Biyolojiye gercekci yaklasimin tek adresi.

Arama Sonuçları..

Toplam 534 kayıt bulundu.

Vitamin türleri

Herkes tarafından bilinen 13 vitamin vardır. Bunlar temelde, yağda çözünenler ve suda çözünenler olarak iki gruba ayrılır ama gerçekte 20 vitamin vardır. En küçük vitamin A, C, D ve K vitaminleriyken, en büyük vitamin türü E vitaminidir. Orta boy moleküllü B vitaminleri ise pek kullanılmaz. Dört vitamin türü, yağda çözünebilir ve bu sayede vücudun yağ dokusunda depolanırlar. Bunlar: A vitamini, D vitamini, E vitamini ve K vitamini. A Vitamini Göz sağlığı için çok önemlidir. E vitaminiyle alınırsa daha iyi gözlere sahip olunur. Yumurta, avokado, karaciğer, süt, havuç, sebze, ceviz, balık yağı gibi besinlerde vardır. Oluşumu sırasında böbreklerin rolü vardır. Zaten A vitamini böbreklerde bulunan tek vitamindir. Yeşil sebzelerde bulunur. Kalorisi yüksektir. A vitamininin (diğer yağda eriyen vitaminler olan D, E, K vitaminleri gibi) fazlası zararlıdır. Özellikle gebe kalmayı planlayanlarla gebelerin A vitamini içeren ilaçlardan ve yiyeceklerden (karaciğer) uzak durması önerilmektedir. Gebelikte düşük ve anormallik yapma riski vardır. Çoklu vitamin içeren ve gebelerce çok tüketilen ilaçlarda da ne yazık ki A vitamini bulunmaktadır. Yağda eriyen, vücutta depolanan bu tarz ilaçların gebelere verilen dozun toksik (zehirleyici) dozda olmaması özgürce alınabileceği anlamına gelmemektedir. İlaç olarak alınan A vitaminin doğal yollarla alınan A vitaminine göre daha riskli olduğu kabul edilmektedir. Nitekim İngiltere Royal Kolej yayınladığı "Gebe Takip Kılavuzu"nda A vitamini içeren ilaçların ve yiyeceklerden karaciğerin gebelere verilmemesini önermektedir. A vitamini fazlalığı aşağıdakilere neden olabilir: Doğum anormallikleri, Karaciğer problemleri, Kemik mineral yoğunluğunda azalma ve osteoporoz, Uygunsuz kemik büyümesi, Deride uygunsuz renk değişimi, Saç dökülmesi, Yoğun cilt kuruluğu ve pullanmalar A vitamini eksikliğinde görülen hastalıklar: Gece körlüğü, Bağışıklık sistemi zayıflığı, Büyüme-gelişme yavaşlaması D Vitamini Provitamin şeklinde alınan D vitamini deri altında uv. ışınları ile aktifleşir. D vitamini Ca ve P'un emilmesini ve kemiklerde depo edilmesini sağlar. D vitamini eksikliğinde çocuklarda raşitizm,yetişkinlerde osteomalazi hastalıklarının oluşmasını sağlar. Fazlası kireçlenmeye neden olur. En önemli kaynak güneş ışınıdır. Ayrıca karaciğer, balık, yumurta, tereyağı, peynir ve mantarda bulunur. E Vitamini Çocukların büyümesi için E vitamini gereklidir. Yaralarının iyileşmesi için E vitamini gerekir (protein yarayı kötüleştirir). Karaciğer, yağ dokusu, ince bağırsak ve mide E vitamini sentezler. Kimyasal yapı itibarı ile bir tokoferol olup antisterilite vitamin olarak da bilinir. Tokol ve tokotrienoltürevlerinin farklı bileşikleri E vitamini aktivitesi gösterir. En aktifi alfa-tokoferoldür. Provitamin olarak kullanılır. D vitamininden daha güçlüdür. E vitamini sinir sisteminin, kasların, hipofiz ve sürrenaller gibi endokrin bezlerin ve üreme organlarının fonksiyonları için öneme sahiptir. E vitamini, biyolojik bir antidoksidan olup, atardamar hastalıklarının ve kanserin önlenmesi için gerekli olan bir antioksidandır. Bitkisel ve sıvı yağlarda, kırmızı et, karaciğer, tahıl, tahıl ürünleri vb. lerde bulunan E vitamini eksikliğinde kaslar gelişemez ve E vitamini yapıcı-onarıcı özelliğe sahip her şeyi yaptığı için, bazı kozmetik ürünleri de E vitamini içermektedir. Kozmetik ürünlerinde sadece B5 ve E vitaminleri bulunur. Tokoferol (E1) vitamininin tokoferolleri: Alfa tokoferol - E1A (Diğer adı: Provitamin E) Beta tokoferol - E1B (Diğer adı: Pro-E1B) Gama tokoferol - E1G (Diğer adı: EProteinToko1) Delta tokoferol - E1D (Diğer adı: DeltE1) Mega tokoferol - E1M (Diğer adı: Megadel) K Vitamini K vitamini, yeşil sebze, çay ve ciğerde bulunan ve kan pıhtılaşmasında önemli bir yeri olan vitamindir. Karaciğerde protrombin yapılmasında kullanılır. Yokluğunda kan ile ilgili belirtiler ortaya çıkar. Normal olarak bağırsaklarda bulunan bakteriler tarafından sentezlenir. Yetersizliğinde pıhtılaşmada sorunlar ve aşırı kanama ortaya çıkar. Vücudumuzdaki bakteriler tarafından da üretilir. Vücudumuzu hastalıklardan korur. yaraların iyileşmesi için K vitamini gereklidir. Suda çözünenler Diğer dokuz vitamin türü ise suda çözünür ve pek çoğu vücutta depolanmaz. Bunlar: C vitamini, tiyamin (B1), riboflavin (B2), niyasin (B3), pantotenik asit (B5), piridoksin (B6), siyanokobalamin (B12), biyotin, folik asit (folacin). C Vitamini (askorbik asit) C vitamini veya askorbik asit, turunçgiller, koyu yeşil sebzeler ve patateslerde bulunan ve kollajen sentezinde yer alan, antioksidan bir vitamindir. Ayrıca demir emilimini de olumlu etkiler. Yetersizliğinde eklem ağrıları, yaraların geç iyileşmesi, skorbüt gibi sorunlara neden olabileceği gibi enfeksiyonlara karşı kişiyi daha zayıf kılar. Küçük yaşlarda diş eti kanaması ve grip C vitamini eksikliğinde, fazlalığında da ishal görülür. B1 Vitamini (tiyamin) Hemen hemen tüm canlı dokularda bulunur ve pirofosforik ester şeklinde görülür. Pentozfosfat çeviriminde alfa-keto asit dekarboksilazların ve transketolazın koenzimidir. Eksikliği başta sinir ve kalp hücreleri olmak üzere beslenmeleri için özellikle glikoza gereksinim duyan hücrelerde metabolizma bozukluğuyla sonuçlanır ve beriberiye neden olur. B2 Vitamini (riboflavin) Tahıllar, et ve ciğerde bulunan bir vitamindir. FAD'ın içeriklerindendir. Yetersizliğinde ariboflavinoz görülebilir. B3 Vitamini (niyasin) Et, balık ve kuru yemişlerde bulunan ve NAD ile NADP koenzimlerinin içeriklerinden olan, solunum için önemli bir vitamindir. Yetersizliğinde pellagra görülebilir. B5 Vitamini (pantotenik asit) Birçok gıdada, özellikle de ciğer ve baklagillerde bulunan önemli bir vitamindir. E vitamininin içeriği olan pantotenik asit, karbonhidrat ve yağ metabolizmasında yer alır. Yetersizliğinde yorgunluk ve uyuşukluk hissedilebilir. B12 Vitamini (siyanokobalamin) Siyanokobalamin veya B12 ciğer, balık ve süt ürünlerinde bulunan ve DNA metabolizmasında koenzim olarak yer alan bir vitamindir. Alyuvarların olgunlaşmasında da gereklidir. Yetersizliğinde anemi ve kilo kaybı görülebilir.

http://www.biyologlar.com/vitamin-turleri


Yağda Eriyen Vitaminler

A VİTAMİNİ: A Vitamini yağda eriyen vitaminlerdendir.Balıkyağında, karaciğerde, tereyağı ve kremada, peynirde, yumurta sarısında bulunur.Sonradan A vitamini (retinol) ne dönüşecek olan Beta Karoten ve diğer karotenoidler ise yeşil yapraklı ve sarı sebzelerde ve tahıllarda bulunur.A vitamini karaciğerde depolanır. Isıya karşı sabit ve pişirilmeye dayanıklıdır.Yüksek miktarlarda alınması toksik reaksiyonlara (zehirlenme) neden olabilir. Vitamin A miktarı Retinol Equivalant ile ölçülür. Vücuttaki Fonksiyonları Sağlıklı deri ve saçlar için gereklidir. Diş, dişeti, ve kemik gelişiminde önemli rol oynar Normal iyi görme de ve gece görme de etkilidir. Bağışıklık sistemini kuvvetlendirir. Akciğer, mide, üriner sistem ve diğer organların koruyucu epitelinin düzeninde rol oynar. Eksiklik Belirtileri 1)Gece körlüğü 2)Xerophthalmia ( korneanın anormal kuruması ve kalınlaşması = göz kuruluğu) 3)Bağışıklık sisteminin zayıflaması, enfeksiyonlara elverişli hale gelme 4)Akne (sivilce) oluşumunda artış 5)Yorgunluk 6)Diş, diseti ve kemiklerde deformiteler Aşırılık ve Zehirlenme Belirtileri 1)Karaciğer bozuklukları 2)Mide bulantısı ve kusma 3)Saç dökülmesi (saçlar çabuk kopar) 4)Başağrısı 5)Eklem ağrıları 6)Dudak çatlamaları 7)Saç kuruluğu 8)İştah kaybı D VİTAMİNİ: D Vitamini yağda eriyen vitaminlerdendir. Daha çok iki şekilde bulunur.Bunlardan aktif ergosterol, kalsiferol ve D2 vitamini gibi adlarla da bilinen ergokalsiferol ışınlanmış mayalarda bulunur.Aktif 7-dehidrokolesterol ve D3 vitamini gibi adlarla da anılan kolesalsiferol ise insan derisinde güneş ışığı ile temas sonucu meydana gelir ve daha çok balık yağında ve yumurta sarısında bulunur. Isıya karşı sabit ve pişirilmeye dayanıklıdır.Yüksek miktarlarda alınması toksik reaksiyonlara (zehirlenme) neden olabilir. Vücuttaki Fonksiyonları İnce barsaklardan kalsiyum ve fosforun emilimini düzenleyerek kemik büyümesi, sertleşmesi ve tamiri üzerinde etkili olur. Raşitizmi önler Böbrek hastalıklarında düşük kan kalsiyumu seviyesini düzenler. Postoperatif kas kasılmalarını önler. Kalsiyumla birlikte kemik gelişimini kontrol eder. Bebekler ve çocuklarda kemik ve dişlerin normal gelişme ve büyümesini sağlar. Henüz kanıtlanmamış olası etkileri: Artrit, yaşlanma belirtileri ,sivilce,alkolizm, kistik fibrozis uçuk ve herpes zoster tedavisi, kolon kanserinin önlenmesi. Vitamin D alınımına dikkat edilmesi gereken durumlar: Güneş ışığı bakımından yetersiz bölgelerde yaşayan çocuklar. Yetersiz gıda alan ve fazla kalori yakan kişiler 55 yaşın üzerindekiler, özellikle menapoz sonrası kadınlar. Emziren ve hamile kadınlar. Alkol veya uyuşturucu kullananlar. Kronik hastalığı olanlar, uzun süredir stress altında olanlar, yakın geçmişte ameliyat geçirmiş olanlar. Mide-barsak kanalının bir kısmı ameliyat ile alınmış olanlar. Ağır yaralanma ve yanığı olan kişiler. Eksiklik Belirtileri Raşitizm/(Çocuklarda D vitamini eksikliği ile oluşan hastalık)Çarpık bacaklar, kemik veya eklem yerlerinde deformasyonlar, diş gelişiminde gerilik, kaslarda zayıflık, yorgunluk, bitkinlik. Osteomalazi (yetişkinlerde D vitamini eksikliği ile oluşan hastalık) kaburga kemiklerinde,omurganın alt kısmında, leğen kemiğinde, bacaklarda ağrı, kas zayıflığı ve spazmları, çabuk kırılan kemikler. Aşırılık ve Zehirlenme Belirtileri 1)Yüksek kan basıncı 2)Mide bulantısı ve kusma 3)Düzensiz kalp atışı 4)Karın ağrısı 5)İştah kaybı 6)Zihinsel ve fiziksel gelişme geriliği 7)Damar sertliğine eğilim 8)Böbrek hasarları E VİTAMİNİ: E Vitamini yağda eriyen vitaminlerdendir.Alfa,beta,gama ve delta tokoferolleri içerir. Bitkisel yağlar ve buğday tanesi en iyi kaynağıdır. Isıya karşı sabit ve pişirilmeye dayanıklıdır. Vücuttaki Fonksiyonları En iyi Antioksidandır.Hücre zarı ve taşıyıcı moleküllerin lipid kısmını stabilize ederek hücreyi serbest radikaller, ağır met@ller, zehirli bileşikler, ilaç ve radyasyonun zararlı etkilerinden korur. İmmun sistemin aktivitesi için gereklidir.Timus bezini ve alyuvarları korur.Virütik hastalıklara karşı bağışıklık sistemini geliştirir. Göz sağlığı için hayati önem taşır.Retina gelişimi için gereklidir.Serbest radikallerin katarakt yapıcı etkilerini önler. Yaşlanmaya karşı koruyucudur.Serbest radikallerin dokular, deri ve kan damarlarında oluşturduğu dejenaratif etkiyi önler.Yaşlanmayla ortaya çıkan hafıza kayıplarını da önleyici etkisi vardır. Eksiklik Belirtileri Çocuklarda hemolitik anemi ve göz bozuklukları Yetişkinlerde Dengesiz yürüme, konsantrasyon bozukluğu, düşük tiroid hormonu seviyesi, sinir harabiyeti, uyuşukluk, anemi, bağışıklık sisteminde zayıflama. E vitamini eksikliğinde kalp hastalıkları ve kanser riski artmıştır. K VİTAMİNİ: K Vitamini yagda eriyen vitaminlerdendir.Kan pıhtılaşmasında önemli rol oynar. Lahana, karnıbahar, ıspanak ve diğer yeşil sebzelerde, soya fasülyesi ve tahıllarda bulunur.Genellikle vücutta bağırsak bakterileri tarafından sentez edilir. Vücuttaki Fonksiyonlari Kan pıhtılaşmasını sağlar. Bazi çalışmalar özellikle yaşlılarda kemikleri güçlendirdiğini göstermektedir. Pıhtılaşmada ve kemik yapımında kalsiyum'a yardımcıdır. Eksiklik Belirtileri Kontrolsuz kanamalara neden olan K vitamini eksikliği malabsorbsiyon hastaları hariç ender görülür.Doğumdan sonraki ilk 3-5 gün içerisinde bağırsak florası henüz tam gelişmemiş olduğundan K vitamini eksikliği vardır. Günlük Vitamin K ihtiyaci: Genellikle sebzelerle alınan günlük 60-85 mg. herhangi bir eklemeye gerek kalmadan yeterli olmaktadır.

http://www.biyologlar.com/yagda-eriyen-vitaminler

Canlıların Biyokimyasal Özellikleri

Canlıların Biyokimyasal Özellikleri: http://www.mikrobik.net/datas/users/1-cantemel.pdf PARAOKSONAZ: BİYOKİMYASAL ÖZELLİKLERİ, FONKSİYONLARI VE KLİNİK ÖNEMİ ; http://www.erciyestipdergisi.org/pdf/pdf_EMJ_100.pdf Mikroalbuminüri ve Klinik Önemi; http://tipbilimleri.turkiyeklinikleri.com/download_pdf.php?id=6481 Arter Kan Gazları: http://www.ataturkhastanesi.gov.tr/ttdergisi/turktip1-1/11aysegulkaralezli.pdf ARTER KAN GAZLARI VE ASİD BAZ DENGESİ : http://www.solunum.org.tr/pdfs/dergi/1104850190.pdf Bilirübin Nörotoksisitesi : http://www.guncelpediatri.com/sayilar/17/112-113.pdf BİYOMARKÖRLERİN TOKSİKOLOJİDE KULLANIMI; http://www.gulhanemedicaljournal.org/pdf/pdf_GMJ_145.pdf Laboratuvar testleri ve klinik kullanımı http://www.performans.saglik.gov.tr/content/files/yayinlar/biyokimya_laboratuvar_testleri_ve_klinik_kullanimi.pdf

http://www.biyologlar.com/canlilarin-biyokimyasal-ozellikleri

Ökaryotik Kromatinin Fonksiyonu

Ökaryotik Kromatinin Fonksiyonu

Vücudunda belirgin bulan genetik özellikler uzak atalarınızdan miras alınmıştır; milyonlarca yıl geriye uzanan kesintisiz bir nesil kuşağından gelmektedir.

http://www.biyologlar.com/okaryotik-kromatinin-fonksiyonu

Ptychopteridae

İnce ve uzun vücutlu (7-15 mm) Ptychopteridae türleri, geniş enli kanatlara sahip olmaları ve çok uzun bacaklı olmalarından dolayı titrek sinekler adıyla da bilinmektedir. Görünüş olarak tipulidlere benzemektedirler. Renkleri çoğunlukla siyah, bazen sarı veya kırmızımsı olabilmektedir. Makrosetaları genellikle kısa veya tüy benzeridir. Sadece antenleri, tarsusları ve cinsel organları sert kıllıdır. Erginler göl, gölcük, hendek ve nehir kenarlarındaki bataklık gibi vejetasyonlarda ve diğer nemli zeminlerde bulunur. Larvalar dere, göl ve gölcüklerin sığ kenarları boyunca detritus ve çamur içinde gelişirler. Larva suyun ıslattığı çamurlu alanlarda yaşar. Pupalar genellikle çamur içerisinde dikey olarak bulunur. Larvalar saprofagdır ve detrituslarla beslenirler. Erginlerin beslenmesiyle ilgili fazla bilgi bulunmamaktadır. Baş küçük, uzunluğundan daha geniş, semiferikal bileşik gözlüdür. Osel gözler yoktur. Anten filiform tipte olup 16 segmentlidir. Ağız parçalarının sadece uzun 5 segmentli maksillar palpi ve büyük labelli kısa labium hariç çoğu indirgenmiştir. Toraks genişliğinden daha uzun fakat uzunluğundan daha yüksektir. Toraks siyah, scutellum ise türlerde sarıdır. Kanatlar çok iyi gelişmiştir, kahverengimsi kanat membranı bazı kısımlarda özellikle daha dış yarısına doğru kısa makrotichia ile microtichia tarafından çevrilmiştir. Bazı türlerde koyu kahverengi ile siyahımsı kanat benekleri vardır, diğer benekler birkaç tanedir veya solgundur. Costa bütün kanatta belirgin olup ayrıca 5 radial damar bulunur. R2 çok kısadır ve R1'de sonlanır. RS uzun veya kısadır. Bacak segmentlerinden koksa, trochenter ve femur çok iyi gelişmiş olup kısa kıllıdır. Metatarsus uzun olup diğer tarsus segmentleri kadar uzundur. Abdomen 7 segmentidir. Her segment çok iyi gelişmiş tergum ve sternuma sahiptir. Tergum ve sternum arasındaki membran stigmalıdır. Sternum 2 iki kitinleşmiş yapı içerisine ayrılmıştır. 1. ve 2. segmentler dar, ikinci segment uzundur. Larva uzun, silindirik, 25-45 mm uzunluğunda ve eucephalic başa sahiptir. Arka tarafında uzun veya kısa bir solunum tüpü veya sifonu vardır. Üçgen şeklindekj baş dorsalinde büyük bir üçgen şeklinde kitinsi bir yapı, alın, anterioründe erimiş clypeusa sahiptir. Vücut 3 kısa torasik segmentten oluşur. 8 abdominal segment daha uzun 9. segment ise kısadır. 1-5 abdominal segmentlerin her biri çıkıntılı bir halka tarafından takip eden segment ile birleştirilmiştir. 6. segment konik şekilli, 7-8 segmentler ise dardır. 9. apikal segmentte bulunan anal 2 parmak benzeri yapıdadır. Geri çekilebilir anal papilla ve trake solungaçları solunum fonksiyonlarını veya boşaltım fonksiyonunu yerine getirir. 7. segmentin posterioründen solunum tüpü çıkar. Pupalar genellikle çamur içerisinde dikey olarak bulunur. Düz toraksik solunum deliği kısadır fakat soldaki solunum deliği su yüzeyine ulaşabilmek için uzun bir sifon içerisine doğru gelişmiştir. Pupasyon dönemi Ptychoptera albimana için su sıcaklığına bağlı olarak 6-31 gün arasında değişir. Kaynaklar •Andersson, H., 1997. Diptera Ptychopteridae, Phantom Crane Flies, pp. 193-207. In: Nilsson, A. (Hrsg.): Aquatic Insects of North Europe. A Taxonomic Handbook. Volume 2. Odonata - Diptera. Apollo Books, Stenstrup. •Peus, F., 1958. 10b. Liriopeidae, pp.10-44. In: Lindner, E. (Hrsg.): Die Fliegen der palaearktischen Region, II 1; Stutgart: E. Schweitzerbartsche Verlagsbuchhandlung. •Rozkosny, R., 1992. Family Ptychopteridae (Liriopeidae), pp 370-373. In: Soós, Á., Papp, L. & Oosterbroek, P. (Eds.). Catalogue of Palaearctic Diptera. 2, Akadémiai Kiadó, Budapest. •Rozkosny, 1997. Family Ptychopteridae. pp. 291-297. In: Papp, László Darvas, Béla. Contributions to a manual of Palaearctic Diptera 2. Science Herald. Budapest. •Wagner, R., 1978. Familie Ptychopteridae, p. 386. In: Illies, J. (Ed). Limnofauna Europea, (2nd ed.). Gustav Fischer Verlag, Amsterdam. •Zwick, P., 1988. Contribution to the Blephariceridae and Ptychopteridae. Mitt. schweiz. ent. Ges., 61: 123-129. •Zwick, P. 2004: Fauna Europaea: Ptychopteridae. In: De Jong, H. (Ed.) Fauna Europaea: Diptera: Nematocera. Fauna Europaea version 1.2, www.faunaeur.org

http://www.biyologlar.com/ptychopteridae

Balıklarda solunum fizyolojisi

Solunum terimi, bir organizmanın hücresi ile çevresi arasındaki gaz (genellikle oksijen ve karbondioksit) alışverişini ifade eder. Tek hücreli canlılarda, gerekli gaz alışverişi pasif difüzyon ile sağlanabilir. Balık gibi komplex organizmalarda, dokulara yeteri miktarda O2 sağlamak ve CO2’i ortadan kaldırmak için, hem gaz alışverişi için gelişmiş bir yapı (solungaç), hem de bir gaz transfer sistemi (kan ve dolaşım sistemi) gerekir. Su ve dokular arasında osmoregülasyon ve asit-baz dengesini sağlamak gibi, balık solungacının başka fonksiyonları da vardır. Solunum sisteminin, elinde tuttuğu ve transferini gerçekleştirdiği su ve kan ve ayrıca O2 ve CO2 alışverişini sağladığı aşamalarının anlaşılması; balıkların fizyolojik ihtiyaçlarını giderecek ve yüksek derecede sağlık ortamı sağlayacak bir intensive kültür sisteminin mantıklı dizayn ve operasyonunu temin edecektir. Solunumun bütün işlevleri önemlidir, fakat intensive kültür sisteminin tipik özelliği olan yoğun balık stoklamalarında, gaz alışverişindeki etkilerin ani ölümlere neden olması bilinmelidir. Solungaç çevresindeki sudan transfer edilmesi ve dokulara gönderilmesi gereken O2 miktarı önemlidir. Salmonid gibi aktif soğuk su balıkları için O2 gereksinimi 100 mg.O/kg vucut ağırlığı şeklinde yüksek bir oranda veya daha fazlası olabilir. Aktif olarak yüzen balıklarda, solunum sistemi, 800 mg.O/kg/saat (20 ml.O/min civarında) kadar yüksek oranda O2 sağlayıp, karşılığında büyük oranda CO2 ortadan kaldırmalıdır. Bununla birlikte su, maximum çözünmüş O2’nin 10-12 mg/l’yi nadiren geçtiği O2 fakiri bir ortamdır. Deniz suyunda, mevcut çözünmüş yüksek tuz konsantrasyonu, mevcut DO’yu maximum 8-9 mg/l’ye kadar azaltabilir. Bunun için, balık yaşamının devamı için büyük miktarda suyun solungaçlardan geçmesi gereklidir. Salmonidler için solungaçlardan suyun geçmesi 5-20 l HO2/O2/vücut ağırlığı/saat oranındadır. Çoğu balık gerekli miktardaki suyu ağızlarıyla pompalayarak ve opercular hareketler yaparak sağlarlar. Ağız ve solungaçlar emme basma tulumbası olarak görev yaparlar ve böylece sabit bir su akışı sağlarlar. Haçerideki balıklar için, su alıp verme oranı 40-60 l/dk oranındadır. Suyun yüksek yoğunluk ve viskozitesinden dolayı solungaç ventilasyonunun enerji gideri, en az, tüketilen O2’nin %10’u kadardır. Salmonid, köpek balığı ve tuna gibi aktif balıklar, solungaçları üzerinden gerekli su akışını ram ventilasyonu (Yüzerken ağızını açarak) ile sağlarlar. Örneğin, pasifik salmon, ram ventilasyonunu 1 vücut uzunluğu/saniye’den daha yüksek hızda yüzerek kullanır. Bazı köpek balıkları, ram ventilasyonu ile sınırlandırılmıştır ve yaşamak için sürekli yüzmek zorundadır. Her iki solungaç ventilasyon metodunda da DO’nun %80’ine kadarki kısmımın (teorik olarak) kullanılması mümkündür. Çünkü solungaç anatomisi, ters yönde kan akışını sağlayacak şekilde dizayn edilmiştir (suyun solungaçlar üzerinden akışı, kanın solungaçlar içinden akışına terstir). Gerçek O2 tüketimi türlere göre farklıdır. Alabalıkta %30-40, tunada %70 ve sazanda %70-80’dir. Buna kıyasla, insan havadaki O2’nin sadece %25’ni alabilir. Su solungaçlardan geçerken, sudaki çözünmüş O2, sekonder solungaç lamelinin ince epitelyal hücrelerinin arasından geçer ve kana difüze olur. Asitlik arttıkça hemoglobinin O2’ye yakınlığı azalır (Bohr etkisi) ve bazı türlerde asitlik, hemoglobinin O2’yi tutmasındaki maksimum kapasiteyi azaltır (Root etkisi). Bu yüzden kan, dokuların kapillar yataklarından geçerken üretilen CO2’in neden olduğu asitlik Hb-O2 ağını zayıflatır ve O2 yoğunluğunun düşük olduğu hücrelere difüze olan O2’nin çıkışını kolaylaştırır. Aynı zamanda, CO2, dokulardan kana difüze olur. O2’in tersine, CO2’in çoğu plazmada erir ve bikarbonat formunda yeniden solungaçlara gönderilir. Kan solungaçlardan geçerken karbonikanhidraz enzimi, HCO3 iyonunu sonra yeniden suya difüze olan CO2 molekülüne hidroliz eder. Bir ünite kanın solungaçlar içinde kalma zamanı, sadece birkaç saniye olduğu için ve kan ve su arasındaki yüksek CO2 basıncından dolayı bu enzimatik reaksiyon son derece hızlı bir aşamadır. Bu yüzden kandaki O2 basıncı 100 mg Hg veya daha yüksek seviyeler arasında değişebilir, kandaki CO2 konsantrasyonu düşük kalır ve çok az değişir. Özellikle aktif soğuk su balıklarında Bohr etkisi büyük olur (kanın düşük CO2 düzeyinde başlar). Aquakültür sistemlerinde, örneğin eğer sudaki çözünmüş CO2 konsantrasyonu 20 mg/l’ye çıkarsa Bohr etkisi salmonidlerin O2 transferini engeller. Karışık kültürü yapılan sıcak su balıkları (Tilapya, sazan, kanal kedi balığı gibi) genellikle çözünmüş CO2 konsantrasyonuna daha az duyarlıdırlar ama, bu yetiştiricilik yöntemi, iyi bir yetiştiricilik işletmesi için, CO2 ’in havuz suyunda birikmesine engel olan durumları sağlamada iyi bir yöntemdir. CO2’in etkisiyle birlikte, laktik asit üretimi kan asitliğinin yükselmesine ve kanın O2 transferinin bozulmasını neden olur. En genel sebep; beyaz kaslarda O2 olmamasından dolayı kan ve dokularda laktik asit birikmesiyle sonuçlanan aşırı yüzme aktiviteleridir. Bu da heyecan ve stresten kaynaklanır. Örneğin, eğer kanın pH’sı 7,8-7,6’dan 6,0’a düşürülürse toplam hemoglobinin sadece çok az bir yüzdesi O2 ile doyurulabilir. Root etkisindeki Hb’in normal görevi choroid rete üzerinden O2’i göze ileten moleküler pompa görevi yapmak ve physoclistik türlerde rete mirabile üzerinden yüzme kesesini doldurmaktır. İkinci görevi, salmonidlerde (fizostomları bulunduğu için) önemsizdir ki; havayı emerek yüzme kesesini doldurmaktır. Bununla beraber, salmonid gözündeki normal O2 yoğunluğu, hem kanın, hem de suyunkinden fazladır. Bu da root etkisindeki Hb’in bu balıklarda önemli bir rol aldığını gösterir. Cadmium ve civa gibi ağır !!!!llerin öldürücü seviyelerinin altındaki dozlarına maruz kalma durumunda, root etkisindeki Hb’in normal fonksiyonunun tersi yönde etkilendiği bilinir. Bunun yoğun kültürdeki balığın sağlığı için önemi bilinmemektedir. Yoğun kültürdeki balıklar için, Bohr ve Root etkisi altında O2 transferinin azalması ile ilgili problemler, kanda yüksek laktik asit konsantrasyonu (Hyperlacticemia) veya kanda yüksek CO2 konsantrasyonu sonucu ortaya çıkar. Genel sebepleri; düşük DO durumları ve heyecandan kaynaklanan aşırı yüzme aktiviteleridir. Ayrıca yetiştirme ve transfer sırasında daha yüksek stoklama yoğunluğu sağlamak için saf O2 kullanarak havalandırma yapmak, aşırı doyurulmuş DO düzeyine ve hipercapnia’ya (yüksek DO’nun solungaç havalandırma oranını baskılaması nedeniyle oluşan bir yan etki) neden olur. Bu ise, CO2 birikmesine ve yüksek arterial PCO2 basıncına neden olur. Kana O2 transferi bundan etkilenmeyebilir. Çünkü daha yüksek arterial PO2, bohr etkisi kaynaklı azalmaları dengeler. Buna ek olarak hipercapnia, dokulara O2 naklini, sadece arta kalan asitliği normal kan dengesini aşarsa veya solunum asidosisi meydana gelirse tehlikeye sokabilir. Suyun kalitesinin iyi olduğu balık kültürlerinde Bohr etkisi kaynaklı O2 naklinin azalması ile ilgili problemler, aşırı yüzme sonunda üretilen laktik asitten dolayı ortaya çıkan !!!!bolik asidosis kökenlidir. Bohr etkisinin solunum baskısının CO2 ve DO konsantrasyonu ile olan ilişkisi ilk kez Basu (1959) tarafından belirlendi. Dokulara yeterli O2 sağlamak için vasat bir yüzme seviyesi oluşturmak için gereken DO seviyesi bunu ortaya çıkarmıştır. Bu minimum miktar, eğer çok az CO2 varsa veya hiç yoksa 6 mg/l’den, Eğer çözünmüş CO2 konsantrasyonu 30 mg/l’ civarına yükselirse, 11 mg/l’den daha yukarı çıkar. Sonuç olarak, salmonid gibi balıkların, DO seviyesinin %80 doygunluk oranının altına düşmemesi şartıyla, yeterli O2’ye sahip olmaları önerilir. Eğer çözünmüş CO2 seviyesi 30-40 mg/l’nin altında tutulmazsa, kanın O2 taşıma kapasitesi, yüksek DO konsantrasyonunun bile yetersiz olduğu, doku hipoksia’sına neden olabilecek seviyelere düşer. Bohr ve root etkisi kaynaklı solunum baskısı, heyecan ve yüzme aktivitesini azaltmak için dikkatli balık tutumu ile en aza indirilebilir. Yeterli miktarda çözünmüş O2 sağlamanın yanısıra çözülmüş CO2 ‘yi hızla ortadan kaldıran havalandırma sistemi ve su değişim oranı ile de bu sağlanabilir. Pratikte bunlar yoğun kültürdeki balığın ihtiyaçlarını sağlamada gerekli unsurlardır. Haçeri’deki çözünmüş O2’i balığın tüketme oranı yoğun kültür sistemlerinin sağlanmasında önemlidir. O2 tüketimi, balık naklinde gerekli olan havalandırma miktarı ve istenilen yükleme yoğunluğu için gerekli su alışveriş oranı gibi temel parametreleri belirler. Racewaylerdeki salmonidler en az 100 mg.O/kg/saat ile en fazla 800 mg/kg saat arasında tüketir. Bu seviye, yüzme seviyelerine, su sıcaklığına, zaman, son beslenme ve heyecan, stres derecesine göre değişir. Egzersiz, stres veya su sıcaklığının sonucu olan !!!!bolik ihtiyaçları karşılamak ve O2 tüketim oranını kontrol etmek için hormonal teknikler kullanılır. Hem soğuk su, hem de sıcak su balıklarının solunum oranı karasal omurgalılarda olduğu gibi kanda CO2 yükselmesi ile değil, DO konsantrasyonundaki düşüş ile stimüle edilir. Örneğin, balıklar elle tutularak stres olduğu zaman, adrenalin ve diğer cathekolomine hormonları (hem solungaç perfüzyon miktarını , hem de alyuvar hemoglobininin O2 taşıma kapasitesini artıran hormonlar) üretilir. Bronşal vasodilasyonun yan etkisi olarak suyun normal ozmatik akımı aşırı şekilde yükselir ve bundan sonra vücuttan atılmalıdır. Diüresis’in sonucu çok çarpıcı olabilir, kandaki elektrolitlerin bazıları üretilen çok fazla üre içinde kaçınılmaz bir şekilde kaybolur. Diüresis uzatılırsa, iyon regulasyonunda bozulmalar ortaya çıkabilir. Balık tutulduktan veya nakledildikten 1-2 gün sonra oluşan gecikmiş ölümler büyük ölçüde bu olayın bir sonucudur. Yoğun kültür sistemlerindeki balıkların O2 tüketimi, hem balığın kültürel prosedürü, hem de doğal gelişmeler nedeniyle arttırılabilir. Bunlardan, tutma nedenli stres, heyecan nedenli arttırılmış yüzme aktivitesi ve beslenmenin doğal aşamaları en önemli olanlarıdır. Örneğin Çelikbaş alabalığı juvenilleri tutulmaktan dolayı strese girerler, O2 tüketimleri 2 kat birden artabilir ve bir veya daha fazla saat yüksek oranda kalır. O2 tüketiminin artması (heyecan ve stres kaynaklı), balıklar nakil tanklarına yüklendikten sonra, birden meydana gelen DO’daki ani düşüşün sorumlusudur. O2 havalandırması varsa, balık bulunan tank suyu 14-16 mg/l’lik DO’ya kadar doyurulmalıdır ki, bu da balıkların O2 ihtiyacını karşılar. Sadece sıkıştırılmış hava varsa, havalandırma sistemini, balık yüklemeden 5-10 dakika önceden başlatmak, suyun doyurulmasını sağlayacağından bir dereceye kadar etkili olacaktır. Beslenme ve sindirimin doğal aşamaları, balığın O2 tüketimini büyük ölçüde artırır. Çünkü sindirimin, absorbsiyon ve asimilasyonun kalorik maliyeti, geri kalan !!!!bolik kalorinin %40’ı kadardır. Bu etkinin O2 tüketimindeki boyutu (Specific dynamic action of food (SDA) = .Yiyeceklerin spesifik dinamik hareketi) her zaman tam olarak değerlendirilmez. Çünkü beslenme rutin bir operasyondur. Salmonid, kanal kedi balığı ve tilapya için, her defasında balık birkaç saat beslendiği için O2 tüketim oranını %40-50 veya daha fazla arttırmak akıllıcadır. SDA’nın pratik sonucu olarak; balığın hemen tutulmaması veya nakil edilmemesi gerekir. Çünkü, beslenme ve sindirim olaylarına eklenen heyecan ve stres, onların O2 tüketimini, havalandırma sisteminin yeterli DO sağlayamayacak seviyede arttırır. Elle tutulmadan ve nakilden 24-48 saat önce balık beslemeyi durdurmak bu etkiyi önler ve O2 tüketim oranını büyük ölçüde azaltır. Yoğun kültür sisteminde O2 tüketimini etkileyen diğer önemli faktörler ise; su sıcaklığı ve yüzme aktiviteleridir. Daha yüksek su sıcaklığı, bütün !!!!bolik hızı artırarak O2 tüketimini yükseltir. Bununla beraber yüzme aktivitelerinde O2 tüketimi, kasların kasılması için, Hb doygunluğunu düşürerek kandaki O2‘yi tüketmesi ile yükselir. Gökkuşağı alabalığında, solungaç lamelleri’nin sadece %60’ı kanla perfüze olur. Hızlı yüzmeye dayanan kas kasılması, adrenalin ve diğer cathekolamine hormonlarının dolaşımını teşvik eder. Meydana gelen solungaç perfüzyonun yükselmesi ile birlikte, eritrosistlerin, hücre içi pH’sını artıran, Na / H değişiminin adrenal hormonu tarafından teşviki sağlanır. Bohr etkisi düşürülür ve hem kanda O2 oluşumu, hem de O2 ‘nin dokulara teslimi sağlanır. Isı ve yüzme aktivitelerinin O2 tüketimi üzerindeki etkisinin gerçek boyutu Brett (1973) tarafından, kontrol altında tutulan pasifik solmonu üzerinde belirlenmiştir. Daha sıcak su, O2 tüketimini bir dereceye kadar artırır. Bununla beraber, yüzmenin etkisi daha çarpıcıdır. İleri atılarak yüzme, özellikle enerji bakımından yoğundur. Çünkü sürtünme etkisi çok yüksektir. Yoğun kültür sistemindeki balığın yüzme aktivitesi genelde daha düşüktür. Salmon kültüründe racewaylerde su alışverişi öyle ayarlanmalıdır ki, o balığın O2 tüketim oranı, DO’yu son taşma sınırının yaklaşık 6 mg/l aşağısına indirmemelidir. Havalandırma sistemi ayrıca, taşıma kapasitesini artırmak için de kullanılır. Bazı durumlarda DO oranını 14-16 mg/l ‘ye çıkarmak için sıvı O2 kullanılır. Balık nakil sisteminde O2 tüketim oranı, genelde yüksek heyecan ve stres nedeniyle değişkendir. Yakaşık DO doygunluğunu sağlamak için saf O2 kullanılır. DO, balık tarafından tüketildikten sonra hemen yenilenmezse, O2 tükenmesi meydana gelir. Karasal hayvanların aksine, balığın nefes alma oranı, yükselen CO2 ile değil, düşen DO konsantrasyonu ile stimüle edilir. Alabalık, sazan, kedi balığı gibi türler düşen DO seviyesine, önce ağız ve solungaçlarını kullanıp solungaç havalandırma oranını yükselterek; kan basıncını ve kardial verimi yükseltip solungaçlardan kan akışını artırarak cevap verir. Salmonidlerde, normal DO tükenmesi bile, solungaç havalandırma oranında çarpıcı yükselmelere neden olur. Bu olaylar, ilk olarak O2 alımını yükseltir, fakat daha fazla su akışı da, solungaçlardan her geçişte çekilebilen DO oranını azaltabilir. DO düştükçe kana transfer edilen O2 miktarı da düşer (max %80’den min %15’e). Ayrıca, daha fazla suyun solungaçlar üzerinden hareket ettirilmesi, enerji maliyetini büyük oranda yükseltir (Absorbe edilen O2 ‘nin %10 ‘undan %70’e yükselmesi). Sonuç olarak; O2 elde etmek için harcanan güç, suda çözünmüş O2 miktarı düştükçe ve arterial kandaki O2 basıncı düştükçe yükselir. Arteial kan O2‘si, alyuvardaki Hb %60 doygunluktan daha az olduğu noktaya ulaşıncaya dek azaldığında; solungaç damarlarını genişleterek ve Na/H alışverişini alyuvar membranı ile sağlayıp, hücre içi PH’yı yükselten adrenalin ve diğer cathecolamine hormonları salgılanır. Bir dizi karışık olay sırasında Hb-O2 ilişkisinde değişiklikler ve Bohr ve Root effect kökenli kapasite değişiklikleri, hem solungaçlardaki O2 transferini, hem de O2 ‘nin dokulara yükselmesini kolaylaştırır. Eğer çözünmüş O2, 5 mg/l’nin altına düşerse, salmonidler, iştahsızlaşırlar. Bu, beslenme ve sindirim sırasında O2 tüketiminde meydana gelen normal yükselmeye engel olmak için geliştirilen bir davranışsal cevaptır. Salmonidlerde, O2‘nin elde edinimi ve kullanımının biyoenerjik maliyeti, DO’nun 2 mg/l civarına kadar tüketilmesinden dolayı ortaya çıkan aşırı enerji ihtiyacı ile başlar ve bilinç kaybı ve hatta ölümle sonuçlanabilir. Aquakültür için önemli olan çoğu sıcak su balığı DO seviyesi 1 mg/l’nin altına düşse bile birkaç saat hayata kalmayı başarır. Ama sonunda meydana gelen doku hipoksiası bilinçsizlik ve ölümle sonuçlanır. Aquakültür ortamında balığın tükettiği O2 oranını sürekli düşürmek en temel hedeftir. O2 tüketimini artırmak için varolan aynı biolojik ve çevresel faktörlerin çoğu onu düşürmek için de arttırılabilir. Su sıcaklığını azaltma (hipothermia) ve yüzme aktivitesini, heyecanı ve balık tutma sırasındaki stresi düşürmek için anastezik kullanımı en bilinenleridir.

http://www.biyologlar.com/baliklarda-solunum-fizyolojisi

Hangi vitamin ne işe yarar, Hangi vitamin hangi besinde bulunur?

A vitamini: Enfeksiyonlara karşı direnci arttırır normal büyüme, üreme, kemik ve diş gelişimi, görme için gereklidir. Cildin tırnakların ve saçların sağlıklı kalmasını sağlar. Diş ve dişetleri için büyük önem taşır . Yalnızca hayvanlarda bulunan ve yağda eriyen doymamış bir alkoldur. Sütte, yumurta sarısında, ton ve morina balıklarının karaciğer yağında (balık yağı) bulunur. Havuç ve havuç benzeri sarı-turuncu renkli sebzelerde A vitamininin ön maddeleri vardır (alfa karoten). Yaşlılıkta etkinliği çok artan kolajenaz enziminin indirgeyici etkisini önlediği saptanmıştır. Bu vitamin ayrıca protein bileşimine katılır ve tümerlerde görülen hücrelerin kontrolsüz biçimde çoğalmasını önler. A vitamini eksikliğinde gözde ve deride keratoz, kseroftalmi (göz akı ve kormeanın parlaklığını kaybederek kuruması), foliküler hiperkeratoz (bir deri hastalığı) ve gece körlüğü görülür. Bulunduğu Yiyecekler: Kayısı,kuşkonmaz,maydanoz,ıspanak, havuç,kereviz, marul, portakal, erik, domates D vitamini: İnce bağırsaklardan kalsiyumun emilmesine yardımcı olur, kalsiyumun kemiklerde ve dişlerde tutulmasını sağlar . Bulunduğu Yiyecekler: Balık yağı, balık, yumurta, tereyağı, karaciğer, et, sebzeler, güneş E vitamini Antioksidan etkilidir. Alzheimer hastalığının ilerlemesini yavaşlatıyor yaşlı kişilerde bağışıklık sistemini güçlendirir. Hücrelerin daha uzun yaşamasını ve yenilenmesini sağlar . Fitol ve metil hidrokinon türevidir. İnsanda karaciğerin yanı sıra yağlı dokularda, böbrekte, kalpte, kaslarda ve böbrek üstü bezi kabuğunda depolanır. A vitamini, doymamış yağ asitleri ve C vitamini gibi maddelerin oksidasyonunu önleyerek antioksidan özellik gösterir. Nükleik asitler ve değişik enzim sistemlerinin metabolizmasına katılır.E vitamini eksikliği ender görülür ve kansızlık biçiminde ortaya çıkar. Başta tahılllar olmak üzere yeşil sebzelerde bol miktarda bulunur… Bulunduğu Yiyecekler: Buğday, tohumlu besinler, soya fasülyesi yağı, arı sütü, ceviz, marul, tere, kereviz, maydanoz, ıspanak, lahana, mısır yağı, mısır, yulafta K vitamini: Karaciğere gelen Kvitamini burada üretilen bazı pıhtılaşma faktörlerinin yapımında rol alır. Kvitamini takviyesi yanlızca kanamalı hastalarda verilir. Bulunduğu Yiyecekler:Ispanak,kabak, marul, yeşil domates, yeşil biber, inek sütü, peynir, tereyağı, yumurta, kırmızı et, pirinç, karaciğer, mısır, muz, şeftali, çilek B1 vitamini: Kasların ve sinir sisteminin faliyeti için gereklidir.Yetersizliğinde iştahsızlık, huzursuzluk, bellek zayıflığı ve dikkat azalması görülür. Bulunduğu Yiyecekler: Buğday, kepek, bira mayası, taze sebze meyve, koyun eti, sığır eti, balık eti, yumurta, süt B2 vitamini: Eksikliğinde dilde kızarma, yanma hissi, ağız çevresi ve dudaklarda kızarma, tahriş, çatlaklar, gözlerde kaşıntı, yanma hissi, katarakt oluşumu, saçların dökülmesi, çocuklarda büyüme yavaşlaması, kilo kaybı, sindirim sorunları oluşur . Bulunduğu Yiyecekler:Karaciğer, böbrek, buğday unu, patates, et, süt, yumurta, peynir, kepek, yeşil sebzeler, havuç, fındık, yer fıstığı, mercimek B3 vitamini: Yetersiz beslenme sonucu deriyi sinir sistemini tutan pellegra adlı hastalık ortaya çıkar. Hücrelerin oksijeni kullanabilmeleri için gereklidir. Midede sindirimin temel taşları olan asitlerin üretimini sağlar. Bulunduğu Yiyecekler: Bira mayası, kepek, yer fıstığı, sakatat, kırmızı et, balık, buğday, baklagiller, un, yumurta, süt, limon, kabak, incir, portakal, hurma B5 vitamini: Doğada bol olduğu için eksikliğine rastlanmaz. Ayrıca bir miktar bağırsaklarda da yapılmaktadır. Eksikliği kan şekerinde düşme, ellerde titreme, kalp çarpıntıya neden olur . Bulunduğu Yiyecekler:Karaciğer, kırmızı et, tavuk, yumurta, ekmek, sebzeler B6 vitamini: Sinir sistemi ve hormonların çalışmasını düzenler.Vücudun savunmasında antikor ve akyuvar oluşumunda rol oynar. Eksikliğinde migren tipi baş ağrısı, kansızlık, ciltte kuruluk, görme problemleri, uyuşukluk, adele zayıflığı ve krampları oluşur . Bulunduğu Yiyecekler: Karaciğer, böbrek, kırmızı et, balık, yumurta, ekmek, sebzeler B11 vitamini: Kırmızı kan hücreleri ve sinir dokularının oluşumunda aktif rol oynar. Hücre bölünmesi için gereklidir. Bu etkisi ile büyümeyi de sağlar. Anne karnındaki bebeğin sinir sisteminin gelişimi için de gereklidir. Eksikliğinde iştahsızlık, kilo kaybı, bulantı, kusma, ishal, baş ağrısı, unutkanlık, çarpıntı gibi bazı kalp sorunları oluşabilir . Bulunduğu Yiyecekler:Karaciğer, böbrek, kırmızı et, ıspanak, marul, yumurta, ekmek, portakal, muz B12 vitamini: Besinlerle veya sigara gibi alışkanlıklarla vücuda giren siyanürü etkisiz hale getirir. Eksikliğinde dilde hassasiyet, şişme, kızarma, hayal görme, depresyon, adalelerde kasılmalar, sinir iltihaplarına bağlı olarak el ve ayaklarda uyuşma, karıncalanma, yanma şikayetleri oluşur . Bulunduğu Yiyecekler:Karaciğer, yürek, böbrek, kırmızı et, tavuk, balık, süt, peynir, yumurta C vitamini: Etkin biçimi L-askorbik asittir.C vitamininin başlıca rolü doku bağlarını tutan ana protein maddesi olan kollageni üretmektir. Bağışıklık sistemi, sinir sistemi, hormonlar ve besinlerin emilimi fonksiyonlarına (E vitamini ve demir gibi )destek olur.Göz merceği ve akciğer gibi yapılarda antioksidan olarak çalışır. C vitamini ayrıca antioksidan yapıda olan E vitaminine dönüşebilir. C vitamini turunçgillerde bol miktarda, ayrıca taze sebzelerde, maydanozda, kabakta ,soğanda ve domateste bulunur.Vücudumuz C vitaminini üretemez bitkiler ve bazı hayvanlar bu vitamini üretebilmektedir. Besinlerle alınan vitamin 2 saat içersinde kullanılır 4 saat sonunda kandan uzaklaşır. Yaraların iyileşmesini, damarların sağlıklı olamalarını sağlar.Vücudun savunma sistemini artırıcı etkisi vardır. Histamin yapımını azaltarak allerjik olayların şiddetini düşürür. Eksikliğinde diş eti kanamaları ve çekilmeleri olur. Bulunduğu Yiyecekler:Siyah üzüm, narenciye, çilek, kavun, karpuz, yeşil biber, maydanoz, brokoli, havuç, soğan, bezelye

http://www.biyologlar.com/hangi-vitamin-ne-ise-yarar-hangi-vitamin-hangi-besinde-bulunur

EKOLOJİ VE BESİN ZİNCİRİ

EKOLOJİ VE BESİN ZİNCİRİ

Canlıların birbirleri ile ve çevreleri ile etkileşimini inceleyen bilim dalıdır. Ekolojiyi anlamak için madde ve canlı organizasyonunun bilinmesi gerekir. Madde organizasyonu: Atom – Molekül – Organel – Sitoplazma – Hücreler – Dokular – Organlar - Sistemler –Organizmalar - Populasyonlar – Komüniteler – Ekosistemler – Biyosfer- Dünya – Gezegenler – Solar sistemler – Galaksiler – Evren şeklindedir. Ekoloji ile ilgili önemli terimler: Biyosfer:Canlı yaşamına uygun ,okyanus derinlikleri ile atmosferin 10 000 m. yüksekliğine kadar olan tabakasıdır. Ekosistem:Komünitelerle cansız (Abiyotik) çevre koşullarının karşılıklı etkileşimleri. Biyotop:Canlıların yaşamlarını sürdürmek için uygun çevresel koşullara sahip coğrafi bölgedir. Komünite:Belirli yaşam alanına uyumlu populasyonlar topluluğudur. Populasyon:Belirli coğrafi sınırlar içinde yaşayan aynı türe ait bireyler topluluğudur. Habitat:Bir canlı türünün rahatça beslendiği,barındığı,ürediği yaşam alanına denir. Niş:Yaşam alanında kalıtsal özellikleri ile ilgili gerçekleştirdiği yaşamının devamına yönelik faaliyetlerin tümüdür Flora:Belirli bir bölgeye adapte olmuş ,o bölgede yaşamını sürdüren bitki topluluğudur. Fauna:Belirli bir bölgeye adapte olmuş ve o bölgede yaşamını sürdüren hayvan topluluğudur. Canlılar bulundukları yaşam ortamında canlı ve cansız faktörlerle etkileşim halindedirler. Canlıyı etkileyen: Biyotik faktörler: 1) Üreticiler 2) Tüketici 3)Ayrıştırıcılar Abiyotik faktörler: İkiye ayrılır. 1) İklimsel faktörler : a) Işık b) Isı c) Su 2) Toprak faktörler : a)Toprak yapısı b)Mineral ve tuzlar c)Toprak ph’ sı BİYOTİK FAKTÖRLER Üreticiler: Fotosentez ve kemosentez mekanizmaları ile inorganik maddelerden organik madde sentezleyebilen ototrof bakteriler,mavi yeşil algler,kloroplast taşıyan protistalar ve bitkilerdir. Enerji ve maddenin canlıların kullanabileceği hale dönüşümünü sağlayan canlılardır. Tüketiciler: İhtiyacı olan besinleri diğer canlılardan hazır olarak alan hayvanlar ,protistalar,parazit bitki ve mantarlar,hetotrof bakterilerdir. Tüketiciler üç grupta incelenir: 1- Bitkilerle beslenen: (1.Tükticiler) 2- Hayvanlarla beslenen(2.Tüketici) 3- Yırtıcılar: (3.Tüketiciler) Ayrıştırıcılar: Bitki,hayvan ölüsü ve artıklarını besin olarak kullanan saprofit bakteri ve mantarlardır. ABİYOTİK FAKTÖRLER 1-İklim faktörleri:Canlılar yaşamlarını sürdürürken güneş ışını,ısı,basınç,nem,hava hareketleri gibi iklim faktörlerden etkilenirler. A) Işık: a) Işığın kalitesi,şiddeti,süresi önemlidir b) Canlıların temel enerji kaynağıdır c) Fotosentez için gereklidir d) Bitkide çimlenme,büyüme,yönelme. klorofil sentezi için gereklidir e) Işık bitkilerin yaşam alanını belirler f) Hayvanlarda üreme,göç,pigmentasyon,bazı vitaminlerin sentezi ,sucul hayvanlarda solunum üzerine etkilidir b) Isı: Canlılarda yaşamsal olaylar belirli ısıda gerçekleşir. Yüksek ve düşük ısıda yaşamsal olaylar azalır hatta durur. Bitkilerde : a) Çimlenme b) Köklerle su alınımı c) Fotosentez Hayvanlarda : a) Üreme b) Gelişmenin devamı c) Değişken ısılı hayvanlarda (Omurgasızlar,Balıklar , Kurbağalar , Sürüngenler ) metabolizmanın devamı C) Su: a) Organik maddelerin sentezlenmesi b) Maddelerin çözülmesi ,emilmesi,taşınması c) Biyokimyasal olayların gerçekleşmesi d) Fazla ısının uzaklaştırılması e) Boşaltım maddelerinin dışa atılması f) Bitkilerde çimlenmenin gerçekleşmesi ,hayvanlarda embriyonun gelişmesi g) Bazı canlılar için yaşam ve hareket alanıdır Canlılar yaşadıkları ortam ve suya duydukları ihtiyaç farklıdır. Özel adaptasyonları ile en iyi uyumu yapmışlardır. Hayvanlarda: 1) Deride su kayıbını önleyen plaka,tüy ,kitin dış iskelet gibi yapıların oluşması. 2) Solunum yüzeyinin vücud içine alınması 3) Boşaltımla su kayıbını önleyen mekanizmaların gelişimi 4) Yaşam alanı olarak suya yakın çevrelerin seçilmesi Bitkilerde: 1) Su kayıbının sağlandığı stomaların;a)Açılıp kapanmasının kontrol edilebilmesi (Terlemenin fazla olduğu zamanlar ve suyun az olduğu zamanlar stomalar kapanır) 2) Köklerin suya yönelimi vardır 3) Kurak ortam bitkilerinde gövde ve yapraklar su kayıbını önleyecek değişikliklere sahiptir. Canlıların ihtiyacı olan suyu şu şekillerde karşılarlar: 1) Suyun doğrudan alınması.( Sindirim sistemi, kökler) 2) Deri ile su almak (Kurbağalar,Bazı omurgasızlar) 3) Besinlerin yapısındaki sudan karşılamak 4) Metabolik su kullanmak EKOLOJİK PİRAMİTLER Ekolojik piramitler ekosistemlerdeki komüniteyi oluşturan birey sayısı (Biyokütle) veya enerji dikkate alınıp hazırlanı Biyokütleye ve enerjiye dayanan piramitler · Piramidin tabanını üreticiler oluşturur · Tepe basamağı yırtıcılar oluşturur · 2. ve 3. basamağı tüketiciler oluşturur tüketiciler= a- Birincil tüketiciler (Herbivorlar) b- İkincil tüketiciler (Karnivorlar) c- Üçüncül tüketiciler (Karnivorlar) · Taban üreticilerden oluşur · Biyokütle tepeye doğru gittikçe her basamakta 10 kat azalır · Enerji tepeye doğru her basamakta 10 kat azalarak aktarılır · Biyolojik birikim (Kimyasal zehirler,radyoaktivite vb.) tepeye doğru gittikçe artar CANLILARDA BESLENME ŞEKİLLERİ A)Ototroflar: İhtiyacı olan organik besinleri kendileri sentezleyebilen canlılardır. Besin sentezlerken kullandıkları enerjinin şekline göre iki tip ototrof canlı vardır: a) Fotoototroflar: Klorofilleri sayesinde ışık enerjisi kullanarak organik besin sentezleyenler. Klorofilli bakteriler,Mavi-yeşil algler, Kloroplast taşıyan protistalar ve bitkiler bu gruptan canlılardır. b) Kemoototroflar: Kuvvetli oksidasyon enzimleri sayesinde oksitledikleri inorganik maddelerden (H,Fe,NH3,nitrit vb.) elde ettikleri kimyasal enerjiyi kullanan bakteriler bu gruptur. Hetotroflar: İhtiyacı olan organik besinleri diğer canlıların vücudundan karşılarlar. Besinlerini almaları bakımından üç gruba ayrılırlar. a) Holojoik beslenme: · Besinlerini katı parçalar halinde alırlar · Sindirim sistemleri ve enzimleri gelişkindir · Hareket sistemleri gelişkindir · Gelişkin duyulara sahiptirler Holojoik canlılar kullandıkları besinin özelliklerine göre sindirim sistemleri ve beslenme davranışlara sahiptir. 1) Herbivorlar: Bitkisel besinlerle beslenenler · Öğütücü dişler gelişkindir · Sindirim kanalları gelişkindir · Mide gelişkin ve bölmelidir · Bitkisel besinlerin besleyici değeri az olduğundan fazla besin alırlar · Beslenmeleri uzun sürer · Bitkisel besinlerden yararlanma azdır · Bazı gruplar sindirim sistemlerinde selüloz sindiren enzimlere sahip bakteri vb. canlılara simbiyoz yaşarlar. 2) Karnivorlar: Hayvansal besinlerle beslenenler · Parçalayıcı(Köpek) dişler gelişkindir · Sindirim kanalı kısadır · Hareket ve duyu sistemleri gelişkindir · Etin besleyici değeri fazla olduğundan beslenmeleri kısa sürer · Uzun süre aç kalabilirler 3) Omnivorlar:Hem hayvansal hemde bitkisel besinlerle beslenebilenler · Sindirim Özellikleri ile karnivorlara benzerler · Selüloz hariç diğer bitkisel besinlerden faydalanacak enzimlere sahiptirler · Tohum,meyve ve hücre öz suları bitkisel besinlerini oluşturur b) Saprofit beslenme · Sindirim sistemleri yoktur · Sindirim enzimleri vardır · Hücre dışı sindirim vardır · Ölü bitki ve hayvan artıkları üzerinden beslenir · Doğada madde döngüsü için önemli canlılardır · Bazı bakteriler ve mantarlar bu gruptandır · Üzerinde yaşadıkları canlıya zarar verirler c) Parazit beslenme Hayvansal parazitler endo ve ekto olmak üzere ikiye ayrılır -Ekto parazitler: · Sindirim sistemleri ve enzimleri vardır . · Hareket sistemleri ve duyuları gelişmiştir · Konakçının vücudu üzerinden besinlerini karşılarlar -Endo parazitler: · Sindirim sistemleri yoktur · Sindirim enzimleri yoktur · Üreme sistemleri hariç diğer sistemleri körelmiştir Parazit canlıların konağa olan bağımlılığı bakımından ikiye ayrılırlar: 1) Yarı parazitlik: Belirli besinler için konağa bağlanan canlılar Örnek:Ökseotu Fotosentez yapmalarına karşı su ve mineralleri başka bitkilerin iletim demetlerinden emeçleri ile alırlar 2) Tam parazitlik: Bütün besinlerini konakçıdan alan parazitlerdir Bu parazitlerde üreme hariç diğer sistemler körelmiştir Bazı özel parazitlik durumları: -Parazit-patojen:Konukçu canlıda hastalık ve ölümlere neden olurlar -Obligat parazitler:Yaşamsal evrelerinin çoğunu konukçu vücudunda geçirirler. Bazı yaşamsal olayları ancak konukçu vücudunda gerçekleştirebilir. C) Hem ototrof hem hetotrof beslenme: Bazı ototrof canlılar fotosentezle besinlerini üretebilirler ancak ihtiyaç duyduklarında diğer canlılarıda besin olarak kullanabilirler. Örnekler: a)Protistalarda EUGLENA · Tek hücreli · Hücre ağızlarından aldıkları besinlerle hetotrof beslenirle · İhtiyaç duyduklarında kloroplastları ile fotosentez yaparak ototrof beslenirler · Göz lekeleri bulunur · Hücre içi sindirim görülür Örnek: b)Bitkilerden Dionea,Drosera,Nephentes gibi insektivorlar · Kloroplastları vardır ve fotosentez yaparlar · Azotça fakir sulak topraklarda yaşarlar · Yaprakları metamorfozla böcek kapanı haline gelmiştir · Azot ihtiyaçlarını yaprakları ile yakaladıkları böcekleri, yapraklarında sindirerek sağlarlar · Hücre dışı sindirim görülür CANLILAR ARASINDAKİ BESLENME BAĞINTILARI Bazı canlı türleri yaşamsal olaylarını devam ettire bilmek için diğer canlılarla beraber yaşamak zorundadırlar. Canlılar beslenme, üreme,barınma,hareket,korunma gibi yaşamsal olaylarda başka canlılara ihtiyaç duyarlar. Bu ilişki yarar zarar ilişkisine göre üç şekilde gerçekleşir. 1) Kommensalizm: Birlikte yaşayan türlerden biri birliktelikten yarar sağlarken diğer tür yarar veya zarar görmez. 2) Mutualizm: Birlikte yaşayan iki ayrı türde birliktelikten yarar sağlarlar. 3) Parazitizm: Birlikte yaşayan iki ayrı tür bireylerinden biri bu durumdan faydalanırken diğeri bundan zarar görür. BESİN ZİNCİRİ VE BESİN PİRAMİTLERİ Besin zincirleri Doğada canlılar başka bir canlıyı besin olarak kullanırken kendileride başka canlıların besini olurlar. Canlıların birbirlerini tüketmelerine göre sıralanmaları ile oluşan zincire besin zinciri denir. Zincirin her halkası ayrı bir tür tarafından oluşturulur. Ancak hiçbir zaman doğada tek sıralı zincire rastlanmaz. Bir canlı besin olarak birden fazla türü besin olarak kullanırken kendiside birden çok türün besini olur. Bu durum zincirlerin birbirine karışıp beslenme ağları oluşturmasına neden olur. · Besin zincirleri ile canlılar arasında organik madde ve enerji akışı gerçekleşir. · Zincir ne kadar kısa ise madde ve enerji o kadar ekonomik kullanılır. · İlk halkada ototroflar bulunur · Son halkada 3.tüketiciler (Yırtıcılar) bulunur · Zincirdeki canlılar fonksiyonlarına göre üç tiptir 1) Üreticiler 2) Tüketiciler: a) Birincil tüketiciler (Herbivorlar) b) İkincil tüketiciler (Karnivorlar) c) Üçüncül tüketiciler (Karnivorlar) 3) Ayrıştırıcılar · Ayrıştırıcılar zincire her halkadan katılabilir · Her halkada önceki halkadan alınan organik madde ve enerjinin %90 ‘ı canlının yaşamsal olaylarında tüketilirken , canlı vücudunda saklı tutulan % 10 ‘u besini olduğu sonraki halkaya geçer. Bu duruma % 10 yasası denir. YAŞAM BİRLİKLERİ (KOMÜNİTELER) Sınırları belli bir coğrafi ortamda yaşayan tüm populasyonların oluşturduğu birliktir. Biyosferde iki tip yaşam birliği vardır. A-Kara yaşam birliği (Orman, Çayır, Step, Tundra, Çöl, Mağara. vb.) B-Su yaşam birlikleri (Deniz, Göl, Akarsu, Havuz, Bataklık, Pınar, vb.) Yaşama birliklerinin özellikleri: · Baskın türler vardır:Komünitede gerek sayısal gerekse yaşamsal aktiviteleri bakımından en çok rastlanan türdür. · Her yaşam birliği belirli iklimsel koşullara sahip ortamlara uyumlu türlerden oluşur: Ormanlarda topraktan ağacın tepesine kadar farklı şartlara sahip microklima katmanları ve bu katmanlarda şartlara uyumlu bitki ve hayvan türleri bulunur. · Yaşam birliklerinin sınırları vardır. Ancak bazı yaşam birlikleri içiçe olabilir. · Yaşam birliklerinde canlıların sayıları ile vücud büyüklükleri ters orantılıdır. · Yaşam birliğinin baskın türü biyotik ve abiyotik nedenlerle zamanla ortadan kalkabilir ve yerini başka bir tür alabilir .Bu olaya süksesyon denir. POPULASYONLAR Sınırlandırılmış coğrafik bölgede yaşayan aynı tür bireylerin oluşturduğu topluluktur.Populasyoınlar biyolojik birimdir. Populasyonlarda bir birey doğar, büyür ve ölür ancak populasyonlar varlığını sürdürür. Populasyonların incelenmesinin sağladığı faydalar şunlardır. · Canlı ile çevresi arasındaki ilişkileri anlamak · Doğadaki madde ve enerji akışını tanımak ,önemini kavramak · Yaşanabilir doğayı öğrenmek ,tanımak ve korumanın önemini kavramak · Canlıların genetik yapı ve evrimini öğrenmek POPULASYONLARIN ÖZELLİKLERİ 1) Populasyon büyüme şekilleri: Populasyona doğum ve içe göçle birey katılarak büyür. Ölüm ve dışa göçle bireyler azalarak küçülür. Eğer populasyonun bulunduğu alanda çevresel koşullar değişmeden kalıyorsa populasyonlarda birey sayısı dengeye ulaşır. Populasyonların gelişme,gerileme ve dengesi şu formülle hesaplanır. P=Populasyon büyüklüğündeki değişme A=Doğum + İçe göç (Birey sayısı artışı) B=Ölüm + Dışa göç (Birey sayısı azalması) KAYNAK: belgeci.com

http://www.biyologlar.com/ekoloji-ve-besin-zinciri

BAĞIŞIKLIK SİSTEMİNİ NEDİR

İnsan vücudu, hastalıklara karşı bir savunma sistemi ile donatılmıştır ve bu yüzden de kendi kendini iyileştirme yeteneğine sahiptir. Hastalığa yol açan maddeler tarafından uyarıldığında bu sistem hemen harekete geçer. Bu bazen adaptasyon tepkisi olarak adlandırılır. Sistem, yabancı olarak algıladığı bir mikroorganizma ile karşılaştığında, belirli hücreler bundan kurtulmak için savaşmaya başlar. Aşılama bağışıklık kazanmanın suni şeklidir. İşlemden geçirilmiş ya da ölü organizma aşı içinde vücuda enjekte edilir. Her gelişmiş sistemde olduğu gibi,sistem kötü işlediğinde sonuçlar ciddidir. Bağışıklık Sisteminde Dengeyi Korumak; Bağışıklık sistemini dengede tutmak önemlidir. Güçsüz bağışıklık sistemi gibi aktif olan sistemde sorun oluşturabilir. Bağışıklık sistemini dengede tutmak için anti-oksidan mikro besin maddeleri sağlayabilir. Dengede tutmak için ilk önce C ve E vitamini betakaroten ve selenyumun vücut tarafından alınması çok önemlidir. Bunun dışında taze meyve ve sebze yemeyi ihmal etmemek gerekir. Bağışıklık Sistemini Olumsuz Etkileyen Besinler... 1.FLÜORİD: Bağışıklık sistemini yavaşlatır,beyaz hücrelerin yabancı hücreleri yok etme gücünü azaltır. 2.CIVA: Vücudun enfeksiyonla savaşma gücünü olumsuz etkiler,antikorlarınkendi hücrelerinin zehirlenmesine yol açar. 3.KADMİYUM: Antikor içeren bazı enzimlerin fonksiyonlarını baskılar. 4.ALÜMİNYUM: Kalsiyum kullanımını engeller,hemoglobin üretimini etkiler. Etkin Bir Bağışıklık Sistemi... * Enfeksiyonların şiddetini azaltacaktır. * Soğuk algınlığı,nezle ve diğer enfeksiyonlara yakalanma riskini azaltacaktır. * Kanser hücrelerinin yok edilmesini en yüksek seviyeye çıkaracaktır. * Canlılığı azaltan toksit kimyasalların birikmesini önleyerek,enerji düzeylerini arttıracaktır. * Vücudu çevredeki radyasyon ve kirlerden koruyacaktır. * Yaşlanma sürecini yavaşlatacaktır. Bağışıklıkla İlgili Yaygın Hastalıkların Bazıları... * AIDS(Kazanılmış bağışıklık eksikliği sendromu) * Kanser ve tümörler * Alerjiler * Yiyeceklere karşı hassasiyet Bozulmuş Bağışıklık Sistemi Belirtileri... * Hazımsızlık * Şiş ve ağrılı bezler * Koku alamama,salgı yokluğu,solunum güçlüğü * Saç dökülmesi ve donuk saç rengi * Kırışık ve kuru cilt * Sertleşmiş ve şiş eklemler * Dikkat bozukluğu,ilgisizlik,isteksizlik ve halsizlik * Depresyon ve irritabilite

http://www.biyologlar.com/bagisiklik-sistemini-nedir

Yassı Solucanların Anatomisi

Polycclad Yassı Solucanların Anatomisi İsmininin de önerdiği gibi, serbest yaşayan solucanlar dorso-ventrally yassılanmış olup birkaç milimetreden daha kalın değildirler Boyutlar bir milimetreden daha azdan balar ve 30 cm nin üzerine kadar uzanır. Çoğu polycladler son derece hassastırlar ve tipik olarak düz bir dorsal yüzey içeren ve/veya oval şekillerine sahiptirler. Bununlar birlikte, dorsal papillae (Acanthozoan, Thysomozoan) sergilerler. Solucanların anteriorlarında uç kısımlarda dokanaç (tentacle) yer aldığından ve çok parlak renklere sahiptirler ve nadiren de olsa bazen yanlışlıkla nudribranc olarak kabul edilirmişlerdir. Fakat nudribranclara karşıt olarak, anterior sınırında dokanaçlar çoğunlukta basit bir yapı halinde tutunmuşlardır. Onlar yol boyunca nudribranclara nazaran daha fazla hareket ederler ve aynı zamanda çok ince yapıya sahiptirler ve elle tutulduklarında kırılmaya çok eğilimlidirler. Bununda ötesinde, onların özel terleme organları (gills) yoktur ve terleme solucanların tüm yüzeylerinde difuzyon yoluyla gerçekleştirilmektedir. Tüm yüzeylerinde difuzyon yoluyla gerçekleştirilir. Polycladler geniş bir renk çeşitliliği ve yapısı sergilerler. Onlar marginal buruşukluklara sahiptirler ve boyutları ile sayıca artmaya eğilimlidirler. Donük türler haricinde (siyah ve esas itibariyle siyah renkli) türler transparenttirler ve iç organları epidermis boyunca görülebilir. Özellikle ovarisleri parlak veya koyu renkli mor renklere sahiptir ve dorsal yüzeyin en dış kısmı binlerde vurucu cilia ile beraber engelleyici epidermistirler (ectodermal orijinli bir tek hücre tabakası). Onun da altında, dairesel kasın dış tabakası ve kasların iç tabakası birbirine parallel uzantı şeklindedir ve aralarında vucut plastisitesi mevcuttur. Dorsal ve ventral epidermis arasındaki boşluk parenchymal doku ile dolmuştur ku bu çok sayıda gizli hücrelere sahiptir ve bununla sümükler dışarı atabilirler ve diğer bileşenler epidermal boşluklarla oluşmuştur. Dorsal ve ventral epidermis arasındaki boşluk parenchymall doku ile dolmuştur ve çok dallanmış bağırsak ve üreme sistemi gibi organları içermektedir. Parenchymal doku mesodermal kökenli olup sümük dışarı ataliben çok yüksek sayıda gizli hücreler ve epidermal boşluklar içermektedir. Polyclad hidrostatik iskelete sahiptir ki bu sulu hayata çok güzel adapte olmasını sağlamaktadır. Mesodermdeki içsel vucut sıvısı kapalı vucut kompartmanında basınç altında tutulmakta ve vucut duvar kaslarının hareketine destek sağlama amacıyla hidrostatik iskelete karşı kuvvet uygulamaktadırlar. İki yönle hareket vardır. Küçük boyutlu türler ince kıla benzeyen ventral cilia ile vuruşlarla taban boyunca kaymasını sağlar. Büyük boyutlu türleri ise (Tysanozoan sp. gibi) aşağıda sol panelde gösterildiği gibi vucut kaslarının ritmik vuruşlarıyla yüzmeye muktedir olabilirler. Solucanlar vucutlarını ileri ve kıyıya atarak bir seri dalgalandırma yaratırlar ve yer üzerinde ileriye doğru sürünürler. Polycladlerin iki yönlü vucut şekilli hali cephalize olmuştur, bu tanımlanabilen baş bölgelerine sahip olduğu anlamındadır ve orada sinir fonksiyonları ve duyu yapıları yer almaktadır. Solucanların sinir sistemi merdiven şekline benzeyen uzun boylu sinir ipi çiftine sahiptir ve bunlar çapraz olarak birleşmişlerdir. Beyinsel anteriordaki ganglion düğümde son bulurlar ve kafanın içinde veya dışında yeralan sinirsel büyük bir top şekline sahiptirler. Son zamanlarda bazı poyclad türlerinde küçük ama iyi tanımlanmış beyin sinirbiyolojisinde model sistem olarak servis yapan beyin cytoarchitecture ve sinirsel tamir mekanizmasını araştırmalar yapılmıştır (Bakınız Bölüm: Polyclads ve Neurobiology). Başın görünen karakteri dokunaçların oluşumudur ki çoğu durumlarda anterior sinirinin belirtilmesi (=pseudotentacle) gereklidir. Bu kör bir basit boru şeklinde veya geniş kapaklı olarak olarak gösterilirler. Çoğunlukla, Thysonozoon sp.‘nın kafa bölgesinde görüldüğü gibi kulağa benzerler (sol panel). Anterior beyinsel ganglion düğüm ve onun büyük iç sinirlerine benzerler ve solucanların “beyin” i çok sayıda foto ve kimyasal hassas hücrelerinden oluşan sinir sinyallerinin analizi esas olarak, kafada ve Pseudotentaclelerde konsantre olmuşlardır. İlave olarak, yüksek sayıda mekaniksel alıcılar epidermiste dağılmış vaziyette yer almışlardır. Fotoya duyarlı hücreler beyinsel göznoktalarında bulunur ki orada yuvarlak salkım olarak çeşitli gözler yeralmışlardır. İleri gözler, ventral ve dorsal yalancı dokanaçlarda yeralmışlardır. Bu gözler gelen görüntünün şekillenmesine kabiliyetli değildirler ama ışık istikameti ve yoğunluğunun değişimine hassatırlar. Yassı kurdun parlak ışığa duyarlı olduğu zaman, özellikle koyu yerlere doğru geri çekilirler. Vertebrateler ile mukayese edildiklerinde, poycladlerin gözlerinin organizasyonu oldukça basittir. Bu tip göz, birçok lens ile kapatılmış olup “pigment cup ocellus” olarak tarif edilirler. Ocelli beyinsel göznoktasının bir parçasıdır ve çeşitli ışığa duyarlı hücrelerden oluşurlar ve konkav kap şekline sahiptirler. Kabın duvarları pigment içermektedir ve bunlar uç taraftan gelen ışığın sızmasını enlellerler. Hücrelerin ışığa duyarlı kısımları (microvilli) opak kabın içersinde düzenlenmişlerdir ve yanlızca bir yönden gelecek ışığa karşı duyarlıdırlar. Gelen ışığın açısına bağlı olarak, loş kısımler ışığa duyarlı yapıların üzerine gölge olarak düşerler. Kap aktif olarak kaslar tarafından döndürüldüğünden çabuk değişen gölge izleri yaratılır. Sinir sinyallerine karşılık olarak, beyinsel ganglion’a gönderilirler ki orada bilgiler analiz edilirler, uç boyutlu oryentasyon ve uygun davranış reaksiyonu gösterirler. Polycladlerin görsel duyularından dolayı çevresel oryentasyonu için yeterli olmayabilir ve polycladler iyi gelişmiş kimyasal dedektörlü batarya vardır ve molekülleri tanımaktadırlar. Kimyasal bileşenlerin besin ve eş bulmada önemli rol oynadıkları düşünülmektedir. Besin ve eş bulmada belirgin moleküller boşalarak akış ile içeri girerler. Bu solucanlar kimyasal alıcıları tarafından algılanarak koku yayarlar. Bunlar özellikle ventral yalancı dokanaçlarda yerleşmişlerdir ve orada yivli ciliate şeklinde salkımlanmışlardır. Aktif solucanlardaki yalancı dokanaçlar hareket halinde meşgul görülürler ve bu kimyasal duyarlı alet solucanların yönünü bulmalarında ve koku çıkarmalarında temel karar veren davranış olarak kabul edilir. Auricle ve göz noktalarına ilave olarak (Bakınız: yukarıdaki sol foto ve alçak panel) yassı solucanlar statocyst adı verilen ilkel denge organları vardır ki basınca duyarlı saç ve küçük taneli materyalli hücreler içerirler ve bu hayvanların yukarıya doğru gitmesinde büyük rol oynarlar. Yassı solucanın dinlenme, tamirat ve cam slaylarda hazırlanmasından sonra (wholemounts) ventral bakış karakterlerinde ölü solucanlar gözlenerek incelenir. Bu karakterlerin coğu türlerin taxonomi belirlenmesinde önemli rol oynarlar ki bu oldukca zor bir görevdir. Basın yanında ağız ve pharynx gözlenebilir. Genel olarak, polycladlar pharynx plicatus’a sahiptirler. Bu tip pharyngeal tüb uzun be dairesel kas tabakası sergiler ki o pharynx’in şeklini çok fazla değiştirir ve sıvıyı bağırsak boşluklarına doğru pompalar. Bununda ötesinde, pharyngeal ceplerini ayıran özelliğine sahiptir ki orada kullanılmadığında dışarı atılırlar. Pharynx boru şeklinden çeşitli şekillere kadar yapı gösterirler (örneğin, yuvarlak veya oval çok sayıda pharyngeal lob içeren çok buruşuk şekiller). Beslenmede, pharynx ağızdan çıkıntı yapar ve Pseudobiceros türünün bazı tiplerinde tüm hayvanları yutacak boyutta açılırlar. Ventral yanın ortasında, alt sınıf Cotylea yapışkan organa sahiptir ve vantuz olarak adlandırılır. Arazi gözlemlerinde bu organ hayvanların alt tabakalara yapışmasında kullanılır. Küçük invertebratelerin yakalanmasında ve yiyeceklerin hazmında işlev görür. Ender olarak, Pseudobiceros örneğinde ve Pseudoceros’da iki eşit olmayan vantuz bulunmuştur. Diğer tür polycladlerin belirgin karakterleri erkek ve dişi üreme sistemlerinin anotomisidir. Polycladler hermaphrodiktir. Onların ikiside erkek ve dişi üreme organları yumurta ve sperm üretirler. Yetişkin solucanlar, ki esas olarak üremeye geçmişlerdir, vucut hacminin yüksek yüzdesi testes ve ovarislerden oluşmuştur. Çoğu türlerde, bu serpistirilmiş haldedir ve ventral ve dorsal parenchyma da yerleşmiştir. Bununla birlikte, dışarıdan yanlızca erkek ve dişi gonophore’lar gözlenmiştir. Genel olarak, erkek boşluk pharynx’de posterior olarak bulunmuştur ve penis papilla ve penial stylet tutarlar, organları eş için uzanırlar. Pseudobiceros türünün çift erkek üreme sistemi, iki erkek boşluk ve erkek organları ile karakterize edilirler. Dişi boşluk daima açıkca erkek boşlukta ayrılmıştır ve posterior’da yerleşmiştir. Çoğu türler (Pseudoceros, Pseudobiceros)’in bir tek dişi boşluğu vardır bununla fakat Nymphozoon’in çok sayıda dişi boşluğu vardır. Dişi üreme sistemi yumurtalık, yumurta sarısı, kabuk beze, bir yarı hazne, ve döl yatağı bulunur ve orada yumurtalar döllenir. Eşleşmeden sonra (Bakınız, Bölüm: Eşleşme ve yeniden üreme) spermler dişi vucuda enjekte edilir (Hypodermal insemination) dişinin üreme aygıtına ve yarı hazneye doğru depolanma amacıyla göçederler. Yumurtalar yumurtalıktan oviduct’a doğru geçerler ve yarı haznede sperm tarafından döllenirler ve yumurta sarısı ile kaplanmış ve kabuk beze ile gizlenirler. Daha sonra üreme organlarına geçerler ve düzensiz yumurta kütlesi şeklinde depolanırlar. Yeniden üreme sisteminin yanında, çok sayıda yanal dallara sahip bağırsak solucanlarının vücut hacminin yüksek yüzdesini teskil eden ikinci organdır. Nutrientlerin vücut hücresine transferinde bağırsak sistemi (intestial), vucudun hemen hemen her tarafına uzanmış olup vurucu cilia ile kaplanmışlardır. Yarı saydam solucanların haricinde (Aquaplana sp.) bağırsak dallarının dağılımı ve onların anotomik detayları gözlenmede çok zordur. Polycladlerin kör sindirme sistemi bulunduğundan sindirilemeyen materyaller pharynx’e doğru yani yiyeceklerin geldiği aynı açıklığa doğru dışlanırlar. Soldaki foto (PHOTO © Bill Rudman) Paraplanocera oligoglena’nin ventral gorünüşünü vermektedir ve hemen hemen transparent olan vucudun çoğu organlarını gosterirler. Beyaz kollu merkezi yapı cok buruşuk pharyngeal tüpdür (pharynx plicatus) ve ağıza doğru ağız vucudun merkezinde yerlemiştir. Donuk beyazımsı network, vucudun çoğu bolgelerine uzanmış çok dallı bagırsak ki bu solucanlara “polyclad” (yunanca = çok dallı) adı verilir. Erkeğin ve dişinin diğer tüm organları yeniden üreme sistemidir. Salgı ve osmoregulation için polycladler özel fonksiyonlu birimlere sahiptirler, bunlara protonephridia (tekil protonephridium) denir. Onlar iki veya daha fazla kapalı uzun tüp dalları halindeki networka benzerler ve vucut boyunca uzanırlar. Osmotik su dengesini kontrol eden özel yapılara sahiptirler ve böbreklerin atık suyu çıkarttığı gibi çalışırlar. Vucut boyunca Protonephridium dallanma yüksek özellikli hücreler tarafından cilia izli kap şeklindeki yapılarla kapatılmıştır. Cilia vurusu, kırpışan aleve benzediği için bu hücreye “alev hücresi” adı verilmiştir. Bu hücrelerden bir kaçı tüplü fonksiyonlar ile hücrelere bağlantılıdır. İç sıvı nitrojen atıkla yüklenmiştir, tübe doğru gitmesinde zorlanır ve alev hücreleri ile akan tüp sistemi yardımıyla bir veya daha fazla boşluktan taşınırak yol alırlar ve son bölümde atıklar gizlenir. Protonephridium ilkel böbreğe bir örnektir ve salgı çıkaran ve osmoregulator bir sistem olarak gözönüne alınırlar. Yassı Solucanlara Genel Giriş Platyhelminthes (Yunanca: platy – flat, helminthes: worm) Kingdom Animalia’ya ait olup bir baş ve uçta bir kuyruk ile bölümlenmeyen yassı solucanlardır. Onlar en ilkel iki bacaklı, iki yanal simetrik hayvan olarak düşünülürler. İki yanlı simetrik anlamı, vucutlarının kıç eksen boyunca, üst ve alt yüzeyler olmak üzere tariflenen anterior ve posterior bitişin bir ayna görüntüsünde olmasıdır. Vucudun iki taraflı şekilli olması önemli bir özelliktir çünkü bu cephalization’a bir örnektir ve kafanın duyu yapılarının konsantrasyonu ve sinir fonksiyonu (kafa ganglion) yeralir. Bu da gelişimde önemli bir eğilimdir. Bunun ötesinde, yassı solucanlar triploblastikdir, bunun anlamı vucut yapısı uç temel hücre yapısından meydana gelmesidir (endoderm, mesoderm ve ectoderm). Üçüncü karaktere göre, onların barsaktan başka vucut boşlukları yoktur (coclom) ve organizasyona acoelomate adı verilmektedir. Anüsleri yoktur, bu nedenle, aynı pharyngeal açıklığından hem yiyecek alımı ve hem de atığın dışarıya atılması sağlanır. Dış hücre tabakası (=epidermis) ile belirgin ic organların arasındaki boşluk bir yumuşak doku ile dolmuştur (parenchyma). Mesodermal orijinli bu doku boşluklar tarafından ayıklanır (=schizocoelium) ve nütrientleri vucudun kısımlarına taşımak için cok dallanmış bağırsak mevcuttur. Terleme sistemi ve kan taşıma sistemi tamamen yoktur ve bu nedenle oksijenin transferinde difüzyon kullanılır. Bu da yassı solucanların düz olmasını sağlamaktadır. Metabolizimin tesisinde, hiç bir hücre dışarıdan uzakta değildir, zorunlu olan vucut şeklinin yassılanmasını sağlarlar. Hemen hemen bütün türler sahip oldukları oldukca kompleks üreme sistemiyle hermaphrodites’lerdir. Çoğu durumlarda, erkek ve dişi üreme yapılarının sayısı ve ayarlanması ile oldukca belirgin özel türlerdir ve çok benzer türlerin morfolojisinin ayırt edilmesinde taksonomik çalışmalarda kullanılabilirler. Yassi solucanların uzunluğu bazı serbest yaşayan türlerde 0.4 mm ve parasitik şekillilerde çeşitli metrelerde (fish tapeworm, Diphyllobothrium latum: 25 m in length) bulunurlar. Yassı solucanlar üç gruba ayrılırlar; 20,000 türü bilinen, 14,000 parasitler Cestoda (tapeworms) veya Trematoda (flukes) sınıfına aittirler. Tapeworm vertebrate’de bağırsak parasitleridir ve anatomik ve parasitims’in hayat tarihi ve modifikasyonlarını gösterirler. Flukes tamamen parasitik olarak bilinirler ve tape wormlara kıyasla kompleks hayat zincirine sahiptirler. Bir kaç genç stepden geçerler; bir, iki veya daha fazla hayvanın üzerinde yetişkin düzeye gelirler ve sonunda bir hayvanın üzerinde parazitik olarak yaşarlar. Bunun karsıtı olarak, Turbellaria serbest olarak yaşamakta olup tatlı suda ve nemli karasal ortamda coğunluktadırlar. Turbellarian yassı solucanların çoğu denizel ortamlarda ve okyanuslarda bentik olarak bulunurlar ve ayrıca sığ sularda da çok bulunurlar. Turbellaria’nin bir taksonomik alt grubu yüksek belirgin serbest yaşayan yassı solucanlar içeren order Polycladida’dir. Bu order’in üyeleri anatomik olarak çok dallanmış ve düzensiz bağırsak pharynx plicatus olarak buruşuklu pharygeal tüb ıle karakterıze edilirler. İlk bakışta, polyclad’ler çarpıcı şekilde goze hoş gelen renkli yassı solucanlardır. Tropikal resiflerde 150 yıldır yasadıkları bilinmektedir. Tropikal sularda yüzlerce türleri olduğuna inanılmasına rağmen şimdiye kadar çok az kısmı tamamen tarif edilebilmiştir. Rejenerasyon Karşıt olarak, yüksek vertebrates, bazı serbest yaşayan yassı solucanlar yeniden oluşmada muhtesem kabiliyetli olduklarını göstermektedir. Kafasının kesilmesi ve bir yenisinin büyümesidir. Kafanın yanal olarak ikiye, üçe veya daha fazlaya bölünmesiyle bir, iki, üç veya çok başlı solucan ile sonuçlanmasıdır. Solucanlar on parçaya bölünebilirler on tamamlanmış küçük solucan meydana gelir (Bakiniz: alt şekil, sol panel-tatlısu triclad Dagesia tigrina). Biyologların yeniden büyümeye büyük ilgi duymaları nedeniyle yeniden oluşumun üzerinde yapılan yoğun çalışmalar çeşitli yassı solucan taxa sistem modeline servis yapmaktadır (Bakınız: Bölüm: Sinirbiyolojisi’nde polycladler). Son zamanlarda, yeniden oluşum ile ilgili detaylı bilgi temelde polycladler üzerindedir (Order: Polycladida) ve tatlı su triclads (Order:Tricladida-üç-dört bağırsaklı anlamına gelir) ve diğeri planarians olarak bilinir (Bakınız: Bölüm: Phytogeny). Biyologların yeniden oluşumun üzerinde yüzyıldır yaptığı çalışmalara rağmen, bazı sorulara cevaplar, özellikle yeniden oluşumun kontrolu ve moleküler mekanism işleminin yakalanması zor görünmektedir. Bilim adamları planaria’nin temelde yeniden oluşumun yeteneğine sahip olduğuna hemfikirdirler ve neoblast adı verilen emriyonik dal hücreleri depolanmasını kullanırlar. Türlere bağlı olarak neoblastlar yetişkin solucanlarda toplam hücre sayısının 30% ‘unu kapsarlar. Bu totiponent hücreler, solucanın vücudunda serpiştirilmiş olup diğer hücre türlerinin büyümesinde yeteneklidirler ve iki rol oynarlar. Onlar, normal fizyolojik koşullarda ölenin yerine yeni hücre alarak yeniden oluşum için ham materyalini ve daha sonra iyileşmeyi sağlarlar. Yeniden oluşum oldukça hızlıdır. Kesilmeden 15 dakika içinde yaranın ucundaki epithelilal hücreler lesion’a yakındır. Birgün içersinde, yüksek sayıda neblast yaralı epithelium altındaki yeni diferansiyel yapılar büyüyen blastema içinde delil haline gelir ve yeniden oluşumun kesilmeden 10 gün içersinde optimal koşullar altında kaybolan kısımları tamamlanır (Baguma vd., 1994). Planaria kuvvetli kafa-kuyruk organlarına sahiptir (anterior-posterior kutuplanma). Kesildiğinde, anterior kesim yüzeyi hemen hemen daima yeniden oluşur ve yeni bir kafayı üretir ve aynı zamanda posterior kesim yüzeyi kuyruk yapıyı yeniden üretir. Solucanların bilgilerinin belirlenmesinin yeniden üretimde bir baş ve bir kuyruktan olup olmadığına dair bir mekanizmasının olması gereklidir. Şu anda, anterior ve posterior kutuplaşmasını açıklayan iki adet hipotez mevcuttur. Biri yeni oluşan epithelium arasında tumevarımsal iç hareket, başlangıç iyileşme işlemini kapsar ve blastema hücrelerinin altından geçer. Diğer hipotez ise anterior-posterior belirlenmesinde faktörlerinin moleküler gradientinin sıralanmasını önerir. Deneysel datanın çokluğuna rağmen her bakış için kesin bir delil yoktur. Çoğu tatlısu planaria sexual olarak yeniden oluşur ve oviparoustur (yumurtanın kuluçkası ile depolanır). Bazı türler parthenogenesis ile asexual yenide oluşum gösterirler. (spermsiz olarak yumurtanın aktivitesi). Bununla birlikte, taxonomik ailenin yassısolucanları Dugesiidae ve Planariidae (Order: Tricladida) nadir olarak ikili bölünme ile yeniden ürerler (Bakınız: üst şekil, sağ panel-tatlısu triclad Planarıa fissipara). Yetişkinler ikili bölünme ile bir küçük kuyruk parçası pharynx diferansiyeli ve iki hafta içinde de beslenen solucan haline gelir. Dugesia trigria’nin tabi olduğu toplulukta yeniden üreme araştırmalarında optimal sıcaklık koşullarının 24 C altında solucanların 20% si bölünme ile olduğu ortaya çıkmıştır. Çift bölünme ile asexual üreme bu dokumanda da belirtildiği gibi deniz polycladlerde de mümkündür (Bakınız: soldaki foto). Prostheceraeus (Familya: Euryleptidae)’nin polyclad’i de bölünme işlemini vermektedir. Kuyruk parçası ok ile belirlenmiş ve bölünmeden sonra yeni bir solucan oluşturarak ve alt hücre yeniden organasyon olacaktır. Bununla birlikte, yeniden üreme işlemi hakkında diğer bir açıklama, diğer hayvanların atağından ve “kuyruk kısmının bölünmesi” nden sonra beslenme amaclı ataklar neticesinde (Bakınız: Bölüm. Predation ve Defence) oluşmasıdır. Yiyecek ve Beslenme Çoğu bilinen, polycladler aktif etobur hayvanlardır ve leşle beslenirler ve aynı zamanda çeşitli sessile invertebrateslerin beslenmesinde kullanılırlar. Bazı türleri herbivorous olup yeşil alg ve bentik diatom’da özelleşmişlerdir. Acoella order’inin bir kaç yassı solucan türlerinde (bir eski taksonomik order, Polycladida’den ayırt edilen) sindirilen mikroalgler derecelenmemiştir ama endosymbionts (Zoochlorella) haline gelmiştir. Bu symbiotik ilişkide bağırsakta alg fotosentezde aktif olarak kalarak pareneyma hücre ve solucanların energy depolanmasında önemli katkılarda bulunur. Convoluta (canvolata reocoffansis - sağdaki foto Arthur Hauck)’nın bazı türleri genç solucanlar yüksek sayıdadırlar (Tetraselmis convolata, her bireyde takriben 25,000 adet). Yetişkin duruma geldiklerinde, canalıcı anotemiksel olarak değişimlerinin yansımasında endosysmbiontlara bağlıdır ve pharynx ve ağız fonksiyonlarının kaybederler. Beslenme için, C. roscoffensis alçak gelgitin parlak ışığında yüzeye gelir ve orada symbiotic alg vücudun epidermis boyunca serpilmişlerdir ve aktif olarak fotosentetiktirler (Holligan vd., 1977). Algler tarafından üretilen yiyecek (şeker) yassı solucanlar tarafından kullanılır. Bu manzara Fransa’nın korunmus kumlu sahillerinde ve İngiltere’nin bazı bölgelerinde gözlenebilir. Optimum cevresel pozisyonlarda bu solucanlar alçak gelgitte kumda mükemmel yeşil yapılar yapar. Pseudocerotidae familyasının birçok türü koloni yaşamayı tercih etttikleri düşünülmektedir ve katı ascidianlar, süngerler, ve bryozoonlar rejimlerinde normal özellik göstermezler. Beslenmede, çok buruşuk pharynx (pharynx plicatus) niçin ve nezaman kullanılmadığında bir cep içinde, çıkıntılarda koloni ascidianlarda bireysel zooidlerde genişlemis olabilirler. Proteolytic nesneleri dışarı atarken dokusal dallı bağırsak oluşmuştur. Gastrovascular boşluk, bütün besin parçalarını vucudun tamamına transfer eder. Pseudobiceros türlerinin gözlemi önerilir, av hayvanı dokusal pharynx tarafından yütülür (Bakınız: aşağıdaki görüntü) ve bütün hayvanlarda aynı ölçüde genişlerler. Bu türler, katı ascidian Corella willmeriana mantosuna sızar ve delme deliğini kullanarak birkaç saatte tamamını emerler. Tunicate’nin içersinde gençler bile bulunmuştur. Bütün şeyleri yedikten sonra, kayalara çapraz olarak sürünürler. Yassı solucanların yığını oluştuğunda insanlık açısından denizel ortamında bir felaket etkisi sözkonusudur. Tropikal polycladler istiridye’nin musibetidir ve dev deniz taraklarıdır (Stylochus matatası). Gastrovasküler boşluğundaki besinler yiyecek parçacıklarının ileri enzimatik derecelenmesinden sonra bağırsak dallarına doğru transfer olurlar ve yüksek bir absorb edebilen yüzeye benzerler. Çoğu yiyecek parçacıkları gastrodermal hücre tabakasının phagocytosis tarafından yutulurlar ve ileri enzimatik düzeyde iç hücresel parçalanma oluşur. Sindirilemeyen materyal pharynx’a doğru, yani yiyeceklerin girdiği deliğe doğru atılırlar, çünkü yassı solucanların kör sindirim sistemi bulunmaktadır. Bazı türlerde bu gözlenmiştir ve sindirimin tamamlanmasından sonra bağırsak fıskırtılan su yardımıyla temizlenir. Tür çeşitliliği ve polyclad yassı solucanların değişimi tropikal suların inanılmaz değişimi ile taxon’a benzer (Newman & Cannon, 1994), Bakınız.Bölüm: Taxonomi). Oldukça uzun zamanda, renk izleri muhteşem renklenmiş olan solucanlar sınıflandırılmada yeterli düşünülmüştür (Hyman, 1954, 1959). Bununla birlikte, birçok türlerin tanımlanmasında yeterli kimliğe sahip değildirler (Faubel, 1983, 1984). Newman & Cannon (1994)’de yaptıkları arazi çalışmalarında farklı genera’da (Pseudoceros - Pseudobiceros; Pseudoceros - Pseudoceros) çok benzer ve hemen hemen tamamen aynı renkli izleri taşıdığı ortaya çıkmıştır ve türler arası farklılığında farklı aileler üzerinde (Pseudocerotidae-Euryleptidae) daha detaylı inceleme gereklidir. Mukayese anatomisi uygun karakterleri kullanılarak göz numarası, göz ayarı, yalancı dokanakların şekli, pharynx ve özellikle üreme sisteminin ince yapısının analizi kanıtlanması için turbellarianlarin tür diagnosisleri için temel araçtır (Newman & Cannon, 1994). Erkek ve dişi üreme yapılarının seri olarak yeniden yapımı zordur ve özel lab aletlerine ihtiyaç vardır ve uzmanlar tarafından arzu edilir. Son zamanlarda, benzer polyclad türlerini ayırt etmede, molekuler data (DNA) sıklığı kullanılmıştır. Böyle araçları kullanmadan, polyclad yassı solucanların sınıflandırılması bazı durumlarda hatalı olabilir. Benzer renk izleri büyük farkla benzemesine rağmen ayni genetiksel olarak belirlenmiş renk ve örnek çeşitliliği ayni tür özellilerine sahiptir. Diğer bir değişle, tamamen aynı renkteki örnek belki farklı türde genera’ya veya hatta familya üyesi olabilir. Bu nedenle, eğer benzer renk örneklerinde olan iki polyclad örneği mukayese edıldiklerinde, çeşitli mümkün senaryolar akla uygundur. 1) Farklı genera ve hatta familyaya sahip solucanlarda, genel seçilmiş basınç ve aynı çevre kosulları altında aynı renk örneklerinin gelişiminde evrimsel gelişim kuvvetlidir. Phylogenetik terim açıklaması; bir benzer renk ilişkili gene seti (=allels) veya bir müşterek gene farklılığı phenotype sonuçlari üzerinde secilmiş basınç tarafından tercih edilir. Bu gibi olayların sıklığı analogous gelişim olarak düşünülür. 2) İkinci senaryoda, iki solucan aynı atayı paylaşırlar. Tahminler ışığında, bu ata daha önce avantajlı renklere ulaşmıştır, her iki örneğin renkli izlerinin mukayesesi hatta anotomiksel ve diğer genetik farklılıklara rağmen çok benzer olabilir. 3) Evrim gelişmekte olan işlemdir ve hiçbir zaman durmaz! Genesin renk örnek ilişkisinde gelişigüzel müşterekliliği, protein kodlama bölgelerinde veya düzenli DNA sıklığında, ışık, sıcaklık, beslenme gibi çevresel faktörlerin etkileri ile beraber polyclad renk izlerini etkilemektedir. Rahatça söylenebilir ki, evrim renkler ile oynamadır. Varsayılan predatörlerin farklılığı daha etkilidir: Mimicry ve Predation ve Defence). Phylogenetik zaman aralığında, bir türün görünümünde veya spectation değişim atlamasında, yeni türlerin tehlikesinde önder olabilir. Takip eden foto paneli açıkca ortaya koymakta ve farklı türler ile bir tek türün üyeleri arasında renk izlerini açıkca göstermektedir. Solucanların morfolojik ve DNA sıklığının kilitlenmesi nedeniyle hangi tariflenmiş senaryoların örnek için uygun olduğu gerçekte belirsizdir. Toxin Aposematic renklenme (Bakiniz.Bölüm: Mimicry) denizel invertebrate hayvanların içersinde bilinen genel defense mekanizmasıdır. Çok sayıda göze çarpan renkli slugları toxic alıkonmuştur. Polyclad yassı solucanlar açısından doğrudur. Polyclad yassı solucanların Pseudoceron concineu ve Planocera tentaculata kimyasal defens araştırması ve staurosporine türevlenmesi gibi yüksek toxic kimyasal bileşen açığa çıkarmıştır (Schupp vd., 1977 ve 1999) ve tetrododoxin (Miyazama vd., 1987). Tetrodotoxin proteinsiz bileşen (aminoperhydroqumazoline) olup günümüzde bilinen en kuvvetli paralytic toxinlerden birisidir. Sodyum (Na+) kanallarında voltaj-kapılı cok belirgin engelleyicidir ve büyük integral protein üyesi sinirsel hücrelerin plazma membranına doğru boşluk oluşturur ve Na+ iyonlarına izin verir. Çeşitli uyarıcı cevaplar, boşluklar (=genes), ve açık ve kapalı mebrane potensiyelinin değişimi gibi hücre dışı ve içi belirli kimyasalların varlığı ve uygun fonksiyonelliği sinirsel hareket potensiyelinde temel teşkil etmektedir. Bunula birlikte, tetrododoxin kanalları bloke eder. Tetrodotoxin ve onun habercisi yüksek konsantrasyonlu mukus, sindirim organlarında, polyclad Planocera multietentacula (Miyazawa vd. 1987, Noguchi vd, 1991) yumurtalarda ve üreme organlarında önerirler. Yassı solucanlar predatorlere karşı defans ve alarm maddesi tetratoxine sahiptir. Tetratoxin geniş farklı hayvan örnekleri tarafından izole edilmiştir bunlar pufferfish (photo: Arothon nigropunctatus, order: Tetraodontiformers), parrotfish, genus Atelopus’un zehirli oklu kurbagalar, mavi-cevreli ahtopot, deniz yıldızı, angelfish ve xanthid crabdir. Japon mutfağında pufferfish hassas olduğundan, tetrodoxoxinden zehirlenme Japonya’da halk sağlığını ilgilendirmektedir. Yumurtalık, çiğer, bağırsak ve pufferfish derisi tetradotoxin miktarını içerir ve bu da hızlı ve zorlu üremeye yeterlidir. Geleneksel olarak çok küçük miktarda ciğer et ile tüketilir. Dudakların oluşum duygusu ve dil gercek akşam yemeği tecrübesidir. Fugu’nun hazırlanması ve satışı özel restaurantlarda olduğundan oradakiler eğitilir ve evde hazırlanmasından ve tüketiminden yanlış tanımlandığı ve yanlış donmuş balık ürünleri nedeniyle bireysel olarak zehirleme olayı (30/100 kışı/yıl) olur. Pufferfish zehirliliği hakkında daha fazla bilgi için Bakınız. FDA/CFSAN web sitesinde Amerikan Besin Emniyeti & Nutrient Aplikasyonu’na başvurunuz. Eşleşme ve Üreme Polycladler oldukça ilkel oldukları için kimyasal bilesenler besin bulmada ve partneri ile arkadaşlık kurmasında anahtar rol oynarlar. Büyük yalancı dokanaclarda anterior sinirinin ayrıntıyla donatılması bir delildir ve bu solucanlar temelde resif çevrenin kavranmasında ve davranışlarıyla kararda kimyasal duyu aleti olarak kullanılır. Genel olarak, polycladler derialtında erkek ve dişi üreme organlarina sahiptirler. Onlar karşılıklı dollenme ile birleşerek çiftleşirler. Bir kere, aynı türe sahip yetişkin solucan oldukca kaba çiftleşme hareketi yaparlar, bu derialtı döllenme olarak tarif edilir (üst görüntü, Pseudoceros bifurcus). Solucanların çiftleşme zamanında birbirlerine doğru hareket ettiği, değdiği ve birbirlerine sarıldıklarında (sol görüntü aşağıda, Pseudoceros graveri) eş zamanlı olarak penis papillae ve stylet dışarı çıkar (İki görüntü aşağı sağda, Pseudobiceros bedfordi). Onlar, daha sonra birbirlerini başka yere çekmeyi denerler, bazen de kendi ortaklarına zarara sebep verirler. Yaralı solucanlar 24 saatte sağlıklarına yeniden kavuşurlar. Ne zamanki biri diğerine penetre ederse, birkaç dakika partnerinin epidermiste içine oturtur. Bu zamanda, erkek dol hücresi partnerine enjekte edilir (Üst görüntü, sağ). Son zamanlarda, Pseudoceros bifus’in eşleşme davranışları gözlenmesinde (Michiels& Newman, Nature, vol.391:647), bireysel polyclad sperm vermeyi arttırır. Erkekler için, spermlerin enjeksiyonu direk yumurtalara gider ki orada dişi yarasının iyileşmesinin maliyeti taşıma kapasitesini ve döllenmede kontrolu kaybeder. Bu nedenle, dişilerdeki çok kuvvetli secme bu maliyetten kaçınmaktadır. Bu arka yukarı ile buna ulaşılır, bir eş davranışı her iki striking ve parrying’de etkilidir. Bireyselde her ikisi de deneme cekingesiyle davranırlar. Gelişme olarakta bu girişim sperm donatısında daha fazla sperm verilmesini sağlar. Daha fazla başarılı döllenme ile daha iyi döllenme sağlar. Derialtı döllenmeden sonra sperm aktif olarak parenchyma yumurta kanalına doğru hareket eder. Onlar muhtemelen oocytes tarafından veya dişi üreme kanalının değer hücrelerde serbest hale getirilen moleküllerin gradienti tarafından cazip olurlar. Döllenmiş yumurtalar daha sonra birkaç yüz yumurtanın düzensiz yumurta yığını halinde depolanir ki daha sonra sıkıca paketlenmiş bir tabaka haline gelirler. Diğerinde, iri çakılların altında ascidian kolonileri halinde bulunurlar ve tercih ettikleri avlanmadan biridir. Serbestce yüzmenin gelişmesinden on gün sonra, transparent larva kuluçkası oluşur (=Muller’s larva). Çizelgeden de anlaşılacağı gibi gelişmelerinde bibirini takip eden üç step vardır. Müller larvası sekiz lob tarafından karakterize edilirler. Loblar vurus yapan cilia taşırlar ki bu ciliate’e benzer yüzmeye izin verir (en soldaki foto: koyu arazi mikroskobu altındaki larva stepi). Larva plaktonik bölüme girerek yerleşmeden ve metamorfize olmadan önce birkaç gün yüzer. Gelişmesi esnasında, larva lobları absorbe olmaya devam eder ki orada sindirimleri gelisir. Minyatür yetişkin solucanlar haline gelindiğinde metamorfoz tamamlanır, yanlızca birkaç mm boyutundadırlar ve hayatın bentik bölümüne girerler. Larvaların nudibranch metamorfisinde yapılan gelişmiş ileri düzeyde çalışmalardan elde edilen bilgilere göre, türlerin tercih ettiği besinler tarafından kimyasal bileşikler üretilmesi hedeflenir. Bu mekanizma, yerleşme alanı genç organizmaların yetişmesinde yeterli yiyecek sağlamasına emin olur ve bu nedenle, bu hayatta kalabilmek için daha büyük bir şanstır. Polycladler lab. koşullari altında larva halinde yerleşmeksizin kuluçka olduktan sonra iki hafta içersinde solucan olabildikleri için, polycladlerin bentik hayat bölümüne girmelerinde dış güçlerin zorunluluğu bilinmemektedir. Polycladlerin Taksonomisi Polycladida (class: Turbellaria)’nin taksonomik order’i bir kaç yüz tanımlanmıs türleri kapsar. Bunların çoğunluğu (7 adet genera’da 200 kadar tür) ve Pseudocerotidal familyasında toplanırlar ki bu bugünün en iyi tropikal polyclad familyası olarak kabul edilir. Pseudocerotis en muhteşem renkli yassı solucanlardır ve daha sonraki en belirgin tropikal polyclad ailesinden Euryleptidae (130 türle birlikte) buruşuk pharynxleri tarafından karaterize edilirler ve ayırt edilirler ve aynı zamanda onlarda tüp halinde pharynx mevcuttur. Pseudocerotidsin diğer genera’si daha az yanıltıcı olmakla birlikte çok az bilinmektedir. Bazıları hatta monospecific’tir. Polyclad yassı solucanlar için Tayler. S & Bush L.F, 1988 web sayfasına giriniz. Turbellarian platyhelminths Taxonomisi Polyclad yassı solucanlar üzerinde taxonomik çalışmalar oldukça zordur. Onların uygun boyut, şekil, renk ve markalamaları, göz ayarlamaları, yalancı dokanaçlar, pharynx, gonopore’ların topoğrafyası ve emme gibi karakteleri gözonüne alınmalıdır. Bazı durumlarda, tanımlamada bu karakterler yetersiz ise, üreme sisteminin karşılaştırmalı morfolojisi özel lab. aletleri kullanılması temel araçtır ve uzmanlar tarafından tercih edilir. Son zamanlarda, moleküler DNA (DNA sıklığı) ayni türdeki benzer polycladlerin farklılığının ayırt edilmesinde kullanılmaktadır (Bakınız.Bölüm:Phylogeny). Takip eden tablo dalan ve UW fotoğrafcılar için polyclad yassı solucanların tanımlanmasında faydalı bir araçtır. Filojeny İlk Metozoa’nın hemen hemen radyal hayvan olduğu için, iki taraflı simetrik (Bilateral) nin radyal atalarından yayılmıştır ve radyalden iki taraflı simetri arasında değişim olmuştur. Bu değişim hala oluşmaktadır ve çeşitli yüksek düzeyde spekulatif bağlantılar yapılmıştır (Brusca & Brusca, 1995). Paleontolojik ve moleküler data gösterir ki çoğu iki taraflı phyla ve Cambrian explosion zamanında bölünmüşlerdir, M.O. 56 ve 520 yıllarında oluşmuştur (Wang, vd., 1999). Phylum platyhelminthes erken Metasoanın farklı grup oluşturduğu ki bu metazoa’nin orijini ve evriminin anlaşılmasında anahtar rol oynamıştır. Coğu zooloji ders kitaplarında, erken ortaya çıkan clade formasyonu, iki taraflı simetri (Bilatera) ile bütün hayvanların kızkardeş grubu olarak tarif edilmiştir. Diğer yazarlar görmüşlerdir ki, çoğu Protostomia’nin kızkardeş grubu veya grup protostome coelomate atalarından türemişlerdir. Filojenik yerleşmenin doğruluğu esas zorluluktur ve bütün Platyhelminthes için synapomorfilerin iknasının kapanmasıdır. Bu belirtir ki onlar polyphyletic’tir. Basitleştirilmiş taxonomik şekilde, phylum Platyhelminthes dört sınıfı tutar. Trematodal (fluxes), monogenea ve Cestoda (tapeworms) ki bunlar vertabratenin endo/ectoparasiteyi sunar. Bazıları kompleks, hayat döngüşü, ve sınıf Turbellaria ana serbest yaşayan yassı solucan türlerini verir. Turbellaria 9 adet order içerir. Coğu açıklanan orderler bu çizelgede gösterilmemiştir. Acoel yassı solucan (Acoela) uzun zamandır, Turbellaria’nin order’i olarak sınıflandırılmıştır. Onlar en ilkel turbellarian order olarak düşünülmüş ve bazal metazoan olarak manzaralanmıştır ki ciliate protozoans (=syncytial veya ciliate=acoel theory) veya diploblast ve triploblast arasında direk link vardır (=planuloid-acoeloid theory)’den evrim geçirerek oluşmuşlardır. Onların basit organizasyonu yorumlanmıştır ve daha kompleks ataları (regressive evrim) ikincil özelliklerinin kaybolması incelenmiştir. Bugün, teorinin destek delillerinin birçok çizgisi, bilinmeyen iki taraflı atalardan Kambrien radyasyondan önce. acoels dallanmasıyla olmuştur. Örneğin, aceoller diğer platyhelminthes iki loblu ve neuropile’li beyinleri var olup sinir hücreleri ile cevrilmiş olduğunu sinir sistemi yapısı işaret eder (Bakınız. Bölüm: Polyclad ve Neurobiology). Karşıt olarak, acoellerin sinir sistemi sinir hücrelerinin salkımı tarafından basit beyin olarak oluşmuştur ve cok sayıda uzun sinir kordları ortagon yapmazlar (Ruitz-Trillo vd., 1999). Son zamanlarda, DNA (desorxy-bonucleic acid) moleküler teknik ve protein sıklığı başarılı kullanılmıştır. Phylogenetic hayat ağacı kurulur ve hayvan taxa’ları arasında filojenetik ilişkisi araştırılır. En yaygını, DNA sıklığı yüksek düzeydeki gene’leri muhafaza etmesidir, mesela, ribozomal RNA (rRNA) genes kodu bu gibi çalışmalarda kullanılmıştır. 18 S ribozomal DNA genesinin sıklık datası mukayesesinde ve diğer Metazoa kanıtları Acoel’in Platyhelminthes’e ait olmadığı belirlenmiştir. Bu buluşlar önerirki basit radyal simetrik organizma (jelyfish gibi) ve daha komplex iki taraflı simetrik organizmalar (arthropods ve vertebrates) boşluk (gap) vardır. Onlar kendi phylum’larına yerleştirilmelidirler (Ruisz Trillo vd., 1999). Bazı çarpıcı özellikleri vermesi polyclad genera’da en yaygın tanımlamada yardımcı olacaktır. DNA sıklılığı dataları aynı zamanda aynı organizmaların morfolojilerinin ayırt edilmesinde de kullanılır. Bu Goggin & Newmann (1996) tarafından pseudoceroid turbellarianlar için teşhir edilmiştir. Ribozomdaki RNA (rRNA) gene salkımındaki spacer-1 (JTS-1)’dan elde edilen Nucleotide sıklığı dataları (Pseudoceros jebborun, Pseudoceros paralaticlavus) ve pseudocerotid polycladların generasında (Ps. jebborum ve paralatic lavus versus Pseudobiceros gratus) türlerin ayırt edilmesinde kullanılmıştır. Ps’in ITS-1’nin nukleotide sıklığı Ps. paralatic lavus’dan 6% farklıdır ve Pseudobiceros gratus’tan 36% farklıdır. Beklenildiği gibi bu sonuçlar aynı genusun türleri farklı genera’dan alınan türlere kıyasla phylogenetiksel olarak yakın ilişkili olduğunu kanıtlamaktadır. Bu nedenle, ITS-1’den elde edilen data sıklığı pseudocerotid yassı solucanlar ayırt edilmesinde faydalı bir taksonomik araçtır. Ribozomal DNA Salkımı Büyümekte olan bir hücre 10 Mio ribozomlar ihtiva eder, protein üretiminde hücresel araçtır (mRNA’nin proteine transferi). Ribozomal RNA her tip ribozomal RNA molekülü (5 S, 5.8 S, 18 S, 28 S rRNA) nin temel yapısal komponenttir ve protein sentezinde hücre ihtiyaçlarında birleşmesi açısından her hücre generasyonunda sentez edilmelidir. Ribozomal RNA’nın yeterli miktarda üretimi için eukaryotic hücreler ribosomal RNA (rRNA genes = rDNA) nın kollanmasında çok sayıda genes kopyası içerirler. İnsan hücreleri her haploid genome’de aşağı yukarı 200 rRNA gene kopyası içerirler ve beş farklı kromozomda (chromosomes 13, 14, 15, 21, 22) küçük salkımlar halinde dağılmışlardır. Kurbağa hücreleri Xenopus leveis bir kromozomda bir tek salkımda 600 rRNA gene kopyası içerir. Bununla birlikte, genel rRNA izleri bir kromozomda bir tek salkımda rRNA gene organizasyonunun genel izinde bütün eukayot hücrelerde tamamen aynıdır. Verilen kromozomda yüksek dereceden rRNA genesinin çok sayıda kopyasının gelişigüzel serileri ayarlanmıştır, her bir gene diğer bolgedekinden ayrılmıştır, DNA boşluk yaratıcı olarak da bilinir ve türler içinde uzunluğu ve sıklığı değişmektedir. Bir tek salkım rRNA genes’i 18 S, 5.8 S, ve 28 S rRNA molekülü içerir ki o (ITS-1 ve ITS-2) tarafından içten ayrılır. Bitişik salkımlar 10,000 nucleotide uzunluğundadır ve herbiri dışsa açıklı bölgeler (ETS) olarak ayrılmıştır. rRNA genes’i RNA polymerase tarafından kopya edilmiştir ve her bir genes seti aynı temel RNA’yi üretir, 45 S öncü rRNA (pre-rRNA) olarak bilinir. Önce kurulmuş ribozomal partiküllerindeki nukleusu terkeder, 45 S pre-rRNA (takriben 5,000 nucleotides, 18 S Rrna (takriben 2,000 nucleotides, ve 5.8 rRNA ( takriben 160 nucleotides). Geri kalan kısımda her temel kopya (ETS, ITS-1 ve ITS-2) olarak derecelenmistir. Takriben 200 farklı hücresel protein ve bir 5 S rRNA diğer kromozom locus’tan türetilir ve ribozomların paketlenmesinde yeni sentezlenmiş rRNA kullanılmıştır. Bu paketleme nucleusta oluşur ve bu büyük geçirgen yapı nucleus olarak adlandırılır. Bozulmamış rRNA molekulleri ribosome üretiminde temel olduğu için, protein sentezi ve hüçre fonksiyonu, kuvvetli basınç seciminde (evrim) fonksiyonel rRNA mevcuttur. Böylece, ecukaryotic hücrelerde çoğu genişler ribosomal genese bağlıdır bu da müthiş bir benzerlik sıklığı gösterir ve hatta phylogenetik taxa dahil olmak üzere. Bununla birlikte, iç alan bölgede (ITS-1 ve ITS-2) daha az homoloji bulunmuştur çünkü bu DNA bölgeleri yapısal RNA’ya katkıda bulunmaz. Bu nedenle, daha az secilmiş basınç uygulanmakta ve DNA sıklığı da farklı olmaktadır (müşterek nokta), aynı genusun türleri arasında bile bu bölgede elde edilmiştir. Bu ilişki rDNA datasındaki molekuler özellikler (Hayat ağaçi) çok faydalıdır ve yakın ilişkili türlerin ayırt edilmesinde kullanılır. Neurobiyolojide Polycladler Serbest yaşayan polyclad yassı solucanlarda Notoplana acticola gibi beyin ve peripheral sinir network araştırma halindeki en ilkelsinir sistemini sunar. Küçük ama iyi tanımlanmış beyin (sağ panel) ve uzun sinir ipleri ve çapraz hatlar tarafından çok sayıda dairesel motoneuronlarla bağlanmıstır. Bu sinir sistemi yassı solucanların cevresel değişimlerinin iç ve dış etkileri mümkündür. Yüzeysel olarak Netoplama articola’nin beyni diğer invertebratedekilere benzemesine rağmen hücreleri cok sayıda vertebrate özelliklerine sahiptir. Hücre tiplerinde tamamlanmış, dallanmış izlerle beraber çok şaşırtıcı farklılık vardır. Çok kutuplu neurone’ler yaygın tipik, iki kutuplu hücreler olarak ayırt edilebilir. Küçük çok kutuplu hücreler glial veya interneurones beyinde serpiştirilmiş olarak bulunmuştur (Keenaneld, 1981). Daha önceki çizimden çıkartıldığı gibi, bazı tabaka tarafından çevrilmiştir. Uzun sinir kordları ve neuronlar dairesel alıcı hücreleri bağlar (ocellinin fotoduyarlı hücreleri) beyinden direk olarak uzanırlar. Ventral sinir kordu dorsal sinir korduna nazaran daha kuvvetli gelişmiştir. Yassı solucanlar Sinirbiyolojisi araştırmaları, beyin araştırmaları açısından en mükemmel model sistemidir cünkü oldukça ince olup beyinleri birkaç mm büyüklüğünde yanlızca birkaç 100 – 1000 hücre içeriler ve deneysel çalışmalarda hazırlanmıştır. Son zamanlarda, çeşitli konular sinirselbiyoloji ve elektrofizyoloji ilgisi adreslenmiştir. Cytoarchitecture’in Analizi ve Sinirsel Bağlantılar Bu sayfadaki bilgilerin Powerpoint Sunumunu (ppt dosyasını) www.sunumbankasi.net adresinde bulabilirsiniz You can find the powerpoint presentation of this web page content at www.sunumbankasi.net Polyclad yassı solucanların beyinlerinin üç boyutlu yapısınin kontrolu için sinir hücreleri özel olarak boyanmıştır. Camillo Golpi (1843-1926) metoduna göre yürütülmüştür (20. yüzyil biyologlar tarafından bilinenlerden en iyisi). Florosan boyaları kullanılarak ic hücrelerdeki iontofarlar ile beyin içindeki sinir konfigürasyonu araştırılmıştır. Bu deneysel yaklaşımda, Koopwitz ve arkadaşları (1966) tarafında belirlendiği gibi, Notoplana articula’nin örneği aneztezi edilmiştir. Sonuç olarak, sinir sistemi dakika cubuğu ve aletleri kullanılarak belirlenmiştir. Beyin örtüsü protesae sindirimi ile ortadan kaldırıldı, beyine ve ganglion hücrelerine direk girebilmek için tek sinir hücrelerinde ultra ince cam mikroelektrot tekniği kullanılmıştır ve lucifer yellow gibi florosan boya ile doldurulmuştur. Enjekte edilen boya hücre içinde sağa doğru axonların ucuna kadar göç etmiş ve florosan mikroskopta izlenmiştir. Laser taramalı florosan mikroskobu kullanarak digital data serili iki-boyutlu resimlerden üç-boyutluya çevrildi ve mümkün olan polyclad beynindeki sinirsel cytoarchhitecture gelişmeler harita haline getirilmiştir. Sinir Tamir ve Sinirsel Plastisite Çalışmaları Şimdiye kadar incelenen bütün invertebrate ve vertebrate türlerideki çalışmalara göre, Notoplana acticola beyin dokusu yeniden üretemez. Bununla birlikte, sinirsel tamir hızlı ve yüksek oranda elverişlidir. Polyclad beyni yassı solucana taşındığında yeni bağlantılar organ nakli edilen beyin ile dairesel network sinir alıcı uçları ameliyattan 24 saat sonra tesis edilmiştir. Bunun gibi organ nakli deneyler Davies ve çalışma arkadaşları (1985) tarafından tarif edilmiştir. Deneylerde dört beyin organ nakli oryentasyonu; normal, ters, ters yüz, ve ters ters yüz olmak üzere kullanılmıştır. Beyin organ naklinin fonksiyonu test edildi ve her iki davranış ve elektrofizyolojik kriterler olçülmüştür. 23 gün içinde, organ naklinin 56% si solucan ve diğerleri organ naklinin iyileştirilmesindeki doğru davranış, kaçınma dönüşü, ditatix hareket, ve beslenme gibi dört davranışta test edilmislerdir. Beyindeki mevcut sinirler kendilerine en yakın dairesel sinirlerle birleşirler. Ameliyattan 36 sonra bazı normal davranışlar gözlenebilir. Kontrol eksikliği olan yassı solucanlar organ nakli olmadan davranışlarını kurtaramazlar. Birkaç beyin davranışında hücre içi kayıtlar da dairesel sinir hücreleri ile uygun bağlantılar yeniden kurulmuştur. Bu sinirlerdeki boyanmış hücreler ters oryentasyonlu beyin ortaya çıkarmıştır, bireysel sinir hücre işlemlerinin beyini terketmesinden sonra uygun olmayan bir şekilde sinir kordu ile ilişki kurmakta olup, bazı işlemlerde 180 0 li sinir kordu , ki onlar normal olarak yerleşen operasyona maruz kalmamış solucanlardır (Davies vd, 1985). Molekuler temeli ve yeniden bağlanan belirgin sinirleri ortaya çıkarmak çok ilginçtir. Konakladığı hayvanın davranışında bazı bilgiler çok önemlidir, paraplegia veya kazadan sonra sinir sisteminin ciddi olarak yaralanması gibi. Dağıtım ve Buluş Polycladler boyutları, renk örnekleri, sıvı içindeki hareketleri nedeniyle SCUBA dalgıçları tarafından tesbit edilebilirler. En yaygını, gün esnasında onlar resif eğimlerin dışında, üzerinde veya uçlarında görülebilirler. Onlar yarıklarda, kaya altlarında, bazende çıplak sedimentlerde veya çamurlu tabakalarda bulunurlar. Bazı türleri resif sırtlarında yüzerken görülmüşlerdir. Polycladler tercih ettikleri yiyeceklerin üstünde veya yanında dinlenirler çok nadiren de olsa süngerlerin veya koloni ascidianlarin üzerinde , çoğu resif sırtında çok iri çakılların altında bulunmuşlardır. Crytic türleri çok ender bulunurlar çünkü kendilerinin normal hayatları zamanında yeraltında karışmışlardır. SCUBA dalgıçlarına ve UW fotoğrafçılarından ilgi duyanlara polyclad türlerini bulmak için çakıl altlarında ve çoral taşlarının etrafında bulabileceklerini tavsiye ederiz. Şans ve sabırla polyclad türleri bulunabilir. Bununla birlikte, bu hassas solucanlara dikkatlice değmek ve ele almak gerekmektedir. Polycladler stress altında kendi-kendini imha etme özellikleri vardır. Onlar otoliz, mukoz parçalarını kirarlar veya buruştururlar ve daha sonra yapılacak incelemeler için fotoğraf çekilmesini imkansız hale getirirler. Bununda ötesinde, kendi belirgin renkli örneklerini kaybederler. Bu nedenle çoğu fotoğraflar mümkün olduğu kadar onlari yaşam yerinden rahatsız edilmemelidir.Yeni türlerin tarifi, örneklerin toplama, koruma, ve detaylı çalışmada, tamirde özel teknikler mümkündür. Polyclad’e ilgi duyan dalgıçlar yeni türlerin tanımlanmasında katkıda bulunacakların Dr.Leslie Newman ile kontak kurmaları (Schooling Resource Science and Management, Southern Cross University, P.O. Box 117, Lismore, NSW, Australi 2480) çünkü kendisi tamir ve koruma konusunda güvenilir metod geliştirmiştir. Leslia şimdi Indo-Pacific polycladlar üzerinde çalışmaktadır. Dünya capında 350 tür içeren database ile onların besin ve üremeleri hakkında bilgi vermektedir. Oya Bezen Çakın  

http://www.biyologlar.com/yassi-solucanlarin-anatomisi

Fotosentez

Dünya, canlı yaşamına en uygun olacak şekilde, özel olarak tasarlanmış bir gezegendir. Atmosferindeki gazların oranından, güneşe olan uzaklığına, dağların varlığından, suyun içilebilir olmasına, bitkilerin çeşitliliğinden yeryüzünün sıcaklığına kadar kurulmuş olan pek çok hassas denge sayesinde dünya yaşanabilir bir ortamdır. Yaşamı oluşturan öğelerin devamlılığının sağlanabilmesi için de hem fiziksel şartların hem de bazı biyokimyasal dengelerin korunması gereklidir. Örneğin nasıl ki canlıların yeryüzünde yaşamaları için yer çekimi kuvveti vazgeçilmez ise, bitkilerin ürettiği organik maddeler de yaşamın devamı için bir o kadar önemlidir. İşte bitkilerin bu organik maddeleri üretmek için gerçekleştirdikleri işlemlere, daha önce de belirttiğimiz gibi fotosentez denir. Bitkilerin kendi besinlerini kendilerinin üretmesi olarak da özetlenebilecek olan fotosentez işlemi, bunların diğer canlılardan ayrıcalıklı olmasını sağlar. Bu ayrıcalığı sağlayan, bitki hücresinde insan ve hayvan hücrelerinden farklı olarak güneş enerjisini direkt olarak kullanabilen yapılar bulunmasıdır. Bu yapıların yardımıyla, bitki hücreleri güneşten gelen enerjiyi insanlar ve hayvanlar tarafından besin yoluyla alınacak enerjiye çevirirler ve yine çok özel yollarla depolarlar. İşte bu şekilde fotosentez işlemi tamamlanmış olur. Gerçekte bütün bu işlemleri yapan, bitkinin tamamı değildir, yaprakları da değildir, hatta bitki hücresinin tamamı da değildir. Bu işlemleri bitki hücresinde yer alan ve bitkiye yeşil rengini veren "kloroplast" adı verilen organel gerçekleştirir. Kloroplastlar, milimetrenin binde biri kadar büyüklüktedir, bu yüzden yalnızca mikroskopla gözlemlenebilirler. Yine fotosentezde önemli bir rolü olan kloroplastın çeperi de, metrenin yüz milyonda biri kadar bir büyüklüktedir. Görüldüğü gibi rakamlar son derece küçüktür ve bütün işlemler bu mikroskobik ortamlarda gerçekleşir. Fotosentez olayındaki asıl hayret verici noktalardan biri de budur. SIR DOLU BİR FABRİKA: KLOROPLAST Kloroplastta fotosentezi gerçekleştirmek üzere hazırlanmış thylakoidler, iç zar ve dış zar, stromalar, enzimler, ribozom, RNA ve DNA gibi oluşumlar vardır. Bu oluşumlar hem yapısal hem de işlevsel olarak birbirlerine bağlıdırlar ve her birinin kendi bünyesinde gerçekleştirdiği son derece önemli işlemler vardır. Örneğin kloroplastın dış zarı, kloroplasta madde giriş-çıkışını kontrol eder. İç zar sistemi ise "thylakoid" olarak adlandırılan yapıları içermektedir. Disklere benzeyen thylakoid bölümünde pigment (klorofil) molekülleri ve fotosentez için gerekli olan bazı enzimler yer alır. Thylakoidler "grana" adı verilen kümeler meydana getirerek, güneş ışığının en fazla miktarda emilmesini sağlarlar. Bu da bitkinin daha fazla ışık alması ve daha fazla fotosentez yapabilmesi demektir. Bunlardan başka kloroplastlarda "stroma" adı verilen ve içinde DNA, RNA ve fotosentez için gerekli olan enzimleri barındıran bir de sıvı bulunur. Kloroplastlar sahip oldukları bu DNA ve ribozomlarla hem kendilerini çoğaltırlar, hem de bazı proteinlerin üretimini gerçekleştirirler. Fotosentezdeki başka bir önemli nokta da bütün bu işlemlerin çok kısa, hatta gözlemlenemeyecek kadar kısa bir süre içinde gerçekleşmesidir. Kloroplastların içinde bulunan binlerce "klorofil"in aynı anda ışığa tepki vermesi, saniyenin binde biri gibi inanılmayacak kadar kısa bir sürede gerçekleşir. Bilim adamları kloroplastların içinde gerçekleşen fotosentez olayını uzun bir kimyasal reaksiyon zinciri olarak tanımlarlarken, işte bu hız nedeniyle fotosentez zincirinin bazı halkalarında neler olduğunu anlayamamakta ve olanları hayranlıkla izlemektedirler. Anlaşılabilen en net nokta, fotosentezin iki aşamada meydana geldiğidir. Bu aşamalar "aydınlık evre" ve "karanlık evre" olarak adlandırılır. AYDINLIK EVRE Bitkilerin fotosentez işleminde kullanacakları tek enerji kaynağı olan güneş ışığı değişik renklerin birleşimidir ve bu renklerin enerji yükü birbirinden farklıdır. Güneş ışığındaki renklerin ayrıştırılması ile ortaya çıkan ve tayf adı verilen renk dizisinin bir ucunda kırmızı ve sarı tonları, öbür ucunda da mavi ve mor tonları bulunur. En çok enerji taşıyanlar tayfın iki ucundaki bu renklerdir. Bu enerji farkı bitkiler açısından çok önemlidir çünkü fotosentez yapabilmek için çok fazla enerjiye ihtiyaçları vardır. Bitkiler en çok enerji taşıyan bu renkleri hemen tanırlar ve fotosentez sırasında güneş ışınlarından tayfın iki ucundaki renkleri, daha doğrusu dalga boylarını soğururlar, yani emerler. Buna karşılık tayfın ortasında yer alan yeşil tonlardaki renklerin enerji yükü daha az olduğu için, yapraklar bu dalga boylarındaki ışınların pek azını soğurup büyük bölümünü yansıtırlar. Bunu da kloroplastların içinde bulunan klorofil pigmentleri sayesinde gerçekleştirirler. İşte yaprakların yeşil gözükmesinin nedeni de budur. Fotosentez işlemi bitkilerin yeşil görünmesine neden olan bu pigmentlerin güneş ışığını soğurmasından kaynaklanan hareketlenme ile başlar. Acaba klorofiller bu hareketlenme ile fotosentez işlemine nasıl başlamaktadırlar? Bu sorunun cevabının verilebilmesi için öncelikle kloroplastların içinde bulunan ve klorofilleri içinde barındıran Thylakoid'in yapısının incelenmesinde fayda vardır. "Klorofiller, "klorofil-a" ve "klorofil-b" olarak ikiye ayrılırlar. Bu iki çeşit klorofil güneş ışığını soğurduktan sonra elde ettikleri enerjiyi fotosentez işlemini başlatacak olan fotosistemler içinde toplarlar. Thaylakoid'in detaylı yapısının anlatıldığı resimde de görüldüğü gibi fotosistemler kısaca, thylakoid'in içinde yer alan bir grup klorofil olarak tanımlanabilir. Yeşil bitkilerin tamamına yakını bir fotosistem ile tek aşamalı fotosentez gerçekleştirirken, bitkilerin %3'ünde fotosentezin iki aşamalı olmasını sağlayacak iki farklı fotosistem bölgesi bulunur. "Fotosistem I", ve "Fotosistem II" olarak adlandırılan bu bölgelerde toplanan enerji daha sonra tek bir "klorofil-a" molekülüne transfer edilir. Böylece her iki fotosistemde de reaksiyon merkezleri oluşur. Işığın emilmesiyle elde edilen enerji, reaksiyon merkezlerindeki yüksek enerjili elektronların gönderilmesine, yani kaybedilmesine neden olur. Bu yüksek enerjili elektronlar daha sonraki aşamalarda suyun parçalanıp oksijenin elde edilmesi için kullanılır. Bu aşamada bir dizi elektron değiş tokuşu gerçekleşir. "Fotosistem I" tarafından verilen elektron, "Fotosistem II" den salınan elektron ile yer değiştirir. "Fotosistem II" tarafından bırakılan elektronlar da suyun bıraktığı elek-tronlarla yer değiştirir. Sonuç olarak su, oksijen, protonlar ve elektronlar olmak üzere ayrıştırılmış olur. Ortaya çıkan protonlar thylakoid'in iç kısmına taşınarak hidrojen taşıyıcı molekül olan NADP (nikotinamid adenin dinükliotid fosfat) ile birleşirler. Neticede NADPH molekülü ortaya çıkar. Suyun ayrışmasından sonra ortaya çıkan protonlardan bazıları ise thylakoid zarındaki enzim kompleksleri ile birleşerek ATP molekülünü (hücrenin işlemlerinde kullanacağı bir enerji paketçiği) meydana getirirler. Bütün bu işlemler sonucunda bitkilerin besin üretebilmesi için ihtiyaç duydukları enerji artık kullanılmaya hazır hale gelmiştir. Bir reaksiyonlar zinciri olarak özetlemeye çalıştığımız bu olaylar fotosentez işleminin sadece ilk yarısıdır. Bitkilerin besin üretebilmesi için enerji gereklidir. Bunun temin edilebilmesi için düzenlenmiş olan "özel yakıt üretim planı" sayesinde diğer işlemler de eksiksiz tamamlanır. KARANLIK EVRE Fotosentezin ikinci aşaması olan Karanlık Evre ya da Calvin Çevrimi olarak adlandırılan bu işlemler, kloroplastın "stroma" diye adlandırılan bölgelerinde gerçekleşir. Aydınlık evre sonucunda ortaya çıkan enerji yüklü ATP ve NADPH molekülleri, karanlık evrede kullanılan karbondioksiti, şeker ve nişasta gibi besin maddelerine dönüştürürler. Burada kısaca özetlenen bu reaksiyon zincirini kaba hatlarıyla anlayabilmek bilim adamlarının yüzyıllarını almıştır. Yeryüzünde başka hiçbir şekilde üretilemeyen karbonhidratlar ya da daha geniş anlamda organik maddeler milyonlarca yıldır bitkiler tarafından üretilmektedir. Üretilen bu maddeler diğer canlılar için en önemli besin kaynaklarındandır. Fotosentez reaksiyonları sırasında farklı özelliklere ve görevlere sahip enzimler ile diğer yapılar tam bir iş birliği içinde çalışırlar. Ne kadar gelişmiş bir teknik donanıma sahip olursa olsun dünya üzerindeki hiçbir laboratuvar, bitkilerin kapasitesiyle çalışamaz. Oysa bitkilerde bu işlemlerin tümü milimetrenin binde biri büyüklüğündeki bir organelde meydana gelmektedir. Şekilde görülen formülleri, sayısız çeşitlilikteki bitki hiç şaşırmadan, reaksiyon sırasını hiç bozmadan, fotosentezde kullanılan hammadde miktarlarında hiçbir karışıklık olmadan milyonlarca yıldır uygulamaktadır. Ayrıca fotosentez işlemi ile, hayvanların ve insanların enerji tüketimleri arasında da önemli bir bağlantı vardır. Aslında yukarıda anlatılan karmaşık işlemlerin özeti, bitkilerin fotosentez sonucu canlılar için mutlaka gerekli olan glukozu ve oksijeni meydana getirmeleridir. Bitkilerin ürettiği bu ürünler diğer canlılar tarafından besin olarak kullanılırlar. İşte bu besinler vasıtasıyla canlı hücrelerinde enerji üretilir ve bu enerji kullanılır. Bu sayede bütün canlılar güneşten gelen enerjiden faydalanmış olurlar. Canlılar fotosentez sonucu oluşan besinleri yaşamsal faaliyetlerini sürdürmek için kullanırlar. Bu faaliyetler sonucunda atık madde olarak atmosfere karbondioksit verirler. Ama bu karbondioksit hemen bitkiler tarafından yeniden fotosentez için kullanılır. Bu mükemmel çevirim böylelikle sürer gider. FOTOSENTEZ İÇİN GEREKLİ OLAN HER ŞEY GİBİ GÜNEŞ IŞIĞI DA ÖZEL OLARAK AYARLANMIŞTIR Bu kimyasal fabrikada her şey olup biterken, işlemler sırasında kullanılacak enerjinin özellikleri de ayrıca tespit edilmiştir. Fotosentez işlemi bu yönüyle incelendiğinde de, gerçekleşen işlemlerin ne kadar büyük bir hassasiyetle tasarlanmış olduğu görülecektir. Çünkü güneşten gelen ışığın enerjisinin özellikleri, tam olarak kloroplastın kimyasal tepkimeye girmesi için ihtiyaç duyduğu enerjiyi karşılamaktadır. Bu hassas dengenin tam anlaşılabilmesi için güneş ışığının fotosentez işlemindeki fonksiyonlarını ve önemini şöyle bir soruyla inceleyelim: Güneş'in ışığı fotosentez için özel olarak mı ayarlanmıştır? Yoksa bitkiler, gelen ışık ne olursa olsun, bu ışığı değerlendirip ona göre fotosentez yapabilecek bir esnekliğe mi sahiptirler? Bitkiler hücrelerindeki klorofil maddelerinin ışık enerjisine karşı duyarlı olmaları sayesinde fotosentez yapabilirler. Buradaki önemli nokta klorofil maddelerinin çok belirli bir dalga boyundaki ışınları kullanmalarıdır. Güneş tam da klorofilin kullandığı bu ışınları yayar. Yani güneş ışığı ile klorofil arasında tam anlamıyla bir uyum vardır Amerikalı astronom George Greenstein, The Symbiotic Universe adlı kitabında bu kusursuz uyum hakkında şunları yazmaktadır: Fotosentezi gerçekleştiren molekül, klorofildir... Fotosentez mekanizması, bir klorofil molekülünün Güneş ışığını absorbe etmesiyle başlar. Ama bunun gerçekleşebilmesi için, ışığın doğru renkte olması gerekir. Yanlış renkteki ışık, işe yaramayacaktır. Bu konuda örnek olarak televizyonu verebiliriz. Bir televizyonun, bir kanalın yayınını yakalayabilmesi için, doğru frekansa ayarlanmış olması gerekir. Kanalı başka bir frekansa ayarlayın, görüntü elde edemezsiniz. Aynı şey fotosentez için de geçerlidir. Güneş'i televizyon yayını yapan istasyon olarak kabul ederseniz, klorofil molekülünü de televizyona benzetebilirsiniz. Eğer bu molekül ve Güneş birbirlerine uyumlu olarak ayarlanmış olmasalar, fotosentez oluşmaz. Ve Güneş'e baktığımızda, ışınlarının renginin tam olması gerektiği gibi olduğunu görürüz. FOTOSENTEZİN SONUÇLARI Milimetrenin binde biri büyüklükte yani ancak elektron mikroskobuyla görülebilecek kadar küçük olan kloroplastlar sayesinde gerçekleştirilen fotosentezin sonuçları, yeryüzünde yaşayan tüm canlılar için çok önemlidir. Canlılar havadaki karbondioksitin ve havanın ısısının sürekli olarak artmasına neden olurlar. Her yıl insanların, hayvanların ve toprakta bulunan mikroorganizmaların yaptıkları solunum sonucunda yaklaşık 92 milyar ton ve bitkilerin solunumları sırasında da yaklaşık 37 milyar ton karbondioksit atmosfere karışır. Ayrıca fabrikalarda ve evlerde kaloriferler ya da soba kullanılarak tüketilen yakıtlar ile taşıtlarda kullanılan yakıtlardan atmosfere verilen karbondioksit miktarı da en az 18 milyar tonu bulmaktadır. Buna göre karalardaki karbondioksit dolaşımı sırasında atmosfere bir yılda toplam olarak yaklaşık 147 milyar ton karbondioksit verilmiş olur. Bu da bize doğadaki karbondioksit içeriğinin sürekli olarak artmakta olduğunu gösterir. Bu artış dengelenmediği takdirde ekolojik dengelerde bozulma meydana gelebilir. Örneğin atmosferdeki oksijen çok azalabilir, yeryüzünün ısısı artabilir, bunun sonucunda da buzullarda erime meydana gelebilir. Bundan dolayı da bazı bölgeler sular altında kalırken, diğer bölgelerde çölleşmeler meydana gelebilir. Bütün bunların bir sonucu olarak da yeryüzündeki canlıların yaşamı tehlikeye girebilir. Oysa durum böyle olmaz. Çünkü bitkilerin gerçekleştirdiği fotosentez işlemiyle oksijen sürekli olarak yeniden üretilir ve denge korunur. Yeryüzünün ısısı da sürekli değişmez. Çünkü yeşil bitkiler ısı dengesini de sağlarlar. Bir yıl içinde yeşil bitkiler tarafından temizleme amacıyla atmosferden alınan karbondioksit miktarı 129 milyar tonu bulur ki bu son derece önemli bir rakamdır. Atmosfere verilen karbondioksit miktarının da yaklaşık 147 milyar ton olduğunu söylemiştik. Karalardaki karbondioksit-oksijen dolaşımında görülen 18 milyar tonluk bu açık, okyanuslarda görülen farklı değerlerdeki karbondioksit-oksijen dolaşımıyla bir ölçüde azaltılabilmektedir. Yeryüzündeki canlı yaşamı için son derece hayati olan bu dengelerin devamlılığını sağlayan, bitkilerin yaptığı fotosentez işlemidir. Bitkiler fotosentez sayesinde atmosferdeki karbondioksidi ve ısıyı alarak besin üretirler, oksijen açığa çıkarırlar ve dengeyi sağlarlar. Atmosferdeki oksijen miktarının korunması için de başka bir doğal kaynak yoktur. Bu yüzden tüm canlı sistemlerdeki dengelerin korunması için bitkilerin varlığı şarttır. BİTKİLERDEKİ BESİNLER FOTOSENTEZ SONUCUNDA OLUŞUR Bu mükemmel sentezin hayati önem taşıyan bir diğer ürünü de canlıların besin kaynaklarıdır. Fotosentez sonucunda ortaya çıkan bu besin kaynakları "karbonhidratlar" olarak adlandırılır. Glukoz, nişasta, selüloz ve sakkaroz karbonhidratların en bilinenleri ve en hayati olanlarıdır. Fotosentez sonucunda üretilen bu maddeler hem bitkilerin kendileri, hem de diğer canlılar için çok önemlidir. Gerek hayvanlar gerekse insanlar, bitkilerin üretmiş olduğu bu besinleri tüketerek hayatlarını sürdürebilecek enerjiyi elde ederler. Hayvansal besinler de ancak bitkilerden elde edilen ürünler sayesinde var olabilmektedir. Buraya kadar bahsedilen olayların yaprakta değil de herhangi bir yerde gerçekleştiğini varsayarak düşünsek acaba aklınızda nasıl bir yer şekillenirdi? Havadan alınan karbondioksit ve su ile besin üretmeye yarayan aletlerin bulunduğu, üstelik de o sırada dışarıya verilmek üzere oksijen üretebilecek teknik özelliklere sahip makinaların var olduğu, bu arada ısı dengesini de ayarlayacak sistemlerin yer aldığı çok fonksiyonlu bir fabrika mı aklınıza gelirdi? Avuç içi kadar bir büyüklüğe sahip bir yerin aklınıza gelmeyeceği kesindir. Görüldüğü gibi ısıyı tutan, buharlaşmayı sağlayan, aynı zamanda da besin üreten ve su kaybını da engelleyen mükemmel mekanizmalara sahip olan yapraklar, tam bir tasarım harikasıdırlar. Bu saydığımız işlemlerin hepsi ayrı özellikte yapılarda değil, tek bir yaprakta (boyutu ne olursa olsun) hatta tek bir yaprağın tek bir hücresinde, üstelik de hepsi birarada olacak şekilde yürütülebilmektedir. Buraya kadar anlatılanlarda da görüldüğü gibi bitkilerin bütün fonksiyonları, asıl olarak canlılara fayda vermesi için nimet olarak yaratılmışlardır. Bu nimetlerin çoğu da insan için özel olarak tasarlanmıştır. Çevremize, yediklerimize bakarak düşünelim. Üzüm asmasının kupkuru sapına bakalım, incecik köklerine… En ufak bir çekme ile kolayca kopan bu kupkuru yapıdan elli altmış kilo üzüm çıkar. İnsana lezzet vermek için rengi, kokusu, tadı her şeyi özel olarak tasarlanmış sulu üzümler çıkar. Karpuzları düşünelim. Yine kuru topraktan çıkan bu sulu meyve insanın tam ihtiyaç duyacağı bir mevsimde, yani yazın gelişir. İlk ortaya çıktığı andan itibaren bir koku eksperi gibi hiç bozulma olmadan tutturulan o muhteşem kavun kokusunu ve o ünlü kavun lezzetini düşünelim. Diğer yandan ise, parfüm üretimi yapılan fabrikalarda bir kokunun ortaya çıkarılmasından o kokunun muhafazasına kadar gerçekleşen işlemleri düşünelim. Bu fabrikalarda elde edilen kaliteyi ve kavunun kokusundaki kaliteyi karşılaştıralım. İnsanlar koku üretimi yaparken sürekli kontrol yaparlar, meyvelerdeki kokunun tutturulması içinse herhangi bir kontrole ihtiyaç yoktur. İstisnasız dünyanın her yerinde kavunlar, karpuzlar, portakallar, limonlar, ananaslar, hindistan cevizleri hep aynı kokarlar, aynı eşsiz lezzete sahiptirler. Hiçbir zaman bir kavun karpuz gibi ya da bir mandalina çilek gibi kokmaz; hepsi aynı topraktan çıkmalarına rağmen kokuları birbiriyle karışmaz. Hepsi her zaman kendi orijinal kokusunu korur. Bir de bu meyvelerdeki yapıyı detaylı olarak inceleyelim. Karpuzların süngersi hücreleri çok yüksek miktarda su tutma kapasitesine sahiplerdir. Bu yüzden karpuzların çok büyük bir bölümü sudan oluşur. Ne var ki bu su, karpuzun herhangi bir yerinde toplanmaz, her tarafa eşit olacak şekilde dağılmıştır. Yer çekimi göz önüne alındığında, olması gereken, bu suyun karpuzun alt kısmında bir yerlerde toplanması, üstte ise etsi ve kuru bir yapının kalmasıdır. Oysa karpuzların hiçbirinde böyle bir şey olmaz. Su her zaman karpuzun içine eşit dağılır, üstelik şekeri, tadı ve kokusu da eşit olacak şekilde bu dağılım gerçekleşir.   Doğada meydana gelen ve canlılığın ışık ile iletişim gösteren en belirgin temel olaylarından biri "fotosentez" dir. Fotosentez ışık enerjisinin biyolojik olarak kimyasal enerjiye dönüşümü olayıdır. Enerji yönünden tüm canlı organizmalar kesinlikle fotosenteze bağımlıdır, çünkü gerekli besin maddelerinin ve hatta atmosferdeki oksijenin kökeni fotosentezdir. Canlı hücrelerin büyük bir çoğunluğu, basit bir algden, büyük ve karmaşık kara bitkilerine kadar fotosentez yaparlar. İnsan yaşadığı ortamda kendi gereksinmelerine göre bir çok değişiklikleri yapma yeteneğine sahip olmasına rağmen, tüm beslenme sorunu için tamamıyla diğer organizmalara bağlıdır. Bu besin piramidinin tabanını fotosentez yapan bitkiler oluşturur. Yediğimiz her şey, ya doğrudan doğruya bitkisel kökenli, ya da bu kökenden türemiş maddelerdir. Gerçekten fotosentez tek başına büyük bir olaydır. Her yıl dünyada 690 milyar ton karbon dioksit (CO2) ve 280 milyar ton su (H2 O) dan fotosentez yolu ile 500 milyar ton karbonhidrat üretilmekte ve 500 milyar ton oksijen atmosfere verilmektedir. Canlıların büyük bir çoğunluğu için oksijen, besin kadar önemlidir. Oksijen (O2) hayatsal olayların sürekliliği için gerekli olan, besinlerde depo edilmiş enerjiyi serbest hale getirir. Canlıların çoğu havadaki serbest oksijeni kullanır. Bir kısım organizmalar (bazı bir hücreliler, ilkel bitkiler, yassı ve yuvarlak parazit solucanlar) enerji elde etmek üzere çevrelerindeki eser miktarda oksijenden bile faydalanabilirler. Diğer bir kısım organizmalar ise serbest oksijen olmadan da enerji elde edebilirler (Anaerobik solunum). Fakat kompleks yapılı bitki ve hayvanlar, yaşamak için çok miktarda oksijen kullanmak zorundadırlar (Aerobik solunum). Öyleyse kompleks yapılı organizmaların canlılığının devamı ve yayılması oksijenin varlığına bağlıdır. Deney 1. Klorofil Elde Edilmesi Yeşil bitkilerin kloroplastlarında meydana gelen fotosentez de, havanın karbon dioksidi ve suyun varlığında karbonhidrat ve oksijen oluşturulmasıdır. Fotosentez olayını detaylı bir şekilde ortaya koymadan önce klorofil ile ilgili bazı deneyler gösterilecektir. Araç ve Gereçler: Isırgan otu (Urtica) yaprağı, kum, havan, kurutma kağıdı, tebeşir, benzen, alkol, su. Uygulama: Bir havan içine hücrelerin parçalanmasını kolaylaştırmak için kum ve alkol konulup ısırgan otunun yaprakları ilave edilerek iyice ezilir. Bunun sonucunda koyu yeşil boyalı bir eriyik elde edilir. Buna ham klorofil ekstresi adı verilir. Ham klorofil ekstresi hem klorofil, hem de diğer renk maddelerinden olan karotin ve ksantofil boyalı maddeleri de içermektedir. Bunları ayırmak için ekstre filitre kağıdından süzülür. Süzülen bu berrak ekstreden bir miktar alınarak bir deney tüpüne aktarılır. Tübün üzerine aynı miktarda benzen ile bir kaç damla su ilave ediler. Su ilave edilmesinin amacı alkol karışımının yoğunluğunu arttırıp, benzenin kolayca tübün üst kısmına çıkmasını sağlamaktır. Bir süre sonra tübün üst kısmında benzende eriyen klorofilin , alt kısmında ise alkolde kalan sarı renkli karotin ve ksantofil bulunur. Bu şekilde ayırmak, kaba bir yöntemdir. Bu ayrımı daha ayrıntılı bir biçimde gözleye bilmek için kağıt ve tebeşir yardımıyla basitçe yapılabilecek olan bazı uygulamaları örnek olarak verebiliriz. Bu uygulamada yukarıda adı geçen renkli maddeler molekül ağırlığı ve adsorbsiyon derecelerine göre ayrılırlar. Bir petri içine süzülmüş olan berrak klorofil ekstresinden bir miktar koyulur. İçerisine şerit şeklinde kesilerek hazırlanmış kurutma kağıdı ile tebeşir yerleştirilir. Bir süre sonra kağıdın ve tebeşirin üst kısımlarında sarı renkli karotin ve ksantofil, alt kısımda ise yeşil renkli klorofilin toplandığı görülür. Bu kademeli renk farkı adı geçen renk maddelerinin molekül ağırlıklarının ve adsorbsiyon derecelerinin farklı olmasında ileri gelir. Fotosentez Olayında Organik Madde Sentezlendiğinin Gösterilmesi Fotesentezde ışığın katalizörlüğü altında karbon dioksit ve suyun bitkiler tarafından birleştirilerek organik madde (glikoz) sentezlenmesidir. Bu maddeler ya olduğu gibi ya da uzun zincirler şeklinde paketlenerek nişasta şeklinde depolanırlar. Amacımız fotosentezin bir ürünü olan glikozun sentezlendiğini ortaya koymaktır. Araç ve Gereçler : Ebegümeci ve yaprağı iki renkli olan bir bitki yaprağı, siyah renkli kağıt, potasyum iyodür (KI), sıcak su. Uygulama : Yaprağı iki renkli olan bitkiyi alarak uzun bir müddet ışık altında tutunuz. Ebegümeci bitkisinin bir yaprağının yarısını siyah bir kağıt ile kapatarak diğer bitkiyle birlikte aynı sürede olmak şartıyla ışık altında bırakınız. Daha sonra bu bitkileri saplarından keserek kaynamakta olan suyun içerisinde hücrelerinin ölmesini ve çeperlerinin dağılmalarını sağlayınız. Bu iş için iki dakikalık bir süre yeterli olacaktır. Yapraklar yeşil rengini kaybedince potasyum iyodürle muamele ediniz. Işıkta kalmış yeşil renkli bölgelerin nişasta oluşumundan dolayı mavi bir renk aldığını, yeşil olmayan kısımların ise renk vermediğini göreceksiniz (Şekil 4. 3). Deney 3. Fotosentez İçin Karbondioksitin Varlığının Zorunlu Olduğunun Gösterilmesi Yeşil bir bitki oldukça yoğun olarak ışık altında bırakılsa bile, eğer ortamda karbon dioksit bulunmuyorsa bitki bir süre sonra sararmaya başladığı ve gelişiminin durduğu gözlenir. Bunu aşağıdaki gibi bir deneyle ispatlamak mümkündür. Araç ve Gereçler : Bir dal parçası, kavanoz, tüp, tıpa, potasyum hidroksit (KOH), su. Uygulama : Bir bitki dalı alınarak iki yaprağı içerisinde su ve potasyum hidroksit bulunduran bir tüple birlikte (tüpün ağzı açık durumda) geniş ağızlı bir şişe veya kavanoz içerisine bırakılır. Bir süre sonra dalın kavanoz içerisinde kalan kısmında yaprakların sararıp solduğu görülür. Bir müddet daha sonra ise yapraklar tamamen ölür. Buna neden olan faktör, büyük şişedeki karbon dioksitin potasyum hidroksit tarafından emilerek şişe içerisindeki yaprakların ışık ve suyu aldıkları halde karbon dioksit yetersizliğinden fotosentezi yapamamalarındandır. Böylece fotosentez için ortamda karbondioksite kesinlikle gereksinim duyulduğu ispatlanmış olur (Şekil 4. 4). Deney 4. Fotosentezi Etkileyen Faktörlerin Birlikte İncelenmesi Aynı canlı materyeli üzerinde, fotosentezi etkileyen faktörlerin birinin etkisini değiştirip (ışık, karbon dioksit, sıcaklık gibi) diğerlerininkinin sabit tutulması ile fotosentez hızında meydana gelen değişikliklerin incelenmesi ve bu faktörlerin etkilerinin karşılaştırılması şeklinde gösterilecektir. Araç ve Gereçler: Elodea bitkisi, beher, huni, ışık kaynağı, %4'lük potasyum bikarbonat (KHCO3), %1'lik KHCO3, termometre, ispirto ocağı, milimetrik kağıt. Uygulama: Bu deney için Elodea su bitkisi kullanılacaktır. Elodea bitkisi içi su dolu bir cam kaba alınır. Bitkinin üzeri çıkacak olan gaz kabarcıklarını toplayacak olan bir huniyle şekilde görüldüğü gibi kapatılır (Şekil 4. 5). Işık faktörünün etkisini ölçmek için önce normal ışıktaki kabarcık çıkışı tespit edilir. Bir lamba yardımıyla düzeneğe ışık verilir ve kabarcık çıkışı gözlenir. Fotosentez hızı ile aydınlatma şiddeti arasındaki ilişki grafikte gösterilir. Karbondioksit konsantrasyonunun etkisini inceleyebilmek için de başka bir kaba yine ortamı su ile hazırlanmış %4'lük KHCO3 çözeltisi konur. Yine bitki bu düzeneğin içine yerleştirilip bu konsantrasyondaki fotosentez hızı ölçülür. Aynı işlem %1'lik KHCO3 için tekrarlanır. KHCO3 konsantrasyonuna karşı kabarcık sayısındaki değişim grafiği çizilir. Sıcaklığın fotosentez üzerine etkisini ölçmek içinde aynı düzeneğin sıcaklığı ölçülür ve bu sıcaklıktaki kabarcık sayısı saptanır. Daha sonra sıcaklık ispirto ocağı yardımıyla arttırılır ve kabarcık sayısı belirlenir. Sıcaklık kabarcık çıkışı durana kadar arttırılır. Sıcaklık ile fotosentez ilişkisi bir grafikte gösterilir. Deney 5. Aerobik Solunum Bu deneyle karbonhidratların havadan alınan O2 ile CO2 ve H2 O ya kadar yıkılıp enerji açığa çıktığını göreceksiniz. Araç ve Gereçler: Çimlenmekte olan bezelye taneleri, balon joje, cam boru, beher, KOH, renkli bir sıvı. Uygulama: Bu deney için, CO2 tutma özelliğine sahip potasyum hidroksit (KOH) kristalleri pamuğa sarılarak çimlenmekte olan bezelye taneleri ile birlikte bir balon joje içine yerleştirilir. Daha sonra balon şekilde görüldüğü gibi bir ucu renkli sıvıya batırılmış kılcal boru ile birleştirilir. Bir süre sonra bezelyelerin solunum yapması sonucu O2 alınıp CO2 verilir. Dışarıya verilen bu CO2, KOH kristalleri tarafından tutulur ve azalan hacim kadar kılcal boruda sıvı yükselir. Deney 6. Anaerobik Solunum Havanın serbest oksijeni ile temas halinde olmayan bazı bitkiler, kendileri için gerekli olan enerjiyi, organik maddeleri enzimatik faaliyetlerle parçalayarak sağlarlar. Bu parçalanma sonucunda açığa çıkan gaz CO2 'tir. Araç ve Gereçler: Çimlenmekte olan nohut, deney tüpü, civa, beher. Uygulama: Çimlenmekte olan bir kaç nohut tanesini deney tüpünün içine yerleştirin. Sonra tüpü tamamıyla civa ile doldurun ve ters çevirerek yine civa dolu bir kabın içine batırın. Daha sonra cıva dolu kabın üzerine su ilave edin. Bir süre sonra tohumların anaerobik solunumu sonucu ortaya çıkan gaz tüpteki civayı aşağıya doğru ittiğini göreceksiniz (Şekil 4. 7). Bu da bize havadaki serbest oksijen yerine bitki dokularındaki bağlı oksijenin kullanıldığını gösterir. Deney 7. Fermantasyon Bazı organizmaların solunumu sonucunda substrat CO2 gibi çok basit bir ürüne kadar parçalanmaz. Solunum sonucunda daha kompleks bir madde açığa çıkar. Bu olaya fermantasyon denir. Araç ve Gereçler: %1 'lik glikoz çözeltisi, % 20 'lik Baryum hidroksit (Ba(OH)2), taze bira mayası, erlenmayer, cam boru, tıpa. Uygulama: Bir erlenin içine 200 cm3 %1 lik glikoz çözeltisi konulur. Daha sonra bu karışımın içine bir miktar taze bira mayası ilave edilir. Erlenin ağzı şekilde görüldüğü gibi cam boru takılmış tıpa ile kapatılır ve cam borunun diğer ucu yine tıpa ile kapatılmış % 20 'lik Ba(OH)2 çözeltisi içine batırılır. Ba(OH)2 içeren tüpte çökelmenin meydana gelmesi, olay sonucunda CO2 açığa çıktığını, alkol kokusu da fermentasyon sonucu alkolün meydana geldiğini gösterir Özet Doğada meydana gelen ve canlılığın ışık ile iletişim gösteren en belirgin temel olaylarından biri "fotosentez"dir. Fotosentez ışık enerjisinin biyolojik olarak kimyasal enerjiye dönüşümü olayıdır. Enerji yönünden tüm canlı organizmalar kesinlikle fotosenteze bağımlıdır, çünkü gerekli besin maddelerinin ve hatta atmosferdeki oksijenin kökeni fotosentezdir. Canlıların büyük bir çoğunluğu için oksijen, besin kadar önemlidir. Oksijen (O2) hayatsal olayların sürekliliği için gerekli olan, besinlerde depo edilmiş enerjiyi serbest hale getirir. Canlıların çoğu havadaki serbest oksijeni kullanır. Bir kısım organizmalar (bazı bir hücreliler, ilkel bitkiler, yassı ve yuvarlak parazit solucanlar) enerji elde etmek üzere çevrelerindeki eser miktarda oksijenden bile faydalanabilirler. Bu ünitede bitkilerde fotosentez olayını, fotosenteze etki eden faktörleri, oksijenli ve oksijensiz solunum olaylarını, fermantasyon olayının nasıl meydana geldiği bazı deneylerle gösterilmeye çalışılmıştır. Değerlendirme Soruları Aşağıdaki soruların yanıtlarını verilen seçenekler arasından bulunuz. 1. Fotosentez için aşağıdakilerden hangisi gerekli değildir? A. CO2 B. Işık C. Klorofil D. KOH E. H2O 2. Aşağıdaki bileşiklerden hangisi CO2 tutabilme özelliğine sahiptir? A. H2O B. KHCO3 C. BaCO3 D. NaOH E. KOH 3. Fermantasyon sonucu aşağıdaki maddelerden hangisi oluşur? A. Glikoz B. Karbonhidrat C. Alkol D. Oksijen E. Protein 4. Aerobik solunumda karbonhidratlar, aşağıdaki hangi maddenin yardımıyla en küçük yapı taşları ve enerjiye kadar parçalanırlar? A. O2 B. CO2 C. H2 O D. KOH E. NaOH 5. Aşagıdakilerden hangisi fotosentezin hızına etki etmez? A. CO2 B. Glikoz C. Sıcaklık D. Işık E. Klorofil Yararlanılan ve Başvurulabilecek Kaynaklar Ocakverdi, H., Konuk, M., (1989) Bitki Fizyolojisi Laboratuvar Kılavuzu, Selçuk Üniv. Eğitim Fak. Yay: 14, Konya. Önder, N. Yentür, S., (1991) Bitki Fizyolojisi Laboratuvar Kılavuzu, İstanbul. Üniv. Fen Fak.Yay. No: 220, İstanbul. Önder, N., (1985) Genel Bitki Fizyolojisi, İstanbul Üniv. Fen Fak. Yay. No: 189, İstanbul. Ayrıntılar ve şekiller için tıklayınız: http://www.aof.anadolu.edu.tr/kitap/IOLTP/2282/unite04.pdf

http://www.biyologlar.com/fotosentez

Tatlı Su Protozoonları ve Önemi

Protozoa tek hücreli, ökaryotik mikroorganizmalardır. Özellikle bakteri, tek hücreli alg ve diğer protistler üzerinden beslenirler. 80.000’in üzerinde protozoon türü tanımlanmıştır. Bunların yarıdan fazlası fosil, yaklaşık 10.000 kadarı da simbiyonttur [1]. Protozoon türleri uzun yıllar sadece insanlara verdikleri zarar düşünülerek, parazitolojik açıdan ele alınmış, serbest yaşayan protozoonlar ihmal edilmiştir. Gerçekte çok sayıda parazit protozoon olmasına rağmen, daha da fazla sayıda hem sucul hem de karasal habitatlarda yaşayan serbest protozoon türü bulunmaktadır. Serbest yaşayan protozoonların bulundukları ortamdaki önemlerinin anlaşılmasından sonra, araştırmacılar dikkatlerini tıbbi protozoolojiden, serbest yaşayan protozoonların ekolojisine çevirmişlerdir. Genel limnolojik çalışmalarda heterotrofik protozoa uzun bir süre dikkate alınmamıştır. Kesin olarak ortaya koymak güç olmakla birlikte, bu ihmalin sebebi, muhtemelen uzman eksikliği veya daha büyük olan metazoonlara göre preparasyon işlemlerinin zor ve zaman alıcı olması gösterilebilir [2]. Protozoonların mikrobiyal besin ağında ve organik kirlilik yükü yüksek suların arıtılmasında önemli rolleri bulunmaktadır. Bunların yanı sıra atık su arıtma sistemlerinin performans göstergesi ve doğal suların kirlilik ve ötrofikasyon indikatörü olarak da kullanılmaktadırlar [3-9]. Protozoon türlerinin planktonik besin ağının önemli bir parçası olduğu ve sucul habitatlarda toplam zooplankton biyoması içerisinde önemli bir yere sahip olduğunun anlaşılmasından sonra göl, gölet, akarsu, rezervuar, kaynak suları ve sulak alanlar gibi tatlı su ekosistemlerinde, protozoon biyomas ve tür çeşitliliğinde meydana gelen mevsimsel değişimler, komünite yapıları çeşitli çalışmalarda ele alınmıştır. Ülkemizde değişik ekosistemlerde bulunan farklı organizma gruplarına ait çalışmalarda büyük aşamalar kaydedilmiş olmasına karşın, protozoonlar ile ilgili çalışmalar yeterli ölçüde değildir. Türkiye tatlı su protozoonları ile ilgili bilgiler yeni, az ve eksiktir. Bu çalışmanın bu alanda yapılacak olan araştırmalara temel bilgi sağlaması beklenmektedir. Protısta Alemi ve Protozoonlar Önceleri tüm canlılar iki alemli sınıflandırma sistemi (Kingdom: Plantae, Kingdom: Animalia) içerisinde ya bitki ya da hayvan olarak kabul edilmişler ve protozoonlar hayvanlar alemine dahil edilmişlerdir. Uzun bir zamandır kullanılmakta olan Whittaker’in beş-alemli sınıflandırma sisteminde bitki, mantar ya da hayvan tanımına uymayan tüm ökaryotik hücre organizasyonu gösteren tek hücreli canlılar Protista alemini oluşturmaktadır. Moleküler tekniklerin gelişmesi sonucunda canlı türleri arasındaki filogenetik ilişkiler ortaya çıkarılmış ve üç domain (süperkingdom) sistemi (Bacteria-Archaea-Eukarya) bilim dünyasına girmiştir. Bu sınıflandırma sisteminde bütün ökaryotik canlılar üçüncü domain olan Eukarya’ya dahil edilmiş ve domain Eukarya dört aleme (Protista-Plantae-Fungi-Animalia) bölünmüştür. Son zamanlarda bilim adamları bugün yaşayan türler arasındaki filogenetik ilişkilere dayanan sekiz alemden (Archaebacteria-Eubacteria-Archaezoa-Protista-Chromista-Plantae-Fungi-Animalia) oluşan yeni bir sınıflandırma sistemini teklif etmişlerdir [10,11]. Archaezoa olarak sınıflandırılan bir hücreli organizmalar (Archaeamoebae-Metamonada-Microsporidia) gerçek bir çekirdeğe sahiptirler, ancak mitokondri, endoplazmik retikulum ve Golgi aygıtından yoksundurlar. Moleküler verilere göre, Archaezoa üyeleri en eski ökaryotik hücreler olup, anaerobik periyodda, Golgi ve endoplazmik retikulumun gelişimi ve mitokondriyal simbiyontların hücreye dahil olmasından önce, ökaryotik evrim hattından ayrılmışlardır. Kahverengi algler ile klorofil c içeren diğer tek hücreli ökaryotlar Chromista adı altında ayrı bir alem içerisinde toplanmış, geriye kalan bir hücreli ökaryotlar, Protista alemine dahil edilmişlerdir [10-13] . Protista üyeleri yapı ve işlev bakımından çok çeşitlidir ve sınıflandırılması güçlüklerle dolu bir geçmişe sahiptir. Bu alemin sınırı değişik sınıflandırmalar arasında büyük farklılıklar göstermektedir [12, 14-16]. Çoğunluğu tek hücreli ve mikroskobik ökaryot canlılar olmasına karşın, aynı zamanda daha basit çok hücrelileri ve hatta deniz yosunları gibi karmaşık yapılı iri organizmaları da kapsar. Bunları bir araya toplayan asıl faktör hayvan, mantar ya da gerçek bitki olmamalarıdır. Protista aleminin, geleneksel bir yaklaşımla hayvan benzeri (Mastigophora-Sarcodina-Ciliata), mantar benzeri (Sporozoa-Mycetozoa-Gymnomycota), bitki benzeri (Euglenoidea-Dinoflagellata) gruplar şeklinde düzenlenmesi kabul görmektedir. Hayvan benzeri bir hücreliler olarak “Protozoa”, evrimsel ya da sistematik bir anlam ifade etmediğinden, takson olarak kabul edilmez. Protozoa kavramı, fonksiyonel anlamda bir organizasyon düzeyini ifade etmek için kullanılır. Bu grubu oluşturan organizmalar, hayvanlarla aynı tip beslenme stratejisini kullanırlar. Hayvan benzeri bir hücreliler enerji ve besinlerini heterotrofi yoluyla (osmotrofi-fagotrofi) elde ederler. Çok sayıda flagellat miksotrofiktir ve her iki beslenme stratejisini de (heterotrofi-ototrofi) kullanırlar. Bir çok heterotrofik protozoa da sitoplazmalarında fotosentez yapabilen endosimbiyontlar içerirler. Protozoanın olağanüstü çeşitliliğini içeren bir sınıflandırma sistemi düzenlemek oldukça zordur. Finlay ve Esteban [17] belirleyici karakter olarak fagotrofinin önemini vurgulayarak, tatlı suda yaygın olarak bulunan serbest yaşayan protozoonları aşağıda belirtildiği gibi 16 şubeye ayırmışlardır. Bu sınıflandırmada protozoa kavramı, eski sınıflandırmalarda tanımlanan Kingdom Protozoa’yı ve geleneksel bir şekilde protozoon olarak kabul edilen ancak şimdi Archaezoa ve Chromista’ya (esas olarak fototrofik protistler ya da alglerdir) dahil edilen organizmaları içermektedir. ARCHAEAMOEBAE: Mitokondriden yoksun, tek-kamçılı ameboyit hücreler olup, “pelobiont”lar da denir (örneğin Mastigamoeba, Mastiginella, Pelomyxa). Kamçı Pelomyxa cinsinde güçlükle gözlenir, bu nedenle amip olarak da tanımlanmaktadır. Organik madde bakımından zengin, anoksik sedimentlerde yaygın olarak bulunurlar. Özel bir besin tercihleri yoktur; bakteri, alg, detritus vs. üzerinden beslenirler. METAMONADA: Mitokondriden yoksun anaerobik kamçılı protistlerdir. İki, dört, sekiz (ya da bazen daha fazla) kamçı taşırlar. Çoğunluğu endokommensal olmasına karşın, parazit türler ve serbest yaşayan diplomonad türleri de (örneğin Hexamita, Trepomonas) içerir. Organik olarak zengin, anoksik sedimentlerde yaygın olarak bulunurlar, bakteri üzerinden osmotrofik ve fagotrofik olarak beslenirler. PERCOLOZOA: Genellikle 1-4 (bazen daha fazla) arasında değişen kamçı taşıyan flagellatları (örneğin ameboyit olmayan dört kamçılı Percolomonas, çok kamçılı pseudosiliyatlar), geçici kamçılı safhaları bulunan ameboyit flagellatları (örneğin iki kamçılı Naeglaria, dört kamçılı Tetramitus), kamçılı safha bulunmayan ameboyit formları (örneğin Vahlkampfia) ve modifiye olmuş mitokondri (hidrogenozom) içeren anaerobik flagellatları (örneğin Psalteriomonas) içeren karışık bir gruptur. Bazıları fakültatif patojendirler. Tümü sedimentlerde yaşar ve esas olarak bakteri üzerinden beslenirler. PARABASALA: Çok sayıda kamçıya sahip hidrogenozom içeren anaerobik, heterotrofik flagellatlardır. Karakteristik olarak parabasal cisimcik (modifiye olmuş Golgi) içerirler. Muhtemelen Ditrichomonas, Pseudotrichomonas hariç, hemen hemen tümü endosimbiyotiktir. İyi bilinmemekle beraber, bakteri üzerinden beslendikleri tahmin edilmektedir. Bazı araştırıcılar Parabasala’yı Archaezoa alemine dahil ederler. EUGLENOZOA: Genellikle iki (nadiren daha fazla) kamçı taşıyan flagellatlardır. Kamçılardan biri ya da her ikisi de anteriyör bir çöküntüden çıkar. Çoğu fagotrofiktir (örneğin Rhyhchomonas, Bodo, Astasia, Paranema, Entosiphon, Anisonema). Fagotrofik türler esas olarak sedimentlerde yaşarlar ve buraya tutunmuş bakteriler ya da su sütununda asılı duran bakteriler üzerinden beslenirler. Entosiphon gibi daha büyük öglenoyitler büyük partiküllerle beslenirler. Kinetoplastid içeren biflagellat bodonidleri de içerir. Serbest yaşayanlara ilaveten simbiyotik olan üyeleri de vardır. Ichthyobodo necator tatlı su balıklarının solungaçlarında ektoparazit olarak yaşar. OPALOZOA: Çoğu biflagellat protistlerdir (Anisomonas, Apusomonas, Cercomonas, Heteromita). Esas olarak bakteri üzerinden beslenirler. Kathalepharis türleri planktonda küçük algler üzerinden, bazıları ise (örneğin Cercomonas) pseudopod oluşturarak bakteri üzerinden beslenirler. Cyathobodo kendini zemine tespit etmek için sap oluşturur. Bu takson endokommensal olarak yaşayan opalinidleri de kapsar. CHOANOZOA: Serbest yaşayan, tek kamçılı, renksiz flagellatlardır. Hücrelerin apikal yüzeyinde bulunan çok sayıda ince sitoplazmik uzantı, kamçının etrafında yaka benzeri bir yapı oluşturur. Çoğunlukla sesildirler. Soliter ya da koloniyal, çıplak ya da lorikalı olabilirler. Sadece fagotrofik formları içerir, tatlı sudaki süspanse bakteri ve diğer küçük partiküller üzerinden beslenirler (örneğin Codonosiga, Diploeca, Diplosigopsis, Monosiga, Sphaeroeca). DINOZOA: Ekolojik bakımdan önemli olan bir şubedir. Deniz ve tatlı sularda serbest, bir kısmı da diğer protistler veya metazoonlarda simbiyont olarak yaşayan, iki heterodinamik kamçı taşıyan flagellatlardır. Renksiz türler osmotrofiktirler, detritus ya da diğer protistler üzerinden beslenirler. Katadinium, Peridinium, Gymnodium ve Ceratium cinslerinde fagotrofik tatlı su türleri bulunur. CILIOPHORA: Protista içerisinde yer alan şubeler arasında en homojen gruplardan biridir. Nüklear dualizm (makro- ve mikronükleus) göstermeleri, hareket ve beslenme için sil veya bileşik sil yapıları (sir, membranel vs.) taşımaları, homothetogenik (enine) bölünmenin görülmesi (flagellatlarda symmetrogenik bölünme görülür) diagnostik özellikleridir. Bir çoğu kompleks ağız siliyatürüne sahiptir. Çoğu aerobiktir, anaerobik türlerde mitokondri yoktur ya da hidrogenozom bulunur. Siliyatlarda beslenme heterotrofiktir, fakat bazı türler fotosentetik algal protistler içerirler. Çoğunluğu serbest yaşar, çok sayıda türü kommensal veya nadiren de parazit olarak yaşayan simbiyontlardır. Ichthyopthyrius multifiliis balıklarda beyaz benek hastalığı etkenidir. Yumuşak zeminlerde geniş populasyonlar oluştururlar (örneğin Loxodes, Spirostomum, Caenomorpha, Aspidisca, Acineta, Nassula, Cyclidium, Vorticella, Frontonia, Paremecium, Prorodon, Lacrymaria, Actinobolina). Bir çok siliyat serbest, fakat bazı peritrich ve suktorlar sesil yaşarlar. Vorticella soliterdir, fakat Epistylis, Carchesium, Zoothamnium ve Operculaia koloniyaldir. Küçük türler bakteri üzerinden, büyük türler ise büyük tek hücreli algler, flamentöz siyanobakteri, diğer protozoonlar ve nadiren rotifer ve diğer mikrozooplankton üzerinden beslenirler. Halteria viridis gibi miksotrofik türlerin metalimniyonda aşırı çoğalması primer üretim bakımından önemli olabilir. RHIZOPODA: Beslenme ve hareket için pseudopod oluşturan, kamçısız amiplerdir. Yalancı ayaklar lobsu (lopopod), ipliksi (filopod) ya da ağsı (retikulopod) olabilir. Çıplak amipler lobsu (örneğin Amoeba, Acanthamoeba) ya da ipliksi (örneğin Vampyrella) yalancı ayaklara, kabuklu amipler ya lobsu (örneğin Arcella) ya da ipliksi (örneğin Euglypha) yalancı ayaklara sahiptirler. Foraminiferlerin (Granuloreticulosa) tümü hemen hemen denizeldir, kabuk yüzeyindeki deliklerden yalancı ayaklar ipliksi şekilde çıkarlar ve ağsı bir yapı şekillendirirler. Taksonun üyeleri esas olarak serbest yaşarlar, fakat endosimbiyont olarak yaşayanları da vardır (örneğin Entamoeba). Serbest yaşayanların tümü fagotrofik heterotroflardır. Alg, detritus, bakteri vs. üzerinden beslenirler. Vampyrella flamentöz yeşil algler üzerinde parazit yaşarlar. Bazı kabuklular planktoniktirler (örneğin Difflugia). HELIOZOA: Aksopodlu fagotrofik hücrelerdir. Sert, mikrotübüler aksonem içeren aksopodlar hücrenin etrafından ışınsal olarak çıkar. Güneş hayvancıkları da denir. Esas olarak tatlı sularda yaşarlar (örneğin Actinosphaerium, Actinophrys, Clathrulina). Bazıları denizeldir. Alg, protozoa ve rotiferler üzerinden beslenirler. Aksopodlar diffüzyonla beslenmede kullanılır. Esas olarak planktonik protistlerdir ve sap ya da aksopodlar aracılığı ile yüzeye tutunabilirler. BICOSOECA, DICTYOCHAE, PHAEOPHYTA, HAPTOMONADA ve CRYPTOMONADA : Kingdom Chromista’ya ait şubelerdir. Çoğunluğu fototrof olduğu halde, fagotrofik türler de içerirler. Tatlısu formlarında miksotrofi ve fagotrofi özellikle chrysomonadlarda yaygındır. Chrysomonadlar iki kamçılı, sesil ya da hareketli ve soliter ya da koloniyal olabilirler (örneğin Spumella, Uroglena, Dinobryon). Beslenme ile ilgili organelleri başta olmak üzere, protozoon morfolojisi ve fonksiyonel rolleri arasında yakın bir ilişki vardır. Bulundukları habitatlarda fonksiyonel rolleri dikkate alındığında, serbest protozoonlar siliyatlar, sarkodinler (kök bacaklılar) ve heterotrofik flagellatlar olmak üzere üç büyük gruba ayrılırlar. Fonksiyonel gruplar aynı yerde, bir arada yaşadıkları halde, besin yakalama mekanizmaları farklıdır. Flagellatlar genellikle 20μm’den, amipler 50 μm’den, siliyatlar 200 μm’den daha küçüktürler. Ancak bazı amip ve siliyatların büyüklükleri 2 mm’ye kadar ulaşabilir (örneğin Pelomyxa, Actinosphaerium, Stentor). Protozoonlar kendi büyüklüklerine uygun besini tercih ederek, mikrobiyal populasyonları kontrol altında tutarlar. Fonksiyonel özellikler dikkate alındığında, siliyatlar (besin yakalamada sil kullanırlar) yırtıcı beslenenler (örneğin Prorodon, Monodinium, Didinium, Dileptus, Chidonella, Nassula), süzerek beslenenler (Cyclidium, Colpidium, Vorticella, Aspidisca, Eupletes, Strombidium, Strobilidium) ve difüzyon ile beslenenler (Suctoria) olarak ayrılabilirler. Sarkodinler kendi içinde üç fonksiyonel gruba ayrılır: çıplak amipler, kabuklu amipler ve heliozoonlar. Bu protistler gruplara göre çeşitlilik gösteren pseudopodlarla, protistin büyüklüğüne uygun olarak alg yada bakteriler üzerinden, Pelomyxa türleri canlı olmayan organik partiküller üzerinden beslenirler. Heterotrofik flagellatlar diğer gruplara göre daha küçüktürler. Bu nedenle sucul ortamlarda, yüzey ve dipte önemli bakteri tüketicileridir. Yırtıcı beslenme (örneğin chrysomonadlar), süzerek beslenme (örneğin choanoflagellatlar) ve difüzyonla beslenme (örneğin Ciliophrys ve helioflagellatlar) bu grupta da görülür. Taksonomik gruplar ile fonksiyonel gruplar arasında yakın bir ilişki yoktur. Farklı türler, benzer ekolojik fonksiyonları olmasına karşın, farklı taksonomik gruplarda yer alabilirler. Heliozoonlar ve helioflagellatlar morfolojik olarak birbirlerine benzedikleri halde, farklı şubelerde yer alırlar. Bu iki şube benzer beslenme stratejisine sahiptirler. Benzer şekilde farklı beslenme stratejisi geliştiren bir hücrelilere çeşitli taksonomik gruplarda rastlanmaktadır. Örneğin değişik pek çok bir hücreli grubunda fotosentez yapan türler vardır. Bir grup fotosentez yapan türleri, heterotrofik türleri ve miksotrofik türleri içerebilir. Protist çeşitliliği ile ilgili iki farklı görüş bulunmaktadır. Mikrobiyal çeşitliliğin, makroskobik hayvan ve bitki çeşitliliği ile ayırt edici bazı özelliklere sahip olduğunu vurgulayan Finlay ve Esteban [17], tatlı su protozoon türlerinin az sayıda bireyle ya da kist olarak temsil edilse bile, tüm nemli habitatlarda her zaman bulunduklarını ve muhtemelen hiçbir zaman da yok olmadıklarını ifade etmişlerdir. Lokal olarak, birçok tür nadir ya da kriptiktir (gizli türler, kist halinde olanlar). Çevresel koşulların onların tercih ettikleri yönde gelişmesini beklerler. Uzun süre “aktif” durumdan çok “potansiyel” durumda kalırlar. Bundan dolayı aktif biyoçeşitlilikten çok, potansiyel biyoçeşitlilikten söz edilir. Boyutlarının küçük olması, dirençli kistler oluşturmaları ve bir yerden bir yere kolay bir şekilde taşınmalarından dolayı kozmopolit türler olarak kabul edilirler. Mikrobiyal ökaryot türlerin dağılışı nadir olarak coğrafik bariyerlerle sınırlanmıştır. Bu nedenle spesifik coğrafik dağılımları hakkında bilgi vermek oldukça zordur. Endemizm nadirdir,global tür çeşitliliği azdır ve en azından siliyatların çoğu halihazırda tanımlanmıştır [18-21]. Siliyat türlerinin çoğunun kozmopolit olduğu konusunda Finlay ve Fenchel’in görüşlerine katılan Foissner [22] önceki araştırıcıların aksine tür çeşitliliğinin çok fazla olduğunu, halen tanımlanmamış çok sayıda türün olduğunu, endemizmin yaygın olduğu ve spesifik coğrafik dağılış gösterdiklerini ileri sürmüştür. Yüksek yapılı hayvan ve bitkilerle karşılaştırıldığında, küçük oldukları ve yaşamlarının çoğunu kist safhasında geçirdikleri için protistleri tanımlamanın güç olduğunu ifade eden Foissner [23], sadece uygun koşullar oluştuğunda kistten çıktıklarını, birkaç tane her zaman mevcut ve sayısal olarak dominant tür tarafından gizlendiğini ve bu nedenle nadir türlerin gözden kaçırılabileceğini açıklamıştır.

http://www.biyologlar.com/tatli-su-protozoonlari-ve-onemi

SOLUNUM SİSTEMİ FİZYOLOJİSİ

Solunum kelimesi iki anlamda kullanılabilir. Hücresel düzeyde, hücresel oksidatif Matabolizma anlamındadır. Organizma düzeyinde ise, gaz değişim yüzeylerinin, yani akciğerlerin atmosfer havası ile havalanması demektir. Solunum sistemi, dolaşım sisteminin atmosferle olan bağlantısını sağlar. Amfibian denilen kurbağa gibi hem karada hem de suda yasayan canlılarda ¤¤¤¤bolizma düşük olduğu için cilt solunumu yeterlidir. Eğer insanlarda kurbağalar gibi cilt solunumu yapsalardı, o zaman insanların ¤¤¤¤bolizması daha yüksek olduğu için, insan vücudunun yüzeyinin, gerçek yüzeyinden kat kat fazla olması gerekir idi. Akciğerler ağırlık olarak vücudun pek az bir kısmını oluştururlar, fakat yüzey olarak çok fazla bir yer kaplar. Yunan mitolojisine göre, "PNEUMA" yani nefes, görülmez kişisel bir ruhtur ve sahibine hayat verir. Sağlıklı insanlar, soluk almayı, değerini takdir etmeden, verilmiş bir hak gibi kabul ederler, çünkü soluk alıp verme hemen hemen gayretsizdir ve bilinçsizce yapılır. Oysa solunum hastalığı olanlar için, her soluk bir altın değerindedir. Solunum hastalıkları genellikle, soluk havasının ya sigara dumanı ya da kirli hava ile kirlenmesinden kaynaklanır. Solunum sisteminin bir diğer görevi de ses çıkarmaktır. Konuşurken, solunum sisteminde dolasan hava, ses tellerini titreştirir, oluşan bu sesin havayla dolu boşluklarda yankılanmasıyla bazı frekanslar diğerleri üzerine baskın çıkar, bu da her kişiye kendine has özel sesini verir. SOLUNUM SİSTEMİ ANATOMİSİ Solunum sistemi burun, ağız, farinks (yutak), larinks (gırtlak), trakea (soluk borusu), bronşlar, bronsioller, ve alveollerden oluşur. Trakeadan sonra ilk dallanan yapılara bronşlar, broşlardan sonraki daha dar çaplı yapılara da bronsioller denilmektedir. Bronşlar, bronsioller ve terminal bronsiollerde gaz alışverişi olmaz, bu kanallar anatomik ölü boşluk olarak adlandırılır. Anatomik ölü boşlukta bulunan hava hacmi 150 ml dir. Gaz değişimi yapılan alanlar ise respiratuvar bronsiol, duktus alveolaris, ve alveol keseleridir. Anatomik ölü boşluk nedeni ile her bir solunum ile akciğerlere alınan 500 ml havanın 350 ml sinde gaz değişimi yapılmaktadır. Diffüzyon: Gerek akciğerlerde gerekse hücre düzeyinde gaz alışverişi diffüzyon ile olmaktadır. Bu diffüzyon pasif bir olaydır, yani gazlar konsantrasyon farkları doğrultusunda diffüzyona uğrarlar. Bir sıvıda çözünmüş olan gazin konsantrasyonu o gazin kısmi basıncı ile ifade edilmektedir. Gazin kısmi basıncı büyüdükçe, konsantrasyonu da artmaktadır. Akciğerlere gelen venöz kanda, alveol içindeki atmosfer havasına oranla, CO2 basıncı daha yüksek, O2 basıncı ise daha düşüktür; bu sebeple, CO2 alveol içine verilirken, O2 de kana geçmektedir. Kanda oksijenin % 97 si eritrositler içinde hemoglobine bağlı olarak taşınır, geri kalan % 3 ise plazmada fiziksel olarak çözünmüş halde taşınmaktadır. Karbondioksit ise 4 şekilde taşınır. % 70 oranında plazmada HCO3 iyonu seklinde taşınır. Hücrelerde oluşan CO2, kana geçtiği zaman eritrositler içine alınır. Eritrositler içinde CO2, karbonik anhidraz enziminin etkisiyle H2O ile birleşir. Karbonik anhidraz: CO2 + H2O HCO3 + H Yukarıdaki reaksiyonda ortaya çıkan hidrojen iyonları hemoglobin molekülüne bağlanır, bikarbonat iyonları ise eritrositlerden plazmaya çıkar ve akciğerlere kadar plazmada gelir. Kan akciğerlere gelince, bikarbonat iyonlarının eritrositler içine girmesi ile reaksiyon tersine döner, sonuçta su ve karbondioksit oluşur ve solunum yoluyla dışarı atılır. Karbondioksitin % 70 i bu yolla taşınır. Karbondioksitin bir kısmı doğrudan hemoglobin molekülüne bağlanarak taşınır. Çok az bir kısmı plazmada fiziksel olarak çözünmüş halde taşınır. Az bir kısmı da plazma proteinleri ile karboamino bileşikleri oluşturarak taşınır. Solunum Sisteminin Fonksiyonları: 1.Oksijen temin eder. 2. Karbondioksiti atar. 3. Kanın hidrojen iyon konsantrasyonunu (pH sini) düzenler. 4. Konuşmak için gerekli sesleri üretir (fonasyon). 5. Mikroplara karsı vücudu savunur. 6. Kan pıhtısını tutar ve eritir. Solunum Sisteminin Organizasyonu: Sağ ve sol olmak üzere 2 akciğer vardır. Akciğerler esas olarak ALVEOL denilen (alveolus, tekil; alveoli, çogul) içi hava dolu küçük keseciklerden oluşur. Alveol kanla, atmosfer havasının gaz değiştirdikleri yerdir ve her bir akciğerde yaklaşık 150 milyon alveol vardır. HAVAYOLU dış ortamla, alveol arasında havanın geçtiği tüm tüplere verilen isimdir. Inspirasyon soluk alma demektir ve solunum sırasında dış ortamdan, havanın havayolları aracılığı ile alveollere hareket etmesidir. Ekspirasyon ise soluk verme demektir ve havanın alveollerden dış ortama, yine havayolu aracılığı ile verilmesi demektir. Soluk alıp verme sırasında, 1 dakikada yaklaşık 4 litre hava alveollere girip çıkarken, alveollerin çevresindeki kapiller damarlardan ise 1 dakikada 5 L kan geçer. Ağır egzersiz sırasında hava akışı 30-40 kat artabilirken, kan akimi da 5-6 kat artabilir. Her zaman için alveole giren hava ile alveol çevresindeki kapillerler içindeki kan birbiriyle orantılı olmalıdır. Alveoler hava ile kapiller kan birbirinden çok ince bir zar ile ayrılmıştır, bu zar oksijen ve karbondioksitin diffüze olmasına olanak tanır. Havayolu: Soluk alma sırasında, hava ya ağızdan ya da burundan farenkse geçer, farenks hem yiyecekler hem de hava için ortak bir geçiş yoludur. Farinks 2 tüpe ayrılır, birisi özafagustur ki buradan yiyecekler mideye geçer, diğeri ise larinks dir ki, bu havayolunun bir parçasıdır. Ses telleri larinkste bulunur, geçen havanın bu telleri titretmesi ile ses oluşur. Larinks trakea denilen uzun bir tüpe açılır. Trakeada 2 tane bronşa dallanır. Bir bronş sağ akciğere bir bronş da sol akciğere girer. (Bronchus=bronş, bronchi=bronşlar) Trakea ve bronşların duvarları kartilaj denilen kıkırdak dokusu içerir ve kartilaj bu yapılara esneklik ve dayanıklılık verir. Akciğerler içerisinde bronşların dallanması devam eder, her bir dallanma daha dar, daha kısa, ve daha çok sayıda tüp oluşması ile sonuçlanır. Bu dallanmalar sırasında kartilaj içermeyen ilk dallanmalardaki tüplere bronsiyol denir. Alveoller, respiratuvar bronsiyollerden itibaren görülmeye baslar. Havayolları larinksten itibaren 2 bölüme ayrılır. 1)İletici kısım 2)respiratuvar kısım. İletici kısımda hiç alveol olmadığı için bu kısımda gaz değişimi olmaz. Respiratuvar kısım ise respiratuvar bronsiollerden itibaren baslar. Bu kısımda gaz değişimi olur. Farinksten, respiratuvar bronsiollerin sonuna kadar tüm havayolu boyunca, epitelyal yüzeyler silya içerir. Tüm havayolu boyuna ayrıca mukus salgılayan epitel hücreleri ile çeşitli bezler bulunur. Silyalar sürekli olarak farinkse doğru hareket halindedirler. Bu yapıyı mukustan yapılmış bir yürüyen merdivene benzetebiliriz. Bu yürüyen merdiven sayesinde solunum havasındaki toz mukusa yapışır ve yavaş ama sürekli hareket halindeki silya hareketleriyle farinkse doğru iletilir ve farinkse varınca, burada yutulur. Bu mukus yürüyen merdiveni akciğerleri temiz tutmak için çok önemlidir. Silyer aktivite zararlı pek çok etkenle inhibe edilebilir. Örneğin sigara içmek silyaları saatlerce immobilize eder. Silyer aktivitenin azalması akciğer enfeksiyonu ile ya da atılamayan mukusun havayolunu tıkamasıyla sonuçlanabilir. İkinci koruma mekanizması fagositlerdir. Tüm havayolu ve alveoller boyunca bulunan fagositler solunumla alınan küçük parçacıkları ve bakterileri fagosite ederek bunların öteki akciğer hücrelerine ya da kan dolaşımına geçmesini önlerler. ALVEOL Alveoller küçük, içi hava dolu keseciklerdir. Alveol duvarının havaya bakan iç yüzleri yalnızca 1 hücre kalınlığındadır. Bu iç yüzey Tip I hücreleri denilen epitel hücreleri tarafından 1 sıra olarak oluşturulmuştur. Alveollerin duvarları ayni zamanda kapiller damarları da içerir. Kapiller damarların endotel hücreleri, alveol endotel hücrelerinden çok az bir interstisiyel sıvı ve bir bazal membranla ayrılmıştır. Sonuç olarak kapiller damarlardaki kan, alveollerdeki havadan yalnızca 0,2 m m kalınlığında bir bariyerle ayrılmıştır. Ortalama bir eritrositin çapının 7 m m olduğunu düşünürsek, 0,2 m m lik bir bariyerin ne kadar ince olduğu çok açıktır. Kapiller damarlar ile temas eden alveol yüzeyinin toplam alanı 75 m2 dir ki bu bir tenis kortunun alanına eşittir, ya da bir diğer deyişle, vücut dış yüzeyinin 80 katidir. Bu kadar ince ve büyük bir alan olması sebebiyle oksijen ve karbondioksit büyük miktarlarda hızlıca değişmektedir. Alveol epitelinde Tip I hücrelerine ek olarak daha az sayıda Tip II hücreleri vardır. Şekilsel olarak Tip I den daha büyük olan bu Tip II hücreleri surfaktan denilen bir madde sentezlerler. GÖGÜS KAFESİ Akciğerler toraks denilen göğüs kafesi içinde yerleşmiştir. Toraks kapalı bir bölmedir. Boyunda kaslar ve bağ dokusu tarafından sınırlanmıştır, altta ise diyafram denilen kubbe seklinde bir çizgili kas ile karından tümüyle ayrılmıştır. Toraks duvarları, omurilik, kostalar, iman tahtası (sternum), ve kostalar arasındaki kas olan interkostal kaslardan oluşur. Toraks duvarı ek olarak büyük miktarda elastik bağ dokusu içerir. Her akciğer plevra zari denilen bir zar ile tamamen kaplanmıştır. Bu zar iki katli bir zardır. Plevra zarını hayalde canlandırmak için içi su dolu bir balona bir yumruğu bastırdığınızı düşünün. Yumruk akciğeri temsil etmektedir, yumruğu ilk saran balon zari visseral plevrayı temsil etmektedir. İkinci katman ise pariyetal plevrayı temsil etmektedir. Visseral plevra ile parietal plevra arasında intraplevral sıvı denilen çok ince bir sıvı tabakası vardır. Bunun toplam miktarı sadece birkaç ml dir. Gelişim sırasında bu iki plevra zari arasında yaklaşık 4 mm Hg lik negatif bir basınç oluşur. Bu negatif basınç sayesinde, normalde kollabe olması gereken alveol açık kalır. Bu negatif basınç alveolleri dışa doğru çekerken, göğüs kafesini de içe doğru çeker. Göğsün kesici aletlerle olan yaralanmasında parietal plevra delindiği için plevral aralıktaki basınç atmosfer basıncına eşitlenir, yani negatif basınç kalmaz. Pnemotoraks denilen bu yaralanmada alveolleri dışa doğru çeken negatif basınç olmadığı için akciğerler kollabe olur, yani söner. İNSPİRASYON (SOLUK ALMA) Inspirasyon, diyafram ve inspiratuvar interkostal kasların kasılmasıyla baslar. Diyaframın kasılmasıyla göğüs boşluğu karına doğru büyür. Interkostal kasların kasılmasıyla da göğüs yukarı ve dışa doğru büyür. Göğüsün bu büyümesi intraplevral aralıktaki basıncı daha da negatif yapar. Bu da akciğerleri daha da büyüterek havanın akciğerlere doğru emilmesine yol açar. EKSPİRASYON (SOLUK VERME) Inspirasyonun sonunda, diyafram ve inspiratuvar interkostal kaslara giden sinirler, kasları uyarmayı sonlandırır ve böylelikle kaslar gevşerler. Göğüs duvarı ve dolayısı ile akciğerler pasif olarak orijinal değerlerine dönerler. Akciğerler küçülünce, alveollerin içindeki hava sıkışır ve alveol içi basınç atmosfer basıncını geçer. Dolayısı ile alveol içindeki hava kolayca havayollarından dışarı atılır. Sonuç olarak istirahat halinde ekspirasyon pasif bir olaydır, inspiratuvar kasların gevşemesi ve akciğerlerin elastikiyeti sayesinde gerçekleşir. Fakat egzersiz sırasında daha büyük miktarda hava dışarı atılmak zorunda olduğu için ekspiratuvar interkostal kaslar ve karin kaslarının kasılmasıyla göğüs daha aktif olarak küçülür. KOMPLİANS (ESNEME) Belirli bir basınç altında belirli bir maddenin ne kadar esneyebildiğine o maddenin kompliansi denir. Dolayısı ile akciğerlerin kompliyansi ne kadar çok olursa, esneyebilmeleri de o kadar çok olur. Tersine komplians azalmışsa akciğerlerin esneyebilmeleri de zor olur. Akciğerlerin kompliyansinin azaldığı hastalıklarda, esneklik azaldığı için, akciğerleri genişletmek için daha fazla güç uygulamak gerekecektir. Bu tür hastalar, yüzeysel ve hızlı solurlar. Akciğerlerin kompliansini etkileyen bir diğer faktör de alveollerin yüzey gerilimidir. Alveollerin yüzeyleri nemlidir ve alveoller ince bir su tabakası ile kaplı gibi düşünülebilir. Bu su tabakası gerilmiş bir balon gibi davranır ve akciğerlerin genişlemesini engelleyen bir güç gibi davranır. Akciğerlerin genişlemesini etkileyen bu güce "yüzey gerilimi" denir. Sonuç olarak akciğerlerin genişlemesi hem akciğerlerin elastik dokusunu germek, hem de bu yüzey gerilimini asmak için daha fazla enerjiye ihtiyaç duyacaktır. Alveollerdeki Tip II hücreler surfaktan denilen bir madde sentezlerler. Surfaktan yüzey gerilimini azalttığı için akciğerlerin kompliansini arttırır, yani akciğerleri genişletmek için daha az enerjiye gereksinim duyulur. Respiratuvar Distress Sendromu denilen hastalıkta yeni doğan bebekler yeteri kadar surfaktan sentezleyemedikleri için bu bebekler soluk alıp vermek için çok enerji harcarlar ve çocukların yorgunluktan bitkin düşerek ölmelerine neden olabilir. Gebe kadına kortizol yapılması çocukta surfaktan sentezini artırır. AKCİĞER KAPASİTELERİ Tek bir solukla akciğerlere alınan veya akciğerlerden çıkarılan hava msktarina tidal volum (soluk hacmi) denir, miktarı 500 ml dir. Pasif ekspirasyondan sonra akciğerlerde kalan hava miktarına fonksiyonel rezidüel kapasite denir, yaklaşık 2300 ml dir. Zorlu bir ekspirasyondan sonra, akciğerlerde kalan hava miktarına rezidüel volüm denir, miktarı 1200 ml dir. Normal bir inspirasyondan sonra zorlu inspirasyon ile akciğerlere alınabilen hava miktarına inspiratuvar yedek volüm denir, 3000 ml civarındadır. Normal pasif ekspirasyondan sonra zorlu ekspirasyon ile akciğerlerden atılan hava miktarına ekspiratuvar yedek volüm denir, 1100 ml civarındadır. Normal bir ekspirasyondan sonra, zorlu inspirasyon ile akciğerlere alınabilen hava miktarına inspiratuvar kapasite denir. Tidal volüm, inspiratuvar ve ekspiratuvar yedek volümlerin toplamı akciğerlere kas kuvveti ile alınıp verilebilen maksimum hava miktarını gösterir, ve buna vital kapasite denir. Vital kapasite genç erkeklerde 4,6 L genç kızlarda ise 3,1 L dir. Maksimum ekspirasyondan sonra akciğerlerde kalan hava miktarına residüel volüm denir, ve yaklaşık 1200 ml civarındadır. Vital kapasite ile residüel volümün toplamına ise Total akciğer kapasitesi denir. Bu bahsedilen volümlere statik volümler denir, çünkü bu ölçümler hava akimi olmadığı zaman yapılan ölçümlerdir. Zorlu ekspirasyon sırasında yapılan akciğer volüm değişikliklerine ise dinamik akciğer volümleri denir. Bunlar FEV1 ve FVC dir. FEV1 birinci saniyede akciğerlerden çıkarılabilen hava miktarıdır. FVC ise maksimum inspirasyondan sonra akciğerlerden çıkarılabilen maksimum hava miktarıdır. Sağlıklı genç bireylerde FEV1 4 L FVC ,ise 5 L dir ve oran 0,8 dir. GÖĞÜS HASTALIKLARI Göğüs hastalıkları iki genel kısma ayrılırlar. Obsruktif Hastalıklar: Bu hastalıklarda hava yolu direnci artmıştır (amfizem, astım). Restriktif Hastalıklar: Akciğer kompliansi azalmıştır (pulmoner fibrozis, respiratuvar distress sendromu).

http://www.biyologlar.com/solunum-sistemi-fizyolojisi

ÇEVRE KİRLENMESİ

ÇEVRE KİRLENMESİ

I – HAVA KİRLENMESİ a) İnsana ve Çevreye Etkisi b) Sonuçları (Asit Yağmurları)   Asit Yağmurlarının Toprağa Etkisi   Asit Yağmurlarının Sulara Etkisi   Asit Yağmurlarının Yapılara Etkisi   Asit Yağmurlarının Bitkilere Etkisi   Asit Yağmurlarının İnsan Sağlığına Etkisi c) Çeşitli Gazların İnsan ve Çevresine Etkisi   İnsan Sağlığına   Hayvan ve Bitkilere   İklime d) Ormanların ve Yeşil Alanların Çevre Kirliliğini Önlemeleri Yönünden İşlevleri   Fiziksel İşlevler   Fizyolojik İşlevler e) Ormanların Su ve Toprak Kirliliği Üzerine Etkileri II – SU KİRLENMESİ a) Kirlenmeye Yol Açan Kaynaklar 1 – Tarımsal Çalışmaların neden olduğu Kirlilik 2 – Endüstrinin Neden Olduğu Kirlilik 2.1.) Kimyasal Kirlilik 2.2.) Fiziksel Kirlilik 2.3.) Fizyolojik Kirlilik 2.4.) Biyolojik Kirlilik 2.5.) Radyoaktif Kirlilik 3 – Yerleşim Alanlarındaki Atıkların Neden Olduğu Kirlilik III – TOPRAK KİRLENMESİ 1 – Kentlerin Neden Olduğu Kirlilik 2 – Endüstrinin Neden Olduğu Kirlilik 3 – Toprak Uğraşlarının Neden Olduğu Kirlilik 4 – Toprak Kirliliğinin İnsan ve Çevresine Etkileri IV – DİĞER ETMENLER a) Gürültü Kirliliği   Gürültünün İnsan ve Çevresine Etkileri b) Radyasyon ÇEVRE KİRLENMESİ Her türlü madde ya da enerjinin (örn: ısı, ses...) doğal birikiminin çok üstündeki mik-tarlarda çevreye katılmasına çevre kirlenmesi denir. Kirlenme, kirleticilerin etkilediği ortamın niteliğine göre, hava, su, toprak kirlenmesi ve diğer etmenler olarak sınıflandırılır. İnsanın yaşamı sürekliliği için doğayı kullanması, do-ğayı değiştirmesi olağandır. Ancak bu kullanışta doğayı düşünmeksizin yalnızca insan açısın-dan ve tek yönlü yararlanma söz konusu olduğunda, umulan olumlu sonuçlar, bir süre sonra çözümü zor ve hatta olanaksız birçok karmaşık sorunlara neden olurlar. Bilimsel açıdan bakıldığında, bir ortamın fiziksel birleşiminde olmaması gereken şey “kir” dir. Yaşamın söz konusu olduğu her yerde muhakkak kir, yani artık madde bulunacak-tır. Fakat bu madde, oluştuğu ortam içinde belirli sınırlar altında kaldığı sürece doğal yapı bu artık maddeyi çözümlemekte ve sonuçta kirlenme çıplak gözle görülmemektedir. O halde ya-şamın getirdiği bir kirlenme hep olacaktır. Ama doğal denge bozulmadıkça, çevre ile etkileşen yaşam, kirlenmeden etkilenmeyecek ve dolayısıyla çevre kirlenmesi sorunu, doğal yapı içinde çözümlenecektir. HAVA KİRLİLİĞİ Erişkin bir insan, günde 2,5 kg kadar su ve 1,5 kg kadar besin almasına karşılık 15 kg kadar hava alır. O halde, insanın dışarıdan aldığı maddeler arasında hava, miktar bakımın-dan başta gelmektedir. Bir insan açlığa 60 gün, susuzluğa 6 gün dayanabildiği halde havasızlığa 6 dakika da-yanamaz. Barınak ve fabrika bacalarından çıkan dumanlar, otomobillerden çıkan eksoz gazları içinde bulunan ve canlılar için zararlı olan çeşitli maddelerin havaya karışması ve onun bileşimini bozması, 20. yüzyıl insanını hava kirliliği sorunu ile karşı karşıya bırakmıştır. Normal temiz bir hava içerisinde, % 78,9 hacim azot, % 20,95 hacim oksijen, %0,03 hacim karbondioksit, %0,93 hacim argon gazı bulunan fakat, duman toz tanecikleri, kükürt dioksit ve diğer gazlar bulunmayan ya da çok az bulunan hava demektir. Kirli hava ise fazla miktarda duman, kü-kürt di oksit, karbon mono oksit, azot oksit gibi gazları, ozon gibi oksidin maddeleri, kurşun, nikel gibi metalleri, lastik parçacıkları ve toz taneciklerini kapsayan ve fena kokan havadır. Diğer bir tanımla, hava kirliliği, atmosferde toz, gaz, duman, koku, su buharı şeklinde bulu-nabilecek kirleticilerin insan ve diğer canlılar ile eşyaya zarar verici miktara yükselmesi ola-rak ifade edilebilir. Metreküpü içinde 7 mikrogramdan fazla miktarda duman ve 100 – 150 mikrogramdan fazla SO2 gazı bulunması havanın kirliliği için bir ölçü olarak kabul edilmektedir. Özellikle duman ve SO2 gazının verilen bu miktarın üzerine çıkması, sağlık için zararlı bir ortamın meydana gelmesine neden olmaktadır. Hava kirliliğini oluşturan başlıca kaynaklar, endüstri merkezlerinden çıkan kirli dumanlar ve gazlar, kalorifer ve soba bacalarından dağılan isler ve dumanlarla motorlu taşıtların eksozlarından çıkan karbonmonoksit, kurşun, azot oksit gibi kimyasal maddelerdir. Bunlar-dan birkaçını tanıyalım: Karbon monoksit (CO): Havadan biraz daha hafif, renksiz, kokusuz, zehirli bir gazdır. Yanma sürecinde yakıttaki karbonun eksik yanma sonucunda tümüyle karbondioksite yük-seltgenmeyip bir bölümünün karbon monoksite dönüşmesiyle oluşur. Başlıca karbon monok-sit kaynağı içten yanmalı motorlardır. Katı ya da sıvı maddelerin parçacıkları, kurum ya da is biçiminde gözle görülebilen-lerden ancak elektron mikroskobuyla gözlenebilecek olanlara kadar değişen boyutlardadır. Çevreyi kirleten parçacıkların oluşumuna yol açan başlıca nedenler hareketsiz merkezlerde yakıt kullanımı ile sanayi etkinlikleridir; orman yangınları da küçük bir yüzde oluşturur. Kükürt oksitleri, kükürt içeren yakıtların yanmasıyla oluşan zehirli gazlardır. Her yıl açığa çıkan kükürt oksitlerin yaklaşık yüzde 60’ı kömürün yakılmasıyla oluşur. Kentsel böl-gelerde yoğunlaşmış olan akaryakıt kullanımı ve kükürtten yararlanan sanayi tesisleri de kü-kürt oksitlerinin oluşumuna yol açan önemli kaynaklardır. Hidrokarbonlar da, karbon monoksit gibi eksik yanan yakıtlardan kaynaklanır. Ama karbon monoksidin tersine, atmosferde normal olarak bulundukları yoğunlukta zehirli değil-lerdir. Bununla birlikte, fotokimyasal sise yol açtıklarından kirliliğin artmasında önemli rol oynarlar. Havadaki hidro karbonlar genellikle, çöp fırınları gibi büyük tesislerde atık madde-lerin yakılmasından, sanayide kullanılan çözücülerin buharlaşmasından ve odun ile kömürün yakılmasından kaynaklanır. Ama en önemli etken, buharlaşma yoluyla ve içten yanmalı mo-torların egzozundan havaya karışan benzindir. Bu yüzden havadaki hidrokarbonların yakla-şık yüzde 60’ı, çok sayıda motorlu taşıtın bulunduğu kentsel alanlarda yoğunlaşmıştır. Azot oksitleri, yakıtın çok yüksek sıcaklıkta yanmasıyla oluşur. Bu kirletici de gene motorlu taşıtlardan ve elektrik enerji santralleri ile sanayide kullanılan buhar kazanlarının yakım sistemlerinden kaynaklanır. Havada normal olarak eylemsiz halde bulunan azot, yan-ma sırasındaki yüksek sıcaklıkta oksijenle birleşir ve gaz halinde dışarı atıldığında çabuk so-ğursa, bu durumda kalır. Azot oksitleri, hidrokarbonlarla birleşerek fotokimyasal yükselt genleri oluştururlar. Bu yükselt genler de, havadaki katı ve sıvı parçacıklarla birleşerek hava kirliliğine yol açarlar. Fotokimyasal yükselt gen kirleticiler ozon, azot di oksit, aldehitler, akrolein ve peroksiaçillerdir. Kentsel bölgelerdeki hava kirliliğine yol açan bir başka önemli madde de kurşundur. Kurşun, sanayi tesislerinden, zararlı canlılarla mücadelede kullanılan kimyasal maddelerden, kömür ve çöp yakımından ve kurşunlu benzin kullanan otomobil motorlarından kaynaklana-rak havaya karışır. Kirleticiler dışında, bazı doğal etkenler de hava kirlenmesine yol açar. Güneş ışığındaki morötesi ışınlar, hidrokarbonlarla birleşerek fotokimyasal sis oluştururlar ve bu da sıcaklık terslenmesi dönemlerinde atmosfer durgunluğuna neden olur. Bu olay, sı-caklığın, yer yüzünde troposferin (alt atmosfer) içlerine doğru arttığı durumlarda görülür; olaya terslenme denmesinin nedeni de normal olarak sıcaklığın yükseklikle birlikte azalması-dır. Sıcaklık terslenmesi havanın yükselmesini engelleyerek kirletici içeren alt hava katmanı-nın asılı halde kalmasına yol açar. Havada önemli bir yanal hareket gerçekleşmediği sürece kirlilik kalıcı olur. İNSANA VE ÇEVREYE ETKİSİ Havada kirlenmeye yol açan maddelerin insanlar üzerinde çeşitli etkileri vardır. Ha-vadan solunan karbon monoksit, kandaki oksijenin yerini alarak vücuttaki hücrelere taşınan oksijen miktarının azalmasına yol açar. Kentlerin havasında bulunduğu miktarıyla karbon monoksit, zihinsel yetilerin gerilemesine ve en sağlıklı insanlarda bile tepkilerin ağırlaşmasına neden olur; bu da kent yaşamında görülen kazalarda önemli bir etkendir. Ayrıca kansızlık, kalp yetersizliği ve kan hastalıkları ile kronik akciğer rahatsızlıkları bulunan kişilerin sağlık durumu üzerinde daha da olumsuz etkilerde bulunur. Kükürt oksitleri, solunum borusunu ve akciğer dokularını etkileyerek, solunum siste-minde geçici ya da kalıcı rahatsızlıklara yol açabilir. Fotokimyasal yükselt genler göz rahat-sızlıklarına neden olur; ayrıca araştırmalar, azot oksitlerinin de insan sağlığına neden oldu-ğunu, özellikle çocuklarda gribe karşı direnci azalttığını ortaya koymuştur. Başka pek çok kirletici de, etkileri doğrudan ya da kısa sürede gözlenememesine kar-şın, halk sağlığı konusundaki kaygıların giderek çoğalmasına neden olmaktadır. Araştırma-lar, kentlerde yaşayan insanların vücudunda bulunan kurşun miktarının, vücudun kan üre-timini olumsuz yönde etkileyecek oranda olduğunu göstermektedir. Ama çevrede bulunan kurşunun insan sağlığına doğrudan mı zararlı olduğu, yoksa asıl tehlikenin gelecekte besin zincirinde ortaya çıkacak bir kurşun yoğunlaşmasına mı yattığı tartışması sonuçlanmış değil-dir. Hava kirliliği, insanların yanı sıra bitki yaşamı, yapılar ve çeşitli eşyalar üzerinde de son derece zararlı etkilerde bulunmaktadır. Pek çok büyük kentin çevresindeki bitki örtüsü hava kirliliği nedeniyle büyük ölçüde yok olmuştur. Ayrıca kentlerde kükürtlü kömür ve a-karyakıt kullanımı, buralardaki çelik ürünlerinin kırsal bölgelere oranla dört kat daha hızlı aşınmasına yol açmaktadır. Kükürt oksitleri de yapıların ve heykellerin aşınmasını hızlandı-rır; havadaki parçacıklar öteki kirleticilerin aşındırıcı etkisini arttırır; ozon ise, kauçuk ürün-lerinin daha çabuk parçalanmasına yol açar. Hava kirlenmesinden kaynaklanan ve 1980’lerin ortalarında gündeme gelen bir başka önemli tehlike de, atmosferin ozon tabakasının incelmesidir. Havalandırma sistemlerinde, spreylerde, otomobillerde ve buzdolaplarında kullanılan kloroflorokarbon kökenli kimyasal yapılarda maddelerin yol açtığı delinme, kutup bölgelerinde yoğunlaşmıştır. Yeryüzüne ula-şan morötesi ışınların zararlı etkilerini azaltan ozon katmanının delinmesi, bazı uzmanlara göre 20 – 30 yıl içinde etkisini gösterecek, yeryüzünde 40 milyon dolayında insanın cilt kanseri olmasına ve yalnızca ABD’de yaklaşık 800 bin kişinin ölümüne yol açacaktır. Bazı uzmanlar bu tahminlerde büyük yanılgı payının bulunduğunu öne sürmekle birlikte, ozon katmanının delinmesinin yeryüzü için büyük bir tehdit oluşturduğu üzerinde herkes aynı düşüncededir. HAVA KİRLİLİĞİNİN SONUÇLARI (ASİT YAĞMURLARI) Asit yağmurları, kendilerini çeşitli ortam ve canlılar üzerinde belli eder. ASİT YAĞMURLARIN TOPRAĞA ETKİSİ Asit yağmurlar, toprağın kimyasal yapısı ve biyolojik koşulları üzerinde etkide bulu-narak, bu topraklar üzerinde yetişen bitkilere zararlı olmaktadır. Toprağa erişen sülfürik asit, toprak çözeltisinin asitliğini yani aktif hidrojen iyonları-nın yoğunluğunu arttırmaktadır. Miktarı artan hidrojen iyonları, toprağın koloidal komp-leksleri olan kil mineralleri ve humus koloitleri tarafından tutulmakta olan başta Ca olmak üzere K, Mg ve Na gibi bitki besin elementlerinin yerine geçerek, bu elementlerin topraktan taban suyuna karışmak üzere yıkanmalarına neden olmaktadır. ASİT YAĞMURLARININ SULARA ETKİSİ Asit yağmurları, tatlı su göllerinde de asitliği arttırarak bu göllerde asitliğe duyarlı balık ve yumuşakçıların tür ve miktarının azalmasına etkili olmaktadır. Amerika Birleşik Devletlerinde bulunan 100 bin gölden yaklaşık 20 bininde ya hiç ba-lık kalmamış, ya da bu yönde olumsuz bir gelişme vardır. Halen birçok gölde aşırı asitliği gidermek üzere kalsiyum hidroksit püskürtülmektedir. İsveç’te bu amaçla her yıl 40 milyon dolar sarf edilmekte olduğu bilinmektedir. ASİT YAĞMURLARIN YAPILARA ETKİSİ Asit yağmurları maruz kalan özellikle kireç taşları, mermerden inşa edilen tarihi yapı-lar ve anıtlar orijinal durumlarını hızla kaybetmektedirler. Asit yağmurların binalarda meydana getirdiği diğer bir zarar da, binalarda çatı örtüsü olarak kullanılan çinko gibi metal levhalarda görülen yıpranmalardır. ASİT YAĞMURLARIN BİTKİLERE ETKİSİ Kükürt di oksit ve azot oksitler, stomlar yoluyla ibre ve yaprak dokularına girmekte, özellikle SO2 bir yönden oksijen alımını önlemekte, diğer yönden de bünyede H2SO4’e dönüşe-rek parçalama, yakma ya da kemirme etkisi yapmaktadır. Kükürt dioksitin yaprak ve ibre-lerde oluşturduğu sülfürik asidin sünger mezofil hücreleri içerisinde bulunan kloro – plastlardaki magnezyumu giderek kuruttuğu, klorofili ve plazmayı tahrip ettiği, dolayısıyla özümlemeyi engellediği, bunların sonuçta ölüme neden olduğu bilinmektedir. ASİT YAĞMURLARIN İNSAN SAĞLIĞINA ETKİSİ Asit yağmurları insan sağlığına olan etkileri kendini dolaylı şekilde belli eder. Asitleşen topraklardan kaynaklanan asitliği yükselmiş olan sular, mide asiditesini arttırarak mide ülse-rine neden olmakta, ayrıca asit yağmurlar topraktaki iyodu eriterek o topraklarda yetişen sebze ve meyvelerin ve içilen suların iyot miktarlarının düşmesini sonuçlandırarak bunları kullanan insanlarda troid bezi rahatsızlıkları (guatr) hastalığına neden olmaktadır. Asit yağmurlar, gazlar ve birlikte bulunan toksit metal iyonları ile insanlar ve hayvan-larda da zararlı olmaktadır. Havada dolaşan kuru kirleticiler be bunlar arasında sülfatlar, üst solunum yolu hastalıklarından kronik bronşit, astım ve anfizeme neden olmaktadır. ÇEŞİTLİ GAZLARIN İNSAN VE ÇEVRESİNE ETKİLERİ İNSAN SAĞLIĞINA ETKİLERİ Hava, yaşamın temel öğesi olduğuna göre, havadaki kirliliğin insan sağlığı yönünden önemi açıktır. Havanın taşıdığı karbon parçacıkları, ozon, karbon monoksit, kükürt dioksit, doyma-mış hidrokarbonlar, aldehitler ile kanserojen maddeler gibi kirleticiler insanların solunum yollarını etkileyerek normal mekanizmasını bozar; bronşlarda iltihaplara ve daralmalara neden olur. Bu değişmeler sonunda da, kronik bronşit ve anfizem meydana gelir. Araştırma-lar akciğer kanserinin meydana gelmesinde ve artmasında da hava kirliliğinin önemli bir ne-den olduğunu göstermektedir. Gaz ve buharlar içinde en tehlikelisi olan kükürt dioksit bilindiği gibi ev ve endüstri bacalarından ve bunlara oranla daha az olarak motorlu taşıtların bacalarından havaya karı-şır. Yapılan araştırmaların sonucuna göre, kükürt dioksitin bronşitten dolayı ölümleri arttırmak-ta olduğu saptanmış, atmosferde SO2 miktarının arttığı sisli havalarda kronik bronşitli bazı hastalarda nefes darlığının şiddetlendiği gözlenmiştir. Ayrıca kirlilik derecesinin yüksek ol-duğu zamanlarda bazı hastalıklara tutulmuş kişilerde ölümlerin bir hayli arttığı görülmüştür. Ozon gazı, ara madde olarak oluşur. Ozon, gözlerde ve bronşlarda iltihaplanma, akci-ğerlerde ödem yapar. Bazı durumlarda bellek zayıflığı yaptığı söylenmektedir. Milyonda bir kısım, göz ve akciğerlerde iltihaplanmaya neden olmaktadır. Nitrojen oksitler, SO2 gazından sonra en önemli hava kirleticisidirler. Kimyasal mad-delerin yapılması sırasında özellikle nitrik ve sülfürik asit ve naylon fabrikalarından, benzin, yağ, doğal gazların ve mazot yanması sonucu ve yine çeşitli petrol arıtma işlemlerinden sonra açığa çıkmaktadır. Dumanla ve sağlık arasında çok sıkı bir ilişki bulunduğunu herkes bilir. Duman, özel-likle sisle birlikte bulunacak olursa havada bulunan SO2 ile birlikte aerosol halinde hızla ya-yılmakta, sonuç olarak kısa veya uzun süreli dönemlerde duygulu olma haline, cinsiyete göre değişmek üzere özellikle bebek, çocuk ve yaşlı insanlarda, kalp, damar ve solunum yolu hasta-lıklarına yakalanmış olanlarda etkisini göstermektedir. Duruma göre farenjit, larenjit, solu-num güçlükleri, bronşit, kronik bronşit, astım ve anfizem meydana gelmektedir. Bu hastalık-lara tutulmuş olanlarda hastalığın şiddeti artmaktadır. Duman, güneşin özellikle ültraviyole ışınlarının yere inmesine engel olur. Bu şekilde havada bulunan mikrop ve virüslerin canlı kaldığı hatta antibiyotiklere karşı direnç kazana-cak şekilde fizyolojik değişikliklere uğradıkları bilinmektedir. Bunun sonucu olarak çocuk-larda raşitizm artmakta, kanda hemoglobin değeri ile birlikte renk indeksi ve B 1 vitamini azalmakta, alkali fosfatlarda yükselme ve proteinlerde değişme kemikleşmede gerileme gö-rülmektedir. Günümüzde kanserin oluşmasının nedeni kesinlik kazanmamış olmakla beraber, bazı etmenler vardır ki, bunları ortaya çıkarıcı ve kolaylaştırıcıdır. Bunlara, kanserojen maddeler denir. Kanserojen maddeler, insanların günlük yaşamını tehdit eder duruma gelmiştir. Kan-ser oluşmasında, kimyasal kanserojenler yüzde 80 oranında olup, yüksek düzeydedir. Bunla-rın büyük bir kısmı çevremizden, hava, besinler ve içecekler yoluyla vücuda alınmaktadır. Özellikle havadan alınan bu kanserojen maddeler şu şekilde sıralanabilir: is, katran, zift, as-falt, parafin gibi maddeler. HAYVAN VE BİTKİLERE ETKİLERİ İnsanlarda görülen hava kirliliği etkilerine, bir ölçüde hayvanlar da rastlamaktadır. İnsanlar ve hayvanlar dışında bitkilerde hava kirliliğinin etkileri ile karşı karşıyadırlar. Daha önce de işaret edildiği gibi, hava kirliliğini oluşturan gazlardan bazıları, özellikle SO2 gazı, bitkilerde fotosentez olayını yavaşlatmakta, bitkilerde oksidasyon işlemine engel olmakta, kloroplastlardaki magnezyumu kurutmaktadır. Flüoritler, bitkiler üzerinde toplanarak bunları kısmen kurutmakta, Aldehitler, bitki-lerde yaprakların stomaları etrafındaki hücrelerde tahribata neden olmaktadır. Ozon gazı, bitkiler üzerinde zehirli alanlar oluşturmakta, ağaçların zamanından öce yaprak dökmesine yol açmakta ve özellikle genç bitkileri etkilemektedir. Tüm bu olumsuz etkiler, özellikle kültür bitkilerinde bir ölçüde ürün azalmasına, geniş alanlar kaplayan orman vejetasyonunun kurumasına neden olmaktadır.   İKLİME ETKİLERİ Hava kirliliğinin değiştirdiği atmosfer koşulları, iklimi de etkilemektedir. Genel ola-rak, kentlerdeki ısı ortalamalarının kırsal alanlardan daha fazla olduğu görülmektedir. Ayrı-ca, meteorolojik ölçmeler, hava kirliliğinin arttığı, büyük kentlerde rüzgar hızının da düştü-ğünü göstermektedir. Rüzgarın ısıyı ve nemi etkilemesi nedeniyle, bu hız azalmasının önemi çok büyüktür. Hava kirliliği, ayrıca, büyük kentlerin yağış miktarlarının da artmasına neden olmaktadır. Havayı ısıtan enerji sonucu, mikroskobik maddelerin çokluğu bulutların oluşma-sını kolaylaştırdığından yağışlar artmaktadır. Diğer yönden hava kirliliği sonucu kentlerin üstünde oluşan tabaka, ültraviyole ışınlarının da önemli derece kaybına yol açmakta, bu ise gün ışığının azalması sonucu doğmaktadır. ORMAN VE YEŞİL ALANLARIN ÇEVRE KİRLİLİĞİNİ ÖNLEMELERİ YÖNÜNDEN İŞLEVLERİ Bir ormanın ekonomik yararları dışında fiziksel, fizyolojik bir takım işlevleri de bu-lunmaktadır. Yapılan çeşitli araştırmaların sonuçlarına göre bu işlevler aşağıdaki gibi özetle-nebilir:   FİZİKSEL İŞLEVLER: 1. Ormanlar rüzgarın hız ve yönünü önemli ölçüde değiştirir. Bu işlev, ormanın sıklılığına ve tepe kapalılığına göre değişir. 2. Ormanlar, fiziksel hava kirlenmesini oluşturan toza karşı filtre görevi yaparlar. 3. Ormanlar, park – bahçe ve benzeri bitki örtüsü, gürültüyü yansıtma ve absorbe etmek suretiyle azaltıcı bir etkiye sahiptirler. 4. Ormanların, radyoaktif hava kirlenmesine karşı koruyucu işlevleri vardır.   FİZYOLOJİK İŞLEVLER: 1. Ormanlar ve benzeri yeşil örtü, fotosentez olayı sonucu çok önemli ölçüde CO2 kullanarak atmosferdeki CO2 konsantrasyonunu etkiler. 2. Ormanlar ve yeşil alanlardan fotosentez reaksiyonu sonucu oksijen üretimi doğal olarak sağlanmakta, böylece doğal oksijen ve karbon dengesini koruyucu bir öğe olarak görev yapmaktadır. 3. Bir orman örtüsü altında topraktan sıcaklık etkisi ile fiziksel olarak meydana gelen bu-harlaşma, açık alanlara oranla önemli ölçüde azalmaktadır. 4. Orman vejetasyonu, serbest hava hareketlerini engelledikleri için bulundukları yerin hava ve toprak sıcaklıklarını etkilemektedir. Orman vejetasyonu tepe çatısına çarpan güneş ı-şınlarının bir kısmını yansıtıp bir kısmını absorbe edip bir kısmını da dağıttığından or-man içine daha az ışık girer. Bunun dışında gerek transprasyon, gerekse nem miktarı faz-la olan orman havasının ısıtılması için yüksek oranda enerji harcanır. Bu nedenlerle koyu gölgeli yerlerde yazın hava serin olur. Kışın ise ormanın tepe çatısı ve nemli havası ile ka-rasal radyasyona engel olduğundan, çıplak alanlara oranla daha sıcak olur. ORMANLARIN SU VE TOPRAK KİRLİLİĞİ ÜZERİNE ETKİLERİ Toprak ve buna bağlı olarak meydana gelen su kirliliğinin nedenleri arasında toprağa verilen gübreler ile toprak taneciklerinde tutulan pestisitler bulunur. Toprak yüzeyinde ölü veya diri örtünün bulunuşu yüzeysel akışı azaltır. Yüzeyden a-kan suyun hızını mekanik olarak engelleyerek toprağa sızması için zaman kazandırır. Böylece gübreleme için verilen kimyasal maddelerin ve zararlılara karşı kullanılan pestitlerin yüzeysel sularla akarsulara, göllere ve denizlere ulaşması engellenmiş olur. E-rozyon olayını durdurarak, barajların zamanla sedimentle dolması oranı da ortadan kal-kar. SU KİRLİLİĞİ Su, doğal durumunda pek çok çözünmüş madde, parçacık, canlı organizma içerir. Evlerde ve sanayide kullanılan suya çeşitli kimyasal maddeler de katılmıştır. Sulara karışan atıklar, çok çeşitlilik gösterse de, başlıca inorganik bileşenleri sodyum, potasyum, amonyum, kalsiyum, magnezyum, klorür, nitrat, bikarbonat, sülfat ve fosfattır. Zararlı organik bileşenler ise çok çeşitlidir ve tümü bilinmemektedir; buna karşılık belirlenmiş olanları, böcek ilaçları, deter-janlar,fenollü maddeler ve karboksilli asitlerdir. Kirlilik uzun vadede, sudaki canlıların ya-şamında ve dağılımında değişikliğe yol açar.; bazı balıkların sayısı azalırken, kirleticilere di-rençli başka canlılar sayıca artış gösterir. Su kirliliği ayrıca, göllerin yaşlanmasına ve kuru-masına yol açan ötrofikasyonu hızlandırır. Böylece suyun çeşitli amaçlarla insanlar tarafın-dan kullanılması da kısıtlanmış olur. Sanayi atıklarının, böcek ilaçlarının ve öteki zehirli madde atıklarının sudaki çözünmüş oksijeni tüketmesi, balıkların kitle halinde ölmesine ne-den olur. Organik ve ısıl atıklar gibi çeşitli kirleticilerin zararlı etkileri doğal süreçlerle ortadan kalkabilir ya da azalabilir. Sulardaki organik atıkların başlıca kaynağı kentlerdeki kanalizas-yon sistemleridir. Suda çok büyük miktarlarda yoğunlaşmadıkları sürece bu maddeler, bak-teriler ve öteki organizmalar tarafından kararlı inorganik maddelere dönüştürülebilir. Bu kendi kendini arıtma süreci sudaki oksijenin yardımıyla gerçekleşir. Ama eğer organik mad-de miktarı çok fazlaysa, yeterli oksijen olmadan arıtım kötü kokulara yol açabilir. Suda çözünen tuzlar, gazlar ve parçacık durumundaki maddeler ise bu yolla arıtıla-maz. Ayrıca, sanayiden kaynaklanan bu atıklarda kadmiyum, cıva ve kurşun gibi zehirli me-taller vardır. Bu maddelerin ne ölçüde zararlı olduğu bilinmemekle birlikte, büyük miktarda cıva içeren sulardan avlanan balık ve benzeri ürünleri yiyen kişilerde ölüm olayına ve sinir sisteminde kalıcı bozukluklara çok rastlanmıştır. Ayrıca sudaki asılı parçacıklar, öteki mad-deleri soğurarak bakteri gelişiminde ve başta DDT gibi böcek öldürücüler olmak üzere pek çok zararlı maddenin dip çamurlarında çökelmesine neden olur. KİRLENMEYE YOL AÇAN KAYNAKLAR Evlerden, ticaret ve sanayi kuruluşlarından kaynaklanan kanalizasyon atıkları, su kirlenme-sine yol açan başlıca etmenlerdendir. Genellikle kullanılan kanalizasyon sistemlerinde, atık sular yağmur suyundan ayrılamamaktadır. Bu yüzden toplam su miktarı sistemin kapasitesi-ni aştığında atık suların büyük bölümü doğrudan akarsulara boşalan kanallara akar. Büyük kentsel bölgelerde yağmur suyunu toplamak için ayrı sistemler ya da göletler yapılmasına yüksek maliyetler yüzünden başvurulamamakta, bu kirlenmesini ciddi biçimde etkilemekte-dir. Sudan yararlanan sanayi tesisleri de bir dizi değişik etkisi olan kirleticilerin sulara karışmasına yol açar. Sanayileşmenin hızla ilerlemesiyle, sanayi atıkları kanalizasyon atıkla-rını birkaç kat aşmıştır. Su kirliliğinde en önemli rolü oynayan sanayi dalları kağıt,kimya, petrol ve demir – çeliktir; enerji santralları da büyük miktarda atık ısının sulara karışmasına neden olur. Plastik üretiminde kullanılan polikloroditenil, insan,hayvan ve bitki yaşamı için büyük tehlike oluşturmaktadır. Bu madde canlı hücrelerde biriktiğinden ve besin zinciri için-de yoğunlaştığından, başlangıçta çok küçük miktarlarda bulunsa bile, besinler insanlarca kul-lanılmaya başlayana kadar tehlikeli miktarlara ulaşmış olur. Tarım ilaçları, böcek öldürücüler ve kimyasal gübreler de su kirlenmesinde önemli rol oyna-makla birlikte bu tarım atıklarının etkileri, kentler ile kentlerin çevresinde yoğunlaşmış yerle-şim birimlerinin atıkları ve sanayi atıkları kadar büyük boyutlarda değildir. Kentlerin dışın-da su kirlenmesine neden olan başka bir etken de, çoğunlukla bırakılmış madenlerdeki asitle-rin çevredeki akarsulara karışmasıdır. Atık ısı: Sanayi tesislerinde, atıkların taşınması gibi işlevlerin yanı sıra soğutma ama-cıyla da büyük miktarlarda su kullanılır. Bu tesislerin başında elektrik enerjisi santralları gelmektedir. Yoğunlaştırıcıların soğutulması için doğal bir kaynaktan alınan su, sıcaklığı 10 yaklaşık 7 C artmış olarak kaynağa geri boşaltılır. Nükleer santrallar, fosil yakıt kullanan aynı kapasitedeki santrallardan yaklaşık yüzde 50 daha çok su kullanır. Bu nedenle, enerji santrallarının soğutulması, çevre kirlenmesinde son derece önemli rol oynayan etkenlerden biridir. Isıl kirlenme, biyolojik ve kimyasal tepkimeleri hızlandırır ve çözünmüş oksijen mik-tarının hızla azalmasına yol açar. Su sıcaklığı, balıkların yaşamasına olanak vermeyecek dü-zeye yükselebilir; bu durum, zararlı alglerin gelişmesine de ortam hazırlayarak besleyici –madde atıkları , deterjan, kimyasal gübre ve insan atıkları gibi kirleticilerin etkisini çoğaltır. Sonuçta atık ısı, göllerdeki ötrofikasyonu hızlandırır. Su kirlenmesinin nedenleri üç gruba ayrılarak incelenebilir:   Tarımsal çalışmaların neden olduğu kirlilik Tarımsal çalışmaların gereği olarak bitki hastalıkları ile mücadele amacıyla uygulanan pestisidlerin, verimin arttırılması için toprağa verilen gübrelerin ve çeşitli kullanımlar altın-daki alanlardan oluşan yüzey akışı, erozyon ve toprağın sürülmesi sonucu oluşan katı ve sıvı atıkların neden olduğu kirliliğe tarımsal kirlilik denir. Tarımsal çalışmalarda daha fazla ürün elde etmek amacıyla arazilere uygulanan kimyasal gübrelerin neden olduğu kirlilikler vardır. Bunlar arasında en önemlileri ise azot ve fosforun doğal düzen içindeki dönüşümleri sonucunda kirlilik meydana gelmesidir. Kimyasal gübrelerin arazilere uygulanması ile verimde bir artış olacağı doğaldır. Ancak bu gübrelemenin, suların kirliliğine hangi oranda etkili olacağının da saptanması gerekir. Su kirliliğine neden olan bitki besin maddelerinden azot ve fosfor, tüm canlı varlıklar için belili miktarlarda gerekli ise da fazla miktarının çeşitli sakıncaları bulunmaktadır. Belli başlı etki-leri, akarsular ve göllerdeki ötrofikasyon olayına neden olmasıdır. Bunun yanında fazla mik-tarda azot nedeniyle, azot zehirlenmesinden ölen toplu balık gruplarına da rastlanmaktadır. Hayvansal artıkların yarattığı kirlilik ise, hayvancılıkla ilgili olarak ahır ve ağıllardan ya-ğışlarla yıkanan hayvan idrar ve dışkı artıklarının temizleme sularına, oradan yüzey sularına karışması ve ya hayvan gübresinin tarlalara serilmesinden sonra yağışlarla yıkanarak yüzey sularına karışması şeklinde oluşan bir kirlilik şeklidir.   Endüstrinin neden olduğu kirlilik Bugün bu konuda bilinen kirlilikler beş alt grupta toplanabilir. 1. Kimyasal Kirlilik Bu kirlilik, sularda organik ve inorganik maddelerin bulunmasıyla oluşur. En çok karşıla-şılan tipi ise, proteinler, yağlar, gıda maddeleri ve hidrokarbonlar nedeniyle oluşan organik kirlenmedir. Zamk ve jelatin üreten fabrikaların artıkları, mezbahaların artık sularında ol-dukça fazla miktarda protein bulunur. Kağıt ve tekstil fabrikalarının artıklarında ise fazla miktarda karbonhidrat bulunmaktadır. Sentetik deterjanlar da kimyasal kirliliğe neden olan maddeler arasındadır. Az miktarda bulunmaları halinde dahi sularda köpük meydana getirdiklerinden suyun havalanmasını ön-ler, arıtma sistemlerinin randımanına düşürürler. 2. Fiziksel Kirlilik Fiziksel kirlenme, suyun sıcaklık, renk, bulanıklık ve koku gibi fiziksel özelliklerine etki eden bir kirlilik tipidir. Termal kirlenme, fiziksel kirlenmenin diğer bir tipidir. Soğutma suyuna gereksinme du-yulan termal enerji üreten istasyonlarda ve endüstrideki soğutma işlemleri sonucunda ortaya çıkan sıcak suların, akarsu, göl ve körfezlere dökülmesi termal kirlenmeye neden olmaktadır. Alıcı suyun sıcaklığında meydana gelen artış,sudaki biyolojik faaliyeti durdurmakta, suyun oksijen miktarını düşürmekte, reaksiyonu değiştirerek bir kısım kimyasal maddelerin çökel-mesine ve bir kısım maddelerin açığa çıkmasına neden olarak sudaki canlılar üzerinde değişik etkiler yapmaktadır. 3. Fizyolojik Kirlilik Suyun tadını ve kokusunu etkileyen bir kirlilik tipidir. Gıda endüstrisi artıkları ile kent kullanma suyu artıkları azotlu maddelerce zengin olduğundan son derece kötü bir kokuya neden olurlar. Endüstri artık sularının demir, mangan, fenoller vb. kimyasal maddeler içe-renleri suya özel, hoş olmayan bir koku ve tad verirler. 4. Biyolojik Kirlilik Sularda patojenik bakteri, mantar, alg, patojenik protozoa vb. bulunması nedeniyle mey-dana gelen kirlilik tipi biyolojik kirlenmedir. Diğer bir deyişle, suların tifo, kolera, amipli di-zanteri vb. çeşitli hastalıkları yapan organizmalarla kirlenmesi olmaktadır. Endüstri artık maddelerinin ve özellikle kanalizasyon sularının herhangi bir arıtma işle-mine tutulmadan plajlara dökülmesi nedeniyle hastalık yapan maddeler çoğalmakta ve denize girenlerde başta kulak, burun, boğaz yanmaları; sinüzit, bağırsak hastalıkları karaciğer ra-hatsızlıkları ve tifoya neden olur. 5. Radyoaktif Kirlilik Atmosferdeki atom patlamalarının ve nükleer enerji santrallerinin neden olduğu kirlilik-tir. Atmosferdeki radyoaktif maddeler, yağışlarla yeryüzüne düşmekte, akarsulara karış-makta, bitkiler tarafından absorbe edilmekte, buradan ot yiyenlere oradan da et yiyenlere geçerek gıda zincirinin üst halkasını oluşturan insanlara ulaşmaktadır. Nükleer santrallerin artık maddeleri oldukça önemli çevre kirleticilerindendir. Bu atık-lardan deniz dibine depo edilenlerden meydana gelen sızıntılar, son yılların önemli deniz kir-leticisi olarak sayılmaktadır.   Yerleşim Alanlarındaki Artıkların Neden Olduğu Kirlilik Bu kirliliğin iki önemli kaynağı, kanalizasyon ve çöplerdir. Bulaşıcı hastalık tehlikesi, kentleri, kapalı kanalizasyon sistemine zorlarken, yine kentlerdeki su sistemleri ile kanalizas-yon arasında bir bağlantı göze çarpmaktadır. Kanalizasyon sistemine verilen pis suların bo-şaltılması genellikle akarsulara, göllere veya denizlere yapıldığından, kent artık suları, önemli bir kirlilik nedeni olmaktadır. Çeşitli şekillerde kirlenen karasal kaynaklı akar suların genellikle ulaştıkları en son nokta denizler ve okyanuslarıdır. Bu nedenle karasal kaynaklı akar suları kirleten kaynak ve işlev-ler denizleri de kirletiyor demektir. Bununla beraber denizlerin kirlenmesi olayını şöyle özet-leyebiliriz: 1. Denizlerin havadan kirlenmesi:   Hava taşıt araçlarının meydana getirdiği kirlenme   Endüstri ve yerleşim bölgelerinde oluşan hava kirliliğinin, kimyasal reaksiyonlar (asit yağmurlar) sonucu sudaki maddelerle birleşmesi 2. Denizlerin denizlerden kirlenmesi   Deniz trafiğinin meydana getirdiği kirlenme. Dünya denizlerinde deniz trafiğinin yoğun-laşmış olması, özellikle ham petrolün deniz yoluyla taşınması denizlerde önemli kirlenme-lere neden olmaktadır. Petrol yüklü tankerlerin herhangi bir nedenle kazaya uğraması so-nucu denize dökülen petrol, deniz eko sisteminde geniş çapta ve uzun süreli zararlar mey-dana getirmektedir. Şu yada bu şekilde denize dökülmüş petrol veya petrol artıklarının zararları başlıca üç grup altında toplanabilir: # Bir litre petrol artığı kırk bin litrelik deniz suyunda oksijeni yok ederek yaşamı ortadan kaldırabilir. # Suyun üzerini kaplayan yağ tabakası suyun buharlaşmasını engelleyerek bir ölçüde ya-ğışların azalmasına neden olmaktadır. # Suyun üzerindeki bu örtü güneş ışığının denizlerin derinliklerine ulaşmasını engelleye-rek oksijeni azaltmakta ve bu da canlıların yaşam olanağını azaltmaktadır. Benzer zararlara denize pasa kül, moloz, safra, yağ, çöp gibi maddeleri atan, tank yıka-yan yük, yolcu gemileri ve tankerler de neden olmaktadır. Deniz eko sisteminde ortaya çıkan dengesizlik üretimde kayıplar şeklinde kendini belli etmektedir. Bugüne kadar yapılmış ince-lemelerin sonuçları, petrol artıklarından en çok etkilenen toplulukların, yumurta, lavra ve genç fertlerden oluşan topluluklar olduğunu göstermiştir.   Limanlarda meydana gelen kirlilik.   Deniz dibi kaynaklarından petrolün çıkarılması sırasında meydana gelen sızıntı ve ka-çaklar.   Deniz ürünlerini elde etmede uygulanan yöntemler.   Denizlerde sürdürülen askeri faaliyetler ve savaş. 3. Denizlerin karalardan kirletilmesi:   Yerleşim yerlerinden denize dökülen kirlilik.   Çöpler.   Kullanılmış sular, kanalizasyon artık ve suları.   Endüstri kuruluşlarından denize atılan kirlilik.   Tarımdan gelen kirlilik.   Turizmin (örneğin yat turizminin) doğurduğu kirlilik. TOPRAK KİRLENMESİ Tarımsal ve mineral atıklar, yeryüzündeki toplam katı atıkların önemli bir bölümünü o-luşturmakla birlikte, kirletici olarak görece daha az zararlıdır. Bunun başlıca nedeni de, yer-leşim bölgelerinden ve sanayiden kaynaklanan atıklar gibi belli noktalarda yoğunlaşmış ol-mayıp daha geniş alanlara yayılmalarıdır. Katı atıklar: Hayvan dışkısı, mezbahalardan ve her türlü ekin biçme etkinliğinden gelen atıklar, toprak kirlenmesinin en önemli kaynağıdır. Sığır, domu, koyun ve tavuk gibi çiftlik hayvanları, toplam insan nüfusundan 1000 kat daha çok dışkı üretir. Geçmişte besin madde-leri, otlak ya da çiftlikteki hayvanların aracılığıyla yeniden toprağa dönerken, günümüzde kullanılan yenilikler bu atıkların belli alanlarda yoğunlaşmasına neden olmaktadır. Pek çok kimyasal madde içeren tarım ilaçlarının (örn. Böcek öldürücüler, ot öldürücüler, mantar ilaçları) su ve toprak kirlenmesinde önemli payı vardır. Bunlar, besin zincirinde daha ileri organizmalara geçtikçe, her aşamada giderek artan oranda yoğunlaşır ve giderek zinci-rin son halkasını oluşturan etçillere önemli zararlar verir. Yani zararlı kimyasal maddeler, basit organizmalarda çok küçük miktarlarda bulunur, bu organizmalar daha karmaşık orga-nizmalarca yendikçe yoğunlaşır; otçulları yiyen etçillere ulaştığında ise zararlı boyutlara varmıştır. Özellikle şahin, atmaca, kartal gibi yırtıcı kuşlarda ve pelikan, karabatak gibi ba-lıklarla beslenen kuşlarda zararlı ilaçlarının olumsuz etkileri gözlenmiştir. Hücrelerinde biri-ken DDT (Diklor difenil triklor) ve benzeri bileşikler bu canlıların üreme yeteneğini sınırla-maktadır. Örneğin dişilerin, üstünde kuluçkaya yatılamayacak biçimde yumuşak kabuklu ya da kabuksuz yumurta vermesi sonucunda, Avrupa, Japonya ve Kuzey Amerika’da bazı türle-rin sayısında önemli azalmalar olmuştur. Tarım ilaçlarının biyolojik etkileri üzerinde yapılan yeni araştırmalar, bu maddelerin za-rarlılar üzerindeki etkisinin giderek azaldığını ortaya çıkarmaktadır. Pek çok böcek türü bu maddelere bağışıklık kazanmış durumdadır; ayrıca, kalıtım yoluyla sonraki kuşakların zehir-li ilaçlara karşı direnci artmaktadır. Öte yandan bu kimyasal maddelerin sürekli olarak kul-lanılması, bazı bölgelerde de önceden bulunmayan zararlı topluluklarının türemesine yol aç-mıştır. Bunun başlıca nedeni, tarım ilaçlarının, otçul böcek nüfusunun denetim altında tutan etçil böcekleri yok etmesidir. Aşınma sonucu biriken tortullar, toprağın bozulmasına ve suların bulanıklaşmasına yol açan bir başka etmendir. Tortul üretimi, orman ve tarım alanlarının kötü kullanımından kaynaklanan ve giderek boyutları büyüyen bir sorundur. Madencilik ve inşaat etkinlikleri de bu alanda rol oynar. Mineral katı atıkların başlıca kaynağı, madencilik etkinlikleri ve ilgili sanayilerdir. Özel-likle açık kömür işletmeciliğinin yol açtığı kirlenme, akarsuları, ve akaçlama havzalarını etki-lediği gibi, toprağın da kıraçlaşmasına yol açmaktadır. Yerleşim bölgelerinden ve sanayi tesislerinden kaynaklanan katı atıklar arasında kağıt, besin maddeleri, metal, cam, tahta, plastik, kumaş, kauçuk ürünleri, deri ve çöp sayılabilir. Bu maddelerin bir bölümü açık çöp alanlarına boşaltılır, bir bölümü çöp çukurlarına atılıp üstü kapatılır, bir bölümü ise fırınlarda yakılarak yok edilir. geriye kalan küçük bir bölümü de rüzgarlarla taşınmaya ya da çürümeye bırakılır ya da başka biçimlerde değerlendirilir. Toprağı kirleten nedenleri şöyle özetleyebiliriz:   Kentlerin neden olduğu toprak kirliliği Kentleşmenin yoğun bulunduğu bölgelerde toprak niteliği hissedilir ölçüde bozulmakta-dır. Bunda arazinin kötü kullanılması kadar, inşaat tekniklerinin kirliliği, alt yapı yetersizlik-leri dolayısıyla kirli su ve kanalizasyonun toprağa karışması ve çöp birikmesinde rol oyna-maktadır. Ayrıca kent suyunun yetersizliği kirli suların pompalanmasında fazla yardımcı olmadığı için, daha kolay şekilde toprakta kalmaktadır. Kent çevresinde toprak kirliliğine yol açan en önemli nedenlerden birisi de fosseptik yöntemiyle kent artıklarının toprakta birikti-rilmesidir. Bu yolla yoğunlaşan kirlilik, toprağın daha derin tabakalarına sızarak yer altı su-larını da kirletmektedir. Çöp sorunu da aynı şekilde kirliliğe yol açmaktadır. Çöp yalnız toprak üzerinde kalan katı madde olarak değil, zamanla toprağa karışan bir kirlilik öğesidir. Kent çevresinde toprak kirliliğine yol açan diğer bir konu da hava kirliliğidir. Gerek ken-tin ısınması sırasında bacalardan çıkan zehirli gazlar, gerekse taşıtların egzoz gazları, yoğun-laşarak toprakla kaynaşmakta ve topraktaki canlı yaşamı öldürmektedir.   Endüstrinin meydana getirdiği toprak kirliliği Endüstri uğraşları sırasında meydana gelen su ve hava kirlilikleri kimyasal yollarla top-rağa karışma eğilimindedir. Bunun yanı sıra çeşitli endüstri artıklarının fabrikalar yöresinde ve ya daha açıkta bir yere yayılması alışıla gelmiş bir uygulamadır. Bazı endüstri kollarının, şeker endüstrisi gibi, toprağın üstüne atılan posa maddesi çok olmaktadır. Bazı uğraşlar, ba-kır gibi, önemli derecede kirleticiliğe sahiptir. Endüstrinin toprak kirlenmesine yol açan önemli bir kusuru da yer seçim kriterlerine uymakta özen göstermemesidir. Ele geçirilen herhangi bir arsa üzerine kurulan bir fabrika-nın kirlilik meydana getirmesi ve çevresindeki toprağın canlı yaşamını tahrip ederek verimini düşürmektedir.   Tarım uğraşlarının meydana getirdiği toprak kirliliği Yanlış toprak kullanımı, yanlış tarım yöntemleri veya yanlış ürün seçimi toprakta tahri-bat yapabilir. Ancak, genellikle tarım uğraşlarının oluşturduğu toprak kirliliğinden, tarım ilaçları ve gübreleme sonucu meydana gelen kirlilik anlaşılmaktadır. Toprağın böcek öldürücülerle veya ot öldürücülerle doğrudan doğruya ilaçlanması ya-nında, havadaki tozlara yapışarak toprağa karışanlar veya bitkilerin yapraklarında kalan miktarların yağmur ve sulama sularıyla yıkanması sonucunda toprağa karışanlar, toprağın kirlenmesine yol açmaktadır. Tarım ilaçlarının biyokimyasal özellikleri, topraktaki mikroorganizmaların ve diğer can-lıların yaşama ve büyüme fonksiyonlarını engellemektedir. Kalıcı ve birikici özellik taşıyan klorlanmış hidrokarbon pestisidler, toprakta mevcut toprak mikroorganizmalarını öldürebi-lir, geçici olarak miktarını azaltabilir veya toprak yapısında değişmelere neden olabilirler. Üretimi arttırmak amacıyla kullanılan yapay gübreler, çok görülen bir toprak kirlenme-sine neden olmaktadır. Bu gübreler içinde bazıları bitki besin maddelerinin tuzla tutulmasına bir neden olurken giderek toprakta tuzluluk sorununu yaratmaktadır. Toprak Kirliliğinin İnsan ve Çevresine Etkileri Toprak sorunları ve kirliliği insan yaşamına ve çevresine çok önlü olarak etkide bulun-maktadır. Bu etkiler başlıca beş ana başlık altında toplanabilir.   Erozyonun etkileri   Yaşlık ve çoraklığın etkileri   Taşlılık ve kayalığın etkileri   Gübre ve gübrelemenin etkileri   Tarım arazisi bozulmalarının etkileri Erozyonun etkileri, toprak kayıplarında artma, üretkenlik potansiyelinde azalma, bitki besin maddelerinin kaybı, ürünlerde nitelik düşüklüğü, su tutma kapasitesinde azalma, ve-rimli toprakların sedimentlerle örtülmesi, toprak yapısının bozulması, çeki gücüne duyulan gereksinmedeki artma, sel oyuntuları ile arazi kaybı, sedimantasyon, akarsu yataklarında ve rezervuarlarda kapasite ve depolama azalması, uygun su temini masraflarının artması, baraj ve sulama sistemlerinde yıpranma ve normal bakım masraflarının artması şeklinde kendini göstermektedir. Gübre ve gübrelemenin etkileri, toprağı tanımadan ve özelliklerini bilmeden yapılan güb-relemelerle, toprağın gereksinimi olmayan gübreyi toprağa uygulamakla kendisini belli eder. Yanlış cins ve aşırı miktarda kullanılan gübre, toprak ph’ nın normalden uzaklaşmasına, top-rak strüktürünün bozulmasına, mikroorganizma yaşamını olumsuz yönde etkilemesine neden olmaktadır. Gereğinden fazla kullanılan gübre, örneğin azotlu gübre kullanılması, topraktan yıkan-malara, içme suları ve akarsularda nitrat miktarının artmasına; aşırı ölçüde fosforlu gübre kullanılması içme suları ve akarsuların fosfor içeriğinin yükselmesine; yüksek düzeyde kulla-nılan nitrojenli gübreler, bitkilerde nitrozamin gibi kanserojen maddelerin oluşmasına yol açmaktadır. DİĞER ETMENLER GÜRÜLTÜ KİRLİLİĞİ Bilimsel yönden “düzensiz ses” olarak nitelendirilen gürültü, hoşa gitmeyen, rahatsız edi-ci duygular uyandıran bir akustik olgu veya beğenilmeyen, istenmeyen sesler topluluğu ola-rak tanımlanır. Gürültü, tüm dünyada özellikle büyük kentlerde hızla kentleşmenin, endüstrileşmenin, ulaşımın artan nüfusun vb. etkenlerin yarattığı önemli bir sorun olarak karşımıza çıkmakta-dır. Örneğin ülkemizdeki büyük kentlerde son yıllarda artan kara trafiğinin gürültünün ne denli etkili olduğu herkes tarafından bilinmektedir. Bunu gibi açık pazarlar, eğlence yerleri, çocuk parkı ve bahçeleri, endüstri kuruluşları, yapı ve yol yapım ve onarımları, hava ve deniz trafiği gibi gürültü kaynakları düşünüldüğünde, bunun da gerçekten önemli bir çevre kirliliği yarattığı söylenebilir. Gürültü düzeyleri “desibel” (dB) birimi ile değerlendirilir. Ses 35 – 40 desibele ulaştığın-da gürültü olarak değerlendirilmektedir. 100 dB’nin üzerindeki gürültüler çok şiddetli gürül-tüler olarak tanımlanır. Sokak gürültüleri 60 – 90 dB arasında, bazı zamanlar bunların dışın-da değerler gösterilebilir. Büro gürültüleri, ortalama 35 – 65 dB, eğer çok gürültülü çalışan makineler varsa 80 – 85 dB olabilir. Evlerde 40 – 50 dB fon gürültüsü düşünülebilir. Büyük kentlerde kent içi gürültüsü 103 dB’ e ulaşırken motosiklet gürültüsü 110 dB, hava kompres-yonu ile çalışan delici tabancalar 120 dB civarında gürültüye neden olurlar. Gürültünün İnsan ve Çevresine Etkileri Gürültünün de insan sağlığını en az hava ve su kirlenmesi kadar etkilediği saptanmıştır. Nabız ve soluma hızlarını arttırarak insanların fizyolojik durumunda değişikliklere yol aça-bildiği gibi, geçici ya da kalıcı işitme bozuklukları da yaratabilir. Gürültüden kaynaklanan işitme bozukluğu milyonlarca sanayi işçisini ve bazı askeri personeli tehdit etmektedir. Ayrıca gürültünün kalp krizine ve yüksek tansiyon, ülser gibi kronik rahatsızlıklara neden olduğu yolunda tıbbi bulgular vardır. Bununla beraber kulak çınlaması – sağırlık, kalp ritminin artması, kaslarda yorgunluk, iş ritminin artması, iş veriminde düşüş, salgı düzeni ve sindirim sisteminde bozukluk, dikkat dağılımı, uyku düzeninde aksaklıklar gibi durumlarda insana zarar verebilir. İnsan kulağı 165 dB şiddetindeki bir sese 0,003 saniye; 145 dB şiddetindeki bir sese ise 0,3 saniye süre ile kalıcı bir etki olmadan dayanabilmektedir. Bu şiddetteki seslerin uzun sürmesi için kulak zarı yırtılmaları, özengi kemiği çıkıkları, orta kulakta kanama, iç kulakta önemli arızalar ortaya çıkar. Sesin sürekli olması, kesikli olmasından daha tahrip edicidir. Günlük 8 saat çalışan kişinin bu süre içinde sürekli olarak çalışabileceği gürültü şiddeti 93 dB olursa günlük çalışma 4 saat, 96 olursa bu süre en fazla 2 saat olmalıdır. RADYASYON Çevreye zarar veren bir etken de radyasyondur. Düşük etkili, insan ürünü radyasyon X ışınlarından, radyoaktif maddelerden ve televizyon gibi elektronik aygıtlardan kaynaklanır. Tıpta kullanılan araçlardan kaynaklanan radyasyon, insan ürünü radyasyonun yüzde 94’ünü, ortalama bireyin aldığı toplam radyasyonun da yüzde 30’unu oluşturur. Yüksek doz-da radyasyonun lösemi ve öteki kanserlere, düşük düzeyde radyasyonun da kalıtsal hastalık-lara yol açtığı ortaya konmuştur. Atmosferde, uzayda ve su altında yapılan nükleer denemele-rin uluslar arası antlaşmalarla yasaklanması, 1960’lardan bu yana doğal çevredeki radyasyon düzeyinin azalmasını sağlamıştır. Doğal çevreye karışan radyoaktif atomların hemen hemen tümü nükleer santrallardan kaynaklanmaktadır. Açığa çıkan başlıca maddeler kripton – 85 ile trityum havaya ve su sis-temlerine karışır; ama bunlar, dünya nüfusunun aldığı radyasyon miktarını önemli ölçüde arttırmamaktır.

http://www.biyologlar.com/cevre-kirlenmesi

Bilirubin tayini ( testi)

Bilirubin eritrositlerin yıkım ürünlerinden biridir.Bu yüzden normalde kanda belirli bir düzeyde (yaklaşık 1mg/dl) bulunur ve karaciğer tarafından dolaşımdan alınarak safra yollarına dökülür.Bu düzeyin üstüne çıkmasına hiperbilirubinemi denir.Normalde idrarda bilirubin bulunmaz. Bilirubin karaciğere gelmeden önce serumda albumine bağlı olarak bulunur. Bu glukronatlaşmamış bilirubin (albümine bağlı bilirubin –indirekt bilirubin) böbreklerden atılmadığı gibi serum, alkol ve amonyum sülfatla işlem görmeden Van den Berg reaksiyonu vermez. Halbuki konjuge bilirubin (glukronik asite bağlı) yükseldiği zaman idrara geçer ve yukarıdaki işleme gerek kalmadan doğrudan Van den Berg reaksiyonu verir.(Direkt bilirubin) Normal değerler: a) İndirekt (nonkonjuge) bilirubin. 02-08 mg/dlb) Direkt (konjuge) bilirubin 0.0-0.24 mg/dlc)Total bilirubin (direkt + indirekt bilirubin )Arttığı Durumlar:a) a) Hemoglobin yıkılımının artışı (hemolitik ikter): Direkt bilirubin normaldir, indirekt bilirubin ise hafif derecede artar.İdrarda bilirubin yoktur.Urobilin ve urobilinojen ise çok artmıştır. Karaciğer fonksiyonları normaldir.b) b) Karaciğer parankim hastalığı : Kanda direkt bilirubin fazlalaşır.Total bilirubinde buna paralel olarak çoğalır ve idrarda bilirubin pozitif olur.Özet olarak:- Enfeksiyoz,toksik ve neoplazik hepatik harabiyet-İntra ve ekstrahepatik safra yolları tıkanıklığı-Hemolitik hastalıklar-Hemokromatoz-Wilson hastalığı-Alkolik karaciğer hastalıklarında bilirubin artar.Diazo ( Van Den Berg) Testi:Diazo reaktifi sulfonilik asit ve sodyum nitrit karışımıdır.Prensip: Diazo reaktifi ile bilirubin azobilirubin adı verilen bir madde meydana getirirler ve bu rengin yoğunluğu bilirubin miktarı ile orantılı olduğundan spektrofotometrik olarak bilirubin miktarı belirlenir.Reaktifler: 1) 1) Diazo A solusyonu: 1 g sülfanilik asit 500 ml distile su ve 15 ml konsantre HCl ilave edilir ve karıştırılır.Distile su ile 1000 ml ye tamamlanır.2) 2) Diazo B solusyonu: % 0,5 lik sodyum nitrit solusyonudur.3) 3) Absolu metanol4) 4) Diazo kör: 15 ml HCl distile su ile litreye tamamlanır.Deneyin Yapılışı:1- 1- 0.5 ml serum üzerine 9.5 ml distile su ilave ederek 1: 20 dilüsyon hazırlanır.2- 2- Bu dilüsyondan Numune ve Kör tüpüne 5 er ml konur.3- 3- Köre 1 ml diazo kör konur.4- 4- Numuneye ise 1 ml taze diazo reaktifi konur.5- 5- İyice karıştırıp 2 dakika bekledikten sonra 540 nm ye ayarlanmış spektrofotometre kör ile sıfıra ayarlanır. Daha sonra testin optik dansitesi okunur ve bu değer kalibrasyon eğrisinden bulunur.Bu direkt bilirubin değeridir.6- 6- Her iki tüpe 6 ml metanol ilave edilip karıştırılır. 30 dakika bekletildikten sonra yine aynı şekilde köre karşı okunur. Burada okunan rakam total bilirubin miktarını verir. Direkt diazo reaksiyonu:Serum ile diazo reaktifi karıştırılır karıştırılmaz kırmızı renk görülür. Bu rengin 1 dakika içinde görülmesi plazmada konjuge (direkt ) bilirubin varlığını gösterir. Hepatik ve posthepatik sarılıklarda direkt diazo testi pozitiftir.İndirekt diazo reaksiyonu:Albumine bağlı (indirekt ) bilirubin doğrudan diazo reaktifi ile reaksiyona girmez. Serum ilk önce alkolle karıştırılır, proteinler çöker ve bilirubin serbest kalır.Daha sonra diazo reaktifi ilave edilirse kırmızı renk ortaya çıkar. Bu reaksiyonda hem direkt hem de indirekt bilirubin diazo reaktifi ile reaksiyona girer.Bilirubin miktarının hesaplanması: Diazo reaktifi ile meydana gelen rengin optik dansitesinin spektrofotometrede ölçülmesi ile bilirubin miktarı bulunur. Plazmadaki bilirubin miktarı total (direkt + indirekt ) olarak bulunabileceği gibi her ikisi ayrı ayrı da bulunabilir.İdrarda bilirubin aranması:Prensip: Bu gruptaki deneylerin prensibi, bilirubinin oksitlenerek, yeşil renkli biliverdin veya mavi renkli bilisiyanine çevrilip gözle daha iyi görülür hale getirilmesinden ibarettir.1-Rosin MetoduReaktifler:Rosin ayıracı (Alkol içinde iyot ve potasyum iyodur içeren bir çözeltidir.Daha basitçe tentürdiyod’un alkolle on kere sulandırılması ile hazırlanabilir.)Deneyin Yapılışı: Bir deney tüpüne 4-5 ml idrar konup üzerine 1 ml Rosin ayıracı, tüp kenarından yavaşça akıtılıp üstte tabakalandırılacak şekilde konur.İdrar ve ayıraç tabakalarının birleşme yerinde yeşil renkli bir halkanın görülmesi idrarda bilirubinin var olduğunu gösterir.2-Fouchet MetoduReaktifler:1-Baryum klorür çözeltisi 2-Fouchet ayıracı (demir II klorür ve triklorasetik asit içerir.)Deneyin Yapılışı:Bir deney tüpüne 10 ml idrar, 3-4 ml baryum klorürü çözeltisi konur iyice karıştırılır, süzgeç kağıdından süzülür.Süzgeç kağıdı üzerindeki çökeltiyle birlikte alınarak kuru bir süzgeç kağıdı üzerine konur.Çökelti üzerine bir damla Fouchet ayıracı damlatılır.Mavi yeşil bir renk görülmesi idrarda bilirubin olduğunu gösterir.NOT: Bu deney Rosin deneyinden daha hasastır.Klinik değerlendirme:İdrarda bilirubin varlığı ancak kanda glukronatlaşmış (direkt) bilirubinin artması halinde görülür.Çünkü direkt bilirubin suda eriyebilir ve böylece böbreklerden atılabilir.Kanda direkt bilirubin artışına neden olabilecek hastalıklar başlıca tıkanma sarılığı ve hepatobiliyer sarılıktır.Eğer aynı zamanda böbrek yetersizliği de varsa, atılan bilirubin miktarı azalır.Bu yüzden ilerlemiş böbrek yetersizliğinde kuvvetli bir sarılığa rağmen idrarda bilirubin bulunmayabilir.İdrarda ürobilinojen aranmasıBilirubin barsağa geldiğinde barsak bakterileri tarafından ürobilinojen haline çevrilir.Normal değeri 24 saatlik idrarda 0.5-4 mg kadardır. Günlük incelemelerde kalitatif (negatif,normal, +, ++ veya +++) olarak değerlendirilir.İdrarda ürobilinojenin arttığı durumlar şunlardır1-Kabızlık2-Aşırı hemoliz3-Karaciğerin fonksiyonel yetersizliği-Hepatosellüler sarılık-Portal siroz4-Bazı infeksiyonlar(tifo,dizanteri,sıtma)5-İdrarın çok konsantre olmasıPrensip:Şiddetli asit ortamda ürobilinojenin Ehrlich ayıracıyla kırmızı bir renk reaksiyonu meydana getirmesinden ibarettir.Reaktifler: Erhlich ayıracı (p-dimetilaminobenzaldehit ve HCL içerir.)Deneyin Yapılışı:Bir deney tüpüne konan 5-6 ml idrar üzerine 2-3 damla ehrlich ayıracı konup karıştırılır.5 dakika içinde kırmızı bir rengin meydana gelmesi, idrarda ürobilinojen varlığını gösterir.Renk şiddetine göre 1(+), 2 (+), 3(+) denir.Klinik değerlendirmeİdrarda ürobilinojenin yokluğu, safra kesesi kanalının tam tıkanık olması ya da yoğun antibiotik tedavisi sonunda barsak florasının tahrip edildiği durumlarda meydana gelir.İdrarda ürobilin aranmasıBarsakta oluşan ürobilinojenin bir kısmı enterohepatik dolaşım yoluyla karaciğere geri gelir ve tekrar ekskresyona uğrar.Barsakta floranın etkisiyle ürobilinojen oksitlenerek ürobiline dönüşür ve feçesle atılır.Bir kısmı ise böbreklere ulaşır ve idrarla atılır.İdrardaki ürobilinojen havanın etkisiyle oksidasyona uğrar ve ürobilin haline döner.Normalde idrarda ürobilin yoktur.Eser miktarda bulunup çok floresans veren madde ürobilin değil sterkobilindir.Arttığı Durumlar:1-Karaciğer hastalıkları2-Barsak bozuklukları,3-Hemolitik ikter,kronik kanamalar,4-Bazı enfeksiyonlar (tifo,romatizma v.s) :... Prensip: alkollü ortamda ürobilinin çinko tuzlarıyla yeşil floresans vermesi temeline dayanır.Reaktifler:1-Çinko asetat2-Alkol %903-Lugol çözeltisi ( İyot ve potasyum iyodür içerir.) Bu çözelti yerine 0.1 N iyot çözeltisi de kullanılabilir.Deneyin Yapılışı:Bir deney tüpüne 5-6 ml idrar, 1-2 gr kadar toz halinde çinkoasetat, 2 damla lugol çözeltisi konur, şiddetle çalkalanır.Bir iki dakika sonra tüp içindeki sıvı hacmi kadar alkol konur,karıştırılır ve süzülür.Süzüntü bir tüp içine konarak ışık yandan gelmek üzere siyah bir zemin üzerinde bakılır.Yeşil bir floresans görülmesi; idrarda ürobilin varlığını gösterir.

http://www.biyologlar.com/bilirubin-tayini-testi

B1 Vitamini

B1 VİTAMİNİ: TİAMİN Yararları: Vitamin B1 ya da Tiamin, diğer B grubu vitaminlerle birlikte vücudun, özellikle beynin, enerji üretiminimde gerekli bir vitamindir. Bu vitamin öncelikle şeker hastalığı, doku sertleşmesi, sinirsel hastalıklar önlenmesinde kullanılır ve yaşlı insanların zihinsel fonksiyonların sürdürebilmesine yardımcı olur. Merkezi sinir sistemi sağlığını korumakta önemli bir rol oynar. B1 vitamini kan hücrelerinin oluşumu ve sağlıklı bir dolaşım sistemi için gerekli olan hidroklorik asidin üretiminde rol oynar. Ayrıca karbonhidratlardan enerji üretiminde, kalp ve sindirim sistemi kaslarının tonusunun korunmasında anahtar rolü vardır. Hangi besinlerde bulunur? Buğday başağı, kepek, bira mayası, sebzeler gibi birçok besinde bol miktarda bulunur. Sebzelerin pişirilmesi, sütün kaynatılması yada sterilize edilmesi çok önemli miktarda tiamin kaybına neden olur, bu nedenle pastörize olmuş sütte az bulunur. Kuru fasulye, yumurta, bütün hububatlar, kahverengi pirinç ve deniz ürünleri B1 kaynaklarıdır. Süt ve süt ürünleri, sebze ve meyveler B1 açısından çok zengin kaynaklar olmasalar da yüksek miktarlarda tüketildiklerinde yeterli B1 vitamini sağlayabilir. Eksikliği nelere yol açar? B1 vitamini eksikliği durumunda “Wernicke-Korsakoff” sendromu hastalığı görülür. Ciddi bir beyin hastalığı olan bu sendrom alkol kullanımı ve tiamin eksikliği birleşiminde görülür. Hafif dereceli tiamin eksikliği ise yorgunluk ve depresyon ile sonuçlanır. B1 düzeylerindeki yetersizlik ise; gözlerde güçsüzlük, zihin bulanıklığı ve fiziksel koordinasyonda bozukluğa sebep olur. Ayrıca iştah azalması, sindirim bozukluğu, kabızlık, yorgunluk, başağrısı, sinir ve dolaşım sistemi hastalıkları, kas krampları, ödem gibi sorunlara yol açabilir. B1 vitaminin uzun süre eksikliklerinde “Beriberi” adı verilen ve merkezi sinir sistemini yıkıcı ve bazen ölümcül derecede etkisi olan bir hastalık oluşabilir. Beriberi'ye beslenme düzeyleri yeterli olan ülkelerde pek rastlanmaz. Ancak uzun süreli alkolizm vakalarında bu hastalığa ratlanabilmektedir. B1 düzeylerini ağızdan alınan antibiotikler, sulfa grubu ilaçlar, antiasitler ve doğum kontrol hapları da etkileyebilir. Ayrıca karbonhidratı yüksek diyetle beslenen kişilerde B1 ihtiyacı artabilmektedir.

http://www.biyologlar.com/b1-vitamini

Fonksiyonlarına Göre Hücrelerarası Bağlantılar

Tutturucu Bağlantılar: Hücrelere mekanik kuvvet sağlayan bağlantılardır ( Zonula adherens ,desmozom, hemidesmozom ) Geçirgen olmayan bağlantılar: Hücreler arasında geçirgen olmayan bir bariyer oluşturur (zonula occludens ). İletişim sağlayan bağlantılar: Moleküllerin hücreler arasında geçişini sağlar (Gap junction ). EPİTEL DOKUSU Örtü (Koruyucu), Bez (salgı) ve Duyu Epiteli (nöroepitel) olmak üzere 3 tipi bulunur. ÖRTÜ EPİTELİ Vücut iç ve dış yüzeylerini ve kavitelerini örtmesinden dolayı epitel hücreleri ya dış yüzeye ya da belirli organların lümenine bakan serbest yüzeye sahiptir. Epitel dokusu kan damarı içermez. Beslenmesi bazal membran altında bulunan kan kapillerlerinden diffüzyon yoluyla olur. Kapillerden çıkan besin maddeleri ve oksijen taşıyan sıvı bazal membranı katederek epitel içinde bazalden apikale doğru yayılır. Metabolizma ürünleri de bazal membranı geçerken kan damarlarına geri dönerler. Bazal membranın yapısı bu iki taraflı madde geçişini sağlayacak niteliktedir. Kat sayısı fazla olan epitel türlerinde yüzey katlarının da beslenebilmesi için alttaki bağ dokusu epitel içine eldiven parmağı şeklinde uzanır. Bu yapılar papilla olarak adlandırılır. Papillaların tepesinde de membranın hemen altında kan kapillerleri sıkı ağ yapısı oluştururlar. Buradan epitelin yüzey alanları beslenir. Epitelin mekanik etkilere uğradığı bölgelerde devamlı rejenerasyon vardır. Bazal kattaki hücreler mitozla çoğalırlar ve üst katlara doğru ilerlerler. Örtü ve bez epiteli ayrı yerlerde yerleşim gösterseler de iç içe olabilirler. Bağırsağın iç yüzünü döşeyen epitel hücrelerinin aralarında sıklıkla müköz salgı yapan goblet hücreleri bulunmaktadır. Koruma epitelinde temelde 3 tip hücre bulunmaktadır. Yassı hücreler, kübik (izoprizmatik) ve prizmatik hücreler Örtü epiteli bu hücreleri içererek katlarına göre şöyle sınıflandırılır. TEK KATLI ÖRTÜ EPİTELİ Tek katlı yassı epitel Tek katlı kübik epitel Tek katlı prizmatik epitel ÇOK KATLI ÖRTÜ EPİTELİ Çok katlı yassı epitel - Keratinleşmiş - Keratinleşmemiş Çok katlı kübik epitel Çok katlı prizmatik epitel --Basit --Fırçamsı kenarlı --Titrek tüylü Çok katlı değişici epitel YALANCI ÇOK KATLI EPİTEL (Pseudo-stratifiye Epitel) Tek katlı yassı epitel: Bazal membran üzerine oturmuş çok ince, yassı hücrelerden oluşur. Hücreler sıkıca bir araya gelerek devamlı bir tabaka oluşturur. Nukleusun bulunduğu orta kısımlar lümene doğru hafifçe kabarık dururlar. Nukleuslar yassı veya ovoid şekillidir. Madde geçişinin çok fazla olduğu vücut kısımlarında bulunur. Endotel (kan ve lenf damarlarını döşeyen örtü), mezotel (periton, plevra, perikard’ın yüzeyel örtüsü) ve böbreklerde Henle kulpunda bulunur. Tek katlı kübik (izoprizmatik ) epitel:Tek katlı halinde düzenlenmiş kübik (izoprizmatik) hücrelerden oluşmaktadır. Epitel yüzeyine dik kesitlerde hücreler kare şeklinde görülür. Çekirdekler yuvarlak ve hücrenin ortasındadır. Yüzeysel olarak bakıldığında poligonal şekilde izlenir. Bu tür epitele, ovaryumun yüzey epiteli, tıroid folliküllerinde, dış salgı bezlerinin boşaltma yollarında böbrek boşaltma yollarında rastlanır. Tek katlı prizmatik epitel:Bazal membran üzerinde tek katlı olarak düzenlenmiş prizmatik hücrelerden oluşur. Hücrelerin çekirdekleri hemen hemen aynı hizada, hücrenin şekline uygun, uzunca, ovoid yapıda olup biraz bazale yakın yerleşim gösterir. Bu tip prizmatik epitelin hücre yüzeyinde özel yapı farklılaşması bulunup bulunmadığına göre 3 türü ayırtedilir. a-Basit tek katlı prizmatik epitel:Hücrenin yüzeyinde hiçbir yapı farklılaşması yoktur. Bezlerin boşaltım yolları epitelleri ile midenin iç yüzeyini döşeyen epitel bu tiptedir. b-Tek katlı prizmatik çizgili kenarlı ( Mikrovilluslu, fırçamsı kenarlı) epitel: Barsak ve safra kesesi epiteli bu tiptedir. Işık mikroskobu ile epitelin serbest yüzünde gözlenen çizgili kenar, birbirlerine paralel ve sıkıca yerleştirilmiş mikrovilluslardan dolayıdır. c-Tek katlı prizmatik titrek tüylü (kinosilyalı) epitel: Apikal yüzeyde kinosilyalar bulunur. Tuba uterina, uterus, ductus efferentes, bronşlar...bulunur. ÇOK KATLI EPİTEL Çok katlı yassı epitel: Vücudun esas koruyucu epitelini oluşturan bu epitel, birbiri üzerine yığılmış hücre katlantılarından meydana gelmiştir. Bazal membran üzerine oturan en derin kat prizmatik hücreleri içerir. Bu hücre katının üstünde düzensiz poligonal şekilli, daha iri hücrelerden oluşan hücre katları bulunur. Ç.K.Y.E.’in keratinize olan ve olmayan tipleri vardır. Keratinize olan Ç.K.Y.E.’de üst sıraları oluşturan hücreler bir dizi değişime uğrayıp nukleuslarını kaybederler ve keratin lamellerine dönüşerek epitel üzerinde sert, koruyucu tabaka oluştururlar. Derinin epidermisi örnektir. Ç.K.Y.non-keratinize epitel yüzeyi kuru olan derinin aksine nemli boşlukları döşer, yumuşak ve canlı kalırlar. Yüzey hücrelerinde çekirdekler kaybolmaz. Bu tip epitele mukoza (mukoz membran) adı da verilir. Çok katlı kübik epitel:İki tabaka halinde kübik hücrelerden meydana gelmiştir. Embriyoner hayatta çok rastlanır. Yetişkinlerde ise tükrük ve ter bezlerinin kanallarında, gelişmekte olan ovaryum folliküllerinin çevresinde bulunur. ÇOK KATLI DEĞİŞİCİ (transisyonel ) EPİTEL: Bu tip epitel, üriner sistem boşlukları döşer. Mesane, üreter , üretranın üst kısmını döşer. Döşediği organın iç basınç ve hacim değişmelerine hücrelerinin biçimini, düzenini ve kat sayısını değiştirerek uyar. Organ dolu olduğu ve duvarları gerildiği zaman epitel 2-3 hücre katından oluşur. Boş olduğunda ise epitel kalınlaşır. Bazal kısımdaki hücreler kübik veya prizmatiktir. Yüzeysel hücreler organ dolu iken yassılaşmıştır, boş olduğunda ise iri prizmatik şekildedir, lümene bakan serbest yüzeyleri kabarık konveks yapıdadır. Bu hücreler çoğunlukla 2 tane nukleus içerirler. Çok katlı değişici epitelin yüzeyindeki hücrelerin kalın plaklardan oluşan özel bir membranı bulunur (KRUSTA). Bu plaklar, idrarla doku sıvıları arasında osmotik bariyer oluşturduğu düşünülen daha ince bir membranın yaptığı dar şeritlerle bölünür. Mesane kasıldığında membran ince bölümlerden katlanır ve kalın plaklar iğ şeklinde sitoplazmik veziküller oluşturacak şekilde içeri çöker. Bu membranın polar lipid fraksiyonunun esas bileşeni serebrozid tir. Dolu mesane 4 bardak idrar taşır. YALANCI ÇOK KATLI (PSEUDO- STRATİFİYE) EPİTEL:Bütün hücreler, bazal laminaya oturur. Ancak bazı hücreler yüzeye kadar uzanmazlar çekirdekler farklı seviyelerde olduğundan epitel ışık mikroskop ile bakıldığında çok katlı epitel izlenimi verir. Solunum yollarında, trake, büyük bronşlarda, östaki borusu, timpanik boşluk, ductus deferens ve ductus epididimiste bulunur.

http://www.biyologlar.com/fonksiyonlarina-gore-hucrelerarasi-baglantilar

Serum Protein Analizleri

Proteinler azot, karbon,oksijenin yani sira fosfat,kukurt ve diger bazi elementleri de tasiyan organik bilesiklerdir.Hucrenin kuru agirliginin ¾ unu olustururlar.Enzimatik aktivite, savunma,tasima,depolama,mekanik hareket,mekanik destek,biyolojik sinyal,buyume ve farklilasma iletimi gibi fonksiyonlarinin yani sira yapisal bilesen olarak da davranirlar. Proteinler,amino asit polimerleridir.Protein yapisinda yer alan aminoasitlerin belirli sayi ve sirada dizilisi ve daha sonra uc boyutlu yapinin kazanilmasi ile fonksiyonel protein meydangelir.Bilesim ve cozunurluklerine gore basit (albumin,globilin,histon,protaminler) ve bilesik (glikoprotein,mukoprotein,nukleoprotein,fosfoprotein,kromoprotein,lipoprotein ve metalloproteinler)olmak uzere iki gruba ayrilabildigi gibi sekillerine gore de globuler (cozulebilir,sekillenebilir proteinler;albumin gibi) ve fibriler(sert,kirilgan,cozunemeyen proteinler;kollajen,keratin gibi) olarak siniflamak mumkundur.Proteinlerde amino asitleri bir arada tutan veya belirli sekillenmelerini saglayan kuvvetler ya kuvvetli (peptit baglari,disulfit kopruleri) ya da zayif (hidrojen baglari,vander Waals kuvvetleri,molekuller arasiitme ve cekmeler) karekterde olabilir.Proteinlerin gosterecegi aktivite uc boyutlu yapinin bir sonucudur.Uc boyutlu yapi ise uc veya dort kademeli yapilasma sureci (primer,sekonder,tersiyer,kuaterner yapi) sonunda kazanilir.Uc boyutlu yapinin bozulmasina denaturasyon denir.Denature protein kendisinden beklenen fonksiyonu yerine getiremez.Denaturasyon,cesitli faktorlere(isi,pH,agir metal tuzlari,radyasyon isinlari gibi ) bagli olarak meydana gelir.Bu olay sirasinda primer yapi haric diger butun yapilar bozulur.Serum total proteininin fizyolojik degeri;Yeni dogmus % 5.0 - 6.5 grSut cocugu % 5.5 - 7.0 gr6 – 12 aylar % 6.5 - 7.5 grYetiskin % 6.5 - 8.5 grPratik nedenlerden kliniklerde kan proteinlerinin incelenmesi genellikle serumda yapilir.Bu durumda fibrinojen uzaklastirilmis oldugundan serum tum protein degeri plazmaya gore yaklasik %0.2 – 0.4 gr daha dusuktur.Kan alinirken yapilan venoz staz total protein degerini onemli olcude yukseltir.Ayrica vazomotor olaylarda tum protein miktarini etkiler. Bu nedenle normal degerin tayini icin kan sabahleyin alinmalidir. Kan proteinlerinin incelenmesi bize protein metabolizmasini yansitmaz.Bunun icin protein yikim urunlerinin idrarda birkac defa bakilmasina,protein dengesinin ortaya konulmasina gerek vardir.Hastaliklardan bircogu serum protein fraksiyonlarinda degisikliklere sebeb olsada pek azinda serum total proteininde artis veya azalis olur.Bu durum hem proteinlerin genis olan normal degerine (% 6.5 – 8.5 gr) hem de hastalik durumunda kural olarak birkac globilin fraksiyonunun artmasi halinde albuminin buna uygun olarak azalmasi ile ve sonuc olarak total proteinin degismemesinden kaynaklanmaktadir.Normal degerin genis bir alana yayilmasina karsilik serum total protein degerinin cok dar bir sapma degeri vardir.Hipoproteinemi Nedenleri1-Protein kaybi ile olan hipoproteinemi nedenleri:a-Barsaktan protein kaybi:Menetrier sendromu ,mide polipi,ulseroz gastrit,coliak spru,gluten enteropatisi,kolitis ulseroza,mide-barsak ve safra yollari karsinomlari,barsak stenozu,Hirschsprung hastaligi,jejonum divertikulu ve hemitiazis.b-Bobrekten protein kaybi:Nefrozlar, glemerulonefrit,bobrek amiloidozu.c-Deri yolu ile protein kaybi:Yaniklar,deskuamasyonla seyreden deri hastaliklari(psoriazis),dermatit.d-Vucut bosluklarindan eksuda yada transudanin uzaklastirilmasi ile olusan protein kaybi:2-Kotu beslenme,uzun sure i.v beslenme.3-Diyare,kronik zehirlenmeler(benzen,karbontetraklorur,fosfor),tedavi gormemis pernisiyoz anemi,ayarlanmamis diyabetes mellitus,kalp yetmezligi,hipertroidizm,gebelik toksemileri.4-Karaciger yetmezligi;siroz,kanser. Hiperproteinemi Nedenleri 1-Multpl Myelom2-Makroglobilinemi3-Cesitli tropik hastaliklar(lepra,kala-azar) Relatif Hiperproteinemiler1-Sindirim kanalindan su kaybi(diare,kusma)2-Bobrek yolu ile su kaybi(bobrek yetmezliginde poliuri,tuz kaybettiren nefrit,diuretik tedavi)3-Su aliniminin kisitlanmasi I-KALITATIF PROTEIN ANALIZLERIKalitatatif protein analizlerinin temelinde,protein denaturasyonu ile uc boyutlu yapinin bozularak proteinlerin cokmeleri veya uygun bir renklendirici ajanla renk olusturmalari esasi yatmaktadir.kalitatif analizler iki grup altinda totlanabilir.1-Renk Olusumuna Dayanan Testler:Proteinlerdeki bazi gruplarin kimyasal ayiraclarla birlesip renkli kompleksler olusturmasi seklinde ortaya cikar.Proteinlerin aminoasit icerigi farkli oldugundan olusacak renk ve siddeti degisik olacaktir.a)-Biuret Deneyi:En karekteristik renk reaksiyonudur.Bu deneyde,proteinler kuvvetli alkali ortamda Bakir sufat(CuSO4) ile pembemsi mor renkli bir kompleks olustururlar.Bunun icin iki veya daha fazla peptit bagi bulunmasi gerekir.b)-Millon Deneyi:Reaksiyon protein molekulundeki hidroksifenil grubunun varligindan kaynaklanir ve tirozin,fenol,timol gibi 3,3 pozisyonunda fonksiyonel grubu bozulmamis fenolik grup tasiyan her bilesik ayni reaksiyonu verir.c)-Ksantoprotein Reaksiyonu:Bu reaksiyon protein molekulunde bulunan fenil gruplarinin varliginda gerceklesmekte olup nitrikasit,nitro bilesiklerini olusturmaktadird)-Ninhidrin Reaksiyonu:Amino asitlerin kalitatif ve kantitatif tayininde kullanilir.Aminoasitlerin amino grubu oksidan ajan ninhidrin ile tepkimeye girerek mavi mor renkli bilesik olusur.Butun alfa aminoasitler bu reaksiyonu verir.Prolin ve hidroksiprolin sari,asparajin kahverengi urun verir.2-Proteinlerin Cokmesine (presipitasyon) Dayanan Testler:Bu tur testler,bir proteinin agir metal tuzlari (HgCI2,AgNO3,ZnSO4,Ba(OH)2 ),asit ve bazlar,organik cozuculer,isi, aktif deterjanlar,basinc,Uvradyasyon,ure cozeltisi gibi denature edici ajan veya faktorlerle uc boyutlu yapinin bozulmasina dayanir.a)-Agir Metal tuzlari ile Cokturme:i-Somogy Yontemi (Cinkosulfat +Baryumhidroksit Yontemi):1 ml serum 5 ml suya konur buna %4,75 gr lik Ba(OH)2 cozeltisinden 2ml eklenir,karistirilir.Daha sonra %5grlik ZnSO4 cozeltisinden 2ml katilir karistirilir,kisa bir sure kendi haline birakilir ve suzgec kagidindan suzulur.ii-Tungustik Asit Yontemi:1ml serum alinir uzerine 0,5 ml Na-tungustatin sudaki %10 luk cozeltisinden ve 8ml distile su konur calkalanarak karistirilir.Sonra uzerine H2SO4(0,33Mlik veya 0,67N lik) den 1ml konur calkalanir.10 dk beklenir ve kuru bir suzgec kagidindan suzulur,berrak bir suzuntu elde edilir.b)-Asit ile koagulasyon(Trikloro Asetik Asit-TCA-Yontemi )1ml serum alinir,uzerine %20lik TCA cozeltisinden 1ml ilave edilir.Hafif bir bulaniklik gozlenir.Bu tup kuvvetli bir sekilde calkalanir,20dk beklenir,tupun dibinde kuvvetli bir cokelek ustunde berrak bir sivi ayrilir.Cokelme kuvvetli asit TCA dan dolayidir.c)-Alkolle Presipitasyond)-Isi ile KoagulasyonII-KANTITATIF PROTEIN ANALIZLERIKantitatif protein analizleri,proteinlerin renklendirme,cokturme,boya baglama,bulaniklik olusturma,isaretleme gibi islemlerle dayanir.1-Azot analizi:Serumda bulunan azotlu maddeler,proteinler ve non-protein nitrojen(NPN) olarak adlandirilan ure,kreatinin,urikasit,aminoasit gibi maddelerdir.Azot miktarini degerlendirmek icin kullanilan metodlarin basinda KJEDAHL yontemi gelir.Bu yontemde biyolojik materyalde bulunan ve azot iceren maddeler amonyum sulfat((NH4)2SO4) haline cevrilir; daha sonra degisik metodlarla (Kjeldah.neslerizasyon,gazometrik,iodometrik metodlar) buradaki azot miktari belirlenir.2-Renk Olusumuna Dayanan Testlera)-Biuret Yontemi:*Proteinlerdeki peptit baglarinin bazik ortamda Cu+2 iyonlari ile menekse renkli bakir –peptid bagi-protein kompleksi olusturmalari ve bu kompleksin absorbansinin 540 nm de spektrofotometrik olarak degerlendirilmesi prensibine dayanir.Amino asitler ve dipeptitler bu reaksiyonu vermez.Yaygin olarak kullanilan bir yontemdir.Reaktifler1-Serum fizyolojik(%0,9luk NaCI )2-Biuret Solusyonu: 3gr CuSO.4H2O tartip 100ml suda cozulur.Ayri bir kapta 12grC4H4KnaO6.H2O(sodyum potasyum tartarat) tartilir ve bir miktar suda cozulur.Her iki cozelti birbirine karistirilir.2lt lik bir balon jojeye aktarilir,uzerine %10luk NaOH den 600 mlt yavas yavas devamli olarak calkalanarak ilave edilir,iyice karistirilir.2gr KI(potasyum iyodur)ilave edilir ve 2ltye saf su ile tamamlanir.3-%10luk NaOH 1000mlDeneyin CalisilmasiKor icin 1,Standarticin1,calisilacak numune sayisi kadar da numuneler icin tup alinir.Uzerleri K,S,N1,N2,N3.,........... yazilir.Kor                Standart                        Numuneler           Distile Su100?L                -                                    -                       -Standart            -                                100 ?L                    -Serum               -                                    -                      100 ?LSerum Fizyolojik 1 mL                             1 mL                    1 mLBiuret Reaktifi    6 mL                             6 mL                    6 mLKaristirilir,oda isisinda 15 dk bekletilir.540 nm dalgaboyunda kore karsi okunur.Standart hazirlanmasi:%30luk bovin serum albuminden 0,1ml alip serum fizyolojik ile 0,6ml ye tamamlanirHazirlanan standardin konsantrasyonu %5liktir. N.absorbansi Hesaplanmasi:Numune Konsantrasyonu(%gr)= ¾¾¾¾¾¾ C S.konsantrasyonu(%5)S.absorbansib)-Folin-Lowry Yontemi:Protein once bazik ortamda biuret ayraci ile reaksiyona sokulur,daha sonra Folin ciocalteu ayraci (fosfo tungunstik asit ve fosfomolibdik asit karisimi) katilir.Olusan bakir-peptit bagi –protein kompleksi ve aromatik aminoasitler(tirozin,triptofan gibi) folin ayracini indirgeyerek mavi renkli bir kompleks olusturur.Bu kompleks spektrofotometrik olarak olculur.3-Fizikokimyasal Yontemler:a)-Isigi Kirma Indeksi(Refraktometri):Biyolojik sivilarda bulunan kati maddelerin konsantrasyonu isigi kirma indeksi ile dogru orantilidir.Serumda bulunan kati maddelerin buyuk cogunlugu proteinler oldugundan serumun olculen kirma indeksinin proteinlerle dogru orantili oldugu kabul edilir.b)-Ultraviole Spektrofotometrisi:Proteinler 200-225 ve 280 nm dalgaboyundaki ultraviyole isigi absorblarlar.200-220 nm deki absorbsiyon peptit baglarindan,280 nm deki absorbsiyon ise fenilalanin,tirozin ve triptofan amino asitlerinden gelir.Bu metodda hicbir kimyasal isleme tabi tutulmadan cozeltideki protein miktari olculur.4-Iyonik CokturmeProteinlerin anyonik veya katyonik formda bulunmasi soz konusudur.Katyonik formdaki proteinler anyonik cokturuculerle,anyonik formdakiler ise katyonik cokturuculerle cokturulerek homojen bir suspansiyon elde edilir.Bu suspansiyon turbidometrik veya nefolometrik olarak degerlendirilir.5-Boya Baglama Yontemleri:Proteinlerin boyar maddeleri baglama ozelliginden yararlanarak analiz yapilmasidir.Ozellikle Albumin tayininde metil oranj ,brom krezol yesili gibi boyalar kullanilir.6-Immunokimyasal Yontemler:ELISA,RIA ile isaretlenmis antikor kullanilarak olusan protein-antikor kompleksinin subrat ilavesi ile urune donusturerek ,olusan urunun spektrofotometrik yada fulorometrik olcumune dayanir.

http://www.biyologlar.com/serum-protein-analizleri-1

B3 vitamini

B3 VİTAMİNİ: NİASİN Niasin, Niasinamid veya Nikotin Amid olarak da adlandırılan B3 vitamini; protein, yağ ve karbonhidrat metabolizması için gerekli olan bir vitamindir. Yararları: 3 vitamini kan dolaşımını düzenler, sağlıklı bir deri sağlar ve santral sinir sisteminin çalışmasına yardımcı olur. Beyin ve hafızanın ileri fonksiyonlarının denetlemesinden dolayı şizofreni ve diğer zihinsel hastalıklarda tedavi edici rol oynar. Son olarak yeterli B3 düzeyinin insülin ile östrojen, progesteron ve testesteron gibi cinsiyet hormonlarının sentezi için hayati rol oynadığı gösterilmiştir. Son zamanlarda kan kolesterolünü ve trigliseritini yan etki olmadan emniyetle düşürebildiği için doktorlar tarafından bu amaçla sıklıkla kullanılmaktadır. Ancak B3 vitamininin kullanımında doz ayarlaması mutlaka doktor tarafından yapılmalıdır. Hangi besinlerde bulunur? B3 vitamini içeren doğal yiyecekler sığır eti, brokoli, karnabahar, havuç, peynir, mısır unu, yumurta, balık, süt, patates ve domatestir. Ette bol miktarda vardır. Vücut, süt ve yumurtadaki proteinlerden de niasin üretebilir. Eksikliği nelere yol açar? B3 vitamini eksikliğinde “pellegra” adı verilen ve sinir sisteminde fonksiyon bozukluğu, mide bağırsak sistemi bozukluğu, ishal, zihin bulanıklığı, depresyon ve ağır dermatit ve çeşitli cilt lezyonlarına neden olan bir hastalık oluşur.

http://www.biyologlar.com/b3-vitamini

Patolojinin Tarihçesi

İlk çağlarda; hastalıkların tanrıların insanları cezalandırmak için kullandıkları bir araç olduğuna inanılıyordu. Her hastalık bir günahın, suçun cezasıydı. Bu inanç, din adamlarının etkinliğini ve gücünü de artırıyordu. Batı Anadolu ağırlıklı eski Yunan uygarlığında ve sonraları ibni Sina'nın yaklaşımlarında, hastalıklar ile tanrı(lar) arasındaki bağı koparma çabaları olmuştur. Atardamarlarda hava değil, kan bulunduğunun anlaşılması bile, insanlık tarihinin yakın dönemlerindedir (Galen, MS 200). Orta çağ boyunca Avrupa'da hastalıkların içsel ve dışsal nedenleri olduğu yönünde (ilahi olmayan) düşünceler ortaya atılmış ve böyle düşünenler genellikle bundan zarar görmüşlerdir! Rönesans ile birlikte, hastalıklar konusunda fiziksel neden-sonuç ilişkileri gündeme gelmiş, salgın hastalıklardan insandan insana geçen etkenlerin sorumlu olabileceği gibi görüşler "gözleme dayanarak" ortaya atılmıştır. Dolayısıyla, "gözlem"in hastalıkları anlama açısından önem kazanması ve bugün anladığımıza yakın anlamda patolojik incelemeler yapılması rönesans ile başlar. Eski Mısır uygarlığında da "haruspex" isimli saray görevlilerinin belli hayvanların organlarını kesip inceledikleri bilinmektedir. Özellikle karaciğerin kesit yüzünü değerlendiren "haruspex"leri ilk patologlar olarak görmek mümkün olabilir. Ancak, "haruspex"lerin (sözcük anlamı:kâhin)incelemeleri o karaciğerde ne olduğunu açıklamayı değil, uğruna bir hayvanın karaciğeri çıkarılan kişinin geleceğinin ne olduğunu tahmin etmeyi amaçlıyordu! Patologluk, bu falcılık yönünü zamanla kaybetmiştir!. Patolojinin büyükbabası olarak kabul edilebilecek kişi, Padua Üniversitesi anatomi profesörü Giovanni Battista Morgagni'dir (1682-1771 veya 1777). Morgagni'nin 1761'de yayımladığı kendi yaptığı 700 otopsiyi anlattığı kitabı bir dönüm noktasıdır. Bundan sonraki dönemde "etiyoloji", "lezyon" ve "semptom" arasında ilişki kurularak bugün bildiğimize yakın, tanrısal yönü olmayan, bir "hastalık" kavramı oluşmuştur. Bu dönemde Bichat, Laennec, Dupuytren, Hodgkin, Addison, Paget, Rokitansky gibi adları bugün de yaşayan hekimler, patoloji bilgisinin artmasına katkıda bulunmuşlardır. Giovanni Baptista Morgagni (1682-1771), Valsalva'nın öğrencisidir. İtalya'da Padua Üniversitesinde 50 yıldan uzun süre görev yapmış ünlü bir hekim olan Morgagni, 1761 yılında, 80 yaşındayken De Sedibus adlı kitabını yayımlamış ve burada 700'den fazla olguda klinik bulgular ile otopsi bulgularını karşılaştırmıştır. Tanımladıkları arasında; mitral darlığı, endokardit, angina pektoris, siroz, spina bifida, patent duktus arteriosus, foramen ovale bulunmaktadır. Kolposkobu bulan, parasentezi ilk gerçekleştiren hekimdir. İnsan ve hayvanların aynı mikroskobik yapıtaşlarından (hücrelerden) yapıldığını ilk kez söyleyen, histolojinin babası olarak kabul edilen Theodor Schwann (1810-1882) da böyledir. Patolojinin 1980'lere kadar kullanılmakta olan yaklaşımlarının hemen tümünün kaynağı olarak "hücresel patoloji"nin kurucusu Rudolph Ludwig Karl Virchow gösterilmektedir. Histopatolojik incelemeye dayanan bu yaklaşımda "hücre"; yaşamı, hastalıkları ve ölümü açıklamaya yönelik tüm çabaların odak noktasını oluşturur. Virchow, hastalıklı hücrelerin de sağlam hücrelerden oluştuğunu vurgulayan ilk bilim adamıdır. Rudolph Ludwig Karl Virchow (1821-1902), günümüzdeki anlamı ile patolojinin babası olarak kabul edilir. Mikroskobun hastalıkların tanısında etkin biçimde kullanımını savunmuştur. Döneminin pek çok ünlü hekimi (Rokitansky dahil), mikroskobik incelemenin önemine inanmıyor ve bu yaklaşımı küçümsüyorlardı. Virchow; tromboz, atrofi, hiperplazi ve iskemi terimlerini ilk kez kullanmış, pek çok hastalığı bu gün bildiğimiz biçimleriyle ilk kez tanımlamıştır. Yaşadığı dönem için devrim niteliğinde olan -hemen tümünde haklı olduğu zamanla anlaşılan- görüşleri nedeniyle zorluklarla karşılaşmıştır. Daha 30 yaşına gelmeden fibrinojen, lökositoz ve lökemiyi tanımlamış; yerel lezyonlara cerrahi girişim yapılmasının anlamsız olduğunu düşünenlere karşı çıkmıştır. İnfarktüs, amiloid, kalsifikasyon ilk kez Virchow tarafından doğru biçimde açıklanmıştır. Lösin ve tirozin amino asitleri Virchow tarafından tanımlanmıştır. Her hücrenin bir hücreden meydana gelmesi gerektiğini (omnis cellula a cellula) yüksek sesle ve inatla söyleyen ilk doktordur. (Bu görüş, o zamanlar çoğunluk tarafından gülünç bulunuyordu). Art arda verdiği 20 konferansın ardından 1858'de yayımlanan Fizyolojik ve Patolojik Histolojiye Dayanan Hücresel Patoloji kitabı, hastalıkların mikroskobik incelenmesi yaklaşımının temeli olarak kabul edilir. Anatomik patolojinin tıp fakültelerinde zorunlu bir ders olarak kabul edilmesi de Virchow sayesindedir. Politik radikalliği ile de bilinen Virchow'un 2000 kadar makalesi ve kitabı bulunmaktadır. Günümüzde, moleküler yöntemlerin gelişmesi ile bu tür yöntemler de patolojik incelemelerde gittikçe artan biçimde kullanılmaya başlanmıştır. Bunlar arasında, DNA başta olmak üzere, "genetik materyal" ile ilgili olanların önemi özellikle artmaktadır. Ülkemizde patoloji, Osmanlı döneminin tek tıp fakültesi olan askeri tıp fakültesinde (Gülhane) Alman bilim adamları tarafından ilk kez uygulanmıştır. Dolayısıyla, Patoloji Türkiye'ye Gülhane ile gelmiştir. İlk Türk patologlarının tümü askerdir. Ülkemizde patolojinin kısa bir tarihi bu konuda daha fazla bilgi edinmenizi sağlayabilir. Tıp eğitiminde patolojinin yeri Günümüzde tıp fakültesi düzeyindeki bütün okullarda patoloji en ağırlıklı derslerden biri olarak okutulmakta ve ders saati sayısının çokluğu açısından da pek çok kurumda ilk sırayı almaktadır. Bu dersler bir veya iki seneye yayılmaktadır. Gelişmiş ülkelerde de, yalnızca 'ders anlatma' yolu ile öğretim pek çok kurumda neredeyse tümüyle ortadan kalkmakta olmasına rağmen, öğrencinin başarısının değerlendirilmesinde patoloji bilgisinin ölçülmesi önemini korumaktadır. Patoloji öğretiminden beklenen; öğrencinin hastalıklı doku ve organları inceleyerek, neden (etiyoloji) ve sonuç (hastalık bulguları) arasındaki bağlantıları kavrayabilmesini sağlamaktır. Patoloji eğitimi, hastalıklar bilgisine görsel bir boyut kattığı için, öğrenilenlerin daha anlaşılır ve kalıcı olmasını sağlama açısından önemlidir. Bu yönleriyle patoloji, 'temel' bir tıp dalıdır. Patolojide öğrenilenler, hemen tüm klinik dallarda o dala özgü bilgilerin öğrenilmesini kolaylaştırır. Tıp pratiğinde patolojinin yeri ve patoloji uzmanının işlevleri Patolog, hemen yalnızca yataklı sağlık kurumlarında hizmet veren, hem cerrahi hem dahili bilim dalları ve servisler ile ilişkili bir uzmandır. Patolog, aşağıda ayrıntılı olarak sıralanan işlevleri yerine getirirken özel laboratuar yöntemlerinden sürekli olarak yararlanır; bu açıdan patoloji bir 'laboratuar' bilim dalı olarak görülebilir. Ülkemizdeki akademik uygulamalarda ise patoloji, 'cerrahi' bilim dalları arasında yer alır. Tıp Fakültelerinde Patoloji Anabilim Dalı, idari açıdan Cerrahi Tıp Bilimleri Bölüm Başkanlığı'na bağlıdır. Tanı: Patologdan en çok beklenen, hastalıklı olduğu düşünülen doku ve organları inceleyerek hastaya belli bir hastalık tanısı koyması veya konulmuş olan bir tanının doğruluğunu değerlendirmesidir. Doku ve organlar vücuttan değişik biçimlerde alınır ve patoloğun incelemesine sunulurlar. (Örnekler: Lenf düğümü biyopsisi ile lenfoma adlı kötü huylu tümörün tanısının konulması; endoskobik yolla alınmış bir mide biyopsisi örneğinde gastrit mi, peptik ülser mi, kanser mi bulunduğunun saptanması...) Tedavi: Patolog, koyduğu tanıyla tedavinin biçimini belirleyebilir.(Örnek: Lenf düğümü biyopsisinde tüberküloz tanısı anti tüberküloz ilaçların, lenfoma tanısı ise antineoplastik ilaçların kullanılacağını belirler). Gittikçe daha yaygınlaşan bir diğer işlev ise, dokuda tedavinin yol açtığı değişikliklerin incelenmesiyle tedavinin etkinlik derecesinin belirlenmesidir. Bu uygulama, hastalığın gidişi konusunda tahmin yapmaya da olanak verir. (Örnek: Kemoterapiden sonra osteosarkoma dokusunun tümüyle ortadan kalkmış olması hastanın kullanılmış olan ilaçlardan yararlandığını gösteren bir bulgudur). Transplantasyon uygulamalarının yaygınlaşmasıyla, patologların transplante edilecek organı transplantasyondan önce ve sonra incelemeleri istenmektedir. Bir organın transplantasyona uygun olup olmadığı hemen yalnızca patolojik inceleme ile belirlenebilir. Fonksiyonları bozulmaya yüz tutan transplante bir organdaki sorunlar da patolojik inceleme yapılmadan tam olarak anlaşılamaz. Bulunacak çözüm yolları patolojik inceleme ile belirlenir. Patologların hastaların tedavisindeki rolü, her zaman dolaylıdır. Tarama: Görülme sıklığı yüksek olan hastalıkların belirgin bozukluklara yol açmadan saptanabilmesi için, risk altındaki kişilerin olabildiğince kolay ve ucuz yollarla incelenmesi anlamında kullanılır. Patoloji pratiğinde bu, ya kendiliğinden dökülen veya küçük bir travmayla dökülmesi sağlanabilen hücrelerin (doku veya organ değil !) incelenmesiyle (sitolojik inceleme) yapılır. (Örnek: Yakınması olmayan orta yaşlı bir kadın hastada tarama amacıyla yapılan vaginal yaymada normal olmayan hücrelerin saptanması ve çok kötü gidişli olabilecek bir tümörün henüz gelişme sürecindeyken yok edilebilmesinin sağlanması). Öte yandan, sitolojik yöntemlerin önemli bir kısmı "tarama" değil "tanı" amaçlıdır. Bunların kullanım alanı hızla genişlemektedir. Dünyanın pek çok ülkesinde olduğu gibi, ülkemizde de böyle sitolojik incelemeler patoloji uzmanları tarafından yapılmaktadır. Otopsi: Tıp eğitiminin en önemli öğelerinden biri olan otopsi, öğrencilere ve doktorlara derslerin ve kitapların sağlayabileceğinin çok ötesinde yarar sağlayan bir eğitim yöntemidir. Tıp teknolojisinin ve buna dayalı tanı/tedavi yöntemlerinin çok gelişmiş olduğu ülkelerde bile hastanede ölen hastaların otopsilerinde, hasta yaşarken tanısı konulamamış pek çok hastalık saptanmaktadır. Bunların bazıları, hastanın tedavi biçiminin değiştirilmesini gerektirebilecek niteliktedir. (Örnek: Metabolik hastalığı olduğu düşünülen bir olguda kötü huylu tümör saptanması). Kitap sayfalarında kalan veya ezberlenen bilgilerin morfolojik karşılıklarının görülmesi, edinilen bilgilerin özümlenmesini sağlamaktadır. Bu nedenle, bir doktorun otopsi eğitimi olmadan yetişmesi bağışlanamaz bir eksikliktir. Çoğu patoloji anabilim Dalında yılda 1-2 tıbbi otopsi bile yapılmamaktadır. Bu sayı kabul edilemeyecek kadar düşüktür. Patolojik yöntem ve yaklaşımlar Patolojinin bir tıp dalı olarak yöntemleri ve işleyişi diğer dallardan kısmen farklıdır. Klinik bir dal olmamasına rağmen, patoloji, çoğu kez klinik çalışmaların ya içinde yer alır veya çalışmalarından elde ettiği verilerle hastaların tanı ve tedavilerine doğrudan katkılarda bulunur. Patolojinin çalışma alanı hastalıklı organ ve dokuların incelenmesiyle sınırlı değildir. Deneysel, teorik ve teknik pek çok konuda patolojik çalışmalar yapılmaktadır. Patolojik inceleme ve çalışmalar ancak yeterli anatomi, histoloji ve fizyoloji bilgisine sahip kişilerce yürütülebilir. Patolog, ilgili uzmanların bulunabildiği akademik ortamlar dışında, çoğu kez bu konulardaki klinik soruları en kolay cevaplayabilecek kişi konumundadır. Bir hastanenin işleyişi içinde patoloji bölümünün katkısı; hastalardan tarama veya tanı amacıyla hücre/doku örneklerinin alınmasıyla veya organların çıkarılmasıyla başlar. Bu örneklerin önce dış görünümleri (makroskobi) değerlendirilir ve mikroskop altında incelenmesi gerekli görülen kısımlar seçilerek ayrılır. Patolojik incelemenin en kritik ve en çok deneyim gerektiren aşamasının bu olduğu kabul edilebilir. Patolojiyi en iyi yansıttığı düşünülen kısımlar örneklenip, çok ince (4-5 mikron kalınlıkta) kesitlerin alınabilmesine olanak verecek işlemlerden (doku takibi) geçirilir ve hazırlanan kesitler rutin olarak "hematoksilen-eosin" yöntemiyle boyanır. (Hücre çekirdekleri mavi, sitoplazmalar kırmızı boyanır). Daha sonra, bu boyanmış kesitlerin ışık mikroskobunda incelenmesiyle morfolojik bir değerlendirme yapılır. Bu değerlendirmenin birtakım kuralları olmakla birlikte, temelde, morfolojik incelemeler subjektiftir. Bu subjektifliğin asıl nedeni, canlı organizmaların özellikleri için 'normal'in kesin sınırlı olarak tanımlanamamasıdır. (Normal saç rengi nedir? Normal boy kaç santimetredir?) Dolayısıyla; belli bir organ veya hücrenin görünümünün normalden ne kadar sapmış olduğu sorusunun yanıtı, kaçınılmaz olarak kişisel ve subjektiftir. Patolojik incelemenin sonuçta subjektif olması, onun kuralları ve sistematiği olmasına engel değildir. Tıbbi bir değerlendirmenin işe yararlılığının ve güvenilirliğinin ölçüsü, hastanın tanı ve tedavisine yapılan katkıdır. Bir dokudaki bütün atomların adlarını ve miktarlarını objektif, bilimsel (ve pahalı!) yollarla saptamak mümkündür ancak, bunun bir lenfoma olgusunun tanı ve tedavisine katkısı yoktur! Subjektif morfolojik değerlendirme, patoloğun tanıya ulaşmada kullandığı yollardan yalnızca birisidir. Patolog, yeri geldiğinde biyokimyasal, farmakolojik, mikrobiyolojik, genetik, moleküler biyolojik verileri kullanabilir; özel yöntem ve düzeneklerin yardımıyla dokular üzerinde nitel (kalitatif ) veya nicel (kantitatif) incelemeler yapabilir. Bunlar arasında histokimya, immunohistokimya, in situ hibridizasyon, DNA sitometrisi, digital görüntü analizi gibi yöntemler sayılabilir. Bu yöntemlerin hemen tümü, GATA Patoloji Anabilim Dalı'nda da kullanılmaktadır. Ülkemizde patolojik değerlendirmelerin objektif, ölçülebilir, yinelenebilir biçimde yapılmasına olanak veren ilk Nicel Patoloji Laboratuvarı Gülhane'dedir. Patoloğun en sık kullandığı düzenek ışık mikroskobudur. Işık mikroskobu ile sağlanabilecek büyültme yaklaşık x 1000 ile sınırlıdır ve görünür ışığın dalga boyundan kaynaklanan bu sınırın teknolojik ilerleme ile aşılması mümkün değildir. Laser, X ışını, ultrasound kullanarak veya digital yöntemlerle değişik mikroskoplar yapılmakta ve bunların kendilerine özgü kullanım alanları bulunmaktadır. Günümüzde, tek tek atomların görüntülenmesine izin veren özel mikroskoplar (scanning tunneling microscope) bile geliştirilmiştir. 'Elektronmikroskop' ise, temel olarak "tarayıcı" (scanning) ve "geçişimsel" (transmission) adlı iki biçimde kullanılmaktadır. Bunların ilki, çok çarpıcı "üç boyutlu" görüntüler sağlayabilmesine rağmen, dar bir kullanım alanına sahiptir ve sık görülen hastalıkların tanısında hemen hemen hiç rolü yoktur. "Transmission" elektronmikroskopi ise daha çok araştırma amacıyla kullanılmakta, nadiren tanısal açıdan da gerekli olabilmektedir. Bu mikroskopların büyültme gücü ışık mikroskobundan yüzlerce kere fazladır. Ancak, büyültme ne kadar fazlaysa tanının o kadar kolay ve doğru olacağını düşünmek yanlış olur. Her inceleme yönteminin olduğu gibi, elektron mikroskobinin de kendine özgü bir kullanım alanı vardır. Önünüzdeki sayfayı okumak için bir dürbün veya teleskop kullanmaya çalışırsanız, elektron mikroskobunun ne zaman işe yarayabileceği konusunda sağlıklı bir görüşe ulaşabilirsiniz! Çok pahalı ve emek-yoğun olan elektronmikroskopla rın yerine (onlardan çok daha ucuz olmayan!) "lazer taramalı konfokal mikroskoplar" da kullanılmaya başlanmıştır. Işık kaynağı lazer olan bu mikroskoplarda büyültme elektronmikroskopla rdakine yakındır. Lazer taramalı konfokal mikroskopları özel yapan, kesit kalınlığından etkilenmemeleri, daha az emek-yoğun olmaları ve sağladıkları verilerin tümüyle digital olmasıdır. Bu sayede hiçbir boya maddesi kullanmadan hücre organellerini değişik renklerde göstermek ve üç boyutlu görüntüler elde etmek mümkün olmaktadır. Bu mikroskopların henüz rutin patolojik incelemede yeri yoktur. Patoloji; doku kültürü, in situ hibridizasyon, immunohistokimya, akım sitometrisi, digital görüntü analizi gibi daha pek çok yöntemi tanısal veya araştırma amaçlı olarak kullanır. Bunların kullanımı gittikçe artmakta ve patolojik incelemede morfolojinin rolü yıldan yıla azalmaktadır. Bu, Virchow ekolünün yerini artık moleküler yaklaşımların almakta olduğunun göstergesidir; buna göre, hastalıkların değerlendirileceği temel birimler artık "hücre altı" yapılardır... Patolog, yukarıdaki yöntemlerden biri veya birkaçı ile yaptığı incelemesinin sonunda bir rapor düzenler. Bu rapor yalnızca bir tanı içerebileceği gibi, bir ayırıcı tanı veya öneriler listesi biçiminde de olabilir. Patolog, tıbbi konsültasyon ve danışma mekanizmasının bir parçasıdır; bu nedenle, bir hasta ile ilgili düşüncesi sorulduğunda (kendisine organ veya doku örneği gönderildiğinde) bütün klinik bulgular ve değerlendirmelerden haberdar edilmelidir. Patologdan herhangi bir hastanın herhangi bir yerinden alınmış herhangi bir örneğe tanı koymasını istemek, bir doktorun ellerini, gözlerini bağlayıp kulaklarını tıkayarak bir hastaya tanı koymasını ve onu tedavi etmesini istemekten farksızdır. Patolojik incelemenin en çok bilinen yolu 'sorular zinciri'dir. Bu yol, özellikle patolojik inceleme yöntemleri konusunda kısıtlı bilgi ve deneyimi olanlar tarafından izlenir. Deneyim arttıkça, tanı adeta otomatikleşir ve tanılar milisaniyelerle belirtilen süreler içinde konulabilir. Sorular zincirine (basitleştirilmiş) bir örnek: Sıra Soru Karşılık 1 Bu bir lenf düğümü mü? Evet 2 Bu görünüm normal mi? Hayır 3 Burada olmaması gereken türde hücreler var mı? Hayır 4 Hücrelerin birbirine oranı değişmiş mi? Evet 5 Hücreler atipik mi? Evet 6 Bu bir lenfoma mı? Evet Yukarıdaki sıra ile yapılan bir akıl yürütme sonucunda ulaşılan tanı lenfoma olacaktır. Yukarıdaki tabloda anlatılan, öğrencilerin laboratuar çalışmaları sırasında inceleyecekleri bütün hematoksilen-eosin boyalı kesitler (preparatlar) karşısında izlemeleri gereken yoldur. Örnek: Bu appendiks vermiformis mi ? 'evet' ; mukozada ülserasyon var mı? 'evet' ; düz kas tabakasında nötrofil lökosit infiltrasyonu görülüyor mu? 'evet' ; tanı: akut appendisit. Deneyimli patologlar sorular zincirine ek olarak "patern (örnek, model, biçim) tanıma" yöntemini de (çoğu kez farkında olmadan) kullanırlar. Bu yöntem, patoloğun mikroskoptaki görüntü ile karşılaştığı anda lezyona tanı koyması biçiminde özetlenebilir. Saptanan görüntü ile o patoloğun daha önce karşılaştığı ve adını bildiği bir görüntü arasında yeterli derecede benzerlik varsa, bu süreç çok kısa süre içinde tanı ile sonlanır. "Cognitive" (bilişsel) psikolojinin alanına giren bu çok karmaşık ve ilgi çekici sürecin ayrıntıları bilinmemektedir. Rutin histopatolojik uygulamalar Tespit (fiksasyon) Dokular insan vücudundan ayrıldıkları anda canlıdırlar ve taşıdıkları hastalığın (varsa) morfolojik bulgularını sergilerler. Tespit, dokuların o andaki görünümünün ısı, nem ve enzimlerin etkisiyle değişmesini, bozulmasını önlemek amacıyla yapılır. Tespit edilmeyen dokulardaki hücreler bir süre sonra bakterilerin ve içerdikleri sindirici enzimlerin etkisiyle otolize uğrar, morfolojik özelliklerini yitirir ve tanısal amaçlı incelemelerde kullanılamayacak duruma gelirler. Tespit işlemi için genellikle özel sıvılar kullanılır. Doku ve organlar kendi hacimlerinin 10-20 katı kadar tespit sıvısı içine bırakılırlar. Patolojide rutin amaçlar için en yaygın olarak kullanılan tespit sıvısı formalindir. Bu, seyreltik bir formaldehit (H-CHO) solüsyonudur. Tespit işlemi dokunun türü ve kalınlığına göre birkaç saat (karaciğer iğne biyopsisi) ile birkaç hafta (beyin) arasında değişen sürelerde olabilir. Yüzde seksenlik etil alkol, Bouin solüsyonu, Zenker solüsyonu, B5 solüsyonu, Carnoy solüsyonu ve glutaraldehit gibi başka tespit sıvıları da yeri geldikçe kullanılabilir. Sitolojik örneklerin havada kurutulmaları veya ısıtılmaları da tespit yöntemleri arasındadır. Bu tür tespit yöntemlerine daha çok hematolojik ve mikrobiyolojik boyalar kullanılacaksa başvurulur. Takip (doku işleme) Tespitten sonraki aşamaların hemen hepsi otomatik makinelerde yapılabilir. İlk aşama, çoğunluğu sudan oluşan tespit sıvısının ve dokunun kendisinin başlangıçta içerdikleri suyun uzaklaştırılmasıdır (dehidratasyon). Bu, dokunun sertleşmesine yardım eder. Sert dokuların sonraki aşamalarda çok ince kesilebilmesi mümkün olur. (Bayat ekmekle taze ekmeğin kesilmeleri arasındaki fark gibi). Alkol, dokunun kırılganlığını artıran bir maddedir. Onun da ksilol yardımıyla ortamdan uzaklaştırılması gerekir. Daha sonra da, dokuda başlangıçta su içeren, sonra sırasıyla alkolle ve ksilolle infiltre olan aralıklara ısıtılarak sıvılaştırılmış parafinin girmesi sağlanır. Kullanılan parafin oda sıcaklığında katılaşır. Takibe alınan bütün örnekler numaralanır. Bu numaralar sonraki bütün aşamalarda dokuların üzerinde, bloklarda, preparatlarda ve raporlarda yer alır. Takip işlemleri, oda sıcaklığı ile 60 C arasındaki sıcaklıklarda yapılır. Negatif basınç (vakum) uygulanması ile, dokuların daha iyi ve daha kısa sürede işlenmeleri sağlanabilir. Ayrıca, özel mikrodalga fırınlar kullanılarak, normal olarak 8-16 saat süren bu işlemlerin süresini belirgin olarak kısaltmak ve 2 saatin altına indirmek mümkündür. Otomatik doku işleme aygıtlarında yaygın olarak uygulanmakta olan program şöyledir: Formalin (3 saat), alkoller (4 saat), aseton (30 dakika), ksilol (1,5 saat), parafin (2 saat). Program, akşam başlatılmakta; sabah, dokular bloklanmaya hazır olmaktaBloklama Parafinle infiltre edilmiş dokular, dikdörtgen prizma biçimindeki kalıplara konulur ve üzerlerine ısıtılmış parafinin dökülüp soğutulmasıyla bloklar elde edilir. Bu durumdaki dokuların çok ince kesilebilmeleri mümkün olu Kesme Parafin bloklar; "mikrotom" adlı aygıt ile istenilen kalınlıkta (genellikle 4-5 mikron) kesilir, kesitler ılık su banyosuna, oradan da lamlar üzerine alınırlar. Bu kesitler önce ısıtılıp sonra bir solvent olan ksilole konularak deparafinize edilir, daha sonra da giderek daha sulu hale gelen alkollerden geçirilerek hidrate edilir ve istenilen boyanın uygulanmasına geçilir. Sayfa başına dön! Boyama Rutin olarak kullanılan boya hematoksilen (mavi) ve eosindir (kırmızı). Kısaca "HE" veya "H&E" denilir. Otomatik boyama aygıtlarında yaygın olarak uygulanmakta olan program şöyledir: Ksiloller (6 dakika), alkoller (3 dakika), su (2 dakika), hematoksilen (6 dakika), su (1 dakika), asit-alkol (10 saniye), su (1 dakika), amonyak (5 saniye), su (1 dakika), eozin (45 saniye), su (1 dakika), alkoller (1 dakika), ksiloller (5 dakika). "Frozen section" ve intraoperatif konsültasyon Yukarıdaki rutin histopatolojik işlemlerin sağlıklı olarak yapılabilmesi için en az 10-15 saatlik bir süreye (mikrodalgalı yöntemler dışında) gereksinme vardır. Bu da, rutin patolojik incelemeye alınan bir örneğin tanısının en iyi olasılıkla ancak bir gün sonra verilebileceği anlamına gelir. Oysa, ameliyat sırasında hastada ameliyatın gidişini değiştirebilecek bir durumla karşılaşıldığında, dakikalar içinde verilecek bir tanıya gereksinme duyulabilir. Hastanın anestezi alma süresini uzatmamaya ve yeniden ameliyata alınmasına engel olmaya yönelik bir uygulama olarak "frozen section"a (dondurarak kesme) büyük hastanelerde sıkça başvurulur. Bu yöntem, dokuların istenilen incelikte kesilebilmeleri için dondurulmaları temeline dayanır. Özel bir aygıt ("cryotome") yardımıyla dokular -20 C sıcaklıkta kesilir ve hazırlanan kesitler hızlandırılmış yöntemle boyanırlar. Patolog, bu kesitleri inceleyerek vardığı sonucu ameliyatı yapan cerraha bildirir. Bütün bu işlemler, ameliyathaneye komşu bir patoloji bölümünde yapıldığında, 10-15 dakika kadar sürer. Bazı patoloji bölümlerinin ameliyathane içinde bu amaçla çalışan bir birimi bulunmaktadır. Dondurarak kesme yöntemiyle hazırlanan kesitlerin değerlendirilmesi güçtür ve bu işlem ancak deneyimli patologlar tarafından yapılabilir. Cerrahlar patologlardan "intraoperatif histolojik inceleme" istediklerinde, bu isteklerini mümkünse operasyondan önce, değilse operasyon sırasında ve hasta hakkındaki tüm önemli bilgileri sunarak iletmelidirler. İletişim eksikliği, intraoperatif histolojik incelemeden istenilen verimin alınmasını engeller ve bu uygulamanın hastaya zarar vermesine bile yol açabilir. Sitolojik yöntemler Dokuların insan vücudundan hiç can yakmadan alınması mümkün değil gibidir. Hastalar, seçme şansları olduğunda, tanılarının canları yakılmadan konulmasını tercih ederler. Gelişmiş ülkelerde hastaların bilinçlenmesine ve tıp teknolojisinin gelişmesine paralel olarak, doku almadan da morfolojik değerlendirme yapılabilmesini sağlayan yöntemler hızla yaygınlaşmaktadır. Romanyalı Dr. Aurel Babes tarafından 1927'de ilk kez bildirilen, 1950'lerde George Papanicolaou tarafından yaygınlaştırılan 'servikovaginal yayma' yöntemiyle, uterus boynundan (cervix uteri) kendiliğinden dökülen hücrelerin morfolojik olarak incelenmesiyle, bir kanserin daha klinik bulgu vermeden yakalanabileceği ilk kez ve kesin olarak gösterilmiştir. Bu yöntemin uygulanması sayesinde, bugün kadınların serviks kanserinden ölmelerine seyrek rastlanmakta ve çoğu kanser daha oluşma aşamasındayken tam olarak çıkarılabilmektedir. Kapladıkları yüzeyden dökülen hücrelerin sitolojik olarak incelenmelerine 'eksfolyatif sitoloji' denilmektedir. (Servikovaginal yayma ve idrar sitolojisi gibi). Ayrıca, bu yöntemle birlikte veya ondan ayrı olarak, deri ve mukozayı kazıyarak hücre elde etmek mümkündür (kazıma yöntemi). Gittikçe yaygınlaşmakta olan 'aspirasyon sitolojisi' yöntemi ise, ulaşabileceği doku ve organların hemen hemen sınırsız olmasıyla diğer bütün sitolojik yöntemlerden ayrılmaktadır. Bu yöntemle, palpe edilebilen bütün organlardaki lezyonlara anesteziye ve özel aletlere gerek duyulmadan ince (dar çaplı) bir enjeksiyon iğnesiyle girilmekte ve aspire edilen hücreler lamlara yayılmaktadır. Derindeki organlara da ultrasound veya bilgisayarlı tomografi gibi görüntüleme yöntemleri eşliğinde girilebilmektedir. Elde edilen hücrelerin değerlendirilmesinde, her organ için ayrı bir bilgi birikimine ve deneyime gereksinme vardır. Bu nedenle, yöntemin yaygınlaşmasının önündeki en büyük engel, bu konuda yetişmiş patolog sayısının azlığıdır. Bir sitolojik incelemenin sonucu değişik koşullarda değişik anlamlar taşıyabileceği için, bu yöntemi uygulamak isteyen klinik doktorlarının patolog ile yakın ilişkide olmaları zorunludur. Dünyada ve ülkemizde pek çok birimde, yüzeysel lezyonların aspirasyonu da patolog tarafından yapılmaktadır. Bu yolla; örneklerin daha iyi alınması, gerekirse aspirasyonun hemen tekrarlanabilmesi ve tanının hem daha çabuk hem daha doğru konulması mümkün olmaktadır. Otomatik boyama aygıtlarında yaygın olarak uygulanmakta olan program (Papanicolaou boyası) şöyledir: Hematoksilen (8 dakika), su (3 dakika), alkol (1 dakika), orange-G (5 dakika), su (1 dakika), alkol (15 saniye), EA-50 (5 dakika), su (2 dakika), alkoller (2 dakika), ksiloller (6 dakika). Sayfa başına dön! Sonuç Patoloji; anatomi ve fizyolojide öğrenilen bilgilere, hastalıklı organların çıplak gözle veya mikroskop altındaki anormal görünüşlerini ekleyerek hastalıkların daha kolay anlaşılmasını sağlar. Görünüşlerin karar vermeye çok yardımcı olduğu alanlarda, patolojik incelemenin tanıya ve uygun tedavi yönteminin belirlenmesine katkısı da çok büyüktür. Günümüzde, tümörlerin tanısı başta olmak üzere, pek çok hastalığın kesin tanısı için patolojik inceleme gereklidir.

http://www.biyologlar.com/patolojinin-tarihcesi

İlk Gen Terapisi

İlk Gen Terapisi

İnsanda ilk gen terapisi denemesini 1990'da Dr. French Anderson gerçekleştirdi.

http://www.biyologlar.com/ilk-gen-terapisi

Kimerler, Kediler ve Diğer Genetik Tuhaflıklar

Kimerler, Kediler ve Diğer Genetik Tuhaflıklar

Hayır, bu bir fotoğraf hilesi değil. Bu gördüğünüz kedicik, aslında bir Kimer olmayan, ama bu yazıyı yazmak için bana esin kaynağı olan Venüs. (Kaynak: Facebook) Eğer benim gibi bir kedisever iseniz, son birkaç haftadır internette dolanan çok tuhaf bir kedi resmini görmüş olabilirsiniz. Ben, resmi ilk gördüğümde, bunun kesinlikle fotoğraf hilesi olduğunu düşünmüştüm. Ancak biraz araştırınca öğrendim ki, artık kendi facebook sayfası olan Venüs isimli bu kedi bir fotoşop hilesi değil, capcanlı bir kedi. İnanmıyorsanız kendi Youtube sayfasındaki videosunu görebilirsiniz. Venüs, bir internet fenomeni olduktan sonra yayınlanan pek çok blogda kendisinden ‘kimer‘ olarak bahsediliyor. Kimer, bu yazımızda bahsedeceğımız bir tür genetik fenomen aslında.  Venüs’ün  bir kimer olup olmadığını söylemek ise çok zor. Zira bir canlıya kimer tanısı koymak için oldukça detaylı genetik analizler yapmak gerekiyor. Kedilerdeki kürk renklerini belirleyen farklı mekanizmalar var. Venüs’ün desenlerinin çok daha sık görülen bu mekanizmalardan birine bağlı ortaya çıkmış olma olasığı, bir kimer olma ihtimalinden çok daha yüksek. Bu ihtimallerden yazımızın sonunda bahsedeceğiz, ama gelin önce bu genetik duruma ismini veren Kimera’dan bahsedelim. Homeros’tan Yanartaş’a Florence Arkeoloji Müzesi, 5. yy’dan bir Kimera keykeli. ( Kaynak: Britannica Ansiklopedisi) Kimera, mitolojide antik çağda bugünkü Güney Anadolu bölgesinde yaşamış olan Likya uygarlığına ait mitolojik bir figür. Ozan Homeros’un yazdıklarına göre,  bu yaratığın gövdesi pekçok hayvanın birleşmesinden oluşmuştu: başı bir aslana, arka ayakları bir keçiye, kuyruğu ise bir sürüngene aitti.  Ağzından bir ejder gibi alevler çıkaran bu canavarı,  epik kahraman Bellerophon üzerine bindiği kanaltı atı Pegasus yardımıyla öldürmüş.   Antalya’nın Çıralı beldesindeki sönmeyen volkanik  alevler, adlarını bu canavarın ağzından çıkan  alevlerden alıyor. Bu bölgeye Yanartaş ya da Kimera adı veriliyor. Biden fazla canlının kaynaşmasından oluşmuş bu ilginç mitolojik canlı, çok nadir görülen ve oldukça şaşırtıcı olan bir genetik duruma isim babalığı yapmış durumda: Kimerizm. Kimerizm 1998 yılında, 31 yaşındaki bir anne adayı ve 41 yaşındaki bir baba adayı, tüp bebek sahibi olmak için doktora başvururlar. Tüp bebek girişimi sırasında, annenin rahmine döllenmiş üç embriyo yerleştirilmesine rağmen, çoğu tüp bebekte denemesinde olduğu gibi embriyolardan sadece bir tanesi gelişimini tamamlar ve çift, gebelik süresinin sonunda, normal doğum ile 3.46 gramlık sağlıklı bir erkek bebek sahibi olur. Yeni doğan bebeğin, sağ testisi normal olup, sol testis torbasının içi boştur. Bu bebeklerde çok sık rastlanan bir durum olduğu için bir süre, sol testisin de yerine inmesi için beklenir. Bebek 15 aylıkken, bu durumun ameliyatla düzeltilmesine karar verilir. Ameliyat sırasında, bebeğin sol kasığnda bir fıtık olduğu ve fıtık içinde bozunmuş testis benzeri bir yapının olduğu fark edilir ve bu dokular ameliyat sırasında alınır. Daha sonra yapılan patolojik incelemede, bu dokuların aslında körelmiş bir rahim ve yumurtalık kanallarına ait dokular olduğu saptanır. İleri tetkiklerde, bebeğin kanındaki akyuvar hücrelerinde iki dizi hücre olduğu tespit edilir: kadınlara özgü 46, XX ile erkeklere özgü 46, XY. CSI dizisinin 4. sezon, 23. bölümünde, dedektiflerimiz bir tecavüz zanlısını dizinin başında kan ve sperm genetik analizi birbirini tutmadığı için salıverirler. Bir kimer olan suçluyu, kolundaki Kimera dövmesi ele verir. Gene aynı yıllarda, 26 yaşındayken çocuklarına bakamadığı gerekçesiyle devlet yardımına başvuran Lydia Fairchild, bu yardımı alması için çocukların biyolojik annesi olduğunu ispat edecek olan zorunlu olan genetik testleri yaptırır. Test sonuçlarını almak için başvurduğunda, Sosyal Yardım dairesi’ndeki görevliler onu bir odaya alırlar ve “Sen kimsin?”, ” Bu çocuklar kimin çocukları, onları nereden buldun?”, ” Bu çocukların gerçek annesi kim?” sorularıyla başlayan, uzun ve yıpratıcı bir süreçten geçer. Çocukların tamamının kendi çocuğu olduğunu iddia etmesine rağmen, ifadesine inanılmaz ve hakkında devleti dolandırmaya çalışmaktan işlem yapılmaya başlanır. Tekrarlanan testler aynı sonuçları vermektedir, bu testlere göre çocuklarının DNA’sı ile kendi DNA’sı uymamaktadır. Bu konuya anlam veremeyen ve çocuklarının hastanede başka bebeklerle karışmış olmasından şüphelenmeye başlayan Lydia, bu sırada dördüncü çocuğuna hamiledir. Avukatından, doğum sırasında şahitlik etmesini ve doğar doğmaz bebeğe tetkik yapılmasını ister. Bebek anne rahminden çıkar çıkmaz kan örnekleri alınır. Sonuç gene aynıdır, yapılan DNA testine göre Lydia çocuklarının genetik annesi değildir. Bu sırada, bir başka şehirde, Karen Keegan isimli bir hasta, son dönem böbrek yetmezliğinden muzdariptir ve böbrek nakli için sıra beklemektedir. Karen’in üç oğlu da, annelerine böbreklerini bağışlamak için gönüllü olurlar. Yapılan doku uygunluk tetkiklerinin sonucu tuhaftır. Testlere göre, Karen’in oğullarından sadece biri kendisine aittir. Diğer iki oğlunun genetik yapısı tamamen farklıdır. Bu tuhaf durumu çözmek isteyen doktorlar seferber olurlar, Karen’in hemen her dokusundan örnekler alınır, ama sonuç aynıdır. Daha sonra Karen, birkaç yıl önce ameliyatla çıkarılmış olan tiroid bezinin de test edilmesini ister. Yapılan incelemelerde, Karen’in iki oğlunun genetik yapısının kendisiyle olmasa bile, birkaç yıl önce aldırdığı tiroid  beziyle aynı olduğu saptanır. Bu birbirinden ilginç vakaların ortak özelliği, her birinin Tetragametik Kimerizm adı verilen nadir bir genetik fenomen olmaları. Tetragametik kimerizm, iki farklı yumurta hücresinin, iki farklı sperm tarafından döllenmesini takiben, oluşan blastosit evresindeki ikiz embryoların birbirileri ile kaynaşması sonucunda ortaya çıkan ilginç bir fenomen. Embriyo büyüdükçe, farklı embriyolardan gelen hücre grupları farklı organların oluşumunda yer almaya başlarlar. Bir kimerin karaciğerinin bir hücre grubundan, böbreğinin de diğer embroya ait hücre grubundan köken almış olması mümkündür. Bu durumda bu iki organın genetik yapıları birbirinden farklı olacaktır. Blaschko Çizgileri Çoğu kimer, bu örnekler kadar çarpıcı deneyimler yaşamaz. Eğer birbiriyle kaynaşan iki embriyonun cinsiyeti ve fiziksel özellikleri kodlayan genleri aynıysa, tetragametik bir kimer, hayat boyu bu özelliğinin farkına varmayabilir. Bazı kimselerde,  iki gözün renginin birbirinden farklı olması gibi küçük belirtiler olabilir. Nadir olarak buradaki örneklerdeki, farklı organların farklı genetik yapıya sahip olması gibi  kimerizm vakaları da olabilir. Çoğu kimerin cildinde, ancak UV ışık altında görülen Blaschko çizgileri mevcuttur. Bu çizgiler, iki ayrı ten rengi tonu kodlayan farklı  embriyo hücrelerinin rahim içindeki gelişimleri boyunca yaşadıkları hücre göçü nedeniyle ciltte farklı iki tonun girdap benzeri desenler oluşturmasından kaynaklanır. Blaschko çizgilerini çıplak gözle görmek zordur, genelde UV ışık altında belirgindirler. Kimerizm, ilginç bir konu olması nedeniyle popüler kültürde de sıklıkla yer buluyor. CSI dizisinin 4. sezoununun 23. bölümünde, kahramanlarımız bir tecavüz zanlısının peşindedirler. Zanlıdan alınan kan örnekleri, suç mahalindeki sperm örnekleri ile karşılaştırılır. Sonuç negatiftir, iki örneğin genetik yapısı farklıdır. Zanlı salıverilmesine rağmen, tüm şüpheler genetik tanı ile aklanan bu kişiyi göstermektedir. Kahramanlarımız, zanlının kolundaki mitolojik canavar Kimera dövmesini fark edince, bu dövmeden yola çıkarak olayı çözerler. Zanlının bu defa kan hücreleri değil, başka hücrelerinden örnekler alınır, sonuç sperm analiziyle uyumludur. Adalet bir kez daha yerini bulur. Stephen King’in aynı isimli romanında uyarlanan The Dark Half ( Hayatı Emen Karanlık) isimli film, kimer bir yazarın başından geçenleri anlatıyor. Bir başka kimera öyküsü ise ünlü korku yazarı Stephen King’den. Türkçeye Hayatı Emen karanlık diye çevrilen The Dark Half romanı ve aynı isimli filmde, bir yazarın beyninde ve bedenine yaşayan ikiz kardeşinin öyküsü anlatılmaktadır. Thad isimli kahramınımız, zaman zaman bilincini kaybetmekte, bu zamanlarda, masasının üzerinde Stark isimli gizemli birinden kendisine hitaben yazılmış notlar bulmaktadır. Kitabın ilerleyen bölümlerinde Stark’ın, anne karnındayken Thad ile bütünleşen kötücül ikizi olduğu anlaşılır. X Kromozom İnaktivasyonu Gelelim, yazımızın başında bahsettiğimiz, İnternet’te milyonlarca hayranı olan Venüs’e. Her ne kadar Venüs, internette “Kimer Kedi” olarak ünlü olmuş olsa da, gerçekte kimer olma ihtimali oldukça düşük. Kimerizm, çok nadir görülen bir durum. Oysa kedilerdeki bu tip renk örgülerine neden olan ve oldukça sık görülen bir başka nedeni var: X  Kromozom  İnaktivasyonu. Memelilerde, erkek ve dişilerde cinsiyet kromozomları birbirlerinden farklıdır. Dişiler iki adet X kromozomu taşırlarken (XX), erkekler bir X bir Y kromozomuna sahiptirler (XY). Amnion sıvısından toplanan dişi hücrelerinin hücre çekirdekleri. Okla gösterilen leke, hücre çekirdeği içinde inaktif halde paketlenmiş Barr cismi. (Kaynak:  Journal of Cell Biology, Vol 135, 1427-1440. PMID:8978813)Memelilerde, erkek ve dişilerde cinsiyet kromozomları birbirlerinden farklıdır. Dişiler iki adet X kromozomu taşırlarken (XX), erkekler bir X bir Y kromozomuna sahiptirler (XY). Genden fakir Y kromozomunun aksine, X kromozomunda her iki cinsiyetin de hücre gelişmesinde anahtar rol üstlenen binden fazla gen mevcuttur. Ancak iki set X kromozomu hücre fonksiyonları için  gerekli değildir. Bu nedenle, dişilerde X kromozomlarından biri inaktif hale getirilir ve paketli bir halde hücre çekirdeğinin bir köşesinde durur.  Bu paketlenmiş X kromozomuna Barr Cismi adı verilir. Keselilerde genelde babadan gelen X kromozomu inaktif hale getirilirken, memelilerde anne ve babadan gelen X kromozomları hücreden hücreye değişiklik gösterecek şekilde rastgele inaktive olurlar. Kediler de memeli hayvanlardır, bu nedenle aynı insanlardaki gibi dişi kedilerde de, hücreler içindeki X kromozomlarından biri rastgele inaktif hale gelir ve Barr cismi oluşturur. Kedilerde, tüy rengini belirleyen genlerden bir tanesi X kromozmunda yer alır. Bu genin iki varyasyonu vardır. Bir tanesi (XB), kedi tüylerinin sarı olmasını sağlarken, diğeri (Xb) siyah tüyleri kodlar. Sarı tüyleri kodlayan gen, siyah tüy genine göre daha baskındır. Normalde, bu durumda, ebeveynlerinden farklı genleri alan kedilerin (genotip XBXb) tüylerinin sarı olması beklenir. Ancak,  bu şekilde heterozigot genlere sahip olan dişi kediler (XBXb), gövdelerinin farklı yerlerinde hücrelerdeki X kromozomlarından birinin rastgele inaktif olması nedeniyle sarı ve siyah lekeli olarak doğarlar. Lekeleri yama şeklinde dağınık olan bu tip kedilere tortoiseshell kediler denir. Bu renk bir kedi gördüğünüzde, o kedinin çok yüksek ihtimalle dişi olduğunu söyleyebilirsiniz. Tortoiseshell kedilerin kürklerindeki renk örgülerinin nasıl oluştuğunu bu şemada görebilirsiniz. En üst satırda, kedilerin olası genetik kombinasyonu mevcut. Dişi kedilerde ( XX), hangi kromozomun Barr Cismi halinde geldiği, kedinin kürk renginin belirlenmesinde temel rolü oynuyor. Barr cismi halinde inaktif hale gelen kromozom, resimde U şeklinde gösterilmiş. ( Kaynak: Miami Univeersitesi Biyoloji Bölümü) Peki erkek tortoiseshell kediler yok mu?  Çok nadir olsa da var. Ancak bu desene sahip kedilerinin hepsinde genetik bir problem olduğunu, çoğunun XXY gibi bir kromozom anomalisine sahip olduklarını gönül rahatlığı ile söyleyebiliriz. (Bu tip erkek kediler, genetik problemleri nedeniyle genelde kısır oluyorlar.) Elbette, çok daha nadir olabilecek bir başka ihtimal daha var: o da bu erkek kedilerin kimer olması. Venüs kadar artistik olmasa da, bir başka dişi tortoiseshell kedi. Venüs’ e baktığımızda,  yüzündeki desen her ne kadar çok ilginç de olsa, dişi bir kedi olduğu için bu desenin büyük ihtimalle yukarıda X inaktivasyonu nedeniyle oluştuğunu söylemek daha olası bir iddia olacaktır. İnternette kısa bir araştırma yaparsanız, Venüs kadar artistik olmayan pekçok yamalı yüzlü tortoiseshell kedi bulmak olası. Kimer olsun veya olmasın, gene de çok şirinler ama değil mi?   Kaynaklar: Chimera. Theoi Greek Myhtology. A True Hermaphrodite Chimera Resulting from Embryo Amalgamation after in Vitro Fertilization. Strain L., Dean J., Hamilton M., Bonthron D.  New England Journal of Medicine. 1998. 166-169. Which half is Mommy?: Tetragametic Chimerism and Trans-Subjectivity . UC Davis, Project Muse. The Stranger Within. Kate Werk. New Scientists, vol 180, issue 2421 The Tech Museum: Chimeras, Mosaicism and other fun stuff. Silence of the Fathers. Early X İnactivation. Cheng M., Disteche C. Bioessays. 2004.  26:821-824 The Genetics of Calico Cats. University of Miami, Biology Department. Yazar hakkında: Işıl Arıcan http://www.acikbilim.com/2012/09/dosyalar/kimerler-kediler-tuhafliklar.html

http://www.biyologlar.com/kimerler-kediler-ve-diger-genetik-tuhafliklar

ALDOSTERON

Adrenal fonksiyonların değerlendirilmesinde kullanılan endokrinoloji tahlilidir.

http://www.biyologlar.com/aldosteron

Besiyeri Çeşitleri

Besiyerleri farklı mantıklar altında gruplandırılabilir. Örneğin, besiyerleri fiziksel özelliklerine göre sıvı ve katı olmak üzere 2 gruba ayrılırken bir başka bakış açısı ile orijinlerine göre bitkisel, hayvansal, sentetik, türev, karışık vb şekillerde sınıflandırılabilirler. Besiyerlerinin kullanım amacına (=fonksiyonlarına) göre sınıflandırılması ise bir anlamda besiyerlerinin formülasyonları ile doğrudan ilgilidir ve sınıflandırmada en çok kullanılan şekildir.Besiyerlerinin kullanım amaçlarına göre sınıflandırılmalarında da farklı yaklaşımlar vardır. Bir kısım araştırıcıya/kullanıcıya göre belirli bir grupta yer alan bir besiyeri bir diğer kısmına göre ise başka bir grupta sınıflandırılmaktadır. Aşağıda, besiyerleri kullanım amacına göre en çok kabul gören sınıflandırma şekli ile gruplandırılmıştır. Bu sınıflama şeklinde besiyerleri öncelikle "genel besiyerleri" ve "özel besiyerleri" olarak 2 gruba ayrılmakta, özel besiyerleri ise kendi içinde alt gruplara ayrılmaktadır.1. Genel BesiyerleriHerhangi bir inhibitör madde içermeyen, besin maddelerince yeterli veya zengin, herhangi bir mikroorganizma grubunun gelişmesini özel olarak desteklemeyen, bazı zor gelişen (fastidious) mikroorganizmaların da dahil olduğu çok sayıda bakterinin gelişmesini sağlayan besiyerleridir.Genel besiyerleri başlıca, çeşitli örneklerdeki toplam mezofil aerob bakteri sayımı, toplam psikrofil aerob bakteri sayımı, bozulma/hastalık etmeninin ön izolasyonu amaçları ile kullanılır.- Başta gıda maddeleri olmak üzere pek çok örnekte "toplam mezofil aerob bakteri sayısı" ile "toplam psikrofil aerob bakteri sayısı" tayinleri önemli kalite kriterleridir. Toplam mezofil aerob bakteri sayısından kasıt 37 oC'da gelişebilen aerob bakterilerin sayısıdır. Kuşkusuz 37 oC'da gelişebilen aerob bakterilerin tümü bu tip besiyerlerinde gelişemez. Ancak pratik uygulamada genel besiyerlerinde gelişebilenler dikkate alınır.- Nedeni hakkında bir ön fikir edinilemeyen bozulma/hastalık etmeninin izolasyonu için yine genel besiyeri kullanılır. Burada amaç, "bozulma/hastalık etmeninin her ne olursa olsun öncelikle izole edilmesidir" ve genel bir besiyeri kullanmak bir anlamda zorunludur. Bozulma/hastalık etmeninin zor gelişen bir mikroorganizma olabileceği varsayımı ile bu tip izolasyonlarda zor gelişen mikroorganizmaların da gelişebileceği besiyerleri kullanmak daha doğru olur.Tüm bakterilerin geliştirilebileceği nitelikte bir genel besiyeri yoktur. Genel besiyerleri, zor gelişen bakterilerin sadece bir bölümünün gelişmesini sağlayabilir. İnkübasyon koşullarının değiştirilmesi ile psikrofillerin, mikroaerofillerin, aerotolerantların ve özel inkübasyon koşullarının sağlanması ile kısmen anaerobların geliştirilmesinde kullanılır.2. Özel BesiyerleriBir tarife göre genel besiyerleri dışında kalan tüm besiyerleri "özel besiyerleri" grubuna girer.2.1. Selektif BesiyerleriSelektif besiyerleri, karışık bir mikrobiyel floradan gelişmesi istenmeyenleri baskılamak ve inhibe etmek, ancak gelişmesi istenenler için herhangi bir olumsuz etki yapmamak üzere formülüze edilirler. Bu amaçla çeşitli inhibitör maddeler kullanılır.İnhibitör maddelerin konsantrasyonu ile inhibe edilmesi hedeflenen mikroorganizma(lar)ın cins ve türlerine göre değişmek üzere, selektif besiyerleri istenmeyen mikroorganizmalar için zayıf, orta veya yüksek selektivite gösterirler. Selektif besiyerleri, belirli bir grup hatta yüksek selektivite gösterenlerde tek bir cins/tür mikroorganizmanın gelişmesine izin vereceğinden bu besiyerleri selektif izolasyon, selektif sayım ve hatta ön identifikasyon amaçları ile kullanılır.Bir besiyerine selektivite kazandırılması her zaman inhibitör madde ilavesi ile yapılmaz. Geliştirilmesi istenilen mikroorganizmanın kullanabileceği, ancak refakatçi mikroflora tarafından kullanılamayan besin maddeleri besiyerine karbon ve azot kaynağı olarak verilerek selektivite sağlanabilir. Örneğin GSP Agar (Merck) besiyerinde glutamat ve nişastadan başka besin maddeleri yoktur. Nişasta ve glutamat Pseudomonas ve Aeromonas türleri tarafından besin maddesi olarak kullanılırken gıda maddeleri, atık sular ve gıda endüstrisi ekipmanında bu bakteriler ile birlikte bulunan bakteriler (=refakatçi mikroflora) bu maddeleri metabolize edemez ve dolayısıyla gelişemez ya da bu maddeleri çok kısıtlı olarak kullanabilenler ihmal edilebilecek kadar küçük koloni oluştururlar.2.2. Diferansiyel BesiyerleriSelektif besiyeri hazırlamak ve kullanmak; inhibitörlerin gelişmesi istenen mikroorganizmaya az da olsa bir miktar zarar verebilmesi, inhibitör kullanımı ile istenmeyen mikroorganizmaların inhibisyonun her zaman mümkün olmaması, bazı inhibitörlerin insan sağlığı için de zararlı olması vb nedenlerle her zaman istenilen sonucu vermemektedir. Mikrobiyolojide besiyeri olarak selektif ortamlar yerine diferansiyel besiyerlerinin hazırlanması ve kullanılması ile çoğu kez tatmin edici sonuçlar alınmaktadır.Diferansiyel besiyerlerinde gelişmesi istenen mikroorganizma yanında diğer mikroorganizmalar da gelişebilir, ancak başta koloni morfolojisi olmak üzere çeşitli farklılıklar ile hedef mikroorganizma diğerlerinden ayrılır.Bu tarif altında diferansiyel besiyerleri zayıf ve orta güçte selektivite gösteren selektif besiyerlerinin modifikasyonu olarak nitelendirilebilir.Ayırt edici (fark ettirici) koloni özelliği, çeşitli pH indikatörleri, boya maddeleri, indirgeyiciler, diğer indikatörler vb maddelerin besiyerine ilavesi ile yapılır. En basit olarak besiyeri bünyesine, ayırt edilmek istenen mikroorganizmanın kullanabileceği, ancak ortamda bulunan diğer bakterilerin yararlanamayacağı bir karbohidrat ilave edilir ve mikroorganizmanın bu karbohidratı kullandığı çeşitli indikatörlerle belirlenir. Örneğin koliform grup bakteriler için laktozdan gaz oluşturulması tipik bir ayırt edici özelliktir ve gaz oluşumu durham tüpleri kullanılarak belirlenir. Pek çok mikroorganizma belirli bir karbohidratı kullanırken asit oluşturur ve bu asitlik pH indikatörü ile rahatlıkla belirlenebilir. Tersine olarak gelişmesi istenen mikroorganizma besiyerine katılan bir maddeden alkali ürünler oluşturabilir. Bu durum yine pH indikatörleri ile belirlenebilir. Ya da mikroorganizmanın jelatinaz, lipaz, lesitinaz vb enzim aktiviteleri besiyerinde oluşan çeşitli berrak zonlar ile belirlenebilir.Diferansiyel besiyerinde gelişen mikroorganizmaların ayrımı koloni morfolojisi, enzimatik aktivitelerin belirlenmesi, gaz oluşumunun izlenmesi vb çıplak gözle yapılabileceği gibi bunlara ilave olarak fluoresansa dayalı olarak da yapılabilmektedir. MUG ilave edilmiş besiyerleri E. coli için yaygın bir şekilde kullanılırken, setrimid (=cetrimide) katılmış besiyerlerinde Pseudomonas aeruginosa yine UV ile ayırt edilmektedir.Diferansiyel besiyerleri sadece selektif besiyerlerinin bir modifikasyonu değildir. Çeşitli genel besiyerlerine ilave edilen özel bazı katkılar bu besiyerlerine diferansiyel bir nitelik kazandırabilir. Hemoliz reaksiyonları için kullanılan kanlı agar besiyeri buna en tipik örnektir. CASO Agar (Merck) besiyerine MUG ilave edilerek yapılan besiyerinde toplam mezofil aerob bakteri sayımı yanında E. coli sayımı da fluoresans ile yapılabilmektedir.Diferansiyel besiyerleri, amaca göre selektif izolasyon, selektif sayım ve ön identifikasyon amaçları ile kullanılmaktadır.2.3. Zenginleştirme BesiyerleriKarışık bir mikroflora içinde hedeflenen bir mikroorganizmayı geliştirmek, sayısını artırmak vb amaçlarla kullanılan zenginleştirme besiyerleri, önzenginleştirme besiyerleri ve selektif zenginleştirme besiyerleri olarak 2 alt gruba ayrılırlar.Önzenginleştirme besiyerleri genel olarak hasar görmüş (= injured = yaralanmış) mikroorganizmaların aktivitelerini kazanmaları için kullanılan, bileşiminde inhibitör içermeyen ve dolayısı ile aktivite kazanması istenen mikroorganizma yanında refakatçi mikrofloranın da gelişmesini sağlayan sıvı besiyerleridir ve bu tarif altında "özel amaçla kullanılan genel besiyerleri" olarak nitelendirilebilir. Önzenginleştirmede kullanılan besiyerlerine en tipik örnek gıdalarda Salmonella aranmasına yönelik çalışmaların ilk aşaması olan "önzenginleştirme" amacıyla kullanılan Tamponlanmış Peptonlu Su besiyeridir. Bileşiminde litrede 10 g et peptonu, 5 g NaCl ve 10 g fosfat tampon olan bu besiyerinde Salmonella yanında ortamdaki diğer bakteriler de gelişebilmektedir.Selektif zenginleştirme besiyerleri ise özel amaçla kullanılan selektif sıvı besiyerleridir. Bunlara en tipik örnekler ise Listeria ve Salmonella aranmasında kullanılan besiyerleridir. Selektif zenginleştirme aşamasında karışık kültür olarak bulunan bakterilerden gelişmesi istenmeyenler çeşitli selektif inhibitörler ile engellenir. Selektif zenginleştirme aşamasını genellikle selektif bir katı besiyerine sürme yapılarak aranan bakterinin selektif izolasyonu aşaması izler. Bu çerçevede selektif zenginleştirmenin amacı, selektif izolasyonda başarı şansını artırmak için aranan mikroorganizmanın karışık kültür içindeki sayısını artırmaktır.Selektif zenginleştirme aşaması her zaman önzenginleştirme aşamasını izlemez. Gıda maddelerinde Salmonella aranırken yukarıda da belirtildiği gibi işlem sırası önzenginleştirme/selektif zenginleştirme/selektif katı besiyerine sürme şeklinde iken Salmonella 'dan şüphe edilen gayta (=dışkı) örnekleri doğrudan selektif zenginleştirme /selektif katı besiyerine sürme aşamalarını izler. 2 farklı örneğe farklı işlem uygulanmasının nedeni gayta örneğinde aktif ve yüksek sayıda Salmonella olmasıdır. Gıda maddesi ise önzenginleştirme aşamasından geçirilerek bir anlamda önzenginleştirme kültürü Salmonella sayısı ve aktivitesi açısından gayta örneğine benzer bir hale getirilir.2.4. İdentifikasyon BesiyerleriTam selektif ve diferansiyel besiyerlerinin ön identifikasyonda kullanılabileceğine yukarıda değinilmiş idi.Tam selektif bir besiyerinde gelişen bir mikroorganizmanın identifikasyonu cins ve hatta bazı durumlarda tür bazında tamamlanabilir. Diferansiyel besiyerlerinde de aynı durum geçerlidir.Bir mikroorganizma izolatının identifikasyonu için en çok kullanılan testler biyokimyasal nitelikli olanlardır. İdentifikasyon besiyerleri, mikroorganizmanın belirli bir besin maddesini (genellikle karbohidratlar) kullanıp/kullanmadığının saptanması, belirli bir besin maddesinden metabolizma sonunda tayin edilebilecek metabolitleri (örneğin triptofandan indol) oluşturup/oluşturmadığının belirlenmesi vb amaçlar ile kullanılır. Bakterinin hareketli olup olmadığının saptanması amacıyla kullanılan yarı katı (semi solid) besiyerleri de identifikasyon besiyerleri grubuna katılmaktadır.3. Diğer BesiyerleriAntimikrobiyel duyarlık testlerinde kullanılan agar disk difüzyon besiyerleri ile minimal inhibisyon konsantrasyonu testlerinde kullanılan sıvı ve katı besiyerleri, vitaminlerin ve amino asitlerin mikrobiyel yolla belirlenmesinde kullanılan besiyerleri, saf kültürlerin korunması (=kolleksiyonu) amacıyla kullanılan besiyerleri gibi özel amaçlara yönelik olarak kullanılan çeşitli besiyerleri de vardır.BESİ YERİ AYRINTILI BİLGİ İÇİN http://www.orlab.net/mikrobiyoloji/942300030.pdf TIKLAYIN

http://www.biyologlar.com/besiyeri-cesitleri

İdrar Analizi

İdrar analizi renal veya sistemik bir hastalık olup olmadığını, bu hastalığın türünü, nasıl bir gidiş gösterdiğini tahmin etmek için başvurulan basit, noninvaziv  önemli bir testtir. İdrar analizi genel uygulamada; 1-Genel ve kimyasal özelliklerine (strip ile) göre 2-Mikroskopik özelliklerine göre analiz edilir. İdrarın Genel Karakteristiğinin İncelenmesi 1.Rengi 2.Görünümü 3.Dansitesi 4.Ph'na bakılır 1.İDRAR RENGİ İdrar görünüşü ve rengi berrak ve açık sarıdır. Konsantre (koyu) idrar koyu kehribardan portakal rengine kadar değişebilir. Düşük dansiteli idrar ise açık renklidir. İdrar rengi aşağıdaki durumlarda değişebilir. 2. İDRARIN GÖRÜNÜMÜ Normal taze idrar berraktır. Ürat ve fosfatların presipitasyonu, hematüri, bakteriüri, pyüri ile idrar bulanıklaşabilir. Taze idrar amonyak kokar. Beklemiş idrar E.coli ile meydana gelen enfeksiyon sonucu balık gibi kokar. Soğuk algınlıklar ve bazı ilaç alımlarından sonrada idrar kokabilir. 3. İDRAR DANSİTESİ Böbreklerin idrarı konsantre ve dilüe etme yeteneğinin göstergesidir. Normalde 1015-1025 arasıdır. Ancak normal bir böbrek dansiteyi 1008-1030 arasında değiştirebilir. Hipostenüri (düşük dansite) : Dİ, tübüler hasar, GMN, pyelonefrit Hiperstenüri (yüksek dansite): DM, nefroz su kaybı,KKY,ADH artışı, gebelik toksemis 4.İDRAR ASİDİTESİ Böbreğin idrarı asidifiye etmesinin kaba bir göstergesidir, 4-8 arasındadır. Asit-baz metabolizması bozuklukları, Taş hastalığı, İdrar yolu enfeksiyonu, Değişik ilaçlar ve kristalleri değerlendirmedeyol göstericidir. Asit İdrar Nedenleri Yüksek proteinli diyet Asidoz Ateş Su kısıtlaması Potasyum eksikliği Gut Metanol zehirlenmesi İlaçlar (amonyum klorid vb.) Alkali İdrar Nedenleri Vejeteryan diyet İdrarın üreaz pozitif mikroorganizma ile kontaminasyonu veya infeksiyonu Alkaloz Distal renal tübüler asidoz Su diürezi İlaçlar (asetazolamide, thiazid, sodyum bikarbonat…) İdrarın Kimyasal Özelliklerinin  İncelenmesi 1.Glukoz 2.Protein 3.Bilirubin 4.Ürobilinojen 5.Nitrat 6.Keton yönünden incelenir 1.İDRAR GLUKOZU Normal koşullarda idrarda glukoz bulunmaz. (proksimal tubuler reabsorbsiyon) Normal renal fonksiyonlu hastalarda plazma glukoz konsantrasyonu >180 mg/dl olunca glukozüri gözlenir. DM, tirotoksikoz, Cushing Sendromu, akromegali, tubuler hasarda; idrarda glukoz artar Normal glukoz düzeylerine rağmen idrarda glukozun varlığı; Renal glukozüriyi gösterir. 2.İDRARDA PROTEİN Sağlıklı bir ürogenital sisteme sahip kişinin idrar tahlilinde protein negatiftir. Glomerüler hasar-Azalmış tubuler reabsorbsiyon Spot idrarda protein pozitifliği 24 saatlik idrarda protein ölçümünü gerektirir. Hafif zincirler ve bazı düşük molekül ağırlıklı proteinlerin bu yöntemle saptanamaz. Yanlış pozitif sonuçlar, Alkali idrarda (pH> 7.5) dipstick uzun süre içeride tutulduğunda, Yüksek konsantrasyonlu idrarda, Ciddi hematüride, Penisilin, sulfonamid veya talbutomid gibi ilaçların kullanımında, Meni ve vajinal salgılarla kontaminasyon Yanlış negatif sonuçlar; Dilüe idrarda (dansitesi<1015) Protein içeriğinin albumin olmadığı veya düşük moleküler ağırlıklı proteinler olduğu durumlarda Mikroalbüminüri Günlük albümin atılımının 30 ile 300 mg arasında olduğu durumlardır. Renal hastalıkların tanımlanmasında proteinüriden daha duyarlıdır. Diabetes mellitusda nefropatinin en erken bulgusudur. Kardiyovasküler olaylar yönünden bağımsız risk faktörüdür. 24 saatlik idrarda protein İdrarda artmış miktarda protein varlığı böbrek hastalıkları için önemli bir belirteçdir. Normalde<150 mg/gün, 150-600 mg arası takip Bazal membran hasarı,BM elektriksel yük değişimi, glomerüler kapiller basınç artışı patolojik sebeptir. Daha çok albumin atılır.Terminolojik olarak proteinüri kavramı = albuminüri Büyük moleküllü globülinlerin atlımı fazlaysa(MPGMN) kötü prognoz işaretidir. 3.ÜROBİLİNOJEN Bozulmuş karaciğer fonksiyonlarının ve hemolizin en duyarlı göstergelerindendir. Safra yollarının tıkandığı hallerde azalır. 4.BİLİRUBİN Normalde idrarda negatifdir. Hemolizde negatif, biliyer tıkanmada pozitifdir. Hepatik hasarda pozitifnegatif olabilir. 5.KETON İdrar keton pozitifliği = ketonüri (diyabetik ketoasidoz, uzamış açlıkta). Bu yöntemle aseton varlığı tespit edilmektedir. Glisemi yüksekliği, asidoz, gebelikte ketonüri takibi gereklidir. 6.NİTRİT Pozitif nitrit testi anlamlı miktarda bakteri varlığıdır. E.coli gibi gram negatif bakteriler pozitif sonuç verebilirler. Duyarlılığı sınırlıdır.

http://www.biyologlar.com/idrar-analizi

B6 Vitamini

B6 VİTAMİNİ: Pyridoxine Pyridoxine olarak da adlandırılan B6 vücutta depolanmayan ve suda eriyen bir vitamindir. Diyetle veya ek vitamin olarak mutlaka alınmalıdır. Üç farklı formu vardır. Alkol, aldehit ve amin. Hayvansal ve bitkisel besinlerde düşük yoğunlukta bulunur. Yararları: Vücutta diğer birçok vitaminden daha fazla hayati fonksiyonları destekleyici rol oynar. Karbonhidrat, yağ ve protein metabolizmasında yer alır. Hormonlar, kırmızı kan hücreleri, sinir hücreleri ve enzimlerin oluşumunda rol oynarlar. Ayrıca B6 vitamini iştahımızı, ağrıya karşı duyarlılığımızı, uyku düzenimizi, ruh durumumuzu etkileyen serotonin adlı maddenin yapımında da etkili olmaktadır. B6 vitamini bağışıklık sistemini güçlendirir, kolesterol birikimine engel olarak kalbi korur, böbrek taşı oluşumunu engeller. karpal tunel sendromu, adet öncesi gerginlik sendromu, artritler, alerjiler, geceleri oluşan bacak kramplarının tedavisinde de kullanılır. B6 vitamini birçok enzimin oluşumuna katılır. Örneğin, demirin hemoglobin yapısına katılmasını sağlayan enzimlerin içinde de bulunurlar. Ensefalopati ve polinevrit gibi nörolojik hastalıkların tedavisinde B6 vitamini etken madde olarak kullanılır. Hangi besinlerde bulunur? Başlıca Vitamin B6 kaynakları arasında muz, avakado, tavuk eti, patates, ıspanak, bezelye, bira mayası, havuç, yumurta, balık ve bütün hububatlar gelmektedir. Tavuk, balık, ıspanak, patates, muz, kepekli ekmek, kuruyemiş diğer önemli kaynaklarıdır. Eksikliği nelere yol açar? B6 vitamini eksikliği son derece enderdir. Bu durumda deri, sindirim sistemi ve sinir sistemi rahatsızlıkları ortaya çıkar. Dudak ve dil çatlaması, egzama gibi fiziksel belirtiler görülür. B6 vitamini eksikliğinde ani uykusuzluk ve santral sinir sisteminin çalışmasında bozukluklar oluşmaktadır. Eksikliğinde depresyon, kusma, anemi (kansızlık), böbrek taşları, dermatitler, uyuşukluk, bağışıklık sisteminin zayıflamasına bağlı olarak sık hastalanma görülebilir. Yeni doğanlarda B6 vitamini eksikliğine bağlı olarak aşırı sinirlilik, huysuzluk; bazende kasılma nöbetleri görülebilir.

http://www.biyologlar.com/b6-vitamini

Biyoteknoloji

Biyoteknoloji; hücre ve doku biyolojisi kültürü, moleküler biyoloji, mikrobiyoloji, genetik, fizyoloji ve biyokimya gibi doğa bilimleri yanında mühendislik ve bilgisayar mühendisliğinden yararlanarak, DNA teknolojisiyle bitki, hayvan ve mikroorganizmaları geliştirmek, doğal olarak var olmayan veya ihtiyacımız kadar üretilemeyen yeni ve az bulunan maddeler (ürünleri) elde etmek için kullanılan teknolojilerin tümüdür. Biyoteknoloji, temel bilim buluşlarını kısa sürede yararlı ticari ürünlere dönüştürebilmesiyle bir anlamda kendi talebini de yaratabilir. Bu yönüyle de diğer teknolojilerden ayrılır. Örneğin sıcak su kaynaklarında yaşayan bakterilerin birinden elde edilen yüksek sıcaklığa dayanıklı bir enzim, günümüzde uygulama ve temel bilim çalışmalarının ayrılmaz bir parçası olan PCR'nin önemli bir girdisidir. Biyoteknoloji uygulamaları; mikrobiyoloji, biyokimya, moleküler biyoloji, hücre biyolojisi, immünoloji, protein mühendisliği, enzimoloji ve biyoproses teknolojileri gibi farklı alanları bünyesinde toplar. Bu nedenle de biyoteknoloji birçok bilimsel disiplinle karşılıklı ilişki içinde gelişir. Bitki, hayvan veya mikroorganizmaların tamamı ya da bir parçası kullanılarak yeni bir organizma (bitki, hayvan ya da mikroorganizma) elde etmek veya var olan bir organizmanın genetik yapısında arzu edilen yönde değişiklikler meydana getirmek amacı ile kullanılan yöntemlerin tamamına Biyoteknoloji denmektedir. Biyoteknoloji, insan, hayvan ve bitki hücrelerinin fonksiyonlarını anlamak ve değiştirmek amacıyla uygulanan çeşitli teknikleri ve işlemleri tanımlamak için kullanılan bir terimdir. Canlıların iyileştirilmesi ya da endüstriyel kullanımına yönelik ürünler geliştirilmesini, modern teknolojinin doğa bilimlerine uygulanmasını kapsar. Uygulamalar arasında; İnsan sağlığına yönelik olarak proteinlerin üretilmesi Bazı hormon, antikor, vitamin ve antibiyotik üretilmesi Çok zor şartlara sahip çevrelerde (sıcak, kurak,tuzlu...) yaşayan organizmaların enzimlerini ve biyomoleküllerini saflaştırarak bunların sanayide kullanılması Yeni sebze ve meyve üretimi İnsandaki zararlı genlerin elemine edilmesi Aşı, pestisit, tıbbi bitki üretimi.

http://www.biyologlar.com/biyoteknoloji-1

ALDOSTERON (İdrar)

Normal Değer: <12 yaş 1,00-11,00 mg/gün >12 yaş 2,80-30,00 mg/gün Kullanımı: Adrenal fonksiyonların değerlendirilmesinde kullanılır. Özellikle hipertansiyonun değerlendirilmesi ve renal hipertansiyon tanısı konmasında değerlidir. Ayrıca primer ve sekonder aldosteronizmin araştırılmasında da kullanılır. www.tahlil.com

http://www.biyologlar.com/aldosteron-idrar

Artropodların Zararlı Etkileri

Artropodların konaklarına (Konak: Artropodları üzerinde veya içinde taşıyan omurgalı canlılar yani insan ve hayvanlara verilen isimdir.) zararlı etkileri 2 grupta toplanmaktadır. Bunlar; A) Artropodların direkt olarak neden olduğu zararlı etkiler: a-1) Konaklarını rahatsız etmeleri: Ektoparazit artropodlar genellikle konak üzerinde gezerken ya da yakınında uçarken onu rahatsız eder ve normal fonksiyonlarını görmesini engeller. Örneğin Mallophaga takımındaki bitler kanatlıların üzerinde gezerken onları huzursuz eder, yeterli besin almasını engeller, stres ve verim düşüklüğüne sebep olur. Meradaki ineklerin çevresinde uçuşan Hypoderma ve Tabanus cinsi sinekler onları huzursuz eder ve hayvanların sağa sola kaçışmasına neden olur ve dolayısı ile özellikle sığırların meradan yararlanmasına engel olduğu için verim kaybına ve hatta bu kaçışmalar esnasında abortlara neden olabilirler. a-2) Soyucu sömürücü etkileri: Artropodun konakçısından kan, lenf ve doku sıvılarını emmesi veya kan emme sırasında böcek tarafından çıkarılan antikoagülant madde etkisiyle kanamanın uzun süre devam etmesiyle olur. Artropod az sayıda olduğunda bu etki önemsenmeyebilirse de çok sayıda olduğunda (Ör: Kene, Tabanus cinsi sinekler gibi) kan emme sonucu anemi meydana gelmekte ve hatta hayvanların ölümüne neden olabilmektedir. Bütün hayatları boyunca kan emmek zorunda olan kenelerin, yumurtlamak için kan emmek zorunda olan dişi sivrisineklerin konaklarından kan emmeleri sömürücü bir etkidir. a-3) Dermatozlara neden olmaları: Artropodların konakçısını ısırma ya da sokması sonucu veya konak derisini istila etmesi neticesinde değişik derecede deri irritasyonlarına ve dolayısıyla dermatozlara neden olurlar. İrritasyonlar artropodların allerjik ve toksik etkileri sonucunda meydana gelebilir. Deri irritasyonu ya sivrisinek, pire, kan emici bitler gibi sokucu artropodlardan ya da uyuz etkeni olan ve deri içinde oyuk ve tüneller açan artropodlardan meydana gelir. Tabanus’ların hayvanlardan kan emerken deride oluşturdukları yaralar ve Hypoderma sineklerinin larvalarının sığırların vücudunda göçleri sırasında sırt derisi altına yerleşip deriyi delmeleri sonucu oluşan bozukluklar bir traumatik etkidir. a-4) Myiasis ve bununla ilgili bozukluklar: İnsecta sınıfı Diptera takımındaki bazı sinek larvalarının insan veya hayvanların organ veya dokularını istila etmelerine myiasis adı verilir. Zorunlu, fakültatif ve rastlansal myiasis olarak ya da larvaların yerleştiği anatomik bölgeye göre cuticol, gastricol, cavicol myiasis olarak sınıflandırılır. Bu larvalar direkt olarak kendileri doku ve organlarda zararlı olduğu gibi larvalar konakta biyolojik gelişmeleri esnasında da yan etkiler oluşturabilirler. Hypodermosisde parapleji, meteorismus görülmesi, tek tırnaklılarda gastricol myiasisde vakalarında stomatitis ve peritonitis görülmesi bunlara örnek verilebilir. Yine Hypoderma larlavarının özellikle sığırların sırt derisi altında açmış olduğu deliklerden dolayı dericilik sektöründe meydana gelen ekonomik kayıplar sinek larvalarının neden olduğu diğer zararlı etkilerdir. Ayrıca özellikle koyunlarda yaygın olarak görülen görülen cavicol myiasisde ise Oestrus ovis larvalarının sinüsler ve burun konhalarına yerleşerek tahribat yapması, hatta ethmoid kemiği de delerek beyine gitmesi ve sinirsel bozukluklara sebep olması önemli zararlı etkilerdir. a-5) Artropodların zehirli etkileri: Parazit olan ve olmayan artropodların toksik etkileri olmak üzere iki grupta incelenir. 1) Parazit olan artropodun beslenmek için konakçısını soktuğunda bıraktığı sekretlerden oluşan toksikozlar. Örneğin; bazı kene türlerinin kan emme esnasında salgıladıkları tükrük hayvanlarda sinir sistemini etkileyerek felçlere ve hatta ölümlere bile neden olabilmektedir. Ayrıca insecta sınıfındaki sivrisinek ve tahta kurularının kan emmeleri esnasında deride oluşturdukları zayıflık ve şiddetli kaşıntı da toksik etkidir. 2) Parazit olmayan arı, çıyan, örümcek ve akrep gibi artropodların özel zehir bezlerinde bulunan zehirlerle meydana gelen toksik etkidir. Bu zehir artropodun saldırı veya savunma araçlarından olup, özelliği ani etki yapması ve şiddetli acı vermesidir. a-6) Artropodların allerjik etkileri: Bazı artropodlar, konakları üzerinde gezinme ve kan emmeleri esnasında allerjik bozukluklara yol açarlar. İnsanlarda tahta kurularının deride gezinmeleri sonucu bütün vücutta şiddetli kaşıntı ve deride kırmızı kabarcıklar (ürtikerlere) oluşması allerjik bir etkidir. Allerjik reaksiyonların şiddeti kişinin dispozisyonuna bağlıdır. Aynı tür artropoda maruz kalan değişik fertlerde değişik şiddette ortaya çıkar. Ayrıca allerjik reaksiyonlarda allergenle daha önceki temas süresi ve allergene maruz kalma şeklide önemlidir. Artropodal alerjik etkiler eksternal veya parenteral yola göre de değişir. Artropodlardan ileri gelen allerjik reaksiyonlar 2 şekilde görülür. a) Parazit olmayan artropodlardan ileri gelen allerjik reaksiyonlar. Bunlar artropodun vücutları veya sekretleriyle ilgilir. Hamam böcekleri ve Dermatophagoutes cinsine bağlı ev tozu akarları örnek verilebilir. b) Parazit olan artropodlardan iler gelen allerjik reaksiyonlar. Örneğin; sivrisinek ve pire gibi insektlerin kan emmek için konakları soktuklarında bıraktıkları tükrük salgısından ileri gelir. Ayrıca tırtılların oluşturduğu etkiler toksik, mekanik veya allerjik bir nedenle oluşmaktadır. B) Artropodların hastalık etkenlerini taşımaları (vektör veya arakonakçı) ile ilgili olarak yaptığı zararlı etkiler: Hastalık etkenlerini aynı veya farklı konaklar arasında aktif olarak nakledip bulaştıran omurgasız canlılara yani artropodlara vektör adı verilir. Burada dikkat edilmesi gereken husus bütün artropodların vektör olmadığı ancak vektör tanımlaması içinde geçen türlerin artropod olduğudur. Arakonak ise hastalık etkenlerinin daha çok genç şekillerini veya larva formlarını vücudunda taşıyan ve omurgalı konaklara pasif olarak bulaşmasını sağlayan artropodlardır. Theileria sp. etkenlerinin vektörü keneler, Dipylidium caninum adlı cestodun arakonağı pirelerdir. Artropodlar hastalık etkenlerini bulaştırmaları yönünden 4 gruba ayrılır. 1) Mekanik taşıyıcı: Bu gruptaki artropodlar hastalık etkenlerini yoğun olarak bulunduğu yerlerden vücutlarına bulaştırmak süratiyle çevreye ve hatta gıdalara mekanik olarak yayarlar. Nakil olayı az çok tesadüfe bağlıdır. Mekanik taşıyıcılar patojen etkenlerin bulaşmasında tali bir rol oynarlar. Örn : Dışkı ile temasta bulunan hamam böcekleri ve kara sinekler amipli dizanteri etkeni olan Entamoeba histolytica kistlerini gıdalara naklederler. Bu tip bulaşık gıdaların insanlar tarafından yenilmesi ile de kistler sindirim kanalına girerek hastalığın oluşmasına yol açarlar. 2) Biyolojik vektör: Bu tip vektörlerde, patojen etkenler artropod vücudunda biyolojik gelişme geçirdikten sonra başka bir konağa aktif olarak nakledilir. Örn : Sivrisineklerin sıtma etkeni olan Plasmodium 'ları, bulaştırması ile lxodidae ailesindeki mera kenelerinin Babesia ve Theileria türlerini bulaştırması örnek olarak verilebilir. Sivrisinekler malaryalı insanlardan kan emerken sıtma etkenlerinin erkek ve dişi gamontlarını alırlar. Bunlar sivrisineğin midesinde bir gelişim devresi geçirdikten sonra oluşan sporozoitler tükrük bezlerine yerleşir. Sivrisineğin başka bir insandan kan emmesi ileverilen sporozoitler ile enfeksiyon oluşur. Bu tip biyolojik vektör olarak hastalık etkenini taşıma olayı; artropodun vücudunun ön tarafından olan biyolojik nakildir (salivarial). Chagas hastalığı etkeni olan Trypanosoma cruzi ise konik burunlu tahta kuruları olan Triatoma ve Rhodnius cinsi artropodlar tarafından ve bunların arka tarafından (dışkının deriye bırakılması ile) biyolojik olarak bulaştırılır (sterkorariyal). 3) Mekanik vektör: Patojen etken vektör de bir biyolojik gelişme geçirmeden diğer konaklara bulaşabiliyorsa bu tip vektörlere mekanik vektör adı verilir. Yani vektör hastalık etkenini aldıktan kısa bir süre sonra başka bir konağa bulaştırılır. Örn : Kan emen sineklerden Tabanus veya Stomoxys'lar sığırlardan kan emmeleri esnasında Trypanosoma evansi'yi alırlar. Kısa bir süre içinde bu insectler diğer bir sığırdan kan emerken hortumlarına bulaşık bulunan trypanosomaları ona naklederler. Hastalık etkenlerinin bu tip taşınması olayı kan emme süratiyle olan mekaniksel nakildir. Yukarıda Anlatılan biyolojik ve mekanik vektörler hastalık etkenlerini bulaştırma yönleri dikkate alındığında zorunlu vektörler olarak da tanımlanırlar. 4) Arakonakçı (Arakonak): Bir parazitin bir gelişme dönemini taşıyan ve sonkonağa ulaşmasında pasif olarak görev yapan artropodlardır. Örn: Köpek piresi olan Ctenocephalides canis'in köpek şeritlerinden Dipylidium caninum'a arakonaklık yapması. Arthropodolojide erişkin form omurgalıdaysa omurgalı sonkonak, erişkin form omurgasızdaysa omurgasız sonkonak olarak tanımlanır. Ancak bu tip adlandırmaya karşı görüşlerde vardır. Erişkin form omurgasızda ise daha yüksek yapılı olan canlı yani omurgalı insan veya hayvan sonkonak olarak adlandırılır. Artropodların taşıyıp bulaştırdıkları enfeksiyon etkenleri: Artropodlar; protozoonlar, bakteriler, helmintler, riketsiyalar ve viruslar olmak üzere bakteriyel ve paraziter hastalık etkenlerini arakonak, vektör veya mekanik taşıyıcı olarak taşırlar. Artropodların enfeksiyon etkenlerini konakçıya veriş biçimleri: a) Mide içeriğinde bulunan patojen etkenleri ağız organelleri ile kusma şeklinde konağa verme şekliyle olur. Örn: Fare piresi (Xenopsylla cheopis) veba hastalığı etkeni olan Pasteurella (Yersinia) pestis'i ve Phlebotomus'ların (tatarcık sineği) Leishmania'ları konaklarına veriş biçimi gibi. b) Tükrük bezleri salgısındaki etkenleri ağız organelleri yardımı ile sokmak süratiyle konağa verme. Örn : Sivrisinekler Plasmodium 'ları, keneler Babesia ve Theileria 'ları bu şekilde verirler. c) Patojen etkenlerin vücut duvarından özellikle de ağız organelleri kenarından dışarı sızması ile konağa bulaştırılması. Örn : Sivrisineklerin filariyal nematodları bulaştırması. d) Artropodların bulaşık vücut kısımlarıyla etkenlerin konaklara bulaştırması. Örn : Sivrisineklerin kanatlı çiçeğini, Chrysops türlerinin tularemiyi bulaştırması. e) Patojen etkenlerin artropodun ekskresyon sıvılarıyla konaklara bulaşması. Örn : Argasidae ailesindeki mesken keneleri virus ve spiroketaları coxal bezleriyle dışarı atarak konaklara bulaştırırlar. f) Enfekte dışkının konakçı derisi üzerindeki sıyrıklara veya konjuktivalara bırakılmasıyla bulaştırma. Örn : Triatoma cinsi uçan tahta kurularının Trypanosoma cruzi'yi bulaştırması. g) Patojen etkenle enfekte artropodun konak tarafından yenmesi veya artropodun konakçı üzerinde ezilmesiyle etkenlerin konaklara bulaşması. Örn : Farelerin pireleri yiyerek Trypanosoma lewisi ile enfekte olması, köpeklerin pireleri yiyerek Dipylidium caninum 'la enfekte olmaları gibi. Artropodların hastalık etkenlerini nakletme şekilleri: a) Transstadiyal nakil: Artropodun gelişme dönemlerinin herhangi bir safhasında iken aldığı enfeksiyon etkenlerini daha sonraki gelişme dönemlerine geçirmesi ve bu gelişme döneminde iken başka bir konaktan beslenirken etkenleri nakletmesine transstadiyal nakil ya da trasstadiyal bulaşma adı verilir. Örn : Ixodidae ailesindeki kenelerin theileriosis etkenlerini bulaştırması. b) Transovariyal nakil: Artropodun, bir jenerasyonda konaktan beslenirken aldığı etkenleri daha sonraki jenerasyonlarına aktarması ve bu jenerasyonda başka bir konaktan kan emerken etkenleri bulaştırmasına transovariyal nakil ya da transovariyal bulaşma denir. Bu bulaşma şekli bazen 8-10 jenerasyon devam edebilir. Örn : Kenelerin (Boophilus sp) babesiosis etkenlerini bulaştırması. Kene bir konaktan kan emerken etkenleri alır. Bu etkenler kene vücudunda gelişme dönemi geçirerek kenenin ovaryumlarına geçer. Kene enfekte yumurtalar bırakır. Yumurtalardan çıkan larvalar da enfektedir. Bu durum nesil boyu devam eder ve kan emerken etkenleri başka konağa nakleder. c) Monohomostadiyal nakil: Artropodun aynı gelişme dönemi içinde konaktan aldığı etkenleri başka bir konağa bulaştırması. Örn : Sivrisineklerin Plasmodium 'ları bulaştırması. d) Transsexuel nakil: Dişi artropod kan emerken aldığı etkenleri transovariyal olarak larvalarına geçirir ve bu larvalardan erişkin hale gelen erkekler etkenleri başka bir dişi artropoda bulaştırır. Bu dişi böcekde başka bir konaktan beslenirken etkenleri bulaştırır

http://www.biyologlar.com/artropodlarin-zararli-etkileri

B12 Vitamini

Yararları: Suda eriyen B12 özellikle sinir sistemi fonksiyonları için gereklidir. Folik asit ile birlikte doğum defektlerini önlemekte önemli rol oynar. Yine folik asit ve B6 vitamini ile birlikte kalp hastalıklarını ve damar tıkanıklığını önleyici rol oynamaktadır. Asetilkolin üretimini arttırdığı ve beyinde sinir iletimini düzenlediği için Alzheimer hastalığında koruyucu rolü olabileceği düşünülmektedir. Normal büyüme gelişmede olumlu rol oynar. Sinir hasarlarında tedavi edici rol oynar. Pernisiyöz anemi tedavisinde kullanılır. Mide bağırsak sisteminin bir kısmı cerrahi olarak çıkartılmış hastalarda oluşabilecek B12 vitamin eksikliğine bağlı belirtileri önler. Vejeteryanlarda ve birtakım emilim bozukluğu olan hastalarda oluşabilecek B12 vitamin eksikliğine bağlı belirtileri önler. Bağışıklık sistemini ve sinir sistemini güçlendirir. DNA molekülünü sentezler ve kırmızı kan hücrelerini üretirler. Hangi besinlerde bulunur? B12 vitamini folik asit ile birlikte alınmalıdır. Karaciğerde, sütte, yumurta akında, peynirde, balıkta, ette ve karideste bol miktarda, bitkilerde ise son derece az miktarda bulunur. Dana eti, dana karaciğeri, böbrek, midye, dil balığı, ringa balığı, uskumru, sardalya B12 vitamini içeren yiyeceklerdir. Sebzelerde ise B12 vitamini bulunmaz. Eksikliği nelere yol açar? B12 vitamin eksikliklerinde zihinsel ve sinirsel fonkisyonlar bozulabilir ve kulak çınlaması, hissizlik gibi belirtileri görülür. Yaşlı insanlarda depresyonun en önemli nedenidir. Yaşlandıkça B12 vitamininin emilimi için gerekli olan mide asitimiz giderek düşer. Besinlerin emilim yeteneğini kaybeden yaşlı insanlarda, B12 gereksinimi giderek artar. Bu nedenle 50 yaş üzerindeki insanların B12 vitaminini harici alınması önerilir. Diğer suda eriyen vitaminlerden farklı olarak vücut dokularında depolanabilir. Bu yüzden eksiklik belirtilerinin ortaya çıkması yıllar alabilir. Ağır vitamin B12 eksikliğinde ise sinir fonksiyonlarının bozulduğu kronik hastalıklar ortaya çıkmaktadır. Yaş ilerledikçe vitamin B12 eksikliğinin görülme sıklığı artmaktadır. Araştırmalar 65 yaşın üstündeki kişilerin yaklaşık % 40'ında vitamin B12 eksikliği olduğunu göstermektedir. Bu yaşlarda görülen bazı zihinsel bozukluklar ve depresyonun bu nedenle oluşabileceği düşünülmektedir. Alzheimer hastalığına benzer belirtiler verebilir ve eksiklik uzun yıllar sürerse zihinsel bozulma geriye dönüşümsüz hale gelebilir. B12 vitamini eksikliğinin, iyileşmesi mümkün olmayan sinir tahribatlarına neden olması dolayısıyla, hayvansal ürünlerin hiçbirini yemeyen vejeteryanların, mutlaka ayrıca B12 vitamini alması gerekir. Hafif derecede B12 eksikliği çok sık görülür. Uyuşukluk, unutkanlık, sabahları yataktan yorgun kalkma gibi belirtiler HIV pozitif kişilerin yüzde 35 inde vitamin B12 eksikliği olduğu bulunmuştur. Yararı tam olarak kanıtlanamasa da AİDS tedavisinde vitamin B12 eklenmektedir.

http://www.biyologlar.com/b12-vitamini

Köpek Hastalıkları

Tüm hayvanlar yaşamları boyunca çeşitli enfeksiyonlara maruz kalırlar.Anneden alınan antikorların etkisi sona erdiğinde enfeksiyonlara karşı zayıf hale gelirler.Enfeksiyona yakalanmadan önce,kendi bağışıklıklarını geliştirmeleri için gerekli olan yeterli miktarda antikoru üretecek B hücrelerine sahip olmaları gerekir.Özellikle köpek üretim merkezleri,barınaklar,pansiyonlar,pet shop ve dog showlar gibi kalabalık çevrelerde bulunan yavrular yüksek risk altındadır.Bu nedenle,viral ve bakteriyel aşıları tamamlanmış olan yavru köpeklerin,dog show gibi etkinliklere katılması doğru değildir. VİRAL HASTALIKLAR Gençlik Hastalığı : (Canine Distemper) Köpeklerin gençlik hastalığı bulaşıcı viral bir hastalıktır.Kolostrum (anneden ilk emzirme sırasındaalınan süt,ağız sütü,yüksek miktarda antikor içerir.)almış yavrularda.maternal(anneden alınan) antikorlar yavruyu % 12 hafta korur.Kolostrum almamış olanlarda ise bu süre 1-4 haftadır.Bu nedenle hastalık genelikle 3-12 aylık köpeklerde yaygındır.Fakat daha yaşlı köpeklerde de rastlanabilmektedir.Yüksek ateş (40-41C) ile başlayan hastalık,iştahsızlık,depresyon,burun ve göz akıntıları,kusma ve ishal ile devam eder.Hastalığa yakalanan köpeklerin büyük kısmı (%60-80) ölür.Hastalığın en çok görülen tipi solunum tipi olmak üzere sindirim sistemi ile ilgili ve sinirsel belirtilerin gözlendiği hastalık formları daha sık görülür.Hastalığın sinirsel formunda sara tipi nöbetler,tikler ve felçler gözlenir.Distemper virüsü T ve B hücreleri ile makrofajları etkiler.Köpek iyileşse bile virüsün bağışıklık sisteminde yaptığı bozukluk kalıcı olur.Distemper virusünün hastalık yapma yeteneği köpek makrofajları üzerindeki bu replikasyon yeteneğinden ileri gelmektedir. Kanlı İshal :(Canine Coronavirüs) Kanlı ishale neden olan parvovirüsler nisbeten yeni virüslerdendir ve kedilerin gençlik hastalığı virüsleri ile yakkınlıkları vardır.İlk olarak 1978 yılında ortaya çıkan ve yüzbinlerce köpeğin ölümüne neden olan bu hastalık köpeklerin afeti olarak tanımlanmaktadır.İlk olarak Kuzey Amerika'da tanımlanan hastalık bundan sonra Avustralya,Yeni Zelanda,Asya,Merkez Amerika ve Güney Afrika'da görülmüştür.1983'lü yıllarda itibaren 50'yi aşkın ülkede gözlendiği bildirilmiştir.Hastalık her yaştaki köpekte gastrointestinal belirtilere,yavru köpeklerde kalp kasının iltihabına(miyokarditis) neden olur.Özellikle yavru köpekler için tehlikeli olan parvoviral enteritise,3 yaşın altındaki köpeklerde rastlanmaktadır.Yeni zelanda'da yapılan bir araştırmaya göre 0-7 haftalık köpeklerde hastalığın insidansı %63, 8-12 haftalık köpeklerde %29, 3-6 aylık köpeklerde %23, 6-12 aylık köpeklerde %14, 1-2 yaşındakilerde ise %9, bir yaşından sonra da %11 olarak tespit edilmiştir.Bu virüs özellikle hızlı olarak bölünen hücreleri hedef alır.Bu hücrelerde organizmada barsakta bulunan ve alınan besinlerin değerlendirilmesi ile ilgili olan hücrelerdir. Parvoviral hastalığın ilk belirtisi şiddetli kusmadır.Kusmuk gri-beyaz renkte ve suludur.Kusmayı sulu,kötü kokulu,sarıdan kahverengiye kadar değişen renkte ishal izler.İshal halinde çıkarılan dışkıda taze ya da pıhtılaşmış halde kan bulunur.Ateş 41.C kadar yükselir.Kusma ve ishal nedeni ile oluşan sıvı kayıpları sonucu çoğu yavru köpekler ilk 24 saat içerisinde ölür.Kalbin etkilendiği durumlarda ise çoğu zaman yavru köpekler ölü bulunurlar.Bu hastalıkta ölüm oranı %50'nin üzerindedir. Parvovirüslerin bağışıklık sistemini baskıladıkları bilinmektedir.Ancak bunun mekanizması ve lenfosit fonksiyonlarını nasıl etkiledikleri henüz açıklığa kavuşmamıştır.Virüslerin bağışııklık sistemini nasıl baskıladıklarına ilgli 4 ana mekanizma vardır.Bu mekanizma lar sayesinde virüsler,vücudun bağışıklık sisteminin zayıf taraflarını araştırarak kendi varlıklarını garentiye alırlar.Virüsler: 1)T ve B hücrelerinin fonksiyonlarını bozar veya onları yok ederler. 2)Bağışıklık sisteminin düzeninde dengesizliğe yol açarak,baskılayıcı T hücrelerinin aşırı aktif hale gelmesine neden olurlar. 3)Makrofajlar bu virüsleri yutarken,makrofajlara zarar verebilir vemakrofajları enfekte edebilirler. 4)Hedef hücrelerin genetik kodlarını çalabilirler. Virüsler özellikle belirli bir hücreyi etkileyen kimyasal habercilerin reseptörlerine kendi genetom proteinlerini yerleştirirler.Bu şekilde virüs, habercinin gönderdiği kamutları bozar veya ortadan kaldırır.Modifiye canlı parvovirüs aşıları,köpeklerde 2-5 haftalık bir süre için bağışıklık sistemini baskılayıcı etki gösterir. Bulaçıcı Karaciğer Hastalığı : (Infectıous Canine Hepatitis, CAV-1) Bu hastalığın etkeni adenovirüslerdir (CAV-1) ve bulaşma hasta köpeklerin idrarı ile olur.Hastalığın en şiddetli formları yavru köprklerde görülmektedir.Aşılı anneden doğan yavru köpekleri kolostrum 5-7 haftaya kadar koruyabilir.Bulaşıcı karaciğer hastalığının 13 yaşındaki köpeklerde bile ölüme yol açtığı bilinmektedir.Adenovirüsler tüm dokuları enfekte edebilme yeteneğindedir.Fakat daha çok karaciğer hücreleri ile ilgilidirler ve bu organda şiddetli yangıya neden olur.Hastalığın ilerleyen dönemlerinde gözlerde kornoval opasite (kornoal bulanıklık) şekillenir.Mavi göz olarak daadlandırılan bu bozukluğun nedeni gözlerin pigmentli tabakasının yangısıdır ve aşılamayı takibende gözlemlenir. Adenovirüs Tip-2 Enfeksiyonu : (Canine Adenovirüs Type-2 CAV-2) Bu virüs daha çok solunum sisteminde hastalık yapmaktadır."Trache obronşitis veya Kennel Cough" olarak adlandırılan köpek öksürüğü hastalığının etkenlerinden biridir.Özellikle kalabalık ortamlarda barınan köpekler arasında yaygındır.CAV-2 aşısı aynı zamanda CAV-1 aşı virüsü nedeniyle oluşabilecek korneal reaksiyonlarıda önler. Köpek Nezlesi : (Canine Parainfluenza) Bu viral enfeksiyon solunum sisteminde orta dereceli bir yangıya neden olur.Ancak CAV-2 virüsü ve Bordetalla bronchiseptica bakterisi ile kombine halde çok şiddetli ve ölümcül enfeksiyonlara neden olurlar. Koronavirüs İshali : (Canine Coronavirüs) Koronaviaral enfeksiyon genellikle subklinik olarak seyreder.Klinik belirtileri ateşle ve hafif bir inestial akıntı ile başlar,sonraları kusma ve ishal gözlenir.Koronaviral hastalık tek başına şiddetli enfeksiyonlara neden olmamakla birlikte,özellikle parvoviral enfeksiyonlarla birleştiği zaman,hem klinik belirtilerin şiddeti hem de ölüm oranında artış görülür. Kuduz :(Rabies) Kuduz sıcak kanlı hayvanların merkezi sinir sistemini etkileyen viral bir hastalıktır.Bu eski ve korkunç hastalığın etkeni olan Rhabdovirüsler beyinde yangı(iltihap) meydana getirirler.Bu virüs enfekte hayvanların salyası ile taşınır.İnkubasyon periyodu(Etkeni aldıktan hsatalığın başlamasına kadar geçen zaman periyodu.) 10 gün ile birkaç ay arasında değişir.Kuduz ölümcül bir hastalıktır.Klinik belirtiler ortaya çıktıktan sonra tedavinin faydası yoktur.Birçok vahşi hayvan(ratlar,racoonlar,yarasalar,tilkiler) kuduzun rezarvuarı durumundadır.Aristotlr "Hayvanın Tarihçesi" adlı kitabında kuduzu éköpek Deliliği" şeklinde tanımlamıştır.Kuduzdan korunma için modifiye canlı ve ölü aşılar bulunmaktadır.Son yıllarda ölü aşıların daha etkili bulunması,modifiye canlı aşıların vazgeçilmelerine neden olmuştur. BAKTERİYEL HASTALIKLAR Bordetelloz: Bu hastalığın etkeni olan Bordetella bronchiseptica bakterisi Adenovirüs Tip-2 ve Parainfluenza ile birleşerek Köpek Öksürüğü diye adlandırılan hastalığı meydana getirir.Köpek bordetellozisi şiddetli öksürüğe neden olur.Aşı özellikle intranazal (burun içi) olarak uygulandığı zaman çok etkili koruma sağlar.Toplam 13 antijenlik tip bu hastalığa neden olabilmektedir.Fakat sadece 3 tanesine karşı aşı geliştirilmiştir.Ancak bu üçü %90 nın üzeindeki vakadan sorumlu olan antijenlerdir. Leptospiroz: Klinik tablosu oldukça değişik olan bu enfeksşyonda ateş ile başlayan hastalık tablosu böbrek yetmezliği ile sonuçlanır.Böbrek fonksiyonlarının bozulması üremiye neden olur.Başlıca belirtileri halsizlik,uyuşukluk,deprosyon,iştahsızlık,ishal,kusma,ağız ve göz mukozalarının yangısı,anormal sinirsel belirtiler ve ölüme neden olan kan pıhtılaşması bozukluklarıdır.Bulaşma enfekte köpek ve ratların idrarları ile olur.Bu hstalığın en önemli özelliği insanlarada bulaşabilmesidir. AŞISI BULUNMAYAN ÖNEMLİ KÖPEK HASTALIKLARI Herpesvirüs : Bu viral enfeksiyon özellikle yavru köpekler için öldürücü bir hastalıktır.Süt emme çağındaki yavru köpeklerde hafif derecede solunum yolu enfeksiyonuna neden olur.Kalıcı enfeksiyonlar olgun dişilerde meydana gelebilir.Herpesvirüsler sinir hücrelerine yerleşerek bağışıklık sisteminden korunabilme yeteneğindedirler.Brusellosizin aksine,herpesvirüsle enfekte olan gebeler doğum yaparlar.Ancak matarnal antikor geçişini sağlayamazlar.Bu annelerden doğan yavrular herpesvirüslere karşı duyarlıdırlar. Bruselloz: Bu bakteriye hastalığın ne aşısı nede tedavisi vardır.Hasta köpekler devamlı taşıyıcı durumundadırlar.spontan yavru atmalar brusellosizin ilk göstergesidir.Bulaşma oral ve mukoz membranlar yoluyla olmaktadır.erkek köpekler enfeksiyonu çiftleşme yoluyla enfekte dişi köpeklerden alırlar.Ayrıca hasta dişilerin vulvalarının yalanması ve idrarlarnın alınması yolu ilede bulaşmalar olmaktadır.Dişiler de yine çiftleşme ve hastalığın etkeni olan bakterilerin ağız yolu ile alınması neticesinde hastalığa yakalanırlar.Bu nedenle dişi köpekler üreme öncesinde brusellosiz yönünden kontrol edilmelidir.

http://www.biyologlar.com/kopek-hastaliklari

BAĞ DOKUSUNUN TEMEL FONKSİYONLARI, BAĞ DOKUSUNUNUN KÖKENİ, GLİKOZAMİNOGLİKANLAR

Desteklik Yumuşak dokuları destekleme Vücut şeklinin sağlanması Hücre ve organları birbirine bağlama Savunma *Fagositik ve immunokompetan hücreleri ile (makrofaj, plazma, lenfosit gibi) *Bağ dokusunun temel maddesinin bileşenleri epitelden geçen mikroorganizmaların yayılmasını önleyen fiziksel bir engel oluşturur. Akışkanlığı azdır. Ancak hiyaluronidaz üreten bakteriler bağ dokusunun akışkanlığını artırarak güçlü yayılmaya yol açar. Beslenme Kan ile doku arasındaki alışverişi için bağ dokusu matriksi çok uygundur. BAĞ DOKUSUNUNUN KÖKENİ Çoğu mezodermal, az bir bölümü (baş ve boyun bölümünün bağ dokuları) ektodermal nöral krista orjinlidir. Mezoderm --- mezenkimal hücreler --– mezenkim Mezenkim, gelişme ve farklanmayla bağ dokusu türlerini, kas dokusunu, organları (damarlar ve bazı bezleri ) oluşturur. Mezenkimal hücreler, oval çekirdekli ve belirgin çekirdekçikli hücrelerdir. Mezenkimde ara madde az ve viskozdur. Az sayıda lif vardır. AMORF TEMEL MADDE *Renksiz , saydam, homojen, amorf , yüksek oranda su içerir. *Hücre ve lifleri birbirine bağlar. *Temel madde, glikoprotein + proteoglikan’ların kompleks bir karışımıdır. *Hücre ve lifler arası boşlukları doldurur. *Viskoz, yağlayıcı , dokuların yabancı partiküllerce işgalini engelleyici özelliği vardır. Glikozaminoglikanlar (Asit mukopolisakkarit): Yapılarında karbohidrat çok (%80-90), protein azdır. OH- COOH-, ve SO4 grublarından zengindir. Polianyonik ve hidrofilik yapılardır. Üronik asit + N-asetil hekzozamin (tekrarlayan disakkarit birimler) Örnek: glukorinik asit + glukozamin iduronik asit + galaktozamin Glikozaminoglikanlar bir proteine bağlandıklarında proteoglikanlar oluşur. Hiyaluronik asit ® glikozaminoglikan’dır Proteoglikan aggregatları: Bir hiyaluronik asit zincirine proteoglikanların eklenmesi ile oluşan yapıdır. Kıkırdak dokusunda görülür. GLİKOZAMİNOGLİKANLAR Sülfatsız Glikozaminoglikanlar: Hiyaluronik asit (göbek bağı, sinoviyal sıvı, vitröz hümor ve kıkırdakta bulunur). Sülfatlı Glikozaminoglikanlar: Dermatan sülfat: Derinin dermisi, tendon, ligament, fibröz kıkırdakta bol bulunur. Bu alanlar kollajen tip I’ den zengindir. Kondroitin sülfat : Hiyalin ve elastik kıkırdakta bulunur. Bu alanlar kollajen tip II’ den zengindir. Heparan sülfat : Akciğer, karaciğer, uterus, arter duvarında çok bulunur. Kollajen tip III (Retiküler lif) bu alanlarda çoktur. Keratan sülfat: Kornea, kıkırdak, anulus fibrosis, nukleus pulposus’ ta bol bulunur. Proteoglikanların Sentezi Protein ® GER’de sentezlenir. Glikolizasyon ®GER’ de başlar, sülfasyonun da meydana geldiği Golgi komplekste tamamlanır. Proteoglikanların ve Glikoproteinlerin Fonksiyonu: Fibrillerden liflerin meydana getirilmesinde ve fibrillerin oluşması için tropokollajen kümeleşmesinde önemli rol oynarlar. Hücreleri liflere bağlar, diffüzyona olanak sağlarlar. Glikoproteinler Glikoprotein: Dallanmış oligosakkarit (az)+ protein (çok) Yapısal Glikoproteinler Fibronektin: Fibroblastlar, hepatositler (dolaşımdaki fibronektinin büyük kısmını oluştururlar), makrofajlar, amniyotik hücreler, endotel hücreleri ve bazı epitel hücrelerce sentezlenirler. Hücre birleşmesi ve göçüne yardımcı olur. Yara iyileşmesi sırasında haraplanan kollajen ve fibrin üzerinde toplanır. Önce trombositlerin adezyonunu ardından fagosit ve fibroblastların göçünü artırır. Lenfokinlerin makrofajlara bağlanmasını, fagositlerin adherensini ve kemotaksisini artırır. Molekül ağırlığı 222 000-240 000 dır. Laminin: Bazal lamina yapısında bulunur. Epitelin bazal laminaya yapışmasını sağlar. Kondronektin: Kıkırdakta kondrositlerin tip II kollajene bağlanması sağlar. Osteonektin : Kemikte osteositlerin kollajen liflere bağlanması sağlar. Hemonektin: Kemik iliğinde hücrelerin liflere tutunmasını sağlar.

http://www.biyologlar.com/bag-dokusunun-temel-fonksiyonlari-bag-dokusununun-kokeni-glikozaminoglikanlar

Lizozom zarının geçirgenliği bozulursa ne olur?

Hücre kendi kendini yok eder; başka bir deyişle eritir. Lizozomlar hücrenin sindirim organeli olarak düşünülebilir. Golgi kompleksinin çıkış yüzünden ayrılan içi eritici enzimlerle dolu veziküller homojen görünümlü primer lizozomlardır. Şekil 2.8: Lizozomlar ve Fonksiyonları Hücre dışından hücre içine fagositoz ya da pinositoz yoluyla alınan yapılar (örneğin bakteri ya da besinler) sindirilmek istendiğinde, primer lizozom zarı ile bu maddelerin çevrelerindeki zar kaynaşır. Lizozomlardaki eritici enzimler keseciğin içine akar. Şekil 2.8'de görüldüğü gibi, sekonder lizozom (=heterofagozom) adı verilen yeni bir yapı gelişir. Eğer hücre içinde yaşlanmadan dolayı bozulmuş yapılar varsa aynı şekilde primer lizozomlarca sindirilir. Bu şekildeki sekonder lizozoma otofagozom adı verilir. Otofagozomların sayısı yaşlılıkta, açlıkta ve doku yaralanmalarında artar.

http://www.biyologlar.com/lizozom-zarinin-gecirgenligi-bozulursa-ne-olur

Cestoda (YASSI SOLUCANLAR) Özellikleri

CESTODA (YASSI SOLUCANLAR) - Sestodlar; vücutları yassı, halkalara ayrılmış şerit şeklindeki PLATHYHELMINTH'lerdir. - Boyları 2-4 mmden 20-25 mye kadar varan değişik ölçülerde olabilir.(Diphylobotrium latum 20-25 m. , Taenia saginata 5-10m. ) - Halka sayısı ise 3'ten 8-10bine kadar çok farklı sayılarda olabilir. (D.latum 8-10 bin halka, E.granulosus 3 halka) Cestodlarda vücut, şekil ve fonksiyon yönünden 3'e ayrılır: SCOLEX:Ön uçta bulunur. Yuvarlak / badem biçimlidir. Yapışma görevi vardır. 3 Yapışma organeli vardır: Bothria: Pseudophyllidea'da görülür. 2- 4 adettir. Yanda bulunur. Acetabula: Cyclophyllidea'da görülen çekmenlerdir. Kadeh ya da kase biçiminde, kassal yapılı, 2-4 adet, karşılıklı yer almış oluşumlardır. Bazısında çekmenler bulunabilir Rostellum: Yine Cyclophylladea'da anteriorda bulunur. Uzayıp kısalabilen, üzerinde 1 ya da 2 sıralı çengel taşıyan bir yapıdır. PROLİFERASYON BÖLGESİ: Scolex'ten hemen sonra, halkalara ayrılmamış ve halkaların oluşturulduğu kısımdır. Bazı sestodlarda yoktur (Moniezia). STROBILA: Boyundan sonra gelir. Halkalar: genç (üreme organı henüz yok) olgun (üreme organı gelişmiş) gebe (yumurtalarla dolu) Psedophylleidea'da halkaların sadece genç ve olgun formları varken, Cyclophylleidea'da 3 form da görülür. Vücut tabakaları: En dışta kutikula, onun altında kas tabakası vardır. Bunun altında da Ca granüllerinden zengin paranşim bulunur. Sindirim sistemi: Yoktur. Tüm vücut yüzeyince osmotik absorbsiyonla besinlerini alırlar. Solunum sistemi: Yoktur. Dolaşım sistemi: Yoktur. Boşaltım sistemi: Osmo-regulator sistem de denir. Tüm halkalarda ortaktır. Halkaların yanlarınd aseyreden 2şer (dorsal, ventral) toplama kanalı ve bunların halka posterirorlarındaki bağlantılarında ibarettir. Boşaltım kesesi yoktur. Paranşime dağılmış kirpikli hücreler vasıtasıyla atık maddeler toplanır, bunlar ana boşaltım kanallarına bağlanırlar. Tıklar dışarıya boşaltım deliğinden atılırlar. Sinir sistemi: İyi gelişmemiştir. Tüm halkalar için ortak bir sistem vardır. 1) Merkezi sinir sistemi (scolex'teki ganglionlar topluluğudur) 2) Sinir lifleri (MSS'ten 2 büyük, çok sayıda küçük sinir çıkar) Dölerme sistemi: Her halka için müstakildir. (1/2 adet). Hermafroditizm görülür. Protandri vardır ( önce erkek genital organları gelişr daha sonra dişi genital organları gelişir; körelmede de aynı sıra izlenir). Bu sistem en gelişmiş ve de en önemli sistemdir. Bunun nedeni ise sestodların komplike olan biyolojileri sırasında hiç olmazsa milyonlarcası üretilen yumurtadan sadece birkaçının olgun şerit haline gelebilmesidir. Döllenme halka içi, halkalar arası ya da parazitler arası olabilir. Erkek dölerme organları 1. testis (çok sayıda, halkanın dorsalinde, sperm üretir) 2. vasa efferentis (ince kanallardır) 3. vas deferens (spiral şeklindedir) 4. vesicula seminalis (sperm depolanır) 5. prostat bezleri 6. canalis ejaculatorius 7. cirrus (penis) 8. genital atrium Dişi dölerme organları 1. ovarium (tek loblu, ventrale doğru, yumurta üretir) 2. oviduct 3. ootype (genişlemiş kısım, yumurta döllenir ve gelişir) 4. Mehlis bezleri (kabuk oluşmu için gerekli) 5. vitellojen bezler (yumurta sarısı için gerekli) 6. receptulum seminis (sperm depolanır) 7. uterus (ootype'den köken alır, yumurta kapsülü ve paruterin organ) 8. vagina 9. genital atrium Pseudophylleidea'da uterus deliği varken, Cyclophyllidea'da yoktur. Yumurtalar: Çeşitli tiplerde olabilir. Pseudophyllidea yumurtaları tramatod yumurtalarına benzer. Yumurta sarısı ile doludur. Cyclophyllidea yumurtalarının içinde 3 çift çengele sahip onkosfer bulunur. Gelişim: İndirektir. Cyclophylidea tek ara konak (mesocestoides hariç), Pseudophylidea iki ara konak kullanır. Larva şekilleri: Cyclophyllidea 1) Cysticercus 2) Coenurus 3) Hidatik kist 4) Strobilocercus 5) Cysticercoid 6) Tetrathyridum Pseudophyllidea 1) Coracidium 2) Procercoid 3) Plerocercoid Cyclophyllidea Cysticercus: İnce çeperli, suyla dolu küçük bir kese ve içinde invagine tek scolex'ten ibaret larva formudur (0,5-1 cm). Taenia cinsina bağlı türlerde görülür. Ör: Taenia saginata (insan-barsak) / Cysticercus bovis (sığır-kas) Coenurus: İnce çeperli, içi su ile dolu, büyücek kese (ceviz/tavuk yumurtası büyüklüğünde). İçinde çok sayıda invagine scolex vardır. Ör: Multiceps multiceps (köpek barsak) / coenurus cerebralis (sığır-beyin) Strobilocercus: İnvagine olmamış bir scolex ve henüz dölerme organları gelişmemiş halkalar (strobila) taşıyan larva formudur. Ör: Hydatigera taeniaformis (kedi-barsak) / Strobilocercus fasciolaris (kemirgen-karaciğer) Hidatik kist: (Echinococcus)En kompleks yapılı cestod larva formudur. Su ile dolu ve çapı 20-25 cm'ye ulaşabilen bir kesedir. Çeperi biri lamelli tabaka, diğeri ise çimlenme yeteneğinde doğurgan tabakalardan yapılmıştır. Bu tabakadan yüzbinlerce invagine scolex (protoscolex) meydana gelir. Ör: Echinococcus granulosus (köpek-barsak) / Hidatik kist (memeli- karaciğer, akciğer) Cysticercoid: Omurgasız arakonaklarda gelişir. Büyük, invagine scolex ve kuyruk taşıyan larva formudur. Cercocystis (kuyruklu) ve cryptocystis (kuyruksuz) formları vardır. Ör: Dipylidium caninum (köpek-barsak) / larvası pire ve bitlerde gelişir. Tetrathyridium (Dithyridium): Ön kısmı daha geniş, arkaya doğru incelmiş, basık, kırışık yapıda, tek parça ve ön tarafta invagine tek scolex taşıyan larva formudur. Ör: Mesocestoides lineatus (köpek-barsak) / larvası çeşitli canlılarda gelişir. Pseudophyllidea Coracidium: Trematodlardaki miracidium'a benzeyen, suda serbest yüzebilen , kirpikli, 3 çift çengelli larva formudur. Procercoid: Coracidium'dan sonraki larva formudur. Coracidium'un girdiği kabukluda aldığı formdur. Tek parça, uzunca bir larva formu olup, posteriorunda boğumla ayrılmış, 3 çift çengel taşıyan yuvarlak bir kısım taşır. Önde cephalic invaginasyon vardır. Plerocercoid: Uzun, tek parça, ön uzunda olgunlarınkine benzer 2 bothria taşır. Artık embriyonik çengellerin kaybolduğu larva formudur. Ör: Diphyllobothrium latum (köpek-barsak) Procercoid_kabuklunun vücut boşluğunda Plerocercoid_tatlı su balıklarının kan ve diğer organlarında SINIF: CESTOIDEA ALT SINIF: CESTODA (EUCESTODA) TAKIM: PSEUDOPHYLLIDEA Yumurta: kapaklı , 3 çift çengelli onkosfer sonradan gelişir Morfoloji: - Scolex badem biçiminde - Yapışma organeli; bothria - Halkalar genç, olgun - Genital delik halka ventralinde - Uterus deliği var Gelişme: 2 ara konak, 3 larva şekli var TAKIM: CYCLOPHYLLIDEA Yumurta: Kapaksız, üç çift çengelli onkosfer var. Morfoloji: - Scolex yuvarlak, oval - Yapışma organeli; rostellum, çekmen(acetabula), - Halkalar genç, olgun, gebe - Genital delik halka lateralinde - Uterus deliği yoktur. Gelişme: 1 ara konak, 6 larva şekli var. PSEUDOPHYLLIDEA AILE: DIPHYLLOBOTHRIAE Tür: Diphyllobothrium latum Son konak: İnsan ve balık iyen carnivora Yerleşim: İnce barsaklar Morfoloji: 20-25 m boya ulaşabilir. 2 tane bothria vardır, scolex badem biçimlidir, genital delik halkanın ventralinde, yumurtalar 52-70x32-45m boyutunda, sarımısı kahverenginde, kapalı. Biyoloji: Yumurta dışkı ile dışarı çıkarılır. Suda coracidium gelişir ve serbest kalır. 1.ara konak çeşitli Crustacae (Cyclops, Diaptomus gibi su pireleri)'de gelişen procercoid 2.ara konak olan tatlı su balıklarınca alınır ve bunlarda plerocercoid gelişir (kas ve diğer organlarda). Balıkların çiğ ya da az pişmiş olarak yenmesi sonucu etken son konaklarca alınır. Önemi: Etken, yaşam süresi olan 10 yıl boyunca 7 km'lik halka oluşturabilir. D.latum vit B12'yi absorbe eder ve bu durum sonucunda enfeste canlılarda pernisiyöz anemi şekillenir. Etkene bağlı vakalar Türkiye'de bildirilmiştir ama ülkemizde çiğ ya da az pişmiş balık tüketilmediğinden bu vakalar da kesin değildir. Diphylobotrium latum Tür: Ligula intestinalis Son konak: Olgunları su kuşlarının barsağında, larvaları (plerocercoidler) tatlı su balıklarında ligulose'a neden olur. Biyoloji: D.latum ile aynı biyolojiye sahiptir. Önemi: Balıklarda paraziter kastrasyon nedenidir. Bunu, organlara basınç yaparak, antigonadotropik hormonlar salgılayarak yapar. Hasta balıklarda karın şişer, hantallaşırlar, yüzemezler, karınları patlar ve ölürler. Hastalığa ülkemizde baraj göllerindeki balıklarda rastlanır. İnsan sağlığı açısından tehlikesi yoktur. Ayıklandıktan sonra balıklar yenebilir. İtalya'da plerocercoidler tüketilmektedir. Mücadele: 1.ara konakla mücadele olanaksızdır. 2.ara konak olan balıklarla mücadele edilir. Hasta olanlar, ölenler ve karınları patlayan balılardan serbest kalan plerocercoidler su yüzeyinden toplanır. Diagramma ve Schistocephalus gibi cinsler de vardır. Spirometra erinacei, köpek, kedi gibi hayvanların incebarsaklarında parazitlenirken, Spirometra mansoni 1.ara konak olarak Crustacae'yi, 2.ara konak olarak balık, kurbağa ve yılanları, bazen de 3.ara konak olarak herhangi bir omurgalıyı kullanır. Sparganose: Plerocercois=spargonum Bazen D.latum, Spirometra gibi parazitlerin plerocercoidleri 1) sudaki kabukludayken insanlarca kabuklunun yenmesi ile alınır, 2) kurbağa, fare, yılan, balık gibi canlıların etleri ampirik tedavi yöntemleriyle yara,göz vs. üzerine tatbik edilerek primitif olarak insanların yaralarına ya da gözlerine bulaşır. Plerocercoidlerin bulunduğu kısımda irritasyona bağlı olarak kızartı, kaşıntı, şişkinlik, iltihaplanma görülür. CYCLOPHYLLIDEA AILE: ANOPLOCEPHALIDAE Tür: Anoplocephala perfoliata Son konak: Tek tırnaklılar Yerleşim: İnce barsakların alt kısımları, colon ve caecum Morfoloji: 8x1-1,5 cm. Scolex küçük, rostellum yok. Çekmenler arkasında küpe benzeri yapılar var. Yumurtalar 80m boyutunda ve Moniezia yumurtasına benzer. Onkosferi çevreleyen embriyoforun ucundaki kollar uzun ve kavuşur. Tür: Anoplocephala magna Son konak: Tek tırnaklılar Yerleşim: İnce barsak, jejenum Morfoloji: Atların en büyük şerididir. 70-80x1,5-2 cm. Yumurtaların boyutu 50 m. Scolexte küpe benzeri çıkıntı yoktur. Tür: Paranoplocephala mamillana Son konak: Equide Morfoloji: 1-4x5 cm. yumurtalar 50m boyutunda. Küpe benzeri çıkıntılar yok. Çekmenler yarık biçiminde. Embriyoforun uçları kısa ve ayrık.Atların en küçük şerididir. Ara konak: Oribatidae fam. bağlı akarlardır. Biyoloji: Yumurtayı yiyen akarlarda 4 ayda cysticercoid gelişir. Cysticercoidleri alan atlarda 6-10 haftada şeritler gelişir. Patojenite: Meradan yazın alınan hastalık Eylül Ekim ayında ortaya çıkar. Taylar 100%, erginler 60% hastalığa duyarlı. Genellikle az sayıda parazit bulunur. En patojeni A.magna'dır. Kataral -hemorajik enterite sebep olurlar. A.perfoliata ve P.mamillana az patojendir. İliocecal lokalizasyon önemlidir. Sağaltım: Niclosamide Tür: Moniezia expansa Son konak: Ruminantlar. Yerleşim: İnce barsaklar. Morfoloji: 6m x 1,5-2 cm. her halkada 2 tane genital atrium vardır. Testisler halka ortasında dağılmış ya da iki yanda toplu halde bulunabilir. Interproglottidal bezler halka posterior boyunca seyreder. Yumurtalar 50-60 m boyutundadır. Tür: Moniezia benedeni Son konak: Özellikle büyük ruminantlar. Yerleşim: İnce barsaklar. Morfoloji: 0,5-4m x 2 cm. Interproglottidal bezler sadece ortada. Tür: Thysaniezia ovilla Son konak: Ruminantlar Yerleşim: İnce barsaklar Morfoloji: 1,5-4,5m x 8-9 mm. Halkalarda 1 tane genital delik var. Testisler boşaltım kanallarının lateralinde. Yumurtaların 5-15'i birarada paruterin organ içinde bulunur. Tür: Stilesia globipunctata Son konak: Ruminantlar (koyun, keçi) Yerleşim: İnce barsaklar Morfoloji: Her halkada 1 tane genitel atrium vardır. 40-60cm x 2-2,5 mm. Testisler boşaltım kanallarının medialinde seyreder. Her halkada 2 tane paruterin organ bulunur. Tür: Avitellina contripunctata Son konak: Ruminantlar Yerleşim: İnce barsaklar Morfoloji: 1-3m x 2-2,5 mm. Her halkada 1 tane genital delik vardır. Testisler boşaltım kanallarının her iki yanında gruplar halinde bulunur. Her halkada 1 tane paruterin organ vardır. Tür: Thysanosoma actinoides Son konak: Ruminantlar Ara konak: Oribatida ailesine bağlı akarlar. Yerleşim: İnce barsaklar, seyrek olarak safra ve pankreas kanalları Morfoloji: 35-40 cm x 8 mm. Her halkada 2 tane genital atrium vardır. Testisler halka posterioru ve ortasında bulunur. Halka posteriorlarında saçaklı yapılar vardır. Yumurtalar paruterin organ içinde bulunur. Biyoloji: Akarlar 0,5-1 mm boyutundadır. Sert kabuklu, gözsüz, serbest olarak toprakta yaşayan, organik kalıntı ve dışkı ile beslenen, bitki kök ve sap kısımlarında yoğun olarak bulunan akarlardır. Akarlarda 3 ayda vücut boşluğunda cysticercoid gelişir. Akarların otlarla birlikte alınımı ile 1,5-2 ayda şeritler gelişir. * Thysaniezia, Stilezia, Avitellina ve Thysanosoma cinslerinde yumurtada onkosferi çevreleyen armut biçimli bir embriyofor yoktur. * Anoplocephalidae ailesindeki parazitlerin olgunları tedavi edilmezse 3-4 ay yaşarlar. Cysticercoidleri akarlarda 1-1,5 yıl boyunca yaşarlar. Akar ölünce onlar da ölürler. Bu akarlar için nemli, uzun, kaba otlu meralar uygundur. Anoplocephalose: 1) mera kontaminasyonu 2) kontaminasyonun devamı ile meydana gelir. Kronik form: En çok görülen formdur. Anemi, zafiyet, yapağı bozulması, ölüm, dehidrasyon, diyare, konstipasyon ve barsaklarda atoni görülür. Akut form: Seyrek görülür. Sinirsel belirtiler (dönme, çırpınma, titreme ve diş gıcırdatma) ile seyreder. Subklinik form: Bakımlı sürülerde görülür. Semptomsuz seyreder. Sindirim sistemi belirtileri (kötü kokulu ishal) görülebilir. Yayılış: 60%'a varabilir. Teşhis: Dışkıda şerit ya da halkaya rastlanabilir. Dışkı muayenesinde yumurta/yumurta kapsülü görülebilir. Otopside olgun şeritlere rastlanır. Sağaltım: Niclosamide, Praziquantel, Albendazol, Nebendazol AILE: DAVAINEIDAE Tür: Davainea proglottina Son konak: Tavuklarda (en yaygın şerit) Ara konak: Sümüklüböcekler (cysticercoid gelişir) Yerleşim: İnce barsaklar (duodenum) Morfoloji: 1,5-5 mm uzunlukta. Halka sayısı 4-9. Rostellumda 2 sıra çengel var. Çekmenlerinde de çengel vardır. Yumurtalar ince çeperli, 30-40 m çapında Tür: Railettina tetragona Son konak: Tavuk, hindi ve diğer kanatlılar Ara konak: Kara sinek ve karıncalar Yerleşim: İnce barsaklar (duodenum) Morfoloji: 6-25 cm x 1-4 mm. Rostellumda tek sıralı çengeller vardır. Çekmenlerinde de çengeller vardır. Yumurtaların 6-12 tanesi bir kapsül içinde bulunur. Tür: Railettina echinobothrida Son konak: Kanatlılar Ara konak: Karıncalar Yerleşim: İnce barsaklar Morfoloji: 9-25 cm x 1-4 mm. Çekmenlerinde çengeller vardır. Yumurtaların 6-12 tanesi bir kapsül içinde bulunur. Tür: Railettina cesticillus Ara konak: Kaprofaj böcekler Morfoloji: 4-13 cm x 1-3 mm. Kokon içinde tek bir yumurta bulunur. Çekmenler çengelsizdir. AILE: HYMENOLEPIDIDAE Tür: Hymenolepis lanceolata Son konak: Ördek ve kazlar Ara konak: Tatlı sudaki crustacea Yerleşim: İnce barsak Tür: Hymenolepis cariocea Son konak: Tavuklar (sıklıkla görülür) Ara konak: Kaprofaj böcekler Tür: Hymenolepis contaniana Son konak: Tavuk ve hindiler Ara konak: Kaprofaj böcekler Morfoloji: 2-5 mm'den 7-8 cm'ye kadar değişen boylardadırlar rostellumda çengel olabilir ya da olmayabilir. Yumurta 3 katlı koruyucu içindedir. Tür: Hymenolepis diminuta Son konak: Fare, sıçan ve insanlar Ara konak: Çeşitli arthropoda (cysticercoid gelişir) Yerleşim: İnce barsaklar Morfoloji: 20-60 cm uzunluktadırlar. Scolexte 4 çekmen vardır. Rostellum çengelsizdir. Yumurtalar ovalimsi, gri-açık kahverengi, 2 kabuklu (dış ve iç) ve 3 çift çengelli onkosfere sahiptir. Tür: Hymenolepis nana Son konak: İnsan, fare ve sıçanlar Yerleşim: İnce barsaklar Morfoloji: "Cüce şerit" de denir. 2.5-4 cm uzunluktadır. Yumurtaları ovaldir. Açık renkli, grimsidir. 2 kabukludur ve içinde 3 çift çengelli onkosfer vardır. İç kabuğun kutuplarında filamentler vardır. Biyoloji: 1) Direkt 2) İndirekt (ara konak olarak arthropodları kullanır) AILE: DILEPIDIDAE Tür: Ametobotaenia cuneata Son konak: Tavuk, ördek Ara konak: Yer solucanları Yerleşim: İnce barsaklar Morfoloji: 2,2-4 mm x 1-1,5 mm. 12-24 adet halka vardır. Scolexte tek sırlaı çengel taşıyan rostellum vardır. Çekmenler çengelsizdir. Tür: Choanotaenia infundibulum Son konak: Tavuk, hindi vb. Ara konak: Karasinek, çekirge, kaprofaj böcekler Yerleşim: İnce barsaklar Morfoloji: 5-23 cm uzunluktadır. Tek sıra çengel taşıyan rostellum vardır. Çekmenleri silahsızdır. Yumurtaları 60-65 x 40-45 m boyutunda, filamentlidir. KANATLILARDA ŞERİT ENFEKSİYONLARI: En önemlisi Davaniea proglottina'dır. küçük olmasına rağmen 50%lere varan ölümler meydana getirir. Patojen kısmı scolextir. Çünkü hem çekmenlerde hem de rostellumda çengeller vardır. Davainea yumurtaları dirençsizdir. Rutubetli, sıcak ve gölgeli yerlerde 5 gün yaşayabilir. Cysticercoidleri sümüklüde en az 1 yıl canlı kalabilir. Ara konak olan sümüklüde 1000'den fazla cysticercoid bulunabilir. Ağır enfestasyonlarda duodenum mukozasında yangı, hemoraji ve ödem görülür. Klinik semptomlar ise zafiyet, anemi, ishal ve mukusta artıştır. Railettina türleri içinde en patojeni Railettina echinobothria'dır. Barsaktaki yangı şekli NODÜLER ENTERİTtir. Barsak içine gömülü scolex etrafında kazeöz nodüller şekillenmiştir. Sağaltım: Niclosamide (Mansonil, Şeridif, Tenyavet)...............................................50-200mg/kg 2-6 gün boyunca..................................................................................................................20 mg/kg Fenbendazol (Panacur) 5 gün boyunca...............................................................................20 mg/kg Mebendazol (Mebanvet)....................................................................................................10 mg/kg Praziquantel (Droncit)....................................................................................................................... Bithional (Actomer)...............................................................................................................0,2 g/kg AILE: TAENIADAE Tür: Echinococcus granulosus Son konak: Olgunları........................köpek, kurt, çakal vb.'nin incebarsakları (kedilerde seksüel olgunluğa erişemez) Larvaları.........................bütün evcil memelilerde (ruminant, sus, eq.,insan...) başta karaciğer ve akciğer olmak üzere, dalak, böbrek, pankreas, kalp, beyin, kemik iliği, bağlayıcı doku aralıkları ve dokularda. Morfoloji: Olgunlar..........................2-6 mm uzunlukta, vücut genellikle 3 halkadan oluşur. Son halkanın uzunluğu vücudun diğer bölümlerinin uzunluğundan daha fazladır. Genital atrium halka posteriorundadır. Ovarium böbrek biçimindedir. Yumurtalar......................Taenia yumurtası formundadır (yuvarlak/oval). Küçük ve kalın kabukludur. Kabuk enlemesine çizgilidir. 3 çift çengelli onkosfer taşır. KİST HYDATİK (EKİNOKOK KİSTİ): 2 tip kist vardır. 1. Uniloculer kist (kistler tek tektir,daha çok koyun ve insanda görülür) 2. Multicystic/Multivesicular kist (birbirine komşu kistlerdir. Her birni ayrı boşluğu ve sıvısı vardır. Özellikle sığırlarda görülür) Biçimleri yuvarlağımsı (yumuşak, hacimli dokularda) yada mevcut boşluk ya da aralıkları dolduran (ör:kemik iliği) gibidir. Büyüklükleri dokularda konakçı reaksiyonları ile sınırlandırılır (çocu başı ya da portakal büyüklüğünde olabilirler). Göğüs ya da karın boşluğunda iseler büyüklükleri sınırlandırılamaz (20 cm çapına varan kistler görülmüştür). Lokalizasyon; ruminantlarda 70% karaciğerde, 25% akciğerde, 5% de diğer dokularda olmaktadır. Gelişme hızları yavaştır. 6 ayda ancak birkaç mm çapında içi sıvı ile dolu kistik yapı şekillenebilir. Protoscolexler 12 ayda şekillenir. Protoscolex taşıyanlar fertil kist, taşımayanlar ise infertil kist adını alır. Sığırda 90%, domuzda 20%, koyunda ise 8% kistler infertildir. 2 şekilde gelişim tamamlanır: 1- PASTORAL SİKLUS: Evcil karnivorlarla evcil ruminantlar konaktır. Köpek, koyun, deve, Ren geyiği. 2- SILVATIC SİKLUS: Son konak yabani karnivor, ara konaklar ise yabani ruminantlardır. Avusturalya'da dingo-kanguru. Hindistan, Pakistan, Seylan'da çakal-geyik. Bu iki epidemiyolojik siklus bağımsıuz seyreder. Ancak avcılık yolu ile kırılabilir. Kanada'da Kariba(geyik)-köpek. Kırsaldan ormansala geçiş şu şekillerde olur: - Kistli evcil ruminantlar köpeklerce yenir § Enfekte av ve çoban köpeklerinin ormanda dolaşması ve buralara dışkısını bırakması ile yabani rum. enfeste olabilir. Ormandan kırsala geçiş ise şöyle olur: § Evcil ruminantlar ormanlık yörede otlarken yabani köpekgillerin bıraktıları dışkılardan yumurta alırlar. § Av veya çoban köpekleri enfekte yabani ruminantların kistlerini yer. Önemi: Hayvanlarda; - Kistler pek klinik belirtiye yol açmaz (normal doku kalmamasına rağmen) - Enfekte havanlarda karkas ağırlığı azalmaktadır - Enfekte organlar(karaciğer, akciğer, dalak) kısmen ya da tamamen imha edilir (ekonomik kayıp). İnsanlarda; Çoğunlukla klinik belirti göstermese de lokaliza olduğu organ ya da dokuya göre normal fonksiyonları bozar, ağrı yapabilir. Kistler kendiliğinden ya da ameliyat sırasında patlayabilir. Bu da anafaktik şok ya da sekonder hidatidose (echinococcose)'a neden olur. Teşhis: Hayvanlarda serolojik testler yetersizken, ancak kesim sırasında teşhis mümkündür. İnsanlarda klinik belirtiler (organların çalışmalarında aksamalar, şişlik, ağrı), röntgen, serolojik testler(KFT, FAT, ELISA, HA, presipitasyon) ve alerji testi (Casoni) ile teşhise gidilir. Sağaltım: Operasyon ile yapılır. Öncesinde Mebendazol-Albendazol kullanılır. Hastalığın prepatent süresi 4-5 haftadır.

http://www.biyologlar.com/cestoda-yassi-solucanlar-ozellikleri

K Vitamini

Asıl adı naftakinondur. Doğada K-l ve K-2 olarak iki şekilde bulunur. K-l vitamini bitkilerde olan, iki form halinde, filokinon ve fitomenadion olarak adlandırılan cinsidir. K-2 ise barsaklardaki bakteriler tarafından da üretilen, bir çok çeşidi bulunan bir grup menakinon denen organik bileşenlerdir. Sentetik olarak üretilen cinsine de K-3 menadion denilir ve doğal olanlardan 2 kat daha güçlüdür. Yağda eriyen bir vitamin olması sebebi ile barsaklardan yağlarla emilerek karaciğere gelir. Isıya dayanıklıdır. Alkali, kuvvetli asitler, radyasyon ve okside edici ajanlar tarafından etkisizlesin Fazla E Vitamini alınması, K Vitaminin emilimini bozar. Yoğurt, kefir asitlenmiş süt barsaklardaki bakterilerin K Vitamini üretmesini arttırır. Barsak bakterilerinin aleyhine olan antibiyotikler K Vitamini üretimini engeller. K Vitaminin Etkileri Karaciğere gelen K Vitamini burada üretilen bazı pıhtılaşma faktörlerinin yapımında rol alır. (İnsan vücudunda kanayan bir dokudan kan kaybının önlenmesi amacıyla pıhtılaşma mekanizması denilen bir sistem devreye girer. Pıhtılaşma olayı ise bir dizi reaksiyonlar sonucunda oluşan ve faktör adı verilen maddeler ve hücreler aracılığı ile oluşan doğal tıkaçlar ve yamalardır. Faktörler Romen rakamları ile numaralanırlar.) Bu faktörler; 1.II. Faktör veya protrombin 2.VII. Faktör 3.IX. Faktör 4.X. Faktör Ayrıca K Vitamini Potasyum ve Kalsiyum ile beraber protrombinin trombin haline dönmesine etkilidir. Bu trombin maddesi de fibrinojenden fibrin tıkaçlarının oluşmasını sağlar. Diğer bir yönden kumarin maddesi ile rekabete girer. Çünkü bu madde de tam aksine protrombinin aleyhine çalışarak pıhtılaşmayı önleyici özelliktedir. Aspirin gibi salisilatlar K Vitamini gereksinmesini arttırırlar. K Vitamini Eksikliği K Vitamini vücutta önemli miktarlarda depolanmaz. Zira günlük gereksinim diye bir miktar pek söz konusu değildir. Çünkü insan vücudu normalde kanamaz, ancak bir neden sonucu kanama olur ve ihtiyaç miktarı o zaman ortaya çıkar. K-2 vitamini barsaklardaki bazı bakteriler tarafından üretilebilmektedir. Ancak barsakları ilgilendiren kolit, ileit, spru, çöliak, gibi hastalıklar ve bazı ameliyatlar, genetik ve edinsel karaciğer hastalıkları buna yol açabilir. • Bu vitaminin eksikliğinde net olarak kanamaya eğilim artmakta ve kişiler kolaylıkla kanama sorunu ile karşılaşırlar. • Pıhtılaşma süresi de doğal olarak uzamaktadır. Yetersiz beslenme ile eksikliği nadirdir. Daha sık olarak yeni doğan bebeklerde barsakları bakteri içermediğinden ve oldukça steril besinler aldıkları için ayrıca karaciğerlerinde de bu pıhtılaşma faktörlerinin yapımı henüz yeterli olmadığından, görülebilir. Yeni doğan bebeklerde göbek kanaması bu nedenle oluşur. Bunun önüne geçmek için doğumdan hemen sonra K Vitamini iğnesi yapılması gerekir. Daha sonra barsakları flora dediğimiz bakterilerine kavuşunca bu durum kendiliğinden çözümlenir. Anne sütü K vitamini açısından fakirdir. • Antibiyotikler barsakta K Vitamini üreten bakterilerin de ölmesine yol açarlar. • Ayrıca salisilat gibi bazı ilaçlar (Çocuklarda kullanımı çok nadir, daha ziyade erişkinlerde) K vitaminin etkisinin tam tersi etki gösterirler. Bunların etkisiyle K vitamini eksikliği oluşur. • Eksikliği göbek kanaması dışında, burun kanaması, idrar ve dışkıda kan bulunması, küçük darbelerde bile morarma ve kanamalar olması, kanayan bir dokuda kanamanın durmaması ve kabuk oluşamaması gibi belirtilerle anlaşılır. • Ayrıca beyin ve diğer iç organ kanmaları ile rahim içi kanama sonucu düşükler de meydana gelebilir. Doğal olarak bu belirtilerin yegane sorumlusu bu vitaminin eksikliği değildir. Başka nedenler de bu arazların oluşmasının sorumlusu olabilirler. Yazılanlar K Vitamini eksikliğinde oluşabilecek sorunlardır ve çoğu oldukça nadir görülebilecek durumlardır. K Vitamini Fazlalığı Fazlalık doğal K vitamini ile oluşmaz. Yiyecekler ile alınan K-1 ve barsaklarda üretilen K-2 Vitaminlerin fazlası kolaylıkla atılabilir. Fakat sentetik ve suda eriyen anolog (benzeri) menadion, konakion gibi K-3 tipindeki sorunlara yol açabilir. Bu vitaminin fazlalığı da eksikliğinin tam tersi etki yapacaktır. • Aşırı pıhtılaşma ve bunun da sonucunda damarlarda tıkanmalar meydana gelir. • Karaciğer fonksiyonlarında bozulmalar oluşur. • Kandaki alyuvarların parçalanmalarına yol açılır. • Kızarma, terleme ve göğüs sıkışması meydana gelir. • Yeni doğan bebeklerde sarılık ve safra boyalarının (Pigmentlerin) beyin ve omurilikte birikmesine neden olur. Keza fazlalık oluşması eksikliği gibi nadiren olabilecek bir durumdur. K Vitamini Gereksinimi Bu gün için alınması gerekli günlük miktarı ilan edilmemiştir. Ortalama bir beslenme ile günde asgari 75 -150 mikrogram alınmaktadır. Günlük 300 mik.gr yeterlidir. Önerilen kilo başına 2 mik.gr.dır. Yeni doğan bebeklere 10 miligr.’lık tek bir enjeksiyon, gerektiğinde kg. başına l - 2 mg. la devam edilir. Bu miktarlar onların özel durumu ve ihtiyaçlarının farklı olmasındandır. Bir çok vitamin reçetesiz satılmasına karşın yurt dışında K Vitamini reçetesiz satılmamaktadır. K Vitaminin Doğal Kaynakları En çok karaciğer, peynir, tereyağı, marul, lahana gibi besinlerde bulunur. En zengin yeşil çay (100 gr.da 700 mikrogr.) iken siyah çayda 0'dır. Çiçek yağı, patates, ekmek gibi besinlerde yok denebilecek kadar azdır. K Vitamini yağda eriyen vitaminlerdendir. Genellikle vücutta bağırsak bakterileri tarafından sentezlenir. Yararları: Kan pıhtılaşmasında önemli rol oynar. Bazı çalışmalar özellikle yaşlılarda kemikleri güçlendirdiğini göstermektedir. Hangi besinlerde bulunur? Lahana, karnabahar, ıspanak ve diğer yeşil sebzelerde, soya fasulyesi ve tahıllarda bulunur. Günlük ihtiyacınız nedir? Genellikle sebzelerle alınan günlük 60-85 mg. herhangi bir eklemeye gerek kalmadan yeterli olmaktadır. Eksikliği nelere yol açar? Kontrolsuz kanamalara neden olan K vitamini eksikliği malabsorbsiyon hastaları hariç ender görülür. Doğumdan sonraki ilk 3-5 gün içerisinde bağırsak florası henüz tam gelişmemiş olduğundan K vitamini eksikliği vardır.

http://www.biyologlar.com/k-vitamini

Bağ Dokusu Hücreleri Nelerdir

Sabit ( fibroblast, yağ hücreleri) ve başka bölgelerden bağ dokusuna gelip bağ dokusunda geçici olarak kalan hareketli hücreleri içerir. Fibroblastlar: En fazla bulunan hücrelerdir. Bağ dokusununun ana hücreleridir. Lifleri ve hücrelerarası maddeyi sentezlerler. Bağ dokusunun onarımından sorumlu hücrelerdir. Onardıkları alanda scar dokusu şekillenir. Bu hücrelerin aktif formu fibroblast; inaktif formları ise fibrosit olarak adlandırılır. Normal şartlar altında mitoz azdır; uygun uyarı geldiğinde mitoz hücre bölünmesi geçirirler. Fibroblastlar, protein sentezleyen her hücre gibi ökromatik oval çekirdek ve belirgin çekirdekçiğe ve iyi gelişmiş GER ve Golgi komplekse sahiptir. Fibrositler ise mekik biçimli, asidofilik sitoplazmalı, GER ve diğer organellerden fakir hücrelerdir. Yara iyileşmesi gibi bir uyarı geldiğinde aktifleşerek fibroblastlara dönüşürler. Yara iyileşmesi olan alanlarda kontraktil miyofibroblastlara rastlanır. Bu hücrelerde aktin ve miyozin çoktur. Yaraların kapanmasından sorumludur. Bu işleve yara kontraksiyonu denir. Farklanmamış Mezenşimal Hücreler: Erişkin gevşek bağ dokusundaki hücrelerin multipotent embriyonik mezenşimal hücreler olarak kalabilirler. Bu hücreler farklanmamış (undifferensiye) mezenşimal hücreler olarak adlandırılır. Bu hücreler yeni doku oluşumunu (yeni kan damarları, ektopik kemik ve kıkırdak gibi) üstlenir ve tamirde kullanılan hücrelere farklanabilirler. Yeni farklanmış böyle bir hücreye örnek olarak perisit (adventisyal hücrelere= perivasküler hücre) verilebilir. Bu hücreleri fibrositlerden ayırt etmek oldukça güçtür. Bu hücreler, çoğalma ve değişmeye zorlandıklarında belirgin olurlar. Retiküler Hücreler: Retiküler lifleri oluşturmak üzere oluşan özelleşmiş fibroblastlardır. Yıldız biçimli, uzantılı hücrelerdir. Sentezledikleri, dallanmış retiküler lifler arasında ve temel madde arasında yerleşiktirler. Retiküler liflerle birlikte retiküler hücreler trabeküler ağ yapısı oluştururlar. Bu yapı retikulum olarak adlandırılır. Retikulum, hücrelerin ve sıvıların içinde kolaylıkla hareket edebileceği süngerimsi bir yapıdır. Makrofajlar (Histiyosit): Hücre membran yüzeyinde girinti ve çıkıntıları-yalancı ayak-pseudopodları bulunur. 10-30 µm çapında, eksentrik oval ya da böbrek şeklinde hetekromatik çekirdekli, lizozom, GER, Golgi kompleksi ve mikrofilament ile mikrotübüllerden zengin hücrelerdir. Aktif fagositoz ve pinositoz yapan hücrelerdir. Bağ dokularında aylarca yaşarlar. Bağ dokusunda yerleşik kalan, iğ biçimli ve fibrositlere benzeyen tiplerine histiyosit adı verilir. Kemik iliğindeki bir ana hücreden köken alırlar. Kanda monosit olarak dolaşırlar ve bağ dokusuna geçtiklerinde makrofaj adını alırlar. Fagositoz yaptıklarından tripan mavisi, lityum carmin ve çini mürekkebi ile vital boyanarak gösterilebilirler. Yabancı hücreler ya da partiküller karşısında yan yana dizilerek ya epiteloid hücreleri oluştururlar ya da gerektiğinde birbirleriyle kaynaşarak çok çekirdekli, dev şekilli yabancı cisim dev hücrelerini (foreign bodies multinuclear giant cells) oluştururlar. Makrofajların fonksiyonları *Partiküllerin yutulması (ingestion) *Partiküllerin sindirilmesi (digestion) *Salgılama (secretion) Makrofajlardan salgılanan ve lenfositleri ortama çağıran monokinler gibi İmmün reaksiyonlarda önemli işlevi olan kollajenaz *Enfeksiyonlara direnç *Tümörlere direnç *Eritrositlerin parçalanması *Ekstrahepatik safra üretiminde *Demir metabolizmasında da fonksiyonları vardır.

http://www.biyologlar.com/bag-dokusu-hucreleri-nelerdir

Mitokondriyon ( Çoğul ismi mitokondria)

Mitokondriyon ( Çoğul ismi mitokondria)

Mitokondriyonun İç ve Dış Zar Yapısı Mitokondriyonlar canlıhücrelerin sitoplazmalarında yavaş hareketleri olan boyları ve şekillerini değiştiren organellerdir. Zaman zaman bölünebilirler. Genellikle sitoplazma hacminin %25'ini kapsarlar. Sitoplazma içinde iki kat zarla çevrilidirler. Işık mikroskobu ile tanecik ya da ipliksi yapılar şeklinde görülürler. Hücre organelleri içinde en büyük olanlarıdır (0,5-1μ). Enerji üretimi yapan, ayrıca çok sayıda kimyasal işlemin gerçekleştiği organellerdir. Yiyeceklerdeki karbonhidratlar, aminoasitler ve yağlar mitokondriyon içinde okside edilerek C02 ve su ile birlikte ATP şeklinde serbest enerji sağlanır. ATP yaşamsal fonksiyonların hepsinde kullanılan bir enerji tipidir.      

http://www.biyologlar.com/mitokondriyon-cogul-ismi-mitokondria

Gram Boyama

Gram Boyama

Ilk olarak Hans Christian Joachim Gram tarafindan bu boyama yöntemini uygulamis ve bakterilerin büyük çogunlugunun gram olumlu ve gram olumsuzluk boyanma özelligi gösterilmistir.

http://www.biyologlar.com/gram-boyama

Vitaminlerin görevleri nelerdir

Vitaminler vücutta pek çok fizyolojik olayın sürdürülmesi için gereklidir. Pek çok enzim reaksiyonunda koenzim ya da kofaktör gibi rol alırlar. Bunun dışında antioksidan etkileri vardır. Bazı vitaminler de hormon olarak etki ederler. Vitaminler ve görevleri A Normal görme ve karanlığa adaptasyonda, sağlıklı cilt, saç, diş ve diş etlerinde önemlidir. D Kuvvetli diş ve kemikler için. Eksikliğinde kemik deformasyonu görülür. E Güçlü antioksidan özelliği ile hücre yıpranmasını ve yaşlanmayı yavaşlatır. Kalp ve damar hastalıkları riskini azaltır. B1 (Tiamin) Kalp, sinir sistemi ve kasların normal fonksiyonu için gereklidir. Eksikliğinde sindirim bozuklukları, aşırı hassasiyet (iritabilite), iştahsızlık gibi bozukluklar olabilir. B2 Sağlıklı cilt ve iyi görme için gereklidir. Eksikliğinde vücut direnci düşer, dudak çatlaklıkları, ağızda yaralar, egzama gibi cilt bozuklukları görülür. NIASIN Merkezi sinir sistemini destekler. Eksikliğinde çeşitli sinirsel hastalıklar ve deri hastalıkları olabilir. B5 (Pantotenik asit) Sinir sistemi, deri ve saç sağlığı için gereklidir. B6 (piridoksin) Sinir siteminin düzenli çalışmasına yardımcıdır. Hormonların fonksiyonlarında rolü vardır.Eksikliğinde gelişme geriliği, cilt bozuklukları, sinirsel bozukluklar görülür. B12 Kırmızı kan hücrelerin ve kemik iliğinin oluşumu ile sinir sisteminin normal fonksiyonları devam ettirmeleri için gereklidir. Eksikliğinde kansızlık, yorgunluk ortaya çıkabilir. FOLIK ASIT Hücrenin yapı taşlarının, kırmızı kan hücrelerinin, sinir dokularının oluşumunda etkilidir. Gebelikte görülen kansızlığın en büyük sebebi folik asit eksikliğidir. Folik asit ihtiyacı bebek gelişimine bağlı olarak yaklaşık 3 kat artar. Eksikliğinde kansızlık, hamilelikte bebeklerde gelişim bozuklukları söz konusudur. C Bağışıklık sistemini destekler. Kemiklerin, dişlerin, kan damarlarının sağlıklı kalmasına yardımcıdır. Eksikliğinde vücut direncinin azalması, diş eti kanaması ve skorbüt oluşur.   Kiraz: B1, B2, A, C vitaminleri ve malik asit. Hindistan cevizi: A, C vitaminleri. Kestane: A, B, C vitaminleri. Lahana: A, B1, B2, B6, C, E, K, P vitaminleri. Bakla: A, B1, B2, C, E, K vitaminleri İncir: A, B vitaminleri Çilek: A, B1, B2 C vitaminleri Mısır: A, B1, B2, E, K vitaminleri. Ağaç çileği: A, B, vitaminleri. Limon: B1, C, P vitaminleri Mandalina: A, B, C vitaminleri Kayısı: C vitamini Ananas: A, B1, B2, C vitaminleri Badem: B1, B2 vitaminleri Elma:A, B1, B2, C vitaminleri Nar: B1, C vitaminleri Kavun: A, B1, B2, C vitaminleri Arpa: B vitamini. Patates: A, B1, C vitaminleri Şeftali: A vitamini Domates:v A, B1, B2, C vitaminleri Maydanoz: A, C, K vitaminleri Erik: A, B1, B2, C vitaminleri Frenküzümü: C vitamini ve malik asit. Kereviz: A, B1, B2, C, K vitaminleri Ispanak: B1, B2, C, P, K vitaminleri Üzüm: A, C vitaminleri Enginar: C vitamini Su teresi: A, C, D vitaminleri Havuç: B, C, D, E vitaminleri Semizotu: C vitamini Roka: C vitamini Ayva: C vitamini Mercimek: Tüm B vitaminleri Ayı üzümü: A, C vitaminleri Avakado: A, D, e vitaminleri Pazı: A, C vitaminleri Biber: C (çok miktarda), B, B2, E vitaminleri   Fiziksel ve zihinsel sağlığımızı korumak için bilinen 30 vitamin ve minerale gereksinimimiz vardır.Çoğu kişi gerekli vitamin ve mineralleri besinlerden alabiliyor. Bu maddelerin normal beslenme yoluyla alınamadığı durumlar ise oldukça nadir. Dünya Sağlık Örgütü ve diğer sağlık kuruluşlarının, önerilen günlük alım (RDA) ile ilgili olarak, üzerinde görüş bildirdiği bir liste bulunmaktadır. RDA, RNI (besin alımı için referans) olarak da tanımlanmaktadır. Beslenme uzmanları ise bu listede yer alan miktarların çoğu kişi için minimum gereksinimi yansıttığını dile getirmektedirler. Gerçek anlamda sağlıklı olabilmek için belli besinlere daha yüksek miktarlarda ihtiyaç duyabilirsiniz ancak tam olarak ne kadar gerektiği tartışmaya açık bir konudur. Belli vitamin ve mineralleri almanız gerektiği, fiziksel ve zihinsel sağlık durumunuzun yanı sıra yaşamınıza ve cinsiyetinize bağlıdır. Bedeniniz vitaminler olmaksızın işlev göremez. Küçük miktarlarda gerekli olmalarına karşın enzim işlevlerinin tetiklenmesi açısından bedenle yaşamsal bir görevi yerine getirirler. Enzim işlvleri de bedendeki diğer faaliyetleri harekete geçirmektedir. B kompleksi vitaminlerine bu vitaminler belli bir grup oluşturur) C vitamini suda eriye vitaminlerdir. Bu vitaminler sadece B12 bedende depolanabilme özelliğine sahiptir. Antibiyotikler, alkol ve stres bu vitaminlerin emilimini azaltmaktadır. A,D,E ve K vitaminleri yağda eriyen vitaminlerdir ve bedende depolanabilirler. En fazla sıvı ve katı yağ içeren yiyeceklerde bulunurlar. İyi emilebilmeleri için safra işlevinin yeterli düzeyde olması gerekir. Vitaminlerin Görevleri: VİTAMİN A: D ve E vitaminleri gibi yağda çözülen bu vitamin, hücre büyümesi için önemli. Mukoza tabakaları ile gözlerin faaliyetini sağlıyor. Cilt ve vücut dokularının sağlıklı olmasını, bağışıklık sisteminin güçlenmesini sağlar. Birçok kanser türüne karşi koruyucudur, antioksidandır ve karanlıkta görmeyi sağlar. Karaciğer, böbrek, yumurta, buğday, mantar, baklagiller, fasulye, fıstık, ceviz VİTAMİN B1: Karbonhidratlardan enerji üretimi, beyin fonksiyonları ve sindirim sistemi için gerekli. Vücudun proteinleri kullanabilmesini sağlar VİTAMİN B6: Protein sindirimi, beyin fonksiyonları, hormonların üretimi için gerekli. Seks hormonlarını dengeler. Deprosyana karşı etkili. Alerjik reaksiyonları engeller VİTAMİN K: Kanın pıhtılaşmasını sağlar VİTAMİN C: Vücudun direncini artırıyor, diş, kemik ve kan damarlarının sağlıklı olmasını sağlıyor. Hücre solunumuna etki ediyor. Ayrıca demirin vücutta değerlendirilmesine yardımcı oluyor. Özellikle kış aylarında ve ateşli hastalıklarda, kronik ishallerde vücudun C vitamini artıyor. VİTAMİN D: Kemikler için vazgeçilmez bir vitamin. Eksikliği raşitizme yol açıyor. VİTAMİN E: Vücudun su ve yağ birikimini ayarlıyor. İşlemden geçmemiş yağlar, buğday, mısır, ayçiçeği, fıstık, susam, soya yağları, zeytin yağı, balık yağı, fındık, badem, ton balığı, sardalya, somon, patates, yumurta sarısı, domates, koyu yeşil renkli sebzelerde bulunur. B-2 vitamini: Protein, yağ ve karbonhidratların bünyede işlenmesini sağlıyor; yani enerji açısından önemi çok büyük. Ayrıca alyuvarların oluşumu için de çok yararlı. Bu vitamin gözlere ve deriye de sağlık veriyor. B-6 vitamini: Tüm metabolizma için vazgeçilmez bir vitamin. Özellikle sinir sistemi üzerinde etkili. Proteinin vücutta değerlendirilmesini de sağlıyor. Folik asit: Hamilelikte bebeğin beyin ve sinir sistemi gelişimi için hayati önem taşır. Yetişkinlerde beyin ve sinir sistemi fonksiyonları, protein kullanımı ve kan hücreleri yapımı için gerekli. Kalsiyum: Dişlerin ve kemiklerin güçlü olmaları için öncelikle kalsiyum gereklidir. Kalsiyum aynı zamanda kalp atışlarını düzenler, kanın gerektiği gibi pıhtılaşmasını sağlar, kaslar ve sinirler için yararlıdır. Kalsiyum kan basıncının yükselmesini ve kalın bağırsak kanserini önleyebilir. Ancak yapılan araştırmalara göre her on kadından sekizi, bol miktarda kalsiyum içeren yiyeceklerle beslenmek istemiyor. Hamilelik, bebeği anne sütüyle emzirme, menopoz, kafeinli içecekler vücuttaki kalsiyum miktarını azaltır süt ve sütlü besinler, mısır, sardalya balığı, kalamar, ıstakoz ve brokkoli bol miktarda kalsiyum içeren besinlerdir.      

http://www.biyologlar.com/vitaminlerin-gorevleri-nelerdir

MAKROFAJ SİSTEMİ (Mononükleer Fagositik Sistem)

Ortak fonksiyonları fagositoz ve pinositoz ile vücut savunması ve çöpçülük; kökenleri kemik iliği kanda monosit bağ dokularında makrofaj olan ve ortak morfoloji olarak bol lizozom, GER, iyi gelişmiş Golgi kompleksi ve pseudopodlara sahip hücrelerin oluşturduğu bir sistemdir. Bu sistemin hücreleri normalde bağ dokularında histiyosit , aktive olduklarında aktive edilmiş makrofaj şeklinde bulunurlar. Hücreleri; *Karaciğerde Kuppfer hücreleri *MSS’de mikroglia hücreleri *Osteoklast *Alveolar makrofaj Mast Hücreleri (Labrosit- Mastzellen ): Granülleri fagositoz ürünü sanıldığından İyi beslenmiş hücre anlamına gelen mast zellen olarak adlandırılmışlardır. Kemik iliği orjinli bu hücreler kan yoluyla dokuya gider ve çoğalırlar. 20-30 µm çapında, oval ya da yuvarlak hücrelerdir. Çekirdek küçük ve merkezi yerleşimlidir. İri granüllü hücrelerdir. Granüller çekirdeği maskeleyebilir. Granülleri, glikozaminoglikan içerikleri nedeni ile polianyonik olduklarından bazofilik ve metakromatiktir. 0,3-0,5 µm çapında ve membranlı olan granülleri tomar, kristal, tanecikli ve karışık olmak üzere 4 tiptir. Granüllerinde; Histamin:Bronşiyolar düz kaslarda kontraksiyon ve kapiller permiabilitede artışa yol açar. Heparin: Proteoglikan yapısındadır. Kan pıhtılaşmasını önler ve damarların yaşam boyunca açık kalmasını sağlar. Lökotrien (Slow reacting factor of anafilaksi=SRS-A): Düz kaslarda yavaş kontraksiyonlar yapar. Hücre içinde depolanmaz. Sitimulasyonla membran fosfolipidlerinden sentezlenip, hemen salınır. ECF-A (Anaflaksinin eozinofil kemotaktik faktörü ): Kan eozinofillerini kendine çeker. Nötral proteazlar: Mastositlerde mitoz nadirdir. Analog hücresi olan bazofillerde ise mitoz görülmez. İnsanda mast hücre sayısı bazofil hücre sayısına eşittir. Parakrin hücrelerdir. En çok dermiste, sindirim ve solunum yollarında bulunur. MSS’de ise sadece meninkslerde bulunur. Mastositler esas olarak iltihabi yanıtta kullanılacak kimyasal aracıların depolanması fonksiyonunu üstlenirler. Mast hücrelerinin 2 tipi vardır; Bağ dokusu mast hücreleri; Granüllerinde bir proteoglikan olan heparin hakimdir. Mukozal mast hücreleri: Granüllerinde bir glikozaminoglikan olan kondroitin – sulfat hakimdir. Mast hücrelerinin yüzeylerinde Ig E için spesifik reseptörler bulunur. *Yabancı maddeler (antijen) vücuda girdiğinde makrofajlar B-lenfositlere bilgi aktarır. B-lenfositler, plazma hücrelerine dönüşür ve bunların salgıladıkları Ig E mast hücre yüzeyindeki reseptörlere tutunur. Aynı antijen ya da benzer antijen vücuda tekrar girdiğinde bu yapılar üzerine tutunur. Tüm granüller deşarj olur. Birkaç dakika içinde yerel yanıt (ürtiker) ya da yaygın yanıt olan ani yüksek duyarlılık reaksiyonu ya da özel bir tipi anaflaktik şok ortaya çıkarak ölüme yol açar. Plazma Hücreleri: Az sayıda, daha çok intestinal mukozada ve kronik iltihaplı alanlarda yerleşik büyük, oval hücrelerdir. Nukleusları eksentrik yerleşimlidir. Nukleus kromatini araba tekerleği ya da saat kadranı gibi dağılım gösterir. Sitoplazmalarında çok iyi gelişmiş GER sisternaları ve Golgi kompleksi yer alır. GER sisternaları ve eksentrik yerleşimli çekirdekleri ile kesitlerde kolaylıkla tanınırlar. Yan yana gelmiş plazma hücreleri şaşı göz hücreleri olarak da adlandırılır. B-lenfositlerden farklanırlar. Nadiren bölünürler. Ömürleri 10-20 gündür. Fonksiyonları, antikor sentezleyerek organizmanın sıvısal (humoral) savunulmasıdır. Yağ Hücreleri (Adiposit): Nötral yağların depolanması ve ısı üretilmesi için özelleşmiş hücreler. Kandan Gelen Hücreler: Fonksiyonlarını bağ dokularında gerçekleştiren, diyapedez ile dolaşımdan çıkarak bağ dokularına giden ve geri dönemeyen kan hücreleridir. Nötrofiller: 3-5 loplu çekirdeğe sahip, granüllerinde alkalen fosfataz ve fagositinleri içeren fagositik hücrelerdir. İltihabi reaksiyonlarda sayıları artar. Nötrofiller, fagositozdan kısa bir süre sonra ölürler. Bu süreç çok enerji gerektirdiğinden hücre tüm glikojen rezervlerini tüketirler. Öldüklerinde, lizozomal enzimlerini ekstrasellüler ortama bırakır ve komşu dokunun liquefactionuna yol açar. Ölü nötrofiller, doku sıvısı ve abnormal materyal Pü (cerahat) olarak adlandırılır. Eozinofiller: Çekirdekleri 2 loplu ve asidofil boyanan granüllere sahip hücrelerdir. Aktif fagositik hücre değillerdir. Ancak ortamda antijen – antikor kompleksi varsa fagositoz yaparlar. Allerjik ve parazitik enfeksiyonlarda sayıları artar. Mastosit ve bazofilden salgılanan ECF-A, eozinofillerin ortama kemotaksis ile gelmesine yol açar. Eozinofiller, aril sulfataz ve histaminaz salgılar. Bu enzimler, lökotrien ve histamine tutunarak inhibe eder. Bu süreçle allerjik reaksiyonların şiddeti azaltılır. Bazofil :Fonksiyonları ve yapıları mast hücrelerine benzediğinden kan mastositleri olarak da adlandırılırlar. Lenfositler: Hücresel savunma (T-lenfositler ) ve sıvısal savunma (B-lenfositler) yapan hücrelerdir. T–lenfositler uzun ömürlüdür. B-lenfositler, daha kısa ömürlüdür ve uyarıldıklarında antikor salgılayan plazma hücrelerine ve bellek hücrelerine farklanırlar.

http://www.biyologlar.com/makrofaj-sistemi-mononukleer-fagositik-sistem

Rektum Kanserinin Tedavisindeki Gelişmeler Umut Verici

Anadolu Sağlık Merkezi’nin düzenlediği “Onkoloji Sempozyumu” uluslararası hekimlerin de katılımı ile gerçekleşti.  Kanser tedavisinde gelinen nokta ve burada  kullanılan teknolojilerin vurgulandığı sempozyumda rektum kanserinin tedavisindeki yeni umutlar paylaşıldı. Rektum kanserinde PET/BT’nin ilk evrelemede tümörün hangi tabakaya kadar yayıldığını (derinlik/penetrasyon) ve tümöre bitişik küçük lenfnodlarındaki metastazı göstermede etkin bir yöntem olduğunu belirten Anadolu Sağlık Merkezi Nükleer Tıp Uzmanı Dr. Kezban Berberoğlu, “Değeri düşük olsa da en önemli katkısı pelvis içinde bulunan diğer lenf nodlarını ve hastalığın uzak yayılımını değerlendirmede oldukça etkilidir. Metastatik hastalarda kemoterapi öncesi tedavi etkinliğini değerlendirmede daha sonraki çalışmalarla kaşılaştırma yapılabilmesi için mutlaka başlangıçta yapılmalıdır. Bu sayede hastanın fayda görmeyeceği cerrahiden hastayı korur. PET/BT’nin diğer önemli rolü rekürrens şüphesi olan hastalarda CEA yüksekliği veya BT’de şüpheli lezyon bulunanlarda rekürrensi saptamada rutin olarak kullanılmaktadır. “Rektum kanserinde son dönem cerrahi yaklaşımlar Rektum kanserinin tedavisinde cerrahinin rolüne dikkat çeken ABD Austin Diyaknostik Kliniği’nden Dr. Francis Buzad, tedavide multidisipliner bir yaklaşım olması gerektiğini vurguladı. Cerrahın yanı sıra  radyolog, onkolog ve diğer branşlarla birlikte değerlendirilmesi gerektiğini belirten Dr. Buzad, “Hastanın geldiği hekime ulaştığı evreye göre tedavi de farklılaşmaktadır.  Doğal olarak cerrahinin uygulama zamanı da bu doğrultuda farklılaşmaktadır. Eğer, hastada rektum kanseri erken dönemde teşhis edilmişe, tanı konar konmaz cerrahi operasyona alınır. Ancak ileri evrelerde tanı konmuşsa, bu hastalar için cerrahi öncesinde kemoterapi ve radyoterapiden yararlanılıyor. Bunların dışında bu hastalarda endoskopi, rektoskopi gibi birçok tanı yöntemi kullanılıyor ve tümörün yerine göre, uygulanacak cerrahi opsiyonlar da değişiyor. Tedavide temel hedef hastayı tümörden kurtarmak.  Ancak bunu yaparken de hastanın anal fonksiyonlarını da korumayı amaçlıyoruz.” diye konuştu.   Rektum kanserinin cerrahisinde son yıllarda önemli gelişmeler yaşandığını belirten Dr. Buzad, sözlerine şöyle devam etti: “Son yıllarda cerrahi anlamda yaşanan en önemli gelişmelerden birinin robotik cerrahi olduğunu söylemek mümkün. Özellikle de bu konudaki deneyim arttıkça görüyorum ki genel cerrahi branşında opere edilebilecek her hasta da Vinci ile ameliyata uygun. Hastalar 3-5 günde normal yaşama dönebiliyorlar. Robot sonrası daha hızlı iyileşme sağlandığı için takip eden tedavileri kişi daha rahat tolere edebiliyor.”  Biyoteknoloji dönemi başlıyor Tanı ve teknolojide yaşanan gelişmelerin daha rahat cerrahi operasyonlara olanak sağladığını belirten Dr. Buzad, “Cerrahi mevcut halinden en fazla biraz daha gelişebilir. Ancak çok yakında biyoteknoloji gelecek. Gelecekte  tümörün hiç oluşmaması için çalışacağız. Şu anda üzerinde çalıştığımız florasan diye yeni bir sistem var. Bu sistemde; tümöre kimyasal bir madde enjekte ediliyor. Böylece özel bir kamera sayesinde tümör daha iyi görüntülenebiliyor ve daha başarılı bir ameliyat gerçekleşiyor. Ayrıca ameliyat sonrasında da daha iyi sonuçlar elde ediliyor.  Bu sistemin şimdilik damarların görüntülenmesiyle ilgili olarak FDA onayı var. Çok yakında sistemin kendisinin de FDA onayını alması bekleniyor” diye konuştu.Görüntülemede  en önemli yeri manyetik rezonans alıyor Rektum kanserinin tanısında dijital muayene ve rektosigmoidoskopinin  birincil rolünü koruduğunu belirten Anadolu Sağlık Merkezi Radyoloji Uzmanı Dr. Oktay Karadeniz ise yeniliklerle ilgili şu bilgileri verdi: “Rektum kanserinde radyolojik görüntülemede  en önemli yeri manyetik rezonans görüntüleme almaktadır. Çok kanallı, paralel görüntüleme yapan  faz sıralı sargılar sayesinde rektum detaylı olarak  incelenebilmekte ve geniş bir alan görüntülenebilmektedir. Bu sayede komşu organlar değerlendirilebilmekte, evrelendirmede önemli rol oynayan bölgesel lenf nodları  da incelenmektedir. Barsak katmanının yüksek rezolüsyonda incelenmesi sayesinde tümörün sınırları ve uzanımı detaylı olarak incelenmekte ve patoloji ile birebir aynı sonuçlar elde edilebilmektedir.Tüm bu bulgular ışığında hasta için en faydalı tedavi seçeneği belirlenmektedir (cerrahi veya kemoradyoterapi). Kemoradyoterapi sonrası  tedaviye yanıt ve cerrahi sonrası lokal nüks takibi için yine MR kullanılmaktadır. MR  ile difüzyon tekniği kullanılarak lezyonun  hücre yoğunluğu incelenmekte ve tedaviye yanıtın değerlendirilmesi difüzyon haritası eşliğinde yorumlanmaktadır. Rektum kanserlerinin  en sık karaciğere metastaz yapması  nedeniyle karaciğer görüntülemesi gerektiğini belirten Dr. Karadeniz, “MR yüksek yumuşak doku kontrastı sağlaması sayesinde tercih edilmekte olup  duyarlılığı en yüksek modalitedir.Teknolojideki gelişmeler sayesinde 10-15 saniyelik nefes tutmalı sekanslar ve serbest nefes alma sırasında görüntü elde edilebilmesi ile çekim kolaylıkla  gerçekleştirilebilmektedir. Ayrıca son yıllarda geliştirilen MR  kontrast maddelerin bir kısmı karaciğer hücrelerine özel olup metastazların belirlenmesindeki duyarlılığı daha da artırmaktadır.” diye konuştu. Karaciğer metastazlarında CyberKnife Karaciğer metastazlarında CyberKnife’ın önemine değinen Prof. Dr. Kayıhan Engin, karaciğerin primer kanseri (hepatoselüler ca.) ve karaciğerdeki safra yolları kanserinin (intrahepatik kolanjio ca.) öncelikli tedavisini cerrahi yöntemin oluşturduğunu belirtti. Cerrahi uygulanan, özellikle tümörü küçük olan hastaların uzun süre yaşayabildiğini belirten Prof. Dr. Engin, “Ancak %30 hastada cerrahi uygulanabiliyor. Diğer hasta grubu cerrahi şansını kullanamıyor ve birçok sistemik tedaviye rağmen yaşam süresi kısa oluyor. Aynı şekilde karaciğerin metastatik hastalıklarında da cerrahi yaklaşım çok daha az oluyor ve kemoterapi ile yeterince etkili olunamıyor. Klasik radyoterapi bu hasta gruplarında karaciğerin hareketli olması ve sağlam karaciğer dokusunun radyasyondan etkilenerek zarar görmesinden dolayı uygulanamıyor veya çok sınırlı olgulara çok sınırlı dozlar verilebiliyor. Bu dozlar da tümör üzerinde istenilen etkiyi gösteremiyor. Radyocerrahi sistemle sağlam dokular maksimum korunabilse bile teknik olarak kafatası dışında uygulanamıyor ve hareketli organlara planlama yapılamıyor. Oysa Cyberknife ile hareketli organların radyocerrahisi küçük bir müdahale ile mümkün olabiliyor. Sağlam dokular maksimum korunurken tümör dokusuna diğer klasik yöntemlerle verilemeyen yüksek dozlar da verilebiliyor. Böylece cerrahi yapılamayan primer veya metastatik karaciğer kanserlerine etkili dozlarda radyocerrahi yapılarak yaşamlarını uzatma şansı doğuyor.” diye konuştu.   http://www.medical-tribune.com.tr

http://www.biyologlar.com/rektum-kanserinin-tedavisindeki-gelismeler-umut-verici

VİTAMİN NEDİR ?

Vitamin sözcüğü Polonyalı biyokimyacı Casimir Funk tarafından 1912'de kullanılmıştır. Vita Latince, hayat demektir, -amin son eki ise amin sözcüğünü kastetmektedir. Zira o dönemde tüm vitaminlerin amin oldukları sanılmaktaydı. Bugün bunun yanlış olduğu bilinmektedir. Vitaminler besinlerimizde bulunmadığı zaman, metabolizmada bozukluklara yol açabilirler. Vitaminler vücudun sağlıklı gelişimi, sindirim fonksiyonları, enfeksiyonlara karşı bağışıklık kazanması açısından oldukça gereklidir. Ayrıca vücudumuzun karbonhidrat, yağ ve proteini kullanmasını da sağlarlar. Vitaminler vücutta "yakılmaz", yani vitaminlerden doğrudan enerji (kalori) alınmaz. Vücut, her vitaminden gerekli olan miktarın kan dolaşımında sürekli mevcut olmasını sağlar. Suda çözünen vitaminlerin fazlası vücut sıvıları ile atılırken, yağda çözünen vitaminlerin fazlası ise yağ dokusunda depolanır. Depolandıkları için yağda çözünen vitaminlerin aşırı dozu zararlı olabilir. Özellikle vitamin A ve D'nin tüketiminde dikkatli olmak gerekir. Vitaminler bütün hücrelerde az miktarda depolanır. Bazı vitaminler ise büyük ölçüde karaciğerde depolanır. Örneğin karaciğerde depolanan A vitamini hiç vitamin almayan bir kişiye 5-10 ay kadar yetebilir ve karaciğerin D vitamini deposu dışarıdan hiç D vitamini almayan bir kişi için genellikle 2-4 ay kadar yeterlidir. Suda çözünen vitaminlerin vücutta depolanma oranı nispeten düşüktür. Bu, özellikle B vitaminlerinin birçoğu için geçerlidir. B kompleks vitaminleri eksik alan bir kişide bu eksikliğin belirtileri bazen birkaç günde ortaya çıkar. B12 vitamini bunun dışındadır, çünkü B12'nin karaciğerdeki deposu kişiye bir yıl veya daha uzun süre yetebilir. Suda çözünen bir başka vitamin olan C vitamininin yokluğu birkaç haftada belirtilerin ortaya çıkmasına yol açabilir. C vitamini eksikliğinden kaynaklanan skorbüt hastalığı ise 20-30 hafta içinde ölümle sonuçlanabilir. Vitaminler, sağlıklı yaşamın vazgeçilmez bir parçası olan organik bileşiklerdir. Vitamin Latince yaşam anlamına gelen “vita” sözcüğünden kaynaklanır. Vitaminler yağda ve suda eriyenler olarak iki gruba ayrılır . YAĞDA ERİYEN VİTAMİNLER : A, D, E ve K vitaminleridir . SUDA ERİYEN VİTAMİNLER : B grubu vitaminler ile C vitaminidir .

http://www.biyologlar.com/vitamin-nedir-

Ulusal ve Uluslar arası Çevre Koruma Kuruluşlar ve Amaçları

Çevre sorunlarının birçoğu insanın var olması ile birlikte başlamıştır. Önceleri nüfusun az olması ve teknolojinin günümüzdeki boyutlarına ulaşmamasından dolayı insanlar doğayla uyum içinde yaşamışlardır. Ancak sanayi ve endüstrileşme, nüfus artışı, teknolojik gelişmelerle bir­likte insanlar doğayı hızla tahrip etmeye başlamışlardır. Bunun sonu­cunda sera etkisi, küresel ısınma, asit yağmurları, çarpık kentleşme ve ik­lim değişiklikleri gibi pek önemli çok çevre sorunları oluşmuştur. Geçmişte bilinçsizce doğayı tahrip eden insanlar bir süre sonra doğa­nın bir parçası olduklarını, doğal dengenin önemini ve bu sistemle uyum içinde yaşamaları gerektiğini anlamışlardır. Çevre sorunları, insanları doğayı koruma konusunda ciddi önlemler almaya yöneltmiştir. Böylece önemli çevre faaliyetlerine girişilmiş ve konu küresel boyutta ele alın­maya başlanmıştır. Ulusal ve uluslar arası faaliyetler hız kazanmıştır. Ulusal ve uluslar arası çevre kuruluşlarından bazıları bu bölümde açıklanmaktadır. T.C. Çevre ve Orman Bakanlığı Çevre ve Orman Bakanlığı'nın; ormanların işletilmesi, korunması ve geliştirilmesi, orman saha bütünlüğünün korunması, Tabiatı Koruma Alanları, Milli Park ve benzeri korunan alanların geliştirilerek yaygınlaş­tırılması, orman ve mera planları, sürdürülebilir orman yönetimi ilkeleri doğrultusunda toplum ihtiyaçları, ekosistemin çeşitli fonksiyonları ve nesli tehlikede olan yaban hayatı ile bitki türleri dikkate alınarak yeni­den düzenlenmesi gibi amaçları vardır. Bunlardan başka, sosyal, kültürel ve çevresel nedenlerle yeşil kuşaklar ve parklar şeklinde ormanların ku­rulmasını özendirmek ve yaygınlaştırmak, orman yaygınlarını önleme ve mücadele, kirlenme ve sera etkisi, asit yağmurları, nesli tehlikede olan su ve yaban hayatını koruma konularım öncelikli olarak benimsemekte­dir. Orman Genel Müdürlüğü İlk ormancılık teşkilatı 1839 yılında kurulmuştur. Bu kuruluştan önce ülkemiz ormanlarının yönetim ve idaresinden sorumlu bir teşkilat bu­lunmamaktaydı. Ormanlarımızın ekonomik bir değer olarak kabul edil­mesi ve işletilmesi Tanzimat'tan sonra başlamıştır. Bu dönemde "Orman Müdürlüğü" kurulmuştur. 31.10.1985 tarih ve 3234 sayılı yasa ile ülkemizdeki ormancılık hizmet­lerinin yerine getirilmesi görevi, Orman Genel Müdürlüğüne verilmiştir. 07.08.1991 tarihinden 01.05.2003 tarihine kadar orman bakanlığına bağlı olarak görev yapmış, bu tarihte kabul edilen 4856 sayılı kanun kapsa­mında Çevre ve Orman Bakanlıklarının birleştirilmesi nedeniyle Orman Genel Müdürlüğü, Çevre ve Orman Bakanlığı bünyesinde faaliyetlerini sürdürmeye başlamıştır. Orman Genel Müdürlüğü'nün görevleri arasında; ormanları usulsüz ve kanunsuz müdahalelere, tabii afetlere, yangınlara, muhtelif zararlara karşı korumak, ormanların devamlılığını sağlayacak şekilde teknik ve ekonomik gerekliliklere göre idare etmek ve işletmek, orman ürünlerinin üretim, taşıma, depolama, pazarlama, ormancılık hizmetleri ile ilgili ge­rekli araç ve gereçleri tedarik etmektir T.C. Kültür ve Turizm Bakanlığı Kültür ve Turizm Bakanlığı 16. 04. 2003 tarihinde 4848 sayılı kanun ile kurulmuştur. Kanunun amacı kültürel değerleri yaşatmak, geliştirmek, yaymak, taratmak, değerlendirmek ve benimsetmek, tarihi ve kültürel varlıkların tahribini ve yok edilmesini önlemek, yurdun turizme elverişli bütün imkânlarını ülke ekonomisine olumlu katkı sağlayacak şekilde değerlendirmek, turizmin geliştirilmesi, pazarlanması, teşvik ve destek­lenmesi için gerekli önlemleri almak, kültür ve turizm konuları ile ilgili kamu kurum ve kuruluşlarını yönlendirmek ve bu kuruluşlarla işbirli­ğinde bulunmak, yerel yönetimler, sivil toplum kuruluşları ve özel sek­tör ile iletişimini geliştirmek ve işbirliği yapmak üzere Kültür ve Turizm Bakanlığının kurulmasına, teşkilat ve görevlerine ilişkin esasları düzen­lemektir. T.C. Tarım ve Köyişleri Bakanlığı Kuruluşundan bu yana dört ana dönemde bazen isim değiştirerek, bazen başka bakanlıklarla birleşerek, kimi zamanda ayrılarak veya kapa­tılıp tekrar kurularak günümüze kadar gelmiştir. 14 Aralık 1983 tarih ve 18251 sayılı resmi gazetede yayınlanan 183 sa­yılı kanun hükmünde kararname ile Köyişleri ve Kooperatifler Bakanlığı, Tarım ve Orman Bakanlığına bağlanarak, bakanlığın adı "Tarım Orman ve Köyişleri Bakanlığı" olarak değiştirilmiştir. Sonraki yıllarda bakanlı­ğın adı; Gıda-Tarım ve Hayvancılık Bakanlığı, Tarım ve Orman Bakanlı­ğı, Tarım Orman ve Köyişleri Bakanlığı, Tarım ve Köyişleri Bakanlığı o-larak değiştirilmiş, halen Tarım ve Köyişleri Bakanlığı olarak devam et­mektedir.

http://www.biyologlar.com/ulusal-ve-uluslar-arasi-cevre-koruma-kuruluslar-ve-amaclari

BAĞ DOKUSUNUN FONKSİYONLARI VE HORMONLARIN ETKİLERİ

Depolama: Lipid, su, elektrolitler (öz. Na+ ), plazma proteinlerinin 1/3’ü Savunma: Hücreleri ve hücrelerarası amorf temel maddesi ile bu fonksiyonu yerine getirir. Yangı alanına sırasıyla nötrofil – lenfosit, makrofaj – plazma hücreleri gelir. Etken ortadan kaldırılamazsa alan etrafında fibröz kapsül oluşturulur. Onarım: Fibroblastlar – scar dokusu oluşur. Transport: Kan damarlarından zengin amorf temel madde diffüzyona uygundur. Destek: Lifleri ile bu görevi yerine getirir. BAĞ DOKUSU ÜZERİNE HORMONLARIN ETKİLERİ Kortizon; Yabancı doku reddini önlemek için bu hormon kullanılır. Lif sentezini ve plazma hücrelerini ve lenfositleri baskılar. Yaraların geç iyileşmesini engeller. Adrenokortikotrop Hormon (ACTH): Hipofizden salınan bu hormon adrenal bezlerden kortizol sentezini uyarır. Tiroid Hormonları: Tiroid bezi salgılarının az olması durumunda hipotiroidizm ortaya çıkar. Bol ara madde (GAG) sentezinden dolayı miksödem olarak adlandırılan hastalık ortaya çıkar. C vitamini: Bu vitaminin eksikliğinde kollajen biyosentezi kusurludur. Fibroblastlar kusurlu kollajen sentezler ve hatalı liflerin yenilenmesi mümkün olmaz. Dişleri yerinde tutan periodontal ligament yapısı bozulur ve dişlerde scorbüt hastalığı ortaya çıkar. Clostridum grubu bakteriler: Bol kollajenaz sentezlediklerinden kollajen yıkımı olur. *Fe, O2, a ketoglutarat kollajen yapımında gerekli maddelerdir.

http://www.biyologlar.com/bag-dokusunun-fonksiyonlari-ve-hormonlarin-etkileri

Fizyoloji

Fizyoloji, hayvan ya da bitki, tüm canlılardaki hücre, doku ve organların işleyişini inceleyen bilim dalı. Canlının hayati fonksiyonlarını ve sistemlerinin işleyişini inceleyen bilim. Fizyoloji; canlılığın, yaşamanın mekanizmalarını, en ince ayrıntılarıyla insan vücudunda veya canlılarda vuku bulan hadiselerin esasına inerek araştırır. Bu sebeple bakteri fizyolojisi, hücre fizyolojisi, insan fizyolojisi ve daha birçok fizyoloji dalları vardır. İnsan fizyolojisi, insan vücudunda yer alan fonksiyonların her çeşidini açıklamaya çalışır. Hücrelerde meydana gelen kimyasal reaksiyonları, sinir sisteminin çalışma şekil ve prensipleri, uyarıların vücut tarafından nasıl alınıp, nasıl değerlendirildiğini, kasların çalışma mekanizmalarını, kanın damarlarda dolaşmasını, dokularda kanın kullanılma özelliklerini, kalbin ve beş duyumuzun nasıl çalıştığını, böbreklerin idrar meydana getirme kabiliyetini ve vücudun dış şartlarından nasıl etkilendiğini ve bunun gibi daha birçok vücut fonksiyonunun nasıl yapıldığını, hücresel, hatta moleküler seviyeye inerek araştırıp, gözler önüne sermeye çalışır. Ayrıca atmosferin üst tabakaları ve uzaydaki vücud fonksiyonlarını inceleyen “hava fizyolojisi”, su altında meydana gelen değişiklikleri inceleyen “sualtı fizyolojisi” gibi daha ilginç fizyoloji dalları da kurulmuştur. İnsanoğluna yeryüzünün değişik şartlarında yaşayabilme kabiliyeti verilmiştir. O, yaşamak ve faaliyet gösterebilmek için gerekli en küçük parçalara kadar donatılmıştır. Çeşit çeşit üstünlüklerle dolu olan, sayısız kimyasal, fiziksel, elektriksel ve daha ince olayların cereyan ettiği bu muazzam yapının araştırılması, akıl sahiplerini hayret ve hayranlıkta bırakmakta ve yaratıcının kudretinin bir göstergesi olmaktadır. Fizyopatoloji: Fizyopatoloji de fizyoloji gibi organizmada meydana gelen hadiselerin mekanizmalarını inceler. Fizyoloji normal vücudu incelerken, fizyopatoloji çeşitli hastalıkların ortaya çıkışındaki mekanizmaları inceler. Normal mekanizmanın neresinden bozulduğunda hastalığın meydana geldiğini, tamirinin nereye müdahale ile mümkün olabileceğini gösterir. Tedavi açısından oldukça kıymetli olan bu bilim dalı, hastalıkların ortaya çıkışındaki sebepleri bize en iyi şekilde izah eder. Kaynak:http://ansiklopedi.turkcebilgi.com

http://www.biyologlar.com/fizyoloji-1

Hücre Fizyolojisi

Hücreler yaşayan organizmaların yapısal ve fonksiyonel birimleridir. Hücreler küçük fakat kompleks yapılardır. Yaşamın bu temel birimi hakkında ayrıntılı bilgiler ilk kez 17. Yüzyılda ışık mikroskobunun geliştirilmesi ile edinildi. Bir müze müdürü olan İngiliz Robert Hooke 1663 yılında mantar ve diğer bitki örneklerini bir jiletle keserek mikroskop altında 30 kat büyüterek inceledi. Bu incelemeler sonucunda bitkilerin "hücre" adını verdiği küçük bölmelerle dolu olduğunu buldu. Anton van Leeuwenhoek isimli bir Alman dükkancı ise doku örneklerini 300 kat büyüterek, bakteri, kan hücresi, sperm hücresi gibi tek hücreli organizmaları inceledi. Bu organizmalara hayvancık anlamına gelen "animalcules" adını verdi. Hücrelerin Genel Özellikleri: Hücreler hem morfolojik (şekilsel) hem de metabolik olarak çok büyük farklılıklar gösterirler. E.coli isimli bakteri 1m m (m m=mikrometre= 1 metrenin milyonda biri) uzunluğundayken, aksonları 1 metre uzunluğunda olan sinir hücreleri vardır. Ama yine de hücrelerin çok büyük bir çoğunluğu 1-30 m m arasındadır. Hücreler küçük olmak zorundadırlar, çünkü metabolizmalarında diffüzyon çok önemlidir. Diffüzyon, termal hareketle moleküllerin rasgele hareket etmesidir. Diffüzyon moleküllerin, yüksek konsantrasyon bölgesinden düşük konsantrasyon bölgesine doğru, her yerde eşit dağılıncaya kadar olan, rastgele hareketleridir. Diffüzyon termodinamiğin 2. Kanuna bir örnektir. Bu kanuna göre entropi (düzensizlik ya da rasgelelik) sürekli olarak artar. Evrendeki düzensizliğin derecesi sadece ve sadece artabilir. Hücrelerin çoğu aktivitelerinin büyük bir bölümünü diffüzyon ile düzenlerler. Diffüzyon, molekülün özelliğine (büyüklük gibi) ve çevreye (vizkozite, membran gibi) bağlıdır. Bir partikül (madde parçası) tarafından katedilen mesafe zamanın karekökü ile doğru orantılıdır. Yani bir partikül 1 saniyede 1 m m gidiyorsa, 4 saniyede 2 m m ve 100 saniyede 10 m m ve 3 saatte (10.000 saniye) 100 m m gidecek demektir. Hücrelerin Fonksiyonel Özellikleri: Hücreler ortamdan ham materyali alırlar. Enerji üretirler: Bu enerji iç ortam dengesini sağlamak, ve sentez reaksiyonlarını yürütmek için gereklidir. Termodinamiğin 2. Kanununa karşı koymak ancak enerji ile mümkündür. Kendi moleküllerini sentez ederler. Organize bir şekilde büyürler. Çevreden gelen uyarılara cevap verirler. Çoğalırlar (bazı istisnalar haricinde). Hücrelerin Yapısal Özellikleri: Kalıtsal bilgiler DNA içinde saklanır. Genetik kod temelde aynıdır. Bilgi DNA dan proteinlere RNA aracılığı ile geçer. Proteinler ribozomlar tarafından yapılır. Proteinler hücrenin fonksiyon ve yapısını düzenlerler. Bütün hücreler seçici geçirgen bir zar olan plazma membranı ile çevrilmiştir. HÜCRELERİ BİRBİRİNDEN AYIRAN ÖZELLİKLER Hücreler arasında pek çok benzerlik olmasına rağmen, çok belirgin farklılıklar da vardır. Bu farklılıklar hücreleri çeşitli ana guruplara ayırmamıza yardımcı olur. İki yaygın ana gurup şunlardır. Prokaryotlar Eukaryotlar Prokaryotlarla Eukaryotlar arasındaki en temel farklar prokaryotların bir nükleusa (çekirdek) ve membrana bağlı organellerinin (birkaç istisna haricinde) olmamasıdır. Her ikisinin de DNA sı, hücre zarı, ribozomları vardır. HÜCRE ORGANELLERİNİN YAPI VE FONKSİYONLARI Hücreler ışık mikroskopu ile incelendiği zaman, sitoplazma ve çekirdek adı verilen iki bölümden oluştuğu görülür. Ancak daha büyük büyütme sağlayan elektron mikroskopuyla yapılan incelemeler, hücrenin bir takım alt birimlerden, hücre organellerinden oluştuğunu ortaya koymuştur. Hücre şunlardan oluşmuştur. Hücre zarı Sitozol Organeller Çekirdek Hücre Zarı: Zar ya da membranlar yaşam için çok önemlidir, çünkü bir hücre 2 sebebten dolayı kendisini dışarıdaki ortamdan ayırmak zorundadır. DNA, RNA ve benzeri yaşamsal moleküllerini dağılmaktan korumalıdır. Hücre molekül yada organellerine zarar verebilecek yabancı molekülleri uzak tutmalıdır. Ancak hücre bu iki kurala uyarken bir taraftan da çevreyle haberleşmeli, dış ortamı sürekli olarak izlemeli ve ortam değişikliklerine ayak uydurmak zorundadır. Ayrıca hücre besin maddelerini dışarıdan almalı ve metabolizması sonucunda ürettiği toksik (zehirli) maddeleri dış ortama vermelidir. Biyolojik membranlar Şekil 1 de görüldüğü gibi bilipit katmandan oluşur. Şekildeki her bir fosfolipiti temsil eder. Daire ya da baş negatif yüklü fosfat gurubudur, ve iki kuyruk da çok hidrofobik (hidrofobik=suyu iten) olan hidrokarbon zincirlerini temsil eder. Fosfolipit zincirlerinin Şekil 1. De görüldüğü düzenlenmesi sonucu hidrofobik kısımlar membranın içinde kalır. Membran yaklaşık 5 nanometre (1 nanometre = 1 metrenin milyarda biri) kalınlığındadır. Membran semipermeabledır (yarı geçirgen), yani bazı maddelerin membrandan serbestçe geçmesine (diffüze olmasına) izin verir. Membran büyük moleküllere geçirgen değilken, yüklü iyonları çok az geçirir, ve yağda eriyen küçük moleküllere oldukça geçirgendir. Tüm biyolojik membranlar gibi hücre zarı (membranı) da lipit, protein ve az miktarda karbonhidrattan oluşmuştur. Hücre zarı, hücre içinde ve dışında bazı uzantılarla devam eder. Hücre dışına doğru olan uzantılar hücrenin yüzeyinden interstisiyel mesafeye doğru uzanırlar, bu uzantılara mikrovillus denir. Hücre içine doğru devam eden zar sistemi ise dış ortamın hücre içiyle daha yakın ilişki kurmasını sağlar. Bu sisteme endoplazmik retikulum denir. Endoplazmik Retikulum: Endoplazmik retikulum lipid, protein (ribozomlar aracılığı ile) ve kompleks karbonhidratların yapım yeridir. Endoplazmik retikulum hücredeki toplam membranların yarısından fazlasını oluşturur. Endoplazmik retikulum iki membrandan oluşur, iki membran arasında kalan boşluğa endoplazmik retikulum lümeni denir. İki tip endoplazmik retikulum vardır. Granüllü Endoplazmik Retikulum: Üzerinde ribozomlar vardır. Sisterna denilen yassılaşmış keseler şeklindedir. Golgi Kompleksi: Golgi kompleksi hem yapı hem de fonksiyon yönünden endoplazmik retikulum ile yakından ilişkilidir. Bu organel birbirine paralel bir dizi membranöz kanaldan oluşur ve salgı yapan hücrelerde iyi gelişmiştir. Golgi kompleksinin fonksiyonu endoplazmik retikulumda sentezlenen maddelere son şeklini vermek ve bu maddeleri bir membranla çevrelemektir. Ayrıca hücre zarının yenilenmesi ve yüzeyinin genişletilmesi görevini de üstlenir. Lizozom: Lizozomlar 0,2 ila 2 m m çapında organellerdir. Hücreiçi sindirimi sağlamak üzere yaklaşık 40 civarında enzim içerirler. Lizozom membranı lizozomun hücreyi tümüyle sindirmesini önler. Bu enzimler için optimal pH 5 civarıdır. Lizozomlarda ATP hidrolizi ile çalışan H+ pompası vardır. Bu sayede lizozomun pH I düşük tutularak enzimlerin etkin hale geçmesi önlenir. Peroksizom: Peroksizom membranında spesifik proteinler ve oksidasyon enzimleri vardır. Karaciğerdeki peroksizomların ana görevi detoksifikasyondur (bir maddeyi zararsız hale getirme). Ribozom: Ribozomlar proteinlerin sentez edildikleri yerdir. Protein sentezi için gerekli bilgi DNA dadır, bu bilgi RNA ya transfer edilir, ve ribozomlarda RNA daki bu bilgiyle protein yapılır. Bir hücre için protein sentezi çok önemlidir, bu yüzden de hücrede binlerce ribozom bulunur. Ribozomlar ya sitoplazmada serbestçe yüzerler ya da endoplazmik retikuluma bağlı olarak bulunur. Ribozomların membranı yoktur. Protein sentezlemedikleri zaman 2 alt gurup halinde bulunurlar. Alt guruplar ribozomal RNA (rRNA) ve ribozomal proteinlerden oluşur. Mitokondri: Mitokondriler eukaryotik hücrelerde ana enerji üretim merkezleridir. Biri iç diğeri dış olmak üzere iki membranı vardır. İç membranda çok sayıda katlanmalar vardır, bu membranın yüzey alanını genişleterek, membran bağımlı raksiyonların daha fazla sayıda olamasını sağlar. Mitokondrilerin kendi DNA ve ribozomları vardır. Çekirdek (Nükleus): Nükleus DNA nın bulunduğu ve DNA daki bilginin RNA ya aktarıldığı yerdir. Çift katlı bir membranla sarılmıştır, bu membranda çok sayıda büyük porlar bulunur. Çekirdeğin içini dolduran esas madde DeoksiriboNükleik Asit ve protein molekülleridir. Bu DNA molekülleri nükleus içinde rastgele dağılmış olamayıp kromozom denilen yapılar içinde protein molekülleri ile birlikte organize olmuşlardır. İnsanda 46 adet (23 çift) kromozom bulunur. DNA molekülleri hücrede mevcut bütün proteinlerin nasıl yapılacağının genetik bilgisini içerirler. Bilgi nükleusdadır fakat proteinler sitoplazmada yapılır, bu sebeple bilginin sitoplazmaya aktarılması gereklidir. Bu amaçla DNA kalıp gibi kullanılarak, bu kalıptan RNA yapılır, oluşan RNA sitoplazmaya geçerek, protein yapım yeri olan ribozomlara protein sentezi için gerekli bilgiyi aktarır. Çekirdek hücrenin kontrol merkezidir, buradaki genetik mekanizmalar yoluyla sadece hücre içindeki kimyasal olaylar değil, aynı zamanda hücrenin özelliklerinin yeni hücre nesillerine aktarılması da sağlanır. Hücre İskeleti: Aslında hücre iskeleti terimi yanlış bir deyimdir. Hücre iskeleti transparan olduğu için hem ışık hem de elektron mikroskobu preperatlarında görülmez. Hücre çizimlerinde de gösterilmemesine rağmen önemli bir hücre komponenttidir. Hücre iskeleti hücrenin şeklini, hücre organellerinin yerinde durmasını sağlar, ve hücre hareketinden sorumludur. Hücre iskeleti şunlardan oluşmuştur. Sentriyoller Mikrotübüller Aktin filamentleri Sentriyoller çekirdeğe yakın olarak yer alan bir çift silindirik yapıdır. Her biri üçerli guruplar halinde dokuz tübülden oluşmuştur. Sentriyoller hücre bölünmesi sırasında kromozomların hücre kutuplarına çekilmesini sağlarlar. Mikrutübüller tübülin denilen alt birimlerden oluşmuştur. Görevi hücreyi yerinde tutmaktır, aynı zamanda silya ve flagellanın da ana bileşenidir. Aktin filamentleri ise hücrenin şeklini değiştirmesinde görev alırlar.

http://www.biyologlar.com/hucre-fizyolojisi

Kompakt Kemik Dokusu ve Yapısı

Kompakt bir kemiğin (örneğin femurun diyafizi) mikroskobik incelemesinde dokunun ha-vers kanalları etrafında 3-7 µm kalınlıktaki lamellerden, hücrelerden ve sert bir matriks-ten oluştuğu görülür. Düzgün ve boşluk içermeyen bir tertiplemede olan kompakt kemikteki os-teoplastlar (laküna) dallıdır ve kanalikül adını da alır. İçine ise osteositler (kemik hücre-leri) yerleşmiştir. Kompakt kemiklerdeki bu kanaliküller her bir lamelde birçok sayıda oldu-ğundan ait olduğu Havers sisteminin en içinden en dış lameline kadar temas kurarlar. Böylecedokuda bir ağ oluşturarak metabolizmanın olaylanmasını sağlarlar. Lamellerin sayısı 4 ile 20arasında değişmektedir (Şekil 7.1). Özellikle enine yapılmış bir kemik kesitinde bu Havers sis-temi konsetrik tertiplenmiş halkalar şeklinde ortaya çıkar. Dokunun incelenmesinde lamel sis-temi şöyle sınıflandırılır:1. Havers Lamelleri2. Periyostun altında dış esas lameller3. Endosteum etrafındaki iç esas lameller4. Osteonların arasındaki ara lameller.Şekil 7.1: Kemik dokusundaki kanaliküller içinde osteositin yerleşimi Bir Havers kanalıyla onun etrafındaki lamellerin tümüne birden osteon adı verilir. Bir Ha-vers kanalı yan dallarla kemik iliği ve periyosteumla bağlantı kurar. Bu yan dallara Volk-mann Kanallarıadıverilir. Haversteki damarlar longitudinal tertiplenmişolup yan dallarıyla dakomşu damarlarla temastadırlar. Havers kanalı 20-100 µm çapındadır ve 1-2 adet damariçerir. Damarlar genellikle kapiller, postkapiller venül veya seyrek olarak arteriol olabilir. Sert birmatrikse sahip olan kemik dokusunda diffüzyon olanağı olmadığından kanal ve kanaliküllerlekemiğin dışından içine kadar ilişki kurulur ve bu şekilde metabolizma için gerekli maddeler da-mar ve kanaliküllerle hücrelere kadar ulaşır. (Şekil 7.2)Şekil 7.2: Kompakt ve spongiyöz kemiğin şematik görünümü Periyosteum Bağ dokusundan yapılı olan bu tabaka eklem yüzeyleri hariç tüm kemiği dıştan çevreler. Peri-yosteumun; kemiğe desteklik yapmasında, beslenmesinde, gelişiminde (perikondral kemik-leşmeye bakınız) ve tamir olaylarında büyük önemi vardır. Yapısında kollajen ve elastik liflerbulunur. Ayrıca Sharpey lifleri adı verilen kollajenler de matriks içine doğru ilerleyerek pe-riyosteumu kemiğe bağlamaktadır. Bunlar dış esas lameller ile ara lamellere kadar uzanabi-lirler. Perikondriyum bol damar içerir ve 2 tabakası bulunur:a- Dış tabaka daha çok sıkı bağ dokusu yapısındadır.b- İç tabaka gevşek bağ dokusunda olup hücreden zengindir.Tabakaların her birinin ayrıfonksiyonlarıvardır. Dışkat, kollajen ve elastiklerden yapılıdır, me-tabolizmada rol alan damarları (aynı zamanda lenfatikleri) içerir. İç tabakanın hücreleri iseözellikle kemik yaralanmasında osteoblast haline dönüşerek yeni kemik dokuyu yapar veo bölgeyi onarırlar. Onarım sırasında osteoblastların epiteloid hücreler şeklinde tabakalaşmayaptığı gözlenir. Bu nedenle bu tabakaya osteojenik kat da denmektedir. Kemik onarımınakatılan bu hücreler normal koşullarda aktif değillerdir. Endosteum ; Bu tabaka kemik iliği kavitesini ve kompakt kemiğin kanal sistemlerini çevreleyen ince bir reti-küler bağ dokusudur ve periyosteumdan incedir. Bu tabakanın hem kemik doku hem de he-mopoetik (kan hücresi yapımı) hücreleri yapabilme özelliği vardır.Görüldüğü gibi kemiğin belirli boşluklarınıve yüzeyini kaplayan bu iki bağdokusu tabakasıçokönemli rolleri üstlenmiş olduğundan herhangi birisinin bozulması veya zedelenmesi durumun-da kemik için hayati önemi olan fonksiyonlar da olumsuz etkilenmektedir. Spongiyöz Kemik Dokusu (Trabeküllü Kemik); Kemiğin bu formu da kompakt kemiğe benzemekle beraber trabeküller lamelden yoksundur.Dolayısıyla histolojik preparasyonlarda enine kesitte sirküler lamel tertiplenmesi görülmez.Buna karşılık bol boşluklu veya trabeküller oluşan adeta petek gibi bir dokusu vardır. Bu boş-luklar kemik iliği ile doludur. Özellikle uzun kemiklerin epifizindeki spongiyöz doku basıncın ve-ya kuvvetin geldiği yönde düzenlenmiştir. Böylece yapıçok daha sağlam bir hale gelmektedir.

http://www.biyologlar.com/kompakt-kemik-dokusu-ve-yapisi

PROTOPLAZMA

Canlı ile cansız arasındaki farkları düşünerek, canlı organizmaların vücut maddesini, anorganik doğanın cansız olarak kabul edilen maddelerinden ayırdetmek isteyen araştırıcılar, canlı madde özelliklerinin protoplazma’da toplandığını, protoplazmanın genel olarak canlı madde diye kabul edilebileceğini öne sürmüşlerdir. Dünyamızda bağımsız canlı organizmalar olarak ayrı ayrı yaşayan tek hücreli varlıkların, yahut bitki, hayvan ve insan şeklindeki çok hücreli canlı organizmaların vücudunda yaşayan çeşitli hücrelerin hatta organizasyonu bir hücre kadar bile gelişmiş olmayan bakteri, virüs gibi daha aşağı ve daha küçük canlı organizmaların vücut maddesi hep protoplazma dan yapılmıştır. Genel olarak bir hücrede protoplazma, ışık mikroskobu ile görülebilen başlıca iki bölüme ayrılır. Biri nukleoplazma yahut karyoplazma ile dolu olan çekirdek veya nukleus, diğeri nukleus ile hücre zarı arasında kalan sitoplazma. Nukleus ile sitoplazmayı birbirinden ayıran bir çekirdek zan, sitoplazmayı hücre etrafındaki ortamdan ayırmak üzere sitoplazmanın dış yüzünde şekillenmiş ve bitki hücrelerinde sellüloz birikimi ile ayrıca kalınlaşmış bir hücre zarı da dikkati çeker. Bir hücrenin ışık mikroskobu ile görülebilen yapısı ve başlıca bölümleri. Çeşitli hücre türlerinde, hücre zarının aldığı farklı özellikler ve meydana getirdiği birçok organeller (titrek tüyler, kamçılar, hücre ağzı, hücre anüsü) ayrı ayrı incelenmeğe değer. Ayrıca sitoplazma içinde, hücre zarının uzantısı ve devamı halindeki birtakım ince borucuklar, elektron mikroskopla görülebilen ve önemi gittikçe daha iyi anlaşılan bir yapı teşkil ederler. Bir çeşit hücre içi damar sistemi gibi olan bu yapı, yer yer genişlemiş kesecikler ve daha ziyade ince borucuklar gösteren bu ağ sistemi, endoplazmik retikulum dur. Çekirdek zarı ile de bağlantılı olan endoplazmik retikulum, hücre çevresindeki ortam ile çekirdeğin içi arasında da ulaşıma elverişlidir. Şunu önemle belirtmek gerekir ki, bu intrasellüler damar sistemi sitoplazma içinde, sadece maddelerin bir yerden bir yere taşınması için kullanılan basit bir ulaştırma şebekesi değil, aynı zamanda, bu ulaşıma tamamıyla hakim olan bir kontrol sistemi gibi çalışmaktadır. Yani endoplazmik retikulum, hücre sitoplazması içinde bir yerden bir yere taşıdığı maddeleri aynı zamanda gerekli şekilde değiştiren ve işleyen, çeşitli kimyasal ve fizyolojik görevleri de mümkün kılacak oluşumlarla donanmıştır. Kısacası bir hücrede bile, kendisine göre pek karmaşık hayat olaylarını son derece kolay, emin ve sağlam bir şekilde yürütmeye elverişli, önemli yapılar dikkati çekmektedir. Bunların ültrastrüktürünü ve fonksiyonlarını yeri geldikçe ayrı ayrı ele alacağız. Bir hücrenin elektron mikroskobu ile görülebilen ince yapısı. Başlıca sitoplazmik organelleri, sitoplazmanın ufak bir bölümünde bir arada gösteren şema.

http://www.biyologlar.com/protoplazma

Biyoinformatik Ders Notları

Biyoinformatik Nedir? * Bilgisayar olmadan işleyip veri toplayamayacağımız işlemlerde kullanmak amacı ile ortaya çıkmıştır. ilk insan genom projesi ile başlamıştır. Biyoinformatik, biyolojik sorulara cevap verebilmek amacı ile bilgisayarların bilgisayar yazılımlarının ve biyolojik verilerin birleşmesinden oluşan bir daldır. örneğin 3 milyar nükleotid vardır insan genomunda 3 milyar nükleotid de el ile yazılamayacağından dolayı biyoinformatiğe ihtiyaç duyulmuştur. * Fakat bilgisayarın hızla gelişmesiyle sadece biyoinformatiğin konuları değil her türlü bilgi bilgisayara işlenir oldu. ** Biyoinformatikten faydalanan bilim dallarını şöyle sıralayabiliriz? • Moleküler Biyoloji • Genomik • Fonksiyonel genomik • Sistem Biyolojisi • Protein mühendisliği • Farmasötik araştırmalar • Tıp • Ekoloji/ Populasyon genetiği * Proteinler neden katlanıyor? Proteinlerin enzim substart ilişkisinde 3 boyutlu yapıyı gerçekleştirmek için diyebiliriz. ** Biyoinformatiğin işlevsel temelini oluşturan unsurlar nelerdir? •Bilginin depolanması •Bilgiye ulaşma •Bilgiyi analiz etme * Biyoinformatikte bilgiye veritabanları vasıtasıyla ulaşıyoruz en çok kullanılan ve bizim şimdiye kadar gördüğümüz veri tabanları NCBI: Genel bir veri tabanı Pubmed : Tıbbi biyolojik bilimler OMIM: Genetik temeli oluşturan haritalama ve genetik bilgi örneğin sigara duyarlılığı 5p15,33 yani okunuşu: 5. kromozomun kısa kolunun 15. bandının 33. alt bandı 23q 12,23 okunuşu 23. kromozomun uzun kolunun 12. bandının 23. alt bandı... Taxonamy: Tüm sistematiği her türlü ayrıntısına göre inceler. ** Veri tabanı programlarının bilgi kavramı için önemli sayılan özellikleri nelerdir. 1.Gelişen erişim olanaklarının elvermesi ile bilgi bölünmeden ortaklaşa kullanılabilmektedir. 2. Etkileşimli ortamlarda oluştuğu anda bilgisayara aktarılan bilgi sürekli olarak kendiliğinden artmaktadır. 3. Büyük boyutlardaki bilgi içerisinden gerekli olana erişim gibi oldukça önemli bir problemi ortadan kaldırmaktadır. 4. Veriyi işlemek, yeni bilgi oluşturmak, ondan yararlanabilmek veritabanları ile daha kolay hale gelmektedir. 5. Bilginin güncellenmesi, her her zaman en son durumu göstermesi veri tabanlarının önemli bir özelliğidir. ** Veri tabanının sorunları nelerdir? Vektoriyeldizilerde kirlilik (Yanlış ya da gereksiz veri girişi) Kalabalık (bir gene ait dizi parçasının biden fazla kez girilmesi) Aynı gene ait birden fazla EST (Expressedsequencetag) Bu problemlerin ortadan kalırılmasındagenom projelerinin ileri aşamalarını oluşturan UNIGENE, VecScreengibi projelerden faydalanılacaktır. kromozom nedir = DNA nı histon proteinleri etrafında sarılmasıyla, yoğunlaşarak oluşturduğu, canlılarda kalıtımı sağlayan genetik birim. gen nedir = anlamlı ve foksiyonel proteinler oluşturan DNA dizilerine denir. genom = Bir organizmadaki DNA'ların tümünü tanımlar. proteom = Bir organizmadaki proteinleri tümünü tanımlar. veritabanı nedir = Toplanan bilgileri işleyebilen, istenen sonuçları kolaylıkla hazırlayabilen bilgisayar programıdır. genomik = Genom ile ilgilenen bilim dalı proteomik nedir = Proteom ile ilgilenen bilim dalı ** Bilimsel makale nedir ? nasıl basılır ? Yapılan makalenin uluslar arası A- B- C sınıfına göre bu dergilerde yayınlanması gerekmektedir. Yayınlanmadan önceki aşamalarda makale yazılır dergiye gönderilir --- Dergide önce editör kontrolünden geçer-- eğer geçerse editör hakem heyetine gönderir-- hakem heyetinden geçerse geçer veya düzeltilip geçer veya geçmez daha sonra uygun bi sayısında full text olarak basılır. DNA mikroarreyleri, nükleik asitlerin hibridizasyon özelliklerinden faydalanarak farklı tipte doku ya da hücrelerde genom boyutunda DNA ve ya RNA moleküllerinin varlığı ve miktarını belirlemek için kullanılan bir teknolojidir. her gen 16-20 oligoniklootit ile ifade edilir Tam eş (PM) 25 er oligonüklootit ile ifade elilir. Hatalı eş (MM) oligo: Tam orta noktada yanlış baz taşıyan oligonüklootid. Oligo çifti: PM-MM çiftleri. Her gen için 16-20 oligo çifti bulunur. MM oligo dizaynı ile non-spesifik bağlanma miktarının ve arka plan gürültünün ölçülmesi amaçlanmıştır. DNA microarraylerin üretiminde genelde 3 tip teknoloji kullanılır. - Fotolitografi - Mekanik Mikro dağılım - Ink jets Temel Kullanım Alanları - Transkript miktarının tespit edilmesi (gen ekspresyon seviyesi analizi) - Genotiplendirme (SNP çipleri) - DNA kopya sayısının belirlenmesi - mRNA bozunum hızının ölçülmesi - Protein bağlanma bölgelerinin tanımlanması - Gen ürünlerinin hücre içi lokalizasyonunun tespit edilmesi Transkiriptom: bir yada bir grup hücre tarafından üretilen tüm mRNA moleküllerini ya da transkript varlığını ifade eden bir terimdir. her hangi bir organizmanın tüm transkript durumunu ifade etmek için kullanılabileceği gibi, belli bir hücre tipinde belli bir transkript içinde kullanılabilir. mRNA daki transkript seviyesi - Bulunduğu gelişim evresi - Bulunduğu hücre döngüsü - Hastalık ve sağlık durumlarının genetik seviyedeki etkileri - Tedaviye ve çevresel etkenlere karşı verilen biyolojik cevap. Bicroarrey teknolojisinin Transkriptom bilgileri ile - Kanser araştırmalarında - İmminolojik araştırmalarda - Kompleks metobolik araştırmalarda Kullanılır. **mRNA dan karşılığını alarak DNA nın kodunu çıkartıp oluşturulan DNA ya tanımlayıcı yani cDNA denir. ve mikroarray teknolojisinde kullanılır. PCR ile çoğaltılmış DNA fragmanları farklı metotlar kullanılarak çip yüzeyi üzerine sabitlenerek yapıştırılır. ** Microarrayda işaretleme yapan boyalar Cy3 kırmızı ışıma yapar Cy5 yeşil ışıma yapar. ** Çip/Slayt görüntüleme lazer ile nokta ışıma yapılarak gelen sinyal okunur ve konfokal mikroskop ile görüntülenir. ** Spotlardaki ışımanın şiddetine göre eğer spot yeşil ise yeşil ile işaretlenmiş olan gen diğerine göre fazla eksprese ediliyor demektir. eğer spot kırmızı ise kırmızı ile işaretlenmiş olan gen diğerine göre fazla eksprese ediliyor demektir. eğer spot sarı ise söz konusu gen yada transkript ediliyor anlamına gelir. ** Mikroarrey biyoinformatiği Teknoloji > Bilgisayar gücü > algoritma > Analiz araçları Microarray avantajları: - Aynı anda binlerce genin eksprepyonu hakkında bilgi verir. - Binlerce nokta kullanılarak tüm genom taraması ile detaylı bir genotiplendirme imkanı sunar. - Amaca yönelik olarak farklı dizayn edilebilir. - Laboratuar aşamaları kolay ve hızlıdır. - Teknolojisi ile gelişimini sağladığı biyoinformatik analiz yöntemlerini kullanarak oldukça fazla miktardaki verileri hızlı ve farklı şekillerde analiz edilir. Mikroarrey Önemli Noktaları: - Probun seçilmesi ve hedefin hazırlanması - Spotlamanın düzgün yapılması - Yüksek kalite ve saflıkta RNA izolasyonu - Kaliteli ve sabit işaretleme verimliliği - Housekeeping genler ile normalizasyona gidilmesi - Yeteri kadar tekrar kullanılması ** in slico: bilgisayar ortamlarındaki yapılan araştırma yöntemleri demektir. ** Hastalıklar poligeniktir. ** Moleküler tıp açısından 4 ana parametre bizi olduğmuz şey yapmaktadır bunlar: • DNA düzeyindeki ana genetik dizimiz • Gen ekspresyonu üzerindeki çevresel etkiler • Gen ekspresyonunu etkileyebilen olasılık fonksiyonları • Bireysel hücrelerin genomunu değiştirebilen viral enfeksiyonlar Biyoinformatik ve Dizi Karşılaştırmaları (BLAST) ** Dizilerin karşılaştırılması bize : Yeni geninizi daha iyi anlamak için benzer genleri başka türlerde lokalize etme konusunda fayda sağlar. ** 6. slayt 4 sayfadan dizi sorusu çıkabilir arkadaşlar?? ** BLAST belirli bir diziyi veritabanandaki diğer diziler ile karşılaştırmak üzere hazırlanmış bir algoritmik veritabanıdır. ** BLAST ile bir uygulama yaptığımızda - Hangi bakteri türünde amino asit dizisini bildiğim proteine benzer bir protein üretiliyor olabilir. - Dizinin elde ettiğim DNA nereden geliyor? - Yapısını yeni belirlediğim proteine benzer proteinleri kodlayan başka genler var mı? ** Benzerliği Belirlemede kullanılan Algoritmalar: - Needleman- Wunsch: Global hizalama algoritmasıdır. -Smith Waterman: Needleman a göre daha lokaldir. Maksimum sayıda eşleşme aranır. -BLAST: bu yöntem ise dizi veritabanından benzer olup aynı zamanda anlamlı olanları bulur. ** En yaygın bulunan 5 BLAST programı vardır? - BLASTN: nüklotidler içindir. - BLASTSP, - BLASTX, - TBLASTN, - TBLASTX: protein içindir. BLAST Analizinin Aşamaları: • Temel olarak üç aşama vardır: ekim, uzatma, ve değerlendirme. • Ekim– Eşleşmeye nerden başlanacağının belirlenmesi. • Uzatma– Ekim noktasından itibaren eşleşmenin uzatılarak ilerlemesi. • Değerlendirme– Hangi eşleşmelerin istatistiksel olarak anlamlı olduğunun belirlenmesi.

http://www.biyologlar.com/biyoinformatik-ders-notlari

 
3WTURK CMS v6.03WTURK CMS v6.0