Biyolojiye gercekci yaklasimin tek adresi.

Arama Sonuçları..

Toplam 1289 kayıt bulundu.

Çeşitli Toprak Parametrelerinin Mikroorganizmalarla İlişkisi

1. Toprak nemi Yağmur suları topraktan yıkandıktan sonra toprak porları yeniden havayla dolar. Drenajı takiben toprak nemi, toprak partiküllerinin tutma kuvveti ile yerçekimi arasında oluşan denge sonucu daha stabil hale gelir. Gerek bitki gerekse mikroorganizmaların ideal nem koşullarını gösteren bu denge düzeyine tarla kapasitesi denir. Toprak kurudukça içerdiği nem, bitki ve pek çok mikroorganimanın yararlanamayacağı bir düzeye kadar azalır ki bu noktaya solma noktası denir. Mikrobiyal hücrelerin çoğu toprağın kuruması sırasında ölmektedir. Ancak bu koşullara dayanıklı olan türler ortamda kalabilmektedir. Mikroorganizmalar kuraklığa karşı farklı direnç ve tepki gösterirler. Örneğin Bacillus cereus mycoides optimum gelişmesini toprakta 20-40 µm su filmi kalınlığında yapabilmektedir. 2. Toprak Porları Toprak partikülleri arasındaki boşluklar yani porlar toplamı toprak hacminin hemen hemen yarısını kaplar. Bitki örtüsü ve toprağa yapılan uygulamalar toprağın por hacmini etkiler. Porların büyüklükleri topraktaki hayvan ve mikroorganizmaların gelişimi ve dağılımını etkiler. Por büyüklüğü bakteri ve aktinomiset’lerden ziyade mantarlar üzerinde daha çok etkilidir. Örneğin Pythium ultinum 2,7-200 µm por çapında vejetatif gelişmesini gerçekleştirebildiği halde eşeysel çoğalmasının 15 µm por çapında azaldığı gözlenmiştir. Mikroorganizmalar porlar içinde bulunduğu kadar partiküllerin birleşmesiyle oluşan toprak kümelerinin (agregatların) içinde de bulunabilir. Toprak agregatlarının (topak-küme) oluşumunda çeşitli türden mikroorganizmalar rol oynarlar. 3. Toprak Havası Mikroorganizmalar, toprak havasındaki gazların konsantrasyonlarının değişimine çok farklı tepkiler gösterirler. Bazı bakteriler kuvvetli anaerob olduklarından oksijen varlığında gelişemezler (Örnek: Clostridium botulinum). Bunun aksine Pseudomonas flourescens ve aktinomiset’lerin çoğu kuvvetli oksijenli koşulları tercih ederler. Toprak havasının bileşimi atmosferdekinden oldukça farklıdır. Bitki kökleri ve diğer canlıların O2 tüketip, CO2 üretmeleri nedeniyle toprak havası %0,17-0,25 arasında CO2 içerir. Halbuki havada bu oran %0,03’tür. Nemli topraklarda O2 difüzyonunun azalmasından dolayı mikrobiyal aktivitenin yoğunluğuna bağlı olarak kısa süreler için CO2 düzeyi %10’u aşabilir. Bir vejetasyon süresi içerisinde toprakta oluşan CO2 miktarı 12 000 kg/ha’dır. Bu miktarın 2/3 mikroorganizmaların, 1/3 ise bitki köklerinin faaliyeti sonucu oluşmaktadır. Toprak havası, su buharı ile doygun olup, ayrıca mikrobiyal aktivite sonucu oluşan amonyak, metan ve diğer uçucu maddeleri de içerir. Bunlar toprak suyunda çözünmüş halde de bulunurlar. Havalanmanın uygun olmadığı koşullarda, bitkilerin biyolojik aktiviteleri azaldığından azot ve kükürt bakterilerinin gelişimi engellenmektedir. Anaerob koşullarda yaşayan mikroorganizmaların metabolik faaliyetleri sonucu toprakta diğer canlılar için toksik nitelikli maddeler oluşmaktadır. Örneğin; karbon mineralizasyonu sonucu CO2 yanında çeşitli organik asitler (süt asidi, yağ asidi, limon asidi vs.) oluşmakta ve CH4, H2S gibi fitotoksik maddeler ortaya çıkmaktadır. Bu metabolitler ile oksijen yetmezliğinin oluşturduğu olumsuz koşullarda bitki kök gelişimi azalmakta ve buna bağlı su ve besin maddesi alımının azalmasından kaynaklanan gelişim bozuklukları ortaya çıkmaktadır. Bazı toprak mikroorganizmaları ise aerob olmalarına karşın düşük O2 basıncı düzeylerinde iyi gelişebilmektedir. Bu tür organizmalara mikroaerofil organizmalar denir. Topraklarda ortaya çıkan anaerobik koşullarda nitrat ve fosfatlar gibi yarayışlı besin maddeleri azalarak sülfitler ve 2 değerli indirgenmiş Fe gibi maddelerde artış görülür. Topraklarda aerobik ve anaerobik koşullar çok dar bir ayırım gösterir. Bazı durumlarda aerob metabolizmadan anaerob metabolizmaya dönüşüm görülür. Örneğin; aerob koşullarda topraklardaki selüloz ayrışması CO2 ve H2O oluşumu ile sonlanırken, anaerobik koşullarda asetik ve formik asit gibi organik asitler birikir. Bitkilerin kök bölgelerinde topraktaki yapısal bozulma nedeniyle ortaya çıkan anaerobik cepler çeşitli olumsuz etkiler yaratır. Bunlar; • Bitkilerdeki fizyolojik olaylarda O2 yetersizliği • Bitki gelişimini etkileyen faktörlerde değişim • Bitki kök bölgelerinde fitotoksik maddeler oluşturan patojen ve saprofit populasyonlarda değişim Toprak porları bloke olduğunda, kök çevresindeki aktif mikrobiyal metabolizma ya da bitki kalıntılarının ayrışması bu ceplerde O2 yokluğuna neden olur. Topraktaki organik maddeler, inorganik partiküller ve mikroorganizmaların etrafını sarar. Bu maddeler yapıştırıcı özellikte olduklarından mikroorganizmalar toprak strüktürünün ana oluşumcularıdır. Toprakta oluşan agregatlar ve bunların oluşturduğu por büyüklükleri toprak havalanmasında son derece önemlidir. Porların bir kısmı kapalı olduğu halde açık olanlar gaz difüzyonuna imkan sağlar. Suyun varlığı ve miktarı porlardaki faz oranını etkiler. Topraktaki suya dirençli agregatların artışı toprak biyokütlesinin artışına paralel olarak artar. Bakteri ve mantarlar bu özelliği artırırken Mucor heamalis gibi toprak mantarlarının hifleri agregasyonu önlemektedir. • Laterit: Tropik iklimlerde kırmızı renkli topraklar. Bol yağış ve sıcaklık nedeniyle SiO2 kaybolmakta, buna karşılık Al ve FeO2‘ler şiddetli buharlaşma nedeniyle üst horizonlarda birikmektedir. Bu topraklar granit ana maddesinden oluşur (Fe, Al ↑). • Podzal: İklimin soğuk ve yağışlı olduğu ve ölü örtünün asidik olduğu yetişme ortamlarında ölü örtü ayrışması güçleşir ve mineral toprak üstünde kalın bir organik madde tabakası oluşur. Bu tabakadaki humus asitleri ve organik asitlerle Fe ve AlO2’ler aşağı doğru yıkanır ve kül renkli bir horizon meydana gelir (Fe, Al ↓). Şist: Yaprak halinde parçalanan kaya. • Çernozyon: Kara topraklar. Yeterli nem ve uygun sıcaklık koşullarının humus oluşumu ve mineral ayrışmasını ilerlettiği fakat aşırı yıkanmanın olmadığı koşullarda oluşur. Düşük yağışlı çayır, step, preri bölgelerinin topraklarıdır. Tarla Kapasitesi: Toprak suyla doygun hale geldikten sonra toprak taneciklerinin yerçekimine karşı tuttuğu su miktarı. 4. Toprak Strüktürü Toprağı oluşturan kum, silt ve kil gibi inorganik bileşenlerin büyüklüğü mikroorganizmalar ve bitki kökleriyle ilişkilidir. Kül partikülleri büyüklük bakımından bakteriyel hücrelere benzemekle beraber çok daha küçük de olabilirler. İnorganik bileşikler Çapları (µm) Kum 50-200 Silt 2-50 Kil 2 Mikroorganizmalar Bakteri 0,5-1,0 Aktinomycetes 1,0-1,5 Mantar 0,3-10 Killer ve mikrobiyal hücreler arasında karşılıklı etkileşimler mevcuttur. Bakterilerin çoğunluğu ve kil mineralleri elektronegatif özellikler gösterirler. Toprak bakterileri sadece kil partikülleri ile etkileşim halindedir. Çünkü her ikisinin de üzerindeki yükler polarize olarak veya metal iyonları ile köprüler kurarak etkileşirler. Killer mikroorganizmalara yapıştıklarında onların aktiviteleri üzerine çok değişik etkiler yapar. 5. Toprak Reaksiyonu ve Mikroflora Toprak pH’sı besin iyonlarının topraktaki davranışları (çözünürlük, yarayışlılık, toksisite vd.) topraktaki enzimatik ve mikrobiyal reaksiyonların yönünü etkilemesi açısından en önemli toprak özelliğidir. Mikrobiyal sitoplazmanın pH düzeyi yaklaşık olarak nötraldir. Bu nedenle toprak mikroorganizmaları en iyi pH 7 civarında gelişme gösterirler. Ancak istisnai durumlarda mevcuttur. Örneğin Thiobacillus bakterileri pH 6 düzeyinde yaşayabilen asidofilik organizmalardır. Genel olarak toprak bakteri ve aktinomisetleri asit koşullara karşı mantarlardan az töleranslıdır. Mantarların pekçok türü podzal topraklar gibi asit koşullarda (pH 3) gelişebilir ve dominant florayı oluşturabilir. Topraklarda küçük partiküller çevresindeki pH koşulları toprağın genel pH’sından biraz farklı olabilir. Örneğin; negatif yüklü kolloidal kil partikülleri etraflarında H+ iyonları ve mikroorganizmalar tarafından salınan enzimleri adsorbe ederek toprak çözeltisinden daha düşük bir pH oluşumuna neden olurlar. Bunun terside olabilir. Örneğin; organik madde parçacıkları etrafında amonyağın tutulması nedeniyle bunların çevresinde pH artışı olabilir. 6. Toprak Sıcaklığı Toprak organizmaları güneş ışıması, toprak rengi, topoğrafya, yön, bitki örtüsü, toprak-su bilançosu gibi faktörlere bağlı olarak ortaya çıkan sıcaklık faktörü ile yakından ilgilidirler. Doğada cereyan eden bütün biyolojik, kimyasal ve fiziksel olaylar belirli enerji dönüşümleri sonucunda meydana gelir. Belirli sıcaklık derecesi özellikle biyolojik varlıkların optimum gelişmesi için gereklidir. Toprakta yaşayan bazı bakteri türlerinin aktiviteleri sıcaklıkla yakından ilgilidir. Örneğin; azot döngüsünde nitrifikasyon bakterilerinin optimal faaliyetleri 25-30 0C arasında olup, bu derecelerin 4,5-5 0C altına düşmesi ile aktiviteleri durur. Toprak faunasının da aktivitesi ve gelişmesi toprak sıcaklığıyla yakından ilgilidir. Toprak mikroorganizmaları optimum gelişme bakımından mezofil (gelişme optimumu 25-37 0C) karekterdedir (psikrofil 5 0C’nin altında, mezofil 25-37 0C, termofil 55-65 0C optimum olanlar). Ancak çok değişik tiplerine de rastlanır. Örneğin birçok topraktan termofilik organizmaları izole etmek mümkün olabildiği gibi eksterm düzeyde soğuk topraklarda mezofilik organizmalara rastlamak mümkündür. Toprak sıcaklığı mikrofloranın genel metabolik aktivitesine belirgin bir etki yapmakla beraber çoğunlukla öldürücü etki yapmaz. Toprak organizmalarının toprak profilindeki durumları ve toprak üstündeki iklim koşulların etki derecesini belirleyen faktörlerdir. Canlılar Alemi Hayvanlar Bitkiler Protistler Prokaryotlar Ökaryotlar Bakteriler Algler Mavi Algler Mantarlar Protozoa’lar Toprak Organizmaları Toprak mikroorganizmalarının tümü edafon olarak bilinir. Organizasyon niteliklerine bakılmaksızın toprak biotası aşağıdaki bölümlere ayrılabilir; • Mikrobiota: Algler, protozoa, mantar ve bakteriler. • Mezobiota: Nematod’lar, küçük arthropod’lar ve enchytroeid (saksı) kurtları, kollemboller. • Makrobiota: Yer solucanları, yumuşakçalar, büyük enchytroeid’ler ve arthropod’lar. Toprak Canlıları (Edafon) Toprak Faunası Toprak Florası Protista (Mikroorganizmalar) Çok Hücreliler Tek Hücreliler (Metazoa) (Protozoa) Yüksek Protistler Alçak Protistler (Eukaryotlar) (Prokaryotlar) Mantar Alg Bakteri Mavi ve Algler Aktinomisetler Toprak mikroorganizmaları içinde bakteri ve mantarlar en ilgi çeken organizmalardır. Bunun nedeni karasal ekosistemlerdeki enerji akışı ve besin maddesi aktarımının büyük kısmının bu organizma gruplarınca gerçekleştirilmesinden kaynaklanmaktadır. Mikroorganizmalar biyolojik organizasyonları nedeniyle bitki ve hayvanlardan ayrı bir grup halinde protista adı altında toplanmıştır. Bu grubun üyeleri tek hücreli veya sönositik (yaşam döngüleri sırasında hücresel strüktüre sahip olduğu dönemler gösteren çok çekirdekli fakat çok hücreli olmayan) veya çok hücreli olduklarında olgun dönemlerindeki bitki ve hayvan dokularının özelliklerinden farklılık gösteren canlılardır. Protista’ların Sınıflandırılması Bakteriler Bu organizmalar topraklarda sayı, faaliyet ve ekolojik etkileri bakımından en önemli grubu oluşturur. Topraktan izole edilen bakteriler iki ana grup altında toplanır; a. Yerli organizmalar (otokton, indigenous) b. Dıştan gelen organizmalar (allokton) Yerli populasyonlar komunitelerin biyokimyasal işlevlerine katılan, uzun süre metabolik aktivite göstermeksizin dirençli formlar halinde toprakta barınabilen türlerdir. Allokton türler ise komunite faaliyetlerine önemli düzeyde katılmazlar. Bu organizmalar hava hareketleri, yağış sonucu veya hayvan gübresi, atık çamurlar ve hastalıklı dokular yoluyla ortama girerler ve bir süre ortamda bulunabilirler. Hatta kısa bir süre için çoğalabilirler fakat asla önemli bir ekolojik işlevi olan dönüşüm (transformasyon) ve interaksiyon (etkileşim) göstermezler. Yerli populasyonlar arasında bulunan bazı türler, hızlı yararlanılabilen organik besin maddeleri ilave edildiği zaman hızla gelişen organizmalardır. Bu nedenle toprak uygulamalarına karşı süratle tepki verirler. Bu grup besin kaynakları azaldığı zaman, sayılarını süratle azaltırlar. Diğer bazı yerli populasyonlar ise toprağın organik maddesini, dirençli bitki dokularını ve diğer mikrobiyal hücreleri besin maddeleri daha az yararlanılabilir olduğundan bu tür organizmalar yavaş gelişirler. Bakteriler, sistematik veya taksonomik esaslara göre sınıflandıralabileceği gibi fizyolojik özelliklerine (beslenme, metabolik özellikleri, enerji kaynakları) ve hücre yapısına göre de sınıflandırılabilir. Morfolojik olarak çubuk şeklinde olanlar en yaygın olanlardır (spiral ve yuvarlak “cocci” olanların yanında). Çubuk bakterilerin bazıları uygun olmayan koşullara dirençlidir. Böyle durumlarda yaşam döngülerinin bir kısmını spor olarak geçiririler. Özellikle çubuk bakterilerinin oluşturdukları endospor bu çevre koşullarına karşı son derece dirençlidir. Bergey’e göre bakterilerin Shizomycetes sınıfına dahil edilirler. Bu sınıfın 13 ordosu bulunmasına rağmen toprakta en çok rastlananları çoğunluk 3 ordo içinde toplanır; • Pseudomonales • Eubacterioles • Myxobacteriales 1. Pseudomonales Bu grup bakterilerin bir kısmı organik besin maddelerinden yararlanmaksızın karbon gereksinimlerini CO2 özümlemesi ile sağlarlar. Bu işlevde gereken enerji inorganik bileşiklerin oksidasyonuyla sağlanır (kemoototrof veya kemolitotrof). Ototrof yaşayan nitrifikasyon bakterilerinin bir kısmı amonyağı nitrite, diğer bir kısmı da nitriti nitrata oksitleyerek enerji sağlarlar. Hydrogenomonas’lar ise molekül hidrojeni suya çevirerek, kükürt bakterileri de elementel kükürt veya kükürtlü hidrojeni sülfatlara veya sülfirik aside okside ederek yaşarlar. Bu ototrof organizmaların yanında bu ordo içinde organik maddelerin ayrışmasında rol alan Pseudomonas’lar biyokimyasal döngüde önemli bakterilerdir. Bunlar gram negatif, polar kamçılı çubuklardır. Bazı tipleri denitrifikasyonu anaerobik solunum amacı olarak kullanılır. Bu ordoda ayrıca metanı karbon kaynağı olarak kullanan Methanomonas, selülozu ayrıştıran Cellvibrio ve kemolitotrof olarak yaşayan Hydrogenomonas cinsleri sayılabilir. 2. Eubacteriales Bu ordo çok önemli toprak bakterilerini içeren familyaları kapsar. Bu familyalar içindeki en önemli cinsler; Azotobacter, Rhizobium, Agrobacterium, Chromobacterium sayılabilir. Azotobacter gram negatif, kok ya da çubuk şekilli serbest yaşayan bakteriler olup, atmosfer azotunu kullanabilirler. Rhizobium bakterileri ise simbiyoz yaşayan, aerob, sporsuz çubuk şekilli bakterilerdir. Baklagil köklerinde nodül oluşturan, havanın serbest azotundan yararlanır. Agrobacterium ise gram negatif, sporsuz, kısa çubuklar şeklinde fakültatif anaerob bakterileridir. Agrobacterium radiobacter var. tumefaciens, gal (ağaç uru) oluşturan bir tür olarak bilinir. Bu bakteri suşu Rhizobium legumiosarum bakterisi ile çok yakın bir G-C (guanin-sitozin) ilişkisi gösterir. Bu iki bakteri sadece 3-ketoglikozid üretimi reaksiyonunda birbirinden ayrılır. R. leguminosarum bu reaksiyon bakımından negatiftir. Bu grupta yer alan Chromobacterium ise gram negatif, sporsuz, kısa çubuklar şeklinde olup, fakültatif anaerob ve mor pigment oluşturan bir bakteridir. Bacillus ve Clostridium türleri de toprakta sıkça bulunan mikroorganizmalardır. Bacillus aerob veya fakültatif anaerob, endospor içeren çubuk bakterileridir. Clostridium kuvvetli anaerobik, endospor içeren, moleküler azottan yararlanabilen çubuk şekilli bir toprak mikroorganizmasıdır. Bitki döküntülerinin ayrışması bakımından pektinolitik ve selolitik türler önemli olup, Clostridium felsinum bunlara bir örnektir. Selülotik Clostridium’lar mesofil ya da termofil olarak gruplanabilirler. Her iki gruba ait üyeler selülozu hidrojen, CO2 ve organik asitlere ayrıştırırlar. Termofil türler toprakta ve ayrışan bitki dokuları üzerinde çoğunlukla bulunmamakla birlikte mesofilik türlerin asıl habitatı otçul hayvanların sindirim sistemleridir. Eubacteriales Azotobacteraceae Azotobacter chrococcum A. agilis A. indicus Rhizobiaceae Rhizobium meliloti R. leguminosarum R. phseoli R. trifoli R. lupini R. japonicum Agrobacterium Chromobacterium Achromobacteriaceae Achromobacter Flavobacterium Micrococcaceae Micrococcus Sarcina Corynebacteriaceae Corynebacterium Arthrobacter Bacillaceae Bacillus Clostridium Gram (+) ve Gram (-) Gram, Danimarkalı fiziçikci. Bakteriler zayıf alkali çözeltide hazırlanmış crystal violet ile boyanmakta ve sabitleştirici olarak iyot çözeltisi ilavesinden sonra alkolle yıkanmakta. Alkol ile rengi giden bakteriler gram (-), boyayı alıkoyanlar ise gram (+) olarak tanımlanmaktadır. Bakterilerin Gram boyama reaksiyonları, onların bazı morfolojik ve fizyolojik özellikleriyle uyum göstermektedir. Örneğin; topraktaki kokların çoğu, spor oluşturan çubuklar ve aktinomisetlerin hepsi gram (+)’dır. Buna karşılık sprillum, polar kamçılı spor oluşturmayan çubuklar gram (-)’dir. 3. Myxobacteriales Bazı myxobakteriler diğer bakterileri çözme (lyses) ve özümleme özelliği gösterirken, diğerleri saprofitiktir. Cytophaga cinsi özellikle selülozun aerob ayrışımında aktif rol oynar. Bu cins içerisinde ayrıca kitin ayrıştıran türlerde vardır. Myxobakteriler toprakta çok yaygın olup, özellikle vejetasyon, gübre, kompost ve çürümekte olan odunsu dokunun ayrışmasında etkilidirler. Bu bakteriler esnek yapılı çubuklar şeklinde olup, kayıcı hareket gösterirler. Chondrococcus, Archamgium ve Polyoungium bu grubun en yaygın örnekleridir. Nemli topraklarda büyük populasyonlar oluştururlar. Toprak Bakterileri Toprakta çok sayıda bulunan ve bakteri populasyonunun %90’nını oluşturan cinsler; Pseudomonas, Arthrobacter, Clostridium, Achromabacter, Bacillus, Micrococcus ve Flavobacterium’dur. Bakteriler toprakta genellikle yüzeyde ya da yüzeye çok yakın kısımlarda ve organik dokular (humus) üzerinde kolonize olurlar. Toprak bakterilerinin gerek yoğunluğu ve gerekse bileşimini etkileyen en önemli faktörler; a. Çevre ve toprak sıcaklığı b. Organik maddeler c. İnorganik besin elementleri d. pH e. Mevsimler f. Toprak işleme ve kültürel işlemler Toprakta mikroorganizmaların faaliyeti için belirli bir nem oranının bulunması gerekir. Her mikrorganizmanın nem oranına tepkisi farklıdır. Toprak suyunun da fazla bulunması toprak havası ve O2 düzeyini etkileyeceğinden aynen su noksanlığında olduğu gibi olumsuz etki yaratır. Bakterilerin optimal su gereksinimleri toprağın su tutma kapasitesinin %50-70’i kadardır. Toprakta su fazlalığı (drenaj bozukluğu, aşırı yağış veya sel) bakteri dağılımında azalmaya neden olur. Bu gibi durumlarda ortamda oksijen azalması aerobik mikroorganizmaların faaliyetlerini etkiler, anaerob bakteri faaliyeti artar ve topraktaki metabolik olaylar yön değiştirir. Sıcaklık, bütün biyolojik olayları etkiler. Her organizma, optimum sıcaklık isteği farklı olduğundan toprak bakterilerinde bu istekler bakımından 3 farklı grup ayırtedilebilir; • Psikrofil bakteriler: Gelişme optimumları 0-20 0C • Mezofil bakteriler: Gelişme optimumları 20-45 0C • Termofil bakteriler: Gelişme optimumları 45-65 0C Toprak ortamında organik maddeler bakterilerin gelişiminde rol oynayan en önemli faktörlerden biridir. Hem hayvansal hem de bitkisel kalıntılar heterotrof organizmalar için besin ve enerji kaynağıdır. Topraklardaki bakterinin populasyonlarının büyüklüğü içerdiği organik madde miktarıyla ilgilidir. Yeşil gübre ya da ürün kalıntılarının toprağa gömülmesi derhal mikrobiyal tepkiye neden olur. Bu tepki zaman içmerisinde azalır. pH, topraktaki H iyonu konsantrasyonu ne kadar artarsa topraktaki bakteriyel komunite büyüklüğü o kadar azalır. Asitli topraklarda yapılan kireçleme bakteri gelişimini uyarır. Genel olarak asit koşullarda mantarlar dominant florayı oluştururken alkali koşullarda bakteriyel formlar daha çok aktivite gösterir. Toprak işleme, toprağın havalanmasına, organik maddenin üst profilde dağılımına ve nem kapasitesine etki yaptığından toprak mikroorganizmalarının tip ve sayısı üzerine etki yapar. Mevsimlerin mikroflora üzerine olan etkisi iklime bağlı olarak sıcaklık ve organik madde ile ilgilidir. Toprağın dominant florası; bakteriler çeşitli şekillerde (taksonomik, morfolojik, fizyolojik) sınıflandırıldığı gibi beslenme ortamına yani maksimum gelişmeleri için gereksinimlerine göre de sınıflandırılabilir; 1. Gelişim faktörü istemeyenler 2. Bir ya da daha fazla aminoasiti gereksinenler 3. B vitaminini gereksinenler 4. Hem aminoasit hem de B vitamini isteyenler 5. Kompleks gelişim faktörüne ihtiyaç duyanlar Bakterilerin yaklaşık 9/10’u maksimum gelişim için gelişim faktörlerine gereksinim duyarlar. Bakterilerin %10’u aminoasit ve bir seri B vitaminlerine, %30’u gelişim faktörlerinin kompleks karışımına gereksinim duyarlar. Bir organizma gelişmesi için özel bir madde gereksiniyor ve bu madde ortamda bulunmadığı zaman gelişemiyorsa bu tür organizmalara oksotrof organizmalar denir. Bakteriler enerji ve karbon kaynaklarına göre de sınıflandırılabilir; • Heterotrofik veya kemoorganotrofik mikroorganizmalar: Bunlar organik besin maddelerini enerji ve karbon kaynağı olarak kullanırlar • Ototrofik veya litotrofik mikroorganizmalar: Bunlar enerjilerini güneşten (fotoototrof) ya da inorganik bileşiklerin oksidasyonundan, karbonu da CO2 özümlemesinden sağlarlar (kemoototrof, kemolitotrof). Ototrof bakteriler iki genel tip gösterirler; • Fotoototroflar (fotolitotrof): Güneş ışığından enerji sağlanır. • Kemoototroflar (kemolitotrof): Enerji inorganik maddelerin oksidasyonundan sağlanır. Bazı bakteri cinsleri fotoototrofik özellikler gösterirler. Kemoototrofi ise tarımsal ve ekonomik önemi olan sınırlı bakteri türlerince kullanılan bir beslenme şeklidir. Bazı bakteri türleri zorunlu kemoototrofik özellik gösterirken bazıları fakültatif niteliktedir ve organik karbonu da kullanabilirler. Obligat (zorunlu) kemoototroflar enerji kaynakları oldukça özel olup, sadece bir veya birkaç bileşiği kullanabilirler. Örneğin; nitrit Nitrobacter için amonyum, Nitrosomonas için bazı inorganik kükürt bileşikleri, Thiobacillus türleri için geçerli bileşiklerdir. • Nitrobacter nitriti nitrata oksitler • Nitrosomonas amonyomu nitrite oksitler • Thiobacillus inorganik kükürtlü bileşikleri sülfatlara • Thiobacillus ferrooxidans ferro demiri (+2 değerli) ferrik (+3 değerli) duruma çevirir. Heterotrof bakterilerin çoğu basit şekerleri ana karbon ve enerji kaynağı olarak kullanırlar. Heterotrof organizmaların bir grubu C gereksinimini glukoz (dekstroz) ve yağ asitleri gibi küçük organik moleküllerden sağlarken diğer bazıları kompleks besin maddeleri kullanırlar. Mikroorganizmalar arasında en çok ve en hızlı kullanılan karbon kaynağı karbonhidratlardır. Monosakkaritler özellikle heksozlar geniş ölçüde kullanılan bileşiklerdir. Mannitol ve gliserol gibi polihidrik alkollerde aktinomisetler için uygun karbon kaynaklarıdır. Aminoasitlerde mikroorganizmalar tarafından süratle kullanılan karbon kaynaklarıdır. Hidrokarbonlar Corynebacterium, Mycobacterium ve Pseudomonas gibi çeşitli bakteri gruplarınca C kaynağı olarak kullanılır. Pseudomonas ve aktinomisetler lignin gibi ayrışması zor karmaşık ve aromatik yapı içeren bileşikleri substrat olarak kullanabilirler. Ancak ligninin ayrışmasında en çok Basidiomycetesler baskın rol oynarlar. Toprakta doğal olarak kullanılmayan ve ancak insanlar tarafından ortama aktarılan peptisit ve deterjan gibi kirleticiler toprakta çeşitli bakteri ve mantar türleri tarafından bir C ve enerji kaynağı olmak üzere ayrıştırılırlar. Aktinomiset’ler Prokaryot bakteriler olup, bakterilerle mantar arasında geçiş teşkil ederler. Sistematik olarak bakterilerin Eubacteriales takımında yer alan bu organizmalar hücre yapıları bakımından bakteri özelliği göstermekle birlikte dallanmış miselli bir yapı oluştururlar. Bu prokaryotik organizmaların hücreleri gram (+) olup, 0,5-20 µm çapındadır. Çeşitli tipte spor üretirler. Toprak aktinomisetlerinin çoğu misel oluşturarak (Actinomyces cinsi hariç) gelişirler. Hiflerinin üzerinde konidia denen tek, çift veya zincirler şeklinde eşeysiz sporlar oluştururlar. Toprakta yaşayan bazı türlerinde sporlar sporangiumlar içinde üretilir. Bakteri ordosu içinde bulunmalarına rağmen bazı özellikleri bakımından mantarlara benzerler. 1. Yüksek aktinomisetlerin miselleri mantarlarda olduğu gibi yaygın bir dallanma gösterir. 2. Mantarlar gibi aktinomisetlerde hava miseli ve konidia oluştururlar. 3. Aktinomisetlerin sıvı kültürde gelişmesi, tek hücreli bakterilerin oluşturduğu gibi bulanıklılıkla sonuçlanmaz. Organizma pelley (topak) veya yumaklar meydana getirir. Buna karşılık bazı aktinomisetler hava miselleri oluşturmaz ve Mycobacterium ve Coryneform bakterilerin genel morfolojisini gösterirler. Aktinomisetlerin çoğunlukla saprofit olarak yaşarlar. Bazı türleri ise hayvan ve bitkilerde hastalık oluşturur. Bu organizmaların kolonileri bakteri kolonilerine benzerse de daha kuru, üzerleri tozlu görünümlü ve opak olmayışlarıyla ayrılır. Koloni dokusu sıkı bir küme oluşturur ve öze ile alınması zordur. Toprak aktinomisetleri beslenme bakımından geniş adaptasyonlar gösterirler. Bakterilerin ürediği ortamlarda gelişmekle birlikte daha çok alkali ortamlarda iyi gelişme gösterir. Toprak mikroorganizmalarının %10-50’sini oluşturur. Konidiosporlar kurumaya ve diğer çevre koşullarına dayanıklıdır. Aktinomisetler heterotrofik organizmalar olup, yaşamları topraktaki organik maddelere bağlıdır. C kaynağı olarak organik asit ve şekerleri (polisakkarit), lipid, protein ve alifatik hidrokarbonları kullanırlar. Birçok türü amonyum, nitrat, aminoasitler, pepton ve proteinleri azot kaynağı olarak kullanırlar. Yine birçok türü, antibiyotik dediğimiz mikrobiyal toksin metabolitleri sentezlemeleri bakımından önemlidir. Streptomycine, klortetracyline, oksitetracyline ve siklohekzimin gibi önemli antibiyotikler aktinomisetlerden elde edilmiştir. Kompleks organik bileşikleri ayrıştırabilen türleri, ayrışmayan dirençli lignin gibi kompleks yapılı bileşikleri ve doğal koşullarda ayrışmamış olan organik bileşikleri ayrıştırabilirler. Örneğin; Nocardia sentetik kimyasal maddeleri ve ağır hidrokarbonları ayrıştırabilir. Toprak aktinomisetleri tipik aerobik organizmalardır. Nemli koşullardan ziyade kuru topraklarda daha yaygındır. Bunun yanında çayır koşullarında da aktif florayı oluşturur. Taksonomi Ordo: ACTINOMYCETALES Fam: Actinomycetaceae Actinomyces, Agromyces, Arachnia, Bacterionema, Bifidobacterium, Rothia, Fam: Actinoplanaceae Actinoplanes, Ampullariella, Dactylosporangium, Planobispora, Planomonospora, Spirillospora, Streptosporangium Fam: Dermatophilaceae Dermatophilus, Gleodermatophilus Fam: Frankiaceae Frankia Fam: Micromonosporaceae Micromonosporaceae Fam: Mycobacteriaceae Mycobacterium, Mycococcus Fam: Nocardiaceae Nocardia, Micropolyspora, Mycobacterium Fam: Streptomycetaceae Streptomyces, Microellobosporia, Streptoventiculum Fam: Thermomonosporaceae Actinomadura, Microbispora, Saccharomonospora, Thermomonospora Aktivite ve İşlevleri Heterotrofik organizmalar oldukları için basit ve kompleks karbon kaynaklarından yararlanabilirler. Streptomisetler kitini ayrıştırır. Kitin ayrıca Micromonospora tarafından da ayrıştırılır. Bu cins aynı zamanda selüloz, glikozid ve hemiselülozun ayrışmasında da etkilerdir. Nocardia ise parafinler, fenoller, steroidler ve pirimidinlerin ayrışmasında işlev görür. Streptomycetes’lerden pekçok tür hücre dışına enzim salgılayarak bakterileri çözerler (lysis). Aktinomiset’lerin çoğu mezofil (25-30 0C) olup, çok yaygın olmayan termofil formlar 55-60 0C arasında aktiftirler. Termofilik alanlar, toprak, hayvan gübresi ve kompost yığınlarında bulunur. Toprak Ekosistemindeki İşlevleri 1. Topraktaki dirençli bitki ve hayvan dokularının ayrıştırılması 2. Bitki dokuları ve yaprak döküntülerinin çeşitli formlara dönüştürülmesiyle humus oluşumu 3. Yeşil gübrelerin kompost ve hayvan gübresi yığınlarının olgunlaşması ve transformayonu 4. Toprak kökenli bitki hastalıklarının oluşması. Örneğin; patates uyuzu ve leke hastalığı (S. scabies, S. ipomoeae) 5. Bazı insan ve hayvan enfeksiyonları. Örnek; Nocardia asteroides, N. otitidis-caviarum) 6. Mikrobiyal antopomizm ve toprak komunitelerinin düzenlenmesinde antagonistik etki ile kontrol sağlama. Bu rolleri antibiyotik ve enzim üretme kapasiteleri ile ilgili olup, mantar ve bakterinin çözünmesi veya gelişminin baskı altına alınmasında etken olur. Aktinomisetleri Etkileyen Çevre Faktörleri a. Organik maddece zengin topraklarda iyi geliştikleri için toprağa organik madde ilavesi bunları kuvvetle uyarır. b. Düşük pH derecelerine toleranslı değildir. pH sınırları 6,5-8 arasında değişir. pH sınırları birçok tür için sınırlayıcıdır. c. Aerob organizmalar oldukları için su ile doygun koşullarda ya da %85-100 su tutma kapasitesine sahip topraklarda zayıf gelişirler. d. Sıcaklığın 5 0C’den 27 0C’ye doğru artışıyla gelişmeleri hızlanır. 28-37 0C’lerde optimuma ulaşır. Bu mezofilik formlar dışında 55-65 0C’de aktif olan termofilik formları da mevcuttur. 30-65 0C arasında faaliyet gösteren fakültatif termofil formlara da rastlanmaktadır. Yüksek Protistler Ökaryotik hücre yapısına sahip organizmalardır. Mevcudiyetine bağlı olarak yüksek protistler fotosentetik algler ve protozoalar ile mantarlar şeklinde sınıflandırılırlar. Mantar ve protozoalar kemotrofik organizmalar olup, yaşam işlevleri için kimyasal enerji kaynaklarına bağımlıdırlar. Mantarlar İyi havalanan işlenmiş topraklarda mantarlar toplam mikrobiyal porotoplazmanın büyük bir kısmını oluştururlar. Bu organizmalar özellikle çalılık ve orman topraklarının organik katmanında aktif olup, dominant mikroorganizma durumundadırlar. Özellikle asit karakterli topraklarda mantarlar organik madde ayrışmasının ana unsurlarıdır. Mantarlar hif denilen mikroskobik dallanmış flamentlerden oluşur ve hifler bir araya gelerek miselleri teşkil ederler. Ancak mantarların hepsi hifli olmayabilir. Çünkü maya olarak bilinen grup üyeleri küresel veya elips şekilli hücrelerden oluşurlar. Mantar hifleri çeşitli eşeysiz sporları oluşturduğu gibi miseller yaşlandığında ya da çevre koşulları uygun olmadığında birçok mantar çekirdek bölünmesiyle oluşan sporlar aracılığıyla eşeysel olarak da üreyebilirler. Filamentli mantarlar arasında eşysiz üremenin en yaygın yöntemi hiflerin bölünmesidir. Bölünen her parça uygun çevre koşullarında bir birey oluşturma yeteneğindedir. Bazı mantarlar uygunsuz çevre koşularına tepki olarak spor benzeri yapılar oluştururlar. Bunlara arthrospor ya da oidia denir. Ancak mantarların en önemli eşeysiz üreme yöntemi spor oluşmu iledir. Eşeysiz sporlar 2 şekilde oluşturulur; • Ya sporangiumdenilen keseler içinde (ki burada oluşan sporlara sporangiospor denir.) • Ya da doğrudan misel üzerinde konidiumlar şeklinde oluşur. Konidiumlar hareketli olmadığı halde sprangiosporlar bazı türlerde kamçılıdır. Eşysiz sporlara ilave olarak miseller olumsuz koşullara karşı bazı dirençli yapılar oluştururlar. Örneğin; spor veya hif hücrelerinin etrafında koruyucu bir duvar oluşumu görülen chlamydosporlar, küresel bir hif kütlesi halinde sclerotium, çok sayıda hifin agregasyonu ile oluşan rhizomorf yapılar. Toprak mantarları ya toprak yüzeyini örten döküntü katmanında ya da toprakta yaşayan mantar olarak ekolojik dağılım gösterirler. Aslında bitki döküntü katmanında yaşayan mantar türlerinin önemli bir kısmı bitki üzerinde yaşayan formlardır. Bitki Üzerindeki Mantarlar Bitkiler daha tohum halinde iken bir mikrofloraya sahiptirler. Tohum kabuklarına tutunan mantarlar bazı potansiyel patojenleri içerebilir. Bezelye köklerinden 40’dan fazla farklı mantar izole edilmiştir. Örneğin; Phytium, Fusarium, Gliocladium, Mortierella. Bazı mantarlar bitkilerin yaprak dokusu üzerinde kolonize olup, dökülme ile birlikte toprağın döküntü katmanına geçerler. Örneğin Cladosporium sp., Alternaria alternata, Botrytis cinerea. Gönderi: Zahide

http://www.biyologlar.com/cesitli-toprak-parametrelerinin-mikroorganizmalarla-iliskisi

Darwin’in evrim teorisine alternatif çıkmadı

Yaşamın nasıl ortaya çıktığı hala tartışılan bir konu. Ancak bilim adamı Darwin’in onlarca yıldır tartışılan Evrim Teorisi, bilimsel kabul görmeyen yaradılışçılık teorilerinin yanında alternatifsiz konumunu sürdürüyor. İngiliz bilim adamı Charles Darwinİngiliz bilim adamı Charles Darwin Eski Ahit, ‘Tanrı insanı kendi suretinde yarattı. Böylece insan Tanrı suretinde yaratılmış oldu. İnsanları erkek ve dişi olarak yarattı’ der. İnsanlar, yüzyıllar boyunca, canlıların oluşumunu açıklamak için, İncil’de geçen ‘Yaratılış Teorisi’ne başvurmuşlardı. Bunun yanısıra Kur’an-ı Kerim’de de yine Allah’ın tartışmasız bir şekilde kainatı, insanları ve diğer varlıkları yaratan tek güç olduğu belirtiliyor. Bunun karşısındaysa Charles Darwin’in ‘Türlerin Kökeni’ kitabında ortaya attığı ‘Evrim Teorisi’ yer alıyor. Modern doğa bilimlerinin şu anki şeklini almasına öncülük eden kişi olarak kabul edilen Charles Darwin’in doğumunun 200′üncü yıl dönümü bu yıl tüm dünyada özel etkinliklerle kutlanıyor. Bu konuda araştırmalar yapan Konstanz Üniversitesi Evrim Biyolojisi Profesörü Axel Meyer’le yapılan söyleşiyi sunuyoruz. - Darwin’in doğumunun 200′üncü yıldönümü sizce gerçekten kutlanması gereken bir gün mü? Meyer: Evet, elbette. Dün derste bir parti düzenledik. Ve bu özel anı pasta ve şampanyayla kutladık. - Modern bir doğa bilimci olarak, bugün sizce Darwin ve onun Evrim Teorisi nasıl bir öneme sahip? Charles Darwin'in Evrim Teorisi hala tartışılıyorCharles Darwin’in “Evrim Teorisi” hala tartışılıyor Meyer: Bu teori, modern evrim biyolojisinin temelini oluşturuyor. Darwin’in bundan 150 yıl önce, bugün neler olacağını tahmin etmesi mümkün değildi. Ancak yine de yazdıkları, evrimin işleyişinin temel mekanizmasını içeriyor. - Darwin’in yeniçağın en önemli bilim adamlarından biri olduğunu savunanlar var. Bu yargıya katılıyor musunuz? Meyer: Kesinlikle. Sahip olduğu popülerlik ancak Freud veya Einstein ile karşılaştırılabilir. - Sayın Meyer, daha önce İncil’de geçen “Yaratılış Teorisi” insanın oluşumunu temellendirmek için kullanılıyordu. Darwin bundan 150 yıl önce teorisini ortaya koyarken ne gibi zorluklarla yüz yüze geldi. Meyer: Görüşlerinin din ve insanın anlamıyla ilgili çekeceği tepkileri tahmin etmesi, kitabını yayımlamak için neden bu kadar beklediği konusuna bir miktar açıklık getirebilir. Eşinin koyu bir dindar olması gibi bir takım ailevi nedenler de söz konusu. - Darwin bilinçli olarak ilk hücrenin, ilk canlının nasıl ortaya çıktığı konusuna açıklık getirmemiş. Meyer: Bu konuda çok fazla bir şey söylememiş. Yaşamın nasıl ortaya çıktığı, hala çok tartışılan bir konu… Bir kez canlılar oluştuktan sonra, tüm bilim adamları Darwin’in açıklamış olduğu türlerin dönüşümü ve doğal seleksiyon yoluyla, şu anki karmaşıklık ve çeşitliliğe kavuşulduğu konusunda birleşiyorlar. - Darwin, doğa bilimlerinin kendilerine, evrim teorisi sonrasında net bir sınır çizeceklerini, kendilerini din bilimden ve inançtan tamamen ayıracaklarını tahmin ediyor muydu? Darwin, çok sayıda kitabın yanı sıra yaklaşık 7 bin 500 mektup kaleme aldıDarwin, çok sayıda kitabın yanı sıra yaklaşık 7 bin 500 mektup kaleme aldı Meyer: Bu yanıtlaması zor bir soru. Darwin biricik kızını kaybettikten sonra, tanrıya inanmaktan vazgeçmiş. Belki de bu, kitabını yayımlamayı geciktirmesindeki bir diğer nedendi. Sanırım bu olaydan sonra, kendisinin agnostik olduğunu söylemiş. Ancak tanrı inancı ile dünyaya bilimsel açıdan bakmak arasında aşılamaz bir aykırılık olduğunu düşünüyor muydu, emin değilim. - Peki, semavî dinlere inanan biri de aynı zamanda “evrimci” olabilir mi? Meyer: Kişisel görüşüme göre hayır. Bence birbirleriyle çelişiyorlar. Bir yandan evrim biyoloğu olup diğer yandan dindar olmak pek alışılageldik bir durum değil. - Darwin’in evrim teorisine karşı ortaya atılmış bilimsel bir alternatif var mı? Meyer: Hayır yok. Yeni yaratılışçılık veya yaratılışçılık teorileri var ancak bunlar bilimsel olarak kabul gören teoriler değil. Darwin’in evrimle ilgili görüşlerine bilimsel bir alternatif oluşturmuyorlar. - İnsanın maymundan türediği tezine sizin yaklaşımınız nasıl? Meyer: İnsan maymundan geliyor derken bahsedilen, primatlarla aynı soydan geldiğimiz. Bazı evrim biyologları, tüm farklılıklarına rağmen insanı varoluşun tepe noktası olarak değil, sadece var olan başka bir tür olarak görürler. Darwin devrim yaratacak keşfini, ispinozgiller familyasına ait küçük kuşlara borçluyduDarwin devrim yaratacak keşfini, ispinozgiller familyasına ait küçük kuşlara borçluydu - Darwin’in bundan 150 yıl önce ortaya attığı görüşleri hala sağlam bilimsel bir temele dayanıyor mu, yoksa yeni araştırmalar sayesinde durum değişti mi? Meyer: Darwin bazı şeyleri anlamamış ya da yanlış anlamış. Örneğin Alfred Wegener, kıtaların kayması kuramını, Darwin’in evrim teorisinden çok sonra ortaya attı. Bu yüzden Darwin’in, türlerin kıtalar üzerindeki coğrafi olarak yayılması ile ilgili bazı görüşleri yanlış. Bu gayet doğal… Genin ve genetiğin henüz keşfedilmediği bir çağda yaşıyordu. O zamanlar ne Mendel yasaları, ne molekülerbiyoloji ne de genomik vardı. Ancak bu yeni disiplinler evrim biyolojisine, Darvin’in evrim teorisini destekleyen açılımlar getirdi. - Sayın Meyer, bilindiği gibi “çevrenin değişen koşullarına uyum sağlamak için türler değişiyor ve yeni türler oluşuyor fikri” evrim teorisinin çekirdeğini oluşturuyor. Küresel ısınmayla ilgili olarak da Charles Darwin’in evrimle ilgili fikirlerini göz önünde bulundurabilir miyiz? Meyer: Bu ne açıdan baktığınıza bağlı… Bu bir yandan belli canlılar için bir doğal seleksiyon nedeni. Ancak diğer yandan iklim değişikliği, insanın dünyayı değiştirmesi yüzünden ortaya çıkan bir durum… Asya’daki veya Güney Amerika’daki dev yağmur ormanlarının nasıl katledildiğini düşünün. Canlıların yaşam alanlarına verilen zarar, tüm dünya tarihinde belki de ancak dördüncü veya beşinci kez bu kadar şiddetli bir şekilde türlerin yok oluşuna sebep oluyor. - Yani evrim değişen çevre koşullarına rağmen devam eden bir süreç… Meyer: Elbette. Ancak bir hızlanma söz konusu. Kürsel ısınmayı tetiklediğimiz için değişim daha çabuk olacak. Dünyanın soğuduğu ve ısındığı jeolojik devirler daha önce de yaşandı. Sadece o zaman hızlandırıcı olarak insan faktörü ortada yoktu. Söyleşi: Stefan Heinlein/ Çeviren: Banu Ertek Editör: Nihat Halıcı Evrimsel biyolog Axel Meyer Kaynak: Deutsche Welle

http://www.biyologlar.com/darwinin-evrim-teorisine-alternatif-cikmadi

Bitkiler ve Mikroorganizmalar arasındaki ilişkiler

Olumlu ve olumsuz etkileşimler sadece mikroplar arasında olmazlar aynı zamanda bitkiler ve mikroplar arasında da gerçekleşirler. Rizosfer, bitkiler ve mikroplar arasındaki kommensal ve mutualistik etkileşimlerin görüldüğü bölgeye verilen addır. Ekto ve endomikorizal mantarlar bitkilerin mineral madde ve suyun fotosentez ile geri dönüşümünü sağlarlar. Çok ekstrem koşullar altında bitkinin hayatını devam ettirmesi için temel olan mutualistik birleşmeler yapmasıdır. Belirli bitkiler ile denitrojen fiske eden bakteriler nitrojeni ekosistem ve ürünler için birlikte üretirler. Bitkilerin havasal kısımları mikroorganizmalar için çok büyük yaşam alanlarını oluştururlar. Toprak altı bölümlerinde ise belli virüsler, bakteriler ve funguslar bitkiler üzerinde hastalıklara yol açarak çok büyük miktarlarda ekonomik kayıplara hatta çok büyük besin kıtlıklarına yol açarlar. Bitki Kökleri İle Olan İlişkileri Bitki kökleri büyüyen mikroorganizmalar için çok uygun bir habitat oluşturmakta ve bu büyük sayılara ulaşan organizmalar değişik mikroorganizmal grupları oluşturarak bitki köklerini kaplamaktadırlar. Toprak mikroorganizmaları ilişkili olan bitki kökleri çok önemli besin yapılarını hem bitki hem de organizma açısından tatmin edici şekilde önemlidirler (Brown 1974, 1975; Bowen and Rovira 1976; Lynch 1976, 1982a, 1982b, Balandreau and Knowles 1978; Dommergues and Krupa 1978; Newman 1978; Harley and Russell 1979; Bowen 1980). Bu da rhizoplane içerisinde büyük miktarlarda mikroorganizmaların risoplane içerisinde bulunan rizosfer içerisindeki asıl alanlar olan bitki köklerinde direk olarak etkili olarak bulunduğunu ortaya koymaktadır(Campell and Rovira 1973; Rovira and Campell 1974; Bowen and Rovira 1976). Rizosfer Rizosfer toprağı kök sistemine yapışık halde bulunan sarsılmış ve gevşek topraktan oluşmuş ince bir tabakadır.Rizosferin büyüklüğü belirli bitki kökü yapılarına bağlıdır ve genellikle toprakla birleşme alanı çok büyük olmaktadır. Her toplam bitki biyokütlesi saçak kök içerenlerde kazık köklü olanlara göre karakterize olmuştur. Örneğin tek bir buğday bitkisinin kök sistemi 200 metreden daha büyük olabilmektedir. Ortalama bir kök çapının ortalama 0.1 mm olduğunu varsaydığımızda bunun kök alanını 6 metre kareye yayıldığını hesaplayabiliriz. Asıl rhizoplane alanının %4 ile &10 arasındaki bölümünde mikroorganizmalar ile direk bir bağlantı olduğu ve birçok mikroorganizmanın rizosferi çevreleyen köklerle birleşme içerisinde olduğu bildirilmiştir(Bowen 1980) Rizosferin şimdiye kadar yetersiz olarak keşfedilen ilginç bir değişikliği rhizoshealthdir, kökleri gövdeye göre dik ve kalın bir silindir olarak karakterize edilmiştir. Rhizosheathin oluşumu birkaç tipik çöl bitkisinden oluşur fakat daha az aşırı koşullar altında yetişen otumsu bitkilerden de meydana gelmektedir (Wullstein et al. 1979; Duell and Peacock 1985). Rhizosheathde kum zerreleri, bir extracellular mucigel tarafından bir arada olma betonlaşırlar, buda kök hücreleri ile salgıları ile olur. Rhizosheath, nem koruması için bir uyum ortaya çıkartır, fakat aynı zamanda şüphesiz kapsamlı kök mikrop etkileşimleri için ortam sağlar. Artırılan azot fikse etme faaliyeti, rhizosheath toprağında ölçülür. Bitki Köklerinin Mikrobiyal Populasyonlar Üzerine Etkisi Bitki kök sisteminin yapısı, rizosferin mikrobiyal populasyonunun kuruluşuna katkıda bulunur(Nye an Tinker 1977; Russell 1977; Bowen 1980; Lynch 1982a). Bitki kökleri ve rizosfer mikroorganizmalarının etkileşimleri, mineral besinlerin mikropluca araya girilen kullanılabilirliği mikroplu ürünü ve bitki büyüme faktörleri, bitki tarafından su alınımı gibi işlemler, toprak ortamının etkileşimli değişikliğine bağlıdır. Rizosfer, bitki köklerinde, mikroplu topluluk toprağın kompozisyon ve yoğunluğunda bir direkt etkiye sahiptir, bilindiği üzere buna rizosfer etkisi denir. Rizosfer etkisi, mikroorganizma sayısının rizosfer toprağı üzerine etkisi ile görülebilir. R-S oran aralığı genellikle 5 ile 20 araasındadır, fakat 100oranını bulmakta olası bir durumdur, odur ki mikroplu nüfus, rizosferde 100 kereden daha yüksek oranlarda kuşatan kök bulundurmayan toprakta bulunur(Gray and Parkinson 1968;Woldendorp 1978). Rizosfer asıl etkisinin uzatılması, fizyolojik olgunluk ve belirli bitkiye bağlıdır(Darbyshire ve Greaves 1967). Gram pozitif çubuklarının daha az oranı ve gram negatif çubuk-şeklinde bakterilerinin bir daha yüksek oranı vardır, pleamorfik ve koklar da az oranlıdır bunlar köksüz toprak rizosferini biçimlendirirler(Rovira and Campell 1974; Woldendorp 1978; Campell 1985). Her zaman rizosferden başka yerlerde, Pseudomonas gibi süratle çoğalan bakterileri de toprakta bulunmaktadır. Bu çoğalma birçok durumda, yüksek esas büyüme oranları ile mikroorganizmalarına yararlı olan bitki kök salgısının direkt etkisine yani toprak mikroorganizmalarını temsil eder. Köklerden organik malzemeler salınırlar, başka tanımlanamayan esaslar ve amino asitleri, keto asitleri, vitaminleri, şekerleri, tanenleri, alkoloidleri, fosfatları içerir. Kökler, steril köklerde çok organik malzeme ile olarak mikroorganizmaların sarılması ile kuşatıldı. Bu malzemelerin çok azı, mikroorganizmaları engelledikleri gibi, mikroplu büyümeyi de yüksek seviyede uyarırlar. Bitki tarafından salınan malzemelerin etkisi, gözlemler tarafından kanıtlandığı üzere rizosferde toprakta bulunmayan bakteri nüfusları, diğer bakterilerden önemli derecede farklı beslenme özelliklere sahip olur. En fazla büyüme için bir çok rizosfer bakterisi amino asitleri kullanırlar ve bu asitler o kök salgılarının da görülmektedirler. Mikroorganizmalar rizosferde, bitki, tohum filizlenmesinden olgunluğa kadar serisel değişimlere yol açabilirler. Bu kesin rizosfer serisi, bitki gelişmesi boyunca, fırsatçı mikroplu nüfuslar, büyüme faktörü uygun görüleni, süratle yetiştirmekte görevlidirler. Bu serisel değişimler bitki olgunlaşması boyunca rizosfere bitki kökleri ile malzemelerin değişimlere uymasını değiştirir. Başlangıçta karbonhidrat salgıları ve mucilaginous katmanları, kökleri kuşatanlardır. Madde ve kök yüzeyinde, karbonhidrat salınımı ve mucilaginous malzemeleri, başlangıçta, epidermik bitki hücresinin boşluklarında mikroorganizmaların büyük nüfuslarının büyümesini destekler.Bitki olgunlaşması olarak otolizis, kök malzemesinin birçoğunun normal kök gelişmesinin esas bölümünde yer alır ve basit şekerler ve amino asitleri toprağa salarlar, yüksek intricsic büyüme oranları ile başka bakteriler ve Pseudomonasın büyümesini destekler. Çoğu zaman r-s oranları bitkilerin büyümesini durdurmalarından sonra yaşlanmalarını da göstermektedir. Mikrooaerofilik bakterilerdenAzospirillum ve aerobik bakterilerden Azotobacter paspali azot fiksasyonu yapan toprak bakterileridir, genellikle Digitaria, Panicum, ve Paspulum genuslarıda tropikal bölgelerin rizosfer tabakalarında bulunmaktadır. Bu bakteriler köklerden salınan maddeleri enerji kaynağı olarak azot fiksasyonu işleminde kullanmaktadırlar. Bu alanda rizosfer azot fiksasyonu bakterileri her bir hektar alan için 40 kg azot üretimi yaparlar(Smith et al. 1976). Azospirillum bazı ılıman otlak alanlarda ve mısır(Zea mays) bitkilerinde görülmüştür(Lamm and Neyra 1981), fakat buralardaki azot fiksasyonu değerleri diğer bakteri cinslerinen göre çok eser durumdadırlar. Bununla birlikte rizosferik azot fiksasyonu pirinç toplanması sırasında artışa uğramıştır(Swaminathan 1982). Biyokimyasal azot fiksasyonunun yan etkisi olarak hidrojen gazı salınımı gösterilebilir. Sadece birkaç Rhizobium ve Bradyrhizobium bakteri suşları arasında hidrogenaz enzimini inaktive edenler bulunmaktadır; diğerleri de hidrojen gazı çıkartmaya devam ederler. Rizosferdeki Mikrobiyal Populasyonların Bitkiler Üzerindeki Etkileri Bitki kökleri direkt olarak bunları saran mikrobiyal populasyonlarla ilişkilidir, rizosferdeki mikroorganizmalar bitki büyümesi üzerinde göze çarpan şekilde etkilidirler. Mikrobiyal populasyonların rizosferdeki eksikliğinde bitki büyümesi azalmaktadır(Lynch 1976; Dommergues and Krupa 1978; Campell 1985). Rizoferdeki mikrobiyal populasyonlar bitkilere değişik şekillerde yarar sağlayabilmektedir, geri dönüşüm mekanizmaları ve mineral maddelerin çözünebilmeleridir; vitaminlerin sentezleri, amino asitler, oksinler, sytokininler, ve giberellinlerdir bunlar bitkilerin büyümeleri üzerinde etkili durumdadırlar; ve antogonistik ilişkiler ile potensiyel bitki patojenleri doğrudan amensal ilişkilerle antibiyotik üretimlerine dayandırılmaktadır(Nieto and Frankberger 1989; Alvarez et al. 1995). Bitkiler katman şeklindeki toprak tabakalarında gelişimlerini sürdürmektedir bunlar sürgünlerden köklere olan oksijen çevirimlerinde adapte olmuşlardır(Raskin and Kende 1985), fakat anaerobik kök çevrelerinde toksik hidrojen sülfit sülfat çevrimi ile indirgenir(Drew and Lynch 1980). Pirinç ve diğer aynı kök yapısındaki bitkiler Beggiota türü bakteriler ile bu toksik hidrojen sülfite karşı korumalı durumdadır(Joshi and Hollis 1977). Bu mikroaerofilik katalaz- negatif, sülfit-oksitleyici filamentli bakteriler oksijeni katalaz enzimi ile kendi yararlarına çevirirler, diğer taraftan Beggiota’ nın buradaki işlevi pirinç kökündeki toksik sülfiti zararsız sülfür ve sülfata çevirmektir, bu olay pirinç köklerinin koruyucu sitokrom sistemlerine örnek olarak verilebilir. Rizosferdeki organik madde üretimi bitki kök sistemini çok hızlı bir şekilde arttırmaktadır(Lynch 1976). Mikroorganizmalar giberellin ve oksinler gibi bileşikler üretmektedirler ve bu maddeler tohum gelişimi ve bitki kökü uzantılarının gelişimini dolayısıyla bitki büyümesini hızlandırırlar(Brown 1974). Arthobacter, Pseudomonas ve Agrobacterium populasyonları bitki gelişimi için gerekli olan organik bileşiklerin sentezlerinde bildirilen rizosfer canlılarıdır. Rizosferdeki buğday tohumlarınında belirgin bakteri grupları indoleasetik asit(IAA) üretirler. Daha yaşlı buğday bitkilerinde üretilen IAA oranı daha düşük seviyelerde kalmaktadır. Bununda köklerden salgılanan ürünlerin bitki büyümesini arttırıcı hormonlardaki azalmalara bağlı olduğu söylenebilir. Mikroorganizmalar tarafından salınan alleopatik ( antogonistik) içerikler amensal etkileşimlerle rizosferdeki bitkilerin bünyesine katılırlar. Bazı alleopatik içerikler habitat içerindeki diğer bitkilerin saldırılarından korunmak içinde kullanılırlar ve bunlar bitki ile rizosferdeki mikroorganizmalar arası sinerjitik ilişkilerle sağlanmaktadır. Buğday rizosferi içerisindeki bakteriyel populasyonların bezelye ve marul büyümesini yavaşlattığı görülmüştür. Gelişmiş buğday bitkilerinde bu bakteri sayılarında azalma yada ortadan kalkma görüldüğünde bitki büyümesini devam ettrebilmek için büyümeyi teşvik edici içeriklerden gibberellik asit üretimini başlatır. Rizosferde bulunan bakteriler bitkilerin mineral madde alımlarına da katkıda bulunmaktadırlar, bazen de limitli konsantrasyonlar içeren durumlarda da bitki kökü devreye girmeden mineral maddeleri kullanmaktadırlar, diğer taraftan da bitkinin mineral madde alımını da arttırmaktadırlar(Barber 1978). Rizosfer mikroorganizmaları bitkinin fosfat alınımı da arttırıcı etkiye sahiptirler, diğer taraftan bitkiler için kullanılamayan formlarda olabilirler. Bitkiler rizosfer mikroorganizmaları ile steril toprak karşılaştırması yapıldığında fosfat alımında çok öndedirler(Campell 1985). Fosfat alınımı artırılmasının temel mekanizması mikrobiyal asit üretimin dağılmış apatitin(yaygın kalsiyum fosfat guruplarındandır) salınımı ile çözünebilir fosfor grupları açığa çıkar. Demir ve manganez bitkiler için daha alınabilir formlardır çünkü rizosfer mikroorganizmalarının organik kataliz ajanlarıdır, bununla beraber demir ve manganez içeriklerinin alınımı artmış olur. Bu olay aynı zamanda bu mikroorganizmaların bitki köklerinde kalsiyum artırımını da yapmaktadır. Mikroorganizmalar tarafından üretilen bu yüksek konsantrasyonlu içerikler karbon dioksit üretimini de arttırır. Değişik radyolamelli organik içeriklerin yer değiştirmesi ile miselli filametlerde ağır metal değişimleri olmaktadır(Groosbard 1971;Campell 1985). Rizosferdeki mikroorganizmaların mineral üretimini arttırmaları yararlı olmasına rağmen rizosferdeki aşırı fazla mikrobiyal populasyonların bitkiler için mineral madde alınımını azalttığı görülmüştür(Agrios 1978). Örneğin hareketsiz bakterilerin çinko ve manganezin oksidasyonu meyve ağaçlarında ‘küçük yapraklılık’ yulaflarda ‘gri beneklenme’ hastalıklarına yol açmaktadır. Rizosferdeki mikroorganizmalar immobil nitrojenin bitkiler tarafından alınımı engellerler(Campell 1985). İmmobil nitrojenin mikroorganizmlar tarafından alınımı bitkilerin kullanabileceği formlara dönüştürülmesinde kullanılır. Mikrobiyal proteinlerin yapısındaki immobil haldeki nitrojen denitrifikasyon ile atmosfere salınmaktadır. Mycorrhizae(Mikorizzalar) Bazı mantarlar bitki köklerine girerek mikorizza denilen mutualistik ilişkiler kurarlar(litaratürde ‘mantar kökleri’ olarak geçmektedir)bitkilerin fiziksel yapıları ile bütünleşik olarak bulunmaktadırlar(Harley 1965; Cooke 1977; Dommergues and Krupa 1978; Powell 1982; Campell 1985; Allen 1991). Bu mantar yapıdaki oluşumlar bitki kökleri ile maddesel yarar sağlarken diğer yandan bitkiler üzerinde hastalık oluşturmazlar. Mikorizal birleşmeler diğer rizosfer birleşmelerinden farklı olarak bitki ve mantar arasında çok büyük seviyede özelleşmiş durumdadırlar. Mikorizal birleşmeler bitki kökü ile mantar misellerinin morfolojik olarak bütünleşmeleri ile oluşan yapılardır. Dünya çapında yapılan araştırmalarda mikorizal birliktelerin mantar ve bitki kökü ile olan birleşmeleri çok önemli bir yer tutmaktadır. Mikorizal birliktelikler bitki ve mantar arasındaki sağlıklı fiziksel yapılarının uzun dönemli birleşmeleri ile olmaktadır. Bitkiler ve mantarlar arasındaki mikorizal birliktelikler çeşitli yakınlaşmalar göstermektedir aynı zamanda fiziksel ve yapısal görevleri- bunlar çift taraflı olarak mineral maddeleri değişimli olarak kullanırlar. Su ve mineral maddeler, özellikle fosfor ve nitrojen alınımı bir çok mikorizal birleşimde çoğaltılmaktadır; bitkiler ile mikorizal fungus birleşimleri habitatlarda yaşmalarını sürdürürlerken diğer taraftan diğerleri yapamazlar(Smith and Daft 1978). Bilinen iki mikorizal birleşim şekli vardır; ektomikorizzalar (Marks and Kozlowski 1978) ve endomikorizzlar(Sanders et al. 1975; Hayman 1978). Ektomikorizzalarda mantarın dıştaki pseudoparanşim kılıfları 40µm kalınlıkta ve kök mantar yapısının %40 kuru ağırlığını oluşturur(Hartley 1965). Fungal hifler epidermisin intercellüler yapısını delerek kökün korteks tabakasına geçer fakat yaşayan hücreleri etkilemez. Kök yapısının morfolojisi değişime uğrar, kısa boylu ve dallardaki salkımsı kümeleşmeler olan meristamatik bölgeler indirgenirler. Karşıt olarak ektomikorizalar ölü hücrelerde bulurken endomikorizalar yaşayan kök hücrelerinde meydana gelmektedir.(Hartley 1965). Rizosferde değişik olarak kolonize olan mikroorganizmalardan mikorizal mantarlar konaklarının içinde veya dışında belirgin şekillerde yerleşme gösterirler. Kökte bulunan funguslar diğer toprak mikroorganizmları ile etkileşim içinde bulunmazlar. Yaygın endomikorizal formlarda, mikroskop görüntüsü hifli demet yapılarının oluşumuna neden olur buna da veziküler-arbusküler(VA) mikoriza yapısı denilmektedir(Hartley 1965). Bazı durumlarda da endo ve ekzo mikorizalar birleşerek ektendomikoriza denilen yapıları oluştururlar. Ectomycorrhizae(ektomikorizalar) ektomikorizzalar gymnosperm ve angiospermlerde yaygın olarak görülürler, en çok da meşe, kayın, huş ve conifer biçimli ağaçlarda(Marks and Kozlowski 1973). Ormanlık alanlardaki birçok bitki ektomikorizal etkileşimler içerisinde bulunmaktadır. Birçok fungus ektomikorizal birleşmeler içerine girebilir; ascomycetesler yer mantarlarında, basidiomycetesler Bletus ve Amanita da. Ektomikorizal mantarlar genellikle optimum 15-30 ºC ‘de ve asidiofilik ortamlarda yani pH 4.0-6.0 ve en az pH 3.0 değerlerinde gelişim göstermektedirler(Hartley 1965). Birçok ektomikorizal fungus basit karbonhidratlat olan disakkaritler ve şeker alkollerinde gelişim gösterirler. Bunlar genellikle kompleks organik moleküllerden nitrojen, amino asit ve amonyum tuzlarını kullanırlar; bunun yanında vitaminlerden thiamine ve biotinleri, oksinleri, gibberellinleri, sitokininleri, vitaminleri, antibiyotikleri ve yağ asitlerini de bitki bünyesine katmak için üretmektedirler(Frankenberger and Poth 1987). Bazı ektomikorizal mantarlarda selülaz gibi enzim üretimi işlevinden sorumludurlar yalnız bu enzim bitki yapısını sindirmek için değil sadece konukçu bitkinin aktivitelerini normale döndirmek için kullanılır. Ektomikorizal infeksiyon bölünme dallanmalarında morfolojik olarak bitki kökünün ortadan kalkmasını yani hayatta kalma durumunu büyüme hormonlarının etkisiyle ektomikorizal fungusların gelişimide etkilenmektedir(Frankberger and Poth 1987). Kökçük oluşumlarının baskılanması ile mantar hifaları bu işlevi üzerine alırlar ve buda bitki için çok büyük bir madde alımı etkisi oluşturur. Ektomikorizal kökler potasyum ve fosfat iyonlarını alarak infekte olmamış bitki köklerinin gelişiminde kullanılırlar. Alınımın mekanizması mantarın metabolik aktivitesine bağlıdır. Birincil fosfat birikimi ile fungus tabakaları içerisinde taşınarak bitki köküne aktarılır. Nitrojen içeren bileşikler ve kalsiyum da bu mantar tabakalarından alınarak bitki köküne transfer edilmektedir. Birbirine bağlı olan bitki kökü ve ektomikorizal mantarlar birbirlerinin yararına olan yapıların kaynağı olmaktadırlar Ektomikorizalı bitkiler aynı zamanda bitki köküne direk saldırılar harici patojenlere karşı korumalı durumdadırlar. Ektomikorizal fungus tarafından oluşturulan mantar kılıfları bitki kökü parazitlerinin burayı delip geçmelerine karşı olarak bir bariyer görevi görürler, birçok basidiomycetes grubu bu etkisini antibiyotik oluşturarak gösterirler. Bitki ve Ektomikorizal funguslar toprakta bulunan patojenlerin bitki köküne girmesini engelleyerek yaşamlarını sürdürürler. Örneğin bir fidanlık toprağında bulunan patojenler köknar ağacının köklerine tutunarak ektomikorizal birleşim içerisine girerler ve konak ağacın ölüm seviyesini düşürürler(Neal and Bollen 1964). Ektomikorizal kökler aynı zamanda uçucu organik asitleri üreterek diğer mantarlara karşı koruma sağlarlar. Ektomikorizal fungusların ürettiği bu yapılar ile patojen olan mantarların etkisi durdurulmuş olunur. Birçok bitkide inhibitör üretimi ile mikorizal infeksiyon patojenik infeksiyonun önüne geçtiğinden karşılaşılmaktadır. Endomycorrhizae (Endomikorizalar) Endomikorizal birleşmelerde mantar bitki kökü hücresini deler, bunlar vesiküler-arbüsküler(VA) yapıda bulunurlar, bunlar birkaç düzenli bitki gruplarında görülürler, Ericales ordosundan süpürge otu, Amerikan defne ağacı, Artubus, Azalea ve Rhododendron’ dur(Sanders et al. 1975). Endomikorizalar patojen olmayan kök korteksi yapısına girmeleri ve intrasellüler dolanmaları ile karakterize edilirler. Mantar kendi başına atmosferik nitrojeni fikse edemezken birlikteliklerinde mikorizal olmayan köklere göre endomikorizal olanlarda çok yüksek seviyelerde olmaktadır. Burada endomikorizal kökü olanlarda, mikorizal olmayanlara göre çok büyük seviyelerde fosfataz aktivitesi görülmekte, mikorizal mantar fosfatı dıştaki kaynaklardan konak bitki içerisine trasfer edebilmektedir. Endomikorizal birleşmelerde Ericales konak bitkinin büyümesi için topraktan alınan maddelerin alınımı ortaya çıkar ve endomikorizal infeksiyonlar Ericales grubu canlılar için çok iyi bir ekolojik niş oluşturur. Neredeyse bütün orkide kökleri tamamı ile fungal hifler ile infekte edilmiştir, bunlar kortikal hücrelerin yüzeylerinden geçerek mikorizal yapıları oluştururlar. Mantar dıştaki korteks yapısına dolanarak hücre içine girer, daha sonra hifalar özelliklerini kaybederek bütün içeriklerini konak hücreye geçirirler. Orkideler normal şartlarda obligat olarak endomikorizal durumdadırlar, sık sık Armillaria mellea ve Rhizoctonia solani ile birleşmeleri görülmektedir. Bu endomikorizal birleşimler orkid tohumunun çimlenmesinde görev alırlarken, mantar bitkide parazitik olarak da bulunmaktadır. Buradaki parazitizm ortak parazitlik denilen bir olayla dengede tutulmakta ve sağlam olmayan yapılara dayanmaktadır. Bu birleşme orkideye gece tozlaşma ve ışıldama etkisi vererek A.mellea ışık üretiminin yapıcısıdır. Gececil böceklerin bunları tozlaştırarak bunların seksüel yapılarının oluşmasında etkilidir. Arbusküler mikorizalar ise bir ihtimal ile Devonian yer florasından meydana gelmişlerdir(Bagyaraj and Varma 1995). Bunlar birçok angiosperm, gymnoperm, eğrelti otu ve bryophyta grubundan şekillenmiştirler. 2.6 milyon bitki türünden 240000 tanesinde potansiyel mikorizal birleşimler olduğu ve bunların 6000 mantar ile olduğu hesaplanmaktadır. Ribozamal DNA genlerinin sıralanmasında 12 türün arbusküler mikorizal fungulsların içinde olduğu görülmüş ve bunların filogenetik analizleri sonucunda üç tane familya ile eşleştikleri görülmüştür, bunlar; Glomaceae, Acaulosporaceae ve Gigasporaceae’ dir. Arbüsküler mikorizal funguların orjinlerinin 383-462 milyon yıl öncesine dayandıkları hesaplanmaktadır. Bu varsayımlar endomikorizal fungusların atasal bitkilerde bulunduğunu göstergesidir. Glomaceae ilk olarak ortaya çıkanlardır bunu Acuulosporoceae ve Gigasporoceae familyaları takip etmektedir. Bu üö form Paleozonic çağın geç kısımlarının 250 milyon yıl öncesine kadar değişimlerini sürdürmüştür. VA tipi endomikorizal birleşmeler sık sık bildirilmeden süregelmiştir çünkü bu olay kök morfolojisinde bir değişikliğe neden olmamaktadır, birçok bitkide de ekzo ve endomikorizal birleşmeler ile kendini göstermektedir(Mosse 1973; Sanders et al. 1975; Bowen 1984). VA mikorizaları buğday, mısır, fasulye, soya, domates, çilek, elma, portakal, üzüm, pamuk, tütün, çay, kahve, kakao, şekerkamışı, hanımeli, kauçuk, toz ağaçları, fındık ağacı, şeker akçaağacı gibi birçok bitkide görülmektedir. Bunlar aynı zamanda angiospermler, gymnospermler, eğreltiler, biryofitler ve daha büyük kültüre edilmiş bitkilerde bulunur. VA endomikorizal mantarları saf kültürler olarak üretilememişlerdir. Düz septa eksikliği VA mantarlarının imzası halinde olup sadece Endogone cinsinde görülmektedir fakat bu grup şimdilerde birçok genus için altbirim olarak görülmektedir. VA mikorizaların ana belirleyici özellikleri vesiküllerin ve arbusküllerin kök korteksi yapısında bulunmalarıdır(Hartley1965). İnter ve intrasellüler hifalar korteksin içerinde ve infeksiyon miselyum yapısının toprağa bakan dış yapısında bulunmaktadır. Genel olarak miselyum formları topraktaki VA mikorizal köklerinin etrafında serbest olarak yayılım gösterir. Bu mikorizal funguslar bilinen en geniş yayılmış 20-400 µm uzunluğunda sporlara sahiptirler. Arbüsküler mikorizal funguslardan Gigaspora margarita da her bir fungal spor üzerinde 250000 bakteriyel endosimbiyont bulunduğu rapor edilmiştir(Biancicotto et al. 1996; Holzman 1996). Funguların bakteriyel endosimbiyontları PCR ile analiz edilerek bunun Burkholderia türünden olduğu saptanmıştır(pseudomonadların II grubundan). Bu bakteriyel endosimbiyontlar ile ökaryotik hücrelerdeki mitokondrinin oluşumu hakkında tartışmalar halen sürmektedir. Mikorizal miselyum yapıları köke abiyotik streslerden metal toksikliği, ve toprak toksikliği durumlarımda olduğundan daha fazla seviyede dayanma gücü vermektedir. Mantar bitki büyümesini teşvik edici olarak dış hifaları, toprak dışındaki kökçükler ve fosfor alanları dışındaki yerlerden fosfor alınmasını arttırmaktadır. VA mikorizal birleşmeleri sonucu fosfor alınımı artarken diğer iyonlardan çinko, sülfat, ve amonyumlarında alınmasını arttırmaktadır(Chiariello et al. 1982). VA mikorizal birleşmeleri ektomikorizalar ile benzerlikler göstermektedir. Bu mikorizal birleşmeler verimsiz haldeki toprağın vejetasyonunu arttırarırlar(Tinker 1975; Wills and Cole 1978). Bitkiler ve mikorizal mantarlar bitki yaşamı için gerekli olan maddelerin topraktan alınmasını arttırmaktadırlar. Bu birleşimin en belirgin getirisi fosfor bakımından yetersiz olan toprağın değiştirilmesidir. Çünkü genellikle tropikal topraklarda fosfor oranı düşük iken buralarda yapılan tarımsal faaliyetler sonrası oluşan topraklarda orijinal toprağa göre daha fazla fosfor bulunduğu görülmüştür. Geleneksel tarımda sık sık ve üzücü başarısızlıklar tropikal bölgelerin tarıma açılmasından sonra meydana gelen verimsizliktir, çünkü çiftçiler buradaki yağmur ormanlarının direk olarak üzerine kurdukları limitli fosfor bulunduran bu üretim arazilerinde verim alamamaktadırlar. Tropikal yağmur ormanlarının gür ve sık yapısı onları aldatmaktadır. Bunlar genellikle yüksek çözünmeli ve eksik maddeli topraklardır(Jordan 1982). Ilıman ormanlarda çürüyen maddeler ve toprak humusu ana maddesel içeriklerdir. Yüksek sıcaklık ve nem altında biyoindirgenme süresi çok artar ve ortamda çok az humus ve çürümüş materyal yaşayan bitki topluluğu tarafından alınarak hemen kullanılır. Çünkü besinler günlük ağı yağmur fırtınaları ile yağmurormanı toprağına nüfus edemeden akar gider. Bu durumda mikorizal etkileşimler madde çevriminde döngüsel olarak yer almaktadır. Mikorizal fungusların saprofitler gibi davranarak bitki parçalarını yüksek seviyelerde ayrıştırdıkları da görülmektedir. Serbest inorganik madde tuzları toprak yapısına katılamazlar ve bunlar ayrıştırma sırasında ortadan kaybolurlar, çünkü bunlar direk olarak mikorizal funguların hifaları ile bitki köklerine taşınırlar. Bu ‘kapalı halkasal madde döngüsü’ çok yüksek seviyede etkili bir koruma mekanizmasıdır. Bu ormanların tarım arazisi olarak kullanılmaları için öncelikle doğal vejetasyonların kesilip daha sonra yakılarak bitkilerdeki mineral maddelerin toprağa geçmeleri sağlanmalıdır. Maddeler bir hasat ile arttırılır yada en iyi birkaç hasat toprağın bu maddeleri alması için buraya bırakılır. Sadece önemli girdilerden sentetik gübreler, genellikle pahalı olduklarından kullanılmaz, yenilenecek üretim için kullanır. Kısır toprak verimsiz ve genelde aşınmış durumdadır. Legümünozlar İle Rhizobialar Arasındaki Nitrojen Fikse Etme İlişkileri Legümünoz bitkiler ve rizobia arasındaki nitrojen fikse etme ilişkileri global nitrojen döngüsü ve tarım için oldukça önemli bir yere sahiptir(Evans et al. 1991; Postgate 1992; Somasegaran and Hoben 1994). Son zamanlara kadar bütün nodüllü ve nitrojen fikse eden bakterilerin tek bir genusta toplandığı düşünülüyordu, Rhizobium. Fakat artık iki ek genus daha var bunlar; Azorhizobium ve Bradyrhizobium bu yeni gruplar birçok legümen familyasında bulunan farklı nodül bakterileri yüzünden eklenmişlerdir. Rhizobium türleri çok çabuk büyüyebilme yeteneğinde iken Bradyrhizobium türleri çok yavaş büyürler (brady nin anlamı ‘yavaş’ demektir). Bradyrhizobium türleri soyalarda, inek fasulyelerinde ve çeşitli tropikal legümünozlarda nodül oluştururlar. Rhizobium türleri fasulyelerde, yoncalarda ve diğer legümünos bitkilerde yaygın olarak olarak nodül oluştururlar. Azorhizobium türleri ise tropikal ağaç gövdelerinde nodül oluşturan(Sesbania rostrata) özel bir gruptur. Azorhizobium türleri diğer gruplara karşıt olarak atmosferik nitrojeni fikse etme yeteneğindedir(Azo kavramı nitrojene karşılık gelir). Rhizobium ve Bradyrhizobium bunu yapabilme yeteneğinde değildir, buna karşın bazı nitrojen fiksasyonu serbest haldeki bakteriler tarafından oksijen gerilimi ile yapılabilmektedir. Bunun yanında bunların büyüme hızı yavaştır, Bradyrhizobium’ lar Rhizobium’ lar dan farklı özellikler göstermektedirler. Bununla beraber nodülleşme ve infeksiyon süreçleri iki cins içinde benzerdir. Rizobia da ise toprakta özgür yaşayan hetetrofların etkisi ile olur, bunlar toprak mikrobiyal kommunitelerinin baskın türleri olmadıkları için atmosferik nitrojeni fikse edemezler. Uygun koşullar altında, rizobialar kökçükleri istila ederek nodül oluşumunu başlatırlar ve azot fikse etme aktivitelerini geliştirebilirler. Bitki ve rizobia arasındaki ilişki belirgindir ve ortak tanıma işleminden sonra bu iki partner arasında uyum içinde kemotaktik olarak nodül oluşumları gözlenmektedir. Legümünoz bitkilerde rizobialar için doğru bir tanımlama içindedirler ki doğru rizobia doğru legümünoz köküne tutunarak nodül oluşturur. Rizosfer içerisinde bitki kökleri rizobialar için bir yaşama ortamı oluştururken bunların değişimleri ile infeksiyon kademeleri sonradan ortaya çıkan nodülleri oluşturmaktadır(Fahrareus abd Ljunggren 1968). Rizobiaların yeterli rizosfer populasyonları ile kurulmasından sonra gerekli olan tam infeksiyon sağlanır. Toprak şartları rizobiaların bağlanma dönemlerinde bunların hayatta kalmasını ve kökçükleri infekte edebilme özelliklerini etkiler(Dixon 1969; Alexander 1985). Rizobialar mezofiliktirler fakat bazı düşük sıcaklıklara toleranslarıda vardır 5ºC’den düşük ve 40ºC’den yüksek sıcaklıklar gibi. Bazı rizobialar düşük pH lara duyarlıdır ve asidik topraklarda kökçüklere bağlanma göstermezler; nitrit ve nitrat iyonlarıda nodül oluşumunu etkili olan diğer düşük konsantrasyon içerikleridir. Nodül oluşumu süreci bitki kökü ve rizobia arasındaki etkileşimlerin karmaşık bir sonucu olarak ortaya çıkmaktadır(Solheim 1984; Brewin 1991). Flavonoidler yada izoflavonoidler aynı kökenli bakterilerin nodülleştirme(nod) genlerinin artırımını engellemek için konak bitki tarafından salgılanırlar. Nod genleri ‘Nod faktörleri’ denilen türlere özgü biyosentez olayı ile lipopolisakkaritler tarafından üretilirler. Bu sinyal içerikleri salındıklarında rizobial hücreleri baskılayarak kıvırcık şekilde dolanarak meristamatik hücreler tarafından nodüllerin oluşturulması sırasında kullanılırlar. Rizobialar bitki kökü salgıları pozitif kemotaksis ile legümünoz köke bağlanma noktalarını belirlemektedir. Rhizobium ve bradyrhizobiumların ikiside kök salgıları olan amino asit ve dikarboksilik asitlere ve iyi bilindiği gibi çok az konsantrasyon içeren salgı bileşiklerinden olan flavonoidlerede oldukça ilgi duyarlar. Bitki proteinlerinden olan lektinler ilgili rizobial hücrelerin yüzeyinde karbonhidrat bileşiklerine çok yüksek seviyelerde ilgi gösterirler ve kök saçları ile rizobia bağlanma yerlerinde belirgin bölgelere sahiptirler(Dazzo and Hubbell 1975; Dazzo and Brill 1979; Hubbell 1981). Nodülleşme sürecinde bitki köklerinden triptofan salgılanır, rizobia tarafından indoleasetik aside çevrilir(IAA) ve IAA birlikte bilinmeyen bir kofaktör ile bitki kökünün kıvırcık ve dallanmış olmasını sağlar. Bitki kökü bakteri hücreleri arasında büyür. Poligalaturonaz denilen ve rizobia tarafından salgılanan enzim ile bitki kökü yapılarının yumuşak bir yapıya kavuşarak bakterilerin buralara girmesini sağlarlar(Hubbell 1981; Ridge and Rolfe 1985). Delme işleminden sonra birincil kök saçları duvarı, hücre duvarı ve selülozik duvar ile kaplanarak infeksiyon tüpü oluşumu başlar. Rhizobium hücreleri polisakkarit bir matriks ile bir baştan bir başa kaplanırlar. İnfeksiyon tüpü düz olarak delme işlemini kök korteks hücleri boyunca devam ettirir. İnfeksiyon tüpü büyümeye devam ettiğinde kök hücresinin büyümüş çekirdeği infeksiyon tüpü boyunca hareket eder. İlk hücrenin olşumunda nodül iki tane normal kromozom içermektedir. Bu dörtlü hücreler merkez nodül hücrelerinde artması ile rizobiadaki nitrojen fikse yapısı oluşturulur. Normal gelişen infekte olmamış hücrelerde kökün taşıma kanal sitemini oluştururlar. İnfekte yapının içerisinde rizobia çoklu haldedir, ve belirsiz şekiller ile bazen de kocaman büyümüş bakteroid denilen hücleri meydana getirirler. Nodüllerdeki bakteroidler ve infekte olmamış vakuol hücreleri bitki ile mikrop arasındaki metobolit trasferinde kullanılırlar. Değişme sırasında normal rizobial hücreleri bakteroidlere, bakteriyal kromozomlar dönüşmeye, bakteroidlerin ortadan kalkması ilede bağımsız çoğalmalar meydana gelmektedir. Bakteroid hücreleri aktif olarak nitrogenaz üretirler, fakat konak bitki yapıları nitrogenaz sentezinin kontrolünde görev alırlar. Nodül içerisindeki bakteroid atmosferik nitrojeni taşımaktadır. Normal şartlar altında hiçbir serbest yaşayan rizobia infekte olmamış bir legümünoz bitkide atmosferik nitrojenin taşınmasında görevli değildir. Nodüller leghemoglobin varlığı ile bütün nitrojen fikse eden legümünoz nodüllerinde karakteristik olarak kırmızı-kahverengi bir renk sahibidir. Leghemoglobin aynı zamanda elektron taşıyıcısı, bakteroidlerde oksijen deposunda ATP üretiminde ve aynı zamanda nitrogenaz sisteminin oksijen duyarlılığı korumasında görev alır. Leghemoglobinin hem bölümü rizobianın, bitkinin globin bölümünü kodlaması ile oluşur. Bitki aleminde leghemoglabin varlığı legümünosların eşsiz özelliği olarak tanımlanmaktadır. Bitki ve bakterial genlerin birleşimleri rizobial-bitki simbiyontlarının ifadesinde belirgindir(Long1989a, 1989b; Martinez et al. 1990; Nap and Bisseling 1990; Brewin 1991; Stacey et al. 1992; Fischer 1994; Van Rhijn and Vanderleyden 1995). Genler nodül oluşumunda ilgilidirler, genelde nodülin genleri olarak adlandırılırlar, simbiyotik nitrojen fiksayonuna izin veren nodüller Nod proteinlerini kodlayarak oluşurlar. Nodülün genleri bitki kökündeki infeksiyona özel simbiyotik nitrojen fikse eden bakterilerdeki nodülün genleri 2 sınıfa ayrılmaktadır. İlk sınıftaki genler biyokimyasal kompozisyonu belirleyen genlerdir bunlar, bakteri hücresi yüzeyi bileşikleridir. İkinci sınıftaki genler ise nodülasyon genlerinin oluşumunda görevlidir. Nodülasyon genlerinin inaktivasyonu çeşitli bitki fenotiplerinin oluşumunda etkilidir, örneğin nodülasyon geninin eksikliği, gecikmiş fakat etkili nodülasyon yada konak sınırlarının değişmesi gibi etmenlerle. Bazı nod genleri değiştirilemeyen nodül oluşumu sırasında ortaya çıkarlar ve bunların işlevleri belirlenmiş değişik türler ile etkileşimin sağlanmasıdır. Diğer nod genleri nodülasyonda belirli konaklarla meydana gelen konağa özgü nod genlerinin oluşumunda etkiledirler. Hızlı gelişen Rhizobium türlerinde birçok nodülin geni büyük Sym plasmidlerinde bulunurlar, bunun yanında Bradyrhizobium türlerinde geç nodül oluşturma genleri bakteriyal kromozomda taşınır. Gen demetlerinin içinde esas nitrojen sürecine nif ve fix adı verilir bunlar nitrogenaz enzimi için gerekli olan yapısal genleri taşırlar. Rizobial genler nodül oluşumu ve nodülün gen ifadelerini nodülasyon genlerinde bulunmaktadır, birkaç gen grubu bakteriumun dış yapısını oluşturmakta görev alır ve az sayıdaki iyi tanımlanmış genlerle olur. Konağa özgü nodül genleri konağın hangi belirgin nodül oluşturmasına karar verir. Nod geni demetleri genellikle Sym plazmidi üzerinde bulunurlar ve infeksiyon ve nodül oluşumu safhalarının kodlanmasında görevlidirler, bunlar aynı zamanda özellikleri belirleyen genleri taşırlar. Rizobial suşların Sym plazmidlerini birbirleri arasında değiştirmeleri mümkündür, legümen konak infekte olduktan sonra değişim gerçekleşebilmetedir. Sym plazmidi Agrobacterium’ lar ile diğer yakın nodül oluşturma yeteneği olan bakteriler arasında değiştirilebilir. Bununla beraber bu tarz birleşmeler ile genellikle nitrojen fiksasyonugerçekleşmez. Nif genleri biyokimyasal nitrojen fiksasyonu mekanizmasını kodlarlar ya da rizobiyal suşların plazmid birleşmlerinde görev almazlar(Postgate 1982; Sprent and Sprent 1990). Bununla birlikte Nod genlerinden Sym plazmidleri nif ve fix nitrojen fikse eden gen demetlerini taşırlar. Nif ve fix demetleri nitrogenaz yapısal genlerini taşımaktadırlar. Rhizobium loti , Bradyrhizobium ve Azorhizobium türlerinde simbiyotik ilişkileri belileyen genler bakteriyel kromozomlarda lokalize olmuşlardır. Çoğu Rhizobium nod genleri kültürel hücreleri belirtmez fakat bitkilerin görünüşlerinde bulunmaktadır. Bu etkileşim bitki tarafından salınmasını tetikler ve aynı zamanda NodD proteininin aktive edici hale gelmesini sağlar. NodD geni sadece nod geninde bulunur ve serbest yaşayan Rhizobium türlerinin simbiotik durumlarını kodlamaktadır. Flavonoidlerin bitki köklerinden salınması ile NodD proteinleri diğer nod genleri daha ileri bir nodülleşme için esas olan nodABC geni aktive edici özelliktedir. Nod genlerinin ana özellikleri simbiyotik ortaklar arasında sinyal iletimini sağlamaktır. NodD proteinleri korunmuş DNA serilerine bağlanarak nod operonları aktifleştirir buna nod kutuları adı verilmektedir. İkinci adım olarak bakteriumlar başka bir deyişle yapısal nod genleri lipoologosakkarit sinyalleri üretirler, bunlar kök yapılarını oluştururlar. Nodül içeren moleküller bitki salgılarından saflaştırılırlar ve flavonoidler olarak isimlendirilirler, fenilproponoidlerin üç zincirli aromatik yapılarının metabolizmaları sonucu oluşmuşlardır(Long 1989a). NodD proteinleri belirgin Rhizobium türlerinin homolog konaklarından elde edilmişlerdir. Rizobialar kök salgılarının varlığında gelişmektedirler yada nod geni içeren flovonoidlerin kök saçı yapılarının bozulmasına neden olan faktörleri içermektedirler. Yonca da ve alfalfa grubu bitkilerde en aktif uyarıcılar flovonlardır, luteolin gibi.(Long 1989a).Alfalfa simbiontu olan Rhizobium melioti D-glukoz amin içerisideki β-1.4-tetrasakkaritleri salgılar, bunlar üç amino grubun açillenmesi ile ve bir tanesine doyurulmamış C16 doymuş yağ asidi eklenmesiyle oluşurlar. Nod genlerine ek olarak rizobialarda nodül oluşumu için gerekli genler bulunur, bu genlere ek olarak bakterial dış yapıların üretimleri de, örneğin eksopolisakkaritler(exo genleri), lipopolisakkaritler (lps genleri) ve glukanlar(ndv genleri), bunlara da ek olarak ilaç dayanıklılığı, ototrofi, ve karbonhidrat metobolizması bulunur. R. meliloti, B. japonicum ve A. Caulinodonas’ ların nif ve fix genleri farklı şekillerdedir. Bu genlerin yapısal ve demetsel özellikleri her bir tür için özeldir(Van Rhijn and Vanderleyden 1995). Rizobianın nif ve fix gen demetleri Klebsiella pneumoniae deki kadar sıkı şekilde hiçbir grupta düzenlenmemiştir. R. meliloti iki tane çok büyük plasmid içermektedir(megaplasmid olarak adlandırılır), biri 1400kb of DNA(megaplasmid 1), diğeri 1700kb DNA(megaplasmid 2) içerir. demet I ve demet II megaplasmid 1 de bulunur. Simbiyosisde bulunan ek genlerde megaplasmid 2 ve kromozomlar içerisinde yer almaktadır. Hidrojen gazının nitrojen fiksasyonu üzerinde yan etkilerini ortadan kaldırmak için erken önlemler alınır. Hidrojen gazının evriminde fotosentez enerjisi ürünler üzerinde azalan bir şekle bürünmüştür. Bazı Sym plazmidleri hidrogenaz aktivitesini kodlayan hub adında genler kodlarlar. Hidrogenazın oksitlediği hidrojen suya ve buradan da kimyasal üretim ile ATP sentezi yapılır. Bu yararlı süreç fotosentetik enerjiyi saklayarak boşa gitmesini engeller(Albrecth et al 1979). Rizobialardaki genetik oluşumlarda legümenler ile beraber çalışarak etkili bir mekanizma ortaya çıkartırlar. Ekonomik dürtülerin etkisiyle bu yönderki araştırmalar gelişmiştir. Önemli legümünoz bitkileri arasındaki soya fasulyeleri, birçok fasulye, bezelye, mercimek çeşitleri gelmektedir. Önemli besin legümünozlarından alfalfa ve yonca sayılabilir. Legümünoz ağaçlar birçok tropikal ve subtropikal ekosistemlerinin ve yağmurormanlarının oluşumu için önemlidirler(Sprent and sprent 1990). Diğer legümenlerden ise mesquiteler çöl toprakları gibi düşük nitrojen içeren yerler için oldukça önemlidir, bu legümünozlar aynı zamanda yerel batı amerikalıllarında önemli bir besin kaynağıdır. Legümünoz Olmayan Grupların Mutualistik Nitrojen Fiksasyonu İlişkileri Rhizobiumlar ve legümünoz bitkiler arasındaki Mutalistik birleşmeler yanında diğer bakteriler ve legümen olmayan bitkiler ile simbiyotik ilişkilerde nodül oluşumu ve serbest nitrojenin atmosferden alınması ile olmaktadır(Evans and Barber 1977; Akkermans 1978). Legümen olmayan bitkilerdeki kök nodülü şeklinde meydana gelen ilişkilerde Rhizobiumlar, cyanobakteriler ve actinomycetesler görülür. Rhizobiumlara örnek vermek gerekirse, Trema ile nitrojeni fikse edebilir, Trema tropikal ve subtropikal bölgelerde görülen bir ağaç türüdür. Aynı şekilde actinomycete Frankia alni bitki köklerini infekte eder ve nodül oluşumunu gösterir(Benson and Silvester 1993). Frankia türleri actinomycetes (filamentli mantarlardan) ve septalı hifalardan oluşmuş sayısız spor içeren yapılardır.Frankia türleri çeşitli legümen olmayan bitkilerde, odunsu şuruplarda ve kısa ağaçlarda görülürler. Actinomycetes tipi azot-fikse eden simbiyotik canlılar özellikle angiospermler için oldukça önemlidir. Frankia hifalarının bir kısmı değişime uğrayarak özelleşmiş azot fiksasyonu hücrelerinde vesikül denilen yapılar oluşturular. Frankia aynı zamanda yaşayan serbest bitki hücrelerini de değişikliğe uğratarak bunların nitrojen fiksasyonu yapmasını sağlarlar. Actinomycete (Frankia) simbiyozları yaygın olarak ılıman ve circumpolar bölgelerde bulunurken cyanobakteriler ve rizobial simbiyozlar tropical ve subtropical bölgelerde bulunurlar(Benson and Silvester 1993). Actinomycete simbiyozlar ve karakteristik olarak Alnus, Myrica, Hippophae, Comptonia, Casurina ve Dryas’ ında aralarında bulunduğu angiospermlerin arasındadır. Toprak azotunun çok büyük bir kısmı serbest olarak bulunur ve Scandinavia gibi muhtemelen actinomycetelerin kök nodülü simbiyozu olan legümen olmayan, genellikle Alnus bitkilerinde ve az da olsa Dryas, Myrica, ve Hippophae yapılarda fikse edilir. Casurina’ yan subtropikal bölgelerdeki kum, kumul tepeleri ve yarıçöl alanlarında rastlanır(Morris et al. 1974; Callahan et al. 1978, Sprent and Sprent 1990). Actinomycetelerin hifaları kökü delebilecek hale geldiklerinde kortikal hücrelerinin bölünmesini uyarır(Berry 1984). Hifalar bölünen hücrelerin içine girdiklerinde gen demetlerini konağın içerisine aktarırlar ve vesüküller çevresinde şekil değiştirirler. Birincil enfekte komşu hücreler kök primordium yapısına girerek buradan cortax içinde büyümeye başlarlar. Endofitik actinomycetelerde primordiumlar meristem hücrelerine saldırıda bulunurlar ve actinomyceteler kök primordiumunun gelişimini attırıcı etki yaparlar. Dichotomous bölümünde bulunan bitkilerin meristamatik hücrelerinde demet şeklinde loblar oluşumu gerçekleşir bunlara rhizothamnion yani tipik actinomycete nodülü adı verilmektedir. Nodül içerisinde nitrogenas ve atmosferik nitrojen fiksasyonu gerçekleşir.

http://www.biyologlar.com/bitkiler-ve-mikroorganizmalar-arasindaki-iliskiler

Geri Dönüşüm Metotları

Geri dönüştürme metodları her malzeme için farklılık göstermektedir: Alüminyum: Atık alüminyum küçük parçacıklar halinde doğranır. Daha sonra bu parçalar büyük ocaklarda eritilerek, dökme alüminyum üretilir. Bu sayede atık alüminyum, saf alüminyum ile neredeyse aynı hale gelir ve üretimde kullanılabilir. Alüminyumun geri kazanımıyla; enerji tüketiminde azalma % 95, hava kirliliğinde azalma % 90, su kirliliğinde azalma % 97, baca gazı kirletici emisyonunda azalma % 99 oranında olur ve boksit cevherinde korunmuş olur. Bir kilogram alüminyum kutu geri kazanıldığında; 8 kg boksit madeni, 4 kg kimyasaln madde, 14 kW/sa elektrik enerjisi kullanımı korunmuş olur. On adet alüminyum içecek kutusu geri kazanıldığında, 100 kW/sa bir lambanın 35 saatte veya bir TV’ nin 30 saatte harcadığı elektrik enerjisi korunmuş olur. Bir ton kullanılmış alüminyumdan alüminyum üretilirse; 1300 kg boksit bakiyesi, 15000 litre soğutma suyu, 860 litre prosesn suyu, 2000 kg CO2 ve 11 kg SO2 emisyonu daha az oluşur. Beton: Beton parçalar, yıkım alanlarından toplanarak kırma makinalarının bulunduğu yerlere getirilir. Kırma işleminden sonra ufak parçalar, yeni işlerde çakıl olarak kullanılır. Parçalanmış beton, eğer içeriğinde katkı maddeleri yoksa yeni beton için kuru harç olarak da kullanılabilir. Kağıt: Kağıt öncelikle kağıt çamurunun hazırlanması için, su içerisinde liflerine ayrılır. Eğer gerekirse içinde lif olmayan yabancı maddeler için temizleme işlemine tutulur. Mürekkep ayırıcı olarak, sodyum hidroksit veya sodyum karbonat kullanılır. Daha sonra hazır olan kağıt lifleri, geri dönüşmüş kağıt üretiminde kullanılır. Kağıt, insanlığın önemli ihtiyaç maddelerinden biri olup, kağıt sanayinin gelişmesi bir ülkenin sanayi ve kültürel gelişmişlik düzeylerinin belirleyici etmenlerinden biri olarak kabul edilmektedir. Atık kağıt sürekli olarak geri kazanılamaz. Eğer, belirli miktardaki kağıt sürekli olarak geri kazanılırsa, son kullanılma limitlerine çok kısa bir süre içinde ulaşılır. Her geri kazanımda, liflerin boyu kısalır ve liflerin yapışması için yardımcı maddeler ilave edilmeden yeni kağıt üretilemez. 1 ton kullanılmış kağıt çöpe atılmayıp geri dönüştürüldüğü ve kağıt üretiminde tekrar kullanıldığı zaman; -12400 m3 havadaki sera gazı olan karbon dioksitin bertaraf edilmesi, -12400 m3 oksijen gazının üretilmeye devam etmesi, -34 kişinin oksijen ihtiyacını sağlayan 17 yetişkin ağacın korunması, -Ayda 3 ailenin tükettiği 32 m3 su tasarrufu, -Kış aylarında ısınma amacı ile iki ailenin tüketeceği 1750 litre fuel-oil tasarrufu, -2,4 m3 çöp depolama alanından tasarruf, -20 ailenin bir ay süreyle tüketeceği 4100 kW/sa elektrik enerjisinden tasarruf edilebilmesi mümkündür. Plastik: Plastik atıklar öncelikle cinslerine göre ayrılarak geri dönüşüm işlemine tabi tutulur. Cinslerine göre ayrılan geri dönüşebilir plastik atıklar, kırma makinalarında kırılıp küçük parçalara ayrılır. İşletmeler bu parçaları direkt olarak belli oranlarda, orijinal hammadde ile karıştırarak üretim işleminde kullanabildiği gibi; tekrar eritip katkı maddeleri katarak ikinci sınıf hammadde olarak da kullanabilir. Cam: Camın bileşimine giren üç grup madde vardır. Bunlar cam haline gelebilen oksitler, eriticiler ve stabilizatörler denilen maddelerdir. Şişe, kavanoz, cam bardak, vazo ve diğer cam atıklar toplama kutularında veya atığın oluştuğu yerlerde ayrı toplanır ve bu atıklar renklerine göre ayrılarak geri dönüşüm tesislerine verilir. Burada atık ve katkı maddelerinden ayrılır. Cam maddeler kırılır ve hammadde karışımına karıştırılarak eritme ocaklarına dökülür. Kırılan cam, beton katkısı ve camasfalt olarak da kullanılmaktadır. Camasfalta %30 civarında geri dönüşmüş cam katılmaktadır. Cam, sonsuz bir döngü içinde geri dönüştürülebilir, yapısında bozulma olmaz. Camın Geri dönüştürülmesiyle Sağlanan Tasarruf • Enerji tüketiminde azalma %25 • Hava Kirliliğinde azalma %20 • Maden atığında azalma %80 • Su Tüketiminde azalma %50 • Korunan doğal kaynaklar: kum, soda, kireç Aküler Ve Piller: Evlerde, işyerlerinde, ulaşımda ve sanayide kullanılan bir çok alet ve ekipmanda pil kullanılmaktadır. Atık piller; kağıt, metal ve cam gibi atıklara göre daha az hacme sahip olmalarına rağmen, onlardan binlerce kat fazla doğal yaşama ve insanlığa zararlı ağır metaller içerirler. Atık haldeki piller ayrı bir yerde (naylon torba, kutu, kavanoz, vs.) biriktirilerek atık pil toplama kutularına atılmalı veya satın alındığı yere geri götürülmelidir. Atık piller uzun süre muhafaza edilmemelidir. Aküler ise daha çok araçlarda olmak üzere yine bir çok alanda kullanılmaktadır. Atık akümülatörleri değiştirirken eskisini, akümülatör ürünlerinin dağıtım ve satışını yapan işletmeler ve araç bakım-onarım yerlerini işletenlerin oluşturduğu geçici depolama yerlerine ücretsiz teslim edilebilir. Tüketici olan sanayi kuruluşlarının üretim süreçleri sırasında kullanılan tezgah, tesis, forklift, çekici ve diğer taşıt araçları ile güç kaynakları ve trafolarda kullanılan akümülatörlerin, atık haline geldikten sonra üreticisine teslim edilene kadar fabrika sahası içinde sızdırmaz bir zeminde doksan günden fazla bekletilmemsi gereklidir. Lastikler: Lastikler araç altından söküldükten sonra "kullanılmış lastik" ya da "ömrünü tamamlamış lastik" olurlar. Çevrede zor ayrışır olmaları, atık lastiklerin önemli bir çevre problemi olmalarının asıl nedeni değildir. Ne kadar zor ayrışsalar da atıklar tabiatta sonunda ortadan kaldırılabilmektedir. Buna yakma ile destek de olunabilmektedir. Ancak, üretilen atık lastiklerin çok önemli miktarlarda olması bu atıkların giderilmesindeki en önemli yönü ortaya koymaktadır. Atık lastiklerin yeniden kaplama, geri kazanma, enerji elde edilmesi, atık deposunda depolama ve ihracat yöntemleri ile bertaraf edilmektedir. Hurda lastiklerin yığıldığı yerlerde önemli 2 çevre zararı söz konusu olmaktadır. Bunlar: Bu yığınlarda meydana gelen şiddetli yangınlar ve bu yığınlarda rahatça çoğalma fırsatı bulan böcekler nedeniyle toplum için oldukça tehdit edici hastalıkların yayılma ihtimalleridir. Özellikle kamyon ve iş makinasi lastikleri kaplama yolu ile geri dönüştürülmektedir. Röntgen Sularından Gümüş Geri Dönüşümü: Resmi ve özel hastanelerde kullanılan röntgen makinelerinden çıkan röntgen suları, n, matbaalardan, fotoğrafçılarıdan kaynaklı atık fotoğrafik banyo suları(röntgen suları), röntgen ve matbaa filmlerinden Gümüş geri kazanımı mümkündür. Bu işyerlerinden yıllardır büyük miktarlarda kanalizasyon sularına karıştırılan ve atık olarak değerlendirilen bu sular, son yılarda Çevre Ve Orman Bakanlığı’ndan lisans almış firmalar tarafından toplanmaktadır. Bu işyerlerindeki çevreye duyarlı yöneticilerin duyarlılıkları ve çevre denetimi görevi yapan denetmenlerin telkinleriyle doğaya atılan bu sular lisanslı firmalara tarafından toplanarak gümüş kazanılması sağlanmaktadır. Bu dönüşü gerçekleştiren işletmeler atık sulardan ülkemizin kar etmesini sağlamaktadırlar. Bu geri dönüşüm döngüsünün etkin hale gelmesinde özellikle hastane yetkililerine ve röntgen teknisyenlerine büyük görevler düşmektedir. Bu atık sulerın ve atık malzemelerin lisansı olmayan işletmelere verilmemesi gerekmektedir. Atık Altın Parça Ve Tozlarının Geri Dönüşümü: Kuyumcu atölyelerinde (bilezik atölyeleri, tamir atölyeleri v.b) kuyumcu tamircilerden ve küçük çaplı atölyelerden altının işlenmesi sırasında yere dökülen, parlatma ve temizleme esnasında oluşan artık altın tozları piyasada yer ve cila ramadı olarak tanımlanmaktadır. Kuyumcu atölyelerinde, oluşan ayak ramadı ve cila ramadından Altın ve Gümüş’ü saf olarak elde edilmesi işlemleri iki metodla yapılmaktadır. a)Ergitme(Kal Yöntemi): Gelen ramat (cila veya yer ramadı olsun) içindeki organikler önce bir tavada yakılarak içindeki yabancı maddeler kül haline getirilir. Katı kısım, erimeyi kolaylaştırması açısından üzerine belirli oranlarda kurşunoksit, karbonat ve boraks ve kurşun indirgeyici ilavesi yapılarak eritme ocaklarında 1000-1100 derecede potalarda ergitilerek malzeme içindeki altın ve gümüş, indirgenen metalik kurşun bünyesinde toplanır. Ağırlığından ve yoğunluk farkından dolayı metalik kurşun, altın ve gümüş içeren karışım sıcak iken pik pota içine dökülerek soğuması beklenir. Beklenen malzeme iki fazdan oluşur biri curuf fazı diğeride kurşun fazı olmak üzere iki fazdan oluşmaktadır. Kurşun fazı kal ocağına alınır 800-850 derece arasında kurşun buharlaştırılarak gümüş ve altın külçe halinde alınır. Curufta çok az miktarda kalan altın ve gümüş değerlendirmek üzere saklanır. b)Flotasyon(Kral Suyu): Ramatlar kapalı kaplarda işletmeye getirilerek ve içerisindeki organik atıklardan kurtulmak için tavalara serilerek yakılır. Kül haline getirilir. Kül içerisindeki altını almak için kral suyu (3Hacim Hidroklorik Asit 1 hacim Nitrik Asit) hazırlanmaktadır. Kral suyunda kaynatılarak altın sıvı içerisinde Altınklorür halinde çözündürülür. Sıvı içine alınan altın sıvısı kuruluğa kadar buharlaştırılır. Mümkün mertebe sıvı buharlaştırılarak azaltılır daha sonra süzülerek demir sülftat veya başka indirgenler kullanılarak altın indirgenir bol su ile yıkanır. Yıkanan altın çelik veya bakır bir kapın içinde kurutulup isteğe göre toz altın veya külçe altın olarak değerlendirilir. Geri dönüşüm metotları Geri dönüştürme metodları her malzeme için farklılık göstermektedir: Alüminyum: Atık alüminyum küçük parçacıklar halinde doğranır. Daha sonra bu parçalar büyük ocaklarda eritilerek, dökme alüminyum üretilir. Bu sayede atık alüminyum, saf alüminyum ile neredeyse aynı hale gelir ve üretimde kullanılabilir. Alüminyumun geri kazanımıyla; enerji tüketiminde azalma % 95, hava kirliliğinde azalma % 90, su kirliliğinde azalma % 97, baca gazı kirletici emisyonunda azalma % 99 oranında olur ve boksit cevherinde korunmuş olur. Bir kilogram alüminyum kutu geri kazanıldığında; 8 kg boksit madeni, 4 kg kimyasaln madde, 14 kW/sa elektrik enerjisi kullanımı korunmuş olur. On adet alüminyum içecek kutusu geri kazanıldığında, 100 kW/sa bir lambanın 35 saatte veya bir TV’ nin 30 saatte harcadığı elektrik enerjisi korunmuş olur. Bir ton kullanılmış alüminyumdan alüminyum üretilirse; 1300 kg boksit bakiyesi, 15000 litre soğutma suyu, 860 litre prosesn suyu, 2000 kg CO2 ve 11 kg SO2 emisyonu daha az oluşur. Beton: Beton parçalar, yıkım alanlarından toplanarak kırma makinalarının bulunduğu yerlere getirilir. Kırma işleminden sonra ufak parçalar, yeni işlerde çakıl olarak kullanılır. Parçalanmış beton, eğer içeriğinde katkı maddeleri yoksa yeni beton için kuru harç olarak da kullanılabilir. Kağıt: Kağıt öncelikle kağıt çamurunun hazırlanması için, su içerisinde liflerine ayrılır. Eğer gerekirse içinde lif olmayan yabancı maddeler için temizleme işlemine tutulur. Mürekkep ayırıcı olarak, sodyum hidroksit veya sodyum karbonat kullanılır. Daha sonra hazır olan kağıt lifleri, geri dönüşmüş kağıt üretiminde kullanılır. Kağıt, insanlığın önemli ihtiyaç maddelerinden biri olup, kağıt sanayinin gelişmesi bir ülkenin sanayi ve kültürel gelişmişlik düzeylerinin belirleyici etmenlerinden biri olarak kabul edilmektedir. Atık kağıt sürekli olarak geri kazanılamaz. Eğer, belirli miktardaki kağıt sürekli olarak geri kazanılırsa, son kullanılma limitlerine çok kısa bir süre içinde ulaşılır. Her geri kazanımda, liflerin boyu kısalır ve liflerin yapışması için yardımcı maddeler ilave edilmeden yeni kağıt üretilemez. 1 ton kullanılmış kağıt çöpe atılmayıp geri dönüştürüldüğü ve kağıt üretiminde tekrar kullanıldığı zaman; -12400 m3 havadaki sera gazı olan karbon dioksitin bertaraf edilmesi, -12400 m3 oksijen gazının üretilmeye devam etmesi, -34 kişinin oksijen ihtiyacını sağlayan 17 yetişkin ağacın korunması, -Ayda 3 ailenin tükettiği 32 m3 su tasarrufu, -Kış aylarında ısınma amacı ile iki ailenin tüketeceği 1750 litre fuel-oil tasarrufu, -2,4 m3 çöp depolama alanından tasarruf, -20 ailenin bir ay süreyle tüketeceği 4100 kW/sa elektrik enerjisinden tasarruf edilebilmesi mümkündür. Plastik: Plastik atıklar öncelikle cinslerine göre ayrılarak geri dönüşüm işlemine tabi tutulur. Cinslerine göre ayrılan geri dönüşebilir plastik atıklar, kırma makinalarında kırılıp küçük parçalara ayrılır. İşletmeler bu parçaları direkt olarak belli oranlarda, orijinal hammadde ile karıştırarak üretim işleminde kullanabildiği gibi; tekrar eritip katkı maddeleri katarak ikinci sınıf hammadde olarak da kullanabilir. Cam: Camın bileşimine giren üç grup madde vardır. Bunlar cam haline gelebilen oksitler, eriticiler ve stabilizatörler denilen maddelerdir. Şişe, kavanoz, cam bardak, vazo ve diğer cam atıklar toplama kutularında veya atığın oluştuğu yerlerde ayrı toplanır ve bu atıklar renklerine göre ayrılarak geri dönüşüm tesislerine verilir. Burada atık ve katkı maddelerinden ayrılır. Cam maddeler kırılır ve hammadde karışımına karıştırılarak eritme ocaklarına dökülür. Kırılan cam, beton katkısı ve camasfalt olarak da kullanılmaktadır. Camasfalta %30 civarında geri dönüşmüş cam katılmaktadır. Cam, sonsuz bir döngü içinde geri dönüştürülebilir, yapısında bozulma olmaz. Camın Geri dönüştürülmesiyle Sağlanan Tasarruf • Enerji tüketiminde azalma %25 • Hava Kirliliğinde azalma %20 • Maden atığında azalma %80 • Su Tüketiminde azalma %50 • Korunan doğal kaynaklar: kum, soda, kireç Aküler Ve Piller: Evlerde, işyerlerinde, ulaşımda ve sanayide kullanılan bir çok alet ve ekipmanda pil kullanılmaktadır. Atık piller; kağıt, metal ve cam gibi atıklara göre daha az hacme sahip olmalarına rağmen, onlardan binlerce kat fazla doğal yaşama ve insanlığa zararlı ağır metaller içerirler. Atık haldeki piller ayrı bir yerde (naylon torba, kutu, kavanoz, vs.) biriktirilerek atık pil toplama kutularına atılmalı veya satın alındığı yere geri götürülmelidir. Atık piller uzun süre muhafaza edilmemelidir. Aküler ise daha çok araçlarda olmak üzere yine bir çok alanda kullanılmaktadır. Atık akümülatörleri değiştirirken eskisini, akümülatör ürünlerinin dağıtım ve satışını yapan işletmeler ve araç bakım-onarım yerlerini işletenlerin oluşturduğu geçici depolama yerlerine ücretsiz teslim edilebilir. Tüketici olan sanayi kuruluşlarının üretim süreçleri sırasında kullanılan tezgah, tesis, forklift, çekici ve diğer taşıt araçları ile güç kaynakları ve trafolarda kullanılan akümülatörlerin, atık haline geldikten sonra üreticisine teslim edilene kadar fabrika sahası içinde sızdırmaz bir zeminde doksan günden fazla bekletilmemsi gereklidir. Lastikler: Lastikler araç altından söküldükten sonra "kullanılmış lastik" ya da "ömrünü tamamlamış lastik" olurlar. Çevrede zor ayrışır olmaları, atık lastiklerin önemli bir çevre problemi olmalarının asıl nedeni değildir. Ne kadar zor ayrışsalar da atıklar tabiatta sonunda ortadan kaldırılabilmektedir. Buna yakma ile destek de olunabilmektedir. Ancak, üretilen atık lastiklerin çok önemli miktarlarda olması bu atıkların giderilmesindeki en önemli yönü ortaya koymaktadır. Atık lastiklerin yeniden kaplama, geri kazanma, enerji elde edilmesi, atık deposunda depolama ve ihracat yöntemleri ile bertaraf edilmektedir. Hurda lastiklerin yığıldığı yerlerde önemli 2 çevre zararı söz konusu olmaktadır. Bunlar: Bu yığınlarda meydana gelen şiddetli yangınlar ve bu yığınlarda rahatça çoğalma fırsatı bulan böcekler nedeniyle toplum için oldukça tehdit edici hastalıkların yayılma ihtimalleridir. Özellikle kamyon ve iş makinasi lastikleri kaplama yolu ile geri dönüştürülmektedir. Röntgen Sularından Gümüş Geri Dönüşümü: Resmi ve özel hastanelerde kullanılan röntgen makinelerinden çıkan röntgen suları, n, matbaalardan, fotoğrafçılarıdan kaynaklı atık fotoğrafik banyo suları(röntgen suları), röntgen ve matbaa filmlerinden Gümüş geri kazanımı mümkündür. Bu işyerlerinden yıllardır büyük miktarlarda kanalizasyon sularına karıştırılan ve atık olarak değerlendirilen bu sular, son yılarda Çevre Ve Orman Bakanlığı’ndan lisans almış firmalar tarafından toplanmaktadır. Bu işyerlerindeki çevreye duyarlı yöneticilerin duyarlılıkları ve çevre denetimi görevi yapan denetmenlerin telkinleriyle doğaya atılan bu sular lisanslı firmalara tarafından toplanarak gümüş kazanılması sağlanmaktadır. Bu dönüşü gerçekleştiren işletmeler atık sulardan ülkemizin kar etmesini sağlamaktadırlar. Bu geri dönüşüm döngüsünün etkin hale gelmesinde özellikle hastane yetkililerine ve röntgen teknisyenlerine büyük görevler düşmektedir. Bu atık sulerın ve atık malzemelerin lisansı olmayan işletmelere verilmemesi gerekmektedir. Atık Altın Parça Ve Tozlarının Geri Dönüşümü: Kuyumcu atölyelerinde (bilezik atölyeleri, tamir atölyeleri v.b) kuyumcu tamircilerden ve küçük çaplı atölyelerden altının işlenmesi sırasında yere dökülen, parlatma ve temizleme esnasında oluşan artık altın tozları piyasada yer ve cila ramadı olarak tanımlanmaktadır. Kuyumcu atölyelerinde, oluşan ayak ramadı ve cila ramadından Altın ve Gümüş’ü saf olarak elde edilmesi işlemleri iki metodla yapılmaktadır. a)Ergitme(Kal Yöntemi): Gelen ramat (cila veya yer ramadı olsun) içindeki organikler önce bir tavada yakılarak içindeki yabancı maddeler kül haline getirilir. Katı kısım, erimeyi kolaylaştırması açısından üzerine belirli oranlarda kurşunoksit, karbonat ve boraks ve kurşun indirgeyici ilavesi yapılarak eritme ocaklarında 1000-1100 derecede potalarda ergitilerek malzeme içindeki altın ve gümüş, indirgenen metalik kurşun bünyesinde toplanır. Ağırlığından ve yoğunluk farkından dolayı metalik kurşun, altın ve gümüş içeren karışım sıcak iken pik pota içine dökülerek soğuması beklenir. Beklenen malzeme iki fazdan oluşur biri curuf fazı diğeride kurşun fazı olmak üzere iki fazdan oluşmaktadır. Kurşun fazı kal ocağına alınır 800-850 derece arasında kurşun buharlaştırılarak gümüş ve altın külçe halinde alınır. Curufta çok az miktarda kalan altın ve gümüş değerlendirmek üzere saklanır. b)Flotasyon(Kral Suyu): Ramatlar kapalı kaplarda işletmeye getirilerek ve içerisindeki organik atıklardan kurtulmak için tavalara serilerek yakılır. Kül haline getirilir. Kül içerisindeki altını almak için kral suyu (3Hacim Hidroklorik Asit 1 hacim Nitrik Asit) hazırlanmaktadır. Kral suyunda kaynatılarak altın sıvı içerisinde Altınklorür halinde çözündürülür. Sıvı içine alınan altın sıvısı kuruluğa kadar buharlaştırılır. Mümkün mertebe sıvı buharlaştırılarak azaltılır daha sonra süzülerek demir sülftat veya başka indirgenler kullanılarak altın indirgenir bol su ile yıkanır. Yıkanan altın çelik veya bakır bir kapın içinde kurutulup isteğe göre toz altın veya külçe altın olarak değerlendirilir.

http://www.biyologlar.com/geri-donusum-metotlari

BALIKESİR VE ÇANAKKALE’NİN ENDEMİK BİTKİLERİ

Milattan önce 1200’ler: Anadolu Yarımadasında kurulu, dünyanın iki süper devletinden biri olan Hitit İmparatorluğu aniden yıkılır. Bütün Hitit şehir kalıntılarında bu tarihlere ait kalın bir kül tabakası vardır. Söz konusu yıkım sadece Hititler değil, bütün Anadolu halkları için geçerlidir. Batıdan doğuya doğru hızlı bir şekilde genişleyen, vahşi bir yıkım göz önüne serilir. Öyle hızlı ve ani bir yıkımdır ki bu, Anadolu yazılı kaynaklarında işgalle ilgili bir belgeye rastlamak neredeyse olanaksızdır. Vahşi, göçebe ve savaşçı kuzey halkları (Deniz halkları) Balkanlardan Anadolu’ya saldırmışlar, burayı boydan boya tahrip ettikten sonra Doğu Akdeniz ve Mısır’a kadar dayanmışlardır. Mısır yazılı metinleri bu saldırıdan dehşetle, saldırganların Mısır’dan kovulmalarından ise övgüyle bahsetmektedir. Tarihin gördüğü en vahşi saldırı, belki de ilk dünya savaşıdır bu. Anadolu insanı barbar kabileler tarafından katledilmiş, uygarlık tamamen yok edilmiştir. Öyle etkili bir saldırıdır ki, yıkımdan sonra, bin yıldan beri Anadolu’da kullanılan ve uygarlık ölçütü olarak bilinen yazı ortadan kalkmıştır. Arkeoloji literatüründe “Karanlık Çağlar” olarak adlandırılan dönem bu yıkım ile başlamıştır. MÖ 1200-750 yılları arasında Anadolu kör bir karanlığa gömülmüştür. Yazının olmadığı, kentlerin ortadan kalktığı bu dönemle ilgili olarak ancak ilkel kabilelere özgü basit keramik parçalara ulaşılabilmiştir. Kuzey halklarının doğal olarak Anadolu’ya ilk saldırı noktası Kuzeybatı Anadolu olmuştur. Bu bölgede o zamanın en önemli siyasi ve ekonomik gücü ise Troya Uygarlığı’dır. MÖ. 3200’lerden MS. 500’lere kadar 4000 yıl sürekli iskan edilen antik kent MÖ 1200’lerde Yunanistan üzerinden gelen vahşilerin saldırısına uğramıştır. İzmirli hemşehrimiz Homeros’un İlyada ve Odessa adlı eserlerinde bu işgal epik ve lirik bir dille anlatılır. Tanrı ve tanrıçalar bu savaşı izlerken takım tutar gibi iki taraftan birini tutarlar. Tanrılar tanrısı Zeus bu savaşı Çanakkale ve Balıkesir arasındaki Kazdağlarından (İda Dağı) izler. 1756 metre rakımla en yüksek noktası olan Gargaros’tan (günümüzdeki ismi Kartal Çimeni) savaşı izleyen baştanrı insanlara benzer duygu, düşünce ve davranışlarıyla savaş süresince bu dağdadır. Aslında İda ismi anatanrıça inancını ifade eder. Roma döneminde bu dağa “Magna Mater İdae”, yani Anatanrıça İda denilirdi. Zeus kültünün, bu inancın üzerine, kuzey halklarından Dor’ların istilasıyla yerleştiği tahmin edilmektedir. Zeus bu dağın en üst noktasına yerleşmesine, dolayısıyla herkesten üstün olduğunu göstermek istemesine rağmen yöre insanı hiçbir zaman Anatanrıça inancından vazgeçmemiştir. Antik çağda Kazdağı ve dolayları bitkilerin ve bereketin tanrıçası olan Kibele ve onun devamı Artemis tapkısının en etkin alanlarındandır. Kazdağı eteklerinde, Altınoluk ile içiçe olan Antandros (Anti+andros=Erkek karşıtı)’da Artemis inancı egemendir. Anatanrıçayı savaş ve kıyımla ortadan kaldırmaya çalışan barbarların tanrılarına karşı yöre halkının günümüzdeki feminist harekete benzer bir tepki vermiş olması da mümkündür. Aksi halde önemli bir antik kenti “erkek karşıtı” olarak adlandırmazlardı. Yöre insanının erkeğe düşman olması mümkün olamayacağına göre, bu tepki ataerkil kültür ve erkek baştanrıya karşı olmalıdır. Günümüzde bile bu tepki yöre kültüründe görülmektedir. Genelde dağların en yüksek doruğu kutsal kabul edilirken, günümüzde yöre halkı Kazdağının zirvesi Kartalçimeni yerine dağa aşağıdaki Sarıkız Tepesi’ni inanç alanı olarak görmektedir. Özellikle Türkmen köyleri arasında kutsal bilinen bu tepede Sarıkız ile ilgili bir de açıkhava sunak yeri (Türbe) vardır. Yöre insanı bu sunağa gelmekte, Sarıkız Ana’ya mumlar adamakta, bez parçaları bağlamakta, ayrıca buradaki zirve defterine yazılar yazarak Sarıkız’dan sorunlarına çare bulmasını istemektedir. Sarıkız’ın hikayesi ve ritüeli ile Tanrıça Artemis’inki de birbirine çok benzer. Her ikisine de tepelerde tapınılır, her ikisi de bakiredir. Sarıkız’ın ölüm nedeni de bakire olmadığı yönündeki iftiralardır. Dağ, anatanrıça inancıyla ilgili bir yer iken, ataerkil kabilelerin işgali ile Anatanrıça zirveyi Atatanrıya bırakmıştır. Anatanrıça ikincil konuma düşerek, daha alçak bir tepeye yerleşince yöre insanı da onu takip etmiştir. (Sarıkız efsanesinin kökeninde de anatanrıçayı baştanrılıktan indirmek isteyen ataerkil halkların söylenceleri olduğu düşünülebilir ve söylence Troya savaşlarının olduğu Geç Tunç Çağına tarihlenebilir). Yöre insanı zirveye çıkarak Zeusa yakarmak yerine Sarıkız tepesine çıkıp anatanrıçaya (Kibele-Artemis) yakarmıştır. Zira anatanrıça bitkilerin, beslenmenin ve bitkisel ilaçların tanrıçasıdır. Zirveye çıkıp ne istenebilir ki yıldırımın ve şiddetin tanrısından. Besleyen ve sağaltan Anatanrıçaları ortaya çıkaran ise önemli bir endemizm merkezi olan Kazdağları’ndaki biyolojik zenginliktir. Kazdağları özgün bitkisel zenginlikleriyle gerek günümüzde ve gerekse antik çağlarda küskün (Erkekler tarafından mağdur edilmiş), ancak üretken ve hastalıkları iyi eden kadınların mekanıdır. Troya savaşları sırasında zehirli okla yaralanan Paris, Kazdağlarında yaşayan ve güzel Helene uğruna terkettiği karısı Oinone’den kendisini bitkilerden yaptığı ilaçlarla iyileştirmesi için Kazdağına çıkar. Ancak Oinone kendisine ihanet eden kocasını yüzüstü bırakır, Kazdağı bitkilerinden yapılmış ilaçlardan mahrum bırakır onu, Paris de bu dağda ölür (1). Homeros Oinone’nin hangi tür bitkilerden ilaçlar yaptığını bize söylemiyor. Dolayısıyla tıbbi potansiyeli olan bütün Kazdağı bitkilerinin sağaltıcı kadınlar tarafından kullanıldığını öngörebiliriz. Örneğin Digitalis trojana (Troya yüksük otu) tıbbi potansiyeli olan ve sadece Balıkesir ve Çanakkale’de yetişen (Kazdağındaki Kapıdağda ve Zeytinli’nin 5 km yakınında, 600-800 metrelerde) endemik bitkilerimizdendir. Nitekim batılı bilim adamları, aynı türden Digitalis purpurea adlı yüksük otunun kanserli hücreleri tedavi edici etkisini keşfetmişlerdir. Bu bitkinin kalp kaslarının güçlenmesini de sağladığı belirtilmektedir (2). Tıbbi etkileri araştırılmamış yüzlerce bitkimiz, özellikle endemik bitkilerimiz Türkiye’nin geleceğini şekillendirecektir. Bu bitkilerden elde edilecek ilaçlar -bitkilerimiz çok lokal alanlarda yetişebildiklerinden- gelecekte bizim uluslararası ilaç endüstrisi, gen teknolojisi ve farmakoloji alanında söz sahibi olmamızı sağlayabileceklerdir, yeterki koruyalım, yeterki yaşatalım endemik bitkilerimizi... Yöre insanı da Kazdağlarındaki özgün bitkileri hastalıklarını iyileştirmek için toplar. Günümüzde Kazdağının Türkmen kadınları, özellikle yaşlı olanları yörenin bitkilerini baştacı ederler (Resim 1) (3). Çünkü onların hepsi birer tanrıçadır; bitkileri onlar tanır, bitkilerden ilaçları damıtarak hastaları sağaltırlar. Başlarına çiçek takarak Kazdağına öykünürler, o zaman Anatanrıça İda’dır onlar. Yörenin endemik şakayıkını (Paeonia masculi subsp. bodurii) konduruverirler başlarına, ölmezotlarını veya diğer adıyla altınotunu taktıklarında başlarına; kocamışlıklarını unutuverirler de ölmeyeceklerini sanırlar, yoksulluktan takamadıkları beşibirliklerin yerine altınotu ile avunurlar. Balıkesir Etnoğrafya müzesine uğrarsanız (Kuva-i Milliye Müzesi), Altınotu süslemeli kadın başlığını görebilirsiniz. Sadece yaşlılar değil, evlenecek genç kızlar başlarına bitki motifli başlıklar takarlar, botanik bahçesine dönen gelin başlıklarının hepsi, murada ermeden hakka yürüyen Sarıkız’a adanmıştır, kuru bitkilerden oluşan gelin başlığını takan her genç kız Sarıkızdır artık... Her ne kadar Milli Park olması dolayısıyla Kazdağlarından bitki toplamak yasaklanmış olsa da bu yasağa uyulmadığı görülmektedir. Yöre insanını Kazdağlarına çıkmaktan alıkoymak oldukça zordur. Zira Sarıkız inancının gücü insanları bu dağa çıkarmaktadır. Binbir zorlukla, traktörlerle, tozdan heykellere dönmüş insanların Sarıkızı gördükten sonra zirvede bitki toplaması herhalde ritüel bir davranıştır. Zira zirvede karşılaştığımız her köylüye, adaçayı ve kekik gibi Kazdağı bitkilerinin toplanmasının yasak olduğu hatırlatıldığında “Biz hayır için topluyoruz” karşılığını vermektedirler. Yani bitkilerin toplanması kutsal bir amaca özgülenmektedir. İşte size Anatanrıça inancı, işte bu inançla bağlantılı bitkisel ritüel... Sarıkız tepesinin biraz aşağısında Kapıdağı denen yükseltide, sadece burada yetişebilen ve yok olma tehlikesi altındaki endemik kekiğimiz Thymus pulvinatus da bitki toplayıcılarından nasibini almaktadır (Resim: 2) (4). Yetişme alanı 30 metrekareyi geçmeyen, Temmuz ve Ağustosta çiçeklenen bu kekik türü Kazdağından başka bir yerde yetişmemektedir. Köylüler tarafından çay yapmak amacıyla köklenerek hasat edildiği için bitki yok olma tehlikesi altındadır. Bu tür, Anadoluda yetişen Thymus türleri içinde en dar yayılış alanına sahip olanıdır. Bu yüzden yetişme alanı acilen korumaya alınmalıdır. Sarıkız türbesine çıkarsanız bir gün, zirve defterine şöyle yazın: “Sevgili Sarıkız Ana, benim de sorunlarım var; hastalık, geçim derdi, sevdalık. Ama çok şükür hayattayım. Sen önce çocuklarının ölümüne çare bul, kekiğine sahip çık”. TROYA SAVAŞINDA ROL ALAN ÖZGÜN BİTKİLER Troya’ya girmek isteyen Akha ordusu, 10 yıl savaştıktan sonra bu amacına ulaşamayınca tahtadan bir at yapar, bunun içine savaşçılarını koyar ve Troya’yı bu yöntemle işgal eder. Ancak söz konusu tahta atı yapmak için savaş alanından bir hayli uzak olan Kazdağındaki köknar ağacını kullanırlar. Troya atının yapıldığı Kazdağı köknarının bilimsel adı da Abies nordmanniana subsp. equi-trojani’dir (Resim 3). Equus Latince de “At” anlamına geldiğinden. Kazdağı Köknarının literatürdeki adı aslında “Troya Atının Köknarı” dır. Anadolunun özgün söylencesinin kaynağında yine Anadolunun özgün bir bitkisi bulunmaktadır. Her ne kadar Akhaların Troya’yı tahta at ile alt ettikleri söylenmekteyse de Troyalıların bu kadar basit bir numarayı yutmayacakları akla daha yakındır. Köknardan tahta at yapılarak bir ülkenin yok edilmesini o zamanın ağaçlarla ilgili inançlarına bağlamak daha mantıklıdır. Nitekim Troyalıların çağdaşı olan Hitit Devletinin anlaşma metinlerinde Köknar ağacı ile ilgili hükümler bu konuda bizlere ipucu vermektedir. Hitit devleti ile Hurri Devleti arasında yapılan bir anlaşma metninde “Hurriler bu antlaşmanın ve yeminin sözlerine uymazsa, bir köknar ağacı kesilip devrildiğinde artık büyümeyeceği gibi...biz Hurrileri karımız, çocuklarımız ve ülkemizle birlikte bu köknar ağacı gibi bırak. (Kesilmiş) Köknar ağacının nasıl zürriyeti yoksa...biz Hurrileri ülkemizle birlikte ve çocuklarımızla birlikte zürriyetsiz bırak” (5). denilmektedir. Yukarıdaki Hitit metninden hareketle; Troya’yı alamayan yağmacı Akhaların en sonunda büyüsel ve simgesel bir yola başvurdukları, mahvetmek istedikleri ülkenin insanlarını yok edebilmek için Kazdağındaki Köknar ağaçlarını keserek bunlardan heykeller yaptıkları akla daha mantıklı gelmektedir. Zira ülkenin köknarlarının kesilmesi ile bu köknarların yetiştiği topraklardaki insanların yok olması arasında Hitit inancında paralellik kurulduğu görülmektedir. Troya bölgesi Hititlerle benzer kültüre sahip, onlara akraba Luvilerin ülkesidir. Belki de Akha ordusu yerel halkın bu inancını bildiğinden ve onların moralini bozmak istediğinden, Kazdağının Köknarlarını keserek Troya halkına umutsuzluk aşılamayı planlamış da olabilir. Diğer bir olasılık ta Troya’yı ele geçiren ve halkını öldüren Akhalar’ın yaptıkları bu soykırımın simgesi ve zaferlerinin sembolü olarak Köknar ağacından çeşitli heykeller yapmış olmaları da olabilir. Günümüzde yöre insanı endemik Kazdağı Köknarının yapraklarını, içtiği çayın içine atar, çayını reçine kokulu bir şekilde içer. Köknar ağacının çayın içine katılması muhtemelen antik çağlardan kalan bir uygulamadır. Zira üreme ve soyun devamı ile özdeşleştirilen bu ağacımızın yaprağının çaya sadece koku vermediği, muhtemelen insanların soyunu devam ettirmek istemesi ile ilgili bir uygulama olduğu akla gelmektedir. Troya savaşının ayrıntılarını öğrenmek için Homeros’un İlyada ve Odessa adlı şaheserlerini okumak gereklidir. İlyadada, Troya kralının oğlunun bir Akha tolgası vasıtasıyla ölümü ile ilgili olarak; “Bir bahçede, meyvesinin ve yaz yağmurunun altında/Haşhaş çiçeği nasıl yana eğerse başını/Tolganın ağırlığıyla baş öyle yana düştü” (6) denmektedir. Ne ilginçtir ki Balıkesir dolaylarında endemik bir haşhaş türü yetişir. Ancak Troyalıların kaderine benzer onun kaderi de. Papaver somniferum subsp. pullatum olarak adlandırılan bu haşhaş bitkimiz yok olma tehlikesi altındadır. Homeros muhakkak biliyordu bu haşhaşı, yoksa özdeşleştirir miydi ölen insanlarla bu narin bitkimizi. Hitit dilinde (Muhtemelen ona akraba Troyadaki Luvi dilinde de) Haşşika olarak adlandırılan haşhaş bitkisinin ismi 4.000 yıldan bu yana değişmeyen ender kelimelerden biridir. Kültürel sürekliliğin önemli göstergelerinden biri olan dil benzerliğinin temelinde de özgün bitkilerimiz vardır. Aslında bir gelinciktir Haşhaş ve gelincikgiller ailesindendir. Gelincik Çiçeği Kibele inancında Attis’in kanlarını temsil eder. Dolayısıyla ölen genç ve yakışıklı erkeklerin sembolüdür. İlyada’da da bunu görürüz. Sadece haşhaş mı, baharda çevresinde kıpkızıl gelincikler açan, Burhaniye ve Havran’daki Madra dağlarında yaklaşık 10 kadar Kibele Açıkhava sunağı da yok olmak tehlikesi altındadır. 1999 yılında, halen Adramytteion kazılarını yürüten Arkeolog Doç. Dr. Engin Beksaç tarafından keşfedilen ve hala koruma altına alınmamış olan bu açıkhava sunakları dinamitlenmektedir. Bunun en hazin örneği Bahadınlı Köyünün yakınında yer alan “Dedekaya” Kibele Açıkhava sunak alanıdır. Eğer bir gün yolunuz Bahadınlı köyüne düşerse ve Dedekaya Kibele Sunağı’nın dinamitlerle parça parça olduğunu görürseniz, ve aylardan baharsa, ve kan kırmızıysa tarlalar, bilin ki gelincikler göç yolundadır. İlyada da İris, Tanrı Zeus’un habercisidir. İlyada da; “Böyle dedi o, yel gibi giden İris fırladı/Vardı İda dağının doruklarından koca Olimpos’a” dizeleri vardır. Gerçekten de Kazdağında endemik bir İris (süsen) türü yetişir, İris kerneriana’dır onun bilimsel adı. Eğer Kazdağını gezerken bu süsenimize rastlarsanız, mutlaka Koca Tanrı Zeus size bir şeyler iletmek çabasındadır. Troya savaşının en yoğun döneminde Zeus’un karısı, kıskanç Hera Kazdağına çıkar; Zeus’u baştan çıkarmaktır amacı. Kadınlara hiçbir zaman hayır diyemeyen baştanrı Zeus Kazdağının doruğunda birlikte olur Hera ile. Homeros İlyada’sında şöyle anlatır bu olayı: “...Böyle dedi, aldı karısını koynuna, sarıldı/Tanrısal toprak yumuşak bir çimen saldı/Taptaze Lotos bir halı serdi toprakla aralarına/Safranlardan, sümbüllerden tatlı bir halı/Uzanıverdi ikisi de halının üstüne/Sardı onu güzel bir altın bulut/Buluttan çiğ damlaları akıyordu pırıl pırıl/Tanrıların babası yüksek Gargaros tepesinde/Koynunda karısı mışıl mışıl uyuyordu”. İlyadayı okuyan Alman araştırmacı Schliemann okuduklarının kılavuzluğu ile Troya’yı ve Troya hazinesini keşfetmişti. Botanik bilimcileri için de başlıbaşına bir rehber kitaptır İlyada. Neden derseniz, yukarıdaki dizelerde bahsedilen safran (çiğdem) ve sümbüller gerçekten de burada yetişir, hem de endemik olarak. Hatta bunlardan birisinin ismi de Gargaros tepesinin adıyla anılır: Crocus gargaricus (Gargaros çiğdemi) adlı endemik çiğdemin üzerinde sevişmiştir Zeus. Bu çiğdemin aynı zamanda güzel bir kokusu da vardır. Ayrıca Crocus candidus ve Crocus biflorus subsp. nubigena adlı çiğdemler de Kazdağının endemik bitkileridir, Muscari latifolium adlı endemik misksümbülü de Kazdağının 1100 metrelerinde yetişir. Şimdi sorarım sizlere, özgün çiçek ve bitki türleri arasında, binbir çeşit kokuyla çepeçevre bir ortamda, yanınızda da sevgiliniz varsa ne yaparsınız? Sevişirsiniz elbet. Tanrılar tanrısı Zeus bile Kazdağı florasının bu oyununa gelmişse, siz çiğdeme ve sümbüllere karşı gelebilir misiniz? Homeros çiğdem bitkisini şafakla özdeşleştirir ayrıca, “Safran urbalı şafak ta yayılınca denize” der. Homeros mutlaka çiğdem bitkilerince zengin, denizi gören ve güneşin en erken göründüğü bir yerde şafağın sökmesini gözlemiş olmalıdır. Kazdağının zirvesi bu açıdan en ideal yerdir. Troya savaşında ölen Troyalı savaşçılar hep keten kumaşa sarılır, cenaze törenleri için hazırlanırlar. İlyada’da, Troya’nın en önemli savaşçısı olarak anlatılan Hektor’un cenaze töreni ile ilgili olarak ozanımız şöyle der: “İki keten çarşafla bir entari bıraktılar arabada/Bunlar ölüyü eve götürürken sarmak içindi/Yıkadı hizmetçiler ölüyü, ovdular yağla/Sardılar bir entariye, güzel bir keten çarşafa”. Bir başka dizede de “Kızlar keten giymişlerdi ipince/ Kızlar güzel çelenkler takmışlardı başlarına” denmektedir. Görüleceği üzere keten törensel bir giysidir. Gerek cenaze ve gerekse kutlama törenlerinde keten özellikli bir yer tutmaktadır. Anadolu ve Troya kültüründe keten en önemli giysi hammaddesidir. Zira Anadolu endemik ketenler açısından çok zengindir. Balıkesir’in de endemik bir keteni vardır: Linum hirsutum var. platyphyllum olarak adlandırılan bu ketenimiz yöre kültürünün itici güçlerinden biridir. Ancak yaşamı tehlikededir onun, kültürünü biçimlendirdiği Troya’nın verdiği mücadele gibi yaşama tutunmak istemektedir. Troyalı yiğitlerin cansız bedenlerini sarıp sarmalayan, antik çağ kızlarına güzellik katan keten yok olursa, Troya kültüründen de bir parça yok olacaktır. Çanakkale ve Balıkesir yöresi endemik bitkiler kadar endemik olmayan nadir bitkiler açısından da zengindir. Örneğin yaşam alanı Ege’deki Yunan adaları olan, ülkemizde ise sadece Marmara adasında yetişen bir orkide türü vardır. Orkidenin üzerinde 4 nokta olduğundan botanikçiler ona ‘dört noktalı orkide’ ismini vermişlerdir (Orchis quadripunctata) (Resim 4) (7). Ayrıca Türkiyede İzmirde yetiştiği bilinen Orchis lactea (sütbeyaz orkide) bu ilimiz dışında sadece Balıkesir’in Alibey (Cunda) adasında yaşayabilmektedir. BİTKİ ADLARINDA YÖREDEN YANSIMALAR Çanakkale ve Balıkesir’in endemik bitkilerinden bir bölümü antik Troya kent ve uygarlığından isimlerini almışlardır: Çanakkale: Achillea fraasii var trojana, Beta trojana var. trojana (Troya pancarı), Digitalis trojana (Troya yüksük otu), Ranunculus pedatus subsp. trojanus (Troya düğünçiçeği), Sideritis trojana (Troya yayla çayı). Balıkesir: Armeria trojana, Carduus nutans subsp. trojanus (Troya devedikeni), Galium trojanum (Troya yoğurt otu) bunlardandır. Bazı endemik bitkiler Kazdağının antik dönem ve günümüzdeki ismiyle isimlendirilmişlerdir: Çanakkale: Erysimum idaea, Jasione idaea (Kazdağı uyuzotu). Balıkesir: Astragalus ideae (Kazdağı geveni), Hieracium idae (Kazdağı mercangüşü), Hypericum kazdagensis (Kazdağı koyunkıranı) bunlara örnektir. Balıkesir’in endemik bitkilerden biri bilimsel ismini Kazdağının zirvesi olan Gargaros (Kartalçimeni) yöresinden almaktadırlar: Bu bitki Crocus gargaricus (Gargaros çiğdemi)’tur. Endemik bitkilerden bir bölümü isimlerini yörenin ırmaklarından almaktadır. Balıkesir: Hieracium scamandris (Karamenderes mercangüşü), Verbascum simavicum (Simav Çayı Sığırkuyruğu). Çanakkale: Verbascum scamandri (Eskimenderes sığırkuyruğu) bu bitkilere örnektir. Balıkesir endemik bitkilerinden birisi Troya savaşının önemli kahramanlarından biri olan Odysseus’un ismini taşımaktadır. Bu bitki Centaurea odyssei (Odysseus peygamber çiçeği) dir. TEHLİKEDEKİ ENDEMİK BİTKİLER Çanakkale ve Balıkesir’in tehlike altındaki bitkileri aşağıdaki tabloda gösterilmiştir (8, 9). Tablonun incelenmesiyle de görüleceği gibi Kazdağında yetişen bitkiler yoğun bir tahribatla karşıkarşıyadırlar. Milli Park sınırları içerisinde olmasına karşın herkesin kolayca girebildiği ve yok olmak üzere olan endemik bitkilerini toplayabildiği bir dağdır Kazdağı. Hatta bu toplama faaliyeti evsel tüketimi aşmış, nadir bitkiler pazarlarda satılır hale gelmişlerdir. Kazdağının doruğuna adım attığınızda, yasak olmasına rağmen ızgarasını yakmış, rakısını yudumlayan keyif erbabının yanısıra, torbalarını dağın nadir bitkileriyle tıka basa doldurmuş insanları ve hatta keçi sürülerini bile görebilirsiniz. Bu manzarayı gördükten sonra diğer milli parklarımızın hali nicedir diye sormadan edemezsiniz. Çanakkale ve Balıkesir’in Yok Olma Tehlikesi Altındaki Endemik Bitkileri Bitkinin Bilimsel Adı Bitkinin Türkçe Adı Bitkinin Yetiştiği Yer ÇANAKKALE Achillea fraasii var. trojana - Kazdağı, Susuzdağı 1500 m, Allium kurtzianum Yabani soğan Kazdağı, Susuzdağı, mermerli alanlar Dianthus ingoldbyi Karanfil Gelibolu, Anzak’ta Peucedanum arenarium subsp. urbanii Domuzkuyruğu Kazdağı, 1500m Ranunculus pedatus subsp. trojanus Troya düğünçiçeği Erenköy, Menderes Dağı Tripleurospermum baytopianum (10) - Keşan ve Kadıköy arasındaki Kurudağ’da, 200 metrelerde Verbascum scamandri Eski Menderes sığırkuyruğu Kazdağında BALIKESİR Centaurea sericea Peygamber Çiçeği Dursunbey’de Papaver somniferum subsp. pullatum Haşhaş Thymus pulvinatus Kekik Kazdağında bulunan Kapıdağı bölgesinde, 1500-1600 metreler DİPNOTLAR 1-Şefik Can, Klasik Yunan Mitolojisi, İnkılap Kitabevi, İstanbul, 1994 2-“Kansere Karşı Yüksük Otu”, Cumhuriyet Bilim-Teknik Dergisi, 16.02.2002 tarihli nüsha 3-Atilla Erden, Anadolu Giysi Kültürü, Ankara, 1998 4-K.H.C. Başer, F. Satıl, G. Tümen, “Thymus Pulvinatus”, The Karaca Arboretum Magazine, TÜBİTAK Yayınları, Haziran 2001, 5-Güngör Karauğuz, Hitit Devletinin Siyasi Antlaşma Metinleri, Çizgi Kitabevi, Konya, 2002 6-Homeros, İlyada (Çev: Azra Erhat/A. Kadir), Can Yayınları,13. Basım, İstanbul, 2002 7- C.A.J. Kreutz, Die Orchideen der Türkei, B.J. Seckel, Netherland, Raalte, 1998 8-Tuna Ekim, Mehmet Koyuncu, Hayri Duman, Zeki Aytaç, Nezaket Adıgüzel; Türkiye Bitkileri Kırmızı Kitabı (Eğrelti ve Tohumlu Bitkiler); Türkiye Tabiatını Koruma Derneği, Van 100. Yıl Üniversitesi, Ankara, 2000 9- DAVİS, P.H., Flora of Turkey and the East Aegean Islands. Edinburg at the University Press,1969 10-Bu bitkinin resmi Bilim ve Ütopya Dergisinin Ağustos-2002 sayısında, “Turhan Baytop’un Ardından” adlı bölüm içerisinde yer alan, Prof. Dr. Ekrem Sezik’in yazısı içerisinde yayınlanmıştır.

http://www.biyologlar.com/balikesir-ve-canakkalenin-endemik-bitkileri

Evrim Teorisi ile İlgili 5 Soru 5 Yanıt

Charles Darwin’in meşhur “Türlerin Kökeni” isimli yapıtının yayınlanmasının üzerinden bir buçuk yüzyıl geçti. Bu süre içinde evrim kuramı sürekli sorgulandı. Darwin genetik ve moleküler biyoloji konusunda hiçbir şey bilmemesine rağmen modern biyoloji bu büyük bilim adamının şaşırtıcı fikirlerini hep doğruladı. Ne var ki bugün evrim biyolojisinin hâlâ yanıtlayamadığı sorular var. Saygın bilim dergisi New Scientist bunların içinden önemli bulduğu 5 tanesini seçerek, en son bulguların ışığı altında uzmanlardan bunları yanıtlamasını istedi. Aşağıda bu sorulara 5 bilim adamının verdiği yanıtları kısaltılmış şekliyle bulacaksınız. 1.Soru Yaşam nasıl başladı? Bu soruyu Glaskow’daki Scottish Üniversities Çevre Araştırmaları Merkezi’nden Michael Russell yanıtladı. 4 milyar sene önce, nükleer ve yerçekimsel enerji Dünya’nın içini kavururken, dışı asteroid darbeleri altında delik deşik olmuştu. Doğal olarak bu ortamda canlıların yaşaması olası değildi. Her şeye rağmen hayat başladı. Pek çok bilim adamı ”vivosentrik” bir yaklaşımla bu olağanüstü olaya açıklık getirmek istediler. Bu yaklaşımın amacı, bugünün hayat şekillerinden başlayıp, aşama aşama geriye doğru giderek organik yapı malzemelerinin kökenini bulmaktı. Bana kalırsa bu yaklaşım başarısızla sonuçlanmaya mahkumdu, çünkü bu bakış açısı ilk Dünya’nın jeokimyasını dikkate almaz ve yaşamın ortaya çıkış nedenini gözardı eder. Şikago Üniversitesi’nden Stanley Miller ‘ın proteinlerin yapı taşı olarak bilinen amino asitleri yaratmasının üzerinden 50 sene geçti. Metan, hidrojen ve amonyağı, kapalı bir cam gereç içinde ısıtan Miller, daha sonra karışımı elektrik kıvılcımı ile hareketlendirdi. Bu deneysel çalışma, kavurucu bir Dünya’da yaşamın bir yıldırım düşmesi ve morötesi radyasyonla başlamış olabileceğiiddiasını doğrulayan bir kanıt olarak ele alındı. Ancak bugün insanlar proteinlerin ilk başta varolduğuna inanmıyor. Bugün geçerli olan düşünceye göre hayat bir RNA dünyasında başladı. Ve bu dünyada RNA’ların sadece bilgi taşıyıcı olarak değil, ilk denizlerdeki organik bileşimlerden yararlanarak, yaşamın reaksiyonlarını katalize eden ilkel enzimler olarak davrandığı düşünülüyor. Ne var ki okyanusların, hayat için gerekli olan organik molekül konsantrasyonunu sağlamış olma olasılığı çok düşük. Kuramcılar bu soruna çözüm oluşturabilecek değişik düşünceler ortaya atıyor. Bazıları yaşamın kuru bir kara parçasında, -dönemsel olarak buharlaşan bir gölette- başlamış olabileceğini ileri sürerken, başkaları okyanusların donup, gerekli molekül konsantrasyonunun artakalan sıvıda birikmiş olabileceğini ileri sürüyor. Diğer bilim adamları, metabolizmanın bir kil ya da pirit yüzeyinde iki boyutlu başlama olasılığından söz ediyor ve bu iki boyutluluğun lipidlerin hücre zarı olarak kendilerini örgütleyinceye kadar sürdüğüne inanılıyor. İddialar bunlarla sınırlı değil. Uzayın dört bir yanında yaşayan organik moleküller hayatı başlatmış olabilir. Bunlar göktaşlarının üzerinde Dünya’ya inmiş, okyanus yüzeylerinde birikerek, organik reaksiyonların meydana geldiği küçük kesecikler oluşturmuş olabilir. İnandırıcı değil Ben bu kuramların hiçbirini inandırıcı bulmuyorum. Benim görüşüme göre yaşamın kökeni biyolojik değil, jeolojik. Evrim ağacını köklerine doğru irdelemek yerine, kökten başlayarak yukarı doğru çıkmakta fayda var. Bu arada ilk Dünya’nın jeolojik yapısını hesaba katmak gerekiyor. Evrenimizde, yapılar eldeki malzeme ile inşa edilir. Bu süreçte enerji bir düzeyden diğerine geçiş sırasında azalırken, entropi (herhangi bir sistemin evrenle beraber düzensizlik ve etkisizliğe doğru olan eğilimi) çoğalır. Dolayısıyla yaşamın kökenlerini ortaya çıkartma çabalarımızda, ilk Dünya’yı oluşturan malzemenin ve enerjinin yaşam-benzeri bir yapıyı oluşturmak için nasıl biraraya geldiğini sormamız gerekir; hangi termodinamik ve kimyasal reaksiyonların söz konusu olduğunu, atık ve aşırı ısıdan nasıl kurtulduğumuzu öğrenmemiz gerekir. Özetle, yanıt bulmamız gereken soru şu: Kendi kendini düzenleyen elektrokimyasal bir aracın, birkaç milivoltluk bir enerjiyle, redoks reaksiyonlarından yararlanarak, aynı anda çoğalarak ve dışkı atarak nasıl varolduğunu çözmemiz gerekir. Başlangıç noktası İlk Dünya yaşamın başlangıç noktası olarak iki adet saha adayı sunuyor. Biri okyanus sırtlarındaki asidik pınarların içindeki mineral tortul birikimleri; diğeri deniz tabanındaki alkalin sızıntıları. Bu iki tip pınar daha soğuk, karbonik okyanus tabanına sürekli olarak malzeme ve enerji taşır. Ayrıca bu iki ortam da bugün bile canlı organizmaların yaşamasına uygun alanlardır. Ama bana göre pek çok nedene bağlı olarak okyanus sızıntıları yaşamın başlangıç noktası olmaya daha yatkın. Bir kere bu okyanus sızıntıları dayanılabilir bir sıcaklık olan 75 derecedir. Oysa asidik pınarlarda sıcaklık 350 dereceye kadar çıkar ve burada organik moleküller yaşayamaz. Ayrıca alkalin sızıntılar organik moleküllerin eriyebilirliklerine uygundur. Ve alkalin sızıntıların asidik okyanus sularıyla birleştiği noktada daha çok enerji bulunur. Çünkü denizden gelen protonlar, sızıntıdaki elektronları güçlendirir. Sonuçta toplamda ortaya yarım voltluk akım çıkar. Bu da metabolizma için yeterlidir. Yaşam eski alkalin sızıntılarda başladıysa neye benziyor olabilir? Bana kalırsa bu ilk şekil hareketsiz demir sülfid bölmeleri şeklindeydi. Bunlar yarı geçirgen, yarı iletken olmakla birlikte, reaksiyonları katalize edebilecek özellikteydi. Ayrıca demir sülfid zarlar organik zarların öncüsü, atası olabilir. Daha da önemlisi bunlar moleküler yapı bloklarını biraya getirmiş olabilir. Dolayısıyla yaşamın kimyasal reaksiyonlarının olması için ideal bir ortam oluşturuyordu. Bu demir sülfid bölmelerinin içinde hidrojen, amonyak ve siyanür kaynayıp durur. Bunların birarada reaksiyona girmesi için gerekli olan enerji, derece derece değişen elektronlardan sağlanır. Sonuçta şeker, ribonükleik asitler ve amino asitler oluşur. Eğer demir sülfid bölmeler Dünya’da hayatı başlatacak yapı taşlarının biraya gelmesi için yeterli ortamı sağladıysa, evrendeki herhangi bir gezegende nemli, kayalık ve güneşin aydınlattığı ortamlarda aynı rolü oynamıştır. Dolayısıyla sıvı suyun bulunduğu her yerde hayat oluşabilir. 2. Soru Mutasyonlar evrimi nasıl gerçekleştirdi? Bu soruyu University College London’dan Andrew Pomiankowski yanıtladı. Genetik mutasyonlar evrimin hammaddesidir. Ama hangi tip mutasyonların önemli olduğunu belirtmek gerekir. Eskiden beri biyologlar genlerdeki değişiklikler üzerinde durmayı seçim eder. Bu da protein kodlarının DNA dizilimidir. Son yıllarda kabul gören görüş şudur: Mutasyon sonucunda, amino asit dizilimi biraz değişik proteinler oluşur. Proteinler organizmaya hayatta kalma avantajı sağlar. Ne var ki pek çok gen diziliminin değişimi milyonlarca senede ama gerçekleşir. Bu yavaşlıkta seyreden bir değişim, morfolojik ve davranışsal evrimi yaratmış olabilir mi? Ben ve benim gibi gelişim biyologları en son yıllarda buna alternatif oluşturan bir görüş ortaya attı. Bu görüşe göre evrim konusunda en önemli rolü oynayan unsur, DNA’nın gen ifadesini düzenleyen bölgesindeki mutasyonlardır. Aykırı yollar var Son 10 senede bu konuda gerçekleştirilen en önemli keşif, değişik hayvan grupları arasındaki ortak gelişim genetik yollarıdır. Klasik örnek ”Hox” genleridir. Hox genleri sorumludur. Bunlar ilkin meyve sineklerinde keşfedildi. Ama balıklarda, kurbağalarda ve insanlarda da aynı gen bulundu. Bu organizmalarda vücut şekli değişik olmakla birlikte, Hox geninin dizilimi birbirinin aynısıdır. Daha da önemlisi, Hox genlerinin uzak türler arasında değiş tokuş edilmesidir. Bundan da şu sonuç çıkıyor: Evrim, aslında genleri korumaya alıyor. Ama aralarındaki etkileşimle oynayarak meyve sineklerinden insanlara dek çok değişik türlerin oluşumunu hazırlıyor. Gen ifadesini denetim eden sistemlerin biri ”cis-regülasyonudur”. Cis-regülasyonu, transkripsiyon faktörleri olarak bilinen proteinlerin, DNA’nın “promoter bölgeleri”ndeki genlerine bağlanmasıdır. Her promoter’ın çoklu bağlanma siteleri vardır. Transkripsiyon faktör bağlama, genleri açık ya da kapalı konuma getirir. Bunun sonucunda gen ifadesi gelişim sırasında denetim edilir. Ayrıca transkripsiyon faktör bağlama, organizmanın aynı genlere sahip olmakla beraber değişik şekillere dönüşmesine izin verir. Sonuçta ortaya az değişik proteinler çıkar. Sözgelimi embriyo evresinden yetişkine dönüşmek ya da dişi/erkek form değişikliği gibi. Şimdi artık, cis-regülasyon’un gelişim için çok önemli olduğu biliyoruz. Son yıllara kadar genlerin birbiriyle nasıl iletişim kurduğunu bilmiyorduk. Ama en son araştırmalar genler arasındaki iletişim ağını yavaş yavaş aydınlatıyor. Bu bilgilerin ışığı altında mutasyonların şekil ve işlev açısından ne biçimde uyum sağladını anlayabiliyoruz. Ama bu konuda temkinli davranmakta yarar var. Tüm bilim dallarında yeni bulguları abartma eğilimi vardır. Gen ağlarındaki evrimsel değişikliklerin, morfolojik evrimi tetikleyen en önemli güç olduğu iddialarını değerlendirirken kuşku payı bırakmakta yarar var. Kuşkusuz, genlerin iç mutasyonlarının ve yeni gen mutasyonlarının evrim konusunda çok önemli rol oynadığını biliyoruz. Ayrıca bundan böyle gen dizilimi konusundaki fonksiyonel değişiklikleri izleyebiliyoruz. 3. Soru Yeni türler nasıl oluştu? Bu soruyu İngiltere’deki Hull Üniversitesi’nden George Turner yanıtladı: Son günlere kadar türlerin nasıl oluştuğunu bildiğimizi sanıyorduk. Bu sürecin popülasyonların tecrit edilmesiyle oluştuğu inancı yaygındı. Popülasyonlar ciddi bir ”gen darboğazı”ndan geçerse çeşitlenme başlıyordu. Sözgelimi hamile bir dişi, uzak ve izole bir adaya gider ve doğan çocuklar birbirleriyle çiftleşirse yeni bir tür doğabilir. “Kurucu etkisi” adı verilen bu modelin güzelliği laboratuvarda test edilebilme olasılığıydı. Ne var ki gerçek yaşamda bunu kimse başaramadı. Evrim biyologlarının çabalarına rağmen, kimse kurucu popülasyondan yeni bir tür yaratmayı başaramadı. Dahası, bildiğim kadarıyla, küçük organizmaların yabancı ortamlara bırakılması sonucu yeni türler oluşmadı. Son günlerde çabalar başka bir yöne yoğunlaştı. Biyologlar çeşitliliğin coğrafi tecritten kaynaklandığına inansa da bu bağlamda “şans” ve küçük popülasyon kavramları geçerliliğini yitirdi. Artık biyologlar, türleri hızlı bir biçimde değiştiren aykırı yolları incelemeyi seçim ediyor. Etkili olan belli başlı güçler ekolojik seleksiyon (Değişen çevre koşullarına uyum çabaları sonucunda ortaya yeni türler çıkar) ve seksüel seleksiyondur (Değişen cinsel tercihler popülasyonda değişiklik yaratır). İşte en kritik soru bu iki gücün önemi üzerine yoğunlaşıyor. Ekolojik seleksiyona en güzel örnek ”paralel çeşitlenme” olgusudur. Burada aynı türler, birbirinden bağımsız şekilde, benzer çevresel koşullara tepki olarak, değişik mekânlarda ortaya çıkar. Buna en iyi örnek Kanada göllerinde yaşayan dikenli balıktır (gasterostus). Kanada’daki göllerde iki çeşit dikenli balık bulunur. Biri dipteki yiyeceklerle beslenirken, diğeri planktonlarla beslenir. Mitokondriyal DNA’larının (mtDNA) incelenmesi sonucu bu iki türün paralel çeşitlenme sonucu ortaya çıktığı anlaşıldı. Bu bulgular, “simpatrik çeşitlenme” denilen yeni bir oluşumu da ortaya çıkarttı. Burada çeşitlenme coğrafi tecride bağlı değildir; melezleşme söz konusudur. Tecrit çeşitlenmesini savunanlar bu görüşe karşı çıksalar da mtDNA çalışmaları simpatrik çeşitlenmeyi destekliyor. Bazı biyologlar melezleştirme sürecinin yeni türlerin oluşumunda önemli bir rol oynadığını düşünüyor. Kuram olarak, bir türün paralel evrim sonucu mu, seksüel seleksiyon sonucu mu yoksa melezleştirme sonucu mu ortaya çıktığını ”çeşitlenme genleri” ne bakarak test edebiliriz. Çeşitlenme genleri, değişik organizmaları birbiriyle karıştırarak üretme olasılığını ortadan kaldırır. Her gün yeni bir genom diziliminin çözümlendiği en son dönemlerde, biyologlar bir gün bu tür genleri keşfedeceklerini umuyor. Ayrıca genlerin ifade farklılıklarının daha çok incelenmesi sonucu çeşitlenmeyi daha iyi anlayabileceğiz. Bana kalırsa çeşitlenme nedenlerini araştırırken en uygun yöntem Mendel tipi çapraz eşleştirmedir. Dolayısıyla çeşitlenmenin tek bir genden mi yoksa bir çift genden mi -erkeğin kur yapması ve dişinin bu sinyale yanıt vermesi gibi- kaynaklandığı netlik kazanabilir. Pek çok bilim adamı bu yöntemin genel tabloyu açıklamakta yetersiz kalacağını iddia etse de, çeşitlenmesini yeni tamamlayan türleri incelemenin en doğru yöntem olduğunu düşünüyorum. 4. Soru Evrim tahmin edilebilir mi? Bu soruyu Oxford Üniversitesi’nde ve Yeni Zelanda’daki Auckland Üniversitesi’nde çalışan Paul Rainey yanıtladı: Son yıllarda yitirdiğimiz Stephen Jay Gould ‘a göre evrim, gelişigüzel ve seçici güçlerin sürekli olarak birbirleriyle etkileşimi sonucu ortaya çıkar. Gelişigüzel unsurların (mutasyon, rekombinasyon ve göç) ve stokastik unsurların (hedefe ulaşmak için uygun olasılıkları seçme işlemi-eş bulma olasılığı gibi) varlığı, evrimin tekrarlanamadığını, tahmin edilemediğini, hatta hiçbir kuralın geçerli olmadığını ortaya koyar. Ancak, Darwin’in net bir biçimde belirttiği gibi, beklenmedik bir olay ile doğal seleksiyon yan yana, beraber etkili olabilirler. Aslında Darwin’in doğal seleksiyon kuramının öngörüsü şudur: Organizmalar çevrelerine uyum sağlar. Olasılık çerçevesi En önemlisi, Darwin’in kuramına dayanarak yapılan bütün tahminler olasılık çerçevesi içinde ele alınır. Bu bağlamda spesifik bir olaya karşı bütün olasılıkları öngörmek gerekir. Burada en önemli sıkıntı, bütün olasılıkların hiçbir zaman hesaba katılamamasıdır. Bugünün evrim biyologları “yasaları” fizik bilimindeki yasalar gibi ele almasalar da -Darwin ve başka 19.Yüzyıl biyologlarının yaptığı gibi- evrimle ilgili kimi temel kuralların varolduğuna dair somut kanıtlar elde ediyor. Evrimsel değişikliklerin mekanizması daha iyi anlaşıldıkça, kimi sonuçların olası başka sonuçlardan daha olası olduğu görülüyor. Tarihsel olasılıklara bir göz attığımızda, Gould’un iddiasına kesin bir yanıt getirmek olası değil. Ama işe başlarken, biyolojik sistemlerin temel yapıları hakkında elde ettiğimiz bilgilerin ışığı altında, evrimin nereye varacağına dair tahminlerde bulunabiliriz. Şimdiden organizmaların çevrelerine nasıl uyum sağlayacağına dair öngörülerde bulunabiliyoruz. Dolayısıyla gelecekte olası değişikliklere dair kantitatif (nicel) tahminlerde bulunmak da olası olabilir. 5. Soru Tanrı’nın evrimle ilgisi ne? Bu soruyu İngiltere’deki Liverpool Üniversitesi’nden Robin Dunbar yanıtılyor: Pek çok insan, bu konuda meşhur bilim felsefecisi Karl Popper ile aynı fikirdedir. Popper’a göre din metafiziğin dünyasına aittir; bilimsel sorgulamaya tabi tutulamaz. Biyologların çoğu bu görüşe katılarak Tanrı konusunu tartışmaların dışında tutar. Ancak din ve tanrıların kişi davranışı üzerinde çok büyük etkisinin olduğunu yadsımak da doğru değildir. İşte bu sebeple ben ve benim gibi düşünen biyologlar, dinlerin niçin varolduğunu ve kişi evriminin hangi noktasında devreye girdiğini araştırmaya başladık. İnsanlar hayvan standartlarına göre çok tuhaf bir özellik sergiler. Bu özellik içinde bulunduğumuz topluluğun isteklerini kabullenme konusunda gösterdiğimiz olağaüstü arzu, hatta bu yolda canımızı bile vermeye hazır durumda olmamızdır. Bu düzeyde bir özveri başarının anahtarıdır. İnsanlar, kollektif çözümlerden yola çıkarak kendi küçük dünyalarıyla sınırlı kişisel sorularına yanıt getirmeye çabalarlar. Bu çözümün yararlı olabilmesi için kişiler kısa vadeli kişisel çıkarlarını uzun vadeli kazançlarıyla değiş tokuş etmeyi öğrenmek zorundadır. Ve gruba uyum sağlama özelliği bizi başka bir tehlikeyle karşı karşıya bırakır. Bu tehlike, topluma ait olma özelliğinden yararlanıp, bunun bedelini ödemek istemeyen parazitlerdir. Tabi ki bu asalakları durdurmanın yolları vardır. Biri, yasalar yardımıyla denetleme, ikincisi toplumsal terbiye kurallarıdır. Ama bu iki yöntem de bir yere kadar yararlıdır: “Benim yaptıklarımı senin onaylayıp onaylamaman beni ilgilendirmez. Ben kazancıma bakarım” şeklinde düşünenlere bu iki yöntem etkili olmaz. İşte bu noktada din devreye girer; kontrolumuzun dışında kimi güçlerin müdahale etme olasılığı insanlarda tedirginlik yaratır. Dinin yarattığı ceza sistemi herhangi bir sivil kuruluşun uygulayacağı cezadan daha ağırdır. Ama bu sistemin çalışması, insanların doğaüstü bir dünyanın varlığına inanmasına bağlıdır. İşte bu aşamada türümüze özgü olan bir özellik önem kazanır. Bu, kişi beynini okuma yeteneğidir. Buna “Aklın teorisi” diyebiliriz. Bu kuramı şu cümleyle açıklayabiliriz: “Senin ve benim ahlaklı davranma arzusu duyduğumu bilen doğaüstü bir varlığın varolduğunu sandığına inanıyorum.” Bu düşünca tarzı, dini doğaüstü kişisel inançların ötesine geçirerek, herkesin paylaştığı toplumsal bir fenomen haline getirdi. Beynimiz tanrıları ve dinleri yaratmamıza izin veriyor. Ama bu, büyük beyinlerin tesadüfen ortaya çıkarttığı bir yetenek midir? Yoksa uyum kaygısı sonucu mu ortaya çıkmıştır? Benim çalışmalarımdan çıkarttığım sonuçlara göre insanların da dahil olduğu primatlarda neokorteksin hacmi -özellikle frontal lob- doğrudan grubun büyüklüğne ve sosyal yeteneklere bağlı olarak değişir. Başka bir deyişle, beynin boyutlarının evrimi, geniş grupların içinde istikrarı sürdürebilecek sosyal yeteneğe bağlı olarak gelişir. Söz konusu insanlar olduğu zaman, bu toplumsal uyum çabalarına din de dahildir. Dinin büyük ölçüde zihinsel güce gereksinim duyduğu gerçeğinden hareketle, dinin ne zaman evrimleştiğini sorabiliriz. Dinsel inançları destekleyecek zihinsel gelişime, evrimsel tarihimizin en son dönemlerinde eriştiğimizi söyleyebiliriz. Dinin, yarım milyon sene ilkin Homo sapiens’in ortaya çıkışından ilkin başlaması olanaksız görünüyor. Bu tarih büyük bir olasılıkla modern insanın 200.000 sene ilkin ortaya çıkışına denk gelebilir. Aynı dönem lisanın da ortaya çıkışına rastlıyor. Kaldı ki dinin varlığı büyük ölçüde lisana bağlıdır. Tabi ki din ödül kavramını da beraberinde getirir. Dini yasaklar toplum krallarına uyumu sağlamakla birlikte, dinsel faaliyetler grubun bir parçası olma duygusunu da yaratır. Son yıllarda sinirbilim beyindeki “Tanrı-noktası”nın yerini buldu. Bu bölge varlığımızın uzamdaki yeri ile ilgili duyulardan ve “evrenle tek vücut olma” duygusundan da sorumlu. Fakat gruba bağlılığı pekiştiren ön önemli araç endorfinler. Bu beyin salgısı, vücut stres altında olduğu zaman salgılanır. Pek çok dinsel törende dövünme, dans ve ilahilerden oluşan uzun ayinler sonucunda endorfinin salgılanması tesadüf değildir. Endorfinlerin uyuşturucu etkisi insanlarda rahatlama ve aynı deneyimi paylaşan grup bireyleriyle yakınlaşma duygusu uyandırır. Dolayısıyla dinler, asalakların toplumsal yaşamın bütün avantajlarından hiçbir bedel ödemeden yararlanmasını önlemek için büyük beyinler tarafından yaratılmıştır. Ama dinsel faaliyetler, doğal dünyanın acımasızlığına karşı toplumsal dayanışmayı artıran yararlı etkinliklerdir. Kaynak: “EVRİM ile ilgili 5 soru 5 yanıt”, Cumhuriyet Bilim Teknik, 5.7.2003, New Scientist’ten Reyhan Oksay çevirisi, 14 Haziran 2003 Bilim Bilmek

http://www.biyologlar.com/evrim-teorisi-ile-ilgili-5-soru-5-yanit

Y-DNA (BABA TARAFINDAN) HAPLOGRUPLAR

Bugün genellikle Doğu ve Güney Afrika’da, özellikle Sudan, Angola ve Namibia (Khoisan)’da bulunan bu haplogruba az da olsa Batı Avrupa’da rastlanmaktadır. Bunların, Roma İmparatorluğu döneminde köle olarak getirilen Nubian’ların torunları olduğu tahmin edilmektedir. B Haplogrubu 50.000 yıl önce M60 mutasyonu ile oluştu. Afrika’da geniş bir alana dağılan bu grup Bayaka ve Mbuti pigmileri arasında da görülür. A ve B tipik Afrika haplogruplarıdır. C ve D haplogrupları Afrika kıtası dışına çıkan ilk erkekler olduğundan, Afrikalı olmayan herkesin atalarıdırlar. En çok sorulan sorulardan biri de haplogrupların saç ve deri rengi gibi dış görünüşleridir. Haplogruplara göre sarışınlık veya esmerlik belirlenemez. Çünkü göz, ten, saç rengi gibi özellikler otozomal genler tarafından belirlenir. Ancak bu konuda sadece tahmin yürütülebilir. Örneğin, Y-DNA Haplogrubu A veya B olan birisinin zenci olma ihtimali yüksektir, çünkü bunlar Afrika’nın yerlileridir. Ancak bu gruplardan pekala bir albino da doğabilir. Dolaysıyla dış görünüşe bakarak haplogrup hakkında tahminde bulunmak yanıltıcı olabilir. CT Haplogrubu M168 ve M294 mutasyonları ile oluştu. C Haplogrubuna paralel hareket eden (M174) D Haplogrubu‘nun torunları bugün hala Tibet, Tacikistan ve Güney Asya’da (Hindistan hariç) aynı hat üzerinde yaşamaktadırlar. Daha sonra bunlardan bir grup Japonya’ya göç etti, birkaç bin yıl önce de başka bir grup Moğolistan’dan Tibet’e gitti. Kısmen bugünkü güney Kazakistan’da da bulunan bu genetik grubun Orta Asya’da önemli bir etkisi yoktur. C Haplogrubu Orta Asya açısından daha önemlidir. M168’den ayrılan bu grup, Arap Yarımadası’ndan sahil boyunca İran, Hindistan, Polinezya ve Avustralya’ya kadar gitti. Hatırlarsanız Orta Asya’ya 4 giriş rotasını incelemiştik. Sahil hattını kullandıkları için Asya’da çok geniş bir coğrafyaya yayılma imkanı elde eden C haplogrubu, Sibirya, Moğolistan, Kore, Kazakistan, Mançurya, Vietnam, Avustralya ve Filipinler dahil pek çok yerde görülmektedir. Hatta Bering’den Kuzey Amerika’ya geçmişlerdir. Na-dene ve Batı Kanada yerlileri %25 oranında bu geni taşımaktadır. C3 Haplogrubu tipik Moğol genidir. 20 bin yıl önce ortaya çıkan, Cengiz Han’ın da içinde bulunduğu bu haplogrup az da olsa Avrupa’ya da yayılmıştır. Bugün yeryüzünde Cengiz Han’ın soyundan gelen 16 milyon erkek olduğu tahmin edilmektedir. (M89) F Haplogrubu 45-50 bin yıl önce Orta Doğu’da oluştu. Bir bölümü Orta Doğu’da yerleşen bu grubun bir kolu da Orta Asya steplerine kadar ulaştı. Küçük bir grup ise kuzeye, Anadolu ve Balkanlara gitti. F’den M69 mutasyonu ile ayrılan H Haplogrubu her ne kadar bir Hint grubu olsa da büyük olasılıkla 30.000 yıl önce Orta Asya’nın güneyinde doğdu. Bugün sadece Hindistan’da görülmekle birlikte, Avrupa’daki Romani (Gypsy, Çingene) halkının %50 den fazlası bu gruptandır. Bunun nedeni Hindistan’dan göçmüş olmalarıdır. 40.000 yıl önce İran veya Güney Asya’da (M9) K Haplogrubu, ondan da (M45) P Haplogrubu 35.000 yıl önce Orta Asya’da doğdu. Bugün Batı Avrupa, Rusya ve Orta Asya’da yaşayan insanların büyük bölümünün ortak atası işte bu M45’tir. Üst paleolitik çağın başlangıcı olan bu dönem, hem neandertalların yok olması, hem de homo sapienslerin bütün yeryüzüne dağılması açısından önemlidir. Artık yeryüzünde insanoğlunun hakimiyeti başlamıştır. 35-40 bin yıl önce Orta Asya’ya yerleşen K ve P gruplarının Türklerin en eski ataları olduğunu biliyoruz. Orta Asya’dan Avrupa’ya giden N ve R haplogrupları Avrupa’daki 10 ana Y-kromozom grubundan en önemlileridir. Bu gruplar 30 bin yıl boyunca Avrasya’ya yayılarak aralarında Rus, Alman, Fransız, İngiliz ve Finlerin de bulunduğu Avrupalı milletleri oluşturdular. Yani Slavlar, İskandinav ve Baltık milletleri, Anglo-Sakson, Germen, Kelt ve diğer bütün Avrupa ırkları ile Türklerin soyu 30 bin yıl geriye gittiğimizde aynı atalara dayanıyor. P Haplogrubu Q ve R gibi en yaygın iki haplogrubun atası olan P’nin bugünkü nüfusu çok azdır. En çok Amerikan yerlilerinde görülen bu grup, Chipeway yerlilerinde %63 oranında bulunmaktadır. P grubuna Avrupa’da çok az rastlanır. Bunların Hun ve Moğol seferleriyle Avrupa’ya gelen Türkler olduğu düşünülmektedir. Hiçbir değişikliğe uğramadan, 35 bin yıl önceki ile aynı M45 genetik marker’ını taşıyan bir kişi Kazakistan’da tespit edilmiştir. Dr. Spencer Wells tarafından Almaty-Bişkek arasındaki evinde ziyaret edilen bu şahsın dedeleri 35 bin yıl boyunca aynı bölgede yaşamışlardır. R1 Haplogrubu başta Orta Asya olmak üzere oldukça geniş bir coğrafyaya yayılmıştır. 30 bin yıl önce P’den M207 mutasyonu ile ayrılan R büyük olasılıkla Güney Asya, Kuzey Kafkasya veya Doğu Avrupa’da doğdu. Bugün, Batı Avrupa ve Amerika Birleşik Devletleri’nde dış görünüşüne göre insanlar tanımlanırken şöyle ifade edilir: - Kafkasyalı (Caucasian): Beyaz ırk, yani sarışın ve kumrallar. - Esmer (Hispanic): Güney Amerika, İspanya ve diğer Akdeniz havzasında görülen esmerler. - Asyalı (Asian): Uzak Doğulu, çekik gözlüler. - Afrikalı (African): Siyahi, Afrika asıllılar. Beyaz Kafkasyalı (White Caucasian) olarak adlandırılan grup, bizim bildiğimiz anlamda sadece Çerkez, Gürcü ve Çeçen gibi Kafkas halklarıyla sınırlandırılmaz. Rusya, Amerika veya başka bir yerde doğan bütün beyaz ırklar Kafkasyalı olarak tanımlanır. Bunun sebebi Alman bilim adamı Johann F. Blumenbach’ın 18. Yüzyılda ortaya atmış olduğu teoridir. Blumenbach’a göre Avrupalı beyaz ırklar Kafkasya’dan çıkmıştır. Avrupa’ya yerleşen ilk insanlar olan Cro-Magnon’ların da bu beyaz Kafkasyalılar olduğu teorisinden dolayı zaman içinde bütün beyazlara Kafkasyalı denmiştir. İşte bu anlamda beyaz ırkların büyük bir bölümünü oluşturan y-DNA haplogrupları R1a ve R1b’dir. R1a Haplogrubu R1a daha çok Doğu Avrupa’da, özellikle Slav ırklarında %50’den fazla bulunmaktadır. 19.000-26.000 yıl önce R1’den ayrılan bu grubun ilk nerede doğduğu tam olarak bilinmiyor. Balkanlar’da görülen R1a çeşitliliğinin nedeni 5.000 yıldır Avrasya steplerinden gelen göçler olabilir. Dolaysıyla Balkan Yarımadası’nda doğmuş olma ihtimali zayıftır. İlk çıkış yeri hakkındaki bir diğer teori Pakistan ve Kuzey Batı Hindistan’dır. Bu bölgedeki çeşitlilik ise nüfus fazlalığından kaynaklanmaktadır. Unutulmamalıdır ki, Pakistan ve diğer Hint halklarının toplam nüfusu Çin’den fazladır. Dolaysıyla R1a’nın ilk doğum yeri için en uygun alternatif, Güney Sibirya veya Orta Asya’dır. R1a’nın hızlı yayılmasının nedeni atların erken evcilleştirilmesi, bronz silahlar ve at arabalarıdır. Özbek, Türkmen, Uygur, Tatar gibi Türk boylarında R1b ve R1a’nın toplamı, nüfusun neredeyse yarısını (%40-50) oluştururlar. Hatta Başkırlarda bu oran tavan yapar, %80 bazı bölgelerde %90’a ulaşır. Tipik Avrupalı gruplar R1a ve R1b’nin binlerce yıldır Orta Asya’da da yaşıyor olması, Tarım havzasında (Uygur, Şincan veya Doğu Türkistan) bölgesinde bulunan sarışın Avrupalı kadın ve erkek mumyaların da orijinini açıklamamızı sağlıyor. Bugüne kadar pek çok antropolog bunların Orta Asya’ya Bronz Çağında (7000-5200 yıl önce) göç eden Avrupalılar olduğunu düşünüyordu. 2007’de Çin hükümetinin izin vermesiyle Dr. Spencer Wells tarafından yapılan DNA testleri, bu mumyaların baba tarafından R1a1a grubuna ait olduğunu ortaya koydu. Anne tarafından ise yine Orta Asyalı olan mt.DNA ‘C’ haplogrubuna ait olduğu tespit edilen bu insanların bölgeye sonradan gelen Avrupalılar olduğu teorisi böylece çürütülmüş oldu. Artık arkeologlar bu halkı Avrupalı değil Tocharian (Tokaryan) olarak adlandırıyorlar. Tokaryan dili ise Hint-Avrupa dil grubuna giriyor. R1b Haplogrubu R1b Batı Avrupa’daki en kalabalık gruptur. R1b’nin doğum yeri tam olarak tespit edilmiş değil. Bulunan en eski formlar Kafkasya ve yakın doğudadır. Büyük olasılıkla Orta Doğu’nun kuzeyinde doğmuş, neolitik çağda Kuzey Anadolu ve Kafkasya’ya hareket etmiştir. İrlanda ve Bask bölgesinin %80’inden fazlasını R1b’nin oluşturduğunu biliyoruz. Ayrıca Başkortistan (Başkırya) ve Ural bölgesinde %50, Türkmenistan’da %35 gibi önemli oranlarda bulunması ilginçtir. Zaman içinde Doğu Avrupa’da kalan R1b iyice azalmış olsa da Orta Asyalı Türk halklarının genlerinde hala önemli bir yer tutmaktadır. R1b Bugün hala Kuzey Batı Çin Uygurlarında %20, Nepal Newa halkında %11, Afgan Hazara halkında %35 oranında bulunmaktadır. Pontik steplerinde, Kuzey Kafkasya’da 6.000 yıl önce R1a ve R1b gruplarının birlikte yaşadığı tahmin ediliyor. Batıda Don ve Dniester kıyılarına yerleşenlerin daha çok R1b, doğuda Volga ve Ural bölgesinde yaşayanların ise R1a grubundan oldukları söylenebilir. R1b’nin Kuzey Doğu Anadolu veya Kafkasya’da uzun zaman yaşamış olması Maykop kültürü ile ilişkisini düşündürmektedir. Tekerleği ilk defa Kuzey Kafkasya’daki bu bronz çağı kültürünün kullandığı sanılmaktadır. İlk metal el aletleri ve silahlar Kuzey Kafkasya’da yapıldı. Dünyanın en eski kılıcı Maykop kültürüne ait bir kurganda bulunmuştur. Hem at arabalarının icadı, hem de kılıç gibi silahların yapılması Kafkas halklarına büyük bir avantaj sağladı. Karşılarına çıkan toplulukları kolayca yenerek Batı Avrupa ve Anadolu’ya yayıldılar. Bu Kafkas halkları daha çok R1b ve G2a gruplarından olup kuzeyde R1a’ya da rastlanmaktadır. Volga-Ural bölgesinde icat edilen tekerlekli at arabalarının Hititler tarafından da kullanıldığı bilinmektedir. Demek ki, R1 grupları Kafkasya’dan güneye, Doğu Anadolu’ya girerek kültürlerini Orta Doğu ve Balkanlara taşıdılar. Tarihçiler ve arkeologlar Hint-Avrupa göçlerinin bir işgal mi yoksa barışçıl bir yayılma mı olduğunu uzun zaman tartıştılar. Yayılma teorisini ileri sürenler, R1b’yi Batı Avrupa’nın yerlileri, R1a’yı ise Hint-Avrupalılar olarak tanımladılar. Ancak R haplogrubunun Orta Asya’da doğmuş olması bu teoriyi çürüttü. R2 ise sadece Güney Asya’da bulunmaktadır. Batı Avrupa nüfusunun %80’i R1b olmasına rağmen oldukça farklı dış görünüş tipleri vardır. Bunun nedeni, atlı arabalarla ve süvari birlikleriyle düşmanlarına üstünlük sağlayan savaşçıların kendilerinden çok daha kalabalık toplumları yenerek bölge halkına üstünlük kurmalarıdır. Çok eşliliğin yaşandığı eski çağlarda galip gelen taraf savaş esiri cariyeler de edindiği için, bir erkeğin nesli pek çok kadından devam etmiştir. Bu sebeple, R1b grubundan olmalarına rağmen, anne tarafına ait genlerden dolayı farklı dış görünüşler oluşmuştur. I Haplogrubu Avrupa’daki en eski gruptur. Orta Doğulu IJ’den 25.000 yıl önce ayrılmıştır. Avrupa’da doğan tek grup olan I, büyük olasılıkla F ve C ile birlikte Cro-Magnon’ların haplogrubudur. I2a, en çok Bosna-Hersek’te (%65) I1 ise İskandinavya’da (%45) görülür. Daha sonra dört ana alt gruba ayrılmıştır. I1, 17.000 yıl önce Güney Doğu Avrupa’da doğdu. I1, I2a, I2b ve I2c gruplarına Türkiye’de az rastlanır. I haplogrubu, özellikle I2a Türkiye ve Kuzey Irak Kürtlerinde %20 oranında görülmektedir. G Haplogrubu 30.000 yıl önce Orta Doğu veya Trans Kafkasya’da doğdu. O dönemde yarı göçebe hayat tarzı hüküm sürüyordu. Buzul çağı sona erip ilk defa Bereketli Hilal’de tarım başladığında bu grup çiftçiliği öğrendi. Tahminen 12.000 yıl önce güney Kafkasya’da koyun ve keçileri evcilleştiren bu insanların bir bölümü 9-6 bin yıl önce Anadolu üzerinden Avrupa’ya göç etti. İskitlerin R1a ve G1 grubundan olduğu biliniyor. İskitler ve Sarmatyanların soyundan olduğu kabul edilen Osetya halkı (Rusya ve Gürcistan içinde) daha çok G2a grubundandır. C. Scott Littleton’a göre Kamelot yuvarlak masa şövalyelerinin bazıları İskitlerdendi. Kral Artur ve kutsal kase efsanesinin kaynağının da İskit kültürü olduğunu belirtmektedir. E1b1b (eski adı E3b) Haplogrubu Afrika’dan en son göçle çıkan haplogruptur. Bu grup Türkiye’de %10’dan fazla görülmektedir. 26.000 yıl önce Afrika’da doğmuş ve Orta Doğu’ya yayılmıştır. E1b’nin Avrupa’ya ne zaman girdiği tam olarak belli değildir. Tahminen neolitik çağ sonu veya bronz çağı başında göçler oldu. Sahra çölü 20.000 yıl önce kurak idi. 12.000 yıl önce buzul çağı sonunda yağmurlarla yaşanılabilir bir alan haline geldi. 6.000 yıl önce de tekrar çölleşmeye başlayarak bugünkü durumuna dönüştü. İşte Kuzey Afrika’daki bu sert iklim değişiklikleri nedeniyle kıta dışına birkaç dalga göç olmuştur. T Haplogrubu 30.000 yıl önce Asya’da oluşan bu grubun doğum yeri tam olarak bilinmemektedir. Avrupa’da az görülen T grubuna en çok Doğu Afrika’da Aden körfezi sahillerinde ve Doğu Hindistan’da rastlanmaktadır. İtalya ve Yunanistan’da %7, Türkiye’de %3 oranında bulunmaktadır. T grubunun daha çok Güney Kafkasya, Irak ve Güney İran’da görülmesi nedeniyle Sümerler ve Elamitlerle ilişkili olduğu düşünülmektedir. Kıbrıs, Sicilya, Tunus’ta bu gruba fazla rastlanmasının sebebi Fenikelilerin Akdeniz’e yayılmaları olabilir. L Haplogrubu 30.000 yıl önce K’dan ayrılan L grubu daha çok Pakistan ve Hindistan’da bulunmakla beraber, Türk, Kürt ve İranlılarda %4 oranında görülür. Kuzey Batı Hindistan’a ait olan bu grubun insanları Orta Doğu, Ermenistan, Anadolu, Balkanlar ve İtalya’ya kadar gitmişlerdir. Bunların ticaret için batıya giden Hintliler olduğu sanılıyor. Ayrıca, Orta Doğu ve Hindistan arasında kurulan Selçuklular, Sasaniler ve Roma İmparatorluğu gibi devletler döneminde bu Hintlilerin batıyla ilişki kurmuş olmaları mümkündür. J Haplogrubu Bugün yeryüzünde en etkin birkaç haplogruptan birisi, pek çok açıdan belki de en önemlisidir. J1 ve J2 sadece nüfus olarak fazla olmasından değil, hem bulunduğu stratejik coğrafya, hem de Orta Doğu’da gerçekleştirmiş olduğu etkiler nedeniyle insanlık tarihinde önemli rol oynamıştır. 30 bin yıl önce, büyük ihtimalle Arap Yarımadası’nda doğmuş olan bu grup sadece Semitik (Arap ve Yahudi) ırkların atası olmakla sınırlı değildir. Türkiye, Kafkasya, İran ve Orta Asya’ya kadar uzanan geniş coğrafyada nüfusun büyük bölümünü oluşturmaktadır. Levant ve Bereketli Hilal’de tarımı 12.000 yıl önce ilk defa J’nin torunları başlatmıştır. İnsanlık tarihi açısından dönüm noktası olan bu gelişme, avcılıktan yerleşik hayata geçilmesine neden olmuş, ilk köyler kurulmuş, eski Mısır ve Mezopotamya uygarlıkları böylece başlamıştır. Bugün Türkiye’de yaşayan halkın üçte birini oluşturan J1 ve J2 haplogrupları, sayıca diğer bütün gruplardan açık ara öndedir. N Haplogrubu Orta Asya ve Türkler için en önemli iki gruptan biri olan N grubu NO’dan 15-20 bin yıl önce doğdu. Orta Asyalı Türkler daha en başından beri birbirinden uzak akraba iki topluluktan oluşmaktaydı. Ön-Türklerin kurduğu devletlerde Q ve N, Orta Asya’da yaşayan R1a, R1b, C ve O gruplarıyla karışık halde bulunuyorlardı. N haplogrubunu Türkler için önemli kılan bir diğer husus, çoğunluğunu oluşturduğu Finlandiya, Estonya, Yakut ve diğer Kuzey Sibirya halklarının hepsinin Ural-Altay grubundan dilleri konuşuyor olmalarıdır. N grubu bu yönüyle belki de tektir. Bugün hala yüksek oranlarda görüldüğü Sibirya ve Kuzey Doğu Avrupa ön-Türklerin de ilk yerleşim alanlarıdır. Bunlar M.Ö. 600-700 yıllarında güneye inerek Moğolistan ve Orta Asya steplerine girdiler. Q Haplogrubu 15 ila 20 bin yıl önce P’den ayrıldı ve kendisiyle aynı dönemde doğan R1 ve N haplogruplarıyla Orta Asya’nın ilk yerlilerini oluşturdu. R1 yukarıda açıkladığımız gibi dünyanın dört bir yanına dağıldı, bugün Hint-Avrupa dil grubunu konuşan Avrupalıların genetik grubu olarak kabul edilir. Diğer taraftan N daha çok Ural dillerini konuşanlara ait bir genetik gruptur. Q ise tamamen Hunlara ait haplogrup olarak bilinir. Bir diğer deyişle Q tamamen Türklere has bir gruptur. Amerikan yerlilerini istisna edersek, Q grubundan olup ta Türk olmayan bir millet yoktur. Çünkü Q insanlarının tamamı hem Orta Asya doğumludur hem de bugün hala Türk dili lehçelerini konuşmaktadırlar. 1500 yıl önce kavimler göçü ile Hunlar Avrupa’ya yayılana kadar Q grubu Orta Asya’da yaşamaya devam etmiştir. İşte bu göçler ile Batı Avrupa’ya gelen Hunlar, sayıları az olsa da Avrupa’da varlıklarını hala devam ettirmektedirler. Hunların ilk önce Macaristan’a yerleştikleri biliniyor. Onların baskısıyla batıya gitmek zorunda kalan Germenlerin ataları, Goth, Ostrogot, Vizigot ve Vandallar Roma İmparatorluğu’nun çöküşüne sebep olmuşlardır. Roma kaynakları, Hunların küçük ve elit gruplar halinde Germenlerden oluşan orduları yönettiğini belirtmektedirler. Müttefikleri Goth’larla birlikte İskandinavya’ya kadar giden Hunlar, Macaristan’dan sonra en çok Norveç ve İsveç’e yerleşmişlerdir. Q’nun Batı Avrupa’ya nasıl gelmiş olabileceğine dair ikinci senaryo, Ural dillerini konuşan N haplogrubu ile birlikte Sibirya’dan hareket etmiş olmaları yönündedir. Ancak bu olasılık zayıftır, çünkü Ural haplogrubu olan N1c1 ve Q’ye Finlandiya’da çok az rastlanır. Bir üçüncü alternatif, Q grubunun Avrupa’ya13. Yüzyılda Cengiz Han’ın orduları içinde gelmiş olabilecekleri ihtimalidir. Moğol orduları C3, G, O, Q, N ve R1a gruplarından oluşuyordu. Ayrıca Moğol istilasından kaçan Kuman ve Kıpçakların da batıya göç ettiklerini biliyoruz, ancak Orta Avrupa ve İskandinavya’ya kadar ulaşmaları zor göründüğünden en kuvvetli teori birinci alternatif, yani 5. Yüzyılda gerçekleşen kavimler göçüdür.

http://www.biyologlar.com/y-dna-baba-tarafindan-haplogruplar

Bakterilerin Üremelerine Etkili Faktörler

Mikroorganizmalar bulundukları ortamlarda (kültürler de dahil), optimal koşullar altında, cins ve türlerinin genetik karakterine göre, iyi bir üreme ve gelişme gösterirler. Ancak, bu uygun şartlar, aynı durumda uzun bir süre devam etmez ve belli bir zaman sonra, mikroorganizmaların üremeleri sınırlanır ve durur. Eğer, olumsuz koşullar değiştirilmezse veya iyileştirilmezse, mikroorganizma populasyonunda ölümler başlar, giderek artar ve canlı mikroorganizma sayısında azalmalar meydana gelir. Ancak, canlı kalmayı başarabilen mikroplarda da, morfolojik bazı değişiklikler (şekillerinde bozukluklar: flamentöz, branşlı, pleomorfik ve diğer aberent formlar) ortaya çıkar. Yukarıda bahsedilen durumlar, genellikle, doğal koşullar altında meydana gelen bazı olumsuz faktörlerin mikroorganizmaların üremeleri üzerine olan etkilerini kapsamaktadır. 1 "Temel Mikrobiyoloji; Genişletilmiş İkinci Baskı. Prof. Dr. Mustafa Arda. Medisan Yayın Serisi no 46. 2000. Medisan Yayınevi, Ankara" adlı kitabın 09. bölümüdür. Böyle etkiye sahip faktörleri başlıca 4 grupta toplamak mümkündür. Bunlar da, 1) Fiziksel faktörler 2) Kimyasal faktörler 3) Biyolojik faktörler 4) Mekanik faktörler 02. Fiziksel Faktörler Yeryüzünde (toprakta, sularda, göllerde, denizlerde, havada, evlerde, barınaklarda, vs.) ve canlıların vücudunda, değişik fiziksel, kimyasal biyolojik ve doğal koşullara adapte olmuş, yaşayan ve üreyen mikroorganizmalar bulunmaktadır. Bakteriler, 20° Güney paralelinden 90° Kuzey paraleline kadar, okyanus sularında, değişik derinliklerde ve ortamlarda oldukça farklı hidrostatik basınç altında kolayca yaşayabilecek tarzda bir adaptasyon göstermektedirler. Bazıları da sıcak su kaynaklarındaki 100°C civarındaki sıcaklıkta ve bir kısmı da donma derecesindeki çevrede kolayca yaşayabildikleri belirlenmiştir. Doğada bu kadar değişken, fazla ve olumsuz koşullara direnç gösteren ve adapte olan mikroorganizmalardan ancak çok azı canlılarda hastalık oluşturabilmektedir. Çünkü, ekseri patogenlerin üreyebildiği sınırlar, üzerinde veya içinde yaşadıkları canlılarınki ile bir uyum göstermektedirler. Maksimal veya minimal sıcaklık sınırlarına yaklaşıldıkça veya geçildikçe, mikroorganizmalar üreseler bile virulens faktörlerinin etkinliğinde inhibisyon veya zayıflamalar oluşmaktadır. Kapsüllü mikroplar, bakteri ve mantar sporları çevre koşullarına çok dayanıklıdırlar ve uzun süre (yıllar) canlı kalabilir ve infeksiyöz yeteneklerini koruyabilirler. Mikroorganizmaların üremeleri üzerine etkileyen önemli fiziksel faktörler aşağıda özet olarak belirtilmiştir. 02.01. Isının Etkisi Mikroorganizmalar üzerine ısı başlıca iki tarzda etkilemektedir. A) Sıcağın etkisi: Ortamın sıcaklığı, mikroorganizmaların üremeleri üzerine büyük ölçüde etkiler. Mikroplar, genellikle, kendi türlerine özel sıcaklık limitleri (minimal ve maksimal) içinde gelişebilir ve üreyebilirler. Bu sınırlar arasında, üremenin en iyi meydana geldiği optimal sıcaklık bulunur. Bu uygun sıcaklıktan minimal veya maksimal hudutlara doğru gidildikçe üremenin yavaşladığı ve bu sınırları geçince üremenin durduğu görülür. Optimal sıcaklık maksimalden 5-10 derece daha düşük olmasına karşın, minimal sıcaklıktan genellikle 20-30 derece daha yüksektir. Maksimal limitin aşılması halinde yalnız üremede durma meydana gelmez, sıcaklığın yüksekliğine göre, mikroplarda az veya çok oranda ölümler de başlar. Buna karşılık minimal sıcaklık sınırının geçilmesi halinde üremede duraklama meydana gelir. Ölümler, sıcaklığın düşme hızına ve sıcaklık derecesine göre çok az olur. Mikroorganizmalar arasında sıcaklık limitleri bakımından bazı ayrılıklar vardır. Bu durum, mikropların doğal adaptasyon ve seleksiyonları sonu oluşmuştur. Patogenik mikroplar, en iyi gelişme ısısını (optimal sıcaklık), adapte oldukları konakçının içinde bulurlar. Diğer bir deyimle, bu tür mikroorganizmalar en iyi, konakçı sıcaklığında ürerler. Bu nedenle de, hastalık yapıcı karakterde olan mikropların üreme sıcaklığı varyasyonları çok geniş olmayıp, belli ve dar limitler arasında bulunmaktadır. Buna karşın, saprofitikler ve doğada serbest yaşayan diğer mikroorganizmaların, sıcaklık genişlik limitleri arası daha geniştir. Optimal sıcaklık, mikropların gelişmesi ve üremeleri için genellikle iyi olmasına karşın, bazı yan ürünlerin (çeşitli metabolitlerin, enzim, toksin, endüstride değeri olan ürünlerin, vs.) sentez edilebilmesi için her zaman uygun olmayabilir. Optimal sıcaklık, hücre içinde enzimlerin aktivitesi için de genellikle, uygun kabul edilir. Sıcaklık arttıkça veya azaldıkça, enzim aktivitesinde de değişiklik oluşacağından, metabolizma üzerine olumsuz yönde etkiler. Mikroorganizmalar üreme sıcaklığı derecelerine göre başlıca 3 bölüme ayrılırlar: a) Soğuk seven (psikrofil) mikroplar: Toprak, su, deniz ve göllerde yaşayan bazı mikroplar ile balıklarda ve soğuk kanlı hayvanlarda hastalık oluşturan mikroorganizmalar bu bölüme girerler. Balıklarda hastalık meydana getiren gerek Gram negatif (A. salmonicida, C. psychrophila, H. piscium, V. anguillarum, vs.) ve gerekse Gram pozitif (korinebakteri, mikobakteri türleri, vs.) mikroplar 15-20°C arasında iyi gelişme olanaklarına sahiptirler. Soğuk seven bazı mikroplar ve mantarlar buzdolabı sıcaklığında (+4 °C' de) kolaylıkla üreyebilir ve gıdaları bozabilirler. Bu nedenle psikrofilik mikroorganizmaların enzimleri -5°C ile +20 °C' ler arasında aktivite gösterebilirler. b) Ilık seven (mezofil) mikroplar: Bu mikroplar, genellikle 20-45 °C' ler arasında gelişme ve üreme kabiliyetlerine sahiptirler. İnsan ve hayvanlarda hastalık oluşturan mikroorganizmaların büyük bir kısmı, bu gruba dahildirler. Bu nedenle optimal sıcaklıkları 35 °C ile 42 °C' ler arasıdır. Mezofil mikroorganizmalar, 65 °C' de 20 dakikada ve pastörizasyon sıcaklığında (70 °C' de bir dakikada) ölürler. c) Sıcak seven (termofil) mikroplar: Termofilik mikropların gelişme ve üreme sıcaklıkları, mezofillerin çok üstündedir (50-60 °C). Mezofiller bu sıcaklıkta yaşayamazlar. Bu tür mikroplara, sıcak su kaynaklarında, gübrelerde ve tropikal ülkelerde rastlamak mümkündür. Termofil mikroplar ve sporlar pastörizasyon ısısına dayanıklıdırlar. Sütlerin pastörizasyonundan sonra da ısıya dayanıklı birçok mikroplar canlı kalırlar. Konserve gıdaların sterilizasyonu bu nedenle önem kazanmaktadır. T. aquaticus, B. stearothermophilus, bu tür mikroplara örnek verilebilir. Mikroplar yüksek sıcaklıkta ölürler. Ancak, sıcaklık yardımı ile ölme üzerine, sıcaklıktan başka, birçok faktörlerin de etkisi bulunmaktadır. Bunlar da kısaca şöyledir: 1- Yüksek sıcaklık: Maksimal limiti aşan sıcaklık, mikropların karakterine göre kısa ve uzun bir süre içinde ölümlere neden olur. Psikrofilik mikropların çoğu 30-35 °C' de, mezofillerin ekserisi 65 °C' de 20-30 dakikada, termofiller ise 80-90 °C' de tahrip olurlar. Sporlar 100-110 °C' de ve bütün mikroorganizmalar da rutubetli sıcaklıkta 120 °C' de 15-20 dakika içinde ölürler (sterilizasyon). 2- Mikrop türü: Mikroorganizmaların vegetatif formları, kapsüllü ve sporlu olanlardan daha erken ölürler. B. anthracis 'in sporları 100-110 °C' de 10-15 dakika canlı kalabilir. Buna karşın doğa koşulları altında 40-50 sene yaşayabilir ve hastalık yapma kabiliyetini muhafaza edebilir. Tüberküloz mikroorganizmalarının etrafında bulunan balmumu tabakası, bunları çevresel koşullarının her türlü olumsuz etkisinden koruduğu gibi ısıya da dayanıklı hale  getirir. Isıya direnç bakımından mikroplar arasında farklar bulunmaktadır. 3- Mikrop sayısı: Bir ortamdaki ve kültürdeki mikrop sayısı arttıkça, bunları öldürmek için geçen süre de, artar. Bu artış, mikrop sayısındaki her logaritmik azalış için, bir sıcaklık birimi kadardır. Çünkü, belli zaman dilimleri içinde populasyonda belli oranda logaritmik azalmalar olur. Örn. başlangıçta kültür içinde 24 milyon mikrop varsa, 100 °C' de ilk dakika sonunda 24x 105, ikinci dakikada 24 x 105, üçüncü dakikada 24 x 103, dördüncü dakikada 24 x 102,.... ve böylece mikroorganizma miktarı ile orantılı olarak süre de uzayacaktır. Ancak, bu rakamlar yaklaşık olup tam kesin değildir. 4- Ortamın bileşimi: İçinde yağ, protein, mukoid sıvılar, organik maddeler, vs. bulunan ortamlardaki mikroplar daha yavaş ve geç ölürler. Bazı durumlarda da, eğer süre ve sıcaklığınderecesi uygun değilse, ölmeyebilirler. Besiyerlerinin viskozitesi arttığında  sıcaklık iletme kabiliyetinde azalma meydana gelir. Bu durumun, göz önünde tutulması gerekir. 5- Ortamın pH 'sı: Mikroorganizmalar, optimal pH derecelerinde ısıya karşı dayanıklı, maksimal ve minimal pH limitlerine doğru dirençlerinde azalmalar meydana gelir. 6- Mikropların üreme durumları: Sıvı kültürlerde üreme döneminde olan mikroplar, ısıya durma veya ölme periyodlarından daha duyarlıdırlar. 7- Rutubet: Rutubetli sıcaklık, kuru sıcaklıktan daha etkilidir. Otoklavda (rutubetli sıcaklık) 115 °C' de 15 dakikada ölen sporlar, Pasteur fırınında (kuru sıcaklıkta) 150 °C' de bir saatte ölürler. 8- Süre: Süre ne kadar uzun olursa, sıcaklığın mikroplar üzerinde olan etkisi de artar. 9-Soğuğun etkisi: Mikroorganizmalar soğuğa sıcaktan, daha fazla dayanırlar. Minimal sıcaklığı geçince üremeleri duran mikroplar, bu limit çok aşılsa bile ölmedikleri görülür. Soğukluk –80 °C veya –190 °C olunca canlılıklarını ve infeksiyöz kabiliyetlerini uzun süre (yıllarca) koruyabilmektedirler. Bu nedenle, mikroorganizmalar (bakteri, mantar, virus) ve çeşitli hücreler (doku hücreleri, sperma, vs.) sıfırın çok altında (-190 °C' de) muhafaza edilmektedirler. Ancak, bazı mikropların özel duyarlılığını da göz önünde tutmak gereklidir. Ayrıca, donarken ve çözülürken populasyonda canlılık miktarında ve hastalık oluşturma yeteneğinde de azalmalar meydana gelir. Bakterilerin hücre duvarı, donma ve çözülme sırasında parçalanabilir. Eğer mikroorganizmalar çok kısa süre içinde dondurulur, kurutulur ve havası alınmış ampuller içinde saklanırsa uzun yıllar canlılıklarını ve aktivitesini koruyabilir (liyofilizasyon). Mikropların ve hücrelerin liyofilizasyonunda, steril yağsız süt, serum, gliserin, laktalbumin, sodyum glutamat, vs. gibi ara maddelerden yararlanılır. Çeşitli sıvılar ve serumlar aynı şekilde, ya çok soğuk derecelerde veya liyofilizasyon suretiyle uzun yıllar muhafaza edilmektedirler. Mikroorganizmaların sıcaklık ile ilişkili fizyolojik karakterlerini saptamada bazı özel kriterler konulmuştur. Bunlardan biri, termal ölüm noktasıdır. Bu nokta, belli bir yoğunluk ve ortamda üretilen mikropların, 10 dakika içinde ölebildikleri en düşük sıcaklık derecesidir. Bu limit mikroplar arasında değişiklik gösterir. İyi bir kontrol sağlandığı takdirde, konservecilikte, süt ve gıda maddelerinin muhafazasında yararlar sağlayabilir. Diğer bir nokta da, termal ölüm süresidir. Bu süre, belli sıcaklık derecesinde veya sabit bir sıcaklık derecesinde bütün mikropların ölmesi için geçen zamanı kapsar. Bu süreye, ortamın viskozitesi, pH' sı, mikroorganizmaların tür ve yaşı, mikrop sayısı ve çevresel koşullar fazlasıyla etkiler. Aynı etkenler, termal ölüm noktasına da tesir ederler. 02.02. Radyasyonun Etkisi Radyasyon, boşlukta veya materyal bir ortamda enerjinin dalgalar halinde yayılması olayıdır. Pratikte mikrobiyoloji alanında radyasyonlardan başlıca iki amaçla yararlanılır. 1- Sterilizasyon ve dezenfeksiyon, 2- Mutasyonlar oluşturmak için Radyasyonlar karakterlerine göre başlıca iki türdür A) İyonizan olmayan radyasyonlar 1- Ultraviolet (mor ötesi) ışınları, 2- İnfrared (kızıl altı) ışınları, 3- Ultrasonik (ses ötesi) dalgalar. B) İyonizan radyasyonlar I). Elektromagnetik radyasyonlar 1- İks (X) ışınları, 2- Gama ışınları. II).Partiküler radyasyonlar 1- Alfa ışınları, 2- Beta ışınları, 3- Katot ışınları Mikrobiyolojide en çok kullanılan radyasyonlar ultraviolet ışınları, X ışınları, gama ışınları, katot ışınları ve ultrasonik vibrasyonlardır. 02.02.01. İyonizan Olmayan Radyasyonlar Ultraviolet (UV-) ışınları: Bunların dalga uzunlukları, diğer ışınlardan daha büyüktür. UV- ışınlarının kuvantum enerjisi düşük olduğundan iyonizasyon oluşturamaz ve ancak moleküllerde ekzitasyonlar meydana getirirler. Ultraviolet ışınlarının dalga boyları 10 nm ile 380 nm (100 A°-3800 A°) arasında değişmektedir. Bu ışınların bakteri, mantar, virus, spor ve hücreler üzerine letal etkileri vardır. Pratikte UV-ışınları, cıva buharlı lambalardan elde edilir. Derinlere girememeleri nedeniyle, hastanelerde operasyon odalarının ve bazı özel yerlerin havasını ve burada bulunan eşyaların yüzeyini sterilize etmekte kullanılır. UV-ışınlarının mikroplar üzerine, letal etkilerinden başka, mutagenik olarak ta tesir eder. Proteinlerin, özellikle, nukleik asitlerin, bu ışınlara karşı olan özel affiniteleri nedeniyle kolayca absorbe edilirler. Bunun sonucu olarak ta, DNA iplikçiklerinde yan yana bulunan timinler arasında bağların kurulması (timin dimerleri) olayı meydana gelir (dimerizasyon). Oluşan bu dimerizasyon, DNA'nın normal yapısını çarpıtır. Bu durum DNA replikasyonuna, transkripsiyona ve dolayısıyla da translasyona etkileyerek bakteride protein sentezin ve diğer mekanizmaları bozar ve ölümlere neden olur. UV-ışınlarının dozajı artarsa bu sefer timin dimerleri yanı sıra, sitozin dimerleri de oluşmaya başlar ve ölümler çoğalır. Absorbe edilemeyen ışınların DNA üzerinde etkileri çok zayıf veya yoktur. Dalga uzunlukları 300 nm.'den aşağı olanlar daha fazla absorbe edilirler. Cam, su ve organik maddeler, UV-ışınlarını absorbe ederek etkisini azaltırlar. Oksijensiz ortamlarda daha etkili olabilen UV-ışınları, gözün retinası üzerinde bozukluk yaptığından, UV-ışınları bulunan bir odaya özel gözlük takarak veya UV-ışığı söndürülerek girilir. Absorbe edilen UV-ışınları ve görülebilen ışınların, kuvantum enerjileri fazla olmadığından maddelerin atomlarından elektronların çıkmasına neden olacak güçte değildirler. Bu nedenlerle iyonizasyon yapamayıp, ancak elektronlar arasındaki aktivasyonu artırarak yüksek enerji oluştururlar (ekzitasyon). Bu da fotokimyasal olaylara neden olur ve bazı bozukluklar meydana getirir. Atomlardan elektronların çıkabilmesi için radyasyon enerjisinin 10 elektrovolttan daha yüksek olması gereklidir. Bu yüksek enerji, atomları iyonize ederek bazı elektronların çıkmasına sebep olur (iyonizasyon). Bu tür enerjiye X ve gama ışınları sahiptirler. Kuvantum enerjinin (elektromagnetik dalgaları oluşturan en küçük enerji demetleri) derecesi,dalga uzunluğu ile ters orantılıdır.  Buna karşılık bir biyolojik sistem tarafından absorbe edilen kuvanta miktarı, radyasyonun süresi ve yoğunluğu ile doğrusal orantılıdır. Bir atomdaki elektronların kuvantum absorbsiyonu, molekülün aktivasyonuna yol açar. Bu da, kimyasal reaksiyonlarda ekstra enerji olarak kullanılır veya kaybedilir (fluoresens, sıcaklık, vs). Fotoreaktivasyon: Eğer bakteri hücreleri UV-ışınlamasından sonra hemen, görülebilen ışınlara (300-400 nm. dalga boyu) tutulursa, UV-ışınlarının letal etkileri azalır. Bu olay, UV- ışınlaması sonu oluşan primidin dimerlerinin görülebilen ışınlarca aktive edilen özel enzimler tarafından, hidrolize edilerek giderilmesi sonu meydana gelir. Böylece, dimerler ortadan kaldırılarak bozukluk tamir edilir. Işıkta yapılan bu tamir mekanizması yan ısıra bakterilerde, karanlıkla iş görebilen ve dimerizasyonu gideren diğer bir tamir sistemi daha bulunmaktadır (karanlıkta tamir). Bu mekanizmada 4 enzim (endonuklease, ekzonuklease, DNA polimerase, polinukleotid ligase) görev alır ve bozulan bölgeyi tamir ederler. 02.02.02. Güneş Işınları Güneş ışınları dünya için iyi bir radyasyon kaynağıdır. Güneş ışınlarını, görülebilen ışınlar, UV-ışınları, infrared ışınları ve radyo dalgalar oluşturur. Özellikle ısınmayı da infrared ışınları sağlar. Görülebilen ışınların, dünyadaki yaşam için önemi çok fazladır. Fotosentetik organizmalar ışık enerjisinden yararlanırlar. Güneş ışınlarının %60'ını infrared ışınları teşkil eder. Dünya yüzeyine ulaşan UV-ışınlarından 290-300 nm dalga boyunun altında olanları çok azdır. UV-ışınlarının 287 nm' nin altında dalga boyuna sahip olanlar atmosferdeki oksijen tarafından absorbe edilir. Bu işlemi, dünyadan 35-55 km. yukarda bulunan ozon (O3) tabakası yapar. Ozon tabakası, daha uzun dalga boyundakileri de absorbe ederek tekrar oksijen oluşturur. Güneş ışınları (UV-ışınları), mikroorganizmalar üzerine, hem mutasyonlar oluşturarak ve hem de sıcaklığı ile etkiler. 02.02.03. İnfrared Işınlar Biyolojik materyallerde kimyasal değişikliğe neden olabilecek kuvantum enerjisine sahip olmadıklarından pratikte değerleri azdır. Dalga uzunlukları çok büyüktür. 02.02.04. Ultrasonik Vibrasyonlar Ses dalgalarının 20-1000 Kc. olanları bakteri hücrelerini parçalayabilecek niteliktedirler. Bu durumdan yararlanılarak, enzimatik çalışmalar ve bakterilerin iç yapı karakterlerini incelemek mümkün olabilmektedir. Ultrasonik dalgalarının frekansı arttıkça, parçalayıcı etkisi de artar. Sıvı içinden geçen ses dalgaları 10 mikrometre çapında boşluklar meydana getirir. Bunlar birbirleriyle birleşir ve sonra da kollapse olurlar. Bu kollaps sırasında oluşan yüksek basınçlı enerji bakterilerde hücre duvarını parçalayabilecek kudrettedir. Bunun yanı sıra sıvı içinde bazı fiziksel ve kimyasal değişmeler de meydana gelir. Bunlar da bakteriler üzerine olumsuz yönde etkileyerek parçalanmayı hızlandırırlar. Ultrasonik vibrasyonlar, hücre içindeki makromoleküllerin ve intramoleküler organizasyonların depolimerizasyonuna yol açar. Ultrasonik vibrasyonlara stafilokoklar dirençli olmasına karşın, diğer Gram pozitif ve negatif mikroorganizmalar daha duyarlıdırlar. Hücreleri parçalayarak içindeki virusları dışarı çıkarmada ultrasonik vibrasyonlardan yararlanıldığı gibi suların sterilizasyonunda da aynı amaçla kullanılmaktadırlar. 02.02.05. İyonizan Radiyasyonlar İyonizan ışınlar, fiziksel özelliklerine göre iki kısma ayrılırlar. 1- Elektromagnetik olanlar ve 2- Partüküler olanlar. Bu ışınların dalga boyları çok kısadır ve derinlere girme kabiliyeti fazladır. Bu özelliklerinden yararlanarak pratikte sterilizasyon amacıyla kullanılırlar. Çok fazla enerjiye sahip olduklarından atomlardan elektronların çıkmasına neden olurlar (iyonizasyon) ve letal etkileri de çok fazladır.Bu etkileri, absorbe edilen enerji miktarı ile bağıntılıdır. İyonizan ışınların hücrelerde bulunan ve çok önemli görevlere sahip olan makro ve mikromoleküller üzerine olan olumsuz etkileri de çok fazladır. Biyolojik sistemlerde suyun fazla olması ve böyle ortamlardan iyonizan ışınların geçmesi suyun iyonizasyonuna da neden olur. enerji (1) H2O ›H2O +e- kuvantum Bu reaksiyonda oluşan pozitif yüklü su iyonu, iyonize olmamış su molekülü ile reaksiyon vererek serbest hidroksil radikalleri oluşturur. (2) H2O + H3O ›H3O + OH (serbest radikal) Birinci reaksiyonda açığa çıkan elektron, iyonize olmamış su ile reaksiyon vererek serbest hidroksil radikallerine yol açar. Hidroksil radikallerinin çok kuvvetli oksidan etkisi olduğundan, DNA üzerinde zedelenmelere sebep olur. Hücrede, irradyasyon sırasında, oksijenin bulunması ışınların etkisini daha da arttırır. Serbest radikallerin oksijenle birleşmesi sonu bir seri otooksidatif reaksiyonlara ve ayrıca da peroksidase oluşumuna neden olur. Bunlar ışınların etkisini artırırlar. Buna karşılık hücre içinde bulunan sülfidril grupları da, biyolojik sistemlerin koruyucu olarak, irradyasyonun zararlarını hafifletirler. İyonizan ışınlardan pratikte, sterilizasyon amacı ile yararlanılır. Gram pozitif ve negatif mikroorganizmalar üzerine letal etkileri fazladır ve bu tesir logaritmik bir kural içinde meydana gelir (belli zaman aralıklarında belli veya sabit düzeyde mikroorganizmalar ölürler). Öldürme olayı, ışınların dalga uzunluğu ve total radyasyon dozu ile bağıntılıdır. İyonizan ışınlarla genellikle soğuk sterilizasyon meydana gelir. Sıcaklık oluşumu ya çok az veya yoktur. Gıdaların sterilizasyonu esnasında, bu maddelere özel tat ve koku verebilir. Bu nedenle de çok tercih edilmemektedirler. 02.02.06. Elektromagnetik İyonizan Radyasyonlar X-ışınları: Bu elektromagnetik ışınlar elektrik jeneratörleri tarafından oluşturulur. Dalga uzunlukları 10 Ao ile 10-4 A° arasında değişir ve yüksek enerjiye sahiptirler. Bu nedenle mikroorganizmalara ve yüksek organizmalara etkilidirler. Elde edilmesi güç ve pahalı olduğu gibi çıkış yerinden her tarafa yayılma özelliğine de sahiptirler. Derinlere girebilme özellikleri bunların letal etkilerini artırır. Bu ışınlardan pratikte, mutasyonlar meydana getirmekte ve paketlenmiş gıdaları sterilize etmede yararlanmaktadır. Gama ışınları: Bu da elektromagnetik bir ışınım olup doğal veya yapay radyoaktif elementlerden elde edilirler. Bu amaç için kobalt-60 fazla kullanılır. Yüksek enerjili olup dalga boyu, X-ışınlarından daha kısadır ve bu nedenle letal etkisi de daha fazladır. Her tarafa yayılma özelliği gösteren bu ışınlardan gıdaların sterilizasyonunda yararlanılır. 02.02.07. Partiküler Radyasyonlar 1- Alfa ışınları: Radyoaktif elementlerden elde edilen çok hızlı ve yüksek enerjili bir helyum çekirdeğidir. 2- Beta ışınları: Aynı tarzda, radyoaktif elementlerden elde edilen hızlı ve yüksek enerjili negatif yüklü bir ışınımdır. 3- Katot ışınları: Elektrik akseleratörleri tarafından oluşturulan ve elektron demetleri halinde ışınlardır. Yüksek voltajlı ve vakumlu tüplerde katottan çıkarak anoda doğru hızla hareket ederler. Bu ışınlardan pratikte, sterilizasyon amacı ile sınırlı olarak yararlanılır. 02.03. Yüzey Geriliminin Etkisi Besiyerlerinde bulunan gıda maddelerinin mikroorganizmalara girebilmesi, bakteri içinde sentezlenen enzimlerin ve oluşan metabolitlerin dışarı çıkabilmesi için, hücre duvarının yarı geçirgen özelliğinin önemi çok fazladır. Metabolizma olaylarının normal meydana gelebilmelerinde mikropların bulunduğu sıvı ile bakteri yüzeyi arasındaki moleküler gerilimin dengede bulunması gereklidir. Bu denge, bakteriye giriş-çıkışı büyük ölçüde kolaylaştırır. Bakteriye temas eden sıvı yüzeyindeki moleküllerin oluşturduğu gerilim çok fazla olursa, oluşan kuvvetli moleküler membran nedeniyle, sıvı ortamdan bakteriye gıda maddelerinin girişi çok güç olur ve bakteri beslenemez. Aksine, bu moleküler gerilim zayıf olursa, sıvı ile bakteri yüzeyi birbirine çok sıkı temas ederek sıvı içindeki maddelerin bakteri yüzeyinde toplanmasına sebep olur. Buna bağlı olarak bakteri içinden dışarı ve dışardan içeri gıdaların akışı güçleşir ve bakteri yine beslenemez. Yukarıda bildirilen nedenlerle, bakteri yüzeyi ile buna temas eden sıvı ortamın yüzeysel moleküler gerilimin dengede bulunması zorunludur. Eğer bir bakteri, kendi türüne göre, yüzey gerilimi fazla olan bir sıvı içinde kültürü yapılırsa, üstte üreme gösterir ve tüpün geri kalan kısmında üreme zayıf olur (B. subtilis gibi). Eğer bu besi yerinin yüzey gerilimi düşürülürse, B. subtilis homogen bir tarzda üreme gösterir. S. aureus buyyonda genellikle homojen bir tarzda ürer. Eğer bu besi yerinin yüzey gerilimi artırılırsa (%0.05 sodium ricionaleate veya lipoid madde ilavesi ile), etken bu sefer üstte üremeye başlar. Yüzey gerilimini düşüren maddeler arasında sabunlar, deterjanlar, safra, fenol vs. ajanlar vardır. Bu nedenle böyle maddelerin ıslatma özellikleri bulunmaktadır. Yüzey gerilimi (interfascial gerilim) iki sıvı veya sıvı ile katı (sıvı besi yeri ile bakteri yüzeyi gibi) arasında olabileceği gibi sıvı ile hava arasında da olabilir. 02.04. Osmotik Basıncın Etkisi Bir ortamın osmotik basıncı, içinde eriyen maddelerin konsantrasyonu ile ilişkilidir. Mikroorganizmalar, içinde üredikleri sıvı besi yerinin osmotik basıncı ile kendi hücre içindeki osmotik basınç arasında bir denge kurmuşlardır. Bu denge yarı geçirici olan hücre membranları yardımı ile regule edilir ve devam ettirilir. Mikropların en iyi üreyebildikleri ortamın osmotik basıncı, bakteri içindeki ile aynı veya çok az farklıdır (isotonik, isoosmotik). Böyle ortamlarda bakteri zarlarından giriş ve çıkış kolaylıkla olur ve bakteri gelişmesine ve üremesine devam eder. Eğer ortamın osmotik basıncı azalmış ise (hipotonik, hipoosmatik), böyle durumlarda dışardan bakteri içine fazla sıvı girerek bakteriyi şişirir ve olay devam ederse bakteriyi patlatır (plasmoptiz). Hipertonik, hiperosmotik ortamlarda ise, bakterinin içinden dışarı fazla sıvının çıkması sitoplasmik membranın hücre duvarından ayrılarak büzülmesine ve ortada toplanmasına neden olur (plasmoliz). Osmosis, yarı geçirgen bir membranla ayrılan konsantrasyonları farklı olan iki sıvının bu zardan birbirine doğru geçişini ifade eder. Bu geçiş olayı her iki tarafın osmotik basıncı veya yoğunluğu birbirine eşit olancaya kadar devam eder. Eğer bakteri, %20 tuz konsantrasyonu içinde suspansiyon yapılırsa, hipertonik bir ortam oluşacağından, plasmoliz olayı meydana gelir. Bunun aksine, bazı bakteriler, %1 oranındaki tuz konsantrasyonu içinde suspansiyon yapılırlarsa, su akışı bu sefer dışardan içeri doğru olur ve bakteri şişerek parçalanır (plasmoptiz). Bakteri içindeki osmotik basınç, bakteri türlerine göre değişmek üzere, 5-20 atmosfer arasında bulunmaktadır. Bu basınca mikroplar hücre duvarı ile karşı koymaktadır. Bakteri içindeki bu fazla osmotik basınç, içte bulunan organik maddeler (protein, amino asit, karbonhidrat, vs.) ve inorganik tuzlar tarafından oluşturulur. Gram pozitif mikroorganizmaların iç osmotik basıncı genellikle 15-20 atmosfer ve Gram negatiflerin ki ise bundan daha azdır (5-10). Mikroorganizmalar normal sınırlar içindeki osmotik basınç değişmelerine kolayca adapte olabilirler ve bu değişmeleri yarı geçirgen membranları ile kolayca regule edebilirler (osmofilik mikroplar). Bu sınırların dışına çıkıldığında bakterilerde gelişme de ve üremede noksanlıklar, plasmoliz ve plasmoptiz olayları görülebilir. Ancak, denizlerde, tuzlu göl ve sularda, salamuralarda, reçellerde, vs. yerlerde bulunan yüksek orandaki tuz veya şeker konsantrasyonlarına alışarak üreyebilen ve bunların bozulmalarına neden olan mikroorganizmalar da vardır (halofilik ve sakkarofilik). Pratikte, et ve balık muhafazaları için %10-20 tuz ve reçellerde de %50-70 oranında şeker kullanılarak osmotik basınç yükseltilir ve mikropların üremesine mani olunur. Ancak böyle hipertonik ortamlarda da, küf, maya, alg ve bazı bakteriler az da olsa üreyebilirler. 02.05. Hidrostatik Basıncın Etkisi Mikroorganizmalar hücre duvarının sert ve dayanıklı olması nedeniyle mekanik ve hidrostatik basınçlara karşı oldukça fazla direnç gösterirler. Çelik bir silindire konan ve suspansiyon halindeki mikroplar, burada oluşturulan fazla basınca, kendilerinde görülebilir önemli zararlı etkiler olmadan dayanabilirler. Okyanusların, denizlerin ve göllerin diplerinde bulunan barofilik mikroplar (B. submarineus, B. thalassokiotes) 10000 libre/inc2 (psu)'lik bir basınca kolayca dayanırlar ve bu basınç altında yaşamlarını sürdürürler. Ancak yüksek basınç altında mikroplarda, az da olsa, bazı değişmeler meydana gelebilmektedir. Örn. flagellalı mikroplar hareketlerini ve bazıları da bölünme kabiliyetini kaybedebilirler. Hidrostatik basınç 15000 psu olunca proteinlerde denatürasyon ve enzimlerde inaktivasyon görülebilir. Serratia marcescens ve S. lactis 85000-100000 psu basınç altında 10 dakika içinde ölürler. 02.06. Rutubetin ve Kurumanın Etkisi Su, mikropların üremesinde, gıda maddelerinin içeri girişinde ve içeride biriken metabolitlerin ve diğer maddelerin dışarı çıkışında ve metabolik olaylarda çok önemli göreve sahiptir. Üreme ortamlarında bulunan gıda maddelerinin bakteriler tarafından alınabilmesi ancak bunların suda eriyebilir olmaları ile mümkündür ve su aracılığı ile de bakteriye girerler. Aynı şekilde, bakteri içindeki enzim veya metabolitlerin dışarı çıkabilmesinde de su önemli rol oynar. İçinde su oranı yüksek katı besi yerlerinde mikropların gelişmesi daha kolay olur ve oluşan koloniler daha iridirler. Mikropları üretmek için kullanılan etüvlerin havasının relatif rutubetinin de yukarıda bildirilen nedenlerle uygun olması gereklidir. Rutubetli etüvlerde, böylece, besiyerlerinin suyunun uçması ve besi yerlerinin kuruması önlenir ve mikroplar için gerekli nem sağlanmış olur. Sıvı besi yerlerinden suyun buharlaşması, bu besi yerinde bulunan kimyasal maddelerin konsantrasyonunu arttırır. Bu durum üreme üzerine olumsuz yönde etkiler. Katı besiyerlerinde üreyen mikropların beslenebilmesi için de agardan gıda maddelerinin diffusyonla bakterilere ulaşması lâzımdır. Bu görevi de yine su yapar. Katı besi yerlerindeki suyun ve bunların konulduğu etüvlerin havasındaki rutubetin çok önemli olduğu bunun azlığı durumlarında bakteri üremesinin yavaşladığı ve durduğu görülür. Bu rutubet, katı besi yerlerinde beslenme üzerine etkili olduğu gibi mikroorganizmalardan suyun çıkması bakımından da önemlidir. Mikroorganizmalar içinde %70-90 kadar su bulunmaktadır. Bunun azalması birçok biyokimyasal olayların durmasına ve mikropların ölümüne sebep olur. Ancak, mikropların kurumaya karşı dirençleri değişiktir. Bazılarının (gonokok, meningokok, leptospira, pastörella. vs.) çok çabuk ölmesine karşın, bir kısım mikroorganizmalar da (stafilokoklar, E. coli, mikobakteriler, sporlar, mantarlar, vs.) daha dayanıklıdırlar. Sporların içinde %5-20 kadar suyun bulunması ve etraflarında kalın membranların oluşu bunları çeşitli fiziksel ve kimyasal etkenlere karşı çok dirençli hale getirmiştir. Liyofilize edilen mikroorganizmalar uzun süre canlılıklarını korurlar. Liyofilizasyon sırasında uygulanan dondurma, kurutma ve havasını alma işlemleri sırasında bazı mikroplar ölebilirlerse de çoğu, uzun zaman canlı kalır ve infektivitesini korurlar. Hasta bir vücuttan çeşitli yollarla dışarı çıkan mikroplar, eğer direk olarak güneş ışınlarına maruz kalmazlarsa, kuruyarak uzun bir süre canlı kalabilirler ve tozlarla havaya karışarak infeksiyon oluşturabilirler. Mikropların etraflarında vücut sıvılarından (mukoid, organik madde, serum, kan, vs.) bir muhafaza varsa veya dışardan diğer organik veya inorganik maddelerle örtülürse yine uzun bir zaman canlı kalabilirler. Gölge, mikroorganizmaların yaşamını uzatıcı bir faktördür. 02.07. Elektriğin Etkisi Sıvı ortamlarda suspansiyon halinde bulunan mikroorganizmalardan direk veya alternatif elektrik cereyanı geçirilirse, mikroplar zarar görebilirler. Cereyanın şiddetli ve geçme süresi fazla olursa daha zararlı ve öldürücü olurlar. Elektrik nedeniyle sıvı ortamda bazı kimyasal değişmeler de meydana gelebilir. Oluşan sıcaklık ve elektroliz olayı sonu meydana gelen ara maddeler (klor, ozon, vs.) mikroplar üzerine zararlı etkide bulunurlar. Elektroforezis: Protein moleküllerinin veya mikroorganizmaların sıvı ortam içinde suspansiyonları yapılırsa, yüzeyleri pozitif (+) veya negatif (-) elektrikle yüklenirler. Böyle bir ortamdan uygun bir süre ve şiddette elektrik geçirilirse, pozitif yüklü olanlar katoda, negatif elektrikle yüklenmiş olanlar da anoda doğru hareket ederler (elektroforezis). Elektroforezisin birçok yöntemleri vardır. Bunların arasında kâğıt elektroforezis özellikle, pratikte, anormal serum proteinlerinin saptanmasında, serum ve sıvılardaki gama globülinlerin düzeylerini ölçülmesinde kullanılır. Jel elektroforezis yöntemi de daha ziyade proteinlerin nukleikasitlerin sütrüktürel durumlarını ortaya koymada veya analitik amaçlarla kullanılmaktadırlar. 03. Kimyasal Faktörler Doğada serbest olarak yaşayan veya laboratuvarlarda üretilen mikroorganizmalar üzerine etkileyen birçok kimyasal faktör bulunmaktadır. Bunların bazıları optimal koşullarda olduğunda üremeyi artırıcı etkilemesine karşın bu sınırların dışında ise üremeyi kısıtlayıcı, durdurucu ve hatta öldürücü etkide bulunurlar. Doğaldır ki, bu tarzdaki etkinlik dereceleri, kimyasal maddelerin yoğunluğu, yapısı ve etkileme süresi ile direkt ilişkili olduğu kadar mikroorganizmalara da bağımlıdır. Mikropların üremelerinde etkili olan kimyasal faktörler arasında oksijen (O2), karbon dioksit (CO2), hidrojen iyon konsantrasyonu (pH), redoks potansiyel, ortama katılan bufferler yanı sıra hastalık oluşturan mikroorganizmaların üremelerini önlemek (stasis) veya öldürmek (sidal) amacı ile kullanılan antibiyotik, kemoterapötik maddeler ile çeşitli dezenfektanlar da bulunmaktadır. Bu son maddeler, özellikle, mikroorganizmaları kontrol altına almada kullanılırlar. 03.01. Oksijenin Etkisi Mikroorganizmaların, üremeleri için oksijene olan ihtiyaçları, çok değişiklik göstermektedir. Bu gereksinmeye göre mikroplar 5 temel bölüme ayrılarak incelenebilirler. Yandaki şekilde sırasıyla aerobik, anaerobik, fakültatif, mikroaerofil, aerotolerant üreme şekilleri görülmektedir. 1- Aerobik mikroorganizmalar: Üremeleri ve yaşamaları için havadaki oksijene ihtiyaç gösteren mikroplar, doğada diğerlerinden daha fazla bulunurlar. Bunlar havasız koşullar altında gelişemezler. Çünkü oksijensiz ortamlarda enerji elde edebilecek mekanizmaya sahip değillerdir. Dik agar besiyerlerinde üretildikleri zaman genellikle üst kısımda koloni oluştururlar. Tam aerobik mikroorganizmalar, havadaki moleküler oksijeni elektron alıcısı olarak kullanırlar. Bu tür mikropların enzim sistemleri, hidrojeni (H+), serbest oksijene (O2) transfer ederek hidrojen peroksit (H2O2) oluştururlar. Bu madde toksik olduğundan katalase enzimi tarafından hemen H2O ve O2 'ye ayrıştırılır (H2O2 ›.H2O + O2). Bazı mikroplar da H2O2 'yi hidrojen (H) alıcısı olarak ta kullanılabilirler (H2O2 + 2 (H) ›2H2O). Aerobik mikroorganizmaların üremeleri esnasında kültürlerin aerasyonu üreme üzerine olumlu yönde etki yapar. Aerobik mikroorganizmalar arasında, M. tuberculosis, B.anthracis, B. subtilis, sarcina, vs. sayılabilir. 2- Fakültatif mikroorganizmalar: Bu gruba giren mikroplar hem aerobik ve hem de anaerobik koşullarda üreyebilme mekanizmasına (enzimatik sisteme) sahiptirler. Bunlar, oksijen içeren koşullarda aynı aerobik mikroplar gibi üremelerine devam ederler. Anaerobik şartlarda da redükte olabilen maddeleri (sülfür, karbon, sodyum nitrat, vs.) hidrojen alıcısı olarak kullanabilirler. Ancak, bu mikroorganizmalar daha fazla enerji sağlayan aerobik koşullarda daha iyi gelişirler. Anaerobik durumlarda, fakültatif mikroplar az bir fermantatif metabolizma gösterirler. Diğer bir deyimle, substratları tam olarak okside edemezler. Bu tür mikroplar (enterobakteriler, stafilokoklar, vs.) dik agarın her tarafında üreme yeteneğine sahiptirler. 3- Anaerobik mikroorganizmalar: Anaerobik mikroplar oksijenin bulunmadığı ortamlarda gelişebilirler. Oksijen bunlar için zehirleyici tesir yapar. Bunlarda bulunan enzimler oksijen tarafından bloke edildiği gibi, enzim sistemleri, hidrojeni (H+), oksijene transfer edemez ve başka oksijen alıcısı (nitrat, sulfat, karbonat, vs) kullanırlar. Bu nedenle, hücre içinde H2O2 oluşmaz. Bu maddeyi ayrıştıramadıklarından, kendileri için toksik etki yapar. Bu tür mikroplar dik agar besiyerinin dip tarafında ürerler. Anaerobik mikroplar arasında, klostridiumlar, aktinomyces, Sphaerophorus necrophorus, v.s. sayılabilir. 4- Mikroaerofilik mikroorganizmalar: Bu mikroplar havada bulunan orandaki kadar oksijen içeren ortamlarda gelişemeyip, oksijen oranı %1-2 kadar düşürülmüş veya havasına %5-10 CO2 katılmış yerlerde üreme olanağına sahiptirler. Bunlar anaerobik olmayıp böyle koşullarda da gelişemezler. Mikroaerofilik mikroorganizmalardan B. abortus, C. fetus, bazı mikoplasma türleri vs. sayılabilir. Bu tür mikroplar katı besiyerlerinin yüzeyinden 1-1.5 cm kadar aşağıda ürerler. 5- Aerotolerant mikroorganizmalar: Bu mikroorganizmalar daha fazla yüzeyde olmak üzere, hem aerobik ve hem de anaerobik ortamlarda üreme yeteneğine sahiptirler. 03.02. Redoks Potansiyelin Etkisi (Oksidasyon-Redüksiyon Potansiyeli) Oksidasyon-redüksiyon (O-R) elektriksel bir olaydır ve elektron transferi üzerine dayanır. Oksidasyon (elektron kaybı) ve redüksiyon (elektron kazanma) fenomenleri genellikle birlikte cereyan ederler. Bir madde okside olurken diğeri redükte olur. Elektron alıcısı okside eden, elektron vericisi de redükte eden ajandır. Elektronun bir maddeden diğerine geçişi iki madde (reaktant) arasında potansiyel farkını yaratır. Bu farkın şiddeti, kazanılan ve kaybedilen elektronlara bağlıdır. Bu da, maddenin oksidan veya redüktan oluşuyla ilgilidir. Eğer, madde çok fazla oksidan ise elektriksel potansiyeli (veya O-R potansiyeli) o oranda büyük olur ve pozitif değer taşır. Eğer redüktan madde ise, bu değer düşüktür ve negatiftir. Okside olan ile redükte olan maddelerin konsantrasyonu birbirine eşitse, O-R potansiyeli sıfır olur. Anaerobikler düşük bir O-R potansiyeline gereksinme duyarlar (0.2 volt). Aerobiklerde ise durum + 0.2-0.4 volt'dur. O-R potansiyeli Eh sembolü ile gösterilir ve milivolt (mV) olarak ölçülür. Bu potansiyelin ölçülmesi, ekilen mikropların üreyip - üremediklerini de ifade etmesi bakımından önem taşır. Kuvvetli oksidan maddeler pozitif potansiyel (+ 200 mV) ve kuvvetli redüktanlar da negatif potansiyel (-200 mV) meydana getirirler. Hidrojenin bir atmosfer altındaki potansiyeli -400 mV 'dur. Kültürlerin aerasyonu, pozitif potansiyel yaratır. Mikroplar üremeye başlayınca potansiyel düşmeye başlar. O-R potansiyeli, elektrometrik veya kolorimetrik yollarla ölçülebilir. 03.03. Hidrojen İyon Konsantrasyonunun Etkisi (pH, Potansiyel Hidrojen) Mikroorganizmaların üremeleri için, besiyerinin pH 'sının optimal sınırlar içinde bulunması gereklidir. Minimal ve maksimal pH limitlerine yanaştıkça üreme azalır ve durur. Bakterilerin optimal pH limitleri oldukça değişiktir. Asit ortamı seven mikroorganizmalar (maya, küf, laktobasil, asetobakter, vs) yanı sıra, alkali besiyerlerinde üreyenler de (mikoplasma, toprak bakterileri, V. cholera, vs.) vardır. İnsan ve hayvanlarda hastalık oluşturanlar genellikle, konakçının sıvı ve dokularının pH derecesinde (pH. 7.0-7.4) ürerler. Patogenik mikroorganizmaların besi yerlerinde üreme pH limitleri, apatogenlerden daha dardır. Ortamın pH 'sının değişmesinde besiyerine katılan ve fermente olabilir karbonhidratların ayrışması sonu oluşan organik asitlerin, nitrogenli veya proteinli maddelerin dekompoze olması neticesinde meydana gelen amonyak veya alkalen maddelerinin önemi fazladır. Ayrıca, hücrede oluşan ve dışarı çıkan diğer metabolizma artıkları da pH 'nın değişmesine büyük ölçüde etkilerler. Bazı mikroplar da reaksiyonu dönüştürebilirler. E. aerogenes glukozu ayrıştırarak asit yapar ve ortamın pH 'sı düşer. Glukoz sarf edildikten sonra, bu sefer teşekkül eden, asit ürünler mikrop tarafından ayrıştırılır. Bu durumda besiyerinin pH 'sı normaline doğru çıkış gösterir. Üremeyi olumsuz yönde etkileyen pH değişmesini önlemek için, besiyerine buffer'ler katılır. Bu amaçla, genellikle, ayrı ayrı veya birlikte K2HPO4 veya KH2PO4 kullanılır. Bunlar meydana getiren hidrojen (H) ve hidroksil (OH) iyonlarının serbest kalmasının önüne geçer ve onlarla birleşikler oluşturur. Bu nedenle de, ortamın pH 'sı hemen asit veya alkali olmaz bir süre optimal limitler arasında kalır. Bir besiyeri hazırlanırken pH'sı da mikroorganizmanın fizyolojik karakterine uygun olarak (optimal pH) ve genellikle %10-20 NaOH 'la ayarlanır. Otoklavdan sonra 1-2 diziyem düşeceği hesap edilerek pH iyice saptanır. Bir sıvı ortamın pH 'sını ölçmede ya elektrikle çalışan pH metreler veya daha az duyarlı olan kolorimetrik yöntemler kullanılır. Bir ortamın pH'sı, içinde bulunan hidrojen iyonların konsantrasyonu ile ölçülür. Saf suyun litresinde, + 22 °C' de 10-7 gram hidrojen iyonu (H+) ile yine aynı miktarda (10-7 gram hidroksil iyonu (OH-) bulunur. Her iki iyon aynı konsantrasyonda bulunması nedeniyle saf suyun reaksiyonu nötrdür ve pH 'sı 7.0 olarak kabul edilir. Bir sıvının pH 'sı 1 ile 14 arasında değişir. Eğer pH = 1-6 arası ise asit, pH = 7.0 nötr ve pH = 8 ile 14 arası ise alkalidir. Asitlik 1'den 6 aya doğru azalır ve alkalilik ise 8'den 14'e doğru gittikçe artar. Diğer bir ifade ile bir sıvının pH' sı 7'den küçükse asit, büyükse alkalidir. Her pH birimi azaldıkça, hidrojen iyon konsantrasyon artar, buna karşılık, hidroksil iyon konsantrasyonu azalır. Bir sıvıdaki hidrojen (H+) ve hidroksil (OH-) iyon konsantrasyon çarpımları sabittir. (H+) x (OH) = K = 10-7 x 10-7 = 10-14). Bir solusyonun pH 'sı sıfır ise, hidrojen iyon konsantrasyonu 10° veya 1 normaldir. Bu solusyon çok asittir. Kuvvetli asitler suda fazla dissosiye olurlar (HCl, H2SO4, vs). Buna karşılık asetik asit, sitrik asit, vs. zayıf asitlerdir ve suda az dissosiye olurlar. 04. Biyolojik Faktörler Canlıların vücudunda özellikle, sindirim, solunum, urogenital sistemleri ile derilerinde değişik cinslere ait sayısız mikroorganizma (yerleşik devamlı mikroflora) bulunmaktadır. Bunlar birbirleri ile ekolojik bir denge içinde, birbirlerinin üremelerini sınırlayarak yaşamaktadırlar. Sentezledikleri veya salgıladıkları substanlar karşılıklı etkileyerek birbirlerinin üremelerine ve hatta ölmelerine de yol açarlar. Aynı zamanda, bu yerleşik flora bazı patojenik mikroorganizmaların kolonizasyonuna da mani olur. Eğer bu metabolitleri sentezleyen mikroorganizmalardan biri veya ikisi ortadan kaldırılırsa, diğerinin fazla üremelerine ve bazı durumlarda hastalık yapmalarına da neden olur. Özellikle antibiyotiklere duyarlı olmayan mikroorganizmalar C. albicans veya C. difficile infeksiyonlar oluşturabilirler. Sindirim sistemi florasında bulunan, E. coli 'nin sentezlediği colicin (bakteriyosinler), bu maddeyi sentezlemeyen E. coli 'ler üzerine öldürücü etkide bulunur. Eğer bakteriyosin sentezleyen E. coli 'ler antibiyotik tedavileri sonunda çok azalırlarsa, diğer E. coli 'ler çoğalma fırsatı bulurlar. Böylece, sindirim, solunum, urogenital ve deride bulunan mikroflora birbirleri ile çok hassas bir denge içinde bulunurlar ve sentezledikleri antagonist etkiye sahip metabolitlerle birbirlerinin üremelerini kontrol altında tutarlar. Vücudun çeşitli sistemlerinde (sindirim, solunum, urogenital) ve diğer bölgelerin de (oral ve deri de) bulunan yerleşik mikroflora aynı zamanda karşılıklı bir ortak yaşam içinde de bulunurlar. 05. Mekanik Faktörler 05.01. Çalkalamanın Etkisi Bu faktörler laboratuvarlarda mikroorganizmaların, özellikle, hareketsiz olanlarının veya zayıf üreme gösterenlerin üremelerini ajite etmek ve bulunduğu ortamlardan daha elverişli yerlere ulaşmasını sağlamak amacı ile uygulanmaktadır. Laboratuvarlarda kültürlerin çalkalanması genellikle çok hafif olmakta (dakikada 10-20 devir) ve üreme üzerine olumlu etkide bulunmaktadır. Eğer çalkalama çok hızlı veya sert olursa mikroorganizmalarda ölümler meydana gelebilir. 05.02. Filtrasyon Sıvı kültürlerde, sıvı besiyerinde, patolojik sıvılarda, serumlardaki, bakterileri ve partikülleri gidermede filtrelerden fazla yararlanılır. Bu amaçla, bakterileri tutan ve delik çapları belli olan özel filtreler kullanılır. Bakteri geçirmeyen filtrelerin delik çapı 1 mikrometreyi (µm) aşmamalıdır. Bakteri alıkoyan filtreler yapısını oluşturan maddelere göre başlıca 5 kısma ayrılırlar. 1- Seitz filtreleri: Bu tür filtreler asbestden yapılmış diskler halindedirler. Delik çaplarına göre birçok türleri vardır. Bakterileri tutan EK (entkeimung) ve sıvıları berraklaştıran (K) gibi fitrelerden mikrobiyoloji laboratuvarında, gereğine göre, önce (K) sonra da (EK) tipleri kullanılabilir. Seitz filtreleri komple olarak etrafı gümüşle kaplı veya paslanmaz çelikten yapılmış özel metal parçadan ve bir de metal elekten oluşur. Otoklavda sterilize edildikten sonra kullanılır. Asbest filtre de bu metal parçalardaki elek üzerine monte edilir. Seitz filtrelerin sıvıları absorbe özelliği yanı sıra bazı toksik maddeleri de sıvıya verme durumları da vardır. Bu nedenle, filtrasyondan önce, filtreden steril distile su geçirilerek yıkanır ve olumsuz etkileri giderilir. Sonra, bu süzüntü çekilerek alınır ve sonra süzülmek istenen sıvı süzülür. Kullanıldıktan sonra asbest diskler atılır. Seitz filtrelerinin çok eski bir tarihi olmasına karşın bu günde hala kullanan yerler vardır. 2- Berkefeld filtreleri: Bu tür filtreler fosil diatome toprağından yapılmıştır. Sıvıları emme kabiliyeti fazladır. Delik çapları çok değişik olarak imal edilir. Başlıca 3 tür porositeye sahiptir, kaba (V), normal (N) ve ince (W). Bu nedenle, en çok (W) tipi kullanılır ve bu mikropları geçirmez. Bu tür filtreler kullanmadan önce sterilize edilirler. Kullanıldıktan sonra çok ince fırça ile temizlenir ve suda kaynatılırlar. Sonra, dıştan içeri su geçirmek suretiyle temizlenirler. Filtreler, kurutulur ve tekrar sterilize edilerek kullanılırlar. Eğer organik madde ile tıkanıklık, meydana gelmişse filtre fırında yakılarak bu tıkanıklık giderilir. Tarihsel değeri vardır. Bugün kullanılmamaktadır. 3- Chamberland filtreleri: Bu filtre türü sırsız porselenden yapılmıştır ve çeşitli porositeye sahiptir. Bu özelliğine göre L1a, L2 ve L3 tipleri, Berkefeld filtrelerinin (V) (N) ve (W) bujilerinin eşdeğerdedir. Kullanıldıktan sonra temizlenir, kurutulur ve otoklavda sterilize edilir. Tarihsel değeri vardır. 4- Cam tozu filtreleri: Cam tozlarının bir araya getirilip birleştirilmesinden oluşan cam filtreler de porositelerine göre E (çok kaba), C (kaba), M (orta) F (ince), UF (çok ince) olarak yapılmıştır. Laboratuvarlarda çeşitli amaçlar için kullanılır. Ancak, özel bir filtrasyon aparatına monte edilerek otoklavda sterilize edilirler. Kullanıldıktan sonra akan su ile ters yönde yıkanır. Lüzum halinde, KNO3 ihtiva eden sıcak H2SO4 solusyonu, filtreyi temizlemek için kullanılır. Sülfirik asit + bikromat karışımı kullanılmaz. Bugün çok nadiren kullanılmaktadır. 5- Sellüloz membran filtreler: Başlıca iki tür sellüloz membran filtre vardır. Biri eski tip olan sellüloz nitrat (gradokol membran) diğeri de yeni veya modern tip olan sellüloz asetat filtreleridir. Gradokol membranlar, çeşitli porositede (3 nm-10 nm) yapılabilir. Genellikle virusların büyüklüğünü ölçmede kullanılırlar. Milipor filtreler de aynı şekilde delik çapları değişik büyüklükte (8µm-0.01 µ) hazırlanmaktadırlar. Sellüloz asetat filtreler de iki tabaka vardır. Basal tabakada 3-5 µm ve üst tabakada 0.1-1.0 µm çapında porosite bulunur. Bu nedenle bakteriler üst tabakada tutulurlar. Otoklava (121 °C.) 35-45 dakika dayanabilirler. Filtre disklerinin çapları 1.7-14 cm kadar olabilir. Özel metal veya cam tutucularda muhafaza edilirler. Sellüloz filtrelerin, absorbsiyon kabiliyetinin daha az olması nedeniyle, Seitz filtrelerine tercih edilirler. Ayrıca daha hızlı süzme kapasitesi de vardır. Bakteri üst yüzeyde tutulduğu için de, bir agarın üzerine yatırılarak ekilebilirler. Filtrasyonda, filtrelerin özelliğine göre, negatif veya pozitif basınç kullanılır. 05.03. Santrifugasyon Normal laboratuvar santrifüjleri ile bir sıvı içindeki mikropları gidermek pratik olarak mümkün değildir. Yüksek devirli santrifüjlerle hem bakteriler ve hem de viruslar çökebilirler. Ancak, bu çökme işlemi viruslar ve bakteriler için %100 kabul edilemez. Özellikle, sıvı içinde fazlaca virus kalabilir. Bu sebeple santrifüj yardımıyla bütün mikroorganizmalar giderilemezler veya sıvı steril hale getirilemez. 05.04. Ezmek Santrifüj yardımıyla çöktürülen mikroplar bir havana veya ezme aletine konur burada ezilerek parçalanabilir. Bu yöntemle de bütün mikroplar ölmezler. 05.05. Basınç Uygulamak Devamlı ve yüksek basınç altında bazı mikroplar ölebilirler. Ancak hepsi ölmez. 05.06. Çalkalamak Mikropların sertçe ve devamlı çalkalanması bazılarının ölümüne neden olabilir. Fakat büyük bir kısmı canlı kalabilir. 05.07. Vibrasyon Suspansiyon halindeki mikroplar ultrasonik vibrasyonlara maruz bırakılırsa ölebilirler. Bu, tam anlamıyla sterilizasyon sağlamaz. Prof. Dr. Mustafa ARDA

http://www.biyologlar.com/bakterilerin-uremelerine-etkili-faktorler-1

BİYOYAKITLAR

Yenilenebilir Enerji Kaynağı Tüm dünyanın küresel ısınmayla mücadele ettiği, aynı zamanda büyüyen enerji ihtiyacını karşılamak için alternatif arayışların hız kazandığı bir dönemde tarımsal potansiyelleri yüksek ülkelerde biyoyakıtlar; biyodizel, biyogaz ve biyoetanol yeni fırsat açılımları yaratmıştır. Güneş, rüzgar, hidrolik enerji, jeotermal enerji, hidrojen enerjisi gibi yenilenebilir enerji kaynaklarından olan biyokütle enerjisi büyük bir potansiyele sahiptir. Yenilenebilir, her yerde yetiştirilebilen, sosyo–ekonomik gelişme sağlayan, atıkları değerlendirebilen, çevre dostu, değişik enerji formlarına dönüşebilen, stratejik bir enerji kaynağı olan biyokütle enerjisi; biyometanlaştırma, biyofotoliz, fermentasyon, piroliz, gazlaştırma, karbonizasyon, esterleşme gibi yöntemlerle karbon ve hidrojence zengin, yüksek ısıl değerli, kolay taşınabilir ve depolanabilir, alternatif yakıtlara dönüştürülebilmektedir. Biyokütle hammaddeleri olarak orman ürünleri, yağlı tohumlar, karbonhidratlar, elyaf bitkileri, bitkisel artıklar ve atıklar, hayvansal atıklar, kentsel ve endüstriyel atıkların kullanıldığı düşünülürse potansiyelin büyüklüğü görülebilecektir. Doğada her yıl 150 milyar ton biyokütle üretilmekte, bunun ancak %10‘u ticari olarak kullanılmaktadır. Dünya artık bu büyük potansiyeli harekete geçirmenin mücadelesini vermekte ve biyokütle teknolojisi önemli boyutlar kazanmaktadır. Enerji arzının güvence altına alınması ve küresel ısınma ile mücadele açısından önem kazanan ve dünyanın gündemine oturan biyoyakıtlar tüm dünyanın ilgi odağı olmuş ve zorunluluk bağlamında tedbirler geliştirilmeye başlanmıştır. Dünyada Biyoyakıtlar İsveç otomobil ve motor fabrikalarına biyoyakıt kullanımı ile ilgili zamana yayılı yaptırımlar öngördü. Brezilya akaryakıt ihtiyacının % 80’ini biyoyakıtlardan karşılamayı başardı. Hatta ABD ile ihracat anlaşması imzaladı. Çin ve Hindistan on binlerce tesis yatırımı yaptı. ABD Biyoetanolde %10 zorunlu kullanıma geçti. Biyoetanol için “Switch grass” denen çim türü geliştirildi. Biyodizelde inanılmaz hamleler yaptı. Biyodizelin stratejik yan ürünü gliserinin insan sağlığında petrokimya ürünleri ile değişimini sağladı. ABD’de artık kalp stenleri petro kimya ürünlerinden değil biyodizel yan ürünü gliserinden yapılıyor. Almanya’ya gelince kanolada yeni bir çeşit geliştirerek yağ oranını % 48’e çıkardı. 1 Ocak 2007’den itibaren Biyodizel ve biyoetanolün % 5 kullanımını zorunlu kıldı. Biyodizelde dünya birincisi olan Almanya kanola üretimini biyodizelin lokomotifliğinde 6 yılda 7 milyon tona çıkardı. Şimdi de biyogazda önemli hamleler gerçekleştiriyor. 1991 de 120 adet olan biyogaz tesis sayısı %2800 artış göstererek 2006 senesinde 3500 tesise ulaştı. Biyogazdan bugün elektrik üretiminin %1’ini karşılıyor. 2020’de hedefi % 17. Bu hedefi yakalamak için 2020’ye kadar 7, 6 Milyar euro yatırım yapmayı , 85. 000 kişiye istihdam sağlamayı bu hedefi gerçekleştirdiğinde 2020 yılında 103 milyon ton/yıl karbondioksit azaltmayı öngörüyor. Şu anda bir büyük hamle daha yaparak biyogazdan doğalgaz elde ettiler. Tabi ki böylesine önemli gelişmelerin altında yatan gerçek sağlam bir kanuni düzenlemedir. Almanya’da biyoyakıtlar kendi kanunları içerisinde yani yenilenebilir enerji kanunu içerisinde yer alır. Kanunun tam adı; “Yenilenebilir Enerji Kaynaklarına Öncelik Tanıma Kanunu”dur. Fosil yakıtlarla eşitliği öngören değil, biyoyakıtlara öncelik tanıyan koruyan ve kollayan, teşvik eden bir kanundur. Biyoyakıtların küresel ısınmaya karşı kanunla korunmasının gerekli olduğunu ifade eden kanun “kirleten öder” prensibi ile hareket ettiğini açıkça belirtmektedir. Türkiye'de Biyoyakıtlar Türkiye’de biyoyakıtlara bakarsak 2000’li yılların başında gündeme geldi. Üniversitelerdeki çalışmalar hızla gelişti. İlk kez biyodizel ve biyoetanol ismi 5015 Sayılı Petrol Piyasası Kanunu’nda harmanlanan ürünler arasında yer aldı. (4. 12. 2003) Amacı; “Bu Kanunun amacı; yurt içi ve yurt dışı kaynaklardan temin olunan petrolün doğrudan veya işlenerek güvenli ve ekonomik olarak rekabet ortamı içerisinde kullanıcılara sunumuna ilişkin piyasa faaliyetlerinin şeffaf, eşitlikçi ve istikrarlı biçimde sürdürülmesi için yönlendirme, gözetim ve denetim faaliyetlerinin düzenlenmesini sağlamaktır.” diyen bir kanun içinde ve “Ürün: Fiziksel veya kimyasal işlem, rafinaj veya diğer yöntemlerle ham petrol ve/veya ürünlerinden elde edilen ürün veya ara ürün herhangi bir hidrokarbonu, ifade eder.” şeklinde tanımlanan ürün içinde değerlendirildi. Bu Kanunda Biyodizelin ÖTV dışında tutulması nedeniyle yatırımlar dünyaya paralel biçimde hızla arttı. Tabii ki sektörün kanuni düzenlemelerden önce hızlı ve yanlış gelişimi acil önlem alma gereğini ortaya koymuş ve mevcut kanuni yapıya ilave gerekliliğini ortaya çıkarmıştır. Ancak gelinen noktada anlaşılmıştır ki biyoyakıtlar kendisini ifade etmeyen bir kanun içinde yer aldıklarında eşyanın tabiatına aykırılık zuhur edecek ve gelişme sağlayamayacaklardır. Biyoetanol uygulamasına sadece bir dağıtım şirketinin itibar etmesi düşünülmesi gereken bir konudur. Bugün tıkanma noktasına gelen biyoyakıtlar enerjide dışa bağımlığımız ve gelecekteki riskler de göz önünde bulundurularak yeniden yapılandırılmalı, tarımda yeni fırsat açılımları yaratılırken karbondioksitle mücadele eden dünya ile de bütünleşilmelidir. Türkiye tarımsal potansiyelleri ve biyodizel ve biyoetanoldeki kurulu kapasiteleri itibariyle Avrupa Birliği'ne önemli bir tedarik merkezi olabilecek konumdadır. Planlama ve düzenlemelerle çok kısa bir sürede Türkiye AB'nin biyoyakıt tedarikçisi olabilir. Biyogazda daha çok katedilecek mesafe bulunmaktadır. Biyogazın doğalgaza çevirilebildiği düşünülecek olursa Türkiye'nin biyogaz mevzuatını bir an önce hazırlaması ve ciddi yatırımlara altyapının sağlanması gerekmektedir.

http://www.biyologlar.com/biyoyakitlar

Böceklerin Morfolojik yapısı ( Böcek Morfolojisi )

Bugün tanımlanmış hayvanların en az 4/5’i böceklere girer. Böceklerin yaklaşık 1 milyon kadar yaşayan, 15 bin kadar da fosil türü tanımlanmıştır ve her sene birkaç bin yeni tür bu sayıya eklenmektedir. Toplam tür sayısının 2 milyon olduğu varsayılmaktadır. Değişen çevre koşullarına çok iyi uyum sağlamaları böcekleri dünyada bulunan en dayanıklı sınıf haline getirmiştir. Böcekler, göğüslerinin üç segmentli olması ve her göğüs segmentinde bir çift bacağın bulunması ile tanınırlar. Bu nedenle 6 bacaklı anlamına gelen Hexapoda ismi de sınıfın adı olarak kullanılır. Büyük bir kısmında 2. ve 3. göğüs segmentlerinden birer çift kanat çıkar. Başta bir çift anten ve kural olarak bir çift bileşik göz bulunur. Trake sistemi solunumunu sağlar; eşeysel kanallar vücudun sonundan dışarıya doğru açılır. Abdomen (karın) 11 segmentten oluşur; hiçbir segmentinde üye yoktur. 8-9 ve 10. segmentleri şekil değiştirerek kavuşma organına ve yumurta koyma borusuna dönüşür. Dış iskelet vardır. Boru şeklinde sindirim sistemleri; uzun boru şeklinde kapakçıklı kalpleri vardır. Kas sistemleri ayrıcasız çizgilidir. Larval gelişim süresince deri değiştirme suretiyle büyürler. Erginlikte deri değiştirme gözlenmez. Yaklaşık 32 takım altında sınıflandırılmışlardır. Böceklerin Dış Yapıları Integüment (Vücut Örtüsü) Embriyonik olarak iki tabakaya ayrılır. Üstte ectoderm kökenli epidermis ve kaide zarı, altta peritondan meydaha gelmiş hücreli yapıda ince bağdoku formunda kutis bulunur. Epidermis veya Hipodermis (Üst Deri) Çok hücrelilerin tümünde bulunan epidermis insectalarda üstte kütikulayı altta kaide zarını salgılar. Lamina Basalis (Kaide Zarı) Epidermis hücrelerinin taban kısmı, deliksiz bir kaide zarı ile astarlanmıştır. Bu zar vücut boşluğuna kadar uzanan salgı hücrelerin ve tüy oluşturan hücreleride örter. Kutikula Epidermisin üst tarafında bulunur. Ectoderm kökenlidir; epidermis tarafından salgılanır. İçerisine birçok organic ve inorganic bileşiğin katılmasıyla çoğunluk sert bir yapı kazanır. Caput (Baş) Embriyonik olarak üç segmentten oluştuğu tartışmalıdır.Başta bulunan segmentlerin her biri ayrı bir üye taşımadığından, ayrıca segmental gangliyonlardan bazıları da birbiriyle kaynaştığından dolayı köken olarak segment sayısını kesin olarak söyleyemeyiz. Beş, en fazla altı segmentten (1. Preantennar (embriyonik olarak ortaya çıkar), 2. Antennar, 3. Intercalary, 4. Mandibular, 5. Maksillar, 6. Labial] oluştuğu varsayılmaktadır. Ergin evrede görülen segmentlerden birinci segmentteki (antennar) gangliyon çiftine “Deutocerebrum” denir. Bu segmentteki gangliyona anten sinirleri bağlı olduğundan, antenler bir üye olarak kabul edilir. Segmentlerin bağlanma yerine “Stur” denir. Antenler Protura’da tamamen körelmiştir. Digger böceklerin tümünde çeşitli tipte bir çift anten vardır. Birçok böcek larvasında anten bulunmayabilir. Kural olarak erkekler dişileri aradığı için daha büyük, yüzeyi daha geniş antenlere sahiptirler. Ağız Tipleri ve Ağız Parçaları “Clypeolabrum” tek yapılıdır ve üyesi yoktur. Gerçek ağız üyeleri olarak çift yapıda “Mandibul”, “Maxilla” ve daha sonar ikincil olarak kaynaşarak çift yapısını kaybetmiş “Labium”dur. A) Konum Olarak Ağız Tipleri: Böceklerde ağız her zaman ön tarafa ya da alt tarafa yerleşmiştir. Ağız üylerinin, vücudun eksenine gore eğimi göz önüne alınarak, ağız tipleri, konum bakımından, genel olarak: “Orthognath (Düşey Yönelmiş), Prognath (Eğik Yönelmiş), Hypognath (Öne Eğilmiş)” şeklinde 3’e ayrılır.  - İşlev Bakımından Ağız Tipleri: Alınan besinin yapısına (katı, sıvı) ya da alınma şekline gore değişik ağız tipleri gelişmiştir. Ağız yapısı, özellikle böceklerle savaşımda kullanılacak ilacın seçiminde dikkate alınması gereken bir husustur. B.1) Orthopteroid (Çiğneyici) Ağız Tipi: Labrum (Üst dudak), Elypeusa bağlanmış, duyu kılları ile donatılmış ağzı üstten kapatan kapak şeklinde tek parçalı bir yapıdır. Mandibul (Üst çene), Her zaman segmentsizdir. Ancak yanlara hareket edebilirler. Mandibulun iç kenarı birçok dişçikle donatılmştır. Bunlar besinlerin ısırılmasında ve çiğnenmesinde rol oynar. Mandibulun uç kısımlarındaki dikenler tutmak ve ısırmak için daha uzun ve sivri olmasına karşın kaideye yakın olanlar biraz daha küt ve çiğnemek için özelleşmiştir. Ağız parçalarının birinci çifti olan mandibuller kafa kapsülüne eklemle ve kirişlerle bağlanmıştır. Maxilla (Alt çene), Birçok segmentten oluşmuştur; iki taraflı, yani çift yapılı hipostoma tek bir eklem araclığıyla bağlanmıştır. Bu ağız üyesinin ilk kısmı yani “Coxopodit”, iki segmentten (Cardo ve Stipes) oluşmuştur. Stipes, “Telopodit” denen 4 ya da 5 segmentten oluşmuş “Palpus” Maxillarisi (Çene duyargaları) taşır. Labium (Alt dudak), Kafanın son segmentinden gelişmiştir. İlkin olarak çift yapılı olan bu üye, daha sonra kaidesinden ortasına kadar birleşerek, bir paralı plaka şekline dönüşmüştür. Bu ağız tipi, tipik olarak çekirgelerde, hamamböceklerinde, mayısböceklerinde vs bulunur. B.2) Yalayıcı-Emici Ağız Tipi: Orthopteroid ağız tipine en yakın ağız tipidir. Labrumla mandibul ilkel şekillerini korurlar. Bunlar besin delinmesinde ya da şekil verilmesinde kullanırlar. Buna karşın, emme görevini görebilmek için maksilla ve labium hafifçe dirsek şeklinde bükülebilir. Maksilla ve labium birleşerek “Labiomaxiller Sistem”i oluşturur. Bu tip ağıza arılarda rastlanır. B.3) Emici Ağız Tipi: Mandibul ile labium (duyargaları hariç) çok küçülmüştür. Buna karşın birinci maksillerin galeaları birer yarım oluk şeklini alarak uzamış ve her iki yarım oluğun karşılıklı gelmesiyle de uzun bir emme borusu oluşmuştur. Emme borusu kullanılmadığı zaman ağzın altında helezon şeklinde kıvrılmış olarak yer alır. Bu tip ağıza besinleri emmek suretiyle alan kelebeklerde rastlanırç Bazı kelebeklerde bu hortum kısmen veya tamamen körelmiştir. B.4) Sokucu-Emici Ağız Tipi: Besinlerini, delip-emmek suretiyle alan böceklerde bulunur. Çoğunlukla 3 grup altında toplanır. B.4.1) Altı İğneli: Culicidae (Sivrisinekler) ve Tabanidae’de (Bügelekler) görülen tiptir. Proboscis (Oluk şeklindeki labium) ve bu oluğun üst tarafı yine bir oluk şeklini almış bir labrum tarafından kapatılır. Mandibuller ve maksillerin iç yaprakları ile hipofarinks delme işlemini yürütebilmek için değişikliğe uğramışlardır. Delme aygıtı ikisi mandibulden, ikisi maksilladan, biri hipofarinksten, biride delabrumdan meydana gelmiş altı iğnedir. B.4.2) Dört İğneli: Tahtakurularında ve pirelerde rastlanır. Bu tip delici-emici ağız tipinde, hipofarinks ve labrum iğneleri bulunmaz. Labrum oransal olarak daha kısadır. Delmede kullanılan maksil iğnelerinin içe bakan tarafları iki yarım kanal içerir. Cervix (Boyun) Başa derimsi bir zarla yapışmıştır. Bu zarın her iki tarafında “Cervicalia” dene iki küçük plakçık vardır. Bazı türlerde “Gularia” adı verilen ventral bir plakçık daha bulunabilir. Boynun ön kısmı başın son segmentine, arka kısmı ise göğsün ilk segmentine aittir. Başla göğüs arasında sınırları belirsiz bu zarımsı bölde “Cervix” olarak adlandırılır. Thorax (Göğüs) Baş ile ların arasında bulunan göğüs yapıları birbirinden farklı olan (metametrik) üç segmentten oluşmuştur. Bunlar önden arkaya doğru “Pro-, Meso- ve Metathorax”dır. Her segment bir çift bacak taşır. Mezo- ve Metathorax , Pterygota’da kural olarak iki çift kanat taşır. Bu iki segmente birlikte “Pterothrax” denir. Sternum (Göğsün Karın Tarafı) Yanlarında pleura ile ilişkide olan plakalardan yapılmıştır. Her plaka bulunduğu segmente göre isim alır. Örn: Methasternum. Bacaklar, pleura ile sternum arasından çıkarlar ve bağlandıkları yerlerde derimsi zarlar vardır. Femur, bacağın en uzun ve kuvvetli kısmıdır. Fakat ona göre çok daha ince yapılıdır. Üzerinde diken, mahmuz ve kıllardan oluşmuş bir silahlanma görülür. Bazı böceklerin tarsuslarının son kısmında çift tırnakları yani “Ungues”den oluşmuş pençe vardır. Tergum (Göğsün Sırt Kısmı) Üç segmentten oluşmuş göğsün sırt kısmındaki parçaları ifade eder. Her parçaya “Notum” denir. Sırasıyla önden arkaya “Pro-, Meso- ve Metanotum” adını alır. Terguma üstten bakıldığında ortaya büyük bir alanı kaplayan ve yanlarında kanatların dibine doğru uzanan kısmına “Alinotum”, iki tergum arasında, bir çeşit ara tergum gibi görünen ince bileziklere “Postnotum” ya da “Acrotergit” denir. Fleura (Göğsün Yan Tarafı) Ayakların hareketine destek sağlayabilmek için, göğsün yan tarafları yapıları farklı olan sert plakalarla ya da plakçıklarla örtülmüştür. Bu plakalara “Pleurum”, plakaların zara ya da sturlarla digger plakalardan ayrıldığı kısmına da “Pleurit” adı verilir. Plakçıkların içlerinde kasların oturması için karinalar, dış kısımlarında ise görülebilen sturlar vardır. Kanadın vücuda bağlandığı yerde kanadın aşağı yukarı hareket etmesini sağlayan “Fulcrum” denen bir boğaz meydana gelir. Bacak Tipleri Yürüyücü Bacak: En ilkel ve temel bacaktipidir. Birçok böcek grubunda görülür. Bu tipe en iyi örnek hamamböcekleridir. Sıçrayıcı Bacak: Yürüyücü bacak tipinden belirli bir değişme ile gelişmiştir. Çekirge ve pirelerin arka bacaklarında görülür. Çengelli Tutunucu Bacak: Bitlerde bacak ucunda tutunmak için bir kanca bulunan küt ve tek segmentli bir tarsus taşır. Toplayıcı Bacak: İşçi arılarda bacağın tibiası genişleyerek polenleri toplayabilmek için, dış kısmında, uzun kıllarla çevrilmiş bir polen sepetçiği ve bununla ilişkin olarak aynı yerde boyuna bir çöküntü meydana gelmiştir. Temizleyici Bacak: Yine bir çok hayvanda, özellikle arılarda, antenleri toz ve polenlerden temizleyebilmek için ön bacağın değişmesiyle oluşur. Yüzücü Bacak: Suda yaşayan böcekler bacaklarını yüzme organı olarak kullandıkları için değişik bir yapı kazanmıştır. Yakalayıcı Bacak: Mantodea’da (Peygamberdeveleri) ön bacaklar avını yakalamak için kullanır. Kazıcı Bacak: Bazı böcekler, özellikle danaburunları toprağın içinde yaşadıklarından dolayı bu tip bacağa sahiptirler. Yapışıcı Bacak: Dytisous (sarı kenarlı kınkanatlılar) erkeğinde, kavuşma sırasında dişiyi yakalayabilmek için çok kuvvetli bir yapışma organı gelişmiştir. Kanatlar Hayvanlar aleminde ilk defa bu canlılarda ortaya çıkmıştır. Kas taşımaz ancak “Pterygota”da ve onlarda da yalnız “Pterotoraksta bulunurlar. Pterygota’nın bazı gruplarında ve türlerinde ikincil olarak kaybolmuştur (Örn: Bitler). Bazılarında küçülerek pul şeklini almıştır (Brachyptera). Bazılarında yanlız erkekte ya da dişide mevcuttur. Bazılarında gelişim evresinin ancak belirli bir evresinde meydana gelir ve daha sonra bırakılır. Bazılarında pullarla kaplı olur (Örn. Kelebekler). Bazılarında genellikle çoğunda her iki kanat yapı bakımından farklıdır. Bir kısmında üst kanatlara mineral tuzlarınında birikmesiyle kın gibi (Örn. Kınkanatlılar) ya da parşömen gibi kalınlaşmalar (Örn. Yarımkanatlılar) meydana gelir. Bazılarında da zar gibi (Örn. Zarkanatlılar) ya da saçak gibidir (Örn. Saçakkanatlılar). Tergumun alt yanlarında dışa doğru gelişen vücut duvarı kıvrımları yani “Paranota”, pterotoraksta (meso- ve metatoraks) kanatları meydana gelir. Abdomen (Karın) Eşeysel organlarında abdomende bulunmasına karşın sınıflandırmada özel öneme sahip oldukları için ayrı bir başlık altında incelenecektir. Abdomenin Segment Sayısı, Bölgelere Ayrılması ve Kitinleşmesi Sindirim borusunun büyük bir kısmını, kalbi ve eşeysel bezleri içine alır. Ön kısmıyla göğse bağlanır ve arkaya doğru çoğunluk gittikçe incelir. Kural olarak 11 segment ve segment olarak Kabul edilmeyen bir “Telson” dan oluşmuştur. Embriyonik olarak bilinen bu 11 segmentin sölom kesesi gangliyonu ve çoğunluk üye taslağı olmasına karşın telsonun sölom kesesi ve gangliyonu yoktur. Bu nedenle de segment olarak kabul edilmez. Üye taslakları, ergin evrede, özellikle ilk 7 segmentte tamamen kaybolur. Bazı hallerde farklı işlev gören organellere dönüşür. Arılarda ve karıncalarda abdomenin öndeki birkaç segmenti iyice incelerek göğse bağlanır. Özellikle sineklerde görüldüğü gibi, birkaç segmentin kaynaşmasıyla segment sayısında azalma görülebilir. Onbirinci segment çoğunluk, embriyonik evreler hariç, tamamen körelmiştir. Yalnız böceklerden bir takım (Collembola), embriyolojik olarak da sadece 9 segment ve bir telsona sahiptir. On bir segment Protura’da tam olarak görülebilir. Çoğunda 8. segmentten sonraki segmentlerde (terminal segmentler) çeşitli amaçlar için değişimler görülür. Telsonun civarında anüs bulunur. Kural olarak dişlerin eşeysel açıklığı 8. segmentte ya da onun arkasındadır; erkeklerinki 9. Segmentten dışarıya açılır. Dolayısıyla bu iki segmente “Genital Segment” bundan önceki segmentlere “Pregenital Segmentler” sonraki segmentlerede “Postgenital Segmentler” ya da “Terminalia” denir. On birinci segment ilkel böceklerde küçük de olsa görülür. Bu segmentin plakaları, telsonu anal kapak olarak çevirir. Cercus (serkus) sırta doğru kayarak dokunaç görevini görür. Dişi Eşey Organlarının Dış Yapısı Pek az ilkel böcek grubunda eşey açıklığı 7. karın sternumunun arkasında bulunmakla birlikte, böceklerin çoğunda 8. sternumun üzerinde ya da arkasındadır. Sekizinci ve dokuzuncu segmentlerin donanımı çiftleşmeyi sağlayacak şekildedir. Uzantıları, yumurta koymaya yarayan boru şeklinde bir “Ovipositor” oluşturur. En ilkel formu bir kılıç ya da boru şeklinde Orthopteroid’lerde görülür. Üremede hizmet gören üyelere “Gonopod” denir. Orthopteroid yumurta koyma borusu tipik olarak Saltatoria (Uzun antenli çekirge), Odonata (Subakireleri), Thysanoptera (Saçakkanatlılar), Hemiptera (Yarımkanatlılar), Hymenoptera (Zarkanatlılar)’da bulunur. Erkek Eşey Organı Erkeklerde eşeysel açıklık ilkin olarak 10; fakat birçok grupta özellikle 10. sternumu körelmişlerde 9. sternumun arkasındaki ara zardan dışarıya açılır. Bu durumda eşey hücrelerinin meydana geldiği segment aynı zamanda eşeysel açıklığa taşınmaz. Bu açıklık geriye doğru kayarak “Kopulasyon Aygıtı” denen birtakım yapıların içerisine girmiştir. Özellikle sınıflandırmada büyük öneme sahip olan kopulasyon aygıtı çok defa ikiz türler arasında dahi farklılıklar gösterir. Mezomerler ve Oluşturdukları Yapılar Her mezomerin ucundan içeriye doğru çökmek suretiyle, ectodermal bir “Ductus Ejaculatorius” meydana gelir ve bu iki ductus ejaculatorius daha sonra birleşerek “Ductus”u yapar. Mezomerler, Ephemeroptera’daki “Penis”le rile karşılaştırılabilir. Değinilen çift penislilik durumu ancak ilkel Dermaptera’da bulunur. Diğer tüm gelişmiş formlarda, mezomerler, ortada kaynaşarak bir boru yani “Aedeagus”u yaparlar. Aedeagusun açıklığına (lümenine) “Phallotrema (fallotrema)” denir. Buna uygun olarak ductus ejaculatorius da çift yapısını yitirir. “Gonoporus (Eşeysel Delik)” aedeagus lümeninin “Endhophallus” denen kaidesine açılır. Aedeagusun uç kısmında, çoğunluk dişiyi uyarmada görev yapan uzantılar bulunur. Çift yapılı olan bu uzantılara “Paraphys” ya da “Tittilator” denir. Bazen endofallusun çift yapıda olmayan, diken şeklinde bir çıkıntısı daha vardır. Buna da “Virga” denir. Bir sonraki yazımızda görüşmek üzere. Kaynak Hacettepe Üniversitesi Biyoloji Bölümü Entomoloji Laboratuvarı Ders Notu Uzm. Dr. Yusuf Durmuş S. Berkay BERKCAN

http://www.biyologlar.com/boceklerin-morfolojik-yapisi-bocek-morfolojisi-

Darwinin Görüşleri Nelerdir

Darwin’in diğer evrimcilerden farkı, fikirlerini desteklediğine inandığı delilleri tabiattan toplamış olmasıdır. Darwin’den öncekilerin görüşleri inandırıcı bir gözleme dayanmıyordu. Sadece fikir olarak ileri sürülüyordu. Darwin, dünyada yaşayan türlerin ayrı ayrı yaratıldığına inanmıyordu. Bunların ortak bir kökenden geldiğini ve tesadüflerle değişerek çeşitlendiğini, türlerin çok uzun zaman içerisinde başka türlere dönüştüğünü iddia ediyordu. Türlerin “değişebilirliği” Lamarcak’tan beri bilindiği için, Darwin, sadece bu türlerin hangi mekanizma ile değiştiğini açıklamaya çalışmıştır. Darwin’ın doğal seleksiyon görüşüne göre, tabiatta acımasız bir hayat mücadelesi vardır. Bu hayat mücadelesinde zayıflar elenmekte, güçlüler yaşamaktadır. Tabiat zayıfları eleyerek güçlüleri korumaktadır. İşte Darwin, bu görüşüne “doğal seleksiyon” adını vermiştir. Tabiatta, canlıların yaşayabilmeleri için mücadele etmek mecburiyetinde olduklarını hepimiz biliyoruz. Ama bu mücadele, bütünüyle tabiattaki zayıfları yok etme şeklinde görülmez. Darwin’e karşı olan evrimcilere göre, madem ki tabiatta zayıflar elenmektedir; o halde bize göre çok güçsüz gibi görünen türlerin yaşaması nasıl izah edilebilir. Tabiat içindeki en gelişmiş canlı olan insan, bakteriler için her türlü öldürücü ilacı (antibiyotik) kullanmasına rağmen, kendisinden çok daha zayıf durumdaki bu canlılarla mücadelede yenik düşmektedir. Her canlı tabiatın belli bir alanında hayatını sürdürebilecek bir yapı ve özelliktedir. Ancak, “Darwin” in “doğal seçilim” hipotezi çağdaş evrimciler tarafından “belirli çevre şartlarına en uygun olan bireyler daha fazla yaşama ve döl verme şansına sahiptirler” şeklinde yumuşatılmıştır.

http://www.biyologlar.com/darwinin-gorusleri-nelerdir

YARDIMCI GENİTAL BEZLER

Testislerin duktus sistemleri ile ilişkili olan bezler seminal vesiküller, prostat ve bulbouretral bezlerdir (Cowper bezleri). Seminal Vesiküller Seminal veziküller, ampullar bölgede mezonefrik (Wolffian) kanalın evaginasyonuyla gelişir. Prostat bezinin posteriorunda yerleşim gösteren seminal vesiküllerin her biri duktus deferensin sonlanma kısmı olan ampullar bölgeye paralel seyreden, kıvrıntılı, ince, uzun bir divertikülümdür. Vesikülün alt kısmı dar, düz bir duktus haline gelerek duktus deferensle birleşip ejekulator duktusu oluşturur. Seminal vesikül duvarı; 1- Pek çok elastik lifleri içeren adventisya adındaki dış bağ dokusu tabakasından, 2- İçte sirküler ve dışta longitidünal düzenlenme gösteren duktus deferensinkinden daha ince olan orta düz kas tabakasından ve 3- Bariz şekilde katlantılar gösteren mukozadan meydana gelmiştir. Mukozanın uzun primer katlantılarının kendileri de sekonder ve tersiyer katlantılar vermek üzere dallanma gösterirler. Son katlantılar lümen içerisine doğru uzanır ve sıklıkla birbirleri ile birleşir. Neticede lümende büyüklükleri değişen çok sayıda bölmeler oluşur. Her ne kadar kesitte bu bölmeler izole halde görülürse de hepsi de lümen ile irtibattadır. Lamina propria damarlardan zengin çok sayıda elastik lifler içeren gevşek bağ dukusu yapısındadır. Epitel tipik olarak pek çok varyasyonlar gösterir. Psödostratifiye prizmatik epiteli uzun silyasız priamatik hücreler ve bazal laminaya yerleşmiş kısa kübik hücrelerden oluşur. Epitelin yüksekliği salgılama evresine, yaşa ve diğer etkenlere bağlı olarak değişkenlik gösterir. Epiteli oluşturan hücreler salgı granüllerini ve sarı bir pigmenti içerir. Sarımsı renkte, yapışkan bir sıvı olan salgı maddesi kesitlerde lümen içinde oldukça asidofil bir koagulum şeklinde görülür. Sekresyon globülin, askorbik asit, fruktoz ve prostoglandinlerden oluşan çok sayıda madde içermektedir. Fruktoz spermatozoonların beslenmesinde önemlidir ve prostoglandinler dişi üreme sistemi üzerine direkt bir etkiyle fertilizasyonu kolaylaştırabilir. Seminal vezikülün sekresyonu ve morfolojisi testosteron hormonunun kontrolü altındadır, kastrasyonu takiben involusyon ve bezin salgılamasında kayıp görülür. Bu durumlar testosteron verildiğinde tam olarak düzelir. Seminal vesiküller seminal sıvının yapışkan kısmının salgılanmasından ve depolanmasından sorumlu olan bir bezdir. Seminal vesiküller içerisinde ölümden sonra bir miktar spermatozoon görülebilir; bunlar muhtemelen geriye doğru akış ile buraya gelmişlerdir, seminal vesiküller gerçekte spermatozoonların depo edildikleri bir yer değildir. Prostat Prostat uretrayı idrar kesesinden ayrıldığı yerde çevreler. Sayıları 15 ila 30 arasında değişen boşaltıcı duktuslar aracılığı ile prostatik uretraya drene olan 30-50 kadar bileşik tübüloalveolar bezlerin bir araya gelmesi ile oluşur. Bezler 3 konsantrik tabaka şeklinde düzenlenmiştir. Mukozal, submukozal ve periferal bezler. Mukozal bezler direkt uretraya direne olurken submukozal ve periferal bezler prostatik sinuslara drene olurlar. Yetişkin prostat parankiması anatomik ve klinik açıdan 4 kısımdan oluşur; • Sentral (merkezi) zon: Ejakulator duktusu sarar, bez dokusunun %25’ini içerir. Prostatın karsinom ve inflamasyona dirençli bölgesidir. Son çalışmalarda, bu zonun embriyolojik açıdan gelişen prostata mezonefrik duktusun inklüzyonuyla meydana geldiği ileri sürülmüştür. • Periferal zon: Prostat bez dokusunun %70’ini içerir. Merkezi zonu sarar ve bezin posterior ve lateralini işgal eder. Prostatik karsinomların ve inflamasyonların çoğu bu zonda gelişir. • Transitional zon: Prostatik üretrayı sarar, prostatik bez dokusunun %5’ini ve mukozal bezleri içerir. Yaşlılıkta bu bölgedeki parankim hücreleri hiperplaziye uğrar ve epitel hücrelerinde nodular kitleler oluşur. Dolayısıyla gelişen bu noduller prostatik üretraya baskı yaparak ürinasyonu zorlaştırır. Bu durum benign prostatik hiperplazia (BPH) olarak bilinir. • Periüretral zon: Mukozal ve submukozal bezleri içerir. BPH’nin ileri aşamasında bu zonda patolojik büyüme izlenir. Bu büyüme üretral basınca neden olur ve mesaneden ürin sızması gerçekleşir. Bütün bez biraz düz kas lifleri içeren fibroelastik bir kapsül ile sarılıdır. Kapsül içinde yaygın bir ven ağı bulunur. Bezin bileşenleri fazla miktardaki dens stroma içerisine gömülüdür. Stroma periferde kapsül ile devam eder. Fibroelastik stroma içerisinde ayrıca pek çok miktarda düz kas lifleri de bulunur. Bu kas lifleri ejekülasyon sırasında kasılarak prostat salgısının boşalmasını sağlarlar. Salgı alveolleri ve tübülleri oldukça düzensiz olup, büyüklük ve şekil bakımından da oldukça farlılık gösterir. Sıklıkla dallanma gösterirler. Alveoller ve tübüller geniş bir lümene sahiptir. Bariz bir bazal lamina yoktur ve epitel oldukça katlantılı olup, kübik ya da psödostratifiye tiptedir. Sitoplazmada çok miktarda salgı granülleri lizozomlar ve lipid damlacıkları görülür. Duktuslar da düzensiz lümene sahiptir ve daha küçük salgı tübüllerini andırırlar. Seminal vesiküller gibi prostat bezinin gelişimi ve fonksiyonel aktivitesi de testosterona bağlıdır. Prostat salgısı ince kıvamlı sütümsü bir sıvı olup hafifçe asidiktir. Özellikle fibrinolizin olmak üzere proteolitik enzimlerden zengindir. Fibrinolizin semenin pıhtılaşmasına engel olur. Fazla miktarda prostatik asit fosfataz (PAF) içerir. Prostatik karsinomlarda sıklıkla bu enzim salımınında artma olur ve enzimin kandaki konsantrasyonu artır. Boyanmış kesitlerde salgı asidofil, granüler yığın şeklinde izlenir. Ayrıca sitrik asit ve serin proteaz olan prostat spesifik antijen (PSA) de salgılarlar. Prostat kanseri durumunda serum PSA konsantrasyonu artar. Salgı içerisinde sıklıkla sferikal veya ovoid şekilli sert prostatik cisimcikler görülür. Yoğunlaşmış salgılar olan bu cisimcikler kalsifiye olabilirler ve prostat taşları (corpora amylacea) olarak bilinirler. Prostatın bez epiteli testosteron ve adrenal androgenler gibi seks hormonlarından etkilenir. Bu hormonlar salgı hücrelerine girerler ve 5ɑ-redüktaz ile dihidrotestosterona dönüştürülürler. DHT, testosterondan 30 kat daha etkilidir. DHT, prostatik epitelin normal gelişim ve proliferasyonunu stimüle eder. Prostat kesitinde, düz kas ile çevrili tübüloalveolar bezleri döşeyen kübik-prizmatik epitel ve bu bezlerin lümenindeki prostat taşları (corpora amylacea) izlenmektedir. H&E. Bulbouretral Bezler (Cowper Bezleri) Bulbouretral bezler, her biri bir bezelye büyüklüğünde olan bir çift organ olup, membranöz uretranın arkasında, bağ dokusu içerisinde yerleşim gösterir. her biri bileşik tübüloalveolar bir bezdir ve uzun duktusları penil uretranın proksimal kısmına drene olur. Bulbouretral bezler ince bir bağ dokusu kapsülü ile sarılmıştır, bunun dışında çizgili kas lifleri yer alır. Septumlar bez içerisine sokularak organı lobüllere böler. Bağ dokusundan oluşan septumların yapısında pek çok miktarda elastik lifler, çizgili kas lifleri ve düz kas lifleri bulunur. Bezlerin son salgılayıcı kısımları alveolar, sakkular ya da tübüler olabilir. Epitelde kübik veya prizmatik olmak üzere farklılık gösterir. Çekirdekler bazalde yerleşmiştir. Salgı duktusları uretradakine benzer şekilde psödostratifiye epitel ile döşelidir ve epitelde yamalar şeklinde müköz hücreler bulunabilir. Bezler sirküler düzenlenmiş düz kas liflerinden oluşan bir tabaka ile sarılmıştır, bu tabaka bütünlük göstermez. Salgı berrak, yapışkan ve müközdür, galaktoz, galaktozamin, galakturonik asit, sialik asit ve metilpentozdan zengindir. Erotik stimülasyona bağlı olarak salgı boşalır ve penil üretranın lubrikasyonunda görev alır. Penis Penis ürin ve seminal sıvının dışarı atıldığı ve kopulasyonun sağlandığı ortak bir organdır. Silindir şeklinde 3 erektil dokudan meydana gelmiştir: 1-Korpora kavernoza, bir çift olup dorsalde yerleşirler, 2- Korpus spongiozum tek olup ventralde yerleşim gösterir. Kavernöz üretrayı sarar. Bir çift olan korpora kavernosa penis birbirlerinden proksimalde ayrılmışlardır fakat pubik açının altında birleşirler ve ileriye doğru beraberce seyrederler. Glans penis ile pektiniform septum adını alan ortak median duvar aracılığı ile bağlantılıdır. Korpora kavernosanın altındaki derin oluk korpus spongiosum tarafından işgal edilmiştir. Bu oluşum glans penis adını alan fincan şeklindeki bir genişleme ile sonlanır. Glans penis, penisin koni şeklindeki uç kısmındaki şapkayı oluşturur. Bu üç silindirik erektil doku subkutanöz doku ile sarılmıştır. Subkutanöz doku yağdan yoksundur fakat proksimalde skrotumun dartos tabakası ile devam eden pek çok düz kas lifleri içerir. Organı örten deri ince ve naziktir, penisin uç kısmında katlantı vererek glans penisi örter. Bu katlantıya prepuce denir. Prepuce iç yüzeyi penisle ilgili olarak nemli ve nonkeratinizedir. Glansın epiteli hemen altındaki fibröz dokuya sıkıca yapışmıştır. Penis derisinde küçük ter bezleri ve kıl follikülleri ile ilgisi olmayan birkaç sebasöz bez bulunur. Penisin distal kısmında kıl follikülleri görülmez. Glans üzerinde ve prepucenin iç yüzeyinde modifiye sebasöz bezler (Tyson bezleri) bulunur. Her bir silindirik korpus kavernosum penis tubika albuginea adındaki kalın fibröz bir kılıf ile sarılmıştır. Kılıfın kollajen lifleri 2 tabaka halinde düzenlenmiştir; dışta longitidünal ve içte de sirküler. Her iki silindirin ortak pektiniform septumu pek çok sayıdaki yarığa benzer açıklıklar ile delinmiştir, bu açıklıklar aracılığı ile her iki taraftaki kavernöz boşluklar birbirleri ile irtibat temin eder. Fibröz kılıf ile devam eden trabekülalar kollajen, elastik ve düz kas liflerinden oluşmuştur ve dens internal çerçeveyi meydana getirir. Çerçeve arasındaki boşluklar kan sinuslarını oluşturur ve ince yassı endotel ile döşelidir. Bu boşluklar helicine arterlerden köken alan kan ile doludurlar. Trabekülaların düzenlenmesine bağlı olarak kavernöz boşluklar her bir silindirin merkezi kısmında en geniştir ve perifere doğru aşamalı olarak küçülürler. Korpus spongiosumun tunika albugineası korpora kavernosa penisinkine oranla çok daha incedir ve pek çok elastik lifleri ve düz kas liflerini içerir. Trabekülalar bir çift korporanın trabekülalarına oranla daha incedir ve daha elastiktir. Kavernöz boşluklar küçüktür, hemen hemen üniform büyüklüğe sahiptir ve uretranın etrafındaki küçük venöz boşluklara dönüşürler.

http://www.biyologlar.com/yardimci-genital-bezler

Parapatrik türleşme nedir

Parapatrik veya parapatri (bitişik bulunan), yaşam alanları belirgin bir şekilde örtüşmeyen ama birbirine bitişik olan ve en azından dar bir temas bölgesinde birlikte görülebilen organizmaları ifade eden bir biyocoğrafya terimi. Bu tür bir coğrafi dağılım şekli, her iki durumda da simpatrik (aynı bölgede) ve allopatrik (veya peripatrik) (dış kenara ait) terimlerinin karşıtıdır. Bu dağılım türü, uzun zaman boyunca parapatrik türleşme denilen bir sürecin oluşmasına ve kardeş türlerin türleşmesine yol açar. Parapatrik türleşme Parapatrik türleşme türleşmenin başka bir şekli olup bir türün popülasyonları arasında polimorfizmler baş gösterdiğinde ve kesintisiz bir coğrafi alan içinde çiftleşme alışkanlıklarında eş zamanlı değişimler meydana geldiğinde ortaya çıkar. Bu modelde ebeveyn türler, alt popülasyonların coğrafi olarak yalıtıldığı allopatrik ve peripatrik türleşme ile aynı yaşam alanı içinde oluşan simpatrik türleşmenin aksine kesinti göstermeyen ve bütünlük teşkil eden bir yaşam alanında yaşarlar. Bu habitat içinde yer alan ekolojik nişler çevresel bir eğim çizgisi boyunca farklılık gösterebilirler ve gen akışını engelleyerek sınır bölgelerde yaşayan canlılarda farklı özelliklerin oluşmasına yol açabilirler. Parapatrik türleşmede bu anlamda gen akışını önleyen özel bir dış engel bulunmaz. Popülasyon bir süreklilik gösterir ama yine de gelişi güzel veya rastlantısal olarak birbirleriyle çiftleşmezler. Bireyler daha ziyade popülasyonun yayıldığı başka bölgelerden gelen bireyler yerine, kendilerine coğrafi olarak daha yakın olan komşularıyla eşleşirler. Bu modelde divergenz (ıraksama veya farklılaşma), popülasyon içinde baş gösteren değişken seçilim baskıları ve bu seçilim baskılarının da gen akışını azaltması sonucu ortaya çıkarlar. Örnekler Bunun bir örneği bahar otu olarak da anılan ve maden ocakları çevresinde tespit edilen metal kirliliğine tepki olarak parapatrik türleşmeye gösteren Anthoxanthum odoratum bitkisidir. Burada, bitkiler, topraktaki yüksek metal seviyesine karşı direnç geliştirmişlerdir. Metale karşı duyarlı ebeveyn popülasyonla yakın akraba eşleşmesine karşı seçilim, metale karşı dirençli olan bitkilerin çiçek açma dönemlerinde, sonunda tümüyle üreme yalıtımına yol açan kademeli bir değişime yol açar. Her iki popülasyon arasında oluşan hibritlere karşı seçilim, iki türün dış görünüşlerinde birbirlerinden giderek farklılaşmasında gözlemlenen karakterlerin yer değişimi gibi, bir tür içinde üremeyi destekleyen özelliklerin evrimini pekiştirmeye yol açabilir. Benzer şekilde yeni bir çalışma, Tennessee mağara semenderinde (Gyrinophilus palleucus) parapatrik türleşme olayının gözlemlendiğine dair yeni bulgular sağlamıştır. Bu araştırmada yüzeyde yaşayan semenderler ile mağarada yaşayan semenderler arasındaki gen akışında bir ıraksama olduğu bulunmuştur. Diğer örnekler ise halka türlerdir.

http://www.biyologlar.com/parapatrik-turlesme-nedir

OMURGASIZ HAYVANLAR SİSTEMATİĞİ

Canlılarla ilgili problemler ele alındığında organizmalar sınıflandırmak ve onları gruplara ayırmak zorunluluğu ortaya çıkmaktadır. Yeryüzünde milyonlarca canlı varlık vardır ve bunun yanı sıra geniş ölçüde bir çeşitlilik de görülür. Sınıflandırmanın Tarihçesi İnsanlar yaradılışlarından itibaren çevrelerinde bulunan bitki ve hayvanları öğrenmeye çalıştılar. İlk insanlar, bitki ve hayvanları kendileriyle olan ilişkisine göre tanıdıklarından, o zamanlarda yapılmış olan sınıflandırmalar fazla derin olmayan günlük tecrübe ve gözlemlere dayanıyordu. Daha sonra bilgiler arttıkça onların bir esasa göre sınıflandırılması ihtiyacı ortaya çıkmıştır. Milattan önce 4. asırda filosozofiyi ilk teklif eden Aristo ilk bilimsel sınıflandırmayı yapmıştır. Aristo ve öğrencisi Theophrastus bitkileri ot, ağaçcık, ve ağaçlar; hayvanları da havada, suda ve karada yaşayan kuşlar, balıklar, balinalar ve böcekler olmak üzere 4 gruba ayırıyorlardı. Böcekleri de ısırıcı, emici, kanatlı ve kanatsız olarak gruplamışlardır. Canlıları sınıflandırmada çeşitli gelişme ve kademelerden sonra John Ray (1627-1705) belli bir tür kavramı geliştirmiştir. Ona göre tür, ortak ataları olan, benzer bireylerin bir grubudur. Ray çok az farklılıkları olan çeşitli organizmaların aynı türe sokulabileceğine inanıyordu. Böylece canlılarla ilgili gözlemler türlerle ilgili bir hipotezle birleştiriliyordu. Ray ve onu destekleyenler tabiattaki türlerin sayısının değişmez olduğuna inanıyorlardı. Tür anlamı Ray’den sonra değişmiştir. Linnaeus.dan sonra Lamarck hayvanları 8 klasise ayırmış, hayvanlar için omurgalı ve omurgasız tabirini kullanmış daha sonra Cuvier (1796-1832) mukayeseli anatomiden faydalanarak hayvanları Vertebrata, Mollusca, Arthropoda, Radiata olmak üzere 4 ana gruba ayırmıştır. Sistematik bir esasa göre, yapı benzerliği esas alınarak bitki ve hayvanların sınıflandırılması ilk defa İsveçli biyolog Carl Von Linnaeus tarafından yapılmıştır (1707-1778). Sistematiğin babası olarak tanımlanan Linnaeus, Systema Naturae (1758) adlı yapıtında hayvanlar alemini sınıf, takım, cins ve türlere göre gruplara ayırmıştır. Linnaeus.un diğer bir önemi binominal nomenclature denen metodu kurmasıdır. Bu metoda iki adla adlandırma denir. Yani her çeşit canlı iki isimle anılır. Bunlardan birincisi yani o hayvanın ait olduğu cins (genus-çoğulu genera)’ın adı büyük harfle, tür adı ise küçük harfle yazılır. Her ikisi de latincedir. Dünyanın her yerinde bu şekilde kullanıldığından anlaşma zorluğu ve karışıklık olmaz. Linnaeus de tür sayısının değişmez olduğuna inanmıştı. Bugün tür¸ ortak atadan gelen, birbiriyle çiftleşebilen, doğurgan yavrular meydana getiren, kendi aralarında nesil veren dolayısı ile gen alışverişinin devam ettiği tabii topluluklara (Yani doğal populasyonlar) ait gruplar olup çok benzer diğer gruplardan üreme bakımından izole bireyler topluluğu olarak tanımlıyoruz. Belirli bir ekolojik nişe sahip olan bu populasyonlar, yapı ve işlevleri ile birbirine benzeyen fiziksel ve kimyasal koşullara benzer tepki gösterirler. Sınıflandırmada Kategoriler Sistematikte en küçük grup tür olduğuna göre yapı taşı da türdür. Türler birleşerek genusları onlar da sırasıyla daha büyük grupları oluştururlar. Örneğin 1. Tür - Species - Homo sapiens 2. Cins - Genus - Homo 3. Aile - Family - Hominidae 4. Takım - Ordo - Primates Super- Class - Enteria 5. Sınıf - Class - Mammalia 6. Phylum - Þube - Chordata 7. Regnum - Alem - Animale Bir canlı türünün tam olarak sınıflandırılabilmesi için en az 6 gruptan söz edilmesi gerekir. Bazı durumlarda ara gruplardan da faydalanılır. Böyle ara gruplar için Alt= sub, Üst = super terimleri kullanılır. Örneğin Sub species = Salmo trutta abanticus = Abant gölünde yaşayan bir tür alabalık. Ayrıca tür adını ilk kez kullanan araştırıcının adı da 2. isimden sonra ilave edilir. Leptinotarsa decemlineata (Say, 1879) Hayvanlar Alemini Sınıflandırmada Esas Alınan Başlıca Özellikler Hayvanlar alemini sınıflandırmada esas, hayvan populasyonları arasında var olan akrabalık ilişkileridir. Linnaeus’den sonra sistematik üzerine olan çalışmalar ilerlemiş evrim teorisinin kabul edilmesiyle de, yani Darwin.le, zoologlar evrimsel orijini birbirine çok yakın olan organizmaları bir gruba koymak suretiyle daha çok, doğal ilişkilere dayanan bir tasnif sistemi kurmaya çalışmışlardır. Yapısal benzerliklerin çoğu evrimsel akrabalığa bağlı olduğundan organizmaların modern tasnifi birçok bakımdan Linnaeus’nin ortaya koyduğu mantıki yapı benzerliğine uymaktadır. Özet olarak modern sistematik yapılırken hayvanların yanlız dış görünüşlerinden değil, karşılaştırmalı anatomilerinden ve embriyonal gelişmelerinden faydalanılarak evrimsel gidişlerine uygun akrabalık derecelerine göre sınıflandırma yapılır. Bu sınıflandırmada hareket noktası olan temel kavramlar şunlardır : Homoloji : Birbiriyle hiç ilgisiz gibi görünen bazı yapılar incelenecek olursa birçok temel köken benzerlikleri ortaya koyulabilir. Örneğin; fokun  yüzme ayağı, yarasanın kanadı, insanın kolu. Bunlardan ilki yüzmeye, ikincisi uçmaya, üçüncüsü yakalamaya yarar. Ancak bunların iç yapısı, kemik ve kasları incelenirse her üçünün de kökten birbirine benzediği görülür. Yüzme ayağı, kanat ve kol aynı orijinlidir, fakat zamanla her biri temel örneğe kıyasla belirli bir görevi yerine getirmek için değişmiştir. Orijinleri aynı olup yani aynı kökenden gelen ancak değişik işler görebilecek şekilde farklılaşarak evrimleşmiş yapılara homolog yapılar denir. Sınıflandırmada özellikle homolog yapılar göz önünde tutulur. Bunun dışında daha farklı benzerlikler de vardır. Örneğin hayvanlarda kanat; sinek ve yarasa kanadının her ikisi de uçmaya yarar. Ancak bu benzerlik yüzeyseldir. Benzerliklerin yüzeysel olduğu ve hemen hemen aynı işi gören yapılara analog yapı denir. Fakat bunların embriyonal dönemlerdeki durumları birbiriyle kıyaslanırsa tamamen farklı kökenden oldukları görülür. Orijinleri tamamen ayrı olan bu yapıları, evrimsel gidişleri, benzer işi gördüklerinden, birbirine benzeyen duruma getirmiştir. Yüzeysel olan bu benzerliklerin doğal sınıflandırmada hiçbir önemi yoktur. Fizyoloji ve biyokimyadan da yararlanılarak canlılar arasındaki akrabalık tesbit edilir. Son zamanlarda, biyologlar protein yapılarının benzerliğinden yararlanmışlardır. Hayvanların bir hücreden veya çok hücreden yapılmış olması yüksek kategorilerde önemli bir temel karakter olup böyle bir ayırım sonucunda hayvanlar alemi Protozoa ve Metazoa olmak üzere 2 büyük subregnuma (veya Regnum yani Aleme) ayrılır. Embriyodaki hücre tabakası , Diploblastik, (Porifera, Coelenterata.) Triptoblastik (diğerleri); Simetri (bilateral, lateral) ve segmentasyon büyük grupları sınıflandırmadaki ayırıcı özelliklerdir. Sindirim, dolaşım ve sinir sisteminin olup olmaması (Protozoa ve Porifera.da yok; Coelenterata ve Platyhelminthes’de sindirim gastrovasküler boşluk halinde, ağız açıklığı vardır, diğerlerinde sindirim borusu hem ağız hem de anüs var) ve söz konusu grubun kendine has morfolojik karakterleri yine başlıca ayırıcı özelliklerdendir. Aristo zamanından beri biyologlar canlılar dünyasını en basit anlamda bitkiler ve hayvanlar olmak üzere 2 aleme ayırmışlardır. Buna göre derinliğine düşünülürse birçok türü, mikroskop altında gözlenebilen ve bir hücreli organizmalardan pek çoğunu bitki veya hayvanlar aleminden birine dahil etmek kolay bir iş değildir. Bundan bir asır önce Alman biyolog Ernest Haeckel birçok özellikler bakımından bitkilerle hayvanlar alemi arasında yer alan bütün bir hücreli organizmaları kapsayabilen Protista’yı üçüncü bir alem olarak teklif etmiştir.Uzun süre dünya biyologlarının pek rağbet etmediği bu teklif ilk bakışta sınıflandırmayı basitleştireceği yerde daha da güç duruma sokacağı ortaya konmuştur. Çünkü bitki benzeri olan bazı protistalar bitkilerle çok yakın ilişki kurarlar. Birçok grup (veya türler) gösterdikleri  bazı karakterler nedeniyle bitkilerle hayvanların arasında yer alırken diğer karakterleri nedeniyle hem bitki hem de hayvanlardan çok farklı bir durum gösterirler. Hatta farklı biyologlar tarafından Protista alemi içerisinde gösterilen organizmalar da farklı olabilmektedir. Bazı sistematikçiler Protista içerisine sadece birhücreli formlar koydukları halde bazıları mantarları, çokhücreli algleri hatta bakteri ve mavi yeşil algleri de Protista.ya dahil etmektedirler. Daha yakın zamanlarda bazı biyologlar Monera diye dördüncü bir alem açılmasının uygun olacağını savunmuşlardır. Monera alemi, bakteriler ve mavi yeşil algler gibi pek çok ortak karakterlere sahip organizmaları içine almaktadır. Prokaryot maviyeşil alglerde çekirdek zarı bulunmadığı gibi mitokondri, kloroplast gibi zarla çevrilmiş organeller de bulunmaz. Diğer taraftan bitki ve hayvan bütün Protista’lar Eukaryottur ve çekirdek zarıyla çevrilmiş gerçek nukleus ihtiva ederler. Bitki ve hayvanlar arasında pek çok temel benzerlikler vardır : 1. Her ikisinde de yapı ve fonksiyon birimi hücredir. 2. Her ikisinde de metabolik olayların çoğu ortaktır. Ancak her iki grup çok bariz ve farklı bazı yollarla birbirinden kesinlikle ayrılır. 1. Bitki hücreleri hücreyi çevreleyen ve bitkiye destek vazifesi gören selülozdan ibaret sert bir hücre çeperi salgılar. Hayvan hücrelerinde böyle bir çeper yoktur. Ancak bazı bitkilerde selüloz çeper bulunmadığı gibi (bir grup hayvanda da) tunicat gibi ilkel Chordatlar.da hücrelerin etrafında aynen bitki hücrelerinde olduğu gibi, selüloz çeper vardır. 2. Bitki büyümesi genellikle sınırsızdır. (Bu büyüme ömür boyu aktif büyüme fazında kalan bazı bitki hücreleri ile gerçekleştirilir, tropik bitkilerde devamlı, ılıman bölge bitkilerinde ise daha çok ilkbahar ve yaz aylarında). Hayvanların çoğunda son vücut büyüklüğü belli bir büyüme devresi sonunda ortaya konmuş olur. Ancak timsahlar, kaplumbağalar ve istakozlar uzun süre büyümelerini devam ettirirler. 3. Hayvanların çoğu hareket eder, bitkiler ise istisnalar dışında 4. En önemli fark ise gıda temin etmeleridir. Bitkiler yeşil renkli klorofil pigmenti yardımı ile fotosentez yapar. Fotosentez ile suyu parçalayabilmek için ısı enerjisini kullanırlar ve neticede karbondioksiti karbonhidrata indirgerler. Klorofil ihtiva etmeyen mantarlar ve bakteriler bu kaideye uymazlar (bazı yüksek organizasyonlu bitkiler). Evrimsel olayların asırlar önce cereyan etmiş olması ve ilk formlara ait fosillerin yetersiz olması nedeni ile bugün bile önemli bitki ve hayvan phylumları arasındaki evrimsel yakınlık hakkındaki görüşler açık değildir. Örneğin, virus ve bakterilerin diğer organizmalara olan evrimsel yakınlığı fazla bilinmediği gibi önemli alg ve mantar cinsleri arasındaki akrabalığa dair eldeki mevcut deliller de yetersiz olup önemli Protozoa cinsleri ile çok hücreli hayvanlar arasındaki akrabalık ilişkileri hakkındaki bilgiler de henüz kesin değildir. Hayvan gruplarını incelerken; hücre tabakalaşmasını, solunum olup olmamasını, metameri durumunu, sindirim sistemini ele alıp kendine özgü morfolojik karakterleri vurgulayacağız. Canlılar alemi bitkiler ve hayvanlar olarak (genel bir ifade ile) ele alınmakta son zamanlarda aşağıdaki gibi gruplandırılmaktadır. I. Alem : Monera II. Alem : Protista - Birhücreliler III. Alem : Fungi - Mantarlar IV. Alem : Plantae - Bitkiler V. Alem : Animalia - Hayvanlar I. Alem : MONERA Prokaryot olan bu organizmalar çekirdek, çekirdek zarı, plastit, mitokondri ve tubuler yapı taşımayan, kamçıları olmayan ancak kamçı benzeri uzantılar taşıyan, birhücreli canlılardır. Bölünme ya da tomurcuklanma ile eşeysiz ürerler, kalıtsal madde alışverişi konjugasyon, transformasyon, transdüksiyon veya plasmit değişimi ile gerçekleşir. Eubacteria ve Archaebacteria şeklinde iki gruba ayrılırlar. 2700 farklı türü bilinmektedir. II. Alem : PROTİSTA Ökaryot canlılar olan (Yani zarla çevrili çekirdek, kamçı, sil, yalancı ayak ve organel içeren) bir ve çok hücreli fotosentetik algler, çok çekirdekli ya da çok hücreli heterotrof bazı mantarlar, bir hücreli ökaryotik canlıları içerir. Fotosentez, absorbsiyon ya da doğrudan yeme ile beslenirler. Eşeyli ya da eşeysiz çoğalırlar. 60.000 yaşayan, 60.000 de fosil türü ALT ALEM (SUBREGNUM): PROTOZOA Protozoa (Eski yunanca protos = birinci; zoon = hayvan) bir hücreli mikroskobik hayvanlardır. Bir protozoon’ın yapısı çokhücreli hayvanların (birhücreye) bir hücresine karşılıktır fakat fonksiyon bakımından çokhücreli bir organizmanın bütün temel görevlerini yapar. Birhücrelilerin hepsi çok küçük mikroskobik hayvanlar olmakla beraber büyüklükleri oldukça değişiktir. Bazıları 2-3 mikron boyunda olup çoğu 250 mm. den daha küçüktür. (Nadir olarak 15-16 mm. boyunda olanlara da rastlanır Sporozoa’dan Porospora gigantea ). 30.000’den fazla bir hücreli hayvan türü bilinmektedir. Bunlar tatlı sularda, denizlerde, rutubetli topraklarda yani sulu ortamda yaşarlar. Bir kısmı da diğer hayvanların vücudunda parazittir. Kuru yerlerde ancak kist halinde bulunurlar. Bu geçici bir korunma durumu olup aynı zamanda birhücrelilerin yayılması bakımından da avantaj sağlar. Þöyle ki bu durumda kuş, böcek ve rüzgarla her yere taşınabilirler. Denizde yaşayanlarda kuruma tehlikesi olmadığından genellikle kist oluşumu yoktur. Vücutları stoplazma ve nukleustan ibarettir. Stoplazma ekto ve endoplazma olmak üzere 2 kısma ayrılmıştır. Dışta yer alan ektoplazma granülsüz veya çok az granüllü ve yoğun, iç kısımda bulunan endoplazma ise granüllüdür. Ekto ve Endoplazma arasında geçiş vardır. Genellikle hücre zarı yani Pelikula (veya Pellicula) altında ektoplazma, anterior uçta cytostom (hücre ağızı) ve cytopharynx bulunur. Besin stoplazma içine geçerken etrafında bir zar şekillenerek koful oluşur. Sindirim bu kofulun içinde gerçekleşir. Posterior uçta cytopig (hücre anüsü) bulunur. Hücre anüsü bir çok kamçılıda ve özellikle sillilerde görülür. Hücre anüsü çok dar yapılı olduğundan, varlığı ancak dışkılama sırasında belirlenebilir. Bir veya daha fazla nukleuslu olabilirler. Tek nukleuslu formlara monoenergid , çok nukleuslulara da polyenergid adı verilir. Bir hücrelilerde bütün hayatsal olaylar organellerle yapılır. (Belirli bir ödevi olan stoplazma farklılaşmalarına organel denir.) Hareket organelleri pseudopod (yalancı ayak), flagellum (kamçı), sillerdir (kirpik). Pseudopodların yeri değişken olup vücudun herhangi bir yerinde teşekkül edebilir ve kaybolur. Buna karşın kamçı ve kirpikler yeri ve şekilleri sabit olan daimi organellerdir. Sporozoa ve Ciliatlar.da vücudun uzayıp kısalması myonem adı verilen kas lifleri ile yapılır. Parazit birhücrelilerde hareket organeli genellikle yoktur. Bununla birlikte bir kısmı (gelişimin erken evrelerinde) yer değiştirebilirler. Kayma şeklinde olan özel bir yöntem ile hareket edebilirler. Kirpik ve kamçılar hareketten başka duygu organı vazifesini de görürler. Bundan başka bazı flagellatlarda göz vazifesini gören ve ışıktan etkilenen kırmızı renkli stigma vardır. Ciliatlar.ın bir çoğunda uyartı nakleden organeller de tesbit edilmiştir.Bunlar sillerin dip cisimlerini birbirine bağlayan ektoplazmik fibrillerdir. Bir hücrelilerin bazılarında örneğin amiplerde vücut ince bir zarla örtülüdür. Plasmolemma adı verilen ve çok ince olan bu zar madde alış verişini düzenler. Fakat hayvanın vücuduna belirli ve sabit bir şekil vermez. Buna karşın bir çok tek hücrelilerde korunma ve destek organelleri vardır. Bu organeller sayesinde vücut şekilleri sabit kalır. Koruma ve Destek Organelleri: Yapılarına göre iki türlüdür. 1. Euplasmatic : Stoplazmanın farklılaşmasından meydana gelen organeller; fibriller aksopodların eksen çubukları radyolenlerin iç kapsülleri, pelikula vs. 2. Alloplasmatic : Stoplazmanın salgı maddesinden meydana gelen organeller; örtüler, kabuklar, evcikler, kistler ve iskeletler. Örtü ve kabuklar vücut yüzeyine yapışıktır. Evcikler ise yalnız belirli yerlerde yapışıktır. Kistler: Bunlar ya yalnız organik maddeden (jelatin, pseudokitin, sellüloz) veya inorganik maddeden SiO2 ve Ca2CO2 den yapılmıştır. Tatlısu protozoonlarında ve bir çok parazitlerde görülen geçici korunma organelleridir. Bunlar yaşamaya elverişli olmayan zamanlarda ve bazen çoğalma esnasında meydana gelirler. Kist meydana geleceği zaman hayvan bütün organellerini kaybeder. Yuvarlak bir şekil alır. Kendi etrafına saldığı jelatinli tabaka sertleşir. Böylece kist meydana gelmiş olur. Normal şartlar başlayınca kist parçalanır ve yeniden organeller teşekkül eder. Beslenme (4 tiptir) I. Ototrof : Bitkilerdeki fotosenteze karşılıktır. Yani anorganik maddeleri organik hale koyar. (Bir kısım flagellatlarda) II. Saprozoik : Erimiş haldeki organik maddelerle geçinirler. Bu maddeler bakteriler tarafından parçalanmış olan organik maddeler vücut sıvıları ve barsak sıvılarıdır. (Parazit yaşayanlar ve renksiz flagellatların bir kısmı). III. Miksotrof : Hem organik ve hem anorganik maddelerle geçinirler (Euglena). IV. Heterotrof : Katı organik maddelerle beslenir (serbest yaşayan birhücrelilerin çoğu). Beslenme ile ilgili organeller. Cytostom (Hücre ağzı), Cytopharynx (yemek borusu) Ciliatlar.da besin stoplazma içine geçerken bir sıvı vakuolü teşekkül eder. Sindirim bu vakuol içersinde olur. Artık maddeler vücudun herhangi bir yerinden veya hususi bir yerden (Cytopig ) dışarıatılır. Boşaltım organeli : Osmoz sonucunda ve besin maddeleri ile birlikte stoplazma içersine giren fazla suyun dışarı atılmasına yarayan Kontraktil vakuollerdir. Deniz formlarında çok nadir olarak bulunur; parazitlerde yoktur. Esas olarak tatlı su protozoonlarında mevcuttur. Katı atıklar çok defa stoplazmada biriktirilir. Öyle ki bu durum bir çeşit atık pigmentasyonuna (renklenmesine) neden olur. Çoğalma 11 1. Bölünme : Enine (Ciliata) veya boyuna olmak üzere (Ekseri flagellatlarda) ikiye bölünme. 2. Tomurcuklanma : İkiye bölünmenin bir modifikasyonuna tomurcuklanma adı verilir. Öncelikle tomurcuk taslağı meydana gelir. Bu taslak ana hayvanın büyüklüğüne erişince koparak ondan ayrılır veya koloniler oluşur. 3. Multible bölünme : Nukleus bir çok defalar bölünür. Sonra stoplazma nukleus sayısı kadar parçalanır. Çoğalma neticesinde fertler bazen bir arada kalarak kolonileri meydana getirirler. Cinsiyet ve Döllenme : Cinsiyet olayları bütün gruplarda görülür. Döllenme çok hücrelilerdeki gibi cinsiyeti farklı iki hücrenin haploid sayıdaki kromozomlarının birleşmesiyle 3 şekilde olabilir. 1. Konjugasyon, 2. Autogamie, 3. Kopulasyon Kopulasyon : Yüksek organizasyonlu hayvanlarda olduğu gibidir. Birleşen hücrelere gamet, birleşme mahsulüne zigot denir. Basit halde, kopulasyon yapan gametler normal vegetatif fertlerden farklı değillerdir. Yani bunlarda gametleri verecek olan fertler bir çoğalma safhası geçirmeden doğrudan doğruya gametlere değişirler. Böyle bir kopulasyonda eşeysel bir çoğalmadan bahsedilemez. Çünkü redüksiyon Diğer durumda ise gametler vegatatif fertlerden farklıdır. Esas ferdin ikiye bölünmesi (mayoz bölünmesi neticesinde) meydana gelir ve kromozom sayısı yarıya iner. Birbiri ile birleşen gametler ya görünüşleri aynı isogamet (isogamie) veya farklı anisogamet (anisogamie)’dir. Anisogamide yedek besin maddesi içeren gamete dişi veya macrogamet diğerine de erkek ya da microgamet denir. Sporozoonlarda izogamiden çok hücrelilerdeki oogamie’ye kadar bütün tipler görülür. Konjugasyon : Yalnız Ciliat’larda görülen özel bir döllenme şeklidir. 12 Autogamie : Kendi kendini döllemedir. Ekseriya bir kist içinde meydana Bazı tek hücrelilerin yapısı çok basit olduğu halde diğer bazıları çok kompleks bir yapı gösterir. Kompleks yapılı birhücrelilerde bütün hayatsal olaylar çeşitli organellerle yapılır. Protozoon’lar hareketlerini sağlayan yapının çeşidine göre sınıflandırılır. SUBREGNUM PROTOZOA 1. Class - Flagellata (Mastigophora) Kamçılılar 2. " - Sarcodina (Rhizopoda) Kökbacaklılar 3. " - Sporozoa (Sporlular) Hareket organeli yok, parazit 4. " - Ciliata (Infusoria) Kirpikliler Sub Class Protociliata " Euciliata " Suctoria Barnes ve Demirsoy.a göre de Phylum (Şube) : Sarcomastigophora 1. Class : Flagellata (Mastigophora) Kamçılılar 2. Class : Sarcodina (Rhizopoda) Kökbacaklılar Phylum Sporozoa Sporozoa (Sporlular) Hareket organeli yok, parazit Phylum Ciliophora - Ciliata Ciliata (Infusoria) Kirpikliler Subclass Protociliata Euciliata Suctoria 13 I. Class - FLAGELLATA (Mastigophora) , Kamçılı hayvanlar Flagellatlar bir veya birkaç kamçıya sahiptirler. Kamçı hareketi temin eder ve besin almaya yarar. (Çıkış yeri Flagellata sistematiğinde önemlidir). Nukleus zarından veya stoplazma içindeki dip taneciğinden (bazal granül) çıkar. Burada bir de kamçı kesesi teşekkül etmiştir. (Dip taneciği bazı flagellatlarda bölünme anında ikiye ayrılır, kutuplarda iğ iplikleri meydana getirir). Flagellatlarda kamçının dip kısmına yakın bir yerde göz lekesi (stigma) denen kırmızı pigmentli bir organel vardır. Bu organizmalarda karbonhidrat depo eden cisimcikler stoplazmada yer alır. Plastidler genellikle serbest yaşayanlarda bulunur. Kloroplast içerenler güneş ışığında besin yapabilirler. Bu karakterleri nedeniyle bitki olarak da sınıflandırılırlar. Ancak hepsinde selüloz bir hücre çeperi yoktur. Çoğalma uzun eksen boyunca bölünmek suretiyle eşeysizdir. Bölünme ön uçtan başlar, nukleus mitozla bölünür, organeller bölünür. Eşeysel çoğalma tam olarak ancak bir kaç Zooflagellat.da saptanmıştır. (Son zamanlarda yapılan çalışmalar çoğalma olaylarının günün karanlık peryodunda olduğunu göstermektedir). Klorofilleri olmasına rağmen yaşadıkları ortamda bazı amino asitlerin mevcut olmasını isterler. Flagellatlar ototrof, heterotrof bazısı da saprofit olarak yaşar. Katı haldeki besin maddeleri ile beslenen türlerde, besin vücudun ön kısmında, kamçı dibinde bulunan ağız yolu ile vücuda girer. Þimdiye dek bildiklerimizden bu grubun hem bitki hem de hayvansal organizmalara ait özellik gösterdiği anlaşılmaktadır. Bu özellik evrim bakımından bitki ve hayvanların aynı orijine sahip olduklarını destekler durumdadır. Bazı flagellatlar, örneğin Eudorina ve Volvox koloni teşkil eder, Volvox’lar, çok hücreli hayvanların embriyo gelişmelerinin blastula safhasına benzer. Tek hücreliler ve çok hücreliler arasında geçit gibi görülürler. 14 Uygun olmayan şartlar altında kist teşkil ederler veya palmella safhasına geçerler. Palmella safhasında kistlerden farklı olarak metabolizma devam ettiği gibi bölünme ve çoğalma olayları da görülür. Vücut küre şeklini alır ve kamçılar kaybolur. Tatlısu flagellatlarında boşaltım organeli olarak kontraktil vakuol bulunur. Bunlar ya tek ya da vakuol sistemi halindedir. Fazla suyun dışarı atımında da kullanılır. Flagellatlara yağmur suları, birikinti suları, dam olukları, nehir ve göl gibi sularda rastlanır. Bazıları hayvan ve insanlarda parazittir. 60.000 kadar flagellat türü bilinmektedir. Ordo - Cystophlagellata : Doğrudan gözle görülebilecek büyüklüktedirler. Pelikula ile örtülü vücut içi jelatinli bir madde içerir mahtut bir bölgede stoplazma toplanmıştır. Noctiluca   miliaris : 1-1,5 mm. çapında bir veya iki kamçılı ve genellikle küre biçimindedirler. Stoplazma vücudun ön kısmında bulunur ve küçük bir bölgeyi kaplar. Vücudun geri kalan kısmını jelatine benzer bir madde doldurmuştur. Stoplazma, jelatinsi madde içine ağ şeklinde uzantılar gönderir. Başka organizmaları yiyerek geçinir. Stigma ve plastidleri Çoğalmaları ikiye bölünme veya zoospor meydana getirmek suretiyle olur. Zoosporlar birleşerek zigotu teşkil eder. Çok sayıda Noctiluca bir araya gelirse, ışık salmaları nedeni ile yakamoz denen olayı meydana getirirler. Denizde pelajik yaşarlar. Ordo - Euglenoidina : İğ şekilli, oval, uzun vücutlu olup vücut yüzeyi kalın bir pelikula ile örtülüdür, renkli veya renksiz olabilirler. Renklilerde parlak yeşil kromatofor bulunur. Euglena   viridis : Oval görünüşlüdürler. Yeşil renkli kromatoforları ince uzun olup bir merkez etrafında toplanmıştır. Bol oldukları zaman su 15 yüzünde hareket ederler. Yeşil lekeler meydana getirirler. Stigma ve boşaltım organeli olan kontraktil koful, vücudun ön kısmında yer almıştır. Astasia sp. Kromatoforsuz ve çoğu stigmasızdır. Ordo - Phytomonadina : Sabit şekilli, oval ve uzun flagellatlar olup vücut yüzeyi ince veya kalın olabilen selüloz zarla örtülüdür. Stigmaları vardır. İki kamçılı olup çanak şekilli bir kromatoforları vardır. Soliter yaşarlar veya koloni teşkil ederler. Nematod gibi diğer omurgasızların bağırsaklarında kamçısız olarak bulunan parazit türleri de vardır. Volvox : Tatlısularda yaşarlar ve koloni teşkil ederler. Bir kolonide 4-128 fert bulunur. Bazı türlerde 20 bin kadar fertten oluşan koloniler de görülür. Kolonide hareket belirli bir bölgeden öne doğru görülür. Yüzlerce fert küre üzerinde sıralanmıştır. Her fert ucu küre merkezine uzanan 6 köşeli jelatin bir piramit içindedir. Komşu fertler stoplazma köprücükleri ile irtibatlıdırlar (Fertler küre veya yassı şekillidirler). Çoğalma eşeyli veya eşeysiz olabilir. Koloninin ön kısmında bulunan fertler çoğalma kabiliyetini kaybetmiştir ve beslenme işini görür. Her bir fertte aynı delikten çıkan eşit uzunlukta 2 kamçı, stigma, çanak şeklinde kromatofor ve kontraktil vakuol Gonium : 4-16 fertlik koloni teşkil ederler. Eudorina : Genel olarak 32 nadiren 16 fertlik koloniler teşkil eder. Ordo - Protomonadina : Parazit flagellatlardır. Hayvan karakteri gösterirler. Küçük renksiz, 1-2 kamçılı, ameboid hareketli olup çoğu besinini pseudopod teşkil ederek veya basit bir ağızla alır. Soliter veya koloni halinde yaşarlar.Bu takım içerisinde yer alan bir familya (Coanaflagellatidae) ön tarafında birbirine çok yakın mikrovilluslardan oluşmuş .Collare. = yakalık taşırlar. Kamçı, bu yakalığın içinde bulunur. Coanaflagellatlar,süngerlerin koanositlerine benzediklerinden belki çok hücrelilerin köken aldığı hat olabilecekleri düşünülmektedir. 16 Leismania : Bu genus’a bağlı türlerin bazısı böceklerde bazısı omurgalılarda yaşar ve önemli hastalıklara neden olur. Leishmania donovani (Visceral Leismaniasis): Kala-azar hastalığının etkenidir. Hindistan, Güney Rusya, Çin, Türkistan, Irak ve Akdeniz havzasında görülür. Başka memleketlerde hem çocuk hem de büyükler hastalığa yakalanabildikleri halde Akdeniz havzasında bilhassa 4 yaşın altındaki çocuklarda görülür. Parazit memeli konakçısında dalak, karaciğer, kemik iliği, barsak ve lenf bezlerinin kan hücrelerinde (reticulaendothelial) bulunur. İnsan vücudundaki hücrelerde kamçısını kaybetmiştir. Hücre içinde çoğalır, çoğalma sonucu hücreler patlar, genç fertler yeni hücrelere geçer. Bir kısmı da dolaşım sistemine geçer, ara konakçı sinek (Phlebotomus) böyle bir kanı emince hastalık etkenini alır. L. donovani sinek vücuduna geçince kamçılı hale geçer, orta barsakta (mide) çoğalır oradan ön barsağa ve tükrük bezlerine geçer. Hastalarda karaciğer ve dalak şişer. Kansızlık baş gösterir. Düzensiz nöbetler sonucu hasta tedavi edilmezse öldürücüdür. Leishmania tropica : Asya, Afrika, İran, Arabistan ve Türkiye.de bulunur. Avrupa memleketlerinden (İspanya, İtalya, Yunanistan ve nadiren Fransa’da rastlanır). Yurdumuzda Güney ve Güneydoğu illerinde vardır. Ara konakçısının insektisitler ile hemen hemen ortadan kaldırıldığı yerlerde çok nadir olarak ortaya çıkar. Böceklerden (Diptera) ara konakçısı Phlebotomus papataci dir. Parazit ara konağın orta barsak epitelinde çoğalır, ön barsağa doğru yayılır, epipharynxe yerleşir ve nihayet sineğin bir insanı ısırması ile memeli konukçuya geçmiş olur. Memeli konukçularındaki kuluçka süresi birkaç gün, haftalar ve hatta bazen 3-4 yıl olabilir. Deride önce sivilce şeklinde bir kabarcık daha sonra birkaç santimetrelik yara meydana gelir. (Bir yıl içinde yara kurur ve bir leke bırakır. Onun için hastalığın bir başka ismi "Yıl- çıbanı" veya "Þark- çıbanı"dır. Bazı hallerden sonradan bakterilerinde yaraya girmesi ile yara daha çok büyüyebilir. Þark çıbanı el, yüz, ayak gibi örtülmeyen yerlerde 17 Trypanosoma : Bu genus omurgalı hayvanlarda kan paraziti olan türleri ihtiva eder. Serbest olarak kanda yaşar onun dışında diğer sistemlerde de görülür. (Konakçılar arasında kan emen omurgasız hayvanlar vasıtasıyla yayılır). Parazit, omurgalı hayvanın vücudunda tam bir Trypanosoma karakteri gösterir. Burada parazitin vücudu uzar, iki uç sivrileşir, dalgalı bir zar içinde uzanan kamçı görünür. Trypanosoma türleri bütün hayvanlarda bulunabilir, ancak insanda ve evcil hayvanlarda patogendir. (muhtemelen bu konakların yeni olması nedeniyle) Hastalık yapan türler tropik bölgelerde yaşar. Trypanosoma lewisi : Fare kanında bulunur. Patojen değildir. Trypanosoma   brucei : Sığırlarda nagana hastalığına sebep olur. Güney Amerika.da görülür. Trypanosoma   gambiense : Afrika da uyku hastalığının etkeni olup en önemli patogen trypanosomalardandır. Glossina palpalis denen çeçe sineği ile taşınır.Parazit, sineğin sindirim kanalında çoğalır, gelişimini tamamlar. Tükrük bezine geçer. Sinek insanın kanını emerken paraziti memeli konukçusuna bulaştırır. Düzensiz aralıkla nöbet başlar. Hastanın ateşi yükselir, lenf bezleri şişer, Parazitin metabolizma sonucu meydana getirdiği maddeler hastada felç yapar ve "uyku" haline neden olur. Sinir sistemini istila ettiğinde genel olarak öldürücüdür. Termit ve selülozla (simbiyoz) beslenen diğer böceklerin barsaklarında yaşayan ve Beta glikosidaz enzimi salgılayan ve böylece selülozu glikoza çeviren birçok flagellat türü bilinmektedir. II. Class : SARCODİNA (Rhizopoda) Bu sınıfa dahil hayvanlarda vücut şekilsiz olup simetrisiz olduğu gibi küresel simetri gösterenler de vardır. Flagellatlar.dan daha basit olup, gelişim dönemlerinde bazen kamçı içerirler. Yine Flagellatlar.dan farklı olarak vücut yüzeyinde pelikula bulunmaz . Vücut ordolara göre çıplak 18 veya kabukludur. Stoplazma bariz biçimde ekto ve endoplazma kısımlarına ayrılmış veya ayrılmamıştır. Nukleus bir veya daha fazladır. Hareket ve besin alma organeli çeşitli tipteki yalancı (Pseudopod) ayaklardır. Yalancı ayaklar loblu (lobopod), iplik gibi (filopod) ağ (retikulopod) şeklinde yahut desteklidir (aksopod). Deniz ve tatlısularda yaşarlar. Tatlısularda yaşayanlarda l-2 kontraktil koful vardır. Bazılarında kabuk, evcik, bazılarında stoplazma içinde SiO2 den ibaret iskelet bulunur. Çoğalmaları ikiye veya daha fazla parçalara bölünme ya da tomurcuklanma ile olur. I. Ordo: Amoebozoa : Stoplazma ekto ve endoplazmaya ayrılmış hareket loblu lobopod veya iplik filopodlarla olur, bunlar ya bir yerden çıkar veya vücut yüzeyine dağılmıştır. Subordo - Amobina Amoeba (Çıplak amipler) : Bu subordo’nun en tipik örneği amip cinsidir. Amipler tatlısularda yaşarlar. Çapları 200-300 mikron kadardır. Stoplazma ekto ve endoplazma olarak belirli bir şekilde ayrılmıştır, bir veya birkaç tane besin vakuolü, küre şeklinde bir kontraktil vakuol (nadiren 2-3) ve disk şeklinde nukleusları vardır. Pseudopodları lobopod veya filopod şeklinde olup bu harekete amoeboid hareket denir. Amoeboid harekete birçok Protozoa.da rastlandığı gibi kan hücrelerinden akyuvarlarda da görülür. Pseudopodun meydana geldiği bölgede endoplazmanın kolloid hali değişir. Gel halindeki endoplazma sol haline geçer. Amibin kontraksiyonu ile arka bölgede sol haline geçen endoplazma pseudopod istikametinde akar. Amip sudaki besin parçasını çevirir ve onu içine alır. Sindirim vakuol içinde olur. Sindirilmeyen artıklar hücrenin herhangi bir bölgesinden dışarıya atılır. Çoğalma eşeysizdir. İkiye bölünme tomurcuklanma ve multible bölünme ile olur. Amoeba   proteus : Çapı 200-500 mikron olan en büyük amip türlerindendir. 19 Amoeba vespertilio : En çok görülen tatlısu formlarından biridir. Entomoeba coli : İnsan kalın barsağında kommensal olarak yaşar. Besin kofulu içinde yemiş olduğu bakteri maya ve diğer mikroorganizmalar vardır. Entomoeba   histolitica : İnsanlarda amipli dizanteriyi yapar. Barsak epitelini yer. Parazit barsak boşluğunda iken minuta adını alır. Minutalarda besin kofulu içinde bakteri yoktur (E. coli.den farklı). E. histolitica kistleri su vs. ile alınır. Kistler sindirim borusunda açılarak amipler barsak dokularına girer. Barsak duvarına yerleştikten sonra magna adını alır. (Barsak epitelini ve alyuvarları yediği için vakvuolde alyuvarlara rastlanır). Minutalar barsak boşluğunda kist teşkil eder ve ancak yeni bir konağa (insana) geçtiği zaman açılır. Subordo - Thecamoeba (Kabuklu amipler) Bu grupta kadeh, şişe yumurta vs. şeklinde olan bir kabuk meydana getirilir. Kabuğun organik maddesine dışardan alınan anorganik maddeler de karışır. Pseudopodların dışarı uzanabilmeleri için kabukta bir tane büyük veya daha fazla küçük delik bulunur. Arcella   vulgaris - Nukleus 2 veya daha fazladır. Saat camına benzeyen kabukları vardır. Pseudopodlar filopod cinsindendir. Difflugia : Balon şeklinde olan kabukları yabancı cisimlerle sertleşmiştir. Pek çok türü vardır. 2. Ordo - Foraminifera : Vücut plazmasında bariz bir ektoplazma ayrımı yoktur. Dallanan pseudopodları vardır. Hepsi kabukludur ve kabuğun üzerinde çok sayıda küçük delik bulunur. İlksel formlar kum, kitin, sünger spiküllerinden, yüksek formlar ise kalsiyum karbonattan yapılmış kabuk içerirler. Kabuk boşluğu ya tek bir odacıktan ya da ara bölmeler ile birbirinden ayrılmış olan bir çok odacıktan oluşmuştur. Foraminifer kabuklarının deniz dibinde birikmesi ile tebeşir ve kalker tabakaları 20 teşekkül etmiştir Denizlerde yaşarlar. (18.000 türü bilinmektedir). Pseudopodların hepsi ya büyük delikten çıkar veya buna ilave birçok küçük delik bulunur. Salyangoz kabuğu biçimindedir. Bölünerek çoğalırlar. Bir veya daha çok sayıda küçük nukleus içerirler. Ammodiscus - Kabuk bir odacıklı olup kumdan yapılmıştır. Az veya çok helezonlu boru şeklindedir. Nummulites - Çap 19 cm. büyük fosil formlar bu cinstendir. Kabuk mercimeğe benzer üzerinde ikinci bir kabuk vardır. Foraminiferlerden Fusulinidae familyası birinci zamanın son devrinde oldukça kısa bir süre (75 milyon yıl) içerisinde büyük bir gelişme göstermiş ve sonra yok olmuştur (bunların bazıları sığ deniz tabanını kaplayan çapı 2 cm. kadar olan büyük tek hücrelilerdir). Genellikle bu fosillere petrolün bulunduğu yataklarda rastlanır. (Bir petrol kuyusu kazılırken tortul kayaları arasında birbirini izleyen ince tabakalar halinde Fusilinidae türlerinden oluşan katlar görülür. Tabakalardaki (belli bir kısmı içinde bulunan) türlerin incelenmesiyle sondaj yapılan yerde paleozoik tabakada ne kadar ilerlendiği tahmin edilebilir. 3. Ordo - Heliozoa (Güneş hayvancıkları) - Küre şeklindedirler. Stoplazma ekto ve endoplazma bölgelerine ayrılmışlardır. (Dıştaki ektoplazma bir veya daha çok vakuollüdür. Endoplazma orta bölgede granüllü olup nukleuslar yer alır). Çoğu tatlısularda yaşar, vücut çıplak veya kabuk kafesle örtülüdür. Pseudopod destekli tipinde (aksopod) olup, ekto-endoplazma sınırından, ya da nukleustan hatta çok nukleuslu türlerde herbiri bir nukleustan çıkar. (Hususi bir destek noktasından çıkar). Actinosphaerium - Örtü ve iskeleti yoktur. Oldukça büyük çapı= l mm. Aksopodların eksen çubukları ekto-endo stoplazma sınırında olup endoplazmada 200 veya daha fazla nukleus var. (Ektoplazmada 2-14 kontraktil koful yer alır. Kokmuş bataklık sularında bulunur. 21 Clathrulina - Küre şeklinde büyük delikli pseudokitinden iskeletleri vardır. Boru şeklinde uzun bir sapla kendilerini tespit ederler. 4. Ordo - Radiolaria - Stoplazmaları iç ve dış olmak üzere kapsül ile iki bölgeye ayrılır. (Kapsül organik madde ve pseudokitinden yapılmıştır) kapsül üzerindeki delikler vasıtasıyla iki stoplazma bölgesi temas halindedir. Genellikle silisyum dioksitten pek azında da stransiyum sülfattan yapılmış (kalsiyum aliminyum silikatta olabilir) değişik şekillerde hayvanlar aleminin en güzel ve zarif iskeletlerini salgılarlar. Başlıca iskelet elementleri iğne, diken, dallı veya çatallı çubuklar ve muhtelif şekilde delinmiş küreledir. (Bunlar kapsülün iç ve dışında bulunabilirler) Bu iskeletler okyanus tabanında çamur haline gelir ve basınçla çakmak taşı gibi silisli kayalara dönüşür. Endoplazmada bir veya daha çok nukleus, yağ damlacıkları, ektoplazmada besin vakuolleri, pigmentler ve yağ damlaları (Tek hücreli alg) yer alır. Bir kısımdan çok sayıda pseudopodlar çıkar. Pseudopodlar çoğunlukla filopod veya aksopod tipindedir (bu ordoda kontraktil vakuol yok). Dış tabakalarını genişleterek suda farklı seviyelere iner ve çıkarlar. Denizlerde yaşarlar, genellikle plankton hayvanlardır. Heterotrofturlar, flagellatlar ve diatomeler ile beslenir. Theopilium - İskelet miğfer şeklinde-Akdeniz.de Heliosphaeera - İskelet kafes şeklinde - Akdeniz.de III. Class - SPOROZOA (Sporlular) Omurgalı ve omurgasız hayvanlarda hücre içi ve hücre dışında yaşayan parazitlerdir. Her tür belirli bir konakçıda yaşar. Yuvarlak veya oval bir hücreye benzerler. Tek bir nukleusları vardır. Parazit olduklarından hareket ve boşaltım organelleri yoktur. Sporozoonlar konakçı vücudunda bir süre eşeysiz olarak çoğalır. Bu tarz çoğalmaya Schizogonie ana sporozoona Schizont ve bölünme sonucunda 22 meydana gelen genç hayvana da Merozoit denir. Merozoitler sağlam konukçu hücrelere hücum ederler diğer hücreleri aşılarlar. Merozoitlerin büyümesi ile yine eşeysiz çoğalan Schizont’lar veyahut eşeyli olarak çoğalan gamontlar teşekkül eder. Parazit organizma ancak eşeyli çoğalma yani Sporogonie yolu ile başka konukçulara geçme imkanını bulur. Yaşam döngüleri üç bölüme ayrılabilir; 1. Sporogonie (eşeysiz çoğalır) 2. Schizogonie (eşeysiz çoğalır) 3. Gametogonie (eşeyli çoğalır). Bu ayrımda, schizogonie safhası iki bölüme ayrılarak schizogonie ve gametogonie olarak incelenmektedir. Schizogonie periyodunun sonuna doğru bazı gametler makro ve mikrogamete dönüşerek eşeyli çoğalırlar. Bu safha eşeysiz ve eşeyli iki bölüme ayrıldığından bir farklılık oluşmaktadır. Gamontlar çoğunlukla bölünerek veya doğrudan doğruya gametleri (mikro ve makro gamet) meydana getirir. Gametlerin birleşmesi ile ortaya çıkan zigot yardımı ile parazitin geçişi olur. Zigot’un etrafı koruyucu sert bir kabukla örtülür onun için buna Spor da denilir. Sporozoa adı buradan gelmektedir. Zigot=spor, içinde çok sayıda genç fert teşekkül eder. Spor başka bir konakçıya geçince muhafaza parçalanır ve genç Sporozoitler serbest hale geçer. Büyüyerek schizont haline gelir. Bazı türlerde zigotun bir konakçıdan diğerine geçişi kan emen bir ara konakçıyla olur. Bu halde zigot etrafında kabuk bulunmaz. Sporozoanın çoğunda, bir hayat devri içinde schizogonie ve sporogonie birbirini tabip eder. Bu çoğunlukla konakçı değişimi ile birlikte görülür. Ordo - Coccidiomorpha : Hücre içi parazitidirler. Hayvanların barsak epiteli veya iç organlarında yaşarlar. Eimeria - küçük bir çiyan cinsi olan Lithobiusların barsak epitelinde yaşar. Ayrıca kümes hayvanlarının barsaklarında da yaşar. Plasmodium - Anopheles cinsinden dişi bir sivrisinek bir insanı soktuğunda deride açtığı deliğe biraz da tükrük akıtır. Şayet bu sinek plazmodiumlu ise tükrük içerisinde bulunan sporozoidler kana geçer ve eritrositlere girerler. Sporozoidler eritrositin içinde büyüyerek amip şekilli 23 bir schizont haline geçerler. Oradan karaciğere geçer, burada multible füzyon (çok parçaya bölünme) geçirerek merozoitler oluşur. Bu şekildeki çoğalmaya Schizogonie denir. Bu faz yaklaşık 10 gün sürer, çıkan merozoitler tekrar karaciğer hücrelerine saldırarak schizogonie ile çoğalabilirler. Merozoitler daha sonra eritrositlere saldırırlar ve burada tekrar schizogonie geçirirler. Eritrositin içi merozoidlerle dolunca parçalanır ve serbest kalan merozoidler schizogonie’yi tekrarlamak üzere diğer eritrositlere girerler bu bir süre devam ettikten sonra schizontlar merozoitlere kıyasla daha büyük olan ve daha çok besin maddesi ihtiva eden erkek ve dişi gamontlara değişirler. Gamontlar ancak ara konak vazifesi gören bir sivrisineğin barsağına geçebilirlerse gelişmelerine devam ederler. Bu zamanda erkek gamontlar multiple bölünmeyle 4 veya 8 mikrogamet meydana getirir. Dişi gamontlar olgun makrogametlere değişirler. Döllenme sivrisineğin barsak boşluğunda olur. Zigot uzundur ve amoeboid hareket eder. Buna ookinet zigot denir. Ookinet sivrisineğin barsak epitelinden geçerek barsak kaslarına yerleşir ve etrafı kalın bir kılıfla çevrelenir. İçerde multiple bölünme ile pek çok sayıda sporozoid meydana gelir. Kılıfın patlaması ile serbest hale gelen sporozoidler sivrisineğin vücut boşluğundan geçerek tükrük bezlerine gelirler. Böyle bir sivrisineğin insanı sokması ile Plasmodium’un hayat devresi tamamlanmış olur. Nöbetler daima merozoidlerin kan içine dökülmesi zamanına rastlar. İlk nöbetten bir hafta sonra gametler teşekkül eder. Gamontlu kan emmek sureti ile sivrisinekler enfekte olur. sivrisinekteki gelişme 10-20 gün arasındadır. Enfeksiyondan sinek etkilenmez. Plasmodium   vivax : 48 saatte bir alyuvarlar parçalanarak merozoitler kana geçer. Alyuvarların patlamasından önce titreme, patlamasından sonra ateş gelir. Bu parazitin neden olduğu sıtmaya Tersiana denir. Plasmodium   falciparum (Lavenaria malaria) : Tropik sıtmaya sebep olur. 48 saatte schizogoni devresi tamamlanır. Eritrositlerin birbirine yapışması sonunda kılcal damarların tıkanma tehlikesi vardır. Beyin ve kalp damarları tıkanırsa ölüme sebep olur. 24 Plasmodium   malaria : Schizogoni devresi 72 saattir. Quartana tipi sıtmaya neden olur. Sıtma tedavisi 17. asırda cinchona denen bir ağaç kabuğunun Peru’dan Avrupaya getirilmesi ile başlar. O zamandan beri kinin, malarya tedavisinde kullanılmaktadır. Denilebilir ki bu ilaç insanlar tarafından keşfedilen ilaçlar arasında son zamanlarda keşfedilen sülfamidler ve antibiyotikler dahil en fazla nisbette insan hayatı kurtarmıştır. 2. Ordo - Gregarinida : Birçok omurgasız hayvanın barsak ve vücut boşluklarında parazit olarak yaşarlar. Gragarina   blattarum : Hamam böceklerinin barsaklarında parazit olarak yaşarlar. Vücutları epimerit, protomerit ve deutomerit olmak üzere üç bölümlüdür. Epimerit çengellidir. Hayvanın tutunmasına yardım eder. Nukleus bir tane olup deutomerit bölümünde yer alır. IV. Class : CILIATA (Infusoria) Birhücreli hayvanların en yüksek organizasyonlu grubunu teşkil ederler. Vücutları oval, küre, silindir, vazo vs. gibi değişik şekillerde olup pelikula ile sarılmıştır. Bazıları üzerini örten zarın (pelikula) elastiki olması sebebi ile şekillerini değiştirebilir. Stoplazmaları ektoplazma ve endoplazma bölgelerine ayrılmıştır. Ektoplazmada kirpikler (sil), miyonemler, besin alma ile ilgili olan organeller, kontraktil vakuoller ve savunma organeli olan trikosistler bulunur. Endoplazma granüllü bir sıvı halindedir. Burada besin kofulları yedek besin depoları (glikojen ve yağ) ve nukleuslar görülür. Hareket organeli olan siller beslenmede de etkili kısa iplikçiklerdir. Bunlar ektoplazmada bulunan dip taneciklerinden çıkarak pelikula’yı deler ve yüzeye geçerler. Uzunlamasına ve diagonal olarak sıralanmış vaziyettedirler. Ciliat’ların bir kısmı da dip taneciklerini birbirine bağlayan 25 ipliksi bir sistem mevcuttur. Siller yapı ve fonksiyonları bakımından flagellatların kamçılarına benzerlerse de boyları kısa ve sayıları fazladır. Vorticella gibi bazı Ciliat gruplarında düz veya çizgili kas liflerinden ibaret miyonemler vardır. Bu lifler sayesinde bütün vücut veya bazı kısımları kontraksiyon yapabilir. Heterotrofturlar, bazıları bakteri, küçük birhücreliler ve çürümüş besinler ile geçinir. Bunlarda peristom bölgesindeki tüylerin hareketi ile ağıza doğru bir su akımı oluşturulur. Besinler titrek tüylerin hareketi ile cytostom ve huni şeklindeki cytopharynxten geçer. Bu arada küresel biçimde toplanan besin koful içine alınır. Besin kofulları stoplazma içinde belirli bir yönde hareket ederler. Sindirilen besinler koful membranından stoplazmaya geçer, artık maddeler ise sitopig’den dışarı atılır. Tatlısularda yaşayan türlerin ektoplazmasında ve belli yerlerde kontraktil kofullar vardır. Paramecium’da kontraktil koful etrafında daire şeklinde sıralanmış toplayıcı kanallar vardır. Trikosistler, korunma organelidir. Bunlar ektoplazmada, vücut yüzeyine dik olarak sıralanmış oval veya çomak şeklinde küçük organellerdir. Mekanik veya kimyasal uyartı karşısında pelikulada bulunan delikten fırlatılarak sivri uçlu uzun iplik halini alırlar. Paramecium gibi bazı cinslerde bu organeller bütün vücutta, yahut vücudun belli bölgesinde bulunur (Didinium). Endoplazmada Macronukleus ve Micronukleus vardır. Macronukleus beslenmede rol oynar. Micronukleus, çoğalma ile ilgilidir, sayısı l-80 kadar olabilir. Bölünmeleri enine ikiye bölünme şeklindedir. Nadiren boyuna olur. Macronukleus amitoz, micronukleus mitozla bölünür. Vorticella ’da olduğu gibi yeni teşekkül eden fertler bir araya gelerek koloni meydana 26 getirebilirler. Yalnız Suctoria alt-sınıfında tomurcuklanma ile çoğalma görülür. Ciliatlar.da Protociliata hariç hepsinde eşeysel çoğalmaya benzetebileceğimiz konjugasyon görülür. Konjugasyonda bireyler ağızlarınının bulunduğu kısımdan yan yana gelerek bir çift teşkil ederler. Bu sırada çiftteki her organizmanın macronukleus’u parçalanarak kaybolur. Mikronukleus’lar ise, üst üste iki defa bölündüğünden her bir fertte 4 nukleus meydana gelir. Bunlardan üçer tanesi stoplazma içinde erir. Geriye kalan birer nukleus bölünerek ikişer nucleus meydana getirir. Bu sırada yan yana gelmiş olan iki ciliat’ın hücre zarı eriyerek arada bir stoplazma köprüsü teşekkül etmiştir. Her iki organizmanın nukleuslarından birisi stoplazma köprüsü yolu ile diğerine geçer ve orada bulunan nukleus ile birleşir. Bundan sonra fertler birbirinden ayrılır. Bu dönemden sonra örneğin Paramecium caudatum ’da üç bölünme ile 8 nukleus teşekkül eder. Bunlardan üç tanesi kaybolur. Geriye kalanlardan 4’ü macronukleuslar.ı bir tanesi de micronukleus.u meydana getirir. Paramecium ve micronukleus bölünür. Macronukleuslar taksim edilir. Paramecium ve micronukleuslar tekrar bölünür. Neticede bir macro bir micronukleusu olan 8 Paramecium meydana gelir. Ciliata sınıfı 3 alt sınıfa ayrılır: l- Subclass; Protociliata 2- Subclass; Euciliata 3- Subclass; Suctoria 1- Sub Class Protociliata : Vücut şekilleri yuvarlak veya yassı olup siller vücudun her tarafında bulunur. Hücre ağzı ve kontraktil koful yoktur. Nukleus iki veya daha çok bölünme ile ve konjugasyonla değil kopulasyon şeklinde eşeyli olarak çoğalırlar. Kurbağaların larva ve erginlerinde nadiren de diğer soğuk kanlı ve omurgalılarda barsak parazitidirler. 27 Opalina ranarum : Vücut yassı ve çok nukleuslu su kurbağalarının son barsağında parazittir. 2- Subclass Euciliata : Hücre ağzı vardır, genç ve ergin safhaları kirpikli olan Ciliatlardır. 1- Ordo - Holotrichia : Basit yapılı siller kısa ve eşit boyda bunlar ya boyuna sıralar halinde bütün vücut yüzeyini kaplar veya kemer oluşturacak şekilde sıralanırlar. Ağız yüzeyde veya içeri çökük bir çukur (peristom) dibindedir. Paramecium : Bu grubun en çok bilinen cinsidir. Þekli nedeniyle terliksi hayvan olarak da adlandırılır. En çok rastlanan türleri; Paramaecium bursaria- geniş ve yassı olduğundan yeşil renkli görülür (zooklorel= yeşil renkli alg, stoplazmada simbiyoz olarak bulunur). Paramecium caudatum : En çok rastlanan türdür. Colpidium colpoda : Şekil olarak böbrek gibidir. Dileptus: Ön uçta uzun ve kontraktil bir hortum bulunur, arka uç sivri, macronukleus tespih tanesi gibi bir veya birçok kısımlıdır. 2 - Ordo - Spirotricha : Peristomun sağından veya ön kenarından cytopharynx’e inen adoral membranal bölge içeren tüm Ciliatlar bu grupta yer alır. Kirpikler kaynaşıp zar şekline dönmüştür. Sub Ordo 1- Heterotrichae - Kirpikler vücudun her tarafında eşit ve uzun sıralar oluşturacak tarzda dizilmiştir. Ayrıca ağzın bulunduğu bölgede cytopharynx.e kadar devam eden bir kirpik bölgesi vardır Stentor (Borozan Hayvanı) : Vücut huniye benzer biçimdedir. Ağızları vücudun geniş tarafında olan ağız çukurunun (peristom) dibindedir. Membranel bölgesi peristomun etrafını sardıktan sonra helezonlar teşkil ederek sitofarinse iner. 28 Genellikle kendilerini bir yere iliştirirler ancak buradan ayrılarak serbest yüzdükleri görülür. Macronukleus tesbih şeklinde olup micronukleus bir veya birden fazladır. Balantidium : Omurgalı (Domuzlarda) ve omurgasız hayvanların barsaklarında parazit olarak yaşar. Sub Ordo 2-Entodinomorpha : Sınıfın en kompleks grubudur. Vücudun arka ucunda değişen sayı ve biçimde dikenimsi uzantılar yer alır. Ağız bölgesinden başka diğer bölgelerde de membranal bölgeler vardır. Entodinium : Siller yalnız adoral bölgede yer alır. Sığır, koyun, deve vs. geviş getiren hayvanların sindirim sisteminde yaşar. Arka ucu uzantılıdır. Ophryoscolex : Arka uçtaki uzantıların dışında bazı türlerde ön uçta da diken çelenkleri vardır. Daha çok keçilerde bulunur. Stylonychia : Arka uçta 3 uzantı vardır. Tatlısularda bulunur. 3 - Ordo - Peritrichia : Siller diğer ordolara göre daha azalmıştır. Vücudun ön ucunda daire biçiminde peristom vardır ve burada etrafı sillerle çevreli iç ve dış sil kemeri oluşturur. Adoral bölgedeki siller dalgalı bir zar görünümünde. Bazılarında vücudun arka tarafında halka şeklinde sıralanmış siller bulunur ve genellikle vücutları bir sapta tutunmuştur. Çoğalmaları diğer Ciliatlardan farklı olarak boyuna bölünme iledir. Konjugasyonda görülür. Vorticella : Saplı ve çan biçimindeki vücutta siller yalnız ön tarafta iki sıra helezon oluşturacak tarzda dizilmiştir. At nalı şeklindeki macronukleus’un girintisinde küçük bir micronukleus bulunur. Sap ile kendini bir yere tutturur ve sapta bulunan esnek iplikler (miyonem) ile ileri geri hareket edebilir. Kontraktil vakuol bir tanedir. Vorticella microstoma - Pis sularda görülür. Vorticella nebulifera - Temiz sularda. 29 3 - Sub Class Suctoria : Gençleri serbest yüzer ve kirpikli Ciliatlara benzer. Ergin safhada silleri yoktur. Yerine emme tentakülleri meydana gelmiştir. Doğrudan doğruya veya sap ile kendilerini bir yere tesbit ederler. Sap kutikuladan yapılmıştır. Uzayıp kısalamaz. Bir adet oval biçimli uzun veya dallı macronukleus veya daha fazla sayıda micronukleus bulunur. Besin alma organelleri emme tentakülleridir, bunlar ektoplazmanın tüp şeklindeki uzantılarıdır. Stoplazmalar ekto ve endo olmak üzere ikiye ayrılır. Emme tentakülleri avın üzerine yapışır ve av felce uğratılır. Sonra da emilir. Eşeysiz çoğalma iç ve dış tomurcuklanma ile olur. Eşeyli çoğalma ve konjugasyon da görülür. Ephelota   gemmipara : Emme tentaküllerinden başka sivri uçlu tentakülleri de vardır. Denizlerde yaşarlar. SUB-REGNUM : METAZOA Protozoaların dışında METAZOA adı altında toplayabileceğimiz diğer hayvan phylumlarında vücut çok hücreden yapılmıştır. Gelişmeleri sırasında çeşitli embriyo tabakaları ve bunlardan da farklı organlar teşekkül eder. Phylum : PLACOZOA En ilkel çok hücreliler olarak kabul edilirler. 1883 yılında Avrupa.daki bir deniz akvaryumunda küçük, hayvana benzer serbest yaşayan bir canlı bulundu ve adına Trichoplax adhaerens dendi. Bu canlı, yassı vücutlu (bazen küremsi) 0.1-3 mm çapında, gevşek yapılı, kasılgan, mezenşime benzeyen ince iç hücreleri örtmüş monosilli epitel hücreleri ile çevrilidir. Kenar kısımları düzensiz, amipler gibi şekil değiştiren hücrelerden oluşmaktadır. Renksizdirler. Üzerindeki silleri ile çok yavaş olarak sürünür gibi hareket ederler. Bir hücreli ve algler ile beslenirler. Bölünme ve tomurcuklanma ile eşeysiz olarak çoğalırlar. DNA miktarı bugüne kadar bilinen hayvanların hepsinden daha azdır. Birçok araştırmacı bunları süngerler ile birlikte incelemeyi teklif etmektedirler. 30 Phylum : PORİFERA (Spongaria) Süngerler radiyal simetrilidir. Farklılaşmış bir organ sistemleri yoktur. İlk defa Aristo tarafından hayvanlar alemi içersine ilave edilen bu canlılar, sonradan uzun yıllar bitkisel organizmalar olarak kabul edilmiş hatta bazıları cansız olduklarını iddia etmiştir. 18. Asrın başlarında Zoophyta grubu içersine konulmuş daha sonra Linnaeus bunları Coelenterata grubu içersine yerleştirmiştir. 19. asrın başlarında phylum Porifera adı altında ayırt edilerek hayvanlar alemindeki bugünkü yerini almıştır. Ancak bugün bile süngerlerin sistematik yeri münakaşalıdır. Birçok araştırmacı tarafından Protozoa ve Metazoa gibi ayrı ve bunlara eşit anlamda Parazoa adı altında incelenmektedir. Süngerlerin çoğu denizde (larvaları hariç) sesil olarak yaşarlar. Ufak bir grubu (Spongilidae familyası) tatlı sularda bulunur. Sahillerde ve derin sularda kendilerini taşlar, mercan resifleri, bitkiler veya herhangi bir sert yüzey üzerine tesbit ederler. Çeşitli vücut şekilleri de (vazo, kadeh, torba veya şekilsiz kümeler halinde) bazen de çeşitli cisimlerin üzerini örten kabuk şeklinde olur. Boyları birkaç mm. ile iki m. arasında olup çok değişiktir. Renkleri genellikle kirli sarıdan (kirli beyaz, gri, yeşil, mavi, kırmızı, hatta) siyaha kadar olur. Genellikle çoğalan fertler ana hayvandan ayrılmayarak koloni meydana getirirler. Soliter yaşayanları da vardır. Bütün metazoonlardan çok daha ilkel bir yapı şekli ile Protozoa kolonisinden biraz daha ileri hücresel yapı gösterirler. Tüm çok hücrelilerin atası olan Protozoa.nın koloni teşkil eden flagellat grubundan süngerler alınmış ancak bir yan kol olarak kalmışlardır. Yüksek organizasyonlu hayvanlardan herhangi birinin süngerlerden gelmiş olduğuna dair bir kanıt yoktur. Uyarmalara karşı duyarsız olduğu sinir sistemi ve sindirim boşluğu bulunmayan tek Metazoa phylumu olduğu bilinmekteydi. Ancak son elektromikroskobik çalışmalarla bir sinirsel düzenlenmenin olduğu gösterilmiştir. 31 Basit yapılı bir süngerde vazo şeklinde olan vücut ortada geniş bir boşlukla bunun etrafını saran ince bir çeperden teşekkül eder. Sünger kapalı olan dip kısmıyla vücudunu bir yere tesbit eder. Serbest kalan taraftaki deliğe osculum ortada kalan boşluğa da osculum boşluğu gastral boşluk veya spongocoel denir. Sünger vücut hücreleri yapı ve görevleri farklı iki tabaka meydana getirir. Vücut çeperi gastral ve dermal olmak üzere iki tabakadan yapılmıştır. Gastral tabaka : Osculum boşluğunu çevreleyen bu tabaka bir epitel gibi yanyana gelmiş başka hiçbir grupta görülmeyen kamçılı ve hunili hücrelerden (choanocyte) yapılmıştır. Bunlar, kamçıların devamlı burgu hareketiyle osculum boşluğundaki suyu harekete getirir ve su ile birlikte sürüklenen besin maddelerini içlerine alarak sindirirler. Dermal tabaka : Bu tabakanın dış yüzeyi büyük ve yassı Pynacocyte (Pinakosit) hücrelerinden yapılmıştır. Bu hücrelerin arasında Porocyte denen por hücreleri bulunur. Por hücreleri dermal tabakasından başlayıp osculum boşluğuna kadar devam eden uzun hücrelerdir. Ortalarında hücre içi bir kanal uzanır ve kanalın bir ucu vücut yüzeyinden dışarıya diğer ucu ise iç boşluğa açılır (Bu kanala ostium adı verilir). Dermal tabaka esasında mezenşim karakterinde olup, esas kısmı peltemsi bir yapı gösteren ara madde yani matrixten yapılmıştır. Bu kısım içinde Amoebocyte hücreler yer alır. Amoebocyte hücrelerin çeşitli tipleri vardır. Örneğin cinsiyet hücrelerinin orijinini teşkil eden ve regenerasyonda rol oynayan archeocyte hücreleri; besin maddesini bir yerden diğer bir yere nakleden gezici hücreler ve sünger iskeletini teşkil eden skleroblast ve spongioblast hücreleri. Süngerlerde su vücuda porlardan girer ve choanocyteler aracılığı ile osculumdan dışarı atılır. Özel bir sindirim kanalı olmadığından choanocyteler tarafından yakalanan besinler burada sindirilir (hücre içi sindirim şeklinde). 32 Süngerlerin besinini mikroskobik organizmalar ve organik parçacıklar (ölmüş bitki ve hayvan artıkları) teşkil eder. Süngerlerde yapı bakımından 1- Ascon, 2- Sycon ve 3- Leucon olmak üzere üç tip ayırt edilir. Yapı bakımından basit olan sünger Ascon tipinde olanıdır. Bu süngerlerde gastral boşluk ile dış ortam arasında vücut çeperine kat eden kısa ve düz kanallar bulunur. Sycon tipte vücut duvarı içersinde tüp şeklinde çöküntüler meydana gelmiştir. Bu çöküntülerin etrafında choanocyteler yer alır. Leucon tipte vücuttaki mezenşim tabakası çok kalındır. Vücut duvarının içersinde odacıklar oluşmuştur. Bu odacıklar etrafında choanocyteler yer alır. Bütün sünger tiplerinde vücut desteğini sağlayan iskelet mevcuttur. Bu, spongin liflerinden yapılmıştır. İskelet genellikle iğne şeklinde spiküller veya ağdan yapılmıştır. Mezenşim içersinde yer alan özel hücreler tarafından meydana getirilirler. Spiküller kalkerli ve silisli maddelerden yapılmış olup skleroblast hücreleri tarafından meydana getirilir (Spiküller eksen ve ışın sayısına göre tiplere ayrılır ve buna göre süngerler arasında bir ayırım yapılır). Lif ağı şeklinde olan iskelet ise bileşimi kollagene benzer bir protein olan sponginden yapılmıştır. Spongin spongioblast adı verilen hücreler tarafından salınır. Çoğalma : Eşeyli ve eşeysizdir. Eşeysiz çoğalma 1. tomurcuklanma ile olur ve koloniler meydana gelir. Tatlısularda yaşayan süngerlerde iç tomurcuklanma yani gemmula adı verilen özel bir eşeysiz çoğalma görülür. Tatlısu süngerleri bulundukları suyun kuruması ve donması gibi uygun olmayan yaşama şartlarında ölmeye mahkumdurlar. Bu gibi hallerde tatlısu süngerlerinde gemmula (iç tomurcuklar) meydana getirilir. Gemmula teşekkül edeceği zaman özel arkeositler (Amoebocyteler) bir araya gelir ve dışında epidermis hücreleri bulunan toplu iğne başı gibi yuvarlak ve kabuğu değişik ortam şartlarına dayanıklı olan sarı renkli 33 tanecikler gemmula meydana gelir ve ortam şartları normale dönünce tam bir sünger halini alırlar. Gemmula teşekkülü kurak mevsimlerde tatlısu süngerlerinde türlerinin devamını sağlar. Diğer bir eşeysiz çoğalma 2. Regenerasyon.dur. Yaralanan ve kopan yer Amoebocyte ile tamir edilir. (Bununla birlikte yavaş da seyredebilir. Bazen aylar yıllar alır.) Parçalanan kısımlar Amoebocyte hücre yardımı ile hemen onarılır. 3. Eşeyli çoğalma: Yumurta ve spermalarla olur. Ekserisi hermafrodittir. Dışardan su ile birlikte gelen sperma evvela bir choanocyte içine girer ve buradan yumurtaya iletilir. Döllenme ana hayvanın mezenşimi içinde olur. Döllenmeden sonra segmentasyon başlar (totalegual). Çoğalan hücreler bir blastula meydana getirirler. Silli epitel ihtiva eden embriyo kanala geçerek ana hayvanı terk eder. Bir süre serbest yüzdükten sonra invaginasyon ile dış yüzeydeki kamçılı hücreler içe dönerek vücudun iç yüzeyini örter. Daha sonra kendini bir yere tesbit eden larva ergin bir sünger halini alır (zoocoğrafik dağılış bu yol ile sağlanmış olur). Süngerler diploblastik olmakla beraber embriyonun ektodermi ergin ferdin iç kısmını, endodermi ise dış kısmını örtmüş olur. Bu durum süngerlerin karakteristik özelliğidir. Solunum : Amoebocyte hücreleri O2 ’yi vücut mezenşimi içinde vücuda dağıtır. CO2 ’yi de dışarı atar ve solunumla ilgili olaylar hücre içinde cereyan eder (Protozoa gibi). Süngerler çok basit organizasyonlu olmaları nedeniyle yüksek bir regenerasyon yeteneğine sahiptir. İpek parçadan geçirilen süngerin her parçası yeni bir sünger meydana getirebilir. 3 sınıf ayırt edilir. 1- Class - Calcarea (Calcispongia) 2- " - Hexactinellide 3- " - Demospongia 34 1- Class - CALCAREA Spikülleri Ca2CO3’den yapılmıştır. Vücut yüzeyi sert kıllarla örtülüdür. Hepsi denizlerin derin olmayan kayalık sahillerinde bulunurlar. Birkaç milimetre ile 15 cm. kadar yükseklikte olan küçük formlardır. Grantia : 2,5 cm. boyunda basit silindir şeklindedir. Akdeniz ve Atlantik sahilinde bol bulunur. (Sycon tipinde iskelet kalkerden yapılmıştır.) Leucosolenia : Grantia’ ya benzer, daha küçük, kanal şekli daha karışıktır. Akdeniz (Çok sayıda türü var.) 2 - Class - HEXACTİNELLİDA : Camlı süngerler. Spiküllerini ya ayrı ayrı veya silisli bir madde ile lehimleyerek ağ meydana getirirler. Radiyal simetrili silis sipiküllerinden yapılmıştır. Euplectella   aspergillum : Venüs sepeti sıcak denizlerde yaşar (güzel görünüşlü). 3 - Class - DEMOSPONGİAE : Deniz ve tatlı sularda yaşar. Ticari önemi olan bütün süngerler bu gruptandır. En büyük süngerlerdendir. İskeletleri spongin denen ve bir çeşit protein olan keratin liflerinden meydana gelmiştir. Denizde yaşayan formlar 150 cm. kadar olabilir. Bazılarında silispikül vardır. Euspongia officinalis (Banyo süngeri) : Karışık yapılıdır. Spongin lifleri ve diğer anorganik maddeler ağ şekilli iskelet oluşturur. Lifler ıslakken yumuşak, kuruyunca sertleşir. (Hayvanın oluşumundan sonra canlı kısım parçalanır, döğülür ve hazırlanır.) Memleketimizde Akdeniz’den toplanır. Spongilla   lacustris : (Spongiller ağ tarzındadır) Kanal sistemli Leucon tipinde karışıktır. Büyük formlar hoş olmayan kokuları ince dikenli iskeleti ve tadı nedeniyle özellikle balıklar tarafından yenmez. Küçük formlar birkaç yıl büyükler ise 50 yıl veya daha fazla yaşar. Ayrıca bir 35 takım canlıların Annelid, Crustacea vs. barınağıdır. Sonuç olarak hücre tabakaları Diploblastik, coelom yok, metameri yok, sindirim sistemi, hücre içi morfolojik karakterleri farklılaşmış organ sistemi yok. PHYLUM : COELENTERATA Doku ve kısmen organların bulunduğu ilk hakiki metazoalardır. 1- Embriyolarında iki bariz hücre tabakası (diploblastik) mevcuttur. Kelime olarak coel= boşluk, enteron= sindirim sistemi anlamına gelir ki bu grubun üyeleri içi oyuk kese biçiminde ve 2- ışınsal simetrili vücut yapısına sahiptir. 3- İç kısım dışarıya bir ağızla açılan sindirim boşluğudur. Coelenterata adı da bu nedenle verilmiştir. Phylumun öteki adı knidaria ise bu gruba 4- özgü knidoblast ’ ların varlığına dayanmaktadır. Bu grubun bütün diğer yüksek organizasyonlu hayvanlarla aynı kökenden geldiklerine ve bunların atası olduğuna inanılmaktadır. Sebep olarakta yüksek organizasyonlu hayvanlar gibi bunların da dışarıya bir ağızla açılan iç sindirim boşluğunun varlığı gösterilmektedir. Protozoonların Ciliatlardan geldiğine inanılır. Çünkü Coelenterata larvaları (Planula) silli yapısı ve serbest yüzen tek hücresi ile Ciliatlara benzetilmektedir (Süngerlerde ise böyle bir durum yok yan dal halinde kalmış). 5- Bu grupta ilk gerçek doku gelişimi görülür. Aynı zamanda epitel, bağ, kas, sinir dokuları ve üreme organları bulunmaktadır. Sindirim boşluğunu kaplayan hücrelerin oluşturduğu tabaka (Gastrodermis) endodermden, dışını örtenler ise epidermis (ektoderm) dir. Yüksek organizasyonlu hayvanların aksine bu ikisi arasında mezoderm tabakasının hücresi yoktur. 6- Aradaki mesoglea denen, boşlukta hücresiz veya çok az hücre kapsayan jelatimsi bir matrix ile doldurulmuştur. Epidermis genellikle yassı bir hücre tabakası, dışı ince bir kutikula ile örtülü veya siller ve kamçılar içerir. Buradaki epitel kas hücreleri vücudun kontraksiyonunu sağlar. Özellikle ağız ve tentakül civarında duygu hücreleri dağılmıştır veya toplanarak duygu epitelini oluştururlar. Duygu hücrelerinden, bundan başka, ağız ve tentaküllerde 36 knidoblastlar yer almıştır. İntertestial hücreler tomurcuk ve diğer hücreleri oluştururlar. Bu phylumdaki (dimorfizm) hayvanların çoğunda iki tip fert görülür ve genel olarak bu, iki tip döl değişimi ile ortaya çıkar. Bunlardan sesil yaşayana polip serbest yaşayana meduz adı verilir. 7- Metagenez yani döl değişimi eşeyli ve eşeysiz çoğalmanın biri ardından tekrarlanmasıdır. Polipten eşeysiz olarak meduzlerin, meduzden eşeyli olarak poliplerin oluşumu metagenez olarak bilinir. Meduz vücudunun yanlarında küçük birer çıkıntı halinde gonadlar bulunur. Dişi gonad, yumurtaları; erkek gonad, spermaları meydana getirir. Döllenme suya dökülen spermatozoonların ovaryum içindeki yumurta hücresi ile döllenmesi sonucu olur. Polip tomurcuklanma ile eşeysiz olarak meydana gelir. Bazen meduz bazen de polip nesli bulunmayabilir. Tomurcuklanma en çok rastlanan çoğalma tarzıdır. Ayrıca 8- regenerasyon kabiliyeti çok yüksek küçük bir parça kısa bir zamanda bir fert oluşturur. Polip torba şeklinde olup ortada gastral boşluk ve bunu çevreleyen çeperden meydana gelir. Ağız peristom adı verilen bölgenin ortasındadır. Bunun aksi tarafı ile kendilerini tesbit ederler. Peristomun kenarında yakalama kolları tentaküller yer alır. Meduz ters dönmüş bir polip şeklindedir ve bir şemsiyeye benzer. Üst taraf Uxumbrella polip vücuduna, alt taraf subumbrella ise peristoma tekabül eder. Þemsiye sapının üzerinde kısa bir ağız borusu manubrium yer alır. Sub ve Uxumbrella sonunda tentaküller yer alır. Gastral boşluk çevresinde halka kanal ise basit ve dallanmış kanalları ihtiva eder. Bu phylumun en önemli özelliklerinden biri de knidoblast denen hücrelerin içinde yakıcı kapsüllerin (nematocyte) bulunuşudur. Yakıcı kapsüller mikroskobik hücre organlarıdır. Kitine benzeyen bir maddeden yapılmış ve dışında knidosil denen bir iğne taşır ve bu iğnenin besine dokunuşu ile nematosit dışarı fırlatılır. Fırlamada besin hayvanından gelen kimyasal etkenin olduğu zannedilmektedir. 37 Yakıcı kapsüller üç tiptir. 1- Penetrante : Öldürücü kapsüller (minyatür şırıngayı andırır fırlatıldığında hyphotoxin akıtır). 2- Volvante: Sarıcı kapsüller (avını ya paralize eder ya da öldürür). Kapsül içinde kapsüle bağlı bir ip var. Hayvana sarılır kaçmasını önler. 3- Glutinante: Yapışkan kapsüller (avlamadan başka hidranın takla atar gibi hareketinde tentakülün sert zemine yapışmasını sağlar). Vücut duvarında Ektoderm hücreleri arasında epitel kas hücreleri bulunur. Bunlar elastikiyeti sağlar. Vücudun ve tentakülün hareketi. Bundan başka peristom orta ağız sahası ile tentakül hücreleri üzerinde duygu hücreleri Bu hücreler ya toplanarak duygu epiteli teşkil ederler ya da epitel hücreleri arasına dağılmıştır. Duygu hücreleri sinir hücreleriyle irtibattadır. Bunlar polarize (kutuplaşma) olmadıklarından uyartıları her yöne naklederler. Beyin ve omurilik gibi merkezileşme yok. Ektoderm hücreleri arasında İnterstitital adı verilen enbriyonal hücreler de vardır. Bunlar knidositleri meydana getirirler, cinsiyet hücreleri değişirler, regerenasyon ve tomurcuklanma ile diğer hücre tüplerini verirler. Knidoblast hücreleri yakıcı kapsüller ihtiva eder. Endoderm kısmında çok vakuollü ve uçları ekseriya iki kamçılı hücreler bulunur. Bunlara besin hücreleri denir. Bunların arasında sayıca daha az olan bez hücreleri vardır. Avlarını canlı olarak yakalarlar. Yakalanan avlar evvela nemotocytler ile uyuşturulur, öldürülür ve sonra yutulur. Sindirim kısmen hücre içinde kısmen de hücre dışında yapılır. Vücut boşluğuna alınan madde endodermden çıkarılan enzimlerle kısmen sindirilir. Daha sonra besleyici hücre pseudopodlar ile besini hücre içine alarak (interselular olarak) sindirir ve besin maddesi diffüzyonla diğer hücrelere iletilir. Artıklar ağız yolu ile atılır. 38 Solunum: Suda erimiş 02 vücut duvarındaki ektoderm hücreleri ile alınır ve CO2 i dışarı verir. Endodermde bu olayı tekrarlar. 1) Hydrozoa, 2) Scyphozoa, 3) Anthozoa olmak üzere 3 sınıfa (class) ayrılır. 1. Sınıf HYDROZOA : Döl değişimi vardır. Ekto ve endoderm arasındaki ara tabakada hücre bulunmaz. Cinsiyet hücreleri ektoderm kökenlidir. Hem polip hem meduz dölü var. Bir hidroid polipin vücudu kaide, sap ve esas vücut kısmı olmak üzere 3 bölgeden yapılmış olup gastral boşluk ince bir tüp gibidir. Kaide, vücudu tesbite yarayan küçük bir tutunma kısmıdır. Koloni teşkil eden formlarda kaidenin etrafında zemin üzerine yayılan boru şeklinde uzantılar, stolon vardır. Stolon koloniyi sabit tutmaya yaradığı gibi tomurcuklanma ile üzerlerinde yeni fertler de oluşabilir. Soliter poliplerde stolon yoktur. Hidromeduz umbrellasının kenarında tentatüller bulunur. Bundan başka Uxumbrella ile subumbrella sınırında şerit şeklinde bir saçak (velum) vardır. Velum Obelia dışındaki hidromeduzlar için karakteristiktir. Meduzların sinir dokusu poliplere nazaran daha iyi gelişmiştir. Duyu organları genel olarak statositlerdir. Meduz ve meduzitler ayrı eşeylidir. Gonadlar manibriumun çeperinde veya radyal kanalların da altlarında bulunur. Cinsiyet hücreleri ekseriya dışarıya bırakılır. Döllenme ve gelişme nadiren ana hayvanın vücudunda olur. Meduzlar plankton (deniz yüzeyinde) halinde yaşarlar. Yalnız hidralarla bazı koloni teşkil eden formları tatlısuda yaşar. 1. Ordo - Hydroida : Umbrellaları genel olarak yüksektir. Gonatları manibriyum etrafında teşekkül eder. (Soliter veya koloni teşkil ederler). Kolonide iş bölümü vardır. Poliplerin bir kısmı besin almaya yarar (hidront); bir kısmı ise üremeyi temin eder. Buna üreme polibi gonangium denir. Üreme polibi 39 üzerinde cinsiyet fertleri gonoforlar meydana gelir. Hidroid poliplerinin koloni teşkil edenlerinde ektoderm kökenli bir kitin dış iskelet bulunur. Bu iskelet bazen sapların ve stolonların etrafını çeviren bir ince boru halindedir. Bunun dışında bazı hallerde hydrantların etrafında bir dış iskelet (hidroteka veya hydrotheca) bulunur. Bu şekilde hydrantlar tehlike halinde kendilerini teka içine çekebilir. Bazen tekalarda 1 veya daha fazla parçalı kapak bulunur. 1- Fam : Hydridae : Soliter yaşarlar. 5-6 tentakülden ibaret bir tentakül çelenkleri vardır. Gastral boşluk tentaküllerin içine kadar uzanır. Meduz dölü yoktur. Dünyanın her tarafında göl veya gölcüklerde yaşarlar. Teka bulunmaz. Hydra vulgaris : Tatlısuda yaşar. Hydra viridis Chlorohydra viridissima : Endoderm hücrelerinde simbiyont olarak yaşayan yeşil renkli zooklorelleri ihtiva ettiğinden yeşil renklidir, berrak suda yaşar. 2- Fam : Campannularidae : Hidrantların etrafında yer alan çan biçimindeki hidrotekaları ile tanınırlar. Obelia : Tek bir bireyle yaşama başlayan fert zamanla çok dallı koloniler meydana getirir. 3 - Fam : Sertullaridae : Sapsız olan hidrotekalar 1-4 parçalı kapak ihtiva ederler. Hydrantlar tamamen teka içerisine çekilebilir, tekalar karşılıklı ve dönüşümlü dizilir. Sertularella 4 - Fam - Plumularidae : Koloni dalları tüy şeklindedir. Hydrotekalar dallar üzerinde bir sıra üzerinde bir tarafı daha yapışarak dizilir. Kapak yoktur. Genellikle meduz dölü yoktur. (Eşeysel fertler meduzoidler halinde kolonilere bağlı kalır). Aglophenia 2 - Ordo : Siphonophora 40 Yüksek polimorfizm gösteren suda yüzen veya sabit olan bu grup şekilleri değişmiş polip ve meduz tipleri ihtiva eder. Zehirlidir. Physalia - Serbest yüzen en tehlikeli deniz analarındandır. Zehiri kobra yılanınkine yakın olup , büyük ızdırap verir. 2. Class : SCYPHOZOA Genellikle büyük deniz analarının bulunduğu gruptur. Vücutları 4 ışınlı bir radial simetri gösterir. Mezoglea tabakası hücreli bir jelatin tabakası halindedir. Eşey hücreleri endodermden oluşur. Döl değişim vardır. Ancak polip dölü gerileyerek önemini kaybetmiş meduz dölü önem kazanmıştır. Bu grupta (umbrellanın kenarında velum yoktur) Subumbrellanın ortasındaki dört köşeli kısa bir manibriumun ucunda dört köşeli ağız vardır. Ağzın köşe kısımları genellikle uzayarak kısa veya uzun olabilen ağız tentaküllerini meydana getirir. Sifo meduzlarda duygu cisimlerine rhopalium adı verilir. Vücut kenarları eşit bölmeler halinde loblara ayrılmış ve Rhopaliumlar kenar lopları arasındaki girintilerde yer almıştır. Bazılarında ışık verme kabiliyeti vardır. Birçoklarında mesoglea içinde zooksantel ve zookloreller yer alır. Hepsi karnivordur. Bu hayvanlar çana benzer vücutlarının açılıp kapanması, nabız atışı şeklinde bir hareketle yayılırlar. Vücutları kase, kadeh, borozan, kubbe, tabak, piramit, küp şeklindedir. Ordo - Semaeostomeae Umbrellanın tabak veya kase şeklinde olması ve kısa manibrium ile diğer ordolardan ayrılır. Aurelia (deniz anası): Bütün dünya denizlerine dağılmıştır. Ters dönmüş bir kaseye benzer. Aurelianın periferinde eşit bölümler halinde 8 lob bulunur. Bu loblar arasındaki girinti kısmında rhopalium denen 8 adet duygu organı yer alır. Subumbrellanın merkezinden kısa bir manibrium uzanır. Ortasında kase şeklinde ağız açıklığı bulunur. Manibriumdan 4 ağız tentakülü çıkar ve su içerisinde uzanır. Bu kollar üzerinde çok sayıda yakıcı hücre yer alır. Aurelia’nın besinini teşkil eden küçük 41 hayvansal organizmalar bu kolların yardımı ile yakalanır. Mide umbrella bölgesinin hemen hemen yarısını kaplayan at nalı şeklinde 4 gastrik cep ihtiva eder. Bu gastrik ceplerin iç yüzeylerinde de yakıcı hücreler yer alır. Gastrik ceplerin dış kenarlarında sekizi dallı bir kanal sistemi vardır. Bunlar periferde halka kanallarla birleşir. Bu sistem hem sindirim hem de sindirilen besinin sirkülasyonu ile ilgilidir. Üreme bilindiği gibi meduzlarda eşeylidir. Gastrik ceplerin tabanında parlak pembe renkte gonatlar yer alır. Bunlardan gametler teşekkül eder (Endodermden). Gametler olgunlaşınca gastrik cepler içine dökülürler ve buradan ağız yolu ile dışarı atılır. Yumurta suda döllenir ve az bir zamanda kirpikli bir planula larvası meydana gelir. Kısa bir süre serbest yüzdükten sonra kendisini sert bir zemin üzerine tesbit eder ve genç bir polip gelişir. Daha sonra polibin serbest ucunda enine bölünmeler ile tomurcuklar ephyra meydana gelir. Ephyra’ların kenarları 8 girinti ile parçalara ayrılmıştır. Az sonra her bir ephyra ana fertten ayrılır. Vücudun altı üstüne döner ve bu suretle serbest yüzen bir meduz meydana gelir. Ve aynı devrede devam eder. Aurelia   aurita   - 5-40 cm. boyda olup bütün Avrupa denizlerinde yaşar. Büyük sürüler teşkil ederler. 3. Class : ANTHOZOA (Mercanlar) 6000 türü ile en geniş sınıftır. Pharynx ve mezenterin gelişmiş olması ile farklıdır. Pharynx tüp şeklinde olup dış ortamı gastrovasküler boşluğa bağlar. Mezenter gastrovasküler boşluğun içinde septumlar biçiminde ve arada mezoglea bulunan iki gastrodermis tabakasından yapılmıştır. Bitki benzeri tamamıyla polip evresindeki sölenteratlar olup denizlerde yaşarlar. 6-8 veya çok ışınlı vücut bilateral simetrilidir. Yalnız polip dölü bulunur ve çoğu koloni halinde yaşarlar. Gastral boşluk oluşmuş bölmeler odacıklara ayrılmıştır. Mercanların hemen hemen hepsinde iskelet ektodermik veya mezenşimik olup ektoderm hücrelerinin kalkerli veya keratinli salgılarından meydana gelir. Çoğalmalar eşeysiz yani 42 tomurcuklanma ile veya eşeylidir. Eşey hücreleri endodermden meydana gelir ve ayrı eşeylidirler. Denizlerde bulunur. Soliter veya koloni halinde sesil olarak yaşarlar. Koloniyi bağlayan ana doku mezoglea ve gastrodermal tüplerdir ve koloninin alt yarısını yapıştırır. Mercan kayalıklarında olduğu gibi ölü iskeletlerinden oluşan resifler (üstündeki bireyler canlıdır) yuva ödevi görür. Sıcak denizlerde bulunurlar (Deniz gülü, deniz kırbacı, deniz yelpazesi, deniz kalemi, mercan başlıca örneklerdir). Phylum - CTENOPHORA (Taraklılar) Knidositleri bulunmayan sölenterlerdir. Yalnız iki tentakülleri vardır. Vücutlarının yanlız bir boşluk ihtiva etmesi, organ sistemlerinin bulunmayışı sinir sisteminin subepitel oluşu ile knidlilere benzerler. Denizlerde 100 kadar türü olup ceviz büyüklüğündeki küçük hayvanlardır. Bir jel kütleyi çevreleyen iki hücre tabakasından oluşurlar. Ekto ve endoderm arasındaki jel kütle mezogleaya benzer olup daha gelişmiştir ve içinde hücre bulunur. Dış yüzey tarağa benzeyen ektoderm kökenli 8 sıra kirpikle örtülmüştür. Bunların yardımı ile su üstünde hareket ederler. Vücudun üst kutbunda primer eksenin ucunda karmaşık yapılı bir duygu organı yer alır. Vücut yüzeyindeki tarak benzeri organlar radial simetrili, iç organları ise bilateral simetrilidir. Bu organ hücrelerine bağlanan 4 kirpik demeti ile dengelenen kalker tanecikler kirpiklere daha çok yüklenir ve duygu hücrelerini uyarırlar. Bu durum bazı kirpiklerin daha çok vurularak normal duruma dönmesini sağlar. Sinir sistemi epidermis altında yer alan dağınık bir sistem şeklinde olup bir ağ halindedir. Duygu organında kirpiklere uzanan sinir uzantıları vuruşları kontrol eder. Ağız vücudun alt tarafındadır. Sindirim boşluğu gastrovasküler boşluk halindedir. Sölenterlerden başlıca farklılıkları çok değişik larva gelişimine sahip olmalarıdır. Hepsi hermafrodittir. Çoğu parlak renklidir. Boşaltım sistemi henüz gelişmemiştir. Hem sölenterlerde hem de bu grupta büyük regenerasyon yeteneği görülür. Ktenoforların hepsi karnivordur. 43 Pleurobranchia   ileus - Az çok küre biçiminde ve 13 mm. boyda olup kuzey denizi ve Atlas Okyanusu.nda bulunur. COELEMATA (Bilateria) Sölomatlar bilateral simetrili muhtemelen yerde sürünen hayvandan türemiştir, çünkü bunların ağızları aşağı doğru yönelik olarak vücut ventral ve dorsalde farklılaşmış böyle olunca bileteral simetri doğmuştur. Duyu organları öne yönelmiş bunu sinir sistemi izlemiş ve hayvanın hareket ettiği yönde bir baş ortaya çıkmıştır. Organların oluşumuna mezoderm de katılmıştır ve mezodermle astarlanmış ikinci bir karın boşluğuna rastlanır (Coelom). Phylum : PLATYHELMİNTHES (Yassı kurtlar) Vücutları dorso-ventral olarak yassılmış, genellikle yaprak şeklinde ve yumuşak yapılı olan hayvanlardır. Tatlısu, deniz ve karalarda yani nemli ortamlarda serbest olarak yaşayan türlerden başka parazit olanları da vardır. Gastrodermis ve epidermis arası (blastocoel) mezenşim dokusu ile doldurulmuştur. Yassı kurtlar vücudun ventral bölgesinin orta kısma yerleşmiş tek açıklık olan ağızla, dışarı ile ilişkili bir gastrovasküler boşluğa sahiptir. Bu boşluk bazen dallanmış da olabilir. Dolaşım sistemi yoktur. Bu nedenle de sölenterlere benzerlerse de simetri durumlarının farklılığı, gonatların da taşıma kanallarının oluşu ve boşaltım organlarının varlığı ile onlardan ayrılır. En dışta epitel tabaka ve salgıladığı kutikula ile siller olup, vücut derilerinin altında bir epitel ve kas tabakası yer alır. Bu tabaka ile barsak arasındaki boşluk yıldız şekilli hücrelerin meydana getirdiği (ve aralarında boşluklar bırakan) blastocoel ile doludur. (Blastocoel intercelular boşluk bırakan yıldız şekli hücrelerden oluşmuştur ve bütün organlar bu doku içine gömülüdür). Sindirim sistemi sert bir yutak ve orta barsak olarak ayırdedilir. Anüs yoktur (ağız her iki maksatla da kullanılır). Torba halinde olan barsak parazit içermez. Boşaltım organı protonefridium tipinde ve dallı bir kanal sistemi halindedir. Protonefridiumlar yüzlerce alev hücresi içerir, çift ya da tek, bazen de çok 44 sayıda delikle dışarı açılır. Bu delikler vücudun karın tarafında ya da son kısmında bulunurlar. Protonefridiumlar vücudun su miktarını da düzenlerler. Sinir sistemi ağ şeklinde olup bazen de bir beyin ganglionu ile ondan çıkan sinir kordonları biçimindedir. Vücutları dışta ektoderm, içte endoderm ve bu iki tabaka arasında organların bir çoğunu meydana getiren mezodermden oluşur. Bu organlar kaslı bir yutak, basit gözler, duygu organları, bir beyin ganglionu, bir çift birbirine bağlı karın sinir şeridi ve üreme organlarıdır (ovaryum ve testisler, bunlarla ilgili kanallar, penis ve vaginadır). Sölenterlerin aksine yüksek organizasyonlu hayvanlar gibi bilateral simetrili olup belirli bir ön ve arka uca sahiptirler. Hareket vücut yüzeyindeki kirpiklerle, kısmen de toprak solucanlarına benzer şekilde kas kasılmalarıyla yapılır. I - Class - Turbellaria Tatlı su, tuzlu su ve rutubetli topraklarda serbest yaşarlar. Boyları 0.1-500 mm. arasında değişir. Fam: Planariidae :Yassı vücutludurlar,belirli bir baş bölgesi ayırdedilmez. Fakat ön taraf daha geniş olup duygu organı, göz, statosit, tentaküller içerir. Ağız karnın orta bölgesindedir. Başın iki yanı kulak gibi çıkıntılı olup, bazen iki yanında tat ve koku çıkıntıları bulunur. Düz bir boru halinde olan yutak (pharynx) bazen etrafı kas kılıfı ile çevrili ve ağızdan dışarı çıkarılarak ava sokulan bir boru halindedir.Derileri bir tabakalı yumuşak ve silli epidermis şeklindedir. Dışarı doğru kutikula salınmaz. Derideki kas kılıfı kontraksiyonu ile sürünerek hareket eder (karın tarafındaki yoğun siller yaşlanma sonucu azalır veya suda dalgalanarak yüzen planariadaki gibi). Sillerin hareketi vücut çevresindeki suyun hareketini dolayısı ile solunumu kolaylaştırır. Boşaltım organı protonefridiumlardır. Protonefridium vücudun iki yanında uzanan çok dallı iki kanaldan oluşur. Vücut dokusu içine kadar ulaşan ve bu kanallarla ilgili her bir küçük kanal ucunda kirpik demetine sahip olan alev hücreleri vardır. Üremeleri enine bölünme ile eşeysiz ve hermafrodit olduklarından karşılıklı döllenme ile eşeylidir. Hepsi karnivordurlar (böcek, solucan yer). 45 Turbelleryalarda çok yüksek regenereasyon kabiliyeti vardır. Solunum vücut yüzeyi ile yapılır. Planaria - Vücut benekli gri ve siyaha yakın renklerde olup 5-25 mm. uzunluktadır. Bunları bıçakla keserek öldürmek hemen hemen olanaksızdır. Bir planaryadan kesilip ayrılan en küçük parçalar bile yenilenme yetenekleri sayesinde eksik kısımlarını tamamlayarak yaşamaya devam ederler. Kesilen parçanın baş kısmına olan uzaklığı yenilenme yeteneğinin başarısını etkiler. Yenilenme, paranşim içinde yer alan neoblastlar tarafından yapılır. II - Class - TREMATODA Ergin haldeyken çeşitli hayvan ve bazen insanların iç organlarında parazit olarak yaşarlar. Yapı olarak turbelleryalara benzerlerse de parazit yaşamalarından dolayı konakçıya yapışmaya yarayan bir ya da daha fazla vantuza ve kirpikler yerine kalın bir dış tabakaya yani kutikulaya sahip olmaları ile onlardan ayırt edilirler. Turbellaryaların bütün hayat boyunca muhafaza ettikleri silli epitelleri trematodların sadece larva döneminde görülür. Yer yer diken ve pullar bulunur. Sindirim, boşaltım ve üreme organları turbellayalara benzer. Ancak ağız ön uçta yer alır. Genellikle hermofrodit hayvanlardır. Beslenmeleri ağız ve barsakla, büyük kısmında ise sadece vücut yüzeyi ile gerçekleşir. Ordo - Digenea Fam. Fasciolidae -Vücutları dorso-ventral yönde yassılaşmış olup, 10 mm. kadar büyüklüktedirler. Biri ağız çevresinde diğeri ise karın ortasında olmak üzere iki vantuzları vardır. Karın vantuzunun yeri familya ayrımında kullanılır. Cins-Distomum : Bu cinse bağlı türler geviş getiren hayvanlarda görülür ve karaciğer sülüğü veya karaciğer kelebeği olarak isimlendirilirler. Tesadüfen insanlara geçerek ölüme sebep olabilir. Distomum lanceolatum (Küçük Karaciğer Kelebeği): Ergin halde koyun, keçi, sığır, at karaciğerinde bulunur. Gelişme safhasında salyangoz ve 46 karınca olmak üzere iki ara konukçusu vardır. Boyu en fazla 1 cm. kadardır. Yassı vücutludur. Önde yer alan ağız bir ağız vantuzu (çekemi) içinde bulunur (geriye doğru barsağın uçları kapalıdır). Ağız vantuzunun gerisinde karın vantuzu yer alır. Parazit konukçu hayvana bu vantuz vasıtası ile tutunur. İki vantuz arasında eşey deliği bulunur. Hermofrodittirler. Bir çift olan testislerden çıkan kanallar birleşerek bir tek kanal (vas defferens) oluşturur ve penise açılır (Penis, penis kesesi içindedir). Dişi üreme organını küçük bir ovaryum, kısa bir oviduct ve uterus takip eder ve penisin yanından dışarı açılır. Bir fert binlerce yumurta meydana getirir. Yumurtalar konukçu hayvanın safra salgısı ile dışarı atılır. Yumurta açılır, içinde tam olarak gelişmiş sillerle örtülü bir miracidium larvası çıkar ve besini ile birlikte kara salyangozunun sindirim kanalına geçer, yumurta kabuğu erir; miracidium larvası serbest hale geçer ve orta barsak duvarına yerleşerek Sporosist meydana getirir (Bunun içinde ikinci bir sporosist dölü), daha sonra içerde serkaria dölü meydana gelir. Serkarialar vena vasıtası ile salyangozun solunum organı boşluğuna gelir ve burada (grup halinde) kistler oluşur. Her kistte 300 kadar serkaria vardır. Kistler solunum organından mukusla dışarı atılır ve otlara yapışır. Bu otu karınca (Formica) yerse metaserkariaya değişir. Bu hayvan koyun keçi vs. tarafından yenirse kist midede açılır ve mide duvarını deler. Vena yolu ile karaciğere gider, safra kanalına yerleşir ve erginleşir. Yumurtalar safra ile barsağa gelir, oradan dışkı ile dışarı atılır. Konakçının zayıflamasına ve ölümüne neden Fasciola   hepatica: Boyu 20-30 mm. kadardır. Koyun, keçi ve sığırların safra kesesinde bulunur. Halk arasında karaciğer kelebeği denir. Kutikula üzerinde diken gibi kabartılar vardır (kirpikli epitel). Dışkı ile konukçunun vücudundan atılan yumurtalar ancak su ile temas ettiği takdirde açılır ve içinden miracidium larvası çıkar (larva su içinde serbest yüzerken). Limnea cinsinden su salyangozuna girer, karaciğere yerleşerek sporosist oluşturur. Sporosistin içindeki embriyonal hücreler redia’ları 47 bunlar da serkariaları meydana getirir. Serkarialar salyangozun barsağı yolu ile dışarı atılır. Bunlar su kenarında bir bitkiye tutunur ve orada kist haline geçer. Otu yiyen konukçu hayvanın midesinde kist açılır, serkaria karaciğere geçerek safra kanalı ve kesesine yerleşir. Yumurtaları idrar yollarında iltihaba sebep olur. Distomum 5-6 mm. en çok 1 cm boyda olmasına karşın bunlar 20-30 mm. boyda olduklarından safra kanallarını kolayca tıkayabilir. Barsak Distomum.daki gibi iki kola ayrılarak aşağı iner ve yanlara doğru kollar oluşturur. Opisthorcis sinensis : (Çin karaciğer kelebeği) İnsan, köpek, kedi, fok ve balık yiyen memelilerin safra kanallarında bulunur. Miracidium ve serkarialar için ana konak salyangoz ve balıktır. Oryantal bölgelerde yaygındır (İnsan dışkısı karışmış sularla sulama nedeni ile) safra ve karaciğerde tahribat yapar. Echinostoma   (Schistosoma)   haematabium: Erkek büyük ve kalın vücutlu olup vücut ventralinde boydan boya bir yarık taşır. Dişi iplik şeklinde daha ince olup erkekteki bu yarık içinde yaşar. İnsanların toplardamarlarında parazit olarak bulunur. Sıcak ülkelerde ara konak su salyangozu olup özellikle pirinç tarlalarında su ile temastaki insan derisinden girerek yumurtalarını kana bırakırlar. Biraraya geldiğinde böbrekten atılamayıp iltihap ve kanamaya neden olur. III. Class - CESTODA (şeritler) Endoparazittirler. Ergin halde omurgalıların barsaklarında, nadiren karın boşluğunda parazit yaşarlar. Dar ve yassı şerit şeklindeki hayvanlarda önde başın bulunduğu kısma scolex denir. Scolex baş ve boyun kısımlarını kapsar. Bu kısımda parazitin konukçu hayvana tutunmasına yarayan çengel ve vantuzlar bulunur. Vücudun geride kalan kısmı seri halinde proglottis denen bölmelerden ibarettir. Proglottisler boyun kısmından tomurcuklanma ile meydana gelirler. Bu nedenle en yaşlı proglottisler en sondadır. Bunlar zaman zaman atılır. Bütün vücut yüzeyi kutikula ile örtülüdür. Kutikulanın altında sırasıyla kaide (bazal) membranı ve bunun altında dış tarafta halka, iç tarafta ise boyuna 48 uzanan kas liflerinden oluşmuş kas tabakaları bulunur. Bunun dışında parenşim kaslar da bulunur. Boşaltım organları protonefridiumlardır. Sinir sistemi başta enine bir ganglion ile geriye doğru uzanan iki sinir şeridinden meydana gelmiştir ki bunlar ana boşaltım kanallarının dışında uzanırlar. Barsak sıvısı içinde yaşadıklarından sindirim sistemi ve ağız yoktur besinlerini barsaklardan osmos yolu ile alırlar. Hermafrodittirler ve proglottislerin her birinde erkek ve dişi üreme organları vardır. Her bir proglottis kendisi ya da başka bir proglottis ile çiftleşebilir. Döllenmiş yumurta ile dolan proglottis kopar ve konakçı vücudundan atılır. Ordo- Cestodes Fam.- Taeniidae Taenia   solium: (domuz tenyası) Ergin halde insan ince barsağında yaşar. Ara konakçısı domuzdur. Ara konağın sindirim kanalına geçen yumurtanın kabuğu erir serbest kalan onkosfer (kancalı embriyo larvası) barsak epitelini delerek kas dokusuna geçer ve sistiserkus (kist) meydana getirir. Böyle bir domuz eti iyi pişirilmeden yenirse, kist barsakta erir, scolex dışarı çıkarak barsak duvarına tutunur. Bundan sonra proglottisler gelişmeye başlar. Ergin halde boyu 3-4 m. kadardır. Taenia   saginata : (Sığır tenyası) Bu şeridin ara konakçısı yalnız sığırdır ve ergin halde insanda bulunur. Sığır etinde bulunan larva şekline Cysticercus adı verilir. Larvalı sığır eti çiğ veya az pişmiş olarak yendiği zaman insanın ince barsağında 8-10 m. boyunda olan şerit meydana gelir. Pişmeden veya az pişmiş olarak yendiği zaman parazit alınmış olur. Domuz şeridine benzer ancak kanca yoktur. Bu şeritler besine ortak olarak insanı zayıflatır. B12 vitamini sömürür, fakat aynı zamanda meydana getirdiği toksik maddelerle kansızlık ve sinir bozukluklarına sebep olur. Parazitleri düşürmek için ilaç verilir. Ama scolex düşmedikçe 2,5 - 3 ay içinde şerit tekrar eski halini alır. 49 Echinococcus   granulosus: (Köpek tenyası) İnsanlar için en tehlikeli olan şerit köpek tenyasıdır. Ergin halde köpeklerde bulunan bu şeridin gelişmesinde ara safha koyunda ve insanda geçer. Köpekle oynayan bir çocuğu, köpek yaladığı zaman yumurtaları kolayca alabilir. Yumurtalar çiğ olarak yenen sebze ve meyvalardan da alınırlar. O zaman parazitin larvası insanın özellikle ak ve karaciğerinde bazen bir çocuk başı büyüklüğünde kistler meydana getirir. İçerisinde birçok scolex oluşur. Kistler çiğ et yiyen köpeklerin barsağında ergin şerit haline geçer. Bu parazit evcil hayvanlarda büyük ekonomik zararlara sebep olur. Kistler delindiği zaman kanla nakledilen scolexler vücudun başka yerlerinde yeni kistler meydana getirirler. Bunlar kalp ve beyine, diğer önemli organlara geçtiği zaman hastanın durumu çok ciddi bir hal alır. Kistlerin tedavisi ancak operasyonla mümkün olmaktadır. PSEUDOCOELOMATA Blastocoel ergin dönemde vücut boşluğu biçiminde gelişir, pseudocoel denen bu boşluk bütünüyle periton zarla astarlanmamıştır. Madde iletimi, azotlu atıkların depolanması, gametlerin gelişme ortamı, eşey bezleri ve organların gelişme ortamı görevlerini üstlenmiştir. Vücut örtüleri tek tabakalı epiteldir. Kaslı yutağın ve anüslerinin gelişmiş olması bu hayvanları Platyhelmintlerden ayırır. Regenereasyon yetenekleri yoktur. Phylum- NEMERTEA (Hortumlu solucanlar) Bazı literatürde class olarak alınmaktadırlar; en yakın akrabalarının Platyhelmintler olduğu düşünülmektedir. Platyhelmintler ile Annelid arasında özelliklere sahiptirler. Paranşime sahip olması, rhabdit benzeri salgı salgılayan silli epitel ile örtülü olması ile Platyhelmintlere, dolaşım sistemlerinin oluşması ve anüse sahip olmaları ile de Annelidlere benzerler. Vücutları yassı veya yuvarlak olup belirli bir baş bölgesi gelişmemiştir. Küçük bir gruptur (550 tür) hemen hepsi denizlerle serbest olarak yaşar. Parazit değillerdir; bu nedenle de fazla bir ekonomik önemleri yoktur; ancak evrimsel açıdan ilk organ sistemlerinin 50 görüldüğü bu grupta boy ortalama 5-20 cm. olup siyah ya da renkli çizgileri olan hayvanlardır. Gruba adını veren proboscis (hortum) vücudun ön ucuna açılan içi boş ve besin yakalanmasında kullanılan kaslı bir tüptür. Bu grupta görülen ilk önemli gelişme bir uçta besin almaya yarayan bir ağız aksi tarafta artıkların atılmasını sağlayan anüs ve arada bir özafagus ve barsakla tam bir sindirim sisteminin bulunmasıdır. Su ve metabolik artıklar yassı kurtlarda olduğu gibi alev hücreleri (protonefridium) ile atılır. Diğer bir gelişme sindirim ve dolaşım işlevlerinin ayrılması olup ilk dolaşım sisteminin bu grupta görülmesidir. Bu sistem vücut boyunca uzanan birbirine enine damarlarla bağlanmış kaslı 3 tüpten meydana gelmiştir. Kalp ve kılcal damarlar yoktur. Kırmızı kan hücreleri içeren gruplar vardır. Kan hareketi, vücut kontraksiyonu ve kaslı kan damarlarının kasılması ile olur. Vücudun ön ucunda sinir halkası ile birbirine bağlanmış iki grup sinir hücresinden (ganglion) meydana gelen bir beyin yer alır. Ayrı eşeylidirler. Regenereasyon yetenekleri var. Gelişmeleri metamorfozla olup larvasına "pillidium" larvası denir. Cerebratulus marginatus: Yassı vücutlu olup 30-40 cm. boydadır. Akdenizde yaşar. Memleketimizde Ankara tavşanlarında rastlanmaktadır. Aschelminthes 1. Phylum: Rotifera 2. Phylum: Nematoda 3. Phylum: Nemotomorpha 1. Phylum - ROTİFERA (Rotatoria) Bunlara döner solucanlar da denir. Bütün dünya deniz ve tatlısularda taban cisimcikleri üzerinde ve alglerde bulunur; bir kısmı da planktoniktir. 51 Laboratuvarlarda Protozoa kültürlerinde de rastlanır. Protozoonlardan daha büyük, mikroskobik hayvancıklardır. Vücutları baş, gövde ve ayak olmak üzere 3 bölgeye ayrılır. Vücut ince bir kitin tabakası ile kaplı olup genellikle arka uçta bir ayak yer alır. Hayvanın tespit edilebilmesi salgı bezleriyle olur. Başta kenarı sillerle çevrili bir disk organı vardır. Buna tekerlek organı da denir. Bu organ harekete ve besin almaya yarar. Rotatorlar saydamdır. Hareket halindeyken iç organları görülür. Ağızdan sonra kaslı farinx (mastax) gelir. Farinx, kutikular bir çeneye sahip olup 7 parçadan oluşmuştur. Öğütücü mide kitinden öğütücü dişler içerir. Daha sonra kaslı mide yer alır. Sindirilmeyen maddeler anüs ile sonlanan bir barsakla dışarıya atılırlar. Başaltım organı protonefridiumdur. İyi gelişmiş bir sinir sistemi vardır. Dişiler partenogenetik olarak çoğalabilirler. Yumurtalar döllenmeden gelişebilir. Erkekleri dişilerinden daha küçüktür. Rotifera’lar arasında şekil ve yaşadıkları yerler bakımından çok büyük değişiklikler vardır. Göl sularında bulunanların vücudu uzun yapılıdır. Arka kısımları çatal şeklindedir (bu hayvanlar ağızlarının etrafında bulunan kirpiklerle suda yüzerler ve solucan şeklinde hareketler yaparlar). Diğer bazı Rotifera’lar silindiriktir ve içinde yaşayabilmek için kendilerine bir kabuk örerler, bu şekilde dış etkilerden kendilerini korumuş olurlar. Bu durum onların çok yaygın olmalarını sağlar. Rotiferlerde yalancı bir coelom bulunduğundan Nematoda ve Gastrotrichia.larla çok yakın akrabalıkları olduğu kabul edilmektedir. Rotifer ve Gastrotrichialar sabit hücreli hayvanlardır. Embriyonik gelişme sonunda mitoz durur. Büyüme ve regenereasyon görülmez. Yalnızca birkaç gün yaşarlar ve yaşlanma başlar ancak günde birkaç saat sodyum sitrat içinde tutulurlarsa insanlardaki gibi yaşlanma nedeni olan kalsiyum tümüyle alınır ve yaşam süresi uzatılabilir. Bu alanda yapılacak deneyler ile insanın ömür uzunluğunun uzatılabileceği sanılmaktadır. Rotatorlar kuru olarak yani latent safhada yılarca canlı tutulabilir. - 272° C.da 8 saat yaşarlar. Bu nedenle deneylerde de kullanılabilirler. 52 Fam - Philodinidae Philodina - Tatlı ve durgun sularda serbest olarak yaşarlar. Sürünerek hareket eden birçok rotator ihtiva ederler. Fam - Brachionidae Gövde kase şeklinde olup vücudunda çıkıntı şeklinde küçük dikenler bulunur. 2. Phylum - NEMATODA Rotifera ve Gastrotrichia ile akraba oldukları ileri sürülmektedir. 10.000 den fazla türü olan bu grup üyeleri denizlerde, tatlısularda, toprakta bitkisel ve hayvansal çürümüş maddeler içinde bulunur. Gruplar farklı ortamlarda yaşamalarına karşın vücut organizasyonları çok benzer. Vücutları uzun ve segmentsizdir; ön kısmı yuvarlak arka kısmı iğ şeklinde sivri, yassı veya çatallıdır. Büyüklükleri çok değişir, serbest yaşayan gruplar 1 mm. kadardır, parazit yaşayan at barsak nematodu 35 cm., Floria medinensis ise 2 metredir. Çoğu hayvan ve bitki parazitidirler. Hemen hemen her toprakta ekonomik önemi büyük olan çok sayıda nematod Başta halka biçimli bir serebral ganglion buradan karın tarafına inen sinir kordonları bulunur. Nematodlarda sindirim sistemi düz bir boru şeklindedir. Ön uçta ağız, arkada anüs bulunur. Bilindiği gibi bu grupta vücut duvarı ile sindirim sistemi arasında yer alan vücut boşluğu, pseudocoel (yalancı boşluk) tipindedir (hakiki coelomda bulunan mezodermik tabaka yoktur). Vücutları kalın fakat çok esnek olan epidermis tarafından salgılanan kalın, üstü partiküllü birkaç tabaka olabilen kutikula ile kaplanmıştır. Silli epitel yoktur. Yalnız boyuna kasları gelişmiştir. Bu nedenle kolaylıkla yılan gibi sürünerek hareket ettikleri halde zorlukla yüzerler. Ergin devrede hücre bölünmesi (mitoz) durur. Ancak hayvan hücre büyümesi ile gelişir. Genç bir nematodun ergin hale gelmesi sırasında kutikula büyümeyi engeller. Bu nedenle kutikula periyodik olarak değiştirilir (gömlek 53 değiştirme). Bu bir nevi deri değiştirmektir. Bu grupta genellikle ergin oluncaya kadar 4 kez deri değiştirme görülür. Her organ belli sayıda hücre içerir. Regenereasyon yoktur. Nematodların çoğu ayrı eşeylidir. Bu durum hayvanlar aleminde ilk defa görülür ve eşeyli olarak ürerler. Erkek eşey açıklığı anüsten, dişinin ise ön ventral taraftan (bir çift olarak) açılır. Fam - Ascaridae - Oldukça kalın vücutludurlar. Ascaris lumbricoides   (barsak solucanı): İnsanlarla domuzların ince barsağında (30 cm. yuvarlak açık pembe renkli) yaşarlar. Ayrı eşeylidirler. Parazit yaşadığı için ağız ve anüs küçülmüş olup, dolaşım sistemleri Döllenme vücut içinde olur, erkekten alınan spermalar uterusa gelerek yumurtayı döller. Sert bir kabuk ile çevrilen yumurtalar yaşadığı hayvanın barsağına inerek dışarı atılır, yumurtaların gelişebilmesi için birkaç hafta nemli toprak veya suda kalması lazımdır. Yumurtalar henüz dışkı içinde iken içlerinde küçük kurtçuklar gelişir. Bu yumurtalar domuz veya insan besinine karışarak alınırsa ince barsakta açılır. Genç kurtlar ince barsağı delerek kan damarlarına buradan da kalp ve akciğere geçerek, bronşlara girerler. Oradan hava boşluğuna ve yemek borusuna tekrar bronşa geçerek erginleşirler. Genç kurtlar çok sayıda ise iltihap, sıtma, kanama gibi nöbetlere sebep olur. Bir dişi askaris günde 200.000 döllenmiş yumurta bırakır. Ascaris   megalocephala (at askarisi) 20-30 cm. boyda olup at barsaklarında parazittir. Fam. Anguillulidae Tarımda ekonomik önemi olan türleri içerir. Anguillula tritici : Buğday zararlısı Anguillula dipsaci : Çavdarda zararlı Heterodera : Pancar ve domateste zararlı 54 Fam. Filariidae İplik kalınlığında ince uzun vücutludurlar. Erginleri lenf dokularında yaşar. Birkaç cm. boydadır. Küçük larvalar kana karışır ve kan emen sineklerle yeni konağa geçer. Filaria - Çoğu bağ dokusu içinde genellikle derinin altında yaşar. Filaria bancrofti - İnsanların lenf sisteminde yaşar ve lenf damarlarını tıkar (Dokularda şişme görülür vücudun altı ve bacaklar şişer). Fil hastalığı elephantiasisi yapar. İnsandan insana geçimi sinek ile olur. Fam. Trichinellidae Trichinella   spiralis: Hayat devresinin bir kısmını insanda geçirip, domuz ve sıçan ince barsağında parazit olup kana, dokulara, çizgili kaslara geçip orada kalker kist oluşturur. Kurtçuklar birkaç yıl sonra yeni konukçuya geçer, kistler sindirilir. Larvalar ince barsakta erginleşir ve hastalık Trichinosis başlar, barsak çeperlerinin delinmesi ateş ve ishal yapar. İkinci safha larvalar kas dokusuna yerleşir. Kas faaliyeti durur. Ağrılar başlar ölüm görülebilir. Fam. Strongylidae - Vücutları silindir şeklinde bazen de iplik gibidir. Kenarları ekseriye dişli olan büyük bir ağız kapsülü içerir. Ancylostoma   duodenale   (Kancalı kurt) Anemiye neden olur. Erginler insan ince barsağında beş sene kadar kalabilir. Barsağın mukozası ile beslenir ve dişleri ile barsak tümörlerini eritir. Fam. Oxyuridae - Çok küçüktür. Gelişmelerinde taşıyıcı ara konak yoktur. Omurgalı hayvanlarla arthropodların barsaklarında yaşarlar. Ağızlarının kenarı düz veya dudaklıdır. Oxyuris - Çoğu 3 dudaklı olup dişilerde vücudun arka ucu iğne gibi uzun ve sivri, erkeklerin ise küttür. Oxyuris   vermicularis - İnsanlarda genellikle çocuklarda görülen parazitlerden biridir (dişiler 2-5 mm, erkekler ise 9-12 mm. boyunda olur). 55 Genç hayvanlar ince barsakta, erginleri kör barsak ve kalın barsakta yaşarlar. Genellikle geceleri yumurta ile dolu dişiler anüsten çıkarak anüs çevresine binlerce (13.000 kadar) yumurta bırakırlar. Normal halde bunlar gelişerek larvaları meydana getirirler. Larvalar henüz yumurta kabuğundan çıkmamış bir halde ağız yolu ile insana geçtikleri taktirde 14 günde ergin hale gelirler. Parazitlerin cilt üzerindeki hareketleri kuvvetli bir kaşıntı yapar. Bazen kaşınan yerlerden tırnak aralarına giren yumurtalar bilhassa küçük çocuklarda parmakların ağıza sokulması ile tekrar aynı konağa döner. Önemli enfeksiyonlara sebep olur. 3. Phylum - NEMATOMORPHA Vücutları iplik şeklinde ve çok uzun olan çoğunlukla kaynak sularında rastlanan kıl kurtlarıdır. İki uçta biraz yassılaşmış olan vücut silindirik bir yapı gösterir. Larva parazitken, erginleri serbest yaşar. Vücutları hipodermis tarafından salgılanan kutikula tabakası ile örtülüdür. Hipodermis bir hücre sırasından meydana gelmiştir ve altında hücreleri epitel şeklinde sıralanmış bir kas kılıfı yer alır. Kas kılıfı yalnız boyuna uzanan liflerden yapılmıştır. Vücudun ön ucunda bulunan ağız ya çok küçülmüş veya tamamen kapanmıştır. Barsak karın sinusunun içinden geçer. Bütün vücut boyunca uzanan sindirim borusu ergin hayvanlarda yer yer körelmiş olabilir. Bu hayvanlarda özel bir boşaltım aygıtı yoktur. Hepsi ayrı eşeylidir. Yumurtalarını suya ve su bitkileri üzerine uzun iplikler halinde bırakırlar. Yumurtalardan küçük larvalar çıkar, bunlar böcekler tarafından besin ile alınırlar. Larvalar bu hayvanların sindirim borusundan vücut boşluğuna geçerler ve orada metamorfoz geçirerek süratle ergin boya ulaşırlar ve konağı terk ederek serbest olarak kaynak suları içinde yaşarlar. Fam- Gordiidae (tel kurtları) Gordius aquaticus - Kahve renkli bir tel şeklindedir. Avrupada bulunur 56 PHYLUM - GASTROTRİCHA Rotiferlere çok benzerler, ancak tekerlekler organı yoktur. Vücutları karın tarafı yassı bir şişeye benzer. Ön uçları baş şeklinde arka uçları çatallıdır. Vücut yüzeyi ince bir kutikula ile örtülüdür ve yüzeyde diken, pul gibi çıkıntılar görülür. Vücut yüzeyinde bazı bölgeler (karın yüzeyi ve ön uca yakın kısım) sillidir. Karın tarafındaki silli bölge yan yana uzanan iki şerit meydana getirir. Baş kısımda da kamçılardan meydana gelmiş dört püskül bulunur. Deride birçok bezler vardır. Ağız ön uçtadır. Sindirim borusu düz olarak arka uca kadar uzanır ve anüs ile sonlanır. Boşaltım organı vücudun yanlarında yer alan 7 çift protonefridiumdur. Boşaltım kanalları dolanmaz, ancak çok kıvrımlıdır. Sinir sistemi ön barsağın yan kısmında yer alır, iki parçalı beyin ve bundan ayrılan bir çift sinir kordonundan meydana gelir. Ancak mikroskopta görülebilen küçük hayvanlar olup havuzlarda, durgun sularda ve çok azı denizlerde yaşarlar. Besinleri bakteri ve alglerdir. Bu phylumda da rotororlarda olduğu gibi hücre sayısı sabittir. Bir kısmı hermofodittir. Bir kısmı da partenogenetik çoğalan dişilerden meydana gelmiştir. Erkeklere PHYLUM - BRYOZOA (Yosun hayvanları) Bir kısmı yosunlara çok benzer diğer bir kısmı da kayalar üzerinde ince dantelli kabuklar şeklinde görünürler. Genellikle koloni meydana getiren sesil hayvanlardır. Bazı türler kalsiyum karbonattan meydana gelen koruyucu bir kılıf salgılarlar. Ağız; üzerinde tentaküller bulunan daire veya at nalı şeklinde lopofofor adı verilen bir kenarla çevrelmiştir. Sindirim borusu "U" harfi şeklindedir (bu sebeple anüs ağıza yakındır). Hermofrodit hayvanlardır. Tatlısuda yaşayanlar statoblast adı verilen tomurcuklanma ile ürerler. 2 gruba ayrılırlar: 1. Entoprocta, 2. Ectoprocta 57 1. Entoprocta- Hakiki karın boşluğu (Coleom) yoktur. Yerine yalancı coelom (Pseudocoelom) mevcuttur. Anüs lopofoforun içindedir. 2. Ectoprocta- Gerçek coelom vardır ve anüs açıklığı lopofoforun dışında kalır. Kolonilerinde avicularium adı verilen ve kuş gagasına benzeyen bir organ bulunur. Kaslarla hareket eder ve ses çıkararak açılıp kapanır. Küçük hayvanların koloni üzerine yerleşmesine engel olur. PHYLUM - BRACHİOPODA (Kandil kabuklular) Kökeni eski devirlere dayalı, kaslarla açınıp kapanan ve kalsiyum karbonattan meydana gelmiş kabukları ile midyelere benzerler. Ancak midyelerde kabuk vücudun sağında ve solunda, bu grupta ise hayvanın altında ve üstünde yer alır. Alttaki kabuk bir sap kısmı ile sağlam bir zemine tutunur ve hepsi denizde yaşar. Sesil hayvanlardır. Jeolojik devirlerde çok daha zengin (3.000 tür) tür sayısına sahip olmakla birlikte bugün 200 kadar türle temsil edilirler. Ağızın iki yanında sillerle çevrilmiş lopofofor kolları tentakülleri bulunur. Boşaltım organları sindirim sistemi kontraktil çalışan kalp, gerçek coelom boşluğu vardır. Yumurtadan çıkan larva sillerle örtülüdür. COELOMATA Bu hayvanlar periton denen mezodermal zar ile yani epitelle tamamen çevrilerek astarlanmış ikinci bir karın boşluğu içerirler. İç organlar bu boşluk içinde yerleşmiş yine peritonla astarlanmışlardır. Coelomatlar ergin dönemde bilateral simetrilidirler. PHYLUM - ANNELİDA Tatlısu, deniz ve karada yaşayan halkalı kurtların bir kısmı diğer hayvanlarda parazittirler. Vücut homonom segmentlere ayrılmıştır. Gerçek coelom ve mezoderm (schizocoel) ihtiva ederler. Sindirim, boşaltım, üreme ve sinir sistemleri vücut boyunca uzanır veya kısmen metameri gösterir. 58 1. Annelitlerde deri ve kas çok iyi gelişmiştir. Vücut en dışta epidermisin bir salgısı olan kutikula ile sarılmıştır. Bunun altında tek tabakalı bir epidermis bulunur. Ondan sonra halka kaslar daha sonra da boyuna kaslar yer alır. 2. Sindirim sistemi Genel olarak önde ağızla başlayan ve anüsle sonlanan uzun bir boru şeklindedir. 3. Dolaşım sistemi kapalıdır. Barsağın üstünde, mezenter içinde uzanan kontraktil bir sırt damarı ile barsak ve karın sınırı arasından geçen bir karın damarından meydana gelir. Sırt ve karın damarı vücudun ön ve arkasında birleştikleri gibi her segmentte bu iki damarı birbirine birleştiren halka şeklinde damarlar vardır. Bazı hallerde sırt damarından başka halka damarlardan bazıları da kontraktil olabilir. Bu taktirde bunlara kalp adı verilir. Kan sırt damarında arkadan öne doğru karın damarında da önden arkaya doğru akar. Kan plazmasında az miktarda kan hücresi ve erimiş halde hemoglobin bulunur. Annelitlerde damar sistemi olmayan birkaç basit form da mevcuttur. 4. Solunum, deri ve bazı sucul gruplarda solungaçlarla yapılır. 5. Boşaltım organı segmental sıralanmış nefridium’lardır. Her segmentte bir çift nefridium vardır. Organları silli bir huni (nefrostom) ile coelom boşluğundan başlarlar ve huninin devamı olan silli boşaltım kanalı da aynı segmentten veya onu takip eden segmentin ventral kısmından dışarıya açılır. Nefridiumlar boşaltım maddelerinden başka coelom boşluklarına geçen eşey hücrelerini de dışarı taşırlar. 6. Sinir sistemi vücudun ön kısmında bulunan bir çift serebral ganglion ile başlar. Buradan ayrılan iki konnektif yutağın etrafını bir halka gibi sardıktan sonra ilk segmentin ventral bölgesinde yer alan karın ganglion çifti ile birleşir. Vücut boyunca her segmentte 1 ganglion çifti bulunur. Bir önceki segmentte bulunan ganglion çiftlerini birleştiren sinir ipliklerine konnektif, aynı segmentte bulunan iki ganglionu birleştiren ipliğe komisur denir. Annelitler ve Artropodlar için karakteristik olan bu tip sinir sistemine ip merdiven sinir sistemi denir. 59 7. Üreme, ayrı eşeyli veya hermafrodit olabilir. Bazı türlerde eşeysiz üreme de görülür. Gelişmelerinde bazı gruplarda sillerle kaplı bir trochophora larva evresi vardır. 8. Mezodermik orijinli olan coelomun içi bir epitel tabakası ile örtülü olup gerçek bir karın boşluğu meydana getirir. Vücut ile barsak arasında kalan coelom boşluğu yani epitel tabakanın barsağa dayanan kısmına splanchopleura, vücut duvarının kas kılıfına dayanan kısmına ise somatopleura adı verilir. 9. Annelitlerde genelde yüksek bir regenereasyon yeteneği vardır. I. Class- POLYCHAETA l. Hemen hemen hepsi denizlerde yaşayan, hafifçe dorso ventral yassı kurtlardır. 2. Belirli bir baş bölgesi vardır. Çenenin değişimi ile meydana gelmiş olan pharynx çevresinde prostomium ile örtülen bir peristomium gelişmiştir. Başın ön kısmı çevresinde 4 çift tentakül var. 3. Parapodiumun bulunması ile karakteristiktir. Parapodun üzerine çok sayıda kitin kıllar (setae) bulunur. 4. Kan kırmızı renkte olup nedeni kan sıvısında erimiº halde bulunan hemoglobin ve ameobosit hücreleridir. 5. Ayrı eşeylidirler. Her üreme mevsiminde coelom epitelinden geçici olarak ovaryum ve testisler meydana getirilir. Döllenme suda olur. Yumurtadan trochophor larvası çıkar. Sub.Class - Errantia Farinkslerini torba gibi ağızdan dışarıya uzatılabilir ve genellikle kitin çene veya diş ihtiva eder. 1-2 çift gözleri vardır. Vücut homonom segmentlidir. Geçici olarak borular içerisinde yaşıyorlarsa da genellikle serbest hareket ederler. 60 Fam. Nereidae Nereis Nereis diversicolor - (deniz kurdu) 8-8.5 cm. boyda olup. Avrupa denizlerinde bulunur. Nereis virens - Kum kurdu veya midye kurdu. Sub.Class - Sedentaria Segmentlere göre vücutları 2 veya 3 farklı bölgeye ayrılır. Gözleri ya çok küçüktür veya hiç bulunmaz. Devamlı olarak boruların içinde yaşarlar. Bazıları kuma gömülürler. Arenicola Arenicola marina - Boyu 12-15 cm. olup olta yemi olarak kullanılır. Akdeniz ve Atlas Okyanusu.nda yaşar. II. Class - OLYGOCHAETA 2000 kadar türü vardır. Tatlısularda ve nemli toprakta yaşar. Belirli bir baş bölgesi yoktur. Yarık biçiminde olan ağız ön uçta, anüs ise arka uçta yer alır. Barsak bütün sırt boyunca uzanan typhlosolis adı verilen girintiye sahiptir. Bu yapı barsakta emilim yüzeyini arttırmaktadır. Barsağın etrafında yer alan Chloragen hücreleri, karaciğer gibi ödev görüp, glikojeni sentez ve depo ederler. Class’ın ismi harekette rol oynayan Setae’lardan ileri gelir. Setaeları kaslar hareket ettirir. Parapod bulunmaz Polychaetlerden farklı olarak hermafrodittirler. Bununla birlikte eşeysiz çoğalan türler de vardır. Her solucan hem dişi hem erkek olabilir. Ancak döllenme vücut içinde olur. Yumurta içinde küçük bir solucan gelişir. Gelişmeleri esnasında, trochophor larvası yoktur . Olygochaetaların en belirgin özelliklerinden biri genellikle eşeysel olgunlaşma sırasında delikler civarında, 6, 7 segmenti kapsayan ve vücudu bir halka gibi saran clitellumun bulunmasıdır. Gelişme sırasında bir madde salınır. Bu, karından birbirine dönük olan hayvanların birbirine bağlanmasını sağlar. Bu kısımda ortalama 32. segmentten geriye 6-7 segmenti kapsar ve burada epidermis çok bezli ve şişkin bir hal alır. Her 61 segmentte kısa kitin setalar vardır. Clitellumda intersegmental boğumlar ve kıllar belirsizleşir veya tamamen kaybolur. Vücut yüzeyi ince bir kutikula ile örtülüdür. Bunun altında epidermis daha içte biri halka şeklinde diğeri de boyuna uzanan liflerden meydana gelmiş 2 kas tabakası ve coelom epiteli bulunur. Karada yaşayanlarda bazı segmentlerde sırt tarafta birer por bulunur. İç tarafta coelom boşluğuna açılan bu porlara coelom ve sırt porları denir. Kuruma tehlikesi olduğu zaman coelom sıvısının bir kısmı buradan dışarıya verilerek derinin nemli kalması sağlanır. Yüksek regenereasyon kabiliyetleri vardır. Besinleri Fam. Tubifidae Çok ince yapılıdırlar . Tubifex tubifex Tatlısularda. Suların dibinde başları dip çamuruna gömülü arka uçları serbest olarak yaşarlar. Boyları 8,5 cm. kadar olabilir. Fam. Lumbricidae - (Toprak solucanları) vücut kılları S şeklinde kıvrık ve sivri uçludur. Her segmentte 8 kıl bulunur. Bunlar yanlarda birer çift boyuna sıra teşkil edecek şekilde sıralanır. Dişi genital por 15, erkek genital porları ise genellikle 14’üncü segmentten dışarıya açılır. Lumbricus terrestris - Boy 30 cm. segment sayısı 140-180 kadar tarla ve bahçe toprakları içinde bulunur, clitellum 31-37 segmentler arasında yer alır. L. rubellus - Boy 15 cm. kadar, clitellum 26-32 segmentler arasında yer alır. Genellikle çürümüş yapraklar arasında bulunur. III. Class - HIRUDINEA Parazittirler ve vücutları sabit sayıda segment içerir. Derilerindeki sekonder bölmeler sebebiyle her iç segment dışta 2-14 halka gösterir. Hirudo medicinalis eskiden beri tıpta kullanılır. Vücutta belirgin bir baş bölgesi yoktur. Bugün bu hayvanlardan elde edilen hirudin maddesi kanın pıhtılaşmasını önlediğinden geniş ölçüde faydalanılmaktadır. Sülükler tatlısularda yaşarlar. Vücutları dorso ventral yassılaşmıştır. Vücudun her iki ucunda anterior ve posteriorde birer vantuz bulunur. 62 Sülükler vantuzlarla tutunarak ileri doğru hareket eder. Ön vantuzun içinde ağız, ağzın arkasında 3 köşe teşkil edecek şekilde sıralanmış 3 kitin diş bulunur. Bu dişlerle yara açıp kan emer. Kan emenlerde tükrük bezi salgısı kanın pıhtılaşmasını önleyen ferment içerir. Sindirim kanalında yan cepler vardır. Bunun için bir defa kan emince aylarca besin almadan yaşayabilir. Hermafrodittirler (Eşeysiz çoğalmazlar). Paraziter yaşama uygun olarak Parapodium veya setaeları yoktur, regenerasyon kabiliyetleri çok azdır, Trochophora larva dönemi Fam. Hirudinidae Hirudo medicinalis - Tıpta kullanılır. Boyu 15 cm. kadardır ve tatlısularda yaşar. Limnatis nilotica - 8-10 cm. boyda olup çeşme yalaklarında yaşar, memeli ve insana geçer. Burun ve ağız boşluklarına yapışarak kan emer. Phylum - ONYCHOPHORA Tropik bölgelerde yaygındırlar. Taşlar altında ağaç kovuklarında rastlanan geceleyin faal olan hayvanlardır. Vücut annelitlere benzer şekilde homonom segmenlidir. Ancak bu segmentler dış boğumlarla birbirlerinden ayrılmadıkları için dıştan görünmezler. Taşıdıkları üyeler segmentlerin yerini işaret eder. Ayrı bir baş bölgesi yoktur. Vücudun ön kısmında ventral olarak yerleşmiş ağız ve yanlarında papillalar bulunur (dorsalde anten gibi bir yapı). Dorsalde göz yer almıştır, ayaklar poliket parapodlarını andırır. Ancak yürümeye yaradığından homolog değildir. Ayrı eşeylidirler. Döllenme ve yumurtaların gelişmesinin bir kısmı vücut içindedir. Dolaşım açık olup kalp dorsaldedir. Kan kısmen hemocoel içinde dolaşır. Solunum püskül trakelerle olur. Boşaltım organı nefridiumlardır. Bu özellikleriyle arthropodlar ile annelitler arasında bir karakter gösterirler ve Arthropodaya geçişi oluştururlar. Fam. Peripatidae 63 Peripatus - Boyları 5 cm. olup geceleri faaldirler. Phylum - ARTHROPODA (Eklem bacaklılar) Karada, tatlı ve tuzlu sularda, havada yaşarlar. Ekvatordan kutuplara kadar geniş bir yayılış alanına sahiptirler. Arthropodlar, homonom segmentli olan annelidlerin aksine Heteronom segmentlidirler. Yani embriyo dönemlerinde muhtelif vücut bölgelerindeki segmentler değişik şekilde gelişerek bir takım bölgeler meydana getirmiştir. Bu bölgeler baş , toraks ve abdomen olmak üzere üç kısımdır. Arthropodlardaki simetri, annelidlerde olduğu gibi, bilateraldir. Hareket değişik sayıdaki segmentlerden yapılmış bacaklarla sağlanır. Kasları enine çizgilidir. Kontraksiyon süratli olduğundan, hareket de çabuk olur. Deri, kutikula ve Ca tuzlarının birikimi ile olağanüstü sertleşmiş ve bir dış iskelet meydana getirmiştir. Dış iskelet harekete engel olmamak için segmentler arasında kesintili olup yerini ince deri kıvrımlarına bırakır. Kaslara destek ödevini görür, zaman zaman atılır ve alttaki deriden yeniden meydana getirilir ki buna deri değiştirme denir. Böylelikle dış iskelet hayvanın büyümesine engel olmaz (her larva ergin hale gelinceye kadar belirli sayıda deri değiştirir. Bu sayı türe, sıcaklığa ve besine göre değişik olup 5-7 kadardır. Lahana kelebeğinde sıcaklığa göre 3-5, güvede ise besine göre 4-40 defa deri değiştirilir). Arthropodlarda her segmentte bir çift ekstremite yer alır. Ancak birçok grupta segmentler kaynaşmış olup dolayısıyla ekstremite sayısı segment sayısını belirler. Başta: Antenler, ağız ekstremiteleri ve gözler bulunur. Toraksta yer alan ekstremiteler hareketi sağlar ve çeşitli gruplarda yürüme, çoğalma, duygu organı, koşma gibi çok değişik görevleri görür. Sindirim borusu vücut boşluğunda serbest olarak uzanır. Dolaşım sistemleri açıktır. Kan kısmen damarlarda kısmen de vücut boşluklarında dolaşır. Boşaltım organları koksal bezler, maksil bezleri, anten bezleri veya böceklerde olduğu gibi malpiki boruları şeklindedir. 64 Solunum suda yaşayanlarda solungaç veya boru ve kitap şeklindeki trakelerle yapılır. Sinir sistemi beyin, yutak konnektifi ve karın ganglionlarından meydana gelmiştir. İp merdiven şeklindeki duyu organları iyi gelişmiştir. Antenler, basit ve bileşik gözler işitme organları ve denge organları bulunur. Ayrı eşeylidirler. Döllenme genellikle içte olur. Bazılarında partenogenez de görülür. Genel organizasyon ile Arthropodalar muhtemelen Annelidaya benzeyen vücudu segmentli kurt (larva) gibi bir atadan köken almışlardır. Bu köken canlıda, çok basit yapılı olan baş muhtemelen duyu kıllarını taşımaktaydı. Ağız ventral tarafta yerleşmiştir. Prostomiumun gelişmesindeki ilk basamak bir çift ventral üye yeni bacakların her vücut segmentinde meydana gelmesi ve hareketin buna ilavesidir. İkinci aşama da buna paralel biçimde başta duyu organları olan göz ve antenlerin gelişimidir. Phylum Oncopoda ve Onycophoranın yaşayan örnekleri bunu göstermektedir. Arthropoda evriminde üçüncü basamak bacakları oluşturan kısımların birbiriyle eklem oluşturacak biçimde bölümlere ayrılmasıdır. Bu gelişme birinci çift extremitelerin ağıza gıda atmaya veya almaya yarayacak şekilde gelişmesini dolayısı ile birinci vücut segmenti ile başın birleşmesini sağlamıştır. Trilobita’da anten ve gözler bu kademede iyi gelişmiştir. Bu kademeye yakın bir noktada Arthropodalar farklı iki dala ayrılır. Birinci grup Cheliserata yani örümceklerin bulunduğu grup diğeri ise (Insecta) böcekler Mryapodlar ve Crustaceae.leri içeren Mandibulata.dır. Günümüzde yaşayan eklembacaklılar iki altşubeye ayrılırlar. Antensiz olanlar keliser (cheliser) taşımaları nedeniyle Chelicerata altşubesine dahil olup bu grupta akrepler, örümcekler ve akarlar yer alır. Anten taşıyanlar ise, ağızın gerisinde yer alan ilk üye çiftinin mandibula olması nedeni ile Mandibulata altşubesi içerisinde incelenirler ve bu grup içerisinde böcekler, kabuklular, kırkayaklar ve çıyanların bulunduğu myriapoda grubu yer alır. 65 Zoologların çoğu böyle bir gruplandırmayı kabul etmektedir. Bununla birlikta bazı sistematikçiler Mandibulata altşubesi, birbirleri ile yakın akrabalıkları olmadıkları ileri sürülen grupları içerdiğinden yapay bir birlik oluşturmaktadırlar. Büyük bir olasılıkla Arthropoda evriminde, Mandibulata ve Chelicerata şeklinde iki daldan çok dört ana dal mevcuttur. Bu dallar; Trilobita (soyu tükenmiş), Chelicerata, Crustacea ve Uniramia altşubeleri ile temsil edilmektedir. Uniramia içerisinde kırkayaklar, çıyanlar ve böcekler yer alır. Diğer üç altşubenin üyeleri sucul olmasına karşın Uniramia karada evrimleşmiştir. Uniramia türleri mandibula ve bir çift anten taşırlar; Uniramia ismi bu hayvanların üyelerinin dallanmamış olduğuna ya da dallanmamış atasal bir üyeden köken aldığına işaret Bazı görüşlere göre, Uniramia üyelerinin ya da tüm altşubelerin farklı Annelida benzeri atadan köken aldığına ilişkin, karşılaştırmalı morfolojiden elde edilen bazı kanıtlar vardır. Eğer bu doğru ise, Arthropoda superphylumu (üstşube) olarak düşünülüp, Trilobita, Chelicerata, Crustacea ve Uniramia, şube (phylum) düzeyine yükseltilebilir. Arthropoda.nın polifiletik olduğu görüşünü bazı uzmanlar ve özellikle bir çok entomolog kabul etmemektedir. Arthropoda phylumunun sistematiği 1. Sub.phylum TRİLOBİTOMORPHA 2. Sub.phylum MANDİBULATA Class : Crustacea Sub.class : Entomostraca Sub.class : Malacostraca Grup Myriopoda Class Chilopoda Class Diplopoda Class Symphyta Class Pauropoda 66 Class Insecta 3. Sub.phylum CHELİCERATA Subphylum - TRİLOBİTOMORPHA (Fosil Formlar) Class - Trilobita Bütün arthropodlar içerisinde en ilkel gruptur. Hepsi denizlerde yaşamış olan bu grubun bugün yaşayan temsilcileri yoktur. Toraks segmentlerinde 1’er çift üye vardır. Son segment üyesiz telsondur. Başta 1 çift anten vardır. Sonra gelen 4 segmentin her biri segmentli üye taşır. Bu grupta vücut tipik olarak birisi dorsal, diğeri ventral, diğer ikisi de yanlarda olmak üzere 3 bölge halindedir ve bu bölgelerin herbiri lobus olarak adlandırılmıştır. Bu nedenle trilobit denmiştir. Subphylum - CHELİCERATA Vücut Cephalothorax (Baş ve toraks) ve abdomen olmak üzere iki kısımdan oluşmuştur. Cepholothorax’da 6 çift ekstremite bulunur. Bunlar : 1. çift Chelicer (ağızın ön tarafında) 2. çift Pedipalpus 3.- 6. çift Yürüme bacağı I. Class - Arachnida 1. Ordo - Scorpionida (Akrepler) Cephalothoraks 6 segmentlidir, abdomen iki kısım olup preabdomen 7, dar ve uzun olan post abdomen 6 segmentten oluşur. Abdomen Cephalothorakstan büyüktür, cephalothorax abdomene bütün genişliği ile bağlanır. Oldukça gelişmiş olan pedipalpusların dip tarafı geniş olup besinin ağıza alınmasına yardım eder. Pedipalpusun uçları kıskaçlıdır (örümcekten farkı) avlarını pedipalpleri ile avlar chelicerleri ile parçalayıp yerler. Chelicer ise küçük ve ucu makas şeklindedir (3 parçadan yapılmıştır). Postabdomenin son segmentindeki telson kısmında zehir iğnesi ile zehir bezi yer alır. Preabdomenin ventralinde 1. sternitin 67 ortasında genital kapak, genital delik ve 2. sternit üzerinde pectin adı verilen dokunma ve bulma organı olarak kabul edilen bir çift tarak bulunur. 3, 4, 5 ve 6. sternitte kitap trakelerine ait birer çift solunum deliği vardır. Akreplerde yürüme bacaklarında göze çarpan özellik ön bacakların diğerlerine göre küçük oluşudur. Cephalothoraks’ın ön orta kısmında 2 median göz ve yanlarda 2-5 tane nokta göz bulunur. Bileşik gözler daha iyi gelişmiştir. Ağız pedipalpler ile bacaklar arasındaki artrium içinde ve üst dudağın altındadır. Akreplerde yumurta dişinin vücudunda açılır ve yavru olarak dışarıya çıkar (doğuruyormuş gibi ancak uterus yoktur). Yavru sırtta taşınır ve bakılır. 700 türden 4 tanesi Türkiye’de vardır. Fam. Buthidae Buthus gibbosus - Batı, Orta ve Doğu Anadolu’da bulunur 6 cm. kadar boydadır. Androctanus crassicauda - Güney ve Güneydoğu Anadolu’da (Adıyaman) bulunur. Bizdeki akreplerin en büyüğüdür. Fam. Scorpionidae Pandinus imperator - Ülkemizde bulunmaz. Dünyanın en büyük akrebi olup Afrika’da yaşar 22 cm. kadar boydadır. Scorpio maurus fuscus - Kuzey Anadolu’da bulunur 6 cm. boydadır. 2. Ordo - Solpugida (Örümcek benzeri) Cepholothorax abdomenle tüm genişliği ile birleşir. Abdomen segmentlidir. Zehir bezleri yoktur. Hızla kaçarlar. Görünüşleri korkunçtur. Halk arasında büyü denir. 3. Ordo - Areneida (Örümcekler) Vücut, cephalothoraks ve abdomenden oluşur. Cephalothoraks ile abdomen dar bir bel (pedicel) bölgesi ile ayrılır. Abdominal bölgede segmentasyon kaybolmuştur. Yalnızca bir familyada segmentasyon görülür. Cephalothorax, karapaks denilen daha sert bir kitinle kaplıdır. Gözlerin sıralanışı sistematikte önemlidir. Bu kısımda 3-4 çift ocel göz 68 bulunur. Cheliserleri tipiktir. Geniş bir kaide kısmı ile kıvrık bir çengel kısmı vardır. Zehir bezinin salgısı bir kanal ile dışarı akıtılır (bu salgı sindirimde rol oynar). Pedipalpus kıskaçlı değildir ve kaide kısmı geniştir. Besin almada kullanılır. Erkekte uç kısım şişe şeklindedir. Kopulasyon sırasında spermleri alır ve dişiye nakleder. Dişide bu kısım çengel şeklindedir. Yürüme bacakları coxa, trochanter, femur, patella, tibia, metatarsus, tarsus segmentlerini içerir. Tarsus segmentinin apexinde çengel biçiminde dişler bulunur. 4. çift bacağın metatarsusu üzerinde 2 sıra halinde tarak şeklinde dikenler bulunur ki buna calamistrum denir. Yine bacakların tarsus kısmında bir çift çengel tarak şeklinde çıkıntılar yer alır. Bu yapılar ağlar üzerinde kolaylıkla yürümeyi sağlar. Örümcek bacaklarının çoğunda diken ve tüy bulunur ki bu sistematikte önemlidir. Abdomenin arka ucunda, anüs önünde 4-6 çift konik çıkıntı halinde görülür, son kısmında ağ papilleri yer alır. Koninin uç kısmında küçük deliklerden oluşmuş cribellum levhası yer alır. Ağı yapan sıvı buradan salınır. Opistosomada (abdomende) ventralde öne yakın bir kısımda eşey açıklığı ve bunun yan taraflarında da kitap trake şeklinde solunum organları yer alır. Boşaltım organları (Prosomada) Cephalothorax’ta yer alan 7 çift koksal bezleridir. Ayrı eşeylidir. Yırtıcı, dişi erkeği yer Fam. Aviculariidae- Büyük örümcekler Zehirli kuş ve memelilere dahi saldırırlar. Avicularia avicularia - Kuş örümceği. Fam. Theridiidae- Bütün dünyaya yayılmış vücut küre şeklinde bacaklar ince, zehirleri ölüme neden olur. Latradectus congulobatus- Boyu küçük petrol renginde karnının üstü kırmızı ayakların son parçası esmer kırmızı Akdeniz sahillerinde bizde de olabilir. Zehiri çok kuvvetli halk korkar. Latradectus lugubris, Güney Rusya Türkistan, İran ve Türkiye.de. Çok zehirlidir. At, deve ve sığırlarda ölüme sebep olur. Fam. Lycosidae Koşucu örümcekler, 69 Hognatarantula- boyu 3-3.5 cm. açık kirli kahve rengi kırmızı renkleri var. Halk arasında büyü denir. 4. Ordo- Acarina- (Kene ve uyuz böcekleri)- Toprak ve suda serbest bir kısım da sıcak kanlı hayvanların parazitidir. Cephalothorax ile abdomen birleşmiştir. Vücut segmenti hemen tamamen kaybolmuştur. Ağız yapıları delici ve emici tipte değişmiştir. Delici formlarda ve celiserler delme dikeni stilet şeklini almıştır. Pedipalpusların kaide parçası ve üst dudak bu kısım etrafını bir kılıf gibi sarar. Solunum püskül trakeler ile. Vücut ve bacaklarda kıllar bulunur. Boşaltım birkaç türde koksal bez. Genelde malpiki tüpleriyle yapılır. Bir kısmı basit bir kalp içerir. Diğerlerinde kalp yoktur. Kıl düzenim ve sayısı sistematikte önemlidir. Fam. Ixodidae- Sert kabuklu gerçek keneler Ixodes ricinus. Göz yok, pedipalp 3, 4 parçalı tokmak şeklinde hortum var. Evcil hayvan paraziti kan emer. Bacakların ucu çengelli ve tutunma alanı içerir. Fam. Argasidae- Yumuşak vücutlu keneler Argas   persicus tavuklarda evlerde çatılarda veya parazit hayvan yuvasında yaşarlar. Fam. Eriophyidae- Bitki özsuyu ile beslenen keneler. Eriophyes pini-sarı çamda düğüm şeklinde mazı oluşumuna sebep Fam. Phyllocoptidae- Uzun kurt şekilli yaprakların sararma ve dökülmelerine neden olur. Phyllocoptrata oleivorus (Turunçgil pas akarı)- Turunçgil meyvalarının kabuklarını tahrip eder. Kabuk kalınlaşır, meyvalar küçük kalır, suyu azalır, asit miktarı artar, dal ve yaprakların bazı hastalıklara hassasiyeti Fam. Tetranychidae- Birçok tür. Bitki .zsuyu emer. Tükrükle temasa geçen bitki hücrelerinde marazi gelişme ve büyümeler olur. Tetranychus ulmi- Avrupa kırmızı örümceği- Kışı yumurta halinde geçirir. Yaprakların renginin değişmesine ve vaktinden önce dökülmesine 70 neden olur. Mahsül azalır ve meyve kalitesi düşer. Elma, armut ve şeftali ağaçlarında görülür. Fam. Sarcoptidae (Acaridae)- Uyuz böcekleri mikroskobik hayvanlardır. Boşaltım organları küçülmüş kalp yoktur. Vücut tıknaz ince derili, ağız extremiteleri kısa bir emme konisi gelişir, Deri içinde veya üstünde yaşar. Sarcoptes scabiei- İnsanda, parlak kirli sarı yalnız dişisi insan epidermisi altında birkaç mm. ile 3-4 cm. arasında tüneller açar ve burada yumurtlar. Sarcoptes canis- Köpekte yatay tüneller açarak uyuz hastalığı Pseuroptes ovis- Koyunda Subphylum - MANDİBULATA Chelicerata’lardan farklı bu grupta anten, mandibul ve maxil vardır. Aynı zamanda bileşik göz ihtiva ederler. 1- Class - Crustacea- Sert kabukludurlar. Büyük bir kısmı denizlerde bir kısmı tatlısularda rutubetli bataklık yerlerde, az bir kısmı da acı sularda yaşar. Kaya, bitki veya hayvanlara yapışık olarak bulundukları gibi parazit olanları da vardır. Parazitlerin bir çoğu o kadar şekil değiştirmişlerdir ki erginlerinde sınıf karakterini görmek mümkün değildir. Bulundukları grup ancak biyolojk gelişmelerini takip etmekle anlaşılır çünkü biyolojik gelişmelerinde tipik ve ortak larva tipleri vardır. Vücut genel olarak baş (cephalo), göğüs (toraks) ve karın (abdomen) olmak üzere 3 kısma ayrılır. Baş birbiriyle kaynaşmış bir biçimde 5 segmentten meydana gelmiştir. Ancak bu segmentlere karşılık gelen ekstremiteler görülür. Bazen baş, toraksın 1. ve 2. segmenti ile veya tümü ile birleşmiş olabilir. Baş ile göğsün birleşmesi sonucunda cephalothorax meydana gelir. Başla toraks arasında bariz bir sınır yoktur. Başın arka kenarındaki dorsal deri katlanmasının geriye doğru uzaması sonucu oluşan, iki parçalı bir kabuk şeklinde carapax bütün vücudu içine alır. Bazen de vücudun bir kısmını örten dorsal bir kabuk şeklindedir. Değişik şekilli olan toraks (2-60) segment ihtiva eder. 71 Genellikle abdomen segmentleri dıştan görülebilecek şekilde belirgindir. Başta sırası ile 2 çift anten, 1 çift mandibula, 2 çift maksil yer alır Bu sınıfa özel bir karakter veren antenlerin 1. çifti 2. çiftten çok küçük, diğer üyelerin aksine bir kollu olup duyu almaçlarını içerir. 2. çift antenler yarık ayak biçiminde hareket eder ve yakalamayı sağlarlar. Antenlerden başka bu kısımda gözler vardır. Çoğunda bileşik gözler bir sap üzerinde olup özel kaslarla hareket ettirebilir. Başta bulunan 1 çift mandibula ile 2 çift maksilla ağız ekstremiteleridir. Besin almaya yararlar. Crustacea ekstremiteleri yarık ayak veya çatal ayak şeklindedir (Tipik olan ekstremitelerin kaide kısımları coxa ve precoxa’ dan ibaret olup bundan sonra 5 parçalı bir endopodit kısmı ile kama şekilli bir exopodit kısmı bulunur. Bu ekstremitelerin iç ve dış kollarında çeşitli şekilde uyartılar bulunabilir). Toraks ayakları (thorocopodlar) muhtelif grupların yaşayışına göre değişik biçimlidir. Yüzme ve besin toplamak gibi işlevleri yerine getirirler ve bunlar yarık ayak tipindedir. Bazı gruplarda abdomendeki ekstremiteler kaybolmuş bazılarında gelişmiştir. Bunlara pleopod denir ve yüzmeye, sıçramaya yararlar. Vücudun son kısmında üye olmayan telson denen bir çıkıntı vardır ve furka isimli 2 uzantı taşır. Birkaç parazit form hariç hepsi ayrı eşeylidir. Gelişmelerinde genel olarak metamorfoz görülür. Yumurtalardan nauplius (gelişme safhası) larvası çıkar. Bu larva, yumurta şeklinde 3 çift ekstremite alında ocel göz ve segmentsiz olan vücudu ile karakteristiktir. Bundan başka metanauplius, zoea ve mysis larva tipleri de görülür. Boşaltım organı 1 çift anten bezi ve 1 çift maxil bezidir. Gelişmiş Crustacea.lerde dolaşım sistemi sırttaki kalp dışında arter ve venaları da geliştirecek biçimde evrimleşmiştir. Solunum organı olarak abdomen bacakları üzerinde ve toraks bacakları bazalinde solungaçlar yer almış olup basit formlarda bu görevi deri almıştır. Ayrı eşeylidirler. 72 Sub. Class- Entomostraca- Segment sayısı çok değişik olup vücudun son kısmında çatal şeklinde uyartıları alan furca bulunur. Parazit formlar hariç, derileri fazla sertleşmemiştir. 1. Ordo- Phyllopoda- Fam. Branchipodidae- Uzun vücutludurlar. Carapax’ları yoktur. Abdomende ise ekstremite yoktur. Ucunda bölmesiz 2 furka bulunur. Branchipus schaefferi- Tatlısularda yaşar. Uzun ve hafifçe yanlardan basık bulunan vücutları 1 cm. boyundadır. 2. Ordo- Cladocera (Su Pireleri)- Vücut yanlardan basık ve 2 yan parçadan oluşmuş bir carapax ile örtülüdür. Baş bunun dışında kalır ve karın tarafına doğru yönelmiştir. Vücut az sayıda segmentli olup segment sınırları belirli değildir. Fam. Daphniidae- 7-8 mm. boyundadırlar. Balık yemi olarak önemlidir. Daphnia magna-, Bütün dünyada, küçük durgun göl, havuzlarda ve tatlısularda bulunur. Daphnia longispina - Ülkemizde Gölbaşı.nda tespit edilmiştir. Daphnia pulex- Bütün Avrupada 3. Ordo Copepoda - (Kürek Ayaklılar)- Sularda serbest yaşayanları olduğu gibi parazit olanları da vardır. Vücut yapıları yayılış tarzına göre değişmiş, bazıları Crustacea.den ziyade kurda benzer bu ancak gelişme safhalarından anlaşılır. Bunlarda carapax görülmez. Bunların birinci antenleri uzun ve kuvvetlidir. Erkeklerin l. çift antenlerinden biri (sağdaki) diğerine nazaran daha kuvvetlidir. Fam. Centropagidae, Tatlısu ve denizlerde yaşarlar. En az 24 segmentli antenleri iplik gibi uzundur. Diaptomus emiri - Emir gölünde dişiden 7 tek yumurta salkımı var. Fam. Cyclopidae (tepegöz) Çoğunluk tatlusuda yaşar. l. çift antenlerin her ikisi de erkek bireylerde dişiyi tutmaya yarar. Boyu thorax cephalo uzunluğunu geçmez. Dişide l çift yumurta salkımı bulunur. Cyclops stenur Çubuk barajı, Emir gölü.nde bulunur. 73 4. Ordo Cirripedia (Sülük ayaklılar) erginleri denizde yaşayan hayvanlar üzerinde yengeç, balina vs. veya taş, gemi, tekne iskele gibi yerlere kendilerini tespit ederler. Birinci anteni tutunma organı şeklinde olur. Bu kısım vantuz gibi genişlemiştir. Bazılarında tespit yeri bir safiha gibi genişler, bazılarında da bir sap gibi uzar. Vücutları 2 parçadan oluşmuş bir carapax ile tamamen örtülüdür. Bunun altında kalker plakaları bulunur. Yumurtadan nauplius larvası çıkar bir müddet sonra bu larva cypris larvasına dönüşür. l. anten bu dönemde iyi gelişmiştir. Bu dönemde deniz dibine çökerek kendini tesbit eder. Balanus- Genellikle vapurlara yapışırlar. Yenir. Sub.Class Malacostraca Cephalothorax ve abdomen olmak üzere 2 kısımdan meydana gelen vücut, sabit sayıda segmentten oluşur. (Gövde daima l4 segmentlidir yalnızca Lepostrakada da 15 segmentten yapılmıştır) Başta 5, toraksta 8, abdomende 6, nadiren 7 segment bulunur. Segmentlerin herbirinin dorsal kısmına tergum ventral kısmına sternum denir. Bunlar da yanlarda pleuron denilen kısımlarla birleşirler. Bazılarında cephalothorax segmentlerinde kalkan şeklinde bir karapax bulunur. Bütün extremitler ve abdomen karapaxın dışındadır. Abdomenlerinin son kısmı çoğunluk yassı bir telson ile sonlanır. Extremite ve ganglion ihtiva etmez. l çift büyük birleşik göz, alın gözü erginde yok. Bazen kollar çok dallı. Mandibulalarda çiğneyici kısımlar meydana gelmiştir. Toraksta 8 çift abdomende 6 çift ekstremite vardır. Toraks ayakları yarık ayak şeklindedir. ve yürümeyi sağlarlar. Abdomendekiler ve telson yüzmeyi sağlar. Solunum solungaç ile yapılır. Istakoz, karides gibi Crustacea.lerde sindirim sistemi çok iyi gelişmiştir. Squiilla- Akdenizde yaşar. Ordo-Decapoda (On ayaklılar) Crustacealer içinde en evrimli olan gruptur. Vücut baş ve thorax segmentlerinin oluşturduğu büyük bir cephalothorax ve abdomenden oluşmuştur. Cephalothorax’ın sırt tarafında büyük kalkan şeklindeki carapax vücuda yapışık yanlarda ve karına doğru sarkar. Baş carapax’ın altına çekilmiştir. Carapax rostrum denen öne doğru sivri bir uzantı meydana getirir. Vücut segmentleri veya kuyruk 74 yüzgeçleri yassı ve geniş bir alan oluşturup karına doğru kıvrıktır. Torakstaki ilk üç ekstremite besin sağlamak üzere maxilliped şeklinde değişikliğe uğramıştır. Birinci çift diğerlerinde büyük, ucu daima makaslıdır; 5 çift dış kollarını kaybederek bir kollu, yürüme bacağı haline dönüşmüştür. Bu grupta abdomen şekil ve büyüklüğü çok değişiklik gösterir. Bazılarında uropod ve telsondan meydana gelmiş bir kuyruk yüzgeci bulunur. Abdomende yüzmeye yarayan 5 çift pleopod vardır (karında bulunan birinci yüzgeç ayağı dişide çok küçülmüş veya kaybolmuştur. Erkekte ise protopodit ve endopodit kısımları kaynaşarak spermanın dişiye iletilmesini sağlarlar). Sinir sistemi gelişmiştir. Baş ganglionu ile ventral özofagusun altında 6 ganglionun kaynaşmasından meydana gelmiş subözöfegal ganglion bulunur. Karın ganglionları da kaynaşmıştır. l. antenlerinin kaide kısmında da ilk parçada denge organları statositler bulunur. Solunum larvalarda vücut yüzeyi, ergin de solungaçlarla yapılır. Boşaltım 2. antenlerin kaide kısmına açılan anten bezleri ile yapılır. Gelişimlerinde metamorfoz görülür. Zoea, metazoe larva safhaları ile çeşitli larva tipleri görülür. Sub.Ordo - Natantia Vücut hafifçe yanlardan basık, rostrum iyi gelişmiş toraks bacakları zayıf, abdomen bacakları ise iyi gelişmiş olup yüzücüdürler. Abdomen cephalothoraxtan uzun ve kuyruk yüzgeci içerir. Familya : Carididae Palaemon serratus (karides) yenir. Sub.Ordo - Reptantia Vücut sert karın yönünde yassıdır (Üstten basık). Rostrum küçük veya yoktur. Yürüme bacakları iyi gelişmiş ve ilk çiftinde makas gibi büyük kıskaç vardır ve hepsinden kalındır. Fam. Palinuridae (Zırhlı kabuklular) - Kutikula kalın olup zırh gibi vücudu sarar. Carapax üzerinde dikenler bulunur. Karın ayakları yüzme bacağı şeklinde ve zayıf dişilerde yumurta taşımaya yarar. Amacura - Vücut yuvarlak abdomen gelişmiştir. Carapax epistomla kaynaşmaz, rostrum gelişmiştir. Yürüme bacaklarının ilk üç çifti makaslı, birincisi çok kalındır. Fam. Nephropsidae 75 Homarus vulgaris (Astacus gammarus) - Istakoz. Koyu mavi renkli 30-45 cm. Yenir. Pişirince kızarır, yosunlu kayalık sahillerde bulunur. Fam. Potamobiidae Potamobius (Astaculus) fluviatilis - Tatlısu ıstakozu (yenir). Anumura - Abdomen iyi gelişmemiş ve yumuşak telson körelmiştir. Carapax epistomla kaynaşmaz. 3. yürüme bacağı makaslı değildir. Fam. Paguridae (Keşiş Istakozları) Abdomen yumuşak olduğundan diğer hayvanlar tarafından kolaylıkla yenir. Deniz salyangozlarının boş kabukları içerisine yerleşirler. Brachyura (Yengeçler)- Vücutları dorso-ventral yassılaşmış, kısa ve yassı olan abdomen cephalothorax’ın altına doğru kıvrılmıştır. Carapax epistomla kaynaşır. Kuyruk yüzgeçleri yoktur. Dişilerde abdomenin son segmenti yuvarlak, erkeklerde sivridir. Yürüme bacağının ilk çifti daima makaslıdır. 3. çiftte hiçbir zaman makas yok. Fam. Canciridae Cancer pagurus (pavurya) - Akdenizde 9-12 cm. yenir. Fam. Majiidae Maja- Deniz örümceği 12-18 cm. Bazı memleketlerde yenir. Fam. Potamonidae (tatlısu yengeci) - Cephalothorax enine oval biçimdedir, yüzme bacakları yoktur. Potamon fluviatilis - 5 cm. yenir. Göl ve nehir kenarlarında taş dibinde. Fam. Portunidae- (yengeç) İyi yüzücüdürler. Yürüme bacaklarının son kısımı levha şeklini almış yüzme bacağı haline gelmiştir. Portunus puber (Çalpara) - Karadenizde, tatlısularda bulunur. ORDO ISOPODA (Tesbih böcekleri), Boyları 1 mm. ile 25 cm. arasında değişir. Vücut dorso-ventral basıktır. Carapax hiçbir zaman tam olarak gelişmemiştir. Karada yaşayanlarda kitin tabakası çok sertleşmiştir. Baş toraksın birinci segmenti ile kaynaşmıştır. Toraks 7 veya 6 segmentlidir. Abdomen çok kısa ve segmentleri birbirine kaynaşmıştır. 76 Asellus   aquaticus - Tatlısuda bulunur. Boy l2 mm. kadardır. Kör kuyu mağara, derin göllerde yaşar. Oniscus   murarus (Asellus) (Duvar tesbih böceği)- 12 - 17 mm boyda kerpiç duvarlarda, mahsenlerde, serlerde, rutubetli depo, kiler, çürümekte olan bitki altında veya sağlam bitki üzerinde yaşarlar. ORDO-AMHIPODA - Dış görünüş olarak çok değişik şekilli olanları vardır. Çoğunda vücut yandan basıktır. 5- 20 mm büyüklüktedir. Baş toraks’ın 1 ve 2. segmenti ile kaynaşmıştır. Deniz ve tatlısularda yaşarlar. Ayrı eşeylidirler. Gelişmelerinde metamorfoz yoktur. Fam. Gammaridae Vücutları incedir. Suda karınlarının hareketiyle süratle yüzeler. Hızla akan acı ve tatlı sularda yaşarlar. Gammarus pulex - Boyu 12 -17 mm. Ülkemizde de tespit edilmiştir. MYRIAPODA’LAR Myriapodalar bir sınıf; Pauropoda, Symphyla, Diplopoda ve Chilopoda da ordo olarak ele alınıyordu. Sonra bu ordolar arasındaki benzerlik ve farklılıkların bir class seviyesinde olduğuna karar verildi. Biz de bu grupları class olarak inceleyeceğiz ancak bu classlara dahil olan hayvanların myriapodalar olarak ortak karakterleri şunlardır. Bu hayvanların hepsi karada yaşarlar. Vücutları baş ve gövde olmak üzere ikiye ayrılmıştır. Başta bir çift anten iki üç çift ağız ekstremiteleri ve değişik sayıda nokta göz bulunur. Myriapodlarda yavaş yavaş böcek başı gelişimi görülür, maksillalar kaynaşarak labiumu oluşturur. Solunum trake ile yapılır. Boşaltım organı malpiki borularıdır. Vücut değişik sayıda segment içerir. Her segmentte bir veya iki çift exremite bulunur. Myriapoda grubunu dört sınıfta inceleyeceğiz, Pauropoda, Symphyla, Diplopoda, Chilopoda. Class. Pauropoda - Genital açıklık (üçüncü segmenttedir) vücudun ön ucuna yakındır. Küçük boylu yuvarlak yassı şekildedirler. Antenleri farklı olarak iki kolludur. Ağız extremiteleri l çift mandibul ile l çift zayıf maxildir. Maxiller alt dudağı oluşturmak üzere kaynaşmıştır. Dolaşım 77 sistemi, gözleri ve trakeleri körelmiştir. Nemli yerlerde ormanlarda yaşarlar. Kutikula kitin içermez. Fam. Pauropodidae Pauropus huxlegi l-l,5 mm. dir. Rutubetli yerlerde yaşar. Class. Symphyla Genel olarak küçük boyludurlar (1-8 mm). Vücutları yumuşak ve pigment bulunmadığından beyazımsı, renksizdir. Genital açıklık üçüncü segmentte öndedir. Başta l çift ve bir kollu çok segmentli iplik şeklinde uzun anten bulunur. Bu grup Apterygotlara benzeyen bir sınıftır. Ağız l çift mandibula, l çift maxilla ve bir de ağız kapağı şeklinde labiumdan (2. maxil) ibarettir. Gövdeyi oluşturan segmentlerden birer çift ekstremite çıkar. Solunum organları püskül trakeler halindedir (Bu grup böceklere köken teşkil ettiği için önemlidir). Vücudun arka ucunda 2 büyük uzantı ve uçlarında ağ bezlerine ait kanallar açılır. Dünyanın her tarafında bulunur. Hareketlidirler. Işıktan kaçarlar. Scutigerella immaculata Class- Diplopoda (Kırk ayaklar) Çoğunluk uzun boyda ve silindirik yapılı hayvanlardır. Genital açıklık ön uçtadır. Deri fazla miktarda Ca2C03 içerdiğinden serttir. Tergit, sternit, pleura bölgeleri iyi gelişmiştir. 2,5 mm.den. 28 cm.’ye kadar olabilirler. Ağız parçaları l çift mandibula ile l çift 2. maxilla’dır. (l. maxilla bulunmaz). Başta l çift anten yer alır. Antenler çok kısa 8 parçalıdır. Genel olarak vücutları çok sayıda segmentten meydana gelmiştir. Bu segmentlerden ilk 4 çifti toraksı oluşturur (ilk defa) bu segmentlerden l. de ekstremite yoktur. Diğer 3’ünde l’er çift ekstremite vardır. Bacaklar karının orta çizgisine yakın yerinden çıkar. Abdomende 2 segmentin bir tek tergitle örtülmesi sonucu olarak her segmentten ikişer çift ekstremite çıkar gibi görülür. Bacakları genel olarak zayıf yapıdadır ve yanlarında büyük bir çengel ile bir de kıl gibi ince çengel bulunur. Sinir sistemleri büyük bir beyin ganglionu ile homonom metamerli karın ganglionları zincirinden ibarettir. Gözleri birçok ocel gözün biraraya 78 gelmesinden meydana gelmiş kümecik halindedir. Antenlerin üzerinde koku almaya yarayan çıkıntılar vardır. Sindirim sistemi çok basit olan bu grubun son barsağın başlangıcında bulunan malpiki boruları ekskrasyon (boşaltım) organı görevi yapar. Dolaşım sistemi iyi gelişmiştir. Solunum püskül trakelerle olur. Ayrı eşeylidirler. Fam. Julidae Vücut çok segmentlidir. Julus   terestris 30-70 segmentli geceleri faaldir. Dokununca helezon gibi kıvrılır. Class. Chilopoda (Çıyanlar) Vücut uzun dorso ventral basıktır. boyları 3 mm. ile 260 mm. arasında değişir. Baş gövdeden bariz olarak ayrıdır. Genital açıklık vücudun sonundadır. Başta basit yapıda çok sayıda segmentten ibaret l çift uzun kıl gibi anten, l çift mandibula ve 2 çift maxilla vardır. Gövde kısmında herbir segmentten l çift ekstremite çıkar. Birinci segmente ait ekstremite çifti şekil değiştirmiş olup bunun kaide kısmında yer alan zehir bezi kanalı sivrilmiş olan uç kısımdan dışarıya açılır. Sinir sistemi başta bulunan bir serebral ganglion ile ventralde homonom karın ganglion zincirinden ibarettir. Ayrıca böceklerdeki gibi bir visceral sinir sistemi de vardır. Sindirim sistemi basit; son barsağa ektodermik 2 malpiki borusu açılır. Ağıza 2 tükrük bezi açılır. Geceleyin faaldirler. Solunum boru trakelerle yapılır (böceklerdeki gibi). Diğer arthropodları avlayarak geçinirler. Ayrı eşeylidirler. Fam. Scolopendridae Gövde 25-27 segmentli, Bacaklar uzun olduğundan Áok hýzlý hareket ederler. Scolopendra   morsitans (çıyan) Ülkemizde tespit edilmiştir. Gündüzleri taşlar altına saklanır. S. cingulata 5-9 mm boyundadır. S.gigantea - 26 cm. Hindistan’da bulunur, zehiri insanı öldürür. Fam. Lithobiidae Vücut Scolopendridae’ye göre daha kısa ve segment sayısı az. Bacakları ise daha uzundur. Cins Lithobius- Ormanlarda bulunur. Fam. Scutigeridae Vücut kısa antenler kıl gibi ince. Bacaklar uzun ve vücudun arkasına doğru uzunlukları artar. 79 Scutigera   coleopterata Boy 16-24 mm. evlerde bulunur. Gece çıkar ve çok hızlı hareket eder. Phylum: MOLLUSCA (Yumuşakçalar) Bu phylum arthropod’lardan sonra en kalabalık grubu teşkil eder. Aşağı yukarı bugün 90.000 kadar yaşayan, 35.000 kadarda fosil türü Phylum üyelerinde vücut bilateral simetrili olup, baş, ayak ve iç organlar torbası olmak üzere üç bölge ayırt edilir. Ergin vücut yapısı diğer omurgasızlardan çok farklılık gösterir. Fakat ilkel mollusklarda görülen veliger larva tipi annelidlerin trochophor larvasına çok benzer. Bu mollusk ve annelidlerin ortak bir atadan geldiklerini düşündürmektedir. Ancak molluska, kendine özgü (amphineuralar dışında) segmentsiz bir vücut yapısı geliştirirken annelidler segmentli bir vücuda Başta ağız açıklığı cerebral ganglion ve göz bulunur. Karın bölgesinde geniş ve yassı kas dokusundan yapılmış bir ayak, ayağın üzerinde iç organlar kütlesi, bu kütleyi örten iki katlı bir deri olan manto ve mantonun üst yüzeyinde Ca2C03’ten oluşan kalkerli, sert bir kabuk yer almıştır, manto ile vücut boşluğu arasındaki kısım manto boşluğudur. Kabuk mantodaki salgı bezlerinin salgısıdır. Arthropodların dış örtülerine benzer olarak bu kabukta barınmayı sağlar, fakat hayvanın hareketini güçleştirir. Sindirim sistemi ağız, yutak, yemek borusu, mide, barsak ve anüsten meydana gelen tek bir tüpten ibarettir. Bu kısım bazen kıvrılmış olabilir. Yutak bir kas grubu yardımı ile hareket eden, tipik törpü şeklinde dili andıran bir yapıya (radula) sahiptir. Mollusklarda sadece bivalvlerde radula bulunmaz. Bunlar deniz suyunu süzerek besinlerini sağlayan hayvanlardır. Mollusklar da hem gerçek bir coelom, hem de dolaşım sistemi görülür. Coelom boşluğu, kalp, gonad ve boşaltım organı ile temas halindedir. 80 Dolaşım sistemleri açıktır. Ancak Cephalopoda sınıfının bütün üyelerinde kapalı dolaşım sistemi görülür. Çok gelişmiş olan kalp bir karıncık ve 2 kulakçıktan oluşmuştur. Kalp bazılarında bir bazılarında ise iki atriumlu olabilir. Kalp, omurgalı hayvanlarda olduğu gibi pericard ile çevrilmiştir. Kulakçıklar kanı toplardamarlardan alır, karıncığa pompalar. Kuvvetli kaslı karıncık atar damarlarla vücuda sevk eder. Boşaltım organı Annelidlerde olduğu gibi, bir çift olan ve kirpikli huni ile başlayan hakiki nefridiumdur. Kirpikli huninin bir ucu perikardial boşluğa, diğer ucu da manto boşluğuna açılır. Bu durumda perikard boşluğu coeloma karşılıktır. Cephalopodada nefridiumlar böbrek keselerini oluşturmuşlardır. Nefridiumlar boşaltım maddelerini manto boşluğu vasıtasıyla dışarı atarlar. Manto boşluğundaki solungaca ktenidium denir. Solunum genellikle solungaçlarla, ilkel formlarda hava teması ile gerçekleşir, ara formlarda akciğer gelişimi görülür. Sinir sistemi belirli sayıda çift ganglionlardan meydana gelmiştir. Tipik olarak üç çift ganglion bulunur: l- Serebral ganglionlar (beyin ganglionu), 2- Pedal ganglionlar (ayak gangalionu), 3 Vücudun arkasındaki Visceral ganglionlar (iç organlar torbası ganglionu). Birçok molluskda ayrıca bir çift 4. Pallial ganglion (manto ganglionu) bulunur. Bu ganglionlar sinir şeritleri vasıtası ile birbirine bağlıdır. Bütün yumuşakçalarda deri altında bu ganglionların oluşturduğu sinir ağı bulunur. Sinir ağına özellikle ayakta, mantoda ve cephalopodların tentaküllerinde rastlanır. l- Class Amphineura - Chiton ve bunların arkabaları ile temsil (tümü fosil) edilen bu grupta vücut elips şeklinde olup küçük ve kabuklu hayvanlardır. Chiton: Classa örnek teşkil eden bu hayvanın konveks olan dorsal yüzeyinde kiremit sırası gibi birbiri üzerine binmiş 8 adet Ca2C03 plakası bulunur. Bu plakalar yalnız yanlarından mantoya bağlı, manto ile ayak arasında pallial boşluk bulunur. Molluskların ekonomik önemi olan başlıca sınıfları şunlardır: l- Lamellibranchiata (Peleciopoda), 2- Gastropoda, 3- Cephalopoda (Cephalopodlar). 81 Class I- Lamellibranchiata (Bivalvia) (Midyeler) Balta ayaklılar Suda yaşarlar. Bilateral simetrilidirler. Kabuk ve manto sağ ve sol olmak üzere ikiye ayrılmış ve bu iki parça yer yer birleştiğinden 2-3 aralık kalmıştır. Bu aralıklar kullanılmış suyu dışarı atmaya ve solunum suyunu almaya yararlar ve bazen manto kenarları buradan sifon biçiminde dışarı çıkan birer yapı oluşturmuştur. Bu yapı suyun giriş çıkışını düzenler. Kabuk karın tarafından açılır. Dorsalden elastiki bir ligamentle bağlıdır, baş tamamen kaybolmuştur. Göz çoğunda yoktur. Ayak bazı türlerde körelmiş olabilir, varsa kuvvetli kaslardan yapılmış olup distal kısmı hayvanın ön ucundan dışarı çıkar ve hareketi sağlar. Ligamentin iki yanında her bir kabuk birer umbo içerir, bunun altında kabuk kenarına paralel büyüme çizgileri yer almıştır. Kalp hayvanın sırtında pericardium (coelom boşluğu) içindedir. 2 atriyum 1 ventriculus, yani 2 kulakçık, 1 karıncık içerir. Ventriculustan aorta çıkar ve aorta arterlere, daha küçük arterlere ve onlar da daha küçük kılcaldamarlara ayrılır. Arterler manto, sindirim sistemi ve ayak gibi organlara gider. Ayrıca venalar (toplar damarlar) da gelişmiştir, (böbrek venaları gibi). Kan, venalardan kulakçıklara oradan pompalanarak, karıncığa oradan da aort’lara (ön ve arka) oradan da vücuda dağılır. Kan sıvısı hemoglobin ve hemosiyanin içerir. Boşaltım organı nefridiumlardır. Yüksek formlarda böbrek oluşumu görülür. Ön uçta ağız bulunur. Midenin altında ayağın üst tarafında karaciğer yer almış olup salgısını mideye gönderir. Barsak çok kıvrım yapar ve yukarı dönerek perikardial boşluktan (coelom boşluğu) bazen karıncıktan geçer. Bazı türlerde manto kenarında dokunma ve ışığa duyarlı benekler vardır. Ayakta pedal ganglionun yanında statocyst denen denge organı vardır. İçindeki kum granülleri hayvanın hareketi doğrultusunda yer değiştirir. Sinir uçları uyarılarak mesajlar beyine gider. Kabuk parçaları sırt tarafta elastiki bir şerit (ligament) vasıtasıyla birbirine bağlanmıştır. Çoğunda ligamente ilave olarak kabuk parçalarının ön kenarlarında dişler bulunur. Bu dişler karşı parçada kendilerine karşılık gelen çukurluklara girerek bir çeşit menteşe oluştururlar. Dişlerin yapısı ve büyüklüğü eşit (homodont) 82 veya değişik (heterodont) olabilir. Her kabukta birbirinden diğerine uzanan ve kabukların kapanmasını sağlayan anterior ve posterior adduktor kasları vardır. Ayrıca anterior ve posterior retraktor kasları ile bir de sadece anteriorda yer alan protraktor kas bulunur. Bunlar ayağın hareketini kontrol ederler. Midye kabuğunun en içteki kalsiyum karbonattan yapılmış sedef tabakası, epitel hücreleri tarafından ince tabakalar halinde salgılanır. Eğer kabukla manto epiteli arasına bir madde girerse epitel hücre, yabancı madde etrafında merkezileşen Ca2CO3 tabakaları salgılamak üzere uyarılır. İnci bu yolla oluşur. Deniz ve acı su midyelerinde embriyonal gelişmeden sonra serbest yüzen silli veliger larvası vardır ki annelitlerin trochophora larvasına benzer. Burdan dibe inerek ergin midyeye erginleşir. Döllenme suda olur. Tatlısu midyelerinde ise parazit yaşayan glochidium larvası vardır. I. ORDO Protobranchiata Midyelerin en ilkel grubudur. Arka yan tarafta çift sıralı tarak şeklinde iki solungaca sahiptirler. Her ktenidium ayakla manto arasında uzanan yatay bir eksen ve iki sıra flamentten oluşur. İlkel midye flamentleri kısa ve yassı üçgenler şeklinde diğerleri iplik şeklindeki flamentler kıvrılarak serbest ucu uzayıp dış taraftan yukarı uzayarak U şeklini alır. Cins Nucula (Fındık midyesi)- Midyelerin en küçüğüdür. 4 mm. Kabuk yuvarlak ve üçgen şeklindedir. Avrupa denizlerinde yaşar. Cins Arca Kabuk parçalarının yüzeyi ışın şeklinde kaburgalı Arca noae (Nuhun gemisi midyesi) - 8-10 cm. Taxodont menteşeli (eşit yapılı birçok küçük diş). II. ORDO - Heterodonta Midyelerin çoğu bu ordodandır. Heteredont menteşeli ve [solungaçları çift yaprak şeklinde olup solungaç flamentleri enine köprülerle birbirine bağlıdır (kabuk çevresi eşit olmayan az sayıda dişi içermektedir). ] Adduktor kaslar (kapama) eşit büyüklükte ve iki tane. Fam. Unionidae - Nehir ve göl midyeleri kabuk parçaları uzunca ve eşittir. Dış yüzey esmer yeşil renkte iç yüzey sedeflidir (Menteşe az dişli veya dişsiz olur). 83 Cins - Unio - Kabuk kalın ön kısmı kısa arka kısmı çok uzundur. Margaritana margatirifera (Nehir inci midyesi) -Dağlardaki derelerde bulunur. 10 cm. İncisi makbul değil. Cins - Anodonta (Göl midyesi) Kabuklar çok ince ve geniş olup tipik tatlısu midyesidir, Menteşe dişsiz. Tüm dünyada yaygındır. Fam. Cardiidae Cins - Cardium (kalp midyesi)- Kabuk kalp şeklinde üzerinde ışınsal olarak sıralanmış çizgiler var. Bunlara kaburga denir (4-5 cm. kabuk dişli). Fam. Tridognidae Tridagna gigans (dev midye)- Boy 2 m. Ağırlık 250 kg. 10 kg. kadar da eti vardır, yenir. Hint okyanusunda yaşar. Kabukları çamaşır teknesi olarak kullanılır. III ORDO - Anisomyaria - Adduktorlar ya farklı büyüklükte veya bir tanesi hiç bulunmaz genellikle menteşede diş yoktur. Solunum solungaçları yaprak şeklindedir. Ekonomik önemi olan midyeler, denizlerde bulunurlar ve çoğunlukla sifonlarını su içine uzatarak kum ve çamura gömülü yaşarlar. Fam. Aviculidae - Kabuk parçaları eşit değildir, menteşe kenarları dişsiz veya zayıf dişli olup kanat biçiminde uzantılardan oluşmuştur. Cins Avicula (Kuş midyesi) Sol kabuk parçası sağdan daha kubbeli boyu 8 cm. dir. Meleagrina margaritifera (İnci midyesi) - Uzunluk 15-30 cm. şark incisi denilen kıymetli incileri meydana getirir ve kabuklarından da sedef elde edilir. Hint Okyanusunda yaşar. Fam. Ostreidae - Kabuk parçaları eşit değildir. Menteşe zayıf ve dişsiz olur. Daha büyük ve kubbeli olan sol kabuk parçası yere yapışır. Sağ parça bir kapak gibi onu örter. Ostrea edulis (İstiridye) - Kabuk büyüklüğü 8-l0 cm. kadardır. Kayalık yerlerde bulunur. Salgı ile kendilerini kayalara veya kabuklara yapıştırır. Fam. Mytilidae Kabuk parçaları eşit, menteşe yok. Ligament iç tarafta yer alır. 84 Cins- Mytilus (Deniz midyesi yenen) - Kabuk parçaları eşit, uzun arka tarafı yuvarlak üçgen şeklinde hemen bütün denizlerde bulunur. Menteşe yok. Ayakları küçülmüş olup salgısı ile kenetlenmiş sert zemine tespit Class : 2 - Gastropoda : Salyangozlar Karada yaşayan tek Mollusca sınıfıdır. Tatlısu ve denizlerde de bulunur. Tek bir dorsal kabuk var (İnsan besini) . Veliger larvasında ağız önde anüs arkadadır. İç organlar torbası embriyolojik gelişme esnasında 180 derecelik (torsiyon olayı) bir dönme yapar. Vücudun her iki tarafının eşit büyümemesinden dolayı bir tarafın, genellikle de sol tarafın daha fazla büyümesi ile torsiyon ortaya çıkar. Bu nedenle önce arkada bulunan kalp ve anüs ağzın üzerinde yer alır ve solungaçlar da ön tarafa gelmiş olur. Soldaki organlar gelişemez kaybolur. Sağdakiler sola geçer. Torsiyondan sonra vücut büyük ölçüde asimetrik bir yapı kazanır. Kabuk, torsiyon olayından bağımsız olarak bir düzlemde rulo gibi kıvrılır. Opisthobranciata.da ve diğer bazı gruplarda olduğu gibi torsiyona ilave olarak detorsiyon yani geri torsiyon görülür. Bu olayda vücut yine simetrisiz kalır; fakat önceden öne gelmiş organlar yana kayar. Torsiyon olayında, manto boşluğu öne kaydığından, tehlike anında hayvanın başını saklayabileceği bir odacık şekillenmiş olur ve hayvan bu odacığın ağzını gerektiğinde ayağı ile kapatarak korunur. Ayrıca buharlaşma ile su yitirilmesini önler. Detorsiyon ile, manto boşluğu vücudun yan tarafına kaydırılarak sindirim kanalı ile atılan atıkların solunum suyuna karışması engellenmiştir ve detorsiyon, büyük bir olasılıkla bununla ilgili geliştirilmiş bir uyumdur. Kuvvetli kaslardan yapılmış geniş bir ayak (çoğunlukla mukus salan hücrelerle kaplı ve ventral taraftan dışarı açılan bir bez içerir) ile sürünerek ve ayak yüzgeç gibi kullanılarak hareket sağlanır. Karada yaşayan ve karadan tatlısuya geçen Gastropodlarda solungaç küçülmüş, buna karşılık manto boşluğu solunum organı olarak gelişmiştir, ayrıca bazı gruplarda akciğer görür. Mantonun içi kılcal damarı ağ gibi örülmüş hava solunum deliğinden girer ve geri çıkar. Genellikle iç döllenme görülür. Bir kısım gastropodlar hermafrodittirler. 85 Genital delik sağ göz tentakülünün dibine yakın bir yerden dışarı açılır. Bu grupta iyi gelişmiş bir baş bulunur. Başın dorsalinde 1-2 çift tentakül ve 1 çift göz yer alır. Göz, ya tentakül dibindeki kabartının veya geriden çıkan özel tentakülün ucunda olabilir. Ağız içinde bir dili andıran radula, bunun üzerinde birkaç sıra halinde dizilmiş kitin dişler yer alır. Gastropodların ataları muhtemelen bilateral simetriliydiler. Fakat torsiyon sonucu sindirim, kalp, anüs, solungaç, boşaltım, sinir sisteminin bir kısmı bugün kaybolmuştur. Dişlerin uçları arkaya dönüktür. Aşındıkça alttan yenileri çıkar. Hem herbivor, hem karnivor olanları vardır (Dişlerin durumuna göre). Gastropodlarda veliger larva tipi görülür. I ORDO - Prosobranchia - En ilkel gruptur. Solungaçlar öndedir. Başta 1 çift tentakül bulunur ve gözler bunların dibinde yer alır. Genellikle denizde yaşarlar. Torsiyon vardır ve visceral konnektif buna bağlı olarak 8 şeklindedir. Bu sebeple manto ön tarafa gelmiş ve içinde bir ktenidium olup kalbin önünde yer alır. Çoğu denizde bir kısmı da tatlı ve acı sularda yaşarlar. Kabuk büyük ve kalındır. Fam. Patellidae - Cins - Patella (Çanak salyangozu) - Kabuğu çanak şeklindedir, Avrupa denizlerinde yaşar. Fam. Cypraeidae - Kabuk yumurta şeklinde iki taraftan kıvrık. Operkulum Cins - Cypraea (Porselen salyangozu) - Kabuğun üzeri parlak bir tabaka ile kaplıdır. Fam. Muricidae (Dikenli salyangoz) - Kabuk ağzının ön ucu kısa veya uzun olabilen düz bir kanal şeklinde uzamıştır. Tropik denizlerde, yırtıcı salyangozlardır. Cins - Murex -Kabuk üzerinde en az 3 sıra diken veya kabartı bulunur. II ORDO - Opisthobranchia - 86 İç organlarda az veya çok geri torsiyon (detorsiyon) görülür. Solungaçlar arkada yandadır. Başta 2 çift tentakül vardır. Gözler art tentakül dibindedir. Kabuk küçük veya hiç yoktur. Fam. Limacinidae - Cins - Limacina - Denizde yaşar. Balinaların besinini oluşturur. Sürüler halinde dolaşır. III ORDO Pulmonata - Akciğerli anlamına gelir. Kara salyangozlarında tekrar suya dönünce akciğer oluşmuştur. Düzenli aralıklarla hava için yukarı çıkarlar. Başta 1- 2 çift tentakül vardır. Ktenidium bulunmaz manto boşluğu fazla damarlı tavanı ile akciğere dönüşmüştür, manto açıklığı ise solunum deliği görevini görür. Hepsi hermofrodit. Larva evresi görülmez. Yumurta doğrudan doğruya gelişir. Genellikle karada, az bir kısmı suda yaşarlar. I - Sub.Ordo - Basommatophora - Bir çift tentakül bulunur. Gözler bunların dibindedir. Birkaçı denizde, çoğu tatlısuda yaşarlar. Fam. Limneidae - Kabuk ince, ağzı keskin kenarlı, tatlısularda yaşarlar. Cins - Limnaea - Kabuk koni şeklinde tepesi sivri, kabuk ağzı geniş ve oval biçimdedir. II - Sub.Ordo - Stylommatophora - İki çift tentakül bulunur. Gözler arka tentakülün ucunda yer alır. Karada yaşarlar. Fam. Helicidae - Kabuklu salyangozlar. Cins - Helix - Kabuk bütün vücudu içine alacak büyüklükte ve yüksekliği ile genişliği hemen hemen aynıdır. Kışın kabuk ağzı kapatılır. En çok tür içeren cinstir. Helix   pomata - Bağ-bahçe salyangozu, Avrupa kara salyangozu en büyüğüdür. Fam. Limacidae - Bütün türleri çıplaktır. Kabuk küçük plakalar şeklinde içte yer alır. Cins - Limax - Bahçe sümüklüböceği 87 Limax   agrestis - Üreme yeteneği fazla olan bir gruptur. Taze filizleri yiyerek zarar verir. III - Class - Cephalopoda Molluskların en yüksek organizasyonlu grubudur. Genel olarak ağız etrafındaki kollarla 1/2 m. olurlar. 5-10 cm. ve 17 m. olanlar da vardır. Bu durumda ağırlık birkaç tonu bulur. Bilateral simetrilidirler. Vücut baş ve iç organlar kitlesi olmak üzere iki bölgeye ayrılır. Büyük olan baş üzerinde çok iyi gelişmiş bir çift göz bulunur. Gözler ilkel gruplarda merceksiz, gelişmiş olanlarda merceklidir. Ayak bölgesi bu grupta büyük bir kısmı önde ağızın etrafını çeviren kollara dönüşmüş, geri kalan kısmı da manto önünde vücut çeperine yapışan huni şeklini almıştır. Ayrıca bir ayak bölgesi yoktur. Derin deniz formlarında ışık verme kabiliyeti vardır. Ağız başın tepesinde etrafı halka biçiminde bir kıvrımla (dudak) çevrilidir. Ganglionlar yutak etrafında bir ganglionlar kitlesi oluşturmuş, buccal, cerebral, pedal ve visceral ganglionlar gelişmiştir. Boşaltım organı nefridium ve böbrek keseleridir. Manto boşluğu muhtemelen ortadan boğumlanarak önde pericard boşluğu, arkada gonad Coelomunu oluşturmuş, içinde ovaryum ve testisler bulunur. Manto boşluğunda, solungaçlar, böbrek, genital delik ve anüs yer alır. Mürekkep balıklarında kıkırdaktan oluşan bir iç iskelet bulunur. Ayrıca bu grupta mürekkep kesesi vardır. Kese anüsün yanına açılır. Tehlike anında buradan manto boşluğuna siyah bir sıvı salınır, oradan sifonla dışarı püskürtülür ve hayvan kendini düşmana karşı saklar. Mürekkep seyreltilmiş melanin pigmentidir. Bugün yaşayan türlerin çoğunda kabuk kaybolmuş veya körelmiştir. Ayrı eşeylidirler. Döllenme vücut içinde olur. Kapsadıkları solungaç sayısına göre 2 gruba ayrılırlar. Ordo - Tetrabrahchiata - İki çift solungaç bulunur. İki nefridium vardır. Başta zayıf vantuzsuz 38 kol vardır. Bunlar kılıf içine çekilebilir. Çok odacıklı ve Ca2CO3’dan oluşan ve helezon şeklinde kıvrık kabukları vardır. Hayvan büyüdükçe en son meydana gelen en büyük odacığa çekilir. Bugün bu gruptan yalnız bir cins yaşamaktadır. Diğerleri fosil 88 formlardır. Göz merceksizdir. Göz basit bir boşluk olup içi ektodermik retina tabakasıyla kaplıdır ve küçük bir delikle dışa açılır. Fam. Nautilidae Cins- Nautilus - Hint Okyanusu ve Büyük Okyanusta yaşar. Dorsalde manto tarafından salgılanan iyi gelişmiş bir dış kabuk vardır. Ordo - Dibranchiata - Bir çift solungaç bulunur, bir çift nefridium vardır. Ağzın etrafında 8 veya 10 kol bulunur. 1.Sub. Ordo - Decapoda - İkisi ayrı tipte, 10 kol bulunur. Vücut çıplak, kabuk rudimenter (kalıntı) haldedir. On koldan uzun olan iki tanesine tentakül adı verilir. Uç kısımlarında vantuzları bulunur. Vücut uzun ve yanları yüzgeçlidir. Gözler gelişmiş merceklidir. Tehlike anında kullandığı mürekkep kesesi vardır. Fam. Loliginidae - Vücut oldukça uzun ve koni şeklinde, yüzgeçler büyüktür ve vücudun alt ucuna yakındır. Tentaküller geri çekilmez. İç kabuk kitinlidir. Loligo vulgaris - (kalamar) Yenen bir türdür Akdenizde ve Atlas okyanusunda bulunur. 45-60 cm boyundadır. Fam. Sepiidae - Vücut oval şekilli yan yüzgeçler uzun olur. İç kabuk kalkerlidir. Tentaküller geri çekilebilir. Sepia   officinalis - (Mürekkep balığı) Yüzgeçler gövde boyunca devam eder. Vücut uzunluğu 20-30 cm. 2.Sub.Ordo - Octopoda - Ahtopotlar. 8 kolu vardır. Tentaküller bulunmaz. Vantuzları sapsızdır. Vücut kısa ve yuvarlaktır. Fam. Octopodidae - Kollar büyük ve dip kısımda kısa bir zarla birbirine bağlı. Octopus vulgaris - Ahtopot, kolları üzerinde iki sıralı vantuzlar yer alır. PHYLUM : ECHİNODERMATA (Derisi Dikenliler) Larvaları bilateral, erginleri ise radial simetrili olan hayvanlardır. Vücut eksenden geçen düzlemlere göre beş kısma ayrılır. Genelde beş ışınlı veya küre şeklindedir. Gösterdikleri çok değişik karakterler nedeniyle sistematik yerleri oldukça şüphelidir. Vücut örtüsü genelde silli bir 89 epiteldir. Bunun altında mezodermal bağ doku kökenli dermal plakalardan oluşmuş bir kabuk yani iç iskelet bulunur. Bu mezenşim hücrelerden meydana gelen mezodermik deri iskeletinin oluşturduğu kalker cisimcikler ya dağınık ya kaslar ile bağlı ya da kaynaşarak kabuk oluşturur. Bazen yüzeye hareketli ve hareketsiz dikenler çıkar. Bunların modifiye olması ile pediseller oluşur (savunma organıdır, ambulakral ayakları korur) Dorsal yüzeyi büyük ve sabit dikenler ile örtülüdür. İskelet uzun dikenli Ca2CO3 tan oluşmuş eksoiskelet, dermal kalker plakalar endoiskeletten oluşur. Ca2CO3 tan yapılan dermal plakalar kaslarla ve konnektif doku ile bağlıdır ve bu da eksoiskelete hareket ve esneklik kazandırır. Sölom, yani vücut boşluğu üç ayrı boşluk sistemi halindedir. 1- Organların yer aldığı perivisceral sistem: Bu boşluk silli bir epitelle çevrilmiş olup hayvanın içerisinde içi hücreli bir sıvı ile dolu geniş bir alan oluşturur. 2- Perihemal sistem: Ağzın etrafında bir halka kanal ile buradan ayrılan beş radial kanal ve ayrıca uca doğru uzanan bir aksial kanaldan oluşmuştur. (oral halka kanal) Kan damarı sistemi gibi görülen ambulakral kanal sisteminin altında muhtemelen ambulakral ayaklara ve gonatlara besin taşıyan kesin işlevi henüz bilinmeyen, aboral bölgede bir halka kanal gelişmiş olabilir. 3-Ambulakral kanal sistemi: Aboral kısımda yeralır . Ağız ventralde yani oral tarafta; anüs ise dorsalde yani aboral tarafta olup arada sindirim borusu yer alır. Baş ve beyin yoktur. Hareket, su basıncına dayanan su-damarı (Ambulakral damar sistemi) sistemi ile yapılır. Ambulakral kanal sistemi ağız etrafında bir halka kanal ve bundan ayrılan beş radial kanal ile bu kanallardan çıkan küçük lateral kanallardan oluşur; lateral kanallar tüp biçimli deri uzantısı olan ambulakral ayakların içine açılır. Burada genellikle kontraktil bir ampul bulunur. Ambulakral kanal sistemi, halka kanaldan ayrılan medrapor kanalı (taş kanal) ile dışarıya bağlanır. Sistemin görevi hareket ve yer değiştirmeyi sağlamaktır. Ampul içindeki su, kontraksiyon ile ayağa itilir, ayak uzar ve yapıştığı 90 yerden çözülür; ayak çeperinin kontraksiyonu ile de su ampule geri döner. İçte basınç oluşur ayak ucundaki vantuz yere yapışır; vücut o yöne çekilir. Solunum dışa doğru deri çıkıntılarından oluşan çok sayıda dermal solungaçlar ve ambulakral ayaklar ile sağlanır. Dış ortamdaki su ve iç ortamdaki sölom sıvısı arasındaki gaz alışverişi bu dermal solungaçlar, ambulakral ayaklar ve vücut içine doğru yönelmiş deri çöküntüleri ile gerçekleşir. Gerçek bir dolaşım sistemi yoktur. Ağız çevresinde halka biçimli bir kanal ve ayrılan radyer kollar (Asterias). Kan, renksiz lenf yapısındadır ve amobosit hücreler içerir. Sillerin hareketi sölom sıvısının hareketini sağlar. Duygu organları iyi gelişmemiştir ancak deri epiteli hassastır. Ayrı eşeylidirler. Genital stolon ve gonatlar genital sistemi oluşturur. Sperm kesesi ve yardımcı bezler yoktur. Gonatlar, örneğin deniz yıldızında, kolların her iki tarafında birer tane, yani beş çift salkımdan oluşur. Eşey hücreleri aboral kutuptan kol bazaline yakın bir yerden küçük kanallar ile dışarı atılır. Döllenme suda olur. Zigot bipinnaria denen bilateral larva safhasını verir. Silli epitel ile örtülü bu larva Mollusk ve Annelidlerdeki trochophoraya ve de ilkel konlat larvasına benzer. Sinir sistemi ağız üzerindeki bir sinir halkası ve beş radial koldan ibarettir. Beyin yoktur. Epitel doku altındaki sinir hücresi ve liflerden oluşan ağlar halindedir. Sölom hücresi ile göçmen hücreler boşaltımı yapar. I- Class: Asteroidea (Deniz yıldızları) Genellikle 5 kolludurlar; daha fazla kollu da (40 kola kadar) olabilirler. Tüp ayaklar kolların altında bir oluk içinde bulunur. İstiridye ve deniz tarağının en büyük düşmanıdır. Büyük regenereasyon kabiliyeti vardır. Fam. Astropectinidae Astropecten auranticus 5 halkalı Fam. Asterinidae Cins. Asterina spp. Kolların kısalığı yüzünden vücut 5 köşeli görülür. Fam. Asteridae Kollar uzun sayıları 5-12 olur. 91 Cins. Asterias Deniz yıldızı II.Class: Echinoidea (Deniz kestaneleri) Bu sınıfta kol yoktur. Kabuk üzerinde bulunan pedisel ayaklar bütün vücutta dikenler arasındadır. Þekilleri basık yarım küreyi andırır. İskeletine testa adı verilir. Sindirim kanalının ön kısmında Aristo feneri denilen kalkerli dişli bir yapı bulunur. 1. Ordo: Regularia - Vücut az çok küre şeklindedir. Fam. Echinidae Cins. Echinus 2. Ordo: Clypeasteroidae - Disk şeklindedirler. Kabuk çok basık olur. Ağız düz veya konkav olan oval kısımda, anüs ayrı tarafta kenara yakın Fam. Clypeastridae Cins. Clypeaster 3: Ordo: Spatongoidae - Kalp şeklindedirler ve ağız tam ortada yer almaz. Anüs iki yüzeyin sınırında veya sınıra yakın yerde bulunur. Fam. Spatangidae Cins. Spatangus III: Class: Ophiuroidea (Yılan yıldızları) Yılana benzer kollar bulunur, bu hayvanlar kollarını yılan gibi oynatarak hareket ederler. İnce uzun gevrek yapılı bu kollar vücuttan belirli bir şekilde ayırtedilir. Harekette tüp ayaklar kullanılmaz. Tehlikede kollarının birisini bırakıp kaçarlar. Fam. Ophiolepididae Cins: Ophiura (Yılan yıldızı) IV: Class: Holothurioidea (Deniz hıyarları) 92 Bu sınıf diğer sınıflardan dikensiz uzun ve kaslı bir vücut yapısıyla ayrılırlar. Vücudun ön ucunda ağzın etrafında geri çekilebilen tentaküller bulunur. İskelet vücut içine gömülüdür. Küçük kalker plakalar halindedir. Fam. Cucumariidae V. Class: Crinoidea (Deniz zambakları) Genel olarak sesil olarak yaşayan çiçek, bitki benzeri hayvanlardır. Merkezi olarak yerleşmiş ve yukarı dönük bir ağız ve küçük vücudun üzerinde kollar yer alır. Aksi tarafta bulunan sap, kök benzeri bir yapı ile vücudu tespit eder. Kollar üzerinde tüy benzeri telekler bulunur. Fam. Pentacrinidae- Kollar halinde çok dallıdır.

http://www.biyologlar.com/omurgasiz-hayvanlar-sistematigi

BİTKİ GENETİK KAYNAKLARININ KORUNMASI VE KULLANIMI

Değişen çevre koşullarına karşın hızla büyümekte olan dünya nüfusunun beslenmesi sorunu, genetik kaynakların önem ve değerini biraz daha arttırmaktadır. Genetik kaynaklar onbinlerce yıllık gelişme süreci boyunca birçok baskı koşullarına karşı dayanıklılık geliştirdiklerinden günümüzde karşı karşıya olduğumuz sorunları aşmada sigorta ve anahtar durumunda olup birçok uluslar arası sözleşmenin de konusudur. Bunların en geniş kapsamlısı olan Birleşmiş Milletler Biyolojik Çeşitlilik Sözleşmesi’nin üç temel prensibi bu kaynakların korunması, sürdürülebilir kullanımı ile kaynakların kullanımından doğacak yararların paylaşımıdır. Bu bildirinin amacı biyolojik çeşitlilik unsurlarının en önemlilerinden biri olan bitki genetik kaynaklarının koruma ve kullanım konularında ülkemizde yapılan çalışmaların bir özetini vermektir. Türkiye bitki genetik çeşitliliği bakımından çok özel bir konumda bulunmaktadır. Avrupa ve Asya Anakaralarına yayılmış toplam 78 milyon ha alanda 4.080’i endemik olmak üzere toplam 12.476 takson barındırmaktadır. Bitkisel genetik çeşitliliğin zenginliği temel olarak, topografya, iklim ve diğer çevre koşullarının kısa mesafeler içinde değişen büyük bir çeşitlilik göstermesinden kaynaklanmaktadır. Biyolojik çeşitlilik unsurlarının en önemlilerinden biri olan bitki genetik kaynakları temel olarak ex situ ve in situ stratejilerle korunmaktadır. Ex situ yöntemler içinde yer alan tohum gen bankalarımızda toplanmış olan tohum örnekleri temel (uzun süreli) ve aktif (kısa ve orta süreli) koleksiyonlar halinde, vejetatif materyal ise çeşitli enstitü arazilerinde oluşturulmuş olan tarla gen bankalarında korunmaktadır. Son yıllarda ülkemizde ultra soğuk koşullarda koruma çalışmalarının başlatılması için altyapı oluşturulmaktadır. İn situ yöntemlerle de 3.749.673 hektar alan koruma altındadır. Bitki genetik kaynaklarının korunması konusunda bölgemizde önder bir konumda olmamıza rağmen bu değerli hazinenin kullanımı konusunda fazla bir yol kat edilememiştir. Korumayla doğrudan ya da dolaylı ilişkili birçok yasal düzenlemeler olmakla beraber bu yasaların aksine hükümler taşıyan düzenlemeler de vardır. Buna ek olarak koruma işiyle görevli kurumlar arasındaki eşgüdüm eksikliği de kaynakların akılcı bir şekilde korunması ve kullanımı önünde engeldir. Koruma ve sürdürülebilir kullanım bakımından üzerinde durulması gereken diğer bir konu da kültür bitkilerinin yerel çeşitlerinin durumudur. Tohumculuk üzerine yapılan yasal düzenlemeler, sadece kayıt altına alınmış tohumlukların ticaretine izin vermektedir. Yasada belirtilen geçiş süresi 2011 yılı sonlarında dolmaktadır. Bu durumda da çiftçi çeşitlerinin tohumluklarının üretimi ve ticaretini kolaylaştıracak yeni yasal düzenlemelere acilen gerek duyulmaktadır. Biyolojik Çeşitlilik Sözleşmesinin amaçlarından bir olan biyolojik çeşitlilik unsurlarının kullanımından doğan yararların eşit ve adil paylaşımı konusu üzerinde bir ilerleme sağlanamamıştır. Gerek gelecekte oluşturulması olası uluslar arası düzenlemeler gerek yerel çeşitlerin tohumluklarının ticaretinin önünün açılması için başta çiftçi çeşitlerimiz olmak üzere tüm bitki genetik kaynaklarımızın yasal düzenlemeyle kayıt altına alınması gerekmektedir. Günümüzde genetiği değiştirilmiş organizmaların biyolojik çeşitlilik yanında insan sağlığı üzerine olumsuz etkileri olduğu bildirilmektedir. Buna karşın henüz ülkemizde biyogüvenliğin sağlanmasına ilişkin bir yasa çıkarılmadan, “Gıda ve Yem Amaçlı Genetik Yapısı Değiştirilmiş Organizmalar ve Ürünlerinin İthalatı, İşlenmesi, İhracatı, Kontrol ve Denetimine Dair Yönetmelik” adında bir yasal düzenlemeye gidilmiştir. Bu Yönetmeliğe dayanak olması gereken Biyogüvenlik Yasasının da bir an önce çıkarılması gereklidir. Alptekin KARAGÖZ Nusret ZENCİRCİ Ayfer TAN Tuncer TAŞKIN Hamit KÖKSEL Muzaffer SÜREK Cengiz TOKER Kürşad ÖZBEK Türkiye Ziraat Mühendisliği VII. Teknik Kongresi

http://www.biyologlar.com/bitki-genetik-kaynaklarinin-korunmasi-ve-kullanimi

Peripatrik türleşme nedir

Peripatrik veya peripatri (dış kenara ait), yayılma alanları birbirine komşu olan ama çakışmayan, bunun yanında bir sıra dağ veya geniş nehirler gibi engeller yüzünden birbirinden ayrılan ve artık eski yurtlarında olamayan organizmaları ifade eden birer biyocoğrafya terimleridir. Birbirinden ayrılmış bu tür canlı organizmalar genellikle birbirleriyle yakın akraba olup aynı soydan gelen kardeş türlerdir ve gösterdikleri yayılım peripartik türleşmenin bir sonucudur. Peripatrik türleşme veya dış kenarlı türleşme evrim yoluyla yeni türlerin oluştuğu bir türleşme şeklidir. Bu türleşme şeklinde, izolasyon içinde bulunan ve diğerlerinden yalıtılmış olan periferik (dış kenara ait) bir popülasyon içinde yeni türler şekillenir. Bu, izole popülasyonların birbirleriyle gen alış verişlerinde bulunamadığı ve gen akışının engellendiği allopatrik türleşmeye çok benzer. Ancak peripatrik türleşme terimi, allopatrik türleşmenin aksine, daha ziyade popülasyonlardan birinin diğerinden daha çok küçük olduğu durumları tanımlamak için kullanılması önerilir. Peripatrik türleşmenin olası bir sonucu, coğrafi olarak geniş bir alana yayılmış olan ata türün parafiletik (birden fazla atadan köken almış) olmaya başlaması ve böylece bir paratür olmasıdır. Kısa olarak paratür, kendisi herhangi bir soy tükenmesi yaşamadan bir veya daha fazla oğul türler oluşturabilmiş olan türlere denir. Örneğin, boz ayıdan kutup ayılarının evrimiş olması, soyundan geldiği ata türün sınır bölgesinde yaşayan bir popülasyonun evrilerek yeni türler oluşturmasına dair iyi belgelenmiş canlı bir örnektir. Peripatrik türleşme, başlangıçta Ernst Mayr tarafından önerilmiş olup küçük nüfuslu canlı popülasyonlarının, bir veya daha fazla nesil boyunca nüfus azalmasına maruz kalarak bir süre için genetik çeşitliliğin hızla azalış gösterdiği seçim darboğazlarından geçmesi nedeniyle, kurucu etkisi denilen olgu ile yakın ilişkilidir. Bunun yanında genetik sürüklenmenin peripatrik türleşmede genellikle önemli bir rol oynadığı da düşünülmektedir.

http://www.biyologlar.com/peripatrik-turlesme-nedir

Adaptif radyasyon nedir

Adaptif radyasyon veya adaptif yayılım (Latince: adaptare – uyumlandırmak; radiatus – yayılarak) , evrimsel biyolojide hızlıca çoğalım gösteren bir tür veya soy içinde ekotipler husule getirerek ekolojik ve fenotipik çeşitliliğe yol açan, aynı zamanda yeni türlerin meydana gelmesinde büyük rol oynayarak birçok farklı grupların evrimine hizmet eden olayı tanımlayan terim. Bu süreç, son bir atadan başlayarak türleşmeye ve canlı organizmaların farklı çevre şartlarında ve yaşam ortamlarında yararlanabilecekleri, farklı morfolojik ve fizyolojik özelliklerin fenotipik adaptasyonlarına yol açar. Bu anlamda adaptif yayılım, az çeşitlilik gösteren bir türün çevre şartlarına özel uyumlar geliştirerek daha yüksek oranlarda çeşitlenmesi ve yayılmasıdır. Bunun yanında adoptif yayılım, daha önce işgal edilmemiş ve yararlanılmayan farklı ekolojik nişlerin kullanılabilmesi de sağlar. Adaptif radyasyon, kladogeneze dair tipik bir örnek olup bir arada var olan türlerin yaşam ağacındaki dallarının veya fidanlarının grafiksel bir gösterimi şeklinde düşünülebilir. Bu süreç "alogenez", "alomorfoz", "kladogenez" veya "idyoadaptasyon" olarak da adlandırılır. Adaptif radyasyon sonucu türleşme evrimin temel mekanizmalarından biri olarak kabul edilir. Adaptif radyasyonun itici güçleri, birçok evrimsel süreçlerde olduğu gibi popülasyon içindeki genetik varyasyonlar ve doğal seçilimdir (örneğin, tür içindeki bireyler arasında var olan rekabet yüzünden oluşan seçilim baskısı gibi). Adaptif yayılım oluşumlarına dair özellikle ilgi çekici olan örnekler, volkanik faaliyetler sonucu okyanus yüzeylerinde beliren yeni adalar ile karalarda volkanik etkinliğin görüldüğü bölgelerin yakınlarında, çökmeler sonucu da oluşabilen tatlı su göllerinin canlılar tarafından yeni yaşam alanları olarak kullanılmaya başlanması ve orada koloniler oluşturmasıdır. Bu yeni yaşam alanları başlangıçta sadece çok az sayıda tür veya türler tarafından keşfedilirler. Böylece bu yeni ve tenha bölgelere yerleşen türler, eski yaşadıkları geniş kapsamlı ve karışık evrimsel örüntülere sahip olan ve birçok çeşitli türleri barındıran yaşam alanlarında olduğundan daha az rekabet şartlarına sahip olurlar. Genelde uzun zamana yayılan evrimsel gelişmelere kıyasla bu ortamlarda çok kısa bir zaman içinde (birkaç 1000 veya 10.000 yıl içinde) birçok çeşitli türler oluşur. Çok kısa zaman içinde evrimsel gelişmelerin görülebileceği böyle bir durum ise sadece bu yeni yaşam alanlarının daha önce canlı türleri tarafından işgal edilmedikleri ve yerleşilmedikleri durumlarda görülür. Burada başka bir ilginç örnek ise, daha önce üzerinde çeşitli canlı türlerin yaşadığı ve coğrafi veya ekolojik olarak birbirleriyle ilişkili olan adaların parçalanarak ayrılmalarından sonra, zaman içinde diğerlerinden yalıtılan ve izole kalmaya başlayan bir ada üstündeki canlı popülasyonların da morfolojik olarak birbirlerinden farklılaşmaya ve türleşmeye başlamasıdır. Yalnız bu durumda hızlandırılmış bir şekilde yeni tür oluşumlarının kendisini göstermeleri beklenmemelidir. Hızlı şekilde gelişen bir türleşme olayında, bir türün rekabet ettiği diğer türler olmadan büyük miktarda kaynaklara (özellikle besin kaynaklarına) sahip olabilmesi çok önemli gibi görünüyor. Adaptif yayılımı kolaylaştıran ve destekleyen etkenler bu anlamda henüz işgal edilmeyen boş ekolojik nişler olmaktadır. Yeni adaların yerleşilmesinde gözlemlenen hızlandırılmış türleşme mekanizmaları, Evrim Kuramının sınanması sağladığı için bilimsel olarak çok dikkate alınır. Yeni yaşam alanlarına yerleşen bir tür başlangıçta genel olarak az çeşitlenmiş olacaktır. Bunun bir nedeni, bir yandan öncü türlerin genel olarak az çeşitli olması, diğer yandan spesiyal bir tür kendine özgü habitatlara veya özel yaşam birlikteliklerine ihtiyaç duyduğundan bu çevre şartları henüz oluşmamış da olabilir. Bu nedenle, yeni yaşam alanlarına yerleşen bir tür buradaki kaynakları tam anlamıyla etkili bir şekilde kullanamayacaktır. Bu durum, henüz olası diğer rekabetçiler olmadığı için başlangıçta pek de önem taşımaz. Ancak zaman içinde, kendi türü içinde rekabet edeceği bireylerin (türiçi rekabet) olması dolayısıyla, mevcut kaynakları iyi değerlendirebileceği bir şekilde değişmeye başlar. Canlı türün özellikleri değişmeye başladığından ve ayrıldığı ebeveyn popülasyonla gen alış verişinde bulunamadığından, zaman içinde kademeli olarak değişerek yeni ve ayrı bir tür oluşturur. Bu şekilde adaya özgü özellikler açıklanabilir. Yalnız burada şu soru da ortaya çıkıyor: Neden sadece tek bir tür oluşmuyor da çok sayıda türler oluşuyor? Bu soruyu kesin olarak yanıtlayacak veya tam olarak tatmin edecek bilimsel bir cevap henüz bulunmamakla birlikte çeşitli araştırmacı buna dair çeşitli modeller öne sürmüşlerdir. Büyük olasılıkla farklı durumlar için farklı modeller geçerli olacaktır. Bu sorunun çözümlenmesinde iki alt proplemin işlenmesi gerekmektedir: Vücut yapısının ve morfolojinin değişmesi Bir türün iki ayrı türe bölünmesi Türler birbirlerinden ayrılmadan da güçlü morfolojik farklılıklar gösterebileceği gibi birbirlerinden ayrılan türler de buna rağmen yaşam tarzları yönünden birbirlerine çok benzeyebilirler. Hatta bazı durumlarda bu türler birbirlerinden ayırt edemeyecek şekilde öyle benzeşirler ki, bu durumu tanımlayan "ikiz türler" veya "gizli türler" gibi tanımlamalardan bahsetmek mümkündür. Örnekler Araştırılmış olan gerçek vakalara dair sunulan farklı hipotezler farklı başarı oranları elde etmiştir. Öncelikle ekolojik türleşmenin gerçek önemi bilim alanında henüz tartışmalıdır. DNA dizilenmesindeki gelişmeler (PZT) sayesinde kısa bir süre önce adaptif yayılım özellikleri gösteren türlerin soy ağaçlarını oluşturmak günümüzde daha da kolay hale geldi. Bu sayede hipotezleri test etmek ve sınamak da daha kolaylaşmıştır. Tam da bazı adaptif yayılım olaylarında gözlemlenen yüksek türleşme hızı, bu türleşme hızına uygun şekilde çabuk tepki gösteren DNA işaretleyicisinin bulunmasını zorlaştığı için başka bir problem teşkil etmektedir. Detaydaki bu tür problemlere rağmen adaptif radyasyondaki süreçler ilke olarak iyi açıklanabilmektedir. Adaptif yayılma dair bilinen örnekler: Galapagos adalarındaki Darwin isponozları Havai'deki bal tırmaşığı (Drepanidinae) Afrika Büyük Göller bölgesindeki Çiklitgiller balıkları Madagaskar Adası'ndaki Tenrekgiller ve Makimsiler Himalayalar'daki dev yengeç örümceği olarak da bilinen avcı örümcek (Sparassidae) Jamaika'da bir keler türü olan Anolis Conidae, karındanbacaklı cinsinden koni şeklinde kabuklara sahip bir sümüklüböcek türü Havai adalarındaki meyve sinekleri Drosophilidae Avustralya'daki keseliler

http://www.biyologlar.com/adaptif-radyasyon-nedir

SİNEK KUŞU

Birçok sinek kuşu ilkbaharda yuva yababileceği bir yere, sonbaharda da sıcak yerlere göç ederler. Kırmızımsı kahverengi bir renge sahip olan sinek kuşu Alaska'da yazını geçirir ve sonra da Meksika'da kışını geçirmek için 4320 km. kadar uzağa, güneye doğru uçar. Sinek kuşunun dili, tüylü uçlarıyla uzun ve çatallıdır. Tüylü uçlar, sinek kuşunun, çiçeklerin içerisinde bulduğu tatlı nektarı yalayarak içebileceği kadar büyüktür. Aynı zamanda sinek kuşu gagasıyla böcekleri de yakalayabilir. Uzun, ince gagası tüp şeklindeki çiçeklerin derinliklerine girebilmesi açısından uygun bir yapıdadır. Bazı sinek kuşları daha kısa gagalara sahiptirler. Bazılarının ise kavisli gagaları vardır. Bundan başka sinek kuşu, her gün en az kendi vücudunun ağırlığı kadar nektar yemektedir. Ayrıca bir sinek kuşu bir günde ihtiyacı olan nektarı alabilmek için 2000'den daha fazla çiçeği ziyaret edebilmektedir. Sinek kuşunun kalbi gün boyunca saniyede 500 ile 1200 kez çarpar. Gece ise kalbi öylesine yavaşlar ki görünüşte sanki nabzı durmuştur ve hatta kuş nefes almıyor gibidir. Bunun benzerini kış geldiğinde kirpiler de yapar. Bu, onların kış uykusudur. Sinek kuşu ise her yıl 365 kez kış uykusuna yatmak zorundadır.

http://www.biyologlar.com/sinek-kusu

Evrim Teorisi Nedir?

Evrim Teorisi, evrimleşmenin bir sonucu olarak türlerin değişimini ve yeni türlerin oluşumunu, evrime etki eden faktörler ve mekanizmalar ile açıklayan teoridir. Bunun yanında evrim teorisi türlerin oluşumuna dair noktaları son bilimsel araştırmaların getirdiği sonuçlar ve yeni bulgular ile açıklamaya çalışır. Charles Darwin’in ilk kez 1859′da yayınlanan “Türlerin Kökeni” isimli kitabında, Darwin’in daha ziyade doğal seçilimler temelinde açıklayarak tanımladığı biyolojik evrim teorisinin bazı detaylarında, zaman içinde yapılan daha derin bilimsel araştırmaların sayesinde gelişmeler ve ilerlemeler olmuştur. Özellikle evrimin mekanizmaları ve birbirleriyle olan etkileşimleri hakkında da daha başka evrim teorilerinin oluşabilmesini mümkün hale getirmiştir. Bir olgu olarak Evrim, aynı zamanda ilke olarak da bilim dünyası içinde gerçekliği hakkında tartışmasız olup evrimin tanımlanmış olan mekanizmaları arasında hangilerinin daha ağır bastığı veya daha çok evrime etki ettiği, bunun yanında hangi faktörlerin hangi oranlarda evrim süreçlerinde etkili olduğu, bu çeşitli evrim kuramlarının incelediği ve açıklama getirdiği alanlardır. Evrimin nasıl olduğuna dair araştırmaların açıklanmasında bu yüzden değişik evrim teorilerinden bahsedilir. Modern biyolojide bu evrim teorilerinden birine örnek verecek olursak, Evrim teorisini tamamlayan Ortak Ata Teorisi, bu konuda Dünya üzerinde yaşayan ya da soyu tükenmiş olan birçok canlının, hangi ortak bir atadan geldiğini inceler ve bunu bir soy ağacı oluşturarak açıklamaya çalışır. Canlıların sınıflandırılmasına dair filogenetik sistem ise bu konuda elde edilen fosil ve genetik bulguları değerlendirerek Ortak Ata Teorisini destekler ve türler arasındaki akrabalık derecelerini genetik ve anatomik benzerlikler düzeyinde inceler. Moleküler evrim ise elde edilen genetik bulguları genomlar ve alleller yardımıyla değerlendirerek yine Ortak Ata Teorisini ve dolayısıyla Evrim Teorisini destekler. Modern biyolojide canlılığın gelişimi ve oluşumu önemli bir konuma sahip olduğu ve bu konuda incelenen fenomenler birbirleriyle ilişkili olduğu için, biyolojinin tüm bu alt disiplinleri de Evrim teorisi için anlamlı olabilecek bilgileri elde ederek evrimin daha iyi anlaşılmasına katkıda bulunurlar. Genetik, Morfoloji, Hücre Biyolojisi, Anatomi, Biyokimya, Davranış Biyolojisi, Ekoloji ve Gelişim Biyolojisi, biyolojinin evrimi destekleyen alt disiplinlerine örnek verilebilirler.

http://www.biyologlar.com/evrim-teorisi-nedir

Tam Donanımlı Termit Ordusu

Dünyadaki tüm ülkelerin savunma için harcadıkları çabanın bir benzerini de hayvanlar harcamaktadırlar. Özellikle koloniler halinde yaşayan bütün canlıların bir ordusu vardır. Tam teçhizatlı olarak nitelendirilebilecek bu ordularda değişik özelliklere sahip askerler bulunur. Bu askerlerin kullandıkları savunma stratejileri son derece akılcıdır. Sosyal böceklerin sahip oldukları ordulardaki en belirgin özellik ise her bireyin kendisine düşen görevi yerine getirmek için elinden geldiğince çok çalışmasıdır, hatta bu uğurda canını bile tehlikeye atmasıdır. Düşmanı Etkisiz Hale Getiren Çene ve Kafa Yapısı Hemen hemen tüm asker termit türleri çok büyük ve kaslı çenelere sahiptir. Çenelerini, saldırı anında düşmanı ısırmak ve parçalamak için kullanırlar. Asker termitlerin çenelerinin büyüklüğü birbirlerine genel olarak benzemesine rağmen, kafa yapıları türlerine göre farklılık gösterir. Bu farklılık bazen oldukça dikkat çekicidir. Bazı askerler uzun burunludur, bazıları ise güçlü ve sert bir kafaya sahiptir. Bu yapı farklılıkları nedeniyle termitlerin savaş teknikleri de farklıdır. Örneğin uzun bir burun yapısına sahip olanlar, burunlarını kullanarak saldırganlara yapışkan bir sıvı fışkırtırlar. Güçlü ve sert bir kafaya sahip olanlar ise tehlike anında kafalarını yuvada açılan deliklere sokarak düşmanın yuvaya girişini engellerler. Böylece kendi bedenleri ile geçilmez barikatlar oluştururlar. Askerlerin kapsüle benzeyen kafaları kendi cüsselerine göre oldukça iridir. Bu hantal görünümlerine rağmen kendilerinden hiç beklenmeyecek bir savunma yeteneğine sahiptirler. Termitlerin Kullandıkları Savaş Stratejileri Koloninin yaşamasını sağlamak açısından güvenlik, birinci dereceden önemlidir. Termitler de düşmanlarına karşı değişik savaş stratejileri uygularlar. Bu stratejileri şöyle sınıflandırmak mümkündür: * Düşmanı felç etmek, * Düşmanın üzerinde kendini patlatmak, * Keskin çenelerle düşmanı yaralamak, * Salgıladıkları zehir ile saldırganın vücut yapısını altüst etmek. Hazır Zehir Deposu: Termit Vücudu Termitlerin savaşırken kullandıkları yöntemlerden bir tanesi de zehir sürmedir. Bazı termit türlerinin vücutlarında oldukça zehirli kimyasal bir madde üretilir. Bu etkili zehiri termitler kendilerine zarar vermeden sentezleyip vücutlarında depolayabilmektedirler. Her termit türünün zehiri farklı bir yapıdadır. Bununla birlikte kullanım şekli de farklıdır. Örneğin Rhinotermitiane alt familyasının askerleri, saldırganı, onun gövdesine zehir sürerek öldürür. Bu termit türü daha küçük alt çenelere ve uzun, ucu fırça gibi üst dudaklara sahiptir. Bu özel ağız yapısı, termitin zehiri en etkili şekilde saldırganın gövdesine sürmesini sağlar. Ayrıca bir asker termit, ağırlığının %35'i kadar zehiri vücudunda depolayabilir. Bu savunma salgısının miktarı binlerce karıncayı öldürmeye yetecek güçtedir. Prorhinotermes de zehir sürerek savunma yapan termitlerdendir. Florida'da yaşayan bu türün askerlerinin çenelerinde "nitroalken" adlı zehirli madde bulunur. Termitlerin bir diğer türü olan ve Afrika'da yaşayan Schedorhinotermes ise "vinil keton" karışımı bir madde üretir. Vinil keton solunduğunda ya da yutulduğunda ölüme neden olacak kadar zehirli bir maddedir. Solunum yollarında, cilt ya da gözlerle temas halinde ciddi anlamda tahrişe neden olur. Etkili zehirler listesinde yer alan ve merkezi sinir sistemi çöküntüsüne neden olan bu madde, mucizevi şekilde termitlerin vücutlarında üretilir ancak termite hiçbir zarar vermez. Guyana termitleri ise son derece hızlı reaksiyona giren B-Ketoaldehitleri sentezler. Armitermes türü termitler de "moleküler kement" denilen zehirleri ve "ester" ya da "lakton" adlı kimyasalları silah olarak kullanır. Görüldüğü gibi zehirlerin tümü birbirinden farklı formüllerde farklı kimyasal yapılara sahiptir. Bu zehirlerin ortak özelliği "elektrofilik" olmalarıdır. Yani zehirler düşmanların vücutlarında bulunan elektron bakımından zengin biyolojik moleküllerle birleşerek onların yapısını bozar. Bu durum ise düşmanlar için öldürücüdür. Birçoğunun adını ve ne işe yaradığını çoğu insanın bilmediği bu zehirli maddeleri termitler milyonlarca yıldır kullanmaktadırlar. Düşmanın Vücut Yapısını Altüst Eden Bir Strateji… Macrotermler, Afrika'da yaşayan ve tümsek biçiminde yuva yapan bir termit türüdür. Bu türde, koloninin savunması bir grup dişinin görevidir. Bu dişiler kısır ve yuvadaki diğer termitlere göre daha küçük yapılı askerlerdir. Daha iri bir vücut yapısına sahip olan kraliyet muhafızları ise saldırganların, genç larvaların ve kraliyet çiftinin bulunduğu iç bölüme girmelerini önlemekle görevlidirler. Kraliyet muhafızları savaş için yaratılmıştır. Savunma için tasarlanmış kalkan gibi kafaları ve kılıç gibi keskin alt çeneleri vardır. Büyük askerlerin vücut ağırlığının %10'unu iç salgıları oluşturur. Alkanlar ve alkenler gibi uzun zincirli karbon bileşiklerinden oluşan bu salgılar, vücudun ön tarafındaki büyük bir kesede saklanır. Düşman, termitlere saldırmakla büyük bir hata yapar. Çünkü koloniye saldırmasının bedelini ufak tefek sıyrıklarla atlatması mümkün değildir. Asker termitler, savaş sırasında düşmanlarını kılıca benzeyen alt çeneleri ile yaralar ancak sadece yaralamakla yetinmezler. Savaş sırasında düşmanlarının derisinde açmış oldukları yarayı, yağlı parafin gibi kimyasal bir karışımla sıvarlar. Ancak çoğu zaman öldürücü yaralar almamalarına rağmen saldırganların bir süre sonra ölmesi bilim adamlarının dikkatini çekmiştir. Bu ilginç durumu inceleyen araştırmacılar, çok şaşırtıcı bir gerçekle karşılaşmışlardır. Termitler tarafından yaralanan saldırganlar yaranın büyüklüğünden değil, kan kaybından ölmektedir. Çünkü termitlerin salgıladıkları sıvılar, düşmanlarının kan pıhtılaşma sistemini etkisiz hale getirmektedir. Örneğin termitlerin düşmanlarından olan karıncaların vücutlarında "hemolimf" adı verilen ve kan görevi gören bir vücut sıvısı bulunur. Vücutlarında bir yara açıldığında pıhtılaşmayı başlatan ve yaranın iyileşmesini sağlayan bir çeşit kimyasal madde devreye girer. İşte termitlerin zehirli salgısı bu kimyasal maddeyi etkisiz hale getirir. Kör Termitlerin İsabetli Tutkal ve Yapışkan Tuzağı Tropikal bölgelerde yaşayan çok sayıda termit türü (dünyada bulunan 2000 termit türünün 500'ü tropikal bölgelerde yaşar) tutkal fışkırtan askerlere sahiptir. Burada dikkat çeken iki nokta vardır. Birincisi, asker termitler vücutlarında kimyasal bileşikler üreterek bunları yapışkan hale getirir. Bu çok önemlidir; çünkü bazı askerlerin fışkırttığı sıvı, metali çürütecek, harcı ve düşük derecedeki betonu delip geçecek kadar etkili bir güce sahiptir. Ancak bu derece tehlikeli olan tutkal, termitin kendi bedeninde üretildiği ve depolandığı halde ona hiçbir zarar vermemektedir. İkinci önemli nokta da, termitlerin bu silahı kullanma metodudur. Askerler tutkalı başlarının ön kısmında bulunan ve sadece onlara özgü olan "nasus" denen hortumlarından fışkırtırlar. Termit, tutkalı bir sprey gibi kullanarak düşmanının üzerine püskürtür. Spreyin etkisinde kalan saldırgan da bayılarak bir süre için etkisiz hale gelir. Bu fırsatı çok iyi değerlendiren asker termit, fırlattığı yapışkan maddenin etkisi geçmeden düşmanına ikinci bir hamle yapar. Bundan sonraki aşamada ise asker termitler, saldırganı ya felç eder ya da öldürürler. Tüm bu teşkilatlı sistemin sonuca ulaşması ve düşmanın etkisiz hale getirilmesi için isabetli bir vuruş olması gerekir. Ancak asker termitler de diğer termitler gibi kördür. Peki bu durumda nasıl olup da isabetli vuruşlar yaparlar? Termitlerin sahip oldukları sistem son derece kusursuzdur. Asker termitlerin hortum ve salgı bezleri ve bunlarla ortaklaşa çalışan antenlerini, radarlı ağır silahlara benzetmek mümkündür. Radarlı silahlar hedeflerini takip etme özelliğine sahiptirler. Bu sayede hedefe kilitlenir ve sonuca ulaşırlar. İşte tıpkı bu silahlardaki radarlar gibi çalışan antenlerini son derece iyi kullanan kör termit askerleri hedeflerini hiç şaşırmazlar.  

http://www.biyologlar.com/tam-donanimli-termit-ordusu

Nörohipofiz

Nörohipofiz; tuber cinereuma ait median eminence, infundibular stem ve infundibular uzantıyı (pars nervosa) içerir. Her üç kısım da aynı karekterdeki hücrelere, aynı sinirlere ve kan akımına sahip olup aynı aktif hormonal prensipleri gösterir. Hypotalamohipofiziyal traktusu meydana getiren miyelinsiz sinir lifleri ve yüz bin kadar bu nöroksekretuar nöronlara ait sinir sonlanmaları nörohipofizde yer alır. Bu sinir liflerinin perikaryonları hypothalamusta supraoptik ve paraventriküler çekirdeklerde (nukleuslarda) yer alır. Hipofiz bezinin posterior lobu bir endokrin bez değildir. Hipotalamusun supraoptik ve paraventriküler çekirdeklerinin nöralsekresyon deposudur. Pituisit adı verilen nörohipofiz hücreleri, MSS’nin herhangi bir yerinde bulunan nöroglia hücrelerine (astrositler) benzerler. Pituisitler kısa, dallanma gösteren uzantılara sahip küçük hücrelerdir. Uzantılar ya kan damarları ya da bağ dokusu septumları ile ilişkili bir şekilde sonlanır. Sitoplazmaları yağ damlacıkları, granüller ve pigmentlere sahiptir. Özellikle pars nervozada yaygın olmak üzere, pitusitlere nörohipofizin her yerinde rastlanır. Pituisitler salgı aktivitesine sahip değildirler. MSS’deki gibi destekleme fonksiyonu gördükleri düşünülmektedir. Supraoptik ve paraventriküler nükleuslardaki nöronlar sekresyon aktivitesine sahiptirler, salgıladıkları materyali hipotalamohipofiziyal traktus ile pars nervozaya iletirler. Salgı burada sinir uçlarında depolanır, sinir uçları yaygın kapiller ağ ile yakın ilişkilidir. Elektron mikroskobunda pars nervozadaki sinir sonlanmalarında meydana gelen salgı granülleri morfolojik olarak 3 farklı yapıdadır. Işık mikroskobide de görülebilen, sinir uçlarında 10-20 nm çapında membranla çevrili, gruplar halinde toplanan ve krom-alum hematoksilen ile koyu boyanan nörosekresyon granüllerine (hormon+nörofizin içerirler) Herring cisimcikleri adı verilir. İmpuls geldiği zaman akson terminallerindeki salgı, ekzositozis ile perivasküler boşluklara iletilir. Salgının atılımı ile hormonal materyal, pencereli tip kapillerlere geçer ve hipofiziyal venlerle sistemik dolaşıma katılır. Nörohipofizden iki hormon sentezlenir, oksitosin ve vasopressin (ADH). Oksitosin primer olarak paraventriküler nukleus hücrelerinden, vazopressin ise supraoptik nukleus hücrelerinden sentezlenmesine rağmen, son çalışmalarda her iki hormonun da hem supraoptik hem de paraventriküler nükleuslardan salgılandığı saptanmıştır. Sinir hücreleri aynı zamanda nörofizinler (neurophysin) denilen proteinleri de sentez ederler. Bu proteinlere hormonlar bağlanır. Oksitosinin bağlanması için bir nörofizin, vazopressin için başka bir nörofizin bulunmaktadır. Her bir vezikül ATP ve bir nörofizin içerir. Nörofizin hormon kompleksleri Herring cisimciklerinin büyük bir kısmını oluşturur. Hormonlar pars nervozada ayrı sinir terminallerinde salınır. Oksitosin gebeliğin son safhasında uterus düz kaslarının kasılmalarına neden olur, oksitosin aynı zamanda meme bezi alveolleri ve duktuslarındaki miyoepitelyal hücrelere de etki ederek onların kasılmalarına sebep olur ve sütun duktuslara iletilmesini sağlar, bu durum emme ile başlatılır. Vazopressin, kan damarları duvarındaki düz kaslara etki ederek onların kasılmalarına sebep olur, böylece artan periferal basınçla birlikte kan basıncı yükselir. Vazopressin aynı zamanda antidiüretik hormon (ADH) olarak da bilinir. Böbrekte distal tübül ve toplayıcı tübüllerde geçirgenliği artırarak suyun tübüllerden kana geçmesini sağlar ve böylece idrar konsantrasyonu artırılır. Osmolaritede artış veya kan hacminde azalma ADH salınımını stimüle eder. Ayrıca hipotalamusta yer alan sekretuvar nöron perikaryonları da ADH salınımı başlatıcı olarak osmoreseptör görevi görebilir. Acı, travma, duygusal stres ve nikotin gibi maddelerde ADH salınımını indükler. Vasopressin yokluğunda idrarla birlikte çok miktarda su kaybedilir ve bu durum diabetes insipidus olarak bilinir.

http://www.biyologlar.com/norohipofiz

BİTKİLEDE SİTOLOJİK KARAKTELER

Sitolojik karakterlerin taksonomide uygulanışı da palinolojik ve embriyolojik karakterler gibi yeni sayılır. Her ne kadar bitkilerin kromozom sayıları ve özellikleri çok önceden biliniyordu ise de bunların taksonomiye uygulanışı oldukça yenidir. Bu konuda en önemli kaynaklar Tischler (1950), Darlington ve Wylio (1955), Löve ve Löve (1961), ...vb. dır. Son yıllarda yalnız sitolojik özelliklerine göre bitkilerin sınıflandırılacağını ileri sürenler de vardır. Taksonomide kullanılan sitolojik özelliklerin başında kromozom sayısı ve kromozom morfolojisi gelir. a. Kromozom Sayısı: Bazı istisnaları olmakla beraber, genellikle türler için kromozom sayısı sabittir. Bu yüzden türleri yarımada geniş biçimde kullanılır. Türlere ait kromozomların değişimi poliploidi ve melezlemeden ileri gelir. Örneğin Hymenocallis calathinun’da (Amaryllidaceae) kromozom sayısı 23-83 arasında değişir. Bu farklılıkta bitkiyi kültüre almanın da rolü vardır. Bugün yeryüzünde bilinen 250.000 kadar çiçekli bitki türünden yalnız 20.000 kadarının kromozom sayısı bilinmektedir. Bunların da çoğu bir tek örnekte ve kültür türlerinde araştırılmıştır. Bu yüzden bitkilerin kromozom sayıları üzerinde bir genelleme yapma olanağı yoktur. Aynı zamanda, kullanılan teknik de kromozom sayısının saptanmasında önemlidir. Çünkü kromozomlar çok küçük olduğundan çoğu kez fazla yada eksik sayılabilmektedir. Ayrıca kromozom sayan kişinin hem sitolog, hem de taksonomist olması gerekir. Ancak bu şekilde kromozomlar gerçek sayı ve özellikleriyle saptanabilir. Tohumlu bitkilerde bilinen kromozom sayıları 2 ile 263 arasında değişmektedir. Haplopappus gracilis’te (Asteraceae) n=2, Poa litorosa’da (Poaceae) n=263. Taksonomik gruplarla (taxa) ilişkileri yönünden kromozom sayılarının durumu 3 grupta toplanabilir. 1. Bir taksonda, örneğin bir genusta, kromozom sayısı değişmeyebilir. Örneğin, tüm Pinus ve Quercus türlerinde kromozom sayısı, n=12 dir. Bu durumda kromozom sayısı türleri ayırmada bir işe yaramaz, ancak genusların ayırımında kullanılabilir. 2. Bir taksonda temel kromozom sayısı (x) poliploidi ile katlanarak artabilir. Tetraploit (4x), Oktoploit (8x).. gibi. Triploit (3x) ve heksaploit (6x) ise değişik düzeylerdeki melezler arasında da meydana gelebilir. Poliploit seriye en iyi örnek Taraxacum’dur: 2n= 16, 24, 32, 40, 48 (Burada kromozom temel sayısı, x=dir). Poliploid sayısında en belirgin ğeişiklik Malvaceae familyasında görülür. Bu familyada x=5, 6, 7, 13 lopu poliploidi 15x e kadar çıkar. Normal olarak kromozom sayısı değişik bitkiler farklı tür olarak kabul edildiğinden burada tür sayısı da buna bağlı olarak artar. Poliploidi değişik türler arasında da görülür. Örneğin, Rosaceae familyasının Pomoideae alt familyasının temel kromozam sayısı, x=17’dir. Bu alt familyanın, temel sayısı x=7 olan Rasa genusundan türevlendiği kabul edilmektedir. Fakat öbür 10 sayısının nereden geldiği kesinlikle bilinmemektedir. Bazı araştırıcılara göre ise bu alt familyanın, Spiroideae (x=8 alt familyalarından türevlendiği ileri sürülmektedir. Pomoideae alt familyasında ayrıca poliploit türler de çoktur. Böyle iki farklı temel sayının birleşmesiyle oluşan poliplodiye “dibazik poliploidi” denir. Birleşen kromozomlar ikinci bir poliploidide x2 ile, triploidid, x3 le gösterilir. Örneğin Brassica oleracea (2x=18) ve B. rapa (2x20) çaprazlandığında B. napus (4x=2x2=38 meydana gelir. Dibazik sayılar özellikle subgenusları karakterize eder. Örneğin Veronica da x=7, 8, 9; x3=26’dır. Bu durumda, türler arasındaki poliploitlerde çoğu kez temel kromozom sayısını bulmak oldukça güçtür. 3. Bir taksonda kromozom sayılları arasında ilişki bulunmayabilir. Örneğin Carex’te (Cyperaceae) kromozomsayısı n=6 ile n=112 arasında değişir. Böyle durumlarda genellikle işin içinden çıkmak oldukça güçleşir. Bunlar genellikle kromozom sayılarının azalması veya çoğalmasıyla açıklanır. Bunun değişik nedenleri arasında, hücre bölünmesi sırasında meydana gelen anormallikler yada kromozomların kendi kendilerine meydana getirdikleri değişiklikler (fragmentasyon ve sentromerin yanlış bölünmesi gibi) vardır. Kromozom sayısındaki azalama genellikle kromozomlar arasındaki eşit olmayan alışverişten (krossingover sırasında ileri gelir. Crepis’te (Asteraceae) kromozom sayısı, bu şekilde 6 dan 3 e inmiştir. Böylece meydana gelen eşit olmayan karşılıklı bir translokasyonla C. fuliginosa’nın kromozom sayısı 3’e düşmüş ve sentromeri de kaybolmuştur. Bazı bitkilerde temel kromozom sayısı sabit kalır ve buna yeni sayılar eklenebilir. Burada iki mekanizma vardır. a. Polizomi ve Monozomi: Mayoz bölünme sırasında meydana gelen anormallikler nedeniyle hücrenin bir kromozom kazanması veya kaybıdır (n+1, n-1). Bu şekilde meydana gelen fertlerden 2n + 1 kromozomlu olana “trizomik”, 2n-1 kromozomlu olana ise “monozomik fert”denir. Trizomikler özellikle Nicotiana (Tütün) ve Lycopersicum (Domtes) türleri üzerinde araştırılmıştır. Deneysel olarak da elde edilen bu fertler fonotipik farklılıklarda gösterir. En önemli özellikleri ise tohumdan üreyememeleri, yalnızca vejetatif olarak üremeleridir. b. Yalancı Kromozomlar: Bunlara B kromozomlarıda denir. Bunlar bir populasyonun sadece bazı fertlerinde görülür ve nasıl ortaya çıktıkları kesinlikle bilinmez. Bu nedenle ikinci sınıf kromozomlar veya hayalet kromozomlar olarak da adlandırılır. Ufak ve heterokrematik özellikte olup mayoz bölünme sırasında A kromozomlarıyla eşleşmez, sadece birbirleriyle eşleşirler. B kromozomlar 60 yıl kadar önce Lutz tarafından Diaprotica böcek genusunun türlerinde görülmüş, 1927’de ise lik kez bitkilerde Zea mays’ta görülmüşlerdir. O günden bu yana bunlar üzerinde sayısız araştırma yapılmıştır. Pek çok bulunmakla beraber bazı familyalara özgü oldukları saptanmıştır. Bu kromozomların etkileri değişiktir. Secale gibi polen ana hücresi veya embriyo kesesinin bölünmesini durdurarak üretkenliği azaltabilirler. Bazı durumlarda ise bitkinin ortama uyumunu kolaylaştırırlar (Festuca ve Centaurea’da olduğu gibi). Bunların populasyondan değişimi, iklimsel ve öteki ekolojik faktörlerle ilişkili olduklarını gösterir. Havanın nem oranı toprağın kil oranı bunların bulunuşunu artıran etmenlerin başlıcalarıdır. Poliploit fertlerden çok diploit fertlerde bulunurlar. Bunun, aşırı ortam koşullarına, poliploidiye gitmeden bir adaptasyon sağladığı sanılmaktadır. B kromozomların A kromozomlardan türevlendiği sanılmaktadır. A kromozomların telosentrik kollarının yanlış bölünme sonucu meydana getirdiği sentrik parçacıklar olabileceği Oenothera (Oenotheraceae) ve Caltha (Ranunculaceae) türleri üzerinde yapılan araştırmalarla ortaya koymuştur. b. Kromozom Morfolojisi: Kromozom büyüklüğü olarak kontrollü olup tür düzeyinde değişmeyen bir özelliktir. Bununla beraber, familya ve genus düzeylerinde büyüklük oldukça değişkendir. Genellikle monokotil kromozomları dikotil bitkilerin kromozomlarıdan daha iridir. Bununla beraber dikotiledanlaın ilkel familyalarıda da iri kromozomalara rastlanır. Örneğin Pacenin genusu bu özelliğinden ötürü Ranunculaceae familyasından ayrılarak yeni bir familyaya (Paeoniaceae) aktarılmıştır. Yapılan araştırmalar göstermiştir ki kromozom sayısı fazla olan bitkilerle kromozomlar, az sayıda olanlara oranla daha küçüktür. Örneğin 16 kromozomlu Anemone kromozomları aynı genusun 14 kromozomlu türlerinden daha küçüktür. Aynı taksonun (genus yada familya) değişik coğrafik bölgelerde bulunan üyelerinin kromozomları birbirinden farklıdır. Örneğin K. Amerika’da yetişen bir grup Liliaceae üyelerinin kromozomları 2-5 mikron iken Doğu Asya’da yetişen üyelerinin kromozomları 4-14 mikrondur. Poliploit türlerin kromozomları diploit türlerinkinden daha küçüktür. Caryophyllaceae ve Asteraceae familyalarında bu durum iyi izlenebilir. Ayrıca tek yıllık türlerin kromozomları çok yıllıklarınkinden, odunlu türlerin kromozomları ise otsu türlerinkinden daha küçüktür. Bütün bu bilgilere rağmen kromozom büyüklüğünün filogenetik değeri yeterince aydınlanmamıştır. Kromozomların büyüklükleri yanında birbirlerine göre hacim ve biçimleri de önem taşır. Bu değişiklikler genellikle “idiogram” ve “karyogram” olarak bilinen diagramlarla gösterilir. Bu tip değişiklikler, genellikle mitotik metafazda iyi izlenebilir. Bu yüzden bu devrede incelenen kromozomlar sistematikte önemli rol oynar. Bu konuda Ranunculaceae, Solanaceae ve Liliaceae familyaları üzerinde araştırmalar yapılmıştır. Kromozomlar soya çekim mekanizmasıyla çok yakından ilgili olduğundan sitolojik karakterler taksonomide büyük değerler taşır. Bu yüzden, eğer filogenetik akrabalıklar esas kabul edilirse, sitolojik karakterler genel morfolojik karakterlerden daha önemlidir. Bununla beraber sistametikçiler daha çok herbaryum materyali üzerinde çalıştıklarından, morjolojik karakterlere daha çok değer verirler. Taksonomide rol oynayan sitolojik özelliklerin başında poliploidi gelir. Bugün bilinen çiçekli bitki türlerinin % 2’si (5.000 tür) poliploittir. Poliploidi, bilindiği gibi, başlıca ikiye ayrılır : a. Otopoliplodidi (Otoploidi): Melez olmayan diploitlerin meydana getirdiği benzer genomlu kromozom kompementi. b. Allopoliploidi (Alloploidi): İki diploit arasındaki melezlerin oluşturduğu farklı genomlu kromozom kompementi. Eğer benzer genomların herbiri A,B,C ile gösterilirse bir dipolit AA, BB,CC, bir ototetrapolit AAAA, BBBB, CCCC olur. Bir allotetropolit ise AABB, AACC, BBCC olur. Alloploidi tür oluşumunda önemli rol oynar. Örnekler: Poa supina (2n=14) x P.infirma (2n=14) P.annua (2n=28); Nicotiana sylvestris (2n=14) x N. tomentosiformia (2n=24) N. tabacum (2n=48); Brassica rapa (2n=20) x B. olareceae (2n=18) Allopolidi bazen genuslar arasında meydana gelebilir. Örnekler : Raphanus – Brassica Rapharobrassica; Malus x sorbus x Malosorbus, ..vb.

http://www.biyologlar.com/bitkilede-sitolojik-karakteler

EVRİM TEORİSİNİN TARİHÇESİ

Evrime dair görüşler, canlıların ortak bir ataya sahip olabilecekleri ve değişim gösterdiklerine dair bilinen kayıtlar, en az M.Ö. 6. yüzyıla, Miletli Yunan DüşünürAnaksimander‘e kadar gitmektedir. Tek tanrılı dinlerin öne sürdüğü yaratılış hikayelerine dayanılarak dünyadaki canlılığın tek seferde yaratıldığına ve bu türlerin sabit bir şekilde hiç bir değişme göstermeden günümüze kadar geldiklerine inanılmıştı. Orta Çağda ise “yaratılışçılk” inancına aykırı düşünce geliştirmek engizisyon zihniyeti tarafından yasaklanmıştı. Ancak 18. yüzyılda farklı bilim insanları ve araştırmacılarca bunun doğru olabileceğine dair şüpheler duyulmaya başladı. Bugün bildiğimiz anlamdaki Evrim kavramı ise Fransız Compt de Buffon‘a aittir. Buffon bu konuda 1749-1804 arasında 44 eser vermiştir. Buffon’un eserlerinde bilinmeyen ise “evrim olgusunu” veren ve neden olan süreçlerdi. Özellikle 18. yüzyılda bu konularda bir düşünce zenginliği gözlemlenmiş ve 1809′da Lamarck, türlerin oluşmasını ebeveynlerin hayattayken edindikleri kalıtımlar ve uyum sağlama yoluyla oluştuğunu söyleyen görüşünü belirtmiştir. Bu görüşler İngiltere’de siyasi ve dini düzeni tehdit eden görüşler olarak görülmüş ve oradaki bilim kurumlarınca da bu görüşler ilk önce tehlikeli olarak görülmüş, tepki çekmişti. 1858 yılında ise hem Charles Darwin, hem de Alfred Russel Wallace eş zamanlı olarak Linnean Society of London’da (Londra Linne Derneğinde) iki farklı çalışmada, türlerin doğal seçilim yoluyla evrim geçirdiklerine dair teorilerini ortaya koyarak ilk kez yayınladılar ve buna Evrim teorisi denildi. Fakat bu yayın ilk önce fazla dikkat çekmedi. Bir yıl sonra 1859 yılında ise Darwin, “Türlerin Kökeni” isimli kitabını yayınladı ve bu kitabında Evrim teorisini daha iyi açıkladığı ve evrim süreçlerine dair daha derin açıklamalar getirdiği için artık bilim dünyasında da giderek daha çok kabul görmeye ve evrimin gerçekliği kabul edilmeye başladı. Darwin’in buna karşın açıklayamadığı şey ise, canlıların bu özelliklerini nesillerden nesillere nasıl aktarabildikleri ve bu özelliklerin sahip olduğu farklı varyasyonlarının soya çekimde neden birbirlerine karışmadığı idi. Çünkü o zamanda Gen ve DNA henüz bulunmamıştı ve Darwin de dolayısıyla bunların genetik temellerini bilemiyordu. Bu mekanizmayı açıklayan bilgileri ise 1865′de Gregor Mendel sağladı. Mendel’in araştırmaları ise belirli özelliklerin önceden söylenebilir ve kesin tanımlanabilir bir şekilde gelecek nesillere kalıtımla nasıl bırakıldığını açıklıyordu. Fakat Mendel de henüz DNA ve genlerin olduğunu bilmiyordu. Biraz daha geriye gidersek, Darwin’den önce Jean Baptiste Lamark’a (1744-1829) göre tüm canlılar ortak bir kökenden gelmekte ve canlının yaşadığı ortamda meydana gelen çevresel bir değişiklik, bu ortama uymaya çalışan canlı türünün tüm (veya çoğu) üyelerinde bir değişikliğe neden olmaktaydı. Mesela Lamark’a göre kullanılan organlar gelişiyor, kullanılmayan organlar ise köreliyordu. Yeni kazanılan bu özellik ise gelecek nesillere kalıtım ile aktarılabiliyordu. Bu durum da canlıların türleşmesine ve türlerin değişimine yol açıyordu. Bilinen en ünlü örneğe göre zürafaların boyunları yüksek dallardaki yaprakları yiyebilmek için uğraşmaları sonucunda uzamıştır ve bu özellik sonraki nesillere aktarılıp o türün özelliği olmuştur. Charles R. Darwin (1808-1882) ve Alfred R. Wallace’e (1823-1913) göre de tüm canlılar ortak bir kökenden geliyordu. Canlı türlerinin değişime uğramasının ve çeşitlenmesinin sebebi ise Lamark’ın öne sürdüğü gibi çevre değişiklikleriyle kazanılan özelliklerin ve becerilerin gelecek nesillere kalıtım yoluyla aktarılması değil, herhangi bir türün bireyleri içinde zaten var olan farklılıklar ve değişkenliklerden, bu bireylerden çevre şartlarına daha iyi uyum gösterebilenlerin diğerlerinden daha elverişli şartlar bulup daha çok üreyip çoğalabilmesiydi. Yani Darwin’e göre çevreye uyum gösterebilme ve adaptasyon seleksiyonun sonucuydu, Lamarck’a göre ise çevreye uyum ihtiyacının sonucuydu. Bir yukarıdaki zürafa örneğimize geri dönecek olursak Darwin’e göre uzun boyunlu zürafaların açıklaması; önce kısa boyunlu zürafaların olduğunu, bunların arasında bazı uzun boyunlu zürafaların (varyasyonları) olduğu ve bu uzun boyunlu zürafaların daha iyi beslenebilmelerinden dolayı daha iyi bir avantaja sahip oldukları ve besin kıtlığı olduğu zamanlarda uzun boyunlu olmalarından dolayı yüksek ağaçlardaki yapraklara ulaşarak hayatta kaldıkları, kısa boyunlu olanların ise doğal seleksiyon sonucu zaman içinde gitgide azalarak yok olduklarını söyler. Bu anlamda Darwin’e göre rastgele varyasyonlar daha önce de vardır ve doğanın düzenleyici etkisi olan doğal seleksiyon sonra devreye girer. Bunun gibi Lamark, mağarada yaşayan ve gözleri kör olan hayvanların o ortama uymak zorunda kaldıkları için böyle olduklarını söylerken, Darwin ise gözleri kör olanların mağarada yaşayabildiklerini ileri sürüyor, fakat kör olmanın sebebini açıklamıyordu. Darwin, evrime etki eden faktörlerin kabaca, günümüzde olduğu gibi geçmişte de aynı şekilde, eşit oranlarda ve sabit bir şekilde etkili olduğunu düşünüyordu. Fakat bu konuda yanılıyordu. Bu şekilde daha önce Jeoloji biliminin babası sayılan Charles Lyell’in (1797-1875) yer bilimsel süreçleri açıklamak için kullandığı “Güncellik Prensibi”‘ni de yanlışlıkla devralmış oldu. Darwin’in doğal seçilim konusunda yazdıkları evrim teorisinin temelinde yatmasına rağmen, Darwin kalıtsal varyasyonlar ile çevrenin etkisi sonucu meydana gelen değişiklikler arasındaki farklılığın ve bu faktörlerden tam olarak hangisinin daha ağırlıklı rol oynadığının tam olarak bilincinde değildi. Evrimin mekanizmasının anlaşılması ancak daha sonraki yıllarda, Mendel’in çalışmalarının başka bilim adamlarınca keşfinden sonra mümkün oldu. Buna rağmen hala günümüzde de evrime etki eden faktörlerden hangilerinin hangi durumlarda daha çok rol oynadığı bilim dünyasında tartışılmaktadır ve her geçen gün bu ilişkilere dair yeni bilgi ve bulgular da ortaya çıkarılmaktadır. En önemlisi 20. yüzyılın ilk yarısında, populasyon genetiğin ortaya çıkardığı sonuçlar, Darwin’in evrim teorisinin gelişmesinde önemli katkılarda bulunmuş, bunun yanında Modern Evrimsel Sentez Kuramının oluşmasını sağlamıştır. 1950′li yıllardan sonra ise moleküler biyoloji de evrim araştırmalarına dahil olmuş ve 1970′li yıllarda da sosyal-biyoloji çerçevesinde seleksiyon ve seçilim süreçleri hakkında fayda – maliyet analizleri yapma suretiyle daha tutarlı veriler elde edilebilmiştir [Sosyal biyoloji; ağırlıklı olarak biyolojide evrimsel süreçleri inceleyen davranış biyolojisinin bir dalıdır. İnsan da dahil olmak üzere her türlü canlı formların sosyal davranışlarının biyolojik temellerini inceler. Sosyobiyoloji terimi 1975'de Edward Osborne Wilsonn'un "Sociobiology - The New Synthesis“ (Sosyobiyoloji - Yeni Sentez) adlı eserinde kavramlaşmıştır]. Darwin ile Mendel’in arasındaki görüş farklılıkları ve anlaşılmayan noktaları ise 1930 yılında Biyolog Ronald Fisher çözerek açıklığa kavuşturdu. Ronald Fisher’in çalışmaları bu anlamda Darwin’in açıkladığı doğal seleksiyon mekanizması ile Mendel’in kalıtım kurallarını birleştirerek başarıyla sentezledi ve evrim süreçlerine etki eden mekanizmaların birbirleriyle de ilişki içinde olduğunun anlaşılmasını sağladı. Fisher’in bu çalışmalarına da Sentetik Evrim Teorisi ya da diğer adıyla Yeni Darwincilik (Neo Darwinizm) adı konuldu. Daha sonra Ernst Mayr bu bulguları değerlendirerek bu bilgilerin Hücre Biyolojisi ve Populasyon Biyolojisi alanlarında da kullanılabilmesini sağladı. DNA’nın 1944′de ilk kez Oswald Avery tarafından bulunması ve bunun genetik materyal olduğunun anlaşılması, sonra 1953′de James Watson ile Francis Crick‘in DNA yapısını çözmeleri ile de bu sefer kalıtımın fiziksel ve maddesel temelleri olduğu anlaşıldı ve evrim mekanizmalarında genetiğin rolüne dair daha çok açıklamalar getirilebildi. O zamandan beri genetik ve moleküler biyoloji evrim biyolojisinin de temel unsurlarıdır. Buna rağmen bir bütün olarak evrim teorisi en çok ABD’de ve hıristiyan köktendinciler tarafından red edilmektedir (Kreasyonizm veya Yaratılışçılık). Avrupa’daki hıristiyan kiliseler ve oluşumların çoğu ise Evrim teorisini desteklemekte ve kabul etmektedirler (Teistik Evrim veya Evrimsel Yaratılışçılık). Evrim Teorisinin ülkemizdeki kabul görme oranı ise çok düşük olup bu oran ABD’dekinden daha azdır. kozmopolitaydinlar.wordpress.com

http://www.biyologlar.com/evrim-teorisinin-tarihcesi

EVRİM TEORİLERİ

Katastrofizm (Kıyamet Kuramı): Paleontoloji’yi büyük oranda geliştiren Fransız anatomist Georges Cuvier (1769-1832) tarafından ileri sürülen ve katmanlar arasındaki her bir sınırın, zaman olarak, sel baskınları ve kuraklık gibi felaketlere karşılık geldiğini ve o dönemde yaşayan türlerin çoğunun ortadan kalkmış olduğunu savunan hipotezdir. Ancak katastrofizmde olaylar birbirine evrimsel olarak bağlı değildir (George Cuvier katmanları incelerken, her katmandaki fosilin bir üstteki katmandaki fosil ile uyuşmadığını görmezden gelir); bu katmanlaşmaların nedeni teolojik bir nedene bağlanır. Yani bu felaketler Nuh Tufanı gibi Tanrı’nın bir cezası gibi görülür. Lamarkizm (Lamarck’ın Evrim Kuramı): Lamarck tarafından canlı türlerin değişimine ilişkin olarak ortaya atılan varsayım. Bu varsayıma göre, Lamarck, çevredeki yavaş değişikliklerin canlılarda yeni ihtiyaçlar doğurduğunu, bu ihtiyaçlar sonucunda canlıların hareketlerinin bedenlerinde değişiklikler oluşturduğunu ve bu değişikliklerin sonraki nesillere aktarıldığını söyler. Kullanılan organlar sinirsel sıvıdan daha çok faydalanıp gelişiyor, buna karşın kullanılmayan organlar körelir. Mendel’in ve Weismann’ın çalışmaları, Lamarck’ın Evrim Teorisi’nin kalbi olan ‘sonradan kazanılan özelliklerin aktarılması’ fikrinin yanlışlığını gösterdi ve Lamark’ın sonradan kazanılan özelliklerin aktarılabildiğini göstermek için yapılan tüm deneyler sonuç vermedi. Bu teori günümüzde geçerli değildir. Darwinizm (Darwin’in Evrim Teorisi): Darwin, Lamarck’tan 50 yıl sonra ‘Türlerin Kökeni’ adlı eserini (1859) yazdıktan sonra Lamark’ın görüşleri yeni formatlarla savunulmaya devam edilmiş ve Darwin de sonradan kazanılan özelliklerin aktarılabileceğini düşünmüş olsa da bu mekanizma, onun teorisinde, Lamarck’ta olduğu kadar önemli değildir. Lamarck’ın anlatımında çevresel değişiklikler öncedir, bunlar canlıdaki değişime sebep olur. Darwin’de ise rastgele varyasyonlar önce vardır, doğanın düzenleyici etkisi olan doğal seleksiyon sonra devreye girer. Bu konuda Prof. Dr. Cemal Yıldırım, “Biyolojideki kullanımları içeren “Darwincilik”, dar anlamda, doğal seleksiyon düzeneğini vurgulayan görüşün adıdır. Buna göre, tüm canlı türler, organizmaya doğal koşullarda ayıklanmaktan kurtulma ve çoğalma olanağı sağlayıcı varyasyonların doğal seleksiyonuyla gelişir. Darwincilik doğal seleksiyon tezini yoklanması gereksiz, doğruluğu apaçık bir ilke saydığı ölçüde bilimsel bir kuram olmaktan uzaklaşmakta, ideolojik bir öğreti kimliği kazanmaktadır. Ancak hemen belirtmeli ki, bu öğretisel eğilim geçmişte kalmış bir olaydır. Bugünkü anlamıyla “Darwincilik” bilimsel evrim kuramıyla özdeştir”.(Evrim Kuramı ve Bağnazlık) Darwinizm tartışması genellikle doğal seleksiyonun sağladığı evrim konusunda yoğunlaşmıştır. Darwinizm sözcüğü yaradılışçılar tarafından bilimsel bir yaklaşımdan ziyade bir ideolojiymişcesine kullanılır. Fakat Biyolog E.O. Wilson`a göre “Bilim adamları Darwinizm demez”. Modern Sentetik Teori: Darwin’in Evrim Kuramı ile Mendel’in kalıtım kuramını modern moleküler biyoloji ve matematiksel popülasyon genetiği ışığında birleştiren modern evrim kuramının adıdır. Modern sentezin ana katkısı kalıtımın ve dolayısıyla evrimin temel birimi olan genler üzerine yeni edinilen bigilerle evrimin mekanizması, yani doğal seçilim arasındaki bağlantıyı kurmuş olmasıdır. Modern sentezin dayandığı genel bulgular 1930 ve 40′larda ortaya çıkan ve bugün kısmen DNA kopyalanması sırasındaki hatalarla oluştuğu bilinen mutasyon ve rekombinasyondur. Bunların dışında modern sentez, gen havuzunun genetik kayma ve gen akımı gibi mekanizmalarla değişime uğradığını ortaya koymuştur. Modern senteze göre, popülasyonlar çevresel nedenlerle (örneğin coğrafi engeller) birbirinden ayrıldığında türleşme meydana gelir. (Wikipedia) Diğerleri: Sıçramalı Denge Teorisi (Punctuated Equilibrium) Kladistizm (Cladistics) Ortak Yaşam Teorisi (Mitokondri Teorisi) Karmaşıklık Teorisi Panspermia Hipotezi Heteretrof Hipotezi Ototrof Hipotezi kozmopolitaydinlar.wordpress.com

http://www.biyologlar.com/evrim-teorileri-1

Genetik

Genetik (Alm. Genetik (f), Fr. Genetique (f), İng. Genetics) canlıların özelliklerini ve kalıtsal karekterlerini inceleyen, bu karekterlerin nesillere geçişini belli kalıtım kanunlarına bağlayan, genin yapı ve görevlerini araştıran bilim dalı. Genetik, ( Yunanca'dan genno γεννώ= doğum vermek) canlının bütün özelliklerinin eski kuşaktan yenisine nasıl geçtiğini inceler. Kalıtım bilimi olarak da bilinir. Biyolojinin bir dalıdır. İlk olarak Gregor Mendel'in yaptığı çalışmalarla bilim dünyasında tanındığı için Mendel genetiğin babası olarak da adlandırılır. Genetik bilimi 20. yüzyıl'ın ilk yarısında bilim insanları arasında heyecan ve merak uyandırsa da asıl etkisini ikinci elli yılda DNA'nın moleküler yapısının keşfedilmesiyle göstermiştir. Gen, mutasyon yoluyla değişmediği takdirde bir kuşaktan öbürüne geçen, büyük ve ayrıntılı yapılı dezoksiribonükleik asit ( DNA) moleküllerine tekabül eden kalıtımın hipotetik temel ünitesidir. Bu kalıtım maddesi, biokimyasal reaksiyonların bazılarını hızlandırarak, bazılarını da geciktirerek, kontrol etmesi dolayısıyla, birtakım etkiler gösterir. Genetik yapının (genotip) bir bütün olarak etkinlik gösterdiği kabul edilir; ufak etkili birçok genin hafif etkinliklerinin kümülatif sonucu, tek genlerin belli başlı sonuçları kadar önemlidir. Genler dış ortamdan, bedenin iç ortamından ve diğer genlerden etkilenebilir. Gözlemlenen sonuçta (fenotip) bütün bu faktörlerin karşılıklı etkinlikleri rol oynar. Klasik genetik araştırma yöntemleri, istatistik, genealojik anket yöntemini kapsar. Bu inceleme konusu hastalıktan mustarip rastgele bir hasta numunesi seçerek, bu bozukluğun hastalann akrabalarındaki insidansının araştırılmasından ibarettir. Genel nüfustakinden daha yüksek bir insidans bozukluğun familyal oldugunu belirtir, ama bozukluğun akraba kuşaklarında belli bir dağılımı, spesifik bir genetik kalıtım biçimine işaret eder. Örneğin, birbiri ardısıra gelen kuşaklarda çocukların % 50'sinde rastlanan bir durumda, dominant gen sözkonusudur. Ebeveynler arasında artan bir kan akrabalığı oranı, ebeveynlerde belirgin klinik normallik, çocuklarda % 25 oranında bozukluk tezahürü ve normal ve genetik bozukluğa uğramış çocuklar arasında kesin farklılık, resessif bir duruma isaret eder. Baska bir klasik genetik araştırma, ikizlerin incelenmesidir. Bu tip araştırma, tek yumurta ikizlerinde genetik yapının eş olmasına karşılık, çift yumurta ikizlerinin genetik olarak kardeş benzerliğinden daha fazla bir genetik benzerlik göstermedikleri varsayımına dayanır. Böylece, tek yumurta ikizlerinde, herhangi bir özellik yahut bozukluğun daha yüksek bir benzerlik oranı göstermesi, güçlü bir genetik temelin delilidir. Bu yollardan yapılan gözlemler, spesifik psikiyatrik durumların ve gerilik sendromlarının, kişilik özelliklerinin ve bir çok psikosomatik bozukluğun belirgin bir genetik temeli olduğunu göstermiştir. Bu klasik tipte araştırmaların yanısıra, psikiyatrik sendromların spesifik sınıflandırmasında da genetik kullanılabilir. Böylece, genetik araştırmalar envolüsyonel melankolinin temelde depressif bozukluklarla aynı tipte bir hastalık olduğunu göstermiştir. Öte yandan, artık bipolar manik depressif bozuklukların genetik olarak unipolar tekrarlayıcı depresyonlardan farklı olduğuna ilişkin güçlü deliller mevcuttur. Ayrıca, genlerin biokimyasal etkinlik göstermeleri, hastalıkların biokimyasal bakımdan farklı olduklarına ve dolayısıyla değişik terapi tiplerine iyi cevap verebileceklerine işaret etmektedir.Nitekim, bir bozukluğun genetik teşhisi, bunun biokimyasal nedeninin araştırılmasına yol açmakta ve böylece tedavisini sağlamaktadir; örneğin fenilketonüri (bkz.) ve galaktozemi (bkz.). Genetik incelemeler ayrıca genetik olmayan, örneğin psikolojik olan, önemli faktörlerin saptanması için de kullanılmaktadır. Böylece genetik yapıları eş olan ve inceleme konusu hastalık bakımından farklı tezahür gösteren tek yumurta ikizlerinde, bazı ortamsal ve belki de psikolojik faktorlerin hastalığın gelişmesinde rol oynaması ihtimali güçlüdür; bu gibi vakalardan oluşan bir seri, ilgili olabilecek stress tiplerinin saptanmasında çok faydalı olabilir. Son olarak, farmakogenetik de gittikçe önem kazanmaktadır. Nüfusun yaklaşık % 50"sinin izoniazidi yavaş metabolize ettikleri, bu durumun genetik olarak belirlendiği ve bu gibi hastalarda periferik nöropati gibi yan etki insidansının daha yüksek olduğu bilinmektedir. Trisiklik antidepresan (bkz.) ilaçların plazma seviyeleri üzerinde son zamanlarda yapılan çalışmalar, genetik faktorlerin bu ilaçların metabolizmasında önemine ve böylece hastanın ilaca cevabını ve gerekli dozajı etkileyebileceğine işaret etmektedir. Genetik, 20. yüzyılın başlarında gelişmiş, yeni sayılabilecek bir bilim dalıdır. Bununla berâber, genetiğin konusunu meydana getiren çoğu olaylar ve bunlar hakkındaki düşüncelerin tarihi bir hayli eskidir. Genetik çalışmaları çok eski târihlerde başlamış, târih boyunca çeşitli fikirlerle zaman zaman ilerleme ve duraklamalar göstermiştir. Son asırda ise genetik daha evvelki zamanlarla kıyaslanamayacak bir ilerleme ve gelişme göstermiştir. Canlı organizmanın ne şekilde ortaya çıktığı uzun zaman tartışma konusu olmuştur. Her canlı bir canlıdan doğar fikrine varılmadan önce, Avrupa’da algler, kurtlar, salyangozlar vs. gibi ilkel organizmaların, kokuşmakta olan organik maddelerden birdenbire ve kendi kendine meydana geldiklerine, yani kendiliğinden oluş (abiyogenez) fikrine inanılmaktaydı. Grek bilgini Aristoteles de bu fikrin savunucularındandı. Aristo’ya göre, canlılar iki yoldan meydana gelmektedir. Bir kısmı cansız maddelerden türemektedir. Bu görüşe “abiyogenez” denilmektedir. Canlıların bir kısmı da, kendileri gibi canlı ana-babadan meydana gelmektedir. Bu görüşe de “biyogenez” denmektedir. Ona göre; “Yüksek organizmalarda ana ve babanın döle verdiği pay eşit değildir. Ana, döle sâdece madde verir, baba ise can verir; yâni, kalıtımda esas rol babanındır.” Aristo gibi döl üzerinde babanın rolünün büyük olduğuna inananlara “spermist”, ananın rolünün büyüklüğüne inananlara ise “ovist” denmekteydi. Bu iki akım arasındaki mücâdele, mikroskobun gelişmesi, sperm ve yumurtaların hücre yapısının incelenmesi ile son bulmuştur. Bitki ve hayvanların aynı temel yapıya sâhib olan ve hücre adı verilen odacıklardan meydana geldiği 17. yüzyılda, mikroskopla anlaşılmıştır. Hücre hakkında yapılan ilk gözlemlerden sonra, 1840’ta Schleiden bitkilerin, Schwann da hayvanların hücrelerden müteşekkil olduğunu belirtmişler ve hâlen geçerliliğini koruyan “hücre teorisini” kurmuşlardır. 1827’de bitki hücresinin bölünerek iki hücre meydana getirdiği mikroskopta görülünce, hiçbir hücrenin, kendiliğinden bir cansızdan meydana gelmeyeceği ortaya çıktı. O hâlde hücre, çoğalma özelliğine ve bir döle sâhiptir. Yâni, hücre bir üreme ünitesidir ve aynı zamanda canlı organizmanın temelidir. 1831’de Robert Brown tarafından bitki hücrelerinde çekirdeğin görülmesi, 1854’te kurbağalarda, 1855’te muhtelif su yosunlarında spermanın yumurtayı döllemesi izlenmiştir. Böylece döllenmede vücut hücrelerinin değil, gametlerinin (cinsiyet hücrelerinin) birleştikleri kesin olarak anlaşıldı. 1840’ta Hofmeister tarafından kromozomların ilk defâ görülmesi, hücre bölünmesi (mitoz) sırasında kromozomların birbirine eşit iki yarımdan hangisine gittiğinin anlaşılmasına yardımcı olmuştur. 1887’de Weismann, gametler meydana gelirken kromozom sayısının yarıya indiğini, sonra döllenmeyle kromozom sayısına erişildiğini, eşeyli üremenin sonraki döllerde farklı şekilde fertler meydana getirdiğini açıkladı. Aynı yazar, kalıtsal maddeye “idioplazm”, kromozomlara “idant”, kromozomları meydana getiren parçalara da “id” (gen) adını verdi. Weismann’ın kalıtım maddesinin kromozomlarla dölden döle geçtiğini kabul eden bu teorisine “kromozom teorisi” denir. İnsanlar çok eski devirlerden beri kendilerine faydalı hayvan ve bitkileri yetiştirmiş ve çoğaltmışlardır. Fakat onların eşeyi ve dölde eşey belirmesi hakkında (cinsiyet ortaya çıkması hakkında) çoğu bâtıl olan yanlış ve eksik düşünceler asırlarca devâm etmiştir. Hayvanlarda iki eşey, yâni iki ayrı cinsin mevcudiyeti biliniyordu. Bitkilerde ise bu durumun farkına varılması, Avrupa’da 17. asrın sonunda oldu. Asur, Babilliler ve Araplar zamanında hurma ağaçlarının ayrı eşeylerinin olduğu bilindiğinden, bol ürün almak için dişi ağaçların çiçekleri erkek ağaçlardan alınan çiçek tozlarıyla muâmele ediliyordu. O zaman bilindiği anlaşılan bu usûl, hurmalardan başka bitkilere tatbik edilmedi ve Asya’dan Avrupa’ya geçemedi. Avrupa’da bitkilerde ayrı eşeyliliğin ve eşeyli üremenin yeniden keşfi 17. yüzyıl sonunda olmuştur. Bitki türleri arasında tozlaşma ile tür melezleri elde edilebilmiştir. 1866’da Çekoslovakya’da Gregor Mendel’in bezelye cinsleri arasında yaptığı çaprazlamalar ve elde ettiği sonuçlar, genetiğin temelini meydana getirmektedir. 1900’de De Vries, Correns ve Tschermak’ın kendi çalışmaları Mendel’in buluşlarını doğruladığından, elde edilen sonuçları Mendel Kanunları adı altında toplamışlardır. Mendel Kanunları’nın yeniden keşfi sebebiyle batıda 1900 yılı kalıtım ilminin doğum yılı, Mendel de genetiğin babası olarak kabul edilmiştir. Bateson 1906’da bu genç bilim dalına “genetik” adını vermiştir. Genetik, ana-babalarla oğul döller arasındaki benzerlikleri ve farkları bir veya daha fazla döller boyunca inceler. Döller arasındaki benzerlik ve farklılıkların meydana gelmesinde kalıtım ve çevrenin karşılıklı olan tesirlerini aydınlatmaya çalışır. Genetik ilminin çeşitli kolları vardır. Her biri günümüzde ayrı bir ihtisas dalı hâline gelmiş olan bu dallar arasında “Mendel Genetiği”, “Populasyon Genetiği”, “Sitogenetik” başta gelenlerdir. Ayrıca son yıllardaki genetik çalışmaları, “Genetik Mühendislik” adı verilen çığır açacak yeni bir bilim dalını doğurmuştur. (Bkz. Genetik Mühendislik) Ek bilgi Gen, mutasyon yoluyla değişmediği takdirde bir kuşaktan öbürüne geçen, büyük ve ayrıntılı yapılı dezoksiribonükleik asit(DNA) moleküllerine tekabül eden kalıtımın hipotetik temel ünitesidir. Bu kalıtım maddesi, biokimyasal reaksiyonların bazılarını hızlandırarak, bazılarını da geciktirerek, kontrol etmesi dolayısıyla, birtakım etkiler gösterir. Genetik yapının (genotip) bir bütün olarak etkinlik gösterdiği kabul edilir; ufak etkili birçok genin hafif etkinliklerinin kümülatif sonucu, tek genlerin belli başlı sonuçları kadar önemlidir. Genler dış ortamdan, bedenin iç ortamından ve diğer genlerden etkilenebilir. Gözlemlenen sonuçta (fenotip) bütün bu faktörlerin karşılıklı etkinlikleri rol oynar. Klasik genetik araştırma yöntemleri, istatistik, genealojik anket yöntemini kapsar. Bu inceleme konusu hastalıktan mustarip rastgele bir hasta numunesi seçerek, bu bozukluğun hastalann akrabalarındaki insidansının araştırılmasından ibarettir. Genel nüfustakinden daha yüksek bir insidans bozukluğun familyal oldugunu belirtir, ama bozukluğun akraba kuşaklarında belli bir dağılımı, spesifik bir genetik kalıtım biçimine işaret eder. Örneğin, birbiri ardısıra gelén kuşaklarda çocukların % 50'sinde rastlanan bir durumda, dominant gen sözkonusudur. Ebeveynler arasında artan bir kan akrabalığı oranı, ebeveynlerde belirgin klinik normallik, çocuklarda % 25 oranında bozukluk tezahürü ve normal ve genetik bozukluğa uğramış çocuklar arasında kesin farklılık, resessif bir duruma isaret eder.Baska bir klasik genetik araştırma, ikizlerin incelenmesidir. Bu tip araştırma, tek yumurta ikizlerinde genetik yapının eş olmasına karşılık, çift yumurta ikizlerinin genetik olarak kardeş benzerliğinden daha fazla bir genetik benzerlik göstermedikleri varsayımına dayanır. Böylece, tek yumurta ikizlerinde, herhangi bir özellik yahut bozukluğun daha yüksek bir benzerlik oranı göstermesi, güçlü bir genetik temelin delilidir. Bu yollardan yapılan gözlemler, spesifik psikiyatrik durumların ve gerilik sendromlarının, kişilik özelliklerinin ve bir çok psikosomatik bozukluğun belirgin bir genetik temeli olduğunu göstermiştir. Bu klasik tipte araştırmaların yanısıra, psikiyatrik sendromların spesifik sınıflandırmasında da genetik kullanılabilir. Böylece, genetik araştırmalar envolüsyonel melankolinin temelde depressif bozukluklarla aynı tipte bir hastalık olduğunu göstermiştir. Öte yandan, artık bipolar manik depressif bozuklukların genetik olarak unipolar tekrarlayıcı depresyonlardan farklı olduğuna ilişkin güçlü deliller mevcuttur. Ayrıca, genlerin biokimyasal etkinlik göstermeleri, hastalıkların biokimyasal bakımdan farklı olduklarına ve dolayısıyla değişik terapi tiplerine iyi cevap verebileceklerine işaret etmektedir. Nitekim, bir bozukluğun genetik teşhisi, bunun biokimyasal nedeninin araştırılmasına yol açmakta ve böylece tedavisini sağlamaktadir; örneğin fenilketonüri (bkz.) ve galaktozemi (bkz.). Genetik incelemeler ayrıca genetik olmayan, örneğin psikolojik olan, önemli faktörlerin saptanması için de kullanılmaktadır. Böylece genetik yapıları eş olan ve inceleme konusu hastalık bakımından farklı tezahür gösteren tek yumurta ikizlerinde, bazı ortamsal ve belki de psikolojik faktorlerin hastalığın gelişmesinde rol oynaması ihtimali güçlüdür; bu gibi vakalardan oluşan bir seri, ilgili olabilecek stress tiplerinin saptanmasında çok faydalı olabilir. Son olarak, farmakogenetik de gittikçe önem kazanmaktadır. Nüfusun yaklaşık % 50"sinin izoniazidi yavaş metabolize ettikleri, bu durumun genetik olarak belirlendiği ve bu gibi hastalarda periferik nöropati gibi yan etki insidansının daha yüksek olduğu bilinmektedir. Trisiklik antidepresan (bkz.) ilaçların plazma seviyeleri üzerinde son zamanlarda yapılan çalışmalar, genetik faktorlerin bu ilaçların metabolizmasında önemine ve böylece hastanın ilaca cevabını ve gerekli dozajı etkileyebileceğine işaret etmektedir ansiklopedi.turkcebilgi.com  

http://www.biyologlar.com/genetik-1


Bakteri nedir?

Bakteriler tek hücreli mikroorganizma grubudur. Tipik olarak birkaç mikrometre uzunluğunda olan bakterilerin çeşitli şekilleri vardır, kimi küresel, kimi spiral şekilli, kimi çubuksu olabilir. Yeryüzündeki her ortamda bakteriler mevcuttur. Toprakta, deniz suyunda, okyanusun derinliklerinde, yer kabuğunda, deride, hayvanların bağırsaklarında, asitli sıcak su kaynaklarında, radyoaktif atıklarda büyüyebilen tipleri vardırbakteri Tipik olarak bir gram toprakta bulunan bakteri hücrelerinin sayısı 40 milyon, bir mililitre tatlı suda ise bir milyondur; toplu olarak dünyada beş nonilyon (5×1030) bakteri bulunmaktadır, bunlar dünyadan biyokütlenin çoğunu oluşturur. Bakteriler gıdaların geri dönüşümü için hayati bir öneme sahiptirler ve gıda döngülerindeki çoğu önemli adım, atmosferden azot fiksasyonu gibi, bakterilere bağlıdır. Ancak bu bakterilerin çoğu henüz tanımlanmamıştır ve bakteri şubelerinin sadece yaklaşık yarısı laboratuvarda kültürlenebilen türlere sahiptir. Bakterilerin araştırıldığı bilim bakteriyolojidir, bu, mikrobiyolojinin bir dalıdır. İnsan vücudunda bulunan bakteri sayısı, insan hücresi sayısının on katı kadardır, özellikle deride ve sindirim yolu içinde çok sayıda bakteri bulunur. Bunların çok büyük bir çoğunluğu bağışıklık sisteminin koruyucu etkisisiyle zararsız kılınmış durumda olsalar, ayrıca bir kısmı da yararlı (probiyotik) olsalar da, bazıları patojen bakterilerdir ve enfeksiyöz hastalıklara neden olurlar; kolera, frengi, şarbon, cüzzam ve veba bu cins hastalıklara dahildir. En yaygın ölümcül bakteriyel hastalıklar solunum yolu enfeksiyonlarıdır, bunlardan verem tek başına yılda iki milyon kişi öldürür, bunların çoğu Sahra altı Afrika'da bulunur. Kalkınmış ülkelerde bakteriyel enfeksiyonların tedavisinde ve çeşitli hayvancılık faaliyetlerinde antibiyotikler kullanılır, bundan dolayı antibiyotik direnci yaygınlaşmaktadır. Endüstride bakteriler, atık su arıtması, peynir ve yoğurt üretimi, biyoteknoloji, antibiyotik ve diğer kimyasalların imalatında önemli rol oynarlar. Bir zamanlar bitkilerin Schizomycetes sınıfına ait sayılan bakteriler artık prokaryot olarak sınıflandırılırlar. ökaryotlardan farklı olarak bakteri hücreleri hücre çekirdeği içermez, membran kaplı organeller de ender olarak görülür. Gelenekesel olarak bakteri terimi tüm prokaryotları içermiş ancak, 1990'lı yıllarda yapılan keşiflerle prokaryotların iki farklı gruptan oluştuğu, bunların ortak bir atadan ayrı ayrı evrimleşmiş oldukları bulununca bilimsel sınıflandırma değişmiştir. Bu üst alemler Bacteria ve Archaea olarak adlandırılmıştır. Bakteriyolojinin tarihçesi Bakteriler ilk defa 1676'da Antonie van Leeuwenhoek tarafından, kendi tasarımı olan tek mercekli bir mikroskopla gözlemlenmiştir. Onlara "animalcules" (hayvancık) adını takmış, gözlemlerini Kraliyet Derneği'ne (Royal Society'ye) yazılmış bir dizi mektupla yayımlamıştır. Bacterium adı çok daha sonra, 1838'de Christian Gottfried Ehrenberg tarafından kullanıma sokulmuş, eski Yunanca "küçük asa" anlamına gelen bacterion -a'dan türetilmiştir. Latince kullanımıyla Bacteria, bakteri sözcüğünün çoğulu, bacterium ise tekilidir. Louis Pasteur 1859'da fermantasyonun mikroorganizmaların büyümesi sonucu meydana geldiğini ve bu büyümenin yoktan varoluş yoluyla olmadığını gösterdi. (Genelde fermantasyon kavramıyla ilişkilendirilen maya ve küfler, bakteri değil, mantardır.) Kendisiyle ayni dönemde yaşamış olan Robert Koch ile birlikte Pasteur, hastalık-mikrop teorisi'nin erken bir savunucusu olmuştur. Robert Koch tıbbi mikrobiyolojide bir öncü olmuş, kolera, şarbon ve verem üzerinde çalışmıştır. Verem üzerindeki araştırmalarında Koch mikrop (germ) teorisini kanıtlamış, bundan dolayı da kendisine Nobel Ödülü verilmiştir.Koch postülatları'nda bir canlının bir hastalığın nedeni olduğunu belirlemek için gereken testleri ortaya koymuştur; bu postülatlar günümüzde hala kullanılmaktadır. On dokuzuncu yüzyılda bakterilerin çoğu hastalığın nedeni olduğu bilinmesine rağmen, antibakteriyel bir tedavi mevcut değildi. 1910'da Paul Ehrlich Treponema pallidum 'u (frengiye neden olan spiroket) seçici olarak boyamaya yarayan boyaları değiştirerek bu patojeni seçici olarak öldüren bileşikler elde etti, böylece ilk antibiyotiği geliştirmiş oldu. Ehrlich, bağışıklık üzerine yaptığı çalışmasından dolayı 1908 Nobel ödülünü kazanmış, ayrıca bakterilerin kimliğini tespit etmek için boyaların kullanılmasına öncülük etmiştir; çalışmaları Gram boyası ve Ziehl-Neelsen boyasının temelini oluşturmuştur. Bakterilerin araştırılmasında büyük bir aşama, Arkelerin bakterilerden farklı bir evrimsel soya ait olduklarının 1977'de Carl Woese tarafından anlaşılmasıdır. Bu yeni filogenetik taksonomi, 16S ribozomal RNA'nın dizilenmesine dayandırılmış ve üç alanlı sistem'in parçası olarak prokaryot alemini iki evrimsel alana (üst aleme) bölmüştür. Köken ve erken evrim Modern bakterilerin ataları, yaklaşık 4 milyar yıl önce, dünyada gelişen ilk yaşam biçimi olan tek hücreli mikroorganizmalardı. Yaklaşık 3 milyar yıl boyunca tüm canlılar mikroskopiktiler, bakteri ve arkeler yaşamın başlıca biçimleriydi. Bakteri fosilleri, örneğin stromatolitler, mevcut olmakla beraber, bunların kendine has morfolojilerinin olmaması, bunlar kullanılarak bakteri evriminin anlaşılmasına veya belli bakteri türlerinini kökeninin belirlenmesini engellemektedir. Ancak gen dizileri bakteri filogenetiğinin inşası için kullanılabilir, bu çalışmalar bakterilerin arke/ökaryot soyundan ayrılmış evrimsel bir dal olduğunu göstermiştir. Bakteri ve arkelerin en yakın zamanlı ortak atası muhtemelen yaklaşık 2,5-3,2 milyar yıl önce yaşamış bir hipertemofil'di. Bakteriler, evrimdeki ikinci büyük ayrışmada, ökaryotların arkelerden oluşmasında da yer almışlardır. Bunda, eski bakteriler, ökaryotların ataları ile endosimbiyotik bir ilişki kurmuşlardır. Bu süreçte, proto-ökaryotik hücreler, alfa-proteobakteriyel hücreleri içlerine alıp mitokondri veya hidojenozomları oluşturdular. Bu organeller günümüz ökaryotlarının tümünde hala bulunmaktadır ("mitokondrisiz" protozoalarda dahi aslında son derece küçülmüş olarak mevcutturlar). Daha sonraki bir dönemde, farklı bir olay sonucu, bazı mitokondrili ökaryotların, siyanobakteri-benzeri canlıları içlerine alması sonucunda, bitki ve yosunlardaki kloroplastlar oluştu. Hatta bazı yosun gruplarında bu olayı izleyen başka içe almalar meydana gelmiş, bazı heterotrofik ökaryotik konak hücrelerin, ökaryotik bir alg hücresini içine alması sonucunda "ikinci kuşak" bir plastid oluşmuştur. Morfoloji Bakteriler, morfoloji olarak adlandırılan, şekil ve boyutları bakımından büyük bir çeşitlilik gösterir. Bakteriyel hücreler ökaryotik bir hücrenin yaklaşık onda biri boyundadır, tipik olarak 0,5-5,0 mikrometre uzunluktadırlar. Ancak, bir kaç tür, örneğin Thiomargarita namibiensis ve Epulopiscium fishelsoni yarı milimetre boyunda olabilir ve çıplak gözle görülebilir. En küçük bakteriler arasında Mikoplazma cinsinin üyeleri bulunur, 0,3 mikrometre olan bu bakteriler en büyük virüsler kadar küçüktür. Bazı bakteriler daha da küçük olabilirler ama bu ultramikrobakteriler henüz iyi tanımlanmamıştır. Çoğu bakteri türleri ya küresel ya da çubuksu şekilli olur. Küresel olanlar kokus (veya coccus; Eski Yunanca tohum anlamında kókkos 'tan), çubuksu olanlar basil (Latince çubuk anlamlı baculus 'tan) olarak adlandırılır. Vibrio olarak adlandırılan bazı çubuksu bakteriler biraz eğri veya virgül şekillidir; diğerleri spiral şekillidir, spirillum olarak adlandırılır, veya sıkıca sarılı olur, spiroket olarak adlandırılırlar. Az sayıda bazı türler tetrahedron veya küp benzeri şekilde olabilirler. Yakın zamanda keşfedilen bazı bakteriler uzun çubuk şeklinde büyür ve yıldız şekilli bir kesite sahiptir. Bu morfolojinin sağladığı yüksek yözölçümü-hacim oranı bu bakterilere az besinli ortamlarda bir avantaj sağladığı öne sürülmüştür. Hücre şekillerindeki bu büyük çeşitlilik bakterinin hücre duvarı ve hücre iskeleti tarafından belirlenir. Hücre şekli, bakterinin gıda edinmesine, yüzeylere bağlanmasına, sıvı içinde yüzmesine ve doğal avcılarından kaçmasına etki eder. Çoğu bakteriyel tür tek hücre halinde varlığını sürdürür, diğerleri ise kendilerine özgü biçimlerle birbirlerine bağlanır: Neisseria diploitler (ikililer) oluşturur, Streptokok zincir, Stafilokok üzüm salkımı gibi kümeler oluşturur. Bazı bakteriler iplik (filament) oluşturacak şekilde uzayabilir Actinobacteria'da olduğu gibi. İpliksi bakterilerde çoğu zaman içinde pek çok hücre bulunan bir kın vardır. Bazı tipleri, örneğin Nocardia cinsine ait bazı türler, hatta karmaşık, dallı iplikçikler oluşturur, bunlar küflerdeki miselyuma benzer. Bakteriler yüzeylere bağlanıp biyofilm denen yoğun kümeler oluştururlar. Bu filmler birkaç mikrometre kalınlıktan yarım metre derinliğe kadar değişebilir, ve birden çok bakteri, protista ve arke türü içerebilir. Biyofilmlererde yaşayan bakteriler, hücre ve hücre dışı bileşenler ile karmaşık bir düzen oluştururlar. Meydana gelen ikincil yapılar arasında mikrokoloniler de sayılabilir, bunların içinde bulunan kanal şebekleri gıdaların daha kolay difüzyonunu sağlar. Doğal ortamlarda, örneğin toprak ve bitkilerin yüzeyinde, bakterilerin çoğunluğu biyofilim aracılığıyla yüzeye bağlanır. Biyofimler tıpta da önemlidir, çünkü bu yapılar kronik bakteriyel enfeksiyonlarda ve vücut içine yerleştirilmiş tıbbi cihazlarda bulunurlar. Biyofilmler içinde kendini koruyan bakterilerin imhası, tek başına ve izole durumda olan bakterilerinkinden çok daha zordur. Daha karmaşık morfolojik değişiklikler de bazen mümkündür. Örenğin amino asitlerden yoksun kalınca Myxobacteria'lar civarlarındaki diğer hücreleri algılamak için yeter çoğunluk algılaması (İng. quorum sensing) denen bir süreç kullanırlar. Bu süreçte bakteriler birbirlerine doğru hareket eder ve yaklaşık 100.000 bakteri içeren 500 mikrometre büyüklüğünde tohum yapıları (İng. fruiting bodies) oluştururlar. Tohum yapılarında bulunan bakteriler farklı görevler yerine getirir; böylesi bir kooperasyon, çok hücreli organizasyonun basit bir tipini meydana getirir. Örneğin, her on hücreden biri bu tohum yapılarının tepesine göç eder ve miksospor adında özelleşmiş uyuşuk (dormant) bir yapı oluştururlar. Miksosporlar normal hücrelere kıyasla kurumaya ve diğer olumsuz çevresel şartlara daha dayanıklıdır. Hücresel yapı Hücre içi yapılar: Bakteri hücresi hücre zarı olarak adlandırılan bir lipit zarla çevrilidir. Bu zar, hücrenin içindekiler içine alıp, besinler, protein ve sitoplazmanın diğer gerekli bileşenlerini hücrenin içinde tutar. Bakteriler prokaryot olduklarından dolayı sitoplazmalarında ender olarak zar kaplı organeller bulundururlar, içlerinde büyük boylu yapılardan az sayıda olur. Bakterilerde hücre çekirdeği, mitokondrisi, kloroplast ve ökaryotlarda bulunan, Golgi aygıtı ve endoplazmik retikulum gibi diğer organellerden yoktur. Bir zamanlar bakterilerin sadece sitoplazmadan içeren basit torbalar olduğu düşünülürdü ama artık karmaşık bir yapıları olduğu bilinmektedir, örneğin prokaryotik hücre iskeleti, ve bazı proteinlerin bakteriyel sitoplazmanın belli konumlarında stabil olarak konuşlanması gibi. Hücre içi organizasyonun bir diğer seviyesi mikrokompartımanlaşma ile sağlanır. Bunun bir örneği olan karboksizom, lipit membran yerine, polihedral bir protein kabukla çevrili olan bir bölmedir. Bu polihedral organeller, ökaryotlardaki zar kaplı organellere benzer bir şekilde, bakteri metabolizmasının bölümlerinin hücre içinde konuşlanmasını ve birbirlerinden ayrı tutulmasını sağlar. Çoğu önemli biyokimyasal tepkime, örneğin enerji üretimi, membran aşırı bir konsantrasyon gradyanı ile, bir bataryadakine benzer şekilde, potansiyel fark oluşması sonucu meydana gelir. Bakterilerde genelde dahili zarlı yapıların olmaması nedeniyle, elektron taşıma zinciri gibi bu tür tepkimeler, hücre zarının iki yanı arasında, yani sitoplazma ile periplazmik aralık veya hücre dışı arasında oluşur. Ancak, çoğu fotosentetik bakteride plazma zarı çok kıvrımlıdır, hücrenin çoğunu ışık enerjisi toplayan membran tabakaları ile doldurur. Yeşil kükürt bakterilerinde bu ışık toplayıcı komplekslerin kimisi klorozom adlı lipit örtülü yapılar oluşturur. Başka proteinler hücre zarından içeri besin ithal eder, veya atık maddeleri sitoplazmadan dışarı atar. Bakterilerin genetik malzemeleri tipik olarak tek bir dairesel kromozomdan oluşur. Bakterilerde zar kaplı bir çekirdek yoktur ve kromozom tipik olarak sitoplazmada yer alan, nükleoit olarak adlandırılan düzensiz şekilli bir cismin içinde yer alır. Nükleoitte DNA, onunla ilişkili proteinler ve RNA bulunur. Planctomycetes ordosu, bakterilerde dahili zarlı yapıların bulunmadığı kuralının bir istisnasını oluşturur, bunlarda bulunan nükloit zar çevrilidir, ayrıca bu bakteriler başka zar çevrili hücresel yapılara da sahiptirler. Tüm canlılar gibi bakterilerde de protein üretimi için ribozomlar bulunur, ancak bakteriyel ribozomların yapısı arke ve ökaryot ribozomlarınınkinden farklıdır. Bazı bakteriler, hücre içinde glikojen, polifosfat, kükürt veya polihidroksialkanoat gibi besinler için depo granülleri oluştururlar. Bu granüller bakterinin daha sonradan kullanması için bu bileşikleri depolamasını sağlar. Bazı bakteri türleri, fotosentetik siyanobakteriler gibi, dahili gaz vezikülleri oluştururlar, bunlar aracılığıyla hafifliklerini ayarlarlar, farklı miktarda ışık ve besin bulunan su seviyeleri arasında alçalıp yükselebilirler. Hücre dışı yapılar: Hücre zarının dışında bakteriyel hücre duvarı bulunur. Bakteriyel hücre duvarları peptidoglikan (eski metinlerde mürein olarak adlandırılırdı)'dan oluşur. Peptidoglikan, peptit zincirlerle birbirine çapraz bağlanmış polisakkarit zincirlerden oluşur, bu peptitler, hücredeki diğer protein ve peptitlerden farklı olarak, D-amino asitler içerir. Bakteri hücre duvarları bitki ve mantar hücre duvarlarından farklıdırlar; bitki hücre duvarları selülozdan, mantarlarınkiler ise kitinden oluşur. Bakteri hücre duvarları arkelerinkinden de farklıdır, bunlarda peptidoglikan bulunmaz. Hücre duvarı çoğu bakterinin varlığını sürdürmesi için gereklidir, bu yüzden bir antibiyotik olan penisilin tarafından peptidoglikan sentezinin engellemesi bakterilerin ölümüne neden olur. Bakterilerde başlıca iki tip hücre duvarı olduğu söylenebilir, bunlar Gram-negatif ve Gram-pozitif olarak adlandırılır. Bu adlar, hücrelerin Gram boyasıyla tepkimesinden kaynaklanır. Bu, bakterilerin sınıflandırılmasında çok eskiden beri kullanılan bir testtir. Gram-pozitif hücreler, pek çok peptidoglikan ve teikoik asit tabakasından oluşan kalın bir hücre duvarına sahiptir. Buna karşın, Gram-negatif bakteriler birkaç peptidoglikan tabakası bulunur, bunun etrafını ikinci bir hücre zarı sarar, bu zarda lipopolisakkaritler ve lipoproteinler bulunur. Çoğu bakteri Gram-negatif bir hücre duvarına sahiptir, sadece Firmicutes ve Actinobacteria'lar (bunlar daha evvel düşük G+C ve yüksek G+C Gram pozitif bakteriler diye bilinirdi) Gram-pozitif, düzene sahiptirler. Bu yapısal farklılık, antibiyotiklere duyarlılıkta farklılık yaratabilir; örneğin vankomisin Gram-pozitif bakterileri öldürmesine karşın, Haemophilus influenzae veya Pseudomonas aeruginosa gibi Gram-negatif patojenlere karşı etkisizdir. Çoğu bakteride hücrenin dışını proteinlerden oluşmuş sert bir bir S-tabakası kaplar. Bu tabaka, hücre yüzeyine kimyasal ve fiziksel bir koruma sağlar ve makromoleküllerin difüzyonuna karşı bir engel oluşturur. S-tabakalarının çeşitli ama az anlaşılmış işlevleri vardır. Kampilobakter'lerde virülans faktörü olarak etki ettikleri ve Bacillus stearothermophilus 'ta yüzey enzimleri içerdikleri bilinmektedir. Kamçılar (flagellum, çoğul hali flagella), sert protein yapılardır, çapları yaklaşık 20 nanometre olup uzunlukları 20 mikrometreyi bulabilir, hareket etmeye yararlar. Kamçının hareketi için gereken enerji, hücre zarının iki yanı arasındaki bir elektrokimyasal gradyan boyunca iyonların taşınması sonucu elde edilir. Fimbrialar ince protein iplikçiklerdir, sadece 2-10 nanometre çaplı olup uzunlukları birkaç mikrometreyi bulabilir. Hücrenin yüzeyine dağılıdırlar, elektron mikroskobunda ince saçlara benzerler. Fimbriaların, sert yüzeylere veya başka hücrelere bağlanmakla ilişkili oldukları sanılmaktadır, ve bazı bakterilerin virülansı için gereklidirler. Piluslar fimbrialardan biraz daha büyük hücresel uzantılardır, konjügasyon denen bir süreç ile bakteri hücreleri arasında genetik malzeme aktarılmasını sağlarlar. Çoğu bakteri kapsül veya sümük tabakaları üreterek kendilerini bunlarla çevreler. Bu yapılar farklı derecede karmaşıklık gösterir: hücre dışı bir polimer olan sümük tabakası tamamen düzensizdir, kapsül veya glikokaliks ise çok düzenlidir. Bu yapılar, bakterileri makrofaj gibi ökaryotik hücreler tarafından yutulmaya karşı korur. Bunlar ayrıca antijen olarak etki edip hücre tanınmasında rol oynayabilir, ayrıca yüzeylere bağlanmak ve biyofilm oluşmasına yardımcı olabilir. Bu hücre dışı yapıların biraraya gelmesi salgı sistemlerine dayalıdır. Bunlar proteinleri sitoplazmadan periplazmaya veya hücre dışı ortama aktarırlar. Çeşitli salgı sistemleri bilinmektedir ve bu yapılar virülans için gerekli olduğu için yoğun bir sekilde araştırılmaktdadır. Endosporlar Bazı Gram-pozitif bakteri cinsleri, örneğin Bacillus, Clostridium, Sporohalobacter, Anaerobacter and Heliobacterium, endospor adlı çok dayanıklı, uyuşuk ('dormant') yapılar oluşturabilir. Hemen her örnekte üremeyle ilişkili olmayan bir süreç sonucunda bir hücreden bir endospor oluşur; ancak Anaerobacter durumunda bir hücrenin içinde oluşabilecek endospor sayısı yediyi bulabilir. Endosporların merkezinde, içinde DNA ve ribozomlar olan bir sitoplazma, bunun etrafında ise korteks tabakası, en dışta ise su geçirmez ve sert bir örtü bulunur. Endosporlar bir metabolizma belirtisi göstermezler, aşırı kimyasal ve fiziksel baskılara dayanıklıdırlar, örneğin, morötesi ışın, gama ışınları, deterjanlar, dezenfektanlar, ısı, basınç ve kurutulma. Bu uyuşuk halde bu organizmalar milyonlarca yıl boyunca tekrar yaşama geri dönebilirler. Endosporlar bakterilerin uzaydaki boşluk ve radyasyona dayanmalarını sağlar. Endospor oluşturan bakterilerin bazıları hastalık da yapar: örneğin şarbon hastalığı Bacillus anthracis endosporlarının teneffüsüyle kapılabilir, derin saplanma yaralarının Clostridium tetani endosporları ile kontamine olması da tetanoza yol açar. Metabolizma Bakterilerde karbon metabolizması ya heterotrofiktir, organik bileşikler karbon kaynağı olarak kullanılır veya ototrofiktir, yani hücresel karbon, karbon dioksitin karbon fiksasyonu elde edilir. Tipik ototrofik bakteriler arasında fototrofik siyanobakteriler, yeşil kükürt bakterileri ve bazı mor bakteriler sayılabilir, ama pekçok kemolitrofik türler de, örneğin azotlayıcı ve kükürt yükseltgeyici bakteriler de bu grupta yer alır. Bakterilerin enerji metabolizması ya fototrofiye, yani ışığın fotosentez yoluyla kullanımına, ya da kemotrofiye, yani enerji için kimyasal bileşiklerin kullanımıdır ki bu bileşiklerin çoğu oksijen veya ona alternatif başka elektron alıcıları yoluyla yükseltgenir (aerobik veya anaerobik solunum). Nihayet, bakteriler ya inorganik ya da organik bileşikler elektron vericileri kullanmalarına göre, sırasıyla, litotrof veya organotrof olarak siniflanirlar. Kemotrofik organizmalar, hem enerji korunumu (solunum veya fermantasyon ile) hem de biosentetik tepkimeler için bu elektron vericilerini kullanır, buna karşın fototrofik organzmalar onları sadece biyosentetik amaçla kullanırlar. Solunum yapan organizmalar enerji kayanğı olarak kimyasal bileşikler kullanırlar, bunun için elektronlar bir yükseltgenme-indirgenme (redoks) tepkimesi ile indirgenmiş bir substrattan bir son elektron alıcısına taşınır. Bu tepkimenin açığa çıkardığı enerji ile ATP sentezlenir ve metabolizma yürütülür. Aerobik organizmalarda oksijen elektron alıcısı olarak kullanılır. Anaerobik organizmalarda nitrat, sülfat veya karbon dioksit gibi başka inorganik bileşikler elektron alıcısı olarak kullanılır. Bunlar sonucunda ekolojide büyük önem taşıyan denitrifikasyon, sülfat indirgenmesi ve asetogenez süreçleri meydana gelir. Kemotroflarda, bir elektron alıcısının yokluğu halinde, bir diğer olası yaşam yolu fermantasyondur, bunda indirgeniş substratlardan elde edilen elektronlar yükseltgenmiş ara ürünlere aktarılarak fermantasyon ürünleri meydana getirir, örneğin laktik asit, etanol, hidrojen, butirik asit gibi. Substratların enerji seviyesi ürünlerinkinden daha yüksek olması sayesinde fermantasyon mümkün olur, böylece organizmalar ATP sentezler ve metabolizmalarını çalıştırırlar. Bu süreçler, çevre kirlenmesine olan biyolojik tepkilerde de önemlidirler: örneğin sülfat indirgeyici bakteriler, cıvanın çok toksik şekillerinin (metil- ve dimetil-cıva) üretiminden büyük ölçüde sorumludur. Solunum yapmayan anaeroblar fermantasyon yoluyla enerji üretip indirgeyici güç elde ederler, bu sırada metabolik yan ürünleri (biracılıkta etanol gibi) atık olarak salgılarlar. Seçmeli anaeroblar (fakültatif anaeroblar), içinde bulundukları çevresel şartlara göre fermantasyon ile farklı elektron alıcıları arasında seçim yaparlar. Litotrofik bakteriler enerji kaynağı olarak inorganik bileşikler kullanırlar. Yaygın kullanılan elektron vericileri hidrojen, karbon monoksit, amonyak (nitrifikasyona yol açar), feröz demir ve diğer indirgenmiş metal iyonları, ve bazı indirgenmiş kükürt bileşikleridir. Metan gazı metanotrofik bakteriler tarafından hem bir elektron kaynağı hem de karbon anabolizmasında bir substrat olarak kullanılması bakımından dikkat çekicidir. Hem aerobik fototrofi hem de kemolitotrofide, oksijen nihai elektron alıcısı olarak kullanılır, anaerobik şarlarda ise inorganik bileşikler kullanılır. Çoğu litotrofik organizma otortorfiktir, buna karşın organotrofik organzmalar heterotrofiktir. Karbon dioksitin fotosentezle fiksasyonuna ek olarak bazı bakteriler, nitrojenaz enzimini kullanarak azot gazını sabitlerler (azot fiksasyonu). Çevresel olarak önemli olan bu özellik, yukarıda sayılmış metabolik tiplerin herbirindeki bazı bakterilerde görülür ama evrensel değildir. Büyüme ve üreme Çok hücreli organizmalardan farklı olarak, tek hücreli organizmalarda büyüme (hücre büyümesi) ve hücre bölünmesi yoluyla üreme sıkı bir sekilde birbirine bağlıdır. Bakteriler belli bir boya kadar büyür ve sonra eşeysiz üreme şekli olan ikili bölünme ile ürerler. En iyi şartlarda bakteriler büyük bir hızla büyür ve ürerler; bakteri topluluklarının sayısı her 9,8 dakikada ikiye katlanabilir. Hücre bölünmesinde birbirinin aynı iki yavru hücre meydana gelir. Bazı bakteriler, eşeysiz üremelerine rağmen, daha karmaşık yapılar oluştur, bunlar yavru hücrelerin yayılmasını kolaylaştırır. Buna örnek myxobacteria'larda tohum yapıları ve Streptomyces'te hif oluşumudur. Bazı bakterilerde ise tomurcuklanma olur, hücre yüzeyindeki meydana gelen bir uzantı kopunca bir yavru hücre meydana gelir. Laboratuvarda bakteriler çoğu zaman katı veya sıvı ortamda büyütülürler. Katı büyüme ortamı olarak agar kapları kullanılır, bunlar aracılığıyla bir bakteri suşunun saf bir kültürü elde edilir. Ancak, büyümenin hızının ölçülmesi veya büyük miktarda hücrenin eldesi gerektiğinde sıvı büyüme ortamları kullanılır. Karıştırılan bir ortam içinde büyüyen bakteriler homojen bir hücre süspansiyonu olştururlar, böylece kültürün eşit olarak bölünmesi ve başka kaplara aktarımı kolay olur. Ancak sıvı ortamda tek bakteri hücrelerinini izole edilmesi zordur. Seçici ortam (belli besin maddeleri eklenmiş veya eksik bırakılmış, veya antibiyotik eklenmiş ortam) belli organizmaların kimliğinin tespitine yardımcı olur. Bakteri büyütmek için kullanılan çoğu laboratuvar tekniğinde, çok miktarda hücrenin hızlı ve ucuz olarak üretilmesi için bol miktarda besinler kullanılır. Ancak, doğal ortamlarda besinler sınırlı miktradadır, bu yüzden bakteriler ilelebet üremeye devam edemez. Besin sınırlaması farklı büyüme stratejilerinin evrimleşmesine yol açar. Bazı organizmalar besinler mevcut olunca son derece hızlı çoğalır, örneğin yaz aylarında bazı göllerde yosun ve siyanobakteriyel büyümelerinde olduğu gibi. Başka bazı organizmalar sert çevresel şartlara adaptasyonları vardır, örneğin Streptomyces'in rakip organizmaları engellemek için çoklu antibiyotik salgılaması gibi. Doğada çoğu organizma besin teminini kolaylaştıran ve çevresel streslere karşı koruyucu topluluklar halinde (biyofilm gibi) yaşar. Bu ilişkiler belli canlı veya canlı gruplarının büyümesi için şart olabilir (sintrofi). Bakteriyel büyüme üç evre izler. Bir bakteri topluluğu yüksek besin bulunduran bir ortama ilk girdiğinde hücrelerin yeni ortamlarına adapte olmaları gerekir. Büyümenin ilk evresi bekleme aşamasıdır (latent dönem veya lag fazı), bu yavaş büyüme döneminde hücreler yüksek besili ortama adapte olup hızlı büyümeye hazırlanırlar. Hızlı büyüme için gerekli olan proteinler üretilmekte olduğu için bekleme döneminde biyosentez hızı yüksektir. Büyümenin ikinci evresi logaritmik faz (log fazı) veya üssel faz olarak adlandırılır. Bu evrede üssel büyüme olur. Bu evrede hücrelerin büyüme hızı (k), hücre sayısının iki katına çıkma süresi de jenerasyon zamanı (g) olarak adlandırılır. Besinlerden biri tükenip sınırlayıcı olana kadar süren log fazı sırasında besinler en yüksek hızla metabolize olur. Büyümenin son evresi durağan faz olarak adlandırılır, ve besinlerin tükenmiş olmasından kaynaklanır. Hücreler metabolik etkinliklerini azaltır ve gerekli olmayan hücresel proteinlerini harcarlar. Durağan faz, hızlı büyümeden bir strese tepki haline geçiş dönemidir, DNA tamiri, antioksidan metabolizması, ve besin taşıması ile ilişkili genlerin ifadesinde bir artış olur. Genetik Çoğu bakteride tek bir dairesel kromozom bulunur, bunun büyüklüğü endosimbiyotik bir bakteri olan Candidatus Carsonella ruddii de 160.000 baz çiftinden, bir toprak bakterisi olan Sorangium cellulosumda 12,200,000 baz çiftine kadar uzanır. Borrelia cinsine ait spiroketler bu genel özelliğin bir istisnasıdır, Borrelia burgdorferi (Lyme hastalığı etmeni) gibi türlerde tek bir doğrusal kromozom bulunur. Bakteriyel kromozomlardaki genler genelde tek bir sürekli DNA parçasından oluşur, bazı bakterilerde intronlar bulunmuşsa da bunlar ökaryotlarda olduğundan çok daha enderdir. Bakteriler aynı zamanda plazmidler de bulunabilir, bunlar kromozomdan ayrı DNA parçalarıdır, antibiyotik direnç genleri veya virülans faktörleri içerebilirler. Bir diğer tip bakteriyel DNA, kromozoma entegre olmuş virüslere (bakteriyofajlara) aittir. Çeşitli bakteriyofaj türleri vardır, bazıları sadece konak bakterilerini enfekte edip onu parçalar, diğerleri ise hücre içine girdikten sonra DNA'larını bakteriyel kromozoma dahil ederler. Bir bakteriyofaj konak hücresinini fenotipine katkıda bulunan genler taşıyabilir: örneğin Escherichia coli O157:H7'nin evrimi sırasında entegre olmuş bir fajın toksin genleri, zararsız bir atasal bakteriyi ölümcül bir patojene dönüştürmüştür. Bakteriler, eşeysiz organizmalar olarak, ana hücrelerinin genlerinin kopyalarını devralırlar. Ancak tüm bakteriler, DNA'larındaki değişikliklerin (mutasyon ve genetik rekombinasyonun) seçilimi ile evrimleşir. Mutasyonlar DNA ikileşmesi sırasında meydana gelen hatalar veya mutajenlerden kaynaklanır. Mutasyon hızları farklı bakteri türleri ve hatta aynı bakterinin farklı suşları arasında büyük farklılıklar gösterir. Bazı bakteriler ayrıca genetik malzemelerini hücreler arasında aktarabilirler. Bu üç yolla meydana gelebilir. Birincisi, bakteriler ortamlarıdaki yabancı DNA'yı içlerine alabilirler, buna transformasyon denir. Genler ayrıca transdüksiyon yoluyla, bir bakteriyofajın yabancı bir DNA parçasını kromozomun içine yerleştirmesiyle aktarılabilir. Gen aktarımını üçüncü yolu bakteriyel konjügasyondur, bunda DNA doğrudan hücresel temas yoluyla aktarılır. Başka bakteri veya ortamdan gen edinimine yatay gen transferi denir ve doğal şartlarda bu yaygın olabilir. Gen transferi özellikle antibiyotik direncinin oluşmasında önemlidir, çünkü bu, farklı patojenler arasında direnç genlerinin transferini sağlar. Hareket Hareketli (motil) bakteriler Kamçı (Biyoloji), bakteriyel kayma, seğirmeli hareket ve batmazlık (buoyuans) değişmesi yoluyla hareket ederler. Seğirmeli hareketlilikte bakteriler tip IV piluslarını bir kanca olarak kullanır, tekrar tekrar onu uzatır, bir yere saplar ve büyük bir kuvvetle (>80 pN) geri çeker. Bakteriyel türler kamçılarının sayı ve düzenine göre farklılık gösterirler; bazılarının tek bir kamçısı vardır (tek kamçılı veya monotrik), bazılarının iki uçta birer kamçısı (iki kamçılı veya amfitrik), bazılarının uçlarında kamçı kümeleri (iki demet kamçılı veya lofotrik), diğerlerinin ise tüm yüzeylerine yayılmış kamçıları vardır (çok kamçılı veya peritrik). Bakteri kamçısı yapısı en iyi anlaşılmış hareketlilik yapısıdır, 20 proteinden oluşur, ayrıca onun düzenlenmesi ve inşası için yaklaşık 30 diğer protein gereklidir. Kamçının tabanında bulunan motor, membranın iki yanı arasındaki elektrokimyasal gradyanı güç için kullanır. Bu motor, bir pervane gibi çalışan iplikçiği döndürür. Çoğu bakterinin (E. coli gibi) iki farklı hareket biçimi vardır: ileri hareket (yüzme) ve yuvarlanma (tumbling). Yuvarlanma sayesinde bakteri yönünü değiştirir ve izlediği yol üç boyutlu bir rassal yürüyüş şeklini alır. Spiroketlerin kamçısı periplamik boşlukta iki zar arasında bulunur. Bu bakterilerin kendilerine has sarmal bir gövdeleri vardır ve hareket ederken kıvrılırlar. Hareketli bakteriler belli uyaranlar tarafından çekim veya itime uğrarlar, bunun neden olduğu davranışlara taksis denir: bunların arasında kemotaksis, fototaksis ve manyetotaksis bulunur. Myxobacterialerde, bireysel bakteriler beraber hareket ederek hücre dalgaları oluşturur, bunlar farklılaşıp içinde sporlar bulunduran tohum yapıları oluşturur. Myxobacteria'lar yalnızca katı ortam üzerindeyken hareket ederler, buna karşın E. coli hem sıvı hem katı ortamda hareketlidir. Birkaç Listeria ve Şigella türü, konak hücreler içinde hareket ederken, normalde organellerin hücre içinde taşınmasını sağlayan hücre iskeletini kullanırlar. Kendi hücrelerinin bir kutbunda aktin polimerizasyonunu sağlayarak bir cins kuyruk oluştururlar, bu onları konak hücre sitoplazması içinde iter. Sınıflandırma ve kimlik tespiti Sınıflandırma, bakterileri benzerliklerine göre gruplandırıp adlandırarak onlardaki çeşitliliği betimlemeye yarar. Bakteriler hücre yapısı, hücresel metabolizma veya hücresel bileşenlerindeki (DNA, yağ asitleri, pigment, antijen ve kinonlar gibi) farklılıklara göre sınıflandırılabilirler. Bu yöntemler bakteri suşlarının kimliklerinin tespitini ve sınıflandırılmasına olanka sağlasa da, bu farklılıkların farklı türler arasındaki varyasyonları mı yoksa aynı tğr içindeki varyasyonları mı yansıttığı belli değildi. Bu belirsizliğin nedeni, çoğu bakteride ayırdedici yapıların olmaması, ayrıca birbiriyle ilişkisiz türler arasında yatay gen transferi olmasıydı. Yatay gen trasnferi yüzünden birbirine akraba sayılabilecek bazı bakteri türleri çok farklı morfoloji ve metabolizmaya sahip olabilirler. Bu belirsizliğin üstesinden gelebilmek için modern bakteri sınıflandırması moleküler sistematiğe ağırlık verir, guanin sitozin oranının ölçümü, genom-genom hibridizasyonu, ayrıca yatay gen transferine uğramamış genlerin (ribozomal RNA gibi) dizilenmesi gibi genetik teknikler kullanır. Bakteri sınıflandırması International Journal of Systematic Bacteriology (Uluslarası Sistematik Biyoloji) dergisi ve Bergey's Manual of Systematic Bacteriology kitapçığında yayımlanarak resmileşir. "Bakteri" terimi bir zamanlar tüm mikroskopik, tek hücreli prokaryotlar için kullanılırdı. Ancak moleküler sistematik sayesinde prokaryotik yaşamın iki ayrı sahadan oluştuğu gösterildi. Önceleri Eubacteria ve Archaebacteria diye adlandırılan, ama artık Bacteria and Archaea olarak adlandırılan bu iki canlı grubu, ortak bir atadan ayrı ayrı evrimleşmişlerdir. Arkeler ve ökaryotlar arasındaki yakınlık, her birinin bakterilerle olan yakınlığından daha çoktur. Bu iki saha (üst alem), Eukarya ile birlikte, günümüzde mikrobiyolojide en yaygın kullanılan sınıflandırma sistemi olan üç saha sisteminin temelini oluşturur. Ancak, moleküler sistematiğin yakın zamanda kullanıma girmesi ve genom dizileri elde edilmiş canlıların sayısındaki hızlı artış nedeniyle bakteri sınıflandırması halen hızle değişen ve gelişen bir bilim dalıdır. Örneğin, bazı biyologlar arke ve ökaryotların Gram-pozitif bakterilerden evrimleştiğini iddia etmektedirler. Laboratuvarda bakteri kimlik tespiti özellikle tıpta çok önemlidir, çünkü doğru tedavi, enfeksiyona yol açan bakteri türüne bağlıdır. Dolayısıyla insan patojenlerinin kimliğinin tespiti, bakterilerin tanımlanma tekniklerinin gelişmesinin başlıca dürtüsü olmuştur. 1884'te Hans Christian Gram tarafından geliştirilmiş Gram boyama, bakterileri hücre duvarlarının yapısal özelliklerine göre tanımlamakta kullanılır. Bazı organizmalar Gram boyasından başka boyalarla en iyi tanınabilirler. Özellikle mikobakteriler ve Nocardia Ziehl–Neelsen ve benzeri boyalarla asit eşliğinde boyanır. Başka organizmalar özel ortamlarda büyümeleriyle tanınırlar veya seroloji gib başka teknikleri gerektirirler. Kültür teknikleri, bakterilerin büyümesini sağlamak ve belli bakterilerin kimliğini tespit etmek, aynı zamanda da nümenede bulunan başka bakterilerin büyümesini sınırlamak için tasarlanmıştır. Çoğu zaman bu teknikler belli nümune türleri göz önüne alınarak geliştirilmiştir; örneğin bir tükürük örneği pnömoniye yol açan organizmaları ortaya çıkaracak şekilde işleden geçirilir, bir dışkı örneği ise ishale yol açan organizalar tanımak için seçici ortamda kültürlenir, bu ortamda patojen olmayan bakteriler büyümez. Normal olarak steril olan örnekler, örneğin kan, idrar veya omurilik sıvısı, tüm organizmaların büyümesini sağlayan şartlarda kültürlenir. Patojen bir organizma izole edildikten sonra, morfolojisi, büyüme özellikleri (aerobik veya anaerobik büyüme, hemoliz şekilleri gibi) ve boyama ile daha ayrıntılı olarak karakterize edilebilir. Bakteri sınıflandırmasında olduğu gibi, bakteri kimlik tespiti de gittikçe daha sık olarak moleküler yöntemlerle yapılmaktadır. DNA'ya dayalı yöntemler, örneğin polimeraz zincir reaksiyonu, özgüllükleri ve çabuklukları nedeniyle, kültür yapmaya dayalı tekniklere kıyasla artarak popülerleşmektedir. Bu yöntemler sayesinde "yaşayan ama kültürlenemeyen", yani metabolik olarak aktif olan ama bölünmeyen hücrelerin kimliklerini tespit etmek mümkün olmaktadır. Ancak bu gelişmiş yöntemlerle dahi, bakteri türlerinin toplam sayısı bilinmemektedir ve bu sayı belli güven sınırları içinde tamin dahi edilememektedir. Mevcut sınıflandırmaya göre bilinen bakteri türlerinin (siyanobakteriler dahil) sayısı 9000'inin altındadır, ama bakteriyel çeşitliliğin büyüklüğü hakkındaki tahminlerde toplam tür sayısı 107'den 109'a kadar uzanır ve hatta bu tahminlerinlerin dahi birkaç büyüklük mertebesi kadar hatalı olabileceği düşünülmektedir. Diğer organizmalarla etkileşimler Görünür basitliklerine rağmen, bakteriler diğer canlılarla karmaşık etkileşimler içindedir. Bu simbiyotik ilişkiler parazitizm, mutualizm ve komensalizm olarak üçe ayrılırlar. Komensal bakteriler her yerde bulunur, hayvan ve bitkiler üzerinde büyümeleri başka yüzeyler üzerinde büyümeleri ile aynıdır (ancak sıcaklık ve ter bunların büyümesini hızlandırabilir); insanlarda bu organizmalardan çok sayıda olması vücut kokusunun nedenidir. Mutualistler Bazı bakteriler varlıklarının devamı için gerekli olan, mekansal olarak yakın ilişkilere girerler. Bu tür mutualist ilişkilerden biri olan türler arası hidrojen transferi olarak adlandırılır, butirik asit veya propiyonik asit tüketip hidrojen tüketen anaerobik bakteriler ile, hidrojen tüketen metanojenik arkeler arasındadır. Bu ilişkide yer alan bakteriler kendi başlarına bu organik asitleri kullanamazlar çünkü bu reaksiyon sonucu aşığa çıkan hidrojen çevrelerinde birikir. Hidrojen tüketici arkelerle yakın ilişkileri sayesinde hidrojen konsantrasyonu yeterince düşük kalır ve bakteriler büyüyebilir. Toprakta, rizosferde (kökün yüzeyi ve kökü bağlı olan topraktan oluşan bölgede) mikroorganizmalar azot fiksasyonu yaparlar, yani azot gazını azotlu bileşiklere dönüştürürler. Bu süreç sonucunda bitkilerin (ki onlar azot fiksasyonu yapamazlar) kolayca absorbe edebildiği bir azot kaynağı meydana gelir. Pekçok başka bakteri, insan ve başka canlılarda simbiont olarak bulunurlar. Örneğin normal insan bağırsağındaki bağırsak florasındaki 1000'den fazla bakteri, bağırsak bağışıklığına, bazı vitaminlerin (folik asit, K vitamini ve biyotin) sentezine, süt proteinlerinin laktik asite dönüştürülmesine (bkz. Laktobasiller) katkıda bulunur, ayrıca sindirilmemiş kompleks karbonhidratların fermantasyonunu sağlar. Bu bağırsak floarası ayrıca potansiyle patojen bakterilerin büyümesini engellediği için (genelde yarışmalı dışlama ile) bu faydalı bakterilerin probiyotik besin katkısı olarak alınmasının olumlu etkileri bulunmuştur. Patojenler Eğer bakteriler başka organizmalarla parazitik ilişkiler kurarlarsa patojen olarak sınıflandırılırlar. Patojen bakteriler insan larda ölüm ve hastalığın başlıca nedenidir; neden oldukları enfeksiyonlar arasında tetanoz, tifo, tifüs, difteri, frengi, kolera, besin kaynaklı hastalıklar, cüzzam ve verem sayılabilir. Bilinen bir hastalığın patojenik kaynağının keşfi yıllar sürebilir, örneğin mide ülseri hastalığı ve Helicobacter pylori durumunda olduğu gibi. Bakteryel hastalıklar tarımda da önemlidir, bakteriler bitkilerde yaprak beneği, ateş yanıklığı ve solmaya, çiftlik hayvanlarında da paratüberküloz, mastit, salmonella ve şarbona neden olur. Her patojen türün insan konağı ile etkileşimlerinin karakteristik bir spektrum oluşturur. Bazı organizmalar, örneğin Stafilokok veya Streptokok, deri enfeksiyonu, pnömoni, menenjit ve hatta sistemik sepsis (şok, masif vazodilasyon ve ölümle sonuşlanan sistemik bir enflamasyon tepkisi) neden olur. Lakin bu oganizmalar aynı zamanda normal insan florasına aittir, genelde insan derisi ve burununda bulur ve hiç bir hastalığa yol açmazlar. Buna karşın bazı başka organizmalar her durumda insanda hastalık yaparlar. Örneği Rickettsia, ancak başka canlıların hücrelerinin içinde büyüyüp çoğlabilen, zorunlu bir hücreiçi parazittir. Rickettsia'nin bir türü tifüse, bir diğeri ise Kayalık Dağlar benekli hummasına neden olur. Klamidya, zorunlu hücre içi paraziti bir diğer takımı içinde bulunan bazı türler pnömoni, veya idrar yolu enfeksiyonuna neden olabilir, ayrıca koroner kalp hastalığı ile de ilişkili olabilirler. Nihayet, bazı bakteri türleri, Pseudomonas aeruginosa, Burkholderia cenocepacia, ve Mycobacterium avium gibi, fırsatçı patojendirler ve sadece immün yetmezlik çeken veya kistik fibrozlu kişilerde hastalık yaparlar. Bakteriyel enfeksiyonlar antibiyotikle tedavi edilebilirler, bu antibiyotikler bakterileri öldürürse bakteriosidal, sadece onların çoğalmasını engelliyorsa bakteriostatik olarak sınıflandırılır. Pekçok antibiyotik vardır ve bunların her sınıfı patojende olup konağında olmayan bir süreci engeller. Antibiyotiklerin nasıl seçici toksiklik gösterdiğine bir örneği kloramfenikol ve puromisindir, bunlar bakteri ribozomlarını engellerler, ama yapısal olarak farklı olan ökaryotik ribozomlara etki etmezler. İnsan hastalıklarını tedavide kullanılan antibiyotiklerin hayvancılıkta da hayvanlarının büyümesini hızlandırmak için kullanılması, bakterilerde antibiyotik direnci gelişmesine neden olabilir. Enfeksiyonları engellemek için antiseptik önlemler alınır, örneğin deri bir iğne ile delinmeden evvel sterilize edilir. Cerrahi ve dişçilik araçları da kontaminasyon ve bakteriyel enfeksiyonu önlemek için sterilize edilir. Çamaşır suyu gibi dezenfektanlar, eşya yüzeylerinde bulunan bakteri ve diğer patojenleri öldürüp kontaminasyonu önlemek ve enfeksiyon riskini daha da azaltmak amacıyla kullanılır. Teknoloji ve endüstride önemi Bakteriler, çoğu zaman laktobasil türleri, maya ve küflerle beraber, fermante edilmiş gıdaların (peynir, turşu, soya sosu, sauerkraut, sirke, şarap ve yoğurt gibi) hazırlanmasında binlerce yıldır kullanılmaktadır. Bakterilerin çeşitli organik bileşikleri parçalayabilme yetenekleri dikkate değerdir ve atıkların işlenmesi ve değerlendirilmesinde (bioremediation) kullanılmıştır. Petroldeki hidrokarbonları sindirebilen bakteriler çoğu zaman petrol saçılmalarının temizlenmesinde kullanılır. 1989'da meydana gelen Exxon Valdez tanker kazasının ardından Prince William Sound kıyılarına gübre dökülerek bu doğal bakterilerin büyümesi teşvik edilmişti. Bu yöntem, çok fazla petrol kaplanmamış kıyılarda etkili olmuştu. Bakteriler ayrıca endüstriyel toksik atıkların değerlendirilmesinde de kullanılırlar. Kimya endüstrisinde, enantiyomerik olarak saf kimyasalların üretilmesinde (bunlar ilaç ve tarımsal kimyasalların hammadesidir) bakteriler önemli rol oynarlar. Bakteriler ayrıca biyolojik haşare kontrolünde haşare ilaçlarının yerine kullanılabilirler. Bunun en yaygın örneği, Gram pozitif bir toprak bakterisi olan Bacillus thuringiensisdir (BT olarak da adlandırılır). Bu bakterinin alt-türleri kelebeklere (Lepidoptera türlerine) özgül bir böcek öldürücü olarak kullanılır. Spesifik olmalarından dolayı bu böcek öldürücüler çevre dostu olarak kabul edilir; insanlara, yabani hayvanlara, polinasyon yapan ve diğer faydalı böceklere etkileri çok az veya hiçtir. Hızlı büyüme ve kolaylıkla manipüle edilebilmelerinden dolayı bakteriler moleküler biyoloji, genetik ve biyokimyada birer araç olarak kullanılırlar. Bakteri DNA'sında mutasyon yapıp bunun fenotipini inceleyerek bilimciler genlerin, enzimlerin ve metabolik patikaların işlevlerini belirleyebilmekte, sonra edindikleri bilgileri daha karmaşık canlılara uygulayabilmektedirler. Muazzam miktarda enzim kinetiği ve gen ifadesi verileri, canlıların matematiksel modellerinde kullanılarak hücrenin biyokimyasının anlanması amaçlanmaktadır. Çok çalışılmış bazı bakterilerde bu mümkündür, Escherichia coli metabolizmasının modelleri üretilmekte ve denenmektedir. Bakteri metabolizması ve genetiğinin bu seviyede anlaşılır olması sayesinde bakterilerin biyoteknoloji kullanılarak yeniden tasarımı mümkün olmakta, böylece onların tedavi amaçlı proteinleri (insülin, büyüme faktörleri veya antikorlar gibi) daha verimli sekilde üretmesi sağlanabilmektedir. Kaynak: bakteri.nedir.com/#ixzz2gQ80yt60

http://www.biyologlar.com/bakteri-nedir

MAĞARA KOŞULLARI ve ADAPTASYON

Neden ve nasıl bu kadar faklı bir ekosistem oluşmuştur? Bunun esas sebebi, mağara ortamının dışarıdaki ortamdan farklı jeolojik ve meteorolojik özelliklere sahip olması ve buna bağlı olarak da farklı bir ekolojik yapı göstermesidir. Peki nedir bu temel farklılıklar? Bu temel farklılıklar kuşakların ayrılmasında kullanılan ana faktörler olan ışık, nem ve sıcaklık etkisiyle şekillenmektedir. Mağaraya giren herkes ilk anda bir ürperti yaşar. Sanki etrafta doğal olmayan bir şeyler vardır. Aslında bu hissi veren şey insan tarafından algılanması en kolay faktör olan ışıktır. İlerledikçe çok çabuk bir biçimde ışıktan uzaklaşır, karanlığa gömülürüz. Yeşil bitkiler yaşamak için güneş enerjisine ihtiyaç duyduklarından, bizi bile ürperten bu karanlıkta yaşamlarını sürdüremezler. Yeşil bitkiler besin zincirinin en altında yer alırlar; yani temel besin maddeleridirler. Güneş enerjisini alıp kimyasal enerjiye çevirirler. Böylece tüm canlıların yaşamak için ihtiyaç duyduğu enerji besin döngüsüne girmiş olur. Güneş enerjisi ancak bu haldeyken hayvanlar da bu enerjiden nasiplerini alabilirler. Yani mağaralar besin zincirinin temel taşı olan yeşil bitkilerden yoksundurlar. İşte bundan dolayı mağara yaşamı zorlukların dünyası olarak görülebilir. Diğer yandan mağara ekosistemleri bu açıklarını besini dışarıdan ithal etmekle çözümlemişlerdir. Mağaraya madde giriş çıkışını sağlayan birkaç yoldan biri özellikle birden çok ağzı olan mağaralarda mevcut olan hava akımıdır. Kuvvetli bir hava akımı ile yaprak, dal ve birçok madde mağara içine taşınabilir. Fakat daha önemlisi bakteri ve mantarların, yani görülemeyecek kadar küçük canlıların, mağaranın içlerine kadar taşınabilmesidir. Daha etkili bir besin kaynağı ise aktif mağaradaki su akıntılarıdır. Bu akıntılarla pek çok organik madde, yaprak, dal, ölü hayvan ve plankton mağaraya taşınabilir. Bu tür taşınan maddeleri çoğu zaman kayaların arasına sıkışmış bir biçimde gözleyebiliyoruz. Besin taşımada etkili diğer bir mekanizma ise mağarayı zaman zaman ziyaret eden canlıların taşıdıkları çeşitli maddelerdir. Bu yollarla yarasa dışkısı (guano), ayı gibi hayvanların kürklerine yapışan tohumlar ve yiyecek artıkları gibi besin kaynaklarının mağaraya girişi sağlanır. Bir başka önemli besin kaynağı ise daha önce de bahsettiğimiz gibi yanlışlıkla mağaraya girip geri çıkamadığından burada ölen rastlantısal canlılardır. Mağaralara besin sağlayan mekanizmalar olmasına rağmen, bütün bu besin kaynakları kısıtlı bir besin girişine izin veren taşıma yöntemleridir. Bu nedenledir ki mağaralarda yaşayan canlılar ya dışarıya çıkıp daha fazla besin bulamaya çalışırlar (örneğin, yarasalar çoğu besinini dışarıdan sağlarlar), ya da besin kıtlığına aşırı dayanıklı hale gelirler. Mağara koşullarına tamamen adapte olduklarından troglobitler besin kıtlığına şaşırtıcı derecede dayanıklıdırlar. Besin kıtlığına uyum sağlamak için troglobitlerin vücut faaliyetleri (metabolizma) yüzey akrabalarına göre yavaşlamış, enerji tasarrufu azami düzeye ulaşmıştır. Bu nedenle mecbur kalmadıkça hareket etmezler. Çoğunun duyu organları o kadar gelişmiştir ki etraflarındaki hareketleri, ani kimyasal ve fiziksel değişimleri kolayca fark ederler. Böylece avın yerinden emin olduktan sonra harekete geçer. Besin kıtlığı ortamdaki biyoçeşitliliği baskılar. Zaten az olan besin için rekabete girilmesi ortamdaki rekabeti artırır, böylece ortama en uygun canlılar ayakta kalırken diğerleri ortadan kalkar. Ayrıca, tek bir besin türüne bağımlı olan canlı türleri bu ortamdaki kısıtlı besin koşullarına uzun süre dayanamaz. Özellikle Troglobitler dışarıdaki kaynaklara ulaşamadıkları için bu tür baskılarda en çok etkilenen canlılardır. Bu nedenle değişik besinlerden faydalanabilmelidirler. Işık mağara yaşamını baskılayıcı diğer bir baskın faktör olduğu için mağara içindeki evrimsel gelişimi de kontrol eden etmenlerden biridir. Karanlığa tamamıyla adapte olan troglobitler yeryüzündeki akrabalarından farklı bir görünüme sahiptirler. Darwin’in de savunduğu gibi, kullanılmayan organların körelmesi ve kullanılan organların gelişmesi ile bu canlılar dışarıdaki akrabalarından çok daha farklı özelliklere sahip olamaya başlamışlardır. İlk bakışta troglobitlerin en ilgi çeken özelliği beyaz ya da pembemsi renkte oluşlarıdır. Tamamen ışıksız bir ortamda gereksiz hale gelen renk pigmentleri yok olmuştur (depigmentasyon). Hemen dikkati çeken diğer bir yapı ise neredeyse görülemeyecek kadar ufalmış ya da kaybolmuş gözlerdir (anophtalmy). Gözler ışık sayesinde etrafımızdakileri algılamamızı sağlayan organlardır ve ışıksız bir ortamda hiçbir işe yaramazlar. Tabii bu koşullar altında kullanılmayan beyindeki görme merkezinin de küçülmesi umulur. Mağarada yaşayan böceklerin kanatlarını yitirmeleri de oldukça sık rastlanan bir olaydır. Bu böcekler hem etraflarını göremediklerinden hem de enerji kaybını azaltmak istediklerinden uçmamayı tercih ederler. Daha önce de belirtildiği gibi tüm bu yitirilen organların görevlerini diğer organlar üstlenmiş ve bu nedenle de besin kıtlığı olan bu ekolojik yapı içinde besine ulaşabilmek için gerekli olan koklama, dokunma gibi duyular aşırı gelişmiştir. Örneğin, bir çoğunun dokunaçları dışarıdaki akrabalarınınkine göre daha uzundur. Bazı duyu organlarının yeri uzuvlarının uç bölgelerine doğru kaymış ve buralarda yoğunlaşmıştır. Tabii ki etraflarındaki değişimi kolaylıkla algılayabilmeleri için hareketleri de çok yavaş ve yumuşak olmalıdır. Bu farklı ekosistemi oluşturan bir diğer önemli faktörün de nem olduğunu belirtmiştik. Özellikle aktif mağaralarda nem tüm mağara içinde yüksektir. Aktif mağaralar ıslak olur, bu da etraftaki nem oranının çok yüksek olmasının sağlar. İçlere doğru ilerledikçe bu nem oranı sabit bir değere ulaşır. Ortamdaki yüksek nem oranı vücuttaki suyun korunmasını kolaylaştırır. Vücut yeryüzündeki kadar su kaybı riskine maruz kalmaz. Bu nedenle de troglobitlerin suyu vücutta tutan katmanları azalmıştır. Böylece nem oranındaki farklılıklara çok hassas hale gelmişlerdir. Sonuç olarak özellikle nemin düşük olduğu koşullarında; örneğin açık havada hemen ölürler. Sıcaklık da mağara ekosistemini etkileyen en önemli faktörlerden biridir. Mağarada ısı farkı pek yoktur, en azından yeryüzündeki kadar büyük değişiklikler göstermez. Gece ve gündüzü mağara içindeyken anlamak imkansızdır. Mevsimsel ısı farkları dışında ısıda pek bir değişiklik olmaz. Mevsimsel ısı farkları da 5-10 dereceyi geçmez. Zaten diğer sebeplerden dolayı da incelmiş olan vücudun koruyucu tabakası canlıların ani sıcaklık değişimlerine karşı da hassas hale gelmesini sağlamıştır. Değişik sıcaklıklara adapte olma özelliklerini yitirmiştirler. Karanlık, nem oranı ve ısının sürekli sabit olduğu bir ortamda mağara canlılarının yüzey canlıları gibi yaşamlarını belli devrelere göre düzenleyip düzenleyemedikleri bir çok araştırmanın konusu olmuştur. Son dönemde yapılan bazı çalışmalar bu canlıların üreme organlarında olmasa bile üreme davranışlarında adaptasyonların meydana geldiğini kanıtlamıştır. Örneğin, hayalet balık olarak da bilinen Amblyopsis rosae’un yumurtaları döllendikten sonra onları aylarca ağzında taşıyarak avcılardan korumaya çalıştığı düşünülmektedir. www.humak.hacettepe.edu.tr

http://www.biyologlar.com/magara-kosullari-ve-adaptasyon

MAĞARALARDAN ELDE EDİLEBİLECEK BİYOLOJİK BİLGİLER

Etraftaki kemikler veya kafatası kalıntıları ya da izler mağaranın geçmişte bazı organizmalar tarafından kullanılmış olduğunu işaret eder. Bunu dışında Antalya’daki Tabaklar mağaralarında da görülebileceği gibi uzun süre önce o bölgede yaşamış olan canlılar, o bölgedeki buzul dönemleri ve ekolojik yapı hakkında da bilgi verirler. Rastlantısal olarak mağaralara düşen türlerden kalan iskelet kalıntıları bile çok önemli bilgilerin bize ulaşmasını sağlayabilir. Hatta bunlar insanlık geçmişi hakkında bugüne kadar sahip olduğumuz pek çok bilginin çıkış noktasının oluşturmuşlardır. Özellikle karbonla zaman tayini yöntemleri kullanılarak tüm bu bulguların tarihi veri olarak kullanılması sağlanmaktadır. Bunların dışında gösterdiği adaptasyonlar sayesinde günümüzde bile halen insan bilincini zorlayan evrim konusunda da pek çok bilgi verirler. Mağara canlılarının buzul çağında mağaralara sığınan canlıların buzul çağının sona ermesine rağmen mağaralardan ayrılmaması ve uzun süreler sonucunda bu ortamlara bağımlı ve tamamen uyum sağlamış canlılar haline geldiği düşünülmektedir. www.humak.hacettepe.edu.tr

http://www.biyologlar.com/magaralardan-elde-edilebilecek-biyolojik-bilgiler

Çevre Ölçüm ve Analizleri (Emisyon Ölçümü) | TÜRKAK

Emisyon (Baca Gazı) Ölçümü Ağır Metal ölçüm ve analizleri (Sb, As, Ba, Be, Cd, Cr, Co, Cu, Pb, Mn, Hg, Ni, Ag, Tl, Zn) HCl (klor) ölçüm ve analizi HF (flor) ölçüm ve analizi Bacagazı (emisyon) ölçümü (CO, CO₂, O₂, SO₂, NOx, NO, NO₂) Bacada partikül madde (toz) ölçümü Uçucu organik bileşikler (VOC) ve buhar tayini Amonyak Ölçüm ve Analizi (NH₃) Formaldehit Ölçüm ve Analizi (CH₂O) Sülfürik Asit Ölçüm ve Analizi (H₂SO₄) Siyanür Ölçüm ve Analizi (CN) Bacada islilik analizi Bacada hız tayini Gaz sıcaklığı tayini Bacagazı nem yüzdesi belirlenmesi Baca yüksekliklerinin ( abak) belirlenmesi Kütlesel debi hesaplanması Karbon ( Ayak İzi ) Hesaplanması Kazan verimi ölçümü Kazan kayıpları ölçümü Filtre performans ölçümleri Bacada Sürekli Toz Ölçüm Cihazlarının Kalibrasyon Eğrisi Ölçümleri Bacada Sürekli Yanma Gazı Ölçüm Cihazlarının Kontrol Ölçümleri Trafik ve İş Makinelerinden Kaynaklanan Emisyon Ölçümleri Emisyon ölçüm raporu (1) Bakanlık, 14 üncü maddede ve 23 üncü maddenin birinci fıkrasının (a) ve (b) bentlerinde belirtilen emisyon ölçüm raporunun içeriğini tespit eder (Ek-11). Emisyon ölçüm raporundaki bilgilerde işletmenin endüstriyel ve ticari sırları varsa işletme sahibinin/işletmecinin talebi üzerine bu bilgiler umuma ifşa edilemez. (2) Bilimsel araştırmalarda kullanılmak üzere ve bilim kuruluşları tarafından talep edilmesi halinde, işletmeye ait endüstriyel ve ticari sırları dışında kalan bilgiler ve emisyon ölçüm sonuçları, işletmenin sahibi/işleticisi tarafından emisyon ölçüm raporunda yer alan bilgilerin kullanılmasında kesin bir yasaklama getirilmediği takdirde, bilgiyi talep eden kurum/kuruluş tarafından, işletmenin sahibi veya işleticisinden yazılı onay alınmak kaydıyla işletmenin ismi belirtilmeksizin, yetkili merci tarafından görevlendirilen personel denetiminde bilgilerin arşivlendiği bina dışına çıkarılmadan ve kopyalanarak çoğaltılmaksızın incelemeye açılabilir. Emisyon Ölçüm Raporu Formatı 1) İşletmenin faaliyetinin Çevre Kanununca Alınması Gereken İzin ve Lisanslar Hakkında Yönetmelik Madde 4 kapsamında yeri, 2) İşletmenin, işletmede bulunan ve ölçüm yapılan her bir tesisin faaliyetinin açık bir şekilde anlatımı, a) İşletmede bulunan ve ölçüm yapılan her bir tesisin genel yerleşim içindeki fotoğrafları ve/veya uydu fotoğrafları, b) Her bir tesis alanındaki birimlerin arazi yerleşim planları ile birimlerin içerisindeki ünitelerin yerleşim planları (plan üzerinde emisyon kaynakları gösterilecek), 3) İşletmede bulunan ve ölçüm yapılan her bir tesisten kaynaklanan emisyonların bu Yönetmelik Ek-1, Ek-2, Ek-3 ve Ek-5’e göre değerlendirilmesi, 4) İşletmede bulunan ve ölçüm yapılan her bir tesisten kaynaklanan emisyon parametreleri, kirletici emisyonların nereden kaynaklandığı ve bunların kaynaklara göre dağılımı, 5) İşletmede üretimde birim ürün başına kullanılacak elektrik enerjisi miktarı, kullanılan yakıt türleri (linyit, taşkömürü, petrolkoku, biyokütle, fuel-oil, doğal gaz vb.), 6) Kullanılan yakıtların yıllık tüketimleri, yakıtın özellikleri, (alt ısıl değerleri, kükürt, kül, uçucu madde, nem yüzdeleri ve ilgili diğer bilgiler), 7) İşletmede bulunan üretim proseslerinin toplam ısıl gücü, üretim prosesinde kullanılan yakıt cinsi ve miktarı, 8) İşletmede bulunan yakma kazanlarının (gaz türbinleri, içten yanmalı motorlar; gaz, dizel ve çift yakıtlı motorlar) sayı ve özellikleri, yakma tekniği, birim zamanda beslenen yakıt miktarı, kazan, türbin ve motor verimleri, toplam ve her bir kazan, türbin ve motora göre hesaplanmış kW veya MW cinsinden yakıt ısıl gücü (maksimum kazan kapasitesi raporda belirtilecektir) hakkında teknik bilgiler, 9) İşletmede bulunan her bir tesis için Yönetmelik Ek-4 kapsamında gerekli bilgiler ve değerlendirilmesi, a) Ölçüm yapılan noktalar ve bacanın atmosfere çıkış noktasının ayrıntılı olarak görülebileceği şekilde fotoğraflarının, b) Abak kullanılması halinde hesaplamaların abak üzerinde gösterilmesi, 10) Emisyon oluşumunu azaltmak için her tesis için alınan tedbirler ile ilgili detaylı bilgiler, 11) Ölçüm sonuçları ve değerlendirilmesi, 12) Ölçüm cihaz çıktıları veya çıktı alınamayan cihazlar için cihazın bu özelliğini gösteren belgeler, 13) Ölçüm yapan kurum kuruluşların akreditasyon belgesi veya Bakanlıkça ölçüm yapmaya yetkili olduğuna dair belgeler, 14) Valilik tespit raporu,” İzne Tabi Tesislerde Baca Yüksekliği ve Hızının Tespiti a) Baca Gazı Hızı: 1) Yakma tesislerinden kaynaklanan baca gazı hızları; Atık gazlar serbest hava akımı tarafından, engellenmeden taşınabilecek biçimde dikey çıkışla atmosfere verilmelidir. Bu amaçla; baca kullanılmalı, anma ısıl gücü 500 kW’ın üzerindeki tesisler için, gazların bacadan çıkış hızları en az 4 m/s olmalıdır. Tesisin üretimi ve dizaynı gereği; baca çapının daraltılamadığı ve cebri çekişin uygulanamadığı hallerde baca gazı hızı en az 3 m/s olmalıdır. 300 kW  anma ısıl gücü 500 kW olan tesislerde baca gazı hızı en az 2 m/s olmalıdır. Anma ısıl gücü 300 kW’ın altında olan tesislerde baca gazı hızı 2 m/s’nin altında olabilir. 2) Üretim Şeklinden Kaynaklanan Baca Gazları Hızı; Prosesten kaynaklanan atık gazlar serbest hava akımı tarafından, engellenmeden taşınabilecek biçimde dikey çıkışla atmosfere verilmelidir. Bu amaçla baca kullanılmalı, gazların bacadan çıkış hızları, cebri çekişin uygulanabildiği tesislerde en az 4 m/s, tesisin üretim şekli ve üretim prosesi gereği; baca çapının daraltılamadığı ve cebri çekişin uygulanamadığı ve bu durumun bilim kuruluşundan alınacak bir raporla onaylandığı hallerde baca gazı hızı en az 2 m/s olmalıdır. 3) Prosesten kaynaklanan atık gazlar serbest hava akımı tarafından, engellenmeden taşınabilecek biçimde dikey çıkışla atmosfere verilmelidir. Bu amaçla kullanılan bacaların atmosfere açıldığı noktaların atmosfer koşullarından etkilenmemesi (Yağmur, kar vb. dış etkenlerin işletme koşullarını etkilememesi) için bacalara şapka konulmasının teknik bir zorunluluk olması durumunda, bacaya monte edilecek şapkanın bacanın bitiminden bir (1) baca çapı kadar yükseklikte olması ve atık gazların serbest hava akımı tarafından, engellenmeden taşınması sağlanmalıdır. b) Baca Yüksekliği; 1) Küçük Ölçekli Tesislerde Asgari Baca Yüksekliği; Anma ısıl gücü 500 kW’ın altında olan tesislerde bacanın çatı üzerinden itibaren asgari yüksekliği aşağıdaki gibi belirlenir. 1.1. Eğik Çatı; Baca yüksekliği, çatının en yüksek noktasından en az 0,5 m daha yüksek olmalıdır. Anma ısıl gücü 500 kW’ın altında olan tesislerde baca çatının tepe noktasına çok yakın değilse, çatı tabanından en az 1 m yüksekliğinde olmalıdır. 1.2. Düz Çatı; Baca yüksekliği, çatının en yüksek noktasından itibaren en az 1,5 m olmalıdır. Ancak, tesisin anma ısıl gücü 50 kW’ın altındaysa bu yükseklik bir metre olabilir. 2) Orta Ölçekli Tesislerde Asgari Baca Yüksekliği; Anma ısıl gücü 500 kW ile 1,2 MW arasında bulunan tesislerde bacanın çatı üzerinden itibaren asgari yüksekliği aşağıdaki gibi belirlenir. 2.1.Eğik Çatı; Düz veya eğim açısı 200’nin altında olan eğik çatılarda baca yüksekliği, çatı eğimini 200 kabul ederek hesaplanan eğik çatının en yüksek noktasından itibaren en az 1,5 m’den daha fazla olarak tespit edilir. 2.2.Düz Çatı Bacanın yüksekliği çatının en yüksek noktasından itibaren en az 2 m olmalıdır. 3) Büyük Ölçekli Tesislerde Asgari Baca Yüksekliği Anma ısıl gücü 1,2 MW ve üzerinde olan tesislerde baca yüksekliği aşağıda verilen esaslara göre ve Abak kullanılarak belirlenir. Abaktan hacimsel debi değerinin (R), Q/S (kg/saat) değerini kesmediği ve abaktan baca yüksekliğinin belirlenemediği durumlarda, tesis etki alanında engebeli arazi veya mevcut ya da yapımı öngörülen bina ve yükseltiler bulunmuyorsa (J’ değeri sıfır olarak belirlenmişse) fiili baca yüksekliğinin tabandan en az 10 m ve çatı üstünden yüksekliği ise en az 3 m olması yeterlidir. J’ değeri sıfırdan farklı ise H’ 10 alınır ve Abak kullanılarak baca yüksekliği belirlenir. Çatı eğimi 200’ün altında ise baca yüksekliği hesabı çatı yüksekliği 200’lik eğim kabul edilerek yapılır. Baca yüksekliğinin belirlenmesinde Abak kullanımı esastır. Baca yüksekliği hesabında Environmental Computing & Consulting Inc. Tarafından Alman Hava Yönetmeliği (TALUFT) ile VDI 3781 standardı doğrultusunda geliştirilen PK 3781 programı referans bilgi olarak kullanılabilir. Benzer tür emisyon yayan ve yaklaşık aynı yükseklikteki bacalar arasındaki yatay mesafe, baca yüksekliğinin 1,4 katından az ise ve emisyonların birbiri üzerine binmemesi için farklı yüksekliklerde baca kullanılması zorunlu görülmüyorsa; yeni tesislerde tek baca kullanılır. Bu paragrafta yukarıda belirlenen baca yüksekliği kullanılması halinde bu Yönetmelik Ek-2 de belirtilen Toplam Kirlenme Değeri (TKD) ve Ek-2 de öngörülen hava kalitesi sınır değerini aşıyorsa ilk önce emisyon değerinin düşürülmesine çalışılır. Bu ekonomik veya teknolojik olarak mümkün değilse, baca yükseltilerek hava kalitesi sınır değerinin aşılması önlenir. Aşağıdaki gibi belirlenen, engebelere göre düzeltilmiş baca yüksekliği 15 nci maddede yer alan ek düzenlemeler kapsamına girmiyorsa 250 m’yi aşmayacaktır. 15 nci maddede yer alan ek düzenlemeler kapsamına giriyor ise; baca yüksekliğinin 200 m’den yüksek çıkması durumunda, teknolojik seviyeye uygun emisyon azaltıcı tedbirlere başvurulur. 3.1. Abak kullanılarak baca yüksekliğinin belirlenmesi; 3.1.1. Baca yükseklikleri aşağıda verilen Abak kullanılarak belirlenecektir. Burada verilen değerler: H' [m] : Abak kullanılarak belirlenen baca yüksekliği, d [m] : Baca iç çapı veya baca kesiti alanı eşdeğer çapı, t [oC] : Baca girişindeki atık gazın sıcaklığı, R [Nm3/h] : Nemsiz durumdaki atık baca gazının normal şartlardaki hacimsel debisi, Q [kg /h] : Emisyon kaynağından çıkan hava kirletici maddelerin kütlesel debisi, S : Baca yüksekliği belirlenmesinde kullanılan faktörü(Tablo 4.1, Tablo 4.2’deki S değerleri kullanılacaktır.) t, R ve Q/S için, kullanılan yakıt ve hammadde türlerine ve işletme şartlarına göre hava kirliliği yönünden en elverişsiz değerler kullanılacaktır. Azot oksit emisyonu durumunda azot oksitin azot dioksite dönüşüm oranı % 60 alınacaktır. Yani azot monoksit kütlesel debisi 0,92 ile çarpılacak ve azotdioksitin kütlesel debisi Q olarak Abakta kullanılacaktır. Özel durumlarda Tablo 4.1, Tablo 4.2’de verilen S değerleri Bakanlık tarafından azaltılabilir. Ancak tabloda verilen değerlerin % 70’inden daha düşük değerler kullanılamaz. 3.1.2. Engebeli arazide ve yüksek binaların bulunduğu bölgelerde baca yüksekliğinin belirlenmesi; Tesisin bir vadi içinde olması veya emisyonunun yayılımının engebeler ve yükseklikler nedeniyle engellenmesi baca yüksekliğinin belirlenmesinde göz önünde bulundurulmalıdır. Bu durumda abaktan elde edilen baca yüksekliklerinde düzeltmeler yapılır. Eğer tesisin bulunduğu alan, engebeli arazi veya mevcut ya da yapımı öngörülen bina ve yükseltilerce çevrelenmişse, Tablo 4.1, Tablo 4.2’ye göre belirlenen baca yüksekliği H', J miktarında artırılır. Jdeğeri aşağıdaki diyagramdan bulunur. Burada: H [m] düzeltilmiş baca yüksekliği (H=H+ J) J' [m] :10 H' yarıçapındaki engebeli arazinin tesis temininden ortalama yüksekliği veya imar planına göre tespit edilmiş azami bina yüksekliklerinin 10 H' yarı çapındaki bölge içindeki tesis zeminine göre yükseklik ortalaması. Tablo 4.1 Yeni tesisler için S – Değerleri EMİSYONLAR S – DEĞERLERİ Havada Asılı Toz 0,08 Hidrojen klorür ( Cl olarak gösterilmiştir. ) 0,1 Klor 0,09 Hidrojen florür ve gaz biçiminde inorganik flor bileşikleri (F olarak gösterilmiştir.) 0,0018 Karbon monoksit 7,5 Kükürt dioksit 0,14 Hidrojen Sülfür 0,003 Azot dioksit 0,1 Tablo 1.1 deki maddeler: Sınıf I 0,02 Sınıf II 0,1 Sınıf III 0,2 Kurşun : 0,005 Kadmiyum : 0,0005 Civa : 0,005 Talyum : 0,005 Tablo 1.2 deki maddeler: Sınıf I 0,05 Sınıf II 0,2 Sınıf III 1,0 Tablo 1.3 deki maddeler: Sınıf I 0,0001 Sınıf II 0,001 Sınıf III 0,01 Tablo 4.1’de yer alan değerler yeni tesisler için geçerlidir. Tablo 4.2 Mevcut tesisler için S – Değerleri EMİSYONLAR S – DEĞERLERİ Havada Asılı Toz 0,2 Hidrojen klorür ( Cl olarak gösterilmiştir. ) 0,1 Klor 0,15 Hidrojen florür ve gaz biçiminde inorganik flor bileşikleri (F olarak gösterilmiştir.) 0,003 Karbon monoksit 15 Kükürt dioksit 0,2 Hidrojen Sülfür 0,005 Azot dioksit 0,15 Tablo 1.1 deki maddeler: Sınıf I 0,02 Sınıf II 0,1 Sınıf III 0,2 Kurşun : 0,005 Kadmiyum : 0,0005 Civa : 0,005 Talyum : 0,005 Tablo 1.2 deki maddeler: Sınıf I 0,05 Sınıf II 0,2 Sınıf III 1,0 Tablo 1.3 deki maddeler: Sınıf I 0,0001 Sınıf II 0,001 Sınıf III 0,01 Tablo 4.2’de yer alan değerler mevcut tesisler için geçerlidir. 4) Isıl gücü olmayan tesislerde asgari baca yüksekliği çatının en yüksek noktasından itibaren dağılımı engellemeyecek şekilde en az 1.5 m olacaktır. 5) Üretim prosesi bacası olmayan, ortam tozsuzlaştırma/gazlaştırma ve malzeme geri kazanım amaçlı olarak iç ortam havasını toz tutma/gaz arıtma sisteminden filtre ederek atmosfere veren bacaların, dikey çıkışlı olmasına, bacanın ait olduğu bina yüksekliği ve atmosfere verilen emisyonların dağılım koşulları dikkate alınarak, yetkili mercii tarafından karar verilir. (stokholler, silolar, nakil hatları, pnömatik sevk sistemlerine ait bacalar ) Bu bacalarda Ek-4.b.4 uygulanmaz. Bu bacalar hakkında emisyon ölçüm raporunda ve Valilik tespit raporunda ayrıntılı bilgi verilmesi gerekmektedir. Hava emisyonu tespiti ve sınırlaması MADDE 23 – (1) Emisyon tespiti ve sınırlamasında aşağıdaki şartlara uyulur. a) İşletmeyi oluşturan tesislerin çevreye zararlı etkilerinin tespiti amacıyla yetkili merci, çevre iznine tabi veya çevre iznine tabi olmayan bir işletmenin işleticisine, yetkili merci tarafından belirlenmiş uzman bir kurum/kuruluş veya kişiye tesisinden çıkan emisyonu ölçtürmesini ve/veya bu emisyonun hava kirlenmesine katkı değerini hesaplatmasını ve/veya hava kirliliği seviyesinin ölçümünü yaptırmasını ister; böylece bir emisyon ve imisyon ölçüm raporu hazırlanır ve bedeli 27 nci maddede belirtildiği şekliyle karşılanır. b) Hava kirliliğinin önemli boyutlarda olduğu kritik bölgelerde, çevre iznine tabi olan/olmayan işletmelerden kaynaklanan emisyonların miktarı ile zamana ve yere göre dağılımını gösteren hava kirlenmesine katkı değerini içeren bir emisyon ölçüm raporu yetkili merci tarafından istenebilir. Bu raporun her yıl yenilenmesi istenebilir. c) Emisyonların ölçümünde Ek-2’de belirtilen, tesis etrafında yapılması gerekli görülen hava kirliliği ölçümlerini düzenleyen 6/6/2008 tarihli ve 26898 sayılı Resmî Gazete’de yayımlanan Hava Kalitesi Değerlendirme ve Yönetimi Yönetmeliğindeki esaslar dikkate alınır. Tesis etki alanında hava kirliliğinin ölçümünde ise Ek-2’de yer alan esaslar dikkate alınır. ç) Tesis etki alanında hava kirliliğinin tespitine yönelik yapılacak ölçümlerle ilgili koordinasyonu Valilik sağlar, bu ölçümler için yapılacak harcamalar 27 nci maddede belirtildiği şekilde karşılanır. d) Yetkili merci hava kirliliğinin önemli boyutlarda olduğu kritik bölgelerde ve/veya kirlilik yükü büyük olan yeni tesisler için bu Yönetmeliğin Ek-2’si kapsamında hava kalitesi ölçümlerinin yapılmasını isteyebilir.” Ek-3 Emisyonun Tespiti Emisyonun tespitinde: a) Emisyonun Ölçüm Yerleri: Tesislerde emisyon ölçüm yerleri Türk Standartlarına, EPA, DIN veya CEN normlarına uygun, teknik yönden hatasız ve tehlike yaratmayacak biçimde ölçüm yapmaya uygun, kolayca ulaşılabilir ve ölçüm için gerekli bağlantıları yapmaya imkan verecek şekilde işletme/tesis yetkililerince hazırlatılır. b) Ölçüm Programı: Emisyon ölçümleri, ölçüm sonuçlarının birbirleri ile karşılaştırılmasını mümkün kılacak şekilde yapılmalıdır. Ölçüm cihazları ve metotları Türk Standartlarına, DIN, EPA veya CEN normlarına uygun olarak belirlenir. Genelde sürekli rejimde çalışan tesislerde emisyon ölçümleri, izne esas olan en büyük yükte (tesis en büyük yükte çalışırken) en az üç ardışık zamanda yapılmalıdır. Buna ilave olarak emisyon değerlendirmesinde önemli olan temizleme, rejenerasyon, kurum atma, uzun işletmeye alma ve benzeri gibi şartlarda en az bir ölçme yapılmalıdır. İzokinetik şartların sağlandığı noktalarda ölçüm yapılmalıdır. Genelde değişen işletme şartlarında çalışan tesislerde emisyon ölçümleri yeter sayıda fakat en az ve en fazla emisyonun meydana geldiği altı işletme şartındaki çalışmaları da içeren yeterli sayıda yapılmalıdır. Numune alma noktaları ölçüm yapılması esnasında kolayca ulaşılabilir olmalıdır. Toz ölçümlerinin izokinetik şartlarda yapılması zorunludur. Emisyon ölçüm süreleri kısa olmalıdır. Baca gazı, atık gaz ve atık hava kanalı kesitlerinin ölçülmesinin gerekli olduğu ve ölçmelerin zor olduğu durumlarda ölçme süresi 2 (iki) saati geçmemelidir. c) Değerlendirme ve Rapor: Rapor, emisyon ölçüm değerlerinin ve ölçüm sonuçlarının değerlendirilmesi için gerekli ayrıntılı ölçüm verileri ile birlikte ölçüm metotlarını ve işletme şartlarını ihtiva etmelidir. Raporda ayrıca yakıt, ham madde ve yardımcı maddeler, ürün ve yardımcı ürünler ile atık gaz temizleme tesisinin işletme şartları hakkında bilgiler bulunmalıdır. Üç ardışık zamanda ölçülen emisyon değerlerinin hiç biri Yönetmelikte verilen sınır değerleri aşmamalıdır. d) Emisyonun Sürekli İzlenmesi: 1) Genel Emisyonun sınır değerlerini aşıp aşmadığı kaydedicili cihazlarla sürekli ölçülerek kontrol edilir. Bu ölçümler ayrıca toz tutucu, gaz yıkayıcı ve son yakıcı gibi atık gaz temizleme tesislerinin etkinliklerinin belirlenmesi ile hammadde ve proseslerden kaynaklanan emisyonların tespiti için de gereklidir. Sürekli ölçümler çerçevesinde, sonuçların değerlendirilmesi, 1 (bir) yıl içindeki işletim saatleri açısından aşağıdakilerin karşılandığını gösteriyorsa, 1.1. Hiç bir takvim ayındaki emisyon ölçümlerinin ortalaması emisyon sınır değerlerini geçmiyorsa, 1.2. Kükürt dioksit ve toz için: 48 saatlik tüm ortalama değerlerin %97'si, emisyon sınır değerlerinin %110'unu geçmiyorsa, 1.3. Azot oksitler için: 48 saatlik tüm ortalama değerlerin %95'i, emisyon sınır değerlerinin %110'unu geçmiyorsa, emisyon sınır değerlerine uyulduğu kabul edilir. 2) Toz Emisyonların Sürekli Ölçümü: Isıl kapasitesi 100 GJ/saat (27778 kW) ve üstünde olan katı yakıt ve fuel-oil ile çalışan yakma sistemleri ile 10 kg/saat ve üstünde toz emisyon yayan (bu emisyona yanıcı partiküller de dahildir.) tesisler toz emisyonu konsantrasyonunu sürekli ölçen yazıcılı bir ölçüm cihazı ile donatılmalıdır. Tesisten kaynaklanan kütlesel debinin belirlenebilmesi için hacimsel debinin de sürekli ölçülmesi gereklidir. Ek-1’in (g) bendinde belirtilen toz emisyonuna neden olan tesisler ve 1 inci sınıfa dahil olup da 2 kg/saat’in üzerinde 2 inci sınıfa dahil olup da 5 kg/saat’in üzerinde toz emisyonu yayan tesislerde baca gazında toz emisyonu sürekli ölçüm cihazları ile ölçülmelidir. Bir tesisin işletme şartlarının değişmesi, atık gaz temizleme tesislerindeki arızalar ve benzeri nedenlerden kaynaklanan emisyonun belirlenen sınır değerlerini kısa süreler için bile aşmamasını sağlamak amacı ile 1. paragraf da verilen yakma sistemi ısıl kapasiteleri ve 2. paragraf da verilen emisyon kütle debileri altında da sürekli toz emisyon ölçümleri yapılması yetkili merci tarafından istenebilir. Ölçüm değerleri en az 5 (beş) yıl muhafaza edilir. Birden fazla yakma sisteminin bir bacaya bağlanması durumunda baca başına düşen toplam ısıl kapasite kullanılacaktır. 3) Gaz Emisyonlarının Sürekli Ölçümü: Bir tesisten, aşağıda verilen maddelerin herhangi birisi karşısında belirtilen miktarın üzerinde emisyon yayılıyorsa, bu sınırları aşan maddeler, yazıcılı ölçüm aletleri ile sürekli olarak ölçülmeli veya otomatik bilgisayar sistemi ile kontrol edilmeli ve ölçüm sonuçları kaydedilmelidir. Tesisten kaynaklanan kütlesel debinin belirlenebilmesi için hacimsel debinin de sürekli ölçülmesi gereklidir. Kükürt dioksit 60 kg/saat Klor 1 kg/saat Organik bileşikler (Karbon olarak verilmiştir.) 10 kg/saat Azot oksit (NO olarak verilmiştir.) 20 kg/saat İnorganik gaz biçimindeki klorür bileşikleri (C1- olarak verilmiştir.) 2 kg/saat Hidrojen sülfür 1 kg/saat İnorganik gaz biçiminde florür bileşikleri (F- olarak verilmiştir.) 2 kg/saat Karbon monoksit ( Yakma Tesisleri İçin ) 5 kg/saat Karbon monoksit ( Diğer Tesisler İçin ) 50 kg/saat Ölçüm değerleri en az 5 yıl muhafaza edilir. 4) Yanma Kontrolü için Sürekli Ölçüm: Isıl kapasitesi 36 GJ/saat (10 MW) ve üstünde olan sıvı ve katı yakıtlı yakma sistemleri yanma kontrolü için yazıcılı bir baca gazı analiz cihazı (CO2 veya O2 ve CO) ile donatılmalıdır. Ölçüm değerleri en az 5 yıl muhafaza edilir. Birden fazla yakma sisteminin bir bacaya bağlanması durumunda baca başına düşen toplam ısıl kapasite kullanılacaktır. e) Kabul Ölçümleri: Bir tesisin kabulünde, tesisin işletmeye alınmasından en erken üç ay, en geç oniki ay sonra Bakanlıkça belirlenecek bir kurum veya kuruluş tarafından öngörülen emisyon sınırlarının bu tesiste aşılıp aşılmadığının tespit edilmesi yetkili merci tarafından istenecektir. f) Ölçümlerin Güvenirliliği: Bu maddenin (d) bendinin 2, 3 ve 4 nolu alt bentlerinde belirtilen ölçümler için uygun ölçüm cihazlarının özellikleri ile, bunların uygunluk testleri, bakım, montaj ve kalibrasyonları hakkındaki esaslar, Bakanlıkça güvenilirliği kabul edilen, TSE tarafından standartlaştırılmış metotlara uygun olmalıdır. İlgili standartlar henüz TSE tarafından hazırlanmamış ise Bakanlık tarafından kabul edilen DIN, EPA normlarına uygun metot standartları tatbik edilir. 5) Ek-5’de yer alan tesislerde sürekli ölçüm cihazı takılmasının gerekmesi halinde tesisten kaynaklanan kütlesel debinin belirlenebilmesi için hacimsel debinin de sürekli ölçülmesi gerekir. Tanımlar a) Az Atıklı Teknolojiler: Sanayi tesislerinden kaynaklanan atıkların üretim prosesinin son aşamasında arıtılmasına dayalı teknolojik seviye yerine tercih edilen ve temiz üretim tekniklerini temel alan, kirletmeyen, temiz ve az atıklı teknolojileri, b) Bakanlık: Çevre ve Orman Bakanlığını, ç) Biyokütle: Ahşap koruyucuları tatbik edilmiş veya kaplama işlemine bağlı olarak halojenli organik birleşikler ihtiva eden ve bu tür atıkları içeren özellikle inşaat ve yıkımdan kaynaklanan ahşap atıklar hariç olmak üzere, ihtiva ettiği enerjiyi kazanmak için yakıt olarak kullanılabilen tarım veya ormancılıktan sağlanan bitkisel bir maddenin kendisini, tamamı ya da bir kısmından elde edilen tarım ve ormancılık kaynaklı bitkisel atıkları, gıda işleme sanayiinden kaynaklanan bitkisel atıkları, ham kağıt hamuru üretiminden kaynaklanan bitkisel atıkları, şişe mantarını ve ahşap atıklarını, d) Deneme izni: İş Yeri Açma ve Çalışma Ruhsatlarına ilişkin mevzuat kapsamında verilen izini, e) ış Hava: Çalışma mekanları hariç, troposferde bulunan dış ortamlardaki havayı, f) Dizel Motorları: Kendiliğinden sıkıştırmalı ateşlemeli motorları, g) Emisyonlar: Yakıt ve benzerlerinin yakılmasıyla; sentez, ayrışma, buharlaşma ve benzeri işlemlerle; maddelerin yığılması, ayrılması, taşınması ve diğer mekanik işlemler sonucu bir tesisten atmosfere yayılan hava kirleticileri, ğ) Emisyon Envanteri: Sınırları belirlenmiş herhangi bir bölgede, hava kirletici kaynaklardan belli bir zaman aralığında atmosfere verilen kirleticilerin listesi, miktarı ve bunların toplam kirlilik içindeki paylarını gösteren bilgileri, h) Emisyon Faktörü: Herhangi bir faaliyetten veya ekipmandan kaynaklanan belirli bir kirleticinin birim hammadde, birim yakıt, birim hacim, birim zaman, birim alan için ortalama emisyon miktarını, “ı) Emisyon Ölçüm Raporu: Çevre izin veya lisans başvuru dosyasının bu Yönetmelik kapsamında hazırlanan hava emisyonları bölümüne esas raporu,” (30 Mart 2010 tarih 27537 sayılı RG.) i) Emisyon Kaynağı: Atmosfere emisyon veren baca veya baca dışı kaynakları, “j) Emisyon Ölçüm Raporu Geçerlilik Süresi: İlk ölçüm tarihi esas alınarak, Çevre Kanununca Alınması Gereken İzin ve Lisanslar Hakkında Yönetmelik kapsamında yer alan işletmeler için emisyon ölçüm raporu geçerlilik süresi üç yılı,” (30 Mart 2010 tarih 27537 sayılı RG.) k) Gaz Motorları: Otto çevrimi, kıvılcım ateşlemeli ateşleme sistemine sahip motorları, l) Hava Kalitesi: İnsan ve çevresi üzerine etki eden çevre havasında, hava kirliliğinin göstergesi olan kirleticilerin artan miktarıyla azalan kalitelerini, m İçten Yanmalı Motorlar: Gaz motorları ve dizel motorlarını, o) İşletme Sahası İçi: Üzerinde doldurma, ayırma, eleme, taşıma, kırma, öğütme işlemlerinin yapıldığı, madde depolanan, boşaltılan, tesisler arasındaki alanı, ö) İş Termin Planı: Tesis sahibi tarafından hazırlanacak ve bu Yönetmelikte belirtilen yükümlülükleri ve sınır değerleri sağlayacak proses ve baca gazı arıtım tesislerinin gerçekleştirilmesi sürecinde yer alan proje, ihale, inşaat ve işletmeye alma gibi işlerin zamanlamasını gösteren planı, “p) Çevre İzni: Çevre Kanununca Alınması Gereken İzin ve Lisanslar Hakkında Yönetmelikte düzenlenen izni,”(30 Mart 2010 tarih 27537 sayılı RG.) r) Kısa Vadeli Değer (KVD): Maksimum günlük ortalama değerler veya istatistik olarak bütün ölçüm sonuçları sayısal değerlerinin büyüklüğüne göre dizildiğinde, ölçüm sonuçlarının % 95 ine tekabül eden değeri, çöken tozlar için farklı olarak aşılmaması gereken maksimum aylık ortalama değerleri, s) Kısa Vadeli Sınır Değer (KVS): Maksimum günlük ortalama değerleri veya sayısal değerlerinin büyüklüğüne göre dizildiğinde, istatistik olarak bütün ölçüm sonuçlarının % 95 ine tekabül eden değer olan ve Ek-2 Tablo 2.2 de verilen değeri aşmaması gereken değeri, ş) Kirletici: Doğrudan veya dolaylı olarak insanlar tarafından dış havaya bırakılan ve insan sağlığı üzerinde ve/veya bütün olarak çevre üzerinde muhtemel zararlı etkileri olan her türlü maddeyi, t) Kritik Bölge: Bir yıl boyunca yapılan hava kalitesi ölçüm sonuçlarına göre kısa vadeli sınır değerlerin en az on beş gün aşıldığı yerleri, u) Kritik Meteorolojik Şartlar: Atmosferde alt sınırı yerden yedi yüz metre veya daha az yüksekte olan enversiyon tabakasında hava sıcaklığının en az 2°C/100 arttığı ve yerden 10 m. yükseklikte ölçülen rüzgar hızının on iki saatlik ortalamada 1,5 m/s den az olduğu kritik meteorolojik durumu, ü) Mevcut Tesis: Bu Yönetmeliğin yayımlanmasından önce kurulmuş veya Çevresel Etki Değerlendirmesi mevzuatına göre kurulması uygun bulunan tesisleri, v) Piyasaya arz edilen sıvı yakıtlar: Enerji Piyasası Düzenleme Kurumu tarafından düzenlenen/düzenlenecek mevzuatla üretimi, yurtdışı ve yurtiçi kaynaklardan temini ve piyasaya arzına izin verilen sıvı yakıtlar ile kalorifer yakıtını, y) Teknolojik Seviye: Sürekli işletilmesinde başarısı tecrübeyle sabit, kıyaslanabilir metotlar, düzenekler ve işletme şekilleriyle kontrolleri yapılabilen; emisyon sınırlama tedbirlerini pratikleştiren ve kullanışlı hale getiren, ileri ve ülke şartlarında uygulanabilir teknolojik metotlar, düzenekler, işletme biçimleri ve temizleme metotlarının geldiği seviyeyi, aa) Uzun Vadeli Değer (UVD): Yapılan bütün ölçüm sonuçlarının aritmetik ortalaması olan değeri, bb) Uzun Vadeli Sınır Değer (UVS): Yapılan bütün ölçüm sonuçlarının aritmetik ortalaması olan, Ek-2 Tablo 2.2 de verilen değeri aşmaması gereken değeri, cc) Üretim Prosesi: Yakıtın ham madde ile birlikte muamele gördüğü veya yakıttan elde edilen enerjinin hammaddeyi veya ürünü kurutma, kavurma ve ben zeri işlemlerde kullanıldığı ve bacasından proses kaynaklı baca gazı emisyonlarının ve yanma gazlarının birlikte çıktığı veya sadece proses kaynaklı baca gazı emisyonlarının çıktığı tesisleri, çç) Üretmek: Ürün elde etmek, işlemek, üretim amacıyla tüketmek ve diğer kullanımları, ithalat ve diğer amaçlı nakliyatları, dd) Yakma Tesisi: Yakıtın yakılması sonucunda, yakıt içeriğinde bulunan kimyasal enerjinin ısı enerjisine dönüştürülerek yararlanıldığı, buhar kazanı ve kızgın yağ kazanı, termik santral kazanı, gaz türbini, gaz motoru gibi sıcak su, buhar ve benzeri üreterek enerji sağlayan tesisleri, ee) Yeni Tesis: Bu Yönetmeliğin yayımlanmasından sonra kurulacak olan tesisleri, ff) Yetkili Merci: Çevre ve Orman Bakanlığı ve Valiliği ifade eder.

http://www.biyologlar.com/cevre-olcum-ve-analizleri-emisyon-olcumu-turkak

Kalıtım ve Kalıtsal Hastalıklar

KALITIM Canlılar arasındaki benzerlik ve farklılıkların, ortaya çıkmasını sağlayan, bunların anne babadan çocuğa nasıl geçtiğini, kalıtsal hastalıkları ve tedavileri inceleyen bilim dalıdır.Aynı tür canlılar kendi aralarında görünüş olarak farklılık gösterirler(saç rengi, göz rengi vb. ).Kalıtımın diğer bir adı da soyaçekimdir. Bütün canlılarda görülür. KALITSAL HASTALIKLAR Genlerle yavrulara geçen özelliklere kalıtsal özellikler denir (kan grubu, göz rengi, çok parmaklılık, renk körlüğü vb.).Bazı hastalıklar havada, suda yiyecek ve içeceklerde bulunan mikroplardan ileri gelir.Bazılarının nedeni doku ve organların zamanla yıpranmasıdır. Kalıtsal hastalıklar yada bozukluklar ise kusurlu genlerin kuşaktan kuşağa aktarılmasından kaynaklanır.Bir canlının büyümesi, gelişmesi ve yaşamını sürdürmesi için gerekli bilgileri taşıyan kalıtım birimlerine gen denir. Genler DNA’dan(deoksiribonükleik asitten)yapılmıştır.Yeni doğan bir bebek genlerini kalıtım yoluyla anne-babasından alır. Eğer bütün genleri normal ise, yani sağlıklı bir insan da bulunması gereken özellikleri taşıyor ve hepsi üstüne düşen görevi eksiksiz yerine getirebiliyorsa bebek sağlıklı doğacaktır.Ama bazı bebeklerde, anne ya da babadan gelen kromozomların biri ya da bir kaçı kusurlu olabilir. Bu durumda vücuttaki bazı etkinlikler bu bozuk genlerin aktardığı yanlış bilgiye göre yönlendirileceğinden bebekte kalıtsal bir bozukluk ya da hastalık ortaya çıkar.Birçok ülkede yaklaşık her 30 bebekten birinde kalıtsal bir hastalık ya da bozukluk söz konusudur. Kalıtsal hastalıkların bir çoğu ameliyatla, ilaçlarla ve çeşitli uygulamalarla denetim altına alınarak hasta çocukların yaşamlarını normal olarak sürdürmeleri sağlanabilir. KALITSAL HASTALIKLARIN TANISI Bir insanın en doğal haklarından birisi sağlıklı olarak dünyaya gelebilmektir.Günümüzde uygulanan birçok doğum öncesi tanı yöntemiyle bu hedefe oldukça yaklaşılmıştır. Gene de istenen sonuçların elde edilmesi için aile bilinçli davranmalı,hekim de bu yöntemleri usulüne uygun biçimde kullanmalıdır. Böylece doğum öncesinde bazı riskler önlenebilecek ve var olan sorunlar uygun yöntemlerle çözülebilecektir.Kalıtsal (genetik) hastalıklara yaklaşımda temel ilke bunların ortaya çıkmasını engellemektir. Bu ilke tedavi edilmeyen hastalıklar kadar tedavi edilebilen hastalıklar için de geçerlidir.Kalıtsal hastalıkların bir bölümü düzeltilebilen bozukluklardır. Örneğin tavşan dudakça da birçok doğumsal kalp hastalığı doğumsal yöntemlerle tedavi edilebilir. Bazı kalıtsal hastalıklar da ise eksik olan madde dışarıdan verilerek tedavi sağlanır.Bunun örnekleri hipotiroidizmde tiroide hormonu kullanılması ve hemofili hastalıklarına faktör VIII verilmesidir. bazı metabolizma ürünlerinin vücutta birikmesine bağlı hastalıklarda ise bu birikimi önleyen ilaçlar kullanılır.Bazı hastalıklar da sağlıklı bir insandan alınan genlerin hastanın gen yapısına eklenmesiyle tedavi edilebilir. GENETİK DANIŞMANLIK Genetik danışmanlık bireyin taşıdığı kalıtsal hastalığın çocuklarına geçmesi riski, bu hastalığın tedavisi, sonuçları ve önlenmesi konusunda onu bilgilendirmeyi sağlar.Genetik danışmanlık için başvuran bireyin ailesi uzak akrabalarına kadar incelenir ve bir soyağacı oluşturulur. Soyağacında yer alan kişilerin hangilerinde kalıtsal hastalık olduğu saptanır ve bireyin hastalığı çocuklarına aktarma riski hesaplanır. Genetik danışmanlık için başvuran anne baba adayının arasında kan akrabalığı varsa, bu bağın kalıtsal hastalık riskini arttıracağı anlatılır.Anne babanın doğduğu ya da yaşadığı yer birbirine ne kadar yakınsa, aralarında kan bağı olmasa bile, kalıtsal hastalıklı çocuk sahibi olma risklerinin ötekilere göre daha yüksek olduğu ileri sürülmektedir.Anne ve baba adayının genetik danışmanlığa başvurmasını gerektiren durumlar;Anne veya babada ya da her ikisinde kalıtsal hastalık varsa,Adaylardan birinin ya da ikisinin yaşlarının ileri olması,Anne ve babanın kalıtsal hastalıkların sık görüldüğü bir yerden gelmeleri,Anne ve baba arasında kan bağı bulunması,Annenin art arda düşük yapmış olması,Annenin hamileliğin ilk haftalarında şiddetli bir enfeksiyon geçirmiş olması,Aile bireylerinden birisinde kalıtsal bir hastalık ve ya doğuştan sakatlık bulunması,Anne ya da babanın önceden kalıtsal hastalığı olan bir çocuğunun olması. KALITSAL HASTALIK TAŞIYAN BİREYLERİN SAPTANMASI Kalıtsal hastalık taşıyan bireylerin daha hastalık belirtileri ortaya çıkmadan saptanması gerekir.Kalıtsal bozuklukların bazıları bebeğin dünyaya gelişinden önce , bazıları doğumdan kısa bir süre sonra, bir bölümü de süt çocukluğu döneminde saptanır.Kalıtsal hastalık taşıyan bebeklerin belirlenmesi bir an önce tedaviye başlamasını sağlar. Böylece belirtilerin şiddetinin azalması sağlanır ya da ortaya çıkması engellenir. Bazen hastalık kesin biçimde tedavi edilir.Bu noktada akla bir soru gelmektedir. Genetik hastalıkların engellenmesi için bütün çiftler mi taranmalı, yoksa ön elemelere bağlı olarak bazı risk grupları mı incelenmelidir ? Bazı hastalıklar için kitlesel tarama testlerine gerek yoktur ; çünkü bunların taşıyıcısı olan bireylerin sayısı çok yüksek değildir. Örneğin ; deri, pul tüy ve kıllarda sarı ,kırmızı ya da siyah pigmentlerin eksikliği bu tür hastalıklardır. Ama kistik fibroz gibi tedavi yöntemleri kısıtlı bir hastalığın toplumda taranması , bu hastalığın sıklığının azalmasına önemli katkıda bulunacaktır.Bazı toplumlarda kalıtsal hastalıklar daha çok görülür. Örneğin Akdeniz denen hastalık özellikle Akdeniz havasında yaygındır. Orak hücreli kansızlık ise Orta Afrika’da ve Ege Denizi’ndeki bazı adalarda daha sık ortaya çıkar.Kalıtsal hastalıklar konusunda Toplumdaki eksik ve ya yanlış bilgiler Az sayıda aile bireyinde bir hastalığın kalıtsal olup olmadığı,Doğumsal bir hastalığın mutlaka kalıtsal olduğu, (Hamilelikte alınan ilaçlar da olabilir)Kalıtsal hastalıkların tedavi edilemediği,Gebelikte annenin geçirdiği bazı fiziksel ya da psikolojik rahatsızlılarının bebekte sakatlığa yol açacağı,Dörtte bir olasılıkla ortay çıkan kalıtsal bir hastalığın ilk bebekte ortaya çıkması durumunda , sonraki bu hastalığın kesinlikle görülmeyeceği,Kalıtsal hastalıkların kendini doğumda ya da ilk günlerde belli ettiği (bazı hastalıklar ileri yaşlarda da belirti verebilir) ,Ailede kalıtsal hastalık yalnızca kadınlarda ya da erkeklerde görülüyorsa , bunu cinse bağlı olarak çocuklara geçeceği. Doğum öncesi tanı Günümüzde birçok genetik ve doğumsal hastalık için ,bebeğin anne karnında olduğu dönemde tanı olanağı vardır.Doğum öncesi tanı yöntemlerinin birçok yararı vardır : Erken dönemde hastalığın tanınmasını sağlar. Risk grubunda bulunan anne ve baba adaylarını beklentilerine yanıt verir. Olası kalıtsal hastalığın bebekte görülmediği kesin olarak belirlenir. Ağır kalıtsal bozukluklar söz konusu olduğunda ailenin izniyle gebelik ilerlemeden sonlandırılabilir. Bazı kalıtsal hastalıkların sık görüldüğü bölgelerde doğum öncesi tanı yöntemlerinin yaygın olarak kullanılması, bu hastalıların görülme sıklığını belirgin biçimde azaltabilir.Doğum sonrası tedavi edilebilen hastalıkların önceden saptanması, tedavi ekibinin hazırlıklı olması , doğum zamanını belirlemesi ve tedaviyi uygun biçimde yönlendirilmesini sağlar. BAŞLICA KALITSAL HASTALIKLAR1 -HEMOFİLİ Bozuk genlerin bir araya gelmesiyle kanın pıhtılaşmaması şeklinde ortaya çıkan hastalıktır.Aile içi birleşmeler sonucu olduğu yanlış yere sanılmış olan bu hastalık ,özellikle kuşaklar boyu Avrupa krallık sülalerini kasıp kavurduğun , çok ünlüdür.Kurban,hemenher zaman bir erkektir ve hastalık bütün erkeklere “taşıyıcı” olarak adlandırılan annelerinden geçer.Günümüzde bu hastalığın görüldüğü birkaç kadın,hem hemofilili bir babaya,hem de taşıyıcı bir anneye sahip olma şansızlığına uğratmıştır.Hemofili çok ender görülen bir hastalık olduğundan,son olarak sözü edilen durum son derece ender bir durumdur.Pek çok ailenin durumu uzun yıllar boyunca açıklık kazanmaz.Ailelerin çoğu için ilk taşıyıcılar konusundaki klinik detaylar eksiktir ve unutulmuştur.Fakat kraliyet aileleri söz konusu olduğunda durum değişir.7 nisan 1853′te ,kloroform kullanılarak yapılan doğum da,kraliçe Viktorya’nın hemofili taşıdığını ortaya koyuyordu.Kanın mekanizmasındaki bozukluğa yol sakat geni,X kromozomunu taşır;bu,”cinsiyete bağlı karakteristik ” adıyla bilinen durumdur.Cinsiyet kromozomları insanın cinsiyetini tayin eder .Fakat aynı zamanda ,cinsiyetten bağımsız olan renk körlüğü araları bitişik parmaklar ,kas sakatlıkları ve hemofili gibi karakteristikleri içeren genlere de sahiptirler.Erkek çocuk X kromozomunu hiçbir zaman babasından almayıp her zaman annesinden alır.Kadınlar da ise hastalık görülmez ,çünkü sadecedir kusurlu ,öbürüyse normal olan iki X vardır ;normal olan.yeterli pıhtılaştırıcı unsuru sağlar .Kadın,kız ve oğullarının her birine X kromozomlarından birini verecektir Çocuklar kusurlu olanı alabilecekleri gibi kusursuz olanı da alabilirler .Kızların taşıyıcı oğullarının hemofilili olma şansının yarı yarıya oluşu buradan gelmektedir.Durumun ilk olarak ortaya çıkmasına Leopold yol açtı;çok ufak tefek yaralar büyük kanamalara yol açıyordu ve vaftizi uzun süre geciktirildi. Leopold’un bütün çocukluğu çeşitli hastalıklarla dolu geçmişti ve yirmi altı yaşındayken bile annesi Avusturya yolcuğuna izin vermedi.Bu yolculuk,kraliçenin yazmış olduğu gibi,hem prensin sağlığını hem de onu merak etmekten kendi sağlığını tehlikeye sokacaktı .Bununla beraber üç yıl sonra evlenmesine izin verdi.Küçük bir kazanın sebebiyet verdiği büyük bir kanamadan öldüğünde Leopold un bir kızı vardı ve karısı erkek doğacak bir çocuğa gebeydi.Leopold un hastalığı kızına geçirmesinden önce(erkek çocuknormaldi ,kraliçe Viktorya ailelerinin “bu müthiş hastalığın pençesinde” olduğunu yazmasına sebep olan başka belirtilere de şahit olmuştu.Leopoldan on yıl önce doğan Alice ,1862′de evlenmişti.İki kız taşıyıcı,Leopold’un ölümünden on bir yıl önce üç yaşındayken,pencereden düşmesini sebebiyet verdiği kanamadan ölen oğlu dahemofililiydi.Şimdilik hemofiliye bir çara bulunamamıştır fakat pıhtılaştırıcı madde kısa bir süre etkili olmak üzere zerk edilebilir.Bu süre ancak bir gündür. Geçmişte kanama korkusu hastalıklı bir kimseye hiçbir şey yaptırılmamasına yol açardı.Günümüzde,hemofilli çocuklarla uğraşmak üzere özel alçak boyda ve pamuk doldurulmuş eşyalı çıkıntısız döşemeli ve yumuşak oyuncaklı kreşler vardır.Fakat aşırı korunmanın da ziyanlı olduğu belirtilmektedir.Günümüze kadar bir tedavisi bulunamamıştır.Ve dünyanın,Kraliçe Viktorya’nın”bildiklerimin en kötüsü”olarak adlandırdığı bu hastalıktan kurtulması için epey zamana ihtiyacı vardır. - ALBİNİZİM “Gebe kaldı ve derisi kar gibi beyaz,gül gibi kırmızı saçları yün gibi beyaz ve uzun,güzel gözlü bir çocuk doğurdu”.sözü edilen çocuk,bir gemi yaparak Tufandan kurtulan Nuh’tur .Bu tasvir İsa’dan yüzyıl kadar önce yazılmış olan bir kutsal kitapta yer almaktadır(Enoch’un kitabı) .Belirtilen özellikler albino özellikleridir.Daha sonra ki dünya nüfusunu atası Nuh olduğuna göre albinoların sayısının çok daha fazla olması beklenirdi.Alginizim çekinik bir genin yol açması sebebiyle (doğal çekimin işe karışmadı düşünüldüğünde),dörtte birimizin albino olması gerekirdi.Oysaki albinizim çok daha az oranda ,fakat bütün ırklarda görülmektedir.Bir kusur olarak adlandırılabilir,çünkü pigment yokluğu gözlerin zayıf ve astigmat olmasına,güneşe tahammül edilmemesine yol açmaktadır.Ayrıca,her ne kadar Avrupalı albinolar sarışın ve açık tenli kişiler arasında fazla göze batmadan dolaşa biniyorsalar da durum zenciler,Japonlar ve kızıl dereliler için aynı değildir.Bildirilen oran, Avrupa için aşağı yukarı yirmi binde birdir.Ortalama olarak İngiltere’de2500 ABD ‘de 9000 albino vardır.Koyu renkli toplumlarda albinizim daha yaygındır.Nijerya da oran 3000′de birdir ve herhangi bir şehirde kolaylıkla seçilmektedir .Panamadaki bir kızıl dereli gurubunda (SanBlas)oran 132′de birdir.Çekinik albino geni Avrupalılarda 70′de bir oranında bulunmaktadır.Bir çocuğun albino olması için taşıyıcı(heterozigot)kimsenin bir başka taşıyıcıyla eşleşmesi gerekir. Hem ana hem de babanın albino olduğu durumlarda çocuklar kesin albino olur. Ana babanın birini albino olması sonucunda çocuk 70′te birimiz oranda taşıyıcı olur ve görünüşü normaldir.Ana babadan birini taşıyıcı olup olmadığı ancak albino bir çocuğun doğumuyla anlaşılabilir.Bir ailede daha önceden albino çocuk görülmüşse,bir başka çocuk görülme şansı 4′te bir oranındadır.Sonuç olarak da albinoların iki renkli olabileceğini ve melanin (saç ve deri dokucularındaki renk maddesi)eksikliğinin büyük bir olasılıkla tirozinaz enziminin yokluğundan ileri geldiği düşünülmektedir.Bu enzim,tiroksinin melaline dönüştüğü ilk evrede katalizör rolünü oynamaktadır.Gözün pembe oluşu pigment renginde değil pigment yokluğu nedeniyle kanın kırmızı renginin görülebilir olmasından ileri gelmektedir. Kuvvetli ışıktan albinoların gözleri çok zedelenir,bu nedenle koyu renk gözlük kullanırlar.Bedenleri Nuh peygamber gibi bembeyaz olanlar için bir çare bulunamamaktadır. - HABSBURG DUDAĞI Dünyada binlerce burun,alın,çene şekli bir baba oğlun, bir ana oğlun ,bir babakızınkinin çok benzer oluşu dikkate değer.Bu biçimlerin tarifi çok güç fakat müşahedesi kolaydır.Baskerville ailesini sorguya çekerken,Sherloch Holmesportresini gördüğü bir ata ile torunu arasındaki benzerliğe hayret etmişti.Sonrada,hayalinde sakallarını kazıyarak ,ailenin kendini gizli tutan bir ferdini ortaya çıkarmıştı.Bu tür baskın bir aile karakteristiği, portrelerini yaptırmak için yeterince zengin ve asırlar boyu hüküm sürecek kadar kudretli olan HABSBURG sülalesinde görülür.HABSBURG dudağı her halde tek bir gene bağlıdır.Öne doğru bir çıkıntı yapan çirkin altdudağa ,dar bir çene ve çoğu zaman hafif açık bir ağız eşlik eder.İyi bir şan solarak,hiçbir gravürcü ve ressam ,zamanımızda da bu ağız şeklini güzelleştirme gitmemiştir. Bu dudağa sahip tarihi kişiler arasında imparator I.Maximilian(XV.yüzyılda doğan ), imparator V.Charles (XVI.yüzyıl),arşidük Albrecht ve İspanyaKralı XII.Alfonso vardır.Bu ender değişken,bir ailede dönüp dolaştığına ve sadece kusura sahip kişiler tarafından geçirildiğine göre ,tek bir baskın genin esiri olsa gerektir. Kalıtımla geçme şansı 50:50 olan bu kusura sahip kişilerin, çocuklarına da geçirme şansı aynı orandadır.Pek çoğumuzda HABSBURG dudağına benzer bir şey yoktur,fakat dille ilgili garip bir yetenek vardır.Bazı kimseler dillerini iki yandan ve yukarı doğru U şeklinde kıvırabilirler,bazıları kıvıramaz.Fakat son derece belirgindir.Bu karakteristiğin genetiği üzerinde fazla çalışılmamıştır ve her ne kadar daha uzağa tükürebilmeyi sağlıyorsa da,dili bu şekilde hareket ettirmenin ne işe yaradığı bilinmemektedir. - RENK KÖRLÜĞÜ Genetik kalıtımla geçen bir başka anomalidir. Tam bir renk körlüğü enderdir. Sebep olan gen çekiniktir ve her iki cins de etkiler. Kısmi olan renk körlüğü otuz kişide birini etkiler. Cinsiyet genleriyle ilişkilidir ve kadından çok erkelerde yaygındır. Bütün istisnaları bir kenara iten temel kurallar vardır. Normal bir kadın renk körü bir erkekle evlendiğinde çocuklarının normal olması beklenir. Normal bir erkek renk körü bir kadınla evlendiğinde erkek çocuklar renk körü, kız çocuklar normal olacaktır. İlk durumun bir kuşak sonrası ele alındığında bu evliliğin normal kızları, babalarının renkkörlüğünün taşıyıcıları olacaktır. Dolayısıyla oğullarının yarısı renk körü, yarısı normalce kızlarının yarısı da kendileri gibi taşıyıcı olacaktır. Taşıyıcı kızlar renk körü erkeklerle evlendiğinde durum daha kötü olacaktır. Oğullarının yarısı renk körü ve kızlarının yarısı taşıyıcı olacak, buna karşı kızların geri kalan yüzde ellisi renk körü olacaktır. Nihayet renk körü bir kadın renk körü bir erkekle evlendiğinde bütün çocukları renk körü olacaktır.Hemofilde de olduğu gibi bütün bunlar X kromozomuna bağlıdır. Erkek çocuk tek Kromozomunu annesinden alır. Kızın iki X kromozomu vardır ve birinin anasından,öbürünü babasından alır. Babası renk körü olduğunda bir kız çocuğu onun kusuru X kromozomunu alacak, fakat annesinden de sağlam bir X kromozomsalmış olacaktır. Biri sağlam biri kusurlu X kromozomlarının sonucu normal görüş, fakat taşıyıcılıktır. Oğullarının yarısı kusurlu X kromozomunu, yarısı sağlam olacak,böylece yarısı renk körü yarısı normal olacaktır. Birkaç istisna dışında renk körlüğü kalıtımının mekanizması budur.Renk körlüğünün görülüş oranı ırklara göre değişir. Avrupalılarda çok sık görülmesine karşılık, örneğin Eskimo ve Avustralya yerlilerinde enderdir. Yine doğal seçimin işe karışarak, daha ilkel toplumlarda renk körlerinin yaşamasını güçleştirdiği varsayılır.Avrupa’da erkeklerin %7 ‘si ve kadınların %0,5 ‘i ya renk körü ya da renk görüşleri zayıf olan kişilerdir. Bir bütün olarak renk körlüğünün daha az olduğu toplumlarda,kadınlardaki renk körlüğü oranı erkeklerinkinin çok ufak bir kesridir.Bütün bunlara ek olarak da, hem hemofili hem de renk körlüğünü Y ‘ye değil de Kromozomuna bağlı oluşan bir tesadüf sonucu olmadığını söyleyebiliriz. Bu ikisi gibi cinsiyete bağlı hemen bütün özelikler X kromozomuna bağlıdır. Sebep açıktır:X Kromozomu geniştir ve genler için yer boldur. Erkeklere özgü Y kromozomu ise daha küçüktür. Erkeklik dışında Y kromozomuna bağlı tel özellik vardır, bu da tüylü kulak uçlarıdır. Genlerin karmaşık dünyasının bir kromozom üzerinde böylesine konularda belirlenmiş olması tuhaf görülebilir. - TAT ALMA, TAT ALAMAMA 1931 ‘den bu yana genetik ilminin ilgisini çeken bir kimyasal bileşimler grubu vardır;bunlarda; bazı kimseler bir tat bulmakta, bazıları ise hiçbir tat alamamaktadır. Bu bileşimler phenylt hiocarbamine vephenylthioure gibi maddeler kapsarlar. P.T.C. gibi önemsiz bir kimyasal maddede tat bulma garip bir karakteristik, fakat her şeyden önce kalıtımla geçen bir vasıftır. Anne ve baba tat alamayan olmasında çocuk da tat almayan olacaktır. Ana ve babanın birinin tat alamayan olduğu durumda çocuğun tat alan olması daha yakın bir ihtimaldir. Babalık davalarında pratik bir önem taşıyan durum, mavi göz, kahverengi göz konusu değildir. Mavi göz de, tat almama da çekinik karakterlerdir. İkisi de kalıtımla geçen bir gen çiftine bağlıdır, fakat her ikisinde de durum başka genlerin etkisiyle karmaşıklaşabilir.Avrupalı ve Kuzey Amerikalıların %70 kadarı P.T.C ‘yi tadabilir. Araplar %63 ve Avustralya yerlileri %51 ‘le bu konuda daha az yetenekli ise de; Çinliler %90 ‘danfazla, zenciler %95 ve Amerikalı Kızılderililer %98 ‘le, çok daha fazla yeteneklidir.İnsanlar konusundaki bir tartışma daima söz edilmesi gereken hayvanlar arasında daprimatlar tat alır görünmektedir. Bulgular kesin değildir. Fakat İngiliz hayvanat bahçesindeki yirmi sekiz maymundan yirmisi yüzlerini buruşturmak gibi yollarla P.T.C ‘nin acı, nahoş tadın aldıklarını göstermişlerdir. Bu yetenek acaba neden vardır ve neden tür ve ırklar arasındaki fark görülmektedir? Tiroit bezlerinin hastalığı veya guatr ile tat alma arasındaki bağ olmasıdır. Bu hastalığın görüldüğü kimselerin tat almama ihtimali daha yüksektir.Bu hastalıkla tat alma arasındaki bağ, hemofili hikayesindeki gibi zorlayıcı değildir,fakat her iki durum da genetik araştırmaları açısından çok değerli materyallerdir. Herikisi de izlenebilmekte, hiçbirinin etkisi diğer genler tarafından anlaşılmaz hale getirilmemekte ve her ikisi de açıkça kalıtımla geçmektedir. Bunlar ve Habsburgdu dağı, renk körlüğü gibi diğer karakteristiklerin tümü de, genetik, ilminin genel bilgisine katkıda bulunmuştur. Bunların her biri genetikçilerin dört elle sarılması gereken kırıntılardır.Her bir yeni hayatın yaratılmasında akmaya başlayan kalıtım nehri, ayrıntılı bir inceleme için çok büyük, çok bulanıktır ve ancak zaman zaman elegeçen kırıntılar incelenebilir. - SAÇ DÖKÜLMESİ Zamanla ilerleyen saç dökülmesi kellikle sonuçlanır. Yıllar geçtikçe insan yaşlanır;yaşlanmaya koşut olarak saçlar da zayıflar ve seyrekleşir. Dökülme büyük olasılıkla saçlı deriye gelen kan akımının ve besleyici maddelerin azalmasına bağlıdır. Saçların dökülmesinin tipik bir ilerleyişi vardır. Şakaklardan başlar, ardından tepeye ayrılır,bazen alın üstünde bir tutam saç kalacak biçimde sürer ve sonunda yalnızca ensenin üstünde yarım taç gibi bir kulaktan öbürüne uzanan saç kalır. Yaşın ilerlemesiyle ortaya çıkan ve fizyolojik bir olgu kabul edilen saç dökülmesi, yapısal ve kalıtsal olduğu söylenebilir. Çoğunlukla erkeklerde görülür. Fakat hemofili veya renkkörlüğü gibi cinsiyet genine bağlı değildir. Erkeklerde kadınlardan çok görülmesi,cinsiyete bağlı olduğunu belirtmez. Saçı dökülmüş bir erkek bu karakteristiği oğullarının yarısı kadarına geçirecektir. Fakat konu istisnalarla doludur. Ayrıca saç dökülmesinin başlıca iki farklı tipi olduğu sanılmaktadır. Bunlardan birinde saçlar otuz yaştan önce seyrekleşmeye başlamaktadır. Öbüründe ise saçlar daha geç dökülmektedir.Başlangıçtaki, saçı dökük-dökük değil ayrımındaki basitlik saç dökülmesini başlama yaşı çekiniklik karakteri erkek hormonlarıyla ilişkisi yaşlılıkla bağlantısı ve kalıtımla geçişinden birden fazla genin rol oynamasıyla karışmaktadır. Basitlik, yerini bir karışıklığa bırakır ve bu sebepten çocuğun saçları konusunda tahminler yürütmekten kaçınır. Bununla birlikte erken başlayıp ilerleyen saç dökülmesi baskın bir genin işe karıştığı düşüncesini uyandırmaktadır. Sadece erkeklerde baskın olduğundan,erkenden saçlarını kaybeden kimsenin oğullarının yarısından aynı hal görünecek,fakat kızlar için bu durum söz konusu olmayacaktır. Gelecek kuşaklarda ise bu kız ve oğulların yarısı, kendi oğullarının yarısının saçlarının erken dökülmesine neden olacaktır.

http://www.biyologlar.com/kalitim-ve-kalitsal-hastaliklar

KALITSAL HASTALIKLAR

I- Hücre Bölünmesi Esnasındaki Hataya Bağlı Olanlar : A. NONDİSJUNCTİON : Kromozom anomalilerinden en önemlisi olup, mayozda gametlere az veya çok sayıdaki kromozom gitmesi olayıdır. 2 şekilde olur. 1. Ayrılamama 2. Anafazda gecikme Mayotik bölünme sırasında oluşan nondisjunction olayı; 2 ayrı hücreye gitmesi gereken bir kromozom çiftinin heriki üyesinin birbirinden ayrılmayıp yeni hücreye gitmesi şeklindedir. Böylece gametlerden birinde adı geçen kromozomdan hiç bulunmazken; diğerinde normalde 1 tane olması gerekirken 2 tane olacaktır. Bu gamet, sözkonusu kromozomdan normal olarak 1 tane taşıyan karşı cins gametle birleşince normalde zigotta 2 kromozom bulunurken ; bu zigotta 1 adet bulunacaktır. Böyle bir hücreye monozomik diyoruz. 2 kromozom içeren gamet karşı cins normal gametle birleşince, zigotta bu kromozomdan 3 adet bulunacaktır. Buna da trizomi diyoruz (Mongolizm-trizomu 21; Klinefelter sendromu XXY ve triple XXX sendromu). Monozomik olanların başlıcaları monozomi G ve Turner sendromu 45 X0 gelir. Monozomik durum otozomal (vücut kromozomlarında) meydana gelmişse hayatla bağdaşmaz. Buna istisna olarak monozomi G gösterilebilir. Otozomal trizomiler ise çok sıktır. Klasik Down sendromu (mongolizm), Edwards sendromu (trizomi 18), Patau sendromu (trizomi 13) buna iyi bir örnek olabilir. B-ANAFAZ LAG (Anafazda geri kalma): Hücre bölünmesi ve kromozomların eşit olarak 2’ye ayrılması normal olarak seyreder. Fakat ayrılmayı izleyen; kromozomların kutuplara göçü hatalıdır. Kromozomlardan 1 tanesi yeni meydana gelen yavru hücrenin dışında kalır, ortadan kaybolur veya diğer grup kromozomlar ile diğer hücre içine katılır. Normal fertilizasyon sonunda meydana gelecek zigot ya bu kromozom için monozomik veya trizomik olacaktır. Olayın sonucu bakımından nondisjunctiondan farkı yoktur. Bazı hallerde geri kalan kromozom hiçbir hücreye giremiyecek ve ortadan kaybolacaktır. Bu halde oluşan hücrelerden biri normal, diğeri monozomik olacaktır. 2. Mozaisizm : Mozaisizm; bir organizmada aynı zigottan menşe almış fakat kromozom yapıları farklı olan birden fazla hücre grubunun birlikte bulunmasıdır. Ayrılamama veya anafazda geri kalma olayı zigotun ilk bölünmesinden sonra meydana gelir. O ana kadar normal olarak bölünen hücreler ve bunlardan meydana gelecekler, orijinal zigotun karyotipinde olacaklardır. Hücreler ya monozomik veya trizomik olacaklardır. Monosizme benzeyen ve organizmada kromozom yapısı farklı birden fazla hücre grubunun bulunması ile kendini gösteren diğer bir durum chimerismdir. Mozaisizmde değişik karyotipte hücre toplulukları, tek bir zigottan menşe almışlardır. Oysa kimerizmde, kromozom yapıları farklı olan hücre grupları, ayrı ayrı zigotlardan menşe almışlardır (Dizigotik ikizlerde plasentadaki anastamozlar sonucu 2 ayrı kan hücresinin bulunuşu). 3. Kromozomların sayı anomalileri : A. Euploidi B. Aneuploidi A. Euploidi: Hücrelerdeki kromozom sayısı; o organizma türü için normal olan haploid sayının tam katı şeklinde artmıştır. İnsanda haploid sayı 23, diploid 46'dır. Haploid sayının 3 kat artmasına triploidi (69 kromozom), 4 kat artmasına tetraploidi (92 kromozom ) denir. 46 kromozomdan fazla olan ve kromozomların, haploid sayının tam katı şeklinde artmış bulunduğu durumlara poliploidi denir. Poliploidiye sebep; bir hücrede çekirdek bölünmesi olduğu halde sitoplazma bölünmesinin (sitokinaz) olmayışıdır. (Habis tümör dokuları ve spontan düşük materyali) B.Aneuploidi : Kromozom sayısı, normal diploid sayıdan (46) bir veya birkaç adet az veya fazladır. Az oluşu hipoploidi, fazlalığı hiperploidi olarak adlandırılır. Hiperploidiye en iyi örnek trizomiler, hipoploidiye Turner sendromu verilebilir. 4. Kromozomların Şekil Anomalileri A. Translokasyon : Kırılma gösteren 2 ayrı kromozomdan birinin kırılan parça üzerine yapışmasına translokasyon denir. Sağlam kromozom uçları birbirine yapışmaz. Yapışmayan bir sonraki mitozda bölünmeye katılamaz ve ortadan kaybolur. a- Karşılıklı translokasyon (Reciprocal trans********) b- Sentriolde birleşme B. Delesyon: Kromozomun küçük bir segmentinin kopması demektir; bu olayın da sebebi kromozomlardaki kırılmalardır. Terminal delesyondan kromozomun bir ucundan bir parça kaybolur. Böyle bir delesyonun meydana gelmesi için kromozomun bir ucuna yakın bir bölgede 2 kırık gerekir. Sonuçta kırıklar arasındaki kısım kaybolmakta ve uçlar tekrar kaynamaktadır (Rension). Cri du chat hastalığında 5. kromozomun kısa kolunda delesyon vardır. C. İnversiyon Bir kromozomda meydana gelen 2 kırık arasındaki segmentin kendi etrafında 180o dönüp tekrar kaynaması ile inversiyon adı verilen anomali oluşur. Sentromerin 2 tarafında 2 ayrı kırık oluşup kırıkları sentromere olan uzaklıkları eşit değilse gen sırası değişmekle kalmayacak; aynı zamanda kromozomun morfolojisi de değişecektir. Buna perisentrik inversiyon denir (Down ve Patau sendromları) D. Duplikasyon: Kırılma sonucu kromozomdan kopan bir segment kendi homolog kromozomuna yapışırsa, duplikasyon meydana gelir. Bunun sonunda da gen sırasında da duplikasyon olur. Buna tandem (ardarda dizilmiş) duplikasyon denir(12343456). Ters tendon duplikasyonda ise 12344356 şeklindedir. E. Halka (Ring) kromozomu Bir kromozomun 2 ucunda 2 kırık olursa bu 2 uç yapışkan bir hal alır ve birbirleri ile birleşip halka şekilini oluştururlar. F. İzokromozom: Sentromerin bölünmesindeki hataya bağlıdır. Normalde 2 kromatide ayrılan kromozom longitidunal olarak 2 ye bölünür. KROMOZOM ANOMALİLERİ I- OTOZOMAL KROMOZOM HASTALIKLARI A- TRİZOMİK SENDROMLAR 1. Mongolizm (Down sendromu) 2. Trizomi 18 sendromu (Edwards sendromu) 3. Trizomi 13 sendromu (Patau sendromu) 4. Trizomi C sendromu 5. Trizomi 22 sendromu B. DELESYON SENDROMLARI 1. Kedi miyavlaması sendromu (Cri-du chat) 2. 4 No'lu kromozomun kısa kolunun delesyonu (Wolf-Hirschhorn sendromu) 3. 18 No'lu kromozomun kısa ve uzun kollarının delesyonları 4. Monozomi G sendromu (G Delesyon sendromu) 5. Halka (Ring) kromozomu sendromu C. PARSİYEL TRİZOMİ SENDROMLARI Trizomi G a. Anne yaşı ileridir b. Genellikle ailevi değildirler, sporadik görülürler. c. Prenatal (intra uterin) ve postnatal (ekstrauterin) büyüme ve gelişme geriliği vardır. d. Çoklu konjenital malformasyonlar bulunur. e. Zeka geriliği görülür f. Mikrosefali mevcut olabilir. h. Kafa kemiklerinde malformasyon ve buna bağlı olarak değişik yüz görünümü vardır. i. Merkezi sinir sistemi anormaldir. l. Adele defektlerine sık rastlanır. k. Hemen hepsinde tipik dermatojik bulgulara rastlanır. MONGOLİZM (TRİZOMİ 21, DOWN SENDROMU) Otozomal kromozom hastalıklar içinde en sık görülenidir. Popülasyonda 1/600 -1/700 sıklıkta görülür. Monozigotik ikizlerde çoğu zaman; dizigotik ikizlerde nadiren görülmesi ve mongol kadınların bebeklerinde de %50 rastlanması hastalığın etyolojisinde genetiği düşündürür. 1932'de Waardenburg genetik bozukluğun nondisjunction olabileceğini ileri sürmüştü. 1959'da Jerome Lejense normalden 1 fazla olan kromozomun G grubuna ait olduğunu göstermiştir. Büyüme ve gelişimleri geridir; bu gerilik intrauterin gelişme geriliğine bağlıdır. Boyları kısa olup; daima %3 persentilin altına düşer. Baş şekli ve yüz görünümü tipiktir. Oksipital bölgenin yassı oluşu; yenidoğanlarda tanıya yardım eder. Hipertelorizm vardır. Dil ağızdan dışarı sarkar ve yüzeyi fissürlerle kaplıdır (Skrotal dil). Burunda aşırı sekresyon ve ağız köşelerinde ragadlar vardır. Dişler geç çıkar ve düzensiz görünümdedirler. Göz kapağı aralığı (palpabral fissür) obliktir, yani göz kapakları aralığının uzun ekseni dışarı ve yukarı yönde olup; çekik badem gözlü görünümü verir. Mongol ırkında kıvrım, üst göz kapağının üzerinden içe ve aşağı doğru kesilmeden iner. Mongol hastalarda ise bu kıvrım hakiki epikantus denilen ve daha içte bulunan, oldukça dikey olarak içe ve aşağı doğru inen 2. bir kıvrımla kesilir. Gözlerde sıklıkla strabismus ve katarakt görülür. İriste Brushfield lekesi denilen ve iris stromasının ön tabakasındaki bağ dokusunun yer yer kalınlaşmasına bağlı beyaz lekeler bulunur. Boyun kısa ve geniştir. Yenidoğanlarda ensede gevşek bir deri kıvrımı bulunur, bebeklik devrinde kaybolur. Eller kısa ve geniş, parmaklar künttür. %50 vakada avuçta normalde 2 tane olan çizgiler birleşerek tek avuç çizgisini (Simian çizgisi) yapar. Elde 5. parmak kısa ve içe doğru kıvrıktır (klinodaktili). Ayaklarda başparmak ve 2. parmak arasındaki mesafe geniştir. Zeka geridir. Konuşma ve yürüme normalden çok geç başlar. Nöromüsküler sistemde görülen en önemli bulgu hipotonisitedir. Yenidoğanların %50 sinde moro reflexi yoktur. Son yıllarda hastaların kanında seratonin maddesinin eksik olduğu tesbit edilmiştir. Hastalarda ÜSYE'na sık rastlanır. İlk yaştaki ölüm sebeplerinden biri pnömonidir. Vakaların %40 kadarında olan konjanital kalp hastalığı ilk yaştaki ölüm sebeplerindendir. Atrio-ventricularis communis, VSD, ostium sekundum tipi ASD en sık rastlananlardır. İlk yaştaki ölüm nedenlerinden bir diğeri de GIS malformasyonlarıdır. (T-E fistül, duodenal atrezi, megakolon, imperfore anüs) Dişilerde fertilite normaldir. Normal bir erkekle evlenen mongol kadının çocuklarının % 50 si mongol olacaktır. Erkek mongol hastalar ise infertildirler. Mongollarda lösemi insidansı yüksek, lösemili hastalarda mongolizmin birlikte görülme oranı normal popülasyondan 15-20 defa daha fazladır. Mongol yenidoğanlarda IgG'nin düşük olduğu bildirilmiştir. Mongolizmde insidans anne yaşının ilerlemesi ile doğru orantılı olarak artar. Sitogenetik bulgular: Esas aberasyon 21 No'lu kromozomun fazlalığı olmakla birlikte; mevcut kromozom aberasyonunun tipine göre mongolizm 3 grupta incelenebilir. a. Mutad tip mongolizm (trizomi 21) G grubuna ait 21 nolu kromozomdan normalde 2 adet bulunması gerekirken bu hastalarda 3 tane bulunur. b. Translokasyon tipi mongolizm : Fazla olan 21 nolu kromozom diğer bir kromozom üzerine eklenir; kromozom materyalinde 1 fazla 21 nolu kromozomun mevcudiyetine rağmen total kromozom sayısı 46 dır. 2 akrosentik kromozomun uzun kollarının birbiri üzerine translokasyonu söz konusudur. Bu tip translokasyona sentriolde yapışma (centric fusion) tipi translokasyon veya "Robertsonian trans********" denir. Bu durumda hem kromozom sayısında azalma olacaktır; hem de 2 akrosentrik kromozomdan 1 submetasentrik kromozom oluşacaktır. 2. tipte translokasyonda kromozomlar arası segment alışverişi vardır. Bu halde kromozomun sayısı değişmemekte ve yer değiştiren segmentlerin boyları eşit ise kromozomların şekillerinde de değişiklik olmayacaktır. c. Mozaik Mongolizm : Hücrelerin bir kısmı normal, bir kısmı ise 21 nolu kromozom için trizomiktir. 1. şahısta ortak bir zigottan çıkarılan fakat kromozom yapıları birbirinden farklı olan 1 den fazla hücre grubunun bulunması haline mozaisizm denir. TRİZOMİ-18 (EDWARDS SENDROMU, TRİZOMİ E) Oldukça enderdir ve prognozu kötüdür. 18 numaralı kromozom 2 yerine 3 adettir. a) İntrauterin ve extrauterin gelişme geriliği b) S.S.S. de gelişme yetersizliğine bağlı defektler c) Belirgin occiput ve mikrosefali d) Şekil bozukluğu gösteren düşük kulaklar ve çökük burun kökü, e) Küçük ağız ve küçük çene (mikrognati) f) Parmaklar flexion pozisyonda, index parmağı- orta ve 5.parmak 4. parmağın üzerine binmiş. g) Tipik dermatografik bulgular h) Kısa sternum ve hipoplastik kaburgalar i) Küçük ve dar pelvis kriptorşidizm k) Konjenital kalp hastalığı (PDA) l) Apgar skorunun düşük oluşu; konvülsiyonlar l) Böbrek anomalileri, inguinal ve umbilical herniler. İnsidans : 1/4500 -1/15000 Anne yaşının ilerlemesi ile orantılı olarak insidans artar. Kız/erkek: 150/42 Prognoz : Çok kötü %70 ilk 13 ayda ex, %20 ilk 12 ayda ex Yaşıyanlarda şiddetli motor-mental gerilik TRİZOMİ-13 (Bartholin-Paton Sendromu Trizomi D) : Anoftalmi, tavşan dudağı ve kurt ağzı, polidaktili ve çoklu malformasyon görülebilir. 13 numaralı kromozom trizomiktir. a- İntrauterin ve extrauterin gelişme geriliği b- Yenidoğan periyodunda apne, siyanoz ve konvülsiyon, c- S.S.S. defekti, (bulbus olpatinus agenezisi orinensefali). d- Arkaya doğru eğilimli olan, belirgin occupit ve burun kökü e- Mikrosefali, retina ve lens kolobomu, hipertelorizm mikroftalmi veya anoftalmi. f- Düşük ve şekil bozukluğu gösteren kulaklar, göz kapaklarında hemanjiom g- Yarık dudak ve damak, orta hat defektleri h- Polidaktili j- Konjenital kalp hastalığı k- Kriptorşidizm İnsidans 1/4600 - 1/14500 TRİZOMİ 8 Genel Özellikleri : Mental retardasyon, kısa boy, kilo azlığı, vertebral anomaliler Kafa-yüz görünümü : Dismorfik kafa, alın çıkıklığı, displazik kulaklar, strabismus, düşük kulaklar, alt dudak sarkıklığı, yüksek damak, yarık yumuşak damak, mikrognati. Toraks : Konjenital kalp hastalığı Abdomen ve pelvis : Üriner yol anomalisi, dar pelvis Extremiteler : Patellar displazi, eklem hareketlerinde kısıtlılık, el ayası ve ayak tabanlarında derin fleksiyon katlantıları TRİZOMİ 9 Mental retardasyon Mikrosefali, anormal kranial sütürler, alın çıkıklığı, çıkıntılı kulaklar, sivri burun, balıkağzı, mikrognati Konjenital kalp hastalığı Üriner yol anomalisi Konjenital kalça/diz çıkıklığı, klinodaktili, dijital hipoplazi, tırnak hipoplazisi, sindaktili. TRİZOMİ C SENDROMU C grubu (6,12) kromozomlar sayısı 1 fazladır. Daima anormal mozaik halde bulunur; klinik bulgular çok değişir. TRİZOMİ 22 Aynen mongolizmde olduğu gibi G grubunda 1 fazla kromozom vardır. 22. kromozom trizomiktir. Mental-motor gerilik, mikrosefali, dış kulak kanalının olmayışı, lakrimal kanal stenozu, ptozis, strabismus, kulak malformasyonu, yarık dudak, konjenital kalp hastalığı. B-DELESYON SENDROMLARI 1- Cri du Chat Syndrome : B grubundaki kromozomlardan birinin kısa kolundaki kopmaya bağlıdır. 5 nolu kromozomun kısa kolu delesyona uğramıştır. Hastalarda ağlama karakteristiktir, zayıf-tiz-yakınır gibidir ve kedi miyavlamasını andırır. 2- 4 Nolu kromozomun kısa kolunun delesyonu : (Wolf-Hirschhorn Sendromu) :Klinik bulgular; olasılıkla kromozomdan kopan segmentin büyüklüğünün vakadan vakaya farklı oluşu sonucu değişiklikler göstermektedir. a. İleri derecede intrauterin gelişme geriliği (Bütün kromozom hastalıkları içinde en düşük doğum ağırlığına sebep olanıdır). b. Vücut orta çizgisi üzerinde defektler c. Hipoplazik dermal çizgiler d. Mikrosefali, hipertelorizm, kolobom, tavşan dudağı ve kurt ağzı, konjenital kalp hastalıkları, hipospadias 3- 18 No'lu kromozomun kısa ve uzun kollarının delesyonu: 18 nolu kromozomun kısa kolundaki delesyon sonucu ortaya çıkan sendrom klinik bulgularının nonspesifik olmasına karşın; kromozomun uzun kolundaki delesyona bağlı olanın klinik bulguları oldukça spesifiktir. K/E:8/6 a. Zeka geriliği b. Mikrosefali, nistagmus c. Hipotoni d. Mid fasiyal hipoplazi (yüzün orta bölgesinin hipoplazisi) e. Öne doğru çıkıntılı çene f. Kulakta belirgin anti helix g. Dışkulak yolu dar veya atrezik olup; işitme kaybı h. Omuz ve ellerde deri çöküntüsü i. İğ biçiminde parmaklar j. Vertikal talus ve parmak uçlarındaki düşümlerde artma 4- Monozomi G (G Delesyon Sendromu) G grubu kromozomlarından birinde delesyon vardır. Hasta mozaik olup; hücrelerinden bir kısmında 45 kromozom, bir kısmında 46 kromozom vardır. a. Hipertoni b. Gözlerin aşağı ve dışa doğru çekik oluşu (antimongoloid slant) c. Burun kökünün belirgin oluşu d. Küçük çene e. İskelet anormallikleri f. Zeka geriliği 5- Halka kromozomu Sendromları : Normal bir kromozomun 2 ucunda meydana gelen birer kopma sonucu bu iki ucun ucuca gelerek yapışmalarıyla ortaya çıkar. Vakadan vakaya uçlarda delesyona uğrayan materyalin miktarı değişeceğinden fenotip ve genotipin birbirine uymaları güç olmaktadır. 5 nolu kromozoma ait halka kromozomu Cri-du Chat sendromunu meydana getirir. 18. kromozomda meydana gelen halka kromozom ise; bazı vakalarda 18. kromozomun uzun kolunun kopması sendromu oluşturur. En çok halka kromozomlar büyük akrosentrik (D grubu) kromozomlarında meydana gelir. C-PARSİYEL TRİZOMİ SENDROMLARI : Total kromozom sayısı 47 dir. Fazla olan kromozom G grubu kromozomlarının yarısı büyüklüğünde metasentrik ufak bir kromozomdur. Normal insan kromozomlarının en küçüğünden de ufaktır; bu kromozomun vakaların çoğunda satellitli oluşu D veya G grubundan menşe almış delesyon olduğunu düşündürür; bu da sendromun trizomik değil, parsiyel trizomik olarak adlandırılmasına yol açar. a.Lens kolobomu b. Anal atrezi c. Hipertelorizm d. Antimongoloid katlantı e. Preoriküler fistül ve deri çıkıntısı f. Umbilical herni g. Böbrek malformasyonları h. Mental gerilik i. Konjenital kalp hastalığı j. Sitogenetik anomalinin sıklıkla mozaik halde oluşu. KLİNEFELTER SENDROMU İlk kez 1942 de Klinefelter ve arkadaşları tarafından tariflenmiştir. Görülme sıklığı 1/500 civarındadır. Küçük sert testis, jinekomasti, idrarda gonadotropin seviyesinin yüksek oluşu kardinal bulgulardır. Bundan başka hastalar genellikle enükoid görünümdedirler. Skrotum normalden küçüktür, pigmentasyonu ve kıllanması azalmıştır. Pubik kıllanma kadın tipidir ve mons pubisin hemen üzerinde sonlanır. Testislerin küçük oluşu en önemli tanısal kriteri teşkil eder. Yüzde sakal azdır, ses incedir ve hastalarda erken osteoporoz görülür. Mozaik vakalar dışında hastalar fertil değildirler. Bir dereceye kadar mental gerilik hemen her hastada görülür. Yaş ilerledikçe psikolojik bozukluklar artar Sitogenetik: Vakaların %80 inde cinsiyet kromatini (Y) dir. Geri kalan %20 Y de ya teknik sebeplere bağlı olarak veya mozaisizmden dolayı cinsiyet kromatini yoktur. En önemli sitogenetik bulgu fazladan bir X kromozomunun bulunuşudur. Bundan dolayı klasik vakalarda 47 kromozom bulunur. (47, XXY). Söz konusu karyotipin ortaya çıkması için ya 2 X'li yani 24 kromozomlu bir ovumun normal yani 23 kromozomlu sperm tarafından veya 23 kromozomlu normal bir ovumun, 24 kromozomlu (XY) bir spermle fertilize olması gerekir. Gametlerin 24 kromozomlu olması hali meiotik bölünme sırasında kromozomun ayrılamama (non disjunction) veya ana fazda geri kalma (anafaz lag) olayı sonucu ortaya çıkar. Bu kromozom hatası zigotun teşekkülünden sonra ortaya çıkarsa mozaisizm durumuyla karşılaşılır. 46,XY(47, XXY). Bunlar fertil olabilirler. 46, XY vakalarında bugün eldeki metodlarla tesbit edemediğimiz kadar küçük bir Y kromozomu parçası diğer bir kromozom üzerine binmiştir (translokasyon) Bazılarında ise Y kromozomu, intrauterin yaşamda kritik bir dönemde mevcutken sonradan ortadan kaybolması şeklinde açıklanabilir. TURNER SENDROMU (Gonadal disgenesis) Boy kısalığı, fibröz bant şeklinde gonadlar (streak gonadlar), sexuel immatürite ve diğer çeşitli malformasyonlar vardır. Fenotipik olarak kadın görünümündedirler. Boyunda yeleleşme, meme uçları arasındaki mesafenin geniş, göğüs kafesinin yassı oluşu ve kubitus valgus deformitesi görülür. Turner sendromlu hastaların idrarında pubertede gonadotropinlerin yüksek oluşu karakteristik laboratuvar bulgusunu teşkil eder. Overler makroskobik olarak fibröz bant şeklindedir, mikroskobik olarak da hemen tamamen kollagen dokudan ibarettir. İç ve dış genital organlar kadın tipindedir. Genellikle uteruslar küçük ve dış genital organlar da gelişmemiş bir durumdadır. Yenidoğan devresindeki bir kız bebekte ensede deri kıvrımının oluşu, kalpte başta aorta koarktasyonu, el ve ayaklarda dorsal yüzlerde gode bırakmayan ödemin bulunuşu Turner Sendromu için klasik işaretleri teşkil eder. Daha ileri yaşlarda ise göğüs kafesinin yassı ve ensede saç hattının düşük olması, gözde strabismus, epikantüs, pitozis, yüksek damak, 4. ve 5. metakarpın kısalığı ve deride pigmente nevüslerin varlığıdır. Hemen her yaşta boy kısadır ve 150 cm nin üzerine çıkmaz. Buna karşın kemik yaşı oldukça normale yakındır. Pubertede primer amenore, östrojen eksikliğine ait bulgular ortaya çıkar. Meme teşekkülü mevcut değildir. Vaginal yaymada östrojen eksikliğine bağlı kornifiye epitellerin mevcut olmayışı dikkati çeker. Uterus ve dış genital organlar gelişmemiştir. Mozaikler dışındakiler fertildir. Turner Sendromlularda X kromozomu üzerinde taşınan mutant bir gene bağlı olarak renk körlüğünün bulunuşu X kromozomundaki bir anomalinin sendroma sebeb olabileceğini düşündürmüştür. Sitogenetik : Bir hücrede total olarak 45 kromozom bulunup; eksik olan kromozom 2X kromozomundan biridir. Vakaların yarısında X kromozomunda çeşitli sitogenetik anomaliler bulunmuştur. Bu anomaliler 2 çeşittir. a) 2. X kromozomun morfolojik anomalliği, b) Aynı zigottan menşe almış normal ve anormal kromozomlu hücre gruplarının aynı kişide birlikte bulunması halidir. Sitogenetik varyantlar A. 45 XO B. X kromozomunda yapısal anomali (delesyon veya uzun kolun izokromozomu) C. Mozaisizm. 47 XXX Kız: 1/1000 dişi doğumda bir görülür. Karakteristik bir fenotipi yoktur ve tutulan dişiler X-kromozomu tarama programlarında, yenidoğan araştırmalarında, amniosentezde, şans eseri tanınırlar. Gonadal fonksiyonlar genellikle normaldir ve fertildirler, fakat çocuklardan anormal sex kromozomu komplemanına sahip olabilirler. 47 XXX dişilerinde motor gelişme ve konuşma geriliği olabilir, hafif derecede entellektüel defisit, kişilerle ilişkilerinde bozukluk olabilir. Bazen 3 den fazla X kromozomuda bulunabilir. Şimdiye kadar en fazla 5 kromozom bulunmuştur. X kromozomun sayısı arttıkça mental retardasyon veya psikiatrik anormalliklerin sıklığı da artmaktadır. XYY Erkek: Agressif antisosyal davranış yönünden hapishanelerde yapılan araştırmalar sırasında saptanmıştır. XYY erkeklerinin diğer saptanan bir özelliği kısa boylu oluşlarıdır. Bir diğer araştırmada suç fazlalığı hızı ile agresyona iten suç davranışı arasında ilişki bulunamamıştır. ATİPİK Sex kromozomu karyotipleri : Fenotipik olarak erkek 46 XX karyotipi Fenotipik olarak erkek görünümünde 46 XX oluşu erkek sex farklanması ve karşılaştırılmasında Y kromozomun gerektirdiği inancına ters düşer. Olası mekanizmalar : 1- Saptanamamış 46 XX/46 XY kimerizm veya 46 XX/47 XXY mozaisizmi 2- Erkek sex karşılaştırıcı segmenti olan Y’in X kromozomuna veya bir otozoma translokasyonu 3- Olasılık saptanmıştır, ancak 1. olasılık da ekarte edilememiştir. Y’nin X’e translokasyonu X kromozomu inaktusisyon mekanizmasıyla XX erkeği oluşturacaktır. Fenotipik Kadın 46 XY XY sex kromozomu varlığı erken embriyo devresinde gonadlar, iç ve dış genital organların erkek tipine farklanmalarına yol açmaktadır; aksi halde embriyo dişi olarak farklanacaktır. XY nin varlığının esas olarak testiküler farklanmayı sağladığını düşünülmektedir. Daha sonra testiküler leydik hücreleri testosteron salgılarlar ve periferde dihidrotestosterona dönüşür. Hedef organlar testosteron ve dihidrotestosterona yanıt verme yeteneğindedirler. Eğer bu basamaklar yetersiz kalırsa; embriyoda maskülinizasyon oluşamayacaktır ve çocukta dişi genital farklanma olacaktır. 46 XY bebeklerde dişi fenotipin oluş mekanizmaları : 1- Target organın androjene tam duyarsızlığı (testiküler feminizasyon) 2- Luteinizan hormona testiküler yanıtsızlık, human chorionic gonadotropine yanıtsızlık (Leydig cell aplasis) 3- Testosteron sentezinde şiddetli defekt 4- XY pure gonadal disgenesis sendromu (Swyer sendromu) GENETİK ÖĞÜTLEME Genetik danışım bir ailede genetik bozukluğun oluşun riski veya oluşuyla birlikte insanın problemlerini ilgilendiren bir karşılıklı bağlantı iletişim işlevidir. Genetik danışım verilenlerin büyük çoğunluğu risklerinin farkında değillerdir, ancak genetik bilgi ve danışım için gelmişlerdir. Diğerleri evlilik öncesi veya çocuk yapmazdan evvel, akrabalarında tibbi problemlerle karşılaşıldığı icin sırf meraklarını karşılamak için gelirler. Doktora burada düşen tıbbi problemler ve doğum defektli doğanların problemlerinin herediter ve tüm aileler için genetik bilgi vermesidir, bunu sadece isteyenlere değil, gereken herkese vermeleri gereklidir. Prenatal tanının açıklanması veya taşıyıcıların saptanmasında genetik öğütleme biraz daha komplex hale geçer. Genetik Öğütlemenin Prensipleri 1. Tanının doğru olduğundan emin olunmalıdır. Burda doktorun izole yarık damak ve dudağı (multifaktöryel kalıtım); otozomal-dominant kalıtımlı yarık dudak ve damaktan ayırdetmesi gerekir. Tanı konduktan sonra: 1. Her iki ebeveyni tartışma için çağırınız (adölesan çocuk ayrı çağırılmalıdır) 2. Defektin tıbbi sonuçlarını tartışınız 3. Her bir ebeveynin aile hikayesini araştırmanın ve anlaşılamamış herhangi bir genetik risk varsa tanımlayınız. 4. Ailenin verdiği açıklamalar veya başkalarının verdiği bilgileri değerlendiriniz. 5. Problem için genetik temeli tanımlayınız bu iş için mümkün olduğu kadar görsel araçlar kullanınız. Örneğin problemle ilgili fenotipik veya diğer görüntüleri,kromozom resimlerini, kalıtım şekillerini gösteren diyagramları gösteriniz. 6. Genetik riskleri ailenin anlayabileceği şekilde açıklayınız. 7. Olasılıkları özetleyiniz; örneğin çocuk yapmama, çocuk yapma ve risklerini kabullenme, evlat edinme, artifisyel inseminasyon özellikle otozomal resesif bozukluklarda ve ciddi otozomal dominant bozukluklarda; eğer prenatal tanı mümkünse not ediniz. 8. Tartışılan konuları danışan kışileri destekleyiniz ve mümkünse kendileri için en uygun olasılığın ne olacağına karar vermek için biraraya geliniz. 9. Önceden danışım yapan ailelerle bağlantıda kalınız ve ebeveynde taşıyıcılık veya prenatal tanı konusunda yeni metodlar geliştiğinde aydınlatınız. Genellikle aileler bir defektli çocuk doğurduktan sonra genetik risk taşıdıklarının farkına varırlar. Bu durum kabul edilene dek reddetme, öfke-kızgınlık ve depresyon periyotları birbirini izleyebilir. Herbir ailenin durumu farklıdır ve danışma reaksiyonlar tektir. Aileler için sık bir problem genetik anormalliği kabullenme konusundadır, tek mutant gen, anormal kromozom veya multifaktöryel kalıtımda olduğu gibi birçok genlerin etkileşimi ve çevresel faktörler birarada olabilir. Kromozom anomalilerinde anormal karyotip normallerle karşılaştırılabileceği için işi biraz kolaylaşır. Bir diğer problem genetik bozukluğu olan çoğu bebek veya çocuk ailenin ilk etkilenen üyesidir; bundan dolayı aile diğer akrabalarda olmadığından; ailenin bunu herediter kabul etmeyip hafife almasıdır. Aileye bazı herediter bozukluklarda ebeveynlerin veya akrabaların sağlıklı olabilecekleri kuvvetle vurgulanmalıdır. TAŞIYICILARIN saptanması mümkün olan durumlarda genetik danışım : Taşıyıcılık durumu laboratuvar testleriyle saptanabiliyorsa genetik öğütleme basitce, daha spesifik ve daha etkilidir. Riskte olanlar tanınabilir, test yapılan akrabalar taşıyıcı değilse doğru olarak ikna edilebilir. Bazı biyokimyasal bozukluklarda ve kromozom anormalliklerinde taşıyıcı saptanması mümkündür. Biyokimyasal bozukluklar : Doğuştan metabolizma hastaları için heterozigot kişilerin tanınması gerekir. * Hb S ve C * Thalassemiler * Tay-Sachs Hast *  ı-antitripsin eksikliği Heterozigotlarda taramada bir diğer sınırlama da heriki ebeveyn heterozigot ise prenatal tanının kolay olmamasıdır. Özellikle hemoglobin anormalliklerinde plasental vene girip tetkik yapılması sadece birkaç merkezde olasıdır. X-e bağlı resesif metabolik hastalıklar G-6-PD eksikliği Fabry hastalığı (a-galaktosidaz eksikliği) Hypoxanthine-guanine phosphoribosyl transferaz PRENATAL TANI mümkünse genetik öğütleme : Birçok çift prenatal tanı hakkında daha çok şey öğrenmek için başvururlar.Prenatal tanının önemli olduğu durumların başında anne yaşının ileri olması, daha evvelden Down sendromlu veya ansefalomeningomiyeloselli çocuğa sahibolma gelir. Genel olarak 35 yaş üzerindeki tüm kadınlarda amniyosentezle prenatal tanı konması tercih edilir. Çünkü bu annelerin bebeklerinde kromozomal anomali riski en az %1 dir. Yine yeni bir bulgu Down sendromlu çocukların en az 1/4 ünde extra 21 kromozomun babadan geldiği bilinmektedir. Eskiden daima anneden geldiği düşünülürdü. Metabolik hastalıklı çocuk sahibi olma riski olan durumlar daha az fakat daha komplexdir. Bu grupta : 1. Amino asit metabolizma bozuklukları 2. Karbonhidrat metabolizma bozuklukları 3. Pürin ve pirimidin metabolizma bozuklukları 4. Enzim ve proteinlerde defektler 5. Eritrosit metabolizma defektleri 6. Kanın diğer şekilli elemanlarına ait bozukluklar 7. Lipid metabolizma defektleri 8. Pigment metabolizma bozuklukları 9. Vitamin metabolizma bozuklukları 10.Renal tübüler transport mekanizmasında primer bozukluklar 11.İntestinal malabsorbsiyonla sonlanan defektler 12. Mineral metabolizma defektleri Prenatal tanı genellikle 15-16 haftalık gebelikte uterus, pelviste amniosenteze uygun düzeye yükselince yapılır. Plasentayı lokalize etmekte veya 1 den yüksek fetus saptanmasında ultrasound kullanılabilir, ikiz gebelik şansı 1/80’dir. Aseptik teknik ve lokal anestezi kullanarak 22 nolu iğne ile abdomende en uygun yerden girilir (ultrasonogramla saptanır). Amniotik boşluğa ilerletilir. Trokar çıkartılır ve 2 ml sıvı alınarak (anne hücreleri ile kontaminasyonundan sakınılır) atılır; daha sonra 2. bir enjektörle 10-30 ml amniotik sıvı alınır ve direkt laboratuvara gönderilir. Spesimen kan varlığı yönünden incelenir, daha sonra santrifüjle hücreler amniotik sıvıdan ayrılır ve doku kültürüne ekilerek uygun koşullarda inkübatöre konur. Amniosentezle fetus kaybı riski: %0,5 Gebede geçici kramplar ve amniotik sıvı sızması:: %3 Olguların %5-10 unda amniosentezin tekrarlanması gerekir. Amniosentezden 14-21 gün sonra objektif sonuçlar alınabilir. Eğer sonuçlar fetusun anormal olduğunu gösteriyorsa ve ebeveynler düşüğü tercih ediyorlarsa çoğu doğumcu gebeliği 20. haftanın bitiminden evvel sonlandırır. Prenatal tanıda kullanılan dokular ve teknik işlemler : 1. Amniotik sıvı hücreleri : Kromozom analizi veya biokimyasal deneylerde kullanılabilirler. Hücrelerin yeterli sayıda çoğalması ve testler için yeterli sayıya ulaşması için 2-3 hafta gerektirir. 2. Amnion mayii:  -fetoporotein (AFP) Bu protein fetal karaciğer, gastrointestinal yol, yolk kesesinde sentezlenir ve anensefali, meningomyelosel, ensefalosel, omfalosel durumlarında artar. AFP ölçümü daha sonraki gebeliklerde bu bozukluğun herediter olup olmadığının saptanması için yapılır . Yine Meckel Sendromu (ensefalosel, pölikistik böbrek, polidaktili, yarık dudak ve damak, genital ve göz anomalileri, otozomal resesif kalıtımlı), konjenital nefroz'da artar. AFP düzeyleri en yüksek 14-18 hafta gebeliktedir. Amniosentezden evvel gebelik yaşının tayini önemlidir. Nöral tüp defektlerinde birlikte asetilkolin esteraz düzeylerinin de ölçümü gerekir. Eğer defektin üzeri deri ile kaplıysa AFP normal düzeylerde ölçülebilir. 3. Sekretuar substance : Myotonik distrofilerde dominant gen loküsünün saptanması için yapılabilir. 4. Hormonlar: Amniotik sıvıda steroid hormonlar ölçülebilir. Konjenital adrenal hiperplazi (21-hidroxylase eksikliğine bağlı) saptanabilir. 5. Ultrasound : Gebelik yaşının tayininde, plasentanın lokalizasyonunda, çoğul gebeliklerin ekarte edilmesinde kullanılır. - Kondrodistrofilerde - Uzun kemiklerin eksikliklerinde - Böbrek genişlemelerinde (Infantil polikistik böbrek ) ultrasound yararlıdır. 6. Amniografi: AFP anormal yüksek ise amnion mayisine suda eriyen bir boya enjekte edilerek incelenir. 7. Fetoskopi : Fetusun direkt inspeksiyonudur. Şiddetli Hb bozukluklarında, plasenta damarlarından kan almak için kullanılır. 8. Radyografi : Fetusun röntgen filmi uzun kemik eksikliklerinde, radial aplazi ile birlikte otozomal resesif trombositopenide kullanılabilir. Son zamanlarda ultrasonografi daha popüler hale geçmiştir.

http://www.biyologlar.com/kalitsal-hastaliklar

Arkealerde Evrim ve sınıflandırma

Arkeler rRNA filojenetik ağaçlarına göre iki ana gruba ayrılırlar, Euryarchaeota ve Crenarchaeota. Ancak yakın yıllarda bu iki gruba ait olmayan bazı başka türler de keşfedilmiştir. Woese, arke, bakteri ve ökaryotların ortak bir atadan (progenot) türemiş farklı evrimsel sülaleler olduğunu öne sürmüştür. Yunanca archae veya 'eski' anlamında Arke isminin seçiminin arkasında bu hipotez yatmaktadır. Daha sonra bu grupları, her biri birçok âlem içeren, bölge (domain) veya üst-âlem olarak tanımlamıştır. Bu gruplandırma sistemi çok popüler olmuş, ancak progenot fikri genel destek görmemektedir. Bazı biyologlar arkaebakteri ve ökaryotların özelleşmiş öbakterilerden türediğini öne sürmüşlerdir. Arkea ve Ökarya arasındaki ilişki biyolojide önemli bir problem olarak sürmektedir. Yukarda belirtilen benzerlikler bir yana, birçok filogenetik ağaç bu ikisini beraber gruplandırır. Bazıları ökaryotları Crenarchaeota'lardan ziyade Euryarchaeota'lara yakın yerleştirir, hücre zarı biyokimyası aksini göstermesine rağmen. Thermatoga gibi bazı bakterilerde arke-benzeri genlerin keşfi aradaki ilişkinin tanımlanmasını zorlaştırmaktadır, çünkü yatay gen transferi olmuş olması muhtemel görünmektedir. Bazıları ökaryotların bir arkeli ile bir öbakterinin kaynaşmasıyla meydana geldiğini öne sürmüşlerdir, öyle ki birinci çekirdek, ikincisi ise sitoplazmayı oluşturmuştur. Bu hipotez genetik benzerlikleri açıklayabilmekte, ama hücre yapısını açıklamakta zorluklarla karşılaşmaktadır. Arkelerin bakterilerden farklılıkları rRNA gen dizinlerinin karşılıştırılması sonucu ortaya çıkmıştı. Yukarıda belirtilen problemlerin bazıları, gen dizinlerine tek başına bakmak yerine artık organizmaların bütün genomlarının karşılıştırılması yoluyla çözülmeye çalışılmaktadır. 2006 Eylül ayı itibariyle 28 arke genom dizini tamamlanmış, 28'i ise kısmen tamamlanmıştır.

http://www.biyologlar.com/arkealerde-evrim-ve-siniflandirma

AKRABA EVLİLİKLERİ

Türkiye gibi akraba evliliklerinin yoğun olduğu ülkelerde, sakat bebek doğumları çok sık görülmektedir. Akraba evliliklerin görülmesinin sebepleri arasında genellikle, aileye ait mal varlığının dağılmaması, aile bireyleri arasındaki sevgi ve saygıyı korumak, akrabaların evlilik ve sosyo ekonomik beklentilerinin aynı olması ve karşı cinsle rahat iletişime girememe gibi etkenler sayılabilir. Akrabalar arasında yapılan evliliğe endogami denilmektedir. Kalıtımın taşıyıcısı genlerdir. Bizler nesiller öncesinden gelen atalarımızın bize hediye ettiği genetik kalıtımla yaşama başlamaktayız. Vücudumuzun büyüyüp gelişmesi ve çalışması genlerimizin kontrolü altındadır. Yaşamın temel taşı olan genler, bir DNA molekülündeki belirli bir özellik içeren kesitine verilen addır. Her bir gen ya da birkaç gen kümesi bizdeki bir özelliğin bilgisini içerir. Anne ve babadan eşit olarak geçen genler, bizdeki tüm yaşam duvarlarını örer. Genler hücrelerde bulunan kromozomların kısımlarıdır. Dolayısıyla genler, kromozomlarla birlikte çoğalarak, hücre bölündükçe yeni hücrelere geçerler. Kişide her genin, biri anneden biri babadan gelmiş olan iki kopyası (alleli) bulunur. Bazen genin bir kopyasının yapısı bozuktur ve bu bozuk kopya yüzde elli olasılıkla çocuğuna geçer. Bozuk bir gen, kişinin bazı vücut işlevlerinin bozulmasına neden olur. Bir karaktere ait olan özelliğin diğerine baskın olması halinde o karaktere baskın (dominant) gen , baskın olmayan gene resesif (çekinik) gen denir. Bir karakterin çıkması, iki aynı gen frekansının karşılaşması demektir. Eğer bir hastalığa ait gen (resesif) anneden aktarılırken, babadan da aynı (resesif) gen ile karşılaşırsa o hastalık mutlaka doğacak olan çocukta çıkacaktır. Eğer , anneden resesif gen, babadan da dominant gen karşılaşırsa bu sefer doğacak çocuk da tıpkı anne ve babası gibi hastalığın taşıyıcısı olacak, ama o hastalık açığa çıkmayacaktır. Aynı karakterde iki resesif genin karşılıklı gelmesi çekinik alleller sonucu hastalık çıkar. Anne ve babadan iki baskın gen (dominant) alan çocuk (baskın alleller) ise tamamen sağlıklıdır.Dolayısı ile, akraba evliliklerinde aynı gen yapısına sahip olan ailede , resesif genlerin birbirleriyle karşılaşma ihtimalleri, daha fazla olacaktır. Buna örnek olarak kahverengi ve mavi göz renklerini ele alalım. Kahverengi göz rengi dominant gen (baskın) olsun , diğeri için de mavi ise (çekinik) resesif gen diyelim. Anne-babadan birinin göz renginin mavi (m), diğerinin kahverengi (K) olduğunu düşünelim. Bebekler anne-babalarından kalıtımla; kahverengi-kahverengi (KK), kahverengi-mavi (Km), mavi-kahverengi (Km) ve mavi-mavi (mm) genler gibi dört ihtimal almış olurlar. İlk üç durumda bebeğin gözleri kahverengi (baskın renk olduğu için), son şıkta ise mavi (çekinik renk olduğu için) olacaktır. KK=K Km=K Km=K mm=m İnsanlar birçok kalıtsal hastalığın genini taşır. Normal aile yapısında da hamilelikte çocuğun hastalıklı doğma olasılığı %25, taşıyıcı olma olasılığı %50, genin bozuk kopyasını hiç almamış olma olasılığı ise %25'tir. Akraba evliliklerinde aynı soydan geldikleri için anne ve babanın aynı genin bozuk kopyasını taşıma, yani hastalığın taşıyıcısı olma olasılığı çok yüksek olduğundan çocuklarında hastalıkların oluşma şansı çok daha fazladır. İşte akraba ile evlenme, zararlı baskın ve çekinik genlerin üst üste gelerek frekanslarının çakışması sonucu ortaya çıkma ihtimalini artırdığından genetik hastalıkların görülmesine yol açabilmektedir. Bunların çocukta görülmesi için ana ve babanın her ikisinin de en az bir zararlı çekinik gene sahip olması gerekir. Biraz önceki göz rengi örneğinde olduğu gibi, mavi göz renginin çekinik genleri, hem anneden hem babadan gelirse, çocuk mavi gözlü olacaktır. Dolayısı ile akraba evliliklerinde aynı gen yapısına sahip olan ailede , zararlı (resesif) genlerin birbirleriyle karşılaşma olasılığı fazla olacaktır. Akraba ile evlenme, kalıtımla geçen hastalıkların bulunduğu ailelerde bu yönden sakıncalıdır. Böyle durumlarda bazı çekinik genler çakışabilecek ve böylelikle hasta çocukların doğma ihtimali artacaktır. Hastalığın çıkması, iki resesif genin karşılık olarak bir araya gelmesi demektir. Bilindiği üzere resesif genler hastalık taşıyan genlerdir. Ailede genetik dağılım ,erkek ve kız kardeşlerde, genellikle genlerin yarısı birbirinin aynıdır. Gen ortaklarının oranları, akrabalık uzaklaştıkça küçülür. Torunlar, dede ve ninelerin dörtte bir genine sahiptir. Yeğenlerin genleri ise, genellikle amca ve halalarının, dayı ve teyzelerinin dörtte bir genine eşittir. Daha uzak akrabalıklarda bu oran, kardeş çocuklarında olduğu gibi sekizde bire düşmektedir. Kan uyuşması çözüm müdür? Akraba evliliğinde Kan uyuşmazlığı kan grubu ile değil kanınızdaki Rh faktörü ile ilgilidir. Yalnızca kadının Rh - , erkeğin ise Rh + olduğu durumlarda oluşabilir. Kan gruplarının uyuştuğu hallerde doğum sonrasında çocuklarda kalıtımsal hastalıklar görülmüştür.Erkekte bulunan Rh faktörünün genetik aktarımla ana karnındaki fetüste ortaya çıkması anne ile bebek arasında bir kan uyuşmazlığının ortaya çıkmasına neden olacaktır. Günümüzde akraba evliliklerinde en çok görülen hastalıklar; zekâ geriliği (fenilketonüri), Akdeniz Anemisi, Alzheimer, Parkinson, Huntington hastalığı ve nöron ölümüdür, özürlü ve ölü doğumlar da bu örnekler arsında sayılmaktadır. Çocuk Doğmadan Önce Kalıtsal Bir Hastalığın Tanısı Konulabilir mi? Gen analizi de denilen DNA analizi yöntemleriyle artık hamileliğin ilk üç ayında birçok hastalığın tanısı konulabilmektedir.Genetik bilimin gelişmesi ile bazı hastalıklarda daha anne karnında müdahale çalışmaları hız kazanmıştır. Bebeğin anne karnında içinde yüzdüğü sıvıdan, ya da beslenmesini sağlayan kordondan alınan sıvıların incelenmesiyle bir anormallik olup olmadığı % 93 oranında kesinleştirilebiliyor.Yapılan testlerde, anne karnındaki bebeğin ense kalınlığı ölçülüyor. Bebeğin ensesinde fazla sıvı birikmesi, doğuştan zekâ geriliği anlamına gelen Down sendromunun habercisi olabiliyor. Ayrıca bazı kromozom bozukluklarında ve doğumsal kalp hastalıklarında da bebeklerin ense kalınlığı artıyor. Bu çalışmalar ilerisi için umut veren gelişmelerle devam etmektedir.

http://www.biyologlar.com/akraba-evlilikleri

Monark Kelebekleri

Güneydoğu Kanada'da yaşayan Monark kelebeklerinin göç öyküsü ise, kuşlarınkinden daha da karmaşıktır. Monark kelebekleri, normalde, tırtıllıktan kurtulup tam bir kelebek olduktan sonra ancak 5-6 hafta yaşarlar. Bir yıl içinde, 4 Monark nesli yaşar. Bu dört neslin üçü, ilkbahar ve yaz aylarında yaşar. Sonbahar geldiğinde durum değişir. Çünkü sonbaharla birlikte, göç başlayacaktır ve bu göçü üstlenecek olan Monark nesli, aynı yıl içinde gelip-geçmiş olan diğer nesillerden çok daha uzun yaşayacaktır.Göç edecek olan Monarklar, mevsimin dördüncü kuşak kelebekleridir. Göç, çok ilginç bir biçimde, tam sonbaharda gecenin gündüze eşitlendiği gecede başlar Güneye göçen bu kelebekler, önceki diğer üç kuşaktan altı ay daha fazla yaşayacaklardır. Çünkü çıktıkları yolculuğu tamamlayıp geri dönebilmeleri için bu kadar süre yaşamaları şarttır. Güneye inen kelebekler, Yengeç Dönencesi'ni geçip soğukları geride bıraktıklarında dağılmazlar. Kıtanın yarısını aşan bir göçten sonra milyonlarca kelebek Meksika'nın ortasında konaklar. Burası üzeri zengin bitki örtüsü ile kaplı volkanik dağların sırtlarıdır. 3000 m. yükseklikteki bu yer kelebeklerin yaşayabileceği kadar sıcaktır. Burada Aralıktan Mart'a kadar 4 ay boyunca hiç bir şey yemezler. Yaşamlarını vücutlarındaki yağ stoklarıyla sürdürürken, yalnızca su içerler.Monarkların binlercesi bir ağaca konduklarında, ağaç neredeyse görünmez olur. İlkbaharda açmaya başlayan çiçekler Monarklar için önemlidir. 4 aylık bir bekleyişten sonra ilk defa kendilerine bir bal özü ziyafeti çekerler. Artık Kuzey Amerika'ya dönüş için gerekli enerjiyi depolamışlardır. İki aylık yaşam süresini sekiz aya genişletilmiş olarak yaşayan bu kuşağın başka yönlerden diğerlerinden hiç bir farkı yoktur. Mart sonunda yola koyulmadan önce çiftleşirler. Tam gece ile gündüz eşitlendiği gün koloni kuzeye uçmaya başlar. Yolculuklarını tamamlayıp Kanada'ya vardıktan az sonra da ölürler. Ancak, ölmeden önce, soylarının devamı için gerekli olan kuşağı da dünyaya getirirler. Yeni doğan kuşak, yılın ilk neslidir ve yaklaşık bir buçuk ay yaşayacaktır. Daha sonra ikinci ve üçüncü kuşaklar... Dördüncü kuşağa gelindiğinde göç yine başlayacak, bu kuşak yine diğerlerinden altı ay daha fazla yaşayacaktır ve zincir böyle sürüp gidecektir... Bu ilginç sistem, akla bir çok soru getirmektedir: Nasıl olmaktadır da, her dört nesilden biri altı ay daha uzun yaşayacak şekilde doğmaktadır? Nasıl olmaktadır da, bu uzun yaşayan nesil binlerce yıldır tam kış aylarına denk gelmektedir? Nasıl olmaktadır da, kelebekler göçe tam gece ile gündüzün eşit olduğu günde başlamakta, bu ince hesabı tutturabilmektedir, yoksa takvim mi kullanmaktadırlar? Kuşkusuz bu soruların Evrim ya da benzeri teorilerin içinde hiç bir cevabı bulunamaz. Çünkü, kelebekler bu ilginç özellikleri var oldukları andan beri taşıyor olmalıdırlar. Eğer dünya üzerindeki ilk dördüncü Monark nesli uzun yaşama özelliğine sahip olmasaydı, bütün kelebekler o kış içinde ölürdü ve hayvanların nesli tükenirdi. Monarklar, var edildikleri andan itibaren bu olağanüstü özelliği taşıyor olmalıdırlar. "Tesadüf"ler, hayvanın neslini göçe göre ayarlama gibi bir yeteneğe şüphesiz sahip değildir. Kelebekler, şöyle bir düşünüp, dördüncü nesillerini uzun yaşatmaya karar vermiş, sonra da metabolizmalarını, DNA'larını, genlerini buna göre ayarlamış da olamazlar. Açıktır ki, Monarklar, böyle bir özelliğe sahip olarak dünyaya gelmişlerdir.

http://www.biyologlar.com/monark-kelebekleri

Çernobil reaktör kazası 26 Nisan 1986

1972’de Ukrayna’daki (O dönemde SSCB’nin bir parçasıydı) Kiev’in 140 km kuzeyinde bulunan Çernobil Nükleer Santralı’nda gerçekleşen kaza, her biri 1.000 Megawatt (MW) gücünde olan dört reaktörüni hatalı tasarımının yanı sıra, reaktörlerden birinde deney yapmak için güvenlik sisteminin devre dışı bırakılıp peşpeşe hatalar meydana gelmesi nedeniyle oldu. Deneyin yapılacağı 25 Nisan 1986 günü, önce reaktörün gücü yarıya düşürüldü, ardından da acil soğutma sistemi ile deney sırasında reaktörün kapanmasını önlemek için tehlike anında çalışmaya başlayan güvenlik sistemi devre dışı bırakıldı. 26 Nisan günü saat 00:23’i biraz geçe teknisyenler deneyin son hazırlıklarını tamamlamak üzere ek su pompalarını çalıştırdılar. Bunun sonucunda gücünün yüzde 7’siyle çalışmakta olan reaktörde buhar basıncı düştü ve buhar ayırma tamburlarındaki su düzeyi güvenlik sınırının altına indi. Normal olarak bu durumda reaktörün güvenlik sistemine ulaşması gereken sinyaller de teknisyenler tarafından engellendi. Su düzeyini yükseltmek için buhar sistemine koşulların oluştuğuna karar verildi.Büyük patlama ise saat 01:23 meydan geldi. Deneyin amacı, reaktörün çalışması aniden durdurulduğunda, buhar türbinlerinin daha ne kadar süreyle çalışmayı sürdüreceğini ve böylece ne kadar süre acil güvenlik sistemine güç sağlayabileceğini öğrenmekti. Geriye kalan öteki acil güvenlik sinyali bağlantılarını da kestikten sonra türbinlere giden buhar akışı durduruldu. Bunun sonucunda dolaşım pompaları ve reaktörün soğutma sistemi yavaşladı. Yakıt kanallarında ani bir ısı yükselmesi görüldü ve yapısal özellikleri nedeniyle reaktör tümüyle denetimden çıkmış oldu. Tehlikeyi farkeden teknisyenler reaktörün durdurulmasını sağlamak amacıyla bütün denetim çubuklarını derhal sisteme sokmaya karar verdiler. Ama aşırı derecede ısınmış bulunan reaktörlerde saat 01:26’te, yani deneye başlanmasından bir dakika sonra iki patlama oldu. Bu patlamanın ayrıntıları tam olarak bilinmemekle birlikte, denetim dışı bir çekirdek tepkimesinin gerçekleşmiş olduğu anlaşılmaktadır. Üç saniye içinde reaktörün gücü %7’den %50’ye fırladı. Yakıt parçacıklarının soğutma suyuyla karşılaşması, suyun bir anda buhara dönüşmesine yol açtı. Oluşan aşırı buhar basıncı reaktörün ve santral binasının tepesini uçurdu. Reaktördeki zirkonyum ve grafitin yüksek sıcaklıktaki buharla karşılaşması sonucu oluşan hidrojen yanarak bütün santralı alevler içinde bıraktı. 26 Nisan 1986 saat: 01:23’ te 4 numaralı reaktör çekirdeğinde patlamalara neden olan katastrofik güç artışı yaşadı. Bu patlamalar, atmosfere çok miktarda radyoaktif yakıtın ve ham maddenin yayılmasına, ve kolayca tutşabilen grafit moderatörünün tutuşmasına neden oldu. Reaktör herhangi bir sağlam muhafaza kazanı ile kaplanmadığı için, yanan grafite moderatörü dumanla taşınan radyoaktif parçacıkların yaılımını arttırdı. Normal kapama işleminde meydana gelen kaza olası acil bir durumda devreye giren soğutma özelliği güvenliğinin planlanmış bir testi sırasında oluştu. Yapılmaya Çalışılan Deney: Nükleer güç reaktörleri, aktif olarak güç üretmediğinde bile, radyoaktif maddelerin bozulma ısısını gidermek için genellikle soğutucu akışı tarafından sağlanan soğutma işlemine ihtiyaç duyar. Basınçlı su reaktörleri, atık ısıyı çıkarmak için yüksek basınçlı su akışını kullanır. Kaza durumundaki bir reaktörün acil olarak durdurulmasından sonra, çekirdek hala başlangıçta tesisin toplam ısı üretiminin yaklaşık olarak % 7’ si kadar ciddi miktarda bir artık ısı üretir. Bu artık ısı soğutucu sistemleri tarafından çıkarılmazsa, ısı çekirdeğin zarar görmesine neden olabilir. Çernobilde patlayan reaktör, yaklaşık olarak 1600 ayrı yakıt kanalından oluşuyordu ve her operasyonel kanal saatte 28 ton’luk (7400galon) su akışına ihtiyaç duyuyordu. Enerji hatları şebekesinin çökmesi durumunda harici gücün, tesisin soğutucu su pompalarını acilen çalıştırmak için uygun olmayacağı yönünde endişeler vardı. Çernobil reaktörlerinin 3 tane yedek dizel jeneratörü vardı. Her jeneratör 15 saniye içinde devreye girebiliyordu, fakat tam hıza ulaşması ve ana soğutucu su pompalarından bir tanesini çalıştırmak için gerekli olan 5.5 MW ‘lik kapasiteye ulaşması 60-75 saniye alıyordu. Bu bir dakikalık güç aralığının kabul edilemez olduğu düşünülüyordu ve buhar tirbünü rotasyonel enerjisi (ya da açısal momentum)ve artık buhar basıncının (tirbün vanaları kapalı), acil durum dizel jeneratörleri yeterli dönme hızına ve voltaja ulaşana kadar, ana soğutucu su pompalarını çalıştırabilecek elektiriği üretmek için kullanılabileceği öne sürülüyordu. Teorik olarak, analizler, bu artık momentumun ve buhar basıncının, acil durum jeneratörlerinden gelen harici enerjinin başlangıcındaki kesinti ve yeterli tam güce ulaşması arasında köprü olabilecek gücü 45 saniyeliğine sağlayabilecek potansiyele sahip olduğunu gösteriyordu. Bu yeterliliğin hala deneysel olarak doğrulanması gerekiyordu ve önceki testler hep başarısızlıkla sonuçlanmıştı. 1982’ de gerçekleştirilen ilk test, tirbün jeneratörünün uyarım voltajının yetersiz kaldığını; türbinin aniden kapanmasından sonra gerekli manyetik alanı devam ettiremediğini, gösterdi. Sistem 1984’ te modifiye edilerek tekrarlandı, fakat sonuç yine başarısız oldu. 1985’ te testler üçüncü sefer yapıldı ve yine olumsuz sonuçlarla bitti. Test prosedürü 1986 da tekrar edilecekti, ve bu testin 4 numaralı reaktörün bakım için kapatılması esnasında yapılması planlandı. Test, reaktörün elektrik kaynaklarının sekanslarını cereyan verme üzerine odaklandı. Test prosedürü, bir acil durum kapatmasıyla başlamış oldu. Reaktörün güvenliği üzerinde zararlı etkisi tahmin edilmiyordu, bu yüzden test programı reaktörün tasarım şefi ya da bilimsel idarecisi ile koordineli olarak yapılmadı. Bunun yerine sadece tesis direktörü tarafından onaylandı. Test parametrelerine göre deneyin başlangıcında reaktörün ısı üretimi 700 MW’ nin altında olmamalıydı. Test koşulları planlandığı gibi olsaydı, test hemen hemen başarıyla gerçekleşebilirdi; nihai felaket, onay verilen test prosedürüne aykırı olarak deney başlar başlamaz reaktör verimini arttırmaya zorlamaktan kaynaklandı. Çernobil santrali, 2 yıl, ilk 60-75 saniye boyunca toplam elektrik gücü kaybını karşılama kapasitesi olmadan çalıştı, ve bu yüzden önemli bir güvenlik özelliğinden yoksundu. İstasyon yöneticileri büyük olasılıkla ilk fırsatta bunu düzeltmek istedi, ki bu ciddi sorunlar meydana geldiğinde bile neden deneye devam ettiklerini ve gerekli izni neden Sovyet nükleer bakım düzenleyicisinden almadıklarını açıklar(üstelik 4 no lu reaktörde bir temsilci bulunmasına rağmen. Deney prosedürünün amaçları: 1- Reaktör 700MW-800MW arasında daha düşük bir güç seviyesinde çalışıyor olacaktı. 2- Buhar tirbünü jeneratörü tam hızıyla çalışıyor olacaktı. 3- Bu koşullar sağlandığında, türbin jeneratörünün buhar desteği kapatılacaktı. 4- Türbin jeneratörü performansının, soğutma pompalarına otomatik olarak güç sağlayan ve çalıştıran acil durum dizel jeneratörleri sıralanana kadar, soğutma pompaları için gerekli köprü gücü sağlayıp sağlayamayacağı belirlenecekti. 5- Acil durum jeneratörleri normal yeterli hıza ve voltaja ulaştıktan sonra, türbin jeneratöre serbest bırakılacaktı. Kaza öncesindeki Koşullar: Testin uygulanmasını sağlayan koşullar 25 Nisan 1986 günü gündüz vardiyasından önce oluşturuldu. Gündüz vardiyasındaki işçiler önceden uyarıldı ve bu işçiler oluşturulan prosedürlere aşinaydı. Elektrik mühendislerinden oluşan özel bir ekip yeni voltaj düzenleme sistemini test etmek üzere oradaydı. Planlandığı gibi gündüz vardiyasının işe başlamasıyla 01:06 25 Nisanda güç ünitesinin randımanı kademeleri olarak azaltılmaya başlandı ve güç seviyesi nominal 3200 MW ısı seviyesinin % 50 sine düşürüldü. Bu noktada bir diğer bölgesel güç istasyonu beklenmedik bir şekilde devre dışı kaldı ve Kiev elektrik şebekesi denetçisi akşamları oluşan yoğun elektrik talebini karşılayacak güce ihtiaç duyulduğu için çernobilde daha fazla güç azaltılmasının ertelenmesini talep etti. Çernobil santrali yöneticisi testin ertelenmesini kabul etti. Saat 23:04 te kiev elektrik şebekesi denetçisi reaktörün kapatılma işlemine devam edilmesi için izin verdi. Bu gecikmenin bazı ciddi sonuçları vardı; gündüz vardiyası geçeli çok olmuştu ve akşam vardıyası da çıkmaya hazırlanıyordu, ve gece vardıyası da işin yapılacağı gece yarısına kadar nöbeti devralmayabilirdi. Plana göre test gündüz vardiyasında bitirilmliydi ve gece vardiyası sadece santralde beklenmedik bir kapanma olursa soğutma sistemlerinin bozulma ısısını devam ettirmekle yükümlüydü. Testi uygulamak ve hazırlanmak için gece vardiyasının zamanı çok kısıtlıydı. Vardiya değişimi sırasında güç seviyesinde % 50 den aşağı ani bir düşüş gerçekleştirildi. Alexander akimov gece vardiyası şefiydi, ve Lenoid taptunov kontrol çubuklarının hareketi dahil reaktörün operasyonel iderasinden sorumlu yöneticiydi. Genç bir mühendis olan Taptunow daha önce üç aylığına bağımsız bir yüksek mühendis olarak çalışmıştı. Test planı 4 numaralı reaktörün güç çıkışının kademeli olarak 700 MW-1000MW lik ısı seviyesine düşürülmesini gerektiriyordu. Test planında yer alan 700 mw seviyesine 26 Nisan 00:05 te ulaşıldı; ancak çekirdekteki nötron soğurucu ksenon 135 elementinin doğal yapısı yüzünden daha fazla azaltma işlemi yapılmasa bile reaktör gücü azalmaya devam etti. Güç yaklaşık olarak 500MW seviyesine ulaştığı için, Taptunov kasıtsız olarak reaktörü neredeyse kapatma noktasına getiren denetim çubuklarını devreye soktu. Taptunov ve Akimov radyasyon hastalığından öldüğü için ayrıntılı ve gerçek detayların bilinmesi zor. Reaktör gücü hemen hemen bir kapanma seviyesi olan 30 MW lik ya da daha az ısıya düştü, bu, test için güvenli olarak planlanan baştaki minimum güç seviyesinin yaklaşık olarak % 5 idi. Kontrol dairesi personeli, bunun üzerine kontrol çubuklarının büyük bölümünü yukarı çekerek gücü tekrar eski haline getirme kararı aldı. Birkaç dakika, personelin çubukları çekmesi, güç çıkışının artması ve ardından planlanan 700 MW değerinden çok daha düşük bir değer olan 160-200 MW de sabitlenmesi arasında geçti. İlk kapatma sırasındaki ani azaltma ve seviyenin 200 MW nin daha da altına düşmesi, ksenon 135 elementinin birikmesiyle reaktör çekirdeğindeki zehirlenmenin artmasına yol açtı. Bu, reaktör gücünün yükselmesini kısıtladı ve zehirlenme etkisini yok etmek için ek denetim çubuklarının reaktör çekirdeğinden çıkarılmasını zorunlu hale getirdi. Reaktörün düşük güçte ve yüksek zehirlenme oranında çalışması, dengesiz çekirdek sıcaklığı ile soğutucu akışı ve muhtemelen dengesiz nötron akısı ile birleşti. Bu noktada çeşitli alarmlar çalmaya başladı. Kontrol odası, su/buhar tamburlarının seviyesiyle ilgili ve besleme suyunun akış hızında değişiklikler ya da farklılıklar olduğuyla ilgili art arda gelen acil durum uyarıları aldı,bunun yanında tahliye vanalarının artan buharı bir türbin kondenserine tahliye etmek için açıldığını belirten ve nötron güç denetçisinden gelen uyarılar vardı. Bu periyotta 00:35 ile 00:45 arasında, termal termal hidrolik parametrelerle ilgili görünüşte reaktör gücünü korumak için dikkate alınmadı. Reaktör acil durum koruma sistemi acil durum sinyalleri, türbin jeneratörlerinin her ikisinin kapanmasına neden olan bir hatayı tetikledi. Bir süre sonra 200 mw lik güç seviyesinde daha çok ya da daha az sabit bir duruma ulaşıldı ve test hazırlıkları devam etti. Test planının bir parçası olarak ilave su pompaları 26 Nisan 00:05 te devreye sokuldu. Reaktör üzerinde artan soğutucu akışı oranı, reaktör çekirdeğinin hava girş deliği soğutucusu sıcaklığının güvenlik payını azaltan ve suyun kabarcıklı kaynama sıcaklığını daha da yakınlaştıran bir artışa neden oldu. Akış saat 01:09 da izin verilen limiti aştı. Aynı zamanda, ilave su akışı tüm çekirdek sıcaklığını düşürdü ve çekirdekteki buhar boşluğunu azalttı. Ayrıca, su nötronları emdiği için ek su pompalarının devreye sokulması reaktör gücünü azalttı. Bu, operatörlerin güç devamını sağlamak amacıyla manual kontrol çubuklarını daha ileriye çekmek için harekete geçmesine neden oldu. Tüm bu yapılanlar kararsız bir reaktör konfigürasyonu oluşmasını sağladı. İlk olarak reaktörün ani durmasında devreye sokulan, güvenlik çubuklarının değerini sınırlayabilecek kontrol çubukları hemen hemen çıkarılmak üzereydi. Dahası reaktör soğutucusu kaynamayı azaltmıştı, fakat kaynama payını sınırlamıştı, bu yüzden her güç farklılığı su tarafından emilen nötronu azaltarak kaynama üretebilirdi. Reaktör, tasarımcılar tarafından oluşturulan güvenli çalıştırma koşullarının açık bir şekilde dışında olan kararsız bir konfigürasyondaydı. Kazanın etkileri İngiltere'nin Galler bölgesinde kazadan iki hafta sonra saptanan yüksek radyoaktivite nedeniyle yeşil alanlara koyun ve sığırların girişi engellenmiştir. Araştırmalarda ilk yıl doz açısından en fazla radyoaktiviteye maruz kalan Avrupa ülkesi Bulgaristan olarak belirlenmiştir. Sıralama açısından ise şemada yer alan ülkeler doz sırasına göre şu şekilde sıralanmıştır:[1] Birleşmiş Milletler'e bağlı kuruluşlar olan Uluslararası Atom Enerjisi Ajansı, Uluslararası Sağlık Örgütü, Dünya Bankası gibi kurumların ve Rusya, Beyaz Rusya ve Ukrayna yetkililerinin oluşturduğu bir organizasyon olan Çernobil Forumu 2005 yılında “Chernobyl’s Legacy: Health, Environmental and Socio-Economic Impacts” (Çernobil’in Mirası: Sosyo-ekonomik, Çevresel ve Sağlık Bakımından Etkileri) başlıklı bir rapor yayınlamıştır. En yüksek radyasyon dozlarına, sayıları bini bulan acil durum çalışanları ve Çernobil personeli maruz kaldı. Çalışanların bazıları için maruz kaldıkları dozlar öldürücü oldu. Zaman içinde Çernobil’de çalışan kurtarma personelinin sayısı 600 bini buldu. Bunların bazıları, çalışmaları boyunca yüksek düzeyli radyasyona maruz kaldılar. Çöken radyoaktif iyodinden kaynaklanan çocukluk tiroid kanseri, kazanın en önemli sağlık sorunlarından birisidir. Kazadan sonraki ilk aylarda, radyoaktif iyodin düzeyi yüksek sütlerden içen çocuklar yüksek radyasyon dozları aldılar. 2002 yılına kadar bu grup içinde 4000’den fazla tiroid kanseri teşhis edildi. Bu tiroid kanserlerinin büyük bölümünün radyoiyodin alımından kaynaklanmış olması çok muhtemeldir. Bağımsız kaynaklar yüzlerce yıl boyunca Pripyat ve komşu bölgelerde yerleşimin güvenli olmadığını söylemektedirler. Ayrıca bölgeye giriş çıkışlar hala polis kontrolünde olup bazı bölgelere giriş yapılamamaktadır.

http://www.biyologlar.com/cernobil-reaktor-kazasi-26-nisan-1986

Escherichia coli (E.coli) Nedir?

Bir bakteri çeşidi olan Escherichia coli Avusturya asıllı bir doktor olan ve enterobacteriaceae familyasına ait bu bakteri türünü ilk olarak izole eden Thedor von Escherich (1857-1911) tarafından isimlendirilmiştir.

http://www.biyologlar.com/escherichia-coli-e-coli-nedir

HAYVAN VE İNSAN KOPYALAMA

Organ nakli, doğum kontrolü, büyük ameliyatlar derken genetikçiler, hayvan kopyamayı da başardı. İskoçya’da Ian Wilmut, Dolly adını verdiği kuzuyu kopyaladı. Sonra Hawai’de fare, Kore’de inek, İskoçya’da domuz kopyalandı.Güney Kore de türü azalan bir kaplan türünü kopyalamaya hazırlanıyor (Hürriyet, 24 Mayıs 1999) “... Bizim (biyologların), hapsedilme tehditini de içeren sayısız ve kesin kuralla dizginlenmesi gereken büyük işadamları olduğumuz söylenir. Tüm bunlar genlerimizi oluşturan DNA’nın olası en kötü şeyleri kışkırtabileceğinin düşünülmesi nedeniyledir. Bu tamamen aptalca; çevremizde beni, DNA’dan daha az ürküten başka bir öğe düşünemiyorum.” James Watson, 1977 “Uyarı profesyonellerinin genetekçilerin uğursuz güçlerini lanetlemeleri için, 1970'li yılların başında, biyologların, DNA rekombinasyon tekniklerini oluşturarak laboratuvarlarında doğayı taklit edebileceklerini keşfetmeleri ve böylece moleküler biyolojiyi kuramsal gettosondan çıkarmaları yetti. Bilimi, özellikle de insanın bilinmesiyle ilgili olduğunda, şeytanlaştırmaya çalışan insanlara daima rastlanır. On beş yildir, genetikçilerin uluslarasi küçük toplulugu, bilimsel perhiz, sakinimlilik, otosansür, kendini sinirlama, erteleme, yani kisacasi, Watson’in bu bölümün epigrafi olan sözlerini kendisinden aldigim, rasyonalizmin canlandiricisi Fransiz filozof Pierre- Andre Taguieff’in güzel bir biçimde söyledigi gibi, araştirmalarin gönüllü olarak kesilmesini buyuran bir entellektüel baskiyla karşi karşiyadir.Taguieff’in dedigi gibi: Fransiz usulü bilim karşiti vahiycilik, birçok açidan, 60'li yillarin sonunda ABD’de başlatilan büyük “acemi büyücü” avinin küçük ve gecikmiş bir yansimasindan başka bir şey degildir. Belki gecikmiş yansima; ama şu son yillarda Avrupa’da, şimdi de bizi yüzyil sonu korkularimizdan kurtarmaya yazgili, ahlaki uzmanligini tuhaf bir biçimde biyoloji ve tisbba bakmiş tüm bu “etik komiteler”i-de Gaulle’ün deyimiyle bu yeni tür “ivir zivir”i- yaratan, bu gecikmiş yansimadir.Sirasi gelmişken, tüm sanayileşmiş ülklerin bilimsel bütçelerinin çok büyük bölümünü yutan nükleer ve askeri araştirmalar gibi diger gerçek tehlike ve sapmalar konusunda bu komiteleree danişmayi düşünen var mi? Oysa bana, insanligin gen sagaltimindan çok askeri elektronikten kaygi duymasi gerekirmiş gibi geliyor. Hiç şüphesiz, bilimin şeytanlaştirilmasindaki bu yeni akim amacina ulaşamiyor; perhize çagri, dogum kontrolünde oldugu gibi bilimsel kontrol için de zavalli bir yöntemdir.Ama gelinb de, Taguieff’in terimleriyle, yalnizca kuşkunun mantigina boyun egen, kaygan zeminden başka kanit tanimayan ve sapmalari önleme adina, mutlak tutuculugun biyoloji sapagina, hatta bilimin totaliter denetimine dogru bizzat sapan yeni lanetçilere laf anlatin. Biyolojideki ilerlemeler ve insanın kendi üzerinde edindiği yeni olanaklar, ahlakçıların hayal güçlerini her zaman çalıştırmıştır. Bazıları bizi, geleceğin doktor Frankenştayn’larının korkunç bir “biyokrasi”si olarak betimlemekten çekinmiyorlar. Sanki gerçek bir saygısızlık olanağı varmış gibi, bizi “insan genomuna ve bütünlüğüne saygı”nın kutsal ilkesiyle tehdit ediyorlar. Böyşle bir yaklaşım, bu alandaki ilk sorumsuzun bir takım kopyalama hataları yapmadığı, onlarsız biyolojik evrimin asla olamayacağı “mutasyonlar”a başvurmadığı zamanlar, her döllenmede her zaman farklı yerni bir varlık oluşturan ve “ufak tefek düzeltmeler”le yetinen doğa olduğunu unutmak demektir. Ayrıca, aynı zamanda hekim de olan bir başka filozofun, François Dagognet’nin söylediği gibi, bizim genetik konusundaki kaygımız, temmodel olarak, türün üreme engeline takıldığı hayvanlara gönderimde bulunmak gibi bir dar görüşlülüğü yansıtmaktadır. Ama bakış tarzı, karışma ve melezleşmenin sıkça görülen fenomenler haline geldiği bitkisel alan da dahil, canlıların bütününe doğru genişletildiğinde söz konusu tabu ortadan kalkmaktadır. Ve nedeni bellidir: çok eski zamanlardan beri insanlar, bitki türleri üzerinde kasıtlı değiştirmeler uyguladılar. İnsanın canlıya ilişkin mantığı bu yolla sarsıldı. Ve sonra, canlının doğal düzenini kutsallaştırmak niye? Biyolojik yönden, programlanmış olmamaya programlanmış insan, niçin başarısızlıkları da dahil olmak üzere, genetik lotarya karşısında diz çökmek ve ona saygı göstermek zorunda olacaktır kı? Genetik kalıtımıza egemen olmak hiç şüphe yok ki, insanın evriminde yeni bir evreyi işaretleyecektir; buna döneceğim. Bu evrimi bir kabusmuşçasına tasarlamak zorunda değiliz. İnsan genomunun bilinmesiyle ortaya çıkan kaygılar şu soruyla özetlenelir: -Şimdilik bize yalnizca hastalarin iyimleştirilmesinin söz konusu oldugunu söylüyorsunuz. Çok iyi. Buna karşi çikmak zor. Ama, siz genetikçilerin az ya da çok yakin bir gelecekte, insani kendi karariniza göre dönüştürme erkine, cüce ya da devlerden, güçlü ya da zayiflardan, üstün zekali ya da ilkel kölelerden oluşacak “irklar” yaratma erkine sahip olmayacaginizi bize kim garanti ediyor? Megalomaniniz ya da ittakarliginiz sonucu, davraniş genlerimizle, hatta zeka genlerimizle “oynama” egilimi duymayacaginizi bize kim söylüyor? Şimdiden “gen nakledilmiş” fareler yapiyorsunuz, “gen nakledilmiş insan” cehennemi ne zaman? Bu kaygılar, insanın genetik kalıtına ilişkin olarak geri, kolaycı ve biyolojik bilgiye dayanmayan bir bakışı yansıtır. Son yirlmi beş yıldır moleküler biyolojinin gelişimi, bize genetik rekombinasyon mekanizmalarının ve genlerin dışavurumunun iki şeyi güvence altına aldığını öğretti: insanın sonsuz çeşitliliği ve insan fenotipinin(Dip not:Fenotip, bireyin gelişimi sırasında ve çevresel etkenlerin denetimi altında genotipinin-gen kalıtının- gerçekleşmesine uyan belirgin vasıflarının bütünüdür) bozulamayacak karmaşıklığı.Bu iki biyolojik gerçekten bir parçacık haberdarn olan herkes, Jim Watson gibi, hiçbir şeyin üzerinde çalıştığımız o molekülden, yani DNA’dan daha az ürkütücü olmadığı ve bunda yeni bir Pandora kutusu(Dip not: Yunan mitolojsinin güzel Pandora’sı. Prometheus’un tanrı katından çaldığı ateşi getirdiği insanları cezalandırmak için dünyaya gönderilmişti. tanrılar Pandora’ya içinde bütün kötülüklerin bulunduğu bir kutu emanet etmişti. Merakını yenemeyen Pandora kutuyu açtı ve böylece tüm kötülükler dünyaya yayıldı. Biraz da acıyarak, bilimin bu yeni engizisyoncularının kafalarının da evrensel ilk günah mitosu tarafından kurcalandığını düşünüyorum!) görmenin gülünç olacağı sonucuna varacaktır.(236-238) Karmaşik tahrip edilebilir; ama onu kolaylaştirmak, onunla “oynamak “, onu azaltmak istemek hiç de gerçekçi degildir. Insanligin genetik olarak tekbiçimlileştirilmesi fantezisi bir tür biyolojik anlamsizliktir.Bunu istesek bile yapamazdik. İnsanlık, genetik yasaları kendi yararına kullanabilir, kullanabilecektir; ama onları değiştiremeyecektir. Anımsatmak gerekir mi; dönemin yaygın yinelemesine uygun biçimde, “bir üstün ırk”ın ayıklanması yoluyla türün iyileşktirilmesi anlamındaki Nazi tipi öjenizm, tam bir fiyasko olmuştur.Psikopat diktatörün sanrıları, genetiğin bilgisine hiçbir şey borçlu değildi. Bu sanrılar, toplama kampları ve gaz odaları aracılığıyla girişilen bir soykurumun sözümona bilimsel doğrulanışından başka bir şey değildi. Ekonomik bunalım ve milliytçiliklerle her türlü karanlıkçıların tırmanış dönemlerinde, ırkçı ve totaliter tüm ideolojik hortlamaları bıkıp usanmadan ifşa etmek, entellektüellerin ve bilimcilerin görevidir. Ama geçmişin vahşeti geleceğin açılımları karşısında bizi dehşetten donakalmış bir halde bırakmamalı, tabu haline gelmiş sözcükler aracılığıyla hedefimizi şaşırtmamalıdır... En son tıbbi tekniklere başvurarak ağır hastalıkları olmayan bir çocuğa sahip olmak, gebeliği önleyebilmek, çocuk düşürme hakkı, yani iyi anlaşılmıyş öjenizm, kuşkusuz bireyin tümüyle özgür seçimiyle uygulandığında iyi bir şeydir. Biz zengin ülke topluluklarının bu tartışmaları, bizim kendi ülkelerimizde yararlandığımız doğum kontrol sisteminin olanaklarına ulaşmaya çamlışan yoksul ülkelerin kadın ve erkeklerine oldukça şaşırtıcı gelebilecektir... Gerçekte, totaliter rejimlerin normalleştirici fantezilerin çok ötesinde, yüzyilin bu son çeyreginde biyoloji, insan düşüncesini çeşitlilik ve karmaşikligin mantigina aliştirmak için hiç şüphesiz en fazla ugraşmiş olan bilimdir. Kendimi geleceğin ahlaki sorunlarını çözmek için hiçbir şekilde yetkin görmüyorum. Ben daha çok, gelecek kuşakların neyi kabul edilebilir ya da edilemez sayacaklarını bulmek için o kuşakların kendilerine güvenme eğilimindeyim. Ahlakın kendi değişmezleri vardır; ama bunlar, bilim ve bilgiyle birlikte evrimleşirler. Bugün bilgisizlikle kendimize yasakladığılmız şeylere, belki de yarın, daha iyi bir bilmenin ışığında izin vereceğiz. Okuru rahatlatır mı bilmem; ama genetiğin yasalarına egemen olmanın kaygılanacak fazla bir yanı bulunmadığını, buna karşılık umut verecek çok yanı olduğunu bana düşündüren nedenleri, burada gözden geçirmek isterim. Çeşitliligin Genetigi Buraya kadar patolojilere yol açan mutasyonları, genomun oyunbozanlık rolünü üstlenenleri gördük. Gerçekten de genom programının en acil hedefi, bizi genetik hastalıklara karşı silahlandırmaktıdr. Ama uzun dönemli hedefi daha temellidir ve biyolojik düzenlenişimizin bütününü daha iyi anlamayı amaçlıyor. kuşaklar boyu biriken mutasyonlarin hepsi (bu ortalama olarak her 300 bazda bir degişiklik noktasi, yani genomun bütününde yaklaşik on milyon polimorf nokta eder) hastaliklara yol açmaz. Çok şükür. Kalitimla aktarilan bu mutasyonlarin büyük çogunlugunun hiçbir kötü sonucu yoktur.(Ek Not:Genomun 3 milyar bazi arasindan, ortalama olarak 300 bazdan biri insandan insana degişir. Bunlar mutasyon noktalaridir.Bu noktalirn herbirinde baz “degişir”; ama yine de, genetik alfabenin yalnizca dört harfi oldugundan, seçim yalnizca dört olasilik arasinda yapilir: A,T,C,G. Örnegin A harfi yerinde bir T, bir C, ya da bir G olacaktir. Her bir degişiklik bölgesi için, topluluk içinde en fazla yalnizca dört allel vardir..s:291) Öncelikle, mutasyohlardan çoğu basit bir istatistik olgu sonucu genomun kodlayıcı olmayan bölgelerini (DNA’nın yüzde 90'nından fazlası) etkiledikleri ve uslu uslu sessiz kaldıkları için: gözlemlenbildiği üzere fenotipte kendilerini dışa vurmazlar. Sonra da bu kez asıl genlere (protein kodlayan, DNA dizilerinden yaklaşık yüzde 10'una) düşkün mutasyonların çoğu “nötr” oldukları için... Ya ana babanın alleliyle kodlanan proteinlerle aynı işleve sahip “eş anlamlı” bir protein kodlayan geni değişime uğratırlar. Ya da organizmanın düzgün işleyişinde bir değişiklik yapmaksızın, yalnızca insanların çeşitliliğine yol açan farklı proteinleri kodlarlar. En sonunda, geriye genomu bozan mutasyonlar kalır. Yüz bin genimizi etkileyen yaklaşık bir milyon mutasyon noktası olduğu varsayılabilirken, tek ya da çok etkenli, yaklaşık üç bin genetik hazstalık saptanmıştır. Mutasyonların çeşitlendirici rollerinin, bozucu rollerinden daha ağır bastığı görülüyor. Bozuk kabul edilen genlerin sayısı hesaplanmak istenirse, kafanızda genlerimizin bir milyon ya da yalnızca 997 000 polimorf noktasını gönlünüzce birleştirmeye çalışın [Dip not: Bu sayıları yalnızca büyüklüğü göstermek için veriyorum. Gerçekte her genetik hastalık ille de bir nokta mutasyonuna denk gelmez;ama bir mutasyonlar biyeşiminin ya da kromozomların rekombinasyonu sırasında ortaya çıkan kazalırın sonucu da olabilir.)Genetik rulet düşleyemeyeceğimiz kadar çok fazla sayıda bireysel bileşim sağlar. Biz, şu ya da bu deri rengi ya da başka bir yapısal özelliği sağlayan on kadar özel allele ayrıcalık tanımak isteseydik bile geriye kalan milyonlarca allel sonsuz çeşitliliği güvenceye almaya yetecekti. İnsan türünü tekbiçimlileştirmek hiç de kolay değildir. En fazlası ve biraz kötü bir şansla, bazı çekinik hastalıkları kolaylaştırmayı başaracaktık ki, bu da esasen, çok sınırla bir topluluk içinde kuşaklar boyu uygulanan her endogamide ortaya çıkan bir şeydir ve değişkenliğin, potansiyel mozayikliği de diyebileceğimiz genel kaynağına gerçek bir zarar vermez. Bireysel değişiklikle her türlü genetik akıl yürütmenin başlangıç noktasıdır.Bu temel gözlem verisi Darwin’in ilk esin kaynağ oldu; bu veri olmaksızın onun doğal ayıklanma kuramının hiçbir anlamının olmayacağı çoğu kez unutulur.”En uygun olanın ayıklanmasıW”na gelince, türün ortamın sonsuz çeşitliliğine uyum sağlamasına izin vermesi nedeniyle, Darwin’den sonra ileri sürüldüğünün tersine, çok daha az tekbiçimlileştiricidir. Evet, biz farklı olmaya mecburuz! Birkaç saniye için (daha fazlasına dayanılmaz) tamamen özdeş varlıklarla dolu bir dünya düşlemeye çalışalım! Rahatlayalım. Böyle bir olasılık, bir biyolojik olanaksızlıktır. Sonuçta kendimizi paylamaya, farklılık “hakkı”mızı ileri sürmeye, bizi sağduyuya zorlaması için tüm etik kaynakları harekete geçirmeye hiç gerek yok. Hoşumuza gitsin ya da gitmesin, her birimiz insan türünü ayni büyük izlegi üzerindeki farkli birer degişikligiz. Şu son yirmi otuz yillik biyolojik araştirmanin en şaşirtici keşiflerinden biri (60'li yillarda Jean Dausset’nin öncülügünü yaptigi HLA sisteminin aydinlatilmasiyla), yalnizca protein düzeyinde degil, genlerimiz düzeyinde de söz konusu oldugu anlaşilan bu olaganüstü insani polimorfizmdir. Mutasyonlar ve DNA rekombinasyonlari bizim en iyi korumalarimiz, normalleşitici heveslerimizin karşisindaki en etkili engellerdir. Farkliliga ve dolaysiyla bireye saygi içinde özgürlük, bundan böyle bir hümanist talepten daha fazla bir şeydir: hakliligini genlerimizde bulmuştur. Genetik kalıtımızın olağanüstü değişkenliğinin keşfi, yalnızca ırk kavramını değil, türe özgü temel özellikler dışındaki biyolojik “norm” kavramını da sonsuza kadar yıktı. Leonardo da Vinci güzelliğin ölçütü olacak bir altın sayı bulunduğuna inanıyordu. Çabalarına rağmen onu asla bulamadı.Çok mükemmel bir nedenden dolayı: ideal norm, bizim basitlmeştirici zihnimizce yaratılmış bir soyutlamadan başka bir şey değildir. Mükemmellik gibi güzelliğe atfettiğimiz kurallar da bir kültürden diğerine, bir dönemden diğerine, hatta bir bireyden diğerine göre değişir. İnsanın özdeş baskısı yoktur! Kuşkusuz, evrim her yeni türe ait yeni işlevlerin ortaya çıkmasına katkıda bulunur. Ama her türün ne bir ana öbeği ne de modeli vardır. Büyük evrim kuramcılarından biri olan Theeodosius Dobzansky’nin yazdığı gibi, genetik koşullanma yalnızca, tek bir insan doğası değil, ama insan doğaları olduğu anlamına gelir . Norm, norm olmamasıdır. Bu biyolojik gerçek, evrimin mantığını dile getirmekten başka bir şey yapmaz.(S:243) Farklılık, türün devamı için zorunludur. Öğrencilerimle beraberken daima şu düşüncenin üzerinde dururum: hepimiz farklı olduğu için hala buradayız. Aksi halde, ne iz ne de ben olacaktık. Burada olmamı, benim gibi olmamış (bugün de benim gibi olmayan ), ama belki de benim bizzat dayanamayacak olduğum bir saldırıdan sağ kalabilmiş olan ötekine borçluyum. Doğada saf soy yoktur. Olsaydı, hayatta kalamazdı. Laboratuvarda üretilenler, iste hücreler, ister drosofiller (sirke sineği) ya da beyaz fareler söz konusu olsun, özgürlüğün bedelini hemen yaşamlarıyla öderler. Eğer sivri sinekler farklı böcekölrüncülerine karşı şeytansı bir direnç gösteriyorlarsa, bu onların genetik polimorfizmlerinin her defasında bazılarının kendilerini kurtarmalarını, sonra da gelecek yok edici bombardımana kadar büyüyüp çoğalmalarını sağlaması nedeniyledir.Gelecek, dirençli azınlıklarda, marjinallerde ve uyum göstermeyenlerdedir! Buna göre, insan sivri sinakten daha az polimorf değildir. Yoksa, dünyanın bizzat yaratmış olduğu çetrefil karmaşıklıklarına nasıl uyum sağlardı? Bu polimorfizm, elli bin ya da yüz bin yıl önce homo sapiens ’in ilk marifetleri döneminde olduğu gibi, bugün için de doğrudur. küçük avcı-toplayıcı gruplar neden yaşamlarını sürdürebildiler? Tüm erkeklerav için uygun bacaklara ve gözlere, tüm kadınlar yenebilecek ot ve taneleri kesin olarak tanıma yeteneğine ve hep birlikte ateşi ya da barutu yeniden icat etme becerisine sahip olmaları nedeniyle mi? Tam olarak böyle değil. Bunu iyi biliyoruz. Her insan grubu, tıpkı bugünkü gibi, miyoplarına, artiritlilerine, keskin gözlülerine ya da koşu şampiyonlarına; yavaş düşünenlerine, hızlı düşünenlerine, liderlerine ve diplomatlarına, melankoliklerine ve neşelilerine, sanatçılarına ve eylem adamlarına, serserilerine ve ahlak hocalarına vb.. sahipti. kısacası her türden ve özellikle de her konumdan insanlar bulunuyordu. Dönemin küçük sürüleri, en azından benim gibi Roy Lewis’in olağanüstü romanı Babamı Niçin Yedim’ e inanırsanız, muhtemelen kendi “tutucular”ına ve “ilerlemeciler”ine bile sahipti. Onların da, vanya dayı gibi, toplanma çığlığı(s:244) “Ağaçlara Dönüş!” olan kendi tepkicileri ve baba Edouard gibi ateşi icat edip çayırları yaktıktan sonra, “Olanaklar olağanüstü !” diye haykırmaktarn geri durmayan dirençli icatçıları vardı. Tarihöncesine dair çalakalem yazılmış bu gülünç yapıtta bilerek başvurulmuş anakronik öğelerin ardında, yazarın derin bir antropolojik gerçekliğe parak bastığına inanıyorum.Hiç şüphe yok ki, yazarın kendilerine atfettiği bilgece dilin ötesinde, ilkel (ve yine de biyolojik olarak bizim kadar ya da az farkla evrimleşmiş) insanlar, Roy Lewis’in yeniden keşfettiği gibi, bugün bizi bölen davranışlarımızı aratmayan farklılık ve incelikteki davranışlarıyla insani entrika ve gülünçlüklere sahip bir çeşitlilik içindeydiler. Musee de l’Homme’ un son sergilerinden birinin, Hepimiz akrabayız, hepimliz farklıyız şeklindeki güzel başlığını açıklamak gerekirse, biz birbirimize benzeriz ve hepimiz farklıyız. Evt. Bunan yakınmak için ve bunun gizlenmesi için hiçbir neden yok. Mavi gözlü mü kara gözlü mü, ince-uzun mu kısa mı, beyaz tenli mi siyah ya da esmer mi.. olmak daha iyidir? Herkesin, en azından bir parça uygar olduğunu ileri süren herkesin hemfikir olacağı gibi, bunlar saçma sapan sorulardır. Ama zihinsel yeteneklerle, zekayla ve davranışlarla ilgili sorunlara gelince, karışıklık genel bir hal alır. Bazıları, yetenek ve zeka farklılıklarında genetik bir kökeni kabul etmekle insanlığa karşı bir suç işlediklerini düşüneceklerdir. Diğerleri, genlerimizin bazı sorumlulukları olduğunu bahane ederek tüm güçleriyle herkesin zekasını kendi ölçütlerine göre ölçmek ve davranışlarımızın tüm gizini hayvanlarda keşfetmek isteyeceklerdir. Gerçekte bunlar nedir? Örneğin zeka diye adlandırılan şey, doğal ya da insanın yarattığı çevrenin kavranmasını hedefleyen bir yetenekler mozayiğidir. Bu yeteneklerin bireşim mekanizması hiç şüphesiz tükenmez olanaklara sahiptir. Bir zeka geni değil, ama daha çok her insanın zekasının tek, karmaşık ve dinamık düzenlenişini oluşturan onbinlerce özellik temelindeki bir gen yığınının olması, gerçeği daha uygundur. Akla uygun tek çıkarsama bir zeka bulunmadığı, zekanın sayısız biçimlerinin olduğudur. Ortam burada fazlasıyla rol oynar. Bazı halklar, diğerleri tarafından ayırıcalıklı kılınandan farklı zeka biçimleri geliştirmek zorunda kalabilirler. Bir grup insana yaşamını Kalahari çölünde ya da Ekvator ormanlarında sürdürmesi için gereken zeka, elbette New York ya da Paris’teki bir büroda çalışmak için gereken zkanın eşi değildir. Aynı zeka değildir; ama kesinlikle eşdeğeridir. Boşimanların ya da Pigmelerin gözünde bizler cahil kişileriz. Boşimanların birbirinden ince farkları olan ve sabah ya da akşam çiğinin damıtılabileçcceği bsayısız bitkileri ayrıştırdıkları yerde, biz yalnızca çöl görürüz. Pigmeler ise, Joseph Conrad’ın Karanlığın Yüreği ’nden (Çev: Sinan Fişek, İletişim Yay: 1994) başka bir şey görmediği yerde, ormanı kolayca okurlar. Ama genetik çeşitlilik ayni kültür içindeki bireyler arasinda da rol oynar. Zeka burada da,genetikçilerin polimorf diyecekleri gibi çok biçimlidir. Müzisyenin zekasi matematikçinin zekasiyla belli bir benzerlige sahip görünür;ama matematikçlerin ve müzisyenlerin kendileri çok çeşitli mizaçlara sahiptiler. Ressamin zekasi yöneticinin, organizatörün, diplomatin, düzenbazin,filozofun, deneycinin,çalgi yapimcisinin,icatçiin, hatibin, eğitimcinin vb zekalarından başka ve şairinkiyle biraz benzerliği olabilen romancınınkiyle aynı değildir. Diğerlerinin zekasından yararlanabilme zekasına da sahip olmak ve bu durumda, anlaşılacağı üzere, en büyük çoğulculuğu savunmak mümkündür! (Daniel Cohen, Umudun Genleri s:236-246...) Bilim ve Çevre Bilimin gelişmesi ve onun teknolojik uygulamalari, doganin kirlenmesinde ve kirletilmesinde rol oynuyor. Bu doğru. " Diğer taraftan bilim adamları da bilmeceleri yanıtlayarak işe başlarlar, ondan sonra da ya küçük parmaklarını ya da tüm dünyayı havaya uçurabilecek deneylere girişirler. Bilim daha sorumlu bir biçimde davranmak zorunda değil midir? Bu sorunun yanıtı açıktır: bilim tümüyle ahlak dışı ve tümüyle sorumsuzdur. Bilim adamları, gerçi davranışlarında kendi ahlak kuralları ve sorumluluk duyguları (ya da bunların yokluğu ) tarafından yönlendirilirler ama sonuçta kendilerini bilimin temsilcileri değil, insan olarak görür ve buna uygun bir davranış biçimi gösterirler. Örneğin bir zamanlar D o ğ a adını verdiğimiz şeyi bugün Çevre' ye indirgemiş bulunuyoruz ve yakında belki de Çöplük olarak adlandırmamız gerekecektir. Peki bu bilimin suçu mu? Doğru, bilim doğanın ölümüne yolacan koşulların ortaya çıkmasında rol oynayabilir, ama unutmayalım ki doğayı yaşatacak çözümler de yine bilimin elindedir. Bilim, bize ancak çevrenin korunması ya da kirliliğin önlenmesi için gereken önlemleri sağlayabilir- karar insanlarındır. Bilim, soruları ( en azından bazı soruları) yanıtlar, ama karar alamaz. Kararları (ya da en azından bazı kararları ) ancak insanlar alabilir." (Raslantı ve Kaos s: 162-163) D. Ruelle, bilimin bu savunmasını son derece belirsiz ve karamsar bir yorumla bitiriyor: " Ama fiziksel ve kültürel çevremize vermekte olduğumuz zararlara karşın varlığımızı sürdürmeyi başarabilecek miyiz? İşte bunu bilmiyoruz. Geçmişte olduğu gibi bugün de insanlığın geleceğini kestirebilme olanağına sahip değiliz ve daha güzel bir geleceğe mi yoksa önüne geçilemez bir sona mı yaklaşmakta olduğumuzu bilmiyoruz" (s:163) Bu görüşler eleştirilmeye değer. İşçilerin tulumları beyazdı; ellerinde soğuk, kadavra rengi kauçuk eldivenler vardı. Işık donuktu, ölüydü: Bir hayalet sanki!.. Yalnız mikroskopların sarı borularından zengin ve canlı bir öz akıyor, bir baştan bir başa uzanan çalışma masalarının üzerinde tatlı çizgiler yaratarak, parlatılmış tüpler boyunca tereyağ gibi yayılıyordu. "Bu da" dedi Müdür kapıyı açarak, "döllenme odası işte..." Doğal olarak, ilkin döllenmenin cerrahlığa dayanan başlangıcından söz etti, derken "Toplum uğruna seve seve katlanılan bir ameliyattır bu" dedi, "altı maaşlık ikramiyesi de caba... Bir yumurta bir oğulcuk, bir ergin; bu normal... Oysa, Bokanovskilenmiş bir yumurta tomurcuk açar, ürer bölünür. Eş ikizler yalnız insanların doğurduğu o eski zamanlardaki gibi yumurtanın bazen rastlantıyla bölünmesinden oluşan ikiz, üçüz parçaları değil, düzinelerle yirmişer, yirmişer." Müdür "yirmişer" diyerek sanki büyük bir bağışta bulunuyormuş gibi kollarını iki yana açtı; "yirmisi birden!.." Ama öğrencilerden biri bunun yararının ne olduğunu sormak gibi bir sersemlikte bulundu. "İlahi yavrucuğum!" Müdür olduğu yerde ona dönüvermişti. "Görmüyor musun? Görmüyor musun, kuzum?" Bir elini kaldırdı; heybetli bir duruşa geçmişti. "Bokanovski süreci toplumsal dengenin en başta gelen araçlarından biridir! Milyonlarca eş ikiz; toptan üretim ilkesinin sonunda biyolojiye uygulanmış olması..." YUKARIDAKİ PARÇA, Aldous Huxley’in 1930’larda yazdığı, geçtiğimiz ay bilim gündemini birdenbire fetheden "koyun kopyalama" deneyine değinen haberlerde sıkça gönderme yapılan, Brave New World (Cesur Yeni Dünya) romanının girişinden kısaltılarak alınmış bir bölüm. Huxley, olumsuz bir ütopya (distopya) niteliği taşıyan romanında, Alfa, Beta, Gama, Delta ve Epsilon adlarıyla, kendi içinde genetik özdeşlerden oluşan beş farklı sınıfa bölünmüş bir toplum tablosu çiziyor. Özdeş vatandaşların üretildiği bu hayali "Bokanovski Süreci", çağdaş anlamıyla klonlama (veya genetik kopyalama) olmasa da, sürecin yolaçtığı etik (ahlaki) ve toplumbilimsel kaygılar, sekiz ay önce İskoçya’da gerçekleştirilen ve geçtiğimiz ay kamuoyuna duyurulan gelişmelerin doğurduklarına denk düşüyor. Şimdi herkesin tartıştığı, son gelişmelerin insanlık için daha insanca bir dönemin mi yoksa, hızla gerçeğe dönüşen korkunç bir distopyanın mı kapısını araladığı. Şubat ayinin 22’sinden itibaren, Iskoçya’nin Edinburg kentinde, biyoteknoloji alaninda tuhaf bir gelişme kaydedildigi, "Dünyanin sonu", "Frankenstein" gibi ifadeleri de içeren dedikodularla birlikte etrafta konu olmaya başladi. Bilim çevreleri de basin da şaşkindi, çünkü, seçkin yazarlarin ve bazi bilim adamlarinin birkaç gündür zaten haberdar olduklari ve konuyu "patlatmayi" bekledikleri bu gelişme, bir biçimde basina sizmiş, dilden dile dolaşmaya başlamişti bile. Normalde pek de ciddiye alinmayacak böyle bir "dedikodunun" bu denli yayilabilmesi, işin içine çeşitli dallarda makalelere yer veren saygin bilimsel dergi Nature’in adinin karişmasiyla olmuştu. Gerçekten de Nature, dedikodu niteligini fersah fersah aşan bir bilimsel gelişmeyle ilgili bir makaleyi 27 Şubat’ta yayinlayacagini bilim yazarlarina duyurmuş ve bu tarihe kadar "ambargolu" olan bir basin bülteni dagitmişti. Bati ülkelerinde yazarlar normal olarak bu ambargolara uyar, hazirladiklari yazilari, ambargonun bittigi tarihte, ayni anda yayina verirler. Ancak, aralarinda ünlü The Observer’in da bulundugu bazi dergi ve gazeteler ambargoyu çoktan delmiş, konuyu kamuoyuna duyurmuştu bile. Haberin, kaynagi olan Nature ve ambargoya saygi gösteren çogu nitelikli dergi ve gazetede yer almamasi da, dedikodu trafigini artirmiş, ortaya atilan spekülasyonlarla beklenenden fazla ilgi toplanabilmişti. Hatta, Mart ayının başlarında, koyun klonlama haberinin yarattığı ilgi ortamını değerlendirmek isteyen bazı haberciler, aynı yöntemle Oregon Primat Araştırmaları Merkezi’nde maymunların klonlandığını öne sürdüler. Oysa, Oregon’da gerçekleştirilen, embriyo hücrelerinin oldukça sıradan bir yöntemle çoğaltılmasıyla yapılmış bir deneydi. Klonlama, yetişkin bir canlıdan alınan herhangi bir somatik (bedene ait) hücrenin kullanılmasıyla canlının genetik ikizinin yaratılmasını açıklamakta. Kavramsal temelleri çoktandır hazır olan bu işlemin uygulamada gerçekleştirilemeyeceği düşünülüyordu. Edinburg’daki Roslin Enstitüsünden Dr. Wilmut ve ekibi bunu başarmiş gibi görünüyor. "Ben bu filmi daha önce seyretmiştim!" diyenleri rahatlatmak için hemen belirtelim ki, ayni ekip 1995 yilinda embriyo hücrelerini kullanarak yine ikiz koyunlar üretmiş ve bunu duyuran makaleyi yine Nature dergisinde yayimlatmişti. Bu deney de basina yansimiş, ancak, son gelişmeler kadar yanki uyandirmamişti. Ne de olsa bu yöntem, döllenmiş yumurtanin kazayla bölünüp tek yumurta ikizlerine yol açtigi bildik süreçlerden farksizdi. Siklikla unutuldugu için tekrarlamakta yarar var ki, Wilmut’un son başarisinin önemi, işe somatik bir hücrenin çekirdegiyle başlamasinda yatiyor. Bu başarinin ortaklarini anarken PPL Tibbi Araştirmalar şirketini de atlamamak gerek. Borsalarda tirmanişa geçen hisseleriyle gelişmenin meyvelerini şimdiden yemeye başlayan PPL, projenin hem amaçlarini belirleyerek hem de maddi olanaklari yaratarak kuzu Dolly’nin varliginin temel sebebi olmuş. Dr. Wilmut’un gerçekleştirdigi başari şöyle özetlenebilir: Yetişkin bir koyundan alinan somatik bir hücrenin çekirdegini dahice bir yöntemle, başka bir koyuna ait, çekirdegi alinmiş bir yumurtaya yerleştirmek ve bilinen "tüp bebek" yöntemiyle yeni bir koyuna yaşam vermek. Adini, ünlü şarkici Dolly Parton’dan alan kuzu Dolly, isim annesinin degilse de, DNA annesinin genetik ikizi. Dolly, sevimli görünüşüyle kamuoyunun sempatisini kazanmiş ve tüm bu süreç ilginç bir bilimsel oyun olarak sunulmuşsa da gerçekte deney oldukça iyi belirlenmiş bilimsel ve maddi hedefleri olan, sogukkanli bir süreç. Zaten Dolly’nin araştirmacilar arasindaki adi da en az varligi kadar "sogukkanlica" seçilmiş: 6LL3... PPL’in idari sorumlusu Dr. Ron James, şirket sirlarini kaybetme kaygisiyla maddi hedeflerini pek açiga vurmamakla birlikte, hemofili hastalari için koyunlara insan kani pihtilaşma faktörü ürettirmeyi de içeren pek çok önemli ticari hedefin ipuçlarini veriyor. PPL ve Roslin Enstitüsü’nün çalışmaları, geçmişi çok eskilere dayanan ve önemli gelişmelerin kaydedildiği bir alan olan transjenik (gen aktarılmasıyla ilgili) araştırmaların bir üst aşamaya, nükleer transfer (çekirdek aktarılması) evresine doğru ilerletilmesinden başka birşey değil. Yıllardır başarıyla sürdürülen transjenik çalışmalarda tek boynuzlu keçi, üç bacaklı tavuk gibi görünüşte çarpıcı, yararı kısıtlı çalışmaların yanı sıra, insan proteinlerinin hayvanlara ürettirilmesi gibi, modern tıp için çığır açıcı sayılabilecek başarılar kaydedildi. Son gelişmelere imzasını atan ekip, daha önce insan bünyesince üretilen molekülleri gen transferi yöntemiyle bir koyuna ürettirmeyi başarmıştı. Söz konusu deneyde gerek duyulan moleküllerin koyunun tüm hücrelerinde değil, sadece süt bezlerinde sentezlenmesinin sağlanması, koyunun "ilaç fabrikası" olarak değerlendirilmesini beraberinde getiriyordu. Dolly başarısının en önemli potansiyel yararı da bununla ilgili zaten. Gen transferi yöntemiyle, istediğiniz maddeyi sentezleyebilen bir canlıya sahip olduğunuzda, madde verimini artırmak üzere aynı süreci zaman ve para harcayarak yinelemeye çabalamak yerine elinizdeki canlının genetik ikizlerini yaratabilirseniz, ticari değer arz edebilecek miktarda ilaç hammaddesi üretimine geçebilirsiniz. Elinizde birkaç on tane genetik özdeş canlı biriktikten sonra, bu küçük sürüyü doğal yollardan üremeye bırakacak olursanız, hem "yatırımınız" kendi kendine büyüyecek, hem de genetik çeşitlilik yeniden oluşmaya başlayacağından, tek bir virüs tipinin tüm "fabrikayı" yok etmesinin önünü alacaksınız demektir. Biraz Ayrıntı İskoç ekibin gerçekleştirdiği klonlama deneyinin, dünyanın pek çok bölgesine dağılmış sayısız standart biyoteknoloji laboratuvarında "kolayca" gerçekleştirilebileceği söyleniyor. Yine de uygulanan yöntem, günlük gazetelerdeki basit şemalarda anlatıldığı kadar kolay ve hemen tekrarlanabilir türden değil. İskoç ekibin başarısı ve önceki sayısız benzeri çalışmanın başarısızlığı, Wilmut’un, verici koyundan alınan hücre çekirdeğiyle, kullanılan embriyonik hücrenin "frekanslarını" çok hassas biçimde çakıştırabilmesine dayanıyor. Bu yöntemle araştırmacılar, yetişkin çekirdeğin genetik saatini sıfırlamayı, tüm gelişim sürecini başa almayı becerebilmişler. Yöntemin ayrıntılarına girmeden önce bazı temel kavramlara açıklık getirmekte yarar var. Çoğu memeli canlı gibi insan bedeni de milyarlarca hücreden oluşuyor. Bu hücrelerin milyonlarcası her saniye bölünmeyi sürdürerek beden gelişimini devam ettiriyor ve yıpranmış hücreleri yeniliyor. Bu hücrelerin önemli kısmı bedenimizin belli başlı bölümlerini oluşturan "somatik hücreler." Tek istisna, üreme hücreleri. Eşeyli üreme, gametlerin (sperm ve yumurta) ortaya çıktığı "mayoz bölünme"yle başlıyor. Cinsel birleşme sonucunda, spermin yumurtayı döllemesiyle de yeni bir canlının ilk hücresi "zigot" oluşuyor. Bu noktadan sonra gelişmeye dönük hücre bölünmeleri, "mayoz" değil, "mitoz" yoluyla ilerliyor. Koyun ve insan hücrelerinin de dahil olduğu ökaryotik yani, çekirdeği olan hücreler, farklı gelişim evreleri içeren bir yaşam döngüsü geçiriyorlar. Bu döngüyü, hücrenin görece durağan olduğu "interfaz" ve belirgin biçimde bölünmenin gerçekleştiği mitoz evrelerine ayırmak mümkün. Hücre, yaşam döngüsünün yüzde doksan kadarını interfaz evresinde geçiriyor. Aslında, bu duraklama evresi göründüğü kadar sakin değil; hücre, tüm bileşenlerini DNA’yı sona bırakacak biçimde çoğaltarak, bölünmeye hazırlanıyor. Alt evreleri son derece iç içe girmiş olan interfaz evresini işlevsellik açisindan G1, S ve G2 alt evrelerine ayirmak yerleşmiş bir gelenek. Yani, hücrenin yaşam döngüsü bu üç evre ve M (mitoz)’dan oluşuyor. G1 evresi, DNA dişindaki bileşenlerin çogaldigi bir dinlenme dönemi. S, DNA’nin bölünmesiyle sonuçlanan bir geçiş evresi. G2 ise, iç gelişmenin tamamlanip, hücrenin mitoz yoluyla bölünmeye hazirlandigi süreci içeriyor. Hücrelerin hangi evreyi ne kadar sürede tamamlayacakları bir biçimde programlanmış durumda. Belli bir organizmanın tüm hücreleri bu evreleri aynı sürede tamamlıyorlar. Yine de, ani çevresel koşul değişiklikleri hücreleri G1 evresinde kıstırabiliyor; sözgelimi, besleyici maddelerin miktarı birdenbire minimum düzeye düştüğünde. G1 evresinin belli bir aşamasında, öncesinde bu duraklamaya izin verilen sabit bir kritik noktası var. Bu kritik nokta aşılırsa, çevresel koşullar ne yönde olursa olsun, DNA replikasyonunun önü alınamıyor. İleride göreceğimiz gibi, bu noktanın denetim altında tutulabilmesi, Wilmut ve ekibinin başarılı bir klonlama gerçekleştirebilmelerinin altın anahtarı olmuştur. Bu noktada bir parantez açarak G1, S, G2 ve M evrelerinin denetim altına alınmasının, hücrenin yaşam döngüsünü olduğu kadar, hücrenin özelleşmesini, sözgelimi beyinden veya kas hücrelerinden hangisine dönüşeceğini de kontrol altına alabilmeyi, bir başka deyişle, hücrenin genetik saatini sıfırlamayı sağladığını ekleyelim. Wilmut ve ekibi Dolly’i klonlayıncaya kadar bu sürecin tersinmez olduğu, söz gelimi, bir defa kas hücresi olmaya karar vermiş bir hücrenin yeniden programlanamayacağı zannediliyordu. Peki Wilmut bunu nasıl başardı? Soruyu tersinden cevaplayacak olursak, diğerlerinin bunu başaramamalarının nedeninin, kullandıkları somatik hücrelerin çekirdeklerini S veya G2 evrelerindeki konakçı hücrelere yerleştirmeleri olduğunu söyleyebiliriz. Eski kuramsal bilgilere göre bu yöntemin işe yaraması gerekiyordu, çünkü çekirdeğin mitoza yaklaşmış olması avantaj olarak görülüyordu. Ancak bu denemelerde, işler bir türlü yolunda gitmedi. Kaynaştırmadan sonra, hücre fazladan bir parça daha mitoz geçiriyor ve yararsız, kopuk kromozom parçaları meydana geliyordu. Bu "korsan" genler, gelişimin normal seyrini sürdürmesi için ciddi bir engel oluşturuyordu. Dersini çok iyi çalışmış olan Wilmut, bu olumsuz deneyleri değerlendirerek hücreyi G1 evresinin kritik noktadan önceki duraksama döneminde, "G0 evresinde" kıstırmaya karar verdi. Verici koyundan alınan meme dokusu hücrelerini kültür ortamında gelişmeye bırakan Wilmut, hücrelerin geçirdiği evreleri sıkı gözetim altında tutarak bir hücreyi G0 evresinde kıstırıp bu haliyle durağanlığa bırakmayı başarmıştı. Bunun için, hücrenin besin ortamını neredeyse öldürme sınırına kadar geriletmiş, tüm süreci dondurarak bir anlamda genetik saati de sıfırlayabilmişti. Üstelik bu evre, kaynaştırılacağı yumurta hücresinin mayoz gelişim sırasında girdiği, bu işlem için en uygun olan metafaz-II evresiyle de mükemmel bir uyum içindeydi. İşlemin diğer kısımları yemek tariflerinde olduğu kadar sıradan ve kolay uygulanabilir nitelikte. G0 evresindeki çekirdek metafaz-II evresindeki yumurtayla kaynaştırılıp, normal besin koşulları ve hafif bir elektrik şoku etkisiyle olağan çoğalma sürecine yeniden sokulduğunda, her şey tüp bebek olarak bilinen, in vitro fertilizasyon sürecindeki işleyişe uygun hale geliyor. Zigot, anne koyunun rahmine yerleştiriliyor ve gerekli hormonlarla normal hamilelik süreci başlatılıyor. Wilmut ve ekibinin gerçekleştirdikleri hakkinda bilinenler, yukarida kaba hatlariyla anlatilanlarla sinirli. Sürecin duyurulmayan kritik bir evresi varsa, bu ticari bir sir olarak kalacaga benziyor. Ancak, herkesin olup bitenler hakkinda ayni bilgilere sahip olmasi, deneyin başarisi konusunda kimsenin şüphe duymamasini gerektirmiyor. 277 denemeden sadece birinin başarili olmasi başta olmak üzere, çogu uzmanin takildigi pek çok soru işareti var. Herşeyin ötesinde, herhangi bir olgunun bilimsel gelişme olarak kabul edilmesi için, sürecin yinelenebilirliginin gösterilmesi gerekiyor. Bir embriyolog, Jonathan Slack, çok daha temel şüpheleri öne sürüyor: "Araştirmacilar, yumurta hücresindeki DNA’lari tümüyle temizleyememiş olabilirler. Dolayisiyla Dolly, siradan bir koyun olabilir." Slack, alinan meme hücresinin henüz tamamen özelleşmemiş olabilecegini, böyle vakalara meme hücrelerinde, bedenin diger kisimlarina göre daha sik rastlanilabildigini de ekliyor. Zaten Wilmut da, bedenin diger kisimlarindan alinan hücrelerin ayni sonucu verebileceginden bizzat şüpheli. Örnegin, büyük olasilikla kas veya beyin hücrelerinin asla bu amaçla kullanilamayacaklarini belirtiyor. Üstüne üstlük, koyun bu deneylerde kullanilabilecek canlilar arasinda biraz "ayricalikli" bir örnek. Koyun embriyolarinda hücresel özelleşme süreci zigot ancak 8-16 hücreye bölündükten sonra başliyor. Geleneksel laboratuvar canlisi farelerde ise ayni süreç ilk bölünmeden itibaren gözlenebiliyor. Insanlarda ise ikinci bölünmeden itibaren... Bu durum, ayni deneyin fare ve insanlarda asla başarili olamamasi olasiligini beraberinde getiriyor. Dile getirilen açık noktalardan biri de, hücrelerde DNA barındıran tek organelin çekirdek olmayışı. Kendi DNA’sına sahip organellerden mitokondrinin özellikle önem taşıdığı savlanıyor. Memeli hayvanlarda mitokondriyal DNA, embriyo gelişimi sırasında sadece anneden alınıyor. Her yumurta hücresi, farklı tipte DNA’lara sahip yüzlerce mitokondriyle donatılmış. Bu mitokondriler zigotun bölünmesinin ileri evrelerinde, embriyo hücrelerine dengeli bir biçimde dağılıyor; ancak, canlının daha ileri gelişim evrelerinde, bu denge belli tipteki DNA’lara doğru kayabiliyor. Parkinson, Alzheimer gibi hastalıkların temelinde bu mitokondriyal DNA kayması sürecinin etkileri var. Bu yüzden kimileri, sağlıklı bir kuzu olarak doğan Dolly’nin, zigot gelişimine müdahele edilmiş olması yüzünden sağlıksız bir koyun olarak yaşlanabileceğini öne sürüyorlar. Şimdilik Dolly’nin tek sağlıksız yönü, basına teşhir edilirken sabit tutulması amacıyla fazla beslenmesi yüzünden ortaya çıkan tombulluğu.

http://www.biyologlar.com/hayvan-ve-insan-kopyalama

Mikrobiyoloji nedir ?

Mikrop diye de isimlendirilen, gözle görülemeyecek kadar küçük canlıları inceleyen ilim dalı. Mikroorganizma denilince bakteriler, virüsler, protozoonlar, mantarlar ve ilkel algler anlaşılır. Mikrobiyoloji ilim dalının faydalı olduğu branşlar, tıp, tarım ve endüstridirmikrobiyoloji Mikrop terimi, ilim dünyasına ilk defa 1878’de Fransız cerrahı Charlet Sédillot tarafından getirilmiştir. Sédillot, mikropların kendilerine has apayrı bir dünyası olduğunu savunmuştur. Mikrobiyoloji ilim dalı beş ana kısma ayrılmıştır: Viroloji, bakteriyoloji, protozooloji, algoloji ve mikoloji. Bunlara ilaveten moleküler ve hücresel biyoloji, biyokimya, fizyoloji, ekoloji, botanik ve zoolojiyle de yakından ilgilidir. Uzun müddet insanlar, çevrelerinin mikroplarla dolu olduğundan habersizdi. Halbuki mikroorganizmalar, onun etrafındaki her yerde, eşyalarında hatta derisinde ve barsaklarında milyonlarca bulunuyordu. İlerleyen yüzyıllarda insan bilmeden mikropları işlerinde kullanmaya başladı. Ekmek yapımı, peynir ve sirke imali, boza yapımı bunların başta gelenleridir. Mikroskobun bulunmasından (1590) 16 asır önce yaşamış olan Marcus Terentius Varro (M.Ö. 116-27), iltihaplı alanlar için; "Buralarda çok küçük hayvanlar ürüyor ki, bunların gözle görülmesi imkansızdır." demiştir. Fatih Sultan Mehmed Hanın hocası Akşemseddin hazretleri de; "Hastalık insandan insana veya topraktan insana gözle görülemeyen canlı tohumlar vasıtasıyla iletilir." demiştir. Mikroplar hakkında ilk kayıt, Robert Hooke’un Mikrographa eserindedir. 1665’te basılan bu eserde bir küf mantarının sporları ve birçok küçük deniz kabuklusunun kabukları anlatılmıştı. Antony Van Leeuwenhoek ise kendi yaptığı mikroskoplarla 1674’te protozoonları ve 1676’da bakterileri görmeyi başardı. Mikrobiyolojinin kurulması, Pasteur ve Koch: Fransız kimyacısı Louis Pasteur, mikrobiyolojinin kurucusu olarak kabul edilir. Pasteur alkollü içki imalatında ortaya çıkan fermentasyonun mayalar tarafından yapıldığını söyledi (1856). Pasteur’ün mayalar üzerindeki bu açıklamasından sonra 1867’de İngiliz cerrahı Joseph Lister, antiseptik solusyonları infeksiyonlara karşı koruyucu olarak kullanmaya başladı. Otoklav denilen mikropsuzlaştırma (Sterilizasyon) aracının Pasteur’ün çalışma arkadaşlarından Charles Chamberland tarafından bulunmasıyla sterilizasyon işlemi laboratuvar ve ameliyathanelerde devamlı kullanılmaya başladı. 1877’de Prusya’da adı duyulmamış bir kasaba hekimi olan Robert Koch, belli bir bakterinin (Bacillus anthracis) şarbon etkeni olduğunu ispat etti. Pasteur bir adım daha ileri giderek, laboratuvar şartlarında mikropların hastalandırıcılık özelliklerini azaltmayı başardı. Koch’un ikinci büyük başarısı, 1882’de kendi adıyla anılan verem basilini bulmasıdır. 1885’te ise Pasteur Fransız Bilimler Akademisine sunduğu bildiride, kuduza karşı aşıyı bulduğunu açıkladı. Tıbbi Bakteriyolojinin gelişimi: Pasteur ve Koch’un çalışmasından sonra, bu bilgilerin ışığında birçok hastalık, bakterilerin mevcudiyetine bağlandı. Koch’un asistanlarından ve aynı zamanda da bir askeri cerrah olan Friedrich Loeffler kendi adıyla anılan Difteri basilini buldu (1884). Emil Behring ise, difteri toksinine karşı bağışıklanmış hayvanların serumlarını vererek insanlarda difterinin hafifletilebileceğini söyledi. 1893’te Alexander Yersin, Hong Kong’ta veba etkenini izole etmeyi başardı. Yersin’in bu buluşuna paralel olarak veba mikrobu Koch’un Japon asistanlarından Shibasaburo Kitasato tarafından da bulunmuştu. Kitasato 1889’da tetanus amilinin bir anaerobik sporlu ve toksin imal edici bir mikrop olan Clostridium tetani tarafından husule getirildiğini açıkladı. Zamanla bakteriler ve yaptıkları hastalıkların listesi giderek genişledi. Topraktaki bakteriler: Bakteriler yalnızca hastalık yapan varlıklar olarak ele alınmamalıdır. Tabiatta birçok yerde bakteriler çok önemli bir denge rolü oynamaktadır. 1878’de iki Fransız ilim adamı Théophile Schloesing ve Achille Mantz, topraktaki nitrat bileşiklerinden amonyak imalinin basit bir kimyasal reaksiyon olmayıp, olayın bazı mikroorganizmalarca yapıldığını açıkladılar. Bu olayı yapan bakterileri 1890’da bir Rus bilim adamı Sergei Winogradsky buldu. Bu tip bakteriler enerji ihtiyaçlarını karşılamada organik maddeleri kullanamazlar, ancak bu iş için amonyağın oksitlenmesiyle ortaya çıkan enerjiyi kullanırlar. Vücut maddelerinin yapımı için gereken karbonu karbondioksitten alırlar. Bu iki özellikleri dolayısıyla bunlara kemoototrof (kimyevi yolla kendi kendine beslenen) denmiştir. Aynı Rus bilim adamının bir diğer açıklaması bazı anaerobik (oksijene ihtiyacı olmayan) bakterilerin toprakta serbest bulunduğu ve atmosferdeki azotu, bitkilerin kullanabileceği hale getirdiği şeklindeydi. 1901’de toprakta baklagiller cinsi bitkilerin köklerinde yaşayan Rhizobium türünde bakteriler keşfedildi. Bunlar, kökünde bulundukları bitkinin faydasına olarak, havadaki azotu tespit edici özelliğe sahiptir. Viroloji: 1884’te Fransız bakteriyoloğu Charles Chamberland bakterilerin geçişine izin vermeyen porselen bir filtre imal etti. Bu filtre bakteriden arınmış su elde etmede kullanılıyordu. 1892’de Rus bilim adamı Dimitri İvanovsky tütün mozaik hastalığının etkeninin bu süzgeçten geçebildiğini gösterdi. Bu süzgeçlerden geçen mikroorganizmalara filtrabl (filtreden geçebilen) virüsler adı verildi. 1900’de Amerikalı ilim adamı Walter Reed’in bazı filtrabl virüslerin belli bir hastalığı yaptığını (bu hastalık "Sarı Humma" dır) göstermesi kendine haklı bir şöhret sağladı. Aynı şekilde bakteriden arındırılmış filtratların (süzülmüş sıvıların) hayvanlarda tümör ortaya çıkmasında rol oynadığı ilk olarak V. Ellerman ve O. Bang (1908 Danimarka) daha sonra da Peyton Rous (1911 ABD) tarafından açıklandı. Virüslerin bakteriler içinde de gelişebildikleri 1915’te Frederick Twort tarafından bildirildi. Bu virüslere Bakteriyofajlar denildi. Tütün mozaik virüsünün kristalizasyonla saflaştırılıp, elde edilmesi (1935), virüslerin birer mikrop olmaktan ziyade, birer kimyevi molekül olduğu fikrini ortaya çıkardı. 1937’de virüslerin nukleoprotein yapısında oldukları İngiliz araştırmacılar F.C. Bawden ve N.W. Pirich’in ekibince bildirildi. Elektron mikroskobunun ilim dünyasına sunulmasını takiben virüslerin fotoğrafları çekilebildi ve incelemeler sonucu hücresel yapıya sahip olmadıkları anlaşıldı. Yine elektron mikroskobunun ve moleküler biyolojinin gelişmesi "büyük virüs" veya "küçük bakteri" denilebilecek küçük mikroorganizmaların varlığını gösterdi. Bunlara riketsia denildi. Riketsialar tifus, siper humması, kayalık dağları humması ve diğer bazı hastalıkları yaparlar. Mikoloji: Mikrobiyolojinin, mantarlarla uğraşan dalı. Mantarların yapılarını, yaşayışlarını ve yaptıkları hastalıkları inceler. On sekizinci yüzyılın ikinci yarısı ve 19. yüzyılın ilk yarısında mantarlar ciddi olarak bitki hastalıklarının amili olarak tanındı. 1835’te Agastino Bassi, ipekböceklerinde hastalık yapan bir mikroorganizmanın günümüzde "Beauveria bassiana" adıyla anılan bir mantar olduğunu buldu. David Gruby adlı Paris’te yaşayan bir Macar ilim adamı da önce çocuk ağız-boğazındaki aftların amilinin "Candida albicans" adıyla anılan maya mantarı olduğunu açıklayıp, daha sonra derinin önemli mantar hastalıklarını bildirdi. 1841-1845 arasındaki bu keşiflerden sonra mantarların insan veya hayvan vücudunda yüzeyde ve derinde birçok iltihabi hastalığa sebep olduğu anlaşıldı. Bununla birlikte genel olarak bakterilerin daha çok insan ve hayvanda, mantarların da daha çok bitkilerde hastalık yaptığı kabul edilir. Mantarlar üzerindeki çalışmalar bu şekilde ilerleyerek 1900 yıllarına varıldı. 1928 yılında Alexander Flemming, Penicillum cinsi mantarların, bakterileri tahrip eden bir madde imal ettiklerini keşfetti. Bu maddeye depenisilin adını verdi. 1940 yılına kadar önemli addedilmeyen bu keşif, o tarihte Oxford Üniversitesindeki çalışma ekibinin penisilinin büyük antibakteriyel etkisini ortaya çıkarmasıyla önem kazandı. Penisilin gibi bakterilerin çoğalmalarını durduran maddelere antibiotik adı verildi. Mikrobiyolojide ortaya çıkarılan ilerlemeler, 1900 yıllarından sonra süratle devam etti. Mantarların yaptıkları hastalıklar, ilaç yapımı endüstrideki kullanılışları yüzyılımızda çok araştırılan konular haline geldi. Mikrobiyolojide kullanılmaya başlayan çok çeşitli metodlar, mikoloji ve mantar hastalıklarına da önemli katkılarda bulundu. Soburoaud’un bulduğu besi yeri birçok mantarın üretilerek teşhisini sağladı. Mantar hastalıkları (mikozlar) çok rastlanan rahatsızlıklardır. Özellikle ayak mantarları pekçok kişide görülen ve rahatsız edici kaşıntılar yapan durumlardır. Deri mantarları ve sistemik hastalık yapan mantarlar olarak mantar hastalıkları ikiye ayrılabilir. Deride hastalık yapan mantarlardan kel, kandida hastalığı, sakal mantarları ve tırnak mantarları önemlidir. Blastomikoz, akdtinomikoz, histoplazmoz gibi hastalıklar vücudun derinliklerinde yerleşen mantar enfeksiyonlarıdır. (Bkz. Mantarlar) Protozooloji: On dokuzuncu yüzyılın ilk yarısında Almanya’da C.G. Ehrenberg, protozooloji dalını ilim dünyasına takdim etti. O protozoonların hayvanlardaki her organ sistemine (çok çok küçültülmüş olarak) sahip olan canlılar olduğunu düşünmüştü. On dokuzuncu yüzyılın ortalarında Alman ilim adamı German Karl Van Siebold protozoonların tek hücreli canlılar olduğunu ortaya koydu. Günümüzde protozonların şark çıbanı, kala-azar, sıtma gibi hastalıkları yaptığı bilinmektedir. Kaynak: mikrobiyoloji.nedir.com/#ixzz2mM4qZMjt

http://www.biyologlar.com/mikrobiyoloji-nedir-

Yılan Türleri ve Özellikleri

Yılan Türleri ve Özellikleri

ZEHİR DİŞLERİ ile yılanların zehir mekanizmasının başka kısımları bundan milyonlarca yıl önce mükemmelleşmiştir. Yirmi milyon yıl önce Fransa'da yaşamış bir kobra'nın fosilleşmiş kemikleri ve zehir dişleri, bugün Afrika'nın büyük bir kısmında görülen «Mısır kobrası» nınkinin (Najahaje) tıpatıp eşidir. Kobra'lar da, başka zehirli yılanlar gibi, içi dolu ön dişleri bulunan yılanların kökünden gelmiştir. Bayağı yılan'ın dişi arkaya eğrilmiştir ve içi doludur. Şimdi böyle bir dişin yassıldığını ve kenarlarının birleşerek bir kanal meydana getirdiğini göz önüne getirin. Zehir dişinin yapısı budur. Bu eklem zehir dişinin önündedir. Üst uçta, zehirin dişin içine akmasına yarayan bir delik vardır, altta sivri ucun hemen yukarısındaki daha ufak bir delik ise zehirin dişten dışarı akmasını sağlar. Böylece, zehir dişindeki kanal, dişin dışını meydana getiren maddeyle astarlanmış bulunmaktadır. içi kanallı zehir dişi şüphesiz içi dolu bir dişin yassılması ve kıvrılması sonucunda meydana gelmiş değildir. Milyonlarca yıl boyunca süregelmiş ufak değişikliklerin sonucudur. Bugünkü oluklu zehir dişli yılanlartn ilk atalarının birçok dişlerinin dışında açık olukların bulunmuş olması ihtimali kuvvetlidir. Her çenenin önündeki diş zamanla değişmeye uğramış, bu dişler uzadıkları gibi, yüzeylerindeki oluklar da daha derinleşmiştir. Sonraki kuşaklarda bu olukların kenarları birbirine yaklaşmış, yaklaşmış ve sonunda birleşmiştir. Böylece içi kanallı zehir dişi meydana çıkmış ve çok sonraları insanoğlu tarafından enjeksiyon iğnesinin yapımında kopye edilmiştir. Genel Bilgiler Yılanlar, genellikle üç metre öteyi görebilirler. Koku almada burun deliklerini değil dillerini kullanırlar. Uzun ve çatallı dillerinin her iki ucu havadan ve yerden gelen kimyasal kokuları alır. İçeri çekildiğinde dil ucundaki kokular damaktaki jakobson organında duyu haline dönüştürülür. Engerek yılanları zehirledikleri avının izini dilleriyle takip ederler ve ölüsünü bularak yutarlar. Yılanların burun delikleri, ağız kapalıyken alt çenedeki hava borusunun üzerine geldiğinden ağızlarını açmadan solunum yaparlar. Avlarını yutarken ağız açık olduğundan burun deliklerinin hava borusuyla ilgisi kesilir. Böyle zamanlarda, vücutlarında bulunan hava torbalarındaki yedek havadan faydalanırlar. Çoğu yılanın sadece sağ akciğeri gelişmiş, diğeri adeta kaybolmuştur. Boa ve piton yılanlarında sol akciğerler küçüktür. İri avların yutulması uzun sürdüğü zaman ağız tabanında bulunan soluk borusunun girişi ağızdan dışarı çıkarılabilir. Bu özellik büyük hayvanları yemek için bir adaptasyondur, yılana ağız dolu olduğunda dahi nefes alma imkânı sağlamaktadır. Yılanlar dış kulakları olmadığından uzun zaman sağır zannedilmiştir. Aslında çeneleriyle kulakları arasında kemik bağlantıları olduğundan, üzerinde bulundukları toprağın yansıttığı sarsıntıları kolayca işitirler. Çenesini yere koyan çıngıraklı bir yılan çok uzaktan gelen bir atın ayak seslerini bile kolayca duyabilir. Yılanların bulunabildiği arâzilerden geçen bir insan, gürültülü ayak darbeleriyle yürüdüğünde hiçbir yılana rastlamaz. Bazı yılanların göz ve burunları arasında ince zarlı iki çukur bulunur. Bunlar, sıcak kanlı hayvanların vücutlarından yayılan ısı dalgalarını (infrared) tespit ederler. Bunların sayesinde avlarını karanlıkta bile bularak takip ederler. Yılan zehiri av etini eritmeye yarayan kuvvetli bir sindirim sıvısıdır. Zehirsiz yılanlarda bile zehirli olan kuvvetli bir sindirim sıvısı vardır. Ağızlarına parmak sokulduğunda veya dişlendiğinde tükürüklerinden dolayı yanma ve şişme yapar. Dişleri sökülen zehirli yılanlarda dişler tekrar sürer. Yılanların renkleri ve boyları çeşitlidir. Zehirli yılanların başları üçgen ve kuyrukları küt olduğu söylenirse de bunlar kesin belirtiler olamaz. Her yılanı zehirli kabul ederek onlardan sakınmak gerekir. Üreme Yılanlar yumurtlayarak ürerler. Yumurtalardan ergine benzer yavrular çıkar. Yavrular yumurtadan çıkar çıkmaz annelerini ararlar. Boa, anakonda ve engereklerin çoğu yavrularını doğurur. Bunlar gerçek doğum değildir. Yumurtalar ana karnında gelişip açıldığından doğum gibi görülür. Buna “Ovovivipar” üreme denir. Gebelik süresi 2 aydır Sınıflandırma Üst familya: Booidea Boidae Bolyeriidae Cylindrophiidae Loxocemidae Pythonidae Tropidophiidae Uropeltidae Xenopeltidae Üst familya: Typhlopoidea Anomalepididae Leptotyphlopidae Typhlopidae Üst familya: Colubroidea Acrochordidae Atractaspididae Colubridae Elapidae Hydrophiidae Viperidae

http://www.biyologlar.com/yilan-turleri-ve-ozellikleri

İnsanlar İçin Ormanları Kutluyoruz

1,6 milyar kişi geçimini ormanlardan sağlamaktadır. Ormanlar tüm dünyada 300 milyon kişiye ev sahipliği yapmaktadır. Image © EEA/John McConnico BM Ormancılık Forumu Doğu Hindistan, Orissa’daki Soura kabilesinin bir üyesi ‘Şehirde birbirimizden ayrıyız ve bu durum bizim için tehlikeli. Orman bizim doğduğumuz yer ve evimiz. Burayı terk edemeyiz. Ormanın bize verdiği güven kentte kayboluyor,’ diyor. Ormanlar sadece ağaç değildir: toplumlardır 2011 Birleşmiş Milletler Orman Yılı olup, tüm dünyada ormanlarda yaşayan ve geçimlerini buradan sağlayan kişilere odaklanmaktadır. Bütün bir yıl boyunca ormanların yaşantımızda oynadığı rol hakkında düşüneceğiz. Ormanlar; bitkiler, hayvanlar, mikro organizmalar, toprak, iklim ve sudan oluşan topluluklardır. Ormanlar ayrıca (biz dâhil) organizmalar ile beslendikleri ortam arasındaki birbirine bağlı karmaşık ilişkilerdir. Ormanlar yeryüzünün %30’undan fazlasını kaplamaktadır. Yeryüzünde biyolojik çeşitliliğin en önemli ‘depolarından’ birini teşkil etmektedir: bilinen karada yaşayan türlerin üçte ikisinden fazlasına ve dünyada tehdit altındaki türlerin çoğunluğuna ev sahipliği yapmaktadır. Ormanlar hayatta kalmamıza yardımcı olur: havamızı ve suyumuzu temizler. Toprağımızı besler ve pek çoklarımıza gıda, korunak ve ilaç sağlar. Ormanlar yerel, bölgesel ve küresel iklimi düzenlediği gibi atmosferde birikip küresel ısınmaya katkıda bulunacak karbonu tutar. Diğer yandan, ormanlar ayrıca kullanabileceğimiz değerli kaynaklarla doludur. Bugün ormanlar tür olarak karşı karşıya kaldığımız anahtar seçimlerden bazılarını temsil etmektedir. Orman kaynakları ve arazisinden faydalanma arzumuzu bunların gezegenimizin yaşam destek sisteminde oynadığı diğer kritik rollerle dengelemeyi başarabilir miyiz? Sonraki sayfalarda tüm dünyada ormanlarla güçlü bağları olan ilginç kişilerle tanışacaksınız. Kongo’dan Hindistan’a ve oradan yine Avrupa’ya kadar her yerden ormanlar ve orada yaşayan insanlar hakkında hikâyeler dinleyeceğiz. 2011 yılını yerel ormanlarınız ile bunun siz ve gelecek nesiller için ne anlama geldiğini düşünerek kutlayın.

http://www.biyologlar.com/insanlar-icin-ormanlari-kutluyoruz

Gen Mühendisliği Yoluyla Koyun Klonlama

Memeli hayvanlar erkek ve dişi bireylerden oluştugu için, bu hayvanlarin üremesi için dişiden gelen yumurta hücresinin erkekten gelen sperma hücresiyle birleşmesi gerekmektedir. Sperma ve yumurta hücreleri, baba ya da annenin biyolojik özelliklerini belirleyen ve her bireyde ikişer kopya (ikişer allel) halinde bulunan genlerin tek kopyalari içerirler. Böylece döllenmiş yumurtadaki gen kopyalarindan birisi anadan digeri ise babadan gelir. Gen kopyalari ya da alleller ayni işlevi gören ancak aralarinda yapisal ve işlevsel olarak ufak farkliliklar taşirlar. Bunlar, ayni genel özellikleri taşiyan türleri oluşturan bireylerde gözlemlenen çeşitliligin temelini oluştururlar. Örnegin bir koyunla bir koçun çiftleşmesinden her zaman kuzular dogacaktir, ama dogan her kuzu ayni ana-babadan gelmelerine ragmen ne annelerine, ne babalarina ne de kardeşlerine tipatip benzemeyeceklerdir. Bu çeşitlilik sayesinde bir türün degişik bireyleri degişen çevre koşullarina karşi farkli uyum özellikleri gösterirler ve türlerin tamamen yokolmasi riski azalir. Ancak bu çeşitlilik, belirli özellikleri olan bireylerin soylarini hiç degişime ugramadan sürdürmesine de engel olmaktadir. Örnegin insanlar için yararli bir protein üreten bir transjenik hayvan dogal üreme koşullarinda böyle bir proteini üretemez hale gelen yavrular dünyaya getirebilir. Belirli özellikleri olan bir hayvandan aynı genetik özellikleri taşıyan yavruların ya da klonların (kopyaların) elde edilebilmesi için en kolay yol, yetişkin hayvanların hücrelerinin yeni hayvanlar elde edilmesinde kullanılmasıdır. Yetişkin hayvan hücreleri organizmayı oluşturana dek ilk döllenmiş yumurtayla aynı gen bilgilerini taşıdıkları için bunun mümkün olması gerekir. Ancak, yetişkin hayvan hücreleri içerdeki genlerin bazıları susturulduğu için, doğal koşullarda yeni bir hayvan oluşturacak kapasitede değillerdir. Geçtiğimiz haftalarda büyük yankılar uyandıran koyun klonlama yöntemi, bu doğal kuralın insan eliyle değiştirilebileceğini göstermiştir. Kullanılan yöntem özet olarak şöyledir: İskoçyalı bilim adamları, hamile bir koyunun memesinden alınan hücreleri önce laboratuvarda çoğaltmış, sonra bu hücreleri çoğalma programından çıkararak dinlenme (Go) evresine almışlardır. Dinlenme evresindeki hücrenin çekirdeğindeki genler hücre füzyonu tekniği ile döllenmemiş bir yumurtaya aktarılmıştır. Döllenmemiş yumurta bu işlevden önce özel bir yöntemle boşaltılarak anadan gelen gen kopyaları atılmıştır. Çekirdeği alınmış yumurtada kalan gen düzenleyici proteinler (transkripsiyon faktörler) ve diğer etkenler, verici meme hücresinde sıfırlanmış olan genetik programları tekrar harekete geçirerek, hayatın başlangıcını oluşturan ilk bölünme evrelerinin oluşmasını sağlamışlardır. Füzyon yoluyla döllendirilen ve genetik programlamayı yeniden başlatan kök hücreleri (toplam 277 adet), hamileliğe hazırlanmış koyunlara aktarılmış ve böylece elde edilen 13 hamile koyundan birisi Dolly adı verilen kuzuyu doğurmuştur. Dolly, annesine benzememekle kalmayıp, meme hücrelerinin alındığı koyunla aynı genetik bilgileri taşımaktadır. İnsanoğlu böylece, memeli bir hayvanın kopyasını yapmayı başarmıştır. Genetik olarak özdeş bu iki koyunun, fiziksel olarak aynı özellikleri taşımakla birlikte, aynı biyolojik özellikleri taşıyıp taşımadıkları henüz belli değildir. Her ne kadar kalıtımın temelini oluşturan genetik yapı canlıların özelliklerini belirlemede ana etken olsa da, çevresel etkilerin canlıları değiştirebileceği de bilinmektedir. Dolayısıyla, iki kopya arasında zamanla bazı biyolojik farklılıklar ortaya çıkabilir. Bu çalışmanın bilimsel olarak önemi, ilk kez yetişkin bir hayvan hücresinden yepyeni bir hayvan kopyasının elde edilmesidir. Bilinen doğal kuralların dışında olan bu gelişme, birden insanların ortak ilgi alanı haline geldi. Bunun nedeni şu: acaba aynı yöntemi kullanarak insanlar da kopyalanabilir mi? Koyun ve insan aynı memeli canlılar sınıfından olduğuna göre, koyunda geçerli olan bir yöntemin insanda geçerli olmaması için bilimsel bir engel yok. Konunun uzmanları, koyunda kullanılan yöntemin kullanılmasıyla en erken bir, en geç on yıl içinde insanların da klonlanmasının teknik olarak mümkün olduğunu söylemektedirler. Şimdilik, çoğunluğun ortak olduğu bir görüşse, bu yöntemin insanlarda hiç kullanılmayacağı, kullanılmaması gerektiği. Konunun etik, hukuksal, dinsel ya da sosyal boyutları bir yana, davranış açısından insan diğer canlılardan çok farklıdır. İnsan davranışlarından bazıları genler tarafından düzenlenebilirse de, bir çoğunun çevresel etkenlere bağlı olduğu sanılmaktadır. İnsanın davranışlarını belirleyen beyinsel işlevlerin biyolojik özellikleri konusundaki bilgiler yok denecek kadar azdır. Böyle bir aşamada, insanı klonlamaya kalkmak, çok büyük bir sorumsuzluk örneğidir. Üstelik, insan kültürel bir varlıktır ve kültürel özellikler sonradan edinilen özelliklerdir. Aynı suda iki kez yıkanamayan insanoğlu, zorunlu olarak iki ayrı zaman diliminde yaşayacak iki kopyanın aynı özellikleri taşıyacağını nasıl düşünebilir? Klonlama Etiği Ergül Tunçbilek Prof. Dr., Hacettepe Üniversitesi Tıp Fakültesi Genetik Ünitesi Bir koyunun meme hücresinden klonlama yolu ile yeni bir koyun dünyaya getirilmesi, memeli genetiği ile ilgilenenlerin önünde çok büyük ufuklar açtı. Dolly’nin kopyalanmasından sonra akla gelen ilk soru, bilim adamlarının insanı ne zaman kopyalayabilecekleri oldu. Yetişkin bir insanın klonlanmasının 1-10 yıl içinde yapılabileceği ihtimalinin ifade edilmesi konunun etik yönlerinin çok yoğun olarak tartışılmasına yol açtı. ABD Başkanı Clinton konu hakkında bir rapor hazırlanmasını ve buna göre insan klonlanmasının yasaklanacağını veya bu çalışmalara kontrollü olarak izin verilebileceğini açıkladı. İngiltere, Danimarka, Almanya, Belçika, Hollanda ve İspanya da buna yakın bir yol izlediler. Konu internet sayfalarında, din adamları arasında, gazete veya dergilerde de yoğun tartışmalara neden oldu. İnsan klonlanmasının, ahlaki olarak kabul edilmeyecek bir şeklide insan hayatına müdahale etmek olduğunu ifade edenlere göre, insan yaratmaya çalışmak sadece bir bilimsel aktivite olmayıp, ahlaki ve manevi yönleri ağır basan bir olaydır. Bunun yanında insan genomunda yapılan değişikliklerle belirli özellikleri olan ve istenilen tanımlamalara uyan grupların yaratılabileceği korkusu da çok ağır basmaktadır. Günümüzde halen uluslararası sözleşmelerle insan embriyosu üzerinde deney yapmak yasaklanmıştır. Avrupa Konseyinin "Convention for the Protection of Human Rights and Dignity of the Human Being With Regard to the Application of Biology and Medicine; Convention on Human Rights and Biomedicine" isimli sözleşmenin 13. maddesi koruyucu, teşhis veya tedavi edici amaçların dışında insan genomu ile çalışma yapılmayacağını ifade etmektedir. Bu maddenin gerekçesinde bilimdeki ilerlemelerin insanlığa faydalı pek çok gelişmeye zemin hazırlamakla beraber, bu imkanların kötü kullanımı ile genomda yapılan değişikliklerin sadece kişileri değil, türün tamamını tehlikeye atabileceği bu nedenle yasaklanmasının gerektiği ifade edilmektedir. (Council Europe. Directorate of Legal Affairs DIR/JUR(97) 1. Strasbourg, January 1997). Böyle bir girişim sonucunda ortaya çikacak ahlaki sorunlarin yaninda biyolojik problemlerin de yaşanabilecegini düşünenler tek bir somatik hücreden herşeyin kalitildigi bir canlida fazla sayida germline mutasyon beklenecegini ve bu canlilarin genetik hastaliklar ve kanser bakimindan daha yüksek riskler taşiyacagini ifade ediyorlar. Major (Büyük, temel, asli) malformasyonlardan başka, sitoplazmadaki çok küçük degişikliklerin belki de mesela, hafif mental retardasyona yol açabilmesi, veya insan için başka ciddi problemlere neden olmasi da söz konusudur. Bu problemlerin anlaşilabilmesi ise uzun bir zamana ihtiyaç gösterir, yani verilebilecek zararin hemen tanimlanamamasi önemli bir risktir. Gen ve çevre (nature-nurture) etkileşiminin nasil oldugu iyi bilinmediginden fizik olarak aynisi kopyalanan canlinin, ayni çevreyi saglamak mümkün olamayacagindan, zeka, davraniş ve düşünceleri ile orijinalinden farkli olacagi düşüncesi de büyük ölçüde paylaşilmaktadir. İnsanı kopyalama gibi bir düşüncenin akla bile getirilmemesini ifade edenler olduğu gibi, bunun önüne set çekilemeyecek bir gelişme olduğunu ve doğru yönde kullanılmasının insanlığın faydasına olacağını söyleyenler de var. Bu düşünce taraftarlarına göre üreme çok kuvvetli bir biyolojik dürtü olup, üreme özgürlüğü çok kuvvetli korunması gereken temel bir haktır. Ayrıca, bir işlemin ahlaki olarak değerlendirilmesi, onun yapma amacınıza da bağlıdır. Bütün yolların denendiği ve çarelerin tüketildiği bir durumda, bu yolla çocuk sahibi olmanın nasıl bir yanlış olabileceğini anlamak zordur. Ancak Hitler deneyimini yaşayan ve öjenik hareketlerden korkar bir dünyada bu gelişmeleri kontrol edebilmenin çok zor oldugu anlaşiliyor. Çünkü bu uygulamanin bugün bile diyelim ki bir nükleer silah yapmak gibi büyük teknoloji ve yatirima ihtiyaç göstermedigi, hele yakin gelecekte belki de orta halli bir laboratuvarda başarilabilecek bir iş oldugu anlaşiliyor. Bu konuda devlet destegini kesmenin araştirmacilari iyi niyetli olmayan başka kişilerle işbirligine zorlayacagini da akilda tutmak gerekir. Mehmet Öztürk Prof. Dr. Bilkent Üniversitesi, Moleküler Biyoloji Bölümü

http://www.biyologlar.com/gen-muhendisligi-yoluyla-koyun-klonlama

Değişmekte olan bir iklimde sağlık

Ağustos 2007’de İtalya’da yerel sağlık makamları, bir nehirle ayrılan iki küçük köy olan Castiglione di Cervia ile Castiglione di Ravenna’da sıra dışı bir hastalığın söz konusu olduğu yüksek sayıda vaka tespit ettiler. Bu hastalıktan neredeyse 200 kişi etkilendi ve yaşlı bir adam da öldü (Angelini vd., 2007). Ayrıntılı bir araştırma sonucunda hastalığın daha çok Afrika ve Asya’da görülen Aedes veya ‘kaplan’ sivrisineği yoluyla insanlara geçen ve böceklerde bulunan bir virüs olan Chikungunya olduğu anlaşıldı. Hastalığın kaynağı bölgede tatil yapan bir adam olarak belirlendi. Hasta adamın Avrupa’ya seyahat etmeden önce hastalığı kaptığı ama İtalya’da bir kaplan sivrisineği tarafından ısırıldığı düşünülüyor. Kaplan sivrisineği virüsün bir vektörü veya taşıyıcısı olup, söz konusu sineğin virüsü köydeki başka bir kişiye bulaştırdığına inanılıyor. Bu, zincirleme bir etkiye yol açtı ve hastalıklı kişileri ısıran sivrisinekler mini bir salgın gelişene kadar virüsü yaymaya devam etti. Etkileşimler ağı Chikungunya salgını küreselleşmiş bir dünyada yüz yüze bulunduğumuz bazı sağlık riskleri ve sorunlarını gözler önüne seren karmaşık bir etkileşimler ve koşullar ağına dayanıyor. Turizm, iklim değişikliği, ticaret, türlerin dolaşımı ve halk sağlığı gibi faktörlerin tümü bu durumda rol oynamıştır. Kaplan sivrisineğinin Avrupa’ya ilk kez olarak ‘şans bambusu’ gibi süs bitkilerinden kullanılmış lastiklere varan bazı ithal mallar yoluyla geldiği düşünülüyor. Sivrisinek larvaları Avrupa’nın pek çok bölgesinde bulunmuşsa da sadece daha sıcak, güney ülkelerinde açık havada veya daha kuzeydeki söz gelimi Hollanda’daki seralarda yaşayabiliyor. Dengue ve Batı Nil Ateşi de artık Avrupa’da bulunuyor ve yine sivrisinek ısırması yoluyla geçiyor. İsveç, Stockholm’deki Avrupa Hastalıkları Önleme ve Kontrol Merkezi’ne (ECDC) göre, 1996’da Romanya’daki ilk büyük salgından beri Batı Nil Ateşi hastalığı Avrupa’da halk sağlığına ilişkin olarak önemli bir endişe sebebi kabul edilmektedir. Hali hazırda buna karşı hiçbir aşı bulunmamakta ve başlıca önleyici tedbirler sivrisinek ısırıklarına maruz kalma durumunu azaltmayı amaçlamaktadır. Yoğun gıda üretimi Bulaşıcı hastalık için gerekli olan ve daha önce var olmayan koşulları kendimiz yaratıyor olabiliriz. Söz gelimi, gıda üretiminin endüstrileşmesi önemli bir endişe konusudur. Tek bir hayvan türünü yoğun olarak üretmek suretiyle, genetik çeşitliliği düşük olan ‘mono kültürler’ üretme riskini taşıyoruz. Bu hayvanlar kötü hijyen koşulları veya kuşlar gibi yaban hayvanlarından bulaşabilecek hastalıklar için son derece elverişli ortamlar sunuyor. Hastalıklar bir kez mono kültüre girdikten sonra kolaylıkla mutasyona uğrayabilir ve söz konusu hayvanlarla çalışan insanlara dahi geçebilir. Antibiyotiklerin aşırı kullanımı doğal direnç eksikliğini telafi etmenin kabul edilen bir yöntemi haline gelmiş olup, bu uygulama kendi sorunlarını yaratabilir. ‘Modern verimli tarım, tıpkı halk sağlığı gibi, küreselleşmiş dünyanın bazı taleplerini karşılamak için bilim ve tıbba dayanmaktadır. Modern tarım pek çoğumuza daha ucuz ve daha fazla gıda sağlamış olmakla beraber, öngörülemeyen baskı ve sorunlara yol açması da mümkündür,’ diyor ECDC Müdürü Dr. Marc Sprenger. Dr. Sprenger ‘Söz gelimi, tarımda aşırı antibiyotik kullanımı sonucunda bakteriler daha dirençli hale geldikçe, bunların etkinliği azalabilir; bunun da potansiyel olarak insanlar üzerinde etkisi olabilir’ diyor. Avrupa’da noktaları birleştirmek Avrupa’ya gelen yeni türler ve yeni hastalıklar iklim değişikliğinin sağlık üzerindeki etkilerinden sadece bazılarıdır. Su, hava ve gıdanın kalitesi ve miktarındaki değişiklikler ile değişen hava durumu, ekosistemler, tarım ve geçinme yollarına bağlı olarak son aşamada insan sağlığını çok daha fazla çevresel ve sosyal etken etkileyebilir. İklim değişikliği ayrıca hava kirliliği gibi mevcut çevre sorunlarını kötüleştirebilir ve sürdürülebilir su kaynakları ve sıhhi temizlik hizmetlerini aksatabilir. Avrupa’da 2003 yılında meydana gelen ve 70.000’i aşkın kişinin ölmesiyle sonuçlanan sıcak hava dalgası değişmekte olan bir iklime uyum sağlama ihtiyacına dikkat çekmiştir. Yaşlılar ve belirli hastalıklara sahip kişilerin daha yüksek risk altında olmasının yanı sıra olanakları daha az nüfus grupları daha korunmasızdır. Betonlaşma ve ısı emen yüzeylerin yüksek olduğu kalabalık kentsel bölgelerde sıcak hava dalgalarının etkileri, geceleri yetersiz soğutma ve güçsüz hava akımları sebebiyle ağırlaşabilir. AB’deki nüfus grupları için, ölüm oranının belli bir (yerel olarak spesifik) kesme noktasının üzerindeki her sıcaklık artışı için % 1–4 oranında arttığı tahmin edilmiştir. 2020’lerde, öngörülen iklim değişikliğinden kaynaklanan sıcağa bağlı ölümlerde tahmin edilen artış, başta orta ve güney Avrupa bölgelerinde olmak üzere, yılda 25.000’i aşabilir. ‘Sağlık, arazi kullanımı, tarım, turizm, ticaret ve iklim değişikliğini birbirine bağlayan tartışmanın yaratıcı bir şekilde gelişmesi gerekiyor. Şu anda halk sağlığı ve çevreyi veya iklim değişikliğini doğru şekilde ilişkilendirmiyor olabiliriz,’ diyor Dr. Sprenger. ‘Örneğin, yakın zamanda bir sağlık bakanlığını ziyaret ettim ve iklim değişikliğiyle ilgili konulardan kimin sorumlu olduğunu sordum ve bana kimsenin sorumlu olmadığını söylediler. Bunu herhangi bir bakanlık veya yetkili makamı yargılamak için söylemiyorum ama bu durum, bu sorunların hepsi birbirine bağlı olduğu için, bunlar hakkında düşünme şeklimizi değiştirmemiz gerektiğini ortaya koyuyor,’ diyor Dr. Sprenger. ‘Halk sağlığı sistemleri yeni hastalık ve yeni iklim koşulları olasılığına uyum sağlamaya ve kendilerini buna hazırlamaya başlamalıdır. Doktorlar yeni bir virüsü tanımadığı için insanlara yanlış tanı konuyor olabilir. Bu hastalıkların pek çoğu grip gibi görünüyor ve grip hissi veriyor. Yeni sorunlarla başa çıkmak için eğitim gibi yeni araçlara ihtiyacımız var ve laboratuvar gibi tesislerin de esnek ve uyarlanabilir olması gerekiyor,’ diyor. ECDC’nin web sitesini aşağıdaki adreste ziyaret edebilirsiniz: www.ecdc.europa.eu en Daha fazla bilgi ve referansların tam listesi için SOER 2010 Sentezi’ne bakın. Yenilikçilik: çevre ve sağlık İklim değişikliğiyle mücadele çabaları hava kalitesini iyileştirecektir Avrupa Birliği’nin İklim ve Yenilenebilir Enerji (CARE) paketi aşağıdakileri hedeflemektedir: • 2020 itibariyle sera gazı emisyonlarının % 20 oranında azaltılması • 2020 itibariyle yenilenebilir enerji payının % 20 oranında arttırılması • 2020 itibariyle enerji verimliliğinin % 20 oranında arttırılması Bu hedefleri gerçekleştirmek için sarf edilmesi gereken çabalar Avrupa’da hava kirliliğini de azaltacaktır. Örneğin, enerji verimliliğindeki iyileşmeler ile yenilenebilir enerjinin daha fazla kullanımı, hava kirliliğinin başlıca kaynaklarından olan fosil yakıt yakılmasının azalmasına yol açacaktır. Bu olumlu yan etkilere iklim değişikliği politikasının ‘ortak faydaları’ denmektedir. Yukarıdaki paketin AB hava kirliliği hedeflerini yerine getirmenin yıllık maliyetini milyarlarca avro düşüreceği tahmin edilmektedir. Avrupa sağlık hizmetlerinin tasarruf edecekleri de bunun altı katı kadar fazla olabilir. İstilacı türler Asya kaplan sivrisineği veya Aedes albopictus ‘istilacı türlerin’ en yaygın görülen örneklerinden biridir. Geleneksel olarak görüldüğü bölgeler Pakistan’la Kuzey Kore arasındadır. Artık tüm dünyada görülmekte olup, ‘dünyanın en istilacı sivrisineği’ olarak tanımlanmaktadır. İnsan faaliyetleri sonucu yabancı veya yerli olmayan türlerin kıtaya yerleşip yayıldığı bir ortamda, sivrisinek, Avrupa’nın biyolojik çeşitliliğinin önündeki çok daha kapsamlı tehditlere verilebilecek örneklerden sadece bir tanesidir. Yabancı türler Avrupa’nın tüm ekosistemlerinde bulunmaktadır. Küreselleşme ve bilhassa artan ticaret ve turizm Avrupa’ya gelen yabancı türlerin sayısı ve türünde artışa sebep olmuştur. Avrupa’da yaklaşık 10.000 yabancı tür kaydedilmiştir. Bunlardan patates ve domates gibi bazıları kasten getirilmiş olup hâlâ ekonomik önemlerini korumaktadır. ‘İstilacı yabancı türler’ adı verilen diğer türler ise hastalık taşıyıcıları olarak veya binalar ve barajlar gibi yapılara zarar vermek suretiyle bahçecilik, tarım ve ormancılık için ciddi sorunlar yaratabilir. İstilacı yabancı türler ayrıca içinde yaşadıkları ekosistemleri de değiştirmekte ve bu ekosistemlerdeki diğer türleri etkilemektedir. BM Biyolojik Çeşitlilik Sözleşmesi istilacı yabancı türleri tüm dünyada biyolojik çeşitlilik açısından en büyük tehditlerden biri olarak belirlemektedir.

http://www.biyologlar.com/degismekte-olan-bir-iklimde-saglik

Medyan Mesajın Kendisi Değildir

Sunuş Okuyacağınız yazı Amerikalı evrimsel biyolog, paleontolog ve bilim tarihçisi Stephen Jay Gould (1941 – 2002) tarafından Discovery dergisinin Haziran 1985 sayısında “The Median isn’t the Message” başlığıyla yayınlanmıştır. Kuşağının en parlak, en çok okunan bilimcilerinden biri olan Gould, bu yazıda kişisel yaşamının önemli bir dönemindeki duygularını okurlarıyla paylaşır. Her şey yazının yayınlanmasından üç yıl kadar önce başlar. Gould’a, tehlikeli bir kanser türü olan mesolothamia teşhisi konulmuştur. Mesolothamia dermansızdır ve teşhisten sonraki medyan yaşam beklentisi sadece sekiz aydır. “Medyan Mesajın Kendisi Değildir” Gould’un kanserle mücadelesinin, bize yaşama tutunmanın ve istatistikleri doğru anlamanın önemini anımsatan öyküsüdür. Gould gördüğü iyi tedavinin yanında, olumlu yaklaşımının ve kendini hiç bırakmayışının sayesinde iki yıllık bir tedaviden sonra kanseri yenmeyi başarmış, sekiz aylık medyanı otuz kat aşarak yirmi yıl daha yaşamıştır. Hem sevdikleri, hem de dünya bilimi açısından çok değerli bir başarı olmuştur bu. Tedavisinden sonra Gould bilimsel çalışmalarının yanında bilim savunuculuğu ve yayıcılığı görevlerini de sürdürmüş, toplumsal sorunlara dikkat çeken çalışmalar yapmış, bu arada çok satan ve çok okunan on kadar kitap yayınlamıştır. Gould, evrim kuramına farklı yaklaşımları anlattığı ve kendi yorumunu ayrıntısıyla sunduğu The Structure of Evolutionary Theory (Evrim Kuramının Yapısı) kitabı da bunlar arasındadır. Gould kendi Magnum Opus’u kabul edilen bu kitabın yayınlanmasından iki ay kadar sonra 20 Mayıs 2002’de karısı Rhonda, annesi Eleanor ve sevdiği kitaplarla çevrili yatağında yaşamını yitirmiştir. Gould’un ölüm nedeni başka bir kanser türüdür; beyne de yayılan bir tür akciğer kanseri olan metastatik adenocarcinoma. Bu kanser, daha önceki mesothelioma ile bağlantılı değildir. Gould’un Yaşamı Gould New York Kenti’nin Queens semtinde doğdu. Babası mahkeme stenografı olarak çalışıyordu, annesi bir sanatçıydı. Gould Yahudi kökenli ancak seküler bir aile ortamında yetişti. Yüksek öğrenimine Jeoloji okuduğu Antioch Koleji’nde başladı. 1963’deki mezuniyetinden sonra lisans üstü eğitimini Leeds ve Columbia üniversitelerinde yaptı. 1967’de Columbia’da doktorasını tamamladıktan hemen sonra Harvard Üniversitesi tarafından işe alındı. Gould 2002’deki ölümüne kadar (konuk öğretim üyesi olarak başka yerlerde geçirdiği kısa dönemler dışında) Harvard’da çalıştı. Görevi Harvard Karşılaştırmalı Zooloji Müzesi’nin paleontologluğunu da içeriyordu. 1982’de Harvard’ın prestijli Andrei Agassiz Zooloji kürsüsü Gould’a geçti. Gould meslek yaşantısı boyunca Amerikan Bilimler Akademisi ve Amerika Bilimin İlerlemesi Birliği başta olmak üzere pek çok bilimsel kurulda yöneticilik yaptı. Gould’un ilk uzmanlık alanı kara yılanlarıydı. Ancak bu alandaki çalışmalarıyla olduğu kadar evrimsel gelişim biyolojisi ya da evrim kuramının yapısı hakkındaki çalışmaları da büyük ilgi çekti. 1972’de meslektaşı Niles Eldredge ile birlikte evrimsel değişimlerin uzun durağanlık dönemlerine kıyasla göreli olarak kısa sıçrama dönemlerinde gerçekleştiğini savunan Sıçramalı Evrim modelini geliştirdi. Darwinci temellerden birinde önemli bir anlayış değişikliği öneren bu model evrimsel biyologlar arasında yoğun tartışmalara yol açtı. Bilim tarihi yazıları da pek çok profesyonel tarihçinin Gould’u bir bilim tarihçisi olarak tanımasını sağladı. http://docs.google.com/a/evrimcalismagrubu.org/File?id=dg9339gg_35cjf23zcf_b Bütün bu çalışmalar Gould’a bilim çevrelerinde hak edilmiş bir saygınlık sağlamak için fazlasıyla yeterliydi. Buna karşın Gould’un asıl ünü ve önemi, güncel evrimsel biyoloji başta olmak üzere ilgilendiği bilimsel konuları geniş bir okur kitlesine anlatma çabasından kaynaklanır. Natural History Magazine’de yazdığı yazılar geniş bir okur kitlesine ulaşmasını sağlamış, bu yazıların derlenmesinden oluşan kitapları en çok satanlar listesine girmiştir. Bunda Gould’un güncel evrimsel biyoloji ve paleontolojiyi özel bir eğitime ya da uzmanlığa sahip olmayan okurun anlayabileceği biçimde anlatma konusundaki ustalığı kadar, eşine az rastlanır entellektüel birikiminin güncel konularla ilişkilendirmesindeki başarısının da payı vardır. Gould’un iki kitabı Türkçe’de yayınlanmıştır. Natural History Magazine’deki yazılarından yapılan ilk derleme kitabı Darwin ve Sonrası (Ever Since Darwin) Ceyhan Temürcü’nün çevirisi ile TÜBİTAK tarafından, tarih boyunca insanların zaman ve takvim hakkındaki düşünceleri üzerine bir inceleme olan Binyılı Sorgulamak (Questioning the Millenium) Tuncay Birkan’ın çevirisi ile İletişim Yayınları tarafından yayınlanmıştır. http://docs.google.com/a/evrimcalismagrubu.org/File?id=dg9339gg_37d46946g8_b http://docs.google.com/a/evrimcalismagrubu.org/File?id=dg9339gg_36cjprjcfm_b Medyan Mesajın Kendisi Değildir[1] Stephen Jay Gould, çeviri: Beycan Mura http://docs.google.com/a/evrimcalismagrubu.org/File?id=dg9339gg_45rmfdszg3_b Hayatım, son zamanlarda Mark Twain’in iki nüktesiyle çok kişisel yönlerden kesişti. Birini denemenin sonuna bırakacağım. Bazı yerlerde Disraeli’ye de mal edilen diğer nükte, yalanın her biri bir öncekinden daha kötü üç türünü sıralıyor: yalan, kuyruklu yalan ve istatistik. Benim öyküme epeyce uyan bir durum olan o bildik örneği, gerçeği sayılarla sündürme örneğini ele alın. İstatistikte “ortalamanın” ya da ana eğilimin farklı ölçümleri vardır. Ortalama genel “vasati” kavramımızdır: Değerleri toplayın ve toplamı paydaşların sayısına bölün (Gelecek Cadılar Bayramı’nda beş çocuk için toplanan yüz şeker, adil bir dünyada her çoçuğa yirmi şeker düşmesi sonucunu verecektir). Medyan, ana eğilimin bir diğer ölçümü, yolun orta noktasıdır. Beş çocuğu boylarına göre sıralayacak olursam, medyan çocuk ikisinden kısa, (şekerden ortalama paylarını almakta güçlük çekmeleri olası) diğer ikisinden de uzun olacaktır. İktidardaki bir politikacı, gururula “Yurttaşlarımızın ortalama geliri yılda 15 bin dolardır” diyebilir. Muhalefet lideri “Ama yurttaşlarımızın yarısı yılda 10 bin dolardan daha az kazanıyor” diye yanıt verebilir. İkisi de haklıdır, ama ikisi de bir istatistiği duygusuz bir nesnellikle veriyor değildir. İlki bir aritmetik ortalamaya, ikincisi de bir medyana başvuruyor. (Bu tür durumlarda ortalamalar medyanlardan daha yüksektir çünkü bir milyoner ortalama hesaplanırken yüzlerce yoksul insanın etkisini götürürken, medyan hesaplanırken yalnızca tek bir dilenciyi dengeleyebilir). İstatistiğe karşı yaygın güvensizlik ve küçümseme yaratan daha önemli konu, daha da sorunludur. Pek çok insan yürek ile beyin, duygu ile akıl arasında geçersiz bir ayrım yapar. Kimi güncel gelenekler –stereotipleri Güney Kaliforniya merkezli olan yaklaşımların da yardakçılığıyla– duyguları daha “gerçek” olmak ve eylem için tek uygun temeli sağlamak bakımından göklere çıkarırlarken (bir şey iyi hissettiriyorsa, yap onu!) akıl, modası geçmiş seçkinciliğin bir takıntısı olarak geçiştiriliyor. Bu saçma ikilemde istatistik sıklıkla düşmanın simgesi haline geliyor. Hilaire Belloc’un yazdığı gibi “İstatistik nicel yöntemin başarısıdır ve nicel yöntem de kısırlığın ve ölümün zaferidir”. Okumakta olduğunuz, doğru biçimde yorumlandığında son derece canlandırıcı ve hayat verici olan kişisel bir istatistik öyküsüdür. Bilim hakkındaki kuru ve akademik bilginin yararı üzerine küçük bir öykü anlatarak, aklın değerinin düşürülmesine karşı kutsal savaş ilan eder. Yürek ve kafa tek bir bedenin, tek bir kişiliğin odak noktalarıdır. 1982 Temmuzunda, az rastlanan ciddi bir kansere –genellikle asbeste maruz kalmakla ilişkilendirilen karın mesothelioma’sına– yakalanmış olduğumu öğrendim. Ameliyattan sonra kendime geldiğimde doktorum ve kemoterapistim olan kişiye ilk sorum şöyleydi: “Mesothelioma üzerine en iyi teknik yapıtlar hangileridir?” Dosdoğru bir açıksözlülükten uzaklaştığı bu tek anda, doktorum, diplomatik bir ifadeyle tıp yazınının gerçekten okumaya değer hiç bir şey içermediğini söyledi. Elbette bir entellektüeli yazından uzak tutmaya çalışmak ancak cinselliğe en düşkün hayvan olan Homo sapiens’e, cinsellikten uzak durmasını önermek kadar işe yarar. Yürüyebilecek hale gelir gelmez en kestirme yoldan Harvard’ın Countway Tıp Kütüphanesi’ne gittim ve bilgisayardaki bibliografik arama programına mesothelioma sözcüğünü zımbalarcasına yazdım. Bir saat sonra, çevrem mesothelioma ile ilgili son yazınla sarılıyken, yutkunarak doktorumun neden o insani öneride bulunduğunu anladım. Yazılar bundan daha insafsızca açık olamazdı: Mesothelioma dermansızdı; teşhisten sonraki yaşam beklentisi medyanı yalnızca sekiz aydı. Bir onbeş dakika kadar şaşkınlıktan allak bullak durdum, sonra gülümsedim ve kendi kendime şöyle dedim: demek ki bana bu yüzden okuyacak bir şey vermediler. Sonra şükürler olsun, aklım yeniden çalışmaya başladı. Bir şeyi az öğrenmek tehlikeli olabiliyorsa, ben bunun klasik bir örneği ile karşılaştım[2]. Kanserle savaşımda yaklaşım kesinlikle önem taşır. Neden olduğunu bilmiyoruz (eski moda maddeci bakış açımla zihinsel durumun bağışıklık sistemine geri besleme yaptığını sanıyorum). Aynı kanser türüne yakalanmış, cinsiyet, yaş, sınıf, sağlık ve sosyoekonomik statü olarak benzer kişiler arasında, olumlu yaklaşımları, yaşamak için güçlü bir istençleri ve amaçları olan, mücadeleye bağlı, yalnızca doktorlarının her söylediğini kabul etmekle yetinmeyip kendi tedavilerine etkin bir yanıtla yardım etmeye çalışanlar daha uzun yaşama eğilimindedirler. Birkaç ay sonra kişisel bilim gurum, Nobelli bir bağışıklık bilimcisi olan Sir Peter Medawar’a kanserle savaşta başarı için en iyi reçetenin ne olduğunu sordum: “Ümitli bir kişilik” diye yanıt verdi. Gerektiği gibi soğukkanlı ve güvenli olduğum için (insan kendini belirli bir amaç için kısa süre içerisinde yeniden kuramayacağına göre) şanslıyım. http://docs.google.com/a/evrimcalismagrubu.org/File?id=dg9339gg_41cxfsqbgj_b Brezilya doğumlu İngilizi bilimci Sir Peter Brian Medawar (1915, 1987). Medawar 1960 Nobel Fizyoloji ve Tıp ödülünü paylaşan iki kişiden biridir. İnsancıl doktorların ikilemi buradan çıkar: Yaklaşım bu ölçüde belirleyiciyken, bu derece kesin bir hükmü ilan etmek gerekir mi? Özellikle de bu kadar az sayıda insan, istatistiksel ifadelerin ne anlama geldiğini değerlendirecek durumdayken? Bahama kara yılanlarının küçük ölçekli evrimini nicel yollarla incelemekle geçirdiğim yıllarca süren çalışmalarımdan edindiğim deneyimler sayesinde istatistikler hakkında sözünü ettiğim teknik bilgiyi edindim ve bu bilginin yaşamımı kurtarmakta büyük rol oynadığını düşünüyorum. Bacon’un ünlü sözündeki gibi bilgi gerçekten de güçtür. Sorun kısaca şöyle ifade edilebilir: “sekiz aylık medyan yaşam beklentisi” bizim dilimizde ne ifade eder? Sanıyorum, insanların çoğu, istatistik konusunda bir eğitimleri olmadığından, bu ifadeyi “muhtemelen sekiz ay içerisinde ölmüş olacağım” biçiminde anlayacaklardır. Tam da kaçınılması gereken çıkarımdır bu, çünkü doğru değildir ve yaklaşımımız çok çok önemlidir. Elbette sevinçten havalara uçmadım, ama söz konusu ifadeyi yukarıda anlattığım anlamda da almadım. Teknik eğitimim “sekiz aylık medyan yaşam beklentisi” ile ilgili başka bir perspektifi zorunlu kılıyordu. Buradaki nüans ince, ama çok önemli; çünkü kendi kişisel çalışma alanlarım evrimsel biyoloji ve doğa tarihinin ayırt edici düşünce biçiminin somutlanması bu. Hala net özlerin ve kesin sınırların peşinde olan Platoncu bir mirasın tarihi yükünü taşıyoruz (Bu nedenle, doğa genellikle karşımıza indirgenemez bir süreklilik olarak çıkıyor olsa da muğlaklıktan uzak bir “yaşam başlangıcı” ya da “ölüm tanımı” bulmayı umuyoruz.). Kesin farklılıklara ve ayrık değişmez kendiliklere yaptığı vurguyla bu Platoncu miras ana eğilimin istatistiksel ölçümlerini yanlış anlamaya yönlendiriyor bizi, hem de varyasyon, nüans, süreklilikten ibaret dünyamıza uygun yorumun tam karşıtı olacak biçimde. Kısaca, ortalama ve medyanı katı “gerçeklikler” ve bunların hesaplanmasına olanak sağlayan varyasyonu da saklı özün geçici ve mükemmellikten uzak bir dizi ölçümü olarak görüyoruz. Eğer medyan gerçeklikse ve medyanın etrafındaki varyasyon sadece onun hesaplanması için bir araçsa “muhtemelen sekiz ay içinde ölmüş olacağım” makul bir yorum olarak kabul edilebilir. Ama her evrim biyoloğu, varyasyonun doğanın yegane indirgenemez özü olduğunu bilir. Varyasyon katı gerçekliktir, bir ana eğilimin mükemmellikten uzak bir dizi ölçümü değil. Ortalamalar ve medyanlar soyutlamalardır. Bu nedenle mesothelioma istatistiklerine epey farklı bir gözle baktım. Salt içindeki boşluk yerine simitin kendisini gören bir iyimser olduğum için değil, daha ziyade varyasyonun kendisinin gerçeklik olduğunu bildiğim için. Kendimi varyasyonun içindeki yerime yerleştirmeliydim. Medyanın sekiz ay olduğunu öğrendiğimde gösterdiğim ilk entellektüel tepki “Güzel. İnsanların yarısı bundan fazla yaşayacak. Peki benim o yarıda olma şansım ne kadardır?” oldu. Bir saat süren hiddetli ve gergin bir okumadan sonra bir ferahlamayla şu sonuca vardım: Çok şanslıydım. Daha uzun bir yaşam olasılığı bahşeden özelliklerin tümüne sahiptim: Gençtim, hastalığım görece erken bir evrede anlaşılmıştı, ülkedeki en iyi tedaviyi görecektim, yaşamayı seviyordum, veriyi nasıl değerlendireceğimi biliyordum ve umutsuzluğa kapılmayacaktım. Başka bir teknik konu avuntumu arttırdı. Sekiz aylık medyandaki varyasyon dağılımının hemen hemen kesinlikle istatistikçilerin “sağa yatık” dediği biçimde olacağını derhal anlamıştım. (Simetrik bir dağılımda, merkez eğilimin solundaki varyasyon profili, sağındakinin ayna görüntüsüdür. Yatık dağılımlarda, merkez eğilimin bir tarfafındaki varyasyon daha fazla yayılmıştır. Sola doğru daha fazla yayılmışsa sola yatık, sağa doğru yayılmışsa sağa yatık denir). Varyasyonun dağılımı sağa yatık olmalı diye akıl yürüttüm. Ne de olsa dağılımın sol tarafında değiştirilemez bir alt sınır vardı: sıfır (Çünkü mesothelioma yalnızca ölüm sırasında ya da öncesinde teşhis edilebilir). Dolayısıyla dağılımın daha düşük değerli (yani sol) tarafında yeterince yer yoktu. Burası sıfır ile sekiz ay arasına sıkışmış olmalıydı. Ama daha büyük değerli (yani sağ) kanat, kimse sonsuza dek yaşamıyor olsa bile, yıllar ve yıllar boyunca genişletilebilirdi. Dağılım sağa yatık olmalıydı ve olumlu profilimin eğrinin o tarafında olma şansımı arttırdığını belirlediğimden kuyruğun ne kadar uzadığını bilmeliydim. http://docs.google.com/a/evrimcalismagrubu.org/File?id=dg9339gg_43fc472mgc_b http://docs.google.com/a/evrimcalismagrubu.org/File?id=dg9339gg_38dgh4hpdt_b Sola yatık grafik (üstte) ve Sağa yatık grafik (altta) Dağılım gerçekten de fazlasıyla sağa kaymıştı ve sekiz aylık medyanın yıllarca ötesine uzanan (çok küçük de olsa) uzun bir kuyruğu vardı. Bu küçük kuyrukta olmamam için bir neden görmedim. Uzun uzun içimi çektim ve rahatladım. Teknik bilgimin yardımı dokundu. Grafiği doğru okudum. Doğru soruyu sordum ve yanıtlarını buldum. Bu koşullar altında, büyük olasılıkla, tüm olası hediyelerin en değerlisini almıştım: Çokça zaman. Durup derhal İşaya’nın Hezekiah’ya verdiği emri – Evini düzenle, öleceğine ve yaşayacak olmadığına göre– uygulamak zorunda değildim. Düşünmek, planlamak ve mücadele etmek için zamanım olacaktı. İstatistiksel dağılımlar hakkında son bir nokta daha var. Yalnızca öngörülmüş bir dizi koşula –bizim durumumuzda belirli uzlaşımsal tedavi yöntemleri altında mesothelioma ile yaşamayı sürdürmek– uygulanabilirler. Eğer bu koşullar değişirse, dağılım da farklışaşabilir. Deneysel bir tedavi yöntemi uygulanan kişiler arasına yerleştirilmiştim. Şansım tutarsa daha yüksek bir medyanı olan ve sağ kuyruğu çok ileri yaşlarda doğal nedenlerden ölüme kadar uzanan yeni bir dağılım kümesinin ilk üyelerinden olacaktım. Ölümü kabullenmeyi içsel vakar gibi bir şeyle bir tutmak, benim görüşüme göre gereğinden daha yaygın bir moda haline geldi. Elbette sevmenin bir zamanı olduğu gibi ölmenin bir zamanı olduğunu söyleyen Süleyman’ın Meselleri’ne katılıyorum. Çilem dolduğumda bu sonu kendi yordamımla ve sükünetle karşılamayı umuyorum. Ama pek çok durumda ölümün baş düşman olduğu biçimindeki daha savaşçı görüşü benimsiyor ve ışığın sönüşü karşısında kahramanca öfkeye kapılanlarda ayıplanacak bir şey görmüyorum. Savaş aletleri çok çeşitli, ama bunlardan hiçbiri nükte kadar etkili değil. Meslektaşlarımın İskoçya’da yaptığı bir toplantıda, ölmüş olduğum duyuruldu. En yakın arkadaşlarımdan birinin ölümümün ardından kaleme alacağı anma yazısını okuma zevkini tatmama ramak kalmıştı (arkadaşım durumdan şüphelendi ve haberi kontrol etti; kendisi de bir istatistikçi ve benim sağ kuyruğun bu kadar dışında kalmamı beklemiyordu). Yine de bu olay tanının konmasından sonraki ilk büyük kahkahamı sağladı bana. Bir düşünün, neredeyse Mark Twain’in yazdığı tüm satırların en ünlüsünü tekrar etmem gerekecekti: Ölümümü duyuran ilanlar fazlasıyla abartılıdır. http://docs.google.com/a/evrimcalismagrubu.org/File?id=dg9339gg_39fqnqf5fk_b [1] Stephen Jay Gould, bu başlıkla Kanadalı iletişim kuramcısı Marshal McLuhan’ın medya formlarının, taşınan mesajdan ya da içerikten daha önemli olduğunu anlatmak için kullandığı “Ortam Mesajın Kendisidir” (İngilizcesiyle The medium is the message) sözlerine gönderme yapıyor. İstatistiksel anlamı yazıda açıklanan medyan (İngilizcesiyle median) sözcüğü, yazarın gönderme yaptığı ifadede kullanılan medium sözcüğüyle aynı kökten geliyor. [2] Gould burada İngilizcenin en sevilen ve en sık alıntılanan şairlerinden Alexander Pope’un (1688 - 1744) ünlü bir dörtlüğüne (A little learning is a dangerous thing) gönderme yapıyor.

http://www.biyologlar.com/medyan-mesajin-kendisi-degildir

Bitki Patolojisi

Bitkilerde hastalığın oluşabilmesi için öncelikle bir patojenle veya abiotik bir faktörle bitkinin karşı karşıya gelmesi gerekir. Bu karşılaşma anında yada sonrasında çevre koşullan uygun değilse; çok soğuk, çok sıcak ve kurak koşullarda hastalık etmeni canlı çoğalamayacağı için, hastalık oluşamaz. Hastalığın oluşabilmesi için bitkinin dispozisyonu uygun olmalı, bitki immun yani bağışık olmamalı, hastalık etmeninin virülensi yüksek olmalı, yani hipovirülent olmamalı ve çevre koşulları da hastalık oluşumuna uygun olmalıdır Bu üç faktörün etkileşimi bir üçgen halinde gösterilir ve buna "hastalık üçgeni" denir. Bu üç faktör ne kadar uygun olursa, hastalık o kadar şiddetli olur. 1. Hastalıkların Gelişim Devreleri Bitkilerde hastalığın oluşumu belirli evrelerde gerçekleşir. Bu olaylar zincirine "hastalık çemberi" denir. Hastalık çemberi bazen patojenin hayat çemberine bağlı olarak gelişir. Hastalık çemberindeki başlıca olaylar; inokulasyon, penetrasyon, enfeksiyon, inkubasyon ve fruktifikasyon 'dur. "inokulasyon" herhangi bir patojenin konukçu bitkiye temasıdır. Konukçu dokuları üzerine ulaşarak bitki ile temasa geçen patojenlere veya patojenlere ait spor, misel parçası gibi parçacıklara "inokulum" denir, inokulum, konukçu üzerinde çimlenerek enfeksiyonu başlatır. Bakteri, mikoplasma, virüs ve viroidlerde inokulum mikroorganizmanın tamamıdır; fakat, funguslarda bir spor, misel parçası, sklerot gibi çimlenerek fungusu oluşturabilecek herhangi bir yapıl olabilir, inokulum çeşitli çevresel faktörler yardımıyla taşınarak konukçu bitkiye ulaşır. Bitki yüzeyine ulaşan inokulumun bitki dokuları içine girmesine F "penetrasyon" denir. Patojenlerin bitki dokuları içine girişi yaralardan, doğal açıklıklardan veya doğrudan doğruya epidermisten olabilir. Bazen penetrasyonda vektörler rol oynayabilir. Penetrasyon mutlaka enfeksiyonlaI sonuçlanmaz. Konukçu bitki dayanikhysa, penetrasyon gerçekleşse bile bitki hastalanmayabilir, patojen hastalığı oluşturamadan ölür. Penetrasyondan sonra patojenin hassas konukçu hücre ve dokularına ulaşarak burada beslenmeye başlamasına ve gelişerek çoğalmasına "enfeksiyon" denir. Başarılı enfeksiyonlar konukçu dokularında belirtilerin ortaya çıkmasına neden olur. Ancak bazı enfeksiyonlarda bir süre belirti oluşmayabilir. Bu süre "latent dönem" olarak adlandırılır. Birçok hastalıkta belirtiler inokulasyondan birkaç gün veya birkaç hafta sonra oluşmaktadır. * Bazen bu süre birkaç yıl kadar da sürebilmektedir. İnokulasyondan feelirtilerin ortaya çıkmasına kadar geçen bu süreye "inkubasyon dönemi" denir. Enfeksiyondan sonra patojen konukçu dokularına veya organlarına yayılarak gelişmeye devam eder. Bazı patojenler hücreler arasında, bazıları hücre içinde, bazıları da iletim demetlerinde çoğalır ve yayılırlar. Birçok enfeksiyon lokaldir; yani, patojen konukçunun bir yada birkaç hücresinde veya bitki üzerindeki küçük bir alanda etkili olur. Bazı enfeksiyonlar ise sistemiktir; yani, patojen girdiği noktadan bitkinin tüm hassas hücre ve dokularına yayılır. Enfeksiyonlar sonucunda patojenlerin bitki dokuları içinde gelişerek, eşeyli veya eşeysiz çoğalma yapılarını oluşturmalarına "fruktifikasyon" veya "sporulasyon" denir. Koşullar hastalık oluşumuna uygun devam ettiği sürece hastalık çemberi tekrarlanır. Koşullar uygunsuz hale gelince patojenler dayanıklı yapılarını oluşturarak bitki artıklarında veya toprakta canlılıklarını sürdürür ve ertesi yıla bu şekilde geçerler. Patojenlerden bazıları hastalık çemberini bir yılda (monocyclic), bazıları birkaç yılda (polyetic) tamamlayabilir. Bazı hastalık etmenleri ise bir yıl içinde birkaç döl verebilir, defalarca hastalık çemberini tekrarlar ve inokulum miktarlarını kat kat artırırlar (polycyclic). 2. Patojenlerin Hastalık Oluşturma Mekanizmaları Tüm canlılar gibi bitkiler de hücrelerden oluşurlar. Çevreleri ile temasta olan yüzeyleri; köklerin epidermis hücrelerinde ve yaprak parankima hücrelerinin hücreler arası boşluklarında selülozdan, toprak üstü kısımlarında ise epidermis duvarını kaplayan kutikuladan ibarettir. Özellikle genç dokularda kutikulanın dışında mum tabakası bulunur. Patojenler bitki hücrelerini istila edebilmek için öncelikle bu dış tabakayı aşmak zorundadırlar. Funguslar ve parazit bitkiler genellikle appressorium oluşturarak mekanik bir basınçla kutikulayı ve hücre duvarını aşarlar. Fakat yine de patojenlerin bitki bünyesi içindeki faaliyetleri esasen kimyasaldır. Bitkilerde hastalıkların oluşumunda patojenler tarafından salgılanan enzim, toksin, büyüme düzenleyicisi ve polisakkaritlerin önemli rolleri vardır. Yumuşak çürüklüklerde enzimler, tütünlerde vahşi ateş hastalığında toksinler, kök uru oluşumunda ise büyüme düzenleyicileri yani hormonlar rol oynar Patojenlerden sadece virüsler ve viroidler bu maddeleri salgılayamazlar. Fakat bunlar, bitki hücrelerinde doğal olarak oluşan bazı maddelerin, bitkilere zarar verecek düzeyde salgılanmasını teşvik ederler. Enzimler bitki hücrelerindeki yapı maddelerini eritir, hücredeki ana gıda maddelerini parçalar yada doğrudan protoplasti etkileyerek işlevini engellerler. Toksinler doğrudan protoplasmayı etkiler, stoplasma zarının geçirgenliğini ve fonksiyonunu bozarlar. Hormonlar hücre bölünmesi yada hücre boyutları üzerinde etkili olurlar. Polisakkaritler ise sadece iletim demeti hastalıklarında rol oynar, su ve mineral maddelerin taşınmasını etkileyerek zararlı olurlar. 3. Bitkilerdeki Savunma Mekanizmaları Bitkiler patojenlerin saldırısına karşı kendilerini savunurlar. Savunmada bitkinin yapısal özellikleri yada bitki bünyesinde gerçekleşen biyokimyasal reaksiyonlar rol oynar. Savunma mekanizmalarının bir kısmı bitkide doğal olarak bulunur, bazıları ise patojenle temastan sonra oluşturulur. Bitkilerde doğal olarak bulunan savunma mekanizmalarından ilkini bitkinin yüzeysel yapısı oluşturmaktadır. Epidermis üzerinde mum tabakasının veya tüylerin olup olmaması yada bunların yoğunluğu, kütikulanın kalınlığı, stomaların açık kalma süresi, sayıları ve yapıları, bitkilerdeki morfolojik dayanıklılık unsurlarından bazılarıdır. Bitkilerde doğal olarak bulunan bazı kimyasal bileşiklerin de savunmada önemli rolleri vardır. Bir bitki türünde bazı kimyasal maddelerin bulunup bulunmaması yada bunların miktarları, bitkinin patojenlere karşı dayanıklı veya duyarlı olmasında etkili olur. Örneğin konukçuda polisakkarit, protein veya glikoprotein (lektin) yapısında maddelerin bulunması, patojenlerin konukçu bitkiyi tanıyarak appressorium yada enzimlerini oluşturmasını sağlar. Bitki bünyesinde patojenlerin gelişebilmesi için gerekli besin maddelerinin olup olmaması ve bunların konsantrasyonları da hastalık oluşumunda önem taşımaktadır. Bitkilerde doğal olarak bulunan ve patojenlerin gelişmesini önleyen kimyasal maddeler arasında, fenolik bileşikler ve taninler sayılabilir. Bunlar genç yaprak ve meyve hücrelerinde yüksek konsantrasyonlarda bulunan bileşiklerdir. Patojenlerin pektolitik enzimlerinin işlevini önleyerek etkili olurlar. Bitki dokuları yaşlandıkça hücrelerin içerdiği inhibitör madde miktarı ve buna bağlı olarak dayanıklılık azalır. Ayrıca bitkilerde bulunan bazı enzimler (glukanaz, kitinaz) patojenlerin hücre duvarının yapısını bozmak suretiyle savunmada rol oynarlar. Bitki bünyesinde doğal olarak bulunan savunma yapılarına ve kimyasal bileşiklere rağmen, bazı patojenler konukçularına penetrasyonu gerçekleştirerek değişik seviyelerde enfeksiyona neden olurlar Bitkilerde ise enfeksiyondan sonra, yani bitki patojen saldırısına uğradıktan sonra değişik savunma mekanizmaları devreye girer. Patojenin geliştiği bitki hücrelerinin yakınındaki hücrelerde birtakım değişiklikler ortaya çıkar. Bu hücrelerde dokusal savunma yapıları oluşur. Bazı bitkilerde enfeksiyon noktasının hemen ilerisinde, patojen tarafından salgılanan maddelerin teşvikiyle, birkaç tabaka halinde mantar hücreleri meydana getirilir. Mantar tabakası patojenin ve onun oluşturduğu zararlı bileşiklerin ilerideki sağlıklı hücrelere ulaşmasını önlemektedir. Ayrıca sağlıklı hücrelerden patojenin bulunduğu kısma besin maddelerinin geçişini de engelleyerek onun besinsiz kalmasına neden olur. Bazen, özellikle sert çekirdekli meyve ağaçlarının genç, gelişmekte olan yapraklarında, enfeksiyondan sonra, enfekte olan hücrelerin etrafında ayırıcı doku oluşturulur. Bunun sonucunda lekeli kısım koparak uzaklaşır. Böylece patojen uzaklaştırılarak yaprakların diğer kısımları sağlıklı kalmış olur. Enfeksiyondan sonra oluşan savunma yapılarından biri de bitkilerin iletim demetlerinde içe doğru meydana gelen ve "tylose" adı verilen çıkıntılardır. Bunlar iletim demetine komşu parankima hücrelerinin protoplastlarının aşırı büyümesi sonucu oluşur ve iletim demetini tamamen tıkayabilirler. Böylece patojen burayı aşıp yukarı doğru ilerleyemez. Enfeksiyondan sonra çok hızlı bir şekilde tylose oluşturan bitkiler solgunluk hastalıklarına dayanıklı olurlar. Bazı bitkiler ise enfeksiyondan sonra, zarar gören dokuların çevresine zamk salgılarlar. Zamk salgısı enfeksiyon noktasının etrafındaki hücrelerin içini ve hücreler arası boşlukları doldurarak, patojenin aşamayacağı bir engel oluşturur. Bitkilerde enfeksiyondan sonra hücresel bazı değişiklikler de söz konusudur. Patojenle karşılaşan parankima hücrelerinin duvarlarının dış tabakası şişkinleşir, hücre duvarı kalınlaşır veya yine hücre duvarının iç yüzeyinde "papilla" denilen çıkıntılar oluşur. Bunlar bazen appresoriumun hücre içine girişini önleyerek penetrasyonu geciktirirler. Bitki hücrelerinin protoplazmasının yoğunlaşarak tanecikli bir yapı kazanması özellikle fungal patojenlerin misellerinin hücre içinde gelişmesini önler. Patojenle karşı karşıya geldikten sonra bitkilerde ortaya çıkan savunma mekanizmalarından biri de aşırı duyarlılık reaksiyonudur (hypersensitive reaksiyon). Patojen hücre duvarından girdikten sonra hücre çekirdeğinin ve protoplazmasının yapısı hızlı bir şekilde bozularak hücre ölür. Böylece patojenin orada gelişerek çevredeki hücreleri etkilemesi önlenmiş olur. Patojenle karşılaştıktan sonra bitki bünyesinde bazı kimyasal bileşiklerin oluşması veya normalde bulunan bazı bileşiklerin miktarlarının artması, savunmada önemli rol oynar. Enfeksiyondan sonra birçok bitkide klorogenik asit, kafeik asit, skopoletin gibi fenolik bileşiklerin miktarlarının arttığı belirlenmiştir. Bunlar patojen enzim ve toksinlerinin işlevini önler, yüksek konsantrasyonları ise patojenlere toksik etki yapar. Daha önce bitkide bulunmayan, enfeksiyondan sonra oluşan ve patojenlere toksik etki yapan kimyasal bileşiklere ise "fitoaleksin" denir. Bunlar patojenlerin bitkiye girişinden sonra, kimyasal yada mekanik zararın başlangıcında oluşurlar. Patojenlerin hücre duvarında bulunan glukan, kitosan, glikoprotein ve polisakkaritler, bitkilerde fitoaleksin oluşumunu teşvik ederler. Fitoaleksinler, oluştukları bitki türüne göre isimlendirilmişlerdir, örnek olarak, fasulye bitkilerinde oluşan phaseolin, bezelyelerde pisatin ve pamukta gossypol verilebilir.

http://www.biyologlar.com/bitki-patolojisi

Jerry Coyne "Doymak Bilmeyen Cehalet ve Bağnazlık: Akıllı Tasarım Evrime Karşı"

İsmail K. Sağlam: Röportaja sizin çalışma konunuz ile başlayalım isterseniz. Büyük oranda türleşme ve türleşme genetiği çalışmaktasınız. Bize bu alan hakkında kısaca bir bilgi verebilir misiniz? Bu konunun neden evrimsel biyolojinin temel taşlarında biri olduğunu, ne tür sorulara cevap aradığını ve ne tür ufuklar açtığını bizlere özetleyebilir misiniz? Jerry Coyne: Bu oldukça kapsamlı bir soru. Ben türlerin kökeni üzerine çalışmaktayım. Bu aynı zamanda Darwin’in kitabının başlığının da ortaya koyduğu, fakat türün ne olduğunu bilmediği için çözemediği ilkin problemin ta kendisidir. Türün ne olduğu ancak 1930’larda veya 1940’larda anlaşılmaya başlanmıştır. Son 50 yıl içerisinde türlerin doğada bir birlerinden ayrı ayrı yer alan gerçek varlıklar olduğunu anladık. Biyoçeşitliliğin en önemli konularından biri, neden çok sayıda farklı türün olduğunun yanında, farklı olan türlerin neden farklı olduklarını ortaya koymaktır. Kısacası bizler, nasıl olup da doğada bir birinden ayrı yaşam formlarının olduğu ve bunların nasıl oluştukları ile ilgileniyoruz. Biz özellikle bu konun genetiği ile ilgileniyoruz yani yeni bir tür ortaya çıkarken ne türlü genetik değişikliklerin gerçekleştiğini ortaya koymaya çalışyoruz. Sadece bir kaç değişiklik mi, yoksa daha çok sayıda değişiklik mi var? Bu değişiklikler büyük etkiye sahip genlerden mi yoksa küçük etkiye sahip genlerden mi ortaya çıkıyor? Bu genler DNA’nın veya kromozomların hangi bölgesinde yer alıyor? Türleşme genetiği kesinlikle evrimsel teorinin vazgeçilmez kısımlarından biridir çünkü ne de olsa Darwin’in kitabının başlığı “Türlerin Kökeni Hakkında” idi. İnsanlar bu soru üzerinde yıllardır uğraşmaktadırlar ve evrim içerisinde çözülmemiş olan veya şimdileri yarı-çözülmüş olan büyük problemlerden biridir. Bu konuda iyi yol katetmekteyiz. Artık üreme izolasyonuna (yani türler arası genetik yalıtıma) yol açan genlerden bazılarını bulmuş durumdayız. Bu konun çok önemli olduğu açıktır çünkü yeni türlerin nasıl ortaya çıktığını anlamadan biyoçeşitliliğin nasıl ortaya çıktığının yanlızca bir kısmını anlayabiliriz. Dolayısıyla bu konu genetik, ekoloji ve evrim konularıyla sıkı sıkaya bağlıdır. İKS: Bilimsel sorulara devam edelim isterseniz. Bu soru sizin son zamanlarda evo-devo’cular ile yaşadığınız tartışmalar üzerine. Evo-devo üzerine yazmış olduğunuz son makaleniz oldukça tepki çekmiş durumda. Dolayısıyla bizlere evo-devo’nın ne olduğu ve evo-devo ile ilgili problemlerin neler oldukları hakkında kısaca bilgi verebilir misiniz? JC: Problem kısmından başlamak her halde daha iyi olacaktır. Evrimsel biyolojideki veya gelişim biyolojisindeki en temel problemlerden biri genlerin kendilerini vücuda, davranışlara veya organizmların gözlemleyebileceğimiz özelliklerine nasıl dönüştürdükleri ile ilgilidir. Artık bir çok türün DNA’sını sekanslıyabiliyoruz, onların davranışlarını veya bir çok farklı karakterlerini ve özelliklerini gözlemleyebiliyoruz. Fakat DNA’nın bu gelişimin gerçekleşmesi için neleri nasıl kodladığı, bir DNA sekansının bir organizma haline nasıl geldiği halen büyük oranda bilinmemektedir. Bu evrimsel biyolojinin çözümlenmemiş en büyük problemlerinden biridir. Evo-devo, kendi araştırma alanını, gelişimin evrim tarafından nasıl şekillendiğini gösteren mekanizmaları ortaya koymak olarak belirlemiştir. Yani ne türlü DNA değişiklikleri organizmalarda ne türlü farklılaşmalara yol açmaktadır sorusunu cevaplamaya çalışır. Dolayısıyla evo-devo evrimsel biyoloji ile gelişimsel biyolojinin bir tür birleşimi gibidir. Fakat kendi başına bir teoriye sahip değildir. Yani evrim teorisi veya doğal seçilim teorisi gibi değildir daha çok DNA sekanslarının nasıl davranışsal özelliklere dönüştüklerini bulmakla uğraşan veri toplama uğraşıdır. İKS: Şimdi daha sosyal içerikli sorulara geçelim. Şu anda dünyaya kıyasla yaratılışçıların A.B.D’deki durumları nedir? JC: A.B.D’ye bakarsak yaratılışçılar çok sağlam bir yumruk yemiş bir boksör gibiler, kan kaybediyorlar fakat bir sonraki round için geleceklerini biliyoruz. Son olarak iki yıl önce Pensilvanyada, yaratılışçılığın bir türü olan Akıllı Tasarım, mahkeme kararıyla dinsel veya yarı-dinsel teori olarak engellenmiştir. Dolayısıyla yaratılışçılığın yeni bir biçimi olan Akıllı Tasarım büyük bir yara almıştır. Fakat bunlar dindar insanlar olduklarından, hatta aşırı derecede radikal Hristiyan Amerikalılar olduklarından, hiç bir zaman mücadeleyi bırakmıyacaklardır ve tekrar geri dönecekleri kesindir. Dolayısıyla şu anda yaratlışçılığın hangi yeni şekliyle karşımıza çıkacağını bekliyoruz. Ne olacağına dair de oldukça meraklıyız çünkü Akıllı Tasarımla yaratılışçılığı dinden olabileceği kadar uzaklaştırmış olmalarına rağmen yinede mahkemede kaybettiler. Dünya’ya baktığımızda, evrim konusunda bilinçlenme konusunda Amerika ve Türkiye listenin en dibinde yer almaktadır. Bunun çok onur verici bir durum olduğu söylenemez. Ben Amerika’da insanların fikirlerini değiştirebilmek için elimden geleni yapıyorum ve Türkiye’de bulunma sebeblerimden bir tanesi de bu zaten. Fakat insanlar evrimi dini inançlarından dolayı redettikleri sürece bu konuda yol almak oldukça zor olacaktır. İKS: Bu konuya devam ederek daha geniş kapsamlı bir soru sorulabilir. Yaratışçıların arkasında çok büyük maddi ve sosyal destek olduğu bilinmektedir. Dünya genelinde baktığımızda bu durumun laiklik için bir sorun teşkil ettiğini düşünüyor musunuz? ABD’de çok büyük bir sorun oluşturmasa da Türkiye gibi ülkelerde soruna neden olabilir mi? JC: Bu durum birbirini takip eden iki denklemden oluşur. Herşeyden önce evrimin reddedilmesi çok büyük bir sosyal problem doğuracaktır. Ve evet, bu reddediş bilimin ve genel olarak bilimsel metodların reddedilmesi anlamına gelir. Yaratılışçılar doğaüstü güçlerin bilimin bir parçası haline gelmesini istiyorlar. Şu sıralarda ABD’deki çekişme büyük oranda bunun üzerinedir. Kazanabileceklerini zannetmiyorum, ancak yine de almakta oldukları önemli maddi destek sayesinde gelişme kaydediyorlar. Sağcılar tarafından sağlanan oldukça büyük bir maddi destekleri var. Gelişme kaydetme konusuna gelince, belki de gelişmekten söz etmek doğru değil ama yine de sürekli bir tehlike oluşturuyorlar; çünkü insanlar vazgeçmezler. Eğer biyoloji derslerimizde yaratılışçılığa yer verirsek o zaman tıp derslerimize de ruhani tedavi yöntemlerini dahil etmeliyiz. Aynı mantıkla astronomi ve psikoloji sınıflarında astroloji öğretmeye başlayabiliriz. Bu şekilde insanlar tarafından anlaşılamayan herhangi bir şey bilimde geçerli bir konu olarak algılanmaya başlanacaktır. Sanırım yaratılışçılığın yol açabileceği en büyük tehdit budur. Ülkeler ileri gidebilmek için gelişmiş teknoloji ve bilime bağımlıdır. Eğer evrimi sınıflarda öğretmekten vazgeçersek ve inançların bilimin önünde yer alabilmesine izin verirsek bu durum kesinlikle teknolojiyi ve teknolojik gelişimi engelleyecektir. Bence bu büyük bir tehlikedir ve sanırım bu tehlike Türkiye’de ABD’den daha büyüktür. Emin değilim ama bana öyle geliyor ki buradaki hükümetin dinle olan etkileşimi ABD’dekinden daha fazla. İKS: Son zamanlarda Richard Dawkins, Daniel Dennet ve Sam Harris gibi yazarların kitapları sonucunda oldukça geniş kesimlere yayılmış bir din eleştirisi söz konusu. Bu gibi yazarlar dinsel düşünceyi çok açık bir şekilde eleştirirken aynı zamanda dini ideolojilerin ne kadar tehlikeli olabileceğini ve insanların artık dinsel düşünceden ve onun iddialarından kurtulmaları gerektiğini belirtmektedir. Yakın zamanda bu gibi konuları ele alan Beyond Belief (İnancın Ötesinde) adlı ve oldukça geniş katılımlı iki sempozyum düzenlendi. Görünen o ki bilim adamları din ve dinsel düşünceye karşı yaklaşımlarında ikiye ayrılmış durumda. Bir grup artık dinin açık ve net bir şekilde reddedilmesi gerektiğini savunurken öbür grup din ve dinsel düşünceye karşı yöneltilen eleştirinin daha büyük bir saygı ve dikkat çerçevesinde yapılması gerektiğini belirtiyor. Allen Orr, yakın zamanda Dawkins ve Dennet gibi yazarlara eleştiri mayetinde “Mission to Convert” (Dinsizleştirme Misyonu) adlı bir makale yayınlamıştır. Sizin bu konudaki duruşunuz nedir? JC: Allen benim öğrencimdi, dolayısıyla onu çok sert bir şekilde eleştirmek istemiyorum. Fakat kişisel görüşüme göre eleştirileri biraz fazla sertti. Dennet, Dawkins, Hitchens ve bunlar gibi yazarlar son derece ayrımcı ateistler olarak inanılırlıklarına belli ölçüde zarar vermiş durumdalar. Fakat bunun yanında konuya daha geniş bir perspektiften baktığımızda büyük bir sosyal gelişmenin gerçekleşmekte olduğunu görmekteyiz. Yukarıda bahsi geçen kişiler ve onlar gibiler artık ateist olduklarını ve dinin kötü bir güç olduğunu belirtmekten korkmuyorlar. Buna ek olarak bu insanlar tarafından yazılan kitapların her birinin büyük miktarlarda satıyor olması (her biri bestseller olmuştur) insanların bu konu hakkında okumak istediklerini gösterir. Açık konuşmak gerekirse Dawkins, Dennet gibi insanlara katılıyor; dünyada din olmamasının daha iyi olacağını düşünüyorum. Din büyük oranda zararlı bir etkiye sahiptir. Elbette iyi tarafları da vardır. Örneğin din insanlara teselli duygusu verir ve dindar insanlar iyi şeyler yaparlar. Benim iddiam aynı insanların din olmasa da iyilik yapacakları idi. Bunun yanında bir çok insan dinden dolayı kötü şeyler yapmaktadır. Kanımca bu insanlar din olmasaydı bu kötülükleri yapmazlardı. Fakat insanlara dinlerini bırakmalarını söylemenin çok etkili bir strateji olduğunu düşünmüyorum. Böyle bir nedenle dinini bırakan çok fazla kişi de tanımadım. Buna karşın insanların dinleri sorgulayabildikleri bir ortam yaratmanın etkili olduğunu düşünüyorum. Türkiye’ye geldiğimden beri birkaç kişi bana gelerek büyük bir ikilem içinde olduklarını, çocukluklarından beri dindar olmak üzere eğitilmiş olmalarına rağmen artık bunu sorgulamaya başladıklarını ve dinlerini bırakma durumuna geldiklerini söyledi. Kanımca sadece dini değil herhangi bir otoriter düşünceyi özgür bir şekilde sorgulayabilme şansınızın olduğu bir ortamda yer almak sadece iyi sonuçlar doğurabilir. İKS: Sizin de içinde olduğunuz The Edge: The Third Culture (Sınır: Üçüncü Kültür) adlı bir oluşum var. Bu oluşumun amacı hem bilimsel düşünceyi hem de yeni bir felsefeyi yaygınlaştırmaktır. The Edge’in ne olduğu ve nasıl kurulduğu hakkında bize bilgi verebilir misiniz? Sizce Türkiye gibi ülkelerde de The Edge gibi topluluklar kurulmalı mıdır? JC: Üçüncü Kültür, bilimin büyük bir rol üstlendiği yeni bir kültür biçimidir. Aslında resmi bir topluluk olmayıp benim de aralarında bulunduğum Pinker, Dennet ve Dawkins gibi bir çok bilim insanının yayın temsilciliğini yapan John Brockman tarafından kurulan bir internet sitesidir. Bilim insanlarının katılımına açık ve görüşlerinizi belirtip tartışmalara katılabileceğiniz bir çevrimiçi yayın alanı. Çok etkileyici ve kamçılayıcı tartışmaların yapıldığı bir site olduğunu söyleyebilirim. İlk başta, kurucuları tarafından yüksek bilimsel tartışmaların gerçekleştirildiği bir platform olarak adlandırılan bir gruba katılma konusunda çekincelerim vardı. Ama sonradan orada yürütülen tartışmaların son derece ilgi çekici ve büyüleyici olduğunun farkına vardım. Dolayısıyla son derece iyi bir site. Kanımca bilimin ilerlemesi hakkında bilgi edinmek isteyen herhangi birinin takip etmesi ve okuması gereken bir site. Evrimci mi, fizikçi mi veya kimyacı mı olduğunuz hiç önemli değil, tek kelimeyle yararlı bir ortam. Türkiye’nin buna benzer bir tartışma ortamından yarar sağlayacı kesin. Ama bunun olabilmesi için insanları organize edebilen karizmatik birine ihtiyacınız var. Bu oluşumda, Brockman’ın insanların yayın temsilciliğini yaptığı gerçeği önemli bir konu. Brockman, insanların kitaplarının yayınlanmasına ve para kazanmalarına aracılık eden kişi. Yani Brockman sizden bir konuda yazı hazırlayıp fikirlerinizi belirtmenizi rica ettiğinde onu yazarsınız (gülüşmeler). Kısacası insanların katkı yapması için arkalarında hafif bir kamçının varlığı önemli. Böyle olmakla beraber bu site oldukça iyi bir site. Türkiye’den de bu şekilde bir organizasyonu yapacak birilerinin çıkmasının çok yararlı olacağı kesin. İKS: Son olarak genç bilim insanlarına öğütleriniz nelerdir? Sizce örnek bir bilim insanı nasıl olmalıdır? Sadece araştırma yapan biri mi olmalıdır yoksa içinde bulunduğu toplumunun sosyal problemlerine de eğilmeli midir? JC: Tavsiyem, bilim insanı Türkiye’den, Amerika’dan veya herhangi bir başka ülkeden de olsa aynı olacaktır. Bilimin amacı tüm dünyada aynıdır; bilim doğayı anlamak için verilen uğraştır. Dolayısıyla genç bilim insanlarına ilk önerim çok çalışmaları olacaktır. Çünkü ne kadar zeki olursanız olun çok çalışmadan hiçbir yere varamazsınız. Ne kadar çok çalışırsanız o kadar başarılı olursunuz. Hatta bu ikisi arasında neredeyse bire bir bir orantı vardır. Açık fikirli olun ve ister bilimde ister başka konularda olsun ortaya konan fikirleri sorgulamaktan çekinmeyin. Bilim insanlarının eleştirsel bir düşünce yapısına sahip olmasının iyi bir tutum olduğunu düşünüyorum. Bilimsel hususların yanında sosyal husuları da göz önünde tutmanın genel olarak hayatı yaşamanın iyi bir yolu olduğunu düşünüyorum. Bu sizi her zaman mutlu bir insan yapmayabilir, fakat size topluma yaptığınız katkı bakımından yardımcı olabilir. Bilim aslında sevdiğiniz şeyleri yaptığınız bir iş olduğundan –benim için olduğu gibi– bir çok bilim insanı için iş olmaktan çok bir zevktir. Dolayısıyla istediğimiz işi yapmak için para almaktayız. Bundan dolayı diğer işlere oranla bilim çok farklı bir konumdadır. Bilimin finansmanının toplum tarafından yapıldığı düşünülürse bilim insanların bu bakımdan topluma bir borcu olduğuna inanıyorum. Ben bundan dolayı bir çok yere giderek sürekli yaratılışçılık hakkında seminerler vererek topluma olan borcumu ödemeye çalışıyorum. Toplum her zaman bu borcumu ödememin şeklini sevmeyebilir, ama sevdiğiniz işi yapmak için para kazandığınız bir duruma geldiğinizde ya genç bilim insanlarına yardımcı olarak ya da daha genelde sosyal konularda fikir belirterek bir katkı yapmaya çalışmalısınız. Fakat burada, birikiminizin çalışmakta olduğunuz uzmanlık alanında olduğunu unutmamalısınız. Ben kendimi toplum karşısında genetik ve evrim gibi konularda konuşma yetkisine sahip yeterli derece uzman biri olarak düşünmekteyim. Fakat ekonomi veya savaş ve barış gibi diğer konulara gelindiğinde bilim insanlarının bu konularda konuşurken diğer insanlara oranla daha yetkili veya üstün olmadıkları unutulmamalıdır. Bu kadarı yeterli olacaktır herhalde. Kaynak:evrimcalismagrubu.org/

http://www.biyologlar.com/jerry-coyne-doymak-bilmeyen-cehalet-ve-bagnazlik-akilli-tasarim-evrime-karsi

Patojenik Mantarların Immunolojisi

Mantarlardan ileri gelen infeksiyonlarda vücut, mantar elementlerine karşı immunolojik bir yanıt verir. Bu cevap, bakteriyel antijenlere oranla zayıf olmakla beraber, kendini humoral ve sellüler tarzda belli eder. Mantar elementlerinin vücuda girmesi ile lenfoid sisteme ait retikuloendotelyal sistem (RES) aktivite kazanır veya uyarılır. Hücresel veya sıvısal yanıtın derecesi ve bunlardan birine ait öncelik sırası, infeksiyonun türüne göre değişir. Bazı hastalıklarda ilk önce deri duyarlılığı oluşur ve bunu deri testleri ile ortaya koymak mümkün olabilir. Diğer bazı hastalıklarda da humoral yanıt önce belirir. Mantar hastalıklarında oluşan antikorları saptamak için,mikrobiyolojide kullanılan yöntemler, aynen burada da uygulanır. Bu reaksiyonlar, genellikle, sistemik mantar infeksiyonlarında daha fazla kullanma alanına sahiptir. Aglütinasyon reaksiyonu mantar infeksiyonlarında çok az kullanılır. Komplement fikzasyon testi ise, yararlanılan ve güvenilen bir serolojik yöntemdir. Bu reaksiyondan, özellikle, sistemik infeksiyonların teşhisinde faydalanılır. Komplementi fikze eden antikorlar presipitinlerden sonra ortaya çıkarlar ve IgG karakterinde olup kanda uzun süre kalabilirler. İnfeksiyonun şiddeti artıkça, bu teste ait titre de yüksek bir düzeye ulaşır ve hastalık süresince teşhise yardımcı olur. Titrenin yüksek olması prognozun iyi olmadığına bir kanıt sayılabilir (Örn. İnsanlarda, Coccidioidomycosisde). Presipitasyon reaksiyonu, bu yöntem genellikle, IgM karakterinde olan antikorları (presipitinleri) saptamada işe yarar. Bir çok mantar hastalıklarında, presipitinler erken oluşurlar ve 3 hafta kadar yüksek titrede kalırlar. İmmunfluoresans testi, özellikle, H. capsulatum, Candida türleri, C. neoformans, S. schenckii, B. dermatitidis gibi sistemik infeksiyonlara neden olan mantarların saptanmasında kullanılan önemli ve yararlı bir yöntemdir. İmmundiffusyon tekniği de mantarlar arasındaki ortak antijenik komponentlerin saptanmasında kullanılmaktadır. Ancak, bu durum testin spesifitesini azaltıcı role sahiptir. C. neoformans ve B. dermatitidis 'e ait komponentler genellikle zayıf olduğundan, vücuttaki immunojenik uyarımı da düşük olmakta ve oluşan antikorları saptamada güçlükler çekilmektedir. Ayrıca, teşhisin çok önemli olduğu infeksiyonun başlangıcını tespit etmekte, oluşan antikorların yetersizliği nedeniyle, olanaksızdır. Bakteriyel ve viral infeksiyonların teşhisinde çok kullanılan ELİSA mantar hastalıklarının tanımında çok sınırlı kullanılmaktadır. Mantarlardan etkin bir antijen hazırlamak ve bunları standardize etmek de oldukça zordur. Özellikle, patojenik dimorfik mantarların, vücuttaki parazitik formları ile in vitro formları arasında oldukça farklı morfolojik ve antijenik ayrılıklar vardır. H. capsulatum 'un h-antijeni, aktif infeksiyon hallerinde antikor oluşturmasına karşın, m-antijeni ise daha ziyade latent infeksiyonlarda antikor meydana getirmektedir. Diğer bir antijenik faktör olan, c-antijeni ise spesifik olmayan bir karakter gösterir ve bir çok mantarlarda da ortaktır. Bu mantara ait olan diğer antijenik komponentler de n.y ve x olarak identifiye edilmiştir. Histoplasma üzerinde yapılan antijenik analiz çalışmalarında 7 antijenik fraksiyonun da, özellikle, h- ve m- antijenlerinde toplandığı ortaya konulmuştur. Son yıllarda, Cryptococcosisli hastaların kanında ve serebrospinal sıvılarında antikor aramaktan ziyade, bu mantara ait antijenlerin varlığını ortaya konan yöntemlerin geliştirilmesi üzerinde durulmaktadır. H. capsulatum ve C. immitis' den ileri gelen infeksiyonlarda dokularda bulunan mantar elementlerinin antijenik komponentleri özellikle, mantar hücre duvarlarında lokalize olmuşlardır. Bileşiminde lipid, polisakkarid, protein ve kitin gibi substanslar vardır. Blastomycosis olgularında presipitasyonla saptanan antikorlar ancak %50 oranında aktif infeksiyonu gösterdiği bildirilmektedir. Coccidioidomycosisde komplement fikzasyonla veya immundiffusyonla ortaya konan antikorlar ise, infeksiyonun şiddetini ifade eder. Yaygın infeksiyon olgularında kanda yüksek titrede antikor bulunmasına karşın, tek veya ekstrapulmoner lezyon olguların antikor titresi daha düşüktür. Candida türlerinde immunelektroforez yöntemi ile 5 antijenik grup ayrılmış olup, bunların esasını protein ve polisakkaridler oluşturmaktadır. S. schenckii’nin tüm hücresi kullanılarak hazırlanan antijenle yapılan aglütinasyon ve komplement fikzasyon yöntemleri, sonuçları bakımından birbirlerine paralellik gösterdiği açıklanmıştır. Mucor, Aspergillus ve Nocardia türleri vücutta çok az bir immunolojik uyarım meydana getirirler. Dermatofitlerin indirekt teşhislerinde de serolojik yöntemler, genellikle, sınırlı kalmaktadırlar. Çünkü, bu mantarlara ait elementlerin vücuttaki humoral yanıtları, aynı antijenik komponentlerin, sellüler reaksiyonlarından daha az olmaktadır. Mantar hastalıklarında hücresel bağışıklık (sellüler immunite) teşhis de büyük kolaylıklar sağlar. Bu türlü yanıtta, T-hücreleri önemli görev yaparlar. T-lenfositlerinin başlıca 5 görevi bulunmaktadır :1-Geciken türde kutan aşırı duyarlılık (tüberkülin, histoplasmin, coccidiodin, vs.), 2-Patojenik mantarlara (ve viruslara) karşı savunma, 3-Allograft reddi ve bununla ilişkili reaksiyonlar, 4-Tümörlerin kontrol altına alınmaları ve 5- Hücresel savunmada etkin role sahiptirler (lenfokin sentezi). T-hücreleri tarafından meydana getirilen substanslara, mediatör veya lenfokin adı verilmektedir. Eğer, T-hücrelerinin fonksiyonlarına mani olunursa mantar infeksiyonları, özellikle, Candidiasis, Aspergillosis, Cryptcoccosis, Phycomycosis, olguları fazlaca görülmektedir. Dermatomycosis ve sistemik infeksiyonlarda, hastaların derisinde duyarlılık meydana gelir. Bu durum deri testi ile ortaya konabilmektedir. Bu amaçla, mantarlardan hazırlanan çeşitli allergenler veya antijenler (trichofitin, coccidiodin, blastomycin, histoplasmin, sporothricin, oidiomycin, vs) kullanılmaktadır. Bazı mantar infeksiyonlarında deri testlerinde kros reaksiyonlara rastlanmaktadır. Ayrıca, bazılarında da (özellikle bazı dermatofitlerde, E. floccosum, M. audouinii, T. schoenleinii, T. rubrum vs. gibi) sensitizan karakter, daha zayıf olmaktadır. Deri testini yapabilmek için, mantarlardan özel yöntemlerle hazırlanan, saflaştırılan ve standardize edilmiş allergenler, deri içine 0.1 ml. miktarında şırınga edilir. Pozitif reaksiyonlar da şırınga yerinde 1 cm. çapına kadar değişebilen büyüklükte ve halka biçiminde kızarıklık meydana gelir. Reaksiyon bazen çok çabuk (bir kaç dakika içinde) bazen de geç 24-48 saat içinde (nadiren bir haftaya kadar) oluşur. İnsanlarda klinik olarak bir infeksiyonun saptanamadığı olgularda, deri testleri pozitif çıkabilmektedirler. Bu durum, vücudun, daha önceden mantarla temasa geldiğini ve deride duyarlılığın kaldığını göstermektedir. Mantar infeksiyonlarından bağışıklıkla korunmada bazı aşılar hazırlanmış ve denenmiştir. Ancak aşıları hazırlama tekniklerinin farklılığı yanı sıra bunların standardize edilmeleri de önemli güçlükler yaratmaktadır. Aşılar genellikle, öldürülmüş (60 oC. de 2 saat tutularak) misellerin fizyolojik su içinde ezilmesi ile hazırlanan ve homojenize edilen süspansiyonlarıdır. Maya benzeri koloni oluşturan mantarlardan veya dimorfik mantarların maya benzeri kolonilerinden de aşılar hazırlanır ve kullanılabilir. Bu aşıların sterilite kontrolleri yapıldıktan sonra, içine konservatif olarak %0.5 fenol,%0.3 trikresol veya mertiolet 1/10.000 oranında katılır. Ancak, şimdiye dek, infeksiyondan koruyabilecek bir aşı geliştirilememiş veya pratiğe konamamıştır. Serolojik ve Alerjik Testler Mantar hastalıklarının teşhisinde serolojik testler, bakteriyel ve viral infeksiyonlardaki kullanma alanı kadar pek yaygın olmayıp çok sınırlıdır. Hatta çoğu zaman kullanılmamaktadır. Kutan Mikozesler Dermatofitlerin teşhisinde, serolojik (aglütinasyon, komplement fikzasyon, presipitasyon, ve diğerleri) ve alerjik testler genellikle kullanılmaktadır. Dermatofitler zayıf immunojenik veya immunostimulan etkiye sahiptirler. Ancak, alerjik özelliği olduklarından deri testlerinde yararlar sağlamaktadırlar. Subkutan ve Sistemik Mikozesler Rhinosporidiosis : İnsan ve hayvanlardaki Rhinosporidiosis infeksiyonlarında serolojik ve alerjik testlerden yararlanılamamaktadır. Sporotrichosis: Laboratuar hayvanlarında yapılan deneysel infeksiyonlarda çok zayıf bir antikor düzeyine rastlanır. Bu antikorlar, komplement fikzasyon, aglütinasyon ve presipitasyon teknikleriyle ortaya konabilmektedir. Evcil hayvanlardaki doğal infeksiyonlardaki antikor durumu hakkında yeterli bilgiler yoktur. Presipitasyon testinin, bu infeksiyonda daha duyarlı olduğu bildirilmiştir. Ancak, diğer bazı mantarlarda kros reaksiyon vermesi testin duyarlılığını azaltır. İnsanlarda doğal infeksiyonlarda, yukarıda anılan antikorlar oluşur. Ancak, deride lokalize olan olgularda bu antikorlar diagnostik düzeyin altındadır veya hiç meydana gelmezler. Serolojik testler içinde fluoresens antikor, latex aglütinasyon ve agar-jel diffusyon tekniklerinden yararlanılmaktadır. S. schenckii’nin maya formundan ısıtılarak elde edilen deri testi antijeni (sporotricin) insanlarda teşhis için kullanılmaktadır. Aspergillosis: Bu infeksiyonun teşhisinde immunodiffusyon ve komplement fikzasyon testleri uygulanabilir. Blastomycosis: İnsanlarda serolojik testler, Histoplasmosis ve Coccidioidomycosis de olduğu kadar pek güvenilir değildir. Komplement fikzasyon testi infeksiyonun başlangıcında negatif olmasına karşın zamanla titre yükselmesi ile test de pozitif çalışır. İyileşme olduktan sonra antikorlar kaybolur. Yüksek komplement fikzasyon titresi ve negatif deri testi prognozun iyi olmadığını gösterir. Immunodifusyon testi çok duyarlıdır. Bu test, Histoplasmosis ile de kros reaksiyon verir. Kültür filtratlarından elde edilen allergen (Blastomycin) insanlarda deri testinde kullanılır. Köpeklerde, Blastomycosis infeksiyonlarında, komplement fikzasyon testinden yararlanılmaktadır. Ancak, test çok spesifik olmasına karşın, bu testle pozitif reaksiyon veren serumlar Histoplasmosis ve Coccidioidomycosis ile de daha düşük titrede olsa bile, kros reaksiyon vermektedirler. Diğer serolojik testler (aglütinasyon, presipitasyon, agar gel diffusyon, vs.) daha az kullanılır. B. dermatitidis ’in sentetik ortamlarda üretilmesi sonu elde edilen filtrat (Blastomycin) deri testi için kullanılır. Bu allergen, Histoplasmin ve Coccidiodin kadar spesifik değildir. Candidiasis: Bu hastalıkta, insanlarda, immunodifusyon, aglütinasyon, latex aglütinasyon, fluoresens antikor ve presipitasyon testleri ile etkenden elde edilen allergen (Oidiomycin) deri testlerinde kullanılabilir. Latex aglütinasyon testi, Cryptococcosis ve Tuberculosisli hasta serumlarıyla kros reaksiyon verebilir. Coccidioidomycosis: İnsanlarda Coccidioidomycosisin teşhisinde, komplement fikzasyon, latex aglütinasyon ve presipitasyon testlerinden yararlanıldığı gibi deri testinde de coccidiodin de kullanılabilir. Cryptococcosis : İnsanlarda infeksiyonun teşhisinde, daha ziyade indirekt fluoresens antikor yöntemi ve daha az olarak komplement fikzasyon ve aglütinasyon tekniği kullanılır. Ayrıca, deri testi için, Coccidioidinden yararlar sağlanabilir. Ancak bu son test, Histoplasmosis ve Blastomycosisli hastalarda da pozitif çalışır. Histoplasmosis : Komplement fikzasyon reaksiyonu antijeni (maya ve miselyal form dan hazırlanan) ve latex aglütinasyon testi, insanlarda Histoplasmosis de kullanılabilir. Nocardiosis : İnsanlarda da, serolojik testlerden ziyade, mikroorganizmadan elde edilen allergen (Nocardin) deri testlerinde yararlanılmaktadır. Kültürlerin Muhafazası Kültürlerin muhafazası, mantarların makro-ve mikro morfolojik özelliklerinin korunmasında büyük yararlar sağlar. Bunun için başlıca yöntemler kısaca şöyledir: 1- Kültürlerin oda ısısında muhafazası: Bu yöntem zaman alıcı ve biraz da masraflı olmaktadır. Kültürlerin 2-3 ayda bir pasajı yapılarak devam ettirilir. Subkültürler tüplerde yapılır ve pasaj için, koloninin tipik yerlerinden seçilir. Ancak, uzun süre subkültürler pleomorfizme neden olabilir. Tüplerin ağzı parafin ile kapatılarak kurumaları önlenir. İyi bir üreme elde edildikten sonra, tüpler bir kutu veya tel sepete konarak oda ısısında ve belli özel yerlerde muhafaza edilirler. Bazı araştırıcılar, besi yerinin her pasajda değişimini uygun görmekte ve örneğin, önce A ortamı kullanılmışsa sonra B vasatı, sonra tekrar A besi yeri ve B ortamı kullanmanın mantarları daha iyi durumda tuttuğunu bildirmektedirler. 2- Soğukta muhafaza: Üremiş kültürler 5-10° C. arasındaki özel yerlerde muhafaza edilebilirler. Bu ısıda kuruma azdır ve kültürlerin 3-4 ay aralıkla pasajı yapılabilir. Dermatofitler bu ısıya uzun süre dayanmasına karşın bazı türler (E. flocosum, M. aoudouinii, T. schoenlenii, T. violaceum) için uygun olmayabilir. 3- Dondurarak muhafaza: Dondurma, dermatofitlerin en iyi muhafaza yöntemidir. Tüplerde üretilen 10-14 günlük kültürler üzerine yağsız süt veya % 5-7 DMSO katarak -20°C. veya daha düşük ısıda muhafaza edilirler. 4- Suda muhafaza: İçinde 5-10 ml. steril fizyolojik su veya distile su bulunan tüplere kültür parçası (sporlu) konarak ağzı pamuk veya mantarla kapatılarak oda ısısında veya buzdolabında muhafaza edilebilir. Pasajlar yapılmadan önce, canlılık kontrolleri yapılır ve canlı olanlar subkültür için kullanılır. Bu yöntemin pleomorfizmi önlediği bildirilmektedir. 5- Kültürlerin mineral yağ tabakası altında muhafazası: Tüplerde üremiş kültürlerin üzerine, kaplayacak derecede, sterilize edilmiş (otoklavda 120oC'de 45 dakika) mineral yağ ilave edilir. Böyle hazırlanan kültürler oda ısısında bir kaç yıl saklanabilirler. Bazen yağ tabakası altında üremeye de rastlanabilir. Sıvı parafin de bu amaç için kullanılabilir. 6- Liyofilizasyon: Bu yöntem de çok fazla kullanılmaktadır. Bu amaçla yağsız sütten (%10) yararlanılır. İçinde mantar üremiş tüplere 5 ml. miktarında konarak, steril bir öze ile mantar süt içinde süspansiyon yapılır. Bu süspansiyondan ampullere 1 veya 2 ml. kadar taksim edilir. Ampuller hemen -25°C' deki alkol içine daldırılarak dondurulurlar. Sonra, hemen, vakumla havaları alınır ve liyofilize edilir. Ampullerin iyi kapatılıp kapatılmadığı veya içinde hava olup olmadığı özel aletle kontrol edilir. Her türden 9-10 ampul hazırlanır. Liyofilizasyonun sonunda bir tanesi açılarak kontrol edilir. Kontrolde üreme varsa, diğerleri oda ısısında muhafaza edilebilirler. 7- Steril toprakta muhafaza: İçinde steril toprak bulunan tüp veya şişelere mantar süspansiyonları katılarak buz dolabında muhafaza edilebilirler. Bu teknik yaygın kullanılmamaktadır. 8- Sıvı nitrojende muhafaza: Gliserin (%10) için de suspansiyonları yapılan mantarlar 190oC' de muhafaza edilebilirler. Mikofajik Böceklerin Kontrolü Bu böcekler laboratuarlara toprak veya infekte marazi maddelerle getirilirler. Bu böcekler, genellikle, mantar yiyen cinse, Tarsonemusa aittirler. Boyları 1 mm. kadardır. Tüplerin pamuğunu delerek içeri girer ve kültürleri yerler. Bunların yumurtaları da pasajlarla nakledildiği için, subkültürler devamlı kontamine çıkarlar. Önerilen bazı akarisidler (paradiklor benzen, dikloro etan, vs.) hem insan ve hem de mantar için zararlıdırlar. Bu amaçla aşağıdaki önlemler alınır : 1- Sabouraud dekstroz agara ,%0.01 oranında Lindan tozu karıştırılarak besi yeri hazırlanır. Sonra, mantarlar ekilir. Lindan böcekleri öldürür. Veya, 2- Böcekli kültürler timol buharına tutulur. Bunun için, dip tarafından timol kristalleri bulunan bir kaba kontamine kültürler konur ve kabın ağzı iyice kapatılır. Timol buharı hem ergin böcekleri ve hem de yumurtalarını öldürür. Timol buharları insan için (temas veya buhar) toksik değildir. 3- Tüplerin ağzına konan pamuk tıkacın dışta kalan kısmına alkol (%96) 500 ml.+ Su 450 ml. + HgCL2 10 g+ gliserin 50 ml. den ibaret karışımdan bir kaç damla konur. Bu solüsyon böcekleri öldürür. Bu yöntem de çok kullanılmaktadır. Kaynak : Temel Mikrobiyoloji

http://www.biyologlar.com/patojenik-mantarlarin-immunolojisi

Klonlama Nedir? Nasıl Yapılır

Klonlama günümüzde embriyoların veya herhangi bir organizmanın kopyalanması ile aynı anlamda kullanılmaktadır. Ancak klonlama sadece bir embriyonun veya organizmanın benzeşik ikizinin yaratılması değil aynı zamanda özgün bir DNA parçasının da çoğaltılması anlamına gelmektedir. Bir organizmanın kopyalanması ilk defa 1972 yıllnda İngiliz bilim adamları tarafından yapılmıştır. Bu çalışmada kurbağa embriyosu hücrelerinin çekirdeği, döllenmemiş kurbağa yumurtalarının içine yerleştirilmesiyle kurbağa elde edilmiştir. Ancak, bu kurbağaların çok yaşamadan öldükleri görüldü. Klonlama ile ilgili tekniklerde anlatıldığı şekilde, 1993 yılında ABD'li bilim adamları embriyoları ikiye bölerek aynı genetik yapıya sahip ikizler oluşturmuşlardır. Bu embriyolar 32 hücreli safhaya gelene kadar yetiştirildikten sonra imha edilmiştir. Memeli bir hayvanın kopyalanması ise 1996 yılında Dr. Ian Willmut ve arkadaşları tarafından İskoçya Roslin enstitüsünde gerçekleşmişir. Dolly adı verilen koyunun İskoçya, Roslin Enstitüsünde kopyalanmasıyla birlikte klonlama tüm dünyada büyük yankılar uyandırmış, etik ve moral açıdan da son derece tartışılır hale gelmiştir. İzleyen yıllarda, Hawaii Üniversitesinde çalışan bilim adamları tarafından fare kopyalandığı bildirilmiştir. Benzer şekilde, Bir Amerikan biyoteknoloji firması 2001 yılında, yumurta çekirdeğinin yetişkin bir insan hücresinin çekirdeğiyle değiştirilmesiyle insan embriyosu klonlandığını ancak klonlaman bu embriyoların kısa sürede öldüğü bildirdi. Aynı yıl Teksas A&M Üniversitesi bilim adamları tarafından ilk kedi kopyalanmıştır. İzleyen yıllarda, hiçbir kanıt gösterilmeksizin insan klonladığı ve kopya bebeğin doğduğu iddia edilmiştir. Ancak, etik açıdan daha önce de sorun yaşayan ve bilim adamı niteliği tartışılan bu kişileri hiçbir bilim adamı ciddiye almamıştır. 2004 yılında Güney Koreli bilim adamları insan embriyosunu klonladıkarını bu embriyoların blastosist aşamasına kadar geldiğini ve sadece 1 tanesinden kök hücre elde edildiğini bildirdiler. Kopyalama işlemi ya embriyonik dönemde bir kök hücre veya farklılaşmasını tamamen tamamlamış bir vücut hücresi kullanılarak yapılabilir. Birinci durumda ancak embriyo kopyalama olasılığı söz konusudur. İkinci durumda ise yetişkin bir organizmadan alınan hücre kullanılarak Dolly örneğinde olduğu gibi yetişkin bir organizma kopyalanabilir. Embriyoların kopyalanması esnasında içi boşaltılan bir yumurta hücresi ile embriyonik kök hücre kaynaştırılır. Boşaltılan yumurtanın çekirdeği dışarı alınır. Benzer şekilde yetişkin bir organizma kopyalanırken de çekirdeği çıkartılmış bu yumurta ile vücudun herhangi bir yerinden alınan hücre kaynaştırılmaktadır. Bilim adamları yakın bir zamana kadar vücuttan alınan yetişkin hücrelerin bir embriyo gibi davranamayacağını düşünmekteydi. Ancak, Dolly'nin üretilmesiyle birlikte yumurtanın içeriğinde bulunan bazı moleküllerin bu tür bir hücrenin de üremeyle ilgili genleri uyarabileceğini ve bu hücrenin de bir embriyo gibi davranmasını sağladığı anlaşılmıştır. Erken dönemde (3-5 günlük )embriyo biyopsisi. Elde edilen blastomer pratikte implantasyon öncesi (preimplantasyon) genetik tanı amacıyla (PGD) kullanılmaktadır). T-Totipotent embriyonik kök hücreler (blastomer) embriyonun kopyalanmasında da kullanılabilir. Embriyonik kök hücreleri embriyoyu parçalayarak elde etme olanağı vardır (immun cerrahi). Elde edilen ikiz hücrelerle yeni kopya embriyolar üretilebilir. Dolly kopyalanırken boşaltılmış yumurta içerisine yerleştirilen bu hücre hayvanın meme başından alınmıştır. Dolly'nin kopyalanmasının amacı özel bir türün devamlılığını sağlamaktır. Doll içerdiği genetik yapı nedeniyle özel bir cinstir. Bu şekilde genetik yapısı değiştirilerek üretilen hayvanlara transgenik hayvanlar denilmektedir. Bu hayvanlar özel proteinlerin elde edildiği bir tür biyolojik makine gibi kullanılmaktadır. Aynı zamanda, tıpta bu tür hayvanlar genlerin işlevlerinin ve hastalıkların nedenlerinin anlaşılmasında ve buna bağlı olarak yeni tedavilerin geliştirmesi amacıyla da kullanılmaktadır. Bu amaçla transgenik fareler çeşitli araştırma merkezlerinde üretilmektedir. Günümüzde yetişkin bir organizmanın kopyalanabilmesi kuramsal olarak tedaviye yönelik (terapötik) klonlama denilen bir tekniğin de tartışılmasına yol açmıştır. Bu teknik, boşaltılmış bir yumurta içerisine yerleştirilen vücut hücresinin meydana getirdiği bir embriyonun totipotent kök hücrelerininin tedavi amacıyla kullanılmasıdır. Bu hücreler hasta bireyden alınan bir hücreden kaynaklandıkları için, herhangi bir uyumsuzluğa neden olmayacakları gibi embriyonik kök hücrelerin bütün avantajlarına da sahiptirler. Aynı embriyo Dolly örneğinde olduğu gibi tedavi amacıyla kullanılmayıp taşıyıcı bir anneye nakledildiğinde bu hücrenin alındığı organizma kopyalanmış olacaktır. Tedaviye yönelik kopyalama bir canlı konumuna sahip olan embriyoların kullanılması nedeniyle etik ve moral açıdan tartışmalara yol açmaktadır. Embriyonik kök hücrelerden yumurta elde edilebilmesi konusundaki son gelişmeler bu tartışmaları azaltabilir, ancak tamamen önleyemeyeceği de bir gerçektir.

http://www.biyologlar.com/klonlama-nedir-nasil-yapilir

Mikroorganizmaların Sınıflandırılması ve İsimlendirilmesi

Mikroorganizmaların Sınıflandırılması ve İsimlendirilmesi

1675 Yılında Anton Van Leewenhoek(layvenhuk)’un mikroskobu keşfiyle, mikroorganizmalar bulunmuştur. Mikroorganizmalar ancak bu keşiften sonra incelenmeye başlanabilmiştir.

http://www.biyologlar.com/mikroorganizmalarin-siniflandirilmasi-ve-isimlendirilmesi

 
3WTURK CMS v6.03WTURK CMS v6.0