Biyolojiye gercekci yaklasimin tek adresi.

Arama Sonuçları..

Toplam 356 kayıt bulundu.

ADRENOKORTİKOTROPİK HORMON (ACTH, Kortikotropin)

Normal Değer: Sabah 0-100 pg/ml, akşam 0-80 pg/ml Kullanımı: Pitüiter bez fonksiyonunu gösterir. Hiperkortizolizm (Cushing sendromu, ektopik ACTH sendromu ve ektopik CRH salınımı), hipokortizolizm (Addison hastalığı, sekonder adrenal yetmezlik, hipotalamik yetmezlik), konjenital adrenal hiper-plazi ve adrenal karsinomaların ayırıcı tanısında kullanılır www.tahlil.com

http://www.biyologlar.com/adrenokortikotropik-hormon-acth-kortikotropin

Ökaryotik Kromatinin <b class=red>Fonksiyonu</b>

Ökaryotik Kromatinin Fonksiyonu

Vücudunda belirgin bulan genetik özellikler uzak atalarınızdan miras alınmıştır; milyonlarca yıl geriye uzanan kesintisiz bir nesil kuşağından gelmektedir.

http://www.biyologlar.com/okaryotik-kromatinin-fonksiyonu

Ptychopteridae

İnce ve uzun vücutlu (7-15 mm) Ptychopteridae türleri, geniş enli kanatlara sahip olmaları ve çok uzun bacaklı olmalarından dolayı titrek sinekler adıyla da bilinmektedir. Görünüş olarak tipulidlere benzemektedirler. Renkleri çoğunlukla siyah, bazen sarı veya kırmızımsı olabilmektedir. Makrosetaları genellikle kısa veya tüy benzeridir. Sadece antenleri, tarsusları ve cinsel organları sert kıllıdır. Erginler göl, gölcük, hendek ve nehir kenarlarındaki bataklık gibi vejetasyonlarda ve diğer nemli zeminlerde bulunur. Larvalar dere, göl ve gölcüklerin sığ kenarları boyunca detritus ve çamur içinde gelişirler. Larva suyun ıslattığı çamurlu alanlarda yaşar. Pupalar genellikle çamur içerisinde dikey olarak bulunur. Larvalar saprofagdır ve detrituslarla beslenirler. Erginlerin beslenmesiyle ilgili fazla bilgi bulunmamaktadır. Baş küçük, uzunluğundan daha geniş, semiferikal bileşik gözlüdür. Osel gözler yoktur. Anten filiform tipte olup 16 segmentlidir. Ağız parçalarının sadece uzun 5 segmentli maksillar palpi ve büyük labelli kısa labium hariç çoğu indirgenmiştir. Toraks genişliğinden daha uzun fakat uzunluğundan daha yüksektir. Toraks siyah, scutellum ise türlerde sarıdır. Kanatlar çok iyi gelişmiştir, kahverengimsi kanat membranı bazı kısımlarda özellikle daha dış yarısına doğru kısa makrotichia ile microtichia tarafından çevrilmiştir. Bazı türlerde koyu kahverengi ile siyahımsı kanat benekleri vardır, diğer benekler birkaç tanedir veya solgundur. Costa bütün kanatta belirgin olup ayrıca 5 radial damar bulunur. R2 çok kısadır ve R1'de sonlanır. RS uzun veya kısadır. Bacak segmentlerinden koksa, trochenter ve femur çok iyi gelişmiş olup kısa kıllıdır. Metatarsus uzun olup diğer tarsus segmentleri kadar uzundur. Abdomen 7 segmentidir. Her segment çok iyi gelişmiş tergum ve sternuma sahiptir. Tergum ve sternum arasındaki membran stigmalıdır. Sternum 2 iki kitinleşmiş yapı içerisine ayrılmıştır. 1. ve 2. segmentler dar, ikinci segment uzundur. Larva uzun, silindirik, 25-45 mm uzunluğunda ve eucephalic başa sahiptir. Arka tarafında uzun veya kısa bir solunum tüpü veya sifonu vardır. Üçgen şeklindekj baş dorsalinde büyük bir üçgen şeklinde kitinsi bir yapı, alın, anterioründe erimiş clypeusa sahiptir. Vücut 3 kısa torasik segmentten oluşur. 8 abdominal segment daha uzun 9. segment ise kısadır. 1-5 abdominal segmentlerin her biri çıkıntılı bir halka tarafından takip eden segment ile birleştirilmiştir. 6. segment konik şekilli, 7-8 segmentler ise dardır. 9. apikal segmentte bulunan anal 2 parmak benzeri yapıdadır. Geri çekilebilir anal papilla ve trake solungaçları solunum fonksiyonlarını veya boşaltım fonksiyonunu yerine getirir. 7. segmentin posterioründen solunum tüpü çıkar. Pupalar genellikle çamur içerisinde dikey olarak bulunur. Düz toraksik solunum deliği kısadır fakat soldaki solunum deliği su yüzeyine ulaşabilmek için uzun bir sifon içerisine doğru gelişmiştir. Pupasyon dönemi Ptychoptera albimana için su sıcaklığına bağlı olarak 6-31 gün arasında değişir. Kaynaklar •Andersson, H., 1997. Diptera Ptychopteridae, Phantom Crane Flies, pp. 193-207. In: Nilsson, A. (Hrsg.): Aquatic Insects of North Europe. A Taxonomic Handbook. Volume 2. Odonata - Diptera. Apollo Books, Stenstrup. •Peus, F., 1958. 10b. Liriopeidae, pp.10-44. In: Lindner, E. (Hrsg.): Die Fliegen der palaearktischen Region, II 1; Stutgart: E. Schweitzerbartsche Verlagsbuchhandlung. •Rozkosny, R., 1992. Family Ptychopteridae (Liriopeidae), pp 370-373. In: Soós, Á., Papp, L. & Oosterbroek, P. (Eds.). Catalogue of Palaearctic Diptera. 2, Akadémiai Kiadó, Budapest. •Rozkosny, 1997. Family Ptychopteridae. pp. 291-297. In: Papp, László Darvas, Béla. Contributions to a manual of Palaearctic Diptera 2. Science Herald. Budapest. •Wagner, R., 1978. Familie Ptychopteridae, p. 386. In: Illies, J. (Ed). Limnofauna Europea, (2nd ed.). Gustav Fischer Verlag, Amsterdam. •Zwick, P., 1988. Contribution to the Blephariceridae and Ptychopteridae. Mitt. schweiz. ent. Ges., 61: 123-129. •Zwick, P. 2004: Fauna Europaea: Ptychopteridae. In: De Jong, H. (Ed.) Fauna Europaea: Diptera: Nematocera. Fauna Europaea version 1.2, www.faunaeur.org

http://www.biyologlar.com/ptychopteridae

Balıklarda solunum fizyolojisi

Solunum terimi, bir organizmanın hücresi ile çevresi arasındaki gaz (genellikle oksijen ve karbondioksit) alışverişini ifade eder. Tek hücreli canlılarda, gerekli gaz alışverişi pasif difüzyon ile sağlanabilir. Balık gibi komplex organizmalarda, dokulara yeteri miktarda O2 sağlamak ve CO2’i ortadan kaldırmak için, hem gaz alışverişi için gelişmiş bir yapı (solungaç), hem de bir gaz transfer sistemi (kan ve dolaşım sistemi) gerekir. Su ve dokular arasında osmoregülasyon ve asit-baz dengesini sağlamak gibi, balık solungacının başka fonksiyonları da vardır. Solunum sisteminin, elinde tuttuğu ve transferini gerçekleştirdiği su ve kan ve ayrıca O2 ve CO2 alışverişini sağladığı aşamalarının anlaşılması; balıkların fizyolojik ihtiyaçlarını giderecek ve yüksek derecede sağlık ortamı sağlayacak bir intensive kültür sisteminin mantıklı dizayn ve operasyonunu temin edecektir. Solunumun bütün işlevleri önemlidir, fakat intensive kültür sisteminin tipik özelliği olan yoğun balık stoklamalarında, gaz alışverişindeki etkilerin ani ölümlere neden olması bilinmelidir. Solungaç çevresindeki sudan transfer edilmesi ve dokulara gönderilmesi gereken O2 miktarı önemlidir. Salmonid gibi aktif soğuk su balıkları için O2 gereksinimi 100 mg.O/kg vucut ağırlığı şeklinde yüksek bir oranda veya daha fazlası olabilir. Aktif olarak yüzen balıklarda, solunum sistemi, 800 mg.O/kg/saat (20 ml.O/min civarında) kadar yüksek oranda O2 sağlayıp, karşılığında büyük oranda CO2 ortadan kaldırmalıdır. Bununla birlikte su, maximum çözünmüş O2’nin 10-12 mg/l’yi nadiren geçtiği O2 fakiri bir ortamdır. Deniz suyunda, mevcut çözünmüş yüksek tuz konsantrasyonu, mevcut DO’yu maximum 8-9 mg/l’ye kadar azaltabilir. Bunun için, balık yaşamının devamı için büyük miktarda suyun solungaçlardan geçmesi gereklidir. Salmonidler için solungaçlardan suyun geçmesi 5-20 l HO2/O2/vücut ağırlığı/saat oranındadır. Çoğu balık gerekli miktardaki suyu ağızlarıyla pompalayarak ve opercular hareketler yaparak sağlarlar. Ağız ve solungaçlar emme basma tulumbası olarak görev yaparlar ve böylece sabit bir su akışı sağlarlar. Haçerideki balıklar için, su alıp verme oranı 40-60 l/dk oranındadır. Suyun yüksek yoğunluk ve viskozitesinden dolayı solungaç ventilasyonunun enerji gideri, en az, tüketilen O2’nin %10’u kadardır. Salmonid, köpek balığı ve tuna gibi aktif balıklar, solungaçları üzerinden gerekli su akışını ram ventilasyonu (Yüzerken ağızını açarak) ile sağlarlar. Örneğin, pasifik salmon, ram ventilasyonunu 1 vücut uzunluğu/saniye’den daha yüksek hızda yüzerek kullanır. Bazı köpek balıkları, ram ventilasyonu ile sınırlandırılmıştır ve yaşamak için sürekli yüzmek zorundadır. Her iki solungaç ventilasyon metodunda da DO’nun %80’ine kadarki kısmımın (teorik olarak) kullanılması mümkündür. Çünkü solungaç anatomisi, ters yönde kan akışını sağlayacak şekilde dizayn edilmiştir (suyun solungaçlar üzerinden akışı, kanın solungaçlar içinden akışına terstir). Gerçek O2 tüketimi türlere göre farklıdır. Alabalıkta %30-40, tunada %70 ve sazanda %70-80’dir. Buna kıyasla, insan havadaki O2’nin sadece %25’ni alabilir. Su solungaçlardan geçerken, sudaki çözünmüş O2, sekonder solungaç lamelinin ince epitelyal hücrelerinin arasından geçer ve kana difüze olur. Asitlik arttıkça hemoglobinin O2’ye yakınlığı azalır (Bohr etkisi) ve bazı türlerde asitlik, hemoglobinin O2’yi tutmasındaki maksimum kapasiteyi azaltır (Root etkisi). Bu yüzden kan, dokuların kapillar yataklarından geçerken üretilen CO2’in neden olduğu asitlik Hb-O2 ağını zayıflatır ve O2 yoğunluğunun düşük olduğu hücrelere difüze olan O2’nin çıkışını kolaylaştırır. Aynı zamanda, CO2, dokulardan kana difüze olur. O2’in tersine, CO2’in çoğu plazmada erir ve bikarbonat formunda yeniden solungaçlara gönderilir. Kan solungaçlardan geçerken karbonikanhidraz enzimi, HCO3 iyonunu sonra yeniden suya difüze olan CO2 molekülüne hidroliz eder. Bir ünite kanın solungaçlar içinde kalma zamanı, sadece birkaç saniye olduğu için ve kan ve su arasındaki yüksek CO2 basıncından dolayı bu enzimatik reaksiyon son derece hızlı bir aşamadır. Bu yüzden kandaki O2 basıncı 100 mg Hg veya daha yüksek seviyeler arasında değişebilir, kandaki CO2 konsantrasyonu düşük kalır ve çok az değişir. Özellikle aktif soğuk su balıklarında Bohr etkisi büyük olur (kanın düşük CO2 düzeyinde başlar). Aquakültür sistemlerinde, örneğin eğer sudaki çözünmüş CO2 konsantrasyonu 20 mg/l’ye çıkarsa Bohr etkisi salmonidlerin O2 transferini engeller. Karışık kültürü yapılan sıcak su balıkları (Tilapya, sazan, kanal kedi balığı gibi) genellikle çözünmüş CO2 konsantrasyonuna daha az duyarlıdırlar ama, bu yetiştiricilik yöntemi, iyi bir yetiştiricilik işletmesi için, CO2 ’in havuz suyunda birikmesine engel olan durumları sağlamada iyi bir yöntemdir. CO2’in etkisiyle birlikte, laktik asit üretimi kan asitliğinin yükselmesine ve kanın O2 transferinin bozulmasını neden olur. En genel sebep; beyaz kaslarda O2 olmamasından dolayı kan ve dokularda laktik asit birikmesiyle sonuçlanan aşırı yüzme aktiviteleridir. Bu da heyecan ve stresten kaynaklanır. Örneğin, eğer kanın pH’sı 7,8-7,6’dan 6,0’a düşürülürse toplam hemoglobinin sadece çok az bir yüzdesi O2 ile doyurulabilir. Root etkisindeki Hb’in normal görevi choroid rete üzerinden O2’i göze ileten moleküler pompa görevi yapmak ve physoclistik türlerde rete mirabile üzerinden yüzme kesesini doldurmaktır. İkinci görevi, salmonidlerde (fizostomları bulunduğu için) önemsizdir ki; havayı emerek yüzme kesesini doldurmaktır. Bununla beraber, salmonid gözündeki normal O2 yoğunluğu, hem kanın, hem de suyunkinden fazladır. Bu da root etkisindeki Hb’in bu balıklarda önemli bir rol aldığını gösterir. Cadmium ve civa gibi ağır !!!!llerin öldürücü seviyelerinin altındaki dozlarına maruz kalma durumunda, root etkisindeki Hb’in normal fonksiyonunun tersi yönde etkilendiği bilinir. Bunun yoğun kültürdeki balığın sağlığı için önemi bilinmemektedir. Yoğun kültürdeki balıklar için, Bohr ve Root etkisi altında O2 transferinin azalması ile ilgili problemler, kanda yüksek laktik asit konsantrasyonu (Hyperlacticemia) veya kanda yüksek CO2 konsantrasyonu sonucu ortaya çıkar. Genel sebepleri; düşük DO durumları ve heyecandan kaynaklanan aşırı yüzme aktiviteleridir. Ayrıca yetiştirme ve transfer sırasında daha yüksek stoklama yoğunluğu sağlamak için saf O2 kullanarak havalandırma yapmak, aşırı doyurulmuş DO düzeyine ve hipercapnia’ya (yüksek DO’nun solungaç havalandırma oranını baskılaması nedeniyle oluşan bir yan etki) neden olur. Bu ise, CO2 birikmesine ve yüksek arterial PCO2 basıncına neden olur. Kana O2 transferi bundan etkilenmeyebilir. Çünkü daha yüksek arterial PO2, bohr etkisi kaynaklı azalmaları dengeler. Buna ek olarak hipercapnia, dokulara O2 naklini, sadece arta kalan asitliği normal kan dengesini aşarsa veya solunum asidosisi meydana gelirse tehlikeye sokabilir. Suyun kalitesinin iyi olduğu balık kültürlerinde Bohr etkisi kaynaklı O2 naklinin azalması ile ilgili problemler, aşırı yüzme sonunda üretilen laktik asitten dolayı ortaya çıkan !!!!bolik asidosis kökenlidir. Bohr etkisinin solunum baskısının CO2 ve DO konsantrasyonu ile olan ilişkisi ilk kez Basu (1959) tarafından belirlendi. Dokulara yeterli O2 sağlamak için vasat bir yüzme seviyesi oluşturmak için gereken DO seviyesi bunu ortaya çıkarmıştır. Bu minimum miktar, eğer çok az CO2 varsa veya hiç yoksa 6 mg/l’den, Eğer çözünmüş CO2 konsantrasyonu 30 mg/l’ civarına yükselirse, 11 mg/l’den daha yukarı çıkar. Sonuç olarak, salmonid gibi balıkların, DO seviyesinin %80 doygunluk oranının altına düşmemesi şartıyla, yeterli O2’ye sahip olmaları önerilir. Eğer çözünmüş CO2 seviyesi 30-40 mg/l’nin altında tutulmazsa, kanın O2 taşıma kapasitesi, yüksek DO konsantrasyonunun bile yetersiz olduğu, doku hipoksia’sına neden olabilecek seviyelere düşer. Bohr ve root etkisi kaynaklı solunum baskısı, heyecan ve yüzme aktivitesini azaltmak için dikkatli balık tutumu ile en aza indirilebilir. Yeterli miktarda çözünmüş O2 sağlamanın yanısıra çözülmüş CO2 ‘yi hızla ortadan kaldıran havalandırma sistemi ve su değişim oranı ile de bu sağlanabilir. Pratikte bunlar yoğun kültürdeki balığın ihtiyaçlarını sağlamada gerekli unsurlardır. Haçeri’deki çözünmüş O2’i balığın tüketme oranı yoğun kültür sistemlerinin sağlanmasında önemlidir. O2 tüketimi, balık naklinde gerekli olan havalandırma miktarı ve istenilen yükleme yoğunluğu için gerekli su alışveriş oranı gibi temel parametreleri belirler. Racewaylerdeki salmonidler en az 100 mg.O/kg/saat ile en fazla 800 mg/kg saat arasında tüketir. Bu seviye, yüzme seviyelerine, su sıcaklığına, zaman, son beslenme ve heyecan, stres derecesine göre değişir. Egzersiz, stres veya su sıcaklığının sonucu olan !!!!bolik ihtiyaçları karşılamak ve O2 tüketim oranını kontrol etmek için hormonal teknikler kullanılır. Hem soğuk su, hem de sıcak su balıklarının solunum oranı karasal omurgalılarda olduğu gibi kanda CO2 yükselmesi ile değil, DO konsantrasyonundaki düşüş ile stimüle edilir. Örneğin, balıklar elle tutularak stres olduğu zaman, adrenalin ve diğer cathekolomine hormonları (hem solungaç perfüzyon miktarını , hem de alyuvar hemoglobininin O2 taşıma kapasitesini artıran hormonlar) üretilir. Bronşal vasodilasyonun yan etkisi olarak suyun normal ozmatik akımı aşırı şekilde yükselir ve bundan sonra vücuttan atılmalıdır. Diüresis’in sonucu çok çarpıcı olabilir, kandaki elektrolitlerin bazıları üretilen çok fazla üre içinde kaçınılmaz bir şekilde kaybolur. Diüresis uzatılırsa, iyon regulasyonunda bozulmalar ortaya çıkabilir. Balık tutulduktan veya nakledildikten 1-2 gün sonra oluşan gecikmiş ölümler büyük ölçüde bu olayın bir sonucudur. Yoğun kültür sistemlerindeki balıkların O2 tüketimi, hem balığın kültürel prosedürü, hem de doğal gelişmeler nedeniyle arttırılabilir. Bunlardan, tutma nedenli stres, heyecan nedenli arttırılmış yüzme aktivitesi ve beslenmenin doğal aşamaları en önemli olanlarıdır. Örneğin Çelikbaş alabalığı juvenilleri tutulmaktan dolayı strese girerler, O2 tüketimleri 2 kat birden artabilir ve bir veya daha fazla saat yüksek oranda kalır. O2 tüketiminin artması (heyecan ve stres kaynaklı), balıklar nakil tanklarına yüklendikten sonra, birden meydana gelen DO’daki ani düşüşün sorumlusudur. O2 havalandırması varsa, balık bulunan tank suyu 14-16 mg/l’lik DO’ya kadar doyurulmalıdır ki, bu da balıkların O2 ihtiyacını karşılar. Sadece sıkıştırılmış hava varsa, havalandırma sistemini, balık yüklemeden 5-10 dakika önceden başlatmak, suyun doyurulmasını sağlayacağından bir dereceye kadar etkili olacaktır. Beslenme ve sindirimin doğal aşamaları, balığın O2 tüketimini büyük ölçüde artırır. Çünkü sindirimin, absorbsiyon ve asimilasyonun kalorik maliyeti, geri kalan !!!!bolik kalorinin %40’ı kadardır. Bu etkinin O2 tüketimindeki boyutu (Specific dynamic action of food (SDA) = .Yiyeceklerin spesifik dinamik hareketi) her zaman tam olarak değerlendirilmez. Çünkü beslenme rutin bir operasyondur. Salmonid, kanal kedi balığı ve tilapya için, her defasında balık birkaç saat beslendiği için O2 tüketim oranını %40-50 veya daha fazla arttırmak akıllıcadır. SDA’nın pratik sonucu olarak; balığın hemen tutulmaması veya nakil edilmemesi gerekir. Çünkü, beslenme ve sindirim olaylarına eklenen heyecan ve stres, onların O2 tüketimini, havalandırma sisteminin yeterli DO sağlayamayacak seviyede arttırır. Elle tutulmadan ve nakilden 24-48 saat önce balık beslemeyi durdurmak bu etkiyi önler ve O2 tüketim oranını büyük ölçüde azaltır. Yoğun kültür sisteminde O2 tüketimini etkileyen diğer önemli faktörler ise; su sıcaklığı ve yüzme aktiviteleridir. Daha yüksek su sıcaklığı, bütün !!!!bolik hızı artırarak O2 tüketimini yükseltir. Bununla beraber yüzme aktivitelerinde O2 tüketimi, kasların kasılması için, Hb doygunluğunu düşürerek kandaki O2‘yi tüketmesi ile yükselir. Gökkuşağı alabalığında, solungaç lamelleri’nin sadece %60’ı kanla perfüze olur. Hızlı yüzmeye dayanan kas kasılması, adrenalin ve diğer cathekolamine hormonlarının dolaşımını teşvik eder. Meydana gelen solungaç perfüzyonun yükselmesi ile birlikte, eritrosistlerin, hücre içi pH’sını artıran, Na / H değişiminin adrenal hormonu tarafından teşviki sağlanır. Bohr etkisi düşürülür ve hem kanda O2 oluşumu, hem de O2 ‘nin dokulara teslimi sağlanır. Isı ve yüzme aktivitelerinin O2 tüketimi üzerindeki etkisinin gerçek boyutu Brett (1973) tarafından, kontrol altında tutulan pasifik solmonu üzerinde belirlenmiştir. Daha sıcak su, O2 tüketimini bir dereceye kadar artırır. Bununla beraber, yüzmenin etkisi daha çarpıcıdır. İleri atılarak yüzme, özellikle enerji bakımından yoğundur. Çünkü sürtünme etkisi çok yüksektir. Yoğun kültür sistemindeki balığın yüzme aktivitesi genelde daha düşüktür. Salmon kültüründe racewaylerde su alışverişi öyle ayarlanmalıdır ki, o balığın O2 tüketim oranı, DO’yu son taşma sınırının yaklaşık 6 mg/l aşağısına indirmemelidir. Havalandırma sistemi ayrıca, taşıma kapasitesini artırmak için de kullanılır. Bazı durumlarda DO oranını 14-16 mg/l ‘ye çıkarmak için sıvı O2 kullanılır. Balık nakil sisteminde O2 tüketim oranı, genelde yüksek heyecan ve stres nedeniyle değişkendir. Yakaşık DO doygunluğunu sağlamak için saf O2 kullanılır. DO, balık tarafından tüketildikten sonra hemen yenilenmezse, O2 tükenmesi meydana gelir. Karasal hayvanların aksine, balığın nefes alma oranı, yükselen CO2 ile değil, düşen DO konsantrasyonu ile stimüle edilir. Alabalık, sazan, kedi balığı gibi türler düşen DO seviyesine, önce ağız ve solungaçlarını kullanıp solungaç havalandırma oranını yükselterek; kan basıncını ve kardial verimi yükseltip solungaçlardan kan akışını artırarak cevap verir. Salmonidlerde, normal DO tükenmesi bile, solungaç havalandırma oranında çarpıcı yükselmelere neden olur. Bu olaylar, ilk olarak O2 alımını yükseltir, fakat daha fazla su akışı da, solungaçlardan her geçişte çekilebilen DO oranını azaltabilir. DO düştükçe kana transfer edilen O2 miktarı da düşer (max %80’den min %15’e). Ayrıca, daha fazla suyun solungaçlar üzerinden hareket ettirilmesi, enerji maliyetini büyük oranda yükseltir (Absorbe edilen O2 ‘nin %10 ‘undan %70’e yükselmesi). Sonuç olarak; O2 elde etmek için harcanan güç, suda çözünmüş O2 miktarı düştükçe ve arterial kandaki O2 basıncı düştükçe yükselir. Arteial kan O2‘si, alyuvardaki Hb %60 doygunluktan daha az olduğu noktaya ulaşıncaya dek azaldığında; solungaç damarlarını genişleterek ve Na/H alışverişini alyuvar membranı ile sağlayıp, hücre içi PH’yı yükselten adrenalin ve diğer cathecolamine hormonları salgılanır. Bir dizi karışık olay sırasında Hb-O2 ilişkisinde değişiklikler ve Bohr ve Root effect kökenli kapasite değişiklikleri, hem solungaçlardaki O2 transferini, hem de O2 ‘nin dokulara yükselmesini kolaylaştırır. Eğer çözünmüş O2, 5 mg/l’nin altına düşerse, salmonidler, iştahsızlaşırlar. Bu, beslenme ve sindirim sırasında O2 tüketiminde meydana gelen normal yükselmeye engel olmak için geliştirilen bir davranışsal cevaptır. Salmonidlerde, O2‘nin elde edinimi ve kullanımının biyoenerjik maliyeti, DO’nun 2 mg/l civarına kadar tüketilmesinden dolayı ortaya çıkan aşırı enerji ihtiyacı ile başlar ve bilinç kaybı ve hatta ölümle sonuçlanabilir. Aquakültür için önemli olan çoğu sıcak su balığı DO seviyesi 1 mg/l’nin altına düşse bile birkaç saat hayata kalmayı başarır. Ama sonunda meydana gelen doku hipoksiası bilinçsizlik ve ölümle sonuçlanır. Aquakültür ortamında balığın tükettiği O2 oranını sürekli düşürmek en temel hedeftir. O2 tüketimini artırmak için varolan aynı biolojik ve çevresel faktörlerin çoğu onu düşürmek için de arttırılabilir. Su sıcaklığını azaltma (hipothermia) ve yüzme aktivitesini, heyecanı ve balık tutma sırasındaki stresi düşürmek için anastezik kullanımı en bilinenleridir.

http://www.biyologlar.com/baliklarda-solunum-fizyolojisi

Yassı Solucanların Anatomisi

Polycclad Yassı Solucanların Anatomisi İsmininin de önerdiği gibi, serbest yaşayan solucanlar dorso-ventrally yassılanmış olup birkaç milimetreden daha kalın değildirler Boyutlar bir milimetreden daha azdan balar ve 30 cm nin üzerine kadar uzanır. Çoğu polycladler son derece hassastırlar ve tipik olarak düz bir dorsal yüzey içeren ve/veya oval şekillerine sahiptirler. Bununlar birlikte, dorsal papillae (Acanthozoan, Thysomozoan) sergilerler. Solucanların anteriorlarında uç kısımlarda dokanaç (tentacle) yer aldığından ve çok parlak renklere sahiptirler ve nadiren de olsa bazen yanlışlıkla nudribranc olarak kabul edilirmişlerdir. Fakat nudribranclara karşıt olarak, anterior sınırında dokanaçlar çoğunlukta basit bir yapı halinde tutunmuşlardır. Onlar yol boyunca nudribranclara nazaran daha fazla hareket ederler ve aynı zamanda çok ince yapıya sahiptirler ve elle tutulduklarında kırılmaya çok eğilimlidirler. Bununda ötesinde, onların özel terleme organları (gills) yoktur ve terleme solucanların tüm yüzeylerinde difuzyon yoluyla gerçekleştirilmektedir. Tüm yüzeylerinde difuzyon yoluyla gerçekleştirilir. Polycladler geniş bir renk çeşitliliği ve yapısı sergilerler. Onlar marginal buruşukluklara sahiptirler ve boyutları ile sayıca artmaya eğilimlidirler. Donük türler haricinde (siyah ve esas itibariyle siyah renkli) türler transparenttirler ve iç organları epidermis boyunca görülebilir. Özellikle ovarisleri parlak veya koyu renkli mor renklere sahiptir ve dorsal yüzeyin en dış kısmı binlerde vurucu cilia ile beraber engelleyici epidermistirler (ectodermal orijinli bir tek hücre tabakası). Onun da altında, dairesel kasın dış tabakası ve kasların iç tabakası birbirine parallel uzantı şeklindedir ve aralarında vucut plastisitesi mevcuttur. Dorsal ve ventral epidermis arasındaki boşluk parenchymal doku ile dolmuştur ku bu çok sayıda gizli hücrelere sahiptir ve bununla sümükler dışarı atabilirler ve diğer bileşenler epidermal boşluklarla oluşmuştur. Dorsal ve ventral epidermis arasındaki boşluk parenchymall doku ile dolmuştur ve çok dallanmış bağırsak ve üreme sistemi gibi organları içermektedir. Parenchymal doku mesodermal kökenli olup sümük dışarı ataliben çok yüksek sayıda gizli hücreler ve epidermal boşluklar içermektedir. Polyclad hidrostatik iskelete sahiptir ki bu sulu hayata çok güzel adapte olmasını sağlamaktadır. Mesodermdeki içsel vucut sıvısı kapalı vucut kompartmanında basınç altında tutulmakta ve vucut duvar kaslarının hareketine destek sağlama amacıyla hidrostatik iskelete karşı kuvvet uygulamaktadırlar. İki yönle hareket vardır. Küçük boyutlu türler ince kıla benzeyen ventral cilia ile vuruşlarla taban boyunca kaymasını sağlar. Büyük boyutlu türleri ise (Tysanozoan sp. gibi) aşağıda sol panelde gösterildiği gibi vucut kaslarının ritmik vuruşlarıyla yüzmeye muktedir olabilirler. Solucanlar vucutlarını ileri ve kıyıya atarak bir seri dalgalandırma yaratırlar ve yer üzerinde ileriye doğru sürünürler. Polycladlerin iki yönlü vucut şekilli hali cephalize olmuştur, bu tanımlanabilen baş bölgelerine sahip olduğu anlamındadır ve orada sinir fonksiyonları ve duyu yapıları yer almaktadır. Solucanların sinir sistemi merdiven şekline benzeyen uzun boylu sinir ipi çiftine sahiptir ve bunlar çapraz olarak birleşmişlerdir. Beyinsel anteriordaki ganglion düğümde son bulurlar ve kafanın içinde veya dışında yeralan sinirsel büyük bir top şekline sahiptirler. Son zamanlarda bazı poyclad türlerinde küçük ama iyi tanımlanmış beyin sinirbiyolojisinde model sistem olarak servis yapan beyin cytoarchitecture ve sinirsel tamir mekanizmasını araştırmalar yapılmıştır (Bakınız Bölüm: Polyclads ve Neurobiology). Başın görünen karakteri dokunaçların oluşumudur ki çoğu durumlarda anterior sinirinin belirtilmesi (=pseudotentacle) gereklidir. Bu kör bir basit boru şeklinde veya geniş kapaklı olarak olarak gösterilirler. Çoğunlukla, Thysonozoon sp.‘nın kafa bölgesinde görüldüğü gibi kulağa benzerler (sol panel). Anterior beyinsel ganglion düğüm ve onun büyük iç sinirlerine benzerler ve solucanların “beyin” i çok sayıda foto ve kimyasal hassas hücrelerinden oluşan sinir sinyallerinin analizi esas olarak, kafada ve Pseudotentaclelerde konsantre olmuşlardır. İlave olarak, yüksek sayıda mekaniksel alıcılar epidermiste dağılmış vaziyette yer almışlardır. Fotoya duyarlı hücreler beyinsel göznoktalarında bulunur ki orada yuvarlak salkım olarak çeşitli gözler yeralmışlardır. İleri gözler, ventral ve dorsal yalancı dokanaçlarda yeralmışlardır. Bu gözler gelen görüntünün şekillenmesine kabiliyetli değildirler ama ışık istikameti ve yoğunluğunun değişimine hassatırlar. Yassı kurdun parlak ışığa duyarlı olduğu zaman, özellikle koyu yerlere doğru geri çekilirler. Vertebrateler ile mukayese edildiklerinde, poycladlerin gözlerinin organizasyonu oldukça basittir. Bu tip göz, birçok lens ile kapatılmış olup “pigment cup ocellus” olarak tarif edilirler. Ocelli beyinsel göznoktasının bir parçasıdır ve çeşitli ışığa duyarlı hücrelerden oluşurlar ve konkav kap şekline sahiptirler. Kabın duvarları pigment içermektedir ve bunlar uç taraftan gelen ışığın sızmasını enlellerler. Hücrelerin ışığa duyarlı kısımları (microvilli) opak kabın içersinde düzenlenmişlerdir ve yanlızca bir yönden gelecek ışığa karşı duyarlıdırlar. Gelen ışığın açısına bağlı olarak, loş kısımler ışığa duyarlı yapıların üzerine gölge olarak düşerler. Kap aktif olarak kaslar tarafından döndürüldüğünden çabuk değişen gölge izleri yaratılır. Sinir sinyallerine karşılık olarak, beyinsel ganglion’a gönderilirler ki orada bilgiler analiz edilirler, uç boyutlu oryentasyon ve uygun davranış reaksiyonu gösterirler. Polycladlerin görsel duyularından dolayı çevresel oryentasyonu için yeterli olmayabilir ve polycladler iyi gelişmiş kimyasal dedektörlü batarya vardır ve molekülleri tanımaktadırlar. Kimyasal bileşenlerin besin ve eş bulmada önemli rol oynadıkları düşünülmektedir. Besin ve eş bulmada belirgin moleküller boşalarak akış ile içeri girerler. Bu solucanlar kimyasal alıcıları tarafından algılanarak koku yayarlar. Bunlar özellikle ventral yalancı dokanaçlarda yerleşmişlerdir ve orada yivli ciliate şeklinde salkımlanmışlardır. Aktif solucanlardaki yalancı dokanaçlar hareket halinde meşgul görülürler ve bu kimyasal duyarlı alet solucanların yönünü bulmalarında ve koku çıkarmalarında temel karar veren davranış olarak kabul edilir. Auricle ve göz noktalarına ilave olarak (Bakınız: yukarıdaki sol foto ve alçak panel) yassı solucanlar statocyst adı verilen ilkel denge organları vardır ki basınca duyarlı saç ve küçük taneli materyalli hücreler içerirler ve bu hayvanların yukarıya doğru gitmesinde büyük rol oynarlar. Yassı solucanın dinlenme, tamirat ve cam slaylarda hazırlanmasından sonra (wholemounts) ventral bakış karakterlerinde ölü solucanlar gözlenerek incelenir. Bu karakterlerin coğu türlerin taxonomi belirlenmesinde önemli rol oynarlar ki bu oldukca zor bir görevdir. Basın yanında ağız ve pharynx gözlenebilir. Genel olarak, polycladlar pharynx plicatus’a sahiptirler. Bu tip pharyngeal tüb uzun be dairesel kas tabakası sergiler ki o pharynx’in şeklini çok fazla değiştirir ve sıvıyı bağırsak boşluklarına doğru pompalar. Bununda ötesinde, pharyngeal ceplerini ayıran özelliğine sahiptir ki orada kullanılmadığında dışarı atılırlar. Pharynx boru şeklinden çeşitli şekillere kadar yapı gösterirler (örneğin, yuvarlak veya oval çok sayıda pharyngeal lob içeren çok buruşuk şekiller). Beslenmede, pharynx ağızdan çıkıntı yapar ve Pseudobiceros türünün bazı tiplerinde tüm hayvanları yutacak boyutta açılırlar. Ventral yanın ortasında, alt sınıf Cotylea yapışkan organa sahiptir ve vantuz olarak adlandırılır. Arazi gözlemlerinde bu organ hayvanların alt tabakalara yapışmasında kullanılır. Küçük invertebratelerin yakalanmasında ve yiyeceklerin hazmında işlev görür. Ender olarak, Pseudobiceros örneğinde ve Pseudoceros’da iki eşit olmayan vantuz bulunmuştur. Diğer tür polycladlerin belirgin karakterleri erkek ve dişi üreme sistemlerinin anotomisidir. Polycladler hermaphrodiktir. Onların ikiside erkek ve dişi üreme organları yumurta ve sperm üretirler. Yetişkin solucanlar, ki esas olarak üremeye geçmişlerdir, vucut hacminin yüksek yüzdesi testes ve ovarislerden oluşmuştur. Çoğu türlerde, bu serpistirilmiş haldedir ve ventral ve dorsal parenchyma da yerleşmiştir. Bununla birlikte, dışarıdan yanlızca erkek ve dişi gonophore’lar gözlenmiştir. Genel olarak, erkek boşluk pharynx’de posterior olarak bulunmuştur ve penis papilla ve penial stylet tutarlar, organları eş için uzanırlar. Pseudobiceros türünün çift erkek üreme sistemi, iki erkek boşluk ve erkek organları ile karakterize edilirler. Dişi boşluk daima açıkca erkek boşlukta ayrılmıştır ve posterior’da yerleşmiştir. Çoğu türler (Pseudoceros, Pseudobiceros)’in bir tek dişi boşluğu vardır bununla fakat Nymphozoon’in çok sayıda dişi boşluğu vardır. Dişi üreme sistemi yumurtalık, yumurta sarısı, kabuk beze, bir yarı hazne, ve döl yatağı bulunur ve orada yumurtalar döllenir. Eşleşmeden sonra (Bakınız, Bölüm: Eşleşme ve yeniden üreme) spermler dişi vucuda enjekte edilir (Hypodermal insemination) dişinin üreme aygıtına ve yarı hazneye doğru depolanma amacıyla göçederler. Yumurtalar yumurtalıktan oviduct’a doğru geçerler ve yarı haznede sperm tarafından döllenirler ve yumurta sarısı ile kaplanmış ve kabuk beze ile gizlenirler. Daha sonra üreme organlarına geçerler ve düzensiz yumurta kütlesi şeklinde depolanırlar. Yeniden üreme sisteminin yanında, çok sayıda yanal dallara sahip bağırsak solucanlarının vücut hacminin yüksek yüzdesini teskil eden ikinci organdır. Nutrientlerin vücut hücresine transferinde bağırsak sistemi (intestial), vucudun hemen hemen her tarafına uzanmış olup vurucu cilia ile kaplanmışlardır. Yarı saydam solucanların haricinde (Aquaplana sp.) bağırsak dallarının dağılımı ve onların anotomik detayları gözlenmede çok zordur. Polycladlerin kör sindirme sistemi bulunduğundan sindirilemeyen materyaller pharynx’e doğru yani yiyeceklerin geldiği aynı açıklığa doğru dışlanırlar. Soldaki foto (PHOTO © Bill Rudman) Paraplanocera oligoglena’nin ventral gorünüşünü vermektedir ve hemen hemen transparent olan vucudun çoğu organlarını gosterirler. Beyaz kollu merkezi yapı cok buruşuk pharyngeal tüpdür (pharynx plicatus) ve ağıza doğru ağız vucudun merkezinde yerlemiştir. Donuk beyazımsı network, vucudun çoğu bolgelerine uzanmış çok dallı bagırsak ki bu solucanlara “polyclad” (yunanca = çok dallı) adı verilir. Erkeğin ve dişinin diğer tüm organları yeniden üreme sistemidir. Salgı ve osmoregulation için polycladler özel fonksiyonlu birimlere sahiptirler, bunlara protonephridia (tekil protonephridium) denir. Onlar iki veya daha fazla kapalı uzun tüp dalları halindeki networka benzerler ve vucut boyunca uzanırlar. Osmotik su dengesini kontrol eden özel yapılara sahiptirler ve böbreklerin atık suyu çıkarttığı gibi çalışırlar. Vucut boyunca Protonephridium dallanma yüksek özellikli hücreler tarafından cilia izli kap şeklindeki yapılarla kapatılmıştır. Cilia vurusu, kırpışan aleve benzediği için bu hücreye “alev hücresi” adı verilmiştir. Bu hücrelerden bir kaçı tüplü fonksiyonlar ile hücrelere bağlantılıdır. İç sıvı nitrojen atıkla yüklenmiştir, tübe doğru gitmesinde zorlanır ve alev hücreleri ile akan tüp sistemi yardımıyla bir veya daha fazla boşluktan taşınırak yol alırlar ve son bölümde atıklar gizlenir. Protonephridium ilkel böbreğe bir örnektir ve salgı çıkaran ve osmoregulator bir sistem olarak gözönüne alınırlar. Yassı Solucanlara Genel Giriş Platyhelminthes (Yunanca: platy – flat, helminthes: worm) Kingdom Animalia’ya ait olup bir baş ve uçta bir kuyruk ile bölümlenmeyen yassı solucanlardır. Onlar en ilkel iki bacaklı, iki yanal simetrik hayvan olarak düşünülürler. İki yanlı simetrik anlamı, vucutlarının kıç eksen boyunca, üst ve alt yüzeyler olmak üzere tariflenen anterior ve posterior bitişin bir ayna görüntüsünde olmasıdır. Vucudun iki taraflı şekilli olması önemli bir özelliktir çünkü bu cephalization’a bir örnektir ve kafanın duyu yapılarının konsantrasyonu ve sinir fonksiyonu (kafa ganglion) yeralir. Bu da gelişimde önemli bir eğilimdir. Bunun ötesinde, yassı solucanlar triploblastikdir, bunun anlamı vucut yapısı uç temel hücre yapısından meydana gelmesidir (endoderm, mesoderm ve ectoderm). Üçüncü karaktere göre, onların barsaktan başka vucut boşlukları yoktur (coclom) ve organizasyona acoelomate adı verilmektedir. Anüsleri yoktur, bu nedenle, aynı pharyngeal açıklığından hem yiyecek alımı ve hem de atığın dışarıya atılması sağlanır. Dış hücre tabakası (=epidermis) ile belirgin ic organların arasındaki boşluk bir yumuşak doku ile dolmuştur (parenchyma). Mesodermal orijinli bu doku boşluklar tarafından ayıklanır (=schizocoelium) ve nütrientleri vucudun kısımlarına taşımak için cok dallanmış bağırsak mevcuttur. Terleme sistemi ve kan taşıma sistemi tamamen yoktur ve bu nedenle oksijenin transferinde difüzyon kullanılır. Bu da yassı solucanların düz olmasını sağlamaktadır. Metabolizimin tesisinde, hiç bir hücre dışarıdan uzakta değildir, zorunlu olan vucut şeklinin yassılanmasını sağlarlar. Hemen hemen bütün türler sahip oldukları oldukca kompleks üreme sistemiyle hermaphrodites’lerdir. Çoğu durumlarda, erkek ve dişi üreme yapılarının sayısı ve ayarlanması ile oldukca belirgin özel türlerdir ve çok benzer türlerin morfolojisinin ayırt edilmesinde taksonomik çalışmalarda kullanılabilirler. Yassi solucanların uzunluğu bazı serbest yaşayan türlerde 0.4 mm ve parasitik şekillilerde çeşitli metrelerde (fish tapeworm, Diphyllobothrium latum: 25 m in length) bulunurlar. Yassı solucanlar üç gruba ayrılırlar; 20,000 türü bilinen, 14,000 parasitler Cestoda (tapeworms) veya Trematoda (flukes) sınıfına aittirler. Tapeworm vertebrate’de bağırsak parasitleridir ve anatomik ve parasitims’in hayat tarihi ve modifikasyonlarını gösterirler. Flukes tamamen parasitik olarak bilinirler ve tape wormlara kıyasla kompleks hayat zincirine sahiptirler. Bir kaç genç stepden geçerler; bir, iki veya daha fazla hayvanın üzerinde yetişkin düzeye gelirler ve sonunda bir hayvanın üzerinde parazitik olarak yaşarlar. Bunun karsıtı olarak, Turbellaria serbest olarak yaşamakta olup tatlı suda ve nemli karasal ortamda coğunluktadırlar. Turbellarian yassı solucanların çoğu denizel ortamlarda ve okyanuslarda bentik olarak bulunurlar ve ayrıca sığ sularda da çok bulunurlar. Turbellaria’nin bir taksonomik alt grubu yüksek belirgin serbest yaşayan yassı solucanlar içeren order Polycladida’dir. Bu order’in üyeleri anatomik olarak çok dallanmış ve düzensiz bağırsak pharynx plicatus olarak buruşuklu pharygeal tüb ıle karakterıze edilirler. İlk bakışta, polyclad’ler çarpıcı şekilde goze hoş gelen renkli yassı solucanlardır. Tropikal resiflerde 150 yıldır yasadıkları bilinmektedir. Tropikal sularda yüzlerce türleri olduğuna inanılmasına rağmen şimdiye kadar çok az kısmı tamamen tarif edilebilmiştir. Rejenerasyon Karşıt olarak, yüksek vertebrates, bazı serbest yaşayan yassı solucanlar yeniden oluşmada muhtesem kabiliyetli olduklarını göstermektedir. Kafasının kesilmesi ve bir yenisinin büyümesidir. Kafanın yanal olarak ikiye, üçe veya daha fazlaya bölünmesiyle bir, iki, üç veya çok başlı solucan ile sonuçlanmasıdır. Solucanlar on parçaya bölünebilirler on tamamlanmış küçük solucan meydana gelir (Bakiniz: alt şekil, sol panel-tatlısu triclad Dagesia tigrina). Biyologların yeniden büyümeye büyük ilgi duymaları nedeniyle yeniden oluşumun üzerinde yapılan yoğun çalışmalar çeşitli yassı solucan taxa sistem modeline servis yapmaktadır (Bakınız: Bölüm: Sinirbiyolojisi’nde polycladler). Son zamanlarda, yeniden oluşum ile ilgili detaylı bilgi temelde polycladler üzerindedir (Order: Polycladida) ve tatlı su triclads (Order:Tricladida-üç-dört bağırsaklı anlamına gelir) ve diğeri planarians olarak bilinir (Bakınız: Bölüm: Phytogeny). Biyologların yeniden oluşumun üzerinde yüzyıldır yaptığı çalışmalara rağmen, bazı sorulara cevaplar, özellikle yeniden oluşumun kontrolu ve moleküler mekanism işleminin yakalanması zor görünmektedir. Bilim adamları planaria’nin temelde yeniden oluşumun yeteneğine sahip olduğuna hemfikirdirler ve neoblast adı verilen emriyonik dal hücreleri depolanmasını kullanırlar. Türlere bağlı olarak neoblastlar yetişkin solucanlarda toplam hücre sayısının 30% ‘unu kapsarlar. Bu totiponent hücreler, solucanın vücudunda serpiştirilmiş olup diğer hücre türlerinin büyümesinde yeteneklidirler ve iki rol oynarlar. Onlar, normal fizyolojik koşullarda ölenin yerine yeni hücre alarak yeniden oluşum için ham materyalini ve daha sonra iyileşmeyi sağlarlar. Yeniden oluşum oldukça hızlıdır. Kesilmeden 15 dakika içinde yaranın ucundaki epithelilal hücreler lesion’a yakındır. Birgün içersinde, yüksek sayıda neblast yaralı epithelium altındaki yeni diferansiyel yapılar büyüyen blastema içinde delil haline gelir ve yeniden oluşumun kesilmeden 10 gün içersinde optimal koşullar altında kaybolan kısımları tamamlanır (Baguma vd., 1994). Planaria kuvvetli kafa-kuyruk organlarına sahiptir (anterior-posterior kutuplanma). Kesildiğinde, anterior kesim yüzeyi hemen hemen daima yeniden oluşur ve yeni bir kafayı üretir ve aynı zamanda posterior kesim yüzeyi kuyruk yapıyı yeniden üretir. Solucanların bilgilerinin belirlenmesinin yeniden üretimde bir baş ve bir kuyruktan olup olmadığına dair bir mekanizmasının olması gereklidir. Şu anda, anterior ve posterior kutuplaşmasını açıklayan iki adet hipotez mevcuttur. Biri yeni oluşan epithelium arasında tumevarımsal iç hareket, başlangıç iyileşme işlemini kapsar ve blastema hücrelerinin altından geçer. Diğer hipotez ise anterior-posterior belirlenmesinde faktörlerinin moleküler gradientinin sıralanmasını önerir. Deneysel datanın çokluğuna rağmen her bakış için kesin bir delil yoktur. Çoğu tatlısu planaria sexual olarak yeniden oluşur ve oviparoustur (yumurtanın kuluçkası ile depolanır). Bazı türler parthenogenesis ile asexual yenide oluşum gösterirler. (spermsiz olarak yumurtanın aktivitesi). Bununla birlikte, taxonomik ailenin yassısolucanları Dugesiidae ve Planariidae (Order: Tricladida) nadir olarak ikili bölünme ile yeniden ürerler (Bakınız: üst şekil, sağ panel-tatlısu triclad Planarıa fissipara). Yetişkinler ikili bölünme ile bir küçük kuyruk parçası pharynx diferansiyeli ve iki hafta içinde de beslenen solucan haline gelir. Dugesia trigria’nin tabi olduğu toplulukta yeniden üreme araştırmalarında optimal sıcaklık koşullarının 24 C altında solucanların 20% si bölünme ile olduğu ortaya çıkmıştır. Çift bölünme ile asexual üreme bu dokumanda da belirtildiği gibi deniz polycladlerde de mümkündür (Bakınız: soldaki foto). Prostheceraeus (Familya: Euryleptidae)’nin polyclad’i de bölünme işlemini vermektedir. Kuyruk parçası ok ile belirlenmiş ve bölünmeden sonra yeni bir solucan oluşturarak ve alt hücre yeniden organasyon olacaktır. Bununla birlikte, yeniden üreme işlemi hakkında diğer bir açıklama, diğer hayvanların atağından ve “kuyruk kısmının bölünmesi” nden sonra beslenme amaclı ataklar neticesinde (Bakınız: Bölüm. Predation ve Defence) oluşmasıdır. Yiyecek ve Beslenme Çoğu bilinen, polycladler aktif etobur hayvanlardır ve leşle beslenirler ve aynı zamanda çeşitli sessile invertebrateslerin beslenmesinde kullanılırlar. Bazı türleri herbivorous olup yeşil alg ve bentik diatom’da özelleşmişlerdir. Acoella order’inin bir kaç yassı solucan türlerinde (bir eski taksonomik order, Polycladida’den ayırt edilen) sindirilen mikroalgler derecelenmemiştir ama endosymbionts (Zoochlorella) haline gelmiştir. Bu symbiotik ilişkide bağırsakta alg fotosentezde aktif olarak kalarak pareneyma hücre ve solucanların energy depolanmasında önemli katkılarda bulunur. Convoluta (canvolata reocoffansis - sağdaki foto Arthur Hauck)’nın bazı türleri genç solucanlar yüksek sayıdadırlar (Tetraselmis convolata, her bireyde takriben 25,000 adet). Yetişkin duruma geldiklerinde, canalıcı anotemiksel olarak değişimlerinin yansımasında endosysmbiontlara bağlıdır ve pharynx ve ağız fonksiyonlarının kaybederler. Beslenme için, C. roscoffensis alçak gelgitin parlak ışığında yüzeye gelir ve orada symbiotic alg vücudun epidermis boyunca serpilmişlerdir ve aktif olarak fotosentetiktirler (Holligan vd., 1977). Algler tarafından üretilen yiyecek (şeker) yassı solucanlar tarafından kullanılır. Bu manzara Fransa’nın korunmus kumlu sahillerinde ve İngiltere’nin bazı bölgelerinde gözlenebilir. Optimum cevresel pozisyonlarda bu solucanlar alçak gelgitte kumda mükemmel yeşil yapılar yapar. Pseudocerotidae familyasının birçok türü koloni yaşamayı tercih etttikleri düşünülmektedir ve katı ascidianlar, süngerler, ve bryozoonlar rejimlerinde normal özellik göstermezler. Beslenmede, çok buruşuk pharynx (pharynx plicatus) niçin ve nezaman kullanılmadığında bir cep içinde, çıkıntılarda koloni ascidianlarda bireysel zooidlerde genişlemis olabilirler. Proteolytic nesneleri dışarı atarken dokusal dallı bağırsak oluşmuştur. Gastrovascular boşluk, bütün besin parçalarını vucudun tamamına transfer eder. Pseudobiceros türlerinin gözlemi önerilir, av hayvanı dokusal pharynx tarafından yütülür (Bakınız: aşağıdaki görüntü) ve bütün hayvanlarda aynı ölçüde genişlerler. Bu türler, katı ascidian Corella willmeriana mantosuna sızar ve delme deliğini kullanarak birkaç saatte tamamını emerler. Tunicate’nin içersinde gençler bile bulunmuştur. Bütün şeyleri yedikten sonra, kayalara çapraz olarak sürünürler. Yassı solucanların yığını oluştuğunda insanlık açısından denizel ortamında bir felaket etkisi sözkonusudur. Tropikal polycladler istiridye’nin musibetidir ve dev deniz taraklarıdır (Stylochus matatası). Gastrovasküler boşluğundaki besinler yiyecek parçacıklarının ileri enzimatik derecelenmesinden sonra bağırsak dallarına doğru transfer olurlar ve yüksek bir absorb edebilen yüzeye benzerler. Çoğu yiyecek parçacıkları gastrodermal hücre tabakasının phagocytosis tarafından yutulurlar ve ileri enzimatik düzeyde iç hücresel parçalanma oluşur. Sindirilemeyen materyal pharynx’a doğru, yani yiyeceklerin girdiği deliğe doğru atılırlar, çünkü yassı solucanların kör sindirim sistemi bulunmaktadır. Bazı türlerde bu gözlenmiştir ve sindirimin tamamlanmasından sonra bağırsak fıskırtılan su yardımıyla temizlenir. Tür çeşitliliği ve polyclad yassı solucanların değişimi tropikal suların inanılmaz değişimi ile taxon’a benzer (Newman & Cannon, 1994), Bakınız.Bölüm: Taxonomi). Oldukça uzun zamanda, renk izleri muhteşem renklenmiş olan solucanlar sınıflandırılmada yeterli düşünülmüştür (Hyman, 1954, 1959). Bununla birlikte, birçok türlerin tanımlanmasında yeterli kimliğe sahip değildirler (Faubel, 1983, 1984). Newman & Cannon (1994)’de yaptıkları arazi çalışmalarında farklı genera’da (Pseudoceros - Pseudobiceros; Pseudoceros - Pseudoceros) çok benzer ve hemen hemen tamamen aynı renkli izleri taşıdığı ortaya çıkmıştır ve türler arası farklılığında farklı aileler üzerinde (Pseudocerotidae-Euryleptidae) daha detaylı inceleme gereklidir. Mukayese anatomisi uygun karakterleri kullanılarak göz numarası, göz ayarı, yalancı dokanakların şekli, pharynx ve özellikle üreme sisteminin ince yapısının analizi kanıtlanması için turbellarianlarin tür diagnosisleri için temel araçtır (Newman & Cannon, 1994). Erkek ve dişi üreme yapılarının seri olarak yeniden yapımı zordur ve özel lab aletlerine ihtiyaç vardır ve uzmanlar tarafından arzu edilir. Son zamanlarda, benzer polyclad türlerini ayırt etmede, molekuler data (DNA) sıklığı kullanılmıştır. Böyle araçları kullanmadan, polyclad yassı solucanların sınıflandırılması bazı durumlarda hatalı olabilir. Benzer renk izleri büyük farkla benzemesine rağmen ayni genetiksel olarak belirlenmiş renk ve örnek çeşitliliği ayni tür özellilerine sahiptir. Diğer bir değişle, tamamen aynı renkteki örnek belki farklı türde genera’ya veya hatta familya üyesi olabilir. Bu nedenle, eğer benzer renk örneklerinde olan iki polyclad örneği mukayese edıldiklerinde, çeşitli mümkün senaryolar akla uygundur. 1) Farklı genera ve hatta familyaya sahip solucanlarda, genel seçilmiş basınç ve aynı çevre kosulları altında aynı renk örneklerinin gelişiminde evrimsel gelişim kuvvetlidir. Phylogenetik terim açıklaması; bir benzer renk ilişkili gene seti (=allels) veya bir müşterek gene farklılığı phenotype sonuçlari üzerinde secilmiş basınç tarafından tercih edilir. Bu gibi olayların sıklığı analogous gelişim olarak düşünülür. 2) İkinci senaryoda, iki solucan aynı atayı paylaşırlar. Tahminler ışığında, bu ata daha önce avantajlı renklere ulaşmıştır, her iki örneğin renkli izlerinin mukayesesi hatta anotomiksel ve diğer genetik farklılıklara rağmen çok benzer olabilir. 3) Evrim gelişmekte olan işlemdir ve hiçbir zaman durmaz! Genesin renk örnek ilişkisinde gelişigüzel müşterekliliği, protein kodlama bölgelerinde veya düzenli DNA sıklığında, ışık, sıcaklık, beslenme gibi çevresel faktörlerin etkileri ile beraber polyclad renk izlerini etkilemektedir. Rahatça söylenebilir ki, evrim renkler ile oynamadır. Varsayılan predatörlerin farklılığı daha etkilidir: Mimicry ve Predation ve Defence). Phylogenetik zaman aralığında, bir türün görünümünde veya spectation değişim atlamasında, yeni türlerin tehlikesinde önder olabilir. Takip eden foto paneli açıkca ortaya koymakta ve farklı türler ile bir tek türün üyeleri arasında renk izlerini açıkca göstermektedir. Solucanların morfolojik ve DNA sıklığının kilitlenmesi nedeniyle hangi tariflenmiş senaryoların örnek için uygun olduğu gerçekte belirsizdir. Toxin Aposematic renklenme (Bakiniz.Bölüm: Mimicry) denizel invertebrate hayvanların içersinde bilinen genel defense mekanizmasıdır. Çok sayıda göze çarpan renkli slugları toxic alıkonmuştur. Polyclad yassı solucanlar açısından doğrudur. Polyclad yassı solucanların Pseudoceron concineu ve Planocera tentaculata kimyasal defens araştırması ve staurosporine türevlenmesi gibi yüksek toxic kimyasal bileşen açığa çıkarmıştır (Schupp vd., 1977 ve 1999) ve tetrododoxin (Miyazama vd., 1987). Tetrodotoxin proteinsiz bileşen (aminoperhydroqumazoline) olup günümüzde bilinen en kuvvetli paralytic toxinlerden birisidir. Sodyum (Na+) kanallarında voltaj-kapılı cok belirgin engelleyicidir ve büyük integral protein üyesi sinirsel hücrelerin plazma membranına doğru boşluk oluşturur ve Na+ iyonlarına izin verir. Çeşitli uyarıcı cevaplar, boşluklar (=genes), ve açık ve kapalı mebrane potensiyelinin değişimi gibi hücre dışı ve içi belirli kimyasalların varlığı ve uygun fonksiyonelliği sinirsel hareket potensiyelinde temel teşkil etmektedir. Bunula birlikte, tetrododoxin kanalları bloke eder. Tetrodotoxin ve onun habercisi yüksek konsantrasyonlu mukus, sindirim organlarında, polyclad Planocera multietentacula (Miyazawa vd. 1987, Noguchi vd, 1991) yumurtalarda ve üreme organlarında önerirler. Yassı solucanlar predatorlere karşı defans ve alarm maddesi tetratoxine sahiptir. Tetratoxin geniş farklı hayvan örnekleri tarafından izole edilmiştir bunlar pufferfish (photo: Arothon nigropunctatus, order: Tetraodontiformers), parrotfish, genus Atelopus’un zehirli oklu kurbagalar, mavi-cevreli ahtopot, deniz yıldızı, angelfish ve xanthid crabdir. Japon mutfağında pufferfish hassas olduğundan, tetrodoxoxinden zehirlenme Japonya’da halk sağlığını ilgilendirmektedir. Yumurtalık, çiğer, bağırsak ve pufferfish derisi tetradotoxin miktarını içerir ve bu da hızlı ve zorlu üremeye yeterlidir. Geleneksel olarak çok küçük miktarda ciğer et ile tüketilir. Dudakların oluşum duygusu ve dil gercek akşam yemeği tecrübesidir. Fugu’nun hazırlanması ve satışı özel restaurantlarda olduğundan oradakiler eğitilir ve evde hazırlanmasından ve tüketiminden yanlış tanımlandığı ve yanlış donmuş balık ürünleri nedeniyle bireysel olarak zehirleme olayı (30/100 kışı/yıl) olur. Pufferfish zehirliliği hakkında daha fazla bilgi için Bakınız. FDA/CFSAN web sitesinde Amerikan Besin Emniyeti & Nutrient Aplikasyonu’na başvurunuz. Eşleşme ve Üreme Polycladler oldukça ilkel oldukları için kimyasal bilesenler besin bulmada ve partneri ile arkadaşlık kurmasında anahtar rol oynarlar. Büyük yalancı dokanaclarda anterior sinirinin ayrıntıyla donatılması bir delildir ve bu solucanlar temelde resif çevrenin kavranmasında ve davranışlarıyla kararda kimyasal duyu aleti olarak kullanılır. Genel olarak, polycladler derialtında erkek ve dişi üreme organlarina sahiptirler. Onlar karşılıklı dollenme ile birleşerek çiftleşirler. Bir kere, aynı türe sahip yetişkin solucan oldukca kaba çiftleşme hareketi yaparlar, bu derialtı döllenme olarak tarif edilir (üst görüntü, Pseudoceros bifurcus). Solucanların çiftleşme zamanında birbirlerine doğru hareket ettiği, değdiği ve birbirlerine sarıldıklarında (sol görüntü aşağıda, Pseudoceros graveri) eş zamanlı olarak penis papillae ve stylet dışarı çıkar (İki görüntü aşağı sağda, Pseudobiceros bedfordi). Onlar, daha sonra birbirlerini başka yere çekmeyi denerler, bazen de kendi ortaklarına zarara sebep verirler. Yaralı solucanlar 24 saatte sağlıklarına yeniden kavuşurlar. Ne zamanki biri diğerine penetre ederse, birkaç dakika partnerinin epidermiste içine oturtur. Bu zamanda, erkek dol hücresi partnerine enjekte edilir (Üst görüntü, sağ). Son zamanlarda, Pseudoceros bifus’in eşleşme davranışları gözlenmesinde (Michiels& Newman, Nature, vol.391:647), bireysel polyclad sperm vermeyi arttırır. Erkekler için, spermlerin enjeksiyonu direk yumurtalara gider ki orada dişi yarasının iyileşmesinin maliyeti taşıma kapasitesini ve döllenmede kontrolu kaybeder. Bu nedenle, dişilerdeki çok kuvvetli secme bu maliyetten kaçınmaktadır. Bu arka yukarı ile buna ulaşılır, bir eş davranışı her iki striking ve parrying’de etkilidir. Bireyselde her ikisi de deneme cekingesiyle davranırlar. Gelişme olarakta bu girişim sperm donatısında daha fazla sperm verilmesini sağlar. Daha fazla başarılı döllenme ile daha iyi döllenme sağlar. Derialtı döllenmeden sonra sperm aktif olarak parenchyma yumurta kanalına doğru hareket eder. Onlar muhtemelen oocytes tarafından veya dişi üreme kanalının değer hücrelerde serbest hale getirilen moleküllerin gradienti tarafından cazip olurlar. Döllenmiş yumurtalar daha sonra birkaç yüz yumurtanın düzensiz yumurta yığını halinde depolanir ki daha sonra sıkıca paketlenmiş bir tabaka haline gelirler. Diğerinde, iri çakılların altında ascidian kolonileri halinde bulunurlar ve tercih ettikleri avlanmadan biridir. Serbestce yüzmenin gelişmesinden on gün sonra, transparent larva kuluçkası oluşur (=Muller’s larva). Çizelgeden de anlaşılacağı gibi gelişmelerinde bibirini takip eden üç step vardır. Müller larvası sekiz lob tarafından karakterize edilirler. Loblar vurus yapan cilia taşırlar ki bu ciliate’e benzer yüzmeye izin verir (en soldaki foto: koyu arazi mikroskobu altındaki larva stepi). Larva plaktonik bölüme girerek yerleşmeden ve metamorfize olmadan önce birkaç gün yüzer. Gelişmesi esnasında, larva lobları absorbe olmaya devam eder ki orada sindirimleri gelisir. Minyatür yetişkin solucanlar haline gelindiğinde metamorfoz tamamlanır, yanlızca birkaç mm boyutundadırlar ve hayatın bentik bölümüne girerler. Larvaların nudibranch metamorfisinde yapılan gelişmiş ileri düzeyde çalışmalardan elde edilen bilgilere göre, türlerin tercih ettiği besinler tarafından kimyasal bileşikler üretilmesi hedeflenir. Bu mekanizma, yerleşme alanı genç organizmaların yetişmesinde yeterli yiyecek sağlamasına emin olur ve bu nedenle, bu hayatta kalabilmek için daha büyük bir şanstır. Polycladler lab. koşullari altında larva halinde yerleşmeksizin kuluçka olduktan sonra iki hafta içersinde solucan olabildikleri için, polycladlerin bentik hayat bölümüne girmelerinde dış güçlerin zorunluluğu bilinmemektedir. Polycladlerin Taksonomisi Polycladida (class: Turbellaria)’nin taksonomik order’i bir kaç yüz tanımlanmıs türleri kapsar. Bunların çoğunluğu (7 adet genera’da 200 kadar tür) ve Pseudocerotidal familyasında toplanırlar ki bu bugünün en iyi tropikal polyclad familyası olarak kabul edilir. Pseudocerotis en muhteşem renkli yassı solucanlardır ve daha sonraki en belirgin tropikal polyclad ailesinden Euryleptidae (130 türle birlikte) buruşuk pharynxleri tarafından karaterize edilirler ve ayırt edilirler ve aynı zamanda onlarda tüp halinde pharynx mevcuttur. Pseudocerotidsin diğer genera’si daha az yanıltıcı olmakla birlikte çok az bilinmektedir. Bazıları hatta monospecific’tir. Polyclad yassı solucanlar için Tayler. S & Bush L.F, 1988 web sayfasına giriniz. Turbellarian platyhelminths Taxonomisi Polyclad yassı solucanlar üzerinde taxonomik çalışmalar oldukça zordur. Onların uygun boyut, şekil, renk ve markalamaları, göz ayarlamaları, yalancı dokanaçlar, pharynx, gonopore’ların topoğrafyası ve emme gibi karakteleri gözonüne alınmalıdır. Bazı durumlarda, tanımlamada bu karakterler yetersiz ise, üreme sisteminin karşılaştırmalı morfolojisi özel lab. aletleri kullanılması temel araçtır ve uzmanlar tarafından tercih edilir. Son zamanlarda, moleküler DNA (DNA sıklığı) ayni türdeki benzer polycladlerin farklılığının ayırt edilmesinde kullanılmaktadır (Bakınız.Bölüm:Phylogeny). Takip eden tablo dalan ve UW fotoğrafcılar için polyclad yassı solucanların tanımlanmasında faydalı bir araçtır. Filojeny İlk Metozoa’nın hemen hemen radyal hayvan olduğu için, iki taraflı simetrik (Bilateral) nin radyal atalarından yayılmıştır ve radyalden iki taraflı simetri arasında değişim olmuştur. Bu değişim hala oluşmaktadır ve çeşitli yüksek düzeyde spekulatif bağlantılar yapılmıştır (Brusca & Brusca, 1995). Paleontolojik ve moleküler data gösterir ki çoğu iki taraflı phyla ve Cambrian explosion zamanında bölünmüşlerdir, M.O. 56 ve 520 yıllarında oluşmuştur (Wang, vd., 1999). Phylum platyhelminthes erken Metasoanın farklı grup oluşturduğu ki bu metazoa’nin orijini ve evriminin anlaşılmasında anahtar rol oynamıştır. Coğu zooloji ders kitaplarında, erken ortaya çıkan clade formasyonu, iki taraflı simetri (Bilatera) ile bütün hayvanların kızkardeş grubu olarak tarif edilmiştir. Diğer yazarlar görmüşlerdir ki, çoğu Protostomia’nin kızkardeş grubu veya grup protostome coelomate atalarından türemişlerdir. Filojenik yerleşmenin doğruluğu esas zorluluktur ve bütün Platyhelminthes için synapomorfilerin iknasının kapanmasıdır. Bu belirtir ki onlar polyphyletic’tir. Basitleştirilmiş taxonomik şekilde, phylum Platyhelminthes dört sınıfı tutar. Trematodal (fluxes), monogenea ve Cestoda (tapeworms) ki bunlar vertabratenin endo/ectoparasiteyi sunar. Bazıları kompleks, hayat döngüşü, ve sınıf Turbellaria ana serbest yaşayan yassı solucan türlerini verir. Turbellaria 9 adet order içerir. Coğu açıklanan orderler bu çizelgede gösterilmemiştir. Acoel yassı solucan (Acoela) uzun zamandır, Turbellaria’nin order’i olarak sınıflandırılmıştır. Onlar en ilkel turbellarian order olarak düşünülmüş ve bazal metazoan olarak manzaralanmıştır ki ciliate protozoans (=syncytial veya ciliate=acoel theory) veya diploblast ve triploblast arasında direk link vardır (=planuloid-acoeloid theory)’den evrim geçirerek oluşmuşlardır. Onların basit organizasyonu yorumlanmıştır ve daha kompleks ataları (regressive evrim) ikincil özelliklerinin kaybolması incelenmiştir. Bugün, teorinin destek delillerinin birçok çizgisi, bilinmeyen iki taraflı atalardan Kambrien radyasyondan önce. acoels dallanmasıyla olmuştur. Örneğin, aceoller diğer platyhelminthes iki loblu ve neuropile’li beyinleri var olup sinir hücreleri ile cevrilmiş olduğunu sinir sistemi yapısı işaret eder (Bakınız. Bölüm: Polyclad ve Neurobiology). Karşıt olarak, acoellerin sinir sistemi sinir hücrelerinin salkımı tarafından basit beyin olarak oluşmuştur ve cok sayıda uzun sinir kordları ortagon yapmazlar (Ruitz-Trillo vd., 1999). Son zamanlarda, DNA (desorxy-bonucleic acid) moleküler teknik ve protein sıklığı başarılı kullanılmıştır. Phylogenetic hayat ağacı kurulur ve hayvan taxa’ları arasında filojenetik ilişkisi araştırılır. En yaygını, DNA sıklığı yüksek düzeydeki gene’leri muhafaza etmesidir, mesela, ribozomal RNA (rRNA) genes kodu bu gibi çalışmalarda kullanılmıştır. 18 S ribozomal DNA genesinin sıklık datası mukayesesinde ve diğer Metazoa kanıtları Acoel’in Platyhelminthes’e ait olmadığı belirlenmiştir. Bu buluşlar önerirki basit radyal simetrik organizma (jelyfish gibi) ve daha komplex iki taraflı simetrik organizmalar (arthropods ve vertebrates) boşluk (gap) vardır. Onlar kendi phylum’larına yerleştirilmelidirler (Ruisz Trillo vd., 1999). Bazı çarpıcı özellikleri vermesi polyclad genera’da en yaygın tanımlamada yardımcı olacaktır. DNA sıklılığı dataları aynı zamanda aynı organizmaların morfolojilerinin ayırt edilmesinde de kullanılır. Bu Goggin & Newmann (1996) tarafından pseudoceroid turbellarianlar için teşhir edilmiştir. Ribozomdaki RNA (rRNA) gene salkımındaki spacer-1 (JTS-1)’dan elde edilen Nucleotide sıklığı dataları (Pseudoceros jebborun, Pseudoceros paralaticlavus) ve pseudocerotid polycladların generasında (Ps. jebborum ve paralatic lavus versus Pseudobiceros gratus) türlerin ayırt edilmesinde kullanılmıştır. Ps’in ITS-1’nin nukleotide sıklığı Ps. paralatic lavus’dan 6% farklıdır ve Pseudobiceros gratus’tan 36% farklıdır. Beklenildiği gibi bu sonuçlar aynı genusun türleri farklı genera’dan alınan türlere kıyasla phylogenetiksel olarak yakın ilişkili olduğunu kanıtlamaktadır. Bu nedenle, ITS-1’den elde edilen data sıklığı pseudocerotid yassı solucanlar ayırt edilmesinde faydalı bir taksonomik araçtır. Ribozomal DNA Salkımı Büyümekte olan bir hücre 10 Mio ribozomlar ihtiva eder, protein üretiminde hücresel araçtır (mRNA’nin proteine transferi). Ribozomal RNA her tip ribozomal RNA molekülü (5 S, 5.8 S, 18 S, 28 S rRNA) nin temel yapısal komponenttir ve protein sentezinde hücre ihtiyaçlarında birleşmesi açısından her hücre generasyonunda sentez edilmelidir. Ribozomal RNA’nın yeterli miktarda üretimi için eukaryotic hücreler ribosomal RNA (rRNA genes = rDNA) nın kollanmasında çok sayıda genes kopyası içerirler. İnsan hücreleri her haploid genome’de aşağı yukarı 200 rRNA gene kopyası içerirler ve beş farklı kromozomda (chromosomes 13, 14, 15, 21, 22) küçük salkımlar halinde dağılmışlardır. Kurbağa hücreleri Xenopus leveis bir kromozomda bir tek salkımda 600 rRNA gene kopyası içerir. Bununla birlikte, genel rRNA izleri bir kromozomda bir tek salkımda rRNA gene organizasyonunun genel izinde bütün eukayot hücrelerde tamamen aynıdır. Verilen kromozomda yüksek dereceden rRNA genesinin çok sayıda kopyasının gelişigüzel serileri ayarlanmıştır, her bir gene diğer bolgedekinden ayrılmıştır, DNA boşluk yaratıcı olarak da bilinir ve türler içinde uzunluğu ve sıklığı değişmektedir. Bir tek salkım rRNA genes’i 18 S, 5.8 S, ve 28 S rRNA molekülü içerir ki o (ITS-1 ve ITS-2) tarafından içten ayrılır. Bitişik salkımlar 10,000 nucleotide uzunluğundadır ve herbiri dışsa açıklı bölgeler (ETS) olarak ayrılmıştır. rRNA genes’i RNA polymerase tarafından kopya edilmiştir ve her bir genes seti aynı temel RNA’yi üretir, 45 S öncü rRNA (pre-rRNA) olarak bilinir. Önce kurulmuş ribozomal partiküllerindeki nukleusu terkeder, 45 S pre-rRNA (takriben 5,000 nucleotides, 18 S Rrna (takriben 2,000 nucleotides, ve 5.8 rRNA ( takriben 160 nucleotides). Geri kalan kısımda her temel kopya (ETS, ITS-1 ve ITS-2) olarak derecelenmistir. Takriben 200 farklı hücresel protein ve bir 5 S rRNA diğer kromozom locus’tan türetilir ve ribozomların paketlenmesinde yeni sentezlenmiş rRNA kullanılmıştır. Bu paketleme nucleusta oluşur ve bu büyük geçirgen yapı nucleus olarak adlandırılır. Bozulmamış rRNA molekulleri ribosome üretiminde temel olduğu için, protein sentezi ve hüçre fonksiyonu, kuvvetli basınç seciminde (evrim) fonksiyonel rRNA mevcuttur. Böylece, ecukaryotic hücrelerde çoğu genişler ribosomal genese bağlıdır bu da müthiş bir benzerlik sıklığı gösterir ve hatta phylogenetik taxa dahil olmak üzere. Bununla birlikte, iç alan bölgede (ITS-1 ve ITS-2) daha az homoloji bulunmuştur çünkü bu DNA bölgeleri yapısal RNA’ya katkıda bulunmaz. Bu nedenle, daha az secilmiş basınç uygulanmakta ve DNA sıklığı da farklı olmaktadır (müşterek nokta), aynı genusun türleri arasında bile bu bölgede elde edilmiştir. Bu ilişki rDNA datasındaki molekuler özellikler (Hayat ağaçi) çok faydalıdır ve yakın ilişkili türlerin ayırt edilmesinde kullanılır. Neurobiyolojide Polycladler Serbest yaşayan polyclad yassı solucanlarda Notoplana acticola gibi beyin ve peripheral sinir network araştırma halindeki en ilkelsinir sistemini sunar. Küçük ama iyi tanımlanmış beyin (sağ panel) ve uzun sinir ipleri ve çapraz hatlar tarafından çok sayıda dairesel motoneuronlarla bağlanmıstır. Bu sinir sistemi yassı solucanların cevresel değişimlerinin iç ve dış etkileri mümkündür. Yüzeysel olarak Netoplama articola’nin beyni diğer invertebratedekilere benzemesine rağmen hücreleri cok sayıda vertebrate özelliklerine sahiptir. Hücre tiplerinde tamamlanmış, dallanmış izlerle beraber çok şaşırtıcı farklılık vardır. Çok kutuplu neurone’ler yaygın tipik, iki kutuplu hücreler olarak ayırt edilebilir. Küçük çok kutuplu hücreler glial veya interneurones beyinde serpiştirilmiş olarak bulunmuştur (Keenaneld, 1981). Daha önceki çizimden çıkartıldığı gibi, bazı tabaka tarafından çevrilmiştir. Uzun sinir kordları ve neuronlar dairesel alıcı hücreleri bağlar (ocellinin fotoduyarlı hücreleri) beyinden direk olarak uzanırlar. Ventral sinir kordu dorsal sinir korduna nazaran daha kuvvetli gelişmiştir. Yassı solucanlar Sinirbiyolojisi araştırmaları, beyin araştırmaları açısından en mükemmel model sistemidir cünkü oldukça ince olup beyinleri birkaç mm büyüklüğünde yanlızca birkaç 100 – 1000 hücre içeriler ve deneysel çalışmalarda hazırlanmıştır. Son zamanlarda, çeşitli konular sinirselbiyoloji ve elektrofizyoloji ilgisi adreslenmiştir. Cytoarchitecture’in Analizi ve Sinirsel Bağlantılar Bu sayfadaki bilgilerin Powerpoint Sunumunu (ppt dosyasını) www.sunumbankasi.net adresinde bulabilirsiniz You can find the powerpoint presentation of this web page content at www.sunumbankasi.net Polyclad yassı solucanların beyinlerinin üç boyutlu yapısınin kontrolu için sinir hücreleri özel olarak boyanmıştır. Camillo Golpi (1843-1926) metoduna göre yürütülmüştür (20. yüzyil biyologlar tarafından bilinenlerden en iyisi). Florosan boyaları kullanılarak ic hücrelerdeki iontofarlar ile beyin içindeki sinir konfigürasyonu araştırılmıştır. Bu deneysel yaklaşımda, Koopwitz ve arkadaşları (1966) tarafında belirlendiği gibi, Notoplana articula’nin örneği aneztezi edilmiştir. Sonuç olarak, sinir sistemi dakika cubuğu ve aletleri kullanılarak belirlenmiştir. Beyin örtüsü protesae sindirimi ile ortadan kaldırıldı, beyine ve ganglion hücrelerine direk girebilmek için tek sinir hücrelerinde ultra ince cam mikroelektrot tekniği kullanılmıştır ve lucifer yellow gibi florosan boya ile doldurulmuştur. Enjekte edilen boya hücre içinde sağa doğru axonların ucuna kadar göç etmiş ve florosan mikroskopta izlenmiştir. Laser taramalı florosan mikroskobu kullanarak digital data serili iki-boyutlu resimlerden üç-boyutluya çevrildi ve mümkün olan polyclad beynindeki sinirsel cytoarchhitecture gelişmeler harita haline getirilmiştir. Sinir Tamir ve Sinirsel Plastisite Çalışmaları Şimdiye kadar incelenen bütün invertebrate ve vertebrate türlerideki çalışmalara göre, Notoplana acticola beyin dokusu yeniden üretemez. Bununla birlikte, sinirsel tamir hızlı ve yüksek oranda elverişlidir. Polyclad beyni yassı solucana taşındığında yeni bağlantılar organ nakli edilen beyin ile dairesel network sinir alıcı uçları ameliyattan 24 saat sonra tesis edilmiştir. Bunun gibi organ nakli deneyler Davies ve çalışma arkadaşları (1985) tarafından tarif edilmiştir. Deneylerde dört beyin organ nakli oryentasyonu; normal, ters, ters yüz, ve ters ters yüz olmak üzere kullanılmıştır. Beyin organ naklinin fonksiyonu test edildi ve her iki davranış ve elektrofizyolojik kriterler olçülmüştür. 23 gün içinde, organ naklinin 56% si solucan ve diğerleri organ naklinin iyileştirilmesindeki doğru davranış, kaçınma dönüşü, ditatix hareket, ve beslenme gibi dört davranışta test edilmislerdir. Beyindeki mevcut sinirler kendilerine en yakın dairesel sinirlerle birleşirler. Ameliyattan 36 sonra bazı normal davranışlar gözlenebilir. Kontrol eksikliği olan yassı solucanlar organ nakli olmadan davranışlarını kurtaramazlar. Birkaç beyin davranışında hücre içi kayıtlar da dairesel sinir hücreleri ile uygun bağlantılar yeniden kurulmuştur. Bu sinirlerdeki boyanmış hücreler ters oryentasyonlu beyin ortaya çıkarmıştır, bireysel sinir hücre işlemlerinin beyini terketmesinden sonra uygun olmayan bir şekilde sinir kordu ile ilişki kurmakta olup, bazı işlemlerde 180 0 li sinir kordu , ki onlar normal olarak yerleşen operasyona maruz kalmamış solucanlardır (Davies vd, 1985). Molekuler temeli ve yeniden bağlanan belirgin sinirleri ortaya çıkarmak çok ilginçtir. Konakladığı hayvanın davranışında bazı bilgiler çok önemlidir, paraplegia veya kazadan sonra sinir sisteminin ciddi olarak yaralanması gibi. Dağıtım ve Buluş Polycladler boyutları, renk örnekleri, sıvı içindeki hareketleri nedeniyle SCUBA dalgıçları tarafından tesbit edilebilirler. En yaygını, gün esnasında onlar resif eğimlerin dışında, üzerinde veya uçlarında görülebilirler. Onlar yarıklarda, kaya altlarında, bazende çıplak sedimentlerde veya çamurlu tabakalarda bulunurlar. Bazı türleri resif sırtlarında yüzerken görülmüşlerdir. Polycladler tercih ettikleri yiyeceklerin üstünde veya yanında dinlenirler çok nadiren de olsa süngerlerin veya koloni ascidianlarin üzerinde , çoğu resif sırtında çok iri çakılların altında bulunmuşlardır. Crytic türleri çok ender bulunurlar çünkü kendilerinin normal hayatları zamanında yeraltında karışmışlardır. SCUBA dalgıçlarına ve UW fotoğrafçılarından ilgi duyanlara polyclad türlerini bulmak için çakıl altlarında ve çoral taşlarının etrafında bulabileceklerini tavsiye ederiz. Şans ve sabırla polyclad türleri bulunabilir. Bununla birlikte, bu hassas solucanlara dikkatlice değmek ve ele almak gerekmektedir. Polycladler stress altında kendi-kendini imha etme özellikleri vardır. Onlar otoliz, mukoz parçalarını kirarlar veya buruştururlar ve daha sonra yapılacak incelemeler için fotoğraf çekilmesini imkansız hale getirirler. Bununda ötesinde, kendi belirgin renkli örneklerini kaybederler. Bu nedenle çoğu fotoğraflar mümkün olduğu kadar onlari yaşam yerinden rahatsız edilmemelidir.Yeni türlerin tarifi, örneklerin toplama, koruma, ve detaylı çalışmada, tamirde özel teknikler mümkündür. Polyclad’e ilgi duyan dalgıçlar yeni türlerin tanımlanmasında katkıda bulunacakların Dr.Leslie Newman ile kontak kurmaları (Schooling Resource Science and Management, Southern Cross University, P.O. Box 117, Lismore, NSW, Australi 2480) çünkü kendisi tamir ve koruma konusunda güvenilir metod geliştirmiştir. Leslia şimdi Indo-Pacific polycladlar üzerinde çalışmaktadır. Dünya capında 350 tür içeren database ile onların besin ve üremeleri hakkında bilgi vermektedir. Oya Bezen Çakın  

http://www.biyologlar.com/yassi-solucanlarin-anatomisi

Epitel Doku

Epitel dokusu, sıkıca biraraya gelmiş polihedral hücreler ile çok az hücrelerarası maddeden oluşur. Bu hücreler arasındaki bağlantılar güçlüdür. Böylece, oluşan hücresel tabakalar vücudun yüzeyini örter ve boşluklarını döşer. Epitel dokusunun başlıca görevleri: Yüzeyleri örtmek ve döşemek (deri) Emilim (barsaklar) Salgılama (bezlerin epitelyal hücreleri) Duyu algılama (nöroepitel) Kasılma (miyoepitelyal hücreler) Kökeni: Her 3 germ yaprağından da gelişir. Deriyi, ağız, burun ve anüsü döşeyen epitel ektodermal; solunum, sindirim sistemi ve sindirim sisteminin bezleri (pankreas ve karaciğer) endodermal; kan damarlarının endotel örtüsü mezodermal orijinlidir. Hücre şekli: Yüksek prizmatikten, kübiğe ve alçak yassıya kadar değişirken , boyutları da değişiktir. Çekirdeğin şekli çoğunlukla ve kabaca hücre şekline uyar. Bütün epitel hücreleri, altlarında bulunan bağ dokusu ile temas halindedir. Bunların bazal yüzeyindeki tabaka bazal lamina olarak isimlendirilir. Yalnızca elektron mikroskopta görülen bu tabaka ince fibrillerin oluşturduğu narin bir ağdan meydana gelen 20-100 nm kalınlığında yoğun bir tabaka olarak belirir ve lamina densa olarak adlandırılır. Lamina densa’nın yanısıra bazal laminadaki yoğun tabakanın tek ya da her iki yanında elektron-geçirgen tabakalar bulunabilir, bunlar lamina rara ya da lamina lusida olarak isimlendirilir. Bazal laminanın ana bileşenleri 1-Tip IV kollajen 2-Laminin (glikoprotein) 3-Heparan sülfat (proteoglikan) dır. Bazal lamina, altındaki bağ dokusuna tip VII kollajenle ve yüzeysel dermisin elastik elementlerinden olan mikrofibril demetleri ile tutunur. Bazal lamina yalnızca epitelyal dokularda değil, aynı zamanda bağ dokusu ile temas eden diğer hücre tiplerinde de bulunur. Bazal lamina, bağ dokusu ile diğer dokular arasında makromoleküllerin değiş – tokuşunu sınırlayan yada düzenleyen bir bariyer oluşturur. Hücrelerarası etkileşim için gerekli bilgileri de içerir. Bir diğer fonksiyonu ise epitelyal hücrelerin yerini ve hareketlerini düzenler. Bazal laminanın bileşenleri epitel, kas, yağ ve Schwan hücreleri tarafından salgılanır. Bazen retiküler lifler, bazal lamina ile sıkı bir ilişki içinde olan ve retiküler lamina adı verilen bir tabaka oluştururlar. Bu retiküler lifler, bağ dokusu hücreleri tarafından üretilirler. Bazal membran, akciğer alveolleri ve böbrek glomerüllerinde her iki epitel hücre tabakasına ait bazal laminaların kaynaşması ile oluşan, bu nedenle bazal laminadan daha kalın olan ve ışık mikroskobu ile görülebilen yapılardır. PAS + dir. Genellikle 2 bazal laminanın kaynaşması ile oluşabildiği gibi bazen bir bir bazal bir retiküler laminanın birleşmesi ile oluşur. Epitel Dokusunun İnnervasyonu: Epitel dokularının çoğu lamina propriadaki sinir pleksuslarından zengin duyu sinir sonlanmaları alır. Epitel Hücrelerinin Yenilenmesi: Epitel dokuları dayanıksız yapıdadır, hücreler mitotik aktivite ile devamlı olarak yenilenir. Yenilenme hızı ince bağırsakta süratli (2-5 gün), pankreasta yavaştır (50 günde bir). Çok katlı ve yalancı çok katlı epitelde mitoz, germinal tabakada meydana gelir. Metaplazi: Bazı fizyolojik ve patolojik şartlar altında bir epitel tipi değişime uğrayarak başka bir epitel tipine dönüşür. Polarite: Epitel hücrelerinin önemli bir özelliğidir. Vücut dışını veya vücut boşluğunu sınırlayan apikal yüzü ve bazal laminaya oturan, iç vücut yapılarına dönük bazal yüzeyi vardır. Kan damarları epitele girmediğinden bütün besinlerin lamina proprianın altında bulunan kapillerlerden çıkarak epitele geçmesi gerekir. Besinler ve epitelyal hücre ürünlerinin öncülleri, bazal laminadan diffüzyonla geçerek bazo-lateral yüzeylerinden genellikle de enerji gerektiren bir işlemle hücre içine alınır. Epitel hücrelerinin aktivitelerini etkileyen hormonlar, nörotransmitterler gibi kimyasal ulakların reseptörleri de bazo-lateral membranda toplanır. Absorbtif hücrelerde, apikal hücre membranı yapısındaki membran, proteinlerin yanısıra disakkaritler ve peptidazlar gibi enzimleri de içerir. Bu enzimler, emilen moleküllerin sindirimini tamamlar. Sıkı bağlantıların, çeşitli hücre membran bölgelerindeki esas membran proteinlerinin birbirine karışmasını önlemeye yardımcı olduğu düşünülmektedir.   Vücudun iç ve dış yüzeyini örter.Bunun 4 görevi vardır;Bulundukları organı dış etkilerden korumak,Salgı yapmak,Emmek, Mukus ve benzeri maddeleri iletmek.Epitel doku işlevine göre 2 grupta incelenir; 1.Örtü epiteli:Asıl görevi korumaktır.Ancak bazen emilim görevide yaparlar.Hücrelerinin sıralanışına göre Tek katlı ve Çok katlı olmak üzere ayrılırlar. A.Tek katlı epitel:Yan yana dizilmiş hücrelerden oluşur.Hücreleri yassı,kübik veya silindiriktir., a.Tek katlı yassı epitel: Akciğer alveolleri,kan damarlarının iç yüzü ve kılcal damarlarda bulunur. b.Tek katlı kübik epitel:Omurgalı böbreklerinde,tiroit bezinde bulunur. c.Tek katlı silindirik epitel:Omurgalının solunum yollarında,incebağırsakta bulunan silindirik epitel emme görevi yapar. B.Çok katlı epitel:Üst üste sıralanmış hücrelerden oluşur.Omugalıların derisinde bu doku vardır.Bu epitel dokuyu incelediğimizde en altta silindirik,ortada kübik,üstte ise yassı epitelden oluşmuştur.En üstteki epitel genellikle ölüdür.Bu ölü hücre alttaki canlı hücreleri dış etkilerden korur.Kan damarı içermez. 2.Salgı(Bez) epiteli;Salgı yapma yeteneğindeki hücrelerdir.Tükürük bezi,mide bezleri,ter bezleri,hipofiz,tiroit gibi salgı yapan organlarda bulunur.Hücre sayısına göre; A.Tek hücreli bezler ; Silindirik hücrelerden oluşur.Bunlara “goblet” hücresi denir.Toprak solucanının derisinden,sindirim kanalından,solunum organlarından salgılanan mukus buna örnektir. B.Çok hücreli bezler; Salgı yapan hücrelerin bir araya gelmesi ile oluşurlar.Salgılarını bir kanala ve buradan vücut boşluğuna veren bezlere ekzokrin(dış salgı) bezi denir.Tükrük bezi,mide ve bağırsak bezleri ile gözyaşı bezleri dış salgı bezleridir.Salgılarını doğrudan kana veren bezlere endokrin(iç salgı) bezi denir.Bunlar kanalsız bezlerdir.Salgılarına hormon denir.Hipofiz,tiroit,paratiroit,böbreküstü bezleri birer iç salgı bezidir

http://www.biyologlar.com/epitel-doku

HÜCRELERARASI BAĞLANTILAR

Epitel hücreleri birbirlerine sıkıca yapışmıştır, ayırmak için oldukça büyük bir mekanik güç gerekir. Hücrelerarası yapışma özelliği, çekme kuvvetine ve basınca maruz kalan epitelyal dokularda (deri) belirgindir. Yapışma; kısmen plazma membranının membran proteinlerinden olan glikoproteinlerin bağlayıcı özelliğinden (cell adhesion molecules) ve az miktardaki hücrelerarası proteoglikanlarla sağlanır. Bazı glikoproteinler, ortamda Ca++ bulunmadığında yapışkanlıklarını yitirirler. Bu yapışmaya ek olarak, epitel hücrelerinin lateral membranları arasında bağlantı yapıları vardır. Bu bağlantılar yalnızca yapışma bölgeleri olarak görev yapmakla kalmaz, aynı zamanda hücrelerarası aralıktan (paraselüler) materyal akışını önler ve komşu hücreler arasındaki iletişim mekanizmasını oluşturur. Bağlantılar, hücrenin tepesinden tabanına doğru belirli bir düzen içinde bulunurlar. Zonula okludens (sıkı bağlantı): En üstte, komşu hücrelerin unıt membranlarının dış yapraklarının kaynaşması ile oluşur ve 5 tabakalı bir görünüm oluşur. Fonksiyonu epitel hücreleri arasında (paraselüler yol ) apikalden bazale ya da bazalden apikale madde geçişini engelleyecek şekilde oldukca sıkı bir tutunma meydana getirmektir. *Sıvı alışverişinin çok olduğu proksimal tübülde 1 veya yok *İdrar geçişinin engellendiği mesane epitelinde ise çok sayıdadır. Zonula adherens: Bu bağlantı hücreyi çepeçevre sarar ve bu yapının komşu hücreleri birbirlerine bağladığı düşünülmektedir. Bu bağlantıda, aktin içeren çok sayıda mikrofilamanın, bağlantı bölgesi membranlarının sitoplazmik yüzeyinde bulunan yoğun plakların içine girer. Plaklar miyozin, tropomiyozin, a - aktinin ve vinkülin içerirler. Mikrofilamanlar, apikal sitoplazmada bulunan çeşitli tip filamanlardan oluşan terminal ağ’ dan uzanmaktadır. Terminal ağ, sitoplazmik organallerin bulunmadığı bu bölgede hücrenin tepesine belirli bir direnç sağlar. Zonula okludens ve zonula adherens terminal bar olarak bilinen yapıyı oluşturur. İnce barsakta, ışık mikroskobu ile eozinofilik bir bant olarak izlenir. Gap junction (Nexus): Epitel hücrelerinin çoğunda lateral membranlar boyunca hemen her yerde ancak az sayıda bulunabilir. Embriyogenez sırasında çok sayıdadır. Olasılıkla gelişen hücrelerin düzenlenmesinden sorumludur. Komşu hücre membranları arasında 2 nm’lik bir dar aralık vardır. Gap junction proteinleri, merkezlerinde yaklaşık 1.5 nm çapında hidrofilik bir delik içeren altıgenler yapar. Bu birim konnekson olarak tanımlanır. Komşu hücre membranlarındaki konneksonlar, 2 hücre arasında hidrofilik kanal oluşturacak şekilde aynı düzeyde yer alırlar. Molekül ağırlığı 1500’ün altındaki moleküller bu kanallardan geçebilir. Bazı hormonlar, cAMP, GMP ve iyonlar gibi bilgi iletici maddeler bilgiyi dokudaki hücreler boyunca yayar, hücrelerin bağımsız üniteler şeklinde değil de, birlikte hareket etmelerini sağlar. Kalp kasındaki gap junctionlar, kalbin düzenli olarak atmasından sorumludurlar. Desmozom (Maküla adherens): Disk şeklinde kompleks bir yapıdır, komşu hücrenin yüzeyinde buna özdeş bir yapı ile bağlantı kurar. Bu bağlantıda aralık, normal aralık olan 20 nm’ den daha geniştir ( 30 nm). Hücrelerarası alan da çizgi halinde yoğun materyele sahiptir. Her iki komşu hücrenin iç tarafında tutunma plağı olarak isimlendirilen ve en az 12 proteinden oluşan bir yapı bulunur. Sitokeratin türlerinin ara filaman grupları, tutunma plağı içine girer ya da keskin dönüşlerle kıvrılarak sitoplazmaya geri dönerler. Lateral membranlarda yamalar halinde dağılmıştır. Epidermiste yalnızca bu tip bağlantı bulunur. Bazen daha basit tipleri de bulunur. Hemidesmozom: Epitelyal hücrelerinin bazal laminaya temas ettiği yüzeyde bulunur. Epitel hücre plazmalemması üzerinde yarı desmozom şeklini alırlar. Epitel hücrelerinin alttaki bazal laminaya tutunmasını sağlar.

http://www.biyologlar.com/hucrelerarasi-baglantilar

SİTOPLAZMA

Hücre zarı ve çekirdek arasında yer alan sitoplazma saydam, jel kıvamında madde ve bu madde içinde yüzen şekilli unsurlardan oluşmuştur. Sitoplazmayı oluşturan yapılara aşağıda olduğu gibi değişik isimlendirmeler yapılır: -Esas plazma (Hyaloplazma): Sitoplazmada hücre organelleri arasındaki sıvıdır. Bu sıvı bütün hücrelerde bulunur. Protein, su, enzimler, hormonlar, mineraller, yağlar ve karbonhidratlardan oluşmuştur. -Metaplazma: Hücrenin fonksiyonu için ortaya çıkan kalıcı fibril şeklindeki yapılar (hücre iskeleti) metaplazmayı oluşturur. -Öplazma: Sitoplazmada geçici olarak belli dönemlerde oluşan yapılara verilen isimdir. Hücre bölünmesi sırasında ortaya çıkıp sonra yok olan mitoz mekiğini, öplazmaya örnek olarak verebiliriz. -Paraplazma: Hücrede hayat olayları devamlılık gösterir. Bir kısım maddeler sürekli olarak yapılır, parçalanır ve canlı maddelerin yapısına katılır. Bazı maddeler ise hücre içinde depo maddesi gibi bulunurlar.

http://www.biyologlar.com/sitoplazma

B2 Vitamini

B2 VİTAMİNİ: RİBOFLAVİN B2 suda eriyen bir vitamindir ve vücutta depolanmaz. Yararları: Biboflavin olarak da adlandırılan B2 vitamini enerji üretimi, enzim fonksiyonu, normal yağ asidi ve aminoasit sentezi için önem taşımaktadır. Besinlerden enerjinin serbest bırakılmasında rol oynar. A vitamini ile birlikte kullanıldığında solunum, sindirim, dolaşım ve boşaltım sisteminin mukozasının sağlıklı olmasını sağlar. Sinir sistemi, deri ve gözleri korur. Normal büyüme ve gelişmeye yardımcı olur. Enfeksiyon, alkolizm, yanık, mide ve karaciğer hastalıkları tedavisine yardımcı olur. Migren, katarakt, orak hücreli anemi tedavisinde kullanılır. Yetersiz kalorili diyet alanlar, beslenme bozukluğu olanlar veya kalori ihtiyacı artmış kişiler. Gebe veya emziren kadınlar, alkol veya diğer madde bağımlıları, kronik hastalığı olanlar, uzun süreli stres altında olanlar, yakın geçmişte operasyon geçirmiş kişiler, sporcular ve beden işçileri, sindirim sisteminin bir bölümü operasyonla alınmış olanlar, ağır yanık veya yaralanması olan hastalar, doğum kontrol hapı veya östrojen kullananlar yoğun B2 vitamini ihtiyacı duyarlar. Hangi besinlerde bulunur? Açık yeşil sebze ve meyvelerde bulunur. Diğer B2 kaynakları: badem, bira mayası, peynir, tavuk, sığır eti, böbrek, buğday. Eksikliği nelere yol açar? Ağır B2 eksikliğine nadir olarak rastlanır. Alkol bağımlılarında görülebilir. Ancak çok ağır olmasa da tehlikeli düzeyde riboflavin eksikliği yaşlıların yaklaşık yüzde 33'ünde görülebilmektedir. 2 eksikliği ağız kenarlarında çatlaklar, dil ve dudaklarda iltihaplanmalar, ışığa duyarlı gözler, ciltte kaşıntı, sersemlik, uykusuzluk, öğrenme güçlüğü, gözlerde yanma ve kaşıntı ve kornea hasarına yol açabilir.

http://www.biyologlar.com/b2-vitamini

Serum Protein Analizleri

Proteinler azot, karbon,oksijenin yani sira fosfat,kukurt ve diger bazi elementleri de tasiyan organik bilesiklerdir.Hucrenin kuru agirliginin ¾ unu olustururlar.Enzimatik aktivite, savunma,tasima,depolama,mekanik hareket,mekanik destek,biyolojik sinyal,buyume ve farklilasma iletimi gibi fonksiyonlarinin yani sira yapisal bilesen olarak da davranirlar. Proteinler,amino asit polimerleridir.Protein yapisinda yer alan aminoasitlerin belirli sayi ve sirada dizilisi ve daha sonra uc boyutlu yapinin kazanilmasi ile fonksiyonel protein meydangelir.Bilesim ve cozunurluklerine gore basit (albumin,globilin,histon,protaminler) ve bilesik (glikoprotein,mukoprotein,nukleoprotein,fosfoprotein,kromoprotein,lipoprotein ve metalloproteinler)olmak uzere iki gruba ayrilabildigi gibi sekillerine gore de globuler (cozulebilir,sekillenebilir proteinler;albumin gibi) ve fibriler(sert,kirilgan,cozunemeyen proteinler;kollajen,keratin gibi) olarak siniflamak mumkundur.Proteinlerde amino asitleri bir arada tutan veya belirli sekillenmelerini saglayan kuvvetler ya kuvvetli (peptit baglari,disulfit kopruleri) ya da zayif (hidrojen baglari,vander Waals kuvvetleri,molekuller arasiitme ve cekmeler) karekterde olabilir.Proteinlerin gosterecegi aktivite uc boyutlu yapinin bir sonucudur.Uc boyutlu yapi ise uc veya dort kademeli yapilasma sureci (primer,sekonder,tersiyer,kuaterner yapi) sonunda kazanilir.Uc boyutlu yapinin bozulmasina denaturasyon denir.Denature protein kendisinden beklenen fonksiyonu yerine getiremez.Denaturasyon,cesitli faktorlere(isi,pH,agir metal tuzlari,radyasyon isinlari gibi ) bagli olarak meydana gelir.Bu olay sirasinda primer yapi haric diger butun yapilar bozulur.Serum total proteininin fizyolojik degeri;Yeni dogmus % 5.0 - 6.5 grSut cocugu % 5.5 - 7.0 gr6 – 12 aylar % 6.5 - 7.5 grYetiskin % 6.5 - 8.5 grPratik nedenlerden kliniklerde kan proteinlerinin incelenmesi genellikle serumda yapilir.Bu durumda fibrinojen uzaklastirilmis oldugundan serum tum protein degeri plazmaya gore yaklasik %0.2 – 0.4 gr daha dusuktur.Kan alinirken yapilan venoz staz total protein degerini onemli olcude yukseltir.Ayrica vazomotor olaylarda tum protein miktarini etkiler. Bu nedenle normal degerin tayini icin kan sabahleyin alinmalidir. Kan proteinlerinin incelenmesi bize protein metabolizmasini yansitmaz.Bunun icin protein yikim urunlerinin idrarda birkac defa bakilmasina,protein dengesinin ortaya konulmasina gerek vardir.Hastaliklardan bircogu serum protein fraksiyonlarinda degisikliklere sebeb olsada pek azinda serum total proteininde artis veya azalis olur.Bu durum hem proteinlerin genis olan normal degerine (% 6.5 – 8.5 gr) hem de hastalik durumunda kural olarak birkac globilin fraksiyonunun artmasi halinde albuminin buna uygun olarak azalmasi ile ve sonuc olarak total proteinin degismemesinden kaynaklanmaktadir.Normal degerin genis bir alana yayilmasina karsilik serum total protein degerinin cok dar bir sapma degeri vardir.Hipoproteinemi Nedenleri1-Protein kaybi ile olan hipoproteinemi nedenleri:a-Barsaktan protein kaybi:Menetrier sendromu ,mide polipi,ulseroz gastrit,coliak spru,gluten enteropatisi,kolitis ulseroza,mide-barsak ve safra yollari karsinomlari,barsak stenozu,Hirschsprung hastaligi,jejonum divertikulu ve hemitiazis.b-Bobrekten protein kaybi:Nefrozlar, glemerulonefrit,bobrek amiloidozu.c-Deri yolu ile protein kaybi:Yaniklar,deskuamasyonla seyreden deri hastaliklari(psoriazis),dermatit.d-Vucut bosluklarindan eksuda yada transudanin uzaklastirilmasi ile olusan protein kaybi:2-Kotu beslenme,uzun sure i.v beslenme.3-Diyare,kronik zehirlenmeler(benzen,karbontetraklorur,fosfor),tedavi gormemis pernisiyoz anemi,ayarlanmamis diyabetes mellitus,kalp yetmezligi,hipertroidizm,gebelik toksemileri.4-Karaciger yetmezligi;siroz,kanser. Hiperproteinemi Nedenleri 1-Multpl Myelom2-Makroglobilinemi3-Cesitli tropik hastaliklar(lepra,kala-azar) Relatif Hiperproteinemiler1-Sindirim kanalindan su kaybi(diare,kusma)2-Bobrek yolu ile su kaybi(bobrek yetmezliginde poliuri,tuz kaybettiren nefrit,diuretik tedavi)3-Su aliniminin kisitlanmasi I-KALITATIF PROTEIN ANALIZLERIKalitatatif protein analizlerinin temelinde,protein denaturasyonu ile uc boyutlu yapinin bozularak proteinlerin cokmeleri veya uygun bir renklendirici ajanla renk olusturmalari esasi yatmaktadir.kalitatif analizler iki grup altinda totlanabilir.1-Renk Olusumuna Dayanan Testler:Proteinlerdeki bazi gruplarin kimyasal ayiraclarla birlesip renkli kompleksler olusturmasi seklinde ortaya cikar.Proteinlerin aminoasit icerigi farkli oldugundan olusacak renk ve siddeti degisik olacaktir.a)-Biuret Deneyi:En karekteristik renk reaksiyonudur.Bu deneyde,proteinler kuvvetli alkali ortamda Bakir sufat(CuSO4) ile pembemsi mor renkli bir kompleks olustururlar.Bunun icin iki veya daha fazla peptit bagi bulunmasi gerekir.b)-Millon Deneyi:Reaksiyon protein molekulundeki hidroksifenil grubunun varligindan kaynaklanir ve tirozin,fenol,timol gibi 3,3 pozisyonunda fonksiyonel grubu bozulmamis fenolik grup tasiyan her bilesik ayni reaksiyonu verir.c)-Ksantoprotein Reaksiyonu:Bu reaksiyon protein molekulunde bulunan fenil gruplarinin varliginda gerceklesmekte olup nitrikasit,nitro bilesiklerini olusturmaktadird)-Ninhidrin Reaksiyonu:Amino asitlerin kalitatif ve kantitatif tayininde kullanilir.Aminoasitlerin amino grubu oksidan ajan ninhidrin ile tepkimeye girerek mavi mor renkli bilesik olusur.Butun alfa aminoasitler bu reaksiyonu verir.Prolin ve hidroksiprolin sari,asparajin kahverengi urun verir.2-Proteinlerin Cokmesine (presipitasyon) Dayanan Testler:Bu tur testler,bir proteinin agir metal tuzlari (HgCI2,AgNO3,ZnSO4,Ba(OH)2 ),asit ve bazlar,organik cozuculer,isi, aktif deterjanlar,basinc,Uvradyasyon,ure cozeltisi gibi denature edici ajan veya faktorlerle uc boyutlu yapinin bozulmasina dayanir.a)-Agir Metal tuzlari ile Cokturme:i-Somogy Yontemi (Cinkosulfat +Baryumhidroksit Yontemi):1 ml serum 5 ml suya konur buna %4,75 gr lik Ba(OH)2 cozeltisinden 2ml eklenir,karistirilir.Daha sonra %5grlik ZnSO4 cozeltisinden 2ml katilir karistirilir,kisa bir sure kendi haline birakilir ve suzgec kagidindan suzulur.ii-Tungustik Asit Yontemi:1ml serum alinir uzerine 0,5 ml Na-tungustatin sudaki %10 luk cozeltisinden ve 8ml distile su konur calkalanarak karistirilir.Sonra uzerine H2SO4(0,33Mlik veya 0,67N lik) den 1ml konur calkalanir.10 dk beklenir ve kuru bir suzgec kagidindan suzulur,berrak bir suzuntu elde edilir.b)-Asit ile koagulasyon(Trikloro Asetik Asit-TCA-Yontemi )1ml serum alinir,uzerine %20lik TCA cozeltisinden 1ml ilave edilir.Hafif bir bulaniklik gozlenir.Bu tup kuvvetli bir sekilde calkalanir,20dk beklenir,tupun dibinde kuvvetli bir cokelek ustunde berrak bir sivi ayrilir.Cokelme kuvvetli asit TCA dan dolayidir.c)-Alkolle Presipitasyond)-Isi ile KoagulasyonII-KANTITATIF PROTEIN ANALIZLERIKantitatif protein analizleri,proteinlerin renklendirme,cokturme,boya baglama,bulaniklik olusturma,isaretleme gibi islemlerle dayanir.1-Azot analizi:Serumda bulunan azotlu maddeler,proteinler ve non-protein nitrojen(NPN) olarak adlandirilan ure,kreatinin,urikasit,aminoasit gibi maddelerdir.Azot miktarini degerlendirmek icin kullanilan metodlarin basinda KJEDAHL yontemi gelir.Bu yontemde biyolojik materyalde bulunan ve azot iceren maddeler amonyum sulfat((NH4)2SO4) haline cevrilir; daha sonra degisik metodlarla (Kjeldah.neslerizasyon,gazometrik,iodometrik metodlar) buradaki azot miktari belirlenir.2-Renk Olusumuna Dayanan Testlera)-Biuret Yontemi:*Proteinlerdeki peptit baglarinin bazik ortamda Cu+2 iyonlari ile menekse renkli bakir –peptid bagi-protein kompleksi olusturmalari ve bu kompleksin absorbansinin 540 nm de spektrofotometrik olarak degerlendirilmesi prensibine dayanir.Amino asitler ve dipeptitler bu reaksiyonu vermez.Yaygin olarak kullanilan bir yontemdir.Reaktifler1-Serum fizyolojik(%0,9luk NaCI )2-Biuret Solusyonu: 3gr CuSO.4H2O tartip 100ml suda cozulur.Ayri bir kapta 12grC4H4KnaO6.H2O(sodyum potasyum tartarat) tartilir ve bir miktar suda cozulur.Her iki cozelti birbirine karistirilir.2lt lik bir balon jojeye aktarilir,uzerine %10luk NaOH den 600 mlt yavas yavas devamli olarak calkalanarak ilave edilir,iyice karistirilir.2gr KI(potasyum iyodur)ilave edilir ve 2ltye saf su ile tamamlanir.3-%10luk NaOH 1000mlDeneyin CalisilmasiKor icin 1,Standarticin1,calisilacak numune sayisi kadar da numuneler icin tup alinir.Uzerleri K,S,N1,N2,N3.,........... yazilir.Kor                Standart                        Numuneler           Distile Su100?L                -                                    -                       -Standart            -                                100 ?L                    -Serum               -                                    -                      100 ?LSerum Fizyolojik 1 mL                             1 mL                    1 mLBiuret Reaktifi    6 mL                             6 mL                    6 mLKaristirilir,oda isisinda 15 dk bekletilir.540 nm dalgaboyunda kore karsi okunur.Standart hazirlanmasi:%30luk bovin serum albuminden 0,1ml alip serum fizyolojik ile 0,6ml ye tamamlanirHazirlanan standardin konsantrasyonu %5liktir. N.absorbansi Hesaplanmasi:Numune Konsantrasyonu(%gr)= ¾¾¾¾¾¾ C S.konsantrasyonu(%5)S.absorbansib)-Folin-Lowry Yontemi:Protein once bazik ortamda biuret ayraci ile reaksiyona sokulur,daha sonra Folin ciocalteu ayraci (fosfo tungunstik asit ve fosfomolibdik asit karisimi) katilir.Olusan bakir-peptit bagi –protein kompleksi ve aromatik aminoasitler(tirozin,triptofan gibi) folin ayracini indirgeyerek mavi renkli bir kompleks olusturur.Bu kompleks spektrofotometrik olarak olculur.3-Fizikokimyasal Yontemler:a)-Isigi Kirma Indeksi(Refraktometri):Biyolojik sivilarda bulunan kati maddelerin konsantrasyonu isigi kirma indeksi ile dogru orantilidir.Serumda bulunan kati maddelerin buyuk cogunlugu proteinler oldugundan serumun olculen kirma indeksinin proteinlerle dogru orantili oldugu kabul edilir.b)-Ultraviole Spektrofotometrisi:Proteinler 200-225 ve 280 nm dalgaboyundaki ultraviyole isigi absorblarlar.200-220 nm deki absorbsiyon peptit baglarindan,280 nm deki absorbsiyon ise fenilalanin,tirozin ve triptofan amino asitlerinden gelir.Bu metodda hicbir kimyasal isleme tabi tutulmadan cozeltideki protein miktari olculur.4-Iyonik CokturmeProteinlerin anyonik veya katyonik formda bulunmasi soz konusudur.Katyonik formdaki proteinler anyonik cokturuculerle,anyonik formdakiler ise katyonik cokturuculerle cokturulerek homojen bir suspansiyon elde edilir.Bu suspansiyon turbidometrik veya nefolometrik olarak degerlendirilir.5-Boya Baglama Yontemleri:Proteinlerin boyar maddeleri baglama ozelliginden yararlanarak analiz yapilmasidir.Ozellikle Albumin tayininde metil oranj ,brom krezol yesili gibi boyalar kullanilir.6-Immunokimyasal Yontemler:ELISA,RIA ile isaretlenmis antikor kullanilarak olusan protein-antikor kompleksinin subrat ilavesi ile urune donusturerek ,olusan urunun spektrofotometrik yada fulorometrik olcumune dayanir.

http://www.biyologlar.com/serum-protein-analizleri-1

B5 Vitamini

B5 VİTAMİNİ: Pantotenik Asit Pantotenik Asit olarak da adlandırılan B5 vitamini hem hayvansal hem de bitkisel kaynaklarda bulunabildiğinden Yunanca "heryer" anlamına gelen "pantos" sözcüğünden kökenini almıştır. Vücutta depolanmayan ve suda eriyen bir vitamindir. Yararları: Depresyonla savaşmakta olan faydasının yanı sıra mide bağırsak sisteminin normal çalışmasına yardımcı olur; kolesterol, D vitamini, kırmızı kan hücreleri ve antikorların üretimi için gereklidir. Normal büyüme ve gelişmeyi destekler. Yiyeceklerin enerjiye dönüştürülmesine yardım eder. Birçok vücut materyalinin sentezine yardımcı olur. Böbrek üstü bezinin fonksiyonunu destekler, enerji metabolizmasında gereklidir. Çeşitli böbrek üstü bezi hormonları, steroidler ve kortizonun oluşumunda hayati rol oynadığı için antistres vitamini olarak da tanımlanır. Ayrıca şunlara iyi gelir: yara iyileşmesi, stress, depresyon, alerji, alkolizm, karaciğer sirozu, kabızlık, yorgunluk, mide ülserleri, osteoartrit, romatoid artrit vs… Hangi besinlerde bulunur? Dana eti, karaciğer, balık, tavuk, yumurta, peynir, fasulye, tüm tahıllar, hububatlar, karnabahar, bezelye, avakado, patates, mısır, kuru yemişler de bolca bulunur. Eksikliği nelere yol açar? Doğrudan B5 vitamini eksikliğine bağlı insanlarda oluşan hiçbir hastalık belirtilmemiştir. Bunun sebebi her türlü besinde bolca bulunmasıdır. Ancak B5 vitamini eksikliğine bağlı bazı belirtilerin oluşabileceği kanıtlanmasa da varsayılmaktadır. Bunlardan bazıları şunlardır: sinir harabiyetleri, solunum problemleri, cilt problemleri, artrit, alerji, doğumsal bozukluklar, zihinsel yorgunluk, baş ağrısı, uyku bozukluğu, kas spazmları, kramplar.

http://www.biyologlar.com/b5-vitamini

BAĞ DOKUSUNUN TEMEL FONKSİYONLARI, BAĞ DOKUSUNUNUN KÖKENİ, GLİKOZAMİNOGLİKANLAR

Desteklik Yumuşak dokuları destekleme Vücut şeklinin sağlanması Hücre ve organları birbirine bağlama Savunma *Fagositik ve immunokompetan hücreleri ile (makrofaj, plazma, lenfosit gibi) *Bağ dokusunun temel maddesinin bileşenleri epitelden geçen mikroorganizmaların yayılmasını önleyen fiziksel bir engel oluşturur. Akışkanlığı azdır. Ancak hiyaluronidaz üreten bakteriler bağ dokusunun akışkanlığını artırarak güçlü yayılmaya yol açar. Beslenme Kan ile doku arasındaki alışverişi için bağ dokusu matriksi çok uygundur. BAĞ DOKUSUNUNUN KÖKENİ Çoğu mezodermal, az bir bölümü (baş ve boyun bölümünün bağ dokuları) ektodermal nöral krista orjinlidir. Mezoderm --- mezenkimal hücreler --– mezenkim Mezenkim, gelişme ve farklanmayla bağ dokusu türlerini, kas dokusunu, organları (damarlar ve bazı bezleri ) oluşturur. Mezenkimal hücreler, oval çekirdekli ve belirgin çekirdekçikli hücrelerdir. Mezenkimde ara madde az ve viskozdur. Az sayıda lif vardır. AMORF TEMEL MADDE *Renksiz , saydam, homojen, amorf , yüksek oranda su içerir. *Hücre ve lifleri birbirine bağlar. *Temel madde, glikoprotein + proteoglikan’ların kompleks bir karışımıdır. *Hücre ve lifler arası boşlukları doldurur. *Viskoz, yağlayıcı , dokuların yabancı partiküllerce işgalini engelleyici özelliği vardır. Glikozaminoglikanlar (Asit mukopolisakkarit): Yapılarında karbohidrat çok (%80-90), protein azdır. OH- COOH-, ve SO4 grublarından zengindir. Polianyonik ve hidrofilik yapılardır. Üronik asit + N-asetil hekzozamin (tekrarlayan disakkarit birimler) Örnek: glukorinik asit + glukozamin iduronik asit + galaktozamin Glikozaminoglikanlar bir proteine bağlandıklarında proteoglikanlar oluşur. Hiyaluronik asit ® glikozaminoglikan’dır Proteoglikan aggregatları: Bir hiyaluronik asit zincirine proteoglikanların eklenmesi ile oluşan yapıdır. Kıkırdak dokusunda görülür. GLİKOZAMİNOGLİKANLAR Sülfatsız Glikozaminoglikanlar: Hiyaluronik asit (göbek bağı, sinoviyal sıvı, vitröz hümor ve kıkırdakta bulunur). Sülfatlı Glikozaminoglikanlar: Dermatan sülfat: Derinin dermisi, tendon, ligament, fibröz kıkırdakta bol bulunur. Bu alanlar kollajen tip I’ den zengindir. Kondroitin sülfat : Hiyalin ve elastik kıkırdakta bulunur. Bu alanlar kollajen tip II’ den zengindir. Heparan sülfat : Akciğer, karaciğer, uterus, arter duvarında çok bulunur. Kollajen tip III (Retiküler lif) bu alanlarda çoktur. Keratan sülfat: Kornea, kıkırdak, anulus fibrosis, nukleus pulposus’ ta bol bulunur. Proteoglikanların Sentezi Protein ® GER’de sentezlenir. Glikolizasyon ®GER’ de başlar, sülfasyonun da meydana geldiği Golgi komplekste tamamlanır. Proteoglikanların ve Glikoproteinlerin Fonksiyonu: Fibrillerden liflerin meydana getirilmesinde ve fibrillerin oluşması için tropokollajen kümeleşmesinde önemli rol oynarlar. Hücreleri liflere bağlar, diffüzyona olanak sağlarlar. Glikoproteinler Glikoprotein: Dallanmış oligosakkarit (az)+ protein (çok) Yapısal Glikoproteinler Fibronektin: Fibroblastlar, hepatositler (dolaşımdaki fibronektinin büyük kısmını oluştururlar), makrofajlar, amniyotik hücreler, endotel hücreleri ve bazı epitel hücrelerce sentezlenirler. Hücre birleşmesi ve göçüne yardımcı olur. Yara iyileşmesi sırasında haraplanan kollajen ve fibrin üzerinde toplanır. Önce trombositlerin adezyonunu ardından fagosit ve fibroblastların göçünü artırır. Lenfokinlerin makrofajlara bağlanmasını, fagositlerin adherensini ve kemotaksisini artırır. Molekül ağırlığı 222 000-240 000 dır. Laminin: Bazal lamina yapısında bulunur. Epitelin bazal laminaya yapışmasını sağlar. Kondronektin: Kıkırdakta kondrositlerin tip II kollajene bağlanması sağlar. Osteonektin : Kemikte osteositlerin kollajen liflere bağlanması sağlar. Hemonektin: Kemik iliğinde hücrelerin liflere tutunmasını sağlar.

http://www.biyologlar.com/bag-dokusunun-temel-fonksiyonlari-bag-dokusununun-kokeni-glikozaminoglikanlar

Genetik ve Biyomühendislik

Genetik ve Biyomühendislik bö¬lümü iki mühendislik branşının yani Genetik Mühendisliği ve Biyomühendisliğin birleşmiş halidir. Dolayısıyla bu bölümü anlatmaya bu iki branşı anlatarak devam edeceğiz. Genetik Mühendisliği Doğal yollarla oluşma ihtimali olma¬yıp insan eli ile oluşturulan genetik de¬ğişiklikler genetik mühendislik olarak olarak adlandırılmaktadır. Hayvan ve bitkilerde bilinen geleneksel melezleme ve mutasyon oluşturma teknikleri yerine rekombinant DNA teknikleri kullanılır. Oluşan yeni canlı genetiği değiştirilmiş organizma olarak adlandırılır. Bu yön¬temlerle ilk üretilmiş canlı 1973 yılında bir bakteridir. Daha sonra 1974'te fare, 1982 yılında insülin üreten bir bakteri ve 1994 yılında da gıda bitkisi üretilip satılmaya başlanmıştır. Genetiği değişti¬rilmiş ilk bitki, 1986 yılında geliştirilen yabani ot ilacına karşı dirençli tütündür. En yaygın olarak genetik mühendis¬lik uygulaması, fonksiyonu bilinen bir genin başka bir canlının kromozomuna dahil ederek fonksiyonel hale getirilme¬sidir. Diğer bir uygulama da canlıda var olan bir genin sakatlanmasıyla fonksiyo¬nunun ortadan kaldırılmasıdır. Günümüzde biyoteknoloji ve tıp gibi birçok alanda genetik mühendisliği kul-lanılmaktadır. Tıpta insülin ve büyüme hormonu üretimi, deneysel amaçlı re-kombinant fare üretimi örnek verilebi¬lir. Tarımda, böcek ve tarım ilaçlarına dirençli bitki üretimi, bitkilerde ilaç üre¬timi, sütünde rekombinant protein sal¬gılanan keçi üretimi yapılabilmektedir. Farklı bir organizmadan gen akta¬rılmış canlıya transgenik denir. Transgenik canlının oluşturulmasındaki ilk adım özelliğinden faydalanılacak genin izole edilmesidir. Farklı bir canlı türün¬den de elde edilebilen bu gen, vektör a¬dı verilen taşıyıcılara aktarılır. Vektörler yapısı değiştirilmiş virüs veya plazmid yapısında olabilir. Bu aşamada genin yapısında ilaveler ve değişiklikler ekle¬nerek yeni özellikler eklenebilmektedir. Daha sonra hedef canlının kromozom yapısına bu gen aktarılır. Bu aşamalarda kullanılan teknikler her geçen gün daha da geliştirilmekte ve son derece karma¬şık ve ileri teknoloji gerektiren laboratu-var ortamlarına ihtiyaç duyulmaktadır. Kullanım alanları: Genetik mühendisliği, tıp, araştırma, endüstri ve tarım gibi alanlarda yaygın olarak kullanılmaktadır. Hayvanlarda, bitkilerde ve çeşitli mikro organizmalar üzerinde değişiklikler yapılmaktadır. Tıpta kullanım alanlarına örnek ola¬rak; insülin, büyüme hormonu, albümin, monoklonal antikorlar, aşı ve bir¬çok ilaç üretimini verebiliriz. İnsandaki hastalıkların daha iyi anlaşılıp tedavi metodu geliştirilebilmesi için deney hayvanlarında hastalık modelleri oluş¬turulabilmektedir. Kanser, obezite, kalp hastalıkları, şeker hastalığı, artritler, yaşlanma ve Parkinson hastalığı gibi hastalıklar için genetik mühendisliği ile fare modelleri geliştirilmiştir. Bu model¬ler üzerinde çalışılarak yeni ilaç ve teda¬vi yolları test edilip geliştirilmektedir. İnsandaki bazı genetik hastalılar da bu yöntemlerle tedavi edilmektedir. Sınırlı olmakla beraber kalıtsal bağışıklık siste¬mi hastalığındaki tedaviyi örnek olarak verebiliriz. Yöntemler sürekli gelişti¬rilmekte ve daha verimli sonuçlar elde edilmeye çalışılmaktadır. Endüstriyel alanda birçok transgenik bakteri kullanılmaktadır. Endüstriyel önemi olan enzimlerin üretilmesinde, petrol veya kimyasal atıklarla kirlenmiş olan su ve toprağın temizlenmesinde, biyolojik atıkların dönüştürülmesinde ve enerji elde edilmesinde bakterilerden ve onlardan elde edilen enzimlerden ya¬rarlanılmaktadır. Günümüzde 25 ülkede genetiği değiş¬tirilmiş bitkilerin tarımı yapılmaktadır. Rekombinant bitkiler, viral, bakteriyel ve mantar hastalılarına karşı direnç ka¬zanırlar. Bu uygulamalarla tarımda kul¬lanılan kimyasal ilaçlara ihtiyacı ortadan kaldırmakta, çevre kirliliğini azaltmada katkı sağlamaktadır. Bu bitkiler soğuğa, kuraklığa ve aşırı tuzlanma gibi farklı toprak yapısına dirençli olmaktadır¬lar. Ayrıca vitamin, mineral ve protein değerleri de arttırılabilmektedir. Tıpta kullanılmak amacıyla bitkilerde çeşitli ilaçlar ve aşılar da üretilebilmektedir.

http://www.biyologlar.com/genetik-ve-biyomuhendislik

MİLLİ PARKLAR YÖNETMELİĞİ

Tarım Orman ve Köyişleri Bakanlığından: R.G. Tarihi: 12/12/1986 R.G. Sayısı: 19309 BİRİNCİ BÖLÜM : Amaç, Kapsam ve Tanımlar Amaç Madde 1 - Bu Yönetmeliğin amacı, 2873 sayılı Milli Parklar Kanunu ile 6831 sayılı Orman Kanununun 25 inci maddesinin uygulanmasını düzenlemektir. Kapsam Madde 2 - Bu Yönetmelik, 2873 sayılı Milli Parklar Kanununun 22 nci maddesi ile 2896 sayılı Kanunla 6831 sayılı Orman Kanununa eklenen EK 5 inci maddesine göre hazırlanmış olup; Milli Parkların, Tabiat Parklarının, Tabiat Anıtlarının, Tabiatı Koruma Sahalarının ve Orman İçi Dinlenme Yerlerinin ayrılması, planlanması, geliştirilmesi, korunması, yönetilmesi ve tanıtılmasına ilişkin iş ve işlemleri kapsar. Kısaltmalar Madde 3 - Bu Yönetmelikte yer alan; a) Kanun: 2873 sayılı Milli Parklar Kanununu, b) Bakanlık: Tarım Orman ve Köyişleri Bakanlığını, c) Genel Müdürlük: Orman Genel Müdürlüğünü, d) Daire Başkanlığı: Milli Parklar Dairesi Başkanlığını, e) Müdürlük: Milli Parklar Müdürlüğünü, f) Fon: Milli Parklar Fonu'nu, ifade eder. Tanımlar Madde 4 - Bu Yönetmelikte yer alan; a) Milli Parklar, Tabiat Parkı, Tabiat Anıtı ve Tabiatı Koruma Alanı; Kanunun 2 nci maddesinde tarif edilen tabiat parçalarını, b) Ekosistem; belli bir yaşama muhiti içindeki canlı organizmalar ile cansız çevrenin meydana getirdiği karakteristik bir ekolojik sistemi, c) Tabii Kaynak; biyolojik tabii değerler; flora, fauna, habitatlar, ekosistemler, tabiat tarihinin ve tabii mirasın müstesna özellikleri ve bunlara dair ilmi değerler ile fiziki tabii değerler; coğrafi konum, jeolojik ve jeomorfolojik teşekküller, hidrolojik ve limnolojik özellikler, klimatik özellikler ve bunlara dair ilmi değerleri, d) Estetik Kaynak; insanın psikolojik yapısına ve bedii zevklerine hitap eden üstün, bakir ve tabii manzara özelliklerini, e) Kültürel Kaynak; tarihi, arkeolojik, mitolojik, antropolojik, etnografik, sosyolojik olayları belgeleyen ve bu olayların izlerini taşıyan sitler ve yöreler ile tarihteki büyük olayların ve kişilerin izlerini ve hatıralarını taşıyan, mimarlık ve güzel sanatların örneklerini bünyesinde toplayan yerler objeler ve kültürel mirasın olağanüstü örnekleri ve bunlarla ilgili ilmi değerleri, f) Teknik İzahname; bu yönetmeliğin uygulanmasına açıklık getiren, Yönetmelikte yer almayan hususları ihtiva eden Bakanlık emrini, g) Rekreasyonel Kaynak; tabii ve kültürel çevrenin, özellikle açık hava rekreasyonu yönünden potansiyeli, taşıma kapasitesi ve hitap ettiği demografik çevreyi, h) Rekreasyon; insanın eğlenme, dinlenme, kendini yenileme fonksiyonunu, ı) Orman İçi Dinlenme Yeri (Orman Mesire Yeri); rekreasyonel ve estetik kaynak değerlerine sahip ormanlık alanı, ifade eder. İKİNCİ BÖLÜM : Temel İlkeler ve Kriterler Temel İlkeler Madde 5 - Bu yönetmeliğin uygulandığı yerlerde; A) Genel olarak; 1 - Kanunun 14 üncü maddesi ile yasaklanan faaliyetler yapılamaz. 2 - Kaynak değerleri ile koruma ve kullanma esaslarının belirlenmesinde, ilmi ve teknik araştırmalara en geniş ölçüde yer verilir. 3 - Kaynakların tabii karakterinin mutlak korunması ve devamlılığı sağlanır. 4 - Tabii kaynakların işletilmesi yasaktır. 5 - Tabii denge ve manzara bütünlüğünü bozacak ve tabii çevrenin bakir karakteri ile bağdaşmayacak hiçbir faaliyete izin verilmez. 6 - Bu yerler sadece koruma, yönetim, araştırma, ziyaretçi, tanıtım tesis ve hizmetleri ile donatılır; bu tesisler ile kaynak amenajmanı ve restorasyon esasları planlarında belirtilir. 7 - Kullanma ve yararlanma şartları ve seviyesi idarece belirlenir ve taşıma kapasitesinin dışına çıkılmaz. 8 - Tabii ve kültürel kaynaklara, kaynak değerini bozmayacak, ancak tamamlayıcı ve restorasyon amaçlı müdahalelerde bulunulabilir. 9 - Tabiatı mutlak koruma zonlarında, tabii kaynaklar insan etkisi olmaksızın tabii haline bırakılır. 10 - Devlet mülkiyeti ve yönetimi ile kaynak, manzara, mülkiyet ve yönetim bütünlüğü esastır. Ancak milli parklarda devlet mülkiyeti aranmayabilir. 11 - Kamulaştırma ve Tahsisler Kanunun 5 inci ve 6 ncı maddelerine göre yapılır. 12 - Planların gerektirdiği her türlü yapı, tesis, hizmet ve faaliyetlerin yapılması, yönetilmesi ve işletilmesi Kanunun 12 nci maddesine göre düzenlenir.   B) Özel hallerde; 1 - Düzenli tarım ve mevcut iskan alanları ile bunları çevreleyen kırsal manzara dokusu, kültürel ve tabii kaynakların korunması ve değerlendirilmesinde tezat teşkil etmemesi halinde bu arazi kullanımlarının devamlılıklarını temin etmek üzere planlarında gerekli hükümler getirilir ve bu hükümlere göre özel mülkiyet tasarruflarına izin verilebilir. 2 - Milli parklar ve tabiat parklarında gerçek ve tüzel kişiler lehine verilecek izinlere dair esaslar, bu Yönetmeliğin 22 inci maddesinde belirtilmiştir. 3 - Üretim, otlatma ve avlanma faaliyetlerine ve kaynakların korunması geliştirilmesi ve devamlılığını sağlayacak teknik faaliyetlere, Kanunun 13 üncü maddesinde belirtilen esaslar dahilinde ve mutlak koruma zonları dışında izin verilebilir. 4 - Kamu yararı açısından vazgeçilmez ve kesin bir mecburiyet doğması halinde, planda yer almayan herhangi bir yatırım projesinin uygulanmasına, projenin çevreye yapacağı tesir etüd edilerek, çevre ve kaynak koruma politikalarıyla kabul edilemez bir tezat teşkil etmeyeceğinin tespit edilmesi halinde, planda gerekli değişiklikler yapıldıktan sonra Bakanlıkça izin verilebilir. Milli Park ve Tabiat Parkı Kriterleri Madde 6 - A) Milli Park olarak ayrılacak yerlerde; 1 - Tabii ve kültürel kaynak değeri ile rekreasyonel potansiyeli, milli ve milletlerarası seviyede özellik ve önem taşımalıdır. 2 - Kaynak değerleri, gelecek nesillerin miras olarak devralacakları ve sahip olmaktan gurur duyacakları seviyede önemli olmalıdır. 3 - Kaynak değerleri tahrip olmamış veya teknik ve idari müdahalelerle ıslah edilebilir durumda olmalıdır. 4 - Saha büyüklüğü, kaynak değerleri kesafeti yönünden, özel haller ve adalar dışında, en az 1000 hektar olmalı ve bu alan bütünüyle koruma ağırlıklı zonlardan meydana gelmelidir. İdari ve turistik amaçlı geliştirme alanları bu asgari saha büyüklüğünün dışındadır. B) Tabiat parkı olarak ayrılacak yerlerde; 1 - Milli veya bölge seviyesinde üstün tabii fizyocoğrafik yapıya, bitki örtüsü ve yaban hayatı özelliklerine ve manzara güzellikleri ile rekreasyon potansiyeline sahip olmalıdır. 2 - Kaynak ve manzara bütünlüğünü sağlayacak yeterli büyüklükte olmalıdır. 3 - Bilhassa açık hava rekreasyonu yönünden farklı ve zengin bir potansiyele sahip olmalıdır. 4 - Mahalli örf ve adetlerin, geleneksel arazi kullanma düzeninin ve kültürel manzaraların ilgi çeken örneklerini de ihtiva edebilmelidir. 5 - Devletin mülkiyetinde olmalıdır. Tabiat Anıtı ve Tabiatı Koruma Alanı Kriterleri Madde 7 - A) Tabiat anıtı olarak ayrılacak yerler ve tabii objeler; 1 - Tabiat ve tabiat olaylarının meydana getirdiği tek veya nadir olmaları sebebiyle ilmi ve estetik yönden milli öneme sahip, bir veya bir kaç jeolojik ve jeomorfolojik formasyon ve bitki türleri gibi müstesna değerleri barındırmalıdır. 2 - Özellikle insan faaliyetlerinden çok az zarar görmüş veya hiç zarar görmemiş olmalıdır. 3 - Saha büyüklüğü milli parkları küçük, fakat koruma yönünden bütünlüğü sağlayacak yeterlikte olmalıdır. 4 - Devletin mülkiyetinde olmalıdır. B) Tabiatı koruma alanı olarak ayrılacak yerler; 1 - Milli veya milletlerarası seviyede tipik, emsalsiz, nadir, tehlikeye maruz veya kaybolmaya yüz tutmuş ekosistemler, türler ve tabii olayların meydana getirdiği veya gizlediği tabii ve geleneksel arazi kullanım şekillerine ait örnekleri barındırmalıdır. 2 - Genellikle hassas ekosistemlere, habitatlara veya hayat şekillerine, biyolojik veya jeolojik önemli çeşitliliklere, zengin genetik kaynaklara sahip olmalıdır. 3 - Bu özellikleri ve farklılıkları; bilim, eğitim, araştırma kurumları veya ilgili kuruluşlar tarafından tesbit edilmiş olmalıdır. 4 - Saha büyüklüğü, korunması gerekli değerlerin hayatlarını uzun süreli olarak devam ettirmelerine yeterli olmalıdır. 5 - Devletin mülkiyetinde olmalıdır. Orman İçi Dinlenme Yeri Kriterleri Madde 8 - Orman içi dinlenme yeri olarak ayrılacak yerler; a) Mahalli seviyede açıkhava rekreasyonu yönünden değişik ve zengin özelliklere sahip olmalıdır. b) Alt yapı imkanlarına sahip olmalıdır. c) Kaynak bütünlüğünü sağlayacak büyüklükte olmalıdır. d) Orman rejimine tabi olmalıdır. ÜÇÜNCÜ BÖLÜM : Tayin, Tesbit ve Planlama Tayin ve Tesbit Madde 9 - Milli Park, tabiat parkı, tabiat anıtı ve tabiatı koruma alanları Kanunun 3 üncü maddesinde açıklanan esaslara göre tayin ve tesbit edilen yer ve yörelere dair uygulama statüleri ve sınırları mahallen duyurulur. Orman İçi Dinlenme Yeri Kriterlerine sahip olduğu tesbit edilen sahalar; 2896 sayılı Kanunla değişik 6831 sayılı Orman Kanununun 25 inci maddesi hükümlerine göre, Genel Müdürlüğün onayı ile orman içi dinlenme yeri olarak belirlenir. Planlama Esasları Madde 10 - Bu yönetmeliğin uygulanacağı yerlerin; etüd, envanter ve araştırması ile Milli Park Planlaması ve kaynak amenajmanı planlarıyla ilgili usul ve esaslar teknik izahnamede açıklanır. Uzun Devreli Gelişme Planları Madde 11 - Milli Park uzun devreli gelişme planları, ilgili Bakanlıkların olumlu görüşleri ve gerektiğinde fiili katkılarıyla hazırlanır. Bakanlıkça onaylanarak yürürlüğe konur. İmar Uygulama Planları Madde 12 - Milli Park uzun devreli gelişme planı uyarınca iskan ve yapılaşmaya konu olan yerler için, mahalli gelişme planı karakterindeki, imar mevzuatına uygun imar uygulama planları, milli park uzun devreli gelişme planı hüküm ve kararlarına uygun olarak, hazırlanır veya hazırlattırılır, Bayındırlık ve İskan Bakanlığının onayı ile yürürlüğe girer. Tabiat Parkı, Tabiat Anıtı, Tabiatı Koruma Alanı ve Orman İçi Dinlenme Yeri Planları Madde 13 - Tabiat parkı, tabiat anıtı ve tabiatı koruma alanı olarak tesbit edilmiş yerler için hazırlanacak planlar; milli park planlama usul ve teknikleriyle, uygulanan statünün amaçları, kriterleri, genel politika ve ilkeler ile uyumlu olarak ve planlanan sahanın kaynak değerleri ve özellikleri gözönünde bulundurularak, Kültür ve Turizm Bakanlığının görüşü alınarak hazırlanır ve Bakanlıkça onaylanarak yürürlüğe konur. Orman içi dinlenme yeri planları, orman içi dinlenme yeri kriterleri ile sahanın rekreasyonel ve estetik değerlerinin yıpratılmadan kullanılması, statü uygulamasının o yer için amaçları gözönünde bulundurularak Dairesince hazırlanır ve Genel Müdürlükçe onaylanarak yürürlüğe konur. Uygulama Projeleri Madde 14 - Uzun devreli gelişme planı, mahalli gelişme planı ve yatırım projeleri uyarınca Dairesince hazırlanan veya hazırlattırılan uygulama projeleri, Genel Müdürlükçe onaylanarak yürürlüğe konur. Kültür Varlıklarının Korunması ve Turizm Yatırımlarına Dair Plan Kararları Madde 15 - Bu yönetmelik uygulamasına konu olan yerlerde; a) Kültür varlıklarının korunması, tahkimi, restorasyonu ve değerlendirilmesine dair plan kararları, 2863 sayılı Kültür ve Tabiat Varlıklarını Koruma Kanununun ilgili hükümlerine göre ve Kültür ve Turizm Bakanlığı ile işbirliği içinde tesbit edilir. b) Turizm bölge, alan ve merkezlerinde, turizm yatırımlarına dair plan kararları Bakanlığın görüşü alınarak sonuçlandırılır. DÖRDÜNCÜ BÖLÜM : Kuruluş ve Yönetim Kuruluş Madde 16 - Bu Yönetmelik kapsamına giren hizmetlerin taşradaki uygulaması bölge müdürlüklerince yürütülür. Koruma Madde 17 - Bu Yönetmeliğin uygulandığı yerlerde; a) Sınırlar uygun fiziki elemanlarla veya yeşil çitlerle yer yer belirlenir. Bunun dışında kalan sınırlar uygun aralıklı ve kolay görülebilir işaret ve levhalarla belirtilir. b) Koruma amacı ile yol, patika, haberleşme ağı; telsiz ve telefon gözetleme kule ve kulübeleri geliştirilir; deniz-hava ulaşım ve kontrol imkanları, ekipman ve araçlarıyla donatılır. c) Yangınlar, özellikle orman yangınlarıyla mücadele yönünden bu Yönetmeliğin 10 uncu maddesinde açıklanan esaslar dahilinde her türlü tedbir alınır. Mücadelede su ve çevreye zararlı olmayan kimyevi madde kullanımına yer verilir. Yangınların tesbit ve söndürülmesine ilişkin her türlü müdahale kalifiye ekiplerce sağlanır. Geniş uygulama alanları için özel yangınla mücadele projeleri hazırlanır ve uygulanır. d) Planlar uyarınca gerçekleştirilecek her türlü tesisin, idarenin koyacağı esaslar dahilinde, çevre sorunu yaratmayacak şekilde, atık su arıtma sistemiyle donatılması ve tesisle birlikte bitirilmesi, tesisi yapan kuruluş veya şahıslarca sağlanır. Yapım sırasında meydana gelen moloz döküntüleri yatırımcı tarafından kaldırılır ve kullanım alanının tabii peyzaja uygun çevre tanzimi idarenin belirleyeceği esaslara göre yapılır. İdarece gerçekleştirilecek müşterek alt yapı tesislerine, kamu ve özel tesis sahiplerinin, belirlenecek katılım payları ile iştiraki temin edilir. e) Çevreyi ve ziyaretçileri rahatsız edecek seviyede gürültülü faaliyetlerde bulunulamaz, yüksek sesle müzik yayını yapılamaz. f) Yapı ve tesislerde çevre ve hava kirliliği yaratan yakıt kullanılamaz, kullanılması gerektiğinde idarenin koyacağı kirlenmeye karşı tedbirlerin alınması zorunludur. g) Ziyaretçiler, idarece konan esaslar dahilinde bu yerlerden yararlanabilirler. h) Yasaklanan fiillere, arazi kullanma şekillerine ve plan dışı yapılaşmaya fırsat verilmez. Aksi hareket edenler hakkında kanuni işlem yapılır. ı) Genel peyzajda göze çarpan bozulmaları gidermek üzere, yörenin tabii arazi yapısı, tabii bitki örtüsü ve tabii peyzaj özellikleri dikkate alınmak ve o yörenin tabii türleri kullanılmak suretiyle ağaçlandırma, peyzaj restorasyonu ve tesislerin yakın çevre peyzaj düzenlemeleri yapılır. Koruma Görevlileri Madde 18 - Bu Yönetmeliğin uygulandığı yerler ve yörelerde; Yönetmelikte belirtilen her türlü koruma hizmetleri ve yasaklara karşı işlenen suçların takibi 6831 sayılı Orman Kanununun 5 inci fasıl dördüncü bölümünde yer alan suçların takibi ile ilgili hükümlere, 2872 sayılı Çevre, 1380 sayılı Su Ürünleri ve 3167 sayılı Kara Avcılığı Kanunları hükümlerine, genel hükümlere ve Muhafaza Memurları Görev ve Çalışma Yönetmeliğine uygun olarak orman muhafaza memurlarınca sağlanır. Mülkiyet ve Kamulaştırma Madde 19 - Milli park, tabiat parkı, tabiat anıtı, tabiatı koruma alanlarının devlet mülkiyetinde ve Genel Müdürlüğün intifa ve denetiminde olması esastır. Ancak Milli parklarda devlet mülkiyeti aranmayabilir. Bunu sağlamak üzere gerekli kamulaştırma işlemleri, Kanunun 5 inci maddesi hükmüne göre yapılır. Kamulaştırma bedelleri Fon'dan karşılanır. Taşınmazların tahsisi ise Kanunun 6 ncı maddesi hükümlerine göre yapılır. Tesis ve Düzenleme Madde 20 - Kanun kapsamına giren yerlerde planların gerektirdiği her türlü yapı, tesis, hizmet ve faaliyetlerin yapılması, yönetilmesi ve işletilmesi Kanunun 12 nci maddesine göre düzenlenir. Bu hizmetler içinde yer alan, lokanta, kafeterya, büfe, kır gazinosu ve benzeri tesisler idarece fon kapsamında işletilebileceği gibi, mevsimlik olarak işletmeciye de verilebilir. Milli Park, tabiat parkı, tabiat anıtı ve tabiatı koruma alanları yatırımları için gerekli ödenekler, fon yönetmeliği esasları dahilinde kullanılır. Milli Park, tabiat parkı, tabiat anıtı ve tabiatı koruma alanları içindeki mevcut yerleşim merkezlerinde ikamet edenler dışında bu yerlere gelen ziyaretçiler; giriş kontrol merkezlerinde veya sahalar içindeki idare ve ziyaretçi merkezlerinde, Bakanlıkça tesbit edilecek ücreti öderler. Bu ücretler fon'da toplanır. Kamu Kurum ve Kuruluşlarına Verilecek İzinler Madde 21 - Milli park ve tabiat parklarında, planlarına uygun olması şartıyla kamu kurum ve kuruluşları tarafından yapılacak her türlü plan, proje ve yatırımlara Bakanlıkça izin verilebilir ve uygulamalar Kanun ve Yönetmelik hükümlerine göre denetlenir. Ancak bu yerlerdeki tarihi ve arkeolojik sahalarda kazı, restorasyon ve ilmi araştırmalar, Bakanlığın bilgisi içinde olmak şartıyla, Kültür ve Turizm Bakanlığının iznine tabidir. Gerçek ve Tüzel Kişilere Verilecek İzinler Madde 22 - Milli Park ve tabiat parklarında, kamu yararı olmak şartıyla, o yer planlarının hükümleri dahilinde turistik amaçlı bina ve tesisler yapmak üzere gerçek ve özel hukuk tüzel kişileri lehine, Maliye ve Gümrük Bakanlığının görüşü alınarak ve Bakanlık tarafından öngörülen şartlar yerine getirilmek kaydıyla izin verilebilir. Müteşebbis, o yere ait mevcut planlarındaki şartlarla, Bakanlığın belirleyeceği esaslar dahilinde projelerini hazırlar ve turizm mevzuatına uygun olarak Kültür ve Turizm Bakanlığından belge almak sureti ile Bakanlıktan intifa hakkı tesisi talebinde bulunur. Turizm belgesi ve ekli projeleri ile keşif özetlerini Bakanlığa getiren müteşebbis adına, Maliye ve Gümrük Bakanlığının görüşü alınarak, Bakanlıkça usulüne ve proje ekonomisi ile amortisman müddetine uygun olarak kırkdokuz yılı geçmemek kaydıyla intifa hakkı tesis edilir. İntifa hakkı tesis edildiğinin Bakanlıkça müteşebbise tebliğini takip eden bir ay içinde Bakanlıkça verilen örneğe uygun noter tasdikli taahhüt senedi Bakanlığa verilir. Takiben, tahsis edilen yer, Bakanlıkça müteşebbise mahallen düzenlenen bir tutanakla teslim edilir. Müteşebbis, Bakanlığa taahhüt ettiği şartlara kesinlikle uymak zorundadır. İntifa hakkı süresinin uzatılması ve devri Kanunun 8 inci ve 9 uncu maddeleri hükümlerine göre yapılır. İzin Verilmeyecek Yerler ve Haller Madde 23 - a) Milli Park ve tabiat parklarında gelişme planları kesinleşmeden Kanun ve Yönetmelikte sözü edilen izinler verilemez. b) Tabiat anıtları ve tabiatı koruma alanlarında; 2863 sayılı Kültür ve Tabiat Varlıklarını Koruma Kanununun ilgili hükümleri saklı kalmak kaydıyla izin verilmez veya intifa hakkı tesis edilemez. c) Bu yönetmelik kapsamına giren yerlerde, Maden ve Petrol Kanunları gereğince araştırma, işletme ruhsatnamesi ve imtiyazı 2863 sayılı Kültür ve Tabiat Varlıklarını Koruma Kanununun ilgili hükümleri saklı kalmak kaydıyla, Bakanlar Kurulu Kararıyla verilir. Araştırma, işletme faaliyetlerinde bu yerlerin korunması amacıyla riayet edilecek hususlar Bakanlıkça belirlenir. Bu yönetmelikte yer alan izin işleriyle ilgili hususlar dışında 6831 sayılı Orman Kanununun ilgili hükümleri ve buna bağlı mevzuata göre hareket edilir. BEŞİNCİ BÖLÜM : Suçların Takibi ve Cezalar Suçların Takibi Madde 24 - Kanunda belirlenen yasaklar ve bu Yönetmelikteki açıklamalar ile 6831 sayılı Orman, 3167 sayılı Kara Avcılığı, 1380 sayılı Su Ürünleri, 6785 ve 1605 sayılı İmar, 2872 sayılı Çevre, 2634 sayılı Turizmi Teşvik ve 2863 sayılı Kültür ve Tabiat Varlıklarını Koruma Kanunu gibi Kanunlar ile bu Kanunların ek ve değişiklikleri ve bunlara dayalı mevzuatın getirdiği yasaklara uyulmaması ve suç sayılan fiillerin işlenmesi Kanun ve bu yönetmelik hükümlerinin uygulandığı yerlerde görevli orman muhafaza memurları tarafından bu memurların görevlerine ilişkin mevzuat çerçevesinde önlenir veya suç işlenmesi halinde gerekli kanuni işlem yapılır. Cezalar Madde 25 - 6831 sayılı Orman Kanunu, 3167 sayılı Kara Avcılığı Kanunu ve 1380 sayılı Su Ürünleri Kanunu ile bu kanunların ek ve değişikliklerinde yasaklanan fiillerin, Kanunun uygulandığı yerlerde işlenmesi halinde Kanunun 20 ve 21 inci maddeleri uygulanır. ALTINCI BÖLÜM : Son Hükümler Yürürlükten Kaldırma Madde 26 - 08/02/1973 gün ve 6304-586/9 Sayılı Milli Parkların Ayrılma, Planlama Uygulama ve Yönetimine Ait Yönetmelik yürürlükten kaldırılmıştır. Geçici Maddeler Geçici Madde 1 - Kanunun yürürlüğe girmesinden önce 6831 sayılı Orman Kanununun ilgili maddelerine göre Milli Park olarak ayrılan yerler ile Devlet Orman İşletmesi ve Döner Sermayesi Yönetmeliğinin ilgili hükümleri uyarınca orman içi dinlenme yeri (mesire yeri) olarak ayrılan yerler, Kanun ve bu Yönetmelik hükümlerine uygun olarak yeniden tasnif ve değerlendirmeye tabi tutulur. Milli Park kriterlerine haiz olan yerlerde; tamamı veya belirli bir kısmı evvelce Bakanlar Kurulu Kararı ile orman rejimine alınıp milli park olarak ayrılmış olanlarında; Kanun ve bu Yönetmelik hükümleri başkaca bir işleme gerek kalmaksızın uygulanır, diğerlerinin Milli Park olarak kabul edilmesi için Bakanlar Kurulu Kararı istihsal edilir. Tabiat parkı, tabiat anıtı ve tabiatı koruma alanı kriterlerine haiz yerlerde ise Kanun ve bu Yönetmelik hükümlerinin uygulanmasına belirleme işlemi ile birlikte başlanır. Geçici Madde 2 - Kanun ve bu Yönetmelik kapsamına giren yerlerde evvelce verilmiş kullanma izni, irtifak ve intifa hakları; geçerlilik süresi bitimine kadar başka bir işleme gerek kalmaksızın sahibi tarafından kullanılır. Yürürlük Madde 27 - Bu yönetmelik Resmi Gazetede yayımı tarihinden yürürlüğe girer. Yürütme Madde 28 - Bu yönetmelik hükümlerini Tarım Orman ve Köyişleri Bakanlığı yürütür.

http://www.biyologlar.com/milli-parklar-yonetmeligi

NANOBİYOTEKNOLOJİ

Nanobiyoteknoloji kelimesi iki kavramıiçinde barındırıyor: Bunlardan birincisi bir büyüklük tanımı: Nano, yani milimetrenin milyonda birine karşılık gelen bir büyüklük. İkincisi ise biyoteknoloji kavramı, yani biyoloji ve biyokimya temelli yöntemlerin uygulamalarını araştıran, ortaya koyan, onları ürüne dönüştüren, teknoloji temelli çalışma alanı. İkisinin birleşmesi ile ortaya çıkan nanobiyoteknoloji ise, bir yandan canlı hücrenin milyarlarca yıllık evrimi sırasında şekillenmiş nano-yapıları ve nanomakineleri, yani DNA’yı, RNA’yı, lipidleri, proteinleri, polisakkaritleri, bunların birbirleri ile etkileşimlerini ve hareketlerini araştırırken diğer yandan bu yapıları ve etkileşimleri daha dayanıklı, daha hızlı hareket eden, istendiği zaman planlanmış hedefe varacak materyaller ve yapılar kullanarak taklit edebilmeyi planlıyor. Nanobiyoteknolojinin bir üçüncü ilgi alanı ise moleküler biyoloji araştırmalarında nano seviyesinde bilgi toplayabilecek ve biyolojik sistemlerin nano düzeyde araştırılmasına olanak verecek sistem ve düzeneklerin tasarlanarak ürüne dönüştürülmesi olarak düşünülüyor. Nanobiyoteknolojinin İlaç Salınımına Etkisi Su an kullanılan ilaçların çoğu hedef hücrelerine ulaşma esnasında hidrofob alanlardan ve enzim yıkımından korunamadığı için etkilerini istenilen şekilde gösterememektedir. Ayrıca ilaçların istenilen süre etki gösterememesi ve hedef doku haricinde de etkisini tüm vücutta göstermesi istenmeyen olaylar olarak karsımıza çıkmakta. Bir diğer problem ise; verilen ilaçların vücuttaki bariyerleri aşıp hedef alana ulaşamaması(Parkinson hastalığı tedavisinde ihtiyaç duyulan dopaminin kan beyin bariyerini geçememesi. Bu nedenle kan-beyin bariyerini geçebilen L-DOPA kullanılır). Ortaya çıkan bu sorunların çözümünde nanoteknoloji bir takım çözümler sunuyor. Nanoboyutlarda üretilen taşıyıcılar, kan-beyin bariyeri, solunum sistemindeki bronşiyoller ve derideki sıkı bağlantılar gibi çeşitli anatomik ve biyolojik bariyerleri geçebilir ve ilaçların istenilen hedef dokuya ulaştırılmasını sağlar. Nanotaşıyıcılar vücuttaki dar alanlarda daha iyi dağılırlar ve düşük çözünürlüklü ilaçların çözünürlüğünü arttırabilirler. Nanoboyutta üretilen araçların olağanüstü özellikler göstermesinden yararlanılarak ilaçların fonksiyonu arttırılıp yeni özellikler kazandırılabilir. İlaç toksisitesini azaltabilir ve daha verimli ilaç dağılımını sağlayabilir. Küçük moleküller, proteinler, peptitler ve nükleik asitlerin hedef doku tiplerine bağlanması için modifiye edilebilir. Bunların yüzey özellikleri immün sistem tarafından tanınmaları için modifiye edilebilirler. Tüm bu işlemlerle ilacın sadece hasta bölgeye etki etmesi, tek uygulamada ilacın kanda uzun sure etkin bir şekilde kalması, ilacın belirli bir hızda ve gerekli miktarda salınması sağlanmış olur. Ancak ilaçların salınımında kullanılan bu nanotaşıyıcılar bir takım problemlere yol açabilir. Nanotaşıyıcıları elde etmek ve depolamak zordur. Düşük potansiyelli ilaçlar için uygun değildirler. Bazı durumlarda istenmeyen bölgelere ulaşarak zarara neden olabilirler. Hücrenin nükleer zarfını geçerek genetik hasara ve mutasyonlara yol açabilirler. Nanobiyoteknolojinin Kanser Araştırmalarında Kullanımı Kanser hücrelerinin sağlıklı hücrelere zarar vermeden öldürülmesi üzerine çok yeni ve farklı metotlar üstünde ve sadece dünyada birkaç laboratuvarda sürdürülen çok ileri düzeyde araştırmalar sürdürülmektedir. Örneğin, bakteri DNA’sının bizim DNA’mızdan yapısal farklılıklar gösterdiğinin keşfiyle DNA moleküllerinin bağışıklık sistemi üzerine olan uyarıcı etkisinden yararlanarak yeni DNA kökenli ilaçlar tasarlanmaktadır. bu ilaçları yeni jenerasyon aşı geliştirmekten, antikanser ve anti allerjik uygulamalara ve aşısı olmayan hastalıklardan immün koruyucu ajan olarak kullanmaya kadar geniş bir yelpazedeki araştırmalar başlamıştır. Sadece kanserli dokulara veya civarına kontrollü bir şekilde DNA’yı ve istendiğinde de kemoterapi ajanını da birlikte salabilen nanokeseciklerle antikanser terapileri geliştirilmekte ve bunların deney hayvanlarındaki etkinlikleri tayin edilmektedir. Bu terapi yöntemi ile, insanda baş ve boyun da oluşan ve çok hızlı bir şekilde ilerleyebilen bu kütle kanseri modeli farelerde %90’ın üzerinde bir başarıyla ortadan kaldırılabilmektedir. STARWARS21

http://www.biyologlar.com/nanobiyoteknoloji

NANOBİYOTEKNOLOJİ

Nanobiyoteknoloji kelimesi iki kavramıiçinde barındırıyor: Bunlardan birincisi bir büyüklük tanımı: Nano, yani milimetrenin milyonda birine karşılık gelen bir büyüklük. İkincisi ise biyoteknoloji kavramı, yani biyoloji ve biyokimya temelli yöntemlerin uygulamalarını araştıran, ortaya koyan, onları ürüne dönüştüren, teknoloji temelli çalışma alanı. İkisinin birleşmesi ile ortaya çıkan nanobiyoteknoloji ise, bir yandan canlı hücrenin milyarlarca yıllık evrimi sırasında şekillenmiş nano-yapıları ve nanomakineleri, yani DNA’yı, RNA’yı, lipidleri, proteinleri, polisakkaritleri, bunların birbirleri ile etkileşimlerini ve hareketlerini araştırırken diğer yandan bu yapıları ve etkileşimleri daha dayanıklı, daha hızlı hareket eden, istendiği zaman planlanmış hedefe varacak materyaller ve yapılar kullanarak taklit edebilmeyi planlıyor. Nanobiyoteknolojinin bir üçüncü ilgi alanı ise moleküler biyoloji araştırmalarında nano seviyesinde bilgi toplayabilecek ve biyolojik sistemlerin nano düzeyde araştırılmasına olanak verecek sistem ve düzeneklerin tasarlanarak ürüne dönüştürülmesi olarak düşünülüyor. Nanobiyoteknolojinin İlaç Salınımına Etkisi Su an kullanılan ilaçların çoğu hedef hücrelerine ulaşma esnasında hidrofob alanlardan ve enzim yıkımından korunamadığı için etkilerini istenilen şekilde gösterememektedir. Ayrıca ilaçların istenilen süre etki gösterememesi ve hedef doku haricinde de etkisini tüm vücutta göstermesi istenmeyen olaylar olarak karsımıza çıkmakta. Bir diğer problem ise; verilen ilaçların vücuttaki bariyerleri aşıp hedef alana ulaşamaması(Parkinson hastalığı tedavisinde ihtiyaç duyulan dopaminin kan beyin bariyerini geçememesi. Bu nedenle kan-beyin bariyerini geçebilen L-DOPA kullanılır). Ortaya çıkan bu sorunların çözümünde nanoteknoloji bir takım çözümler sunuyor. Nanoboyutlarda üretilen taşıyıcılar, kan-beyin bariyeri, solunum sistemindeki bronşiyoller ve derideki sıkı bağlantılar gibi çeşitli anatomik ve biyolojik bariyerleri geçebilir ve ilaçların istenilen hedef dokuya ulaştırılmasını sağlar. Nanotaşıyıcılar vücuttaki dar alanlarda daha iyi dağılırlar ve düşük çözünürlüklü ilaçların çözünürlüğünü arttırabilirler. Nanoboyutta üretilen araçların olağanüstü özellikler göstermesinden yararlanılarak ilaçların fonksiyonu arttırılıp yeni özellikler kazandırılabilir. İlaç toksisitesini azaltabilir ve daha verimli ilaç dağılımını sağlayabilir. Küçük moleküller, proteinler, peptitler ve nükleik asitlerin hedef doku tiplerine bağlanması için modifiye edilebilir. Bunların yüzey özellikleri immün sistem tarafından tanınmaları için modifiye edilebilirler. Tüm bu işlemlerle ilacın sadece hasta bölgeye etki etmesi, tek uygulamada ilacın kanda uzun sure etkin bir şekilde kalması, ilacın belirli bir hızda ve gerekli miktarda salınması sağlanmış olur. Ancak ilaçların salınımında kullanılan bu nanotaşıyıcılar bir takım problemlere yol açabilir. Nanotaşıyıcıları elde etmek ve depolamak zordur. Düşük potansiyelli ilaçlar için uygun değildirler. Bazı durumlarda istenmeyen bölgelere ulaşarak zarara neden olabilirler. Hücrenin nükleer zarfını geçerek genetik hasara ve mutasyonlara yol açabilirler. Nanobiyoteknolojinin Kanser Araştırmalarında Kullanımı Kanser hücrelerinin sağlıklı hücrelere zarar vermeden öldürülmesi üzerine çok yeni ve farklı metotlar üstünde ve sadece dünyada birkaç laboratuvarda sürdürülen çok ileri düzeyde araştırmalar sürdürülmektedir. Örneğin, bakteri DNA’sının bizim DNA’mızdan yapısal farklılıklar gösterdiğinin keşfiyle DNA moleküllerinin bağışıklık sistemi üzerine olan uyarıcı etkisinden yararlanarak yeni DNA kökenli ilaçlar tasarlanmaktadır. bu ilaçları yeni jenerasyon aşı geliştirmekten, antikanser ve anti allerjik uygulamalara ve aşısı olmayan hastalıklardan immün koruyucu ajan olarak kullanmaya kadar geniş bir yelpazedeki araştırmalar başlamıştır. Sadece kanserli dokulara veya civarına kontrollü bir şekilde DNA’yı ve istendiğinde de kemoterapi ajanını da birlikte salabilen nanokeseciklerle antikanser terapileri geliştirilmekte ve bunların deney hayvanlarındaki etkinlikleri tayin edilmektedir. Bu terapi yöntemi ile, insanda baş ve boyun da oluşan ve çok hızlı bir şekilde ilerleyebilen bu kütle kanseri modeli farelerde %90’ın üzerinde bir başarıyla ortadan kaldırılabilmektedir. STARWARS21

http://www.biyologlar.com/nanobiyoteknoloji-1

Vitaminlerin görevleri nelerdir

Vitaminler vücutta pek çok fizyolojik olayın sürdürülmesi için gereklidir. Pek çok enzim reaksiyonunda koenzim ya da kofaktör gibi rol alırlar. Bunun dışında antioksidan etkileri vardır. Bazı vitaminler de hormon olarak etki ederler. Vitaminler ve görevleri A Normal görme ve karanlığa adaptasyonda, sağlıklı cilt, saç, diş ve diş etlerinde önemlidir. D Kuvvetli diş ve kemikler için. Eksikliğinde kemik deformasyonu görülür. E Güçlü antioksidan özelliği ile hücre yıpranmasını ve yaşlanmayı yavaşlatır. Kalp ve damar hastalıkları riskini azaltır. B1 (Tiamin) Kalp, sinir sistemi ve kasların normal fonksiyonu için gereklidir. Eksikliğinde sindirim bozuklukları, aşırı hassasiyet (iritabilite), iştahsızlık gibi bozukluklar olabilir. B2 Sağlıklı cilt ve iyi görme için gereklidir. Eksikliğinde vücut direnci düşer, dudak çatlaklıkları, ağızda yaralar, egzama gibi cilt bozuklukları görülür. NIASIN Merkezi sinir sistemini destekler. Eksikliğinde çeşitli sinirsel hastalıklar ve deri hastalıkları olabilir. B5 (Pantotenik asit) Sinir sistemi, deri ve saç sağlığı için gereklidir. B6 (piridoksin) Sinir siteminin düzenli çalışmasına yardımcıdır. Hormonların fonksiyonlarında rolü vardır.Eksikliğinde gelişme geriliği, cilt bozuklukları, sinirsel bozukluklar görülür. B12 Kırmızı kan hücrelerin ve kemik iliğinin oluşumu ile sinir sisteminin normal fonksiyonları devam ettirmeleri için gereklidir. Eksikliğinde kansızlık, yorgunluk ortaya çıkabilir. FOLIK ASIT Hücrenin yapı taşlarının, kırmızı kan hücrelerinin, sinir dokularının oluşumunda etkilidir. Gebelikte görülen kansızlığın en büyük sebebi folik asit eksikliğidir. Folik asit ihtiyacı bebek gelişimine bağlı olarak yaklaşık 3 kat artar. Eksikliğinde kansızlık, hamilelikte bebeklerde gelişim bozuklukları söz konusudur. C Bağışıklık sistemini destekler. Kemiklerin, dişlerin, kan damarlarının sağlıklı kalmasına yardımcıdır. Eksikliğinde vücut direncinin azalması, diş eti kanaması ve skorbüt oluşur.   Kiraz: B1, B2, A, C vitaminleri ve malik asit. Hindistan cevizi: A, C vitaminleri. Kestane: A, B, C vitaminleri. Lahana: A, B1, B2, B6, C, E, K, P vitaminleri. Bakla: A, B1, B2, C, E, K vitaminleri İncir: A, B vitaminleri Çilek: A, B1, B2 C vitaminleri Mısır: A, B1, B2, E, K vitaminleri. Ağaç çileği: A, B, vitaminleri. Limon: B1, C, P vitaminleri Mandalina: A, B, C vitaminleri Kayısı: C vitamini Ananas: A, B1, B2, C vitaminleri Badem: B1, B2 vitaminleri Elma:A, B1, B2, C vitaminleri Nar: B1, C vitaminleri Kavun: A, B1, B2, C vitaminleri Arpa: B vitamini. Patates: A, B1, C vitaminleri Şeftali: A vitamini Domates:v A, B1, B2, C vitaminleri Maydanoz: A, C, K vitaminleri Erik: A, B1, B2, C vitaminleri Frenküzümü: C vitamini ve malik asit. Kereviz: A, B1, B2, C, K vitaminleri Ispanak: B1, B2, C, P, K vitaminleri Üzüm: A, C vitaminleri Enginar: C vitamini Su teresi: A, C, D vitaminleri Havuç: B, C, D, E vitaminleri Semizotu: C vitamini Roka: C vitamini Ayva: C vitamini Mercimek: Tüm B vitaminleri Ayı üzümü: A, C vitaminleri Avakado: A, D, e vitaminleri Pazı: A, C vitaminleri Biber: C (çok miktarda), B, B2, E vitaminleri   Fiziksel ve zihinsel sağlığımızı korumak için bilinen 30 vitamin ve minerale gereksinimimiz vardır.Çoğu kişi gerekli vitamin ve mineralleri besinlerden alabiliyor. Bu maddelerin normal beslenme yoluyla alınamadığı durumlar ise oldukça nadir. Dünya Sağlık Örgütü ve diğer sağlık kuruluşlarının, önerilen günlük alım (RDA) ile ilgili olarak, üzerinde görüş bildirdiği bir liste bulunmaktadır. RDA, RNI (besin alımı için referans) olarak da tanımlanmaktadır. Beslenme uzmanları ise bu listede yer alan miktarların çoğu kişi için minimum gereksinimi yansıttığını dile getirmektedirler. Gerçek anlamda sağlıklı olabilmek için belli besinlere daha yüksek miktarlarda ihtiyaç duyabilirsiniz ancak tam olarak ne kadar gerektiği tartışmaya açık bir konudur. Belli vitamin ve mineralleri almanız gerektiği, fiziksel ve zihinsel sağlık durumunuzun yanı sıra yaşamınıza ve cinsiyetinize bağlıdır. Bedeniniz vitaminler olmaksızın işlev göremez. Küçük miktarlarda gerekli olmalarına karşın enzim işlevlerinin tetiklenmesi açısından bedenle yaşamsal bir görevi yerine getirirler. Enzim işlvleri de bedendeki diğer faaliyetleri harekete geçirmektedir. B kompleksi vitaminlerine bu vitaminler belli bir grup oluşturur) C vitamini suda eriye vitaminlerdir. Bu vitaminler sadece B12 bedende depolanabilme özelliğine sahiptir. Antibiyotikler, alkol ve stres bu vitaminlerin emilimini azaltmaktadır. A,D,E ve K vitaminleri yağda eriyen vitaminlerdir ve bedende depolanabilirler. En fazla sıvı ve katı yağ içeren yiyeceklerde bulunurlar. İyi emilebilmeleri için safra işlevinin yeterli düzeyde olması gerekir. Vitaminlerin Görevleri: VİTAMİN A: D ve E vitaminleri gibi yağda çözülen bu vitamin, hücre büyümesi için önemli. Mukoza tabakaları ile gözlerin faaliyetini sağlıyor. Cilt ve vücut dokularının sağlıklı olmasını, bağışıklık sisteminin güçlenmesini sağlar. Birçok kanser türüne karşi koruyucudur, antioksidandır ve karanlıkta görmeyi sağlar. Karaciğer, böbrek, yumurta, buğday, mantar, baklagiller, fasulye, fıstık, ceviz VİTAMİN B1: Karbonhidratlardan enerji üretimi, beyin fonksiyonları ve sindirim sistemi için gerekli. Vücudun proteinleri kullanabilmesini sağlar VİTAMİN B6: Protein sindirimi, beyin fonksiyonları, hormonların üretimi için gerekli. Seks hormonlarını dengeler. Deprosyana karşı etkili. Alerjik reaksiyonları engeller VİTAMİN K: Kanın pıhtılaşmasını sağlar VİTAMİN C: Vücudun direncini artırıyor, diş, kemik ve kan damarlarının sağlıklı olmasını sağlıyor. Hücre solunumuna etki ediyor. Ayrıca demirin vücutta değerlendirilmesine yardımcı oluyor. Özellikle kış aylarında ve ateşli hastalıklarda, kronik ishallerde vücudun C vitamini artıyor. VİTAMİN D: Kemikler için vazgeçilmez bir vitamin. Eksikliği raşitizme yol açıyor. VİTAMİN E: Vücudun su ve yağ birikimini ayarlıyor. İşlemden geçmemiş yağlar, buğday, mısır, ayçiçeği, fıstık, susam, soya yağları, zeytin yağı, balık yağı, fındık, badem, ton balığı, sardalya, somon, patates, yumurta sarısı, domates, koyu yeşil renkli sebzelerde bulunur. B-2 vitamini: Protein, yağ ve karbonhidratların bünyede işlenmesini sağlıyor; yani enerji açısından önemi çok büyük. Ayrıca alyuvarların oluşumu için de çok yararlı. Bu vitamin gözlere ve deriye de sağlık veriyor. B-6 vitamini: Tüm metabolizma için vazgeçilmez bir vitamin. Özellikle sinir sistemi üzerinde etkili. Proteinin vücutta değerlendirilmesini de sağlıyor. Folik asit: Hamilelikte bebeğin beyin ve sinir sistemi gelişimi için hayati önem taşır. Yetişkinlerde beyin ve sinir sistemi fonksiyonları, protein kullanımı ve kan hücreleri yapımı için gerekli. Kalsiyum: Dişlerin ve kemiklerin güçlü olmaları için öncelikle kalsiyum gereklidir. Kalsiyum aynı zamanda kalp atışlarını düzenler, kanın gerektiği gibi pıhtılaşmasını sağlar, kaslar ve sinirler için yararlıdır. Kalsiyum kan basıncının yükselmesini ve kalın bağırsak kanserini önleyebilir. Ancak yapılan araştırmalara göre her on kadından sekizi, bol miktarda kalsiyum içeren yiyeceklerle beslenmek istemiyor. Hamilelik, bebeği anne sütüyle emzirme, menopoz, kafeinli içecekler vücuttaki kalsiyum miktarını azaltır süt ve sütlü besinler, mısır, sardalya balığı, kalamar, ıstakoz ve brokkoli bol miktarda kalsiyum içeren besinlerdir.      

http://www.biyologlar.com/vitaminlerin-gorevleri-nelerdir

MAKROFAJ SİSTEMİ (Mononükleer Fagositik Sistem)

Ortak fonksiyonları fagositoz ve pinositoz ile vücut savunması ve çöpçülük; kökenleri kemik iliği kanda monosit bağ dokularında makrofaj olan ve ortak morfoloji olarak bol lizozom, GER, iyi gelişmiş Golgi kompleksi ve pseudopodlara sahip hücrelerin oluşturduğu bir sistemdir. Bu sistemin hücreleri normalde bağ dokularında histiyosit , aktive olduklarında aktive edilmiş makrofaj şeklinde bulunurlar. Hücreleri; *Karaciğerde Kuppfer hücreleri *MSS’de mikroglia hücreleri *Osteoklast *Alveolar makrofaj Mast Hücreleri (Labrosit- Mastzellen ): Granülleri fagositoz ürünü sanıldığından İyi beslenmiş hücre anlamına gelen mast zellen olarak adlandırılmışlardır. Kemik iliği orjinli bu hücreler kan yoluyla dokuya gider ve çoğalırlar. 20-30 µm çapında, oval ya da yuvarlak hücrelerdir. Çekirdek küçük ve merkezi yerleşimlidir. İri granüllü hücrelerdir. Granüller çekirdeği maskeleyebilir. Granülleri, glikozaminoglikan içerikleri nedeni ile polianyonik olduklarından bazofilik ve metakromatiktir. 0,3-0,5 µm çapında ve membranlı olan granülleri tomar, kristal, tanecikli ve karışık olmak üzere 4 tiptir. Granüllerinde; Histamin:Bronşiyolar düz kaslarda kontraksiyon ve kapiller permiabilitede artışa yol açar. Heparin: Proteoglikan yapısındadır. Kan pıhtılaşmasını önler ve damarların yaşam boyunca açık kalmasını sağlar. Lökotrien (Slow reacting factor of anafilaksi=SRS-A): Düz kaslarda yavaş kontraksiyonlar yapar. Hücre içinde depolanmaz. Sitimulasyonla membran fosfolipidlerinden sentezlenip, hemen salınır. ECF-A (Anaflaksinin eozinofil kemotaktik faktörü ): Kan eozinofillerini kendine çeker. Nötral proteazlar: Mastositlerde mitoz nadirdir. Analog hücresi olan bazofillerde ise mitoz görülmez. İnsanda mast hücre sayısı bazofil hücre sayısına eşittir. Parakrin hücrelerdir. En çok dermiste, sindirim ve solunum yollarında bulunur. MSS’de ise sadece meninkslerde bulunur. Mastositler esas olarak iltihabi yanıtta kullanılacak kimyasal aracıların depolanması fonksiyonunu üstlenirler. Mast hücrelerinin 2 tipi vardır; Bağ dokusu mast hücreleri; Granüllerinde bir proteoglikan olan heparin hakimdir. Mukozal mast hücreleri: Granüllerinde bir glikozaminoglikan olan kondroitin – sulfat hakimdir. Mast hücrelerinin yüzeylerinde Ig E için spesifik reseptörler bulunur. *Yabancı maddeler (antijen) vücuda girdiğinde makrofajlar B-lenfositlere bilgi aktarır. B-lenfositler, plazma hücrelerine dönüşür ve bunların salgıladıkları Ig E mast hücre yüzeyindeki reseptörlere tutunur. Aynı antijen ya da benzer antijen vücuda tekrar girdiğinde bu yapılar üzerine tutunur. Tüm granüller deşarj olur. Birkaç dakika içinde yerel yanıt (ürtiker) ya da yaygın yanıt olan ani yüksek duyarlılık reaksiyonu ya da özel bir tipi anaflaktik şok ortaya çıkarak ölüme yol açar. Plazma Hücreleri: Az sayıda, daha çok intestinal mukozada ve kronik iltihaplı alanlarda yerleşik büyük, oval hücrelerdir. Nukleusları eksentrik yerleşimlidir. Nukleus kromatini araba tekerleği ya da saat kadranı gibi dağılım gösterir. Sitoplazmalarında çok iyi gelişmiş GER sisternaları ve Golgi kompleksi yer alır. GER sisternaları ve eksentrik yerleşimli çekirdekleri ile kesitlerde kolaylıkla tanınırlar. Yan yana gelmiş plazma hücreleri şaşı göz hücreleri olarak da adlandırılır. B-lenfositlerden farklanırlar. Nadiren bölünürler. Ömürleri 10-20 gündür. Fonksiyonları, antikor sentezleyerek organizmanın sıvısal (humoral) savunulmasıdır. Yağ Hücreleri (Adiposit): Nötral yağların depolanması ve ısı üretilmesi için özelleşmiş hücreler. Kandan Gelen Hücreler: Fonksiyonlarını bağ dokularında gerçekleştiren, diyapedez ile dolaşımdan çıkarak bağ dokularına giden ve geri dönemeyen kan hücreleridir. Nötrofiller: 3-5 loplu çekirdeğe sahip, granüllerinde alkalen fosfataz ve fagositinleri içeren fagositik hücrelerdir. İltihabi reaksiyonlarda sayıları artar. Nötrofiller, fagositozdan kısa bir süre sonra ölürler. Bu süreç çok enerji gerektirdiğinden hücre tüm glikojen rezervlerini tüketirler. Öldüklerinde, lizozomal enzimlerini ekstrasellüler ortama bırakır ve komşu dokunun liquefactionuna yol açar. Ölü nötrofiller, doku sıvısı ve abnormal materyal Pü (cerahat) olarak adlandırılır. Eozinofiller: Çekirdekleri 2 loplu ve asidofil boyanan granüllere sahip hücrelerdir. Aktif fagositik hücre değillerdir. Ancak ortamda antijen – antikor kompleksi varsa fagositoz yaparlar. Allerjik ve parazitik enfeksiyonlarda sayıları artar. Mastosit ve bazofilden salgılanan ECF-A, eozinofillerin ortama kemotaksis ile gelmesine yol açar. Eozinofiller, aril sulfataz ve histaminaz salgılar. Bu enzimler, lökotrien ve histamine tutunarak inhibe eder. Bu süreçle allerjik reaksiyonların şiddeti azaltılır. Bazofil :Fonksiyonları ve yapıları mast hücrelerine benzediğinden kan mastositleri olarak da adlandırılırlar. Lenfositler: Hücresel savunma (T-lenfositler ) ve sıvısal savunma (B-lenfositler) yapan hücrelerdir. T–lenfositler uzun ömürlüdür. B-lenfositler, daha kısa ömürlüdür ve uyarıldıklarında antikor salgılayan plazma hücrelerine ve bellek hücrelerine farklanırlar.

http://www.biyologlar.com/makrofaj-sistemi-mononukleer-fagositik-sistem

Krista nedir ?

Mitokondriyon iç zarı Şekil 2.9'da görüldüğü gibi matrikse doğru bir takım çıkıntılar yapar.Bu çıkıntılara krista adı verilir. Kristaların temel fonksiyonu iç yüzeyi artırmaktır. Mitokondriyonlar genellikle hücrenin belli bölgelerinde birikirler. Bunun nedeni üretilen enerjinin tüketileceği bölgeye mümkün olduğunca yakın tutulmak istenmesidir.

http://www.biyologlar.com/krista-nedir-

BAĞ DOKUSUNUN FONKSİYONLARI VE HORMONLARIN ETKİLERİ

Depolama: Lipid, su, elektrolitler (öz. Na+ ), plazma proteinlerinin 1/3’ü Savunma: Hücreleri ve hücrelerarası amorf temel maddesi ile bu fonksiyonu yerine getirir. Yangı alanına sırasıyla nötrofil – lenfosit, makrofaj – plazma hücreleri gelir. Etken ortadan kaldırılamazsa alan etrafında fibröz kapsül oluşturulur. Onarım: Fibroblastlar – scar dokusu oluşur. Transport: Kan damarlarından zengin amorf temel madde diffüzyona uygundur. Destek: Lifleri ile bu görevi yerine getirir. BAĞ DOKUSU ÜZERİNE HORMONLARIN ETKİLERİ Kortizon; Yabancı doku reddini önlemek için bu hormon kullanılır. Lif sentezini ve plazma hücrelerini ve lenfositleri baskılar. Yaraların geç iyileşmesini engeller. Adrenokortikotrop Hormon (ACTH): Hipofizden salınan bu hormon adrenal bezlerden kortizol sentezini uyarır. Tiroid Hormonları: Tiroid bezi salgılarının az olması durumunda hipotiroidizm ortaya çıkar. Bol ara madde (GAG) sentezinden dolayı miksödem olarak adlandırılan hastalık ortaya çıkar. C vitamini: Bu vitaminin eksikliğinde kollajen biyosentezi kusurludur. Fibroblastlar kusurlu kollajen sentezler ve hatalı liflerin yenilenmesi mümkün olmaz. Dişleri yerinde tutan periodontal ligament yapısı bozulur ve dişlerde scorbüt hastalığı ortaya çıkar. Clostridum grubu bakteriler: Bol kollajenaz sentezlediklerinden kollajen yıkımı olur. *Fe, O2, a ketoglutarat kollajen yapımında gerekli maddelerdir.

http://www.biyologlar.com/bag-dokusunun-fonksiyonlari-ve-hormonlarin-etkileri

Fizyoloji

Fizyoloji, hayvan ya da bitki, tüm canlılardaki hücre, doku ve organların işleyişini inceleyen bilim dalı. Canlının hayati fonksiyonlarını ve sistemlerinin işleyişini inceleyen bilim. Fizyoloji; canlılığın, yaşamanın mekanizmalarını, en ince ayrıntılarıyla insan vücudunda veya canlılarda vuku bulan hadiselerin esasına inerek araştırır. Bu sebeple bakteri fizyolojisi, hücre fizyolojisi, insan fizyolojisi ve daha birçok fizyoloji dalları vardır. İnsan fizyolojisi, insan vücudunda yer alan fonksiyonların her çeşidini açıklamaya çalışır. Hücrelerde meydana gelen kimyasal reaksiyonları, sinir sisteminin çalışma şekil ve prensipleri, uyarıların vücut tarafından nasıl alınıp, nasıl değerlendirildiğini, kasların çalışma mekanizmalarını, kanın damarlarda dolaşmasını, dokularda kanın kullanılma özelliklerini, kalbin ve beş duyumuzun nasıl çalıştığını, böbreklerin idrar meydana getirme kabiliyetini ve vücudun dış şartlarından nasıl etkilendiğini ve bunun gibi daha birçok vücut fonksiyonunun nasıl yapıldığını, hücresel, hatta moleküler seviyeye inerek araştırıp, gözler önüne sermeye çalışır. Ayrıca atmosferin üst tabakaları ve uzaydaki vücud fonksiyonlarını inceleyen “hava fizyolojisi”, su altında meydana gelen değişiklikleri inceleyen “sualtı fizyolojisi” gibi daha ilginç fizyoloji dalları da kurulmuştur. İnsanoğluna yeryüzünün değişik şartlarında yaşayabilme kabiliyeti verilmiştir. O, yaşamak ve faaliyet gösterebilmek için gerekli en küçük parçalara kadar donatılmıştır. Çeşit çeşit üstünlüklerle dolu olan, sayısız kimyasal, fiziksel, elektriksel ve daha ince olayların cereyan ettiği bu muazzam yapının araştırılması, akıl sahiplerini hayret ve hayranlıkta bırakmakta ve yaratıcının kudretinin bir göstergesi olmaktadır. Fizyopatoloji: Fizyopatoloji de fizyoloji gibi organizmada meydana gelen hadiselerin mekanizmalarını inceler. Fizyoloji normal vücudu incelerken, fizyopatoloji çeşitli hastalıkların ortaya çıkışındaki mekanizmaları inceler. Normal mekanizmanın neresinden bozulduğunda hastalığın meydana geldiğini, tamirinin nereye müdahale ile mümkün olabileceğini gösterir. Tedavi açısından oldukça kıymetli olan bu bilim dalı, hastalıkların ortaya çıkışındaki sebepleri bize en iyi şekilde izah eder. Kaynak:http://ansiklopedi.turkcebilgi.com

http://www.biyologlar.com/fizyoloji-1

Deniz Biyolojisi

Su an yeryüzünde görebildiginiz tüm canlilar, dogadaki canlilarin çok küçük bir bölümünü teskil etmektedir.Yeryüzünün üçte ikisinin sularla kapli oldugunu düsündügümüz zaman, okyanus ve denizlerde yasayan canlilar aleminin ne kadar devasal oldugunu anlayabiliriz. Yapilan arastirmalara göre dünya üzerindeki su kütlesinin hemen hemen tamami volkanik patlamalardan atmosfere salinan su buharindan husule gelmistir. Atmosfere salinan yüksek miktardaki su buhari yogunlasarak yillar boyunca yagan yagmurlari ve nihayetinde deniz ve okyanuslari meydana getirmistir. Yagmur sulari tatli yani saf su olmasina ragmen okyanus ve denizlerde yüksek miktarda tuzluluk vardir.Bunun nedeni jeolojik tabakalarin yüksek miktarda karbonat, sodyum klorür (tuz) ve zengin mineraller içermesidir.Sodyum miktari oldukça fazla oldugu için deniz ve okyanuslari olusturan tatli sularin tuzlu hale gelmesine neden olur. Tuz orani yüksek bu sularda herhangi bir kara canlisinin veya bir insanin uzun süreler yasamasi mümkün olmamasina karsin birçok deniz canlisi rahatlikla yasayabilmektedir.Tabii yasamlarini vücutlarindaki mükemmel organ sistemleri sayesinde sürdürürler. Okyanus ve denizlerde tipki karada yasayan canlilar gibi mikroorganizmalardan tutun devasal memeli canlilalar kadar binbir çesit canli türü yasamaktadirlar.Biz yanlizca bu devasal canlilar aleminden bilinen ve bilinmeyen birkaç örnek verecegiz. Deniz ve tatlisu mikroorganizmalari Bu canlilara " Plankton " adi verilmektedir.Planktonlar tatli sularda yasayabildigi gibi deniz ve okyanusta yasayanlarida vardir. Bu canlilar tipki bakteriler gibi ikiye bölünerek çogalmaktadirlar.Önce canlinin içerisindeki DNA replikasyonla kopyalanarak iki Katina çikarilir ve ardindan canlinin vücudu ikiye bölünür. Miktari iki katina çikan DNA nin yarisi birinci yavru hücreye diger yarisi ise ikinci yavru hücreye aktarilir. Planktonlarin en önemli özellikleri, suda yüzmek için aktif olarak belli bir hareketleri olmamasidir.Bu canlilar bulunduklari su ortaminin akimina bagimli olarak basibos dolanirlar. Planktonlar ancak mikroskopla görülebilirler fakat çiplak gözle dikkatlice bakildiginda görülebilecek kadar büyük olanlarida vardir. Bu mikroskobik canlilardan en çok bilineni ise " alg " adi verilen tek hücreli bir canli türüdür ki algler hemen hemen heryerde yasamaktadirlar. Denizlerde, tatli sularda, okyanuslarda, havuz sularinda, su birikintilerinde çamurlarin içinde ve nehirlerde bile yasamaktadirlar.Bu kadar fazla bir yasam alanina sahip canlilar biz ziyaretçilerin bile gözünden kaçmis olamaz. Örnegin bir havuz veya insaat sahasindaki seffaf su birikintilerinin renginin, birkaç gün sonra yesile veya kirmiziya dönüstügünü görmüssünüzdür.Bu sularda ilk zamanlarda yasayan binlerce tek hücreli canli türü, uygun bir sicakliga geldiginde süratle çogalmaya baslarlar. Yanlizca birkaç gün içerisinde sudaki canli sayisi milyari bulabilir.Bu kadar fazla sayidaki tek hücreli canlilar suyun rengini bulandirmaya baslar. Suyun rengi niçin yesile dönüsüyor ? Bunun nedeni ise bazi planktonlarin, tipki yesil bitkiler gibi klorofil molekülünü içermesinden dolayidir.Hatirlarsaniz bitkilerin yapraklarinin renginin yesil olarak görünmesinin klorofil molekülünden dolayi oldugunu söylemistik. Iste bu tip planktonlarinda vücutlarinda klorofil molekülü vardir ve tipki bitkiler gibi fotosentez yaparlar.Bu yüzdendir ki taksonomik olarak siniflandirilirken bitkiler kategorisinemi yoksa hayvanlar kategorisinemi konacagi konusunda sistematikçilerin ortak bir karari yoktur. Yumusakçalar (Mollusk) Okyanus ve denizlerde yasayan diger bir canli grubu ise, genel latince isimleri " Mollusk " olan yumusakçalardir. Bu canlilarin vücutlari adindanda anlasilacagi gibi oldukça yumusak bir yapiya sahip olup, bazi türlerinin vücutlari oldukça sert kabuklarlada kapli olabilir. Yumusakçalarin en iyi bilinen iki örnegi " Mürekkep baligi " ve kabuklu bir yapiya sahip olan " Deniz minareleri " dir. Mürekkep baliklari, gerek anatomik yapilari gerekse savunma mekanizmalari bakimindan oldukça ilginç canlilardir. Belgesellerde sik olarak gördügümüz bu canlilarin hareket mekanizmalari, bir jet motorunun çalisma prensibiyle aynidir.Bu prensip " etki - tepki " prensibidir.Yani bir yandan madde alinirken diger yandan madde verilmekte ve bu sekilde süratle hareket etmektedir. Balik, öncelikle vücudunu, arka tarafindan aldigi bir miktar su ile doldurur.Ardindan karin kaslarini büyük bir siddetle kasarki bu kasilma neticesinde sikisan su büyük bir süratle yine vücudun arka tarafindan disari püskürtülür.Disari püskürtülen su, baligin büyük bir hizla ileri dogru ivmelenmesini saglar. Bunun yaninda hayvan düsmanlarindan korunmak için bir tür sivi salgilarki bu sivi mürekkebe benzer olup salgilandiginda, kendisi kovalayan avcinin görmesini engelleyecek kadar suyu bulandirabilir. Yine bir mollusk olan deniz minareleri ise, yumusak bir vücuda sahip olmasina karsin çok sert bir kabuga sahiptir. Bu kabugun en önemli fonksiyonu canliyi düsmanlarindan korumasidir. Nasil oluyorda bu canlilar etraflarini kabukla örtebiliyorlar ? Bir sperm ile bir yumurtanin birlesmesinden sonra zigotu meydana getirdigini ve bu zigotun ardi ardina milyonlarca kez bölünerek bir yavru canliyi meydana getirdigine deginmistik.Mesela insan yavrusunda, en distaki hücreler diger hücrelerden farklilasarak keratin adi verilen bir madde üretir ve " Derinin " sekillenmesini saglarlar. Deniz minarelerinde ise, zigot milyonlarca kez bölünerek yavruyu meydana getirdiginde, yavrunun en distaki hücreleri " Kalsiyum " salgilayan özel bir hücre tipine farklilasirlar.Bu hücreler, canlinin içinde yasadigi deniz yada okyanuslardan absorbe edilen kalsiyumu düzenli bir sekilde salgilayarak canlinin etrafinda kalin bir tabaka olusmasini saglarlar. Okyanus bitkileri Su an soludugunuz havadaki oksijenin büyük bir kismi, deniz ve okyanuslarda yasayan ve klorofil içeren bitkiler tarafinda fotosentez yoluyla üretilir. Nasil ki atmosfer sartlarinda klorofil içeren bir bitki havadan CO2 yi, topraktan suyu ve günesten isigi alarak fotosentez yapip canlilar için oksijen üretiyorsa ayni sekilde deniz ve okyanuslarda da günes isiginin varabildigi bölgelerde bulunan klorofilli bitkilerde oksijen üretmektedirler. Bu canlilarin büyük bölümünü ise yosunlar teskil eder.Bunun yaninda daha adini sayamadigimiz onbinlerce tür deniz bitkisi vardir. Deniz bitkilerinin ihtiyaci olan su zaten yasam ortami olan denizden, CO2 ihtiyaci ise diger tüm deniz canlilari tarafindan karsilanir.Eger bu tabiat harikalari denizlerde var olmasaydi hemen hemen tüm deniz canlilari oksijensizlikten hayatini kaybedecekti. Basit bir canli gibi görünen bu yaratiklari aslinda ekosistemin vazgeçilmez birer parçasidirlar. Bu canlilarin milimetrelerle ölçülebilecek kadar küçük olanlari oldugu gibi yüzlerce metre uzunlugunda devasal boyutlara sahip olanlarida vardir. Atlas okyanusu kiyilarinda yasayan birtür deniz bitkisi, fotosentez yapmak için oldukça mükemmel bir yöntem gelistirmistir. Bu bitki tipki bir " Palmiye " agacina benzer ve onlarca metre uzunlugundaki dallarinin uçlarinda bir veya birkaç adet hava kesesi bulunur.Bu hava keseleri, bitki gelistikçe gitgide büyüyerek bitkinin dallarini suyun kaldirma kuvvetinin etkisiyle yukari dogru kaldirir. Deniz yüzeyine yaklasan dallar günes isigindan olabildigince faydalanarak fotosentez yapma imkani bulur. Deniz bitkilerinin üremeleri hem eseyli hemde eseysiz olabilmektedir. Erkek bitkiden gelen bir sperm ile disi bitkiden gelen bir yumurta hücresinin birlesmesiyle (eseyli üreme) yavru bir bitki meydana gelebildigi gibi bazi bitkiler ikiye bölünme ve " Tomurcuklanma " ile de çogalabilir (eseysiz üreme). Tomurcuklanma, bir bitkinin belirli bir bölgesinde büyüyen hücre veya hücre gruplarinin daha sonra bitkiden ayrilarak bagimsiz bir sekilde kendi basina büyüyüp gelismesi olayidir. Derisi dikenliler (Ekinodermata) Derisi dikenli deniz yaratiklarinin basinda " Deniz yildizlari ", " Deniz hiyarlari " ve degisik sekillerdeki dikenli canlilar gelmektedir. Bu hayvanlarin yasayis tarzlari pek aktif olmasada görünüs itibariyle deniz diplerinde bir renk cümbüsü meydana getirmektedirler.Görünümleri göze çok hos gelen bu yaratiklar alimli renkleriyle deniz diplerindeki vahsi yasamin vazgeçilmez birer parçasidirlar. Deniz yildizlari bilindigi gibi ikiye, üçe, dörde veya daha fazla sayida parçalara ayrilmasina ragmen her ayirdiginiz parça kendini tamir ederek yeni bir deniz yildizi verebilir.Canlilarin bu yeteneklerine "rejenerasyon" yani tamir edebilme özelligi denir. Deniz yildizlarinin bazi türlerinde dikenler oldukça uzun olup, yildizi vahsi deniz canlilari tarafindan parçalanma tehlikesine karsi korur Deniz hiyarlari, protein bakimindan zengin olup uzakdogu ülkelerinde besin kaynagi olarak tüketilmektedir.Bu canlilar genellikle fazla derin olmayan okyanus sularinda yasarlar. Deniz kestaneleri ise disaridan basit bir yapiya sahip oldugu izlenimini verir fakat iç organlari oldukça kompleks bir yapiya sahiptir.Öyleki kestanenin içerisinde, hayvanin sudaki oksijeni rahatça soluyabilmesi için suyu vücudunun içerisinden geçiren karmasik devri-daim organlari bile vardir. Bu mükemmel deniz yaratiklari, gözalici renkleriyle deniz diplerini adeta birer cennete çevirirler. Yüksek Organizasyonlu Deniz Canlilari : Yüksek organizasyonlu canlilar çok sayida türleri kapsamakla birlikte biz en çok bilinen " Köpek baliklari " ve " Balina " türlerine örnekler verdik. Köpek baliklari belgesellerde ve filmlerde gördügünüzden çok daha mükemmel ve gizemli yaratiklardir.Köpek baliklarinin kendi içerisinde birçok alt türleri vardir. Örnegin mamuzlu köpek baligi, boga köpek baligi ve çekiç basli köpek baligi gibi.Fakat köpek baliklarinin bazilari çok uysal olmakla birlikte diger bazi türleri oldukça saldirgan olup önüne gelen hemen her tür canliya saldirabilirler. Saldirgan bir köpek baligi grubu kendilerinden onlarca kat daha büyük olan balinalara bile saldirabilirler. Bu baliklardan en ünlüsü ise " Beyaz köpek baliklari " dir. Bu baliklar köpek baligi türleri arasinda en saldirgani olup yunuslara, foklara, deniz aslanlarina ve hatta balinalara bile saldirabilirler. Bir köpek baligini tehlikeli yapan en önemli organlari disleridir.Eger disleri normal bir baliginki gibi pek keskin olmasaydi, köpek baliklari tanindigi kadar tehlikeli olmayackti. Birçok insan köpek baliginin avini özellikle kuvvetli çene darbeleriyle parçaladigini zanneder fakat asil fonksiyon çenede degildir. Köpek baliklarinin disleri öyle mükemmel bir anatomiye sahiptirki hem bir jilet kadar keskin hemde ince elenmis bir testere kadar yivlidir. Bir köpek baligi avini isirdiktan sonra basini derhal saga sola dogru sallamaya baslar.Bu sekilde davranarak disleri arasina sikisan bir objeyi ivmelendirip yanal olarak disleri üzerinde hareket etmesini saglar. Obje veya av, disleri üzerinde hareket ettigi zaman jilet kadar keskin olan disler tarafindan rahatlikla kesilir.Böylelikle balik avini kisa süre içerisinde parçalayarak etkisiz hale getirir. Köpek baligi avini parçalarken gözlerini asla açmaz. Bunu yapmasinin nedeni ise avini parçalamasi esnasinda etrafa saçilacak kemik parçalarindan gözlerini korumak içindir. Çünki bir canlinin kemigi kirildigi (insan olsun hayvan olsun) zaman küçük partiküller haline gelen kemik parçalari oldukça keskin bir hale dönüsür. Bazi köpek baligi türlerinin boylari oldukça büyük olmasina karsin çok uysal olabilirler.Hatta bazi türleri iri memelilere saldirmak yerine deniz planktonlari ve küçük deniz canlilari ile beslenmektedir. Buna karsin dogada, resimdekinden çok daha iri köpek baliklarininda yasamasina karsin bazilari insanlarin zannettikleri gibi bir saldirganlik göstermezler. Köpek baliklarinin vücut sekilleri çok mükemmel bir sekilde dizayn edilmistir.Tipki bir füzeye benzeyen vücutlari ve güçlü yüzgeçleri sayesinde saatte 60 - 80 km ye kadar hiza erisebilmektedirler. Diger bir mükemmel özellikleri ise solungaçlarinin bu kadar süratle giderken sudaki oksijenden maksimum istifade edebilmesi için yan yaraflarda özel olarak konumlanmis olmasidir. Dikkat ettiyseniz yaris arabalarinin her iki yaninda hava bosluklari oldugunu görürsünüz.Bu bosluklar, araba süratle giderken motorun havayi daha rahat bir sekilde emmesine yardimci olmak içindir.Köpek baliklarinin yanlarindaki solungaçlarda, hayvan büyük bir süratle yüzerken sudaki oksijeni maksimum absorbe etmesi için yan taraflarda birer bosluk birakacak sekilde konumlanir. Insanlarin köpek baliklarindan esinlenerek taklit etmeye çalistigi bu mükemmel sistemi köpek baliklari haberleri bile olmadan milyonlarca yildir kullanmaktadir. Bugün halen sadece zevk amaciyla köpek baligi öldüren insanlar vardir.Bazi balikçilar ise besin degeri ve parasal degeri çok yüksek oldugundan dolayi hiç durmaksizin köpek baliklarini avlamaktadirlar. Bazi uzakdogu ülkelerinde balikçilar, lüks restoranlarin ihtiyaçlarini karsilamak amaciyla yanlizca yüzgeçlerini kesip baliklari tekrar çaresiz bir sekilde denize atmaktadirlar. Eger bu mükemmel yaratiklarin korunmasi amaciyla bir önlem alinmaz ise yakin bir zaman içerisinde soylari tükenme noktasina gelecektir. Ve eger köpek baliklarinin soylari tükenirse, denizde avlanilmasi ve sayilarinin azaltilmasi gereken birçok av hayvaninin nüfuslari gitgide artacak ve deniz ekosistemini altüst etmeye baslayacatir. Balinalar Dogadaki en büyük memeli hayvanlari temsil eden balinalarin bazi türleri küçük boyutlara sahip olmasina karsin bazi türlerinin boylari ise 35 - 40 metreye kadar varabilir. Balinalarda kendi aralarinda uysal ve saldirgan olarak ayrilirlar.En taninan uysal balina, boyutlari 35 metreye varmasina ragmen planktonlarla beslenerek yasamlarini sürdürürler. Balinalarin cüssesinin büyük olmasina karsin oldukça uysaldir.Bu balinalarin bazi türleri plnaktonlar ve küçük baliklar ile beslenmektedirler. Planktonlarin çok küçük canlilar oldugunu biliyoruz.Fakat bu kadar büyük cüsseli bir balina plnaktonlarla nasil beslenebilmektedir ? Balina bunu, çenelerinin arkasinda bulunan kusursuz bir yüzgeç sistemi sayesinde basarir.Boyu yaklasik 40 metreye varan ve planktonlarla beslenen bir balina, tek hamlede vücuduna 3 oda dolusu suyu doldurabilir.Vücuduna doldurdugu bu muazzam su kütlesini, mükemmel bir yüzgeç sistemine sahip çenelerinden tekrar disari verir. Su büyük bir hizla disari çikarken plankton ve diger küçük canlilar (ufak baliklar gibi) çenedeki yüzgeçte kalirlar.Bir cm3 suyun içinde onlarca plankton bulunduguna göre metrelerce küp su içerisinde içerisinde milyarlarca plankton bulunabilir.Balina bunu defalarca yaparak, midesini protein degeri yüksek bu ufak canlilar ile doldurur. Katil balinalar saldirgan olmalarina karsin egitildikleri zaman dost olmaktadirlar.Fakat vahsi yasam ortamlarinda birer köpek baligi gibidirler. Denizlerin en vahsi hayvanlari sayilan beyaz köpek baliklari bile bir katil balinayi gördügü zaman mümkün oldugu kadar ondan kaçinmaya çalisir. Bu canlilar, karsilastikari bir köpek baligini tek bir çene darbesiyle ikiye bölebilirler. Bazi katil balinalar fok ve deniz aslanlarini avlamak için sahile kadar kovalayabilirler.Ve bu kovalamaca neticesinde basarilida olurlar. Katil balinanin yaksaltigini gören fok veya deniz aslani sürüsü çareyi kumsala çikmakta bulurlar. Fakat katil balinanin sahile kadar çikacagini ummazlar. Balina foklari avlamak için kendini sahile kadar vurabilmektedir.Nitekim bazi foklar hayvanin koca agizindan kurtulamaz. Televizyonlarda gördügümüz gösteri balinalari bu katil balinalardir.Vahsi yasamlarindakinin aksine egitilidikleri zaman oldukça uysal olan bu yaratiklar insanlarin çok yakin dostu olabilmektdir. Senede bir kez belirli dönemlerde dogum yapan balinalar, yavrularini dogurmak için sig sulara göç ederler. Göç sirasinda binlerce mil yol katedebilirler.Deniz arastirmacilari halen balinalarin nasil yönlerini sasirmadan devasal okyanuslarda istedikleri yerlere gidebildiklerini tam olarak çözememislerdir. Bir balina sürüsünün içindeki bireyler, çok tiz bir ses çikararak birbirleriyle anlasmaktadirlar.Bu seslerin ne anlama geldigi konusunda uzun arastirmalar yapilmaktadir. Çikarilan bu sesler kilometrelerce ötedeki baska balinalar tarafindan ve hatta insanlar tarafindan bile duyulabilr. Balinalarin bu seslere nasil yanit verdikleri ise bir sirdir. Balina ve köpek baliklari deniz ekosistemi için mutlaka gerekli olan canlilardir.Fakat insanlarin bilinçsiz avlanmalari sonucunda denizlerdeki av - avci orani süratle bozulmakta, ve denizel ekosistemin dengeleri altüst olmak üzeredir. Örnek verecek olursak okyanuslarda istakozlarla beslenen ve ayni zamanda besin olarak tüketilen bir balik türü, istakozlarin bilinçsiz avlanilmasi sonucunda açlik ve nihayetinde ölüm tehlikesiyle karsi karsiya gelir.Yani insanlar, besin olarak tükettigi bu baliklari kendi elleriyle yok etmektedirler. Ayni sekilde köpek baligi ve balinalarin sayilarindaki süratli düsüs, av sayisinin yükselmesine (örnegin foklar ve küçük baliklar) ve dolayisiyla denizel ekosistemde bir nüfus patlamasina yol açar.Av canlilarinin sayisi yükseldikçe denizdeki diger canlilarin yasamlari olumsuz yönde etkilenmektedir. Umuyoruzki su an bu mükemmel deniz yaratiklarinin soylarinin devam etmesi için yürütülen çalismalar olumlu sonuç versin ve hergeçen gün yikilma noktasina biraz daha yaklasan deniz ekosistemi eski durumuna kavussun.

http://www.biyologlar.com/deniz-biyolojisi

Hücre Fizyolojisi

Hücreler yaşayan organizmaların yapısal ve fonksiyonel birimleridir. Hücreler küçük fakat kompleks yapılardır. Yaşamın bu temel birimi hakkında ayrıntılı bilgiler ilk kez 17. Yüzyılda ışık mikroskobunun geliştirilmesi ile edinildi. Bir müze müdürü olan İngiliz Robert Hooke 1663 yılında mantar ve diğer bitki örneklerini bir jiletle keserek mikroskop altında 30 kat büyüterek inceledi. Bu incelemeler sonucunda bitkilerin "hücre" adını verdiği küçük bölmelerle dolu olduğunu buldu. Anton van Leeuwenhoek isimli bir Alman dükkancı ise doku örneklerini 300 kat büyüterek, bakteri, kan hücresi, sperm hücresi gibi tek hücreli organizmaları inceledi. Bu organizmalara hayvancık anlamına gelen "animalcules" adını verdi. Hücrelerin Genel Özellikleri: Hücreler hem morfolojik (şekilsel) hem de metabolik olarak çok büyük farklılıklar gösterirler. E.coli isimli bakteri 1m m (m m=mikrometre= 1 metrenin milyonda biri) uzunluğundayken, aksonları 1 metre uzunluğunda olan sinir hücreleri vardır. Ama yine de hücrelerin çok büyük bir çoğunluğu 1-30 m m arasındadır. Hücreler küçük olmak zorundadırlar, çünkü metabolizmalarında diffüzyon çok önemlidir. Diffüzyon, termal hareketle moleküllerin rasgele hareket etmesidir. Diffüzyon moleküllerin, yüksek konsantrasyon bölgesinden düşük konsantrasyon bölgesine doğru, her yerde eşit dağılıncaya kadar olan, rastgele hareketleridir. Diffüzyon termodinamiğin 2. Kanuna bir örnektir. Bu kanuna göre entropi (düzensizlik ya da rasgelelik) sürekli olarak artar. Evrendeki düzensizliğin derecesi sadece ve sadece artabilir. Hücrelerin çoğu aktivitelerinin büyük bir bölümünü diffüzyon ile düzenlerler. Diffüzyon, molekülün özelliğine (büyüklük gibi) ve çevreye (vizkozite, membran gibi) bağlıdır. Bir partikül (madde parçası) tarafından katedilen mesafe zamanın karekökü ile doğru orantılıdır. Yani bir partikül 1 saniyede 1 m m gidiyorsa, 4 saniyede 2 m m ve 100 saniyede 10 m m ve 3 saatte (10.000 saniye) 100 m m gidecek demektir. Hücrelerin Fonksiyonel Özellikleri: Hücreler ortamdan ham materyali alırlar. Enerji üretirler: Bu enerji iç ortam dengesini sağlamak, ve sentez reaksiyonlarını yürütmek için gereklidir. Termodinamiğin 2. Kanununa karşı koymak ancak enerji ile mümkündür. Kendi moleküllerini sentez ederler. Organize bir şekilde büyürler. Çevreden gelen uyarılara cevap verirler. Çoğalırlar (bazı istisnalar haricinde). Hücrelerin Yapısal Özellikleri: Kalıtsal bilgiler DNA içinde saklanır. Genetik kod temelde aynıdır. Bilgi DNA dan proteinlere RNA aracılığı ile geçer. Proteinler ribozomlar tarafından yapılır. Proteinler hücrenin fonksiyon ve yapısını düzenlerler. Bütün hücreler seçici geçirgen bir zar olan plazma membranı ile çevrilmiştir. HÜCRELERİ BİRBİRİNDEN AYIRAN ÖZELLİKLER Hücreler arasında pek çok benzerlik olmasına rağmen, çok belirgin farklılıklar da vardır. Bu farklılıklar hücreleri çeşitli ana guruplara ayırmamıza yardımcı olur. İki yaygın ana gurup şunlardır. Prokaryotlar Eukaryotlar Prokaryotlarla Eukaryotlar arasındaki en temel farklar prokaryotların bir nükleusa (çekirdek) ve membrana bağlı organellerinin (birkaç istisna haricinde) olmamasıdır. Her ikisinin de DNA sı, hücre zarı, ribozomları vardır. HÜCRE ORGANELLERİNİN YAPI VE FONKSİYONLARI Hücreler ışık mikroskopu ile incelendiği zaman, sitoplazma ve çekirdek adı verilen iki bölümden oluştuğu görülür. Ancak daha büyük büyütme sağlayan elektron mikroskopuyla yapılan incelemeler, hücrenin bir takım alt birimlerden, hücre organellerinden oluştuğunu ortaya koymuştur. Hücre şunlardan oluşmuştur. Hücre zarı Sitozol Organeller Çekirdek Hücre Zarı: Zar ya da membranlar yaşam için çok önemlidir, çünkü bir hücre 2 sebebten dolayı kendisini dışarıdaki ortamdan ayırmak zorundadır. DNA, RNA ve benzeri yaşamsal moleküllerini dağılmaktan korumalıdır. Hücre molekül yada organellerine zarar verebilecek yabancı molekülleri uzak tutmalıdır. Ancak hücre bu iki kurala uyarken bir taraftan da çevreyle haberleşmeli, dış ortamı sürekli olarak izlemeli ve ortam değişikliklerine ayak uydurmak zorundadır. Ayrıca hücre besin maddelerini dışarıdan almalı ve metabolizması sonucunda ürettiği toksik (zehirli) maddeleri dış ortama vermelidir. Biyolojik membranlar Şekil 1 de görüldüğü gibi bilipit katmandan oluşur. Şekildeki her bir fosfolipiti temsil eder. Daire ya da baş negatif yüklü fosfat gurubudur, ve iki kuyruk da çok hidrofobik (hidrofobik=suyu iten) olan hidrokarbon zincirlerini temsil eder. Fosfolipit zincirlerinin Şekil 1. De görüldüğü düzenlenmesi sonucu hidrofobik kısımlar membranın içinde kalır. Membran yaklaşık 5 nanometre (1 nanometre = 1 metrenin milyarda biri) kalınlığındadır. Membran semipermeabledır (yarı geçirgen), yani bazı maddelerin membrandan serbestçe geçmesine (diffüze olmasına) izin verir. Membran büyük moleküllere geçirgen değilken, yüklü iyonları çok az geçirir, ve yağda eriyen küçük moleküllere oldukça geçirgendir. Tüm biyolojik membranlar gibi hücre zarı (membranı) da lipit, protein ve az miktarda karbonhidrattan oluşmuştur. Hücre zarı, hücre içinde ve dışında bazı uzantılarla devam eder. Hücre dışına doğru olan uzantılar hücrenin yüzeyinden interstisiyel mesafeye doğru uzanırlar, bu uzantılara mikrovillus denir. Hücre içine doğru devam eden zar sistemi ise dış ortamın hücre içiyle daha yakın ilişki kurmasını sağlar. Bu sisteme endoplazmik retikulum denir. Endoplazmik Retikulum: Endoplazmik retikulum lipid, protein (ribozomlar aracılığı ile) ve kompleks karbonhidratların yapım yeridir. Endoplazmik retikulum hücredeki toplam membranların yarısından fazlasını oluşturur. Endoplazmik retikulum iki membrandan oluşur, iki membran arasında kalan boşluğa endoplazmik retikulum lümeni denir. İki tip endoplazmik retikulum vardır. Granüllü Endoplazmik Retikulum: Üzerinde ribozomlar vardır. Sisterna denilen yassılaşmış keseler şeklindedir. Golgi Kompleksi: Golgi kompleksi hem yapı hem de fonksiyon yönünden endoplazmik retikulum ile yakından ilişkilidir. Bu organel birbirine paralel bir dizi membranöz kanaldan oluşur ve salgı yapan hücrelerde iyi gelişmiştir. Golgi kompleksinin fonksiyonu endoplazmik retikulumda sentezlenen maddelere son şeklini vermek ve bu maddeleri bir membranla çevrelemektir. Ayrıca hücre zarının yenilenmesi ve yüzeyinin genişletilmesi görevini de üstlenir. Lizozom: Lizozomlar 0,2 ila 2 m m çapında organellerdir. Hücreiçi sindirimi sağlamak üzere yaklaşık 40 civarında enzim içerirler. Lizozom membranı lizozomun hücreyi tümüyle sindirmesini önler. Bu enzimler için optimal pH 5 civarıdır. Lizozomlarda ATP hidrolizi ile çalışan H+ pompası vardır. Bu sayede lizozomun pH I düşük tutularak enzimlerin etkin hale geçmesi önlenir. Peroksizom: Peroksizom membranında spesifik proteinler ve oksidasyon enzimleri vardır. Karaciğerdeki peroksizomların ana görevi detoksifikasyondur (bir maddeyi zararsız hale getirme). Ribozom: Ribozomlar proteinlerin sentez edildikleri yerdir. Protein sentezi için gerekli bilgi DNA dadır, bu bilgi RNA ya transfer edilir, ve ribozomlarda RNA daki bu bilgiyle protein yapılır. Bir hücre için protein sentezi çok önemlidir, bu yüzden de hücrede binlerce ribozom bulunur. Ribozomlar ya sitoplazmada serbestçe yüzerler ya da endoplazmik retikuluma bağlı olarak bulunur. Ribozomların membranı yoktur. Protein sentezlemedikleri zaman 2 alt gurup halinde bulunurlar. Alt guruplar ribozomal RNA (rRNA) ve ribozomal proteinlerden oluşur. Mitokondri: Mitokondriler eukaryotik hücrelerde ana enerji üretim merkezleridir. Biri iç diğeri dış olmak üzere iki membranı vardır. İç membranda çok sayıda katlanmalar vardır, bu membranın yüzey alanını genişleterek, membran bağımlı raksiyonların daha fazla sayıda olamasını sağlar. Mitokondrilerin kendi DNA ve ribozomları vardır. Çekirdek (Nükleus): Nükleus DNA nın bulunduğu ve DNA daki bilginin RNA ya aktarıldığı yerdir. Çift katlı bir membranla sarılmıştır, bu membranda çok sayıda büyük porlar bulunur. Çekirdeğin içini dolduran esas madde DeoksiriboNükleik Asit ve protein molekülleridir. Bu DNA molekülleri nükleus içinde rastgele dağılmış olamayıp kromozom denilen yapılar içinde protein molekülleri ile birlikte organize olmuşlardır. İnsanda 46 adet (23 çift) kromozom bulunur. DNA molekülleri hücrede mevcut bütün proteinlerin nasıl yapılacağının genetik bilgisini içerirler. Bilgi nükleusdadır fakat proteinler sitoplazmada yapılır, bu sebeple bilginin sitoplazmaya aktarılması gereklidir. Bu amaçla DNA kalıp gibi kullanılarak, bu kalıptan RNA yapılır, oluşan RNA sitoplazmaya geçerek, protein yapım yeri olan ribozomlara protein sentezi için gerekli bilgiyi aktarır. Çekirdek hücrenin kontrol merkezidir, buradaki genetik mekanizmalar yoluyla sadece hücre içindeki kimyasal olaylar değil, aynı zamanda hücrenin özelliklerinin yeni hücre nesillerine aktarılması da sağlanır. Hücre İskeleti: Aslında hücre iskeleti terimi yanlış bir deyimdir. Hücre iskeleti transparan olduğu için hem ışık hem de elektron mikroskobu preperatlarında görülmez. Hücre çizimlerinde de gösterilmemesine rağmen önemli bir hücre komponenttidir. Hücre iskeleti hücrenin şeklini, hücre organellerinin yerinde durmasını sağlar, ve hücre hareketinden sorumludur. Hücre iskeleti şunlardan oluşmuştur. Sentriyoller Mikrotübüller Aktin filamentleri Sentriyoller çekirdeğe yakın olarak yer alan bir çift silindirik yapıdır. Her biri üçerli guruplar halinde dokuz tübülden oluşmuştur. Sentriyoller hücre bölünmesi sırasında kromozomların hücre kutuplarına çekilmesini sağlarlar. Mikrutübüller tübülin denilen alt birimlerden oluşmuştur. Görevi hücreyi yerinde tutmaktır, aynı zamanda silya ve flagellanın da ana bileşenidir. Aktin filamentleri ise hücrenin şeklini değiştirmesinde görev alırlar.

http://www.biyologlar.com/hucre-fizyolojisi

Kozmetik Yönetmeliği

23 Mayıs 2005 Tarihli Resmi Gazete Sayı: 25823 Yönetmelik Sağlık Bakanlığından: Kozmetik Yönetmeliği BİRİNCİ BÖLÜM Amaç, Kapsam, Dayanak ve Tanımlar Amaç Madde 1 — Bu Yönetmeliğin amacı; kozmetik ürünlerin, yanılmaya yol açmayacak ve insan sağlığına zarar vermeyecek şekilde, doğru ve anlaşılabilir bilgiler ile tüketiciye ulaşmasını sağlamak üzere, sahip olmaları gereken teknik niteliklerine, ambalaj bilgilerine, bildirimlerine, piyasaya arz edilmelerine, piyasa gözetim ve denetimlerine, üretim yeri denetimlerine ve denetimler sonunda alınacak tedbirlere ilişkin usûl ve esasları düzenlemektir. Kapsam Madde 2 — Bu Yönetmelik, insan vücudunun epiderma, tırnaklar, kıllar, saçlar, dudaklar ve dış genital organlar gibi değişik dış kısımlarına, dişlere ve ağız mukozasına uygulanmak üzere hazırlanmış, tek veya temel amacı bu kısımları temizlemek, koku vermek, görünümünü değiştirmek ve/veya vücut kokularını düzeltmek ve/veya korumak veya iyi bir durumda tutmak olan bütün preparatlar veya maddeleri ile bunların sınıflandırılması, ambalaj bilgileri ve denetimlerine ilişkin esasları kapsar. Dayanak Madde 3 — Bu Yönetmelik 24/3/2005 tarihli ve 5324 sayılı Kozmetik Kanununun 7 nci maddesine dayanılarak; Avrupa Birliği Kozmetik Mevzuatının 76/768/EEC sayılı Konsey Direktifi ile 96/335/EC sayılı Komisyon Kararına paralel olarak hazırlanmıştır. Tanımlar Madde 4 — Bu Yönetmelikte geçen; Bakanlık: Sağlık Bakanlığını, Kanun: 24/3/2005 tarihli ve 5324 sayılı Kozmetik Kanununu, Kozmetik ürün: İnsan vücudunun epiderma, tırnaklar, kıllar, saçlar, dudaklar ve dış genital organlar gibi değişik dış kısımlarına, dişlere ve ağız mukozasına uygulanmak üzere hazırlanmış, tek veya temel amacı bu kısımları temizlemek, koku vermek, görünümünü değiştirmek ve/veya vücut kokularını düzeltmek ve/veya korumak veya iyi bir durumda tutmak olan bütün preparatlar veya maddeleri, Kozmetik ürün bileşenleri: Kozmetik ürünün yapısında kullanılan, parfüm ve aromatik bileşim dışında olan, sentetik veya doğal kaynaklı her tür kimyasal madde veya preparatı, Üretici: Bir ürünü üreten, imal eden, ıslah eden veya ürüne adını, ticarî markasını veya ayırt edici işaretini koymak suretiyle kendini üretici olarak tanıtan gerçek veya tüzel kişiyi; üreticinin Türkiye dışında olması halinde, üretici tarafından yetkilendirilen temsilciyi ve/veya ithalatçıyı; ayrıca, ürünün tedarik zincirinde yer alan ve faaliyetleri ürünün güvenliğine ilişkin özelliklerini etkileyen gerçek veya tüzel kişiyi, İyi İmalat Uygulamaları: Bir ürünün veya hizmetin belirlenen kalite şartlarını yerine getirmesine yönelik yeterli güveni sağlamak için gerekli olan bütün planlı ve sistemli faaliyetleri, INCI: "International Nomenclature Cosmetic Ingredients" kelimelerinin kısaltması olup; uluslararası kozmetik ürün bileşenleri terminolojisini, CTFA: "Cosmetic, Toiletries and Fragrances Association" kelimelerinin kısaltması olup; Amerika Birleşik Devletleri Kozmetik Üreticileri Birliğinin derlemiş olduğu kozmetik ürün bileşenleri sözlüğünü, CI: İngilizce "Color Index" kelimelerinin kısaltması olup; uluslararası Boyar Madde Renk İndeks numarasını, ifade eder. İKİNCİ BÖLÜM Kozmetik Ürünlerin Kategorileri, Teknik Nitelikleri ve Ambalaj Bilgilerine Dair Şartlar Kozmetik Ürünlerin Kategorilerine Ait Liste Madde 5 — Kozmetik olarak değerlendirilen ürünlerin genel kategorilerini gösteren liste, bu Yönetmeliğin Ek-I’inde yer almaktadır. Bu Yönetmeliğin Ek-V’inde sıralanan maddelerden herhangi birini içeren bir kozmetik ürün ile ilgili Bakanlık, gerekli gördüğü tedbirleri alır. Kozmetik Ürünlerin Nitelikleri Madde 6 — Piyasaya arz edilen bir kozmetik ürün, normal ve üretici tarafından öngörülebilen şartlar altında uygulandığında veya ürünün sunumu, etiketlenmesi, kullanımına dair açıklamalara veya üretici tarafından sağlanan bilgiler dikkate alınarak önerilen kullanım şartlarına göre uygulandığında, insan sağlığına zarar vermeyecek nitelikte olmalıdır. Kullanıcıya bilgi ve uyarıların iletilmiş olması, hiçbir şekilde bu Yönetmelik gereklerine uyma zorunluluğunu ortadan kaldırmaz. Kozmetik Ürünlerin İçermemesi Gereken Maddeler Madde 7 — Bu Yönetmeliğin 6 ncı maddesinde öngörülen genel yükümlülükler saklı kalmak kaydıyla, kozmetik ürünlerin üreticileri, aşağıda belirtilenleri içeren kozmetik ürünleri piyasaya arz edemezler: Bu Yönetmeliğin; a) Ek-II’sinde belirtilen maddeler, b) Ek-III’ün Kısım 1’inde verilen listedeki maddelerden, belirtilen limitler ve şartların dışında yer alanlar, c) Sadece saçların, kılların ve tüylerin boyanması amacıyla boyar madde içeren kozmetik ürünler hariç olmak üzere, Ek-IV’ün, Kısım 1’inde belirtilenler dışındaki boyar maddeler, d) Sadece saçların, kılların ve tüylerin boyanması amacıyla boyar madde içeren kozmetik ürünler hariç olmak üzere, Ek-IV’ün, Kısım 1’inde belirtilen boyar maddelerden belirlenen şartlar dışında kullanılmış olanlar, e) Ek-VI’ün, Kısım 1’inde listelenenler dışındaki koruyucular, f) Ürünün tüketiciye sunum şeklinden anlaşılacak şekilde koruyuculuk dışında bir amaçla farklı konsantrasyonların kullanıldığı ürünler hariç olmak üzere, Ek VI’ün, Kısım 1’inde listelenmiş belirtilen sınırlar ve şartların dışında yer alan koruyucular, g) Ek-VII’nin, Kısım 1 dışındaki UV filtreleri, h) Ek-VII’nin, Kısım 1’deki UV filtrelerinden belirtilen sınırlar ve şartların dışında yer alanlar. Bakanlık, bu maddenin birinci fıkrasında belirtilenleri içeren kozmetik ürünlerin piyasaya arzını engellemek için gerekli tedbirleri alır. Ayrıca, bu Yönetmeliğin 6 ncı maddesinde öngörülen yükümlülüklere uymak kaydıyla, bu Yönetmeliğin Ek-II’sinde listelenen maddelerin eser miktarda varlığına, bu Yönetmeliğin 21 inci maddesine istinaden Bakanlıkça çıkarılacak olan İyi İmalat Uygulamaları Kılavuzu koşullarında teknik olarak uzaklaştırılamadıkları takdirde izin verilir. Kozmetik ürünlerin imalatında kullanılan kozmetik madde bileşenleri veya bileşimlerinin, hayvanlar üzerinde deneylerle test edilmesi ve bunların piyasaya arz edilmesi ile ilgili hususlar, Bakanlık tarafından yayımlanacak bir tebliğ ile belirlenir. Kozmetik Ürünlerde Kullanılması Serbest Olan Maddeler Madde 8 — Aşağıdakileri içeren kozmetik ürünler piyasaya arz edilebilir: Bu Yönetmeliğin; a) Ek-III, Kısım 2’sinde verilen listedeki maddelerden, belirlenen sınırlar ve şartlara uygun olanlar, aynı Ekte (g) sütununda verilen tarihe kadar, b) Ek-IV, Kısım 2’sinde listelenenlerden, belirtilen sınırlar ve şartlara uygun kullanılmış boyar maddeler, aynı Ekte verilen tarihe kadar, c) Ek-VI, Kısım 2’sinde verilen listedeki koruyuculardan, belirtilen sınırlar ve şartlara uygun olanlar, aynı Ekte (f) sütununda verilen tarihe kadar, d) Ek-VII, Kısım 2’sinde verilen listedeki UV filtrelerinden, belirlenen sınırlar ve şartlara uygun olanlar, aynı Ekte (f) sütununda verilen tarihe kadar. Ancak, birinci fıkranın (c) bendinde belirtilen maddelerden bazıları, ürünün tüketiciye sunum şeklinden açıkça anlaşılan özel bir amaçla başka konsantrasyonlarda kullanılabilirler. Boyar maddeler, koruyucular ve UV filtreleri, sözü geçen listelerde verilen tarihlerde; a) Tamamen izin verilmiş veya, b) Tamamen yasaklanmış (Ek-II) olacaklar veya, c) Ek-III, Ek-IV, Ek-VI ve Ek-VII’nin ikinci kısımlarında belirlenen sürelere kadar kalacak veya, d) Mevcut bilimsel bilgilere dayanılarak veya artık kullanılmadıkları için Eklerin tamamından silineceklerdir. Eklerin Güncelleştirilmesi Madde 9 — Bu Yönetmeliğin Ekleri üzerinde, bilimsel ve teknolojik gelişmeler ile Avrupa Birliği mevzuatındaki güncellemeler göz önünde bulundurularak, gerekli değişiklikler yapılır. İç ve Dış Ambalajda Yer Alacak Bilgiler Madde 10 — Kozmetik ürünler, iç ve dış ambalajlarında yer alan bilgilerin, silinemez, kolayca görülebilir ve okunabilir olmaları kaydıyla satışa sunulabilir. İç ve dış ambalajda yer alması gereken bu bilgiler aşağıda sıralanmıştır. Ancak, bu fıkranın (g) bendinde belirtilen bilgilerin pratik olarak iç ambalaj üzerine yazılamadığı durumlarda, bu bilgilerin dış ambalajın üzerinde diğer bilgilerin yanında bulunması yeterlidir. a) Ülke içinde yerleşik üreticinin, adı veya unvanı ve adresi veya kayıtlı işyerinin adı veya unvanı ve adresi belirtilir. Bu bilgiler, sorumluya ulaşmayı engellememek kaydıyla kısaltılabilir. İthal edilen ürünlerin menşeinin belirtilmesi gerekir. b) Beş gram veya beş mililitre altındaki ambalajlar, ücretsiz eşantiyonlar ve tek dozluk olan ürünler hariç, ağırlık veya hacim olarak ambalajlama anındaki nominal miktar belirtilir. Ağırlık veya hacim detaylarının önemli olmadığı, birden fazla birim ürünün tek ambalajda satıldığı durumlarda, birim sayısının ambalaj üzerinde belirtilmesi koşuluyla ambalaj içindeki birimlere miktar yazılması gerekmez. Eğer ambalaj içinde kaç adet ürün bulunduğu dışarıdan görülebiliyor veya ambalajın içindeki her bir ünite normalde sadece ayrı ayrı satılıyor ise, içindeki ürün sayısının ambalaj üzerinde belirtilmesine gerek yoktur. c) Bir kozmetik ürünün minimum dayanma tarihi; normal şartlar altında depolandığı takdirde, başlangıçtaki fonksiyonlarını yerine getirmeye devam ettiği ve özellikle bu Yönetmeliğin 6 ncı maddesine uyumlu kaldığı süredir. Söz konusu tarih, "minimum dayanma tarihi" ifadesi veya uygun kısaltılmış şeklini takiben; 1) Tarih yazılarak veya, 2) Ambalajın üzerinde tarihin bulunduğu yer hakkında detaylı bilgi verilerek, belirtilmelidir. Eğer gerekir ise, ürünün bu dayanıklılığının hangi şartlarda garanti altına alındığına dair ek bilgi verilir. Tarih açıkça ve sırasıyla ay ve yıl olarak belirtilir. Minimum dayanma süresi otuz ayı geçen ürünlerde, tarih belirtilmesi zorunlu değildir. Ancak, bu ürünlerde ürünün açılmasından itibaren tüketiciye zarar vermeden kullanılabileceği sürenin bildirilmesi zorunludur. Ürün açıldıktan sonra güvenli kullanılabileceği bu süre hakkında bilgi, Ek-VIII/a’da verilen sembolü takiben kullanma süresi ay ve/veya yıl cinsinden yazılarak belirtilir. d) Kullanımdaki alınması gereken özel tedbirler ve özellikle, bu Yönetmeliğin Ek-III, Ek-IV, Ek-VI ve Ek-VII’sinde yer alan ve "etikette belirtilmesi zorunlu olan kullanım şartları ve uyarılar" sütununda listelenenler ve profesyonel kullanım için, özellikle saç bakımı olmak üzere alınması gerekli özel tedbirler, kozmetik ürün etiketinde belirtilecektir. Pratik açıdan buna imkan olmadığı takdirde, bu bilgiler broşür, etiket, bant veya kart şeklinde ürüne eklenerek verilecektir. Tüketiciyi bunlara yönlendirmek için bir kısaltma veya Ek-VIII’deki sembol, iç ve dış ambalajın üzerinde bulunur. e) Üretim kodu veya üretim şarj numarası belirtilir. Kozmetik ürünün çok küçük olması nedeniyle bunun pratik olarak imkansız olması halinde bu bilgiler, dış ambalajın üzerinde bulunur. f) Ürünün sunum şekli itibariyle açıkça belli olmadığı takdirde, ambalaj üzerinde ürünün fonksiyonu belirtilir. g) Ürün bileşenlerinin listesi, ilave edildiği andaki ağırlıklarına göre azalan sıra ile ambalaj üzerinde belirtilir. Bu liste, "ÜRÜN BİLEŞENLERİ" veya aynı anlama gelen Türkçe veya yabancı dildeki ifadenin altında yer alır. Pratik açıdan bu mümkün olmadığı takdirde, bu bilgiler broşür, etiket, bant veya kart şeklinde ürüne eklenerek verilir. Tüketiciyi bunlara yönlendirmek için bir kısaltma veya bu Yönetmeliğin Ek- VIII’indeki sembol, iç ve dış ambalajın üzerinde bulunur. Aşağıdakiler ürün bileşeni olarak kabul edilmezler: 1) Kullanılan hammaddelerdeki safsızlıklar, 2) Preparatın yapımında kullanılan, ancak bitmiş üründe bulunmayan yardımcı teknik maddeler, 3) Kesinlikle gerekli miktarda kullanılan çözücüler veya parfüm ve aromatik bileşiklerin taşıyıcıları. Üreticinin, ticari sırların korunması amacıyla ürün bileşenlerinin bir veya birkaçını listeye dahil etmek istememesi durumunda uygulanacak prosedür, Bakanlıkça yayımlanacak bir tebliğ ile düzenlenir. Parfüm ve aromatik bileşikler ve onların hammaddeleri, "parfüm" ve "aroma" kelimeleri ile tarif edilir. Ancak, bu Yönetmeliğin Ek-III, Kısım 2’sinde yer alan "diğer sınırlamalar ve gereklilikler" sütununda belirtilmesi gereken maddelerin mevcudiyeti, ürün içindeki işlevlerine bakılmaksızın listede gösterilir. Konsantrasyonu % 1’den az olan ürün bileşenleri, konsantrasyonu % 1’den fazla olanlardan sonra herhangi bir sırayla listelenebilir. Boyar maddeler, bu Yönetmeliğin Ek-IV’ünde kabul edilen CI numaraları ve isimlendirmeye göre, diğer içerik maddelerinin ardından herhangi bir sıralamaya göre listelenebilir. Birçok renkte piyasaya verilen renkli dekoratif kozmetik ürünlerde kullanılan tüm boyar maddeler, "içerebilir" ifadesi veya "+/-" sembolü konulmak kaydıyla listelenebilir. Bir içerik maddesi öncelikle INCI; bu olmadığı takdirde ise, CTFA veya yaygın olarak kullanılan diğer isimleriyle tanımlanır. Bu maddenin ikinci fıkrasının (d) ve (g) bentlerinde belirtilen hususların, ebat veya şekli nedeniyle ürüne ekli bir kılavuzda belirtilmesinin pratik veya mümkün olmadığı hallerde bu hususlar, kozmetik ürüne ekli olan etiket, bant veya kartta belirtilir. Sabun, banyo topları ve diğer küçük ürünlerde, ikinci fıkranın (g) bendinde istenen bilgilerin ebat veya şekilden kaynaklanan pratik imkansızlıklar nedeniyle ürüne ekli broşür, etiket, bant veya kartta yer alamaması durumunda, ürünün satışa sunulduğu teşhir raflarının üzerinde veya hemen yakınında bulundurulacak kılavuzda belirtilir. Satışa hazır şekilde ambalajlanmamış, satış yerinde müşterinin isteği ile ambalajlanan veya anında satılmak üzere satış yerinde önceden ambalajlanmış kozmetik ürünler için, bu maddenin ikinci fıkrasındaki bilgilerin belirtilmesi gerekir. Kozmetik ürünlerin dolum yerleri ve dolum şartlarına dair esaslar, İyi İmalat Uygulamaları Kılavuzunda düzenlendiği şekilde uygulanır. Bu maddenin ikinci fıkrasının (b), (d) ve (f) bendlerindeki bilgilerin Türkçe olması gerekir. Ancak, ürünün dayanıklılığının hangi şartlarda garanti altına alındığına dair ek bilgi verilmesinin gerektiği durumlarda, ikinci fıkranın (c) bendinde istenen bilginin de Türkçe olması gerekir. Etiketlerde, ürünlerin satış için sergilenmesinde ve reklamlarında kullanılan metin, isimler, ticari marka, resim, figüratif desenler veya diğer şekiller, ürünlerin gerçekte sahip olmadıkları nitelikler varmış gibi kullanılamaz. Ayrıca, bu yönde imada bulunulamaz. ÜÇÜNCÜ BÖLÜM Sorumluluk, Denetim ve Bildirim Sorumluluk Madde 11 — Kozmetik ürünlerin üreticileri, sadece bu Yönetmeliğe ve Eklerine uygun olan kozmetik ürünlerin piyasaya arz edilmesi için gerekli tedbirleri almakla ve İyi İmalat Uygulamaları Kılavuzuna göre üretim yapmakla yükümlüdürler. Bakanlık, bu esaslara uygun olan kozmetik ürünün piyasaya arz edilmesini kısıtlayıcı, yasaklayıcı ve reddetmeye yönelik uygulamalardan kaçınır. Denetim Esasları Madde 12 — Kozmetik ürünlerin üretim yeri denetimleri, piyasa gözetim ve denetimi ile denetim kapsamında numune alma, uyarı, geri çekme, imha, üretim yerinin ıslahı ve kapatılması hususları Bakanlık tarafından belirlenir. Üretici, piyasa gözetim ve denetimi için Bakanlığın talebi halinde aşağıdaki bilgileri içeren Ürün Bilgisini, bu Yönetmeliğin 10 uncu maddesinin ikinci fıkrasına uygun olan etikette belirtilen adreste üç iş günü içerisinde hazır bulundurmak zorundadır. Bu Ürün Bilgileri; a) Ürünün kalitatif ve kantitatif yapısı; parfüm ve parfüm bileşimi olması halinde, bileşimin kodu ve tedarikçinin kimliği, b) Hammadde ve bitmiş ürünün fiziko-kimyasal ve mikrobiyolojik spesifikasyonu ve kozmetik ürünün fiziko-kimyasal ve mikrobiyolojik spesifikasyona uygunluğuna ilişkin kontrol kriterleri, c) İyi İmalat Uygulamaları Kılavuzu hükümlerine uygun üretim metodu; üreticinin, uygun seviyede profesyonel yeterliliği veya gerekli tecrübesi olduğunu belirleyen eğitim ve çalışma belgeleri, d) Bitmiş üründe insan sağlığı için güvenlik değerlendirmesi; bunun için üretici, ürün bileşenlerinin toksikolojik karakteri, kimyasal yapısı ve maruz kalma seviyelerini göz önüne alır. Bu amaçla, ürünün kullanımına sunulduğu hedef kitlenin veya ürünün uygulanacağı bölgenin belirgin maruz kalma özelliklerini göz önünde bulundurur. Üç yaşından küçük çocukların kullanımı için hazırlanan ürünler ile dış genital organlara haricen uygulanmak amacıyla üretilmiş kişisel hijyen ürünleri için özel güvenlik değerlendirmesi gerekir. Bu değerlendirme, 25/6/2002 tarihli ve 24796 sayılı Resmî Gazetede yayımlanan İyi Laboratuar Uygulamaları Prensipleri ve Test Laboratuarlarının Belgelendirilmesine Dair Yönetmelik hükümlerine uygun olarak yapılır. Ülke sınırları içinde aynı ürünün bir kaç yerde üretilmesi halinde, üretici bu üretim yerlerinden bir tanesini bu bilgilerin hazır bulunduğu üretim adresi olarak seçebilir. Bu durumda üretici, istendiği takdirde denetlenebilmesi için, seçilen bu yeri Bakanlığa bildirmek zorundadır. e) (d) bendindeki değerlendirmeyi yapacak yetkili veya sorumlu kişinin adı ve adresi; bu kişinin, eczacılık, veterinerlik, biyoloji, kimya, biyokimya, toksikoloji, mikrobiyoloji, dermatoloji, tıp veya eşdeğer bir bilim dalında diploma sahibi olması ve yeterli tecrübeyi haiz bulunması gerekir. f) Kozmetik ürünlerin kullanımı neticesinde insan sağlığına olabilecek istenmeyen etkiler hakkında mevcut veriler, g) Kozmetik ürünün veya maddenin iddia edilen etkilerini kanıtlayan bilimsel nitelikte çalışmalara dair belgeler, h) Avrupa Birliği dışındaki ülkelerin mevzuat veya diğer düzenlemelerinin gerekleri nedeniyle hayvanlar üzerinde yapılmış olan testler de dahil olmak üzere, üretici tarafından, ürünün geliştirilmesi veya ürün veya bileşenlerinin güvenlik değerlendirilmesi için hayvanlar üzerinde yapılan testlerle ilgili verilerdir. Özellikle ticari sır ve kişisel hakların saklı kalması kaydıyla, bu maddenin üçüncü fıkrasının (a) ve (f) bentlerinde yer alan veriler kamuya açık ve kolay ulaşılabilir olacaktır. Bu maddenin üçüncü fıkrasının (c), (d), (f) ve (g) bendlerindeki bilgilerin Türkçe veya Avrupa Birliğinde yaygın olarak kullanılan dillerden tercihen birinde olması zorunludur. Sorumlu Teknik Eleman Madde 13 — Üreticinin, uygun seviyede profesyonel yeterliğe ve gerekli tecrübeye sahip bir sorumlu teknik eleman bulundurması gerekir. Üretici bu maddenin ikinci fıkrasında belirtilen şartları taşıyorsa sorumlu teknik elemanlık görevini kendisi üstlenebilir. Eczacı veya kozmetik alanında en az iki yıl fiilen çalışmış olduğunu belgelemek kaydıyla kimyager, kimya mühendisi, biyolog veya mikrobiyologlar üretici tarafından sorumlu teknik eleman olarak görevlendirilebilirler. Sorumlu teknik eleman, İyi İmalat Uygulamaları Kılavuzuna uygunluğun sağlanmasından da sorumludur. Sorumlu teknik eleman, ülke mevzuatını bilmekle yükümlüdür. Bildirim ve Yasak Madde 14 — Piyasaya ilk kez arz edilecek kozmetik ürün için üretici, yeni ürünü piyasaya arz etmeden önce ve piyasaya kozmetik ürün arz etmek amacıyla yeni kurulan veya faaliyet sahasını genişleten imalat ve ithalat müesseseleri, yeni faaliyetine başlamadan önce bunu bildirmek zorundadır. Üreticiler, bu Yönetmeliğin Ek-IX’unda yer alan Kozmetik Ürün ve Üreticileri Bildirim Formunu, bu Yönetmelik hükümleri uyarınca, eksiksiz ve doğru olarak doldurur ve onaylar. Bu Formun Bakanlığa veya İl Sağlık Müdürlüklerine teslim edilmesiyle bildirim yapılmış sayılır. Bu maddenin birinci fıkrasına uygun şekilde bildirimi yapılmayan kozmetik ürünlerin piyasaya arz edilmeleri yasaktır. Zehir Danışma Merkezine Bilgi Verilmesi Madde 15 — Kozmetik ürünün kullanılması sırasında bir sorun çıkması halinde hızlı ve uygun müdahale yapılabilmesi amacıyla, ürün piyasaya arz edilmeden önce, ürünün formülünün ve istenen diğer bilgilerin, bu Yönetmeliğin Ek-X’unda yer alan Zehir Danışma Merkezine Bildirim Formu üzerinde doldurularak, Bakanlık Refik Saydam Hıfzıssıhha Merkezi Başkanlığı bünyesindeki Zehir Danışma Merkezine verilmesi gerekir. Söz konusu formül, ürün bileşenleri INCI adlarına göre düzenlenerek, hacim veya miktar oranlarının aralıklar şeklinde belirtilmesi suretiyle ve mühürlenmiş kapalı zarf içinde teslim edilir. Bu mühürlenmiş kapalı zarf, Zehir Danışma Merkezine elden teslim edilebilir veya iadeli taahhütlü posta yoluyla gönderilebilir. Bakanlık, bu bilginin yalnız sözü edilen müdahale amacıyla kullanılmasından sorumludur. DÖRDÜNCÜ BÖLÜM Analiz Metotları ve Kozmetikte Kullanılmasına İzin Verilenler Dışındaki Maddelerin Kullanılmasına İlişkin Özel Esaslar Analiz Metotları Madde 16 — Bakanlık tarafından, güncel teknik gelişmeler paralelinde; a) Kozmetik ürünlerin yapısını kontrol etmek için gerekli analiz metotları, b) Kozmetik ürünlerin kimyasal ve mikrobiyolojik saflık kriterleri ve bu kriterleri kontrol için metotlara dair gerekli tebliğler, yayımlanır. Kozmetik Ürünlerde Kullanılmasına İzin Verilen Diğer Maddelere İlişkin Özel Esaslar Madde 17 — Bu Yönetmeliğin 7 nci ve 9 uncu madde hükümleri saklı kalmak kaydıyla, kozmetik ürünlerde kullanılmasına izin verilen maddeler listesi dışındaki diğer maddelerin, Türkiye Cumhuriyeti sınırları dahilinde kullanılmasına aşağıdaki şartlarda izin verilebilmesi Bakanlığın yetkisindedir: a) İzin, üç yıllık bir süre ile sınırlandırılır, b) İzin verilen madde veya preparatlardan üretilen kozmetik ürünler, Bakanlık tarafından kontrol edilir, c) Bu tür kozmetik ürünler Bakanlığın belirleyeceği farklı bir şekilde işaretlenir. Bakanlık; bu maddenin birinci fıkrasına göre verdiği yeni izin hakkında, iznin verilmesi tarihinden itibaren iki ay içinde Dış Ticaret Müsteşarlığı vasıtasıyla Avrupa Birliği Komisyonunu bilgilendirir. Bu maddenin birinci fıkrasının (a) bendi uyarınca verilen üç yıllık sürenin sona ermesinden önce Bakanlık; Dış Ticaret Müsteşarlığı vasıtasıyla Avrupa Birliği Komisyonuna, birinci fıkraya göre ulusal kapsamda izin verdiği maddelerin, kozmetik ürünlerde kullanılmasına izin verilen maddeler listesine alınması için destekleyici bilgi ve belgeler ile başvuruda bulunabilir. Bu durumda, Bakanlık tarafından bu maddenin birinci fıkrasına göre verilen izin, birinci fıkranın (a) bendindeki üç yıllık süre dikkate alınmaksızın, listeye alınması için yapılan başvurudan sonra bir karar alınana kadar yürürlükte kalır. BEŞİNCİ BÖLÜM Çeşitli ve Son Hükümler İdari Yaptırımlar Madde 18 — Bir kozmetik ürünün bu Yönetmeliğin gereklerine uygun olmasına rağmen, sağlık için bir tehlike oluşturduğu tespit edilir ise Bakanlık, Ülke sınırları içinde bu ürünün piyasaya arz edilmesini geçici olarak yasaklar. Kontrol sonucunda ürünün genel sağlık yönünden güvenli olmadığının tespit edilmesi halinde, masrafları üretici tarafından karşılanmak üzere Bakanlık; a) Ürünün piyasaya arzının yasaklanmasını, b) Piyasaya arz edilmiş olan ürünlerin piyasadan toplanmasını, c) Ürünlerin, güvenli hale getirilmesinin imkansız olduğu durumlarda, taşıdıkları risklere göre kısmen veya tamamen imha edilmesini, d) (a), (b) ve (c) bendlerinde belirtilen önlemler hakkında gerekli bilgilerin ülke genelinde dağıtımı yapılan iki gazete ile ülke genelinde yayın yapan iki televizyon kanalında ilanı suretiyle risk altındaki kişilere duyurulmasını Sağlar. Risk altındaki kişilerin yerel yayın yapan gazete ve televizyon kanalları vasıtasıyla bilgilendirilmesinin mümkün olduğu durumlarda bu duyuru yerel basın ve yayın organları yoluyla risk altındaki kişilerin tespit edilebildiği durumlarda ise bu kişilerin doğrudan bilgilendirilmesi yoluyla yapılır. Böyle bir durumda Bakanlık, Dış Ticaret Müsteşarlığı vasıtasıyla Avrupa Birliği Komisyonunu, geçici yasaklama kararına esas olan gerekçe ve kanıtları da belirterek ivedilikle bilgilendirir ve yapılacak görüşmelerin sonuçları doğrultusunda gerekli değişiklik ve düzenlemeler Bakanlık tarafından yapılır. Bu Yönetmeliğe uygun olan kozmetik ürünlerin piyasaya arz edilmesi hakkında kısıtlama veya yasaklama getirilmesi ile ilgili kararlarda kesin gerekçeler Bakanlıkça belirtilir. Kararlarda, alınması gereken tedbirler ile bu Yönetmeliğe ve diğer ilgili mevzuata uygunluk sağlanmak üzere belirlenen süreler, ilgili tarafa bildirilir. Cezaî Müeyyideler Madde 19 — Bu Yönetmeliğe ve bu Yönetmeliğin uygulanmasına yönelik olarak yürürlüğe konulan mevzuat hükümlerine uymayanlar hakkında fiilin mahiyeti ve niteliğine göre, 24/3/2005 tarihli ve 5324 sayılı Kozmetik Kanunu, 29/6/2001 tarihli ve 4703 sayılı Ürünlere İlişkin Teknik Mevzuatın Hazırlanması ve Uygulanmasına Dair Kanun, Türk Ceza Kanununun ilgili hükümleri uygulanır. Kılavuz Madde 20 — Bu Yönetmeliğin uygulanmasını göstermek amacıyla Bakanlıkça gerekli kılavuzlar yayımlanır ve yayımlanan kılavuzların hükümleri, bu Yönetmelik ile birlikte uygulanır. Yürürlükten Kaldırılan Yönetmelik Madde 21 — 8/4/1994 tarihli ve 21899 sayılı Resmî Gazete’de yayımlanan Kozmetik Yönetmeliği yürürlükten kaldırılmıştır. Geçici Madde 1 — Bu Yönetmeliğin yayımlanmasından önce kozmetik ürün üretimine veya ithaline dair izin almak üzere Bakanlığa yapılan başvurular, bu Yönetmeliğin 14 üncü maddesine göre piyasaya arz öncesi bildirim olarak kabul edilerek sonuçlandırılır. Geçici Madde 2 — Üretim/ithal izni olan ve piyasada bulunan kozmetik ürünler için, bu Yönetmeliğin 14 üncü maddesi uyarınca, Yönetmeliğin yayım tarihinden itibaren altı ay içerisinde Bakanlığa bildirimde bulunulması zorunludur. Bakanlık, ürün güvenliğine halel getirmemek kaydıyla, üretim veya ithal izni almış, 5324 sayılı Kozmetik Kanununda öngörülen şartları yerine getirmiş ancak bu Yönetmeliğin gereklerine tam olarak uygun olmayan kozmetik ürünlerin Türkiye Cumhuriyeti sınırları dahilinde satılmasına, bu Yönetmeliğin yayımlanmasından itibaren otuzaltı aya kadar süre tanıyabilir. Yürürlük Madde 22 — Bu Yönetmelik, yayımı tarihinde yürürlüğe girer. Yürütme Madde 23 — Bu Yönetmelik hükümlerini Sağlık Bakanı yürütür.

http://www.biyologlar.com/kozmetik-yonetmeligi

Mikrofilamanlar

Mikrofilamanlar aktin molekülünden oluşan ipliksi yapılardır. 5-7 nm çapındadırlar. Hücrenin fonksiyonu ve şekline göre çok sayıda aktin tipi bulunmaktadır. Aynı hücrede de aktin tipinde çeşitlilik görülebilir. Mikrofilamanlar hücrede ekzositoz, endositoz, hücre göçü gibi hücre zarı aktivitelerine katılarak, bölünme sırasında hücrelerin ikiye ayrılmasında bölünme noktasında yüzük oluştururlar. Kas hücrelerinde kasılmayı sağlarlar ve sitoplazmada organel hareketlerine eşlik ederler.

http://www.biyologlar.com/mikrofilamanlar

Dinozor Türleri

Onlarla ilgili çok şey okuduk, binlerce film çekildi, belgeseller yapıldı. Bazı örnekleri 12- 15 katlı bir apartman büyüklüğünde olan dinozorlardan bahsediyoruz. Tarih öncesinin efsane canlıları Dinozorlar, günümüzden 65 milyon yıl önce yok olmuşlardır. Bugüne kadar 700 farklı türü sınıflandırılmış olmasına karşın, bu gizemli hayvanların dünyasını tanıma konusunda henüz yolun çok başında bulunmaktayız. Bilim dünyası dinozorlarla gerçek anlamda 19. yüzyılın ortalarında yaşayan İngiliz doğa bilimci Sir Richard Owen’ın çalışmaları ile ilgilenmeye başladı. Owen bu hayvanları, 1841 yılında, Yunanca “deinos” (korkunç), “saurus” (kertenkele) anlamına gelen iki sözcüğün birleşiminden oluşmuş Dinosauria (Dinozor) adıyla adlandırdı. Dinozorlar omurgalı hayvanlardan sürüngenler (Reptilia) sınıfına girerler. Yumurtlayarak nesillerini devam ettirirler. Dinozorların cins adları, çoğunlukla özelliklerinden hareketle belirlenir. Çatal omur, üç boynuzlu yüz gibi. Bazı durumlarda da onları bulan kişi, bulundukları yer ya da üzerlerinde çalışan fosil bilimcinin adını alırlar. Hayvanlar vücutları çok ısınır veya çok soğursa yaşamlarını sürdüremezler. Dinozorların vücut sıcaklıkları hava sıcaklığına bağlı olarak değişiyordu. Soğuk havalarda vücutları da soğuyordu. Bazı dinozorlar o kadar büyüktü ki, vücutlarının soğuması çok uzun zaman alıyordu.Yani gövdelerinin büyüklüğü sıcak kalmalarına yardımcı oluyordu. DİNOZOR TÜRLERİ: Dinozorlar, kalça yapılarına göre iki grup altında incelenirler: Birinci gruptakilerin kalça yapısı kuşlarınkine (Ornithischia), İkinci gruptakilerin kalça yapısı kertenkelelerinkine (Saurischia) benzemektedir. Saurischia’lar ise Theropoda ve Sauropoda diye iki alt takıma ayrılır. Therapoda’lar etçil olup ilk dinozor grubudur. İki ayak üzerinde yürürler. Bunların boyları 25cm. ile 10m. arasında değişir. En çok tanınanları Allosaurus olup, 140 milyon yıl önce Kuzey Amerika’da yaşamıştır. Allosaurus; Reptilia (sürüngenler) sınıfı, Saurischia takımının, Therapoda alttakımına ait Allosauridae ailesinin bir cinsidir. Bu alt takım üyeleri iki ayak üzerinde yürüyüp, etle beslenmişlerdir. Allosaurus 12 metre uzunluğunda yaklaşık 3 ton ağırlığında bir hayvan olup, ot yiyici dev boyutlu Sauropodlara saldıracak kadar da güçlüdür. Kafası vücuduna oranla büyüktür. Çenesi, uzun ve derin, 5-10 cm. uzunluğundaki dişleriyse geniş ve keskindir. Allosaurus kuş benzeri üç tane ayak parmağına sahiptir ve baş parmak geriye dönerek birçok kuşta olduğu gibi destek görevini üstlenmiştir. Ön üyeler kısa ve sağlamdır, pençe biçimli üç parmak ayrılmıştır ve beslenme fonksiyonunda kullanılmak için uygundur. Fakat vücudu desteklemek için elverişli bir yapıya sahip değildir. Diğer alt takım da Sauropoda’lardır. Bunlar Theropoda’lardan daha sonra ortaya çıkmışlardır. Dört ayak üzerinde yürürler, otçul ve etçil formları vardır. 30 metre uzunluğa ulaşanları bulunmuştur. Bunlar dinozorların en iri temsilcileridir. Bu alt takıma ait örneklerden Diplodocus, Kuzey Amerika’da 140 milyon yıl önce yaşamıştır. Bunlar 24 metre uzunluğunda olup 10 ton ağırlığa sahiptir. Otçul bir kertenkeledir. Dinozorlara ait bir diğer takım ise Ornitischia’lardır. Bunlar da, Ornithopoda, Stegosauria ve Ceratopsia alt takımlarına ayrılmaktadır. Ornithopoda alt takımı üyeleri otçul olup iki ve dört ayağa sahiptirler. Stegosauria üyeleri de karasal yaşama uyum sağlamıştır. Bunlar 150 milyon yıl önce Kuzey Amerika, Afrika ve Avrupa’da yaşamışlardır. Boyları 4.5 metre, yükseklikleri ise 2.5 metredir. Ceratopsia’lar da kara hayatına uymuştur. Dört ayaklıdırlar. En önemli örnek Triceratops’tur. Bu cinsin temsilcileri 110 milyon yıl önce Kuzey Amerika’da yaşamıştır. Boyları 6 metre kadardı. Otçul idiler. NASIL BESLENİYORLARDI? Dinozorların beslenme biçimleri çoğunlukla etçil ya da otçuldur. Ancak az rastlansa da bazı dinozorlar hem et, hem otla beslenebiliyor yani hepçillerdir. Dinozorların neyle beslendikleri çene ve diş yapıları incelenerek belirlenmektedir. Etçil dinozorlar, yumurtalarla, o dönemde yaşayan kertenkele, kaplumbağa ve ilkel memelilerle beslenerek yaşamlarını sürdürüyorlardı. Başka dinozorları avlayanlar ve leş yiyenler de vardı. Otçul dinozorlar ise, iğne yapraklı ağaçların yapraklarını, eğrelti, yosun ve atkuyruğu otlarıyla ginko yapraklarını yerlerdi. NE ZAMAN YAŞADILAR? Bundan 230-250 milyon yıl önce Triyas Devri’nde yeryüzü henüz tek bir dev kıta görünümündedir. “Pangea” adı verilen bu kıtayı, yine tek ve dev bir okyanus olan Panthalassa çevrelemektedir. Ana kıta henüz dev bir çöl yapısındadır. Sadece okyanus kıyılarında tropikal ormanlar yer almaktadır. İklim sıcak ve kuraktır. Kutup bölgelerinde buzullar henüz oluşmamıştır. O zamanlarda, daha sonra devrin tüm kıtalarını istila edecek olan dinozorlar evrimlerinin henüz başlangıç aşamasında bulunmaktadır. Yaklaşık 230 milyon yıl önce, ilk dinozorlar henüz ne çok iri ne de çok çeşitli idiler. Fakat kısa zamanda yeni yaşam şekillerine uyabilmek için farklılaşmaya başladılar. Bazıları ataları gibi etobur kalırken diğerleri otobur hale geldiler. Trias Devri sonunda yani 215 milyon yıl önce Amerika’dan Çin’e; Afrika’dan Avrupa’ya kadar hemen hemen her yerde dinozor fosillerine rastlanmaktadır. Günümüzden 150 milyon yıl önce dinozorlar yerküre üzerindeki en geniş hayvan topluluğuydu. NE ZAMAN YAŞADILAR? Milyonlarca yıl dünyaya hükmeden bu yaratıkların da bir sonu vardı. Günümüzden 80 ila 65 milyon yıl önce çok kısa bir sürede soyları tükendi. Bu dönemde beklenmedik bir olay canlıların bütün tarihini alt üst etti. Dinozorlar ve onlarla birlikte diğer birçok canlı varlık, deniz ve kara hayvanları, mikroskobik veya devasa yaratıklar sonsuza kadar yok oldular. Dinozorların neden yok olduğu sorusunun yanıtı yıllarca araştırıldı. Büyük bir olasılıkla, bu sorunun yanıtı hiçbir zaman tam olarak verilemeyecek. Bunun yanında bazı bilim adamlarına göre, salgın hastalıklar, bazılarına göre dinozor yumurtaları ile beslenen ilkel memeliler veya bir Astroid’in dünyaya çarpması da öne sürülen teorilerden bazılarıdır. Dinozorlar hakkındaki yeni buluntular hayal gücümüzü zorlamaya devam ediyor. Yok olmuş bir yaşam hepimizin ilgisini çekiyor. Dinozorların gizemli dünyasında keşfedilmeyi bekleyen çok soru var. Araştırmalar büyük bir hızla sürmektedir.  

http://www.biyologlar.com/dinozor-turleri

FİKSASYONUN ETKİLERİ

Otoliz, hücrelerin ölümünden sonra intraselüler enzimlerin hareketinin değişmesi ile protein yıkımına ve sonuçta hücrelerin sıvı hale gelmesine yol açar. Otolitik değişiklikler herhangibir bakteriyel hareketten bağımsızdırlar, soğukla geciktirilir, 37 C de muhafaza etmek önemli ölçüde hızlandırır. Doku 57 C'ye ısıtılırsa hemen hemen tamamen inhibe edilir. Otoliz, beyin, böbrek gibi çok iyi özelleşmiş organları , elastik fibriller, kollajen gibi yapılardan daha hızlı ve ciddi olarak etkilemektedir. Mikroskobik incelemede otoliz olmuş dokunun hücre çekirdekleri kondensasyon (piknoz), fragmentasyon (karyoreksis), lizis veya görülmeme (karyolizis) gösterebilir. Sitoplazma şişmiş ve granüler hale gelebilir ve tüm doku sonradan boyama reaksiyonunda kayıp veya büyük değişimle granüler ve homojenöz kütle haline dönüşür. Otoliz, epitelin dökülmesine, hücrelerin bazal membrandan ayrılmasına yol açar. Ek olarak teşhis önemi olan maddeler (örn.glikojen) miktarca azalır ve uygun fiksasyonun olmayışından dokuda yayılırlar. Bakterilerin dokularda yol açtıkları değişiklikler otolizdekine çok büyük benzerlik gösterir ve ölüm sırasında (septisemi gibi) hasta dokudaki veya yaşamda vücutta normalde bulunan ( Örneğin barsak flora bakterileri gibi) non-patojenik organizmaların çoğalmasıyla meydana gelmektedir. Fiksatifler dokuda mevcut olan veya ölümden sonra meydana gelen ve dokunun daha ileri değişimlerine yol açan bütün bakterileri öldürür. Fiksasyonun en önemli etkilerinden biri doku proteinlerinin ve yapı taşlarının koagülasyonudur. Böylece takip sırasında kayıpları ve diffüzyonları minimuma inmektedir. Ancak ek olarak fiksatif, takip sırasındaki haraplayıcı etkilere karşı koruyucu olmalıdır. Eğer, taze tespit edilmemiş doku çeşme suyunda yıkanacak olursa ciddi ve tamir edilemez harabiyet ve hücre lizisi oluşur. Fakat doku önce, Zenker de tespit edilirse ve daha sonra suya daldırılırsa zararsızdır. Akılda tutulmalıdırki doku elemanlarının koagulasyonu gerekli olmasına rağmen büyük bir artifakt oluşacaktır. Çünkü canlı hücre sıvı veya yarı-sıvıdır. Fiksasyon hücre ve doku elemanlarına değişen oranlarda kırma indislerini değiştirerek optik differansiasyon sağlamaktadır. Bazı hücre elemanlarının kırma indisleri çevreleyen ortama çok yakındır. Bu nedenle klasik mikroskopla canlı olarak incelendiklerinde görülemezler. Fiksasyon dokuların boyama basamağında da önemli bir etkiye sahiptir ve genellikle boya hareketlerini kolaylaştırır. Tespit ajanları bazı boyaların uygulanması üzerine özellikle faydalı bir etkidir. Örneğin çekirdek boyası olan carmalum, formalinden sonra merkurik klorid fiksasyonuna göre daha az boyar. Bazen tespit ajanı özel doku kompenenti ve doku arasında direkt bir link olarak hareket edebilir ve bu durumda fiksatifin bir mordant olarak hareket ettiği söylenebilir. Örnek olarak da hematoksilenle miyelinin gösterimi için dokunun potasyum dikromatla muamele edilmesi verilebilir. Fiksatiflerin diğer önemli bir fonksiyonu ise, dokuyu sertleştirmeleri sebebiyle doku parçalarından kolaylıkla ince kesitlerin alınmasına sebep olmalarıdır. Fiksasyon olayında fiksatifte kullanılan bazı kimyasal maddeler sebebiyle enzimler inaktif hale getirilir veya muhafaza edilir. Fiksatiflerin pratik uygulanması düşünülürken, araştırmanın gerçek amacı, dokunun boyutu, tipi ve tazeliği kesit alma prosesi ve uygulanmak istenen boyama tekniğinin bilinmesi gereklidir. Hiçbir fiksatif bütün dokular ve teknikler için ideal değildir. Proteinler, tuzlar, CH'lar veya lipidler çökertilir ve dolayısıyle dokunun yapısı elemanları sertleşir ve katılaşır. Fiksasyon işlemi fiziksel (ısı, kurutma ve dondurma ile ) ve kimyasal yolla yapılabilir. Isı ile fiksasyon dezavantajları nedeni ile artık uygulanmamaktadır. Kurutma ile fiksasyon, kan ve kemik iliği yaymalarında kullanılır. Dondurma ile fiksasyon, lipidler, enzimler ve ameliyat parçalarının hızlı teşhisinde kullanılır. Dondurulan örneklerden dondurma mikrotomu ( Cryostat ) ile kesit alınır. Kimyasal fiksasyon en çok kullanılan yöntemdir. Bu yöntemde alınan örnekler ya fiksatife atılır (immersiyon yöntemi ) ya da hayvan anestezi altında iken organı besleyen arter yolu önce serum fizyolojik ardından fiksatif verilerek yapılır (Perfüzyon Yöntemi). Perfüzyondan sonra örnekler alınarak tekrar fiksasyonun tamamlanması için fiksatife atılırlar. Böylelikle organ vücuttan çıkarılmadan bir miktar tespit edilir. Morfoloji daha iyi korunduğundan genellikle titiz çalışma gerektiren araştırmalarda kullanılır. Fiksatifler daima maksada ve boyama metodlarına uygun olarak seçilmelidir. Tespit olayının basarılı olması aşağıdaki unsurlara bağlıdır 1- Ölümden ve operasyondan sonra elde edilen doku ve organ parçaları derhal fiksatife atılmalıdır. Kalp durmasından en geç ışık mikroskobunda 30 dk., elektron mikroskobunda 4 dk. sonra örnekler fiksatife alınmalıdır. 2- Fiksatifte kullanılan kimyasal maddelerin tazeliğinde emin olmalı ve bu maddeleri titizlikle tartmalı ve karıştırmalıdır. Aksi taktirde fiksatifin etki ve nüfuz kabiliyeti ortadan kalkar. 3- Doku parçaları mümkün olduğu kadar küçük olmalıdır. 4- Fiksatif yeterli miktarda yani doku parçasının en az 10 misli olmalıdır (Formalin için 20 misli). 5- + 4C'de fiksasyon yapılması önerilmektedir. Her ne kadar düşük ısılar fiksatifin, dokuya penetrasyonunu azaltırsa da otolizi önlendiğinden iyi tespit için gereklidir. 6- İçi boş organlar tespit solusyonu ile doldurulmalıdır. Böylece tespit solusyonu dokuya her iki yüzden işler. Hem de boşluğun iç yüzündeki düzgün yüzey şeklini korumuş olur. 7- Kırışma ve katlanma olasılığı olan dokular mantar plakalar üzerine gerilmelidir. 8- Kaba önce fiksatif konmalı sonra parçalar aktarılmalı. Aksi taktirde doku kaba yapışır ve yapışma yerinden tespit solusyonu dokuya işlemez. 9- Yağdan ve havadan zengin dokular tespit solusyonunda yüzdükleri için bir kaset içine alınarak tespit edilmelidir. 10- Tespit solusyonunun dokuya işleyişini hızlandıran işlemlerden kaçınmalıdır. Yüksek ısı bir yönden tespit solusyonunun. dokuya işlerliğini artırır. Diğer yönden de dokuda otolizi hızlandırır. 11- Kullanılan tespit solusyonunun dokulara işleme hızları bilinmelidir. Bu hız her tespit solusyonu için değişiktir. Örneğin aIkol 5 mm kalınlığında bir dokuyu 2-4 saatte tespit eder. Aseton 5 mm kalınlığında bir dokuyu 2 saatte tespit ederken, sublime 5 mm kalınlığında bir dokuyu 5 saatte tespit eder .% 4'1ük formalin 4 mm kalınlığında bir dokuyu + 4 Cde 5 saatte tespit eder. 12- Kural olarak özel amaçlar dışında doku 24 saatten fazla tespit edilmemelidir. 13- Tespit solusyonu ne hipotonik,ne de hipertonik olmalıdır. Kullanılacak tespit solusyonunun osmomolaritesi canlı dokunun osmolaritesi (300 mosl) ve ölü dokudakine (450 mosl) uygun olmalıdır. Bu özellik gözönünde bulundurularak tespit edilmeyen doku su ile kesinlikle yıkanmamalıdır. 14- Tespit solusyonunun pH'sı canlı dokunun pH'sına yakın olmalıdır (6-8). Bu nedenle tamponlanmış formalinle dokuların tespit edilmesi daha uygun olur. Dokunun aşırı derecede sertleşmesine müsade edilmemelidir. Doku aşırı derecede katılaşacak olursa daha sonraki işlemleri zorlaşır. Kaplar yeterli büyüklükte ve düz hatlı olmalı, boğazı ise dar olmamalıdır. Böylelikle spesimenlerin sonradan çok küçük kavanoza aktarılırken minumum hasar görmesi sağlanır. Uzun zaman tespit solusyonunda kalan ve tespit solusyonunun buharlaşması sonucu sertleşen dokulardan tekrar çalışmak istendiğinde bu doku antiformine konarak yumuşatılabilir. ANTi FORMİN SOLUSYONU: 1 gr antiformin 5 ml suya konarak yahutta konsantre solusyonun 20 ml'si 80 ml suya konarak hazırlanır. Tamamen kuruyan dokuysa Dimetilsülfoksid (DMSO) içinde yumuşatılarak tekrar çalışır hale getirilebilir. TESPİT ESNASINDA MEYDANA GELEN HATALAR Fiksasyon artefaktları birçok nedeni vardır. Bunlar : a) Doku parçaları iyi tesbit edilmemişse, tespit olmamış doku elemanları otolize uğrarlar. Böylece ileride yapılacak işlemlerde beklenen netice alınamaz. b) Eğer bir fiksatif hazırlanırken formule iyi dikkat edilmez ve karışımı temin edecek maddeler uygun bir denge sağlıyamazlarsa hücrelerde şişme, büzülme ve ayrılmalar meydana gelerek, histolojik detaylar kaybolur.

http://www.biyologlar.com/fiksasyonun-etkileri

Deniz Biyolojisi Hakkında Bilgi

Su an yeryüzünde görebildiginiz tüm canlilar, dogadaki canlilarin çok küçük bir bölümünü teskil etmektedir.Yeryüzünün üçte ikisinin sularla kapli oldugunu düsündügümüz zaman, okyanus ve denizlerde yasayan canlilar aleminin ne kadar devasal oldugunu anlayabiliriz. Yapilan arastirmalara göre dünya üzerindeki su kütlesinin hemen hemen tamami volkanik patlamalardan atmosfere salinan su buharindan husule gelmistir. Atmosfere salinan yüksek miktardaki su buhari yogunlasarak yillar boyunca yagan yagmurlari ve nihayetinde deniz ve okyanuslari meydana getirmistir. Yagmur sulari tatli yani saf su olmasina ragmen okyanus ve denizlerde yüksek miktarda tuzluluk vardir.Bunun nedeni jeolojik tabakalarin yüksek miktarda karbonat, sodyum klorür (tuz) ve zengin mineraller içermesidir.Sodyum miktari oldukça fazla oldugu için deniz ve okyanuslari olusturan tatli sularin tuzlu hale gelmesine neden olur. Tuz orani yüksek bu sularda herhangi bir kara canlisinin veya bir insanin uzun süreler yasamasi mümkün olmamasina karsin birçok deniz canlisi rahatlikla yasayabilmektedir.Tabii yasamlarini vücutlarindaki mükemmel organ sistemleri sayesinde sürdürürler. Okyanus ve denizlerde tipki karada yasayan canlilar gibi mikroorganizmalardan tutun devasal memeli canlilalar kadar binbir çesit canli türü yasamaktadirlar.Biz yanlizca bu devasal canlilar aleminden bilinen ve bilinmeyen birkaç örnek verecegiz. Deniz ve tatlisu mikroorganizmalari Bu canlilara " Plankton " adi verilmektedir.Planktonlar tatli sularda yasayabildigi gibi deniz ve okyanusta yasayanlarida vardir. Bu canlilar tipki bakteriler gibi ikiye bölünerek çogalmaktadirlar.Önce canlinin içerisindeki DNA replikasyonla kopyalanarak iki Katina çikarilir ve ardindan canlinin vücudu ikiye bölünür. Miktari iki katina çikan DNA nin yarisi birinci yavru hücreye diger yarisi ise ikinci yavru hücreye aktarilir. Planktonlarin en önemli özellikleri, suda yüzmek için aktif olarak belli bir hareketleri olmamasidir.Bu canlilar bulunduklari su ortaminin akimina bagimli olarak basibos dolanirlar. Planktonlar ancak mikroskopla görülebilirler fakat çiplak gözle dikkatlice bakildiginda görülebilecek kadar büyük olanlarida vardir. Bu mikroskobik canlilardan en çok bilineni ise " alg " adi verilen tek hücreli bir canli türüdür ki algler hemen hemen heryerde yasamaktadirlar. Denizlerde, tatli sularda, okyanuslarda, havuz sularinda, su birikintilerinde çamurlarin içinde ve nehirlerde bile yasamaktadirlar.Bu kadar fazla bir yasam alanina sahip canlilar biz ziyaretçilerin bile gözünden kaçmis olamaz. Örnegin bir havuz veya insaat sahasindaki seffaf su birikintilerinin renginin, birkaç gün sonra yesile veya kirmiziya dönüstügünü görmüssünüzdür.Bu sularda ilk zamanlarda yasayan binlerce tek hücreli canli türü, uygun bir sicakliga geldiginde süratle çogalmaya baslarlar. Yanlizca birkaç gün içerisinde sudaki canli sayisi milyari bulabilir.Bu kadar fazla sayidaki tek hücreli canlilar suyun rengini bulandirmaya baslar. Suyun rengi niçin yesile dönüsüyor ? Bunun nedeni ise bazi planktonlarin, tipki yesil bitkiler gibi klorofil molekülünü içermesinden dolayidir.Hatirlarsaniz bitkilerin yapraklarinin renginin yesil olarak görünmesinin klorofil molekülünden dolayi oldugunu söylemistik. Iste bu tip planktonlarinda vücutlarinda klorofil molekülü vardir ve tipki bitkiler gibi fotosentez yaparlar.Bu yüzdendir ki taksonomik olarak siniflandirilirken bitkiler kategorisinemi yoksa hayvanlar kategorisinemi konacagi konusunda sistematikçilerin ortak bir karari yoktur. Yumusakçalar (Mollusk) Okyanus ve denizlerde yasayan diger bir canli grubu ise, genel latince isimleri " Mollusk " olan yumusakçalardir. Bu canlilarin vücutlari adindanda anlasilacagi gibi oldukça yumusak bir yapiya sahip olup, bazi türlerinin vücutlari oldukça sert kabuklarlada kapli olabilir. Yumusakçalarin en iyi bilinen iki örnegi " Mürekkep baligi " ve kabuklu bir yapiya sahip olan " Deniz minareleri " dir. Mürekkep baliklari, gerek anatomik yapilari gerekse savunma mekanizmalari bakimindan oldukça ilginç canlilardir. Belgesellerde sik olarak gördügümüz bu canlilarin hareket mekanizmalari, bir jet motorunun çalisma prensibiyle aynidir.Bu prensip " etki - tepki " prensibidir.Yani bir yandan madde alinirken diger yandan madde verilmekte ve bu sekilde süratle hareket etmektedir. Balik, öncelikle vücudunu, arka tarafindan aldigi bir miktar su ile doldurur.Ardindan karin kaslarini büyük bir siddetle kasarki bu kasilma neticesinde sikisan su büyük bir süratle yine vücudun arka tarafindan disari püskürtülür.Disari püskürtülen su, baligin büyük bir hizla ileri dogru ivmelenmesini saglar. Bunun yaninda hayvan düsmanlarindan korunmak için bir tür sivi salgilarki bu sivi mürekkebe benzer olup salgilandiginda, kendisi kovalayan avcinin görmesini engelleyecek kadar suyu bulandirabilir. Yine bir mollusk olan deniz minareleri ise, yumusak bir vücuda sahip olmasina karsin çok sert bir kabuga sahiptir. Bu kabugun en önemli fonksiyonu canliyi düsmanlarindan korumasidir. Nasil oluyorda bu canlilar etraflarini kabukla örtebiliyorlar ? Bir sperm ile bir yumurtanin birlesmesinden sonra zigotu meydana getirdigini ve bu zigotun ardi ardina milyonlarca kez bölünerek bir yavru canliyi meydana getirdigine deginmistik.Mesela insan yavrusunda, en distaki hücreler diger hücrelerden farklilasarak keratin adi verilen bir madde üretir ve " Derinin " sekillenmesini saglarlar. Deniz minarelerinde ise, zigot milyonlarca kez bölünerek yavruyu meydana getirdiginde, yavrunun en distaki hücreleri " Kalsiyum " salgilayan özel bir hücre tipine farklilasirlar.Bu hücreler, canlinin içinde yasadigi deniz yada okyanuslardan absorbe edilen kalsiyumu düzenli bir sekilde salgilayarak canlinin etrafinda kalin bir tabaka olusmasini saglarlar. Okyanus bitkileri Su an soludugunuz havadaki oksijenin büyük bir kismi, deniz ve okyanuslarda yasayan ve klorofil içeren bitkiler tarafinda fotosentez yoluyla üretilir. Nasil ki atmosfer sartlarinda klorofil içeren bir bitki havadan CO2 yi, topraktan suyu ve günesten isigi alarak fotosentez yapip canlilar için oksijen üretiyorsa ayni sekilde deniz ve okyanuslarda da günes isiginin varabildigi bölgelerde bulunan klorofilli bitkilerde oksijen üretmektedirler. Bu canlilarin büyük bölümünü ise yosunlar teskil eder.Bunun yaninda daha adini sayamadigimiz onbinlerce tür deniz bitkisi vardir. Deniz bitkilerinin ihtiyaci olan su zaten yasam ortami olan denizden, CO2 ihtiyaci ise diger tüm deniz canlilari tarafindan karsilanir.Eger bu tabiat harikalari denizlerde var olmasaydi hemen hemen tüm deniz canlilari oksijensizlikten hayatini kaybedecekti. Basit bir canli gibi görünen bu yaratiklari aslinda ekosistemin vazgeçilmez birer parçasidirlar. Bu canlilarin milimetrelerle ölçülebilecek kadar küçük olanlari oldugu gibi yüzlerce metre uzunlugunda devasal boyutlara sahip olanlarida vardir. Atlas okyanusu kiyilarinda yasayan birtür deniz bitkisi, fotosentez yapmak için oldukça mükemmel bir yöntem gelistirmistir. Bu bitki tipki bir " Palmiye " agacina benzer ve onlarca metre uzunlugundaki dallarinin uçlarinda bir veya birkaç adet hava kesesi bulunur.Bu hava keseleri, bitki gelistikçe gitgide büyüyerek bitkinin dallarini suyun kaldirma kuvvetinin etkisiyle yukari dogru kaldirir. Deniz yüzeyine yaklasan dallar günes isigindan olabildigince faydalanarak fotosentez yapma imkani bulur. Deniz bitkilerinin üremeleri hem eseyli hemde eseysiz olabilmektedir. Erkek bitkiden gelen bir sperm ile disi bitkiden gelen bir yumurta hücresinin birlesmesiyle (eseyli üreme) yavru bir bitki meydana gelebildigi gibi bazi bitkiler ikiye bölünme ve " Tomurcuklanma " ile de çogalabilir (eseysiz üreme). Tomurcuklanma, bir bitkinin belirli bir bölgesinde büyüyen hücre veya hücre gruplarinin daha sonra bitkiden ayrilarak bagimsiz bir sekilde kendi basina büyüyüp gelismesi olayidir. Derisi dikenliler (Ekinodermata) Derisi dikenli deniz yaratiklarinin basinda " Deniz yildizlari ", " Deniz hiyarlari " ve degisik sekillerdeki dikenli canlilar gelmektedir. Bu hayvanlarin yasayis tarzlari pek aktif olmasada görünüs itibariyle deniz diplerinde bir renk cümbüsü meydana getirmektedirler.Görünümleri göze çok hos gelen bu yaratiklar alimli renkleriyle deniz diplerindeki vahsi yasamin vazgeçilmez birer parçasidirlar. Deniz yildizlari bilindigi gibi ikiye, üçe, dörde veya daha fazla sayida parçalara ayrilmasina ragmen her ayirdiginiz parça kendini tamir ederek yeni bir deniz yildizi verebilir.Canlilarin bu yeteneklerine "rejenerasyon" yani tamir edebilme özelligi denir. Deniz yildizlarinin bazi türlerinde dikenler oldukça uzun olup, yildizi vahsi deniz canlilari tarafindan parçalanma tehlikesine karsi korur Deniz hiyarlari, protein bakimindan zengin olup uzakdogu ülkelerinde besin kaynagi olarak tüketilmektedir.Bu canlilar genellikle fazla derin olmayan okyanus sularinda yasarlar. Deniz kestaneleri ise disaridan basit bir yapiya sahip oldugu izlenimini verir fakat iç organlari oldukça kompleks bir yapiya sahiptir.Öyleki kestanenin içerisinde, hayvanin sudaki oksijeni rahatça soluyabilmesi için suyu vücudunun içerisinden geçiren karmasik devri-daim organlari bile vardir. Bu mükemmel deniz yaratiklari, gözalici renkleriyle deniz diplerini adeta birer cennete çevirirler. Yüksek Organizasyonlu Deniz Canlilari : Yüksek organizasyonlu canlilar çok sayida türleri kapsamakla birlikte biz en çok bilinen " Köpek baliklari " ve " Balina " türlerine örnekler verdik. Köpek baliklari belgesellerde ve filmlerde gördügünüzden çok daha mükemmel ve gizemli yaratiklardir.Köpek baliklarinin kendi içerisinde birçok alt türleri vardir. Örnegin mamuzlu köpek baligi, boga köpek baligi ve çekiç basli köpek baligi gibi.Fakat köpek baliklarinin bazilari çok uysal olmakla birlikte diger bazi türleri oldukça saldirgan olup önüne gelen hemen her tür canliya saldirabilirler. Saldirgan bir köpek baligi grubu kendilerinden onlarca kat daha büyük olan balinalara bile saldirabilirler. Bu baliklardan en ünlüsü ise " Beyaz köpek baliklari " dir. Bu baliklar köpek baligi türleri arasinda en saldirgani olup yunuslara, foklara, deniz aslanlarina ve hatta balinalara bile saldirabilirler. Bir köpek baligini tehlikeli yapan en önemli organlari disleridir.Eger disleri normal bir baliginki gibi pek keskin olmasaydi, köpek baliklari tanindigi kadar tehlikeli olmayackti. Birçok insan köpek baliginin avini özellikle kuvvetli çene darbeleriyle parçaladigini zanneder fakat asil fonksiyon çenede degildir. Köpek baliklarinin disleri öyle mükemmel bir anatomiye sahiptirki hem bir jilet kadar keskin hemde ince elenmis bir testere kadar yivlidir. Bir köpek baligi avini isirdiktan sonra basini derhal saga sola dogru sallamaya baslar.Bu sekilde davranarak disleri arasina sikisan bir objeyi ivmelendirip yanal olarak disleri üzerinde hareket etmesini saglar. Obje veya av, disleri üzerinde hareket ettigi zaman jilet kadar keskin olan disler tarafindan rahatlikla kesilir.Böylelikle balik avini kisa süre içerisinde parçalayarak etkisiz hale getirir. Köpek baligi avini parçalarken gözlerini asla açmaz. Bunu yapmasinin nedeni ise avini parçalamasi esnasinda etrafa saçilacak kemik parçalarindan gözlerini korumak içindir. Çünki bir canlinin kemigi kirildigi (insan olsun hayvan olsun) zaman küçük partiküller haline gelen kemik parçalari oldukça keskin bir hale dönüsür. Bazi köpek baligi türlerinin boylari oldukça büyük olmasina karsin çok uysal olabilirler.Hatta bazi türleri iri memelilere saldirmak yerine deniz planktonlari ve küçük deniz canlilari ile beslenmektedir. Buna karsin dogada, resimdekinden çok daha iri köpek baliklarininda yasamasina karsin bazilari insanlarin zannettikleri gibi bir saldirganlik göstermezler. Köpek baliklarinin vücut sekilleri çok mükemmel bir sekilde dizayn edilmistir.Tipki bir füzeye benzeyen vücutlari ve güçlü yüzgeçleri sayesinde saatte 60 - 80 km ye kadar hiza erisebilmektedirler. Diger bir mükemmel özellikleri ise solungaçlarinin bu kadar süratle giderken sudaki oksijenden maksimum istifade edebilmesi için yan yaraflarda özel olarak konumlanmis olmasidir. Dikkat ettiyseniz yaris arabalarinin her iki yaninda hava bosluklari oldugunu görürsünüz.Bu bosluklar, araba süratle giderken motorun havayi daha rahat bir sekilde emmesine yardimci olmak içindir.Köpek baliklarinin yanlarindaki solungaçlarda, hayvan büyük bir süratle yüzerken sudaki oksijeni maksimum absorbe etmesi için yan taraflarda birer bosluk birakacak sekilde konumlanir. Insanlarin köpek baliklarindan esinlenerek taklit etmeye çalistigi bu mükemmel sistemi köpek baliklari haberleri bile olmadan milyonlarca yildir kullanmaktadir. Bugün halen sadece zevk amaciyla köpek baligi öldüren insanlar vardir.Bazi balikçilar ise besin degeri ve parasal degeri çok yüksek oldugundan dolayi hiç durmaksizin köpek baliklarini avlamaktadirlar. Bazi uzakdogu ülkelerinde balikçilar, lüks restoranlarin ihtiyaçlarini karsilamak amaciyla yanlizca yüzgeçlerini kesip baliklari tekrar çaresiz bir sekilde denize atmaktadirlar. Eger bu mükemmel yaratiklarin korunmasi amaciyla bir önlem alinmaz ise yakin bir zaman içerisinde soylari tükenme noktasina gelecektir. Ve eger köpek baliklarinin soylari tükenirse, denizde avlanilmasi ve sayilarinin azaltilmasi gereken birçok av hayvaninin nüfuslari gitgide artacak ve deniz ekosistemini altüst etmeye baslayacatir. Balinalar Dogadaki en büyük memeli hayvanlari temsil eden balinalarin bazi türleri küçük boyutlara sahip olmasina karsin bazi türlerinin boylari ise 35 - 40 metreye kadar varabilir. Balinalarda kendi aralarinda uysal ve saldirgan olarak ayrilirlar.En taninan uysal balina, boyutlari 35 metreye varmasina ragmen planktonlarla beslenerek yasamlarini sürdürürler. Balinalarin cüssesinin büyük olmasina karsin oldukça uysaldir.Bu balinalarin bazi türleri plnaktonlar ve küçük baliklar ile beslenmektedirler. Planktonlarin çok küçük canlilar oldugunu biliyoruz.Fakat bu kadar büyük cüsseli bir balina plnaktonlarla nasil beslenebilmektedir ? Balina bunu, çenelerinin arkasinda bulunan kusursuz bir yüzgeç sistemi sayesinde basarir.Boyu yaklasik 40 metreye varan ve planktonlarla beslenen bir balina, tek hamlede vücuduna 3 oda dolusu suyu doldurabilir.Vücuduna doldurdugu bu muazzam su kütlesini, mükemmel bir yüzgeç sistemine sahip çenelerinden tekrar disari verir. Su büyük bir hizla disari çikarken plankton ve diger küçük canlilar (ufak baliklar gibi) çenedeki yüzgeçte kalirlar.Bir cm3 suyun içinde onlarca plankton bulunduguna göre metrelerce küp su içerisinde içerisinde milyarlarca plankton bulunabilir.Balina bunu defalarca yaparak, midesini protein degeri yüksek bu ufak canlilar ile doldurur. Katil balinalar saldirgan olmalarina karsin egitildikleri zaman dost olmaktadirlar.Fakat vahsi yasam ortamlarinda birer köpek baligi gibidirler. Denizlerin en vahsi hayvanlari sayilan beyaz köpek baliklari bile bir katil balinayi gördügü zaman mümkün oldugu kadar ondan kaçinmaya çalisir. Bu canlilar, karsilastikari bir köpek baligini tek bir çene darbesiyle ikiye bölebilirler. Bazi katil balinalar fok ve deniz aslanlarini avlamak için sahile kadar kovalayabilirler.Ve bu kovalamaca neticesinde basarilida olurlar. Katil balinanin yaksaltigini gören fok veya deniz aslani sürüsü çareyi kumsala çikmakta bulurlar. Fakat katil balinanin sahile kadar çikacagini ummazlar. Balina foklari avlamak için kendini sahile kadar vurabilmektedir.Nitekim bazi foklar hayvanin koca agizindan kurtulamaz. Televizyonlarda gördügümüz gösteri balinalari bu katil balinalardir.Vahsi yasamlarindakinin aksine egitilidikleri zaman oldukça uysal olan bu yaratiklar insanlarin çok yakin dostu olabilmektdir. Senede bir kez belirli dönemlerde dogum yapan balinalar, yavrularini dogurmak için sig sulara göç ederler. Göç sirasinda binlerce mil yol katedebilirler.Deniz arastirmacilari halen balinalarin nasil yönlerini sasirmadan devasal okyanuslarda istedikleri yerlere gidebildiklerini tam olarak çözememislerdir. Bir balina sürüsünün içindeki bireyler, çok tiz bir ses çikararak birbirleriyle anlasmaktadirlar.Bu seslerin ne anlama geldigi konusunda uzun arastirmalar yapilmaktadir. Çikarilan bu sesler kilometrelerce ötedeki baska balinalar tarafindan ve hatta insanlar tarafindan bile duyulabilr. Balinalarin bu seslere nasil yanit verdikleri ise bir sirdir. Balina ve köpek baliklari deniz ekosistemi için mutlaka gerekli olan canlilardir.Fakat insanlarin bilinçsiz avlanmalari sonucunda denizlerdeki av - avci orani süratle bozulmakta, ve denizel ekosistemin dengeleri altüst olmak üzeredir. Örnek verecek olursak okyanuslarda istakozlarla beslenen ve ayni zamanda besin olarak tüketilen bir balik türü, istakozlarin bilinçsiz avlanilmasi sonucunda açlik ve nihayetinde ölüm tehlikesiyle karsi karsiya gelir.Yani insanlar, besin olarak tükettigi bu baliklari kendi elleriyle yok etmektedirler. Ayni sekilde köpek baligi ve balinalarin sayilarindaki süratli düsüs, av sayisinin yükselmesine (örnegin foklar ve küçük baliklar) ve dolayisiyla denizel ekosistemde bir nüfus patlamasina yol açar.Av canlilarinin sayisi yükseldikçe denizdeki diger canlilarin yasamlari olumsuz yönde etkilenmektedir. Umuyoruzki su an bu mükemmel deniz yaratiklarinin soylarinin devam etmesi için yürütülen çalismalar olumlu sonuç versin ve hergeçen gün yikilma noktasina biraz daha yaklasan deniz ekosistemi eski durumuna kavuşsun.

http://www.biyologlar.com/deniz-biyolojisi-hakkinda-bilgi

Böceklerde Dolaşım Sistemi

Böceklerin dolasim sistemi vücutlarinin dorsaline yerlesmis ve iki kisma ayrilabilen bir boru sisteminden olusmustur. Abdomende bulunan pompalama organi, kalp adi ile anilir. Her segmentte azçok siskin bir kisim olan bir sira ufak bölmelerden ibarettir. Bu bölmelerin yanlarindaki ostium adini alan yariklar kanin içeri girmesine yarar. Thorax içersinde bulunan kisim kalbin basit bir tüp seklindeki uzantisi Aort'tur. Aort genellikle bas içersinde sonlanir. Bazi böcekler kan dolasimina yardimci olmak üzere kalpten baska yardimci pompalama organlarida bulunur. Kalp kani genellikle kapali olan posterior kisimdan pompalayarak anteriora dogru basin iç bosluguna bosaltir. Kan buradan geriye dogru vücut boslugu içersine akarak çesitli doku ve organlari yikar; sonra kalp içine çekilir ve tekrar ön kisma pompalanir. Kanin dolastigi vücut bosluguna hemocoel denir. Bu tip dolasima bilindigi gibi açik dolasim denir. Vücut boslugunda dolasin kan yani hemolymph sivi olan plasma ve hemocyteleri içerir. Kan besin maddelerinin organlara nakli ve oradan artik maddelerin uzaklastirilmasini saglar. Memelilerdeki lenf sisteminin ödevi görür. Kanin görevlerinden biride hidrolik basinç sistemini çalistirmasidir; böylece vücudun bir yerindeki basinç gerekli yere iletilir. Böceklerde hemolenf hemoglobin içermez bu nedenle Oksijen (O2) ve Karbondioksit (CO2) kimyasal olarak degil fiziksel solüsyon olarak tasir. Dolasim sistemine ait bazi yardimci organlarin varligindan bahsetmistik. Yardimci veya Alary denen kas bantlari kalp ve tergitlerin lateral kenari ile baglantilidir. Bu kaslar kalbin çevresindeki alan ve vücut boslugu arasinda tam bir izole alan olustururki buna Dorsal Diyafram denir. Bu durumda bu kismin kalpteki bölümü Dorsal Sinüs veya Perikardial sinus olarak adlandirilir. Bu diyafram ve sinus yanlizca kalp boyunca uzanir ve aort bölgesinde devam etmez. Esasinda Hemolenfin içinde aktigi, gerçek kapali damar sistemindeki damarlarin ödevini gören bosluklara Sinüs denir. Diyaframlar tam olarak gelistiginde genel vücut boslugu veya hemosöl iki kas fibrili tarafindan üç sinüse ayrilir. Bilindigi gibi Dorsal diyafram abdominal boslugun içinden sindirim kanalinin üstünde uzanir ve kapanan kan alani dorsal veya perikardial sinüs olarak bilinir. Perikardial sinüs abdominal terganin altinda yer alir ve kalp bu kismin içine yerlesmistir. Ventral diyafram (oldugu zaman) ventral sinir seridi ganglionlarinin hemen üstünde abdominal boslugun içinde uzanir. Ventral diyafram ile sinirlanan bu alan ventral yada Perineural sinüs olarak adlandirilir. Dorsal ve ventral sinüs arasinda ise iç organlari da içine alan bosluk Viceral sinüs tür. Hava keselerinin Dolasimdaki Fonksiyonu: Vücut boslugundaki hacimleri büyük sinüslerde kan dolasimi, dar lümenli damarlardakinin aksine çok yavastir. Bu nedenle bu bölgelerin besin almalari güçlesir. Bu durumda bu hacimlerin küçültülmesi için yardimci bazi yapilar gelismistir. Hava keseleri, bu sinüslerin sikistirilarak hacminin küçülmesini ve dolayisiyla kan dolasiminin hizlanmasini saglar. Uzun zaman, hava keselerinin, uçucu böceklerde , sadece oksijen sagladigina inanilmisti. Fakat bu keselerin dolasim sistemini etkileyerek enerji maddelerinin ulasimini hizlandirdigi saptanmistir. Özellikle ari ve sineklerde çok büyük olan hava keseleri, vücut boslugunu etkin bir sekilde daraltarak hemolenfin iletimini hizlandirir. Keza son deri degisiminden hemen sonra, kivrilmis ve burusmus integüment ve kanatlarin düzgünlesmesi için hemolenf basincinin arttirilmasi yasamsal öneme sahiptir. Hava keselerinin sisirilmesinin yanisira, yutulan havanin bagirsaklara doldurulmasiyla da büyük bir iç basinç olusturulur. Bu da hemolenf sinüslerinin sikistirilmasini ve dolayisiyla hemolenf basincinin yükselmesini saglar. Böcek kani 4 önemli görevi yürütür: 1- Sindirilmis besin maddeleri sindirim sisteminden absorbe edilir ve organlara tasinir. Organlarda meydana gelmis, artik maddeler bosaltim organina getirilir. Ayrica hormonlarda kaynaklarindan organlara kanla tasinir. 2- Solunum; böceklerin hepsinde Trakeoller hücrelerin bütününe ulasamamakta ve buralarda direkt solunum yapilmamaktadir. Şüphesiz bu hücreler ihtiyaci olan O2 yi kanda erimis olarak bulunan O2 deposundan almaktadir. 3- Korunma; hemositler belli bakteri ve parazitleri elimine ederler. Yaralarin onarilmasi yine kan veya onun hemositleri ile yapilir. 4- Hydrolik görev: Kan volümünün bütünüyle vücut duvari içinde bir tarafindaki basinci diger bölümüne nakledilebilmektedir. Bu mekanik durum, vücutça birçok yerlerde faydali olmaktadir. Kan basinci thorax ve abdomen veya ikisi birden kontraksiyonu ile düzenlenmektedir. Kan basincinin birbirini takiben artmasi ve azalmasi solunum hareketi ile ortaya çikmakta ve trakelere ait hava ceplerinin bosalmasi ve dolmasini saglamaktadir. Lokalize edilmis bir kan basinci gömlek degistirme sirasinda dis derinin çatlamasina yardimci olur. Kan kalbe ostiumlardan emilir ve peristaltik hareketlerle öne sürülür. Kalb çeperinin birbirini takiben kasilma gevsemeleriyle emilen kan ön tarafa gönderir. Bu, kalbin elastikiyeti ve kas yapisi ile olur. (Aliform kaslar ve bununla baglantili diger kaslar). Basa bosaltilan kan oradan vücut bosluguna akar. Otomatik kalp atislari sinir stimülasyonu ilemi, yoksa sinir stimulasyonu olmadan otomatik olarak kalbin kendisinin kasilip gevseme kabiliyetinden mi oldugu henüz bilinmemektedir.

http://www.biyologlar.com/boceklerde-dolasim-sistemi

CANLILAR ARASI ETKİLEŞİM VE EKOLOJİK NİŞ

CANLILAR ARASI ETKİLEŞİM VE EKOLOJİK NİŞ

Her tür kendi tarzı yaşamını sürdürebilmek için doğa ve diğer canlılarla mücadele etmek zorundadır.

http://www.biyologlar.com/canlilar-arasi-etkilesim-ve-ekolojik-nis

Solucanlar; Platyhelminthes ( Yassı ), Anelida (halkalı ), Aschelminthes (yuvarlak solucanlar)

Solucan sınıfı Platyhelminthes (yassı solucanlar), Anelida (halkalı solucanlar), Aschelminthes (yuvarlak solucanlar) ve Pogonophora (sakallı solucanlar) filumlarını kapsar. Bazen Aschelminthes grubunu oluşturan Nematoda (iplik solucanlar), Rotifera, Gastrotricha, Kinorhyncha ve Pripalida sınıfları filum düzeyine yükseltilerek sınıflandırılmaktadır. Yer solucanları, Oligochaeta sınıfından halkalı solucanların karada yaşayan en tanınmış üyeleridir. Solucanların gövdesi ince uzun, silindir biçiminde yada yassılaşmış ve genellikle uzantılardan yoksundur. Uzunlukları 1mm ‘nin altından başlayarak 15m’yi aşabilir. Denizlere, tatlı sulara ve karalara yayılmış olan bu hayvanların bir bölümü asalak, öbürleri serbest yaşar. İsmininin de önerdiği gibi, serbest yaşayan solucanlar dorso-ventrally yassılanmış olup birkaç milimetreden daha kalın değildirler Boyutlar bir milimetreden daha azdan balar ve 30 cm nin üzerine kadar uzanır. Çoğu polycladler son derece hassastırlar ve tipik olarak düz bir dorsal yüzey içeren ve/veya oval şekillerine sahiptirler. Bununlar birlikte, dorsal papillae (Acanthozoan, Thysomozoan) sergilerler. Solucanların anteriorlarında uç kısımlarda dokanaç (tentacle) yer aldığından ve çok parlak renklere sahiptirler ve nadiren de olsa bazen yanlışlıkla nudribranc olarak kabul edilirmişlerdir. Fakat nudribranclara karşıt olarak, anterior sınırında dokanaçlar çoğunlukta basit bir yapı halinde tutunmuşlardır. Onlar yol boyunca nudribranclara nazaran daha fazla hareket ederler ve aynı zamanda çok ince yapıya sahiptirler ve elle tutulduklarında kırılmaya çok eğilimlidirler. Bununda ötesinde, onların özel terleme organları (gills) yoktur ve terleme solucanların tüm yüzeylerinde difuzyon yoluyla gerçekleştirilmektedir. Tüm yüzeylerinde difuzyon yoluyla gerçekleştirilir. Polycladler geniş bir renk çeşitliliği ve yapısı sergilerler. Onlar marginal buruşukluklara sahiptirler ve boyutları ile sayıca artmaya eğilimlidirler. Donük türler haricinde (siyah ve esas itibariyle siyah renkli) türler transparenttirler ve iç organları epidermis boyunca görülebilir. Özellikle ovarisleri parlak veya koyu renkli mor renklere sahiptir ve dorsal yüzeyin en dış kısmı binlerde vurucu cilia ile beraber engelleyici epidermistirler (ectodermal orijinli bir tek hücre tabakası). Onun da altında, dairesel kasın dış tabakası ve kasların iç tabakası birbirine parallel uzantı şeklindedir ve aralarında vucut plastisitesi mevcuttur. Dorsal ve ventral epidermis arasındaki boşluk parenchymal doku ile dolmuştur ku bu çok sayıda gizli hücrelere sahiptir ve bununla sümükler dışarı atabilirler ve diğer bileşenler epidermal boşluklarla oluşmuştur. Dorsal ve ventral epidermis arasındaki boşluk parenchymall doku ile dolmuştur ve çok dallanmış bağırsak ve üreme sistemi gibi organları içermektedir. Parenchymal doku mesodermal kökenli olup sümük dışarı ataliben çok yüksek sayıda gizli hücreler ve epidermal boşluklar içermektedir. Polyclad hidrostatik iskelete sahiptir ki bu sulu hayata çok güzel adapte olmasını sağlamaktadır. Mesodermdeki içsel vucut sıvısı kapalı vucut kompartmanında basınç altında tutulmakta ve vucut duvar kaslarının hareketine destek sağlama amacıyla hidrostatik iskelete karşı kuvvet uygulamaktadırlar. İki yönle hareket vardır. Küçük boyutlu türler ince kıla benzeyen ventral cilia ile vuruşlarla taban boyunca kaymasını sağlar. Büyük boyutlu türleri ise (Tysanozoan sp. gibi) aşağıda sol panelde gösterildiği gibi vucut kaslarının ritmik vuruşlarıyla yüzmeye muktedir olabilirler. Solucanlar vucutlarını ileri ve kıyıya atarak bir seri dalgalandırma yaratırlar ve yer üzerinde ileriye doğru sürünürler. Polycladlerin iki yönlü vucut şekilli hali cephalize olmuştur, bu tanımlanabilen baş bölgelerine sahip olduğu anlamındadır ve orada sinir fonksiyonları ve duyu yapıları yer almaktadır. Solucanların sinir sistemi merdiven şekline benzeyen uzun boylu sinir ipi çiftine sahiptir ve bunlar çapraz olarak birleşmişlerdir. Beyinsel anteriordaki ganglion düğümde son bulurlar ve kafanın içinde veya dışında yeralan sinirsel büyük bir top şekline sahiptirler. Son zamanlarda bazı poyclad türlerinde küçük ama iyi tanımlanmış beyin sinirbiyolojisinde model sistem olarak servis yapan beyin cytoarchitecture ve sinirsel tamir mekanizmasını araştırmalar yapılmıştır (Bakınız Bölüm: Polyclads ve Neurobiology). Başın görünen karakteri dokunaçların oluşumudur ki çoğu durumlarda anterior sinirinin belirtilmesi (=pseudotentacle) gereklidir. Bu kör bir basit boru şeklinde veya geniş kapaklı olarak olarak gösterilirler. Çoğunlukla, Thysonozoon sp.‘nın kafa bölgesinde görüldüğü gibi kulağa benzerler (sol panel). Anterior beyinsel ganglion düğüm ve onun büyük iç sinirlerine benzerler ve solucanların “beyin” i çok sayıda foto ve kimyasal hassas hücrelerinden oluşan sinir sinyallerinin analizi esas olarak, kafada ve Pseudotentaclelerde konsantre olmuşlardır. İlave olarak, yüksek sayıda mekaniksel alıcılar epidermiste dağılmış vaziyette yer almışlardır. Fotoya duyarlı hücreler beyinsel göznoktalarında bulunur ki orada yuvarlak salkım olarak çeşitli gözler yeralmışlardır. İleri gözler, ventral ve dorsal yalancı dokanaçlarda yeralmışlardır. Bu gözler gelen görüntünün şekillenmesine kabiliyetli değildirler ama ışık istikameti ve yoğunluğunun değişimine hassatırlar. Yassı kurdun parlak ışığa duyarlı olduğu zaman, özellikle koyu yerlere doğru geri çekilirler. Vertebrateler ile mukayese edildiklerinde, poycladlerin gözlerinin organizasyonu oldukça basittir. Bu tip göz, birçok lens ile kapatılmış olup “pigment cup ocellus” olarak tarif edilirler. Ocelli beyinsel göznoktasının bir parçasıdır ve çeşitli ışığa duyarlı hücrelerden oluşurlar ve konkav kap şekline sahiptirler. Kabın duvarları pigment içermektedir ve bunlar uç taraftan gelen ışığın sızmasını enlellerler. Hücrelerin ışığa duyarlı kısımları (microvilli) opak kabın içersinde düzenlenmişlerdir ve yanlızca bir yönden gelecek ışığa karşı duyarlıdırlar. Gelen ışığın açısına bağlı olarak, loş kısımler ışığa duyarlı yapıların üzerine gölge olarak düşerler. Kap aktif olarak kaslar tarafından döndürüldüğünden çabuk değişen gölge izleri yaratılır. Sinir sinyallerine karşılık olarak, beyinsel ganglion’a gönderilirler ki orada bilgiler analiz edilirler, uç boyutlu oryentasyon ve uygun davranış reaksiyonu gösterirler. Polycladlerin görsel duyularından dolayı çevresel oryentasyonu için yeterli olmayabilir ve polycladler iyi gelişmiş kimyasal dedektörlü batarya vardır ve molekülleri tanımaktadırlar. Kimyasal bileşenlerin besin ve eş bulmada önemli rol oynadıkları düşünülmektedir. Besin ve eş bulmada belirgin moleküller boşalarak akış ile içeri girerler. Bu solucanlar kimyasal alıcıları tarafından algılanarak koku yayarlar. Bunlar özellikle ventral yalancı dokanaçlarda yerleşmişlerdir ve orada yivli ciliate şeklinde salkımlanmışlardır. Aktif solucanlardaki yalancı dokanaçlar hareket halinde meşgul görülürler ve bu kimyasal duyarlı alet solucanların yönünü bulmalarında ve koku çıkarmalarında temel karar veren davranış olarak kabul edilir. Auricle ve göz noktalarına ilave olarak (Bakınız: yukarıdaki sol foto ve alçak panel) yassı solucanlar statocyst adı verilen ilkel denge organları vardır ki basınca duyarlı saç ve küçük taneli materyalli hücreler içerirler ve bu hayvanların yukarıya doğru gitmesinde büyük rol oynarlar. Yassı solucanın dinlenme, tamirat ve cam slaylarda hazırlanmasından sonra (wholemounts) ventral bakış karakterlerinde ölü solucanlar gözlenerek incelenir. Bu karakterlerin coğu türlerin taxonomi belirlenmesinde önemli rol oynarlar ki bu oldukca zor bir görevdir. Basın yanında ağız ve pharynx gözlenebilir. Genel olarak, polycladlar pharynx plicatus’a sahiptirler. Bu tip pharyngeal tüb uzun be dairesel kas tabakası sergiler ki o pharynx’in şeklini çok fazla değiştirir ve sıvıyı bağırsak boşluklarına doğru pompalar. Bununda ötesinde, pharyngeal ceplerini ayıran özelliğine sahiptir ki orada kullanılmadığında dışarı atılırlar. Pharynx boru şeklinden çeşitli şekillere kadar yapı gösterirler (örneğin, yuvarlak veya oval çok sayıda pharyngeal lob içeren çok buruşuk şekiller). Beslenmede, pharynx ağızdan çıkıntı yapar ve Pseudobiceros türünün bazı tiplerinde tüm hayvanları yutacak boyutta açılırlar. Ventral yanın ortasında, alt sınıf Cotylea yapışkan organa sahiptir ve vantuz olarak adlandırılır. Arazi gözlemlerinde bu organ hayvanların alt tabakalara yapışmasında kullanılır. Küçük invertebratelerin yakalanmasında ve yiyeceklerin hazmında işlev görür. Ender olarak, Pseudobiceros örneğinde ve Pseudoceros’da iki eşit olmayan vantuz bulunmuştur. Diğer tür polycladlerin belirgin karakterleri erkek ve dişi üreme sistemlerinin anotomisidir. Polycladler hermaphrodiktir. Onların ikiside erkek ve dişi üreme organları yumurta ve sperm üretirler. Yetişkin solucanlar, ki esas olarak üremeye geçmişlerdir, vucut hacminin yüksek yüzdesi testes ve ovarislerden oluşmuştur. Çoğu türlerde, bu serpistirilmiş haldedir ve ventral ve dorsal parenchyma da yerleşmiştir. Bununla birlikte, dışarıdan yanlızca erkek ve dişi gonophore’lar gözlenmiştir. Genel olarak, erkek boşluk pharynx’de posterior olarak bulunmuştur ve penis papilla ve penial stylet tutarlar, organları eş için uzanırlar. Pseudobiceros türünün çift erkek üreme sistemi, iki erkek boşluk ve erkek organları ile karakterize edilirler. Dişi boşluk daima açıkca erkek boşlukta ayrılmıştır ve posterior’da yerleşmiştir. Çoğu türler (Pseudoceros, Pseudobiceros)’in bir tek dişi boşluğu vardır bununla fakat Nymphozoon’in çok sayıda dişi boşluğu vardır. Dişi üreme sistemi yumurtalık, yumurta sarısı, kabuk beze, bir yarı hazne, ve döl yatağı bulunur ve orada yumurtalar döllenir. Eşleşmeden sonra (Bakınız, Bölüm: Eşleşme ve yeniden üreme) spermler dişi vucuda enjekte edilir (Hypodermal insemination) dişinin üreme aygıtına ve yarı hazneye doğru depolanma amacıyla göçederler. Yumurtalar yumurtalıktan oviduct’a doğru geçerler ve yarı haznede sperm tarafından döllenirler ve yumurta sarısı ile kaplanmış ve kabuk beze ile gizlenirler. Daha sonra üreme organlarına geçerler ve düzensiz yumurta kütlesi şeklinde depolanırlar. Yeniden üreme sisteminin yanında, çok sayıda yanal dallara sahip bağırsak solucanlarının vücut hacminin yüksek yüzdesini teskil eden ikinci organdır. Nutrientlerin vücut hücresine transferinde bağırsak sistemi (intestial), vucudun hemen hemen her tarafına uzanmış olup vurucu cilia ile kaplanmışlardır. Yarı saydam solucanların haricinde (Aquaplana sp.) bağırsak dallarının dağılımı ve onların anotomik detayları gözlenmede çok zordur. Polycladlerin kör sindirme sistemi bulunduğundan sindirilemeyen materyaller pharynx’e doğru yani yiyeceklerin geldiği aynı açıklığa doğru dışlanırlar. Soldaki foto (PHOTO © Bill Rudman) Paraplanocera oligoglena’nin ventral gorünüşünü vermektedir ve hemen hemen transparent olan vucudun çoğu organlarını gosterirler. Beyaz kollu merkezi yapı cok buruşuk pharyngeal tüpdür (pharynx plicatus) ve ağıza doğru ağız vucudun merkezinde yerlemiştir. Donuk beyazımsı network, vucudun çoğu bolgelerine uzanmış çok dallı bagırsak ki bu solucanlara “polyclad” (yunanca = çok dallı) adı verilir. Erkeğin ve dişinin diğer tüm organları yeniden üreme sistemidir. Salgı ve osmoregulation için polycladler özel fonksiyonlu birimlere sahiptirler, bunlara protonephridia (tekil protonephridium) denir. Onlar iki veya daha fazla kapalı uzun tüp dalları halindeki networka benzerler ve vucut boyunca uzanırlar. Osmotik su dengesini kontrol eden özel yapılara sahiptirler ve böbreklerin atık suyu çıkarttığı gibi çalışırlar. Vucut boyunca Protonephridium dallanma yüksek özellikli hücreler tarafından cilia izli kap şeklindeki yapılarla kapatılmıştır. Cilia vurusu, kırpışan aleve benzediği için bu hücreye “alev hücresi” adı verilmiştir. Bu hücrelerden bir kaçı tüplü fonksiyonlar ile hücrelere bağlantılıdır. İç sıvı nitrojen atıkla yüklenmiştir, tübe doğru gitmesinde zorlanır ve alev hücreleri ile akan tüp sistemi yardımıyla bir veya daha fazla boşluktan taşınırak yol alırlar ve son bölümde atıklar gizlenir. Protonephridium ilkel böbreğe bir örnektir ve salgı çıkaran ve osmoregulator bir sistem olarak gözönüne alınırlar. Yassı Solucanlara Genel Giriş Platyhelminthes (Yunanca: platy – flat, helminthes: worm) Kingdom Animalia’ya ait olup bir baş ve uçta bir kuyruk ile bölümlenmeyen yassı solucanlardır. Onlar en ilkel iki bacaklı, iki yanal simetrik hayvan olarak düşünülürler. İki yanlı simetrik anlamı, vucutlarının kıç eksen boyunca, üst ve alt yüzeyler olmak üzere tariflenen anterior ve posterior bitişin bir ayna görüntüsünde olmasıdır. Vucudun iki taraflı şekilli olması önemli bir özelliktir çünkü bu cephalization’a bir örnektir ve kafanın duyu yapılarının konsantrasyonu ve sinir fonksiyonu (kafa ganglion) yeralir. Bu da gelişimde önemli bir eğilimdir. Bunun ötesinde, yassı solucanlar triploblastikdir, bunun anlamı vucut yapısı uç temel hücre yapısından meydana gelmesidir (endoderm, mesoderm ve ectoderm). Üçüncü karaktere göre, onların barsaktan başka vucut boşlukları yoktur (coclom) ve organizasyona acoelomate adı verilmektedir. Anüsleri yoktur, bu nedenle, aynı pharyngeal açıklığından hem yiyecek alımı ve hem de atığın dışarıya atılması sağlanır. Dış hücre tabakası (=epidermis) ile belirgin ic organların arasındaki boşluk bir yumuşak doku ile dolmuştur (parenchyma). Mesodermal orijinli bu doku boşluklar tarafından ayıklanır (=schizocoelium) ve nütrientleri vucudun kısımlarına taşımak için cok dallanmış bağırsak mevcuttur. Terleme sistemi ve kan taşıma sistemi tamamen yoktur ve bu nedenle oksijenin transferinde difüzyon kullanılır. Bu da yassı solucanların düz olmasını sağlamaktadır. Metabolizimin tesisinde, hiç bir hücre dışarıdan uzakta değildir, zorunlu olan vucut şeklinin yassılanmasını sağlarlar. Hemen hemen bütün türler sahip oldukları oldukca kompleks üreme sistemiyle hermaphrodites’lerdir. Çoğu durumlarda, erkek ve dişi üreme yapılarının sayısı ve ayarlanması ile oldukca belirgin özel türlerdir ve çok benzer türlerin morfolojisinin ayırt edilmesinde taksonomik çalışmalarda kullanılabilirler. Yassi solucanların uzunluğu bazı serbest yaşayan türlerde 0.4 mm ve parasitik şekillilerde çeşitli metrelerde (fish tapeworm, Diphyllobothrium latum: 25 m in length) bulunurlar. Yassı solucanlar üç gruba ayrılırlar; 20,000 türü bilinen, 14,000 parasitler Cestoda (tapeworms) veya Trematoda (flukes) sınıfına aittirler. Tapeworm vertebrate’de bağırsak parasitleridir ve anatomik ve parasitims’in hayat tarihi ve modifikasyonlarını gösterirler. Flukes tamamen parasitik olarak bilinirler ve tape wormlara kıyasla kompleks hayat zincirine sahiptirler. Bir kaç genç stepden geçerler; bir, iki veya daha fazla hayvanın üzerinde yetişkin düzeye gelirler ve sonunda bir hayvanın üzerinde parazitik olarak yaşarlar. Bunun karsıtı olarak, Turbellaria serbest olarak yaşamakta olup tatlı suda ve nemli karasal ortamda coğunluktadırlar. Turbellarian yassı solucanların çoğu denizel ortamlarda ve okyanuslarda bentik olarak bulunurlar ve ayrıca sığ sularda da çok bulunurlar. Turbellaria’nin bir taksonomik alt grubu yüksek belirgin serbest yaşayan yassı solucanlar içeren order Polycladida’dir. Bu order’in üyeleri anatomik olarak çok dallanmış ve düzensiz bağırsak pharynx plicatus olarak buruşuklu pharygeal tüb ıle karakterıze edilirler. İlk bakışta, polyclad’ler çarpıcı şekilde goze hoş gelen renkli yassı solucanlardır. Tropikal resiflerde 150 yıldır yasadıkları bilinmektedir. Tropikal sularda yüzlerce türleri olduğuna inanılmasına rağmen şimdiye kadar çok az kısmı tamamen tarif edilebilmiştir. Rejenerasyon Karşıt olarak, yüksek vertebrates, bazı serbest yaşayan yassı solucanlar yeniden oluşmada muhtesem kabiliyetli olduklarını göstermektedir. Kafasının kesilmesi ve bir yenisinin büyümesidir. Kafanın yanal olarak ikiye, üçe veya daha fazlaya bölünmesiyle bir, iki, üç veya çok başlı solucan ile sonuçlanmasıdır. Solucanlar on parçaya bölünebilirler on tamamlanmış küçük solucan meydana gelir (Bakiniz: alt şekil, sol panel-tatlısu triclad Dagesia tigrina). Biyologların yeniden büyümeye büyük ilgi duymaları nedeniyle yeniden oluşumun üzerinde yapılan yoğun çalışmalar çeşitli yassı solucan taxa sistem modeline servis yapmaktadır (Bakınız: Bölüm: Sinirbiyolojisi’nde polycladler). Son zamanlarda, yeniden oluşum ile ilgili detaylı bilgi temelde polycladler üzerindedir (Order: Polycladida) ve tatlı su triclads (Order:Tricladida-üç-dört bağırsaklı anlamına gelir) ve diğeri planarians olarak bilinir (Bakınız: Bölüm: Phytogeny). Biyologların yeniden oluşumun üzerinde yüzyıldır yaptığı çalışmalara rağmen, bazı sorulara cevaplar, özellikle yeniden oluşumun kontrolu ve moleküler mekanism işleminin yakalanması zor görünmektedir. Bilim adamları planaria’nin temelde yeniden oluşumun yeteneğine sahip olduğuna hemfikirdirler ve neoblast adı verilen emriyonik dal hücreleri depolanmasını kullanırlar. Türlere bağlı olarak neoblastlar yetişkin solucanlarda toplam hücre sayısının 30% ‘unu kapsarlar. Bu totiponent hücreler, solucanın vücudunda serpiştirilmiş olup diğer hücre türlerinin büyümesinde yeteneklidirler ve iki rol oynarlar. Onlar, normal fizyolojik koşullarda ölenin yerine yeni hücre alarak yeniden oluşum için ham materyalini ve daha sonra iyileşmeyi sağlarlar. Yeniden oluşum oldukça hızlıdır. Kesilmeden 15 dakika içinde yaranın ucundaki epithelilal hücreler lesion’a yakındır. Birgün içersinde, yüksek sayıda neblast yaralı epithelium altındaki yeni diferansiyel yapılar büyüyen blastema içinde delil haline gelir ve yeniden oluşumun kesilmeden 10 gün içersinde optimal koşullar altında kaybolan kısımları tamamlanır (Baguma vd., 1994). Planaria kuvvetli kafa-kuyruk organlarına sahiptir (anterior-posterior kutuplanma). Kesildiğinde, anterior kesim yüzeyi hemen hemen daima yeniden oluşur ve yeni bir kafayı üretir ve aynı zamanda posterior kesim yüzeyi kuyruk yapıyı yeniden üretir. Solucanların bilgilerinin belirlenmesinin yeniden üretimde bir baş ve bir kuyruktan olup olmadığına dair bir mekanizmasının olması gereklidir. Şu anda, anterior ve posterior kutuplaşmasını açıklayan iki adet hipotez mevcuttur. Biri yeni oluşan epithelium arasında tumevarımsal iç hareket, başlangıç iyileşme işlemini kapsar ve blastema hücrelerinin altından geçer. Diğer hipotez ise anterior-posterior belirlenmesinde faktörlerinin moleküler gradientinin sıralanmasını önerir. Deneysel datanın çokluğuna rağmen her bakış için kesin bir delil yoktur. Çoğu tatlısu planaria sexual olarak yeniden oluşur ve oviparoustur (yumurtanın kuluçkası ile depolanır). Bazı türler parthenogenesis ile asexual yenide oluşum gösterirler. (spermsiz olarak yumurtanın aktivitesi). Bununla birlikte, taxonomik ailenin yassısolucanları Dugesiidae ve Planariidae (Order: Tricladida) nadir olarak ikili bölünme ile yeniden ürerler (Bakınız: üst şekil, sağ panel-tatlısu triclad Planarıa fissipara). Yetişkinler ikili bölünme ile bir küçük kuyruk parçası pharynx diferansiyeli ve iki hafta içinde de beslenen solucan haline gelir. Dugesia trigria’nin tabi olduğu toplulukta yeniden üreme araştırmalarında optimal sıcaklık koşullarının 24 C altında solucanların 20% si bölünme ile olduğu ortaya çıkmıştır. Çift bölünme ile asexual üreme bu dokumanda da belirtildiği gibi deniz polycladlerde de mümkündür (Bakınız: soldaki foto). Prostheceraeus (Familya: Euryleptidae)’nin polyclad’i de bölünme işlemini vermektedir. Kuyruk parçası ok ile belirlenmiş ve bölünmeden sonra yeni bir solucan oluşturarak ve alt hücre yeniden organasyon olacaktır. Bununla birlikte, yeniden üreme işlemi hakkında diğer bir açıklama, diğer hayvanların atağından ve “kuyruk kısmının bölünmesi” nden sonra beslenme amaclı ataklar neticesinde (Bakınız: Bölüm. Predation ve Defence) oluşmasıdır. Yiyecek ve Beslenme Çoğu bilinen, polycladler aktif etobur hayvanlardır ve leşle beslenirler ve aynı zamanda çeşitli sessile invertebrateslerin beslenmesinde kullanılırlar. Bazı türleri herbivorous olup yeşil alg ve bentik diatom’da özelleşmişlerdir. Acoella order’inin bir kaç yassı solucan türlerinde (bir eski taksonomik order, Polycladida’den ayırt edilen) sindirilen mikroalgler derecelenmemiştir ama endosymbionts (Zoochlorella) haline gelmiştir. Bu symbiotik ilişkide bağırsakta alg fotosentezde aktif olarak kalarak pareneyma hücre ve solucanların energy depolanmasında önemli katkılarda bulunur. Convoluta (canvolata reocoffansis - sağdaki foto Arthur Hauck)’nın bazı türleri genç solucanlar yüksek sayıdadırlar (Tetraselmis convolata, her bireyde takriben 25,000 adet). Yetişkin duruma geldiklerinde, canalıcı anotemiksel olarak değişimlerinin yansımasında endosysmbiontlara bağlıdır ve pharynx ve ağız fonksiyonlarının kaybederler. Beslenme için, C. roscoffensis alçak gelgitin parlak ışığında yüzeye gelir ve orada symbiotic alg vücudun epidermis boyunca serpilmişlerdir ve aktif olarak fotosentetiktirler (Holligan vd., 1977). Algler tarafından üretilen yiyecek (şeker) yassı solucanlar tarafından kullanılır. Bu manzara Fransa’nın korunmus kumlu sahillerinde ve İngiltere’nin bazı bölgelerinde gözlenebilir. Optimum cevresel pozisyonlarda bu solucanlar alçak gelgitte kumda mükemmel yeşil yapılar yapar. Pseudocerotidae familyasının birçok türü koloni yaşamayı tercih etttikleri düşünülmektedir ve katı ascidianlar, süngerler, ve bryozoonlar rejimlerinde normal özellik göstermezler. Beslenmede, çok buruşuk pharynx (pharynx plicatus) niçin ve nezaman kullanılmadığında bir cep içinde, çıkıntılarda koloni ascidianlarda bireysel zooidlerde genişlemis olabilirler. Proteolytic nesneleri dışarı atarken dokusal dallı bağırsak oluşmuştur. Gastrovascular boşluk, bütün besin parçalarını vucudun tamamına transfer eder. Pseudobiceros türlerinin gözlemi önerilir, av hayvanı dokusal pharynx tarafından yütülür (Bakınız: aşağıdaki görüntü) ve bütün hayvanlarda aynı ölçüde genişlerler. Bu türler, katı ascidian Corella willmeriana mantosuna sızar ve delme deliğini kullanarak birkaç saatte tamamını emerler. Tunicate’nin içersinde gençler bile bulunmuştur. Bütün şeyleri yedikten sonra, kayalara çapraz olarak sürünürler. Yassı solucanların yığını oluştuğunda insanlık açısından denizel ortamında bir felaket etkisi sözkonusudur. Tropikal polycladler istiridye’nin musibetidir ve dev deniz taraklarıdır (Stylochus matatası). Gastrovasküler boşluğundaki besinler yiyecek parçacıklarının ileri enzimatik derecelenmesinden sonra bağırsak dallarına doğru transfer olurlar ve yüksek bir absorb edebilen yüzeye benzerler. Çoğu yiyecek parçacıkları gastrodermal hücre tabakasının phagocytosis tarafından yutulurlar ve ileri enzimatik düzeyde iç hücresel parçalanma oluşur. Sindirilemeyen materyal pharynx’a doğru, yani yiyeceklerin girdiği deliğe doğru atılırlar, çünkü yassı solucanların kör sindirim sistemi bulunmaktadır. Bazı türlerde bu gözlenmiştir ve sindirimin tamamlanmasından sonra bağırsak fıskırtılan su yardımıyla temizlenir. Tür çeşitliliği ve polyclad yassı solucanların değişimi tropikal suların inanılmaz değişimi ile taxon’a benzer (Newman & Cannon, 1994), Bakınız.Bölüm: Taxonomi). Oldukça uzun zamanda, renk izleri muhteşem renklenmiş olan solucanlar sınıflandırılmada yeterli düşünülmüştür (Hyman, 1954, 1959). Bununla birlikte, birçok türlerin tanımlanmasında yeterli kimliğe sahip değildirler (Faubel, 1983, 1984). Newman & Cannon (1994)’de yaptıkları arazi çalışmalarında farklı genera’da (Pseudoceros - Pseudobiceros; Pseudoceros - Pseudoceros) çok benzer ve hemen hemen tamamen aynı renkli izleri taşıdığı ortaya çıkmıştır ve türler arası farklılığında farklı aileler üzerinde (Pseudocerotidae-Euryleptidae) daha detaylı inceleme gereklidir. Mukayese anatomisi uygun karakterleri kullanılarak göz numarası, göz ayarı, yalancı dokanakların şekli, pharynx ve özellikle üreme sisteminin ince yapısının analizi kanıtlanması için turbellarianlarin tür diagnosisleri için temel araçtır (Newman & Cannon, 1994). Erkek ve dişi üreme yapılarının seri olarak yeniden yapımı zordur ve özel lab aletlerine ihtiyaç vardır ve uzmanlar tarafından arzu edilir. Son zamanlarda, benzer polyclad türlerini ayırt etmede, molekuler data (DNA) sıklığı kullanılmıştır. Böyle araçları kullanmadan, polyclad yassı solucanların sınıflandırılması bazı durumlarda hatalı olabilir. Benzer renk izleri büyük farkla benzemesine rağmen ayni genetiksel olarak belirlenmiş renk ve örnek çeşitliliği ayni tür özellilerine sahiptir. Diğer bir değişle, tamamen aynı renkteki örnek belki farklı türde genera’ya veya hatta familya üyesi olabilir. Bu nedenle, eğer benzer renk örneklerinde olan iki polyclad örneği mukayese edıldiklerinde, çeşitli mümkün senaryolar akla uygundur. 1) Farklı genera ve hatta familyaya sahip solucanlarda, genel seçilmiş basınç ve aynı çevre kosulları altında aynı renk örneklerinin gelişiminde evrimsel gelişim kuvvetlidir. Phylogenetik terim açıklaması; bir benzer renk ilişkili gene seti (=allels) veya bir müşterek gene farklılığı phenotype sonuçlari üzerinde secilmiş basınç tarafından tercih edilir. Bu gibi olayların sıklığı analogous gelişim olarak düşünülür. 2) İkinci senaryoda, iki solucan aynı atayı paylaşırlar. Tahminler ışığında, bu ata daha önce avantajlı renklere ulaşmıştır, her iki örneğin renkli izlerinin mukayesesi hatta anotomiksel ve diğer genetik farklılıklara rağmen çok benzer olabilir. 3) Evrim gelişmekte olan işlemdir ve hiçbir zaman durmaz! Genesin renk örnek ilişkisinde gelişigüzel müşterekliliği, protein kodlama bölgelerinde veya düzenli DNA sıklığında, ışık, sıcaklık, beslenme gibi çevresel faktörlerin etkileri ile beraber polyclad renk izlerini etkilemektedir. Rahatça söylenebilir ki, evrim renkler ile oynamadır. Varsayılan predatörlerin farklılığı daha etkilidir: Mimicry ve Predation ve Defence). Phylogenetik zaman aralığında, bir türün görünümünde veya spectation değişim atlamasında, yeni türlerin tehlikesinde önder olabilir. Takip eden foto paneli açıkca ortaya koymakta ve farklı türler ile bir tek türün üyeleri arasında renk izlerini açıkca göstermektedir. Solucanların morfolojik ve DNA sıklığının kilitlenmesi nedeniyle hangi tariflenmiş senaryoların örnek için uygun olduğu gerçekte belirsizdir. Toxin Aposematic renklenme (Bakiniz.Bölüm: Mimicry) denizel invertebrate hayvanların içersinde bilinen genel defense mekanizmasıdır. Çok sayıda göze çarpan renkli slugları toxic alıkonmuştur. Polyclad yassı solucanlar açısından doğrudur. Polyclad yassı solucanların Pseudoceron concineu ve Planocera tentaculata kimyasal defens araştırması ve staurosporine türevlenmesi gibi yüksek toxic kimyasal bileşen açığa çıkarmıştır (Schupp vd., 1977 ve 1999) ve tetrododoxin (Miyazama vd., 1987). Tetrodotoxin proteinsiz bileşen (aminoperhydroqumazoline) olup günümüzde bilinen en kuvvetli paralytic toxinlerden birisidir. Sodyum (Na+) kanallarında voltaj-kapılı cok belirgin engelleyicidir ve büyük integral protein üyesi sinirsel hücrelerin plazma membranına doğru boşluk oluşturur ve Na+ iyonlarına izin verir. Çeşitli uyarıcı cevaplar, boşluklar (=genes), ve açık ve kapalı mebrane potensiyelinin değişimi gibi hücre dışı ve içi belirli kimyasalların varlığı ve uygun fonksiyonelliği sinirsel hareket potensiyelinde temel teşkil etmektedir. Bunula birlikte, tetrododoxin kanalları bloke eder. Tetrodotoxin ve onun habercisi yüksek konsantrasyonlu mukus, sindirim organlarında, polyclad Planocera multietentacula (Miyazawa vd. 1987, Noguchi vd, 1991) yumurtalarda ve üreme organlarında önerirler. Yassı solucanlar predatorlere karşı defans ve alarm maddesi tetratoxine sahiptir. Tetratoxin geniş farklı hayvan örnekleri tarafından izole edilmiştir bunlar pufferfish (photo: Arothon nigropunctatus, order: Tetraodontiformers), parrotfish, genus Atelopus’un zehirli oklu kurbagalar, mavi-cevreli ahtopot, deniz yıldızı, angelfish ve xanthid crabdir. Japon mutfağında pufferfish hassas olduğundan, tetrodoxoxinden zehirlenme Japonya’da halk sağlığını ilgilendirmektedir. Yumurtalık, çiğer, bağırsak ve pufferfish derisi tetradotoxin miktarını içerir ve bu da hızlı ve zorlu üremeye yeterlidir. Geleneksel olarak çok küçük miktarda ciğer et ile tüketilir. Dudakların oluşum duygusu ve dil gercek akşam yemeği tecrübesidir. Fugu’nun hazırlanması ve satışı özel restaurantlarda olduğundan oradakiler eğitilir ve evde hazırlanmasından ve tüketiminden yanlış tanımlandığı ve yanlış donmuş balık ürünleri nedeniyle bireysel olarak zehirleme olayı (30/100 kışı/yıl) olur. Pufferfish zehirliliği hakkında daha fazla bilgi için Bakınız. FDA/CFSAN web sitesinde Amerikan Besin Emniyeti & Nutrient Aplikasyonu’na başvurunuz. Eşleşme ve Üreme Polycladler oldukça ilkel oldukları için kimyasal bilesenler besin bulmada ve partneri ile arkadaşlık kurmasında anahtar rol oynarlar. Büyük yalancı dokanaclarda anterior sinirinin ayrıntıyla donatılması bir delildir ve bu solucanlar temelde resif çevrenin kavranmasında ve davranışlarıyla kararda kimyasal duyu aleti olarak kullanılır. Genel olarak, polycladler derialtında erkek ve dişi üreme organlarina sahiptirler. Onlar karşılıklı dollenme ile birleşerek çiftleşirler. Bir kere, aynı türe sahip yetişkin solucan oldukca kaba çiftleşme hareketi yaparlar, bu derialtı döllenme olarak tarif edilir (üst görüntü, Pseudoceros bifurcus). Solucanların çiftleşme zamanında birbirlerine doğru hareket ettiği, değdiği ve birbirlerine sarıldıklarında (sol görüntü aşağıda, Pseudoceros graveri) eş zamanlı olarak penis papillae ve stylet dışarı çıkar (İki görüntü aşağı sağda, Pseudobiceros bedfordi). Onlar, daha sonra birbirlerini başka yere çekmeyi denerler, bazen de kendi ortaklarına zarara sebep verirler. Yaralı solucanlar 24 saatte sağlıklarına yeniden kavuşurlar. Ne zamanki biri diğerine penetre ederse, birkaç dakika partnerinin epidermiste içine oturtur. Bu zamanda, erkek dol hücresi partnerine enjekte edilir (Üst görüntü, sağ). Son zamanlarda, Pseudoceros bifus’in eşleşme davranışları gözlenmesinde (Michiels& Newman, Nature, vol.391:647), bireysel polyclad sperm vermeyi arttırır. Erkekler için, spermlerin enjeksiyonu direk yumurtalara gider ki orada dişi yarasının iyileşmesinin maliyeti taşıma kapasitesini ve döllenmede kontrolu kaybeder. Bu nedenle, dişilerdeki çok kuvvetli secme bu maliyetten kaçınmaktadır. Bu arka yukarı ile buna ulaşılır, bir eş davranışı her iki striking ve parrying’de etkilidir. Bireyselde her ikisi de deneme cekingesiyle davranırlar. Gelişme olarakta bu girişim sperm donatısında daha fazla sperm verilmesini sağlar. Daha fazla başarılı döllenme ile daha iyi döllenme sağlar. Derialtı döllenmeden sonra sperm aktif olarak parenchyma yumurta kanalına doğru hareket eder. Onlar muhtemelen oocytes tarafından veya dişi üreme kanalının değer hücrelerde serbest hale getirilen moleküllerin gradienti tarafından cazip olurlar. Döllenmiş yumurtalar daha sonra birkaç yüz yumurtanın düzensiz yumurta yığını halinde depolanir ki daha sonra sıkıca paketlenmiş bir tabaka haline gelirler. Diğerinde, iri çakılların altında ascidian kolonileri halinde bulunurlar ve tercih ettikleri avlanmadan biridir. Serbestce yüzmenin gelişmesinden on gün sonra, transparent larva kuluçkası oluşur (=Muller’s larva). Çizelgeden de anlaşılacağı gibi gelişmelerinde bibirini takip eden üç step vardır. Müller larvası sekiz lob tarafından karakterize edilirler. Loblar vurus yapan cilia taşırlar ki bu ciliate’e benzer yüzmeye izin verir (en soldaki foto: koyu arazi mikroskobu altındaki larva stepi). Larva plaktonik bölüme girerek yerleşmeden ve metamorfize olmadan önce birkaç gün yüzer. Gelişmesi esnasında, larva lobları absorbe olmaya devam eder ki orada sindirimleri gelisir. Minyatür yetişkin solucanlar haline gelindiğinde metamorfoz tamamlanır, yanlızca birkaç mm boyutundadırlar ve hayatın bentik bölümüne girerler. Larvaların nudibranch metamorfisinde yapılan gelişmiş ileri düzeyde çalışmalardan elde edilen bilgilere göre, türlerin tercih ettiği besinler tarafından kimyasal bileşikler üretilmesi hedeflenir. Bu mekanizma, yerleşme alanı genç organizmaların yetişmesinde yeterli yiyecek sağlamasına emin olur ve bu nedenle, bu hayatta kalabilmek için daha büyük bir şanstır. Polycladler lab. koşullari altında larva halinde yerleşmeksizin kuluçka olduktan sonra iki hafta içersinde solucan olabildikleri için, polycladlerin bentik hayat bölümüne girmelerinde dış güçlerin zorunluluğu bilinmemektedir. Polycladlerin Taksonomisi Polycladida (class: Turbellaria)’nin taksonomik order’i bir kaç yüz tanımlanmıs türleri kapsar. Bunların çoğunluğu (7 adet genera’da 200 kadar tür) ve Pseudocerotidal familyasında toplanırlar ki bu bugünün en iyi tropikal polyclad familyası olarak kabul edilir. Pseudocerotis en muhteşem renkli yassı solucanlardır ve daha sonraki en belirgin tropikal polyclad ailesinden Euryleptidae (130 türle birlikte) buruşuk pharynxleri tarafından karaterize edilirler ve ayırt edilirler ve aynı zamanda onlarda tüp halinde pharynx mevcuttur. Pseudocerotidsin diğer genera’si daha az yanıltıcı olmakla birlikte çok az bilinmektedir. Bazıları hatta monospecific’tir. Polyclad yassı solucanlar için Tayler. S & Bush L.F, 1988 web sayfasına giriniz. Turbellarian platyhelminths Taxonomisi Polyclad yassı solucanlar üzerinde taxonomik çalışmalar oldukça zordur. Onların uygun boyut, şekil, renk ve markalamaları, göz ayarlamaları, yalancı dokanaçlar, pharynx, gonopore’ların topoğrafyası ve emme gibi karakteleri gözonüne alınmalıdır. Bazı durumlarda, tanımlamada bu karakterler yetersiz ise, üreme sisteminin karşılaştırmalı morfolojisi özel lab. aletleri kullanılması temel araçtır ve uzmanlar tarafından tercih edilir. Son zamanlarda, moleküler DNA (DNA sıklığı) ayni türdeki benzer polycladlerin farklılığının ayırt edilmesinde kullanılmaktadır (Bakınız.Bölüm:Phylogeny). Takip eden tablo dalan ve UW fotoğrafcılar için polyclad yassı solucanların tanımlanmasında faydalı bir araçtır. Filojeny İlk Metozoa’nın hemen hemen radyal hayvan olduğu için, iki taraflı simetrik (Bilateral) nin radyal atalarından yayılmıştır ve radyalden iki taraflı simetri arasında değişim olmuştur. Bu değişim hala oluşmaktadır ve çeşitli yüksek düzeyde spekulatif bağlantılar yapılmıştır (Brusca & Brusca, 1995). Paleontolojik ve moleküler data gösterir ki çoğu iki taraflı phyla ve Cambrian explosion zamanında bölünmüşlerdir, M.O. 56 ve 520 yıllarında oluşmuştur (Wang, vd., 1999). Phylum platyhelminthes erken Metasoanın farklı grup oluşturduğu ki bu metazoa’nin orijini ve evriminin anlaşılmasında anahtar rol oynamıştır. Coğu zooloji ders kitaplarında, erken ortaya çıkan clade formasyonu, iki taraflı simetri (Bilatera) ile bütün hayvanların kızkardeş grubu olarak tarif edilmiştir. Diğer yazarlar görmüşlerdir ki, çoğu Protostomia’nin kızkardeş grubu veya grup protostome coelomate atalarından türemişlerdir. Filojenik yerleşmenin doğruluğu esas zorluluktur ve bütün Platyhelminthes için synapomorfilerin iknasının kapanmasıdır. Bu belirtir ki onlar polyphyletic’tir. Basitleştirilmiş taxonomik şekilde, phylum Platyhelminthes dört sınıfı tutar. Trematodal (fluxes), monogenea ve Cestoda (tapeworms) ki bunlar vertabratenin endo/ectoparasiteyi sunar. Bazıları kompleks, hayat döngüşü, ve sınıf Turbellaria ana serbest yaşayan yassı solucan türlerini verir. Turbellaria 9 adet order içerir. Coğu açıklanan orderler bu çizelgede gösterilmemiştir. Acoel yassı solucan (Acoela) uzun zamandır, Turbellaria’nin order’i olarak sınıflandırılmıştır. Onlar en ilkel turbellarian order olarak düşünülmüş ve bazal metazoan olarak manzaralanmıştır ki ciliate protozoans (=syncytial veya ciliate=acoel theory) veya diploblast ve triploblast arasında direk link vardır (=planuloid-acoeloid theory)’den evrim geçirerek oluşmuşlardır. Onların basit organizasyonu yorumlanmıştır ve daha kompleks ataları (regressive evrim) ikincil özelliklerinin kaybolması incelenmiştir. Bugün, teorinin destek delillerinin birçok çizgisi, bilinmeyen iki taraflı atalardan Kambrien radyasyondan önce. acoels dallanmasıyla olmuştur. Örneğin, aceoller diğer platyhelminthes iki loblu ve neuropile’li beyinleri var olup sinir hücreleri ile cevrilmiş olduğunu sinir sistemi yapısı işaret eder (Bakınız. Bölüm: Polyclad ve Neurobiology). Karşıt olarak, acoellerin sinir sistemi sinir hücrelerinin salkımı tarafından basit beyin olarak oluşmuştur ve cok sayıda uzun sinir kordları ortagon yapmazlar (Ruitz-Trillo vd., 1999). Son zamanlarda, DNA (desorxy-bonucleic acid) moleküler teknik ve protein sıklığı başarılı kullanılmıştır. Phylogenetic hayat ağacı kurulur ve hayvan taxa’ları arasında filojenetik ilişkisi araştırılır. En yaygını, DNA sıklığı yüksek düzeydeki gene’leri muhafaza etmesidir, mesela, ribozomal RNA (rRNA) genes kodu bu gibi çalışmalarda kullanılmıştır. 18 S ribozomal DNA genesinin sıklık datası mukayesesinde ve diğer Metazoa kanıtları Acoel’in Platyhelminthes’e ait olmadığı belirlenmiştir. Bu buluşlar önerirki basit radyal simetrik organizma (jelyfish gibi) ve daha komplex iki taraflı simetrik organizmalar (arthropods ve vertebrates) boşluk (gap) vardır. Onlar kendi phylum’larına yerleştirilmelidirler (Ruisz Trillo vd., 1999). Bazı çarpıcı özellikleri vermesi polyclad genera’da en yaygın tanımlamada yardımcı olacaktır. DNA sıklılığı dataları aynı zamanda aynı organizmaların morfolojilerinin ayırt edilmesinde de kullanılır. Bu Goggin & Newmann (1996) tarafından pseudoceroid turbellarianlar için teşhir edilmiştir. Ribozomdaki RNA (rRNA) gene salkımındaki spacer-1 (JTS-1)’dan elde edilen Nucleotide sıklığı dataları (Pseudoceros jebborun, Pseudoceros paralaticlavus) ve pseudocerotid polycladların generasında (Ps. jebborum ve paralatic lavus versus Pseudobiceros gratus) türlerin ayırt edilmesinde kullanılmıştır. Ps’in ITS-1’nin nukleotide sıklığı Ps. paralatic lavus’dan 6% farklıdır ve Pseudobiceros gratus’tan 36% farklıdır. Beklenildiği gibi bu sonuçlar aynı genusun türleri farklı genera’dan alınan türlere kıyasla phylogenetiksel olarak yakın ilişkili olduğunu kanıtlamaktadır. Bu nedenle, ITS-1’den elde edilen data sıklığı pseudocerotid yassı solucanlar ayırt edilmesinde faydalı bir taksonomik araçtır. Ribozomal DNA Salkımı Büyümekte olan bir hücre 10 Mio ribozomlar ihtiva eder, protein üretiminde hücresel araçtır (mRNA’nin proteine transferi). Ribozomal RNA her tip ribozomal RNA molekülü (5 S, 5.8 S, 18 S, 28 S rRNA) nin temel yapısal komponenttir ve protein sentezinde hücre ihtiyaçlarında birleşmesi açısından her hücre generasyonunda sentez edilmelidir. Ribozomal RNA’nın yeterli miktarda üretimi için eukaryotic hücreler ribosomal RNA (rRNA genes = rDNA) nın kollanmasında çok sayıda genes kopyası içerirler. İnsan hücreleri her haploid genome’de aşağı yukarı 200 rRNA gene kopyası içerirler ve beş farklı kromozomda (chromosomes 13, 14, 15, 21, 22) küçük salkımlar halinde dağılmışlardır. Kurbağa hücreleri Xenopus leveis bir kromozomda bir tek salkımda 600 rRNA gene kopyası içerir. Bununla birlikte, genel rRNA izleri bir kromozomda bir tek salkımda rRNA gene organizasyonunun genel izinde bütün eukayot hücrelerde tamamen aynıdır. Verilen kromozomda yüksek dereceden rRNA genesinin çok sayıda kopyasının gelişigüzel serileri ayarlanmıştır, her bir gene diğer bolgedekinden ayrılmıştır, DNA boşluk yaratıcı olarak da bilinir ve türler içinde uzunluğu ve sıklığı değişmektedir. Bir tek salkım rRNA genes’i 18 S, 5.8 S, ve 28 S rRNA molekülü içerir ki o (ITS-1 ve ITS-2) tarafından içten ayrılır. Bitişik salkımlar 10,000 nucleotide uzunluğundadır ve herbiri dışsa açıklı bölgeler (ETS) olarak ayrılmıştır. rRNA genes’i RNA polymerase tarafından kopya edilmiştir ve her bir genes seti aynı temel RNA’yi üretir, 45 S öncü rRNA (pre-rRNA) olarak bilinir. Önce kurulmuş ribozomal partiküllerindeki nukleusu terkeder, 45 S pre-rRNA (takriben 5,000 nucleotides, 18 S Rrna (takriben 2,000 nucleotides, ve 5.8 rRNA ( takriben 160 nucleotides). Geri kalan kısımda her temel kopya (ETS, ITS-1 ve ITS-2) olarak derecelenmistir. Takriben 200 farklı hücresel protein ve bir 5 S rRNA diğer kromozom locus’tan türetilir ve ribozomların paketlenmesinde yeni sentezlenmiş rRNA kullanılmıştır. Bu paketleme nucleusta oluşur ve bu büyük geçirgen yapı nucleus olarak adlandırılır. Bozulmamış rRNA molekulleri ribosome üretiminde temel olduğu için, protein sentezi ve hüçre fonksiyonu, kuvvetli basınç seciminde (evrim) fonksiyonel rRNA mevcuttur. Böylece, ecukaryotic hücrelerde çoğu genişler ribosomal genese bağlıdır bu da müthiş bir benzerlik sıklığı gösterir ve hatta phylogenetik taxa dahil olmak üzere. Bununla birlikte, iç alan bölgede (ITS-1 ve ITS-2) daha az homoloji bulunmuştur çünkü bu DNA bölgeleri yapısal RNA’ya katkıda bulunmaz. Bu nedenle, daha az secilmiş basınç uygulanmakta ve DNA sıklığı da farklı olmaktadır (müşterek nokta), aynı genusun türleri arasında bile bu bölgede elde edilmiştir. Bu ilişki rDNA datasındaki molekuler özellikler (Hayat ağaçi) çok faydalıdır ve yakın ilişkili türlerin ayırt edilmesinde kullanılır. Neurobiyolojide Polycladler Serbest yaşayan polyclad yassı solucanlarda Notoplana acticola gibi beyin ve peripheral sinir network araştırma halindeki en ilkelsinir sistemini sunar. Küçük ama iyi tanımlanmış beyin (sağ panel) ve uzun sinir ipleri ve çapraz hatlar tarafından çok sayıda dairesel motoneuronlarla bağlanmıstır. Bu sinir sistemi yassı solucanların cevresel değişimlerinin iç ve dış etkileri mümkündür. Yüzeysel olarak Netoplama articola’nin beyni diğer invertebratedekilere benzemesine rağmen hücreleri cok sayıda vertebrate özelliklerine sahiptir. Hücre tiplerinde tamamlanmış, dallanmış izlerle beraber çok şaşırtıcı farklılık vardır. Çok kutuplu neurone’ler yaygın tipik, iki kutuplu hücreler olarak ayırt edilebilir. Küçük çok kutuplu hücreler glial veya interneurones beyinde serpiştirilmiş olarak bulunmuştur (Keenaneld, 1981). Daha önceki çizimden çıkartıldığı gibi, bazı tabaka tarafından çevrilmiştir. Uzun sinir kordları ve neuronlar dairesel alıcı hücreleri bağlar (ocellinin fotoduyarlı hücreleri) beyinden direk olarak uzanırlar. Ventral sinir kordu dorsal sinir korduna nazaran daha kuvvetli gelişmiştir. Yassı solucanlar Sinirbiyolojisi araştırmaları, beyin araştırmaları açısından en mükemmel model sistemidir cünkü oldukça ince olup beyinleri birkaç mm büyüklüğünde yanlızca birkaç 100 – 1000 hücre içeriler ve deneysel çalışmalarda hazırlanmıştır. Son zamanlarda, çeşitli konular sinirselbiyoloji ve elektrofizyoloji ilgisi adreslenmiştir. Cytoarchitecture’in Analizi ve Sinirsel Bağlantılar Bu sayfadaki bilgilerin Powerpoint Sunumunu (ppt dosyasını) www.sunumbankasi.net adresinde bulabilirsiniz You can find the powerpoint presentation of this web page content at www.sunumbankasi.net Polyclad yassı solucanların beyinlerinin üç boyutlu yapısınin kontrolu için sinir hücreleri özel olarak boyanmıştır. Camillo Golpi (1843-1926) metoduna göre yürütülmüştür (20. yüzyil biyologlar tarafından bilinenlerden en iyisi). Florosan boyaları kullanılarak ic hücrelerdeki iontofarlar ile beyin içindeki sinir konfigürasyonu araştırılmıştır. Bu deneysel yaklaşımda, Koopwitz ve arkadaşları (1966) tarafında belirlendiği gibi, Notoplana articula’nin örneği aneztezi edilmiştir. Sonuç olarak, sinir sistemi dakika cubuğu ve aletleri kullanılarak belirlenmiştir. Beyin örtüsü protesae sindirimi ile ortadan kaldırıldı, beyine ve ganglion hücrelerine direk girebilmek için tek sinir hücrelerinde ultra ince cam mikroelektrot tekniği kullanılmıştır ve lucifer yellow gibi florosan boya ile doldurulmuştur. Enjekte edilen boya hücre içinde sağa doğru axonların ucuna kadar göç etmiş ve florosan mikroskopta izlenmiştir. Laser taramalı florosan mikroskobu kullanarak digital data serili iki-boyutlu resimlerden üç-boyutluya çevrildi ve mümkün olan polyclad beynindeki sinirsel cytoarchhitecture gelişmeler harita haline getirilmiştir. Sinir Tamir ve Sinirsel Plastisite Çalışmaları Şimdiye kadar incelenen bütün invertebrate ve vertebrate türlerideki çalışmalara göre, Notoplana acticola beyin dokusu yeniden üretemez. Bununla birlikte, sinirsel tamir hızlı ve yüksek oranda elverişlidir. Polyclad beyni yassı solucana taşındığında yeni bağlantılar organ nakli edilen beyin ile dairesel network sinir alıcı uçları ameliyattan 24 saat sonra tesis edilmiştir. Bunun gibi organ nakli deneyler Davies ve çalışma arkadaşları (1985) tarafından tarif edilmiştir. Deneylerde dört beyin organ nakli oryentasyonu; normal, ters, ters yüz, ve ters ters yüz olmak üzere kullanılmıştır. Beyin organ naklinin fonksiyonu test edildi ve her iki davranış ve elektrofizyolojik kriterler olçülmüştür. 23 gün içinde, organ naklinin 56% si solucan ve diğerleri organ naklinin iyileştirilmesindeki doğru davranış, kaçınma dönüşü, ditatix hareket, ve beslenme gibi dört davranışta test edilmislerdir. Beyindeki mevcut sinirler kendilerine en yakın dairesel sinirlerle birleşirler. Ameliyattan 36 sonra bazı normal davranışlar gözlenebilir. Kontrol eksikliği olan yassı solucanlar organ nakli olmadan davranışlarını kurtaramazlar. Birkaç beyin davranışında hücre içi kayıtlar da dairesel sinir hücreleri ile uygun bağlantılar yeniden kurulmuştur. Bu sinirlerdeki boyanmış hücreler ters oryentasyonlu beyin ortaya çıkarmıştır, bireysel sinir hücre işlemlerinin beyini terketmesinden sonra uygun olmayan bir şekilde sinir kordu ile ilişki kurmakta olup, bazı işlemlerde 180 0 li sinir kordu , ki onlar normal olarak yerleşen operasyona maruz kalmamış solucanlardır (Davies vd, 1985). Molekuler temeli ve yeniden bağlanan belirgin sinirleri ortaya çıkarmak çok ilginçtir. Konakladığı hayvanın davranışında bazı bilgiler çok önemlidir, paraplegia veya kazadan sonra sinir sisteminin ciddi olarak yaralanması gibi. Dağıtım ve Buluş Polycladler boyutları, renk örnekleri, sıvı içindeki hareketleri nedeniyle SCUBA dalgıçları tarafından tesbit edilebilirler. En yaygını, gün esnasında onlar resif eğimlerin dışında, üzerinde veya uçlarında görülebilirler. Onlar yarıklarda, kaya altlarında, bazende çıplak sedimentlerde veya çamurlu tabakalarda bulunurlar. Bazı türleri resif sırtlarında yüzerken görülmüşlerdir. Polycladler tercih ettikleri yiyeceklerin üstünde veya yanında dinlenirler çok nadiren de olsa süngerlerin veya koloni ascidianlarin üzerinde , çoğu resif sırtında çok iri çakılların altında bulunmuşlardır. Crytic türleri çok ender bulunurlar çünkü kendilerinin normal hayatları zamanında yeraltında karışmışlardır. SCUBA dalgıçlarına ve UW fotoğrafçılarından ilgi duyanlara polyclad türlerini bulmak için çakıl altlarında ve çoral taşlarının etrafında bulabileceklerini tavsiye ederiz. Şans ve sabırla polyclad türleri bulunabilir. Bununla birlikte, bu hassas solucanlara dikkatlice değmek ve ele almak gerekmektedir. Polycladler stress altında kendi-kendini imha etme özellikleri vardır. Onlar otoliz, mukoz parçalarını kirarlar veya buruştururlar ve daha sonra yapılacak incelemeler için fotoğraf çekilmesini imkansız hale getirirler. Bununda ötesinde, kendi belirgin renkli örneklerini kaybederler. Bu nedenle çoğu fotoğraflar mümkün olduğu kadar onlari yaşam yerinden rahatsız edilmemelidir.Yeni türlerin tarifi, örneklerin toplama, koruma, ve detaylı çalışmada, tamirde özel teknikler mümkündür. Polyclad’e ilgi duyan dalgıçlar yeni türlerin tanımlanmasında katkıda bulunacakların Dr.Leslie Newman ile kontak kurmaları (Schooling Resource Science and Management, Southern Cross University, P.O. Box 117, Lismore, NSW, Australi 2480) çünkü kendisi tamir ve koruma konusunda güvenilir metod geliştirmiştir. Leslia şimdi Indo-Pacific polycladlar üzerinde çalışmaktadır. Dünya capında 350 tür içeren database ile onların besin ve üremeleri hakkında bilgi vermektedir. Oya Bezen Çakın Halkalı solucanlar (Annelida) Polymera olarak da bilinir. Segmentleri dıştan belirgin olarak görülen bir omurgasız hayvanlar şubesidir. Deniz, tatlı su ve karalarda yaşarlar. Vücut uzun ve segmentlidir. Vücut segmentler septum adı verilen bölmelerle birbirlerinden ayrılmıştır. Baş bölgesine prostomium, posterior uca ise pigidium adı verilir. Prostomium ile pigidium birer segment değildirler. En yaşlı segment başın hemen arkasındaki segmenttir. Çeşitli organlar her segmentte tekrarlanır. Protostome grubuna dahillerdir. Gerçek sölom bulunur. Sölomları şizosöl (Schizocoelous) tiptir. Boşaltım organları segmental sıralanmış nefridium’lardır. Vücudun ön ve arka uçlarındaki birkaç segment hariç, her segmentte bir çift nefridium bulunur. Vücut yüzeyi ince esnek kutikula ile kaplıdır. Bazılarında kitinden kıllar bulunur. İp merdiven sinir sistemi gelişmiştir. Prostomiumun sırt tarafında iki loplu bir beyin gangliyonu vardır. Duyu organları kimyasal duyu organları ve gözlerden ibarettir. Kapalı dolaşım sistemi bulunur. Annelidler hermafrodit hayvanlardır. Gonadları gayet basit yapılıdır. Rejenerasyon özellikleri çok iyi gelişmiştir. 9 bin türü bulunur. Bir kısmı mikroskobiktir. Yuvarlak solucanlar (İpliksisolucanlar) ya da Nematodlar, yuvarlak yapıda, sayıca Dünya üzerinde en fazla bulunan omurgasız hayvan şubesidir. Hayvan ve bitkilerde önemli zararlara neden olan birçok türü vardır. Yalancısölomları bulunur. Vücutları uzamış, silindirik, bilateral simetrilidir. Dünya üzerinde çok değişik yaşam yerlerine uyum sağlamışlardır. Bazıları serbest, bazıları parazitik yaşar. Marin nematodları, hayvan parazitleri, insan parazitleri, karasal nematodlar olarak gruplandırılırlar. Yuvarlak solucanlar, anatomik ve morfolojik olarak basit yapılı canlılardır. Boyları 0,25 mm – 3 mm, çapları 1-20 µ arasında değişir. Yüksek yapılı hayvansal organizmaların sahip olduğu bazı sistemlere sahip değildirler. Ör. solunum, dolaşım ve iskelet sistemi yoktur. Sinir ve boşaltım sistemleri ise çok basit yapılı hücre gruplarından oluşmuştur. En gelişkin sistemleri sindirim ve üreme sistemidir. Üreme [eşeysiz) olmakla beraber birçok türde besin konukçu varlığı ve çevre şartlarının uygun olduğu zamanlarda üreme partenogenetik (döllemsiz) olarak dişinin dişi birey içeren yumurta bırakması şeklinde olur. Böylece kısa sürede populasyonları artar. Erkekler populasyon içinde çok düşük oranda bulunurlar ve çevre şartlarının iyileşmesiyle dayanıklı yumurtaların oluşmasını sağlarlar. Bitki parazitleri, bitkilerin kılcal köklerinde ve kök-büyüme konisi (uç kısmı)nde styletlerini doku içerisine batırarak buradan bitki öz suyunu emerler. Nematod türüne ve yoğunluğuna bağlı olarak bitkilerde gelişme geriliği, solgunluk ve verimde azalmaya neden olurlar. Endoparazit, yarı-endo parazit ve ektoparazit olarak beslenirler. En zararlı grup, kök sistemine en çok zarar veren endoparazitlerdir Örn. kök-ur nematodları.    

http://www.biyologlar.com/solucanlar-platyhelminthes-yassi-anelida-halkali-aschelminthes-yuvarlak-solucanlar

Transplantasyon immünolojisi

TRANSPLANTASYON İMMÜNOLOJİSİ VE TARİHÇESİ İmmünoloji İnsan İmmün (Bağışılık) sistemi zararlı olan organizmaları vücuttan uzaklaştırmaktadır. Bu sistem, vücudumuzun yaklaşık iki trilyon hücresini koruyan, antibadi ve sitokinler üreten hareketli askerleridir. Virüs, bakteri ve tümör hücreleri veya transplante edilmiş hücreler gibi yabancı ya da vücuda ait olmayan hücrelerle koordineli bir biçimde hızlıca çok yönlü bir atağa geçmektedir. Her ne kadar çevre immün cevabı stimüle etse de, immüniteyi kontrol eden genlerdir. Genler antibadi ve sitokinlerin hücre yüzeyini spesifik olarak kodlamaktadır. Genler aynı zamanda sitokinleri tutan hücre yüzey proteinlerini kodlamaktadır (Antijen başka bir bireyde immün cevaba neden olan bir moleküldür. Antijenler genellikle protein veya karbohidratlardır). Yabancı antijen, vücuda ait olmadığından dolayı, bir immün cevaba neden olmaktadır. Genler immüniteyi kontrol ettiğinden, oluşan değişiklikler immünolojik fonksiyonları engelleyebilmektedir. Immünitede oluşan bozukluk, otoimmün hastalıklara, allerjiye ve kansere neden olabilmektedir. Genlerin immünitede büyük rol oynamasından dolayı, teknoloji ile birlikte, hastalıkların tedavisi amacıyla immün sistem güçlendirilmeye çalışılmaktadır. Transplantasyon nedir nasıl yapılır Transplantasyon yöntemi günümüzde oldukça yaygındır. Kalp, böbrek ve başka organların bir kişiden diğerine nakledildiğini sık sık duyarız. Dişlerin transplantasyonunda iki yöntem vardır: Aynı kişiden ve başka kişiden transplantasyon. Aynı kişide bir diş bir çene yarısında dizi dışı bulunur ve normal diş sayısına oranla artıklık gösterirken, diğer tarafta herhangi nedenlerle bir dişin dizide eksik olduğu da görülebilir. Bu durumda iki olasılık vardır: Ya bir diş yuvası önceden hazırdır ya da operatör bu dişi transplante edebilmek için ilkin böyle bir yuva oluşturmalıdır. Bu durumda en uygunu, önceden hazır olduğu için yeni çekilmiş bir dişin boş olan alveolüdür. Ayrıca aynı kişiden transplantasyon dışında, dişin başka kişiden alındığı, kişiden – kişiye transplantasyon da vardır. Kişiden – kişiye transplantasyon çok eskidir de. Örneğin, ortaçağda varlıklı bir bayan bir dişini yitirdiğinde bir kölenin benzer dişini çektirttiği sık sık görülürdü; sonra bu yabancı diş çenesine transplante edilirdi. Oysa her zaman uygun dişli bir köle bulunamazdı. Bayan böyle durumlarda da transplantasyon amacıyla uygun dişini çektirtecek olan bir başka kişiye belirli bir tutar para önerirdi. Kişi artık günümüzde transplantasyonda biraz daha dikkatlidir. Benimsenme olasılığı için en uygunu; plantat-vericisi ve plan-tatralıcısının kardeşler, ana-baba, çocuklar gibi yakın akraba olmalarıdır. Ancak yabancı plantat-vericisi plantat-alıcısıyla aynı kan grubundan ise, bu plantat-vericisinin dişi de kullanılabilir. Kan uyuşmazlığının göz önüne alınmaması eskiden bir çok başarısızlıklara neden olurdu. Tüm plantasyonlarda plantat kökünün vücutta yabancı madde sayılarak atılma tehlikesi vardır. Bu nedenle, transplantat’ın sürekliliği olabildiğince uzatılsın diye gereken her şey yapılmalıdır. Genel diş ve kök tedavisi tıpkı replantasyondaki gibi uygulanır. Çoğu zaman başarı replantasyondaki kadar iyi değildir ve atılmazlığı bütünüyle plantat-alıcısmın kendisine bağlıdır. Tüm transplantasyonlarda ope­rasyondan sonra şineleme son derece önemlidir. Transplantasyon Sonrası Immün Sistemin Yeniden Programlanmasında Monoklonal Antikorların Kullanımı Transplantasyon sonrası immün sistemin yeniden yapılanması sürecinde temel amaç, graftı T lenfositlerinin yıkıcı etkilerinden korumaktır. Monoklonal antikorlar da bu amaca yönelik olarak mevcut immünsüpresif ilaçlara yardımcı olarak kullanılmaktadır. Bazıları indüksiyon tedavisinde, rejeksiyon önlenmesine yönelik olarak, bazıları da dirençli akut rejeksiyon tedavisinde kullanılırlar. Monoklonal antikorların en yaygın kullanılanları basiliksimab ve daklizumabdır. Bu IL-2 reseptör blokerleri, akut rejeksiyon oranlarında önemli azalmalar sağlamaları ve yan etkilerinin olmayışı nedeni ile oldukça benimsenen ilaçlardır. Bunların yanında rituksimab (anti-CD20) ve Campath (anti-CD52) gibi ajanlar da giderek daha çok kullanılmaya başlanan monoklonal antikorlardır. Transplantasyon immünolojisinde, T hücre aktivasyonunda görevli, bazı yeni aracı moleküllerin bulunması monoklonal antikorların da giderek çeşitleneceğini göstermektedir. Transplantasyon Hakkında Sık Sorulan Sorular 1. Canlı veya kadavra vericilerden transplantasyon yapılacak adayların hazırlıkları arasında bir fark var mıdır? Hayır, Kadavra böbreği bekleme listesindeki adaylar da tıpkı canlı vericiden transplantasyon yapılacak adaylar gibi incelenir. Ancak bir kadavra böbreği bulunma olasılığının ne zaman gerçekleşeceği belli olmadığı için. zaman geçtikçe önceden yapılmış muayene le bazı laboratuar incelemelerinde değişiklikler olabilir. Bu nedenle kadavra böbreği bekleme listesindeki hastaların belli aralıklarla, fizik muayene ve laboratuar incelemeleri yineletmeleri ger eklidir. Kısaca; kadavra böbreği bekleyen hastalar ameliyata her an hazır durumda olabilir. 2. Transplantasyon adayı hastaların kendi böbreklerine herhangi bir müdahale yapılır mı? Genellikle hastaların kendi böbreklerine dokunulmaz. Ancak, inatçı hipertansiyon, böbreklerde tedaviye dirençli infeksiyon, idrarın mesaneden böbreğe taşması, çok büyük kistik böbrekler söz konusu ise, hastalıklı böbrekler çıkarılır. Bu ameliyat bazı merkezlerde transplantasyondan önce yapılır ve 3-4 hafta sonra yeni böbrek takılır. Bazı merkezlerde ise böbrek nakli ameliyatı yapılırken aynı anda hastanın kendi böbrekleri de çıkarılır. Yalnız her iki ameliyatın aynı seansta yapılması oldukça uzun sürer ve biraz daha risklidir. 3. Kadavra böbrek listesine kayıtlı hastalar için bekleme süresi ne kadardır? ÜIkemizde bugün için kesin bir süre belirtmek mümkün değildir. Listeye çok yeni giren bir hasta, uygun tipte böbrek çıkması ile kısa zamanda transplantasyon şansına kavuşabileceği gibi bazen de uygun bir böbrek çıkmadığı için uzun süre beklenebilir. Olanaklar elverdiğince, uygun böbrek çıktığında daha uzun süre beklemiş olan hastaya öncelik tanınır. Halkımızın bilinçlenerek daha fazla organ bağışında bulunması bekleme süresini kısaltacaktır. Halkımızın bilinçlenerek daha fazla organ bağışında bulunması bekleme süresini kısaltacaktır. 4. Kadavra böbrek bulunduğunda hastalara nasıl haber verilir? Transplantasyon ünitesinde bilgisayarda kadavra böbreği bekleyen tüm hastaların telefon numaraları kayıtlıdır. Uygun bir kadavra böbreği çıktığında günün herhangi bir saatinde size telefonla haber verilere!,, transplantasyon ünitesine gelmeniz istenecektir. Size daha kolay ve kısa sürede haber verebilmemiz için. varsa, birden fazla telefon numaranızı ve yakınlarınızın da telefon numaralarını bildirmeniz faydalıdır. Telefon numaranızda bir değişiklik olduğunda bunu hemen üniteye bildirmelisiniz. 5. Böbrek bulunduğu haberi ile transplantasyon ünitesine çağrılmanız mutlaka böbreğin size takılacağı anlamına mı gelir? Hayır. Bir kadavradan elde edilen iki böbrek için yaklaşık 10 hasta üniteye çağrılmaktadır. Burada, hemen yapılan fizik muayene ve acil laboratuar incelemeleri sonucunda, ünite hekimlerinden oluşan bir kurul tarafından karar verilmekte ve durumu en uygun olan 2 hastaya böbrek takılmaktadır. Böbrek takılmayanlara ise bunun nedenleri açıklanır ve hastalar evlerine gönderilir. 6. Kadavra böbrek, transplantasyon için haber verildiğinde neler yapılmalıdır? Öncelikle bu saatten itibaren hiçbir şey yenilmemeli ve içilmemelidir. Bekleme listesindeki bu hastanın küçük bir çantada, kişisel eşyaları (pijama, terlik gibi) her an hazır olmalıdır. Özelikle şehir dışından gelecek hastaların telaşa kapılmamaları ve hazırlanmakla vakit kaybetmemeleri için önemlidir. Çağrıldığınızda yanınıza eşyaları da alarak en hızlı ulaşım aracı ile. uzak bir şehirde oturmaktaysanız mümkünse uçakla, üniteye gelmelisiniz. 7.Kadavra böbreğin size takılmasına karar verildiğinde ne tür işlemler yapılacaktır? Bu karardan sonra, artık hastanede kalacaksınız. O gün diyalize girmediyseniz acil olarak hemodiyalize alınacak ve bitiminde transplantasyon ünitesine yatırılacaksınız. Gerekli ameliyat hazırlıkları ve transplantasyon öncesi ilaç uygulamalarından sonra böbrek nakli ameliyatına alınacaksınız. Artık yeni böbreğiniz takılacak ve sizin için yeni bir yaşam dönemi başlayacaktır. TRANSPLANTASYON İMMÜNOLOJİSİ TARİHÇESİ Prof.Tbp.Kd.Alb.Ali ŞENGÜL Tarihçe; MÖ 200: Çin?de Kalp nakilleri denemeleri MÖ 600: otolog deri transplantasyonları (Hindu cerrah Sushruta- yüz plastik cerrahisi) Modern transplantasyon dönemi ise 18. Yüzyılın sonlarında deneysel cerrahinin babası olarak da bilinen Hunter tarafından başlatılmış olarak kabul edilmektedir. Carrel 1912?de vasküler anastomoz tekniği ile nobel ödülü almış ve teknik olarak başarılı nakillerin yolunu açmıştır. Daha sonra biyolojik özelliklerden immün sistem üzerine yoğunlaşılmış ve gerçek başarı ancak immünolojik gelişmelerden sonra mümkün olabilmiştir. İlk kan transfüzyonları 17. yy?da hayvanlar ve insanlar arasında denenmiş ve alınan korkunç sonuçlar nedeniyle bu konu 150 yıl boyunca bir daha gündeme gelememiştir. 1900 yılında Landsteiner ve Miller insanları kanlarındaki aglutininlere göre gruplandırarak transfüzyonları tekrar gündeme getirirken, doku tiplendirmesinin de yolunu açmışlardır. 1923 de Williamson homolog ve otolog graftlemeyi kıyaslayarak doku tiplendirmesi için çalışmaların başlamasına sebep olmuştur. 1930 larda moleküler genetikçi George Snell farelerde histokompatibilite lokusu olan H-2 lokusunu keşfetmiştir. 1937 de Gorer insanlarda ilk histokompatibilite antijenini tanımlamış ve self-nonself ayrımını izah etmiştir. 1943 de Medawar tavşanlarda deri grefti çalışmaları yapmış ve otograft-homograft ayrımında akraba olanlarla olmayanların farklılığını ortaya koymuştur. II. Dünya savaşında yanıklı hasların tedavisinde plastik cerrah Gibson ile işbirliği yaparak immün yanıtın 3 temel özelliğini (tanıma, yıkım ve hafıza) tanımlamıştır. 1952 de Dausset multiple kan transfüzyonu yapılanlarda lökoaglutininler oluştuğunu gözlemleyerek insanlarda HLA lokuslarının keşfine giden yolu açmıştır. 1964 de Terasaki ve arkadaşları sitotoksik antikorları kullanarak mikrolenfositotoksisite yöntemi ile antijenlerin serolojik olarak tanımlanmasını sağlamışlardır immünosupresyon 1950 lerde John Loutit tarafından total vücut radyasyonu (TBI) ile farelerde denenmiş, 1958 de Murray (Boston) ve Hamburger (Paris) tarafından ayrı ayrı insanlara uygulanmıştır. 1960 larda AZT geliştirilmiş ve transplantasyonda kullanılmış. Ardından Starzl AZT ile kortikosteroidi kombine ederek başarının artmasını sağlamıştır. 1960 ve 1970 lerden itibaren poliklonal antikor teknolojisi, siklosporinin keşfi, 1980 lerde monoklonal antikor teknolojisinin keşfi ile bu konudaki gelişmeler hız kazanmış, daha modern immünosupressif ajanların keşfi ile neredeyse doku uyumuna bakılmaksızın transplantasyonlar yapılmaya başlamıştır. TANIMLAR Transplantasyon: Donör / verici : Recipient / alıcı: Ortotopik transplantasyon Heterotopik transplantasyon. Rejeksiyon / red Birincil rejeksiyon ikincil rejeksiyon (Hafıza). TANIMLAR (2) Otolog greft / otogreft Oto transplantasyon / otolog transplantasyon Isogreft / syngeneik greft / syngreft Allogeneik greft / allogreft Xenogeneik greft / xenogreft Alloantijen Xenoantijen alloreaktif antikor xenoreaktif antikor ALLOGENEİK TANIMANIN MOLEKÜLER TEMELİ Haplotip identik, inbred farelerde yapılan hücre ve doku nakillerinde rejeksiyon oluşmamaktadır. Farklı inbred fareler arasında yapılan transplantasyonlarda hemen daima rejeksiyon oluşmaktadır. Farklı iki inbred fareden olan F1 dölünde, anne ve babadan alınan greftlerde rejeksiyon oluşmamaktadır. Farklı iki inbred fareden olan F1 dölünden alınan greft, anne ve babaya transplante edildiğinde rejeksiyon oluşmaktadır. MHC / HLA Minör doku uygunluk antijenleri MHC molekülleri dışındaki polimorfik alloantijenler daha zayıf ve daha yavaş bir rejeksiyon reaksiyonu oluştururlar. Bunlara Minör doku uygunluk antijenleri (minor histocompatibility antigens) adı verilmektedir. Birçok minör doku uygunluk antijeni self veya greft MHC molekülleri tarafından işlenip T hücrelerine sunulabilen protein yapısındaki moleküllerdir. MHC moleküllerinden farklı olarak bu minör antijenlerin tanınabilmesi için işlenip MHC molekülleri tarafından sunulmaları gereklidir. ALLOGENEİK TANIMANIN HÜCRESEL TEMELİ Rejeksiyon reaksiyonu, transplante edilen dokuların hem CD4+ ve hem de CD8+ hücreler tarafından tanınması sonucunda gelişir. Değişik T hücre popülasyonlarının alloantijenleri tanımalarını anlamak için mikst lenfosit reaksiyonu (MLR) güzel bir model olarak kullanılmaktadır. MLR ile şu sonuçlara ulaşılabilir: Eğer hücrelerin MHC-sınıf I antijenleri arasında farklılık yoksa CD8+ CTL oluşmayacaktır. Uyarıcı hücrenin MHC-Sınıf-I antijenlerine karşı antikorlar kullanılırsa, hücre lizis’den korunacaktır. Eğer uyarıcı ve uyarılan hücreler arasında MHC Sınıf-II antijen farklılığı varsa alloreaktif CD4+ T hücreleri uyarılacak ve prolifere olarak sitokin üretecektir. Uyarıcı hücre ile aynı MHC sınıf-II antijenlere sahip üçüncü grup hücre kültüre eklenirse alloreaktif CD4+ T hücreleri tekrar uyarılacaktır (İkincil MLR). Uyarıcı hücrenin MHC sınıf–II antijenlerine karşı antikor kullanılırsa, bu antikorlar ikincil MLR’nu önleyecektir. Rejeksiyon Rejeksiyonun değişik formlarının olduğu ve bunların her biri için farklı bulgu ve belirtilerden oluşan tanımlar olduğu bilinmektedir. Ancak çoğu kez bunları biri birinden kesin olarak ayırt edecek kriterler bulunamaz. Gerçekte aynı greftte akut ve kronik rejeksiyon sıklıkla birliktelik gösterir. Sınıflandırmada, transplantasyonu takibeden sürenin uzunluğundan çok, major sınıflandırma kriteri olarak histolojik değişikliklere dikkat etmek gereklidir. Hiperakut rejeksiyon (HAR) : Greft damarlarında hızlı trombotik oklüzyon ile karakterize bir tablodur. Anastomozu takiben dakikalar içerisinde başlar. Özellikle IgM tipi antikorların endotele bağlanarak komplemanı aktive etmesi söz konusudur. Endotelden Von Willebrand faktör sekrete edilir. Kompleman aktivasyonu da endotel hücre hasarına yol açarak koagülasyonu başlatır. Subendotelyal bazal membran proteinlerinin de trombositleri aktive etmesi sonucunda tromboz ve vasküler oklüzyon oluşarak, organda kalıcı iskemik hasar meydana gelir. Hiperakut rejeksiyon (HAR) : (2) IgM türü allo antikorlar: Bu tür antikorlara en iyi örnek ABO kan grubu antikorlarıdır. Normal barsak florasında bulunan bazı bakterilerin karbonhidrat antijenlerine karşı geliştiği düşünülen doğal antikorlar. Doğal Xenoantikorlar. IgG izotipinde alloantikorlar: Eski transplantasyonlar veya multiple gebelik durumlarında oluşurlar. Bu antikorlar Lenfosit Cross Match (LCM) ile ortaya çıkarılabilir. AKUT REJEKSİYON Transplantasyondan sonra 1 hafta ile 4 ay arasında ortaya çıkar ve ilk yıldan sonra da ataklar görülebilir. a) Akut Sıvısal Rejeksiyon : Akut sıvısal rejeksiyon, greft kan damarlarındaki bazı hücrelerde nekroz ile karakterize bir durumdur. Histolojik olarak hiperakut rejeksiyondaki trombotik oklüzyondan çok bir vaskülit sözkonusudur. Akut sıvısal rejeksiyondan endotelyal hücre antijenlerine karşı gelişmiş IgG izotipinde alloantikorlar sorumludurlar. Bu antikorlar kompleman aktivasyonuna da yol açarak etkili olurlar. Bu olaya lenfositlerin de katılması nedeniyle alternatif bir şekilde “akut, vasküler rejeksiyon” olarak da isimlendirilmektedir. Akut Hücresel Rejeksiyon : Bu tip rejeksiyon parenkimal hücrelerde nekroz ile karakterize ve genellikle lenfosit ve makrofaj infiltrasyonu ile birliktedir. Bu infiltrasyondaki lökositler greft parenkim hücrelerinin lizis’inden sorumludurlar. Akut hücresel rejeksiyondan birçok farklı effektör mekanizma sorumlu tutulabilir: CTL’e bağlı lizis, Aktive makrofajlara bağlı lizis (geç tip aşırı duyarlılık reaksiyonunda olduğu gibi), Doğal öldürücü (NK: Natural killer) hücre lizisi. KRONİK REJEKSİYON : Normal organ yapısının kaybolduğu, fibrozis ile karakterize bir durumdur. Patogenezi akut rejeksiyona oranla daha az anlaşılmıştır. Fibrozis, akut rejeksiyondaki hücre nekrozunun iyileşme sürecinde gelişiyor olabilir. Kronik geç tip aşırı duyarlılık reaksiyonunda olduğu gibi aktive makrofajların, trombosit kaynaklı büyüme faktörü gibi mezanşimal hücre büyüme faktörü salgılaması ile ya da kan damarlarındaki hasarlara bağlı olarak ortaya çıkan kronik iskemiye bir yanıt şeklinde gelişmesi ihtimali de vardır. Kronik rejeksiyonun bir başka formu, musküler arterlerde intimal düz kas proliferasyonu ile karakterize olan formdur. Bu düz kas proliferasyonu da geç tip aşırı duyarlılık reaksiyonunun bir sonucu olarak gelişebilmektedir. Greftteki damar duvarlarında bulunan alloatijenlerle uyarılan lenfositlerin makrofajları uyararak, düz kas hücresi büyüme faktörü salgılanmasına yol açtıkları düşünülmektedir Bu form özellikle renal ve kardiyak transplantasyonlarda görülmüştür. Bu şekilde gelişen bir arterioskleroz geç tip greft kayıplarındaki en önemli sebeplerden biridir. Birçok olguda arteriel hasardan önce herhangi bir histolojik bulgu tespit edilmemiştir. ALLOGRAFT REJEKSİYONDAN KORUNMA VE TEDAVİ: İmmün sistemi tam olarak fonksiyonel bir alıcıya aktarılan bir allograft eninde sonunda mutlaka rejeksiyonun bir şekli ile karşılaşacaktır23,24. Rejeksiyondan korunmak ya da rejeksiyonu geciktirmek için gerek klinik çalışmalarda, gerekse deneysel modellerde iki yöntem geliştirilmeye çalışılmıştır: Greftin immünojenitesini azaltmak Alıcının immün sistemini baskılamak Dokuların immünojenitesi Kemik iliği Deri Gastrointestinal kanal Langerhans adacıkları Kalp Böbrek Karaciğer Greftin immünojenitesini azaltmak: İnsanlardaki transplantasyonlarda graft immünojenitesini azaltmak için takip edilen ana strateji, donör ve alıcı arasındaki alloantijenik farklılıkları minimalize edecek bir seçim uygulamaktır. HAR’dan korunmak için donör ve alıcının ABO kan grubu antijenlerinin daima uyumlu olmasına dikkat edilmektedir. MHC moleküllerinin allelik farklılıklarının hem sınıf-I ve hem de sınıf-II lokusları bakımından mümkün olduğu kadar az olmasına ya da tamamen uygun olmasına dikkat edilmekte, bu amaçla donör ve alıcının HLA antijenlerini belirleyen test yöntemleri, moleküler düzeyde analiz yöntemleri ile geliştirilmektedir. Greftin immünojenitesini azaltmak (2) Kan grubu ve HLA tiplemeleri yanında mevcut bir immünizasyon varsa bunun tespiti de çok önemlidir. Bu amaçla hücresel immünizasyonun araştırılması için mikst lenfosit reaksiyonu (MLR) testi yapılmaktadır. Sıvısal bir immünizasyon için ise dolaşan antikorların varlığının araştırılması önemlidir. Lenfosit Cross Match (LCM) Panel reaktif Ab (PRA) Alıcının immün sistemini baskılamak: Greft dokularına karşı reaktif antikorların varlıklarını belirlemek ve plazmaferez gibi yöntemlerle bu antikorları azaltmak. Transplantasyondan önce alloantijenler vererek allografta tolerans oluşturmak: İmmünosupressif tedavilerle T hücrelerini baskılamak veya lizise uğratmak: İMMÜNOSUPRESYON Kortikosteroidler, Metabolik toksinler (azathioprine, cyclophosphamide v.b.), lenfoid dokuların irradiasyonu, spesifik immünosupressif ilaçlar (Cyclosporine, FK506 v.b.), T hücre yüzey moleküllerine spesifik antikorlar kullanılmaktadır. Graft Versus Host Hastalığı (GVHD) İmmünosupressif alıcıda yerleşme fırsatı bulan donör kaynaklı lenfositlerin alıcı dokularına karşı reaksiyon vermesiyle ortaya çıkar. İmmünosupressif kişilere iatrojenik olarak verilmiş immünopotent hücrelerle de ortaya çıkabilir. (Kan transfüzyonu, solid organ transplantasyonları v.b.) Allogenik kemik iliği transplantasyonunun önündeki en büyük engeldir. GVHD Deri, Gastro-intestinal sistem, karaciğer, akciğer başlıca hedef organlardır. Akut reaksiyonlar post-transplant 7-80 günlerde, Kronik formlar ise 3. Aydan sonra ortaya çıkar. Solid organ transplantasyonları sonrasında oluşan GVHD’da transplante organ self kabul edildiğinden o organa karşı reaksiyon oluşmaz. Ortaya çıkan patolojilerin GVHD’na ait olup olmadığını destekleyecek en önemli bulgu periferik kanda kimerizm araştırarak elde edilebilir. Bunun yanında daha invaziv bir yöntem olan Biyopsi de çok değerli bilgiler verebilir. TRANSPLANTASYON ve İMMÜN YANIT Prof. Dr. Mahmut Nezih Çarin İstanbul Tıp Fak. Tıbbi Biyoloji ABD, Transplantasyon Ünitesi MHC gen bölgesi 6. kromozom (6p21.31) üzerinde yerleşmiş olup, yaklaşık olarak 4 Mbp lik bir yer kaplar. En uzun haplotype (110-160 kb) DR53 grup haplotiplerdir. Jan Klein 1977 yılında Sınıf I, II ve III olmak üzere ilk tanımlamayı yapmıştır. Günümüzde HLA sınıf III’ e ait olan bölgenin telomerik ucundaki 0.3 Mbp kısmın sınıf IV bölgesi olarak isimlendirilmesi önerilmektedir. Klasik HLA antijenleri sınıf I geni icindeki HLA-A, -B, -C bölgesinde ve Sınıf II geni içindeki HLA- DR, -DQ, -DP bölgesinde kodlanır. Tüm sınıf I genler 3-6 kb, sınıf II genler ise 4-11 kb uzunluktadır. Klasik antijenleri kodlayan genler dışındaki sınıf I bölgesindeki diğer genler: HLA-E, -F, -G, -H, -J, -K, -L olup, bunlar arasından sadece HLA-E,- F,-G eksprese olmaktadır. Sınıf III bölgesinin ise gen yoğunluğu oldukça fazla olup bunların bir kısmı immün sistem ile ilişkili değildir. Sınıf II bölgesinde klasik antijenleri kodlayan genlerin yanısıra HLA-DM, -DN, -DO, TAP1, TAP2, LMP2 ve LMP7 gibi gen bölgeleride bulunmaktadır. İmmunolojik ve nonimmunolojik fonksiyonu olan bir dizi genden oluşan MHC bölgesi ilk kez farelerdeki transplantasyon çalışmaları ile Peter Gorer tarafından 1937 yılında ortaya çıkarılmıştır. Bu genlerin ürünleri olan moleküller 1958 yılında Jean Dausset tarafından (HLA-A2) tanımlamış, aynı yıl van Rood ve arkadaşları HLA-BW4 ve BW6 antijenlerini ve kan transfüzyonu yapılmış kişilerin ve çok doğum yapmış kadınların serumlarında lökositlere karşı oluşmuş antikorları göstermişlerdir. İlk doku antijenleri lökositlerde saptandığı için insan lökosit antijenleri (Human Leukocyte Antigens = HLA) olarak tanımlanmışlardır. Daha sonraki yıllarda eritrositlerin dışında bütün vücut hücrelerinde bulundukları ve çok önemli oldukları anlaşılarak bu grup antijen sistemi MHC molekülleri veya MHC antijenleri olarakta isimlendirilmiştir. MHC genel bir isimdir ve her bir türün ayrı bir MHC simgesi vardır . MHC molekülleri graft rejeksiyonun temel belirleyicileridirler. Bu nedenle aynı MHC moleküllerini eksprese eden bireyler birbirlerinin doku graftlerini kabul edebilirler veya farklı MHC gen bölgelerine sahip bireyler arasında graft rejeksiyonu gelişir. Bu lokusun keşfinden ancak 20 yıl sonra immun cevapta MHC’nin önemi ortaya çıkarılmıştır. Hugh McDevitt ve arkadaşları 1960’larda kobay ve fareler üzerine yaptıkları çalışmalarda basit polipeptidler ile yapılan immunizasyona karşı antikor oluşmadığını ve gelişen immun yanıtsızlığın MHC bölgesinin haritalanması ile otozomal dominant bir özellik olduğunu buldular. İmmun yanıtı kontrol eden genlere de İmmun yanıt genleri (Immune response =Ir ) adı verildi. Ir genlerinin protein yapıdaki antijenlere antikor yanıtında gerekli olan Th (T helper = yardımcı T) lenfositlerinin aktivasyonunu kontrol ettiğini gösterdiler. 1970’lerin sonunda MHC genlerinin protein antijenlere karşı olan esas rolü anlaşıldı. Her iki HLA antijen yapısı da iki yan yana alfa heliksi tarafından oluşturulan, hücre membranına distal konumda benzer bir girintiye sahiptir. Bu girintilere hem kendi antijenlerinden hem de yabancı antijenlerden kaynaklanan peptid antijenleri bağlanır. Böylece HLA antijenleri hem kendi hem de yabancı peptidleri T lenfositlerine sunma görevindeki moleküller olarak immün yanıt oluşumunda kilit bir fonksiyona sahiptir. Ayrıca HLA antijenlerinin kendileri de allogeneik transplantasyon, transfüzyon ve hamileliklerde güçlü immün yanıtları tetikleyebilen, fazlasıyla immünojenik moleküllerdir. MHC Sınıf I molekülleri Sınıf I molekülü a zincirinin b2 mikroglobulin ile non kovalen bağlanmasıyla oluşmaktadır. Alfa zinciri a1 (N terminal), a2 ve a3 olmak üzere üç adet ekstrasellüler domain içerir. MHC sınıf I molekülleri arasında a3 domaini oldukça korunmuş bir yapıdadır ve T lenfositlerindeki CD8 molekülü ile etkileşime giren bölgeyi oluşturmaktadır. Beta 2 mikroglobulin yapısındaki bir adet disülfit bağı ile stabilize edilmiştir. b2- mikroglobulin yokluğunda sınıf I molekülleri hücre membranında eksprese edilmez. Alfa-1 ve alfa-2 domainler 8 adet anti-paralel b strandı ve 2 adet anti-paralel a strandı ile platform oluşturmaktadır. Genel olarak çekirdekli hücrelerde eksprese edilmektedir. Ancak ekspresyon düzeyleri hücreler arasında değişmektedir. Lenfositlerde en yüksek düzeyde eksprese edilirken, Fibroblastlar, kas hücreleri, hepatositler, sperm, oosit, plasental ve merkezi sinir sistemi hücrelerinde sınıf I moleküllerinin ekspresyonu çok düşük ya da dikkate alınmayacak düzeydedir. HLA- C moleküllerinin hücre yüzeyinde HLA- A ve –B moleküllerinden 10 kat daha düşük düzeyde ortaya çıkmaktadır. Ancak HLA-C molekülleride işlevseldir ve NK (doğal öldürücüler ) tarafından tanınmak üzere ilk hedef noktalardır. MHC Sınıf II molekülleri Sınıf II molekülleri a ağır zinciri ile b hafif zincirinin non-kovalent bağlanması ile oluşan bir heterodimerdir. Alfa zincirinde a1 ve a2, beta zincirinde ise b1 ve b2 domainleri bulunmaktadır. Alfa-1 ve alfa-2 domainleri arasında kalan çukur peptid fragmanlarının bağlandığı bölgeyi oluşturmaktadır. Sınıf II molekülleri dendritik hücre, makrofaj, B ve aktive T lenfosit olmak üzere daha sınırlı sayıda hücrelerde eksprese edilmektedir. Transplantasyonda İmmun Yanıt İmmün sistemin birincil görevleri herhangi bir potansiyel infekte edici yabancı materyali tanımak ve birden çok efektör mekanizma yoluyla yanıt vererek yabancı materyali inaktif hale getirmektir. HLA antijenlerinin görevi hem kendi hem de yabancı proteinlerden türevlenen peptid fragmentlerini sunmaktır. Antijen sunum hücreleri (APCler) olarak görev yapan hücre tipleri dendritik hücreler, monositler, makrofajlar, B lenfositleri ve immün regülatör süreçlere katılan diğer hücreleri içerir. Protein moleküllerinin peptid parçalarına ayrılması ve antijenin T hücrelerine sunulması, immünitenin önemli bir bölümünü oluşturur. Sınıf I molekülleri endojen kaynaklı peptidlerin CD8 (+) T lenfositlerine, sınıf II molekülleri ise eksojen kaynaklı peptidlerin CD4 (+) T lenfositlerine sunumunda rol almaktadırlar. Peptidler önce degradasyona uğrar ve peptid fragmanları hücre içinde HLA sınıf I ve II moleküllerine bağlanır. Bu moleküller, bağlanan peptid ile birlikte hücre yüzeyine gelir. Hücrelerde proteinlerin yıkımını sağlayan iki büyük yol vardır. Bunlardan birisi lizozomal asidik ortamda gerçekleşen lizozomal proteolizis diğeri ise ubiquitin- proteasom yıkım yoludur. Çok sayıda ubiquitin ile işaretlenmiş olan protein, çok sayıda alt birimden oluşmuş olan proteaz kompleksi olan proteasom tarafından yıkılır. Ubiquitinin bağlanması ve işaretlenmesi için ATP enerjisi kullanılır. Endojen proteinler ubiquitin ile bağlanarak proteasoma yönlenirler. LMP2 ve LMP7, proteozom kompleksinin bileşenlerini oluşturan peptidleri kodlamaktadır. Proteozom, kısa ömürlü sitoplazmik proteinlerin çoğunun sindiriminde yer almaktadır. Burada 8-10 aa uzunluğunda kısa peptidlere yıkılan endojen proteinler TAP heterodimeri aracılığı ile ER aktarılırlar. TAP molekülleri zarlar arasında, oligopeptid ve daha büyük proteinler gibi farklı maddelerin taşınmasını sağlamaktadır. TAP1/TAP2 molekülleri ER zarında, sitoplazmadan lümene peptid taşıyıp yerleştiren bir kompleks oluştururlar. Taşınmış olan peptidler sınıf I molekülüne yüklenirler. Endoplasmik retikulumdan ayrılan bu yapılar golgi kompleksine gelir oradan taşıyıcı veziküller ile hücre membranına taşınarak sitotoksik T lenfositlerine sunulurlar. Eksojen kaynaklı proteinler (bakteriler gibi) ASH tarafından hücre içine endositik olarak alınıp lizozom ile birleşir ve lizozomal enzimlerin etkisi ile küçük peptidler haline dönüştürülürler. ER’da yeni sentezlenen sınıf II molekülleri invariant chain (Ii) molekülü ile bağlanarak taşıyıcı veziküller ile lizozoma gelir ve füzyon yaparlar. Lizozom icerisinde Ii molekülü küçük peptid haline dönüştürülür ve HLA-DM molekülüde peptid bağlama oluğunda bulunan parçalanmış Ii molekülü ile eksojen peptidin yer değişimini gerçekleştirir. Peptid yüklenmiş olan sınıf II molekülleri hücre membranına taşınarak CD4(+) T lenfositlerine sunulurlar. İmmün tanıma : İmmün yanıtın oluşumunda ilk basamak, kendi-HLA moleküllerince sunulan yabancı peptidin yardımcı T hücrelerince (CD4+ T hücreleri) tanınmasıdır. Tanınmanın sağlanabilmesi için T-hücre reseptörü (TCR) HLA-antijen kompleksine özgü olmalıdır. Hücrelerin birbiriyle teması üzerine TCR, yabancı peptid ve APC üzerinde yer alan MHC molekülünden oluşan trimoleküler bir kompleks meydana gelir. T hücreleri ve APC arasındaki etkileşim diğer lenfositler ve B7, CD40 gibi T hücreleri üzerinde yer alan CD4, CD8, CD28 VE CD11a/CD18 gibi APC hücre yüzey molekülleri (lökosit fonksiyonuyla bağlantılı antijen 1 [LFA-1]) ve interselüler adhezyon molekülü (ICAM-1) desteği ile sağlanır. Hücre yüzey reseptörleri ve sitokinler gibi immün modülatör molekülleri kodlayan genler uyarılır, transkribe edilir ve aktif ürünler vermek üzere translasyon geçirirler. Aktivasyonun erken evrelerinde yanıtlayıcı T hücrelerinin klonal genişlemesi ile sonuçlanan, interlökin 2 (IL-2) ve interferon-g (IFN-g) sitokinleri üretilir. Makrofajlar ve B hücreleri de ek sitokinler ve kemokinler katılarak çalıştırılmıştır ve böylelikle uyarılmış B hücrelerinin yanıtı genişletilerek olgun antikor oluşturan plazma hücrelerine dönüşmeleri sağlanır. İmmün yanıtın hem hücresel hem de hümoral kolları, nakledilen bir organın yabancı HLA antijenleri ile ilişki halindedir. Transplant yerleştirilmesinde, spesifik alloreaktif T hücrelerinin klonlarının allotanıma ve aktivasyonuna, akut rejeksiyon nöbetlerine, greft fonksiyonlarında aksamaya ve kronik rejeksiyona ve son olarak greft kaybına sebep olabilir. Direkt ya da indirekt allotanıma yolları olarak bilinen iki farklı yol, greftte yer alan yabancı HLA antijenlerin immünojenitesini oluşturur. Direkt yolda, donör MHC antijenlerinin tanınmasında spesifik TCR taşıyan alıcı T hücreler, greftin HLA antijenlerini tanırlar ve onlar tarafından direkt olarak aktive edilirler. Yabancı HLA antijeni kendi-HLA ve yabancı antijenin kombine halini taklit eder böylelikle TCR’ler ile başarılı bir şekilde bağlanırlar. Bu arada donör dendritik hücreleri, gratft ile birlikte “pessenger” lökositler olarak gelirler, ve greftten yuvalarına yani alıcı lenf nodlarına geçerler. Lenf nodlarında alıcı T hücreleri donör APCleri’nce sunulan yabancı MHC ve peptidlere yanıt verirler ve prolifere olurlar. Bu aktive olmuş alıcı hücreler daha sonra süzülerek grefte geçerler ve bozulmakta olan greftin biyopsisi sonucunda kolaylıkla gözle görülebilen red süreçlerini başlatırlar. İndirekt tanıma yolu ile oluşan yanıt, donör antijenlerinin alıcı APCleri tarafından işlenmesini ve sunulmasını gerektirir. Bu hem lenf “pessenger” lökositlerce işgal edilen alıcı lenf nodlarında gelebilir hem de greft antijeninin alıcı APCleri tarafından çıkarılan, geri alınan ve işlenen greft sitlerinde meydana gelebilir. Direkt yol grefte karsi verilen ilk yanıtlarda baskındır, indirekt yolun ise zaman geçtikçe red sürecinin sürmesinde ve yolcu lökositlerin bir uyarı olarak yok olduğu süreçte önemli olduğu var sayılmaktadır. Alloantikor yanıt: Transplantasyonun bir sonucu olarak, aktive edilmiş yardımcı T hücreleri B hücreleri ile etkileşime geçebilirler ve onları spesifik donör HLA antijenlerine yönelik alloantikor üretmeleri için stimule ederler. Transplantasyon sonrası bu tip alloantikorlar saptanması eşlik eden hücresel red yanıtının bir işaretidir. Transplantasyonun oluşturduğu uyarıya ek olarak HLA antijenlerine karşı immün yanıtlar, lökosit içeren kan transfüzyonu ile gelen HLA alloantijenlerine maruz kalma ve hamilelik gibi durumlarda oluşur. Birden fazla transfüzyon alan hastalar ve bazı multipar kadınlar HLA antijenlerine bağışıklık kazanabilirler, ve antikorlar ile spesifik HLA antjenleriyle etkileşime giren aktif T hücre klonları üretirler. Transplantları başarısızlıkla sonuçlanan hastalarda reddedilen greftin HLA antijenlerine karşı yüksek düzeyde antikor üretilmektedir. Potansiyel bir alıcı tarafından antikorlar oluşturulduğunda sensitizasyon (hassasiyet) meydana gelir ki bu da uygun bir organ donörü bulmada engel oluşturur. Hastanın sensitize olduğu belirli HLA antijen/leri içeren bir organın transplantasyonu hiperakut red ile sonuçlanabilir. Bu süreçte alıcı antikorları ile donör antijenlerinin oluşturduğu kompleksler anında greft damarlarında koagülasyonu tetikler, bu da grefte ve greft içindeki kan dolaşımının blokajı ve kesilmesi ile sonuçlanır ve böylelikle greft hızla yok edilir. Böbrek, kalp ve pankreas transplantasyonu bekleyen sensitize hastalar için önceden oluşmuş alloantikorlara hedef antijenlere sahip olmayan donörlerin seçimi kesin şarttır.Yabancı HLA antijenleri immün reddi tetiklediklerinden, alıcı ve verici arasında HLA antijen uyumunun sağlanması transplant başarısı için etkin bir stratejidir. KAYNAK: lokman.cu.edu.tr/anestezi/v_cag/new_page_2.htm VİDEO İLE İLGİLİ LİNGLER www.zaplat.com/video/saglik_videolari/41349/Organ_Nakli_Nedir www.zaplat.com/video/saglik_videolari/34884/Kalp_Nakli www.zaplat.com/video/saglik_videolari/43...alp_Transplantasyonu www.zaplat.com/video/saglik_videolari/28...migi_Tranplantasyonu

http://www.biyologlar.com/transplantasyon-immunolojisi

13. Ulusal Tıbbi Biyoloji ve Genetik Kongresi

13. Ulusal Tıbbi Biyoloji ve Genetik Kongresi

Değerli Meslektaşlarım, XIII. Ulusal Tıbbi Biyoloji ve Genetik Kongresi 27-30 Ekim 2013 tarihleri arasında Kuşadası Pine Bay Holiday Resort Otel’de düzenlenecektir. Uluslararası katılımla gerçekleştirilen bu kongre tıbbi biyoloji ve genetik camiasının Derneğimiz tarafından düzenlenen en önemli etkinliğidir. Derneğimizin kuruluşundan beri düzenli olarak gerçekleştirilmekte olan Ulusal Tıbbi Biyoloji ve Genetik Kongreleri  500’ü aşkın üyenin katılımı ile, gerek bilimsel ve sosyal etkinlikleri, gerekse katılımcı sayısı bakımından sürekli artan bir grafik çizmektedir. “Genom Dizisinden Gen Fonksiyonuna” başlıklı kurs yine kongre açılış günü öncesi 26 Ekim 2013 tarihinde düzenlenecektir. Her yıl olduğu gibi XIII. Ulusal Tıbbi Biyoloji ve Genetik  Kongre’sinde de camiamızın kurucu isimlerinden olan Prof. Dr. Altan Günalp Araştırma Ödülü’nün yanısıra, sözel / poster bildiri ödülleri ve bu kongrede ilk kez Genç Araştırmacı Ödülleri verilecektir. Kongrelerimize geniş bir öğrenci katılımı olduğu dikkate alınarak bu yıl 25 katılımcımızın kayıt ücretleri Tıbbi Biyoloji ve Genetik Derneği tarafından karşılacaktır. Tıbbi Biyoloji ve Genetik alanındaki güncel gelişmelerin yanısıra, sorunlarımızı ve çözüm önerilerini da geniş katılımlı olarak tartışma imkanının olacağı Kongremizde, gelenekselleşen 29 Ekim Cumhuriyet Balosunu da siz değerli meslektaşlarımızla birlikte yaşayacağız. Bu vesile ile sizleri kongremize davet etmekten onur duyar, 27-30 Ekim 2013 tarihleri arasında Kuşadası’nda XIII. Ulusal Tıbbi Biyoloji ve Genetik Kongresi’nde buluşmayı dilerim. Saygılarımla, Prof. Dr. Turgut Ulutin Tıbbi Biyoloji ve Genetik Derneği Başkanı http://www.tbgk2013.org/

http://www.biyologlar.com/13-ulusal-tibbi-biyoloji-ve-genetik-kongresi

Tedavide öncül rejeneratif tıp

Tedavide öncül rejeneratif tıp

Kronik hastalık pandemiği ve buna ek olarak kullanılabilir donör organlarının yetersizliği bireylerin ve toplumların ihtiyaçlarını her geçen gün daha az karşılamaktadır. Bu duruma çözüm olabilecek radikal yeniliklerin geliştirilmesi ihtiyaçların karşılanmasında hayati önem taşımaktadır. Yaşam süresini uzatmaya yönelik yaklaşımlar sıklıkla hastalık tedavilerinde son uygun seçenek olarak değerlendirilir. Bunun bir adım ötesinde rejeneratif stratejilerin geliştirilmesi ile dejeneratif patolojilerin giderilmesi için dönüştürülebilir çözümler olarak önerilmektedir. Organ oluşumu ve iyileşmeye esas teşkil eden süreçlere ilişkin yeni bilgilerin ortaya çıkmasıyla birlikte yeni rejeneratif tedavi yöntemleri insan dokularının kendiliğinden yenilenme kapasitesini artırmayı hedefler. Rejeneratif teknolojiler, organ yapı ve fonksiyonunu yerine koyan doğal onarım süreçlerini desteklemeye, iyileştirmeye ve yeniden yapılandırmaya çalışır. Çok modellemeli rejeneratif yaklaşımlar sağlıklı dokuların nakledilmesi sonucunda hasarlı ortamlarla bütünleşmesini sağlar, hasarlı dokularda rejeneratif yanıt oluşması için vücudu harekete geçirir ve doku mühendisliğini kullanarak yeni doku üretimini sağlar. Kök hücreler ve kök hücre ürünlerinin özellikli doku oluşturma ve sinyalleme onarımını desteklemedeki eşsiz kapasitesi, rejeneratif tedavi yöntemlerine uygun etkin madde olmalarına yol açar. Bununla birlikte, malzeme bilimi ve biyoteknolojideki gelişmeler doku grefti üretimi ve organ mühendisliği ile ilgili beklentileri artırmıştır. Rejeneratif ilkelerin güvenli bir şekilde klinik uygulamaya aktarımı mümkündür. Bu nedenle rejeneratif tıp ve cerrahi, ilke kanıtlama (proof-of-concept) çalışmaları ile klinik validasyon arasında denge ve bunun sonucunda standardizasyonu sağlayarak bireye özgü, ileri nesil tedavi alternatifi algoritmalarına yol açar.   Mayo Clin Proc. 2013 Jul;88(7):766-75. doi: 10.1016/j.mayocp.2013.04.017. Terzic A, Nelson TJ. Çev: Uzm. Ecz. Pelin KILIÇ Dr.Bio. Selda ÖZGEN ÖZGACAR

http://www.biyologlar.com/tedavide-oncul-rejeneratif-tip

İndirgenemez komplekslik nedir?

İndirgenemez komplekslik kavramı, Akıllı Tasarım (AT) hareketini savunanların en fazla başvurdukları ve belki de AT’nin bilimsel bir teori olduğunu savunmak için kullandıkları yegâne argüman olarak karşımıza çıkıyor. Aslında indirgenemez komplekslik, AT’nin ispatlanması için kullanılamaz yani doğru olması AT’nin doğruluğunu göstermez ama bu yazımda bu konuyu bir kenara bırakıp indirgenemez kompleksliğin bilimsel konumunu inceleyeceğim. İndirgenemez komplekslik kavramının mucidi olan Michael J. Behe, 1996 yılında yazdığı Darwin’in Kara Kutusu (Darwin’s Black Box: The Biochemical Challenge to Evolution) kitabında indirgenemez kompleksliği şöyle tanımlıyor: By irreducibly complex I mean a single system composed of several well-matched, interacting parts that contribute to the basic function, wherein the removal of any one of the parts causes the system to effectively cease functioning. (s. 39) An irreducibly complex system cannot be produced directly (that is, by continuously improving the initial function, which continues to work by the same mechanism) by slight, successive modifications of a precursor system, because any precursor to an irreducibly complex system that is missing a part is by definition nonfunctional. (s. 39) Burda Michael Behe, aşağı yukarı şöyle diyor: İndirgenemez kompleks sistem ile temel fonksiyona katkıda bulunan, birbiriyle etkileşim halinde olan, iyi eşleşmiş çeşitli parçalardan oluşan ve bu parçalardan herhangi birinin çıkarılmasıyla çalışması sonlanacak olan tek bir sistemi ifade ediyorum. İndirgenemez kompleks bir sistem, öncü bir sistemin ufak, birbirini takip eden değişimleriyle direk olarak (yani aynı mekanizma ile çalışıp ilk fonksiyonu devamlı olarak geliştirerek) üretilemez çünkü indirgenemez kompleks bir sisteme giden herhangi bir öncü sistem tanım gereği işlevsizdir. İşte Michael Behe indirgenemez kompleks sistemi böyle tanımlıyor ve canlılarda bu özellikleri gösteren biyokimyasal yapılar olduğunu iddia ediyor. Bu yapılara örnekler veriyor ve kitabında bunları uzun uzun anlatıyor. Örnek olarak bakteri kamçısı (bacterial flagellum), kan pıhtılaşma sistemi (blood clotting system) ve bağışılık sistemi (immune system) gibi birkaç sistem veriyor ve bunların kendi tanımına göre indirgenemez kompleks olduklarını ve bu sebeple de evrimleşmiş olamayacaklarını iddia ediyor. Şimdi ilk olarak Michael Behe’nin yaptığı indirgenemez komplekslik tanımını ve daha sonra da bu tanım gereği evrimleşmiş olamayacağını düşündüğü sistemleri inceleyelim. Behe yaşamın tasarlanmış olması gerektiği sonucuna şu mantıksal düzen içinde ulaşıyor. Tanım gereği, indirgenemez kompleks bir sistemin bir parçası eksik öncüsünün işlevsiz olması gerekiyor. Böylece doğal seçilimde işlevsiz bir yapının seçilmiş olamayacağı ve böylece indirgenemez kompleks yapının bir bütün olarak tasarlanmış olması gerektiği sonucuna varlıyor. Ama gerçekte durum böyle değil. İlk olarak öncü bir sistemin daha az parçadan oluşması gibi bir zorunluluk yokur, yani daha fazla parçadan da oluşuyor olabilir. İkinci olarak öncü sistem farklı bir görevi yapıyor olabilir, yani öncü sistemin tanımdaki gibi işlevsiz olması şartı yoktur. Öncü sistem farklı bir fonksiyonu gerçekleştiriyor olabilir. Görüldüğü gibi Behe’nin kurmuş olduğu mantıksal düzende belirgin bir sorun var. Behe’nin indirgenemez komplekslik tanımına uygun yapılar olabilir ama bu onların evrimleşmiş olamayacağı anlamına gelmez. Peki Behe’nin indirgenemez kompleks olduğunu düşündüğü, dolayısıyla da evrimleşmiş olamayacağını ileri sürdüğü ve “biyokimyasal makineler” olarak adlandırdığı yapılar gerçekten evrimleşmiş olamaz mı? Bu yapılar gerçekten de bir bütün halinde mi ortaya çıkmış olmak zorunda? İşte bu noktada, Behe’nin vermiş olduğu örnekler incelendiğinde, bilim adamları bu yapıların evrimleşmiş olabilecekleri sonucuna varıyor. İlk olarak bakteri kamçısını ele alalım. Bakteri kamçısı Flagellum yani kamçı organı prokaryot ve ökaryot hücrelerde bulunabiliyor. Bakteriler kamçılarını sıvı ortamlarda hareket etmek için kullanıyorlar. Bakteri kamçısının işlevini ve yapısını Mustafa Akyol şöyle açıklıyor (1): Organ, bakterinin hücre zarına tutturulmuştur ve canlı ritmik bir biçimde dalgalandırdığı bu kamçıyı bir palet gibi kullanarak dilediği yön ve hızda yüzebilir. [...] Bakterinin hareketli motoru, elektrik motorlarıyla aynı mekanik özelliğe sahiptir. İki ana bölüm söz konusudur: Bir hareketli kısım (rotor) ve bir durağan kısım (stator). Bu organik motor, mekanik hareketler oluşturan diğer sistemlerden farklıdır. Hücre, içinde ATP molekülleri halinde saklı tutulan hazır enerjiyi kullanmaz. Bunun yerine kendine özel bir enerji kaynağı vardır: Bakteri, zarından gelen bir asit akışından aldığı enerjiyi kullanır. Motorun kendi iç yapısı ise olağanüstü derecede komplekstir. Kamçıyı oluşturan yaklaşık 240 ayrı protein vardır. [...] Bakteri kamçısını kitabında detaylı olarak anlatan Michael J. Behe, sadece bu kompleks yapısının dahi, evrimi “yıkmak” için yeterli olduğunu savunmaktadır. Aslında bakteri kamçısının indirgenemez kompleks olup olmadığıyla veya evrimleşmiş olup olamayacağıyla çok ilgisi yok ama yine de belirtmek lazım. Burda adı bahsi geçen bakteri kamçısını oluşturan farklı protein sayısı olan 240 doğru değil. Bakteri kamçılarının çok daha az proteinle oluştukları yapılan araştırmalarda ortaya konmuştur. Örneğin E. coli türü bakterinin kamçısının yapısında 18-20 farklı protein bulunmaktadır (2). Ayrıca farklı bakteri türlerinde farklı (E. coli’ninkinden daha az) sayıda proteinden oluşan kamçı türleri vardır. Ökaryot hücrelerdeki kamçı ise “cilium” olarak adlandırılmaktadır. Yapı olarak bakteri kamçısından oldukça farklı yapıdadır. Örneğin bir hayvan sperm hücresindeki cilium 250 civarında proteinden oluşmaktadır (2). Aslında sayılarda yapılan bu yanlışlığın çok da önemi yok. Asıl önemli olan nokta bakteri kamçısının herhangi bir parçası çıkarıldığında işlevsiz olacağı ve bu sebeple evrimleşmiş olamayacağı gibi hatalı bir sonuca varılmış olmasıdır. Yapılan homoloji çalışmaları bakteri kamçısı ile “tip III salgılama sistemi” (type III secretory system) (TTSS)’nin birçok parçasının birbiriyle ilişkiliği olduğunu hatta bazı bakterilerde tamamen aynı olduğunu göstermektedir (3). TTSS bakterilerin başka hücrelerin içine protein aktarmak için kullandığı bir yapıdır. Hatta bazı ölümcül bakteriler ürettikleri protein toksinleri bu yöntemle kurbanlarının hücrelerine bu yolla aktarırlar (4). TTSS’nin protein yapısı üzerinde yapılan araştırmalarda bakteri kamçısının bazal (temel) bölümünün TTSS ile direk homolog olduğunu göstermektedir (4). Yani indirgenemez kompleks olduğu iddia edilen bakteri kamçısının ufak bir bölümünün oldukça işlevsel olduğu görülmektedir. Behe ise tek bir parçanın bile çıkarılmasının geri kalan kısmı işlevsiz kılacağını ve doğal seçilim mekanizması tarafından seçilemeyeceğini söylüyordu. Ama görüldüğü gibi indirgenemez kompleks kavramına yapılan itirazdaki gibi öncü bir sistemin asıl sistem ile aynı görevde olması zorunluluğ yoktur. Farklı görevi yapan bir sistem gen eşleşmesi, mutasyon ve doğal seçilim sayesinde başka bir işlev gören bir yapıya dönüşerek sağladığı avantaj sayesinde de korunarak gelecek nesillere aktarılabilir. Peki bakteri kamçısının TTSS’den nasıl evrimleşmiş olabileceğiyle ilgili neler biliniyor? Bu konuda en geniş bilgiye Nick Matzke’nin makalesinden (4) ulaşmak mümkün. Matzke makalesinde bakteri kamçısının ve TTSS’nin yapısıyla ilgili bilgi veriyor, bakteri kamçısının evrimiyle ilgili önceki modeller hakkında bilgi veriyor ve daha sonra kendi modelini anlatıyor. Bu modellerin kesin doğru olduğunu iddia etmek mümkün değildir ama zaten bu modellerin amacı da bu yapıların nasıl evrimleşmiş olabileceğiyle ilgili mantıklı, olası varsayımlar ortaya koymaktır çünkü Behe indirgenemez kompleks olduğunu söylediği yapılar için bu tip olası modellerin oluşturulmasının mümkün olmadığını söylemektedir. Bakteri kamçısını bir kenara koyarsak yılan balığı sperm hücresinin kamçısında (ökaryot bir hücrede olduğu için cilium) üç önemli bölüm eksiktir. Yani Behe’nin kitabında indirgenemez kompleks olduğunu iddia ettiği ve bu yapının vazgeçilmez parçaları olarak belirttiği bazı parçalar bu yılan balığı sperm hücresi kamçısında bulunmamaktadır ve buna rağmen normal olarak görevini görmektedir (6). Bu da Behe’nin belirttiği yapının kendi tanımına göre indirgenemez kompleks olmadığını göstermektedir. Kan Pıhtılaşma Sistemi Michael Behe’nin indirgenemez kompleks olduğunu iddia ettiği bir başka sistem de omurgalılardaki kan pıhtılaşma sistemidir. Omurgalıların kan pıhtılaşma sistemi “kaskat” olarak adlandırılan bir yapıdadır. Yani bir nevi domino taşlarından kurulmuş bir sistemdir ve son hamlede kan pıhtılaşması gerçekleşir. Sistemde görevli proteinler, kofaktörler (enzimlerin çalışmasını sağlayan maddeler) ve proteazlar (proteinleri peptit bağlarını kopararak parçalayan enzimler) görev almaktadır. Kan pıhtılaşması iki farklı yolla gerçekleşebilir: İntrensek ve ekstrensek yol. Bu iki yol Jeremy M. Berg’un Biochemistry kitabında aşağıdaki şekilde gösterilmektedir. Yukardaki şekilde pembe ile gösterilenler maddelerin aktif olmayan, sarı ile gösterilenler ise aktif halledir. Mavi ile gösterilenler ise kofaktörlerdir. Ayrıca tüm Roma Rakamıyla gösterilenler rakamın önüne “faktör” koyularak okunur. Örnek vermek gerekirse faktör VIIIa bir kofaktördür ve aktif haldeki faktör IX (yani faktör IXa)’un yardımcı olarak inaktif haldeki faktör X’u aktive hali olan faktör Xa‘ya dönüşmesini sağlar. Şekilden bakarak aynı mantıkla her adımda neler olduğunu anlayabilirsiniz. Şekilden görülebileceği gibi intrensek ve ekstrensek yollar bir noktada birleşir. İki yolla da faktör X aktive edilir ve faktör Xa ile faktör Va, protrombini trombine dönüştürür. Trombin ise kan plazmasında çözünebilir bir protein olan fibrinojeni parçalayarak fibrine dönüşmesini sağlar ve daha sonra faktör XIIIa‘nın da devreye girmesiyle fibrin pıhtıları oluşarak gerekli yerlerin tıkanması sağlanır. Burda temel yapıyı kısaca anlatmak istedim, daha ayrıntılı bilgi için buraya, buraya ve buraya bakabilirsiniz. İşte Michael Behe bu sistemin indirgenemez kompleks olduğunu ve bu sebeple evrimleşmiş olamayacağını iddia ediyor. Yani Michael Behe’nin tanımına göre bu sistemin bir parçasının bile olmaması sistemin çökmesine, çalışmamasına sebep olacaktır. Ama intrensek yolda karşımıza çıkan faktör XII veya diğer adıyla Hageman faktörü yunuslarda ve balinalarda yoktur (5) ama kan pıhtılaşma sistemleri çalışmaktadır. Yani kan pıhtılaşma sisteminin indirgenemez kompleks olmadığını çok açık bir şekilde görmekteyiz. Ama bunu Michael Behe de görüyor. Amerikan Doğa Tarihi Müzesi’ndeki bir forumda Kenneth Miller ile Michael Behe karşılıklı tartışırken (tartışma metnine buradan ulaşabilirsiniz) Miller yunuslardaki bu olayı dile getiriyor ve Behe kan pıhtılaşma sisteminde gereksiz parçalar olduğunu kabul ediyor. Behe bu sebeple bütün pıhtılaşma sistemi yerine bu sistem içindeki sadece 4 parçayı (fibrinojen, protrombin, Stuart faktörü, and proakselerin) seçerek bunların indirgenemez kompleks bir sistemin parçaları olduğunu söylüyor. Ama ortada sadece bu parçalardan oluşan bir sistem yok gerçekte ve evrim sürecinde sadece bu parçalardan oluşan bir sistemin oluşması şart değildir. Kaldı ki Behe’nin kitabında söylediği gibi kan pıhtılaşma sisteminin moleküler evrimiyle ilgili hiçbir şey bilinmiyor falan değildir. Literatürde bu konuyla ilgili birçok makale ve çalışma vardır. PubMed‘de arama yaparak bu konu ile ilgili yazılmış makalelerin listesini görebilirsiniz. Ayrıca buradan ve buradan da bu konuyla ilgili önemli birçok referansa ve linke ulaşabilirsiniz. Yani Michael Behe ya bilimsel literatürü pek iyi takip etmiyor ya okuyucularının takip etmediğini düşünerek bol keseden atıyor ya da hiçbir açıklamayı nedense tatmin edici bulmuyor. Bağışıklık Sistemi Michael Behe, Darwin’in Kara Kutusu kitabının 6. bölümünü bağışıklık sisteminin parçası olan ve indirgenemez kompleks olduğunu iddia ettiği 3 sisteme ayırıyor. Bu 3 sistemin neden indirgenemez kompleks olmadığı Matt Inlay tarafından Evolving Immunity başlıklı yazısında ayrıntılarıyla anlatılmıştır. Bu 3 sistemden biri olan tamamlayıcı sistemin (Complement System) neden indirgenemez kompleks olmadığı Mike Coon’un Is the Complement System Irreducibly Complex? başlıklı yazısında incelenmektedir. Ayrıca bağışıklık sisteminin nasıl evrimleştiği konusunda da birçok bilimsel makale mevcuttur. Mesela daha önce linkini vermiş olduğum PubMed‘de arama yaparak bağışıklık sisteminin evrimiyle ilgili ne kadar çok makale olduğunu görebilirsiniz. Ayrıca buradan ve buradan da konu ilgili faydalı kaynaklara ulaşabilirsiniz. Ama nedense bunların hiçbiri Michael Behe için yeterli olmuyor. Amerika’da Dover’daki Akıllı Tasarım davasının kararında Yargıç Jones, Behe’ye bağışıklık sisteminin evrimiyle ilgili 58 peer-reviewed (hakemli dergilerde) makale, 9 kitap ve birkaç ders kitabı bölümü gösterildiğini ama Behe’nin bunların hiçbirini yeterli görmediğini söylüyor. Hem de bu kitapların ve makalelerin çok büyük bir kısmını okumamış olmasına rağmen kendi istediği şekilde bir evrim sürecinin bu kitap ve makalelerde anlatılmadığını düşündüğünü söylüyor. Ayrıca yine bu davada verdiği ifadesinde bir yerde bağışıklık sisteminin nasıl evrimleştiğiyle ilgili araştırma yapmadığını çünkü bunun verimli bir çalışma olmayacağını (yani sonuca ulaşamayacağını) düşündüğünü söylüyor. Yani Behe bunun olamayacağına kendini öyle inandırmış ki konuyla ilgili ne tüm bilimsel görüşleri ve bakış açılarını inceleme gereği duyuyor ne de nasıl evrimleşmiş olabileceğini ve kökenini kendi araştırıyor. Aslında bu sadece bağışıklık sistemi ile ilgili de değil. Yukarda anlattığım diğer yapılar için de aynı şey geçerli. Sonuç Tüm bunlar bize Michael Behe’nin en başında önemli bir hata yaptığını göstermektedir. Michael Behe bir biyokimyacıdır ve özellikle de protein sistemleriyle uğraşmaktadır. Proteinlerden oluşan kompleks yapıların evrimi konusunda yanlış bir düşüncesi var. Behe şöyle düşünüyor: Elimizde 100 proteinden oluşan kompleks bir sistem varsa bu sistemin evrimleşmiş olması için daha önce 99 proteinden oluşan ve aynı görevi yapan bir yapı olmalıdır. 99 proteinlik yapı ise ancak 98 proteinlik ve aynı görevi yapan bir yapıdan evrimleşmiş olmalı. İşte Behe biyokimyasal yapıların evriminin böyle olması gerektiğini düşünüyor. Ama bunun böyle olması gerekmediği çok açık. Proteinlerden oluşan yapıların evrimi DNA yapısındaki değişikliklerle olur ve DNA yapısında oluşacak değişikliğin tek bir protein eklenmesine veya yapı içindeki sadece bir proteinin değişmesine sebep olmak zorunda olmadığı çok açıktır. Ayrıca öncü bir sistemin aynı görevi yapıyor olma gibi bir zorunluluğu da mevcut değildir. Ama Behe böyle olması gerektiğini düşünüyor ve bu tip adım adım kademeli bir evrim sürecinin bilim adamları tarafından açıklanamadığını söylüyor. Yani yukarda anlattığım gibi Behe’nin kendisine sunulan ve bu yapıların olası evrim modellerini anlatan makale ve kitapları bu sebeple kabul etmiyor ve yeterli görmüyor. Sanırım bu sebeple Behe hiçbir zaman bu açıdan kendini tatmin eden bir evrim modeliyle karşılaşmayacak çünkü beklediği şey zaten mümkün olmayan birşey. En son olarak da Michael Behe’nin veya başka birinin şimdiye kadar, herhangi bir yapının indirgenemez kompleks olduğunu ve evrimleşmiş olamayacağını savunduğu ve hakemli dergilerde yayınlanmış hiçbir makalesi olmadığını belirtmek istiyorum. Sanırım Behe artık, konuyu fazla bilmeyen ve araştırma yapma imkanı olmayan insanları etkilemek için kitap yazmak yerine bilimsel olduğunu iddia ettiği argümanlarını hakemli dergilerdeki makaleleriyle bilim adamlarına sunmalı. Akıllı Tasarım hareketi önceki yazılarımda da belirttiğim gibi argümanlarını bilgisizlikten almaktadır. Bilimde bazı boşluklar yaratıp bunların sebebini akıllı bir tasarımcıya atfetmek bilimin araştırma, gözlem ve deney gibi kademelerini ortadan kaldırmak ve yüzyıllar öncesinin gücünü bilgisizlikten alan düşüncelerini kabullenmekten başka birşey değildir. Baksanıza Behe bağışıklı sistemiyle ilgili araştırmalarda sonuca ulaşılamayacağını düşündüğü için araştırmadığını söylüyor. Bu nasıl bir bilimsel yaklaşımdır. Bir bilim adamı böyle önyargılarla hareket etmemelidir. Behe işin başından kendi kriterlerine göre evrimleşmiş olmayacağına karar veriyor ve bu sebeple o yapıları araştırmıyor hatta yapılan tüm araştırmaları inceleme gereği bile duymuyor. Bir de Akıllı Tasarımcılar teorilerinin bilimsel olduğu iddiasıyla okullarda öğrencilere öğretilmesi gerektiğini savunuyorlar. Hakkında hakemli saygın bilim dergilerinin hiçbirinde bir tane destekleyici makale yazılmamış bir teorinin (aslında ortada teorisi falan yok ama…) okullarda öğretilmesi çok yanlış olur. Referanslar: 1. Mustafa Akyol, Akıllı Tasarım [Intelligent Design] Teorisi, 2004 2. N. J. Matzke, Evolution in (Brownian) space: a model for the origin of the bacterial flagellum, 2003 3. Ian Musgrave, Evolution of the Bacterial Flagella, 2000 4. Kenneth R. Miller, The Flagellum Unspun: The Collapse of “Irreducible Complexity”, 2004 5. Robinson, A. Jean, Kropatkin, Mona, and Aggeler, Paul M. 1969. Hageman Factor (Factor XII) Deficiency in Marine Mammals. Science 166:1420-1422. 6. Kenneth R. Miller, Answering the Biochemical Argument from Design, 2003

http://www.biyologlar.com/indirgenemez-komplekslik-nedir

Tavuklar sperm üretir mi

YUMURTANIN OLUŞUMU Tavuklarda üreme sistemi yumurtalık, yumurta kanalı ve kloaka’dan ibarettir. Yumurtalıklar çift olup; böbreklerin önü, akciğerlerin arkası ve vücut boşluğunun sırt tarafına yerleşmişlerdir. Embriyonun ilk gelişimi safhasında sağlı sollu iki yumurtalık ve yumurta kanalı gelişir. Ancak daha sonra sağ kısmı körelir ve civciv kuluçkadan çıktığında sadece sol yumurtalık ve sol yumurta kanalı fonksiyoneldir. Yumurta verimi başlamadan yumurtalık, içinde oosit ihtiva eden küçük foliküller yığınıdır. Bazıları görünebilecek büyüklükte olup, diğerleri mikroskobik yapıdadır. Tavuğun yumurta kanalı karın boşluğunun sol tarafında bulunur ve karın boşluğunun önemli bir kısmını kaplar. Yumurta kanalı, sarının geçtiği ve yumurtanın diğer kısımlarının salgılandığı kıvrımlı ve uzun bir kanal (boru) şeklindedir. Yumurta kanalı belirgin bir şekilde farklılaşmış beş ayrı bölgeye ayrılır. Bunlar İnfindibulum, magnum, isthmus, uterus ve vaginadır. 1. OVULASYON Her ovum, gelişmesi için kan yoluyla besin maddeleri sağlayan bir folikül sapı ile yumurtalığa tutunmuş ve foliküler membran denen bir zarla sarılmıştır. Yumurtalığa bağlı ovum olgunlaştığında yumurtalıktan salgılanan progesteron hormonu, LH hormonu salgılanmasına neden olan hipotalamusu uyarır. LH hormonu da yumurtalıktan ovumun serbest bırakılması için olgun folikülün stigma yerinden kopmasına veya folikülün yırtılmasına neden olur. Böylece ovum yumurtalıktan serbest bırakılır. Bu olay ovulasyon olarak bilinir.Yumurta sarısı daha sonra vitellin zarı ile sarılır. 2. İNFİNDİBULUMDAN GEÇİŞ Ovulasyondan sonra vücut boşluğuna düşen ovum, yumurta kanalının ilk kısmı olan huni şeklindeki infindibulum da yakalanır. Ovum burada 20 dakika kaldıktan sonra ardı ardına seri kontraksiyonlarla yumurta kanalından ilerlemeye zorlanır. Döllenmenin meydana geldiği yer infindibulumdur. Yumurta, infindubulumu geçtikten ve sarı üzerine ak tabakaları oluşmaya başladıktan sonra yumurtanın döllenmesi mümkün değildir. 3. MAGNUMDAN GEÇİŞ Magnum 33 cm ile yumurta kanalının en uzun kısmıdır. Yumurtanın magnumdan geçmesi yaklaşık 3 saat alır. Yumurta akının önemli bir kısmı magnumda oluşmaktadır. Bir yumurta akı 4 ayrı tabakadan oluşur. İçten dışa doğru bu tabakalar ve yüzdesi şöyledir: · Sarıyı saran (Çok ince koyu ak) şalaz tabakası % 2.7 · İç sulu ak %17.3 · Koyu ak %57 · Dış sulu ak %23 Albumenin önemli kısmı magnum da meydana getirilir ancak albumenin dış sulu ak kısmı uterusta salgılanan sıvı albumen veya sulu uterin sıvısı daha önce isthmusta oluşan kabuk altı zarlarında geçerek yumurta içine girer ve albumenin dış sulu ak kısmının oluşumu burada tamamlanmış olur. 4. KABUK ALTI ZARLARININ OLUŞUMU Kabuk altı zarları isthmusta yumurtaya eklenir. Zarlar ağ şeklinde örülmüş protein liftlerinden oluşur ve kağıt gibi ince yapılıdır. Önce kabuk iç zarı ve daha sonra kabuk dış zarı oluşur. Kabuk zarları hava ve suyu geçirme özelliğine sahiptirler. Ancak bakteri ve organizmaların geçişlerine engel olurlar. Ayrıca yumurta içeriğinin hızlı nem kaybını önlerler. 5. HAVA KESESİNİN OLUŞMASI Yumurta yumurtlamadan önce iç ve dış kabuk altı zarları birbirine yapışıktır. Yumurta yumurtlandığı anda vücut sıcaklığında yani 41 C° ‘dir. Çevre sıcaklığının daha düşük olması sebebiyle kısa zamanda soğur. Bu durum yumurta kabuğu içindeki kısımların büzülmesine yol açar. Bu sırada porların (bir yumurtada yaklaşık 7000-17000 adet por bulunur.) yoğun olduğu kısımdan, yani küt uçtan, içeri doğru hava girer ve iki zar tabakası arasında küçük bir hava kesesi oluşturur. Genellikle hava kesesi yaz aylarında kış aylarındakinden daha küçüktür. Yumurta soğudukça, su kaybı arttıkça veya yumurta bayatladıkça hava kesesi büyür. Hava kesesi lamba yardımıyla kontrol edilebilir. 6. UTERUSTAN GEÇİŞ VE YUMURTA KABUĞUNUN OLUŞMASI Uterus kabuk bezi olarak ta bilinir. Yumurta tavuklarında yaklaşık 10 -13 cm uzunluğundadır. Yumurta kabuğunun oluştuğu yerdir. Yumurta kanalında 18 – 20 saat ile en uzun süre burada kalır. Yumurta kabuğunun kalsifikasyonu yumurta uterusa girmeden önce başlar. Yumurta henüz isthmusu terk etmeden önce dış kabuk zarı üzerinde küçük kalsiyum zerrecikleri görülür. Kabuğa kalsiyum depolama hızı yumurtanı uterustaki ilk üç saatinde yavaştır, sonra süratle artar. Yumurta kabuğunun oluşturulması uterustaki kalsiyum iyonlarının ve kan metabolik karbondioksit konsantrasyonun yeterli düzeyde olmasına bağlıdır. 7. VAGİNADAN GEÇİŞ Yumurta kanalının uterustan sonraki bölümü vajinadır. Verim dönemindeki bir tavukta 12 cm uzunluktadır. Vajinanın yumurta oluşumunda herhangi bir fonksiyonu yoktur. Yumurta vajinada birkaç dakika kalabilir ve kabukta gözenekleri örten bloom veya kütikül olarak bilenen bir materyal ile kaplanır. 8. KLOAKADAN GEÇİŞ VE YUMURTLAMA Normal oluşmuş yumurta, yumurta kanalı boyunca sivri uç önde olacak şekilde ilerler ve yumurtlama öncesi yön değiştirerek küt uç öne geçer yumurtanın kolayca yumurtlanması gerçekleştirilir. Özet olarak; tavuklarda sadece sol yumurtalık faaliyettedir. Yumurta 25 saatte oluşur. 30 dakika sonra, yeniden ovulasyon şekillenebilir. Ovaryum: Yumurta sarısının folliküllerde gelişmesini sağlar, İnfindibulum: Ovulasyon sonucu olgunlaşmış, zarla kaplı sarıyı yakalar, peristaltik hareketlerle oviduktun diğer kısımlarına (Magnuma) gönderir. Ayrıca sperm deposu, döllenme burada olur. Magnum: Ovomucin sekresyonu ile yumurta akının oluşumuna yardım eder, şalazalar oluşur. İsthmus: Yumurtaya su ve mineral maddelerin ilavesiyle iki kabuk zarı oluşur. Uterus: Yumurta akı tamamlanıp, kireçli sıvı ile kabuktaki pigmentler oluşur. Vajina: Yumurta, kütikül ile örtülür. Kloaka: Olgunlaşmış yumurta vajinadan gelip kloakadan çıkar (1,5,15).   TAVUKLARDA EMBRİYO GELİŞİMİ VE KULUÇKA Embriyoloji canlı organizmaların oluşumu ve ilk gelişmelerini inceleyen bir bilimdir. Döllenmeden itibaren doğum veya kuluçka arasında meydana gelen biyolojik olayları ve gelişmeyi konu alır. Bir tek mikroskobik hücrenin (döllenmiş yumurta veya zigot) gelişimini ve tam olarak yaşayabilen bir canlı oluşumuna kadar geçen safhayı inceler. Kanatlılarda embriyoloji kapsamında döllenme, hücre bölünmesi, farklılaşma, gelişme ve kuluçka olayları yer alır. Döllenme ve Civciv Embriyosunun Gelişimi Tavuklarda normal kuluçka dönemi 21 gündür. Ancak bu sürede bazı farklılıklar görülebilir. Irk, cinsiyet, mevsim, yumurtanın bekleme süresi, büyüklüğü ve kabuk kalitesi ile kuluçkada uygulanan koşullara bağlı olarak kuluçka süresi değişebilmektedir. Örneğin Leghorn ve diğer hafif ırklarda, diğer ağır ırklara nazaran kuluçka süresi birkaç saat daha kısadır. Tablo 5. bazı kanatlılar için kuluçka süreleri verilmiştir. Döllenme Döllenme, normal olarak tabii bir işlemdir. Ancak, yapay yolla horozlardan ejekulat alınarak tavukların yapay döllenmesi de bugün uygulanan bir yöntemdir. Yapay tohumlamadan hemen sonra, sperm hücreleri tavuğun yumurta kanalının üst kısmında (infundibulum) bulunan uterovaginal bölgeye ve infundibular spermatozoa depo bezlerine inerler. Yumurta kanalında yumurta yok ise, bu ilerleme veya yolculuk 30 dakika sürer. Döllenme, sperm hücresinin (erkek gamet) ovuma (dişi gamet) girmesi ve bir tek hücre (zigot) içerisinde çekirdeklerin birleşmesi ve kromozomların çiftleşmesi işlemidir. Ovulasyondan sonra, ovum hücresi serbest bırakıldıktan sonra, 15 dakika içerisinde kendisine ulaşabilen yüzlerce sperm hücresinden birisiyle birleşir. Bu sperm hücresi vitellin zarından geçerek ovuma girer ve çekirdekler birleşir. Döllenen ovum, zigot olarak ifade edilir. Döllenme olayı infundibulumda gerçekleşir. Bir çiftleşmeden yaklaşık 23-26 saat sonra döllü yumurta alınabilir. Ancak sürüde maksimum döllülüğe ulaşılabilmesi veya bütün tavuklardan döllü yumurta alınabilmesi sürüye horoz katımından yaklaşık 3 gün sonra mümkün olabilecektir. Düşük kümes sıcaklığı horoz testislerinin aktivitesini azaltır. Bu bakımdan horoz ve tavuklar için optimum çevre sıcaklığı 19°C’ dir. Sürüde çiftleşme programının bitimiyle horozlar, tavuklar arasından alındıktan sonra yaklaşık 4 hafta süreyle döllü yumurta alınabilir. Ancak horozların sürüden ayrılmasını izleyen 4-5 günden sonra döllü yumurtaların yüzdesi süratle düşmektedir. Yumurta Yumurtlanmadan Önceki Embriyo Gelişimi Embriyonik gelişmenin ilk safhası 40.6-41.7°C arasında değişen vücut sıcaklığında, tavuk vücudunda olmaktadır. Bu safha ise döllenme ile başlar. Embriyonik gelişmenin toplam süresinin yaklaşık %4.5’i yumurta kanalında olmaktadır. Ortalama olarak kuluçka süresi 22 gün olup bunun bir günü tavuk vücudunda, 21 günü de tavuk dışında, genellikle kuluçka makinesinde geçmektedir. Ancak tavuklarda kuluçka süresi dendiğinde kuluçka makinesinde veya gurk tavuğun altında geçen 21 günlük süre anlaşılır. Yumurtlanmadan önceki embriyonik gelişim, ovulasyondan sonraki 15 dakika içerisinde zigotun oluşumu ile infundibulumda başlatılır. Döllenmeden yaklaşık 3 saat sonra, yumurta istmusa girdiğinde ilk hücre bölünmesi ile 2 hücre meydana gelir. Bunu izleyen 20 dakika içerisinde 2. hücre bölünmesi meydana gelir ve 4 hücre oluşur. Uterusa girişte 16 hücre oluşur ve uterustaki ilk 4 saat içerisinde gelişen embriyodaki hücre sayısı, aynı şekilde geometrik bölünmeler sonucu 256’yı bulur. Yumurta henüz yumurta kanalında iken disk şeklinde bir hücre tabakası oluşur. Biastodermin merkezinde bulunan hücreler blastocoele olarak adlandırılan bir boşluk oluşturmak üzere sarının yüzeyinden ayrılırlar. Embriyonik gelişmenin gerçekleştiği yer bunun merkezidir. Blastodermin bu merkez kısmı saydamdır. Sarı ile temas halinde kalan saydam olmayan dış kısma nazaran daha koyu renklidir. Bu satha döllenmeden sonraki yaklaşık 24 saat sonra ve yumurta yumurtlamadan hemen önce meydana gelir. İlk hücre farklılaşması uterusta yumurta yumurtlanmadan hemen önce meydana gelir. Yani blastoderm iki hücre tabakası halinde farklılaşır. İç tabaka endoderm, dış tabaka ise ektoderm olarak adlandırılır. Yumurta Yumurtlandıktan Sonraki Embriyo Gelişimi Yumurta kuluçka makinesine konuncaya kadar embriyo bir uyku devresindedir. Embriyonik gelişmenin kuluçka makinesinde ihtiyaç duyduğu optimum sıcaklık 37.5°C’ dir. Ancak 24°C üzerindeki sıcaklıklarda da embriyo gelişebilecektir. Yumurtlama sonrasında embriyonik gelişmeyi tam olarak durdurmak için 15-18°C’ler arasında bir çevre sıcaklığı sağlanmalıdır. Bu amaçla kuluçkalık yumurtaların kuluçka makinesine konmadan önce muhafaza edildikleri yerin sıcaklığının bu optimum sınırlar içerisinde olmasına dikkat edilmelidir. Kuluçkanın birinci gününde embriyonun uzun ekseni boyunca oluşan yapılardan endoderm, ektoderm ve mesoderm adı verilen hücre tabakaları farklılaşarak gelişmeye başlar. Vücudun bütün organ ve kısımları bu üç hücre tabakasından meydana gelir. Bu üç tabakanın herbirinden oluşan organ ve kısımlar şöyledir: Ektodermden deri, tüyler, gaga, tırnaklar, sinir sistemi, gözün mercek ve retina tabakası, ağız mukozası ve geri gibi vücudun dış kısımları; mesodermden iskelet, kaslar, dolaşım sistemi, üreme, boşaltım organları gibi vücudun orta dokuları; endodermden ise sindirim kanalının mukozası, solunum ve salgı sistemleri gibi vücudun iç kısımları meydana gelir. Embriyonik Zarlar Civciv embriyosunun ananın vücudu ile herhangi bir anatomik-organik bağlılığı olmadığından doğal olarak yumurtanın kapsadığı besin maddelerini kullanabilmek için bazı membranlara (zar kese) sahiptir. Embriyonun büyümesinde fonksiyonel olan 4 embriyonik zar veya kese vardır. •Amnion kesesi: Kuluçkanın ikinci gününde oluşmaya başlar. Ektoderm tabakasının altında, mezoderm tabakasından ibaret kan damarları olmayan, içi saydam bir sıvı ile dolu bir kesedir. Embriyonun gelişmesine yardım eder ve onu mekanik şoklardan korur. •Allantois Kesesi: Kuluçkanın ikinci gününde, ektoderm ve mesoderm tabakasından ibaret bir kıvrımdan chorion ile amnion oluşur. Kuluçkanın üçüncü gününde chorion ve amnion arasında kan damarları ile kaplı allantois kesesi gelişir. Allantoisin şu önemli fonksiyonları vardır. •Fonksiyonel akciğer gelişinceye kadar allantois geçici embriyonik solunum organıdır. Allantois, chorion vasıtasıyla oksijeni absorbe eder ve karbondioksiti vererek gaz değişimini sağlar. •Boşaltım görevini görür. Allantois böbreklerde oluşan metabolizma artıklarını alarak onları allantoik boşlukta depolar. •Allantoic membran, yumurta akınının sindirilmesini sağlayan enzimleri salgılar. Yumurta akından sindirilen besinler ve yumurta kabuğundan da kalsiyum, allantois tarafından absorbe edilir ve gelişen embriyoya transfer edilir. •Chorion: Bu membran veya kese, allantois ile birlikte kabuk altı zarları ile kaynaşır ve metabolik fonksiyonların tamamlanmasında rol oynar. •Yumurta Sarısı Kesesi: Endoderm tabakası üzerinde bir mesoderm tabakasından ibaret ve vitellin zarı ile temas ederek bütün sarıyı çevreleyen, kan damarlarıyla kaplanmış bir kesedir. Yumurta sarısı kesesi civciv kuluçkadan çıktıktan sonra besin kaynağı olarak kullanılmak üzere karın boşluğuna çekilir. Embriyonik Gelişme Döneminde Meydana Gelen Değişmeler Hava Boşluğu: Kuluçka döneminde kabuk yüzeyindeki gözenekler vasıtasıyla su kaybı olur. Bu su kaybı, yumurta içeriğinin büyüklüğünün azalmasına ve hava boşluğunun büyümesine neden olur. Kuluçkanın 19. gününden sonra hava boşluğu genellikle yumurtanın 1/3’ünü kaplamaktadır. Civcivin Yumurta İçindeki Konumu: Embriyo yaklaşık 17.günde yumurta içinde çıkış pozisyonunu alır. Bu durumda, boyun hava boşluğuna yönelir ve baş öne doğru, gaga sağ kanadın altında, ayaklar vücudun iki yanındadır ve çoğu kez ayaklar başa değerler. Embriyonun Ağırlığı: Kuluçka döneminde embriyonun ağırlığında değişme görülür. 60 g ağırlığındaki bir yumurtada kuluçka döneminde embriyo ağırlığında görülen değişim şöyledir: Civciv Embriyosunun Gelişme Dönemleri: Yumurta yumurtlandıktan sonra kuluçka devresinde embriyonik gelişme 4 dönemde tamamlanır. •Birinci Dönem: 1-5. günler (İç organların gelişmeye başlaması). •İkinci Dönem: 6-14. günler (Dış organların gelişmeye başlaması). •Üçüncü dönem: 15-20. günler (Embriyonun büyümesi) •Dördüncü dönem: 21. gün (Civcivin çıkışı). Bu dönemlerin dışında embriyo gelişiminde önemli dört safha ve kritik iki dönem vardır. •Kalp atışlarının başladığı ve kan dolaşım sisteminin yeterli düzeye ulaştığı 1. gün ile 3. günler arasındaki dönem. (1. kritik dönem). •16-18. günler: Amnion sıvısı ve amnion tamamen biter. •19. gün: Yumurta sarısı kesesi, göbekten vücut boşluğuna çekilir. •19-21. günler: Civciv, üst gagasında bulunan ve daha sonra düşen yumurta dişi denen sert bir oluşumla yumurta kabuğunu kırmaya başlar. Bu işlem bir saat sürer. Bu işlemin tamamlanmasıyla yaklaşık 20+1/2 günlük kuluçka dönemi sona erer. Ancak yarım gün de civcivin, kuluçkahane şartlarında kuruma ihtiyacı göz önüne alınırsa kuluçka süresi 21 gün olur. Gaganın yumurtayı ilk kırdığı dönemden civcivin tamamen yumurtadan çıkışına kadar yaklaşık 10-12 saatlik bir süre geçmektedir. Civciv kabuğu delmeden önce kabuk altı zarını delerek gagasını hava boşluğuna uzatır ve akciğer solunumu başlar (2. kritik dönem). Kuluçka sürelerinde yukarıda belirtilen faktörler nedeniyle farklılıklar olmasına rağmen, kuluçka makinesi içerisinde embriyolar arası ses yoluyla gerçekleşen haberleşme nedeniyle civcivler aynı sürelerde kuluçkadan çıkma eğilimi gösterirler. Sesin hızı embriyo gelişmesini yavaşlatmak veya hızlandırmak içindir. Sesin yavaş olması gelişmeyi hızlandırırken, hızlı olması gelişmeyi yavaşlatmaktadır.

http://www.biyologlar.com/tavuklar-sperm-uretir-mi

HIV yapısal kalp hastalığına yol açıyor

HIV yapısal kalp hastalığına yol açıyor

Kandaki saptanabilir virüs yükü, kalp hastalığının prevalansını neredeyse iki katına çıkarmaktadır . Ambargo: 11 Aralık 2013, 8:30am CET Paris Time – 9:30 am Local Time İstanbul, Türkiye – 11 Aralık 2013: EuroEcho-Imaging 2013 sırasında Madrid, İspanya'dan Dr. Nieves Montoro tarafından sunulan araştırmaya göre, HIV yapısal kalp hastalığına yol açıyor. Bulgular, kardiyovasküler taramanın, başta pozitif bir kan virüs yüküne sahip olanlar olmak üzere tüm HIV hastalarında uygulanmasını destekliyor. EuroEcho-Imaging 2013, Avrupa Kardiyoloji Topluluğu'nun (ESC) kayıtlı bir bölümü olan Avrupa Kardiyovasküler Görüntüleme Birliği'nin (EACVI) resmi yıllık toplantısıdır. Bu toplantı 11-14 Aralık  tarihleri arasında Türkiye'nin İstanbul şehrinde, İstanbul Lütfi Kırdar Kongre ve Sergi Sarayı'nda (ICEC) gerçekleşecektir. Dr. Montoro şunları söyledi: “Ekokardiyografi ile ölçüldüğü gibi, HIV hastalarında yüksek bir yapısal kalp hastalığı oluşumu (başta diyastolik disfonksiyon ve akciğer yüksek tansiyonu olmak üzere) görüldüğü iyi bilinir, fakat nedeni belirli değildir. Kalp hastalığının derecesi ile, HIV devresinin mi yoksa saptanabilir kan virüs yükünün mü ilişkili olduğunu değerlendirmek için bir araştırma yürütmeye karar verdik.” Bu ileriye dönük kohort çalışması, NYHA ölçeğine göre >II olarak sınıflandırılan dispne (nefes darlığı) çeken 65 HIV hastası (%63'ü erkek, ortalama yaş 48) üzerinde gerçekleştirildi.1 HIV devresi, CD4 oranlarının ve oportünist hastalıklarının ölçümü ile belirlendi. Aynı zamanda kandaki virüs yükü de belirlendi. Hastalara, yapısal kalp hastalıkları (ventrikül hipertrofisi, sistolik veya diyastolik disfonksiyon veya akciğer yüksek tansiyonu) bulunup bulunmadığını tespit için transtorasik ekokardiyogram uygulandı. Şu kardiyovasküler risk faktörleri değerlendirildi: yüksek tansiyon, şeker hastalığı, sigara içme durumu, dislipidemi ve böbrek yetmezliği. Hastaların yaklaşık yarısında (%47), başta sol ventrikül hipertrofisi, sol ventrikül disfonksiyonu, akciğer yüksek tansiyonu ve sağ ventrikül yetmezliği belirtileri olmak üzere bir tür yapısal kalp hastalığı bulunmaktaydı (bkz. şekil). Yapısal kalp hastalığı, pozitif kan virüs yüküne sahip hastalarda, kardiyovasküler risk profili veya antiretroviral terapiden bağımsız olarak, saptanamaz virüs yüküne sahip olanlardan (%75'e karşılık %43, p <0,04) önemli derecede daha yüksek bir oranda görüldü. Dr. Montoro şunları söyledi: “Nefes darlığı çeken HIV hastalarının yarısında ekokardiyografiye göre yapısal kalp hastalığı bulunduğu kanıtına ulaştık. En ilginç bulgumuz, pozitif kan virüs yüküne sahip hastalarda, yapısal kalp hastalığının önemli derecede daha yüksek biçimde görülmesi oldu. Hatta diyebiliriz ki kandaki saptanabilir virüs yükü, kalp hastalığının prevalansını neredeyse iki katına çıkartıyor, bu da HIV'nin kendisinin bağımsız bir etken olduğu izlenimini veriyor.” Yapısal kalp hastalığının oranının, hastada AIDS olup olmaması, cinsiyeti, yaşı veya kardiyovasküler risk faktörleri bulunup bulunmamasından etkilenmemesine rağmen, bu yine de başlangıç niteliğinde bir sonuçtur ve daha ayrıntılı analizler ile doğrulanması gerekecektir.   Dr. Montoro şunları söyledi: “Araştırmamız, kandaki virüs varlığı ve kalp hastalığı arasında bir ilişki bulunduğunu gösteriyor. Bu bulgular, HIV'nin kalp hasarının sebepleri arasında olduğu hipotezine bir kapı açıyor. HIV'nin proinflamatuar bir tepkiye yol açabileceği bilinmektedir ve buna kalp de dahil olabilir. Bu fikri test etmek için daha ayrıntılı araştırmalar yürütüyoruz.” Sözlerine şu şekilde devam etti: “HIV tedavisindeki hedeflerden biri de kandaki virüs seviyelerinin saptanamaz olmasıdır. Bu tespit edilemediğinde, tedavi genellikle değiştirilir. Bulgularımız, kanda herhangi bir saptanabilir virüs seviyesinin bulunmasının, kalp hastalığı riskini neredeyse iki katına çıkardığını gösteriyor.” Dr. Montoro sözlerine şu şekilde devam etti: “Araştırmamızdaki kalp problemlerinin yüksek oranı nedeniyle (yaklaşık %50), nefes darlığı çeken tüm HIV hastalarına, yapısal kalp hastalığı kontrolü için transtorasik ekokardiyogram uygulanması gerektiğini düşünüyoruz. Bu invaziv olmayan, uygun maliyetli ve kolay ulaşılabilir bir tanı amaçlı testtir. Daha da ötesi, pozitif bir kan virüs yüküne sahip hastalarda yaklaşık iki kat daha fazla yapısal kalp hastalığı bulunmaktadır ve belirti göstersin veya göstermesin, ekokardiyogram uygulanmalıdır.”  Sözlerine şu şekilde son verdi: “HIV hastalarında kalp problemlerini ekokardiyografi gibi basit bir tanı aracı kullanmakla daha erken saptamak, onları kalp hasarının oldukça erken bir devresinde tedavi etmemizi ve hastalığın seyrini iyileştirmemizi sağlayacak. Saptanabilir bir kan virüs yükü ve/veya yapısal kalp hastalığı bulunan hastalar, bir kardiyolog ve uzman HIV doktorları tarafından daha yakın bir incelemeye alınmalıdır.” 53% - Kardiyomiyopatisiz 20% - Sol ventrikül hipertrofisi 9% - Sol ventrikül sistolik disfonksiyonu 10% - Akciğer yüksek tansiyonu 5% - Diyastolik disfonksiyon 3% - Sağ ventrikül sistolik disfonksiyonu Yazarlar: ESC Basın Ofisi Tel: +336 2241 8492 http://www.medical-tribune.com.tr

http://www.biyologlar.com/hiv-yapisal-kalp-hastaligina-yol-aciyor

Ekosistemde Yaşayan Canlılar

Bütün ekosistemi özetlemek için ekolojik pramid yararlı bir yoldur. Piramit yaşayan canlıların enerjilerini nasıl elde ettiklerine göre yukarıdan aşağıya (yaklaşık olarak yediklerine göre) bir listedir. Piramid‘in her bir tabakasının (bölümden bölüme) genişliği yaşayan canlıların (bireyin sayısını, türün sayısını değil) nasıl çoğaldığını göstermektedir. Enerjiyi nasıl elde ettiklerine göre yaşayan tüm varlıklar katagorilerden birine girerler : Ekosistemi oluşturan öğeler, başlıca dört gurupta toplanır. 1-Cansız varlıklar. (inorganik ve organik maddeler) 2-Primer üreticiler. (yeşil bitkiler) 3-Tüketiciler (bitkisel ve hayvansal maddeleri yiyenler) 4-Ayrıştıcılar (bakteri ve mantarlar) Üreticiler, klorofil içeren yeşil yapraklı bitkilerdir. Bu klorofil ile havada ki CO2‘i ve su‘dan (şekerler) karbonhidratlar yapmak için ihtiyaçları olan güneşin enerjisini tutarlar. Bu üretim sürecine fotosentez denir. Bitkiler büyüme ve tüm diğer gelişme süreçleri için karbonhidrat temin eder. Bitkiler dışında yaşayan canlılardan hiç birinin gıdasını üretememesi önemli bir noktadır. Bu nedenle onlara üreticiler denir. Tüketiciler, direk veya indirek üreticilerin ürettiklerini (karbonhidratla) yiyerek yaşayan hayvanlardır. Tüketiciler daha fazla gruplara bölünebilirler: Birinci tür, ikinci tür, üçüncü tür vb. Birinci tür otçul hayvanları (bitki yiyenler) kapsar. İkinci tür et obur hayvanlardır, örümcekler, kurbağalar gibi, parazit (alsak böcekler) ki birinci türün tüketicilerini yerler. Üçüncü tür, yılanlar gibi et obur hayvanlardır ki ikinci türün tüketicilerini yerler. Tüketiciler grubunun son halkasını örneğin; kaplanlar kartallar veya insanlar oluşturur, yüksek tüketici sınıfı adını alırlar. Ayrıştırıcılar, bazı nematod ve böcekler gibi küçük hayvanlar ve bakteri ve mantarlar gibi mikroorganizmalardır ki tüketici ve üreticilerin (düşen yapraklar, ölü gövdeler, hayvanların gübresi vb.) atıklarını (organik materyali) yiyerek yaşarlar. Toprakta yaşayan ayrıştırıcıların sayısı çok büyüktür (verimli torağın 1 gramın da 1.000.000.000 dan daha çok) ayrıştırıcıların en önemli fonksiyonu organik materyalden bitkilerin kullanabileceği mineralleri yapmaktır. Sonra bu mineraller bitkiler tarafından absorbe edilebilir.

http://www.biyologlar.com/ekosistemde-yasayan-canlilar

Bitkilerin gözüyle Dünya ve İnsanlar

Bitkilerin gözüyle Dünya ve İnsanlar

Bitkiler gerek görünümleri gerekse ekosistemdeki fonksiyonları ile birer tabiat harikalarıdır.Bitkiler insanlar için birer şifa kaynağı olup bir çok türü ilaç sanayiinde kullanılmaktadır. Şu an yaşamımız için gerekli oksijenin tamamı bitkiler tarafından üretilir.Eğer bitkilerin gerçekleştirdiği fotosentez enzimlerinden bir tanesi bile olmasaydı şu an yeryüzünde hiçbir canlı varolmayacaktı.Bitkilerin canlılara sağladığı en onemli fayda sadece fotosentez ile değildir.Bunun yanı sıra böcekler, memeli hayvanlar (inek,zurafa,geyik vs.), kuşlar ve hemen hemen tüm yaratıklar için birer besin kaynağı ve birer yuvadır. Bitkilerin nasıl yaşadıklarını, ne ile beslendiklerini, canlılarla nasıl bir ilişki içerisinde olduklarını ilginç resimler eşliğinde inceleyelim. Bitkinin sahip olduğu 3 temel öğe vardır.Bunları tek tek ele alalım. 1-)Kök: Bu temel öğelerden ilki bitkinin "kök" üdür.Kök bitki için gerekli tüm su ve mineral maddeleri tıpkı bir vakum gibi emerek gövde ve yapraklara kadar iletir.Kökün mucizevi bir özelliği ise salgıladığı bazı kimyasal maddelerle kendisini toprak altında yaşayan kurt, solucan ve mikroorganizmalara karşı korumasıdır.Bu gerçektende bir bitki için ilginç bir durum teşkil etmektedir.Çünkü kapkaranlık toprağın içinde bir kök'ün böcek ve mikroorganizmaların hoşlanmadığı bir kimyasalı üretip salgılaması dış dünyadan habersiz bitkiden beklenilmeyecek bir durumdur. 2-)Gövde: İkinci temel öğe olan gövde, yerine getirdiği fonksiyonlar itibariyle mükemmel bir yapıdır. Bahçelerde sokaklarda koskoca ağaçları görürüz.Devasal bir gövdeleri vardır, üzerlerinde de binlerce yaprak.Fakat gövde dışarıdan görüldügü gibi sadece odunsu bir dokudan oluşan basit bir yapı degildir. Ağacın gövdesi inanılmaz bir esnekliğe sahiptir.Bu esneklik, rüzgar ve vahşi hayvanların yaptığı dış etkilere karşı bitkinin gövdesinin kırılmasını engeller.Tabii saatte 200 km. ile esen kasırgaları saymazsak.Elbetteki gövdenin harikulade özellikleri saymakla bitiremeyiz. Gövde içerisinde tıpkı bir su şebekesi gibi döşeli bir borucuk ağı vardır.Bu ağı oluşturan boruların büyütülmüş şekilleri aşağıdaki resimlerde görülmektedir.(Sağdaki resimde gerçek hali görülmekte) Şekilerde görülen kısa borular, bitki içerisinde bir intizamla dizilerek hem suyu yukarı doğru çıkarmakta hemde yukarı çıkarma esnasında suyun bir kısmını boruların etrafında dizilen hücrelere aktarmaktadır. Bu sistem tıpkı insandaki kandamarı ağına benzer.Yukarı çekilen su böylelikle serbest bir akımla her tarafa dağıtılmış olur. Suyun yukarı çıkmasına sebep olan kuvvet ise "osmotik basınç" ve "emme basıncı" adı verilen iki kuvvetdir.Örnegin kuru bir kağıdı diklemesine suya batırdığınızda suyun yukarı doğru çekildiğini görürsünüz.Burada meydana gelen hadise emme basıncıdır ve bitkilerde suyun hücreler tarafından yukarı çekilmesine neden olur.Hücreyi, örneğimizdeki kağıt olarak düşünebilirsiniz. Osmotik basınç ise hücre içindeki iyon ve mineral konsantrasyonu fazla olduğu hallerde ortaya çıkar.Hücre içerisindeki iyon ve mineral konsantrasyonu yükselince hücre derhal su almaya başlar.Hücrenin bunu yapmasındaki amaç, içerisindeki iyon konsantrasyonunu düşürerek normal seviyeye getirmek istemesidir. İşte hücrenin, iyon konsantrasyonunu düşürmek için suyu çekmek istemesi, "Osmotik basınç" kuvvetini doğurur.Bu basınç tek bir hücre için çok küçük bir kuvvet olsa bile bir ağaçta trilyonlarca hücre vardır ve herbir hücrenin çekiminden doğan kuvvetlerin toplamı, suyun toprak yüzeyinden onlarca metre yukarı çekilmesini sağlar. Yandaki ağacın yüksekliği yaklaşık 35 metredir.Bu kadar yüksekliğe su çıkarmak için apartmanlarda kullanılan güçlü bir hidrofora ihtiyacınız olacaktı. Fakat bitki, sahip oldugu mükemmel anatomik yapısı sayesinde bu problemin üstesinden gelerek suyu rahatlıkla topraktan çeker ve yapraklara kadar iletir. Afrikada ki bazı balta girmemiş ormanlarda yuksekliği 120 metreye kadar varan ağaçlar yaşamaktadır.Bu ağaçlar topraktan o kadar fazla su çekerlerki, ağacın gövdesine kulağınızı dayadığınızda akan suyun sesini net bir şekilde duyabilirsiniz. Gövdenin diğer bir muhteşem özelliği kabuk üretip zamanla bu kabukları dökmesidir.Hiç merak ettinizmi bitkiler neden kabuk üretirler ve neden belli bir zaman sonra bu kabukları dökerler?.Bir bitki çok zor şartlar altında yaşar.Bitkinin en büyük düşmanlarından birisi ise mikroorganizmalardır. Mikrroorganizmalar insanları hasta ettiği gibi bitkileride hasta ederler. Fakat bitkiler bu hastalıklardan korunmak için gene dahiyane bir çözüm bulmuşlardır. Ağaçlar etraflarını saracak bir şekilde kabuk üretirler.Bu kabuklar oldukça kalın bir yapıya sahip olup bakterilerin iç taraflara kadar nüfus etmesini engeller.Bazen kabuk bağlamakta işe yaramaz.Bu sefer ağac bu kabukları dökmeye başlar.Böylelikle hem taze bir örtüye kavuşur hemde bakteri yuvasına dönen kabukları kendilerinden uzaklaştırmış olur. Bazı ağacların etraflarından yapışkan bir sıvının sızdığını görürsünüz.Halk arasında "Çam sakızı" adı verilen "Reçine" sıvısı, biyokimyasal olarak bitki tarafından üretilmiş mükemmel bir ilaçtır. Ağac, vahşi hayvanlar ve insanlar tarafından üzerinde bir yara meydana getirildiği takdirde bu sıvıyı derhal salgılamaya başlar.Yaralanan bölge bu sıvı ile kapatılarak hem mikroorganizma saldırısı engellenmiş olur hemde yaranın çabucak iyileştirilmesi sağlanır. Bu sıvının en önemli özelliği mikrop kırma özelliğinde olmasıdır.Yani bu sıvıya yaklaşan bakteriler sıvıyla temas etmesi halinda ölürler.Ayrıca "Kalloz" adı verilen ve reçineye benzeyen diğer bir ilaç ise kış mevsimi geldiğinde, yukarıdaki resimlerde görülen boruları bir tıkaç gibi tıkayarak su akışını engeller.Böylelikle suyun ulaşamadığı yerlerde donma tehlikesi ortadan kalkar. Yapraklar bir bitki için vazgeçilmez organlardır.Biz insanlar nasıl ki ellere muhtacız, bitkilerde o derece yapraklara muhtaçtır. Bir yaprak bitkinin terleme, fotosentezle oksijen üretme, yine fotosentez sayesinde besin üretme, bazı bitkilerde üremeye yardımcı olma ve atmosferle gaz alışverişinde bulunma gibi bir çok fonksiyonunu yerine getirir.Tabii bu kadar fonksiyonu yerine getiren yaprak oldukça karmaşık bir yapıya sahip olup hücrelerinde karma karışık kimyasal reaksiyonlar cereyan eder. Yaprakların içerisinde meydana gelen fotosentez, olağan üstü bir karmaşayla gerçekleşmektedir.Hücrelerin kendi karmaşaları bir kenara fotosentez için yüzlerce enzim görev almıştır. Bu reaksiyonlarda görev alan en önemli yapı ise "Klorofil" adı verilen bir moleküldür.Bu molekül güneşten gelen ışığı soğurarak kimyasal enerjiye çevirir.Çevrilen bu enerji bir çok kimyasal reaksiyon basamakları için gerekli olan enerjidir. Karmaşa ise bunda sonra başlamaktadır.Bitkinin yapraklarında gercekleşen fotosentez olayında elektron transfer zinciri adı verilen bir dolanım sistemi sayesinde, su molekülleri, fotosentez reaksiyon basamaklarının birisinde parçalanır.Tabii bu parçalanma esnasında hidrojen(H) ve oksijen(O)atomları serbest kalır. Serbest kalan bu atomlardan hidrojen atomu bitki içerisinde tekrar kullanılırken oksijen atomları ise atmosfere bırakılır. Aşağıda klorofil molekülünü ihtiva eden "Kloroplast" pigmentinin bir şeması görülüyor. Şekilde görülen yapı "Kloroplast" pigmentidir.Pigmentin içinde miskete benzeyen daha kücük yapılar görülmektedir.Bu yapılar ise "Grana" adını alır ve fotosentez basamaklarının bazıları bu bölgede meydana gelir. Işığı absorbe ederek kimyasal enerjiye çeviren "Klorofil" molekülleri ise granaların içerisinde bulunurlar.Kloroplast pigmenti güneş ışığına maruz kaldığında hareketlenmeye başlar ve yaprak hücresinin içerisinde sürekli dolanırlar.Bu dolanım hareketlerini yapmasının nedeni ise güneş ışığından maksimum verim alabilmesi içindir. Kloroplast pigmentinin rengi ise yeşildir.Bitkilerin yapraklarının yeşil görünmesinin nedeni bu pigmentlerden dolayıdır.Buna karşın bitkinin gövdesinde kloroplast miktarı daha düşüktür. Şu an bu yazıları okurken soluduğunuz oksijen, dışarıdaki bitkilerden birisinin yapraklarındaki fotosentez reaksiyon basamaklarında parçalanan suyun oksijenidir.Eğer fotosentez basamaklarındakı yuzlerce enzimden birisi eksik olsa idi şu an yeryüzünde olmayacaktık.Görüyoruzki hayatımız, bitkilere verilen kusursuz görevler sayesinde devam ediyor. Bitkiler yaprakları sayesinde diğer canlılar gibi solunum yaparlar.Yapraklardaki özelleşımiş yapılar, solunumun belli bir düzen içerisinde meydana gelmesini sağlarlar.Nasılki biz koşarken solunum hızımızda koşma hızımıza paralel olarak artıyorsa, bitkilerde de aynen böyle bir feedback mekanizması mevcuttur Yukarıda görülen ilginç şekiller, yaprak üzerinde bulunan ve "Stoma" adını alan açılıp kapanma özelliğine sahip yapılardır. Örneğin hava çok sıcak ise bitki stomalarını kapayarak terlemeyle dışarı atılacak su kaybını engeller.Veya havadaki karbondioksit (CO2) miktarı fazla olursa stomalar ardına kadar açılır.Bu sayede havadan maksimum CO2 yi absorbe eden bitki hızlı bir şekilde fotosentez yapar ve kendisi için besin üretir.Tabii aynı zamanda atmosferede oksijen verir. Yapılan tahmini hesaplara göre yer yüzünde her yıl bitkiler tarafından kullanılan su miktarı 280 milyar ton, CO2 miktarı 680 milyar ton, ve kullanılan bu maddelere karşılık olarak atmosfere bırakılan oksijen miktarı ise 500 milyar tondur.Biraz düşünecek olursak bitkilerin gerçekte hayatımız için ne kadar önemli olduğunu kavrayabiliriz.Dış dünyadan bihaber olan bu harika yaratıklar her an her saniye hiç durmadan, canlıların oksijen soluması icin çalışmaktadırlar.

http://www.biyologlar.com/bitkilerin-gozuyle-dunya-ve-insanlar

Sperm Morfolojisi

Sperm hücresi baş, boyun ve gövde olmak üzere üç kısımdan oluşmuştur. Sperm başı içerisinde genetik materyel bulunur. Özellikle baş kısmının yapısal bozuklukları (morfolojik bozukluklar) spermin döllenme kabiliyetini sınırlayan önemli faktörlerin başında gelmektedir. Boyun kısmı enerji, kuyruk kısmı ise hareketin sağlanması için gereklidir. Penis kökündeki kasların kasılması ile dışarıya atılan ejakülat (meni) normalde 2-6 ml hacminde olup ilk atılma esnasında koyu kıvamlıdır. Yaklaşık yarım saat içinde sıvılaşan menide ml’de ortalama 50 milyon sperm hücresi olup % 40 civarında hareketlilik görülür. Vajina içine boşalan bu spermlerden en yüksek döllenme kapasitesine sahip 25 - 30 tanesi üreme kanallarındaki yumurta hücresine ulaşır ve yalnızca bir tanesi yumurta içine girerek döllenmeyi oluşturur. ılişkiyi takip eden 16 saat sonrasında bile canlı sperm hücrelerinin vajina içinde görülmesi mümkündür. Sperm sayısının 20 milyon/ml, hareketliliğin % 30’un altında olması anormal kabul edilir. Spermin dölleme fonksiyonunu belirleyen en önemli faktör ise morfolojik yapısıdır. Bu parametrenin infertilite klinikleri tarafından değerlendirilmesi önem taşımaktadır. Morfoloji % 5 normal sınırının altında olanlar tedavi seçeneğinin düzenlenmesi açısından değerlendirilmelidir.

http://www.biyologlar.com/sperm-morfolojisi

Balıkların Solunum sistemi

Diğer omurgalılarda olduğu gibi balıklarda da solunum, su ile kan damarları arasındaki dış solunum ve kan ile dokular arasındaki solunum olmak üzere iki kısımda tamamlanmaktadır. Balıklarda solunum organları olarak özel şekilde gelişmiş bulunan solungaçlar vardır. Bunlar kemikli balıklarda her bir taraftaki 4 solungaç yayı üzerinde lampiridlerde ise 7 solungaç yayı üzerinde gelişmişlerdir. Solungaç boşluğunda yerleşmiş bulunan solungaçlar genellikle operkulüm denilen bir örtü ile korunmaktadır. Bir Solungaç yayının konkav tarafında büyüklük ve sayıları türlere göre değişen solungaç dikenleri (branchiospiri), aksi tarafta ise, kılcal kan damarlarıyla donatılmış olan solungaç lamelleri bulunmaktadır. Dış solunum denilen, suda erimiş oksijenin kan tarafından alınması ve kandaki CO2'in suya verilmesi (gaz alışverişi) olayı solungaç lamellerindeki lokal kan damarlarıyla (kapillerler) sağlanmaktadır. Lameller her solungaç yayı üzerinde bir çift sıralı olarak bulunurlar. Solungaçların devamlı olarak su ile temas ederek nemli kalmaları gerektiğinden, balıklar ağızlarını sık sık açıp kapatırlar ve bu esnada solungaç kapaklan da devamlı su sirkülasyonunu sağlamak ve bunun solungaç boşluğunda tekrarını temin edebilmesi için periyodik olarak açılır ve kapanırlar. Daha öncede belirttiğimiz gibi, solungaç lamelleri kılcal damarlarla donatılmış olduğundan, ağız yoluyla giren suyun içersindeki erimiş O2 tutar, buna karşın dokulardan getirdiği CO2 gazım suya bırakır. Bu esnada operkulumlar açılarak O2 ni alınmış olan su dışarıya atılır. Genellikle balıkların solunum organları solungaçlar olmakla beraber, bazı formlarda (örneğin, Nemacheilus cinsinde) bağırsak içersinde bulunan özel kıvrıntılar da solunuma yardımcı olmaktadır. Bu nedenle adı geçen balık, oksijensizliğe karşı son derece dayanıklı olan türler arasında yer almaktadır. Solunum esnasında O2 nin alınıp CO2 gazının suya verilebilmesi için solungaçların devamlı surette nemli kalmaları şarttır. Bundan dolayı havada bol miktarda oksijen bulunmasına rağmen, balıklar su dışına çıkarıldıklarında havasızlıktan boğularak ölürler. Eğer bir balığın solungaçları devamlı olarak nemli şekilde muhafaza edilebilirse havadaki oksijeni de teneffüs edebilir. Bundan dolayı bazı balıkları (örneğin, Cyprinus carpio ve Silurus glanis gibi) rutubetli yosunlar içine yerleştirerek bir kutuya koymak sureti ile canlı olarak uzun mesafelere nakletmek mümkündür. Bütün kemikli balıklarda solunum olayı yukarda olduğu gibi operkulüm ile muhafaza edilen 4 çift solungaç takımı ile sağlandığı halde Lampetra fluviatilis'de biraz farklı olup, solungaç adedi 7 çifttir ve bunların da üzerinde operkulüm denilen kapak tek değildir. Burada solunum için gerekli olan su, ağız boşluğunda bulunan bir kanal ile solungaç boşluklarına girer ve gaz alışverişi yapıldıktan sonra solungaç yarığı denilen 7 küçük delikten dışarıya atılır. Diğer soğukkanlı hayvanlarda (Amphibi ve Reptillerde] olduğu gibi balıklarda da çok az aktif olan bazı türler mevcuttur. Bu nedenle de, vücut ısıları daima değişken olup genellikle bulundukları çevreye bağımlı kalmaktadır. Bu yüzden ılık suda yaşayan bir akvaryum balığının bulunduğu ortama, aniden çok soğuk bir su karıştırılacak olursa, balık vücudundaki ısı ayarlamasını kısa zamanda yapamayacağı için, soğuk suyun şok etkisinden dolayı derhal ölecektir. Bazı balıklar, oksijenin çok az bulunduğu bataklığımsı sularda ve balçık içersinde yaşadıkları için, ortamdaki düşük oksijenden gereği gibi yararlanmak amacıyla solunuma yardımcı olan bazı özel yapılar geliştirmişlerdir, örneğin, Clarias cinsinde, solungaçların arkasına rastlayan bölgede labirent şeklindeki solunum organlarına rastlanmaktadır. Hava kesesi veya yüzme kesesî Hava kesesi, balıkların su içersinde vertikal olarak seviyelerini ayarlamalarında ve denga sağIamaIarında rol oynayan önemli bir organdır. İnce bağırsağın bir ilavesi olup çok ince, zar şeklînde bir cidarı vardır. İçinin hava ile dolu olması nedeniyle bazı omurgalıların akciğer boşluklarına benzemektedir. Bu organlar bazen tek başına bir solunum organı olarak da (Örneğin, Dipnoi'lerde) fonksiyon görmektedir. Çalışma tarzı denizaltılardaki prensibe çok yakın benzerlik göstermektedir. Nasıl ki bir denizaltı belli derinliklerde kalabilmesi için safrasındaki suyu boşaltır veya safrasına su doldurursa, balıklar da su içersinde sabit bir seviyede kalabilmeleri için hava keselerindeki gazı boşaltır veya keseye gaz doldururlar. Bu kese, bir deri kıvrıntısından meydana gelmiş ve etrafı (cidarı) gayet sık kan damarlarıyla donatılmıştır. Kese üzerinde diffuz şekilde dağılmış bulunan kılcal kan damarları, içerdeki gazı absorbe etmek veya atmak niteliğindedir. Bu nedenle, balık hava kesesindeki gazı istediği zaman doldurup boşaltabilir. Cyprinidae familyasında hava kesesi iki loplu olup, ön lop ile iç kulağın denge-işitme merkezi arasında bir bağlantı bulunmaktadır. Bu bağlantıyı, 4 küçük kemiğin yan yana gelmesinden oluşan ve Weber apareği denilen özel bir yapı sağlamaktadır. Bu sayede dış ortamdaki basınç değişimleri hava kesesi yoluyla iç kulağa iletildiğinden Gyprinid'lerde titreşimlere karşı duyarlılık artmıştır. Balık bu keseleri gaz ile doldurduğunda daha az bir yoğunluğa sahip olacağından suyun yüzeyine çıkma imkânı bulacaktır. Eğer hava, kese içersinden atılacak olursa, bir öncekinin aksine, balık suyun derinliklerine inecektir. Böylece balığın su içindeki seviyesi, yüzme kesesi içindeki havanın durumu ile tanzim edilmiş olacaktır. Salmonid ve Cyprinid'lerde bu kese, gayet ince pneumatik bir kanal ile özofagusa bağlanmaktadır. Fakat bazı balıklarda (Percidae familyasında) doğumdan (yumurtadan çıktıktan) biraz sonra bu kanal dejenere olur. Yumurtadan henüz çıkmış yavruların hava keselerinde önce hava bulunmaz ve bu yüzden kese sönük vaziyette durur. Fakat yumurtadan çıktıktan kısa bir süre sonra, aklı başına gelen küçük yavrular su yüzeyine çıkarak ağızlarını açar ve bu keseyi hava ile doldururlar. Fakat Percidae familyasında genç yavrular yumurtadan çıktıktan sonra 5-8 gün asla su yüzeyine çıkmadıklarından pneumatik kanal giderek kaybolur ve hava keselerinde hava kalmaz. Kesenin normal fonksiyonunu yapabilmesi için hava ile dolup boşalması şarttır. Bu nedenle hava kesesi kapalı olan balıklarda kesedeki havanın emilmesi veya tekrar keseye doldurulması yukarıda da bahsettiğimiz gibi, kesenin cidarında yer alan kılcal damarlarla sağlanmaktadır. Hava kesesinin bazı kısımlarından meydana gelmiş olan pneumatik bezler, su basınçlarına otomatik olarak uyan, özel bir basınçtan etkilenen reflekslerle tanzim edilerek bu fonksiyonu yerine getirirler. Zeminde yaşayan balıkların çoğunda (Örneğin, Blennius fluviatilia, Cottus gobio, Pleuronectes flesus, Gobius vb.) hava kesesi ergin safhada mevcut değildir.

http://www.biyologlar.com/baliklarin-solunum-sistemi

ANTİSENS TEKNOLOJİLERİ HAKKINDA BİLGİ

ANTİSENS TEKNOLOJİLERİ HAKKINDA BİLGİ

Antisens teknolojisi insan, hayvan ve bitkilerdeki hastalıkların daha spesifik tedavisi ve yeni keşifleri için ayrıca, fonksiyonel genomik çalışmalar için çok güçlü silahlardan oluşan uygun tekniklerdir. Antisens teknoloji olarak bilinen yöntemde, antisens RNA moleküllerinin hedef genin RNA mesajına spesifik olarak bağlanarak gen ifadesinin moleküler düzenlenişine engel olunmaktadır. Hastalıkların oluşumunda büyük bir paya sahip olan proteinlerin üretimini durdurmak için bu teknoloji, oligonükleotidler olarak adlandırılan modifiye olmuş ya da olmamış DNA/RNA segmentlerinin kullanımını içermekte ve hücre içinde, nukleus ve protein üretim bölgeleri arasındaki genetik bilginin iletimini bloke etmektedir (1). Antisens nükleik asit sekanslarının hedef olacak spesifik mRNA’ ya bağlanması veya hibridizasyonu, genin genetik mesajının kesilmesine yol açmaktadır. Bir genin genetik mesajının hücresel proses ile kesilmesi “Knock - Down” veya “Knock – Out” olarak isimlendirilir. Bu proses, bu genin işleyişini saptamak için araştırıcılara olanak sağlamıştır. Diğer bir önemli antisens teknolojisi ise"RNA interferens" olarak adlandırılır. Antisens alanındaki araştırmalar RNAi (RNA interferens) ’nin keşfi ile hız kazanmıştır. Doğal olarak oluşan bu mekanizma sekansa spesifik olup ilk kez Caenorhabtidis elegans nematodunda keşfedilmiştir. Çoğu ilaç (Drug) proteinlere bağlanırken, antisens moleküller kendilerine komplementer hedef RNA ile eşleşirler. Antisens oligonükleotidler mRNA’ nın translasyonunu bloke eder veya RNAaz – H ile mRNA’ nın degredasyonuna neden olurlarken, ribozim ve DNA enzimleri hedef RNA’ yı keserler. RNAi yaklaşımları, RISC ile etkileşen siRNA (small interfering RNA) molekülleri ile gerçekleştirilir (2). Antisens Oligonükleotidler Oligonükleotid bazlı antisens tekniklerin birçok ortak yanı vardır ve genetik mesajın eleminasyonu veya baskılanması üzerine çok başarılı yöntemler uygulanmıştır. Sentetik oligonükleotid sekansın antisens etkisi 1970 yıllarında Zamecnik ve Stephenson tarafından gösterilmiştir. Bu araştırmacılar Rous Sarcoma virusün (RSV)35SRNA’ sının 5’ ve 3’ uçlu nükleotid sekansını kullanarak viral integrasyonda önemli olarak görünen 21 nükleotidlik tekrarlayıcı sekansları identifiye etmişler ve viral sekansın bir kısmına komplementer olan d(AATGCTAAAATGG)13 mer’ lik oligonükleotidi sentezlemişlerdir. Bu sentetik oligonükleotid sekansı RSV ile enfekte olmuş fibroblast hücre kültürlerine verildiğinde, viral üretim büyük ölçüde inhibe olmuştur. Böylece araştırmacılar önemli sekanslara hibridize olarak onları bloke eden oligonükleotidlerin viral integrasyonu inhibe ettiği sonucuna varmışlardır. Hücreye verilen bu oligonükleotide “hibridon” adı verilir (1). Şekil 1. Farklı antisens stratejilerinin karşılaştırılması Sentetik oligonükleotidler, genetik proseslerde bir ajan olarak kullanılmak isteniyorsa bir takım konular aydınlatılmalıdır. Bu konuların en önemlisi “Kalıcılık”tır. Sentetik oligonükleotidler yabancı bir hücreye verildiklerinde hemen endonükleazlara yem olurlar. Onun için bu oligonükleotidlerin endonükleazlardan korunması gerekir. Mümkün olan koruma modifikasyonları 2003 yılında Kurreck tarafından 3 tip olduğu ortaya çıkmıştır. Birinci sınıf modifikasyon, DNA ve RNA nükleotidlerindeki baz veya fosfat bağlarının değişimidir. DNA nükleotidlerinde olmayan, RNA nükleotidlerindeki 2’(OH) hidroksil grubu olan (Riboz) modifiye edilebilir. Bu modifikasyon, nukleaz degredasyonuna karşı bir tür kamuflajdır. 1969 yılında araştırıcılar fosfat bağlarında köprü oluşturmayan oksijen atomundan birini sülfür ile yer değiştirmişlerdir. Bu modifikasyon insan serumunda 10 saatin üzerinde nükleazlara karşı dayanıklı bir şekilde kalmış, aynı sekansa sahip modifiye olmamış oligonükleotid ancak 1 saat kalabilmiştir. Bu modifikasyona fosforotiat denmiştir. 1990 yıllarında başka araştırıcılar kültüre edilmiş hücrelerde HIV replikasyonuna karşın fosforotiatın etkili bir hibridon olduğunu bulmuşlardır. Diğer yandan, fosforotiatlı nükleotidler azda olsa hibridizasyon kinetiği düşük ve spesifik olmayan proteinlere bağlanarak sitotoksik etkiye neden olan özelliklere sahiptirler (1). İkinci sınıf modifikasyon, Riboz şekerinin 2’ pozisyonundaki alkil modifikasyonlar içeren RNA nükleotidleridir. Bu modifikasyonların en önemli ikisi, 2’-O-metil (OMe) ve 2’-O-metoksi-etil (MOE)RNA’ larıdır. Modifikasyona uğramış antisens oligonükleotidlerin hibridizasyon afinitesi arttırılmış ve daha düşük bir toksik etki yaratmışlardır. 2’-O-alkil modifikasyonlarının en önemli eksikliği, en güçlü antisens mekanizması olan RNAaz-H kesimine elverişli olmamasıdır. Buna karşın avantajı da, istenmeyen çeşitli kesimleri baskılayarak bazı proteinlerdeki beklenen değişik kesimlerin ifadesini arttırmasıdır. Antisens etki için, RNAaz-H kesimi, nukleazlara dayanıklılık için 2’-O-alkil modifikasyonlarının tercih edilmesi araştırıcıları yeni bir modele ihtiyaçları olduğu gerçeğini ortaya çıkarmış ve araştırmacılar, bu her iki karakteristiği bir araya getirerek antisens oligonükleotid formunda hibrid bir oligonükleotid oluşturmuşlardır. Bu oligonükleotid nukleazların degredasyonundan internal bloğu koruyan 2’-O-metil ile modifiye olmuş ribonükleotidler ile, RNAaz-H kesimini uyarmak için deoksinükleotidlerin merkezi bloklarını içermektedir(1). Bu model diğer antisens konularına cevap oluşturmak için henüz gelişmemiştir. Modifiye olmamış oligonükleotidler, DNA : DNA ve DNA : RNA dublekslerini oluştururken , DNA ve RNA hedeflerinin tanınmasına yüksek afinite sağlayan çeşitli modifikasyonların sentezleri büyük çaba gerektirmektedir. Modifiye olmamış DNA:DNA ve DNA:RNA dubleksleri ile karşılaştırıldığında, DNA ve RNA’lara hibridize olduğunda termal stabilitesi yükselmiş bir çeşit nükleik asit analoğu geliştirilmiştir. Bu modifikasyon üçüncü sınıf antisens oligonükleotidleri oluşturur. Bu sınıf 4’e ayrılır. Peptid nükleik asitler (PNAs), 2’-floro N3-P5’-fosforoamidler, 1’, 5’- anhidroheksitol nükleik asitler (HNAs) ve locked nükleik asitler (LNA)’dır. 3.sınıf modifikasyonlar ile hibridizasyonda termal stabilite artmış ve hedefin tanınması zenginleşmiştir. Bu tipler arasında ençok bilinen PNA’dır (1991). Şeker fosfat bağları poliamid bağları ile tümüyle değişmiştir. Bu oluşumlar stabiliteyi arttırıcı ve yüksek hibridizasyon kinetiği sağlarkan, hücreye verilimi ve RNAaz H kesim mekanizması için elverişli değildir. PNA’lar, fosforotiat ve 2’-O-alkil RNA’lardan sonra üzerinde çalışılmış ve başarı sağlanmış oluşumlardır (2002). Bu 3.sınıf oluşumlar arasında en yeni olan LNA’lardır. LNA’larda da termal stabilitenin arttığı ve hedef tanınmasının zenginleştiği görülmüştür (1). RNA İnterferens (RNAi) İlaç sanayi, tedavi amaçlı gen baskılanması için her geçen gün kendini yenilemektedir. Daha önceki araştırmalar, antisens oligonükleotid ve ribozimleri kapsayan sekansa – spesifik RNA baskılanması üzerineydi. Bazı pozitif sonuçlar, bu ilaç platformunda elde edilirken, stabilite, hedefi bloke etme potansiyeli, hücreye iletimi ve hedef sekans seçimi gibi teknik konular, klinik olarak ilaçların etkinliğinin gelişimini yavaşlatmıştır. Son yıllarda, nükleik asit bazlı gen inhibisyon yaklaşımlarının klinik olarak gelişiminde yeniden bir etki yaratma potansiyeline sahip olan RNA interferens (RNAi), gen regülasyonunun yeni bir mekanizması olduğu gerçeğini ortaya çıkarmıştır (3). A. Normal transkripsiyon ve translasyon prosesi B. DNA’yı hedefleyen ajanlar ile transkripsiyonun önlenmesi C. pre–mRNA hedeflenmesi ile olgun mRNA’nın oluşumunun engellenmesi D. Translasyonel aparatürlerin engellenmesi ile translasyonun bloke edilmesi E. RNAaz- H ile mRNA’nın etkileşimi sonucu translasyonun önlenmesi (1). RNAi, bitkilerde, solucanlarda, mayalarda ve insanlar arasında yüksek oranda korunmuş, doğal olarak oluşan biyolojik bir prosestir. Hücre içinde iki bölümden oluşan bir yol izine sahiptir. Hücrede oluşan öncül dubleks RNA molekülü ilk olarak, Dicer endonukleaz ile 21-23 nükleotidlik kısa fragmentlere ayrılır. siRNA (short interfering RNA) olarak bilinen bu effektör RNA’ lar, RNA uyarıcı protein kompleksi ile etkileşir (RNA inducing silencing protein compleks; RISC). Bu protein kompleksi, siRNA’nın bir ipliğini lider sekans olarak kullanarak, hedef homolog RNA’ları kesmektedir. Bitkilerde, RNAi hücre savunmasında rol oynar; virus infeksiyonundan, transpozonlardan (sıçrayıcı gen) ve tekrarlayıcı sekansların uygun olmayan ifadelenmesinden, hücreyi korumaktadır. Memeli hücreleri de benzer savunma sistemine sahiptir. Bu endogenik RNA’lar, veya miRNA (microRNA ), dicer tarafından siRNA effektörlerine dönüştürülür ve çeşitli hücresel proseslerde örneğin, çoğalma, apoptozis ve farklılaşmada görev yapan genlerin ifadesinin düzenlenmesinde rol oynar. siRNA molekülleri, kimyasal olarak sentezlenip ekzogenik olarak memeli hücrelerine verildiğinde, hücresel RISC kompleksine maruz kalır ve siRNA’ya homolog olan RNA’ların parçalanmasına aracılık eder (3). RNAi, gen işleyişinin validasyonu ve hızlı identifikasyonunda, hedef ilaç keşfinde, biyolojik kaynak olarak devrim yapmış, hatta 2002 yılında, “Science Magazine” tarafından “yılın keşfi” olarak nitelendirilmiştir ve bazı şirketler, RNAi bazlı tedaviler geliştirme yönünde adımlar atmıştır (3). RNAi Tedavisinin Avantajları Spesifitesi Sekans bazlı gen inhibisyon teknolojilerinin potansiyel avantajlarından birisi, herhangi bir gen için tedavi amaçlı dizayn edilebilmesidir. Özellikle, tek bir allelde mutasyonla oluşan onkoloji ve genetik nörolojik hastalıklar alanında sadece defektif genin ifadelenmesini seçici olarak bloke etme fırsatı yaratılmıştır. Bunun yanında, tek bir polimorfizim ile ayırd edilebilen hedef sekansı identifiye etmek önemsiz değildir. Ayrıca, optimal siRNA’ nın hedef seçimi limitli olsada, RNAi aktivitesi önemli sayılmaktadır. Kanser ve nörolojik hedefler de, allele spesifik olacak kadar yeterli bir spesifiteye sahiptir (2). Şekil 3. Memeli sistemlerindeki RNA interference mekanizması (4) Potansiyel Etkinliği Optimal dizaynı ve hedef sekans seçiminde kurallardaki farklılıklardan dolayı gen inhibisyon teknolojisinin etkinliğini direk olarak karşılaştırmak zor olmakla birlikte, RNAi bazlı inhibisyon, antisens oligonükleotidler ile başarılmış çalışmalardan daha etkindir (2). Değişkenliği RNAi hedef bölgelerini identifiye etme kolaylığı, RNAi’ nin süper etkinliği ile ilişkili olabilir. Optimal RNAi etkinliliği için gerekli olan kurallar saptanmış olsa da, CG içeriği ve 3’ uçlarının kompozisyonu temel parametreler olarak karşımıza çıkmaktadır. Diğer yandan, ribozim ve antisens oligonükleotid hedef sekanslarını identifiye etmek, kesim için gerekli olan özel sekans motiflerinin uygunluğu ile sınırlandırılmıştır. Bir grup gende bulunan multipli sekansları uyarabilen RNAi – bazlı inhibisyon ile değişkenlik daha kolaydır (2). RNAi Tedavisinde Öne Çıkan Noktalar Hücreye İletimi Hücreye verilim problemi, sadece RNAi tedaviye özgü değildir fakat, RNAi bazlı ilaçların klinik olarak kullanımına önemli bir engel olarak görülmemektedir(2). RNAi Effektörleri RNAi effektörleri, 2 farklı yaklaşımla hücreye verilmektedir. İlki, laboratuvarda sentezlenmiş siRNA’lar bir ilaç gibi verilir. Diğeri ise, gen terapi yaklaşımı yani, shRNA (small hairpin RNA) kodlayan DNA, hücrelere verilir ve böylece shRNA’ nın hücre içi ifadelenmesi başlatılmış olur. Daha sonra shRNA’ lar, konukçu hücre tarafından aktif siRNA’ ya dönüştürülür. DNA yaklaşımının potansiyel avantajı, verilen plasmid DNA’ların yüksek stabilite içermesidir yani, her bireysel DNA kalıbından sentezlenmiş olan shRNA’ ların büyük miktarını içeren hücresel amplifikasyon basamağından oluşmaktadır. İlaveten, ister genoma integre olan, ister epizomal formda replike olabilen DNA’ yı stabil ifade vektörü şeklinde vermek de mümkündür (2). Lokal Verilimi Antisens ilaçların başarılı lokal uygulamasına en iyi örnek olarak “göz” verilebilir. Göz içine direk olarak siRNA’ların lokal injeksiyonu ile, yaşla ilişkili oluşan makular dejenerasyonun RNAi bazlı tedavisi geliştirilmiş ve ayrıca, merkezi sinir sistemi içine direk iletimi de mümkündür (2). Sistemik İletimi Sistemik verilim, siRNA’nın stabilizasyonuna, effektörün istenen dokuyu hedef alması ve hücresel alınımın kolaylığına gereksinim duyar. siRNA ilaçlarının hücresel alınımı ve stabilitesini geliştirmek için gerekli olan yaklaşımlar, nükleik asitin kimyasal değişimi ve koruyucu partiküller içine effektörün çeşitli yöntemler ile paketlenmesini içeren antisens oligonükleotid uygulaması için de geçerlidir. Effektörün özel hücre tiplerini hedef alması için, farklı ligand ve antikorların RNAi effektörü ile konjuge olması gereklidir. Viral vektörlerin kullanımı, RNAi effektörünün sistemik verilmesi için kullanılabilir fakat, viral vektörler klinik olarak hücreye iletilmesi için gerekli olan dokuya spesifik tropizm ve transdüksiyonu sağlasa da, her tip viral vektör, risk ve güvenlik sorunlarını beraberinde getirmektedir (2). Güvenlik İstenen etkilerin oranını en üst düzeye çıkarmak, her tedavinin ana temelini oluşturur. Kemoterapi, interferens tedavisi ve yüksek oranda aktif antiretroviral tedavilerde bu oran ideal değildir ve tedavi ile birlikte toksisite önemli bir seviyeye ulaşabilir. RNAi, hedeflenen genin spesifitesini arttırma yetisine sahip olurken, hücrenin herhangi bir ekzogenik (siRNA veya iletim ajanı) moleküle maruz kalması, normal hücresel işleyişini bozabilir (2). Hedef Dışı Etkileri Spesifite, en önemli avantajlardan biri olmasına karşın, hedef dışındaki etkileri hala sorundur çünkü, genin inhibisyonunda aracılık eden siRNA’ların minumum homoloji seviyesini saptayan parametreler henüz bilinmemektedir. İnhibisyon sonucunda siRNA’nın sekansına bağlı olarak tek iplikli RNA ile 11 baz çiftlik bir homoloji gösterdiği bulunmuştur (2). Spesifik Olmayan Etkileri Spesifik olmayan etkileri konusunda RNAi için toksisite 2 kattır. Çünkü, hem hücreye verilmesi hem de siRNA’nın kendisi beklenmedik hücresel tepkiler doğurabilir. İlk olarak, bazı katyonik lipozomlar, siRNA’nın hücreye verilmesinde kullanılmış ve interferon molekülleri uyarılmış; aynı şekilde, shRNA ifade kasetlerini hücre içine transport etmek için kullanılacak herhangi bir viral vektör, istenmeyen bir tepki ile karşılaşabilir. İkinci olarak, siRNA effektörlerinin kendileri, çift iplikli RNA hücresel savunma mekanizmasını tetikleyebilir. Bazı durumlarda, terapi için interferon indüksiyonu yararlı olmasına karşın; başlangıç defans mekanizmasının kontrolden çıkması durumunda sitotoksik olabilmekte ve bu yüzden sorun yaratmaktadır. Son yıllardaki çalışmalar, siRNA’nın interferonu uyarması ile oluşan farklılıkları sistematik olarak analize etmeye başlamıştır. Örneğin, interferon sinyalini uyaran bir siRNA effektörünün içeriğinde,"tehlikeli motif" olarak adlandırılmış 9 baz çifti identifiye edilmiş ve interferon indüksiyonunu başlatan siRNA’nın 5’ fosfat ucu olduğu belirlenmiştir (2). Stabilitesi Bazı veriler siRNA’nın, serumda ve memeli hücrelerinde antisens oligonükleotid ve ribozimlerden daha stabil olduğunu gösterse de, birçok araştırma in vivo’da siRNA’nın yarı ömrünü arttımak için siRNA’nın farmokinetik özelliğini değiştirmeyi hedeflemiştir. Özellikle, geniş spektrumlu kimyasal modifikasyonlar ile uyumlu siRNA’ların gen ekspresiyonunu inhibe ettiği kanıtlanmıştır. Araştırmacılar, enjekte edilen siRNA’nın %1’inden daha azının hedef organa ulaştığını kaydetmişlerdir (2). Tedavi Amaçlı Uygulamaları Viral İnfeksiyon Birçok şirket viral infeksiyonu inhibe etmek için, RNAi bazlı tedaviler geliştirmeye başlamışlardır (2). Hedeflenen Viral RNA’lar Birçok makalede, invivo ve invitro’da birçok virusun replikasyonunu veya ekspresiyonunu inhibe etmek için virusa spesifik siRNA’ların kullanıldığı belirtilmiştir. Özellikle RNAi’nın potansiyel antiviral yararları üzerine araştırmalar, HIV ve Hepatit viruslarına ışık tutmuştur. Her özelliği tanımlanmış HBV (hepatit B virusu)fare modelleri bu viruslara popüler bir hedef konsepti hazırlamıştır. Başlangıçta invivo’da transfeksiyon deneyleri, fare karaciğerine HBV’ ye spesifik siRNA ve HBV ekspresiyon plazmidlerinin aynı anda verilmesinin HBV’ nin gen ekspresiyonunu ve replikasyonunu bloke ettiğini ortaya çıkarmıştır. Bu çalışmaları genişletmek için, araştırıcılar fare modellerini kullanarak HBV tedavisi için, RNAi’ nin ileri tedavi etkinliğini incelemişlerdir. Bazı viral RNA’lar, baskılanmaya dirençlidir ve HIV’ e benzer bazı memeli virusları, RNAi aktivitesini engelleyen proteinlere sahiptir. HBV konusunda, RNAi effektörlerinin, viral gen ekspresiyonu ve replikasyonunu bloke ettiği görülmüştür. Aynı şekilde İnfluenza virusunun inhibisyonu, coxsackievirus B3 ve respiratör syncytial virus infeksiyonları, farede infeksiyon oluşumundan sonra verilen siRNA ile inhibe olmuşlardır (2). Konukçu Hücre Genlerinin Hedeflenmesi Bunun nedeni, virusların siRNA’lar kendi genomlarını hedeflediklerinde hızlı bir şekilde kaçış mutasyonları oluşturmasıdır; diğer bir potansiyel RNAi antiviral strateji ise, infeksiyonu devam ettiren hücresel faktörlerin ekspresiyonunu inhibe etmeye yöneliktir. Özellikle CD4 ve CCR5 gibi, HIV hücresel reseptörlerinden inhibisyon için yararlanılmaktadır. Viral temizlik için etkinliğe göre RNAi’nin viral RNA’ları parçalaması, viral infeksiyonu tamamen elemine etmeye benzemez. Eğer, konukçu immün yanıt, infeksiyon ile başarılı bir şekilde mücadele ederse, viral replikasyon ve virusun yayılması etkili bir şekilde azaltılmakta, böylece etkili bir antiviral olduğu kanıtlanmış olmaktadır. Örneğin, HBV konusunda, hatta kronik olarak infekte olmuş hastalarda infeksiyon süresince virusa spesifik sitotoksik T-lenfosit üretimi sürmektedir. Bu immün yanıt, virusu temizlemek için güçlü olmasa bile, HBV antijenlerini ifadeleyen hücreleri yok etmektedir (2). Nörolojik Hastalıklar Parkinson, hungtington, amyotrophic lateral sclerosis (ALS) ve spinobulbar muscular atropi, RNAi bazlı terapilerin yararlı olduğunu kanıtlayan sinirsel hastalıkların önde gelenlerindendir. Sekansa spesifik RNAi’ ler, mutant olan hedef genin ifadesini bloke etmektedir. Örneğin, siRNA’ lar, ALS modelinde gösterilmiş mutant ve yabani tip RNA’lar arasındaki farklılıkları tek nükleotidte fark eder. ALS, tedavisi olmayan letal bir motor nöronun dejenere olduğu bir hastalık olup, Cu/Zn süperoksid dismutazı (SOD1) kodlayan gende tek bir nükleotid’teki mutasyon sonucu oluşmaktadır. Diğer bir örnek, Alzheirmer, β – amiloid üretiminde artış ile tetiklenir. β amiloid , β sekretaz (BACE1) tarafından kesilir ve bu enzim, hastaların beyinlerinde yüksek seviyede regüle edilir. β-sekretazın regülasyonunu inhibe eden siRNA’lar, işleyişi bloke eder. Bunu kanıtlamak için, Kao adında bir araştırıcı primer fare nöronlarında β sekretaz ekspresiyonunu bloke etmiş ve böylece, β amiloid üretiminde azalma gözlemlemiştir (2). İnflamasyon ve Apoptozis Bazı hastalıklarda hücresel proseslerin aktivasyonunun neden olduğu patoloji gözlemlenmiş hatta bunun gelişiminde önemli rol oynayan kilit moleküllerin hedeflenmesi ile hücresel proseslerin kontrol altına alınması anlamında RNAi tedavisi yarar sağlayabilmiştir. Örneğin, Tümör nekrozis faktör (TNF-α ), rheumatoid arthritisin kronik patojenitesinde gerekli olan pro-inflatör sitokindir. TNF- α işleyişini bloke etmede kullanılan ilaçlar, inflamasyonun azalmasında etkili olduğu ve hastalığın yavaşladığı gözlemlenmiştir. Bazı riskler tabiki mevcuttur, TNF - α bloke edicilerin kullanılması ile ilişkili ciddi infeksiyonlar, lenfoma, sistemik eritomozus gibi hastalıklarda risk unsuru bulunmuştur. Son yıllarda lokal injeksiyon ve TNF- α’ ya spesifik siRNA’ların elektroporasyonu, faredeki paw inflamasyonunu inhibe ettiği görülmüştür (2). siRNA Gen ifadelenmesini spesifik olarak kesintiye uğratan moleküller, güçlü araştırma kaynaklarıdır. Bu moleküllerin gelişimine yönelik çalışmalar sonucunda farklı potansiyelde ajanlar ortaya çıkmıştır. siRNA’ lar, sekansa spesifik silencing ajanı olarak ortaya çıkan en son keşiftir. Çoğu kilit organizmanın sekansı ortaya konmuş ve nükleik asit bazlı yaklaşımlarla gen işleyişinin incelenmesi için fırsat doğurmuştur. Bu nükleik asit molekülleri, tedavi amaçlı olarak geliştirilmiş ve hastalığa sebep olan virusları hedef almıştır. siRNA’ lar, RNAi yol izinin effektör molekülleridir. Nematodlardaki RNAi’nın keşfi, bitkilerde post-transkripsiyonel gen silencing ve funguslarda "Quelling" gibi prosesler dubleks – RNA ile tetiklenir. Uygulamalarda, uzun dubleks RNA’ lar kullanılmış fakat, bu RNA’ lar çoğu memeli hücreleri için etkin değildir çünkü, antiviral interferon (IFN) yanıtını uyarmaktadır. Antiviral interferon yanıtı, hücre ölümüne neden olur. Farklı organizmalarda var olan RNAi mekanizmasının genetik ve biyokimyasal incelemeleri, bu hücresel mekanizmanın korunduğu gerçeğini ortaya koymaktadır. Bu mekanizma, dubleks RNA’yı keserek 21-28 nükleotid uzunluğundaki, siRNA’ya dönüştürür ve bu siRNA mRNA’ların sekansa spesifik degredasyonuna yol açmaktadır (5). Nükleik – Asit Bazlı Gen Silencing mRNA’ ların spesifik sekanslarını hedefleyerek gen ifadesini inhibe edecek birkaç farklı molekül istenilen düzeyde dizayn edilebilir. Başlıca 3 tip nükleik asit bazlı gen silencing molekülü vardır. Bunlar, kimyasal olarak modifiye olmuş antisens oligodeoksiribonükleik asitler (ODN ), ribozim ve siRNA’lardır (5). Tablo 1. İnvivo'da test edilmiş anti-kanser RNAi hedefleri i.v: intravenöz, i.t: intratumoral, hd: hidrodinamik infeksiyon CEACAM 6: karsinoembriyonik antijen ile ilişkili adhezyon molekül 6 ATA: aurintrikarboksilik asit (3). Antisens ipliği (kırmızı çizgi) içeren RISC’lerin oranını etkileyen siRNA veya siRNA’ların sens ipliklerinin ilk birkaç baz çiftinin termodinamik stabilitesi. Sens ipliğin 5’ ucundaki yüksek termodinamik stabilite (yeşil kutucuk) ile antisens ipliğin 5’ ucundaki düşük termodinamik stabilite (mavi kutucuk) karşılaştırıldığında termodinamik stabilite ile ilişkili olarak antisens iplik RISC ile etkileşime girmek için daha yatkındır. Antisens ipliği içeren birden fazla RISC daha fazla etkili siRNA demektir ve sens ipliğin neden olduğu hedef dışındaki etkinlik şansını azaltmış olur. siRNA’ların 3’ ucundan çok 5’ ucu hedef tanımada etkin rol almaktadırsiRNA ve mRNA ‘nın 5’ ucundan devam eden en az 11 – 14 baz çiftinde hedef genin baskılandığı gözlemlenmiştir. Bir siRNA için minimal substrat merkezinde 13 nükleotidten oluşmaktadır (5). Şekildeki turuncu renkli üçgen; mRNA’nın kesim bölgesini, nt; nükleotid, RISC; RNA’ca indüklenen silencing compleks, siRNA; small interfering RNA. Şekil 4. Etkili ve spesifik siRNA ‘nın özellikleri ODN: Genellikle 20 nükleotid uzunluğunda olup, pre-mRNA ve mRNA’ya hibridize olarak ribonükleaz-H için bir substrat oluştururlar. Bu enzim, RNA – DNA dublekslerinden, RNA ipliğini degrede eder. RNAaz-H aktivitesini engellemek için, modifiye olmuş ODN’ler mRNA’ların translasyonunu veya pre-mRNA’nın kesilmesine mani olmaktadır. ODN’ ler ve modifikasyonları bu yüzden, çift iplikli DNA’yı hedef alarak, 3’ lü heliks oluşumu ile transkripsiyonu inhibe etmek için kullanılmaktadır (5). Uzun çift iplikli RNA (dsRNA) RNAaz pol III enzimi olan Dicer tarafından tanınır ve 21 – 23 nükleotid uzunluğundaki siRNA dublekslerine dönüştürülür (1). Sentetik siRNA (2) veya endogenik siRNA ‘lar (3) RISC ile etkileşirler bundan dolayı Dicer prosesi bypass olmuş olur. siRNA’ lar multiprotein kompleksi olan RISC ile etkileşir (4). RISC kompleksindeki bir helikaz siRNA dubleksini açar ve tek iplikli siRNA’yı içeren RISC mRNA’ya komplementerize olur (5). (6) RISC içinde identifiye olmamış bir RNAaz (silecer) mRNA‘ yı degrede eder (6). Şekil 5. siRNA ‘nın mekanizması Ribozimler: Ribozimler, RNA’ya Watson – Crick modeli ile bağlanır ve fosfodiester bağlarının hidrolizini katalizleyerek, hedef RNA’yı degrede etmektedir. Ribozimler birkaç sınıf olup, en çok kullanılan “çekiç başlı“ adı ile anılan hammerhead ribozimlerdir. Hedef mRNA’ya hibridize olduğunda, tek bir sekonder yapı oluştururlar. Ribozimlerde katalitik olarak önemli parçalar, hedef RNA kesim bölgesinin içinde bulunduğu hedef – komplementer sekans ilişkisi ile bağlantılıdır. Ribozim ile kesim magnezyum gibi divalent iyonlara, hedef RNA yapısına ve hedefe ulaşılabilirliğine gereksinim duyar. Hücre içinde bu hedef RNA ile ribozimin birlikte lokalizasyonu, silencing etkinliğini arttırıcı sinyaller doğurur. Hammerhead ribozimler, kimyasal olarak sentezlenmesi veya vektörlerden transkribe olabilmesi için yeteri kadar kısadır ve hücre de ribozimin devamlı üretimine olanak sağlar (5). siRNA: RNAaz III (Dicer)enzimi ile dubleks RNA’nın stoplazmik prosesinden türevlenmiştir. Dicer, uzun dubleks RNA’yı keserek, 21-28 nükleotid’lik bir siRNA dubleksini oluşturur. Bu dubleks, 5’ fosfat ucunda 2-nükleotid eksik iken, 3’ hidoksil (OH) ucunda 2-nükleotid fazla şeklindedir. RNAi mekanizmasının bileşenleri spesifik olarak siRNA’yı tanır ve (RISC) RNA-uyarıcı silencing kompleksi olarak bilinen protein kompleksi ile siRNA’nın tek ipliği ilişkiye girer. mRNA’ları kesen RISC kompleksi, tek iplikli siRNA’nın 5’ ucundaki 10 nükleotide komplementer sekanslar içerir. Ribozimler gibi, siRNA ‘lar da sentetik olarak üretilebilir veya transkribe olan kısa çift iplikli hairpine benzer RNA’lar vektörlerden ifadelenip, daha sonra siRNA’ya dönüşmektedir. siRNA’lar, ODN ve ribozimler gibi memelilerde hedef pre-mRNA’nın degredasyonunda etkin değildir. Birkaç organizmanın, kromatin modifikasyonlarını ve transkripsiyonel olarak bloke edici genlerini hedef almak için, RNAi ile ilişkili mekanizmaları kullandığı hakkında deliller ortaya çıkmıştır. siRNA’lar, kod oluşturmayan RNA molekülleri olan miRNA’lara benzerler. Bu miRNA’lar, gen ekspresiyonunu regüle etmek için hücreler tarafından doğal olarak kullanılır. Olgun bir miRNA tek iplikli 21-22 nükleotid uzunluğunda ve stoplazmada, 70 nükleotid’lik hairpinden meydana gelir. Olgun miRNA ‘lar, protein kompleksi (miRNP) ile ilişkiye girmekte ve bu kompleks ribozom ile ilişkili olup, miRNA’ya bir kısım komplementer sekanslar içeren mRNA’ların translasyonunu inhibe etmektedir. Mükemmel bir substrat ile sıkı bir komplementerlik oluşursa , miRNA , siRNA gibi davranıp , mRNA degredasyonuna aracılık etmektedir (5). Gen Silencing Yaklaşımlarının Karşılaştırılması Bazı araştırıcılar, kültür modellerinde ODN ve siRNA’nın aracılık yaptığı gen tutuklanmasının farklı yönlerini karşılaştırmışlardır. Bu çalışmalardan çıkan sonuçlar pek belirgin değildir, çünkü gen tutuklanmasının etkinliği, ajanın konsantrasyonuna, transfeksiyon tekniğine, hücre tipine, hedef bölge seçimine, kimyasal modifikasyonlarına ve analize edilecek bilgilerin süresine bağlıdır. RNA’ya bağlanan proteinler ve mRNA’da oluşan tersiyer, quarterner yapılar, ODN’ ler ile hedef RNA molekülü arasındaki hibridizasyonu etkilediği ve bu varyasyonların siRNA’ların etkisini etkilediğine inanan araştırıcılar incelemelere başlamışlardır. Bu çalışmaların çoğunda, mRNA üzerindeki hedef pozisyonuna bağlı olarak ODN ve siRNA’ların etkinliği arasında bir korelasyon bulunmuştur. Modifiye olmuş fosfotiat ODN’ ler toksik olabilir, çünkü, endogenik proteinlere bağlanarak spesifik olmayan bir tavır sergilemektedirler. CpG (sitidin fosfat guanozin) motifi içeren ODN’ ler, IFN’nun ifadesini veya diğer başka immün yanıtta oluşan molekülleri uyardığı görülmüştür. Bu uyarı, Toll – Like reseptör (TLR)’ e bağlanılması ile oluşur. ODN’lerin bu spesifik olmayan özelliği, bazı ODN’lerin tedavi amaçlı olması sonucunda keşfedilmiştir. Ribozimler, ODN’ ler gibi hedeflerine herhangi bir molekülün yardımı olmaksızın hibridize olurlar ve bu hibridizasyon, genlerin baskılanması için ihtiyaç duyulan yüksek konsantrasyon ile ilişkilidir ayrıca, kimyasal olarak modifiye olmuş ribozimler spesifik olmayan etkiler oluştururlar. RNA lokalizasyon sinyallerinden yararlanma veye RNA şaperon’ ları bu problemi çözebilir. Böylece, ribozimin düşük konsantrasyonu ile ilişkili etkili bir gen baskılanmasını sağlamaktadırlar. En son bilgiler, insan ve farelerde ifadelenen TLR’ nin, üridin / guanozin veya üridin bakımından zengin olan tek iplikli RNA oligonükleotidler tarafından aktivite olduğunu ispatlamıştır (5). Tek iplikli RNA ile bu TLR ‘lerin aktivasyonu, plazmositoid dendritik hücrelerin endozomal kısımlarında oluştuğu ve böylece, IFN – γ ve diğer sitokinlerin ifadelenmesine neden olduğu görülmüştür. Kimyasal olarak modifiye olmuş siRNA veya ribozimler, invivo’da hücreye verilip denature olduğunda, siRNA sekansına bağlı olarak, bu özel TLR’leri aktive etmekdedir. Etkili bir gen baskılanması sağlamak için gerekli olan, siRNA’nın düşük konsantrasyonudur. Buna bağlı olarak siRNA’lar spesifik ve hızlı bir şekilde RISC kompleks ile etkileşmekte böylece, spesifik olmayan proteinlere bağlanma potansiyeli azalmaktadır. Bazı çalışmalar, normal konsantrasyondaki siRNA’ların transfeksiyonunun, gen ekspresiyonunda spesifik olmayan global etkilere neden olmadığını göstermiştir. Memelilerdeki RNAi uygulamaları, gen ekspresiyonunu spesifik olmayan şekilde etkiler, tabiki siRNA konsantrasyonuna, hücre tipine, siRNA ekspresiyonunun moduna ve ajanın hücreye veriliş şekline de bağlıdır. Bu spesifik olmayan etkiler, IFN yanıtının oluşmasından sorumlu genlerin stimülasyonunu içerir hatta, bu çalışmalardaki IFN’yi oluşturan genlerin indüksiyonu, hücresel büyümeyi engellemesede böyledir. Eğer, tam bir IFN yanıtı oluşursa, büyümeyi engelleyebilir. Uzun dubleks RNA ile transfekte olmuş, veya IFN tip 1 ile yada yüksek konsantrasyondaki siRNA ile tedavi edilmiş HeLa hücrelerinin mikroarray gen profillerinin bir kısmı birbiri ile çakışmaktadır. Bu çalışmalarda, tedavi ve araştırma çalışmalarındaki siRNA uygulamalarının potansiyel yan etkileri belirlenmiş ve tanımlanmış efektif siRNA’ların önemi üzerinde durulmuştur. Gen baskılanması için mümkün olan en düşük konsantrasyon kullanılmalıdır. Farelerin, kısa RNA hairpini üreten vektörler ile tedavi edildiğinde, IFN oluşturan genleri uyarması çok ilginç bulunmuştur. Spesifik olmayan etkileri yanında, nükleik asit bazlı gen baskılayan moleküller, hedefin etkilerini bloke etmeye hazırdır. Hedef etkilerinin yok edilme seviyesi, nükleik asit hibridinin stabilitesine ve baskının moduna bağlıdır. ODN’ler, hedef etkisini bloke etmeye eğilimlidir, çünkü 6 veya 7 sıralı DNA / RNA baz çiftleri RNAaz-H tarafından tanınmaktadır. Bu problemi çözmek için, antisens oligonükleotid gamper adında bir yapı geliştirilmiş, böylece ODN’lerin yaklaşık 10 nükleotidinden sadece bir tanesi RNAaz – H yanıtı göstermiştir. siRNA’lar dikkatlice seçilmez ise, bir mRNA hedefine kısmen komplementer olan siRNA’lar , endogenik miRNA’lar gibi davranıp translasyonu baskılar. Aynı transkripte karşı hedeflenmiş farklı siRNA’lar ile oluşmuş gen ekspresiyon profilleri karşılaştırıldığında, hem siRNA hem de mRNA ipliklerinin 5’ uçları arasındaki en az 11 – 14 nükleotidlik komplementerlik, transkript düzeyinde hızlı bir düşüşe sebebiyet verir. Antisens sekanslar olarak seçilmiş ODN, ribozim DNAzim ve siRNA’ lar, seçici olarak tek bir nükleotid ile hedefi diğerlerinden ayırabilir (5). siRNA’ların Hücrelere Verilimi ODN’ler ve ribozimler, farklı stratejiler kullanarak in vivo’da başarılı bir şekilde hücrelere verilir. Klinik denemelerde, ODN’lerin en popüler modu, intravenöz injeksiyonudur. siRNA-, siRNA üreten plasmid veya siRNA üreten virüslerin memeli model organizmalara verilmesinde çeşitli yöntemler kullanılmaktadır (5). Bu yöntemler içinde, elektroporasyon ve hem lokal hem de sistemik injeksiyonu yer almaktadır. Çok etkili bir silencing için hücreye verilim yöntemi hakkında genelleme yapmak zordur çünkü hücre içine injeksiyonda, farklı dokuların farklı istekleri söz konusudur. Özellikle farklı boyutlardaki hücreler için fare dokularına siRNA’ ların verilmesinde ilk prosedür, fizyolojik solusyondaki siRNA’ ların, damar ucuna injeksiyonudur. Bu yöntem ile karaciğerde %90 oranında hedef gen ekspresiyonunun azaldığı görülmüştür. Bu oran akciğer, böbrek ve pankreas’ta daha azdır. Silencing süresi, 1 haftadan fazla sürer ve silencing seviyesi tam net değildir çünkü hayvandan hayvana varyasyonlar mevcuttur. siRNA üreten virusların gelişmesi, özellikle insan hastalıkları için gen terapinin alternatif modudur. Birkaç çeşit virus, siRNA’ların üretimi için dizayn edilir. Virus çoğunlukla epizomal form’da bulunur yani, konukçu genomuna entegre olması düşüktür. siRNA üreten AAV (Adeno associated vektör)’nin fare beyni içine injeksiyonundan 7 hafta sonra etkili bir silencing sonucu alınmıştır. siRNA üreten Adenovirusun fare karaciğerine damar yolu ile veya fare beynine direk injeksiyonu ile verilimi gen ekspresiyonunda etkili bir baskılanma yaratmıştır. siRNA’lar tedavi amaçlı deneylerde kullanılıcaksa, in vivo’da siRNA’ların hücreye verilmesinde pozitif sonuç elde edilmesi ve Amerika’da FDA tarafından “yetim ilaç” statüsü verdiği kimyasal olarak modifiye edilmiş ODN’lerin hücreye verilimini de kapsayan yöntemler için çalışmaların sürdürülmesi gerekmektedir. Son yıllarda ODN’lerin de içinde bulunduğu birkaç makromolekülün transdermal penetrasyonunu sağlayacak küçük moleküller keşfedilmiş. Akciğerler içine gen enjeksiyonu için kullanılmış aerosol yöntemler, yakın gelecekte siRNA’ların hücrelere iletiminde de benzer şekilde kullanılacaktır (5). siRNA Bazlı Tedaviler Birkaç ODN ve ribozim molekülleri klinik denemelerde test edilmiştir. Gözdeki sitomegalovirusun infeksiyonunun tedavisi için, FDA tarafından onaylanmış bir antisens ODN (fomivirsen) geliştirilmiştir. Klinik deneylerde kullanılmış antisens oligonükleotidlerin çoğu, modifiye olmuş fosforatiat ODN veya "gamper" dedikleri ODN’lerdir (5). Fakat bunların hedef RNA’lara afinitesi düşük ve yüksek konsantrasyonda toksisiteye neden olan problemleri vardır. Kimyasal modifikasyonların tiplerini içeren ikinci generasyon antisens oluşumlar, klinik deneylerde kullanılmış ve fosforatiat ODN’ ler den daha yararlı olduğu görülmüş. Son çıkan yayınların içerikleri bu farklı ilaçlardan ve onların hedeflerinden bahsetmektedir. siRNA ve onların memeli hücrelerindeki fonksiyonları 3 yıl önce keşfedilmiş fakat henüz klinik denemelerde kullanılması çok erkendir. Klinik programların gelişimi üzerine siRNA bazlı şirketlerin kurulmasından sonra siRNA, tedavi amaçlı gelişimde ODN ve ribozimleri hızlı bir şekilde yakalamıştır. Birkaç deneme siRNA’nın tedavi amaçlı potansiyel yetisini göstermiş; fulminant hepatitlerden, viral infeksiyondan, sepsisden, tümör gelişiminden ve macular dejenerasyondan fareleri koruduğu kanıtlanmış. Yüksek basınç ile damar ucundan verilen siRNA’lar, fare karaciğer hücrelerinde etkilidir hatta, bir grup araştırıcı, çeşitli karaciğer hastalıkları için tedavi amaçlı ajan olarak siRNA’nın potansiyelini test etmişlerdir (5). Karaciğerde ifadelenen apoptozis ile ilgili genler olan caspase 8 ve FAS hücre ölüm reseptörlerinin hedeflenmesi ile fare karaciğerini, çeşitli ajanlar tarafından uyarılmış ani gelişen hastalıklardan korumuştur. Diğer bir grup araştırmacı, virus tarafından direk olarak meydana gelen Hepatit B (HBV) infeksiyonunun tedavisi için siRNA’ların tedavi amaçlı potansiyelinin olup olmadığını araştırmıştır. Protein üretimi ve viral replikasyonu etkili bir şekilde azaltmak için, HBV genomunun bazı kısımlarını hedefleyen siRNA’lar hücrelere verilmiştir (5). siRNA virus oranını azaltsada, infeksiyonu sonlandırıcı etkisi başarısızlıkla sonuçlanmıştır. Bu sonuçlar, siRNA’ların tedavi amaçlı potansiyelini ve uygulamalar için pozitif sonuçlar doğurabilecek yöntemler üzerinde çalışmaların yoğunlaşması gerekliliğini göstermiştir. Nükleik asit bazlı gen baskılanmasının etkinliğini optimize etmek için, birkaç parametreyi incelemek gerekmektedir. Silencing molekül, dokudaki gibi dolaşım sisteminde de stabil olmalı ve toksik etki yaratmadan kan proteinlerine bağlanmalı ancak boşaltım sistemine girmemelidir. Nükleazların etkini azaltmak için kimyasal olarak modifiye olmuş nükleik asitlerin identifikasyonu üzerine denemeler gerçekleşmiş ve bu gerçekleşen denemeler ile tedavi amaçlı gen silencing kullanım sağlanmıştır. Sistemik verilim için yapılan, yapılması gerekli olan oluşumlar, klinik denemelerde modifiye edilmiş fosforatiat ODN’ler için açıklanmıştır. Modifikasyon ODN’nin hedef RNA’sına olan afinitesini azaltsa da in vivoda, stabilite, hücre içinde kalma ve hücresel alınımlarının gelişmesi ile moleküllerin etkinliğini arttırmış. Fosforatiat modifikasyonlar ODN’ lerin kan proteinlerine afinitesini arttırır ve nükleazların aktivitesinden ODN’ leri uzak tutar. Tek iplikli spesifik endonükleazlardan korunmuş, siRNA dubleksleri, serumda hem ODN hem de ribozimlerden daha stabildir. Modifiye olmamış siRNA’lar hücreler tarafından tam olarak alınmaz, hatta kan proteinleri için etkili bir afiniteye sahip olmazlar. siRNA’lar tedavi amaçlı kullanılacak ise, modifiye edilirler. Virusların kullanımını içeren gen terapi bazlı platformlar hariçtir. siRNA’ların modifikasyonu, siRNA’nın RISC kompleksi ile etkileşimini engeller (helikaz aktivitesi ile siRNA dubleksinin açılması hedef kesme oranı ve ürün oluşumunu etkiler). Bazı araştırıcılar, iyi bir silencing etkisi yaratıcı ayrıca, siRNA stabilitesini arttırıcı kimyasal modifikasyonları identifiye etmeye başlamışlar. Fosforatiat modifikasyonları siRNA dublekslerini tolere edebilirler ve siRNA’ ların hücresel alınımlarını kolaylaştırırlar. İn vivo’da kimyasal olarak modifiye olmuş siRNA’ ların etkinliği üzerine bir gelişme yoktur. siRNA’ların yapılarına spesifik olan nükleik asit modifikasyonlarının yeni tiplerini geliştirmek için girişimler başlamıştır (5). miRNA miRNA’lar küçük RNA’nın ikinci sınıfıdır. Bitki ve hayvan genomlarının protein kodu oluşturmayan bölgelerinde kodlanır ve Dicer tarafından proses edilir. miRNA’lar RISC’e benzer bir kompleks ile etkileşirler. Hedef mRNA’ya komplementerizasyon derecesine bağlı olarak translasyonel baskılama veye mRNA kesimi oluşmaktadır (7). Bu gizli genlerin çoğu kod oluşturmayan RNA’ lardır ve protein için kod veya open reading frame (ORF) içermezler (8). Yaklaşık 22 nükleotidlik RNA‘lardır ve RNAi yol izinde gen ekspresiyonunu regüle ederler. miRNA’lar, RNA pol II tarafından (pri – miRNA) primer transkript olarak meydana gelirler. Bu tanskriptler ORF içersin ya da içermesin, splice edilir, poliadenillenir ve mRNA’lara benzerler. Bir intron veya ekzonda lokalize olmuş stem loop yapısı, fonksiyonel komponenttir. Örneğin miRNA genleri olan mir -106b, mir – 93 ve mir-25 protein kodlayan genin intronunda lokalize olmuşlardır. Stem loop yapısı ribonükleaz olan Drosha ve Dicer tarafından proses edilip, olgun miRNA oluştururlar. Bu RNA, RISC kompleksi ile etkileşir ve bu kompleks mRNA’ların baskılanmasını yönlendirir. İnsanda identifiye edilmiş miRNA genlerinin sayısı 300’den yüksek olup, hücre bölünmelerinde ve gelişimsel proseslerde rol alırlar (8). miRNA Genlerinin Kanserdeki Genomik Değişimler ile ilişkisi İnsan miRNA’ların çoğu genomlardaki kırılma noktalarının hemen yakınlarında lokalize oldukları görülmüştür (8). Örneğin, kromozom 13q14’teki delesyon yıllardır çalışılmaktadır, kronik lenfosit lenfoma ve birkaç tümörün oluşumuna neden olmaktadır. Bu lokustaki kansere neden olan şüpheli genlerin çoğu, miRNA diziliminden oluşur. Bu dizilim, mir - 15a ve mir – 16 – 1 içermektedir. Acaba, bu miRNA’ların delesyonu tümör oluşumunu nasıl etkiler? En son datalar, hem miR-15a ve miR-16, anti – apoptik gen olan BCL-2 genini hedeflemesi ile normal apoptik bir yanıt meydana getirdiğini göstermiştir. Bu bakımdan, bu miRNA’ların tümör supresör olarak fonksiyon göstermesi ve limfoma hücrelerindeki miR – 15a – 16‘ nın yeniden ekspresiyonu, apoptozisi ilerlettiği görülmüş. Buna ilaveten, delesyonlar için miRNA lokusları haritalanmıştır. Bunun bir örneği, akciğer, baş, dil, B-hücre ve foliküler limfomada amplifiye edilmiş 13q31 kromozomu çok iyi bir şekilde çalışılmış. Chr13orf25 (kromozom 13, open reading frame 25) genin ifadelenmesi ile hastalıkların ilişkisi vardır. Bu gen protein oluşturmayan küçük ORF’ye sahiptir. Bu transkripteki miRNA öncüleri miR – 17, 18, 19a, 20, 19b ve 92‘ dir. Bu dizilerden 28 miRNA’ların ekspresiyonunun artması, primer limfomada ve tümör oluşturan hücrelerin meydana gelmesini tetikler. Tümör oluşumundaki bu miRNA’ların rolleri, Burkitt’in lenfoma için fare modelinde gösterilmiştir. Tablo – 2 Kanser genlerinin siRNA tedavileri (6) Kök Hücreler, miRNA’lar ve Kanser Bir tümördeki hücrelerin bazı bölümlerini inceleyen tümör oluşum modelinde kök hücre özelliklerine sahip oldukları meydana çıkmıştır (8). Bu kanser kök hücreleri, tümör oluşumunu başlatma ve sürdürme özelliğine sahiptir. Halbuki tümör’deki hücre yığınları bazı farklılıklar gösterip, tümorogenik değildirler. Bunun miRNA’lar ile ilişkisi nedir? Tümörler, kök hücrelerini andıran bir biçimde miRNA profili sergiler. Çoğu miRNA’ların ekspresiyonunu azaltırlar fakat miR–17-92 içeren kök hücre miRNA’ların ekspresiyonunu etkilemezler. RNAi ve kök hücrelerin devamlılığı arasında biyokimyasal bir ilişki vardır. Drosophila ve bitkilerde, kök hücre devamlılığı için RISC komponenti olan Argonaute gereklidir. Dicer – 1 ‘in mutasyonu tarafından miRNA fonksiyonunun kaybı, Drosophiladaki üreme kök hücrelerinin çoğalmasını azaltmıştır. Siklin bağımlı kinaz inhibitörü olan Dacapo’nun ekspresiyonundaki artış, G1 ve S fazı arasındaki tutuklanmaya yol açmıştır (8). Tahmin edilen miRNA hedef bölgeleri, Dacaponun 3’UTR (Translate edilmemiş) kısmında bulunur. Önemli olan bu bölgelerin kök hücrelerde eksprese olmuş miRNA’lara uygunluğudur. Bir S-faz indüksiyon regülatörü olan p27 – Kip1, Dacoponun insandaki homoloğudur. Bu gen memelilerdeki bir miRNA hedefi olup olmadığı bilinmiyor, eğer öyle ise, hücre çoğalmasını ilerletmek için onkogenik miRNA‘ nın ekspresiyonunu engelleyici bir gen sağlanmış olur. Tedavi Amaçlı miRNA’lar İnsandaki kanser için miRNA’lar anahtar yapılar sunarsa, potansiyel tedavi amaçlı olarak gözden geçirilir (8). Tedavi amaçlı molekül hücresel alınımı ve serumdaki stabilitesi için modifiye edilmiş nükleik asit özelliğinde olmalıdır. Bir grup araştırıcı, kültüre olmuş hücrelerde miRNA fonksiyonunun antisens inhibitörü olarak modifiye olmuş 2’-O-metil RNA’ların görev yaptığını gözlemlemişler. Bu moleküller miR – 17, 92 olan hedef onkogenik miRNA’lar için kullanılır. Tümör suppresör miRNA’lar konusunda istenilen tedavi amaçlı strateji hücrelerdeki fonksiyonlarını arttırmak için olabilir. Serumda stabilize olmuş pre – miRNA’lar bunu başarabilir. Buna bir örnek, per–let-7‘nin hücreye verilimi RAS ekspresiyonunu durdurarak tümörün ilerlememesine neden olmasıdır. Ribozim Katalitik RNA’lar olarak bilinen ribozimler, intraselüler ortamda aktivitelerini optimize etmek için dizayn edilirler (10). Aktif ribozimlerin kütüphanelerinin hücre içine verilmesi gen işleyişinin identifikasyonuna olanak sağlar. Gen işleyişini saptamak için siRNA kütüphanelerini baz alan RNA bazlı araçlara, ribozim teknolojisi bir alternatif sunmaktadır. Tablo 3. Hastalıklarda ve hayvanlarda miRNA’ların biyolojik fonksiyonları (9) Pri – miRNA ‘lar nukleusta transkribe olmaktadır (1). dsRNA’ya spesifik olan Drosha nukleustaki pri-miRNA ‘yı degrede ederek stoplazmaya verilmeden önce pre-miRNA’ya dönüştürür (2). Exp5 (exportion-5) pre-miRNA’ların nukleustan stoplazmaya geçişinden sorumludur (3). siRNA’lara benzer olarak miRNA’lar dicer tarafından olgun miRNA‘ ya dönüştürülür ve bir ipliği ribonükleoprotein kompleksi olan miRNP ile etkileşir (4) (RISC kompleksine benzer). miRNA ve hedefi arasındaki baz eşleşmesi RISC kompleksinin mRNA’yı parçalamasına veya proteine translasyonunu durdurmaya sebebiyet verir (6). Şekil 6. miRNA ‘nın mekanizması İnvivo'da Ribozim Ekspresiyonunu Optimize Etmek Sekonder yapısının şeklinden dolayı ismi konan “hammerhead ribozim“, infekte olmuş bitkide orijinal olarak keşfedilmiş katalitik RNA moleküdür (10). Hammerhead ribozimin kendi başına kesim aktivitesi, tek iplikli yaklaşık 350 nükleotidlik, protein kılıfından yoksun RNA olan “virusoid“ moleküllerinin replikasyonu için zorunludur. Hammerhead ribozimler, herhangi bir RNA’yı kesmek için dizayn edilebilir (10). Bu dizayn, ribozimin substrat tanıma kısımlarında yapılır böylece, hedef sekansa komplementer tanıma bölgeleri içerebiliyor. Substrat kesimi, hedef RNA’daki NUX (N, herhangi bir baz ise X, A, C veya U dur.) sekansına göre ayarlanıyor. Dizayn edilen ribozimler, farklı RNA’ları kesebilir. Bu ribozimler, ya hammerhead veya hairpin ribozimlerdir. Ribozimler sentez ve modifikasyonları kolay ve yüksek oranda spesifik durumları ile hedef mRNA’ların ekspresiyonunu regüle ederler. İnvitroda, ribozimlerin kesim aktiviteleri, hücresel ortamdaki aktiviteleri ile koralasyon göstermek zorunda değildir. Bu yüzden memeli hücrelerindeki spesifik RNA’ların kesimi için ribozimlerin uygulamaları ifade sistemlerinin gelişimine gereksinim duyar (10). Tablo 4. Ribozimlerin invivo aktivitesini optimize etmede gerekli olan unsurlar (10) Şekil - 7 Hammerhead ribozimin ifadelenmesi a. Hammerhead ribozimin sekonder yapısı, onun substratı RNA (açık mavi) ve substratın kesim bölgesi gösteriliyor. N herhangi bir baz ve X A , C veya U ‘ yu simgelemektedir. b. Oklar, 3’ tRNaz veya RNaz P tarafından wild-type tRNAVAl (yabani tip)‘nın proses edilen bölgelerini göstermektedir. Transkripsiyon için RNA polimeraz III‘ ün etkileşimde bulunduğu promotor, internal promotordur; transkriptler, tRNA sekanslarının içindeki promotor elementlerini içerir (A ve B kısımları, kırmızı renkli). Ribozim sekansı doğal formdaki tRNA sekansının 3’ ucuna bağlanırsa, 3’ tRNaz ribozim – tRNA transkriptinden ribozim kısmını keser. Sonuçta oluşan ribozim endogenik RNaaz tarafından degrede olur. Bu yüzden modifiye olmuş yapıda, wild – type tRNA ‘nın 3’ kısmının bir bölümü linker sekans ile yer değiştirilir ve stem yapısı oluşur. Stem yapısı ribozimin tRNAval kısmından ayrılmasını bloke etmektedir (10). Yüksek İfade Seviyeleri RNA pol III tarafından tanınan promotorlar, tRNA ve küçük nüklear RNA olan küçük RNA’ların transkripsiyonundan sorumludur(10). Bu sebebten dolayı, Pol III ifade sistemleri, hammerhead, hairpin ribozimler ve siRNA olarak bilinen küçük RNA’ların transkripsiyonunda rol oynar. Pol III transkriptleri, pol II transkriptleri ile karşılaştırıldığında, ekstra sekanslar içermektedir (her transkriptin 3’ ve 5’ uçlarında polyA ve cap yapısı vardır). Bu özellikler, pol III sistemini ribozim ve siRNA’ların ekspresiyonu için ideal yapıyor yani, transkriptlerin yüksek seviyeleri güçlü aktivite için gereklidir ve ekstra sekanslar inhibitör etkisi yapar. tRNAmet tRNAva veya tRNAlys gen promotorunu veya U1, U6 veya adenovirus VA1 promotorunu içeren PoI III ifade sistemleri, hücrelerdeki hammerhead ve hairpin ribozimlerin ifadeleri için gereklidir. U6 promotoru çoğunlukla siRNA ifade vektörleri için kullanılır. Bunun yanında, farklı promotorlardan transkribe olmuş siRNA ve ribozimler sahip oldukları çeşitli özellikleri kendi promotorlarından alırlar (10). Kanser Biyolojisindeki Araştırmalar Tümör hücrelerine, hairpin ribozim transfeksiyonu yapılmış ve transforme olmuş hücreler birkaç hücresel proses olan apoptozis, kontak inhibisyonu ve üreme gibi normal regulasyonunu kaybetmiş (10). Hairpin ribozimleri alan hücrelerde tümör supressör gibi regülatör protein fonksiyonu olan bir gen hedeflenmiş ve biyolojik yol izlerinde birkaç yeni genler identifiye edilmiş. Bunların içinde insandaki gene homoloji gösteren D. melanogaster’de “ppan” ve"Mtert"geni keşfedilmiş. Ppan, hücre büyümesinin inhibitörü olarak, Mtert geni ise fibroblast transformasyonunun supressörü olarak identifiye edilmiş. Metastazi Genlerinin İdentifikasyonu Kanser hücrelerinin metastazisinde görev yapan genleri identifiye etmek için rastgele dizayn edilmiş ribozim kütüphaneleri kullanılmış. Kanserin erken safhalarında genellikle malignant hücreler lokalize olur. Hastalık ilerlediğinde metastazi için hücreleri uyaran çeşitli genler ifadelenir veya baskılanır. İnvaziv kanser hücrelerinin hareketi, invaziv olmayan veya zayıf invaziv özellik gösteren hücrelerden daha fazladır (10). Metastazinin mekanizması, kompleks ve çoğunlukla bilinmeden kalmıştır. Bu yüzden metastatik proseslerdeki basamakları identifiye etmek için, farklı prosedürler keşfetmişler. Bunlardan ilki, kemotaksi denemesi, rastgele dizayn edilmiş 33 genler yüksek oranda hareketli olan HT1080 hücrelerine verilir. Transfeksiyondan 24 saat sonra ekstraselüler matriks jeli ile çevrilmiş porlu filtre ile ayrılmış kemotaksi denemesine maruz bırakılmış. Kemoattranktant olarak fibronectin içeren bu denemede yüksek konsantrasyon içeren kısımdan daha düşük konsantrasyon içeren kısma doğru bir geçiş olur. 24 saat sonra yüksek konsantrasyonda bulunan çok az seviyedeki hücreler incelenmiş (invaziv olmayan hücreler). Ribozim taşıyan vektörleri alan bu hücrelerde migrasyonu tetikleyen genler bloke olmuş. İkinci yaklaşım, hücre invazyon denemesi. Bu deneme ilk denemeye benzer, sadece alt kısımın matriks jeli çevrelenmesi hariçtir. Retroviral vektörler (ribozim genlerini içerir)fare fibroblast NIH3T3 hücrelerine verilir. Bu hücreler jel ile çevrelenmiş filtre içinden çok zor geçer ve matriks jeline penetre olmuş hücrelerden RNA izole edilir. Bu RNA’nın, reverse transkripsiyonundan sonra, fibroblastların invaziv aktivitesini sağlayan 8 ribozim bulunmuş. Hücre kültür koşulları fizyolojik durumu tam olarak yansıtmasada, ribozim teknolojisi fare pulmonar tümörogenezis için bir yoldur. Ribozim kütüphaneleri, viral hayat çemberi, apoptik yol izleri, alzhemier hastalığı, kas ve neuronal farklılaşma fonksiyonu gösteren genleri identifiye etmede yararlanılır. Özellikle ribozim kütüphaneleri sinirsel kök hücrelerin farklılaşmasını regüle eden kod oluşturmayan RNA ‘yı identifiye etmede kullanılır. Şekil – 8 Metastazide görev yapan genlerin identifikasyonu a. Rasgele dizayn edilmiş ribozimler, hareketli HT 1080 hücrelerine veriliyor. b. Transfeksiyondan 24 saat sonra, hücreler ekstraselüler matriks jel ile kaplı porlu bir filtre ile ayrılmış alanda kemotaksi denemesine maruz bırakılmış. Üst kısımdan ekstraselüler matriks yolu ile alt kısma göç eden invaziv hücreler gözlemlenmiş. c. 24 saat sonra üst kısımdan göç edememiş hücreler alınmış. d. Alınan hücrelerdeki ribozimler çıkartılmış ve yeniden daha zor şartlar altında test edilmiş. e. Bu ribozim sekansları kullanılarak databazlı araştırmalarda istenen genler saptanmıştır (10). siRNA ve Ribozim Kütüphanelerinin Karşılaştırılması Son yıllarda RNAi, gen baskılanması için güçlü bir araç olarak dikkatleri üstüne çekmiştir (10). C. elegans hücresine dubleks RNA’nın verilmesi sonucunda ilk gen baskılanması ortaya çıktıktan sonra, bitkilerde, D. melanogaster, protozoa ve memeli türlerindeki varlığı saptanmıştır. RNAi mekanizmasında, ekzogenik dubleks RNA’lar 21-23 nükleotidlik siRNA oluştuktan sonra RISC kompleks ile ilişkiye girer. siRNA – RISC kompleksi, sekansa spesifik olarak hedef mRNA’yı keser. Bu reaksiyon, ribozimler tarafından hedef mRNA’nın kesimine benzemektedir. RNAi ‘nin potansiyel gücü, bilimsel kominitelere, genom analizleri ve gen işleyişleri için işe yarar bir araç olarak bakma cesaretini vermiştir. siRNA ifade vektörlerini ve kütüphanelerini kullanarak memeli genomunun karşılaştırmalı sistemik analizlerini yapılmıştır. siRNA kütüphaneleri ile, TRAIL ile indüklenmiş apoptozis, P53‘ e bağlı üremenin tutuklanması ve fosfadilinositol 3 – kinaz (P13)yol izlerinde yeni komponentler identifiye edilmiştir (10). Etkinliği ve Hedef Spesifitesi Ribozim ve siRNA teknolojileri arasındaki en büyük farklılık, siRNA’lar endogenik proteinler ile iş birliği içindedir (10). Halbuki ribozimlerin aktivitesi hücresel faktörlere bağlı değildir. Bu yüzden, siRNA’lar birçok hücresel enzimi kullanır örneğin helikaz ve RNAaz’lar, hedef mRNA’nın kesiminde görev yaparlar. Bundan dolayı, hedef mRNA’ların baskılanmasında ribozimlerden daha etkili bir araçtır. Her iki teknolojide de, hedef bölgelerin seçimi aktiviteyi belirlese de, daha düzenli bir mRNA’nın yapısı siRNA’dan çok, ribozim aktivitesini daha güçlü etkiler. Buna karşın siRNA’ların baskılayıcı aktivitesi, mRNA’nın düzenli yapısından çok, siRNA ve bir grup endogenik protein arasındaki etkileşime bağlıdır. siRNA’ların en önemli dezavantajı, spesifik olmayan baskılayıcı aktivitesidir. Bu baskılayıcı aktivite interferon üretiminin indüklemesi veya hedef olmayan genlere karşı sekansa spesifik silencing etki anlamına gelmektedir. siRNA’nın bir ipliği (antisens) hedef mRNA’ya komplementer, diğer ipliği (sense) değildir. Sense ve antisense iplikler, hedef olmayan mRNA’nın translasyonunu inhibe edebilir. Hedef olmayan genler üzerindeki etkilerin tahmin edilmesi zor olduğundan, bu konuda ribozimler daha düşük aktiviteye sahip olmalarına rağmen, siRNA’ların bir adım önünde bulunmaktadır. Son yıllarda siRNA alanındaki gelişmeler hız kazanmıştır (10). Örneğin, daha önceleri kullanılan 21 – 23 mer siRNA’ların nanomolar konsantrasyonları yerine günümüzde 27 mer’ lik siRNA’ların pikomolar konsantrasyonları kullanılmaktadır. Bu konsantrasyonun kullanılması, hedef dışındaki etkisini minimize edebilir Ayrıca, siRNA ifade vektörlerini dizayn etmek mümkün; shRNA (short haırpın RNA – sens ve antisens sekansları içermekte, Dicer tarafından shRNA siRNA‘ ya dönüştürülür.)‘ nın sadece sens ipliğinin degrede olacağı vektör düzenlenir ve böylece hedef dışı etkileri minimize edilmiş olur. İnterferon uyarılması, sekansa bağlı olmadan spesifik olmayan etki demektir yani, ekzogenik dubleks RNA tarafından immün yanıtın aktive olması demektir. siRNA’lar bu yanıtı uyarmayabilir. Uzun dubleks RNA 30bp’den büyük olursa bu yanıt oluşmaz. Ayrıca, siRNA ‘nın interferon yanıtını uyardığı ve bu yanıtın oluşmaması için bazı faktörler identifiye edilmiştir. Stem (gövde) bölgesinde bir mutasyonun meydana getirilmesi ile (C→U veya A→G) interferon yanıtı azaltılır. Yalnız bu çözüm dsRNA>100bp olduğu durumlar için geçerlidir. Antisens Teknolojisinin Çözüm Bekleyen Sorunları İlk sorun, genlerin insana verilmesini sağlayacak daha kolay ve etkili yöntemlerin bulunmasıdır. Bir başka sorun ise, nakledilen genin hastanın genetik materyalinin hedeflenen bölgesine yerleşmesini sağlamak ve böylece olası bir kanser ya da başka bir düzensizlik riskini ortadan kaldırmaktır (11). Bu konudaki başka bir sorun da, yerleştirilen yeni genin vücudun normal fizyolojik sinyalleriyle etkin bir biçimde kontrolünün sağlanmasıdır. Örneğin insülin, doğru zamanda ve doğru miktarda üretilmediği zaman, hastaya yarar yerine zarar getirecektir. Şu ana kadar yapılan çalışmalar sonrası iyi sonuçlar alınabilmiş fakat kalıcı tedavi çoğu zaman başarılı olamamıştır (11). Bunun bir nedeni, vektörlerin taşıdıkları genin uzun süreli ekspresyonuna izin vermeyişleri, diğeri ise denemelerde etkinlikten çok güvenliğin ön plana çıkmasıdır. Kanser tedavisi için antisens oligonükleotidleri major kaynak olarak görmeden önce, iki temel zorluğu çözmek gerekmektedir. İlaç verilmesinde en çok aranan özellik basitliktir (12). Oligonükleotidin hücresel alınımı sınırlı ve hücre tipleri arasında varyasyonlar göstermektedir. Örneğin, normal lenfositlerin antisens nükleotidleri çok zayıf aldığı gözlemlenmiştir. Lipozomal taşıyıcılarında içinde bulunduğu çeşitli formulasyonlar sonuçlarına bakılmaksızın denenmiştir. Antisens oligonükleotidlerin direk injeksiyonu en yüksek tümör konsantrasyonlarında verilir fakat sistemik tümör tedavisi için kullanımı limitlidir. Gut epitel hücreleri, antisens oligonükleotidleri çok iyi bir şekilde almaktadır, bu yüzden oral formulasyonu mümkündür ve uygulamalar arasında en çok umut veren olabilir. İkinci çözülmeyen konu, hedef onkogen zaman zaman mı aktif oluyor yoksa, bir tümör hücresi olarak mı kalıyor? Tümör hücreleri bazen hareketsiz kalabiliyor ve büyüme aktivitesi, antisens oligonükleotidin verilmesi ile eş zamanlı olmayabiliyor (12). Şu anki duruma göre, önümüzdeki yıllarda gen tedavisindeki eğilim, genleri istenilen hücrelere en etkin biçimde taşıyabilecek vektörlerin dizayn edilmesi yolunda olacak gibi görünüyor. O zaman, gen tedavisinin daha başarılı sonuçlar vereceği söylenebilir. Kaynaklar 1. IDT Tutorial. 2005. Antisense Technologies, 1-12. 2. Kurreck, J. 2003. Antisense Technologies improvement through novel chemical modifications. Eur. J. Biochem, 270: 1628-1644 3. Uprichard, S. L. 2005. The therapeutic potential of RNA interference. FEBS Letters, 579: 5996-6007. 4. Aigner, A. 2006. Gene silencing through RNA interference (RNAi) in vivo: Strategies based on the direct applications of siRNAs. Journal of Bıotechnology, 124 (1): 12-25. 5. Dorsett, Y and Tuschl, T. siRNAs:2005. Applications in Functional Genomıcs and Potential as Therapeutics. Nature Biotechnology, 40-51. 6. Rychahou, G. P., Jackson, N. L., Farrow, J. B and Evers, M.B. 2006. RNA interference: Mechnanisms of action and therapeutic consideration. Surgery ; 140: 719-25. 7. Matzke, A.M and Birchler, J.A. 2005. RNAi – Mediated Pathways in the Nucleus. Nature Reviews Genetics, 6: 24-35. 8. Hammond, S. M. 2006. MicroRNAs as oncogenes. Current Opinion in Genetics and Development , 16:4-9. 9. Wienholds, E., Plasterk, H.A R.2005. MicroRNA function in animal development. FEBS Letters, 579: 5911-5922. 10. Akashi, H., Matsumoto, S. and Taira, K. 2005. Gene Dıscovery By Rıbozyme and siRNA Libraries. Nature Reviews Molecular Cell Biology, 6: 413-422. 11. Yaşar, Ü. 2006. Gen Tedavisi; Hastalıkların biyolojik temeli III. www.medinfo.hacetttepe.edu.tr/ders. 12. Cunnıngham, C.C. 2002. New modalities in oncology: antisense oligonucleotides. BUMC Proceedings, 15: 125-128.   PDF KAYNAK: documents/tipbil14_3_11.pdf

http://www.biyologlar.com/antisens-teknolojileri-hakkinda-bilgi

Sinirbilimciler ışıkla kas hareketlerini kontrol ettiler

Sinirbilimciler ışıkla kas hareketlerini kontrol ettiler

Amerikanın dünyaca ünlü bilim ve teknoloji enstitüsü Massachusetts Institute of Technology (MIT)’deki sinirbilimciler ilk kez omurilikte bulunan sinirler arası elektriği kontol etmeyi sağlayan optogenetik teknikler ile kas hareketlerini kontrol etmeyi başardılar.Profesör Bizzi önderliğinde araştırmacılar ışığa karşı duyarlı olan proteinleri farelerin omurliğinde bulunan sinirlerin yüzeylerinde üreterek bu sinirleri mavi ışık dalgası ile kontrol altına almayı başardılar. Mavi ışık dalgasında farelerin ayak kaslarının geri donüşümlü olarak hareketsiz hale geldiğini gözlemlediler. Araştırmacılar 25 Haziran 2014’te PLOS One’da yayınlanan çalışmalarının omurilik ile ilişkili olan kompleks hareket devrelerinin anlaşılmasına yeni bir yaklaşım getirdiğini belirttiler.Ekip bir süredir MIT McGrown Beyin Enstitüsünde optogenetik teknikler ile omurilik üzerinde bulunan ara sinirlerin duyu ve hareket devreleri üzerindeki etkilerini araştırıyordu.Önceleri araştırmacılar elektriksel sinyaller veya bir takım kimyevi müdaheller ile sinirleri kontrol edip, fonksiyonlarını anlamaya çalışıyorlardı. Bu yeni yaklaşım omurilik bölgesindeki sinirler hakkında harika bilgilere ulaşmamızı sağlasa da, şimdilik belirli alt sinirlerin kontrolünün sağlanmasında tam anlamıyla yardımcı olamamaktadır.Optogenetik, genetik yollar ile sinir hücrelerin yüzeylerinde ışığa duyarlı opsins proteinilerin üretilmesi ve bu sayede sinir hücrelerindeki kalsiyum akışını veya elektrik sinyallerini belli dalga boylarındaki ışıklar ile kontrol altına alma tekniğidir. Bu sayede bazı sinirler aktif edilirken, bazıları da pasifize edilebilmekte.McGrown Beyin Enstitüsünden Prof. Bizzi, optogenetik ile karakteristik açıdan benzerlik gösteren hücre sistemelerine müdahale edip bu sistemlerin nasıl çalıştığını aydınlatılabileceğimizi düşünüyor.Omurilikte bulunan durdurucu sinirler kas kasılmalarını durdurarak denge ve hareketin sağlıklı bir şekilde sürdürülmesi içim önemli rol oynamaktadır. Örneğin bir elma yediğinizde bazı çene kaslarınız kasılırken bazılarıda gevşer bu sayede dengeli bir hareket sağlanmış olur. Ayrıca, durdurucu  sinirlerin REM uykusu sırasında kas kasılmalarını durdurucu etkide gösterdiği bilinmektedir.Araştırmacılar bu çalışmada durdurucu sinirlerin fonksiyonu daha iyi anlamak için omurilik sinirlerinin yüzeyinde genetik yollar ile ışığa karşı duyarlı bir opsin proteini olan channelrhodopsin 2 sentezlenir ve mavi bir ışıkla bu sinir hücreleri aktif edilerek etkilerini gözlemlediler. Torasik omurgalarda bulunan durdurucu sinirler farelerde serbest hareketi aktif ederler. Bu arka bacakların hareketinin bir süreliğine durması anlamınada gelir. Araştırmacılar ayrcıa durdurucu sinirlerin optogeneti ile aktif edilmesinin duyu ve normal refklekslerin üzerinde bir etki oluştumadığını belirtiyorlar.Çalışma ekibinde bulunan Dr. Caggiano, omurgada bulunan sinirlerin optogenetik ile baskılanmasının tamamiyle yeni bir gelişme olduğunu, bunun yanı sıra daha önce hiçbir araştırmacının bu sinirlerin hareketten sorumlu olmasına rağmen duyulardan sorumlu olmadığına değinmemeleri bakımından da  yeni bir keşif olduğunu belirtiyor.Drexel Üniversitesi'nden nörobiyolog ve anatomi Profesörü Giszter ise optogenetiğin getireceği bir zorlayıcı unsurun da bir çok ilginç sorunun bu alan ile gündeme gelmesi olduğunu belirtiyor. Bu soruların yanı sıra bir başka önemli soru ise durdurucu sinirlerin  sinirsel aktiviteyi tamamen sonlandırıcı mı yoksa baskılayıcı bir etki mi gösterdiği üzerine olacağını belirtiyor. Dr. Caggiano, omurga sinirlerinin tam olarak nasıl bir fonksiyonla çalıştığını anlamamız için daha yapılması gereken bir çok çalışmanın olduğunu da belirtiyor.Çevirmenin Notu: Optogenetik sinir bilimlerinde kullanılan çağımızın en parlak ve gelecek vaadeden tekniklerinden biri olmuş durumda. Araştırmacılar, optogenetik teknikler ile beynin gizemini çözmeye daha bir yaklaşıldığını ve istenmeyen hafızaların silinmesinden yeni bilgilerin beyine işlenmesine kadar bir çok mucizevi denecek gelişmelere şahit olabileceğimize inanıyorlar. Bunun yanı sıra bu teknolojideki gelişmelerin  Alzeihmer, Parkinson gibi bir çok mental hastalığa da çözüm olabileceğini belirtiyorlar.Referanslar:1. Sciencedaily2. Vittorio Caggiano, Mirganka Sur, Emilio Bizzi. Rostro-Caudal Inhibition of Hindlimb Movements in the Spinal Cord of Mice. PLoS ONE, 2014.Görsel kaynak: İllüstrasyon, Jose-Luis Olivares/MIT  http://www.bilim.org

http://www.biyologlar.com/sinirbilimciler-isikla-kas-hareketlerini-kontrol-ettiler

Balıkların Görme Organı ve Görüş Sahası

Balıkların gözü, ön tarafta hafif konveks bir durum arzeden küresel şekildedir. Görme yoluyla yön tayininin balıkların çoğu için büyük bir önemi vardır. Balıkların göz kapakları yok ise de, bazı balıklarda (Kefal balıklarındaki gibi) diğer omurgalılarınkine nazaran farklı yapıda olan etten yapılmış göz kapakları bulunur. Eskiden, balıkların çok iyi gördükleri zannedilirdi. Hakikaten balıklar insanı şaşırtacak bir emniyet ve son derece hızlı, bir süratle engeller arasından sıyrılıp geçmesini bilirler. Bugünkü görüşe göre ise, balıklardaki görme hissinin tam olmadığı yapılan tecrübelerde kesinlik kazanmıştır. Fakat herşeye rağmen yine kabul edilir ki, bu görüş noksanlığı diğer bazı özel organların mükemmilliği ile telafi edilmektedir. Bunun yanında çok istisnai olmakla beraber, daima ışıksız mağaralarda Yaşmaya adepte olmuş formların gözleri degeneratif evrimsonucu tamamen kaybolmuş veya deri altında fonksiyonu olmayan çok küçük noktacıklar halinde kalmıştır. Balığın gözü nispeten büyüktür. Kürsel ve sert bir kristal içerir. Kornea tabakası omurgalşılarda olduğu gibi ışığı yansıtmaz. Zira kırılma indisi suyunkinden farksızdır. Kristallerin yerleştiği görme odasının görüş açıları göz kapağının durumlarına bağlıolarak değişmektedir. Genellikle bir balık gözü için görüş açısının değerleri yatay olarak 190° - 170°, dikey olarak ise 150° civarındadır. Balığın önündeki 20-30 ° lik bir açısal alan, ancak iki gözün birlikte görebildiği bir görüş sahasıdır. Balıklar ancak bu durumda, herhangi bir objeyi çok net görebilirler. Eğer bir balık suyun içindeyken yukarıya doğru bakıyorsa, gerek sudaki, gerekse havadaki bir objeyi ancak 98° civarındaki bir açı içersinde net olarak görebilir. Fakat, görüş odasının açıklığı genellikle yukarıya doğru yönelmiş olduğundan, balıklar zemindeki objelerin ancak sudaki hayali yansımasını görürler. Bu yüzden bilhassa hareket halindeki olayların mesafesini tayin edemeyen balıklarda relief hissi çok zayıftır. Normal olarak az ışıklı bir biotopta yasayan balıklar daima ışıktan kaçan bir özellik gösterirler. Bu yüzden fazla ışıklı bir ortama getirilerek orada yaşamaya mecbur tutulursa daima ışığın az olduğu sığınma yerleri ararlar, şayet böyle barınaklar bulamazlarsa kısa zamanda kör olurlar. Bu konuda Lota lota ve Silurus glanis türleriyle bir seri tecrübeler yapılmış ve neticede fazla ışıklı ortamda tutulan bu balıkların kısa zamanda körleşerek hemcinsleriyle çarpıştıkları ve vücutlarında aşırı yaralanmaların meydana geldiği müşahade edilmiştir. Balıklardaki görüş yeteneği, gözünün yapısına göre türden türe az çok değişiklik göstermektedir.

http://www.biyologlar.com/baliklarin-gorme-organi-ve-gorus-sahasi

Bakteri ve Virüslerin Karşılaştırılması

Bakteriler ve Virüsler Monera alemini oluşturan prokaryot canlıların en yaygın ve en çok bilinen grubu bakterilerdir. O kadar yaygındır ki bugün dünyamızda bakterinin bulunmadığı yer yoktur diyebiliriz. En çok organik atıkların bol bulunduğu yerlerde ve sularda yaşarlar. Bununla beraber, -90 0C buzullar içinde ve +80 0C kaplıcalarda yaşayabilen bakteri türleri de vardır. Hava ile ve su damlacıkları ile çok uzak mesafelere taşınabilirler. Deneysel olarak ilk defa 17. yüzyılda bakterileri gözleyebilen ve onların şekillerini açıklayan Antoni Van Lövenhuk olmuştur. Bakteriler bütün hayatsal olayların gerçekleştiği en basit canlılardır. Hepsi mikroskobik ve tek hücrelidirler. Büyüklükleri normal ökaryotik hücrelerin mitokondrileri kadardır. HÜCRE YAPISI Prokaryot olduklarından zarla çevrili çekirdek, mitokondri, kloroplast, endoplazmik retikulum, golgi gibi organelleri yoktur. Ribozom bütün bakterilerin temel organelidir. DNA, RNA, canlı hücre zarı ve sitoplazma yine bütün bakterilerin temel yapısını oluşturur. Bunlara ek olarak bütün bakterilerde hücre, cansız bir çeperle (murein) sarılıdır. Çeperin yapısı, bitki hücrelerinin çeperinden farklıdır. Selüloz ihtiva etmez. Bazı bakterilerde hücre çeperinin dışında kapsül bulunur. Kapsül bakterinin dirençliliğini ve hastalık yapabilme (patojen olma) özelliğini artırır. Bazı bakteriler kamçılarıyla aktif hareket edebilirken, bazıları kamçıları olmadığı için ancak bulundukları ortamla beraber pasif hareket edebilirler. Buna göre bakteriler, kamçısız, tek kamçılı, bir demet kamçılı, iki demet kamçılı ve çok kamçılı olarak gruplandırılır. Bazı bakteriler "mezozom" denilen zar kıvrımları bulundurur. Burada oksijenli solunum enzimleri (ETS enzimleri) vardır. Oksijenli solunum yapan, ancak mezozomu bulunmayan bakterilerde ise solunum zinciri enzimleri hücre zarına tutunmuş olarak bulunur. bakterilerde genel yapının % 90′ı sudur. suda çözünmüş maddeler hücre zarından giriş-çıkış yaparlar. DNA’lar sitoplazmaya serbest olarak dağılmıştır. Bakteriler ökaryot hücrelere göre daha çok ve daha küçük ribozom içerirler. bu sayede protein sentezleri çok hızlıdır. Bakteriler çeşitli özellikleri bakımından gruplandırılırlar. Bu özelliklerin başlıcaları; şekilleri, kamçı durumları, beslenmeleri ve boyanmaları olarak sayılabilir. ŞEKİLLERİ ve BOYANMALARI Bakteriler ışık mikroskobunda bakıldığında başlıca şu şekillerde görülürler. a. Çubuk şeklinde olanlar (Bacillus):Tek tek veya birbirlerine yapışmışlardır. Tifo, tüberküloz ve şarbon hastalığı bakterileri bu şekildedir. b. Yuvarlak olanlar (Coccus): Genellikle kamçısızdırlar. Zatürre ve bel soğukluğu bakterileri bunlara örnektir. c. Spiral olanlar (Spirullum): Kıvrımlı bakterilerdir. Frengi bakterileri ve dişlerde yerleşen Spiroketler bunlara örnektir. d. Virgül şeklinde olanlar (Vibrio): Virgül biçiminde tek kıvrımlıdırlar. Kolera bakterisi gibi. Bakterilerin boyanmaları: Danimarkalı bakteriyolog Gram tarafından geliştirilen boyalarla boyanan bakterilere Gram (+), boyanmayanlara ise Gram (-) bakteriler denir. BAKTERİLERİN BESLENMELERİ Bazı bakteriler ototrof olup, fotosentez veya kemosentez yaparlar. Çoğunluğu ise heterotrof olup, saprofit veya parazit yaşarlar. Saprofit Bakteriler: Bakterilerin çoğunluğunu oluşturur. Besinlerini bulundukları ortamlardan hazır sıvılar olarak alırlar. Nemli, ıslak ve çürükler üzerinde yaşarlar. en çok amino asit, glikoz ve vitamin gibi besinleri ortamdan alırlar. Bu tür bakteriler dış ortama salgıladıkları enzimlerle bitki ve hayvan ölülerini daha basit organik maddelere parçalayarak onların çürümesini sağlarlar. Böylece hem toprağın humusunu artırırlar, hem de kendilerine besin sağlarlar. çürütme sonucu çeşitli kokular meydana gelir. Bu yüzden bu olaya kokuşma denir. Bazı saprofit bakteriler, sütün yoğurt ve peynir olarak mayalanmasını sağlarlar. Saprofitler, dünyada madde devrinin tamamlanmasında önemli rol oynadıklarından hayat için mutlaka gereklidir. Parazit Bakteriler: Besinlerini cansız ortamdan değil de üzerinde yaşadıkları canlılardan temin ederler. Çünkü sindirim enzimleri yoktur. Bunların bazıları konak canlıya fazla zarar vermeden yaşayabilirler. Sadece onun besinlerine ortak olurlar. Kalın bağırsağımızdaki Escherichia coli bunun en iyi örneğidir. Bazı parazit bakteriler ise konak canlının ölümüne bile sebep olabilen hastalıklara yol açarlar. Bunlara Patojen Bakteriler denir. Patojenler ya toksin çıkararak ya da konak canlının enzim ve besinlerini kullanarak zarar verirler. toksinler ya dışarı atılır (Ekzotoksin), ya da Bakterinin içinde kalır (Endotoksin). İçinde kalan toksinler bakteriler ölünce zararlı hale geçerler. Canlıların patojen bakterilere ve toksinlerine karşı oluşturdukları savunmaya "Bağışıklık" denir. Parazit bakterilerinin üremeleri oldukça hızlıdır. Fotosentetik Bakteriler: Sitoplazmalarında serbest klorofil taşırlar. Fotosentezlerinde elektron kaynağı olarak H2O yerine H2S ve H2 kullanırlar. CO2 + H2O ——> Besin + O2 (Mavi-yeşil algler) CO2 + H2S ——> Besin + S + H2O (Kükürt bakterileri) CO2 + H2 ——> Besin + H2O (Hidrojen Bakterileri) Kemosentetik Bakteriler: Bu bakteriler de madde devrinde çok önemlidirler. Bazı inorganik maddeleri oksitleyerek onları zararsız hale getirirler. oluşan maddeler ise bitkilerce mineral tuzlar olarak kullanılır. bu oksitleme sonucunda açığa kimyasal enerji çıkar. Bu enerjiyle de CO2 indirgemesi yaparak besinlerini sentezlerler. ışık ve klorofil gerekli değildir. Oksijen kullanılır. Kemosentetik bakteriler en çok azotlu, kükürtlü, demirli maddeleri oksitlerler. NH3 + O2 ———> HNO2 + H2O + Kalori (Nitrosomanas) HNO2 + O2 ———> HNO3 + Kalori (Nitrobacter) H2S + O2 ———> H2O + S + Kalori (Kükürt Bakterileri) FeCO3 + O2 + H2O ———> Fe(OH)3 + CO2 + Kalori (Demir Bakterileri) N2 + O2 ———> NO2 + Kalori (Azot bakterileri) Kemosentez sonucu: Bazı zararlı maddeler ortadan kaldırılmış, Bitkilerin alabileceği tuzlar oluşturulmuş, Kimyasal enerji kazanılmış Organik besin sentezlenmiş olmaktadır. BAKTERİLERİN SOLUNUMLARI a.Anaerob Bakteriler Bakteriler organik besinleri parçalayarak enerjilerini elde ederken genellikle oksijen kullanmazlar. Bunlar havasız yerlerde de yaşayarak çoğalırlar. ( Konservelerde olduğu gibi) Bunlardan bazıları oksijenin olduğu yerde hiç gelişemezler. Örnek: Clastrodium tetani (Tetanos bakterisi). b. Aerob Bakteriler Bazı bakteri grupları (Escherichia coli, Zatürree ve Yoğurt Bakterisi gibi) ancak oksijenli ortamda yaşayabilir. Bunlarda mitokondri olmadığı için solunum hücre zarının iç kısmındaki kıvrımlarda (mezozom) gerçekleştirilir. Örnek: Azot Bakterileri. Geçici Aerob veya Geçici Anaerob Olanlar Asıl solunumları oksijensiz olduğu halde kısa süre için aerob olanlara "Geçici Aerob" denir. Normal solunum şekli aerob olanlar ise havasız kalınca fermantasyona başvururlar. Bunlara "Geçici Anaerob" denir. BAKTERİLERİN ÜREMELERİ Bölünerek Çoğalma Bütün bakteri türlerinin esas üreme şekli bölünmedir. bölünme eşeysiz üreme biçimidir. Su, besin maddesi ve sıcaklığın uygun olduğu ortamlarda çok hızlı bölünürler. bu bölünmeler her 20 dakikada bir gerçekleşir. Böylece geometrik olarak artmaya başlarlar. ancak bu artış sürekli değildir. Çünkü zamanla ortam sıcaklığı artar, asitler ve CO2 birikir, besin maddeleri tükenir. Bunlar bakteriler için öldürücü doza ulaşınca geometrik artış bozulur. belli değerden sonra artış yerine azalma görülür. Böylece bakteri populasyonları da dengelenmiş olur. Bakterilerin bölünmeleri mitoza benzer. ancak çekirdek zarı ve belli bir kromozom sayısı olmadığı için tam bir mitoz değildir. Buna Amitoz Bölünme denir. Sporlanma Bazı bakteri türleri yaşadıkları ortam şartları bozulunca endospor oluşturarak kötü şartları geçirirler. Endosporlar, kalıtım materyalinin çok az bir sitoplazmayla beraber çevrilmiş halidir. ortam şartları normale dönünce çeper çatlar, endospor gelişerek normal bakteriyi meydana getirir. Endosporlarda metabolik faaliyetler minimum seviyededir. bu şekilde uzun yıllar yaşayabilirler. olumsuz şartlar olan yüksek ısıdan, kuraklıktan, donmadan ve besinsizlikten etkilenmezler. 60 yıl canlı kalan bakteri sporları tespit edilmiştir. Normal bakteri hücrelerinin tamamı 100OC’de ölürken endosporlar ancak 120OC’de 15-20 dakika kalırsa ölürler. Soğuk ortamlarda da aynı oranda dayanıklıdırlar. Bazı türlerde bir bakteriden birden çok endospor meydana gelebilir. Eşeyli Üreme (Kojugasyon) Bakteriler bölünerek çok hızlı üremelerine, olumsuz şartları da endospor oluşturarak geçirmelerine rağmen, düzensiz de olsa eşeyli üremeyi gerçekleştirirler. Çünkü bu sayede kalıtsal çeşitliliklerini artarak değişen ortamlara uyum yapma imkanı bulurlar. Bu çeşitliliğe ise Kalıtsal Varyasyon denir. Konjugasyon (kavuşma) esnasında DNA yapısı farklı iki bakteri yan yana gelerek aralarında geçici bir zardan köprü oluştururlar. bu köprü aracılığı ile DNA parçalarını değiştirirler. Sonra ayrılarak bölünmelerine devam ederler. Dikkat edilirse çok hücreli canlılarda görülen eşeyli üremeden çok farklı bir eşeyli üreme oluşmaktadır. Bunlarda gamet oluşumu ve döllenme yoktur. Bakteriler diğer canlılara göre daha kolay mutasyona uğrarlar. Mutasyon genellikle zararlı ve öldürücü olmakla beraber, bakterilerde bazen olumlu sonuçlar veren faydalı mutasyonlar oluşabilmektedir. Bugün bakteriler besin (kültür) ortamlarında yetiştirilerek incelenmektedir. En iyi geliştikleri kültür ortamı et suyudur. YARARLI BAKTERİLER Bakteri ismini duyduğunuzda aklınıza nasıl bir canlı türü geliyor? Elbette birçoğumuzun aklına bu isim duyulduğunda mikroplar, hastalıklar ve uzak durulması gerekilen küçük yaratıklar gelmektedir. Ancak bunun yanında yine birçoğumuz hergün mutfağımızı, banyomuzu sterilize etmek için uğraşırken yok ettiğimiz milyonlarca bakteri türünün hayatımızdaki olmazsa olmaz dedirtecek faydalı özelliklerinden de bihaberiz. Aslında işte bu monera aleminin küçük canlıları olan bakteriler olmasaydı, ne dünya şimdiki olduğu gibi olabilirdi ne de insanlar şimdi göründükleri gibi olurdu. Dünyamızın bu mikroskopik canlıları sadece insandaki bazı zararlı canlıları öldürmekle kalmaz, dünyamızın üzerine kurulduğu kimyasal döngülerde de önemli yerler edinirler. Bakterilerin en önemli faydası olarak dünyamızda biriken artık maddelerin ana biyolojik monomerlerine ayrıştırılması olarak gösterebiliriz. Eğer çürükçül bakteriler olmasaydı ölü insan bedenleri ve canlılığını yitirmiş bitki parçacıkları öldükleri bedende kalacaklardı ve bunların ana organik maddelere dönüşümü olmayacaktı. Böylece karbon döngüsünün önemli bir parçası yerine getirilmemiş olacaktı. Bu çürükçül bakteriler yaptıkları bu parçalama işlemiyle aynı zamanda toprakları da beslerler ve verimli hale getirirler. Bazı bakterilerin çürütücü göreviyle doğaya katkılarda bulunmasının yanında kimi bakterilerde aşı veya antibiyotik olarak tıp sektöründe insanlara daha sağlıklı bir hayat sunmak için kullanılırlar. Bilindiği üzere öldürülmüş veya zayıflatışmış bakteriler insan vücuduna enjekte edildiğinde, vücut bu bakterilere karşı antikor üretmeye başlar ve bu zayıflatılmış veya ölü olan bakterilere karşı bir üstünlük sağlar. Bu olaya tıp alanında bağışıklık denmektedir. Vücut güçsüz bakterilere karşı benzetme yerindeyse bir antreman yapmış olur ve güçlü, sağlam bakterilerle karşılaştığında nasıl davranması gerektiğini öğrenmiş olur. Bildiğiniz gibi günümüzde de tetanoz olsun verem olsun bir çok hastalığı önlemek için çok çeşitli bakteriler kullanılır ve bir önlem olarak sayılırlar. Yine benzer şekilde bazı bakteriler de yine tıp sektöründe antibiyotik yapımında kullanılırlar. Streptomycin adı verilen bir bakteri türü Bacitracin,Polymyxin, ve Erythromycin adı verilen antibiyotikler üretmektedir ve bu antibiyotikler hastalık önleyici olarak çok zaman insanlar tarafından kullanılmaktadır. Bakteriler kimi zamanda besin yapımında sıkça kullanılmaktadır. Birçok bakteri türü fermantasyon adı verilen süreç sonucunda kimyasal değişikliklere sebep olmaktadır. Örneğin peynir ve yoğurt bu tür kimyasal değişikliklerin sonucu ortaya çıkmış yararlı besinlerdendir. Ayrıca yine Clostridium bacterium adı verilen bir bakteri türünün fermantasyonu süreci sonunda ortaya çıkan bütül alkol ve asetone kimya sektöründe çok kullanılan değerli kimyasal maddelerdendir. Yine benzer şekilde insan kanının plazmasında bulunan Dextran adlı yararlı bir madde de yine Leuoconostoc adlı bir bakteri tarafından yapılmaktadır. Saymakla tükenmeyecek faydaları olan bakterilerin son bir yararından da bahsetmek gerekirse, bazı bakteri türleri bazı hayvanların bağırsaklarında özellikle selülöz sindiriminde kullanılmaktadır ve bu selülözün karbonhidratların temel taşı olan glikoza indirgenmesini sağlar ve böylece hücreler için gerekli olan enerji de bulunmuş olur. Aslında hep kafamızda zararlı yaratıklar olarak yer edinmiş olan bakterilerin faydaları sayılacak gibi değildir ama bu kadarı bile insanları şaşırtmaya yetmektedir. Bizim zararlı olarak nitelendirdiğimiz bu monera aleminin nerdeyse 1 mikrondan küçük bu savaşçıları, bizim onları zararlı ve yok edilmesi gerekilen küçük yaratıklar olarak nitelendirmelerimize aldırış etmeden hep bizim yararımıza çalışmaktadırlar ve ileride de bizim emrimizde çalışacaklardır; her ne kadar biz onların faydaların farkında olmasak da… VİRÜSLER Çok küçük mikroorganizmalardır. Uzun süre bilim adamlarının dikkatini çekmemiştir. Meydana getirdiği hastalıklar hep bakterilerden bilinmiştir. Elektron mikroskobunun bulunmasıyla ancak virüslerin farkına varılmıştır. İlk olarak tütün bitkisinin yapraklarında hastalık meydana getiren virüs bulunmuştur. Daha önce tütnlerde bu hastalığın bakteriler tarafından meydana getirildiği sanılıyordu, fakat incelemelerin hiç birisinde bakteriye rastlanmıyordu. Hasta tütün yapraklarından elde edilen özütün elektron mikroskobuyla incelenmesinden sonra hastalığın bakteri dışında yeni bir mikroorganizma tarafından meydana getirildiği görüldü. Bu mikroorganizmalarda daha önce hiç rastlanılmayan ve bilinmeyen bir yapı ortaya çıktı. Normal hücre yapısına benzemeyen virüslerde sadece dış tarafında bir protein kılıf ve içerisinde nükleik asit vardı. Bunların dışında stoplazma, organel gibi yapılar bulunmuyordu. Bu yapıda onların zorunlu parazit yaşamalarını gerektiriyordu. Evet, bir virüsün yapısı sadece dışta bir protein kılıf ve içerisinde nükleik asitten meydana gelir. Herhangi bir organeli ve enzimleri olmadığı için normal bir hücre gigi yaşamlarını sürdürebilmeleri olanaksızdır. Yaşamsal faliyet (üreme gibi) gösterebilmek için mutlaka canlı bir hücreye girmeleri gerekir. Hücre dışında ise kristal halde bulunurlar. Bu yüzden bilim adamları tarafından cansızlık ile canlılık arasında geçiş formu olarak kabul edilirler. Virüsler küre, çubuk ve elips şeklinde olabilirler. Bulundurdukları nükleik asit tek çeşittir. Yani ya sadece DNA yada sadece RNA bulundururlar. Aynı zamanda çok ta spesifiktirler. Sadece belirli hücrelere girerler. Bir kuduz virüsü sadece beyin hücrelerine, uçuk virüsü sadece ağız civarındaki epitel doku hücrelerine bir bakteriyofaj sadece belirli bakteri türlerine, AIDS virüsü sadece kandaki akyuvar hücrelerine gibi. Virüs hücreye tutunduğunda ilk önce hücrenin zarını eritir. Daha sonra bu delikten içeriye kendi nükleik asitini akıtır. Hücreye giren virüs nükleik asiti derhal yönetimi ele geçirerek hücreyi kendi hesabına çalıştırmaya başlar. İlk önce kendi nükleik asitlerinin kopyalarını arkasından da protein kılıflarını sentezlettirir. Daha sonra bunları birleştirerek yüzlerce virüs oluşmasını sağlar. Hücre içerisindeki virüsler hücreyi patlatarak dışarı çıkar ve yeni hücrelere saldırırlar. Yapılarından dolayı ve hücre içerisinde bulunduklarından antibiyotik türü ilaçlardan etkilenmezler. Virüsler ile bakteriler arasındaki fark nedir? Virüslerle bakteriler arasındaki farklar sayısızdır. Virüsler bilinen en küçük ve en basit canlı formlardır. Bakterilerden 10 ila 100 kat daha küçüktürler. Virüslerle bakteriler arasındaki en büyük fark virüslerin çoğalabilmesi için bitki ya da hayvan gibi canlı bir yapıya ihtiyaç duymalarıdır. Bakteriler ise cansız yüzeylerde de gelişebilirler. Ayrıca, bakteriler vücuda meydan savaşındaki askerler gibi saldırırken, virüsler gerilla savaşçıları gibidir. İçeri sızmak için çok saldırmazlar. İnsan hücrelerini tam olarak istila ederler ve hücrenin genetik materyalinin normal fonksiyonunu virüs üretecek şekile dönüştürürler. Buna ek olarak, bakteriler gelişmeleri ve çoğalmaları için gerekli bütün mekanizmayı taşırken, virüsler başlıca bilgiyi taşırlar. Örneğin DNA veya RNA bir protein ve/veya zarımsı bir kaplama içerisinde paketlenmiş haldedir. Virüsler çoğalmak için konak hücrelerinin mekanizmasını kullanırlar. Bir anlamda, virüsler gerçekte “canlı” değillerdir, fakat aslında bilgi (DNA veya RNA), uygun bir canlı konakçı ile karşılaşıncaya kadar havada süzülmeye devam eder

http://www.biyologlar.com/bakteri-ve-viruslerin-karsilastirilmasi

BİYOKİMYA DERSİ ÇALIŞMA SORULARI ( 445 soru )

1) Biyokimyanın tanımı nasıldır? Canlı hücrelerin kimyasal yapı taşlarını ve bunların katıldığı reaksiyonları inceleyen bilim dalı… 2) Biyokimyanın amacı nedir? Canlı hücrelerle ilgili kimyasal olayların moleküler düzeyde tam olarak anlaşılmasını sağlamak 3) Biyokimyanın konuları nelerdir? Hücre bileşenlerinin doğası hakkındaki bilgilerin toplanması Hücre içinde sürekli olarak meydana gelen kimyasal dönüşümlerin incelenmesi 4) Canlı hücrelerin bilinen kimyasal yapı taşları nelerdir? Organik maddeler a) Karbonhidratlar b) Proteinler, amino asitler ve peptitler c) Enzimler d) Lipidler e) Nükleotidler ve nükleik asitler f) Porfirinler g) Hormonlar h) Vitaminler İnorganik maddeler a) Mineraller b) Su 5) Canlı organizmalarda en bol bulunan elementler nelerdir? Karbon (C), hidrojen (H), azot (N), oksijen (O), fosfor (P), kükürt (S) 6) Elementlerin en küçük kimyasal yapı taşı nedir? Atomlar 7) Kimyasal bağlar nelerdir? Kovalent bağlar Hidrojen bağları İyonik bağlar Van der Waals bağları 8) Bir organik moleküle spesifik kimyasal özelliklerini veren atom veya atom gruplarına ne denir? Fonksiyonel grup 9) Hidrofilik ne demektir? Suyu seven 10) Hidrofobik ne demektir? Suyu sevmeyen 11) Su moleküllerin ayrışmasıyla neler oluşur? Proton ve hidroksil iyonları 12) Nötral pH ne ifade eder? H+ ile OH- konsantrasyonlarının eşit olduğunu 13) pH nasıl tanımlanır? Bir çözeltideki H+ iyonları konsantrasyonunun eksi logaritması 14) Asidik çözeltinin pH’ı nedir? 7’den küçük 15) Alkali (bazik) çözeltinin pH’ı nedir? 7’den büyük 16) Nötral çözeltinin pH’ı nedir? 7 17) Asidik çözeltide H+ konsantrasyonu nasıldır? Yüksek 18) Alkali çözeltide H+ konsantrasyonu nasıldır? Düşük 19) Nötral çözeltide H+ konsantrasyonu nasıldır? OH- konsantrasyonuna eşit 20) Asitler nasıl tanımlanır? Sulu çözeltilerde proton dönörleri (vericileri) 21) Bazlar nasıl tanımlanır? Sulu çözeltilerde proton akseptörleri (alıcıları) 22) Bir proton donörü ve ona uygun proton akseptörü ne oluşturur? Konjuge asit-baz çifti 23) Zayıf bir asit (proton donörü) ve onun konjuge bazını (proton akseptörü) içeren sistemlere ne denir? Kimyasal tampon sistemi 24) Küçük miktarlarda asit (H+) veya baz (OH-) eklendiğinde pH değişikliklerine karşı koyma eğiliminde olan sulu sistemlere ne denir Kimyasal tampon sistemi 25) Kimyasal tamponlar nasıl tanımlanır? Küçük miktarlarda asit (H+) veya baz (OH-) eklendiğinde pH değişikliklerine karşı koyma eğiliminde olan sulu sistemler… 26) Vücuttaki önemli tampon sistemleri nelerdir? Karbonik asit/Bikarbonat tampon sistemi [H2CO3 / HCO3-]: Ekstrasellüler sıvılarda Primer fosfat/Sekonder fosfat tampon sistemi [H2PO4- / HPO4-2]: İntrasellüler sıvılarda, böbreklerde Asit Hemoglobin/Hemoglobinat tampon sistemi [HHb / Hb-]: Eritrositlerde Asit Protein/Proteinat tampon sistemi [H.Prot / Prot-]: Hücre içinde 27) Su, erkeklerde vücut ağırlığının % kaçını oluşturur? % 50-65’ini 28) Su, kadınlarda vücut ağırlığının % kaçını oluşturur? % 45-55’ini 29) Vücut sıvı bölükleri nelerdir? İntrasellüler (hücre içi) sıvı bölüğü: Toplam su miktarının %66’sı. Ekstrasellüler (hücre dışı) sıvı bölüğü: Toplam su miktarının %33’ü. Plazma hücreler arası (interstisyel)sıvı transsellüler sıvılar. 30) Klinik laboratuarlarda ölçülen anyon boşluğu nedir? Rutin olarak ölçülen katyonların (Na+, K+) konsantrasyonu ile anyonların (Cl-, HCO3-) konsantrasyonu arasındaki fark 31) Anyon boşluğunun normal değeri ne kadardır? 12 mmol/L 32) Vücut su dengesi bozuklukları nelerdir? Dehidratasyon Hiperosmolar dehidratasyon: Su kaybı sodyum kaybından fazla İzoosmolar dehidratasyon: Su ve sodyum kaybı dengeli Hipoosmolar dehidratasyon: Su kaybı daha az Ödem: Venöz dolaşımda basınç artışı veya plazma proteinlerinin onkotik basıncındaki azalma sonucu hücre dışı sıvı hacminde artış.... 33) Karbohidratların tanımı nasıldır? Kimyasal olarak polihidroksi aldehit veya ketondurlar veya hidroliz edildiklerinde böyle bileşikler veren maddeler... 34) Karbohidratların monomerik birimi nelerdir? Monosakkaritlerdir 35) Molekül yapılarında aldehid grubu olan monosakkaritlere ne denir? Aldozlar… 36) Molekül yapılarında keton grubu olan monosakkaritlere ne denir? Ketozlar… 37) Molekül yapılarında üç karbon atomu olan monosakkaritlere ne denir? Triozlar… 38) Molekül yapılarında dört karbon atomu olan monosakkaritlere ne denir? Tetrozlar… 39) Molekül yapılarında beş karbon atomu olan monosakkaritlere ne denir? Pentozlar… 40) Molekül yapılarında altı karbon atomu olan monosakkaritlere ne denir? Heksozlar… 41) Molekül yapılarında altı karbon atomu ve aldehid grubu olan monosakkaritlere ne denir? Aldoheksozlar… 42) Molekül yapılarında altı karbon atomu ve keton grubu olan monosakkaritlere ne denir? Ketoheksozlar… 43) Molekül yapılarında beş karbon atomu ve aldehid grubu olan monosakkaritlere ne denir? Aldopentozlar… 44) Molekül yapılarında beş karbon atomu ve keton grubu olan monosakkaritlere ne denir? Ketopentozlar… 45) Molekül yapılarında üç karbon atomu ve aldehid grubu olan monosakkaritlere ne denir? Aldotriozlar… 46) Molekül yapılarında üç karbon atomu ve keton grubu olan monosakkaritlere ne denir? Ketotriozlar… 47) Metabolizmada önemli aldotrioz nedir? Gliseraldehit… 48) Metabolizmada önemli ketotrioz nedir? Dihidroksi aseton 49) Metabolizmada önemli aldopentoz nedir? Riboz 50) Metabolizmada önemli aldoheksozlar nelerdir? Glukoz, mannoz, galaktoz… 51) Metabolizmada önemli ketoheksoz nedir? Fruktoz 52) Glukoz hangi sınıftan monosakkarittir? Aldoheksoz… 53) Fruktoz hangi sınıftan monosakkarittir? Ketoheksoz… 54) D- ve L- izomerleri eşit miktarlarda içeren ve optik aktivitesi olmayan karışımlara ne denir? Rasemat (rasemik karışım)… 55) Monosakkaritlerin a- ve b- formları (anomerler) hangi ortamda oluşur? Sulu çözeltilerde… 56) Karbohidratlara indirgeyici özelliklerini veren nedir? Molekülünde serbest yarı asetal veya yarı ketal hidroksili bulunması… 57) Monosakkaritlerin, Cu2+’ı Cu+’a indirgemeleri özellikleriyle ilgili deneyler hangileridir? Trommer ve Fehling deneyleri… 58) Pozitif Trommer ve Fehling deneylerinde gözlenen sarı renkli çökelti nedir? Bakır 1 hidroksit (CuOH) 59) Pozitif Trommer ve Fehling deneylerinde gözlenen kırmızı renkli çökelti nedir? Bakır 1 oksit (Cu2O) 60) Pozitif Trommer ve Fehling deneylerinde gözlenen turuncu renkli çökelti nedir? Bakır 1 hidroksit (CuOH) ile Bakır 1 oksit (Cu2O) karışımı… 61) Metabolizmada önemli bir şeker fosfatı nedir? Glukoz-6-fosfat 62) Metabolizmada önemli bir deoksi şeker nedir? Deoksiriboz 63) Metabolizmada önemli disakkaritler nelerdir? Maltoz, laktoz, sukroz (sakkaroz) 64) Maltozun molekül yapısında hangi monosakkaritler bulunur? Glukoz 65) Laktozun molekül yapısında hangi monosakkaritler bulunur? Glukoz ve galaktoz 66) Sukrozun molekül yapısında hangi monosakkaritler bulunur? Glukoz ve fruktoz 67) İki glukoz molekülünün Glc(a1®4)Glc biçiminde kondensasyonu ile oluşmuş disakkarit nedir? Maltoz 68) Bir galaktoz molekülü ile bir glukoz molekülünün Gal(b1®4)Glc biçiminde kondensasyonu ile oluşmuş disakkarit nedir? Laktoz 69) Bir glukoz molekülü ile bir fruktoz molekülünün Glc(a1®2)Fru biçiminde kondensasyonu ile oluşmuş disakkarit nedir? Sukroz 70) Maltoz çözeltisi ile yapılan bir Fehling deneyi nasıl sonuç verir? Pozitif sonuç 71) Laktoz çözeltisi ile yapılan bir Fehling deneyi nasıl sonuç verir? Pozitif sonuç 72) Sukroz çözeltisi ile yapılan bir Fehling deneyi nasıl sonuç verir? Negatif sonuç 73) Sukroz çözeltisi ile yapılan bir Fehling deneyi niçin Fehling negatif sonuç verir? Molekülünde serbest yarıasetal hidroksili olmadığı için… 74) Bitki hücrelerinin temel depo homopolisakkariti nedir? Nişasta 75) Hayvan hücrelerinin temel depo homopolisakkariti nedir? Glikojen 76) Nişasta molekülünü oluşturan monosakkarit nedir? Glukoz 77) Nişasta molekülünü oluşturan disakkarit nedir? Maltoz ve izomaltoz 78) Nişasta molekülünü oluşturan glukoz polimerleri nelerdir? Amiloz ve amilopektin 79) Nişasta molekülünde düz zincir biçimindeki glukoz polimeri nedir? Amiloz 80) Nişasta molekülünde dallı zincir biçimindeki glukoz polimeri nedir? Amilopektin 81) Glikojen özellikle hangi organlarda depo edilir? Karaciğer ve kasta 82) Sağlıklı bir erişkinde 8-12 saatlik açlıktan sonra enzimatik yöntemlerle ölçüldüğünde kan glukoz düzeyi nedir? %60-100 mg (60-100 mg/dL) 83) Kan glukoz düzeyini düşürücü yönde etkili olaylar nelerdir? 1) Glukozun indirekt oksidasyonu: Glukozun aerobik koşullarda glikoliz ve sitrik asit döngüsüyle yıkılımı. 2) Glukozun direkt oksidasyonu: Glukozun pentoz fosfat yolunda yıkılımı. 3) Glikojenez: Glukozun glikojene dönüşümü. 4) Liponeojenez: Glukozun yağ asitlerine ve yağa dönüşümü. 5) Glukozun glukuronik asit yolunda yıkılımı. 6) Glukozdan diğer monosakkaritlerin ve kompleks karbonhidratların oluşumu 84) Glikoliz nedir? Hücrenin sitoplazmasında altı karbonlu glukozun, on basamakta iki molekül üç karbonlu pirüvata yıkılması olayıdır 85) Glikolize uğrayan her glukoz molekülü için net kaç molekül ATP oluşmaktadır 2 ATP 86) Sitrik asit döngüsü (TCA döngüsü) nedir? Karbohidrat, yağ ve protein katabolizmasının ortak son ürünü olan asetil-CoA’nın asetil gruplarının mitokondride oksitlendiği döngüsel olaylar dizisi 87) Bir tek glukoz molekülünün tamamen CO2 ve H2O’ya oksitlenmesi suretiyle net kaç adet ATP kazancı olur? 38 adet ATP 88) Glukozun pentoz fosfat yolunda yıkılımı hücrenin hangi bölümünde gerçekleşir? Sitoplazmada 89) Glukozun pentoz fosfat yolunda yıkılımı sırasında ne oluşur? NADPH ve riboz-5-fosfat 90) Glikojenez nedir? Glikojen biyosentezi 91) Kan glukoz düzeyini yükseltici yönde etkili olaylar nelerdir? 1) Diyetle karbonhidrat alınması. 2) Glikojenoliz: Glikojenin yıkılımı. 3) Glikoneojenez: Karbohidrat olmayan maddelerden glukoz yapılımı 92) Glikojenoliz nedir? Glikojenin yıkılımı 93) Glikoneojenez nedir? Karbohidrat olmayan maddelerden glukoz yapılımı 94) Hiperglisemi nedir? 8-12 saatlik açlıktan sonra serum glukoz düzeyinin %110 mg’dan yüksek olması durumu 95) Hipoglisemi nedir? Serum glukoz düzeyinin %40 mg’dan düşük olması durumu. 96) Karbohidrat metabolizması bozuklukları nasıl sınıflandırılırlar? Emilim bozuklukları Dönüşüm bozuklukları Depolanma bozuklukları Kullanım bozuklukları 97) Karbohidrat metabolizmasının önemli bir emilim bozukluğu nedir? Laktaz eksikliği (süt intoleransı) 98) Karbohidrat metabolizmasının önemli bir dönüşüm bozukluğu nedir? Herediter fruktoz intoleransı, galaktozemi 99) Karbohidrat metabolizmasının önemli depolanma bozuklukları nelerdir? Glikojen depo hastalıkları (glikojenozlar) 100) Karbohidrat metabolizmasının önemli kullanım bozukluğu nedir? Diabetes mellitus 101) Diabetes mellitus, karbohidrat metabolizmasının ne tür bozukluğudur? Kullanım bozukluğu 102) Amino asitlerin tanımı nasıldır? Molekül yapılarında hem amino (-NH2) hem karboksil (-COOH) grubu içeren bileşikler 103) Standart amino asitler kaç tanedir? 20 142) En basit standart amino asit nedir? Glisin 105) Dallı yan zincirli standart amino asitler nelerdir? Valin, lösin, izolösin 106) Molekül yapılarında hidroksil (-OH) grubu içeren standart amino asitler nelerdir? Serin, treonin, tirozin 107) Molekül yapılarında kükürt içeren standart amino asitler nelerdir? Sistein, metiyonin 108) Molekül yapılarında ikinci bir karboksil (-COOH) grubu içeren standart amino asitler nelerdir? Aspartik asit, glutamik asit 109) Bir çözeltideki bir amino asit molekülü üzerinde net yükün sıfır olduğu pH değeri, ne olarak adlandırılır İzoelektrik nokta (pI) olarak adlandırılır 110) Amino asitlerin amino grupları ile verdikleri reaksiyonlara dayanan önemli bir tanımlama deneyi nedir? Van Slyke deneyi: Nitröz asitle azot gazı çıkışı… 111) Amino asitlerin amino ve karboksil gruplarının birlikte verdikleri reaksiyonlara dayanan önemli bir tanımlama deneyi nedir? Ninhidrin deneyi: Ninhidrin ile mavi-menekşe renk… 112) Amino asitlerin renk reaksiyonlarına dayanan önemli bir tanımlama deneyi nedir? Fenil halkası için ksantoprotein deneyi: Konsantre nitrik asit ile ısıtma sonucu sarı renk 113) Van Slyke deneyi, amino asitlerin hangi grupları ile verdikleri reaksiyonlara dayanan önemli bir tanımlama deneyidir? Amino grupları 114) Ninhidrin deneyi, amino asitlerin hangi grupları ile verdikleri reaksiyonlara dayanan önemli bir tanımlama deneyidir? Amino ve karboksil grupları 115) Önemli bir nonstandart amino asit nedir? 4-Hidroksiprolin 116) İki amino asitten oluşan bileşiklere ne denir? Dipeptit 117) Ona kadar amino asitten oluşan bileşiklere ne denir? Oligopeptit 118) Çok sayıda amino asitten oluşan bileşiklere ne denir? Polipeptit 119) Aminoasitlerin polimerlerine ne denir? Polipeptit, protein 120) Polipeptit veye proteinlerin monomerleri nelerdir? Amino asitler 121) Yapay tatlandırıcı olarak kullanılan aspartam hangi sınıftan bir bileşiktir? Dipeptit 122) Glutatyon hangi sınıftan bir bileşiktir? Tripeptit 123) Metabolizmada önemli bir tripeptit nedir? Glutatyon 124) Oksitosin ve vazopressin hangi sınıftan bir bileşiktir? Nonapeptit 125) Proteinler ne tür bileşiklerdir? Amino asitlerin polimerleri 126) Proteinlerin yapısındaki kovalent bağlar nelerdir? Peptit bağları ve disülfit bağları 127) Proteinlerin yapısındaki kovalent olmayan bağlar nelerdir? Hidrojen bağları, iyon bağları, hidrofob bağlar (apolar bağlar) 128) Proteinlerin primer yapısı hangi bağlarla oluşur? Peptit bağlarıyla 129) Proteinlerin denatüre oldukları deneysel olarak nasıl anlaşılır? Çözünürlüklerinin azalmasıyla… 130) Proteinleri denatüre eden etkenler nelerdir? Isı, X-ışını ve UV ışınlar, ultrason, uzun süreli çalkalamalar, tekrar tekrar dondurup eritmeler, asit etkisi, alkali etkisi, organik çözücülerin etkisi, derişik üre ve guanidin-HCl etkisi, salisilik asit gibi aromatik asitlerin etkisi, dodesil sülfat gibi deterjanların etkisi... 131) Proteinlerin reversibl (geri dönüşümlü) denatürasyonunda hangi yapıları bozulmaz (korunur)? Primer ve sekonder yapılar 132) Proteinlerin irreversibl (geri dönüşümsüz) denatürasyonunda hangi yapı bozulmaz (korunur)? Primer yapı 133) Proteinlerin tam hidrolizi sonucu ne oluşur Amino asitler 134) Proteinlerin yapılarına göre sınıfları ve alt sınıfları nelerdir? Basit proteinler: Globüler proteinler, fibriler proteinler… Bileşik proteinler: Fosfoproteinler, glikoproteinler, lipoproteinler, kromoproteinler, metalloproteinler… Türev proteinler: 135) Proteinlerin biyolojik rollerine (fonksiyonlarına) göre sınıfları nelerdir? Katalitik proteinler: Amilaz, pepsin, lipaz Taşıyıcı proteinler (transport proteinleri): Serum albümin, hemoglobin, lipoproteinler, transferrin Besleyici ve depo proteinler: Ovalbümin, kazein ferritin Kontraktil proteinler: Miyozin, aktin Yapısal proteinler: Kollajen, elastin Savunma (defans) proteinleri: İmmünoglobülinler, kan pıhtılaşma proteinleri Düzenleyici proteinler: İnsülin, büyüme hormonu Diğer proteinler: Fonksiyonları henüz daha fazla bilinmeyen ve kolayca sınıflandırılmayan çok sayıda protein 136) Proteinleri denatürasyon ve çökme tepkimeleri ile tanımlanma deneyleri nelerdir? Sülfosalisilik asit ile çöktürme Konsantre nitrik asit ile çöktürme Triklorasetik asit (TCA) ile çöktürme Isıtma ile çöktürme 137) Proteinleri renk tepkimeleri ile tanımlanma deneyleri nelerdir? Biüret tepkimesi: Biüret reaktifi ile mor renkli kompleks oluşması 138) Azot dengesi nedir? Total azot alınımı ile azot kaybı arasındaki fark 139) Pozitif azot dengesi nedir? Azot için alınım>atılım 140) Negatif azot dengesi nedir? Azot için atılım>alınım 141) Esansiyel amino asit deyince ne anlaşılır? Vücutta sentezlenmeyen, besinlerle dışarıdan alınması zorunlu olan amino asitler… 142) Esansiyel olmayan amino asit deyince ne anlaşılır? Vücutta sentezlenebilen, besinlerle dışarıdan alınması zorunlu olmayan amino asitler… 143) Esansiyel amino asitler nelerdir? Valin, lösin, izolösin, treonin, metionin, fenilalanin, triptofan, lizin ve gelişmekte olanlarda arjinin ile histidin 144) Esansiyel olmayan amino asitler nelerdir? Glisin, alanin, serin, sistein, prolin, tirozin, glutamat, glutamin, aspartat, asparajin ve erişkinlerde arjinin ile histidin 145) Amino asitlerin hücre içindeki reaksiyonları nelerdir? Transaminasyon: Bir amino asidin amino grubunun bir keto aside taşınması (yeni amino asitler oluşur) Deaminasyon: Amino asitlerdeki amino grubunun amonyak şeklinde ayrılması (keto asitler oluşur) Amino asitlerden metil ve diğer 1 karbonlu birimlerin sağlanması (çeşitli bileşikler oluşur) Dekarboksilasyon: Amino asidin yapısındaki karboksil grubunun CO2 halinde ayrılması (biyojen aminler oluşur) 146) Protein metabolizması bozuklukları nelerdir? Serum proteinlerinde değişiklikler (Disproteinemiler): Hiperproteinemi Hipoproteinemi Dokularda normalde bulunmayan proteinlerin ortaya çıkışı Amiloidoz Beslenim eksikliği (malnutrisyon) ile ilgili durumlar Kwashiorkor Marasmus 147) Mental gerilikle birlikte olan amino asit metabolizması bozuklukları nelerdir? Fenilketonüri: Fenil alanin metabolizması bozukluğu Homosistinüri: Metiyonin metabolizması bozukluğu Akça ağaç şurubu idrar hastalığı: Dallı zincirli amino asitlerin metabolizması bozukluğu Hiperglisinemi: Glisin metabolizması bozukluğu Histidinemi: Histidin metabolizması bozukluğu Hiperprolinemi: Prolin metabolizması bozukluğu 148) Membranlarda transport bozukluğu ile ilgili amino asit metabolizması bozuklukları nelerdir? Hartnup hastalığı: Triptofan metabolizması bozukluğu Glisinüri: Böbreklerde glisin geri emilimi bozukluğu Sistinüri: İdrarda fazla miktarda sistin atılması 149) Amino asit ve metabolitlerinin depolanması ile ilgili amino asit metabolizması bozuklukları nelerdir? Primer hiperoksalüri: Glisin metabolizması bozukluğu Sistinozis: Özellikle retiküloendoteliyal sistemde olmak üzere sistin kristallerinin birçok doku ve organda birikmesi Alkaptonüri: Tirozin metabolizması bozukluğu 150) Enzimlerin tanımı nasıldır? Biyolojik sistemlerin reaksiyon katalizörleri; biyokimyasal olayların vücutta yaşam ile uyumlu bir şekilde gerçekleşmesini sağlayan kimyasal ajanlar… 151) Enzimlerle katalize edilen tepkimeye katılan kimyasal moleküllere ne ad verilir? Substrat 152) Enzimlerin yapısal özellikleri nasıldır? Katalitik RNA moleküllerinin küçük bir grubu hariç bütün enzimler proteindirler 153) Bazı enzimler katalitik aktivite için ne gerektirirler? Kofaktör 154) Katalitik olarak aktif tam bir enzim, kofaktörü ile birlikte ne olarak adlandırılır? Holoenzim 155) Enzimlerin altı büyük sınıfı nelerdir? 1. Oksidoredüktazlar 2. Transferazlar 3. Hidrolazlar 4. Liyazlar 5. İzomerazlar 6. Ligazlar 156) Laktat dehidrogenaz hangi sınıftan enzimdir? Oksidoredüktaz 157) Kreatin kinaz hangi sınıftan enzimdir? Transferaz. Fosfat grubu transfer eder… 158) a-Amilaz hangi sınıftan enzimdir? Hidrolaz 159) Adenilat siklaz hangi sınıftan enzimdir? Liyaz 160) Fosfoglukomutaz hangi sınıftan enzimdir? İzomeraz 161) Arjininosüksinat sentaz hangi sınıftan enzimdir? Ligaz 162) Katalizör olarak bir enzimin fonksiyonu nedir? Aktivasyon enerjisini düşürmek suretiyle bir reaksiyonun hızını artırmak… 163) Enzimle katalizlenen bir reaksiyon nerede meydana gelir? Enzim üzerinde aktif merkez denen bir cep sınırları içinde… 164) En çok kullanılan enzim aktivitesi birimi nedir? İnternasyonel ünite (IU) 165) 1 IU enzim aktivitesi deyince ne anlaşılır? Optimal koşullarda 1 dakikada 1mmol substratı değiştiren enzim etkinliği… 166) Enzimatik bir reaksiyonun hızını etkileyen faktörler nelerdir? Enzim konsantrasyonu Substrat konsantrasyonu pH Isı veya sıcaklık Zaman Işık ve diğer fiziksel faktörler İyonların doğası ve konsantrasyonu Hormonlar ve diğer biyokimyasal faktörler Reaksiyon ürünleri 167) Bir enzim tarafından katalizlenen bir reaksiyonun hızının zamanla azalmasının nedeleri nelerdir? Reaksiyon ürünlerinin kendi aralarında birleşerek aksi yönde bir reaksiyon meydana getirmeleri Enzimin zamanla inaktive olması Reaksiyonu önleyen maddelerin oluşması Substratın tükenmesi… 168) Enzimatik aktivetinin düzenlenmesi hangi etkilerle olur? Allosterik enzimler Protein/protein etkileşimi Kovalent modifikasyon/kaskat sistemler Zimojen aktivasyon Enzim sentezinin indüksiyonu veya represyonu 169) Proteolitik yıkılım vasıtasıyla aktive edilen enzimlerin inaktif prekürsörü ne olarak isimlendirilir? Zimojen 170) Enzim inhibisyonu çeşitleri nelerdir? Reversibl enzim inhibisyonları 1) Kompetitif (yarışmalı) enzim inhibisyonu 2) Nonkompetitif (yarışmasız) enzim inhibisyonu 3) Ankompetitif enzim inhibisyonu İrreversibl enzim inhibisyonları 171) Bir enzimin izoenzimleri deyince ne anlaşılır? Belli bir enzimin katalitik aktivitesi aynı, fakat elektriksel alanda göç, doku dağılımı, ısı, inhibitör ve aktivatörlere yanıtları farklı olan formları… 172) Kreatin kinaz enzimin izoenzimleri nelerdir? CK1 (CK-BB ) CK2 (CK-MB ) CK3 (CK-MM) 173) Koenzim deyince ne anlaşılır? Bazı enzimlerin aktiviteleri için gerekli olan ve kofaktör diye adlandırılan ek kimyasal komponentlerin organik veya metalloorganik molekül yapısında olanları… 174) Prostetik grup deyince ne anlaşılır? Koenzimlerin enzim proteinine kovalent olarak bağlı olup enzimden ayrılmayanları… 175) Kosubstrat deyince ne anlaşılır? Koenzimlerin enzim proteinine nonkovalent olarak bağlı olup enzimden ayrılabilenleri… 176) Koenzimlerin fonksiyonlarına göre grupları nelerdir? 1) Hidrojen ve elektron transfer eden koenzimler. 2) Fonksiyonel grup transfer eden koenzimler. 3) Liyaz, izomeraz ve ligazların koenzimleri. 177) Hidrojen ve elektron transfer eden koenzimler nelerdir? NAD+ - NADH NADP+ - NADPH FAD - FADH2 FMN - FMNH2 Koenzim Q Demir porfirinler Demir-kükürt proteinleri a-Lipoik asit 178) Fonksiyonel grup transfer eden koenzimler nelerdir? Piridoksal-5-fosfat (PLP) Tiamin pirofosfat (TPP) Koenzim A (CoA×SH) Biotin (vitamin H) Tetrahidrofolat (H4 folat) Koenzim B12 (5'-deoksiadenozil kobalamin) 179) Klinik enzimoloji nedir? İnsanlarda görülen hastalıkların tanı veya ayırıcı tanısının yapılması ve sağaltımın izlenmesinde enzimatik ölçümlerin uygulanması ile ilgilenen bilim dalı 180) Enzimatik ölçümler için uygun biyolojik materyaller nelerdir? Biyolojik sıvılar: Kan, BOS, amniyon sıvısı, idrar, seminal sıvı Eritrositler Lökositler Doku biyopsi örnekleri Doku hücre kültürleri 181) Kanda bulunan enzimlerin kaynakları nelerdir? Plazmaya özgü enzimler: Fibrinojen gibi... Sekresyon enzimleri: a-Amilaz gibi... Sellüler enzimler: Transaminazlar gibi... 182) Serum enzim düzeyini etkileyen faktörler nelerdir? Enzimlerin hücrelerden serbest kalma hızı Enzim üretiminde değişiklikler Enzimlerin dolaşımdan uzaklaştırılma hızı Enzim aktivitesini artıran nonspesifik nedenler 183) Kan enzimlerinin aktivite tayinlerinde dikkat edilecekler nelerdir? Kan, antikoagulansız tüpe (düz tüp) alınmalıdır Kan genellikle venden alınır Kan alırken hemolizden kaçınmalıdır Kan, pıhtılaşmasından hemen sonra santrifüj edilerek serum ayrılmalıdır Günlük taze kan kullanılması en iyisidir 184) Klinik tanıda önemli olan serum enzimleri nelerdir? Transaminazlar (AST ve ALT) Laktat dehidrojenaz (LDH, LD) Kreatin kinaz (CK, CPK) Fosfatazlar (ALP ve ACP) Amilaz (AMS) Lipaz (LPS) Gama glutamiltransferaz (GGT, g-GT) Aldolaz (ALS) 5¢-nükleotidaz (5¢-NT) Lösin aminopeptidaz (LAP) Psödokolinesteraz (ChE) Glukoz-6-fosfat dehidrojenaz (G-6-PD) 185) Enzimatik tanı alanları nelerdir? Kalp ve akciğer hastalıkları Karaciğer hastalıkları Kas hastalıkları Kemik hastalıkları Pankreas hastalıkları Maligniteler Genetik hastalıklar Hematolojik hastalıklar Zehirlenmeler 186) Kalp ve akciğer hastalıklarının tanısında yararlı enzimler nelerdir? Total kreatin kinaz (CK, CPK) CK-MB Aspartat transaminaz (AST) Laktat dehidrojenaz (LD, LDH) 187) Karaciğer hastalıklarının tanısında yararlı enzimler nelerdir? Transaminazlar (ALT, AST) LDH GGT (g-GT) ALP 5¢-nükleotidaz (5¢-NT) Lösin aminopeptidaz (LAP) 188) Kas hastalıklarının tanısında yararlı enzimler nelerdir? CK LDH Aldolaz AST 189) Kemik hastalıklarının tanısında yararlı enzimler nelerdir? Alkalen fosfataz (ALP) Asit fosfataz (ACP) Osteoblastik aktivite artışı ile karakterize kemik hastalıklarında ALP yükselir Osteoklastik kemik hastalıklarında ALP yanında ACP da yükselir. 190) Pankreas hastalıklarının tanısında yararlı enzimler nelerdir? a-amilaz Lipaz 191) Malignitelerin tanısında yararlı enzimler nelerdir? Organ spesifik enzimler: ACP, ALP, GGT, 5¢-nükleotidaz, lösin aminopeptidaz (LAP), a-amilaz ve lipaz Organ spesifik olmayan enzimler: LDH, aldolaz, fosfoheksoz izomeraz 192) Genetik hastalıkların tanısında yararlı enzimler nelerdir? Fenilalanin hidroksilaz, Galaktoz-1-fosfat üridiltransferaz, Glukoz-6-fosfataz… 193) Hematolojik hastalıkların tanısında yararlı enzimler nelerdir? Anaerobik glikoliz ile ilgili bazı enzimler Pentoz fosfat yolu ile ilgili bazı enzimler Glutatyon metabolizması ile ilgili bazı enzimler Adenozin deaminaz gibi pürin ve pirimidin katabolizması enzimleri Na+/K+ ATPaz Lesitin kolesterol açil transferaz (LCAT) methemoglobin redüktaz 194) Zehirlenmelerin tanısında yararlı enzimler nelerdir? Organik fosfor bileşikleri ile zehirlenme durumlarında serum kolinesteraz (ChE) düzeyi düşük bulunur 195) Lipidlerin tanımı nasıldır? Ya gerçekten ya da potansiyel olarak yağ asitleri ile ilişkileri olan heterojen bir grup bileşik… 196) Lipidlerin ortak özellikleri nelerdir? Biyolojik kaynaklı organik bileşiklerdir Suda çözünmeyen, apolar veya hidrofob bileşiklerdir Kloroform, eter, benzen, sıcak alkol, aseton gibi organik çözücülerde çözünebilirler Enerji değerleri yüksektir 197) Lipidler yapılarına göre nasıl sınıflandırılırlar? Basit lipitler Bileşik lipitler Lipit türevleri Lipitlerle ilgili diğer maddeler 198) Basit lipidler ne tür bileşiklerdir? Yağ asitlerinin çeşitli alkollerle oluşturdukları esterler… 199) Nötral yağ deyince ne anlaşılır? Trigliseridler (triaçilgliseroller) 200) Trigliseridler yapılarına göre hangi sınıftan lipidlerdir? Basit lipidler 201) Bileşik lipidler ne tür bileşiklerdir? Yağ asitleri ve alkole ek olarak başka gruplar içeren lipidler… 202) Keton cisimleri nelerdir? Asetoasetik asit, b-hidroksibutirik asit ve aseton 203) Lipidler biyolojik rollerine (fonksiyonlarına) göre nasıl sınıflandırılırlar? Depo lipidler Membran lipidleri 204) Depo lipidler nelerdir? Trigliseridler (triaçilgliseroller) 205) Membran lipidleri nelerdir? Kolesterol Glikolipidler Sfingolipidler 206) Yağ asitleri sınıfları nelerdir? Doymuş (satüre) yağ asitleri Doymamış (ansatüre) yağ asitleri Ek gruplu yağ asitleri Halkalı yapılı yağ asitleri 207) Palmitik asit ve stearik asit hangi sınıftan yağ asitleridir? Doymuş (satüre) yağ asitleri 208) Doymuş (satüre) yağ asidi deyince ne anlaşılır? Molekülünde çift bağ içermeyen, sadece tek bağ içeren yağ asitleri… 209) Oleik asit ve araşidonik asit hangi sınıftan yağ asitleridir? Doymamış (ansatüre) yağ asitleri 210) Doymamış (ansatüre) yağ asidi deyince ne anlaşılır? Molekülünde çift bağ içeren yağ asitleri… 211) Tekli doymamış (monoansatüre) yağ asidi deyince ne anlaşılır? Molekülünde bir çift bağ içeren yağ asitleri… 212) Oleik asit ne tür bir yağ asididir? Tekli doymamış (monoansatüre) 213) Çoklu doymamış (poliansatüre) yağ asidi deyince ne anlaşılır? Moleküllerinde iki veya daha fazla çift bağ içeren yağ asitleri… 214) Araşidonik asit ne tür bir yağ asididir? Çoklu doymamış (poliansatüre) 215) Yağ asitlerinin kimyasal özellikleri nelerdir? Esterleşme Tuz oluşturma Çift bağların hidrojenlenmesi (hidrojenizasyon) Halojenlenme Oksitlenme 216) Trigliseridler (triaçilgliseroller) kimyasal yapılarına göre net tür bileşiklerdir? Gliserolün yağ asidi esterleri… 217) Karbon sayısı 6’dan fazla olan yağ asitlerinin metallerle oluşturduğu tuzlara ne denir? Sabun 218) Sabunlar kimyasal yapılarına göre net tür bileşiklerdir? Karbon sayısı 6’dan fazla olan yağ asitlerinin metallerle oluşturduğu tuzlar… 219) Yağ asitlerinin halojenlenmesi ne demektir? Doymamış yağ asitlerinin yapısında yer alan etilen bağının fluor, klor, brom, iyot gibi halojenlerden biri ile doyurulması… 220) İyot indeksi nedir? 100 g doymamış yağın gram cinsinden tuttuğu iyot miktarı… 221) Steroidler kimyasal yapılarına göre net tür bileşiklerdir? 17 karbonlu steran halkası (gonan halkası, siklopentano-perhidrofenantren halkası) içeren bileşikler… 222) Steroid sınıfları nelerdir? Steroller (sterinler). Safra asitleri. Cinsiyet hormonları. Adrenal korteks hormonları. Vitamin D grubu maddeler. 223) Hayvansal kökenli steroid nedir? Kolesterol 224) Safra asitleri kimyasal yapılarına göre net tür bileşiklerdir? 24 karbonlu steroidlerdir; kolanik asidin oksi türevleridirler… 225) Safra asidi sınıfları nelerdir? Primer safra asitleri: Kolik asit (3,7,12-Trihidroksikolanik asit) ile kenodezoksikolik asit (3,7-Dihidroksikolanik asit) Sekonder safra asitleri: Dezoksikolik asit (3,12-Dihidroksikolanik asit) ile litokolik asit (3-Hidroksikolanik asit) 226) Safra asitlerinin fonksiyonları nelerdir? Yüzey gerilimini azaltıcı etkileriyle emülsiyonlaşmayı kolaylaştırırlar; hem yağların hem yağda çözünen vitaminlerin 0,3-1m çapında emülsiyon veya 16-20Ao çapında miseller halinde emilmelerini sağlarlar. Safra içindeki kolesterolün çökmesini önlerler. İntestinal motiliteyi artırırlar. Kolesterol esterazı ve ince bağırsağın üst kısımlarında lipazı aktive ederler 227) Lipoproteinlerin tanımı nasıldır? Fosfolipitler, kolesterol, kolesterol esterleri ve trigliseridlerin çeşitli kombinasyonları ile apolipoproteinler denen spesifik taşıyıcı proteinlerin moleküler agregatları… 228) Lipoprotein sınıfları nelerdir? Şilomikronlar: VLDL’ler: Çok düşük dansiteli lipoproteinler IDL’ler: Ara dansiteli lipoproteinler LDL’ler: Düşük dansiteli lipoproteinler Lp (a): HDL’ler: Yüksek dansiteli lipoproteinler 229) Eikozanoidlerin tanımı nasıldır? Omurgalı hayvanların çeşitli dokularında son derece güçlü hormon benzeri etkilerinin çeşitliliği ile bilinen, 20 karbonlu poliansatüre yağ asidi olan 20: 4D5, 8, 11, 14 araşidonik asit türevi bileşikler… 230) Eikozanoid sınıfları nelerdir? Prostaglandinler Tromboksanlar Lökotrienler 231) LDL’nin kolesterolü taşıma özelliği nedir? Karaciğerden başka dokulara taşır… 232) HDL’nin kolesterolü taşıma özelliği nedir? Başka dokulardan karaciğere taşır… 233) Sağlıklı bir erişkinin kan plazmasında 8-10 saatlik açlıktan sonra total olarak ne kadar lipid bulunur? %400-700 mg kadar 234) Sağlıklı bir erişkinin kan plazmasında 8-10 saatlik açlıktan sonra total olarak ne kadar kolesterol bulunur? %140-200 mg 235) Hiperkolesterolemi ne demektir? Kan kolesterol düzeyi yüksekliği 236) Kan kolesterol düzeyi yüksekliğine ne denir? Hiperkolesterolemi 237) Dislipoproteinemi ne demektir? Serum lipoprotein düzeylerinin düşük veya yüksek olması… 238) Hiperlipoproteinemi ne demektir? Serum lipoprotein düzeylerinin yüksek olması… 239) Hiperlipoproteinemi sınıfları nelerdir? Tip I hiperlipoproteinemi, Tip IIa hiperlipoproteinemi, Tip IIb hiperlipoproteinemi, Tip III hiperlipoproteinemi, Tip IV hiperlipoproteinemi Tip V hiperlipoproteinemi 240) Nükleik asit monomerleri nelerdir? Nükleotidler 241) Nükleik asit sınıfları nelerdir? Deoksiribonükleik asit (DNA) Ribonükleik asit (RNA) 242) Nükleotidlerin yapısında neler bulunur? Azotlu baz, pentoz ve fosfat 243) Nükleotidlerin yapısında bulunan pentozlar nelerdir? Riboz ve deoksiriboz 244) Nükleotidlerin yapısında bulunan pirimidin bazları nelerdir? Sitozin, timin, urasil 245) Nükleotidlerin yapısında bulunan pürin bazları nelerdir? Adenin, guanin 246) DNA nükleotidlerin yapısında bulunan pirimidin bazları nelerdir? Sitozin ve timin 247) RNA nükleotidlerin yapısında bulunan pirimidin bazları nelerdir? Sitozin ve urasil 248) Nükleotidlerin fonksiyonları nelerdir? Nükleik asitlerin alt üniteleridirler Hücrede kimyasal enerjiyi taşırlar Birçok enzim kofaktörlerinin komponentleridirler Sellüler haberleşmede aracıdırlar 249) DNA’nın tanımı nedir? Canlı hücrelerde genetik bilginin saklandığı kromozomal komponent… 250) DNA’da saklı genetik bilginin kalıtımını sağlayan olay nedir? Replikasyon 251) DNA’da saklı genetik bilginin RNA’ya aktarılmasını sağlayan olay nedir? Transkripsiyon 252) DNA’da saklı genetik bilginin protein haline çevrilmesini sağlayan son olay nedir? Translasyon 253) Bölünme evresinde olmayan ökaryotik hücrelerde nükleustan izole edilen kromozomal materyal ne olarak tanımlanır? Kromatin 254) Bölünme evresinde olan ökaryotik hücrelerde nükleustan izole edilen genetik materyal ne olarak tanımlanır? Kromozom 255) Kromozomların, örneğin göz rengi gibi tek bir karakter veya fenotipi (görünen özellik) belirleyen veya etkileyen bölümleri ne olarak tanımlanır? Gen 256) Gen tanımı nasıldır? Kromozomların, örneğin göz rengi gibi tek bir karakter veya fenotipi (görünen özellik) belirleyen veya etkileyen bölümleri… 257) DNA’da kodlayıcı segmentler ne olarak adlandırılırlar? Ekson 258) DNA’da kodlayıcı olmayan segmentler ne olarak adlandırılırlar? İntron 259) Ekstrakromozomal DNA’lar nelerdir? Viral DNA molekülleri Bakterilerin birçok türünde plazmid Mitokondriyal DNA Fotosentetik hücrelerin kloroplastlarındaki DNA 260) DNA’nın kimyasal özellikleri nelerdir? Çift heliks yapılı DNA, denatüre edilebilir ve denatüre olan DNA renatüre olabilir Farklı türlere ait DNA’lar hibridler (melezler) oluşturabilirler DNA, nonenzimatik transformasyona uğrayabilir DNA moleküllerindeki belli nükleotid bazları, sıklıkla enzimatik olarak metillenirler 261) RNA’nın tanımı nasıldır? DNA’daki genetik bilgiyi bir fonksiyonel proteine dönüştürmekte aracı rol oynayan nükleik asit… 262) RNA çeşitleri nelerdir? Haberci RNA (messenger RNA, mRNA) Taşıyıcı RNA (transfer RNA, tRNA) Ribozomal RNA (rRNA) 263) mRNA’nın tanımı nasıldır? Protein sentezi için gerekli genetik mesajı nükleustaki DNA’dan sitoplazmadaki ribozomlara taşıyan RNA’lardır. Protein sentezi için kalıp görevi görür… 264) mRNA üzerindeki, her biri bir amino aside uyan üçlü baz gruplarına denir Kodon 265) tRNA’nın tanımı nasıldır? Sekonder yapıları yonca yaprağı şeklinde olan RNA’dır. Protein sentezine girecek amino asitleri sentez yerine taşır… 266) İnsanda pürin nükleotidlerinin yıkılımının son ürünü nedir? Ürik asit 267) İnsanda pirimidin nükleotidlerinin yıkılımının son ürünü nedir? b-alanin, CO2, NH3 ve b-aminoizobutirat 268) Pirimidin metabolizması bozuklukları nelerdir? Orotik asidüri 269) Pürin metabolizması bozuklukları nelerdir? Gut hastalığı Lesch-Nyhan sendromu Anormal pürin metabolizması ile ilgili immün yetmezlik hastalıkları Adenozin deaminaz eksikliği Pürin nükleozid fosforilaz eksikliği Hipoürisemi 270) Vitamin tanımı nasıldır? Sağlıklı beslenme için küçük miktarlarda alınmaları zorunlu olan, herhangi birinin eksikliği spesifik bir bozukluk ve hastalık meydana getiren organik maddeler 271) Vitamin sınıfları nelerdir? Suda çözünen vitaminler Yağda çözünen vitaminler Vitamin benzeri bileşikler 272) Önemli suda çözünen vitaminler nelerdir? Vitamin B1 (tiamin, antiberiberik vitamin) Vitamin B2 (riboflavin, laktoflavin) Nikotinik asit (niasin) Vitamin B5 (pantotenik asit) Vitamin B6 (piridoksin) Biotin (vitamin H) Folik asit Vitamin B12 Vitamin C (askorbik asit) 273) Diğer vitaminlerin eksikliği ile birlikte olan hangi vitamin eksikliği hallerinde beriberi hastalığı tablosu ortaya çıkar? Tiamin (B1 vitamini) 274) Diğer vitaminlerin eksikliği ile birlikte olan tiamin eksikliği hallerinde hangi hastalık tablosu ortaya çıkar? Beriberi 275) Diğer vitaminlerin eksikliği ile birlikte olan hangi vitamin eksikliği hallerinde seboreli dermatit, keratokonjunktivit, atrofik glossit, ağız köşesi çatlağı (cheilosis, ragad) görülür? Vitamin B2 (riboflavin, laktoflavin) 276) Diğer vitaminlerin eksikliği ile birlikte olan riboflavin (B2 vitamini) eksikliği hallerinde hangi klinik tablo görülür? Seboreli dermatit, keratokonjunktivit, atrofik glossit, ağız köşesi çatlağı (cheilosis, ragad) 277) Tiamin diye bilinen vitamin hangi vitamindir? B1 vitamini 278) Riboflavin diye bilinen vitamin hangi vitamindir? B2 vitamini 279) Antiberiberik vitamin diye bilinen vitamin hangi vitamindir? B1 vitamini (tiamin) 280) Pellegraya karşı koruyucu faktör (PP vitamini) diye bilinen vitamin hangi vitamindir? Niasin (nikotinik asit) 281) İnsanda nikotinamid eksikliğinde derinin güneş gören yerlerinde dermatitis, diyare ve demans ile karakterize hangi klinik tablo oluşur? Pellegra 282) Derinin güneş gören yerlerinde dermatitis, diyare ve demans ile karakterize pellegra tablosu insanda hangi vitamin eksikliğinde oluşur? Niasin (nikotinik asit) 283) Tüberküloz tedavisinde kullanılan izoniazid verilmesiyle hangi vitaminin eksiklik belirtileri meydana gelebilir? Vitamin B6 284) Yumurta akında bulunan ve avidin adı verilen bir glikoprotein, hangi vitamin ile birleşerek sindirilemeyen ve dolayısıyla bağırsaktan emilemeyen bir kompleks meydana getirir? Biotin (vitamin H) 285) Megaloblastik anemi, lökopeni ve trombositopeni hangi vitamin eksikliğinde ortaya çıkar? Folik asit 286) Pernisiyöz anemi diye tanımlanan megaloblastik anemi tablosu hangi vitaminin eksikliğine bağlı olarak ortaya çıkar? B12 vitamini 287) Askorbik asit diye bilinen vitamin hangi vitamindir? C vitamini 288) Askorbik asit eksikliğinde insanlarda hangi hastalık meydana gelir? Skorbüt hastalığı 289) Skorbüt hastalığı insanlarda hangi vitamin eksikliğinde meydana gelir? C vitamini (askorbik asit) 290) Önemli vitamin benzeri bileşikler nelerdir? Kolin Karnitin a-lipoik asit PABA (p-aminobenzoat) İnozitol Koenzim Q Biyoflavonoidler (vitamin P) 291) Özellikle uzun zincirli yağ asitlerinin b-oksidasyonla yıkılmak üzere sitoplazmadan mitokondri içine transportunda görev alan vitamin benzeri bileşik nedir? Karnitin 292) Önemli yağda çözünen vitaminler nelerdir? Vitamin A (retinoidler) Vitamin D (kalsiferoller) Vitamin E (tokoferoller) Vitamin K (naftokinonlar) 293) Karanlığa karşı adaptasyon bozukluğu ile karakterize gece körlüğü (niktalopi), hangi vitamin eksikliğinin erken belirtilerinden biridir? Vitamin A 294) Vitamin A eksikliğinin erken belirtilerinden biri olan, karanlığa karşı adaptasyon bozukluğu ile karakterize bulgu nedir? Gece körlüğü (niktalopi) 295) Kalsitriol diye bilinen bileşik nedir? 1a,25-dihidroksi vitamin D3 (aktif vitamin D3) 296) İskeletin gelişmesi döneminde vitamin D eksikliğinin neden olduğu klinik durum, nedir? Raşitizm 297) İskelet gelişimi tamamlandıktan sonra vitamin D eksikliğinin neden olduğu klinik durum nedir? Osteomalazi 298) Kolekalsiferol diye bilinen bileşik nedir? Vitamin D3 299) Ergokalsiferol diye bilinen bileşik nedir? Vitamin D2 300) Karaciğerde, kanın pıhtılaşma faktörlerinden bazılarının oluşmasında gerekli vitamin hangisidir? Vitamin K 301) K vitamini, karaciğerde kanın pıhtılaşma faktörlerinden hangilerinin oluşmasında gereklidir? Faktör II (protrombin), faktör VII (prokonvertin), faktör IX (plazma tromboplastin komponenti) ve faktör X (Stuart faktörü) 302) İnsan vücudunda nispeten önemli miktarlarda bulunan majör mineraller nelerdir? Sodyum (Na) Potasyum (K) Klor (Cl) Magnezyum (Mg) Kalsiyum (Ca) Fosfor (P) 303) İnsan vücudunda oldukça az miktarlarda bulunan minör mineraller (iz elementler, eser elementler) nelerdir? Bakır (Cu) Demir (Fe) Çinko (Zn) Kobalt (Co) Molibden (Mo) Manganez (Mn) Kadmiyum (Cd) Lityum (Li) Selenyum (Se) Krom (Cr) Nikel (Ni) Vanadyum (V) Arsenik (As) Silisyum (Si) Bor (B ) Kükürt (S) İyot (I) Flüor (F) 304) Erişkin sağlıklı bir insanda serum sodyum düzeyinin normal değeri nedir? 140±7,3 mEq/L 305) Serum sodyum düzeyinin normalden yüksek olması ne olarak tanımlanır? Hipernatremi 306) Serum sodyum düzeyinin normalden düşük olması ne olarak tanımlanır? Hiponatremi 307) Hipernatremi deyince ne anlaşılır? Serum sodyum düzeyinin normalden yüksek olması 308) Hiponatremi deyince ne anlaşılır? Serum sodyum düzeyinin normalden düşük olması 309) Erişkin sağlıklı bir insanda serum potasyum düzeyinin normal değeri nedir? 3,5-5,1 mEq/L 310) Serum potasyum düzeyinin normalden yüksek olması ne olarak tanımlanır? Hiperpotasemi (hiperkalemi) 311) Serum potasyum düzeyinin normalden düşük olması ne olarak tanımlanır? Hipopotasemi (hipokalemi) 312) Hiperpotasemi (hiperkalemi) deyince ne anlaşılır? Serum potasyum düzeyinin normalden yüksek olması 313) Hipopotasemi (hipokalemi) deyince ne anlaşılır? Serum potasyum düzeyinin normalden düşük olması 314) Erişkin sağlıklı bir insanda serum klorür düzeyinin normal değeri nedir? 98-108 mEq/L 315) Serum klorür düzeyinin normalden yüksek olması ne olarak tanımlanır? Hiperkloremi 316) Serum klorür düzeyinin normalden düşük olması ne olarak tanımlanır? Hipokloremi 317) Hiperkloremi deyince ne anlaşılır? Serum klorür düzeyinin normalden yüksek olması 318) Hipokloremi deyince ne anlaşılır? Serum klorür düzeyinin normalden düşük olması 319) Erişkin sağlıklı bir insanda serum magnezyum düzeyinin normal değeri nedir? 1,7-3,0 mg/dL 320) Serum magnezyum düzeyinin normalden yüksek olması ne olarak tanımlanır? Hipermagnezemi 321) Serum magnezyum düzeyinin normalden düşük olması ne olarak tanımlanır? Hipomagnezemi 322) Hipermagnezemi deyince ne anlaşılır? Serum magnezyum düzeyinin normalden yüksek olması 323) Hipomagnezemi deyince ne anlaşılır? Serum magnezyum düzeyinin normalden düşük olması 324) Erişkin sağlıklı bir insanda serum kalsiyum düzeyinin normal değeri nedir? 8,5-11,5 mg/dL 325) Serum kalsiyum düzeyinin normalden yüksek olması ne olarak tanımlanır? Hiperkalsemi 326) Serum kalsiyum düzeyinin normalden düşük olması ne olarak tanımlanır? Hipokalsemi 327) Hiperkalsemi deyince ne anlaşılır? Serum kalsiyum düzeyinin normalden yüksek olması 328) Hipokalsemi deyince ne anlaşılır? Serum kalsiyum düzeyinin normalden düşük olması 329) Erişkin sağlıklı bir insanda serum inorganik fosfor düzeyinin normal değeri nedir? 2,5-4,5 mg/dL 330) Serum inorganik fosfor düzeyinin normalden yüksek olması ne olarak tanımlanır? Hiperfosfatemi 331) Serum inorganik fosfor düzeyinin normalden düşük olması ne olarak tanımlanır? Hipofosfatemi 332) Hiperfosfatemi deyince ne anlaşılır? Serum inorganik fosfor düzeyinin normalden yüksek olması 333) Hipofosfatemi deyince ne anlaşılır? Serum inorganik fosfor düzeyinin normalden düşük olması 334) Erişkin sağlıklı bir insanda serum bakır düzeyinin normal değeri nedir? 65-165 mg/dL 335) Serum bakır düzeyinin normalden yüksek olması ne olarak tanımlanır? Hiperkupremi 336) Serum bakır düzeyinin normalden düşük olması ne olarak tanımlanır? Hipokupremi 337) Hiperkupremi deyince ne anlaşılır? Serum bakır düzeyinin normalden yüksek olması 338) Hipokupremi deyince ne anlaşılır? Serum bakır düzeyinin normalden düşük olması 339) Demir taşıyıcı protein nedir? Transferrin 340) Demir depolayan protein nedir? Ferritin 341) Erişkin sağlıklı bir insanda serum demir düzeyinin normal değeri nedir? 90-120 mg/dL 342) Serum demir düzeyinin normalden yüksek olması ne olarak tanımlanır? Hipersideremi 343) Serum demir düzeyinin normalden düşük olması ne olarak tanımlanır? Hiposideremi 344) Hipersideremi deyince ne anlaşılır? Serum demir düzeyinin normalden yüksek olması 345) Hiposideremi deyince ne anlaşılır? Serum demir düzeyinin normalden düşük olması 346) Eksikliğinde vitamin B12 eksikliğine bağlı bozukluklar saptanan iz element nedir? Kobalt 347) Kobalt eksikliğinde hangi vitamin eksikliğine bağlı bozukluklar saptanır? B12 vitamini 348) Psikiyatride manik depresif psikoz tedavisinde kullanılan iz element nedir? Lityum 349) Hangi iz element yetmezliği durumlarında tiroit bezinin endemik guatr denen hastalığı ortaya çıkar? İyot 350) İyot yetmezliği durumlarında ortaya çıkan hastalık nedir? Tiroit bezinin endemik guatr denen hastalığı 351) Porfirin tanımı nasıldır? Porfirin halka sistemi içeren renkli maddeler… 352) En yaygın olarak bulunan biyolojik metaloporfirinler ne içerenlerdir? Demir ve magnezyum 353) Hemoglobin nedir? Kanda eritrositlerde bulunan, kana kırmızı rengini veren, demir-porfirinli bir bileşik protein… 354) Yetişkin erkek için %g olarak kandaki hemoglobin konsantrasyonunun normal değeri nedir? %14-18 g 355) Yetişkin kadın için %g olarak kandaki hemoglobin konsantrasyonunun normal değeri nedir? %12-15 g 356) Hemoglobin molekülü kaç hem kaç globin içerir? 4 hem 1 globin 357) Bir hemoglobin molekülü toplam kaç adet O2 molekülü bağlayarak taşıyabilir. 4 358) Hemoglobinin protein komponenti olan globin, kaç polipeptit zincirden yapılmıştır 4 359) Çeşitli hemoglobin tiplerinde bulunabilen polipeptit zincir tipleri nelerdir? a-zincir, b-zincir, g-zincir, d-zincir 360) Fizyolojik hemoglobinler (normal hemoglobinler) nelerdir? HbA1: Globininde 2a ve 2b polipeptit zinciri. Erişkin bir şahsın eritrositlerinde bulunan hemoglobinin %97-98’ini oluşturur. HbA2: Globininde 2a ve 2d polipeptit zinciri. HbF: Globininde 2a ve 2g polipeptit zinciri. Yeni doğanda total hemoglobinin %70-90’ını oluşturur. 361) Sağlıklı erişkin bir şahsın eritrositlerinde bulunan hemoglobinin en büyük kısmını hangi hemoglobin oluşturur.? HbA1 362) Primitif hemoglobin (HbP) diye de bilinen hemoglobin nedir? HbF 363) HbA1c ne tür hemoglobindir? Glikozile hemoglobin 364) HbS hangi hastalığın ortaya çıkmasına neden olan hemoglobindir? Orak hücreli anemi ( Hb S hastalığı) 365) Önemli hemoglobin bileşikleri nelerdir? Oksihemoglobin (HbO2) Karbaminohemoglobin Karboksihemoglobin (Hb×CO) Methemoglobin Sulfhemoglobin Azotmonoksit hemoglobin Siyanhemoglobin 366) Oksihemoglobin nasıl oluşur? Hemoglobin molekülündeki 4 Fe2+’e akciğerlerde birer O2 molekülü bağlanması sonucu… 367) Kanın oksijenlenmesinde bir azalma sonucu deri ve mukozaların karakteristik mavimtrak bir renk alması ne olarak tanımlanır? Siyanoz 367) Karbaminohemoglobin nasıl oluşur? Hemoglobindeki globinin serbest a-amino gruplarına reversibl olarak CO2 bağlanmasıyla… 368) Karboksihemoglobin nasıl oluşur? Oksihemoglobindeki O2 yerine karbonmonoksit (CO) geçmesi suretiyle… 369) Methemoglobin nasıl oluşur? Hemoglobindeki Fe2+ ’nin Fe3+ haline reversibl olarak oksitlenmesi sonucu… 370) Sulfhemoglobin nasıl oluşur? Oksihemoglobin ile H2S’ün reaksiyonlaşması sonucu… 371) Azotmonoksithemoglobin nasıl oluşur? Nitritli dumanların solunması durumlarında 372) Siyanhemoglobin nasıl oluşur? HCN solunması sonucu… 373) Miyoglobin ne tür bileşiktir? Prostetik grubu hem olan bir kromoprotein… 374) İdrarla miyoglobin atılması ne olarak tanımlanır? Miyoglobinüri 375) İdrarla hemoglobin atılması ne olarak tanımlanır? Hemoglobinüri 376) İdrarla kan atılması ne olarak tanımlanır? Hematüri 377) Sitokromlar ne tür bileşiklerdir? Prostetik grup olarak bir demir-porfirin bileşiği olan hem içeren elektron taşıyıcı proteinler… 378) Erişkinde hemoglobin nerede sentezlenir? Kemik iliğinde 379) Porfirin sentezi için temel prekürsörler nelerdir? Glisin amino asidi ile süksinil-KoA 380) Hemoglobin biyosentezinde neler rol alır? Pantotenik asit (vitamin B5), Piridoksal fosfat (vitamin B6), Vitamin B12 Folik asit Demir Bakır 381) İnsanlarda porfirin biyosentezinde görevli bazı enzimlerde genetik defekt olmasına bağlı olarak ortaya çıkan genetik hastalıklar nelerdir? Porfiriyalar 382) Hemoglobinin hem kısmının yıkılması sonucu ne oluşur? Bilirubin 383) Bilirubin neyin yıkılması sonucu oluşur? Hemoglobinin hem kısmının 384) Hemoglobinin hem kısmının yıkılmasıyla oluşan bilirubin, ne olarak adlandırılır? İndirekt bilirubin (ankonjuge bilirubin) 385) Direkt bilirubin (konjuge bilirubin) nasıl oluşur? İndirekt bilirubinin karaciğerde glukuronik asitle konjugasyonu veya çok az oranda sülfatlanmasıyla 386) Hiperbilirubinemi deyince ne anlaşılır? Serumda bilirubin düzeyinin normalden yüksek olması 387) Hiperbilirubinemiler nasıl sınıflandırılırlar? Serbest (indirekt) bilirubin düzeyindeki artışlar Yenidoğan sarılığı Gilbert hastalığı Crigler-Najjar sendromu tip I Crigler-Najjar sendromu tip II Konjuge (direkt) bilirubin düzeyindeki artışlar Kolestaz Dubin-Johnson sendromu Rotor sendromu 388) Klasik hormon tanımı nasıldır? Endokrin sistemde dokular arası haberleşmeyi sağlayan moleküller… 389) Hormonların etki şekilleri nelerdir? Endokrin etki: Kana salınma ve uzakta etki Parakrin etki: Komşu hedef dokuya etki Otokrin etki: Salgılandığı hücreye etki Jukstakrin etki: Bitişik hücreye etki Ekzokrin etki: Mukozadan salgılanıp uzakta etki Nörokrin etki: Sinir hücresinden yakındaki dokuya etki Nöroendokrin etki: Sinir hücresinden uzakta etki 390) Hormonların sınıflandırılma şekilleri nelerdir? Sentezlendikleri yere göre Yapılarına göre Depolanıp depolanmamalarına göre Etki mekanizmalarına göre 391) Sentezlendikleri yere göre hormon sınıfları nelerdir? Hipotalamus hormonları Hipofiz hormonları Ön lop hormonları Orta lop hormonu Arka lop hormonları Tiroit hormonları Paratiroit hormonu Pankreas hormonları Böbrek üstü bezi hormonları Adrenal korteks hormonları Adrenal medülla hormonları Cinsiyet bezleri hormonları Erkek cinsiyet hormonları Dişi cinsiyet hormonları Gastrointestinal sistem ve diğer doku hormonları 392) Yapılarına göre hormon sınıfları nelerdir? Peptitler ve proteinler: Hipotalamus, hipofiz, paratiroit, pankreas, mide-bağırsak sistemi ve bazı plasenta hormonları Steroidler: Adrenal korteks ve gonadlardan salgılanan hormonlar ile bazı plasenta hormonları Amino asit türevi hormonlar: Adrenal medülla hormonları: Katekolaminler Tiroit hormonları Eikozanoidler Retinoidler NO• 393) Depolanıp depolanmamalarına göre hormon sınıfları nelerdir? Depolanan hormonlar: Peptit ve protein yapılı hormonlar, granüllü endoplazmik retikulumda sentez edildikten sonra Golgi sisteminde membranöz veziküller içinde depolanırlar Katekolaminler, suda çözünür özellikli proteinler olan kromograninler ve ATP ile birlikte granüllerde depolanırlar Tiroglobulin yapısındaki tiroit hormonları, tiroit follikülleri içinde depolanırlar Depolanmayan hormonlar: Steroid hormonlar, sentez sonrası hemen salgılanırlar, depolanmazlar 394) Etki mekanizmalarına göre hormon sınıfları nelerdir? Grup I: Hücre içi reseptörler bağlanan hormonlar Grup II: Hücre yüzeyi reseptörlerine bağlanan hormonlar Adenilat siklaz aktivasyonu veya inaktivasyonu yapan hormonlar Guanilat siklaz aktivasyonu yapan hormonlar Fosfolipaz C aktivasyonu yapan ve/veya sitozolik Ca2+ konsantrasyonunu artıran hormonlar Tirozinkinaz aktivasyonu yapan hormonlar 395) Hormon salgılanması nasıl kontrol edilir? Sinir sistemi ile Negatif ve pozitif feedback mekanizmalar ile: Kandaki kimyasal maddelerle Tropik hormonlarla 396) Hormon salgılanmasının kandaki kimyasal maddelerle feedback düzenlenmesinin iki güzel örneği nedir? Parathormon salgılanmasının plazma Ca2+ düzeyi ile düzenlenmesi İnsülin salgılanmasının plazma glukoz düzeyi ile düzenlenmesi 397) Hormon salgılanmasının tropik hormonlar ile feedback düzenlenmesinin örnekleri nelerdir? Tiroit, sürrenal korteks ve gonad hormonlarının sentez ve salgılanışı… 398) Hormonların kanda taşınmaları nasıl olur? Hidrofilik özellikli katekolaminler ve peptit/protein yapılı hormonların büyük çoğunluğu serbest olarak… Hidrofobik özellikli tiroit hormonları ile steroid hormonlar proteinlere bağlı olarak… 399) Hormon reseptörü deyince ne anlaşılır? Hormonu tanıyan ve bağlayan; çoğunlukla glikoprotein yapısında maddeler… 400) Hormon reseptörleri nerede bulunurlar? Plazma membranında, sitoplazmada veya çekirdekte 401) Hormon-reseptör kompleksinin oluşumundan sonra ne olur? Hücre içi metabolik olayı etkileyecek sinyal oluşumu mekanizması uyarılır… 402) Endokrin fonksiyon bozukluklarının mekanizmaları nelerdir? Yetersiz miktarda hormon salgılanması Aşırı miktarda hormon salgılanması Hormona karşı doku duyarlılığında azalma 403) Yetersiz hormon salgılanması ne ile karakterizedir? Hormona özgü hipofonksiyon belirtileri ile… 404) Yetersiz hormon salgılanmasının nedenleri neler olabilir? Endokrin hücre sayısında yetersizlik Hormonu kodlayan genin eksikliği veya kusuru Ön madde eksikliği, enzim eksikliği, sentez koşullarının sağlanamaması Adrenal korteks, tiroit ve gonad hormonları için tropik hormonun sentez ve salgılanmasında azalma (sekonder hipofonksiyon) 405) Aşırı miktarda hormon salgılanması ne ile karakterizedir? Hormona özgü hiperfonksiyon belirtileri ile… 406) Aşırı miktarda hormon salgılanmasının nedenleri neler olabilir? Endokrin bezin büyümesi (tümörler) Otoimmün hastalıklar Benzer yapılı aşırı miktardaki hormonun çapraz bağlanması Ektopik olarak hormon sentezi Adrenal korteks, tiroit ve gonad hormonları için tropik hormonun sentez ve salgılanmasında artma (sekonder hiperfonksiyon) 407) Hormona karşı duyarlılığın azalması ne ile karakterizedir? Hormona özgü hipofonksiyon belirtileri ile… 408) Hormona karşı duyarlılığın azalmasının nedenleri neler olabilir? Reseptör veya postreseptör mekanizmalardaki bozukluklar… 409) Hipotalamus hormonları nelerdir? Supraoptik ve paraventriküler çekirdekte oluşanlar Antidiüretik hormon (ADH, vazopressin) Oksitosin (pitosin) Peptiderjik nöronlardan salgılanan, Adenohipofiz hormonlarının sekresyonunu düzenleyen hormonlar Tirotropin salgılatıcı hormon (TRH) Kortikotropin salgılatıcı hormon (CRH) Gonadotropin salgılatıcı hormon (GnRH) Büyüme hormonu salgılatıcı hormon (GHRH) Somatostadin (Büyüme hormonu salgılanmasını inhibe edici hormon) Prolaktin salgılatıcı hormon (PRH) Prolaktin salgılanmasını inhibe edici hormon (PIH) 410) Ön hipofiz hormonları nelerdir? Opiyomelanokortin ailesi Kortikotropin (ACTH) Melanosit stimüle edici hormon (MSH) b-endorfin Glikoprotein ailesi Tirotropin (TSH) Gonadotropinler Luteinizan hormon (LH) Follikül stimüle edici hormon (FSH) Somatomammotropin ailesi Somatotrop hormon (Büyüme hormonu, GH) Prolaktin (PRL) 411) Kortikotropin (ACTH)’in fonksiyonu nedir? Adrenal steroidlerin sentez ve salgılanmasını artırır; özellikle kortizolün sentez ve salıverilmesini düzenler… 412) Tiroid stimüle edici hormon (TSH)’un etkisi nedir? Tiroid bezinde tiroid hormonlarının sentezinin tüm aşamalarında etki… 413) LH’ın etkisi nedir? Kadınlarda sıcaklık artışı ve östrus ile ilişkilidir, over folliküllerinin son olgunlaşmasını, çatlamasını ve çatlayan folliküllerin korpus luteuma dönüşmelerini sağlamaktadır. Erkeklerde testosteron salgılayan leydig hücrelerini uyarır… 414) FSH’ın etkisi nedir? Kadınlarda graaf folliküllerinin büyümesini uyarır. Erkeklerde seminifer tüp epitelini uyararak olgun sperm hücreleri ile spermatositlerin sayısal artışına yol açar. 415) Plasentada sentez edilen, hamileliğin ilk 4-6 haftasında korpus luteumun devamlılığından sorumlu hormon nedir? İnsan koryonik gonadotropin (hCG) 416) Büyüme hormonunun (somatotrop hormon, GH) etkisi nedir? İskelet büyüme hızı ve vücut ağırlığındaki artışı kontrol eder. Normal büyüme için gereklidir. 417) İnsanlarda iskelet büyümesinin tamamlanmasından sonra görülen adenohipofiz adenomunda GH sentezinin artışı neye yol açar? Akromegaliye 418) Hipofiz adenomunun puberte öncesinde kemik büyümesi tamamlanmadan gelişmesine bağlı olarak uzun kemiklerde aşırı büyüme görülmesine ne ad verilmektedir? Gigantizm (devlik) 419) Büyüme hormonunun yetersiz salıverilmesi ne ile sonlanır? Dwarfizm (cücelik) 420) Prolaktinin etkisi nedir? Hamilelikte meme dokusunda kendine özgü reseptörlerine bağlanarak laktalbümin dahil bazı süt proteinlerinin sentezini uyarır. Laktasyonun başlaması ve devamlılığı için gereklidir. 421) Galaktore deyince ne anlaşılır? Emzirme dönemi dışında meme bezlerinden süt gelmesi… 422) Hiperprolaktinomi deyince ne anlaşılır? Serum prolaktin düzeyinin normalden yüksek olması… 423) Epifiz hormonu nedir? Melatonin 424) Önemli gastrointestinal sistem hormonları nelerdir? Gastrin Kolesistokinin-pankreozimin (CCK-PZ) Sekretin Gastrik inhibitör polipeptit Vazoaktif intestinal polipeptit (VİP) Motilin 425) Gastrinin en önemli etkisi nedir? Gastrik asit salgılanmasını uyarmaktır. İntrinsik faktör ve pepsinojen salgılanmasını da uyarır. 426) Kolesistokinin-pankreoziminin (CCK-PZ) en önemli etkisi nedir? Oddi sfinkterinin relaksasyonu ile birlikte pankreastan enzim salıverilmesini, gastrointestinal mukozanın ve pankreasın ekzokrin salgı yapan dokularının gelişmesini, intestinal motiliteyi uyarır. 427) Sekretinin en önemli etkisi nedir? Sekretinin etkilerinin çoğu duodenumdaki asidi azaltmaya yöneliktir. Pankreastan, safra kesesinden ve Brunner bezlerinden su ve bikarbonat salıverilmesini, pankreatik büyümeyi uyarır. 428) Eritropoietin nerde sentezlenir? Böbrek dokusunda 429) Eritropoietinin en önemli etkisi nedir? Kırmızı kan hücrelerinin oluşmasını ve olgunlaşmasını hızlandırır. 430) Tiroit hormonları nelerdir? Folliküler hücrelerden sentezlenen hormonlar: Tiroksin (T4, tetraiyodotironin) T3 (triiyodotironin) 431) Tiroit hormonlarının sentez ve salgılanmasını düzenleyen nedir? TSH 432) Tiroit hormonlarının etkileri nelerdir? Genel metabolik etkileri: Organ ve dokularda hücresel tepkimeleri hızlandırırlar Karbonhidrat metabolizmasına etkileri: Glukoz emilimini hızlandırırlar, glikolizi uyarırlar, hepatositlerde epinefrinin glokojenolitik ve glukoneojenik etkilerine duyarlılığı artırırlar Yağ metabolizmasına etkileri: Yağ dokusunda lipolizi uyarırlar, yağ asitlerinin oksidayonunu artırırlar, kolesterolün emilimini azaltırlar Protein metabolizmasına etkileri: Protein sentez hızını artırırlar. Ancak düşük dozlarda katabolik etkilidirler Büyümeye etkileri: Normal büyüme ve gelişmede rolleri vardır. 433) Tiroit işlevleri ile ilgili bozukluklar nelerdir? Hipotiroidi: Tiroit hormon üretiminin baskılanmasıyla… Hipertiroidi: Tiroit hormon üretiminin uyarılmasıyla… 434) Kalsiyum ve fosfor metabolizmasını düzenleyen hormonlar nelerdir? Parat hormon (PTH) Kalsitonin (CT) Kalsitriol (1α,25-dihidroksikolekalsiferol) 435) PTH salgılanması nasıl düzenlenir? Serum iyonize kalsiyum düzeyi tarafından düzenlenir. Serum iyonize kalsiyum düzeyi azaldığında parathormon sentezi uyarılır, serum iyonize kalsiyum düzeyi arttığında ise parathormon sentezi baskılanır. 436) PTH etkisi nedir? Böbrekler ve kemik üzerine doğrudan, gastrointestinal sistem üzerine dolaylı yoldan etki ederek serum iyonize kalsiyum düzeyini artırır. 437) Kalsitonin nereden salgılanır? Tiroit bezinin parafolliküler C hücrelerinden… 438) Kalsitonin salgılanması nasıl düzenlenir? Serum iyonize kalsiyum konsantrasyonu tarafından düzenlenir… 439) Kalsitonin etkisi nedir? Temel hedef organ olan kemiklerde rezorpsiyonu kısıtlayarak kalsiyum ve fosfor kaybını önlemekte, serum kalsiyum ve fosfor düzeylerini azaltmaktadır. Ayrıca böbreklerde kalsiyum ve fosforun tübüler geri emilimini azaltarak renal klirenslerini artırır… 440) Kalsitriol (1α,25-dihidroksikolekalsiferol) nasıl oluşur? Böbrekte, cildin malpigi tabakasında UV ışın etkisiyle oluşan kolekalsiferol (D3 vitamini)’den… 441) Kalsitriol (1α,25-dihidroksikolekalsiferol)’ün etkisi nedir? Kemik mineralizasyonunun oluşması ve devamlılığı için gereken serum kalsiyum ve fosfor düzeylerini düzenlemektir. Bağırsaklarda kalsiyum ve fosforun emilimini uyarır. Kemik dokusundan mineral ve matriks mobilizasyonuna yol açar. Kalsiyum mobilizasyonu için parat hormona gereksinim vardır. Böbreklerde kalsiyum ve fosforun renal atılımlarını kısıtlar 442) Pankreas hormonları nelerdir? Langerhans adacıklarının hücrelerinden salgılanan Glukagon: A (α) hücrelerinden İnsülin: B (b) hücrelerinden Somatostadin: D (l) hücrelerinden Pankreatik polipeptit: F hücrelerinden 443) İnsülinin yapısı nasıldır? 21 AA’lik A ve 30 AA’lik B polipeptit zincirlerini içeren küçük globüler bir proteindir. Oluşumu sırasında bulunan bağlayıcı peptit olan C zinciri olgun insülinde bulunmaz. 444) İnsülinin salgılanmasını düzenleyen nelerdir? Glukoz, arjinin ve lösin gibi amino asitler, çeşitli hormonlar, farmakolojik etkili bileşikler 445) İnsülini    

http://www.biyologlar.com/biyokimya-dersi-calisma-sorulari-445-soru-

SOLUNUM SİSTEMİ

Solunum sisteminin esas fonksiyonu, solunan havadan oksijeni almak ve vücut metabolizması sonucunda oluşan toksik bir ürün olan karbondioksiti atmaktır. Oksijen kuşkusuz hücre metabolizması için gereklidir ve akciğerlerden hücrelere dolaşım sistemi yolu ile taşınır, karbondioksit de tersine bir yol izleyerek hücrelerden akciğerlere taşınır. Solunum sistemi akciğerler ve dış ortam ile bağlantılı solunum yollarından oluşmuştur. Solunum sistemi iki bölüme sahiptir. I. İletim Kısmı: 1- Burun 2- Farinks 3- Larinks 4- Trake 5- Bronşlar 6- Geniş bronşiollerden oluşur. Bu yollar nispeten rijid yapılardır ve sürekli açık olarak bulunurlar. II. Solunum Kısmı: 1- Solunum bronşiolleri 2- Alveolar duktuslar 3- Alveolar keseler 4- Alveoller’den oluşur. Burada hava ve kan arasında gaz değişimi olur. Bu fonksiyonun yerine getirilmesi için akciğerlerdeki hava ve kapillerlerdeki kan arasındaki bariyer son derece incedir. Nazal kaviteden akciğerlerdeki alveollere kadar olan solunum yolu kapalı bir sistemdir, yalnızca nazal ve oral orifisler aracılığı ile dış ortama açılır. Akciğerler torasik kavite içerisinde bulunur, böylece toraks boşluğu kapasitesi arttığında, hava, iletim sistemi boyunca emilerek akciğerlere iletilecektir. Solunum sisteminin iletim kısmında hava uygun bir duruma getirilir veya modifiye edilir. Hava ısıtılır, nemlendirilir ve partiküllerin uzaklaştırılması ile filtre edilir. Havanın uygun duruma getirilmesinde mukusun varlığı önemlidir. Mukus iletici tüplerin bezleri ve döşeyici epitelin Goblet hücreleri tarafından salgılanır. Mukus sadece döşeyici epitelin dehidratasyonuna engel olmaz aynı zamanda solunan havadaki partiküler materyali de yakalar ve seröz bezlerin salgısı ile birlikte havayı nemlendirerek ılık hale getirir. Döşeyici epitelin silyar aktivitesi ile mukus farinkse hareket eder ve buradan tükürme veya yutma yolu ile uzaklaştırılır. Solunum sisteminin gaz değişimine ilave fonksiyonları da vardır. Nazal kavitede yerleşen olfaktör mukoza koku reseptörü olarak ve larinks de fonasyonda fonksiyon görür. Bu iki fonksiyonun gerçekleşmesi inspirasyonda ve ekspirasyondaki hava hareketine bağlıdır. İLETİM KISMI BURUN Burun bir kavite olup tam orta yerdeki bir duvarla sağ ve sol nasal boşluklara ayrılmıştır. Her bir boşluk (kavite) ön taraftaki anterior naris ya da diğer adı ile nostriller aracılığıyla dış ortam ile ilişki kurar. Posterior olarak posterior naris 2 aracılığıyla farinksin kısmı olan nasofarinks ile irtibattadır. Anterior naris dışında her bir nasal kavite kemik ve hyalin kıkırdaktan oluşmuş rijid bir duvara sahiptir. Anterior naris duvarı ise fibröz bağ dokusu ve kıkırdaktan oluşmuştur ve buradaki kaslardan dolayı boşluk hacmi değişkenlik gösterir. Her bir nasal kavite (burun boşluğu) bir vestibüle (anterior narisin hemen arkasındaki geniş kısım), solunum kısmına ve olfaktör kısmına bölünmüştür. Vestibül: Bazı büyük yağ bezlerinin bulunması ile karakterize olan burnun dış yüzeyini örten deri, vestibüllerin anterior kısmına kadar sokulur ki buralarda deri, bazı yağ ve ter bezleri ile kalın kıllara (Vibrissae) sahip kıl follikülerini içerir. Bu kıllar solunan hava içerisindeki kaba partiküllerin elimine edildiği ilk oluşumlardır. Vestibülün derinlerinde, çok katlı yassı epitel önce non-keratinize, daha sonra incelerek psödostratifiye hale geçer. Bu bölümde sebase bezler bulunmaz. Solunum Kısmı: Nazal kavitenin geniş bir kısmını oluşturan solunum kısmı solunum mukozası ile örtülüdür. Solunum mukozası bir basal lamina üzerine oturmuş goblet hücrelerini içeren pseudostratifiye silyalı prizmatik epitel ve altındaki lamina propriadan oluşmuştur. Solunum epiteli silyalı ve goblet hücrelerinden başka bazal hücreleri de içerir. Bazal hücreler epitel içerisindeki diğer hücre tiplerine farklanabilen stem hücrelerdir. Ayrıca epitel içerisinde birkaç “fırçamsı hücre” ile küçük granül hücreleri (Kulchitsky hücreleri) de bulunur. Bazal lamina, epiteli hemen altındaki fibröz bağ dokusundan (lamina propria) ayırır. Bu kısımda, yani lamina propria içerisinde hem müköz ve hem de seröz bezler bulunur. Lamina proprianın derin kısımları, nasal kavite duvarında bulunan kemik veya kıkırdağa ait periosteum veya perikondrium ile kaynaşır ya da devam eder. Dolayısı ile burun müköz membranı sıklıkla mukoperiosteum veya mukoperikondrium (Schneiderian membranı) olarak adlandırılır. Lamina propria kollajen ve elastik lifler ile birlikte fibroblast, makrofaj, lenfosit, plazma hücreleri ve granüler lökositleri içerir. Bu bölgenin bir karakteristiği de, özellikle nasofarinkse yakın ve posteriorda bulunan küçük lenfoid doku topluluğudur. Frontal kesitte, nasal kavite armut şeklinde görülür ve median nasal septum ile bölünmüştür. Lateral duvarlardan kaviteye doğru mukoperiosteum ile örtülü, kavis şeklinde 3 kemik uzanır; bunlar superior, median ve inferior konka (concha=kabuk) veya turbinate kemiklerdir. Bunlardan inferior konka en büyüğü olup daha kalın bir müköz membran ile örtülüdür. Solunum mukozasının lamina propriasında arteriovenöz anostomozların yaygın olduğu vasküler pleksus bulunmaktadır. Konkaların üzerinde (özellikle inferior konkada) kavernoz veya erektil doku olarak adlandırılan ince duvarlı, geniş damarların oluşturduğu yüzeyel venöz pleksus bulunur. Bu penisin gerçek erektil dokusuna benzer fakat kavernoz boşluklar arasındaki septumda kas bulunmaz. Burun boşluğundaki kavernöz sinüslerin görevi, alınan havanın ısıtılmasını sağlamaktır. Bu olayın düzenlenmesi ve kontrolü otonom sinir sistemi tarafından yapılır. Solunum yolları epitelinin yüzeyi bir mukus tabakası ile örtülüdür. Bu mukus goblet hücreleri ve lamina propria içerisindeki bezler tarafından salgılanır. Epitele ait silyalı hücrelerin silyaları mukusu devamlı bir şekilde geriye, nasofarinkse doğru hareket ettirir ki bu salgı ya yutulur ya da dışarı atılır. Müköz tabaka aynı zamanda hava ile alınan partikülleri de tutar. Seröz ve müköz bezlerin salgısı alınan havayı diğer taraftan nemlendirmiş olur. Erektil dokuya ait genişlemiş venöz sinüslerde bulunan kan, solunan havanın ısısını arttırır. 3 Olfaktör Bölge: Normal solunum bölgelerini döşeyen müköz membran taze durumda pembe renktedir. Fakat her bir nasal kavitenin tavanı ve aşağıya doğru süperior konka üzeri ile septuma komşu kısımların müköz membanı canlı halde sarımsı kahverengidir. Koku alıcı organlar, olfaktör bölge ya da olfaktör mukoza adını alan bu özelleşmiş bölgede bulunur. Olfaktör mukoza 500 mm 2 lik bir alanı kapsar. Olfaktör epitel uzun psödostratifiye prizmatik tip olup goblet hücrelerini içermez ve belirgin bir bazal laminaya sahip değildir. 60 mikron yüksekliği olan bu epitel tabakasında şu hücreler bulunur: 1- Destek (Sustentakular) Hücreleri Uzun silindirik hücrelerdir. Apeksleri geniş ve tabanları dardır. Çekirdekleri merkezi olarak yerleşmiştir. Apikal sitoplazmalarında destek hücreleri ve komşu duyu hücreleri arasındaki terminal barlar (bağlantı kompleksleri) ile ilişkili filamentöz materyalin belirgin terminal ağları vardır. Çekirdek yakınınıda küçük bir Golgi apparatus bulunur. Apikal yüzeyde ince, uzun mikrovilluslar görülür (çizgili kenar); bu villuslar hemen üzerinde yer alan mukus tabakasına doğru uzanır. Hücreler aynı zamanda lipofuksine benzer pigment granüllerini de içerirler. Bu granüller mukozanın sarımsı-kahve renginden sorumludurlar. 2- Bazal Hücreler Küçük, koni şeklinde hücreler olup koyu renkli ovoid çekirdeğe ve sitoplazmalarında birkaç organele sahip olup, rezerv veya stem hücre olarak fonksiyon görürler. Destek hücrelerinin tabanları arasında bulunur. 3- Olfaktör veya Duyu Hücreleri Destek hücreleri arasında düzgün bir şekilde dağılmış bipolar sinir hücreleridir. İğ şekilli olan bu hücrelerin sferikal şekilli çekirdeği destek hücrelerindekilerden daha bazalde yerleşmiştir. Periferal (Apikal) sitoplazma ince bir uzantı (dendrit) şeklinde destek hücrelerinin arasında yüzeye doğru uzanır. Bu uzantı küçük bir kesecik şeklinde sonlanır ve olfaktör vesikül adını alır. Buradan 6-10 kadar küçük kılımsı uzantılar lümene uzanır. Kıl şeklindeki bu uzantılara olfaktör kıllar (Silya) denir. Modifiye (hareketli olmayan) silyumlar olan olfaktör kıllar gerçek reseptör elemanlar olarak görev yaparlar. Hücrenin bazal kısmı daralarak 1 mikron kadar çapta ince silindirik bir uzantı halini alır ve hemen altındaki lamina propriaya akson olarak girer. Hücrenin sitoplazması çekirdeğin etrafında daha belirgin olmak üzere nörofibril demetleri içerir. Olfaktör sinir lifleri ya da aksonları lamina propria içerisinde bir araya gelerek fila olfaktoria adındaki küçük demetleri oluştururlar. Fila olfaktoria ethmoid kemiğin cribriform yüzeyi içindeki ince kanallarda seyrederek beyin olfaktor bulbusuna gider. Olfaktor epitelde birkaç fırçamsı hücre (brush cell) de bulunur. Bu hücreler kalın, kısa apikal mikrovilluslar içerirler ve trigeminal kranial sinirden (V. sinir) köken alan sinir lifleri ile ilişki kurarlar. Muhtemelen olfaktor mukozada alışılmış duyuyu alırlar. Lamina propria içerisinde aynı zamanda lenf ve venöz pleksuslar da yer alır, venöz pleksusler, fila olfaktoria ile birlikte seyreden kapillerler aracılığıyla subaraknoid boşlukla irtibat kurar. Olfaktör epitelin altındaki lamina propria içerisinde dallanma gösteren tubuloasinar seröz bezler (Bowman bezleri) bulunur. Bu bezlerin son bölümleri kübik epitel ile döşelidir. Hücre sitoplazması salgı granülleri ve pigment ile doludur. Salınan sulumsu madde ince duktuslar aracılığı ile yüzeye taşınır. Bowman bezleri salgısı olfaktör epitel yüzeyini nemlendirerek kokulu maddelerin solvent (eriyik) hale 4 gelmesini sağlar. Devamlı salgılama sayesinde de yüzey sıvı tabakası yenilenmiş ve dolayısıyla devamlı aynı kokunun alınması önlenmiş olur. Otoradyografik çalışmalar olfaktör hücrelerin yaklaşık 1 aylık bir ömüleri olduğunu göstermektedir. Hasar görmüş olfaktör hücreler hızla yenilenir. Dolayısı ile olfaktör hücrelerin sinir sisteminde doğumdan sonra yenilenen tek nöron olduğu görülmektedir.

http://www.biyologlar.com/solunum-sistemi-1

İnsanın Mikroekolojisi

Mikroekolojik açıdan incelendiğinde insan vücudunda sadece kendi hücreleri bulunmaz. İnsan vücudu kendi hücre sayısından daha fazla tek hücreli mikroorganizmaya (bakteri ve mantar) ev sahipliği yapar. Mikroplar doğumdan hemen sonra bebeğin ağız ve burun gibi dışa açılan boşluklarına yavaş yavaş yerleşmek suretiyle koloniler teşkil eder. Yetişkin bir insandaki toplam mikroorganizma sayısı 1014-1015’tir (bu sayı insanın kendi hücrelerinin sayısından yaklaşık 10-100 kat daha fazladır) bunların toplam ağırlığı ise 2 kg’dır. Bedende değişik sürelerde yaşadıkları belirlenmiş mikroorganizma çeşidi 500’den fazladır. Mikroorganizmalarda çoğalma hızına bağlı olarak belirlenen nesil değişiminin gerçekleştiği süre 1-7 gün arasında değişmektedir. Belirli bir ekolojik ortamda yaşayan bitki ve hayvanların teşkil ettiği topluluklara biyosenoz denir. Sağlıklı insanlarda rastlanan mikroorganizmaların (bakterilerin mikroskobik mantarların) belirli vücut bölgelerinde toplanması ve yaratılışları gereği kendilerine en uygun yeri yaşama alanı olarak seçmeleri (biyosenoz) hâdisesine ise mikrobiyotik denmektedir. İnsan bedenindeki mikroorganizma toplulukları (mikrobiyotlar) bedende konaklama sürelerine göre üç alt grupta incelenir. Beden sarayında yaşayan mikroorganizmaların yaklaşık % 90’ı vücutta yaşamaya programlanmış olduğundan sürekli bulunan ve yaşamak için insan vücuduna ihtiyaç duyacak şekilde yaratılmış olan alt grubu teşkil eder; yaklaşık % 9’u da çeşitli sebeplerle bir araya gelerek orada bulunur (insan vücudunda yaşamaya mecbur olmayan alt grubu meydana getirirler). Herhangi bir sebeple vücutta geçici olarak konaklayan transit grup ise yaklaşık % 001 civarındadır. Yüksek seviyede girift bir düzenleme ve kontrol mekanizmasıyla yaratılmış bir ekosistem olan insan organizmasının bütünlüğünün devamlılığı yapı elemanlarının (hücre doku organ sistem) ve bütünleştirici-birleştirici sistemlerin (sinir sistemi salgı bezleri sistemi kalb-damar ve bağışıklık sistemleri) faaliyetleri neticesinde gerçekleşmektedir. İnsan-mikrobiyot münasebetleri burada destek sistemleri şeklinde bütünleştirici bir rol oynamaktadır. Vücudumuzda yaşayan mikroorganizmaların bir araya gelip koloni ve birlikler oluşturmasını mümkün kılan faktörler: a) vücut hücre ve dokuları ile mikroorganizmalar arasındaki fizikî temas ve geçirgenlik; b) genetik yatkınlık ile metabolik alışveriş; c) enformasyon-haberleşme olarak özetlenebilir. a) Vücudumuz ve mikroorganizmalar arasındaki fizikî temas ve geçirgenlik Günümüzde yapılan araştırmalar insan organizmasındaki çeşitli biyotopların (mikroorganizmaların yaşama alanları) vücuda belli nispette dağıtıldığını göstermektedir. Mikroorganizmalar konakladıkları yapılarla geçici ve/veya sürekli fizikî temas kurmaya meyilli yaratılmıştır. Çeşitli boyut şekil ve iç örgütlenme motifleriyle oluşan kolonilerin meydana gelmesinde bu temaslar önemli rol oynar. Bunların en dikkat çekici olanlarından biri insan organizmasında çeşitli epitel hücre ve dokuların (mide-bağırsak gibi içi boş organların mukozaları ve deri) yüzeyine yapışmış mikroorganizmalar birliği olan ve vücuttaki çeşitli boşlukları astarlayan biyozarlardır. Biyozarlar içinden sıvıların geçtiği kanallar sistemine ve hava geçişine imkân veren hususi boşluklara sahiptir. Meselâ ağız ve burnun içini döşeyen sümüksü zarı teşkil eden hücreler (epitelyum doku); mikroorganizmalar vücudun savunma hücreleri olan lökositler ve makrofajlar (göçebe hücreler) için geçirgen olduğundan bir mikroorganizmanın kendi biyotopundan diğerine taşınabilmesi mümkündür. Meselâ kişi ayak parmaklarının aralarını kaşıdıktan sonra elini yıkamadan kulağını kaşırsa veya elini gözüne-ağzına götürürse mikrobiyotların yaşama alanlarının değişmesine sebep olur ve neticede o kişinin enfeksiyona bağlı hastalıklara yakalanma riski artar. Bu hususla ilgili olarak Hz. Muhammed’in (sas) uykudan uyandığımızda ellerimizi yıkamamız gerektiğine dâir tavsiyesi çok dikkat çekicidir (Bu hadîste Hz. Peygamber (sas) ellerimizin nerede sabahladığını bilemeyeceğimizi de ifade eder). Yaşama alanını sürekli değiştirme davranışı geçici konaklama yapan gruptaki mikroorganizmalar için sürekli bir özelliktir. Buna karşılık hem vücutta mecburen sürekli olan grup hem de herhangi bir sebebe bağlı olarak konaklayan grup için bu davranış çeşitli faktörlerle tetiklenir (aşırı sıcak ve soğuk travma stres zehirlenme kan dolaşımındaki bozukluklar vs.). b) Vücut ve mikroorganizmalar arasındaki genetik ve metabolik alışveriş Aynı veya farklı ırktan mikroorganizma topluluklarının bedenin belli bölgelerinde yoğunlaşıp koloni ve birlikler oluşturmasında bunların genetik unsurlarının (bakteriyel DNA parçaları plazmidler) kendi aralarındaki değiş-tokuşu önemli rol oynar. Son yıllarda yapılan araştırmalar bu canlıların sadece kendi aralarında değil insan vücudunun hücreleriyle (epitel dokunun yüzeyindeki hücrelerle) de genetik bilgi alışverişinde bulunduklarını ortaya koymuştur. Bilhassa insanda ve diğer memelilerde bağışıklık sisteminin birinci vazifesi vücuda ait olan ve olmayan (gerek vücut içinden gerek dışarıdan gelen) hücreleri ayırt etmektir. Bunu vücut hücrelerinin zarlarına yerleştirilmiş olan ve hücrenin kimliği sayılan molekül takımlarıyla (antijen) yapar. Bu yüzden vücudumuzda sürekli yaşayan mikroorganizmalar yabancı muamelesi görmemek için kendilerini bu sisteme tanıtmalıdır. Bu tanıtma yollarından biri genetik bilginin değiş-tokuşudur. Bu değiş-tokuşla vücudun bağışıklık sisteminde rol alan hücrelerin tanıyıcı fonksiyon gören kendi antijen desenlerinde vücutta sürekli yaşayan bakterilerin bir kısım antijenlerinin de yer alması mümkün olur. Bu genetik alışveriş hem vücudumuzu koruyan bağışıklık sisteminin mikroorganizmalara karşı güçlenmesine hem de bu canlıları bağışıklık sistemine karşı nispeten güçlü hâle getirerek ihtiyaç ve beklentileri farklı iki canlı ekosistem arasında bir istikrarın teşekkülüne katkı yapmaktadır. Bu mekanizmalar insan organizmasının belli bölgelerine yerleşen mikroorganizmaların genetik yapısının sadece o bölgede yaşayacak şekilde yüksek seviyede özelleşerek uyum sağlamasına yol açmaktadır. Vücudun değişik bölgelerinde yaşamaya ve karşılıklı fayda üretmeye azamî uyum sağlamış mikroorganizma toplulukları bulundukları bölgeden başka bölgelere taşındıklarında hem uyumlarını hem de istikrarını kaybederek hastalıklara sebep olmakta ve bağışıklık sistemi bunları öldürmek için harekete geçmektedir. c) Enformasyon-haberleşme Hücre içi ve hücreler arası haberleşme (enformasyon) mekanizmaları mikroorganizmalar topluluğunun insan vücuduna uyum sağlayıp yerleşmesi için olmazsa olmaz bir faktördür. Mikroorganizmaların ve çeşitli canlıların aralarındaki kimyevî haberleşmenin önemli bir kısmı feromon denen moleküllerle gerçekleştirilir. Mikroorganizma tarafından üretilen çeşitli yapılardaki (proteinler modifiye olmuş aminoasitler lipidler vs.) feromonlar hem koloni içerisinde haberleşmeye hem de çeşitli türlerin kendi aralarında haberleşmesine vesile olur. Son yıllarda koloni oluşturan bakterilerin de feromonlar vasıtasıyla haberleştikleri tespit edildi. Feromonlar bakteri ve mantarların üremelerinin düzenlenmesinde spor oluşumunda tabiî antibiyotiklerin üretiminde ve biyozarların oluşumunda rol alır. Mikroorganizma topluluklarının insan vücudunun ekosistem şartlarına uyumunda ve katılımında bir başka önemli faktör de metabolik işbirliği ve yardımlaşmadır. Mikroorganizmaların yaşadığı çevrenin şartları değişmeye başladığında ortamda mevcut beslenme maddelerinin en verimli şekilde kullanılmasını sağlamak üzere çeşitli ırk ve cinsten mikroorganizmalar arasındaki metabolik münasebetler yeniden düzenlenir. Böyle bir düzenlemeye misâl olarak insan bağırsağında topluluk hâlinde (konsorsiyum) yaşayan farklı bakteri gruplarının (çeşitli vitaminler üreten eubacteria ve metan gazı üreten archaebacteria) hem kendi aralarındaki hem de vücuda alınan besinlerle olan metabolik münasebetleri verilebilir. Vitamin üreten ve sindirimi kolaylaştıran bakterilerin metabolik faaliyetlerinin yan ürünlerinden biri olan hidrojen metan gazı üreten bakteriler için çok gerekli bir moleküldür. Normal fizyolojik şartlarda adı geçen bakteri konsorsiyumunun ortakları arasında dengeli bir münasebet olduğunda bağırsaklarda çok fazla metan (CH4) ve hidrojen sülfür (H2S) gazı birikmez. Bu denge bozulursa (meselâ kuru bakliyat fazla tüketilirse) metan gazının bağırsaktaki üretilme hızı artar ve vücut daha fazla gaz çıkarır. Bedenin canlılığını sürdürmesinde mikrobiyotların rolü Hem çeşit hem de biyo-kütle açısından bağırsaklardaki mikroorganizma topluluğu insandaki mikrobiyotun en kalabalık kısmını teşkil eder. Bağırsak mikroorganizmaları mayalanmaya (fermentasyon) bağlı olarak birtakım gıda maddelerinin (selüloz dahil) parçalanmasına yardım eder. Bu arada oluşan kısa zincirli yağ asitleri (asetik propionik ve butirik asit) bağırsak epitel hücreleri ile organizmanın diğer hücreleri tarafından (kan dolaşım sistemine emildikten sonra) enerji üretiminde kullanılır. Bakterilerce gerçekleştirilen kimyevî reaksiyonlar ısı da üretir. Mikroorganizmaların ağırlıklı olarak bulundukları kalın bağırsak bu yüzden ısı üreten bir organ olarak da bilinir. Bağırsaktaki mikroorganizmalar vitaminlerin (B grubu H K vs. vitaminleri) antibiyotiklerin ve protein sentezi için vazgeçilmez olan aminoasitlerin üreticisidir. Bunun yanında bağırsak bakterileri detoksifikasyon (zehirli maddelerin tesirsiz hale getirilmesi) fonksiyonunu da yerine getirir. Vücudumuz için toksik olabilecek mikroorganizmaları (canlı yahut ölü) parçalanmamış gıda liflerini (selüloz vs.) dışarıdan alınan ve içeride üretilen toksik maddeleri (fenoller merkaptanlar aminler vs.) zararsız hâle getirme mekanizmasıyla donatılmış yüksek emilim ve bağlama kapasitesi olan emici-tutucu (sorbent) moleküllerin sentezi bakteriler tarafından gerçekleştirilir. Bakterilere sentezlettirilen bu hususi emiciler hem toksik molekülleri kendilerine bağlayarak tesirsiz hâle getirir hem de onların vücut dışına atılmasına öncülük eder. Hastalık yapıcı (patojen) mikroorganizmalara karşı koruyucu kalkan vazifesi gören mikrobiyotlar patojenlerin biyozar yüzeyinde çoğalmalarını ve epitel tabakadan geçerek bedenin iç ortamına (doku sıvısına lenflere kana) sızmasını engeller. Bedenin değişik noktalarına yerleştirilmiş mikroorganizmalar bağışıklık sisteminin aynı güçte tutulmasında önemli rol oynar. Mikroorganizmaların öldürülmesi ve sindirilmesi sırasında oluşan makromoleküller metabolize edilirken açığa çıkan pek çok kimyevî madde (metabolit) bağışıklığın teşekkülünde uyarıcı ve tetikleyici rol alır. Mikrobiyotların hayatlarını sürdürmesinde dokuların rolü Beden ile mikroorganizmaların karşılıklı münasebetleri için hem beden hücreleri hem de mikroorganizmalar hususi mekanizmalarla donatılmıştır. Derimizin en üst tabakasında keratinsi ölü epitel hücrelerinin dökülmesi ve sindirim borusu gibi düz kaslı içi boş organlardaki sağılım (peristaltik) hareketi bunlardan bazılarıdır. Hususi olarak sentez edilen kimyevî faktörlere örnek ise salgıların mineral bileşenleri pH düzenleyicileri (tuzruhu biyokarbonat iyonu vs.) hazmettirici fermentler safra asitleridir. Biyolojik faktörlere örnek olarak çeşitli salgıların yapısındaki bakteri öldürücü (bakterisit) moleküller (lizozim immunoglobulinler vs.) sümüksü (mukus) zarların ve derinin lokal bağışıklık sistemi olan immun-kompetan hücreler (öncelikle T-lenfositler) verilebilir. Mikroorganizmalar ile vücut doku ve hücrelerinin aynı sistem içinde bu ölçüde uyumlu birbirinin işine yardımcı ve tamamlayıcı olmaları en önemlisi de tek bir hedef için hizmete yönelmeleri tesadüfî olabilir mi? Bedenle misafir ettiği mikroorganizmalar arasındaki karşılıklı faydaya dayalı münasebetin bozulması: Dispioz Eğer bedenimizde yaşayan mikroorganizmaların (mikrobiyotun) keyfiyet ve miktarlarındaki sapmalar vücudun fizyolojik mekanizmalarıyla telâfi edilemezse dispioz denen patolojik durum ortaya çıkar. Bu durumu kolaylaştıran faktörlere yoğun strese maruz kalma antibiyotik ve hormon tedavileri alerjiler radyasyona maruz kalma iklim şartlarının çok sık değişmesi misâl verilebilir. Bağırsaktan atılan dışkının (fekal) bakteriyolojik analizi simbiyotik (bifidobakteriler laktobasiller vs.) ve patojen (enterobakterilerin patojenik çeşitleri basiller psedomonatlar mikroskopik mantarlar vs.) mikroorganizma gruplarının ne ölçüde dengede olduğunu gösterir. Bazı durumlarda ince bağırsak ekosistemi bozulursa patojenik özellikleri öne çıkan kalın bağırsak mikroorganizmalarıyla kirlenmeye başlar. Daha ağır durumlarda bu patojen mikroorganizmalar bağırsak dışına çıkarak iç organlara yerleşebilir. Bağırsaklardaki mikroorganizma profilinin böylesine bozulması patojenik mikroplara karşı koruyucu kalkan faaliyetini aksatır. Bir sonraki basamakta ise bedenin hazmetme (polisakaritlerin parçalanması) ve biyosentez fonksiyonu (vitaminler ve aminoasitlerin sentezi vs.) ağır şekilde bozulmaya başlar. Bu şartlar kontrol altına alınıp normale döndürülemezse mikroorganizmaların bazı çeşitlerinde hızlı artış bazı çeşitlerinde ise hızlı ölüm gözlenir. Neticede bedenin sağlıklı şekilde canlılığını devam ettirebilmesi için gerekli faaliyetler bundan zarar görür ve bedende toksik maddelerin oluşması artabilir. Yukarıdaki menfî tablonun oluşmaması için antibakteriyal ilâçların gereksiz alınmaması; mikrobiyotanın besin kaynağı olan ve bunların çoğalmasını uyaran yoğurt ve kefir gibi prebiyotiklerin kullanılması; bağışıklık sisteminin ve lokal bağışıklığın uyarılması; fonksiyonel ve dengeli beslenme için fazla miktarda besin lifleri ihtiva eden (kepek sebze meyve) ve canlı mikroorganizma kültürleriyle zenginleştirilmiş gıdaların (mayalanmış süt karışımları) alınması; bifidobakterilerin çoğalmasını uyaran maddelerin (patates pirinç suyu havuç tatlı kabağı soya) yenmesi alınabilecek başlıca tedbirlerdir. Özetlersek vücudumuzun çeşitli bölgelerini yurt edinmiş mikroorganizmaların bedenle karşılıklı fayda üretmeye dayalı (simbiyotik) münasebetleri o kadar girifttir ki bu muhteşem mikroskobik canlıların sırları ancak ağ tabanlı bir sistem olarak modellenebilirse tam olarak çözümlenebilir.

http://www.biyologlar.com/insanin-mikroekolojisi

Alveoller

Alveoller polihedral veya hegzagonal şekillidir ve tek duvara sahiptir. Bu duvar, solunum bronşiolleri, duktus alveolaris, atrium veya alveolar keselere açılarak havanın akışına izin verir. Yan yana bütün alveoller açıldığında yaklaşık 150 m 2 genişliğinde gaz değişim alanı oluştururlar. Alveoller sıkıca paketlenmişlerdir ve her bir alveolün duvarı tam değildir. Bunun yerine komşu alveoller birbirlerinden interalveolar septum ile ayrılmışlardır. Herbir alveol yassı, oldukça ince bir epitelle döşelidir. Bu epitel içerisinde iki farklı tip hücre bulunur. Bir interalveolar septum alveol içerisindeki hava basıncına dirençli olmalıdır ve hava basıncı solunumun değişik fazlarında farklılıklar gösterir. Septumun destek fonksiyonu retiküler ve elastik lif ağı tarafından sağlanmaktadır. Septum içerisinde oldukça zengin kapiller damar pleksusları yerleşmiştir. Bundan dolayı bir interalveolar septum her iki yüzeyde ince bir alveolar epitelle örtülüdür ve bu epitel hücreleri de bir bazal lamina üzerine oturmuşlardır. İnteralveolar septumun orta kısmında da zengin kapiller ağ içeren bağ dokusu yerleşmiştir. Alveolar epitel içerisinde iki esas tip hücre bulunur. 1- Tip I Alveolar Hücreler: Yassılaşmış yüzey epitel hücreleri ya da tip I Pnömosit adını da alan bu hücreler alveolar yüzeyde en yaygın bulunan hücre tipidir. Yaklaşık hücrelerin %90’ını oluştururlar. Fakat 0.2 mm.den daha az bir kalınlığa sahiptirler. Işık mikroskobik seviyede çekirdekleri ayırt edilebilir, fakat sitoplazmaları çok ince olduğu için net olarak izlenemez. Elektron mikroskopta bu hücrelerin apikal ve bazal yüzeylerinde mikropinositotik veziküllerin bulunduğu ve hücrelerin birbirlerine sıkı bağlantılarla bağlandıkları görülmektedir. 2- Tip II Alveolar Hücreler: Büyük alveolar hücreler, septal hücreler ya da tip II pnömositler olarak da isimlendirilen salgı hücreleridir, tek veya küçük gruplar halinde yassı hücrelerin aralarında yerleşmişlerdir. Hücreler kübik tiptedirler genellikle alveolar duvarın köşelerinde veya açı oluşturduğu bölgelerinde yerleşmişlerdir. Işık mikroskopta sferikal şekilli veziküler çekirdekleri ve vakuollü sitoplazmaları ile ayırt edilirler. Elektron mikroskobik seviyede bu hücrelerin tipik salgı hücreleri görünümünde olduğu, sitoplazmalarında granüler endoplazmik retikülüm, bir Golgi kompleksi, mitokondriyonlar, apikal sitoplazmalarında salgı granülleri ile apikal yüzeylerinde birkaç mikrovillus içerdikleri gözlenmektedir. Salgı granülleri 0.2-1 mikron çapında olup özlerinde birbirlerine paralel membran lamelleri şeklinde olan lamellar bir yapı gösterirler. Bu lameller yapılar fosfolipidleri (Dipalmitoilfosfatidilkolin), nötral lipidler ve sürfaktant proteinlerini (SP-A, SP-B, SP-C, SP-D) içerirler. Ekzositoz ile salgılanan bu granüller, alveolar yüzey üzerinde surfaktant olarak adlandırılan yüzey aktif ajanı oluştururlar. Surfaktant miyelin formunda alveolar boşluklar içerisine salınır. Daha sonra monomoleküler film halinde alveol yüzeyine yayılır. Tip II hücreler aynı zamanda mitoz bölünme gösterilebilirler ve alveolar epitel hücrelerine farklanırlar. Bu hücreler alveolar yaralanmalarda alveolar epiteli tamir etme yeteneğine de sahiptirler. Bunlara ilaveten alveolar epitel içerisinde birkaç fırçamsı hücreler de gözlenebilmektedir. İnterstisyum ve İnteralveolar Septum Komşu iki alveolü döşeyen pulmoner epiteller arasında interstisyum (Zona diffuza) bulunurken, epitel ile interstisyumun tamamı interalveolar septumu oluşturur. 15 İnterstisyum her iki tarafta bazal lamina tarafından sınırlanmıştır. Bazal laminanın üzerinde alveolar epitel bulunmaktadır. İnterstisyumda amorf temel madde, hücreler ve lifler bulunmaktadır. Hücre tipleri, mast hücreleri, makrofajlar, lenfositler, fibroblastlar veya septal hücrelerdir. Çoğunluğu septal hücreler oluştururlar. Bu hücreler akciğer bağ dokusunun oluşumunu, onarımını ve devamlılığını sağlarlar. Düzensiz şekilli olan bu hücreler interstisyumdaki elastik ve retiküler lifler arasında yerleşirler. İnteralveolar septumun büyük bir kısmını kaplayan kapillerler endotel hücreleri ile döşelidir ve birkaç perisit tarafından desteklenmiştir. Kapillerler bazal lamina ile sınırlanmıştır. Kapillerleri döşeyen endotelyal hücreler koyu yassılaşmış çekirdekler içeririler ve dar sitoplazmaları ile yüzey epitel hücrelerine (Tip I) benzerlik gösterirler. Yüzey epitelinden, kapiller lümenindeki kan hücreleri (eritrositler, granülositler, lenfositler ve monositler) ile olan ilişkileri nedeniyle ayırt edilirler. Kan hücrelerinin çoğu göç ederek interstisyumda kapillerlerin dışında yerleşebilirler veya epiteli geçerek alveolar boşluğu dahil olabilirler.

http://www.biyologlar.com/alveoller

Rektum Nedir? Anatomisi ve <b class=red>Fonksiyonu</b> Nedir?

Rektum Nedir? Anatomisi ve Fonksiyonu Nedir?

Rektum, dışkının geçici bir süre depolanmasını sağlayan sindirim sisteminin alt parçasıdır. Bu makalede rektumun anatomisi ve fonksiyonu hakkında bazı bilgiler vereceğiz.Biliyor Muydunuz?Bağırsak hareketlerinin sıklığı konusunda hiç bir kural yoktur. Ancak, sağlıklı bir birey için sıklık haftada üç kez veya günde üç kez arasında değişmektedir.İnsan sindirim sistemi, sindirim sürecinden sorumludur. Sindirim sürecinin her biri son derece önemli olan bir çok aşamaları bulunmaktadır. Böyle önemli aşamalardan biri de vücuttan sindirilmemiş gıda ve atık ürünlerinin kaldırılmasını içeren aşamadır. İşte bu aşamada rektum devreye girmektedir. Rektum Nedir?Sindirim kanalının sigmoid fleksuradan anüse kadar olan parçasına rektum denilmektedir. Ayrıca anüste son bulan kalın bağırsağın son bölümü olarak da ifade edilebilir.Rektum Anatomisi:Sindirim sistemi ağızdan anüse kadar, uzunluğu yaklaşık 8.3 metre olan boru şeklinde bir yapıdır. Sindirim sisteminin son bölümü çekum, kolon, rektum, anüs bölümlerini içeren yaklaşık 1,8 metre uzunluğundaki kalın bağırsaktır. İnsanlarda rektum yaklaşık 10-12 cm arasında ortalama bir uzunluğa sahiptir. Yukarıda bahsedildiği gibi sigmoid kolonu anüse bağlamaktadır. Rektumun dış duvarı boylamasına kaslarla çevrelenmiştir. Pankreas, dalak, karaciğer gibi organların yanı sıra üreme organları ve idrar yolları rektuma yakın yer almaktadır. Bu nedenle kolorektal kanser (hem kolon hem de rektumu ilgilendiren kanser türü) gibi durumlar kalın bağırsağın dışına çıktığı takdirde komşu organları etkileyebilir.Rektumun Fonksiyonları:Rektumun fonksiyonu, dışkılamaya kadar dışkıyı geçici bir süre depolamaktır. Bir kişi bir yiyeceği ilk kez çiğnediği andan itibaren sindirim sürecinin bir parçası olarak, sırasıyla mide, ince bağırsak ve son olarak kalın bağırsaktan geçmelidir. Sindirim işlemi sırasında biriken sindirilmemiş gıda ve atık maddeler, dışkı maddesi şeklinde rektum içine doğru hareket eder. Bu dışkı maddesini toplamak ve dışkılama sürecine kadar geçici olarak saklamak rektumun fonksiyonudur. Böylece dışkı anüsten atılana kadar, rektum içinde saklanmaktadır.Rektum Nasıl Çalışır?Sindirilmemiş yiyecekler ve diğer artık maddeler dışkı formunda rektuma ulaşıp, rektumu doldurduğunda sensörler bu durumu beyine bildirir. Daha sonra beyin dışkılamanın uygun olup olmadığına karar verir. Sinyaller beyin ile birlikte, dışkı tahliyesi için, kişiyi hazır hale getirmek için karın duvarı kasları, anal kanal, göğüse gönderilir. Eğer beyin dışkılamanın mümkün olduğuna karar verirse, sfinkter gevşer ve rektum kasılır böylece dışkılama gerçekleşir. Eğer beyin dışkılama için uygun olmadığına karar verirse sfinkter kasılır, rektum dışkıyı daha uzun bir süre tutar ve bir süre için tuvalete gitme dürtüsünün uzaklaşmasını sağlar.Rektum ile ilişkili olabilen belirli hastalıklar veya sorunlar olduğunda rektal muayene teşhis için yapılabilir. Bu durumlar arasında erkeklerde prostat kanseri ve benign prostat hipertrofisi, fekal inkontinans ve basur bulunmaktadır. Kolonoskopi veya sigmoidoskopi rektumu görüntülemek için rehberli kamera kullanılan endoskopinin türleridir. Bu tetkikler gerekirse biyopsi almak için de kullanılabilmektedir ve kanser gibi hastalıkları teşhis etmek için de kullanılabilir. Örneğin rektal kanser endoskopi yardımı ile tespit edilebilmektedir.Vücut sıcaklığı rektumdan ölçülebilmektedir. Cıvalı termometre 3- 5 dakika boyunca, dijital termometre bip sesi gelene kadar vücutta tutulmalıdır. Normal rektum sıcaklığı genel olarak 36 ile 38 ° C arasında değişmektedir ve ağızdan ölçülen sıcaklıktan 0.5 °C, koltuk altından ölçülen sıcaklıktan 1 °C kadar daha yüksektir. Çocuk hekimleri bebeklerin ve küçük çocukların vücut sıcaklıklarının rektumdan ölçülmesi gerektiğini önermektedir. Bunun nedeni rektal sıcaklığın çekirdek vücut sıcaklığına en yakın olmasıdır ve küçük çocuklarda vücut sıcaklığının doğruluğu çok önemlidir. Oysaki son zamanlarda ortaya çıkan timpanik ve alın termometreleri kullanımlarının daha kolay olması sebebiyle aileler ve doktorlar tarafından daha sık kullanılmaya başlanmıştır ve rektumdan ateş ölçümünün önemi unutulmaya başlamıştır.Kaynakça: http://www.buzzle.com/articles/anatomy-and-function-of-the-rectum.html<br />http://en.wikipedia.org/wiki/RectumYazar: Tülay Arsoyhttp://www.bilgiustam.com

http://www.biyologlar.com/rektum-nedir-anatomisi-ve-fonksiyonu-nedir

 
3WTURK CMS v6.03WTURK CMS v6.0