lenmektedir. Etkinlikleri daha ziyade fagositik hücrelerden olan makrofajlar ve polimorfnukleer lökositler üzerine olmaktadır. Mikroorganizmalar fagosite olduktan sonra, bunlara ait leukosidinler, hücre sitoplasmasında, içlerinde değişik karakterde hidrolizan enzimler bulunan granülleri parçalayarak internal degranülasyona yol açarlar. Bu substansların sitosola geçmesi fagositik hücrelerin çeşitli ve önemli fonksiyonlarını bozar ve aynı zamanda ölümlerine de neden olur. Bu durum, bir bakıma fagositik hücrelerin infeksiyonu niteliğini taşır. Leukosidinler antijeniktirler ve kendilerine karşı antikor sen¤¤¤ini uyarırlar. Deoksiribonuklease (DNase): Bu enzim, S. aureus, S. pyogenes, C. perfringens ve diğer bazı etkenler tarafından sen¤¤¤lenir. Zedelenmiş dokularda bulunan hücrelerin DNA (deoksiribonukleik asit) 'sını eriterek tahrip eder. Böylece, patojenler daha kolaylıkla yayılma olanağı bulurlar. Yaralarda bulunan ve yapısının büyük bir bölümünü ölmüş fagositik hücreler oluşturan irindeki hücre DNA'ları eridiğinden içlerinde bulunan mikroorganizmalar daha kolayca ve serbest hareket edebilmektedirler. Lesitinase: Daha ziyade, Clostridium spp'ler tarafından sen¤¤¤lenen bu enzim, hücre plazma membranında bulunan lesitini ayrıştırarak membranın bütünlüğünü ve fonksiyonunu bozar. Böylece hücreler tahrip olur ve patojenlerin etkinliği de artar. Kollagenase: Bazı Clostridium spp'ler tarafından sen¤¤¤lenen bu enzim de kas, kıkırdak ve kemiklerde bulunan kollageni ayrıştırma yeteneğine sahiptir. Patojenlerin invazyon kabiliyetini arttırır. Mikrobial demir kelatörleri: Demir bir çok aerobik ve aerotolerant mikroorganizmaların yaşamaları ve çoğalmaları için çok gerekli bir elementtir. Ayrıca, demir içeren bazı enzimlerin (sitokrom, katalase) sen¤¤¤leri için de demire gereksinim vardır. E. coli 'de de demir bağlayan protein (enterochelin) bulunmaktadır. Bu protein polimerize ferrik demiri solubulize ederek hücre içine girmesine yardımcı olur. Demir bağlayan proteinlere bakterilerde siderofor adı da verilmektedir. Konakçı serumunda bulunan transferrin, süt, sıvı ve mukozalarda bulunan laktoferrin demir içeren birer protein olarak bilinmektedir. Ayrıca, kanda da hemin bulunmaktadır. Ortamlarda demirin bulunması bakterilerin üremesi ve toksin sen¤¤¤leri üzerine olumlu etkide bulunur. Difteri, tetanoz, C. perfringens, vs etkenlerin toksini için demir gereklidir. Hidrojen peroksit (H2O2): Bazı mikoplasmalar ve ureaplasmalar, genellikle, ürogenital sistem mukozalarına yerleşme eğilimi gösterirler. Çoğaldıktan sonra burada hidrojen peroksit ve amonyak (NH3) oluştururlar. Bu maddelerin böbrek ve ürogenital sistem epitel hücrelerinde birikmesi zararlı ve zedeleyici etkiye sahiptir. 2.03. Membran Parçalanmasına Neden Olan Toksinler Listeriolizin: İnsan ve hayvanlarda hastalık oluşturan L. monocytogenes, uygun ortamlarda üretildiklerinde, hücrelerin sitoplasmik membranlarında porlar açan ve böylece hücrelerin permeabilitesini bozarak parçalanmasına neden olan listeriolizin adı verilen toksik maddeyi sen¤¤¤ler. Bu substans, aynı zamanda pore forming cytotoxin (delik açan sitotoksin) olarak ta bilinmektedir. Fosfolipase: C. perfringens tarafından sen¤¤¤lenen ve alfa-toksin olarak ta tanımlanan bu sitotoksin, fosfolipase karakterinde olup hücre membranındaki lesitini hidrolize ederek erimesine ve hücrelerin parçalanmasına neden olmaktadır. 2.04. Antifagositik Faktörler Kapsül: Bazı Gram negatif ve pozitif mikroorganizmaların etrafında hem virulensin artmasında, bakterinin korunmasında ve hem de fagositozun önlenmesinde etkili olan kapsül bulunmaktadır. Örn. B. anthracis 'in etrafında protein (D-glutamik asit polimeri) karakterinde ve plasmid tarafından spesifiye edilen zayıf antijeniteye sahip bir kapsül bulunur. C. perfringens, P. multocidae, S. pneumoniae, K. pneumoniae, H. influenzae, N. meningitidis, vs. etrafında polisakkarid yapısında kapsül bulunur. Kapsül, aynı zamanda, bakteriyi, fajların lizisinden de korur. B. anthracis 'in kapsülü in vivo koşullarda meydana gelir. Kültür ortamlarında pasajı yapıldığında kapsül kaybolabilir. Ancak, serumlu ve CO2 'li besi yerlerinde kapsül formasyonu tekrar meydana gelebilir. Kapsülsüz etkenin hastalık yapma yeteneği de kaybolur. Kapsül aynı zamanda komplementin aktivitesini azaltır ve fagositoza de mani olur. Bazı mikroorganizmaların etrafında bulunan mukoid tabakasının aynı zamanda üredikleri ortama da yayılabilen mukoid maddesinin de antifagositik etkisi bulunmaktadır. Hücre duvarı antijenleri: Hidrofobik yüzeye sahip olan Gram negatif bakteriler, hidrofiliklerden daha fazla, fagositoza dirençlidirler. Streptokoklarda bulunan M proteininin antifagositik aktivitesi (aynı zamanda adherens faktörüdür) vardır. S. aureus 'ların Protein A fraksiyonu, immunglobulinlerin Fc porsiyonu ile bağlanır. Eğer böyle bir antikor, fagositik hücrelerin yüzeylerindeki Fc reseptörleriyle birleşince antifagositik etki meydana getirir. Teikoik asitinin de antifagositik aktivitesi olduğu açıklanmıştır. Böylece mikroorganizmalar fagositozdan korunurlar. 2.05. Adherens Faktörleri Mikrobial infeksiyonların çoğu, genellikle, konakçının solunum, sindirim ve ürogenital sistemlerine ait mukozal membranlarının yüzeylerinden başlar. Bu yüzeylerde oluşan makroskobik veya mikroskobik porantreler patojenik mikroorganizmaların kolayca girmesine, yerleşmesine, üremesine ve vücuda yayılarak infeksiyonlar oluşturmalarına yardımcı olurlar. Ancak, yüzeylerinde böyle hazır giriş kapıları bulunmayan, sağlam hücrelere de etkenler girebilirler. Mikroorganizmalar kendilerinde bulunan adhezyon molekülleri yardımı ile hücrelerin yüzeylerindeki spesifik reseptörlere bağlanarak tutunur ve kolonize olabilirler, daha derinlere ulaşabilir ve vücuda yayılabilirler. Bu adhezyon faktörlerinden bazıları aşağıda bildirilmiştir. Hemaglutinin: Daha ziyade virusların yüzeyinde bulunan hücrelere tutunmada yardımcı olan ve aynı zamanda, eritrositlere de bağlanarak aglütinasyon (hemaglutinasyon) meydana getiren glikoprotein karakterinde moleküllerdir (peplomer). Fimbrial ve afimbrial adhezinler: Bazı bakterilerde bulunan fimbriaların (Tip-I pilus) distal uçlarında bulunan özel adhezyon proteinleri (adhezinler, fimbrial adhezinler) veya bakterilerin hücre duvarlarında lokalize olmuş spesifik adhezyon molekülleri (afimbrial adhezinler), konakçı hücre yüzeyindeki spesifik reseptörlerle (adhezin/reseptör) interaksiyona girebilir ve bunun sonunda mikroorganizmalar hücre yüzeyine bağlanabilir ve kolonize olabilirler. Bazı bakterilerde bulunan çeşitli adhezinler başlıca iki grup içinde toplanabilirler. 1- Gram negatif mikroorganizmalarda adhezinler a- Fimbrial adhezinler: E. coli (FimH, PapG, SfaS, PrsG), H. influenzae (HifE), K. pneumoniae (MrkD). Bu fimbrial adhezinler, hücre yüzeyinde bulunan, glikolipid, galaktoz, mannoz, sialogangliosid-GMI ve tip V kollagan reseptörleriyle interaksiyona girerler. b- Afimbrial adhezinler: B. pertussis (PHA, Pertactin), H. influenzae (HMV 1/HMV 2, Hia), H. pylori (Leb-bağlayan adhezin). Bu tür adhezinler de, S'li oligosakkarid, integrin, insan epitel hücreleri, fucosile Leb-histokan grubu) reseptörleriyle ilişki kurarlar. 2- Gram pozitif mikroorganizmalarda adhezinler Bunlar daha ziyade afimbrial özellikte olup bağlandıkları reseptörlerin karakterlerine göre gruplara ayrılırlar. a- Antijen I-II grubu: S. mutans (SpaP, Pl, PAc), S. gordonii (SspA, SspB ), S. sobrinus (SpaA, PAg). Bunlar, genellikle, salivar glikoproteinlere ve actinomyces reseptörlerine bağlanırlar. b- Lral grubu: S. parasanguis (FimA), S. pneumoniae (PsaA), S. gordonii (ScaA), S. sanguis (SsaB ), E. faecalis (EfaA). Bu gruptaki adhezinler (S. pneumoniae ve E. faecalis hariç), salivar glikoproteinlerine, fibrin ve actinomyces reseptörlerine bağlanırlar. c- S.gordonii (CshA, CshB ), S. aureus (FnbA, FnbB ), S. pyogenes (SfbI, protein F). Bu adhezinler de hücre yüzeyindeki fibronectin ve actinomyces reseptörleri ile ilişki kurarlar. d- S.pneumoniae (CbpA, SpsA, PbcA, PspC). Bu etkene ait çeşitli adhezinler de, sitokinle aktive olmuş epitelyal ve endotelyal hücreler ve İgA ile ilişki kurarlar. Yukarıda da görüldüğü gibi, bir tür mikroorganizma üzerinde hem fimbrial ve hem de afimbrial adhezinler bulunabiliyor. Ayrıca, farklı mikroorganizmalar farklı karakterdeki reseptörle bağlanabiliyor (veya tersi de olabilmektedir). Mikroorganizmaların sağ tarafındaki parantez içindeki kodlar, adhezin moleküllerini ifade etmektedir. Adhezinlerin bağlandıkları reseptörler de farklı karakter (genellikle) taşımakta ve hiç bir zaman bütün adhezinlerin, yukarıda belirtilen reseptörlerin hepsine bağlanabilir özellikleri yoktur. Diğer bir ifade ile adhezinlerle reseptörler arasında spesifik bir ilişki bulunur. Bakterilerin hücrelere kolonize olmalarını önlemek için, adhezinler ile reseptörler arasındaki ilişkiyi kesmek gerekir. Bu amaçla, adhezinlerle hazırlanan aşıların vücuda verilmesi halinde gerek kanda ve gerekse mukozal yüzeylerde spesifik antikorların varlığı ortaya konulmuş ve bunların, adhezinlerle birleşerek, reseptörlerle interaksiyona girmesinin önlendiği açıklanmıştır. Örn. uropatojenik E. coli 'ye ait FimH adhezinine karşı elde edilen anti adhezin antikorların, farelerde, çok olumlu sonuçlar verdiği bildirilmiştir. Mukoid salgı: Bazı mikroorganizmaların etrafında bulunan amorf bir özellik gösteren mukoid salgı antijenik bir maddedir. Fagositoza mani olur. Glikoprotein veya mukopolisakkarid yapısındadır. S katmanı: Bazı mikroorganizmalarda bulunan ve yüzeylere bakterilerin bağlanmasını kolaylaştıran maddelerdir. Teikoik asit ve lipoteikoik asit: Gram pozitif mikroorganizmaların hücre duvarında bulunan bu maddeler de, yüzeyde yerleştikleri için, adhesyon molekülleri gibi görev yapmaktadırlar. M proteini: S. pyogenes 'lerin hücre duvarındaki M proteini aynı zaman adherens faktörü olarak ta etkindir. 2.06. Mikroorganizmaların Vücuda Adaptasyonları Patojenik etkenler, çeşitli yollardan vücuda girdikten sonra, kendilerini çok değişik olarak buldukları bu yeni ortam koşullarına (ısı, pH, osmotik basınç, oksijen, gıda maddeleri, humoral, sellüler, fiziksel, kimyasal ve biyolojik anti mikrobial, diğer faktörler, vs) adapte etmeye çalışırlar. Bu faktörlerin büyük bir kısmı mikroorganizmaların yerleşme, kolonizasyon ve yayılmasına uygun olmamasına karşın, bazıları da destekleyici bir özellik taşımaktadır. Mikroorganizmaların bu kadar çok ve farklı olumsuz koşullara karşı kendini koruyabilmesi, savunabilmesi ve vücutta yerleşebilmesi için, bu yaşam savaşından galip çıkması (diğer bir ifade ile bu yeni ortama adaptasyon için mücadele vermesi ve bundan da başarılı olması) gerekmektedir. Eğer canlı kalabilirse, o zaman mikroorganizma, kendisinin, konakçının ve diğer faktörlerin etkinlik derecesine göre, yerleşebilir, ürer ve vücuda yayılarak infeksiyonlara ve hastalıklara yol açabilir. İşte, bu süreç, bir adaptasyon dönemidir ve infeksiyon için de ilk adımı oluşturur. Mikroorganizmaların, adaptasyon periodunu aşabilmesinde, genlerinde meydana gelebilecek reorganizasyonların önemli bir rolü bulunmaktadır. Bu genetik düzenleme için bazı mikroorganizmalar yeterli bir zamana sahip olmamasına karşın, bir kısmı da bu süreyi elde edebilir. Bu nedenle de hastalık ajanların bir çoğu vücutta yerleşme fırsatı bulamadan, başta, humoral ve sellüler faktörler olmak üzere diğer savunma faktörlerinin etkisi altında üremeleri sınırlandırılır ve öldürülürler. Bu adaptasyon periodunda, mikroorganizmalarda bulunan virulens faktörlerini kodlayan genlerin önemi oldukça fazladır. Bu period içinde genlerde bir reorganizasyonun meydana gelmesi gerekir ve bu sayede adaptasyon çok daha kolaylaşır ve canlı kalma süreleri de artar. Bu sürenin uzun veya kısa olmasında, bulunduğu ortamın sağladığı olanaklar (çevresel sinyaller, fiziksel ve kimyasal faktörler-Ca, Fe, vs) oldukça fazla etkilidirler. Bu ajanların indükleyici etkileri ile, virulens faktörlerinin kısa bir süre içinde ekspresyonuna yardımcı olurlar. Ancak, bu çevresel sinyaller ve bunların etkinlik dereceleri, mikroorganizmalara göre değişebilmektedir. Besi yerlerinde yavaş üreme gösteren mikroorganizmalar (veya generasyon süresi uzun olanlar) uzun bir adaptasyon dönemi geçirmiş olanlardır. Bu süre de kendini iyi reorganize edenler, üremenin latent periodunu geçerek üreme dönemine ve böylece daha hızlı çoğalmaya başlarlar. Eğer, mikroorganizmaların latent dönemi (adaptasyon dönemi) çok kısa sürmüşse, o zaman, etkenler çok daha hızlı çoğalabilir ve kısa bir sürede üreme dönemine geçerler. Latent periodun uzun veya kısalığı, mikroorganizmaların yeni girdikleri ortamının koşulları ile çok yakından ilgili olduğu kadar mikropların reorganizasyonu ile de alakadardır. Vücuda giren mikroorganizmaların genetik düzeydeki reorganizasyon ve regulasyon mekanizmaları oldukça önemlidir ve bunlar birkaç tarzda gerçekleştirebilmektedir. 1) gen reorganizasyonları (gen amplifikasyonu, genlerin yer değiştirmeleri, rekombinasyonlar, ve bunun gibi genetik düzeydeki değişiklikler). 2) Bazı özel genlerden yapılan transkript (mRNA) sayısının arttırılması, 3) Her transkriptten elde edilecek özel ürün (protein) miktarının artırılması, 4) Bazı silent genlerin indüklenerek stimule edilmesi ve böylece aktif gen haline getirilmesi, 5) Virulens faktörlerini kodlayan genlerin ve diğer önemli genlerin aktive edilmesi, Genetik yönden reorganizasyonda, çevresel faktörlerin uyarıcı etkileri yanı sıra, bakterilerde bulunan plasmidlerin, fajların, profajların İS-elementleri, Transposonların aktivitelerinin de rolleri oldukça fazladır. Bunların yanı sıra, kromozomun replikasyonu sırasında, yan yana gelen iki DNA iplikçiğinde homolog bölgeler arasında çok azda olsa, homolog rekombinasyonların meydana gelebileceğini belirten araştırıcılar bulunmaktadır. Yukarıdaki ekstrakromozomal genetik elementler, hem kendi aralarında ve hem de bakteri kromozomu ile çeşitli tarzda rekombinasyonlar meydana getirerek kromozoma integre olabilirler. Bazı bakterilerde virulens faktörlerinin bir kısmı plasmidler tarafından kodlanmasına karşın (Örn, B. anthracis ve C. tetani 'nin toksin sen¤¤¤i), bir kısım bakteride de faj tarafından spesifiye edilir (C. diphtheriae ve C. botulinum toksin geni). E. coli başta olmak üzere, bir çok Gram pozitif ve Gram negatif mikroorganizmalarda virulens faktörlerinin en önemlilerinden birisi olan pilusların ve diğer virulens faktörlerinin bazıları yine plasmid, Transposon, ve fajlar tarafından kodlanmaktadırlar. Promotorların kuvvetinin artırılması transkript ve gen ürününün de artmasına yol açar. Bu nedenle kuvvetli promotorlardan rekombinant DNA teknolojisinde fazla yararlanılır. RNA veya DNA polimerase genlerindeki mutasyonlar da replikasyona ve genlerin ekspresyonlarına olumsuz yönde etkilerler. Ayrıca, virulens genlerinin ekspresyonuna, promotor bölgesinde oluşan mutasyonlar da tesir ederler. 2.07. Mikroorganizmaların Giriş Yolları ve Miktarı 1) Mikropların vücuda girmesi: Mikroorganizmaların hastalık yapabilmesindeki ilk basamak, vücuda girmekle başlar. Bunun için bazı giriş kapılarına (porantre) ihtiyaç vardır. Vücutta bulunan en önemli giriş kapıları ağız, yutak ve sindirim sistemi, burun, larinks ve trachea ve akciğerler, genital organlar, göz konjunktivası ve deridir. Salmonella, shigella, vibriolar, brusella ve tüberküloz etkenleri sindirim sisteminden girerek; Corynebacterium diphtheriae insanlarda boğazda yerleşerek toksin meydana getirir ve bu zehir vücuda yayılarak hastalık yapar. Hayvanlarda septisemik hemorajik karakterde seyreden pastörellozisin etkeni ekseriya yutak ve larinkste yerleşmiştir. Bünyede bir zayıflamanın olduğu hallerde hastalık meydana getirirler. Tüberküloz ve anthraks etkenleri solunum yolu ile bulaştıkları gibi deriden de geçebilir. Deriden, ayrıca, leptospira, brusella, anaeroblar, anthraks mikroorganizmaları da girebilirler. Çiftleşme ile, genital yolla, sifilis, N. gonorrhoea, brusella ve C. fetus bulaşabilir. Göz yolu ile leptospiralar, listerialar ve diğer mikroorganizmalar girerek hastalık yapabilirler. Yukarıda yapılan ayrım kesin bir durum göstermez. Yani bir mikrop birçok yollardan vücuda girerek hastalık yapabilir. Örn, brusella sindirim, deri ve çiftleşme ile; tüberküloz, deri, sindirim ve solunum; antraks basilleri deri, sindirim ve solunum yolu ile bulaşabilir. Çeşitli yollardan infeksiyon meydana getirebilen mikroorganizmaların yaptığı hastalığın klinik tablosu girdiği yere göre değişebilir. Örn, B. anthracis sporları solunum yolu ile alınmışsa, akciğer antraksı, deriden alınmışsa girdiği yerde püstül ve ödem (kasap çıbanı), tüberküloz mikrobu deriden girerse deri tüberkülozu, barsaktan girerse barsak ve solunum yolu ile alınırsa akciğer tüberkülozunu meydana getirir. C. tetani, deride bulunan derin ve kirli yaralarda yerleşerek ürer ve toksin meydana getirir. Bu toksin kana karışarak hastalık yapar. Botulismde ise, toksin ihtiva eden gıdaların alınması sonu barsak yolu ile zehirlenme olur. Mantarların çoğu da, deri, solunum ve sindirim sisteminden girerek mikozeslere neden olurlar. Mikroorganizmaların hastalık yapabilmeleri için, bunların uygun yolla girmeleri de gereklidir. Örn, S. typhi sindirim yolu ile alınırsa vücudu istila edebilir ve hastalık meydana getirebilir. Deriden girerse çok nadiren vücuda yayılabilir. Buna karşın grup A hemolitik streptokoklar deriden girerek yayılma kabiliyetine sahiptirler: F. tularensis, derideki yaralardan girerse lenf yumrularında lokalize olur. Kana geçip istila edemez. Bu durumda ölüm oranı %5 kadardır. Halbuki, aynı etken sokucu sinek veya keneler aracılığı ile dokulara kadar iletilirse septisemi meydana getirir ve %95 ölüme sebep olabilir. Aynı şekilde, tetanoz toksinleri sindirim sisteminden girerse hastalandıramaz. Neisseria gonorrhoea ağızdan bulaşamaz. Beyin, damar ve periton içine verilen mikroorganizmalar, diğer yollardan, daha çabuk hastalık meydana getirirler. Vücudu mikroplardan koruyan sistemlerden biri de deri ve mukozaların mikroplar üzerine olan inhibitör ve öldürücü etkileri çok önemlidir. Deri dokusu salgılarıyla birçok mikroorganizmaların ölmesine sebep olmasına rağmen, derideki kıl ve yağ folliküllerinden ve çok küçük yaralardan mikroplar girerek infeksiyonlar yapabilirler (S. aureus, streptokoklar ve korinebakteriler, leptospiralar, vs.). Solunum ve genital organlarda bulunan mukus salgılayan hücreler de mikropların mukoza hücrelerine yerleşmesine mani olur. Bazı mikroplar lizozim enziminin etkisiyle öldürebilirler. Fakat, buna rağmen yine buralardan mikroplar girebilirler. Göz yaşının da aynı şekilde, mikroplar üzerine olumsuz etkisi vardır. Fakat, göz konjonktivası yolu ile de mikroplar hastalık yapabilirler. Mide asiditesi bazı salmonellaları inhibe eder. Fakat, bu asiditenin bozulduğu zamanlarda mikroplar mideyi kolayca geçebilirler. Bazı mikroplar normal deri ve mukozadan geçemezler. Ancak, deride ve mukozada meydana gelecek çok ufak mikroskobik yaralar mikropların giriş kapısı vazifesini görürler. Deri üzerinde sokucu insektlerin açtığı yaralardan mikroplar kolayca girebilirler. Su ile fazla yumuşamış deriden leptospiralar ve brucellalar kolaylıkla geçebilirler. 2- Mikrobun dozu (miktarı): Vücuda porantrelerden giren mikroorganizmalar, bir infeksiyonu başlatabilecek miktarda, olmalıdırlar (MİD minimum infektif doz). Bu limitin altında girenler, vücudun hücresel ve humoral savunma sistemleri ile kolayca yok edilirler. Mikrop sayısı ne kadar fazla olursa, konakçının hastalanma şansı o derece artar. Hastalık yapma veya başlatma limiti mikropların virulensine ve konakçının duyarlılığına göre de değişir. Virulensi fazla olan mikroorganizmalar çok hassas konakçıya az sayıda girseler bile, bir infeksiyonu başlatabilirler. Pasteurella multocidae için güvercinler, antraks basilleri için fareler örnek verilebilir. Mikroplar girdiği yerde yerleşmesine, üremesine ve buradan çeşitli yollarla (kan, lenf ve sinir sistemi) dokulara yayılmasına invazyon kabiliyeti adı verilir. Enterobakterilerin invazyon kabiliyeti, fazladır. Buna karşılık, deride yerleşen streptokok veya stafilokoklar, genellikle, burada lokalize olurlar. Bazen bitişik dokulara yayılırlar. 3. Konakçıya Ait Faktörler 3.01. Bağışıklık Mikroorganizmalar ne kadar virulent olurlarsa olsunlar konakçı duyarlı değilse ve savunma mekanizmaları tarafından önleniyorsa infeksiyon meydana gelemez. Konakçının direncine etkileyen bir çok faktörler vardır. Bunlar yerine göre işbirliği içinde, konakçıyı korumaya çalışırlar. Ancak, bu savunma mekanizmaları bazen yetersiz kalmakta ve canlılar hastalanmaktadırlar. Bir hastalıktan iyileşen şahsın, aynı infeksiyona, genellikle, ikinci kez yakalanmadığı veya en azından, uzun bir süre direnç gösterdiği eskiden beri bilinmektedir. On birinci asırda Çinliler, çiçek hastalığı geçirenlerin hayat boyu bu infeksiyona tutulmadıklarını bilmekteydiler. Bu nedenle, iyileşmiş kişilerin, hastalarla ilgilenmelerinin ve onlara yardım etmelerinin bir sakınca yaratmayacağını belirtmektedirler. Bu görüşler hastalıkların nedeni üzerinde durulmaksızın ve bilinmeksizin, Edward Jenner’e kadar muhafaza edilmiştir. Bağışıklığın kurucusu olarak kabul edilen bu bilim adamı, sığır çiçeği alan bir şahsın, insan çiçeğine karşı bağışık olacağını ve hastalanmayacağını deneysel olarak göstermiş ve böylece aşılama ile immunitenin elde edilebileceğini kanıtlamıştır (1798). Bağışıklık genel anlamda, vücuda giren veya verilen yabancı substanslara (mikroorganizma, toksin, toksoid, protein, polisakkarid, kompleks yapıdaki moleküller, vs.) karşı vücudun bütün genel ve özel savunma mekanizmaları ile karşı koyması, direnç göstermesi, kendini koruması ve zararlı maddeyi elimine etmesi olarak tanımlanabilir. Bağışıklık, bu genel tarifi içinde vücutta, birbirlerini tamamlayan ve çok yakın ilişkide bulunan başlıca iki temel korunma mekanizması tarafından sağlanmaktadır. DoğaI Bağışıklık 1)Genetik faktörler 2)Fizyolojik faktörler 3)Primer savunma mekanizması 4)Sekonder savunma mekanizması Edinsel Bağışıklık 1)Aktif bağışıklık a)Doğal aktif bağışıklık b) Suni aktif bağışıklık 2) Pasif bağışıklık a)Doğal pasif bağışıklık b) Suni pasif bağışıklık 3) Adoptif bağışıklık 3.02. Doğal Direnç (Yapısal direnç, Kalıtsal direnç, Nonspesifik direnç, Doğal Bağışıklık) Canlıların yapısal (anatomik, fizyolojik, fiziksel, kimyasal, vs) ve kalıtsal karakterleri ile ilişkili olarak, dışardan giren patojenik, apatojenik etkenlere ve diğer substanslara yönelik olarak genel savunma mekanizması yardımı ile karşı koyması ve kendini koruması doğal direnç (doğal bağışıklık) kapsamı içinde bulunmaktadır. Genetik olarak kontrol edilen ve kalıtımla nesillere aktarılabilen bu tür direnci, ayrıca, destekleyen ve yardımcı olan bir çok sekonder faktörler de vardır. Doğal dirençte etkinliği olan başlıca faktörler aşağıda gösterilmiştir. Genetik Faktörler Doğal direnci oluşturan faktörlerin başında genetik nitelikte olanları bulunmaktadır. Yavrulara kalıtsal olarak aktarılan bu karakter türler, ırklar ve bireyler arasında bazı değişiklikler göstermektedir. 1) Türlere ait direnç: İnsanlarda rastlanılan kızıl, kızamık, boğmaca, kolera, kabakulak, tifo, gibi bir kısım hastalığa ait bakteriyel ve viral etkenler hayvanlarda hastalık oluşturmazlar. Kanatlıların bir çok viral hastalığı da (AE, LL, Marek, IB, ILT, EDS, gibi) insan ve diğer memeli hayvanlarda bozukluklar meydana getirmezler. Hayvan türleri arasında da türlere özgü hastalıklar vardır. Şöyle ki, At vebası hastalığı tek tırnaklılarda, sığır vebası hastalığı da çift tırnaklılarda görülür. 2) Irklara (soy) ait direnç: Aynı tür içinde bazı ırklar (soylar), türün, genelde duyarlı bulunduğu infeksiyonlara, değişik derecede hassasiyet gösterirler. Örn, koyunlar, genel olarak, B. anthracis ’e duyarlıdırlar. Ancak, Cezayir koyunları, bu infeksiyona daha fazla doğal bir direnç gösterir ve hastalığı almazlar. Merinos koyunları, Piroplasmosis ve deri hastalıklarına daha fazla yakalanırlar. İnsanlar arasında, Negrolar Tüberkulozis ve mantar hastalıklarına, Anglosaksonlar solunum sistemi infeksiyonlarına daha duyarlıdırlar. Tavuk yumurta lizozimi, strain B10 farelerinde supresyon oluşturmasına karşın, B10 A ırklarında ise antikor sen¤¤¤ini uyarmaktadır. Poli-L-lizin, strain 2 kobaylarda hücresel bir yanıt meydana getirmesine karşın, strain 13’lerde hiç bir immunolojik cevap oluşturmamaktadır. Leghorn ırkı yumurtacı tavuklar, S. gallinarum infeksiyonlarına dirençli oldukları halde, Newhampshireler ise çok duyarlıdırlar. 3) Bireylere ait direnç: Bireyler arasında da hastalıklara yakalanma yönünden bazı farklar vardır. Ancak, bu durum genetik faktörler kadar, diğer nedenlerin etkisi (şahısların konstitüsyonel özellikleri yanı sıra, kondisyonel durumları, beslenme, kendini koruma ve diğer faktörler) altında da oluşmaktadır. İnsanlar arasında bir hastalığa (Örn, Grip), erken veya geç yakalananlar, hiç hastalanmayanlar, çok hafif veya çok şiddetli geçirenler bulunmaktadır. Hayvanlar için de benzer durumlar vardır. 4)Hücrelere ait direnç: Canlılar arasında türlere ve ırklara ait dirençte, hücrelerin yüzeyindeki özel reseptörlerin rolleri fazladır. Eğer, hastalık, ajanları, hücrelere kendinin bağlanmasına yardımcı olan reseptörleri bulamazsa tutunamaz, kolonize olamaz ve üreyemezler. Bunun sonunda da hastalık oluşturamazlar. Bir vücutta bazı doku ve organlar, mikroorganizmalarını yerleşmesine çok daha fazla duyarlı olabilmektedir. Fizyolojik Faktörler Doğal direnci destekleyen yan faktörler arasında bazı fizyolojik özellikler de bulunmaktadır. Bunlar da, 1) Vücut ısısı: Normal koşullarda, ısısı yüksek (41-42°C) olan kanatlıların hastalıkları (bakteriyel veya viral), ısısı 37-38°C arası olan memelilerde görülmemektedir. Bunun tersi de mümkündür. Ancak, kanatlılar normal koşullarda B. anthracis ’ten ileri gelen infeksiyonlara yakalanmamalarına karşın, bu hayvanların tüyleri yolunduktan sonra belli bir süre 37°C de tutulurlarsa deneysel olarak infekte olabilirler. Soğuk kanlılardan olan balıkların ve diğer hayvanların hastalıkları da, sıcak kanlılara bulaşmamaktadır. 2) Yaş durumu: Yeni doğanlar ile çok yaşlılar, immun sistem fonksiyonlarının yeterince aktif olmamaları ve hücresel aktivite noksanlığı nedenleriyle, gençlere veya erginlere oranla, bir çok infeksiyonlara daha duyarlıdırlar. Ancak, maternal antikorlar yeni doğanlarda önemli koruyucu etkiye sahiptir. Bazı hastalıklar da gençler arasında, erginlerden daha fazladır. 3) Hormonlar: Hormonları normal çalışan bireyler, hastalıklara daha dirençli olmasına karşın, hormonal bozukluk hallerinde vücut duyarlı hale gelmektedir. Ayrıca, hormon tedavileri de, doz ve süre iyi ayarlanmazsa, vücut direncinde azalmalara yol açmaktadırlar. 4) Beslenme: Yeni doğanlar için çok gerekli olan kolostrum ve spesifik antikorlar yanı sıra vitamin, karbonhidrat, yağ, protein, mineraller ve bazı sitokinler (TNF-a, TGF-b, IL-1b, vs) yönünden oldukça zengindir. Bu nedenle, neonatallar için çok gerekli bir besini oluşturur ve hayatın ilk günlerinde çeşitli bakteriyel, viral ve mantar infeksiyonlarına karşı koruma sağladığı gibi direnci de arttırır. Dengeli beslenmenin çeşitli infeksiyonlara karşı korumada çok önemli rolü vardır. Yetersiz gıda ve iyi beslenememe vücudun direncini zayıflattığı gibi antikor yapımına da olumsuz yönde etkiler. 5) Diğer fizyolojik faktörler: Öksürük, tıksırık, barsak peristaltiği, urinasyon, defekasyon, burun akıntısı, deskuamasyon, solunum sistemindeki siliar aktivite vs. gibi fizyolojik olgular mikroorganizmaların dışarı atılmasında önemli rollere sahiptirler. Primer Savunma Mekanizması Bir çok önemli ve nonspesifik komponentin işbirliği ile gerçekleştirilen bu savunma sisteminin, dışardan girebilecek her türlü hastalık yapıcı ajanlara karşı vücudu korumada önemli rolü vardır. Konakçı duyarlı, çevresel koşullar uygun ve mikroorganizmalar da virulent olsalar bile, yine bu sistem bütün elementleri ile direnç göstererek etkenlerin girmesine, kolonize olmasına ve yayılmasına mani olmaya çalışır. Primer savunma mekanizması, genelde, vücut yüzeyinde ve mukoz membranlarda aktivite gösterdiğinden, buna aynı zamanda tam karşılığı olmasa bile, dış savunma sistemi de denilmektedir. Bu savunmada rolleri olan başlıca faktörler aşağıda bildirilmiştir. 1) Tüyler: Hayvanların derisi üzerinde bulunan yapağı, tüy, yün veya kıl örtüsü bir çok tehlikeli mikroorganizmanın vücuda girmesine mani olduğu gibi, derinin yaralanmasına ve bütünlüğünün bozulmasına da karşı koymaktadır. Bu örtü, ayrıca, deri ve vücudu, aşırı soğuk ve sıcaktan, mekanik, fiziksel, kimyasal diğer faktörlerin zararlı etkisinde de korumaktadır. 2) Deri: Sağlam derinin epitel örtüsü mikroorganizmaların girişini önleyen önemli ve iyi bir bariyerdir. Bu epitel katmanının yaralanmaması ve bütünlüğünün bozulmaması gereklidir. Birçok patojenik mikroorganizma sağlam deriden geçememektedir. Ancak, bazıları (leptospiralar, brucellalar, vs) su ile yumuşamış sağlam deriden girerek infeksiyon meydana getirebilmektedir. Deride oluşan her türlü mikroskobik veya makroskobik lezyonlar mikroplar için uygun birer porantredirler. Fakat, her mikroorganizmanın infeksiyon oluşturabilmesi için virulensi yanı sıra, vücuda uygun bir yoldan ve yeterli miktarda da girmesi gerekmektedir. Örn, Mycobacterium tuberculosis ve B. anthracis insanlara deriden girerse, burada lokalize olabilir ve generalizasyon meydana gelmeyebilir. Stafilokok ve streptokoklar için de benzer durum söz konusudur. Deride bulunan ter ve yağ bezlerinin salgıları, bir çok patojenik mikroorganizmanın deride lokalize olmasına ve deriden içeri girmesine mani olurlar. Bu salgılar, mikroorganizmalar üzerine inhibitör veya öldürücü etkiye sahiptirler.Yağ bezi salgısının içinde bulunan doymamış uzun zincirli yağ asitleri (oleik asit gibi) hem deri yüzey pH’sını (3.5-5.5) düşürür ve hem de mikroplar üzerine antibakteriyel bir etki yapar. Sebumda bulunan kaproik ve kaprilik asitler bakterisidal bir etkiye sahiptirler. Terdeki laktik asit ve lizozim de benzer tarzda etkide bulunurlar. Terin içinde bulunan tuz konsantrasyonu da yüzeyde yüksek bir ozmotik basınç meydana getirir. Deri üzerindeki yerleşik mikrofloranın antagonist etkisi birçok patojenik etkenin kolonize olmasını önler. Deride komensal olarak bulunan C. acnea ’nin, özellikle S. aureus ve S. pyogenes gibi mikroorganizmalar üzerine bakteriostatik etkisi vardır. Deskuamasyon da deri üzerinde yerleşik mikroorganizmanın bir kısmının atılmasında büyük bir etkinlik gösterir. Derinin yıkanması veya dezenfekte edilmesi, folliküllere ve yağ bezlerine kadar girmiş olan etkenleri tam olarak elimine edemez. Derinin yukarıda belirtilen koruyucu etkinliği yanı sıra, immunolojik yönden de savunmaya katkısı olmaktadır. Özellikle, antijen işleyen ve sunan dendritik karakterdeki makrofajların (Langerhans hücreleri), T-hücrelerine (Th-lenfositleri) antijen sunmada ve salgıladıkları İL-1 ile de B- ve T- hücrelerini uyarmada önemli rolleri bulunmaktadır. 3) Mukoz membranlar ve salgıları: Sağlam mukozal yüzeyler, genellikle, bazı mikroorganizmalar için uygun giriş kapıları olarak düşünülmemektedir. Mikroorganizmaların içeri girmeleri için, önce mukus bariyerini geçmesi ve sonra da epitel hücrelere temas ederek onlara tutunması gerekmektedir. Eğer mukozal yüzeylerde, çeşitli nedenlerden ileri gelen porantreler varsa, mikropların girişi çok daha kolay olur. Vücutta bazı bölgelerdeki mukoz membranlar (ağız, yemek borusu, mide) çok katlı epitel hücrelerden oluştuğundan hastalık ajanlarına girişlerine karşı daha fazla direnç gösterirler. Solunum, sindirim ve ürogenital sistemlerin mukozaları üzerinde mukoid salgı daha fazla bulunmaktadır. Bunların koruyucu etkisi oldukça fazladır. Mukoz membranların yüzeyini örten mukoid tabaka (Mukus, MA: 530000) ve bunun devamlı hareket halinde olması mikropların hücrelerle direk temasını zorlaştırır. Birbirlerine disülfid bağlarla birleşmiş bir glikoprotein yapısında olan mukus, ayrıca, siliar aktivite nedeniyle de bir hareket hali gösterir. Ancak, piluslara sahip olan etkenler ile hareketli patojenik mikroorganizmalar bu mukoid tabakayı bazı noktalardan kolayca geçerek epitel hücrelerine ulaşabilirler. Ayrıca, mukoid katmanın zayıf olduğu yerler de bulunduğundan, buralardan hareketli veya hareketsiz bir çok mikroorganizma epitel hücrelerine tutunabilirler. Bu salgı tabakasının içinde bulunan bazı antibakteriyel substanslar (lizozim, sİgA, enzimler, mikrobial flora, fibronektin, vs) birçok etkenin kolonize olmasını önleyecek bir karakter gösterir. Bu aktivitede sİgA’ların özel bir yeri ve önemi vardır. Bazı mikroorganizmalar (N. meningitidis, N. gonorrhoea, H. influenzae, S. pneumonia, vs) salgıladıkları bazı maddelerle (sİgA protease), özellikle, sİgAl’in yapısını bozarak etkisiz hale getirir. Bu enzim, immunglobulini Fab- ve Fc-porsiyonlarına ayırır. Bazı bakteriler de (Bacterioides asaccharolyticus, B. melaninogeniscus) sİgAl, sİgA2 ve İgG yi ayrıştıracak enzim sen¤¤¤lerler. Barsaklarda yerleşik bulunan anaerobik mikroorganizmalardan kaynaklanan yağ asitleri, bazı salmonella ve shigella türlerinin üremelerini inhibe ettiği belirtilmiştir. Glisin ve taurin bileşikleri halinde sen¤¤¤lenen safra tuzlarının, barsakta anaerobik mikroorganizmalar tarafından kompleks safra kompozitlerine dönüştürülmesi, Bacteroides fragilis ve C. perfringens, laktobasil ve enterobakterilerin üzerine inhibitör etkisi bulunmaktadır. 4) Mikrofloranın etkinliği: Vücutta mukozal yüzeylerden (solunum sistemi, sindirim sistemi, ürogenital sistemlerin mukozaları ve göz konjunktivası yerleşik olarak bulunan ve bu yüzeylere daimi mikroflorasını oluşturan çeşitli tür ve sayıda mikroorganizmalar bulunmaktadır. Bunlar birbirleriyle kompetasyon (rekabet) halinde yaşayarak bir denge kurmuşlardır. Bu duyarlı denge, mikroorganizmaların salgıladıkları çeşitli türden antimikrobial substanslarla (bakteriyolisinler, lizozim, diğer enzimler, sIgA'lar, yağ asitleri, safra tuzları, vs) birbirlerinin üremelerinin belli limitler içinde kalmasını sağlarlar. Ayrıca dışardan gelen patojenik ve apatojenik etkenlerin de yerleşmesine mani olurlar. Bu dengenin bozulduğu durumlarda bazıları üreyerek konakçısını hastalandırabilirler.

http://www.biyologlar.com/infeksiyonun-mekanizmasi

Virusların Morfolojik ve Kimyasal Özellikleri

İnsan ve hayvanlarda infeksiyon ve/veya hastalık oluşturan viruslar (genel bir terim olarak, hayvan virusları) morfolojik özellikleri yönünden fazla çeşitlilik göstermemekle beraber, elektron mikroskopik muayenelerde olgun viruslarda bazı farklı formlar gözlemlenmiştir. Normal ışık mikroskopları ile görülebilen (1000 x veya 1500 x büyütmeli) Poxviridae familyası virusları hariç tutulursa, diğer virusların morfolojik karakterleri (olgun virus partiküllerinin genel görünümü ve yapıları) hakkında ayrıntılı bilgiler ve görüntüler, ancak, elektron mikroskopların keşfinden ve viroloji alanında kullanılmaya başlamasından sonra elde edilebilmiştir. Negatif boyama, X- ışınları difraksiyon, krioelektron mikroskopi, elektron mikroskop (TEM, SEM) ve diğer tekniklerin uygulanması, virusların daha net, ayrıntılı ve açık görüntülenmesine çok büyük katkısı olmuştur. Yapılan çalışmalarla virusların başlıca 4 morfolojik form gösterdikleri belirlenmiştir. 1) Yuvarlak (sferik) formlar: İkosahedral simetriye sahip bazı DNA (Adenoviridae, Herpesviridae, Papovaviridae, Iridoviridae, Hepadnaviridae) ve RNA virus familyaları (Birnaviridae, Caliciviridae, Picornaviridae, Reoviridae ve diğer bazı familyalar) ile helikal simetriye sahip olanlar (Arenaviridae, Bunyaviridae, Coronaviridae, Orthoymxoviridae, vs) bu grup içinde yer almaktadırlar. 2) Flamentöz formlar: Filoviridae virusları (Ebola ve Marburg virusları) flamentöz morfolojik bir özellik gösterirler. 3) Mermi benzeri formlar: Rhabdoviridae virusları (kuduz virusu) mermi benzeri formlara sahiptirler. 4) Briket (tuğla) benzeri formlar: Poxviridae virusları (variola, vaccinia, Cowpox, Orf, BPS, Molluscum contagiosum, vs) bu gruba dahildirler. Her ne kadar hayvan virusları başlıca 4 temel form gösteriyorlarsa da sferik olanlar daha fazla familya ile temsil edilmekte ve diğer 3 grup ise birer familyada bulunmaktadırlar. Bakteri viruslarında (bakteriyofajlar): Bradley klasifikasyonunda, A,B, ve C grupları) rastlanan kuyruklu formlar, hayvan viruslarında görülmemektedir. Yuvarlak DNA viruslarının boyutları 18-300 nm (nanometre) arasında değişmektedir (parvoviruslar, 18-26 nm ve iridoviruslar, 125-300 nm); RNA virusları, 25-300 nm (picornaviruslar, 25-30 nm ve paramyxoviruslar, 150-300 nm); Filoviruslar, 80 x 79-970 nm; rhabdoviruslar, 75 x 180 nm ve poxviruslar, 140-170 x 230-350 nm arası ölçülere sahiptirler. Aynı familya içinde bulunan cinslere ait virusların boyutları arasında farklar bulunmaktadır. Her ne kadar virusların bireysel formlarını ışık mikroskopları ile görüntülemek olası değilse de (poxvirusları hariç), ancak, bunların hücre içinde ürerlerken veya üredikten sonra oluşturdukları intrasitoplasmik veya intranukleer inklusiyon cisimciklerini görmek mümkündür. Işık mikroskopları ile kolayca gözlemlenen bu cisimcikler, ya sadece intrasitoplasmik (çiçek virusu, kuduz virusu, vs) veya sadece intranukleer (adenoviruslar, herpesviruslar, papovaviruslar, vs) oluşabilecekleri gibi her iki bölgede de aynı anda lokalizasyon gösterebilirler (CMV, kızamık virusu). Hayvan virusları, elektron mikroskopla saptanabilen başlıca 3 temel yapısal karakter göstermektedirler. 1) Kapsomerler ve kapsid 2) Zarf 3) Nukleik asitler (viral genom, DNA ve RNA) 01.01. Kapsomerler ve Kapsid Hayvan viruslarının genetik materyallerinin (DNA ve RNA) etraflarında belli sayıda ve birbirleri ile non kovalent bağlarla birleşmiş protein alt üniteleri (kapsomerler) bulunmaktadır. Kapsomerler, ikosahedral simetriye sahip viruslarda, belli bir düzen içinde yanana gelerek birleşir ve böylece genomun etrafında proteinden bir muhafaza oluşturur ki buna kapsid adı verilir. Helikal simetrili viruslarda ise, kapsomerler, viral nukleik asitin üzerinde yan yana gelmiş ve genoma bağlanmış durumdadırlar. Viruslar, kapsid simetrilerine göre başlıca iki kısma ayrılmaktadırlar. Ancak, bu iki temel gruba uymayan poxvirusları 3. bir bölüm içinde toplanmış ve böylece hayvan virusları 3 kısımda incelenmektedirler. 1) İkosahedral (kübik) simetri 2) Helikal (sarmal) simetri 3) Kompleks yapı 1)İkosahedral (kübik) simetri: Kapsomerlerin yan yana gelerek oluşturdukları düzenli formlar arasında kübik simetrinin özel bir önemi bulunmaktadır. İkosahedral simetri gösteren bir kapsid (isometrik kapsid), 12 köşe, 20 eşkenar üçgen yüzey ve 30 kenardan oluşmaktadır. Kapsidin köşelerinde yer alan her bir kapsomer 5 tane komşu kapsomerle (pentamer, penton), kenar ile yüzeylerde bulunan her bir kapsomerde 6 tane komşu kapsomerle (hekzamer, hekzon) çevrilmiştir. Bunlar bazı viruslarda aynı ve bir kısımlarında ise farklı yapıda polipeptidlerden oluşmaktadır. Adenoviruslarında da köşelerden çıkan, kısa ve uçları şişkince (tokmak benzeri) uzantılar (fiber) bulunmaktadır. Protein karakterinde olan fiberler, virusun hücrelere tutunmasında görev alırlar. Viruslara şekil veren, koruyan, viral genomun hücre içine girmesine yardımcı olan kapsid, protein yapısında olması nedeniyle de çok iyi bir antijeniteye sahiptir. Kapsidlerin eşkenar üçgenlerinin kenarlarında eşit sayıda kapsomer bulunur. Üçgenlerin her biri de kendi içinde daha küçük üçgenlere ayrılabilir üçgenleşme (triangulasyon). Eşkenar üçgenlerin bir kenarındaki kapsomer sayısı (n) bilinirse, kapsiddeki toplam kapsomer sayısı (N) hesaplanabilir. Örn, adenoviruslarında her bir kenarda 6 kapsomer bulunur. Buna göre kapsidin toplam kapsomer sayısı aşağıdaki formül yardımı ile saptanabilir. N = 10 (n-1)2 + 2 N = 10 (6-1)2 + 2 = 252 Kübik simetrili viruslarda nukleik asitler, kapsidin orta kısmında lokalize olmuştur. Genom ile kapsidin oluşturduğu birliğe, genellikle, nukleokapsid adı verilmektedir. İkosahedral simetrili viruslara, hem DNA ve hem de RNA virus familyalarının bazılarında rastlanmaktadır. DNA viruslarından herpes ve hepadnavirusları, ile RNA viruslarından togavirus ve flaviviruslarının etrafında (kapsidin dışında) diğer bir muhafaza daha bulur(zarf). Virusların protein yapısındaki kapsidlerinde, farklı familyalara ait olanlarınki ile kros reaksiyon vermeyen ve vücutta spesifik immunolojik yanıtı stimule eden tip spesifik protein molekülleri vardır. Bunlar, SDS-PAGE'de (sodium dodecyl sulfate - polyacrylamide gel electrophoresis) molekül ağırlıklarına göre yapılan separasyonlarda jel üzerinde farklı aralıklarla oluşan bant düzenleri virus familya ve cinslerini belirlemede önemli rol oynarlar. Ayrıca, penton ve hekzonlarda veya aynı kapsid üzerinde değişik yerlerinde lokalize olmuş spesifik antijenik protein molekülleri bulunabilir ve bunlar teşhiste önemli fonksiyonlara sahiptirler. Adenoviruslarının fiberleri de aynı şekilde spesifik antijenik uyarım yapabilecek güçtedirler. Reovirusların kapsidin etrafında iki adet konsantrik ve proteinden yapılmış muhafaza bulunmaktadır. İki muhafazalı olan virion infeksiyöz bir özellik taşır. 2) Helikal (sarmal) simetri: Helikal simetrili viruslara RNA virus familyalarında rastlanmaktadır. DNA viruslarında bu form bulunmamaktadır. Sarmal simetrili viruslarda spiral formda bulunan genetik materyalin üzerinde, bir tür polipeptidden oluşan, oval veya yuvarlak şekilli kapsomerler yan yana gelerek genomla birleşmişlerdir. Böylece, nukleik asit (RNA) kapsomerlerle birlikte helikal (spiral) bir form alır (helikal simetri). Kapsomerler, RNA genomla birlikte olduklarından da helikal nukleokapsid özelliği taşır. Helikal simetri gösteren hayvan viruslarının nukleokapsidlerinin etraflarında ayrıca sellüler lipidlerden zengin bir zarf bulunur (zarflı viruslar). Nukleokapsid bazı viruslarda bu zarf içinde ikincil kıvrımlar (yumak gibi) yapabilir. Hayvan viruslarının aksine, bitki viruslarından olan, tütün mozaik virusu (TMV) zarf taşımaz (zarfsızdır). TMV, sert ve nukleokapsid uzun (çomak gibi), düz ve RNA etrafında, her biri tek bir polipeptidden oluşan, yaklaşık 2130 oval kapsomer bulunur. 3) Kompleks yapı formu: Yukarda açıklanan temel iki kapsid simetrisine uymayan Poxviridae familyası virusları kompleks yapı formu grubu içinde incelenmektedirler. Böyle yapıya sahip viruslarının yüzeylerinde tübüler elementler bulunur. Çiçek viruslarında, DNA karakterindeki viral genom ortada ve bikonkav bir lokalizasyon gösterir. Ayrıca, orta kısımlarda da lateral cisimcikler yer almışlardır (orthopoxvirusları). Parapoxviruslarının yüzeylerinde çapraz strüktürler bulunur. Poxviruslarının etraflarında lipidden zengin zarf vardır. Virusların başlıca yapısal formları yandaki şekilde gösterilmektedir. 01.02. Zarf Bazı DNA (herpesvirusları, hepadnaviruslar, poxvirusları) ve RNA virusları (arenavirusları, bunyavirusları ve diğerleri) nukleokapsidlerinin etraflarında, viruslar hücrelerden tomurcuklanarak olgunlaştıkları sırada hücreye ait membranlara sarılarak dışarı salınırlar. Bu nedenle de zarfın yapısı, hücre membranlarının (sitoplasmik membran, nükleer membran, endoplasmik retikulum) kimyasal yapısı ile çok büyük benzerlik gösterir. İki katmanlı (bilayer) olan zarf, hücreler tarafından kodlanmasına karşın, zarfta bulunan peplomerler (glikoprotein yapısında, spike) ise viruslar tarafından spesifiye edilirler. Tomurcuklanarak hücrelerden çıkan zarflı viruslar hücrelere zarar vermezler ve hücreler normal yaşamlarını sürdürürler. Diğer bir ifade ile, hücrelerde morfolojik değişiklikler (sitopatik efektler, CPE) yapmazlar. Ayrıca, böyle viruslar, persistent infeksiyonlara yol açabilirler. Buna karşın hücre içinde olgunlaşan bazı viruslar da hücrelerde parçalanma (sitolizis) yaparak dışarı çıkarlar. Bilayer zarfın yüzeyinde lokalize olan ve viruslarca kodlanan peplomerler (spike; hemaglutinin, neuraminidaz, F-proteini), protein ve glikoprotein yapısında olduklarından da iyi bir antijeniteye sahiptirler. Vücutta, spesifik immunolojik bir yanıt oluştururlar. Peplomerler, elektron mikrografide çıkıntılar halinde görülürler. Bunlardan ayrı olarak ta bazı virusların (rhabdoviruslar, reoviruslar, orthomyxoviruslar, vs) zarflarının iç yüzeylerinde ve zarfın sağlamlığını destekleyen nonglikozile matriks proteini (M proteini) yer almaktadır. Viruslarda kapsid ve zarfın çok önemli fonksiyonları bulunmaktadır. Bunlardan bazıları aşağıda belirtilmiştir, a) Kapsidler ve zarflar, virusları, hem hücre içi (nukleazlardan) ve vücut içi antiviral maddelerden ve hem de vücut dışı fiziksel, kimyasal ve diğer virusidal faktörlerin zararlı etkilerinden de korurlar, b) Kapsidler ve zarflar (peplomerler), protein ve glikoprotein yapısında olduklarından ve virus grupları arasında farklı kimyasal özellik taşıdıklarından, vücutta spesifik bağışıklığı uyararak özgül antikor sentezini sağlarlar, c) Kapsidler ve zarflar, hücre yüzeylerindeki spesifik reseptörlere bağlanmada önemli rol oynarlar ve virusların infeksiyon oluşturmasının veya hücrelere girişinin de ilk basamağını sağlarlar, d) Kapsidler ve zarflar, virusların güvenli olarak sitoplasmik membranı geçmesini ve hücre içine (sitoplasmaya) ulaşmasına yardımcı olurlar, e) Kapsidler ve zarflar, virusların morfolojik özelliklerini belirlemede de fonksiyoneldirler, f) Kapsidler ve zarflar (peplomerler), vücutta oluşan spesifik antikorların tanınmasında ve bunlara bağlanmada ve antikor-antijen interaksiyonlarında önemli görevlere sahiptirler. g) Bazı poxvirusları hariç tutulursa, zarfın bütünlüğü infektivite için gereklidir. Zarflı viruslarda, glikoprotein yapısında olan peplomerlerin yanı sıra Transport kanal proteinlerinin varlığı da bildirilmektedir. Bunlar, membranın (zarfın) permeabilitesinde değişiklikler yapmakta, virionun internal ortamını modifiye etmekte ve virionun olgunlaşmasına katkıda bulunmaktadırlar. 01.03. Viral Nukleik Asitler (viral genom, DNA ve RNA) Virusların genetik yapılarını oluşturan nukleik asitler (viral genom), deoksiribonukleik asit(DNA) veya ribonukleik asit (RNA)lerden sadece birinden oluşur. Diğer bir ifade ile, virionda ya DNA veya RNA'lardan sadece biri vardır ikisi birden bulunmamaktadır. Bunlara karşın, bakterilerin genetik materyallerini hem DNA ve hem de RNA oluşturur. Ancak bunlardan mRNA'da genetik bilgiler bulunur. Diğer RNA'lar (tRNA ve rRNA) nongenomiktirler. Viral genom, hücre içinde kendi replikasyonunda fonksiyonu olan enzimlerden bazılarının kodlarına sahip olmasına karşın, gerekli diğer enzimleri, makromolekülleri, replikasyon ve ekspresyon mekanizmalarını, içinde üredikleri hücrelerden sağlarlar ve yararlanırlar. Bazı nukleik asitler, hücrelere girdiklerinde, infeksiyonu başlatabilir ve infeksiyöz yeni nesiller oluşturabilir. Buna karşın, bir kısım viruslar da, genetik informasyonların hemen hepsi bulunduğu halde, viral genom infeksiyöz değildir. RNA viruslarında, viral genom, eğer negatif (sens) polariteli ise, veya çift iplikçikli ise, bunlardan pozitif polariteli mRNA( +mRNA)'nın meydana gelebilmesi (transkripsiyonu) için viriona bağımlı transkriptaz enzimine gereksinim vardır. Bazı viruslarda da, transkripsiyonda sellüler transkriptaz kullanılır. Retrovirusların pozitif polariteli iki molekül tek iplikçik RNA'ları infeksiyöz bir özellikte değildir. Bu virusların ancak, proviral çift iplikçikli DNA'ları hücre genomuna integre olduktan sonra replikasyonları başlar. Retroviruslar hariç, diğer virusların genomlarında, her genin sadece bir kopyası bulunur. Viral genom, taşıdıkları genetik materyal türü yönünden başlıca iki kısma ayrılırlar. 1) Deoksiribonukleik asit (DNA): Bütün DNA viruslarında tek bir molekül genom bulunur. Bu da ya tek iplikçikli (ssDNA, parvoviruslar) veya çift iplikçikli (dsDNA), lineer veya sirküler bir özelliğe sahiptirler. Bunlar hakkında ayrıntılı bilgiler tablo 44.2 gösterilmiştir. Papovaviruslarında sirküler olan dsDNA, genellikle, süpersarmal (süperheliks) bir form gösterir. Çift iplikçikli ve sirküler hepadnaviruslarında DNA iplikçiklerinden biri diğerinden daha kısadır ve bunu bağlı olarak ta genom kısmen tek iplikçikli bir özellik taşır (ss/dsDNA). Poxvirusların lineer iki iplikçiğinin uçları birbirlerine kovalent bağlıdır ve denatürasyon durumunda sirküler tek iplikçik form oluşmaktadır. Lineer çift iplikçikli bazı herpesviruslarında genomun sonunda tekrarlanan sekanslar vardır. Adenoviruslarında, terminal tekrarlar birbirlerine ters oriyentasyon gösterirler (inverted terminal repeat, ITR). Parvoviruslarında da uçlarda palindromik sekanslar bulunur ve bunlar bir saç tokası görünümü alabilmektedirler. Terminal strüktürler yapışkan uçlar oluşturmaları yönünden de önemlidir. DNA viruslarında, bazı RNA viruslarında rastlanan segment oluşumu, saptanamamıştır. Bazı DNA virusları, kendi nukleik asitlerin sentezinde önemli rolleri olan proteinlerin (özellikle, enzimlerin) kodlarını taşırlar. Örn, hepadnaviruslar DNA'ya bağımlı DNA polimeraz ve poxvirusları da çok sayıda (polimeraz, nukleertopoizomeraz, fosfohidrolaz, vs gibi enzimlerin kodlarına sahiptir. DNA viruslarında genom büyüklüğü, küçük DNA viruslarında (parvoviruslar) 4-5 kb (MA: 1.5-2.2 x 106) ve büyük DNA viruslarında (poxvirusları) 130-280 kbp (MA: 130-200 x 106) arası bir varyasyon gösterir. Genellikle, 1 kb veya 1 kbp uzunluk, ortalama büyüklükte bir proteini kodlayacak bilgilere sahip olduğu kabul edilir. Bu nedenle de genomları 4-200 kb uzunlukta olanlar hem 4-200 gene ve dolayısıyla da 4-200 proteini kodlayabilecek kapasiteye sahip olmaktadırlar. Ancak, kodlamayan sekanslar (intron), tekrarlanan baz sıraları ve diğer nedenler göz önüne alınırsa, yukarıdaki görüş pek gerçekleşememektedir. Poxvirusları hariç tutulursa, DNA viruslarının hemen hepsi ikosahedral simetriye sahiptirler. ds : Çift iplikçik Jawetz, 1998;Ustaçelebi, 1993;Fenner, 1993, Akan, 1994 ss : Tek iplikçik + : Pozitif polarite (+ sens) - : Negatif polarite (- sens) RT: Reverse transkriptaz 2) Ribonukleik asit (RNA): RNA karakterinde genoma sahip viruslar, nukleik asitlerinin yapısal özellikleri yönünden, DNA viruslarından daha komplike bir durum gösterirler. Bunlar da, tek veya çift iplikçikli, lineer, segmentli ve segmentsiz bir yapısal organizasyona sahiptirler. RNA viruslarında sirküler genom bulunmamaktadır: Retroviruslarında genom, iki adet tek iplikçik ve pozitif polariteli RNA molekül yapısındadır. Bazı virus familyalarındaki (Bunyaviridae, Orthomyxoviridae, Reoviridae, vs) viruslarda bulunan segmentlerin her biri ayrı bir gen olduğu ve segmentlerin birbirlerinden tam ayrı olmadığı ve birbirlerine non kovalent bağlarla birleştiği kabul edilmektedir. RNA viruslarında genom hem ikosahedral ve hem de helikal simetri gösterir. Tek iplikçik RNA viruslarından picornaviruslar ve caliciviruslar dışındaki, ssRNA taşıyan virusların etraflarında lipidden zengin bilayer bir zarf bulunur. ssRNA virusları, viral nukleik asitlerinin polarite durumlarına göre pozitif (+) veya negatif (-) polarite (sens) olmak üzere iki kategoriye ayrılmaktadırlar. Eğer RNA hücre içinde mRNA fonksiyonuna sahipse, pozitif polariteli (+) RNA ve eğer böyle bir etkinliği bulunmuyorsa negatif polariteli olarak (-) RNA olarak kabul edilir. Viral RNA'nın (+) polariteli olduğu durumlarda, genomun 3'-ucu, genellikle, poliadenilatlı (pol AAA....) bulunmaktadır (örn, caliciviruslar, coronaviruslar, picornaviruslar, togaviruslar); bazılarının 5'-ucu ise kepli (cap)'dir (7-metil guanosin). Örn, coronaviruslar, flaviviruslar, togaviruslar, vs). Picornavirusları ve caliciviruslarda, RNA'nın 5'-terminusunda protein molekülü vardır. RNA viruslarında replikasyonda görev alan bazı enzimlerin kodları yer almaktadır. Örn, retroviruslarında, RNA'ya bağımlı DNA polimeraz; orthomyxovirusları, paramyxo-filo, bunya, reo ve arenaviruslarında, RNA'ya bağımlı RNA polimeraz enzimi gibi. RNA viruslarının genom büyüklüğü, 7,5 kb (picornavirusları, MA: 2.3-2.8 x 106) ile 27-33 kb (coronaviruslar, 7 x 106) arasında değişmektedir. 02. Virusların Kimyasal Yapıları Olgun bir virus partikülü, her ne kadar bir bakteri kadar zengin ve çeşitli kimyasal komponentlere sahip değilse de duyarlı organizmaya girdiklerinde değişik derecede (virusa ve konakçıya bağlı olarak) immunolojik bir yanıt oluşturabilecek moleküllere ve kompleks yapılara sahip bulunmaktadırlar. Bu nedenle de, viruslar, immunolojik özellikleri bakımından, bakterilerden hiç de gerilerde değildir ve hatta daha da önde oldukları söylenebilir. Virusların kimyasal yapılarını oluşturan başlıca komponentler hakkında aşağıda kısa ve özlü bilgiler verilmektedir. 02.01. Viral Proteinler Virusların yapılarında bulunan proteinler (viral proteinler) başlıca iki karakter taşımaktadırlar. 1) Yapısal (strüktürel) proteinler: Bu tür proteinler virionun bir çok bölgesinde lokalize olmuşlardır. Bunlardan, kapsid proteinleri, bazı DNA ve RNA viruslarında kapsidi oluşturan protein alt ünitelerinin (kapsomerler) yapısında bulunurlar ve çok iyi immunojenik aktiviteye sahiptirler. Kapsid proteinleri, bir virionun yüzeyinde, değişik karakterlerde ve lokalizasyonlarda olabilirler (VP1, VP2, VP3......,gp,....). Helikal simetrili viruslarda ise, genomla birleşik olan kapsomerler, nukleokapsidi oluştururlar. Burada da kapsomerlerin yapısı yine proteinden meydana geldiğinden antijenik bir özellik taşır. Yapısal proteinlerin bazıları da virusun bağlanma proteinlerini (ligand) oluştururlar. Zarflı viruslarda zarfın yapısında bulunan proteinler (zarf proteinleri) virus tarafından kodlanan peplomerlerde lokalize olmuşlardır. Peplomerlerde virus tarafından kodlanan peplomerlerde lokalize olmuşlardır. Peplomerlerde (spike), başlıca hemaglutinin, neuraminidase ve F-proteinleri bulunmakta ve bunlar, hücre yüzeylerinde yerleşik olan spesifik reseptörlerle bağlanabilen ligandları oluştururlar. Protein ve glikoprotein özelliği taşıyan bu moleküller de çok iyi antijenik karaktere sahiptirler. Hemaglutininler (trimer molekül) genellikle, hem alyuvarlara bağlanarak hemaglutinasyon fenomenine neden olurlar ve hem de hücrelere bağlanmada etkin ligandları oluştururlar. Neuraminidase (tetramer molekül) ise, hücre yüzeylerinde lokalize olan reseptörlerin yapısındaki oligosakkaridlerdeki sialik asidi hidrolize ederek bunun aktivitesine mani olur ve virusun bağlantısını çözerek serbest kalmasını sağlar (elüsyon). Bu nedenle neuraminidaz "reseptör parçalayan enzim" olarak tanınmaktadır (parapoxvirusları, orthopoxviruslar ve diğerleri). Virusların hücre içlerine girmesinde bu olgunun önemi fazladır. F-proteini (füsyon proteini), bu moleküller, hücrelerin bir araya gelmesini sağladığı gibi, hücre membranları ile de interaksiyona girerek zarfın membranla bütünleşmesinde de önemli rol oynar ve nukleokapsidin sitoplasmaya girişini kolaylaştırır. Zarflı olmasına karşın, Coronaviridae ve Herpesviridae viruslarındaki peplomerlerin etkinliği, Orthomyxoviridae ve Paramyxoviridae virusları kadar değildir ve oldukça zayıftır. Bazı zarflı viruslarda da (rhabdoviruslar, reoviruslar, orthomyxoviruslar, vs) yapısal bir karakter taşıyan ve zarfın iç yüzünde lokalize olan nonglikozile matriks proteinleri (M-proteinleri) bulunmaktadır. Viruslara şekil vermede rollere sahip olan M-proteinlerine Arenaviridae, Bunyaviridae ve Coronaviridae familyası virusların da rastlanmamıştır. 2) Yapısal olmayan (non strüktürel) proteinler: Bu proteinler, genellikle, viruslar tarafından kodlanmakta olup enzim karakteri göstermektedirler. Bunlar, virusların hücre içinde replikasyonları ve transkripsiyon regulasyonunda görev almaktadırlar (transkriptaz, revers transkriptaz, erken gen proteinleri ve diğerleri). Poxviridae familyası virusları kodladığı proteinleri bakımından oldukça zengindirler. Retroviruslar da revers transkriptaz enziminin kodlarına sahiptirler. 02.02. Lipidler Bazı DNA (Herpesviridae, Hepadnaviridae, Iridoviridae) ve RNA virus familyalarında (Arenaviridae, Bunyaviridae ve diğerleri) nukleokapsidlerin dışında yer alan ve hücre orijinli olan zarflar genellikle lipidlerden zengindirler. Çünkü, zarflar, viruslar, hücre membranlarından (sitoplasmik membran, nükleer membran, endoplasmik retikulum) çıkarlarken (olgunlaşma sırasında) alırlar. Bu nedenle de zarfın kimyasal yapısı ile hücrelerinki arasında çok yakın bir benzerlik bulunmaktadır ve bunlar hücre tarafından kodlanırlar. Zarflarda bulunan lipidler, viruslara göre değişmek üzere, hücre kuru ağırlığının %20-35'i kadar olabilmektedirler. Herpes viruslarının zarfları, hücrelerin nükleer membranları, orthomyxovirus ve paramyxovirusların zarf lipidleri de sitoplasmik membranların kimyasal yapıları ile özdeştirler. Lipidlerin yapısında fosfolipid, kolesterol, nötral yağlar, trigliseridler, glikolipidler, vs. bulunmaktadır. Virusların etrafında bulunan zarfların lipid kompozisyonları ve moleküler yapıları, virus türlerine ve ayrıca, içinde üredikleri hücreler (özellikle, olgunlaşarak çıktıkları membranların yapısına) göre değişiklik göstermektedir. Hatta, aynı tür virusun zarf lipid kompozisyonu, üredikleri hücreler farklı ise, değişik yapısal karakter gösterebilir. Zarflar, genellikle iki katmanlıdır (bilayer). 02.03. Karbonhidratlar Karbonhidratlar, virusların değişik bölgelerinde lokalize olmuşlardır. Virusların genetik materyallerinde (DNA ve RNA) pentoz şekerleri bulunmaktadır. DNA viruslarında 2-deoxy D-ribose olan şeker, RNA viruslarında D-ribose molekülü halindedir. Bu durumları ile de, genoma ad verirler (DNA ve RNA gibi). Karbonhidratlar, genomun yapısındaki bazlar ile fosfat molekülleri arasında bağ kurarlar. Şöyle ki, pirimidin bazlarında, şekerin 1 no’lu karbon atomu ile bazın 3 no’lu nitrojeni ve pürin bazlarında da şekerin 1 no’lu karbon atomu ile, bazın 9 no’lu nitrojeni arasında beta glikozid bağları ile ve diğer taraftan da pentoz şekerleri 3. ve 5 no’lu karbon atomları ile fosfat moleküllerine fosfodiester bağları ile birleşerek kompleksler oluştururlar. Zarfların yüzeyinde bulunan peplomerlerin yapısında da şeker molekülleri bulunduğundan bunlar, glikoprotein yapısı taşırlar ve iyi bir antijeniteye de sahiptirler. Buna karşın, matriks proteininde (M-proteini) şeker molekülü bulunmamaktadır (nonglikozile). 02.04. Fosfatlar Fosfat molekülü (H3PO4), viral nukleik asitlerin 3. önemli yapısal komponentini oluşturur. Ayrıca, Poxviridae familyası viruslarında fosforilize olmuş bazı proteinlere (fosfoprotein) veya lipidlere (fosfolipid) rastlanılmaktadır. 02.05. Nukleik Asitler (viral genom) Viruslar, genetik materyal olarak DNA (deoksiribonukleik asit) veya RNA (ribonukleik asit)'lardan sadece birini taşırlar. Bütün viral genomlarda her genin sadece bir kopyası olmasına karşın, retroviruslarında iki molekül tek iplikçik RNA bulunmaktadır (2, ss RNA, diploid). Nukleik asitler, DNA veya RNA, 3 tür komponentten oluşmaktadır. Bunlar da, 1) Pirimidin veya pürin bazları: Pirimidin bazları timin (T), sitozin (C) ve pürin bazları adenin (A) ve guanin (G)'dir. Ancak, RNA'da timin yoktur bunun yerini urasil (U) almıştır. 2) Pentoz şekeri (C5H10O5) : DNA'nın yapısında 2-deoxy D-ribose (C5H10O4) bulunmasına karşın RNA'da D-ribose (C5H10O5) molekülü vardır. 3) Fosfat molekülü (H3PO4): DNA ve RNA'da aynı yapıda fosfat molekülü bulunmaktadır. Kaynak :Temel Mikrobiyoloji

http://www.biyologlar.com/viruslarin-morfolojik-ve-kimyasal-ozellikleri

EVRİM TEORİLERİ

İnsanoğlu kendini ve çevresinde algıladıklarını tanımaya başladıktan sonra, bu olağan üstü varlıkların nasıl meydana geldiğini düşünmüştür. M.Ö. VI. Yüzyılda yaşamış olan Şyonya‟lı filozoflardan Thales, tüm nesneler gibi canlıların da sudan oluştuğunu; Anaximander, canlıların kaynağının deniz olduğunu, başlangıçda balık olan atalarımızdan bugünkü şeklimize evrimleşerek ulaştığımızı; Herakleitus, canlıların gelişmesinde aralarındaki çatışmaların rolü olduğunu ileri sürmüşlerdir. M.Ö. IV. Yüzyılda yaşamış olan Aristoteles, canlılığın başlangıçta kendiliğinden meydana geldiğini, zaman içinde giderek basitten daha karmaşık yapılı canlıların meydana geldiğini (doğa merdiveni) ve canlılarda organların ihtiyaca göre oluştuğunu savunmuştur. Canlı türlerinin ayrı ayrı yaratıldıklarını ifade eden yaratılış düşüncesinin herhangi bir bilimsel kanıtı bulunmadığından burada tartışılamamaktadır. XIII. yüzyılda fosiller üzerinde yaptığı çalışmalarla “paleontoloji” biliminin ortaya çıkmasına neden olan Buffon, canlı türlerinin bir evrim sonucunda meydana geldiğini ifade etmiş olmasına rağmen; kilisenin baskısı sonunda “kutsal kitapta bildirilenlere ters düşen sözlerimi geri alıyorum” demek zorunda kalmıştır. Bu dönemde, bir doğa bilimci olan Charles Darwin‟in dedesi Erasmus Darwin de Buffon gibi, canlıların yaşamları sırasında edindikleri beceri ve özelliklerin yeni kuşaklara geçmesiyle evrimleştiği görüşünde idi. Bununla beraber, aydınlanma çağı olarak bilinen bu dönemde, Carl von Linné‟nin morfolojik ve fizyolojik özellikleri bakımından biribirine benzeyen canlıları aynı grup içinde toplayarak, en küçük canlı gruplar olan türleri oluşturması; Cuvier‟nin aynı türden olan bitki ve hayvanların erkek ve dişilerinin kendi aralarında birleşmeleri sonunda fertil yavruların meydana getirdiklerini saptaması; XVIII. ve XIX. yüzyıllarda Cuvier, Hilaire ve Gothe‟nin, belli işlevleri yerine getiren organların, canlılar arasında gösterdikleri benzerlik ve farklılıkları inceleyerek homolog ve analog organların ontogenetik gelişimlerini açıklamaları; canlıların evrimsel bir gelişimin sonunda çeşitlendikleri düşüncesini destekleyen yeni delilleri ortaya çıkarmıştır. Bugüne kadar yapılan çalışmalara rağmen, biyoloji sistematiğinin son şeklini aldığını söylemek mümkün değildir. Hatta, evrimin sürekliliği düşünülürse tamamlanması da mümkün gözükmemektedir. Ancak, bu çalışmaların sonunda; a) Biribirine yakın gruplar arasında benzerliklerin fazla olmasına karşın, uzak gruplar arasında benzerliklerin giderek azaldığı b) Sistematiğin alt sıralarında yer alan canlıların ilkel ve basit yapılı olmalarına karşın, üst sıralarda yer alan canlıların daha zengin bir biyolojik işleve ve karmaşık yapıya sahip oldukları c) Aynı tür içindeki canlıların kendilerine benzer ve fertil yavrular meydana getirdikleri d) Paleontolojik bulguların da yardımıyla; Jeolojik devirlerde yaşamış ve bugünkü canlılara benzeyen tür sayısının eski jeolojik devirlere gidildikçe azaldığı, yakın jeolojik devirlerde arttığı görüldü. Bu gözlemlere dayanarak, Hilaire; “hayvan türlerinin birbirinden meydana geldiğini” ileri sürdü, fakat dönemin ünlü anatomisti Cuvier ile yaptığı tartışmada ileri sürdüğü deliller yeterli bulunmadı. Lamarck (1744-1829) “Phylosophy Zoologique” adlı eserinde, türlerin ara varyetelerle, cinslerin ara türlerle ve familyaların ara genuslarla biribirlerine bağlı olduklarını ve değişen ortam koşullarına uyumlu yeni bir türün bir başka türün değişmesiyle meydana geldiğini ileri sürdü. Lamarck‟a göre, çok kullanıldığı için gelişen veya kullanılmadığı için körelen bir organın eşem hücreleri üzerindeki etkisi bu özelliklerin yeni döllere geçmesine neden oluyordu. Zürafanın, ağaçların yeşil yapraklarına uzanabilmesi için boynunun uzaması ve kurbağanın su içindeki hareketini kolaylaştıran arka ayakları arasında yüzme derisi gerili olması, bu canlıların, ortam koşullarına uygun olarak değişmeleri sonunda meydana gelmişti. Benzer şekilde, köstebekte gözlerin körelmesini, yılanlarda üyelerin yok olmasını, bu organların kullanılmamaları sonucunda yok oldukları şeklinde yorumlamıştır. Lamarck‟ın hipotezinin özelliği, canlılarda görülen değişikliklerin fonksiyona bağlı olarak ve ortamın koşullarına uygun olarak meydana gelmiş olmasıdır. Hipotezde yer alan, “canlılar içinde bulundukları koşullara uyar” önermesi bugün de gözlenen, doğruluğu çok kere kanıtlanmış bir olgudur. Ancak, bu yöndeki bir teorinin hıristiyanlığın telkinlerine uymaması yanında, değişikliklerin yeni döllere geçişini açıklamakta teorinin yetersiz kalması ve daha açık olarak; bugüne kadar yapılan gözlemlerde, canlılarda doğumdan sonra kazanılmış olan özelliklerin sonraki döllere geçtiğinin gösterilememesi nedeniyle fazla taraftar toplayamamıştır. Örneğin, August Weismann (1834-1914), yirmi döl boyunca kuyruklarını kestiği farelerin yirmi birinci dölde de deney serisinin başındaki fareler kadar uzun kuyruklu olduklarını gördü. Bu deneyler sonunda Weismann, vücudu meydana getiren somatik hücrelerin kalıtımda rolünün bulunmadığını; kalıtımla ilgili hücrelerin üreme (germ) hücreleri olduğunu ve çevresel faktörlerin üreme hücrelerine etki etmediğini buldu. Nitekim, Müslümanların ve Musevilerin, yüzyıllardan beri sünnet olmaları, bu toplumlarda herhangi bir kalıtsal değişikliğe neden olmamıştır. Aynı şekilde, Çinlilerin çocuklarına ayaklarının küçük kalması için yüzyıllar boyunca demir ayakkabı giydirmeleri de Çinlilerin ayaklarını küçültmemiştir. Halbuki, bugün bakterilerin antibiyotiklere, böceklerin insektisitlere karşı bağışıklık kazandıkları bilinir ve Lamarck‟ın hipotezi bu olayları anlamamıza yardım eder. Ancak bu yönde yürütülen araştırmalar, bağışıklığın bir populasyonun bütün fertlerinde değil, uygun gen kompozisyonuna sahip olan bazı fertlerinde meydana geldiğini ve bu fertlerin populasyon içindeki sayısının, doğal seçim baskısı altında daha sonraki döllerde giderek artmasıyla dirençli ırkların oluştuğunu gösterdi. Ayrıca, genetik alanındaki bilginin artmasına bağlı olarak bugün kabul edilen evrim düşüncesinin olası mekanizması ortaya konmuştur. örneğin Lüers, populasyon düzeyinde kazanılmış bir bağışıklığın, mutasyon, doğal seçim ve genlerin rekombinasyonuyla birlikte açıklanabileceğini ileri sürmüştür. Aydınlanma çağında, en fazla taraftar toplayan evrim teorisi, Charles Darwin (1809-1882) tarafından önerilen “doğal seçim” teorisidir. Aydın bir çevrede, varlıklı bir ailenin çocuğu olan Darwin, hekim olan babasının tüm gayretlerine rağmen tıp eğitimini başaramamış, Cambridge Üniversitesinde yine babasının zoruyla başladığı teoloji eğitimini tamamlamıştır. Bu arada, botanik ve jeoloji derslerine devam ederek, meydana getirdiği böcek koleksiyonuyla bilim dünyasının ilgisini çekmiştir. 1831 yılında “Beagle” adlı gemiyle Güney Amerika kıtasının çevresini dolaşma olanağını elde eden Darwin, Galapagos adalarının faunasını inceleyerek örnekler toplamış ve 1836 yılında Şngiltere‟ye dönmüştür. Seyahati sırasında okuduğu, kıtaların kayma teorisini savunan Charles Lyeel(1797-1875) in “Jeolojinin Şlkeleri” ve 1838 yılında okuduğu Thomas Malthus (1766-1834) un “Nüfus Üzerine Deneme” adlı kitaplarından da etkilenen Darwin, 5 yıl boyunca doğada yaptığı gözlemlere ilave olarak, seferden döndükten sonra 23 yıl topladığı materyal üzerinde yaptığı çalışmalardan sonra 1859 yılında “Türlerin Kökeni” adlı kitabını yayınladı. Darwin teorisinde, bir populasyon içinde, değişen ortam koşullarına en iyi uyum sağlayan fertlerin alıkonmasıyla yeni bir ırkın meydana gelebileceğini, dölden döle farklılaşmanın artarak yeni ırkın başlangıçdaki populasyonun ait olduğu türden farklı ve yeni bir türe dönüşebileceğini ileri sürmüştür. Darwin‟e göre evrim şu sırayla meydana gelmektedir. 1- Bir ekosistem içinde yer tutan her populasyon için, o ekosistemin bir taşıma kapasitesi vardır. Çünkü, ekosistemler yaşam alanı, barınak ve besin gibi olanaklar bakımından sınırlıdır. Nitekim, yapılan bir hesaba göre, 1 erkek ve 1 dişiden oluşan Drosophila melanogaster çiftinden 3 hafta sonunda, teorik olarak 245 000 fert meydana gelebilmektedir. Fakat doğada hiç bir zaman bu ölçüde büyümeye rastlanmamıştır. Örneğin, 100 cm3 lük bir yetiştirme kabında, yeterli besin bulunmasına rağmen; yumurtalarından yeni çıkmış kelebek larvalarından 100-150 den fazlası birarada yetiştirilememektedir. 2- Aynı populasyona ait fertler arasında, morfolojik ve fizyolojik özellikleri bakımından farklar vardır. Eşeyli çoğalan bir populasyonun üyeleri, tek yumurta ikizleri dışında, biribirlerinden bazı karakterler bakımından farklıdır. 3- Ekosistemin sınırlı olanaklarında hayatta kalabilmek için populasyonun farklı özelliklere sahip olan fertleri arasında rekabet başlar. 4- Sahip oldukları özelliklerle çevrenin isteklerini karşılayabilen fertler rekabeti kazandıkları için hayatta kalır (doğal seçim) ve populasyonun sonraki dölü meydana getirirler. 5- Çevresel koşullar sürekli değişmektedir. Değişim, iklim düzeyinde, sıcaklık, nem, ışık miktarı gibi faktörlerin günlük, mevsimlik ve yıllık değişimlerini; biyolojik olarak, canlıların doğumdan sonra büyüyüp, yaşlanarak ölmelerini; ekosistem olarak, örneğin oligotrofik özelliklere sahip olarak yeni oluşmuş bir gölün, zamanla ötrofik ve distrofik bir göl halini alması, daha ileri aşamada kurumasıyla; çalılıktan başlayarak bir meşe ormanı ekosistemine varan farklı “serel evre” lerden geçmesi gibi çok farklı konuda ve bazen çok geniş kapsamda, yani biyosfer ölçüsünde meydana gelmektedir. Örneğin, CFC (klor-flor - karbon) bileşiklerinin sebep olduğu stratosferik ozon miktarındaki azalmaya bağlı olarak, biyolojik etkiye sahip olan ultraviyole ışınlarının yeryüzüne ulaşması ve sanayi devriminden (1860) sonra hızla tüketilen organik karbon kaynaklarından açığa çıkan karbon dolatısıyla ortaya çıkan küresel ısınma, tüm biyosferi içine alan küresel değişikliklerdir. 6- Değişen koşullara bağlı olarak kazanılan karakterlerin toplamına sahip olan fertlerden oluşan populasyon ile eski populasyonun fertleri, aralarında meydana gelen bu farklılaşmadan sonra biraraya gelseler dahi fertil yavrular meydana getiremezler. Aralarında tür düzeyinde fark meydana gelmiştir. Bu türleşmedir. Ancak, bu teoride bugünkü kalıtım bilgimize göre yanlış olan bir anlayışın üzerinde durmak gerekir. “Doğal seçim teorisi” olarak da bilinen bu teorinin ileriye sürüldüğü XIX. yüzyılda, kalıtsal özelliklerin vücut parçalarından geldiği ve bir çaprazlama sonucunda ortaya çıkan melezde, anne ve babaya ait karakterlerin eriyerek karışmaları nedeniyle yavrunun, anne ve babaya ait karakterlerin bir ortalaması olduğu düşüncesi hakimdi. Yani, ana ve babada var olan siyah ve beyaz gibi iki zıt karakterin yavruda gri rengi meydana getireceğine inanılıyordu. Halbuki, gözlemler bir aile içindeki çocukların, anne ve babaya ait karakterlerin bir ortalaması olmak yerine; bazılarının anneye veya anne soyundan birine örneğin dayıya, bazılarının babaya veya baba soyundan birine örneğin halaya benzediğini gösteriyordu. Fakat bunun nasıl meydana geldiği bilinmiyordu. Bu durum, Darwin'in de dikkatini çekmiş olmasına rağmen, bu konuda yeterli bilgi birikimine sahip olmadığından açıklayamamıştır. Nitekim, bugünkü bilgimize göre; anne ve babadan gelen baskın (dominant) ve çekinik (resesif) karakterler yavruda homozigot (AA veya aa) veya heterozigot (Aa) durumda bulunmaktadırlar. Bunların biribirleriyle karışması söz konusu olmamakta; bir karakter için baskın olan gen homozigot ya da heterozigot durumda olsa da fenotipte etkisini gösterebilirken, çekinik olan gen ancak homozigot durumda olduğunda fenotipte etkisini gösterebilmektedir. Genetik alanında yaptığı çalışmalarla tanınan Gregory Johann Mendel (1822-1884) ile Darwin (1809-1882) aynı dönemde yaşamış olmalarına rağmen, aralarında bilimsel bir ilişkinin kurulamamış olması bilim ve onlar adına talihsizlikti. Mendel‟in bulgularının önemi yaşadığı dönemde anlaşılamamış, ölümünden 16 yıl sonra Erich Tschermak von Seysenegg, Hugo de Vries ve Carl Erich Correns tarafından bilim dünyasına tanıtılmıştır. XX. yüzyılın başlarında, Hollandalı deVries (1848-1935), döller boyunca yetiştirdiği otuza yakın bitki türünde kendiliğinden meydana gelen ve kalıtsal nitelik gösteren değişikliklerin meydana geldiğini (varyasyon) saptadı. Benzer sonuçlar bulan, Alman Correns (1864-1933) ve Avusturyalı Tschermak (1871-1962) ile birlikte, 1900 yılında “mutasyon Teorisi” ni ileri sürdüler. Bu teoriye göre, bir tür içinde, birdenbire, ara dereceleri bulunmayan değişikliklere sahip canlılar (mutant) meydana gelebilir. Bu değişiklikler göz renginden zeka düzeyine kadar tür içi çeşitliğe ait karakterlerde olabildiği gibi, tür için karakteristik olan özelliklerden birinde de meydana gelebilir ve hayat mücadelesinde organizmaya avantaj sağlar veya zararlı olabilir. Mutasyon teorisine karşı, “canlılarda görülen değişikliklerin genellikle onların yaşama gücünü azaltıcı yönde olması” ve “türe özgü karakterlerinde değişiklik meydana gelen fert populasyonun diğer fertlerinden ayrı kalacağı için, soyunu devam ettirme ve bu değişikliği sonraki döllere aktarma şansının bulunmaması” gibi görüşler ileri sürülmüştür. Ancak, bugünkü bilgimize göre; canlılar geometrik dizi şeklinde artma eğilimindedirler. Mutasyonların çoğu, fertte olumsuz gelişmelere yol açmasına rağmen, az sayıda meydana gelen ve çevreye uyumda avantaj sağlayan mutasyonlar meydana geldikleri populasyon içinde kalıcı olurlar, bu değişikliklere sahip olan mutantların sayısı populasyon içinde giderek artar. Karşı görüşe göre, meydana gelen mutantın içinde bulunduğu populasyonun fertleriyle birleşemeyecek veya fertil yavru veremeyecek kadar farklılaştığı varsayılmaktadır ki, bu olağanüstü bir olaydır. Halbuki, mutasyonların çoğu türe özgü karakterlerin birinde meydana gelebilir ve bu değişiklik mutantın populasyon içinde fertil birleşmeler yapmasına engel teşkil etmez. Alman Biyolog August Weismann' ın da içinde bulunduğu bir grup biyolog, canlı varlıklarda genetik materyalin organizmanın somatik dokularından farklı olduğu ve ondan etkilenmediği sonucuna vardılar. Bu sonuç, bir organizmanın doğumdan sonra kazandığı yetenek ve özelliklerin neden kendinden sonraki döllere geçmediğinin anlaşılmasını sağladı. Buraya kadar anlatılan bilgi birikimine sahip olan biyologlar XIX. yüzyılın sonlarında Darwin‟in teorisi ile mutasyon teorisini birleştirerek “neodarwinizm” olarak adlandırılan yeni bir evrim teorisi geliştirdiler. Neodarwinistlere göre evrim; “bir populasyon içinde, organizmaların ortama uyumunda zayıflık yaratmayan küçük mutasyonların birikmesi sonunda, türe özgü karakterler bakımından orijinal populasyondan farklı ve ortam koşullarına daha uyumlu bir populasyonun ortaya çıkması” şeklinde meydana gelir. Darwinizm ve Neodarwinizm arasındaki benzerlik, her ikisinde de “doğal seçim” mekanizmasına yer verilmiş olması; fark ise, Darwinizmde “canlılarda değişikliğin ortam koşullarına bağlı olarak meydana gelmesi” düşüncesi yerine Neodarwinizmde “önce mutasyonların meydana geldiği” düşüncesinin yer almış olması ve karakterlerin sonraki döllere nasıl taşındığının öğrenilmiş olmasıdır. Bu konuda yapılan çalışmalar, canlılarda meydana gelen her mutasyonun canlının hayatta kalma gücü ve fertilitesi üzerinde olumsuz etkilere neden olmadığını, bazı koşullar altında canlının hayatta kalabilme yeteneğini artırdığını göstermiştir. Örneğin, Ptychopoda seriata kelebeğinde, kanatların deseninde değişikliğe neden olan bir mutasyon; kelebeğin hayatta kalma gücünü normal koşullarda azaltmasına karşın, soğuk ve rutubetli ortamlarda artırdığını göstermiştir. Bu kelebek, bir başka canlı ile ekolojik nişlerinin çakışması sonucunda habitatını değiştirmek durumunda kalırsa, sahip olduğu bu mutasyonla daha soğuk ve rutubetli ortamlarda hayatta kalmayı başaracak, oluşan yeni populasyonun gen havuzuna başka mutasyonların eklenmesiyle yeni bir tür meydana gelebilecektir (adaptif radyasyon). Buna göre, bir populasyon içinde görülen küçük mutasyonlar populasyonun gen havuzunda değişik genlerin birikmesine olanak sağlarken; diğer taraftan işleyen “doğal seçim” mekanizması var olan koşullara uygun olmayan genotiplerin ayıklanmasını sağlamaktadır. Örneğin, Florida da deniz kıyısındaki ormanlık bir alanda ve kıyıya yakın kumluk bir adada yaşayan aynı türden farelerin, ormanlık alanda koyu renkli, adada açık renkli olmaları şu şekilde açıklanmaktadır. Konu edilen fare populasyonununda rengin 3 gen çifti (A/a, B/b, C/c) tarafından belirlendiği kabul edilirse, F1 dölünün sperm ve yumurta hücrelerinde 23 = 8 farklı renk kombinasyonu (ABC, ABc, AbC, aBC, Abc, aBc, abC, abc) bulunacaktır. Buna göre F2 dölünde koyu ve açık renk veren gen kombinasyonlarından birer adet bulunma olasılığına karşın, ara derecelerde renk veren 62 adet farklı gen kombinasyonuna sahip fare meydana gelme olasılığı bulunacaktır (Tablo 1). Renk geni üzerinde meydana gelen mutasyonlarla fare populasyonunun gen havuzu içinde biribirinden farklı renk genlerinin sayısı artarken, karayla bağlantılı olan adada da farklı renklerde mutantlar görülecektir. Ancak, ada ile kara arasındaki bağlantının kesilmesi ve ada üzerindeki ormanın yok olmasıyla, çıplak ve kumluk alanda kendilerini gizleyemedikleri için kuşlar tarafından avlanan koyu renkli farelerin populasyondan elenmesiyle (doğal seçim) adada sadece açık renkli fare ırkı barınabilmiş; bunun tersine, ormanlık alanda açık renkli farelerin populasyondan elenmesiyle koyu renkli fareler barınabilmiştir. Bu örnekte, adada açık rengi; karada ormanlık alanda koyu rengi meydana getiren genler “doğal seçimde avantajlı gen” olarak tanımlanmaktadır.

http://www.biyologlar.com/evrim-teorileri

Bakterilerin Biyoteknolojide Kullanım Alanları

Bakterilerin Biyoteknolojide Kullanım Alanları

Son on yılda biyokimya, moleküler biyoloji ve bakteriyolojideki ilerlemeler, bakterilerin antikanser ajan olarak kullanımının yanı sıra, antikanser ilaçların verilmesinde kemoterapiye duyarlı ajan ve gen tedavisi için vektör olarak kullanımına kadar kullanışlı bir çok yönlerini ortaya koymuştur.

http://www.biyologlar.com/bakterilerin-biyoteknolojide-kullanim-alanlari

Mutasyon Örnekleri Nelerdir

1) Kılsız Köpekler Köpeklerde kıllar üzerinde etkili FOXI3 isimli bir gen bulunur. Science dergisinin Eylül 2008 sayısında yayınlanan bir makaleye göre (bkz: kaynaklar), kromozom 17 üzerinde bulunan bu gende meydana gelen 7 ekleme tipi mutasyon sonucunda eskiden kıllara sahip olan köpekler kıllarını dökmektedirler. FOX genlerinin memelilerde genel olarak embriyonik gelişimi kontrol ettiği bilinmektedir. 2) Atlardaki overo Geni Atlarda eşey hücrelerinin çalışmasından sorumlu overo isimli bir gende meydana gelen bir kromozomal büyütme (amplifikasyon) tipi mutasyon sonucunda doğan taylarda sindirim sistemi bozukluklarına rastlanır ve bu mutasyon sonucunda doğan tay kısa sürede ölür. Dolayısıyla bu mutasyon, hem kalıtsal mutasyonlara hem de ölümcül mutasyonlara örnektir. 3) E. coli Bakterisinde Laktoz Kullanımı E. coli bakterisi normal olarak laktozu parçalayamaz (laktoz intoleransı). Ancak Boston Üniversitesi'nden Prof. John Cairns ve ekip arkadaşlarının yaptıkları ve New Scientist dergisinde yayınlanan bir çalışma sonucu, Mu isimli bir bakteriyofaj (bakterileri enfekte eden bir virüs) kullanılarak genetik materyalde bulunan beta-galactosidase geninde meydana getirilen bir mutasyon sayesinde bakterilerin laktozu sindirebilmeye başladıkları ortaya çıkmıştır. Daha sonradan farklı yöntemlerle benzer deneyler tekrarlanmış ve aynı sonuçlara ulaşılmıştır. Bu da bakteriler açısından bir faydalı mutasyon örneği olarak karşımıza çıkmaktadır. 4) HIV (AIDS Virüsü) Direnci 2001 yılında yapılan bir araştırmanın sonucuna göre, insanlarda bulunan CCR5 isimli bir gende meydana gelen 32 silinme tipi mutasyon sonucu bu gen açısından homozigot bireylerde HIV direnci, heterozigotlarda ise HIV belirtilerinin ortaya çıkmasında gecikme meydana geldiği ispatlanmıştır. Bu, faydalı mutasyonlara bir örnektir. 5) Orak Hücre Anemisi Orak hücre anemisi, çoğumuzun bildiği üzere, vücudumuzda oksijen taşıyan hemoglobin molekülünde meydana gelen bir nokta mutasyon sonucunda, beta-globin genindeki tek bir Adenin'in Timin'e dönüşmesi sonucunda meydana gelir. Buna Tek Nükleotit Çokbiçimliliği (Single Nucleotide Polymorphism - SNP) denir. Bu mutasyon sonucu 6. pozisyondaki Glutamik Asit isimli bir aminoasit, Valine isimli bir diğerine dönüşür. Ancak ilginç bir şekilde, bu genetik bozukluğa heterozigot olarak sahip olan Sahara Altı Bölge'deki bireylerin, dişi sivrisinek ile taşınan sıtma (malaria) hastalığına dirençli oldukları keşfedilmiştir. Bu da faydalı mutasyonlara örnektir. Bazı bilim düşmanı evrim karşıtları bu konuyu "faydalı mutasyonlar"dan saymamakta ısrar etmektedirler, çünkü orak hücre anemisinin yeterince kötü bir hastalık olduğunu, dolayısıyla sıtmaya engel olsa da bir şeyi değiştirmeyeceğini ileri sürerler. Bu, onların ne kadar bilimden uzak bir yaşam görüşü olduklarını göstermektedir. Elbette ki orak hücre anemisi kötü bir durumdur, bir hastalıktır, tereciye tere satmaya çalışmanın anlamı yok, bunu herkes biliyor. Ancak bu hastalığa tarafsız olarak bakıldığında ve doğrudan etkileri incelendiğinde, sıtma gibi bir hastalığa yaklanmaya engel olduğu görülmektedir. Üstelik sıtma, Afrika'daki ilaç bulamayan insanlar için orak hücre anemisinden çok daha ölümcüldür. Kaldı ki burada mutasyonun etkileri incelenmektedir ve bu mutasyon, zaten bir olumsuzluk doğurmaktadır; ancak öte yandan faydalı bir etkisi de vardır, ölüm sürelerini sayısal olarak düşürmektedir. 6) E. coli Bakterilerinde Sıcaklık Değişimine Bağlı Evrim Bennett, Mittler ve Lenski'nin Evolution dergisinde yayınladıkları bir araştırmaya göre araştırmacılar 2.000 nesil boyunca 37 santigrat derecede yaşamaya uygun E. coli bakterisi yetiştirmişlerdir. Daha sonra bu popülasyondan 3 örnek popülasyon alınıp 32 derecede, 37 derecede ve 42 derecedeki ortamlara yerleştirilmiş ve bir 2.000 nesil daha geçmesi beklenmiştir. Bu nesillerin adaptif başarıları (evrimsel değişimleri) sürekli takip edilmiştir. İlk anda 32 dereceye bırakılan nesle göre, 2.000'inci nesil %10 daha adaptif başarıya sahip bireylerden oluşmuştur, yani popülasyon içerisinde yeni sıcaklığa yönelik bir evrim süreci gerçekleşmiştir. Benzer şekilde, 42 dereceye bırakılan ilk nesle göre, 2.000'inci nesil %20 daha başarılıdır. 37 derecede bırakılan bireylerde hiçbir adaptif değişim gözlenmemiştir. Bu durumun nesiller içerisinde meydana gelen mutasyonlara bağlı bir çeşitliliğin seçilmesinden ve birikmesinden kaynaklandığı tespit edilmiştir. Bud a faydalı mutasyonlara bir örnektir. 7) Chlamydomonas Cinsi Algde Karanlığa Adaptasyon Graham Bell isimli meşhur popülasyon genetikçisi (isim sadece bir tesadüftür, telefonu icat eden Bell ile alakası yoktur) fotosentetik bir alg olan Chlamydomonas ile çalışmıştır. Bu cins, aydınlıkta normal bir şekilde yaşayıp büyür. Ancak karanlıkta da, eğer ortamda asetat varsa, bunu karbon kaynağı olarak kullanarak büyümeyi sürdürebilir. Bell, birkaç yüz nesil bekleyerek hangi alglerin karanlıkta büyüme konusunda başarılı, hangisinin başarısız olduğunu tespit etti ve bunlardan örnekler alarak birbirlerinden ayırdı. Daha sonra karanlıkta büyüme konusunda başarısız olanları karanlıkta ve zorlu şartlarda bıraktı. Belli bir kırılma yaşandıktan sonra, popülasyonun normal yaşam süreci ve nesilleri içerisinde meydana gelen mutasyonlardan bazılarının karanlıkta yaşama ve asetatı kullanma açısından avantaj sağladığını gördü. Sadece 600 nesilde ilk başta başarısız olan algler, nesiller içerisinde belli tip mutasyona sahip olanların avantajlı konuma geçip üremeleri sayesinde karanlıkta yaşamaya adapte olmayı başardı. Bu da faydalı mutasyonlara örnek olarak verilebilir. 8) Chlamydomonas Cinsi Alglerde Büyüklüğün Evrimi Bir üstteki örnekte bahsettiğimiz Bell, karanlıktan sonra bir başka deney için aynı cins algleri kullandı. Algleri çok ince delikli bir filtreden geçirdi ve sadece deliklerin üzerinde kalabilen, büyük bireyleri seçti, deliklerden geçebilenleri eledi. Bu seçtiklerini yaşatıp üretmeyi sürdürürken, küçük olanların üremesine engel oldu. Sadece 40 nesil içerisinde popülasyondaki bireylerin büyüklüğünün, iki misline yakın artış görülmüştür (fenotipik skalada 1 puan). Hatta Bell, filtresinin yeterince iyi olmamasından ötürü büyükleri seçmekte zorlandığını belirtmiş ve makalesinde deneyin daha iyi yapılabilmesi için daha hassas filtrelerin kullanılması gerektiğini açıklamıştır. Böyle yapılacak olursa, genetik çeşitliliğe bağlı seçilim sonucu oluşan evrimin daha kolay görülebileceğini söylemiştir. Bu çeşitliliğin muhtemelen mutasyonlara bağlı olarak sağlandığını ve sadece daha büyük bireyler olacak şekilde genlere sahip bireylerin hayatta kalıp üreyebilmelerinden ötürü boyutların değiştiğini izah etmiştir. 9) Maya Mantarlarında Mutasyona Bağlı Evrim Hansche ve Francis, Genetics dergisinde 1972, 1973 ve 1975 yılında yayınladıkları makalelerde Saccharomyces cerevisiae türü mantarlarla çalıştıklarını ve bu canlılarda gözlemledikleri mutasyona bağlı evrimi izah etmişlerdir. Öncelikle bir kemostat (kimyasal olarak aşırı dengeli ve mikroorganizmaların oluşumuna izin veren ortam) içerisinde maya mantarları yetiştirmişlerdir. Mayalar bu ortamda 180 nesil boyunca gayet yavaş bir şekilde çoğalmışlardır. Ancak 180. nesil civarından sonra aşırı bir birey artışı, aşırı bir üreme gözlenmiştir. Araştırmacılar bu noktadan önceki ve sonraki bireylerin genlerini kontrol etmişler ve permeaz enziminin (mantar hücresinin zarından madde geçişlerini kontrol eden enzim) üretilmesini sağlayan gende meydana gelen bir mutasyondan ötürü yeni nesildeki ilk bireylerin ortamdaki fosfatı önceki nesillere (atalarına) göre çok daha kolay hücre içerisine aldıklarını tespit etmişlerdir. Mutasyonlar burada da sona ermemiştir. 180. nesilden sonra yaklaşık 400 nesil boyunca hızlı artış sürmüş; ancak 400. nesil civarında artış daha da hızlanmıştır. Yine genler kıyaslandığında, bu ilk mutasyona sahip bireylerden oluşan nesil içerisinde, ikinci bir mutasyonun meydana geldiği görülmüştür. Bu mutasyonun fosfataz (fosfatın kullanımını sağlayan enzim) enzimini üreten genlerde bir değişim olduğu fark edilmiştir ve yeni nesildeki mutant bireylerin fosfatı çok daha kolay sindirebildikleri gözlenmiştir. Bu mutasyon sonrasında fosfatazın optimal olarak çalıştığı pH aralığı, ortamdaki pH'ın değişimine paralel olarak değişmiş, evrim geçirmiştir. Dahası da var. Aradan 800 nesil daha geçtikten sonra, yine aşırı bir artış görülmüştür ve yine genetik analiz yapılmıştır. Bu artışın sebebi çok daha ilginçtir. Aslında asla koloniler halinde yaşamayan bu maya hücreleri, bu mutasyondan sonra bir araya gelerek koloniler halinde yaşamaya başlamışlardır. Bu mutasyonun kemostatın kendi dengesini sağlamak için gerekenden fazla hücre bireylerini mekanizmanın dışına atarak öldürmesine karşı avantaj sağladığı görülmüştür. Yani koloni olan bireyler daha büyük yapılar oluşturarak kemostatın içerisindeki emme mekanizmasını atlatabilmişlerdir. Bunu sağlayan mutasyon, popülasyon içinde hızla yayılmıştır. Deney defalarca tekrarlanmış ve her seferinde benzer mutasyonlar, farklı sırayla ortaya çıkıp seçilmiştir. Hatta bir denemede, daha orjinal bir mutasyon meydana gelmiş ve bir gen çiftlenmesi tipi mutasyon sonucunda fosfataz enzimini üreten genler sayıca iki katına çıkmışlardır, böylece mayalar daha fazla fosfat sindirebilmeyi başarmışlardır. 10) E. coli Bakterisinde Her 26 Mutasyondan 3'ü Faydalıdır! Bilindiği gibi canlılarda mutasyonları değil de, etkilerini gözlemek çok zordur, çünkü çok uzun sürede, yüzlerce, binlerce, on binlerce nesil sonra etkileri görülebilir. Bu sebeple bakteri, alg ya da mantar gibi canlıları denek olarak kullanmak iyidir, çok hızlı ürerler ve nesilleri çok hızlı geçer, en azından bizimkine göre çok daha hızlı. İşte Lenski ve Remold, PNAS dergisinde 2001 yılında yayınladıkları bir makalede, E. coli bakterileri üzerinde yıllar yılı yaptıkları araştırmaların sonuçlarını yayınladılar ve bütün detaylarıyla verilen genetik araştırmaların, her 26 mutasyondan en azından 3 tanesinin nesle doğrudan faydalı bir etki yarattığı gösterilmiş oldu. Bu da %12'lik bir dilim demektir. Bu, bizlerin yukarıda tanımladığı yüzdelerin gerçekte daha da iyimser olabileceklerini göstermektedir. Hatırlayacak olursanız mutasyonların %70-90'ı nötr, %8-9'u ani zararlı, %1-2'si ani faydalı olarak tanımlanmıştı. Ancak bu araştırmada, faydalı mutasyonların oranının %12'ye kadar çıkabildiği gözlenmiş, geri kalan mutasyonların 20-21'inin nötr (yaklaşık %81'i), geri kalan %7 civarı da zararlı olduğu gösterilmiştir. Bunlar, mutasyonların düşündüğümüz kadarıyla zararlı veya nötr olmayabileceğini net bir şekilde ortaya koymaktadır. 11) Bakterilerde Antibiyotik Direnci Bildiğiniz gibi doktorlar, bir antibiyotik aldığınız zaman onu mutlaka ama mutlaka sonuna kadar (veya önerilen süre boyunca) kullanmanızı tembihlerler, asla erken kesmemeniz gerektiğini vurgularlar. Eğer erken keseceğiniz bir durum olacaksa da hiç başlamamanızı tavsiye ederler. Bunun çok basit bir nedeni vardır: Evrim. Vücudunuzdaki tipik bakterilere karşı geliştirilen antibiyotikler, bu bakterilerin ölmesini sağlayan kimyasalları içerir. Siz, antibiyotiği aldığınızda, ilaç vücudunuza yayılarak bakterilerin hücre zarlarında bulunan reseptörlere tutunur ve onları yok etmeye başlar veya savunma sisteminizin bu bakterileri daha kolay tanımasını sağlar. Ancak bakteriler, çok hızlı üreyen canlılar oldukları için ve hem üreme sırasında, hem üreme sonrasında prokaryotik yapıda olmalarından ötürü mutasyonlara çok açık olmalarından dolayı genetik yapıları çok hızlı değişebilmektedir; yani çok hızlı evrim geçirebilmektedirler. Bu sebeple kimi zaman, erkenden öldürülmezlerse, bireyin vücudu içerisinde üreyen bu bakterilerin reseptörleri değişim geçirir (genleri değiştiği için). Bu yüzden de antibiyotikler bu bakterileri öldüremez, çünkü tanıyamazlar. İşte tam olarak bu sebeple, hastalığın tesbitinden sonra en azından yaklaşık 5 gün boyunca, günde bir veya birkaç defa (doktorun reçetesine bağlı olarak) antibiyotik alınır ve bu bakteriler hemen, çok fazla bölünmelerine ve üremelerine izin vermeden öldürülmeye çalışılır. Bu müdahale geciktiği sürece, bakterilerin reseptörleri evrimsel süreçlerle farklılaşır. Antibiyotiğin kullanımı sırasında, ilk 2-3 gün, antibiyotiğin içerisindeki kimyasalın doğrudan tanıdığı bakteriler öldürülür -ki bunlar, genelde patojen (hastalık yapıcı) bakterilerin büyük bir kısmını oluşturur. Bu sebeple bu 2-3 günlük kullanım sonrasında hasta kendini iyi hissedebilir. İşte bu sırada ilaç kesilecek olursa ve savunma sistemine ek yardım ortadan kaldırılırsa, ilacın ilk etapta yok edemediği daha dirençli varyasyonlar (Evrimsel çeşitlilikten ötürü) hızla yeniden çoğalmaya başlarlar. Bu defa vücudu kuşatan popülasyon, ilaçtaki kimyasallara daha dirençli olan popülasyon ve torunları olacaktır. Yine ilaç alınır ve yine kullanım süresinden önce kesilirse, yine göreceli olarak dirençli olanların ölümü sağlanmadan kesilmiş olur ve giderek daha dirençli bakteriler hayatta kalır ve çoğalırlar. Bu konu, her zaman bilim düşmanları tarafından çarpıtılır ve sanki mutasyonların doğrudan faydalı etkisiyle bakteriler bir anda antibiyotik direnci kazanmışlar gibi lanse ederler. Halbuki bakterilerdeki bu çeşitliliğe çoğu zaman mutasyonlar katkı sağlasa da, diğer tüm çeşitlilik mekanizmaları da katkı sağlamaktadır. 12) Tarım Zararlılarında (Haşerelerde) DDT Direnci Bu da, tıpkı bakterilerde antibiyotik direnci gibi sadece mutasyonlara yüklenerek Evrimsel Biyoloji'yi akılları sıra "tesadüflere" hapsetmeye çalışan zihniyetin çarpıttığı bir mevzudur. Tarım alanlarında sayısız böcek bulunur. Bunların bir kısmı tarım ürünleri için faydalı, bir kısmı ise zararlıdır. Ancak en nihayetinde hiçbiri insan için çalışmaz, kendi hayatlarını sürdürmeye çalışan canlılardır. İşte bunlardan zararlı olanları insan yok etmek ister ki tarım alanları zenginleşsin. Ancak evrim, bu kadar kolay atlatılabilen bir olgu değildir, hele ki tarım alanları gibi devasa alanlarda, belki trilyonlarca böcek bireyin yaşadığı ve belki de milyonlarca farklı popülasyonun bulunduğu ortamlarda. İnsan, her zamanki gibi "yok etme" yöntemini tercih eder ve bu canlıların sinir sistemlerini felç edecek veya onları zehirleyecek gazları kullanarak mücadele etmeye çalışır. Ancak üretilen DDT gibi meşhur kimyasallar, genellikle bir tür böceğin, sadece genel özelliklerine göre belirlenir (sinir sistemleri, reseptörleri, hücre yapısı, biyokimyasal özellikleri, vs.). Halbuki her canlıda olduğu gibi, Evrim'in Çeşitlilik Mekanizmaları sayesinde böcekler içerisinde de devasa bir çeşitlilik bulunmaktadır. DDT gibi ilaçlar ortama sıkıldığında, türlerin içerisindeki ortalama özelliklere sahip bütün böcekler gerçekten de ölür ve ziraatçiler, böceklerden kurtulunduğu sanarlar. Halbuki aradan birkaç ay geçtikten sonra, aynı veya benzer böceklerin sayısı birden artar; çünkü eski türün içerisindeki her birey DDT'nin içerisindeki kimyasallara aynı derecede dirençsiz değildir. Bazıları, şans eseri kendilerinde var olan genetik farklılıklardan ötürü (gerek crossing-over, gerek mutasyonlar, gerek transpozonlar, gerek plazmidler sonucu elde edilir) DDT'ye karşı dirençlidirler ve hayatta kalırlar. Bunların üremesi ve diğerlerinin ölmesi sonucu, bunlardaki DDT direncini sağlayan genler popülasyon içerisinde hızla yayılır. İşte bu sebeple, bir sonraki dönem DDT sıkıldığında, neredeyse hiçbir böceğin ölmediği ya da bir önceki duruma göre çok daha azının öldüğü görülür (çünkü her ne kadar dirençliler kendi aralarında üreseler de, genetik kombinasyonlardan ötürü yine dirençsiz bireyler de doğabilir belli oranlarda). İşte bu sürekli sürdürüldüğünde, DDT ve farklı tip ilaçlara giderek direnç kazanan popülasyonlar ve nesiller elde edilir. Bilim düşmanları bunu "Evrim değil, adaptasyon." olarak değerlendirirler. Halbuki, kimyasalların çeşidi ve sayısı arttırılıp, bu süreç devam ettirildiği müddetçe böceklerin giderek farklı özellikleri de, kimyasal direnciyle birlikte sürüklenerek farklılaşacak ve yüz yıllar sonunda elde edilen bireyler, eğer hala sağ iseler, ilk başta müdahale eden bireylerle çiftleşemeyecek kadar farklılaşacaklardır. İşte bu, türleşme, bunun daha da uzun müddette sürmesi ise evrimdir. 13) Hudson Nehri'ndeki Tomcod Balıklarında PCB Direnci PCB isimli bir kimyasal madde balıkları zehirlemesiyle meşhurdur. PCB maddesi hücredeki AHR-2 reseptörüne bağlanarak işlemi başlatır. Üzerine PCB bağlanan reseptör de DNA'yı gereksiz yere aşırı uyararak toksik yanıta neden olur. Ama AHR-2 reseptörünün PCB maddesine bağlandığı bölgeyi bozan bir mutasyon balığın hayatını kurtarır. PCB reseptöre bağlanamaz, reseptör de gidip DNA'yı uyaramaz ve balık hayatta kalmayı başarır. Tomcod balıklarını inceleyen bilim insanları, PBC kimyasalıyla kontamine olmuş Hudson Nehri'ndeki balıklarda AHR-2 proteinin 2 aminoasidinin silinmiş olduğunu gördüler. Bu nasıl olmuştur? Rastgele mutasyonlar AHR proteinini değiştirmişlerdir, 2 aminoasidini silmişlerdir ve PCB'ye bağlanamayan bir protein varyantı oluşmuştur. Dünya'nın hemen her yerinde Tomcod balıkları PCB'ye maruz kalmaları halinde hemen ölüyorlar ama Hudson popülasyonundaki bu silinme mutasyonu sayesinde Hudson'daki balıklar zehir içinde rahatça yaşıyor. 100 sene kadar önce PCB yokken nehirdeki balıkların hepsi bu kimyasala duyarlıydı. Şimdi ise %95'inden fazlası dirençlidir. Yani rastgele mutasyon hayatta kalma ve üreme hızını artırdığı için popülasyon içindeki temsil oranını yükseltti. Kısaca bu da bir faydalı mutasyon örneğidir. Örnekler sonsuz sayıda arttırılabilir. Ancak bu kadar örnek, mutasyonların nasıl çeşitlilik yarattığını anlamak için yeterli olacaktır. Görüleceği üzere mutasyonda nesillerden birinde meydana gelen, tek bir bireyde ya da birkaç bireyde oluşabilecek bir mutasyon, eğer avantaj sağlıyorsa, üremeler sonucu hızla popülasyona yayılarak evrime sebep olabilmektedir. Eğer bu tekil değişimler, nesiller içerisinde birikecek olursa, binlerce nesil sonra alınan bir birey, deneyin en başında elimizde bulunan bireyden o kadar farklı olacaktır ki bu, eşeyli üreyen canlılar için artık bu ikisinin birbiriyle üreyememesi anlamına gelir. İşte bu, Evrim'dir. KAYNAKLAR 1.ARN 2.New Scientist 3.Nature Genetics 4.A Mutation in Hairless Dogs Implicates FOXI3 in Ectodermal Development, Cord Drogemuller, Elinor K. Karlsson, Marjo K. Hytonen, Michele Perloski, Gaudenz Dolf, Kirsi Sainio, Hannes Lohi, Kerstin Lindblad-Toh, and Tosso Leeb. Science 321, 12 September 2008: 1462. 5.Bennett, A.F., Lenski, R.E., & Mittler, J.E. (1992). Evolutionary adaptation to temperature I. Fitness responses of Escherichia coli to changes in its thermal environment. Evolution, 46:16-30 6.Contribution of individual random mutations to genotype-by-environment interactions in Escherichia coli, Susanna K. Remold and Richard E. Lenski 7.Francis, J.E., & Hansche, P.E. (1972) Directed evolution of metabolic pathways in microbial populations. I. Modification of the acid phosphatase pH optimum in Saccharaomyces cervisiae. Genetics, 70: 59-73. 8.Francis, J.E., & Hansche, P.E. (1973) Directed evolution of metabolic pathways in microbial populations. II. A repeatable adaptation in Saccharaomyces cervisiae. Genetics, 74:259-265. 9.Hansche, P.E. (1975) Gene duplication as a mechanism of genetic adaptation in Saccharaomyces cervisiae. Genetics, 79: 661-674. evrimagaci.org

http://www.biyologlar.com/mutasyon-ornekleri-nelerdir

Eşeyli Üreme (Seks), Evrimi Nasıl Yönlendiriyor?

Aşırı süslü özellikler ve sadece bir cinsiyette görülen ilginç davranışlar evrim kuramına aykırı mı? Mücadeleyi kazanan veya en güzel görünüşü sergileyen erkeklerin daha fazla eşi olacağı doğru mu? Erkekler arası rekabet ve dişilerin eş tercihi nasıl evrimleşti? Eşeyli üreme de nereden çıktı? Erkek ve dişinin farklı çiftleşme stratejileri. Neden hep dişi seçiyor? Dişi aslında neyi seçiyor ve nasıl seçiyor? Ne olacak bu erkeğin hali?! Okuyacağınız makale, Jerry A. Coyne’ın “Why evolution is true?” (Evrim neden doğru?) adlı kitabının (Oxford University Press, 2009) “How sex drives evolution?” adlı bölümünün çevirisidir. Arabaşlıkları biz koyduk. Bütün görüntüsüyle, vücudunun arkasında tam bir zaferle yelpaze gibi açılan üzerinde bir sürü gözbebeği bulunan parlak mavi-yeşil kuyruğuyla erkek bir tavus kuşundan daha göz kamaştırıcı çok az hayvan vardır doğada. Darwinizmi her yönden çiğniyormuş gibi görünür, onu güzel yapan bütün özellikleri aynı zamanda hayatta kalması açısından uyumsuzdur. O uzun kuyruk uçuş sırasında aerodinamik sorunlar yaratır, tavus kuşunun uçabilmek uğruna verdiği mücadeleye tanık olanlar bunu bilir. Bu, kuşların geceleri ağaçlardaki tüneklerine çıkmalarını ve yırtıcılardan kaçmalarını zorlaştırır; özellikle de nemli bir kuyruğun sürüklenmek zorunda kaldığı muson yağmurları sırasında. Parıldayan renkler de, özellikle kısa kuyruklu ve ölü yeşilimsi bir kahverengi ile kendilerini kamufle eden dişilerle karşılaştırıldığında yırtıcıları kendisine daha fazla çeker. Ve çok fazla metabolik enerji her yıl yeniden büyümesi gereken bu kuyruğa harcanır. Darwin’i şaşırtan görüntü ve davranışlar Tavus kuşunun tüyleri sadece amaçsız görünmekle kalmaz, aynı zamanda bir engeldir. Bu nasıl bir adaptasyon olabilir? Ve bu tüylere sahip bireyler daha fazla gen aktarabiliyorsa, tahmin edileceği gibi giysi doğal seçilimle evriliyorsa, neden dişiler de aynı şekilde göz kamaştırıcı olmuyor? Darwin, 1860’da Amerikalı bir biyolog olan Asa Gray’e yazdığı bir mektubunda bu sorulardan yakınıyordu: “Gözle ilgili düşüncenin beni dondurduğu anı hatırlarım, fakat bu şikâyet halinin üstesinden geldim ve şimdi yapıya dair önemsiz şeyler beni rahatsız hissettiriyor. Tavus kuşunun kuyruğundaki bir tüyün manzarası ise her ona baktığımda beni hasta ediyor!” Tavus kuşunun kuyruğu gibi muammalar çoktur. Soyu tükenmiş İrlanda elkini ele alalım (aslında ne İrlandalı ne de elk olduğu için bir isim hatası. Bu zamana kadar tanımlanmış en büyük geyiktir ve Avrasya civarında yaşamıştır). Bu türün erkekleri sadece on bin yıl kadar önce yok olmuş ve bir uçtan diğer uca 12 fitten (1 fit yaklaşık 0,3 m, 12 fit = 3,6 m) geniş olan büyük bir çift boynuzun sahibidir! Birlikte 90 pound (1 pound yaklaşık 453,6 gram, 90 pound = 40,8 kg) ağırlığında olan bu boynuzlar önemsiz 5 pound ağırlığındaki bir kafatasının üzerinde durur. Neden olacağı gerilimi bir düşünün. Bütün gün kafanızın üstünde genç bir insanı taşıyarak yürümek gibidir. Ve tavus kuşunun kuyruğu gibi bu boynuzlar da her yıl oyuklarından yeniden doğmak zorundadır. Aşırı süslü özelliklerin yanında, sadece bir cinsiyette görülen ilginç davranışlar da vardır. Orta Amerika’nın erkek tungara kurbağaları şişirebildikleri ses keselerini her gece uzun bir serenat yapmak için kullanır. Bu şarkılar dişilerin dikkatini çeker; fakat şarkı söylemeyen dişilerdense söyleyen erkeklerle beslenen yarasa ve kan emici sineklerin de dikkatini çeker. Avustralya’da erkek çardak kuşları çubuklardan, türüne göre tüneller, mantarlar veya tentelere benzeyen büyük ve biçimsiz “çardaklar” inşa eder. Bunlar dekoratif şeylerle süslenmiştir: çiçekler, yılan kabukları, kabuksuz meyveler, tohum zarfları ve eğer insanlara yakınsa teneke kutular, cam parçaları ve folyo ile. Bu çardakların yapılması saatler hatta bazen günler alır (bazıları enine 10 fit, uzunluğuna 5 fit boyutlarında olabilir), fakat yine de yuva olarak kullanılmazlar. Neden erkekler bütün bu zorluklara katlanır? Eşeysel dimorfizm Biz Darwin gibi, bu özelliklerin hayatta kalma olasılığını azalttığını sadece tahmin etmek zorunda değiliz. Dönemimizdeki bilim insanları bunların nelere mal olabileceğini göstermiştir. Kırmızı gerdanlı çardak kuşu erkeği parlak siyahtır, derin bir boyun ve kafa yaması ile gösteriş yapar ve gayet uzun kuyruk tüyleriyle yüklüdür, bu tüyler neredeyse boyunun iki katı uzunluğundadır. Erkek çardak kuşunu arkasında çırpınan kuyruğuyla havada mücadele ederek uçarken gören biri bu kuyruğun ne işe yaradığını anlamakta zorlanır. İsveç Göteborg Üniversitesi’nden Sarah Pryke ve Steffan Andersson Güney Afrika’da bir grup erkek yakaladılar ve birinci grubun kuyruklarını bir inç kadar ikinci grubun ise dört inç kadar kısalttılar. Üreme mevsiminden sonra yeniden yakaladıklarında, kısa kuyruklu olanlara oranla uzun kuyruklu erkeklerin daha fazla kilo kaybetmiş olduğunu gördüler. Açıkçası, bu uzamış kuyruklar büyük handikaptır. Canlı renkler de öyledir ve bu da gerdanlıklı kertenkelelerde yapılan daha zekice bir deneyle gösterilmiştir. Amerika’nın batısında yaşayan bir fit uzunluğundaki bu kertenkelenin erkek ve dişileri birbirinden çok farklı görünür. Erkek turkuaz renkli vücudu, sarı kafası, siyah boyun halkası ve siyah-beyaz benekleri ile gösteriş yapar; dişilerin rengi ise gri-kahverengi arasıdır ve az beneklidirler. Oklahoma Devlet Üniversitesi’nden Jerry Husak ve arkadaşları, erkeklerin parlak renginin yırtıcıları daha çok çektiği hipotezini sınamak için çöle erkek ve dişi kertenkelelere benzeyen boyanmış kilden modeller yerleştirdiler. Yumuşak kil bu modelleri gerçek hayvanlarla karıştıran herhangi bir yırtıcının bıraktığı ısırık izlerini saklıyordu. Sadece bir hafta sonra kırk parlak erkek modelden otuz beşinde çoğunlukla yılan ve kuş ısırıkları görüldü; kırk ölü renkli dişi modelden ise hiçbiri ısırılmamıştı. Bir türün erkek ve dişileri arasında görülen bu farklı özellikler, örneğin kuyruk, renk ve şarkı, “eşeysel dimorfizm” olarak adlandırılır, bu terim Yunanca “iki form” anlamına gelir. Biyologlar, erkeklerin eşeysel dimorfik özelliklerinin, zamanı ve enerjiyi boşa harcadığı ve hayatta kalma oranını düşürdüğü için evrim teorisini ihlal ettiğini gösterdiler. Renkli erkek lepistesler, daha sade olan dişilerden daha sıklıkla yem olmaktadır. Bir Akdeniz kuşu olan siyah kuyrukkakan erkeği, iki haftadan fazla bir süre çakılların arasında kendi ağırlığının elli kat fazlasını biriktirerek farklı bölgelerde büyük taş yığınları kurar. Çalı tavuğu erkeği, çayırda kabarıp sönerek ve iki büyük ses kesesinden yüksek sesler çıkartarak süslü görüntüler sergiler. (1) Bu muziplikler bir kuş için büyük enerji tüketimi anlamına gelir: bir günlük görüntü, kalori açısından bir muz dilimine denk enerji yakar. Eğer bu özellikler için seçilim söz konusuysa -karmaşıklıkları göz önünde bulundurulduğunda olmalıdır da- bunun nasıl gerçekleştiğini açıklamamız gerekir. Darwin’in anahtarı: eşeysel seçilim Darwin’den önce eşeysel dimorfizm bir sırdı. Bugün de olduğu gibi yaratılışçılar, doğaüstü bir tasarımcının, hayatta kalmayı tehlikeye sokan bu vasıfları neden sadece bir cinsiyette yarattığını açıklayamıyorlardı. Doğanın çeşitliliğini en güzel şekilde açıklayan Darwin de bu yararsız özelliklerin nasıl evrildiğini anlayamamaktan dolayı kaygılıydı. Sonunda bunun açıklanması için gerekli anahtarı keşfetti: Eğer bir türün erkekleri ile dişileri arasında özellik farkları varsa, ayrıntılı davranışlar, yapılar ve süsler neredeyse sadece erkeklerle sınırlıdır. Artık bu masraflı özelliklerin nasıl evrildiğini tahmin edebilirsiniz. Seçilimin değerinin gerçek anlamda hayatta kalma olmadığını, başarılı üreme olduğunu hatırlayın. Süslü bir kuyruk ve baştan çıkarıcı bir şarkı hayatta kalmanıza yardım etmez, fakat döl bırakabilme şansınızı artırır, bu da söz konusu göz alıcı özelliklerin ve davranışların ortaya çıkmasına neden olan şeydir. Darwin bu takasın ilk farkına varan kişidir ve eşeysel dimorfik vasıflardan sorumlu seçilim türüne eşeysel seçilim adını vermiştir. Eşeysel seçilim, basitçe, bir bireyin eş bulması olasılığını artıran seçilimdir. Yani doğal seçilimin bir alt kümesidir, fakat çalıştığı biricik yol açısından ve ürettiği uyumlu olmayan adaptasyonlardan dolayı kendine has bir bölümde anlatılması gerekir. Eşeysel olarak seçilmiş özellikler, erkeğin azalan yaşama şansını üremesinde bir artış ile dengelemekten fazlasını yapıyorsa evrim geçirir. Whydah ispinozları uzun kuyruklarıyla yırtıcılardan çok iyi kaçamazlar, fakat dişileri eş olarak uzun kuyruklu olanları tercih eder. Daha uzun boynuzlu geyikler hayatta kalmak için metabolik bir sorumlulukla savaşırlar, fakat belki de karşılaşmaları sıklıkla kazanmaları daha fazla döl bırakabilmelerini sağlar. Eşeyli seçilim iki şekilde olur. Birincisi, dev boynuzlu İrlanda elkleri örneğinde görüldüğü gibi, dişilere giden yolda erkekler arasında doğrudan rekabettir. Whydah ispinozlarının uzun kuyruğunun türemesine neden olan diğeri ise, olası erkekler arasında seçim yaparken görülen dişi titizliğidir. Erkek erkeğe rekabet (veya Darwin’in hırçın terminolojisinde “Mücadele Yasası”) anlaması en kolay olanıdır. Darwin’in söylediği gibi “neredeyse bütün hayvanların erkekleri arasında dişinin mülkiyeti için bir mücadele vardır.” Bir türün erkekleri doğrudan savaştığında, geyiğin boynuz çarpıştırması, geyik böceğinin boynuzunu saplaması, sap gözlü sineğin kafasını toslaması veya iri fil ayıbalığının kanlı savaşlarında olduğu gibi, rakiplerini defederek dişilerine kavuşurlar. Seçilim, hayatta kalma oranını düşürmeyi dengelemekten daha büyük oranda eş bulma şansını artıran bu gibi zaferleri sağlayan özellikleri destekler. Canlı renkler, süsler, çardaklar ve çiftleşme görüntüleri ise ikinci eşeysel seçilim türüyle yani eş tercihiyle şekillenir. Öyle görünüyor ki, dişilerin gözünde bütün erkekler aynı değildir. Bazı erkek özelliklerini ve davranışlarını diğerlerinden daha etkileyici bulurlar, bu sayede popülasyonda bu özellikleri üreten genler birikir. Bu senaryoda erkekler arası bir rekabet elemanı da vardır, fakat bu dolaylıdır: kazanan erkekler en yüksek sese, en parlak renklere, en cazip feromonlara, en seksi görünüşlere ve daha birçok şeye sahiptir. Erkek-erkeğe rekabetin tersine burada kazanan, dişi tarafından belirlenir. Erkekler arasında doğrudan rekabet Mücadeleyi kazanan, çok süslü olan veya en güzel görünüşü sergileyen erkeklerin daha fazla eşi olacağı doğru mudur? Eğer öyle değilse eşeysel seçilim teorisi hepten çöker. Aslında kanıtlar hem güçlü hem tutarlı bir şekilde teoriyi destekler. Mücadelelerle başlayalım. Kuzey Amerika’nın Pasifik kıyısındaki kuzeyli fil ayıbalığı, boyutları açısından sıra dışı bir eşeysel dimorfizm gösterir. Dişiler yaklaşık 10 fit uzunluğunda ve 1500 pound ağırlığındayken erkeklerin uzunluğu neredeyse iki katıdır ve ağırlıkları da 6000 pounda kadar varabilir ki bu bir Volkswagen’den büyük ve iki katından daha ağır demektir. Bunlar poligamiktir de, yani çiftleşme dönemi boyunca erkekler birden fazla dişi ile eşleşir. Erkeklerin yaklaşık üçte biri eşleştikleri dişilerden oluşan haremlerini savunurlar (bir erkeğin 100 kadar eşi olabilir!), geri kalan erkekler ise bekârlıktan yana kara talihlerini yaşar. Çiftleşme piyangosunun kime vuracağı dişiler daha sahile çıkmadan önce erkekler arasındaki vahşi savaşla belirlenir. Bu savaşlar kocaman vücutlarını birbirine vuran büyük boğalarınki gibi kanlı olur, dişleriyle derin boyun yaraları açarlar ve en büyük erkeklerin en üste yerleştiği bir baskınlık hiyerarşisi ortaya çıkar. Dişiler vardığında baskın erkekler onları haremlerine doğru sürükler ve yaklaşan rakiplerini kovar. Verili bir yıl içerisinde çoğu bebek sadece birkaç büyük erkek tarafından yapılmış olur. Bu, erkeklerin rekabetidir; saf ve basit, ödül de üremedir. Bu çiftleşme sistemi ele alındığında eşeysel seçilimin büyük ve cani erkeklerin evrimini teşvik ettiğini görmek kolaydır: büyük erkekler genlerini yeni jenerasyona aktarabilir, küçükler yapamaz (dövüşmek zorunda olmayan dişiler, tahminen optimum üreme ağırlıklarına yakındır). Vücut büyüklüğündeki eşeysel dimorfizm, biz de dahil birçok türde erkeklerin dişilere ulaşmak için giriştiği rekabetten kaynaklanıyor olabilir. Erkek kuşlar çoğunlukla, sahip oldukları arazi üzerinde şiddetle rekabet ederler. Birçok türde, erkekler dişilerini sadece, yuva yapmak için uygun, güzel yeşillikleri olan bir toprak parçasını kontrol altında tutarak etkiler. Erkekler bu parçaya sahip olduklarında, görsel ve ses öğeleriyle veya alanlarına tecavüz eden erkeklere doğrudan saldırarak onu savunurlar. Bize zevk veren kuş şarkılarının pek çoğu aslında diğer erkeklere uzak durmalarını söyleyen tehditlerdir. Kuzey Amerika’nın kırmızı kanatlı karatavuğu genellikle açık habitatlardaki tatlı su bataklığı gibi bölgeleri savunur. Fil ayıbalıkları gibi bunlar da poligamiktir, bazı erkekler kendi bölgelerinde barınan neredeyse elli kadar dişiyle eşleşebilir. Diğer pek çok erkek ise “oltacı” diye adlandırılır ve eşleşmeden yaşarlar. Oltacılar ele geçirilmiş bölgelerdeki erkekleri oyalayıp uzak tutarak dişilerle sinsice eşleşmek için sürekli buraları işgal etmeye çalışırlar. Erkekler zamanlarının dörtte birini tetikte durup kendi bölgelerini korumaya çalışmakla geçirirler. Kırmızı kanat erkekleri doğrudan devriye gezmenin yanı sıra karmaşık şarkılar söyleyerek ve omuzlarında parlak kırmızı bir apoletle soylarına has süslerini tehdit gösterisine çevirerek savunma yaparlar (Dişiler kahverengidir, bazen küçük iz gibi bir apoletleri olur). Apoletler dişileri etkilemek için değildir, gerçekte bölgeyi ele geçirmek için düelloya gelen diğer erkekleri tehdit etmek için kullanılır. Araştırmacılar, siyaha boyayarak apoletlerini yok ettikleri erkeklerin yüzde 70 oranında bölgelerini kaybettiğini gördüler; fakat apoletleri şeffaf bir çözücü ile boyanan erkeklerin sadece yüzde 10’u kaybetmişti. Apoletler belki de zorla girenleri uzak tutmak için, o bölgede yaşandığını gösteren bir işarettir. Şarkı da önemlidir. Şarkı söyleme yeteneğini geçici olarak kaybetmiş, susturulmuş erkekler de bölgelerini kaybediyordu. Kısacası karatavuklarda şarkı ve tüyler bir erkeğin daha fazla eş edinmesine yardımcı olur. Yukarıda anlatılan çalışmalarda ve diğer başka birçok çalışmada araştırmacılar, daha ayrıntılı özelliklere sahip erkeklerin dölde daha büyük bir netice elde etmesinde, eşeyli seçilimin rol oynadığını gösterdiler. Bu sonuç basit görünmektedir, fakat meraklı biyologların yüzlerce saatlik sabırlı saha çalışmaları sonucunda ortaya çıkmıştır. Parıltılı bir laboratuarda DNA’nın dizi analizini yapmak daha ihtişamlı görünebilir ama bir bilim insanının seçilimin doğada nasıl işlediğini göstermesinin tek yolu sahada kirlenmekten geçer. Çiftleşme sonrası rekabet örnekleri Eşeysel seçilim sadece eşeye etkimekle bitmez: erkekler çiftleşmeden sonra da rekabete devam eder. Birçok türde dişiler kısa bir süre içerisinde birden fazla erkekle çiftleşebilir. Bir erkek bir dişiyi dölledikten sonra, aynı dişiyi diğer erkeklerin döllemesini ve babalık hakkını elinden almasını nasıl engelleyebilir? Bu çiftleşme sonrası rekabet eşeysel seçilim tarafından inşa edilmiş en merak uyandırıcı özelliklerden bazılarını ortaya çıkarmıştır. Bazen erkek çiftleşmeden sonra etrafta başıboş gezer, dişisini bu şekilde diğer taliplerden korur. Birbirine yapışmış bir çift yusufçuk görürseniz bilin ki erkek dişiyi dölledikten sonra fiziksel olarak diğer erkeklere kapatarak korumaya alıyordur. Bir Orta Amerika kırkayağı en olağanüstü şekilde eşini korumaya geçer: bir dişiyi dölledikten sonra, onu birkaç gün boyunca taşır ve bu şekilde yumurtalarına herhangi bir rakibin sahip çıkmasını engeller. Bazen bu engelleme kimyasallar yoluyla yapılır. Bazı yılanların ve kemirgenlerin menisi çiftleşmeden sonra dişinin üreme yolunu geçici olarak tıkayan kimyasallar içerir, yani diğer erkeklere karşı barikat kurar. Benim de çalıştığım sirke sineği grubunda ise erkek dişiye bir anti-afrodizyak enjekte eder, semenindeki bu kimyasal birkaç gün boyunca dişiyi yeniden çiftleşmeye isteksiz hale getirir. Erkekler babalıklarını korumak için çok çeşitli savunma silahları kullanırlar. Fakat çok daha sinsi de olabilirler, birçoğu ilk çiftleşen erkeğin spermlerinden kurtulabilecek ve yerine kendilerininkini koyabilecek hücum silahı taşır. Bunlar arasında en zekice araçlardan biri bazı kızböceklerinin “penis kepçesi”dir. Erkek önceden çiftleşmiş bir dişiyle çiftleştiğinde, penisi üzerinde arka tarafa bakan iğnelerini kullanarak daha önceden çiftleşen erkeğin spermlerini dışarı atar. Ancak dişi spermlerden arındırıldıktan sonra kendi spermlerinin transferine başlar. Drosophila’da (Drosophila melanogaster sirke sineğinin tür ismidir), kendi laboratuarımda erkek menisinin daha önceden çiftleşen erkeğin spermlerini pasifleştiren bir madde bulduk. Dişilerin eş tercihi Eşeysel seçilimin ikinci formu olan eş tercihine gelelim. Erkek-erkeğe rekabetle karşılaştırıldığında bu sürecin nasıl işlediğine dair çok daha az bilgimiz var. Çünkü boynuzların ve diğer silahların önemi, renkler, tüyler ve görünüşün öneminden çok daha açıktır. Eş tercihinin nasıl evrimleştiğini ortaya çıkarmak için Darwin’i bu kadar sinirlendiren belalı tavus kuşu kuyruğuyla başlayalım. Tavus kuşundaki eş tercihi üzerine çalışmaların çoğu, İngiltere Bedfordshire’daki Whipsnade Parkı’nda serbest-değişen bir popülasyonu çalışan Marion Petrie ve arkadaşları tarafından gerçekleştirildi. Bu türün erkekleri toplu halde görünebilecekleri ve bu sayede dişiye karşılaştırma olanağı sağlayan bölgelerde, leklerde (Lek, erkek hayvanların kur yapmak ve kendisini göstermek için toplanması hali) toplanır. Bütün erkekler leklere katılmaz, ancak bir dişi kazanabilecek olanlar katılır. On tane kur yapan erkek üzerinde yapılan gözlemsel bir çalışmada erkeklerin kuyruk tüylerindeki göz beneği sayıları ve başarılı oldukları çiftleşme sayıları arasında bir bağıntı bulundu: 160 göz beneği olan en ayrıntılı erkek, bütün eşleşmelerin yüzde 36’sını topladı. Bu, dişilerin daha ayrıntılı kuyrukları tercih ettiğini tahmin ettirir, fakat kanıtlamaz. Erkeğin kur yapmasında bazı diğer yönlerinin de –örneğin görünüşündeki zindelik- dişi tarafından seçiliyor olması muhtemeldir ve bu, tüylerle bağıntılı görünmektedir. Bunu hariç tutmak gerekirse, bazı deneysel düzenlemeler yapılabilir: tavus kuşunun kuyruğundaki benek sayısını değiştirin ve bunun eş bulma yeteneğini etkileyip etkilemediğine bakın. Dikkate değer bu tip bir deney Darwin’in rakibi Alfred Russel Wallace tarafından 1869’da düzenlendi. Bu iki bilim adamı birçok konuda, özellikle de doğal seçilimde birbirini onaylamış olsa da konu eşeysel seçilime geldiğinde ayrıştılar. Erkek-erkeğe rekabet iki adam için de sorun değildi, fakat Wallace dişi tercihi olasılığını uygun görmüyordu. Yine de bu konuda açık ufuklu davrandı ve bunun nasıl deneneceğini önerirken kendi zamanının ötesine geçti: “Süslü olanın kendisi tarafından oynanması gereken bölüm çok küçüktür, hatta süslünün az da olsa üstünlüğünün genellikle eşin tercihini belirleyeceği kanıtlansa bile. Nitekim kanıtlanmadı. Yine de bu, deneye imkân veren bir sorundur ve ben de bazı Zooloji Toplulukları veya araca sahip herhangi bir insanın bu çalışmaları denemesini öneririm. Her biri dişi kuşlara erişebildiği bilinen, aynı yaşta bir düzine erkek kuş seçilmelidir, örneğin evcil kümes hayvanları, yaygın sülünler veya altın sülünler. Bunların yarısının bir veya iki kuyruk tüyü kesilmeli veya boyun tüyleri doğadaki çeşitliliği taklit eden bir fark oluşturmaya yetecek fakat kuşu biçimsizleştirmeyecek şekilde biraz kısaltılmalıdır ve sonra dişi kuşların bu eksikliği fark edip etmediği ve daha az süslü erkekleri eşit bir şekilde reddedip etmedikleri gözlemlenmeli. Bu deneyler, dikkatlice planlanır ve birkaç sezon için mantıklı bir şekilde çeşitlendirilirse, bu ilgi çekici soruya dair en değerli açıklamaları sağlayacaktır.” Aslında bir yüzyıl sonrasına kadar bu tip deneyler yapılmadı. Fakat şimdi sonuçları elimizde ve buna göre dişi tercihi yaygın. Bir deneylerinde Marion Petrie ve Tim Halliday, bir grup tavus kuşundaki her erkeğin kuyruğundan yirmi göz bebeğini kestiler ve yakalanan fakat tüyleri kesilmeyen bir kontrol grubuyla çiftleşme başarılarını karşılaştırdılar. Tabii sonraki üreme mevsiminde süsleri alınmış erkeklerin her biri kontrol erkeklerinden ortalama 2,5 daha az çiftleşme gerçekleştirebildi. Bu deney, dişilerin süsleri azaltılmamış erkekleri tercih ettiğini gösterir. Fakat ideal olan, deneyin bir de tersinden tekrarlanmasıdır: kuyrukları daha ayrıntılı hale getirin ve bunun çiftleşme başarısını artırıp artırmadığına bakın. Böyle bir deneyi tavus kuşlarında yapmak zor olsa da, İsveçli biyolog Malte Andersson tarafından Afrika’da yerel uzun kuyruklu Whydah ispinozları üzerinde denendi. Bu eşeysel dimorfik türlerde erkeklerin kuyruğu yaklaşık 20 inç (1 inç yaklaşık 2,5 cm, 20 inç = 50 cm), dişilerin ise 3 inç uzunluğundadır. Andersson uzun erkek kuyruklarının bir parçasını alıp bunları normal kuyruklara yapıştırarak aşırı derecede kısa kuyruklu (6 inç), normal “kontrol” kuyruklu (bir parça kesilmiş ve sonra geri yapıştırılmıştır) ve uzun kuyruklu (30 inç) erkekler üretti. Tahmin edileceği gibi, kısa kuyruklu erkekler normallerle karşılaştırıldığında bölgesinde barınan daha az dişiyi elde edebilmiştir. Fakat suni bir şekilde kuyrukları uzatılmış olan erkekler çiftleşmede çok büyük bir artış elde etmiş, neredeyse normal erkeklerin iki katı kadar dişiyi etkilemişlerdir. Buradan bir soru ortaya çıkar. Eğer 30 inç uzunluğunda kuyruğu olan erkekler daha fazla dişi tarafından tercih ediliyorsa, neden Whydah ispinozları ilk başta bu uzunlukta bir kuyruğa evrilmedi. Cevabı bilmiyoruz, fakat bu uzunlukta kuyruğun eş bulma yeteneğini artırmasından daha büyük oranda ömrü kısaltıyor olması muhtemeldir. Yirmi inç belki de ömrü boyunca verebileceği ortalama üreme sayısının en yüksek olduğu uzunluktur. Peki, erkek çalı tavukları yeşilliklerdeki çetin maskaralıklarından ne kazanıyor? Burada da yanıt: eş. Tavus kuşları gibi, erkek çalı tavuğu da denetlemeye çıkmış dişilere toplu halde göründükleri lekler yapar. Sadece günde 800 kere “kasılarak yürüyen” en kuvvetli erkeğin dişileri kazanabildiği gösterilmiştir; geri kalan çoğunluk ise çiftleşemeden yürümeye devam eder. Eşeysel seçilim diğer yandan çardak kuşlarının mimari başarılarını da açıklar. Türden türe değişen çardak dekorasyonlarının pek çok çeşidinin çiftleşme başarısıyla bağlantılı olduğu birçok çalışmada gösterilmiştir. Örneğin saten çardak kuşları çardaklarına daha fazla mavi tüy koyduklarında daha fazla çiftleşebilir. Benekli çardak kuşlarında en büyük başarı yeşil solanum meyveleri (yabani domatesle akraba bir tür) gösterildiğinde elde edilmektedir. Cambridge Üniversitesi’nden Joah Madden benekli çardak kuşlarının çardaklarından dekorasyonları çaldı ve erkeklere altmış objelik bir seçenek sundu. Tabii bunlar çardaklarını yine en çok solanum meyveleri ile dekore ettiler, bu meyveleri çardağın göze çarpan yerlerine koydular. Kuşlar üzerine eğiliyorum çünkü biyologlar eşey tercihinin en kolay bu grupta çalışılabildiğini görmüşler. Kuşlar gün içerisinde aktiftir ve gözlemlenmesi kolaydır, fakat diğer hayvanlarda eşey tercihinin çalışıldığı pek çok örnek de vardır. Dişi tungara kurbağaları en karmaşık sesleri çıkaran erkeklerle çiftleşmeyi tercih eder. Dişi lepistesler daha uzun kuyruğu ve daha renkli benekleri olan erkekleri sever. Dişi örümcekler ve balıklar genellikle daha büyük olan erkeği seçer. Malte Andersson Eşeysel Seçilim adlı kapsamlı kitabında, 186 türde 232 deneyin erkek özelliklerinin büyük bir kısmının çiftleşme başarısıyla bağlantılı olduğunu ve bu deneylerin büyük çoğunluğunun dişi tercihi gösterdiğini anlatmaktadır. Kısacası dişi tercihinin birçok eşeysel dimorfizmin evrimini yönlendirdiğinden şüphemiz yok. Yani Darwin haklıydı. Fakat biz iki önemli soruyu atladık: erkekler kur yapmak veya onlar için savaşmak zorundayken neden dişiler seçme işlemini yapmak zorunda kalıyor? Ve neden her zaman dişiler seçiyor? Bu sorulara yanıt verebilmek için organizmaların neden eşeyli olmayı benimsediklerini anlamamız gerekir. Neden eşeyli üreme? Eşeyin neden evrimleştiği evrimde hâlâ en muammalı sorudur. Genlerinin sadece yarısına sahip yumurta veya spermler oluşturarak eşeyli üreyen herhangi bir birey eşeysiz üreyen diğer bir bireye göre yeni jenerasyona yüzde 50 oranında genetik harcama yapar. Şu şekilde düşünelim. İnsanlarda, normal formu eşeyli üremeye yarayan, mutant formu ise dişilerin döllenme gerekmeden yumurta üretmesini sağlayan partenogenez ile üremesine yardımcı olan bir gen hayal edin (Bazı hayvanlar gerçekten bu şekilde ürer: yaprak bitleri, balık ve kertenkelelerde görülmektedir). İlk mutant kadının sadece kızları olacaktır ve bu kızlar da kendi kendilerine başka kızlar doğurabilecektir. Mutant olmayanlarda ise eşeyli üreyen kadınlar erkeklerle çiftleşecektir ve yarısı erkek yarısı dişi olan döller verecektir. Dişi havuzu sadece kız çocuğu üreten mutantlarla dolacağı için popülasyondaki kadın oranı çabucak yüzde 50’nin üzerine çıkacaktır. Sonunda bütün dişiler eşeysiz üreyen annelerden doğmuş olacaktır. Erkekler gereksiz hale gelecek ve ortadan kaybolacaktır: hiçbir mutant kadın onlarla çiftleşme ihtiyacı duymaz ve bütün dişiler sadece daha fazla dişi doğuracaklar. Partenogenez için gereken gen eşeyli üreme için gereken geni yenmiş olur. “Eşeysiz” genin kendisini, her jenerasyonda, “eşeyli” genin yaptığının iki katı kadar üreteceği teorik olarak gösterilebilir. Biyologlar bu duruma “eşeyin iki katı masrafı” derler. Sonuçta, doğal seçilim etkisinde partenogenez için olan genler çok hızlı bir şekilde yayılır ve eşeyli üremeyi eler. Fakat bu gerçekleşmedi. Dünya’daki türlerin büyük çoğunluğu eşeyli ürer ve üremenin bu türü bir milyar yıldır sürüyor. (2) Peki eşeyin masraflı olması neden partenogenezle yer değiştirmesine neden olmadı? Eşeyin, masrafından daha ağır evrimsel bir avantajı olmalı. Henüz o avantajın ne olduğunu ortaya çıkaramamış olsak da, teorilerde bir noksanlık hissedilmemektedir. Asıl anahtar, eşeyli üreme sırasında genlerin rasgele karışması ve bu sayede dölde yeni gen kombinasyonları ortaya çıkarmasıdır. Bir bireyde birçok elverişli geni bir araya getirirsek eşey, çevrenin sürekli değişen manzarasıyla baş edebilmek için evrimi hızlanmaya zorlar, parazitlerin evrimleşen savunma mekanizmalarımıza karşı durabilmek için acımasız bir şekilde evrim geçirmesi buna örnektir. Veya belki de eşey, tamamen avantajsız bir bireyde, bir araya getirmek suretiyle türdeki bütün kötü genleri yok edebilir. Bilim insanları hâlâ, eşeyi, iki kat masraflı olmasına karşın daha önemli hale getiren bir avantajı olup olmadığını sorguluyor. Eşey evrildiğinde ister istemez bunu eşeyli üreme de takip edecektir, bunun için iki şeyi daha açıklamamız gerekir. İlki; döl oluşturmak için çiftleşmek ve genlerini bir araya getirmek zorunda olan neden sadece iki cinsiyet var (neden üç veya daha fazla değil)? Ve ikincisi; neden iki eşeyin farklı sayı ve büyüklükte gametleri (erkekler pek çok küçük sperm oluşturur, dişiler ise daha az ama daha büyük yumurtalar) var? Eşey sayısına dair soru bizi oyalamaması gereken karmaşık teorik bir sorundur; fakat teorinin, iki eşeyin, üç veya daha fazla eşeyli çiftleşme sistemlerinin evrimsel olarak yerini alacağını gösterdiğini aklımızdan çıkarmayalım. İki eşey en sağlam ve kararlı stratejidir. İki eşeyin gametlerinin neden farklı sayı ve boyutlarda olduğu teorisi de aynı şekilde karmaşıktır. Bu durum muhtemelen iki eşeyin de aynı büyüklükte gametler ürettiği daha önceki eşeyli üreyen türlerden evrilmiştir. Teorisyenler doğal seçilimin, bu atasal durumun bir eşeyin (“erkek” diye adlandırdığımız) çok sayıda küçük gametler (sperm veya polen) oluşturması ve diğerinin (“dişi”) ise daha az ama büyük gametler (yumurta) oluşturması durumuna geçişini elverişli kıldığını inandırıcı bir şekilde gösterdiler. Erkek ve dişinin farklı çiftleşme stratejileri Eşeysel seçilimin aşamasını belirleyen gamet boyutundaki asimetri, aynı zamanda iki eşeyin farklı çiftleşme stratejileri evrimleştirmesine de neden olmuştur. Erkekleri ele alalım. Bir erkek çok miktarda sperm üretebilir ve büyük olasılıkla çok miktarda dölün babası olur; bu etkileyebileceği dişi sayısıyla ve spermlerinin rekabet yeteneği ile sınırlıdır. Dişiler için ise durum farklıdır. Yumurtalar masraflıdır, sayıca sınırlıdır ve eğer bir dişi kısa bir süre içerisinde pek çok kez çiftleşirse bu onun döl sayısını artırmada çok az etkili olur. Bu fark çok açık bir şekilde, bir insan dişisi ile erkeğinin ebeveyni olduğu kayıtlı çocuk sayısına bakarak görülebilir. Bir kadının hayatı boyunca üretebileceği maksimum çocuk sayısını tahmin etmeye kalkarsanız muhtemelen 15 civarında dersiniz. Bir daha düşünün. Guinness Rekorlar Kitabı’ndaki resmi rakam 69’dur, on sekizinci yüzyılda yaşayan bir Rus köylüsünün rekorudur. 1725 ile 1745 arasındaki 27 hamilelikten 16 ikiz, 7 üçüz ve 4 adet dördüz doğmuştur (Muhtemelen fizyolojik veya genetik olarak çoklu doğuma yatkınlığı vardı). Birileri bu çalışan kadın için ağlar, fakat bu rekor bir erkek tarafından, Marokko İmparatoru Mulai İsmail (1646-1727) tarafından, kırılmıştır. İsmail Guinness’te “en az 342 kız ve 525 erkeğin babası” olarak ve “1721’de 700 erkek toruna sahip” olarak kaydedilmiştir. Bu uç örneklerde bile erkekler dişileri 10 katından fazla geçmektedir. Erkekler ve dişiler arasındaki evrimsel fark, farklı yatırımdan gelir. Erkekler için çiftleşmek ucuzdur; dişiler için masraflıdır. Erkekler için bir çiftleşme sadece az miktarda sperme mal olur, dişiler için çok daha fazlasını ifade eder: büyük, besin dolu yumurtaların üretimi ve çoğunlukla çok miktarda enerji ve zaman kaybı. Memeli türlerinin yüzde 90’dan fazlasında, bir erkeğin döle yaptığı tek yatırım spermidir, dişi ise bütün bakımı üstlenir. Dişi ve erkeklerin olası eş ve döl sayıları arasındaki bu asimetri eş seçme zamanı geldiğinde çelişen ilgilere neden olur. Erkeklerin, standardın altında bir dişi (diyelim ki zayıf veya hasta biri) seçtiklerinde kaybedecekleri şey azdır, çünkü kolaylıkla tekrar ve defalarca eşleşebilirler. Bu durumda seçilim bir erkeği gelişigüzel yapan, neredeyse her dişiyle durmaksızın eşleşmeye çalışan genlerini öne çıkarır. Dişiler farklıdır. Yumurtalarına ve döllerine çok yatırım yaptıkları için en iyi taktikleri gelişigüzel olmak değil titiz olmaktır. Dişiler sınırlı sayıda yumurtalarını dölleyecek en iyi baba olanağını seçmek için her fırsatı hesaba katmalıdır. Bu nedenle potansiyel erkekleri çok yakından incelerler. Genellikle bunun anlamı, erkeklerin dişiler için rekabet etmesi gerektiğidir. Erkekler gelişigüzel, dişiler nazlıdır. Bir erkeğin hayatı, sürekli eş için hemcinsleriyle yarışan yıkıcı bir anlaşmazlık ile geçer. Standart erkekler eşleşemezken, iyi erkekler, hem daha etkileyici hem de daha vahşi olanlar, çoğunlukla çok sayıda eşi güvenceye alacaktır (tahminen daha fazla dişi tarafından da tercih edilecektir). Diğer yandan, neredeyse her dişi sonunda bir eş bulacaktır. Her erkek onlar için rekabet ettiğinden, dişilerin eşleşme başarısının dağılımı daha dengeli olacaktır. Biyologlar bu farkı, eşleşme başarısındaki varyansın erkekler için dişiler için olduğundan daha yüksek olması gerektiğini söyleyerek açıklarlar. Peki, öyle midir? Evet, genellikle böyle bir fark görürüz. Örneğin kırmızı geyik erkekleri arasında, hayatları boyunca kaç döl bıraktıklarına dair çeşitlilik dişilerinkinin 3 kat fazlasıdır. Uyumsuzluk fil ayıbalıkları için çok daha büyüktür, çünkü bunlardaki dişilerin yarısından fazlasıyla karşılaştırılırsa, bütün erkeklerin yüzde 10’u üreme sezonları boyunca hiç döl bırakamaz. (3) Erkek ve dişilerin olası döl sayıları arasındaki fark erkek-erkeğe rekabetin ve dişi tercihinin evrimleşmesine neden olmuştur. Erkekler sınırlı sayıdaki yumurtaları döllemek için rekabet etmek zorundadır. Buna “muharebe yasası” diyoruz: erkekler arasında genlerini gelecek jenerasyonlara aktarmak için doğrudan rekabet. Bu nedenledir ki erkekler renklidir veya “beni seç, beni seç!” demenin bir yolu olan görüntüleri, çiftleşme şarkıları, çardakları vardır. Ve sonunda yine de erkeklerde uzun kuyrukların, daha vahşi görüntülerin ve daha yüksek sesli şarkıların evrimini sürükleyen dişinin tercihleridir. Anlattığım senaryo bir genellemedir ve bazı istisnalar vardır. Bazı türler monogamiktir, erkek de dişi de yavruların bakımını üstlenir. Erkekler, daha fazla eş aramak için döllerini bıraktıklarından daha fazla döle çocukların bakımına yardım ederek sahip oluyorsa, evrim monogamiyi elverişli kılar. Örneğin birçok kuşta, iki tam-zamanlı ebeveyne ihtiyaç duyulur: biri yem aramaya gittiğinde diğeri yumurtaları sıcak tutar. Fakat monogamik türler vahşi doğada tahmin edildiği kadar da çok değildir. Örneğin bütün memeli türlerinin sadece yüzde 2’si bu tür eşleşme sistemine sahiptir. ‘Yalancı’ monogami örnekleri Eşeysel dimorfizmi birçok “sosyal monogamik” türde de görürüz. Bunlarda erkekler ve dişiler çift oluşturur ve yavruları birlikte yetiştirirler. Erkekler dişiler için rekabet etmiyorsa neden parlak renkler ve süsler evrimleştirmiş olabilir? Aslında bu çelişki de eşeysel seçilim teorisini destekler. Bu durumlarda, öyle görünüyor ki, dış görünüş aldatıcıdır. Türler sosyal yönden monogamiktir, fakat gerçek monogamik değildir. Chicago’daki okul arkadaşım Stephen Pruett-Jones’un çalıştığı Avustralyalı görkemli çalıkuşu bu türlerden biridir. Bu tür ilk bakışta monogaminin kusursuz örneği zannedilir. Erkek ve dişiler bütün erişkin yaşamlarını genellikle sosyal olarak birbirine bağlı geçirirler, arazilerini birlikte korur ve yavrularına birlikte bakarlar. Yine de tüylerinde eşeysel dimorfizm gösterirler: erkekler muhteşem yanardöner mavi ve siyahlıdır, dişiler ise ölü grimsi kahve renklidir. Neden? Çünkü “zina” yaygındır. Çiftleşme zamanı geldiğinde, dişiler kendi “sosyal eşleri”nden çok diğer erkeklerle eşleşir (Bu DNA babalık testi ile kanıtlanmıştır). Erkekler de aktif bir şekilde “ekstra çift” eşleşmeler arayarak ve dişilere asılarak aynı oyunu oynarlar, fakat üreme kapasitesi açısından dişilerden çok daha farklıdırlar. Bu zina dolu eşleşmelerle birlikte eşeysel seçilim cinsiyetler arasındaki renk farklılıklarının evrimleşmesini sağlamıştır. Söz konusu çalıkuşu bu davranışı gösteren tek tür değildir. Bütün kuş türlerinin yüzde 90’ı sosyal monogamik olsa da bu türlerin dörtte üçündeki erkekler ve dişiler kendi sosyal partnerleri haricinde bireylerle de eşleşir. Eşeysel seçilim teorisi test edilebilir tahminlerde bulunur. Eğer sadece bir eşeyin parlak tüyleri, boynuzları varsa, güçlü çiftleşme görüntüleri sergiliyorsa veya dişileri cezbetmek için göz kamaştırıcı yapılar inşa ediyorsa bahse girebilirsiniz ki bunlar çiftleşmek için diğer üyelerle rekabet eden eşeylerdendir. Gösteriş veya davranışta daha az eşeysel dimorfizm gösteren türler daha monogamik olmalıdır: eğer erkekler ve dişiler çift oluşturur ve eşlerinden ayrılmazsa eşeysel bir rekabet yoktur ve tabii ki eşeysel seçilim de yoktur. Aslında biyologlar eşleşme sistemi ile eşeysel dimorfizm arasında güçlü bir bağıntı görür. Boyutta, renk veya davranıştaki olağandışı dimorfizmler cennet kuşları veya fil ayıbalıkları gibi erkeklerin dişiler için rekabet ettiği ve sadece birkaç erkeğin eşlerin çoğuna sahip olduğu türlerde görülür. Erkeklerle dişilerin benzer görüldüğü türler, örneğin kazlar, penguenler, güvercin ve papağanlar, gerçek monogamik olma eğilimindedir, yani hayvanlardaki sadakatin örneğini teşkil ederler. Sadece eşeysel seçilim düşüncesi tarafından öngörüldüğü fakat herhangi bir yaratılışçı alternatif tarafından öngörülemediği için bu bağıntı evrim teorisinin bir başka zaferidir. Evrim yoksa neden renk ile çiftleşme sistemleri arasında bir bağıntı olsun ki? Aslında bir tavus kuşu tüyü gördüğünde hasta olması gerekenler yaratılışçılardır, evrimciler değil. (4) Az da olsa bazen roller değişir Şimdiye kadar eşeysel seçilimde önüne gelenle çiftleşen eşeyi erkek, titiz olanı ise dişi olarak tanımladık. Fakat bazen, ender de olsa, tersi doğrudur. Ve bu davranışlar eşeyler arasında değiş tokuş edildiğinde dimorfizmin yönü de değişir. Bu dönüşü en cazip balıklarda, denizatında ve yakın akrabası olan yılaniğnesinde görürüz. Bazı türlerde dişilerdense erkekler hamile kalır. Bu nasıl olabilir? Dişi yumurtayı üretse bile, bir erkek onları dölledikten sonra karnında veya kuyruğundaki özelleşmiş bir kuluçka kesesine yerleştirir ve çatlayana kadar taşır. Erkekler bir seferde sadece bir kuluçka taşır ve “gebelik” dönemleri bir dişinin taze bir parti yumurta üretmesinden uzun sürer. Dolayısıyla erkekler çocuk yetiştirmeye dişilerden daha fazla yatırım yapar. Döllenmemiş yumurta taşıyan dişi sayısı erkeklerin onları kabul edebileceğinden fazla olduğu için de dişiler nadir bulunan “hamile olmayan” erkekler için rekabet etmek zorundadır. Burada, üreme stratejisindeki erkek-dişi farkı tersine dönmüştür. Ve eşeysel seçilim teorisine göre tahmin edebileceğiniz gibi, parlak renkler ve süslerle dekore edilmiş olanlar bu kez dişilerdir, erkekler ise daha sönüktür. Avrupa ve Kuzey Amerika’da yaşayan zarif üç sahil kuşu türü olan deniz çulluklarında bu durum geçerlidir. Bunlar birkaç poliandri (bir dişi ve çok erkek) çiftleşme sistemi örneğinden biridir. Erkek deniz çullukları çocuk bakımından tamamen sorumludur, yuvayı kurar ve dişi diğer erkeklerle çiftleşmek için gittiğinde kuluçkayı besler. Yani erkeğin döle yaptığı yatırım dişininkinden daha büyüktür ve dişiler çocuklarına bakacak erkekler için rekabet eder. Ve tabii ki her üç türde de dişilerin renkleri erkeklerden çok daha parlaktır. Denizatları, yılaniğneleri ve deniz çullukları genel yasaya uymayan istisnalardır. Eşeysel dimorfizmin evrimsel açıklaması doğruysa, “ters” dekorasyonlar da beklediğimiz gibidir; fakat türler özel olarak yaratılmışsa aynı sonucu bekleyemeyiz. Dişi neyi seçiyor, nasıl seçiyor? Dişilerin seçici taraf olduğu “normal” eş seçimine dönelim. Bir erkeği seçerken gerçekten ne arıyorlar? Bu soru evrim biyolojisinde ünlü bir tartışmayı canlandırmıştır. Daha önce de gördüğümüz gibi Alfred Russel Wallace bile dişilerin seçici olduğu konusunda şüpheliydi (ve sonuçta hatalıydı). Teorisi dişilerin yırtıcılardan saklanmaya ihtiyacı olduğu için erkeklerden daha az renkli olduğu, erkeklerin parlak renklerinin ve süslerinin ise fizyolojilerinin yan ürünü olduğuydu. Fakat erkeklerin neden saklanmak zorunda olmadığına dair hiçbir açıklama yapmadı. Darwin’in teorisi ise biraz daha iyiydi. Erkek seslerinin, renklerinin ve süslerinin dişi tercihi ile evrildiğini güçlü bir şekilde hissetmişti. Dişiler neye dayanarak seçim yapıyordu? Yanıtı şaşırtıcıydı: saf estetik. Darwin dişilerin, aslen cazip görmüyorlarsa bu özenli şarkılar veya uzun kuyruklar gibi şeyleri seçmeleri için bir neden bulamıyordu. Eşeysel seçilim konusunda çığır açan çalışması İnsanın Türeyişi ve Eşeye Bağlı Seçilim (1871), dişi hayvanların erkeklerin türlü özellikleri karşısında nasıl “büyülendiklerini” ve nasıl “kur yapıldığını” anlatan ilginç antropomorfik açıklamalarla doludur. Wallace’ın da not ettiği gibi, hâlâ bir sorun vardı. Hayvanlar, özellikle de arı ve sinekler gibi basit olanlar, bizim gibi bir estetik duygusuna sahip miydi? Darwin bunun üzerine bahse girdi: “Avustralya’nın çardak kuşlarında olduğu gibi, kuşların parlak ve güzel objeleri takdir ettiğine dair bazı pozitif kanıtlarımız olsa da, şarkının gücünü kesinlikle takdir ediyor da olsalar, yine de birçok dişi kuşun ve memelinin, eşeysel seçilime dayandığını söylediğimiz süsleri takdir etmek gibi başarılı bir tat alma duyusuna sahip olmasının hayrete şayan olduğunu kabul ediyorum. Ve bu özellikle de sürüngenler, balık ve böcekler için çok daha hayret vericidir. Fakat aşağı canlıların aklına dair çok az şey biliyoruz.” Bütün yanıtları bilmese de bu Darwin’in doğruya Wallace’tan daha yakın olduğunu gösterir. Evet, dişiler seçim yapar ve bu seçimler eşeysel dimorfizmi açıklıyor gibi görünmektedir. Fakat dişi tercihinin basitçe estetiğe dayandırılması bir anlam ifade etmiyor. Yeni Gine cennet kuşları gibi yakın akraba türlerin erkekleri çok çeşitli tüylere ve eşleşme davranışına sahiptir. Bir türe güzel gelen şey onun en yakın akrabalarına güzel gelen şeyden çok mu farklıdır? Aslında, artık dişi tercihlerinin kendi başlarına uyumsal olduğuna dair çok kanıtımız var. Bazı erkeklerin seçilmesi dişilerin genlerini yaymasına yardım eder. Tercihler Darwin’in öne sürdüğü gibi her zaman rasgele ve doğuştan gelen tat almayla ilgili değildir, birçok durumda muhtemelen seçilimle evrimleşmiştir. Bir dişi belirli bir erkeği seçerek ne kazanır? Bunun iki yanıtı vardır. Dişi, yavru bakımı boyunca daha fazla ve sağlıklı yavrular üretmesine yardım edecek erkeği seçerek doğrudan yarar sağlayabilir. Veya diğer erkeklerden daha iyi genlere (sonraki jenerasyonda döllerine avantaj sağlayacak olan genler) sahip olan erkeği seçerek dolaylı yoldan yarar sağlayabilir. Her iki yoldan da dişi tercihlerinin evrimi doğal seçilim tarafından elverişli kılınacaktır. Doğrudan yararları ele alalım. Bir dişiye daha iyi bölgeleri sahiplenen bir erkekle çiftleşmesini söyleyen bir gen, döllerinin daha iyi beslenmesine veya daha güzel yuvalar edinmesine yardımcı olur. İyi bölgelerde yetiştirilmemiş gençlere oranla daha iyi yaşayacak ve üreyeceklerdir. Bu şu anlama gelir; genç popülasyonu kendinden önceki jenerasyonun sahip olduğundan daha yüksek oranda “tercih geni”ne sahip dişiler içerecektir. Jenerasyonlar geçtikçe ve evrim devam ettikçe her dişi sonunda tercih genine sahip olacaktır. Hatta daha iyi bölgelerin tercihini artıran başka mutasyonlar varsa bunların da frekansı artacaktır. Zamanla daha iyi bölgelere sahip erkeklerin tercih edilmesi çok daha güçlü olmaya doğru evrilecektir. Ve bu bölgeler için daha güçlü rekabet eden erkeklerin seçilmesiyle sonuçlanacaktır. Dişi tercihi arazi için erkekler arası rekabetle birlikte evrimleşir. Seçici dişilere dolaylı yarar sağlayan genler de yayılacaktır. Kendisini bir hastalığa karşı diğerlerinden daha dirençli yapan gene sahip bir erkek hayal edin. Bu tür bir erkekle çiftleşen dişi hastalığa karşı daha dirençli döller üretecektir. Bu erkeği seçmek ona evrimsel bir yarar sağlar. Şimdi de bu daha sağlıklı erkekleri dişinin eş olarak belirlemesine yardımcı olan bir gen hayal edin. Eğer dişi böyle bir erkekle çiftleşirse, bu çiftleşme iki geni de (hem hastalığa karşı direnç geni hem de hastalığa karşı dayanıklıları tercih etme geni) içeren kız ve erkek çocukları meydana getirecektir. Her jenerasyonda, daha iyi üreyen ve hastalığa karşı en dirençli bireyler, aynı zamanda dişilere en dirençli erkekleri seçmesini söyleyen geni de taşıyacaktır. Bu direnç genlerinin doğal seçilimle yayılması gibi, dişi tercihi için olan genler de bunların sırtında ilerleyecektir. Bu yolla hem dişi tercihi hem de hastalığa karşı direnç bir tür içerisinde artacaktır. Bu iki senaryo da dişilerin neden bazı erkekleri tercih ettiğini açıklar, fakat parlak renkler veya özenli tüyler gibi erkeklerin belirli özelliklerini neden tercih ettiğini açıklamaz. Bu muhtemelen, belirli özellikler dişiye o erkeğin daha büyük doğrudan veya dolaylı yararlar saplayacağını söylediği için gerçekleşmektedir. Dişi tercihine dair bazı örneklere bakalım. Kuzey Amerika’nın ev ispinozu renkleri açısından eşeysel dimorfiktir: dişiler kahverengiyken erkeklerin kafasında ve göğsünde parlak renkler vardır. Erkekler bölgelerini savunmaz ama yavru bakımını üstlenir. Michigan Üniversitesi’nden Geoff Hill yerel bir tür içinde erkeklerin renklerinin açık sarıdan portakala veya parlak kırmızıya kadar değişkenlik gösterdiğini buldu. Rengin üreme başarısını etkileyip etkilemediğini görmek amacıyla saç boyası kullanarak erkekleri daha parlak veya soluk yaptı. Ve tabii ki parlak olanlar soluk renklilerden daha başarılı bir şekilde eş buldu. Ve üzerinde oynanmamış erkekler açısından, dişiler solgun renkli erkeklerin yuvasını parlak olanlarınkine oranla daha fazla terk etti. Dişi ispinozlar neden daha parlak erkekleri tercih ediyor? Hill, aynı popülasyonda parlak erkeklerin yavrularını solgunlardan daha fazla beslediğini gösterdi. Yani dişiler daha parlak erkekleri seçmekle, döllerinin daha iyi beslenmesi şeklinde doğrudan bir yarar sağlıyordu (Daha solgun erkeklerle eşleşen dişiler yavruları yeteri kadar beslenmediği için yuvalarını terk etmiş olabilir). Peki, neden daha parlak erkekler daha fazla besin getirir? Muhtemelen parlaklık genel bir sağlık belirtisi olduğu için. Erkek ispinozların kırmızı rengi, yedikleri tohumlardaki karoten maddesinden gelir – bu maddeleri kendileri üretemezler. Yani daha parlak renkliler daha iyi beslenmiştir ve muhtemelen genel anlamda daha sağlıklıdır. Dişiler parlak renkli erkekleri, renk onlara “aile ambarını en iyi stoklayacak erkek benim” dediği için bunları seçiyor gibiler. Dişilere daha parlak erkekleri seçmesinde yardımcı olan herhangi bir gen o dişilere doğrudan yarar sağlar ve böylece seçilim bu tercihi artıracaktır. Ve buradaki tercihle, tohumları parlak tüylere çevirebilen her erkek aynı zamanda avantajlı olacaktır çünkü daha fazla eşi güvenceye alacaktır. Zamanla eşeysel seçilim bir erkeğin kırmızı rengini abartacaktır. Dişiler ise solgun kalacaktır çünkü parlak olmaktan kazanacakları hiçbir şey yok; hatta yırtıcılara daha çekici gelmekten yakınabilirler. Sağlıklı ve güçlü bir erkek seçmenin başka doğrudan yararları da vardır. Erkekler, dişiye, çocuğuna veya her ikisine de aktarabilecekleri parazit veya hastalıklara sahip olabilir ve bu tip erkeklerden kaçınmak bir dişinin yararınadır. Bir erkeğin rengi, tüyleri ve davranışı hastalıklı veya zararlı olup olmadığına dair ipucu sağlayabilir: sadece sağlıklı erkekler yüksek sesle şarkı söyleyebilir, güçlü bir duruş sergileyebilir veya parlak, yakışıklı tüyler çıkartabilir. Mesela eğer bir türün erkekleri normalde parlak maviyse, soluk mavi bir erkekle çiftleşmekten kaçınmak en iyisidir. Evrim teorisi dişilerin, erkeğin iyi baba olacağını gösteren herhangi bir özelliği seçeceğini gösterir. Tek gereken bu özellik için tercihi artıran bazı genlerin olması ve o özelliğin anlatımındaki çeşitliliğin erkeğin durumu hakkında ipucu vermesidir. Gerisi kendiliğinden gelir. Çalı tavuğunda, parazit bitler erkeğin ses kesesinde kan benekleri oluşturur, bu özellik leklerde kasılarak yürürken kabarık, yarı saydam bir kese gibi durur. Ses keselerine suni yolla kan benekleri boyanmış erkekler kayda değer şekilde az eş edinebilir: bu benekler dişiye erkeğin hastalıklı ve muhtemelen kötü baba olduğuna dair tüyo verir. Seçilim sadece dişinin beneksiz keseleri tercih etmesini sağlayan genleri elverişli kılmayacaktır, aynı zamanda bu durumu belli eden erkek özelliğini sağlayanları da elverişli kılacaktır. Erkeğin ses kesesi daha da büyüyecektir ve dişinin pürüzsüz ses kesesi tercihi artacaktır. Bu, erkeklerde abartılı özelliklerin evrimine neden olabilir, örneğin saçma bir şekilde uzun olan Whydah ispinozu kuyruğu gibi. Bütün bu süreç, erkek özelliğinin daha fazla arttığında yaşamını tehlikeye düşürecek kadar abartılı hale geldiği an, yani döl üretiminin net sayısı kötü etkilendiği an sona erer. Peki, dolaylı yarar sağlayan dişi tercihlerinde durum nasıldır? Bu yararlardan en aleni olanı bir erkeğin döllerine sürekli verdiği şey, yani genleridir. Ve bir erkeğin sağlıklı olduğunu gösteren özellikler aynı zamanda genetik yönden iyi özellikler taşıdığını da gösterebilir. Daha parlak renkli, daha uzun kuyruklu veya daha yüksek sesli erkekler, rakiplerinden daha iyi yaşamalarına ve üremelerine olanak sağlayan genlere sahip olduğu için bu özellikleri gösteriyor olabilir. Bu, aynı şekilde, özenli çardaklar üretme yeteneğine sahip olan veya büyük taş yığınları oluşturabilen erkekler için de geçerli olabilir. Bir erkeğin daha iyi yaşama yeteneği veya daha fazla üreme yeteneği sağlayan genleri olduğunu gösteren pek çok özellik hayal edebilirsiniz. Evrim teorisi bu durumlarda üç tür genin frekansının birlikte artacağını söyler: bir erkeğin iyi genlere sahip olduğunu yansıtan “gösterge” özellik genleri, bir dişinin bu gösterge özellikleri tercih etmesini sağlayan genler ve son olarak varlığı gösterge sayesinde yansıtılan “iyi” genler. Bu karmaşık bir senaryodur, fakat çoğu evrim biyoloğu bunu, ayrıntılı erkek özellikleri ve davranışları için en iyi açıklama olarak görür. Fakat “iyi genler” modelinin gerçekten doğru olup olmadığını nasıl test edebiliriz? Dişiler doğrudan mı yoksa dolaylı yararları mı arar? Bir dişi daha az güçlü veya daha az gösterişli bir erkeği geri çevirebilir, fakat bu o erkeğin zayıf genetik yapısını değil de enfeksiyon veya yetersiz beslenme gibi sadece çevresel etkilerle oluşmuş bir halsizliği gösteriyor olabilir. Bu karmaşıklıklar herhangi verili bir koşulda eşeysel seçilimin nedenlerini ortaya çıkarmayı zorlaştırır. Belki de iyi genler modelinin en başarılı sınaması Missouri Üniversitesi’nden Allison Welch ve arkadaşları tarafından gri ağaç kurbağası üzerinde yapılmıştır. Erkek kurbağalar, ABD’nin güneyinde yaz gecelerinin simgesi olan yüksek sesler çıkararak dişileri etkiler. Yakalanan kurbağalarla yapılan çalışmalar dişilerin daha uzun naralar atan erkekleri tercih ettiğini göstermiştir. Bu erkeklerin daha iyi genlere sahip olup olmadığını test etmek için araştırmacılar farklı dişilerden yumurtaları bölüp her dişinin yumurtasının bir yarısını in vitro uzun naralı erkeklerden aldıkları spermlerle, diğer yarısını ise kısa naralı erkeklerden aldıkları spermlerle döllediler. Bu çaprazlamalardan çıkan iri başlar olgunlaşıncaya kadar beklendi. Uzun naralıların dölleri iribaş halindeyken daha hızlı büyüdü ve daha iyi yaşadı, metamorfozda (iri başların kurbağaya dönüştüğü süreç) daha büyüktü ve metamorfozdan sonra da daha hızlı büyüdü… Jerry A. Coyne

http://www.biyologlar.com/eseyli-ureme-seks-evrimi-nasil-yonlendiriyor

Bitkiler ve Mikroorganizmalar arasındaki ilişkiler

Olumlu ve olumsuz etkileşimler sadece mikroplar arasında olmazlar aynı zamanda bitkiler ve mikroplar arasında da gerçekleşirler. Rizosfer, bitkiler ve mikroplar arasındaki kommensal ve mutualistik etkileşimlerin görüldüğü bölgeye verilen addır. Ekto ve endomikorizal mantarlar bitkilerin mineral madde ve suyun fotosentez ile geri dönüşümünü sağlarlar. Çok ekstrem koşullar altında bitkinin hayatını devam ettirmesi için temel olan mutualistik birleşmeler yapmasıdır. Belirli bitkiler ile denitrojen fiske eden bakteriler nitrojeni ekosistem ve ürünler için birlikte üretirler. Bitkilerin havasal kısımları mikroorganizmalar için çok büyük yaşam alanlarını oluştururlar. Toprak altı bölümlerinde ise belli virüsler, bakteriler ve funguslar bitkiler üzerinde hastalıklara yol açarak çok büyük miktarlarda ekonomik kayıplara hatta çok büyük besin kıtlıklarına yol açarlar. Bitki Kökleri İle Olan İlişkileri Bitki kökleri büyüyen mikroorganizmalar için çok uygun bir habitat oluşturmakta ve bu büyük sayılara ulaşan organizmalar değişik mikroorganizmal grupları oluşturarak bitki köklerini kaplamaktadırlar. Toprak mikroorganizmaları ilişkili olan bitki kökleri çok önemli besin yapılarını hem bitki hem de organizma açısından tatmin edici şekilde önemlidirler (Brown 1974, 1975; Bowen and Rovira 1976; Lynch 1976, 1982a, 1982b, Balandreau and Knowles 1978; Dommergues and Krupa 1978; Newman 1978; Harley and Russell 1979; Bowen 1980). Bu da rhizoplane içerisinde büyük miktarlarda mikroorganizmaların risoplane içerisinde bulunan rizosfer içerisindeki asıl alanlar olan bitki köklerinde direk olarak etkili olarak bulunduğunu ortaya koymaktadır(Campell and Rovira 1973; Rovira and Campell 1974; Bowen and Rovira 1976). Rizosfer Rizosfer toprağı kök sistemine yapışık halde bulunan sarsılmış ve gevşek topraktan oluşmuş ince bir tabakadır.Rizosferin büyüklüğü belirli bitki kökü yapılarına bağlıdır ve genellikle toprakla birleşme alanı çok büyük olmaktadır. Her toplam bitki biyokütlesi saçak kök içerenlerde kazık köklü olanlara göre karakterize olmuştur. Örneğin tek bir buğday bitkisinin kök sistemi 200 metreden daha büyük olabilmektedir. Ortalama bir kök çapının ortalama 0.1 mm olduğunu varsaydığımızda bunun kök alanını 6 metre kareye yayıldığını hesaplayabiliriz. Asıl rhizoplane alanının %4 ile &10 arasındaki bölümünde mikroorganizmalar ile direk bir bağlantı olduğu ve birçok mikroorganizmanın rizosferi çevreleyen köklerle birleşme içerisinde olduğu bildirilmiştir(Bowen 1980) Rizosferin şimdiye kadar yetersiz olarak keşfedilen ilginç bir değişikliği rhizoshealthdir, kökleri gövdeye göre dik ve kalın bir silindir olarak karakterize edilmiştir. Rhizosheathin oluşumu birkaç tipik çöl bitkisinden oluşur fakat daha az aşırı koşullar altında yetişen otumsu bitkilerden de meydana gelmektedir (Wullstein et al. 1979; Duell and Peacock 1985). Rhizosheathde kum zerreleri, bir extracellular mucigel tarafından bir arada olma betonlaşırlar, buda kök hücreleri ile salgıları ile olur. Rhizosheath, nem koruması için bir uyum ortaya çıkartır, fakat aynı zamanda şüphesiz kapsamlı kök mikrop etkileşimleri için ortam sağlar. Artırılan azot fikse etme faaliyeti, rhizosheath toprağında ölçülür. Bitki Köklerinin Mikrobiyal Populasyonlar Üzerine Etkisi Bitki kök sisteminin yapısı, rizosferin mikrobiyal populasyonunun kuruluşuna katkıda bulunur(Nye an Tinker 1977; Russell 1977; Bowen 1980; Lynch 1982a). Bitki kökleri ve rizosfer mikroorganizmalarının etkileşimleri, mineral besinlerin mikropluca araya girilen kullanılabilirliği mikroplu ürünü ve bitki büyüme faktörleri, bitki tarafından su alınımı gibi işlemler, toprak ortamının etkileşimli değişikliğine bağlıdır. Rizosfer, bitki köklerinde, mikroplu topluluk toprağın kompozisyon ve yoğunluğunda bir direkt etkiye sahiptir, bilindiği üzere buna rizosfer etkisi denir. Rizosfer etkisi, mikroorganizma sayısının rizosfer toprağı üzerine etkisi ile görülebilir. R-S oran aralığı genellikle 5 ile 20 araasındadır, fakat 100oranını bulmakta olası bir durumdur, odur ki mikroplu nüfus, rizosferde 100 kereden daha yüksek oranlarda kuşatan kök bulundurmayan toprakta bulunur(Gray and Parkinson 1968;Woldendorp 1978). Rizosfer asıl etkisinin uzatılması, fizyolojik olgunluk ve belirli bitkiye bağlıdır(Darbyshire ve Greaves 1967). Gram pozitif çubuklarının daha az oranı ve gram negatif çubuk-şeklinde bakterilerinin bir daha yüksek oranı vardır, pleamorfik ve koklar da az oranlıdır bunlar köksüz toprak rizosferini biçimlendirirler(Rovira and Campell 1974; Woldendorp 1978; Campell 1985). Her zaman rizosferden başka yerlerde, Pseudomonas gibi süratle çoğalan bakterileri de toprakta bulunmaktadır. Bu çoğalma birçok durumda, yüksek esas büyüme oranları ile mikroorganizmalarına yararlı olan bitki kök salgısının direkt etkisine yani toprak mikroorganizmalarını temsil eder. Köklerden organik malzemeler salınırlar, başka tanımlanamayan esaslar ve amino asitleri, keto asitleri, vitaminleri, şekerleri, tanenleri, alkoloidleri, fosfatları içerir. Kökler, steril köklerde çok organik malzeme ile olarak mikroorganizmaların sarılması ile kuşatıldı. Bu malzemelerin çok azı, mikroorganizmaları engelledikleri gibi, mikroplu büyümeyi de yüksek seviyede uyarırlar. Bitki tarafından salınan malzemelerin etkisi, gözlemler tarafından kanıtlandığı üzere rizosferde toprakta bulunmayan bakteri nüfusları, diğer bakterilerden önemli derecede farklı beslenme özelliklere sahip olur. En fazla büyüme için bir çok rizosfer bakterisi amino asitleri kullanırlar ve bu asitler o kök salgılarının da görülmektedirler. Mikroorganizmalar rizosferde, bitki, tohum filizlenmesinden olgunluğa kadar serisel değişimlere yol açabilirler. Bu kesin rizosfer serisi, bitki gelişmesi boyunca, fırsatçı mikroplu nüfuslar, büyüme faktörü uygun görüleni, süratle yetiştirmekte görevlidirler. Bu serisel değişimler bitki olgunlaşması boyunca rizosfere bitki kökleri ile malzemelerin değişimlere uymasını değiştirir. Başlangıçta karbonhidrat salgıları ve mucilaginous katmanları, kökleri kuşatanlardır. Madde ve kök yüzeyinde, karbonhidrat salınımı ve mucilaginous malzemeleri, başlangıçta, epidermik bitki hücresinin boşluklarında mikroorganizmaların büyük nüfuslarının büyümesini destekler.Bitki olgunlaşması olarak otolizis, kök malzemesinin birçoğunun normal kök gelişmesinin esas bölümünde yer alır ve basit şekerler ve amino asitleri toprağa salarlar, yüksek intricsic büyüme oranları ile başka bakteriler ve Pseudomonasın büyümesini destekler. Çoğu zaman r-s oranları bitkilerin büyümesini durdurmalarından sonra yaşlanmalarını da göstermektedir. Mikrooaerofilik bakterilerdenAzospirillum ve aerobik bakterilerden Azotobacter paspali azot fiksasyonu yapan toprak bakterileridir, genellikle Digitaria, Panicum, ve Paspulum genuslarıda tropikal bölgelerin rizosfer tabakalarında bulunmaktadır. Bu bakteriler köklerden salınan maddeleri enerji kaynağı olarak azot fiksasyonu işleminde kullanmaktadırlar. Bu alanda rizosfer azot fiksasyonu bakterileri her bir hektar alan için 40 kg azot üretimi yaparlar(Smith et al. 1976). Azospirillum bazı ılıman otlak alanlarda ve mısır(Zea mays) bitkilerinde görülmüştür(Lamm and Neyra 1981), fakat buralardaki azot fiksasyonu değerleri diğer bakteri cinslerinen göre çok eser durumdadırlar. Bununla birlikte rizosferik azot fiksasyonu pirinç toplanması sırasında artışa uğramıştır(Swaminathan 1982). Biyokimyasal azot fiksasyonunun yan etkisi olarak hidrojen gazı salınımı gösterilebilir. Sadece birkaç Rhizobium ve Bradyrhizobium bakteri suşları arasında hidrogenaz enzimini inaktive edenler bulunmaktadır; diğerleri de hidrojen gazı çıkartmaya devam ederler. Rizosferdeki Mikrobiyal Populasyonların Bitkiler Üzerindeki Etkileri Bitki kökleri direkt olarak bunları saran mikrobiyal populasyonlarla ilişkilidir, rizosferdeki mikroorganizmalar bitki büyümesi üzerinde göze çarpan şekilde etkilidirler. Mikrobiyal populasyonların rizosferdeki eksikliğinde bitki büyümesi azalmaktadır(Lynch 1976; Dommergues and Krupa 1978; Campell 1985). Rizoferdeki mikrobiyal populasyonlar bitkilere değişik şekillerde yarar sağlayabilmektedir, geri dönüşüm mekanizmaları ve mineral maddelerin çözünebilmeleridir; vitaminlerin sentezleri, amino asitler, oksinler, sytokininler, ve giberellinlerdir bunlar bitkilerin büyümeleri üzerinde etkili durumdadırlar; ve antogonistik ilişkiler ile potensiyel bitki patojenleri doğrudan amensal ilişkilerle antibiyotik üretimlerine dayandırılmaktadır(Nieto and Frankberger 1989; Alvarez et al. 1995). Bitkiler katman şeklindeki toprak tabakalarında gelişimlerini sürdürmektedir bunlar sürgünlerden köklere olan oksijen çevirimlerinde adapte olmuşlardır(Raskin and Kende 1985), fakat anaerobik kök çevrelerinde toksik hidrojen sülfit sülfat çevrimi ile indirgenir(Drew and Lynch 1980). Pirinç ve diğer aynı kök yapısındaki bitkiler Beggiota türü bakteriler ile bu toksik hidrojen sülfite karşı korumalı durumdadır(Joshi and Hollis 1977). Bu mikroaerofilik katalaz- negatif, sülfit-oksitleyici filamentli bakteriler oksijeni katalaz enzimi ile kendi yararlarına çevirirler, diğer taraftan Beggiota’ nın buradaki işlevi pirinç kökündeki toksik sülfiti zararsız sülfür ve sülfata çevirmektir, bu olay pirinç köklerinin koruyucu sitokrom sistemlerine örnek olarak verilebilir. Rizosferdeki organik madde üretimi bitki kök sistemini çok hızlı bir şekilde arttırmaktadır(Lynch 1976). Mikroorganizmalar giberellin ve oksinler gibi bileşikler üretmektedirler ve bu maddeler tohum gelişimi ve bitki kökü uzantılarının gelişimini dolayısıyla bitki büyümesini hızlandırırlar(Brown 1974). Arthobacter, Pseudomonas ve Agrobacterium populasyonları bitki gelişimi için gerekli olan organik bileşiklerin sentezlerinde bildirilen rizosfer canlılarıdır. Rizosferdeki buğday tohumlarınında belirgin bakteri grupları indoleasetik asit(IAA) üretirler. Daha yaşlı buğday bitkilerinde üretilen IAA oranı daha düşük seviyelerde kalmaktadır. Bununda köklerden salgılanan ürünlerin bitki büyümesini arttırıcı hormonlardaki azalmalara bağlı olduğu söylenebilir. Mikroorganizmalar tarafından salınan alleopatik ( antogonistik) içerikler amensal etkileşimlerle rizosferdeki bitkilerin bünyesine katılırlar. Bazı alleopatik içerikler habitat içerindeki diğer bitkilerin saldırılarından korunmak içinde kullanılırlar ve bunlar bitki ile rizosferdeki mikroorganizmalar arası sinerjitik ilişkilerle sağlanmaktadır. Buğday rizosferi içerisindeki bakteriyel populasyonların bezelye ve marul büyümesini yavaşlattığı görülmüştür. Gelişmiş buğday bitkilerinde bu bakteri sayılarında azalma yada ortadan kalkma görüldüğünde bitki büyümesini devam ettrebilmek için büyümeyi teşvik edici içeriklerden gibberellik asit üretimini başlatır. Rizosferde bulunan bakteriler bitkilerin mineral madde alımlarına da katkıda bulunmaktadırlar, bazen de limitli konsantrasyonlar içeren durumlarda da bitki kökü devreye girmeden mineral maddeleri kullanmaktadırlar, diğer taraftan da bitkinin mineral madde alımını da arttırmaktadırlar(Barber 1978). Rizosfer mikroorganizmaları bitkinin fosfat alınımı da arttırıcı etkiye sahiptirler, diğer taraftan bitkiler için kullanılamayan formlarda olabilirler. Bitkiler rizosfer mikroorganizmaları ile steril toprak karşılaştırması yapıldığında fosfat alımında çok öndedirler(Campell 1985). Fosfat alınımı artırılmasının temel mekanizması mikrobiyal asit üretimin dağılmış apatitin(yaygın kalsiyum fosfat guruplarındandır) salınımı ile çözünebilir fosfor grupları açığa çıkar. Demir ve manganez bitkiler için daha alınabilir formlardır çünkü rizosfer mikroorganizmalarının organik kataliz ajanlarıdır, bununla beraber demir ve manganez içeriklerinin alınımı artmış olur. Bu olay aynı zamanda bu mikroorganizmaların bitki köklerinde kalsiyum artırımını da yapmaktadır. Mikroorganizmalar tarafından üretilen bu yüksek konsantrasyonlu içerikler karbon dioksit üretimini de arttırır. Değişik radyolamelli organik içeriklerin yer değiştirmesi ile miselli filametlerde ağır metal değişimleri olmaktadır(Groosbard 1971;Campell 1985). Rizosferdeki mikroorganizmaların mineral üretimini arttırmaları yararlı olmasına rağmen rizosferdeki aşırı fazla mikrobiyal populasyonların bitkiler için mineral madde alınımını azalttığı görülmüştür(Agrios 1978). Örneğin hareketsiz bakterilerin çinko ve manganezin oksidasyonu meyve ağaçlarında ‘küçük yapraklılık’ yulaflarda ‘gri beneklenme’ hastalıklarına yol açmaktadır. Rizosferdeki mikroorganizmalar immobil nitrojenin bitkiler tarafından alınımı engellerler(Campell 1985). İmmobil nitrojenin mikroorganizmlar tarafından alınımı bitkilerin kullanabileceği formlara dönüştürülmesinde kullanılır. Mikrobiyal proteinlerin yapısındaki immobil haldeki nitrojen denitrifikasyon ile atmosfere salınmaktadır. Mycorrhizae(Mikorizzalar) Bazı mantarlar bitki köklerine girerek mikorizza denilen mutualistik ilişkiler kurarlar(litaratürde ‘mantar kökleri’ olarak geçmektedir)bitkilerin fiziksel yapıları ile bütünleşik olarak bulunmaktadırlar(Harley 1965; Cooke 1977; Dommergues and Krupa 1978; Powell 1982; Campell 1985; Allen 1991). Bu mantar yapıdaki oluşumlar bitki kökleri ile maddesel yarar sağlarken diğer yandan bitkiler üzerinde hastalık oluşturmazlar. Mikorizal birleşmeler diğer rizosfer birleşmelerinden farklı olarak bitki ve mantar arasında çok büyük seviyede özelleşmiş durumdadırlar. Mikorizal birleşmeler bitki kökü ile mantar misellerinin morfolojik olarak bütünleşmeleri ile oluşan yapılardır. Dünya çapında yapılan araştırmalarda mikorizal birliktelerin mantar ve bitki kökü ile olan birleşmeleri çok önemli bir yer tutmaktadır. Mikorizal birliktelikler bitki ve mantar arasındaki sağlıklı fiziksel yapılarının uzun dönemli birleşmeleri ile olmaktadır. Bitkiler ve mantarlar arasındaki mikorizal birliktelikler çeşitli yakınlaşmalar göstermektedir aynı zamanda fiziksel ve yapısal görevleri- bunlar çift taraflı olarak mineral maddeleri değişimli olarak kullanırlar. Su ve mineral maddeler, özellikle fosfor ve nitrojen alınımı bir çok mikorizal birleşimde çoğaltılmaktadır; bitkiler ile mikorizal fungus birleşimleri habitatlarda yaşmalarını sürdürürlerken diğer taraftan diğerleri yapamazlar(Smith and Daft 1978). Bilinen iki mikorizal birleşim şekli vardır; ektomikorizzalar (Marks and Kozlowski 1978) ve endomikorizzlar(Sanders et al. 1975; Hayman 1978). Ektomikorizzalarda mantarın dıştaki pseudoparanşim kılıfları 40µm kalınlıkta ve kök mantar yapısının %40 kuru ağırlığını oluşturur(Hartley 1965). Fungal hifler epidermisin intercellüler yapısını delerek kökün korteks tabakasına geçer fakat yaşayan hücreleri etkilemez. Kök yapısının morfolojisi değişime uğrar, kısa boylu ve dallardaki salkımsı kümeleşmeler olan meristamatik bölgeler indirgenirler. Karşıt olarak ektomikorizalar ölü hücrelerde bulurken endomikorizalar yaşayan kök hücrelerinde meydana gelmektedir.(Hartley 1965). Rizosferde değişik olarak kolonize olan mikroorganizmalardan mikorizal mantarlar konaklarının içinde veya dışında belirgin şekillerde yerleşme gösterirler. Kökte bulunan funguslar diğer toprak mikroorganizmları ile etkileşim içinde bulunmazlar. Yaygın endomikorizal formlarda, mikroskop görüntüsü hifli demet yapılarının oluşumuna neden olur buna da veziküler-arbusküler(VA) mikoriza yapısı denilmektedir(Hartley 1965). Bazı durumlarda da endo ve ekzo mikorizalar birleşerek ektendomikoriza denilen yapıları oluştururlar. Ectomycorrhizae(ektomikorizalar) ektomikorizzalar gymnosperm ve angiospermlerde yaygın olarak görülürler, en çok da meşe, kayın, huş ve conifer biçimli ağaçlarda(Marks and Kozlowski 1973). Ormanlık alanlardaki birçok bitki ektomikorizal etkileşimler içerisinde bulunmaktadır. Birçok fungus ektomikorizal birleşmeler içerine girebilir; ascomycetesler yer mantarlarında, basidiomycetesler Bletus ve Amanita da. Ektomikorizal mantarlar genellikle optimum 15-30 ºC ‘de ve asidiofilik ortamlarda yani pH 4.0-6.0 ve en az pH 3.0 değerlerinde gelişim göstermektedirler(Hartley 1965). Birçok ektomikorizal fungus basit karbonhidratlat olan disakkaritler ve şeker alkollerinde gelişim gösterirler. Bunlar genellikle kompleks organik moleküllerden nitrojen, amino asit ve amonyum tuzlarını kullanırlar; bunun yanında vitaminlerden thiamine ve biotinleri, oksinleri, gibberellinleri, sitokininleri, vitaminleri, antibiyotikleri ve yağ asitlerini de bitki bünyesine katmak için üretmektedirler(Frankenberger and Poth 1987). Bazı ektomikorizal mantarlarda selülaz gibi enzim üretimi işlevinden sorumludurlar yalnız bu enzim bitki yapısını sindirmek için değil sadece konukçu bitkinin aktivitelerini normale döndirmek için kullanılır. Ektomikorizal infeksiyon bölünme dallanmalarında morfolojik olarak bitki kökünün ortadan kalkmasını yani hayatta kalma durumunu büyüme hormonlarının etkisiyle ektomikorizal fungusların gelişimide etkilenmektedir(Frankberger and Poth 1987). Kökçük oluşumlarının baskılanması ile mantar hifaları bu işlevi üzerine alırlar ve buda bitki için çok büyük bir madde alımı etkisi oluşturur. Ektomikorizal kökler potasyum ve fosfat iyonlarını alarak infekte olmamış bitki köklerinin gelişiminde kullanılırlar. Alınımın mekanizması mantarın metabolik aktivitesine bağlıdır. Birincil fosfat birikimi ile fungus tabakaları içerisinde taşınarak bitki köküne aktarılır. Nitrojen içeren bileşikler ve kalsiyum da bu mantar tabakalarından alınarak bitki köküne transfer edilmektedir. Birbirine bağlı olan bitki kökü ve ektomikorizal mantarlar birbirlerinin yararına olan yapıların kaynağı olmaktadırlar Ektomikorizalı bitkiler aynı zamanda bitki köküne direk saldırılar harici patojenlere karşı korumalı durumdadırlar. Ektomikorizal fungus tarafından oluşturulan mantar kılıfları bitki kökü parazitlerinin burayı delip geçmelerine karşı olarak bir bariyer görevi görürler, birçok basidiomycetes grubu bu etkisini antibiyotik oluşturarak gösterirler. Bitki ve Ektomikorizal funguslar toprakta bulunan patojenlerin bitki köküne girmesini engelleyerek yaşamlarını sürdürürler. Örneğin bir fidanlık toprağında bulunan patojenler köknar ağacının köklerine tutunarak ektomikorizal birleşim içerisine girerler ve konak ağacın ölüm seviyesini düşürürler(Neal and Bollen 1964). Ektomikorizal kökler aynı zamanda uçucu organik asitleri üreterek diğer mantarlara karşı koruma sağlarlar. Ektomikorizal fungusların ürettiği bu yapılar ile patojen olan mantarların etkisi durdurulmuş olunur. Birçok bitkide inhibitör üretimi ile mikorizal infeksiyon patojenik infeksiyonun önüne geçtiğinden karşılaşılmaktadır. Endomycorrhizae (Endomikorizalar) Endomikorizal birleşmelerde mantar bitki kökü hücresini deler, bunlar vesiküler-arbüsküler(VA) yapıda bulunurlar, bunlar birkaç düzenli bitki gruplarında görülürler, Ericales ordosundan süpürge otu, Amerikan defne ağacı, Artubus, Azalea ve Rhododendron’ dur(Sanders et al. 1975). Endomikorizalar patojen olmayan kök korteksi yapısına girmeleri ve intrasellüler dolanmaları ile karakterize edilirler. Mantar kendi başına atmosferik nitrojeni fikse edemezken birlikteliklerinde mikorizal olmayan köklere göre endomikorizal olanlarda çok yüksek seviyelerde olmaktadır. Burada endomikorizal kökü olanlarda, mikorizal olmayanlara göre çok büyük seviyelerde fosfataz aktivitesi görülmekte, mikorizal mantar fosfatı dıştaki kaynaklardan konak bitki içerisine trasfer edebilmektedir. Endomikorizal birleşmelerde Ericales konak bitkinin büyümesi için topraktan alınan maddelerin alınımı ortaya çıkar ve endomikorizal infeksiyonlar Ericales grubu canlılar için çok iyi bir ekolojik niş oluşturur. Neredeyse bütün orkide kökleri tamamı ile fungal hifler ile infekte edilmiştir, bunlar kortikal hücrelerin yüzeylerinden geçerek mikorizal yapıları oluştururlar. Mantar dıştaki korteks yapısına dolanarak hücre içine girer, daha sonra hifalar özelliklerini kaybederek bütün içeriklerini konak hücreye geçirirler. Orkideler normal şartlarda obligat olarak endomikorizal durumdadırlar, sık sık Armillaria mellea ve Rhizoctonia solani ile birleşmeleri görülmektedir. Bu endomikorizal birleşimler orkid tohumunun çimlenmesinde görev alırlarken, mantar bitkide parazitik olarak da bulunmaktadır. Buradaki parazitizm ortak parazitlik denilen bir olayla dengede tutulmakta ve sağlam olmayan yapılara dayanmaktadır. Bu birleşme orkideye gece tozlaşma ve ışıldama etkisi vererek A.mellea ışık üretiminin yapıcısıdır. Gececil böceklerin bunları tozlaştırarak bunların seksüel yapılarının oluşmasında etkilidir. Arbusküler mikorizalar ise bir ihtimal ile Devonian yer florasından meydana gelmişlerdir(Bagyaraj and Varma 1995). Bunlar birçok angiosperm, gymnoperm, eğrelti otu ve bryophyta grubundan şekillenmiştirler. 2.6 milyon bitki türünden 240000 tanesinde potansiyel mikorizal birleşimler olduğu ve bunların 6000 mantar ile olduğu hesaplanmaktadır. Ribozamal DNA genlerinin sıralanmasında 12 türün arbusküler mikorizal fungulsların içinde olduğu görülmüş ve bunların filogenetik analizleri sonucunda üç tane familya ile eşleştikleri görülmüştür, bunlar; Glomaceae, Acaulosporaceae ve Gigasporaceae’ dir. Arbüsküler mikorizal funguların orjinlerinin 383-462 milyon yıl öncesine dayandıkları hesaplanmaktadır. Bu varsayımlar endomikorizal fungusların atasal bitkilerde bulunduğunu göstergesidir. Glomaceae ilk olarak ortaya çıkanlardır bunu Acuulosporoceae ve Gigasporoceae familyaları takip etmektedir. Bu üö form Paleozonic çağın geç kısımlarının 250 milyon yıl öncesine kadar değişimlerini sürdürmüştür. VA tipi endomikorizal birleşmeler sık sık bildirilmeden süregelmiştir çünkü bu olay kök morfolojisinde bir değişikliğe neden olmamaktadır, birçok bitkide de ekzo ve endomikorizal birleşmeler ile kendini göstermektedir(Mosse 1973; Sanders et al. 1975; Bowen 1984). VA mikorizaları buğday, mısır, fasulye, soya, domates, çilek, elma, portakal, üzüm, pamuk, tütün, çay, kahve, kakao, şekerkamışı, hanımeli, kauçuk, toz ağaçları, fındık ağacı, şeker akçaağacı gibi birçok bitkide görülmektedir. Bunlar aynı zamanda angiospermler, gymnospermler, eğreltiler, biryofitler ve daha büyük kültüre edilmiş bitkilerde bulunur. VA endomikorizal mantarları saf kültürler olarak üretilememişlerdir. Düz septa eksikliği VA mantarlarının imzası halinde olup sadece Endogone cinsinde görülmektedir fakat bu grup şimdilerde birçok genus için altbirim olarak görülmektedir. VA mikorizaların ana belirleyici özellikleri vesiküllerin ve arbusküllerin kök korteksi yapısında bulunmalarıdır(Hartley1965). İnter ve intrasellüler hifalar korteksin içerinde ve infeksiyon miselyum yapısının toprağa bakan dış yapısında bulunmaktadır. Genel olarak miselyum formları topraktaki VA mikorizal köklerinin etrafında serbest olarak yayılım gösterir. Bu mikorizal funguslar bilinen en geniş yayılmış 20-400 µm uzunluğunda sporlara sahiptirler. Arbüsküler mikorizal funguslardan Gigaspora margarita da her bir fungal spor üzerinde 250000 bakteriyel endosimbiyont bulunduğu rapor edilmiştir(Biancicotto et al. 1996; Holzman 1996). Funguların bakteriyel endosimbiyontları PCR ile analiz edilerek bunun Burkholderia türünden olduğu saptanmıştır(pseudomonadların II grubundan). Bu bakteriyel endosimbiyontlar ile ökaryotik hücrelerdeki mitokondrinin oluşumu hakkında tartışmalar halen sürmektedir. Mikorizal miselyum yapıları köke abiyotik streslerden metal toksikliği, ve toprak toksikliği durumlarımda olduğundan daha fazla seviyede dayanma gücü vermektedir. Mantar bitki büyümesini teşvik edici olarak dış hifaları, toprak dışındaki kökçükler ve fosfor alanları dışındaki yerlerden fosfor alınmasını arttırmaktadır. VA mikorizal birleşmeleri sonucu fosfor alınımı artarken diğer iyonlardan çinko, sülfat, ve amonyumlarında alınmasını arttırmaktadır(Chiariello et al. 1982). VA mikorizal birleşmeleri ektomikorizalar ile benzerlikler göstermektedir. Bu mikorizal birleşmeler verimsiz haldeki toprağın vejetasyonunu arttırarırlar(Tinker 1975; Wills and Cole 1978). Bitkiler ve mikorizal mantarlar bitki yaşamı için gerekli olan maddelerin topraktan alınmasını arttırmaktadırlar. Bu birleşimin en belirgin getirisi fosfor bakımından yetersiz olan toprağın değiştirilmesidir. Çünkü genellikle tropikal topraklarda fosfor oranı düşük iken buralarda yapılan tarımsal faaliyetler sonrası oluşan topraklarda orijinal toprağa göre daha fazla fosfor bulunduğu görülmüştür. Geleneksel tarımda sık sık ve üzücü başarısızlıklar tropikal bölgelerin tarıma açılmasından sonra meydana gelen verimsizliktir, çünkü çiftçiler buradaki yağmur ormanlarının direk olarak üzerine kurdukları limitli fosfor bulunduran bu üretim arazilerinde verim alamamaktadırlar. Tropikal yağmur ormanlarının gür ve sık yapısı onları aldatmaktadır. Bunlar genellikle yüksek çözünmeli ve eksik maddeli topraklardır(Jordan 1982). Ilıman ormanlarda çürüyen maddeler ve toprak humusu ana maddesel içeriklerdir. Yüksek sıcaklık ve nem altında biyoindirgenme süresi çok artar ve ortamda çok az humus ve çürümüş materyal yaşayan bitki topluluğu tarafından alınarak hemen kullanılır. Çünkü besinler günlük ağı yağmur fırtınaları ile yağmurormanı toprağına nüfus edemeden akar gider. Bu durumda mikorizal etkileşimler madde çevriminde döngüsel olarak yer almaktadır. Mikorizal fungusların saprofitler gibi davranarak bitki parçalarını yüksek seviyelerde ayrıştırdıkları da görülmektedir. Serbest inorganik madde tuzları toprak yapısına katılamazlar ve bunlar ayrıştırma sırasında ortadan kaybolurlar, çünkü bunlar direk olarak mikorizal funguların hifaları ile bitki köklerine taşınırlar. Bu ‘kapalı halkasal madde döngüsü’ çok yüksek seviyede etkili bir koruma mekanizmasıdır. Bu ormanların tarım arazisi olarak kullanılmaları için öncelikle doğal vejetasyonların kesilip daha sonra yakılarak bitkilerdeki mineral maddelerin toprağa geçmeleri sağlanmalıdır. Maddeler bir hasat ile arttırılır yada en iyi birkaç hasat toprağın bu maddeleri alması için buraya bırakılır. Sadece önemli girdilerden sentetik gübreler, genellikle pahalı olduklarından kullanılmaz, yenilenecek üretim için kullanır. Kısır toprak verimsiz ve genelde aşınmış durumdadır. Legümünozlar İle Rhizobialar Arasındaki Nitrojen Fikse Etme İlişkileri Legümünoz bitkiler ve rizobia arasındaki nitrojen fikse etme ilişkileri global nitrojen döngüsü ve tarım için oldukça önemli bir yere sahiptir(Evans et al. 1991; Postgate 1992; Somasegaran and Hoben 1994). Son zamanlara kadar bütün nodüllü ve nitrojen fikse eden bakterilerin tek bir genusta toplandığı düşünülüyordu, Rhizobium. Fakat artık iki ek genus daha var bunlar; Azorhizobium ve Bradyrhizobium bu yeni gruplar birçok legümen familyasında bulunan farklı nodül bakterileri yüzünden eklenmişlerdir. Rhizobium türleri çok çabuk büyüyebilme yeteneğinde iken Bradyrhizobium türleri çok yavaş büyürler (brady nin anlamı ‘yavaş’ demektir). Bradyrhizobium türleri soyalarda, inek fasulyelerinde ve çeşitli tropikal legümünozlarda nodül oluştururlar. Rhizobium türleri fasulyelerde, yoncalarda ve diğer legümünos bitkilerde yaygın olarak olarak nodül oluştururlar. Azorhizobium türleri ise tropikal ağaç gövdelerinde nodül oluşturan(Sesbania rostrata) özel bir gruptur. Azorhizobium türleri diğer gruplara karşıt olarak atmosferik nitrojeni fikse etme yeteneğindedir(Azo kavramı nitrojene karşılık gelir). Rhizobium ve Bradyrhizobium bunu yapabilme yeteneğinde değildir, buna karşın bazı nitrojen fiksasyonu serbest haldeki bakteriler tarafından oksijen gerilimi ile yapılabilmektedir. Bunun yanında bunların büyüme hızı yavaştır, Bradyrhizobium’ lar Rhizobium’ lar dan farklı özellikler göstermektedirler. Bununla beraber nodülleşme ve infeksiyon süreçleri iki cins içinde benzerdir. Rizobia da ise toprakta özgür yaşayan hetetrofların etkisi ile olur, bunlar toprak mikrobiyal kommunitelerinin baskın türleri olmadıkları için atmosferik nitrojeni fikse edemezler. Uygun koşullar altında, rizobialar kökçükleri istila ederek nodül oluşumunu başlatırlar ve azot fikse etme aktivitelerini geliştirebilirler. Bitki ve rizobia arasındaki ilişki belirgindir ve ortak tanıma işleminden sonra bu iki partner arasında uyum içinde kemotaktik olarak nodül oluşumları gözlenmektedir. Legümünoz bitkilerde rizobialar için doğru bir tanımlama içindedirler ki doğru rizobia doğru legümünoz köküne tutunarak nodül oluşturur. Rizosfer içerisinde bitki kökleri rizobialar için bir yaşama ortamı oluştururken bunların değişimleri ile infeksiyon kademeleri sonradan ortaya çıkan nodülleri oluşturmaktadır(Fahrareus abd Ljunggren 1968). Rizobiaların yeterli rizosfer populasyonları ile kurulmasından sonra gerekli olan tam infeksiyon sağlanır. Toprak şartları rizobiaların bağlanma dönemlerinde bunların hayatta kalmasını ve kökçükleri infekte edebilme özelliklerini etkiler(Dixon 1969; Alexander 1985). Rizobialar mezofiliktirler fakat bazı düşük sıcaklıklara toleranslarıda vardır 5ºC’den düşük ve 40ºC’den yüksek sıcaklıklar gibi. Bazı rizobialar düşük pH lara duyarlıdır ve asidik topraklarda kökçüklere bağlanma göstermezler; nitrit ve nitrat iyonlarıda nodül oluşumunu etkili olan diğer düşük konsantrasyon içerikleridir. Nodül oluşumu süreci bitki kökü ve rizobia arasındaki etkileşimlerin karmaşık bir sonucu olarak ortaya çıkmaktadır(Solheim 1984; Brewin 1991). Flavonoidler yada izoflavonoidler aynı kökenli bakterilerin nodülleştirme(nod) genlerinin artırımını engellemek için konak bitki tarafından salgılanırlar. Nod genleri ‘Nod faktörleri’ denilen türlere özgü biyosentez olayı ile lipopolisakkaritler tarafından üretilirler. Bu sinyal içerikleri salındıklarında rizobial hücreleri baskılayarak kıvırcık şekilde dolanarak meristamatik hücreler tarafından nodüllerin oluşturulması sırasında kullanılırlar. Rizobialar bitki kökü salgıları pozitif kemotaksis ile legümünoz köke bağlanma noktalarını belirlemektedir. Rhizobium ve bradyrhizobiumların ikiside kök salgıları olan amino asit ve dikarboksilik asitlere ve iyi bilindiği gibi çok az konsantrasyon içeren salgı bileşiklerinden olan flavonoidlerede oldukça ilgi duyarlar. Bitki proteinlerinden olan lektinler ilgili rizobial hücrelerin yüzeyinde karbonhidrat bileşiklerine çok yüksek seviyelerde ilgi gösterirler ve kök saçları ile rizobia bağlanma yerlerinde belirgin bölgelere sahiptirler(Dazzo and Hubbell 1975; Dazzo and Brill 1979; Hubbell 1981). Nodülleşme sürecinde bitki köklerinden triptofan salgılanır, rizobia tarafından indoleasetik aside çevrilir(IAA) ve IAA birlikte bilinmeyen bir kofaktör ile bitki kökünün kıvırcık ve dallanmış olmasını sağlar. Bitki kökü bakteri hücreleri arasında büyür. Poligalaturonaz denilen ve rizobia tarafından salgılanan enzim ile bitki kökü yapılarının yumuşak bir yapıya kavuşarak bakterilerin buralara girmesini sağlarlar(Hubbell 1981; Ridge and Rolfe 1985). Delme işleminden sonra birincil kök saçları duvarı, hücre duvarı ve selülozik duvar ile kaplanarak infeksiyon tüpü oluşumu başlar. Rhizobium hücreleri polisakkarit bir matriks ile bir baştan bir başa kaplanırlar. İnfeksiyon tüpü düz olarak delme işlemini kök korteks hücleri boyunca devam ettirir. İnfeksiyon tüpü büyümeye devam ettiğinde kök hücresinin büyümüş çekirdeği infeksiyon tüpü boyunca hareket eder. İlk hücrenin olşumunda nodül iki tane normal kromozom içermektedir. Bu dörtlü hücreler merkez nodül hücrelerinde artması ile rizobiadaki nitrojen fikse yapısı oluşturulur. Normal gelişen infekte olmamış hücrelerde kökün taşıma kanal sitemini oluştururlar. İnfekte yapının içerisinde rizobia çoklu haldedir, ve belirsiz şekiller ile bazen de kocaman büyümüş bakteroid denilen hücleri meydana getirirler. Nodüllerdeki bakteroidler ve infekte olmamış vakuol hücreleri bitki ile mikrop arasındaki metobolit trasferinde kullanılırlar. Değişme sırasında normal rizobial hücreleri bakteroidlere, bakteriyal kromozomlar dönüşmeye, bakteroidlerin ortadan kalkması ilede bağımsız çoğalmalar meydana gelmektedir. Bakteroid hücreleri aktif olarak nitrogenaz üretirler, fakat konak bitki yapıları nitrogenaz sentezinin kontrolünde görev alırlar. Nodül içerisindeki bakteroid atmosferik nitrojeni taşımaktadır. Normal şartlar altında hiçbir serbest yaşayan rizobia infekte olmamış bir legümünoz bitkide atmosferik nitrojenin taşınmasında görevli değildir. Nodüller leghemoglobin varlığı ile bütün nitrojen fikse eden legümünoz nodüllerinde karakteristik olarak kırmızı-kahverengi bir renk sahibidir. Leghemoglobin aynı zamanda elektron taşıyıcısı, bakteroidlerde oksijen deposunda ATP üretiminde ve aynı zamanda nitrogenaz sisteminin oksijen duyarlılığı korumasında görev alır. Leghemoglobinin hem bölümü rizobianın, bitkinin globin bölümünü kodlaması ile oluşur. Bitki aleminde leghemoglabin varlığı legümünosların eşsiz özelliği olarak tanımlanmaktadır. Bitki ve bakterial genlerin birleşimleri rizobial-bitki simbiyontlarının ifadesinde belirgindir(Long1989a, 1989b; Martinez et al. 1990; Nap and Bisseling 1990; Brewin 1991; Stacey et al. 1992; Fischer 1994; Van Rhijn and Vanderleyden 1995). Genler nodül oluşumunda ilgilidirler, genelde nodülin genleri olarak adlandırılırlar, simbiyotik nitrojen fiksayonuna izin veren nodüller Nod proteinlerini kodlayarak oluşurlar. Nodülün genleri bitki kökündeki infeksiyona özel simbiyotik nitrojen fikse eden bakterilerdeki nodülün genleri 2 sınıfa ayrılmaktadır. İlk sınıftaki genler biyokimyasal kompozisyonu belirleyen genlerdir bunlar, bakteri hücresi yüzeyi bileşikleridir. İkinci sınıftaki genler ise nodülasyon genlerinin oluşumunda görevlidir. Nodülasyon genlerinin inaktivasyonu çeşitli bitki fenotiplerinin oluşumunda etkilidir, örneğin nodülasyon geninin eksikliği, gecikmiş fakat etkili nodülasyon yada konak sınırlarının değişmesi gibi etmenlerle. Bazı nod genleri değiştirilemeyen nodül oluşumu sırasında ortaya çıkarlar ve bunların işlevleri belirlenmiş değişik türler ile etkileşimin sağlanmasıdır. Diğer nod genleri nodülasyonda belirli konaklarla meydana gelen konağa özgü nod genlerinin oluşumunda etkiledirler. Hızlı gelişen Rhizobium türlerinde birçok nodülin geni büyük Sym plasmidlerinde bulunurlar, bunun yanında Bradyrhizobium türlerinde geç nodül oluşturma genleri bakteriyal kromozomda taşınır. Gen demetlerinin içinde esas nitrojen sürecine nif ve fix adı verilir bunlar nitrogenaz enzimi için gerekli olan yapısal genleri taşırlar. Rizobial genler nodül oluşumu ve nodülün gen ifadelerini nodülasyon genlerinde bulunmaktadır, birkaç gen grubu bakteriumun dış yapısını oluşturmakta görev alır ve az sayıdaki iyi tanımlanmış genlerle olur. Konağa özgü nodül genleri konağın hangi belirgin nodül oluşturmasına karar verir. Nod geni demetleri genellikle Sym plazmidi üzerinde bulunurlar ve infeksiyon ve nodül oluşumu safhalarının kodlanmasında görevlidirler, bunlar aynı zamanda özellikleri belirleyen genleri taşırlar. Rizobial suşların Sym plazmidlerini birbirleri arasında değiştirmeleri mümkündür, legümen konak infekte olduktan sonra değişim gerçekleşebilmetedir. Sym plazmidi Agrobacterium’ lar ile diğer yakın nodül oluşturma yeteneği olan bakteriler arasında değiştirilebilir. Bununla beraber bu tarz birleşmeler ile genellikle nitrojen fiksasyonugerçekleşmez. Nif genleri biyokimyasal nitrojen fiksasyonu mekanizmasını kodlarlar ya da rizobiyal suşların plazmid birleşmlerinde görev almazlar(Postgate 1982; Sprent and Sprent 1990). Bununla birlikte Nod genlerinden Sym plazmidleri nif ve fix nitrojen fikse eden gen demetlerini taşırlar. Nif ve fix demetleri nitrogenaz yapısal genlerini taşımaktadırlar. Rhizobium loti , Bradyrhizobium ve Azorhizobium türlerinde simbiyotik ilişkileri belileyen genler bakteriyel kromozomlarda lokalize olmuşlardır. Çoğu Rhizobium nod genleri kültürel hücreleri belirtmez fakat bitkilerin görünüşlerinde bulunmaktadır. Bu etkileşim bitki tarafından salınmasını tetikler ve aynı zamanda NodD proteininin aktive edici hale gelmesini sağlar. NodD geni sadece nod geninde bulunur ve serbest yaşayan Rhizobium türlerinin simbiotik durumlarını kodlamaktadır. Flavonoidlerin bitki köklerinden salınması ile NodD proteinleri diğer nod genleri daha ileri bir nodülleşme için esas olan nodABC geni aktive edici özelliktedir. Nod genlerinin ana özellikleri simbiyotik ortaklar arasında sinyal iletimini sağlamaktır. NodD proteinleri korunmuş DNA serilerine bağlanarak nod operonları aktifleştirir buna nod kutuları adı verilmektedir. İkinci adım olarak bakteriumlar başka bir deyişle yapısal nod genleri lipoologosakkarit sinyalleri üretirler, bunlar kök yapılarını oluştururlar. Nodül içeren moleküller bitki salgılarından saflaştırılırlar ve flavonoidler olarak isimlendirilirler, fenilproponoidlerin üç zincirli aromatik yapılarının metabolizmaları sonucu oluşmuşlardır(Long 1989a). NodD proteinleri belirgin Rhizobium türlerinin homolog konaklarından elde edilmişlerdir. Rizobialar kök salgılarının varlığında gelişmektedirler yada nod geni içeren flovonoidlerin kök saçı yapılarının bozulmasına neden olan faktörleri içermektedirler. Yonca da ve alfalfa grubu bitkilerde en aktif uyarıcılar flovonlardır, luteolin gibi.(Long 1989a).Alfalfa simbiontu olan Rhizobium melioti D-glukoz amin içerisideki β-1.4-tetrasakkaritleri salgılar, bunlar üç amino grubun açillenmesi ile ve bir tanesine doyurulmamış C16 doymuş yağ asidi eklenmesiyle oluşurlar. Nod genlerine ek olarak rizobialarda nodül oluşumu için gerekli genler bulunur, bu genlere ek olarak bakterial dış yapıların üretimleri de, örneğin eksopolisakkaritler(exo genleri), lipopolisakkaritler (lps genleri) ve glukanlar(ndv genleri), bunlara da ek olarak ilaç dayanıklılığı, ototrofi, ve karbonhidrat metobolizması bulunur. R. meliloti, B. japonicum ve A. Caulinodonas’ ların nif ve fix genleri farklı şekillerdedir. Bu genlerin yapısal ve demetsel özellikleri her bir tür için özeldir(Van Rhijn and Vanderleyden 1995). Rizobianın nif ve fix gen demetleri Klebsiella pneumoniae deki kadar sıkı şekilde hiçbir grupta düzenlenmemiştir. R. meliloti iki tane çok büyük plasmid içermektedir(megaplasmid olarak adlandırılır), biri 1400kb of DNA(megaplasmid 1), diğeri 1700kb DNA(megaplasmid 2) içerir. demet I ve demet II megaplasmid 1 de bulunur. Simbiyosisde bulunan ek genlerde megaplasmid 2 ve kromozomlar içerisinde yer almaktadır. Hidrojen gazının nitrojen fiksasyonu üzerinde yan etkilerini ortadan kaldırmak için erken önlemler alınır. Hidrojen gazının evriminde fotosentez enerjisi ürünler üzerinde azalan bir şekle bürünmüştür. Bazı Sym plazmidleri hidrogenaz aktivitesini kodlayan hub adında genler kodlarlar. Hidrogenazın oksitlediği hidrojen suya ve buradan da kimyasal üretim ile ATP sentezi yapılır. Bu yararlı süreç fotosentetik enerjiyi saklayarak boşa gitmesini engeller(Albrecth et al 1979). Rizobialardaki genetik oluşumlarda legümenler ile beraber çalışarak etkili bir mekanizma ortaya çıkartırlar. Ekonomik dürtülerin etkisiyle bu yönderki araştırmalar gelişmiştir. Önemli legümünoz bitkileri arasındaki soya fasulyeleri, birçok fasulye, bezelye, mercimek çeşitleri gelmektedir. Önemli besin legümünozlarından alfalfa ve yonca sayılabilir. Legümünoz ağaçlar birçok tropikal ve subtropikal ekosistemlerinin ve yağmurormanlarının oluşumu için önemlidirler(Sprent and sprent 1990). Diğer legümenlerden ise mesquiteler çöl toprakları gibi düşük nitrojen içeren yerler için oldukça önemlidir, bu legümünozlar aynı zamanda yerel batı amerikalıllarında önemli bir besin kaynağıdır. Legümünoz Olmayan Grupların Mutualistik Nitrojen Fiksasyonu İlişkileri Rhizobiumlar ve legümünoz bitkiler arasındaki Mutalistik birleşmeler yanında diğer bakteriler ve legümen olmayan bitkiler ile simbiyotik ilişkilerde nodül oluşumu ve serbest nitrojenin atmosferden alınması ile olmaktadır(Evans and Barber 1977; Akkermans 1978). Legümen olmayan bitkilerdeki kök nodülü şeklinde meydana gelen ilişkilerde Rhizobiumlar, cyanobakteriler ve actinomycetesler görülür. Rhizobiumlara örnek vermek gerekirse, Trema ile nitrojeni fikse edebilir, Trema tropikal ve subtropikal bölgelerde görülen bir ağaç türüdür. Aynı şekilde actinomycete Frankia alni bitki köklerini infekte eder ve nodül oluşumunu gösterir(Benson and Silvester 1993). Frankia türleri actinomycetes (filamentli mantarlardan) ve septalı hifalardan oluşmuş sayısız spor içeren yapılardır.Frankia türleri çeşitli legümen olmayan bitkilerde, odunsu şuruplarda ve kısa ağaçlarda görülürler. Actinomycetes tipi azot-fikse eden simbiyotik canlılar özellikle angiospermler için oldukça önemlidir. Frankia hifalarının bir kısmı değişime uğrayarak özelleşmiş azot fiksasyonu hücrelerinde vesikül denilen yapılar oluşturular. Frankia aynı zamanda yaşayan serbest bitki hücrelerini de değişikliğe uğratarak bunların nitrojen fiksasyonu yapmasını sağlarlar. Actinomycete (Frankia) simbiyozları yaygın olarak ılıman ve circumpolar bölgelerde bulunurken cyanobakteriler ve rizobial simbiyozlar tropical ve subtropical bölgelerde bulunurlar(Benson and Silvester 1993). Actinomycete simbiyozlar ve karakteristik olarak Alnus, Myrica, Hippophae, Comptonia, Casurina ve Dryas’ ında aralarında bulunduğu angiospermlerin arasındadır. Toprak azotunun çok büyük bir kısmı serbest olarak bulunur ve Scandinavia gibi muhtemelen actinomycetelerin kök nodülü simbiyozu olan legümen olmayan, genellikle Alnus bitkilerinde ve az da olsa Dryas, Myrica, ve Hippophae yapılarda fikse edilir. Casurina’ yan subtropikal bölgelerdeki kum, kumul tepeleri ve yarıçöl alanlarında rastlanır(Morris et al. 1974; Callahan et al. 1978, Sprent and Sprent 1990). Actinomycetelerin hifaları kökü delebilecek hale geldiklerinde kortikal hücrelerinin bölünmesini uyarır(Berry 1984). Hifalar bölünen hücrelerin içine girdiklerinde gen demetlerini konağın içerisine aktarırlar ve vesüküller çevresinde şekil değiştirirler. Birincil enfekte komşu hücreler kök primordium yapısına girerek buradan cortax içinde büyümeye başlarlar. Endofitik actinomycetelerde primordiumlar meristem hücrelerine saldırıda bulunurlar ve actinomyceteler kök primordiumunun gelişimini attırıcı etki yaparlar. Dichotomous bölümünde bulunan bitkilerin meristamatik hücrelerinde demet şeklinde loblar oluşumu gerçekleşir bunlara rhizothamnion yani tipik actinomycete nodülü adı verilmektedir. Nodül içerisinde nitrogenas ve atmosferik nitrojen fiksasyonu gerçekleşir.

http://www.biyologlar.com/bitkiler-ve-mikroorganizmalar-arasindaki-iliskiler

Evrim Teorisi ile İlgili 5 Soru 5 Yanıt

Charles Darwin’in meşhur “Türlerin Kökeni” isimli yapıtının yayınlanmasının üzerinden bir buçuk yüzyıl geçti. Bu süre içinde evrim kuramı sürekli sorgulandı. Darwin genetik ve moleküler biyoloji konusunda hiçbir şey bilmemesine rağmen modern biyoloji bu büyük bilim adamının şaşırtıcı fikirlerini hep doğruladı. Ne var ki bugün evrim biyolojisinin hâlâ yanıtlayamadığı sorular var. Saygın bilim dergisi New Scientist bunların içinden önemli bulduğu 5 tanesini seçerek, en son bulguların ışığı altında uzmanlardan bunları yanıtlamasını istedi. Aşağıda bu sorulara 5 bilim adamının verdiği yanıtları kısaltılmış şekliyle bulacaksınız. 1.Soru Yaşam nasıl başladı? Bu soruyu Glaskow’daki Scottish Üniversities Çevre Araştırmaları Merkezi’nden Michael Russell yanıtladı. 4 milyar sene önce, nükleer ve yerçekimsel enerji Dünya’nın içini kavururken, dışı asteroid darbeleri altında delik deşik olmuştu. Doğal olarak bu ortamda canlıların yaşaması olası değildi. Her şeye rağmen hayat başladı. Pek çok bilim adamı ”vivosentrik” bir yaklaşımla bu olağanüstü olaya açıklık getirmek istediler. Bu yaklaşımın amacı, bugünün hayat şekillerinden başlayıp, aşama aşama geriye doğru giderek organik yapı malzemelerinin kökenini bulmaktı. Bana kalırsa bu yaklaşım başarısızla sonuçlanmaya mahkumdu, çünkü bu bakış açısı ilk Dünya’nın jeokimyasını dikkate almaz ve yaşamın ortaya çıkış nedenini gözardı eder. Şikago Üniversitesi’nden Stanley Miller ‘ın proteinlerin yapı taşı olarak bilinen amino asitleri yaratmasının üzerinden 50 sene geçti. Metan, hidrojen ve amonyağı, kapalı bir cam gereç içinde ısıtan Miller, daha sonra karışımı elektrik kıvılcımı ile hareketlendirdi. Bu deneysel çalışma, kavurucu bir Dünya’da yaşamın bir yıldırım düşmesi ve morötesi radyasyonla başlamış olabileceğiiddiasını doğrulayan bir kanıt olarak ele alındı. Ancak bugün insanlar proteinlerin ilk başta varolduğuna inanmıyor. Bugün geçerli olan düşünceye göre hayat bir RNA dünyasında başladı. Ve bu dünyada RNA’ların sadece bilgi taşıyıcı olarak değil, ilk denizlerdeki organik bileşimlerden yararlanarak, yaşamın reaksiyonlarını katalize eden ilkel enzimler olarak davrandığı düşünülüyor. Ne var ki okyanusların, hayat için gerekli olan organik molekül konsantrasyonunu sağlamış olma olasılığı çok düşük. Kuramcılar bu soruna çözüm oluşturabilecek değişik düşünceler ortaya atıyor. Bazıları yaşamın kuru bir kara parçasında, -dönemsel olarak buharlaşan bir gölette- başlamış olabileceğini ileri sürerken, başkaları okyanusların donup, gerekli molekül konsantrasyonunun artakalan sıvıda birikmiş olabileceğini ileri sürüyor. Diğer bilim adamları, metabolizmanın bir kil ya da pirit yüzeyinde iki boyutlu başlama olasılığından söz ediyor ve bu iki boyutluluğun lipidlerin hücre zarı olarak kendilerini örgütleyinceye kadar sürdüğüne inanılıyor. İddialar bunlarla sınırlı değil. Uzayın dört bir yanında yaşayan organik moleküller hayatı başlatmış olabilir. Bunlar göktaşlarının üzerinde Dünya’ya inmiş, okyanus yüzeylerinde birikerek, organik reaksiyonların meydana geldiği küçük kesecikler oluşturmuş olabilir. İnandırıcı değil Ben bu kuramların hiçbirini inandırıcı bulmuyorum. Benim görüşüme göre yaşamın kökeni biyolojik değil, jeolojik. Evrim ağacını köklerine doğru irdelemek yerine, kökten başlayarak yukarı doğru çıkmakta fayda var. Bu arada ilk Dünya’nın jeolojik yapısını hesaba katmak gerekiyor. Evrenimizde, yapılar eldeki malzeme ile inşa edilir. Bu süreçte enerji bir düzeyden diğerine geçiş sırasında azalırken, entropi (herhangi bir sistemin evrenle beraber düzensizlik ve etkisizliğe doğru olan eğilimi) çoğalır. Dolayısıyla yaşamın kökenlerini ortaya çıkartma çabalarımızda, ilk Dünya’yı oluşturan malzemenin ve enerjinin yaşam-benzeri bir yapıyı oluşturmak için nasıl biraraya geldiğini sormamız gerekir; hangi termodinamik ve kimyasal reaksiyonların söz konusu olduğunu, atık ve aşırı ısıdan nasıl kurtulduğumuzu öğrenmemiz gerekir. Özetle, yanıt bulmamız gereken soru şu: Kendi kendini düzenleyen elektrokimyasal bir aracın, birkaç milivoltluk bir enerjiyle, redoks reaksiyonlarından yararlanarak, aynı anda çoğalarak ve dışkı atarak nasıl varolduğunu çözmemiz gerekir. Başlangıç noktası İlk Dünya yaşamın başlangıç noktası olarak iki adet saha adayı sunuyor. Biri okyanus sırtlarındaki asidik pınarların içindeki mineral tortul birikimleri; diğeri deniz tabanındaki alkalin sızıntıları. Bu iki tip pınar daha soğuk, karbonik okyanus tabanına sürekli olarak malzeme ve enerji taşır. Ayrıca bu iki ortam da bugün bile canlı organizmaların yaşamasına uygun alanlardır. Ama bana göre pek çok nedene bağlı olarak okyanus sızıntıları yaşamın başlangıç noktası olmaya daha yatkın. Bir kere bu okyanus sızıntıları dayanılabilir bir sıcaklık olan 75 derecedir. Oysa asidik pınarlarda sıcaklık 350 dereceye kadar çıkar ve burada organik moleküller yaşayamaz. Ayrıca alkalin sızıntılar organik moleküllerin eriyebilirliklerine uygundur. Ve alkalin sızıntıların asidik okyanus sularıyla birleştiği noktada daha çok enerji bulunur. Çünkü denizden gelen protonlar, sızıntıdaki elektronları güçlendirir. Sonuçta toplamda ortaya yarım voltluk akım çıkar. Bu da metabolizma için yeterlidir. Yaşam eski alkalin sızıntılarda başladıysa neye benziyor olabilir? Bana kalırsa bu ilk şekil hareketsiz demir sülfid bölmeleri şeklindeydi. Bunlar yarı geçirgen, yarı iletken olmakla birlikte, reaksiyonları katalize edebilecek özellikteydi. Ayrıca demir sülfid zarlar organik zarların öncüsü, atası olabilir. Daha da önemlisi bunlar moleküler yapı bloklarını biraya getirmiş olabilir. Dolayısıyla yaşamın kimyasal reaksiyonlarının olması için ideal bir ortam oluşturuyordu. Bu demir sülfid bölmelerinin içinde hidrojen, amonyak ve siyanür kaynayıp durur. Bunların birarada reaksiyona girmesi için gerekli olan enerji, derece derece değişen elektronlardan sağlanır. Sonuçta şeker, ribonükleik asitler ve amino asitler oluşur. Eğer demir sülfid bölmeler Dünya’da hayatı başlatacak yapı taşlarının biraya gelmesi için yeterli ortamı sağladıysa, evrendeki herhangi bir gezegende nemli, kayalık ve güneşin aydınlattığı ortamlarda aynı rolü oynamıştır. Dolayısıyla sıvı suyun bulunduğu her yerde hayat oluşabilir. 2. Soru Mutasyonlar evrimi nasıl gerçekleştirdi? Bu soruyu University College London’dan Andrew Pomiankowski yanıtladı. Genetik mutasyonlar evrimin hammaddesidir. Ama hangi tip mutasyonların önemli olduğunu belirtmek gerekir. Eskiden beri biyologlar genlerdeki değişiklikler üzerinde durmayı seçim eder. Bu da protein kodlarının DNA dizilimidir. Son yıllarda kabul gören görüş şudur: Mutasyon sonucunda, amino asit dizilimi biraz değişik proteinler oluşur. Proteinler organizmaya hayatta kalma avantajı sağlar. Ne var ki pek çok gen diziliminin değişimi milyonlarca senede ama gerçekleşir. Bu yavaşlıkta seyreden bir değişim, morfolojik ve davranışsal evrimi yaratmış olabilir mi? Ben ve benim gibi gelişim biyologları en son yıllarda buna alternatif oluşturan bir görüş ortaya attı. Bu görüşe göre evrim konusunda en önemli rolü oynayan unsur, DNA’nın gen ifadesini düzenleyen bölgesindeki mutasyonlardır. Aykırı yollar var Son 10 senede bu konuda gerçekleştirilen en önemli keşif, değişik hayvan grupları arasındaki ortak gelişim genetik yollarıdır. Klasik örnek ”Hox” genleridir. Hox genleri sorumludur. Bunlar ilkin meyve sineklerinde keşfedildi. Ama balıklarda, kurbağalarda ve insanlarda da aynı gen bulundu. Bu organizmalarda vücut şekli değişik olmakla birlikte, Hox geninin dizilimi birbirinin aynısıdır. Daha da önemlisi, Hox genlerinin uzak türler arasında değiş tokuş edilmesidir. Bundan da şu sonuç çıkıyor: Evrim, aslında genleri korumaya alıyor. Ama aralarındaki etkileşimle oynayarak meyve sineklerinden insanlara dek çok değişik türlerin oluşumunu hazırlıyor. Gen ifadesini denetim eden sistemlerin biri ”cis-regülasyonudur”. Cis-regülasyonu, transkripsiyon faktörleri olarak bilinen proteinlerin, DNA’nın “promoter bölgeleri”ndeki genlerine bağlanmasıdır. Her promoter’ın çoklu bağlanma siteleri vardır. Transkripsiyon faktör bağlama, genleri açık ya da kapalı konuma getirir. Bunun sonucunda gen ifadesi gelişim sırasında denetim edilir. Ayrıca transkripsiyon faktör bağlama, organizmanın aynı genlere sahip olmakla beraber değişik şekillere dönüşmesine izin verir. Sonuçta ortaya az değişik proteinler çıkar. Sözgelimi embriyo evresinden yetişkine dönüşmek ya da dişi/erkek form değişikliği gibi. Şimdi artık, cis-regülasyon’un gelişim için çok önemli olduğu biliyoruz. Son yıllara kadar genlerin birbiriyle nasıl iletişim kurduğunu bilmiyorduk. Ama en son araştırmalar genler arasındaki iletişim ağını yavaş yavaş aydınlatıyor. Bu bilgilerin ışığı altında mutasyonların şekil ve işlev açısından ne biçimde uyum sağladını anlayabiliyoruz. Ama bu konuda temkinli davranmakta yarar var. Tüm bilim dallarında yeni bulguları abartma eğilimi vardır. Gen ağlarındaki evrimsel değişikliklerin, morfolojik evrimi tetikleyen en önemli güç olduğu iddialarını değerlendirirken kuşku payı bırakmakta yarar var. Kuşkusuz, genlerin iç mutasyonlarının ve yeni gen mutasyonlarının evrim konusunda çok önemli rol oynadığını biliyoruz. Ayrıca bundan böyle gen dizilimi konusundaki fonksiyonel değişiklikleri izleyebiliyoruz. 3. Soru Yeni türler nasıl oluştu? Bu soruyu İngiltere’deki Hull Üniversitesi’nden George Turner yanıtladı: Son günlere kadar türlerin nasıl oluştuğunu bildiğimizi sanıyorduk. Bu sürecin popülasyonların tecrit edilmesiyle oluştuğu inancı yaygındı. Popülasyonlar ciddi bir ”gen darboğazı”ndan geçerse çeşitlenme başlıyordu. Sözgelimi hamile bir dişi, uzak ve izole bir adaya gider ve doğan çocuklar birbirleriyle çiftleşirse yeni bir tür doğabilir. “Kurucu etkisi” adı verilen bu modelin güzelliği laboratuvarda test edilebilme olasılığıydı. Ne var ki gerçek yaşamda bunu kimse başaramadı. Evrim biyologlarının çabalarına rağmen, kimse kurucu popülasyondan yeni bir tür yaratmayı başaramadı. Dahası, bildiğim kadarıyla, küçük organizmaların yabancı ortamlara bırakılması sonucu yeni türler oluşmadı. Son günlerde çabalar başka bir yöne yoğunlaştı. Biyologlar çeşitliliğin coğrafi tecritten kaynaklandığına inansa da bu bağlamda “şans” ve küçük popülasyon kavramları geçerliliğini yitirdi. Artık biyologlar, türleri hızlı bir biçimde değiştiren aykırı yolları incelemeyi seçim ediyor. Etkili olan belli başlı güçler ekolojik seleksiyon (Değişen çevre koşullarına uyum çabaları sonucunda ortaya yeni türler çıkar) ve seksüel seleksiyondur (Değişen cinsel tercihler popülasyonda değişiklik yaratır). İşte en kritik soru bu iki gücün önemi üzerine yoğunlaşıyor. Ekolojik seleksiyona en güzel örnek ”paralel çeşitlenme” olgusudur. Burada aynı türler, birbirinden bağımsız şekilde, benzer çevresel koşullara tepki olarak, değişik mekânlarda ortaya çıkar. Buna en iyi örnek Kanada göllerinde yaşayan dikenli balıktır (gasterostus). Kanada’daki göllerde iki çeşit dikenli balık bulunur. Biri dipteki yiyeceklerle beslenirken, diğeri planktonlarla beslenir. Mitokondriyal DNA’larının (mtDNA) incelenmesi sonucu bu iki türün paralel çeşitlenme sonucu ortaya çıktığı anlaşıldı. Bu bulgular, “simpatrik çeşitlenme” denilen yeni bir oluşumu da ortaya çıkarttı. Burada çeşitlenme coğrafi tecride bağlı değildir; melezleşme söz konusudur. Tecrit çeşitlenmesini savunanlar bu görüşe karşı çıksalar da mtDNA çalışmaları simpatrik çeşitlenmeyi destekliyor. Bazı biyologlar melezleştirme sürecinin yeni türlerin oluşumunda önemli bir rol oynadığını düşünüyor. Kuram olarak, bir türün paralel evrim sonucu mu, seksüel seleksiyon sonucu mu yoksa melezleştirme sonucu mu ortaya çıktığını ”çeşitlenme genleri” ne bakarak test edebiliriz. Çeşitlenme genleri, değişik organizmaları birbiriyle karıştırarak üretme olasılığını ortadan kaldırır. Her gün yeni bir genom diziliminin çözümlendiği en son dönemlerde, biyologlar bir gün bu tür genleri keşfedeceklerini umuyor. Ayrıca genlerin ifade farklılıklarının daha çok incelenmesi sonucu çeşitlenmeyi daha iyi anlayabileceğiz. Bana kalırsa çeşitlenme nedenlerini araştırırken en uygun yöntem Mendel tipi çapraz eşleştirmedir. Dolayısıyla çeşitlenmenin tek bir genden mi yoksa bir çift genden mi -erkeğin kur yapması ve dişinin bu sinyale yanıt vermesi gibi- kaynaklandığı netlik kazanabilir. Pek çok bilim adamı bu yöntemin genel tabloyu açıklamakta yetersiz kalacağını iddia etse de, çeşitlenmesini yeni tamamlayan türleri incelemenin en doğru yöntem olduğunu düşünüyorum. 4. Soru Evrim tahmin edilebilir mi? Bu soruyu Oxford Üniversitesi’nde ve Yeni Zelanda’daki Auckland Üniversitesi’nde çalışan Paul Rainey yanıtladı: Son yıllarda yitirdiğimiz Stephen Jay Gould ‘a göre evrim, gelişigüzel ve seçici güçlerin sürekli olarak birbirleriyle etkileşimi sonucu ortaya çıkar. Gelişigüzel unsurların (mutasyon, rekombinasyon ve göç) ve stokastik unsurların (hedefe ulaşmak için uygun olasılıkları seçme işlemi-eş bulma olasılığı gibi) varlığı, evrimin tekrarlanamadığını, tahmin edilemediğini, hatta hiçbir kuralın geçerli olmadığını ortaya koyar. Ancak, Darwin’in net bir biçimde belirttiği gibi, beklenmedik bir olay ile doğal seleksiyon yan yana, beraber etkili olabilirler. Aslında Darwin’in doğal seleksiyon kuramının öngörüsü şudur: Organizmalar çevrelerine uyum sağlar. Olasılık çerçevesi En önemlisi, Darwin’in kuramına dayanarak yapılan bütün tahminler olasılık çerçevesi içinde ele alınır. Bu bağlamda spesifik bir olaya karşı bütün olasılıkları öngörmek gerekir. Burada en önemli sıkıntı, bütün olasılıkların hiçbir zaman hesaba katılamamasıdır. Bugünün evrim biyologları “yasaları” fizik bilimindeki yasalar gibi ele almasalar da -Darwin ve başka 19.Yüzyıl biyologlarının yaptığı gibi- evrimle ilgili kimi temel kuralların varolduğuna dair somut kanıtlar elde ediyor. Evrimsel değişikliklerin mekanizması daha iyi anlaşıldıkça, kimi sonuçların olası başka sonuçlardan daha olası olduğu görülüyor. Tarihsel olasılıklara bir göz attığımızda, Gould’un iddiasına kesin bir yanıt getirmek olası değil. Ama işe başlarken, biyolojik sistemlerin temel yapıları hakkında elde ettiğimiz bilgilerin ışığı altında, evrimin nereye varacağına dair tahminlerde bulunabiliriz. Şimdiden organizmaların çevrelerine nasıl uyum sağlayacağına dair öngörülerde bulunabiliyoruz. Dolayısıyla gelecekte olası değişikliklere dair kantitatif (nicel) tahminlerde bulunmak da olası olabilir. 5. Soru Tanrı’nın evrimle ilgisi ne? Bu soruyu İngiltere’deki Liverpool Üniversitesi’nden Robin Dunbar yanıtılyor: Pek çok insan, bu konuda meşhur bilim felsefecisi Karl Popper ile aynı fikirdedir. Popper’a göre din metafiziğin dünyasına aittir; bilimsel sorgulamaya tabi tutulamaz. Biyologların çoğu bu görüşe katılarak Tanrı konusunu tartışmaların dışında tutar. Ancak din ve tanrıların kişi davranışı üzerinde çok büyük etkisinin olduğunu yadsımak da doğru değildir. İşte bu sebeple ben ve benim gibi düşünen biyologlar, dinlerin niçin varolduğunu ve kişi evriminin hangi noktasında devreye girdiğini araştırmaya başladık. İnsanlar hayvan standartlarına göre çok tuhaf bir özellik sergiler. Bu özellik içinde bulunduğumuz topluluğun isteklerini kabullenme konusunda gösterdiğimiz olağaüstü arzu, hatta bu yolda canımızı bile vermeye hazır durumda olmamızdır. Bu düzeyde bir özveri başarının anahtarıdır. İnsanlar, kollektif çözümlerden yola çıkarak kendi küçük dünyalarıyla sınırlı kişisel sorularına yanıt getirmeye çabalarlar. Bu çözümün yararlı olabilmesi için kişiler kısa vadeli kişisel çıkarlarını uzun vadeli kazançlarıyla değiş tokuş etmeyi öğrenmek zorundadır. Ve gruba uyum sağlama özelliği bizi başka bir tehlikeyle karşı karşıya bırakır. Bu tehlike, topluma ait olma özelliğinden yararlanıp, bunun bedelini ödemek istemeyen parazitlerdir. Tabi ki bu asalakları durdurmanın yolları vardır. Biri, yasalar yardımıyla denetleme, ikincisi toplumsal terbiye kurallarıdır. Ama bu iki yöntem de bir yere kadar yararlıdır: “Benim yaptıklarımı senin onaylayıp onaylamaman beni ilgilendirmez. Ben kazancıma bakarım” şeklinde düşünenlere bu iki yöntem etkili olmaz. İşte bu noktada din devreye girer; kontrolumuzun dışında kimi güçlerin müdahale etme olasılığı insanlarda tedirginlik yaratır. Dinin yarattığı ceza sistemi herhangi bir sivil kuruluşun uygulayacağı cezadan daha ağırdır. Ama bu sistemin çalışması, insanların doğaüstü bir dünyanın varlığına inanmasına bağlıdır. İşte bu aşamada türümüze özgü olan bir özellik önem kazanır. Bu, kişi beynini okuma yeteneğidir. Buna “Aklın teorisi” diyebiliriz. Bu kuramı şu cümleyle açıklayabiliriz: “Senin ve benim ahlaklı davranma arzusu duyduğumu bilen doğaüstü bir varlığın varolduğunu sandığına inanıyorum.” Bu düşünca tarzı, dini doğaüstü kişisel inançların ötesine geçirerek, herkesin paylaştığı toplumsal bir fenomen haline getirdi. Beynimiz tanrıları ve dinleri yaratmamıza izin veriyor. Ama bu, büyük beyinlerin tesadüfen ortaya çıkarttığı bir yetenek midir? Yoksa uyum kaygısı sonucu mu ortaya çıkmıştır? Benim çalışmalarımdan çıkarttığım sonuçlara göre insanların da dahil olduğu primatlarda neokorteksin hacmi -özellikle frontal lob- doğrudan grubun büyüklüğne ve sosyal yeteneklere bağlı olarak değişir. Başka bir deyişle, beynin boyutlarının evrimi, geniş grupların içinde istikrarı sürdürebilecek sosyal yeteneğe bağlı olarak gelişir. Söz konusu insanlar olduğu zaman, bu toplumsal uyum çabalarına din de dahildir. Dinin büyük ölçüde zihinsel güce gereksinim duyduğu gerçeğinden hareketle, dinin ne zaman evrimleştiğini sorabiliriz. Dinsel inançları destekleyecek zihinsel gelişime, evrimsel tarihimizin en son dönemlerinde eriştiğimizi söyleyebiliriz. Dinin, yarım milyon sene ilkin Homo sapiens’in ortaya çıkışından ilkin başlaması olanaksız görünüyor. Bu tarih büyük bir olasılıkla modern insanın 200.000 sene ilkin ortaya çıkışına denk gelebilir. Aynı dönem lisanın da ortaya çıkışına rastlıyor. Kaldı ki dinin varlığı büyük ölçüde lisana bağlıdır. Tabi ki din ödül kavramını da beraberinde getirir. Dini yasaklar toplum krallarına uyumu sağlamakla birlikte, dinsel faaliyetler grubun bir parçası olma duygusunu da yaratır. Son yıllarda sinirbilim beyindeki “Tanrı-noktası”nın yerini buldu. Bu bölge varlığımızın uzamdaki yeri ile ilgili duyulardan ve “evrenle tek vücut olma” duygusundan da sorumlu. Fakat gruba bağlılığı pekiştiren ön önemli araç endorfinler. Bu beyin salgısı, vücut stres altında olduğu zaman salgılanır. Pek çok dinsel törende dövünme, dans ve ilahilerden oluşan uzun ayinler sonucunda endorfinin salgılanması tesadüf değildir. Endorfinlerin uyuşturucu etkisi insanlarda rahatlama ve aynı deneyimi paylaşan grup bireyleriyle yakınlaşma duygusu uyandırır. Dolayısıyla dinler, asalakların toplumsal yaşamın bütün avantajlarından hiçbir bedel ödemeden yararlanmasını önlemek için büyük beyinler tarafından yaratılmıştır. Ama dinsel faaliyetler, doğal dünyanın acımasızlığına karşı toplumsal dayanışmayı artıran yararlı etkinliklerdir. Kaynak: “EVRİM ile ilgili 5 soru 5 yanıt”, Cumhuriyet Bilim Teknik, 5.7.2003, New Scientist’ten Reyhan Oksay çevirisi, 14 Haziran 2003 Bilim Bilmek

http://www.biyologlar.com/evrim-teorisi-ile-ilgili-5-soru-5-yanit

Gen Aktarım Teknikleri

Gen tedavisinde, etkin bir gen aktarimi en onemli bir kosuldur. Genleri istenilen hucrelere tasiyabilmek icin kullanilan yontemler genel olarak iki kategoride toplanmaktadir: Fiziksel yontemler ve biyolojik vektorler: Fiziksel yontemler, DNA'nin dogrudan dogruya enjeksiyonu, lipozom formulasyonlari ve balistik gen enjeksiyonu yontemlerini icerir. Dogrudan DNA enjeksiyonunda ilgili gen DNA'sini tasiyan plazmit, dogrudan dogruya, ornegin kas icine, enjekte edilir. Yontem basit olmasina karsin kisitli bir uygulama alani vardir. Lipozomlar, lipidlerden olusan molekullerdir. DNA'yi iclerine alma mekanizmalarina gore iki guruba ayrilirlar: Katyonik lipozomlar ve pH-duyarli lipozomlar. Birinci gurup lipozomlar arti yuklu olduklarindan, eksi yuklu olan DNA ile dayanikli bir kompleks olustururlar. Ikinci gurup lipozomlarsa negatif yuklu olduklarindan DNA ile bir kompleks olusturmaz, ama iclerinde tasirlar. Parca bombardimani ya da gen tabancasi olarak da adlandirilan balistik DNA enjeksiyonu, ilk olarak bitkilere gen nakli yapmak amaciyla gelistirilmistir. Bu ilk uygulamalarindan sonra, bazi degisiklikler yapilarak memeli hucrelerine gen nakli amaciyla kullanilmaya baslanmistir. Bu yontemde, genellikle altin ya da tungstenden olusan 1-3 mm boyutunda mikroparcaciklar, tedavi edici geni tasiyan plazmit DNA'si ile kaplanir, sonra da bu parcaciklara hiz kazandirilarak, hucre zarini delip, iceri girmeleri saglanir. Basit olmalarina karsin fiziksel yontemler verimsizdir; ayrica, yabanci genler, sadece belirli bir sure fonksiyonal kalabilmektedirler. Bu nedenle arastirmacilarin cogu, genellikle virus kokenli vektorlere yonelmislerdir. "Vektor" kelimesinin bir anlami da "tasiyici"dir. Benzer sekilde, gen terapisinde genleri hucrelere tasima amaciyla kullanilan ve genetik olarak zararsiz hale getirilmis viruslere de vektor denir. Gunumuzde yapilan arastirmalarda, viruslerin hastaliga yol acan gen parcalarinin yerine, hastalari iyilestirme amaciyla rekombinant genler yerlestirilmektedir. Bu amacla degistirilmis hucreler kullanilmaktadir. Bu hucrelere tedavi edici geni tasiyan bir genetik yapi sokuldugunda, tedavi edici geni icinde tasiyan virusler elde edilir. Bu sekilde degistirilmis virusler hucreye girmek icin kendi yontemlerini kullanirlar ve genomlarinin ekspresyonu sonucu, genin kodladigi protein uretilmeye baslanir. Ote yandan, virusun kendisini cogaltmak icin ihtiyac duydugu genler, tedavi edici genlerle degistirilmis oldugundan, virus cogalip hucreyi patlatamaz. Bunu yerine, hucrede virusun tasidigi hastaligi duzeltici genin ekspresyonu olur, genin kodladigi protein (yani ilac) uretilir ve genetik bozukluk nedeniyle uretilemeyen proteinin yerini alir. En cok kullanilan viral vektorler, retrovirusler, adenovirusler, herpesvirusler (ucuk virusu) ve adeno-iliskili viruslerdir. Ama her vektorun kendine ozgu dezavantajlari vardir: Bolunmeyen hucreleri enfekte edememek (retrovirus), olumsuz immunolojik etkiler (adenovirus), sitotoksik etkiler (herpesvirus) ve kisitli yabanci genetik materyal tasiyabilme kapasitesi (adeno-iliskili virus). Ideal bir vektorde aranan ozellikler yuksek titraj, kolay tasarlanabilme, integre olabilme yetenegi ve gen transkripsiyonunun kontrol edilebiliyor olmasinin yaninda, imunolojik etkilerin olmamasidir. Gen aktarim teknikleri Viral Vektorler 1. Retroviral vektorler 2. Adenoviral vektorler 3. Adeno-asociated virus 4. Herpes Simpleks Virus Tip-1 5. Polio Virus 6. Ordek Hepatit Virusu 7. Parvovirus 8. Sendaivirus 9. Sindbis virus Fiziksel ve Kimyasal Yontemler 1. Transferin-reseptoru araciligi ile 2. Asiaglikoprotein DNA konjugatlari 3. Lipofection 4. Direk aktarim 5. Kalsium fosfat cokturmesi ile 6. Diethilaminoetil dekstran 7. Elektroporasyon 8. Sonikasyon 9. Kazima yontemiyle 10 Polibrene/dimetilsulfoksid 11 Jet injeksiyon 12 Partikul bombardimani Genlerin vucuda yerlestirilmesi yontemleri Genleri vucuda yerlestirmenin cesitli yollari vardir. Genel olarak, gen tedavisi iki esas bolumde siniflandirilabilir. l. ex vivo yaklasim: Bu yaklasimda hucreler vucuttan alinir; in vitro kosullarda gen transferi yapilir. Tekrar vucuda geri verilir. Bu yaklasimin avantajlari sunlardir: a. Gen aktarimi genel olarak yuksektir. b. Eger vektor secilebilir marker gen tasiyorsa; gen aktarilan hucreler zenginlestirilebilir. c. Re-implantasyon oncesinde etkinlik kontrol edilebilir. 2. in vivo yaklasim: Vucuttaki hucrelere genlerin direk transferidir. Bu aktarim, in vitro kosullarda gerceklestirilir ve hucreler aliciya tekrar geri verilerek yapildigi gibi alicinin dokusuna in situ direk aktarim seklinde de yapilabilir. Ayrica henuz kullanilmamakta ise de bir vektor araciligi ile de kan yoluyla aktarim gerceklestirilebilir. Bu vektorler plasmidin konakci hucrede takibini saglayacak sekilde floresans ile isaretlenebilir. En onemli sorun spesifiklik ve duragan gen transferinin dusuk etkinligidir. Bu klinikde arka arkaya tedavi islemlerini gerektirmektedir. Gen tedavisinde antisens oligonukleotid kullanimi Antisens oligonukleotidler, kucuk sentetik nukleotid dizileri olup; bunlar spesifik DNA veya RNA dizilerine komplementerdirler. Eksojen oligonukleotidler nukleik asit baglayici reseptorler araciligi ile hucre icerisine alinirlar. Terapotik urun olarak hazirlanmalarinda baslica sorun hucre icerisine tasinabilmeleridir. Oligonukleotidlerin gen tedavisinde kullanilmasi ‘eger belirli bir gen bir hastaliktan sorumlu ise; bunun calistirilmamasi klinik anormalligin duzelmesini saglayabilir’ prensibinden yola cikarak tasarlanmaya baslanmistir. Antisens oligonukleotidler genin cevrilmesini durdurarak hastaliga neden olan genlerin ekspresyonunu engelleyen yapilardir. Bu yapilar onkogenleri kontrol altina alabilmekte ve virus DNA’sinin cevrilmesini engelleyebilmektedirler. Bir cok ilacda amac defektif veya istenmeyen proteinin sentez edildikten sonra fonksionuna engel olmaktir. Antisens teknolojide amac protein sentezinin spesifik kisa tek sarmal DNA veya RNA dizileri kullanilarak onlenmesidir. Bu onleme, protein sentezinin: 1) Genomik DNA'nin mRNA'ya transkripsiyonunda 2) mRNA'nin proteine translasyonu sirasinda mumkun olabilir. Sitoplazmik mRNA, DNA 'ya oranla daha kolay bir hedef gibi gorunmektedir. Bu yaklasimla, c-myc geni/lenfoma hucre dizileri bcr-abl/ Kronik Myelositer Losemide blast hucrelerinde denemeler yapilmistir. In vitro calismalarda, anormal mRNA olusturan Burkitt lenfoma hucre dizilerinin cogalmasi antisens oligonukleotidlerle durdurulmustur. Antisens oligonukleotidler, hucre dizilerinin kanserlesmesini veya metastatik potansiyellerini azaltir. Anti-sens olarak gelistirilen ve AIDS'li hastalarda olusan sitomegalovirus retinitini tedavi edecek olan ilac intra vitreal enjeksiyonla 1998 yilinda insanda kullanilmaya baslanmistir. Oligonukleotid ile gen modifikasyonu Amac DNA'da var olan hatanin, yapisal DNA hatasina donusturulerek, tamir mekanizmasinin taniyabilmesini saglamaktir. 20 bazlik bir oligonukleotide baglanan bir alkile edici ajan, ikili helikse yapisir. Tek iplikcikli oligonukleotid hedef DNA'da kendisine uyan bolgeye yapisir. Replikasyon sirasinda, hucre tamir mekanizmalari devreye girer ve duzeltmeyi yapar. Bu metod ile obesite, b-adrenerjik reseptor mutasyonu, Hb S ve kistik fibrozisin gen tedavisi calismalari yapilmaktadir. Genetik immunomodulasyon: Genetik immunomodulasyon, gen tedavisinde sitokinleri kodlayan genlerin vektorler araciligi ile aktarilmasini kapsamaktadir. Sitokinlerin, klinik olarak tumor buyumesi uzerine onemli etkisi vardir. Immun sistemde yapilacak modifikasyonla, konakcinin antitumor immun yaniti gelistirilebilir. Tumor infiltre eden lenfositlere TNF geni aktarilmasi modeli bunun bir ornegidir. Ilac hedeflemesi: Gen tedavisinde kullanilan vektorlerin spesifik olarak hastalikli hucrelerde eksprese olurken normal hucrelerde bunun olusmamasi temel amactir. Degisik doku ve hucrelerde gen tedavi yaklasimlari asagida ozetlenmistir. Kemik iligi: Kemik iligi transplantasyonu icin gerekli olan teknik islemlerin ve tedavinin gelistirilmesi ile hematopoetik sistem gen tedavisi icin uygun bir aday doku olmustur. Pluripotent hematopoetik kok hucre, kemik iligi hucrelerinin %0.01-0.1'i kadardir. Pluripotent olmasi ve kendiliginden yenilenmesi, ideal bir hedef doku halini almasini saglar. Ex vivo tedavinin en guzel ornegidir. Bir kac hucreye bir gen aktarimi olmasi halinde dahi, aktarilan genin surekli varligi mumkun olacaktir. Yuksek sinif hayvanlarda, bu hucrelerin enfekte edilmesi guctur. Kemik iligindeki bag dokusu hucrelerinin etkin transferde onemli rolu oldugu gosterilmistir. Kemik iliginin gen tedavisi icin ilk hedef doku olmasinin nedenleri soyle siralanabilir. 1- Kemik iligi hucreleri kolayca elde edilebilir. 2- In vitro olarak calisilabilirler. 3- Bireye tekrar reinfuze edilebilirler. 4- Infuzyon sonrasi organizmada cogalarak, farklilasmaya ugrarlar. Boylece organizmada yeni bir hucre populasyonu olusturulabilir. Kas: Cok sayida hedef hucreye gereksinim oldugundan; yuksek etkinlikte gen transferine ihtiyac vardir. Retrovirusla infekte edilen primer myoblastlarin hayvan kasi icine zerk edilmesi ile alti aylik bir surenin uzerinde gen ekspresyonu saglanmistir. En onemli dezavantaji, myoblastlarin zerk edildigi bolgede kalmasidir. Adenovirus vektorunun intravenoz olarak sicana verildikten sonra, etkin bir transduction hem kas fibrillerinde, hem de diger dokularda saglanmistir. Kas fibrillerinin in vivo direkt gen aktarim teknikleri icin de kullanilabildigi gosterilmistir. Plazmid DNA'nin iskelet ve kalp kaslarina direkt zerki ile duragan gen ekspresyonu saglanmistir. Bu zerk edilen plazmid DNA'si hucrede episomlar olarak bulunmaktadir. Bu prosedur, primatlarda cok etkin degildir.Insan buyume hormonu genlerinin transferi ile de hayvanlarda bu hormonun duzeyleri uc ay sonra belirlenebilmistir. Karaciger: Hepatositleri, kultur ortaminda manuple etmek oldukca guctur. Cunku bu hucreler kultur ortaminda cok az bolunmeye ugrarlar ve retroviral vektorlerle transduction etkinligi %20-25 gibi dusuk duzeylerdedir. Her ne kadar in vivo olarak, hepatositler normal kosullarda bolunmezken, kismi hepatektomi, hepatositlerin hucre bolunmesini aktive eder. Bunu takiben retrovirus vektorunun in vivo perfuzyonu ile cok sayida hepatosit infekte edilebilir. Ancak etkinlik %1-2 civarindadir. Alfa-1- antitrypsin geni intraportal yolla adenoviral vektorle karacigere aktarilmissa da, genin ekspresyonu kisa surmustur. Santral sinir sistemi: Yapisal ve fizyolojik kompleksligi nedeni ile SSS bozukluklarinda somatik gen tedavisi uygulanmasi beraberinde onemli sorunlari da getirmektedir. HSV-1 vektorleri hem in vivo, hem de ex vivo olarak sinir hucrelerinde aktarimda kullanilmistir. Trakea epiteli: Bu hucrelerin organizma disina alinip, kulture edilmesi ve sonra tekrar organizmaya implante edilmesindeki zorluklar nedeni ile in vivo aktarim kullanilmaktadir. Adenoviral vektorler ile trakea epiteline invivo gen aktarimi, sicanlarda basarilmistir. Lenfosit: Adenosine Deaminaz enzim eksikliginde kullanilmistir. T hucrelerinin yasam surelerinin sinirli olmasinin nedeni ile arka arkaya infuzyona ihtiyac bulunmaktadir. AIDS ve kanser tedavisinde en uygun hedef doku olarak ortaya cikmaktadir. Okuler hucreler: Vitroz icine adenovirus araciligi ile gen aktarimi yapilmistir. Periferik kan progenitor hucreler: Kemik iligi yerine, periferik kandan izole edilen progenitor hucrelere gen transfer edilmesi ile uzun sureli hematopoesis saglanmistir. Umbilikal ven epiteli: Umbilikal ven epiteline "Doku Faktor" transferi yapilmistir. Gen Terapisinin Cozum Bekleyen Sorunlari: Ilk sorun, genlerin insana verilmesini saglayacak daha kolay ve etkili yontemlerin bulunmasidir. Bir baska sorunsa, nakledilen genin hastanin genetik materyalinin hedeflenen bolgesine yerlesmesini saglamak ve boylece olasi bir kanser ya da baska bir duzensizlik riskini ortadan kaldirmaktir. Bu konudaki baska bir sorun da, yerlestirilen yeni genin vucudun normal fizyolojik sinyalleriyle etkin bir bicimde kontrolunun saglanmasidir. Ornegin insulin, dogru zamanda ve dogru miktarda uretilmedigi zaman, hastaya yarar yerine zarar getirecektir. Su ana kadar yapilan calismalar sonrasi iyi sonuclar alinabilmis fakat kalici tedavi cogu zaman basarili olamamistir. Bunun bir nedeni, vektorlerin tasidiklari genin uzun sureli ekspresyonuna izin vermeyisleri, digeriyse denemelerde etkinlikten cok guvenligin on plana cikmasidir. Su anki duruma gore, onumuzdeki yillarda gen tedavisindeki egilim, genleri istenilen hucrelere en etkin bicimde tasiyabilecek vektorlerin dizayn edilmesi yolunda olacak gibi gorunuyor. O zaman, gen tedavisinin daha basarili sonuclar verecegi soylenebilir.

http://www.biyologlar.com/gen-aktarim-teknikleri

Bakteri nedir?

Bakteriler tek hücreli mikroorganizma grubudur. Tipik olarak birkaç mikrometre uzunluğunda olan bakterilerin çeşitli şekilleri vardır, kimi küresel, kimi spiral şekilli, kimi çubuksu olabilir. Yeryüzündeki her ortamda bakteriler mevcuttur. Toprakta, deniz suyunda, okyanusun derinliklerinde, yer kabuğunda, deride, hayvanların bağırsaklarında, asitli sıcak su kaynaklarında, radyoaktif atıklarda büyüyebilen tipleri vardırbakteri Tipik olarak bir gram toprakta bulunan bakteri hücrelerinin sayısı 40 milyon, bir mililitre tatlı suda ise bir milyondur; toplu olarak dünyada beş nonilyon (5×1030) bakteri bulunmaktadır, bunlar dünyadan biyokütlenin çoğunu oluşturur. Bakteriler gıdaların geri dönüşümü için hayati bir öneme sahiptirler ve gıda döngülerindeki çoğu önemli adım, atmosferden azot fiksasyonu gibi, bakterilere bağlıdır. Ancak bu bakterilerin çoğu henüz tanımlanmamıştır ve bakteri şubelerinin sadece yaklaşık yarısı laboratuvarda kültürlenebilen türlere sahiptir. Bakterilerin araştırıldığı bilim bakteriyolojidir, bu, mikrobiyolojinin bir dalıdır. İnsan vücudunda bulunan bakteri sayısı, insan hücresi sayısının on katı kadardır, özellikle deride ve sindirim yolu içinde çok sayıda bakteri bulunur. Bunların çok büyük bir çoğunluğu bağışıklık sisteminin koruyucu etkisisiyle zararsız kılınmış durumda olsalar, ayrıca bir kısmı da yararlı (probiyotik) olsalar da, bazıları patojen bakterilerdir ve enfeksiyöz hastalıklara neden olurlar; kolera, frengi, şarbon, cüzzam ve veba bu cins hastalıklara dahildir. En yaygın ölümcül bakteriyel hastalıklar solunum yolu enfeksiyonlarıdır, bunlardan verem tek başına yılda iki milyon kişi öldürür, bunların çoğu Sahra altı Afrika'da bulunur. Kalkınmış ülkelerde bakteriyel enfeksiyonların tedavisinde ve çeşitli hayvancılık faaliyetlerinde antibiyotikler kullanılır, bundan dolayı antibiyotik direnci yaygınlaşmaktadır. Endüstride bakteriler, atık su arıtması, peynir ve yoğurt üretimi, biyoteknoloji, antibiyotik ve diğer kimyasalların imalatında önemli rol oynarlar. Bir zamanlar bitkilerin Schizomycetes sınıfına ait sayılan bakteriler artık prokaryot olarak sınıflandırılırlar. ökaryotlardan farklı olarak bakteri hücreleri hücre çekirdeği içermez, membran kaplı organeller de ender olarak görülür. Gelenekesel olarak bakteri terimi tüm prokaryotları içermiş ancak, 1990'lı yıllarda yapılan keşiflerle prokaryotların iki farklı gruptan oluştuğu, bunların ortak bir atadan ayrı ayrı evrimleşmiş oldukları bulununca bilimsel sınıflandırma değişmiştir. Bu üst alemler Bacteria ve Archaea olarak adlandırılmıştır. Bakteriyolojinin tarihçesi Bakteriler ilk defa 1676'da Antonie van Leeuwenhoek tarafından, kendi tasarımı olan tek mercekli bir mikroskopla gözlemlenmiştir. Onlara "animalcules" (hayvancık) adını takmış, gözlemlerini Kraliyet Derneği'ne (Royal Society'ye) yazılmış bir dizi mektupla yayımlamıştır. Bacterium adı çok daha sonra, 1838'de Christian Gottfried Ehrenberg tarafından kullanıma sokulmuş, eski Yunanca "küçük asa" anlamına gelen bacterion -a'dan türetilmiştir. Latince kullanımıyla Bacteria, bakteri sözcüğünün çoğulu, bacterium ise tekilidir. Louis Pasteur 1859'da fermantasyonun mikroorganizmaların büyümesi sonucu meydana geldiğini ve bu büyümenin yoktan varoluş yoluyla olmadığını gösterdi. (Genelde fermantasyon kavramıyla ilişkilendirilen maya ve küfler, bakteri değil, mantardır.) Kendisiyle ayni dönemde yaşamış olan Robert Koch ile birlikte Pasteur, hastalık-mikrop teorisi'nin erken bir savunucusu olmuştur. Robert Koch tıbbi mikrobiyolojide bir öncü olmuş, kolera, şarbon ve verem üzerinde çalışmıştır. Verem üzerindeki araştırmalarında Koch mikrop (germ) teorisini kanıtlamış, bundan dolayı da kendisine Nobel Ödülü verilmiştir.Koch postülatları'nda bir canlının bir hastalığın nedeni olduğunu belirlemek için gereken testleri ortaya koymuştur; bu postülatlar günümüzde hala kullanılmaktadır. On dokuzuncu yüzyılda bakterilerin çoğu hastalığın nedeni olduğu bilinmesine rağmen, antibakteriyel bir tedavi mevcut değildi. 1910'da Paul Ehrlich Treponema pallidum 'u (frengiye neden olan spiroket) seçici olarak boyamaya yarayan boyaları değiştirerek bu patojeni seçici olarak öldüren bileşikler elde etti, böylece ilk antibiyotiği geliştirmiş oldu. Ehrlich, bağışıklık üzerine yaptığı çalışmasından dolayı 1908 Nobel ödülünü kazanmış, ayrıca bakterilerin kimliğini tespit etmek için boyaların kullanılmasına öncülük etmiştir; çalışmaları Gram boyası ve Ziehl-Neelsen boyasının temelini oluşturmuştur. Bakterilerin araştırılmasında büyük bir aşama, Arkelerin bakterilerden farklı bir evrimsel soya ait olduklarının 1977'de Carl Woese tarafından anlaşılmasıdır. Bu yeni filogenetik taksonomi, 16S ribozomal RNA'nın dizilenmesine dayandırılmış ve üç alanlı sistem'in parçası olarak prokaryot alemini iki evrimsel alana (üst aleme) bölmüştür. Köken ve erken evrim Modern bakterilerin ataları, yaklaşık 4 milyar yıl önce, dünyada gelişen ilk yaşam biçimi olan tek hücreli mikroorganizmalardı. Yaklaşık 3 milyar yıl boyunca tüm canlılar mikroskopiktiler, bakteri ve arkeler yaşamın başlıca biçimleriydi. Bakteri fosilleri, örneğin stromatolitler, mevcut olmakla beraber, bunların kendine has morfolojilerinin olmaması, bunlar kullanılarak bakteri evriminin anlaşılmasına veya belli bakteri türlerinini kökeninin belirlenmesini engellemektedir. Ancak gen dizileri bakteri filogenetiğinin inşası için kullanılabilir, bu çalışmalar bakterilerin arke/ökaryot soyundan ayrılmış evrimsel bir dal olduğunu göstermiştir. Bakteri ve arkelerin en yakın zamanlı ortak atası muhtemelen yaklaşık 2,5-3,2 milyar yıl önce yaşamış bir hipertemofil'di. Bakteriler, evrimdeki ikinci büyük ayrışmada, ökaryotların arkelerden oluşmasında da yer almışlardır. Bunda, eski bakteriler, ökaryotların ataları ile endosimbiyotik bir ilişki kurmuşlardır. Bu süreçte, proto-ökaryotik hücreler, alfa-proteobakteriyel hücreleri içlerine alıp mitokondri veya hidojenozomları oluşturdular. Bu organeller günümüz ökaryotlarının tümünde hala bulunmaktadır ("mitokondrisiz" protozoalarda dahi aslında son derece küçülmüş olarak mevcutturlar). Daha sonraki bir dönemde, farklı bir olay sonucu, bazı mitokondrili ökaryotların, siyanobakteri-benzeri canlıları içlerine alması sonucunda, bitki ve yosunlardaki kloroplastlar oluştu. Hatta bazı yosun gruplarında bu olayı izleyen başka içe almalar meydana gelmiş, bazı heterotrofik ökaryotik konak hücrelerin, ökaryotik bir alg hücresini içine alması sonucunda "ikinci kuşak" bir plastid oluşmuştur. Morfoloji Bakteriler, morfoloji olarak adlandırılan, şekil ve boyutları bakımından büyük bir çeşitlilik gösterir. Bakteriyel hücreler ökaryotik bir hücrenin yaklaşık onda biri boyundadır, tipik olarak 0,5-5,0 mikrometre uzunluktadırlar. Ancak, bir kaç tür, örneğin Thiomargarita namibiensis ve Epulopiscium fishelsoni yarı milimetre boyunda olabilir ve çıplak gözle görülebilir. En küçük bakteriler arasında Mikoplazma cinsinin üyeleri bulunur, 0,3 mikrometre olan bu bakteriler en büyük virüsler kadar küçüktür. Bazı bakteriler daha da küçük olabilirler ama bu ultramikrobakteriler henüz iyi tanımlanmamıştır. Çoğu bakteri türleri ya küresel ya da çubuksu şekilli olur. Küresel olanlar kokus (veya coccus; Eski Yunanca tohum anlamında kókkos 'tan), çubuksu olanlar basil (Latince çubuk anlamlı baculus 'tan) olarak adlandırılır. Vibrio olarak adlandırılan bazı çubuksu bakteriler biraz eğri veya virgül şekillidir; diğerleri spiral şekillidir, spirillum olarak adlandırılır, veya sıkıca sarılı olur, spiroket olarak adlandırılırlar. Az sayıda bazı türler tetrahedron veya küp benzeri şekilde olabilirler. Yakın zamanda keşfedilen bazı bakteriler uzun çubuk şeklinde büyür ve yıldız şekilli bir kesite sahiptir. Bu morfolojinin sağladığı yüksek yözölçümü-hacim oranı bu bakterilere az besinli ortamlarda bir avantaj sağladığı öne sürülmüştür. Hücre şekillerindeki bu büyük çeşitlilik bakterinin hücre duvarı ve hücre iskeleti tarafından belirlenir. Hücre şekli, bakterinin gıda edinmesine, yüzeylere bağlanmasına, sıvı içinde yüzmesine ve doğal avcılarından kaçmasına etki eder. Çoğu bakteriyel tür tek hücre halinde varlığını sürdürür, diğerleri ise kendilerine özgü biçimlerle birbirlerine bağlanır: Neisseria diploitler (ikililer) oluşturur, Streptokok zincir, Stafilokok üzüm salkımı gibi kümeler oluşturur. Bazı bakteriler iplik (filament) oluşturacak şekilde uzayabilir Actinobacteria'da olduğu gibi. İpliksi bakterilerde çoğu zaman içinde pek çok hücre bulunan bir kın vardır. Bazı tipleri, örneğin Nocardia cinsine ait bazı türler, hatta karmaşık, dallı iplikçikler oluşturur, bunlar küflerdeki miselyuma benzer. Bakteriler yüzeylere bağlanıp biyofilm denen yoğun kümeler oluştururlar. Bu filmler birkaç mikrometre kalınlıktan yarım metre derinliğe kadar değişebilir, ve birden çok bakteri, protista ve arke türü içerebilir. Biyofilmlererde yaşayan bakteriler, hücre ve hücre dışı bileşenler ile karmaşık bir düzen oluştururlar. Meydana gelen ikincil yapılar arasında mikrokoloniler de sayılabilir, bunların içinde bulunan kanal şebekleri gıdaların daha kolay difüzyonunu sağlar. Doğal ortamlarda, örneğin toprak ve bitkilerin yüzeyinde, bakterilerin çoğunluğu biyofilim aracılığıyla yüzeye bağlanır. Biyofimler tıpta da önemlidir, çünkü bu yapılar kronik bakteriyel enfeksiyonlarda ve vücut içine yerleştirilmiş tıbbi cihazlarda bulunurlar. Biyofilmler içinde kendini koruyan bakterilerin imhası, tek başına ve izole durumda olan bakterilerinkinden çok daha zordur. Daha karmaşık morfolojik değişiklikler de bazen mümkündür. Örenğin amino asitlerden yoksun kalınca Myxobacteria'lar civarlarındaki diğer hücreleri algılamak için yeter çoğunluk algılaması (İng. quorum sensing) denen bir süreç kullanırlar. Bu süreçte bakteriler birbirlerine doğru hareket eder ve yaklaşık 100.000 bakteri içeren 500 mikrometre büyüklüğünde tohum yapıları (İng. fruiting bodies) oluştururlar. Tohum yapılarında bulunan bakteriler farklı görevler yerine getirir; böylesi bir kooperasyon, çok hücreli organizasyonun basit bir tipini meydana getirir. Örneğin, her on hücreden biri bu tohum yapılarının tepesine göç eder ve miksospor adında özelleşmiş uyuşuk (dormant) bir yapı oluştururlar. Miksosporlar normal hücrelere kıyasla kurumaya ve diğer olumsuz çevresel şartlara daha dayanıklıdır. Hücresel yapı Hücre içi yapılar: Bakteri hücresi hücre zarı olarak adlandırılan bir lipit zarla çevrilidir. Bu zar, hücrenin içindekiler içine alıp, besinler, protein ve sitoplazmanın diğer gerekli bileşenlerini hücrenin içinde tutar. Bakteriler prokaryot olduklarından dolayı sitoplazmalarında ender olarak zar kaplı organeller bulundururlar, içlerinde büyük boylu yapılardan az sayıda olur. Bakterilerde hücre çekirdeği, mitokondrisi, kloroplast ve ökaryotlarda bulunan, Golgi aygıtı ve endoplazmik retikulum gibi diğer organellerden yoktur. Bir zamanlar bakterilerin sadece sitoplazmadan içeren basit torbalar olduğu düşünülürdü ama artık karmaşık bir yapıları olduğu bilinmektedir, örneğin prokaryotik hücre iskeleti, ve bazı proteinlerin bakteriyel sitoplazmanın belli konumlarında stabil olarak konuşlanması gibi. Hücre içi organizasyonun bir diğer seviyesi mikrokompartımanlaşma ile sağlanır. Bunun bir örneği olan karboksizom, lipit membran yerine, polihedral bir protein kabukla çevrili olan bir bölmedir. Bu polihedral organeller, ökaryotlardaki zar kaplı organellere benzer bir şekilde, bakteri metabolizmasının bölümlerinin hücre içinde konuşlanmasını ve birbirlerinden ayrı tutulmasını sağlar. Çoğu önemli biyokimyasal tepkime, örneğin enerji üretimi, membran aşırı bir konsantrasyon gradyanı ile, bir bataryadakine benzer şekilde, potansiyel fark oluşması sonucu meydana gelir. Bakterilerde genelde dahili zarlı yapıların olmaması nedeniyle, elektron taşıma zinciri gibi bu tür tepkimeler, hücre zarının iki yanı arasında, yani sitoplazma ile periplazmik aralık veya hücre dışı arasında oluşur. Ancak, çoğu fotosentetik bakteride plazma zarı çok kıvrımlıdır, hücrenin çoğunu ışık enerjisi toplayan membran tabakaları ile doldurur. Yeşil kükürt bakterilerinde bu ışık toplayıcı komplekslerin kimisi klorozom adlı lipit örtülü yapılar oluşturur. Başka proteinler hücre zarından içeri besin ithal eder, veya atık maddeleri sitoplazmadan dışarı atar. Bakterilerin genetik malzemeleri tipik olarak tek bir dairesel kromozomdan oluşur. Bakterilerde zar kaplı bir çekirdek yoktur ve kromozom tipik olarak sitoplazmada yer alan, nükleoit olarak adlandırılan düzensiz şekilli bir cismin içinde yer alır. Nükleoitte DNA, onunla ilişkili proteinler ve RNA bulunur. Planctomycetes ordosu, bakterilerde dahili zarlı yapıların bulunmadığı kuralının bir istisnasını oluşturur, bunlarda bulunan nükloit zar çevrilidir, ayrıca bu bakteriler başka zar çevrili hücresel yapılara da sahiptirler. Tüm canlılar gibi bakterilerde de protein üretimi için ribozomlar bulunur, ancak bakteriyel ribozomların yapısı arke ve ökaryot ribozomlarınınkinden farklıdır. Bazı bakteriler, hücre içinde glikojen, polifosfat, kükürt veya polihidroksialkanoat gibi besinler için depo granülleri oluştururlar. Bu granüller bakterinin daha sonradan kullanması için bu bileşikleri depolamasını sağlar. Bazı bakteri türleri, fotosentetik siyanobakteriler gibi, dahili gaz vezikülleri oluştururlar, bunlar aracılığıyla hafifliklerini ayarlarlar, farklı miktarda ışık ve besin bulunan su seviyeleri arasında alçalıp yükselebilirler. Hücre dışı yapılar: Hücre zarının dışında bakteriyel hücre duvarı bulunur. Bakteriyel hücre duvarları peptidoglikan (eski metinlerde mürein olarak adlandırılırdı)'dan oluşur. Peptidoglikan, peptit zincirlerle birbirine çapraz bağlanmış polisakkarit zincirlerden oluşur, bu peptitler, hücredeki diğer protein ve peptitlerden farklı olarak, D-amino asitler içerir. Bakteri hücre duvarları bitki ve mantar hücre duvarlarından farklıdırlar; bitki hücre duvarları selülozdan, mantarlarınkiler ise kitinden oluşur. Bakteri hücre duvarları arkelerinkinden de farklıdır, bunlarda peptidoglikan bulunmaz. Hücre duvarı çoğu bakterinin varlığını sürdürmesi için gereklidir, bu yüzden bir antibiyotik olan penisilin tarafından peptidoglikan sentezinin engellemesi bakterilerin ölümüne neden olur. Bakterilerde başlıca iki tip hücre duvarı olduğu söylenebilir, bunlar Gram-negatif ve Gram-pozitif olarak adlandırılır. Bu adlar, hücrelerin Gram boyasıyla tepkimesinden kaynaklanır. Bu, bakterilerin sınıflandırılmasında çok eskiden beri kullanılan bir testtir. Gram-pozitif hücreler, pek çok peptidoglikan ve teikoik asit tabakasından oluşan kalın bir hücre duvarına sahiptir. Buna karşın, Gram-negatif bakteriler birkaç peptidoglikan tabakası bulunur, bunun etrafını ikinci bir hücre zarı sarar, bu zarda lipopolisakkaritler ve lipoproteinler bulunur. Çoğu bakteri Gram-negatif bir hücre duvarına sahiptir, sadece Firmicutes ve Actinobacteria'lar (bunlar daha evvel düşük G+C ve yüksek G+C Gram pozitif bakteriler diye bilinirdi) Gram-pozitif, düzene sahiptirler. Bu yapısal farklılık, antibiyotiklere duyarlılıkta farklılık yaratabilir; örneğin vankomisin Gram-pozitif bakterileri öldürmesine karşın, Haemophilus influenzae veya Pseudomonas aeruginosa gibi Gram-negatif patojenlere karşı etkisizdir. Çoğu bakteride hücrenin dışını proteinlerden oluşmuş sert bir bir S-tabakası kaplar. Bu tabaka, hücre yüzeyine kimyasal ve fiziksel bir koruma sağlar ve makromoleküllerin difüzyonuna karşı bir engel oluşturur. S-tabakalarının çeşitli ama az anlaşılmış işlevleri vardır. Kampilobakter'lerde virülans faktörü olarak etki ettikleri ve Bacillus stearothermophilus 'ta yüzey enzimleri içerdikleri bilinmektedir. Kamçılar (flagellum, çoğul hali flagella), sert protein yapılardır, çapları yaklaşık 20 nanometre olup uzunlukları 20 mikrometreyi bulabilir, hareket etmeye yararlar. Kamçının hareketi için gereken enerji, hücre zarının iki yanı arasındaki bir elektrokimyasal gradyan boyunca iyonların taşınması sonucu elde edilir. Fimbrialar ince protein iplikçiklerdir, sadece 2-10 nanometre çaplı olup uzunlukları birkaç mikrometreyi bulabilir. Hücrenin yüzeyine dağılıdırlar, elektron mikroskobunda ince saçlara benzerler. Fimbriaların, sert yüzeylere veya başka hücrelere bağlanmakla ilişkili oldukları sanılmaktadır, ve bazı bakterilerin virülansı için gereklidirler. Piluslar fimbrialardan biraz daha büyük hücresel uzantılardır, konjügasyon denen bir süreç ile bakteri hücreleri arasında genetik malzeme aktarılmasını sağlarlar. Çoğu bakteri kapsül veya sümük tabakaları üreterek kendilerini bunlarla çevreler. Bu yapılar farklı derecede karmaşıklık gösterir: hücre dışı bir polimer olan sümük tabakası tamamen düzensizdir, kapsül veya glikokaliks ise çok düzenlidir. Bu yapılar, bakterileri makrofaj gibi ökaryotik hücreler tarafından yutulmaya karşı korur. Bunlar ayrıca antijen olarak etki edip hücre tanınmasında rol oynayabilir, ayrıca yüzeylere bağlanmak ve biyofilm oluşmasına yardımcı olabilir. Bu hücre dışı yapıların biraraya gelmesi salgı sistemlerine dayalıdır. Bunlar proteinleri sitoplazmadan periplazmaya veya hücre dışı ortama aktarırlar. Çeşitli salgı sistemleri bilinmektedir ve bu yapılar virülans için gerekli olduğu için yoğun bir sekilde araştırılmaktdadır. Endosporlar Bazı Gram-pozitif bakteri cinsleri, örneğin Bacillus, Clostridium, Sporohalobacter, Anaerobacter and Heliobacterium, endospor adlı çok dayanıklı, uyuşuk ('dormant') yapılar oluşturabilir. Hemen her örnekte üremeyle ilişkili olmayan bir süreç sonucunda bir hücreden bir endospor oluşur; ancak Anaerobacter durumunda bir hücrenin içinde oluşabilecek endospor sayısı yediyi bulabilir. Endosporların merkezinde, içinde DNA ve ribozomlar olan bir sitoplazma, bunun etrafında ise korteks tabakası, en dışta ise su geçirmez ve sert bir örtü bulunur. Endosporlar bir metabolizma belirtisi göstermezler, aşırı kimyasal ve fiziksel baskılara dayanıklıdırlar, örneğin, morötesi ışın, gama ışınları, deterjanlar, dezenfektanlar, ısı, basınç ve kurutulma. Bu uyuşuk halde bu organizmalar milyonlarca yıl boyunca tekrar yaşama geri dönebilirler. Endosporlar bakterilerin uzaydaki boşluk ve radyasyona dayanmalarını sağlar. Endospor oluşturan bakterilerin bazıları hastalık da yapar: örneğin şarbon hastalığı Bacillus anthracis endosporlarının teneffüsüyle kapılabilir, derin saplanma yaralarının Clostridium tetani endosporları ile kontamine olması da tetanoza yol açar. Metabolizma Bakterilerde karbon metabolizması ya heterotrofiktir, organik bileşikler karbon kaynağı olarak kullanılır veya ototrofiktir, yani hücresel karbon, karbon dioksitin karbon fiksasyonu elde edilir. Tipik ototrofik bakteriler arasında fototrofik siyanobakteriler, yeşil kükürt bakterileri ve bazı mor bakteriler sayılabilir, ama pekçok kemolitrofik türler de, örneğin azotlayıcı ve kükürt yükseltgeyici bakteriler de bu grupta yer alır. Bakterilerin enerji metabolizması ya fototrofiye, yani ışığın fotosentez yoluyla kullanımına, ya da kemotrofiye, yani enerji için kimyasal bileşiklerin kullanımıdır ki bu bileşiklerin çoğu oksijen veya ona alternatif başka elektron alıcıları yoluyla yükseltgenir (aerobik veya anaerobik solunum). Nihayet, bakteriler ya inorganik ya da organik bileşikler elektron vericileri kullanmalarına göre, sırasıyla, litotrof veya organotrof olarak siniflanirlar. Kemotrofik organizmalar, hem enerji korunumu (solunum veya fermantasyon ile) hem de biosentetik tepkimeler için bu elektron vericilerini kullanır, buna karşın fototrofik organzmalar onları sadece biyosentetik amaçla kullanırlar. Solunum yapan organizmalar enerji kayanğı olarak kimyasal bileşikler kullanırlar, bunun için elektronlar bir yükseltgenme-indirgenme (redoks) tepkimesi ile indirgenmiş bir substrattan bir son elektron alıcısına taşınır. Bu tepkimenin açığa çıkardığı enerji ile ATP sentezlenir ve metabolizma yürütülür. Aerobik organizmalarda oksijen elektron alıcısı olarak kullanılır. Anaerobik organizmalarda nitrat, sülfat veya karbon dioksit gibi başka inorganik bileşikler elektron alıcısı olarak kullanılır. Bunlar sonucunda ekolojide büyük önem taşıyan denitrifikasyon, sülfat indirgenmesi ve asetogenez süreçleri meydana gelir. Kemotroflarda, bir elektron alıcısının yokluğu halinde, bir diğer olası yaşam yolu fermantasyondur, bunda indirgeniş substratlardan elde edilen elektronlar yükseltgenmiş ara ürünlere aktarılarak fermantasyon ürünleri meydana getirir, örneğin laktik asit, etanol, hidrojen, butirik asit gibi. Substratların enerji seviyesi ürünlerinkinden daha yüksek olması sayesinde fermantasyon mümkün olur, böylece organizmalar ATP sentezler ve metabolizmalarını çalıştırırlar. Bu süreçler, çevre kirlenmesine olan biyolojik tepkilerde de önemlidirler: örneğin sülfat indirgeyici bakteriler, cıvanın çok toksik şekillerinin (metil- ve dimetil-cıva) üretiminden büyük ölçüde sorumludur. Solunum yapmayan anaeroblar fermantasyon yoluyla enerji üretip indirgeyici güç elde ederler, bu sırada metabolik yan ürünleri (biracılıkta etanol gibi) atık olarak salgılarlar. Seçmeli anaeroblar (fakültatif anaeroblar), içinde bulundukları çevresel şartlara göre fermantasyon ile farklı elektron alıcıları arasında seçim yaparlar. Litotrofik bakteriler enerji kaynağı olarak inorganik bileşikler kullanırlar. Yaygın kullanılan elektron vericileri hidrojen, karbon monoksit, amonyak (nitrifikasyona yol açar), feröz demir ve diğer indirgenmiş metal iyonları, ve bazı indirgenmiş kükürt bileşikleridir. Metan gazı metanotrofik bakteriler tarafından hem bir elektron kaynağı hem de karbon anabolizmasında bir substrat olarak kullanılması bakımından dikkat çekicidir. Hem aerobik fototrofi hem de kemolitotrofide, oksijen nihai elektron alıcısı olarak kullanılır, anaerobik şarlarda ise inorganik bileşikler kullanılır. Çoğu litotrofik organizma otortorfiktir, buna karşın organotrofik organzmalar heterotrofiktir. Karbon dioksitin fotosentezle fiksasyonuna ek olarak bazı bakteriler, nitrojenaz enzimini kullanarak azot gazını sabitlerler (azot fiksasyonu). Çevresel olarak önemli olan bu özellik, yukarıda sayılmış metabolik tiplerin herbirindeki bazı bakterilerde görülür ama evrensel değildir. Büyüme ve üreme Çok hücreli organizmalardan farklı olarak, tek hücreli organizmalarda büyüme (hücre büyümesi) ve hücre bölünmesi yoluyla üreme sıkı bir sekilde birbirine bağlıdır. Bakteriler belli bir boya kadar büyür ve sonra eşeysiz üreme şekli olan ikili bölünme ile ürerler. En iyi şartlarda bakteriler büyük bir hızla büyür ve ürerler; bakteri topluluklarının sayısı her 9,8 dakikada ikiye katlanabilir. Hücre bölünmesinde birbirinin aynı iki yavru hücre meydana gelir. Bazı bakteriler, eşeysiz üremelerine rağmen, daha karmaşık yapılar oluştur, bunlar yavru hücrelerin yayılmasını kolaylaştırır. Buna örnek myxobacteria'larda tohum yapıları ve Streptomyces'te hif oluşumudur. Bazı bakterilerde ise tomurcuklanma olur, hücre yüzeyindeki meydana gelen bir uzantı kopunca bir yavru hücre meydana gelir. Laboratuvarda bakteriler çoğu zaman katı veya sıvı ortamda büyütülürler. Katı büyüme ortamı olarak agar kapları kullanılır, bunlar aracılığıyla bir bakteri suşunun saf bir kültürü elde edilir. Ancak, büyümenin hızının ölçülmesi veya büyük miktarda hücrenin eldesi gerektiğinde sıvı büyüme ortamları kullanılır. Karıştırılan bir ortam içinde büyüyen bakteriler homojen bir hücre süspansiyonu olştururlar, böylece kültürün eşit olarak bölünmesi ve başka kaplara aktarımı kolay olur. Ancak sıvı ortamda tek bakteri hücrelerinini izole edilmesi zordur. Seçici ortam (belli besin maddeleri eklenmiş veya eksik bırakılmış, veya antibiyotik eklenmiş ortam) belli organizmaların kimliğinin tespitine yardımcı olur. Bakteri büyütmek için kullanılan çoğu laboratuvar tekniğinde, çok miktarda hücrenin hızlı ve ucuz olarak üretilmesi için bol miktarda besinler kullanılır. Ancak, doğal ortamlarda besinler sınırlı miktradadır, bu yüzden bakteriler ilelebet üremeye devam edemez. Besin sınırlaması farklı büyüme stratejilerinin evrimleşmesine yol açar. Bazı organizmalar besinler mevcut olunca son derece hızlı çoğalır, örneğin yaz aylarında bazı göllerde yosun ve siyanobakteriyel büyümelerinde olduğu gibi. Başka bazı organizmalar sert çevresel şartlara adaptasyonları vardır, örneğin Streptomyces'in rakip organizmaları engellemek için çoklu antibiyotik salgılaması gibi. Doğada çoğu organizma besin teminini kolaylaştıran ve çevresel streslere karşı koruyucu topluluklar halinde (biyofilm gibi) yaşar. Bu ilişkiler belli canlı veya canlı gruplarının büyümesi için şart olabilir (sintrofi). Bakteriyel büyüme üç evre izler. Bir bakteri topluluğu yüksek besin bulunduran bir ortama ilk girdiğinde hücrelerin yeni ortamlarına adapte olmaları gerekir. Büyümenin ilk evresi bekleme aşamasıdır (latent dönem veya lag fazı), bu yavaş büyüme döneminde hücreler yüksek besili ortama adapte olup hızlı büyümeye hazırlanırlar. Hızlı büyüme için gerekli olan proteinler üretilmekte olduğu için bekleme döneminde biyosentez hızı yüksektir. Büyümenin ikinci evresi logaritmik faz (log fazı) veya üssel faz olarak adlandırılır. Bu evrede üssel büyüme olur. Bu evrede hücrelerin büyüme hızı (k), hücre sayısının iki katına çıkma süresi de jenerasyon zamanı (g) olarak adlandırılır. Besinlerden biri tükenip sınırlayıcı olana kadar süren log fazı sırasında besinler en yüksek hızla metabolize olur. Büyümenin son evresi durağan faz olarak adlandırılır, ve besinlerin tükenmiş olmasından kaynaklanır. Hücreler metabolik etkinliklerini azaltır ve gerekli olmayan hücresel proteinlerini harcarlar. Durağan faz, hızlı büyümeden bir strese tepki haline geçiş dönemidir, DNA tamiri, antioksidan metabolizması, ve besin taşıması ile ilişkili genlerin ifadesinde bir artış olur. Genetik Çoğu bakteride tek bir dairesel kromozom bulunur, bunun büyüklüğü endosimbiyotik bir bakteri olan Candidatus Carsonella ruddii de 160.000 baz çiftinden, bir toprak bakterisi olan Sorangium cellulosumda 12,200,000 baz çiftine kadar uzanır. Borrelia cinsine ait spiroketler bu genel özelliğin bir istisnasıdır, Borrelia burgdorferi (Lyme hastalığı etmeni) gibi türlerde tek bir doğrusal kromozom bulunur. Bakteriyel kromozomlardaki genler genelde tek bir sürekli DNA parçasından oluşur, bazı bakterilerde intronlar bulunmuşsa da bunlar ökaryotlarda olduğundan çok daha enderdir. Bakteriler aynı zamanda plazmidler de bulunabilir, bunlar kromozomdan ayrı DNA parçalarıdır, antibiyotik direnç genleri veya virülans faktörleri içerebilirler. Bir diğer tip bakteriyel DNA, kromozoma entegre olmuş virüslere (bakteriyofajlara) aittir. Çeşitli bakteriyofaj türleri vardır, bazıları sadece konak bakterilerini enfekte edip onu parçalar, diğerleri ise hücre içine girdikten sonra DNA'larını bakteriyel kromozoma dahil ederler. Bir bakteriyofaj konak hücresinini fenotipine katkıda bulunan genler taşıyabilir: örneğin Escherichia coli O157:H7'nin evrimi sırasında entegre olmuş bir fajın toksin genleri, zararsız bir atasal bakteriyi ölümcül bir patojene dönüştürmüştür. Bakteriler, eşeysiz organizmalar olarak, ana hücrelerinin genlerinin kopyalarını devralırlar. Ancak tüm bakteriler, DNA'larındaki değişikliklerin (mutasyon ve genetik rekombinasyonun) seçilimi ile evrimleşir. Mutasyonlar DNA ikileşmesi sırasında meydana gelen hatalar veya mutajenlerden kaynaklanır. Mutasyon hızları farklı bakteri türleri ve hatta aynı bakterinin farklı suşları arasında büyük farklılıklar gösterir. Bazı bakteriler ayrıca genetik malzemelerini hücreler arasında aktarabilirler. Bu üç yolla meydana gelebilir. Birincisi, bakteriler ortamlarıdaki yabancı DNA'yı içlerine alabilirler, buna transformasyon denir. Genler ayrıca transdüksiyon yoluyla, bir bakteriyofajın yabancı bir DNA parçasını kromozomun içine yerleştirmesiyle aktarılabilir. Gen aktarımını üçüncü yolu bakteriyel konjügasyondur, bunda DNA doğrudan hücresel temas yoluyla aktarılır. Başka bakteri veya ortamdan gen edinimine yatay gen transferi denir ve doğal şartlarda bu yaygın olabilir. Gen transferi özellikle antibiyotik direncinin oluşmasında önemlidir, çünkü bu, farklı patojenler arasında direnç genlerinin transferini sağlar. Hareket Hareketli (motil) bakteriler Kamçı (Biyoloji), bakteriyel kayma, seğirmeli hareket ve batmazlık (buoyuans) değişmesi yoluyla hareket ederler. Seğirmeli hareketlilikte bakteriler tip IV piluslarını bir kanca olarak kullanır, tekrar tekrar onu uzatır, bir yere saplar ve büyük bir kuvvetle (>80 pN) geri çeker. Bakteriyel türler kamçılarının sayı ve düzenine göre farklılık gösterirler; bazılarının tek bir kamçısı vardır (tek kamçılı veya monotrik), bazılarının iki uçta birer kamçısı (iki kamçılı veya amfitrik), bazılarının uçlarında kamçı kümeleri (iki demet kamçılı veya lofotrik), diğerlerinin ise tüm yüzeylerine yayılmış kamçıları vardır (çok kamçılı veya peritrik). Bakteri kamçısı yapısı en iyi anlaşılmış hareketlilik yapısıdır, 20 proteinden oluşur, ayrıca onun düzenlenmesi ve inşası için yaklaşık 30 diğer protein gereklidir. Kamçının tabanında bulunan motor, membranın iki yanı arasındaki elektrokimyasal gradyanı güç için kullanır. Bu motor, bir pervane gibi çalışan iplikçiği döndürür. Çoğu bakterinin (E. coli gibi) iki farklı hareket biçimi vardır: ileri hareket (yüzme) ve yuvarlanma (tumbling). Yuvarlanma sayesinde bakteri yönünü değiştirir ve izlediği yol üç boyutlu bir rassal yürüyüş şeklini alır. Spiroketlerin kamçısı periplamik boşlukta iki zar arasında bulunur. Bu bakterilerin kendilerine has sarmal bir gövdeleri vardır ve hareket ederken kıvrılırlar. Hareketli bakteriler belli uyaranlar tarafından çekim veya itime uğrarlar, bunun neden olduğu davranışlara taksis denir: bunların arasında kemotaksis, fototaksis ve manyetotaksis bulunur. Myxobacterialerde, bireysel bakteriler beraber hareket ederek hücre dalgaları oluşturur, bunlar farklılaşıp içinde sporlar bulunduran tohum yapıları oluşturur. Myxobacteria'lar yalnızca katı ortam üzerindeyken hareket ederler, buna karşın E. coli hem sıvı hem katı ortamda hareketlidir. Birkaç Listeria ve Şigella türü, konak hücreler içinde hareket ederken, normalde organellerin hücre içinde taşınmasını sağlayan hücre iskeletini kullanırlar. Kendi hücrelerinin bir kutbunda aktin polimerizasyonunu sağlayarak bir cins kuyruk oluştururlar, bu onları konak hücre sitoplazması içinde iter. Sınıflandırma ve kimlik tespiti Sınıflandırma, bakterileri benzerliklerine göre gruplandırıp adlandırarak onlardaki çeşitliliği betimlemeye yarar. Bakteriler hücre yapısı, hücresel metabolizma veya hücresel bileşenlerindeki (DNA, yağ asitleri, pigment, antijen ve kinonlar gibi) farklılıklara göre sınıflandırılabilirler. Bu yöntemler bakteri suşlarının kimliklerinin tespitini ve sınıflandırılmasına olanka sağlasa da, bu farklılıkların farklı türler arasındaki varyasyonları mı yoksa aynı tğr içindeki varyasyonları mı yansıttığı belli değildi. Bu belirsizliğin nedeni, çoğu bakteride ayırdedici yapıların olmaması, ayrıca birbiriyle ilişkisiz türler arasında yatay gen transferi olmasıydı. Yatay gen trasnferi yüzünden birbirine akraba sayılabilecek bazı bakteri türleri çok farklı morfoloji ve metabolizmaya sahip olabilirler. Bu belirsizliğin üstesinden gelebilmek için modern bakteri sınıflandırması moleküler sistematiğe ağırlık verir, guanin sitozin oranının ölçümü, genom-genom hibridizasyonu, ayrıca yatay gen transferine uğramamış genlerin (ribozomal RNA gibi) dizilenmesi gibi genetik teknikler kullanır. Bakteri sınıflandırması International Journal of Systematic Bacteriology (Uluslarası Sistematik Biyoloji) dergisi ve Bergey's Manual of Systematic Bacteriology kitapçığında yayımlanarak resmileşir. "Bakteri" terimi bir zamanlar tüm mikroskopik, tek hücreli prokaryotlar için kullanılırdı. Ancak moleküler sistematik sayesinde prokaryotik yaşamın iki ayrı sahadan oluştuğu gösterildi. Önceleri Eubacteria ve Archaebacteria diye adlandırılan, ama artık Bacteria and Archaea olarak adlandırılan bu iki canlı grubu, ortak bir atadan ayrı ayrı evrimleşmişlerdir. Arkeler ve ökaryotlar arasındaki yakınlık, her birinin bakterilerle olan yakınlığından daha çoktur. Bu iki saha (üst alem), Eukarya ile birlikte, günümüzde mikrobiyolojide en yaygın kullanılan sınıflandırma sistemi olan üç saha sisteminin temelini oluşturur. Ancak, moleküler sistematiğin yakın zamanda kullanıma girmesi ve genom dizileri elde edilmiş canlıların sayısındaki hızlı artış nedeniyle bakteri sınıflandırması halen hızle değişen ve gelişen bir bilim dalıdır. Örneğin, bazı biyologlar arke ve ökaryotların Gram-pozitif bakterilerden evrimleştiğini iddia etmektedirler. Laboratuvarda bakteri kimlik tespiti özellikle tıpta çok önemlidir, çünkü doğru tedavi, enfeksiyona yol açan bakteri türüne bağlıdır. Dolayısıyla insan patojenlerinin kimliğinin tespiti, bakterilerin tanımlanma tekniklerinin gelişmesinin başlıca dürtüsü olmuştur. 1884'te Hans Christian Gram tarafından geliştirilmiş Gram boyama, bakterileri hücre duvarlarının yapısal özelliklerine göre tanımlamakta kullanılır. Bazı organizmalar Gram boyasından başka boyalarla en iyi tanınabilirler. Özellikle mikobakteriler ve Nocardia Ziehl–Neelsen ve benzeri boyalarla asit eşliğinde boyanır. Başka organizmalar özel ortamlarda büyümeleriyle tanınırlar veya seroloji gib başka teknikleri gerektirirler. Kültür teknikleri, bakterilerin büyümesini sağlamak ve belli bakterilerin kimliğini tespit etmek, aynı zamanda da nümenede bulunan başka bakterilerin büyümesini sınırlamak için tasarlanmıştır. Çoğu zaman bu teknikler belli nümune türleri göz önüne alınarak geliştirilmiştir; örneğin bir tükürük örneği pnömoniye yol açan organizmaları ortaya çıkaracak şekilde işleden geçirilir, bir dışkı örneği ise ishale yol açan organizalar tanımak için seçici ortamda kültürlenir, bu ortamda patojen olmayan bakteriler büyümez. Normal olarak steril olan örnekler, örneğin kan, idrar veya omurilik sıvısı, tüm organizmaların büyümesini sağlayan şartlarda kültürlenir. Patojen bir organizma izole edildikten sonra, morfolojisi, büyüme özellikleri (aerobik veya anaerobik büyüme, hemoliz şekilleri gibi) ve boyama ile daha ayrıntılı olarak karakterize edilebilir. Bakteri sınıflandırmasında olduğu gibi, bakteri kimlik tespiti de gittikçe daha sık olarak moleküler yöntemlerle yapılmaktadır. DNA'ya dayalı yöntemler, örneğin polimeraz zincir reaksiyonu, özgüllükleri ve çabuklukları nedeniyle, kültür yapmaya dayalı tekniklere kıyasla artarak popülerleşmektedir. Bu yöntemler sayesinde "yaşayan ama kültürlenemeyen", yani metabolik olarak aktif olan ama bölünmeyen hücrelerin kimliklerini tespit etmek mümkün olmaktadır. Ancak bu gelişmiş yöntemlerle dahi, bakteri türlerinin toplam sayısı bilinmemektedir ve bu sayı belli güven sınırları içinde tamin dahi edilememektedir. Mevcut sınıflandırmaya göre bilinen bakteri türlerinin (siyanobakteriler dahil) sayısı 9000'inin altındadır, ama bakteriyel çeşitliliğin büyüklüğü hakkındaki tahminlerde toplam tür sayısı 107'den 109'a kadar uzanır ve hatta bu tahminlerinlerin dahi birkaç büyüklük mertebesi kadar hatalı olabileceği düşünülmektedir. Diğer organizmalarla etkileşimler Görünür basitliklerine rağmen, bakteriler diğer canlılarla karmaşık etkileşimler içindedir. Bu simbiyotik ilişkiler parazitizm, mutualizm ve komensalizm olarak üçe ayrılırlar. Komensal bakteriler her yerde bulunur, hayvan ve bitkiler üzerinde büyümeleri başka yüzeyler üzerinde büyümeleri ile aynıdır (ancak sıcaklık ve ter bunların büyümesini hızlandırabilir); insanlarda bu organizmalardan çok sayıda olması vücut kokusunun nedenidir. Mutualistler Bazı bakteriler varlıklarının devamı için gerekli olan, mekansal olarak yakın ilişkilere girerler. Bu tür mutualist ilişkilerden biri olan türler arası hidrojen transferi olarak adlandırılır, butirik asit veya propiyonik asit tüketip hidrojen tüketen anaerobik bakteriler ile, hidrojen tüketen metanojenik arkeler arasındadır. Bu ilişkide yer alan bakteriler kendi başlarına bu organik asitleri kullanamazlar çünkü bu reaksiyon sonucu aşığa çıkan hidrojen çevrelerinde birikir. Hidrojen tüketici arkelerle yakın ilişkileri sayesinde hidrojen konsantrasyonu yeterince düşük kalır ve bakteriler büyüyebilir. Toprakta, rizosferde (kökün yüzeyi ve kökü bağlı olan topraktan oluşan bölgede) mikroorganizmalar azot fiksasyonu yaparlar, yani azot gazını azotlu bileşiklere dönüştürürler. Bu süreç sonucunda bitkilerin (ki onlar azot fiksasyonu yapamazlar) kolayca absorbe edebildiği bir azot kaynağı meydana gelir. Pekçok başka bakteri, insan ve başka canlılarda simbiont olarak bulunurlar. Örneğin normal insan bağırsağındaki bağırsak florasındaki 1000'den fazla bakteri, bağırsak bağışıklığına, bazı vitaminlerin (folik asit, K vitamini ve biyotin) sentezine, süt proteinlerinin laktik asite dönüştürülmesine (bkz. Laktobasiller) katkıda bulunur, ayrıca sindirilmemiş kompleks karbonhidratların fermantasyonunu sağlar. Bu bağırsak floarası ayrıca potansiyle patojen bakterilerin büyümesini engellediği için (genelde yarışmalı dışlama ile) bu faydalı bakterilerin probiyotik besin katkısı olarak alınmasının olumlu etkileri bulunmuştur. Patojenler Eğer bakteriler başka organizmalarla parazitik ilişkiler kurarlarsa patojen olarak sınıflandırılırlar. Patojen bakteriler insan larda ölüm ve hastalığın başlıca nedenidir; neden oldukları enfeksiyonlar arasında tetanoz, tifo, tifüs, difteri, frengi, kolera, besin kaynaklı hastalıklar, cüzzam ve verem sayılabilir. Bilinen bir hastalığın patojenik kaynağının keşfi yıllar sürebilir, örneğin mide ülseri hastalığı ve Helicobacter pylori durumunda olduğu gibi. Bakteryel hastalıklar tarımda da önemlidir, bakteriler bitkilerde yaprak beneği, ateş yanıklığı ve solmaya, çiftlik hayvanlarında da paratüberküloz, mastit, salmonella ve şarbona neden olur. Her patojen türün insan konağı ile etkileşimlerinin karakteristik bir spektrum oluşturur. Bazı organizmalar, örneğin Stafilokok veya Streptokok, deri enfeksiyonu, pnömoni, menenjit ve hatta sistemik sepsis (şok, masif vazodilasyon ve ölümle sonuşlanan sistemik bir enflamasyon tepkisi) neden olur. Lakin bu oganizmalar aynı zamanda normal insan florasına aittir, genelde insan derisi ve burununda bulur ve hiç bir hastalığa yol açmazlar. Buna karşın bazı başka organizmalar her durumda insanda hastalık yaparlar. Örneği Rickettsia, ancak başka canlıların hücrelerinin içinde büyüyüp çoğlabilen, zorunlu bir hücreiçi parazittir. Rickettsia'nin bir türü tifüse, bir diğeri ise Kayalık Dağlar benekli hummasına neden olur. Klamidya, zorunlu hücre içi paraziti bir diğer takımı içinde bulunan bazı türler pnömoni, veya idrar yolu enfeksiyonuna neden olabilir, ayrıca koroner kalp hastalığı ile de ilişkili olabilirler. Nihayet, bazı bakteri türleri, Pseudomonas aeruginosa, Burkholderia cenocepacia, ve Mycobacterium avium gibi, fırsatçı patojendirler ve sadece immün yetmezlik çeken veya kistik fibrozlu kişilerde hastalık yaparlar. Bakteriyel enfeksiyonlar antibiyotikle tedavi edilebilirler, bu antibiyotikler bakterileri öldürürse bakteriosidal, sadece onların çoğalmasını engelliyorsa bakteriostatik olarak sınıflandırılır. Pekçok antibiyotik vardır ve bunların her sınıfı patojende olup konağında olmayan bir süreci engeller. Antibiyotiklerin nasıl seçici toksiklik gösterdiğine bir örneği kloramfenikol ve puromisindir, bunlar bakteri ribozomlarını engellerler, ama yapısal olarak farklı olan ökaryotik ribozomlara etki etmezler. İnsan hastalıklarını tedavide kullanılan antibiyotiklerin hayvancılıkta da hayvanlarının büyümesini hızlandırmak için kullanılması, bakterilerde antibiyotik direnci gelişmesine neden olabilir. Enfeksiyonları engellemek için antiseptik önlemler alınır, örneğin deri bir iğne ile delinmeden evvel sterilize edilir. Cerrahi ve dişçilik araçları da kontaminasyon ve bakteriyel enfeksiyonu önlemek için sterilize edilir. Çamaşır suyu gibi dezenfektanlar, eşya yüzeylerinde bulunan bakteri ve diğer patojenleri öldürüp kontaminasyonu önlemek ve enfeksiyon riskini daha da azaltmak amacıyla kullanılır. Teknoloji ve endüstride önemi Bakteriler, çoğu zaman laktobasil türleri, maya ve küflerle beraber, fermante edilmiş gıdaların (peynir, turşu, soya sosu, sauerkraut, sirke, şarap ve yoğurt gibi) hazırlanmasında binlerce yıldır kullanılmaktadır. Bakterilerin çeşitli organik bileşikleri parçalayabilme yetenekleri dikkate değerdir ve atıkların işlenmesi ve değerlendirilmesinde (bioremediation) kullanılmıştır. Petroldeki hidrokarbonları sindirebilen bakteriler çoğu zaman petrol saçılmalarının temizlenmesinde kullanılır. 1989'da meydana gelen Exxon Valdez tanker kazasının ardından Prince William Sound kıyılarına gübre dökülerek bu doğal bakterilerin büyümesi teşvik edilmişti. Bu yöntem, çok fazla petrol kaplanmamış kıyılarda etkili olmuştu. Bakteriler ayrıca endüstriyel toksik atıkların değerlendirilmesinde de kullanılırlar. Kimya endüstrisinde, enantiyomerik olarak saf kimyasalların üretilmesinde (bunlar ilaç ve tarımsal kimyasalların hammadesidir) bakteriler önemli rol oynarlar. Bakteriler ayrıca biyolojik haşare kontrolünde haşare ilaçlarının yerine kullanılabilirler. Bunun en yaygın örneği, Gram pozitif bir toprak bakterisi olan Bacillus thuringiensisdir (BT olarak da adlandırılır). Bu bakterinin alt-türleri kelebeklere (Lepidoptera türlerine) özgül bir böcek öldürücü olarak kullanılır. Spesifik olmalarından dolayı bu böcek öldürücüler çevre dostu olarak kabul edilir; insanlara, yabani hayvanlara, polinasyon yapan ve diğer faydalı böceklere etkileri çok az veya hiçtir. Hızlı büyüme ve kolaylıkla manipüle edilebilmelerinden dolayı bakteriler moleküler biyoloji, genetik ve biyokimyada birer araç olarak kullanılırlar. Bakteri DNA'sında mutasyon yapıp bunun fenotipini inceleyerek bilimciler genlerin, enzimlerin ve metabolik patikaların işlevlerini belirleyebilmekte, sonra edindikleri bilgileri daha karmaşık canlılara uygulayabilmektedirler. Muazzam miktarda enzim kinetiği ve gen ifadesi verileri, canlıların matematiksel modellerinde kullanılarak hücrenin biyokimyasının anlanması amaçlanmaktadır. Çok çalışılmış bazı bakterilerde bu mümkündür, Escherichia coli metabolizmasının modelleri üretilmekte ve denenmektedir. Bakteri metabolizması ve genetiğinin bu seviyede anlaşılır olması sayesinde bakterilerin biyoteknoloji kullanılarak yeniden tasarımı mümkün olmakta, böylece onların tedavi amaçlı proteinleri (insülin, büyüme faktörleri veya antikorlar gibi) daha verimli sekilde üretmesi sağlanabilmektedir. Kaynak: bakteri.nedir.com/#ixzz2gQ80yt60

http://www.biyologlar.com/bakteri-nedir

Kalıtsal Değişiklikler Nelerdir ?

Her canlı varlığın öz niteliklerini belirleyen temel iki etken vardır: Kalıtsal yük ve çevre. Bu iki etkenin birbirine etkisi gelişmeye, büyümeye, çoğalma yeteneğine, bir başka deyişle her bireyin yaşamına bağlıdır.Kalıtsal yük, türden türe gerek sayı, gerekse tek başına görünüşü bakımından değişen, ama aynı türün bütün bireylerinde aynı yapıda olan kromozom yumağında kodlanmıştır. Kalıtsal değişiklikler, soydeğişimler ( = mutasyonlar) sonucu belirmiş olurlar ve iki büyük grupta sınıflandırılabilirler: Gen değişimleri ve kromozom değişimleri. Gen Değişimleri Gen değişimleri, kalıtsal içeriğin çok küçük bölgelerinde görülen değişikliklerdir. Bu nedenle mikroskopik incelemeyle saptanamazlar. Bu gruba giren değişiklikler, yenidoğan'ın bireysel, toplumsal, ruhsal ve fiziki yaşamında ağırlığı olan, birçok hastalığın ortaya çıkmasına neden olur. Bu hastalıklar ; 1. Hemofili: Kanın pıhtılaşma yetersizliği. 2. Talasemi: Alyuvarların oksijen iletiminin yetersizliği. 3. Duchenne tipi ilerlemiş miyodistrofi: İskelet kaslarının felci. Kromozom Değişimleri Bu gruba, yani kromozom değişimlerine, bir ya da daha fazla kromozomun yapısal ya da sayısal değişiklikleri girer. Kromozom değişimleri, bazı hücreler (kanda lenfositler, deri, kemik iliği gibi dokulardaki bazı hücreler) üzerinde yapılacak mikroskopik gözlemlerle saptanabilir.Günümüzde, gen değişiminin neden olduğu hastalıkların bazılarıyla , kromozom değişikliğine bağlı hastalıkların tümü, gebeliğin ikinci üç aylık devresinde biyokimyasal incelemeler ve hücre genetiği çalışmalarının sağladığı geliştirilmiş yöntemlerle tanılanabilmektedir. İnsan Kromozomları Kromozomlar her hücrenin çekirdeğinin özel bir oluşumudur ve DNA (Deoksiribonükleik asit) moleküllerini içerir. Bireyin, bütün özelliklerini düzenlerler. İnsan türünde, organizmanın bütün hücrelerinde (üreme ile görevlendirilen eşeysel hücreler dışında) bulunan kromozom sayısı 23 x 2= 46'dır. 23 çiftin biri cinsiyet farkını belirlediğinden ayrı olarak gösterilmiştir (22XY) Erkekte bu kromozom çifti hem biçim, hem de boyut bakımından birbirinden farklıdır ve XY olarak işaretlenir. Dişide ise bu kromozom çiftleri birbirine benzerler ve XX olarak işaretlenirler. Diğer çiftler 1 'den 22'ye kadar numaralanmışlardır. Her çift benzeşik iki kromozomla ( homolog ) gösterilmişlerdir. Değişik çiftler de aralarında yapı ve büyüklük bakımından farklılaşırlar.Günümüzde laboratuvar yöntemleri, yalnızca kromozomların toplam sayısındaki değişiklikleri değil, aynı zamanda yapılarındaki değişik olasılıkları da etkin biçimde saptamaya izin verir. Hücre Bölünmesi Kromozomlar mikroskopta yalnızca, hücre iki yavru hücre oluşturmak için bölündüğü sırada gözlenebilirler. Çünkü bu evrede DNA yoğunlaşmış ve büklümleşmiş durumdadır.İnsan hücrelerinin büyük bölümü, bir dizi düzeneği aşarak, ana hücrenin özdeş kromozom içeriğini, yavru hücrelere aktarmak amacı ile bölünür.İnsanda ve genel olarak bütün yüksek canlılarda türün çoğalmasına izin veren bazı hücreler bulunur. Bu hücreler özel biçimde gelişmiş eşeysel hücrelerdir; bunların olgunlaşmasından eşeygözeler ( = gametler) oluşur. Erkek ve dişi gametlerin birleşmesiyle de yeni bir bireyin doğumuna yol açacak bir etkinlik başlar.Gametler daha sonra "mayoz" denilen özel bir hücre bölünmesine uğrarlar. Bu etkinlikte ana hücrenin kromozom yükü ikiye bölünür ve her biri 23 ana çiftin yalnızca bir kromozomunu içeren iki yavru hücre oluşur. Bunlar, sadece 23 kromozomlu bir yumağa sahiptir. Dişide bu etkinliğin son ürünü yumurta hücresi, erkekte sperm hücresidir.Döllenmeyle, yani yumurta hücresinin sperm hücresi ile birleşmesiyle 23'ü anneden, 23'ü de babadan gelen, 46 kromozomlu kalıtsal yük yeniden bütünleşir. Bu yeni hücre "zigot" adını alır. Zigotun oluşumuyla, önce öndölütü, sonra embriyoyu ve sonuçta yeni doğacak canlıyı oluşturacak olan düzenekler sırasıyla işlemeye başlar. TÜRKİYE’Yİ ETKİLEYEN KALITSAL HASTALIK AKDENİZ ANEMİSİ Eski yunancada "Thalas" kelimesi deniz, "Emia" kelimesi anemi anlamına, "Thalasemia" ise Akdeniz anemisi anlamına gelir. Akdeniz bölgesinde ve göçlerle yayılarak dünyanın bir çok ülkesinde görülen kalıtsal kan hastalığıdır. D.S.Ö. nün verilerine göre, tüm dünyada 266 milyon hemoglobinopati taşıyıcısının bulunduğu vurgulanmaktadır. Talasemi, Türkiyede'de en önemli sağlık problemlerinden birisidir. Talasemi için taşıyıcı sıklığı, yaklaşık olarak % 2,1 (1.300.000 taşıyıcı birey) ve yaklaşık olarak 4000 hasta bireyin bulunduğu bilinmektedir. (Harita 2). Yalnızca Antalya' da taşıyıcı sayısı 200.000 civarında (sıklık %12), hasta sayısı 600 civarındadır. Antalya’daki hastaların dağlımı Harita 3’de görülmektedir. TALASEMİNİN FORMLARI: 1. TALASEMİ TRAİT: TALASEMİ TAŞIYICILIĞI: Bu bireyler, tamamen sağlıklıdır. Eğer her iki ebeveyn de talasemi taşıyıcı iseler, çocuklarına geçirdikleri talasemi geni ile talasemi hastalığına neden olabilirler. Talasemi taşıyıcılarına talasemi minör denir. 2. TALASEMİ İNTERMEDİA: Taşıyıcılar gibi tamamen sağlıklı olmayan, hastalık belirtileri genellikle ileri yaşlarda başlayan, kan gereksinimleri daha az olan hastalığın hafif formudur. 3. TALASEMİ MAJOR: Akdeniz anemisi olarakta bilinir. Erken çocuklukta başlayan, çok ciddi bir kan hastalığıdır. Bu çocuklar kendileri için yeterli hemoglobini yeterince yapamazlar. Bu tür kalıtsal hastalıklardan korunmada en etkili yöntemler; 1. Toplum eğitimi, 2. Taşıyıcıların taranması, 3. Genetik danışma, 4. Doğum öncesi tanı yöntemleridir. İki taşıyıcının evlenmesi halinde ise hamileliğin 6-22. haftasında doğum öncesi tanı yapılabilir. Böylece hasta bir çocuğun doğması önlenir. Doğum öncesi tanı ile sağlıklı olacağı belirlenen bebeğin doğmasına izin verilebilir. KROMOZOMLARIN GİZLEDİKLERİ GENOME PROJESİ (EN KÖTÜSÜ 21 NCİ KROMOZOM) Her insan hücresinde yaşamın yapı taşları kabul edilen 23 çift kromozom bulunuyor. Gen bilgilerini taşıyan ip biçimindeki kromozomlar uç uca eklenseydi 1.5 metrelik bir kordon oluştururdu. Kromozomların bozuk oluşumu sonucu, insanın yaşamında değişik dönemlerde, çeşitli hastalıklar ortaya çıkıyor. Bilim adamları, hangi kromozomun bozuk olduğunda hangi hastalığa neden olduğunu biliyorlar. 1.KROMOZOM Alzheimer, ağır işitme 2.KROMOZOM Belleğin oluşumuyla ilgili bilgiler 3.KROMOZOM Akciğer kanseri 4.KROMOZOM Çeşitli kalıtımsal hastalıklar 5.KROMOZOM Akne, saç dökülmesi 6.KROMOZOM Diyabet, epilepsi 7.KROMOZOM Kronik akciğer iltihabı, şişmanlık 8.KROMOZOM Erken yaşlanma 9.KROMOZOM Deri kanseri 10.KROMOZOM Bilinmiyor 11.KROMOZOM Diyabet 12.KROMOZOM Metabolizma hastalıkları 13.KROMOZOM Göğüs kanseri, retina kanseri 14.KROMOZOM Alzheimer 15.KROMOZOM Doğuştan beyin özrü 16.KROMOZOM Crohn hastalığı 17.KROMOZOM Göğüs kanseri 18.KROMOZOM Pankreas kanseri 19.KROMOZOM Bilinmiyor 20.KROMOZOM Bilinmiyor 21.KROMOZOM Down sendromu, Alzheimer, Parkinson, lösemi, depresyonlar 22.KROMOZOM Yeni keşfedildi, kemik iliğinin olumuşumu düzenliyor 23.KROMOZOM (Y) Erkeklik cinsiyetini belirliyor, cinsel organların gelişimini düzenliyor 23.KROMOZOM (X) İki adet X kromozomu taşıyan bebek, kız oluyor. Bu kromozomdaki dejenerasyon kas erimesi, cücelik ve gece körlüğüne yol açıyor. Erkek genleri daha riskli Genome Projesi'nde elde edilen önemli bulgulardan biri de erkek genlerindeki kalıtımsal mutasyonların kadınlara göre iki kat fazla olduğu. Yani erkeklerdeki bir genetik bozukluğun ileriki kuşaklara geçme riski kadınların yarattığı riskin iki katı. Bu durum önemli bir paradoks yaratıyor: Evrimsel değişim sürecinde erkeklerin daha etkin bir faktör olduğu ileri sürülüyor, ancak aynı zamanda erkekler hastalıkların yayılması açısından da daha etkin bir faktör olarak ortaya çıkıyorlar. İnsan genlerinde meydana gelen mutasyonların, diyabetten astıma, kanserden kalp krizine kadar uzanan geniş bir yelpazede tam 1500 hastalığa yol açtığı belirlendi. Yaklaşık 30 kadar gen bu hastalıklara yol açıyor. Genetik şifrenin çözülmesiyle birlikte bu mutasyonların neden hastalıkla sonuçlandığı şimdi daha iyi anlaşılıyor. Bunun sonucunda da devrim niteliğindeki şu yeni tedavi yöntemlerinin geliştirilmesi bekleniyor: -Kişinin genetik yapısına özel imal edilen ilaçlar. -Sadece hastalıklı bölgeyi hedef alan, bedenin geri kalan kısmını etkilemeyen ilaçlar. -Bir insanın hangi hastalıklara yakalanabileceği anlaşılacak ve doğumdan önce müdahaleyle önlenecek. Bu müdahale kanser ve kalp hastalıkları için de geçerli. Çünkü kanser büyük ölçüde genlerin eseri. 30 bin genimiz var İnsan vücudunda 60 bin ila 100 bin gen bulunduğunu tahmin eden araştırmacılar, son araştırmalarla bu sayının 30-40 bin arasında olduğunu gördüler. Bilim adamları, insanı meyve sineği ve fareden farklı kılan genlerin sayısının fazla bir fark oluşturmadığını saptarken, bunu yüzyılın tıp alanındaki sürprizi olarak nitelendirdiler. İnsan genlerininin sıralanması ile ilgili bilgiler ışığında, bilim adamlarının insan biyolojisi ile ilgili yeni bir başlangıç oluşturduğu ve yeni tedavi uygulamalarınının, devrim yaratacak ilaçlarla gündeme geleceği bildirildi. Şimdiye kadar insan ile ilgili olarak düzinelerle bilinmeyene cevap oluşturan araştırmalar sonucunda, hastalıkların daha az yan etkilerle tedavisinin mümkün kılınacağı açıklandı. Araştırmalarda, genlerin tek başına durumlarının yanı sıra genler arasındaki ilişkilerin de anlaşılabildiği, insanlar arasındaki farklılıkların cevabının, milyonlarda DNA kodlarındaki farklı varyasyonlar ile ortaya çıktığı kaydedildi. DNA kodlarının her bir varyasyonunun kromozomlar için bir belirleyici olduğu ve bu sayede, genlerin taşıdığı mikroskopik yapının incelenebileceği belirtildi. Bilgisayar yardımı ile hastalıklı genlere benzeyen bilinmeyen genlerin de hızlı bir şekilde analiz edilebileceği, bu şekilde DNA'ların tek başına araştırılmasına gerek kalmayacağı bildiriliyor. Böylece DNA'ların analizine harcanan yıllar sürecek araştırmaların kısa bir zamana sığdırılabildiği kaydediliyor. İnsanın biyolojik yapısının sırlarını ortaya koyan gen sıralamasının öncelikle kalp hastalıkları, kanser, sinir sistemi bozuklukları, enfeksiyonlar ve çevresel etkenlerin yol açtığı hastalıklar ile mücadelede kullanılacağına dikkat çeken bilim adamları, önümüzdeki yıllarda bu konularda, insanlara büyük müjdeler verilebileceğini ve insan ömrünün giderek uzayabileceğini ileri sürüyor. Gen haritası ile ilgili yapılan son araştırmalar, bugüne kadar insanın biyolojik yapısı ile ilgili olarak tıp dünyasının çok az bilgilere sahip olduğunu da ortaya koymuş oldu.  

http://www.biyologlar.com/kalitsal-degisiklikler-nelerdir-

Klonlama

Klonlamanın özellikle de insan klonlama konusunun etik boyutu kamuoyunca, günlük yaşamda kültürün, temel bilimsel birikimin, tarih, siyaset ve toplumbilimin en yaygın ve temel kavramlarıyla tartışılabilir nitelik kazanmıştır. Nükleer enerji kullanımı, hormon destekli tarım, ozon tabakasına zarar veren gazların üretimi gibi, farklı toplum kesimlerince kolayca anlaşılabilir ve tartışılabilir kabul edilen klonlama, şimdiden kamuoyunun gündeminde yerini aldı. Kamuoyunun, bilimsel ve teknolojik gelişmelerin uygulanıp uygulanmaması konusunda birtakım ahlaki gerekçelerle ne şekilde ve ne ölçüde yaptırım uygulayabileceği tartışmalı olsa da, şu anda kamuoyunun isteksizliği klonlama çalışmalarının daha ileri aşamalara taşınmasına en güçlü engel olarak gösteriliyor. Oysa, "tüp bebek" diye bilinen in vitro fertilizasyonun, başlangıçtaki şiddetli tepkilerden sonra kolayca kabullenilmesi, işin içine "çocuk sahibi olma isteği ve hakkı" karıştığı durumlarda (aynı argüman klonlama konusunda da sıkça kullanılıyor) toplumun ne kadar kolay ikna olabileceğinin bir göstergesi. Bilimkurgu romanları ve filmlerinde kaba hatlarıyla çokça tartışılmış olan klonlama konusunda halihazırda belli belirsiz bir kamuoyu "oluşturulmuş" durumda. Şu anda sürmekte olan tartışmaların bilinen yanlışlara yeniden düşmemesi için birkaç temel olguya açıklık getirmek gerekiyor. Olası yanılgıların en sık rastlananı, klonlanmış bir canlının, (tartışmalara sıkça insan da dahil ediliyor) genin alındığı canlının fizyolojik özellikleri bir yana, kişilik özellikleri bakımından özdeşi olacağı kanısı. Kazanılmış özelliklerin kalıtsal yolla taşınabileceği yanılgısı, Philosophie Zooloique (Zoolojinin Felsefesi) adlı ünlü yapıtı 1809 yılında yayınlanmış olan, Fransız zoolog Jean Baptiste Lamarck’a dayanıyor. Lamarck’ın görüşlerinin takipçileri, insanların gözlemlenebilir kişilik özelliklerinin önemli ölçüde kalıtsal nitelik taşıdığını savlayarak, çevresel koşulların gelişim üzerindeki etkilerini neredeyse tamamen yadsıyorlardı. Oysa, genetik, evrim, psikoloji gibi alanların ortaya koyduğu çağdaş ölçütler, kazanılmış karakterlerin kalıtsal nitelik gösteremeyeceğini ortaya koyarak, kişilik oluşumunda çevresel etmenlerin güçlü bir paya sahip olduğunu kanıtlamıştır. Bu bağlamda, basında da yankı bulan "koyunlar zaten birbirlerine benzerler" esprisinin aslında ciddi bilimsel doğrulara işaret ettiğinin altını çizmek gerekiyor. Klonlanmış bir koyunun, genetik annesinin genetik ikizi olduğu ölçülerek gösterilebilir bir gerçektir. Oysa, gözlemlenebilir kişilik özellikleri oldukça kısıtlı olan koyunların birbirlerine benzemeleri kaçınılmazdır. Çok daha karmaşık bir organizma olan insanoğlu, sayısız gözlemlenebilir kişilik özelliği sayesinde, genetik ikizinden kolayca ayırt edilebilir. Tüm bunların ötesinde, klonlanmış bir insanın sadece kişilik bakımından değil, fizyolojik ve bedensel özellikleri bakımından da, genetik ikizinden farklı olacağını peşinen kabullenmek gerekiyor. Bir bebeğin biçimsel özelliklerinin ana rahminde geçirdiği gelişim süreci içerisinde tümüyle DNA’sı tarafından belirlendiği görüşü yaygın bir yanılgı. DNA molekülü, insan geometrisine dair tüm bilgileri en sadeleşmiş biçimiyle bile bütünüyle kapsayamayacak kadar küçük. Çoğu biçimsel özellik, akışkan dinamiği, organik kimya gibi alanlardaki temel evrensel yasaların kontrolünde meydana geliyor. Bu süreçte de, her zaman için rastlantı ve farklılaşmalara yeterince yer var. Bir genetik ikiz, kuramsal açıdan, eşine en fazla eş yumurta ikizlerinin birbirlerine benzedikleri kadar benzeyebilir. Uygulamada ise, benzerlik derecesi çok daha düşük olacaktır; aynı rahimde aynı anda gelişmediği, aynı fiziksel ve kültürel ortamda doğup büyüyemediği için... İşin bu boyutunu da göz önünde bulunduran Aldoux Huxley, romanında, Bokanovski Süreci’yle çoğaltılmış bebekleri, yetiştirme çiftliklerinde psikolojik koşullandırmaya tutma gereği duymuştu. Benzer biçimde, 1976’da yazdığı The Boys from Brazil romanında Adolf Hitler’den klonlanan genç Hitler’lerin öyküsünü kurgulayan Ira Levin, klonları, Adolf Hitler’in kişiliğinin geliştiği tüm olaylar zincirinin benzerine tabi tutma gereğini hissetmişti. Tüm bu "hal çarelerine" rağmen, kopya insanın genetik annesinden çoğu yönden farklı olması kaçınılmaz görünüyor. Diğer tüm koşullar denk olsa bile, kopya birey, aynı zamanda ikizi olan bir anneye sahip olmasından psikolojik bakımdan etkilenecektir. Sağduyumuz bize Hitler’i genlerinin değil, Weimar Cumhuriyeti sonrası sosyo-ekonomik koşulların ve genç Adolf’un kıstırıldığı maddi ve manevi bunalımların yarattığını öğretiyor. Tüm bunların ışığında, klonlama konusundaki popüler tartışmaları, tıkanıp kaldıkları, "beklenmedik bir ikize sahip olma" fobisinden kurtarılıp, daha gerçekçi zeminlere çekilmesi gerekiyor. Gen havuzunun (belli bir topluluktaki genetik çeşitlilik) daralması, hayvancılığın geleneksel yapısından koparılıp biyoteknoloji şirketlerinin güdümüne girmesi, yol açılabilecek genetik bozuklukların kontrolden çıkması, bu alanda çalışan bazı şirketlerin (söz gelimi PPL’in) tüm tekel karşıtı yasal önlemleri delerek ciddi ekonomik dengesizliklere yol açması gibi akla gelebilecek sayısız somut etik sorununun tartışılması gerekiyor. Yoksa, akademik organlardan dini cemaatlere kadar sayısız grup gelişmeleri "kitaba uydurma" çabasıyla, kısır tartışmalara girebilir. Örneğin, Budist bir araştirmaci, Dolly’nin eski yaşaminda ne gibi bir kabahat işleyip de bu yaşama klonlanmiş olarak gelmeyi hak ettigi üzerine kafa yoruyormuş. Aslında biyoteknolojik tekelcilik tehdidine, Cesur Yeni Dünya’da Aldous Huxley de işaret etmişti: "İç ve Dış Salgı Tröstü alanından hormon ve sütleriyle Fernham Royal’daki büyük fabrikaya hammadde sağlayan şu binlerce davarın böğürtüsü duyuluyordu..." İnsanoğlunun temel kaygıları, şimdilik bazı temel koşullarda klonlamayla çelişiyor gibi görülüyor: Bir çiftçi düşünün ki, kendisi için tüm evreni ifade eden kasabasında herkese hayranlıktan parmaklarını ısırtan bir danaya sahip olsun. Bu danayı klonlayıp tüm sürüsünü özdeş yapmayı ister miydi? Büyük olasılıkla biraz düşündükten sonra bundan vazgeçerdi. Danasının biricik oluşu ve genetik çeşitliliği sayesinde bu danaya yaşam veren sürüsünün daha da güzel bir dana doğurması olasılığı çok daha değerli. Ömrü boyunca aynı dananın ikizlerine sahip olmayı kabullenmiş bir çiftçinin komşusu her an elinde daha güzel bir danayı ipinden tutarak getirebilir.

http://www.biyologlar.com/klonlama

İnsan ömrü giderek uzayacak

Bilim adamları, insanın biyolojik yapısının sırlarını ortaya koyan gen sıralamasının kalp hastalıkları, kanser, sinir sistemi bozuklukları, enfeksiyonlar ve çevresel etkenlerin yol açtığı hastalıklar ile mücadelede kullanılacağına dikkat çekiyor. İnsan genlerininin sıralanması ile ilgili bilgiler ışığında, bilim adamlarının insan biyolojisi ile ilgili yeni bir başlangıç oluşturduğu ve yeni tedavi uygulamalarınının, devrim yaratacak ilaçlarla gündeme geleceği bildirildi. Şimdiye kadar insan ile ilgili olarak düzinelerle Dna kodlarının her bir varyasyonunun kromozomlar için bir belirleyici olduğu ve bu sayede, genlerin taşıdığı mikroskopik yapının incelenebileceği belirtildi. Bilgisayarın genlerin araştırılması konusunda bir hız kazandırdığına değinen bilim adamları, insan vücudunda incelenecek Dna’ların, bilgisayar ortamında çabuk araştırılarak sonuçlandırılabildiğini kaydediyor. Bilgisayar yardımı ile hastalıklı genlere benzeyen bilinmeyen genlerin de hızlı bir şekilde analiz edilebileceği, bu şekilde Dna’ların tek başına araştırılmasına gerek kalmayacağı bildiriliyor. Böylece Dna’ların analizine harcanan yıllar sürecek araştırmaların kısa bir zamana sığdırılabildiği kaydediliyor. İnsanın biyolojik yapısının sırlarını ortaya koyan gen sıralamasının öncelikle kalp hastalıkları, kanser, sinir sistemi bozuklukları, enfeksiyonlar ve çevresel etkenlerin yol açtığı hastalıklar ile mücadelede kullanılacağına dikkat çeken bilim adamları, önümüzdeki yıllarda bu konularda, insanlara büyük müjdeler verilebileceğini ve insan ömrünün giderek uzayabileceğini ileri sürüyor. Gen haritası ile ilgili yapılan son araştırmalar, bugüne kadar insanın biyolojik yapısı ile ilgili olarak tıp dünyasının çok az bilgilere sahip olduğunu da ortaya koymuş oldu. İktidarsızlığa karşı molekül Amerikalı bilim adamlarının bulduğu Y-27632 adlı molekül, penisin dokusunda kan basıncını artırıyor ve ereksiyonu sağlıyor. Etkileri Viagra’ya çok benziyor, ancak Viagra gibi bir ilaç değil. İktidarsızlığın yeni çaresi, Amerikalı bilim adamlarının bulduğu bir molekül. Araştırmanın sonuçları Nature Medicine adlı derginin son sayısında yayınlandı. Y-27632 adı verilen molekül labortatuvarda kobaylar üzerinde başarıyla denendi. Molekül kobaya enjekte edildiğinde penisin dokusunda kan basıncını artırıyor ve ereksiyonu sağlıyor. Michigan Üniversitesi araştırmacılarına göre yeni molekül Viagra’nın etki yaptığından farklı tipte bir enzimi bloke ediyor ve bugüne kadar etkili bir çözümün bulunmadığı iktidarsızlık vakalarının tedavisinde yeni ufuklar açıyor.

http://www.biyologlar.com/insan-omru-giderek-uzayacak

Nükleotid Eksizyon Tamir Genleri

Memelilerde eksizyon tamir yolunun moleküler mekanizmasını araştırmak amacıyla NER hasarı olan iki mutant hücre hattı kullanılmıştır: Laboratuvarda oluşturulan UV’ye duyarlı hamster hücre hatları ve doğal insan mutantları XP, CS ve TTD’nin hücre hatları. Hücre füzyon çalışmaları sonucunda XP’da XPA, XPB, XPC, XPD, XPE, XPF ve XPG olmak üzere 7; CS’de iki (CSA ve CSB); TTD’de ise üç (XPB, XPD ve TTDA) komplementasyon grubu tanımlanmıştır (6). Bu hasta gruplarının hücre hatlarına ek olarak, mutant hamster hücre hatları arasında 11 komplementasyon grubu tanımlanmıştır (7). Mutant hamster hücrelerinin insan genomik DNA ile transfeksiyonu sonucunda insan DNA’sı ile hamster hücrelerinin mutant fenotipi düzeltilmiş ve ERCC (excision repair cross complementing) genleri tanımlanmıştır. Komplementasyon analizleri ERCC2’nin XPD, ERCC3’ün XPB, ERCC5’in XPG ve ERCC6’nın CSB geni ile benzer olduğunu ortaya çıkarmıştır (8). Genel genom tamir yolunda ve transkripsiyona kenetlenmiş tamir yolunda görev alan bu genlerin özellikleri Tablo I’de görülmektedir (9). 2.2.2. Nükleotid eksizyon tamir mekanizması Son yıllarda yapılan araştırmalar, transkribe olmayan DNA zincirindeki DNA adüktlerinin XPC/hHR23B kompleksi ile tanındığını ortaya koymuştur (Şekil 2) (1). XPC/hHR23B kompleksinin hasara bağlanması DNA yapısının kısmen açılmasına neden olmakta ve tamir mekanizmasında görev alan diğer proteinlerin bu bölgeye toplanmasını ve bağlanmasını sağlamaktadır. DNA zincirindeki bu açılma, Transkripsiyon faktörü II H (TFIIH)’nin, XPA ve replikasyon proteini A (RPA)’nın hasarlı bölgeye girerek açık DNA kompleksini meydana getirmesine neden olmaktadır. Transkripsiyonda ve DNA tamirinde görev alan TFIIH 9 altbiriminden meydana gelmektedir ve altbirimlerden XPB 3′→5′ ve XPD 5′→3′ helikaz aktivitelerine sahiptir. Helikaz aktiviteleri nedeniyle, TFIIH DNA zincirinin 20 - 30 nükleotidlik bir bölgenin açılmasını sağlar (1, 10). Daha sonra, hasarlı zincir üzerinde sırayla kesim olayı gerçekleşir. XPG proteini 3′ bölgesinde, hasardan 2-8 nükleotid uzaklıktan keser. XPF/ERCC1 ise 5′ bölgesinde hasardan 15 - 24 nükleotid uzaklıktan keser. Hasarlı bölgeyi içeren 24 - 32 nükleotidlik oligonükleotid serbest bırakılır. Serbest bırakılan bu oligonükleotid, hasarı tanıyan proteinlerden XPC/hHR23B proteinine bağlı olarak ortamdan uzaklaştırılır. DNA zincirindeki boşluk, DNA replikasyon faktörü C (RFC), prolifere edici hücre nükleer antijeni (PCNA) ve DNA polimerazlar δ ve ε ile doldurulur. PCNA, RFC ile birlikte DNA kalıbı üzerine DNA polimerazlar δ and ε’un yüklenmesini sağlar. NER mekanizmasındaki son basamak, PCNA proteininin ayrılması ve ligaz I enzimi ile yeni sentezlenen DNA zincirinin ligasyonudur (1,10,11). 2.1.3. Transkripsiyona kenetlenmiş tamir mekanizması İnsan tamir genlerinin tanımlanması ve klonlanmasıyla DNA tamiri ve transkripsiyon arasındaki moleküler ilişki açıklık kazanmıştır. Yapılan araştırmalar, genlerin transkribe olan zincirinin transkribe olmayan zincirden daha hızlı bir şekilde NER yoluyla tamir edildiğini ortaya koymuştur. Transkripsiyon sırasında RNA polimeraz II DNA zincirinde hasarla karşılaştığında RNA sentezi durur ve TCR yolu bu hasarın tamirinde rol oynar (4). TCR mekanizmasında, GGR yolundan farklı olarak hasarın tanınma basamağında XPC/hHR23B kompleksi yerine CSB proteini rol oynar. CSB proteini, RNA polimeraz II’yi ubikitinleyerek parçalanmasını ve böylece TFIIH, XPA ve RPA proteinlerinin hasarlı bölgeye ulaşmasını sağlar. TCR yolundaki diğer basamaklar GGR yolundaki basamaklar ile aynıdır

http://www.biyologlar.com/nukleotid-eksizyon-tamir-genleri

Biyoteknolojinin sürdürülebilir tarım üzerine olası olumsuz etkileri ve türler arası gen alışverişi

Biyoteknoloji alanında yapılan çalışmalar sonucu farklı kaynaklardan organizmalar arasında gen alışverişi mümkün hale gelmiştir. Bu gelişme sonucu hızla artan dünya nüfusunun gıda gereksinimini karşılamak amacıyla geliştirildiği ifade edilen genetik yapısı değiştirilmiş organizmaların (GDO), uzun dönemde biyolojik çeşitliliği olumsuz yönde etkilemek gibi tehlikeleri de vardır. Burada en büyük tehdit doğal evrimleşme sürecinin doğal olmayan yollardan kazanılan genler ile istenmeyen şekilde değişmesi olasılığıdır. Canlıların evrimleşmeleri milyonlarca yıldır devam doğal bir süreçtir. Evrimleşme süreci boyunca canlı türlerinde mikro mutasyonlar ve seyrek de olsa daha büyük doğal mutasyonlar ortaya çıkmaktadır. Bunların sonucu oluşan genotiplerden değişen çevre ve stres koşullarına adapte olabilenleri neslini devam ettirmektedir. Nesiller boyunca ortaya çıkan bu değişimler sonucu, çevre ve stres koşullarına daha iyi uyum sağlayacak fenotipik değişiklikler de oluşmaktadır. Örneğin aynı cinse ait farklı türlerin soğuk bölgelerde yetişenleri nispeten daha kısa boylu ve daha yatık olmaktadır. Benzer şekilde herhangi bir zararlının yoğun olduğu yöreler içinde meydana gelen doğal evrimleşme süreci boyunca bitkiler, hücre duvarını kalınlaştırmak, tüylenmek, sap kısmında mumsu tabaka oluşturmak gibi doğal savunma mekanizmaları geliştirmektedir. Bu arada hastalıklara karşı dayanıklı genotipler de ortaya çıkmaktadır. Buna karşılık zararlılar da doğal evrimleşme süreçleri içinde kendilerini yenilemekte ve bitkilerin geliştirdikleri doğal dayanıklılık mekanizmalarının üstesinden gelecek yönde gelişimlerini sürdürmektedir. Hastalık etmenleri de oluşan dayanıklılık genlerini aşacak yönde yeni ırklar geliştirmektedir. Bu nedenle belirli bir hastalığa karşı dayanıklılığı için tescil edilen bazı kültür çeşitleri, bazen birkaç yıl gibi kısa süre içinde, aynı hastalığın yeni gelişen ırkları tarafından kırılmaktadır. Genetik yapısı değiştirilmiş organizmalardan kültür çeşitlerine kazandırılan dayanıklılık genleri, alışılmış dayanıklılık mekanizmaları dışında bazı özelliklere sahiptir. Bunlardan özellikle toksin üreten bakteriyel kökenli dayanıklılık genlerinin aktarıldığı çeşitlerin kullanılması durumunda ekolojik dengeye, dolayısıyla da bitki genetik kaynaklarına olabilecek olumsuz etkileri dikkatle izlenmeli, bu tip çalışmalarda bitkisel kökenli genlere öncelik verilmelidir. Doğada türler arasında gen alışverişi olmaktadır. Gen alıp vermenin ötesinde bazı türlerin ortaya çıkması, türler arası genom alışverişi sonucu olmuştur. Canlıların evrim süreci bu gibi örneklerle doludur. Genetik yapısı değiştirilmiş kültür çeşitlerinden yabani akrabalarına gen akışı olanaklıdır. Milyonlarca yıldır süren evrimleşme işlemi, GDO’lardan doğal bitkilere istenmeyen genlerin bulaşması sonucu 40-50 yıl gibi biyoçeşitliliğin ayak uyduramayacağı ölçüde kısa bir zaman dilimi içinde yön değiştirebilir. Evrim süreci mutasyon, melezleme, adaptasyon, seleksiyon vb bir dizi işlemleri içermektedir. Evrimleşme olmadan hiçbir canlı türü değişen çevre koşullarına uyum sağlayamaz. Bunu başaramayanlar geçmiş dönemlerde yok olmuşlardır. GDO’lar evrimleşme sürecini istenmeyen yönde değiştirme riskini taşıdıklarından, biyolojik çeşitlilik ve sürdürülebilir tarım için potansiyel bir tehdit durumundadır. Özellikle gen ve çeşitlilik merkezi durumunda olduğumuz türler için bu durum daha da önemlidir. Doğa, türler arasında meydana gelen gen alışverişi sonucu oluşan melez bitkiler ve hatta yeni türler ile doludur. Evrimleşme sürecine doğal dayanıklılık mekanizmaları dışında kazanılmış dayanıklılık genlerinin, katılması aşamasında bu konu büyük bir önem kazanmaktadır. Doğal flora (ve fauna) elemanlarının dışarıdan alacakları transgenler ile sürdürecekleri evrimin nereye varacağı büyük bir soru işaretidir. Sonuçta doğada baş edilmesi şimdikinden daha güç sorunların ve organizmaların ortaya çıkması olasıdır. Türler arası melezleme bakımından ülkemiz açısından bazı familya ve bitki grupları öne çıkmaktadır. Bunlardan buğdaygiller (Gramineae) familyasına dahil olan buğdayın evrim süreci türler arası gen alışverişine örnekler ile doludur. Bilindiği gibi günümüzde kültürü yapılan tetraploid buğday grubunun; yabani akrabalarından Aegilops speltoides ile Triticum boeoticum türlerinin melezlenmesi sonucu ortaya çıkan Triticum dicoccoides türünün doğal mutasyona uğraması ile önce Triticum dicoccum türüne, daha sonra da kültürü yapılan Triticum durum türüne dönüşmesiyle oluşmuştur. Benzer şekilde hekzaploid olan ekmeklik buğday (Triticum aestivum) da, Triticum dicoccoides türü ile Aegliops tauschii türlerinin doğal melezidir. Buğdayın evriminde diploid yabani akrabaları dışında kalan tüm tetraploid ve hekzaploid kültür çeşitleri ve yabani akrabaları, türler arası doğal melezlemeler sonucu ortaya çıkmış yapay türlerdir. Türler arası melezlemeler sonucu oluşan yeni türler, gen alışverişinden daha fazlası olan genom alışverişine örnektir. Doğanın dikkatlice incelenmesi sonucu buğdayın ana vatanı olduğunu söyleyebileceğimiz Anadolu’nun muhtelif yörelerinde Aegilops columnaris, Ae. biuncialis, Ae. triuncialis ve Ae. cylindrica türlerinin steril melezlerine sıkça rastlanmaktadır. Burada sıralanan buğday yabani akrabalarından Ae. columnaris türü Ae. umbellulata X Ae. comosa türlerinin; Ae. biuncialis türü Ae. umbellulata X Ae. comosa türlerinin; Ae. triuncialis türü Ae. umbellulata X Ae. caudata türlerinin; Ae. cylindrica türü de Ae. caudata X Ae. tauschii türlerinin doğal melezidir. Geçmişte türler arası genom alışverişinin sonucu ortaya çıkan bu türlerin, başka türlerden toz alarak oluşturdukları melezlerin varlığı, doğal evrimleşme sürecinin bir parçası olarak kabul edilebilir. Bu da sözü edilen türlerin, transgenik bitkilerden gen almalarının mümkün olduğunun göstergesidir. Ekmeklik buğday ile yabani akrabası Aegilops cylindrica arasında gen akışı olduğuna ilişkin birçok bildirişler vardır (Morrison, 2002; Wang, 2002; Zemetra ve ark., 2002; Stewart ve ark., 2003). Buğdaygiller familyası içinde türler arası melezlemeye başka cinslere ait örnekler de verilebilir. Türkiye’de doğal olarak bulunan Agropyron, Elymus, Festuca, Lolium, Hordeum, Triticum ve birçok buğdaygil cinslerinin genomlarında 7 kromozom olduğu bilinmektedir. Ayrıca bu türlerin kendi aralarında doğal ve yapay melezlerinin olduğunu ortaya koyan çok sayıda literatür vardır. Bunlardan Fedak (1984) arpa (Hordeum vulgare) ile mavi ayrık (Agropyron intermedium) arasında % 3.9’a varan oranlarda melez bitkiler oluşturulabildiğini; Belanger ve ark. (2003) tavuz kuyruğu (Agrostis) türleri arasında melezlenmenin olduğunu; Ellstrand (2003) Kuşyemi (Seteria) türleri arasında % 0.50 oranında, gökdarı (Pennisetum) türleri arasında % 39’a varan oranlarda melezlemenin olduğunu; bu oranın Sorghum bicolor ve Sorghum halepense türleri arasında % 100’e kadar ulaştığını bildirmektedir. Quist ve Chapela (2001) mısır bitkisinin ana vatanı olduğu bilinen Meksika’da transgenik kültür çeşitlerinden geleneksel çiftçi çeşitlerine transgenik DNA geçtiği bildirilmiştir. Bu bilgi üzerine Meksika Hükümeti konunun araştırılması için bir ekip görevlendirmiş ve yapılan çalışma sonucu “cry1A” transgenin Oaxaca Eyaletinde yetiştirilmekte olan mısır çiftçi çeşitlerinde yaygın olarak bulunduğu, ancak incelenen örneklerde “cry9C” transgenine henüz rastlanmadığı rapor edilmiştir (Morales, 2002). Buğdaygil familyası dışında ülkemiz açısında risk oluşturan bir başka familya da lahanagiller (Brassicaceae) olmaktadır. Bilindiği gibi bu familyaya ait birçok türün yumrusu, sapı, yaprakları, çiçekleri ve tohumları insan gıdası olarak veya başka amaçlarla kullanılmaktadır. Ayrıca doğal bitki örtüsünde bulunan birçok Brassicaceae türleri süs ve örtü bitkisi olarak (Alyssum saxatile, Brassica oleracea, Cardaria draba, Crambe orientalis, Iberis saxatilis, Isatis glauca, Lobularia maritima, Matthiola incana) (Yücel, 2002), tıbbi amaçlarla (Capsella bursa-pastoris) veya boya bitkisi olarak boya bitkisi olarak (Isatis tinctoria) da kullanılmaktadır. Brassicaceae türleri arasında gen alışverişinin çok yaygın olduğuna ilişkin çok sayıda literatür bildirişleri vardır. Burada üzerinde durulması gereken konu, 2004 yılı itibarıyla dünyada 4.3 milyon hektar ekim alanı ile soya, mısır ve pamuk ardından dördüncü sırayı alan transgenik kanoladan, yabani akrabalarına olası bir gen akışıdır. Elsstrand (2003), Raphanus sativus bitkisinden aynı adı taşıyan yabani akrabasına % 100 oranında gen akışı olabileceğini bildirmektedir. Dünya’da son zamanlarda “biyoyakıt” olarak adlandırılan enerji kaynaklarına yöneliş olmaktadır. Biyoyakıtlar bitki orijinli yağlar, kızartma yağları, ürün artıkları veya odun gibi maddelerden üretilebilmektedir. Avrupa Birliği (AB) ülkelerinde geleceğe dönük biyoyakıt kullanım hedefleri şimdiden belirlenmeye başlamıştır. AB, kullandığı akaryakıtın 2005 yılı sonuna kadar % 2’sinin, 2010 yılı sonuna kadar % 6’sının ve 2020 yılı sonuna kadar da % 20’sinin biyoyakıt olmasını hedeflemiştir. Bu arada çiftçilerine biyoyakıt üretim amacıyla yaptıkları ekimlerde 45 €/ha destek vermektedir. Konuyu İngiltere açısından ele alan Monbiot (2004), % 20 hedefine ulaşabilmek için İngiltere’de ekilebilir alanların tamamının kanola ekimine ayrılması gerektiğini bildirmektedir. Konu diğer AB ülkeleri açısından da düşünüldüğünde, ileride AB ülkeleri ve buna bağlı olarak kanola ekiminin yaygın olduğu ülkelerde, biyoyakıt üretimini amaçlayan kanola ekim alanlarının artması nedeniyle gıda üretim amaçlı ekilişlerin daralması, hem de genişleyen kanola ekim alanlarından dolayı muhtemelen artacak olan transgenik çeşit ekim alanları dolayısıyla doğal bitki örtüsündeki yabani akrabalarına ve kültürü yapılan diğer Brassicaceae türlerine gen akışı gibi olası tehditleri de göz önünde bulundurmak gerekir. İki durumda da tarımsal sürdürülebilirliğin zarar göreceği açıktır. Türkiye açısından önemli olan bir başka familya da sirkengiller (Chenopodiaceae) olmaktadır. Bilindiği gibi ülkemizin temel tarımsal ürünlerinden olan şekerpancarı yanında ıspanak, hayvan pancarı, pazı gibi kültür bitkileri ile yabani florada çok sayıda türleri yanı sıra şeker pancarının yabani akrabaları (Beta spp.) da vardır. Sirkengiller de gen akışının yoğun olarak yaşandığı familyalardan biri olarak bilinmektedir. Desplanque ve ark. (2002) şeker pancarından yabani sirkengil türlerine gen akışının muhtemel ve mümkün olduğunu, bu nedenle herbisite dayanıklı şekerpancarından doğaya kaçacak transgenlerin ortaya çıkarabileceği olumsuzluklara işaret etmektedir. Stewart ve ark. (2003) kültürü yapılan pancardan yabani akrabalarına gen akışının olduğunu bildirmekte; Ellstrand (2003) gen akış oranının türlere bağlı olarak % 1 düzeyine kadar çıkabileceğini ifade etmektedir. Genetik yapısı değiştirilmiş organizmaların günümüzde en fazla tepkiye yol açan şekli Genetik Kullanımı Sınırlayıcı Teknolojileridir (Genetic Use Restriction Technologies = GURTs). Genetik materyalin izinsiz kullanımını engellemek amacıyla geliştirilen çeşitler henüz dünya üzerinde kullanım alanı bulmamakla beraber, tarımsal sürdürülebilirliği tehdit eder nitelikte olmaları bakımından önemlidirleri. GDO olmayan bir materyale uygulanmış olsa bile, GURT kullanımı sonucu ortaya çıkan ürün, bir GDO kabul edilmektedir. İki tür GURT vardır. 1. VGURT (Variety Use Restriction Technology); bir sonraki generasyonu steril hale getiren teknolojidir. “Terminatör Teknolojisi” olarak da bilinir 2. TGURT (Trait Use Restriction Technology); bir sonraki generasyonun herhangi bir karakterinin ortaya çıkmasını engeller, bu karakterin çıkması için özel tetikleyiciye gerek duyulur. Yukarıda sıralananlardan VGURT’lerin geliştirilmesinde üç farklı strateji uygulanmaktadır. Birinci stratejide bitkiye embriyo oluşumunu engellemeye şifrelenmiş bir gen verilerek materyalin canlı tohumlar üretmemesi sağlanır. Bu gen de, normal embriyo oluşumunu sağlayabilmek üzere başka gen tarafından engellemektedir. Tohumlar üretici firma tarafından satılırken genleri harekete geçiren bir kimyasalla muamele edilerek ikinci nesil tohumlarda embriyo oluşumunu engelleyen genler harekete geçirilir ve ikinci nesil ürünün cansız (canlanamayan) olması sağlanır. İkinci VGURT oluşturma stratejisi birincisine benzemekle beraber işlemi satış aşaması hariç her aşamasında kimyasal madde uygulanır. Materyal tüm nesiller boyunca kendiliğinden steril tohum verecek şekilde geliştirilmiştir. Kısırlığı ifade eden gen, canlılığı sağlayacak restorer protein veren bir kimyasalla engellenerek üretim sağlanır. VGURT uygulamalarındaki üçüncü strateji de süs bitkilerinin birçoğunda olduğu gibi vegetatif yolla çoğalan, yumrulu bitkilerin depolama veya raf ömrünü uzatmak amacıyla gelişmelerinin bir süre durdurulmasıdır. Burada gelişmeyi engelleyici gen, kimyasal bir madde yardımıyla etkisiz hale getirilir. Her üç stratejide de istenmeyen genlerin doğaya salınması sonucu kısır bitkilerin üretilmesinden, gelişmenin durmasına kadar birçok olumsuzlukların yaşanması olasıdır. Hibrit bitki ıslahında da fertil bitkiler elde edilse bile meydana gelen açılma sonucu, istenen bazı özellikler TGURT’lerde olduğu gibi döllere taşınmaz. Klasik veya moleküler genetik yöntemlerle geliştirilmiş olmalarına bakılmaksızın çiftçiler her iki durumda da her yeni ürün için üretici firmalardan hibrit – TGURT materyal almak zorundadır. Klasik genetik kuralları kapsamı içinde de VGURT’lere benzeyen ürünler elde etmek mümkündür. Örneğin triploid balık, çekirdeksiz karpuz, partenokarp meyveler de kısırdır. Ancak klasik genetik kuralları içinde geliştirilen ürünler getirdikleri katma değer ile üretici ve tüketici tarafından neredeyse hiçbir uyuşmazlığa meydan vermeyecek şekilde geniş kabul görmekle beraber, GURT ürünleri özellikle de VGURT’lar tarımsal üretimi sınırlayıcı materyal olarak algılanmakta; bunların biyoçeşitlilik, tarımsal uygulamalar, tohum güvenliği ve kırsal ekonomi üzerindeki olası olumsuz etkileri nedeniyle de her geçen gün küresel boyutta artan bir reaksiyon görmektedirler. Genetik kullanımı sınırlayıcı teknolojiler konusunda dünya çapında oluşan duyarlılık sonucu Birleşmiş Milletler Çevre Programı (UNEP) tarafından bir rapor hazırlanarak 2002 yılında düzenlenen Biyolojik Çeşitlilik Sözleşmesi’nin 6. Taraflar Konferansına sunulmuştur (UNEP/CBD/COP/6/INF/1, 2002). Bu belgede GURT uygulamalarının detayları yanı sıra bunların (a) tarımsal biyolojik çeşitlilik üzerine etkileri, (b) biyogüvenlik üzerindeki etkileri, (c) çiftlik sistemleri içinde yaratacağı sosyo-ekonomik etkileri, (d) çevresel etkileri ve (e) ekonomik etkileri olacağı ifade edilmiştir. Genetik kullanımı sınırlayıcı teknolojilerin, konunun etik yanı dışında tarımsal sürdürülebilirlik üzerinde olumsuzluklar yaratacağı kesindir. GURT konusu Biyolojik Çeşitlilik Sözleşmesi’nin 7. Taraflar Konferansında da tartışılmaya devam edecektir. Biyoteknoloji tarihsel gelişimi içinde tarımsal sürdürülebilirliğin temeli olan biyolojik çeşitliliğin korunmasında ve artmasında önemli roller oynamıştır. Klasik yöntemlerle muhafazası zor veya olanaksız olan bitkilere ait genetik kaynakların korunmasında biyoteknolojiden yararlanılmış ve yararlanılmaya devam edilmektedir. Bu şekliyle biyoteknoloji, sürdürülebilir tarımın sigortası durumunda olan bitki genetik çeşitliliğinin devamlılığının sağlanması ve yeni çeşitlilik kaynakları oluşturması bakımından vazgeçilmez bir araçdır. Biyoteknolojinin, bitkilere dayanıklılık genlerinin aktarılmasında kullanılan bakteriyel kökenli toksin üreten çeşitlerin geliştirilmesi amacıyla kullanılması durumunda, istenmeyen genlerin doğaya bulaşması sonucu ekolojik dengenin bozulması olasıdır. Doğada türler arası gen alışverişinin olduğuna dair birçok örnekler vardır. Doğa dikkatli bir şekilde gözlendiğinde türler arası gen akışının devam eden bir süreç olduğu, dolayısıyla da GDO’dan da yabani akrabalarına gen akışının mümkün olduğunu söyleyebiliriz. Gen alış verişinin sonuçlarının görülmesi kısa zaman içinde gerçekleşmemektedir. İnsan ömrü bu sonuçları görecek ölçüde uzun değildir. Unutulmamalıdır ki insan ömrü evrim süreci içinde önemsenmeyecek kadar kısadır. Sonuç olarak biyoteknoloji, bazı uygulamalarıyla tarımsal sürdürülebilirlik için vazgeçilmez bir araç, bazı uygulamalarıyla da ciddi bir potansiyel bir tehlike durumundadır. Alptekin KARAGÖZ

http://www.biyologlar.com/biyoteknolojinin-surdurulebilir-tarim-uzerine-olasi-olumsuz-etkileri-ve-turler-arasi-gen-alisverisi

İnsan Kopyalama

"İnsanın varlığını meydana getiren en küçük temel birim olan hücre, çekirdeğinde bulunan DNA ve RNA, çoğalmayı, genetik özelliklerin nesilden nesile aktarımını sağlamaktadır. Klonlama DNA parçalarından çok sayıda özdeş kopyalama işlemidir. Bunun için, kopyalanmak istenen DNA dizini tespit edilip enzimler vasıtasıyla ana dizinden ayrılarak, aktarılmak istenen parçaya "DNA bağlayıcı enzim" aracılığıyla birleştirilip yeni DNA oluşturulacaktır. Bugün, bu sistem tıpta doğuştan metabolik ve kalıtsal hastalıklar ile AIDS gibi tedavisi olmayan hastalıkların iyileştirilmesinde kullanılmaktadır. Genetik defekte (bozukluk) yol açan DNA dizilimindeki bozukluk tespit edilerek, bu bölüm enzimlerle ana dizinden koparılarak, taşıyıcı DNA sarmalları yoluyla, taşınmak istenen doğru şifre içeren dizin, bağlayıcı enzim ile bozuk alana bağlanmakta böylece eksik materyal, yerine konmuş olmaktadır. Bu işlemin en son formu, koyun cinsi bir havyanın hücre DNA'sının tekrar kendi hücrelerine aktarımı ile aynı hayvanın tekrar oluşturulma işlemidir. Bunun insan ırkı için olup olmayacağını bize zaman gösterecektir." Acaba insanda kopyalama nasıl olacaktı? Yine basında yer alan bir habere göre, Ukrayna Ulusal Bilimler Akademisi ve Moleküler Biyoloji Genetik Enstitüsü'nün yetkili bir kişisi, "Her türlü varyasyonu deneyerek, insan genlerini anlamaya çalışıyoruz. Mesela, yarısı adam yarısı at olan bir yaratık ürettik, ama yaşamadı. Ya da timsahla fare genlerini karıştırıp ortaya ne tür yaratıklar çıktığına bakıyoruz. Ancak, tahmin edersiniz ki, bunlar doğduktan hemen sonra ölüyorlar, insanın kopyalanmasına oldukça yakınız. Şunu açıkça ifade edeyim ki, bizim kullandığımız teknikleri batı dünyası henüz yapamıyor" şeklinde açıklamalarda bulunuyor ve şöyle devam ediyordu: "Sadece hayvan değil, insan da kopyalayabiliriz. Ama, biz yaptığımız araştırmalar sonrası, insanın klasik bir şekilde üremesinin hem daha zevkli hem de daha doğru bir yol olduğu sonucuna vardık. Bizim üzerinde durduğumuz asıl konu, halk diliyle ifade edilirse, 'siparişe göre insan yapabilmek...' İşte bunu yapabilmek için de, insan genlerini çözmeye çalışıyoruz. Fare genlerinin içine insan genlerini rahatça katabiliyoruz. Her türlü canlının genleriyle dilediğimiz şekilde oynayabiliyoruz. Ölü hayvanlardan da Klonlama yapabiliriz. Ve insanın kopyalanması konusundaki çalışmaları başlattıklarını söyleyen Ukraynalı bilim adamı, "Bu iş üzüm salkımından koparılan tek bir üzümü, kiraz salkımın dan koparılan kirazın yerine yerleştirip büyütmek gibi bir şey. Timsahla fareyi, fareyle insanı karıştırıp ortaya çıkan yaratığa bakıyoruz. Amerika'da gen terapi ve kopyalama ile uğraşan en az yüz laboratuar var. İnsan DNA'sının sadece yüzde 3-5'i insanı insan yapan genler. Yüzde 70'i ise, anlaşılması güç genler. Biz bu anlaşılması güç genlerin yüzde 10-12'sini keşfettik. Tüm verilerle insanın yarısını yapabiliriz, tamamını da keşfedeceğiz. Bunu başardığımız zaman, siparişe göre bebek yapacağız" şeklinde beyanda bulunuyordu. İşin enteresan yönü, klonlamaya inanan ve bu işe oldu bitti gözüyle bakan bir takım şirketlerin patent edinme yarışına girip konuyu ticari sahaya çekmeleridir. Klonlama konusunda bir başka önemli haber de şu şekilde: 1970'lerin başında KGB laboratuarlarında yapılan deneyler sonucunda bir köpekten iki köpek klonlanmıştı. Rus Bilim Akademisi'nde yapılan ve çok gizli tutulan araştırmalar, tam otuz sene sonra gizliliğini kaybettiğine göre, kapalı kapılar ardındaki ülkenin o zamandan bu yana neler yaptığı meçhuldü. Ancak, doktorların ifadesine göre, klonlanan iki köpek ve aslı, yani üç köpek, birbirlerine karbon kopyası kadar benzemelerine karşın, tavırları çok farklı şekilde oluşmuştu. Bilimsel veriler er ya da geç insanın da kopyalanabileceği hususunda işaretler veriyor. Ne var ki klonlanan insan aslının aynı olmayacaktır. Zira klonlama eylemi, yumurtaya ihtiyaç olmadan gen boyutunda gerçekleşmektedir. Gen, insanın belli kalıtsal ve bedenini üretecek özelliklerini taşır. Kopyalama işlemi bir noktaya kadar uzanabilir. Bundan sonraki devrelerde, yani bebeğin ana rahminde çeşitli astrolojik etkiler istikametinde, farklı tesirleri alması, özellikle aslından farklı tavırlar, huy ve karakter yapısına sahip olabileceğini gösteriyor. Yukarıda örnek olarak gösterdiğimiz, Rusya'da klonlanan köpeklerin tavır ve hareketleri, ayrıca birbirine tıpatıp benzeyen ancak doğum sırasında 15-20 dakikalık farklılıktan ötürü değişik özelliklere sahip tek yumurta ikizleri gibi. Evet! Bu konu bize açıkça şunu gösteriyor; Popüler Bilim, gelişen teknoloji ve genetik boyutlarda yapılan inanılmaz çalışmalar bilinmeyeni bilinir hale dönüştürdükçe, her alanda olduğu gibi mitsizimde de bazı kavramların, bununla bağlantılı olarak, inanışların değişmesi de kaçınılmaz olacaktır. KAYNAK:http://www.rehberantalya.com/teknoloji/insan.asp

http://www.biyologlar.com/insan-kopyalama

Embriyogenez

Biyolojinin bütün problemleri arasında en büyüleyici ve en zor olanı embriyogenez yani embriyonun yaratılmasıdır. Embriyogenez; tek hücrenin döllenmiş yumurtanın, hedef aldığı çok hücreli karmaşık organizmaya ulaşırken attığı adımlarla ilgilidir. Bu hedef bütün ince ayrıntılarıyla, gelişme olayının orkestrasyonu üzerine talimatları içeren, DNA'da yazılıdır. Bu harikulade işin nasıl olduğunu henüz anlayamamış olduğumuzu hemen söyleyebilirim, ama en azından çevresinde araştırmalar yapıyoruz. Hücreler Birbirine Yapışır ve Uzmanlaşır Döllenmiş bir yumurta, diğer daha basit tek hücreli yaratıklar gibi yaşamına iki ayrı hücre oluşturmak için bölünerek başlar; bu iki hücre bölünüp dört olur ve bu böyle sürüp gider. Tek hücreli yaratıkları gözlemleyerek, her bölünmeden sonra hücrelerin ayrılacağını umuyoruz. Ama döllenmiş yumurtadan üreyenler ayrılmıyorlar, toplumsal bir girişime katıldıklarını bilirlermiş gibi birbirlerine sıkıca yapışıyorlar. Kısa bir süre sonra başka bir şey açığa çıkıyor. Hücreler birbirlerine benzemeyen ve değişik davranan gruplar oluşturuyorlar. Hücre grupları artık uzmanlaşmaktadırlar. Her grup belirli sayıda özel görevleri yapmakla yükümlüdür. Uzmanlaşma işinin geriye dönüşü yoktur. Erken embriyogenez iki özelliği, hücre yapışması ve hücre uzmanlaşması, bunlar gelişme işleminin temelinde yatıyorlar. Değişkenliğin Kökeni Şimdiye kadar organizmaların nasıl uzun zaman geçtikçe giderek farklılaştığım belirleyen ve bütün canlı yaratıklar için geçerli yasaları öğreniyorduk. Bütün canlı yaratıklar kendilerini oluşturan bilgiyi DNA'da biriktirirler, DNA'yı mesajcı RNA'ya kopya ederler, mesajcı RNA'yı proteine "tercüme ederler". Dahası, DNA'nın mutasyonla veya cinsel karışımla değişmesi proteinlerin kalıcı değişimine neden olur. Böylece organizmalar arasında gittikçe artan farklılıklar ortaya çıkar ve sonunda yeni türler doğar. Bazı bakımlardan embriyogenez, evriminin, kısa bir zaman aralığında ve mikrokosmosta tekrarı gibidir. Hayvan embriyosunun gelişmesini değişik aşamalardan geçerken gözlemleyelim. Embriyo, erişmesi beklenen yetişkin yaratığa benzemeden önce balığa benzer. Balığa benzerlik yalnız görünüşte değildir; erken embriyo oksijen ve besini göbek bağı yoluyla annesinden alır, ama gereksinimi olmadığı halde su altında nefes almaya yarayan solungaçlara da sahiptir. Açıkçası embriyonun evrimsel gelişmenin bir aşamasını yinelemesi için görünürde hiçbir neden yok. Ama embriyogenez süresince farklılık nasıl doğar, hücreler deri hücresi, kas hücresi, sinir hücresi olmaya ne zaman karar verirler diye sorsak, doğa boş bakışlarla cevap verir bize; hücrelerdeki bilgi işleminin evrensel mekanizması üzerine bir sürü şey öğrenmemize izin verdi, ama sıra hücreleri birbirinden farklı yapan nedenlere gelince bilgisizlik içinde oturuyoruz. Bazı bilim adamları embriyogenezin derinliklerine dalabilmek için tümüyle yeni kavramlara ve yöntemlere gereksinimimiz olduğuna inanıyorlar. Bunun böyle olduğundan kuşkuluyum. Yalnızca, hücreleri değişik yapan nedenler şimdiye kadar bulduklarımızdan daha karışığa benziyor. Tıbbın Embriyogenezle İlgisi Tıp bilimi için embriyogenezin anlaşılması önemlidir. Tıp adamlarının ilgilerini başka hiç bir olaya benzemeyen ölçüde bileyen, yalnızca bir tek hücrenin tam bir bireye dönüşebilmesi değil. Tıbbın; hamilelik, doğum kontrolü, çocuk ölümleri, doğuştan itibaren görülen hastalıklar, kalıtım hastalıkları ve kanser gibi problemlerin daha iyi denetlenmesi üzerine araştırmalarıyla da ilişkili. Bilim adamlarının embriyogenezin anlaşılmasının çok sayıdaki tıbbi probleme ışık tutacağı beklentileri var. Hücrelerin Yapışkanlığı Üzerine Birkaç Söz Daha Döllenmiş yumurta bölünmeye başladıktan sonra, hücrelerin birbirinden ayrılmayıp yapıştıklarından söz etmiştim. Yapışmalarını ne sağlıyor? insanın aklına bir yapışkan maddenin varlığı geliyor, ama gerçekte yapışkanlığı sağlayan bir madde değildir. Daha çok hücrelerin yüzeylerinde girintiler, çıkıntılar varmış gibi görünüyor (diğer hücrelerin çengellerine geçebilen ufacık çengeller). Hücrenin DNA'sı, gerçekte protein-yapan makineye, hücrenin dışına doğru göç edip orada girintili çıkıntılı bir yüzeyde çengel gibi davranacak belirli özel proteinler yapması talimatını vermiştir. Hücreler, bedenin değişik kısımlarını oluşturmak için uzmanlaşırken, yüzey protein çengelleri de amaca göre biçimlenirler. Bunlarla hücre tipleri birbirinden ayırt edilir. Embriyogenez İçin Enerji Şimdi bütün yapım işlerinde enerjinin gerekliliğine tümüyle duyarlı hale gelmiş olmalısınız. Hücrelerinin yakılıp ATP üretebilmesi için gelişmekte olan embriyoya şeker verilmelidir. Balıklarda, sürüngenlerde, kuşlarda ve embriyonun bir yumurta içinde büyüdüğü diğer yaratıklarda, yumurtanın sarısı embriyonun besinini sağlar. Annelerinin rahminde büyüyen hayvanlarda başka bir araç kullanılır. Anne iç duvarıyla embriyo arasındaki plasenta denen tabaka embriyo ile aynı hızla büyür. Plasenta, annenin kanıyla gelişen embriyonun kanının karıştığı yerdir. Annenin yediği besini getiren kan burada embriyonun kanına karışır. Yapım projesi için enerji böylece sağlanır. Bütün Hücrelere Aynı Bilgi Dağılmıştır Döllenmiş yumurta, anneden ve babadan aldığı tam büyüklükteki DNA ile yaşama başlar. Bölündükçe, yeni gelen her hücre kuşağı yetişkinliğe ulaşana kadar aynı büyüklükte DNA alır. Sonunda 60 trilyon hücreden oluşan bir insanda 60 trilyon birbirinin aynısı DNA kopyası bulunur! Bedenin her hücresinde, tamamen aynı bilgi bulunur. Yalnız üreme hücreleri diğer hücrelerin yarısı kadar DNA içerirler. Gen İfadesinin Denetlenmesi Embriyogenezin sırrının DNA'nın genlerinin ifadelerinin hücreler tarafından nasıl kontrol edildiğinin bilinmesinde gizli olduğu görülüyor. Bir yetişkini yaratmak için gerekli bütün bilgi hücrededir. Gelişen embriyonun her hücresinin içinin derinliklerini gözlemleyebilseydik, bazı şeylerin oluşumunu izleyebilecektik. Enzimler, döllenmiş yumurtanın DNA'sının genlerinin bazılarını mesajcı RNA'ya kopya etmeye başlayacaklardı. Mesajcı RNA'lar, daha en başta yumurtanın içinde bulunan, embriyoda etkin olan ribosomlara gideceklerdi ve burada gerekli proteinlerin sentezi başlayacaktı. Döllenmiş yumurta, reçetesinde yazılı proteinlerin tümünü biraz daha ribosomla birlikte toparladıktan sonra (ve DNA'sını iki katına çıkardıktan sonra) bölünecekti. Sonuçta oluşan hücre çiftlerinde, şimdi yeni bir tam ölçü DNA, yeni ribosomlar ve yeni her şey bulunacaktı. Kendisinden doğdukları hücrenin tümüyle tıpkısı olacaklardı. Protein sentezi işlemi ve yeni hücre yapımı kendi kendisim, yineleyerek, hücre sayısı dört hücreye ulaştırılacak, sekiz hücreye çıkmak için yeniden... Kısacası bunun böylece sürüp gittiğini görecektik.Buraya kadar işlem, bölünen bakteride sürüp gidenin hemen hemen aynı. Her kuşak hücre kendisinden öncekinin aynen yinelenmesi. Fakat uzmanlaşma başladığı zaman, yeni bir şeyler katılıyor olmalı. Eğer üreyecek hücrelerin bir grubu deri, diğeri kas, bir başkası beyin vb. olacaksa, DNA gerekli yönlendirmeyi sağlamalıdır. Yalnızca hücreler arasındaki sürekli artan farklılığı değil, aynı zamanda farklılığın ne zaman başlayacağını belirlemelidir. Gelişen hücre topluluğu içindeki her bir hücrede tamı tamına aynı ölçüde DNA bulunur. O zaman hücreler nasıl farklı olabilirler? Birincisi şunu hatırlayalım, deri hücresi, kas hücresi, beyin hücresi olsun, belli bir hücrenin karakterini, yaptığı proteinler belirler. Örneğin, deri hücreleri, keratin denilen özel bir protein yönünden zengindirler (deriye bizi koruyan özel yeteneğini veren protein). Kas hücreleri myosin denilen bir proteinle sarılmıştır. Bu proteinin özel yeteneği, bir eş proteinle etkileşip uzunluğunu değiştirebilmesidir. Böylece kas liflerinin kasılmasına yol açarlar. Beyin hücreleri elektrik güçler iletmeye yardımcı proteinler içerirler. Diğer bütün uzmanlaşmış dokuların hücreleri, hücrenin özel karakterini belirleyen kendilerine özgü proteinleri üreteceklerdir. Böylece bazı hücreler deri hücreleri olarak amaçlarını gerçekleştirmek için keratin üretmeye; diğerleri kas hücresi olabilmek için myosin üretmeye başlayacaklardır. Aslında, bütün hücrelerdeki DNA'larda keratin için bir gen myosin için diğer bir gen bulunur. Genler orada hazır bekliyorlar. Öyle görünüyor ki deri hücrelerinde keratin yapılması ifade edilirken, myosin baskı altına alınmak zorunda. Diğer yandan, kas hücrelerinde myosin ifade edilmeli ve keratin geni bastırılmalıdır. Yani deri hücrelerindeki keratin geni, keratin mesajcı RNA'sı olarak okunuyor. Ribosoma gidiyor orada keratin proteinine çevriliyor. Bütün bunlar gerçekleştikten sonra hücre deri hücresi haline geliyor. DNA, embriyo gelişimi sürerken, programlı bir sıralama ile genlerini her birinin sırası geldikçe ifade edip bastırabilmelidir. Belli türden bir hücre oluşumu yüzlerce protein gerektirir, yani bu hücrelerde. bir çok gen ifade edilirken daha çoğu da (başka, hücrelerin proteinlerini kodlayan genler) bastırılır. Gerçekten dikkate değer bir durum! DNA bütün genlerle birlikte, bu genlerin ne zaman işe koşulacağını ne zaman bastırılacağını da biliyor.

http://www.biyologlar.com/embriyogenez-1

TRANSPLANTASYON ve İMMÜN YANIT

MHC gen bölgesi 6. kromozom (6p21.31) üzerinde yerleşmiş olup, yaklaşık olarak 4 Mbp lik bir yer kaplar. En uzun haplotype (110-160 kb) DR53 grup haplotiplerdir. Jan Klein 1977 yılında Sınıf I, II ve III olmak üzere ilk tanımlamayı yapmıştır. Günümüzde HLA sınıf III’ e ait olan bölgenin telomerik ucundaki 0.3 Mbp kısmın sınıf IV bölgesi olarak isimlendirilmesi önerilmektedir. Klasik HLA antijenleri sınıf I geni icindeki HLA-A, -B, -C bölgesinde ve Sınıf II geni içindeki HLA- DR, -DQ, -DP bölgesinde kodlanır. Tüm sınıf I genler 3-6 kb, sınıf II genler ise 4-11 kb uzunluktadır. Klasik antijenleri kodlayan genler dışındaki sınıf I bölgesindeki diğer genler: HLA-E, -F, -G, -H, -J, -K, -L olup, bunlar arasından sadece HLA-E,- F,-G eksprese olmaktadır. Sınıf III bölgesinin ise gen yoğunluğu oldukça fazla olup bunların bir kısmı immün sistem ile ilişkili değildir. Sınıf II bölgesinde klasik antijenleri kodlayan genlerin yanısıra HLA-DM, -DN, -DO, TAP1, TAP2, LMP2 ve LMP7 gibi gen bölgeleride bulunmaktadır. İmmunolojik ve nonimmunolojik fonksiyonu olan bir dizi genden oluşan MHC bölgesi ilk kez farelerdeki transplantasyon çalışmaları ile Peter Gorer tarafından 1937 yılında ortaya çıkarılmıştır. Bu genlerin ürünleri olan moleküller 1958 yılında Jean Dausset tarafından (HLA-A2) tanımlamış, aynı yıl van Rood ve arkadaşları HLA-BW4 ve BW6 antijenlerini ve kan transfüzyonu yapılmış kişilerin ve çok doğum yapmış kadınların serumlarında lökositlere karşı oluşmuş antikorları göstermişlerdir. İlk doku antijenleri lökositlerde saptandığı için insan lökosit antijenleri (Human Leukocyte Antigens = HLA) olarak tanımlanmışlardır. Daha sonraki yıllarda eritrositlerin dışında bütün vücut hücrelerinde bulundukları ve çok önemli oldukları anlaşılarak bu grup antijen sistemi MHC molekülleri veya MHC antijenleri olarakta isimlendirilmiştir. MHC genel bir isimdir ve her bir türün ayrı bir MHC simgesi vardır . MHC molekülleri graft rejeksiyonun temel belirleyicileridirler. Bu nedenle aynı MHC moleküllerini eksprese eden bireyler birbirlerinin doku graftlerini kabul edebilirler veya farklı MHC gen bölgelerine sahip bireyler arasında graft rejeksiyonu gelişir. Bu lokusun keşfinden ancak 20 yıl sonra immun cevapta MHC’nin önemi ortaya çıkarılmıştır. Hugh McDevitt ve arkadaşları 1960’larda kobay ve fareler üzerine yaptıkları çalışmalarda basit polipeptidler ile yapılan immunizasyona karşı antikor oluşmadığını ve gelişen immun yanıtsızlığın MHC bölgesinin haritalanması ile otozomal dominant bir özellik olduğunu buldular. İmmun yanıtı kontrol eden genlere de İmmun yanıt genleri (Immune response =Ir ) adı verildi. Ir genlerinin protein yapıdaki antijenlere antikor yanıtında gerekli olan Th (T helper = yardımcı T) lenfositlerinin aktivasyonunu kontrol ettiğini gösterdiler. 1970’lerin sonunda MHC genlerinin protein antijenlere karşı olan esas rolü anlaşıldı. Her iki HLA antijen yapısı da iki yan yana alfa heliksi tarafından oluşturulan, hücre membranına distal konumda benzer bir girintiye sahiptir. Bu girintilere hem kendi antijenlerinden hem de yabancı antijenlerden kaynaklanan peptid antijenleri bağlanır. Böylece HLA antijenleri hem kendi hem de yabancı peptidleri T lenfositlerine sunma görevindeki moleküller olarak immün yanıt oluşumunda kilit bir fonksiyona sahiptir. Ayrıca HLA antijenlerinin kendileri de allogeneik transplantasyon, transfüzyon ve hamileliklerde güçlü immün yanıtları tetikleyebilen, fazlasıyla immünojenik moleküllerdir. MHC Sınıf I molekülleri Sınıf I molekülü a zincirinin b2 mikroglobulin ile non kovalen bağlanmasıyla oluşmaktadır. Alfa zinciri a1 (N terminal), a2 ve a3 olmak üzere üç adet ekstrasellüler domain içerir. MHC sınıf I molekülleri arasında a3 domaini oldukça korunmuş bir yapıdadır ve T lenfositlerindeki CD8 molekülü ile etkileşime giren bölgeyi oluşturmaktadır. Beta 2 mikroglobulin yapısındaki bir adet disülfit bağı ile stabilize edilmiştir. b2- mikroglobulin yokluğunda sınıf I molekülleri hücre membranında eksprese edilmez. Alfa-1 ve alfa-2 domainler 8 adet anti-paralel b strandı ve 2 adet anti-paralel a strandı ile platform oluşturmaktadır. Genel olarak çekirdekli hücrelerde eksprese edilmektedir. Ancak ekspresyon düzeyleri hücreler arasında değişmektedir. Lenfositlerde en yüksek düzeyde eksprese edilirken, Fibroblastlar, kas hücreleri, hepatositler, sperm, oosit, plasental ve merkezi sinir sistemi hücrelerinde sınıf I moleküllerinin ekspresyonu çok düşük ya da dikkate alınmayacak düzeydedir. HLA- C moleküllerinin hücre yüzeyinde HLA- A ve –B moleküllerinden 10 kat daha düşük düzeyde ortaya çıkmaktadır. Ancak HLA-C molekülleride işlevseldir ve NK (doğal öldürücüler ) tarafından tanınmak üzere ilk hedef noktalardır. MHC Sınıf II molekülleri Sınıf II molekülleri a ağır zinciri ile b hafif zincirinin non-kovalent bağlanması ile oluşan bir heterodimerdir. Alfa zincirinde a1 ve a2, beta zincirinde ise b1 ve b2 domainleri bulunmaktadır. Alfa-1 ve alfa-2 domainleri arasında kalan çukur peptid fragmanlarının bağlandığı bölgeyi oluşturmaktadır. Sınıf II molekülleri dendritik hücre, makrofaj, B ve aktive T lenfosit olmak üzere daha sınırlı sayıda hücrelerde eksprese edilmektedir. Transplantasyonda İmmun Yanıt İmmün sistemin birincil görevleri herhangi bir potansiyel infekte edici yabancı materyali tanımak ve birden çok efektör mekanizma yoluyla yanıt vererek yabancı materyali inaktif hale getirmektir. HLA antijenlerinin görevi hem kendi hem de yabancı proteinlerden türevlenen peptid fragmentlerini sunmaktır. Antijen sunum hücreleri (APCler) olarak görev yapan hücre tipleri dendritik hücreler, monositler, makrofajlar, B lenfositleri ve immün regülatör süreçlere katılan diğer hücreleri içerir. Protein moleküllerinin peptid parçalarına ayrılması ve antijenin T hücrelerine sunulması, immünitenin önemli bir bölümünü oluşturur. Sınıf I molekülleri endojen kaynaklı peptidlerin CD8 (+) T lenfositlerine, sınıf II molekülleri ise eksojen kaynaklı peptidlerin CD4 (+) T lenfositlerine sunumunda rol almaktadırlar. Peptidler önce degradasyona uğrar ve peptid fragmanları hücre içinde HLA sınıf I ve II moleküllerine bağlanır. Bu moleküller, bağlanan peptid ile birlikte hücre yüzeyine gelir. Hücrelerde proteinlerin yıkımını sağlayan iki büyük yol vardır. Bunlardan birisi lizozomal asidik ortamda gerçekleşen lizozomal proteolizis diğeri ise ubiquitin- proteasom yıkım yoludur. Çok sayıda ubiquitin ile işaretlenmiş olan protein, çok sayıda alt birimden oluşmuş olan proteaz kompleksi olan proteasom tarafından yıkılır. Ubiquitinin bağlanması ve işaretlenmesi için ATP enerjisi kullanılır. Endojen proteinler ubiquitin ile bağlanarak proteasoma yönlenirler. LMP2 ve LMP7, proteozom kompleksinin bileşenlerini oluşturan peptidleri kodlamaktadır. Proteozom, kısa ömürlü sitoplazmik proteinlerin çoğunun sindiriminde yer almaktadır. Burada 8-10 aa uzunluğunda kısa peptidlere yıkılan endojen proteinler TAP heterodimeri aracılığı ile ER aktarılırlar. TAP molekülleri zarlar arasında, oligopeptid ve daha büyük proteinler gibi farklı maddelerin taşınmasını sağlamaktadır. TAP1/TAP2 molekülleri ER zarında, sitoplazmadan lümene peptid taşıyıp yerleştiren bir kompleks oluştururlar. Taşınmış olan peptidler sınıf I molekülüne yüklenirler. Endoplasmik retikulumdan ayrılan bu yapılar golgi kompleksine gelir oradan taşıyıcı veziküller ile hücre membranına taşınarak sitotoksik T lenfositlerine sunulurlar. Eksojen kaynaklı proteinler (bakteriler gibi) ASH tarafından hücre içine endositik olarak alınıp lizozom ile birleşir ve lizozomal enzimlerin etkisi ile küçük peptidler haline dönüştürülürler. ER’da yeni sentezlenen sınıf II molekülleri invariant chain (Ii) molekülü ile bağlanarak taşıyıcı veziküller ile lizozoma gelir ve füzyon yaparlar. Lizozom icerisinde Ii molekülü küçük peptid haline dönüştürülür ve HLA-DM molekülüde peptid bağlama oluğunda bulunan parçalanmış Ii molekülü ile eksojen peptidin yer değişimini gerçekleştirir. Peptid yüklenmiş olan sınıf II molekülleri hücre membranına taşınarak CD4(+) T lenfositlerine sunulurlar. İmmün tanıma : İmmün yanıtın oluşumunda ilk basamak, kendi-HLA moleküllerince sunulan yabancı peptidin yardımcı T hücrelerince (CD4+ T hücreleri) tanınmasıdır. Tanınmanın sağlanabilmesi için T-hücre reseptörü (TCR) HLA-antijen kompleksine özgü olmalıdır. Hücrelerin birbiriyle teması üzerine TCR, yabancı peptid ve APC üzerinde yer alan MHC molekülünden oluşan trimoleküler bir kompleks meydana gelir. T hücreleri ve APC arasındaki etkileşim diğer lenfositler ve B7, CD40 gibi T hücreleri üzerinde yer alan CD4, CD8, CD28 VE CD11a/CD18 gibi APC hücre yüzey molekülleri (lökosit fonksiyonuyla bağlantılı antijen 1 [LFA-1]) ve interselüler adhezyon molekülü (ICAM-1) desteği ile sağlanır. Hücre yüzey reseptörleri ve sitokinler gibi immün modülatör molekülleri kodlayan genler uyarılır, transkribe edilir ve aktif ürünler vermek üzere translasyon geçirirler. Aktivasyonun erken evrelerinde yanıtlayıcı T hücrelerinin klonal genişlemesi ile sonuçlanan, interlökin 2 (IL-2) ve interferon-g (IFN-g) sitokinleri üretilir. Makrofajlar ve B hücreleri de ek sitokinler ve kemokinler katılarak çalıştırılmıştır ve böylelikle uyarılmış B hücrelerinin yanıtı genişletilerek olgun antikor oluşturan plazma hücrelerine dönüşmeleri sağlanır. İmmün yanıtın hem hücresel hem de hümoral kolları, nakledilen bir organın yabancı HLA antijenleri ile ilişki halindedir. Transplant yerleştirilmesinde, spesifik alloreaktif T hücrelerinin klonlarının allotanıma ve aktivasyonuna, akut rejeksiyon nöbetlerine, greft fonksiyonlarında aksamaya ve kronik rejeksiyona ve son olarak greft kaybına sebep olabilir. Direkt ya da indirekt allotanıma yolları olarak bilinen iki farklı yol, greftte yer alan yabancı HLA antijenlerin immünojenitesini oluşturur. Direkt yolda, donör MHC antijenlerinin tanınmasında spesifik TCR taşıyan alıcı T hücreler, greftin HLA antijenlerini tanırlar ve onlar tarafından direkt olarak aktive edilirler. Yabancı HLA antijeni kendi-HLA ve yabancı antijenin kombine halini taklit eder böylelikle TCR’ler ile başarılı bir şekilde bağlanırlar. Bu arada donör dendritik hücreleri, gratft ile birlikte “pessenger” lökositler olarak gelirler, ve greftten yuvalarına yani alıcı lenf nodlarına geçerler. Lenf nodlarında alıcı T hücreleri donör APCleri’nce sunulan yabancı MHC ve peptidlere yanıt verirler ve prolifere olurlar. Bu aktive olmuş alıcı hücreler daha sonra süzülerek grefte geçerler ve bozulmakta olan greftin biyopsisi sonucunda kolaylıkla gözle görülebilen red süreçlerini başlatırlar. İndirekt tanıma yolu ile oluşan yanıt, donör antijenlerinin alıcı APCleri tarafından işlenmesini ve sunulmasını gerektirir. Bu hem lenf “pessenger” lökositlerce işgal edilen alıcı lenf nodlarında gelebilir hem de greft antijeninin alıcı APCleri tarafından çıkarılan, geri alınan ve işlenen greft sitlerinde meydana gelebilir. Direkt yol grefte karsi verilen ilk yanıtlarda baskındır, indirekt yolun ise zaman geçtikçe red sürecinin sürmesinde ve yolcu lökositlerin bir uyarı olarak yok olduğu süreçte önemli olduğu var sayılmaktadır. Alloantikor yanıt: Transplantasyonun bir sonucu olarak, aktive edilmiş yardımcı T hücreleri B hücreleri ile etkileşime geçebilirler ve onları spesifik donör HLA antijenlerine yönelik alloantikor üretmeleri için stimule ederler. Transplantasyon sonrası bu tip alloantikorlar saptanması eşlik eden hücresel red yanıtının bir işaretidir. Transplantasyonun oluşturduğu uyarıya ek olarak HLA antijenlerine karşı immün yanıtlar, lökosit içeren kan transfüzyonu ile gelen HLA alloantijenlerine maruz kalma ve hamilelik gibi durumlarda oluşur. Birden fazla transfüzyon alan hastalar ve bazı multipar kadınlar HLA antijenlerine bağışıklık kazanabilirler, ve antikorlar ile spesifik HLA antjenleriyle etkileşime giren aktif T hücre klonları üretirler. Transplantları başarısızlıkla sonuçlanan hastalarda reddedilen greftin HLA antijenlerine karşı yüksek düzeyde antikor üretilmektedir. Potansiyel bir alıcı tarafından antikorlar oluşturulduğunda sensitizasyon (hassasiyet) meydana gelir ki bu da uygun bir organ donörü bulmada engel oluşturur. Hastanın sensitize olduğu belirli HLA antijen/leri içeren bir organın transplantasyonu hiperakut red ile sonuçlanabilir. Bu süreçte alıcı antikorları ile donör antijenlerinin oluşturduğu kompleksler anında greft damarlarında koagülasyonu tetikler, bu da grefte ve greft içindeki kan dolaşımının blokajı ve kesilmesi ile sonuçlanır ve böylelikle greft hızla yok edilir. Böbrek, kalp ve pankreas transplantasyonu bekleyen sensitize hastalar için önceden oluşmuş alloantikorlara hedef antijenlere sahip olmayan donörlerin seçimi kesin şarttır.Yabancı HLA antijenleri immün reddi tetiklediklerinden, alıcı ve verici arasında HLA antijen uyumunun sağlanması transplant başarısı için etkin bir stratejidir. Prof. Dr. Mahmut Nezih Çarin İstanbul Tıp Fak. Tıbbi Biyoloji ABD, Transplantasyon Ünitesi KAYNAK: lokman.cu.edu.tr/anestezi/v_cag/new_page_2.htm

http://www.biyologlar.com/transplantasyon-ve-immun-yanit

Mendel Yasaları

Avusturyalı bir papaz olan Gregor Mendel 'in genetik ilmiyle ilgili olarak bulduğu biyoloji kanunları. Manastırın bahçesinde bezelye leri birbirleriyle çaprazlama|çaprazlayarak (eşleştirerek) kalıtım için ilgi çekici sonuçlar buldu. Bugün bu sonuçlar Mendel kanunları adıyla anılmaktadır. Çalışmalarını yaptığı dönemde kromozom ve genlerin varlığı bilinmemesine rağmen, özelliklerin "faktör" adını verdiği birimlerle nesilden nesile aktarıldığını söyledi. Bugün bu birimlere, gen denmektedir. Bahçe bezelyeleriyle yıllarca yapmış olduğu çalışmalarının sonuçlarını 1865'te yayınladı. ''Bitki Melezleri Üstüne Denemeler'' isimli eseriyle genetik|genetiğin kurucusu olarak kabul edildi. Mendel'in en önemli deneylerinin konusu bezelye idi. Adi bezelye tanelerinin bazıları düz yuvarlak, bazıları buruşuktur, bazı taneler sarıyken, diğerleri yeşildir, bazı bezelye bitkileri uzun, bazıları kısadır. Bu bitkileri düzenli tozlaşmalara tabi tutan Mendel, yukarıdaki özelliklerin dölden döle nasıl aktarıldığını göstermiştir. İki özelliğin bir araya gelmesi sonucunun bir karakteristik ortalaması olabileceği düşünülebilir. Bazı saf karakterlerin birleşmesinden, gerçekte de bu sonuçlar alınabilir; ama Mendel'in deneylerine göre, iki saf karakterin çaprazından, mesela uzunluk ve kısalıktan melez uzunlar çıkmaktaydı. Uzunluk karakteri, kısalık karakterine baskın olduğundan sonuçta melez bireyler uzun görünümdeydi. Bu tip iki uzun melezin çaprazı sonucunda ise, % 25 oranında saf uzun, % 25 saf kısa, % 50 melez uzun çıkmaktaydı. İki eş saf özellik çaprazlandığında, sadece bu saf özellik ortaya çıkmaktaydı. Mendel kanunlarının esası buna dayanmaktaydı. Mendel'in bahçe bezelyeleri ile deneyleri Mendel bahçe bezelyeleriyle yaptığı çaprazlamalarda bazı belirli özelliklerin değişmediğini tesbit etti. Bezelyelerin bir kısmı kısa ve çalı tipli (bodur) olduğu halde, bazıları uzun ve tırmanıcı idiler. Yine, bazıları sarı tohum ürettiği halde, bir kısmı yeşil tohum üretirdi. Bazıları renkli çiçeklere sahip olduğu halde, bazıları da beyaz çiçek ihtiva ederdi. Mendel bahçe bezelyelerinin topu topu yedi özelliğinin değişmediğini keşfetti. Ayrıca bezelye çeşitlerinde özelliklerin nesilden nesile kendi kendilerine sürdürdükleri tozlaşma sayesinde korunduğunu gördü. Melezleme tozlaşmasında ise çiçeğin erkek organlarından diğer bitkinin dişi organına çiçek tozu ( polen ) aktarılarak kolaylıkla üretilmekteydi. Farklı yedi özellik (uzunluk, kısalık, sarı tohum, yeşil tohum vs.) görüldüğünden ve melezleme tozlaşması kolaylıkla icra edildiğinden Mendel'in seçtiği konu idealdi. Onun ilk işi, kendisinin takip ettiği ve anne babadan evlatlara devamlı aktarılan yedi özelliği, olsa da olmasa da keşfetmekti. Mendel farklı bitki çeşitlerinin her birinden tohumlar toplayarak onları bahçesinde fidan olarak dikti. Deneylerle ortaya çıkan yedi özelliğin zürriyet meydana getirmede ebeveynlerden (anne babadan) evlatlara aktarıldığını göz önüne almıştı. Bezelye çiçekleri, ancak kendini dölleyebilecek bir yapıya sahip olduğundan saf soylarını devam ettirmeye müsaittir. Mendel ilk deneylerinde bezelyelerin arı döl olup olmadığını araştırmaya başladı. Bunun için aynı bitkiyi birkaç defa arka arkaya tozlaştırarak birçok döl elde etti. Her dölde elde ettiği bireyleri birbirine ve ebeveynlerine benzeyip benzemediklerine göre ayırdı. Böylece özellikleri farklı yedi saf döl elde etti. Bu özelliklerin herbirine saf karakter adını verdi. Mendel'in Dominantlık (Baskınlık) Kanunu'nu keşfetmesi Mendel'in bundan sonraki işi, iki farklı karakterli bitkiyi tozlaştırdığında ne olacağını görmekti. Buna uygun olarak bir uzun ve bir kısa ebeveyn bitki seçti. Uzunundan çiçek tozu alarak kısanın dişicik borusunun üzerine serpti. Kısa bitkide tohumlar olgunlaştığında çaprazlamanın sonucunu keşfetmek için tohumları ekti. Acaba yeni bitki kısa ebeveyne mi, uzun ebeveyne mi benzeyecekti? Yoksa her iki ebeveynin karakterinin tesiriyle orta uzunlukta mı olacaktı? Üreyen fidanların hepsinin, çaprazlamayı yapmak için çiçek tozu aldığı bitkiler gibi uzun olduğunu gördü. Mendel'in ikinci adımı, hangi bitkinin farklılığa sebep olduğunu bulmaktı. Çiçek tozunu kullandığı mı, yoksa üretimde tohumlarını kullandığı bitki mi? Buna uygun olarak tozlaşma işlemini ters tatbik ederek polen için kısa bitkileri, tohum üretimi için de uzun bitkileri kullandı. Sonuçlar önceki gibi olup bütün yavru bitkiler uzun meydana gelmişti. Mendel sonra diğer karakterleri çaprazlayarak deneyler yaptı. Sarı tohumlu bitkilerle yeşil tohumlu bitkileri çaprazladı. Çaprazlamanın birinci dölünde (F1 dölünde) hepsinin sarı tohumlu olarak ürediğini gördü. Bunun gibi yuvarlak tohumlu türlerle buruşuk tohumluların çaprazlamasından yuvarlak tohumlular üretti. Mendel yedi farklı karakteri tahlil edene kadar çaprazlama deneylerini tekrar etti ve şaşırtıcı sonuçlar elde etti. Çaprazlama döllerini dikkatle takip ederek birinci çaprazlamada kullandığı ebeveyn bitkileri "P" olarak adlandırdı. Adı geçen dölün çaprazlama sonucuna (ürününe) F1 olarak ad verdi. F1 ilk evladı temsil ediyordu. İki uzun bezelyenin F1 döllerinin çaprazlamasıyla, F2 dölünü (torunları) üretti. Üretimde önceki yolu takip etti. Her ikisi de uzun olan iki F1 bitkisi seçti. Onları çaprazlayarak tozlaştırdı ve F2 dölünü vermesi için tohumları dikti. Bu çaprazlamanın sonuçları gayet dikkat çekiciydi. Bitkilerin bazıları uzun olmasına rağmen diğerleri ise kısaydı. İkisi arası uzunlukta (orta boy) hiçbir bitki meydana gelmemişti. Üretilen bitkilerin 3/4'ü uzun, 1/4'ü ise kısa idi. F2 dölünde kısa bitkilerin tekrar ortaya çıkışı Mendel için büyük bir anlam taşımaktaydı. Demek ki F1 bitkileri görünmeyen kısalık karakterine sahipti. Diğer karakterlere sahip olan F1 neslinin çaprazlamalarıyla da aynı sonuçlar elde edildi. Sarı tohumlu ile yeşil tohumlu ebeveyn bitkileri (P) birbirleriyle çaprazlandığında F2 dölünde 3/4 oranında sarı ve 1/4 oranında yeşil bezelyeler üredi. Mendel bu sonuçlardan "''Dominantlık Kanunu''"nu kurdu. Mendel'in ikinci kanunu olarak bilinen Dominantlık (Baskınlık) Kanunu açık bir ifade ile şöyle tanımlanabilir: "Aynı genetik yapıya sahip iki benzer melez çaprazlandığında meydana gelen dölde, ana-babadan gelen karakterler belirli oranlarda (baskın karakter % 75, çekinik % 25) ortaya çıkar." Mendel'in ilk kalıtım kanunu: Uzun bezelyelerin kısalarla melezlenmesinden (çaprazlanmasından) uzun F1 nesli üredi ve kısa bezelyeler F2 dölünde tekrar ortaya çıktılar. Mendel, karakterlerin meçhul faktörler tarafından kontrol edildiğini ileri sürdü. Bugün bu faktörlere " gen " denilmektedir. Mendel bu temel üzerine kalıtımın birinci kanununu yani Eştiplilik = İzotipi Kanunu'nu kurdu. Eştiplilik (İzotipi) Kanunu Bu kanun, çeşitli kalıtsal karakterlerin faktörleri (genler) tarafından kontrol edildiğini ve bu faktörlerin çiftler halinde bulunduğunu ifade etmektedir. Mendel'in yaşadığı zamanda gen ve kromozomlar bilinmediği halde onun "Eştiplilik Kanunu" bugün genetiğin temel kurallarını meydana getirmektedir. Eştiplilik (İzotipi) Kanunu açık bir ifade ile şöyle tarif edilebilir: "Birer karakteri farklı iki saf ( homozigot ) ırk çaprazlandığı zaman meydana gelen F1 dölünün bireylerinin hepsi melez ve birbirine benzer olur." Uzun saf bezelye ile kısa saf bezelyelerin çaprazlanmasından % 100 uzun melezler meydana gelir. Mendel uzun F1 dölü bitkilerinin saf uzun ebeveyn bitkileri gibi olmadıklarını ortaya çıkardı. Bu bezelyeler görünmediği halde kısalık faktörünü taşımaktaydılar. Bu faktör bir sonraki dölde tekrar ortaya çıkacaktı. Bu muhakeme, onun kalıtımın ikinci kanununu, yani Baskınlık (dominantlık) Kanunu'nu keşfetmesine öncülük etti. Bu kanuna göre, çiftler halinde bulunan faktörlerden (genlerden) biri diğerini maskeleyebilir veya varlığını göstermesine mani olabilir. Baskınlık (Dominantlık) Kanunu Bahçe bezelyelerinde olduğu gibi, uzunluk bir çift gen tarafından kontrol edilir. Uzunluk geni kısalık genine baskındır ( dominant tır). Kısalık genine çekinik ( resesif ) denir. Mendel'in çaprazlamalarında ebeveynin biri saf uzun olup, her iki uzunluk genine de sahipti. Diğeri de saf kısa olup, her iki kısalık genine sahipti. Bunların çaprazlama ürünü olan F1 dölünün bireylerinin hepsi uzun, fakat melezdiler. Bunlar bir uzunluk ve bir kısalık geni taşımalarına rağmen, uzunluk geni kısalık genine baskın olduğundan uzun olarak ortaya çıktılar. Mendel, çalışma sonuçlarını tablolar halinde göstermeyi başardı. Günümüzde her karakter en az iki genle ifade edilir. Genetik te her gen bir harf ile temsil edilir. Dominant (baskın) genler büyük harfle, resesif (çekinik) genler aynı harflerin küçükleri ile ifade edilir. Eğer uzunluğu T harfiyle gösterirsek, saf uzun bitki TT olarak yazılacaktı ve uzunluk karakterinin her iki geni böyle gösterilecekti. Büyük T, uzunluğun zıt karakter olan kısalığa baskın olduğunu ifade etmektedir. Aynı usulle, küçük t, kısalığı temsil etmektedir ve yalnız başına saf kısa, tt olarak gösterilecekti. Bütün vücut hücreleri diploit sayıda (2N) kromozom ve gen ihtiva etmelerine rağmen, gamet ler (cinsiyet hücreleri) mayoza uğrayarak kromozom ve gen sayılarını yarıya indirgediklerinden haploit sayıda (N) kromozom ve gen taşırlar. İnsanın vücut hücrelerinde 23 çift (46 adet), gametlerinde ise 23 adet kromozom bulunur. Sonuç olarak bezelyenin tohum taslağındaki yumurta hücresi ve polen tanesinden meydana gelen sperm çekirdekçiği her karakter için yalnız birer gen taşırlar. Saf uzun bezelye bitkisinde, yumurta ve sperm çekirdekleri olgunlaştığında biri T'nin birini, diğeri de diğer T'yi alır. Aynı şekilde bütün vücut hücrelerinde tt genlerini taşıyan saf kısa bitkinin genleri mayoz sonucu t ve t'ye bölünerek şekillenen yumurta veya spermlere geçerler. Mendel Ayrılma Kanunu adı ile kalıtımın üçüncü kanununu kurdu. Bu kanuna göre, bir melezde bulunan gen çiftleri birbirinden bağımsız ayrılarak gametlere gider. Bu demektir ki, gen çiftinin bir tanesini bir gamet, diğerini ise başka bir gamet taşır. Ayrıca bir melezde, dominant genle beraber bulunan resesif gen değişmez. Eğer melezin sonraki döllerinde, iki resesif bir araya gelirse resesif karakter tekrar ortaya çıkar. Mendel çaprazlamalarının çizim metodları: Mendel'in bezelyelerle olan melezleme çalışmaları, dama tahtasına benzeyen tablolarla daha açık olarak gösterilebilir. Gametler, üst ve dikey karelere yerleştirilir. Gametlerin birbiriyle eşlenmesi, diğer karelerde işaretlenir. Tt meydana gelen uzun melez bitkileri ifade eder. T (uzunluk) geni, kısalık (t) genine dominant olduğundan, bireyler uzun olarak gözükür. Eğer Tt melezleri birbiriyle çaprazlanırsa gen birleşimlerinin dört ihtimali rahatlıkla tabloda işaretlenebilir. Durum '''tablo 2'''´de gösterildiği gibi olur. Melez ebeveynlerden T ve t genlerinin birleşme ihtimallerinin sonucunda, F2 dölünde: 1/4'ü saf uzun TT, 1/2 melez uzun Tt ve 1/4'ü saf kısa tt yavru meydana gelir. Mendel'in uzun ve kısa bezelyeleri çaprazlayarak elde ettiği aynı sonuçlar kobay ların renk verasetinde de ispatlandı. Bu durumda siyah renk, beyaz renge dominanttır. Saf bir siyah kobay BB ile, saf bir beyaz kobayı bb çaprazladığımızda ne olacağını görelim. F1 dölünde bütün bireyler (yavrular) siyahtır. Genetik yapılarında ebeveynlerden farklılık arz ederler. Çünkü onlar melez siyahlar Bb'dir. İki melez çaprazlandığında F2 dölü 1/4 oranında saf siyah BB, 1/2 oranında melez siyah Bb ve 1/4 oranı saf beyaz bb olarak gözükebilir. F1 dölünün iki melezi Bb arasındaki çaprazlamadan ortaya çıkan F2 dölü, dağılım gösterir:

http://www.biyologlar.com/mendel-yasalari

Farklılaşma ve Polimorfizm

Kanser; hücre çoğalması, farklılaşması ve ölümü arasındaki dengenin bozulmasıyla oluşur. Hücrede son farklılaşma; hücre döngüsünün durması ve hücreye özgü genlerin ifade edilmesiyle ilgili programının aktivasyonuyla sağlanır. Birbiriyle zıt bir program ilişkisi içinde olan hücresel büyüme ve farklılaşmanın genetik programı bağlaşıktır54. Örneğin kas hücrelerinin oluşması sırasında, çoğalan myoblastlar MyoD genini ifade eder, ancak büyüme faktörlerince zengin ortamda farklılaşma yoktur. Ortamdan büyüme faktörleri uzaklaştırılınca myojenik farklılaşma başlar. p21 ve p16 gibi negatif hücre döngüsü düzenleyicileri MyoD transkripsiyon aktivitesini sağlarken, büyüme faktörlerinin varlığında pozitif düzenleyici siklin D1’in aşırı ifade edilmesi MyoD aktivitesini engeller6. mRNA’sı kesim sonrası beş ekzondan oluşan siklin D1’in, intron kesim bölgesindeki SNP’den dolayı dört ekzondan oluşan polimorfik varyantı siklin D1b, bazı farklı işlevlere sahip olabilmektedir55. Siklin D1’in androjen reseptör işlevini etkilediği ve prostat kanserinde epitel hücrelerin transformasyonuna neden olan bazı transkripsiyonel düzenlemelerin ve hücresel çoğalmanın kontrolünü elde tuttuğu gösterilmiştir56. Melanokortin-1 reseptörü (MC1R)’in bazı varyantlarının melanozom olgunlaşmasının tamamlanamamasına neden olduğu ve deri kanser riskini arttırdığı öne sürülmektedir57. Yeni hipotezlerle en azından bazı kanserlerin, normal dokulardaki farklılaşmaya benzer şekilde, farklılaşma yeteneğini sürdüren kök hücrelerin neoplastik transformasyonundan oluşabileceği öne sürülmekte ve bu hücreler “kanser kök hücreleri” olarak isimlendirilmektedir. Buna alternatif bir hipotezle de kanser kök hücrelerinin, farklılaşması geriye dönmüş (dedifferansiyasyon) ve kök hücre özelliğini yeniden kazanmış hücrelerden ya da asıl kökenden değil farklı embriyonal kökenden gelerek transformasyona uğramış hücrelerden (trans-differansiyasyon) geliştiği öne sürülmektedir58,59. Kök hücre farklılaşmasının son aşaması, olgunlaşma işleviyle ilgili sürecin son bölümünü kapsar. Farklılaşma tamamlanamamışsa ya da hatalı farklılaşma olmuşsa hücre, apoptozisle ortadan kaldırılır. Apoptozisin gerçekleşmediği durumlarda ise bu hücrelerin neoplastik dönüşüme uğramas olasılığı vardır. Retinoik asit (RA) ve reseptörleri (RAR), akciğerde hücre çoğalması60 ve normal epitelyal farklılaşmanın devamlılığı için gereklidir. RA etkisini, asıl olarak çekirdek reseptör gen ailesinin üyeleri - RAR ve retinoid X reseptörleri - aracılığıyla ortaya koyar61. RA, insan akut promyelositik lösemi hücrelerinin de terminal farklılaşmasını sağlar ve bu hastalığın tedavisinde kullanılır62. RAR, ligand-bağlı transkripsiyon faktörü olarak işlev yapar. RAR’ın birden fazla promotörü kullanabilen ve alternatif intron kesimiyle oluşturduğu ve her biri farklı genden ifade edilen α, β, and γ izotipleri ve bunların da birkaç izoformları bulunur. Diğer çekirdek reseptörleriyle de heterodimerler oluşturarak DNA’ya bağlanabilirler. Bu sinyal moleküllerindeki çeşitlilik ve bunların DNA’ya bağlandıkları özel hedef bölge polimorfizmleri, denetledikleri genlerin ifade edilmelerinde de rol oynayabilmektedir61,63. Örneğin RAR genlerinin epigenetik metilasyonla ifade edilmesinin engellenmesi bazı karsinomların oluşmasında etkili olabilmektedir64-66. Bazı çevresel kimyasal maddeler (organoklorürlü kimyasallar, klorürlü pestisitler, poliklorürlü bifenil ve dibenzo bileşikleri), meme kanserinin başlamasında rol oynayabilmektedir. Bu bileşikler hücre farklılaşmasında rolü olan östrojenin özelliklerini taklit etmektedir67,68.

http://www.biyologlar.com/farklilasma-ve-polimorfizm

DNA Onarımı ve Polimorfizm

DNA onarımında görev alan OGG1, ERCC1, XRCC1, XRCC2, XRCC3, XPC, XPD, XPF, BRCA2, MRE11, NBS1, Ku70/80, LIG4, RAD…vb. genlerin polimorfizmleri, proteinlerin işlevini ve bireylerin hasarlı DNA’yı onarma kapasitesini değiştirebilmektedir. Eksik onarım kapasitesi de genetik kararsızlığa ve dolayısıyla kanser oluşumuna neden olabilmektedir69. Ancak, DNA onarım genlerindeki polimorfizmler tek başlarına kanser risk çeşitliliğini açıklamak için yeterli değildir. Kanserle ilişkili somatik mutasyonların birikimi sadece DNA onarımındaki kusurdan değil, hücre ölüm mekanizmasının hasarlı hücreleri elimine etme yeteneğinin azalmasından da kaynaklanır70. DNA onarımı, genomik kararsızlık ve apoptozis birbirleriyle etkileşen olaylar olduğundan, her biri kanserin patofizyolojisinde çok önemli role sahiptir. Bir çalışmada DNA onarım mekanizmalarından (işlergelerinden) biri olan nükleotit kesme-çıkarma onarımında görev alan XPC (Asp312Asn) ve XPD (Lys751Gln) genlerinin polimorfizmleri ile akciğer kanseri arasında bir ilişki bulunurken, baz kesme-çıkarma ve çift zincir kırıklarının tamirlerinde görev alan XRCC1 (Arg399Gln) ve XRCC3 (Thr241Met) gen polimorfizmleri ile hastalık arasında ilişki bulunmamıştır71. Diğer bir çalışmada, XPD kodon 312 heterozigot ve homozigot A allelinin prostat kanseri için belirteç olabileceği önerilmiştir72. Bir başka çalışmada, XRCC1 ve XPD genlerindeki  polimorfizmlerin kolorektal kanser ile ilişkili olduğu bulunmuştur73. 507 meme kanserli hastada XRCC3 Thr241Met polimorfizmini araştıran bir çalışmada, 241Met taşıyıcılarında meme kanserine yakalanma riskinde artış olduğu belirlenmiştir74. Yeni tanı almış mesane kanserli 215 hasta ile yapılan bir araştırmada, XPD 156-22541C>A ve 751-35931A>C polimorfizmlerinin mesane kanserinin etiyolojisinde önemli rolü olduğu ortaya konmuştur75. Hepatosellüler karsinomlu hastalarda, XRCC1 AG ve GG genotiplerinin homozigot olan AA genotipli hastalara göre, p53 geninin 249. kodonundaki (hot spot) mutasyon frekansında artışa neden olabileceği gösterilmiştir76. Diğer bir çalışmada da, XPC 499val alleli taşıyıcılarının, nazofarengeal karsinoma yakalanma riskinde artış olduğu belirlenmiştir77. RAD51 135G>C polimorfizminin özellikle 50 yaş altındaki kadınlarda ailesel meme kanseri riskini arttırabileceği saptanmıştır78. DNA onarım genlerindeki genetik polimorfizmlerin kanser gelişimde etkin rolü olduğu bilinmesine rağmen, bu polimorfizmlerin infertiliteyi de etkileyebileceğine ilişkin bilgiler de vardır. Yapılan bir çalışmada, XPD 751 glutamin allelinin azospermi için risk alleli olduğu ve XRCC1 194 Arg/Arg ve 399 Arg/Arg genotipleri ile beraber değerlendirildiğinde de azospermiyi 5.100 - 3.064 kat arttırdığı belirlenmiştir79.

http://www.biyologlar.com/dna-onarimi-ve-polimorfizm

Apoptozis ve Polimorfizm

Programlı hücre ölümü olan “apoptozis”, hem hücresel homeostazisin devamlılığı hem de hücre çoğalması ve farklılaşmasında çok önemli olan hücre eliminasyonu için gerekli fizyolojik bir işlemdir. Apoptozis, nekrozis, otofaji, anoikis ve mitotik katastrof gibi programlı veya indüklenen hücre ölümleri tanımlanmış olmasına rağmen, içlerinde sistematik olarak en çok ve en iyi çalışılanı, apoptozisin moleküler işlergesi olmuştur. Apoptozis, genetik işlergelerle düzenlenmekte ve malign hücrelerde bu işlergelerin denetimi bozulabilmektedir. Bu da kontrolsüz hücre büyümesine ve tümör gelişimine neden olmaktadır. Apoptotik işlergelerde rolü olan pro-apoptotik ve antiapoptotik genlerin klonlanmış olmasına ve apoptotik yolaktaki olası fonksiyonlarının araştırılmasına rağmen80 bu genlerin önemi ve kanser gelişimindeki ürünleri halen tam olarak ortaya konamamıştır81. Apoptozis; iyonlar (Ca+2), moleküller (seramid), genler (c-myc), proteinler (p53) hatta organeller (mitokondri) gibi çok sayıda aracıyla düzenlenir82. Normal hücre ve tümör hücresi arasındaki gen ve protein ifade edilmesindeki artış veya azalışların (ifade farklılıklarının), tümörün başlangıç aşamasında mı yoksa ilerleyen evrelerinde mi gerekliliği halen bilinmemektedir81. Apoptozisin azalması tümörigenezis ile ilişkilendirildiği için, apoptozisin negatif düzenleyici genlerinin onkogenik potansiyeli olabileceği, pozitif düzenleyici genlerinin de tümör baskılayıcı genler gibi davranabileceği öngörülmektedir. Birçok tümörde anti-apoptotik proteinler, yüksek düzeyde pro-apoptotik moleküllerle beraber bulunur (aktif kaspaz-3 ve kaspaz-7 gibi)81. İlk bakışta çelişkili görünen bu durum 30’dan fazla proteini içeren ve bir kısmı apoptozisi indükleyen bir kısmı da baskılayan Bcl-2 ailesi ile açıklanabilir. Bu ailenin üyeleri kendi aralarında homo veya hetero-dimerler oluştururlar. Hücrenin sağkalım durumu bu ailenin pro-apoptotik ve anti-apoptotik üyelerinin göreceli oranına bağlıdır. Bu heterodimerlerden biri olan Bcl- 2/Bax’ın birbirine oranının bazı hematolojik malignensilerde prognostik değer taşıdığı rapor edilmiştir83,84. Bu oranın azalması apoptozisin aktivasyonu, artması ise apoptozisin inhibisyonu ile sonuçlanmaktadır. p53 geninin Pro72 polimorfizmi, apoptozisilişkili SNP’dir. Ancak, karsinogenezisde apoptozis ile ilgili olabileceği düşünülen genler/proteinler de vardır (Şekil 2). Tümör nekroz faktörü- α (TNF-α), en çok çalışılan ve bazı önemli kanser tipleri ile ilişkili olduğu belirlenen sitokinlerden biridir85. FAS, TNFRSF6/CD95/APO-1 olarak bilinen apoptotik sinyal yolağında yer alan hücre yüzey reseptörü, promotör bölgesinde yer alan SNP’lerin kanser duyarlılığında rolü olabileceği belirtilmiştir86,87. FAS -1377 G/A, -670A/G ve FAS ligand (FASL) -844T/C polimorfizmleri bu genlerdeki transkripsiyonel aktiviteyi değiştirebilmektedir. Ölüm yolağındaki FAS ve FASL genlerindeki polimorfizmlerin özefagus skuamöz kanseri geliştirme riskini arttırdığı gösterilmiştir87. p73 geni, p53 geninin hücre döngüsü kontrolü, apoptozis ve hücre büyümesi gibi sahip olduğu fonksiyonları düzenleyebilir. Ekzonların bilinen kodlayıcı bölgelerinin dışında, 5′ ucunda ribozoma bağlanma işlevinden sorumlu ve 3′ ucunda da poliA kuyruğunun eklenmesinde rolü olan kodlayıcı olmayan (untranslated bölgeleri (UTR)) bulunabilmektedir88, 89. p73 genindeki bağlantı gösteren ve kodlayıcı olmayan 2. ekzonda bulunan G4C14-A4T14 polimorfizmleri baş-boyun skuamöz kanserlerinde genetik belirteç olabileceği belirtilmiştir90.Tümör nekrozis faktör, apoptozis ile ilişkili- ölüm reseptörü 4 (DR4) ve 5’e bağlanarak dışarıdan apoptotik yolağı uyaran ligandı uyarır. APO2L/TRAIL, dışarıdan apoptotik yolağı uyaran, TNF reseptör gen süper ailesinin alt grubu olan bir ailedir. APO2L/TRAIL, ikisi proapoptotik reseptörler [(DR4 veya APO2L/TRAIL R1), TRAIL-reseptör 2 (APO2L/TRAIL-R2, DR5, KILLER/DR5)], diğer ikisi de (TRID ve DcR2) tuzak reseptörler- hücre ölümünü indükleyemeyen- olmak üzere dört farklı hücre yüzey reseptörlerine eşit eğilimli olarak bağlanır. APO2L/TRAIL ile indüklenen hücre ölümü, reseptör ifadelenmesi ve bağlanması ile sınırlıdır91 Bir çalışmada, DR4 ekzon 4 G/G genotipinin mesane kanseri riskini azalabileceği öne sürülmektedir91. Hematolojik ve sindirim yolundaki kanserlerde kaspaz- 8, kaspaz-10 ve DR4 genlerinde mutasyonlar rapor edilmesine rağmen, kanser ile ilişkilendirilen bu apoptotik genlerdeki SNP’ler ile ilgili çalışma daha azdır92-96. Bu çalışmalardan birinde kaspaz-8 polimorfizminin meme kanseri yatkınlığına karşı koruyucu etkisi olduğu rapor edilmiştir96. DNA onarım ve polimorfizmi kısmında bahsettiğimiz, XPD’deki polimorfik değişim ilk başlarda DNA onarım çalışmalarına dahil edilip araştırılmıştır. Ancak, kodon 3122deki Asp/Asn (GAT/AAT) polimorfizmi, AAT homozigotları ultraviyole ile uyarılan apoptozisdeki artış ile karakterize edildiğinden, bu DNA onarım enzimindeki polimorfizm, apoptotik yolakla da ilişkilendirilmiştir97. Hücre ölüm genlerinin kodlanan bölgelerinde belirlenmiş SNP’lerin sayısının, kodlanmayan bölge ve henüz onaylanmamış gen polimorfizmleri ile artış göstereceği öngörülmektedir70. Çünkü, hastalıklardaki fonksiyonel anlamlılıkla ilişkilendirilmiş SNP’lerle ilgili bilgimiz, gelecekteki çok sayıda olgu-kontrol gruplarını içeren çalışmalarda uygun polimorfik aday genlerin seçiminde yol gösterici olabilecektir.

http://www.biyologlar.com/apoptozis-ve-polimorfizm

 
3WTURK CMS v6.03WTURK CMS v6.0