Biyolojiye gercekci yaklasimin tek adresi.

Arama Sonuçları..

Toplam 225 kayıt bulundu.

Türkiye’deki önemli bitki alanları tehdit altında

11 bin tür bitkiye ev sahipliği yapan Anadolu, zenginliğiyle, tropikal kuşaktaki ülkelerle yarışıyor. Ancak, Türkiye’deki 122 önemli bitki alanından 114’ünün (yüzde 94’ü) tehdit altında olduğu belirlendi. Tehdidin en önemli nedenleri ise yoğun zirai faaliyetler, plansız yapılaşma, ormancılık çalışmaları, tarım alanlarının genişletilmesi ve sulak alanların kurutulması olarak sıralandı. Bilim adamlarının on yıldır konuyla ilgili olarak sürdürdüğü çalışmalar “Türkiye’nin 122 Önemli Bitki Alanı” kitabında bir araya getirildi. Çalışmalar sırasında daha önce dünyada varlığı bilinmeyen 5 yeni bitki türü de keşfedilirken, başka ülkelerde olduğu bilinen 20 türe de rastlandı. Kitabın yazarlarından Prof. Dr. Neriman Özhatay, Önemli Bitki Alanı (ÖBA) ve önemli kuş alanı (ÖKA) kavramlarının koruma statüsü olarak kabul edilmesini, yasal metinlere girmesini istedi. WWF-Türkiye, Doğal Hayatı Koruma Derneği, (DHKD) İstanbul Üniversitesi, Fauna&Flora International işbirliğiyle hazırlanan kitaba 20’ye yakın üniversiteden 40 akademisyen destek verdi. Öncelikle yedi coğrafi bölgede büyüklüğü Türkiye’nin yüzölçümünün yüzde 13’üne, (111 bin kilometrekare) ulaşan 122 alan tespit edildi. Bu alanların botanik, jeolojik ve doğa koruma durumları detaylı şekilde incelendi. Çalışmaların sonucunda ÖBA’lar doğa korumada öncelik durumlarına göre; “zarar görebilir”, “acil” ve “çok acil” olarak tanımlandı. Nadir bitki türlerinin tanıtıldığı kitapta, bu türlerin yüzde 83’ünün ÖBA’larda olduğu belirtildi. Çalışmalar sırasında bulunan ve bilim dünyası için yeni olan bitkilerin Latince isimleri şöyle: “Bellevalia mathewii, fritillaria byfieldii, fritillaria sibtharbiana, poa elsia minor, tulipa karamanica.” WWF Türkiye Genel Müdürü Filiz Demirayak, kitabın ülkemizin bitki envanterini çıkarmak açısından büyük önem taşıdığını kaydetti. ‘Çok acil’ tehdit tanımlı bitki alanlarından bazıları şunlar: Köyceğiz Gölü Ömerli Fundalıkları (İstanbul), Uludağ (Bursa) Kuzey Saros Kıyıları, Ergene Havzası, Ağaçlı ve Kilyos Kumulları, Batı İstanbul Meraları, Şile Kıyıları, Yeniçağa Gölü, Yukarı Gerede Vadisi, Çoruh Vadisi, Gölköy (Muğla), Dalaman Ovası, Sandras Dağı (Muğla), Acı Göl (Afyon), Antalya Falezleri, Lara Kumulları, Beyşehir Gölü, Seyhan ve Ceyhan Deltaları, Mogan Gölü (Ankara), Akşehir ve Eber Gölleri. Gürhan Savgı Ankara

http://www.biyologlar.com/turkiyedeki-onemli-bitki-alanlari-tehdit-altinda

Kök Hücre Çalışmaları Kanseri Ortadan Kaldırabilecek mi?

Kök Hücre Çalışmaları Kanseri Ortadan Kaldırabilecek mi?

Kanseri tedavi etmenin yolunun kanser kök hücrelerini yok etmekten geçtiğini belirten Anadolu Sağlık Merkezi İç hastalıkları ve Hematoloji Uzmanı Prof. Dr. Zafer Gülbaş, kanser hastalarında kök hücre uygulamalarıyla ilgili Medical Tribune’ün sorularını yanıtladı. MT: Kök hücre tedavisi ile ilgili yeni gelişmelerden bahsedebilir misiniz? Önceki yıllarda, kanseri dokudaki olgun hücrelerin yaptığını düşünüyorduk ama bugün kansere neden olan bir kök hücrenin var olduğunu biliyoruz. Kök hücre, kanserli hücreleri oluşturuyor ve bunlar çoğaldıkça hastalık ortaya çıkıyor. Kanseri tedavi etmek için birçok kemoterapi çeşidi, immünoterapi, radyoterapi ve cerrahi tedavi uygulandı.  Ancak kanserin birçok hastada tekrarlamasını önleyemiyoruz. Şu anki bilgilerimize göre kanseri tedavi etmenin yolu ise kanser kök hücresini yok etmekten geçiyor. Kanser kök hücresinin varlığını nasıl tanıyabileceğimiz ve nasıl ortadan kaldırabileceğimizle ilgili sorunun yanıtı aranıyor.  Bugün için en önemli konu bu. Dünyada birçok merkezde bu konu üzerinde çalışmalar yürütülüyor. Bütün kanser türlerinde kanser kök hücresinin olduğuna inanılıyor.  Johns Hopkins Üniversitesi Kemik İliği Programı Direktörü Prof. Dr. Richard Jones ve ekibi bu hipotezi miyeloma denilen hematolojik kanserde açıkladı. Richard Jones’un kanser kök hücre teorisinde  şöyle bir kuram kullanıyor. Yabani bir otu ne kadar çok temizlerseniz temizleyin eğer kökünü çıkarmıyorsanız bir süre sonra tekrar çıkacaktır. Kanser için de aynı durum sözkonusu olup, kök orada olduğu sürece kanser tekrar oluşuyor. Kanser kök hücresi önümüzdeki 5-10  yılın en çok çalışılacak konularından biri olup,  kanseri ortadan kaldırmanın belki de anahtarının yattığı konudur. MT: Kök hücrelerin kanser tedavisinde kullanıldığı alanlar hangileri? Hematopoetik kök hücre nakli dışında, kanser tedavisinde kanser kök hücresine karşı aşı üretme çalışmaları yeni bir alan. Oldukça ilgi çekici ve önümüzdeki süreçte yararlı olup olmadığını öğreneceğiz. Ayrıca kanser hücresine özgü T lenfositleri ve NK lenfositleri üretmek ve tedavide kullanmak ilgi çekici ümit verici gelişmeler. MT: Hematolojik kanserlerde kanser kök hücresini yok etmek mümkün mü? Hematolojik kanserlerde kemik iliği nakli yapmak için yüksek doz tedavi uygulandığında, hastanın kemik iliği bir daha üretim yapamaz hale geliyor. Bu da yüksek doz tedavilerin kök hücreyi ortadan kaldırabildiğini gösteriyor. Ancak yüksek doz tedavi her kanserde aynı sonucu vermiyor. Bu konuda yapılan çalışmalarda allojenik kök hücre nakliyle kanserli kök hücrenin ortadan kaldırılabileceğini gösteriyor. Yöntem, her kanser türünde aynı sonucu vermese de; özellikle lenfoma, lösemi gibi hematolojik kanserlerde kanser kök hücresinin ortadan kaldırılmasında etkili oluyor. MT: Şu an Türkiye’de kök hücre tedavisi hematolojik hastalıklarda yaygın kullanılıyor mu? Ülkemizde kök hücre nakli yapan birçok merkez var. Sağlık bakanlığı kök hücre naklinin yaygınlaşması ve hastaların bu tedaviden yararlanmasını sağlamak için önemli destek veriyor. Ancak her hastaya kök hücre nakli için uygun donör bulamıyoruz. Normalde biz kök hücre naklini HLA doku grubu uygun kişilerden yapıyoruz. HLA doku grubu uygun kişi bulma şansı kardeş sayısına göre değişmekle birlikte yüzde 25-50 civarında değişiyor. HLA doku grubu uygun donör bulunmadığında, donör bankalarına baş vuruyoruz ve %25 hastaya da bu şekilde çözüm buluyoruz. Bankada da bulmazsak hasta donörsüz kalıyor. Bu durumda yüzde 50 antijen uyumlu aile içindeki donörlerden haploidentik nakil yapabiliyoruz ve hastaların hemen hepsi allojenik nakil olma şansını yakalıyor. Böylece bu tedavi ile hastalıklarının ortadan kaldırılma şansı doğuyor. Johns Hopkins grubu ve İtalyan bilim adamları bu konuda çok çalışıyorlar. Ve elde ettikleri sonuçlara göre; doku uyumlu akraba dışı donörden yapılacak nakilde elde edilecek sonuç ile haplodentik  aile içi nakilin sonuçları benzer. Haplodentik nakil dediğimiz nakil bugün için donör bulunamayan hastalarda kemik iliği nakli yapılmasına imkan veriyor.    MT:Haploidentik nakilde başarıyı etkileyen faktörler nelerdir? Enfeksiyon ve graft versus horst hastalığı (GVHD) dediğimiz graftın alıcının organlarına karşı reaksiyon vermesidir. GVHD, donör hücrelerinin alıcının organlarını tanıyıp tahrip etmesidir. Donörün bağışıklık sistemi alıcıya yerleştikten sonra alıcının karaciğerine, cildine, barsaklarına, kemik iliğine zarar vermektedir. Bu zararı verdiğinde enfeksiyonlara  hastalar daha sık yakalanmaktadır. Hastaların ölümü, graft versus host hastalığından olduğu gibi  bazen hastalık tekrarından da  oluyor. Ama akraba dışı nakillerle bu tip nakilleri kıyasladığımızda ikisinin de başarı oranı benzerdir. Biz Anadolu Sağlık Merkezinde akrabadışı donör bulunamayan hastalara haploidentik nakil yapıyoruz. Sağlık Bakanlığı tüm organ nakillerini olduğu gibi kemik iliği nakline de önemli destek vermektedir. Bunlar zor nakiller. Bu nakli olanlara aile desteği de çok önemli. Anadolu Sağlık Merkezi’nde hastalarımıza bu olanağı sağlıyoruz. Anadolu Sağlık Merkezi Kemik İliği Ünitesi’nde son bir yıl içinde 166 nakil gerçekleştirdik, 21’i haploidentik nakildir. MT: Kemoterapi öncesi kök hücre saklama yönteminden bahsedebilir misiniz? Kemoterapi öncesi kök hücreler hastanın kendinden toplanacaksa, G-CSF dediğimiz ilacı tek başına 4-6 gün yada 1-3 günlük kemoterapi verip kemoterapi sonrası 7-10 gün cilt altı vererek kol kanından topluyor, sonra belirli solüsyonlarla karıştırarak otomatize alette adım adım dondurup saklıyoruz. Bu şekilde kök hücreleri güvenli olarak en az 5 yıl saklayabiliyoruz. Hastanın sağlıklı donoründen ise 4-6 gün G-CSF dediğimiz ilacı tek başına 4-6 gün cilt altı vererek kol kanından toplayarak donduruyoruz. Kol kanından toplama işlemini hücre ayırıcı denen cihazlarla yapıyoruz. Bu işleme kök hücre aferezi diyoruz. MT: Türkiye’nin kök hücre konusunda geldiği noktayı nasıl değerlendiriyorsunuz? Türkiye’de yeterli sayıda merkez var mı? Türkiye kemik iliği nakli konusunda uluslararası standartlarda başarılı işlemler gerçekleştiriliyor. Son 2-3 yılda nakil yapılan yıllık hasta sayısı, 800’lü değerlerden 2000’lerin üzerine  çıktı. Ancak halihazırda ülkemizde 1000-1500 hasta halen bu tedaviden yararlanamıyor. Merkezlerin aktivitesinin artması gerekiyor. Sağlık Bakanlığı bu konuda hastalarımızın yanında. Yeni yönerge  değişiklikleri  yapılarak kemik iliği nakli merkezlerinin kalite standartları da yükseltilmeye çalışılıyor. Kemik iliği naklinde,  nakil sonrası süreçte enfeksiyon riskinin olmaması başarıyı etkileyen en önemli unsurların başında geliyor. Bu nedenle yeni açılacak merkezlerde aranan kalite standartları daha da ağırlaştırılıyor.  http://www.medical-tribune.com.tr

http://www.biyologlar.com/kok-hucre-calismalari-kanseri-ortadan-kaldirabilecek-mi

Epitel Doku

Epitel dokusu, sıkıca biraraya gelmiş polihedral hücreler ile çok az hücrelerarası maddeden oluşur. Bu hücreler arasındaki bağlantılar güçlüdür. Böylece, oluşan hücresel tabakalar vücudun yüzeyini örter ve boşluklarını döşer. Epitel dokusunun başlıca görevleri: Yüzeyleri örtmek ve döşemek (deri) Emilim (barsaklar) Salgılama (bezlerin epitelyal hücreleri) Duyu algılama (nöroepitel) Kasılma (miyoepitelyal hücreler) Kökeni: Her 3 germ yaprağından da gelişir. Deriyi, ağız, burun ve anüsü döşeyen epitel ektodermal; solunum, sindirim sistemi ve sindirim sisteminin bezleri (pankreas ve karaciğer) endodermal; kan damarlarının endotel örtüsü mezodermal orijinlidir. Hücre şekli: Yüksek prizmatikten, kübiğe ve alçak yassıya kadar değişirken , boyutları da değişiktir. Çekirdeğin şekli çoğunlukla ve kabaca hücre şekline uyar. Bütün epitel hücreleri, altlarında bulunan bağ dokusu ile temas halindedir. Bunların bazal yüzeyindeki tabaka bazal lamina olarak isimlendirilir. Yalnızca elektron mikroskopta görülen bu tabaka ince fibrillerin oluşturduğu narin bir ağdan meydana gelen 20-100 nm kalınlığında yoğun bir tabaka olarak belirir ve lamina densa olarak adlandırılır. Lamina densa’nın yanısıra bazal laminadaki yoğun tabakanın tek ya da her iki yanında elektron-geçirgen tabakalar bulunabilir, bunlar lamina rara ya da lamina lusida olarak isimlendirilir. Bazal laminanın ana bileşenleri 1-Tip IV kollajen 2-Laminin (glikoprotein) 3-Heparan sülfat (proteoglikan) dır. Bazal lamina, altındaki bağ dokusuna tip VII kollajenle ve yüzeysel dermisin elastik elementlerinden olan mikrofibril demetleri ile tutunur. Bazal lamina yalnızca epitelyal dokularda değil, aynı zamanda bağ dokusu ile temas eden diğer hücre tiplerinde de bulunur. Bazal lamina, bağ dokusu ile diğer dokular arasında makromoleküllerin değiş – tokuşunu sınırlayan yada düzenleyen bir bariyer oluşturur. Hücrelerarası etkileşim için gerekli bilgileri de içerir. Bir diğer fonksiyonu ise epitelyal hücrelerin yerini ve hareketlerini düzenler. Bazal laminanın bileşenleri epitel, kas, yağ ve Schwan hücreleri tarafından salgılanır. Bazen retiküler lifler, bazal lamina ile sıkı bir ilişki içinde olan ve retiküler lamina adı verilen bir tabaka oluştururlar. Bu retiküler lifler, bağ dokusu hücreleri tarafından üretilirler. Bazal membran, akciğer alveolleri ve böbrek glomerüllerinde her iki epitel hücre tabakasına ait bazal laminaların kaynaşması ile oluşan, bu nedenle bazal laminadan daha kalın olan ve ışık mikroskobu ile görülebilen yapılardır. PAS + dir. Genellikle 2 bazal laminanın kaynaşması ile oluşabildiği gibi bazen bir bir bazal bir retiküler laminanın birleşmesi ile oluşur. Epitel Dokusunun İnnervasyonu: Epitel dokularının çoğu lamina propriadaki sinir pleksuslarından zengin duyu sinir sonlanmaları alır. Epitel Hücrelerinin Yenilenmesi: Epitel dokuları dayanıksız yapıdadır, hücreler mitotik aktivite ile devamlı olarak yenilenir. Yenilenme hızı ince bağırsakta süratli (2-5 gün), pankreasta yavaştır (50 günde bir). Çok katlı ve yalancı çok katlı epitelde mitoz, germinal tabakada meydana gelir. Metaplazi: Bazı fizyolojik ve patolojik şartlar altında bir epitel tipi değişime uğrayarak başka bir epitel tipine dönüşür. Polarite: Epitel hücrelerinin önemli bir özelliğidir. Vücut dışını veya vücut boşluğunu sınırlayan apikal yüzü ve bazal laminaya oturan, iç vücut yapılarına dönük bazal yüzeyi vardır. Kan damarları epitele girmediğinden bütün besinlerin lamina proprianın altında bulunan kapillerlerden çıkarak epitele geçmesi gerekir. Besinler ve epitelyal hücre ürünlerinin öncülleri, bazal laminadan diffüzyonla geçerek bazo-lateral yüzeylerinden genellikle de enerji gerektiren bir işlemle hücre içine alınır. Epitel hücrelerinin aktivitelerini etkileyen hormonlar, nörotransmitterler gibi kimyasal ulakların reseptörleri de bazo-lateral membranda toplanır. Absorbtif hücrelerde, apikal hücre membranı yapısındaki membran, proteinlerin yanısıra disakkaritler ve peptidazlar gibi enzimleri de içerir. Bu enzimler, emilen moleküllerin sindirimini tamamlar. Sıkı bağlantıların, çeşitli hücre membran bölgelerindeki esas membran proteinlerinin birbirine karışmasını önlemeye yardımcı olduğu düşünülmektedir.   Vücudun iç ve dış yüzeyini örter.Bunun 4 görevi vardır;Bulundukları organı dış etkilerden korumak,Salgı yapmak,Emmek, Mukus ve benzeri maddeleri iletmek.Epitel doku işlevine göre 2 grupta incelenir; 1.Örtü epiteli:Asıl görevi korumaktır.Ancak bazen emilim görevide yaparlar.Hücrelerinin sıralanışına göre Tek katlı ve Çok katlı olmak üzere ayrılırlar. A.Tek katlı epitel:Yan yana dizilmiş hücrelerden oluşur.Hücreleri yassı,kübik veya silindiriktir., a.Tek katlı yassı epitel: Akciğer alveolleri,kan damarlarının iç yüzü ve kılcal damarlarda bulunur. b.Tek katlı kübik epitel:Omurgalı böbreklerinde,tiroit bezinde bulunur. c.Tek katlı silindirik epitel:Omurgalının solunum yollarında,incebağırsakta bulunan silindirik epitel emme görevi yapar. B.Çok katlı epitel:Üst üste sıralanmış hücrelerden oluşur.Omugalıların derisinde bu doku vardır.Bu epitel dokuyu incelediğimizde en altta silindirik,ortada kübik,üstte ise yassı epitelden oluşmuştur.En üstteki epitel genellikle ölüdür.Bu ölü hücre alttaki canlı hücreleri dış etkilerden korur.Kan damarı içermez. 2.Salgı(Bez) epiteli;Salgı yapma yeteneğindeki hücrelerdir.Tükürük bezi,mide bezleri,ter bezleri,hipofiz,tiroit gibi salgı yapan organlarda bulunur.Hücre sayısına göre; A.Tek hücreli bezler ; Silindirik hücrelerden oluşur.Bunlara “goblet” hücresi denir.Toprak solucanının derisinden,sindirim kanalından,solunum organlarından salgılanan mukus buna örnektir. B.Çok hücreli bezler; Salgı yapan hücrelerin bir araya gelmesi ile oluşurlar.Salgılarını bir kanala ve buradan vücut boşluğuna veren bezlere ekzokrin(dış salgı) bezi denir.Tükrük bezi,mide ve bağırsak bezleri ile gözyaşı bezleri dış salgı bezleridir.Salgılarını doğrudan kana veren bezlere endokrin(iç salgı) bezi denir.Bunlar kanalsız bezlerdir.Salgılarına hormon denir.Hipofiz,tiroit,paratiroit,böbreküstü bezleri birer iç salgı bezidir

http://www.biyologlar.com/epitel-doku

KITALARIN VE KARA PARÇALARININ KONUMLANMASI İLE İLGİLİ GÖRÜŞ VE KURAMLAR

Mevcut hayvan yayılışının açıklanmasında Kararlılık, Köprüler ve Kıtaların kayma kuramı olmak üzere üç temel kuramdan yararlanılmıştır. Bunlar: 1. Kararlılık (Permanenz) Kuramı Dünyadaki kıtaların ve bununla ilgili olarak ana karaların ve deniz tabanlarının oluşumundan beri ufak abzı değişiklilikerin dışında durumunu ve konumunu koruduğu ve değişmediğini varsayılmıştır. Bu kuramın en önemli savunucularından olan Wallace (1876) zoocoğrafik yayılışın, göçler ve bugünkü kara ve su bağlantıları ile açıklamaya çalışır. Bu kurama destek veren Darlington (1957) geç ortaya çıkmış olan memeli hayvanların günümüzde bu yoları etkin biçimde kullandıklarını öne sürmüştür. 2. Kara Köprüleri Kuramı Bir çok canlı grubunun yayılışını bugünkü kıta konumlanması ile açıklamak oldukça zordur. Bu nedenle 1800 yılların başından itibaren kara köprülerinin kabul edilmesi eğilimi ortaya çıktı. Bu kurama göre; Dünyadaki büyük kıta ve kara parçaları arasındaki hayvan geçişinin dar bağlantılar, suların buz ve kar halinde yüksek dağ başlarına veya kutuplarda tutulması sonucunda deniz seviyesinin düşmesiyle oluşan kara köprüleri aracılığı ile gerçekleşmiş olduğunu ileri sürmektedir. Wallace bu kurama da destek vermiştir. Farbes (1846) İngiltere’nin ana kıta ile olan bir karasal bağlantı yoluyla faunalarının bezerliğini açıklamıştır. Hooker (1847) Avustralya ve Güney Amerika kıtaları arasındaki bağlantıyı, bir zamanlar var olduğu öne sürdüğü “ Transokyanusya” kara parçasına bağlamaktadır. Bununla ilgili çok sayıda kara köprüleri ile ilgili kuramlar ortaya konulmuştur. Çoğu bilim adamının vardığı önemli kurama göre, büyük kıtalar arasındaki geçiş, ya dar bağlantılarla ya da suların buz ve kar halinde yüksek dağların başına ve kutuplara yığılması sonucunda denizlerdeki su seviyesinin düşmesi ile oluşan kara köprüleri aracılığı ile sağlanmıştır. ( örneğin Bering boğazının Asya ile Kuzey Amerika arasındaki geçişi sağlaması gibi). Kara köprüleri ile İngiltere ile Avrupa, Asya ile Japonya arasındaki geçişler açıklanmıştır. Afrika ile Güney Amerika arasındaki köprü (Atlantis) bir varsayımdan öte geçmemiştir. Ana kıtalara yakın ve sığ sularda bulunan adalara geçişler, bu yaklaşımlarla kolay açıklanabilmektedir. Uçamayan kuşların kıtalardaki dağılımı kara köprüleri kuramlarına göre de tam açıklanamıyordu. Günümüzde yaşayan deve kuşlarının yapısal özellikleri, hepsinin ortak bir atadan türediğini göstermektedir. Bu kanatsız kuşların okyanuslardaki büyük mesafeleri aşması olanaksız görülmektedir. Kıtaların kayma kuramı bu soruna açıklık getirmiştir. Kara köprüleri kuramı bir açıdan da geçerli bir kuramdır. 2.1. Buzullaşmalar ve Kara Köprülerinin Oluşumu Buzul dönemlerinde, bugünkü buz birikiminin yaklaşık 3 katı daha fazla buz birikimi olmuştur. Buzla kaplı alanların miktarı, Antartika hariç, bugünkünün 13 katı daha fazlaydı. Buzulların ortalama kalınlığı yaklaşık 2 km civarındaydı. Kuzey yarımküre’deki buz miktarı , Güney Yarımküre’den kabaca iki kat fazlaydı Güneyde, buzullar Antartika kıtasının dışına taşmamıştı. Buna karşın Kuzey Amerika ve Avrasya’da, buzlar karalara büyük ölçüde yayılmıştı. İskandinavya’daki buzullar 48o enleme kadar inmişti. Kuzey Amerika’daki nemli iklim ve büyük miktardaki kar yağışı ise 37 o enleme kadar inmişti. Son buzul dönemindeki, buzulların yayılışı, hareketi ve konumlanması ayrıntılı olarak haritalanmıştır. Avrasyadaki buzlar bir çok yeri tamamen örtmüştü (İngiltere, Benelüks ve İskandinavya ülkeleri Almanya’nın önemli bir bölümü ve Sibirya gibi yerler buzlar altında kalmıştı). Buzulların yığılmasıyla birlikte, altlarında bulunan taşküre, dengeyi sağlayabilmek için, magmaya gömülmeye başlar ve buzul arası dönemlerde de tersi ortaya çıkar. Böylece kara parçaları bir duba gibi yükselir ve alçalır. Buzulların erimesiyle karaların yükselmesi yaklaşık 15 000 yıldan beri sürmektedir. Suların buz halinde kıtalara yığılması deniz seviyesinin düşmesine, erimesi ise yükselmesine neden olmuştur. Denizlerde yaşayan kabuklu hayvanların fosillerini kıyılardaki katmanlarda saptamak ve izlemek yoluyla su seviyesindeki değişmeler gözlemlenebilir. Genel bir kabul, buzul devirlerde, deniz düzeyinin bugünkünden 100-150 m’den daha fazla düştüğü yönündedir. Buzullar arası dönemlerde ise deniz düzeyi bugünkünden yaklaşık 20 m. daha fazla yükseldiği kabul edilmektedir. Böylece kara ve su köprülerinin oluşmasının yanı sıra, keza bitki ve hayvanlar için yaşam alanlarının genişlemesi veya kısıtlaması durumu ortaya çıkmıştır. Hem buzul arası dönemin sürmesi, hem de CO2 birikimi ile dünya atmosferinin normal seyrinden daha fazla ısınması, dünyadaki buzların erime sürecini hızlandırmıştır. Antartika ve Grönland’daki buzların erimesi, dünya denizlerinin 6 m. yükselmesine, bu da bir çok kıyı şeridi ile birlikte bugünkü liman şehirlerinin bir çoğunun su altında kalmasına neden olacaktır. Buzullaşma dönemine girseydik, deniz düzeyi en an 100 m düşeceği için, kıyılarda bir çok yeni toprak elde edilecekti. Buzul dönemlerinde bölgeler arasındaki sıcaklık farkları çok daha fazla olduğundan, meydana gelen rüzgarların miktarı, şiddeti ve yönleri bugünkülerden farklıydı. Pleistosen’de (kuaterner’in ilk dönemi, 1 milyon 800 bin yıl önce başlamış, 10 bin yıl öncesine kadar devam etmiş olan jeolojik bölüm) ortaya çıkan buzullaşmalar zoocoğrafya açısından oldukça önemlidir. Pleistosen’de belirgin olarak 4 buzul dönemi saptanmıştır. Her buzul döneminin arasında, sıcaklığın bugünkü gibi yüksek olduğu bir dönem vardır. Tropiklerde ve subtropiklerde kurak (arid) ve yağışlı (pluvial) iklimler birbirini izlemiştir. Zamanımız buzularası (interglasiyal) evredir. Pleistsende meydana gelen buzul dönemleri, dünyanın tümünü etkilemiştir. Tundra yapısında olan Holarktik bir çok canlı için yaşanamaz duruma gelmiştir. Tersiyer türlerinin bir kısmı tamamen ortadan kalkmış, bir kısmı güneye sığınmıştır. Doğu-Batı yönünde uzanan sıradağlar (Alpler, Toroslar, v.s), güneye olan göçü büyük ölçüde önlemiştir. Sonuç olarak Tersiyer’in tür zenginliği ortadan kalkmıştır. Bir çok tür refigiyum (=sığınak) denen uygun ortamlara sığınarak, tür ve alttür oluşumuna zemin hazırlamış ve buzularası dönemde bu refigiyumlar yeniden bir yayılma ya da gen merkezi olarak görev yapmıştır. Anadolu önemli bir refigiyum olarak buzul dönemleri sırasında hizmet vermiştir. Bu dönemde Avrupa’da Alp dağları ve diğer dağlar arasına sığınmış türlere arktik-alpin türler denir. Deniz canlıları da buzullardan etkilenmiştir (suların soğumasından dolayı). Akdeniz, bu dönemde sıcak seven türlerinin hemen hepsini yitirmiştir. Suların buz halinde karalara yığılası ile birbirine 100-150 m sığlıktaki denizlerle bağlanmış kara parçaları arasında kara köprüleri kurulmuş; kara canlıları için yeni yayılma yolları açılmış; fakat daha önce yalıtılmış olan bazı adalarda oluşmuş birçok tür de, ana kıtadan gelen yeni türlerle ortadan kaldırılmıştır. İç sular arasında da buzulların etkisiyle su köprüleri kurulmuştur. Buzul dönemlerinde güneye göç edenlerin bir kısmı, buzul arası dönemlerde tekrar kuzeye gelirken , bir kısmı da yüksek dağların başına çekilerek soğuk yerler aramıştır. Böylece yüksek dağların belirli yüksekliklerinde Arktik Relikt adı verilen bir çok canlı yerleşmiştir. Darwin bu konuda da araştırma yapmıştır. 2.2. Kara Köprüleri Canlıların yayılmasında önemli rol oynayan kara köprüleri iki şekilde oluşmuştur. Birincisi tektonik nedenlerle, yani kara parçalarının yükselmesi ile "Isostatic"; diğeri ise buzul devirlerde deniz düzeyinin düşmesi ile (bu sonuncular "Eustatic" diye adlandırılır) ortaya çıkar. BERİNG KANALI VE KÖPRÜSÜ Senozoyik'in sonlarına doğru Kuzey Amerika ile Avrasya arasında oluşmuş geniş bir kara köprüsüydü. Deniz seviyesinin 100 m. düşmesiyle yaklaşık Alaska'nın genişliğinde bir köprü oluşmuştur (HOPKİNS, 1967). İlave olarak iki kıta arasında Senozoyik boyunca, Miyosen'den sonra, kısa aralıklarla da olsa zaman zaman açılıp kapanan kıstaklar "İsthmus" oluşmuştu. Bu kıstaklar. Kuzey Yarımküre'de, geniş ölçüde buz kütlesi oluşmadan önce, büyük bir olasılıkla, yer hareketiyle oluşmuştu. Fakat esas fauna ve flora alışverişinin olduğu dönem, deniz düzeyinin, östatik (= eustatic= buzullaşma) nedenlerle düşmesi sonucu gerçekleşmiştir. Bu kara köprüsü yaklaşık 12.000 yıl açık kalmıştır. Bering Köprüsü, en azından Geç Pleistosen'de, boreal ormanlardan arınmış, yağış miktarı oransal olarak az olan, tundra ve çayırlık özelliğinde bir köprüydü. Böyle bir bitki örtüsü, ancak, steplerde ve tundralarda yaşamaya uyum yapmış memelilerin göçlerine olanak sağlamıştı. Bununla birlikte, birçok dönemde, iklim, büyük bir olasılıkla, bugünkü boreal iklimden fazla farklı değildi; çünkü Kuzey Pasifik akıntısı kısmen buraları ısıtıyordu. Buradaki iklim ve bitki örtüsü, her defasında, bir süzgeç gibi görev yaparak, ancak, bazı farklı hayvan türlerinin geçmesine izin vermiştir. Bu da Amerika ya da Asya kıtasında bulunan her hayvanın neden diğer kıtaya göç edemediğinin açık kanıtıdır. Bu geçişten en çok yararlananlar, boreal sıcaklıkta, birincil olarak otlayan (çayır, mera ve otlağa bağlı) hayvanlardır. İNGİLİZ KANALI Avrupa Kıtası'nı, Britanya Adaları'na bağlamıştır. Tabanı, Kuzey Denizi ile bağlantılıdır. Buzullaşma olduğu; fakat bizzat bu bölgeler buzullarla örtülmediği zaman, su düzeyinin düşmesiyle kara köprüsü oluşmuştur. İngiliz Kanalı, en azından onun dar bir kısmı. Pleistosen boyunca ya da büyük bir kısmında, hatta deniz düzeyinin yükseldiği buzularası dönemin bir kısmında, kıstak (köprü) özelliğini korumuştur. Bu değişim sırasında, birçok türün yanısıra, fil, gergedan, geyik ve su aygırınm geçtiğini kanıtlayan fosiller bulunmuştur. Bu kıstağın tamamen kapanması, M.Ö. 8000 yıllarında gerçekleşmiştir. İRLANDA KANALI Buzul dönemleri sırasında Weichsel Buzullaşması'na kadar, köprü özelliğini korumuştur. Memelilere dayalı kanıtlar bunu göstermektedir. Örneğin Weichsel Buzullaşması'yla ilişkili (ve daha sonraki dönemler için) hiçbir karasal memeli fosili İrlanda'da henüz bulunmamıştır. İngiltere ve İrlanda arasındaki dar köprü, M.Ö. 8000 yıllarında deniz düzeyinin yükselmesi ile (Flandrian Yükselmesi) kesilmiştir.

http://www.biyologlar.com/kitalarin-ve-kara-parcalarinin-konumlanmasi-ile-ilgili-gorus-ve-kuramlar

Darwin Neyi Öğretti

Darwin Türlerin Kökeni`ni yazdığı sıralarda insanlar, yeryüzünün ve canlıların geçmişte nasıl yaratılmışlarsa aynı biçimde hiç değişmeden var olmaya devam ettiklerine inanıyorlardı. Yüce bir irade dünyaya `ol` demişti ve o, en tamam haliyle oluvermişti. Bu değişmez doğa inancı insanlığı 19. yüzyıla kadar idare etti. Sonra Darwin`in kitabı çıktı ortaya. Tam da büyük altüst oluşlarla insanlığın makus talihinin değişmeye başladığı dönemdi. Ve Darwin`in Evrim Kuramı her şeyin gözünün önünde değiştiğini gören insan için, kendi çabasını anlamlandırabildiği bir çerçeve sundu. Bunu görenlerden biri de toplumsal hayatın ve ilişkilerdeki değişimin analizini yapan Marx ve Engels`ti; ve her ikisi de Evrim Kuramı`na büyük bir değer verdiler. İnsanın kendi doğal ve sosyal koşullarının ürünü olduğu, bu koşulların değişimiyle insanın ve toplumun da değişmeye başlayacağı fikri Darwin`in tezleriyle uyuşuyordu. Yani doğa gibi toplum da sürekli değişiyor, değişiyor ve evrim geçiriyordu. Darwin`in Türlerin Kökeni ve diğer kitapları bilim açısından da kökleşmiş bir anlayışı yıktı. Evrim Kuramı`nı oluşturmak için Galapaggos Adaları`nda yıllar süren bir araştırma ve gözlem yapan Darwin bilimin sınırlarını zorlamış; bir şeyi iddia edebilmek için kanıtlamanın zorlu yollarından geçmek gerektiğini göstermişti. Ve her şeyden önce, türlerin değişiminde doğal çevre koşullarının çok önemli bir faktör olduğuna yaptığı vurgu ile insana, içinde yaşadığı doğayla nasıl bir ilişki kurabileceği konusunda bir `anlayış` kazandırmıştı. Bugün Darwin`in 200. yılı dolayısıyla yaptığımız Forum`a yazarlarımız Darwin`i ve kuramını yazıyorlar. İyi hafta sonları. Evrim…bir temel diyalektik NURDAN İNAN (Prof. Dr. Mersin Üniversitesi) `Gerçek mücadele,ortamda olanaklar kısıtlanmaya başlayınca ortaya çıkar…` Charles Darwin 1809-1882 yıllarında yaşamış olan Charles Darwin, Teoloji(Din Bilim) ve Doğa bilimleri konusundaki eğitimini tamamladığında henüz 22 yaşındadır. Dönem, doğanın işleyiş düzeni hakkındaki tartışmaların dorukta olduğu, jeoloji ve biyoloji bilimlerinin çatısını oluşturan görüşlerin temellerinin atıldığı bir dönemdir. 23 yaşındaki genç Darwin, Güney Atlantik`te 5 yıl sürecek olan geniş kapsamlı bir harita araştırması için Beagle gemisinde görevlendirildiğinde, aslında kendisinden beklenen dini görüşleri destekleyen doğa gözlemleri yapmasıdır. Oysa Darwin, hem Charles Lyell`in, henüz I. cildi yayımlanmış olan `Preinciples of Geology` kitabında belirttiği gibi inorganik dünyanın sürekli değişerek, sabit kalmadığı, jeolojik süreçlerin günümüzde de aynen devam ettiği fikrinden; hem de dedesi Erasmus Darwin`in, kazanılmış karekterlerin yeni nesillere aktarılmasıyla türlerde ortaya çıkan değişikliği ayrıntısıyla ele aldığı ünlü eseri `Zoonomia` `dan etkilenmiş, doğa ve oradaki ilişkiler konusunda farklı bir bakış açısını çoktan yakalamıştır. Darwin`in özellikle Galapagos adalarında yaptığı doğa gözlemleriyle; yaşama ortamının koşulları ve sunduğu imkanlarla, yaşayan hayvan grupları arasındaki ilişki ve farklılaşmalar hakkında geliştirdiği öngörüleri, evrim düşüncesinin temelini oluşturmuştur. Şöyle ki, Dünyaya gelen canlıların sayısı çok, buna karşılık besin bulabilerek yaşamını sürdürebilecek olanların sayısı azdır. Bu yüzden canlılar arasında özellikle besin ve mekan kapma konusunda sürekli bir yarış vardır. Bu, ya öldürürsün ya ölürsün savaşıdır (struggle for survival). Yaşama ortamının koşullarına daha uygun donatılmış olanlar, yaşamı sürdürmede diğerlerine göre daha şanslıdırlar (survival of the fittest). Bu ilke, doğada zayıfın elendiği doğal ayıklanma (natural selection) ve ancak başarılı olanın yoluna devam ettiği doğal seçilim düşüncesinin de çekirdeğini oluşturmuştur. Sonraki kuşakları yaratabilecek olanlar yaşamını sürdürebilenler olup, bu sayede ancak başarılı olan değişimler (mutasyon) daha sonraki kuşaklara aktarılabilmiştir. Darwin, bu öngörülerle oluşturduğu evrim kuramında; doğal seçilim yoluyla genetik karekterlerin devamını sağlayan kalıtım, çeşitlilik ve seçilim olmak üzere üç temel bileşen ekseninde, bütün canlıların belli bir düzende tedrici olarak (gradual) evrileceğini ileri surer . Bu anlamıyla `Darwinist Evrim Kuramı` doğadaki canlı mekanizmasını, ortak bir atadan evrilerek, çeşitlenmeye dayandırarak, nesillerde uzun süreler boyunca yavaş, yavaş, fakat devamlı olarak meydana gelen değişikliklerin tümünü kapsayan bir `Tedrici= Gradual Evrim` modeli sunar. Darwin`in, zamanının hayvan ve bitki topluluklarındaki güncel gözlemlerine dayandırdığı evrim kuramında fosiller hiç yer almamıştır. Bu eksiklik, evrim karşıtları tarafından günümüzde de kullanılmaya çalışılsa da, fosil verilerle desteklenen `Sıçramalı=Kesintili Evrim Kuramı` evrimi şüphesiz olarak ortaya koymaktadır. Özellikle omurgalıların hem karasal ortamda fosilleşmelerinin ancak çok özel koşullarda gerçekleşebilecek olması, hem de mutant=ara form fosillerinin eksik olması nedeniyle evrim kuramına tam anlamıyla destek veremedikleri ileri sürülse de, fosil olabilmenin zaten çok büyük bir şansa bağlı olarak, fiziksel/ kimyasal pek çok koşulun birlikte hareket etmesiyle gerçekleşebildiği göz önüne alındığında, çok kısa ömürlü olan ara formların fosil olarak bulunmalarının ne kadar zor olduğu açıktır. Buna karşın, fosil kayıtlara göre; balıklar 480 milyon yıl once, amfibiler 365 milyon yıl önce, sürüngenler 340 milyon yıl once ve memeliler 210 milyon yıl once ortaya çıkmakta, böylece Darwin`in öngördüğü sıraya da açıkça destek vermektedir. Evrim kuramı; sadece organizmalar bakımından değil, kıtasal levhaların hareketleri, deniz ilerlemeleri, deniz gerilemeleri, buzulların, çöllerin, iklimlerin, kıyı çizgilerinin, coğrafyanın sürekli olarak denge-uyum-değişim döngüsüyle evrildiği bir doğada, insanlığa ilişkin sonuçları nedeniyle, ortaya atıldığından bu yana en çok tartışılan, buna karşın teknolojiye bağlı olarak da en çok gelişen, sürekli kanıtlarını artıran kuram olmuştur. Darwin`in 1830-1850`deki öngörüleriyle, günümüzde geçerli olan evrim kuramı arasında çok büyük farklar vardır. Günümüzde evrim kuramı; 1930`lu yıllar ve sonrasında, önce Gregor Mendel`in ortaya koyduğu kalıtım kuramı, daha sonra moleküler biyolojinin kalıtımın moleküler temellerine dair sağladığı bilgi ve ilerleyen Genetik bilimiyle sentezlenerek, 20. yüzyıl felsefecilerinin de önemli katkılarıyla modern halini almış; biyoloji, jeoloji, paleontoloji, antropoloji, sosyoloji, tarih, ekonomiden, iktisat`a tüm bilimlere uygulanabilen bir temel diyalektik olarak yaşamın tüm alanlarına egemen olmuştur… Yerleşik dünya algısını sarstı Ergi Deniz Özsoy (Doç. Dr; Hacettepe Üniversitesi Biyoloji) İçinde bulunduğumuz yıl, büyük doğa bilimci Charles Darwin`in 200. doğum yılı. Bu yıl aynı zamanda, Darwin`in anıtsal yapıtı, biyolojiyi bilim haline getiren temel çerçeveyi sunan magnum opusunun, `Türlerin Kökeni`nin, yayınlanmasının 150. yılı. Gezegendeki mevcut canlı çeşitliliğinin, özel olarak yaratılmamış olan, tarihsel değişimlerin izini taşıyan türlerin ve geçiş niteliğindeki diğer formların zaman ve mekandaki farklı olguları olduğunu vurgulayan `Köken`, bu çeşitliliğin oluşumu için de tamamen doğal olarak tanımlanan bir süreci, seçilimi, Darwin`in terminoljisiyle söylersek, doğal seçilimi önermekteydi. `Köken`, hem dönemdeki evrimcilik görüşünün yaygınlığı, hem de yerleşik dünya algısını derinden sarsacak önermelerinin tahrik ediciliği itibarıyla basıldığı ilk gün tükenmiştir. Ancak, evrime biyolojik bakışın tarihi açısından hemen söylememiz gereken önemli bir nokta, daha o ilk günlerden itibaren, Darwin`in yapıtının günümüze dek gelen iki temel tartışma-fikir yürütme koluna ayrıldığıdır. Bunlardan birincisi, `Köken`in akademi ve uzman çevrelerinde gördüğü teknik ilgiyle başlayan ve son 75 yılın biyolojisi açısından vazgeçilmez bir doğrulanmış hipotezler, olgular bütünü olarak kuramsal üst yapı niteliğindeki evrimsel biyolojinin oluştuğu kol; diğeri ise, Darwin`den önce (ve Darwin`de olmayan biçimde) Herbert Spencer tarafından iddia olunan ve insanın soyal ve toplumsal örüntülerini ve hallerini onun biyolojik yapısının devamı sayan, `sosyal Darwinizm` ya da yeni moda tabiriyle `sosyobiyoloji` şeklinde tezahür eden, aslında biyolojik anlamıyla Darwinizmin kötü karikatürleri olan tartışmalar bütününü içeren bilim kisveli kol. Birinci kol, yani günümüzün en parlak bilimlerinde olan evrimsel biyoloji, 1940`ların sonunda tamamlanan çok uluslu bir sentezin (Modern Sentez) sonucunda, doğal seçilimi ve ortak köken ilişkisini matematiksel olarak tanımlayabilecek bir genetik yetkinliğe ulaşmış; son 15 yıldaki genom projelerinin ortaya konmasıyla da, hemen tüm canlı gruplarını tek bir ortak kökene çakıştırabilecek bir yetkinliğe ulaştırmıştır. Üstelik bu genom projeleri, ister gen olarak tanımlansınlar ister gen-dışı DNA parçaları olsunlar, herhangi bir genomdaki pek çok bölgenin şiddeti değişkenlik içeren doğal seçilime maruz kaldığını göstermektedir. Öyle ki, genom projelerinin hayata geçirilmesinden yaklaşık 20 yıl once başlayan ve günümüzde aktif araştırma ve uygulama alanı olarak, doğal seçilimi DNA düzeyinde anlamamızı sağlayan istatistiksel genetik testler yaygın biçimde ve doğrulukla kullanılabilmektedir. Yine, evrimsel gelişim biyoloji adı verilen, pek çok canlının ortak gelişimsel planını ortak köken ve belirli genetik motiflere odaklanan doğal seçilim varlığıyla açıklayan heyecan verici bir disiplin de biyolojik araştırmaların altını çizmektedir. Evrimsel biyolojik araçların bu denli yetkin oluşuyla, doğaldır ki, biyoteknolojik, tarımsal, tıbbi vd. insan odaklı araştırmaların yönü de değişmiş. Evrimin katılmasıyla gerçekleşen bu yön değişimi bu alanların kuramsal yapısını etkilemiş ve sonuçta alan ne olursa olsun daha gerçekçi ve verimli sonuçlara varabilmenin yolları açılmıştır. Evrimsel biyolojinin belki de en önemli insani katkısı, arka planı sömürgecilik dönemlerine uzanan ve tipolojik algının doğrudan yansıması olan `insan ırkı` kavramının yanlışlığının ortaya konmasıdır. 1970`lerde protein çeşitliliği kullanılarak yanlışlanan ve en son darbeyi geçtiğimiz yıl yapılan en kapsamlı genomik çalışmayla alan insan ırkı kurgusu, artık sömürgecilik ve ötekileştirme tarihinin sancılara yol açmış bir hurafesinden öte bir şey olarak görülmemektedir. Öyle ki, evrimsel genetiğin bize söylediği şey, bir siyahi, eskimo, beyaz vb. `ırk` mensubu iki kişi arasındaki fark, iki Alman, iki Türk, iki Kürt vd. arasındaki farklardan ya da bir Alman ile Türk`ün veya İngiliz ile Hintli`nin arasındaki farklardan çok daha azdır. Sonuç itibarıyla, son 150 yıldan geriye doğru baktığımızda, Darwin`i ve evrimsel biyolojiyi en etkili ve geçerli bilimlerden biri olarak kabul etmemeyi gerektiren tek nedenin ileri düzeyde cehalet ve tutuculuk olduğunu söylemek yanlış olmayacaktır. Darwin`in önemi Dr. Kenan Ateş(Sabancı Üniversitesi) Günümüzde modern evrim kuramı denildiğinde ilk ve esas olarak akla gelen, İngiliz doğa bilgini Charles Darwin olur. Oysa evrim düşüncesi Darwin`le ortaya çıkmadı, ondan çok önceleri vardı. Binlerce yıl öncesinde Çin ve Hindistan`dan Anadolu ve Mezopotamya uygarlıklarına, Antik Yunanistan`dan Roma`ya, oradan da Arap-İslam uygarlıklarına dek pek çok kültür ve sonra da 18. ve 19. yüzyılların özellikle Avrupalı doğa bilginleri, doğadaki canlılığın evrimsel açıklamalarını yapmaya çalışmıştı. Buna karşın, günümüzde, biyolojideki birçok sürecin anlaşılmasına yardım eden modern evrim kuramını ve biyolojik evrim için büyük ölçekli bir kanıt ve deneysel veri yığını eşliğinde bunun işleyiş mekanizmalarını açıklayan asıl olarak Darwin oldu. Bu yüzden evrim kuramı haklı olarak daha çok onunla ilişkilendirilir. Çünkü biyoloji bilimi, Darwin`den önce daha çok, yaşamla ilintili birbirinden kopuk tek tek bilgilerin toplamıydı. Darwin, bu bilgilerin birbirleriyle bağlantısını kurup sistematik bir hale getirdi ve bunun sonucunda canlı yaşamıyla ilgili süreçlerin anlaşılmasını sağladı. Bu bağlamda, onsuz biyolojik süreçlerin anlaşılamayacağı, biyolojinin bir anlamda dilbilgisini oluşturdu. Darwin`den önce, doğa bilimcilerinin büyük bölümü, çok uzun süredir devam ede gelen teolojik düşünce sistematiği nedeniyle, türlerin değişmez varlıklar olduğuna ve ayrı ayrı yaratıldıklarına inanıyorlardı. Her ne kadar, Rönesansla başlayıp Aydınlanmayla hızlanan süreçte bu teolojik düşünce sistematiği kısmen sarsılmış; doğa, dünya ve olayları yorumlama biçimi değişmiş; daha önceleri teolojik yollarla ifade edilen olay ve olgular artık dünyevi, akılcı yollarla açıklanmaya başlanmıştıysa da, yine de canlıların oluşumu esas olarak bir yaratıcıya, doğa üstü ilahi bir güce bağlanıyordu. Gözlemleri ve geliştirdiği tezlerini tartıştığı pek çok kişi, öne sürdüğü tezleri hayranlıkla dinledikten sonra `ama burada hâlâ ilahi bir şeyler eksik` diyorlardı. İnsan türünün üstünlüğü ve eşsizliğini doğal ve kaçınılmaz gören fikirleri esas alan bir insan merkezli doğa anlayışı; türleri, özellikle de insanı mutlak ve değişmez kabul eden Aristocu-Platocu `ideal tip` kavramı hala egemendi. Bırakalım ortak kökenden gelme fikrine, canlı yaşamın değişmekte olduğu düşüncesine bile alışkın olmayan entelektüel bir çevre bulunuyordu. Doğa bilimleri içinde en son gelişenin biyoloji olmasının nedeni de bu ortam ve havadır. Darwin`in eseri, esas olarak bu egemen havayı dağıttı, Aristocu-Platocu `ideal tip` kavramını yıktı. Doğa`ya ve insan olarak onun içindeki yerimize bakışı değiştirerek insanlığın düşünce dünyasında büyük bir sıçramaya yol açtı. Darwin`in önemi esas olarak buradadır. Darwin`in modern evrim kuramı, on dokuzuncu yüzyıl evrimciliğinin kökeni değil, doruk noktasıdır. Çünkü Darwin, `Türlerin Kökeni` ile ortaya çıktığında, her ne kadar yukarıda sıralanan hava egemendiyse de, gittikçe gelişen başka bir hava ve birikim de vardı. Kuramın ortaya çıkışını hazırlayan koşullar olgunlaşmaya başlamış ve kuramın temel hatlarını oluşturan görüşler esas olarak ortaya çıkmıştı. Darwin`in yapıtı bütün bu görüşlerin zirvesi ve bir anlamda sentezi oldu. Kaynak: evrensel.net

http://www.biyologlar.com/darwin-neyi-ogretti

Likenler

Likenler ya da Lichenes; başlı başına birer organizma değildirler. Mantarlar ve fotosentetik alglerden meydana gelen simbiyotik birlikteliklerdir. Şekil ve yaşayış bakımından kendilerini oluşturan alg ve mantarlardan tamamen ayrı bir yapı gösterirler. Renksiz bir mantar hifinden oluşan tallusun yapısına katılan fotosentetik canlı (fotobiyont), genellikle yeşil alg ya da bir siyanobakteridir; fakat bazı sarı-yeşil alglerden ve kahverengi alglerden de oluştukları bilinir. En çok Cyanophyta ve Chlorophyta'ya ait cinsler ve Xanthophyta ve Phaeophyta'dan bazı alg türleri görülür. Mantarlarda ise genellikle Ascomycetes ve az olarak Basidiomycetes'e ait cinsler görülür. Alg ve mantarın birbirleri ile birleşmeleri farklı şekillerde olabilir. Eğer alg ve mantar dağılımı homojen tek bir tabaka şekildeyse bu likenler; "Homeomerik liken", heterojen bir dağılım ve farklı tabakalar varsa "Heteromerik liken" olarak isimlendirilirler. Homeomerik likenlerde, alg ve mantar ayrı bir katman oluşturmadan birleşir, tallus jelatini andıran müsilajımsı yapıdadır. Heteromerik likenlerde, üst kabuk katmanı (korteks) ile orta kısım arasında algler bulunur, diğer kısımlar sıkı ya da gevşek dizilmiş mantar hiflerinden oluşur. Çoğu liken bu grupta yer alır. Likenler, birçok yerde bulunabilen organizmalardır. Morfolojilerine veya dış görünüşlerine göre göre; Kabuksu likenler, genellikle kayalar üzerinde gelişen likenlerdir. Tallus kabuk biçimindedir. Kayaları eritebilen enzimleri bulunabilir, bu yüzden "Endolitik likenler" de denirler. Yapraksı likenler, tallusları loblar halinde olan ve genellikle rozetler oluşturan likenlerdir. Dalsı likenler, ağaçlar bazen de kayalar üzerinde gelişen, oldukça büyük talluslu, sık dallanma gösteren likenlerdir.   Likenler Tabiatta bazı kayaların, toprakların ağaç gövde ve dallarının üzerinde yaşayan yosunlara benzeyen, köksüz, gövdesiz ve yapraksız bitkiler, Likenler bir kısım mantarlarla bazı su yosunlarının beraberce bir bütün halinde ortak yaşadığı bitkilerdir. Bu iki ayrı çeşit bitki kendine benzemeyen tamamen farklı bir organizma meydana getirirler. Herhangi birisi olmasa liken meydana gelemez. Liken, su yosunları (alg) vasıtasiyle özümleme yapar. Mantarlar da iplikleri ile suyu temin eder ve likeni bulunduğu yere tesbit eder. Likenler, zengin bir bitki grubudur. Dünyanın hemen her bölgesinde yayılmış olarak çeşitli yetişme yerlerinde yaşarlar. Kutuplardan Ekvatora, deniz kıyısından, ovalardan dağların en yüksek yerlerine kadar hemen hemen her yerde, diğer organizmaların yaşayamayacağı yetişme yerlerinde yetişebilirler. Kızgın güneş altında (70°C) sıcağa ve çok düşük dereceli soğuğa, haftalarca süren kuraklığa dayanabilirler, dünya üzerinde de 20.000 kadar türü bulunmaktadır. Likenlerin besin maddelerine olan ihtiyaçları azdır. Yalnız havası temiz olan yerlerde yaşayabilirler. Kirli havaya karşı çok duyarlılık gösterirler. Bunun için likenler, bir bölgenin havasının temiz olup olmadığını belirten iyi bir göstericidir. Likenlerin yapısının büyük kısmını mantar iplikleri meydana getirir. Çoğunlukla likenin üst ve alt kısmında mantar ipliklerinden meydana gelen sıkı bir kabuk tabakası, orta kısmında ise daha gevşek bir örgü dokusu bulunur. Üst kabuk tabakasının altında suyosunları yer alır. Likenin eşeysiz üremesini suyosunları sağlar. Eşeyli üremeyi ise sadece mantar sağlar. Likenler çok yavaş büyürler. El büyüklüğünde bir liken, ekseriya 50 yılda meydana gelir. Çalımsı likenlerin birkaç cm yükselebilmesi ise ancak 100-200 yılda olabilir.” Likenler, şekillerine göre üç grupta toplanabilir. 1. Kabuksu likenler: Liken tamamen ağaç kabuğuna veya kayalara tutunmuş olup, kabuk şeklinde, yassı ve sıkı bir örtü meydana getirirler. Mesela; lecanora, lecidea, rhizocarpon (harita likeni) likenleri gibi. 2. Yapraksı likenler: Liken şerit veya levha şeklinde küçük veya büyük dilimli yaprak şeklindedir. Mesela, İslanda likeni (cetraria) gibi. 3. Çalımsı likenler: İnce şerit şeklinde ve iplik şeklinde dallanmış olup, bir çalıyı andırarak ya dik olarak veya ağaçlardan aşağı doğru sarkan likenlerdir. Mesela; sakal likeni (Usnea), kadeh likeni (Cladonia) gibi. Memleketimizde yetişen önemli likenler şunlardır: Harita likeni: (Rhizocarpon geographicum): Kayalar üzerinde yaşayan sarımsı-yeşil renkte kabuklu likenlerdir. Parmelia furfuraceae: Ağaçlar üzerinde yaşayan grimsi-siyah likenlerdir. Evernia prunastri: Çok yaygındır. Meşe, kayın, gürgen, kavak ve karaağaç üzerinde yaşayan sarımsı-yeşil renkli likenlerdir. Sakal likeni (Usnea barbata): Çam, köknar, kayın ağacı dallarından sarkan çalımsı likenlerdir. Ciğer likeni (lobaria pulmonaria): Yaprak şeklinde, derimsi, yeşilimsi gri likenlerdir. Kadeh likeni (Cladonia pyxidata): Orman kenarlarındaki güneşli yerlerde ve kireçli topraklarda yaşayan grimsi-yeşil kadeh şeklindeki likenlerdir. Likenlerin kullanılışı: Likenler çok eskiden beri tıpta kullanılmıştır. Ancak bu kullanma ilmi esaslara göre değil de o zamanki kurala göre, benzetildiği hasta organının tedavisinde kullanılırdı. Mesela sakal likeni saç çıkarmada, ciğer likeni akciğer hastalıklarında kullanılmıştır. Likenler, antibiyotik etkileri incelenmekte olan bitkilerdir. Bugün likenlerden elde edilen 60 kadar antibiyotik vardır. Bu etkisinin de, taşıdıkları liken asitlerinden ileri geldiği düşünülmektedir. Antibiyotik maddeler çoğunlukla, cladonia, evernia, cetaria, usnea romalina cinsi türlerinden elde edilen usnik asit, vulpinik asit, evernin asidi, önemli antibiyotik asitlerdir. Usnik asit, evernin asidi ve liken yağ asitlerinin karışımından Evosin elde edilir ki bunun kuvvetli bir antibiyotik etkisi vardır. Gram (+) kokuslara karşı etkilidir. Usnik asidin sodyum tuzunun da staphylococcus, streptococcus ve mycobacteriuma karşı kuvvetli bir antibiyotik etkisi vardır. İki liken türü, lethraria vulpina ve cetraira pinastri zehirlidir. İskandinav ülkelerinde kurtları zehirlemek için kullanılır. Bu iki liken türünden başka hiçbir liken zehirli değildir. Yalnız çoğu, ihtiva ettikleri asitlerden dolayı barsak bozukluklarına sebep olur. Tabiatta likenlerin büyük kısmı, hayvanların besinlerini sağlar. Kuzey ülkelerinde ren geyikleri, kar altında cladonia alpestris likenini tercih ederek ararlar. Ayrıca Arktik ve Subarktik kuzey bölgelerinde bulunan İslanda likeni (Cetraria islandica), yabani mandaların, domuzların önemli yem bitkisidir. Kuzey bölgelerinde yerli halk, evcil hayvanları için bol miktarda liken toplarlar. Liken, insanlar için de yiyecek maddesi olarak kullanılır. İki kg liken unu, 1 kg buğday ununa eşittir. Orta doğunun kurak bölgelerinde ve çöllerindeki Manna likeni(kudret helvası), besin olarak kullanılan likenlerdendir. Develerin besinini temin ettiği gibi, insanlar da bundan ekmek yaparlar. Orta Asyada bu liken türünden yapılan ekmeğe Kırgız ekmeği denir. Likenlerde az miktarda da olsa vitaminler vardır. Ren geyiği likeninde (Cladonia rangiflerina), A,C ve D vitaminleri mevcuttur. Likenlerden sanayide de faydalanılır. Roccella tinctoria ve R. fuciformis liken türlerinden, asit, baz endikatörü olarak kullanılan turnusol mahsulü ve kağıdı yapılır. Bundan başka Orsey adı verilen yün, ipek, hatta odunu boyamada kullanılan kırmızı bir boya elde edilir. Bazı liken türleri de ortaçağdan beri parfümeride kullanılmıştır. Fransa''da bir liken türünden orman çayı adı verilen aromatik bir içecek yapılır.     Likenler ya da Lichenes; başlı başına birer organizma değildirler. Mantarlar ve fotosentetik alglerden meydana gelen simbiyotik birlikteliklerdir. Şekil ve yaşayış bakımından kendilerini oluşturan alg ve mantarlardan tamamen ayrı bir yapı gösterirler. Renksiz bir mantar hifinden oluşan tallusun yapısına katılan fotosentetik canlı (fotobiyont), genellikle yeşil alg ya da bir cyanobakteridir; fakat bazı sarı-yeşil alglerden ve kahverengi alglerden de oluştukları bilinir. En çok Cyanophyta ve Chlorophyta'ya ait cinsler ve Xanthophyta ve Phaeophyta'dan bazı alg türleri görülür. Mantarlarda ise genellikle Ascomytcetes ve az olarak Basidiomycetes'e ait cinsler görülür. Alg ve mantarın birbirleri ile birleşmeleri farklı şekillerde olabilir. Eğer alg ve mantar dağılımı homojen şekildeyse bu likenler; "Homeomerik liken", heterojen bir dağılım varsa "Heteromerik liken" olarak isimlendirilirler. Homeomerik likenlerde, alg ve mantar ayrı bir katman oluşturmadan birleşir, tallus jelatini andıran müsilajımsı yapıdadır. Heteromerik likenlerde, üst kabuk katmanı (korteks) ile orta kısım arasında algler bulunur, diğer kısımlar sıkı ya da gevşek dizilmiş mantar hiflerinden oluşur. Çoğu liken bu grupta yer alır. Likenler, birçok yerde bulunabilen organizmalardır. Bulundukları yere göre; •Kabuksu likenler, kayalar üzerinde gelişen likenlerdir. Tallus kabuk biçimindedir. Kayaları eritebilen enzimleri bulunabilir, bu yüzden "Endolitik likenler" de denirler. •Yapraksı likenler, toprakta yaşayan, tallusları loblar halinde olan likenlerdir. •Dalsı likenler, ağaçlar üzerinde gelişen, oldukça büyük talluslu, sık dallanma gösteren likenlerdir. Üremeleri Likenler; 1.Eşeysiz 2.Eşeyli olarak çoğalabilen bir canlı grubudur. 1. Eşeysiz Üreme Bu çoğalma tipi "Sored" denilen mantar hifleri ile çevrili birkaç alg hücresinden oluşan tallus parçacıkları ile gerçekleştirilir. Soredler tallusun korteksinin parçalanması ile serbeste hale geçerek toz gibi çevreye dağılırlar, ulaştıkları yerlerde tutunarak, yeni bireyleri oluştururlar. 2. Eşeyli Üreme Likenlerin yalnızca mantarlarında görülür. Alg bu yapının içinde vejetatif olarak çoğalır. Mantarların meydana getirdiği fruktifikasyonlar serbest yaşayan mantarlarınkinden oldukça farklıdır. Liken yapısındaki mantarın cinsine göre oluşturulan fruktifikasyonlar farklılık gösterir. Metabolizma Likenleri oluşturan alg ve mantarlar arasında bazı fizyolojik iş bölümleri vardır. Simbiyotik organizmalardan alg, klorofil taşıdığından fotosentez yapar ve birliğin karbonhidrat gereksinimini karşılar. Mantar ise su ve madensel maddelerin alınmasında görev alır. Likenlerde metabolik aktivite su, ısı ve ışıkla değişkenlik gösterir. Su içeriği %65-90 arasında olduğunda fotosentez oranı artar, 15-200C fotosentez için en uygun sıcaklıktır. Depo maddesi olarak nişasta bulunur. Likenlerin metabolizmaları sonucu ekonomik öneme sahip bazı maddeler oluşur. Bunlar tıpta, boya sanayinde ve besin olarak kullanlan maddelerdir. Tıpta; öksürük ve göğüs hastalıklarında, diabette, nefrit, nezle de ve iştah açıcı olarak kullanım alanları mevcuttur. İnsanlarca Lecanora esculenta ve Ren geyiklerince Cladonia rangiferina besin olarak kullanılır. Ekoloji Dünyada geniş bir yayılım alanına sahip ve denizlerden yüksek dağlara, sıcak bölgelerden kutuplara kadar yerleşim yerlerinde ve zor koşullarda bulunurlar. Tallus yavaş gelişir, ağaç, toprak ve kayalar üzerinde bulunurlar.üzerinde bulunduğu kayaları parçalayarak toprak oluşumuna katkı sağlarlar.

http://www.biyologlar.com/likenler-1

Gürültü Kirliliği

Gürültü İnsanlar üzerinde olumsuz etki yapan ve hoşa gitmeyen seslere gürültü denir. Özellikle büyük kentlerimizde gürültü yoğunlukları oldukça yüksek seviyede olup, Dünya Sağlık Örgütü'nce belirlenen ölçülerin üzerindedir. Gürültü Kirliliği Kent gürültüsünü artıran sebeplerin başında trafiğin yoğun olması, sürücülerin yersiz ve zamansız klakson çalmaları ve belediye hudutları içerisinde bulunan endüstri bölgelerinden çıkan gürültüler gelmektedir. Meskenlerde ise televizyon ve müzik aletlerinden çıkan yüksek sesler, zamansız yapılan bakım ve onarımlar ile bazı işyerlerinden kaynaklanan gürültüler insanların işitme sağlığını ve algılamasını olumsuz yönde etkilemekte, fizyolojik ve psikolojik dengesini bozmakta, iş verimini azaltmaktadır. Gürültünün insan üzerindeki etkilerini 4'e ayırabiliriz: 1.Fiziksel Etkileri: Geçici veya sürekli işitme bozuklukları. 2.Fizyolojik Etkileri: Kan basıncının artması, dolaşım bozuklukları, solunumda hızlanma, kalp atışlarında yavaşlama, ani refleks. 3.Psikolojik Etkileri: Davranış bozuklukları, aşırı sinirlilik ve stres. 4.Performans Etkileri:İş veriminin düşmesi, konsantrasyon bozukluğu, hareketlerin yavaşlaması. Gürültüye maruz kalma süresi ve gürültünün şiddeti, insana vereceği zararı etkiler. Endüstri alanında yapılan araştırmalar göstermiştir ki; işyeri gürültüsü azaltıldığında işin zorluğu da azalmakta, verim yükselmekte ve iş kazaları azalmaktadır. Çalışma ve Sosyal Güvenlik Bakanlığı verilerine göre; meslek hastalıklarının %10'u, gürültü sonucu meydana gelen işitme kaybı olarak tespit edilmiştir. Meslek hastalıklarının pek çoğu tedavi edilebildiği halde, işitme kaybının tedavisi yapılamamaktadır. Bazı Gürültü Türlerinin Desibel Dereceleri ve Psikolojik Etkileri Gürültü Türü Db Derecesi Psikolojik Etkisi Uzay Roketleri 170 Kulak ağrısı, sinir hücrelerinin bozulması Canavar Düdükleri 150 Kulak ağrısı, sinir hücrelerinin bozulması Kulak dayanma sınırı 140 Kulak ağrısı, sinir hücrelerinin bozulması Makineli delici 120 Sinirsel ve psikolojik bozukluklar (III.Basamak) Motosiklet 110 Sinirsel ve psikolojik bozukluklar (III.Basamak) Kabare Müziği 100 Sinirsel ve psikolojik bozukluklar (III.Basamak) Metro gürültüsü 90 Psikolojik belirtiler (II.Basamak) Tehlikeli bölge 85 Psikolojik belirtiler (II.Basamak) Çalar Saat 80 Psikolojik belirtiler (II.Basamak) Telefon zili 70 Psikolojik belirtiler (II.Basamak) İnsan sesi 60 Psikolojik belirtiler (I.Basamak) Uyku gürültüsü 30 Psikolojik belirtiler (I.Basamak) Çeşitli Kullanım Alanlarının Kabul Edilebilir Üst Gürültü Seviyeleri Kullanım Alanı Ses basıncı düzeyi(gündüz) dBA Dinlenme Alanları Tiyatro Salonları 25 Konferans Salonları 30 Otel Yatak Odaları 30 Otel Restoranları 35 Sağlık Yapıları Hastaneler 35 Konutlar Yatak Odaları 35 Oturma Odaları 60 Servis Bölümleri (mutfak, banyo) 70 Eğitim Yapıları Derslikler, Laboratuvarlar 45 Spor Salonu, Yemekhaneler 60 Endüstri Yapıları Fabrikalar (küçük) 70 Fabrikalar (büyük) 80 Gürültüyü Azaltmak İçin Alınabilecek Tedbirler: Hava alanlarının, endüstri ve sanayi bölgelerinin yerleşim bölgelerinden uzak yerlerde kurulması, Motorlu taşıtların gereksiz korna çalmalarının önlenmesi, Kamuoyuna açık olan yerler ile yerleşim alanlarında elektronik olarak sesi yükseltilen müzik aletlerinin çevreyi rahatsız edecek seviyede olmasının önlenmesi, İşyerlerinde çalışanların maruz kalacağı gürültü seviyesinin en aza (Gürültü Kontrol Yönetmeliğinde belirtilen sınırlara) indirilmesi, Yerleşim yerlerinde ve binaların içinde gürültü rahatsızlığını önlemek için yeni inşa edilen yapılarda ses yalıtımı sağlanması, Radyo, televizyon ve müzik aletlerinin evlerde rahatsızlık verecek seviyede seslerinin yükseltilmemesi gerekmektedir. Kaynak: cevreorman.gov.tr

http://www.biyologlar.com/gurultu-kirliligi

Filogeni Nedir ?

1-Bir organizma grubunun veya taksonomik kategorinin: ilk ortaya çıkışından yada özgünlüğünü kazandıktan, bulunduğu zamana veya ölümüne(özgünlüğünü kaybettiği hal değişimine) kadarki gerçek hayat hikayesidir. 2-Taksonomik bir grubun, bulunduğu zaman-boyutuna kadaki;doğal krinolojik ve orjinleme kıstaslarına göre şekillenen gerçek hayat ağacıdır. Filogeni Nedir? 3-Bir Grup Organizmanın Filogenisi (Grup geçmişi);O grup fertlerinin geçmişleri (ontogenileri) toplamına eşittir. 4-Her ferdin bir ontogenisi (ferdin hayat döngüsü) vardır. 5-Filogeni ise genellikle açılan bir döngüdür. 6-Filogenisi tamamlanmış taksonomik kategori artık yaşamıyor demektir.Tüm canlıların yok olmasıyla filogenisi tamamlanmış olacaktır. Filogeni, evrimsel soy ilişkisi demektir. Filogeniye göre tür ve tür üstü kategorisindeki taksonlar jeolojik dönemlerde türleşme süreçleri ile oluşmuşlardır. Bu türleşme süreçlerinin açıklanması ile taksonlar arasındaki evrimsel ilişki (akrabalık) açıklanmış olur. Bir takson veya takson grubunun filogenilerinin belirlenmesi demek, zamansal olarak (önce-sonra) onların birbirleri ve diğer taksonlarla ortak ata temelinde durumlarının ortaya konması demektir. Darwin e göre; grupların her birinin sınıf (birim) halinde düzenlenmesi, bölünmeleri ve diğer gruplarla ilişkilerinin doğal olabilmesi için kesinlikle soy ilişkisi olmalıdır. Williem Hennig (1966) filogeni ve sınıflandırma ilişkilisi ile ilgili olarak “organik çeşitliliğin soy ilişkisini (=kanbağı) ortaya koyan bir sistem, hem doğal bir sınıf sistemdir ve hem de kendiliğinden doğal taksonların sınırlarını belirler” demektedir. Günümüzde filogeninin taksonomi açısından zorunluluğu hemen hemen tüm taksonomistlerce kabul edilmektedir. Ancak, farklı bakış açıları olduğu için, filogeninin saptanmasında kullanılacak yöntem noktasında yatmaktadır. Şimdilik direk sonuç alıcı metodlar olmasa da veya kullanılmakta olan metodlarla soy ilişkisi çok kesin olarak ortaya konamasa da doğal bir sınıflandırmaya ulaşmak, evrimsel sorunların incelenmesi ve gruplararası evrimsel ilişkinin tahmini ile mümkündür. Hangi yöntem ve araçlarla filogeni tahmini yapılırsa yapılsın, her tahmin bir hipotezdir.

http://www.biyologlar.com/filogeni-nedir-

Potansiyel Olarak Kullanılan Biyolojik Savaş Maddeleri

BHM"lerinin sayısı gün geçtikçe artmaktadır, ancak üzerinde en fazla çalışılan ve bilinen potansiyel BHM"lerini şöyle sıralayabiliriz. (1) Bakteriler : , (a) Bacillus anthracis (Anthrax-Şarborı), (b) Francisella tularensis (Tularemia), (c) Yersinia pestis (Plague), (ç) Vibrio cholerae (Kolera), (d) Salmonella typhi (Tifo), (e) Bacillus seraus, (f) Brucella spp (Brucellosis, suis, melitensis, abortus, canis, ovis), (g) Clostridium perfringes. (2) Riketsiyalar : (a) Riketsia prowezeki (Tifüs), (b) Riketsia mooseri (Tifüs), (c) Riketsia ricketsi (Lekeli Humma), (ç) Coxiella burnetii (Q Humması). (3) Chlamydialar : (a) Chlamyclia psittaki (Psittakoz), (b) Chlamyclia trachomatis (Trahom). (4) Virüsler : (a) Variola (Smallpox- Çiçek hastalığı), (b) Ebola (Filaviridae ailesinden Ebola kanamalı ateşi), (c) Marburg (Filaviridae ailesinden Marburg hastalığı etkeni), (ç) influenza(Grip etkeni), (d) Rift Valley Fever (Bunyaviridae ailesinden Valley Ateşi etkeni), (e) Crimen-Congo Hemorrhagic Fever (Bunyaviridae, Kanamalı ateş etkeni), (f) Argentine Hemorrhagic Fever (Junin), (g) Bolivian Hemorrhagic Fever (Mochupa), (ğ) Venezuelan Hemorrhagic Fever (Guanorito), (h) Hemorrhagic Fever With Renal Sydrome (Hantaan, Seoul, Puumala), (1) Lassa Fever(Arenaviridae ailesinden Kanamalı ateş etkeni), (i) Venezuelan Equine Encephalitis (VEE), (j) Eastern Equine Encephalitis (EEE), (k) Western Equine Encephalitis (WEE), (1) Japanese Encephalitis, (m) Dengue, Yellow Fever, AIOS (HIV), (n) Sandfly Fever, (o) Chick Urıgunya (Apha). (5) Toksinler : Kaynaklarına göre; (a) Anthrax Bacillus anthracis (b) Botulinul1l Clostridium botulinum (c) Tetanoz Clostridium tetani (ç) Difteri Toksini Kornibakteriyum difteri (d) Enterotoksin Eşherişya coli (e) Shigella Dizanteri Shigella spp. (f) Stophylococcus Enterotoksin -B (SEB) stophylococcus aureus (g) Kolera Toksini Vibrio kolera (ğ) Anatoksin A Deniz yosunu Anasistis türleri (h) Mikrosistin M.Sinea(Mavi yeşil su yosunu) (l) Saksitoksin Deniz kabuğu zehiri (i) Tetradotoksin Takifigu paessilonotus (J) Aflatoksin Aspergillus flavus (k) Trichothecene Mycotoksins (T-2, Trikotesin,Yellow rain) (l) Ricin Risinus communis (m) Akonitin Akonitum napolyus (n) Politoksin Yumuşak deniz mercanı (o) Batrakotoksin kurbağa zehiri (ö) Bunganotoksin Çizgili yılan zehiri (p) Krotoksin Çıngıraklı yılan zehiri (r) Kobratoksin Kobra yılan zehiri (s) Erabutoksin Deniz yılanı zehiri Biyolojik Harp maddelerinden patojenlerin kuluçka süreleri (inkübasyon süresi) günlerle ifade edilir oysa toksinlerin inkübasyon süresi dakika ve saatlerle ölçülür. Patojen BHM"leri kısa sürede etkisini göstermesi için aerosol olarak kullanılırlar. Genelde patojen BHM"lerinin semptomları (Hastalık belirtileri) ateş, halsizlik, kilo kaybı, kusma, ishal ve solunum güçlüğü gibi belirtiler olup personeli kısa sürede görevini yapamaz hale getirir.Solunum yolu ile oluşan enfeksiyonlarda ölüm sebebi,çoğu zaman akciğer ödemidir. Patojen BHM"leri enfeksiyonlarının tedavileri güç ve pahalıdır. Bağışıklık sistemini hedef alan BHM"leri bağışıklığı oluşturan hücreleri etkilerler, bu nedenle bunlara karşı geliştirilen aşılarla yeterli koruma sağlanamamaktadır. Toksinler zehirleme özelliğine göre Nörotoksinler (Sinir zehirleri) ve Si1otoksinler (Hücre zehirleri) olarak ikiye ayrılır. Nörotoksinlerin etkileri kimyasal harp maddelerinden sinir gazlarına benzer olup, sinir gazlarından yaklaşık bin kat daha zehirlidirler. Öyle ki Anthraks ve Botulinum toksinleri çok zehirli olan vx sinir gazından daha tehlikelidirler (Botulinum toksini için LD50 UG/KG değeri 0.001 iken, bu değer vx için 15.0 dır). Patojen ajanların arazideki kalıcılığı saatlerden günlere kadar (Spor ve kapsül formunda olanlar yıllarca kalabilir), toksinlerin kalıcılığı ise günlerden haftalara kadar değişebilir. BHM"lerinin rüzgaraltı tehlike bölgesi alanı ise rüzgaraltı istikametinde 500 Km"ye kadar çıkabilir.

http://www.biyologlar.com/potansiyel-olarak-kullanilan-biyolojik-savas-maddeleri

Kontrol Laboratuvarlarının Kuruluş ve Görevleri Hakkında Yönetmelik

23.6.2005 tarih ve 25854 sayılı Yönetmelik Tarım ve Köyişleri Bakanlığından: Kontrol Laboratuvarlarının Kuruluş ve Görevleri Hakkında Yönetmelik BİRİNCİ BÖLÜM Amaç, Kapsam, Dayanak ve Tanımlar Amaç Madde 1 — Bu Yönetmeliğin amacı; gıda, gıda ile temas eden madde ve malzemelerin gıda güvenliği, hijyen ve kalite analizlerini yapmak üzere kurulacak gerçek ve tüzel kişilere ait özel laboratuvarlar ile bu hizmetlerin yanı sıra yem ve yem maddeleri, hayvan hastalıkları teşhis, tohumluk kontrol hizmetlerinin yürütüldüğü kamu laboratuvarlarının kuruluş ve çalışma izni ile denetimlerine dair usul ve esasları düzenlemektir. Kapsam Madde 2 — Bu Yönetmelik, kontrol laboratuvarlarının kuruluş ve çalışma izni ile denetimlerine dair usul ve esasları kapsar. 5179 sayılı Gıdaların Üretimi, Tüketimi ve Denetlenmesine Dair Kanun Hükmünde Kararnamenin Değiştirilerek Kabulü Hakkında Kanunun 5 inci maddesine göre; Sağlık Bakanlığı ile Türk Silahlı Kuvvetleri yetkileri çerçevesinde bulunan laboratuvarlar bu Yönetmelik kapsamı dışındadır. Dayanak Madde 3 — Bu Yönetmelik: 7/8/1991 tarihli ve 441 sayılı Tarım ve Köyişleri Bakanlığının Teşkilat ve Görevlerine Dair Kanun Hükmünde Kararname, 27/5/2004 tarihli ve 5179 sayılı Gıdaların Üretimi, Tüketimi ve Denetlenmesine Dair Kanun Hükmünde Kararnamenin Değiştirilerek Kabulü Hakkında Kanun, 29/5/1973 tarihli ve 1734 sayılı Yem Kanunu, 22/3/1971 tarihli ve 1380 sayılı Su Ürünleri Kanunu, 8/5/1986 tarihli ve 3285 sayılı Hayvan Sağlığı ve Zabıtası Kanunu, 21/8/1963 tarihli ve 308 sayılı Tohumlukların Tescil, Kontrol ve Sertifikasyonu Kanununa dayanılarak hazırlanmıştır. Tanımlar Madde 4 — Bu Yönetmelikte geçen; Bakanlık : Tarım ve Köyişleri Bakanlığını, Genel Müdürlük : Koruma ve Kontrol Genel Müdürlüğünü, Ulusal referans laboratuvar : Kontrol laboratuvarlarında yapılan hizmetlerin teknik yönden koordinasyonunu yapan, kollaboratif çalışma düzenleyen, analiz yöntemlerinin geliştirilmesi ve standardizasyonunun sağlanması için yurtiçi ve yurtdışı bilimsel kuruluşlarla işbirliği ve ortak çalışma yürüten, eğitim ve araştırma yapan, analiz sonuçlarına itiraz durumunda şahit numune çalışan ve AB referans laboratuvarlarının faaliyetlerine ülke adına ulusal düzeyde katılım sağlayan ve Türk Akreditasyon Kurumu veya Avrupa Akreditasyon Kurumlarına üye kuruluşlarca akredite edilmiş laboratuvarı, Referans laboratuvar : Bakanlıkça yetkilendirildiği konularda şahit numunelerde analiz yapan, eğitim veren, araştırma yapan, yeterli bilgi ve donanıma sahip, Türk Akreditasyon Kurumu veya Avrupa Akreditasyon Kurumlarına üye kuruluşlarca akredite edilmiş olan laboratuvarı, Kontrol laboratuvarı : Faaliyet konularına göre Bakanlıkça yetkilendirilmiş özel veya kamu laboratuvarı, Sorumlu yönetici/müdür : Laboratuvarın mevzuata uygun olarak yönetilmesinden sorumlu olan ve gıda bilimi konusunda en az lisans düzeyinde eğitim almış; ziraat mühendisi, gıda mühendisi, kimya mühendisi, su ürünleri mühendisi, kimyager, veteriner hekim, biyolog, veya gıda konusunda lisans üstü eğitim almış olan personeli, Müdür yardımcısı : Kamu kontrol laboratuvarlarının hizmetlerinin yürütülmesinde müdüre teknik ve idari yönden yardımcı olan laboratuvar personeli, Teknik müdür yardımcısı : Kamu kontrol laboratuvarının ana hizmet bölümleri ile kalite yönetim biriminin yönetim ve koordinasyonunda müdüre teknik yönden yardımcı olan laboratuvar personeli, İdari müdür yardımcısı : Kamu kontrol laboratuvarının hizmetlerinin yürütülmesinde idari yönden müdüre yardımcı olan laboratuvar personeli, Bölüm sorumlusu/laboratuvar şefi : Laboratuvar bölümlerinin faaliyet ve görev alanına giren konularda analizlerin yapılmasından sorumlu olan laboratuvar personeli, Laboratuvar personeli: Laboratuvar bölümlerinin faaliyet ve görev alanına giren konularda analizleri yapan, bölüm sorumlusu/laboratuvar şefi ve idareye karşı sorumlu olan en az lisans düzeyinde eğitim almış ziraat mühendisi, gıda mühendisi, kimya mühendisi, su ürünleri mühendisi, kimyager, veteriner hekim, biyolog ve diyetisyeni, Laboratuvar yardımcı personeli: Laboratuvar bölümlerinin faaliyet ve görev alanına giren konularda analizlerin yapılmasında yardımcı olan, bölüm sorumlusu/laboratuvar şefi ve idareye karşı sorumlu ve en az lise düzeyinde eğitim almış, laborant, teknisyen ile ön lisans eğitimi almış teknikeri, Kuruluş izni : Kontrol laboratuvarının bu Yönetmelik esaslarına göre Genel Müdürlükçe ürün/ürün gurupları ve analiz bazında faaliyette bulunmak üzere belirlenmiş adreste uygun bina ve ortamın yeterliliğini belirten izni, Çalışma izni : Kontrol laboratuvarının bu Yönetmelik esaslarına göre Genel Müdürlük tarafından incelenerek onaylanan ürün/ürün gurupları ve analiz bazında belirlenmiş faaliyet konularını kapsayan izni, Metot validasyonu/metodun geçerliliği: Bir metodun veya ölçüm prosedürünün performansını belirlemek için yapılan test ve ölçme işlemlerini, Kalite yönetim birimi : "TS EN ISO/IEC 17025 Deney ve Kalibrasyon Laboratuvarlarının Yeterliliği için Genel Şartlar" standardına göre laboratuvarlarda oluşturulması gereken birimi, ifade eder. İKİNCİ BÖLÜM Görev, Yetki, Kuruluş ve Çalışma Esasları, İstihdam, Hizmet Bölümleri Sorumlu yönetici/müdürün görev ve yetkileri Madde 5 — Sorumlu yönetici/müdür, Laboratuvarın mevzuata uygun olarak yönetiminden sorumludur ve bu Yönetmelikte belirtilen hizmetleri, mevzuata göre yürütmekle yükümlü olup, görev ve yetkileri şunlardır: a) Laboratuvar bölümlerinin işlevine uygun olarak çalışmasını sağlamak ve kontrol etmek. b) Alet ve ekipmanların bakım, onarım ve kalibrasyon ve performans testlerini yaptırmak. c) Laboratuvarda metot validasyonu yapılmasını, standart çalışma prosedürlerinin hazırlanmasını ve bunların dokümante edilmesini sağlamak. d) Numune ve analiz kayıt defterlerinin düzenli tutulmasını ve numunelerin laboratuvarlara dağılımını sağlamak. e) Laboratuvara giren numunenin tüm analizlerinin onaylanmış metotlara uygun yapılmasını sağlamak. f) Analiz raporlarını onaylamak. g) Kontrol laboratuvarlarında denetim tutanağı ile belirtilen hususların yerine getirilmesini sağlamak, denetim tutanaklarının muhafazası için gerekli tedbirleri almak. h) Personelin eğitimi ile ilgili programlar düzenlemek. ı) Laboratuvarın ulusal ve uluslararası yeterlilik testlerine katılımını sağlamak. i) Kayıtların düzenli tutulmasını ve arşivlenmesini sağlamak. j) Aylık faaliyet raporlarının Genel Müdürlüğe bildirimini sağlamak. k) Kayıt ve raporlarda gizlilik esasına uyulmasını sağlamak. Müdür yardımcıları ve görevleri Madde 6 — Kamu kontrol laboratuvarlarında teknik ve idari olmak üzere iki müdür yardımcısı istihdam edilebilir. a) Teknik müdür yardımcısının görevleri: Laboratuvarın ana hizmet bölümleri ile kalite yönetim biriminin yönetim ve koordinasyonunda müdüre teknik konularda yardımcı olmak. b) İdari müdür yardımcısının görevleri: Laboratuvar hizmetlerinin idari yönden yönetimi, yürütülmesi ve denetimi ile ilgili konularda müdüre yardımcı olmak, laboratuvarın tahakkuk memurluğu görevini yürütmek. Kalite yönetim birimi Madde 7 — Kontrol laboratuvarlarında, kalite yönetim birimi "TS EN ISO/IEC 17025 Deney ve Kalibrasyon Laboratuvarlarının Yeterliliği için Genel Şartlar" standardına göre kalite ile ilgili çalışmaların organizasyon ve takibinden sorumludur. Kalite yönetim birimi, kalite sistem politikalarını ve hedeflerini ve "TS EN ISO/IEC 17025 Deney ve Kalibrasyon Laboratuvarlarının Yeterliliği için Genel Şartlar" standardı şartlarını karşılayan kalite el kitabı ile sisteme ait prosedür ve talimatları hazırlar veya hazırlatır ve diğer dokümanların hazırlanmasını koordine ve sisteme uygunluğunu kontrol eder. Kalite yönetim birimi en az bir kişiden oluşur. Bu kişilerin kontrol laboratuvarlarında en az bir yıl çalışmış ve "TS EN ISO/IEC 17025 Deney ve Kalibrasyon Laboratuvarlarının Yeterliliği için Genel Şartlar" standardının gerektirdiği eğitimleri almış olmaları gerekir. Kalite yönetim birimi, "TS EN ISO/IEC 17025 Deney ve Kalibrasyon Laboratuvarlarının Yeterliliği için Genel Şartlar" standardı kapsamında kalite yöneticisi olarak görev yapar. Laboratuvar politikası ve kaynaklar hakkında kararların alındığı en yüksek yönetim kademesine doğrudan ulaşır. İstihdam Madde 8 — Kontrol laboratuvarlarında bir sorumlu yönetici/müdür ve her laboratuvar hizmet bölümünde bir bölüm sorumlusu/laboratuvar şefi, yeterli sayıda personel ve yardımcı personel istihdamı zorunludur. Kontrol laboratuvarlarında faaliyet ve görev alanına giren konulara göre gıda, süt, su ürünleri, zootekni, toprak, bitki koruma, tarla ve bahçe bitkileri bölümü mezunu ziraat mühendisi, gıda mühendisi, kimya mühendisi, kimyager, su ürünleri mühendisi, veteriner hekim, biyolog, polimer mühendisi, diyetisyen, tekniker, teknisyen, laborant, veteriner sağlık teknisyeni teknik ve sağlık hizmetleri sınıfı personeli istihdam edilir. Hayvan hastalıkları teşhis bölümü oluşturulan kamu kontrol laboratuvarlarında bölüm sorumlusu olarak mikrobiyoloji, patoloji ya da viroloji konusunda uzman veya doktor veteriner hekimler istihdam edilir. Tohumluk kontrol bölümü oluşturulan kamu kontrol laboratuvarlarında tarla bitkileri ve bahçe bitkileri bölümü mezunu ziraat mühendisi istihdam edilir. Ayrıca, gerektiğinde elektrik, elektronik, bilgisayar mühendisi veya tekniker, teknisyeni istihdam edilebilir. Kamu kontrol laboratuvarlarına ilk defa atanacak teknik ve sağlık hizmetleri sınıfı personelin hizmet süresi beş yıldan az olmalıdır. Müdür ve müdür yardımcıları ile hizmet süresi beş yıldan fazla olan teknik ve sağlık hizmetleri sınıfı personelin laboratuvarlara atanabilmesi için daha önce laboratuvarda en az bir yıl çalışmış olması gerekir. Laboratuvar hizmet bölümleri Madde 9 — Laboratuvar, faaliyet konularına göre uygun hizmet bölümlerini içerir. Bu bölümler; numune kabul, fiziksel, kimyasal, mikrobiyoloji, katkı, kalıntı, mikotoksin, gıda ile temas eden madde ve malzemeler, mineral, biyogüvenlik analiz laboratuvarı ve benzeri şeklinde planlanabilir. Kamu kontrol laboratuvarlarında ayrıca, yem, tohumluk analizlerinin ve hayvan hastalıkları teşhisinin yapıldığı bölümler kurulabilir. ÜÇÜNCÜ BÖLÜM Laboratuvar Binası, Bölümleri ve Genel Özellikleri Laboratuvar binası ve yeri Madde 10 — Laboratuvarlar insanların ikametgahına mahsus binalarda olmamak üzere, imar mevzuatına uygun yerlerde kurulur. Laboratuvar binasının bölümleri Madde 11 — Kontrol laboratuvarları aşağıdaki bölümlerden oluşur; a) İdari Bölüm: 1) Yönetici ve diğer personel için ayrı oda. 2) Duş, tuvalet, giyinme odası. b) Laboratuvar hizmet bölümleri: 1) Numunelerin teslim alındığı numune kabul bölümü. 2) Tartım işleminin yapıldığı çevre şartlarından olumsuz şekilde etkilenmeyecek ayrı veya tek bir bölüm halinde düzenlenen tartım bölümü. 3) Laboratuvarda kullanılacak olan ve yapısına, risk grupları ile saklama koşullarına göre ayrı muhafaza edilmek üzere kimyasal maddeler ve yedek yardımcı malzemeler için depo veya uygun düzenlenmiş dolaplar. 4) Laboratuvarın çalışma konularına göre hizmet bölümleri bulunur. Bu bölümler; fiziksel, kimyasal, mikrobiyoloji, katkı, kalıntı, biyogüvenlik, gıda ile temas eden ambalaj materyali analiz laboratuvarı ve benzeri şeklinde planlanabilir. Laboratuvarların genel özellikleri Madde 12 — Laboratuvarların genel özellikleri ile ilgili hususlar şunlardır: a) İdari ve analiz yapılan bölümler ayrı olacak şekilde planlanmalıdır. b) Enstrümantal cihazlarla yapılan analizlerde numune hazırlama ile cihazın bulunduğu alan ayrı planlanmalıdır. c) Mikrobiyoloji laboratuvarı kontaminasyonu önlemek amacıyla iş akış sırasına göre besiyeri hazırlama, sterilize etme, ekim, inkübasyon işlemleri, kullanılmış malzemelerin temizliği ve sterilizasyonu için ayrı bölümler içeren alanlardan oluşmalıdır. d) Her hizmet bölümü için en az on beş metrekarelik alan olmalıdır. e) Laboratuvarlar özel ortam gerektiren analizlerde bu şartları sağlayan alet ve ekipmanlarla donatılmalı ve ayrı bölümler halinde planlanmalıdır. f) Laboratuvar çalışmalarında analiz sonuçlarının olumsuz etkilenmemesi için ortamın; toz, nem, buhar, titreşim, elektromanyetik etkenler ve zararlı canlılar gibi olumsuz şartlardan korunması sağlanmalıdır. Laboratuvar çalışmalarında analizlerin gerektirdiği ideal ortam sıcaklığının sağlanması için gerekli önlemler alınmalıdır. g) Çalışan personelin iş güvenliği için uygun giysi ve donanım kullanması sağlanmalıdır. h) Gerekli durumlarda bu maddenin (e) bendinde belirtilen özel ortam veya alet ve ekipmanlarla çalışılmalıdır. i) Laboratuvarların her bölümünde temizlik, sanitasyon ve dezenfeksiyon işlemleri yazılı talimatlara göre düzenli olarak yapılmalıdır. j) Boru sistemleri, radyatörler, aydınlatma sistem ve bağlantıları ile diğer servis noktalarının temizlenmesi kolay olacak şekilde tasarlanmalıdır. Duvar, tavan ve tabanlar kolayca temizlenebilir ve gerektiğinde dezenfekte edilebilir özellikte malzemelerle kaplanmalıdır. k) Aydınlatma, ısıtma ve havalandırma sistemleri yapılacak analizlere uygun olarak planlanmalıdır. l) Laboratuvarın analiz yapılan bölümlerine çalışan personel haricindeki kişilerin girişleri önlenmelidir. m) Yedek yardımcı malzemeler ve kimyasal maddeler yapısına, risk guruplarına ve saklama koşullarına göre havalandırma sistemli kilitlenebilir ayrı oda, dolap veya depolarda bulundurulmalıdır. n) Laboratuvarda ilk yardım için gerekli ilaç ve malzemelerin bulunduğu ilk yardım dolabı ve talimatı yer almalıdır. o) Tuvaletlerin laboratuvarın analiz yapılan bölümleri ile doğrudan bağlantısı önlenmelidir. p) Laboratuvarın boya, badana ve diğer bakımları düzenli olarak hazırlanacak yazılı talimatlara göre yapılmalıdır. r) Laboratuvarın kapasitesine uygun hacimde olmak üzere, numunelerin analize alınıncaya kadar ve analiz sonrasında kalan örneklerin uygun şekilde muhafaza edileceği depo veya soğutucu cihaz bulundurulmalıdır. s) Laboratuvarlarda ortaya çıkan atıklar doğrudan alıcı ortama verilmez, gerekli önlemler alındıktan sonra tekniğine ve mevzuatına uygun bir şekilde laboratuvardan uzaklaştırılmalıdır. t) Laboratuvarda kullanılan patlayıcı, parlayıcı ve boğucu gaz içeren gaz tüpleri bina dışında tekniğine uygun şekilde muhafaza edilmelidir. u) Laboratuvarlarda analizin yapıldığı birimde atık da dahil olmak üzere ilgili tüm prosedürler ve talimatlar bulundurulmalıdır. DÖRDÜNCÜ BÖLÜM Kontrol Laboratuvarlarının Kuruluş ve Çalışma İzni, Yetkilendirme ve Bildirimler Kuruluş izni Madde 13 — Laboratuvar kurmak isteyen kamu, gerçek ve/veya tüzel kişiler aşağıdaki bilgi ve belgeleri içeren başvuru dosyası ile Bakanlığa başvurur: a) Dilekçe. b) Laboratuvarın adı, sahibinin adı soyadı veya kurumun adı, açık adresi, telefon, faks numarası ve elektronik posta adresi. c) Kuruluş ve değişiklikleri içeren Türkiye Ticaret Sicili Gazetesi, vergi levhası fotokopisi ve ticaret odasından alınan faaliyet belgesi. d) Sorumlu yönetici/müdür noter onaylı sözleşmesi, diploma sureti, nüfus cüzdanı fotokopisi ve kayıtlı olduğu meslek odasından alınacak belge. e) Laboratuvarın analiz ve ürün / ürün gurupları bazında belirlenmiş genel faaliyet konularını belirten belge. f) Laboratuvar yerinin tapusu veya kira sözleşmesi ile yapı kullanma izin belgesinin noter onaylı fotokopisi. g) Laboratuvar cihaz yerleşim planı. h) Laboratuvarda yangına karşı gerekli önlemlerin alındığına dair itfaiyeden alınacak belge. Bakanlıkça, gönderilen bilgi ve belgeleri içeren başvuru dosyasına istinaden en az bir kişi Genel Müdürlükten olmak üzere Genel Müdürlüğün belirleyeceği ve konusunda uzman en az üç kişiden oluşan bir komisyon tarafından laboratuvar yerinde incelenir ve bu Yönetmeliğe uygun olması halinde laboratuvara kuruluş izin belgesi verilir. Yerinde yapılan incelemede laboratuvarın bu Yönetmeliğe uygun bulunmaması halinde denetim raporunda belirtilen eksikliklerin giderilmesi için laboratuvara süre verilir. Eksikliklerin giderildiğine dair müracaatla yeniden yerinde inceleme yapılır ve bu Yönetmeliğe uygun olması halinde laboratuvara kuruluş izin belgesi verilir. Kuruluş izni verilen kontrol laboratuvarının yeni bir bölüm açması durumunda yeni açılacak bölüm/bölümlere ait belgeler istenir, yukarıda belirtilen işlemler yapılır ve kuruluş izni yenilenir. Kuruluş izni amacıyla başvuruda bulunan kamu kontrol laboratuvarlarından bu maddenin (c), (d) ve (f) bendlerinde belirtilen belgeler istenmez. Çalışma izni Madde 14 — Bakanlıktan kuruluş izni belgesi alan laboratuvar, çalışma izni almak için, aşağıdaki bilgi ve belgelerle yeniden Bakanlığa başvurur: a) Dilekçe. b) Laboratuvarın analiz ve ürün ve/veya ürün gurupları bazında belirlenmiş faaliyet konularını belirten belge. c) Laboratuvar organizasyon şeması. d) Her bölüm sorumlusu/laboratuvar şefi, laboratuvar personeli ve yardımcı personelinin noter onaylı sözleşmesi, diploma sureti, nüfus cüzdanı fotokopisi varsa meslek odasına kayıt belgesi. e) Bakanlıkça onaylanmış numune kabul ve analiz defteri. f) Laboratuvarın çalışma izin başvurusunda belirtilen analizlerin listesi, orijinal analiz metotları ile bu yöntemlerin standart çalışma planı formatındaki metot talimatları. g) Orijinal metot olarak ulusal/uluslararası kabul görmüş bir metot kullanılmaması durumunda metot validasyon raporu. h) Laboratuvarda kullanılacak cihaz, alet ve ekipmanların marka, model, üretim yılına ait bilgiler ve kullanım talimatları ve kalibrasyon belgeleri. ı) Laboratuvar atıklarının bertaraf edilmesi için ilgili kuruluş ile yapılan sözleşme. Bakanlık, gönderilen başvuru dosyasını teknik yönden inceler ve/veya referans laboratuvara incelettirir. İnceleme sonucu uygun bulunan kontrol laboratuvarı, en az bir kişi Genel Müdürlükten olmak üzere Genel Müdürlüğün belirleyeceği konusunda uzman en az üç kişiden oluşan bir komisyon tarafından yerinde incelenir ve bu Yönetmeliğe uygun olan kontrol laboratuvarına çalışma izin belgesi verilir. Yerinde yapılan incelemede laboratuvarın bu Yönetmeliğe uygun bulunmaması halinde denetim raporunda belirtilen eksikliklerin giderilmesi için laboratuvara süre verilir. Eksikliklerin giderildiğine dair müracaatla yeniden yerinde inceleme yapılır ve bu Yönetmeliğe uygun olması halinde laboratuvara çalışma izin belgesi verilir. Çalışma izni verilen kontrol laboratuvarının faaliyet konularını genişletmek istemeleri halinde faaliyet genişletmeye esas belgeler istenerek yukarıda belirtilen işlemler yapılır ve çalışma izni yenilenir. Yetkilendirme Madde 15 — Bakanlıktan kuruluş ve çalışma izin belgesi alan kontrol laboratuvarı, ürün/ürün gurubu ve analiz bazında belirtilen faaliyet konularında Bakanlık il müdürlüklerince gönderilecek yurt içi denetim, ithalat ve ihracat numuneleri ile özel istek amaçlı numunelerde analiz yapmaya yetkilidir. Laboratuvarlar izin verilen faaliyet konusu dışında analiz raporu düzenleyemezler. Faaliyet konusu dışında analiz raporu düzenleyen laboratuvarlar için bu Yönetmeliğin 18 inci maddesine göre işlem yapılır. Bildirimler Madde 16 — Kuruluş ve çalışma izni alan kontrol laboratuvarının kapatılması, sahibi, sorumlu yönetici, adresi ve adının değişmesi, çalışma izninde belirtilen faaliyet konularının değiştirilmesi, genişletilmesi, laboratuvarda yeni bir bölüm açılması veya laboratuvarın yapısını temelden değiştirecek tadilatların yapılması halinde, on beş gün içinde değişiklikleri içeren bilgi, belgeler, kuruluş ve çalışma izin belgelerinin asılları ile birlikte Bakanlığa başvurulur. Laboratuvarın başvuru dosyası incelendikten sonra gerekli görüldüğünde Bakanlıkça, en az bir kişi Genel Müdürlükten olmak üzere Genel Müdürlüğün belirleyeceği konusunda uzman en az üç kişiden oluşan bir komisyon tarafından laboratuvar yerinde incelenir ve bu Yönetmeliğe uygun olması halinde laboratuvarın kuruluş ve/veya çalışma izin belgesi yenilenir. BEŞİNCİ BÖLÜM Kontrol Laboratuvarlarının Denetlenmesi, Kuruluş ve Çalışma İzni İptali, Cezai Hükümler, Belge ve Kayıtların Tutulması Denetim Madde 17 — Kontrol laboratuvarı, Genel Müdürlüğün belirleyeceği komisyon tarafından bu Yönetmelik esasları dahilinde şikayet dışında yılda en az bir defa denetlenir. Denetimlerde gizlilik esastır. Sorumlu yönetici, denetlemeye gelen görevlilere her türlü bilgi ve belgeyi göstermek zorundadır. Denetim tutanağı iki nüsha halinde düzenlenerek bir nüshası sorumlu yöneticiye verilir. Denetim tutanağı daha sonraki denetimlerde sorumlu yönetici tarafından istenildiğinde denetim görevlilerine gösterilir. Denetimden sonra, kontrol laboratuvarında eksiklik veya uygunsuzluk bulunduğu takdirde, ilgili laboratuvar denetim tutanağında belirtilen süre içerisinde eksikliklerini tamamlayarak Bakanlığa bildirir. Belirlenen eksikliklerin; kontrol laboratuvarının eksikliği görülen konuda analiz yapmasına engel teşkil etmesi durumunda, Genel Müdürlük kontrol laboratuvarının o bölümü ya da analizi konusundaki analiz yapma yetkisini eksiklik veya uygunsuzluğun giderilmesine kadar durdurabilir. Laboratuvar bu süre sonunda yeniden Genel Müdürlüğün belirleyeceği komisyon tarafından gerektiğinde yeniden denetlenir. Genel Müdürlükçe analiz sonuçlarının kabul edilebilir hata sınırları içerisinde olup olmadığının kontrolü amacıyla, gerektiğinde belirlenen bir referans laboratuvar tarafından hazırlanarak gönderilen test numunesi kontrol laboratuvarına analiz ettirilir ve analiz sonuçları referans laboratuvar tarafından değerlendirilir. Referans laboratuvar tarafından değerlendirme ve analiz sonuçları ile ilgili olarak Genel Müdürlüğe bilgi verilir. Analiz sonuçlarının hata sınırları dışında olması halinde, Genel Müdürlük kontrol laboratuvarının hata sınırları dışında olduğu belirlenen analizlerle ilgili analiz yapma yetkisini, ulusal veya uluslar arası yeterlilik testleri düzenleyen kuruluşlarca analiz sonuçlarının yeterliliği onaylanana kadar durdurabilir. Ayrıca, gerektiğinde Genel Müdürlük, laboratuvarda analiz edilen numunelerden birine ait şahit numuneyi analiz sonuçlarının kabul edilebilir hata sınırları içinde olup olmadığının kontrolü amacıyla referans bir laboratuvara analiz ettirir. Kontrol laboratuvarları her yıl Genel Müdürlüğün belirleyeceği konularda ulusal veya uluslar arası yeterlik testlerine katılarak test sonuçlarını Genel Müdürlüğe bildirirler. Yapılan denetimler sırasında belirlenen eksikliklerin bildirilen süre içerisinde tamamlanmaması durumunda bu Yönetmeliğin 18 inci maddesine göre işlem yapılır. Kuruluş ve çalışma izni iptali ile cezai hükümler Madde 18 — Kontrol laboratuvarının, Bakanlıktan kuruluş ve/veya çalışma izni almadan faaliyette bulunduğunun tespitinde; 5179 sayılı Gıdaların Üretimi Tüketimi ve Denetlenmesine Dair Kanun Hükmünde Kararnamenin Değiştirilerek Kabulü Hakkında Kanunun 29 uncu maddesinin (b) fıkrasında belirtilen hükme göre laboratuvar faaliyetten men edilir ve on bin YTL idari para cezası verilir. Kontrol laboratuvarının; a) Çalışma izin belgesinde belirtilen ve Bakanlıkça onaylanan faaliyet konusu dışında çalışması, b) Bu Yönetmeliğin 16 ncı maddesinde yer alan konularla ilgili olarak belirlenen süre içerisinde bildirimlerde bulunmaması, c) Bu Yönetmeliğin 17 nci maddesine göre yapılan denetim sırasında denetim elemanlarınca tespit edilen eksikliklerin belirlenen süre içerisinde tamamlanmaması, Hallerinde laboratuvar faaliyetten men edilir ve on bin YTL idari para cezası verilir. Faaliyetten men edilen laboratuvarın tekrar faaliyete geçebilmesi için yeniden kuruluş ve/veya çalışma izni alması zorunludur. Bu madde hükümleri Kamu kontrol laboratuvarları için uygulanmaz. Belge ve kayıtlar Madde 19 — Laboratuvarın işleyişiyle ilgili olarak aşağıdaki doküman ve kayıtlar tutulur: a) Genel numune kayıt defteri (Ek-1). b) Bölümlere ait numune kayıt defteri (Ek-2). c) Bölümlere ait analiz ile ilgili çalışma detaylarını gösteren analiz defteri (Ek-3). d) Muayene ve analiz defteri (Ek-4). d) Yurtiçi denetim muayene ve analiz raporu (Ek-5). e) Özel istek muayene ve analiz raporu (Ek-6). f) İhracat muayene ve analiz raporu (Ek-7). g) İthalat muayene ve analiz raporu (Ek-8). h) Yem muayene ve analiz raporu (Ek-9). ı) Hayvan hastalıkları teşhis raporu (Ek-10). i) Ulusal ve/veya Uluslar arası yeterlilik test sonuçlarına ait kayıtlar. j) Alet, ekipman bakım, onarım ve kalibrasyon çizelgesi (Ek-11). k) Alet ve ekipman listesi (Ek-12). l) Alet, ekipmanların kullanım talimatları. m) Enstrümental analizlerde elektronik yedekleri veya kromotogram çıktıları. n) Analiz metotlarına ve cihazlara ait validasyon raporları. o) Personel bilgi kayıtları. ö) Eğitim kayıtları. p) Kimyasal madde kayıtları. r) İlk yardım talimatı. s) Aylık faaliyet raporu (Ek-13). ş) Standart çalışma planı (Ek-14). t) Kimyasal madde kayıt defteri (Ek-15). u) Kimyasal madde kullanım kayıt defteri (Ek-16). Yukarıda belirtilen doküman ve kayıtlar en az beş yıl muhafaza edilir. ALTINCI BÖLÜM Analiz Metotları, Analiz Raporları ve Ücretleri Analiz metotları Madde 20 — Kontrol laboratuvarlarında öncelikle Türk Gıda Kodeksi Yönetmeliğinde belirtilen analiz metotları kullanılır. Analiz metotları Türk Gıda Kodeksi Yönetmeliğinde mevcut değilse, Bakanlık tarafından izin verilecek, ulusal/uluslararası kabul edilmiş bir analiz metodu kullanılır. Ulusal/uluslararası kabul edilmiş bir analiz metodu kullanıldığında, laboratuvar tarafından ilgili metodun laboratuvarda uygulanabilirliğinin verifikasyon çalışması ile teyit edilmesi yeterlidir. Ulusal/uluslararası kabul edilmiş bir analiz metodu kullanılmadığında, laboratuvar tarafından ilgili metodun validasyon çalışmaları yapılarak dokümante edilir. Yapılan validasyon metotta tanımlanmış olan ürün/ürünler için geçerlidir. Metotta belirtilenin dışında farklı özelliklere sahip bir matriksteki ürün çalışıldığında metot yeniden valide edilir. Elde edilen validasyon sonuçlarına göre metodun optimum şartlarda ve en yüksek performansta kullanılması için gerekli olan uyarıların, dikkat edilecek noktaların, kritik nokta ve kritik işlemlerin tanımlandığı rutin uygulamalara yönelik metot talimatları standart operasyon prosedürü olarak hazırlanır. Yem ile ilgili analizlerde 1734 sayılı Yem Kanununda belirtilen yöntemler uygulanır. Tohumlukların tescil ve sertifikasyonu ile ilgili muayene ve analizler ise 308 sayılı Tohumlukların Tescil, Kontrol ve Sertifikasyonu Kanunu ile ilgili 1/2/1964 tarihli ve 11622 sayılı Resmî Gazete’de yayımlanan Tohumlukların Tescil, Kontrol ve Sertifikasyonu Hakkındaki Kanunun Uygulanmasına İlişkin Yönetmeliğe göre yapılır. Özel istek numuneleri müşteri talep ettiği metoda göre analiz yapılabilir ve analiz raporunda "Yukarıda belirtilen analizler numune sahibinin talep ettiği analiz metoduna göre yapılmıştır" ifadesi yer alır. Bu rapor adli-idari işlemlerde ve reklam amacıyla kullanılamaz. Analiz raporları Madde 21 — Kontrol laboratuvarlarında düzenlenen analiz raporları; denetim (Ek-5), ihracat (Ek-7), ithalat (Ek-8)’e göre en az üç nüsha halinde ve özel istek numuneleri için ise (Ek-6)’ya göre en az iki nüsha düzenlenir. Laboratuvarların düzenleyecekleri raporlar reklam amacıyla kullanılamaz. Laboratuvar tarafından analiz raporlarının gizliliği esastır. Analiz raporlarının hazırlanmasında aşağıdaki hususlara dikkat edilir: a) Enstrümantal cihazlarla yapılan analizlerde kullanılan cihaz, metot adı ve miktar olarak verilebilen en düşük limit ölçüm limiti olarak analiz raporuna yazılır. b) İthalat, ihracat ve denetim amaçlı numunelerde analiz sonuçları ile ilgili herhangi bir değerlendirme yapılmaz. c) Numunede yapılan bütün analizler aynı raporda belirtilir. d) Analiz raporunda raporun kısmen kullanılamayacağına dair uyarıcı ifade ve "Analiz Sonuçları Yukarıda Belirtilen Numune İçin Geçerlidir" ifadesi yer almalıdır. e) Bakanlığın yetki verdiği hususlarda ilgili mevzuata göre analiz raporlarında değerlendirme yapılır. Analiz ücretleri Madde 22 — Kamu kontrol laboratuvarlarında uygulanacak numune analiz ücretleri, her yıl Genel Müdürlüğün belirleyeceği esaslara göre oluşturulacak bir komisyon tarafından, analiz maliyetleri dikkate alınarak analiz bazında belirlenir. YEDİNCİ BÖLÜM Çeşitli ve Son Hükümler Yürürlükten kaldırılan yönetmelik Madde 23 — 4/9/2000 tarihli ve 24160 Sayılı Resmî Gazete’ de yayımlanan Özel Gıda Kontrol Laboratuvarlarının Kuruluş ve Faaliyetleri Hakkında Yönetmelik yürürlükten kaldırılmıştır. Geçici Madde 1 – Halen faaliyet gösteren kontrol laboratuvarları bu Yönetmeliğin yayımından itibaren bir yıl içinde bu Yönetmelik hükümlerine uymak zorundadır. Yürürlük Madde 24 — Bu Yönetmelik yayımı tarihinde yürürlüğe girer. Yürütme Madde 25 — Bu Yönetmelik hükümlerini Tarım ve Köyişleri Bakanı yürütür.

http://www.biyologlar.com/kontrol-laboratuvarlarinin-kurulus-ve-gorevleri-hakkinda-yonetmelik

Tıbbi Laboratuvarlar Yönetmeliği Resmi Gazetede Yayınlandı

Uzun zamandır çıkacağı konusunda beklentiler olan Tıbbi Laboratuvarlar Yönetmeliği 25 Ağustos 2011 tarihli ve 28036 sayılı Resmi Gazete’de yayınlandı.Yönetmelik, kamu ve özel sağlık kurum/kuruluşlarındaki tıbbi laboratuvarların planlanması, ruhsatlandırılması, açılması, faaliyetlerinin düzenlenmesi, sınıflandırılması, izlenmesi, denetlenmesi ve kapatılmasına ilişkin usul ve esasları düzenliyor, kaliteli ve verimli hizmet sunmalarını sağlamayı amaçlıyor.Yönetmeliğin yürürlüğe girdiği tarihten önce ilgili mevzuata uygun olarak açılan laboratuvarlar, iki yıl süre ile mevcut durumları ile faaliyete devam edebilecekler. Bu süre içinde bu Yönetmelikte belirlenen ölçütlere uygun olarak ruhsat alacaklar. Belirtilen süre içinde ruhsat almayan laboratuvarın faaliyetine son verilecek. Tıbbi Laboratuvarlar Yönetmeliği’ni Tümünü Aşağıda Bulabilirsiniz: TIBBİ LABORATUVARLAR YÖNETMELİĞİ BİRİNCİ BÖLÜM Amaç, Kapsam, Dayanak, Tanımlar ve Kısaltmalar Amaç MADDE 1 – (1) Bu Yönetmeliğin amacı; kamu ve özel sağlık kurum/kuruluşlarındaki tıbbi laboratuvarların planlanması, ruhsatlandırılması, açılması, faaliyetlerinin düzenlenmesi, sınıflandırılması, izlenmesi, denetlenmesi ve kapatılmasına ilişkin usul ve esasları düzenlemek, kaliteli ve verimli hizmet sunmalarını sağlamaktır. Kapsam MADDE 2 – (1) Bu Yönetmelik; doping, adli tıp, veteriner hekimlik, doku tipleme, genetik ve araştırma amaçlı kurulmuş laboratuvarlar dışındaki, Devlet ve vakıf üniversiteleri, kamu kurum/kuruluşları ile özel hukuk tüzel kişilerine ve gerçek kişilere ait tıbbi laboratuvarları kapsar. Dayanak MADDE 3 – (1) Bu Yönetmelik; 19/3/1927 tarihli ve 992 sayılı Seriri Taharriyat ve Tahlilat Yapılan ve Masli Teamüller Aranılan Umuma Mahsus Bakteriyoloji ve Kimya Laboratuvarları Kanununun 7 nci maddesi, 7/5/1987 tarihli ve 3359 sayılı Sağlık Hizmetleri Temel Kanununun 3 üncü maddesi ile 9 uncu maddesinin birinci fıkrasının (c) bendi ve 13/12/1983 tarihli ve 181 sayılı Sağlık Bakanlığının Teşkilat ve Görevleri Hakkında Kanun Hükmünde Kararnamenin 43 üncü maddesine dayanılarak hazırlanmıştır. Tanımlar ve kısaltmalar MADDE 4 – (1) Bu Yönetmelikte geçen; a) Ana dal: Tıpta uzmanlık mevzuatında yer alan, bu Yönetmelik kapsamındaki tıbbi laboratuvar dallarını, b) Bakan: Sağlık Bakanını, c) Bakanlık: Sağlık Bakanlığını, ç) Başkan: Tıbbi Laboratuvar Bilimsel Danışma Komisyonu Başkanını, d) Başkanlık: Refik Saydam Hıfzıssıhha Merkezi Başkanlığını, e) Dış kalite değerlendirme: Laboratuvarların test sonuçlarının güvenilirliğini sağlamak veya yükseltmek amacıyla laboratuvarın dışındaki bir sistem/kurum/kuruluş tarafından düzenlenen içeriği veya konsantrasyonu bilinen ya da bilinmeyen örneklerle yapılan izleme ve değerlendirme çalışmasını, f) Genel Müdür: Tedavi Hizmetleri Genel Müdürünü, g) Genel Müdürlük: Tedavi Hizmetleri Genel Müdürlüğünü, ğ) Hizmet alımı: Laboratuvarın kendisi dışındaki ruhsatlı bir laboratuvar/laboratuvarlardan test kapsamında hizmet alımını, h) Hizmet Kalite Standartları (HKS): Bakanlıkça sağlık kuruluşları ve laboratuvarların hizmet birimleri ve iş süreçlerini değerlendirmek, iyileştirmek üzere yayımlanan standartları, ı) İç kalite kontrol: Analitik sürecin kalitesini değerlendirmek ve sonuçların güvenirliğini yükseltmek amacıyla laboratuvar tarafından yapılan kalite kontrol çalışmasını, i) Komisyon: Tıbbi Laboratuvar Bilimsel Danışma Komisyonunu, j) Laboratuvar: İnsanlarda; sağlığın değerlendirilmesi, hastalıkların önlenmesi, tanısı, takibi, tedavinin izlenmesi ve prognoz öngörüsü amacı ile insana ait biyolojik örneklerin veya dolaylı olarak ilişkili olduğu örneklerin incelendiği, sonuçların raporlandığı, gerektiğinde yorumlandığı ve ileri incelemeler için önerileri de içeren hizmetlerin sunulduğu tıbbi laboratuvarları, k) Laboratuvar dışı testler: Muayenehane testleri (basit ve mikroskopik testler), hasta başı testler ile klinik veya servisde yapılan testleri, l) Laboratuvar merkezi: Birden fazla uzmanlık dalında kurulan laboratuvarı, m) Müdürlük: İl sağlık müdürlüğünü, n) SKYS: Sağlık Kuruluşları Yönetim Bilgi Sistemini, o) Test: Laboratuvara gelen veya laboratuvarda alınan bir örnekte bir veya daha fazla parametrenin aynı anda çalışılabilmesine olanak sağlayan ve pre-analitik, analitik, post-analitik tüm evreleri kapsayan süreci/çalışmaları, ö) Tıbbi atık: 22/7/2005 tarihli ve 25883 sayılı Resmî Gazete’de yayımlanan Tıbbi Atıkların Kontrolü Yönetmeliğinde yer alan tıbbi atık tanımını, p) Uzman: Tıpta uzmanlık mevzuatına göre bir laboratuvar ana dalı veya yan dallarından birinde uzmanlık eğitimini tamamlayarak o alanda sanatını uygulama hakkı ve uzman unvanını kullanma yetkisi kazanmış ve uzmanlık alanında müstakilen bir laboratuvarı yönetmeye yetkili olan kişiyi, r) Uzmanlık Derneği: Tıpta uzmanlık mevzuatında yer alan, bu Yönetmeliğin kapsamındaki laboratuvarlarla ilgili tıpta uzmanlık ana dal ve yan dallarını temsilen kurulan meslek örgütlerini, s) Yan dal: Tıpta uzmanlık mevzuatında yer alan, laboratuvar alanına ait tıpta uzmanlık yan dallarını, ifade eder. İKİNCİ BÖLÜM Tıbbi Laboratuvarlar Bilimsel Danışma Komisyonunun Teşkili, Görevleri, Çalışma Usul ve Esasları Komisyonun teşkili MADDE 5 – (1) Komisyon, laboratuvar hizmetlerinin geliştirilmesi ve kalitesinin artırılmasında Bakanlığa bilimsel destek verilmesini sağlamak üzere, ilgili uzmanlık dallarından seçilen yirmi beş üyeden oluşur. (2) Komisyon, Refik Saydam Hıfzıssıhha Merkezi Başkanı veya Refik Saydam Hıfzıssıhha Merkezi Başkanlığı Salgın Hastalıklar Araştırma Müdürlüğünün bağlı olduğu Başkan Yardımcısı Başkanlığında toplanır. (3) Komisyonun sekretarya görevini Başkanlık yürütür. (4) Komisyon üyeleri aşağıda belirtilen temsilcilerden, Başkanın teklifi ile Bakan tarafından görevlendirilir. a) Başkanlığı temsilen iki uzman ve Refik Saydam Hıfzıssıhha Merkezi Başkanlığı Salgın Hastalıklar Araştırma Müdürlüğünün bağlı olduğu Başkan Yardımcısı, b) Genel Müdür veya görevlendireceği bir temsilci, c) Genel Müdürlüğün performans yönetimi ve kalite geliştirme daire başkanlığı ile laboratuvar hizmetleri daire başkanlığından birer temsilci, ç) Üniversite hastane laboratuvarlarını temsilen enfeksiyon hastalıkları ve klinik mikrobiyoloji, tıbbi biyokimya, tıbbi mikrobiyoloji, tıbbi patoloji ana dallarından anabilim dalı/bilim dalı başkanları veya en az doçent olmak üzere akademisyenleri arasından birer temsilci olmak üzere dört uzman, d) Eğitim ve araştırma hastane laboratuvarlarını temsilen enfeksiyon hastalıkları ve klinik mikrobiyoloji, tıbbi biyokimya, tıbbi mikrobiyoloji, tıbbi patoloji ana dallarından klinik şefi veya şef yardımcıları arasından birer temsilci olmak üzere dört uzman, e) Özel kurum/kuruluş laboratuvarlarını temsilen enfeksiyon hastalıkları ve klinik mikrobiyoloji, tıbbi biyokimya, tıbbi mikrobiyoloji, tıbbi patoloji ana dallarından birer temsilci olmak üzere dört uzman, f) Uzmanlık derneklerinden enfeksiyon hastalıkları ve klinik mikrobiyoloji, tıbbi biyokimya, tıbbi mikrobiyoloji, tıbbi patoloji, hematoloji, temel immünoloji ana dal veya yan dallarında uzman olan birer temsilci olmak üzere altı uzman. (5) Bir uzmanlık alanında birden fazla derneğin olması halinde, komisyon üyeliği, bu dernekler arasında iki yılda bir üye sayısı fazla olan dernekten başlamak üzere dönüşümlü olarak sağlanır. (6) Komisyon üyelerinin görev süresi iki yıldır. Süresi dolan üyeler tekrar görevlendirilebilir. Herhangi bir sebeple boşalan üyelik için kalan süreyi tamamlamak üzere dördüncü fıkraya uygun aynı niteliklere sahip yeni üye seçilir. (7) Komisyon toplantılarına mazeret belirtmeksizin iki defa üst üste katılmayan üyenin üyeliği sona erer. Bu üye sonraki dönemlerde tekrar komisyon üyesi olamaz. Komisyonun görevleri MADDE 6 – (1) Komisyonun görevleri aşağıda belirtilmiştir: a) Laboratuvarların sınıflandırılması, 25/3/2010 tarihli ve 27532 mükerrer sayılı Resmî Gazete’de yayımlanan Sosyal Güvenlik Kurumu Sağlık Uygulama Tebliğine yönelik test listelerinin hazırlanması ve güncellenmesi konularında Bakanlığa görüş bildirmek, b) Laboratuvarların sınıflarına uygun olarak sağlamaları gereken asgari standartların tespiti, güncellenmesi, HKS’nin oluşturulması ve hazırlanmasında Bakanlığa destek olmak, gerektiğinde bu konularla ilgili görüş bildirmek, ilgili mevzuatta değişiklik önerilerini Bakanlığa sunmak, c) Bilimsel ve mesleki kuruluşların laboratuvarlar ile ilgili olarak Bakanlığa önermiş olduğu standart, kılavuz ve benzeri dokümanları değerlendirmek ve görüş bildirmek, ç) Dış kalite değerlendirme programlarıyla ilgili Bakanlığa görüş ve öneriler sunmak, d) Laboratuvar test listelerinde yer alan testlerin en son bilimsel terminolojiye göre adlandırılmalarına ve maliyet analizlerine yönelik Bakanlığa önerilerde bulunmak, e) Referans hizmet laboratuvarı başvurusunun değerlendirilmesinde Bakanlığa görüş bildirmek, f) Bakanlıkça talep edilmesi halinde bu Yönetmelik çerçevesinde düzenlenen eğitici toplantılara bilimsel katkı sağlamak, g) Bakanlık tarafından toplanan dış kalite kontrol değerlendirme verilerinin değerlendirilmesi ve gerektiğinde rapor haline getirilmesine katkı sağlamak, ğ) Gerektiğinde laboratuvarlar tarafından kullanılan yöntemlere ilişkin görüş vermek. Komisyonun çalışma usul ve esasları MADDE 7 – (1) Komisyon, Başkanın daveti üzerine, yılda en az bir kez üye tam sayısının üçte ikisinin katılımı ile toplanır. Bakanlık gerekli hallerde, Komisyonu olağan toplantıları dışında da toplantıya davet edebilir. (2) Toplantı tarihi, yeri ve gündem taslağı sekretarya aracılığı ile toplantı tarihinden bir ay önce, olağan dışı toplantılarda ise en geç on gün öncesinde yazılı olarak veya elektronik posta ile üyelere duyurulur. Üyeler tarafından ayrıca gündeme alınması talep edilen konular değerlendirilmek üzere, toplantıdan en geç onbeş gün önce sekretaryaya bildirilir. (3) Kararlar toplantıya katılan üyelerin oy çokluğu ile alınır. Oyların eşitliği halinde Başkanın oy verdiği taraf çoğunluğu sağlamış kabul edilir. Komisyon kararları, karar defterine yazılır ve toplantıya katılan üyelerce imzalanır. Karara muhalif olanlar, şerh koymak suretiyle kararları imza ederler. Muhalif görüş gerekçesi, karar altında veya ekinde belirtilir. (4) Başkan tarafından gerek görülmesi halinde yurt içinden veya yurt dışından uzman veya uzmanlar toplantıya davet edilir ve yazılı ya da sözlü görüşleri alınır. Toplantıya davet edilen katılımcılar Komisyon çalışmaları ile ilgili oylamaya katılamazlar. (5) Komisyon, ilk toplantısını görevlendirmeler yapıldıktan sonraki bir ay içinde yapar. Gerekli durumlarda komisyon, görev alanlarıyla ilgili konularda çalışmalar yapmak ve görüş hazırlamak üzere, görev süresinin ve üye sayısının komisyon tarafından belirlendiği alt komisyonlar veya çalışma grupları oluşturulabilir. (6) Toplantı karar ve tutanaklarını yazmak, tüm yazışmaları yapmak ve bunları muhafaza etmek sekretaryanın görevidir. ÜÇÜNCÜ BÖLÜM Laboratuvarların Kuruluşu, Dalları, Sınıflandırılması, Görev Tanımları, Referans Hizmet Laboratuvarı Ölçütleri, Laboratuvar Dışında Uygulanan Testlere İlişkin Hususlar ve Laboratuvarların Çalışma Esasları ile Fiziki Şartları Laboratuvarların kuruluşu MADDE 8 – (1) Laboratuvarlar kurum/kuruluş bünyesinde veya bağımsız olarak kurulabilir ve işletilebilirler. Laboratuvarların dalları MADDE 9 – (1) Bu Yönetmelik kapsamında kurulacak laboratuvarlarda ruhsata esas alınan dallar; tıbbi mikrobiyoloji, tıbbi biyokimya veya tıbbi patolojidir. Laboratuvarların sınıflandırılması MADDE 10 – (1) Laboratuvarlar aşağıdaki şekilde beş sınıfa ayrılır: a) Basit Hizmet Laboratuvarı, b) Kapsamlı Hizmet Laboratuvarı, c) İleri Düzey Hizmet Laboratuvarı, ç) Referans Hizmet Laboratuvarı, d) Ulusal Referans Laboratuvarı. Laboratuvarların görev tanımları MADDE 11 – (1) Yataklı ve/veya ayakta teşhis ve tedavi yapılan kurum veya kuruluş bünyesinde olmak şartıyla Basit Hizmet Laboratuvarında aşağıdaki basit testler çalışılabilir. a) Şerit veya tablet halinde reajenler ile otomatize olmayan idrar analizi, b) Dışkıda gizli kan, c) Kan glikozu – spesifik olarak ev kullanımı için onaylanmış glikoz izleme cihazlarıyla, ç) Hemoglobin – otomatik olmayan tekniklerle veya doğrudan sonuç veren basit cihazlarla, d) Eritrosit sedimantasyon hızı (otomatize olmayan), e) Mikrohematokrit (otomatize olmayan), f) İdrarda hCG (gebelik testleri), g) Doğrudan ARB Mikroskobi (Aside Dirençli Boyama, tüberküloz tanısına yönelik). Ancak, hasta örneği teksif yöntemiyle boyama ve kültür yapılmak üzere tüberküloz tanısı yapan laboratuvara gönderilir. (2) Kapsamlı Hizmet Laboratuvarı; her bir anadal için en az bir sorumlu uzmanın bulunduğu ve uzmanlık alanı ile ilgili laboratuvar testlerini uygulayabilen laboratuvardır. (3) İleri Düzey Hizmet Laboratuvarı; her bir anadal için en az iki uzmanın bulunduğu ve uzmanlık alanı ile ilgili kapsamlı laboratuvar testleri ile birlikte gerektiğinde ileri teknikleri uygulayabilen ve alanıyla ilgili uzmanlık, ön lisans, lisans veya lisansüstü eğitimleri veren laboratuvardır. (4) Referans Hizmet Laboratuvarı; referans olunan testin doğrulamasını yapan, gerektiğinde yeni yöntemlerin geçerli kılınmasını sağlayan, Bakanlık tarafından oluşturulan laboratuvar ağı içinde yer alan ve ulusal referans laboratuvarına karşı sorumlu olan laboratuvardır. (5) Ulusal Referans Laboratuvarı; referans olduğu tanı testi ile ilgili olarak kalite kontrol, laboratuvarlar arası karşılaştırma testleri, eğitim, denetim yapan ve laboratuvar ağı içinde yer alan diğer laboratuvarların verilerini değerlendiren, ulusal düzeyde strateji oluşturan ve uluslararası düzeyde ülkeyi temsil eden laboratuvardır. Referans hizmet laboratuvarı ölçütleri MADDE 12 – (1) Referans Hizmet Laboratuvarı, aşağıdaki her bir bent için en az bir ölçütün karşılanması durumunda belirlenebilir: a) Teknoloji kullanımı ölçütü: 1) Tanımlayıcı ve/veya referans yöntem kullanıyor olmak, 2) Henüz rutine girmemiş öncü/ileri teknolojiyi kullanıyor olmak. b) Eğitim ve araştırma-geliştirme-yenilik kapasitesi ölçütü: 1) Lisans, lisansüstü veya tıpta uzmanlık eğitimi verme kapasitesine sahip olmak, 2) Araştırma, geliştirme kapasitesine sahip olmak; bunun için özel birim oluşturmak ve/veya araştırma personeli bulundurmak. c) Kalite ölçütü: 1) Referans olunmak istenen test kapsamında ISO 15189 standardı gereklerini sağlayarak akreditasyon belgesine sahibi olmak, 2) Referans olunmak istenen test kapsamında dış kalite kontrol/yeterlilik testlerine en az iki yıl süre ile katılmak ve başarılı olmak, 3) Ulusal Referans Laboratuvarı tarafından düzenlenen laboratuvarlar arası karşılaştırma testlerine son bir yıl içinde katılmak ve başarılı olmak. ç) Tıbbi bir önem veya öncelik arz eden bir durumla ilgili olma ölçütü: 1) Durumun halk sağlığı açısından önem taşıması veya bulaşıcı hastalıklar bildirim sistemi içinde yer alması, 2) Durumun fiziksel, kimyasal veya biyolojik olarak yüksek risk grubunda olması, 3) Durumun nadir ancak yüksek mortalite ve morbidite hızına sahip olması. d) Spesifik tıbbi bir uygulama gereksinimi olması ölçütü: 1) Duruma ilişkin olarak henüz standardize bir bilimsel yöntemin geliştirilmemiş olması ve konuyla ilgili araştırma, geliştirme veya yenilik gereksiniminin oluşması, 2) Yöntem hiyerarşisine göre ilgili uygulama ve tarama yöntemlerine ilave olarak tanımlayıcı veya referans yöntem niteliğinde olan bir veya birden fazla yöntemin kurulum ya da kullanım gerekliliğinin olması. e) Referans laboratuvar ölçütü: 1) Laboratuvarlar arası karşılaştırma ve/veya dış kalite kontrol testleri düzenlemek, 2) Alanıyla ilgili yeni yöntemlerin geçerli kılınması veya yeni metot geliştirmesi için çalışmalar yapmak. Laboratuvar dışında uygulanan testlere ilişkin hususlar MADDE 13 – (1) Laboratuvar dışında yapılabilecek klinik/servis testleri, hastabaşında ve muayenehanede yapılabilecek tıbbi testler ile ilgili hususlar aşağıda belirtilmiştir. a) Hastabaşı testleri; 1) Kalıcı ve özel bir alan gerektirmeksizin, hastanın bulunduğu yerin yanında veya hemen yakınında, hemşire, hekim veya Ek-1’de belirtilen teknik personel tarafından gerçekleştirilen, elde taşınabilen veya hastabaşına geçici olarak getirilebilen kit, cihaz veya aygıtlar ile yapılabilen testlerdir. 2) İlgili HKS kurallarına uygun olarak yapılır ve kayıt altına alınır. 3) Ek-2’de yer alan Hastabaşı Testlerinden oluşur. b) Muayenehane Testleri; 1) Hekimin yalnızca muayene ettiği hastaya yönelik tanıyı güçlendirmek amacıyla yapmış olduğu testlerdir. 2) Muayenehane mikroskopisi sınıfında yer alan testler; bu testlerin eğitimini almış hekim veya test ile ilgili alanda uzman olan hekim ya da bu testlerin eğitimini almış Ek-1’de belirtilen personel tarafından hekim gözetiminde yapılır. 3) Muayenehanede yapılabilecek tıbbi testler 11 inci maddenin birinci fıkrasında verilen basit testler ile Ek-2’de yer alan Muayenehane Mikroskopisi testlerinden oluşur. c) Klinik/Servis Testleri; 1) Yataklı tedavi kurumlarında, ilgili klinik uzmanı tarafından yapılan mikroskopla incelenen boyalı veya boyasız örnekler ile bu Yönetmelikte tanımlanan laboratuvar uzmanlık ana dallarında yapılan testler dışındaki testlerdir. 2) Bu testlerin yapılabilmesi için ilgili klinik/servis sorumlusunun talebi ve başhekimin onayı gereklidir. Laboratuvarların çalışma esasları MADDE 14 – (1) Laboratuvarlar valilik tarafından belirlenen mesai saatlerine uygun olarak hizmet sunarlar. Ancak kurum/kuruluş bünyesindeki laboratuvarlar mesai saatleri dışında hizmet bütünlüğünü bozmayacak şekilde gerekli tedbirleri alırlar. (2) Laboratuvarlar, bu Yönetmeliğe ve Bakanlık tarafından yayımlanan HKS’de belirlenen ölçütleri sağlayacak ve gereklerini yerine getirecek şekilde hizmet sunarlar. (3) Laboratuvarda analiz raporlarının klinisyen/kullanıcıya sunulması, donanım, bilgisayar veya otomatize sistemlerin kullanımı, izlenmesi, verilerin toplanması, kayıt ve muhafaza edilmesi ve verilere tekrar erişimi sağlamak üzere yazılı düzenlemeler oluşturulur ve laboratuvar buna uygun olarak çalıştırılır. (4) Laboratuvarda testlerin ulusal ve/veya uluslararası standartlara uygun, geçerliliği kabul edilmiş yöntemler kullanılarak yapılması esastır. Ulusal veya uluslararası yöntem bulunmadığında bilimsel geçerliliği komisyon tarafından uygun bulunan yöntemler kullanılır. (5) Laboratuvarda test sonuçlarının güvenilir ve doğru olarak zamanında verilmesi amacıyla etkili ve verimli hizmet sunumunu sağlamak için gereken şartlar ve donanım sağlanır. (6) Laboratuvar, 30/5/2007 tarihli ve 26537 sayılı Resmî Gazete’de yayımlanan Bulaşıcı Hastalıklar Sürveyans ve Kontrol Esasları Yönetmeliğinde yer alan bildirimleri, laboratuvar verilerini ve gerektiğinde Bakanlığın istediği diğer verileri belirlenen formata uygun şekilde Bakanlığa gönderir. (7) Laboratuvarda raporlar ve kayıtlar en az yirmi yıl, elektronik kayıtlar yedekleme ile birlikte süresiz, örnekler ve lamlar bozulmayacak şekilde uygun şartlarda sonuç raporlanıncaya kadar muhafaza edilir. Ancak tıbbi patoloji laboratuvarlarında örnekleme yapılan dokular rapor çıktıktan sonra en az bir ay, lamlar en az on yıl, bloklar ise en az yirmi yıl muhafaza edilir. (8) Uzmanlık eğitimi verilen kurumlarda uzmanlık eğitimi ile ilgili tüm laboratuvar alanları rutin çalışmalar yanında eğitim ve araştırma amacı ile de kullanılır ve kullandırılır. (9) Laborutavarda tutulan kayıt defterleri yedekleme ve tekrar erişime açık olmak şartıyla bilgisayar ortamında da tutulabilir. Laboratuvarların fiziki şartları MADDE 15 – (1) Laboratuvarın yerleşim planı; laboratuvar teknik alanı, destek alanları ve ofis alanları olmak üzere üç temel kısımdan oluşur. Bu alanlar aşağıda tanımlanmıştır. a) Laboratuvar teknik alanı; laboratuvar hizmetlerinin gerçekleştirilmesinde gerekli bütün donanım ve uygun şartların sağlandığı ve çalışma aşamalarının yürütüldüğü yerdir. b) Destek laboratuvar alanları; en az bir örnek kabul birimi, örnek alma odası ve malzeme depolanması için uygun alandan oluşur. Bu alanlar, laboratuvar teknik alanı ile fonksiyonel bir bütün oluşturacak şekilde düzenlenir. Laboratuvar yerleşim planında aynı anadal laboratuvar alanları bitişik komşuluk düzeninde olacak şekilde yerleştirilir. Kurum/kuruluş bünyesinde olan laboratuvarlarda örnek alma odası poliklinik katında da bulunur. c) Ofis alanları; hasta kabul, bekleme yeri, sekretarya, tuvaletler, uzman odası ve personel dinlenme bölümleri gibi bölümleri içerir. Ofis alanlarındaki bölümler bir bölgede toplanabilir ve ortak kullanılabilirler ancak bu bölümler laboratuvar teknik alanının içinde yer alamazlar. (2) Laboratuvarlar sınıflarına uygun aşağıdaki fiziki şartları yerine getirecek şekilde yapılandırılır: a) Basit hizmet laboratuvarında, teknik alan en az 10 metrekare olmalıdır. Destek laboratuvar alanları ve ofis alanları toplamı en az 10 metrekareden oluşur. b) Referans, ileri düzey ve kapsamlı hizmet laboratuvarında, laboratuvar teknik alanı tıbbi patoloji laboratuvarları hariç olmak üzere; her bir laboratuvar dalının ayrı konumlanması durumunda her biri için en az 30 metrekare, ofis ve destek laboratuvar alanları toplamı ise en az 20 metrekare olmalıdır. Laboratuvar merkezlerinde laboratuvar teknik alanı en az 40 metrekare, ofis ve destek laboratuvar alanları toplamı ise 30 metrekare olmalıdır. Tıbbi patoloji laboratuvarları için ise, laboratuvar teknik alanı en az 50 metrekare, ofis ve destek alanları en az 30 metrekare olmalıdır. Tıbbi patoloji dahil referans, ileri düzey veya kapsamlı hizmet laboratuvarların teknik alanlarının toplamı 100 metrekareyi aşması durumunda, bu alanın en az % 30’u kadar ofis ve destek laboratuvar alanları tahsis edilir. 1) Tıbbi mikrobiyoloji laboratuvarları besiyerini kendisi yapması durumunda ayrıca besiyeri hazırlama odası bulundurur. 2) Tıbbi biyokimya laboratuvarlarında; idrar ve gaita testleri için havalandırması olan en az 7.5 metrekare ayrı bir oda/alanda veya çeker ocak içersinde çalışılır. 3) Tıbbi patoloji laboratuvar teknik alanı; boyama/özel işlem odası, doktor mikroskopi inceleme odası/alanı, arşivlenme odası ve kimyasal buhar veya gazlar için özel olarak havalandırma sistemi bulunan makroskopi odasından oluşur. 4) Laboratuvarda özel ve ileri teknik gerektiren testler için gerekmesi durumunda uygun alan ayrılır. (3) Laboratuvar ayrıca aşağıdaki şartlara sahiptir; a) Laboratuvarın, lavabo ve tuvaletleri engelli kullanımına uygun olarak düzenlenir. b) Laboratuvar, hizmetin sürekliliğini sağlamak üzere gerekli enerji, güç kaynağı, su, iletişim, bilişim gibi ortam destek sistemlerini içerecek şekilde yapılandırılır. c) Laboratuvar teknik alanların kapıları, giriş ve acil durumda çıkışa engel olmayacak şekilde otomatik kayar kapı veya dışarı doğru açılabilen ve şifreli veya yetkisiz girişlere engel olacak şekilde düzenlenir. (4) Laboratuvarda uygun bir aydınlatma sağlanır ve çalışan sağlığını olumsuz etkileyen gürültü düzeyini aşmayacak önlemler alınır. (5) Tüberküloz tanısı yapan laboratuvarlar aşağıdaki şartları taşır; a) Doğrudan mikroskopi yöntemiyle Aside Dirençli Boyama yapan basit hizmet laboratuvarı için sadece bu amaca yönelik olmak üzere en az 10 metrekarelik ayrı teknik bir alan, b) Tıbbi mikrobiyoloji laboratuvarında, örnek işleme, mikroskopi, kültür, tür tanımlama ve ilaç duyarlılık testleri çalışan tüberküloz tanısı yapan laboratuvarlar için bu amaca yönelik en az 20 metrekarelik negatif basınçlı ayrı bir alan, c) Sadece örnek işleme, mikroskopi, kültür, tür tanımlama ve ilaç duyarlılık testleri çalışan tüberküloz tanısı yapan laboratuvarlarda en az 20 metrekare negatif basınçlı ayrı bir teknik alan ile en az 20 metrekare ofis ve/veya destek laboratuvar alanlar. (6) Tüberküloz tanısı yapan laboratuvarlara ilişkin bu Yönetmelikte tanımlanmayan diğer şartlar Bakanlıkça belirlenir. DÖRDÜNCÜ BÖLÜM Laboratuvar Uzman Kadrosu ve Çalışma Şekli, Laboratuvar Personeli, Personelin Görevlendirilmesi ile Görev ve Sorumlulukları, Eğitimi ve Değerlendirilmesi Laboratuvar uzman kadrosu ve çalışma şekli MADDE 16 – (1) Laboratuvarın uzman kadroları aşağıdaki hususlar dikkate alınarak belirlenir ve planlamaya uygun olarak ilan edilir: a) Laboratuvarın hizmet sunmasına izin verilen her uzmanlık dalı için en az bir uzman kadrosu bulunur. b) Laboratuvarın kadrosunda çalışan uzmanlar, laboratuvarın bulunduğu il içinde ve 11/4/1928 tarihli ve 1219 sayılı Tababet ve Şuabatı Sanatlarının Tarzı İcrasına Dair Kanunun 12 nci maddesine uygun olması ve hizmetin nitelikli sürdürülmesi kaydıyla en fazla iki laboratuvarda çalışabilirler. c) Bakanlığın Eğitim ve Araştırma Hastanelerinde her bir ana dal için asgari olmak üzere dört laboratuvar uzman kadrosu bulunur. ç) Bakanlığa bağlı diğer hastanelerde standart kadro ve personel dağılım cetvelinde belirtilen kapasiteye göre kadrolar belirlenir. d) Diğer kamu kurum veya kuruluş hastanelerine ise her dal için en az birer uzman kadrosu verilir. Laboratuvar personeli MADDE 17 – (1) Laboratuvarda, en az aşağıdaki sayı ve özelliklere sahip personel bulundurulur. a) Basit hizmet laboratuvarında Ek-1’de belirtilen en az bir teknik personel bulundurulur. b) Kapsamlı hizmet laboratuvarında her bir laboratuvar dalı için, ilgili uzmanın yanında Ek-1’de belirtilen en az bir teknik personel ile bir yardımcı personel ve/veya sekreter bulundurulur. Tıbbi patoloji laboratuvarında otopsi yapılması durumunda ayrıca bir teknisyen veya tekniker bulundurulur. Laboratuvar merkezinde yardımcı personel ve/veya sekreter ortak çalışabilir. c) İleri düzey hizmet laboratuvarında her bir laboratuvar dalı için en az iki uzman yanında Ek-1’de belirtilen en az üç teknik personel ile bir yardımcı personel ve sekreter bulundurulur. ç) Referans hizmet laboratuvarında son iki yıl laboratuvarda fiilen çalışan en az bir uzman ve Ek-1’de belirtilen en az iki teknik personel bulundurulur. Laboratuvar personelinin görevlendirilmesi ile görev ve sorumlulukları MADDE 18 – (1) Tıbbi mikrobiyoloji laboratuvarlarında enfeksiyon hastalıkları ve klinik mikrobiyoloji uzmanları ve/veya tıbbi mikrobiyoloji uzmanları, tıbbi biyokimya laboratuvarlarında tıbbi biyokimya uzmanları ve tıbbi patoloji laboratuvarlarında tıbbi patoloji uzmanları çalışmaya yetkilidir. (2) Laboratuvarda, ruhsatta belirtilen uzmanlık alanına uygun olarak aşağıda belirtilen nitelikte personel görevlendirilir: a) Laboratuvar sorumlu uzmanı; laboratuvar merkezlerinde birim sorumluları arasından laboratuvarlar arası koordinasyonu sağlamak ve aşağıda belirtilen hususları yerine getirmek üzere Başhekim tarafından görevlendirilir. Ancak üniversitelerin laboratuvar merkezlerinde laboratuvar sorumlu uzmanı başhekimin teklifi ile rektör tarafından görevlendirilir. Yalnızca bir birim sorumlusunun bulunduğu laboratuvarlarda birim sorumlusu aynı zamanda laboratuvar sorumlusu olarak görev yapar. 1) Kurum veya kuruluştaki laboratuvar birim sorumlularından oluşturulan bir komisyon marifetiyle laboratuvarların ihtiyaçlarının tespitini, laboratuvar testlerinin maliyet etkin yürütülmesini ve HKS’ye uygun çalışılmasını sağlamak, 2) İlgili uzmanlık eğitim içeriğini dikkate alarak, kurum veya kuruluş bünyesindeki laboratuvarlarda farklı ana bilim dalı/yan dallarında hangi testlerin yapılacağını belirlemek, 3) Laboratuvarda çalışan uzmanların değişmesi, ayrılması veya işe başlaması durumunda bu değişikliği beş iş günü içinde Müdürlüğe bildirmek. b) Laboratuvar birim sorumlusu; birden fazla uzmanının bulunduğu dallarda, bu uzmanlardan birisi başhekim tarafından birim sorumlusu olarak görevlendirilir. Eğitim araştırma hastaneleri ve üniversitelerde ise, laboratuvar birim sorumlu uzmanlığı görevi ilgili anabilim dalı başkanı veya klinik şefi tarafından veya görevlendireceği uzman tarafından yürütülür. Birim sorumlu uzmanı aşağıdaki görevleri yerine getirir: 1) Laboratuvar güvenliği de dâhil, laboratuvarın yönetimi ve tüm faaliyetleri ile bu Yönetmeliğe, ilgili mevzuata ve kalite yönetim sistemine göre yürütülmesini ve bu iş ve işlemlerin yürütülmesi için uygun kişilerin görevlendirilmesini yapar. 2) Laboratuvarın ihtiyaçlarının tespitini, sonuçlarının güvenilirliği ve izlenebilirliği ile laboratuvarda HKS’nin yerine getirilmesini sağlar. 3) İç kalite kontrol ve dış kalite değerlendirme sonuçlarının uygun periyotlarda yapılması ve değerlendirilmesi ile gerekli düzeltici ve önleyici faaliyetlerinin yapılması veya yaptırılmasından sorumludur. 4) Testlerin zamanında yapılması ve sonuçlarının kayıt altına alınmasını ve hizmet talebinde bulunan kişi/kurum/kuruluşa zamanında rapor edilmesini sağlar. 5) Laboratuvar personelinin tüm faaliyetlerini izler, eğitim almalarını sağlar ve yeterliliklerini değerlendirir. 6) Teknik personele iç kalite kontrol, dış kalite kontrol değerlendirme ve HKS konusunda eğitim verir. 7) Uzmanlık eğitimi veren kurum/kuruluşlarda eğitimle ilgili sorumluluklarını varsa eğitim sorumlusu ile birlikte yerine getirir. c) Eğitim ve araştırma hastanelerinde başhekimlik/dekanlık tarafından eğitim faaliyetlerini yürütmek üzere bir eğitim sorumlusu atanabilir. ç) Laboratuvar, ihtiyacına uygun ve kadrosunda olmak kaydıyla diğer uzman/uzmanlar bulundurabilir. Bu uzmanlar birim sorumlu uzmanının koordinasyonunda personel eğitimi/uzmanlık eğitimi de dâhil olmak üzere laboratuvardaki tüm faaliyetlerin yürütülmesinden sorumludurlar. Gerektiğinde testi isteyen hekime test süreci, sonuçları, yorumlanması ve ileri tetkik yapılması ile ilgili bilgi ve danışmanlık hizmeti verirler. d) Laboratuvar ihtiyacına uygun olarak aşağıda belirtilen görevleri yerine getirmek üzere Ek-1’de belirtilen teknik personel çalıştırabilir: 1) Gerektiğinde laboratuvara başvuran kişilerden usulüne uygun olarak klinik örnekleri almak, teste uygun hale getirmek üzere hazırlamak, 2) Laboratuvar ortamını ve cihazları, analizin preanalitik ve analitik evrelerine hazır hale getirmek, 3) Laboratuvarın görev kapsamındaki işleri ve testleri yazılı düzenlemelere göre yapmak ve değerlendirilmek üzere uzmana sunmak, 4) Dekontaminasyon işlemlerini ve atıkların güvenli şekilde bertaraf edilmesini sağlamak, 5) Uzman tarafından verilen diğer görevleri yerine getirmek. e) Destek hizmetler ve/veya idari işler personeli; laboratuvarda genel temizlik, örneklerin taşınması ve diğer ofis işlerinin yerine getirilmesinden sorumludurlar. Ayrıca uzman tarafından verilen benzeri diğer görevleri yerine getirmekle yükümlüdürler. (3) Hastalık, ölüm ve doğal felaket gibi mücbir sebepler dışında bir yılda iki aydan az olmak şartıyla sorumlu uzmanın veya birim sorumlusunun görevinden ayrılması durumunda, aynı nitelikleri taşıyan bir uzman, kurum/kuruluş yetkilisi tarafından vekâleten görevlendirilir. Bu durum beş iş günü içinde Müdürlüğe bildirilir. İki aydan uzun süre sorumlu uzmanın/birim sorumlusunun mücbir sebeplerle görevine dönmemesi halinde bu süre altı aya kadar uzatılabilir. Personelin eğitimi ve değerlendirilmesi MADDE 19 – (1) Laboratuvar sorumlu uzmanı laboratuvar personelinin mesleki becerilerini geliştirmek, teknolojik gelişmelerden haberdar olmaları ve laboratuvar hizmet standartlarını yerine getirmelerini sağlamak üzere, yılda en az bir hizmet içi eğitim düzenler veya laboratuvar personelinin düzenlenen en az bir hizmet içi eğitime katılımını sağlar. (2) Laboratuvar personelinin aldığı eğitimin değerlendirilmesi; personelin kendi görev ve sorumluluk alanı ile ilgili konularda, laboratuvarın HKS’de belirlenen ölçütleri sağlamasına olan katkısı ve laboratuvardaki sorumluluklarını yerine getirmesine göre yapılır ve kayıt altına alınır. BEŞİNCİ BÖLÜM Laboratuvarların Planlaması ve Yatırım İzni Laboratuvarların planlanması ve yatırım izni MADDE 20 – (1) Özel laboratuvar açmak isteyenler ruhsat başvurusunda bulunmadan önce Bakanlıkça belirlenen planlamaya ve aşağıdaki şartlara uygun olarak yatırım izni alırlar. a) Bakanlıkça yeni açılmasına izin verilecek laboratuvarlara ilişkin yatırım listesi, her yıl Ekim ayında Bakanlık internet sitesinde ilan edilir. İlanda, istenecek belgeler, laboratuvarda bulundurulması gereken uzmanlık dalları ve sınıfı belirtilir. Laboratuvar açmak isteyenler, Kasım ayı sonuna kadar Bakanlığa başvurur. Kasım ayına kadar başvuru olmaması halinde, takip eden yılın Ağustos ayına kadar başvuruda bulunulabilir. b) Başvurular ilgili yılın Kasım ayının sonuna kadar ya da başvuru olmaması halinde izleyen yılın Ağustos ayının sonuna kadar toplanır ve takip eden ayın ilk haftasında birden fazla istekli olması halinde aralarında noter huzurunda kura çekilerek hak sahibi belirlenir; tek istekli bulunması halinde o kişiye hak sahibi olduğu bildirilir. c)Yatırım izni için başvurularda aşağıdaki belgelerin aslı veya müdürlük tarafından onaylanmış sureti istenir: 1) Laboratuvar açmak için ekonomik ve mali yeterliliğinin olduğunu gösteren belgeler, 2) Hak sahipliğinin iki yıl başkasına devredilmeyeceğine dair taahhütname, 3) Laboratuvar açtıktan sonra işletme hakkının bir yıl süreyle başkasına devredilmeyeceğine dair taahhütname, 4) (a) bendi gereği yapılacak ilanda belirtilen diğer belgeler. ç) Yatırım izni verilen yatırımcı, bir yıl içinde laboratuvar ruhsatnamesini alarak faaliyetine başlar. Bu süre içinde yatırıma başlamış ancak ruhsatname alamamış yatırımcıya müracaat etmesi halinde altı ay ek süre verilebilir. Bu sürede de ruhsat alarak faaliyete başlayamayan yatırımcının yatırım izni iptal edilir. d) Yeni açılan hastanelerin ruhsatlandırılmasına esas olan laboratuvara hastane planlaması ile birlikte Bakanlıkça izin verilir. (2) Gerekli hallerde yapısı ve işlevi Bakanlık tarafından belirlenen ulusal laboratuvar ağları oluşturulabilir. ALTINCI BÖLÜM Başvuru ve Başvurunun İncelenmesi, Ruhsatlandırma, Referans Hizmet Laboratuvarı Başvurusu ve Belgelendirilmesi, Ruhsat Yenileme, Faaliyetin Geçici Olarak Kısmen Durdurulması, Ruhsatın Askıya Alınması ve İptali ile Çalışan Uzman Değişikliğinin İşlenmesi Başvuru ve başvurunun incelenmesi MADDE 21 – (1) Yeni laboratuvar açacaklar veya taşınma/birleşme gibi nedenlerle yeni bir fiziki alanda yeniden ruhsatlandırma gerektiren durumlarda yatırım izni verilen yatırımcı ile kamu sağlık kurum/kuruluş yöneticisi, aşağıda belirtilen belgelerin olduğu dosya ile Müdürlüğe başvurur. Dosya, dizi pusulası ile kabul edilir. Dosyada; a) Ek-3’e uygun olarak doldurulan ruhsat başvuru dilekçesi, b) Bu Yönetmelikte belirtilen şartlara uygunluğunun yazılı beyanı ve laboratuvarın faaliyette bulunacağı yerin adresi, yerleşim planı ve mimar onaylı ölçekli krokisi, c) Laboratuvardaki kimyasal maddelerin, araç, gereç, donanımın ve uzmanlık alanına uygun olarak yapılan test listesi, ç) Her yıl Maliye Bakanlığı tarafından tespit edilen miktarlar üzerinden yatırılacak ruhsat harç makbuzunun aslı veya Müdürlükçe onaylı örneği, bulunur. (2) Başvuru; Müdürlüğe hazırlanan bir dosya ile ve/veya SKYS’ye kaydedilerek yapılır. Başvuru SKYS üzerinden de yapılmış ise geçici kurum kodu ve ruhsat işlemlerinin aşamalarını izleyebilmek ve yazışmaya gerek olmaksızın eksiklik ve uygunsuzlukları bildirmek için müracaat sahibine geçici şifre düzenlenir ve imza karşılığı verilir. Başvuru, Müdürlük tarafından bu Yönetmelik hükümlerine uygun olup olmadığı Ek-4 ile Ek-5’e göre değerlendirilir ve başvuru tarihinden itibaren yedi iş günü içinde incelenir. Dosyada eksiklik ve/veya uygunsuzluk tespit edilir ise, başvuru sahibine eksiklikler on iş günü içinde bildirilir. (3) Dosyada eksiklik ve/veya uygunsuzluk olmaması halinde denetim ekibi tarafından onbeş iş günü içinde laboratuvar yerinde denetlenir. Eksiklik olmayan dosya Bakanlığa gönderilir. (4) Eksiklik ve/veya uygunsuzluk bulunması halinde, bunlar beş iş günü içinde ilgilisine geri bildirilir ve eksikliklerin giderildiğine dair müracaat üzerine ilgili inceleme ekibi tarafından onbeş iş günü içinde tekrar yerinde denetim yapılır. Eksikliklerin giderilmiş olduğunun tespit edilmesi halinde dosya Bakanlığa iletilir. Ruhsatlandırma MADDE 22 – (1) Bakanlığa intikal ettirilen başvuru, Genel Müdürlükçe dosya ve/veya SKYS kaydı üzerinden incelenir. Dosyada eksiklik ve/veya uygunsuzluk varsa eksiklikler SKYS üzerinden onbeş gün içinde veya yazışmayla onbeş iş günü içinde giderilir. Bu süre sonunda eksikliği giderilmeyen dosya Müdürlüğe iade edilir. (2) Genel Müdürlük başvuruyu Ek-5’te belirtilen ruhsat denetimi hizmet kalite ölçütleri ile bu Yönetmeliğin ilgili hükümlerine uygunluğu açısından değerlendirir. (3) Genel Müdürlük eksiklik ve/veya uygunsuzluğu bulunmayan laboratuvara en fazla otuz gün içersinde Ek-6’ya göre ruhsatname düzenler ve Müdürlüğe gönderir. (4) Bakanlık, laboratuvarlara ruhsatname düzenleme yetkisini gerekli görmesi halinde valiliklere devredebilir. (5) Başvuru dosyası ve düzenlenen belgelerin bir örneği Müdürlükte muhafaza edilir. Düzenlenen ruhsatın aslı sorumlu uzmana imza karşılığında verilir. (6) Ruhsatname alan laboratuvar altı ay içerisinde faaliyete geçmek zorundadır. Bu süre içerisinde faaliyete geçmeyen laboratuvarın ruhsatı Bakanlıkça iptal edilir ve planlama hükümleri uygulanır. Referans hizmet laboratuvarı başvurusu ve belgelendirilmesi MADDE 23 – (1) Referans hizmet laboratuvarı olarak hizmet sunabilmek için 12 nci maddede verilen ölçütleri karşıladığını belirten bir dosya ile Genel Müdürlüğe başvurulur. Başvuru, Genel Müdürlük tarafından dosya üzerinden on iş günü içinde incelenir. İncelenen dosya belgelerinde eksiklik varsa Referans hizmet laboratuvarı olma talebinde bulunan ilgililere bildirilir. Başvuru dosyasında eksiklik yoksa, başvuru Başkanlığa gönderilir. Başkanlık dosyayı üç ay içinde komisyonda görüşerek raporunu Genel Müdürlüğe bildirir. (2) Genel Müdürlükçe uygun bulunanlara Ek-7’ye göre bir ay içerisinde Referans hizmet laboratuvarı belgesi düzenlenir. (3) İhtiyaç durumunda aynı test için birden fazla referans hizmet laboratuvarı belirlenebilir. Başkanlık bünyesinde yer almayan testlerle ilgili olarak Bakanlık, kamu kurum veya kuruluş bünyesindeki referans hizmet laboratuvarından birisini Ulusal Referans Laboratuvarı olarak belirler. Referans hizmet laboratuvarı/laboratuvarları veri gönderme, ilgili ulusal ağlara ve kalite kontrol çalışmalarına katılma konusunda Ulusal Referans Laboratuvarına karşı sorumludur. Ruhsat yenileme MADDE 24 – (1) Aşağıdaki hususlardan herhangi birindeki değişiklik durumunda ruhsat yenilenir: a) Sorumlu uzman, b) Ruhsata esas kadrolu uzman, c) Laboratuvarın faaliyette bulunduğu uzmanlık dalı, ç) Adres/fiziki mekan değişikliği, d) Kurum/kuruluş veya laboratuvar adı. (2) Uzmanlık dalı, adres/fiziki mekân, kurum/kuruluş veya laboratuvar adı değişikliği yapacak laboratuvar, değişikliklerle ilgili dosya hazırlayarak en az onbeş gün öncesinde Müdürlüğe başvurur. (3) Laboratuvar sorumluluğunu yürüten uzmanın ayrılması ve yerine başka bir uzmanın başlaması durumunu en az onbeş gün öncesinde Ek-3’e uygun ruhsat başvuru dilekçesi ile birlikte Bakanlığa bildirilir. (4) Laboratuvar ruhsatının herhangi bir nedenle askıya alınması halinde, buna neden olan durum altı ay içerisinde düzeltilmemişse ruhsatın yenilenmesi gerekir. Faaliyetin geçici olarak kısmen durdurulması MADDE 25 – (1) Laboratuvarda uygulanan testlerle ilgili olarak, iç kalite kontrol veya dış kalite değerlendirilmesi sonucunda, varsa Bakanlık tarafından belirlenen uygunsuzlukların giderilmediğinin veya bu testin/testlerin hizmet alımıyla karşılanmadığının tespit edilmesi durumunda, bu test veya testlere yönelik faaliyetler geçici olarak kısmen durdurulur. Bu süre altı ayı geçemez. Ancak laboratuvar kendi isteği ile; kapsamı değişmemek ve Müdürlüğe bildirmek şartıyla bu test/testleri yapmaktan tamamen vazgeçebilir. Ruhsatın askıya alınması ve iptali MADDE 26 – (1) Laboratuvarın ruhsatının askıya alındığı veya iptal edildiği durumlar aşağıda belirtilmiştir: a) Faaliyeti geçici olarak kısmen durdurulan ve 25 inci maddede belirtilen süre sonunda eksiklikleri hâlâ devam eden laboratuvarın ruhsatı en fazla altı ay süreyle askıya alınır. Bu süre sonunda da eksiklikleri tamamlamayan laboratuvarın ruhsatı iptal edilir. b) Laboratuvar faaliyetlerine ara vermek istediğinde en fazla altı ay süre ile ruhsat askıya alınır. Bu süre içinde laboratuvar, faaliyete başlamak istediğini belirten bir dilekçe ile Müdürlüğe başvurmamış ise ruhsat iptal edilir. c) Faaliyeti geçici olarak kısmen durdurulduğu halde faaliyeti durdurulan testin çalışmasına devam eden veya ruhsatın askıya alındığı halde faaliyetine devam eden laboratuvarın ruhsatı iptal edilir. ç) Laboratuvarın faaliyetine son verilmek istendiğinde, Müdürlüğe ekinde ruhsatın yer aldığı bir dilekçe ile başvurulur ve Müdürlükçe ruhsat iptal edilir. d) Bakanlık tarafından belirlenen verileri düzenli olarak Bakanlığa göndermeyen laboratuvarlar üçer ay ara ile iki kez uyarılır. Altı aylık süre sonunda veri göndermeyen laboratuvarın ruhsatı iptal edilir. e) Ruhsatın tanzim edilmesinden itibaren altı ay içinde faaliyete geçmeyen laboratuvarın ruhsatnamesi iptal edilir. f) Değerlendirmelerde, laboratuvarda bulunduracağını belirttiği, kimyasal maddeler, araç, gereç, donanımında eksikliği tespit edilen laboratuvara, bunları tamamlaması için en fazla üç ay süre verilir ve bu süre içinde eksikliklerini tamamlayamayan laboratuvarın ruhsatnamesi askıya alınır. Bu durumun üç ay daha devamı halinde ruhsat iptal edilir. g) Ek-8’e göre yıllık değerlendirme sonunda %50 -%70 arasında HKS puanı alan laboratuvarlardan tekrar değerlendirilenlerin %70 puana ulaşamayanlarının ruhsatları altı ay süre ile askıya alınır. Bu süre sonunda %70’e ulaşamayanların ruhsatı iptal edilir. ğ)Yıllık değerlendirmelerde laboratuvarın fiziki şartlarının ruhsat için belirtilen asgari ölçütleri karşılamayacak şekilde değişiklik yapıldığının tespiti halinde ruhsatı askıya alınarak, uygunluk sağlanmasına yönelik en fazla altı ay süre tanınır. Bu süre sonunda uygunsuzluğun devamı durumunda ruhsatı iptal edilir. h) Ek-8’e göre değerlendirilen laboratuvarlardan %50 HKS puanına ulaşamayanların ruhsatları altı ay süreyle askıya alınır. Bu süre sonunda yapılan değerlendirme sonucuna göre %50 veya üzerinde puan alamayan laboratuvarın ruhsatı iptal edilir. Çalışan uzman değişikliğinin işlenmesi MADDE 27 – (1) Çalışan uzman değişikliği durumunda laboratuvar SKYS kaydının yapılması için müdürlüğe başvurur. Müdürlük SKYS kaydını yapar ve bir çıktısını ilgilisine verir. Çalışan uzmanların diploma aslı veya onaylı suretleri laboratuvarda görülebilecek yerde asılır. YEDİNCİ BÖLÜM Denetim ve Değerlendirme Ekibi, Laboratuvarın Değerlendirilmesi ve Yaptırımlar Denetim ve değerlendirme ekibi MADDE 28 – (1) Ruhsata esas denetimlerde denetim ekibi, ilin sağlık müdürünün görevlendireceği ilgili müdür yardımcısı veya şube müdürü, denetlenen laboratuvar dallarında en az birer uzman ile HKS eğitimi almış olan bir üye olmak üzere en az üç kişiden oluşur. Tüm HKS değerlendirmelerinde il performans ve kalite koordinatörlüklerinin sorumluluğunda laboratuvar dallarından en az birer uzman ile HKS eğitimi almış olan iki üye olmak üzere en az üç kişiden oluşan değerlendirme ekibi görev alır. Genel Müdürlük lüzumu halinde benzer niteliklere sahip il dışı denetim veya değerlendirme ekibi görevlendirebilir. Denetim ve değerlendirme ekibindeki üyeler kendi çalıştığı laboratuvarın denetim ve değerlendirmesinde yer alamazlar. Laboratuvarın değerlendirilmesi MADDE 29 – (1) Laboratuvar, Ek-8’e ve bu Yönetmeliğin diğer hükümlerine göre en az yılda bir kez değerlendirilir. Bakanlık HKS puan durumlarına uygun olarak aşağıdaki sürelerde laboratuvarı ayrıca değerlendirir veya değerlendirilmesini sağlar: a) %70-%90 arasında puan alanlar altı ay sonunda, b) %50 -%70 arasında puan alanlar üç ay sonunda, tekrar değerlendirilir. (2) Değerlendirme ekibi tarafından düzenlenen rapor en fazla beş iş günü içinde Müdürlük aracılığı ile Genel Müdürlüğe iletilir. Müdürlük, değerlendirme raporunda yer alan hususlara veya işlemlere yönelik beş iş günü içinde ilgili laboratuvarı yazılı olarak bilgilendirir. Yaptırımlar MADDE 30 – (1) Laboratuvarlar bu Yönetmelik hükümlerine aykırı olarak açılamaz ve işletilemez. (2) Laboratuvar, ruhsat başvurusunda bulunduğu sorumlu uzman ve yer/adres değişikliklerini Müdürlüğün bilgisi ve Bakanlığın onayı olmaksızın yapamaz. (3) Laboratuvar, tıbbi üretim, pazarlama firmalarıyla ortaklıklar kuramaz, çıkar birlikteliği oluşturamaz. (4) Laboratuvar açma yetkisine sahip olmayıp da, laboratuvar açanlar veya izinle açmış oldukları laboratuvarları yetkisi olmayanlara terk edenler ile laboratuvarın usulüne uygun olmayan yöntemlerle çalıştığı ve bu Yönetmelik hükümlerine uymadığı tespit edilenler hakkında 992 sayılı Kanunun 9 uncu ve 10 uncu maddelerindeki hükümler uygulanır. (5) Bu Yönetmeliğin ilgili hükümlerine uygun çalışmayan referans hizmet laboratuvarları Bakanlık tarafından eksikleri hususunda yazılı olarak uyarılır ve üç ay süre tanınır. Bu süre içerisinde eksikliklerini gidermeyen referans hizmet laboratuvarının belgesi iptal edilir. (6) Faaliyetleri geçici olarak kısmen durdurulan testi çalışmaya devam edenler ile ruhsatsız veya ruhsatı askıda iken faaliyet gösteren laboratuvarlar iki yıl süresince yeniden ruhsat başvurusunda bulunamaz. (7) Bakanlığa veri göndermediği için ruhsatı iptal edilen laboratuvarlar iptal tarihi itibariyle altı ay süresince yeniden ruhsatlandırılmaz. (8) Sadece araştırma amaçlı üretilmiş test ve kitler laboratuvarda tanı amacıyla kullanılamaz. SEKİZİNCİ BÖLÜM Laboratuvarın Kalite Kontrol ve Değerlendirme Sistemi, Güvenliği, Atık Yönetimi, Bilgi Sistemiyle Verilerin Korunması ve Etik İlkeler Laboratuvarın kalite kontrol ve değerlendirme sistemi MADDE 31 – (1) Laboratuvarlarda Bakanlık tarafından hazırlanan hizmet kalite standartları gereklerini sağlamak üzere bir kalite yönetim sistemi kurulur. (2) Laboratuvarda rapor edilen testler için uygun bir iç kalite kontrol, test doğrulama ve/veya geçerli kılma programı uygulanır ve kayıt altına alınır. (3) Laboratuvar Bakanlık tarafından belirlenen testler için dış kalite değerlendirme programlarına katılır ve bu katılım belgelenerek sonuçları kayıt altına alınır. (4) Hizmet alımı ile diğer bir laboratuvara hizmet sunan laboratuvarlar, Bakanlık tarafından belirlenen testlerle ilgili katıldıkları dış kalite değerlendirme programına katılımlarına ait belge ve sonuçlarını hizmeti alan laboratuvara bildirirler. (5) Laboratuvar; test sonuçlarının güvenilirliğini sağlamak amacıyla kalite kontrol ve değerlendirme sistemi kapsamında yöntemlerini ve faaliyetlerini gözden geçirmek ve gerekli önemleri almak zorundadır. (6) İç kalite kontrol ile dış kalite değerlendirme sonuçları laboratuvarda en az beş yıl muhafaza edilir. Laboratuvar güvenliği MADDE 32 – (1) Laboratuvarın biyogüvenlik düzeyi TS EN 12128 standardında belirtilen en az “fiziksel korunma düzeyi 2” şartlarına uygun olmalıdır. Ancak, Ek-9’da yer alan mikroorganizmalardan risk grubu 3 olanlarıyla çalışan tıbbi mikrobiyoloji laboratuvarları “fiziksel korunma düzeyi 3” , risk grubu 4 olanlarıyla çalışan tıbbi mikrobiyoloji laboratuvarları ise “fiziksel korunma düzeyi 4” şartlarına uygun olmalıdır. (2) Korunmaya yönelik alınan tedbirler; laboratuvar personelinin ve yakın çevresinin kimyasal radyolojik veya enfeksiyöz ajana maruz kalma olasılığını azaltıcı veya önleyici olmalıdır. (3) Laboratuvarda ilk yardım kiti ve mevcut tehlikelere uygun yangın söndürücü ile alev söndürme örtüsü güvenlik donanımı bulundurulur. (4) Laboratuvarda risklere uygun dekontaminasyon ve/veya nötralizasyon kiti bulundurulur ve etkin kullanımı için önlemler alınır. (5) Laboratuvarda kimyasal, radyoaktif ve/veya potansiyel enfeksiyöz riskten korunmak için personele yeterli kişisel koruyucu donanım ve diğer gerekli güvenlik donanımları temin edilir ve kullanılması sağlanır. (6) Personele, işindeki potansiyel tehlikeler bildirilir, güvenli laboratuvar teknikleri eğitimi verilir ve aldığı eğitimler kayıt altına alınır. Personelin, çalıştığı örnekler veya testlerden dolayı aşı ile önlenebilir hastalıklara neden olan enfeksiyöz etkenlere maruziyet riski ile karşı karşıya ise bu personelin aşılanması sağlanır. (7) Laboratuvar teknik alanında el yıkama için lavabo ile acil duş ve göz yıkama işlevi görecek ünite bulunur. (8) Laboratuvarda kendine özgü ve personelinin kolayca erişebileceği bir güvenlik dokümanı oluşturulur. Kullanılan kimyasalların ürün güvenlik bilgi formları temin edilir. (9) Laboratuvar içerisinde bulunan tehlike ve risklere ilişkin olarak, giriş kapısı ile gerekli olduğu durumlarda cihaz, donanım veya aygıt üzerine ilgili işaretleme veya etiketleme yapılır. (10) Laboratuvarda uygun sıklıkta hava değişimi sağlanır. Bu değişim kimyasal veya toksik dumanların veya enfeksiyöz ajanların yayılmasını engelleyecek şekildedir. (11) Laboratuvara giriş sınırlaması uygulanır. Laboratuvarda biyolojik ajanların, örneklerin, ilaçların, kimyasalların ve hastalara ait bilgilerin yanlış kullanılması, tahrip edilmesi ve çalınma tehlikesine karşı gerekli önlemler alınır. (12) Laboratuvarda korunma amacıyla kurulu cihazların ve donanımların ait oldukları standartlara uygun olarak düzenli bakım ve kontrolleri yapılır. (13) Laboratuvarda giriş ve çıkış noktaları ile varsa yangın çıkışları uygun şekilde işaretlenir. Laboratuvar güvenliği ile ilgili tüm işaretlemeler ulusal veya uluslararası kabul gören simgeler kullanılarak yapılır. (14) Tıbbı atıklar laboratuvarın biyogüvenlik düzeyine uygun olarak dekontamine edilir. Laboratuvar atık yönetimi MADDE 33 – (1) Laboratuvara ait tıbbi atıklar ile ilgili işlemler, 22/7/2005 tarihli ve 25883 sayılı Resmî Gazete’de yayımlanan Tıbbî Atıkların Kontrolü Yönetmeliğine uygun olarak yürütülür. Laboratuvar bilgi sistemiyle verilerin korunması MADDE 34 – (1) Laboratuvarda test sonuçları ve kişisel verilerin mevzuata uygun bir şekilde gizliliğini ve güvenliğini sağlayacak bilgi sistemi kurulur ve işletilir. Etik ilkeler MADDE 35 – (1) Laboratuvar hizmetleri etik kurallara ve kanıta dayalı laboratuvar tıbbı ilkelerine uygun olarak, güncel bilimsel ve teknolojik gerekleri yerine getirecek şekilde yürütülür. (2) Laboratuvarda, toplum sağlığını tehdit eden salgın durumları veya hayatı tehdit eden acil durumlar hariç olmak üzere 1219 sayılı Kanunun 70 inci maddesine göre seçme ve ayırt etme kabiliyeti bulunan hastalarda kendisinin, kısıtlılarda ve çocuk hastalarda ise kanuni temsilcisinin başvurusu/rızası olmaksızın hastadan test için örnek alınamaz ve test yapılamaz. (3) Test için alınan örneklerin araştırmalarda kullanılmasında klinik araştırmalarla ilgili mevzuat hükümleri uygulanır. Ancak toplum sağlığını korumaya yönelik Bakanlıkça yapılacak çalışmalar ile laboratuvarların kalite kontrol analizlerinde bu örnekler kör numune olarak kullanılabilir. DOKUZUNCU BÖLÜM Çeşitli ve Son Hükümler Hizmet alımı MADDE 36 – (1) Kamuya ait laboratuvarlar 7/2/2009 tarihli ve 27134 sayılı Resmî Gazete’de yayımlanan Sağlık Hizmeti Sunan 4734 sayılı Kamu İhale Kanunu Kapsamındaki İdarelerin Teşhis ve Tedaviye Yönelik Olarak Birbirlerinden Yapacakları Mal ve Hizmet Alımlarına İlişkin Yönetmelik uyarınca birbirlerinden veya 4/1/2002 tarihli ve 4734 sayılı Kamu İhale Kanunu uyarınca özel laboratuvarlardan hizmet alabilir. Hizmet alımı kararını kurum/kuruluş yönetimi ile birlikte laboratuvar sorumlusu verir. (2) Hizmetin satın alma yoluyla gördürülmesi halinde, hizmeti alan sağlık kurum/kuruluşu ile hizmeti veren sağlık kurum/kuruluşu, bu uygulamadan ve sonuçlarından müştereken sorumludur. Örneklerin taşınması MADDE 37 – (1) Örnekler 25/9/2010 tarihli ve 27710 sayılı Resmî Gazete’de yayımlanan Enfeksiyöz Madde ile Enfeksiyöz Tanı ve Klinik Örneği Taşıma Yönetmeliğine uygun olarak taşınır. Mevcut ruhsatlı laboratuvarlar GEÇİCİ MADDE 1 – (1) Bu Yönetmeliğin yürürlüğe girdiği tarihten önce ilgili mevzuata uygun olarak açılan laboratuvarlar, iki yıl süre ile mevcut durumları ile faaliyete devam edebilirler. Bu süre içinde bu Yönetmelikte belirlenen ölçütlere uygun olarak ruhsat alırlar. Belirtilen süre içinde ruhsat almayan laboratuvarın faaliyetine son verilir. Ruhsat için başvuru yapmış olan laboratuvarlar GEÇİCİ MADDE 2 – (1) Bu Yönetmelik yürürlüğe girmeden önce 15/2/2008 tarihli ve 26788 sayılı Resmî Gazete’de yayımlanan Ayakta Teşhis ve Tedavi Yapılan Özel Sağlık Kuruluşları Hakkında Yönetmeliğe göre ruhsat almak üzere başvuruda bulunmuş olan laboratuvarların ruhsat başvuruları anılan Yönetmelik kapsamında değerlendirilerek sonuçlandırılır. Ancak bu laboratuvarlar da bu Yönetmeliğin yürürlük tarihinden itibaren iki yıl içinde ruhsatlarını yenilemek zorundadır. Mevcut referans laboratuvarları GEÇİCİ MADDE 3 – (1) Bu Yönetmeliğin yürürlüğe girdiği tarihten önce Bakanlık tarafından belirlenmiş Referans Hizmet Laboratuvarları bu Yönetmeliğin yürürlüğe girdiği tarihten itibaren iki yıl içinde durumunu bu Yönetmeliğe uygun hale getirmekle yükümlüdürler. Aksi halde referans olma durumları herhangi bir işleme gerek olmaksızın iptal olunur. Laboratuvar uzman kadroları GEÇİCİ MADDE 4 – (1) Bu Yönetmeliğin yürürlüğe girdiği tarihten önce, faaliyette bulunan laboratuvarlara bir uzman kadrosu verilir. Birden fazla uzman çalışan laboratuvarlarda 1219 sayılı Kanunun 12 nci maddesine uygun olmak kaydıyla, çalışan diğer uzmanları belgelemeleri halinde bu uzmanlar kadrolara eklenerek laboratuvar kadrosu olarak belirlenir. Yürürlük MADDE 38 – (1) Bu Yönetmelik yayımı tarihinde yürürlüğe girer. Yürütme MADDE 39 – (1) Bu Yönetmelik hükümlerini Refik Saydam Hıfzıssıhha Merkezi Başkanlığının bağlı olduğu Bakan yürütür. TEKNİK PERSONEL a) Tekniker; meslek yüksekokullarının tıbbi laboratuvar veya patoloji laboratuvar teknikleri programlarından mezun olan sağlık teknikeridir. b)Teknisyen; sağlık meslek liselerinin tıbbi laboratuvar programından mezun olan sağlık teknisyenidir. c) Laboratuvarlar hizmet çeşitliliği ve kapasitesine göre; laborant ve astsubay teknikerleri ile veteriner sağlık yüksek okulu (ön lisans), meslek liselerinin kimya, gıda analizi ve su ürünleri analizi bölümü mezunları toplam en az bir yıl süreyle, sorumlu uzmanı bulunan laboratuvar veya laboratuvarlarda staj yaptığını ya da çalıştığını belgelemek kaydıyla laboratuvarda görev alabilirler. Üniversitelerin biyoloji, kimya, gıda, su ürünleri, veteriner hekimlik bölüm veya fakültelerinin mezunları toplam en az üç ay süreyle, sorumlu uzmanı bulunan laboratuvarda staj yaptığını ya da çalıştığını belgelemek kaydıyla tıbbi laboratuvarlarda görev alabilirler. ç) Aside Dirençli Boyama Mikroskopisi yapacak teknik personelin uzmanı bulunan tüberküloz laboratuvarında en az beş gün eğitim aldığını ve başarılı olduğunu belgelendirmesi zorunludur. LABORATUVAR DIŞINDA UYGULANAN TESTLER 1. Muayenehane Mikroskopisi (MM): Hekimin muayenehanesinde tanı koyabilmek için hastadan aldığı örneklere hemen uygulayabildiği mikroskopik işlemler olup aşağıda listelenmiştir; - Lam-lamel arası (ıslak) preparatlar - vajinal, servikal sürüntü veya deri örnekleri dahil - Bütün potasyum hidroksit (KOH) ile hazırlanan preparatlar - Fern test - Vajinal veya servikal mukusun post-coital direkt, kalitatif incelemeleri - Semen analizi; Huhner hariç - sperm motilitesinin varlığı veya yokluğunun tespiti düzeyinde - İdrar analizi: yalnız mikroskopik - Fekal lökosit incelemesi - Eozinofillerin tespiti için nazal smear incelemesi - ARB (Aside Dirençli Boyama, Tüberküloz tanısına yönelik) - Kalın damla ve ince yayma (Sıtma tanısına yönelik) 2. Hasta-Başı Testleri (HBT): Kalıcı ve özel bir alan gerektirmeksizin hastanın bulunduğu yerin yanında veya hemen yakınında yapılabilen testler olup aşağıda listelenmiştir; - Kan glukozu – spesifik olarak ev kullanımı için onaylanmış glukoz izleme cihazlarıyla - Hemoglobin – otomatik olmayan tekniklerle veya doğrudan sonuç veren basit cihazlarla - Protrombin zamanı, aPTT (yarı otomatik) - İdrarda hCG (gebelik testleri) - Alkol tayini–kanda veya tükürükte - Kan gazları

http://www.biyologlar.com/tibbi-laboratuvarlar-yonetmeligi-resmi-gazetede-yayinlandi

TEK TEK DAĞLARI MİLLİ PARKI

TEK TEK DAĞLARI MİLLİ PARKI

İli : ŞANLIURFA Adı : TEK TEK DAĞLARI MİLLİ PARKI Kuruluşu : 2007 Alanı : 19.335 ha. Konumu : Şanlıurfa ili, merkez ilçesi, Harran ilçesi ve Akçakale ilçesindedir. Ulaşım : Batıdan doğuya doğru Viranşehir ilçesi istikametini takiben güneye inilerek 45 km. mesafe ile ulaşılmaktadır. Kaynak Değerleri :           Mezopotamya’nın en eski yerleşim yerlerinden biri olan Şanlıurfa, akarsulara yakın olması, ticaret yollarının kesiştiği noktada yer almasından ötürü tarihi boyunca stratejik bir öneme sahip olmuştur. Arap tarihçisi Ebul FARAÇ’a göre; Şanlıurfa, Nuh Tufanından sonra yeryüzünde kurulan ilk yedi yerleşimin ilkidir. Merkeze bağlı Örencik Köyü Göbeklitepe’de 2001 yılında gerçekleştirilen kazı çalışmaları sonucu kentin tarihinin M.Ö. 9500’e Çanak Çömleksiz Neolitik döneme kadar uzandığı görülmüştür. Tek Tek dağlarının bulunduğu coğrafyada birçok medeniyet yaşamıştır. Eyyubiler, Memluklar, Türkmen Aşiretleri, Timur Devleti, Akkoyunlular Dulkadirbeyliği, Safeviler ve sonrasında 1516’da Osmanlı sınırları içine katılmıştır. Kentin bilinen en eski ismi Edesadır. Kent köklü bir kültür mirasına sahiptir. Dünyanın, ilk İslam Üniversitesi; Dünya Kültür Mirası’na dahil edilmesi düşünülen Harran, Şanlıurfadadır. Milli Park alanı içerisinde tarihi ve arkeolojik açıdan önemli alanlar bulunmaktadır. Bunlar, Han-el Ba’rur Kervansarayı, Şuayb Şehri Harabeleri ve Soğmatar Harabeleridir. Soğmatarda kökü Harran Sin kültürüne dayanan Sabizm ve Baştanrı Marilaha’nın kültür merkezi olduğu bilinen örende sözde baştanrıya ve mukaddes gezegenlere (Güneş, Ay, Satürn, Jüpiter, Mars, Venüs, Merkür) ibadet edilen ve kurban kesilen açık hava mabedi olup, önemli kalıntıları teşkil etmektedir. Ayrıca, Roma devrine ait çok sayıda kaya mezarları bulunmaktadır. Türkiye bitkilerinin yaklaşık %30-35’nin Güneydoğu Anadolu Bölgesinde yayılış gösterdiği bilinmektedir. Ayrıca, bazı tarım bitkilerinin (buğday, arpa ve baklagil) gen merkezi olarak bilinmektedir. Güneydoğu Anadolu Bölgesinde 304 endemik tür olduğu belirlenmiş olup, bunlardan 58 tanesi Şanlıurfa ili çerçevesinde yetişmektedir. Milli Park alanının büyük bir bölümünde menengiç bitkisi (pictacia terebinthus L.) yayılış göstermektedir. Alan otsu türler açısından zengindir. Yöreye endemik olan Peygamber çiçeğinin (centaurea) 138 yıl sonra ortaya çıkması önem arz etmektedir. Bunun dışında, gelincik (Papaver rhoes), kekik (Tymus sp.), sütleğen (ephorbia sp.), köy göçüren (circium arvense) ve papatya mevcuttur. Kurt, alakarga ekin kargası, kınalı keklik ve nesli tehlikede olan ceylan (gazella dorcas) alanın faunasını oluşturmaktadır. Tek Tek Dağları; flora, fauna zenginliği, kültürel, tarihi ve arkeolojik özellikleri ile ülkemizde ve dünyada hızlı değişimlerin yaşandığı ve her geçen gün doğal niteliğini koruyan alanların azaldığı 21. yüzyılın başlarında milli park statüsüne alınıp, korunarak, sürdürülebilir kullanımının sağlanması, ülkemizin sahip olduğu doğal değerlerin ve zenginliklerin devamlılığı açısından büyük önem arz etmektedir.Görünecek Yerler : Sene mağarası, Şuayb Şehri Harabeleri, Soğmatar Harabeleri, Soğmatar’da kutsal tepeye yönelen tapınaklar. FLORA Menengiç bitkisi (Pictacia terebinthus L.), Peygamber çiçeğinin (centaurea), Gelincik (Papaver rhoes), kekik (Tymus sp.), sütleğen (ephorbia sp.), köy göçüren (circium arvense) ve papatya vb. FAUNA Park sahasında; Ceylan (gazel subgutturosa), Varan Kertenkelesi (Varanus griseues), Vaşak (Lynx lynx) ceylan,vaşak, tavşan, kurt, tilki, varan kertenkelesi, toy,mezgeldek, turna, kınalı kekelik, çilkeklik, şahin, atmaca, kaya güvercini, üveyik, kızkuşu, tepelitoygar, boğmaklı toygar, bağırtlak,karga,ibibik,leylek,sığırcık,serçe vb. faunaya rastlanmaktadır.. http://www.milliparklar.gov.tr

http://www.biyologlar.com/tek-tek-daglari-milli-parki

Evrimi Destekleyen Kanıtlar ve Analizleri

Evrim,biyolojinin felsefi bir boyutudur. Evrim konusunu anlayabilmek ve yorumlayabilmek için ,biyolojik bilimler bilgisine genel anlamda sahip olunması gerekir. Biyolojik bilimlerde ne kadar iyi bilgi düzeyine sahipseniz,bu konuda o kadar net yorumlar yapabilirsiniz. Evrimi açıklayabilmek için yararlanılan bilimsel verileri aşağıdaki maddeler halinde özetlemek mümkündür. 1.Paleontolojik(fosil) kanıtlar: Jeolojik devirlere ait katmanların incelenmesi sonucu, geçmişten günümüze," basitten karmaşığa doğru" bir değişim sürecinin yaşandığı tespit edilmektedir. 2.Embriyolojik kanıtlar:Omurgalı embriyonlarının, gelişimlerinin ilk evrelerinde gösterdiği şekil benzerliği, "canlıların ortak atadan evrimleşmesine" kanıt olarak gösterilmektedir. 3.Biyokimya ve Fizyolojik kanıtlar:Evrimsel kriterler baz alınarak yapılan sınıflandırmada, birbirine yakın olan taksonomik kategorilerin, türlerinin protein benzerliği söz konusudur. Bu durum aynı zamanda gen benzerliği demektir. Örneğin :Memelilerin sindirim sitemlerindeki enzimlerin çoğunun benzerliği... 4.Morfolojiden elde edilen kanıtlar: Homolog(kökendeş=ortak bir atadan kalıtılan fakat farklı görevler yapan) organların varlığı. Örneğin fok ve kedinin ön üyeleri homolog organlardır. Bu anlamda bazı canlılardaki ön üyeler, örneğin:İnsanda kollar,koyun,at ve kertenkelede ön bacak,fok ve balinada yüzgeç ;kuş ve yarasada kanatlar homolog organlardır. Kuş ve yarasa kanadı bağımsız olarak geliştiğinden kanat olarak homolog organ değillerdir. Ancak her ikisinin anatomisinde homolog kemikler vardır. Bu nedenle kanat olarak analog, ön üye olarak ise homolog kabul edilirler.(Keeton-Gould Genel Biyoloji s520) Anolog (görevdeş=işlev ve çoğunlukla yüzeysel yapıda benzerliği olan fakat kökenleri faklı) organlar bu anlamda kullanılamazlar. 5.Sistematikten elde edilen kanıtlar:Taksonomik kategorilerin oluşturulması sonucu ortaya çıkan düzen ,evrimsel açıdan yakınlıkları da ifade eder. 6.Evcilleştirme olayından elde edilen kanıtlar:Evcileştirilen türlerin, doğal türlerle eşleşebilmeleri, verimli döller oluşturabilmeleri söz konudur. 7.Parazitolojiden elde edilen kanıtlar:Ortak atadan geldikleri var sayılan iç parazitlerin bazılarının ileri derecede farklılaşması söz konusudur. Örneğin insan ve domuz ascaris parazitleri, birbirlerinin konaklarını etkileyemezler. 8.Sitoloji ve genetikten elde edilen kanıtlar:Tüm canlıların hücrelerden oluşması ve hücre içi yapıların ortak olması söz konusudur. Genetik olarak ise şu örnek verilebilir:Hayvanlar (omurgalı(memeliler),omurgasız(böcekler)),bitkiler ve mantarlar alemlerindeki 28 türde mitokondri yapısındaki Sitokrom C'nin amino asit dizisi incelenmiş ve çarpıcı bir benzerlikler gözlenmiştir.(Keeton-Gould Genel Biyoloji s524) 9.Organizmaların coğrafi dağılımlarından elde edilen kanıtlar:Biyocoğrafya da genel olarak kabul edilen bir görüşe göre; "hayvan ve bitki türlerinin tek bir noktadan ve bir defada ortaya çıkmıştır." EVRİMSEL ve EKOLOJİK GENELLEME KURALLARI ALLEN KURALI :Soğuk iklimde yaşayan memeli ve kuşların vücut çıkıntıları ve üyeleri , sıcak iklimde yaşayan akrabalarına göre daha küçüktür. Böylece vücudun dış ortamla temas yüzeyi daha az olduğundan daha az ısı kaybına yönelik bir adaptasyondur. BERGMAN KURALI:Soğuk iklimde yaşayan memeli ve kuşların vücut büyüklükleri ,sıcak bölgelerde yaşayan akrabalarına göre daha büyüktür. Böylece vücut büyüdükçe yüzey/hacim oranı küçülmekte ve daha az sıcaklık kaybı yaşanmaktadır. Klin:Bir türün bir karakterinin coğrafya ile ilişkili göreceli varyasyon göstermesi durumunda ,bu varyasyonlara verilen isimdir."Örnek olarak bir çok memeli ve kuş ortalama vücut büyüklüğü açısından kuzey-güney klinleri gösterirler."(Bergman kuralı) DOLLO KURALI:Evrim bası geri mutasyonların olmasına karşılık,geriye dönük değildir. Sürekli ileriye doğru giden bir düzendedir. COPE KURALI:Omurgalılar, sürekli vücutlarını büyütme eğilimi içindedirler. Vücut büyüdükçe, çevre şartlarına olan bağımlılık(besin açısından) azalacaktır. GLOGER KURALI:Kuzey yarım küredeki kuş ve memeliler,kuzeye doğru gittikçe açık renkli,güneye doğru gittikçe daha koyu renkli olmaktadırlar. GAUS KURALI: Aynı habitatta aynı nişi gerçekleştiren iki tür uzun süre birlikte kalamazlar. Güçlü olan diğerini baskılar ve dışlar.Zayıf olan tür zamanla tükenebilir.

http://www.biyologlar.com/evrimi-destekleyen-kanitlar-ve-analizleri

Madde Ve Enerji

Madde • Kütlesi ve hacmi olan her şeye madde denir. o Taş, toprak, su, demir, tahta, ve hava birer maddedir. • Dünyada bunlara benzer bir çok madde bulunur. • Maddeler özelliklerine göre çeşitli işlerde kullanılır.(Ev, eşya,yol, besin vs.) Ayrıca maddelerin enerjilerinden de yararlanılır. Maddelerin Sınıflandırılması • Maddeler hallerine göre; o Katı, o Sıvı, o Gaz maddeler olarak üç gruba ayrılır. • Maddeler oluşumlarına göre ise iki grupta incelenir: o Saf maddeler. o Karışımlar. Madde Örnekleri • Toprak karışık bir maddedir. • Toz şeker ve kükürt saf bir maddedir. Saf Maddeler • Saf maddelerin içinde yabancı madde bulunmaz. • Örnek; o Kükürt. o Demir tozu, o Tuz saf maddelerdir. • Saf maddeler elementler ve bileşikler olmak üzere iki gruba ayrılır. Elementler. • Kendisinden başka saf maddelere ayrıştırılamayan saf maddelere elemen denir. o Demir, o Bakır, o Kükürt, o Oksijen birer elementtir. • Dünyada 109 tane element bulunur. Bileşikler. • Değişik elementlerin birleşmesiyle oluşan saf maddelere bileşik denir. o Şeker, o Tuz , o Su, o Kireç birer bileşiktir. • Dünyada milyonlarca çeşit bileşik madde bulunur. • Bileşikler çeşitli yollarla kendilerini oluşturan elementlere ayrılabilir. Karışımlar • Karışımlarda değişik element ve bileşikler bulunur. Fakat bunlar birleşme olmadan, yani kendi özelliklerini değiştirmeden bir arada bulunur. o Toprak, o Hava, o Deniz suyu, o Kayalar karışımdır. • Adi karışım ve çözelti olmak üzere iki gruba ayrılır. Adi Karışımlar • İçindeki her madde kendi özelliğini taşır. Karışım miktarları eşit değildir. • Adi karışımlara heterojen karışım da denir. o Kükürt - demir tozu, o Un - tuz. • Karışımları adi karışımlardır. Çözeltiler • Çözeltilere homojen karışımlar da denir. Çünkü çözünen maddenin molekülleri çözücü maddenin her damlasında eşit olarak bulunur. o Şekerli su bir çözeltidir. Çünkü çözünen şekerin molekülleri suyun her damlasında eşit miktarda bulunur. • Şekerli suda su çözücü , şeker çözünendir. o Tuzlu su , gazoz birer çözeltidirler. Derişik Çözelti • Bir çözeltiye daha çok çözünen eklenirse derişik çözelti olur. o Örnek: şekerli çayın tadı azsa tekrar şeker katılır. Bu bir deriştirmedir. • Çözeltiler , çözücüyü buharlaştırılarak da derişik duruma getirilebilir. o Üzüm suyu kaynatılınca pekmez olur. Seyreltik Çözelti • Bir çözeltiye daha çok çözücü eklenirse seyreltik çözelti elde edilir. • Örnek: o Tuzlu suyun içine normal su eklenirse tuzluluk azalır. o Şekerli çaya çay ilave edilirse tadı azalır. Karışım Bileşik Element Bir çeşit atomdan oluşur. Kendi özelliğini taşıyan en küçük taneciği atomdur. Çeşitli atomların birleşmesinden oluşur. Molekül yapılı bileşiklerin kendi özelliğini taşıyan en küçük taneciği moleküldür. Çeşitli elementlerin veya bileşiklerin yan yana gelmesinden oluşur. İçindeki her madde kendi özelliğini taşır Maddenin Yapı Taşları • Elementlerin kendi özelliklerini taşıyan en küçük taneciklerine atom denir. • Atomun milyonlarcası bir toplu iğnenin başına sığabilir. Gözle ve mikroskopla görülmez. Maddenin Yapı Taşları • Atomlar bütün maddelerin yapı taşlarıdır. • Her element bir çeşit atomdan oluşur. • Dünyada element çeşidi kadar atom çeşidi vardır. Atomun Yapısı • Atomda bir çekirdek bir elektron bulunur. • Çekirdek: o Atomun ortasındadır. Çapı ve kütlesi elektrondan çok büyüktür. o Proton ve nötrondan oluşur. o Proton ve nötron sayıları atom çeşidine göre değişir. Atomun Yapısı • Elektron: o Çekirdeğin çevresinde dolanır. o Çekirdekten küçüktür. o Kütlesi yok denecek kadar azdır. o Her elementin atomunda proton sayısı kadar elektron bulunur. Çeşitli Atom Örnekleri Atomların birleşmesiyle molekül, Moleküllerin birleşmesiyle madde oluşur. Çeşitli Molekül Örnekleri Molekül • Atomlar birleşerek molekülleri oluşturur. • Bir molekülde aynı cinsten ya da başka cinsten atomlar bulunabilir. Atom sayıları da değişik olabilir. • Molekül çok küçük atom kümeleridir. Çıplak gözle görülmez. • Aynı cins moleküllerin birleşmesiyle maddeler meydana gelir. Molekül - Madde • Atomların birleşmesiyle molekül, moleküllerin birleşmesiyle madde oluşur. Örnekler: • Bir oksijen atomu, iki hidrojen atomu ile birleşir, su molekülü oluşur. Su molekülleri de suyu oluşturur. • Bir karbon atomu, iki oksijen atomu ile birleşir, karbondioksit molekülü oluşur. Karbondioksit moleküllerinden karbondioksit gazı meydana gelir. Örnekler : • İki oksijen atomu birleşir, oksijen molekülü oluşur. Oksijen moleküllerinden de oksijen gazı meydana gelir. • Duvar yaparken tuğlalar ya da taşlar üst üste dizilir. Sonunda ev , apartman , iş yeri ortaya çıkar. Maddelerin yapı taşları olan atomlar da, bunun gibi çeşitli maddeler oluştururlar.

http://www.biyologlar.com/madde-ve-enerji

Botanik Soruları

*1)Bitkilerde asimilasyon sonucu oluşan glikozu nişastaya çevirerek depo edilmesi sağlama görevini kim yapar?Çevrilen bu nişasta nerelerde depolanır?Sadece adlarını yazınız. *2)Bitkilerdeki Klorozis olayına yol açan faktörler farklı olsa bile,sonuçta etkiledikleri metabolik ve fizyolojik olaylar aynıdır.Sararmaya yol açan faktörlerin bitkilere verdikleri ortak zarar nedir?kısaca belirtiniz. *3)Hangi bitkilerde “ETİYOLE” olayı pek görülmez?Niçin? *4)Herhangi bir etkenle zarı yırtılmış Kloroplastın klorofilleri hücre içerisinde fotosentez yapmaya devam eder mi?Niçin? *5)Bitki dünyasında hücre çeperlerinin kalınlığı ile geçitlerin uzunluğu ve sayısı arasında nasıl bir ilişki var?Niçin? *6)Bitki hücresinde en çok görülen geçit çifti hangisidir?Niçin? *7)Hücre bölünmesi sırasında iki yavru hücre arasında ilk meydana gelen yapılar hangileridir?Niçin?Önce seçiminizi yapınız. 8)Bitki hücrelerinde REKSİGEN boşlukların oluşmasında rol oynayan en önemli etken nedir?Niçin?Önce seçiminizi yapınız. *9)Bitkilerde katı halde bulunan Karbonhidratlar hangileridir?Niçin? *10)Üretilip piyasada satılan ekmek çeşitlerinin lezzetleri birbirinden çok farklıdır.Buna göre; a) Tohum kabuğu alındığı için buğday ekmeğinin lezzeti tamamen yok olmuştur. Niçin? b) Buğday tohumuna bu işlem yapılmasa bile, çavdardan üretilen ekmek buğday ekmeğinden çok daha lezzetlidir?Niçin? *11)Anatomi ne zaman başlar?Niçin? 12)Gelişmiş tohumlu bitkinin yapısı özellikle çevre değiştikçe çok uzun bir dönemde şekillenir.Niçin? 13)organlaşma bakımında bitkileri kaça ayırırsınız?Açıklayınız. 14)Morfogenez nedir? 15)Primer yapılı bitkileri açıklayarak,örnek veriniz. 16)I.tip ve II. Tip sekonder büyüme yapan bitkileri açıklayıp örnek veriniz.

http://www.biyologlar.com/botanik-sorulari

Hayvansal Dokular

Hayvansal dokular, yapısına,görevlerine göre epitel doku,bağ ve destek doku,kas doku,sinir doku olmak üzere dört bölümde incelenir. A.Epitel Doku * Vücudun iç ve dış yüzeyini örter. * Hücreleri sık dizilişli, hücreler arasında çok az ara madde var. * Bütün doku,bağ dokusundan yapılmış taban zarı üzerine oturur. * Kan damarları taşımaz.Beslenme ,bağ dokusu aracılığı ile difüzyon ile olur. * Epitelyum dokunun başlıca görevleri şunlardır. Koruma: Vücudu fiziksel,kimyasal ve mikroskobik etkenlere karşı korur. Emme:İnce bağırsakta bazı maddelerin emilimini sağlar. Salgı yapma:Süt,göz yaşı gibi salgıları salgılar. Duyu:Çevreden gelen uyarıları alır. Bu görevlerin birden fazlasını yapana rastlanabilir(İnce bağırsak). Epitel Doku üç bölümde incelenir. 1.Örtü epitel 2.Bez epitel 3.Duyu epitel 1.Örtü epiteli: Örtü epiteli vücudun iç ve dış yüzeyini örter.Hücrelerinin şekil ve dizilişine göre tek ve çok katlı olmak üzere iki çeşit örtü epiteli vardır. A.Tek katlı epitel:Tek katlı epitel dokunun hücreleri tek sıra halinde dizilmiştir. a.Tek katlı yassı epitel:Hücreleri yassıdır.Örneğin vücudumuzda akciğer alveollerinde ve kılcal damarların yapısında bulunur. b.Tek katlı kübik epitel:Hücreleri küp şeklindedir.Örneğin,vücudumuzda böbrek kanallarında , yumurtalığın üzerinde , tiroit bezinde bulunur. c.Tek katlı silindirik epitel:Hücreleri silindir şeklindedir.Örneğin mide ve ince bağırsağın iç yüzeyinde bulunur.Soluk borusu ve üreme kanallarındaki silindirik epitellerin silerli vardır. B.Çok Katlı epitel: * Omurgalıların üst derisinde bulunur. * Derinin epidermisi; Yassı,kübik ve silindirik epitel hücrelerinin çok katlı olarak üst üste sıralanmasından meydana gelir.En alttaki sırada yer alan hücreler silindir şeklindedir ve tek sıra halinde taban zarı üzerine oturmuştur.Bu hücrelerin mitoz bölünme ile oluşturduğu yeni hücreler , üst tabakalara doğru itilirken şekilleri değişir ve yassılaşır.Yüzeydeki yassı epitel hücreleri ölüdür. Bunlar daha alttaki canlı hücreleri ısı,ışın,kimyasal maddeler gibi dış etkilerden korur. * Çok katlı epitelde, dış yüzeye doğru itilen hücreler difüzyon ile besin sağlayamaz duruma geldiklerinde sitoplazmaları azalır ve katılaşmaya,keratin maddesi oluşturmaya başlar.Keratinleşen hücreler ölür.Böylelikle epitel dokunun üzerinde,içleri keratin ile dolu hücrelerden oluşan koruyucu bir tabaka oluşur. * Vücudun daha az basınçla karşılaştığı bölgelerde bulunan çık katlı yassı epitelde keratinleşme olmaz .Yemek borusu ile ağız boşluğunun bazı bölgelerinde bulunan çok katlı epitel buna örnektir. * Çok katlı epitel dokuda bulunan pigmentler insanda deriye renk verir. Pigment hücrelerinin büyük bir kısmı melanin denen renk maddesi taşır. Melanin mor ötesi ışınları emerek vücudun güneş ışınlarının Zaralı etkilerinden korur.Güneş ışınları melanin sentezleyen hücrelerin çalışmasını artırır. 2.Bez epiteli * Bez epiteli kübik veya silindirik epitel hücrelerinin değişimiyle meydana gelir. * Salgı maddesi enzim veya mukus gibi maddelerdir. * Bez epiteli hücrelerin sayısına ve salgıların döküldüğü yere göre çeşitlere ayrılır.Hücre sayısına göre ; Bir Hücreli Bezler: • Genellikle silindirik bir epitel hücreden oluşur. • Bir hücreli bezlerden bazıları mukus salgılar.Mukus salgılayan tek hücreli salgı bezine goblet hücresi denir. • Solunum organlarında, mide ve bağırsak duvarında mukus salgılayan hücreler ile kurbağa derisinin her zaman nemli olmasını sağlayan hücreler, goblet hücresine örnektir. Çok Hücreli Bezler: • Birden çok salgı yapan hücrelerden meydana gelir. • Epitel hücresinin bazıları tüp şeklinde çıkıntılar oluşturur. • Çok hücreli bezler salgılama şekillerine göre üç grupta incelenir. a.Ekzokrin (Kanallı)Bezler: * Salgısını bir kanalla veya doğrudan doğruya vücut boşluğuna veya vücut dışına boşaltan bezlerdir. * Tükrük,ter ve yağ bezleri , gözyaşı,böbrek ve sindirim kanalı bezleri ve meme bezleri bu tip bezlerdir. b.Endokrin (Kanalsız) Bezler: * Salgılarını doğrudan doğruya kana verirler. * Salgılarına hormon denir. * Hormonlar ekzositoz yoluyla kana salınırlar. * Dolaşım sistemine katılan hormon,kan aracılığıyla etki edeceği hedef organa ulaşıp burada etkisini gösterir. * Hipofiz, epifiz,tiroid,paratiroid,böbrek üstü bezleri timüs bu tip bezlerdir. c.Karma Bezler: * Bunlar hem enzim çıkaran, hem de hormon salgılayan bezlerdir. * Pankreas mide,yumurtalık,testis bu tip bezlerdir. * Pankreas, insulin ve glukagon hormonlarını doğrudan kana verirken, sindirim enzimlerini de bir kanal ile ince bağırsağa verir. 3.Duyu Epiteli: * Dış ortamdan gelen fiziksel,kimyasal ve optik uyarıları alan özelleşmiş epitel hücreleridir. * Duyu epitelinde yenilenme yoktur. * İç kulakta kurti organında, burunda koku soğancığında, dilde tat cisimciklerinde, gözde retina tabakasında bulunur. * Koku alma hücreleri, epitel hücrelerinin farklılaşması ile oluşurlar.Aldıkları uyarıları nöronların denridine kadar iletirler.Tat alma hücreleri epitel hücrelerinden oluşurlar.Uyarıları nöronlara ulaştıracak uzantıları yoktur. Dentridler hücrelere kadar uzanır.Omurgalıların beyin ve gangliyonlarında, miyelince fakir bazı dendrid uzantıları serbest larak epitel dokusu içerisine kadar uzamıştır.Bu serbest sinir uçları almaç adını alır. B.Bağ ve Destek doku: * Çeşitli doku ve organları birbirine bağlar,desteklik sağlar.Ayrıca vücudun savunmasında görev alır. * Bağ dokusunun en önemli özelliği hücrelerinin arasında boşluklar olmasıdır. Bu boşluklar hücre ara maddesi ile doludur. Bağ dokusu; Temel bağ doku, kıkırdak doku, kemik doku, yağ doku ve kan doku olarak ayrılır. 1.Temel Bağ doku: * Bu doku hücreleri,hücre ara maddesi ve liflerden oluşur. * Dokular içerisinde ara maddesi en az olan doku tipidir. * Kan damarları bulunur. * Temel bağ dokusunun esas hücresine fibroblast denir.Fibroblastlar bağ dokunun liflerini yapar;daha sonra fibrositlere dönüşür. * Bağ dokuda bulunan makrofajlar ve lökosit hücreleri fagositoz yoluyla vücuda giren yabancı maddeleri ve mikropları yok eder. * Bağ dokuda bulunan mast hücreleri genellikle kan damarlarını yakınında bulunur;heparin ve histamin salgılar.Heparin damar içerisinde kan pıhtılaşmasını engellerken, histamin kılcal damarların geçirgenliğini artırır. * Bağ dokusunda bulunan melanosit hücreleri deriye renk verir.Daha çok gözün iris tabakasında bulunurlar. * Bağ dokunun lifleri proteinden oluşur ve hücreleri bir arada tutar.Kollojen lifler,elastiki lifler ve ağsı lifler olmak üzere üç çeşit bağ doku lifi vardır. Kollojen lifler demetler halinde bulunur, beyaz renkte görünür,mekanik etkilere karşı çok dirençlidir(Aşil dendonu).Elastiki lifler,sarı renkli görünür.Az gerilir,bırakılınca eski haline döner.Özellikle yüz ve boyun bölgelerini örten derinin dermis tabakasında bulunur.Ağsı lifler doku ve organların etrafını sararak onlara destek olur. * Embriyonik evrede mezoderm tabakasından meydana gelir. 2.Kıkırdak Doku: * Bulunduğu yere sertlik ve esneklik sağlar. * Bütün omurgalıların embriyonik döneminde kıkırdaktan yapılmış bir iskelet vardır.Ergin köpek balığı ve vatoz balığında iskelet kıkırdaktır.Diğer omurgalı hayvanların embriyoları geliştikçe kıkırdak dokunun yerini kemik doku alır.Eklemlerde, kaburga uçları gibi yerlerde kemikleşme olmaz,bu bölgeler hayat boyu kıkırdak kalır. * Kıkırdak doku hücrelerine kondrosit denir.Kondrositler bir kapsülle çevrilmiştir.Kapsülün içinde bir veya birkaç kıkırdak hücresi bulunur.Stoplazma ile kapsül arasında kalan boşluğa kondroplast denir.Kıkırdak dokunun hücre ara maddesine kondrin denir. * Kıkırdağın büyümesi, beslenmesi ve onarımı kıkırdak zarı sayesinde olur. * Kıkırdak hücreleri arasında sinir hücreleri ve kan damarları bulunmaz.Besin ve oksijenin iletilmesini artık maddelerin dışarı atılması difüzyon ile olur. * Embriyonik evrede mezoderm tabakasından meydana gelir. Kıkırdak dokusu,ara maddesindeki bağ dokusu liflerinin çeşidine göre üçe ayrılır. Hiyalin Kıkırdak • Hücre ara maddesi homojen,saydam ve beyaz mavim tırak renktedir. • Ara maddedeki kolojen lifler sayesinde basınca dayanıklıdır. • Omurgalı hayvanların embriyoları ile köpek balıklarının erginlerinde bulunur. • Ergin omurgalılarda kaburgaların uçları,burun,soluk borusu,eklem başlarında,bronşlarda bulunur. Elastik Kıkırdak • Hücre ara maddesinde elastiki lifler bulunur.Bükülme özelliğine sahiptir.İçinde az miktarda kollojen lif bulunur. • Elastiki kıkırdak; kulak kepçesi ,östaki borusu,ses tellerinde bulunur. Fibröz (Lifsi) Kıkırdak • Hücre ara maddesinde kollojen lifler boldur,kıkırdak hücreleri azdır. • Basınca ve çekilmeye karşı dayanıklıdır. • Uzun kemiklerin eklem yerlerinde,omurlar arasında ,diz kapağında,göğüs ve köprücük kemiklerin oynak yerlerinde bulunur. 3.Kemik Dokusu * Omurgalıların iskeletini oluşturan kemikler kemik dokudan meydana gelir. * Embriyo döneminde 8. haftadan itibaren,iskeleti oluşturan kıkırdakta mineral birikmesi ile kemik doku gelişmeye başlar. * Kemik doku ya kıkırdak dokudan veya embriyodaki mezenşim hücrelerinden meydana gelerek embriyonal bağ dokusu içinde oluşur. * Kemik dokusu canlı kemik hücreleri ile bu hücrelerin salgıladığı cansız ara maddeden oluşur. * Kemik hücresine osteosit,kemik dokunun ara maddesine osein denir.Hücre ara maddesinin organik kısmı kemik hücresi tarafından salgılanan protein ve kollojen liflerden oluşur.İnorganik kısmını kalsiyum fosfat,kalsiyum karbonat,kalsiyum florür,magnezyum,potasyum gibi minareler oluşturur. * Yaş ilerledikçe bu in organik tuzların birikimi arttığından yaşlıların kemikleri sertleşerek çabuk kırılan bir yapı kazanır.Yaşlılarda kemik yıkan hücreler, kemik yapan hücrelerden fazla olduğundan özellikle kadınlarda östrojen hormonunun azalmasıyla da kemik erimesi yani osteoporoz görülmektedir. * İn organik tuzların yetersizliğinde ise kemik yumuşak kalır,iskelet eğilir. Buna raşitizm denir.C ve D vitamini ile onarılır. * Kemiklerde iki farklı doku görülür. * Canlı vücudun da inorganik maddelerin en fazla bulunduğu yer kemik dokudur. a.Sert (sıkı) kemik doku:Pürüzsüz görünümlü ve sert yapılıdır.Kemiklerin dış yüzünde ve uzun kemiklerin gövdesinde bulunur.Bu dokuda bulunan kemik hücrelerinin zarı yoktur. * Havers kanalları kemiğin ortasından geçen sarı kemik iliği kanalına paralel uzanırlar. * Havers kanallarını birbirine bağlayan yan kanallar da volkman kanalı denir. Bu kanallarda kan damarları ve sinirler bulunur.Kemik hücreleri kan damarlarından oksijen ile besin sağlarken artık ürünleri de aynı yolla kana verir. b.Süngerimsi Kemik doku:Düzensiz boşluklardan oluşan gözenekli yapıya sahiptir.Gözeneklerin içinde kırmızı kemik iliği bulunur.Bu doku yassı,kısa kemiklerin içinde ve uzun kemiklerin uç bölgesinde bulunur Süngerimsi kemik dokuda alyuvar ve akyuvar hücreleri üretilir. * Uzun kemiklerin ortasında bulunan sarı kemik iliğinde akyuvar hücreleri üretilir. * Kemiğin en dışında periost denilen bir bağ dokusu örtüsü bulunur.Periost kemiklerin beslenmesini , onarımını ve enine büyümesini sağlar. * Kemiğin boyca uzamasını kıkırdak tabaka sağlar.Kıkırdak tabaka kemikleştik den sonra eklem kıkırdağı boyca uzamayı devam ettirir. Kemik Dokunun görevleri: • Kas ve eklemlerle birlikte hareketi sağlar. • Önemli organları korur. • Kaslara ve organlara tutunma yüzeyi oluşturur. • Vücudun mineral deposudur. • Kemik dokuda kan yapımı da olur. 4.Yağ Doku * Özelleşmiş bir bağ dokusudur. * Yağ sentezi yapan hücrelere lipoblast denir.Hücreleri yuvarlak ve büyüktür. İçleri yağ damlacıkları ile doludur. * Yağ hücrelerinin arasında ağsı ve kollojen lifler bulunur. * Embriyonik evrede mezoderm tabakasından meydana gelir. * Yağ doku organların etrafında ve deri altında toplanır. * Vücutta harcanmayan yağın depo edilmesini sağlar.Deri altındaki yağ doku vücut ısısını korur.Derinin kurumasını önler. * Enerji üretimi sırasında yağ doku çok enerji sağlar. * Yağlar hafif olduğu ve az yer kapladığı için göçmen kuşların uzun süre uçmasında kolaylık sağlar. * Yağın yakılması ile metabolik su açığa çıkar. 5.Kan Doku Kan dokusu, kan hücreleri ve hücre ara maddesinden oluşur.Kan hücreleri ; alyuvar (eritrosit), akyuvar (lökosit) ve kan pulcuklarından (trombosit) oluşur. Ara maddesi plazmadır. a.Plazma Plazma kanın ara maddesidir.Plazma, madde taşınması ve geçişine yardım eden hafif bazik (pH=7.4) bir sıvıdır.Kanın % 55’ini kan plazması,% 45’ini ise kan hücreleri oluşturur. Kan plazmasının % 90-92’si su,% 7-8’i protein,geri kalan ise inorganik maddelerden oluşur.Kan proteinleri albumin,globulin,fibrinojen,heparindir. Kanın pıhtılaşmasından(Serumda fibrinojen bulunmaz) sonra , hücrelerinden ayrılmış , açık sarı renkli sıvı kısma serum denir.Serumda amino asit,basit karbonhidratlar, lipit, vitamin, antikor,hormon,enzimler,madensel tuzlar,azotlu artıklar (üre,ürik asit), oksijen, karbondioksit ve azot bulunur. b.Kan hücreleri Alyuvarlar(Eritrositler) * Sağlıklı insanlarda ortalama olarak erkeklerde 1mm3 kanda 5 milyon, dişiler de ise 4,5 milyon kadar alyuvar bulunur. * Doğumdan önce karaciğer ve dalakta, daha sonra kırmızı kemik iliğinde üretilir. * Memelilerde olgunlaşırken çekirdeklerini kaybederler, diğer omurgalılarda çekirdeklidir. Çekirdeklerin kaybolması ile yüzey daha çok genişler.Bu nedenle daha fazla CO2 ve O2 taşıyabilir. * Yapılarında demirli bir protein olan hemoglobin bulunur.Hemoglobin demir mineralinden dolayı kana kırmızı renk verir.Alyuvar vücutta hemoglobin yardımı ile O2 ve CO2 taşır. * Yükseklere çıkıldıkça oksijen miktarına bağlı olarak sayıları artar. Proteinlerle birlikte kan ve vücut sıvısının asit baz dengesini kurar. * Bölünmez , yaklaşık ömrü 120 gündür. * Ömürleri biten alyuvarlar karaciğer ve dalakta parçalanır. * Kan plazmasının hareketiyle pasif olarak taşınır. * Memelilerin olgun alyuvarlarında çekirdek, mitokondri , endoplazmik retikulum ve ribozom yoktur. Akyuvarlar (Lökositler) • Vücudu hastalık yapıcı mikroplardan korur.Bazı çeşitleri mikropları fagositozla , bazıları da antikor ve antitoksin üreterek savunma yaparlar. • Ortalama olarak 1 mm3 kanda 6-10 bin (Kan hücrelerinin % 0,3’ü) arasında akyuvar bulunur. • Başta kemik iliği olmak üzere timüs, dalak ve lenf düğümlerinde meydana gelir. • Çekirdekli hücrelerdir.Amipsi hareket ederler. • Hemoglobin taşımadıklarından renksizdirler. • Dolaşımı katılan akyuvarlar bölünme yeteneklerini kaybederler. • Ömürleri 3-4 saat veya 3-4 gündür. • Kan sıvısı içinde aktif olarak hareket ederler. • İltihaplı durumlarda ve lösemide sayıları artar. • Akyuvarlar, sitoplazmalarında taneciklerin olup olmamasına göre granülü ve granülsüz diye ikiye ayrılır. 1.Granüllü akyuvarlar:Kırmızı kemik iliğinde yapılır.Çekirdekleri boğumlu , sitoplazmaları bir zarla çevrilmiş , granüllü yapılardır.Bazofil ,eozinofil ve nötrofil olmak üzere üç çeşittir. a.Bazofil:Kanın damar içinde pıhtılaşmasını önleyen heparin salgılar, histamin taşırlar.Yaralanmalarda yaranın kızarıp şişmesine , ağrı ve acının oluşmasına neden olurlar. b.Eozinofil:Çekirdekleri iki parçalıdır.Parazit ve alerjik hastalıklarda sayıları artar.Bu hastalıklarla savaşırlar. c.Nötrofil:Vücuda giren yabancı madde ve mikropları fagositozla yok ederler. 2.Granülsüz akyuvarlar:Lenf düğümlerinde , dalak ve timüs gibi lenf dokularında meydana gelir.Sitoplazmaları granülsüz ve homojendir.Yuvarlak ve tek çekirdeklidir.Lenfositler ve monositler olmak üzere iki çeşittir. a.Lenfosit: Büyük ve yuvarlak çekirdekli ve az sitoplazmalıdır.Vücutta esas oluşum yerleri lenf düğümleridir.Sinir dokusu hariç her türlü dokuda bulunur. T lenfositleri hücresel bağışıklıktan sorumludur.B lenfositleri antijenlere karşı antikor salgılayarak kandaki yabancı maddelere saldırır.Ağız ve burun yoluyla vücuda giren mikro organizmalar lenf düğümü olan bademcikler tarafından yok edilmeye çalışılır. b.Monositler:Granülsüz ve en büyük akyuvardır.Oval veya fasulye şeklinde çekirdekleri vardır.Dokular arasında hızla hareket edebilen ve 100 kadar bakteriyi yutabilen makrofajlara dönüşür.Fagositoz yapar ve kılcal damarlardan doku aralarında geçebilir.Bu özellikleri ile ömürleri tükenmiş hücre ve dokuları parçalar. Kan Pulcukları (Trombositler) • Kırmızı kemik iliğinde büyük çekirdekli hücrelerin (Mega karyosit) parçalanması ile oluşur. • Çekirdekleri yoktur, renksiz ve küçüktür. • 1 mm3 kanda ortalama 300 bin trombosit bulunur. • Ömürleri en fazla 8 gündür. • Kanamalarda , kanın pıhtılaşmasını sağlayarak, kan kaybını önler. • Karaciğer ve dalakta makrofaj hücreleri ile fagositozla yok edilir. c.Kan Grupları: İnsanlarda A, B,AB ve O olmak üzere dört çeşit kan grubu bulunur.Ayrıca M ve N grupları da bulunur.Kan grupları alyuvarda bulunan protein yapılarına göre belirlenir.Alyuvarlarda A proteini (anglotinojen=antijen) bulunduran kan A kan grubu , B proteini bulunduran kan B grubudur.Alyuvarlarında her iki proteini de bulunduran AB kan grubudur.O kan grubunun alyuvarlarında kan grubunu belirleyen protein yoktur.Kanın plazma bölümünde antikor(aglütinin) bulunur. O kan grubunda hem A hem de B grubu alyuvarlarını çökerten anti-A ve anti-B antikoru vardır.AB grubunda ise antikor bulunmaz. Kan nakillerinde kan veren kişinin alyuvarlarındaki antijenine , alacak kişinin plazmasındaki antikoruna bakılır.Bu nedenle O kan grubunun plazmasında antikor bulunmadığı için genel verici, AB kan grubunun plazmasında antikor bulunmadığı için genel alıcıdır. Rh sistemi Alyuvarlarında Rh antijeni bulunduran kan tipine Rh pozitif (Rh+) bulunmayan Rh negatif (Rh-) denir. C.Kas Doku * Uzun silindirik ya da iğ şeklindeki hücrelerden oluşur. * Yenilenme yetenekleri çok azdır. * Kas dokusunu oluşturan hücrelerin zarlarına sarkolemma , sitoplazmalarına sarkoplazma denir. * Kas hücreleri mitokondri, endoplazmik retikulum ve sarkoplazma bakımından zengindir. * Sarkoplazma içinde kasılıp gevşeme özelliğindeki miyofibril denilen telcikler yer alır.Bu telcikler ise aktin ve miyozin denilen proteinlerden oluşur. Miyofibriller bir araya gelerek kas demetlerini oluşturur. * Kemiklerle birlikte hareket sistemini oluşturur.Vücudun şeklini korur ve vücudu desteklik sağlar. * Kaslar tüm uyarılara kasılma ve gevşeme şeklinde tepki gösterir.Bu özelliği ile hareket, dolaşım , boşaltım, sindirim , solunum, üreme gibi olayların gerçekleşme sağlanır. * Kaslar yapı ve çalışmalarına göre; düz kas , çizgili kas ve kalp kası olmak üzere üçe ayrılır. Düz Kas Çizgili Kas Kalp kası Beyaz renklidir. Miyoglobin den dolayı kırmızı renklidir. Kırmızı renklidir. Lifler uzun, iğ biçimli ve sivri uçlu şekillidir. Lifleri uzun, silindirik ve kalın uçlu şekillidir. Silindirik lifler uzundur, dallanır ve kaynaşır. Enine çizgileri yoktur. Enine çizgileri yoktur. Enine çizgileri vardır. Her lifin ortasında yassı ve uzun bir tane çekirdeği vardır. Her lif çok çekirdeklidir. Çekirdek hücrenin kenar kısımlarında yer alır. Her lif bir veya iki çekirdeklidir.Çekirdek hücrenin ortasında bulunur. İsteğimiz dışında otonom sinir sisteminin kontrolünde çalışır. Bunlara istemsiz kaslar. İsteğimize bağlı merkezi sinir sisteminin kontrolün de çalışırlar.Bunlara istemli kaslar denir. Kalp kası, çizgili kas olmasına rağmen isteğimiz dışında çalışır. Kasılma hızı yavaş, kasılmış kalabilme yeteneği, en fazladır. Yorulmaz. Kasılması çok hızlı, kasılmış kalabilme yeteneği en azdır. Çabuk yorulur. Kasılma hızlı, kasılmış kalabilme yeteneği fazladır. Yorulmaz. İç organlarda bulunur. Yapacakları görevlere göre farklı şekillerde olur.Ör:bu kaslar bağırsakta uzunlamasına ve halka şeklinde; mide de uzunlamasına,halka ve çapraz şeklinde bulunur. İskeleti sarar ve hareketi sağlar. Yapacakları görevlere farkı şekillerde olurlar. Ör: Ağız ve anüste halka;kol ve bacakta mekik;yüz,sırt ve karında yelpaze şeklinde bulunur. Kalp çeperinde bulunur. Solucan, salyangoz gibi omurgasızlar düz kaslara sahip olduklarından hare- ketleri yavaştır.Böcekler çizgili kaslara sahip olduklarından hareketleri hızlıdır. Işık mikroskobunda bakıldığında sitoplazmadaki miyofibriller açık ve koyu bantlar halinde görülür. Miyo fibrillerin gösterdikleri bu enine bantlaşma nedeni ile çizgili kas adını alır Miyofibrillerin aktin ve miyozin protein- leri bulunur.Aktin ve miyozin birlikte aktomiyozin adını alır.Aktin proteini, ışığı az kırdığından mikroskopta bakıldı- ğında açık renkte görülür.Buraya izotrop bölge ve I bandı denir.Miyozin proteini ise ışığı çok kırdığından,koyu renkte görülür.Bu bölgeye anizotrop veya A bandı denir.Kasılma ve gevşeme bu iki proteinin birbiri arasında kayması dır. Çizgili kaslara göre daha az miyofibril bulundurur. Enine bantlaşma gösterdiği için çizgili kasa benzer. Kas telleri kısa boyludur. Birbirine bağlandıkları yerlerde ara diskler bulunur. Kalp kası embriyonun dördüncü haftasından itibaren kasılıp gevşemeye başlar. Çalışması hayat boyu devam eder. D.Sinir Doku * Sinir doku uyartıları alma , iletme ve gerekli cevapları verme özelliği olan hücrelerden yapılmıştır. * Sinir hücrelerine nöron denir.Nöronlar vücudumuzun dışından ve içinden gelen uyarıları merkezi sinir sistemine taşır, orada oluşan cevapları tepkime organlarına getirir. * Bir sinir hücresi , çekirdek ve sitoplazmadan oluşan büyük bir hücre gövdesi ile hücre gövdesinden çıkan çok sayıda uzantılardan oluşur. Nöron gövdesinde golgi aygıtı , mitokondri,nisill tanecikleri ve nörofibriller bulunur.Nisill tanecikleri granüllü endoplazmik retikuluma benzeyen taneciklerdir.Bu taneciklerin sayısı sinir dinlendiğinde artar.Nörofibriller dendrit,akson ve hücre gövdesinde bulunan uyartıların iletimini sağlayan ince iplikçiklerdir. Hücre gövdesinden tek veya daha fazla sayıda çıkan kısa ve dallanmış uzantılara dendrit denir.Dendritler sinir hücresine gelen bilgiyi alır ve hücre gövdesine iletir.Nöron gövdesinden uzun ve tek bir uzantı çıkar.Buna akson denir. • Aksonların üzerini ince bir zar örter.Ortasında ise yarı sıvı plazma bulunur.Beyin ve omurilikte bulunan nöronların aksonları miyelinlidir.Bu yapı uyarının daha hızlı taşınmasını sağlar.Otonom sinirler miyelinsizdir. • Miyelin kılıfı nöron çeşidine göre kesintiye uğrayarak ranvier boğumu yapar.Ranvier boğumlarında miyelin yoktur.İmpulslar buradan atlamalı olarak geçtiğinden hızı artırır. • Schwann kılıfı, schwann hücrelerinden oluşur. • Sinir dokuda ayrıca görevleri sinir hücrelerine destek olmak, onları beslemek ve koruyucu kılıflarını oluşturmak olan yardımcı olan hücreler (glialar) bulunur. • Sinir hücrelerine farklılaşma çok fazla olduğundan sentrozomları kaybolur.Bundan dolayı sinir hücreleri bölünerek çoğalamaz,yenilenemez Nöronların ömrü,bulunduğu canlının ömrü kadardır. • Sinir telindeki uyartının elektriksel ve kimyasal olarak dalgalar şeklindeki yayılmasına ‘sinir impulsu’ denir. • Nöronlarda taşınan bütün uyarıların yönü, hücre gövdesinden aksona doğrudur.Nöronlar uzantıları vasıtası ile bez hücrelerine ve kaslara bağlanır. • İki sinir hücresi birbiri ile doğrudan bağlanmaz.Bir nöronun aksonu ile diğer nöronun dendritinin yada gövdesinin karşı karşıya geldikleri yere sinaps denir.Sinaps bir boşluktur.İmpulslar bir sinir hücresinden diğer sinir hücresine sinapstan geçerek iletilir.Nöronlar iletimi sağlayan nörotransmitter madde salgılar. • Sinir hücreleri çalışırken çok fazla enerji harcarlar. Dinlenme halinde nöronların dış yüzü pozitif, iç yüzeyi negatif yüklüdür.Nöron uyarıldığında ise yükler yer değiştirir.İletim aktarıldığında ise yükler eski konumuna dönerler.Böylece yeni bir uyartının başlanması sağlanır. • Embriyonik evrede ektoderm tabakasından meydana gelir.

http://www.biyologlar.com/hayvansal-dokular-4

BİYOLOJİK MÜCADELE:

Zararlı bir organizmayla,bunun düşmanı olan başka bir canlıdan faydalanmak suretiyle yapılan savaşa denir..Su birikintilerine larva yiyen balık, sineklerin üreme yeteneğini bozan formülasyonlar atma gibi tedbirlerdir.Yani zarar veren canlıyı ortamdan yok etmek için ,mevcut canlıyı yiyerek beslenen başka bir canlıyı ortama yerleştirmektir. Biyolojik mücadele,tabii dengenin tesisine yardımcı olur.ileriye dönük kalıcı sonuçlar verir.Dezavantajı ise uzun zaman almasıdır.Kimyasal mücadele,Hem çevre ve insan sağlığına zarar verdiği hemde zararlıların bunlara karşı dayanıklılığı kazandığı görülmüştür.Kimyasal savaşın Biyolojik mücadele programı ile birlikte yürütülmesi çoğu zaman oldukça risklidir.Bu sebeple biyolojik mücadele programının tavsiye edilmesi veya başarısız kaldığı dönem ve alanlarda tamamlanması için Biyoteknik yöntemler kullanılır.Biyoteknik yöntemlerden biri olan FEROMON' da amaç,hedef türü,çevreye ve diğer canlılara zarar vermeden kontrol altına almaktır. BİYOLOJİK MÜCADELE UYGULAMASI: 1-KISIRLAŞTIRMA 2-FEROMON 3-ATRAKTAN BİYOLOJİK KONTROL YÖNTEMLERİ 1~ PATOJEN AJANLARIN KULLANILMASI; -Bacil menşeyli ilaç uygulamaları, -Bazı bakteri,virüs ve mantarların kullanılması(Henüz araştırma aşamasındadır) 2~ PREDATÖRLER; -Kuş,kurbağa,kertenkele ve bazı balıklar 3~ YAPAY GENETİK DEĞİŞİKLİKLER -Gelişmeyi düzenleyen hormon esaslı ilaç uygulamaları -Bacil esaslı biyolojik kontrol ilaçları: 1)Bacillus sphericus 2)Bacillus thurigiensis:Şu özelliklerden dolayı B.thurigiensis dünyada en çok tercih edilen biyolojik ilaçtır. ---Hedef seçici özelliği vardır(yalnız sivrisinek larvalarına etkilidir)diğer canlılara toksik etkisi yoktur, ---Hedef canlılar B.thurigiensis’e direnç göstermezler, ---Doğal besin zincirini olumsuz etkilemez, ---Çok kısa zamanda etkisini gösterir ve parçalanarak birikime neden olmaz. -Predatörler: Doğal denge içerisinde bazı sucul kuşlar, Gambusia gibi etçil balıklar,kurbağalar larvalarla beslendiklerinden zaralıların üreyip çoğalmasını dengelerler. ~ Gelişmeyi düzenleyici hormonlar: Başkalaşım dönemine sahip zararlının; -Herhangi bir döneminden bir üst dönemine geçmesini engelleyen Gençlik hormonları, -Başkalaşım döneminde gömlek değiştirmesini engelleyen Kitin hormonları. BİYOLOJİK MÜCADELENİN ÖZELLİKLERİ: AVANTAJLARI: YAN VE ART ETKİLERİNİN OLMAYIŞI:İnsan,Hayvan,Bitki ve faydalı organizmalarda herhangi bir zarar meydana gelmez. EN AZ MASRAFLA EN İYİ SONUCUN ALINABİLMESİ:Biyolojik mücadelede,nakil için başlangıçta önemli bir masraf olur,ilerki yıllarda bu masraf azalır. DEVAMLI/ETKİ (ETKİNİN İDAME OLMASI):İlk tesisten sonra yok denecek bir masrafla kendi kendisini devam ettirebilme özelliği vardır.Mekanik ve Kimyevi mücadelede etki,ancak bilfiil yürütüldüğü zaman olur. ZARARLILARDA DAYANIKLILIK VE BAĞIŞIKLIĞA YOL AÇMAMASI:Biyolojik mücadelede bu önemli bir avantajdır. DOLAYLI FAYDALAR SAĞLAMASI: a)Konuk zararlıyı direk öldürür, b)Üreme gücünü azaltır, c)Gelişiminde dengesizlikler yaratır. d)Zararlının direncini kırma,ve hassasiyet oluşmasını sağlar. DEZAVANTAJLARI: BAŞLANGIÇTA RİSK TAŞIMASI: NETİCENİN GEÇ ALINMASI: BİYOLOJİK MÜCADELEDE BAŞLANGIÇ: İlk olarak faydalı türün korunması ve sonrada güçlendirilmesi esas alınmalıdır.Bu süreyi beklerken zararlı alyhine dönüşen durumlarda,zararlının yoğunluğu artar.Mücadele Başlangıç süresi ,3 yıl tesbit edilir(3 generasyonluk süre) Bu süreler zarfında düşman çoğalıp istenen seviyeye çıkar.tek risk "Başlangıç Riski"dir.Buda ekonomik kayıptır.Son 5 yılın istatistik verilerine göre mücadele faaliyet oranları şu şekildedir. A)MEKANİK MÜCADELE(%65), B)KİMYASAL MÜCADELE (%21), C)BİYOLOJİK MÜCADELE (%12). D)BİYOTEKNİK(FEROMON)MÜCADELESİ (%2) dir. BİYOTEKNİK(FEROMON)MÜCADELESİ: UYARMA KAYNAĞI: A)FİZİKSEL : Ses titreşimi ve elektromanyetik radyasyon uygulamaları. B)KİMYASAL:Tat alma,Koku alma,Gaz ile zararl duyu organları ile uyarılır.Koku bırakılarak doğrudan uyarılması sağlanır. BİR ARAYA GETİRİCİ FEROMONLAR: A)CİNSİYET FEROMONLARI:Türün yalnız bir cinsiyeti tarafından salgılanıp öteki cinsi cezbeder. (Erkek > Dişi) ,veya (Dişi >Erkek) şeklinde uygulanır. B)TOPLANMA FEROMONLARI:Türün her iki cinsiyeti üzerinde de etkili olan (Yine bir cinsiyet tarafından salgılanan (Erkek >Dişi ve Erkek), veya (Dişi >Dişi ve Erkek) şeklinde uygulanır. FEROMON'un Kaynağı ,Yeni erginleşmiş dişi böcekten veya sentetik olarak laboratuar ortamında üretilir. TARIMDA FEROMON: Direk etki,Yaprak biti türlerinde alarm feromonu bulunmuş Corniclerinden salgı yaparlar.Feromon ile alarma geçiren yaprak biti Kolonilerinin kendisini yere atması veya bulunduğu bitkiyi terk etmesini sağlar. İndirek Etki,Zararlı böcek populasyonunu tayin etmede uygulanır,sex feromonları indirek uygulanır. FEROMON NEDİR? : Feromon bir böcek türünün,kendi bireyleri arasında haberleşmelerinde kullandıkları Kokudur.Feromon böcekler arası kimyasal konuşma dilidir.Çiftleşmeye hazır bir dişi böceğin salgılamış olduğu kokuyu duyan erkek böcek,kokunun izini takip ederek dişiye ulaşır.işte bu koku seks Feromonudur. Bilim adamları Feromonların kimyasal yapılarını çözebilmek için ilk etapta çeşitli böcek türlerinden çok sayıda toplayıp Laboratuvar ortamında böceklerin salgıladıkları kokuların kimyasal yapılarını öğrenmişlerdir.Bilim adamları Feromonların kimyasal yapılarını elde ettikten sonra bu kokuların türe bağlı olarak farklılıklar gösterdiğini görmüşlerdir. BUNA BAĞLI OLARAK HER BÖCEĞİN FEROMONU BİRBİRİNDEN FARKLIDIR.: Yıllar süren araştırmalar sonunda Bilim adamları türden türe farklı olan feromonları tanımlamalarının yanısıra,Feromonları Laboratuvarda "SENTEZ ETME" Başarısına ulaşmışlardır.Sentaz edilen Feromonlar,çeşitli maddelere emdirilerek tuzaklarla birlikte mücadele edilecek ortama asılarak denemeler yıllar sürmüştür.Son olarak gelinen noktada,mevcut bilgiler ışığında bir çok böceğin Feromonu bulunmuştur.Bu bizlere zararlı böceklerin haberleşme dünyalarına girmeyi ve onları tuzaklara çekerek zararlarını en aza indirme şansını vermiştir.Entegre zararlı mücadelesi,zararlı davranışları ve Popülasyonları konularında fazla bilgi gerektirmektedir.Zararlının ne zaman ve nerede ortaya çıktığını bilmek,hangi yaşam evresinde olduğunu görebilmek zararlılarla mücadelede ve sonraki tehditlerde çözümlere kolay ve ucuz bir şekilde ulaşmamızı sağlar.Her geçen yıl dünyada çeşitli zararlılar hakkında çeşitli kimyasal zehirler karşı reziztans (Yani,Bağışıklık)geliştirdikleri veya,çok bilinen bazı kimyasal zehirlerin mücadelede daha az etkili olmaya başladığı görülmektedir.Orman,Tarım,Depolanmış ürünler,Ev ve Bahçe zararlılarına karşı mücadelede Alternatif,Çevreye,İnsana zararlı olmayan,Ucuz ve Başarılı Altarnatif yöntemlerin kullanılması kaçınılmaz bir hal almaya başlamıştır.Bu avantajlara haiz bir metot olan Feromonlarla Zararlı Böcek Mücadelesi dünyada ve ülkemizde hızla gelişmektedir. YÖNTEMLER VE UYGULAMA METOTLARI ? : Laboratuar ortamında sentez edilen ve böceklerin salgıladığı kokunun kopyası olan Feromon'lar "DİSPENSER" denilen ve kokuyu atmosfere yayan maddelere emdirilirler.Elde edilen Feromon Dispenserleri ile mücadelede amaca ve ihtiyaca göre dört ana yöntem kullanılır. 1-ERKEN UYARI (MONITORING) : Erken uyarı böceklerin pupa evrelerinden sonra hangi zamanda ergin olup uçmaya başladıklarını tesbit için kullanılır.Böceklerin uçma zamanlarını tesbit etmek mücadele yapan için büyük faydalar sağlar.Zararlının gerçekten var olup olmadığını görür.Eğer varsa ilaçlama yapılacak zamanın tam ve kesin tarihi ortaya çıkar.ve böylece çok sayıda ilaçlama tekrarı gerektirmez. 2-KARIŞTIRMA (CONFUSION) : Zararlılar ergin olduktan sonra çiftleşmek için dişinin salgılamış olduğu kokuyu ararlar,ancak ortamda çok kaynaklı bir koku varsa dişiyi bulmaları güçleşir.Mücadele yapılacak ortama asılan çok sayıdaki Feromon Dispenserinden yayılan kokular nedeniyle zararlı dişiyi bulamayarak çiftleşme gerçekleşmez ve böcek zararı ortadan kalkmış olur. 3-ÇEK-ÖLDÜR (ATTRACT-KILL) : Tuzağa çekilen böceklerin tuzak içine konulmuş Pestisit'lerle(Kimyasal İlaç) öldürülmesine dayanan bu metotta,tuzağa çekilerek hapsolan erkek bireyler temas etkili pestisitlerle yok edilirler. 4-TOPLU TUZAKLAMA (MASS TARPPING) Hangi alanda kullanılacak olursa olsun toplu tuzaklama yönteminde Feromon Dispenseri ve tuzaklar mücadele alanına tavsiye edilen miktarlarda asılarak gerçekleştirilen metottur.en çok kullanılan ve bilinen bu metotta böcekler toplu olarak tuzaklara hapsedilerek zarar vermeleri önlenir. FEROMON'LA MÜCADELENİN AVANTAJLARI NELERDİR ? : 1-FEROMONLAR TAMAMİYLE ZEHİRSİZ-NON TOXİC MADDELERDİR.ÇEVREYE,İNSANA,BAŞKA CANLILARA VE ATMOSFERE ZARAR VERMEZLER. 2-FEROMON'LAR TÜRE ÖZGÜ CEZBEDİCİ VE ÇEKİCİ KOKULAR OLDUKLARINDAN DOĞADAKİ DİĞER CANLILARI ZARAR VERMEZLER.KİMYASAL MADDELERİN SEÇİCİ OLMAMASI KADAR FEROMON'LAR SEÇİCİ BİR MÜCADELE METOTUDUR.HEDEF CANLI DIŞINDA HİÇ BİR ORGANİK YADA İNORGANİK MADDEYE ZARAR VERMEZLER. 3-FEROMON'LAR MÜCADELE EDİLECEK ZARARLININ VARLIĞININ YADA YOKLUĞUNUN ORTAYA ÇIKMASINDA ROL OYNAR.BUDA BOŞUNA YAPILACAK İLAÇLAMA İŞİNDEN MÜCADELE YAPANI KURTARMIŞ OLUR. 4-UYGULAMASI OLDUKÇA BASİTTİR.İLAÇLAMAYA GÖRE OLDUKÇA KISA VE GÜVENLİ BİR İŞLEMDİR. 5-UÇAKLA İLAÇLAMANIN DAHİ MÜMKÜN OLMADIĞI,ARAZİ ŞARTLARININ ÇETİN OLDUĞU YERLERDE KULLANIMI MÜMKÜNDÜR. 6-BİR ÇOK MÜCADELE YÖNTEMİNE GÖRE UCUZ BİR YÖNTEMDİR. 7-İLAÇ KULLANILMADAN ÜRETİLEN TARIM ÜRÜNLERİNİN DEĞERİ DIŞ VE İÇ PAZARDA ARTACAĞINDAN,FEROMON YÖNTEMİ İLE ZARARLI BÖCEK MÜCADELESİ ,KATAGORİSİNDE TEK VE VAZGEÇİLMEZ BİR UYGULAMA YÖNTEMİDİR. FEROMONLARIN ZARARLI BÖCEKLERLE MÜCADELEDE KULLANILMASI 1. GİRİŞ Feromonlar böceklerde bir türün bireyleri tarafından dışarıya salınan ve o türün diğer bireyleri tarafından hissedilerek reaksiyon göstermelerine sebep olan kimyasal maddelerdir. Bu maddeler; cinsel cezbedici, buluşma, dağılma, alarm verme, yol veya sınır belirleme, tat uyarması, dişilerin üreme faaliyetlerinin engellenmesi gibi etkilerine göre sınıflandırılabilir. Bunların arasında cinsel cezbedici hormonlar bitki koruma alanında büyük ölçüde kullanılmaktadır. Dişi böcekler bu feromonu çiftleşmeye hazır olduklarını belli etmek ve erkeklerin kendilerini bulabilmesi için salgılarlar. Bu maddeler hava hareketleri ile taşınırlar ve erkeklerin antenleri aracılığıyla algılanırlar. Feromonlar Entegre Zararlı Düzenlemesi Programı’nın elemanlarından biridir. Etkileri çok eskiden beri bilinmekle beraber ilk olarak BUTENANDT (1954) tarafından ipek böceklerinin koku salgı bezlerinden elde edilip, tanımlanmış ve erkekleri çektiği belirlenmiştir (SEREZ 1983). Daha sonraki yıllarda birçok böceğe ait feromonlar izole edilip tanımlanmıştır. Günümüzde feromonlar sentetik olarak üretilmekte ve bu iş için geliştirilmiş tuzaklarda çekici olarak kullanılmaktadır. Zararlı böceklerle mücadelede feromonlardan yararlanmak üzere üç metot geliştirilmiştir. Bunlar; gözlem ve erken uyarı, kitle tuzaklama ile çiftleşmeyi engellemedir. 2. GÖZLEM VE ERKEN UYARI (MONITORING) Feromonlar zararlı böcek türlerinin varlığının, biyolojilerinin belirlenmesinde ve uygun mücadele zamanının tespitinde yaygın şekilde kullanılmaktadır. Bunun için tuzağın şekli de önemlidir. Hedef böcek türüne uygun olacak tuzak tipleri (yapışkan yüzeyli, su yüzeyli, delta tipi, kelebek tipi, funnel tipi vs.) geliştirilmiştir. Tuzağın büyüklük ve çeşidi hedef böceğin davranışına da bağlıdır. Bu tuzakların en önemli kısmı çekici maddeyi kontrollü şekilde salan dispenserlerdir. Arazide 1 mg veya daha az feromon ihtiva eden dispenser bir ay veya daha uzun süre hedef böceği çekmeye devam edebilir. Belli dönem boyunca yakalanan böcekler sayılarak zararlının varlığı, uçuş ve populasyon yoğunluğu bilgileri elde edilebilir. Bu bilgiler önceki yılların verileriyle karşılaştırılıp değerlendirilerek ilaçlamaya karar vermede kriter olarak kullanılır. Bu bilgilerin yorumlanmasında dikkatli gözlem ve tecrübe başarı için çok önemlidir. Tahıl ve otsu bitkilerde zararlı olan Spodoptera exempta’ya karşı seks feromonu ihtiva eden tuzak ağı kullanımıyla Doğu Afrika’da başarılı sonuçlar alınmaktadır. Diğer taraftan Avrupa ve ABD’de, depolanmış ürünlerin böcekten (Ephestia, Plodia, Sitotroga ve Trigoderma türleri) korunması için feromon tuzaklarıyla gözlem ve erken uyarı hizmeti verilmektedir. Feromonların kullanımıyla İngiltere’de önemli bir zararlı olan Cydia nigricana’nın populasyon artışına ilişkin tahminlerde oldukça başarı sağlanmıştır. Önceleri ürün üzerinde yumurta araştırarak gözlem yapılırken, 1977’den beri bu amaçla feromon tuzakları kullanılmaktadır. Buna benzer bir uygulama dünyanın çeşitli yerlerindeki meyve bahçelerinde Laspeyresia pomonella’ya (Elma iç kurdu) karşı yapılmaktadır. Ülkemizde zararlı böceklere karşı feromonlu tuzaklar ile erken uyarı denemeleri 1980’li yıllarda Bornova Zirai Mücadele Araştırma Enstitüsü tarafından başlatılmıştır. Günümüzde değişik yörelerde önemli zararlılar olarak kabul edilen (Laspeyresia pomonella, Lobesia botrana, Dacus oleae, Prays oleae, Rhagolatis cerasi, Heliotis helicoverpa, Quadraspidotus pernicious, Ostrinia nubilalis, Agrotis ipsilon Heliotis zea vs.) türlere karşı erken uyarı amacıyla feromonlu, cezbediciler ve renkli görsel çekici tuzaklar yaygın şekilde kullanılmaktadır (SEREZ 2001). 3. KİTLE TUZAKLAMA Populasyon yoğunluğu düşük olduğunda, hedef böceğe özgü feromonlu tuzaklarla zararlının yoğunluğu çok daha azaltılabilir. Başarı için böcek populasyonunundan yakalanması gerekli miktarı ve gerekli tuzak sayısının iyi belirlenmesi gereklidir. Yüksek bir yakalama oranı, Lepidoptera türlerinde özellikle erkekler yakalandığı için önemlidir. Mücadelenin başarılı olması için erkeklerin %80-95’inin yakalanmasının gerektiği hesaplanmıştır. Pratikte farklı türler için tuzak yoğunluğu hektarda 1 ila 700 arasında olabilir. Tuzak sayısındaki üst limit maliyet ve tuzak ağının devamlılığına göre belirlenir. Kitle tuzaklaması orman, meyve bahçeleri ve tarım arazilerinde çok çeşitli böcek türleri için yapılmaktadır. Çankırı Orman Fidanlığında bir Lepidopter olan Sciapteron tabaniformis zararlısına karşı funnel tipi tuzaklarda (30 adet/ha ), türe özgü eşeysel çekici feromon kullanarak kitle tuzaklama denemesi uygulamış, %63,9’luk bir etkinlik sağlanabilmiştir. Bu çalışmaya göre; izole olmayan kavaklıklarda feromonlu tuzakların gözlem ve erken uyarı için amacıyla kullanılmasının daha faydalı olacağı sonucuna varılmıştır (ŞİMŞEK 1998). Her iki cinsi de çektiğinden Coleoptera türlerine karşı kitle tuzaklama programları daha başarılı şekilde uygulanmaktadır. Buna en iyi örnek kabuk böceklerine karşı alınan sonuçlardır; 1979 yılında İsveç ve Norveç’te Ips typograhus’a karşı kitle tuzaklama projesi yürütülmüş, toplam 320 bin tuzak kullanılarak 1,6 milyar böcek yakalanmış, ölen ağaç sayısında önceki yıllara göre büyük azalma olmuştur (SEREZ 1983). Türkiye’de ilk feromon denemeleri Doğu Karadeniz Bölgesi’nde Picea abies ormanlarında Ips sexdentatus kabuk böceğine karşı başlatılmış olup, araştırma ve uygulama faaliyetleri genişleyerek devam etmektedir. Artvin ormanlarında ladinlerde zarar yapan Ips typographus’a karşı 2001 yılında feromon tuzak denemeleri yapılmış, sonuçta Kanada tipi hunili tuzakların ve “Almanya –Trifolia M” menşeli preperatların kullanımı önerilmiştir. Ayrıca aynı ormanlarda 1998 -2001 yılları arasında toplam 20 bin adet tuzak kullanılarak 50 milyon civarında böcek (Tuzak başına ortalama 2500 adet) toplanmıştır (ALKAN 2001). Hedef böceğe göre farklı tuzaklar geliştirilmiştir. Örneğin kabuk böcekleri için; boru, körüklü boru tipi, hunili, radyötör tip gibi çok çeşitli tuzaklar kullanılmaktadır. Etkili bir tuzak ağı kurmanın maliyeti ve zorluğu kitle tuzaklamada genel bir sorundur. Ayrıca, tuzak materyalinin, çalınarak kaybolma riskini azaltacak malzemeler seçilmesine dikkat edilmelidir. 4. ÇİFTLEŞMEYİ ENGELLEME Çiftleşmeyi engelleme; böceğin bulunduğu sahada çiftlerin buluşmasını, engelleyecek sentetik feromonların kullanılmasıyla yapılır. Korunacak alanda hedef böcek için feromon salgılayan çok sayıda dispenser yerleştirilir. Bu dispenserlerden yeterli yoğunlukta feromon konsantrasyonu sağlanarak doğal feromon maskelenir ve erkeklerle, dişilerin buluşması, böylece doğurganlıkları engellenir. Mücadele için sahadaki feromon konsatrasyonu birkaç hafta yeterli düzeyde tutulmalıdır. Teorik olarak çiftleşmeyi engelleme, sahte ize yönlendirme veya şaşırtmayla yapılabilir. Denemelerde üç tip dispenser, feromon salınma oranında tatmin edici sonuçlar vermiştir. Bunlar, içi boş plastik lifler, küçük ince plastik yaprak ve mikro kapsüllerdir. Plastik lifler 10 mm boyunda, 0,2 mm çapındadır, feromon lifin içindeki boşluğa konur ve lifin uçlarından birisi açık bırakılarak kontrollü salınması sağlanır. Plastik yaprak formülasyonunda, plastikten imal edilmiş koruyucu özelliği olan iki tabakanın ortasına feromon yerleştirilmiştir. Plastik dış tabaka güneş, oksidasyon ve hidrolizden koruma özelliği yanında, içindeki feromonun kontrollü şekilde salınmasını sağlamaktadır. Bu çeşit preperatlar kare, şerit, bant, pul, konfeti gibi değişik şekillerde üretilerek kullanılmaktadır. Bu preperatlar uçakla veya yerden deposunda özel yapıştırıcı ilave edilmiş püskürtme sistemi ile serpilerek, arazide bitkilerin yapraklarına yapışmaları sağlanır (FLINT ve DOANE 1996). Üçüncü formülasyon tipi feromonun jelatin, poliüretan veya poliamid gibi maddelerden oluşan mikro kapsülün içine konulmasıyla elde edilir. Bunda feromonun salınma oranı, çeperin yapısı, kalınlığı ve içindeki maddenin bileşimine göre değişir. Bu formülasyon tipi çok miktarda ve kolaylıkla imal edilip, ilave yapıştırıcıya ihtiyaç duyulmadan uygulanabilir. Her üç formülasyon ABD, Latin Amerika ve Mısır’da Pectinophora gossypiella (Pembe pamuk kurdu)’ya karşı 3-10 g/ha oranlarında kullanılmış ve başarılı sonuçlar alınmıştır (CAMPION ve VEIGH 1984). 5. SONUÇLAR Feremonların, zararlı böceklerle mücadelede etkili oldukları durumlarda, özellikle faydalı böceklere zarar vermeyişleriyle klasik insektisitlerle mücadeleye nazaran avantajları bulunmaktadır. Ancak, seçici olmaları nedeniyle tek bir böcek türüne karşı kullanılabilmektedir. Aynı sahada birkaç tür zararlı olması durumunda geniş spektrumlu insektisit kullanımı tercih edilmektedir. Feromonla doğrudan mücadelede başarı, ergin böcekler arasındaki çiftleşmenin azaltılmasına ve mücadele sahasının dışından gelerek yumurta bırakacak döllenmiş dişilerin sayısının azaltılmasına bağlıdır. Feromonla mücadelede faydalı böcekler işlevlerini zarar görmeden sürdürebildiklerinden, feromonlar Entegre Zararlı Düzenlemesi programlarının en önemli unsurlarındandır. Diğer taraftan feromon tuzaklarının da yer aldığı, erken uyarı istasyonlarıyla zararlıların populasyon yoğunluğu ile muhtemel zarar düzeyleri önceden tahmin edilebildiğinden, insektisit uygulaması daha az sayıda ve en uygun zamanda yapılabilmektedir. Kaynak: www.osman.com.tr

http://www.biyologlar.com/biyolojik-mucadele

BİTKİSEL DOKULAR

Bir hücreli canlılarda hayatsal olayların sürdürülmesinde, organel adı verilen yapılar görev alır.Çok hücreli canlılarda ise belirli görevleri yapmak üzere özelleşmiş hücre toplulukları vardır.Organizmada belirli görevlerini yapan özelleşmiş hücre topluluklarına doku denir.Dokularda özelleşme çok özelleşmiştir.Dokuları inceleyen bilim dalına doku bilimi (Histoloji) denir. Dokular, bitkisel ve hayvansal olmak üzere iki bölümde incelenir. 1.Bitkisel Dokular: Bitkisel dokular bölünür (Sürgen-meristem) doku ve bölünmez (değişmez) doku olarak iki bölümde incelenir.Bununla birlikte bazı bölünmez dokular belirli koşullar altında tekrar bölünme özelliği kazana bilirler. Birincil bölünür doku ve ikincil bölünür dokudan , bölünmez doku oluşur. Bölünmez doku ise değişime uğrayarak ikincil (meristem dokuyu oluşturabilir. A.Bölünür (Sürgen-Meristem) Doku * Meristem doku hücreleri , canlı, ince zarlı, bol sitoplazmalı, büyük çekirdeklidir.Kofulları küçük ya da yoktur.Hücre çeperleri incedir.Hücre arası boşlukları yoktur.Metabolizmaları hızlıdır. * Meristem hücreleri sürekli mitoz bölünmeyle çoğalır. * Bitkilerde gelişme ve farklılaşmayı sağlar.Boyca uzamayı ve enine büyümeyi meydana getirir. * Hormon üretirler. * Meristem doku bitkide kök, gövde, yaprak ve yan sürgün uçlarında bulunur. * Bölünür doku kökenine göre birincil meristem ve ikincil meristem olmak üzere ikiye ayrılır. * Sürgen doku hücrelerinde koful bulunmaz. 1.Birincil Meristem Doku: * Bitkinin ömrü boşunca bölünme özelliğine sahip hücrelerin oluşturduğu dokudur. * Bitkinin kök ve gövde ucunda bulunur.Bitkinin boyuna uzamasını sağlar.Bu bölgeye büyüme noktası (büyüme konisi) denir.Uçtaki büyüme konileri sayesinde bitkide büyüme sınırsızdır.Büyüme noktaları, kökte kaliptra (yüksük), gövde de ise genç yapraklar tarafından korunur.Kaliptra zedelendiğinde, içteki bölünür doku çoğalarak kaliptrayı onarır. * Kök ve gövde büyüme bölgelerinde dıştan içe doğru dermatojen, periblem ve plerom olmak üzere üç farklı tabaka bulunur.Bu tabakaların faaliyeti sonucu, bitkinin farklı olan değişmez dokuları meydana gelir.Dermatojen epidermisi, periblem kabuk bölgesini,plerom da merkezi silindiri oluşturur. 2.İkinci Meristem Doku: * Değişmez doku hücrelerinin sonradan mitoz bölünme kazanması ile meydana gelir.Böylece iç kambiyum ve dış kambiyum (mantar kambiyumu*fellojen) oluşur. * İç kambiyum, kök ve gövdede odun ve soymuk boruları meydana getirerek enine büyümeyi sağlar.Mantar kambiyumu mantar dokuyu oluşturur.Bu doku, bitkide mantarlaşma oluşturarak bitkinin dış etkenlerinden korunmasını sağlar. * Ilıman bölgelerdeki çok yıllık iki çenekli bitkilerde , iç kambiyum dan ilk baharda büyük hücreler, sonbaharda küçük hücreler oluşur.Her yıl tekrarlanan bu yapılar bitkinin yaşının hesaplanmasını sağlar.Bunlara yıllık halkalar denir. B.Bölünmez Doku * Birincil veya ikincil meristem doku hücrelerinin gelişme ve farklılaşmasından oluşur. * Değişmez dokuları meydana getiren hücreler bölünebilme özelliğini kaybederler. * Hücreleri, çoğunlukla meristem hücrelerinden daha büyüktür ve stoplazmaları az olup, kofulları çok sayıdadır.Çekirdekleri küçüktür.Hücreler arasında boşluk bulunur. * Bazılarının hücre duvarına odun (lignin) ve mantar özü (süberin) gibi maddeler birikerek kalınlaşmaya sebep olur.Odun borularında olduğu gibi, bazı hücreler ölü olabilir. * Bölünmez dokular yapı ve görevlerine göre; parankima dokusu, koruyucu doku,iletken doku, destek doku ve salgı doku olmak üzere beş gruba ayrılır. 1.Parankima (Temel) Doku: * Parankima kök ve gövdenin korteksinde,yaprağın mezofil tabakasında ve diğer dokuların etrafında bulunur.Bu nedenle temel doku adını alır. * Hücreleri canlı , ince zarlı, bol sitoplazmalı,kofulları küçük ve az sayıdadır. Ancak odun borusu ve öz bölgesi parankimasında ölü parankima hücrelerine de rastlanır. * Yaptıkları görevlere göre dörde ayrılır. a.Özümleme parankiması: Yeşil bitkilerin yapraklarında ( palizat ve sünger parankiması), genç gövde ve dalların da bulunur. Hücrelerinde bol kloroplast vardır.Fotosentez ile organik besin yaparlar. b.İletim parankiması: Özümleme yani foto sentez yapan dokularla iletim demetleri arasında bulunur.İletim parankiması bu iki doku arasında su ve besin taşınmasını sağlar. kloroplast yoktur. c.Depo parankiması: Bitkinin kök,gövde,meyve ve tohum gibi organlarında bulunur.Su ve besin depolar.Depo parankiması örneğin patates yumrunda nişasta depolar. d.Havalandırma parankiması Oksijen temininde güçlükle karşılaşan bataklık ve su bitkilerinin kök ve gövdelerinde bulunur.Hücre arasında biriken hava solunumda kullanılır. 2.Koruyucu Doku: * Kök,gövde,yaprak ve meyvelerin üzerine örter. * Bitkileri dış etkilerden korur. * Bitkilerin su ve besin kaybını önler. * Tek ya da çok sıralı hücrelerden oluşur.Hücreleri kalın çeperli olup,alt kısmındaki ince çeperli hücreleri korurlar.Sık dizilişli ve klorofilsizdirler. * Koruyucu dokular,epidermis ve mantar doku (periderm) olmak üzere ikiye ayrılır. a.Epidermis * Otsu bitkilerde odunsu bitkilerin kök, genç dal ve yapraklarının üzerini örten bir dokudur. * Dermatojen hücrelerinin farklılaşmasıyla meydana gelir. * Hücreleri canlı,az sitoplazmalı,büyük kofullu ,klofilsiz,çoğunlukla tek tabaka halinde bulunur.Epidermisteki hücreler güneş ışığının yaprağın alt kısımlarına iletilmesini sağlar. * Epidermis hücrelerinden bazıları farklılaşarak çeşitli şekil ve görevleri olan tüyleri ve stoma (gözenek) yı oluşturur.Tüyler çeşitli şekillerde olup farklı görevler yapar.Tek hücreli olanlara basit,çok hücreli olanlara bileşik tüy denir. * Stoma, epidermis hücreleri arasındaki bol kloroplastlı hücrelerdir.Stomalar çoğunlukla yaprakların alt yüzeyinde bulunup bitkinin gaz alış verişini ve terleme ile bitki de su miktarını düzenler.Dikodiledon bitkilerde stomalar fasulye tanesi şeklinde,monokotiledon bitkilerde stomalar kol kemiği şeklindedir * Bazı epidermis hücrelerinin dış çeperleri kalınlaşarak, kutikula adı verilen koruyucu bir tabaka oluşturur.Kutikula,bitkinin su kaybını azaltır.Su bitkileri dışındaki bitkilerin epidermis hücreleri daima kutikula ile örtülüdür.Bazı bitkilerde kutikulanın üzeri mumsu maddelerden oluşmuş tabaka ile örtülerek bitkinin su kaybı en aza indirilir.Bu tabaka nemli bölgelerde yaşayanlarda ince , kurak bölgelerde yaşayanlarda kalındır. b.Mantar (Periderm) Doku: * Mantar doku çok yıllık bitkilerin kök ve gövdelerinin üzerinde bulunur. * Bitki yaşlandıkça ölen epidermisin yerini mantar doku alır. * Mantar hücreleri , mantar kambiyumu (fellojen) tarafında meydana getirilir. * Hücreleri ölü olup,çeperlerinde süberin denilen su geçirmeyen madde birikir. * Stomaların yerini kovucuk (lentisel) denilen yapılar alır.Gaz alış verişini sağlar. * Mantar doku,yaprak sapı ile gövde arasında oluştuğunda su ve besinin yaprağa geçişine engel olur.Bu yaprak dökümüne neden olur. Stoma açılıp kapanabilir, kovucuk ise devamlı açıktır.Stoma hücreleri kloroplastlıdır, bu nedenle fotosentez yaparlar.Kovucuk yapısında ise kloroplast yoktur. 3.Destek Doku: * Bitkilere şekil ve desteklik sağlar. * Hücrelerde selüloz çeper desteklik görevi yapar. * Otsu ve büyümekte olan bitkilerde dayanıklılık hücrelerin turgor durumu ile sağlanır. * Çok yıllık odunsu bitkilerde iletim demetleri da desteklik işine yardımcı olur. * Çok yıllık bitkilerde ; pek doku (Kollenkima) ve sert doku (Sklerankima) olmak üzere iki destek doku vardır. a.Pek Doku(Kollenkima) * Bitkinin gövde,yaprak ve sapında görülür. * Hücreleri canlıdır.Çekirdek ve sitoplazmaları vardır. * Hücre çeperleri selüloz ve pektin birikmesi ile kalınlaşmıştır. * Kalınlaşma hücre çeperlerinin köşelerinde olursa köşe kollenkiması hücre çeperinin her tarafında olursa levha kollenkiması adını alır. b.Sert Doku(Sklerankima) * Hücreleri cansızdır.Sitoplazma ve çekirdekleri kaybolmuştur. * Çeperleri selüloz ve lignin birikmesiyle kalınlaşmıştır. * Keten,kenevir, sarımsak gibi bitkilerde mekik şeklinde sklerankima lifleri halinde bulunur. * Armut ve ayva da çekirdeğe yakın taş hücrelerinden oluşan sert doku bulunur.Fındık ve ceviz kabuğun dada bulunur. 4.İletim Doku: * Damarsız bitkiler dışında,karada yaşayan tüm bitkilerde bulunur. * Bitkilerde su ve organik maddelerin taşınmasını sağlar. * Büyüme bölgesindeki plerom hücrelerinin değişmesiyle meydana gelir. * Yapısı ve taşıdığı maddelere göre odun boruları(Ksilem) ve soymuk(floem) olmak üzere ikiye ayrılır. a.Odun boruları (Ksilem): * Bölünür doku hücreleri üst üste gelerek zamanla çekirdek ve sitoplazmalarını kaybeder.Hücrelerin kenarlarında odun özü birikerek kalınlaşmalar oluşur.Hücreler arasındaki enine zarlar eriyerek kaybolur.Böylece , ince bir boru şeklindeki odun boruları oluşur.Odun boruları demetler halinde bulunur. * Olgun bir ağaç gövdesinde odun borularını meydana getiren hücreler cansızdır.Çapı geniş olanlarına trake,ince olanlarına trakeit adı verilir. * Odun borularının çeperlerinde nokta,basamak, sarmal ve halka şekilli lignin (odun özü) birikir.Lignin odun borularını kalınlaştırır ve sağlamlığını artırır. * Köklerle alınan su ve suda erimiş madensel tuzları bitkinin gövde,dal,yaprak gibi organlarına taşırlar. * Odun borularında taşınma aşağından yukarıya doğrudur. * Taşınma hızı hızlıdır. b.Soymuk boruları(Floem) * Tek sıra halindeki üst üstte dizilmiş canlı hücrelerden oluşur. * Canlı meristem hücrelerinin boyu uzar ve içinde kofullar meydana gelir.Sitoplazma ve çekirdek çeperlere çekilir.Hücre arasında zarlar kalburlu bir görünüm alır.Bu hücreler canlılıklarını kaybetmezler. * Fotosentezle meydana gelen organik bileşikleri yapraklardan diğer organlara taşır. * Bazı bitkilerin köklerinde sentezlenen amino asitlerde yaprak ve diğer organlara taşınır. * Soymuk borularında madde taşınması çift yönlüdür. * Soymuk boru hücreleri canlı olduğundan, taşınma hızı yavaştır. Gövdesi odunsu olan tohumlu bitkilerde ksilem ve floem arasında kambiyum vardır.Kambiyum devamlı bölünerek içe doğru ksilem , dışa doğru floem hücrelerini verir.Bir çenekli bitkilerde kambiyum yoktur.Gövde enine büyümez . İletim demetleri dağınık yerleşmiştir. 5.Salgı Doku * Hücreleri canlı olup, bol sitoplazmalı , büyük çekirdekli ve küçük kofulludur. * Hücreler tek tek ya da gruplar halinde diğer dokular arasına dağılmıştır. * Salgılar işlevlerine göre ikiye ayrılır. a.Hücre içi salgılar:Salgı maddeleri hücre içinde depo edilir. Salgı hücreleri:Gül,defne yapraklarında bulunur. Süt boruları : Sütleğen, incirde görülür.Süt boruları içinde nişasta tanecikleri vardır. b.Hücre dışı salgılar:Salgı maddeleri hücre çeperlerinden dışarıya atılır. Salgı cepleri:Portakal ve limonda bulunur. Salgı kanalları:Çamlarda reçine kanalları şeklindedir.Reçine,tanin gibi antiseptik içeren salgılar,bitkiyi zararlı hayvanlardan ve çürümekten korur. Salgı tüyleri:Sardunya bitkisinde bulunur. Bal özü:Tozlaşma ve döllenmenin olması için böcekleri çeker. Sindirim bezleri:Böcekçil bitkilerde sindirim enzimi böcek hücre dışı sindirime uğrar. Su savakları(hidatot):Suyun damla halinde bitkiden çıkmasını sağlar.

http://www.biyologlar.com/bitkisel-dokular-3

Özel görelilik kuramı

Özel Görelilik Kuramı ya da İzafiyet teorisi, Albert Einstein tarafından 1905'te Annalen der Physik dergisinde, "Hareketli cisimlerin elektrodinamiği üzerine" adlı 2. makalesinde açıklanmış ve ardından 5. makalesi "Bir cismin atıllığı enerji içeriği ile bağlantılı olabilir mi?" başlıklı makalesiyle pekiştirilen bir fizik kuramıdır. Göreliliğin Özel Teoremi 1905 yılında Albert Einstein tarafından "Hareketli Cisimlerin Elektrodinamiği Üzerine" isimli yayınında ortaya atılmıştır. Teoreme göre, bütün var­lıklar ve varlığın fizikî olayları izâfidir. Zaman, mekân, hareket, birbirlerinden bağımsız değildirler. Aksine bunların hepsi birbirine bağlı izafî olaylardır. Cisim zamanla, zaman cisimle, mekân hare­ketle, hareket mekânla ve dolayısıyla hepsi birbiriyle bağımlıdır. Bunlardan hiçbiri müstakil değildir, Kendisi bu konuda şöyle demektedir: «Zaman ancak hareketle, cisim hareketle, hareket cisimle vardır. O halde; cisim, hareket ve zamandan birinin diğerine bir önceliği yoktur. Galileo'nin Görelilik Prensibi, zamanla değişmeyen hareketin göreceli olduğunu; mutlak ve tam olarak tanımlanmış bir hareketsiz hâlinin olamayacağını önermekteydi. Galileo'nin ortaya attığı fikre göre; dış gözlemci tarafından hareket ettiği söylenen bir gemi üzerindeki bir kimse geminin hareketsiz olduğunu söyleyebilir.» E=mc²Einstein'ın teorisi, Galileo'nin Görelilik Prensibi ile doğrusal ve değişmeyen hareketinin durumu ne olursa olsun tüm gözlemcilerin ışığın hızını her zaman aynı büyüklükte ölçeceği önermesini birleştirir. Bu teorem sezgisel olarak algılanamayacak, ancak deneysel olarak kanıtlanmış birçok ilginç sonuca varmamızı sağlar. Özel görelilik teoremi, uzaklığın ve zamanın gözlemciye bağlı olarak değişebileceğini ifade ederek Newton'ın mutlak uzay zaman kavramını anlamsızlaştırır. Uzay ve zaman gözlemciye bağlı olarak farklı algılanabilir. Bu teorem, madde ile enerjinin ünlü E=mc² formülü ile birbirine bağlı olduğunu da gösterir (c ışık hızıdır). Özel görelilik teoremi, tüm hızların ışık hızına oranla çok küçük olduğu uygulama alanlarında Newton mekaniği ile aynı sonuçları verir. Teoremin özel ifadesiyle anılmasının nedeni, görelilik ilkesinin yalnızca eylemsiz gözlem çerçevesine uygulanış şekli olmasından kaynaklanır. Einstein tüm gözlem çerçevelerine uygulanan ve yerçekimi kuvvetinin etkisinin de hesaba katıldığı Genel Görelilik Teoremini geliştirmiştir. Özel Görelilik yerçekim kuvvetini hesaba katmaz ancak ivmeli gözlemcilerin durumunu da inceler. Özel Görelilik, günlük yaşamımızda mutlak olarak algıladığımız, zaman gibi kavramların göreli olduğunu söylemesinin yanı sıra, sezgisel olarak göreceli olduğunu düşündüğümüz kavramların ise mutlak olduğunu ifade eder. Birbirlerine göre hareketi nasıl olursa olsun tüm gözlemciler için ışığın hızının aynı olduğunu söyler. Özel Görelilik, c katsayısının sadece belli bir doğa olayının -ışık- hızı olmasının çok ötesinde, uzay ile zamanın birbiriyle ilişkisinin temel özelliği olduğunu ortaya çıkarmıştır. Özel Görelilik ayrıca hiçbir maddenin ışığın hızına ulaşacak şekilde hızlandırılamayacağını söyler.

http://www.biyologlar.com/ozel-gorelilik-kurami

METABOLİZMA FİZYOLOJİSİ

SU METABOLİZMASI: •Bitkilerin organlarında farklılık göstermesine rağmen ortalama olarak yapılarının % 75 su ve % 25 kuru ağırlıktır. Bu kuru maddenin % 90’ ı organik % 10’ u ise inorganiktir. •Susuz hayat olmaz sözü bitki için çok daha önemlidir. Çünkü bitkiler beslenme, iletim, enzim, hormon etkileri gibi tüm faaliyetler su ile mümkün olmaktadır. •Su metabolizması ile, suyun topraktan alınımı, bitkide taşınımı, bitkideki etkileri ve bitkiden atılımı (transpirasyon) açıklanmaktadır. •Su metabolizmasını kavrayabilmek ve öğretebilmek için su ile ilgili bazı temel fiziksel olayları iyi bilmek gerekmektedir. •Bunlar: Difüzyon, osmoz, osmotik basınç, turgor basıncı, emme kuvveti, şişme ve su potansiyeli olarak sıralanabilir. Diffüzyon (Yayılma): •Maddelerin molekül, iyon veya gaz şeklinde bulundukları ortamda çok konsantre oldukları yerden az konsantre oldukları yere doğru homojen bir dağılım sağlayıncaya kadar hareket etmelerine diffüzyon denir. •Katı, sıvı ve gaz her üç madde halinin uygun şartlarda diffüzyonu olabilir. Ancak her maddenin diffüzyonu söz konusu değildir. Ör: Nişastanın diffüzyon özelliği olmadığı için bitki hücrelerinde depolandığı halde, şekerin (glikoz) diffüzyon özelliği sayesinde hücreden hücreye taşındığı bilinmektedir. Nişastada glikoza dönüşerek taşınımı gerçekleşmektedir. Özellikle canlılar için çok önemli olan CO2 ve O2 gazlarının diffüzyon özellikleri sayesinde stomalardan girerek kloroplast ve mitokondrilere kadar ulaşırlar. •Diffüzyon hızı moleküllerin kinetik enerjileriyle doğru, büyüklükleri ve ortam yoğunluğu ile ters orantılıdır. •Sıcakta moleküllerin kinetik enerjileri artacağından diffüzyon hızları da artar. Küçük moleküller büyük moleküllere göre daha hızlı diffüze olurlar. Diffüzyon tek bir ortamda içinde olabileceği gibi zarla ayrılmış iki ortam arasında da geçekleşebilir. •Ör: Sınıfta herhangi bir yerde dökülecek kolonyanın her tarafa difüzyonu veya glikozun bir hücreden diğerine difüzyonu gibi. •Hücre zarından difüzyonu gerçekleşen maddeler üzerinde zar seçicidir. Ör: Apolar (yağda çözünen) maddeler polar maddelerden daha kolay zardan geçerler. Polar maddeler özel proteinler veya porlar yoluyla ancak zardan geçerler. Osmoz : •Seçici geçirgen zar bulunan bir ortamda suyun, yoğun olduğu ortamdan daha az yoğun olduğu ortama geçmesine osmoz denir. Difüzyon olayının özel bir şeklidir. Yani suyun difüzyonudur. Difüzyon ile arasındaki fark arada yarı geçirgen bir zarın bulunması gereğidir. •Bitki hücre ortamı osmoz olayının sürekliliği açısından uygundur. Çünkü hücrelerin ünit membran yapıları (hücre zarı, ER, vakuol, nukleus, plastit vs.) osmozun devamlılığını sağlamaktadır. •Konsantrasyonu daha az olan eriyikteki suyun su potansiyeli, konsantrasyonu daha fazla olan eriyiğin su potansiyelinden daha yüksektir. (Su potansiyeli, suyun kimyasal potansiyelidir ve tepkime yada hareket için mevcut enerjinin bir ölçüsüdür. •Su hareketi suyun potansiyeline bağlıdır. Çünkü suyun net hareketi daima daha yüksek potansiyelli bölgeden daha düşük potansiyelli bölgeye doğrudur. Su potansiyeli sembolü PSİ (Ψ) dır. Ölçü birimi cm2 başına atm yada bar veya din.) A ve B bölgeleri arasında su potansiyeli Aok olarak ifade edilir. A Ψ = A Ψ – B Ψ başka bir ifadeyle A Ψ >+ ise yani A B den daha büyükse su A dan B’ ye hareket eder. Sonuç olarak su daha yüksek potansiyelden daha düşük potansiyelli bölgeye doğru hareket eder. •Saf suyun potansiyeli sıfırdır. Herhangi bir eriyiğin su potansiyeli sıfırdan daha düşüktür (negatiftir). Osmotik Basınç (OB): •Her çözeltinin su ile temasa geçtiği zaman suyu emmesini sağlayan değer osmotik basınçtır. Osmotik değer, genel olarak potansiyel bir değerdir. Bu değer OB. İle ölçülür. Osmotik basınç çözeltinin konsantrasyonu ile doğru orantılı olarak değişen bir basınçtır. •Hücrelerin ve organellerin öz suları sayesinde meydana gelen belirli bir osmotik basınç vardır. Bu basınç sayesinde hücre içinde organeller arasında, hücreler arasında ve kök hücreleri ile toprak arasında su geçişi meydana gelir. •OB = m. R.T.i m = Çözeltinin molaritesi • R = Gaz sabiti (0,082) •OB birimi (Atm)’ dir. T = Mutlak sıcaklık (273o C • İ = İyonlaşma sabiti (1,83) Bir çözeltinin osmotik basıncı o çözeltinin konsantrasyonu ile doğru orantılıdır. Yani çözünen madde miktarı ne kadar fazlaysa o oranda OB yüksektir. •İyonlaşmayan maddeden oluşan 1 mol çözeltinin 0 o C’ deki OB’ ı 22,4 Atm’ dir. •OB yüksek olan çözeltilerin donma noktası düşüktür. Ör: Bitkilerin kışın donmasını önleyen su miktarını azaltarak konsantrasyonu yükseltmeleridir. •Bir hücrenin OB’nı yukardaki formülle hesaplamak kolay değildir. Çünkü hücrede onlarca eriyik bulunmaktadır. Ancak osmometre denilen aletler yardımıyla bir bitki hücresinin OB’ ı ölçülebilmektedir. •Hücrelerin bulundukları ortamla olan su ilişkilerine göre bu ortamlar değişik isimler alırlar. Hücredeki OB bulunduğu ortamdakinden yüksekse bu ortama hipotonik ortam, eğer tersiyse (düşükse) bu ortama hipertonik ortam, fakat hücre ile ortamın basıncı (OB) eşitse bu ortama da izotonik ortam denir. •Buna göre bir hücrenin veya bitkinin osmozla su alabilmesi için hipotonik ortamda olmaları gerekir. Ör: Kök emici tüylerinin su alabilmesi için toprağın hipotonik olması gerekir. Yada bir parankima hücresinin su alabilmesi için intersellüler alanın hipotonik olması gerekir. Hipotonik ortamda hücre su alıp turgor durumuna geçer. Hipertonik ortamda ise hücre su kaybederek büzülür ve plazmolize uğrar. Hücre tekrar hipotonik ortama konulursa turgor duruma geçer ki buna deplazmoliz adı verilir. •Araştırmalara göre; bir bitkinin organ, doku ve hücrelerinde farklı organik madde ve tuzların bulunmasına, ışığın şiddetine, fotosentez hızına bağlı olarak OB değişmektedir. Hatta bitkilerde OB günlük, mevsimlik peryodisite göstermektedir. Genel olarak mezofit bitkilerde OB değeri 5-11atma arasındadır. Ancak halofit ve kserofit bitkilerde çok daha yüksektir. OB’ ın en yüksek olduğu organ ise fotosentezin yapıldığı yapraklardır. Köklerde osmotik basınç topraktan daha yüksek, gövdede kökten daha yüksek ve yapraklarda da en yüksektir. Bu Osmotik Basınç Gradiyenti farkıyla topraktan köke, kökten yapraklara suyun yükselmesi gerçekleşir. Turgor Basıncı (TB) : • Osmozla hücreye giren su, hücrenin şişmesine sebep olur. Buna turgor, bu sırada su moleküllerinin hücre çeperine yaptığı basınca da Turgor Basıncı denir. Hücre çeperinin TB’ na zıt yönde ortaya koyduğu bir kuvvet vardır ki buma çeper basıncı denir. •TB basıncı otsu bitkilerin hayatında önemlidir. Çünkü bu bitkilerin dik durması TB’ na bağlıdır. Ör: Susuz kalmış saksı bitkilerinin sulandığı zaman tekrar canlandığını dallarını kaldırdığını gözlemişinizdir. Emme Kuvveti (EK) : •Hücrede OB’ ın TB’ na üstünlük sağladığı sürece su alınımı devam eder. Su alınımını sağlayan bu kuvvete Emme Kuvveti denir. •EK = OB – TB Şayet TB = 0 ise EK = OB • EK = 0 ise OB = TB •Su alınımı için daima OB > TB’ dır. •atm ŞİŞME •Bitkilerin kolloidal yapılarının intersellüler alanlarına su alarak hacim ve ağırlık artışı göstermesine şişme denir. Ör: Selüloz ve nişasta gibi kolloidal maddelerce zengin tohumlarda şişme bariz olarak görülür. Şişme sonucu hacim artışından doğan kuvvete şişme basıncı denir. Bu 1000 atm. kadar olabilmektedir. •Ortamın OB., sıcaklığı ve kimyasal özelliği şişmeyi etkileyen önemli etmenlerdir. •Şişme ortamındaki iyonların şişmeye etkileri farklıdır. İyonların atom ağırlıkları ile şişmeye etkileri doğru orantılıdır. •Ör: Aynı miktarda keten tohumu saf suya, KCl, NaCl, LiCl çözeltilerine konulduğunda en fazla şişme saf suda gözlenir. Sonra KCl çözeltisinde gerçekleşir. Çünkü K+’ un atom ağırlığı Na ve Li’ dan büyüktür. Dolayısıyla hidratasyon örtüsü azdır. Dolayısıyla ortamda serbest su molekülleri yoğundur ve tohumlara su girişi daha çoktur. Bu durum topraktaki iyonların çeşitliliği ve miktarları farklı olduğu için tohumların şişme durumları ve buna bağlı olarakta çimlenmeleri farklı olacaktır. Su Potansiyeli (Ψ PSi): •Suyun kimyasal potansiyeli olarak bilinir, suyun hareketi ve etkileşimi için gerekli olan enerjinin bir ölçüsüdür. Bir çözeltideki çözünen madde miktarıyla su potansiyeli ters orantılıdır. Çözünen madde miktarı ne kadar çok ise burada su potansiyeli o denli düşüktür. Bitkilerde normal şartlarda su potansiyeli her zaman negatiftir. Saf suyun su potansiyeli normal atmosfer basıncında sıfıra eşit olup en yüksek değerdir. •Yarı geçirgen zarla ayrılmış iki ortam arasında su geçişi, su potansiyelinin yüksek olduğu yerden düşük olduğu ortama geçecektir. Birimi bar’ dır. ( 1 atm = 1, 013 bar)

http://www.biyologlar.com/metabolizma-fizyolojisi

Arı Hastalıkları ve Sınıflandırılması

Arının gelişme dönemi pek çok hastalık etmeni ve zararlı için uygun ortam oluşturduğundan arılarda çok sayıda hastalık ve zararlı görülmektedir. Bununla birlikte, dünyadaki hızlı ulaşım, kıtalar ve ülkelerarası arı, arı ürünleri ve arıcılık malzemeleri ticareti arı hastalıklarının kısa sürede tüm ülkelere yayılmasına neden olmaktadır. Benzer şekilde, gezginci arıcılık da hastalık ve zararlıların ülke içindeki hızlı yayılışında önemli bir etkendir. Arı hastalıkları genellikle ilkbahar aylarında görülür. Bunun başlıca nedeni ilkbahar aylarında özellikle yavru yetiştirme faaliyetinin büyük hız kazanmış olması ve beklenmeyen soğuk ve yağışlı havalardır. Bu nedenle bu kritik dönemde arıların özellikle yavru hastalıklarına karşı korunması için, koloni kontrollerinde koloninin üşütülmemesine özen gösterilmelidir Arı hastalıkları, hastalığı oluşturan etmene göre; bakteriyel (Amerikan ve Avrupa Yavru Çürüklüğü, Septisemi), fungal (Kireç ve Taş hastalığı), viral (Kronik ve Akut Arı Felci), paraziter (Varroa jacobsoni ve Acarapis voodi) ve Protozoan (Nosema ve Amoeba) ya da hastalığın oluştuğu konukçuya göre; Ergin ve Yavru Arı Hastalıkları olarak sınıflandırılabilir. Pek çok patojen arıların gerek gelişme gerekse yetişkin dönemlerinde hastalık oluşturabilir. Ancak bu patojenlerin hepsi aynı derecede tehlikeli değildir. Amerikan yavru çürüklüğü ve varroa gibi çok tehlikeli ve hızlı yayılıcı bazı arı hastalık ve zararlılarının kontrolünde "Ulusal Kontrol Programları"na ihtiyaç duyulur. Halihazırda ülkemizde mevcut olup ve ülkemiz arıcılığı için önemli bulunan bazı arı hastalık ve zararlıları aşağıda verilmiştir. 1. Yavru Hastalıkları a) Amerikan Yavru Çürüklüğü Ülkemizde ihbarı zorunlu yavru hastalıklarından olan bu hastalığın etmeni Paenibacillus larvae adlı bir bakteridir. Değişik çevre şartlarında uzun bir yaşam süresi olan sporları besleme görevi yapan bakıcı arılar tarafından larvaya bulaştırılır. Hastalığın yayılmasını sağlayan sporlar kovanın herhangi bir yerinde, peteklerde, bal ve balmumunda veya herhangi bir ortamda 35-60 yıl canlı kalıp bu süre sonunda bile hastalık oluşturabilirler. Bu nedenle bu hastalığa karşı gerekli hassasiyetin gösterilmesi ülkemiz arıcılığının geleceği yönünden hayati önem taşımaktadır. Amerikan yavru çürüklüğü görüldüğünde veya şüpheli durumlarda Tarım ve Köyişleri Bakanlığının İl ve İlçe Müdürlüklerine veya Ankara Etlik ve İzmir Bornova'da bulunan Veteriner Kontrol ve Araştırma Enstitülerine ya da Ek.1'de adresleri verilen arıcılık konusunda uzmanlaşmış kurumlardan birine başvurularak teknik yardım istenmelidir. Ayrıca, bu hastalığın ihbar edilmesi kanuni bir zorunluluktur. Hastalıklı kolonilerin nakilleri de yasaktır. Arıcı her şeyden önce kendi geleceği için bu kurallara uymalıdır. Hastalığın Belirtileri Yavrulu petekler incelendiğinde öncelikle düzensiz yavru görünümü dikkat çeker. Kapalı yavrulu hücreler arasına dağılmış düzensiz açık yavru ya da boş hücreler gözlenebilir. Dışbükey görünümünde olması gereken kapalı yavru hücreleri içe çökmüş, çukurumsu görüntü sergiler ve üzerleri deliktir. Hastalıklı yavru beyazdan sarıya daha sonra da kahverengine dönüşür, bir çöple dışa çekildiğinde iplik şeklinde uzar ve tutkal gibi kokar. Çürüyerek ölmüş yavrunun kalıntısı hücre yan duvarı ve tabanına yapıştığından arılarca temizlenmesi zordur. Mücadelesi Bu hastalıkla en kesin ve en etkili mücadele yöntemi, hastalıklı kolonilerin tümüyle yakılarak yok edilmesidir. Böylece, hastalığın diğer kolonilere bulaşması önlenmiş olur. Bazı ülkelerde hastalıklı kolonilerin yakılması yasal bir zorunluluktur. Bakteri sporları antibiyotiklerle öldürülemediği için hastalıkla mücadelede antibiyotik uygulamasının fazla bir yararı olmaz. Antibiyotik uygulaması hastalığı baskı altına alabilir ancak uygulamadan vazgeçildiği anda hastalık tekrar görülür. Daha önemlisi, bu tür koloniler arılıktaki diğer sağlıklı koloniler ve bölge için sürekli hastalık kaynağı olurlar. Arıları ve petekleri yakılmış koloninin, boş kovanı ve kovan kapağı pürümüzle en ince detaylarına kadar yakılıp 40 lt suya 400 gr sodyum hidroksit katılarak elde edilen sıvı ile yıkandıktan sonra tekrar kullanılabilir. Diğer alet ve ekipmanlar da bu sıvı ile yıkanmalıdır. Hastalıktan uzak kalmak için arı satın almalarda ve temel petek kullanımında dikkatli olunmalıdır. Temel petek kullanırken temel peteğin hiçbir zaman hastalık geçirmemiş kolonilerden elde edilmiş balmumundan üretilmiş olmasına özen gösterilmelidir. Temel petek mutlaka sterilize edilmiş balmumundan üretilmiş olmalıdır. Hükümlerine uyulması zorunlu olan "Arıcılık Yönetmeliği"ne göre de temel petek yapımında kullanılacak balmumu 110 oC'da 12 saat süre ile sterilize edilmelidir. b) Avrupa Yavru Çürüklüğü Dünyada en yaygın görülen hastalıklardan biridir. Hastalığın etmeni en son yapılan sınıflandırmaya göre Melisococcus pluton adında bir bakteridir. Hastalıkta diğer bazı (sekonder) bakteri türleri de görülür ancak bunlar doğrudan hastalık oluşturmazlar fakat ölü larvanın kokusu ve kıvamı üzerinde etkili olurlar. Hastalığın Belirtisi Hastalığın kendine özgü kokmuş et ya da balık kokusunu andıran kokusu kovan açıldığında algılanabilir. Açık yavru döneminde ölmüş larvalar koyu kahverengi ve siyaha yakın renktedir ve larvadaki renk değişimi önemli bir belirtidir. Hastalığın çok şiddetli seyrettiği durumlarda kapalı yavru gözlerinde de görülebilir. Ölmüş larva bir çöple çekildiğinde Amerikan yavru çürüklüğünde görülen ipliksi uzama görülmez, kolayca petek hücresinden çıkartılabilir. Genellikle, Amerikan yavru çürüklüğü kapalı yavrularda görülürken Avrupa yavru çürüklüğü açık yavrularda görülür. Mücadelesi Amerikan yavru çürüklüğündeki uygulamanın aksine şiddetli durumlar hariç, bu hastalıkta arıların ve yavru peteklerin imhasına gerek yoktur. Koloninin ana arısı bir süre kovan içerisinde kafeslenerek yumurta atması engellenir. Oxytetracycline, erythromycin veya diğer antibiyotik uygulamaları ile tedavi edilebilir. Ancak, antibiyotik kullanımı konusunda mutlak surette bir uzmanın görüş ve önerileri alınmalıdır. Çünkü antibiyotikler belli aralıklarla, belli dozlarda ve belli bir süre için kullanılması gereken maddelerdir. Aksi halde arı kolonisine, aile bütçesine ve balın kalitesine zarar verilir. Antibiyotik verilen kovanın balı uzun bir süre tüketilmemelidir. Örneğin bu sürenin oxytetracycline grubu için en az 8 hafta olmasına karşın diğer antibiyotik grupları için 1 yıla kadar çıkabilir. Arılıkta kullanılan ekipman ve hastalıklı kolonilerin boş kovanları 50 lt suya 1 kg soda veya 1/1'lik amonyum klorid eriyiği ile dezenfekte edilmelidir. Yavru Çürüklüğü Hastalıklarından Korunma Gerek Amerikan yavru çürüklüğü gerekse Avrupa yavru çürüklüğü hastalıklarından korunmak için; * Arılık her zaman temiz ve düzenli olmalıdır. * Arı ve ana arı satın alırken alımlar, sağlık belgesi veren ve güvenilir kurumlardan yapılmalıdır. * İkinci el alet-ekipman alındığında bunlar dezenfekte ve sterilize edilmelidir. * Amerikan yavru çürüklüğü hastalığının bulaşmasını ve yayılmasını sağlayan bakteri sporları bal içinde yıllarca yaşayabildiğinden arılar kaynağı belli olmayan ya da hastalık geçirmiş arılıklardan elde edilen ballarla beslenmemelidir. * Kaynağı belli olmayan oğullar arılığa alınmamalıdır. * Arılıkta yağmacılığa meydan verilmemelidir. Kovanların yerleşme düzeni arıların yanlış kovanlara girmelerini önleyecek şekilde olmalıdır. Bunun için kovanların uçuş delikleri farklı yönlere bakmalı ve kovanlar arası mesafe 1-2 m'den az olmamalıdır. Mümkünse bu mesafe artırılmalıdır. * Koloniler arasında petek alış-verişi yapılırken dikkatli davranılmalıdır. * Mümkün olduğunca eski petek kullanmaktan kaçınılmalıdır. * Koloniler nektar ve polen kaynağı yönünden zengin bölgelerde tutulmalı, hastalık riski bulunan yerlere arı götürülmemelidir. * Koloniler sürekli kontrol edilmeli, hastalığın yayılmasını önleyen en etkili yolun erken teşhis olduğu unutulmamalıdır. c) Kireç Hastalığı Etmeni Ascosphaera apis adlı bir fungus (mantar) olan yavru hastalığıdır. Hastalıklı larvalar mumyalaşmış olup siyahımsı, gri veya beyaz renktedirler. Hastalığın ilk dönemlerinde beyazlaşmış larvalar iki parmak arasında ezilebildiği halde ileri dönemde pirinç tanesi gibi sertleşerek arılar tarafından kovan önüne ve uçuş tahtası üzerine atılırlar. Hastalığın etmeni olan sporlar toprak altında ve değişik ortamlarda 15 yıl etkinliğini sürdürebildiğinden ve rüzgarla sürüklenebildiğinden bu hastalıkla daha çok kültürel önlemlerle mücadele edilerek başarılı sonuçlar alınabilir. Hastalığa neden olan fungus, yeterli havalandırmanın olmayışı sonucu kovanda biriken CO2 ve nemli ortamda gelişir. Bu nedenle kovanlar sehpalar üzerine yerleştirilerek havalandırma sağlanmalı ve nemden korunmalıdır. Kireç hastalığına karşı alınabilecek bir başka önlem, hastalığa yakalanan kolonilerin ana arılarının hastalığa yakalanmayan kolonilerden üretilen yeni ana arılarla değiştirilmesidir. Zayıf koloniler hastalığa daha hassastırlar. Bunun için güçlü kolonilerle çalışmak en iyi kültürel yöntemdir. Kolonilerin beslenmesi ve arılara doğal nektar kaynağı sağlanması da bu hastalığa karşı etkin bir mücadele yöntemidir. Kolonide stres oluşturan açlık, üşütme ve rahatsız etme gibi durumlar yanında bölme yaparak koloni işçi arı varlığının azaltılması, gereksiz ve yanlış antibiyotik kullanarak larvanın sindirim sistemindeki faydalı floranın tahrip edilmesi kireç hastalığının ortaya çıkmasına veya şiddetinin artmasına neden olan uygulamalardır. Bu uygulamalardan kaçınmak, güçlü koloniler ve genç ana arılarla çalışmak alınabilecek en iyi koruma tedbirleridir. Kireç hastalığının tedavisinde koloni şartlarında uygulanan ilaçlı mücadele denemelerinden bugüne kadar tatmin edici olumlu sonuçlar alınamamıştır. 2. Ergin Arı Hastalıkları a) Nosema Nosema apis adı verilen tek hücreli bir mikroorganizmanın neden olduğu, oldukça tehlikeli sayılan ergin arı hastalığıdır. Hastalığa yakalanmış kolonilerde davranış değişimi ve hızlı yaşlanma görülür. Hastalığın kesin olarak tanınması için hasta arı midesinin makroskobik veya mikroskobik incelenmesi gerekir. Normalde saman rengi olan sağlam arı midesi hasta arıda katı, kirli ve beyaz renktedir. Hastalık yıl içerisinde çeşitli zamanlarda görülebilmekle beraber en yüksek düzeyde ilkbaharda, ikinci derecede ise sonbaharda ortaya çıkar. Nosemaya yakalanmış kolonilerde; çerçevelerin, peteklerin, kovan kapağı ve uçuş tahtası üzerinde turuncu ve beyaz renkte arı pisliği görülür. Hastalığın yayılması besin yoluyla olur. Hasta arılar bakıcılık gücünü kaybederler, uçamazlar ve kovan etrafında sürünürler. Nosema hastalığının önlenmesi ve tedavisinde fumagillin uygulaması yapılır. İlaç ilkbahar ve sonbaharda şerbetle birlikte verilir. Özellikle sonbaharda şurupla birlikte verilen fumagillin iyi bir tedbirdir. Kolonilerin polen dışında polen yerine geçen kek karışımları ve kış aylarında salgı ballarıyla beslenmesi hastalığa sebep olabilen uygulamalardır. Hastalık daha çok besleme hataları sonucu ortaya çıkar. Bu hastalıkla ilişkili olarak, arıların bal ve polen dışında herhangi bir maddeye ihtiyaç duymadıkları unutulmamalıdır. 3. Paraziter Hastalıklar a) Varroa Bu hastalık, Varroa jacobsoni adlı bir dış parazitin sebep olduğu, hem yetişkin arıda hem de yavruda zarar oluşturan, çok hızlı gelişmesi ile tüm dünya üzerine yayılan ve mücadele edilmediği taktirde kolonilerin sönmesine neden olan tehlikeli paraziter bir hastalıktır. Varroanın dişisi oval görünümde ve koyu kahve renktedir. Vücut uzunluğu 1.1-1.3 mm, eni ise 1.5-1.7 mm arasında değişmektedir. Vücudun alt kenarı 4 çift bacak ile çevrilidir. Ağız yapısı sokucu ve emicidir. Gerek ergin gerekse larva ve pupa döneminde arının kanını emerek beslenir. Bu nedenle arıya her dönemde zarar verir. Erkek varroa, sarı-gri renkte yuvarlak görünümlü, dişi varroaya oranla daha yumuşak bir kitin ile kaplıdır. Erkek varroalar dişi ile çiftleşme sonrası öldüklerinden yetişkin arı üzerinde görülmezler. Varroanın kolonilerde üremesi ilkbahar kuluçka faaliyetiyle birlikte başlar. Sonbaharda bu faaliyetin sona ermesine kadar sürer. Kışı yalnızca ergin dişiler geçirir. Varroanın üreme ve gelişmesi kapalı yavru gözlerinde gerçekleşir. Ergin dişiler yavru gözlerinin kapanmasından hemen önce bu gözlere girerek iki gün sonra yumurta bırakmaya başlarlar. İlk 24 saatte yumurtalardan 6 bacaklı larvalar çıkar ve tüm gelişim erkeklerde 6-7 günde, dişilerde ise 8-10 günde tamamlanmaktadır. Gelişimini tamamlayan varroalar kapalı yavru gözü içinde çiftleşirler. Çiftleşmeden hemen sonra erkek ölür. Dişiler ise beslenmeyi sürdürerek arıların gözden çıkması ile birlikte gözü terk ederler. Ergin dişi varroalar kışın 5-6 ay yazın ise 2-3 ay yaşarlar. Ergin dişi varroanın yavru gözüne 5 ve daha fazla yavru bırakması durumunda arı gelişmesini tamamlayamaz ve siyahımsı-gri renkte kanatsız olarak çıkar. Ancak bir görüşe göre kanatsızlığın doğrudan varroaya bağlı olmadığı parazitin varlığında etkisini gösterebilen bir virüse bağlı olduğu belirtilmektedir. Varroa parazitinin gerek larva ve pupa gerekse ergin dönemde arının kanını emerek gelişme ve çalışma aktivitesini zayıf düşürmesi başka hastalıkların da ortaya çıkmasına neden olmaktadır. Mücadelesi Kimyasal Mücadele Varroanın dünyada ve ülkemizde ilk görüldüğü yıllarda mücadele için uygun olan veya olmayan bir çok ilaç varroa mücadelesinde kullanılmıştır. Günümüzde varroa mücadelesi için piyasada 20 civarında ruhsatlı ilaç bulunmasına rağmen bazı arıcılar ruhsatsız ilaç ve karışımlar kullanabilmektedir. Varroa mücadelesi için ruhsatlandırılmamış hiçbir ilaç hiçbir zaman; ruhsatlı olanlar da kullanılma dönemleri dışında özellikle de bal üretim dönemlerinde kullanılmamalıdır. Aksi halde, bu ilaçların bal ve balmumundaki kalıntıları insan sağlığını olumsuz yönde etkileyecektir. Varroa mücadelesinde bir başka önemli nokta mücadele dönemidir. Erken ilkbaharda kolonilerde kapalı yavrunun olmadığı veya en az olduğu, sonbaharda ise kapalı yavrunun sona erdiği son bal hasadından sonraki dönem en etkin mücadele dönemidir. Varroa mücadelesinde altın kural; mücadelenin uygun zamanda, uygun ilaçla uygun dozda yapılmasıdır. Bahsedildiği üzere varroa ile en iyi mücadele zamanı erken ilkbahar ile geç sonbahardır. Kapalı yavru dönemindeki kimyasal mücadeleden olumlu sonuç almak mümkün değildir. Çünkü hiçbir ilaç kapalı yavru içindeki varroalara ulaşamamakta ve öldürememektedir. Fiziksel Mücadele Bilindiği gibi dişi varroalar ilkbahar döneminde yumurta atmak için erkek arı gözlerini tercih ederler. Bu dönemde kolonilere üzerinde erkek arı gözü bulunan petekler verilerek dişi varroaların erkek arı gözlerinde toplanması sağlanır. Bu gözler kapandıktan sonra kovandan çıkartılarak imha edilir. Böylece dişi varroanın bu dönemde attığı yumurtalar ve kendisi erkek arı pupaları ile birlikte yok edilmiş olur. Bu dönemde koloniye yarısı kesilmiş petekli çerçeve verildiğinde, arılar peteğin alt kısmına erkek arı gözlü yeni petek örerek tamamlarlar. Varroalar erkek arı gözlerinde çoğalmayı tercih ettiklerinden gözlerin kapanmasından hemen önce bu gözlere girerler. Bu gözlerin kapanmasından sonra erkek arı gözlü petek kesilerek imha edilir. Bu yöntemle kolonideki varroa miktarını azaltmak mümkündür. Ancak aynı zamanda işçi arı gözlerinde de çoğalan varroalar etkinliğini sürdürür. Bir başka mücadele yöntemi, nektar akımı döneminde işçi arı gözleri içerisine bırakılan varroa yumurtalarını yok etmeye yönelik çalışmadır. Bu yöntemde, koloninin ana arısı ana arı ızgarası kullanılarak bir çerçeveye hapsedilir ve böylelikle bütün varroa yumurtalarının bir petekte toplanması sağlanır. Bu petek kapalı yavru döneminde kovandan çıkartılarak imha edildiğinde kovandaki varroa yumurtalarının tamamı yok edilmiş olur. Bu yöntemin dezavantajı her dönemde uygulanamaması ve koloni gelişimini kısmen engellemesidir. B- Arı Zararlıları a) Petek Güvesi Büyük Petek Güvesi (Galleria mellonella) ve Küçük Petek Güvesi (Achroia grisella) olmak üzere iki türü vardır. Büyük petek güvesi daha zararlıdır. Petek güvesi özellikle sahil şeridindeki arılıklarda daha sık görülür ve ciddi tahribatlar oluşturur. Güvenin larvası zayıf kolonilerin peteklerinde ve balı süzülmüş peteklerin saklanması sırasında, peteklerdeki balmumu ve polenle beslenerek petekleri tahrip eder. Koloni güçlü olduğu ve tüm petekler arılarla sarılı olduğu sürece koloni içinde zarar veremez. Bu yönüyle koloni içinde bulunan peteklerin tümünün arılarla sarılmış olması güvenin çoğalmasını önler. Güve sorunu ve tahribatı daha çok balı süzülmüş peteklerin saklanması sırasında görülür. Balı süzülmüş peteklerin korunmasında fiziksel, kimyasal ve biyolojik metotlar kullanılabilir. Peteklerin 10 oC'nin altında örneğin soğuk hava depolarında saklanması peteklerde bulunan güve yumurtalarının açılımını ve larva gelişimini engeller. Peteklerin 12 oC'da 3 saat veya 15 oC'da 2 saat bekletilmesi petekte bulunan yumurta da dahil olmak üzere bütün gelişme dönemlerindeki güveyi öldürür. Kimyasal mücadele olarak peteklerin saklandığı muhafazalı odalarda 1 m3 hacim için 50 g toz kükürt yakılarak peteklerde bulunan güve larvaları, pupaları ve yetişkinleri öldürülebilir. Bu uygulamada güve yumurtaları ölmediği için uygulamanın sıcaklığa bağlı olarak tekrarlanması gereklidir. Kimyasal mücadele olarak arıcılar arasında sıkça görülen naftalin kullanılmamalıdır. Kanserojen ve petrol ürünü olan naftalin bal ve balmumunda kalıntı bırakmaktadır. Biyolojik mücadele olarak uygulanan Bacillus thuringiensis'in temel peteklere katılması dış ülkelerde uygulanmakta olup ülkemizde bu uygulama henüz yapılmamaktadır. b) Eşek Arıları Ülkemizde Vespa orientalis ve Vespa crabro adlı türleri oldukça yaygındır. Yavru yetiştirme dönemlerinde bal arılarını arazide besin toplarken veya kovan uçuş tahtası üzerinden yakalayarak yuvalarına götürürler. Bazı yıllarda arılara ciddi zarar verirler. Eşek arıları ile kesin bir mücadele yöntemi olmamakla birlikte; yuvaların tahrip edilmesi, içine et, balık, ciğer konan tuzaklarla sayılarının azaltılması, kovan giriş deliğinin daraltılması, böcek öldürücü ilaç ve kıymadan yapılacak zehirli yem ile yuvalarındaki yavrularının öldürülmesi faydalı olabilecek bazı uygulamalardır. En iyi yol, eşek arısı sayısının çok arttığı dönemlerde kolonilerin bu bölgeden taşınmasıdır.

http://www.biyologlar.com/ari-hastaliklari-ve-siniflandirilmasi

ÇEVRENİN CANLI VE CANSIZ ETMENLERİ

Cansız (abiyotik) etmenler: Işık:Canlılar için en önemli enerji kaynağı güneştir.Yeryüzüne inen enerji bitkiler tarafından fotosentez olayında kullanılır. Sıcaklık:Canlıların yeryüzüne dağılımını ve yoğunluğunu belirleyen önemli bir etkendir. İklim:Uzun zaman aralığı,içinde belirli bir bölgede egemen olan atmosfer koşullarına iklim denir. Toprak ve Minareler:Mineral tanecikleri ile humus karışarak toprağı meydana getirir.Rüzgar,sıcaklık ve suyun aşındırıcı etkileri dünyanın yüzeyini kaplayan kayaların zamanla parçalanması ,toprağı oluşturan mineral taneciklerinin ortaya çıkmasına neden olur. Su:Yeryüzünün 3/4’ü sularla kaplıdır.Atmosferde bulunan suyun yağmur, kar,dolu olarak yeryüzüne dönmesi yağış olarak tanımlanmaktadır. pH:Doğadaki sular asidik ve bazik(pH) özellikleri bakımından büyük farklılık gösterir.Ortamın pH derecesi organizmanın yaşamsal faaliyetini etkiler. Bol yağış alan bölgelerdeki topraklar, örneğin Karadeniz bölgesi toprakları oldukça asidiktir. Hayvanlar Vücut sıcaklığının Korunmasına göre; 1)Poikilotermal hayvanlar(Soğuk kanlı-Vücut ısısı değişken hayvanlar) Örnek:Balık,sürüngen,kurbağa poikilotermal hayvanlardır. 2)Homoitermal hayvanlar (Sıcak kanlılar-Sabit ısılılar) Canlı (biyotik) etmenler: Çevrenin canlı etmenleri görevlerine göre üreticiler, tüketiciler ve ayrıştırıcılar olmak üzere gruplandırılır. Canlılar arasında heterotrof ototrof ilişkisinden başka,belirli bazı yaşama ve beslenme biçimleri vardır. -Ototrof canlılar: Ototrof canlılar,kendi besinlerini kendi üretir.Bu nedenle ototrof canlılara Üreticiler de denir.Bunlar su,karbondioksit ve inorganik tuzlardan organik madde sentezler.Ototroflar ihtiyaç duydukları enerji göre sınıflandırılır. Fotosentetik ototroflar:Enerjiyi güneş ışığından sağlayan canlılardır.Yeşil bitkiler,bazı bakteriler ve mavi-yeşil algler fotosentetik ototrof organizmalardır. Kemosentetik ototroflar:Kendileri için gerekli olan enerjiyi bazı inorganik (NH3,H2S) oksidasyonundan sağlayan organizmalardır.Demir,nitrit,nitrat ve sülfür bakterileri gibi bazı bakteriler kemosentetik ototrof organizmalardır. -Hetetrof canlılar: Hetetrof organizmalar,besinlerini ortamdan hazır alır. Ototrof canlılar ve çürümüş organik maddeleri besin alarak kullanan hetetroflara,hazır beslendikleri için tüketiciler de denir.Hayvanların,mantarların ve bakterilerin çoğu hetetroftur.Hetetroflar beslenme özellikleri yönünden üçe ayrılır. Holozoik: Besinlerini katı parçacıklar halinde alanlar. Simbiyoz: Birlikte yaşayanlar. Saprofit: Çürükçül yaşayanlar. Holozoik beslenen hayvanlar kullandıkları besinlerin yapısına göre üç gruba ayrılır. Ot obur(Herbivor) Hayvanlar: Sadece otla beslenen hayvanlardır. Karada yaşayanlardan böcekler, kemirgen memeliler ve geviş getirenler; suda yaşayanlardan kabuklu ve yumuşakçalar herbivordur. Et obur(Karnivor) Hayvanlar: Sadece etle beslenen hayvanlardır.Aslan, kartal gibi yırtıcılar ve büyük yılanlar karnivordur. Hem ot obur hem ot obur (Omnivor) Hayvanlar: Hem otla,hem de etle beslenen canlılardır.İnsanların yanı sıra; ayı,domuz gibi canlılarda omnivordur. -Simbiyotik ilişkiler (Birlikte yaşama) İki veya daha fazla canlının birlikte yaşama şeklidir. Yararlı birlikleri ve zararlı birlikleri oluşturur.Birlikte yaşama üç grupta incelenir. Kommensalizm (Tek taraflı ortaklık):Birlikte yaşayan iki ortaktan biri yarar sağlarken,diğeri hiçbir yarar sağlamaz.Bu ilişki (+,0) ifadesiyle gösterilir. Örneğin ; Köpek balığına tutunarak onunla taşınan küçük bir balık (Echeneis),köpek balığına herhangi bir zarar vermeden yaşamını sürdürür.Köpek balığının yiyecek artıklarından beslenir.Kommensalizme okyanuslarda daha çok rastlanır. Midyenin kabuğuna tutunarak yaşayan Broyozoa,midyenin sağladığı su akıntısı ile gelen besinlerden yararlanır.Midyeye ne faydası nede zararı vardır. Mutualizm (İki taraflı ortaklık): Karşılıklı fayda esasına dayanan bir yaşama şeklidir.Bu ortaklıktan her iki türde faydalanır.Bu ilişki (+,+) ifadesiyle gösterilir.Mutualizm örnekleri ; Liken birliğini bir alg ile basit bir mantar meydana getirir. Alg bu birlik içerisinde üretici olarak görev yapar. Mantara ise,su ve mineral temin ederek algin fotosentez yapabilmesini sağlar ve sitemi korur. Besin, oksijen Liken =Su Yosunu + Mantarlar Su, mineral maddeler -İnsanın bağırsağında yaşayan bakteriler kendileri için yaşama, çoğalma ortamı bulurken, insan için K ve B vitaminlerini sentezler. -Geviş getiren hayvanların sindirim sisteminde bulunan bakteriler selüloz enzimi salgılayarak selülozun sindirilmesini sağlar. -Baklagil köklerindeki nodüllerde yaşayan Rhizobium adlı bakteri havanın serbest azotunu bağlar ve baklagilin bu azottan yararlanmasını sağlar. Bunun karşılığında bakteri baklagillerden besin elde eder. Protokooperasyon:Ayrıca birde protokooperasyon mevcutdur.Bur da canlılar birlikte yaşamak zorunda değillerdir.Bir araya geldiklerinde birbirlerinden istifade ederler.Örnek:Timsahın ağzından etleri temizleyen kuşlar. Parazitizm (Asalaklık) Bir canlının başka bir canlının içinde veya üzerinde yaşayarak besinini ondan elde etmesi şeklinde olur.Parazit canlı konaktan yarar sağlarken onun zararına iş görür.Bu ilişki (+,-) ifadesiyle gösterilir.Parazitin üzerinde yaşadığı canlıya konak canlı denir.İyi adaptasyon göstermiş bir parazit konağını öldürmemelidir.Parazit canlı yaşadığı yere göre ikiye ayrılır. Dış parazitler: Parazit olan canlının, konak canlının dış kısmına (Deri ya da solungaç) yapışarak ya da tutunarak yaşamasıdır.Dış parazitlerin özellikleri ; - Genellikle eklem bacaklılar grubundandır.(bit, pire, kene) - Sindirim sistemleri vardır. - Hücre dışı sindirim yaparlar. - Duyu ve hareket organelleri vardır. - Yumurta çoğalırlar, ayrı eşeylidirler. İç parazitler: Parazit canlının, konak canlının iç kısmında yaşamasıdır.İç parazitliğin özellikleri ; - Genellikle solucanlar şubesindedirler(Bağırsak kurtları, tenyalar).Hücre içerisinde (Plazmodyum) ya da kan içinde (Uyku hastalığını oluşturan bir hücreli) yaşayanlarda olabilir. - Sindirim organları yoktur. - Monomerleri tüm vücut yüzeyleri ile alırlar. - Duyu organları yoktur. - Hermafrodittir(Dişi veya erkek gamet aynı canlıda) “Bitkisel parazitler ikiye ayrılır. Yarı parazitler: Bazı bitkiler klorofil taşırlar ve fotosentez yaparlar. Ancak kök sistemleri gelişmediği için su ve mineral madde ihtiyaçlarını emeç adı verilen kökleriyle üzerinde yaşadıkları bitkinin odun borularından alırlar. Örnek; Ökse otu. Tam parazitler: Bazı bitkiler fotosentez yapamadıkları için bütün ihtiyaçlarını üzerinde yaşadıkları bitkiden sağlarlar.Klorofilleri yok veya indirgenmiştir.Kökleri (emeçleri) ile üzerinde yaşadığı bitkinin soymuk dokularından organik besin maddesi alırlar. Örneğin; küsküt otu(Çin sacı),canavar otu gibi. -Çürükçül (Saprofit) beslenme: Saprofit beslenen canlılar mayalar, küfler ve bazı bakteriler örnek verilebilir.Bu tür beslenen canlılara ayrıştırıcılar da denir.Bu organizmalarda enzim sistemi iyi gelişmiştir. Ayrıştırıcılar ölü bitki ve hayvan kalıntılarıyla, organik atıkların üzerine enzimler salgılayarak bu maddeleri parçalar ve kendileri için gerekli olan organik maddeyi bünyelerine alırlar.Ayrıştırıcıların yaptıkları bu beslenme şekline saprofit (Çürükçül) beslenme denir.Organik maddelerden inorganik madde üretirler.Mantarlar daha çok bitkileri,bakteriler ise hayvanları ayrıştırır. Saprofit, organik maddeleri inorganik maddelere dönüştürmeleriyle azot devrinde çok önemlidir.(Nitrifikasyon ,denitrifikasyon vb.) -Hem hetetrof , hem ototrof beslenme Azot bakımından fakir toraklarda yaşayan böcekçil bitkilerde bu beslenme şekli görülür.İbrik otu (Nephentes) ve sinek kapan (Dionea) gibi böcek yiyen bitkiler fotosentez yaparak kendi besinlerini üretir.Ayrıca büyümeleri için gerekli olan amino asitleri ve diğer azotlu bileşikleri yakaladıkları böcekleri sindirerek sağlar.Örnek:Böcekçil bitkiler,Öglena(Çepersiz protista örneğidir.Karanlıkta endositoz,ışıkta fotosentez),Likenler(Mantar hetetroftur, Alg ototrof) A.Madde ve Enerji akışında Üretici, Tüketici ve Ayrıştırıcı İlişkileri Canlıların hayatlarını devam ettirebilmeleri için üretici, tüketici ve ayrıştırıcı ilişkilerine ihtiyaçları vardır.Yeryüzünün ilk enerji kaynağı güneştir.Her ekosistemde üreticiler,güneş enerjisinin fotosentez yoluyla kimyasal enerjiye dönüştürür. Son tüketicilere doğru sürekli ve tek yönlü bir enerji akışı gerçekleşir. Enerjinin büyük bir bölümü, yaşamsal etkinlikler ve vücut ısısını sağlamak için kullanılır. Bu nedenle besin aktarımı sırasında, sistemde madde ve enerji kaybı olur. B.Besin Zinciri ve Enerji Piramidi Bir ekosistem içerisindeki canlıların tümü beslenme bakımından birlerine bağlıdır.Bir ekosistem de yer alan canlıların birbirlerine bağlı olarak beslenmelerine besin zinciri denir. Yalnız bitkilerle beslenen hayvanlara birincil tüketiciler denir.Birincil tüketicilerle beslenen hayvanlara ise ikincil tüketiciler,İkincil tüketicilerle beslenen hayvanlara da üçüncül tüketici denir.Ayrıştırıcılar ise ölü hayvan bitkilerin çürümesini ve içerdikleri minerallerin toprağa karışmasını sağlayan organizmalardır. Üreticiler, besin zincirinde birinci halkayı oluşturur.Bitkilerde depolanan enerjinin bir kısmı besin yolu ile ot oburlara iletilirken,bir kısmı ısı şeklinde çevreye ,bir kısmı da ayrıştırıcılara aktarılmaktadır.Ot oburlar aldıkları enerjiyi et oburlara aktarmaktadır.Görüldüğü gibi besin zincirindeki besinin bir kısmı enerji olarak kullanılırken bir kısmı da depolanmaktadır.Besin zincirleri bir araya gelerek daha karmaşık olan besin ağnı oluşturur. Besin zinciri karasal ortamlarda genellikle çiçekli bitkilerle başlarken su ortamında mikroskobik alglerle başlar. Enerji ,enerji pramidin de bir üst basamağa sadece besin yolu ile geçer.Zehirli maddelerin en fazla birikimi besin zincirinin en son halkasında bulunan canlılarda en fazla olur. Piramitin tabanından tepesine çıkıldıkça enerji düzeyi azalır.Ekosistemdeki genellikle bir canlıdaki enerjinin %10-20’si beslenme zinciri ile bir sonraki tüketiciye geçmektedir.Buna biyolojide ‘% 10 Yasası’ denir.Yaklaşık enerjinin % 90 kadarı canlıların hayatsal faaliyetleri için harcanarak kaybolmaktadır. Karalarda veya sularda birim alana düşe canlıların ağırlına Biyokütle denir. Buna göre doğada biyokütlesi en fazla olan tür bitkiler olduğu için piramidin ilk basamağında yer alır.Besin zincirinde biyokütle üst basamaklara gidildikçe azalır.Canlı sayısına,canlı ağırlığına yada enerjiye dayalı olarak çizilen bu piramite ‘ekolojik pramit’ denir Denizlerde bitki ve hayvan türleri genellikle güneş ışınlarının ulaşabildiği yüz metrelik derinlikte yaşar. Bitkisel planktonlar fotosentez ile ürettikleri besini ve oksijeni yine mikroskobik olan hayvansal planktonlar kullanırlar. Besin pramidin de tek yönlü enerji akışı vardır.Bir canlıdan diğerine aktarılan enerji geri dönmez. Populasyonda ki bireylerin vücut büyüklükleri artıkça sayıları azalır.

http://www.biyologlar.com/cevrenin-canli-ve-cansiz-etmenleri


Bitki Hormonlarının Sınıflandırılması

Bitki hormonlarına, yapıca benzeyen kimyasal maddeler laboratuvarda sentetik yollarla elde edilmekte ve bunlar bitkiye dıştan uygulandığında bitki hormonu gibi fizyolojik etkiler göstermektedirler. Fakat bunlar, bitkide doğal olarak sentezlenmediğinden ve hormon tanımına girmediğinden büyümeyi düzenleyici maddeler olarak sınıflandırılır. Bitki hormonlarının (fitohormonların) bazı grupları büyümeyi teşvik edici etki gösterirken, bazıları ise engelleyici etki gösterirler. Fakat, bitkide düzenli bir büyüme için, büyümeyi teşvik eden ve engelleyen, her iki tip hormona da ihtiyaç vardır. Bitki hormonları; oksin, sitokininler, giberellinler, absisik asit, etilen ve brassinosteroidler olmak üzere altı gruba ayrılır. Büyümeyi teşvik edenler: oksin, sitokininler, giberellinler, etilen, brassinosteroidler Büyümeyi engelleyenler: absisik asit, etilen Hormon Bitkide Üretildiği Yer Ana İşlevler Oksin (IAA)----Tohumun embriyosu, apikal tomurcukların meristemleri, genç yapraklar.----Gövde uzamasını (yalnızca düşük konsantrasyonda), kök büyümesini, hücre farklılaşmasını ve dallanmayı teşvik eder; meyve gelişimini düzenler; apikal dormansiyi artırır; fototropizma ve gravitropizmada iş görür. Sitokininler (Zeatin)---Köklerde sentezlenir ve diğer organlara taşınırlar. ----Kök büyüme ve farklılaşmasını etkiler; hücre bölünmesi ve büyümesini teşvik eder; çimlenmeyi teşvik eder; senesensi geciktirir. Giberellinler (GA3)---Apikal tomurcukların ve köklerin meristemleri, genç yapraklar, embriyo.----Tohum ve tomurcuk çimlenmesini, gövde uzamasını ve yaprak büyümesini artırır; çiçeklenmeyi ve meyve gelişimini teşvik eder, kök büyümesini ve farklılaşmasını etkiler. Absisik asit---Yapraklar, gövdeler, kökler, yeşil meyve.----Büyümeyi engeller; su stresi esnasında stomalar kapanır; dormansinin kırılmasını engeller. Etilen----Olgunlaşan meyve dokuları, gövdelerin nodyumları, yaşlanan yaprak ve çiçekler.---Meyve olgunlaşmasını artırır; oksinin bazı etkilerini bastırır; türe bağlı olarak, köklerin, yaprakların ve çiçeklerin büyümesini artırır veya engeller. Brassinosteroidler (Brassinolid)----Tohumar, meyveler, gövdeler, yapraklar ve çiçek tomurcukları. ----Kök büyümesini engeller, yaprak absisyonunu engeller, ksilem farklılaşmasını artırır. OKSİN : Büyüme Hormonu Charles Darwin ve oğlu Francis, 19. yüzyılın sonlarında fototropizma üzerindeki ilk denemeleri gerçekleştirmiştir. Bu araştırmacılar, fototropik uyartının kuş yemi (Phalaris canariensis) koleptilinin ucunda oluştuğunu ve belli bir mesafede etki ettiğini gözlemiştir. Fototropizma üzerinde yapılan ilk deneyler. Sadece koleoptilin ucu ışığı algılayabilir; fakat kıvrılma uçtan belli bir uzaklıkta oluşur. Bir sinyal çeşidinin, uçtan aşağıya taşınması gerekir. Sinyal, geçirgen bir engelden (jelatin blok) geçebilir, fakat katı bir engelden (mika) geçemez bu, fototropizma sinyalinin taşınabilir bir kimyasal olduğunu göstermektedir. Koleoptilin ucu kesildiğinde, koleoptilin kıvrılmadığı gözlenmiştir. Koleoptilin ucu ışık geçirmeyen bir kapla örtüldüğünde de fideler ışık yönünde büyüyememişlerdir; buna karşılık, ne koleoptilin ucu şeffaf bir kapla örtüldüğünde, ne de koleoptilin alt kısmı ışık geçirmez bir kapla sarıldığında fototropizmanın oluşması önlenememiştir. Darwin, ışığın algılanmasından koleoptilin ucunun sorumlu olduğunu düşünmüştür. Bununla birlikte, gerçek büyüme yanıtı, yani koleoptilin kıvrılması, uçtan belirli uzaklıkta gerçekleşmekteydi. Darwinler, koleoptilin ucundan uzama bölgesine bazı sinyaller gönderildiğini ileri sürmüşlerdir Koleoptil: Bir yulaf (çim) tohumu embriyosunun genç kökünün örtüsü. Fototropizma: Bir bitki sürgününün ışığa doğru yada ışıktan uzaklaşarak büyümesi Birkaç on yıl sonra, Danimarka‟dan Peter Boysen–Jonsen, bu varsayımı sınamış ve sinyalin hareketli bir kimyasal madde olduğunu göstermiştir. Araştırmacı, koleoptil ucunu, hücreler arasındaki teması kesen, fakat kimyasalların geçişine izin veren jelatin bir blokla koleoptilin diğer kısımlarından ayırmıştır. Bu fideler, ışığa doğu kıvrılarak normal davranış göstermişlerdir. Buna karşın uç, koleoptilin alt kısmından geçirimsiz bir engelle ayrıldığında, fototropik yanıt oluşmamıştır 1926‟da Hollandalı bir lisans üstü öğrencisi olan Frits W. Went, Boysen-Jonsen‟in denemelerinde değişiklik yaparak fototropizmada iş gören kimyasal mesaj taşıyıcı elde etmeyi başarmıştır. Bu araştırmacı, koleoptil ucunu çıkartarak agara yerleştirmiştir, daha sonra agarı bloklara ayırarak koleoptillerin tek tarafına yerleştirmiştir Şöyle ki; agar blokları, karanlıkta tutulmuş ucu kesik koleoptillerin üzerine yerleştirmiştir Koleoptil tepesinin ortasına yerleştirilen bir blok, gövdenin dik büyümesine neden olmuştur. Fakat blok, merkezin uzağına yerleştirildiğinde (asimetrik olarak tek tarafa), koleoptil ucu, ışığa doğru büyümesinde olduğu gibi, agar bloğun bulunduğu tarafın aksi yönünde kıvrılmaya başlamıştır. Went’in Deneyleri. Ucun yerine bir blok konulduğunda, koleoptilden agar bloğa geçebilen bir kimyasal, kök koleoptilinin uzamasını teşvik eder. Eğer blok, karanlıkta tutulan ve ucu kesilmiş bir koleoptilin ucunun uzağına yerleştirildiğinde, organ, tek taraftan ışık alıyormuş gibi kıvrılır. Bu kimyasal, bir hormon olan oksindir. Oksin, sürgünde hücrelerin uzamasını teşvik etmektedir. NOT: Went deneylerinde Avena sativa (yabani yulaf) koleoptillerini kullanmıştır. Went, agar bloğun, koleoptil ucunda üretilen bir kimyasalı içerdiği sonucuna varmıştır. Went‟e göre, bu kimyasal koleoptile geçtikçe büyümeyi uyaran ve artıran bir kimyasaldı ve koleoptilin ışık almayan tarafında daha yüksek bir konsantrasyonda biriktiğinden koleoptil ışığa doğru büyüyordu. Wenti bu kimyasal mesaj taşıyıcı yada hormona, oksin (auxein = artmak) ismini verdi. Daha sonra oksin, Kaliforniya Teknoloji Enstitüsünden Kenneth Thimann ve arkadaşları tarafından izole edilmiş (saflaştırılmış) ve yapısı aydınlatılmıştır. Darwinler‟in ve Went‟in çalışmalarına dayalı olarak, koleoptillerin ışığadoğru büyümelerine neyin neden olduğu yönündeki klasik varsayım, oksinin, koleoptil ucundan aşağıya taşınarak asimetrik olarak dağılmasına ve ışık almayan taraftaki hücrelerin ışık alan taraftaki hücrelerden daha hızlı büyümesine neden olduğudur. Oksin Biyosentezi ve Metabolizması Kenneth Thimann ve arkadaşları tarafından izole edilen oksinin, indolasetik asit(IAA, indol-3-asetik asit) olduğuna karar verildi. Daha sonra bitkilerde çeşitli oksinlerin bulunduğuda anlaşıldı. Bunlar fenil asetik asit (PAA), indol butirik asit (IBA) ve 4-kloro indol-3-asetik asit (4-Cl-IAA) gibi maddelerdir. Bunlar gibi etki gösteren fakat doğal olmayan sentetik oksinlerde vardır; naftelen asetik asit (NAA), 2,4-dikloro fenoksi asetik asit (2,4-D), ve 2,4,5-trikloro fenoksi asetik asit (2,4,5-T), 2-metoksi-3,6-dikloro benzoik asit. Üç doğal oksinin yapısı. IAA, bütün bitkilerde; 4-Cl-IAA, bezelyede; IBA, hardal ve mısırda görülür. IAA, triptofan amino asitinden sentezlenir. IAA‟in bütün sentez yollarında başlangıç maddesi genelde triptofandır. IAA, gövde ve dal uçlarında sentezlenmekle beraber, tohumlarda ve genç yapraklarda da sentezlenir. Oksinin floem yoluyla yukarıdan aşağıya doğru taşınımı saatte 0,5-1,5 cm arasındadır. Oksinin, floem yoluyla az da olsa aşağıdan yukarıya taşındığı radyoaktif izleme yöntemiyle (C14 ile işaretlenmiş oksin kullanılarak) belirlenmiştir. Oksinin taşınımı sentetik bir madde olan 2,3,5-triiyodo benzoik asit (TIBA) ile engellenmektedir. Bunun dışında da doğal ve sentetik oksin inhibitörleri de vardır. Oksinin sürgün ucundan aşağıya, gövdeye doğru taşınma hızı saatte 10 mm dir. Bu taşınım hızı floem yoluyla taşınım hızından daha düşüktür. Oksin, bir hücreden diğerine, doğrudan parankima dokusundan taşınır. Taşınma sadece sürgün ucundan kaideye doğru gerçekleşir. Bunun aksi yönünde bir taşınım görülmez. Oksinin, bu tek yönlü taşınımı polar taşınım olarak adlandırılır. Polar taşınımın yer çekimiyle ilgisi yoktur. Bir gövde yada koleoptil parçası baş aşağı konumlandırıldığında oksin yukarı doğru taşınır. Şekil 10‟da plazma zarında ATP ile çalışan proton pompalarının oksin taşınımı için nasıl metabolik enerji sağladıkları gösterilmiştir (Oksin taşınma mekanizması, kemiozmozis ile hücrenin iş yapmasına diğer bir örnek teşkil eder. Kemiozmozis, proton pompalarının yarattığı H+ gradiyentlerini kullanır). Polar oksin taşınımı (kemiozmotik model). Oksin, büyüyen sürgünlerde, sürgün ucundan aşağı doğru tek yönde taşınır. Bu yol boyunca, hormon, hücrenin apikal ucundan girer ve basal ucundan çıkar. Bu esnada çeperden geçer ve bir sonraki apikal uçtan girer. 1) Oksin hücre çeperinin asidik ortamı ile karşılaşınca, elektriksel olarak nötrleşmek için bir hidrojen alır. 2) Nispeten küçük olan molekül plazma zarından geçer. (oksin hücreye girerken; yüksüz formda (AH), difüzyonla veya anyon (A-) olarak sekonder aktif taşımayla girer.) 3) Hücre içinde 7 olan ortam pH sında oksin iyonlaşır. Plazma zarının, iyonlara olan geçirgenliği aynı büyüklükteki nötr moleküllerden daha fazla olduğundan, hormon geçici olarak hücre içinde tutulur. 3) Hücre içinde 7 olan ortam pH sında oksin iyonlaşır. Plazma zarının, iyonlara olan geçirgenliği aynı büyüklükteki nötr moleküllerden daha fazla olduğundan, hormon geçici olarak hücre içinde tutulur. 4) ATP ile çalışan proton pompaları hücrenin içi ve dışı arasındaki pH farkının sürmesini sağlar. 5) Oksin yalnızca hücrenin basal ucundan dışarı çıkar. Hücrenin basal ucunda yer alan zarda, özel taşıyıcı proteinler bu çıkışı sağlar. 6) Proton pompaları, zarın iki yanında bir zar potansiyeli (voltaj) oluşturarak oksin çıkışına katkı yapar. Bu, anyonların hücre dışına çıkmasını sağlar. Kemiosmozis: ATP sentezi gibi, hücresel bir olayı yerine getirmek için zarın karşı tarafında hidrojen iyonu gradiyenti oluşturmakla ortaya çıkan, depolanmış enerjiyi kullanan bir enerji elde etme mekanizması. Hücrede sentezlenen ATP‟nin çoğu, kemiosmozis yoluyla sentezlenir. Proton pompası: Zar potansiyeli meydana getirme işleminde, ATP kullanarak hidrojen iyonlarını hücrenin dışında tutan, hücre zarındaki aktif taşıma mekanizması. Apikal meristem: Kökün uç kısmında ve gövdenin tomurcuklarında bulunan embriyonik bitki dokusu; bitkinin uzunlamasına büyümesi (uzaması) için bitkiye hücre sağlar. Oksin düzeyi bitkide her zaman sabit değildir; mevsim ve çevre şartlarına göre azalıp çoğalabilir. Dolayısıyla oksinin bitkide sentezlendiği gibi parçalandığı sonucuna ulaşırız. IAA hormonu iki şekilde etkisiz hale gelir: birisi çeşitli maddelerle bir enzim aracılığıyla birleştirilerek oksinin inaktif edilmesidir; diğeri ise IAA oksidaz enziminin kataliziyle indol asetaldehit ve CO2‟e parçalanmasıdır. Ayrıca kuvvetli ışıkta da oksin parçalanabilir. Oksinlerin Fizyolojik Etkileri ve Pratik Değeri Hücre Büyümesinde Oksinin Rolü Oksin, esas olarak bir sürgünün apikal meristeminde sentezlenir. Oksin sürgün ucundan hücre uzaman bölgesine taşındıkça, hücrelerin büyümesini uyarır. Bu etki, olasılıkla, oksinin plazma zarındaki bir reseptöre bağlanmasıyla gerçekleşir. Oksin büyümeyi sadece 10-8 ila 10-4 M‟lık konsatrasyon aralığında uyarır. Daha yüksek konsantrasyonlarda hücre büyümesini (uzamasını) engelleyebilir. Bu engellemeyi muhtemelen etilen üretimini teşvik ederek yapar(etilen, bu gibi oskin özelliklerini bastırabilir). Oksin aynı zamanda gen ifadesini hızla değiştirir. Gen ifadesinin değişmesi, dakikalar içinde hücrenin uzama bölgesinde yeni proteinlerin oluşmasını sağlar. Bu proteinlerin bazıları, diğer genleri baskı altına alan yada aktifleştiren kısa ömürlü transkripsiyon faktörleridir. Bu başlangıç hamlesinden sonra büyümenin sürmesi için hücrelerin daha fazla sitoplazma ve çeper maddesi alması gerekir. Oksin, aynı zamanda büyümeyle ilgili bu yanıtın devam etmesini sağlar. Oksine yanıt olarak hücre büyümesi (uzaması); asit büyüme hipotezi. Asit büyüme hipotezi olarak adlandırılan bir görüşe göre, proton pompaları hücrelerin oksine yanıtında büyük bir rol oynamaktadır. Oksin, bir gövdenin uzama bölgesinde plazma zarındaki proton pompalarını uyarır. Bu etkileşim sonucu dakikalar içinde zarın iki yanında zar potansiyeli oluşur (voltaj artar) ve hücrenin pH‟sı düşer (Şekil 11). Çeperin asitleşmesi, ekspansin olarak isimlendirilen enzimleri aktifleştirir. Ekspansinler çeperde selüloz mikrofibrillerin arasındaki bağlantıları (hidrogen bağları) koparır. Bunun sonucunda çeper gevşer. Zar potansiyelindeki artış hücreye iyon alınımını artırır. Bu da, suyun osmozla alınmaına neden olur. Çeperlerin esnekliğinin artışıyla birlikte olan su girişi, hücrenin uzamasını (büyümesini) sağlar. Yan Kök ve Adventif Kök oluşumu Oksinler, ticari olarak bitkilerin çeliklerle vejetatif olarak üretilmesinde kullanılmaktadır. Oksin içeren köklendirme tozu ile bir kesik yaprak yada gövdenin muamele edilmesi çoğunlukla kesik yüzeyin yakınında adventif kök oluşumuna neden olur. Oksin aynı zamanda köklerin dallanmasında da yer alır. Araştırmacılar, yan kökleri aşırı çoğalan bir Arabidopsis mutantının normalden 17 kat daha fazla oksin içerdiğini bulmuşlardır. Ayrıca oksin, apikal dominansinin sürdürülmesinde , absisyonun engellenmesinde, kambiyal faaliyetleri artırarak dikotillerde enine büyümenin teşvikinde, tohum çimlenmesinde, meyve gelişiminde, fototropizma, gravitropizma gibi olaylarda da rol alır. Oksin, primer büyüme için hücre uzamasını uyarmasının yanında, sekonder büyümeyi de etkiler. Bunu, demet kambiyumunda hücre bölünmesini teşvik ederek ve sekonder ksilemin farklılaşmasını etkileyerek yapar. Gelişmekte olan tohumlar oksin sentezlerler. Bu oksin, meyvelerin büyümesini artırır. Domates fidelerine oksin püskürtülmesi, tozlaşmaya gerek duyulmaksızın meyve gelişimini teşvik eder. Bu, normalde gelişmekte olan tohumlar tarafından sentezlenen doğal oksin yerine, sentetik (yapay) oksin kullanılarak, tohumsuz domates yetiştirilmesine olanak sağlar. Oksinlerin zirai amaçlı kullanımında aşağıdaki yöntemler kullanılır: 1) Yapraklara püskürtme. 2) Sulama suyuna karıştırma. 3) Kesik yüzeylere lanolin macunu içinde sürme. 4) Bitki organlarını hormon içeren çözeltiye batırma. 5) Belirli bir dokuya enjeksiyon yapma. Sentetik oskinler, daha ucuz olduğundan, bunları tanıyan yıkıcı enzimlerin bitkide bulunmadığından, bazılarının doğal olanlara göre daha etkili olduğundan pratik olarak daha çok kullanılırlar. Gravitropizma: Bitki yada hayvanların, yer çekimiyle ilişkili olarak verdikleri yanıt. Herbisit Olarak Oksinler 2,4-Dinitrofenol (2,4-D) gibi sentetik oksinler, yaygın bir şekilde herbisit (yabani ot öldürücü) olarak kullanılmaktadır. Mısır gibi monokotiller süratle bu sentetik oksinleri, etkisizleştirirken, dikotiller bunu yapamaz. Bu nedenle aşırı hormon dozları bu bitkileri öldürür. Tahıl tarlalarına 2,4-D püskürtülmesi, karahindiba gibi dikotil otları ortadan kaldırır. Böylece tahıllardan daha çok mahsul alınır. IBA ve NAA, çeliklerin köklendirilmesinde kullanılır. Çelikler bu maddelerin çözeltilerinde bir süre batırılarak köklendirilir. NAA seracılıkta domates ve salatalık gibi sebzelerde çiçeklenme ve meyve gelişimini artırmak için, elma ve armut gibi meyve ağaçlarında meyva tutumunu artırmak için kullanılır. Bu uygulamalar püskürtme ile yapılmaktadır. Bunların dışında, oksinler doku kültürü çalışmalarında kök geliştirilmek üzere besi ortamına ilave edilerek kullanılır. SİTOKİNİNLER : Hücre Büyüme Düzenleyicileri Doku kültüründe bitki hücrelerinin büyüme ve gelişimini artıran kimyasal katkı maddelerini bulmak için gösterilen çabalar, sitokininlerin keşfine yol açmıştır. New York‟ta Cold Spring Harbor Laboratuvarında çalışan, Johannes van Overbeek, 1940‟lı yıllarda, kültür ortamına, Hindistan cevizi tohumunun sıvı endosperminin (hindistancevizi sütü), bitki embriyolarının büyümesini uyardığını buldu, fakat bu madde tanımlanamadı. Bu maddeyi, 1974‟te Letham zeatin olarak tanımladı (ayrıca Letham mısır endosperminde de zeatin elde etmiştir). Daha sonra, t-RNA‟nın antikodon bölgesine yakın bir yerde bulunan izopentenil adenin (IPA) homonu keşfedildi. Bunlar bitkilerde sentezlenen-doğal- sitokinin hormonlarıdır. 1950‟de Wisconsin Üniversitesinden Folke Skoog ve Carlos O. Miller, kültür ortamına ilave ettikleri parçalanmış DNA örneklerinin, tütün hücrelerinin bölünmesini artırdığını gözlemlemişlerdir. Burada rol alan madde otoklavlanmış DNA‟da aydınlatılmış ve kinetin olarak adlandırılmıştır. Kinetin sentetik bir sitokinindir. Sentetik sitokinlere diğer bir örnek ise benzil adenin (BA)‟dir. Sitokininlerin aktif bileşeni, nükleik asitlerin bir elemanı olan adenin (amino pürin) bazının değişime uğramış formlarıdır. Sitokinezi yada hücre bölünmesini uyarması nedeniyle bu büyüme düzenleyicileri, sitokininler olarak isimlendirilmiştir. Bitkilerde doğal olarak oluşan sitokinin çeşitlerinden en yaygın olanı zeatindir. Zeatin, ilk kez mısır (Zea mays) bitkisinde keşfedildiği için bu isim verilmiştir. Sitokininlerin Biyosentezi ve Metabolizması Sitokininlerin sentezi amino pürin yani adeninden başlar. fakat yan grupların sentezi tam bilinmemektedir. Zaten sitokininlerin hormon aktivitesi gösteren kısmı yan gruplara bağlıdır. IPA, t-RNA‟nın yapısındayken hormon aktivitesi göstermez fakat t-RNA‟nın parçalanmasıyla serbest hale geçtiğinde aktivite gösterir. Büyük çabalara rağmen ne sitokininleri oluşturan enzimler bitkilerden izole edilebilmiş ne de onu kodlayan genler tanımlanabilmiştir. Hatta Salisbury Devlet Üniversitesinden Mark Holland, bitkilerin kendi sitokininlerini üretemeyebileceklerini ileri sürmüştür. Bu araştırmacıya göre, sitokininler bitki dokularında simbiyotik oalrak yaşayan ve metilobakteriler olarak isimlendirilen prokaryotlar tarafından üretilmektedir. Bu bakteriler in vitro kültürlerde bile aktif olarak büyüyebilmektedirler. Gerçekten metilobakteriler yok edilince normal gelişme süreci engellenmektedir. Bu süreç, metilobakterilerin yeniden uygulanması yada sitokininlerin yeniden verilemsiyle düzelmektedir. Bu kışkırtıcı varsayımın destek bulup bulmamasına bağlı olmaksızın, varacağımız yer şudur; genom sekanslanması bizi gerçek bilgiye götürecektir. Şu an Arabidopsis‟in gen dizisi analizi tamamlanmıştır. Dolayısıyla, eğer bir sitokinin üreten enzim mevcut ise bunun kolaylıkla tanımlanması gerekir. Bitki hücreleri sitokininlerin kaynağına bağlı olmaksızın sitokinin reseptörlerine sahiptir. Bazı kanıtlar, biri hücre içi, diğeri hücre yüzeyinde olmak üzere iki farklı sitokinin sınıfının varlığını göstermektedir. Sitoplazmik reseptör, sitokinine doğrudan bağlanır ve izole nukleusta transkripsiyonu uyarabilir. Sitokininler bazı bitki hücrelerinde plazma zarındaki Ca+2 kanallarını açarak, sitosolde Ca+2 artışına neden olur. Sitokinin sentezi ve sinyal iletimi hakkında tam olarak bilimsel veriler bulunamamıştır. Fakat bitki fizyolojisi ve gelişimi üzerindeki ana etkileri bilinmektedir. Sitokininlerin yıkımı, sitokinin oksidaz enzimi ile yan grupların uzaklaştırılması ve amino pürin kalmasıyla gerçekleşir. Amino pürin tek başına hormon etkisi gösteremez. Diğer bir yollada; sitokininler şekerlerle birleştirilerek glikozitlerin oluşmasıyla inaktif hale getirilebilir. Turpta rafanatin adı verilen glikozit (glikozil zeatin) bu şekilde meydana gelir. Sitokininlerin bitkide başlıca sentez yerleri tohumlar, genç yapraklar ve en çok kök uçlarıdır. Kök uçlarında sentezlenen sitokininler ksilem yoluyla gövdeye ordanda etki gösterecekleri hedef dokulara taşınırlar. Yaprak, tohum ve meyve gibi organlara sitokininlerin başlangıçta kökten taşınarak geldikleri kabul edilmektedir. Sitokininlerin yukarıdan aşağıya doğu taşınımları ile ilgili veriler çeşitlidir. Yapraklarda uygulanan sitokininler ağaç gibi bazı bitkilerde hiç taşınmayıp yaprakta biriktiği, ancak çilek gibi bitkilerde yavaşta olsa yapraktan diğer organlara taşındığı belirtilmiştir. Sitokininlerin Fizyolojik Etkileri ve Pratik Değeri Hücre Bölünmesi ve Farklılaşmanın Kontrolü Sitokininler, özellikle kökler, embriyolar ve meyvelerde olmak üzere, aktif olarak büyüyen dokularda üretilirler. Kökte üretilen (sentezlenen) sitokininler ksilem öz suyunda taşınarak hedef dokulara ulaşır. Sitokininler, oksin ile birlikte hareket ederek hücre bölünmesini teşvike eder ve farklılaşmayı etkiler. Doku kültüründe büyüyen hücreler üzerinde sitokininlerin etkileri, bu hormonun bütünlüğü bozulmamış bir bitkideki işlevi hakkında ipucu verir. Gövdeden alınan bir parankima dokusu parçası sitokinler olmaksızın kültüre alındığında hücreler çok fazla büyürler fakat, bölünmezler. Sitokininler tek başlarına etki göstermezler, oksin ile birlikte uygulandıklarında hücreler bölünürler. Sitokininin oksine olan oranı ise hücre farklılaşmasını kontrol eder. Bu iki hormonun konsantrasyonları dengelenince, hücre kütlesi büyümeyi sürdürmekle birlikte, farklılaşmaz ve küme oluşturur. Farklılaşmamış bu hücre kümesi, kallus olarak isimlendirilir. Eğer sitokinin oranı artırılırsa kallustan gövde tomurcukları gelişir. Oksin düzeylerinin artırılması halinde ise kökler oluşur. Simbiyoz: Birbirleriyle doğrudan temas halinde olan iki farklı türe ait organizma arasındaki ekolojik ilişki. Endosperm: Çifte döllenme sırasında bir sperm hücresinin iki kutup hücresi çekirdeği ile birleşmesiyle oluşan besince zengin doku; angiospermlerin tohumu içerisinde gelişen embriyoya besin sağlar. In vitro: Hücelerin, dokuların, organların ait oldukları organizmaların dışında yapay ortamlar içinde yetiştirilmeleri veya bulunmaları. Apikal Dominansinin Kontrolü Apikal dominansinin kontrolü için sitokininler oksin ve diğer faktörlerle etki gösterirler. Apikal dominansi, tepe tomurcuğunun yanal tomurcukların gelişimini baskı altına almasıdır. Son zamanlara kadar, apikal dominansinin hormonlar tarafından düzenlenmesi ile ilgili başlıca varsayıma göre (doğrudan engelleme varsyımı) yanal tomurucuk büyümesinin düzenlenmesinde oksin ve sitokinin antagonistik(birbirinin tersi etki göstermek) etki gösterir. Bu görüşe göre; tepe tomurcuğundan sürgünün alt kısımlarına taşınan oksin yanal tomurcukların büyümesini doğrudan engeller. Böylece gövde uzar, fakat yan dallar oluşmaz. Aynı zamanda, kök sisteminden gövde sistemine giren sitokininler büyümenin başlaması için yanal tomurcuklara sinyal göndererek oksin etkisini ortadan kaldırır. Buna göre; yanal tomurcuk engellenmesinin kontrolünde oksinin sitokinine oranı kritik bir etmendir. Pek çok gözlem doğrudan engelleme varsayımı ile uyumludur. Eğer başlıca oksin kaynağı konumundaki tepe tomurcuğu uzaklaştırılırsa (kesilirse), yanal tomurcuklar engellenmez ve bitki çalımsı görünüm alır. Ucu kesilmiş fidelerin kesik yüzeylerine oksin uygulanması yanal tomurcukların büyümesini baskı altına alır. Aşırı sitokinin üreten yada sitokininle muamele edilen bitkiler, normalin üstünde çalımsı görünüm alırlar. Doğrudan engelleme varsayımına göre, başlıca oksin kaynağı durumundaki tepe tomurcuğunun kesilmesi yanal tomurcukların oksin düzeyinde bir azalmaya neden olacaktır. Fakat, biyokimaysal çalışmalar bunun tersini göstermektedir. Ucu kesilen bitkilerin yanal tomurcuklarında oksin düzeyleri artmıştır. Böylece, doğrudan engelleme varsayımı tüm deneysel bulgular tarafından desteklenememektedir. Bu halen bir bilmecedir. Yaşlanmayı Önleyici Etkileri (senesensi geciktirme) Sitokininler, protein parçalanmasını (yıkımını) engelleyerek, RNA ve protein sentezini teşvik ederek ve etraftaki dokulardan besin elementlerini hareketlendirerek bazı bitki organlarının yaşlanmasını geciktirir. Eğer bir bitkiden alınan yapraklar bir sitokinin çözeltisine daldırılırsa, uzun süre yeşil kalırlar. Ayrıca sitokininler bütünlüğü bozulmamış bitkilerde yaprak bozulmasını yavaşlatır.Bu yaşlanmayı engelleyici etkisi nedeniyle, çiçek satıcıları kesilmiş çiçekleri taze tutmak için sitokinin spreyleri kullanırlar. Ayrıca sitokininler kloroplast gelişiminde, boy kısalığında, vasküler kambiyum faaliyetini artırıcı etkilerde etmendir. Kloroplast gelişiminde; karanlıktaki etiyole bitkiye sitokininle muamele edildiğinde, lamellere sahip kloroplastların meydana geldiği fakat klorofil oluşmadığı belirlenmiştir. Işık ve sitokinin etiyole bitkiye birlikte uygulanmasında ise, sadece ışık uygulanan bitkiye göre kloroplastların ve klorofilk sentezinin daha iyi ve hızlı oluştukları görülür. Kök ve gövdeye dıştan yüksek dozda uygulanan sitokinin enine büyümeyi artırarak boy kısalığına sebep olur. Etilende bu etkiye sahip olduğuna göre, sitokininlerde oksinler gibi bitkide etilen artışına sebep olurlar? Bu soruya cevap olarak; bu etkinin hücre çeperinde yeni sentezlenen (üretilen) mikrofibrillerin diziliş yönlerini değiştirmeleri öne sürülmüştür. Sitokininler oksinler gibi vasküler kambiyum faaliyetini artırıcı etkiye sahip olduklarından oksinlerle birlikte aşı macununa karıştırılarak aşı tutmayan bitkilerde aşılamayı kolaylaştırmada kullanılırlar. NOT: Sitokininler bazen oksinin tamamlayıcısı (büyüme), bazen de antagonisti (kök ve tomurcukların farklılaşması) gibi görünmektedir. Etki mekanizmaları bilinmemesine rağmen bu iki tip hormon arasındaki dengenin büyümeyi belirleyici faktörlerden biri olduğu açıktır. Apikal dominansi: Büyüme olayının, bitkinin gövdesinin uç kısmında yoğunlaşması ve buradaki terminal tomurcuğun, lateral tomurcukların büyümesini kısmen engellemesi. Senesens: Bitkilerde yaşlanma ile birlikte gerçekleşen ve bir dokunun, bir organın veya bir bikinin ölümüne yol açan katabolik olaylar dizisi. Kallus: Bitkilerde sürgünlerin kesilen ucunda yer alan, bölünme özelliği gösateren farklılaşmamış hücre kümesi. Dormansi: Büyümenin ve gelişmenin askıya alındığı, son derece düşük metabolik hız ile kendisini gösteren durum. Vernalizasyon: Bazı bitkilerinçiçeklenmesi için sadece uygun fotoperyod yeterli olammakta, belli bir süre düşük sıcaklığa maruz kalması gerekir. Absisyon: Yaprak, çiçek ve meyve gibi organların bitkiden koparak dökülmeleridir.

http://www.biyologlar.com/bitki-hormonlarinin-siniflandirilmasi

Kuru Distilasyon Yöntemi

Bitki kısımlarında mevcut maddeler çeşitli yöntemlerle belirlenirler.Çünkü;her elelment belirli deneysel etkilerle kendisini ortaya çıkartır.Bir tüpe buğday ve bezelye taneleri konulur.Tüp üç yıkama şişesine bağlanır. 1.I.şişede,CoCl’ye batırılmış mavi renkli süzgeç kağıdı ile Pb(CH3CO)2 eriyiğine batırılmış veyaz renkli süzgeç kağıdı vardır. 2.II.şişede,Nessler ayıracı bulunur. 3.III.şişede ise,Ba(OH)2 eriyiği mevcuttur. Buğday ve bezelye tanelerinin bulunduğu tüp ısırtıldığında çıkan dumanın yıkama şişelerini dondurmasından sonra şu değişiklikler gözlenir: 1.Molekül rengi mavi olan CoCl su ile tepkimeye girdiğinde iyonlarına ayrılır ve pembe renk verir. 2.Beyaz renkli Pb(CH3CO)2’li kağıt,kükürtün etkisiyle siyahlaşır. 3.Azot(N),Nessler ayracında turuncu bir renk tepkimesi verir. 4.Ortamda karbon varlığında,CO2 çıkışından ve CO2 + Ba(OH)2 BaCO3 + H2O reaksiyonu sonucu beyaz renkli BaCO3 çökeleğinin oluşmasından anlaşılır.Tepkime İlk Renk Son RenkCoCl + H2O Mavi PembePb(CH3Co)2 Beyaz SiyahK2HgI4x2H2O + N Beyaz TuruncuBa(OH)2 + CO2 Saydam Beyaz(Çökelek) Kuru distilasyon yöntemiyle böylece C,H,O,N ve S’nin varlığı ispatlanmış olur.Ancak bitkilerdeki bütün elementler bunlar değildir.Deney tüpünün tabanında belirli derecede yanmadan kaynaklanan siyah kısım kalmıştır.Bunun nedeni ortamdaki karbonun bir kısmının serbest halde bulunmasından ileri gelir.Eğer 1000 oC’lik bir fırında ısıtılırsa ve ortamda yeteri kadar oksijen varsa,bu kez siyahlık yerini gri renge bırakır. Çeşitli derecelerce yanma sonucu elde edilen grimsi artık madde kül olarak kabul edilir. Gerçek anlamda kül,kuru bitki materyalinin 700 oC’ye kadar belirli bir süre fırında bırakılmasıyla elde edilen artık maddedir.Kül miktarını etkileyen çeşitli faktörler vardır.Bunlardan en önemlileri;bitkinin türü, gelişme durumu,yaşı,organları ve gelişme ortamının şartları gibi etkenlerdir.Genel olarak;a. Fazla su kullanan bitkilerin yapraklarında % 15-30 kadar kül bulunur. Örneğin;Eucalyptus,çınar ve söğüt.b. Az su kullananlarda ise bu miktar yaklaşık %25’dir.Örneğin;Coniferae.c. Aşırı su kullanan bitkilerde kül oranı daima %30’un üzerindedir.Örneğin;Beta vulgari (Şeker Pancarı)d. Ayrıca aynı bitkinin farklı organlarındaki kül miktarı da farklıdır.Örneğin;kültür bitkilerinin gövdeleri %5-10,yaprakları %10-20,Yabani bitkilerde gövdede %1-2,Kök %3-6 arasında küle sahiptir. Halofitlerde genel olarak %10-20’dir.Genel duruma normal olarak,kül en fazla yaprakta bulunur.Bu durumun çeşitli nedenleri vardır.En önemlisi köklerden yapraklara kadar taşınan madensel maddeler isteğe bağlı olmaksızın su ile birlikte alınır. Yapraklar-da metabolizma sonucu su transprasyon ile buharlaşınca bu maddeler birikirler.Yine yapraklarda madde değişimi,bitkinin diğer organlarına göre en fazladır.O yüzden yapraklarda zaten madensel madde bulunuyor demektir. Bitki külünün hemen hemen tamamı bitkilerin geliştikleri ortamdan aldıkları mineral maddelerden oluşmuştur.C,H,O ve N en düşük dereceli bir yanmada kaybolduğu için hiçbir külde bulunmaz.Mineral maddeler,külde element halinde değil,çoğunlukla oksitleri halinde bulunur.Gerek külün gerekse içerdiği mineral maddelerin gerçek miktarı külün eldesi anında uygulanan sıcaklık derecesiyle yakından ilgilidir. Yanma için gerekli sıcaklık daha da artırılırsa C,H,O ve N’nin tamamı,Cl ve S’nin büyük bölümü,Ca,K ve P vb. elementlerin de bir kısmı uçup gider.Ekolojik şartlara bağlı olarak,bitki külünde çok değişik maddeler bulunur.Günümüze kadar yapılan değişik şartlarda birçok farklı bitkinin külündeki analizler 60 kadar mineral maddenin varlığı ispatlanmıştır.Deneyler sonucu bitki gelişimi için,bunların tamamına tam bağımlı değildir. Ancak C,H,O,N,Ca,K,P,Mg,Fe,S,Mn,Mo,B,Cu,Zn,Cl ve Na elementleri mutlaka gerekli elementler olarak kabul edilmişlerdir. Bitki külünün gerek miktar gerekse içerdiği mineral madde miktarı üzerine etki eden ortam şartlarının en önemlisi su,sonrada ışıktır.Ayrıca zirai ortamları da dikkate aldığımızda gübrelemeyi üçüncü faktör olarak düşünebiliriz.Bunlardan suyun habitattaki miktarı kül ve külde bulunan elementleri miktarı üzerine önemli etki yapar.Su kapsamı yüksek topraklarda yetiştirilen patates yumrularında Cl,Ca ve S’nin önemli miktarda arttığı görülmüştür.Ancak ilginç bir durum yapraklarında Cu ve Cl’nin azaldığı yönündedir.Yulafta fazla su K ve P’nin artmasına,Ca’nin azalmasına neden olmuştur.Toprağa verilen su miktarının da artması buğday toprağında yapılan bir deneyde kül miktarını artırdığı gözlenmiştir.Toprağın 12,5-87,5 cm arasında su muhteviyatı kül miktarını kademeli olarak artırdığı ancak 87,5 cm’den daha fazla verilen sulama suyun kül üzerine etkisi zıt yönde olmuştur. Bilindiği gibi ışıksız ortamda yetiştirilen bitki her ne kadar kökleriyle topraktan mineral madde alarak kül miktarını artırır ise de bu maddelerin çok az bir kısmı organik madde yapımında kullanılır.Büyük bölümü ise yani ihtiyaç fazlası elementler,bitki bünyesinde doğrudan sekonder olarak birikir.Böylece bünyelerindeki kül miktarı artar.Oysa bol ışık karşısında yetişen bitkiler fotosentez yoluyla mineral maddeleri organik madde yapımında kullandığı için doğrudan sekonder birikim söz konusu değildir. Böylece ışık ortamındaki bitkilerin biriktirdiği anlamda yüksek oranda kül oluşturmazlar. Yapılan deneyler gübrelemenin bitki külü üzerine en fazla etkisi bilhassa baklagiller ve çapa bitkileri üzerinde görülmüştür.Arpa ve buğdayda az,çavdar da ise en az etkilidir.Toprağa verilecek gübre miktarı belirli bir düzeye kadar bitkilerde külün artmasına neden olurken bu miktardan sonrası kül miktarını etkilemez (Minimum Yasası). Külde bulunan mineral maddeler arasında da dikkate değer ilişkiler görülmüştür.Genellikle küldeki K ve Na arasında orantı değişiktir.Fakat bitkiler arasında belirli bir ayırım görülmemekle beraber Ca ile K arasında belli bir ilişki vardır.Bunlardan birisi arttığında diğeri azalır.Kimi bitki külünde Na ve Cl arasında da bir ilişki belirlenmiştir.Bu ilişki daha çok Na’nın artması durumunda Cl miktarında azalma şeklindedir. Bitkilerin küllerinde yapılan çok çeşitli analizlerle,doğada bulunan elementlerin hemen hemen tümünün bitkilerde mevcut olacağı ihtimali uyanmıştır.Burada deneye tabi tutulan her farklı bitki türünün bir öncekinden farklı elementleri kapsadığı görülmüştür.Analizlerin en önemli dayanağı bazı elementlerin her bitki türünde mutlaka mevcut olduğu,bazılarının ise genelde çok az bulundukları yine bir kısmının da tamamen iz durumda olduğu belirlenmiştir.Buna göre bitki bünyelerindeki elementleri makro elementler ve mikro elementler olmak üzere 2 grupta toplamak mümkündür: 1)Makro(Esas) Elementler:Yapılan deneysel araştırmalara göre,bitkilerin normal büyüme ve gelişmeleri için hangi miktarda alınmaları gerektiğine ve buradaki etkinliklerine göre elementler hassas bir şekilde belirlenmiştir.Buna göre makro elementler; a)Bitkideki miktarı 30.000-60.000µ/gr kuru ağırlığı ya da % 0,1-6,0 kuru ağırlık oranında bulunmalıdır. b)Bitkilerde büyüme ve çoğalma için temel olmalıdır.Mevcut olmaması halinde bitkide büyüme ve çoğalma meydana gelmemelidir. c)Bitkilerdeki etkisi spesifik ve kesin olmalıdır.Kendine öz etkisi başka bir element tarafından telafi edilmemelidir. d)Bitkilerdeki etkisi doğrudan olmalıdır.Dolaylı yollardan sağlanmamalıdır. Birçok araştırmacı tarafından bu dört kritere uygunluk gösteren C,H,O,N,P,K,Fe,Mg,Ca ve S diye ifade edilen on element,bitki için esas element olarak kabul edilmiştir. 2)Mikro(İz) Elementler:Bu elementler bitkiler için mutlaka gerekiyor ise de yukarıdaki kriterlere tam olarak uymadığı için makro elementler sınıfına girmezler.Çünkü bu grup elementlerin diğer bir özelliği de eksiklikleri kadar fazlalıkları da zararlıdır.Üstelik fazla miktarda bulunmaları toksik etki yapar.En önemlileri; Cu,Mn,Zn,B ve Mo’dur.Ayrıca I,Li,Arsenik,Sl,Ba,Br,Se,Cr,Cl,Co,Ni,Si,St,Sn,Ti ve Va elementleri de diğer grup elementleridir.Günümüzde yapılan hassas deneyler bu elementlerin varlığı ve miktarının bitki türüne göre değiştiğinin,her yeşil bitki için özellikle son grubun gerekli olmadığını göstermiştir.Ancak;B,Mn,Cu,Zn ve Mo gibi 5 elementin genellikle bütün yeşil bitkiler için gerekli olan iz element oldukları kabul edilmiştir. Sonuç olarak;ister mikro isterse de makro elementler olsun bitkilerdeki rollerin esas oluşun tespiti için su kültürleri denilen deneyin yapılması gerekmektedir. Su kültürleri deneyinde bitkiler doğrudan farklı minerallerin eriyiklerinde yetiştirilir.Böylece deney bitkilerinde hangi mineralin daha önemli,hangisinin daha az önemli ya da önemsiz olduğu belirlenmiş olur. Su kültürleri deneyi sonucunda on tane makro elementin bitkilere kesin olarak verilmesi kararlaştırılmıştır.Su kültürlerinde bir veya birkaç elementin eksik olması bitkinin yetişmesine imkan vermez.Su kültürlerinde eksik olan elementlerin etkilerini göstermek için yulaf bitkisindeki deney şu sonuçları vermiştir:Çözelti Kuru Ağırlığın ArtışıTam Çözelti 138 defaMg Eksik 5 defaK Eksik 9 defaCa Eksik 1 defaFe Eksik 7 defaP Eksik 6 defaS Eksik 5 defaTütünde yapılan çalışmalarda; N noksanlığında üst yaprakların açık sarı,orta yaprakların sarı ve alt yaprakların ise kuru olduğu gözlenmiştir. P eksikliğinde de yapraklar koyu yeşil bir renk almaktadır. K eksikliğinde ise;yaprak uç ve kenarlarında klorozis(sararma),yer yer kuruma ve tamamen kuruyup dökülme görülür. Ca eksikliğinde yapraklarda normal yeşil renk olmasına rağmen yapraklar biçimsiz ve kırıntılı bir yapı gösterir. Mg eksikliğinde;bitkinin alt yaprakları tamamen sararır.sadece yaprak damarı yeşil kalır. Fe yeterli olmadığı topraklarda yetişen bitkilerin genç yaprakları tamamen sarı-beyaz bir renk alır. Fakat damarlar yeşildir.Su kültürleri,gübreleme tekniğinin ilk ve temel ilkelerini vermesi bakımından çok önemlidir.Çünkü bu teknikte gübrelerin tarımsal değeri,hangi bileşimdeki gübrelerin verilmesi gerektiğini ortaya koyuyor.Her bitki yaşadığı ortamdan bazı mineral maddeler alarak azaltır.Bu maddelerin hangi oranda azaldığının bilinmesi ve habitata o oranda verilmesi gerektiğini ortaya koyar.Aksi taktirde ürün miktarı gittikçe azalır. Zira bir bitkinin iyi bir büyüme-gelişme göstermesi ve bol ürün vermesi gerekli elementlerin tamlık (yeterlilik) derecesine bağlıdır.Liebig’in Minimum YasasıBir bitkinin büyüme,gelişme ve ürün verimi habitatın mevcut elementlerinin en az olanına bağlıdır. Buradaki az deyimi,bitkinin isteğine göre anlaşılan bir deyimdir.Yani genel olarak canlıların yaşayabilmesi için hücresel metabolizma gereği alınması zorunlu besin maddelerinin en azından minimum miktarda karşılaması gerekir.Buna göre habitattaki makro elementlerin hangisi en az ise,o az olan madde sınırlayıcıdır. Diğer maddeler yeterli olsa bile en az olan kadar diğer besin maddelerinden de faydalanırlar.Örneğin bitki için zorunlu makro elementlerden Ca,Fe,Mg ve N’den Ca bitkinin isteğine karşılık vermezse diğerlerinden de az yararlanır.Bitkilerin gelişmeleri buna göre düzenlenir.Yapılan araştırmalara göre;özellikle ekolojik toleransları yüksek olan bitkiler iz elementlerden eksik olanın yerine ona yakın özellik gösteren diğer elementi kullanarak eksik olan elementin sakıncalarını gidermektedir.Fakat bu durumun makro elementlerde yapılması mümkün değildir.Minimum yasasında iz elementlerin durumları daha farklıdır.Çünkü;ilk grup iz elementleri olan B,Mn,Mo,Cu ve Zn bitkilerin hatta aynı tür bitkinin farklı habitatlarda yetişenlerini farklı şekilde etkilemektedir.Örneğin aynı bitkinin (Dactylis glomerata) gölgede yetişeni güneşte yetişenlerine nazaran daha az Zn’ye ihtiyaç duyar.Aynı cinsin türlerinde de durum böyledir.O halde Zn elementi aynı bitkinin gölgede yetişen fertlerine güneşte yetişen fertlere nazaran daha az sınırlayıcı etki yapar. İzah:Bitkinin nişinde bulunan Ca,N,P ve K elementlerinin miktarına göre,bitkinin boyu;1. durumda 8 birim, 2.durumda 7 birim,3. durumda 5 birim ve 4.durumda 10 birimdir(birim oranı elementin önemini göstermektedir).Bitkinin boyu ile elementin önemi paralellik gösterir.BİTKİLERDE AZOT KAPSAMAYAN ORGANİK BİLEŞİKLER1)Karbonhidratlar 2)Lipitler Bunlar da karbonhidratlar,bitkide kuru maddenin yaklaşık %50-80’ini oluşturur.Kimi karbonhidratlar yaygın bulunmalarına rağmen,kimileri daha özeldir(Zarda olanlar).Yani türe özel,zar ve sitoplazmaya özel veya serbest ve depo maddesi şeklinde faaliyet göstermekte olan özel karbonhidratlar vardır.Karbonhidratların en ilginç yönü moleküllerin hızlı ve sürekli olarak birinin diğerine dönüşmesidir.Fizyolojik olarak aktif hücrelerde görülen bu dönüşüm ve parçalanma sonucu açığa çıkan enerji bitki hücrelerinde çeşitli sentez olaylarında kullanılır.Bitkilerde karbonhidrat dönüşümünü çok sayıda faktör etkiler:a) Sıcaklık:Düşük sıcaklık bitki hücrelerinde nişastanın şekere dönüşmesi için uygun bir ortamdır. Örneğin tüm yıl yeşil kalan bitkilerin yapraklarında soğuk aylarda çözünebilir karbonhidratlar birikirken,sıcak aylarda ise nişasta biriktirmektedir.Çok düşük sıcaklıklarda (donma noktasının biraz üstünde -2oC) saklanan patates yumrularında nişasta miktarı azalırken şeker miktarı (asal olarak sakaroz) artmaktadır.İşte kışın pazarlanan patateste görülen tatlı lezzetin nedeni bu açıklamadır.Yapılan araştırmaya göre patates yumrularında nişastanın şekere dönüşümü esasen fosforilizasyon sonucu ortaya çıkar.Düşük sıcaklıklarda saklanan patates yumrularında glikoz-1-fosfat yüksek iken normal şartlarda saklananlarda yok denecek kadar azdır.Bunlarda ise glikoz-6-fosfat fruktoz-6-fosfat bulunmaktadır.Nişastanın sentezi ve hidrolizi üzerine sıcaklığın etkisi bitki türüne göre önemli değişiklik gösterir.Olgunlaşan muz meyvelerinde nişastanın hidrolizi 21-26 oC’de hızlanırken 10 oC’de pratik olarak durmaktadır.b) Su:Solma noktasında su kapsayan bitki yapraklarında hemen hemen nişastanın tamamı şekere dönüşür. Genellikle bitkilerde suyun yeterli düzeyde bulunması ise nişasta sentezini olumlu yönde etkiler.O nedenle büyüme ve gelişme için bütün bitkilerde su muhteviyatı daima solma nokatsının üzerinde olmalıdır.c) Hidrojen iyonu konsantrasyonu (pH):Ortamın pH’sı enzimlerin faaliyetleri üzerine etkili olmak suretiyle karbonhidratların dönüşümlerini dolaylı olarak etkiler.Kuşkusuz ortamın pH’sı sadece enzimatik tepkimeler üzerinde değil,aynı zamanda da tepkimenin yönü üzerinde de etkili olmaktadır.Geri dönüşü olan karbonhidrat dönüşüm reaksiyonları daha çok stoma hücrelerinde görülmektedir.d) Şeker konsantrasyonu:Bitki hücrelerinde şeker konsantrasyonunun yüksek olması kural olarak nişasta sentezinin fazla olmasını,az olmasını da nişasta sentezinin yavaş olması sağlar.Fotosentezin yüksek düzeyde olduğu ve dolayısıyla bitkide fazla miktarda şekerin oluştuğu şartlarda artmaktadır.karşıt durumda azalmaktadır.Karanlık ortamda bırakılan bitkilerde nişasta miktarı süratle azalır.Çünkü fotosentez yapamadığı için su alıp nişastayı glikoza çevirip harcar.     Günümüzden 4000 yıl önce Mısırlılar sedir ağacının kuru distilasyonu ile sedir katranı elde etmişlerdir. Benzer üretim tekniği antik çağlarda Çinliler, Hintliler, Persler, Yunanlı ve Romalılar tarafından da kullanılmıştır. Orta çağda ilk olarak İbni Sina tarafından uygulanan su buharı distilasyonu tekniği ile uçucu yağ üretimi daha da geliştirilmiş ve ürün çeşitliliğinde de büyük artmalar gözlenmiştir. Özellikle 19. yüzyıldan başlayarak içerdikleri kimyasal bileşiklerin aydınlanması ve önemli ekonomik değerleri nedeniyle uçucu yağ üretiminde çok hızlı bir artış gerçekleşmiştir. Günümüzde 3000'den fazla uçucu yağın bileşimi bilinmekte ve 150'den fazla uçucu yağ ticari amaçla üretilmektedir. Bir deney tüpüne Triticum sp. meyveleri ve azot miktarını çoğaltmak için birkaç tane bezelye tanesi konur. Ayrıca tepkimeyi hızlandırmak için bıçak ucu kadar Ca(OH) 2 ilave edilir. Bu deney tüpü içinde mavi renkli kobalt klorürlü (CoCl2) ve beyaz renkli kurşun asetatlı (PbC4O4H6) filtre kağıdı bulunan I. yıkama şişesine bağlanır. Birbirine bağlı olan II. yıkama şişesine Nessler belirteci (K2HgI4) ve III. yıkama şişesine de baryum hidroksit konur. Nessler Reaktifi: Birinci Çözelti: 100 g civa iyodür (HgI2) ve 70 g potasyum iyodür (Kl) az miktarda amonyaksız saf suda çözülür. İkinci çözelti: 100 g sodyum hidroksit (NaOH) 500 ml amonyaksız saf suda çözülür. Birinci ve ikinci çözeltiler karıştırılıp 1000 ml’ye seyreltilir. Filtre edilir. Koyu şişede saklanır. Tüp bir ispirto ocağı ya da başka bir ısı kaynağı ile ısıtılır. Çıkan duman bu tüpe seri halde bağlı olan yıkama şişelerinden geçerken şişeler ya da belirteçlerde şu değişikler gözlenebilir. Sonuç: I. Yıkama şişesinde: a) Molekül rengi mavi olan CoCl2'lü kâğıdı dumanda bulunan su buharı etkisiyle iyon rengi olan ....................................... renge dönüştürür. Böylece H ve O varlığı kanıtlanmış olur. b) Beyaz renkli kurşun asetatlı kağıdın S'den dolayı PbS oluşmasıyla ................................ renk gözlenir. II. yıkama şişesinde: Bu kaptaki Nessler belirtecinin rengi gaz karışımı geldiğinde ........................ olur. Bu da bize N'un varlığını gösterir. III. yıkama şişesinde: Bu kapta bulunan Ba(OH) 2'de gazın gelmesi ile reaksiyona girer ve ..............................renkli BaCO3 oluşur. Bu sonuç ta C varlığını kanıtlamış olur.      

http://www.biyologlar.com/kuru-distilasyon-yontemi

Balıklarda Göçlerle İlgili Davranışı Kontrol Eden Faktörler

Balıkçılık biyolojisi alanında, balık fizyolojisi üzerinde çalışan bilim adamlarından birçoklarının yaklaşık yüzyıldan beri, bu konu üzerine dikkat ve önemle eğildikleri bir gerçektir. Bazı balıklarda gözlenen üreme ile ilgili göçler (migrasyon), tıpkı bazı kuşlar gibi, belirli zamanlarda, hayati önemi büyük ve neslin devamı için, bir zorunluluk olarak yapılan göçlerdir. Bu göçler hangi amaçla olursa olsun iki yönde yapılır. Denizlerden tatlısulara Tatlısulardan denizlere Normal olarak, denizlerde yaşayan, fakat yumurta bırakmak üzere tatlısulara geçen balıklara Potamotok veya Anadrom balıklar denir. Örneğin, Tirsi balığı (Clupeid' lerden Alosa türleri) ; Som balığı (Salmonidler' den Salma salar] Anadrom balıklardır. Buna karşın, tatlısulardan denizlere geçen balıklara'da Katadrom balıklar denir. Avrupa Yılan balığı (Anguilla anguilla] ; Kefal balıkları (Mugilidae) Katadrom balıklardandır. Özellikle, Atlantik ve Pasifik okyanusları gibi, büyük denizlerde, göçlerin balık avcılığı yönünden önemi fazladır. Bu konuda, son 50-60 yıldan beri, gerek kırsal alanlarda (doğada) ve gerekse, laboratuvar koşullarında göçlerle ilgili pekçok araştırma projeleri üzerine gözlem ve deneyler sürdürülmektedir. Bununla beraber, zaman zaman alınan sonuçlarla, ulaşılan mesafe göç olayının mekanizmasını açıklamaya ve sırlarını çözmeye halen yeterli değildir. Gerçek şudur ki, kalıtsal özelliklerinden veya içgüdüsel davranışlarından başlayarak, hormonal etkilere ve bu temel faktörleri etkileyen fizikokimyasal çevre koşullarına kadar, göç olayı ile doğrudan veya dolaylı olarak ilişkili ve araştırılması güç olan pekçok faktör söz konusudur. Hal böyle iken, göç olayını, şimdilik belli bir amacı gerçekleştirmek üzere veya diğer bir deyimle, neslin devamlılığını sağlamak üzere, içgüdüsel bir davranış çerçevesi içinde programlanmış bir seri fizyolojik uyum sağlama dizisi içinde aramak lazım geldiği söylenebilir. Oldukça karmaşık bir uyum dizisi içinde cereyan ettiği sanılan göçle, amaca ulaşmak için, neden bu kadar dolanbaçlı yollar seçilmiş olduğunun cevabı halen bir sır olmakla beraber, yapılan gözlemlerle pekçok ipuçları da gözden kaçmamaktadır. Örneğin, üreyebilmeleri için, iyi beslenebilecek ve risklerden uzak bir ortama göç gereksinimi duyma ve orada beslendikten ve gonadların gelişimini sağladıktan sonra da bunları en uygun bir ortamda bırakarak, yumurtaların döllenmesini sağlama ve sonra da çıkan larvaların metamorfozu ile minyatür bir yılan balığına (elver) dönüştürme olanağına kavuşturmak için hormonal gelişme gereksinimlerini gerçekleştirme v.b. gibi istekleri oluşturabilmek üzere yapılan düzenlemenin, bu hayvanlarda görülen içgüdüsel bir göçü sergilediği düşünülebilir. Zira böyle bir göçün keyfi bir davranış olmayıp, mecburiyet kespeden bir davranışla içgüdüye bağlandığı bir gerçektir. Bu periyodik göç şayet keyfi olsaydı, koşulların değişmesiyle zaman zaman değişebilirdi, oysa ki belli bir program çerçevesi içinde aynı aksiyonun tekrarı ile nesillerin devamı sağlanmaktadır. Bütün bu sorulara, muhtemelen daha da akla yakın bir cevap bulabilmek için olsa gerek ki, göç eden bu balıklar üzerinde giderek artan araştırmalar sürdürülmektedir. Balıklarda, belirtilen amaçla gerçekleştirilen başlıca iki tip göçten söz etmiştik. Sırası gelmişken yukarıda sözü edilen Som bahklarındaki (Sa/mo salar] göçünü ele alalım. Suları oldukça soğuk (5°-6°C) nehirlerde bölgeye göre Kasım - Şubat arası yumurtadan çıkan ve belli bir süre (2 yıl kadar) sonunda okyanusa göç eden ve burada beslenip, belli bir cinsi olgunluğa ulaşarak, yumurta bırakmak üzere tekrar doğdukları yere (nehirlere) dönen balıklarda (Salmonidae familyasından Atlantik Salmonu Salma salar'da. ve Pasifik Salmonu Onchorynchus nerko'da.} gözlenen bu tip göç olayı, yukarıda belirtilen Anadromus göç olarak adlandırılır. Yılan balıklarında (Anguilla anguilla} ise, okyanusların belirli ortamlarında, bu balıkların bıraktıkları yumurtalardan çıkan larvalar (Leptocephalus), belli bir süre (3 yıl kadar) sonunda metamorfoz geçirip, genç bir yılan balığı yavrusu (elver) haline dönüştükten sonra, beslenip cinsel olgunluğa erişmek üzere tatlısulara geçerler. Cinsi olgunluğa erişinceye kadar yaşamlarını burada sürdürdükten sonra, olgunlaşarak yumurta bırakmak ve nesillerinin devamını sağlamak üzere, tekrar doğdukları yerlere (denize) dönerler. Bu tip göçe de Katadromus göç adı verilir. Kuzey Avrupa'da (İsveç, Norveç, Danimarka, Finlandiya ve ingiltere) veya Kuzey-Doğu Amerika kesiminde herhangi küçük bir nehirde doğup ta, yaşamına başlayan Salmo salar türüne mensup bir Som balığı yavrusu ile aynı şekilde Pasifiğe akan nehirlerde yaşayan Onchorynchus türlerinin yavruları, henüz genç sayılabilecek bir yaşta iken (2 yaşında) nehirlerin aşağı kısımlarına doğru göçe başlarlar ve sonunda nehrin onları götürdüğü okyanusa (Salmo salar Atlantiğe; Onchorynchus Pasifiğe) ulaşırlar. Orada 4-5 yıl yaşadıktan sonra, tekrar doğdukları yere, tatlısulara dönmek üzere, uzun bir yolculuğa çıkarlar. Bu sırada nehirlerin akış yönünün tersine yüzerek irili ufaklı pekçok çağlayanlardan geçerek bu yolculukları sonunda, hedeflerine ulaşabilmek için doğdukları yerleri acaba nasıl hatırlayabileceklerdir, hatta bazen binlerce km. ye ulaşan bu dönüş yolunu nasıl bulupta katedebileceklerdir. Göç olayı boyunca ortam koşullarının ne denli değişken çevre koşullarına uyabilmeleri için, balığın metabolizmasında ne gibi değişiklikler oluşacaktır. Alabalıkların, genellikle Atlantik ve Pasifik Salmonu türlerinde gençler (jüvenil) her ilkbaharda, günlerin uzamasıyla beraber yolculuğa çıkar ve nehirlerin alt kesimlerine doğru inmeye başlarlar. Bu arada eğer varsa yollan üzerindeki, göllere de uğrarlar ve orada yine denize doğru yollarına devam ederler. Uzun yıllardan beri, gümüşimsi renkte görülen bu genç bireylerin, adeta kabına sığamazcasına hareketleriyle ilkbaharda nehirlerde 2-3 ay süre ile görülebilmelerinin nedeni de, denize doğru olan bu göçlerden dolayıdır. Yılan balıkları (Anguilla anguilla} için durum, daha da ilginçtir. Yıllar önce, bu balıkların yumurtalarından yeni çıkan larvaları, başka bir balık türü sanılarak, morfolojik görünümüne uygun düşen Leptocephalus adı ile isimlendirilmiş ve sınıflandırmada da bu şekilde yer almıştır. Avrupa yılan balığı (Anguilla anguilla} tülünün bu larvaları, doğdukları yer olan Sargassa denizinden Avrupa'ya doğru yola çıkarak 3 yılda Atlantiği aştıktan sonra, Avrupa kıyılarına ulaştıklarında, geçirdikleri bir metamorfozla tipik bir yılan balığı yavrusuna dönüşürler. Daha önce Leptocephalus diye adlandırılan bu yavruların, larval safhasının, aslında Avurpa yılan balığının yavru safhasından önceki, larval safha olduğu hakikati anlaşılmış ve bu safhaya sehven verilen Leptocephalus tarihi adı da bir hatıra olarak muhafaza edilegelmiştir. Avrupa yılan balıkları (Anguilla anguilla) türü Kuzey Atlantiğin Doğu kıyılarında, Batı Avrupa'da, Akdeniz ve Batı Afrika kıyılarında ve hatta dağılım alanları içine İzlanda, Kanarya adaları, Azor adaları, Madeire adalarını da alırken; Amerikan yılan balığı (Anguilla rostrata) türü ise, Labrador yarımadasından, Meksika körfezinin güneyine, Panama'ya, Antiller'e ve Bermuda'ya kadar uzanan bir dağılım gösterir. Bizi burada doğrudan ilgilendiren husus ise, Avurapa yılan balıklarının ve özellikle ülkemiz karasularına giren Akdeniz yılan balıklarının Sargossa denizinde üreyebilmeleri için, uzun bir yolculuğa çıkmaları ve sadece orada yumurta bırakmalarıdır. Bu bölge; 22° 35° Kuzey, 48°-65° Batı enlem ve boylamları içine girer. Bu alanda yumurta bırakma derinliğinin 300 m. olduğu ve su sıcaklığının da 18°C de sabit kaldığı görülür. Yılan balıkları gibi, çok özel olan tek bir yerde (bölgede) yumurtlama alanları olmasa bile, Alabalıklar da onlardaki gibi, metamorfoz deyimini akla getiren bazı morfolojik ve fizyolojik değişiklikler geçirirler. Her iki tür balık için de, yaşamlarının değişik evrelerinde, farklı ortamlarda bulunabilme yeteneğinin metamorfoz olayı ile yakından ilişkili olabileceği düşünülebilir. Alabalıklara örnek olarak Atlantik türü Som balığı (Salmo salar) türünü alabiliriz. Bu türe ait yumurtalar bırakıldıkları nehir veya derelerde, suyun sıcaklığına bağlı olarak 5 haftadan 21 haftaya kadar sürebilen bir kuluçka (înkübasyon) periyodu geçirirler. Bu sürenin sonunda süratli akan sığ suların tabanında çakıllar arasında Alevin adı verilen sarı torbalı (Vitellüs keseli) larvalar belirir. Bu larvalar ancak, vitellüs kesesi absorbe edildikten sonra postlarval safhaya geçerler. Yavrular, yuvayı terkettikleri zaman, boyları aşağı yukarı 3-5 cm.ye ulaşır. Bundan sonra da sığ sularda yaşamaya devam ederler. Bunlara Fry veya parmak boyu balık anlamına gelen Fingerling adı verilir. Bu yaştaki yavrular, bir süre aquatik küçük organizmalarla (bazı küçük su böcekleri ve diğer omurgasızlarla) beslenirler. Ancak, bunların boyları bir yıl sonra 7.5-10 cm. ye, iki yıl sonra da 12.5-15 cm.ye erişir. Bu yaştaki Salmonlara Parr adı verilir. Bunlar, bu çağda halen vücutlarında larva özelliklerini taşırlar. Çünkü Parr çağındaki bir balığın vücudunda onu karakterize eden 10-11 enine (sırt-karın istikametinde) koyu renkli bandlar bulunur. Bu bandlar arasında da yer yer kırmızı benekler görülür. Ayrıca, solungaç kapağı üzerinde iki adet yuvarlak siyah leke dikkati çeker ve bunlardan birisi, gözün hemen arkasında yer alır. Pullar, ilk yaz süresince, şekil almaya ve pulun ortasındaki çekirdek bölgesi etrafında büyüme halkaları belirmeye başlar, ilk kış geçtikten sonra, pul üzerinde koyu bir halka ayırd edilir. Bu halka, balığın kışın çok yavaş veya hiç büyümediğini gösterir. Bugün, yaş tayininde pul çalışmaları başlı başına bir araştırma konusu olmuştur. Pullardan yararlanarak bir balığın yaşı, büyümesi, biyolojik özellikleri, tatllsularda ne kadar kaldıkları ve denize ne zaman döndükleri gibi bir çok faydalı bilgileri öğrenebiliriz. DAHL'a göre Güney Norveç'te Parr'ların çoğu, 2 veya 3 yaşında iken denize göç ederler. Bununla beraber, daha Kuzeyde bu göç içgüdüsü, bu kadar genç yaşta iken hissedilmez ve Arktik çevreye yakın bölgelerde, bu balıkların bazıları göç etmeden önce, 4 veya 5 yaşına kadar tatlısularda kalabilirler. Hutton'un Wye nehri (ingiltere) için verdiği rakamlara göre; bölgede mevcut balıklardan bir yaşında olanların % 7.5'u iki yaşında olanların ise % 88,5'u göç etmiştir. Ancak % 4'ü üç yaşına kadar nehirlerde kalmışlardır. Bununla bearber 4 yaşındaki Parr'lara ise, Wye nehrinde hiç rastlanmamıştır. Mallock'a göre, Parr'lar kış aylarında sığ sulara geçerler ve taşlar altında istirahat ederler. Hatta erkeklerin bazıları denize göç etmeden önce erginleşerek dölleme olayına dahi katılırlar. Denize göç, 8-17 cm. boya ulaşınca başlar. Bu esnada portakal sarısı renkleri de kaybolur, gümüşi bir renge bürünürler. Parr yaşında iken balığın renk alması, deri içindeki pigment hücrelerinin etkisi ile olur ve bu renk saydam olan pulların altında görülebilir. Böyle bir balığa, denize doğru göç içgüdüsü geldiği zaman, pulların örttüğü ince derinin görünümü, gümüşi bir renkle yer değiştirir. Parr çağında bir balığın ilk defa renk değiştirmesi, bu ilk göç sırasında gözlenebilir. Yeni kazandığı bu gümüşi renk, daha yoğunlaşmaya başladığı zaman Parr'ların renkleri çok koyulaşır. Bununla beraber, eğer gümüşi renkte görülen pullar kaldırılarak bakılacak olursa, zemindeki derinin de gümüşi renkte olduğu kolaylıkla anlaşılabilir, işte bu çağa ulaşmış bir Parr'a Smolt adı verilir. Smolt çağında olan bu balıklar, nehirlerin ağızlarına geldikleri zaman, açık denize doğru süratle açılırlar. Smolt çağında iken, bu balıklar, genç bir Salma trutta'nın deniz formuna çok benzerler. Bununla beraber, Salmo trutta'nın kuyruğu çatallı olup, vücut yüksekliği de boyuna oranla çok fazla değildir. Aynı yaştaki bir S. truttada. vücutta portakal sarısı renk hakim ve devamlıdır. Açık renkli bir hale ile çevrilen kırmızı benekler yanal çizgi boyunca devam ederler. Bu bakımdan Salmo salar'ın smolt çağı ile Salmo trutta'da lateral çizginin altına kadar uzanan pekçok siyah benekler görülür. Açık denizlerde, Smolt çağındaki balıklar Yılan balığı yavrularını ve Ringa balıklarını yiyerek çok çabuk büyürler. Bu nedenle, bu balıkların bir yıl denizde kaldıktan sonra tekrar nehire döndükleri zaman boyları 40 cm.'den aşağı, ağırlıkları da 800 gramdan az değildir. Bu arada bazıları da istisnai olarak çok büyümüş olabilirler. Hatta bunlar arasında, aynı yaşta oldukları halde, 5-6 kg. olanlarına dahi rastlanabilir. Salmonların, denizden tekrar nehirlere döndükleri çağa Grilse adı verilir. Bu yaştaki balıklar, ergin bir Salmon'un bütün özelliklerini içerirler Bundan böyle, bu balıklarda Parr işaretine rastlanmaz. Hutton ve diğer yazarlara göre, bir kış denizde kalan Grilse'e Salmon nazari ile bakılabilir. Grilse'nin ortalama boyu aşağı yukarı 60 cm'yi bulur. Grilse çağındaki birçok Som balığı nehirlere geçmezler. Kış ve ilkbahar süresince denizlerde kalırlar. Aşağı yukarı 4 yaşına geldikleri zaman küçük bir ilkbahar salmonu olarak nehirlere geçerler. Grilse'nin yumurta bırakma çağına da Kelt adı verilir. Salmonların çok zaman, geldikleri nehre döndükleri gözlenmiştir. Johnston (1905), Tay (ingiltere) nehrinde Smolt çağında 5500 Salmon'u markalamıştır. Markalanan bu balıkların büyük bir kısmı, bir yıl sonra, bazıları iki yıl ve diğer bazıları da 3 veya 4 yıl sonra, tekrar aynı nehirde yakalanmışlardır. Yakalanan bu balıkların herbiri, kendi hayat tarihlerini pullarının üzerinde açıkça göstermişlerdir. Şu halde, pulların okunmasıyla, markalama deneyleri sonucunda uzun bir süre denizlerde kalarak geri dönen balıkların, bu süre zarfında gösterdikleri büyüme farklarını ve ne zaman nehirleri terkedip, ne zaman geri döndüklerini öğrenebiliyoruz. Anguilla anguilla (Avrupa yılan balığı) Kuşkusuz 50 yıl öncesine kadar herhangi bir kimse, yılan balığı hayatının esrarengizliği hakkında konuşabilirdi fakat bugün bu esrarı çözmek için yaptığı araştırmalarla bütün dünyada şöhret yapan Danimarkalı büyük biyolog Johansen SCHMIDT'e ve onun büyük deniz ekspedisyonuna katılanlara ne kadar teşekkür edilse azdır. Bununla beraber, Yılan balığının hayat devri, hala ilgi çekiciliğini sürdürmekte olup, daha fazla aydınlatılması gereken bir konu olarak ortada durmaktadır. Anguilla anguilla nın hayat devri kısaca 8 safhada özetlenebilir. Bu safhaları şöylece sıralayabiliriz Şeffaf olan larvanın (Leptocephalus) Sargasso denizinde doğuşu ve kısa bir süre sonra yüzey sularına çıkışı. Buradan, okyanus sularının akıntısına kapılarak Batı Avrupa sularına doğru göç yoluna girmesi. Bu sırada Leptocephalus'un. küçük ve şeffaf bir yılan balığı veya Elver şekline değişmesi (metamorfozu). Yavru diyebileceğimiz bu genç bireyler (Elver) tarafından Batı Avrupa ve Akdeniz sularının istilâsı. Elverlerin sarı yılan balığına değişmesi (metamorfozu). Bunların içsulara geçerek (nehir ve göllere) büyüme safhasına geçişi. Tatlısudan denize dönerken eşeysel organlarının (ovaryum ve testislerinin) olgunlaşmaya başlamasıyla gümüş renkli yılan balığına dönüşmesi (metamorfozu). Üreme göçü için denizlere dönüşü ile gümüş renkli yılan balığının okyanuslara geçişi ve buradan yumurta bırakarak çoğalma (üreme) ve ölüm safhası olan Sargasso denizine gidişi şeklinde özetlenebilir. Yumurta bırakma göçüne iştirak eden bu balıklara balıkçılar Sivri-burunlu yılan balığı adını verirler. Bu balıklar üreme sahasına göç ederlerken ya çok az gıda alırlar veya hiç almazlar. Denizlere göç, Akdeniz ve civarı ülkelerde ve Adriyatik sahillerinde Eylül ayında başlar. Daha kuzeyde (İsveç, Danimarka ve İngiltere’ nin doğu sahillerinde) göl ve dereleri Ağustos ve Eylülde terkederler. İskandinavyadan genellikle Eylül ve Ekimde ayrılırlar. Bütün Akdeniz ve Avrupa sularından göç eden yılan balıklarının hedefi, yumurta bırakmak için yer yer 1000 m. derinliği aşan Meksika körfezine doğru yol almaktır. Yılan balıklarının yumurta bırakma sırları, ancak 20. yüzyılda açıklanabilmiştir. Daha önce, Elvers denen genç bireylerin ilkbaharda Batı Avrupa nehirlerine geçtikleri ve büyük yılan balıklarının da Sonbaharda nehirlerden aşağı göç ettikleri biliniyordu. Bununla beraber, gümüş renkli yılan balıklarının denizlere geçer geçmez kaybolmaları ve bunu takip eden ilkbaharda genç yılan balıklarının (elvers) ortaya çıkması dikkati çekiyordu. Bu iki safha arasındaki boşluk hakkında hiçbir şey bilinmiyordu. O zamanlar Baltık denizinde Sonbaharda gümüş renkli yılan balığı üzerine düzenli bir balık avcılığı yapılıyordu. Bu balıklar o zaman bir takım özel sepetlerle tutulmaktaydı. Bu sepetlerin ağızları Baltık körfezine dönük olarak yerleştirildiklerinde, oldukça çok denecek miktarda balık yakalanmakta, aksi istikamette kondukları zaman (Atlantiğe doğru dönük olunca) hiç balık tutulmamakta idi. İşte ilk defa bu deneyimlerden yılan balıklarının Kuzey denizine doğru göç ettikleri ortaya çıktı. Bundan sonra, Uluslararası Deniz Araştırmaları Sosyetesinin himayesi altında Danimarkalı bazı araştırıcılar bu balıkların denize doğru yaptıkları göç yollarını saptamak amacı ile bunları madeni plakalarla markalayarak yollarını takip etmeye başladılar. Bu esnada, açık denizde yaptıkları birçok sondalamalarla, markalanan bu balıkları, oralarda göç esnasında çeşitli derinliklerde tekrar yakalamayı başardılar. Doğada yapılan bu müteaddit sondalamalarla yılan balıklarının denize doğru muntazam ve düzenli göçler yaptıkları kanıtlanmış oldu. Yapılan araştırmaların sürdürülmeliyle göç süratinin ortalama olarak günde 15 km. yi bulduğu öğrenilmiş oldu. Markalama deneylerinden elde edilen sonuçlara göre 29 günde 367 km. ve 93 günde ise, 1200 km. yol katettikleri anlaşıldı. Bundan sonra birçok yılan balıkları markalanarak, 15 Ağustos 1905 tarihinde Finlandiya'da Tvarminne sahillerinde suya bırakılmışlar ve aynı yıl 16 Aralık ta, bu balıklar Jutland’ın (Danimarka) Doğu sahilinde Helgenes yakınında tekrar yakalanmışlardır. Ergin yılan balıklarının denizlerden nehirlere geçtiği asla gözlenmemiştir. Bu nedenle şu kanaate varılmıştır ki, yılan balıkları herhalde, hayatlarında bir defa yumurta bırakmakta ve sonra denizde ölmektedirler. Bugün yılan balıkları hakkında noksan olan bilgimiz kısmen de olsa tamamlanmış sayılmakta ve bu iki nokta arasındaki boşlukta (doğum yeri ve ölüm yeri gibi) bu suretle doldurulmuş bulunmaktadır.Bu problemin açıklığa kavuşturulmasını Danimarkalı araştırmacı E. J. SCHMIDT e borçluyuz. Leptocephalus (yumurtadan çıkan ilk şeffaf ve zakkum yaprağına benzeyen yılan balığı larvası) ilk defa 1763 te Villiam MORRIS tarafından tavsif edilmiştir. Bundan sonra, bu formdan birçok numuneler Messina boğazından yakalanmışlar ve bütün bu numuneler Leptocephalidae familyası içinde mütalea edilmişlerdir. Leptocephalus bireyleri şeffaf olup, aşağı yukarı, bir zakkum yaprağı şeklinde yassılaşmış görünümdedir. Onun larva safhasında bir balık olduğunu ilk defa CARUS söylemişse de, bunun Kordeia balığı (Trachypteridae) familyasından bir forma ait olduğunu düşünmekle hata etmiştir. Ancak, 1869 da GILL bunun bir yılan balığı larvası olabileceğini açıklamış ve Leptocephalus morrisii'nin bununla ilgisi bulunmadığını, hatta Conger (Migri) yılan balığının larvası olduğunu da söylemiştir. GUNTHER, bu görüşü kabul etmiş, fakat bu larvaları anormal bir şekilde gelişmiş formlar olarak düşünmüştür. 1886 da Fransız Doğa bilgini DELAGE, Leptocephalus morrisii'yi Roscoff laboratuvarında akvaryumda 7 ay canlı olarak beslemeye muvaffak olmuş ve bunun sonunda genç bir Conger yılan balığına dönüşme safhasını yakından gözleme fırsatını bulmuştur. 1904 yılında SCHMIDT in Faroe adalarının batısında bir örnek yakalamasına kadar, yılan balıklarının larval safhası olan Leptocephalus Akdenizin dışında yakalanmamıştı. İkinci örnek, Farran tarafından irlanda'nın Batı açıklarında ele geçirilmiş ve bundan sonra, Kuzey-Doğu Atlantik'te birçok örnekler elde edilmiştir. Daha sonra Schmidt, bu larvaların sistematik bir araştırmasını yapmayı düşünmüş ve bunun içinde Güney Atlantik'te yaptığı araştırmalardan bir sonuç elde edememesine karşın İngiliz adalarının Batısın da 500 kulaç derinlikte oldukça büyük yılan balığı larvaları sürülerine rastlamıştır. Neden bu larvalar daha önce bulunmamışlardı. Çünkü yılan balıkları yumurta bırakmak için okyanusta büyük derinlikler aramaktadır (1000 m. veya daha fazla). Bu derinlikler Baltık ve Kuzey denizlerinde yoktur. 800-1000 m. derinliklerde ısı, hiç değilse, 5-7 °C derecededir. Bu temparatüre, Kuzey denizinde rastlanmaz, ingiltere adaları, su altında kalmış büyük plato veya bir kıta parçası üzerinde bulunduğundan burada deniz, ani olarak derinleşmekte olup, 100, 500 ve 1000 kulaçlık yerler genelde birbirlerine çok yakındır. Larvalar buralardan göz açıklığı küçük olan orta derinlik ağları ile yakalanmışlar ve ilk büyük avlama İrlanda'nın Güney-Batısında (56 ve 45 Kuzey enlemleri arasında) yapılmıştır. Burada 500 kulaç, derinlikte ısı, bütün yıl süresince 9°C dir, larvalar 500 kulaç derinlik boyunca, Faroes'tan İspanyanın kuzeyine kadar olan sahalarda yakalanabilmişlerdir. Böyle bir larva, yılan balığına değişeceği sırada Leptocephalus'un vücut şeklinde bir değişme olmakta, yani vücut genişliği azalmakta, gözler küçülmekte, larva safhasındaki dişler kaybolmakta ve bağırsak kısalmaktadır. Schmidt 1922 de kendisinin hemen hemen son yayınlarında yılan balıklarının çoğalma özelliklerini özetlemektedir. Buna göre, yumurta bırakma, ilkbaharın başlangıcında başlar ve Yaz içinde sona erer. Çıkan küçük larvalar 7-15 mm. civarındadır, larvalar yumurtadan çıktıktan sonra ilk ay çok çabuk bir büyüme gösterirler ve ilk Yaz süresince ortalama boyları 25 mm. ye ulaşmaktadır. Bundan sonra, larvalar su yüzeyine doğru çıkmaya başlarlar. 25 mm. civarında olan bu larvalardan 13-27 kulaç arasındaki derinliklerde pekçok toplanabilmiştir. Hatta bazen bu boyda olan larvalara yüzey sularında da rastlanabilmiştir. İlk yaz süresince bunlara Batı Atlantik'te (50° Batı boylamının batısında) rastlanmıştır, ikinci Yaz, bunlar 50-55 mm.ye ulaşmışlar ve bu çağda iken orta Atlantik'te görülmüşlerdir. Üçüncü Yaz Avrupa sahili açıklarına gelmişler ve bu esnada tam büyümüş larvalar haline ulaşmışlardır. Bu durumda aşağı yukarı 7.5 cm. boya erişmiş olmalarına rağmen, halen, yaprak şeklindeki yassı larva görünümünü muhafaza ettikleri görülmüştür. Sonbahar ve Kış müddetince, geriye doğru bir gelişme geçirerek asıl yılan balığı şeklini alırlar. Bu safha Elver safhasıdır. Bu safhada sahillere Elver'ler (henüz metamorfozu bitirmiş olan yavrular) bundan sonra, yönlerini nehirlere ve içsu membalarına doğru çevirirler. Şimdiye kadar sözünü ettiğimiz Avrupa yılan balığı yani Anguilla anguilla'dır. Amerikan yılan balığının türü ayrıdır. Bu tür Anguilla rostrata adı ile anılır. Bu türün yumurta bırakma sahası ise, Avrupalı yılan balığının yumurta bıraktığı yerin merkezinin Batı ve Güneyinde yer alır, bu saha Batı İndiana'nın Kuzey hattı boyunca uzanan sahadır. Dolayısıyla iki çoğalma mıntıkası birbirinin üzerine isabet eder. Bu nedenle, bu iki türün yumurtalarından çıkan larvalar da orta Atlantik'te birbirleriyle karışırlar. Bu larvalar sonra, nasıl oluyorda birbirlerinden ayrılarak Amerikan yılan balığı lavvaları yönünü Amerika sahillerine, Avrupa yılan balığı larvaları da yönünü Avrupa sahillerine yöneltebiliyor. Amerikan yılan balığının pelâjik larva safhası aşağı yukarı bir yıl içinde sona erer. Bu nedenle, böyle bir larvanın Avrupa'ya uzun bir seyahat yapmasına esasen zaman da yoktur, çünkü katedilecek mesafe onların ergin hale erişme süresinden daha fazladır. Oysaki, Avrupa yılan balığı larvasının gelişme süresi üç yıl sürer. Bu nedenle bu larvaların Amerika sahillerinden çok uzaklara gitmek için zamanları da vardır. Bunlar Atlantik'in Doğu kısmına varınca, Elver safhasına ancak ulaşmış olurlar. Kısa bir süre sonra da sahillere ve içsulara geçmek için ise nehirleri aramaya başlarlar.

http://www.biyologlar.com/baliklarda-goclerle-ilgili-davranisi-kontrol-eden-faktorler

İpek böceği ( Bombyx mori ) Hikayesi

İpek böceği (Bombyx mori), Bombycidae familyasından ördüğü kozalardan ipek elde edilen, dut yaprağı ile beslenen bir cins kelebeğin tırtılı. Kelebek yumurtalarını dut yaprakları üzerine bırakır, yumurtladıktan üç dört gün sonra ölür. Baharda taze dut yaprakları üzerindeki yumurtalardan larva halinde çıkan tırtıllar sık tüylü ve siyahtır. Büyük bir iştahla devamlı dut yaprağı yerler ve dört beş defa gömlek değiştirerek bir birbuçuk ayda 7 veya 8 santime ulaşırlar. Büyüdükçe renkleri açılır ve tüyleri kaybolur. İyice büyüyüp de hücrelerine yerleşince üst dudağındaki delikten iplik halinde zamk gibi bir sıvı çıkararak kozasını yapmaya başlar. Tırtıl önce kozanın dış kısmını sonra kendi vücudunun etrafını örmeye devam eder ve görünmez olur. Eğer kendi haline bıraklırsa iki üç hafta içinde kelebek haline gelerek ördüğü kozayı parçalar ve dışarı çıkar. Bu yüzden kozayı parçalamadan kozalar sıcak suya atılır veya sıcak su buharına tutularak tırtıl öldürülür. Böylece ipek kozaları elde edilir. Bu kozalardan da tel şeklindeki ipek lifleri çıkarılıp ham ipek üretilir. Böceğin neslinin devamı için bir kısım kozanın parçalanıp kelebeğin çıkmasına müsaade edilir. Suni ipek kavak, göknar, söğüt gibi selülozca zengin olan ağaçlardan kimyasal yollarla elde edilen liflere denir. İpek böceği ilk defa İsa'dan 2600 yıl önce Çin'de beslemeye alınmıştır. Çinliler ipekböceği yetiştirme ve ipekli kumaş yapmanın sırrını uzun yıllar ülkelerinde saklamışlardır.Yurdumuzda ise ipekböcekçiliği 1500 yıllık bir geçmişe sahiptir.Son yıllarda suni ipeğin üretilmesi ile önemini kaybetmiştir. Minicik bir böcek, milyonlarca yıldır yeryüzünde bilinen en sağlam ipliği üretir. Bu böceğin yumurtaları bir yıl uyuyarak canlanmayı bekler, yeni doğanlar ise kısa sürede ilk ağırlığının 10.000 katına çıkarak mucizevi bir gelişim gösterir. Binlerce yıldır insanların "en güzel ve en narin" olarak değerlendirdikleri, nadide kumaşların dokunduğu bu ipliği üretmek için kendini ördüğü bir kozanın içine hapseder. Bu süre içinde böceğin kendisi de bambaşka bir görünüm kazanarak göz kamaştıran bir kelebeğe dönüşür. Yumuşaklığı ve parlaklığıyla yüzyıllardır en çok tercih edilen kumaş olan ipek, ipek böceği tırtıllarının ördüğü kozalardan yapılır. Bu mucizevi canlılar, ilginç bir şekilde yalnızca dut yaprağı yerler. Dut ağacı yapraklarından başka hiçbir şeyle beslenmezler. İpek böceği tırtılları gelişimlerini tamamlayınca, kelebek olmak için koza örmeye başlarlar. Sonunda da kendilerini, bu incecik ipek ipliklerinden örülmüş kozalarına hapsedip, uykuya dalarlar. Önce yalnızca minik bir tırtılla başlayan bu sürecin sonunda tırtıl kaybolurken ortaya ipekten örülmüş bir koza ile bir kelebek çıkmaktadır. Peki bu olay nasıl gerçekleşmektedir? *** Tırtıldan Kelebeğe... *** İpek böceklerinin yeryüzünde birçok farklı türü bulunmaktadır. Bazı farklılıklar dışında hepsinde ortak olan dönemler; yumurta dönemi, larva dönemi, koza örme devresi ve ergin-kelebek dönemidir. ***İpek Böceği Yumurtası Bir Yıl Nasıl Canlı Kalır? **** İpek böceklerinin bir türü (univoltin ırk) sadece ilkbaharda yumurtlar ve bu türün verdiği yumurtalar diğer ilkbahara kadar bekler. Başka bir türde (bivoltin ırk) ise yumurtalar ikinci yumurtlama için beklemeye girmeden, 11–12 günlük kuluçka devresi geçirerek yumurtadan çıkarlar. İkinci neslin verdiği yumurtalar ise bekleme dönemine girerek kışı geçirir ve ilkbaharda tekrar canlanırlar. Hindistan, Tayland gibi yetiştirildiği bölgelerin sıcak olması nedeniyle multivoltin ırklardan bir yılda 7–8 nesil elde edilebilir. Burada ilk akla gelen soru kuşkusuz, bir yumurtanın bir yıl nasıl canlı kalabildiğidir. Tıpkı tohumların toprağa ekilip nem, sıcaklık, karanlık gibi uygun koşullar sağlandığında filizlenerek bitki, ağaç haline gelmesi ve bu ana kadar uykuda olması gibi, ipek böceği yumurtaları da bir sonraki ilkbahar mevsimine kadar uykuda kalırlar. Vakti geldiğinde ise harekete geçerler. Bu durumu, tuşuna basarak komut verilen bir cihazın çalışmaya başlamasına benzetebiliriz. ***Deri Değiştiren Larvalar*** Yumurtadan çıkan larvalar, iklim ve hava şartlarına bağlı olarak süresi değişen larva döneminde 4 defa deri değiştirirler. Larvalar yem yeme safhasında çok iştahlıdırlar ve sürekli taze dut yaprağı yerler. Adeta yaşayacakları bir sonraki dönemde inzivaya çekileceklerini biliyor gibi karınlarını iyice doyururlar. Başları vücutlarına oranla küçük olan larvaların derilerinin parlaklığı ve gerginliği artar. Deri değiştirme (uyku) safhasının başlangıcında yemek yemeyi keserler ve durgunlaşırlar. Dinlenmek için yer ararlar. İpeğimsi bir madde salgılayarak yapraklar üzerine tutunurlar, başlarını yukarı kaldırarak hareketsiz bir şekilde dururlar. Deri değiştiren larvaların vücudu ise büyümüştür. Başları da vücutlarına oranla artık daha büyüktür. Yem yeme safhasında parlak ve gergin olan deri, deri değiştirme sonrası gevşer, buruşur ve solgunlaşır. ***20 Gün İçinde 10.000 Katına Çıkan Ağırlık*** Deri değiştirme sürecini yaşayan bir ipek böceği hemen hemen yumurtadan çıkış ağırlığının 10.000 katına ulaşmıştır. Üstelik bu gelişme, 20–25 gün gibi kısa bir süre içerisinde oluşmuştur. Bu mucizevi gelişmeyi anlamak için gözünüzde yeni doğmuş bir bebeği canlandırın. Yaklaşık 3 kg ağırlığında doğan bebek, 20–25 gün sonra devasa bir boyuta ulaşarak 30.000 kg ağırlığına ulaşsa bu mucize karşısında büyük hayrete düşerdik. Ancak milyonlarca yıldır bu dönemleri geçiren ipek böceği larvaları bu mucizenin canlı birer örneğidirler. Böcek erginleştiğinde genellikle 7.-9. günlerde yem yemeyi keser, başını yukarı kaldırarak sallamaya ve oldukça nemli bir sıvı salgılamaya başlar. Göğüs ve karın bölgesinin yarı şeffaf olması nedeniyle vücudunun hemen hemen %40'ını kaplayacak şekilde genişlemiş olan ipek bezleri deri altında fark edilebilir. Sindirim kanalının boşaldığı ve larvanın kehribar rengini aldığı bu aşamada ipek böcekleri artık koza örmeye hazırdır ve askıya alınmaları için toplanmaları gerekir. ***Koza Örme Devresi Başlıyor*** Yumurtadan çıkan ipek böceği tırtılı; önce büyük bir titizlikle seçtiği "askı" olarak kullanacağı dallardan birine çıkarak kendini aynı iplikle oraya bağlar. Daha sonra salgıladığı ipeğe sarılmaya ve koza örmeye başlar. Multivoltin ırklarda 2–3 gün, uni ve bivoltin ırklarda 3–4 gün içerisinde koza örme işlemi biter. İpek böceği, ipliğini çıkardığı sürece, başını 8 çizer gibi sürekli oynatır, kozanın bir bölümünden diğer bölümüne geçerek örme işlemine devam eder. Başı dönmeden ve dengesini hiç kaybetmeden yaptığı bu hareketi, 3–4 gün süresince yaklaşık 130.000 kez tekrarlamaktadır. Bu süre içerisinde tırtıl, ortalama 900-1500 m. uzunluğunda bir iplik çıkarır. Bu rutin hareketi yapan tırtılın boynunun ya tutulması, ya da işlevini yitirmesi gerekirken, o büyük bir çaba ile üretimine devam eder. İpek üretimi sona erdiğinde ve bezler boşaldığı zaman artık çok zayıflamış olan tırtılın ya ölmesi, ya da hastalanması gerekir ancak tırtıl başkalaşıma uğrayarak, bir iki gün içinde daha güçlü bir yapıda olan "krizalit"e dönüşür. ***İpek Böceği Krizalitten Kelebeğe Nasıl Dönüşüyor?*** Koza örmenin 4. veya 5. gününde krizalit haline dönüşen ipek böceği, 8–14 gün süren krizalit devresinde metamorfoza uğrayarak kelebek haline dönüşür. Burada ise yine başka bir mucize gerçekleşmiştir. Bir tırtıl kendi salgıladığı maddeyle kendini sarmalayarak gözden kaybolur, saklanmadan önce yerde yürüyerek ilerleyen bu böcek, iki hafta içinde ise uçabilen bir kelebek olarak dışarı çıkar. Kelebek alkali yapıdaki salyası yardımıyla kozayı delerek dışarı çıkar. Yani kelebek haline gelen tırtıl, bir kozada olduğunu, buradan çıkma vaktinin geldiğini, buradan çıkmak için özel bir sıvıya ihtiyacı olacağını, kozayı delmek için bu sıvının sahip olması gereken formülü ve bunu vücudunda nasıl üreteceğini de adeta "bilmektedir". ***İpek Nasıl Üretiliyor?*** Kozayı örme ve tamamlama işlemi, gece gündüz durmaksızın 3–4 gün sürmektedir. Birkaç mm.lik boyuyla, günlerce ara vermeden çalışan bu tırtıl olağanüstü bir güç göstermektedir. Bunu insanlar ile kıyaslayarak daha iyi anlayabiliriz. Örneğin; insan günlük uykusunu almadığında hem zihnen, hem de bedenen güçsüzleşmesine rağmen, ipek böceğinde herhangi bir bitkinlik görülmemektedir. Yumurtadan tırtıla, tırtıldan kelebeğe giden bu döngünün içinde hayatını sürdüren ipek böceği, dünyanın en sağlam ipliğini üretir. Araştırmalara göre; ipek üretiminin sırrı, ipek böceklerinin salgı bezlerindeki ipek proteinlerinin, suda çözünebilirliğini nasıl kontrol ettiklerinde yatmaktadır. Tüm süreç, su miktarıyla kontrol altında tutulur. Organizma ipek bezine protein gönderir, ancak bunu yaparken oraya ne kadar su bıraktığını denetler. Bu hassas ölçüler de ipeğin sağlamlığında rol oynar. ***İpek, Bilinen En Sağlam Doğal İpliktir*** İpeğin tıp alanında, tahrip olmuş diz bağlarının onarılması ve yapay kemik dokusu oluşturulmasında kullanılabileceğini, Bulgularının doğruluğunun kanıtlanması halinde, çok sağlam koruyucu giysi ve spor malzemeleri üretiminin yanı sıra kemik dokusu için de laboratuvarda yapay ipek üretilebileceğini belirtiyorlar.

http://www.biyologlar.com/ipek-bocegi-bombyx-mori-hikayesi

Koliform grubu bakterıler ve bunlar hakkında bilgi

Koliform bakteriler gıda ve suların sıhhi durumunu gösteren göstergeç bakterilerdir. Tanım olarak çubuksu, Gram-negatif olup 35-37 °C'de laktoz fermante ederek asit ve gaz üretirler. Koliformlar sıcak kanlı hayvanların dışkılarında bolca bulunurlar, ama sulak ortamlarda, toprakta ve bitkilerde de bulunurlar. Coğu zaman kloliformalar kendileri hastalığa neden olmazlar ama kolay kültürlenirler, ve varlıkları dışkı kaynaklı zararlı patojenlerin de mevcut olabileceğine işaret eder. Dışkıya ait (fekal) patojenlere bakteriler, virüsler, protozoalar ve parazitler dahildir. Koliform bakterileri oluşturan cinsler arasında şunlar sayılabilir:[1] Citrobacter, Enterobacter, Escherichia, Hafnia, Klebsiella, Serratia ve Yersinia. Escherichia coli (E. coli) bakterisinin diğer koliformlardan ayırdedici özelliği 44 °C'da laktoz fermantasyonu yapabilmesi, bazı özel kültür ortamlarında büyüyebilmesi ve bu ortamlarda oluşturduğu renktir. Genel koliform grubundan farklı olarak E. coli hemen tamamen dışkı kaynaklıdır ve onun varlığı dışkı kirlenmesinin açık bir belirtisidir. Koliform grup bakteriler, Enterobacteriaceae familyası içinde yer alan, fakültatif anaerob, gram negatif, spor oluşturmayan, 35 oC' de 48 saat içinde laktozdan gaz ve asit oluşturan, çubuk şeklindeki bakterilerdir. Bu grupta yer alan ve gıda mikrobiyolojisi açısından önemli olan mikroorganizmalar; Citrobacter freundii, Enterobacter aerogenes, Enterobacter cloacae, Escherichia coli ve Klebsiella pneumoniae 'dir. Koliform grup mikroorganizmalara pek çok gıda hammaddesinde rastlanmaktadır. Bunların başında; taze sebzeler, taze yumurta, çiğ süt, kanatlı etleri ve koliform bakımından sayıca zengin sulardan alınan kabuklu ve diğer su ürünleri gelmektedir. Gıdalarda koliform mikroorganizmaların bulunması; kötü sanitasyon koşullarının, yetersiz veya yanlış pastörizasyon uygulamalarının, pişirme ve pastörizasyon sonrası tekrar bulaşma olduğunun bir göstergesi olarak kabul edilmektedir. Koliform grubu mikroorganizmaların hepsi dışkı kökenli değildir. Bu grupta bulunan bakterilerden normal florası insanların ve sıcak kanlı hayvanların alt sindirim sistemleri olanlar "fekal koliform" olarak tanımlanmakta ve bunlar fekal kontaminasyonun bir göstergesi olarak kabul edilmektedirler. Koliform grup içinde fekal koliform olarak tanımlanan bakterilerin büyük çoğunluğunun E. coli olduğu bilinmektedir. Grubun diğer üyeleri toprak ve bitki kökenli olabilmektedirler. Herhangi bir örnekte E. coli 'ye ve/veya fekal koliform bakterilere rastlanması oraya doğrudan ya da dolaylı olarak dışkı bulaştığının ve yine bağırsak kökenli Salmonella ve Shigella gibi primer patojenlerin de olabileceğinin bir göstergesidir. Bu nedenle hiçbir gıda maddesinde, içme ve kullanma sularında, denizlerde ve göllerde E. coli ve fekal koliform bulunmasına izin verilmezken, bazı gıdalarda belirli sayıda koliform bakteri bulunmasına izin verilebilmektedir. E. coli fekal kontaminasyonun bir göstergesi olması yanında genetik yapısı en iyi bilinen canlı olma özelliğine de sahiptir. Suşlarının birçoğu zararsız olan bu bakterinin bazı patojenik tipleri, insan ve hayvanlarda sonucu ölüme kadar giden ishallere, yara enfeksiyonlarına,menenjit, septisemi, artheriosklerosis, hemolitik üremik sendrom, çeşitli immünolojik hastalıklar vb. gibi hastalıklara sebep olabilmektedir. 02. Analiz Yöntemleri Bir gıda maddesinde ya da herhangi bir materyalde E. coli aranma ve sayılması için kullanılan tüm standart yöntemler koliform grup aranmasına yöneliktir. Bu yöntemler en muhtemel sayı (EMS) yöntemi, katı besiyeri kullanılan yöntemler, membran filtrasyon yöntemi ve hızlı sayım yöntemleri olarak gruplandırılmaktadır. 02.01. En Muhtemel Sayı Yöntemi Genel olarak koliform grup/fekal koliform grup bakteriler / E. coli sayılmasında EMS yöntemi kullanılmakta ve yöntem üç aşamada uygulanmaktadır. Bu aşamalar sırasıyla: - Koliform grup bakterilerin muhtemel sayısını belirlemek, - Koliformların kesin sayısını onaylamak ve aynı anda farklı bir besiyerinde fekal koliformların sayısını belirlemek, - E. coli sayısını belirlemektir. Türk Standartları Enstitüsü (TSE) ve Uluslararası Standartlar Örgütü (ISO)' nün koliform grup mikroorganizma aramak için kullanılan standart analiz yöntemlerine göre örnek hazırlanıp dilüsyonları yapıldıktan sonra ardışık 5 dilüsyondan 3 'er adet Lauril Sülfat Triptoz Broth (LST) besiyerine 1'er ml ekim yapılmakta ve 37 oC 'de 24 (gerekirse 48) saat inkübasyondan sonra pozitif sonuç veren tüpler muhtemel koliform olarak değerlendirilmektedir. Bu yönteme göre, muhtemel koliformların sayısını doğrulamak için de Brilliant Green Bile Broth (BGBB ) besiyerine ekim yapılmakta ve 37 oC 'de 24 (gerekirse 48) saat inkübasyondan sonra pozitif sonuç veren tüpler koliform grup olarak doğrulanmaktadır. TS 6063/ISO 7251 'e göre E. coli aranmasında analize koliform grupta olduğu gibi örneğin hazırlanıp dilüsyonlarının yapılmasından sonra, ardışık 5 dilüsyondan 3'er adet LST besiyerine 1 'er ml ekim yapılmakta ve tüpler 37 oC 'de 24 (gerekirse 48) saat inkübasyona bırakılmaktadır. Burada pozitif sonuç veren tüplerden, su banyosunda 44,5 oC 'de tutulan E. coli (EC) Broth besiyerlerine ekim yapılmakta ve gaz oluşumu için yine 44,5 oC 'de 24 (gerekirse 48) saat inkübe edilmektedir. Bu sürenin sonunda gaz oluşumu görülen tüpler fekal koliform olarak değerlendirilmektedir. Testin devamında EC Broth besiyerinde pozitif sonuç veren tüplerden 44,5 oC 'deki Tripton Water (TW) besiyerine ekim yapılmakta ve aynı derecede 48 saat inkübasyona bırakıldıktan sonra indol testi yapılmaktadır. Bu testin sonunda indol pozitif reaksiyon veren tüpler E. coli, negatif reaksiyon verenler ise E. coli dışındaki diğer fekal koliformlar olarak değerlendirilmektedir. Amerikan Resmi Analitik Kimyacılar Birliği (AOAC) 'nin koliform grup/E. coli aranması için önerdiği yöntem EMS yöntemidir. AOAC 'ye göre örnek hazırlanıp dilüsyonları yapıldıktan sonra, ardışık 3 dilüsyondan 3 'er adet LST besiyerine 1 'er ml ekim yapılmakta, 35 oC 'de 48 saat süren inkübasyondan sonra pozitif sonuç veren tüpler muhtemel koliform grup olarak değerlendirilmektedir. İkinci aşamada pozitif sonuç veren bu tüplerden BGBB ve EC Broth besiyerlerine ekim yapılıp, 35 oC 'de 48 saat inkübe edildikten sonra, BGBB tüplerinden alınan pozitif sonuçlar koliform grup olarak doğrulanmakta, 44,5 oC 'de 48 saate kadar inkübeedilen EC Broth tüplerinden alınan pozitif sonuçlar ise fekal koliform olarak kabul edilmekte ve sayılmaktadır. Son olarak EC Broth besiyerinde gaz pozitif tüplerden Eosin Metilen Blue Agar (EMB ) besiyerine sürme yapılarak, ayrıca gram boyama ve IMVEC testleri uygulanarak E. coli doğrulanmaktadır. Amerikan Halk Sağlığı Kuruluşu (American Public Health Association; APHA) tarafından özellikle suların mikrobiyolojik analizinde kullanılmak üzere önerilen Amerikan Standartları metoduna göre koliform grup/fekal koliform/E. coli aranmasında %0,5 Laktoz Broth (LB ) kullanılmaktadır. Bu yönteme göre; her biri 20 ml LB besiyeri içeren 15 adet tüpe, 5 X 10 ml, 5 X 1 ml ve 5 X 0,1 ml olacak şekilde ekim yapılmakta ve tüpler 35 oC 'de 24-48 saat inkübasyona bırakılmaktadır. İnkübasyon sonunda gaz oluşturan tüpler muhtemel koliform olarak kabul edilmektedir. Daha sonra gaz oluşturan bu tüplerden EMB agara sürme yapılmakta ve 35 oC 'de 24 saat inkübasyona bırakılmaktadır. Eğer bu besiyerinde tipik E. coli kolonileri oluşmuş ise tamamlama testi yapılmakta, oluşmamış ise teste burada son verilmektedir. Tamamlama testinde EMB agardan birkaç değişik koloni alınarak LB fermentasyon besiyerine ve yatık Nutrient Agar (NA) besiyerine ekim yapılarak her iki besiyeri de 35 oC' de 24 saat inkübasyona bırakılmaktadır. İnkübasyon sonunda LB besiyerinde gaz oluşmuş ve NA' dan alınan kolonilerde gram negatif sporsuz çubuk bakteriler tespit edilmiş ise su örneğinde koliform grup mikroorganizma olduğu kabul edilmektedir. Aynı kuruluş fekal koliform testi için EC Broth besiyerinde 44±0,2 oC 'de 48 saat inkübasyon sonunda gaz oluşumu görülen tüplerin fekal koliform olarak değerlendirilmesini önermektedir. Koliform grup mikroorganizma aranmasında kullanılan diğer bazı sıvı besiyerleri; LMX Broth, MOSSEL Broth, MacConkey Broth ve EE Broth' dur. 02.02. Katı Besiyeri Yöntemi Pek çok kuruluş tarafından koliform grup ve E. coli aranmasında standart yöntem olarak EMS yöntemi gösterilirken, özellikle izolasyon amaçlı sayım çalışmalarında katı besiyeri kullanılmaktadır. Bu amaçla yaygın olarak kullanılan besiyeri Violet Bile Red (VRB ) Agardır. Bu besiyerinde sayım yapılırken yayma, dökme ve çift tabaka dökme plak yöntemleri uygulanmaktadır. VRB Agar besiyerine alternatif olarak Petrifilm VRB yöntemi de kullanılabilmektedir. Bu yönteme göre VRB Laktoz Agar besiyeri kullanılması önerilmektedir. Besiyeri bileşiminde katılaştırıcı ajan olarak agar yerine soğuk suda çözülebilen bir madde kullanılmaktadır. Bileşenler kurutularak üzeri plastik film ile kaplanmış halde kullanıma hazır olarak satılmaktadır. Yönteme göre seyreltiden veya direkt örnekten 1 ml alınarak besiyeri üzerine ilave edilir. Plastik film üzerine basınç uygulanarak örneğin 20 cm2 alana yayılması sağlanır. 32±1 oC 'da 24±2 saat inkübasyondan sonra, etrafında bir veya daha fazla gaz kabarcığı görünen koloniler koliform olarak sayılır. Burada ister koliform olsun ister başka bir tür kolonilerin kırmızı renkli olacağı unutulmamalıdır. E. coli sayımında katı besiyeri olarak Triptik Soy Agar (TSA) besiyeri de kullanılmaktadır. Dökme plak yöntemi ile hazırlanan petri kutuları 35 oC 'de 2 saat inkübasyondan sonra besiyerinin üzeri ikinci tabaka olarak VRB Agar ile kaplanmakta ve inkübasyona 44,5 o C 'de 24 saat devam edilmektedir. Bu yöntemle, hasar görmüş E. coli hücrelerinin sayımında daha iyi sonuçlar alınmaktadır. Koliform bakteri izolasyonunda kullanılan diğer bazı katı besiyerleri; Enriched Lauryl Sulphate Aniline Blue Agar, Fecal Coliform Agar, Pepton Tergitol Glucuronide Agar, Deoxycholate Agar, Endo Agar, EMB Agar, Brillant Green Agar, XLD Agar' dır. 02.03. Membran Filtrasyon Yöntemi Hidrofobik Grid Membran Filtre (HGMF) tekniği, özellikle su ve diğer sıvı gıdaların analizinde kullanılmaktadır. Bu teknikte örnek önce bir membran filtreden geçirilerek mikroorganizmalar filtre üzerinde tutulmaktadır. Daha sonra bu filtreler uygun bir besiyeri üzerine, arada hava kabarcığı kalmayacak şekilde yerleştirilmekte ve oluşan koloni sayısından materyaldeki mikroorganizma sayısı hesaplanmaktadır. Filtreler üzerinde bulunan birbirini dik kesen hidrofobik hatlar, oluşan kolonilerin dağılmasını önlemekte ve böylece sayım yapılmasını kolaylaştırmaktadır. HGMF tekniği ile E. coli sayımı AOAC tarafından standart analiz yöntemi olarak kabul edilmiştir. Membran filtrasyon tekniğinin bazı üstünlükleri bulunmaktadır. Bunlardan en önemlileri; örnekte az sayıda mikroorganizmanın bulunması durumunda bile belirleme imkânı vermesi ve inkübasyondan sonra filtrelerin kurutularak saklanabilmesidir. HGMF ile fekal koliform sayılmasında filtre, TSA besiyerine yerleştirilmekte ve kuru gıdalar için 25 oC 'de 4-5 saat, diğer gıdalar için 35 oC 'da 4-5 saat olmak üzere, hasar görmüş ve stres altındaki mikroorganizmaların tekrar aktivite kazanmalarını sağlamak amacı ile bir ön inkübasyon uygulanmaktadır. Filtreler buradan m-FC Agar besiyerine alınmakta ve 44,5 oC 'da 24 saat inkübasyona bırakılmaktadır. İnkübasyon sonunda bir veya daha çok mavi renkli koloni gelişimi görülen alanlar belirlenmekte ve değerlendirme koliform sayımında olduğu gibi yapılmaktadır. HGMF tekniğinde amaca uygun olan her tür besiyeri kullanılabilmektedir. Bunlardan bazıları; m-T7 (membran Tegritol-7) Agar, Tamponlanmış Tripton Bile Agar, MI Agar, m-ENDO Agar, m-TEC (membran Thermotolerant E. coli) Agar, m-Coli Blue 24 Agar besiyerleri ve ticari olarak hazırlanmış (Sartorius) ve besiyeri emdirilmiş steril pedlerdir. 02.04. Koliform Grup ve E. coli İdentifikasyonu Uluslararası standart kontrol örgütleri tarafından E. coli 'nin doğrulama testleri olarak IMVEC testleri gösterilmektedir (I: İndol testi, M: Metil red testi, V: Voges-Proskauer testi, E: Eijkman testi veya 44,5±0,2 oC 'de gelişme testi, C: Sitrat testi). IMVEC testlerine ilaveten HOMoC testleri de yapılmaktadır (H: Hidrojen sülfür oluşum testi, O: Ornitin dekarboksilaz testi, Mo: Hareketlilik testi, C: Sitrat testi). Ayrıca; glikozdan gaz oluşumu, laktoz, mannit, sorbitol fermentasyon testleri, lisin dekarboksilasyonu, H2S oluşumu testleri koliform grup bakterilerin identifikasyonu için önerilen diğer bazı testlerdir. Bu testlerde koliform grup bakteriler ve E. coli 'nin test sonuçları çizelge 1 'de verilmiştir. 02.05. MUG ve Diğer Hızlı Analiz Yöntemleri AOAC tarafından bildirilen E. coli hızlı tayin yönteminde örnekten dilüsyonlar hazırlandıktan sonra ardışık 3 dilüsyondan 3'er adet LST Broth besiyerine inokülasyon yapılıp, tüpler kapalı su banyosunda 44,0±0,2 oC' de 24 saat inkübasyona bırakılmakta ve pozitif sonuç veren tüpler muhtemel E. coli olarak değerlendirilmektedir. Daha sonra bu kültürlerden EMB Agar besiyerine sürme yapılarak E. coli 'nin varlığı doğrulanmaktadır. Bu yönteme göre analiz süresi toplam 48 saattir. İlk kez 1982 yılında ortaya konulan MUG tekniği, son yıllarda E. coli sayımına yeni bir yaklaşım getirmiştir. Bu tekniğin prensibi; doğrudan besiyerinin ilave edilen ya da selektif katkı olarak ilave edilen 4-methyleumbelliferyl-β-D-glucuronide (MUG) adlı bileşiğin E. coli 'de yapısal bir enzim olarak olarak bulunan β-D-glucuronidase (MUGase, β-GUR) enzimi tarafından 4-methyleumbelliferone adlı florojenik bir ürüne dönüşmesi ve bu ürünün de 366 nm uzun dalga boylu ultraviyole ışık altında floresan ışıma vermesi esasına dayanmaktadır. MUG, katı ve sıvı besiyerlerinin bileşimine kolaylıkla ilave edilebildiği için, EMS yöntemi, katı besiyerleri ve membran filtrasyon yöntemi ile yapılan koliform grup/E. coli analizlerinde kullanılmaktadır. β-D-glucuronidase pozitif olan bakteriler içinde indol pozitif olan tek bakteri E. coli 'dir. Bu nedenle E. coli dışında bazı β-D-glucuronidase pozitif Citrobacter, Enterobacter, Salmonella, Shigella suşlarının neden olduğu sahte pozitif reaksiyonlar indol testi ile belirlenebilmektedir. Ayrıca bazı E. coli suşları yoğun üremeye bağlı olarak aşırı miktarda asit oluşturmakta ve bu da floresan ışımayı maskelemektedir. Bu gibi durumlarda besiyerine 1 ml, 1 N NaOH ilavesi ile floresan reaksiyon kesinleştirilebilmektedir. Koliform grup/E. coli analizlerinde en fazla kullanılan MUG' lu besiyerleri LST Broth ile VRB Agar' dır. Bu besiyerlerinde inkübasyondan sonra UV ile floresan pozitif sonuç alındıktan sonra, doğrudan sıvı besiyerinde gelişen kültürün üzerine veya katı besiyerinde gelişen koloni üzerine Kovac's indol ayıracı damlatılarak indol testi yapılmakta ve böylece 16-18 saat gibi kısa bir sürede, floresan ve indol pozitif reaksiyon verenler E. coli olarak belirlenebilmektedir. Sıvı besiyerlerinde MUG kullanılan yöntemlerde, istenirse fekal koliform bakterilerin analizi de yapılabilmektedir. Ancak fekal koliform grubun %90'dan fazlasının E. coli olduğu düşünülürse buna ancak özel durumlarda gerek olacağı düşünülmektedir. Standart yöntemle 6 gün süren koliform grup/E. coli aranması ve sayılması MUG sistemi kullanıldığında 24-48 saatte yapılabilmektedir. Hatta sıvı besiyerlerinde 16-18 saatte gelişme olduğu düşünülürse analiz süresi oldukça kısalmaktadır. MUG sistemi kullanıldığında dikkat edilmesi gereken en önemli nokta kendiliğinden floresan veren cam tüplerdir. Analiz sonucu negatif olsa dahi bu tür tüplerde pozitifmiş gibi görünmekte ve bu da sahte pozitif sonuçların alınmasına neden olmaktadır. Bunu önlemek için besiyeri tüplere dağıtılmadan önce tüpler UV lamba ile kontrol edilmeli ve böyle tüpler kullanılmamalıdır. MUG içeren katı besiyerlerinde koliform grup / E. coli aranması ve sayılmasında yaygın olarak kullanılan besiyerinden birisi VRB Agar' dır. VRB+MUG Agar besiyerinde standart dökme ve yayma yöntemleri kullanılmaktadır. Eğer ekim yayma yöntemi ile yapılıyor ise çift tabaka ekim yapılmalıdır. Bu besiyerinde 35-37 oC 'de 16-18 saat inkübasyon sonunda oluşan tipik koloniler koliform grup, floresan veren koloniler ise E. coli olarak değerlendirilmektedir. Burada yine E. coli olan kolonilerin IMVEC testleri ile veya hızlı identifikasyon kitleri ile doğrulanması gerekmektedir. MUG yöntemi kromojenik substratlarla beraber kullanıldığında daha etkin ve çabuk sonuçlar alınmaktadır. Koliform grubu bakteriler için karakteristik olan β-D-galactosidase enzimi kromojenik bir substrat olan Salmon-GAL ile, E. coli için karakteristik olan β-D-glucuronidase enzimi ise yine kromojenik bir substrat olan X-glucuronide ile belirlenir. Kromojenik substratlar kullanılarak koliform grup ve E. coli aranması için geliştirilmiş besiyerlerinden birisi de Lauryl Sulphate-MUG-X-GAL (LMX) Brothdur. Bu besiyerinin bileşiminde 5-bromo-4-chloro-3-indolyl-β-D-galacto pyranoside (X-GAL) adı verilen kromojenik bir substrat ve MUG bulunmaktadır. Bu besiyerinde koliformlar ürediğinde kromojenik substrat parçalanmakta ve mavi-yeşil renk oluşmakta, E. coli ürediğinde ise MUGase varlığına bağlı olarak floresans ışıma oluşmaktadır. Bu sisteme göre hazırlanmış Readycult Koliform (Merck) arama kitleri de bulunmaktadır. Koliform grup/E. coli analizlerinde kullanılan enzimlerin adaptif değil yapısal nitelikte olması gerekmektedir. Enzimatik yönteme dayalı olarak geliştirilen Chromojenic E. coli/Koliform Medium (Oxoid) adlı besiyerinde, gıda ve diğer çevresel örneklerde bulunan E. coli ve koliformların ön tanısı 18 saatte yapılabilmektedir. Bu yöntem, besiyerinde bulunan iki kromojenik substrattan birinin, %97'si E. coli tarafından üretilen glukoronidaz enzimi tarafından parçalanarak mor koloniler oluşumuna neden olması; diğerinin ise yine büyük çoğunluğu koliform grup tarafından üretilen galaktosidaz enzimi tarafından parçalanarak kırmızı/pembe renkli koloniler oluşumuna neden olması prensibine dayanmaktadır. Besiyerinde oluşan bu mor ve pembe kolonilerin dışında saman sarısı koloniler de oluşmakta ancak bunlar renklerinden dolayı diğerlerinden kolaylıkla ayırt edilebilmektedir. Serolojik yöntemlerle koliform grup mikroorganizma aranmasında ilk akla gelen teknik Floresan Antikor (FA) Tekniğidir. Bu teknikte örnekten izole edilen mikroorganizmalar floresan bir madde ile işaretli antiserumla kaplanmış bir filtre üzerinde tutulmakta ve filtrenin floresan mikroskobu altında incelenerek belirlenmesi esasına dayanmaktadır. Bu yöntem daha çok su analizlerinde kullanılmaktadır. Koliform grup/E. coli aranmasında elektro kimyasal yöntemler de kullanılmaktadır. Bu yöntemlerin esası gelişmekte olan bakteri kültüründe oluşan moleküler hidrojenin ölçülmesi, bakteri kültürünün ortama uyum sağlarken oluşan direncin ölçülmesi ve elektrot yüzeyi ile ilişki kurulduğunda bakteri yüzeyleri ile arada oluşan elektron transferinin ölçülmesi esasına dayanmaktadır. Çiğ süt, yoğurt, dondurma ve pastörize krema gibi süt ürünlerinde koliform grup mikroorganizma aranmasında kullanılmak üzere geliştirilmiş BactometerTM mikrobiyel analiz cihazi impedans-kondüktans prensibine göre çalışmaktadır. Bu yönteme göre önce standart miktarda test örneği alınarak aletin inkübatör kısmına yerleştirilerek 35 oC' da 3 saat ön zenginleştirmeye bırakılır. Bu aşamada Coliform Medium (CM) besiyeri kullanılmaktadır. Ön zenginleştirme aşamasından sonra 1,5 ml örnek alınarak aletin inkübasyon kuyucuklarına yerleştirilip yine aynı derecede inkübasyona bırakılır. Kuyucuk içindeki test karışımı renginin menekşeden sarıya dönmesi koliform grup pozitif reaksiyon olarak değerlendirilmektedir. Analiz cihazı bilgisayar donanımlı olduğu için sonuçlar direkt bilgisayara kaydedilebilmekte veya yazdırılabilmektedir. E. coli sayımında kullanılan hızlı yöntemlerden bir tanesi de BioSys (BioSys, Inc., Ann Arbor Mich.) optik ölçüm sistemidir. Yöntemin prensibi mikroorganizma gelişimi sonucu meydana gelen pH ve redoks değişimlerinin optik okuyucu yardımı ile ölçülmesi esasına dayanır. pH 'da meydana gelen değişiklikler besiyerinde bulunan brom cresol purple indikatörü yardımıyla tespit edilir. Burada indikatörün renginin değişmesi ile besiyerinden geçen ışık şiddetinde meydana gelen değişimler tespit edilmektedir. Bu yönteme göre önce uygun bir seyreltme çözeltisi içinde homojenize edilen örnekten 4,5 ml alınarak BioSys tüplerine aktarılır. BioSys tüplerinde %2 dekstroz ilave edilmiş çift kuvvetli Coliform Medium (bioMerieux Vitek Inc.) besiyeri bulunmakta olup ayrıca tüplerin dip kısmında agar içeren bir bölme bulunmaktadır. İnokülasyondan sonra tüpler aletin inkübasyon kısmına yerleştirilerek (42 oC) inkübasyon süresi boyunca sonuçlar optik okuyucuya kaydedilir. Bactometer ve BioSys analiz sistemleri ile E. coli sayımı 1-11 saatte gerçekleştirilebilmektedir.

http://www.biyologlar.com/koliform-grubu-bakteriler-ve-bunlar-hakkinda-bilgi

Nematodlar İle Mücadelede Biyolojik Alternatifler

Bitki paraziti nematodlar genellikle çok küçük, ince ve yuvarlak, çok hücreli, solucana benzer, mikroskobik canlılardır. Boyları 0,5-2 mm arasında değişir. Kültür bitkilerinde zararlı olan bitki paraziti nematodların hayat devresi genel olarak şu şekildedir: Yumurta → 1. larva dönemi → 2. larva dönemi → 3. larva dönemi → 4. larva dönemi ve ergin şeklindedir. Pek çok bitki paraziti nematod türünün görünüşü ince uzunipliksi formda olmasına rağmen bazı türlerin dişilerinde, vücut şekli armut, küre veya limon biçimindedir. Günümüzde bitki paraziti nematodlardan dolayı dünyada meydana gelen ürün kaybının parasal değeri 80 milyar dolar civarındadır. Araştırmacılar yapılan nematisitdenemelerinde kök-ur nematodlarının domateslerde % 42-54, patlıcanlarda % 30-60 ve kavunlarda % 18-33 oranlarında ürün kaybına neden olarak zarar yaptıklarını tespit etmişlerdir. Nematod beslenmek için bitki dokusundaki hücre zarını styleti ile delerek, hücre içine tükrük salgısını bırakır. Bu salgı hücre özsuyunu akıcı ve kolay emilir hale getirir. Bunun sonucunda bitkide de tepki olarak urlanmalar (patateslenme) görülür. Nematodlara karşı etkili bir savaş yöntemi geliştirmek oldukça güçtür. Nematodlara karşı kullanılan savaş yöntemleri içinde en yaygın olanları kültürel önlemler ve kimyasal savaş olup bunlarda her zaman yeterli etkiyi gösterememektedir. Bu nedenle araştırıcılar nematodlara karşı biyolojik savaş olanakları üzerinde durmaya başlamışlardır. Bitki paraziti nematodların doğada değişik gruplardan birçok doğal düşmanı saptanmıştır. Bunlar içinde en etkili olanları sırasıyla funguslar, bakteriler ve predatör nematodlardır. Nematodlara karşı uygulanan biyolojik savaşın etkinliği, doğal düşmanların toprakta olumsuz koşullarda dayanıklı yapılar oluşturarak canlılıklarını sürdürebilme, çoğalma ve yayılma özelliklerine bağlıdır. Ayrıca konukçu yoğunluğu ve duyarlılığı da mücadelede başarıyı etkileyici en önemli faktörlerdendir. 1. Funguslar a. Tuzak oluşturan funguslar Bunlar ağımsı, yapışkan ya da halka şeklinde tuzaklar oluşturarak konukçularını yakalarlar. Toprakta misel gelişmesini artırmak için nematodların dışında bir enerji kaynağına gereksinim duyarlar. Bunun için zararlı nematodlara karşı bu tür fungus uygulamalarında ortama gerekli enerjiyi sağlayacak organik madde ilave edilerek fungusun gelişmesi teşvik edilmelidir. Ancak, bu tür uygulamalar genellikle sera ve benzeri yoğun tarımın yapıldığı dar alanlarda mümkün olmaktadır. Tuzak oluşturan fungusların en iyi bilinenleri; Arthrobotrys spp., Dactylella spp., Dactylaria spp. ve Nematoctonus spp. türleridir. Nematodlar rastgele hareketleri sırasında yapışkan ya da halka şeklindeki tuzaklara yapışmasından itibaren iki saat içinde bu yapışkan hifler bitki paraziti nematodu hareketsiz hale getirir ve bu sırada yapışkan hifin çıkıntıları nematod kütikulasına nüfuz eder. Bu sırada hif enfeksiyon halkası denebilen bir yapı nematodun içine doğru kayarak, burada birçok trophic hifler üretmektedir. Bu hifler vücudun içindekileri emerek nematodu öldürür. b. Endoparazit funguslar Genelde spor oluşturabilen bu funguslar kolonizasyon için fazla enerjiye gereksinim duymazlar. Sporları toprakta uygun bir konukçu nematod ile karşılaşıncaya kadar uzun süre dormant durumda kalabilirler. Nematodu baskı altına alma sporun dağılımı ve sayısına bağlıdır. Bazıları ise misel oluştururlar, bunlar miselleriyle toprağı ve bitki köklerinin yüzeyini koloniler halinde kaplarlar. Parazit funguslar nematodların değişik gelişim evrelerindeki etkinliklerine göre; yumurta paraziti funguslar, larva ve ergin paraziti funguslar ve her üç dönemi de parazitleye bilen funguslar olarak gruplandırılabilirler. Yumurta paraziti funguslar fakültatif olup, yapay olarak üretilebilirler. Bunlarla ilgili yapılan çalışmalarda, Paecilomyces lilacinus'dan Meloidogyne incognita ve Tylenchulus semipenetrans'a karşı olumlu sonuçlar alınmıştır. Yine yumurta paraziti olan Dactylella oviparasitica'nın şeftalide Meloidogyne incognita'yı, Verticillium chlamydosporium'un tahıllarda Heterodera avenae'yı doğal olarak baskı altına aldığı saptanmış olup bu konudaki çalışmalar devam etmektedir. Bu fungusların birçoğu nematodların değişik grup ve türlerinin kütikulalarına yapışmakta da özelleşme gösterirler. Hirsutella rhossiliensis önce nematod kütikulasına yapışan ve penetrasyon yeteneğinde olan sporları üretir, daha sonra içeride gelişip vücut içeriğini emip özümleyerek yeniden sporulasyona geçer. Bunun topraktaki saprofitik potansiyeli, kitlesel üretimine veya topraktaki yerleşmesine olanak sağlayan arzu edilebilir bir özelliğidir. Paecilomyces lilacinus ilk olarak Peru'da Meloidogyne incognita yumurtalarında tespit edilmiştir. Bu fungus, M. incognita yumurtalarının fakültatif bir parazitidir ve diğer bitki paraziti nematod türlerini de parazitleye bilmektedir. Paecilomyces lilacinus izolatları M. incognita yumurtalarına bulaşıp yumurtalardan larva çıkışını azaltmaktadır. Araştırıcıların yaptığı çalışmalarda, Paecilomyces lilacinus'un toprağa uygulanması ile domates köklerindeki M. incognita popülasyonu % 67-77 oranında, köklerde meydana gelen galler ise % 30 oranında azalırken ikinci yılda elde edilen ürün üç misli artmıştır. Bu fungus, dikimden 10 gün önce ve dikim sırasında toprağa uygulandığında, domates bitkileri nematod saldırısından en iyi şekilde korunmaktadır. Bu fungusun nematodların entegre mücadelesi içinde kullanılması ile başarılı sonuçlar alınacağı bildirilmiştir. 2. Bakteriler Nematodlar üzerinde bugüne kadar saptanan bakteriler içersinde en önemli olanı Pasteuria penetrans dır. Birçok bitki zararlısı nematodların obligat bir paraziti olan 2. larva dönemi ile karşı karşıya getirildiğinde, nematodun kütikulasına yapışmakta ve bir çim borucuğu oluşturarak konukçunun vücut boşluğunda vejetatif mikrokoloniler meydana getirmektedir. Bunun sonucu olarak da enfekte edilmiş bireyler ergin döneme ulaşmadan ölmektedirler. Bu organizma ile konukçusu olan bitki paraziti nematod türlerinin gelişim ve fizyolojisi arasında bir zaman uyumu vardır. Pasteuria penetrans, endospor oluşturan bakteriyel bir parazittir ve dünyada tarımsal alanlarda geniş dağılım göstermektedir. Umut vaat edici biyolojik mücadele etmenlerinden biri olan Pasteuria penetrans, obligat bir bakteriyel parazittir. Bu bakterinin önemli bir özelliğide endosporlarının uygun olmayan çevre koşullarına ve pestisitlere tölerans göstere bilmesidir. Buna rağmen bakterinin konukçu dizisi son derece kısıtlıdır ve kitle üretimi için henüz bir metot geliştirilememiştir. 3. Predatör Nematodlar Predatör nematodlar çok sayıdaki nematod türlerinin populasyon yoğunluklarına önemli ölçüde etkide bulunan yararlı organizmalar olup bitki paraziti nematodların biyolojik savaşımındaki rolleri hala tam olarak bilinmemektedir. Bilinen en etkili avcı nematodlar Dorylaimida, Mononchida takımları ve Diplogasteroidaea üst familyasına bağlı türlerdir ve toprakta bulunmaktadırlar. Halen biyolojik bir preperat oluşturmak için araştırıcılar tarafından çalışmalar devam etmektedir.

http://www.biyologlar.com/nematodlar-ile-mucadelede-biyolojik-alternatifler

Ototrof canlıların Işık enerjisini kimyasal enerjiye nasıl dönüştürdüklerini tüm basamaklarıyla açıklayınız.

Ototrof canlıların Işık enerjisini kimyasal enerjiye nasıl dönüştürdüklerini tüm basamaklarıyla açıklayınız.

Bitkiler ve algler günes ışığını kullanarak besinlerini kendileri üretir. Kendi besinlerini kendi sentezleyen, su (H2O), karbondioksit (CO2) ve inorganik tuzlardan organik maddeyi oluşturan, enerjiyi bu organik bileşiklerde depolayan canlılardır. Kendi içinde: Fotosentetik ototroflar. (Fototroflar) Biyokimyasal olaylar için gereksinim duydukları enerjiyi güneş ışınlarından, fotosentezle sağlayan canlılardır. Örn : Yeşil ve mor bakteriler. Kemosentetik ototroflar. (Kemotroflar) Kendileri için gerekli olan enerjiyi amonyak (NH3),hidrojensülfür (H2S) gibi belli organik maddeleri oksitleyerek, kimyasal yoldan, kemosentezle sağlayan canlılardır. Örn : Nitrit,nitrat ve demir bakterileri. Fotosentez, bitkilerde ışık enerjisi kullanılarak organik bileşiklerin üretilmesidir. Yeryüzündeki her canlı, metabolizma etkinlikleri için gerekli olan enerjiyi temelde üç yoldan sağlar. Fotosentetik organizmalar, ışık enerjisinden yararlanarak enerjiyi depolarlar ve organik bileşikler üretebilirler. İlk kez 1771 yılında Joseph Priestley, bitkiler tarafından dışarı verilen oksijenin hayvanlar tarafından kirletilen havayı temizlediği fikrini ortaya atmıştır. Daha sonra 1779'da Jan Ingenhousz havanın temizlenmesinin yeşil bitkiler tarafından ışıkta yapıldığını açıklamıştır. 1804 yılında De Saussure fotosentez esnasında eşit hacimde CO2 ve O2 alış verişi olduğu, buna benzer eşit hacimde bir gaz alış verişinin solunum esnasında da meydana geldiğini ileri sürmüştür. Yirminci yüzyılın başlarında tek hücreli yeşil su yosunlarında (Chlorella vulgaris) fotosentezle ilgili araştırmalar Warburg tarafından yapılmıştır. Genel Fotosentez denklemi: nCO2 + 2nH2O + Işık enerjisi → (CH2O)n + nO2 + nH2O Ancak heksoz şekerleri ve nişasta ana ürünler olduğundan, genelde aşağıdaki spesifik (basit) denklem fotosentezin ifadesinde kullanılır: 6CO2 + 12H2O + Işık enerjisi → C6H12O6 + 6O2 + 6H2O + 673 Kalori Havadaki karbondioksit güneş enerjisi kullanılarak, nişasta ve diğer yüksek enerjili karbonhidratlara dönüştürülür. Karbon kullanıldıktan sonra ortaya çıkan oksijen ise havaya bırakılır. Bitki daha sonra besine ihtiyaç duyduğunda bu karbonhidratlarda depoladığı enerjiyi kullanır. Bu bitkilerle beslenen canlılar da bitkide bulunan karbonhidratlardan enerji ihtiyaçlarını karşılarlar. Fotosentez olayının meydana gelebilmesi için gerekli olan maddeler, ışık, klorofil, karbondioksittir. Yeşil bitkilerin havadan aldıkları CO2 yi topraktan aldıkları su ile birleştirip glikoz yapmaları ve oksijen vermeleri olayına fotosentez denir. Olay sadece klorofilli hücrelerde ve ışıklı ortamlarda gerçekleşir. FOTOSENTEZ REAKSİYONLARI ve AŞAMALARI Bu reaksiyonlar iki kademeden oluşur. Birinci kademede ışık kullanılarak, ikinci kademe için gerekli olan ATP ve NADPH2 ler üretilir. 1. Işıklı Devre Reaksiyonları Bu devre kloroplastın zar katmanları içinde yani granalar’da gerçekleşir. Işık mutlaka gereklidir ve iki şekilde meydana gelir. Devirli fotofosforilasyonda; sadece 2 ATP sentezlenir. Herhangi bir madde tüketimi görülmez. Elektronlar aynı klorofile geri döner. Devirsiz fotofosforilasyonda; hem klorofil-a hem de klorofil-b görev yapar. H2O parçalanır (fotoliz olayı). Devirsiz fotofosforilasyonda bir defa elektronların aktarılması sonucunda 1 ATP, 2 NADPH2 ve 1 O2 molekülü oluşur. 2. Karanlık Devre Işığın kullanılmadığı, enzimatik reaksiyonlar evresidir. Bundan dolayı karanlık devre denir. Ama olayları yine ışıklı ortamda olur. Çünkü ışıklı devreye bağlıdır. Kloroplastın sıvı kısmında gerçekleşen bir karbon döngüsüdür. Işıklı devreden getirilen hidrojenlerle CO2 indirgenir ve organik bileşikler sentezlenir. Gerekli aktivasyon enerjisi ise, yine ışıklı devreden gelen ATP lerle sağlanır. Karanlık devre reaksiyonlarında mutlaka CO2 gerekli olup, bu safha sıcaklık değişmelerine karşı hassastır. Çünkü enzimler katalizör olarak görev yapar. Bir molekül glikozun sentezlenebilmesi için 6 molekül CO2 nin tutulması gerekir. 1 CO2 için 3 ATP ve 2 NADPH2 gerekli olduğuna göre; 1 glikoz için 18 ATP ve 12 NADPH2 gerekir. Bunun için ise, ışıklı devre olaylarının 6 defa tekrarlanması gerekir. FOTOSENTEZ HIZINI ETKİLEYEN FAKTÖRLER 1. Dış Faktörler a. Işık Şiddeti : Karanlık ortamda bitki klorofil taşısa bile fotosentez yapamaz. Işık seven bitkilerin fotosentezi ışık şiddeti arttıkça artar, gölge bitkilerinde de ışık şiddeti arttıkça fotosentez hızı biraz artar, ancak ışık bitkilerine oranla artış daha azdır. b. Işığın Dalga Boyu : Beyaz ışık birden fazla ışığın birleşmesi sonucunda oluşur. Bitkiler ışığın bazı dalga boylarını emerken (soğururken) bazılarını yansıtırlar. Fotosentezde en çok kırmızı ve mor ışık, en az ise yeşil ışık soğrulur. Tüm diğer mücevher ve takı fırsatları için tıklayın ! c. Ortamın Sıcaklığı : Fotosentez enzimler sayesinde gerçekleştirilir. Proteinler ısıdan etkilenirler. Bundan dolayı fotosentez sıcaklıktan enzimler gibi etkilenir. d. CO2 Yoğunluğu : Bitkilerde CO2 yi devreye sokan fotosentez enzimleridir. Enzimlerin hız kapasitesi sabittir. Bundan dolayı CO2 miktarı arttıkça fotosentez hızı artar, fakat belli bir noktadan sonra sabit kalır. e. Mineral Tuzlar Mg : Klorofilin yapısında olduğundan dolayı çok fazla olması fotosentezi hızlandırır. P ve Ca : Enzimleri aktive ettiklerinden dolayı bunların artması fotosentezi hızlandırır. Fe : ETS elemanlarının yapısına girdiğinden ve klorofil sentezinin ara reaksiyonlarında kullanıldığından dolayı demirin çok olması fotosentezi hızlandırır. Ayrıca; amino asit, vitamin ve organik baz gibi moleküllerin sentezinde mineraller harcandığı için, yetersiz mineral ortamında bitki gelişmesi yavaşlar. 2. Kalıtsal Faktörler Bitkinin yaprak genişliği ve kalınlığı, yaprak sayısı, stomaların sayısı ve sıklığı, kutikula tabakasının kalınlığı, sitoplazmanın su miktarı, kloroplast sayısı ve enzimatik etkenlerdir. KEMOSENTEZ Bazı bakterilerin klorofil gibi yapıları bulunmadığından güneş enerjisinden faydalanamazlar. Dışarıdan organik besin de almazlar. Bu organizmalar yaşadıkları ortamdaki inorganik maddeleri oksitleyerek enerji kazanırlar. NH3 + O2 ® NO2(Nitrit) + H2O + K.cal. (Enerji Eldesi) Bu enerjiyi su ve karbondioksitin birleştirilmesinde kullanır, kendilerine lazım olan organik besin maddelerini yaparlar veya doğrudan ATP sentezlerler. İşte kimyasal enerjiden faydalanarak organik besinler yapılması olayına kemosentez adı verilir. Her türün oksitlediği madde farklı olabilir. Buna göre bakteri isimleri oluşturulmuştur. En çok oksitlenen maddeler, NH3, S, H2S, NO2, N2 dir. H2O + CO2 + K.cal. ® Glikoz + O2 (Besin Sentezi) ADP + Pi + K.cal. ® ATP + H2O (Kemosentetik Fosf.) Bu tür bakteriler yaşadıkları ekosisteme oksijen bakımından katkıda bulunmazlar. Çünkü ürettikleri kadarını tüketirler. Fotosentez Enerji Dönüşümleri (Fotosentez-Solunum) Organik evrim teorisine göre ilkel atmosferde yer alan CO2, H2O, H2,NH3,CH4, vb. gibi moleküller şimşek,yıldırım ve u.v ışınların etkisiyle basit organik moleküller haline dönüştü. (Atmosferde oksijen yoktu.) Şimşek+Yıldırım CO2+H2O+H2+NH3+CH4 Basit organik moleküller O2’siz atmosfer Oluşan organik maddeler yağmur suları ile karaya taşınıp , ısı ve u.v etkisiyle karmaşık kompleks moleküller haline dönüştüler. (Karada) ısı+U.V Basit organik moleküller Karmaşık organik maddeler. O2’siz atmosfer Yer kabuğunda oluşan komplex maddeler yağmur suları ile denizlere taşındı. Denizlerde u.v etkisiyle komplex moleküllerden sayısız ve karmaşık reaksiyonlarla ilk canlılığın temeli atıldı ve ilkel hücreler (Koaservat) oluştu. (Denizlerde) ısı+U.V+Enzimsel maddeler Komplex organik maddeler İlkel hücre (Koaservat) O2’siz ortam İlk canlı oksijensiz ortamda oluşmuştur. İhtiyaç duyulan organik maddeler cansız ortamda inorganik koşullarda sentezlenmekte ve bol miktarda bulunmaktadır. İlkel hücre ihtiyacı olan enerjiyi ortamdaki organik moleküllerden oksijensiz solunumla elde etmekteydi. Bu mekanizma günümüze kadar gelmiştir.(Fermantasyon) İlkel hücre Organik madde Basit organik ve inorganik madde+Enerji Enzim Not:Bu yöntemle elde edilen enerji ilkel hücreler için yeterlidir.İlkel hücrelerden bazıları sahip olduğu enzimlerle kendi organik maddelerini inorganik maddelerden üretebilme yeteneğine sahip oldular. Bunun en ilkel şekli kemosentezdi zamanla fotosentez gelişti. İleri hücre formları İnorganik maddeler Organik maddeler Kemosentez ve Fotosentez Fotosentezin ortaya çıkışıyla: 1-O2 üretimi sağlanarak ozon (O3) oluşumu gerçekleşmiştir. Ozon U.V ışınlar atmosferin üst katmanlarında tutmuş, böylece canlılar önce deniz (su) yüzeyine sonra karaya çıkışını sağlamıştır. 2-O2 üretimi ile O2 li solunumum başlamasına olanak tanımış , enerji üretiminin artması ile canlıların fizyolojik karakterlerinde artmaya ,özelliklerinin çeşitlenmesine, sayılarının ve çeşitlerinin artmasına neden olmuştur. 3-Oksijenin yüksek oksidasyon yeteneği nedeni ile; O2 yi etkisizleştirip kullanımını sağlayan enzim taşımayan canlıların hızla azalmasını ,O2 yi kullanabilen canlıların ise hızla çoğalarak sayılarının artmasını sağlayan doğal seleksiyonu başlatmıştır. 4-O2 nin üretimi ile inorganik ortamdaki organik madde üretimi engellenmiş , fotosentez canlılar için en önemli organik madde üretim mekanizması olmuştur. Not: Fotosentezden önce (ozon oluşmadan) organik madde sentezi için gerekli enerji u.v , şimşek , yıldırımlarla gerçekleşirken , fotosentezde madde sentezi için gerekli enerji güneşin görünür ışınları (450-760n.m) ile gerçekleşir .Ozon bu ışınların geçişine engel değildir. Not: Bugün yaşayan bütün canlılar (Kemosentetik ler hariç) ihtiyaç duydukları organik besini ve oksijeni fotosentezden karşılarlar. Ortamda, aşağıdaki yapılardan biri varsa, fotosentez gerçekleşir. Klorofil-Kloroplast-Özümlem parankiması-Parankima dokusu-Yaprak-Bitki Fotosentezin özgün olayları ■6CO2 + 6H2O (Işık/Klorofil) C6H12O6 + 6O2 ■Kloroplastta gerçekleşir. ■Fotosentetik ototroflarda görülür. ■Hammaddeler CO2 ve H2O dur.(Bakterilerde H ve H2S kullanılır) ■Ürünler glikoz ve O2 dir.(Bakterilerde O2 yerine S oluşur) ■Işıkta gerçekleşir. ■Anabolik reaksiyonlarıdır. ■Hidrojen akseptörü NADP dir ■İnorganik madde organik maddeye dönüşür. ■Işık enerjisi kimyasal bağ Enerjisine dönüşür ■Fotofosforilasyon la ATP sentezi yapılır. ■Klorofil ve su elektron kaynağıdır.(Bakterilerde H ve H2S, elektron ve H kaynağı olarak rol alır) ■Elektronların son alıcısı klorofil ve NADP dir. ■Canlıda ağırlık artışı olur. ■Sentezlenen ilk ürünler karbonhidratlardır. Bakteriyel fotosentezin özellikleri ■Sitoplazmada gerçekleşir ■Klorofiller sitoplazmik zar katlanmaları olan tilakoidlerde yer alır ■H ve elektron kaynağı olarak H2 veya H2S kullanılır ■Işık gereklidir ■Yan ürün olarak O2 oluşmaz ■Anaerobiktirler Protista ve bitkilerde gerçekleşen fotosentezin özellikleri ■Kloroplastlarda gerçekleşir ■Klorofiller kloroplastlardaki granalarda yer alır ■H ve elektron kaynağı H2O dur ■Yan ürün olarak O2 oluşur ■Işık gereklidir Fotosentezin evreleri: A-Işık evresi reaksiyonları a-Devirli fotofosforilasyon: Özellikleri: ■Işık varlığında gerçekleşir ■Granalarda gerçekleşir ■Enzim görev almaz ■Elektron kaynağı klorofildir ■ e.t.s ye aktarılan her elektrona karşılık 1 ATP sentezi gerçekleşir ■Klorofilden e.t.s ye aktarılan elektronlar yine aynı klorofil tarafından tutulurlar ■Bu seride sadece karanlık evrede kullanılmak üzere ATP sentezi gerçekleşir b-Devirsiz fotofosforilasyon: Özellikleri: ■Işık varlığında gerçekleşir ■Granalarda gerçekleşir ■Enzim görev almaz ■Elektron kaynağı PS1,PS2 ve H2O dur ■İki, pigment sistemi görev alır ■Suyun iyonizasyonu ve O2 nın oluşumu bu döngüde gerçekleşir ■Karanlık evrede kullanılacak ATP ve CO2 nin redüklenmesinde kullanılacak H ler bu evrede üretilir. (ATP ve NADPH2 ler üretilir) ■Ps1 ve Ps2 nin dört kez indirgenme - yükseltgenme olayına karşılık sistemde 3 ATP,2 NADPH2 ve 1 O2 sentezlenir Genellemeler: -Işık evresi reaksiyonlarında ihtiyaç duyulanlar: 1-Işık 2-ADP+Pi 3-NADP 4-Klorofil 5-H2O 6-e.t.s -Işık evresi reaksiyonlarında açığa çıkanlar: 1-ATP 2-HADPH2 3-O2 B-Karanlık evre reaksiyonları: Özellikleri: ■Kloroplastlarda stroma da meydana gelir ■Enzimler rol alır ■Isı,Ph,Substrat miktarı,İnhibitör ve aktivatörlerden etkilenirler ■CO2 nin kullanıldığı evredir ■1 CO2 için bu evrede ışık evrelerinde üretilen 3 ATP ve 2 NADPH2 kullanılır(1 glikoza karşılık 18 ATP ve 12 NADPH2 kullanılır) ■ e.t.s rol almaz ■CO2 yakalayıcısı olarak Ribuloz difosfat (Pi-5C-Pi) rol alır ■Işığa ihtiyaç duyulmaz ■Glikoz,sukroz,nişasta,a.asit,gliserol vb. organik maddelerin üretildiği evredir Fotosentezin şematize edilmesi Fotosentez reaksiyonlarında elde edilen ürünlerdeki C,H ve O kaynakları aşağıdaki gibidir. 6CO2 + 6H2O C6H12O6 + 6O2 CO2: Glikozdaki C ve O kaynağıdır H2O: Glikozdaki H ve serbest kalan O2 kaynağıdır Fotosentezle ilgili grafik ve deneyler Fotosentez: Fotosentez reaksiyon hızını etkileyen faktörler: 1-Işık 2-Klorofil 3-CO2 4-H2O 5-Isı 1-Işık faktörü ■Temel enerji kaynağıdır. ■Işık evresinde rol oynar. ■Dalga boyu ve şiddeti önemlidir. a) Işığın dalga boyu:Fotosentez dalga boyunun 400-750 nm olduğu aralıkta gerçekleşir. Klorofil tarafından mor ışık daha fazla soğurulur ancak fotosentezin reaksiyon hızı kırmızı ışıkta fazla yeşil ışıkta en az değerdedir PS1,PS2 yükseltgenmesinde ve H2O nun iyonizasyonunda farklı dalga boylarında ışığa ihtiyaç olduğu için fotosentezin hızı beyaz ışıkta daha fazladır. b) Işığın şiddeti: Belirli bir ışık şiddetine kadar reaksiyon hızı artar. Ancak ışık şiddeti güneş(ışık) ve gölge bitkilerinde fotosentez reaksiyon hızı üzerine etkisi farklıdır Not:Işığın fotosentez için gerekli enerji kaynağı olmakla beraber klorofilin sentezi içinde ışığa ihtiyaç vardır. Mg Öncül madde Porfirin Mg-porfirin (Karanlıkta gerçekleşir.) ( Fe , Enzim ) MG-porfirin Öncül-klorofil Klorofil Işık Klorofil sentezi (Kısaca) Enzim / Işık ( C , H , O , N ) + Mg 1 mol Klorofil Fe katalizör 2-CO2 faktörü ■Karanlık evre reaksiyonlarında görev alır. ■Glikozun yapısına katılır. Atmosferde % 0,03 oranında bulunan karbondioksit % 0,3 ‘e kadar artırınca reaksiyon hızı artar CO2 nin miktarını daha fazla artırmak reaksiyonu hızlandırmaz. 3-Isı faktörü ■Karanlık evre reaksiyonlarında etkendir. ■Optimal ısı 35 derecedir. (Türe göre değişir.) ■Fotosentezin enzimatik reaksiyonlardan olması nedeniyle ısıya karşı duyarlıdır. 4-Su faktörü ■Güneşten gelen fazla ısının terleme ile uzaklaştırılmasında görev alır. ■Karbondioksitin redüklenmesinde kullanılan H lerin kaynağıdır. ■Atmosferin O2 kaynağıdır. ■Devirsiz fotofosforilasyon da kullanılır. ■Enzimatik reaksiyonların gerçekleşmesi için gerekli ortamı oluşturur. Not:Fotosentez reaksiyonlarında etken olan faktörler için minimum yasası geçerlidir. Buna göre reaksiyon hızı faktörlerden en zayıfı tarafından belirlenir. A-Etken madde miktarı – reaksiyon hızı arasındaki ilişki. ■H2O-CO2 Reaksiyon hızını belirleyen ortamda en az bulunan faktördür. ■Işık şiddeti-CO2 Yukarıdaki grafiğe göre reaksiyon hızını belirleyen faktör ortam ışık şiddetidir ■Işık şiddeti-Isı Not:Fotosentezde açığa çıkan yan ürünler H2O O2 H2S S H2 Yan ürün yok Elektron ve H kaynağı Ortama verilen yan ürün CO2 yakalayıcılar KOH , NaOH , Ba(OH)2 , Ca(OH)2 Fotosentezin Hızı a)Kütle artışı b)Oluşan O2 miktarı c)Kullanılan CO2 miktarı ile ölçülür. Fotosentezde e. t.s (enerji seviyelerine göre.) 1-Ferrodoksin 2-Plastokinon (Flavoproteinler) 3-Sitokrom Bu sistem elemanları belirli enerji düzeyindeki elektronları yakalar ve enerji seviyelerini düşürerek bir sonraki elemana aktarırlar.Bu esnada serbest kalan enerji ile sistemde ADP+Pi nin ATP ye dönüşümü sağlanır Fotosentez Şartları ■CO2 ve H2O gerekir ■O2 açığa çıkar ( H2O kullanılırsa ) ■Işık karşısında olur ■Klorofilli hücrelerde gerçekleşir ■Nişasta meydana gelir DENEY 1 :Fotosentezde CO2 gerekliliği Yukarıdaki kurulu düzende sods ilave ediliyor. (soda içinde CO2 var.) CO2 eklenince gaz çıkışı fazlalaşıyor. Çıkan gaz O2 dir. Aynı deney şayet kaynatılmış soğutulmuş suda yapılırsa gaz çıkışı gözlenmez eğer suyuniçine CO2 içeren su ilave edilirse gaz çıkışı artar Sonuç: CO2 fotosentez için gereklidi DENEY 2 :Fotosentezde CO2 gerekliliği Bu deneyde kavanozun içindeki kısım lügolle boyanmaz. Nedeni CO2 ten yoksun olup fotosentez yapamamasıdır. Sonuç: fotosentez için CO2 gereklidir DENEY 3 :Fotosentezde ışık şiddetinin etkisi Bu deneyden ; fotosentez için ışığın gerekli olduğunu çıkarıyoruz. Işık miktarı arttıkça çıkan kabarcık miktarı artar. Bu artış belli bir seviyeyekadar olur. Çünkü bu olay yapraktaki enzim miktarı ve klorofil miktarı ile de ilgilidir. Sonuç:Işık şiddetinin artışı belli oranda fotosentezin hızını artırır. DENEY 4 :Fotosentezde CO2 kullanılır O2 açığa çıkar Bu deney düzeneğini düzenli kurarsak bir süre sonra bitki ölür.Çünkü giden havaya CO2 ve O2 vardır.O2 gerekli değildir.Fotosentez sonucu elde edilen O2 miktarı kullanılandan fazladır.Fakat giren havadaki CO2 ve solunumla ortaya çıkan CO2 ortamda bulunan KOH ve Ba(OH)2 tarafından yok edildiği için fotosentez yapılamaz. DENEY 5:Fotosentezde O2 açığa çıkar Deney tüpü içinde birikerek kibrit alevinde parlayan gaz O2 olduğu anlaşılır DENEY 6:Fotosentezde klorofil gerekliliği Sardunya yaprağı 7-8 saat gün ışığı aldıktan sonra klorofilleri saydamlaştırılarak lügolle boyandığında sadece önceden yeşil olan kısımlarının mavi-mor renge boyandığı görülür.Klorofil taşıyan yeşil bölgelerde gerçekleşen fotosentezle nişasta sentezlenmiştir DENEY 7:Fotosentez için ışık gereklidir Saksı çiçeğinin bir yaprağının yarısı ışık geçirmeyen nesne ile kapatılarak 7-8 saat ışıkta tutulur daha sonra bitkiden kesilerek saydamlaştırılır ve üzerine lügol dökülür renk değişimi gözlenir. Sonuçta açık kalan bölgenin mavi-mor renge boyandığını kapalı kısmın ise boyanmadığını görürüz DENEY 8:Fotosentezde organik madde (Nişasta) sentezlenir Saksı çiçeğinin bir yaprağının yarısı ışık geçirmeyen nesne ile kapatılarak 7-8 saat ışıkta tutulur daha sonra bitkiden kesilerek saydamlaştırılır ve üzerine lügol dökülür renk değişimi gözlenir. Sonuçta açık kalan bölgenin fotosentez sonunda nişasta sentezlediği için mavi-mor renge boyandığını kapalı kısmın ise boyanmadığını görürüz bu durum burada fotosentez gerçekleşmediği ve nişasta sentezlenmediğini gösterir.

http://www.biyologlar.com/ototrof-canlilarin-isik-enerjisini-kimyasal-enerjiye-nasil-donusturduklerini-tum-basamaklariyla-aciklayiniz-

Mutasyon Oranı

Kültürlerde oluşan spontan mutasyonlar az çok sabit bir durum gösterebilir. Mutasyon oranı her generasyonda, her bir hücreye isabet eden mutasyon miktarı ile ölçülür. Mutasyonlar genellikle, replikasyon sırasında ve yeni sentezlenen iplikçiklerde meydana gelirler. Parental DNA'da mutasyon çok azdır. Mutasyon oranı (MO) aşağıdaki şekilde hesaplanır. Ms MO = ¾¾¾¾¾ N1-No MO: Mutasyon oranı Ms: Mutasyon sayısı N0: Başlangıçtaki mikrop sayısı N1: Bir generasyon sonra mikrop sayısı Yukarıdaki formül yanı sıra, mutasyon sıklığını hesaplamada Poisson dağılımı formülünden de fazlaca yararlanılır. P(x)= ( mx/X!) e¾m e: Doğal logaritma (2.178) m: Her petrideki (tüpteki) ortalama mutant sayısı Bu formüle göre; 1- Hiç mutant ihtiva etmeyen tüp sayısı m=o), P(0)= e-m veya P(0) = -m 'dir. 2- Bir mutant ihtiva eden tüp sayısı (m = 1) P(1) = e-1 veya P(1) = 1/e = 0.37'dir.

http://www.biyologlar.com/mutasyon-orani

Ahtapotun Yumurtadan Çıkış Anı  ve Ahtapotun Yumurtlaması

Ahtapotun Yumurtadan Çıkış Anı ve Ahtapotun Yumurtlaması

Ahtapotlar kabuksuz bir kafadan bacaklıdır. Kayalar üstünde kollarıyla sürünerek ve suyu hunisinden püskürterek hareket eder. Küçük türleri kayalık ve yarıklar arasında gizlenerek avlanır.

http://www.biyologlar.com/ahtapotun-yumurtadan-cikis-ani-ve-ahtapotun-yumurtlamasi

ÇED SORULARI

1- Bitkisel atık yağların çevreye zararları nelerdir? Denize, akarsuya ve göle ulaşan bitkisel atık yağlar, kuşlara, balıklara ve diğer canlı türlerine zarar vermektedir. Atık bitkisel yağlar su yüzeyini kaplayarak havadan suya oksijen transferini önlemektedir. Atık yağlar zamanla suda bozunarak sudaki oksijeni tüketmektedir. Bitkisel atık yağlar atıksu toplama sistemlerinin (kanalizasyon, kollektörler vs.) daralmasına ve tıkanmasına neden olmaktadır 2- Bitkisel atık yağların kontrolü yönetmeliğinin amacı nelerdir? Bitkisel atık yağların üretiminden bertarafına kadar, • Doğrudan veya dolaylı bir biçimde alıcı ortama verilmesinin önlenmesini, • Atık yağların yönetiminde gerekli teknik ve idari standartların oluşturulmasını sağlamaktır. 3- Yönetmeliğe göre bitkisel atık yağlar kaç sınıfa ayrılır? Soap-Stock Tank Dibi Tortular Yağlı Topraklar Yağ tutuculardan çıkan yağlar Kullanılmış kızartmalık yağlar ile kullanım ömrü geçmiş yağlar 4- Bitkisel atık yağların kullanım alanları nelerdir? • Ürün geri kazanımı (Biyodizel, Sabun, Yemlik Yağ vb.) (Bakanlıktan toplama lisansı almış geri kazanım tesislerinde) • Enerji geri kazanımı (Bakanlıktan lisanslı tesislerde yakma) 5- Belediyelerce alınacak tedbirler nelerdir? • atık üreticilerinin geri kazanım tesisleriyle veya valilikten geçici depolama izni almış toplayıcılarla yıllık sözleşme yapmalarını sağlamak. • lokantalar, sanayi mutfakları, oteller, tatil köyleri, motel ve yemekhaneler, hazır yemek üretimi yapan firmalar ile diğer yerlerde gerekli denetimleri yaparak kullanılmış kızartmalık yağların kanalizasyona dökülmesini önlemek. • 2008 yılından itibaren kullanılmış kızartmalık yağların hanelerden toplanması için gerekli sistemi kurmak, halkı bu konuda bilgilendirerek atık yağ toplama faaliyetlerini 2008 yılı itibariyle başlatmak. 6- Yemeklik bitkisel yağ üreticilerinin yükümlülükleri nelerdir? - Kullanılmış kızartmalık yağları diğer atıklardan ayrı olarak temiz ve ağzı kapaklı bir kapta biriktiriniz. -Kullanılmış kızartmalık yağları, çevrenin korunması amacıyla kanalizasyona, toprağa, denize ve benzeri alıcı ortamlara dökmeyiniz. - Bu yağları kullanılmış kızartmalık yağ toplayıcılarına vermeye özen gösteriniz. 7- Atık Yağ Üreticisinin Yükümlülükleri nelerdir? • Atık yağları diğer atık madde ve çöplerden ayrı olarak biriktirmek, • Atık yağların biriktirilmesi için sızdırmaz, iç ve dış yüzeyleri korozyona dayanıklı toplama kaplarını kullanmak, • Atık yağları lisanslı taşıyıcılarla lisanslı geri kazanım veya bertaraf tesislerine göndermek, • Atık yağ sevkıyatında ulusal atık taşıma formu kullanmak ve her taşımadan sonra bunların bir kopyasını ilgili valiliğe göndermek, • Geri kazanım veya bertaraf tesisleriyle olabilecek uyuşmazlıkları ilgili valiliğe ve Bakanlığa bildirmek 8- Atık Yağlar nasıl taşınmalıdır? • Atık yağ taşımak isteyen gerçek ve tüzel kişilerin, ilgili valilikten taşıma lisansı alması gereklidir. Lisans, başvuruda bulunan firmaya ve firmanın araçlarına verilir. Bu lisans devredilemez ve üç yıl için geçerlidir. Araçların denetimleri ilgili valilikçe on iki aylık dönemlerde yapılır. • Taşıma aracı, beyaz renkte ve araç kasasının veya tankının her iki yüzünde yeşil renkte, dikey yüksekliği en az 20 cm olan Bitkisel Atık Yağ Taşıma Aracı ibaresi bulunacaktır. Taşıma araçlarının kasa veya tankları; sızdırmaz, koku önleyen ve kolaylıkla temizlenebilir bir sisteme sahip olması zorunludur. • Atık yağların taşınması sırasında araçlarda ulusal atık taşıma formu bulundurulması zorunludur. 9- Geçici depolama alanları Geri kazanım ve rafineri tesislerinde hammadde olarak atık yağların, proses atıklarının ve yan ürünlerin biriktirildiği yerlerdir. Kullanılmış kızartmalık yağların verimli bir şekilde toplanabilmesi için, geri kazanım tesisleri dışında geçici depolama alanları k9urulabilir. Toplayıcılar bu alanlar için valilikten geçici depolama izni almakla yükümlüdür. (il çevre ve ormn müd.) Toplayıcılar, geri kazanım firmasıyla yapılan sözleşme, tesis projesi ve işletme planıyla geçici depolama izni için valiliğe müracaat eder. Valilik müracaatı uygun bulması durumunda geçici depolama izni verir. Geçici depolama izni süresi, geri kazanım tesisinin mevcut toplama lisansı süresine göre verilir. Bu süre toplama lisansı süresini aşamaz. 10- Geçici depolama alanlarının teknik özellikleri nelerdir? • Geçici depolama alanının atık yağ ile temasta olan kısımlarında zemin geçirimsizliğinin sağlanması gerekir. • Atık kabul alanı yağmura karşı korunur. Beyaz renkte olacak depolama tanklarının üzerinde Bitkisel Atık Yağ ibaresi bulunur ve atığın cinsi tank üzerinde (soap-stock, tank dibi tortu, kullanılmış kızartmalık yağ ve benzeri) belirtilir. • Atık yağlar, geçici depolama alanlarında üç aydan fazla süre ile depolanmaz 11- Proseslerinin yeterliliği kimden alınır? -Biyodizel üretimi yapacak geri kazanım tesisleri için, Elektrik İşleri Etüt İdaresi Genel Müdürlüğü ve TÜBİTAK’tan, -Sabun, yemlik yağ ve diğer ürünlerin üretimini yapacak geri kazanım tesisleri için, TÜBİTAK ve bir üniversiteden alınacak teknik raporlarla belgelenir. 12- Atık yağların geri kazanım tesisleri için nereden izin alınır? Sabun üretimi için Sağlık Bakanlığından, yemlik yağ üretimi için Tarım ve Köyişleri Bakanlığından gerekli izinleri alır. Kullanılmış kızartmalık yağların canlılar üzerindeki kanserojen etkileri dolayısıyla yem ve sabun sanayinde kullanılması ilgili kurumların da işbirliği ile yasaklanmıştır. Kullanılmış kızartmalık yağlar yaygın olarak sadece biyodizel üretiminde kullanılabilir Atık yağlardan biyodizel üretimi yapacak tesisler, bu Yönetmelik kapsamında geri kazanım tesisi olarak değerlendirilir. Bu tesisler, Enerji Piyasası Düzenleme Kurumu’nun teknik düzenlemelerine uygun üretim yapar ve piyasaya arz edilen ürünlere ilişkin olarak lisanlı dağıtım firmalarından alınacak teslimatla ilgili belgeleri altı aylık dönemlerde Bakanlığa sunar. 13- Geri kazanım tesislerinin yükümlülükleri nelerdir? • Tesise getirilen atık yağların analizini yaparak üretici beyanına uygunluğunu tespit etmek, atık yağın uygun bulunması halinde ulusal atık taşıma formunu imzalayarak teslim almak ve atık taşıma formlarının bir nüshasını her taşımadan sonra ilgili valiliğe göndermekle, • Toplayıcılarla olan sözleşme iptalini ilgili valiliğe bildirmek, • Geri kazanım işlemleri sonucunda ortaya çıkan atıkları ve bunlarla kontamine olmuş malzemeleri bertaraf etmek veya ettirmek, buna ilişkin harcamaları karşılamakla, • Ürünlerin standartları sağlayıp sağlamadığını denetlemek amacıyla ürün analizlerini 6 aylık periyotlarda Bakanlığın uygun gördüğü akredite bir laboratuvara yaptırmak ve analiz sonuçlarını Bakanlığa göndermek 14- Atık yağlar nasıl bertaraf edilir? • Geri kazanım ürünlerine dönüştürülemeyen atık yağlar, • Geri kazanım işlemlerinde ortaya çıkan tehlikeli nitelikli atıklar ve bunlarla kirlenmiş malzemeler, • Atık yağ depolama tanklarının dip çamurları özelliklerine göre; Tehlikeli Atıkların Kontrolü Yönetmeliği, Katı Atıkların Kontrolü Yönetmeliği veya Çimento Fabrikalarında Atıkların Alternatif veya Ek Yakıt Olarak Kullanılmalarında Uyulacak Genel Kurallar Hakkında Tebliğ hükümlerine göre lisanslı tesislerde bertaraf edilir.

http://www.biyologlar.com/ced-sorulari-2

Hücre zedelenmesinin nedenleri ve zedelenmeye karşı hücrenin verdiği uyum yanıtları nelerdir; hasara uğrayan dokunun onarılması nasıl gerçekleşir?

Hücre Zedelenmesinin Nedenleri Hücre zedelenmesinde pek çok etken söz konusudur. Trafik dahil pekçok kazanın neden olduğu gözle görülen fiziksel travmalardan, belli bazı hastalıklarda neden olabilen defektli enzimleri oluşturan gen mutasyonlarına kadar sıralanabilir. Zedeleyici etkenler aşağıdaki gibi, sınıflanabilir. Oksijen Kayıpları: Hipoksi (oksijen azlığı- oksijen yetersizliği), hücre zedelenmesi veya ölümünün en önemli ve en çok görülen nedenidir. Hipoksi pekçok durumda görülür. Bunlar içinde en önemli olanı iskemidir. Hipoksi, iskemiden (kansızlık) farklıdır ve ayrılmalıdır. İskemi, dokulara gelen arteriyel akımın engellenmesi veya venöz dönüşün azalmasıyla ortaya çıkan dolaşımdaki kan kaybıdır. Bir bölgedeki kan akımının durması olarak özetleyebiliriz. İskemi, dokuları hipoksiden daha çabuk zedeler. Hipoksik doku zedelenmesi, karşımıza şu durumlarda çıkar. 1-İskemix: Mortalite (kalb hastalığı- miyokard enfarktüsü) ve morbiditenin (serebral ve renal iskemik hastalıklar) başlıca nedenidir. 2-Asfiksi (solunum zorluğu- solunum yetersizliği) nedeniyle, kanın oksijenizasyonundaki azalmaya bağlı olarak hücre zedelenmeleri ortaya çıkabilir. Buna kalb-akciğer hastalık- larında ve pnömonide görülen yetersiz kan oksijenlenmesi örnek verilebilir. 3-Anemixx veya karbon monoksit (CO) zehirlenmesinde görülen, kanın oksijen taşıma kapasitesindeki düşme, diğer bir örnek olabilir. Kimyasal Etkenler ve İlaçlar: Zehir olarak bilinen maddeler, tedavi amaçlı kullanılan bazı ilaçlar (hassas bünyeli kişilerde) ve ilaçların aşırı kullanılma durumlarında, hücre zede-lenmeleri meydana gelebilir. Hücrelerin bazı yaşamsal işlevlerini, örneğin membran permea-bilitesini, osmotik homeostazı (hücre içi denge) ve enzim entegrasyonunu (sistemi) bozarak, ciddi hücre zedelenmesi ve belki de tüm organizmanın ölümüne neden olabilir. Esasda zarar-sız olan glukoz ve tuz gibi kimyasallar, konsantre olduğunda osmotik çevreyi bozarak, hücre zedelenmesine ve hatta ölüme yol açabilir. Fiziksel Etkenler: Travma, sıcak ve soğuk olmak üzere aşırı ısı, ani ve farklı atmosfer basınç değişiklikleri, radyasyon ve elektrik şoku, hücre üzerinde geniş etkiler gösterir. Enfeksiyöz Etkenler: Bu grupta submikroskopik viruslardan, mikroskopik bakteri, riket- siya, fungus ve parazitlere kadar geniş bir mikroorganizma grubu bulunur. Mikrobiyolojik ajanlar olarak, salgıladıkları toksinler ve enzimlerle hücrenin metabolizmasını inhibe eder ve hücresel yapıları destrüksiyona uğratır. İmmunolojik Reaksiyonlar: Biyolojik etkenlere karşı vücudu koruyan immün sistem, bazı durumlarda immun reaksiyonlara neden olarak, hücre ve doku zedelenmesi meydana getirebilir. Yabancı proteinlere (antijen) karşı gelişen anaflaktik (allerjik) reaksiyon, önemli bir örnektir. Ayrıca bu grupta endojen antijenlerin sorumlu olduğu immunolojik reaksiyonlar söz konusu olabilir. Bunlar da “otoimmun hastalıklar” olarak sınıflanır. Radyasyon: Ultraviyole (noniyonize -güneş ışını) ışınlar hücrelere zarar vererek güneş yanıklarına neden olabilir. İyonize radyasyon hücrelerdeki moleküllere direkt etki yapıp, mo-lekül ve atomların iyonizasyonuna neden olarak veya hücre komponentleri ile etkileşen serbest radikal oluşumuna neden olarak hücrelere zarar verir. Genetik Defektler: Tek bir genin eksikliği veya yapısal bozukluğu, hastalığa neden olabi-lir. Doğuştan var olan metabolik depo hastalıkları ve bazı neoplastik hastalıklar gibi, bir çok hastalığın temelinde, genetik defektlerin rol oynadıkları bilinir. Beslenme Dengesizlikleri: Vücudun bazı aminoasitler, yağ asitleri, vitaminler gibi, orga-nik ve inorganik maddeleri besinlerle alması gerekir. Beslenme yetersizliğinde ortaya çıkan protein ve besin eksikliği, doku hasarlarına neden olabilir. Besinlerin eksikliği gibi, aşırılıkla-rında, ortaya çıkan şişmanlık ve atheroskleroz da morbidite ve mortaliteye zemin hazırlaya-rak, zarar verir. Obesite, tip 2 diyabetes mellitus riskini arttırır. Hayvansal yağ yönünden zen-gin olan gıdalar, atheroskleroz ve kanseri de içeren pekçok hastalığın oluşumundan sorumlu olabilir. Yaşlanma; hücre zedelenmesine neden olan diğer bir örnekdir. Yıllar geçtikçe hücrelerde çoğalma ve kendini onarma yeteneklerinde meydana gelen azalmalar ve buna bağlı ölümler oluşur. Hücre Zedelenmesinin Mekanizmaları Hücre zedelenmesine neden olan pek çok farklı yol vardır; fakat bunların hepsi öldürücü değildir. Bununla birlikte, herhangi bir zedelenmeden kaynaklanan, hücre ve doku değişiklik-lerine yol açan, biyokimyasal mekanizmalar oldukça karmaşıktır ve diğer intrasellüler olaylar ile sıkıca birbiri içine girmiştir. Bu nedenle, sebep ve sonuçları birbirinden ayırdetmek müm-kün olmayabilir. Bir hücrenin yapısal ve biyokimyasal komponentleri o kadar yakın ilişkide-dir ki, zedelenmenin başlangıç noktası önem taşımayabilir; fakat pek çok sekonder etki süratle oluşur. Yine de hücre zedelenmeleriyle ilgili bilinen pekçok özellik vardır. Örneğin siyanürle aerobik solunumun zehirlenmesi, intrasellüler osmotik dengenin korunması için elzem olan sodyum, potasyum ve ATP aktivitelerinde azalmalara neden olur. Bunlar korunamadığı za-man, hücre süratle şişer, rüptüre olur ve nekroza gider. Hücre hasarlarına neden olan, bazı zedeleyici ajanların patojenik mekanizmaları çok iyi ta-nımlanmıştır. Örneğin, siyanürle zehirlenmede mitokondriyada oksijen taşıyıcı bir enzim olan sitokrom oksidazın inaktive edilmesiyle, ATP’yi tüketerek, hipoksi yoluyla hasar meydana getirir, yani intrasellüler asfiksiye yol açar. Yine aynı şekilde anaerobik bazı bakteriler, fosfo-lipaz salgılayarak hücre membran fosfolipidlerini parçalayıp, hücre membranında direkt hasar meydana getirir. Hücre zedelenmesinin pekçok şeklinde, hücreyi ölüme götüren moleküler mekanizmalardaki bağlantıları anlamak bu kadar kolay değildir. Reversibl zedelenmenin neden olduğu hücresel bozukluklar onarılabilir ve zedeleyici etki hafifletilebilirse, hücre normale döner. Kalıcı veya şiddetli zedelenme, o bilinmeyen “dönüşü olmayan nokta” yı aşarsa irreversibl zedelenme ve hücre ölümü meydana gelir. İrreversibl zedelenme ve hücre ölümüne neden olan “dönüşü olmayan nokta”, hala yeterince anlaşılama-mıştır. Sonuç olarak; hücre ölümüne neden olan bilinen ortak bir son yol yoktur. Bütün bunla-ra rağmen, hücre ölümünü anlamak ve açıklayabilmek için, bir miktar genelleme yapılabilinir. İrreversibl hücre zedelenmesinin patogenezinde başlıca iki olay vardır. Mitokondrial disfonk-siyonun düzelmeyişi (oksidatif fosforilasyon ve buna bağlı ATP üretiminin yapılamaması) ve hücre membranındaki ağır hasardır. Bunu ispatlayan kanıtlar vardır. Lizozomal membran-lardaki zedelenme enzimatik erimeye neden olup, hücre nekrozunu ortaya çıkarır. Zedelenme İle İlgili Bazı Özellikler: -- Zedeleyici stimulusa hücresel yanıt, zedeleyicinin tipine, onun süresine ve şiddetine bağlı- dır. Bu nedenle düşük dozda toksinler veya iskeminin kısa sürmesi, reversibl (dönüşlü) hücre zedelenmelerine neden olur. Halbuki daha büyük toksin dozları veya daha uzun süreli iskemik aralar, irreversibl (dönüşsüz) zedelenme ile sonuçlanır ve hücre ölüme gider. -- Tüm stresler ve zararlı etkenler, hücrede ilk etkilerini moleküler düzeyde yapar. Hücre ölü- münden çok önce, hücresel fonksiyonlar kaybolur ve hücre ölümünün morfolojik değişiklikle- ri, çok daha sonra ortaya çıkar. Histokimyasal veya ultrastrüktürel teknikler, iskemik zedelen- medeki değişiklikleri birkaç dakika ile birkaç saat içinde görülebilir hale getirir. Örneğin, myokardial hücreler iskemiden 1, 2 dk sonra, nonkontraktil (kasılamama) olur. İskeminin 20- 30 dk’sına kadar, ölüm meydana gelmez. Ölümden sonraki değişikliklerin, ultrastrüktürel dü-zeyde değerlendirilmesi için, 2- 3 saat, ışık mikroskobu ile görülebilme düzeyine gelebilmele-ri için (örn. nekroz), 6- 12 saat geçmesi gerekir. Morfolojik değişikliklerin çıplak gözle görü-lebilir hale gelmesi, daha da uzun bir zaman alır. -- Zedeleyici stimulusun sonuçları; zedelenen hücre tipine, hücrenin uyum yeteneğine ve ge-netik yapısına bağlı olarak da farklılıklar gösterir. Örneğin, bacaktaki çizgili iskelet kası, 2- 3 saatlik iskemileri tolere edebilir. Fibroblastlar da dirençli hücrelerdir. Buna karşın kalb kası hücresi (myosit), yalnızca 20-30 dakikalık zaman içinde ölüme dayanabilir. Bu zaman, nöron- da 2- 3 dakikadır. -- Farklı zedeleyici etkenler, nekroz veya apoptoz şeklinde hücre ölümüne neden olur. ATP de kayıplar ve hücre zarı hasarları, nekrozla ilişkilidir. Apoptoz; aktif ve düzenli bir olaydır. Proğramlanmış bir hücre ölüm biçimidir ve burada ATP kayıpları yoktur. -- Hücre zedelenmesi hücre komponenetlerinden bir veya bir kaçında ortaya çıkan biyokimya-sal veya fonksiyonel bozukluklardan kaynaklanır. Zedeleyici stimulusun en önemli hedef nok-taları şunlardır: (a)Adenozin trifosfat (ATP) üretim yeri olan mitokondriler, (b)hücre ve organellerinin iyonik ve osmotik homeostazı için gerekli olan hücre membranı, (c)protein sentezi, (d)genetik apareyler (DNA iplikciğinin bütünlüğü) ve (e)hücre iskeleti çok önemlidir. Membran Permeabiltesindeki Defektler: Hücre membranı; iskemi, bazı bakteriyel tok-sinler, viral proteinler, kompleman komponentleri, sitolitik lenfositler veya birçok fiziksel- kimyasal etkenlerle direkt zarar görebilir. Ayrıca birçok biyokimyasal mekanizma, hücre membran hasarına etken olabilir. Kısaca gözden geçirelim. - Fosfolipid sentezinde azalma: Oksijendeki düşmeler ATP sentezinde azalmalara, ATP’nin azalması da fosfolipid sentezini düşürür. Fosfolipid kaybına bağlı olarak, membran hasarı meydana gelir. - Fosfolipid yıkımında artma: Hücre içi (sitozolik) kalsiyum artımı, fosfolipazları aktifleştirir. Bu da membran fosfolipidlerin parçalanmasını- yıkımını arttırır. - Lipid yıkım ürünlerinde artma: Fosfolipidlerin parçalanması, yıkılması, lipid yıkım ürünleri-ni arttırır. Bu ürünlerin birikimi, geçirgenliği bozarak zarar verir. - Reaktif oksijen türevleri (serbest radikaller): Hücre membranında lipid peroksidasyonuna neden olup, zarar verir. - Hücre iskelet anormallikleri: Hücre iskeleti iplikcikleri, hücre içini hücre zarına bağlayan ça-palar olarak görev yapar. Hücre içi kalsiyumun artması, proteazları aktifleştirerek hücre iske-leti proteinlerini parçalar, bu şekilde hücre zarını hasarlar. Hücre İskeleti: Sitoplazmik matriksde; mikrotübüller, ince aktin flamanlar, kalın flaman-lar ve değişik tiplerde ara flamanlardan oluşan, karmaşık bir ağ yapısı “hücre iskeleti” olarak tanımlanır. Bunlara ek olarak hücre iskeletinde, nonflamentös ve nonpolimerize proteinler de vardır. Bu yapısal proteinler sadece hücrenin şekil ve biçimini korumakla kalmaz, aynı za-manda hücre hareketinde de önemli bir rol oynar. Hücre iskelet bozuklukların da; hücre hare-keti ve intrasellüler organel hareketleri gibi, hücrelerde fonksiyon defektleri görülür. Ayrıca hücrenin fagositoz yetenekleri de kaybolur. Bunlar lökosit gibi özel hücreler ise, lökosit göçü ve fagositoz yeteneklerinde kayıplar ortaya çıkar. Mitokondriyal Zedelenme: Memeli hücrelerinin tümü, temelde oksidatif metabolizmaya bağlı olduğundan mitokondriyal bütünlük hücre yaşamı için, çok önemlidir. Mitokondri hüc-renin “enerji santralı” olarak bilinir. ATP hücredeki bütün intrasellüler metabolik reaksiyonlar için, gereken enerjiyi sağlar. Mitokondrilerde üretilen ATP deki enerji, hücrelerin yaşamı için elzemdir. Yine bu mitokondriler, hücre zedelenmesi ve ölümünde de çok önemli bir rol oynar. Mitokondriler sitozolik (hücre içi) kalsiyumun artmasıyla, serbest radikallerle (aktif oksijen türevleri), oksijen yokluğunda ve toksinlerle zedelenebilir. Mitokondriyal zedelenmenin iki ana sonucu vardır: 1)Oksidatif fosforilasyonun durmasıyla ATP nin progresif olarak düşmesi, hücre ölümüne götürür. 2)Aynı zamanda mitokondriler bir grup protein içerir. Bunlar içinde apoptotik yolu harekete geçiren protein (sitokrom c) de bulunur. Bu protein, mitokondride enerji üretimi ve hücrenin yaşamı için, önemli bir görev yapar. Eğer mitokondri dışına sitozo-le sızarsa, apoptozisle ölüme neden olur. Bazı nonletal patolojik durumlarda mitokondriaların sayılarında, boyutlarında, şekil ve fonksiyonlarında çeşitli değişiklikler olabilir. Örneğin hücresel hipertrofide, hücre içindeki mitokondri sayısında artma vardır. Buna karşın atrofide, mitokondri sayısında azalma görülür. ATP Tüketimi: Hücrelerin enerji deposu olarak bilinen ATP, adenozin difosfat (ADP) ve 1 fosfat (P1) ile mitokondride -üretilir- sentezlenir. Bu işlem oksidatif fosforilasyon olarak tanımlanır. Ayrıca oksijen yokluğunda glikolitik yol ile glukozu kullanarak ATP üretilebilir (anaerobik glikolizis). ATP, hücre içindeki tüm sentez ve parçalama işlemlerinde gereklidir. ATP, hücresel osmolaritenin korunması, membran geçirgenliği, protein sentezi ve temel metabolik işlevler gibi, hemen her olayda çok önemlidir. ATP kayıplarının başlıca nedenleri; iskemiye bağlı oksijen kayıpları ve besin alımında azalma, mitokondri hasarı ve siyanür gibi, bazı toksinlerin etkileri sayılabilir. Kalsiyum Dengesindeki Değişmeler: İskemi ve belli bazı toksinler, belirgin bir şekilde hücre dışı kalsiyumun plasma membranını geçerek hücre içi akışına yol açar. Bunu, hücre içi depolardan ( mitokondri, endoplazmik retikulum) kalsiyumun açığa çıkması izler. Bu hücre içi artan kalsiyum, sitoplazmada bulunana bazı enzimleri aktifleştirir. (1)Fosfolipazları aktive ederek, fosfolipid yıkımına neden olur. Fosfolipid azalması ve lipid yıkım ürünlerinin de açı-ğa çıkmasına neden olur. Bu katabolik (yıkım) ürünler, hücre membran zedelenmesine neden olur. (2)Proteazlarıx (protein parçalayan enzim) aktive ederek, hem membran hem hücre iske-leti proteinlerinin parçalanmasına neden olur. hücre iskeletinin hücre membranından ayrılma-sına ve böylelikle, membranda yırtılmalara neden olur. (3)Adenozin trifosfatazlara (ATPas) etki ederek adenozin trifosfat (ATP) azalmasını hızlandırır. (4)Endonükleazları aktive eder, DNA ve kromatin parçalanmasından sorumludur. Sonuç olarak intrasellüler kalsiyumun art-ması, hücrede bir dizi zedeleyici etki yaparak, hücre ölümüne sebebiyet veren en önemli et-kendir. Hücre Zedelenmesinde Serbest Radikallerin Rolü Hücre zedelenmesinde önemli mekanizmalardan birisi de, aktive edilmiş (reaktif) oksijen ürünlerine (serbest radikaller) bağlı zedelenmedir. Hücre membranına ve hücrenin diğer elemanlarına zarar verir. Serbest radikallerin sebep olduğu hasarlar; iskemi-reperfüzyon hasarıx, kimyasal (hava kir-liliği, sigara dumanı, bitki ilaçları gibi çevresel faktörler) ve radyasyon zedelenmesi, oksijenin ve diğer gazların toksisitesi, hücresel yaşlanma, savunma sisteminin fagositik hücrelerce mikropların öldürülmesi, iltihabi hücrelerin oluşturduğu hücre hasarı ve makrofajlarca yapılan tümör hücrelerinin destrüksiyonu şeklinde sıralanır. Serbest radikallerin hücrelerde yaptığı hasarlar: a)Lipidlerin peroksidasyonuna neden olarak hücre membran hasarı yapar. b)Protein hasarı yaparak, iyon (Na/K) pompası dengesini bozar. c)DNA yı haraplayarak, yetersiz prote- in sentezine neden olur. d)Mitokondrial hasar yaparak, ATP yokluğuna neden olup etkisini gösterir. Oksijen yaşamsal olarak çok gerekli bir molekül olmasına karşın, oksijenin aşırı miktarlar- da bulunduğu durumlar veya çeşitli kimyasal ajanlarla oluşturdukları oksidasyon reaksiyonları ile ortaya çıkan serbest oksijen radikallerinin, hücreye zarar verme riski vardır. Bunlar oksijen zararına örnektir. Paslanmanın bilimsel adı, oksitlenmedir. Vücudumuzdaki hücreler de oksit- lenir ve yaşlanır. Serbest radikallerin (bunlar oksidan moleküller, oksitleyiciler olarak da bili- nir) yıkımına karşı, hücrelerde harabiyeti önleyen, sınırlayan veya onaran gibi, pek çok koru- yucu mekanizma vardır. Bunlara “serbest radikal savaşcıları” (antioksidanlar- oksitlenmeyi önleyiciler) adı verilir. Bunları enzimatik ve nonenzimatik olarak iki ana grupta inceleyebili- riz. Bunların dışında serbest radikallerin, stabil olmadıklarından spontanöz (kendiliğinden) bozulmaları da söz konusudur. Enzimatik Antioksidanlar: Hücrede oluşan serbest radikallerin yok edilmeleri bir dizi enzi-matik olay ile gerçekleşir. Antioksidan enzimlerle yapılan savunmanın önemli bir bölümünü; süperoksit dismutaz, glutatyon peroksidaz ve katalaz oluşturur. Süperoksit radikali, süperoksit dismutasyonla; hidrojen peroksit ise, katalaz ve glutatyon peroksidaz enzimleri ile nötralize edilir. Hidrojen peroksitin parçalanmasında katalaz direkt etkilidir. Nonenzimatik Antioksidanlar: Bu savunma başlıca endogenös ve ekzogenös antioksidanlar tarafından sağlanır. Ekzogenöse örnek; vitamin E (tokoferoller), vitamin C (askorbik asid), beta karoten (A vitaminin yapı taşı) gibi vitaminlerdir. Ekstrasellüler antioksidan olarak serü-loplasmin sayılabilir. Vitamin C ve E’nin vücudu serbest radikallerin yıkıcı etkilerinden koru-duğu düşünülür. Bu antioksidanlar serbest radikallere kendi elektronlarından birini verip, elektron çalma reaksiyonunu sonlandırmasıyla nötralize eder. Antioksidan besinler elektron vermekle, kendileri serbest radikallere dönüşmez; çünki her iki şekilde de stabildir. Bunlar çöpcüler gibi hareket ederek hastalık oluşmasına neden olacak, hücre ve doku hasarlarını ön-ler. Antioksidan besinlere diğer örnekler; eser miktardaki mineraller bakır, çinko ve selen-yumdur. Bu mineraller bazı antioksidan enzimlerin gerekli komponentleri olduğundan, anti-oksidan görevi görür. Kimyasal (Toksik) Zedelenme: Kimyasal maddeler iki mekanizmadan birisiyle hücre zedelenmesine neden olur. (1)Bazı kimyasal maddeler, moleküler komponentlerle veya hüc-resel organellerle direkt birleşerek etki eder. Birçok antineoplastik kemoterapotik ajanlar, doğrudan sitotoksik etkileriyle hücre hasarlarına neden olur. (2)Diğer mekanizmada ise, bazı kimyasal maddeler, biyolojik olarak aktif değilken, toksik metabolitlere dönüştükten sonra, aktif olur ve hedef hücrelerde etkilerini gösterir. Burada indirekt etki söz konusudur. Bu tip değişme genellikle karaciğer hücrelerinde oluşur. x Kan akımının kesilmesiyle (iskemi) eğer hücreler reversibl olarak zedelenirse, kan akımının yeniden düzelme-siyle hücrelerde iyileşme görülür; fakat bazı durumlarda iskemiye uğramış bir dokuda, kan akımının yeniden sağlanmasına (reperfüzyon) rağmen, zedelenme giderek daha da kötüleşir. Buna “iskemi- reperfüzyon hasarı” (reperfüzyon nekrozu) adı verilir. Klinik olarak çok önemli olan, kalb ve beyin enfarktüslerindeki doku hasarla-rında bu şekilde bir zedelenmenin bariz katkısı vardır. Bu olayın nedeni, bölgede serbest radikallerin miktarının artması olabilir; çünki bu toksik oksijen ürünleri, reperfüzyon anında iskemik alana gelen lökositler tarafından bol miktarda ortama salınmıştır. İskemiye uğramış dokuda reperfüzyon oluşmasa bile, sonuçta bu bölgede letal iskemik hücre hasarı yine meydana gelecektir; fakat hasar, bu sefer serbest radikallerle değil, iskemik zedelen-me, hipoksi (oksijen yetersizliği) nedeniyle ortaya çıkacaktır. Serbest Radikaller: Serbest radikaller (oksidan ürünler) ile antioksidan etkileşimini anlamak için, ilk önce hücreler ve moleküller hakkında biraz bilgi sahibi olmak gerekir. İşte bu nedenle burada lise kimyasına kısaca bir göz atalım. İnsan vücudu pekçok farklı tip hücreden oluşmuştur. Hücreler de birçok değişik tip moleküllerden oluşmuştur. Mole- küller, bir veya daha fazla atomlardan, bir veya daha fazla elementlerin kimyasal bağlarla birleşmesinden mey-dana gelmiştir. Atomlar; tek bir nüve (çekirdek), nöronlar, protonlar ve elektronlanlardan oluşur. Atom çekirde- ğindeki protonların (pozitif yüklü parçacıklar) sayısı, atomu çevreleyen elektronların (negatif yüklü parçacıklar) sayısını belirler. Elektronlar kimyasal reaksiyonlarla ilgilidir ve molekül oluşturmak için, atomları birbirine bağ-layan maddedir. Elektronlar atomu yörünge biçiminde bir veya birkaç kat kabuk şeklinde çevreler. En içteki ka-buk iki elektrona sahip olduğunda dolar. İlk kabuk dolduğu zaman, elektronlar ikinci kabuğu doldurmaya başlar. Bir atomun kimyasal davranışını belirleyecek en önemli yapısal özellik, dış kabuktaki elektron sayısıdır. Dış ka-buğu tamamen dolu olan bir madde, kimyasal reaksiyonlara girme eğiliminde değildir, stabildir (hareketsiz). Atomlar maksimum stabiliteye ulaşmak için, dış kabuğunu dolu hale getirmeye çalışırlar. Atomlar genellikle di-ğer atomlarla elektronlarını paylaşarak dış kabuklarını doldurmaya çalışır. Serbest radikaller dış yörüngede eşleş-memiş (çiftlenmemiş) tek bir elektronu bulunan kimyasal moleküllerdir. Bu özellikleri nedeniyle son derece değişken- dengesiz yapıda olduğundan, kolayca inorganik ve organik kimyasallarla reaksiyona girer. Bunlar hem organik hem de inorganik moleküller halinde bulunur. Diğer bileşiklerle süratle reaksiyona girerek, stabilite kazanmak için, gerekli elektronu kazanmaya çalışır. İşte serbest radikaller en yakın stabil moleküle saldırarak o moleküllün elektronunu çalarak zararlı etkisini gösterir. Serbest radikal tarafından saldırılan molekül, elektro-nunu kaybedip serbest radikale dönüşür. Süreç bir kez başlayınca ardışık zincirleme olaylar, canlı hücrenin yaşa-mının bozulmasıyla sonuçlanır. Hücrelerde oluştuğu zaman, hücresel proteinler ve lipidler olduğu kadar nükleik asidlerle de süratle etkileşek onları parçalar. Buna ek olarak serbest radikaller otokatalitik reaksiyonları başlatır. Serbest radikallerle reaksiyona giren moleküller, yeni serbest reaksiyonlara dönüşerek zincirleme hasarlara yol açar. Hücre içinde pekçok reaksiyon, serbest radikallerin oluşumundan sorumludur. Çeşitli reaksiyonlar sonucu bunlar ortaya çıkar. Bunlar aşağıda özetlenmiştir. 1- Hücre içi metabolik olaylar sırasında oluşan redüksiyon- oksidasyon (redoks) reaksiyonlarında görülür. Bu olaylarda; süperoksit radikali (O2-), hidrojen peroksitx (H2O2) ve hidroksil radikali (OH) gibi, önemli serbest radikaller oluşur. Hücre içinde oluştuğunda süratle çeşitli membran molekülleri olduğu kadar, proteinleri ve nük-leik asidleri (DNA) de parçalayarak hasar verir. Böyle DNA hasarları; hücre ölümünde, yaşlanmada ve malig-niteye dönüşümde söz konusudur. Normal koşullarda bu serbest radikaller, antioksidanlarla yok edilebilir. Eğer antioksidanlar yoksa veya serbest radikal üretimi çok artarsa, hücrelerde hasar kaçınılmaz olacaktır. 2- Radyasyon enerjisinin (ultraviyole ışık, X- ışınları) absorbsiyonunda iyonize radyasyonun etkisiyle hücre içindeki su hidrolize olur. Suyun bu radyolizisi sonucu hidroksil (OH) ve hidrojen (H) serbest radikalleri ortaya çıkar. 3- Demir ve bakır gibi değişimli metaller, bazı hücre içi reaksiyonlarda elektron alıp verme özellikleri nede-niyle serbest radikaller ortaya çıkar. 4- Ekzogenös (dış kaynaklı) kimyasal maddelerin enzimatik metabolizması sonucu karbon tetraklorid (CCl4) den, karbon tetraklorür (CCl3) serbest radikali oluşur. 5- Nitrik oksit (NO), endotel hücreleri ve makrofaj gibi, bazı tip hücreler tarafından sentez edilen, serbest radikal gibi davranan önemli bir kimyasal medyatördür. Nitrik oksit oksijenle reaksiyona girdiğinde, NO2 ve NO3 gibi, diğer serbest radikalleri de oluşturur. x Hidrojen peroksit (H2O2), kendisi serbest radikal değildir, bu nedenle reaktif oksijen türevi olarak adlandırılır. STRESE KARŞI HÜCRESEL ADAPTASYON Normal bir hücre, değişen çevre şartlarına göre, yapı ve fonksiyonunu (işlevini) belirli ölçülerde değiştirerek yaşamını devam ettiren bir mikro evrendir. Bu oluşum, stresler çok ciddi olmadığı sürece, kendini koruma eğilimindedir. Eğer hücre, aşırı fizyolojik strese veya bazı patolojik stimulasyonlara (uyarılara) maruz kalırsa, stresin devam etmesine rağmen, adaptasyon (uyum) göstererek sağlığını korur. Hücresel adaptasyon, normal hücre ile zedelen- miş hücre arasında kalan bir durumdur. Hücresel adaptasyonlar başlıca atrofi, hipertrofi, hiperplazi ve metaplazidir. Hücre adaptif gücü aşıldığında veya hiç adaptif yanıt sağlanamadı- ğında hücre zedelenmesi ortaya çıkar. Hücre zedelenmesi bir noktaya kadar reversibldir (geri dönüşlü); fakat ciddi veya kalıcı streslerle irreversibl (geri dönüşsüz) hale gelir ve hücre so-nuçta ölüme gider. İrreversibl zedelenme, hücre ölümüne yol açan, kalıcı patolojik değişiklik- leri. ifade eder. Reversibl hasardan, irreversibl hasara ne zaman geçtiği kesin olarak bilinme- mektedir. Bu bölümde özellikle patolojik olaylarda, hücre büyüme ve farklılaşmasıyla (diferansiyas-yon) ortaya çıkan adaptif değişikliklere değineceğiz. Bunlar; atrofi (hücre boyutunun küçül-mesi), hipertrofi (hücre boyutunun büyümesi), hiperplazi (hücre sayısının artması) ve meta-plaziyi (hücre tipindeki değişiklik) içermektedir. Ayrıca displazi (hücrelerde şekil bozukluğu) hipoplazi, atrezi, agenezis ve aplazinin anlamlarını açıklayacağız. Atrofi: Hücrenin madde kaybına bağlı olarak hacmının küçülmesi “atrofi” olarak bilinir. Atrofi, adaptif yanıtın bir şeklidir. Yeterli sayıda hücre etkilendiğinde, tüm doku veya organ hacmında küçülme olur ve organ atrofik şekle dönüşür. Gerçi atrofik hücrelerde fonksiyon azalmıştır ama bu hücreler ölü değildir. Atrofik hücre daha az mitokondria, myoflament ve endoplazmik retikulum içerir. Birçok durumda atrofiye, artmış bir otofaji (kendini yiyen) eşlik eder. Atrofinin nedenleri şunlardır: (1)İnaktivite atrofisi; iş yükünün azalması söz konusudur. Çalışmayan, fonksiyon görmeyen organ veya doku atrofiye uğrar. Uzun süre alçıda kalan ekstremitelerde kas atrofisi görülebilir. Felçlilerde, felçli taraf kaslarında inaktivite nedeniyle atrofi olur. (2)İnnervasyon (sinir uyarı) kaybı; poliomyelitisde olduğu gibi, innervasyon kay-bına bağlı meydana gelen paralizilerde söz konusu kas dokularında atrofiler görülür. Burada da fonksiyon kaybı söz konusudur. (3)Kanlanmanın azalması, (4)yetersiz beslenme, (5)endo-krin stimülasyon (uyarı) kaybı; menoposda hormon kayıpları örnek verilebilir ve (6)yaşlan-maya bağlı atrofiler meydana gelir. İleri yaşlardaki kişilerin beyinlerinde görülen atrofilere “senil atrofi” denir. Senil atrofi ve menoposda hormon stimülasyon kayıpları, fizyolojik atro-fiye örnektir. Patolojik atrofiye, innervasyon kaybı örnek verilebilir. Hipertrofi: Hipertrofi, hücrelerin hacımlarının artmasını tarif eder ve böyle bir değişiklik- te organın hacmı da büyüyecektir. Bu nedenle hipertrofiye organda yeni hücreler yoktur, yal- nızca büyük ve iri hücreler vardır. Hücre hacmının artımı, sıvı alımının artımı ile ilgili değil- dir. Sıvı alımıyla ilgili olanı, hücre şişmesi veya ödem olarak adlandırılır; fakat hipertrofide daha çok ultrastrüktürel komponentlerin (proteinler ve organeller) sentezinde bir artım söz konusudur. Hipertrofi, fizyolojik veya patolojik olabilir ve organdaki fonksiyonel artım veya spesifik hormonal stimülasyon, bunun oluşmasına neden olabilir. Gebelik anında, uterusun büyümesi, fizyolojik bir olaydır. Uterus düz kas hücrelerinde oluşan artım, hem hipertrofi ve hem de hiperplazi nedeniyledir. Patolojik hücresel hipertrofiye örnek, hipertansiyon veya aortik valvül hastalığı sonucu ortaya çıkan kardiyak büyüme gösterilebilir. Her bir myokard lifi hipertrofiye olarak, hücre büyümesi ve hacım artışı göstererek, bu artan yüke karşı, kalbin daha fazla bir güç ile pompalamasını sağlar. Kas kitlesinin büyümesi, bir sınıra ulaştıktan sonra, artan yükü kompanse edemez ve kalb yetmezliği ortaya çıkar. Bu safhada myokardiyal liflerde bir dizi dejeneratif değişiklikler ve hücre ölümü ortaya çıkar. Kalb ve iskelet kasında-ki çizgili kas hücreleri, en fazla hipertrofi gösterebilme yeteneğinde olan hücrelerdir. Belki de bu, hücrelerin artan metabolik gereksinimlere mitotik bölünme ve yeni hücre şekillenmesiyle 8 yanıt veremediğindendir. Hipertrofinin kesin mekanizması ne olursa olsun, Bunların en önem-lisi myofibriler kontraktif elemanlarının erimesi ve kaybıdır. Hiperplazi: Hiperplazi, bir doku veya organda hücre sayısındaki artışı belirtir ve böylelik- le volüm olarak da artış vardır. Hücreler, fonksiyonel gereksinim artmasına bir yanıt olarak nasıl hipertrofiye olursa, aynı şekilde stress altında kalınca veya stimüle edilince, mitotik bölünerek çoğalırlar. Bu şekilde organ veya dokuda hücre sayısının artmasına “hiperplazi” adı verilir. Hücre sayısı artması ile, organ veya dokunun büyümesi söz konusudur. Hiperplazi gösteren hücrelerin fonksiyonlarında artma olur. Özellikle bu, iç salgı gudde hücrelerinde belirgindir. Vücuttaki her hücre tipinin hiperplazik kapasitesi yoktur. Örnek; kalb ve iskelet kası ile sinir hücreleridir. Epidermis, intestinal epitel, hepatositler, fibroblastlar ve kemik iliği hücreleri hiperplaziye uğrar. Hiperplazi; fizyolojik ve patolojik olarak ikiye bölünebilir. Fizyolojik Hiperplazi: Fizyolojik hiperplazi de ikiye ayrılır. (1)Hormonal hiperplazi; en iyi örnek puberte (ergenlik) ve gebelikte; meme glandüler epitel proliferasyonu ve ayrıca gebelikte uterusda kas hücrelerinde hiperplazi ve hipertrofi görülür. Menstrüel siklusdaki “proliferatif faz” (endometrial proliferasyon) fizyolojik bir hiperplazidir. (2)Kompensatuvar hiperplazi; parsiyel hepatotektomi yaparak, karaciğer dokusunun bir parçasının çıkarılmasın-dan sonra, karaciğerin rejenerasyon kapasitesi ile yeni karaciğer hücreleri yapılır. Patolojik Hiperplazi: Patolojik hiperplazinin pek çok şeklinde, aşırı hormonal veya büyü-me faktörü stimülasyonu vardır. Normal menstrüel perioddan sonra, endometrial doku gudde-lerinde aşırı proliferasyon görülür. Bu endometrial proliferasyon esasda fizyolojik bir hiper-plazidir; fakat hormonal dengelerin bozulduğu bazı durumlarda (östrojen ve progesteron ara-sındaki balans) östrojenin artması durumunda, endometrium guddelerinde aşırı bir hücre artı-mı ortaya çıkar. Bu endometrial hiperplazi sonrası, kanser sürpriz olmamalıdır; çünki endo-metrial hiperplazilerde kanser riski vardır. Ayrıca, endometrial hiperplazi, anormal menstrüel kanamaların başlıca nedenidir. Prostat kanseri tedavisi için, östrojen hormonu verildiğinde veya karaciğer sirozunda oldu-ğu gibi, östrojenin inaktivite edilemediği durumlarda, hastalarda hiperöstrinizm (östrojen fazlalığı) ortaya çıkar. Bu gibi, erkek hastaların memelerinde büyümeler (jinekomasti) meyda- na gelir. Kanın kalsiyum düzeyindeki uzun süreli düşmeler, paratiroid salgılıklar üzerine uyarıcı etki yapar, paratiroid hiperplazisi (sekonder hiperparatiroidizm) saptanır. ACTH veril- mesi sonucu, sürrenal korteks hiperplazisi gelişir (Cushing sendromu)x. Patolojik hiperplaziye örnek olarak iltihabi iritasyon ve enfeksiyon hiperplazisini göstere- biliriz. Kötü yapılmış bir protez, alttaki dokuda epitel ve bağ dokusu olmak üzere hücre proli- ferasyonlarına neden olur. Bunlara “iltihapsal fibröz hiperplazi” denir. Protez vuruğu hiper- plazisi veya epulis fissuratum olarak adlandırılır. Hiperplazi, yara iyileşmesindeki bağ dokusu hücrelerinin verdiği önemli bir yanıt olabilir. Prolifere olan fibroblast ve kan damarı hücreleri bir onarım işlemine yol açarak bir granulasyon dokusunu oluşturur. Bu hücreler, fibroblast ve endotel hücreleri, büyüme faktörlerinin stimülasyonu (uyarısı) ile prolifere olarak hiperplazi- ye neden olur. Büyüme faktörlerinin stimülasyonu, keza human papilloma virus gibi bazı viral enfeksiyonlarda da hiperplazilere neden olarak karşımıza çıkabilir. Bu tür lezyonlara örnek, deride görülen bildiğimiz deri siğilleridir (verruka vulgaris). Gerçi hipertrofi ve hiperplazi tanımlamada iki farklı olaylarsa da, aynı mekanizma tarafından başlatılır ve pek çok durumda beraber oluşur. x Cushing Sendromu : Adrenokortikal hiperfonksiyonu, Cushing sendromuna neden olur. Bu fazlalığın nedenleri (1)adrenal bezinde (salgılığında) hiperplazi, (2)adenoma veya karsinoma gibi, tümörler (3)hastanın ağızdan uzun süre kortizon alması ve (4)hipofiz hiperfonksiyonu (ACTH hipersekresyonu) dur. Bütün bunlar, adrenal salgılığına aşırı salgı yaptırır. Klinik olarak, Buffalo tipi şişmanlık, düşük omuz, kalın boyun, aydede yüz hastalığın özelliğidir. Karın derisinde çizgilenme, akne, osteoporoz, hipertansiyon görülür. Kadınlarda hirsutizm (kıllanma) amenore ve mental bozukluk, diğer özelliklerdir. Metaplazi: Metaplazi adült (matür= erişkin) bir hücre tipinin (epitelyal veya mezanşimal) yerini, diğer bir adült hücrenin alması şeklinde olan reversibl bir değişikliktir. Olumsuz çevre koşullarına karşı dayanabilmek için, strese duyarlı hücrelerin daha dirençli hücre tipine dönü-şerek gösterdiği adaptif cevaptır. Bu tür adaptif metaplaziye en güzel örnek, “skuamoz meta-plazi” dir. Sigara (içme gibi, kötü) alışkanlığı olan kişilerde solunum yollarındaki (trakea ve bronş epiteli) silli- silendirik epitel yerini, stratifiye skuamoz epitel hücrelerinin almasıdır. Tükrük salgılığı kanalı ve safra kesesi kanalı taşlarının varlığında olan kronik iritasyon, bura-lardaki sekretuvar silendrik epitelin yerini nonfonksiyonel stratifiye skuamoz epitel alabilir. A vitamini yetersizliği de, solunum yolu epitelini skuamoz metaplaziye uğratır. “Müköz meta-plazi” kronik bronşitte psödostratifiye silli solunum yolu epiteli, mukus salgılayan basit silen-dirik epitele dönüşebilir. Metaplazi mekanizması, adaptif bir yanıt olarak, mezankim hücrele-rinde de oluşur. Fibroblastlar kemik ve kıkırdak yapan osteoblast veya kondroblastlara dönü-şebilir. Örneğin; osteoid ve kemik dokusu yumuşak dokuda özellikle zedelenme alanında nadiren oluşur, buna “osseöz metaplazi” denir. Hipoplazi: Özel yapısı aynı kalmakla beraber, normal boyutuna ulaşamayan organlar için kullanılan bir terimdir. Bu bir eksik gelişmedir. Organın görünümü normal, fakat hacım bakı- mından küçüktür. Beyinin tam gelişemeyerek küçük kalmasına “mikrosefali” adı verilir, bu hipoplaziye bir örnektir. Gelişmesini tamamlamamış ve küçük kalmış bir diş, hipoplazik diş olarak adlandırılır. Aplazi: Tam gelişememiş bir organı tarif eder. Bir organın çok küçük ve biçimsiz olması durumudur. Bir taraftaki böbreğin taslak halinde bulunmasıdır. Agenezi: Bir organ veya dokunun konjenital bir bozukluk nedeniyle taslak halinde bile bulunmamasına “agenezis” denir. Bir organa ait doku kalıntılarının olmaması durumudur. Dental agenez olarak, çok nadir de olsa rastladığımız lateral veya üçüncü molar dişlerdeki hiç gelişememe örnekleri vardır. Atrezi: Barsak karaciğer ve safra kanalı gibi, duktal veya lümenli organların kanal açıklı-ğının olmamasıdır. REVERSİBL VE İRREVERSİBL HÜCRE ZEDELENMESİNDE IŞIK MİKROSKOBİK DEĞİŞİKLİKLER Klasik patolojide öldürücü olmayan (nonletal) zedelenme sonucu ortaya çıkan morfolojik (yapısal- biçimsel) değişikliklere “dejenerasyon (yozlaşma)” olarak söz edilirdi; fakat bugün bunlara daha basit olarak, reversibl (geri dönüşlü) değişiklik adı verilmektedir. İki ana mor-folojik değişiklik şeklinde karşımıza çıkar: (1)Hücresel şişme ve (2)yağlanma. Hücresel Şişme: Hücre içi sıvı ve iyon dengesinin bozulduğunda görülür. Hidropik de-ğişme veya vakuoler dejenerasyon olarak da adlandırılan hücresel şişme, hücrede hemen her tip hasarın ilk göstergesi ekstrasellüler suyun, hücre içine geçmesi neticesi olan hücredeki büyüme “hücresel şişme” olarak bilinir. Hücre şişmesi, reversibl bir olaydır ve hafif hasarın (zedelenmenin) işaretidir. Makroskopik olarak hücresel şişmede organlar büyümüştür; sert ve soluk görünümlü olup, ağırlıkları artmıştır. Mikroskopik olarak hücre sitoplasması bulanık, nükleus (nüve= çekirdek) ise soluk görünümlüdür. Yağlı Değişme (Yağlanma- Steatozis): Yağlı değişme parankimal hücrelerde anormal yağ (trigliseritler, kolesterol ve kolesterol esterleri) birikimini belirtir. Yağlanma ise, daha az görülen bir reaksiyondur. Hücre içindeki küçük ve büyük vakuoller, hücrede lipid artışını gösterir. Yağlı değişme öldürücü olmayan (reversibl) zedelenmenin belirtisidir; fakat etken ortadan kaldırılmazsa, bazen öldürücü olabilir. Yağ metabolizmasının ana organı olması nede-niyle yağlı değişme, en sık karaciğer dokusunda görülür; fakat kalb, böbrek, kas ve diğer organlarda da oluşabilir. Karaciğerdeki yağlı değişmenin en önemli nedeni, alkol bağımlılığı-dır. Alkol bir hepatotoksiktir. Yağlı karaciğer daha sonra, siroz olarak adlandırılan ilerleyici karaciğer fibrozisine yol açabilir. Yağlı karaciğere neden olan diğer etkenler; obesite, toksin-ler, protein malnutrisyonu, diyabetes mellitus ve anoksidir. İskemik ve Hipoksik Zedelenme İskemi veya dokudaki kan akımı azalması, klinik tıpta hücre zedelenmesinin en yaygın görülen nedenidir. Hipoksinin ilk etkilediği yer, hücrenin solunum merkezidir (aerobik solu-numu) ki burası, mitokondrilerdeki oksidatif fosforilasyonun olduğu yerdir. Oksijen basıncı düştükçe ATP nin hücre içi yapımı, bariz bir şekilde azalır ve durur. ATP kaybı, hücrede genel olarak bir çok sistemi etkiler. Hücre dışı kalsiyumun, hücre içi girişine neden olur. Hipoksi ve ATP azalmasının en erken sonuçlarından birisi, hücresel şişmedir (hücresel ödem). Protein normalde hücre içinde daha fazla olduğu için, hücre içi osmotik kolloidal basınç yük-sektir. Diğer taraftan sodyum (Na) ve diğer bazı iyonların konsantrasyonu dış ortama göre, hücre içinde daha düşüktür. İntrasellüler sodyumun azlığı, hücre membranında ATP enerjisine dayanan “sodyum pompası” ile sağlanır. Potasyum (K) konsantrasyonu ise, dış ortama göre hücre içinde daha yüksektir. ATP azalmasıyla bu sistem bozulur. Potasyum dışarı çıkmaya, sodyum hücre içine girmeye başlar. Sodyum ile birlikte hücre içine su girişi olur. Sonuçta iç ve dış ortam dengeye vardığında, hücre içinde normalden çok fazla su bulunacaktır ve hücre şişecektir. Hücresel Yaşlanma: Bu deyim; hemen daima subletal (reversibl) zedelenmenin progresif (ilerleyici) birikimleri, hücresel fonksiyonla uyum içinde davranır ve hücre ölümüne yol açabilir veya en azından hücrenin bir zedelenmeye karşı verdiği yanıt kapasitesindeki azalma- yı anlatır. Yaş ile pekçok hücre fonksiyonu progresif olarak azalır. Mitokondrial oksidatif Fosforilasyon (aerobik solunum), strüktürel, enzimatik ve reseptör proteinlerinin sentezindeki gibi, giderek azalır. Yaşlanan hücrelerde besin alımlarında ve kromozomal hasarların onarı-mında belirgin azalmalar görülür. Yaşlı hücrelerin ultrastrüktürel yapılarında da morfolojik değişiklikler gözlenir. Şekil bozukluğu gösteren nüveler, pleomorfik vaküollü mitokondriler, endoplazmik retikulumda azalma ve lipofussin pigment birikimi vardır. Hücresel yaşlanmada serbest radikal hasarı, önemli hipotezlerden birisidir. İyonizan radyasyon olarak tekrarlayan çevresel etkilenme, antioksidan savunma mekanizmalarının (örn vitamin E, glutatyon peroksi- daz) progresif bir şekilde azalması veya her ikisi birden beraberce etki ederek serbest radikal hasarı oluşturur. Lipofussin birikimi yaşlanmış hücrelerde bu tür hasarın açıklayıcı bir göster- gesidir; fakat pigmentin kendisinin hücreye toksik olduğuna dair deliller yoktur. Serbest radi- kaller mitokondrial ve nükleer DNA hasarını harekete geçirebilir. Zedelenmeye Karşı Hücre İçi Yanıtlar Lizozomal Katabolizma (Parçalama): Primer lizozomlar esas fonksiyonu sitoplazma içi sindirim olan, çok sayıda ve çeşitte sindirici (hidrolitik) enzim içeren, membranla çevrili vezi- küllerdir. Her hücrede bulunursa da özellikle fagositik aktivite gösteren hücrelerde (makrofaj, lökosit) bol miktarda bulunur. Bugüne kadar 50’den fazla hidrolitik (parçalayıcı) enzim tanımlanmıştır. Lizozomal örneklerden bazıları; asid hidrolaz (organik materyale örn. Bakteri-ye karşı rol oynar), lizozim (lökositlerde olduğu kadar makrofajlarda da bulunur. Mikroorga-nizmaların hidrolizinde rol oynar), proteaz (proteinlerin parçalanmasına neden olur; elastin, kollagen ve bazal membranda bulunan proteini yıkar) ve diğerleri asit fosfataz, glukoronidaz, sülfataz, ribonükleaz, deoksiribonükleaz, elastaz, kollagenaz ve lipaz’dır. Lizozomlar tarafın-dan parçalanma şu iki yoldan birisiyle oluşur. Otofaji: Hücrenin kendi içeriğinin (komponentler), yine hücrenin kendi lizozomları tara-fından sindirilmesidir. Kendini yeme anlamındadır. Pekçok durumda mitokondri ve endoplaz-mik retikulum gibi, hücre organalleri zedelenmeye maruz kalırsa hücre normal fonksiyonları-nı koruyabilmek için, bunları yok edebilmelidir. Zedelenmiş veya yaşlanmış organellerin belli bir düzen içinde yok edilmesi bir hücresel yenilenmedir. Ayrıca besinsiz kalan hücrenin kendi öz içeriğini yemek suretiyle kendi yaşamını sürdürmesi olayıdır. Otofaji, özellikle atrofiye giden hücrelerde belirgindir. Heterofaji: Bir hücrenin özellikle makrofajın, dış ortamdan hücre içine aldıkları maddeleri sindirmesi olayına, heterofaji denir ve otofajinin karşıtıdır. Bir materyalin dış çevreden alın-ması olayı, genelde “endositozis” olarak adlandırılır. Büyükçe partiküler materyal için, “fago-sitozis” ve küçük solubl (eriyebilir) makromoleküller için de “pinositozis” terimi kullanılır. Dış ortamdan alınan partikül hücre içine girdiğinde, vakuolle çevrilir. Bunlar fagozom (fago-sitik vakuol) olarak adlandırılır. Bu fagozomlar, primer lizozomlarla kaynaşır, artık sekonder lizozom (fagolizozom) dur. Heterofaji, genelde “profesyonel fagositler” olarak bilinen lökosit (PNL -mikrofaj) ve makrofajlarca (histiosit) yapılır. Lökositler bakterileri, makrofajlar da hücre debrilerini sindirir. Sindirilmiş atıkların hücreden dışarı atılma olayına “ekzositozis” denir. N E K R O Z İ S Canlı organizmada (doku ve organ) ışık mikroskopi ile saptanan, hücre ölümü sonucu ortaya çıkan morfolojik değişikliklere “nekroz” denir. Nekrozis, Yunan dilinde ölüm anla-mındadır. Kan gereksinimi kesintilerinde (iskemik zedelenme) veya belli bazı toksinlerle karşılaşılması durumunda ortaya nekroz çıkar. Nekrozdaki morfolojik görünüm, aslında aynı anda oluşan iki olayın sonucu olabilir: (1)Hücrenin enzimatik yıkımı (organellerin parçalan-ması) ve (2)makromoleküllerin denaturasyonu (proteinlerde yapı değişiklikleri). Bir hücrenin enzimatik sindirimi, kendi lizozomal enzimlerinden kaynaklanıyorsa “otoliz” olarak tanımla-nır. Hücre kendi- kendini sindirir. Otosindirimde nekroz meydana gelir. Postmortem otoliz, tüm organizma öldükten sonra oluşur ve bu bir nekroz değildir. Çevreye gelen bakteri ve lökosit lizozomlarından türeyen hidrolitik (katalitik) enzimlerle olan sindirime de “heteroliz” adı verilir. Bu şekilde de hücre dıştan gelen enzimatik etki ile nekrotik olur. Biyopsi ve rezek-siyon gibi, cerrahi işlemlerle vücuttan alınıp fiksatife (%10’luk formalin) konulan doku parça-sındaki hücreler de ölüdür; fakat nekrotik değildir. Fiksatifler dokuların yapısal bütünlüğünü (morfolojiyi) korur. Hücre ölümünün temel işaretleri nüvede bulunur. Ölüme giden hücrelerde nüve değişiklik- leri şu üç görünümden birisini gösterir. Bunların hepsi kromatin ve DNA nın parçalanmasına bağlıdır. Nüve büzüşür ve küçülür, kromatin yoğunluğu artmıştır. Bazofilik nüve olarak söz edilir, (1)piknozis olarak adlandırılır. Piknozis apoptotik hücre ölümünde de görülür. Zaman içersinde piknotik nüvede parçalanma olayı meydana gelir. Nüve küçük düzensiz parçacıklara bölünmüştür (2)karyorekzis olarak adlandırılır ve (3)karyolizis olarak bilinen nükleer mater-yallerin çözülme ve erimesi söz konusudur. Kromatinin bazofilliği solabilir. Sonuçta, nekrotik hücrede nüve tümüyle kaybolur. Bu arada sitoplazmik değişiklikler de görülür. Sitoplazmada homojenizasyon ve belirgin eosinofili artışı vardır. Artık bu safhada nekrotik hücre; çekirdeği olmayan asidofilik bir atığa dönmüştür. Geleneksel olarak birçok farklı tiplerde nekrotik doku görünümleri tarif edilmiştir. Koagülasyon Nekrozu: En çok görülen nekroz tipi, koagülasyon nekrozudur. Genel ola-rak doku yapısı korunmuştur. Nekrotik doku içinde, hücre elemanları hayalet hücre şeklinde görüntü verir, hücrelerin dış hatları seçilebilir. Nekrotik alan asidofilik opak görünümlüdür. Bu nekroz tipi, daha çok kan akımının kesilmesiyle iskemi (hipoksi) sonucu ortaya çıkan enfarktlarda oluşur. Bakteriyel toksinler, viruslar ve iyonize radyasyon gibi, pek çok etken de neden olabilir. Bu tip nekroz iltihabi yanıtı harekete geçirir. Hasarlı doku fagositler tarafından ortadan kaldırılır ve bölge onarım veya rejenerasyona uğrar. Kalb (myokard enfarktüsü) ve böbrek gibi, organlarda daha sık görülür. Kazeifikasyon Nekrozu: Bu nekroz, farklı- özel bir nekroz tipidir. Başlıca tüberküloz enfeksiyonlarında oluşur. Bu nekroz tipinin karakteristik makroskopik yapısı, bir çeşit peyniri hatırlatan yumuşak, parçalanabilir gri- beyaz görünümde olmasıdır. Bu görünümü nedeniyle “kazeös” terimi kullanılır. Mikroskopik olarak hiçbir hücre detayı görülmez, dokunun yapı özellikleri tamamen silinmiştir. Yerine amorfös, granüler ve eosinofilik bir doku geçmiştir. Likefaksiyon Nekrozu: Bu tip nekroz, iki durumda karşımıza çıkar. Bunlardan biri enzim sindiriminin baskın olduğu durumlarda söz konusudur. Güçlü hidrolitik enzimlerin aksiyonu sonucu oluşur. Başlıca fokal bakteri (özellikle pyojenik mikroorganizmalar) enfeksiyonların- da görülür. Dokuda belirgin yumuşama ve likefaksiyon vardır; abse buna bir örnektir. Hücre ölümü sonrası bölgede bulunan bakteri ve lökositlerin hidrolitik enzimleri ile çevre doku hüc- relerinin otolizi ve heterolizisi sonucu ortaya çıkar. Lökositlerle dolu abse kavitesi oluşturarak doku defekti meydana getirir. Püy’ün oluşmasıyla karakterli süpüratif enfeksiyondur. Diğeri, santral sinir sisteminde iskemi sonucu oluşan hücre ölümü, likefaksiyon nekrozudur. Hemorajik Nekroz: Venöz drenajda blokaj olduğu dokularda ekstravaze kırmızı kan hücrelerinin çevreyi kaplaması sonucu, dokuların nekroze olmasıdır. Gangrenöz Nekroz: Çoğunlukla diyabetli kişilerde, özellikle alt ekstremitelerde ayak ve ayak parmaklarında görülür. Dokuda iskemik hücre ölümü ile ortaya çıkan koagülasyon nek- rozunun özel bir formudur. Bölgede mevcut bakterilerin ve çevreden gelen lökositlerin like- faktif aksiyonunun oluşur. Koagülasyon nekrozu ön planda olduğu zaman, bu olay gelişir. İskemiye neden olan damar tıkanıklığı, lökosit göçünü engellerse, nekroza uğrayan hücrelerin parçalanması önlenir ve ortadan kaldırılmayan nekrotik hücreler mumyalaşır. Buna “kuru gangren” denir. Salim doku ile sınırı belirgindir. Nekrotik bölgeye bakteri invazyonu ve löko- sit göçü olursa, likefaksiyon nekrozu gelişir, “yaş gangren” terimi kulanılır. Yaş gangrene, putrefaksiyon (kokuşma) nekrozu da denir.Vincent spiroketleri, fusiform basiller ve daha bazı mikroorganizmaların eklenmeleri söz konusudur. Beslenme defektli direnci düşük çocuklarda orafasiyal dokularda ortaya çıkan “noma” (gangrenöz stomatit) olarak adlandırılan lezyon da bir çeşit yaş gangrendir. Noma (Gangrenöz Stomatitis- Şankrum Oris): Oral ve fasial dokularda destrüktif yapısı ile karakterize, süratle yayılan daha çok 2- 5 yaşlardaki beslenme defektli veya debilite (yıkıcı) sistemik hastalıklara sahip çocuklarda görülen nadir bir hastalıktır. Kişinin genel sağlığıyla belirgin bir uyum gösteren doku nekrozu, başlangıçta fuziform basiller ve Vincent spiroketleri gibi, anaerobik bakterilerin invazyonu ve sonrasında stafilokokus aureus, streptokokus pyo-gens gibi, diğer çeşitli mikroorganizmalar tarafından invazyona uğrayan spesifik bir enfeksi-yondur. Gerçi pnömoni, sifiliz, tüberküloz, lösemi ve sepsis gibi, zayıf düşürücü sistemik has-talıklar yanısıra malnütrisyon, en sık görülen predispozan faktörlerdir. Noma çok nadir görülür. Gelişmemiş ülkelerde, özellikle malnütrisyon veya protein defek- ti gösteren durumlarda ortaya çıkar. Lezyon özellikle gingival mukozada küçük ağrılı bir ülser şeklinde başlar. Çevre dokuya süratle yayılır. Alttaki yumuşak dokuya penetre olan, sonunda yüz derisini perfore eden akut gangrenöz bir hastalıktır. Nekrozlara bağlı olarak meydana ge- len doku kayıpları sonucu, kemik dokusu ve dişler açığa çıkar. Etkilenen bölgede dişler dökü- lür. Noma, çok sınırlı ve daha benign yapıda olan “akut nekrotizan ülseratif gingivitis”e (ANUG) bir çok özellikleriyle benzemektedir. Her ikisinde de etken aynı mikroorganizmalar-dır ve olay, doku nekrozu ile sonuçlanır. Ayrıca her iki lezyonda da bağışıklık yönünden düşük (immünosüprese) kişiler söz konusudur. Gerçi nadir de olsa, ANUG’dan noma’ya dönüşen olgular da vardır. Son zamanlarda yapılan araştırmalarda, HIV/AIDS’li hastalarda noma’nın görülme sıklığının artmış olduğu gözlenmiştir. Mikroskopi; nonspesifik yoğun nek-roz ve belirgin yaygın bir iltihabi hücre reaksiyon gösterir. Tedavi; enfeksiyonun kendisi kadar, hastalığa neden olan predispozan faktörlerin de yok edilmesini içermelidir. Uygulanan antibiyotik tedavisi yanında, hastanın sıvı- elektrolit denge- sinin ve beslenmesinin sağlanması gerekir. Eğer çevre dokuda yoğun destrüksiyon varsa, do- kudaki nekrotik debrilerin temizlenmesi gerekir. Noma’da mortalite; antibiyotiklerden önce yaklaşık %75 idi. Gerçi bu lezyon hala ciddi bir problemdir. “Gazlı gangren”; özellikle Clostrdium welchii’nin etken olduğu, sporlu anaerobik Clostri-dia grubunun yaptığı spesifik bir enfeksiyondur. Klostiridya sporlarının bulaştığı delici yara-lanmalarda, güçlü ekzotoksinler ile proteolitik enzimler çevre dokuyu haraplar, hatta fatal (öldürücü) olabilir. Yağ Nekrozu: Yağ dokusu hasarı iki şekilde oluşur. 1)Travmatik yağ nekrozu; meme gibi yağ içeren dokularda oluşan şiddetli zedelenme sonucu ortaya çıkar. 2)Enzimatik yağ nekrozu (lipolizis); pankreasdaki ağır bir iltihabın sonucu ortaya çıkan, akut hemorajik pankreatitisin komplikasyonudur. Proteolitik ve lipolitik pankreatik enzimlerinin aksiyonu sonucu, yağ do-kusunda ortaya çıkan bir tip nekrozdur. Fibrinoid Nekroz: Bu gerçek bir nekroz özelliği göstermez. Bazı hipersensitivite (aşırı duyarlık) reaksiyonlarında görülür. Genellikle immünolojik olarak zedelenen damar duvar- larında koyu eosinofilik boyanan fibrine- benzer homojen görünümlü bir madde birikimiyle karakterlidir. Bu birikim; fibrin, immünoglobulin ve plasma proteinlerinden oluşur. A P O P T O Z İ S Apoptozis, köken olarak apo (ayrı), ptozis (düşen) kelimelerinden oluşmuştur. Apoptoz (kopma, düşme) sonbaharda yaprak dökümünü tanımlayan bir kelimedir. Farklı ve önemli bir hücre ölümü biçimi olan apoptoz, proğramlanmış veya seçici hücre ölümüdür, hücre intiharı ile eş anlamlı olarak kullanılmaktadır. Bir grup içinde belli bazı hücrelerin kendi- kendilerini yok ettikleri proğramlı bu ölüm biçimi, diğer bir hücre ölümü olan nekrozdan farklı olduğu bilinmelidir. Nekroz, yalnızca patolojik durumlarda ortaya çıkar ve iltihabi reaksiyon mevcut-tur. Apoptoz, hiçbir zaman iltihabi reaksiyona neden olmaz. Organizmanın dengeli yaşamını sağlayan apoptoz, fizyolojik olduğu kadar patolojik olaylarda da rol oynamaktadır. Önemi, biyolojik olaylarda gereksiz ve zararlı hücrelerin yok edilişini sağlamasından, organizmanın kendi iç dengesinin devamlılığına katkıda bulunmasından ileri gelmektedir. Apoptoz, fizyolojik ve patolojik olmak üzere pek çok durumda karşımıza çıkar. Fizyolojik Apoptoz : 1-Embriyogenezis sırasında aşırı yapılmış hücrelerin proğramlı olarak ortadan kaldırılması olayında görülür. 2-Erişkinlerde hormon bağımlı dokuların gerilemesinde (involüsyon═ organ atrofisi) görü-lür: Postlaktasyonel (sütten kesilmiş) meme salgı hücrelerinde regresyon, menopozda ovarian follikül atrofisi, menstrüel siklusda endometrium hücrelerindeki ölüm, örnektir. 3-Prolifere hücre topluluklarındaki hücre kayıpları; buna örnek barsak kriptlerindeki epitel hücre sayılarının sabit tutulmaları için, hücre ölümü örnek verilebilir. 4-İltihabi yanıtın sonlandırılması; ekstravazasyondan sonra, iltihabi dokuda görevini ta-mamlamış lökositlerin ölümü, apoptozis ile olmaktadır. 5-Sitotoksik T lenfositler tarafından oluşturulan hücre ölümü: Virus ve tümör hücrelerine karşı oluşturulan bir savunma mekanizmasıdır. Bunların öldürülerek elimine edilmelerini sağ- lar. Patolojik Apoptoz : 1-DNA hasarı: Radyasyon, sitotoksik antikanser ilaçları, aşırı ısı (soğuk, sıcak) ve hipoksi, gibi, nekroz oluşturan bu etkenler, düşük dozlarda uygulandığı zaman hücre intiharını tetikler. DNA, direkt olarak veya serbest radikaller aracılığıyla zedelenebilir. Eğer hasar onarılamazsa, interensek (içsel) mekanizmalar tetiklenerek apoptoz indüke edilir. DNA daki mutasyonların malign değişme riski bulunduğu için, bu durumdaki hücrelerin apoptoz ile yok edilmeleri bir kazançtır. Apoptozda, tümör süpresör (baskılayıcı) gen olan TP53 (p53) ün aracılığı söz konu-sudur. Bir antionkogen olan bu genin (TP53), apoptozu harekete geçiriçi bir etkisi vardır. 2-Hatalı sarmalanmış proteinlerin birikimi. Gen mutasyonları ve serbest radikaller sonucu ortaya çıkan bu proteinler, endoplasmik retikulumda aşırı birikir ve hücrenin apoptotik ölü-müne neden olur. 3-Hücre zedelenmesine neden olan bazı infeksiyonlar, özellikle viruslar, apoptotik ölüme neden olur. 4-Paranşimal organlarda (pankreas, tükrük salgılığı ve böbrek) kanal tıkanmalarından son-ra ortaya çıkan patolojik atrofi. Apoptoz Mekanizması ve Morfolojisi Bu tip hücre ölümünün morfolojik yapısı, koagülasyon nekrozundan farklıdır. Apoptoz da gözlenen başlıca morfolojik değişiklikler, en iyi biçimde elektronmikroskopi ile gözlenebi- lir. Hücre, su ve elektrolit kaybı ile birlikte yapısal elementlerinin yoğunlaşması sonucu dansi-tesinde artma meydana gelir ve volümlerinin yarısını kaybeder ve hacım olarak küçülür. Apoptoz ışık mikroskobunda tanınabilir. Histolojik olarak tek hücre veya hücre gruplarında hematoksilen- eosin ile boyanmış kesitlerde yoğun eosinofilik sitoplazma içinde, yoğun nük- leer kromatin parçalarına sahip, yuvarlak veya oval kitleler olarak görülür. Nüve kromatini yoğundur (piknotik) ve sonuçta karyoreksiz oluşur. Bu sırada hücre süratle büzüşür, önce sito- plazmik tomurcuklar sonra, parçacıklar şeklinde beliren “apoptotik cisimcikler” oluşur. Bun-lar membranla çevrili nükleer ve sitoplazmik organeller içeren parçacıklardır. Bunlar süratle makrofajlar ve komşu doku hücreleri tarafindan fagosite edilir. HÜCRE İÇİ BİRİKİMLER Bazı koşullar altında normal hücreler, anormal miktarlarda çeşitli maddeler biriktirebilir. Bu maddelerin birikimi geçiçi veya kalıcı olabilir. Bunlar hücreye zarar vermeyebilir veya bazen toksik olabilir ve hücrede ciddi zedelenme yapabilir. Maddelerin birikim yeri sitoplaz- ma veya nüvedir; sitoplazmada en çok lisosomlardadır. Bu intrasellüler birikimler üç grupta incelenir: (1)Normal endogenös madde, normal miktarlarda üretilir; fakat bunu kullanacak metobolizma hızı yeterli değildir (normal bir maddenin çok fazla birikmesi). Buna örnek “karaciğer hücrelerinde görülen yağlı değişme” verilebilir. Ayrıca hücre içinde su, glikojen ve protein birikimleri, örnek verilebilir. (2)Anormal endogenös madde birikir; çünki bu endoge- nös maddeyi metabolize edebilecek enzimlerde defekt söz konusudur. Bunun önemli nedeni doğuştan varolan genetik enzimatik defektir ve bu metabolitin parçalanmasında yetersiz olur. Sonuçta hücre içi birikimler ortaya çıkar. Bunlar, “depo hastalıkları” olarak tanımlanır. Tay- Sacks hastalığında gangliosid, Gaucher hastalığında glukoserebrosid ve Niemann- Pick hasta-lığında da sfingomyelin birikimleri, örnek verilebilir. (3)Hücreye dışarıdan alınan anormal ekzojen madde depolanmasıdır. Bunları parçalayıp yok edecek yeterli metabolizma yoktur ve diğer alanlara da taşınamadığı için, bu birikimler ortaya çıkar. Solunum yoluyla alınan kar-bon- kömür veya silika partiküllerinin akciğerde birikimi ve tatuaj (döğme) pigmentleri buna verilebilecek en güzel örnekleridir. Bu pigmentler makrofajlardaki fagolisosomlarda dekatlar-ca kalabilir. Lipidler: Sayfa 11 de yağlı değişmeyi (yağlanma) tekrar okuyunuz. Kolesterol: Makrofajlar, iltihabi bir alandaki nekrotik hücrelerin lipid artıklarını fagositik aktiviteleri ile tutarlar. Bu da bir çeşit hücre içi lipid birikimidir. Bu hücrelerin sitoplazmaları, küçük lipid vakuolleri ile dolar ve köpüksü bir görünüm alır. Bunlara “köpük hücreleri” adı verilir. Aterosklerozda düz kas hücreleri ve makrofaj sitoplazmaları, lipid vakuolleri (koleste- rol) ile doludur. Bunlara aterosklerotik plak denir. Proteinler: Lipid birikimine oranla çok daha nadir görülür. Hücreler içindeki protein fazlalığı, morfolojik olarak sitoplazmada görülebilen pembe renkli hyalin damlacıklar şeklin-dedir. Hücre içindeki protein birikimi; (a)hücrenin aşırı proteine maruz kalıp, hücreye alınma-sı şeklinde olur veya (b)hücrede protein sentezinin aşırı yapılması şeklindedir. Bu birikim şe-killerine örnek vermek istersek; böbrek, albumini glomerüllerden filtre ederken, proksimal tüplerden az bir kısmını tekrar geri emer. Aşırı proteinüriye (idrarda fazla protein kaybı) neden olan böbrek hastalıklarında (glomerülonefritler), haliyle protein daha fazla miktarda reabsorbsiyona uğrayacaktır. Bu protein reabsorbsiyonu nedeniyle tüp epitel hücrelerinde aşırı birikme meydana gelir. Plasma hücrelerinde muhtemelen antijen uyarılarına yanıt olarak gra-nüllü endoplasmik retikulumda sentezlenen immünoglobulin birikimi olursa, “Russell cisim-ciği” olarak adlandırılan homojen eosinofilik inklüzyonlar (cisimcikler) görülür. Glikojen: Glikoz veya glikojen metabolizma bozukluğu olan hastalıklarda hücre içinde aşırı miktarda glikojen birikimi görülür. Glikojen birikimini, su veya yağ vakuollerinden ayır- mak gerekir. Glikojen, sitoplazmada PAS pozitif şeffaf (saydam) vaküoller şeklinde görülür. Diyabetes mellitus (şeker hastalığı), glikoz metabolizma bozukluğunun başlıca örneğidir. Bu hastalıkta glikojen; karaciğer hücreleri, pankreasdaki Langerhans adacıklarındaki beta hücre-leri ve kalb kası hücrelerinde (kardiyak myosit) olduğu kadar, böbrek tüp epitellerinde de biri- kir. Ayrıca “glikojen depo hastalıkları” veya “glikogenoz”lar olarak adlandırılan, birbiriyle yakın ilişkili bir grup genetik hastalıklarda hücre içinde glikojen aşırı birikir. Bu hastalıklarda glikojenin, yapım ve yıkımıyla ilgili enzim defekti nedeniyle metabolize edilemez ve aşırı birikim nedeniyle, sekonder hücre zedelenmesi ve hücre ölümü ortaya çıkar. Hyalin Değişiklik Hyalin terimi; hücre içi birikimin veya hücre incinmesinin spesifik işeretinden daha çok, tarif edici bir terim olarak kullanılır. Hücre içinde veya ekstra boşluklarda hyalin olarak tanımlanan değişiklikler hematoksilen- eosin ile boyanan rutin histolojik kesitlerdeki homoje- nös, camsı, saydamsı pembe görünümde madde birikimleridir. Bunlar intrasellüler birikimler veya ekstrasellüler depositler olarak tarif edilir. İntrasellüler hyalini değişikliklere örnekler şunlardır: (1)Aşırı proteinüri de, böbrek tüp epitel hücrelerinde geri emilen protein, hyalin damlacıklar şeklinde görülür. (2)Plasma hücrelerinde küresel hyalin depositler şeklinde immunoglobulin birikimleri olur (Russell cisimcikleri). (3)Bir çok viral enfeksiyonda, nüve veya sitoplazmada hyalin inklüzyonlar görünümünde oluşumlar vardır. Bunların bir kısmı, viral nükleoprotein birikimleridir. “İnklüzyon cisimcikler”i olarak adlandırılır. (4)Alkoliklerin karaciğer hücrelerinde “alkolik hyalin” denilen hyalin inklüzyonlar görülür. Ekstrasellüler hyalini analiz etmek bir dereceye kadar güçtür. Eski skar (nedbe) yerindeki kollagen fibröz doku, hyalinize bir görünüm alır. Uzun süren hipertansiyonda ve diyabetes mellitusda damar duvarları özellikle böbrek, hyalinize bir şekil alır. Ekstrasellüler hyaline diğer bir örnek, kronik haraplanmaya neden olan böbrek glomerüllerindeki hyalindir. Amiloid de Hematok-silen- eosin boyasında, hyalini bir görünüm verir. Görüldüğü gibi, çok sayıda ve birbirinden farklı mekanizmalar bu değişikliğe neden olabilir. Hyalini değişiklik görüldüğünde, etyoloji-deki farklı patolojik durumlar nedeniyle lezyonun tanımlanması önem arzeder. PİGMENTLER Pigmentler renkli maddelerdir, Latince boya- renk anlamına gelir. Melanin gibi, hücrenin normal içeriği olabilir, hücrenin içinde sentez edilir (endojen pigment). Diğer bir bölümde ise, bazı durumlarda organizmaya dış çevreden gelen birikimlerdir (ekzojen pigment). En sık görülen ekzojen pigment, karbon veya kömür tozudur. Bunlar medeni yaşamın en önemli hava kirliliği etkenleridir. Büyük sanayi şehirlerinde yaşayanlarda görülebildiği gibi, asıl kö- mür madenlerinde çalışan işçilerde çok belirgindir. Solunumla alındığında alveolar makrofaj- lar tarafindan tutulup, bölgesel trakeo- bronşial lenfatik kanallardan lenf düğümlerine taşınır. Akciğer dokusunun bu pigment birikimi ile kararması “antrakozis” olarak adlandırılır. Kömür tozu birikimleri, fibroblastik reaksiyona neden olarak anfizem ve hatta ciddi bir akciğer toz hastalığı olan “kömür işçisi pnömokonyozu” adı verilen akciğer patolojilerine neden olur. İnhalasyonla alınan İnorganik tozların cinsine göre; antrakozis dışında asbestozis (amyant) ve silikozis de örnek verilebilir. Bunlar, “pnömokonyoz” lar olarak adlandırılan, çevresel hasta-lıklardır. Bunların içersinde en zararsızı antrakozisdir. Metal, cam ve taş partiküllerine silika tozları denir. Bu alanlarda çalışan silika tozları etkisi altında kalan işçilerde, silikozis görülür. Asbestozisde, asbest tozlarının inhalasyonu söz konusudur. Diffüz interstisyel fibrozise neden olur ve bronkojenik karsinoma ile malign mezotelyoma gelişme riski vardır. HÜCRE ZEDELENMESİ, ADAPTASYON ve HÜCRE ÖLÜMÜ Tatuaj (Döğme) : Dekoratif amaçla vücudun değişik bölgelerindeki deriye boyalı şimik maddelerle değişik resimler yapılmasıdır. Deriye ekzojenös metalik veya bitkisel pigment verilmesi sonucu oluşur. İnoküle pigmentler, dermal makrofajlar tarafından fagosite edilir. Bu pigment herhangi bir iltihabi yanıt oluşturmaz ve zararsızdır; fakat kullanılan bu maddeye karşı allerjisi olanlarda reaksiyonlar gelişir. Ayrıca kullanılan malzeme aracılığıyla AIDS, he-patit B ve C’ye yakalanma riski olabilir. Amalgam Tatuaj : Dental dolgu yapımı sırasında amalgam parçacıklarının oral yumuşak doku içine implante olması durumunda, söz konusu olur. Klinik olarak mavi- kahverenkte ve hatta bazen siyah renkte pigmentasyon görülür. Mikroskopik düzeyde, dev hücre oluşumları gösteren bir reaksiyon vardır. Ayırıcı tanı için, hematom ve nevusu düşünmeliyiz. Endojen Pigmentler : Bu grupta lipofuskin ve melanin pigmentleri ile hemoglobin türev-leri olan hemosiderin ve bilirubin gibi, pigmentler vardır. Lipofuskin : Latince "kahverengi lipid" anlamına gelen sarı- kahverenk'de, ince granüler sitoplazmik bir pigmenttir. Yaşlı kişilerde, ciddi malnütrisyon ve kanser kaşeksisinde, özellik- le kalb ve karaciğer hücrelerinde görülür. Bu organlarda hacım küçülmesiyle beraber görüldü- ğünden “brown atrofi” olarak da bilinen bu yıpranma pigmenti, hücre içi sindirilmemiş mater- yale örnek verilebilir. Serbest radikal hasarı, lipofuskin birikimine neden olabilir. Antioksidan savunma mekanizmalarının kaybına yol açan çevresel etkenlerle oluşabilir. E vitamini gibi, antioksidanların eksik olduğu durumlarda karşımıza çıkmaktadır. Bu pigmentin hiçbir önemi yoktur. Lipofuskinin kendisi hücre ve fonksiyonlarına bir zarar vermez. Sadece fizyolojik ve patolojik atrofi veya kronik zedelenme gibi, regresif değişiklikleri işaret eder. Melanin : Melanin, tirozinin enzimatik oksidasyonu ile üretilen bir pigmenttir. Melanin sentezi, epidermisin bazal tabakasında bulunan melanositlerde yapılır. Kahverengi-siyah renk- te olan bu pigmentin adı Yunanca siyah anlamına gelen "melas" kelimesinden türemiştir. Melanositlerin prekürsörleri (öncüleri) olan melanoblastların, embriyonik gelişim devresinde nöral kristadan göç ederek son bulundukları yer olan bölgeye geldikleri düşünülür. Bu hücre-lerin yuvarlak gövdeleri bu gövdeden uzanan düzensiz uzantıları vardır. Bunlar epidermis içine doğru dallanarak, bazal ve spinal tabakadaki hücreler arasına uzanır. Melanin melano-sitlerde sentezlenir. Bu işlem tirozinaz enziminin varlığında olur. Tirozinaz aktivitesiyle tiro-zin önce dihydroxyphenylalanine (DOPA) oluşturur ve daha sonra bir dizi dönüşüm işlemi ile melanin ortaya çıkar. Ultrastrüktürel düzeyde tirozinaz, granüler endoplazmik retikulumda sentezlenir ve Golgi kompleksinin veziküllerinde biriktirilir. Membranla çevrili bu küçük organellere "melanozom" adı verilir. Bunlar ışık mikroskobunda görülebilen pigment granül-lerini oluşturur. Melanositlerin normalde görüldüğü yerler; deri, kıl follikülleri, retina pigment epiteli, lep-tomeninks ve iç kulak bölgesidir. Derimiz bu pigment sayesinde renk kazanır. Güneş ışınları-nın (ultraviyole)x etkisiyle derideki melaninin miktarı artar, derinin esmerleşmesi olarak kendini belli eder. Melanin ve melanositler birçok yönden öneme sahiptir. Melaninin fonksi-yonu koruyuculuktur. Bu pigment sayesinde deri ve göz, güneş ışığının zararlı etkisine karşı daha iyi korunur. Melanin pigmenti az olan beyaz derili kişiler, güneşin zararlı etkilerine karşı daha hassasdır. Güneş altında uzun süre çalışan beyaz derili çiftçilerde ve gemicilerde deri kanseri görülme oranı, kapalı yerlerde çalışanlara oranla çok daha yüksektir. Fazla güneşte kalan insanda, melanin pigmentasyonu artar. Kişi koyu renk alır, bronzlaşır. Bu bronzlaşma ile vücut kendini güneşin zararlı ışınlarından korumaya çalışır. Bir zaman sonra, pigment artımı deriyi korumak için yeterli olmaz. Vücut derisi kendini korumak için, bu sefer kalın-laşmaya başlar, hiperplazi gelişir. Sayıca artan hücrelerde dejenerasyon ve de mutasyonun oluşumuyla kansere dönüşme riski ortaya çıkar. Melanogenesisin lokal artması, çoğu kişilerde görülen ve halk arasında "ben" adı verilen, melanositlerin proliferatif lezyonlarını (pigmentli nevusları) ortaya çıkarır. Bunlar deride çok yaygın olarak bulunan siyah- kahverenkte hafif kabarık oluşumlardır. Benign bir lezyon olan nevus'un malign karşıtı, kanserin oldukça öldürücü bir tipi olan, malign melanomadır (mela-no karsinoma). Dermis, ağız mukozası, retina ve çok nadir olarak da, leptomeninks’den geli- şen malign melanoma olguları vardır. Melanin sentezi, adrenalxx (sürrenal) ve hipofizin kontrolü altındadır. Hipofizden adreno- kortikotropik hormon (ACTH) yanısıra, melanosit stimüle eden hormon (MSH) da salgılanır. Adrenal korteksden salgılanan glikokortikoid (kortizol, kortikosteron, kortizon gibi, bir grup hormonu kapsar) ler ve mineralokortikoidler (aldosteron), feed-back regülasyonu ile hipofiz üzerinde ACTH salgılanmasını kontrol eder. ACTH ve MSH düzeyindeki artmalar, melanin pigmentasyonunda da artmalara neden olur. Addison hastalığıxxx (ki bunda primer adrenokor-tikal yetmezlik -hipoadrenalizm- söz konusudur) buna güzel bir örnektir. Hipoadrenalizmde, adrenal korteksden salgılanan ACTH antagonistleri olan adrenokortikal hormon (örneğin kortizol salgısı baskılandığı zaman) oluşamayacağı için, hipofiz üzerindeki feed-back frenleyi ci etkisi de ortadan kalkar. Adrenal korteksin hipofiz üzerindeki kontrolü yok olduğundan, haliyle kompensatuvar olarak hipofiz daha fazla ACTH ve MSH salgılayacaktır. Bunların aşırı salgılanmaları da, deri ve mukozalarda pigmentasyon artımına neden olur. x Ultraviyole (morötesi); çok kısa, enfraruj (kızılötesi); çok uzun dalga boyuna sahip, güneşin zararlı ışınlarıdır. xx Adrenal: ad- ek + renal Surrenal: sur(supra)- üst + renal xxxAddison Hastalığı(Kronik Adrenal Korteks Yetmezliği): Adrenal yetmezlik (hipoadrenalizm) primerdir; sürre-nalin kendisinde bir lezyon vardır veya hipofizin ACTH salgılanmasında bir yetersizlik söz konusudur ve sekon-der hipoadrenalizm olarak adlandırılır. Primer hipoadrenalizm, Addison hastalığı olarak da bilinir. Bunda böbrek üstü bezi hasarlanmıştır. Addison hastalığı, adrenal korteksin progresif destrüksiyonuna bağlı olarak ortaya çıkan, çok nadir rastladığımız bir hastalıktır. Klinik belirtilerin ortaya çıkması için, salgılığın % 90’ının harab olması gerekir. Bu genelde iki şekilde karşımıza çıkar. Otoimmün adrenalitis; olguların % 60-70’sini oluşturur. Enfeksiyonlar; Tuberküloza bağlı hasar en çok rastlanılan bir nedendir. Özellikle tuberküloz adrenalitis’i iltihabi olguların % 90’ını oluşturur. Klinik olarak, deride ve ağız mukozasında melanin pigmentasyonunda artma, hipo-tansiyon şiddetli anemi, halsizlik, kas zayıflığı, kilo kaybı, anoreksi (iştahsızlık) ve gastroentestinal semptomlar (kusma, diyare) görülür. Mineralokortikoid (aldosteron) yetmezliği nedeniyle, başta sodyum (Na) iyonları kaybı ve buna bağlı olarak su kaybı meydana gelecektir. Bu durum, kan hacmı azlığını ve hipotansiyon belirtilerini doğuracaktır. Aynı zamanda potasyum (K) iyonları retansiyonu (hiperpotasemi-hiperkalemi) görülür. Önemli tehlike, hipotansiyonun daha sonra, “kardiovasküler şok” tablosunu meydana getirmesidir. Hasta tedavisi, aldosteron ve tuz verilerek yapılır. -- Pigmentasyon artımı “hiperpigmentasyon” olarak adlandırılır. Aşağıdaki şu lezyonlar-da melanin artımı söz konusudur. Addison Hastalığı (Kronik Adrenal Korteks Yetmezliği): Multipl Nörofibromalar (Nörofibromatozis): Periferal sinirlerden kökenli değişik bü-yüklüklerde ve çok sayıda (multipl) nörofibromlar vardır. Bununla beraber, deride ve ağız mukozasında sütlü-kahve lekeleri (cafe-au-lait) halinde melanin pigmentasyonu görülür. Oto-zomal dominant geçişli bir hastalıktır. İki tipi vardır. Nörofibromatozis tip1 (von Recklingha-usen hastalığı) de, az da olsa malignleşme olasılığı vardır. Nörofibromatozis tip 2, bilateral akustik (vestibüler) schwannoma ve diğer beyin tümörleriyle beraber görülür. Bu her iki has-talık genetik ve klinik olarak birbirinden farklıdır. Olguların % 90 ı tip 1 dir. Tip 2, çok daha nadir görülür. Peutz- Jeghers Sendromu : İnce barsaklarda multipl polipozis ile beraber ağız mukoza- sında ve dudakta melanin pigmentli lekeler vardır. McCune-Albrigt Sendromu : Kemiklerde multipl odaklar halinde fibröz displazi ile bera- ber, deride ve ağız mukozasında melanin lekeleri vardır. Bunlara “cafe- au- lait (kahve) leke-leri denir. -- Deride melanin pigmentasyonunun azalmasına “hipopigmentasyon” denir ve görüldü-ğü durumlar: Skatris (Nedbe) Yerleri : Cerrahi işlem veya travmalar sonucu ortaya çıkan skatris yerle-rinde, lepra hastalarında lezyonların bulunduğu alanlardaki skatris yerlerinde pigment yoktur. Hormonal Nedenler : Kastre (hadım) erkeklerde ve ayrıca hipofiz hipofonksiyonunda vücuttaki pigment miktarı azalır. Albinolar : Bu tip kişilerde kalıtsal tirozinaz enzim defekti vardır. Bu enzim yokluğunda, tirozinin DOPA ya dönüşme yetersizliği söz konusudur. Bu nedenle albinolar, melanin sentez edemez, derileri ve kılları çok açık renktedir. Bu kişiler güneş ışığına ileri derecede duyarlıdır Vitiligo : Deride leke tarzında pigmentsiz alanların bulunmasıdır ve bu edinsel (kazanılmış akkiz, sonradan oluşan) bir lezyondur. Lezyonların dağılımı ve boyutları çeşitlilik gösterebilir. Bu hastalığın nedeni son araştırmalara göre, daha çok otoimmün bir bozukluk olduğu yönün- dedir. Hemosiderin : Hemoglobinden türeyen hemosiderin, altın sarısından- kahverengine kadar değişen renklerde görülen bir pigmenttir. Demirin hücre içinde birikme şekline örnektir. Kanamanın doğal sonucu hemosiderin pigmenti oluşur. Hücre içinde demir, apoferritin adı verilen proteine bağlı ferritin miçelleri şeklinde depolanır. Hücre ve doku içinde biriken demir histokimyasal olarak Berlin Mavisi denilen özel bir boya ile gösterilir. Makroskopik kanamalar veya yoğun vasküler konjesyonun neden olduğu mikroskopik ka-namalar, demirin lokal artımını ve bunu takiben hemosiderini ortaya çıkarır. Buna en iyi ör-nek, zedelenmeden sonra görülen çürüktür (ekimoz). Çürükler, lokalize hemosiderozisin en iyi örneğidir. Kanama bölgesindeki eritrositlerin yıkımıyla ortaya çıkan kırmızı kan hücre artıkları, makrofajlar tarafından fagoside edilir. Hemoglobin içeriği lisosomlar tarafından katalize edilir ve hemosiderine dönüştürülür. Çürükte görülen renk değişikliği, bu dönüşüm- deki aşamaları yansıtır. Kronik kalb yetmezliğinde uzun süreli staz nedeniyle oluşan konjesyon, akciğerde pig-mentasyon görülmesine neden olur. Akciğer alveollerinde kapillerlerin yırtılması ve geçirgen- liğinin artması nedeniyle eritrositler dışarı çıkar. Eritrositler alveolar makrofajlar tarafından fagosite edilir. Sonuçta hemosiderin oluşur. Akciğer alveollerinde bulunan hemosiderinle yüklü bu tür makrofajlara “kalb hatası hücreleri” adı verilir. Nedeni ne olursa olsun, demirin sistemik yüklenmesi, çeşitli organ ve dokularda hemosiderin birikimine neden olur. Bu şekle “hemosiderosis” adı verilir. Sistemik hemosiderozisin birçok şeklinde, intrasellüler pigment birikimi çoğu durumlarda paranşimal hücrelere zarar vermez veya organ fonksiyonunu boz- maz. Hemosiderozisi meydana getiren pigment birikimi; (1)besinlerle alınan demirin emili- mindeki artım ve kontrolsüz kan yapıcı tabletlerin alımı (2)demirin kullanımındaki yetersiz- lik, (3)hemolitik anemiler ve (4)kan nakillerinde (kırmızı kan hücre transfüzyonları), ekzoje- nöz demir yüklenmesine neden olur. Demirin normalden çok fazla (yoğun) birikimi “hemo-kromatozis” olarak bilinir. Biriken demir, çeşitli organlarda disfonksiyona ve hücre ölümleri-ne neden olur. Kalb yetmezliği (kardiyomyopati), siroz (kronik karaciğer hastalığı) ve diyabe-tes mellitusu (pankreas adacık hücreleri ) içeren doku- organ zararları oluşabilir. Bilirubin : Bilirubin, safrada bulunan ve safranın sarı- yeşil rengini veren başlıca pig- menttir. Kırmızı kan hücrelerinin mononükleer fagositik sistemde parçalanmasıyla (karaciğer- deki kupffer hücrelerinde) serbestleşen hemoglobinden türemiştir; fakat demir içermez. Orga- nizmada normal yaşam sürelerini (100- 120 gün) tamamlayan bu eritrositlerin parçalanma- sıyla konjuge olmamış (ankonjuge) bilirubin meydana gelir. Bu ankonjuge bilirubin, kan pro- teinlerine (albumin) bağlanarak karaciğer parankim hücrelerine (hepatosit) taşınır ve burada işlenerek konjuge bilirubine çevrilir. Bu işlem spesifik bir enzim (bilirubin uridindifosfat glukuronosil transferas) ile oluşur. Daha sonra safra aracılığıyla bağırsağa dökülür. Bağır-saktaki bakteriyel enzimlerin etkisiyle “urobilinojen”e dönüştürülür. Bu pigmentin bir bölümü (% 20) tekrar barsaktan geri emilerek (reabsorbe olarak), karaciğere döner. Bunun bir bölümü de idrarla atılır. Barsaktaki urobilinojenin geri kalan bölümü, daha ileri bir işlemle “ürobilin” (stercobilin)’e dönüşür. Dışkının bilinen rengini (sarı- kahverengi) veren bu maddedir. Kan plasmasında total bilirubinin normal miktarı 100 ml’de 0.3- 1 mg’dır. Kandaki biliru-bin düzeyi (hem konjuge hem de ankonjuge) 2- 3 mg’ın üzerine çıktığında (bazı durumlarda 30- 40 lara çıkabilir), deri ve sklerada sarı bir renk oluşur. Bu renk değişikliği, dokuların safra pigmenti birikimine bağlı olarak, sarıya boyanmasından ileri gelmektedir. Klinik olarak “sarı-lık” (ikter) diye tarif edilir ve meydana geliş biçimlerine göre şöyle incelenebilir. (1)yoğun eritrosit yıkımı (hemoliz artması), (2)hepatosellüler disfonksiyon ve (3)intrahepatik veya eks-trahepatik safra obstrüksiyonu ile safranın tutulması (kolestaz) sonucu sarılık ortaya çıkar. Konjuge bilirubin; suda çözünür, nontoksiktir ve idrarla atılır. Ankonjuge bilirubin suda çö-zünmez, idrar ile atılmaz, toksiktir ve bilirubinin bilinen bütün toksik etkilerinin nedenidir. (1) Hemolitik (Prehepatik) Sarılık: Kırmızı hücre parçalanmasına bağlı bilirubin artı- mını yansıtır. Eritrosit yıkımının yoğun olduğu durumlarda sarılık görülür. Hemolitik anemi- lerde, ağır enfeksiyonlarda, yılan zehiri gibi, dolaşımdaki toksik maddelerin neden olduğu eritrosit destrüksiyonlarında ve kan transfüzyon uyuşmazlıklarında bilirubin miktarı aşırı artar. Bu bilirubin, ankonjuge bilirubindir. Yeni doğanlarda fizyolojik olarak hemoliz fazladır. Ayrıca, karaciğerde bilirubin konju-gasyonu ve atılımını sağlayan hepatik mekanizmalar, hayatın ilk iki haftasına kadar tam ola-rak gelişmediğinden, bütün yenidoğanlarda geçici (2- 4 gün), hafif bir ankonjuge hiperbiliru-binemi ortaya çıkar. Buna yenidoğanın fizyolojik sarılığı (neonatal sarılık) adı verilir. Bu durum tehlikesizdir. Bebeklerde görülen diğer bir tehlikesiz olan sarılık, maternal (anneye ait) serum sarılığıdır. Anne sütü ile beslenen bazı bebeklerde muhtemelen anne sütündeki beta glukuronidazlar nedeniyle oluşur. Tehlikeli olanı, Rh uyuşmazlığı gibi nedenlerle karşımıza çıkanıdır. Rh uyuşmazlığında, aşırı hemoliz olduğundan, ankonjuge bilirubin düzeyi çok yükselir ve “yenidoğanın hemolitik sarılığı” (eritroblastosis fetalis)x gelişir. Bu hastalık nedeniyle meydana gelen yoğun eritrosit yıkımına bağlı olarak ortaya çıkan bilirubin, yeni doğanların kapiller damarlarının geçirgenliği fazla olduğundan beyin dokusuna geçerek, doğumdan sonra “kernikterus” (bilirubin ansefalopatisi) adı verilen ağır nörolojik hasara yol açarak, sekeller bırakabilir veya bebeğin ölümüne yol açar. Adültlerde ankonjuge bilirubin seviyesi yüksek olsa bile, kan- beyin bariyeri nedeniyle kernikterus oluşmaz. (2) Hepatosellüler (Hepatik) Sarılık: Karaciğer hücre hasarı olan yoğun hepatosellüler nekroz ve siroz gibi, durumlarda görülür. Fazla bilirubin konjuge ve ankonjuge olmak üzere karışıktır. Karaciğer hücresinin fonksiyon bozukluklarında, bilirubinin alımında azalma ola-bildiği gibi, karaciğer hücresinde yetersiz konjugasyon da söz konusu olabilir. Karaciğer parankim hücrelerinin zedelenmeleri sonucu, bilirubin salgılanmasında intrahepatik blokaj da olabilir. Karaciğer hücresine verilen zarar, enzim sistemini etkilemiş olabilir. Örneğin viral hepatitis, kimyasal veya ilaç toksisitesi yanısıra karaciğerin mikrobiyolojik enfeksiyonları, konjugasyonu ve safra ekskresyonunu (ifrazat) bloke edebilir. Bu şekilde dolaşımdaki biliru-binin miktarı artmış olur. (3) Obstrüktif (Posthepatik) Sarılık: Bu grupta genellikle safra kanalı obstrüksiyonu söz konusudur. Ekstrahepatik tıkanmaların başlıca nedeni; safra kanalı ve pankreas karsinomaları ile safra kanalı taşlarıdır. Bu tıkanmalar uzarsa, hepatositlerde nekrozlar ortaya çıkar ve “bili- er siroz” meydana gelebilir. Çok nadiren de yenidoğanlarda bir anomali olarak, intrahepatik ve ekstrahepatik obstruksiyon, hepatositlerdeki primer defekt veya safra duktuslarının atrezisi ve agenezisi şeklinde karşımıza çıkabilir. Karaciğerdeki konjuge bilirubin, safra yollarındaki tıkanma nedeniyle bağırsağa akamaz ise, bağırsakta safra pigmenti olmayacağı için, feçes açık renkte olur. Ayrıca bağırsakta safra eksikliği nedeniyle, K vitamini sentezi yapılamaz (Vita- min K; endojen olarak E. coli varlığında barsakda sentezlenmekteydi). Vitamin K eksikliği veya diffüz karaciğer hastalıklarında, hepatositlerdeki disfonksiyonun etkisiyle, vitamin K’ya bağlı koagülasyon faktörlerin (protrombin ve diğer pıhtılaşma faktörleri) sentezinde meydana gelen azalmayla koagülopati meydana gelir, hemorajik diatez’e (anormal kanamalar) neden olur. Bu spontanös kanama sonucu hematomlar, hematüri, melena, ekimozlar ve dişeti kana- maları görülür. Azalmış safra akışının diğer sonuçları; yağda eriyen A, D ve K vitaminlerinin yetersiz absorbsiyonudur. x Eritroblastosis Fetalis: Maternal ve fetal kan grubu uyuşmazlığı sonucu annede oluşmuş olan antikorların, fetus’da neden olduğu bir hemolitik anemidir. Rh(-) bir annenin fetusu, babanın ki gibi Rh(+) olursa, anne ve onun bebeği arasında Rhesus (Rh) uyuşmazlığı meydana gelebilir.Anne; Rh antijeninden yoksun (Rh-) ise, fetusda mevcut olan Rh antijenlerine (Rh+) karşı antikorlar üretir. Rh(-) anne eritrositleri, Rh(+) fetus eritrositle- ri tarafından sensitize edilmiştir. Fetal eritrositler gebelik boyunca plasentadan sızarak annenin dolaşımına katı- lır. En büyük geçiş, doğum esnasında olur. Oluşan bu antikorlar, sonraki gebeliklerde plasenta yolu ile fetusa geçerek, fetusa ait kırmızı hücrelerin destrüksiyonuna (lizise, hemoliz) neden olur. Ortaya çıkan sendrom, “eritroblastosis fetalis” olarak bilinir. Yenidoğanın bu hemolitik hastalığında meydana gelen anemi, uterus içinde fetal ölüme yol açabilecek kadar şiddetli de olabilir. Anemiye reaksiyon olarak fetal kemik iliği, olgunlaşmamış eritrositleri (eritroblastları) fetusun dolaşımına katar. Eritroblastosis fetalis terimi; oluşan eritrosit destrüksiyo- nunu kompanse etmek için, fetal dokulardaki kırmızı kan hücre prekürsörlerinin (hematopoesis) aşırı artmasını anlatır. Rh uyuşmazlığının patogenezindeki sensitizasyonun önemi anlaşıldıktan sonra, bu hastalık belirgin bir şekil- de kontrol altına alınmıştır. Rh sisteminin içerdiği pekçok antijenden yalnızca D antijeni, Rh uyuşmazlığının başlıca nedenidir. Rh(-) anneye, Rh(+) bebeğin doğumundan hemen sonra, anti- D globulin uygulanmaktadır. Anti- D antikorlar, doğum sırasında maternal dolaşıma sızan fetal eritrositlerdeki antijenik bölgeleri maskeleye- rek, Rh antijenlerine karşı olan duyarlılığı engeller. Eritroblastosis fetalis; belirtilerine göre üç sendroma ayrılabilir. Şiddetli komplikasyonlar olmadan yaşam mümkün olan, yalnızca hafif anemiyle seyreden “yeni doğanda konjenital anemi” olarak adlandırılır. Şiddetli hemoliz vakalarında anemiye bariz sarılık eşlik eder, “ikterus gravis” sendromu oluşur. Dolaşım bozukluğundan, anazarka denilebilecek kadar şiddetli bir ödemin ortaya çıkışı, buna eşlik eden sarılık, “hidrops fetalis” olarak adlandırılan bir klinik tabloyu da ortaya çıkarabilir. Hidrops Fetalis: Fetusdaki yaygın ödemi anlatmak için kullanılan bir terimdir. İntrauterin gelişim süresinde progresif sıvı birikimi sonucu oluşur, genellikle ölümle sonuçlanır. Geçmişte fetus ile anne arasındaki Rh uyuş- mazlığı sonucu ortaya çıkan hemolitik anemi, hidrops fetalisin en büyük nedeniydi. Bu tip, immun hidrops ola-rak bilinir. Gebelikdeki kan uyuşmazlığı tedavi edilebildiğinden, immun hidrops’un görülme sıklığı, zamanımız-da düşmüştür. Non- immun hidrops’un başlıca nedenleri ise; kardiovasküler defektler, kromozomal anomaliler ve fetal anemidir. Rh veya ABO uyuşmazlığı dışında başka nedenlerle de fetal anemi oluşur. Bu da hidrops feta-lis ile sonuçlanabilir. KARACİĞER Karaciğerin Normal Histolojik Yapısı Karaciğerin temel mimari yapı birimi, lobdur. Her lobun merkezinde, hepatik ven ağının uzantısı (santral ven) bulunur. Lobun periferinde, portal alan adı verilen bu bölgelerde fibröz doku içinde hepatik arter, portal ven dalları, sinir lifleri, safra kanalları ve lenfatik damarlar gibi, pek çok portal kanal bulunur. İki karaciğer hücresi arasında intralobüler safra kanalikül-leri denilen ince tübüler yapılar bulunur. Bunların içindeki safra, kan akımının ters yönünde, yani lobülün merkezinden portal alanlardaki safra kanallarına akar. Lobüller içindeki hepatositler ışınsal olarak dizilmiş ve bir duvarın tuğlalarına benzer biçimde düzenlenmiştir. Karaciğer hücrelerinin yaptığı bu tabakalar arasındaki boşluklara, karaciğer sinuzoidleri adı verilir. Bunlar labirent şeklinde ve sünger benzeri bir yapı oluştura- cak biçimde serbestçe anastomozlaşırlar. Bu sinuzoidal kapillerler, pencereli endotel tabakala- rından oluşan damarlardır. Endotel hücreleri ile alttaki hepatositler arasında kalan aralığa, Disse aralığı adı verilir. Endotel hücrelerine ek olarak, sinuzoidler Kupffer hücreleri adı veri- len makrofajları da içerir. Bu fagositik hücrelerin başlıca fonksiyonları; yaşlı eritrositleri me-tabolize etmek, hemoglobini sindirmek, immunolojik olaylarla ilgili proteinleri salgılamak ve kalın barsaktan portal dolaşıma geçen bakterileri ortadan kaldırmaktır. Karaciğere kan, iki farklı kaynaktan gelir: (a)Kanın %60- 70’i abdominal (pankreas ve da-lak) organlardan gelen oksijenden fakir, bağırsaklardan emilen besinleri içeren (besinden zen-gin) kanı taşıyan portal ven’den gelir; (b)%30- 40’ı ise, oksijenden zengin kanı sağlayan he-patik arter’ den gelir. Portal alana gelen arter ve ven kanı, karaciğer lobülünün çevresinden merkeze doğru sinuzoidler boyunca akar. Sinuzoidlerde karışan bu kan, vena santralis ve daha sonra da hepatik venlerle vena kava inferiyora akar. Karaciğerin vücudun metabolik dengesini sağlamak için, çok büyük ve önemli işlevleri vardır. Karaciğer dokusu; (1)besinlerle alınan proteinler, karbonhidratlar, yağlar ve vitaminle-rin metabolize edilmesi (işlenmesi) ve depolanması, (2)plasma proteinlerin ve enzimlerin sen-tezi, (3)pek çok endogen atık ürünlerin ve ekzogen toksinlerin detoksifikasyonu ve bunların safra ile atılması gibi, pek çok fizyolojik fonksiyona sahiptir. Çoğu ilaç, karaciğer tarafından metabolize edilir. Anlaşılacağı gibi, karaciğer dokusu; metabolik, toksik, mikrobiyal ve dola-şım bozuklukları olmak üzere çeşitli etkilere açıktır. Bazı durumlarda hastalık, karaciğerin primer olayıdır. Bunun dışında karaciğeri sekonder olarak etkileyen kardiyak dekompansas-yon, diyabet ve ekstrahepatik infeksiyonlar gibi, çok sık görülen hastalıklar vardır. Karaciğer muazzam bir işlevsel kapasiteye sahiptir. hepsi olmasa da çoğu fulminant hepa-tik hastalıklar dışında rejenerasyon oluşur. Normal bir karaciğerin %60’ının cerrahi olarak çıkarılması durumunda minimal ve geçici bir karaciğer fonksiyon yetersizliği görülür. Karaci-ğer kitlesinin büyük bir bölümü 4- 6 hafta içinde rejenerasyonla yeniden oluşur. Masif hepa-tosellüler nekrozlu kişilerde, hepatik retikulin çatı harap edilmemişse, mükemmele yakın bir restorasyon oluşabilir. Kronik sağ ventriküler kalb yetmezliği, karaciğerde kronik pasif venöz konjesyona neden olur. Hepatik vendeki basıncın artmasına bağlı olarak intralobüler santral vendeki basınç da artar. Ortaya çıkan sinuzoidal dilatasyon ve konjesyon, santral ven çevresindeki hepatositlerde hipoksi ve iskemiye bağlı hasarlar ortaya çıkarır. Buna bağlı olarak bu karaciğer hücrelerinde dejenerasyon, yağlı değişme ve sonuçta nekroz meydana gelirken, buna tezat periferdeki he-patositler (portal alan çevresi) normal kalabilir. Hepatosellüler nekroz sonucu fibrozis meyda-na gelebilir. Karaciğerin temel yapısındaki bağ dokusu ağı haraplanmışsa, siroz ortaya çıkar. SİROZ Siroz, kronik karaciğer hastalıklarının irreversibl bir şeklidir ve “siroz” adı da bu hastalığı tanımlayan bir terimdir. Çeşitli kronik karaciğer hastalıklarının son döneminde ortaya çıkan bir sekeldir. Batı ülkelerinde ilk on içindeki ölüm nedenlerinden birisidir. Alttaki etiyolojiyi belirtmesinden başka, sirozun doyurucu bir sınıflaması yoktur. Sirozun etiyolojisinde pek çok etken rol oynar: (a)Aşırı alkol alımının bir sonucu olarak görülen sirozun diğer nedenleri ara-sında bazı ilaç ve kimyasal maddelerin uzun süreli alınması, (b)viral hepatitler, bilier obstrük-siyon (safra yolu hastalıkları), hemokromatozis (aşırı demir yüklenmesi), (c)kalb yetmezliğine bağlı, karaciğerde kronik pasif konjesyon (d)Wilson hastalığıx ve doğuştan olan bazı metabo-lik bozukluklar sayılabilir. Siroz gelişmesi için, uzun zaman periyodunda hücre ölümü, buna eşlik eden bir rejeneratif olay ve fibrozise gerek vardır. Başlıca üç patolojik mekanizma kombinasyonu, sirozu yaratır. (1)Karaciğer hücrelerinin progresif hücre incinmesine bağlı hepatosellüler (paranşimal) ölüm, (2)hepatosellüler hasara ve ölüme bağlı olarak ortaya çıkan rejenerasyon ve (3)buna eşlik eden kronik iltihabın stimüle ettiği progresif (ilerleyen) fibrozis bu hastalığı karekterize eden özelliklerdir. Rejenerasyon, hücre ölümünü kompanse etmek için, normalde verilen bir yanıt-tır. Normalde hepatositlerin proliferatif kapasitesi sirkülasyondaki büyüme faktörleri ile regü-le edilir. Hepatosit nekrozu sonucu açığa çıkan büyüme faktörleri hepatosit proliferasyonunu stimüle eder. Bu progresif olaylar sonucu karaciğerin normal lobüler yapısı ortadan kalkar. Fibrozis bu rejenere karaciğer dokusunu çevreleyerek sirozun karakteristik özelliği olan, değişik boylarda nodül yapılarının oluşmasına neden olur. Fibrozis, bir yara iyileşme reaksiyonudur. Zedelenme yalnızca paranşimi değil, destek bağ dokusunu da tuttuğu zaman skar oluşumuna neden olur. Normalde interstisyel kollagenler, portal alanlarda ve santral ven çevresinde ince bandlar şeklinde bulunurken, sirozda bu kolla-genler, lobülün tüm bölümlerini tutmuştur. Sirozda mikroskopik düzeyde karaciğerin normal arşitektürünün yerini, diffüz olarak kalın kollagen fibröz bandlarla separe edilmiş rejenere ka-raciğer hücre gruplarından oluşan nodüller yer almıştır. Karaciğerin normal yapısının değiş-mesi mikrosirkülasyonu bozar ve buna bağlı hastalığın klinik özellikleri ortaya çıkar. Çoğu sirozlu hastalardaki ölüm; (1)progresif karaciğer yetmezliği, (2)portal hipertansiyona bağlı komplikasyonlar ve (3)hepatosellüler karsinom gelişmesi sonucudur. Tüm siroz çeşitle-rinde hepatosellüler gelişme riski fazladır. Sirozların sınıflandırılmalarında bir konsensus yoktur. Yapılan morfolojik sınıflama ile sirozlar üçe ayrılmıştır: (1)Mikronodüler siroz (nodüllerin çapı 3 mm den daha küçüktür), (2)makronodüler siroz (nodül çapları 3 mm den büyüktür ve 2-3 cm ye ulaşabilir) ve (3)mikst olanda ise, mikro ve makro nodüller birarada bulunur. Etiyolojik nedenlere göre şu şekilde sınıflanabilir. Alkolik karaciğer hastalığı %60- 70; viral hepatitis %10; safra hastalıkları %5- 10; herediter hemokromatozis %5 vs. Siroz tiplerini; oluş biçimleri ve özelliklerine göre şu şekilde sıralayabiliriz. Alkolik (Beslenmeye Bağlı) Siroz: Alkolle ilgili olan ve çok sık görülen şekildir, Laennec siroz olarak da bilinir. Mikronodüler yapıdadır Postnekrotik (posthepatik) Siroz: Çoğunlukla viral etiyoloji (Hepatit B Virus ve Hepatit C Virus) etkendir. Makronodüler yapıdadır. Biliyer Siroz: 1)Primer biliyer siroz; otoimmun kökenli olduğu savunulur. 2)Sekonder biliyer siroz; uzun süreli ekstrahepatik safra kanalı obstrüksiyonu bunun nedenidir ve daha çok karşı-mıza çıkar. X Wilson Hastalığı: Bakır metabolizmasını otozomal resesif bir bozukluğudur. Bozukluklar karaciğer, böbrek ve beyinde anormal miktarlarda bakır birikimi meydana gelir. Hemokromatozis: (1)Herediter hemokromatozis; bağırsak mukozasında demir absorbsiyo-nunda (emiliminde) kalıtımsal bir defekt vardır; aşırı geri emilim görülür. (2)Sekonder hemo-kromatozis; aşırı demir yüklenmesi durumlarında sekonder olarak meydana gelir. Sirozda Klinik Özellikler: Fonksiyonel parankim kayıpları, sirozun başlıca şu klinik be-lirtilerini ortaya çıkarır. - Hepatosellüler hasar ve buna bağlı karaciğer yetmezliğiyle ilgili bulgular: a)Sarılık: Karaciğerin işlevlerinden birisi de safra üretimidir. Kandaki bilirubin (ankonjuge bilirubin) karaciğer hücrelerinde işlenir (konjuge edilir), safra yolları aracılığıyla barsağa dö-külür. Bu işlemin herhangi bir yerindeki aksama sonucu bilirubin kana karışırsa, sarılık (ikter) ortaya çıkar. Çoğunluğu karışık olmak üzere, konjuge ve ankonjuge bilirubin artımı söz konu-sudur. b)Hipoalbuminemi: Hepatosit hasarına bağlı albumin ve fibrinojen olmak üzere plasma protein sentezindeki azalma söz konusudur. c)Koagülasyon faktör eksiklikleri: Karaciğerde oluşan pıhtılaşma faktörlerinin sentezinde azalma ortaya çıkar. d)Hiperöstrinizm: Testikular atrofi, jinekomasti, palmar eritem (lokal vazodilatasyon) ve vücudun değişik kısımlarında, spider anjiomlar (örümcek şeklinde damarlanma). - Portal hipertansiyon: Portal akımla kan, batından vena kava inferiora döner. Portal kan akımındaki herhangi bir engelleme, portal venlerdeki hidrostatik basıncın artmasına neden olur. Üç farklı bölgedeki obstrüksiyona bağlı olarak ortaya çıkar. 1)Prehepatik: Portal vendeki tromboz nedeniyle oluşan obstrüksiyon, karaciğer içinde sinusoidlere dağılmadan öncedir. 2)İntrahepatik: Hepatik sinusoidlerdeki blokaj, bunun nedenidir. En önemli neden sirozdur, daha sonra yaygın karaciğer yağlanması gelir. 3)Posthepatik: Santral vendeki, hepatik vende-ki veya vena kavadaki blokaj nedendir. Bu, sağ kalb yetmezliği ve ağır perikardit gibi durum-larda karşımıza çıkar. Portal Hipertansiyona Bağlı Değişiklikler (Komplikasyonlar): Portal hipertansiyonun belli başlı bulguları; assit, venöz kollateraller (bazı bölgelerde venöz varisler), splenomegali (dalak büyümesi) ve bazen hepatik ansefalopatidir. - Assit (hidroperitoneum), hidrotoraks veya periferal ödem: Biriken kan geriye doğru ba-sınç yapar. Sirozdaki portal hipertansiyonun en önemli klinik sonuçlarından birisi, periton boşluğunda fazla sıvı birikimi (assit) oluşmasıdır: a)Portal vende hidrostatik basınç artımı, he-patik lenf sıvısı artımına neden olur. Bu sıvı peritona geçer. b)Hipoalbuminemiye bağlı olarak ortaya çıkan plasma onkotik (ödeme neden olan) basıncın düşmesi ve c)sodyum ve su tutulu-munun artması; Bu da hepatik hasara bağlı olarak aldosteronun karaciğerdeki yıkımının azal-ması (hiperaldosteronizm) ve renin- anjiyotensin sistem aktivasyonundaki artma, ödemi ve peritondaki sıvı birikimini açıklar. nedenidir. - Hepatik ansefalopati: Nöropsikiyatrik bir sendromdur. Karaciğer yetmezliklerinde ortaya çıkar. Normalde karaciğerde detoksifiye edilen amonyak ve nörotoksik maddelerin karaciğer-deki siroz gibi, bir defekt nedeniyle detoksifiye edilemeyen bu maddelerin doğrudan dolaşıma girmesi sonucu oluşur. Hafif konfüzyondan (bilinç kaybı) derin komaya kadar giden nörolojik belirtiler gösterir. Ölüm olağandır. x Etil alkol (etanol) - nontoksik Metil alkol (metanol) – toksik Alkolik Karaciğer Hastalığı Bu Karaciğer hastalığının başlıca nedeni, yoğun alkol (etanol)x alımıdır. Alkol alışkanlığı, ölüm nedenlerinin beşinci sırasında yer alır. Alkole bağlı siroz, ölümlerin önemli bir bölümü- nü oluşturur. Ölümlere neden olan diğer önemli bir neden ise, alkole bağlı otomobil kazaları sonucu meydana gelen ölümlerdir. Hastahanelerde yatan karaciğer hastalarının %20- 25 inde, alkol nedeniyle ortaya çıkan problemler vardır. Kronik alkol alımı birbiriyle bağlantılı üç farklı tipte karaciğer hastalıklarına neden olur. 1-Hepatik Steatoz (Yağlı Karaciğer): Hepatositler içinde önce küçük yağ damlacıkları biri-kir. Bunlar zamanla hücrenin içini tamamen doldurur, nüveyi kenara iter. Tamamen bir yağ hücresine döner. Bu değişme önce vena santralis çevresindedir, sonra perifere doğru yayılarak tüm lobülü tutar. Zamanla bu nekrotik parankimal hücreler yerini fibröz dokuya bırakır. Fib-rozis gelişmeden önce alkol alımı kesilirse, yağlı değişmeler gerileyebilir. 2- Alkolik Hepatitis: Hepatositler tek veya gruplar halinde şişer (balonlaşır) ve nekroza uğ-rar. Nekrotik ve dejenere hepatositlerin çevresinde polimorf nüveli lökositler birikir. Daha sonra lenfositler ve makrofajlar bölgeye gelir. Sonuçta belirgin bir fibrozis ortaya çıkar. 3- Siroz (Alkolik Siroz): Alkolik karaciğer hastalığının finali ve geri dönüşsüz şekli olan siroz, sinsidir ve yavaş gelişir. Karaciğerin makroskopik görünümü sarı- turuncu renktedir, yağlı ve büyümüştür, ağırlığı artmıştır. Oluşan fibröz septalar arasındaki parankimal hepato-sitlerin rejeneratif aktiviteleri, değişik büyüklükte nodüller oluşturur. İleri zamanlarda fibrozis geliştikçe karaciğer yağ kaybeder, progresif bir seyirle büzüşür, küçülür. Yağsız bir organ haline gelir. Organın ağırlığı düşmüştür ve sirozun karakteristiği olan değişik büyüklüklerde (mikro- makro) nodüller gelişir. PANKREAS : Pankreas, iki ayrı organın bir organda bulunma özelliğinde olan bir organımızdır. Yakla- şık %85-90 ekzokrin salgılıktır ve besinlerin sindirimi için, gerekli enzimleri salgılar. Geri kalan %10-15 endokrin salgılıktır ve insülin, glukagon ve diğer hormonları salgılayan Langer-hans adacıklarından oluşmuştur. Endokrin Pankreas : Endokrin pankreas Langerhans adacıkları adı verilen, bir milyon civarında mikroskopik hücre kümesinden oluşmuştur. Bu adacıklardaki hücrelerin tipleri, rutin hematoksilen- eosin boyası ile ayırt edilemez. Ancak bazı özel boyalarla elektron mik-roskobunda granüllerin şekillerinin görülmesiyle veya immunohistokimyasal yöntemle hücre tipi belirlenebilir.  (beta) hücreleri : Adacık hücre topluluğunun %70’ ini oluşturur. İnsülin hormonunu sentez eder ve salgılar. Hipoglisemik etkili hormondur.  (alfa) hücreleri : Adacık hücrelerinin %5- 20’sini temsil eder ve glukagon oluşturur. Kara-ciğerde glikojenolitik (glikojen parçalayan) etkinliği nedeniyle hiperglisemi oluşturur.  (delta) hücreleri: %5-10’luk bir bölümü oluşturur. İnsülin ve glukagon üretimini dengeleyen somatostatin hormonunu salgılar. PP (Pankreatik Polipeptit): %1-2 oranındadır ve yalnızca adacıklarda değil, pankreasın ekzo-krin bölümünden de salgılanır. Salgıladıkları polipeptidin, gastrik ve intestinal enzimlerin sal-gılanmasını uyarmak, intestinal hareketleri inhibe etmek gibi, etkileri bulunmaktadır. Adacık hücrelerinin önemli patolojik olaylarından birisi “Diyabetes Mellitus” dur. Diğeri “Adacık Hücre Tümörleri” dir. DİYABETES MELLİTUS Diyabet; insülinin yetersiz üretimi veya yetersiz işlevi nedeniyle ortaya çıkan hiperglisemi ile karakterize kronik, multisistemik bir hastalıktır. Karbonhidrat, yağ ve protein metaboliz-masını etkiler. Vücuttaki bütün hücrelerin glikoza (şeker molekülü- karbonhidrat) enerji kay-nağı olarak ihtiyacı vardır. Hücrelerin kandan şekeri alabilmeleri için, insülin hormonu şarttır. İnsülin, glikoz için regülatördür. Normalde kanda glikoz düzeyi yükselince insülin salgılanır. Tolere edilemeyen glikoz, hücre ölümlerine neden olur. Fazla glikoz, gerektiği zaman kan do-laşımına salınmak üzere, karaciğerde glikojen olarak depo edilir. İnsülin salgısının yokluğu (veya eksikliği) sonucu, glikozun kullanımında yetersizlikler meydana gelir. İnsülin salgısı duralarsa, kanda glikoz miktarı artar hiperglisemix durumu ortaya çıkar. Bu nedenle buna, halk arasında “şeker hastalığı” denir. Diyabetes mellitus hastalığında pankreasda yeteri kadar insülin üretilemiyordur veya vücut hücreleri bu insülinin etkisine karşı direnç geliştirmiştir. Her iki durumda da hücrelerin kan-dan glikozu almalarında problem vardır. Kan glikoz seviyesi yüksektir ve her ikisin de ortaya çıkan klinik sonuc aynıdır. Sınıflama ve Görülme Sıklığı Asıl özelliği hiperglisemi olan diyabetes mellitus, heterojen bir grup hastalıktır. Etyoloji-sine göre İki grup altında incelenir. Primer tip; en yaygın şeklidir (%95) ve insülin üretimin-deki veya işlevindeki bir defektten ortaya çıkar. Sekonder tip; infeksiyonlar (kronik pankrea-tit), herhangi bir nedenle pankreasın bir bölümünün cerrahi olarak çıkarılması, pankreas ada-cıklarının destrüksiyonuna neden olan bazı hastalıklar, aşırı demir yüklenmesi (hemokromato-zis), bazı genetik bozukluklar ve tümör gibi, pankreasın kendisini tutan lezyonlar yanısıra, in-sülinin antagonistleri olan hormonların hipersekresyonu söz konusudur. Akromegaliye neden olan aşırı büyüme hormonu (GH), Cushing sendromunda glukokortikoid artımı, feokromasito-mada (tümör) adrenalin artımı ve hipertiroidi gibi, bazı endokrin hastalıklar sonucu ortaya çı-kan diyabetes mellitusdur. Bu ikinci grup (sekonder tip) çok nadir görülür (%5). Diyabetes mellitusun en yaygın ve en önemli şekli, adacık hücresi insülin sinyali sisteminde primer bo-zukluğundan ortaya çıkanıdır. Bu primer diyabet; kalıtım özelliği, insüline verdiği yanıt ve köken olarak birbirinden farklı iki ana grupta (tip1 ve tip2) incelenir. Diyabetin iki ana tipinin farklı patogenetik mekanizmalara ve metabolik özelliklere sahip olmasına rağmen, kan da-marlarında, böbreklerde, gözlerde ve sinirlerde ortaya çıkan komplikasyonlar her iki tipte de mevcuttur. Bu hastalıktan meydana gelen ölümlerin en önemli nedenleridir. Patogenez : Önce insülin metobolizmasını kısaca gözden geçirelim. Normal İnsülin Fizyolojisi ve Glukoz Dengesi: Normal glikoz dengesi, birbiriyle ilişkili üç mekanizma ile sıkı bir şekilde denetlenir. Bunlar:(1)Karaciğerde glikoz üretimi, (2)glikozun çevre dokular tarafından (özellikle kas) alınması, kullanılması ve (3)insülin ve bunu den-geleyici karşıt hormonun (glukagon) salınımı. İnsülin salgılanması, glikoz üretimi ve kulanı-mını kan glikozun normal düzeyde kalacağı şekilde ayarlar. İnsülin pankreatik adacıkların beta hücre granüllerinde sentez edilir ve depolanır. Kan glikoz düzeyindeki yükselme, daha fazla insülin salımına neden olur. İnsülin sentezini ve salgılanmasını başlatan en önemli uya-ran glikozdur. İnsülin majör bir anabolik hormondur: İnsülinin en önemli metabolik etkisi, vü-cuttaki bazı hücre tiplerinde hücre içine glikoz girişini hızlandırmaktır. Bunlar myokordial hücreleri de içine alan çizgili kas, fibroblast ve yağ hücreleridir. Glikoz kas hücrelerinde gli-kojen olarak depolanır veya adenozin trifosfat (ATP) üretimi için oksitlenir. Glikoz yağ doku-sunda öncelikle lipid olarak depolanır. İnsülin, yağ hücrelerinde lipid üretimini (lipogenez) hızlandırırken diğer yandan da lipid parçalanmasını (lipoliz) inhibe eder. Aynı şekilde amino asid alımını ve protein sentezini hızlandırırken, diğer taraftan protein parçalanmasını durdu-rur. Böylelikle, insülinin etkileri anabolik olarak glikojen, lipid ve proteinin artan üretimi ve azalan parçalanması olarak özetlenebilir. x Yunanca; hiper- yüksek; glyk- şeker; emia- kan kelimelerinden köken alır. Açlık durumunda glikojen üretimi azaldığından (düşük insülin- yüksek glukagon durumu), karaciğerde glikoneojenezi (glikojen sentezi) ve glikojenolizi (yıkımı) arttırarak, hipoglisemi-yi önler. Bu nedenle açlık plasma glikoz düzeyi, karaciğerden salınan glikoz miktarı ile belir-lenir. İnsülin salınmasının başlıca tetikleyicisi, glikozun kendisidir. Salgılanan insülin, ilgili çevre dokularda insülin reseptörüne bağlanarak hücreiçi glikoz alımını tetikler. Böylelikle gli-koz dengesi kurulur. Tip1 Diyabetes Mellitus Patogenezi Tip1 Diyabet (İnsüline Bağımlı Diyabetes Mellitus): Tüm diyabet vakalarının %5-10 nu oluşturur. Çocuklukta gelişir, pubertede belirgin hale gelir ve şiddetlenir. Pankreasın insülin yapma özelliği kaybolmuştur. İnsülin sekresyonunda tam (veya tama yakın) yokluk söz konu-sudur. Hastaların hayatta kalmaları için, mutlak insüline gereksinim vardır. Bu nedenle “insü-lin bağımlı diyabet” olarak tanımlanır. Pankreas beta hücre antijenlerine karşı, T hücre lenfo-sitlerin oluşturduğu reaksiyon sonucu beta hücrelerinin destrüksiyona uğradığı otoimmun bir hastalıktır. Dışarıdan insülin alınmadığı takdirde diyabetik ketoasidoz ve koma gibi, ciddi metabolik komplikasyonlar gelişir. Beta hücre destrüksiyonuna iç- içe geçmiş pek çok meka-nizma katkıda bulunur: (1)Genetik eğilim, (2)otoimmünite ve (3)çevresel etkenler. Genetik Eğilim : Diyabetes mellitusun, ailesel özellik gösterdiği uzun zamandan beri bilin- mektedir. Genetik eğilimin kesin kalıtsal geçiş şekli tam olarak bilinmemektir. Tek yumurta ikizlerinin (eş ikizler) ikisinde birden görülme oranı yaklaşık %40’dır. Diyabetli ailelerde yaklaşık %6 sının çocuklarında bu hastalık gelişmektedir. Gerçi tip1 diyabet olgularının %80 inde ailevi bir hikaye yoktur. Otoimmünite : Tip1 diyabetin klinik başlangıcı ani olmasına rağmen, beta hücrelerine karşı olan kronik otoimmun atak, hastalığın başlamasından yıllar önce başlamıştır. Hastalığın klasik belirtileri olan hiperglisemi ve ketoz, beta hücrelerinin % 90 ından fazlası haraplandıktan son-ra, ortaya çıkar. Otoimmunitenin diyabet patogenezindeki rolü morfolojik, klinik ve deneysel birçok gözlemle desteklenmiştir: (1)Hastalığın erken dönemlerinde çoğu vakada adacıklarda hücre nekrozu ve lenfositten zengin iltihabi infiltrasyon (insülitis) gözlenir. (2)Diyabetli has-taların %80 inin kanlarında, beta hücre antijenlerine karşı oluşmuş antikorlar (otoantikor) gösterilmiştir. (3)T lenfositler beta hücre antijenlerine karşı reaksiyon gösterir ve hücre hasar-larına neden olur. (4)Sitokinler beta hücrelerini harplar. Çevresel Etkenler: Çevresel bozukluk beta hücrelere zarar vererek otoimmüniteyi tetikle-miş olabilir. Epidemiyolojik gözlemler, böyle bir tetiklemeyi virusların yaptığını düşündür-müştür. Tip2 Diyabetes Mellitus Patogenezi Tip2 Diyabet (İnsüline Bağımlı Olmayan Diyabetes Mellitus): Vakaların büyük bir çoğun-luğunu (%90) bu tip diyabet oluşturur. Hastalık olgun yaşlarda başlar ve daha çok 50-60 lı yaşlarda ortaya çıkar. Daha önceleri adult tipi diyabet olarak adlandırılırdı. Pankreas insülin üretir; fakat dokuların bu insülini kullanmasında problem vardır. Dokuların insüline karşı olan duyarlılığında azalma nedeniyle karbonhidrat, yağ ve protein metabolizmalarının bozukluğu ortaya çıkar. Dokuların insüline duyarlılığın azalmasına (azalmış duyarlılık) “insülin direnci (rezistansı)” denir. İnsülin direnci; glukoz alımında, metabolik işlevde veya depolanmasında, insülinin etkisine karşı bir direnç olarak tanımlanır. İnsülin direnci, tip2 diyabetli hastalarda görülen karakteristik bir özelliktir ve diyabetli bireylerde görülen obeslik, genel bir bulgudur. Tip2 diyabeti iki metabolik defekt karakterize eder. (1)Çevre doku hücrelerinde, insüline yanıt verme yeteneğinde azalma (insülin direnci) ve (2)bu insülin direnci ve hiperglisemiyi kom-panse etmek için, gerekli insülinin pankreas tarafından salgılanamaması. Bu patolojiye beta hücre disfonksiyonu adı verilir. Burada esas olay, insülin dirençidir. Tip2 diyabetli hastaların yaklaşık %80’i şişman kişilerdir. Patogenezde obesite söz konusu olduğundan, kişinin yaşam biçimi ve beslenme alışkanlıkları gibi, çevresel faktörlerin önemli bir rol oynadığı düşünülür. 27 Bir zamanlar adültlerin bir hastalığı olarak düşünülürdü. Şimdi obes çocuklarda da bu şeklin görülebildiği bilinmektedir. Obesite, insülin direnciyle ve böylelikle tip2 diyabetle, önemli bir ilişkiye sahiptir. Kilo verilmesi ve fizik ekzersiz, bu hastalarda glikoz tolerans bozukluğunu düzeltebilir. Tip2 diyabet çok daha fazla görülmesine karşın, patogenezi hakkında bilgi azdır. Otoim-mün mekanizmaya ait deliller yoktur. Bunun yerine göreceli olarak insülin yetmezliğiyle sonuçlanan, insülin direnci ve β hücre bozukluğu vardır. Hafifden tam’a kadar değişen bir in-sülin eksikliği söz konusudur ve tip1 diyabetten daha az şiddettedir. Tip2’de insülin yetmez-liğinin kesin sebebi bilinmemektedir. Tip1 diyabette olduğu gibi, beta hücrelerinde viral veya immün sistem kökenli zedelenmeyi gösterecek bir bulgu da yoktur. Genetik faktörler, Tip1 diyabete göre bu Tip2 de daha önemlidir. Tek yumurta ikizlerin ikisinde de birden görülme oranı %60-90 dır. Bu hastalığın görülme oranı tüm popülasyonda %5-7 iken, birinci derece akrabalarda hastalık gelişme riski %20-40 arasında değişmektedir. Diyabetes Mellitus Geç Komplikasyonlar ve Patogenezi İnsülin hormonunun bulunması ve bunun tedavide kullanıma başlanmasından sonra, hasta-ların ömrü uzamıştır; fakat bu hastalık tedavi edilememiştir Diyabet hastalığında, geç kompli-kasyonlar olarak adlandırılan hastalığın başlangıcından 10- 15 yıl sonra ortaya çıkan lezyonlar çok önemlidir. Hastalar arasında bu komplikasyonların çıkış zamanı, şiddeti ve tutulan organ-lar yönünden bariz farklar vardır. Pankreasda patolojik bulgular çok çeşitlidir ve mutlak dra-matik değildir. Komplikasyonların hemen tamamı damar lezyonlarına bağlıdır. Bugünün diya-betle ilişkili en önemli komplikasyonları; küçük damarların bazal membranlarında kalınlaşma (mikroanjiyopati), arterlerde (ateroskleroz), böbreklerde (diyabetik nefropati), retinada (reti-nopati), sinirlerde (nöropati) ve klinik olarak bütün bu organlarda disfonksiyonlar görülür. Yapılan gözlem ve çalışmalar, ortaya çıkan bu komplikasyonların doğrudan hiperglisemiye bağlı olduğunu düşündürmektedir. Buna ilaveten, diyabette hipertansiyonun varoluşu, atero-sklerozisi hızlandırır. En çok konuşulan bulgu, nondiyabetik donörlerden (verici) diyabetik hastalara yapılan böbrek transplantlarında 3- 5 yıl sonra, bu böbrekte diyabetik nefropatinin gelişmesidir. Buna tezat oluşturacak şekilde diyapatik nefropatili böbreklerin normal alıcılara transplante edildiği zaman, bu böbreklerde düzelmeler olduğu bilinir. Diyabette hayatı tehdit eden esas olay ateroskleroz ve mikroanjiyopati gibi, generalize vasküler hastalıktır. Ateroskleroz, diyabetin klinik seyrini hızlandırır; kalb, beyin ve böbrekde iskemik lezyonlar gelişir. Myokard infarktüsü, serebral infarktüs, renal yetmezlik ve alt eks- tremite gangrenleri diyabetlerde sık görülen lezyonlardır. Diyabetin patognomanik (tanı koy- durucu) ağız lezyonları (spesifik ağız yumuşak doku ve dental lezyonları ) yoktur. Diyabette Pankreas Değişiklikleri: Langerhans adacıklarında diyabetin etyolojisini ve pato-genezini açıklayacak spesifik bir patolojik lezyon gösterilememiştir. Pankreas lezyonları sabit ve patognomanik değildir. Tip1 deki değişiklikler, tip2 ye göre daha belirgindir. Gerçi diyabe-te eşlik eden, bazı morfolojik değişiklikler vardır. Adacıklar sayıca azalmıştır, buralarda fibro-zis ve lenfosit infiltrasyonu (insülitis) ve amiloid birikimi görülebilir. Amiloid birikimi za-manla hücrelerin atrofisine neden olabilir. Ayrıca beta hücrelerinde granül kayıpları dikkati çeker. Diyabetik Göz Komplikasyonları: Diyabetik retinopati olarak adlandırılan göz lezyonları, katarakt veya glakom (göz tansiyonu) gelişmesine bağlı olarak, görme bozuklukları ve körlü- ğe kadar gidebilen ağır lezyonlar gelişir. Retinada, düzensiz damar duvarı kalınlaşmaları ve mikroanevrizmalar sonucu lezyonlar ortaya çıkar. Diyabetik Nöropati: Geç komplikasyonlar olarak periferal sinirler, beyin ve omurilik hasar görebilir. Refleks bozuklukları, duyu kusurları, gelip- geçici ekstremite ağrılarına neden olur. Schwann hücre hasarı, myelin dejenerasyonu ve akson hasarı ile karakterlidir. Bu hücrelerde- ki hasarın primer hasar olduğu düşünülmektedir. Buna, intrasellüler hipergliseminin yol açtığına inanılır. Hem bu intrasellüler hiperglisemi ve hem de mikroanjiopati sonucu gelişen iske- minin beraberce nöropatiye neden olduğuna inanılır. Pelvik organların innervasyonu bozula- rak; seksüel impotans (ereksiyon problemi), mesane ve barsak disfonksiyonu ortaya çıkabilir. Diyabetik Böbrek Değişiklikleri (Diyabetik Nefropati): En ağır lezyon gösteren organlar-dan birisi böbrektir. Myokard infaktüsünden sonra görülen en sık ölüm nedenidir. Ölüm çoğu kez, mikroanjiopati sonucu gelişen böbrek yetersizliğine bağlıdır. Vasküler Sistem: Diyabet vasküler sisteme ağır zararlar verir. Her çaptaki damarlar (aort ve küçük damarlar) etkilenir. Koroner arterlerin aterosklerozu nedeniyle ortaya çıkan myo- kard enfarktüsü, diyabetiklerde görülen en sık ölüm nedenidir. Diyabette ateroskleroz daha erken yaşta ortaya çıkar ve daha ağır seyreder. Ateroskleroz oluşmasına yatkınlık, birden fazla faktöre bağlıdır. Hiperlipidemi ve trombositlerin yapışma özelliğinin artması, şişmanlık ve hipertansiyon gibi, aterosklerozda rol oynayan diğer risk faktörleri de vardır. Damarlarda ülserasyon, kalsifikasyon, ve trombüs gelişimi sıktır. Damarların daralmasına bağlı olarak myokard infarktüsü gibi klinik bulgular ortaya çıkar. Yırtılma riski olan anevrizmalar gelişir. Diyabetlilerde normalden 100 kat fazla olan, alt ekstremite gangrenleri gelişir. Diyabette Klinik Özellikler Tip1 diyabet, çoğu hastada 35 yaşın altında poliüri (çok idrara çıkma), polidipsi (çok su içme), polifaji (iştah artışı) ve ciddi olgularda ketoasidozis ile kendini göstererek başlar. Bun-ların tümü metabolik bozukluklardan meydana gelir; çünki insülin vücuttaki başlıca anabolik hormon olduğundan, İnsülin salgılanmasındaki bir yetersizlik, yalnızca glikoz metabolizma-sını etkilemez, yağ ve protein metabolizmasını da etkiler. İnsülin eksikliğinde, glikozun kas ve yağ dokusu tarafından emiliminde, bariz azalma (veya yokluğu) söz konusudur. Karaciğer ve kasdaki glikojen depoları azaldığı gibi, glikojenoliz nedeniyle yedek depolar da tükenir. Şiddetli bir açlık hiperglisemisi izler. Tip1 de iştah artmasına rağmen katabolik etkinin baskın olması, kilo kaybı ve kas zayıflığı ile sonuçlanır. Polifaji ve kilo kaybının beraberliği bir tezat oluşturur. Böyle kişilerde her zaman bir diyabet şüphesi akla gelmelidir. Kandaki glikoz seviyesi artarsa, glomerüllere fazla glikoz gider, “glikozüri” (idrarda şeke-rin çıkması) başlar. Glikozüri osmotik diürezi başlatır, poliüriye neden olur. Yoğun bir su ve elektrolit (Na+, K+, Mg++, PO4-) kaybı ortaya çıkar. Sonuç olarak dolaşımda sodyum, potas-yum kayıpları ve kandaki glukoz seviyesinin artmasına bağlı olarak ortaya çıkan serum os-molaritesindeki artma (hiperosmolarite) ile kombine renal su kaybı, hücreler içi ve hücreler arası su kaybına neden olarak beyinde susuzluk merkezi uyarılarak su içme isteği doğar (polidipsi). İnsülin eksikliğinde metabolik dengenin bozulması ve ayrıca yağ katabolizması (yıkımı) aşırı artması, serbest yağ asidi düzeyini yükseltir. Bu serbest yağ asitleri, karaci-ğerde oksitlenerek keton cisimleri meydana gelir. İdrarla keton atılımı azalırsa, ketoasidoz oluşur. Tip2 diyabetes mellitus, poliüri ve polidipsi gösterebilir; fakat tip1 den farklı olarak hasta-lar genellikle 40 yaş üzeridir ve şişmandır. KALSİYUM METABOLİZMASI VE BOZUKLUKLARI Kalsiyum ve fosfat (PO4)x metabolizması, birbirleriyle çok yakın bir ilişki içindedir. Hem kalsiyum hem de fosfat dengesinin düzenlenmesinde, büyük ölçüde dolaşımdaki paratiroid hormonu (PTH), vitamin D ve bunlar kadar olmasa da kalsitonin hormonunun etkileri vardır. Kalsiyum; kemik ve dişlerin şekillenmesi, kasların kasılması, kanın pıhtılaşması, sinir uyarıla- rının iletisi ve hormon salınması gibi, pekçok fizyolojik olayda anahtar rol oynar. Bu nedenle kalsiyum dengesinin korunması kritik önem taşır. Vücuttaki kalsiyum depoları (iskelet siste- mi) ve plazma kalsiyum konsantrasyonunun korunması; besinlerle kalsiyum alımına, gastroin- testinal kanaldan kalsiyum emilimine ve böbreklerden kalsiyum atılımına bağlıdır. Dengeli bir beslenmeyle günde yaklaşık 1000 mg kalsiyum alınır. Bu da sütün 1 litresindeki miktara eşit- tir. Kalsiyumun esas atılımı dışkı ve idrar ile olmaktadır. Bunun yanısıra, barsaktan geri emi- lim de olmaktadır. D vitamini, kalsiyumun barsaklardan emilimini arttırır. Böbreklerde aktif vitamin D sentezixx arttırılarak, barsaktan kalsiyum emilimi arttırılır. Böbreklerde bir hasar mevcutsa, D vitamini etkisinin büyük bir bölümünü kaybeder ve barsak emilimi de azalır. Paratiroid hormonu; kalsiyum ve fosfat’ın barsaklardan reabsorbsiyonunu, böbreklerden atılmalarını ve ekstrasellüler sıvı ile kemikler arasındaki değişimleri düzenleyen bir hormon- dur. Paratiroid salgılığı (bezi) aktivitesinin artması, kemikten kalsiyum tuzlarının hızla rezorb- siyonuna yol açarak, ekstrasellüler sıvıda hiperkalsemi oluşturur. Bunu osteoklast aktivasyonu ile kemik rezorbsiyonu yani kalsiyumun mobilizasyonu arttırarak yapar. Bunun aksine, parati- roid salgılıklarının hipofonksiyonu, hipokalsemiye neden olur. D vitamini, kemik rezobsiyonu (yıkımı) ve kemik depolanması (yapımı) yani remodelas-yon üzerinde önemli etkilere sahiptir. Aşırı miktarda vitamin D fazlalığında, kemiklerde re- zorbsiyon oluşur. D vitamini eksikliğinde, paratiroid hormonunun kemik rezorbsiyonu üzerine olan etkisi büyük ölçüde azalır. Hipokalseminin Başlıca Nedenleri: 1-Hipoparatiroidizm: Paratiroid hormonunun eksikliği veya yokluğu nedeniyle, hipopara- tiroidizm ortaya çıkar. Başlıca özellikleri hipokalsemi ve hiperfosfatemidir. Özellikle tiroidek- tomi sırasında paratiroid salgılıklarının kaza sonucu çıkarılması veya hasar görmesiyle hipo-paratiroidizm meydana gelir. PTH yeterince salgılanamayınca kemiklerde osteolitik rezorb- siyon azalır. Vücut sıvılarında da kalsiyum düzeyi düşer. Kemiklerden kalsiyum ve fosfat re- sorbsiyonu olmadığı için, kemikler dayanıklılığını kaybetmez. Kronik hipokalsemide deride kuruma ve pullanma, tırnaklarda çatlama ve kırılma ile saç-larda sertleşme görülebilir. Kalsiyum konsantrasyonu ileri derecede azaldığında, tetani belirti- leri ortaya çıkar. Özellikle larenks kasları tetanik spazma duyarlıdır ve bu kasların spazmı, solunumu engeller. Gerekli tedavi uygulanmazsa, ölüme yol açabilir. 2-Vitamin D Eksikliği: Besinlerle yeterince D vitamini alınamaması (malnutrisyon) yanı- sıra, hepatobilier hastalık (karaciğer hastalıkları vitamin A, D ve K nın sentezini düşürür), barsaklardaki emilim bozuklukları (intestinal malabsorpsiyon), renal hastalıklar, belli bazı ilaçların alımı ve derinin güneş ışığını yeterince alamaması (İngilteredeki Müslüman kadınlar) gibi durumlar, vitamin D eksikliğinin önemli nedenleridir. Vitamin D, güneş ışını aracılığıyla deride sentez edilir; eksikliği hipokalsemiye neden olur. Eksikliğine bağlı olarak, çocuklarda raşitizm ortaya çıkar. Erişkinlerde diyete bağlı D vitamini veya kalsiyum yetersizliği oldukça seyrektir; çünki kemik büyümesi çocuklardaki gibi, çok miktarda kalsiyum gerektirmez. x Fosfor, insan vücudunda en çok bulunan elementlerden biridir. Vücuttaki fosforun çoğu oksijen ile beraber, fosfat (PO4) şeklinde bileşik halinde bulunur. Vücuttaki fosfat’ın yaklaşık % 85 i kemiktedir ve burada hidroksi-apatit kristalinin önemli bir bileşenini oluşturur2. xx Böbreklerde 1-α hidroksilaz enzimi tarafından vitamin D’nin en aktif formu olan 1, 25-dihidroksikolekalsife- rol’e [1,25(OH2) D3] çevrilir. Bu madde [vitamin D3 (kolekalsiferol)] barsaklardan kalsiyum emilimini arttırır. Önemli miktardaki vitamin D eksikliklerinde, erişkinlerde osteomalasi’ye yol açar. Bu, nor- mal gelişimini yapmış kemiklerdeki eksik mineralizasyonu yansıtır. Raşitizm’de ise yetersiz mineralizasyon çocuklarda gelişmekte olan kemikleri tutar. 3- Böbrek Yetersizliği: Böbreklerde vitamin D, aktif şekli olan dihidroksikolekalsiferol’a çevrilir. Böbrek hücrelerinin direkt hasar görmesinden dolayı; (1) aktif vitamin D oluşumu- nun azalması ve ayrıca (2) lezyonlu böbreklerde meydana gelen anormal kalsiyum kayıpları, hipokalsemiye neden olur. Fosfat’ın böbreklerden atılımının azalmasına bağlı olarak gelişen hiperfosfatemi de, tam anlaşılamamış bazı mekanizmalar yoluyla hipokalsemiye neden ol-maktadır. Hiperkalseminin Başlıca Nedenleri: Hiperkalsemi, kemik rezorbsiyonunun aşırı olma-sından kaynaklanır. Nedenleri şöyle sıralanabilir. 1- Primer Hiperparatiroidizm: Popülasyonda en sık rastlanılan hiperkalsemi nedenidir. Paratiroid salgılığındaki (bezi) bir bozukluk nedeniyle aşırı miktarda hormon salgılanması so-nucu meydana gelir. Nedeni paratiroid salgılıklarındaki bir hiperplazi veya tümördür. Bu tü-mör benign (adenoma) veya malign (karsinoma) olabilir. Eksesif paratiroid hormonu yapımın-da (hiperparatiroidizm) kemiklerde osteoklastik aktivite ileri derecede artmıştır, kemiklerden kalsiyumun açığa çıkmasına neden olur. Bu durum dolaşımda kalsiyum konsantrasyonunu arttırır, serum kalsiyum seviyesi yükselir. Osteoklastik aktivasyon (rezorbsiyon), osteoblastik depolanmadan çok fazla olduğu için, kemik yıkımı fazladır. Bu tür hastalarda patolojik kırık-lara çok rastlanır. Osteoklastların yaptığı lakunar rezorbsiyon, kemiklerde defektlere neden olacaktır ve kistik kaviteler şeklinde belirecektir. Bu bulgular da, hormon fazlalığının radyolo-jik ve histopatolojik göstergesidir. Paratiroid hormonunun kronik artımı, tüm iskelet sistemin-de herhangi bir kemiği tutabildiği gibi, çene kemiklerini de tutabilir. Bu hastaların kemikle-rinin radyolojik incelemelerinde, aşırı dekalsifikasyon kemik yıkımı nedeniyle multipl kistik alanlar görülür. Bu kistik alanlarda fibröz doku ve osteoklast tipi dev hücreler yoğun bir şekil-de bulunur. Bu histolojik özellik, çene kemiklerinin özel bir lezyonu olan, santral dev hücreli granulomanın benzeridir. Hiperparatiroidizme bağlı bu tür kistik kemik hastalığına, “osteitis fibroza kistika” adı verilir. Bu lezyon bazen kitleler oluşturarak tümörlerle karışabilir. Bu nedenle bu lezyonlar, “hiperparatiroidizmin brown (kahverengi) tümörü” olarak da bilinir. Osteoblastlar aktive olduğu zaman, bol miktarda alkalen fosfat salgılar. Bu nedenle, önemli tanı bulgusu plasma alkalen fosfat düzeyinde artıştır. Bu hastalar böbrek taşı oluşumuna aşırı yatkın olurlar. Bunun nedeni hiperparatiroidizmde barsakdan absorbe edilen ve kemikten mo-bilize olan kalsiyum ve fosfatın, böbrekler tarafından atılması sırasında idrardaki konsantras-yonlarının çok artmasıdır. Sonuçta, kalsiyum fosfat kristalleri böbreklerde çökmeye başlar ve böylece kalsiyum fosfat taşları oluşur. 2- Sekonder Hiperparatiroidizm: Sekonder hiperparatiroidizmde paratiroid hormon artı- şı, paratiroid salgılığındaki primer bir bozukluk yerine, önceden var olan hipokalseminin kompansasyonu sonucu ortaya çıkar. Böbrek yetersizliği en önemli nedendir. Barsakda mal- absorbsiyon sendromu gibi olaylarda, vitamin D eksikliği ve yetersiz kalsiyum alımları, hipo- kalseminin nedenleri olabilir. Kronik hipokalsemi sonucu, paratiroid salgılanmasında bir artış belirir. Buna “sekonder hiperparatiroidizm” denir. 3- Vitamin D fazlalığı: Aşırı vitamin D’nin alımı, vitamin D’nin toksik etkisini ortaya çı-karabilir. D vitaminin fazlalığı, çocuklarda gelişim geriliğine neden olabilir; adültlerde hiper-kalsiüri, nefrokalsinozis ve böbrek taşına neden olur. Vitamin D fazlalığı; kalsiyumun bar-saklardan emilimini arttırdığı gibi, normalin üstünde kemik rezorbsiyonuna (yıkımına) neden olarak kan kalsiyum seviyesini yükselterek, hiperkalsemiye neden olur. 4- Destrüktif Kemik Tümörleri: Destrüktif kemik lezyonlarına neden olan multipl mye- loma veya metastatik kemik tümörlerini sayabiliriz. Multipl myeloma, skuamoz hücreli karsi- noma, böbrek karsinomu, meme- over kanseri hiperkalsemiye neden olur. 5- Süt- Alkali Sendromu: Genellikle peptik ülser tedavisi sırasında uzun müddet ve aşırı miktarda antiasit olarak, kalsiyum (kalsiyum karbonat) ve emilebilir alkali alınması sonucu, hiperkalsemi ortaya çıkar. Bu olaya “süt- alkali sendromu” denir. Gerçi bu sendrom, büyük miktarlarda süt alan hastalarda da tanımlandı. Bu sendrom hiperkalsemi, hiperkalsüri, metabo- lik alkaloz (plasma bikarbonat düzeyinin artması), nefrokalsinozis ve böbrek yetmezliğine neden olabilir. 6- Hipertiroidizm 7- Sarkoidozis: Akciğerleri tutan kronik granulomatöz bir iltihaptır. PATOLOJIK KALSİFİKASYON Kalsiyum tuzlarının kemik ve dişlerden başka dokularda birikmesine, patolojik kalsifikas- yon denir. Normalde kalsifikasyon yalnızca kemik ve dişlerde oluşur. Bunların dışında oluş- ması, heterotopik kalsifikasyon olarak yorumlanır. Heterotopik kalsifikasyon iki farklı tipte tanımlanır. 1)Distrofik Kalsifikasyon: Serum kalsiyum ve fosfor seviyesinin normal olması- na ve kalsiyum metabolizmasında bir bozukluk olmamasına rağmen görülür. Kalsiyum tuzları ölü ve dejenere hücre ve dokularda (tüberküloz nekrozu) birikir. Ayrıca atherosklerozisde aterom plaklarında ve hasarlı kalb kapakcıklarında oluşur. 2)Metastatik Kalsifikasyon: Kalsiyum metabolizmasında bir bozukluk söz konusudur. Hiperkalsemi olan her durumda, normal ve canlı dokularda kalsifikasyonun oluşması görülür. Hatta hiperkalsemi, distrofik kalsifikasyonu da arttırır. Metastatik kalsifikasyonda özellikle bazı dokulara nedeni bilinme- yen bir meyil vardır. Böbrek tübulusları, akciğer alveolleri, mide mukozası ve kan damarları- nın mediası sıkça etkilenen organlardır. Bu organlarda yetmezlikler nedenidir. Metastatik kalsifikasyona neden olan hiperkalseminin nedenlerini daha önce de değindi- ğimiz gibi, şu şekilde sıralayabiliriz; (1)aşırı paratiroid hormonu salgısına neden olan, parati-roid tümörleri ve primer hiperparatiroidizm gibi, endokrin bozukluklar, (2)kemik yıkımını arttıran multipl myeloma, metastatik kanserler ve lösemi gibi tümörler ve (3)vitamin D fazla-lığı (intoksikasyonu) ve süt- alkali sendromu ile sarkoidozdur. Hatta hiperkalsemi, (4)ileri saf-hadaki böbrek yetmezliğinde ortaya çıkan sekonder hiperparatiroidizm’e bağlı olarak da geli-şebilir. Histolojik olarak kalsifikasyon intrasellüler, ekstrasellüler veya her iki lokalizasyonda da depolanabilir. Bu birikim bazofilik, amorfös (şekilsiz) granüler görünümdedir. Kalsifikasyon odağında zaman içinde, kemik gelişebilir, buna “heterotopik kemik” denir. KEMİK HASTALIKLARIİnsan iskeleti kompleks bir sistemdir. Yapısal olarak destek oluşturmaya iyi ayarlanmıştır. İskelet kasının aktivitesini harekete dönüştürür ve hassas iç organlar için, koruyucu bir çevre oluşturur. Ayrıca vücudun kan oluşturan (hematopoetik) elemanları için, iskeletten bir yapı oluşturur ve kalsiyum ile diğer birçok hayati minerallerin ana deposu olarak görev yapar. Pek çok beslenme bozukluğu ile endokrin bozukluklar, iskelet sistemini etkiler. Beslenme bozuk-luklarının neden olduğu kemik hastalıkları; C vitamini eksikliklerinde, skorbüt ve D vitamini eksikliklerinde, raşitizm ile osteomalazi görülen hastalıklardır. Mineralizasyon kaybıyla ka-rakterli bir grup hastalık vardır. Bunlar “osteopenik hastalıklar” adı altında incelenir. Osteo-peni (kemik kaybı), radyolojik olarak mineralize kemik kitlesindeki kayba verilen genel bir terimdir. Bu kolaylaştırıcı bir kavram olup, bunlardaki radyolojik görüntüler, belirli bir patolojiyi işaret etmez. (1)Osteoporoz en sık görülen bir osteopenidir. (2)Osteomalazi ileri yaşlarda, (3)raşitizm çocuklarda görülen kemik matriksindeki mineralizasyon kaybını anla-tır. (4)Osteitis fibroza kistika, hiperparatiroidizmde görülen, kemik kayıpları gösteren bir lezyondur. Osteoklastik kemik rezorbsiyonunda artım vardır. Ortaya çıkmış olan kaviteleri dolduran fibröz doku proliferasyonları görülebilir. Fibröz dokunun tam doldurmadığı kavite-ler, kistik kaviteler olarak tanımlanır. Bazı (5)malign kemik lezyonlu osteopenik hastalarda kemiklerinde bir azalma görülür. Bu artan osteoklastik aktivitenin delilleri olmasına rağmen,bir kısmında anormal osteoklastik aktivite yoktur. Tümör hücrelerinin kendileri kemik rezorb-siyonundan sorumludur. Osteoporoz: Osteoporoz, kemik kitlesinin azalmasıyla mikro- yapı bozulmasına bağlı ola-rak ortaya çıkan kemik inceliği ve zayıflığına bağlı olarak kırık olasılığının arttığı bir kemik hastalığıdır. Burada hem kemik yapımı azalmıştır, hem de kemik yıkımı artmıştır. Kemik in-celiği lokalize olabildiği gibi, tüm iskelet sistemini de tutabilir. Osteoporoz terimi nitelendiril-meden kullanılırsa, primer senil ve postmenopozal şekli anlaşılır. Senil osteoporoz, yaşlılarda ve heriki cinsde şiddeti artarak görülür. Postmenopozal osteoporoz, menopoz sonrası kadın-larda görülür. Yaşlı kadınlardaki femur başı kırığın başlıca komplikasyondur. Primer osteopo-rozis ileri derecede yaygın olarak görülür. Osteoporozisle ilgili kırıklara bağlı ortaya çıkan morbidite ve mortalite analiz edilirse, yıllık maaliyetin çok yüksek olduğu görülür. Patogenezis: Erişkinlerde kemik oluşumu ve rezorbsiyonu arasında dinamik bir denge var-dır. Bu dengenin osteoklastların kemik yıkım tarafına kaydığında olay osteoporoz ile sonuçla-nır. Bu dengesizliğin oluşumu bir sırdır. Gerçi kemik gelişimi ve yeniden modelizasyon (yı-kım- yapım) kontrol mekanizmalarında heyecan verici önemli kavramlar vardır. Bunların merkezinde, tümör nekroz faktörü (TNF) ailesine ait yeni bir molekülün, keşfi vardır. Nükle-er Faktör kB nin Reseptör Aktivatörü (RANK) olarak adlandırılan bu molekülün, osteo-klast fonksiyonunu (işlevini) etkilediği anlaşılmıştır. Bunu, kemik stromal hücreler ile osteo-blastların sentezlediği ve hücrenin membranına yerleşik olduğu bugün artık bilinmektedir. Bu liganların reseptörü, makrofajlarda bulunmaktadır. RANK- sunan (tanıtan) hücreler bu makro-fajlar (böylelikle osteoklastlar) dır. Makrofajların osteoklastlara dönüşebilmeleri için, stromal hücreler veya osteoblastlarda bulunan bu RANK ligandının, makrofajlardaki RANK reseptö-rüne bağlanması gereklidir. Aynı zamanda osteoblastlar ve stromal hücreler, makrofaj koloni stimüle eden faktör (M- CSF) olarak adlandırılan bir sitokin üretir. Bu uyaran faktör, makro-faj yüzeyinde bulunan farklı bir reseptöre bağlanır. RANK ligandı ve makrofaj koloni –stimü-le eden (uyaran) faktör beraberce etki ederek makrofajları, kemik- yiyen osteoklastlara dönüş-türür. Bunun dışında stromal hücreler/osteoblastlar tarafından salgılanan ve osteoprotegerin (OPG) olarak adlandırılan molekül, tuzağa düşürücü “yem reseptör” dür. RANK ligandını kaplayarak, bunun makrofajdaki RANK reseptörüne bağlanmasını önler ve böylece yeni osteoklastların oluşumu ve kemik yıkımı kesintiye uğramış olur. Öyle görülüyor ki, osteoporoz tek bir hastalık olmaktan çok, total kemik kitlesinin ve yo-ğunluğunun azalması gibi, benzer morfolojik görüntüyü veren hastalıklar grubudur. Normal durumlarda bebeklik ve çocukluktan itibaren, kemik kitlesi devamlı artar, genç adült yaşların- da zirveye çıkar. Bunu büyük ölçülerde genetik faktörler belirler. Gerçi fiziksel aktivite, diyet ve hormonal durumlar gibi, eksternal (dış) faktörlerin de büyük rolü vardır. Yaş Faktörü: Kemik dansitesindeki (yoğunluğu) yaşa bağlı değişiklikler, her bireyde görü- lebilir. Kemik dinamik bir dokudur ve yaşam boyu devamlı bir yıkım- yapım şeklinde devam eder. Bu remodelizasyon (yıkım- yapım), kemik rezorbsiyonu ve yeni kemik yapımı değişik- likleriyle karakterizedir. Maksimum kemik yoğunluğuna yaşamın üçüncü on yılında ulaşılır. Bundan sonra dansite giderek azalır. En büyük kayıplar, yoğun süngersi (trabeküler) kemikle- rin olduğu omurga ve femur boynunda ortaya çıkar. Bu nedenle osteoporozlu kişilerde kırıklar bu bölgelerde çok sık görülür. Yaşlı hanımlarda kalça kırıkları kayda değer sayılardadır. Bu tür kırıklardaki tedavide, yaşlı insanların uzun periyodlarda hareketsiz yatmaları gerektiğin- den, hareketsizliğe bağlı olarak pnömoni, akciğer ödemi ve pulmoner tromboembolizm gibi, komplikasyonlar çok sık görülür ve başlıca ölüm nedenidir. Mekanik Faktör: Özellikle beden ağırlığının taşınması normal yeni kemik yapımında önemli bir stimulusdur. Azalmış bir fiziksel aktivitenin, hızlanmış kemik kayıplarıyla yakın ilişkisi vardır. Bunun kötü örnekleri felçli veya hareketten yoksun ekstremiteler örnek verilir. Sıfır yerçekiminde bir müddet kalmış olan astronotlarda da kemik yoğunluğunda kayıplara rastlanır. Pekçok yaşlı insandaki yaşam biçimi, hiç şüphesiz osteoporozun ilerlemesinde kat-kısı olabilir. Diyet Faktörü: Osteoporozun oluşması, korunması ve tedavisinde, kalsiyum ve vitamin D nin alımını da içeren diyetin rolü, halen daha tam anlaşılamamıştır. Raşitizm ve Osteomalazi Raşitizm ve Osteomalazi, her ikisi de vitamin D eksikliğinin birer örneğidir. Başlıca deği- şiklik kemiğin mineralizasyonundaki eksikliktir ve buna bağlı olarak nonmineralize osteoid kitlesindeki artım ortaya çıkar. Kısaca, osteoid matriks kalsifikasyonundaki defekttir. Osteo- malazideki bu özellik, total kemik kitlesindeki azalmaya rağmen, kalan kemik kitlesinde mineralizasyonu normal olan, osteoporozise çelişki oluşturur. Osteoporozisde kemik kaybı vardır, mineralizasyon kaybı yoktur. Raşitizmde mineralizasyon defekti, çocuklarda gelişmekte olan kemiklerde ortaya çıkar. Osteomalazide ise, tamamen normal gelişimini tamamlamış kemikteki bozuk mineralizasyon tarif edilir. PROF. DR. Taha ÜNAL EGE ÜNİVERSİTESİ DİŞHEKİMLİĞİ FAKÜLTESİ 2011 ORJİNAL KAYNAK: dent.ege.edu.tr/dosyalar/kaynak/301_patoloji/11.pdf   documents/11.pdf

http://www.biyologlar.com/hucre-zedelenmesinin-nedenleri-ve-zedelenmeye-karsi-hucrenin-verdigi-uyum-yanitlari-nelerdir-hasara-ugrayan-dokunun-onarilmasi-nasil-gerceklesir

Hepimiz Biraz Şizofren miyiz?

Hepimiz Biraz Şizofren miyiz?

Otizm ya da depresyonda olduğu gibi, psikoz; ya hep ya hiç tarzı bir vaka olmayabilir.Elden ayaktan düşürmese de birçok insan hayatının bir döneminde depresif hisleri ya da anksiyeteyi deneyimlemiştir. Açıkçası insanlar birçok mental hastalığın hafiften ciddiye doğru seyreden bir spektrumu olduğunu düşünür. Oysa insanların çoğu halüsinasyonlar (aslında var olmayan şeyler görmek ya da duymak) görmenin neye benzediğini ya da delüzyonlar tecrübe etmenin nasıl bir şey olduğunu bilmezler. Geleneksel bilgeliğe göre ise; ya “psikotiksindir” ya da “değilsindir.”Deliller giderek artıyor ancak diğer yandan da keskin bir ayrımın olup olmadığı ise belirsizliğini sürdürüyor. Psikiyatristler, uzunca bir süredir psikozun bir spektrumda seyredip seyretmediği üzerinde görüş birliğine varmış değiller. Ve araştırmacılar ise 10 yıldan fazla bir süredir sorunu araştırmayı sürdürüyorlar. 2013 yılında Hollanda’daki Maastricht University’den ve Yeni Zelanda’daki University of Otago’dan araştırmacılar tarafından yapılan bir meta-analiz çalışması, varolan verilerin birçoğunu bir araya getirdi ve halüsinasyon ve delüzyonların toplumda %7.2 (güncel çalışmaların ortaya koyduğu şizofreni tanısının %0.4’lük yaygınlığının çok çok üzerinde bir oran) gibi bir oran ile yaygınlık gösterdiği bulgusuna erişti. Daha önce sitemizde detaylarını yayımladığımız JAMA Psychiatry‘de yayımlanan, psikotik deneyimlerin bugüne kadarki en kapsamlı epidemiyolojik çalışması; araştırmacılara; insanların halüsinasyon ve delüzyonlar deneyimleme halinin ne sıklıkta gerçekleştiğini ve nüfusa bağlı oranının en detaylı fotoğrafını sunmuştu. Ve bu sonuçlar bir spektrumun olduğuna işaret etmişti.Avustralya’daki University of Queensland’den John McGrath tarafından yürütülen söz konusu çalışma, 2001 ve 2009 yılları arasında yapılan ve 19 ülkedeki 31.261 yetişkinin dahil edildiği World Health Organization’da toplanan bir dizi anket verisini analiz etmişti. Araştırmacılar; uyuşturucu ilaç ya da uykunun sebep olduğu durumları çıkararak, katılımcıların %5.8’inin psikotik deneyimler yaşadığını raporlamıştı. Bu insanların üçte biri bu deneyimi hayatlarında bir kez yaşadıklarını ve diğer üçte biri ise hayatları boyunca iki ila beş kez yaşadıklarını belirtmişti. Yani katılımcıların üçte ikisi hayatları boyunca psikotik deneyimler yaşıyorlardı ve halüsinasyon görme durumu delüzyonların yaklaşık dört katı kadardı.Sonuçların gösterdiğine göre; psikoz kesinlikle bir spektrumda seyrediyor, fakat bunun toplumda düzenli olarak bir yayılım gösterip göstermediğine ise bakılması gerekiyor. Yani hepimiz biraz şizofren miyiz? Ya da çok daha yüksek bir oran ile aramızda az şizofren olanlar ve biraz daha fazla olanlar mı var? Bu konudaki kafa karıştırıcı olan şeylerden birisi; halüsinasyon tanımlamasının ne olduğu ve özenle hazırlanmış bir araştırma olsa da, araştırma anketlerinin yoruma açık olabilirliğidir. Linscott’a göre; ankete bakarak, bizim uç noktada gördüğümüz insanların cevaplarının anket sorularındaki dilden kaynaklı olabilirliğini de göz önüne almamız gerekir.Öte yandan, tam tanısı konulmuş bir şizofreni erkeklerde daha yaygın olsa da, psikotik deneyimler; kadınlarda (%6.6) erkeklere (%5) kıyasla daha yaygın. Dahası, psikotik deneyimler, gelir düzeyi orta ve yüksek ülkelerdeki insanlarda (%7.2 ve 6.8) gelir düzeyi düşük ülkelerdeki insanlara (%3.2) kıyasla daha yaygın. Aynı zamanda da, işsizlik, evlenememek ya da görece düşük gelirli bir aileden olmak da daha yüksek oranlarda halüsinasyon ve delüzyon deneyimleme oranıyla ilişkili. Ayrıca, stres gibi, çevresel ve sosyo-ekonomik faktörlerin de şizofreni için risk faktörleri olduğu biliniyor.Psikotik deneyimler bazen genel fizyolojik endişenin işaretleri de olabilir. Bu durum için McGrath; depresyon, anksiyete hastalıkları gibi vakalarda psikotik deneyimlerin ortaya çıktığını söylüyor. Ayrıca, sağlıklı insanlarda da psikotik deneyimler görülebilir. Bu noktada da araştırılması gereken; birçok insan böyle durumlarda şizofreni gibi daha ciddi hastalıkları geliştirirken, bazı insanlar durumu nasıl toparlıyorlar? Yani bu durumun bazı insanlarda neden geçici ve diğerlerinde neden kalıcı olduğunu anlamalıyız. Bu sorulara cevap bulduğumuzda, endişe içerisindeki insanlara önemli düzeyde katkımız olabilir. Depresyon ya da anksiyete hastalıklarıyla ilişkili psikotik deneyimler yaşayan insanlara uygulanacak tedavi, şizofreninin ilk belirtilerini gösteren kişiye uygulanacak tedaviye kıyasla çok daha farklı olabilir.Gerçek şu ki; psikozun bir spektrumda bulunma ihtimali; şizofreni tanısına bağlı belirtileri azaltmaya yardımcı olabilir. Bu da semptomları hafif ya da daha ciddi olarak deneyimleyen insanların tedavisi için önemli bir adım olacaktır.“İyi Huylu” Halüsinasyonlar?Jenny şizofren değil, ancak halüsinasyonlar görüyor.“Mark’ı odada hissedebiliyordum, arkamda dikiliyordu. İlk aşkımdı ve kendisini gençliğimden beri hiç görmemiştim. Halüsinasyonlarım belli bir şekil almaya başlayana kadar beni hiç yönlendirmediği kadar fazla yönlendiriyordu. Gözümün bir köşesinde belirip kayboluyordu. Benim şu kararı almama sebep oldu; geçmişimi geride bırakıp İngiltere’ye gidecek ve bir gazeteci olacaktım.” Scientific American‘a röportaj veren Jenny (takma ad) isminin gizli kalmasını istemiş ve bu halüsinasyonların kendisine doğru kararlar aldırdığını, ne zaman bir halüsinasyon görse Mark’ı gördüğünü ve kendisine daima bir öneride bulunduğunu, hayatının bir parçası haline geldiğini ve onun önerilerini hep dinlediğini söylüyor.Jenny çocukluk deneyimlerinin ve annesinin mental sağlık sorunlarının kendisini psikoza meyilli hale getirdiğine ve genetik bir bileşeni olduğuna inanıyor. Geçtiğimiz yıl yayımlanan bir çalışma; şizofreni suçlularında 108 genetik bölgenin varlığını ortaya koydu. Psikologlar Jenny’nin deneyimlerinin çocukluğunda yeterli psikolojik destek almamasıyla ilişkilendiriyor ve bu durumun da kendi destek ağını kurmaya neden olduğunu ileri sürüyorlar. Mental sağlık söz konusu olduğunda, görünen o ki; doğa ve yetişme koşulları ayrılmaz biçimde içiçe geçmiş durumda.Kaynaklar:  1-) Bilimfili.com, “Halüsinasyonlar ve Delüzyonlar Düşünülenden Daha Yaygın”, http://bilimfili.com/halusinasyonlar-ve-deluzyonlar-dusunulenden-daha-yaygin/2-) Scientic American Mind – Kasım/Aralık’2015 *BilimFili.com, "Hepimiz Biraz Şizofren miyiz?" https://bilimfili.com/hepimiz-biraz-sizofren-miyiz/

http://www.biyologlar.com/hepimiz-biraz-sizofren-miyiz

Canlılar tarafından tüketilen besin maddeleri değişik şekillerde gruplandırılabilir.

A. GÖREVİNE GÖRE BESİNLER 1. Enerji Verici Besinler Bunlarkarbonhidratlar,,yağlar ve proteinlerdir. Açlık anında tüketim sırasına göre; Karbonhidratlar ® Yağlar ® Proteinler olarak sıralanır. Solunum kolaylığı sırasına göre; Karbonhidratlar ® Proteinler ® Yağlar olarak sıralanır. Sağladıkları enerji miktarına göre; Yağlar ® Proteinler ® Karbonhidratlar olarak sıralanır. 2. Yapıcı ve Onarıcı Besinler Canlının yıpranan kısımlarının tamirinde ve yeni hücre yapımında kullanılırlar. Bunlar; proteinler ,yağlar ,karbonhidratlar,madensel maddeler ve su’dur. 3. Düzenleyici Besinler Düzenleyici besin maddeleri ,hücredeki metabolik olayların düzenlenmesinde rol oynar. Bunlar ,proteinler , madensel maddeler ,vitaminler ve sudur. B. YAPILARINA GÖRE BESİNLER Organik besin maddeleri; proteinleryağlarkarbonhidratlar ve vitaminlerdir. İnorganik besin maddeleri; su ve madensel maddelerdir. 1. Karbonhidratlar Karbonhidratlaradından da anlaşılacağı gibi karbon (C)hidrojen (H) ve oksijen (O) atomlarından meydana gelmiştir. Karbonhidratlar bütün canlı hücrelerde bulunur ve en önemli enerji kaynağıdır. Genel formülleri (CnH2nOn) dir. Karbonhidratlar yapısındaki şeker sayısına göre değişik gruplara ayrılabilirler. a. Monosakkaritler: Sindirime uğramadan direkt olarak kana geçerler. Altı karbonlulara (heksozlar) glikoz (üzüm şekeri)fruktoz (meyva şekeri) ve galaktoz (süt şekeri)beş karbonlulara (pentozlar) ise riboz ve deoksiriboz örnek verilebilir. Disakkaritin Adı Oluşan Monosakkaritler Kaynağı Sükroz +H2O Glikoz + Fruktoz Bitki Maltoz + H2O Glikoz + Glikoz Bitki Laktoz + H2O Glikoz + Galaktoz İnsan ve memeli hayvan sütü Tablo : Disakkaritlerin Sentezi ve Özellikleri b. Disakkaritler: İki monosakkaritin birbirleriyle glikozit bağı kurarak meydana getirdiği karbonhidratlardır. Bu birleşme sırasında su açığa çıktığı için olaya dehidrasyon sentezi de denir. Disakkaritler ancak sindirilerek hücre zarından difüzyonla geçebilir. c. Polisakkaritler: Çok sayıda glikozun dehidrasyon sentezi sonucuglikozit bağları kurarak birleşmesiyle oluşur.Bir polisakkaritin yapısında kaç tane monosakkarit kullanılmışsareaksiyon sonucu bunun bir eksiği kadar su açığa çıkar. Yani n – molekül su açığa çıkar. Burada nglikoz sayısıdır. Polisakkaritler hidroliz edildiklerinde monosakkaritlere indirgenirler. Polisakkaritleri dört grupta toplayabiliriz. Depo Polisakkaritler Nişasta : Bitkilerde karbonhidratların depo şeklidir. Suda çözünmez. Glikojen : İnsanlarda ve hayvanlarda karbonhidratların depo şeklidir. Suda kısmen çözünür. Yapısal Polisakkaritler Selüloz : Bitki hücrelerinde hücre çeperinin yapısına katılır. Suda çözünmez. Kitin : Eklem bacaklılar grubundaki hayvanların dış iskeletine ve birçok mantarın çeper yapısına katılır. Her dört polisakkarit de glikozun polimeri olduğu halde fiziksel ve kimyasal özellikleri farklıdır. Çünküglikozların bağlanma biçimleri farklıdır. 2. Proteinler Yapısında karbon (C)hidrojen (H)oksijen (O)azot (N) ve bazılarında bunlara ek olarak kükürt (S) ve fosfor (P) da bulunabilir. Protein moleküllerinin yapısında en fazla 20 çeşit amino asit bulunabilir. Her bir amino asitte amino grubuyla (NH2) karboksil (COOH) grubu aynıdır. Amino asitlerde radikal grup (R) farklıdır. Proteinler sentezlenirken amino asitler birbirlerine peptid bağlarıyla bağlanırlar. Her peptid bağına karşılık bir molekül su açığa çıkar. n tane amino asit kullanılırsa n–1 su molekülü açığa çıkar. Peptid bağı sayısı = su sayısı 3. Yağlar (Lipidler) Yağlardan fosfolipidlerhücre zarının yapısına katılır. Steroidler zarların yapısınakatıldığı gibi metabolizmayı düzenlemede de görev yaparlar. Steroidler bazı vitamin ve hormonların sentezinde kullanılır. Hayvansal yağlar genellikle doymuş olupkatıdır. Bitkisel yağlar ise genellikle sıvı olupdoymamıştır. Bitkisel yağlar yüksek ısı ve basınç altında hidrojenle doyurulursa katılaşırlar ve margarinler oluşur. Gliserolüç molekül yağ asitiyle birleşerek nötral yağları meydana getirir. 4. Vitaminler Vitaminler sindirilmezler ve doğrudan kana emilirler. Organik yapılı olmalarına karşıncanlılarda enerji verici olarak kullanılmazlar. Genel özellikleri bakımından vitaminler iki grup altında toplanabilir. Yağda Eriyen Vitaminler : ADE ve K vitaminleridir. Bu grup vitaminlerin fazlası özellikle karaciğerde depo edilir. Suda Eriyen Vitaminler : B ve C vitaminleridir. Bu grup vitaminlerin fazlası depo edilmezdışarıya atılır. 5. Madensel Tuzlar (Mineraller) Organizmada az da olsa 15 kadar mineral maddeye mutlaka ihtiyaç duyulur. Mineral maddelerin vücut içindeki görevlerini üç ana başlık altında toplayabiliriz. 1. Vücut içindeki birçok enzimin ve hemoglobin gibi moleküllerin yapısına katılırlar. Bunlardemir (Fe) ve fosfor (P) gibi elementlerdir. 2. Kemiklerin ve dişlerin normal olarak gelişmesini sağlarlar. Bunlar için gerekli olan madensel maddelerkalsiyum (Ca)fosfor (P) ve mağnezyum (Mg) dur. 3. Vücut ve hücre sıvısının osmotik basıncını düzenlerler. Bunlardan hücre içi sıvıda sodyum (Na)klor (Cl)hücre dışı sıvıda potasyum (K)mağnezyum (Mg) ve fosfor (P) bulunur. 6. Su Vücudumuzun en fazla ihtiyaç duyduğu maddelerden biridir. Kimyasal reaksiyonlar sulu bir ortamda gerçekleşir. Su iyi bir çözücü olduğu için besinlerin sindirimindeemilmesindetaşınmasında ve artıkların atılmasında kullanılır. Vücut ısısının fazlası yine su ile atılır. HÜCREDE MADDE GEÇİŞİ (Konu Hücre Bölümünde Daha Geniş Anlatımıştır) Hücre zarının en önemli özelliğicanlı ve seçici–geçirgen olmasıdır. 1. Difüzyon (Yayılma) Madde moleküllerinin çok yoğun olduğu ortamdan az yoğun olduğu ortama doğru yayılmalarıdır. Difüzyon sırasında enerji harcanmaz ve canlılık şart değildir. Bazı durumlarda difüzyona uğrayacak madde bir taşıyıcı proteinle hücreye alınabilir. Buna ise kolaylaştırılmış difüzyon denir. 2. Osmoz (Suyun Difüzyonu) Suyun seçici geçirgen bir zardan difüzyonuna denir. Osmozda da enerji harcanmaz ve canlılık şart değildir. Ancak seçici geçirgen zar bulunmak zorundadır. Diyaliz: Suda çözünmüş maddelerden bazılarının yarı geçirgen zardan difüzyonuna diyaliz denir. Osmotik Olaylar a. Hipertonik Ortam (Yoğun Ortam): Bir hücre kendisinden daha yoğun ortama koyulursa su kaybederek büzülür. Bu olaya “plazmoliz” denir. b. Hipotonik Ortam (Az yoğun Ortam): Plazmoliz olmuş yada normal bir hücreyi kendisinden daha seyreltik bir çözeltiye koyarsak su alarak şişer. Bu olaya “deplazmoliz” denir. c. İzotonik Ortam (Denge Ortamı): Hücre izotonik ortama koyulursa dengeli bir madde alışverişi olur. Zardan Madde Geçiş Yolları Hücreler çok seyreltik ortamlara ya da saf suya konulursa aşırı miktarda su alarak gerilirler. Bu gerilme sonucunda oluşan basınçla hayvan hücreleri patlar. Buna hemoliz denir. Osmotik Kuvvetler a. Osmotik Basınç: Hücre içindeki çözünmüş maddelerin hücre zarına yaptığı basınçtır. b. Turgor Basıncı: Hücre içindeki suyun hücre zarına yaptığı basınçtır. c. Emme Kuvveti: Osmotik basınçtan turgor basıncının çıkarılmasıyla elde edilen pozitif kuvvettir. E.K = O.B – T.B şeklinde hesaplanır. 3. Aktif Taşıma Maddelerin az yoğun ortamdan çok yoğun ortama taşınmasına denir. Aktif taşıma ancak canlı hücrelerde gerçekleşir. Çünkü ATP harcanır ve enzimler iş görür. Aktif Taşımayla Madde Atılması Bu olaydataşınacak maddelerin porlardan sığabilecek kadar küçük olması gerekir. İyonların çoğu yoğun ortamdan az yoğun ortama aktif olarak geçer. 4. Endositoz ve Ekzositoz Bu olaylarda da enerji harcanır. Her iki olay hayvan hücrelerinde görülmesine karşılıkbitki hücrelerinde endositoz görülmez. Endositoz pordan geçemeyecek kadar büyük moleküllerin hücre içerisine alınmasıdır. Alınan madde sıvı ise pinositozkatı ise fagositoz adını alır. Ekzositoz hücre içerisinde oluşturulan enzimhormonçeşitli proteinlerbitkilerde reçine ve eterik yağlarhayvanlarda mukus ve diğer büyük moleküllü salgı maddelerinin golgi yardımıylaküçük kesecikler halinde taşınarak dışarı atılmalarına denir.

http://www.biyologlar.com/canlilar-tarafindan-tuketilen-besin-maddeleri-degisik-sekillerde-gruplandirilabilir-

ALTERNATİF ENERJİ KAYNAKLARI

JEOTERMAL ENERJİi: (jeo-yer, termal-ısı) yerkabuğunun çeşitli derinliklerinde birikmiş ısının oluşturduğu, kimyasallar içeren sıcak su, buhar ve gazlardır. Jeotermal Enerji de bu jeotermal kaynaklardan ve bunların oluşturduğu enerjiden doğrudan veya dolaylı yollardan faydalanmayı kapsamaktadır. Jeotermal enerji yeni, yenilenebilir, sürdürülebilir, tükenmez, ucuz, güvenilir, çevre dostu, yerli ve yeşil bir enerji türüdür. Sıcak su ve buhar, diğer yaraltı ve yerüstü sulara göre daha fazla erimiş madde ve gaz içeren ve oluşumunda ki süreklilik nedeni ile yenilebilir özelliktedir. Jeotermal enerji kaynakları sıcaklıklarına göre; yüksek yoğunluklu solüsyonların buharlaştırılmasıdan (180 Derece), balık çiftliklerinin (20 derece) kurulmasına kadar çok değişik alanlarda kullanılmaktadır. jeotermal enerjinin en ekonomik uygulama alanı, en geniş kullanım biçimi doğrudan kullanım olarak konutların ve sera alanlarının ısıtılmasıdır.Ülkemizde, 1962 yılından beri, MTA tarafından sürdürülen çalışmalar sonucunda, çok sayıda jeotermal kaynak bulunmuştur. Jeotermal kaynaklarla ısıtma, soğutma ve elektrik üretimi gerçekleştirilebilir. Yine bu kaynaktan yararlanarak elektrik üretmek olasıdır. Jeotermal kaynaklar ile; I. Elektrik enerjisi üretimi, II. Merkezi ısıtma, merkezi soğutma, sera ısıtması ve benzeri ısıtma/soğutma uygulamaları, III. Proses ısısı temini, kurutma işlemleri gibi endüstriyel amaçlı kullanımlar, IV. Karbondioksit, gübre, lityum, ağır su, hidrojen gibi kimyasal maddelerin ve minerallerin üretimi, V. Termal turizm'de kaplıca amaçlı kullanım, VI. Düşük sıcaklıklarda (30 °C'ye kadar) kültür balıkçılığı, VII.Mineraller içeren içme suyu üretimi, gibi uygulama ve değerlendirme alanlarında kullanımlar gerçekleştirilmektedir. Türkiye’de jeotermal enerji tüketiminin %87 si ısıtma amaçlı olmaktadır. Jeotermal enerji sahalarının ise %95’i ısıtmaya uygun sahalardır. Tüm dünyadaki jeotermal potansiyelin %8’ini bulunduran ülkemiz bu kaynaklar yönünden dünyanın en zengin 7. Ülkesidir. Jeotermal kaynaklar ile; I. Elektrik enerjisi üretimi, II. Merkezi ısıtma, merkezi soğutma, sera ısıtması ve benzeri ısıtma/soğutma uygulamaları, III. Proses ısısı temini, kurutma işlemleri gibi endüstriyel amaçlı kullanımlar, IV. Karbondioksit, gübre, lityum, ağır su, hidrojen gibi kimyasal maddelerin ve minerallerin üretimi, V. Termal turizm'de kaplıca amaçlı kullanım, VI. Düşük sıcaklıklarda (30 °C'ye kadar) kültür balıkçılığı, VII.Mineraller içeren içme suyu üretimi, gibi uygulama ve değerlendirme alanlarında kullanımlar gerçekleştirilmektedir. Türkiye’de jeotermal enerji tüketiminin %87 si ısıtma amaçlı olmaktadır. Jeotermal enerji sahalarının ise %95’i ısıtmaya uygun sahalardır. Tüm dünyadaki jeotermal potansiyelin %8’ini bulunduran ülkemiz bu kaynaklar yönünden dünyanın en zengin 7. Ülkesidir. Türkiye’de şu anda elektrik üretimi, jeotermal merkezi ısıtma, karbondioksit üretimi, termal turizm ve diğerleri ile Türk Milli Ekonomisine jeotermalin katkısı yaklaşık 3 Milyar YTL olarak hesap edilmiştir. Ayrıca sektörde yapılan toplam istihdam ise 40.000 kişidir. Ayrıca, mevcut elektrik dışı toplam jeotermal değerlendirmenin kalorifer yakıtı eşdeğeri yılda 2 Milyar YTL’dir. DALGA ENERJİSİ Med-cezir enerjisinde faydalanmak ideal bir fikirdir. Suyun kabarması ve inmesi şeklinde gelişen gelgit hareketi süresince suyun hareket enerjisinin faydalı amaçlar için kullanımı mümkündür. Çok önceleri Med değirmenleri ismi verilen ve eski vapurların kepçe çarklarına benzeyen sistemler ile değirmen yapılmıştır. Değirmen denizin üstünde olup çarkın alt kısmı suya dalmaktadır. Dalan çark kısmı gelip giden suyun zorlamsıyla itilmekte ve dönme hareketi elde edilmektedir. Dalga enerjisi tüm dünya için 3000 GW lık bir potansiyele sahiptir. Bununla birlikte bunun ancak 64 GW lık kısmı kullanılabilir durumdadır. Bu Türkiye’nin bugünkü elektrik enerjisi üretiminin 3 katına tekabül etmektedir. Med cezir olayı yerin ve ayın çekimi arasında suyun denge sağlamasından ileri gelmektedir. Sadece dünyanın aya bakan yüzünde değil, diğer yüzündede meydana gelir.Genellikle her 12 saat 25 dakikada bir med-cezir meydana gelir. Hergün bir önceki günden 50 dakika sonra meydana gelir. Yaklaşık 6 saatte yükselme ve takip eden 6 saatte de çekilme süreci meydana gelir.Deniz veya okyanusun sahil şekli ve derinliği önemlidir. Limana yaklaşan gemiler üzerinde çok etkili olduğundan her sahilin med-cezir haritası belirlenmiştir. Med-cezir enerjisini alabilmek için koy formundaki sahile bir baraj yapılmalıdır. Med esnasında su baraj üzerindeki türbinlerden geçerek baraja dolar. Cezir süresincede barajdan yine türbinler üzerinden geçerek denize döner. Burada med-cezir enerjisinin %8-25 i faydalı hale dönüştürülebilir. Med-cezir santralı mevsin değişikliklerinden etkilenmez. Med-cezir vasıtasıyla enerjinin daha verimli elde edilebilmesi için sahillerin okyanusa açık olmalıdır. Bu manada bu enerji Türkiye açısından kullanışlı olmayacaktır. Okyanusa sahili olan Fransa 18 km lik sahilden 6000 MW lık bir enerji üretim projesi üzerinde çalışmaktadır. Güneş ışığı aynı zamanda denizlerdeki dalga enerjisi ve sıcaklık farklarıyla enerji elde edilmesini de sağlar. Tüm dünya bilim adamlarının üzerinde araştırma yapmakta olduğu, temiz enerji arayışı’nın bir parçası da Dalga enerjisi dir. Bizim yararlanmayı amaçladığımız, Denizlerde, Archimedes prensibi ve yer çekimi arasında oluşan ve diğer enerji kaynakları ile alışverişinde ortaya çıkan enerjinin, dalga enerjisinin, rasyonel olarak kullanılmasıdır. Üç tarafı denizlerle çevrili olan Ülkemizde, İlk yatırımından ve bakım giderlerinden başka gideri olmayan, primer enerjiye bedel ödenmeyen, doğaya her hangi bir kirletici bırakmayan, ucuz, temiz, çevreci ve çok büyük bir enerji kaynağının değerlendirilmesi. Güneş Enerjisi Dünya, güneşten yaklaşık 150 milyon km. uzakta bulunmaktadır. Dünya hem kendi çevresinde dönmekte, hem de güneş çevresinde eliptik bir yörüngede dönmektedir. Bu yönüyle, dünyaya güneşten gelen enerji hem günlük olarak değişmekte, hem de yıl boyunca değişmektedir. İlave olarak, Dünyanın kendi çevresindeki dönüş ekseni, güneş çevresindeki dolanma yörüngesi düzlemiyle 23.50 lik bir açı yaptığından, yeryüzüne düşen güneş şiddeti yörünge boyunca değişmekte ve mevsimler de böylece oluşmaktadır. Yeryüzünün kullanılmakta olan tüm yenilenebilir enerjilerin kaynağı güneştir. Diğer alternatif enerjiler güneşin etkisi ile oluşmaktadır. Güneşin tükenmez enerjisinden yaralanarak ve az bir maliyetle, evlerimizi veya kullanım suyumuzu ısıtıp, elektrik elde edebiliriz. Güneş kolektörlerini kullanarak, kullanım suyunu arzu edilen sıcaklıkta ısıtabilir, güneş pilleri sayesinde, yılın her ayı, istediğiniz yerde, istediğiniz kadar elektrik elde edebilirsiniz. Güneş enerjisinden, ısı enerjisine dönüştürerek, elektrik enerjisine dönüştürerek yararlanılmaktadır. Yarı iletkenler kullanarak doğrudan elektrik üretimi de mümkündür. Güneş enerjisi, güneş ışığından enerji elde edilmesine dayalı teknolojidir. Güneşin yaydığı ve dünyamıza da ulaşan enerji, güneşin çekirdeğinde yer alan füzyon süreci ile açığa çıkan ışıma enerjisidir, güneşteki hidrojen gazının helyuma dönüşmesi şeklindeki füzyon sürecinden kaynaklanır. Dünya atmosferinin dışında güneş ışınımının şiddeti, aşağı yukarı sabit ve 1370 W/m² değerindedir, ancak yeryüzünde 0-1100 W/m2 değerleri arasında değişim gösterir. Bu enerjinin dünyaya gelen küçük bir bölümü dahi, insanlığın mevcut enerji tüketiminden kat kat fazladır. Güneş enerjisinden yararlanma konusundaki çalışmalar özellikle 1970'lerden sonra hız kazanmış, güneş enerjisi sistemleri teknolojik olarak ilerleme ve maliyet bakımından düşme göstermiş, güneş enerjisi çevresel olarak temiz bir enerji kaynağı olarak kendini kabul ettirmiştir. Dünyada yararlanılan en eski enerji kaynağı güneş enerjisidir. Güneş enerjisinin de diğer enerjiler gibi kullanım sorunları ve koşulları vardır. Güneş enrejisi her tüketim modelinde kolaylıkla kullanılamaz. Her tüketim dalında kullanılabilmesi için bu sorunlarının tüketim modellerine göre çözülmesi gerekmektedir. Güneş enerjisinin depolanması yada diğer enerji lere dönüşebilmes, ısıl, mekanik, kimyasal ve elektrik yöntemlerle olur. Ekoloji bilimi açısından temel enerji güneş enerjisidir. Fosil yakıtlar dahil, rüzgar, hidroelektrik, biyogaz, alkol, deniz, termik, dalga gibi tüm enerji kaynakları güneş enerjisinin türevleridir. Fizikçi Capra’ya göre fozil yakıtlar ve çeşitli sorunlar yaratan nükleer enerji geçmiş dönemin enerji kaynaklarıdır. Buna karşılık güneş ve türevleri geleçeğin enerji kaynaklarıdır. Günlük güneş enerjisinden yararlanılması, dünyada günlük 300 tirilyon ton kömür yakılmasına eşdeğerdir. Başka bir hesaplamayla dünyamıza bir yılda düşen güneş enerjisi, dünyadaki çıkarılabilir fosil ykıt kaynakları rezervlerinin tamamından elde edilecek enerjiin yaklaşık 15-20 katına eşdeğerdir. Dünyaya üzerinde Alman şirketleri öncülüğünde, 20 kadar kuruluşun 2009 yılında projelendirdiği 'Desertec', şimdilik, güneş enerjisinin kullanılacağı en büyük proje olarak planlanmıştır. Bu projede dev aynalarla ısıtılacak sudan sağlanacak buhar ile çalıştırılacak dev türbinlerden sağlanacak elektrik enerjisi yüksek voltaj iletişim hatlarıyla Kuzey Afrika çöllerinden Avrupa'ya ulaştırılacak. İlk hesaplamalara göre 2020 yılında Almanya'ya ulaşabilecek olan enerjinin maliyeti 6 euro/sent olacak. En büyük avantaj, 400 milyar euro tutarındaki yatırım tamamlandıktan sonra maliyetin sabit kalması. 'Desertec' projesinin kısa sürede Avrupa kıtasının elektrik ihtiyacının %15'ini karşılayabilir duruma gelmesi dışında, doğal olarak kurulduğu bölgelerin enerji ihtiyacını da yerine getirecek. Dünyadaki çöllere 6 saat içerisinde düşen güneş enerjisinin tüm dünyanın bir yıl içerisinde tükettiği enerjiye eşit olduğu düşünülürse projenin ekonomik değeri daha iyi anlaşılacaktır. Ülkemiz güneş enerjisi açısınıdan diğer ülkelere nazaran daha şanslıdır. Türkiye düşen güneş enerjisi miktarı tüm Avrupa ülkelerine düşen enerjinin toplamına eşittir. Devlet Meteoroloji İşleri Genel Müdürlüğünde (DMİ) mevcut bulunan 1966-1982 yıllarında ölçülen güneşlenme süresi ve ışınım şiddeti verilerinden yararlanarak EİE tarafından yapılan çalışmaya göre Türkiye'nin ortalama yıllık toplam güneşlenme süresi 2640 saat (günlük toplam 7,2 saat), ortalama toplam ışınım şiddeti 1311 kWh/m²-yıl (günlük toplam 3,6 kWh/m²) olduğu tespit edilmiştir.Çeşitli kaynaklara göre ülkemizin yılda almış olduğu güneş enerjisi ; bilinen kömür rezervimizin 32, bilinen petrol rezervimizin 2200 katıdır. Güneş enerjisinin , diğer enerjilere çevriminde kullanılan çevrimler; a) güneş enerjisinden doğrudan ısı enerjisi b) güneş enerjisinden doğrudanelektrik enerjisi c) güneş enerjisinden hidrojen enerjisi elde edilmesi olarak sıralanabilir. Güneş Enerjisinin Diğer Enerjilere Göre Üstünlükleri Güneş enerjisinin diğer enerjilere göre bir çok üstün özelliği bulunmaktadır. Güneş enerjisini etkin ve kullanılabilir kılan özellikleri aşağıdaki şekilde sıralanabilir: - Güneş enerjisi tükenmeyen ve azalmayan bir enerji kaynağıdır. - Güneş enerjisi, temiz bir enerji türüdür. Gaz, duman, toz, karbon veya kükürt gibi zararlı maddeleri yoktur. - Güneş, dünya tüm ülkelerinin, herkesin yararlanabileceği bir enerji kaynağıdır. Bu sayede ülkelerin enerji açısından bağımlılıkları ortadan kalkacaktır. - Güneş enerjisinin bir diğer özelliği, hiçbir ulaştırma harcaması olmaksızın her yerde sağlanabilmesidir. - Güneşi az veya çok gören yerlerde biraz verim farkı olmakla birlikte, dağların tepelerinde vadiler ya da ovalarda da bu enerjiden yararlanmak mümkündür. - Güneş enerjisi doğabilecek her türlü bunalımın etkisi dışındadır. Örneğin, ulaşım şebekelerinde yapılacak bir değişiklik bu enerji türünü etkilemeyecektir. - Güneş enerjisi hiçbir karmaşık teknoloji gerektirmemektedir. Hemen hemen bütün ülkeler, yerel sanayi kuruluşları sayesinde bu enerjiden kolaylıkla yararlanabilirler. Güneş enerjisinin karşılaştığı sorunlar: - Güneş enerjisinin yoğunluğu azdır ve sürekli değildir. İstenilen anda istenilen yoğunlukta bulunamayabilir. - Güneş enerjisinden yararlanmak için yapılması gereken düzeneklerin yatırım giderleri bugünkü teknolojik aşamada yüksektir. - Güneşten gelen enerji miktarı bizim isteğimize bağlı değildir ve kontrol edilemez. - Bir çok kullanım alanının, enerji arzı ile talebi arasındaki zaman farkı ile karşılaşılmaktadır. Güneş enerjisinden elde edilen ışınım talebinin yoğun olduğu zamanlarda kullanılmak üzere depolanmasını gerektirir. Enerji depolaması ise birçok sorun yaratmaktadır. Güneş Pilleri ( Fotovoltaik Piller ) Güneş pilleri (fotovoltaik piller), yüzeylerine gelen güneş ışığını doğrudan elektrik enerjisine dönüştüren yarıiletken maddelerdir. Yüzeyleri kare, dikdörtgen, daire şeklinde biçimlendirilen güneş pillerinin alanları genellikle 100 cm² civarında, kalınlıkları ise 0,2-0,4 mm arasındadır. Güneş pilleri fotovoltaik ilkeye dayalı olarak çalışırlar, yani üzerlerine ışık düştüğü zaman uçlarında elektrik gerilimi oluşur. Pilin verdiği elektrik enerjisinin kaynağı, yüzeyine gelen güneş enerjisidir. Güneş enerjisi, güneş pilinin yapısına bağlı olarak % 5 ile % 20 arasında bir verimle elektrik enerjisine çevrilebilir. Güç çıkışını artırmak amacıyla çok sayıda güneş pili birbirine paralel ya da seri bağlanarak bir yüzey üzerine monte edilir, bu yapıya güneş pili modülü ya da fotovoltaik modül adı verilir. Güç talebine bağlı olarak modüller birbirlerine seri ya da paralel bağlanarak bir kaç Watt'tan megaWatt'lara kadar sistem oluşturulur. Güneş pillerinin yapımında kullanılan malzemeler. Güneş pilleri pek çok farklı maddeden yararlanarak üretilebilir. Günümüzde en çok kullanılan maddeler şunlardır: Kristal Silisyum, Galyum Arsenit (GaAs), Amorf Silisyum, Kadmiyum Tellürid (CdTe),Bakır İndiyum Diselenid (CuInSe2),Optik Yoğunlaştırıcılı Hücreler Güneş Pillerinin Kullanım Alanları Güneş pili sistemlerinin şebekeden bağımsız olarak kullanıldığı tipik uygulama alanları aşağıda sıralanmıştır. - Haberleşme istasyonları, kırsal radyo, telsiz ve telefon sistemleri - Petrol boru hatlarının katodik koruması - Metal yapıların (köprüler, kuleler vb) korozyondan koruması - Elektrik ve su dağıtım sistemlerinde yapılan telemetrik ölçümler, hava gözlem istasyonları - Bina içi ya da dışı aydınlatma - Dağevleri ya da yerleşim yerlerinden uzaktaki evlerde TV, radyo, buzdolabı gibi elektrikli aygıtların çalıştırılması - Tarımsal sulama ya da ev kullanımı amacıyla su pompajı - Orman gözetleme kuleleri - Deniz fenerleri - İlkyardım, alarm ve güvenlik sistemleri - Deprem ve hava gözlem istasyonları - İlaç ve aşı soğutma    RÜZGAR ENERJİSİ Yenilenebilir bir enerji türü olan rüzgar, eski çağlardan beri kullanılmaktadır. Endüstriyel manada kullanımı ise araştırılmaya devam edilmektedir. Bu amaçla, hareketli havanın bünyesindeki kinetik enerji bir eksen etrafında dönen kanatlar vasıtasıyla mekanik enerji dönüştürülmek durumundadır. Rüzgar enerjisi temiz ve diğer enerji türlerine kolayca çevrilebilmeleri avantajları, zamana göre düzensiz ve yoğunluğunun az olması dezavantaj olarak düşünülmektedir. Hava tabakalarının farklı sıcaklıklarda ısınıyor olması rüzgarı oluşturur. Rüzgar enerjisiyle, elektrik üretebilir; kuyulardan su çekmek için kullanılan su dığınız pompaları çalıştırabilir. Rüzgâr hızı, bir rüzgâr türbininin elektriğe çevirebileceği enerji miktarı açısından önemlidir. Rüzgar enerjisinin kaynağını güneş oluşturmaktadır. Enerji iş yapabilme yeteneği olarak tanımlanmaktadır. Günümüzde, endüstrinin en temel enerji tüketimi elektrik enerjisi olup, onu ısınma veya ısıtma amaçlı fosil yakıtlar (petrol, kömür) takip etmektedir. Güneşin yeryüzü ve atmosferi homojen bir şekilde ısıtamamasından dolayı atmosfer içerisinde oluşan hava akımlarına rüzgar adını vermekteyiz. Yeryüzünün çoğrafi farklılıkları ile düzgün olmayan ısınmasına bağlı olarak, rüzgar enerjisi dağılımı zamansal ve yerel farklılıklar göstermektedir. Rüzgar enerjisinin atmosferde bol bulunması, çevre kirliliği yaratmaması, yerel bir enerji kaynağı olması ve ücretsiz oması gibi üstün özellikleri vardır. Rüzgarın enerji içeriği, ortalama rüzgâr hızının küpü oranında değişir. Yani rüzgâr hızı 2 katına çıkarsa, 8 kat enerji içerir. Rüzgâr türbini örneğinde, rüzgârın hızını 2 katına çıkarırsak her saniye pervaneden geçen dilim sayısını da 2 kat artar ve bu dilimlerin her biri otomobilin frenlemesi örneğinden anlaşıldığı gibi 4 kat enerji içerir. Rüzgar enerjisi potansiyele bağlı olarak gerek mekanik enerji gerekse elektrik üretiminde kullanılabilir. Rüzgardan üretilen mekanik enerji, su pompalama, zirai ürün öğütme, kesme, biçme ve elektrik üretiminde kullanılabilmektedir. Rüzgâr enerjisi günümüzde, 21. yüzyılda ve onların ötesinde ençok gelecek vadeden teknolojilerden bir tanesidir. Rüzgâr türbinlerinden herhangi bir çevre kirliliği olmaz. Modern bir 600 kW gücündeki rüzgâr türbini ortalama bir yerde, bir yılda genellikle kömürle iletilen diğer elektrik santrallarının 1.200 ton karbondioksidinin yerine geçecektir.20 yıllık bir işletme süresi içinde (ortalama bir yerde) bir rüzgâr türbini tarafından üretilen enerji imâlatı, bakımı, faaliyeti, demontajı ve parçalanması için gerekli olan enerjinin sekiz misli fazladır. Başka bir deyişle, genellikle bir rüzgâr türbinini imâl etmek ve çalıştırmak için gerekli olan enerjiyi geri kazanmak için sadece iki yada üç ay yeterli olacaktır. Rüzgârdaki enerji gerçekten de sürdürülebilir bir kaynaktır. Rüzgâr hiç bitmeyen bir şeydir. Halihazırda, rüzgâr enerjisi Danimarka elektrik tüketiminin yüzde yedisini karşılamakta ve bu rakkamın 2005 yılında yüzde 10 mertebesine yükselmesi beklenmektedir.Avrupayı çevreleyen sığ denizlerin üzerindeki rüzgâr kaynakları, teori olarak Avrupa'nın kullandığı tüm elektriği birçok misli ile karşılar niteliktedir. Enerji gereksiniminizi doğanın sonsuz rüzgar gücüyle karşılayabilrsiniz. Rüzgar jeneratörleri, birkaç yıl içinde ilk kuruluş maliyetlerini karşılayarak, sonraki yıllarda, bedava elektrik üretmeye yardımcı olur. Elektrik üretilmek istenen her yerde, rüzgar jeneratörlerini kullanmak mümkündür. Rüzgar jeneratörü elektrik üretim sistemini, akülerle birlikte dizayn edebilir, üretilen elektriği bu yolla depolayabilir. Böylece, rüzgar hızının yeterli olmadığı anlarda, sistem, akülerde depolanan enerjiyi kullanabilecektir. Rüzgar jeneratörleri, çevreyi kirletmeyen enerji üretim araçlarıdır. Elektrik üretirken çıkardıkları ses, tipik bir çamaşır makinasının sesi kadardır. Ses kirliliği yaratıp çevreyi rahatsız etmez. Rüzgar jeneratörünün üreteceği elektrik gücü, rüzgar hızıyla orantılıdır. Rüzgar hızı attıkça, üretilen elektrik miktarı da artar. Rüzgar jeneratörleri DC üretirler ve sistem çıkışında AC alınmak isteniyorsa, sisteme inverter eklemek gerekir. Bireysel kullanım amaçlı üretilmiş Ampair Hawk jeneratörlerini, küçük güçlü elektrik motorlarını çalıştırmak için tercih edilebilir. Ülkemizde rüzgar enerjisi bir kaç yıl öncesine kadar enerji planlamalarında gözükmeyen bir enerji olmasına rağmen, özellikle içinde bulunduğumuz yıllarda özel sektörün çalışmaları ile hızlı atılımlar göstererek gerekli düzenlemelerin yapılması sağlanmıştır. Ülkemizde DPT’nin desteği ile Türkiye Rüzgar Atlası çalışmaları yapılmış olup; Türkiye teknik rüzgar potansiyeli ve santral kurulmaya uygun alan sayısı açısından birinci sırada yer almaktadır. Son yıllarda özel teşebbüsler tarafından rüzgar enerjisine yatırım yapılmaya başlanmıştır. Türkiye'de Rüzgar Enerjisi'nin Tarihi Ülkemizde rüzgar enerjisiyle ilgili çalışmaların başlangıç tarihi çok eskilere dayanmamaktadır. Bu konudaki çalışmaları ilk başlatan kurum 1980'li yılların ortalarında Elektrik İşleri Etüt İdaresi olmuştur. Başlangıç çalışmaları rüzgar potansiyelini tespit amacıyla gerçekleştirilen etüt faaliyetlerinden ibarettir. Bu çalışmaların yapıldığı yıllarda rüzgar enerjisini konu alan herhangi bir kanuni düzenleme mevcut değildi. 1995 yılından itibaren bazı küçük uygulamalar Yap - İşlet - Devret modeliyle gerçekleştirilmiştir. Türkiye'de İlk rüzgar santrali Demirer holding'in Çeşmede kurduğu santraldir. İzmir Çeşme germian'da (1.5MW), Alaçatı'da (7.2MW); Çanakkale Bozcaada'da 10.2MW); İstanbul Hadımköy'de (1.2MW) gerçekleşen rüzgar santralleri bu şekilde ortaya çıkmıştır. Türkiye'de rüzgar enerjisi gibi yenilenebilir enerji kaynaklarının konu edildiği ilk kanun 2001 yılında Elektrik Piyasası Kanunu'dur. Bu kanunla devletin belirli bir fiyattan alım garantisinden vaz geçmesi zaten düşük seviyede olan rüzgar enerjisi yatırımlarını durdurmuştur. Bu aşamada az sayıda özel sektörün kendi enerjisini üretmek için gerçekleştirdiği projeler mevcuttur. (Otoprodüktör) Rüzgar enerjisine verilen resmi önemin kanıtı olarak ilk ciddi girişim ise ancak 2005'dey Yenilenebilir Enerji Kaynakları Kanunu'yla ortaya konmuştur. Bu kanunun sonrasında Bandırma, Çeşme yarımadası, Hatay, Manisa, Çanakkale'de gerçekleştirilen 150 MW gücündeki santraller kanunun ilk meyveleridir. Bu tarihten sonra Enerji Piyasası Düzenleme Kurumu rüzgar enerjisine dayalı üretim tesisi kurmak için başvurular gerçekleştirilmiştir. (Aralık 2007) EPDK gelen yoğun başvurulardan uygun olanlarını elemiş ve 2008 itibarıyla 1420 MW kurulu gücünde rüzgar enerji santralı projesine üretim lisans verilmiştir. Türkiye Rüzgar potansiyeli yüksek ülkeler arasında yer almaktadır. Türkiye'de Faaliyette olan Rüzgar Santralleri Türkiye'de çalışmakta olan 13 rüzgar santrali bulunduğu, bunların da üretim kapasitesinin 249,15 MW olduğu açıklanmıştır. Rüzgar Jeneratörleri Kullanım Alanları • Çiftlikler Villalar, dağ evleri • Sanayi tesisleri • Tarım sulama/pompalama sistemleri • GSM santralleri • Telekomünikasyon, radyo ve tv istasyonları • Yatlar ve deniz fenerleri • Tüm turistik işletmeler  

http://www.biyologlar.com/alternatif-enerji-kaynaklari

EVRİM TEORİLERİ

İnsanoğlu kendini ve çevresinde algıladıklarını tanımaya başladıktan sonra, bu olağan üstü varlıkların nasıl meydana geldiğini düşünmüştür. M.Ö. VI. Yüzyılda yaşamış olan Şyonya‟lı filozoflardan Thales, tüm nesneler gibi canlıların da sudan oluştuğunu; Anaximander, canlıların kaynağının deniz olduğunu, başlangıçda balık olan atalarımızdan bugünkü şeklimize evrimleşerek ulaştığımızı; Herakleitus, canlıların gelişmesinde aralarındaki çatışmaların rolü olduğunu ileri sürmüşlerdir. M.Ö. IV. Yüzyılda yaşamış olan Aristoteles, canlılığın başlangıçta kendiliğinden meydana geldiğini, zaman içinde giderek basitten daha karmaşık yapılı canlıların meydana geldiğini (doğa merdiveni) ve canlılarda organların ihtiyaca göre oluştuğunu savunmuştur. Canlı türlerinin ayrı ayrı yaratıldıklarını ifade eden yaratılış düşüncesinin herhangi bir bilimsel kanıtı bulunmadığından burada tartışılamamaktadır. XIII. yüzyılda fosiller üzerinde yaptığı çalışmalarla “paleontoloji” biliminin ortaya çıkmasına neden olan Buffon, canlı türlerinin bir evrim sonucunda meydana geldiğini ifade etmiş olmasına rağmen; kilisenin baskısı sonunda “kutsal kitapta bildirilenlere ters düşen sözlerimi geri alıyorum” demek zorunda kalmıştır. Bu dönemde, bir doğa bilimci olan Charles Darwin‟in dedesi Erasmus Darwin de Buffon gibi, canlıların yaşamları sırasında edindikleri beceri ve özelliklerin yeni kuşaklara geçmesiyle evrimleştiği görüşünde idi. Bununla beraber, aydınlanma çağı olarak bilinen bu dönemde, Carl von Linné‟nin morfolojik ve fizyolojik özellikleri bakımından biribirine benzeyen canlıları aynı grup içinde toplayarak, en küçük canlı gruplar olan türleri oluşturması; Cuvier‟nin aynı türden olan bitki ve hayvanların erkek ve dişilerinin kendi aralarında birleşmeleri sonunda fertil yavruların meydana getirdiklerini saptaması; XVIII. ve XIX. yüzyıllarda Cuvier, Hilaire ve Gothe‟nin, belli işlevleri yerine getiren organların, canlılar arasında gösterdikleri benzerlik ve farklılıkları inceleyerek homolog ve analog organların ontogenetik gelişimlerini açıklamaları; canlıların evrimsel bir gelişimin sonunda çeşitlendikleri düşüncesini destekleyen yeni delilleri ortaya çıkarmıştır. Bugüne kadar yapılan çalışmalara rağmen, biyoloji sistematiğinin son şeklini aldığını söylemek mümkün değildir. Hatta, evrimin sürekliliği düşünülürse tamamlanması da mümkün gözükmemektedir. Ancak, bu çalışmaların sonunda; a) Biribirine yakın gruplar arasında benzerliklerin fazla olmasına karşın, uzak gruplar arasında benzerliklerin giderek azaldığı b) Sistematiğin alt sıralarında yer alan canlıların ilkel ve basit yapılı olmalarına karşın, üst sıralarda yer alan canlıların daha zengin bir biyolojik işleve ve karmaşık yapıya sahip oldukları c) Aynı tür içindeki canlıların kendilerine benzer ve fertil yavrular meydana getirdikleri d) Paleontolojik bulguların da yardımıyla; Jeolojik devirlerde yaşamış ve bugünkü canlılara benzeyen tür sayısının eski jeolojik devirlere gidildikçe azaldığı, yakın jeolojik devirlerde arttığı görüldü. Bu gözlemlere dayanarak, Hilaire; “hayvan türlerinin birbirinden meydana geldiğini” ileri sürdü, fakat dönemin ünlü anatomisti Cuvier ile yaptığı tartışmada ileri sürdüğü deliller yeterli bulunmadı. Lamarck (1744-1829) “Phylosophy Zoologique” adlı eserinde, türlerin ara varyetelerle, cinslerin ara türlerle ve familyaların ara genuslarla biribirlerine bağlı olduklarını ve değişen ortam koşullarına uyumlu yeni bir türün bir başka türün değişmesiyle meydana geldiğini ileri sürdü. Lamarck‟a göre, çok kullanıldığı için gelişen veya kullanılmadığı için körelen bir organın eşem hücreleri üzerindeki etkisi bu özelliklerin yeni döllere geçmesine neden oluyordu. Zürafanın, ağaçların yeşil yapraklarına uzanabilmesi için boynunun uzaması ve kurbağanın su içindeki hareketini kolaylaştıran arka ayakları arasında yüzme derisi gerili olması, bu canlıların, ortam koşullarına uygun olarak değişmeleri sonunda meydana gelmişti. Benzer şekilde, köstebekte gözlerin körelmesini, yılanlarda üyelerin yok olmasını, bu organların kullanılmamaları sonucunda yok oldukları şeklinde yorumlamıştır. Lamarck‟ın hipotezinin özelliği, canlılarda görülen değişikliklerin fonksiyona bağlı olarak ve ortamın koşullarına uygun olarak meydana gelmiş olmasıdır. Hipotezde yer alan, “canlılar içinde bulundukları koşullara uyar” önermesi bugün de gözlenen, doğruluğu çok kere kanıtlanmış bir olgudur. Ancak, bu yöndeki bir teorinin hıristiyanlığın telkinlerine uymaması yanında, değişikliklerin yeni döllere geçişini açıklamakta teorinin yetersiz kalması ve daha açık olarak; bugüne kadar yapılan gözlemlerde, canlılarda doğumdan sonra kazanılmış olan özelliklerin sonraki döllere geçtiğinin gösterilememesi nedeniyle fazla taraftar toplayamamıştır. Örneğin, August Weismann (1834-1914), yirmi döl boyunca kuyruklarını kestiği farelerin yirmi birinci dölde de deney serisinin başındaki fareler kadar uzun kuyruklu olduklarını gördü. Bu deneyler sonunda Weismann, vücudu meydana getiren somatik hücrelerin kalıtımda rolünün bulunmadığını; kalıtımla ilgili hücrelerin üreme (germ) hücreleri olduğunu ve çevresel faktörlerin üreme hücrelerine etki etmediğini buldu. Nitekim, Müslümanların ve Musevilerin, yüzyıllardan beri sünnet olmaları, bu toplumlarda herhangi bir kalıtsal değişikliğe neden olmamıştır. Aynı şekilde, Çinlilerin çocuklarına ayaklarının küçük kalması için yüzyıllar boyunca demir ayakkabı giydirmeleri de Çinlilerin ayaklarını küçültmemiştir. Halbuki, bugün bakterilerin antibiyotiklere, böceklerin insektisitlere karşı bağışıklık kazandıkları bilinir ve Lamarck‟ın hipotezi bu olayları anlamamıza yardım eder. Ancak bu yönde yürütülen araştırmalar, bağışıklığın bir populasyonun bütün fertlerinde değil, uygun gen kompozisyonuna sahip olan bazı fertlerinde meydana geldiğini ve bu fertlerin populasyon içindeki sayısının, doğal seçim baskısı altında daha sonraki döllerde giderek artmasıyla dirençli ırkların oluştuğunu gösterdi. Ayrıca, genetik alanındaki bilginin artmasına bağlı olarak bugün kabul edilen evrim düşüncesinin olası mekanizması ortaya konmuştur. örneğin Lüers, populasyon düzeyinde kazanılmış bir bağışıklığın, mutasyon, doğal seçim ve genlerin rekombinasyonuyla birlikte açıklanabileceğini ileri sürmüştür. Aydınlanma çağında, en fazla taraftar toplayan evrim teorisi, Charles Darwin (1809-1882) tarafından önerilen “doğal seçim” teorisidir. Aydın bir çevrede, varlıklı bir ailenin çocuğu olan Darwin, hekim olan babasının tüm gayretlerine rağmen tıp eğitimini başaramamış, Cambridge Üniversitesinde yine babasının zoruyla başladığı teoloji eğitimini tamamlamıştır. Bu arada, botanik ve jeoloji derslerine devam ederek, meydana getirdiği böcek koleksiyonuyla bilim dünyasının ilgisini çekmiştir. 1831 yılında “Beagle” adlı gemiyle Güney Amerika kıtasının çevresini dolaşma olanağını elde eden Darwin, Galapagos adalarının faunasını inceleyerek örnekler toplamış ve 1836 yılında Şngiltere‟ye dönmüştür. Seyahati sırasında okuduğu, kıtaların kayma teorisini savunan Charles Lyeel(1797-1875) in “Jeolojinin Şlkeleri” ve 1838 yılında okuduğu Thomas Malthus (1766-1834) un “Nüfus Üzerine Deneme” adlı kitaplarından da etkilenen Darwin, 5 yıl boyunca doğada yaptığı gözlemlere ilave olarak, seferden döndükten sonra 23 yıl topladığı materyal üzerinde yaptığı çalışmalardan sonra 1859 yılında “Türlerin Kökeni” adlı kitabını yayınladı. Darwin teorisinde, bir populasyon içinde, değişen ortam koşullarına en iyi uyum sağlayan fertlerin alıkonmasıyla yeni bir ırkın meydana gelebileceğini, dölden döle farklılaşmanın artarak yeni ırkın başlangıçdaki populasyonun ait olduğu türden farklı ve yeni bir türe dönüşebileceğini ileri sürmüştür. Darwin‟e göre evrim şu sırayla meydana gelmektedir. 1- Bir ekosistem içinde yer tutan her populasyon için, o ekosistemin bir taşıma kapasitesi vardır. Çünkü, ekosistemler yaşam alanı, barınak ve besin gibi olanaklar bakımından sınırlıdır. Nitekim, yapılan bir hesaba göre, 1 erkek ve 1 dişiden oluşan Drosophila melanogaster çiftinden 3 hafta sonunda, teorik olarak 245 000 fert meydana gelebilmektedir. Fakat doğada hiç bir zaman bu ölçüde büyümeye rastlanmamıştır. Örneğin, 100 cm3 lük bir yetiştirme kabında, yeterli besin bulunmasına rağmen; yumurtalarından yeni çıkmış kelebek larvalarından 100-150 den fazlası birarada yetiştirilememektedir. 2- Aynı populasyona ait fertler arasında, morfolojik ve fizyolojik özellikleri bakımından farklar vardır. Eşeyli çoğalan bir populasyonun üyeleri, tek yumurta ikizleri dışında, biribirlerinden bazı karakterler bakımından farklıdır. 3- Ekosistemin sınırlı olanaklarında hayatta kalabilmek için populasyonun farklı özelliklere sahip olan fertleri arasında rekabet başlar. 4- Sahip oldukları özelliklerle çevrenin isteklerini karşılayabilen fertler rekabeti kazandıkları için hayatta kalır (doğal seçim) ve populasyonun sonraki dölü meydana getirirler. 5- Çevresel koşullar sürekli değişmektedir. Değişim, iklim düzeyinde, sıcaklık, nem, ışık miktarı gibi faktörlerin günlük, mevsimlik ve yıllık değişimlerini; biyolojik olarak, canlıların doğumdan sonra büyüyüp, yaşlanarak ölmelerini; ekosistem olarak, örneğin oligotrofik özelliklere sahip olarak yeni oluşmuş bir gölün, zamanla ötrofik ve distrofik bir göl halini alması, daha ileri aşamada kurumasıyla; çalılıktan başlayarak bir meşe ormanı ekosistemine varan farklı “serel evre” lerden geçmesi gibi çok farklı konuda ve bazen çok geniş kapsamda, yani biyosfer ölçüsünde meydana gelmektedir. Örneğin, CFC (klor-flor - karbon) bileşiklerinin sebep olduğu stratosferik ozon miktarındaki azalmaya bağlı olarak, biyolojik etkiye sahip olan ultraviyole ışınlarının yeryüzüne ulaşması ve sanayi devriminden (1860) sonra hızla tüketilen organik karbon kaynaklarından açığa çıkan karbon dolatısıyla ortaya çıkan küresel ısınma, tüm biyosferi içine alan küresel değişikliklerdir. 6- Değişen koşullara bağlı olarak kazanılan karakterlerin toplamına sahip olan fertlerden oluşan populasyon ile eski populasyonun fertleri, aralarında meydana gelen bu farklılaşmadan sonra biraraya gelseler dahi fertil yavrular meydana getiremezler. Aralarında tür düzeyinde fark meydana gelmiştir. Bu türleşmedir. Ancak, bu teoride bugünkü kalıtım bilgimize göre yanlış olan bir anlayışın üzerinde durmak gerekir. “Doğal seçim teorisi” olarak da bilinen bu teorinin ileriye sürüldüğü XIX. yüzyılda, kalıtsal özelliklerin vücut parçalarından geldiği ve bir çaprazlama sonucunda ortaya çıkan melezde, anne ve babaya ait karakterlerin eriyerek karışmaları nedeniyle yavrunun, anne ve babaya ait karakterlerin bir ortalaması olduğu düşüncesi hakimdi. Yani, ana ve babada var olan siyah ve beyaz gibi iki zıt karakterin yavruda gri rengi meydana getireceğine inanılıyordu. Halbuki, gözlemler bir aile içindeki çocukların, anne ve babaya ait karakterlerin bir ortalaması olmak yerine; bazılarının anneye veya anne soyundan birine örneğin dayıya, bazılarının babaya veya baba soyundan birine örneğin halaya benzediğini gösteriyordu. Fakat bunun nasıl meydana geldiği bilinmiyordu. Bu durum, Darwin'in de dikkatini çekmiş olmasına rağmen, bu konuda yeterli bilgi birikimine sahip olmadığından açıklayamamıştır. Nitekim, bugünkü bilgimize göre; anne ve babadan gelen baskın (dominant) ve çekinik (resesif) karakterler yavruda homozigot (AA veya aa) veya heterozigot (Aa) durumda bulunmaktadırlar. Bunların biribirleriyle karışması söz konusu olmamakta; bir karakter için baskın olan gen homozigot ya da heterozigot durumda olsa da fenotipte etkisini gösterebilirken, çekinik olan gen ancak homozigot durumda olduğunda fenotipte etkisini gösterebilmektedir. Genetik alanında yaptığı çalışmalarla tanınan Gregory Johann Mendel (1822-1884) ile Darwin (1809-1882) aynı dönemde yaşamış olmalarına rağmen, aralarında bilimsel bir ilişkinin kurulamamış olması bilim ve onlar adına talihsizlikti. Mendel‟in bulgularının önemi yaşadığı dönemde anlaşılamamış, ölümünden 16 yıl sonra Erich Tschermak von Seysenegg, Hugo de Vries ve Carl Erich Correns tarafından bilim dünyasına tanıtılmıştır. XX. yüzyılın başlarında, Hollandalı deVries (1848-1935), döller boyunca yetiştirdiği otuza yakın bitki türünde kendiliğinden meydana gelen ve kalıtsal nitelik gösteren değişikliklerin meydana geldiğini (varyasyon) saptadı. Benzer sonuçlar bulan, Alman Correns (1864-1933) ve Avusturyalı Tschermak (1871-1962) ile birlikte, 1900 yılında “mutasyon Teorisi” ni ileri sürdüler. Bu teoriye göre, bir tür içinde, birdenbire, ara dereceleri bulunmayan değişikliklere sahip canlılar (mutant) meydana gelebilir. Bu değişiklikler göz renginden zeka düzeyine kadar tür içi çeşitliğe ait karakterlerde olabildiği gibi, tür için karakteristik olan özelliklerden birinde de meydana gelebilir ve hayat mücadelesinde organizmaya avantaj sağlar veya zararlı olabilir. Mutasyon teorisine karşı, “canlılarda görülen değişikliklerin genellikle onların yaşama gücünü azaltıcı yönde olması” ve “türe özgü karakterlerinde değişiklik meydana gelen fert populasyonun diğer fertlerinden ayrı kalacağı için, soyunu devam ettirme ve bu değişikliği sonraki döllere aktarma şansının bulunmaması” gibi görüşler ileri sürülmüştür. Ancak, bugünkü bilgimize göre; canlılar geometrik dizi şeklinde artma eğilimindedirler. Mutasyonların çoğu, fertte olumsuz gelişmelere yol açmasına rağmen, az sayıda meydana gelen ve çevreye uyumda avantaj sağlayan mutasyonlar meydana geldikleri populasyon içinde kalıcı olurlar, bu değişikliklere sahip olan mutantların sayısı populasyon içinde giderek artar. Karşı görüşe göre, meydana gelen mutantın içinde bulunduğu populasyonun fertleriyle birleşemeyecek veya fertil yavru veremeyecek kadar farklılaştığı varsayılmaktadır ki, bu olağanüstü bir olaydır. Halbuki, mutasyonların çoğu türe özgü karakterlerin birinde meydana gelebilir ve bu değişiklik mutantın populasyon içinde fertil birleşmeler yapmasına engel teşkil etmez. Alman Biyolog August Weismann' ın da içinde bulunduğu bir grup biyolog, canlı varlıklarda genetik materyalin organizmanın somatik dokularından farklı olduğu ve ondan etkilenmediği sonucuna vardılar. Bu sonuç, bir organizmanın doğumdan sonra kazandığı yetenek ve özelliklerin neden kendinden sonraki döllere geçmediğinin anlaşılmasını sağladı. Buraya kadar anlatılan bilgi birikimine sahip olan biyologlar XIX. yüzyılın sonlarında Darwin‟in teorisi ile mutasyon teorisini birleştirerek “neodarwinizm” olarak adlandırılan yeni bir evrim teorisi geliştirdiler. Neodarwinistlere göre evrim; “bir populasyon içinde, organizmaların ortama uyumunda zayıflık yaratmayan küçük mutasyonların birikmesi sonunda, türe özgü karakterler bakımından orijinal populasyondan farklı ve ortam koşullarına daha uyumlu bir populasyonun ortaya çıkması” şeklinde meydana gelir. Darwinizm ve Neodarwinizm arasındaki benzerlik, her ikisinde de “doğal seçim” mekanizmasına yer verilmiş olması; fark ise, Darwinizmde “canlılarda değişikliğin ortam koşullarına bağlı olarak meydana gelmesi” düşüncesi yerine Neodarwinizmde “önce mutasyonların meydana geldiği” düşüncesinin yer almış olması ve karakterlerin sonraki döllere nasıl taşındığının öğrenilmiş olmasıdır. Bu konuda yapılan çalışmalar, canlılarda meydana gelen her mutasyonun canlının hayatta kalma gücü ve fertilitesi üzerinde olumsuz etkilere neden olmadığını, bazı koşullar altında canlının hayatta kalabilme yeteneğini artırdığını göstermiştir. Örneğin, Ptychopoda seriata kelebeğinde, kanatların deseninde değişikliğe neden olan bir mutasyon; kelebeğin hayatta kalma gücünü normal koşullarda azaltmasına karşın, soğuk ve rutubetli ortamlarda artırdığını göstermiştir. Bu kelebek, bir başka canlı ile ekolojik nişlerinin çakışması sonucunda habitatını değiştirmek durumunda kalırsa, sahip olduğu bu mutasyonla daha soğuk ve rutubetli ortamlarda hayatta kalmayı başaracak, oluşan yeni populasyonun gen havuzuna başka mutasyonların eklenmesiyle yeni bir tür meydana gelebilecektir (adaptif radyasyon). Buna göre, bir populasyon içinde görülen küçük mutasyonlar populasyonun gen havuzunda değişik genlerin birikmesine olanak sağlarken; diğer taraftan işleyen “doğal seçim” mekanizması var olan koşullara uygun olmayan genotiplerin ayıklanmasını sağlamaktadır. Örneğin, Florida da deniz kıyısındaki ormanlık bir alanda ve kıyıya yakın kumluk bir adada yaşayan aynı türden farelerin, ormanlık alanda koyu renkli, adada açık renkli olmaları şu şekilde açıklanmaktadır. Konu edilen fare populasyonununda rengin 3 gen çifti (A/a, B/b, C/c) tarafından belirlendiği kabul edilirse, F1 dölünün sperm ve yumurta hücrelerinde 23 = 8 farklı renk kombinasyonu (ABC, ABc, AbC, aBC, Abc, aBc, abC, abc) bulunacaktır. Buna göre F2 dölünde koyu ve açık renk veren gen kombinasyonlarından birer adet bulunma olasılığına karşın, ara derecelerde renk veren 62 adet farklı gen kombinasyonuna sahip fare meydana gelme olasılığı bulunacaktır (Tablo 1). Renk geni üzerinde meydana gelen mutasyonlarla fare populasyonunun gen havuzu içinde biribirinden farklı renk genlerinin sayısı artarken, karayla bağlantılı olan adada da farklı renklerde mutantlar görülecektir. Ancak, ada ile kara arasındaki bağlantının kesilmesi ve ada üzerindeki ormanın yok olmasıyla, çıplak ve kumluk alanda kendilerini gizleyemedikleri için kuşlar tarafından avlanan koyu renkli farelerin populasyondan elenmesiyle (doğal seçim) adada sadece açık renkli fare ırkı barınabilmiş; bunun tersine, ormanlık alanda açık renkli farelerin populasyondan elenmesiyle koyu renkli fareler barınabilmiştir. Bu örnekte, adada açık rengi; karada ormanlık alanda koyu rengi meydana getiren genler “doğal seçimde avantajlı gen” olarak tanımlanmaktadır.

http://www.biyologlar.com/evrim-teorileri

EVRİMİN KANITLARI

Temel bilimlerin önemli karakteri, ortaya atılan bir düşünce ya da teorinin bilimsel yöntemlere dayalı olarak yapılan gözlemlerle kanıtlanmasıdır. Buna göre, bir temel bilim olan biyolojide de teorik olarak verilen bilgilerin, laboratuvar koşullarında yapılan bilimsel gözlemlerle doğrulanması gerekmektedir. Ancak, evrimin süreklilik göstermesi ve çok yavaş ilerlemesi, bu konuda ortaya atılan teorilerin gözlemlerinin yapılmasını; bir başka deyişle evrimin laboratuvara sığdırılmasını olanaksız kılmaktadır. Ayrıca, evrime ortam koşullarındaki değişmenin neden olduğu düşünüldüğüne göre; belli bir evrimsel değişmeyi araştırırken buna neden olan ortam koşullarını veya bu koşullarda meydana gelen değişmeyi de bilmek gerekir ki bunu tam olarak bilmek bügün için olanaksızdır. Bu nedenle, evrimin kanıtları biyolojinin dalları ve jeoloji ile biyolojinin ara kesitinde yer alan paleontoloji alanında yapılan çalışmalardan elde edilmektedir. Aşağıda bu kanıtlara yer verilmiştir. 1- Sistematikten sağlanan kanıtlar Canlıların biribirlerinden meydana geldiğini ifade eden evrim düşüncesi, bitki ve hayvanların sınıflandırılmasından sonra daha çok dikkat çekmeye ve taraftar toplamaya başlamıştır. Sınıflandırmada gerçek ve esas olan kavram türdür. Çünkü, kendi aralarında çiftleşerek fertil yavrular veren canlılar aynı tür içinde kabul edilirler. Türün üstünde yer alan cins, aile, takım gibi taksonlar içindeki canlıların yeri, farklı sistematikçilere göre değişiklikler gösterebilmektedir. Örneğin, bir tür farklı sistematikçilere göre farklı cinsler içinde düşünülebilir. Bir başka örnek, canlıların günümüzde genellikle beş alem (regnum) e ayrılarak (Monera, Protista, Fungi, Plante, Animalia) incelenmelerine karşın; bazı sistematikçilere göre iki aleme (Animalia, Plante) ayrılmasıdır. Aslında iki alemli sistematikten beş alemli sistematiğe geçişin nedeni, prokaryot ve ökaryot tek hücreliler ile mantarların ne bitkilere, ne de hayvanlara sokulamıyacak kadar ortak özelliklere sahip olmaları idi. Örneğin, Euglena klorofil içermesi ve taşıdığı kamçıyla hareketli olması dolayısıyla botanikçiler ve zoologlar arasında bitki mi, yoksa hayvan mı kabul edilmesi konusunda tartışmaya neden olmuştur. Fakat, beş alemli sistematiğin kullanılmaya başlanmasıyla bu tür tartışmalar büyük ölçüde sona ermiştir. Sistematik biliminin gelişmesinde ve canlı sistematiğinin incelenmesinde evrim açısından önemli olan, ilkel canlıların bitki mi yoksa hayvan mı olduklarını tartışacak kadar basit ve benzer yapılı olmalarına karşın; sistematiğin gelişmiş olan üst grupları arasında (memeli hayvanlar ve çiçekli bitkiler gibi) farkların çok fazla oluşudur. Canlı sistematiğinde evrime delil olarak gösterilen bir başka gözlem, aynı takson içinde biribirine yakın gruplardaki canlıların biribirlerine daha çok benzemesidir. Bu durum, yakın türlerin değişerek biribirlerinden meydana geldikleri düşüncesinin kaynağı olmuştur. 2- Paleontolojiden elde edilen kanıtlar Paleontoloji, bilimler yelpazesi içinde jeoloji ile biyolojinin birleştikleri çizgide yer alır. Adeta iki bilim dalının ara kesiti durumundadır. Bugün ele geçen fosillerden, jeolojik devirlerde yaşamış olan canlıların ne kadar eskiye ait olduklarını; ortamlarıyla ve bugün yaşamakta olan canlılarla ilgilerini araştırır. Fosil, Jeolojik devirlerde yaşamış olan canlılardan veya onların bıraktıkları izlerden bugün elimize geçen kalıntılara denir. Canlılar öldükten sonra, yumuşak dokuları ayrıştırıcı olarak isimlendirilen eklembacaklılar ve mikroorganizmalar tarafından tüketilir. Şayet iyi korunmamışsa kemikler de yok olur. Fosiller, jeolojik devirlerde yaşamış olan canlıların doğal olaylar sonunda uygun şekilde korunarak günümüze kadar gelmiş olan izleridir. Suda yaşayan canlıların fosilleşme şansı, karada yaşayan canlılara oranla daha fazladır. Örneğin, deniz veya gölde akarsu ağzına yakın yerde ölen bir balık, derenin taşıdığı sel sularıyla gelen sedimantasyonun altında kalabilir. Bu şekilde fosilleşme sürecine giren balık, diğer canlıların etkisinden uzak kaldığı gibi, yer altı sularıyla taşınan silikatlar ve karbonatların sert dokularına girmesiyle taşlaşarak binlerce yıl bozulmadan kalacak bir fosil haline gelir (Şekil 6). Fosilleşmenin bir başka şekli, çevresindeki tüm canlıları örtecek bir volkanik etkinlik sonunda canlıların kalın bir lav veya tüf tabakası altında kalmasıdır. Şekil. 6. Fosillerin, yaşadıkları devirlerin eskiliğine göre jeolojik tabakalar içinde sıralanışı Yer altında değişik derinliklerde bulunan fosiller çeşitli dış ve iç kuvvetlerin etkisiyle yüzeye çıkabilirler. Dış kuvvetler heyelanlar veya akarsu ve rüzgarların meydana getirdiği erozyon; iç faktörler ise, jeolojik anlamda yer hareketleridir. Paleontologlar, bu amaçla çeşitli yöntemler kullanarak jeolojik tabakaların yaşlarını belirlerler. Radyoaktiviteden yararlanılarak yapılan yaş tayinleri bu konuda yaygın olarak başvurulan yöntemdir. Paleontolojik bulgulara göre 4,6 milyar yıl yaşında olduğu tahmin edilen yer üzerinde ilkel canlıların günümüzden 3,5 milyar yıl önce (MYÖ); ilk ökaryotların ise 1,5 MYÖ meydana geldikleri ve ilk çok hücrelilerin kambriyen devrinde ortaya çıktıkları tahmin edilmektedir. Şekil 7, sırasıyla çenesiz omurgalılar, kıkırdaklı balıklar, kemikli balıklar, amfibiler, sürüngenler, kuşlar ve memelilerin ortaya çıktıkları jeolojik devirleri ve gelişmelerini göstermektedir. Bu şekile göre, a) Şlk omurgalı hayvanlar çenesiz balıklardır. Bu canlıları zaman içinde sırasıyla kıkırdaklı ve kemikli balıklar, amfibiler, sürüngenler, kuşlar ve memeliler izlemektedir. Bu durum, zaman içinde giderek gelişmiş canlıların ortaya çıktığını göstermektedir. Herhangi bir jeolojik devirde meydana gelen bir canlı türü, belli bir sayısal büyüklüğe eriştikten sonra, yeni türler meydana getirmektedir. Örneğin, başlangıçta sayıca az olan reptiller; fert sayıları belli bir büyüklüğe eriştikten sonra, tür sayılarını artırarak tüm jura devrinin baskın canlıları olmuşlardır. Burada "fert sayısının belli bir büyüklüğe erişmesi" b) ifadesiyle, ekosistemde türe ait taşıma kapasitesinin tamamının kullanılmış olması kastedilmektedir. c) Fosillerin incelenmesi, bazı hayvan grupları arasında geçit formu olarak nitelendirilebilecek fakat bugün yaşamayan canlıların varlığını ortaya koymuştur. Örneğin, jura devrinde yaşamış olan Archaeopteryx, vücut yapısı bakımından hem sürüngenlere ve hem de kuşlara benzeyen karakterlere sahiptir. Bu yapısıyla Archaeopteryx, bugün yaşamayan bir geçiş formudur. Bir başka örnek, biribirini izleyen jeolojik devirlerde yaşamış olan ve bugünkü atın ataları durumunda olan hayvan fosilleridir. Bu fosiller de atın evrimini gösteren geçiş formlarıdır (Şekil 8). d) Canlıların evrimi sürecinde, bazı karakterlerde meydana gelen değişikliklerin aynı yönde geliştiği görülür. Atın ayağının allometri tarzında gelişmesi; Sudan karaya geçiş sürecinde rol alan balık – kurbağa – sürüngen ve daha sonra gelişen memelilerde hareket, solunum ve dolaşım sistemlerinde görülen ve giderek daha fonksiyoner olma yönündeki gelişmeler buna örnektir. 3-Morfolojiden sağlanan kanıtlar Morfoloji, bir canlının veya canlıyı meydana getiren yapıların dış görünüşünü inceleyen bilimdir. Canlıların dış görünüşleri ve bu görünüşleri meydana getiren organ morfolojileri ve işlevleri karşılaştırılırken aralarındaki benzerlikler dikkate alınmaktadır. Gözlemler, organlar arasında homologi ve analogi tarzında olmak üzere, iki şekilde benzerlik bulunduğunu ortaya koymuştur. Şekil 8. Atın soyoluşunda yer alan geçiş formları. Analog organlar arasındaki veya analogi tarzındaki benzerlikler morfolojik ve işlevsel benzerlikleri dikkate almaktadır. Örneğin, embriyonik gelişimleri birbirlerinden tamamen farklı olan böceklerin ve kuşların kanatları arasındaki benzerlik, her ikisinde de kanatların uçma işlevini yerine getirmesidir. Bu konuda bir başka örnek, deniz parlaması (yakamoz) olayına neden olan Noctiluca miliaris ile aralarında filogenetik yakınlık olan Craspedotella pileolus‟un tek hücreli hayvan olmasına rağmen, morfolojik bakımdan deniz anası (Aurelia aurita) na benzemesidir veya bir memeli hayvan olan yunus balığı ile bilinen gerçek balıklar (Pisces) arasında görülen morfolojik benzerliktir. Yunus balığı, derisinin kıllı oluşu, akciğerleriyle soluması, canlı doğurması gibi özellikleri ve embriyonik gelişimi bakımından tipik bir memeli olmasına rağmen; ortam koşullarına uyması sonucunda morfolojik olarak balık şeklindedir. Homolog organlar arasındaki veya homologi tarzındaki benzerlikler organların embriyonik gelişimleri arasındaki benzerliklere dayanmaktadır. Evrimsel gelişimleri birbirine benzer olan bu organlar adaptif radyasyon sonunda farklı amaçlara uygun olarak değişmektedirler. Homolog organlar işlevsel farklılıklar gösterse de, burada dikkate alınan embriyonik gelişimleri arasındaki benzerliktir. Örneğin, memelilerde genel olarak 5 parmaklı olan üyeler; farklı türlerin yaşam koşulları ve beslenme şekilleri (veya topluluk içindeki rolleri = niş) ne göre el, toynak, yüzgeç, pençe, kanat gibi değişik amaçlara göre farklılaşmıştır. Bu organlar işlevsel farklarına rağmen embriyonik gelişmelerindeki benzerlikler nedeniyle homolog organlardır. Yukarıda anlatılan kuşlar ve böceklerin kanatları arasındaki analogi tarzı benzerliğe karşın, kuşların ve yarasaların kanatları arasında; hem embriyonik gelişimleri bakımından ve hem de işlevsel olarak görülen benzerlik nedeniyle, hem analogi hem de homologi tarzı benzerlik bulunmaktadır. Nitekim, her iki kanat yapısında yer alan kemikler arasında önemli benzerlikler bulunmaktadır (Şekil 9). Şekil 9. Sırasıyla, Şnsan, kedi, balina ve yarasa kolları arasındaki anatomik benzerlikler Homolog organların karşılaştırılmasıyla hayvanlar arasındaki yakınlıklar daha doğru bir şekilde belirlenmektedir (Şekil 9). Hatta, dış görünüşleri bakımından farklı olan fakat filogenetik bakımdan biribirlerine yakın olan canlıların akrabalık dereceleri, homologi tarzındaki benzerliklerin değerlendirilmesiyle ortaya çıkarılmaktadır. Örneğin, Equidae ailesinden at, Felidae ailesinden kaplan ve Pongidae ailesinden maymunun ayakları arasında anatomik ve işlevsel farklar vardır. At, aslan ve maymun sırasıyla; tırnakları, parmakları ve tabanları ile yere basan hayvanlardır. Aileler arasında yere basış şekli bakımından görülen farka rağmen, aynı aile içindeki fertlerin benzer şekilde yere bastıkları görülür. Buna göre, aynı aile içinde toplanan bireyler yakın akraba olarak kabul edilmelerine karşın, farklı ailelere mensup fertler daha uzak akraba olarak kabul edilmektedirler. A-Embriyolojiden sağlanan kanıtlar. Morfolojinin bir dalı olan embriyoloji, yumurtanın döllenmesiyle meydana gelen zigotun, hayvanlarda yumurta içinde veya ananın uterusunda; bitkilerde tohum içinde filizleninceye kadar geçirdiği gelişme evrelerini inceleyen bilim dalıdır. Bu bilim dalında yapılan gözlemler, yüksek organizasyonlu canlıların geçmiş jeolojik devirlerde yaşamış olan canlıların sürekli evrimleşmeleriyle meydana geldiklerini ortaya koymaktadır. Bu düşünceye neden olan gözlemler: a) Canlıların bir bölümü (örneğin bugüne kadar soylarını devam ettirebilmiş olan süngerler) embriyonik gelişimlerinde gastrula evresinde kalırlar. Ancak daha gelişmiş canlılarda embriyonik tabakalar ve organ oluşumları belirgin olarak görülmeye başlar. b) Belli bir gelişmişlik düzeyinin üzerindeki canlılar yumurta hücreleri meydana getirirler ve bu hücrede meydana gelen bölünmelerle bulastula ve gastrula evrelerinden geçerek; sırasıyla ektoderm, endoderm ve mezoderm olarak tanımlanan embriyonik tabakaları meydana getirdikten sonra organ taslaklarını oluşturarak gelişirler. c) Gelişmiş canlıların embriyonik gelişimlerinde, daha ilkel canlıların ergin evrelerinin bulunduğu gözlenmektedir. Örneğin, kurbağa metamorfozunda; su hayatına uyarak kuyruğuyla hareket eden ve solungaçlarıyla soluyan, balığa benzer bir tetar evresinin bulunuşu, filogenez içinde kurbağaların balıklardan meydana geldiği düşüncesini kuvvetlendirmektedir. Omurgalılarda boşaltım sisteminin evrimi incelendiğinde, ilkel balıklarda görülen pronefroz tipi böbreğin yerini; sürüngenler, kuşlar ve memeliler gibi daha ileri derecede evrimleşmiş olan grupların erginlerinde metanefroz tipi böbreğin aldığı görülür. Ancak, bu grupların ve amfibilerin larvalarında daima pronefroz tipi böbreğin bulunduğu görülür (Tablo 2). Bir başka örnek olarak, insanın, embriyonik gelişiminde nöral borunun oluşumu sırasında, kısa bir süre için başın gerisinde, balıkların solungaçlarına benzer yarıkların meydana geldiği; kalbin iki odacıklı olduğu; böbreklerin pronefroz tipinde olduğu ve kuyruğunun bulunduğu bir evreden geçtiği bilinmektedir. Ayrıca, Şekil 10 da görüldüğü gibi, insanın embriyonik gelişimindeki belli evreler ile başka canlıların embriyonik gelişim evreleri arasında benzerlikler bulunmaktadır. Bir başka anlatımla, her canlı embriyonik gelişiminde, evrim çizgisinde yer alan canlıların morfolojik özelliklerini sergileyen evrelerden geçerler. Sistematikdeki yeri tartışma konusu olan canlılar arasında filogenetik yakınlıklar, bu şekildeki benzerliklerden yararlanılarak bulunmaktadır. Hatta, bazı yazarlara göre “bir canlının embriyonik gelişimi onun soyoluşunu göstermektedir”. B-Sitolojiden sağlanan kanıtlar Morfolojik ve fizyolojik bakımdan, tek ve çok hücreli canlıların hücrelerinde bulunan ortak özellikler, canlıların orijininin tek hücreli bir organizma olduğunu düşündürmektedir. Bütün hücrelerde, merkezde DNA yapısında bir kalıtım materyali ve onu saran sitoplazma ile bütün bu yapıyı çevresinden ayıran bir zarın bulunması; bütün hücrelerde çoğalmanın mitoz olarak isimlendirilen bir bölünmeyle gerçekleşmesi; eşeyli çoğalan türlerde eşey hücrelerinde kromozom sayılarının mayoz bölünmeyle yarıya indirilerek türlerin kromozom sayılarının sabit tutulması bütün bu canlıların hücrelerinde karşılaşılan ortak karakterlerdir. Şekil 10. Çeşitli düzeylerde evrimleşmiş olan canlıların embriyonik gelişim evreleri arasında görülen benzerlikler. Soldan sağa sırasıyla: Balık, Salamander, Hindi, Tavuk, Domuz, Dana, Tavşan ve Şnsan Diğer taraftan, cins ve aile gibi küçük sistematik kategoriler içindeki türler arasında biribirlerine yakın olan kromozom sayılarının, takım gibi daha geniş kapsamlı kategorilerde giderek farklılaşması; canlıların ortak bir atadan meydana geldikten sonra giderek değiştiklerini göstermektedir. Örneğin, sineklerin Chironomus cinsi içindeki türlerin hemen hepsinde haploid kromozom sayısı 4; çekirgelerin Acridiidae ailesinde 16 türde n=10, 86 türde n=12 olmasına karşın; bilinen tüm kelebekleri kapsayan Lepidoptera takımında n=11-112 arasında değişmektedir. Benzer şekilde, kromozomların metafaz düzleminde sıralanışı bakımından da büyük sistematik kategoriler içindeki fertler arasında farklar bulunmaktadır. C-Histolojiden sağlanan kanıtlar Bütün canlıların özelleşmiş hücre grupları olan dokulardan ve farklı dokuların belli bir amaca yönelik olarak bir araya gelmesinden oluşan organ ve organların bir araya gelmesinden oluşan sistemlerden meydana gelmesi ve bu hiyerarşik yapının bütün canlılarda benzer olması canlıların ortak bir başlangıcının olduğunu düşündürmektedir. Ayrıca, canlıların dokuları arasında görülen morfolojik ve işlevsel benzerlikler de bu düşünceyi kuvvetlendirmektedir. Örneğin, omurgalı hayvanların deri, kol ve mide kasları ile sinir dokuları morfolojik olarak benzer yapıdadırlar. Bu durum, canlıların ortak bir atadan meydana gelerek evrimleşmeleri sırasında, doku düzeyinde benzer şekilde farklılaştıklarını göstermektedir. 4-Fizyolojiden sağlanan kanıtlar Canlıların bir hücreden meydana geldikten sonra sürekli bir rekabet ortamında ve çevrenin koşullarına uygun olarak, gelişerek ve farklılaşarak çeşitlendiklerini gösteren kanıtlara fizyoloji bilim dalında da rastlanmaktadır. Örneğin, bütün canlılarda görülen fizyolojik gereksinimler aynıdır. Fakat bunların karşılanma şekli gelişmişlik düzeyine bağlı farklılıklar gösterir. Örneğin, bütün canlılar enerji elde etmek için beslenmek ve solunum yapmak, ortaya çıkan artıkları da organizmadan uzaklaştırmak zorundadırlar. Bu işlemleri amip gibi tek hücreli bir canlıda ozmoz, difüzyon ve aktif transport gibi işlemlerle hücre düzeyinde gerçekleştirmek mümkün olmakla birlikte; çok hücreli organizmalarda periferdeki hücreler dışında, organizmanın geri kalan hücreleri için gazların ve maddelerin taşınmasını sağlamak üzere bir taşıma sistemi gerekmektedir. Böylece solunum, sindirim ve boşaltım sistemleri ile dış ortam arasındaki iletişim dolaşım sistemiyle sağlanmaktadır. Ayrıca bu sistemler arasındaki koordinasyonun sağlanması ve ortamdaki değişikliklerin organizma tarafından algılanması ve yanıtlanması için sinir sistemi ve ona bağlı olarak duyu organları gelişmiştir. Evrim sürecinde, canlılardaki sistem ve organların da ortamın gereksinimlerine uygun olarak değiştikleri görülmektedir. Ancak, burada rekabet daima varlığını sürdürmekte; hatta, ortamın gereksinimlerinden biri olarak karşımıza çıkmaktadır. Örneğin, Dolaşım sisteminin amacı, genel olarak; gazların, besinsel elementlerin, metabolizma artıklarının ve hormonların taşınmasını sağlamaktır. Bu gereksinimi karşılamak üzere kan sıvısı, böceklerde sırtta bulunan ve emme-basma tulumba gibi çalışan bir kalp yardımıyla vücut içinde serbest olarak dolaştırılırken; solucanda kalb ödevi gören lateral damarlar yardımıyla damarlar içinde kapalı olarak dolaşmaktadır. Omurgalılarda, gereksinimlere bağlı olarak önemli ölçüde değişikliğe uğrayan kalbin; balıklarda 2 odacıklı, amfibilerde 3 odacıklı, reptillerde ventrikülü tamamlanmamış bir bölmeyle ikiye ayrılmış olarak 3 odacıklı, kuşlar ve memelilerde 4 odacıklı olmak üzere evrim sürecinde giderek pompalama kapasitesini artırdığı görülmektedir (Şekil 11). Şekil 11. Sırasıyla balıkta 2 gözlü, kurbağada 3 gözlü ve memelide 4 gözlü kalp Boşaltım sisteminin amacı başlıca üre ve ürik asit şeklindeki metabolizma artıklarını vücut sıvılarından ayırmaktır. Bu amaca ulaşmak için, yöntem temelde aynı kalmak üzere gelişmişlik düzeyine bağlı olarak boşaltım organının süzme kapasitesinin arttığı görülmektedir. Solucanda her segmentte bir çift olarak bulunan nefridium şeklindeki boşaltım organı, böceklerde arka barsağa açılan Malpighi tüpü ve omurgalılarda sırasıyla pronefroz, mezonefroz, metanefroz olarak adlandırılan böbrek tipleri şeklinde bir evrimleşme göstermektedir. Bu anlatılanların dışında, tüm canlıların sadece kimyasal haldeki enerjiyi kullanabilmeleri ve depolayabilmeleri onların ortak bir atadan meydana geldiklerini gösteren bir başka kanıttır. Bu kuralın dışına çıkarak, gün ışığıyla hareket eden veya radyoaktif maddeler kullanarak büyüyen bir canlı bilinmemektedir. 5-Endokrinolojiden sağlanan kanıtlar Endokrinoloji, iç salgı bezlerinin yapısını, salgılarını, bu salgıların etkiledikleri olayları ve etki şekillerini inceleyen bir bilim dalıdır. Bu konuda memelilerde yapılan çalışmaların sayısı, ilkel gruplarda yapılan çalışmalara göre fazla olmasına rağmen; elde edilen bulgular canlıların ortak bir soydan gelerek derece derece farklılaştıklarını göstermektedir. Örneğin, çenesiz omurgalılar (cyclostomata) dan memelilere kadar uzanan evrim sürecinde yer alan canlılarda, tiroid bezinin biyokimyasal organizasyonun aynı olduğu bildirilmektedir. Siklostom larvalarında yapılan çalışmalar, endostillerinde tiroksin ve tironin hormonlarının bulunduğu; metamorfozunu tamamlayan bireylerde endostilden tiroid foliküllerinin oluştuğu ve aynı kimyasalların tiroid bezinde bulunduğu saptanmıştır. Daha alt gruplarda yapılan çalışmalar, protokordatlardan Ascidia'ların endostillerinde ve süngerlerde skleroproteinlere bağlı olarak iyot bulunduğunu göstermiştir. 6-Biyokimyadan sağlanan kanıtlar Bilinen bütün canlılar C, H, O, N başta olmak üzere canlılık için önemli olan bazı metal ve ametallerin de içinde bulunduğu organogen elementleri kullanırlar. Büyüme, hareket, çoğalma gibi işlevleri gerçekleştirebilmek için; bu elementlerden, cansız dünyada bulunmayan şeker, yağ ve proteinleri, nükleik asitleri meydana getirirler. Önemsiz farklarla kullandıkları ve meydana getirdikleri maddelerin aynı olması, canlıların ortak bir başlangıca sahip oldukları düşüncesini kuvvetlendirmektedir. Canlılar arasındaki akrabalık derecelerinin ortaya çıkarılmasında da biyokimyasal yöntemlerden yararlanılmaktadır. Bilindiği gibi, metabolik işlemler sonunda canlılarda meydana gelen NH3 ve CO2 in organizmadan uzaklaştırılması gerekir. Paleontolojik bulgular, omurgalı hayvanların; balıklar, kurbağalar, sürüngenler ve sürüngenlerin bir kolundan kuşların, diğerinden memelilerin evrimleştiklerini göstermektedir. Bu konuda yapılan biyokimyasal çalışmalar, balıklar, kurbağalar ve sürüngenlerin kaplumbağaları kapsayan Anapsida grubu ile memelilerde amonyağın ornitinle reaksiyona sokularak, CO2 in de kullanıldığı işlemler sonunda üreye dönüştürülerek organizmadan uzaklaştırıldığını; Buna karşın, sürüngenlerin kertenkeleler ve yılanları kapsayan Diapsida grubunda amonyağın ornitin yerine ksantinle reaksiyona sokularak organizmadan ürik asit şeklinde uzaklaştırıldığını göstermektedir. Bu durumda, biyokimyasal yöntemler de, paleontolojik bulgulara uygun olarak omurgalıların evriminde reptillerin bir kolundan memelilerin, diğer kolundan kuşların evrimleştiği göstermektedir. 7-Moleküler biyolojiden sağlanan kanıtlar Biyolojinin genç bilim dallarından olan moleküler biyoloji, içinde bulunduğumuz teknoloji çağının olanaklarıyla moleküler düzeydeki biyolojik problemlere çözüm aramaktadır. Gerek bu çalışmalar sırasında elde edilen bulguların bir bölümü ve gerekse doğrudan canlılığın nasıl meydana geldiğini araştıran çalışmalardan elde edilen bulgular, evrimin yer üzerinde moleküler düzeyde başlamış olabileceğini göstermektedir. Bu düşünceye göre, metan, amonyak ve karbon di oksit bakımından zengin olan yer atmosferinde elektrik boşalmaları yardımıyla meydana gelen tepkimeler sonunda; aminli asitler, şekerler ve yağ asitleri meydana gelmiştir. Bu tepkimeler sırasında meydana gelen çok sayıdaki moleküller uç uca gelerek zincirler oluşturmuşlardır. Olasılıkla deniz suyundaki bu moleküller yağ asitleri sayesinde kümeler meydana getirerek büyümüşler ve zamanla bakterilere benzer bir bölünme yeteneğine sahip olmuşlardır. Bundan sonraki bölümde üzerinde durulacak olan Miller'in deneyi, yerin soğuma sürecinde sahip olduğu düşünülen çevre koşulları altında inorganik maddelerden organik yapıların meydana geldiğini gösteren önemli bir çalışmadır.

http://www.biyologlar.com/evrimin-kanitlari

Teknolojide Kullanılan Bitkiler

Tentürler 35-40 derece alkol içerikli damıtılmış içkilerin veya aynı derecede etil alkol kanyak veya elma sirkesi kullanımı ile elde edilirler. Bir şişe veya ağzı kapanabilir bir kavanoz ince kıyılmış bitkilerle gevşekce doldurulur (Kuru bitkiler için kavanozun 1/5' i taze bitkiler için kavanozun 2/5' i) ve üstüne etil alkol kanyak veya elma sirkesi eklenir. Sıvı bitkilerin üstüne çıkmalı ve kavanozun çalkalanacak kadarlık bir kısmı boş kalmalıdır. Ağzı iyice kapatılan şişe veya kavanoz 14 gün güneşte bekletilir ve her gün 2-3 kez çalkalanır. Süre sonunda ince delikli bir süzgeç veya tülbentle birkaç kez süzülür ve bitki posasının suyu sıkılır. 1-2 gün bekledikten sonra bir kez daha süzülür ve koyu renkli şişelere aktarılır. Elde edilen bu başlangıç tentürü serin bir ortamda saklandığında kullanım süresi 2-3 yıl civarındadır. Tentürler içten doğrudan veya çaya ve suya eklenerek dıştan da kompres veya friksiyon (sürülme) biçiminde kullanılırlar. Tentürün İnceltilerek Güçlendirilmesi: Bazı bitki tentürlerinin kullanımında yukarıda açıklanan başlangıç tentürü tercih edilir. Ama tentürler genellikle inceltilip-güçlendirilerek kullanılr. İnceltme-Güçlendirme Yöntemi: 1 ölçü başlangıç tentürü 9 ölçü 30-35 derecelik etil alkol-su karışımı kanyak veya elma sirkesi ile koyu renkli küçük bir şişede inceltilir ve iyice çalkalanır. Elde edilen tentür desimal ölçüye göre; D1' dir ve şişenin üstüne kullanılan bitkinin adı tentür yapımının tarihi ve incelti derecesi (D1) bilgilerini içeren bir etiket yapıştırılır. D1 inceltisinden alınan 1 ölçü aynen yukarıdaki gibi 9 ölçü etil alkol-su kanyak veya elma sirkesi karışımıyla inceltilirse D2 inceltisi elde edilir. Böylece devam edilerek kullanımı önerilen incelti derecesine ulaşılır. (D3 D4 D5 D6... gibi) Homeopaty biliminde (tentür ile tedavi) 2 yüzyıl boyunca yapılan sürekli araştırmalar ve insan üzerinde yapılan deneylerle hangi hastalıklara karşı hangi bitkisel hayvansal veya mineral tentürün hangi incelti derecesinde hiç bir yan etki yapmadan başarılı olabileceği kesinlikle saptanmıştır. Homeopaty (Homeopathic- Homeopathie-Homöopathi) yöntemleriyle yapılacak tedavilerde konu literatüründe yerini almış olan bu incelti derecelerine ve kullanım dozajlarına mutlaka uyulmalıdır. Bazı hastalıklara karşı çok yüksek incelti dereceleri (Örnek: D30 gibi) önerildiğinde konunun yabancısı olan kişiler şaşkınlığa kapılabilirler ama bu tespitler kesinlikle doğrudur çünkü tentürlerin etkinlikleri genelde inceldikçe artar! Tentürler kullanım miktarları göz önüne alındığında bitki çaylarından çok daha etkilidirler. Alkol almak istemeyen veya kesin alkol yasağı altında olan kişiler için sıcak su karışımı idealdir çünkü alkol sıcak suyun içerinde kısa bir sürede uçar ve geriye yalnızca bitkisel etken maddeler kalır. Tentürler ayrıca eklenerek de kullanılabilir. Özsu Çıkarmak Bitkilerin taze özsuları damla biçiminde kullanılmaya veya hasta organları nemlendirmeye uygundur. Bu özsular evlerde kullanılan meyva sıkma aleti ile de elde edilebilirler. Bitkilerin özsuyu her gün taze olarak sıkılabilir. Ağzı iyice kapalı küçük renkli şişelerin içinde buzdolabında bir kaç gün saklanabilir. Bitki Lapası Saplar ve yapraklar bir tahta tabla üstünde bir bitki lapası haline gelene kadar merdane ile ezilir. Elde edilen lapa bir keten bezin üstüne yayılarak hasta organın üstüne yatırılır sargı bezi ile sarılır ve sıcak tutulur. Bu lapa kompresi gece boyunca etkilemeye bırakılabilir. Bitki-Buhar Kompresi İçinde su kaynayan bir kabın üstüne yerleştirilen süzgecin içine taze veya kurutulmuş bitkiler konduktan sonra süzgecin üstü kapanır. Bir süre sonra yumuşamış olan bu sıcak bitkiler bir bezin üstüne yerleştirilerek hasta organın üstüne yatırılır. Hepsi bir yünlü kumaşla örtülür ve başka bezlerle sıkıca sarılır. Hasta kişi üşümemelidir.Örneğin:[Linkleri Görebilmek İçin Üye Olmanız Gerekiyor. buğu kompresleri çok etkilidir. Buğu kompresleri iki saat veya gece boyunca hasta organın üstünde kalabilirler. Merhem ve Yağ Hazırlamak İki avuç taze bitki ince kıyılır. 500 gr içyağı veya bir doğal margarin sanki kızartma yapılacakmış gibi bir kabın içinde kızdırılır. Bitkiler bu kızgın yağın içine atılarak karıştırılır 1-2 dakika sonra ateş söndürülür kabın kapağı kapatılır ve soğumaya bırakılır. Soğuduktan sonra buzdolabına koyulur. Ertesi gün kap yine ısıtılır (kızartılmaz) ve bir tülbentten geçirilerek süzülür ve hazırlanmış olan merhem kaplarına dağıtılır. Bitki yağı hazırlamak için çiçekler veya yapraklar gevşek biçimde bir şişeye doldurulur ve bitkilerin iki parmak üstüne çıkacak miktarda sızma zeytinyağı eklenir. 14 gün boyunca güneşte veya sıcak bir ortamda bekletildikten sonra tülbentten geçirilerek süzülür. Oturma Banyosu T** banyo için gerekli bitkiler geceden soğuk suya koyulur. Bir banyo için bir kova dolusu (6-8 litre) taze bitki veya 200 gr kurutulmuş bitki gereklidir. Ertesi gün bu miktar ısıtılır (kaynatılmaz) ve süzüldükten sonra banyo suyuna eklenir (küvet). Banyo süresi 20 dakikadır. Kalp ve göğüs bölgesi suyun dışında kalmalıdır. Ilık ya da sıcak su ile belirtilen sınırları aşmayacak şekilde doldurulmuş küvete bitki suyunu süzüp boşalttıktan sonra 20 dakika süreyle oturmalısınız. Bu esnada ilgili sayfalarda belirtilen bitki çayını da yudum yudum içebilirsiniz. Banyodan sonra kurulanılmaz ve durulanılmaz. Bir bornozun içinde sıcak yatakta bir saat kadar yatarak dinlenilir. Yarım banyo için yarım kova (3-4 litre) taze bitki veya 100 gr kurutulmuş bitki gereklidir. Yarım banyonun hazırlanışı ve uygulanışı da aynı tam banyo gibidir. Ancak banyo suyu böbreklerin üstüne kadar çıkmalıdır. Yarım banyo süresi de 20 dakikadır. Banyodan sonra kurulanılmaz ve bir bornozun içinde sıcak yatakta bir saat kadar yatarak dinlenilir. İlgili sayfalardaki bitki özelliklerine uygun önerilere dikkat edilmesi gerekir. Bitkilerin teknolojide kullanım alanları ve bitkilerin teknolojide kullanım alanları vikipedi ve bitkilerin teknolojide kullanım alanları nelerdir ve bitkilerin teknolojide kullanımı ve bitkilerin teknolojideki kullanım alanları ve bitkilerin teknolojide kullan ve bilim teknik bitkilerin teknolojide kullanım alanları ve teknolojide kullanılan bitkiler ve bitkilerin tıpta kullanım alanları ve bitkilerin teknolojide kullanım ve ilaç olarak da kullanılabilen bitkiler nelerdir ve haşhaşın kullanım alanları ve kanaryaotunun teknolojide kullanımı ve teknolojide bitkilerin kullanım alanları ve teknolijide kullanılan bitkiler ve bitkilerin teknoloji alanında kullanımı ve bitkilerin tıpta kullanım alanları-vikipedi ve bitkilerin kullanım alanları vikipedi ve tentür hazırlamak bitkilerin teknolojik alanda kullanılması örnek midir ve ilaç yapımında kullanılan bitkiler nelerdir ve yararlı otlar yasası ve homeo dis macunu ve sığırkuyruğu tentür kullanım şekli ve haşhaş teknolojide kullanıldığı alanlar ve uyarici bitkilerin kullanim alanlari.

http://www.biyologlar.com/teknolojide-kullanilan-bitkiler

Ses Kirliliği

Gürültü; insanlar üzerinde olumsuz etki yapan ve hoşa gitmeyen seslere denir. Özellikle büyük kentlerimizde gürültü yoğunlukları oldukça yüksek seviyede olup, Dünya Sağlık Örgütü'nce belirlenen ölçülerin üzerindedir. Gürültü (ses) Kirliliği Kent gürültüsünü artıran sebeplerin başında trafiğin yoğun olması, sürücülerin yersiz ve zamansız klakson çalmaları ve belediye hudutları içerisinde bulunan endüstri bölgelerinden çıkan gürültüler gelmektedir. Meskenlerde ise televizyon ve müzik aletlerinden çıkan yüksek sesler, zamansız yapılan bakım ve onarımlar ile bazı işyerlerinden kaynaklanan gürültüler insanların işitme sağlığını ve algılamasını olumsuz yönde etkilemekte, fizyolojik ve psikolojik dengesini bozmakta, iş verimini azaltmaktadır. Gürültünün insan üzerindeki etkilerini 4'e ayırabiliriz: 1-) Fiziksel Etkileri: Geçici veya sürekli işitme bozuklukları. 2-) Fizyolojik Etkileri: Kan basıncının artması, dolaşım bozuklukları, solunumda hızlanma, kalp atışlarında yavaşlama, ani refleks. 3-) Psikolojik Etkileri: Davranış bozuklukları, aşırı sinirlilik ve stres. 4-) Performans Etkileri: İş veriminin düşmesi, konsantrasyon bozukluğu, hareketlerin yavaşlaması. Gürültüye maruz kalma süresi ve gürültünün şiddeti, insana vereceği zararı etkiler. Endüstri alanında yapılan araştırmalar göstermiştir ki; işyeri gürültüsü azaltıldığında işin zorluğu da azalmakta, verim yükselmekte ve iş kazaları azalmaktadır. Çalışma ve Sosyal Güvenlik Bakanlığı verilerine göre; meslek hastalıklarının %10'u, gürültü sonucu meydana gelen işitme kaybı olarak tespit edilmiştir. Meslek hastalıklarının pek çoğu tedavi edilebildiği halde, işitme kaybının tedavisi yapılamamaktadır. Bazı Gürültü Türlerinin Desibel Dereceleri ve Psikolojik Etkileri Gürültü türü dB derecesi Psikolojik Etkisi Uzay roketleri 170 Kulak ağrısı, sinir hücrelerinin bozulması Canavar düdükleri 150 Kulak ağrısı, sinir hücrelerinin bozulması Kulak dayanma sınırı 140 Kulak ağrısı, sinir hücrelerinin bozulması Makineli delici 120 Sinirsel ve psikolojik bozukluklar (III.Basamak) Motosiklet 110 Sinirsel ve psikolojik bozukluklar (III.Basamak) Kabare müziği 100 Sinirsel ve psikolojik bozukluklar (III.Basamak) Metro gürültüsü 90 Psikolojik belirtiler (II.Basamak) Tehlikeli bölge 85 Psikolojik belirtiler (II.Basamak) Çalar saat 80 Psikolojik belirtiler (II.Basamak) Telefon zili 70 Psikolojik belirtiler (II.Basamak) İnsan sesi 60 Psikolojik belirtiler (I.Basamak) Uyku gürültüsü 30 Psikolojik belirtiler (I.Basamak) GÜRÜLTÜNÜN NEDEN OLDUĞU RAHATSIZLIKLAR 30-65 dB: Konforsuzluk, sıkılma duygusu, kızgınlık konsantrasyon ve uyku bozukluğu 65-90 dB: Kalp atışı değişimi, solunum hızlanması, beyindeki basıncın azalması. 90-120 dB: Metabolizmada bozukluk, başağrısı 120-140 dB: İç kulakta bozukluk 140 dB ve üzeri: Kulak zarının patlaması Çeşitli Kullanım Alanlarının Kabul Edilebilir Üst Gürültü Seviyeleri Tiyatro Salonları 25 dB Konferans Salonları 30 dB Otel Yatak Odaları 30 dB Otel Restoranları 35 dB Hastaneler 35 dB Yatak Odaları 35 dB Derslikler, Laboratuvarlar 45 dB Oturma Odaları 60 dB Spor Salonu, Yemekhaneler 60 dB Servis Bölümleri (mutfak, banyo) 70 dB Fabrikalar (küçük) 70 dB Fabrikalar (büyük) 80 dB Gürültüyü Azaltmak İçin Alınabilecek Tedbirler: •Hava alanlarının, endüstri ve sanayi bölgelerinin yerleşim bölgelerinden uzak yerlerde kurulması, •Motorlu taşıtların gereksiz korna çalmalarının önlenmesi, •Kamuoyuna açık olan yerler ile yerleşim alanlarında elektronik olarak sesi yükseltilen müzik aletlerinin çevreyi rahatsız edecek seviyede olmasının önlenmesi, •İşyerlerinde çalışanların maruz kalacağı gürültü seviyesinin en aza (Gürültü Kontrol Yönetmeliğinde belirtilen sınırlara) indirilmesi, •Yerleşim yerlerinde ve binaların içinde gürültü rahatsızlığını önlemek için yeni inşa edilen yapılarda ses yalıtımı sağlanması, •Radyo, televizyon ve müzik aletlerinin evlerde rahatsızlık verecek seviyede seslerinin yükseltilmemesi gerekmektedir. Gürültü Kontrol Yönetmeliği Gürültü Kontrol Yönetmeliği, yerleşim birimleri içinde konser, kutlama, miting gibi toplantıların, havai fişek kullanımının kısıtlanması, trenlere susturucu takılması, yüksek sesli makinaların kullanım saatlerinin azaltılması gibi önlemler içeriyor. Yönetmelik, eğlence merkezlerine gürültü ölçüm cihazları takılması, yol kenarlarına ağaç ve betondan ses duvarları oluşturulması, binalarda ses yalıtımına uygun malzemeler kullanımının mecburi olması gibi bir çok önlemi içeriyor. Bunların 2013 yılına kadar uygulamaya konulması planlanıyor. 30 desibelin üzerindeki sesler insan sağlığı açısından tehdit oluşturuyor.

http://www.biyologlar.com/ses-kirliligi

EROZYON (TOPRAK AŞINMASI)

Erozyonun kelime anlamı; bir varlığın bir değeri yerine getirilemeyecek şekilde yok olmasıdır. Toprak biliminde ise; yeryüzündeki ana materyalin çeşitli etkenlerle aşınıp taşınması olayıdır. Erozyon, tabiatın normal süreci içinde meydana geliyorsa normal erozyon; insanın tabiattaki toprak, su ve bitki arasındaki dengeyi bozucu nitelikteki müdahaleleri sonucu meydana geliyorsa hızlandırılmış erozyon adını almaktadır. Normal erozyon, genellikle insan müdahalesi olmayan yerlerde görülür ve çok yavaş olarak gelişir. Meraların aşırı derecede otlatılması, ormanların tahrip edilmesi ile daha az korunan toprak, su ile kolayca taşınabilmektedir ve erozyon hızlanmaktadır. Yapıcı unsurlara göre erozyonun çeşitleri Özellikle ülkemizde tahribatı büyük boyutlara ulaşan su erozyonu, erozyon çeşitleri içerisinde en önemlisidir. Su erozyonundan sonra diğer erozyon çeşitleri önem sırasına göre; rüzgar, çığlar, heyelanlar ve buzullar olarak sıralayabiliriz. Çığ zaman zaman can ve mal kayıplarına neden oluyorsa da su erozyonu afeti karşısında ikinci planda kalmaktadır. 1-) Su Erozyonu Su erozyonu, diğer erozyon çeşitleri içerisinde en yaygın ve en etkili olanıdır. Bunun için, toprak erozyonu denildiğinde akla su erozyonu gelmektedir. Türkiye topraklarının % 86'sında erozyon vardır. Böylece su erozyonunun etkilediği alan 66.9 milyon hektarı bulmaktadır. Yurdumuzdaki önemli can ve mal kayıpları su erozyonu sonucu meydana gelmektedir. 2-) Çığlar Türkiye'nin aşırı derecede ormansızlaşmış, yükseltisi yurdun diğer kısımlarına oranla daha fazla ve yağışların genel olarak % 45' den sonraki meyilde kar şeklinde düştüğü Kuzey- Kuzeydoğu ve Doğu Anadolu'da çığ olaylarına sıkça rastlanmakta, can ve mal kayıplarına neden olduğu gibi yerleşim yerlerini, yolları, turistik tesisleri ve devlet yatırımlarını tehdit etmektedir. Türkiye'de yalnız 1985 yılından bugüne kadar 233 çığ olayı tespit olunmuş ve bu süre içinde 604 kişi hayatını kaybetmiştir. Çığ, pürüzsüzlüğü olmayan eğimi yüksek kayalık ve otlu satıhlara düşen aşırı kar yağışlarının kaygan satıhtan kopması ile aşağı kısımlara doğru hızını ve miktarını arttırarak meydana gelen bir kar kitlesi akımı olayıdır. Bu kar kitlesi önüne gelen insanların ölümüne neden olabildiği gibi ev, ahır, sınai tesis v.b. gibi yerlere zarar vererek kara ve demiryollarını kapatabilmekte günlerce trafiği aksatabilmekte ve sportif amaçlı gezilerde insan ölümlerine neden olmaktadır. 3-) Rüzgar Erozyonu Rüzgar erozyonu sonucu verimli toprakların kaybı, buharlaşmanın hızlanmasıyla toprak emliliğinin azalması, bitki büyümesinin yavaşlaması, ulaşımın aksaması ve verimin düşmesi olumsuzluklarını ortaya çıkarmaktadır. Taşınan kum ve verimsiz toprak, üretken tarım topraklarını kaplayarak, tarım yapılamaz hale getirmektedir. Mevcut Durum Türkiye jeomorfolojik yapısı itibariyle engebeli bir ülkedir. Nitekim ülkemizin toplam alanının % 46'sını % 40'dan fazla eğime ve % 80'den fazlasını da % 15'den fazla eğime sahip sahalar teşkil etmektedir. İklim yarı kurak, yağışlar düzensiz ve şiddetli sağanak şeklindedir. Bütün bu olumsuz faktörlerin yanında, toprağı normal yapısı ile koruması gereken ormanlar, yangın ve kaçak kesim sonucu koruyucu vasfını büyük ölçüde yitirmiş, meralarda aşırı otlatma ve tarla açmaları ile korumasız hale gelmiştir. Erozyon bütün Dünyada değişik şekil ve şiddette meydana gelmekte ise de yurdumuzda özellikle daha yaygın ve hızlı seyretmekte ve hemen hemen her çeşidi bulunmaktadır. Yüzeysel erozyon, oyuntu erozyonu, arazi kaymaları, rüzgar erozyonu ve çığlar bunların başlıcalarıdır. Buna karşın Türkiye'de, erozyonla savaş çalışmaları ne yasal, ne teknik ve ne de sosyo-ekonomik yönlerden rayına oturmuştur. Bunun sonucu olarakta toprak servetinin kaybı yanında sık sık sel felaketleri meydana gelmektedir. En yakın örnek olarak 1998'de Batı Karadeniz selinde 30, 1995 İzmir selinde 63, ve yine 1995 Senirkent selinde 74 vatandaşımız hayatını kaybetmiş, rakamlara dökülmesi çok zor maddi zarar meydana gelmiş, insanlarımız acı çekmişlerdir. Erozyonun Doğal Yapıdan Kaynaklanan Nedenleri 1-) İklim İklimin erozyon üzerine etkisi; yağış, sıcaklık ve rüzgarla olmaktadır. Bunların içerisinde en önemlisi yağış olup, yağışın da şekli, şiddeti, süresi ve rejimi erozyona farklı etkiler yapmaktadır. diğer taraftan sıcaklık, yağışların çeşidini, toprağın donmasını ve nem içeriğini etkilemek suretiyle detaylı olarak erozyonun şiddetine tesir etmektedir. Bu açıdan Doğu Anadolu Bölgemizde toprağın 50 cm. derinliğe kadar donması ve sıcak havalarda gevşemesi olayı, diğer bölgelerimizde yağmur ve rüzgar, erozyon olayları açısından önemlidir. Ülkemizin dünyadaki konumu nedeniyle özellikle İç Anadolu, Doğu ve Güneydoğu Anadolu Bölgeleri'nde yaz kuraklığı ve yağış azlığı/yetersizliği diğer bölgelere göre daha fazladır. Bu nedenden dolayı, bitki örtüsünün zayıf olduğu bu bölgeler ülkemizin erozyondan en fazla etkilenen bölgeleridir. Çünkü, kurak ve yarı kurak sahaların mevcut ekosistemlerinin bozulması kolay ve hızlı olmakta ve bozulan ekosistemlerinin tekrar eski haline getirilmesi de zor ve pahalı olmaktadır. 2-) Topografya Yamacın eğim ve uzunluğu erozyonda etkili topografık etkenlerdir. Erozyonun şiddeti ve toprağın yüzeysel akışla taşınmasına neden olan faktörlerin başında eğim gelmektedir. Dünyada kara kütlesinin ortalama yüksekliği 700 m., Avrupa'nın 330 m., Afrika'nın 600 m., Asya'nın 1010 m. olmasına rağmen Türkiye'nin ortalama yüksekliği 1132 m. 'ye ulaşmaktadır. Yükselti basamakları dikkate alınarak yapılan değerlendirmede de 0-500 metre arasındaki alanlar ülkemizin % 17,5'u, 500-1000 metre arasındaki sahalar % 26,6'sını kaplamakta,1000-2000 metre arasındaki alanlar ise % 45,9' a ulaşmaktadır. Ülkemiz arazisinin eğimli ve engebeli olması, orman ve ot örtüsünün tahrip edildiği alanlarda doğal dengenin hızla bozulması sonucunu doğurmaktadır. Doğal dengenin bozulması sonucu hızla toprakların aşınması süreci başlamaktadır. Erozyonun şiddetli olarak devam ettiği alanlarda altta bulunan jeolojik yapı yer yer taşlı ve kayalık araziler halinde ortaya çıkmaktadır. 3-) Jeolojik ve Toprak Yapısı Ülkemizin jeolojik ve toprak yapısı; genelde pekişme durumu zayıf, ayrışmaya ve değişmeye karşı fazla direnç göstermeyen taneli, tortul ve volkaniktir. Toprak ile jeolojik yapı arasında sıkı bir ilişki vardır. En fazla aşınmaya uğrayan zeminler Eosen ve Neogen zamanlara ait araziler ile volkanik kül ve tüflerdir. Genelde pekişme durumu zayıf, ayrışmaya ve erozyona karşı fazla direnç göstermeyen gevşek yapılardan oluşan topraklarımız erozyona hassas bir yapıdadır. Bu nedenle, en fazla aşınan ve sellere en fazla malzeme veren kaynaklar kumlu, şiltli, çakıllı olan pekişmemiş araziler ile bünyesine su aldığında kısa sürede eriyebilen tuzlu ve alkali maddeler bakımından zengin, milli ve killi depolar olmaktadır. Ülkemizde, toprak örtüsünün tamamen yok olduğu eğimli alanlarda erozyonun şeklini, şiddet ve seyrini; jeolojik yapıyı oluşturan ana materyalin yapısı, bünye özelliği, yağış sularını tutma ve geçirme kapasitesi gibi fiziksel ve kimyasal özellikleri belirler. Öte yandan, kurak ve sıcak iklim şartları altında Anadolu'nun kapalı havzalarında çökelmiş olan tuzlu, alkali maddeler bakımından zengin killi, marnlı ve jipsli depolarda kimyasal erozyon ön plana geçmiştir. Ülkemizde, bazı ana kayalar üzerinde oluşan toprak aşınması; kayalık-taşlık alanların ortaya çıkmasına ve dolayısıyla buraların VIII. sınıfa giren araziler haline gelmesine yol açmıştır. 4-) Bitki Örtüsü ve Ölü Örtü Çıplak arazilere oranla bitki örtüsü ile kaplı arazilerde erozyon daha az meydana gelmektedir; çünkü, bitki örtüsü intersepsiyonla toprağa ulaşan yağışın miktarını, şiddetini ve mekanik etkisini azaltır, kökleriyle toprağı sarar ve taşınmasını önler. Orman toprakları ise, suyun akış hızını azaltır ve suyun toprağa sızmasını artırarak erozyonun şiddetini düşürür. Ayrıca; bitki örtüsü, toprak yüzeyinde biriktirdiği ölü örtü ile toprağı yağmura karşı korumaktadır. Özellikle, orman ölü örtüsü, en şiddetli yağışları yüzeysel akıma geçmeden toprak içerisine kolaylıkla geçirebilecek bir infiltrasyon kapasitesine sahiptir. Erozyonun Önlenmesi Erozyon, toprağın yağmur ve rüzgarla aşınarak sulara karışmasıdır. Bu olay nedeniyle, ülkemizde her yıl büyük oranlarda toprak kaybı meydana gelmektedir. Erozyondan korunmak için toprağın aşınmasını önleyen ağaçlarla boş alanlar ağaçlandırılmalıdır. Tarım uygun alanlarda yapılmalı, tarım alanı açmak için ormanlar tahrip edilmemelidir. Çiftçilerin yanlış sulama yapması engellenmeli, tarım alanları üzerine ev ve sanayi tesisleri kurulmamalıdır. Erozyonun önlenmesi için alınması gereken önlemleri şu şekilde sıralayabiliriz: • Yanlış ekim, sulama, toprak işleme uygulamaları önlenmeli, • Zarar gören bitki örtüsünün yerine yenisi dikilmeli, • Ormanlardaki tahribat önlenmeli • Var olan bitki örtüsü korunmalı ve yenileri eklenmeli, • Verimli toprak yüzeyinin ev yapımında kullanılması önlenmeli, • Ağaçlandırma kampanyaları düzenlenmelidir.

http://www.biyologlar.com/erozyon-toprak-asinmasi

Memelilerin evrimi

Paleontolojik bulgulara göre, dinazorların ve biyomlara hakim olan diğer reptillerin günümüzden 65 MYÖ (kretase sonu) ortadan kalktıkları bilinmektedir. Buna neden olarak ileri sürülen "yerin soğuması teorisi" ne göre; dinazorlar, Alp, Kayalık ve And dağlarının oluşumu sırasında ve bu oluşumlar sonunda iklimin soğumasıyla ve/veya bu soğumaya bağlı olarak beslendikleri bitkilerin ortadan kalkmasıyla; ayrıca, sıcak kanlı olan memeli ve kuşların soğuktan fazla etkilenmeden yeni biyomlara dağılmaları ve buldukları reptil yumurtaları ve soğukta hareketsiz kalan dinazorlarla beslenmeleri sonunda bu iri yapılı canlılar ortadan kalkmışlardır. Bu konuda ileri sürülen "katastrof" teorisine göre; dinazorlar, kretase devrinde bir asteroidin yere çarpması sonunda iri yapılı olan tüm canlılarla birlikte yok olmuşlardır. Dinazorlara göre gösterişsiz canlılar olan ilk memeliler, gösterişsiz yaşamlarıyla yeryüzünde çeşitli biyomlara dağılarak; yavrularını emziren ve koruyan, vücutlarını belli bir sıcaklık derecesinde tutabilen, canlı doğuran yeni formlar meydana getirerek çoğalmışlardır. Şlk memelilerin günümüzden 213 MYÖ (triyas devrinde) "therapsid" olarak adlandırılan ve memelilere benzeyen karnivor reptillerden meydana geldiği düşünülmektedir. jura devrinde ortaya çıkan memeliler, Multituberculata, Tricodontia, Symmetrodontia, Docodontia ve Panthotera olmak üzere 5 gruba ayrılmaktadırlar. Bunlardan, sadece Multituberculata nın Senozoyik devrine kadar yaşayabildiği, diğerlerinin Jura ve Kretase devirlerinde yok oldukları, ancak Panthotera nın yok olmadan önce bugünkü Insectivora ya benzer bir grubu meydana getirdiği ileri sürülmektedir. Bununla beraber, aktüel memelilere ait alt sınıflar incelendiğinde, içinde Echidna, Ornithorynchus gibi örneklerin yer aldığı Monotremata nın reptillere en yakın grup olduğu görülmektedir. Bu canlıların omuz kemerinin yapısı, yumuşak kabuklu yumurtaları, çenenin gaga şeklinde oluşu ve tam bir sıcak kanlı hayvan olmayışları memeli olmalarına rağmen sahip oldukları ilkel karakterlerdir. Buna göre, jura devri memelilerinden, Placentalia alt sınıfı içinde yer alan Insectivora takımından memeliler yerine; Monotremata alt sınıfından memelilerin meydana geldiği düşünülebilir. Memelilerde görülen embriyonal zarlar ve bu zarların plasenta oluşumundaki önemli rolleri memelilerin atasının yumurtlayan canlılar olabileceğini göstermektedir. Embriyonal gelişimin yumurta içinde tamamlandığı ovipar ve ovovivipar canlılarda (balık, amfibi, reptil gibi) embriyo için gerekli olan besin maddeleri yumurta içinde biriktirilmiş olan vitellusdan sağlanırken; memelilerde uterusda gelişen ebriyo için gerekli olan besin annenin uterus epiteliyle temasa geçen vitellus kesesi ve daha ileri aşamada koryoallontoisin anne dolaşımı ile çeşitli derecelerde yaptığı bağlantı (plasenta) ile sağlanmaktadır. Bu gözlemler, memelilerdeki plasentanın evriminde rol alan embriyonal zarların kökeninin, yumurtlayan canlılara kadar uzandığı göstermektedir.

http://www.biyologlar.com/memelilerin-evrimi

ALABALIK BİYOLOJİSİ ve YETİŞTİRME TEKNİKLERİ

A.Ü. Ziraat Fakültesi Su Ürünleri Bölümü. 06110 ANKARA Yaşam ortamı bakımından berrak, temiz, serin ve oksijen yönünden zengin suları tercih eden alabalık halkımız tarafından özel likle etinin lezzetli oluşuyla anımsanan balıklar arasında bulunmaktadır. Alabalık türleri sistematikte Salmonidae familyasında yer alırlar. Morfolojik bakımdan yağ yüzgeci ile karakterizedirler. Salmonidae familyasında ekonomik yetiştiricilik ve doğal suların balıklandırılması için önem arz eden çeşitli alabalıklar üç cinsin türleridir. Bu cinsler : a- Salmo b- Salvelinus c- Oncorhynchus Dünya genelinde ençok tanınan alabalık türleri aşağıda gösterilmiştir (Bruno ve Poppe 1996). - Salmo salar Linnaeus (Atlantik Salmonu) - Salmo trutta f.trutta Linnaeus (Deniz alabalığı) - Salmo trutta f.fario Linnaeus (Dere alabalığı) - Oncorhynchus mykiss Walbaum (Gökkuşağı alabalığı) - Salvelinus fontinalis Mitchill (Kaynak alabalığı) - Salvelinus alpinus Linnaeus (Alp alabalığı) - Salhvelinus namaycush Walbaum (Göl alabalığı) Ülkemizin yerel alabalık alt türleri ise şöyle sıralanabilir (Çelikkale 1994). - Salmo trutta macrostigma Dumeril (Anadolu Dağ alabalığı) - Salmo trutta abanticus Tortonese (Abant alabalığı) - Salmo trutta caspius Kessler ( Aras alabalığı) - Salmo trutta labrax Pallas (Karadeniz alabalığı) - Salmo trutta f.lacustris Linnaeus (Göl alabalığı) Yukarıda belirtilen alabalık türleri içerisinde yetiştiriciliği en yaygın olanı Kuzey Amerika kökenli Gökkuşağı alabalığı olmuştur. Gökkuşağı alabalığı ile Kaynak alabalığı hemen hemen aynı yıllarda yaklaşık 120 yıl önce Kuzey Amerika’dan Avrupa’ya getirilmelerine karşın kültür koşullarına uygun niteliklerinden dolayı Gökkuşağı alabalığı yetiştiriciliği hızlı bir artış göstermiş ve günümüzde bir endüstri haline gelmiştir. Gökkuşağı alabalığının yetiştiriciliğe uygun özel likleri aşağıdaki başlıklar halinde belirtilebilir (Steffens 1981). - Gökkuşağı alabalığının çevre koşullarına çok iyi uyum göstermesi yanında özel likle yüksek sıcaklıklara oransal olarak dayanıklı olması, - Aktif yem alması nedeniyle yemlenmesinin kolay olması ve yemi değerlendirmesinin daha iyi olması yönünden iyi bir büyüme göstermesi, - Daha yüksek ilkbahar sıcaklığında dere alabalığı ve kaynak alabalığı gibi diğer alabalık türlerine göre daha kısa süreli kuluçka dönemine sahip olması. Gökkuşağı alabalığının Türkiye’de yetiştiriciliği ise 1970’li yıllarda kamu ve özel girişimciler tarafından başlatılmıştır. Dünya genelindeki kültür balıkçılığının gelişimine koşut olarak ülkemizde de özel likle üstün yetiştirme avantajları nedeniyle Gökkuşağı alabalığı üretimi büyük aşamalar katetmiştir. Önceleri küçük işletmeler tarafından gerçekleştirilen Gökkuşağı alabalığı üretimi, 1990’lı yıllardan itibaren entegre üretim tesislerine dönüşmüştür. Hatta günümüzde ülkemiz Gökkuşağı alabalığı üreticileri Avrupa’ya füme halinde işlenmiş ürün ihraç eder duruma erişmişlerdir. SU KOŞULLARI Alabalık yetiştiriciliğinde kullanılacak su kaynağının orijini ve kalitesinin yüksek nitelikte olması arzulanan bir olgudur. Kaynak Tipleri Alabalık yetiştiriciliğinde yararlanılan su kaynaklarının başlıcaları şunlardır (Leitritz 1974). - Kaynaksuları - Dere veya ırmak suları - Göl veya gölet suları - Yeraltı suları Kaynak Suları Kaynak suları genellikle yerkürenin yüzeysel yada derin katlarından çıkmalarına bağlı olarak kaliteleri farklılık gösterir. Yaklaşık 40 m gibi yüzlek katlardan çıkan kaynak sularının miktar ve kalitesi yağmur ve kuraklığa bağlı olarak değişkenlik gösterir. Fakat oksijen düzeyleri yüksek, CO2 miktarları düşük, su sıcaklığı ise 6-12 oC arasındadır. Yer kabuğunun 1000 m ve daha derin tabakalarından köken alan kaynak sularının miktar ve kalitesi aynı, fakat ekseriya oksijen miktarları litrede 4 mg’ın altında, CO2 düzeyleri ise litrede 50 ppm’in üzerinde, su sıcaklığı ise 8-10 oC seviyesindedir. Dere veya Irmak Suları Irmak veya derelerin kaynaktan ilk birkaç yüz metrelik kesimlerinin su kalitesi aynı ve kirlenmemiştir. Orta ve alt kesimleri ise tarım, gübreleme, endüstri ve evsel atıkların etkisi altındadır. Fakat dere ve ırmakların su kalitesindeki belirtilen bu olumsuzluklara karşın, su miktarları çok fazladır. Kaliteli bir kaynaktan köken alan dere veya ırmak gibi akarsular litrede 8 mg’ın altında CO2’e sahip olmakla birlikte, sıcaklıkları yıl bazında 6-12 oC arasında oldukça değişkendir. Göl veya Gölet Suları Bu tip suların kalitesi de endüstriyel ve tarımsal faaliyetlerin etkisiyle mevsimsel olarak farklılık gösterir. Göl suları da yüksek düzeyde oksijen ve düşük miktarda CO2 içermeleriyle tanınırlar. Fakat 10 m den daha derin göllerde yaz aylarında su kütlesinin yüzey kesimlerinde su sıcaklığı 20 oC’a yükselebilir, yüzeyin yaklaşık 4 m altında ise 15-16 oC sıcaklıkta su bulunur. Yeraltı Suları Genelde kaynak veya iyi kalitede dere suyuna yakın kalitede sulardır. En büyük avantajları daima aynı miktar ve kalitede olmalarıdır. Fakat yerüstüne çıkarmada ekseriya yüksek düzeyde enerji giderine gereksinim duyulur. Ayrıca oksijen yönünden zenginleştirmeye de gereksinim vardır. Su Kalitesi Alabalık yetiştiriciliğinde ideali, yetiştirme ortamındaki balıklara düzenli bir şekilde daima aynı kalitede su temin etmektir. Aynı zamanda su miktarı ile kalite arasındaki sıkı ilişki de gözardı edilmemelidir. Bu bakımdan su miktarındaki ani değişimlerin suyun mevcut kalite değerlerini olumsuz veya olumlu yönde etkileyebileceği unutulmamalıdır. Alabalık yetiştiriciliğinde su kalitesine ilişkin suda incelenmesi gereken çeşitli parametrelerin sınır değerleri Tablo 1’de gösterilmiştir (Lindhorst-Emme 1990). Kuluçka Evinde Su Kriterleri Döllenmiş yumurtaların kuluçkasının gerçekleştirileceği kuluçka evine verilecek suyun kalitesine daha fazla özen göstermenin yararları yadsınamaz. Alabalık yumurtalarının kuluçkası ve larvaların gereksinimi için mümkün olduğu kadar temiz ve kirlenmemiş su kullanılmalıdır. Bu bakımdan kuluçka evine verilen suyun önceden filtre edilmesinde fayda vardır. Kuluçka evinin büyüklüğü döllenmiş yumurta miktarı ve kullanılan kuluçka gereçlerinin tipine bağlıdır. Orta büyüklükte bir kuluçka evinin su gereksinimi saniyede 3-5 litredir. Kuluçka evinde kullanılacak suya ilişkin uygun değerler Tablo 2’de gösterilmiştir (Lindhorst-Emme 1990). Su Miktarı ile Balık Üretimi İlişkisi Balık üretim miktarını, su kalitesi ile birlikte temel olarak suyun miktarı yani debisi etkilemektedir. Fakat bunlarla birlikte balık üretim miktarında yetiştirme sistemi ve kullanılan teknik donanımlarda etkilidir. Örneğin 1000 m2 havuz yüzlemi için saniyede 8 litre kaynak veya iyi kalitede dere suyuna gereksinim vardır. Bu örnekte teknik donanımlardan yararlanmaksızın 400-500 kg alabalık üretilebilir. Fakat ilave olarak havalandırma gibi ilave tekniklerden yararlanıldığında ise yılda 1500-2000 kg alabalık üretmek mümkün olabilir. 1000 m2’den büyük ve 3 m’den derin havuzlarda, küçük havuzlara oranla daha az suya gereksinim vardır. Böyle havuzlarda rüzgarın etkisiyle suyun kalitesi olumlu etkilenebilirse de işçilik yönünden büyük havuzlarda çok büyük güçlüklerle karşılaşılır. Diğer yandan akarsu kanallarında yetiştiricilikte geleneksel havuz yetiştiriciliğine göre 10-20 misli daha fazla suya gereksinim vardır. Yani 1000 m2 yüzleminde akarsu kanalında alabalık yetiştiriciliği için saniyede 80-160 litre suya ihtiyaç vardır. Alabalık üretiminde işletme tiplerine göre stoklama miktarları Tablo 3’de görülmektedir (Lindhorst-Emme 1990). Alabalık üretiminde ana ilke kullanılan suyun miktar ve kalitesinin esas alınarak üretim miktarının saptanmasıdır. Buradan yola çıkılarak önceleri havuzlarda su değişiminin günde 3-5 defa gerçekleşmesiyle saniyede 1 litre suyla yılda 50-75 kg mutfaklık balık üretilebileceği şeklindeydi. Fakat günümüzde yaygın kanı saniyede 1 litre suyla 100-150 kg sofralık balık üretilmesine dönüşmüştür (Bohl 1982). Günümüzde balık üretim miktarı genellikle m3’de kg olarak ifade edilmektedir. Havuzlarda değişimin günde 3-5 defa gerçekleşmesiyle 3-5 kg/m3 balık üretilebilir. Daha yoğun üretimde bu miktar 1 m3 suda 10 kg’a yükselmektedir. 0,30-0,50 m derinlikteki havuzlarda suyun saatte 3 defa değişimiyle m2’de 20 kg (=40-60 kg/m3) balık üretilebilmiştir. Hatta Fransa’nın Brötanya yöresinde havalandırmalı havuzlarda m3’de 100 kg balık üretimi gerçekleştirildiği bildirilmiştir (Bohl 1982). Benzer üretim miktarlarına su değişiminin saatte 5-10 defa gerçekleştirildiği tanklarda m3’de 50-100 kg’la ulaşılmıştır (Steffens 1981). Alabalık üretiminde su miktarı kadar kullanılan suyun sıcaklığı ve yetiştirme ortamına stoklanan bireylerin ortalama canlı ağırlığının dikkate alınması gerekmektedir. Bu faktörlerin dikkate alınmasıyla saniyede 1 litre su girişiyle yoğun üretim koşullarında üretilebilecek balık miktarları Tablo 4’de sunulmuştur (Steffens 1981). Belirli bir miktar su ile üretilebilecek balık miktarının saptanmasında yararlanılan bir diğer kriter suyun oksijen içeriğidir. Buradaki birinci temel ilke toplam 1 kg alabalığın 1 saatte tükettiği oksijenin esas alınmasıdır. Bu yöntemde 50 g’dan küçük balıkların toplam 1 kg’nın 1 saatte 500-600 mg oksijen tükettiği, 50 g’dan daha büyük balıkların ise toplam 1 kg’nın 1 saatte 400-500 mg oksijen tükettiklerinin dikkate alınmasıdır. Ayrıca kullanılan suyun havuzlardan çıkışta litrede 6 mg oksijen içermesi zorunludur. Havuzlara giren suyun içerdiği oksijen ile çıkış suyunun kapsadığı oksijen arasındaki miktar balıkların tüketebileceği kullanılabilir oksijeni ifade eder. Bu veriler esas alınarak (Steffens 1981), Örneğin havuzlara girişte litrede 11 mg oksijen içeren debisi saniyede 100 litre olan bir su kaynağı ile 50 g’dan küçük balıklar stoklandığında üretilebilecek sofralık balık miktarını hesaplamak gerekirse, Oksijenden yola çıkılarak üretilecek balık miktarını hesaplamada ikinci temel ilke 1 kg yemin balık tarafından tüketilmesinde harcanan oksijenin esas alınmasıdır. Bu tip hesaplamada yararlanılan formül aşağıda gösterilmiştir (Bohl 1982). d = debi = litre/sn 2= Beslenme fizyolojisi bakımından saptanmış katsayı Bu formüle göre havuzlara girişte litrede 11 mg oksijen içeren debisi saniyede 100 litre olan bir su kaynağı ile, günde %2 oranında yemlemeyle üretilebilecek balık miktarını saptamak gerekirse, Balıklar, günde canlı ağırlıklarının %2’si oranında yemlendiğine göre; Buraya kadar belirtilen veriler doğrultusunda saniyede 1 litre suyla genel olarak 100-200 kg pazarlık balık üretilebileceğini belirtebiliriz. DAMIZLIK BALIKLAR Damızlık populasyonu işletmenin sofralık balık üretiminin %1’i kadar yeterlidir. Yani 400 ton üretim kapasiteli bir işletmede 1 ton damızlık balık bulundurulacak demektir. Damızlık balıklar günlük su değişiminin defalarca olacağı kaliteli suyun verildiği havuzlara m2’ye 1-2 kg stok yoğunluğunda yerleştirilir. Erkek / dişi oranı 1: 5 ila 1 : 8 olmalıdır. Genellikle erkekler 2, dişiler ise 3 yılda cinsel olgunluğa ulaşır. İşletmenin yumurta üretim kapasitesini saptamada kg dişi başına 2000 Adet yumurta hesaplanır. Damızlığa ayrılacak bireylerin seçimi ön büyütme döneminden başlayarak gerçekleştirilmelidir. Ayrılan balıkların yetiştirilmesine devam edilerek populasyon içersinden damızlık balık ayrımında belirgin özel likler aranmalıdır. Bu nitelikler: - Hızlı büyümeyle birlikte yemi iyi değerlendirme, - Hastalıklara karşı dayanıklılık, - Düzgün ve uyumlu vücut formu, - Yüksek üreme verimi (Sayıca fazla ve çapı büyük yumurta, kaliteli sperma vb.) - Cinsi olgunluğa geç ulaşma. Yukarıdaki özel likler dikkate alınarak seçilen damızlık balıklar, damızlık havuzlarında kaliteli pelet yem yanında taze balık, karides gibi yaş yemle de beslenmelidir. Damızlık balıkları yemlemede aşırıya kaçılmamalıdır. Damızlıklar yılda yaklaşık 0,5 kg artış göstermelidir. Yoğun yemleme gonad ürünlerinden özel likle yumurtalarda yağ dejenerasyonuna neden olabilir (Bohl 1982). Damızlıkların Verimi Üç yaşındaki damızlık balıkların ortalama ağırlıkları 1-2 kg arasındadır. Dişi balıklar 6. yaşına kadar birbirini takip eden 4 üreme peryodunda kullanılır. Çünkü canlı ağırlık artışıyla birlikte damızlık balıkların kg vücut ağırlığına düşen yumurta miktarı azalır. Örneğin 6 yaşındaki balıklarda bu miktar kg canlı ağırlık için 1200 adet yumurtanın altına iner. Fakat çapı daha büyük yumurtalardan satış avantajı daha fazla olan canlılıkta larva elde edilir. Bu nedenle 4-5 yaşındaki dişiler her yönüyle büyük ekonomik değere sahiptir. Yapılan araştırmalar 3 yaşlı erkeklerin spermasının hiçbir zaman 4-5 yaşlı erkeklerin spermasının kalitesine ulaşamadığını göstermiştir. Fakat 3 yaşlı erkeklerin sperması miktar bakımından daha fazladır. Bu bakımdan yetiştiriciler damızlık balık giderini de dikkate alarak 3 yaşındaki erkekleri tercih ederler (Lindhorst-Emme 1990). Dişi damızlıkların yumurta verim özel liklerine ilişkin temel bilgiler aşağıdaki şekilde sıralanabilir (Steffens 1981). - Damızlık balıktan elde edilen toplam yumurta miktarı balık büyüdükçe artış gösterir. Örneğin 3 yaşında 750 g ağırlıkta balıktan 1800 adet yumurta elde edilirken; 4 yaşında 1300 g ağırlıkta balıktan 2500 adet yumurta alınır. - Balık büyüklüğü arttıkça kg vücut ağırlığına düşen oransal yumurta miktarı azalır. Örneğin 3 yaşında 750 g ağırlıktaki balıkta kg canlı ağırlığa düşen yumurta sayısı 2400 adet olurken; 4 yaşlı 1300 g ağırlıkta balığın kg canlı ağırlığa düşen yumurta sayısı ise 2000 adettir. - Yumurta sayısı, yemin miktar ve kalitesiyle etkilenebilir. - Yumurta sayısının bireylerde farklılığında genetik koşulların etkisi çok büyüktür. - Yaşlı ve büyük balıklar genç ve küçük balıklara oranla daha büyük yumurta geliştirirler ve bu suretle daha kuvvetli larva oluşumunu sağlarlar. Örneğin 178 g ağırlıkta 2 yaşlı balıkta yumurta çapı 3,9 mm olurken, 2700 g ağırlıkta 7 yaşlı balığın yumurtasının çapı ise 5,7 mm dir. Özgün bir çalışma sonucunda elde edilen damızlık dişilerin yumurta verimleri ve erkek damızlıkların sperma (süt) miktarlarına ilişkin veriler Tablo 5’de gösterilmiştir (Lindhorst-Emme 1990). Damızlıkların Cinsiyet Ayrımı Gökkuşağı alabalıkları kökenlerine göre yılın farklı dönemlerinde yumurtlama olgunluğuna erişirler. Yılın erken döneminde yumurtlayanlar Temmuz/Ağustos, Orta dönemdekiler Kasım/Aralık, geç dönemdekiler Mart/Nisan’da üremeye hazırdırlar. Damızlık balıklar üreme sezonundan 4 hafta önce cinsiyet ve yaşlarına göre ayrılmalıdır. Bu ayrım işleminde erkek ve dişi balığın vücut yapısına bakılır. Dişilerde karın daha şişkindir. Cinsiyet deliği etrafı kırmızı renkte görünümdedir. Üreme zamanı erkeklerde alt çene öne doğru uzamış ve bir kanca şeklinde yukarı kıvrılmıştır. Erkeklerde vücut daha yassıdır. Özellikle erkekler üreme zamanı yaklaştığında yanal çizgi boyunca daha koyu ve parlak kırmızı bir şerit taşırlar (Ekingen 1975,Özdemir 1994). SAĞIM VE YUMURTALARIN DÖLLENMESİ Balık üretiminde damızlık balıklara üreticiler eliyle hafif bir masaj uygulanarak dişi balıklardan yumurta ve erkek balıklardan süt (spermatozoa içeren beyazımsı renkte sıvı) alım işlemi sağım olarak adlandırılır. Sağım döneminden 2-3 hafta önce damızlıklara verilen yem miktarı azaltılır. Damızlık balıklarda sağıma hazırlığa yönelik son kontrollerin yapılmasından sonra, yani sağımın bir hafta öncesinde ise yemleme tamamen kesilir. Yumurtlama olgunluğuna ulaşmayan damızlıklar ise bir hafta boyunca canlı ağırlıklarının %0,5’i gibi düşük oranda yemlenir (Greenberg 1969, Wiesner 1968). Sağımda damızlıklara zarar vermemek, işlemi çabuk ve seri olarak gerçekleştirmek ile sağımı yürüten kişinin fazla güç sarfetmeden, çok sayıda damızlık balığı sağabilmesi için damızlıklara narkoz uygulanabilir. Damızlık balıkları bayıltmada anestezik olarak sıkça kullanılan preparatlar (Atay 1987, Bohl 1982). - MS-222 (Tricainemethansulphonat) - Trichlormethylpropanol (TCMP) - Quinaldin (2 Methylchinolin) Belirtilen anesteziklerden suda kolay eriyen MS-222 1:20.000-1:30.000 (1 g+ 20-30 lt su) konsantrasyonlarında kullanılır. Balıklar sağımdan birkaç dakika önce anestezik madde bulanan suya yerleştirilirler. Sağım işlemi bittikten sonra balıklar tekrar oksijen yönünden zengin temiz suya bırakılırlar ve burada 2-3 dakika içinde normale dönerler. Alabalık üretiminde sağımın ana kuralı işlemin kuru koşullarda gerçekleştirilmesidir. Çünkü yumurtanın su ile teması halinde spermanın yumurtaya giriş kapıcığı olan mikropil 1-2 dakika içersinde kapanır. Ayrıca erkek balıktan elde edilen sütün içerdiği spermatozoa’lar suda yaklaşık 1 dakika kadar yaşabilirler. Bu nedenlerle sağımda damızlık balıkların bir bez yada en iyisi havlu ile kurulanmasıdır. Alabalık sağımında dikkat edilmesi gereken bir diğer konu balıkların uygun sağım zamanının saptanmasıdır. Tam olgunluğa ulaşmış dişi alabalık sudan çıkarılıp kuyruğu aşağı gelecek şekilde tutulduğunda yumurtalar kendiliğinden akmaya başlar (Baran 1977, Erençin 1977). Genellikle sağımda balığın sırtının sağan kişiye dönük olması geleneksel tutuş şeklidir. Damızlık balıkların sağımı balığın boyutuna göre tek veya iki kişi tarafından gerçekleştirilir. Birkaç dişinin yumurtası küçük hacimli plastik kaba sağılır ve bu yumurtaların üzerine de birden fazla erkeğin sütü sağılır. Dişi balıklar yılda bir defa sağıldıkları halde, erkekler 15 gün ara ile birkaç defa sağılabilirler (Brown ve Gratzek 1980). Plastik bir küvete sağlan yumurta-süt karışımı elle veya plastik bir kaşıkla karıştırılır. Daha sonra bu karışım üzerine bir miktar temiz su ilave edilir. Yaklaşık 5 dakikada döllenen yumurtaların bir küvet içerisinde 30-45 dakika süreyle su alıp şişme işleminin tamamlanması beklenir. Bu evrenin sonunda yumurtalar birkaç defa temiz su ile yıkanarak kuluçka gereklerine yerleştirilir (Atay 1980). Kuluçka Balık üretiminde döllenmiş yumurtalardan embriyonal evrelerin (Morula, Blastula ve Gastrula) gelişimiyle yumurtadan larva çıkışının tamamlanmasına kadar geçen süreç kuluçka (Incubation) işlemi olarak adlandırılır. Gökkuşağı alabalığının döllenmiş yumurtalarının kuluçkası için uygun su sıcaklığı 7-10 oC arasındadır. Yumurtalardan larva çıkış süresi gün-derece olarak ifade edilir. Gün-derece; günlük ortalama su sıcaklıklarının toplamı olarak larva çıkış süresinin belirtilmesidir. Örneğin 10 oC su sıcaklığında larvalar 30 günde yumurtadan çıktığında, gün derece 300’dür. Buna göre döllenmiş yumurtalardan kaç gün sonra larva çıkabileceğinin gün-derece olarak göstergeleri farklı alabalık türlerine göre Tablo 6’da sunulmuştur (Bohl 1982). Kuluçka döneminde 10 oC su sıcaklığında gökkuşağı alabalığının döllenmiş yumurtalarından 32 ila 36 gün sonra vitellus keseli (yedek besin keseli) larvalar çıkar. Larvaların çıkışında su sıcaklığı ile birlikte kalıtsal etki ve damızlıkların yaşı yanında, suyun oksijen içeriği ve ışık yoğunluğu gibi çevresel faktörlerde etkilidir. Alabalık yumurtaları embriyonal gelişme sürecinde ışık etkisine karşı aşırı duyarlıdırlar. Bu bakımdan direkt güneş ışığından korunmaları gerekir. Kaliteli damızlıklardan elde edilen yumurtaların optimum koşullarda kuluçkasında kayıp oranı yaklaşık %10-20 olabilir. Büyük işletmelerde bu oran %20-30’u aşmamalıdır (Bohl 1982, Steffens 1981). Kuluçka Süresinde Koruyucu Önlemler Döllenmiş yumurtaların kuluçka döneminde su sıcaklığı, oksijen miktarı, suyun temizliği, ışık gibi faktörlere özen göstermekle beraber, ölü yumurtaların ayaklanması da çok önemlidir. Çünkü ölen yumurtalarda saprolegnia sp. mantarları kısa sürede infeksiyona neden olur ve sağlıklı yumurtalara bulaşarak onların da ölmelerine neden olurlar. Bu hastalık odağı ölü yumurtalar, sağlıklı yumurtaları zedelemeden cımbız (yumuşak ahşap materyalden özel imal edilenler tercih edilmelidir), özel pens yada maşalar, tıpta kullanılan lastik puarların ucuna 15-20 cm boyunda cam boru takılarak hazırlanan özel pipetler, ölü yumurtaların sifon edilmesi, tuz eriyiği (%10, 7’lik tuz eriyiğinde-960 g NaCl/8 lt su-ölü yumurtalar 3 dakikada dibe çökerler) ve fotosel sistemi ile çalışan elektrikli seçicilerden yararlanılarak ayıklanabilir. Fakat yinede fazla işçilik gerektirmesine rağmen en iyi sonuçlar elle temizlemeyle elde edilmektedir. Ölü yumurtaların canlı yumurtalardan ayrımında hangi yöntem tercih edilirse edilsin, bu işlem yumurtaların göz lekeli döneminde gerçekleştirilmelidir. Döllenmiş yumurtalar göz lekeli döneme 200-220 gün-derece sonra ulaşırlar. Gözlekeli dönemde yumurtaların mekanik işlemlere duyarlılıkları azalır. Fakat döllenmeden yaklaşık 8 saat geçtikten sonrası ile göz lekesi oluşana kadar ki dönemde ise yumurtalar fevkalade duyarlıdırlar. Kuluçka döneminde mantarlaşmaya karşı koruyucu olarak kimyasal maddelerle yumurtaları ilaçlamak faydalı olmaktadır. Bu amaçla kullanılan kimyasal maddeler Tablo 7’de belirtilmiştir (Steffens 1981). Bu maddelerin tamamı kuluçka sisteminin giriş suyuna ilave edilirler. Koşullara göre belirtilen tedavi 2 günde bir veya daha fazla süre arayla da uygulanabilir. Kuluçka döneminde yumurtalara saprolegnia infeksiyonuna karşı en yaygın kullanılan kimyasal madde Malachit yeşilidir. Çoğunlukla oxalat formu, kristalize veya sıvı konsantrasyonu kullanılmaktadır. Maalesef günümüzde henüz Malachit yeşilinin yerini alacak zararsız ve aynı değerde bir kimyasal madde bulunamamıştır. Bu dezenfeksiyon maddesinin son on yıldan beri yoğun şekilde kanser etkisinden bahsedilmekte ve kullanılırken özenli davranılması gerektiği belirtilmiştir. Özellikle pazarlık balık üretiminde kullanımı yasaklanmıştır. Çünkü balığın etinde insan sağlığı için zararsız düzeye inene kadar 108 gün geçmesi gerekmektedir. Bu nedenle Almanya’da Malachit yeşilinin satışı 1988 yılı sonundan itibaren veteriner hekim reçetesine bağlanmıştır. Ayrıca kullanımı da yumurta ve larva dönemi ile 6 cm boyunda yavru balıklarla sınırlandırılmıştır (Baur ve Rapp 1988, Lindhorst-Emme 1990, Schlotfeldt ve Alderman 1995). Balık yumurtalarının yüzeylerinde infeksiyon etkenlerinin bulunabildiği ve böylece hastalıkların yayılmasında rol oynadıkları bilinmektedir. Bu nedenle işletmelerin yumurta satışlarında, yumurtaların taşınmasından önce dezenfeksiyon işlemini uyguladıklarını garanti etmeleri istenmektedir. Bu hedefe yönelik olarak iyot preparatlarıyla banyo işlemine tabi tutulan yumurtaların, bu işlemin uygulanmadığı yumurtalara oranla daha az mantarlaştıkları bildirilmiştir (Bohl 1982). İyot içeren dezenfeksiyon maddesi olarak yaklaşık %1 aktif iyot kapsayan Actomar K30 önerilmektedir. Alabalık yumurtalarının bu maddeyle dezenfeksiyonu için ideal iki dönem vardır. Birinci uygulama zamanı döllenmeden 10 saat sonra yeşil yumurta dönemi, daha da iyi olan 2.ci dönem ise yumurtaların gözlekeli devresidir. Belirtilen dezenfeksiyon işlemi için 1 litre suya 15 ml Actomar K30 ilave edilir ve yumurtalara banyo uygulanır. Actomar K30 ile hazırlanan banyo solüsyonunun etkinliği rengi ile anlaşılır. Kullanılan eriyiğin rengi kahverengiden-sarıya kadar kullanılabilirliğini gösterir. Açık sarı renk oluştuğunda ise etkinliği garanti edilemez, hatta bazen tamamen etkisizdir (Baur ve Rapp 1988, Bohl 1982, Schlotfeldt ve Alderman 1995). Kuluçka Tipleri Alabalık üretim tesislerinde yaygın olarak kullanılan kuluçka tipleri ve temel nitelikleri Tablo 8’de belirtilmiştir. Tablo 8. Kuluçka tipleri Kuluçka gereci Su gereksinimi Kapasite Kuluçka kanalı 15-25 lt/dak. 100.000 Adet yumurta Zuger şişesi 1,5-3 lt/dak. 30-50.000 Adet yumurta Kuluçka dolabı 1,2-2 lt/dak. 100.000 Adet yumurta Kuluçka kanalları En eski ve halen günümüzde de yaygın olarak kullanılan kuluçka gereçleridir. Birkaç metre uzunluğunda kanal ve içerisine konulan özellikle tabanları gözenekli materyalden yapılan, yumurta yerleştirilen tablalardan (Kasetlerden) oluşur. Tablalar arasında kanalda enine bölmeler vardır. Bu sistemde su tablaya alttan girer ve yumurtaların oksijenini sağladıktan sonra üstten çıkar. Kuluçka kanallarının boyları farklı olmakla birlikte 2-3 m uzunluk tercih edilmektedir. Yumurta tablaları ise 45x45 cm boyutunda kare şeklindedir. Yumurta tablalarının tabanı için 1,5 mm çapında yuvarlak delikleri olan alüminyum materyal kullanılması daha uygundur. Yumurta tablaları kuluçka kanallarına üst üste değil, birbiri ardı sıra konulmalıdır. Kuluçka kanallarına 4-7 adet yumurta kaseti yerleştirilir. Bu kasetlere suyun kalitesine göre kuluçka için yumurtalar tek kat konulduğunda 5000 adet, çift kat konulursa 10.000 adet yumurta bırakılır. Kuluçka kanallarının herbirisine kuluçkanın ilk günlerinde 15 lt/dak. su girişi sağlanırken, bu miktar yumurtalardan larva çıkışına yakın 25 lt/dak düzeyine yükseltilir (Bohl 1982, Çelikkale 1994, Lindhorst-Emme 1990, Steffens 1981). Bu tip kuluçkalıklar alt kısımları huni şeklinde olan, ilk kullanan kişinin ismine atfen zuger şişesi olarak adlandırılan ve genellikle 6,5-8 lt kapasiteli gereçlerdir. Daha az yer kaplayan, daha az suya gereksinim duyan ve kurulmaları kolay olan bu gereçlerin, kapasiteleri 30.000 ile 50.000 adet yumurtadır. Taban kısımları açık olan ve ters yerleştirilen bu şişelerin, huninin alt kesimi gibi daraltılmış boğaz kısmından verilen su girişinin basıncının yumurtalara zarar vermemesi için, ağız kısmına 3 cm yüksekliğinde cam boncuklardan (yaklaşık 6 mm çapında veya aynı büyüklükte çakıl taşları) oluşan bir katman yerleştirilir. Normal boyutta bir zuger şişesi için 1,5-3 lt/dak. su gereklidir. İki zuger şişesi için 0,25 x 0,50 m, çift sıralı 8 zuger şişesi için ise 0,50 x 1.00 cm’lik alana gereksinim vardır. 8-10 zuger şişesine yerleştirilen yumurta miktarı, kanal sistemi kuluçkalıklarda 36 adet kuluçka kanalına konulan yumurta miktarına eşdeğerdedir. Belirtilen miktarda kuluçka kanalı için, kuluçka evinde 35 m2 yer ayırmak gerekir. Ayrıca zuger şişeleri fiyat bakımından da daha uygundur (Bohl 1982). Kuluçka dolaplarının kullanımı son yıllarda özel likle büyük kapasiteli işletmelerde hızla artmaktadır. Buna neden olarak çok az alana gereksinim duymaları, kaliteli, fakat az miktarda su kullanımı ve işçilik giderinden tasarruf gösterilebilir. Kuluçka dolapları damlalıklı ve vertikal akışlı dolaplar olmak üzere iki tiptir. Damlalıklı dolaplarda yumurtaların larva çıkışından kısa süre önce dışarı alınarak kuluçka kanallarında tablalara yerleştirilmesi zorunludur (Ekingen 1975). İkinci tipte ise larvalar yemleme dönemi öncesine (serbest yüzme) kadar dolabın tepsilerinde tutulabilmektedir. Bunlar Veco (İSVİÇRE)-Dolapları olarak adlandırılırlar. Bu dolapların yumurta tablaları tepsi şeklinde daireseldir. Her dolapta 10 tepsi bulunur. Her tepsi şeklindeki yumurta tablasına 10.000 adet yumurta konur. Bu dolapların su girişi üsttendir, önce birinci tepsiye su dolar, daha sonra ikinci vd. ne devam eder. Bu dolaplarda 100.000 adet yumurta için 1,2-2,0 lt/dak. su yeterli olmaktadır (Bohl 1982). Kuluçka döneminin sona erdiği günlerde 25-35 gün-derecede yada bir başka ifadeyle 10 oC su sıcaklığında 2,5 günde yumurtaların tamamından larva çıkışı tamamlanır. Bu arada ortamdaki yumurta kabukları sifonlanarak günde iki defa yumurta tablalarının delikleri tıkanmaması için ayıklanmalıdır. Yumurtadan çıkan larvalara Vitellus keseli larva denilir. Bunlar besin kesesi olarak da adlandırılan keselerini su sıcaklığına göre 12-17 günde tüketirler. Bu dönemde larvaların barındırıldığı gereçlerden en azından her iki gündebir beyaz renkli ölü yumurtalar yada ölen keseli larvalar vaya deforme ve anomalili larvalar sifonlanarak uzaklaştırılmalıdır. Belirtilen temizlik işlemi yapılmadığı durumda hızlı bir şekilde mantar enfeksiyonu ile karşılaşılır (Lindhorst-Emme 1990) Larvaların serbest yüzme dönemine ulaşmaları, besin keselerinin çoğunu tüketmeleri, larvaların yemlenmeye başlanmaları için önemli göstergelerdir. Vitellus keseli larvaların %10’u yem alma gücüne ulaştığında yada besin keselerinin 2/3’lük kısmını tükettiklerinde ve serbest yüzmeye başladıklarında yemlenmeye başlanmalıdır. Larvalar belirtilen evreye ulaştıklarında, kuluçka kanallarında yumurta tablaları arasındaki bölmeler kaldırılır, tablalarda bulunan larvalar yavaş bir şekilde kanallara stoklanırlar (Bohl 1982, Çelikkale 1994, Igler 1990, Steffens 1981). Serbest yüzme devresine ulaşmış ve suda aktif hareket eden larvaların bakım ve beslenmelerine özen gösterilerek ortalama 1 g canlı ağırlığa kadar yetiştirilmeleri genel olarak “ön büyütme” olarak tanımlanır. Bu devre 60-80 günde tamamlanır. Bu dönemde yetiştirme ortamı olarak daha ziyade büyütme kanalları kullanılır. Ayrıca ön büyütme dönemi kuluçka evinde tank yada kanallarda gerçekleştirilir. Su değişimi, stok yoğunluğuna ve su kalitesine bağlı olarak 4-8 kez/saat, olmalıdır. Belirtilen koşullarda stok yoğunluğu 100.000 larva/m3 sudur. Larvaların yemlenmesine her 30-60 dakikada bir günde 12 saat devam edilir. Bu dönemde kayıp oranı yaklaşık %30-35’dir. Optimum üretim koşullarında hasatta üretim hedefi en azından 1 g bireysel ağırlıkta m3’de toplam 25 kg veya 25.000 ön büyütülmüş yavru olmalıdır (Steffens 1981). Ön büyütme döneminde larvaların yetiştirilmesinde aşağıdaki önlemlerin alınmasında fayda vardır (Çelikkale 1994). - Kaliteli su temini, - Direkt güneş ışığından korumayla birlikte dolaylı aydınlık sağlama, - Yavruların köşelerde veya belli noktalarda birikmelerinin önlenmesi, - Yemlemenin sık olarak yapılması, fakat her defasında azar azar verilmesi ve yem artıkları ile dışkıların sürekli temizlenmesi gibi konularda özen gösterilmelidir. Alabalık larvalarının ön büyütülmesinde genellikle 3-4 m uzunluk ve 40-80 cm genişlikte kanallar kullanılmaktadır. Genelde betonarme inşa edilirlerse de, hijyenik açıdan polyester kanallar tercih edilmelidir. Populasyonun stok yoğunluğu, kullanılan suyun miktar ve kalitesine bağlıdır. Bu kanallarda su değişiminin optimum düzeyi saatte 4-8 defa olmalıdır. Derinlikleri 30-80 cm olan bu kanallarda su yüksekliği balık boyutuna koşut olarak yükseltilir. Örneğin 3,60 m uzunluk, 40 cm genişlik, 17 cm su derinliğinde kanala yaklaşık 30.000 adet gökkuşağı alabalığı larvası, yani 122.000 larva/m3 stoklanarak yemlenebilir. Yemleme dönemindeki larvalarda genellikle 100.000 adet/m3, yani 100 adet/lt stok miktarları uygulanır. Belirtilen stok miktarları uygulandığında kanallarda saatte 4-8 defa su değişimi için 1-2 lt/sn/m3 su gereklidir. Bu koşullar altında, 8-10 oC’lik su sıcaklığında 8 günlük yemleme sonunda stokta 50.000 yavru/m3, 15 günlük yemlemeden sonra ise 20.000-30.000 yavru/m3 şeklinde seyreltme yapılır (Bohl 1982). Kapasitesi 2-4 m3, genelde polyester olan, fakat beton yada eternitten de imal edilen kanal tipi tanklarda iyi düzeyde oksijen içeren suyla 30.000-60.000 adet larva 6-8 hafta beslenir. Bu tanklara su girişi 20-40 lt/dak./m3 su, olmalıdır. Stok yoğunluğu 8-12 adet larva/lt. Bu tanklarda taban eğimi %1,5-2 olduğunda iyi temizlenme olanağı yaratır (Lindhorst-Emme 1990). Bu tanklarda üst kısımdan basınçla geren su, tank içindeki suyu dairevi bir hareket halinde tutar. Dolayısıyla bu tankların her tarafında oksijen hemen hemen aynı düzeydedir. Bu tanklarda su çıkışı tabanın ortasındadır. Su çıkış kısmı üzerine 15-20 cm çapında 3,5-4,0 mm göz açıklığında, paslanmaz metalden yapılmış bir süzgeç yerleştirilir. Tankın alt kısmına yerleşmiş olan su çıkış borusu hareketli bir dirsekle dış kısmından yükselmektedir. Bu hareketli dirseklerle tank içindeki su seviyesi kolayca ayarlanabilmektedir. Diğer taraftan tankın tabanında orta su çıkış kısmına doğru yaklaşık %5 meyil vardır. 2 m çapında ve yaklaşık Fingerling (Parmak Büyüklüğünde Balık) Yetiştiriciliği Parmak büyüklüğünde yavru balık üretiminde stok materyali olarak ön büyütmesi yapılan genellikle en azdan 0,5-1 g bireysel ağırlıkta ve 4-5 cm boyunda yavrular kullanılır. Eğer ön büyütmesi yapılan yavruların stoklandığı havuzlarda ve kullanılan suda dönme hastalığına neden olan parazitin (Myxosoma cerebralis) sporları varsa, yavruların boyu en azından 6-7 cm olmalıdır. Çünkü belirtilen büyüklükteki yavruların omur ve kafa kemiklerinin kıkırdak kısımları oldukça dayanıklılık kazanmıştır ve deforme olmaz hale gelmiştir (Bohl 1982). Parmak büyüklüğünde yavru balıkların yetiştiriciliği yapılan bütün üretim donanımlarının, yavru balıklar stoklanmadan önce hijyenik yönden önlemlerinin alınması zorunludur. Bu önlemlerin başında dezefenksiyon gelir. Dezenfeksiyon etkisi sıcaklığa bağlıdır. Genel bir kural olarak, dezenfeksiyon maddesinin etkisi için 20 oC’da 30 dakika, 12 oC’da 1 saat, 4 oC’da 2,5 saat süre gereklidir. Dezenfeksiyon maddesi olarak genellikle formaldehyd (Ticari adı Formol) tercih edilir. Konsantrasyon olarak %5’lik eriyik (5 kısım Formol + 32 kısım su) önerilmektedir. Metal olmayan materyaller için NaOH (Sodyum hidroksit) %2 oranında, yani 20 g NaOH (Sud kostik) 1 litre suya ilave edilerek kullanılmaktadır (Bohl 1982, Baur ve Rapp 1988). Beton kanallarda finrgerling yetiştiriciliği Mevcut kapasiteyi daha iyi değerlendirmek için, 7-10 m uzunluk, 0.80-1 m genişlik ve 0,80-1 m derinlikte beton kanallar parmak büyüklüğünde yavru üretiminde kullanılmaktadır. Su koşullarına ve her 10 dakikada su değişiminin gerçekleşmesine bağlı olarak stok yoğunluğu 2000-5000 adet ön büyütülmüş yavru/m3 tercih edilir. Bu durumda hasatta elde edilen ürün 50 kg/m3 olur ve yavru balıkların bireysel ağırlıkları 10-15 g yada 30 g’a ulaşabilir. Bu tip yetiştiricilikte yavruların defalarca yemlenmesi çok zaman alırsada, aynı zamanda günde iki defa temizlik yapılmalıdır (Bohl 1982). Yavru yetiştirme kanallarının 8-10 m uzunluk ve 1-2 m genişlikte olanları fingerling üretimi için esas yönünden uygundur. Bu kanallarda su değişimi en azından 5-20 dakika sürede gerçekleşmelidir. Kanalların savaklarında 3,5 mm çapında delikli materyal kullanılmalıdır. Su değişimine göre stok yoğunluğu 2000-5000 adet/m3, yavru yada daha yüksek olabilir. Hasatta balık büyüklüğü ve su koşullarına göre 50 kg/m3 veya özel likle daha iyi koşullarda 100 kg/m3, ürün elde edilebilir (Steffens 1981). Havuzlarda fingerling yetiştiriciliği Parmak büyüklüğünde yavru balık yetiştiriciliği uygun koşullarda havuzlarda da yapılabilir. Bu havuzların betonarme yapılması daha uygundur. Dikdörtgen konumdaki havuzların genişlik/uzunluk oranları yaklaşık ¼-1/6 olmalıdır. Bu havuzlarda kullanılan suyun kalite ve miktarına bağlı olarak stok yoğunluğu 60-100 adet ön büyütülmüş yavru/m3 (ortalama 1 m derinlikte) şeklinde düzenlenir. Bu tip üretimde 50.000 adet fingerling yetiştiriciliği için yaklaşık 10 lt/sn suya gereksinim vardır. Ayrıca hafif asidik karakterde 3-5 lt/sn suyla, örneğin 450 m2 yüzleminde ve 1,5-2,3 m derinlikte havuzda ek havalandırma koşullarında 60.000-80.000 adet yavru ortalama 12-15 cm (2-3 kg/m2) boya kadar üretilir (Bohl 1982). Ağ kafeslerde fingerling yetiştiriciliği Ağ kafeslerde parmak büyüklüğünde yavru yetiştiriciliği pazarlık boyutta (sofralık) balık yetiştiriciliği kadar uygun değildir. Bunun en büyük nedeni fingerling yetiştirilecek kafeslerde ağ göz açıklığının küçük olma zorunluluğudur. Çünkü ağın gözleri küçüldükçe ağlar daha çabuk tıkanır ve böylece su değişimi engellenir. Ayrıca kafeslere stoklanacak yavru balıkların genellikle ön beslemesi yapılmış ortalama 1 g ağırlıkta olmaları nedeniyle, kafesten kaçmamaları için 4 mm göz açıklığında ağlar gereklidir (Beueridge 1987). Belirtilen sorunlar dikkate alınarak ağ kafeslere stoklanacak yavruların en az 2 g ağırlıkta ve ağ göz açıklığının 6 mm olması daha uygundur. Ağ kafeslerde parmak büyüklüğünde yavru yetiştiriciliğinde stok yoğunluğu 300-500 adet/m3, yavru önerilmektedir. Bu tip yetiştiricilikte uygun su koşullarında yavru balıklar 8-10 cm boy yada 50 g ağırlığa kadar büyütülebilirler. Yalnız yavru balıklar büyüdükçe 1 cm balık boyu için 1 mm ağ göz açıklığı temel alınarak kafesin ağ torbası periyodik olarak yenilenmelidir (Kieckhäfer 1983, Steffens 1981). Pazarlık (Sofralık) Alabalık Yetiştiriciliği Yavruların fingerling (Parmak büyüklüğünde balık) üretiminde amaç, 140-150 günlük yemleme döneminde yavruları en azından ortalama 10 g bireysel ağırlığa ulaştırmaktır. Fakat daha iyisi 30 g bireysel ağırlığın üstüne çıkmak olmalıdır (Steffens 1981). Pazarlık alabalık üretiminde genel olarak sofralık balık büyüklüğü 250-330 g/adet (4 yada 3 adet/kg) olarak kabul edilmektedir. Mutfaklık balık yetiştiriciliğinde havuz, kanal ve kafes sistemleri kullanılır (Bohl 1982, Çelikkale 1994, Steffens 1981). Havuzlarda sofralık alabalık üretimi Bu havuzların ölçüleri, kullanılan suyun miktarı ve kalitesi ile havuz yapılan arazinin topoğrafik durumu ve toprak yapısına göre büyük değişiklik gösterir. Havuzların beton yapılmasında zorunluluk yoktur. Toprak yapısı killi ve suyu tutma özel liğinde ise havuzların kullanımı, beton havuzlara bakarak daha fazla işçilik gerektirirse de, sabit yatarım gideri daha azdır. Beton havuzlarda dezenfeksiyon ile bakım daha kolay, yemleme ve balıkların kontrolü daha iyi, fakat yapım gideri ise yüksektir (Atay 1995, Çelikkale 1994, Emre ve Kürüm 1998). Pazarlık alabalık besiciliğinin gerçekleştirildiği havuzların boyutları, genellikle 20-50 m uzunluk, 4-12 m genişlik ve en fazla 1.20 m derinlikte olmalıdır. Uygun stok yoğunluğu su değişimine ve kalitesine göre saptanır. Ayrıca yemleme, havuz hijyeni, teknik donanım kullanımı (Örneğin havalandırma gibi), üretim süresi gibi faktörlerde stok miktarını saptamada dikkate alınmalıdır (Lindhorst-Emme 1990, Steffens 1981). Optimum yetiştirme koşulları ve tam değerli pelet yem kullanımı ile gökkuşağı alabalığı yetiştiriciliğinde 8 aylık üretim sürecinde tüketim ağırlığına ulaşılabileceği beklenmelidir (Bohl 1982). Sofralık balık üretim miktarı genellikle kg/m3 olarak ifade edilir. Örneğin havuzlarda su değişimi günde 3-5 defa gerçekleştiğinde 3-5 kg/m3, balık üretilebilir. Yarı yoğun üretim koşullarında ise bu miktar 10 kg/m3’e yükselir. Derinliği 30-50 cm olan havuzlarda su değişiminin saatte 3 defa gerçekleştiği durumda 20 kg/m2 (=40-60 kg/m3) balık üretilir (Bohl 1982). Havuzlara verilen su miktarı esas alınarak da stok miktarı hesaplanabilir. Buna göre iyi kalitede 1 lt/sn’lik su girişine göre hasatta 100-150 kg sofralık balık üretileceği hedefine yönelik stoklama yapılır. Pazarlık alabalık büyüklüğü 200-250 g baz alınarak, 1 lt/sn debi için 400-600 adet fingerling stoklanır (Çelikale 1994). Kanallarda sofralık alabalık üretimi Derinlikleri 50-65 cm, genişlikleri bir kaç metre olan, betondan yapılan, uzunlukları birkaç yüz metre, su değişiminin saatte 2-3 defa gerçekleştiği üretim tesisleridir. Taban eğimi 30 m’de 10-20 cm dir. Birkaç yüzmetre uzunluğundaki bu kanallar ızgaralarla yaklaşık 30 m’lik bölümlere ayrılır. Üretim kapasiteleri genellikle 24-32 kg/m3’dür (Steffens 1981). Bu kanal tipi havuzlar, mekanik yemlemeye hastalıklarla savaşa ve otomatik seleksiyona uygun balık üretim tesisleridir (Atay 1995). Yavru balıkların pazarlık boyuta kadar büyütülmesinde suyun akış hızı 1,5-3 cm/sn olmalıdır. Benzer veriler Amerikan kaynaklarına (Westers’e göre) tablo 9’da belirtilmiştir (Bohl 1982). Bir hektar yüzleminde kanal tipi havuzlarda 1000 lt/sn su ile 100 ton alabalık üretilir. Bu hesaplama havuzlarda yarı intensif yetiştiricilik yöntemindeki 100 kg balık/lt/sn su ile hesaplanan geleneksel eski üretim miktarına eşdeğerdir (Bohl 1982). Kafeslerde sofralık alabalık üretimi Ağ kafeslerde yetiştiricilik göller, baraj gölleri, göletler, kum-çakıl göletleri, akarsu gölcükleri ve büyükçe yapılmış sulama kanallarında, belirli çerçevelere takılmış ağ kafesler içinde, balıkların kontrol altında büyütülmeleridir. Ülkemizde denizlerimizde ağ kafeslerde çipura ve levrek yetiştiriciliğine koşut olarak, son yıllarda kamunun da yönlendirmesiyle özel girişimciler tarafından tatlısu kaynaklarımızda da ağ kafeslerde alabalık yetiştiriciliği hızla yaygınlaşmaya başlamıştır (Atay 1994). Kafeslerde alabalık yetiştiriciliğinde öncelikli olarak su koşullarının uygun olması gerekir. Buna ilişkin koşullar Tablo 10’da özetlenmiştir. (Ruhdel 1977). Tablo 10. Ağ kafeslerde alabalık yetiştiriciliğinde su koşulları Nitelik Miktar Su sıcaklığı 20 oC’nin altında Oksijen 6 mg/lt’nin üzerinde (sabahları) PH 8’in altında NH4 0,5 mg/lt’nin altında Zehirli madde Olmamalı Su derinliği 4 m’nin üzerinde Oksijen tüketimi 600 g/ton/saat Kafesin yerleştirildiği ortamın tabanı ile kafesin ağ torbasının alt kısmı arasında en az 1 m aralık olmalıdır. Kafesin ağ torbası su ortamında geometrik şeklini tam olarak koruyamayacağından hacminin yaklaşık %15’i kaybolur. Kafesler uzun süre aynı yerde konuşlandırıldıklarında gölün yada göletin su kalitesini etkilerler. Sığ göllerde her üretim peryodunda kafeslerin yeri değiştirilmelidir. 10 m’den derin göllerde ise yer değiştirmeye gereksinim yoktur. Ağ kafeslerin büyüklükleri çok farklı olmakla birlikte 5 m x 5 m x 5 m boyutları en çok kullanılanıdır. Ağ kafesin göz açıklığı balığın boyunun 1/10’u olmalıdır. Ağ göz açıklığının bir başka ifadeyle pratikte 1 cm alabalık boyu için 1 mm ağ göz açıklığı esas alınır. Ağ kafeslere en azından ortalama 40 g ağırlıkta yavru balıklar stoklanır. Yılın Mart ayında stoklanan yavrular Haziran ayı ortalarında, Eylül ayında stoklanan balıklar Aralık ayında hasat edilirler (Bohl 1982, Kieckhäfer 1983, Ruhdel 1977). Normal su koşulları altında ağ kafeslerde stok yoğunluğu 50-100 adet ortalama 40 g ağırlıkta yavru balık/m3 olarak planlanır. Bu durumda hasatta üretim miktarı 20-30 kg/m3 olarak gerçekleşir. Örneğin Orta Avrupa göl ve baraj göllerinde ağ kafeslerde yetiştiricilikte ağ göz açıklığı 14 mm olarak düzenlenir. Stok yoğunluğu olarak 90 adet 40 g ağırlıkta yavru/m3 esas alınır. Bu koşullarda 100 ton alabalık üretimi için 4x3x3 m boyutlarında yaklaşık 180 kafese gereksinim vardır. Uygun koşullar altında stok yoğunluğu 100 adet fingerling/m3, olarak uygulanabilir (Steffens 1981). Ağ kafeslerde yetiştiricilikte 17-20 oC su sıcaklığında, gökkuşağı alabalıklarında ortalama 35 g ağırlıkta stoklanan yavrular yüksek büyüme oranıyla 300 g ağırlığa ulaşmışlardır. Bu durumda 2,5 ayda 265 g ağırlık artışı sağlanmış, yani yavrular günde 3,5 g büyümüşlerdir (Bohl 1982). Ağ kafeslerde yetiştiricilikte ortalama 50 g’lık balıkların, 90-100 yemleme gününde 250 g olan sofralık büyüklüğe ulaştırmak hedeflenmelidir. Bu hedefe yönelik olarak 20 m3’lük kapasiteli ağ kafese 500-1800 adet yavru balık yeterlidir. 20 m3 kapasiteli ağ kafeslere 700 adetten az balık stoklandığında, 1000 veya 1200 adet balık stoklamaya oranla büyüme daha yavaş olmuştur. Fakat 20 m3 kapasiteli ağ kafeslere 1200 adetten fazla balığın stoklanması da önerilmemektedir. Belirtilen maksimum stok yoğunluğu esas alındığında 1200 x 250 g= 300 kg balık üretilir. Aynı koşullarda bir sezon daha üretim yapıldığında 300 x 2= 600 kg yıl sürecinde alabalık üretimi gerçekleştirilir. Göllerde ağ kafeslerde yılda 600 kg sofralık alabalık üretildiğinde ortama balıklar tarafından bırakılan dışkı 1 hektar havuz yüzleminin kendini temizleme gücünü etkilemez (Kieckhäfer 1983). Ağ kafeslerde alabalık yetiştiriciliğinde Kieckhäfer’e (1983) göre m3’e ortalama 50 g ağırlıkta yavrulardan 60 adetten fazla stoklanmamalıdır. Bu stoklama miktarı uygulandığında ise 250 g sofralık balık bireysel hasat ağırlığına göre 15 kg balık/m3 ürün elde edilir. Fakat literatür verilerine (Mann 1974, Falk 1968) göre 20-30 kg/m3, mutfaklık alabalığı ağ kafeslerde üretmek olasıdır (Kieckhäfer 1983). Ağ kafeslerde gökkuşağı alabalığı yetiştiriciliği deniz ortamında da gerçekleştirilebilir (Atay 1994). Çünkü gökkuşağı alabalıklarının tuz konsantrasyonuna toleransları balıklar büyüdükçe artmaktadır. Yavru balıkların ağırlıkları 50 grama ulaştığında %0 12-15 tuz konsantrasyonunda, %0 0-1’lik konsantrasyona oranla büyümeleri %70 daha iyi olmaktadır. Parmak büyüklüğünde yavru balıklar sofralık balık büyüklüğüne kadar ‰30 tuzlulukta ve bununda üstünde konsantrasyonda deniz suyunda beslenebilirler (Steffens 1981). ALABALIKLARIN BOYLANMASI Alabalıkların sınıflandırılması yada boylarına göre ayrılması özenle uygulanması gereken bir işlemdir. Çünkü alabalıkların karnivor karakterde olmaları nedeniyle, balıklar arasındaki büyüklük farkı aşırı boyutlara ulaştığında, büyük bireylerin küçükleri yemeleri (Kannibalizm) olgusuyla karşılaşılır. Bu sakıncanın yanında verilen yem büyük balıklar tarafından alınır ve küçük balıklar ise yetersiz düzeyde beslenirler. Böylece yem dağılımının dengesiz olması bakımından büyük balıklar ile küçük balıklar arasındaki büyüklük farkı giderek artar. Sonuçta birim canlı ağırlık artışı için tüketilen yem miktarı (yem değerlendirme değeri) artar, bir başka tanımla yem değerlendirme oranı (FQ yada FCR= Food Conversation Rate) olumsuz yönde etkilenir (Vollmann-Schipper 1975). Alabalık üretiminde yavru balıkların boylarına göre ilk seleksiyonu, larvaların 6-8 hafta beslenmesinden sonra, yani ön büyütme dönemi sonunda yavruların yaklaşık 1 g ağırlığa ulaştığında gerçekleştirilmelidir. Bu işlemin uygulanmasında sabit yada ayarlı ayırma kutuları kullanılır. Belirtilen gereçler daha çok miktarı az ve boyu küçük yavruların sınıflandırmasında kullanılır. Eğer iyi bir gelişme elde etmek, kanibalizme engel olmak ve aynı büyüklükte balık elde etmek isteniyorsa seleksiyon yapmak zorunludur. Bütün balıklar aynı büyüklükte olurlarsa, günlük yem gereksinimi daha doğru ve havuzun toplam kapasitesi daha kolay tahmin edilir (Atay 1995, Bohl 1982). Hem yavru balıklar hem de daha büyük balıkları sınıflandırmada ise ızgaraları ayarlanabilen, havuzlara ve kanallara monte edilebilen boylama sistemleri kullanılabilmektedir. Bu sistemin ızgara aralığını 1,6-21 mm arasında ayarlamak mümkündür (Atay 1995). Ayrıca alabalıkları aynı anda ikiden fazla boya ayırmak için su püskürtme ve titreşim esasına göre çalışan sınıflandırma makinalarından da yararlanılabilir. Belirtilen boylama gereçlerinden farklı olarak kapasitesi büyük üretim tesislerinde ise; ayırmayı hızlandırmak, zaman ve işçilikten tasarruf etmek için; üretim tesisi dışında kurulan, su akıntısı verilebilen ve balıkları yakalama sırasında boylama yapabilen sistemlerin kullanılması önerilmektedir (Vollmann-Schipper 1975, Igler 1990). Yavru Alabalıkların Sınıflandırılması Alabalıkların boylanmasının pratikte iki önemli yararı vardır. Bunlar: 1- Farklı boyuttaki balıkların ayrılmasıyla kannibalizm önlenir. 2- Özellikle yavru balıklar satış için sınıflandırılmış olur. Yavru balık üreticileri yavru balıkları satış için pratikte 6 sınıfa ayırmaktadırlar. Bu sınıflar ve balık boyutları Tablo 11’de sunulmuştur (Lindhorst-Emme 1990). ALABALIKLARIN YEMLENMESİ Gökkuşağı alabalıklarının yemlenmesinde öncelikli olarak aşağıdaki faktörler dikkate alınmalıdır (Ruhdel 1977). a- Su sıcaklığı b- Suyun oksijen içeriği c- Suyun alkalinitesi d- Stok yoğunluğu Yemin İçeriği Gökkuşağı alabalığının yetiştiriciliği için optimum su sıcaklığı 15-20 oC olmasına karşın, yemlemeye uygun su sıcaklığı ise 14-16 oC’dır. Gökkuşağı alabalıklarının larva yeminde %40, yavru yeminde %30 ve sofralık balıkların yeminde ise %30 protein bulunması genel kullanım oranlarıdır. Bu oranlar larva yeminde %50’ye, mutfaklık balık beslenmesinde %46’ya kadar yükseltilebilmektedir. Yemleme metodu, su ve işletme koşullarına göre seçilir. Alabalık yemlerinde yağ içeriği başlangıçta %4-5 oranında önerilmektedir. Rasyonda protein miktarının yüksekliği ile birlikte yağ oranı %8’e kadar artırıldığında, yem değerlendirme ve balığın et kalitesi iyileşir. Alabalık pelet yemlerinde %8-12 oranında yağ ve %42-50 oranında protein üst sınır olarak kabul edilmektedir (Ruhdel 1977). Avrupa’da tanınmış bazı firmaların ürettikleri alabalık ticari besi yemlerinin içerikleri Tablo 14’de gösterilmiştir (Lindhorst-Emme 1990). Yem Tüketimi Dağılımı Alabalık üretim tesislerinde yem tüketimi işletme giderleri içerisinde yaklaşık %50-60 oranıyla en büyük payı oluşturur, İşletme giderinin yaklaşık 2/3’ünü oluşturan yemin yıl sürecinde kullanımının üretim dönemlerine göre dağılımı Tablo 15’de görülmektedir (Lindhorst-Emme 1990). Tablo 15’de görülen dönemlerden kuluçka evinde larvaların yemlenmesi günde 8-12 defa yapılmalıdır. Yem balıklara su yüzeyine serpilerek verilmelidir. Larva besiciliği döneminde 2000 adet larva için yem gereksinimi ilk bir ay yaklaşık 1 kg, ikinci ay ise 2 kg olarak hesaplanmalıdır (Bohl 1982). Daha sonraki dönemlerden yavru yetiştiriciliğinde yemleme sıklığı günde 3-4 defa, pazarlık balık besiciliğinde ise günde 2 defa olmalıdır. Balıklara haftada bir gün yemleme yapılmamalıdır (Ruhdel 1977). Yemin Boyutu Alabalıkların yemlenmesinde özel likle larva ve yavru dönemlerinde yemin boyutunun balıkların ağız açıklığına uygunluğu çok önemlidir. Bu konuya ilişkin veriler Tablo 16’de gösterilmiştir (Lindhorst-Emme 1990). Yemleme ve Su Sıcaklığı Alabalık besiciliğinin bütün evrelerinde su sıcaklığının etkisi yadsınamaz. Çünkü su sıcaklığı en başta suyun oksijen yönünden doymuşluğunu etkilemekle birlikte, aynı zamanda balıkların metabolizma hızına da tesir etmektedir. Yavru yetiştiriciliğinin ilk haftalarındaki yemlemede, su sıcaklığının etkisine ilişkin özgün örnek Tablo 17’de görülmektedir (Lindhorst-Emme 1990). Tablo 17’deki verilerin elde edilmesinde 4 m3 hacminde kanal tipi küvetlerde, yetiştirme için ideal su sıcaklığı olan 15 oC’da başlangıçta 100.000 adet olan stok yoğunluğu, 5. haftadan itibaren 60.000 adete indirgenmiştir. Yemleme Zamanı Ön büyütmesi yapılmış yavruların ilkbahar yaz döneminde, parmak boyunda yavru balık boyutuna kadar beslenmesinde, günlük yemleme öğünleri aşağıdaki gibi olmalıdır. 1. Yemleme 07.00-08.000 saatlerinde 2. Yemleme 11.00-12.00 saatlerinde 3. Yemleme 14.00-15.00 sularında Sonbahar döneminde fingerling dönemine ulaşan yavru balıklar ise aşağıda gösterilen saatlerde günde iki defa yemlenirler. 1. Yemleme 08.00-09.00 2. Yemleme 13.00-14.00 Yemleme (Besi) süresi Alabalık yetiştiriciliğinde bir diğer önemli konu yavru balıkların ne kadar süre beslenerek pazara sunulabileceğidir. Bu konu tamamen su ve yemleme koşullarıyla balığın kalıtımsal kökenli büyüme performansına bağlı bir durum olanak kabul edilse de, Tablo 18’de normal koşullarda gerçekleşmesi olası besi süreleri verilmiştir (Lindhorst-Emme 1990). Yem Değerlendirme Oranı Balık yetiştiriciliğinin verimliliğinin ölçütü olarak birim balık üretimi için harcanan yem miktarı kullanılmaktadır. Çünkü balık üretiminde girdilerin büyük çoğunluğunu yavru, işçilik ve yem giderleri oluşturmaktadır. Bu üç gider içerisinde de en büyük paya yem sahiptir. Belirli koşullar altında farklı kalitede 3 çeşit yemle yürütülen gökkuşağı alabalığı besiciliğine ilişkin veriler Tablo 19’da görülmektedir (Lindhorst-Emme 1990). Tablo 19’da görülen veriler irdelendiğinde birim balık üretimi için harcanan yem, yani yem değerlendirme oranı kadar, yemin fiatınında çok önemli olduğu anlaşılmaktadır. Yemleme Oranı Alabalık üretiminde başarılı besiciliğin temelini balıkları canlı ağırlıklarının %’si olarak doğru oranda yemlemek oluşturur. Yemleme oranını saptamada stok miktarı, su kalitesi ve miktarıyla birlikte, yetiştirme ortamında su değişimi gibi bir çok faktör dikkate alınabilir. Fakat balıklara günlük olarak verilecek yem miktarını saptarken iki ana ilke unutulmamalıdır. Bu iki ilke (Igler 1990): 1- Balıkların yem alımı su sıcaklığına bağlıdır. 2- Balıklar büyüdükçe yem gereksinimi oransal olarak düşer. Su sıcaklığı baz alınarak alabalık populasyonuna canlı ağırlıklarının %’si olarak günlük verilecek yem miktarı Tablo 20’den yararlanarak saptanır (Kieckhäfer 1983). Alabalıkların beslenmesinde günlük olarak verilecek yem miktarını tespit etmede, yine su sıcaklığının esas alındığı, fakat balıkların ortalama bireysel ağırlık ve boylarına göre gruplandırıldığı ve pratikte uygulanan yemleme oranları Tablo 21’de gösterilmiştir (Igler 1990). Alabalık Yemleme Yöntemleri En eski yemleme şekli olan elle yemleme halen kullanılan bir yöntemdir. Bu yöntemle yemlemede, balıklar özenle yavaş bir şekilde yemlenmeyi gerektirdiği için işçilik giderini artırır. Alabalık yetiştiriciliğinde büyük kapasiteli işletmelerde ve işçilik ücretinin yüksek olduğu ülkelerde yaygın olarak otomatik yemlikler kullanılmaktadır. Yem otomatları içerisinde en çok kullanılanlar, sarkaçlı yemlikler, yürüyen band sistemi ile çalışan yemlikler ve hava basınçlı yem otomatlarıdır (Çelikkale 1994). Sarkaçlı yemliklerde bir yem deposu, yemin düşmesini ayarlayan bir mantar, mantara takılan ve su içerisine uzayan bir çubuk bulunur. Balık havuzda yüzerken çubuğa dokunduğunda belli miktar yem suya dökülür. Bu sistemi balık 1-2 günde öğrenebilmektedir (Kieckhäfer 1983). Band sistemi yemliklerde, saat benzeri mekanizma yardımıyla yürüyen band üzerine yem konur. Band ilerledikçe yada döndükçe bandın yanlarından suya yem dökülür. Bu bandlar çalar saatlerin belirli zamana ayarlanarak kurulmasına benzer şekilde çalışırlar ve belirli zaman aralıklarıyla yavru yada özel likle larva yetiştirme kanallarına düzenli bir şekilde yem bırakırlar (Bohl 1982). Hava basınçlı yemliklerde, yem deposu havuz kenarındaki plastik bir boru üzerine yerleştirilmiştir. Yem deposu boru içine yem dökülecek şekilde boruya bağlıdır. Bir kompresör yardımıyla borunun, bir kenarından belli sürelerde hava basılır ve boru içine dökülmüş olan yem havuza fışkırtılır. Her havuz başına yerleştirilen bu sisteme merkezden otomatik olarak kumanda edilir (Lindhorst-Emme 1990). ALABALIKLARIN TAŞINMASI Alabalıkların yavru ve sofralık boyutlarında canlı olarak taşıma kaplarına konulmazdan önce uyulması gereken ilkeler aşağıda 4 madde halinde belirtilebilir. 1- Alabalıkların havuzlardan hasat sonrasında aşırı stresli oldukları bilinmeli, 2- Balıkların solungaçları temiz olmalı, 3- Balıklara havuzun taban yapısının kokusu sinmiş olabilir. Özellikle havuzlarda bulunan alg, çamur ve balçık vd. leri direkt olarak balığın etini etkiler. 4- Balıkların sindirim sistemi boş olmalıdır. Çünkü taşıma sırasındaki stresin etkisiyle balıkların barsak içeriğinin taşıma suyuna boşaltılmasıyla oluşacak bulanıklık taşımada büyük sorunlar yaratır (Lindhorst-Emme 1990). Alabalıkların taşıma sürecinde en büyük gereksinimleri oksijendir. Fakat diğer taraftan suyun oksijen içeriğinin su sıcaklığına göre değişken olduğu bilinen bir olgudur. Farklı su sıcaklıklarında oksijen doymuşluğu ve alabalıkların belirli süreçte tükettikleri oksijen Tablo 22’de özetlenmiştir (Koch et.al. 1976). Alabalıkların canlı olarak taşıması aşamasında taşıma gereçlerindeki balıkların oksijen gereksinimleri, oksijen tüplerinden yararlanarak taşıma suyuna oksijen verilerek karşılanır. Piyasada satılan oksijen tüplerinin özel likleri Tablo 23’de gösterilmiştir (Lindhorst-Emme 1990). Alabalıkların farklı büyüklük dönemlerinde taşınmalarında belirli sürede gereksinim duyulan oksijen miktarları Tablo 24’de görülmektedir (Lindhorst-Emme 1990). Alabalıkların canlı olarak taşınmaları öncesi havuz yada yavru yetiştirme kanal veya tanklarından yakalanmalarında ve taşıma kaplarına stoklanmalarında yararlanılan kepçelerde kullanılan ağ materyalin iplik kalınlığı ve ağ göz açıklıkları Tablo 25’de gösterildiği gibi olmalıdır (Lindhorst-Emme 1990). Yavru Balıkların Taşınması Alabalık yavruları özel likle küçük dönemlerinde plastik torbalarda oksijen ilave edilerek taşınırlar. Plastik torbalar 50 cm genişlik ve 1.20 m yükseklik boyutlarında dayanıklı materyalden üretilmiş olmalıdır. Plastik torbaların 1/3’üne temiz, soğuk su konur; 2/3’üne ise saf, gaz formunda oksijen doldurulur. Bu torbalarla 10-15 lt su içerisinde, 4-6 hafta yemlenmiş 1000 adedi 400-700 g olan 2000-3000 adet yavru emniyetli bir şekilde taşınabilir. Fakat yavruların taşınma ortamının su sıcaklığının, bulundukları havuz suyu sıcaklığı ile aynı olması zorunludur. Dayanıklı plastikten üretilen torbalarla 15-20 lt su hacminde 12-15 cm boyda olan 100 adet, toplam 2,5-3 kg yavru balığın taşınması mümkündür (Lindhorst-Emme 1990). Alabalık yavruları oksijen yönünden zenginleştirilmiş taşıma kaplarında (tanklarında) da taşınabilir. Bu tip taşımada 30-40 lt su hacminde 8000-10.000 adet yem alma yeteneğinde yavru taşınması mümkündür. Bu yavruların 1000 adedi toplam 120-160 g ağırlıktadır. Aynı koşullarda 3-4 hafta yemlenmiş 1000 adedi 400-700 g ağırlıkta olanların ise 4000-5000 adedi taşınabilir. Alabalık yavrularının yukarıda belirtilen ağırlıkta olanlar için bu koşullar altında taşınma süresi 1-2 saattir. Daha uzun süreli taşımalarda taşınacak yavru balık miktarı %10-20 oranında azaltılmalıdır. Taşıma tanklarının kapasitesi 100 lt olduğunda, 10-12 kg ön büyütmesi yapılmış yavru veya 15-20 kg parmak büyüklüğünde balık (Fingerling) taşınabilir. Sofralık Balıkların Taşınması Sofralık alabalıklar plastik torbalarda 15-20 lt su hacminde 250 g bireysel ağırlıkta 20 adet, yani toplam 5 kg ağırlığa kadar taşınabilir. Sofralık alabalıkların tanklarda taşınmasında 100 lt su hacminde 20-25 kg stok miktarı esas alınır. Daha fazla miktarda pazarlık balık taşımada ise kasalarına tank monte edilen kamyon, kamyonet ve ağır vasıtalardan yararlanır. Bu araçlarla taşımada araçta bulunan oksijen tüplerinden taşıma tanklarına düzenli bir şekilde oksijen verilir. Bu tip endüstriyel şekilde pazara alabalık sunmada 500 lt suda 75 kg yada 100 lt su içinde 150 kg alabalık taşınır. Belirtilen kapasitede tanklardan araçların çekiş gücüne göre bir adet yada birden fazla tank konabilir. Tam donanımla tankların monte edildiği ağır vasıtalarla oksijen miktarına bağlı olarak 4000 km yada daha fazla uzaklıklara 50-60 saat sürede sorunsuz olarak mutfaklık alabalık taşıyabilmek olasıdır (Lindhorst-Emme 1990). Çekici güçleri 1,5 ton ile 32 ton arasında değişen taşıma vasıtaları ile pazarlık balık taşınabildiği gibi küçük yavruları (larva) ve büyükçe yavruları (Fingerling) da taşımak olanak içerisindedir. Fakat 500 lt’de 75 kg, 1000 lt’de 150 kg, olarak belirtilen sofralık alabalık miktarlarını, larvalar için 2/3 ve parmak büyüklüğünde yavrularda ise 1/3 oranında azaltmak gereklidir. Ayrıca bu miktarlarda balıkların kondisyonu, taşıma süresi ve su sıcaklığına bağlı olarak değişiklik yapmak gerekebileceği de unutulmamalıdır. Alabalık Yumurtalarının Taşınması Gökkuşağı alabalığının yetiştiriciliğin dünya genelinde yayılmasında, döllenmiş yumurtalarının uygun koşullarda sorunsuz bir şekilde kıtalararasında kolayca taşınabilmesinin önemi yadsınamaz. Gökkuşağı alabalığının yumurtalarının döllenmesinden sonra 24-36 saat içerisinde daha çok kısa mesafelerde işletmeler arası taşındığı bilinmektedir. Bu sürede yumurtalar henüz duyarlı döneme ulaşmamışlardır. Fakat gökkuşağı alabalığı yumurtaları en emin bir şekilde göz lekesi oluştuktan sonra en uzak  Doç.Dr.Fikri AYDIN

http://www.biyologlar.com/alabalik-biyolojisi-ve-yetistirme-teknikleri

ALTERNATİF ENERJİ KAYNAKLARI

Enerji iş yapabilme yeteneği olarak tanımlanmaktadır. Günümüzde, endüstrinin en temel enerji tüketimi elektrik enerjisi olup, onu ısınma veya ısıtma amaçlı fosil yakıtlar (petrol, kömür) takip etmektedir. Günümüze kadar ısınma ihtiyacı kömür veya petrolden karşılanmaktaydı. Son yıllarda artan enerji talebi ve fosil yakıtların azalması insanaları başka enerji kaynaklarına yöneltmiştir. Özellikle son yıllarda fosil yakıtlardan çevre dostu olan doğal gazın tüm dünyada kullanımı yaygınlaşmaya başlamıştır. Özellikle kömür ve petrol rezervlerinin sınırlı olması ve bir gün mutlaka bitecek olması gelecekteki enerji politikalrının oluşmasına ve bu alanda yeni planlamaların ve yeni kaynakların oluşturulmasına neden olmuştur. Günümüz bilimi yeni ve alternatiif enerji kaynakların kullanılması için çalışmalar başlatmışlardır. Bu enerjiler; Güneş, Rüzgar, Jeotermal, Hidrojen, Hidro-elektrik ve Biyokütle ve dalga enerjisi doğal ve temiz enerji kaynakları olarak değerlendirilmektedir. Bu kaynaklardan en önemlilleri ve günümüzde yararlanma oranı yüksek olan güneş ve rüzgar enerjileridir. Fosil yakıtlara alternatif olabilecek kaynaklar ise yenilenebilir ve tükenmeyecek olan enerji kaynaklarıdır. Güneş enerjisinin de diğer enerjiler gibi kullanım sorunları ve koşulları vardır. Güneş enrejisi her tüketim modelinde kolaylıkla kullanılamaz. Her tüketim dalında kullanılabilmesi için bu sorunlarının tüketim modellerine göre çözülmesi gerekmektedir. Güneş enerjisinin depolanması yada diğer enerji lere dönüşebilmes, ısıl, mekanik, kimyasal ve elektrik yöntemlerle olur. Ekoloji bilimi açısından temel enerji güneş enerjisidir. Fosil yakıtlar dahil, rüzgar, hidroelektrik, biyogaz, alkol, deniz, termik, dalga gibi tüm enerji kaynakları güneş enerjisinin türevleridir. Fizikçi Capra’ya göre fozil yakıtlar ve çeşitli sorunlar yaratan nükleer enerji geçmiş dönemin enerji kaynaklarıdır. Buna karşılık güneş ve türevleri geleçeğin enerji kaynaklarıdır. Günlük güneş enerjisinden yararlanılması, dünyada günlük 300 tirilyon ton kömür yakılmasına eşdeğerdir. Başka bir hesaplamayla dünyamıza bir yılda düşen güneş enerjisi, dünyadaki çıkarılabilir fosil ykıt kaynakları rezervlerinin tamamından elde edilecek enerjiin yaklaşık 15-20 katına eşdeğerdir. Dünyaya üzerinde Alman şirketleri öncülüğünde, 20 kadar kuruluşun 2009 yılında projelendirdiği 'Desertec', şimdilik, güneş enerjisinin kullanılacağı en büyük proje olarak planlanmıştır. Bu projede dev aynalarla ısıtılacak sudan sağlanacak buhar ile çalıştırılacak dev türbinlerden sağlanacak elektrik enerjisi yüksek voltaj iletişim hatlarıyla Kuzey Afrika çöllerinden Avrupa'ya ulaştırılacak. İlk hesaplamalara göre 2020 yılında Almanya'ya ulaşabilecek olan enerjinin maliyeti 6 euro/sent olacak. En büyük avantaj, 400 milyar euro tutarındaki yatırım tamamlandıktan sonra maliyetin sabit kalması. 'Desertec' projesinin kısa sürede Avrupa kıtasının elektrik ihtiyacının %15'ini karşılayabilir duruma gelmesi dışında, doğal olarak kurulduğu bölgelerin enerji ihtiyacını da yerine getirecek. Dünyadaki çöllere 6 saat içerisinde düşen güneş enerjisinin tüm dünyanın bir yıl içerisinde tükettiği enerjiye eşit olduğu düşünülürse projenin ekonomik değeri daha iyi anlaşılacaktır. Ülkemiz güneş enerjisi açısınıdan diğer ülkelere nazaran daha şanslıdır. Türkiye düşen güneş enerjisi miktarı tüm Avrupa ülkelerine düşen enerjinin toplamına eşittir. Devlet Meteoroloji İşleri Genel Müdürlüğünde (DMİ) mevcut bulunan 1966-1982 yıllarında ölçülen güneşlenme süresi ve ışınım şiddeti verilerinden yararlanarak EİE tarafından yapılan çalışmaya göre Türkiye'nin ortalama yıllık toplam güneşlenme süresi 2640 saat (günlük toplam 7,2 saat), ortalama toplam ışınım şiddeti 1311 kWh/m²-yıl (günlük toplam 3,6 kWh/m²) olduğu tespit edilmiştir.Çeşitli kaynaklara göre ülkemizin yılda almış olduğu güneş enerjisi ; bilinen kömür rezervimizin 32, bilinen petrol rezervimizin 2200 katıdır. Güneş enerjisinin , diğer enerjilere çevriminde kullanılan çevrimler; a) güneş enerjisinden doğrudan ısı enerjisi b) güneş enerjisinden doğrudanelektrik enerjisi c) güneş enerjisinden hidrojen enerjisi elde edilmesi olarak sıralanabilir. Güneş Enerjisinin Diğer Enerjilere Göre Üstünlükleri Güneş enerjisinin diğer enerjilere göre bir çok üstün özelliği bulunmaktadır. Güneş enerjisini etkin ve kullanılabilir kılan özellikleri aşağıdaki şekilde sıralanabilir: - Güneş enerjisi tükenmeyen ve azalmayan bir enerji kaynağıdır. - Güneş enerjisi, temiz bir enerji türüdür. Gaz, duman, toz, karbon veya kükürt gibi zararlı maddeleri yoktur. - Güneş, dünya tüm ülkelerinin, herkesin yararlanabileceği bir enerji kaynağıdır. Bu sayede ülkelerin enerji açısından bağımlılıkları ortadan kalkacaktır. - Güneş enerjisinin bir diğer özelliği, hiçbir ulaştırma harcaması olmaksızın her yerde sağlanabilmesidir. - Güneşi az veya çok gören yerlerde biraz verim farkı olmakla birlikte, dağların tepelerinde vadiler ya da ovalarda da bu enerjiden yararlanmak mümkündür. - Güneş enerjisi doğabilecek her türlü bunalımın etkisi dışındadır. Örneğin, ulaşım şebekelerinde yapılacak bir değişiklik bu enerji türünü etkilemeyecektir. - Güneş enerjisi hiçbir karmaşık teknoloji gerektirmemektedir. Hemen hemen bütün ülkeler, yerel sanayi kuruluşları sayesinde bu enerjiden kolaylıkla yararlanabilirler. Güneş enerjisinin karşılaştığı sorunlar: - Güneş enerjisinin yoğunluğu azdır ve sürekli değildir. İstenilen anda istenilen yoğunlukta bulunamayabilir. - Güneş enerjisinden yararlanmak için yapılması gereken düzeneklerin yatırım giderleri bugünkü teknolojik aşamada yüksektir. - Güneşten gelen enerji miktarı bizim isteğimize bağlı değildir ve kontrol edilemez. - Bir çok kullanım alanının, enerji arzı ile talebi arasındaki zaman farkı ile karşılaşılmaktadır. Güneş enerjisinden elde edilen ışınım talebinin yoğun olduğu zamanlarda kullanılmak üzere depolanmasını gerektirir. Enerji depolaması ise birçok sorun yaratmaktadır. Güneş Pilleri ( Fotovoltaik Piller ) Güneş pilleri (fotovoltaik piller), yüzeylerine gelen güneş ışığını doğrudan elektrik enerjisine dönüştüren yarıiletken maddelerdir. Yüzeyleri kare, dikdörtgen, daire şeklinde biçimlendirilen güneş pillerinin alanları genellikle 100 cm² civarında, kalınlıkları ise 0,2-0,4 mm arasındadır. Güneş pilleri fotovoltaik ilkeye dayalı olarak çalışırlar, yani üzerlerine ışık düştüğü zaman uçlarında elektrik gerilimi oluşur. Pilin verdiği elektrik enerjisinin kaynağı, yüzeyine gelen güneş enerjisidir. Güneş enerjisi, güneş pilinin yapısına bağlı olarak % 5 ile % 20 arasında bir verimle elektrik enerjisine çevrilebilir. Güç çıkışını artırmak amacıyla çok sayıda güneş pili birbirine paralel ya da seri bağlanarak bir yüzey üzerine monte edilir, bu yapıya güneş pili modülü ya da fotovoltaik modül adı verilir. Güç talebine bağlı olarak modüller birbirlerine seri ya da paralel bağlanarak bir kaç Watt'tan megaWatt'lara kadar sistem oluşturulur. Güneş pillerinin yapımında kullanılan malzemeler. Güneş pilleri pek çok farklı maddeden yararlanarak üretilebilir. Günümüzde en çok kullanılan maddeler şunlardır: Kristal Silisyum, Galyum Arsenit (GaAs), Amorf Silisyum, Kadmiyum Tellürid (CdTe),Bakır İndiyum Diselenid (CuInSe2),Optik Yoğunlaştırıcılı Hücreler Güneş Pillerinin Kullanım Alanları Güneş pili sistemlerinin şebekeden bağımsız olarak kullanıldığı tipik uygulama alanları aşağıda sıralanmıştır. - Haberleşme istasyonları, kırsal radyo, telsiz ve telefon sistemleri - Petrol boru hatlarının katodik koruması - Metal yapıların (köprüler, kuleler vb) korozyondan koruması - Elektrik ve su dağıtım sistemlerinde yapılan telemetrik ölçümler, hava gözlem istasyonları - Bina içi ya da dışı aydınlatma - Dağevleri ya da yerleşim yerlerinden uzaktaki evlerde TV, radyo, buzdolabı gibi elektrikli aygıtların çalıştırılması - Tarımsal sulama ya da ev kullanımı amacıyla su pompajı - Orman gözetleme kuleleri - Deniz fenerleri - İlkyardım, alarm ve güvenlik sistemleri - Deprem ve hava gözlem istasyonları - İlaç ve aşı soğutma GÜNEŞ ENERJİSİ Dünya, güneşten yaklaşık 150 milyon km. uzakta bulunmaktadır. Dünya hem kendi çevresinde dönmekte, hem de güneş çevresinde eliptik bir yörüngede dönmektedir. Bu yönüyle, dünyaya güneşten gelen enerji hem günlük olarak değişmekte, hem de yıl boyunca değişmektedir. İlave olarak, Dünyanın kendi çevresindeki dönüş ekseni, güneş çevresindeki dolanma yörüngesi düzlemiyle 23.50 lik bir açı yaptığından, yeryüzüne düşen güneş şiddeti yörünge boyunca değişmekte ve mevsimler de böylece oluşmaktadır. Yeryüzünün kullanılmakta olan tüm yenilenebilir enerjilerin kaynağı güneştir. Diğer alternatif enerjiler güneşin etkisi ile oluşmaktadır. Güneşin tükenmez enerjisinden yaralanarak ve az bir maliyetle, evlerimizi veya kullanım suyumuzu ısıtıp, elektrik elde edebiliriz. Güneş kolektörlerini kullanarak, kullanım suyunu arzu edilen sıcaklıkta ısıtabilir, güneş pilleri sayesinde, yılın her ayı, istediğiniz yerde, istediğiniz kadar elektrik elde edebilirsiniz. Güneş enerjisinden, ısı enerjisine dönüştürerek, elektrik enerjisine dönüştürerek yararlanılmaktadır. Yarı iletkenler kullanarak doğrudan elektrik üretimi de mümkündür. Güneş enerjisi, güneş ışığından enerji elde edilmesine dayalı teknolojidir. Güneşin yaydığı ve dünyamıza da ulaşan enerji, güneşin çekirdeğinde yer alan füzyon süreci ile açığa çıkan ışıma enerjisidir, güneşteki hidrojen gazının helyuma dönüşmesi şeklindeki füzyon sürecinden kaynaklanır. Dünya atmosferinin dışında güneş ışınımının şiddeti, aşağı yukarı sabit ve 1370 W/m² değerindedir, ancak yeryüzünde 0-1100 W/m2 değerleri arasında değişim gösterir. Bu enerjinin dünyaya gelen küçük bir bölümü dahi, insanlığın mevcut enerji tüketiminden kat kat fazladır. Güneş enerjisinden yararlanma konusundaki çalışmalar özellikle 1970'lerden sonra hız kazanmış, güneş enerjisi sistemleri teknolojik olarak ilerleme ve maliyet bakımından düşme göstermiş, güneş enerjisi çevresel olarak temiz bir enerji kaynağı olarak kendini kabul ettirmiştir. Dünyada yararlanılan en eski enerji kaynağı güneş enerjisidir. RÜZGAR ENERJİSİ Yenilenebilir bir enerji türü olan rüzgar, eski çağlardan beri kullanılmaktadır. Endüstriyel manada kullanımı ise araştırılmaya devam edilmektedir. Bu amaçla, hareketli havanın bünyesindeki kinetik enerji bir eksen etrafında dönen kanatlar vasıtasıyla mekanik enerji dönüştürülmek durumundadır. Rüzgar enerjisi temiz ve diğer enerji türlerine kolayca çevrilebilmeleri avantajları, zamana göre düzensiz ve yoğunluğunun az olması dezavantaj olarak düşünülmektedir. Hava tabakalarının farklı sıcaklıklarda ısınıyor olması rüzgarı oluşturur. Rüzgar enerjisiyle, elektrik üretebilir; kuyulardan su çekmek için kullanılan su dığınız pompaları çalıştırabilir. Rüzgâr hızı, bir rüzgâr türbininin elektriğe çevirebileceği enerji miktarı açısından önemlidir. Rüzgar enerjisinin kaynağını güneş oluşturmaktadır. Enerji iş yapabilme yeteneği olarak tanımlanmaktadır. Günümüzde, endüstrinin en temel enerji tüketimi elektrik enerjisi olup, onu ısınma veya ısıtma amaçlı fosil yakıtlar (petrol, kömür) takip etmektedir. Güneşin yeryüzü ve atmosferi homojen bir şekilde ısıtamamasından dolayı atmosfer içerisinde oluşan hava akımlarına rüzgar adını vermekteyiz. Yeryüzünün çoğrafi farklılıkları ile düzgün olmayan ısınmasına bağlı olarak, rüzgar enerjisi dağılımı zamansal ve yerel farklılıklar göstermektedir. Rüzgar enerjisinin atmosferde bol bulunması, çevre kirliliği yaratmaması, yerel bir enerji kaynağı olması ve ücretsiz oması gibi üstün özellikleri vardır. Rüzgarın enerji içeriği, ortalama rüzgâr hızının küpü oranında değişir. Yani rüzgâr hızı 2 katına çıkarsa, 8 kat enerji içerir. Rüzgâr türbini örneğinde, rüzgârın hızını 2 katına çıkarırsak her saniye pervaneden geçen dilim sayısını da 2 kat artar ve bu dilimlerin her biri otomobilin frenlemesi örneğinden anlaşıldığı gibi 4 kat enerji içerir. Rüzgar enerjisi potansiyele bağlı olarak gerek mekanik enerji gerekse elektrik üretiminde kullanılabilir. Rüzgardan üretilen mekanik enerji, su pompalama, zirai ürün öğütme, kesme, biçme ve elektrik üretiminde kullanılabilmektedir. Rüzgâr enerjisi günümüzde, 21. yüzyılda ve onların ötesinde ençok gelecek vadeden teknolojilerden bir tanesidir. Rüzgâr türbinlerinden herhangi bir çevre kirliliği olmaz. Modern bir 600 kW gücündeki rüzgâr türbini ortalama bir yerde, bir yılda genellikle kömürle iletilen diğer elektrik santrallarının 1.200 ton karbondioksidinin yerine geçecektir.20 yıllık bir işletme süresi içinde (ortalama bir yerde) bir rüzgâr türbini tarafından üretilen enerji imâlatı, bakımı, faaliyeti, demontajı ve parçalanması için gerekli olan enerjinin sekiz misli fazladır. Başka bir deyişle, genellikle bir rüzgâr türbinini imâl etmek ve çalıştırmak için gerekli olan enerjiyi geri kazanmak için sadece iki yada üç ay yeterli olacaktır. Rüzgârdaki enerji gerçekten de sürdürülebilir bir kaynaktır. Rüzgâr hiç bitmeyen bir şeydir. Halihazırda, rüzgâr enerjisi Danimarka elektrik tüketiminin yüzde yedisini karşılamakta ve bu rakkamın 2005 yılında yüzde 10 mertebesine yükselmesi beklenmektedir.Avrupayı çevreleyen sığ denizlerin üzerindeki rüzgâr kaynakları, teori olarak Avrupa'nın kullandığı tüm elektriği birçok misli ile karşılar niteliktedir. Enerji gereksiniminizi doğanın sonsuz rüzgar gücüyle karşılayabilrsiniz. Rüzgar jeneratörleri, birkaç yıl içinde ilk kuruluş maliyetlerini karşılayarak, sonraki yıllarda, bedava elektrik üretmeye yardımcı olur. Elektrik üretilmek istenen her yerde, rüzgar jeneratörlerini kullanmak mümkündür. Rüzgar jeneratörü elektrik üretim sistemini, akülerle birlikte dizayn edebilir, üretilen elektriği bu yolla depolayabilir. Böylece, rüzgar hızının yeterli olmadığı anlarda, sistem, akülerde depolanan enerjiyi kullanabilecektir. Rüzgar jeneratörleri, çevreyi kirletmeyen enerji üretim araçlarıdır. Elektrik üretirken çıkardıkları ses, tipik bir çamaşır makinasının sesi kadardır. Ses kirliliği yaratıp çevreyi rahatsız etmez. Rüzgar jeneratörünün üreteceği elektrik gücü, rüzgar hızıyla orantılıdır. Rüzgar hızı attıkça, üretilen elektrik miktarı da artar. Rüzgar jeneratörleri DC üretirler ve sistem çıkışında AC alınmak isteniyorsa, sisteme inverter eklemek gerekir. Bireysel kullanım amaçlı üretilmiş Ampair Hawk jeneratörlerini, küçük güçlü elektrik motorlarını çalıştırmak için tercih edilebilir. Ülkemizde rüzgar enerjisi bir kaç yıl öncesine kadar enerji planlamalarında gözükmeyen bir enerji olmasına rağmen, özellikle içinde bulunduğumuz yıllarda özel sektörün çalışmaları ile hızlı atılımlar göstererek gerekli düzenlemelerin yapılması sağlanmıştır. Ülkemizde DPT’nin desteği ile Türkiye Rüzgar Atlası çalışmaları yapılmış olup; Türkiye teknik rüzgar potansiyeli ve santral kurulmaya uygun alan sayısı açısından birinci sırada yer almaktadır. Son yıllarda özel teşebbüsler tarafından rüzgar enerjisine yatırım yapılmaya başlanmıştır. Türkiye'de Rüzgar Enerjisi'nin Tarihi Ülkemizde rüzgar enerjisiyle ilgili çalışmaların başlangıç tarihi çok eskilere dayanmamaktadır. Bu konudaki çalışmaları ilk başlatan kurum 1980'li yılların ortalarında Elektrik İşleri Etüt İdaresi olmuştur. Başlangıç çalışmaları rüzgar potansiyelini tespit amacıyla gerçekleştirilen etüt faaliyetlerinden ibarettir. Bu çalışmaların yapıldığı yıllarda rüzgar enerjisini konu alan herhangi bir kanuni düzenleme mevcut değildi. 1995 yılından itibaren bazı küçük uygulamalar Yap - İşlet - Devret modeliyle gerçekleştirilmiştir. Türkiye'de İlk rüzgar santrali Demirer holding'in Çeşmede kurduğu santraldir. İzmir Çeşme germian'da (1.5MW), Alaçatı'da (7.2MW); Çanakkale Bozcaada'da 10.2MW); İstanbul Hadımköy'de (1.2MW) gerçekleşen rüzgar santralleri bu şekilde ortaya çıkmıştır. Türkiye'de rüzgar enerjisi gibi yenilenebilir enerji kaynaklarının konu edildiği ilk kanun 2001 yılında Elektrik Piyasası Kanunu'dur. Bu kanunla devletin belirli bir fiyattan alım garantisinden vaz geçmesi zaten düşük seviyede olan rüzgar enerjisi yatırımlarını durdurmuştur. Bu aşamada az sayıda özel sektörün kendi enerjisini üretmek için gerçekleştirdiği projeler mevcuttur. (Otoprodüktör) Rüzgar enerjisine verilen resmi önemin kanıtı olarak ilk ciddi girişim ise ancak 2005'dey Yenilenebilir Enerji Kaynakları Kanunu'yla ortaya konmuştur. Bu kanunun sonrasında Bandırma, Çeşme yarımadası, Hatay, Manisa, Çanakkale'de gerçekleştirilen 150 MW gücündeki santraller kanunun ilk meyveleridir. Bu tarihten sonra Enerji Piyasası Düzenleme Kurumu rüzgar enerjisine dayalı üretim tesisi kurmak için başvurular gerçekleştirilmiştir. (Aralık 2007) EPDK gelen yoğun başvurulardan uygun olanlarını elemiş ve 2008 itibarıyla 1420 MW kurulu gücünde rüzgar enerji santralı projesine üretim lisans verilmiştir. Türkiye Rüzgar potansiyeli yüksek ülkeler arasında yer almaktadır. Türkiye'de Faaliyette olan Rüzgar Santralleri Türkiye'de çalışmakta olan 13 rüzgar santrali bulunduğu, bunların da üretim kapasitesinin 249,15 MW olduğu açıklanmıştır. Rüzgar Jeneratörleri Kullanım Alanları • Çiftlikler Villalar, dağ evleri • Sanayi tesisleri • Tarım sulama/pompalama sistemleri • GSM santralleri • Telekomünikasyon, radyo ve tv istasyonları • Yatlar ve deniz fenerleri • Tüm turistik işletmeler JEOTERMAL ENERJİ (jeo-yer, termal-ısı) Yerkabuğunun çeşitli derinliklerinde birikmiş ısının oluşturduğu, kimyasallar içeren sıcak su, buhar ve gazlardır. Jeotermal Enerji de bu jeotermal kaynaklardan ve bunların oluşturduğu enerjiden doğrudan veya dolaylı yollardan faydalanmayı kapsamaktadır. Jeotermal enerji yeni, yenilenebilir, sürdürülebilir, tükenmez, ucuz, güvenilir, çevre dostu, yerli ve yeşil bir enerji türüdür. Sıcak su ve buhar, diğer yaraltı ve yerüstü sulara göre daha fazla erimiş madde ve gaz içeren ve oluşumunda ki süreklilik nedeni ile yenilebilir özelliktedir. Jeotermal enerji kaynakları sıcaklıklarına göre; yüksek yoğunluklu solüsyonların buharlaştırılmasıdan (180 Derece), balık çiftliklerinin (20 derece) kurulmasına kadar çok değişik alanlarda kullanılmaktadır. jeotermal enerjinin en ekonomik uygulama alanı, en geniş kullanım biçimi doğrudan kullanım olarak konutların ve sera alanlarının ısıtılmasıdır.Ülkemizde, 1962 yılından beri, MTA tarafından sürdürülen çalışmalar sonucunda, çok sayıda jeotermal kaynak bulunmuştur. Jeotermal kaynaklarla ısıtma, soğutma ve elektrik üretimi gerçekleştirilebilir. Yine bu kaynaktan yararlanarak elektrik üretmek olasıdır. En ucuz jeotermal enerji üretimi kendiliğinden yüzeye çıkan sıcak sulardan faydalanılarak gerçekleştirilen üretimdir. Bu kaynaklar çoğunlukla yeterli değildir ve kullanım alanları oldukça kısıtlıdır. Bunun yanında daha yüksek kapasiteli kaynaklara ulaşmak için sondaj çalışmalarının yapılması gerekmektedir. Sondaj çalışmalarının çoğu petrol aramak amacıyla yapılmış olup jeotermal kaynaklara rastlanıldıktan sonra kuyuların işletme amacı değiştirilerek jeotermal kaynak olarak kullanılmıştır. Jeotermal sular çok derinlerdedir. Bu suların yukarı çıkarılması boru hatları döşeme ve pompalama gibi sorunları ortaya çıkarır. Bu suların borularla taşınmasında ortaya çıkan sorun suların aşındırıcı etkiye sahip olmasıdır. Jeotermal kaynakların dağılıtılmasında kullanılan sistemlerde kireçlenme yoğun olarak yaşanmaktadır. Jeotermal kuyularda sık sık boruları ve pompalama sistemlerini değiştirmek gerekebilir. Jeotermal kaynaklar ile; I. Elektrik enerjisi üretimi, II. Merkezi ısıtma, merkezi soğutma, sera ısıtması ve benzeri ısıtma/soğutma uygulamaları, III. Proses ısısı temini, kurutma işlemleri gibi endüstriyel amaçlı kullanımlar, IV. Karbondioksit, gübre, lityum, ağır su, hidrojen gibi kimyasal maddelerin ve minerallerin üretimi, V. Termal turizm'de kaplıca amaçlı kullanım, VI. Düşük sıcaklıklarda (30 °C'ye kadar) kültür balıkçılığı, VII.Mineraller içeren içme suyu üretimi, gibi uygulama ve değerlendirme alanlarında kullanımlar gerçekleştirilmektedir. Türkiye’de jeotermal enerji tüketiminin %87 si ısıtma amaçlı olmaktadır. Jeotermal enerji sahalarının ise %95’i ısıtmaya uygun sahalardır. Tüm dünyadaki jeotermal potansiyelin %8’ini bulunduran ülkemiz bu kaynaklar yönünden dünyanın en zengin 7. Ülkesidir. Türkiye’de şu anda elektrik üretimi, jeotermal merkezi ısıtma, karbondioksit üretimi, termal turizm ve diğerleri ile Türk Milli Ekonomisine jeotermalin katkısı yaklaşık 3 Milyar YTL olarak hesap edilmiştir. Ayrıca sektörde yapılan toplam istihdam ise 40.000 kişidir. Ayrıca, mevcut elektrik dışı toplam jeotermal değerlendirmenin kalorifer yakıtı eşdeğeri yılda 2 Milyar YTL’dir. DALGA ENERJİSİ Güneş ışınları dünyanın ana enerji kaynağıdır. Dünya üzerinde kara ve denizlerin dağılımından dolayı gelen ışınların %70'i denizler tarafından tutulur. Bu sebeble uygun yöntemler kullanılabildiğinde okayanuslar iyi bir enerji kaynağı olarak değerlendirilebilir. Med-cezir enerjisinde faydalanmak ideal bir fikirdir. Suyun kabarması ve inmesi şeklinde gelişen gelgit hareketi süresince suyun hareket enerjisinin faydalı amaçlar için kullanımı mümkündür. Çok önceleri Med değirmenleri ismi verilen ve eski vapurların kepçe çarklarına benzeyen sistemler ile değirmen yapılmıştır. Değirmen denizin üstünde olup çarkın alt kısmı suya dalmaktadır. Dalan çark kısmı gelip giden suyun zorlamsıyla itilmekte ve dönme hareketi elde edilmektedir. Dalga enerjisi tüm dünya için 3000 GW lık bir potansiyele sahiptir. Bununla birlikte bunun ancak 64 GW lık kısmı kullanılabilir durumdadır. Bu Türkiye’nin bugünkü elektrik enerjisi üretiminin 3 katına tekabül etmektedir. Med cezir olayı yerin ve ayın çekimi arasında suyun denge sağlamasından ileri gelmektedir. Sadece dünyanın aya bakan yüzünde değil, diğer yüzündede meydana gelir.Genellikle her 12 saat 25 dakikada bir med-cezir meydana gelir. Hergün bir önceki günden 50 dakika sonra meydana gelir. Yaklaşık 6 saatte yükselme ve takip eden 6 saatte de çekilme süreci meydana gelir.Deniz veya okyanusun sahil şekli ve derinliği önemlidir. Limana yaklaşan gemiler üzerinde çok etkili olduğundan her sahilin med-cezir haritası belirlenmiştir. Med-cezir enerjisini alabilmek için koy formundaki sahile bir baraj yapılmalıdır. Med esnasında su baraj üzerindeki türbinlerden geçerek baraja dolar. Cezir süresincede barajdan yine türbinler üzerinden geçerek denize döner. Burada med-cezir enerjisinin %8-25 i faydalı hale dönüştürülebildalga enerjisi,ir. Med-cezir santralı mevsin değişikliklerinden etkilenmez. Med-cezir vasıtasıyla enerjinin daha verimli elde edilebilmesi için sahillerin okyanusa açık olmalıdır. Bu manada bu enerji Türkiye açısından kullanışlı olmayacaktır. Okyanusa sahili olan Fransa 18 km lik sahilden 6000 MW lık bir enerji üretim projesi üzerinde çalışmaktadır. Güneş ışığı aynı zamanda denizlerdeki dalga enerjisi ve sıcaklık farklarıyla enerji elde edilmesini de sağlar. Tüm dünya bilim adamlarının üzerinde araştırma yapmakta olduğu, temiz enerji arayışı’nın bir parçası da Dalga enerjisi dir. Bizim yararlanmayı amaçladığımız, Denizlerde, Archimedes prensibi ve yer çekimi arasında oluşan ve diğer enerji kaynakları ile alışverişinde ortaya çıkan enerjinin, dalga enerjisinin, rasyonel olarak kullanılmasıdır. Üç tarafı denizlerle çevrili olan Ülkemizde, İlk yatırımından ve bakım giderlerinden başka gideri olmayan, primer enerjiye bedel ödenmeyen, doğaya her hangi bir kirletici bırakmayan, ucuz, temiz, çevreci ve çok büyük bir enerji kaynağının değerlendirilmesi gerekmektedir. Dalga enerjisi konusunda yapılan çalışmalar yetersiz ve oldukça azdır. Konuyla ilgili olarak üniversitelerin çalışma başlatmaları sağlanarak özel teşebbüsün tetiklenmesi gerekmektedir. Türk yatırımcılar için en uygun dalga dönüştürücü teknolojisi, enerji üretim sürecinin devamı boyunca periyodik olarak suyu depolayabilecek bir rezervuar ve dalganın yetersiz olduğu dönemlerde ikili bir yapıyla aynı zamanda rüzgar gücünü de kullanarak verimliliği artırabilecek bir sistemi içermelidir. Diğer ülkelerde düşük dalga ikliminde etkili olarak çalışabilecek dönüştürücüler halen geliştirilmektedir. Bu projelere katılmak veya yeni bir ikili tasarıma başlamak için çok geç değildir.

http://www.biyologlar.com/alternatif-enerji-kaynaklari-1

JEOTERMAL ENERJİi: (jeo-yer, termal-ısı)

Yerkabuğunun çeşitli derinliklerinde birikmiş ısının oluşturduğu, kimyasallar içeren sıcak su, buhar ve gazlardır. Jeotermal Enerji de bu jeotermal kaynaklardan ve bunların oluşturduğu enerjiden doğrudan veya dolaylı yollardan faydalanmayı kapsamaktadır. Jeotermal enerji yeni, yenilenebilir, sürdürülebilir, tükenmez, ucuz, güvenilir, çevre dostu, yerli ve yeşil bir enerji türüdür. Sıcak su ve buhar, diğer yaraltı ve yerüstü sulara göre daha fazla erimiş madde ve gaz içeren ve oluşumunda ki süreklilik nedeni ile yenilebilir özelliktedir. Jeotermal enerji kaynakları sıcaklıklarına göre; yüksek yoğunluklu solüsyonların buharlaştırılmasıdan (180 Derece), balık çiftliklerinin (20 derece) kurulmasına kadar çok değişik alanlarda kullanılmaktadır. jeotermal enerjinin en ekonomik uygulama alanı, en geniş kullanım biçimi doğrudan kullanım olarak konutların ve sera alanlarının ısıtılmasıdır.Ülkemizde, 1962 yılından beri, MTA tarafından sürdürülen çalışmalar sonucunda, çok sayıda jeotermal kaynak bulunmuştur. Jeotermal kaynaklarla ısıtma, soğutma ve elektrik üretimi gerçekleştirilebilir. Yine bu kaynaktan yararlanarak elektrik üretmek olasıdır. En ucuz jeotermal enerji üretimi kendiliğinden yüzeye çıkan sıcak sulardan faydalanılarak gerçekleştirilen üretimdir. Bu kaynaklar çoğunlukla yeterli değildir ve kullanım alanları oldukça kısıtlıdır. Bunun yanında daha yüksek kapasiteli kaynaklara ulaşmak için sondaj çalışmalarının yapılması gerekmektedir. Sondaj çalışmalarının çoğu petrol aramak amacıyla yapılmış olup jeotermal kaynaklara rastlanıldıktan sonra kuyuların işletme amacı değiştirilerek jeotermal kaynak olarak kullanılmıştır. Jeotermal sular çok derinlerdedir. Bu suların yukarı çıkarılması boru hatları döşeme ve pompalama gibi sorunları ortaya çıkarır. Bu suların borularla taşınmasında ortaya çıkan sorun suların aşındırıcı etkiye sahip olmasıdır. Jeotermal kaynakların dağılıtılmasında kullanılan sistemlerde kireçlenme yoğun olarak yaşanmaktadır. Jeotermal kuyularda sık sık boruları ve pompalama sistemlerini değiştirmek gerekebilir. Jeotermal kaynaklar ile; I. Elektrik enerjisi üretimi, II. Merkezi ısıtma, merkezi soğutma, sera ısıtması ve benzeri ısıtma/soğutma uygulamaları, III. Proses ısısı temini, kurutma işlemleri gibi endüstriyel amaçlı kullanımlar, IV. Karbondioksit, gübre, lityum, ağır su, hidrojen gibi kimyasal maddelerin ve minerallerin üretimi, V. Termal turizm'de kaplıca amaçlı kullanım, VI. Düşük sıcaklıklarda (30 °C'ye kadar) kültür balıkçılığı, VII.Mineraller içeren içme suyu üretimi, gibi uygulama ve değerlendirme alanlarında kullanımlar gerçekleştirilmektedir. Türkiye’de jeotermal enerji tüketiminin %87 si ısıtma amaçlı olmaktadır. Jeotermal enerji sahalarının ise %95’i ısıtmaya uygun sahalardır. Tüm dünyadaki jeotermal potansiyelin %8’ini bulunduran ülkemiz bu kaynaklar yönünden dünyanın en zengin 7. Ülkesidir. Türkiye’de şu anda elektrik üretimi, jeotermal merkezi ısıtma, karbondioksit üretimi, termal turizm ve diğerleri ile Türk Milli Ekonomisine jeotermalin katkısı yaklaşık 3 Milyar YTL olarak hesap edilmiştir. Ayrıca sektörde yapılan toplam istihdam ise 40.000 kişidir. Ayrıca, mevcut elektrik dışı toplam jeotermal değerlendirmenin kalorifer yakıtı eşdeğeri yılda 2 Milyar YTL’dir.

http://www.biyologlar.com/jeotermal-enerjii-jeo-yer-termal-isi

Havai Fişek Gösterilerinin Fauna Elemanları Üzerine Etkisi

Trafik, enerji üretimi ve endüstri emisyonuyla birlikte evsel ısıtma sistemleriyle hidrokarbon yanması kentsel çevrelerde önemli oranda hava kirliliğine sebep olmaktadır. Kentsel çevrelerdeki hava kirliliğinin önemli oranlarda artması, kısa dönem ve uzun dönem olumsuz insan sağlığı etkilerine neden olmaktadır. Bu olağandışı insan etkilerinden biri de dikkate değer oranlarda hava kirliliğine neden olan ve günümüzde özellikle otellerde her akşam olmak üzere düğünler vb. etkinliklerde uygulanan havai fişek gösterileridir. Havai fişekler potasyum nitrat, potasyum klorat, potasyum perklorat, mangal kömürü, sülfür, manganez, sodyum okzalat, alüminyum, demir tozları, strontiyum nitrat ve baryum nitrat vb. gibi kimyasallar içerir (Mclain, 1980). Havai fişek kullanılmasıyla çevre kirliliğine yol açan sülfür dioksit, karbondioksit, karbon monoksit, asılı partiküller gibi maddeler ile alüminyum, manganez ve kadmiyum gibi bazı metaller serbest kalır. Bu maddeler ise ciddi sağlık riskleri ortaya çıkarmaktadır. Havai fişek gösterileri genellikle ciddi kazalar ve öldürücü yaralanmalarla sonuçlanır (Bull vd., 2001), havai fişek partikülleri ve içerdikleri iz elementleri ile organik bileşikler insan sağlığı için önemli tehdit oluşturmaktadır (Ravindra vd., 2001). Bununla birlikte, renkli havai fişeklerin kullanılması güçlü ve zararlı oksitlenme ajanı olan ozonu yer seviyesinde meydana getirebilir. Bu ise insan sağlığını yüksek risk altına sokacaktır (Attri vd., 2001). Hava kirliliğine ve insan sağlığına olumsuz etkileriyle birlikte diğer canlılar üzerine de farklı etkileri söz konusudur. Hava kirliliği ve içerdiği zararlı madde oranlarının artması, bölgede yaşayan canlıları da olumsuz etkilemektedir. Bu etkiler sonucunda canlılar arasında da önemli sağlık sorunları (kanser vb. gibi) ortaya çıkacaktır. Tüm bu sağlık sorunlarının yanında, patlamalar nedeniyle olumsuz fiziksel etkiler de söz konusudur. Doğada her şey ve her durum birbiriyle bağlantılı bir uyum içerisindedir. Bir ormanda bir kurt (Kurt= Canis lupus) ulurken diğer memeliler susarlar, bir şahin (Şahin= Buteo buteo) veya bir kartal (Kartal= Circaetus gallicus) uçup çığlıklar atmaya başlayınca ormanı bir sessizlik kaplar. Böylelikle doğal ormanlarda ortalama gürültü 20-30 dB seviyesindedir. Oysa bir havai fişek patladığında ortalama 120-170 dB gürültü oluşmaktadır (Echo Bruit, 1985). Bu en gürültülü doğal ekosistemler için bile oldukça yüksek bir değerdir. Özellikle göçmen kuşlar bu aktivitelerden belirgin bir şekilde etkilenmektedir. Göçmen kuşların büyük çoğunluğu göç hareketini gece gerçekleştirmektedirler. Gerek kışlayacakları alanlara yaptıkları sonbahar göç ve gerek üreme bölgelerine yaptıkları ilkbahar göç hareketinde rotalarını yıldızlardan, aydan ve yerin manyetik alanından yararlanarak bulmaktadırlar (Berthold 2000). Aynı zamanda bu uzun ve meşakkatli yolculuk esnasında çok büyük stres altında olurlar. Bu yolculuğun uzun mesafeler arasında gerçekleşmesinden dolayı da büyük miktarlarda enerjiye gereksinimleri vardır. Dolayısıyla ihtiyaçlarını karşılamak ve dinlenmek amacıyla konaklama alanlarında mola verirler (Berthold 2000, Bairlein 2003, Bairlein 2004). Havai fişek aktiviteleri ile meydana gelen patlamalar ve farklı ışıklar bu alanlardan geçen kuşları önemli oranda şaşırtmaktadır. Patlamalarda açığa çıkan yüksek ses, davranış değişiklikleri meydana getirerek rotalarından sapmalarına neden olabilir. Yine patlamalarda açığa çıkan olağandışı ışıklar da benzer şekillerde rota değişikliklerine neden olabilir. Bu değişiklikler, kışlama alanlarına ya da üreme alanlarına ulaşmalarını engelleyecektir. Ayrıca, stresli göç hareketi esnasında karşılaştıkları bu anormal olaylar hayvanlara aşırı stres yükleyecektir. Metabolik aktivitelerin çok yüksek olduğu göç hareketi esnasında karşılaştıkları bu anormal streslenme ani ölümlere neden olabilir. Diğer yandan patlamalarda açığa çıkan farklı ve şiddetli ışıklar geçici görme kaybına ya da ani yön değişikliklerine de neden olacaktır. Bundan dolayı da karşılarına çıkacak engelleri (yüksek binalar, elektrik direkleri vb. gibi) göremeyeceklerinden çarpmalara ve ölümlere neden olabilir. Bununla birlikte, üreyen türler de bu aktivitelerden benzer şekilde etkilenecektir. Üreme; eş seçimi, kur davranışları, yuva yapımı, yumurtlama, kuluçkaya yatma, yavru çıkışları, yavru beslenmesi, yavru uçuşları olayları dizinidir ve uzun bir süreçte gerçekleşmektedir. Her bir aşaması aşırı enerji gerektiren ve stres içerisinde gerçekleşen davranışlardır. Bu süreçte karşılaşacakları aşırı gürültülü patlamalar ve olağandışı ışıklar üreme başarısını düşürebilir. Üreme başarısının düşmesi, populasyonun azalmasına neden olabilir ve belirli süre sonra ise populasyonu tehdit altına sokabilir, hatta tamamen ortadan kaldırabilir. Diğer taraftan böcekler ile biyolojik mücadele ve tohumların yayılmasında önemli rolleri bulunan yarasaların (Familia: Vespertilionidae) yaşam tarzı da bu gürültülerden büyük oranda etkilenmektedir. Yarasalar bizlerden ve birçok memeliden daha hassas olan kulaklarıyla 10-250.000 hertz arasındaki sesleri çok rahat duyabilmektedirler (insan 20 ilâ 20.000 hertz arasındaki sesleri işitebilmektedir). Ancak bu durum onların yüksek dB' deki gürültülere karşı daha hassas olmalarına neden olmaktadır. Onlar da diğer hassas türler gibi bu durumdan olumsuz etkilenmektedirler (Bornschein, 1961). Çoğunlukla yüksek gürültü seviyesi nedeniyle birkaç kez uzaklaştıkları ortama bir daha çok uzun süreler sonra döndükleri ya da hiç dönmedikleri saptanmıştır. Yine yüksek gürültülü ortamlarda yavru gelişimlerinin olumsuz etkilendiği bilinen bir gerçektir. Maalesef, yavru gelişimi olumsuz etkilenen populasyonların devamlılığı tehlikeye düşmektedir. Ayrıca ülkemizin güney sahilleri iki tür deniz kaplumbağası (Chelonia mydas ve Caretta caretta, Familya: Cheloniidae) tarafından üreme alanı olarak kullanılmaktadır (Kaska 1993, Öz ve Erdoğan 2001, Erdoğan vd. 2001, Öz vd. 2004). Sadece üremek amacıyla karaya çıkan bu canlılar için çevresel etkiler üreme başarısı açısından önemli bir faktör oluşturmaktadır. Yuva yapmak amacıyla kumsala çıkan ergin dişiler (yuvalama süreci mayıs – temmuz ayları arasındadır) ve yumurtadan çıkan yavrular (yavru çıkış süresi: temmuz – eylül ayları arasındadır) iyi korunan kumsallarda bile uzaktan gelen bir ışık faktöründen ve sesten etkilenmektedirler. Diğer faktörlerle birlikte (eğlence tesislerinin gürültü ve ışıkları, insanların kumsal yakınında meydana getirdiği gürültü ve ateş yakma gibi faaliyetleri) bu canlıların stres altına girmesine, erginlerin yuva yapmadan direk denize geri dönmesine veya yönlerini şaşırarak kumsalın dışına çıkmalarına, predatör hayvanlara karşı savunmasız bir durumda kalmalarına ve hatta ölmelerine neden olurken, yumurtadan çıkan yavruların yönlerini şaşırarak denize ulaşamadan ölmelerine neden olabilmektedir (Özkan Karaardıç, 2007). Havai fişeklerin etkisiyle meydana gelen gürültü ve ışıklar da bu iki tür üzerinde oluşan bu etkileri daha da arttırmaktadır. Biri nesli tehlike altında (Chelonia mydas) ve diğeri nesli tehdit altında (Caretta caretta) olan bu iki türün (IUCN 1988) ülkemiz sahillerinde güvenli bir şekilde üremelerini sağlamamız gerekmektedir. Bu doğrultuda sadece eğlence amaçlı gerçekleştirilen havai fişek gösterilerinin üreme sezonu süresince yasaklanması söz konusu iki türün üreme başarısını oldukça olumlu yönde etkileyecektir. Havai fişek patlamalarıyla ortaya çıkan gürültünün yanında, en önemli yan etkilerinden biri de gecenin anlamlı karanlığını aniden bozan yüksek ışık demetleridir. Canlılığın gelişimi süresince belirli bir periyotta ışıklı ve karanlık zamanlar birbirini izlemiş ve dolayısıyla yaşam buna adapte olmuştur. Bir çok tür yüksek ışık şiddetinden önemli oranda etkilenmektedir. Canlıların çoğunun beslenme, üreme ve yaşam döngüsü, kısaca hayatı, fotoperyota (ışık periyodu) bağlıdır ve bu durum dengesi değiştirilemeyecek kadar hassastır. Şöyle ki; Levrek (Perca sp.), Kefal (Mugil sp.) gibi balıkların larvaları ışık görmemeleri gereken dönemde yoğun ışığa maruz kalırlarsa strese girerler (Chech and Moyle, 1982). Yüksek ışık, balık yavrularında gelişim bozukluklarından ölümlere kadar varan bulguların en önemli nedenleri arasındadır (Nikolsky, 1963). Manavgat, göçmen kuşlar açısından önemli bir dinlenme ve beslenme alanıdır. Manavgat ırmağı, Titreyengöl ve farklı habitatların var oluşu, canlı çeşitliliğini Manavgat ve çevresinde arttırmaktadır. Manavgat/Titreyengöl Kuş Halkalama çalışması verilerine göre; 121 farklı kuş türü halkalanmış, gerek halkalama gerek yapılan gözlemlerle 197 kuş türü Manavgat ve çevresinde tespit edilmiştir (Erdoğan vd., 2007, Karaardıç vd., 2007). Göç sırasında, sonbahar göçünde Akdeniz öncesi ve ilkbahar göçünde Akdeniz sonrası önemli dinlenme ve beslenme alanı olması alanın önemini ortaya koymaktadır (Karaardıç vd., 2005, Karaardıç vd., 2007). Bu türlerin büyük çoğunluğu bölgede üremektedir. Bu farklı habitat zenginliği, kuşlarla beraber diğer canlı türlerin de zengin olmasını sağlar. Bölgede pek çok memeli, sürüngen, amfibi ve balık türlerinin varlığı tespit edilmiş, aynı zamanda pek çok omurgasız türünün de yaşadığı belirtilmiştir. Her geçen gün festivallerde, kutlamalarda, düğünlerde vb. törenlerde artan havai fişek gösterileri hem insan ve hayvan sağlığını hem hayvan davranışlarını hem de hava kirliliğini olumsuz etkilemektedir. Bu nedenlerle, havai fişek kutlamalarının yıl boyu ya da göç ve üreme dönemleri süresince (Şubat-Kasım) yasaklanması bu sorunları büyük oranda azaltacaktır. Kaldı ki "Gürültü yaparak ÇEVRENİN HUZUR VE SÜKUNUNU bozanlar konusunda 31 Mart 2005 tarih ve 25772 Mükerrer Resmi Gazetede yayınlanan 5326 No'lu Kabahatler Kanunu'nun 36. maddesinde belirtilmiş olup, kabahatin işlendiği yerin kolluk kuvveti (polis, jandarma) veya belediye zabıtasına bildirilmelidir" denilmektedir. Çevre sorunlarının arttığı, küresel iklim değişikliklerinin gözlendiği son yıllarda, havai fişek gibi günlük yaşamda kullanılması zorunlu olmayan sadece eğlence amacı içeren faaliyetlerin yasaklanması insan günlük aktivitelerini etkilemeyecektir. Bununla beraber, bu faaliyetlerin yapılmaması doğal dengenin bozulmaması için bir katkı olacaktır. Kaynaklar 1) Attri, A.K., Kumar, U., Jain, V.K., 2001. Microclimate: formation of ozone by fireworks. Nature 411 (6841), 1015. 2) Bairlein F., 2003: The study of bird migrations- some future perspectives. Bird study, 50, 243-253. 3) Bairlein F., 2004: Vogelmonitoring in deutschland: Appell für ein integriertes monitoring als grundlage für einen noch effektiveren Arten- und Naturschutz. Beitraege zur Jagd- und Wildforschung, Bd. 29, 367-374. 4) Berthold P. 2000: Vogelzug, eine aktuelle gesamtübersicht. Die Deutche Bibliothek, pp 280. 5) Bornschein, H. 1961; Vision in echolocating bats. Original cited by J. EKLÖF PhD Thesis University of Göteborg Univ. Göteborg, Sweden. 6) Bull, M.J., Agran, P., Gardner, H.G., Laraque, D., Pollack, S.H., Smith, G.A., Spivak, H.R., Tenenbein, M., Brenner, R.A., Bryn, S., Neverman, C., Schieber, R.A., Stanwick, R., Tinsworth, D., Garcia, V., Tanz, R., Newland, H., 2001. American Academy of Pediatrics. Committee on injury and poison prevention. Fireworks-related injuries to children. Pediatrics 108, 190-191. 7) Chech, J.J. Jr. and P.B. Moyle. 1982; Fishes: An Introduction to Ichthyology. Prentice-Hall Inc., Englewood Cliffs, N.J. 8) Echo Bruit, 1985; La gazette du C.I.D.B., 4 rue Beffroy 92200 Neuilly-sur-Seine, Fransa. 9) Erdogan, A., Öz, M., Kaska, Y., Dusen, S., Aslan, A., Yavuz, M., Tunc, M. R., Ve Sert, H. 2001. Marine Turtles Nesting at Patara, Turkey, in 2000. Zoology in the Middle East. 24; 31-34. 10) Erdoğan, A., Karaardıç, H., Vohwinkel, R., Prünte, W., Özkan Karaardıç, L., 2007: Results of bird banding in spring since 2002 at Titreyengöl, Manavgat Turkey. 2nd international eurasian ornithology congress, abstract book, pp 88. 11) IUCN 1988. IUCN on sea turtle conservation. Amphibia- Reptilia, 9; 325-327. 12) Karaardıç, H., Erdoğan, A. and Yöntem, O., 2005: Forests land will cut down to build up golf area. 13th international symposium on environmental pollution and its impact on life in the mediterranean region. Book of abstract, pp 256. 13) Karaardıç, H., Erdoğan, A., Vohwinkel, R., Prünte, W., Özkan Karaardıç, L., 2007: New records for west Turkey from Titreyengöl/Manavgat (Turkey) ringing study. 2nd international eurasian ornithology congress, abstract book, pp 76. 14) Kaska, Y., 1993. Investigation of Caretta caretta population in Patara and Kizilot, M. Sc. Thesis. Dokuz Eylul University, 28p, Izmir. 15) Mclain C. H., 1980: Pyrotechnics from the viewpoint of solid state chemistry. The Franklin institute press, pp 155-157. 16) Moreno T., Querol X., Alastuey A., Minguillion M. C., Pey J., Rodriguez S., Miro J. V., Felis C., Gibbons W., 2007: Recreational atmospheric pollution episodes: inhalable metalliferous particles from firework displays. Atmospheric environment, 41, 913-922. 17) Nikolsky, G.V. 1963. The Ecology of Fishes. Academic Press, London. 18) Öz, M. ve Erdoğan, A. 2001. Patara Özel Çevre Koruma Bölgesinde Deniz Kaplumbağaları Populasyonlarının Araştırılması. Akdeniz Üniversitesi Fen-Edebiyat Fakültesi Biyoloji Bölümü ve Akdeniz Üniversitesi Biyolojik Çeşitlilik Araştırma, Geliştirme ve Uygulama Merkezi (AK-BİYOM), 56s, Antalya. 19) Öz, M., Erdoğan, A., Kaska, Y., Düşen, S., Aslan, A., Sert, H., Yavuz, M., Tunç, M.R., 2004. Nest Temperatures and Sex Ratio Estimates of Loggerhead Turtles at Patara Beach an the Southwestren Coast of Turkey. Canadian Journal of Zoology, 82: 94-101. 20) Özkan Karaardıç, L., 2007. Olympos-Çıralı Kumsalı'ndaki Caretta caretta (Linneaus,1758) (Chelonia: Cheloniidae) yuvalarında sıcaklığa bağlı yavru eşey oranının belirlenmesi. Yüksek Lisans Tezi. Akdeniz Üniversitesi Fen Bilimleri Enstitüsü, 65s, Antalya. 21) Ravindra, K., Mittal, A.K., Grieken, R.V., 2001. Health risk assessment of urban suspended particulate matter with special reference to polycyclic aromatic hydrocarbons: A review. Reviews on environmental health 16 (3) 169-189. 22) Wang Y., Zhuang G., Xu C., An Z., 2007 : The air pollution caused by the burning of fireworks during the lantern festival in Beijing. Atmospheric environment, 41, 417-431. Hazırlayanlar: *Prof. Dr. Ali ERDOĞAN, Araş. Gör. Hakan KARAARDIÇ, Araş. Gör. Mustafa YAVUZ, Araş. Gör. Leyla ÖZKAN KARAARDIÇ *Akdeniz Üniversitesi Fen-Edebiyat Fakültesi, Biyoloji Bölümü 07058 Antalya aerdogan@akdeniz.edu.tr www.ttkder.org.tr

http://www.biyologlar.com/havai-fisek-gosterilerinin-fauna-elemanlari-uzerine-etkisi

Genetik

Genetik (Alm. Genetik (f), Fr. Genetique (f), İng. Genetics) canlıların özelliklerini ve kalıtsal karekterlerini inceleyen, bu karekterlerin nesillere geçişini belli kalıtım kanunlarına bağlayan, genin yapı ve görevlerini araştıran bilim dalı. Genetik, ( Yunanca'dan genno γεννώ= doğum vermek) canlının bütün özelliklerinin eski kuşaktan yenisine nasıl geçtiğini inceler. Kalıtım bilimi olarak da bilinir. Biyolojinin bir dalıdır. İlk olarak Gregor Mendel'in yaptığı çalışmalarla bilim dünyasında tanındığı için Mendel genetiğin babası olarak da adlandırılır. Genetik bilimi 20. yüzyıl'ın ilk yarısında bilim insanları arasında heyecan ve merak uyandırsa da asıl etkisini ikinci elli yılda DNA'nın moleküler yapısının keşfedilmesiyle göstermiştir. Gen, mutasyon yoluyla değişmediği takdirde bir kuşaktan öbürüne geçen, büyük ve ayrıntılı yapılı dezoksiribonükleik asit ( DNA) moleküllerine tekabül eden kalıtımın hipotetik temel ünitesidir. Bu kalıtım maddesi, biokimyasal reaksiyonların bazılarını hızlandırarak, bazılarını da geciktirerek, kontrol etmesi dolayısıyla, birtakım etkiler gösterir. Genetik yapının (genotip) bir bütün olarak etkinlik gösterdiği kabul edilir; ufak etkili birçok genin hafif etkinliklerinin kümülatif sonucu, tek genlerin belli başlı sonuçları kadar önemlidir. Genler dış ortamdan, bedenin iç ortamından ve diğer genlerden etkilenebilir. Gözlemlenen sonuçta (fenotip) bütün bu faktörlerin karşılıklı etkinlikleri rol oynar. Klasik genetik araştırma yöntemleri, istatistik, genealojik anket yöntemini kapsar. Bu inceleme konusu hastalıktan mustarip rastgele bir hasta numunesi seçerek, bu bozukluğun hastalann akrabalarındaki insidansının araştırılmasından ibarettir. Genel nüfustakinden daha yüksek bir insidans bozukluğun familyal oldugunu belirtir, ama bozukluğun akraba kuşaklarında belli bir dağılımı, spesifik bir genetik kalıtım biçimine işaret eder. Örneğin, birbiri ardısıra gelen kuşaklarda çocukların % 50'sinde rastlanan bir durumda, dominant gen sözkonusudur. Ebeveynler arasında artan bir kan akrabalığı oranı, ebeveynlerde belirgin klinik normallik, çocuklarda % 25 oranında bozukluk tezahürü ve normal ve genetik bozukluğa uğramış çocuklar arasında kesin farklılık, resessif bir duruma isaret eder. Baska bir klasik genetik araştırma, ikizlerin incelenmesidir. Bu tip araştırma, tek yumurta ikizlerinde genetik yapının eş olmasına karşılık, çift yumurta ikizlerinin genetik olarak kardeş benzerliğinden daha fazla bir genetik benzerlik göstermedikleri varsayımına dayanır. Böylece, tek yumurta ikizlerinde, herhangi bir özellik yahut bozukluğun daha yüksek bir benzerlik oranı göstermesi, güçlü bir genetik temelin delilidir. Bu yollardan yapılan gözlemler, spesifik psikiyatrik durumların ve gerilik sendromlarının, kişilik özelliklerinin ve bir çok psikosomatik bozukluğun belirgin bir genetik temeli olduğunu göstermiştir. Bu klasik tipte araştırmaların yanısıra, psikiyatrik sendromların spesifik sınıflandırmasında da genetik kullanılabilir. Böylece, genetik araştırmalar envolüsyonel melankolinin temelde depressif bozukluklarla aynı tipte bir hastalık olduğunu göstermiştir. Öte yandan, artık bipolar manik depressif bozuklukların genetik olarak unipolar tekrarlayıcı depresyonlardan farklı olduğuna ilişkin güçlü deliller mevcuttur. Ayrıca, genlerin biokimyasal etkinlik göstermeleri, hastalıkların biokimyasal bakımdan farklı olduklarına ve dolayısıyla değişik terapi tiplerine iyi cevap verebileceklerine işaret etmektedir.Nitekim, bir bozukluğun genetik teşhisi, bunun biokimyasal nedeninin araştırılmasına yol açmakta ve böylece tedavisini sağlamaktadir; örneğin fenilketonüri (bkz.) ve galaktozemi (bkz.). Genetik incelemeler ayrıca genetik olmayan, örneğin psikolojik olan, önemli faktörlerin saptanması için de kullanılmaktadır. Böylece genetik yapıları eş olan ve inceleme konusu hastalık bakımından farklı tezahür gösteren tek yumurta ikizlerinde, bazı ortamsal ve belki de psikolojik faktorlerin hastalığın gelişmesinde rol oynaması ihtimali güçlüdür; bu gibi vakalardan oluşan bir seri, ilgili olabilecek stress tiplerinin saptanmasında çok faydalı olabilir. Son olarak, farmakogenetik de gittikçe önem kazanmaktadır. Nüfusun yaklaşık % 50"sinin izoniazidi yavaş metabolize ettikleri, bu durumun genetik olarak belirlendiği ve bu gibi hastalarda periferik nöropati gibi yan etki insidansının daha yüksek olduğu bilinmektedir. Trisiklik antidepresan (bkz.) ilaçların plazma seviyeleri üzerinde son zamanlarda yapılan çalışmalar, genetik faktorlerin bu ilaçların metabolizmasında önemine ve böylece hastanın ilaca cevabını ve gerekli dozajı etkileyebileceğine işaret etmektedir. Genetik, 20. yüzyılın başlarında gelişmiş, yeni sayılabilecek bir bilim dalıdır. Bununla berâber, genetiğin konusunu meydana getiren çoğu olaylar ve bunlar hakkındaki düşüncelerin tarihi bir hayli eskidir. Genetik çalışmaları çok eski târihlerde başlamış, târih boyunca çeşitli fikirlerle zaman zaman ilerleme ve duraklamalar göstermiştir. Son asırda ise genetik daha evvelki zamanlarla kıyaslanamayacak bir ilerleme ve gelişme göstermiştir. Canlı organizmanın ne şekilde ortaya çıktığı uzun zaman tartışma konusu olmuştur. Her canlı bir canlıdan doğar fikrine varılmadan önce, Avrupa’da algler, kurtlar, salyangozlar vs. gibi ilkel organizmaların, kokuşmakta olan organik maddelerden birdenbire ve kendi kendine meydana geldiklerine, yani kendiliğinden oluş (abiyogenez) fikrine inanılmaktaydı. Grek bilgini Aristoteles de bu fikrin savunucularındandı. Aristo’ya göre, canlılar iki yoldan meydana gelmektedir. Bir kısmı cansız maddelerden türemektedir. Bu görüşe “abiyogenez” denilmektedir. Canlıların bir kısmı da, kendileri gibi canlı ana-babadan meydana gelmektedir. Bu görüşe de “biyogenez” denmektedir. Ona göre; “Yüksek organizmalarda ana ve babanın döle verdiği pay eşit değildir. Ana, döle sâdece madde verir, baba ise can verir; yâni, kalıtımda esas rol babanındır.” Aristo gibi döl üzerinde babanın rolünün büyük olduğuna inananlara “spermist”, ananın rolünün büyüklüğüne inananlara ise “ovist” denmekteydi. Bu iki akım arasındaki mücâdele, mikroskobun gelişmesi, sperm ve yumurtaların hücre yapısının incelenmesi ile son bulmuştur. Bitki ve hayvanların aynı temel yapıya sâhib olan ve hücre adı verilen odacıklardan meydana geldiği 17. yüzyılda, mikroskopla anlaşılmıştır. Hücre hakkında yapılan ilk gözlemlerden sonra, 1840’ta Schleiden bitkilerin, Schwann da hayvanların hücrelerden müteşekkil olduğunu belirtmişler ve hâlen geçerliliğini koruyan “hücre teorisini” kurmuşlardır. 1827’de bitki hücresinin bölünerek iki hücre meydana getirdiği mikroskopta görülünce, hiçbir hücrenin, kendiliğinden bir cansızdan meydana gelmeyeceği ortaya çıktı. O hâlde hücre, çoğalma özelliğine ve bir döle sâhiptir. Yâni, hücre bir üreme ünitesidir ve aynı zamanda canlı organizmanın temelidir. 1831’de Robert Brown tarafından bitki hücrelerinde çekirdeğin görülmesi, 1854’te kurbağalarda, 1855’te muhtelif su yosunlarında spermanın yumurtayı döllemesi izlenmiştir. Böylece döllenmede vücut hücrelerinin değil, gametlerinin (cinsiyet hücrelerinin) birleştikleri kesin olarak anlaşıldı. 1840’ta Hofmeister tarafından kromozomların ilk defâ görülmesi, hücre bölünmesi (mitoz) sırasında kromozomların birbirine eşit iki yarımdan hangisine gittiğinin anlaşılmasına yardımcı olmuştur. 1887’de Weismann, gametler meydana gelirken kromozom sayısının yarıya indiğini, sonra döllenmeyle kromozom sayısına erişildiğini, eşeyli üremenin sonraki döllerde farklı şekilde fertler meydana getirdiğini açıkladı. Aynı yazar, kalıtsal maddeye “idioplazm”, kromozomlara “idant”, kromozomları meydana getiren parçalara da “id” (gen) adını verdi. Weismann’ın kalıtım maddesinin kromozomlarla dölden döle geçtiğini kabul eden bu teorisine “kromozom teorisi” denir. İnsanlar çok eski devirlerden beri kendilerine faydalı hayvan ve bitkileri yetiştirmiş ve çoğaltmışlardır. Fakat onların eşeyi ve dölde eşey belirmesi hakkında (cinsiyet ortaya çıkması hakkında) çoğu bâtıl olan yanlış ve eksik düşünceler asırlarca devâm etmiştir. Hayvanlarda iki eşey, yâni iki ayrı cinsin mevcudiyeti biliniyordu. Bitkilerde ise bu durumun farkına varılması, Avrupa’da 17. asrın sonunda oldu. Asur, Babilliler ve Araplar zamanında hurma ağaçlarının ayrı eşeylerinin olduğu bilindiğinden, bol ürün almak için dişi ağaçların çiçekleri erkek ağaçlardan alınan çiçek tozlarıyla muâmele ediliyordu. O zaman bilindiği anlaşılan bu usûl, hurmalardan başka bitkilere tatbik edilmedi ve Asya’dan Avrupa’ya geçemedi. Avrupa’da bitkilerde ayrı eşeyliliğin ve eşeyli üremenin yeniden keşfi 17. yüzyıl sonunda olmuştur. Bitki türleri arasında tozlaşma ile tür melezleri elde edilebilmiştir. 1866’da Çekoslovakya’da Gregor Mendel’in bezelye cinsleri arasında yaptığı çaprazlamalar ve elde ettiği sonuçlar, genetiğin temelini meydana getirmektedir. 1900’de De Vries, Correns ve Tschermak’ın kendi çalışmaları Mendel’in buluşlarını doğruladığından, elde edilen sonuçları Mendel Kanunları adı altında toplamışlardır. Mendel Kanunları’nın yeniden keşfi sebebiyle batıda 1900 yılı kalıtım ilminin doğum yılı, Mendel de genetiğin babası olarak kabul edilmiştir. Bateson 1906’da bu genç bilim dalına “genetik” adını vermiştir. Genetik, ana-babalarla oğul döller arasındaki benzerlikleri ve farkları bir veya daha fazla döller boyunca inceler. Döller arasındaki benzerlik ve farklılıkların meydana gelmesinde kalıtım ve çevrenin karşılıklı olan tesirlerini aydınlatmaya çalışır. Genetik ilminin çeşitli kolları vardır. Her biri günümüzde ayrı bir ihtisas dalı hâline gelmiş olan bu dallar arasında “Mendel Genetiği”, “Populasyon Genetiği”, “Sitogenetik” başta gelenlerdir. Ayrıca son yıllardaki genetik çalışmaları, “Genetik Mühendislik” adı verilen çığır açacak yeni bir bilim dalını doğurmuştur. (Bkz. Genetik Mühendislik) Ek bilgi Gen, mutasyon yoluyla değişmediği takdirde bir kuşaktan öbürüne geçen, büyük ve ayrıntılı yapılı dezoksiribonükleik asit(DNA) moleküllerine tekabül eden kalıtımın hipotetik temel ünitesidir. Bu kalıtım maddesi, biokimyasal reaksiyonların bazılarını hızlandırarak, bazılarını da geciktirerek, kontrol etmesi dolayısıyla, birtakım etkiler gösterir. Genetik yapının (genotip) bir bütün olarak etkinlik gösterdiği kabul edilir; ufak etkili birçok genin hafif etkinliklerinin kümülatif sonucu, tek genlerin belli başlı sonuçları kadar önemlidir. Genler dış ortamdan, bedenin iç ortamından ve diğer genlerden etkilenebilir. Gözlemlenen sonuçta (fenotip) bütün bu faktörlerin karşılıklı etkinlikleri rol oynar. Klasik genetik araştırma yöntemleri, istatistik, genealojik anket yöntemini kapsar. Bu inceleme konusu hastalıktan mustarip rastgele bir hasta numunesi seçerek, bu bozukluğun hastalann akrabalarındaki insidansının araştırılmasından ibarettir. Genel nüfustakinden daha yüksek bir insidans bozukluğun familyal oldugunu belirtir, ama bozukluğun akraba kuşaklarında belli bir dağılımı, spesifik bir genetik kalıtım biçimine işaret eder. Örneğin, birbiri ardısıra gelén kuşaklarda çocukların % 50'sinde rastlanan bir durumda, dominant gen sözkonusudur. Ebeveynler arasında artan bir kan akrabalığı oranı, ebeveynlerde belirgin klinik normallik, çocuklarda % 25 oranında bozukluk tezahürü ve normal ve genetik bozukluğa uğramış çocuklar arasında kesin farklılık, resessif bir duruma isaret eder.Baska bir klasik genetik araştırma, ikizlerin incelenmesidir. Bu tip araştırma, tek yumurta ikizlerinde genetik yapının eş olmasına karşılık, çift yumurta ikizlerinin genetik olarak kardeş benzerliğinden daha fazla bir genetik benzerlik göstermedikleri varsayımına dayanır. Böylece, tek yumurta ikizlerinde, herhangi bir özellik yahut bozukluğun daha yüksek bir benzerlik oranı göstermesi, güçlü bir genetik temelin delilidir. Bu yollardan yapılan gözlemler, spesifik psikiyatrik durumların ve gerilik sendromlarının, kişilik özelliklerinin ve bir çok psikosomatik bozukluğun belirgin bir genetik temeli olduğunu göstermiştir. Bu klasik tipte araştırmaların yanısıra, psikiyatrik sendromların spesifik sınıflandırmasında da genetik kullanılabilir. Böylece, genetik araştırmalar envolüsyonel melankolinin temelde depressif bozukluklarla aynı tipte bir hastalık olduğunu göstermiştir. Öte yandan, artık bipolar manik depressif bozuklukların genetik olarak unipolar tekrarlayıcı depresyonlardan farklı olduğuna ilişkin güçlü deliller mevcuttur. Ayrıca, genlerin biokimyasal etkinlik göstermeleri, hastalıkların biokimyasal bakımdan farklı olduklarına ve dolayısıyla değişik terapi tiplerine iyi cevap verebileceklerine işaret etmektedir. Nitekim, bir bozukluğun genetik teşhisi, bunun biokimyasal nedeninin araştırılmasına yol açmakta ve böylece tedavisini sağlamaktadir; örneğin fenilketonüri (bkz.) ve galaktozemi (bkz.). Genetik incelemeler ayrıca genetik olmayan, örneğin psikolojik olan, önemli faktörlerin saptanması için de kullanılmaktadır. Böylece genetik yapıları eş olan ve inceleme konusu hastalık bakımından farklı tezahür gösteren tek yumurta ikizlerinde, bazı ortamsal ve belki de psikolojik faktorlerin hastalığın gelişmesinde rol oynaması ihtimali güçlüdür; bu gibi vakalardan oluşan bir seri, ilgili olabilecek stress tiplerinin saptanmasında çok faydalı olabilir. Son olarak, farmakogenetik de gittikçe önem kazanmaktadır. Nüfusun yaklaşık % 50"sinin izoniazidi yavaş metabolize ettikleri, bu durumun genetik olarak belirlendiği ve bu gibi hastalarda periferik nöropati gibi yan etki insidansının daha yüksek olduğu bilinmektedir. Trisiklik antidepresan (bkz.) ilaçların plazma seviyeleri üzerinde son zamanlarda yapılan çalışmalar, genetik faktorlerin bu ilaçların metabolizmasında önemine ve böylece hastanın ilaca cevabını ve gerekli dozajı etkileyebileceğine işaret etmektedir ansiklopedi.turkcebilgi.com  

http://www.biyologlar.com/genetik-1

NÜKLEİK ASİTLER DNA VE RNA

RİBONÜKLEİK ASİT (RNA) RNA'lar ribonukleotitlerinbirbirlerine bağlanması ile meydana gelen tek zincirli nukleik asitlerdir. DNA molekülleri ile kıyaslandığı zaman boyları daha kısadır. Hemen hemen bütün hücrelerde bol olarak bulunmaktadırlar. Gerek prokaryotik gerek ökaryotik hücrelerde genellikle üç ana sınıf RNA'ya rastlanmaktadır. Bunlar mesencır RNA (mRNA), ribozomal RNA (rRNA) ve transfer RNA (tRNA) dır. Bütün RNA'lar tek zincirli özel bir baz dizisine, karakteristik bir molekül ağırlığına sahip ve belirli bir biyolojik fonksiyonu yerine getirmektedir. MESENCIR RNA (mRNA) DNA'da saklı bulunan genetik bilginin, protein yapısına aktarılmasında kalıplık görevi yapan aracı bir moleküldür. mRNA ribozomlara tutunur ve DNA'dan aldığı genetik şifreye göre sentezlenecek proteinin amino asit sırasını tayin etmektedir. Her mRNA molekülü, DNA üzerinde bulunan ve gen adı verilen belirli bir bölge ile komplementerlik göstermektedir. Tek bir ökaryotik hücre yaklaşık 10.000 farklı mRNA molekülü ihtiva etmekte ve bunların her birinden bir veya daha fazla polipeptid zinciri sentezlemektedir. TRANSFER RNA (tRNA) tRNA'lar da ribonukleotidlerin polimerize olması ile meydana gelmiş, çok kıvrımlar gösteren ve tek zincirli yapıya sahip bir RNA çeşididir. tRNA'lar yonca yaprağına benzeyen üç boyutlu yapılarında yer yer çift sarmallı bir durum göstermektedir. Zincirde yer alan ribonukleotid sayısı 70 ile 99 arasında, molekül ağırlığı ise 23.000 ile30.000 dalton arasında değişmektedir. Doğada yer alan 20 aminoasitin her biri için en az bir tRNA molekülü bulunmaktadır. tRNA'lar adaptörlük görevi yaparak bir uçlarına bağladıkları amino asiti, ribozoma tutunmuş mRNA'nın taşıdığı kodono göre polipeptid zincirine dizerler. tRNA'lar üç bazdan meydana gelen antikodon adı verilen uçları ile yine mRNA üzerinde bulunan ve kodon adı verilen bölgeye geçici bağlanarak amino asitlerin mRNA üzerindeki şifreye göre doğru bir şekilde dizilmelerini temin etmektedir. RİBOZOMAL RNA (rRNA) rRNA'lar ribozomların ana yapısal elementi olup yaklaşık olarak ribozom ağırlığının % 65'ini teşkil ederler. Prokaryotik hücrelerde 3 çeşit, ökaryotik hücrelerde ise 4 çeşit rRNA bulunmaktadır. Ribozomal RNA'lar ribozomların yapı ve fonksiyonlarında önemli rpller oynamaktadır. Bunlara ilave olarak ökaryotik hücrelerde iki çeşit RNA daha bulunmaktadır. Bunlardan birincisi heterojen nuklear RNA (hnRNA)'lardır. Bunlar ökaryotik hücrede sentezlenen ve prosese uğramamış öncül mRNA molekülleridir. İkincisi ise küçük nuklear (snRNA)'dır ve yine öncül mRNA moleküllerinin prosese uğraması esnasında ortaya çıkmaktadırlar. DEOKSİRİBONÜKLEİK ASİT (DNA) Genetik olayların hücrede moleküler düzeydeki temeli genetik materyal görevini üstlenen nükleik asitlerin yapı ve özelliklerine dayanır. Nükleik asitlerin iki türü olan deoksiribonükleik asit DNA ve ribonükleik asit RNA temelde aynı yapısal özelliklere sahiptir. Genler, DNA‘daki bazı kimyasal dizilimler olan nükleotidlerden meydana gelmiştir. Çoğunluk kromozomların içersinde bulunurlar. Ayrıca DNA molekülü prokaryotlarda (Bakteriler) kromozom dışı genetik sistem, olan plazmidlerde, Ökaryotik hücrelerde genetik materyalin kromozomlar (Nukleus) dışında temel olarak (hayvan ve bitkilerde) mitokondri ve (sadece bitkilerde ve alglerde) kloroplastlarda bulunduğu bilinmektedir. 1953 yılında Watson ve Crick DNA molekülünün kendine has özelliklere sahip bir çift sarmal yapı halinde bulunduğunu ileri sürdüler. Bu araştırıcıların önerdikleri DNA yapısı o tarihlerde başka araştırıcılar tarafından ortaya konulan DNA ya ilişkin önemli bulgulara dayanmaktadır. Bunlardan biri, Wilkins ve Franklin tarafından, izole edilmiş DNA fibrillerinin X-ray ışınlarını kırma özelliklerinin açıklanmasıdır. Elde edilen X ışını fotoğrafları, DNA nın zincirlerindeki bazların diziliş sırasına bağlı olmaksızın, çok düzenli biçimde dönümler yapan bir molekül olduğunu göstermektedir. Ayrıca TMV (tütün Mozaik Virusu) üzerinde yapılan çalışmalar da DNA ile ilgili çalışmalarda ışık tutmuştur. Bir başka önemli bulguda Chargaff tarafından saptanmıştır. Herhangi bir türe ait DNA nın nükleotidlerine parçalandığında serbest kalan nukleotidlerde adenin miktarının timine, guanin miktarının da sitozine daima eşit olduğunun saptanmasıdır.. Yani Chargaff kuralı‘na göre doğal DNA moleküllerinde adeninin timine veya guaninin sitozine oranı daima 1’e eşittir. (A/T=1 ve G/C=1). İşte Watson ve Crick bu bulguları değerlendirerek böyle özelliklere sahip DNA makro molekülünün sekonder yapısına ait bir model geliştirdiler. Bu modele göre, bir çok sorunun açıklanması yapılabildiğinden dolayı 1962 yılında bu iki bilim adamına Nobel Ödülü verildi. Bu modele göre; DNA molekülü, heliks (=sarmal) şeklinde kıvrılmış, iki kollu merdiven şeklindedir. Kollarını, yani merdivenin kenarlarını, şeker (deoksiriboz) ve fosfat molekülleri meydana getirir. Deoksiriboz ile fosfat grupları ester bağlarıyla birbirlerine bağlanmıştır. İki kolun arasındaki merdiven basamaklarında gelişigüzel bir sıralanma yoktur; her zaman Guanin (G), Sitozin’in (C ya da S); Adenin (A), Timin’in (T) karşısına gelir. Hem pürin (yani adenin ve guanin) ile pirimidin (yani sitozin ile timin) arasındaki hidrojen bağları, hemde diğer bağlar, meydana gelen heliksin düzgün olmasını sağlar. Pürin ve pirimidin bazları, yandaki şekerlere (Riboz), glikozidik bağlarla bağlanmıştır. Baz, şeker ve fosfat kombinasyonu, çekirdek asitlerinin temel birimleri olan nükleotidleri meydana getirmiştir. Dört çeşit nükleotid vardır. Bunlar taşıdıkları bazlara göre isimlendirilirler (Adenin, Guanin, Sitozin,Timin). DNA molekülü kendini oluşturan nukleotidlerin sayısına bağlı olarak, büyüklüğü türden türe değişen, uzun zincir şeklinde bir yapı gösterir. İnsanda bu zincirin uzunluğu açıldığında 2 metreye kadar varabilir. Bütün halinde eldesi zincirin hassas ve kırılgan yapısından ötürü çok güçtür. İki polinükleotid zincirin şeker fosfat omurgaları, ortak bir eksen çevresinde eşit çaplı ve sağ yöne doğru dönümler meydana getirir. Nükleotidlerin bazları molekülün omurgasının iç kısmında bulunur. Bazların konumları sarmalın eksenine 90 derece açı yapacak şekilde konumlanmıştır. Birbirine komşu baz çiftlerinin dönümleri arasındaki uzaklık 3,4A dür. Ayrıca her baz çifti komşusuna 36 derecelik açı yapacak şekilde yerleşmiştir. Buna göre, yaklaşık 10 baz çifti 360 derecelik tam bir dönümü tamamlayacağından, her dönümün boyu 34A dür. İki polinükleotid zincirdeki nukleotidler karşılıklı olarak birbirlerine hidrojen bagları ile bağlanmıştır. Bu bağ fosfor bağları kadar kuvvetli olmadığı için pH değişikliği, sıcaklık basınç gibi faktörlerde kolaylıkla birbirlerinden ayrılabilmektedir. DNA nın kendi kopyasını yapması ve gen anlatımı, nukleotidler arasındaki hidrojen bağlarının ayrılması ile gerçekleşmektedir. Nükleotidler birbirlerine fosfat bağlarıyla bağlanarak, şeker ve fosfat kısımlarının birbirlerini izlediği serilerden oluşan bir omurgaya sahip uzun ve dallanmış polinükleotid zincirlerini meydana getirmiştir. Kovalent ester bağları veya fosfodiester bağları olarak da bilinen bu bağlar son derece kuvvetlidir. Fosfodiester bağlarının varlığı DNA molekülünün tek zincirli yapı halinde iken bile dayanıklı ve stabil yapıda olmasını sağlar. Genetik mühendisliğinin hedeflerinden biri olan klonlama çalışmaları, doğal yolla gerçekleşmesi mümkün olmayan kovalent bağ kırılmalarını gerçekleştirerek yeni türler oluşturma çabalarını içerir. Nukleotidlerin yapısı bazik olmasına karşın oımurgadaki PO4(fosforik asit) grubunun varlığı polinükleotid zincirlerin asit özellikte olmalarına yol açar ve nükleik asit terimi de bu özellikten kaynaklanır. Hidrojen bağları daima bir pürin(A,G) ile bir pirimidin (T,C) bazı arasından meydana gelir. A-T baz çiftinde 2 hidrojen bağı, G-C baz çiftleri arasında ise 3 hidrojen bağı bulunmaktadır. Hidrojen bağlarının özelleşmesi; anahtar kilit modelinini andıran, uygun nukleotid moleküllerinin karşılıklı gelerek birbirlerine yine uygun sayıda hidrojen bağları ile bağlanmasını sağlar. Böylece zincirin bir kolunda bulunan nukleotidlerin dizilişi,karşı kolda bulunan nukleotidlerin dizilişini bir çeşit dikte ve kontrol eder. Tesadüfe bırakmayan bir titizlikle molekül yapısı oluşturulur ve kontrol edilir. DNA molekülünün en önemli özellik iki polinükleotid zincirin birbirinin tamamlayıcısı olmasıdır. Pozitif (+) ve negatif (–) iki polinukleotid zincirlerinin tamamlayıcılık özelliği,genetik materyalin işlevlerini doğru biçimde nasıl yapabildiğinin açıklanması açısından DNA’nın en önemli temel özelliklerinin başında gelir. DNA çift sarmalının dikkate değer ve önemli bir özelliği, molekülü oluşturan zincirlerin birbirlerinden kolaylıkla ayrılabilmesi ve yeniden birleşebilmesidir. Protein sentezi ve Dna replikasyonu (kendi kopyasını oluşturması) bu özellik sayesinde meydana gelebilir. DNA’nın iki zinciri, birbirine sadece H bağları ve hidrofobik etkileşimlerle bağlı olmaları nedeni ile, nükleotidleri arasındaki kovalent bağlardaki herhangi bir kopma olmaksızın çözülebilir (denatürasyon). Aynı şekilde çözülmüş molekülün zincirleri tamamlayıcı bazları arasında H bağlarının oluşumu ile birleşip sarmal yapıyı yeniden oluşturabilir (renatürasyon). Nükleotidler arasındaki fosfor bağlarının kopması nedeniyle nükleotidlerin yerine başka nukleotid veya nukleotid dizisinin geçmesi mutasyonlara yol açar.Bu mutasyonların tek zincirli RNA molekülünde oluşma olasılığı çift zincirli DNA molekülüne göre daha fazladır.Mutasyonların neticeleri ölümcül olabilir. Evrimsel gelişim içinde mutasyonların menfi yada müspet etkileri gözardı edilemeyecek noktadadır. Günümüzde viral hastalıkların başında gelen AIDS’in önüne geçilememesinin en geçerli nedeni genomu tek zincirli RNA olan virusun sürekli mutasyonlar geçirerek kendini sürekli yenilemesi gösterilebilir..

http://www.biyologlar.com/nukleik-asitler-dna-ve-rna

DOĞA KORUMA VE TURİZM

Doğal alanlar; genellikle insan elinin değmediği alanlar anlamına gelmekte ise de, günümüzde bu durumda olan alanların sayısı çok azalmıştır. Bu nedenle, insan etkisinin çok az olduğu alanlar da genelde doğal alanlar kapsamına alınmaktadır. Ülkemizdeki turizm yatırımlarının önemli bir kısmının kırsal kesimde ve yeşil doku içinde yoğunluk kazandığı gözönüne alındığında, bu alanlar yoğun turizm baskısı altında kalmaktadırlar. Zira, turizmde çevre boyutunun gittikçe önem kazanmasıyla kitlesel karakterde yapılan ve kum, güneş ve deniz üçlüsünden oluşan klasik turizm anlayışı artık egemenliğini kaybetmektedir. Turistlerin gittikleri ülkelerin doğa koruma ve çevre sorunlarına duyarlı oldukları gözlenmekte; böylece, turizmin kitlesel karakterden uzaklaşıp bireysel bir nitelik kazanmakta olduğu görülmektedir. Ülkemizde yapılan bir araştırmada (Gülez, 1994), yabancı turistlerin ülkemizde kendi ülkelerinden farklı gördükleri özelliklerin beşında "doğanın bozulmamış olması" gelmekte, onu "farklı bir bitki örtüsü" izlemektedir. Aynı araştırmada, turistlerin ülkemizde en ilginç gördükleri özelliklerin başında ise, "doğanın güzelliği" gelmekte, onu "halkın dostça oluşu" izlemektedir. Bu durum, turizmin çevreye duyarlı bilinçli bir şekilde yapılması gerektiği, diğer bir deyişle "yumuşak turizm" (soft tourism) kavramını gündeme getirmiştir. Genelde yumuşak turizm; ekonomik yönden verimli, sosyal yönden sorumlu ve çevreye duyarlı bir turizm formu olarak tanımlanabilir. Diğer bir deyişle, yumuşak turizmde; bir taraftan yerel örf ve adetlere saygı gösterilmeli, diğer taraftan ise çevre ve doğa korumaya önem verilmelidir. Yumuşak turizmin çeşitli formları; "yeşil turizm", "doğa turizmi", "alternatif turizm", "ekoturizm", "yayla turizmi", 'çiftlik turizmi', 'bilinçli turizm' vb. adlarla anılmaktadır. Genel olarak doğa ve turizm birbirine zıt olgular durumundadır. Fakat bu iki zıt olgunun birbirinin aleyhine olmayacak bir ilişki içinde olması, diğer bir deyişle, uzlaşması da aklın ve mantığın bir gereğidir. Doğaya ve doğal kaynaklara dayalı bir turizm ile doğanın korunması arasında, kuramsal olarak üç farklı ilişkiden söz edilebilir (Budowski, 1977). Bunlar, sırasıyla; a) Uyuşmazlık ve zıtlık, b) Birarada varolma, ve c) Ortak yaşama dır: a) Uyuşmazlık ve Zıtlık (Conflict): Turizmin doğaya ve doğal kaynaklara zararlı olabileceği varsayımı ile turizm ve doğa koruma arasında bir uyuşmazlık ve zıtlıktan söz edilebilir. Bunun sonucu olarak, çeşitli düzeylerde yasaklamalar ve sınırlamalar söz konusu olacağı için, böyle bir ilişkinin en azından bir hoşnutlukla karşılanacağı söylenemez. b) Birarada Varolma (Coexistence): Turizm ile doğa koruma arasında, çok az bir ilişkinin olması durumudur. Bu durum, çoğunlukla, turizm ve doğa korumanın tam olarak gelişemediği alanlar için söz konusudur. Bununla birlikte, birarda varolma durumu çok az bir süre statik kalabilir. Zira, özellikle turizmin gelişmesi önemli değişikliklere yol açabilecektir. Böyle olunca da bu evre, ya uyuşmazlığa ya da daha az bir olasılıkla, karşılıklı olarak birbirinin yararına olan bir ilişkiye (ortak yaşama) dönüşebilecektir. c) Ortak Yaşama (Symbiosis): Turizm ve doğa korumanın birbirinden karşılıklı olarak yararlandıkları bir organizasyon şeklidir. Doğa koruma açısından bunun anlamı, doğal değerler özgün durumlarında korunabilecekler ve hatta daha uygun koşullara doğru geliştirilmeleri de sağlanabilecektir. Böyle olunca da, daha çok sayıda kişi daha geniş anlamda doğadan ve doğal değerlerden rekreasyonel, estetik, bilimsel ve eğitsel yönden yararlanabilecektir. Turizm ve doğa koruma arasında bu şekildeki bir ortak ilişkinin, doğayı korumanın daha iyi bir yaşam için gerçekten zorunlu olduğunun anlaşılmasına da önemli katkıları olacaktır. ÜLKEMİZİN DOĞAL ZENGİNLİKLERİ VE KORUNAN ALANLAR Ülkemiz, bilindiği üzere, gerek doğal varlıklarımız (dağlarımız, ormanlarımız, yaylalarımız, kıyılarımız, göllerimiz, akarsularımız vb. doğal değerlerimiz) ve gerekse biyolojik çeşitlilik (flora ve fauna) ve ilginç jeolojik oluşumlar (peri bacaları, mağaralar, kanyonlar vb.) açısından diğer ülkelerle kıyas kabul etmeyecek düzeyde çok zengindir. Ayrıca, ülkemizin coğrafi konumu ve farklı iklimsel özellikleri, doğal ve kültürel değerlerimizi turizm açısından (rafting, trekking, tırmanıcılık, kamping, avcılık, kuş gözetleme, fototurizm vb.) çok cazip bir duruma sokmaktadır. Ülkemiz, iklim ve doğal veriler kadar, kültürel ve tarihsel veriler (geleneksel konut mimarisi, yöresel el sanatları, farklı sosyal yaşam biçimleri, etnografik ve folklorik motifler, tarihsel miras vb.) açısından da çok zengin olması, pek çok turizm formunun yapılmasına olanak veren fırsatlar sunmaktadır. Yapılan araştırmalarla, özellikle ülkemizin bazı bölgelerinde doğal peyzajın rekreasyon ve turizme uygun olduğu belirlenmiştir (Gülez, 1996). Ülkemizdeki doğal varlıkların bir kısmı yasal statüyle koruma altına altına alınmıştır. Nitekim, 1983 yılında çıkarılan 2873 sayılı "Milli Parklar Kanunu" ile ülkemizdeki doğal alanlar; a) milli park, b) tabiat parkı (doğa parkı), c) tabiat anıtı (doğa anıtı), ve d) tabiatı koruma alanı (doğayı koruma alanı) olarak dört grupta ele alınmaktadır. Bunların dışında, ayrıca yine aynı yıl çıkarılan 2872 sayılı 'Çevre Kanunu' ile de özel çevre koruma bölgeleri oluşturulmuştur. Ülkemizde halen, 2011 yılı itibariyle ilan edilmiş olarak; 41 milli park, 31 doğayı koruma alanı, , 33 doğa parkı, 56 doğa anıtı ve 14 özel çevre koruma bölgesi bulunmaktadır. Adı geçen bu korunan alan formlarından, doğayı koruma alanı dışındakiler iç ve dış turizme açıktırlar. Ülkemizin, salt adı geçen bu korunan alanlarından daha çok, bu alanların dışında kalan doğal ve kültürel varlıklarımızın önemli bir kısmını belirli bir koruma-kullanma dengesi gözetilerek turizme açmak olasıdır. Bunun için, bu alanların rekreasyon taşıma kapasitelerinin belirlenmesi ve zonlama içeren yönetim planlarının yapılması gerekmektedir. DOĞAL ALANLARDA REKREASYON TAŞIMA KAPASİTELERİ Doğal alanlara olan turizm ağırlıklı yoğun baskı, belirli bir kapasite sınırı aşıldıktan sonra, doğal kaynakların bozulması ve bazılarının azalması olgusunu karşımıza çıkarmaktadır. Zira, turistler tarafından yoğun bir şekilde ziyaret edilen birçok alanda, duyarlı ekosistemler önemli ölçüde zarar görebilir ve özellikle endemik flora ve faunal değerlerimizle biyolojik zenginliğimiz olumsuz yönde etkilenebilir. Bazı özel alanlara ulaşmak için yol ve benzeri alt yapı tesislerinin yapımı, ekolojik dengede ve doğal peyzajın görsel kalitesinde olumsuz etkiler ortaya koyabilir. Bunun dışında, özellikle meyilli yörelerde, yoğun rekreasyonel ve turistik kullanım toprak erozyonuna neden olabilir. Ayrıca, bilinçsiz bir kullanım sonucu, çöp ve benzeri katı atıkların gelişigüzel bir şekilde ortada bırakılmaları, estetik değerler ve görsel kalite üzerinde de olumsuz etkiler sunarlar. Konuyu özellikle ülkemiz açısından ele alacak olursak; acaba doğal varlıklarımız kendilerine olan ve olması kaçınılmaz hale gelecek olan bu baskıyı kaldırabilecek kapasitede midir? Diğer bir deyişle, bu alanların doğal ve ekolojik dengesinde ve görsel kalitesinde kabul edilmez bir bozulma olmaksızın, rekreasyonel ve turistik istekler ne ölçüde karşılanabilir? Bu aşamada, bu alanların rekreasyon taşıma kapasitelerinin bilinmesi gerekmektedir. Rekreasyon taşıma kapasiteleri olarak; fiziksel, ekolojik ve algısal kapasiteler burada söz konusu olmaktadır. Bir başka deyişle; · Bir yerdeki rekreasyonel ve turistik kullanım, o yerde varolan rekreasyonel ve turistik tesislerin maksimum kabul edilebilir kapasitelerini aşmayacak bir düzeyde olmalıdır. · Bir yerdeki rekreasyonel ve turistik kullanım, çevre peyzajının ekolojik dengesine zarar vermeyecek bir düzeyde olmalıdır. · Ve yine bir yerdeki rekreasyonel ve turistik kullanım, o yer peyzajının görsel güzelliğini bozmayacak bir düzeyde olmalıdır. 2634 SAYILI TURİZMİ TEŞVİK KANUNU VE DOĞA KORUMA Burada, 1982 yılında çıkarılan 2634 sayılı Turizmi Teşvik Yasası'na da değinmek gerekecektir. Zira, bu yasanın 8. maddesi doğal alanların turizme açılması konusuna yasal dayanak getirmekte, fakat ne yazık ki doğal alanların aleyhine bazı hükümler taşımaktadır. 2008 yılında olumlu yönde fakat bizce yine de yeterli olmayan bazı değişiklikler yapılsa da, bu maddenin bazı hükümlerine göre, özetle; "Kültür ve turizm koruma ve gelişim bölgeleri ve turizm merkezlerinde, imar planları yapılmış ve turizme ayrılmış yerlerdeki taşınmaz mallardan Hazine'ye ait olan yerlerle ormanlar, ilgili kuruluışlarca talep tarihinden başlayarak en geç bir ay içerisinde Kültür ve Turizm Bakanlığı'na tahsis edilir. Uyuşmazlıkların çözümlenmemiş olması, arazinin turizm amaçlı kullanıma tahsisine engel değildir. Kültür ve Turizm Bakanlığı bu taşınmaz malları Türk ve yabancı uyruklu gerçek ve tüzel kişilere kiralamaya ve tahsis etmeye yetkiliir." Görüldüğü gibi, bu madde hükümlerine göre; kültür ve turizm koruma ve gelişim bölgeleri veya turizm merkezi olarak ayrılmış olan bir yöre, orman alanı olup olmadığına da bakılmaksızın, bir ay içersinde Kültür ve Turizm Bakanlığı'na tahsis edilebilmektedir. Diğer bir deyişle, Kültür ve Turizm Bakanlığı, özellikle Ege ve Akdeniz kıyı bandındaki en güzel ormanlık alanları, girişimcilerin istekleri doğrultusunda, kültür ve turizm koruma ve gelişim bölgesi veya turizm merkezi ilan ederek, söz konusu yasanın 8. maddesine dayanarak, bu alanların bir ay içinde kendi bakanlığına tahsisini isteyebilmektedir. İşin ilginç yanı, aynı yasanın 15. maddesiyle de bu tahsisler çok ucuza yapılmaktadır. Zira bu madde, özetle; "ormanlarda yer alacak turizm yatırımı belgeli tesislerin ödemek zorunda oldukları bedel, tahsis tarihini takip eden üçüncü yıldan itibaren beş yıl vade ve beş eşit taksitle alınır" hükmünü getirmektedir. Aslında, doğal alanlarımızdan uygun olan bazılarının koruma-kullanma dengeleri gözetilerek turizme açılmalarına genelde kimsenin bir itirazının olmaması gerekir. Fakat eleştiri olarak getirdiğimiz konu, söz konusu yasa hükümlerinin istismara çok uygun olduğu ve uygulamada da bunun örneklerinin görüldüğüdür. TARTIŞMA VE ÖNERİLER Turizm ve doğa koruma, biri diğerinin aleyhine olmayacak bir şekilde, birarada karşılıklı bir ilişki içinde olabilir ve bundan her ikisi de yararlanabilir. Yukarıda da değinildiği gibi, simbiotik bir ilişki olarak adlandırabileceğimiz bu durumda; korunan alan ve objeleri ziyaret edenler onlardan bilimsel, eğitsel, rekreasyonel, kültürel ve estetik yönden yararlanabilirler. Buna karşılık, elde edilen gelirin önemli bir bölümü, bu alan ve objelerin daha iyi korunmalarına ve korunmaya alınan çeşitli doğal ve kültürel değerlerin sayılarının artmasına neden olabilir (Gülez, 1986). Bunun için, herşeyden önce, bütüncül bir yaklaşımla, tüm doğal varlıklarımızın genel bir envanterinin çıkarılması gerekmektedir. Orman ve Su İşleri Bakanlığı Doğa Koruma ve Milli Parklar Genel Müdürlüğünün koordinatörlüğünde, ilgili diğer kurum ve kuruluş temsilcilerinİn katıldığı bir komisyon bu işlevi yerine getirebilir. Bu komisyon, öncelikle, mutlak korunması gerekli ve turizme açılması sakıncalı alanları tesbit ederek, bu alanları, doğayı koruma alanı ya da ileride belirlenecek koruma statüsüne göre rezerv alan olarak ayrılması önerisinde bulunmalıdır. Diğer doğal değerlerimiz ise kısa, orta ve uzun vadede hangi korunan alan formu altında ve hangi koşullarda turizme açılabileceği belirlenebilir. Korunan alan formlarının belirlenmesinde, uluslar arası bilimsel kriterler gözönüne alınmalıdır (Gülez, 1992). Bu alanların planlanmalarının yapılmasından önce, kullanım yoğunlukları ve rekreasyon taşıma kapasiteleri sayısal olarak belirlenmelidir. Bu amaçla şu faktörlerin gözönüne alınması gerekir: · Doğal varlıkların şimdiki ve gelecekteki kullanım yoğunlukları. · Şimdiki kullanımın çevre bozulması işaretlerini veriyor olup olmaması. · Çevre peyzajının doğal niteliği ve orayı kullanan ya da kullanacak insan ve araçların etkilerini absorbe edebilme yeteneği. · Çevre doğasının erozyona uğrayabilme ve bilimsel değerinin zarar görme ihtimali. · Motorlu araçla alana ya da yakınına ulaşabilme olanağı ve ulaşım yoğunluğu. Turizme açılması olası doğal değerlerimizin mutlaka uzun devreli gelişim (master) planlarının yapılması gerekir. Bu planlar koruma-kullanma dengesini gözeten bir zonlama sistemini içermelidir. Böylece, korunması gerekli alanlar ile turizme açılması düşünülen alanlar birbirinden ayrılmış olacaklardır. Turizmi Teşvik Yasası çıkaracak kadar turizme böylesine önem verilen bir ülkede, turizmin çevre boyutuyla birlikte ele alınması son derece önem kazanmaktadır. Zira, doğal kaynakların aleyhine gelişen bir turizm, doğal kaynakların azalması sonucunu doğuruyorsa, doğal kaynağa dayalı turizm kendi kaynağını tüketiyor demektir. Bu nedenle, söz konusu 2634 sayılı Turizmi Teşvik Kanunu'nun 8. ve 15. maddelerinin istismara uygun bazı hükümleri yeniden gözden geçirilmelidir. Ayrıca, özellikle doğal ve ormanlık alanların kültür ve turizm koruma ve gelişim bölgeleri veya turizm merkezi olarak ayrılması önerisinde bulunacak komisyonda, doğa koruma konularında uzman kişilerin yeterli sayıda bulundurulmaları için yönetmelik de değişiklik yapılmalıdır. Yayla turizmi, özellikle Doğu Karadeniz ve Akdeniz Bölgesi kırsalında yaşayanlar için önemli bir turizm formudur. Yazın yaylaya çıkma alışkanlığında olan halkımızın genelde düzensiz bir yerleşme göstermesi, hayvanların gelişigüzel kesilip atılması ve benzeri düzensiz uygulamalar nedeniyle, çevre peyzajında gerek fiziksel ve gerekse görsel bozulmalar olmaktadır. Bu durumların önüne geçebilecek çözümlerin üretilmesi gerekmektedir. Örneğin; bu gibi alanların dış turizme de açılabileceği düşünülerek, kır evleri ve tatil çiftlikleri gibi düzenlemeleri de içeren ve örgütleyen geçici özel belediye teşkilatları kurma yoluna gidilebilir. Kültür ve Turizm Bakanlığı, Temmuz 1993 yılında, Çoruh Nehri üzerinde, IV. Dünya Rafting Şampiyonası'nı başarılı bir organizasyonla düzenlemiştir. Kültür ve Turizm Bakanlığı, aynı şekilde, benzer alternatif turizm formlarını ülkemizde uluslararası düzeyde düzenlemesi, doğal varlıklarımızın turizme açılmaları konusunda önemli fırsatlar sunabilecektir. Turizm kuruluşlarının doğa koruma konusuna yatırım yapmaya yada en azından doğa koruma ile ilgili kamu ve özel kuruluşlara parasal destek sağlamaya özendirilmeleri ve yapılacak yardımın bir turizm yatırımı olarak görülmesi alışkanlığının yaratılması, doğa koruma ile turizm arasındaki simbiyotik ilişkinin geliştirilmesi açısından son derece önem taşımaktadır. Turizm kuruluşları, ayrıca, özellikle görsel basında konuyu geniş şekilde işleyen programlara da katkıda bulunmalı ya da bu tür programları bizzat kendileri hazırlamalıdırlar. Unutulmamalıdır ki, ülke düzeyinde oluşturulan olumlu kamuoyu desteği ile halkımız doğal ve kültürel değerlerine daha bilinçli olarak sahip çıkabilecek, bunun sonucu olarak da onları yakından tanımak isteği ile en azından iç turizmin gelişmesine katkıda bulunacak, bundan da turizm kuruluşları yararlanacaktır. Yararlanılan kaynaklar Budowski, G., 1977. Tourism and Conservation: Conflict, Coexistence, or Symbiosis? Parks, Vol. 1, No. 4, Washington, D.C., p. 3-6. Gülez, S., 1986. Doğa Koruma ve Turizm; Uzlaşması gereken İki Zıt Olgu. TurizmYıllığı 1986, Turizm Bankası A.Ş., Ankara, s. 80-91 Gülez, S. 1990. 2634 Sayılı Turizmi Teşvik Kanunu ve Çevre Koruma. I. Ulusal Turizm Kongresi, 16-18 Kasım 1990, Kuşadası, Bildiriler, s. 212-217. Gülez, S. 1992 A Method for Evaluating Areas for National Park Status. Environmental Management, Vol. 16, No. 6, pp. 811-818. Gülez, S. 1994. Green Tourism: A Case Study. Annals of Tourism Research, Vol. 21, No. 2, pp. 413-415. Gülez, S. 1996. Relationship Between Recreation Demand and Some Natural Landscape Elements in Turkey: A Case Study. Environmental Management, Vol. 20, No. 1, pp. 113-122. Prof.Dr. Sümer GÜLEZ TTKD Bilim ve Danışma Kurulu Üyesi www.ttkder.org.tr

http://www.biyologlar.com/doga-koruma-ve-turizm

 
3WTURK CMS v6.03WTURK CMS v6.0