Biyolojiye gercekci yaklasimin tek adresi.

Arama Sonuçları..

Toplam 1935 kayıt bulundu.

Dünyanın Oluşumu Ve Yapısı

Yer'in oluşumu sorunu,yüzyıllar boyunca insanı düşündüren ve düşündürmeye devam etmekte olan,önemli bir bilimsel sorundur.Gerçi Yer'in oluşumu konusunda,bugün geçmişe oranla ,daha çok şey bilmekteyiz.Ancak yine de,problemle ilgili görüşler,hipotez düzeyindedir. Bunların delilleri güçlü olmakla birlikte,kesin birtakım sonuçlara ulaşıldığı ileri sürülemez.Yer’in yaşının 4,5 ile 5 milyar yıl dolayında olduğu sanılmaktadır.Bunun 10 milyar yılı bulduğunu ileri süren kaynaklara da rastlanır. Yer’in nasıl oluştuğu sorusunu cevaplamayı amaçlayan teoriler ve bunların eksikliklerini daha iyi anlayabilmek için Güneş Sistemi’nin nasıl oluştuğu sorusuna kısaca değinmek gerekir.Güneş sistemi bu sistemden çok daha büyük bir sistemdir.Fakat güneş sistemini de içine alan daha büyük bir dev sistem vardır.Bu sistemde pek çok sisteme ayıılmıştır.Bu sistemlerin herbirine Galaksi denir.Yer'in de içinde yer aldığı insalığın Galaksi’sine (Yun.süt demektir.),Türkçe bir terim ola Samanyolu denir.Batı kaynaklarda Samanyolu,Sütlü yol diye geçer.(Yani bu anlama gelir.) Samanyolu’nda bazı kaynaklara göre 100 milyar,bazı kaynaklara görede 200 milyar gök cismi vardır.Kuşkusuz bunlardan biri de şimdiki bilgilerimize göre insan barındıran tek gök cismi olan Dünya’mızdır.Yer Samanyolu’nun merkezi kabul edilen Güneş’ten149,6 milyon km. uzaktır. Çapı hemen hemen 300 milyon km yi bulan yörünge adı verilen bir düzlem üzerinde dolanır.Bu düzleme,eliptik düzlem (tutunma düzlemi) denir.Bunun üzerindeki dolanımını,bir yılda 365 gün 6 saatte tamamlar. Yerin oluşumu ile Samanyolu’nun oluşumu,aynı esaslara ve büyük bir ihitimalle de aynı zaman dilimine rastlanmaktadır.Bu konudaki ilk teori ünlü Franız gök bilimci Laplace (Laplaş;1749-1827) tarafından 1796 yılında ileri sürülmüştür.Teori’i ilme,Nebula kramı diye geçmiştir. Laplace’ın varsayımına göre,Güneş ve gezegenler ile Samanyolun’dakidiğer gök cisimleri, oluşum tarihinin (4.7 ile 5 milyar yıl) ilk evresinde,kütle çekimi etkisi altında sıkışarak dönmeye başlayan,bir toz kümesinin birleşmesi sonunucu oluşmıştur.İleri sürülen bu teoriye Birleşme hipotezi adı verilir.Teorinin kabülüne göre,nebula sıkıştıkça,halkalar teşkil etmeye başlamıştır.Oluşan halkaların giderek yoğuşması sonucu,gezegenler oluşmaya başlamıştır.Dolayısıyla iç gezegenler(Yer ile Güneş arasındakiler) önce ,dış gezegenler ise ,daha sonra oluşmuştur. Kısaca söylersek,Laplace’ın görüşüne göre Samanyolu ,milyarlarca yıl önce ,bir gaz ve toz kümesi idi.Ekseni çevresinde bir bulutsu,kütle çekimi etkisi altında çevresine gaz ve toz saçabilir. Esas kütleden uzaklaşan ve yine etkisi altında kalarak dönmeye,yani dolanıma devam eden kümeler zamanla yoğuşabilir.Gezegenler,bu esasa göre oluşmuştur. Bulutsu, ya da birleşme teorisi;uzun yıllar geçerliliğini korumuştur.Bundan sonra,gel-git kuramları diye ilme geçen,Laplace teorisini redetmeyen,fakat matamatiksel yanlışlıkların bulunduğunu doğrulayan bir dizi teori ortaya atılmıştır. Gel-git teorilerinin en güveniliri,ünlü İngiliz fizikçi ve gök bilimcisi James Jeans tarafından 1901'de ileri sürülenidir. Gerçi,matamatiksel olarak ispatı yapılmamıştır.Ancak yine de akla en yakındır.Ona göre gezegenler ve Yer Güneş'in çekim bölgesine girerek geçen bir gök cisminin,yan, yıldızın,çekim gücü etkisi ile,Güneş ten kopardığı puro şekilli maddelerden oluşmuştur. Gezegenler ve Güneş sistemi Galaksisindeki diğer gök cisimlerinin Güneşten koptuğu yani koparıldığı görüşü aslında söz konusu gel-git varsayımlarına dayanır.Ancak hem bu görüş de kanıtlanmış değildir,hem de,buna karşı savunulan,bir patlama-dağılma teorisi vardır. Güneş’in manyetik çekim gücü,diğer Gökada cisimlerine göre,çok yüksektir.İlk evrede oluşmuş dev bir Güneş’in nükleer enerji üretme evresinden sonra patlaması sonucu,farklı büyüklüklerdeki kütleler onun çekim alanına dağılıp,belli yörüngeler üzerinde dönmeye başlayabilirler. Bütün modern teoriler,bütün gezegenlerin,gaz ve ince toz bulutundan oluştuğunu Güneş’in,ilk evrede bu tür bir madde topluluğu olduğunu kabul ederler. Ancak şunu iyi biliyoruz ki,evrenin sırrı,henüz çok bilinmeyenli bir denklem olma özelliğni korumaktadır.Güneş ve gezegenlerin aslı kızgın gaz ve toz kümesi de olsa,bilim ve teknik esasta var olup da bilinmeyenleri keşfetme çabasındadır.Örneğin nebulaların maddeleri nasıl oluşmuştur;ya da uzay nerede başlar nerede biter;daha sonra ne başlar ve o da nerede biter gibi sonsuz denilen soruların cevabı henüz verilmemiştir.Ama bu güçlükler,müspet ilmi reddetmeyi gerektirmez.Çünkü ilim,sabırla düşünme-araştırma ve maraktan doğar;gelişir ve olgunlaşır.Peşin yargılar ve mistik düşüncelerin,objektif ilim kuralları arasında yer yoktur. Güneş sistemi elemanlarından biri olan Dünya,sahip olduğu başlıca üç doğal küreden oluşur.Bunlar ;katı yer kabuğu veya taşküre ,yaklaşık %71'lik payı sularla kaplı bulunan suküre,800-900 km hatta dah çok seyrelmiş şekilde,8000 km yüksekliğe kadar devam eden,havaküredir.Bu doğal kürelerin hayat veren şartlar sunması,bitkiler-hayvanlar ve insanların,türemesi ve yaşamasını sağlamıştır.Coğrafi yeryüzü terimi ile tanımladığımız bu üç doğal kürenin kesişmesi,madde ve enerji değişimi sürecinin oluşmasına ve bu doğal süreç de,hayat imkanlarının doğmasına yol açmıştır. Yer ,dıştan içe-yüzeyden merkezine doğru,başlıca üç farklı bölümden oluşur. 1-)Kabuk Bölgesi 2-)Manto Bölgesi a)Üst Manto b)Alt Manto 3-)Çekirdek Bölgesi a)Dış Çekirdek b)İç Çekirdek Bunlardan Kabuk bölgesi,yaklaşık 30 ile 40 km lik ortalama bir kalınlık gösterir.Bu değerler,yüksek sıra dağların derinliklerinde,70-75 km ye dek ulaşır. Okyanus kabuklarında ise,yaklaşık 5 ile 10 km ye iner.Yapısının,daha çok granit ve bazaltik olduğu kabul edilmektedir. Sismik hareketlerin odak noktaları,genel olarak bu bölge içindedir.Metalik madenler daha çok masif bir yapı gösteren granitik ve bazaltik bölgelerede doğal gaz ile hampetrol ve kömürler ise,bu kabuk içindeki tortul bölgelerinde rezerve olmuştur. Kabuk bölümün altında,deriniği 2900 km dolayında kabul edilen Manto yer alır.Yaklaşık 800-900 km lik dış bölüme dış manto,2000 km ye varan derinliğe kadarki bölüme ise,alt manto denilir.Radyometrik dalgalara uyarı vermesi nedeni ile bu bölümün de,katı yapıda olduğu kesindir. Teorik olarak,mantodan sonra,Yer'in çekirdeği diye adlandırılan bölüm gelir.Artık bu bölge,akışkan-sıvımsı bir maddeden oluşur.Çünkü,elektrmanyetik dalgalara uyarı vermez.Bu bölge de,dış manto(kalınlığı 5000 km ye uzanır.)ve iç manto diye ikiye ayrılır.Böylece,üzerinde dolaştığımız katı bölgeden Dünya’nın merkezine dek,ortalama 6370 km lik bir derinlik bulunduğu kabul edilmektedir. Yeryüzü DSG KABUK ÜST MANTO ALT MANTO ÇEKİRDEK Şekil:Yer’in iç yapısının kesiti Tablo:Yer’in iç yapı bölgeleri ve bileşimleri İç yapı bölgeleri Derinlikleri Bileşimleri KABUK 30-40(km) SİAL MANTO 35-2900 SİMA-MAGMA ÇEKİRDEK 2900-6370 NİFE Yer’in iç yapı bölgelerini oluşturan maddelerin,oran yüksekliğine göre de adlandırılmıştır. Nitekim kabuk bölgesinin hakim maddeleri,daha çok silisyum ve alüminyumdur.Bu madde adlarının ilk hecelerini kullanan kimi gök bilimci jeofizikçi ve coğrafyacılar,yerin kabuk bölgesini Sial diye adlandırmışlardır. Yer’in manto bölgesinin bileşiminde,en yüksek paylar,silisyum ve magnezyum elementlerine aittir.Bu nedenle de,Sima diye adlandırılmıştır. Yanardağ püskürmeleri,bu bölümden kaynaklanır.Dolayısıyla magma diye adlandırılır. Aynı şekilde, çok daha ağır madenlerden oluşan çekirdek bölgesinin hakim maddeleri,nikel ve demir madenleridir.Bundan dolayı,Nife şeklinde adlandırılmıştır. Derinliklere inildikçe,belli basamaklarda sıcaklık değerleri çok belirgin bir şekilde artar.Bu sıcaklığa,jeotermi denir.Jeotermide,her 33 m derinliğe inildikçe,yaklaşık 1 C artış olur.Bu artış çizgilerine,jeotermi basamağı denir. Jeotermi basamağı,genel olarak her 33 m de 1 C değişmekle birlikte,bu değişim,Yer’in bazı iç bölgelerinde 145 m bulur. Bu veriler esas alındığında,örneğin 40 km derinlikte sıcaklık yaklaşık 1200 C ,60 km de 2000 C ve iç çekirdek’te,yaklaşık 200 000 C dolayında bulunmaktadır.Kuşkusuz,derinliklere doğru sıcaklığın artışı kesin olmakla birlikte,hesaplanan bu değerler,teorik sonuçlardır.Çünkü Yer’in iç yapısı konusunda,şimdilik kısmen iyi tanına bilen iç bölge,kabuk bölgesi’dir.Öte yandan Yer içi sıcaklığını ölçmek mümkün değildir.Bu nedenle de,şimdilik kaydıyla bu konuda en iyi bilinen husus,Yer’in derin noktalarında sıcaklık derecelerinin,çok yüksek oluşu gerçeğidir. Zaten,yanardağ püskürmeleri,gayzer,su-buhar ve kaplıca gibi sıcak sularda,bu açıkça doğrulamaktadır. Güneş sistemi ve bu arada Yer’in oluşumu milyarlarca yıllık bir zaman sürecinde gerçekleşmiştir.Bu sürece,kısaca Güneş Sistemi ve Yer’in yaşı denir.Ancak biz burada sorunu,Yer’in yaşı terimi ile ifade edeceğiz. Yer yuvarlağının oluşumu ile uğraşan,bu sorunu aydınlatmaya çalışan ilimler,jeoloji yani yerbilimi alanları,jeofizik,jeodezi ve kısmen de coğrafya gibi ilimlerdir.Jeoloji,yer yuvarlağı üzerinde ve doğal olayları inceleyen bir bilimdir.Bu bilimin,özellikle Palecoğrafya ve Paleontoloji bilimleri yerin yapısını incelerler. Bunlardan Paleocoğrafya:yani jeoloji zamanlar ve devrelerinin coğrafya ilmi,Yer tarihi boyunca her bir jeoloji devrinde oluşmuş kıtalar,okyanuslar,dağ sistemleri ve jeosenklinaller gibi coğrafi ünitelerin dağılımlarını inceleyen bir bilim dalıdır.Nitekim Paleocoğrafi araştırmaların sonuçlarına göre Arkeen veya Arkeozik devrelerde günümüze dek,Yer’in Paleocoğrafyası’nda çok büyük değişiklikler olmuştur. Yer’in tarihi geçmişi ve gelişimini aydınlatan bir diğer bilim alanı da Paleontoloji’dir. Bu dalın ana uğraşı konusu,fosil kalıntılarıdır.Yer kabuğunda doğal süreçlerle oluşmuş fiziksel-kimyasal değişikliklere uğradığı halde,katmanlar arasında korunarak günümüze ulaşmış zoolojik vefitolojik her türlü kalıntılara fosil denir.Terim,jeoloji ilmi terimi olduğu kadar:Paleobiyoloji,Paleobotanik, Jeomorfoloji,paleontoloji ve paleocoğrafya terimidir de.Yine terimle ilgili olarak,fiziksel-kimyasal değişmeler geçirip taşlaşan hayvansal ve bitkisel kalıntıların bu nihayi şekline,fosilleşme denir. Fosiller,çok değişik özelliklerinin laboratuvar metodlarla incelenmesi sonucu,ait oldukları jeolojik zaman ve devirlerinin değişik coğrafi özellikleri hakkında,akıl yürütme metodu ile de olsa,bazı bilimsel sonuçlara varıla bilmektedir. Yeryuvarlağının yapı,bileşim ve gelişimini inceleyen bilim demek olan jeofizik de,Yer’in yapısı ve yaşının belirlenmesine yardımcı olan bir ilimdir. Örneğin,geliştirilen jeofizik metodlar ile,yeraltı yapı özelliklerinin incelenmesi giderek kolaylaşmoştır.Özellikle Sial bölümü hakkında,artık bu sayede geçmişe göre çok şey bilinmektedir.Bununla ilgili bir metod,radyoaktivite teorisi olarak ilme geçmiştir. Hatırlanacağı üzere radyasyon,sıcaklık veya ışın yaymak demektir.Bu fiziksel olaya kısaca ışınımda denir.Radyoaktif ise,nükleer sıcaklık veya ışınım etkinliği demektir.Terim,kısaca radyoaktivite diye de ifade edilir. Radyasyon’dan kaynaklanan yani nükleer ışınım yayma derecesinin ölçmeye yarayan jeofiziksel alete radyometre denir.A.B.D'li jeofizikçi J.Jolly, Rodyoaktiviteli,kayaçların parçalanma ayrışma hareketlerinin,yeryuvarı içinde ısınmaya yol açtığı;bunun deriniklerindeki kayaçlarda daha yüksek ısınmalar ve ergimelerle sonuçlandığını,Magma veya Sima’nın esas oluşma nedenin bu jeofiziksel değişime dayandığını;yeryuvarı kabuğunun yani kabuk bölgesinin de,aslında bu olayların eseri olduğunu ileri sürmüştür. Bu görüşlere,radyoaktivite teorisi denir.Teori kanıtlanmış olmazsada zamanla yapılan bir tür jeofizik ilmi çalışmaları ve radyometrenin kullanılması ile kayaçların yaşlarının belirlenmesi metodlarına,radyometrik metodlar denir.Bu tür metodlarla yapılan zaman belirlenmesi sonuçlarına göre Yer’in yaşı sorunu konusunda daha çok şey bilmekteyiz. Çok teknik bir dizi problem teşkil etmesine rağmen kayaçların yaşının belirlenmesi temelde şu esasa dayanır: En yüksek radyment,uranyum metalidir.Yer kabuğunun bileşiminde bütün kayaçlardai,onlardan oluşmuş topraklarla ve denizlerin sularında bulunur.Ekonomik olarak işletilmeyişini rezerv ve tenörler belirler. Uranyum atomlarını oluşturan partiküller,binlerce-hatta milyonlarca yıllık bir zaman sürecinde çözünürler ve sekiz elementin oluşmasını sağlar: Uranitit,peblend,carnotit,otunit…gibi.Buılardan en sonuncusu,kurşun bileşiğidir.Bu oluşum ve değişim çok,uzun bir zaman sürecinde gerçekleşir.Örneğin,1 g uranyum’un radyoaktivitesini yitirerek 1 g kurşun’a dönüşmesi için geçmesi gereken zaman sürecinin,7.6 milyar yıl olacağı hesaplanmaktadır. Söz konusu ettiğimiz bu oluşum süresinden yararlana uranyum ve kurşun elementleri bulunan kayaçların yaşlarını gerçeğe yakın bir şekilde hesaplaya bilmektedirler.Gerçekten de bu yapıdaki kayaçların incelenmesi bileşimlerindeki uanyum’un,kaç yılda kurşun2a dönüştüğü ve dolayısıyla da, Yaşlarının hesaplanmasını sağlamıştır.Bu yolda yaşları hesaplanmış kayaçların,3.5 ile 5 milyar yılı bulduğu anlaşımıştır. Bu metodla yapılan hesaplamalar,Yer’in kabuk bölgesi’nin ilk şekillenmeye başlamasının en az 4.5 - 5 milyar yıl eskiye dek uzandığını göstermiştir.Bunun 3.5-4.6 milyar yıl olabileceğini hesaplamış bilim adamlarınada rastlanır.

http://www.biyologlar.com/dunyanin-olusumu-ve-yapisi

Parazitolojiye Giriş

Öğrencilerin Öğrenmesi Beklenilen Noktalar 1.Parazitler anlatılırken, parazitizmin özünü anlamak. 2.Parazitolojide kullanılan terimler (terminoloji) ile aşina olmak 3.Taxanomic şemaları kullanarak parazitleri sınıflandırmak 4.Hedeflenen paraziti bilimsel (genus-cins, species- tür) ve halk arasındaki adı ile tanımak, patalojisini, ekonomik etkisini ve kullanılan ilaçlara cevabını öğrenmek. 5.Her parazit için asıl konakçıyı yada konakçı gurubunu bilmek. Hedeflenen parazitin hangi konakçı yada konakçıları etkilediğini öğrenmek. 6.Aksidental (kaza ile oluşan parazitlik) yada rezervuar (kaynak) parazitliğin anlamlarını ve bunların önemini öğrenmek. 7.Her parazitin, tür veya aile olarak asıl konakçı ve hedef konakçılarını öğrenmek 8.Parazitlerin konakçı spektrumunu (konak olarak seçtikleri hayvan türlerinin neler olduğunu) öğrenmek 9.Aksidental (kaza sonu) konakçı ve rezervuar (kaynak) konakçı anlamlarını ve bunların etkilerinin neler olduğunu öğrenmek. 10.Parazit yayılmasındaki rotaları (bulaşma yolları) anlamak ve tanımlayabilmek. oDirek bulaşma, başka bir konakçı kullanmadan oluşan yayılma (bulaşma) oBiolojik (gelişme olan developmental) arakonakçı (intermediate hosts), yada vektörler kullanarak, biolojik yada mekanik oParatenic konakçı (gelişme olmayan - nondevelopmental) yada taşımacı konakçı (transport hosts). 11.Parazit türlerinin dağılımını (ülke ve dünyada) anlamak: oParazitler cosmopolitan (birden fazla kaynaktan köken alan) yada universal (tüm dünyaya yayılan) oCoğrafik yapı yada vektör dağılımına bağlı olarak belli bölgelerle sınırlanmış oMevsimsel değişilerden etkilenme durumları 12.Görülen paraziti tanımak ve teşhis etmek.: oTeşhis için uygun morfolojik karakterlerini kullanarak oParazitin hayat siklusundaki evreleri, yumurtası, kisti , larvası gibi tanıyarak. oLaboratuvar tekniklerini kullanarak örnekte paraziti bularak oParazitin yerleştiği konakçıyı, konakçının hangi organ veya doku kısmına yerleştiğini bilerek tahmini teşhis yapabilmek. 13.Parazitlerin hedef konakçılardaki asıl enfeksiyon bölgelerini, bu bölgelere hangi göç yolları ile ulaştıklarını öğrenip açıklayabilmek. 14.Klinikpatoloji semptomlarına (belirtilere) gözlemleyerek patofizyolojik ve immunolojik cevapları açıklayabilmek. Bu sayede konakçının asıl konakçımı yoksa aksidental konakçı mı olduğunu açıklamak. 15.Anti paraziter ilaçları bilmek: oKimyasal (chemical) sınıfı oEtki genişliği (spectrum) hangi parazitleri etkilediği oHedef parazitin hangisi olduğu oİlacın paraziti nasıl (hangi yolla) etkilediği oİlacın etkili, yeterli dozları oHangi yolla kullanılması gerektiği (IM, SC, IV, oral, vb ) oGüvenliği (Terapötik endeksi) oİlacın kullanılmaması gereken (kontraendike- contraindication) durumlar oTavsiye edilen özel uygulama proğramı 16.Konakçı hayvanların ve çevrelerinin parazitlerden nasıl arındırılacağı konusunda tavsiye edilen kontrol ölçülerini detayları ile bilmek. 17.Paraziter zoonozların halk sağlığındaki önemini anlamak.  

http://www.biyologlar.com/parazitolojiye-giris

Biyolojik Silahlar ve Biyosensörler

Bakterilerin bir kısmı görünmeyen dostlarımızdır; bazıları sindirim sistemimize yardım ederken, bazıları vücudumuzdaki zehirleri yok ederler. Kimi bakteriler ise bizleri hasta eder. Vücudumuzun içinde veya dışında yaşayan bu ilginç mahlukçuklar hayatımızın ayrılmaz parçalarıdır her hâlükârda. Ancak bir de ‘katil’ bakteriler var ki, zalim insanların ellerine geçtiklerinde biyolojik silah olarak kullanılabilirler. Biyolojik silahlar; insanları, hayvanları veya tarımsal ürünleri öldürücü veya ağır derecede hasta edici olan mikroorganizmalar ile, bunlardan üretilen zehirli maddelerdir. Hatta sadece hastalık ve ölüme yol açan mikropların kendileri değil; bunların taşıyıcıları da meselâ böcekler bu sınıfa dahildir. Biyolojik silahlar kitle imha silahları içindeki en problemli ve tehlikeli silahlardır. Nükleer veya kimyasal silahlardan çok daha fazla insanı hedef alırlar. Diğer silahlara göre maliyetlerinin düşük olması, rutin güvenlik sistemleriyle tesbit edilemiyor olmaları gibi değişik nedenlerle insanlık için ciddi tehdit unsurudurlar. Kimyasal silahların aksine hemen tesir etmezler. Yaklaşık 24-48 saatlik bir kerahet devresinden sonra tesirleri ciddi olarak görünür ve o zamana kadar da eğer mikrop kullanıldı ise çoğalarak etrafa yayılmaya devam ederler. Biyolojik silahlar kimyasal olanlara göre çok daha fazla öldürücüdür. Meselâ 10 gr. şarbon sporu, 1 ton sinir gazı Sarin’in öldürebileceği kadar insan öldürebilir. Biyolojik silah tehlikesine karşı yapılması gerekenler ise şöyle özetlenebilir: • Biyosensörler ile tehlikenin tesbiti ve tanımlanması. • Mikrobiyal zehirlere karşı antidotların hazırlanması. • Antibiyotik ve aşı geliştirilmesi. Bakteriler, virüsler ve toksinler biyolojik silah olarak kullanılabilirler ve hepsinin birbirinden farklı özellikleri vardır. Son yıllarda biyoteknolojik metodların hızla ilerlemesi bu bilgi ve teknolojilerin kötü amaçlara âlet edilme tehlikesini de beraberinde getirdi. Genetik mühendisliği çalışmalarındaki ilerlemeye paralel olarak biyolojik silahların etkisini artırıcı ve tesbit edilmelerini zorlaştırıcı gelişmeler ise, bu silahlara karşı yapılan savunmayı daha da güçleştirecektir. Genetik olarak dizayn edilmiş organizmalar, biyo-silah üretiminde kullanılabilir durumdalar ne yazık ki. Örneğin: • Mikroskobik toksin veya biyoregülator fabrikasına dönüştürülmüş mikroorganizmalar, • Antibiyotik, aşı gibi rutin kullanılan ilaçlara bağışıklık kazandırılmış organizmalar. • İmmunolojik profilleri değiştirilerek bilinen tesbit metodları ile tesbit edilemeyen organizmalar. • Antikor bazlı sensör sistemlerinin tesbitinden kaçabilecek organizmalar. Bilimi kötü ve vahşi amaçlarına alet etmeye çalışanlar biyolojik silahların etkisini artırıp tesbitini zorlaştırmaya çalışırken, bizlere de, biyolojik silahların zararlı tesirlerini gidermeye çalışmak ve onların üretiminde kullanılan maddelerin tesbitini kolaylaştıracak metodları bulmak düşüyor. Biyolojik silahlara karşı erken tesbit, uyarı ve tedavi metodlarının geliştirilmesi insanlık için bir zorunluluk haline gelmiş bulunuyor. Tehlikeli biyolojik maddelerin varlığının tesbitinde en önemli unsur biyosensörlerdir. Biyosensörler (biyo-alıcılar, biyolojik dedektörler) biyolojik materyallerin alıcılar ile tesbit edilip ölçülebilir sinyallere dönüştürüldüğü aletlerdir. Alıcılar tarafından tesbit edilen tanımanın sinyale dönüştürülmesinde kullanılan metodlara göre, bu biyosensörleri kabaca (1) optik sensörler ve (2) elektrokimyasal sensörler olarak iki gruba ayırabiliriz. Şu anda ticarî olarak piyasada olan kimyasal ve biyolojik analiz âletleri gözden geçirildiğinde, kimyasal dedektörlerin biyolojik olanlardan daha fazla gelişmiş oldukları görülecektir. Kimyasal dedektörler neredeyse saniyeler ve dakikalar içinde kimyasal maddeler hakkında bilgi verirlerken, biyolojik dedektörler için bu süre genellikle daha uzundur; çünkü daha kompleks ve yavaş çalışan mekanizmaları vardır. Problemlerden biri de, büyük ve ağır olmalarıdır. Bu sorunların çözülmesi gerekmektedir; çünkü artık, kimyasal silahların tesbitinde olduğu gibi, biyo-silahların tesbiti için de küçük boyuttaki robotlar ya da uçaklar kullanılmak istenmektedir. Son yıllarda optik sensörler biraz daha geliştirildi ve biyokimyacılar için çok önemli araçlar haline geldi. Sensörlerde kullanılan biyolojik materyalleri tanıma elementlerini genel olarak şöyle sıralayabiliriz: enzimler, mikroorganizmalar, bitkisel ve hayvansal dokular, antikorlar, reseptörler, nükleik asitler. Tesbit edilmesi gereken materyale ilgisi olan, bağlanabilecek olan alıcı element (veya elementler) biyosensör yüzeyine kimyasal metodlar ile sabitlenir, yani immobilize edilir. Daha sonra ortam içerisinde istenen molekül veya mikroorganizma olan çözelti ilave edildiğinde, alıcı ile bu biyolojik materyal birbirlerine bağlanırlar. Bu bağlanma ise kullanılan sensör cinsine göre elektrik veya optik metodlarla sinyale dönüştürülerek algılanır. Eğer ortamda istenen biyokimyasal yok ise, sinyal gönderilmez. Biyosensörlerin çalışma mekanizması biyolojik elementler arasındaki ilgiye dayanır. Meselâ, hücre içindeki pek çok hayatî faaliyette yer alan proteinler arasında anahtar-kilit ilişkisine benzer ilişkiler vardır. Hücre içindeki faaliyetler hep birbirine bağlanan veya bağlanamayan proteinlerin oluşturdukları biyokimyasal sinyaller ile devam eder. Meselâ, protein ailesinin üyelerinden olan antikorların vazifesi organizmaya giren yabancı molekülleri tesbit edip bunlara bağlanmaktır. Antikorlar vücudun savunma sisteminin en önemli elemanlarıdırlar. Aslında her birimiz mükemmel biyosensörler sahibi olarak yaratılmışız. Meselâ beş duyumuz—görme, işitme, dokunma, koklama, ve tat almamız—yine alıcılar tarafından hissedilen verilerin kimyasal ve elektriksel sinyallere dönüştürülüp, beynin değerlendirilmesine sunulmasıdır. Modern teknoloji biyosensörler ile bir ya da birkaç molekülü tanımaya, algılamaya çalışırken, sizlerin şu anda bir yandan gözleriniz dergiye bakıp her an sinyalleri beyne gönderiyor; diğer yandan kulağınız radyodan gelen hafif müziğin sinyallerini göndermekle meşgul; derginin sayfalarını hisseden parmaklarınız sinirlere uyarılar veriyorlar; burnunuz bardaktaki meyve çayını koklamak ve yine uyarıları beyne göndermekle meşgul; öteki yanda antikorlarınız yabancı madde avında ve buldukları anda gereken bilgileri beyne gönderip savunma mekanizmasını harekete geçirmeye çalışıyorlar. Ama bütün bunlar olurken siz “Ayy, şimdi benim beynim bu verilerin hangisini anlamaya yetişsin?” diye sızlanmak yerine, yazıda okuduklarınızı düşünmekle meşgulsünüz. Biyosensör çalışmalarında yaşanan zorluklar ve eksiklikler bize küçücük hücrelerden büyük organizmalara kadar canlıların muhteşem biyosensörler olarak yaratıldıklarını ve insanoğlunun teknoloji adına yaptığı herşeyin bu muhteşem mekanizmaları taklide çalışmaktan başka birşey olmadığını gösteriyor. Sadece biyo-silahların tesbitinde değil, aynı zamanda biyolojik mekanizmaların, proteinler arası ilişkilerin anlaşılmasında ve insan genom projesinin devamı olan proteomik çalışmalarında da biyosensörlerin büyük önemi vardır. İnsan genom projesi ve patojenik bakteri ve mikroorganizmaların genetik kodlarının ilaç geliştirme çabalari için belirlenmesi, bazı kötü niyetli insanların ilaç yerine zehir yapmasına da yardım etmektedir. Almanya, Fransa, Japonya, İngiltere, ABD, Rusya ve Irak’ın bu silahları üretmek için çalışma yaptıkları söylenmektedir. Birinci ve İkinci Dünya Savaşlarında biyo-silahlar kullanılmıştır. Hatta çok daha önceleri 1763’te İngilizler Kızılderililere çiçek hastalarının kullandıkları battaniyeleri vermiş ve bu hastalığa karşı bağışıklığı olmayan yerlilerin hasta olup ölmelerine sebep olmuşlardır. Görünen o ki, yıkma, yok etme ve zarar verme açısından insana kimse yetişemiyor. Eğer insan olma erdemleri ve Allah korkusu yok ise, insanoğlu en vahşi silahları bile kullanmaktan, insanları yok etmekten geri kalmayan, esfel-i sâfilîne lâyık varlıklara dönüşüyor. Bu tür insanların neden olabileceği biyolojik savaş/terör tehlikesine karşı uyanık olunması ve gereken erken uyarı, tesbit ve savunma sistemlerinin geliştirilmesine ülkemizde de çalışılması gerekmektedir.

http://www.biyologlar.com/biyolojik-silahlar-ve-biyosensorler

Aids

AİDS insan vücudunun immün sistemini yok eden ve bir dizi belirtilerle karakterize olan bır immün (bağışıklık) yetersizlik sendromudur. ""Normal olarak immün sistemi beyaz kan hücreleri ve vücuda mikroplar girdiğinde bunları etkisiz hale getirmek üzere oluşan antikorlar meydana getirir. Bu hücrelere T hücre lenfositleri adı verilir. Aids Belirtileri: Uzun süreli açıklanamayan yorgunluk. Lenf nodüllerinin açıklanamayan şişliği On günden daha uzun süren ateş Gece terlemesi Açıklanamayan kilo kaybı Derideki renk bozulumu ve iyileştirilemeyen mukoz membran iltihapları ilerleyen açıklanamayan öksürük ve boğaz ağrısı. Nefes darlığı ilerleyen üşüme Devamlı ishal. Ağızda mantar enfeksiyonu Kolay yaralanma ve açıklanamayan kanama Zihinde karışıklık ve sonunda koma. AIDS'Iİ kişilerde HIV-I denilen virüs tipi bu T hücrelerinin içine girer ve çoğalmaya başlar. Daha sonra da bu hücreleri öldürür. AİDS'ti kişilerde bt. imha immün sistemi zayıf bir hale getirir. Bu durumda ayrıca değişik enfeksiyonların ve tümörlerin ortaya çıkışı da kolaylaşır. HIV-I virüsüne ayn zamanda HTLV-III LAV ARV virüsleri de denilir Virüs değişik yollarla örneğin damardan kirli iğne-lerle yapılan iğneler cinsel ilişkiler veya anneder çocuğa olmak üzere vücuda girerler. Virüs T hücrelerinin içine girer ve çoğalır. Birkaç ay içinde vücut bu virüse karşı antikor üretir. Kan testleri bu yüzden pozitif bir sonuç verir. Semptomlar 1-2 haftada gelişir. Bunlar virüs vücuda girdikten birkaç ay sonra başlar. Bu sırada kanda antikor oluştuğu için ELİSA ve VVestern Blot gibi tahlillerle teşhis konulabilir. Semptomlar enfeksiyöz mononükleozu andırır ve lenf nodüllerinde şişme ağrılı boğaz ateş sıkıntı ve deri döküntüsü gibi durumları içerir. Semptomlar bir süre sonra azalabilir ve birkaç yıl hiç görülmeyebilir. Bu zaman zarfında vücuttaki virüs miktarı önceleri yavaş sonraları ise hızlı bir şekilde artar. Bu artışa paralel olarak T hücreleri azalır. Kişi bundan sonra AİDS'e sebep olan virüs enfeksiyonuna yakalanmış demektir. Fakat henüz AİDS tam meydana gelmez. Bununla birlikte kişi diğer insanlara bu virüsü bulaştırabilir. T hücreleri ortadan kalktığında immün sistem çöker ve vücutta çok kolay enfeksiyon ve tümörler meydana gelir. Lenf bezleri şişmesi düşük dereceli ateş gibi immün sistemin zayıflamasının işareti ola-rak bilinen semptomlar meydana geldiğinde hastalık AİDS Related Complex (ARC) adını alır. İmmün sistemin büyük çapta zayıflamasından sonra tüm belirtilerin tamamen belirmesi durumu ortaya çıkar ki bu da fırsatçı enfeksiyon durumunu içerir. (Fırsatçı enfeksiyon vücudun immün sistemi şiddetli bir şekilde bozulduğunda vücuda istila edebilen bakteri veya virüsler tarafından oluşturulur.) AİDS'in bütün etkileri virüs enfeksiyonunu takiben 5-10 yıl içinde gelişir. Ölüm ortalama 2-3 yıl içinde bu etkiler nedeniyle meydana gelebilir. Bu hastalık yeni tanımlanabilmiştir ve doğal yapısı konusundaki bilgilerimiz birkaç yıl içinde değişebilir. AİDS şu anda büyük bir salgındır. On yıl önce bu ülkede AİDS bilinmiyordu. Bugün halkın ilgi alanına giren büyük bir olaydır. Ocak 1981'den Ocak 1990'a kadar 140.00 Amerikalıya AİDS teşhisi konmuştur. Bu grubun yarısından fazlası semptomların ortaya çıkmasını takip eden 4 yıl içinde ölmüştür insanların bir çoğu da kanlarında AİDS virüsü taşımakta olup sonunda AİDS gelişecektir. Dünya Sağlık Organizasyonunun tahminlerine göre dünyadaki AlDS'li hasta sayısı 500.000 civarındadır. Diğer taraftan Amerika'da 1-1.5 milyon diğer ülkelerde 5-10 milyon AİDS virüsü taşıyan insan vardır. Muhtemelen bu insanların sayısı da gittikçe artmaktadır. AlDS'li hastalar ikiye ayrılır. Homoseksüel ve biseksüel erkekler ve iğne ile uyuşturucu kullanan erkekler ve kadınlar. Riskli olan diğerleri ise AlDS'liyle cinsel ilişkide bulunanlar AİDS virüsü taşıyan kadınların çocukları ve 1977-1985 Nisan'ı arasında çeşitli nedenlerle kan nakli yapılmış kişilerdir. Bu hastalığın kadından erkeğe erkekten kadına cinsel ilişkiyle geçebildiğini vurgulamak istiyoruz. Prezervatif kullanarak virüs geçişini azaltmak mümkün olabiliyorsa da tam korunma sağlanamaz.

http://www.biyologlar.com/aids

TÜRKİYE BİYOLOGLAR BİRLİĞİ KANUN TASARISI

BİYOLOG MESLEĞİ, GÖREV ALANLARI, BİYOLOGLARIN YETKİ VE SORUMLULUKLARI İLE BİYOLOG ODALARI VE TÜRKİYE BİYOLOGLAR BİRLİĞİ KANUN TASARISI Genel Gerekçe Türkiye Cumhuriyeti Anayasası'nın 135 inci maddesinin verdiği hak ve teşvikten yola çıkarak, Biyologların görev alanları, yetki ve sorumlulukları ile Türkiye Biyolog Odaları ve Biyologlar Birliği kanunlarının teklif edilmesi kararlaştırılmıştır. 1933 Üniversite reformu ile ilk defa İstanbul Üniversitesinde nebatat ve hayvanat kürsüsü olarak öğretime başlayan Biyoloji bölümleri ilk mezunlarını 1937de vermiştir. 68 yıldır kadrosu olan ama yetki ve sorumluluğu belli olmayan Biyologların yetki ve sorumluluklarının belirlenmesi için bu kanun tasarısı hazırlanmıştır. Biyoloji biliminin eğitimini alarak Biyolog unvanını kullanmaya hak kazanmış kişilerin; tüm bilimsel, hukuki ve çalışma alanlarındaki görev ve sorumluluklarını belirlemek, mesleki özlük haklarını korumak ve mesleki faaliyetlerini kolaylaştırmak, bu kanun teklifinin temel gerekçesini oluşturmaktadır. Biyoloji, canlı sistemlerin bilimidir. Biyologlar ise; canlılarla ilgili araştırma, (deney, gözlem, koleksiyon, istatistik, koruma, kontrol, inceleme, test, tanı ve değerlendirme) yapar. Canlıların gelişimi, evrimi, kalıtımı, fizyolojisi, ekolojisi, korunması, tanı ve sınıflandırılması, davranışlarını ve özelliklere etki eden faktörlerin neden ve sonuç ilişkilerini araştırır, tanımlar. Aynı zamanda Biyolog, Biyoloji yada Biyolojinin özelleşmiş alt dallarında laboratuar ve arazi çalışmaları yapar. Bu çalışmalarla ilgili yetki ve sorumlulukları taşır. Çalışmalarını yaparken çeşitli biyolojik, matematiksel, fiziksel ve kimyasal yöntemlerle, uygun araç ve gereçlerden yararlanır. Çalışma sonuçları çevre, sağlık, üretim, eğitim, teknoloji ve ekonomi gibi yaşamsal alanlarda uygulanır. Ülkemiz iklim koşulları, coğrafi konumu ve jeomorfolojik yapısı nedeniyle çok zengin ve kendisine özgü bir Biyolojik çeşitliliğe sahiptir. Avrupa'nın sahip olduğu tür sayısına yakın bir flora (bitkiler) ve fauna (hayvanlar) zenginliğine sahip ülkemizin bu biyolojik zenginliğinin korunması konularında dünya ülkeleri arasında hak ettiği yeri alması Biyologların bu tür çalışmalara etkin bir biçimde katılmasıyla mümkün olacaktır. Ülkemiz Biyolojik zenginliklerinin belirlenmesi, korunması Türkiye Büyük Millet Meclisi tarafından değerlendirilmiş 1996 yılında 96/8857 karar sayısı ile Milletlerarası Biyolojik Çeşitlilik sözleşmesi kabul edilerek Biyolojik çeşitlilik daha da önem kazanmıştır Biyolojik zenginliklerle, kalkınma arasında sıkı bir ilişki mevcuttur. Zira tüm ekonomik faaliyetler temelde doğal kaynaklara dayanmaktadır. Bu da biyolojik sistemlerin etkin bir biçimde araştırılması ve anlaşılmasına bağlıdır. Canlı doğal kaynaklarımızı akılcı bir biçimde değerlendirerek kendilerini yenileme, kapasitelerini yitirmeden gelecek kuşaklara aktarabilmek için Biyologlara ihtiyaç vardır ve her zaman olacaktır. Biyologlar,çevre, eğitim, tarım,orman,tıp, sağlık ve ekonomi gibi hayati konularda ülkemizde önemli sorumluluklar yüklenerek hizmet vermektedirler. Bu yüzyılın Biyoloji çağı olacağı göz önüne alınarak Biyologların görev, yetki ve sorumlulukları ile Biyolog Odaları ve Türkiye Biyologlar Birliği Kanun tasarısı hazırlanmıştır. Ulusal Programda Biyologların yeri; Ülkemizin hazırladığı AB'ye uyum için ulusal programda kısa ve orta vadede yer alan beşeri tıbbi ürünler ve gıdaların piyasa kontrolü başlığı altında yer alan uyum yasalarının hazırlanmasında ve uygulanmasında biyologların rolü kaçınılmaz olacaktır. Bilindiği gibi 560 sayılı KHK r0; Gıdaların Üretimi Tüketimi ve Denetlenmesine Dair Yönetmelikr1; te ülke mevzuatında yer almayan hususlarda Uluslar arası mevzuata uyumlu işlem yapılacağı belirtilmektedir. Bu mevzuatın içeriğini bilen ve yorumunu yapabilecek kabiliyetteki biyologların varlığı ülkemiz için bir avantajdır. AB için hazırlanan Ulusal Programda Beşeri Tıbbı Ürünler başlığı içerisinde yer alan biyolojik ürünlerin İyi Üretim Uygulamaları (GMP) na göre üretilmesi, etkili ve güvenli sunumu için yasal olarak görev ve sorumluluklarının belirlenmesi zorunlu olan biyologlarının katkısı büyük olacaktır. Ayrıca tıbbi cihazlar konusunda AB ülkelerinde eğitim almasını önerdiğimiz teknik personel içerisinde mesleki yatkınlıklarından dolayı biyologların olması ülkemiz lehine bir durum olacaktır. Ulusal Programda bitkisel ürünler başlığı altında; transgenik bitkilere ilişkin düzenlemelerde, arıcılığın geliştirilmesi maksadıyla flora çeşitleri, flora mevsimi ve kapasitelerinin haritalandırılması ve de arıcılık Araştırma Enstitülerinin tüm ülkeye etkin bir şekilde hizmet vermesinin sağlanacağı ifade edilmektedir. Genetik, entomoloji, bitki anatomisi,patolojisi ve fizyolojisi konularında yeterli eğitim almış biyologların bu gelişmelere sağlayacağı katkı yadsınamaz düzeyde olacaktır. Aynı zamanda yerli hayvan gen kaynaklarının korunacağı ve bu maksatla Hayvan Gen Bankasının kurulacağı ifade edilmektedir. Tüm dünyada olduğu gibi ülkemizde de bitki ve hayvan gen bankalarının kurulması biyologların işbirliği ile sağlanacaktır. Ormancılık alanında;yaklaşık yarısı verimli durumda olan 20,7 milyon hektarlık ormanlık alanın 1,8'i biyolojik çeşitlilik olmak üzere yüzde 17,5'i korunan alanlar Olarak değerlendirilmektedir. Ormanların ekosistem yaklaşım dahilinde, devamlılık, çok amaçlı yararlanma, biyolojik çeşitlilik ile su ve yaban hayatının korunması doğrultusunda; eko turizm, verimlilik, kirlenme, yangın-böcek-heyelan-kar-çığ-sel-don ve kuraklık gerçekleri ile ergonomik faktörler dikkate alınarak işletilmesi, korunması ve geliştirilmesi için biyologların görev ve sorumluluklarına ihtiyaç duyulacağı açık bir gerçektir. Ayrıca korunan alanlar ve nesli tehlikede olan yaban hayatı ile bitki türleri dikkate alınarak yeniden incelenmelidir. Yeşil ve yaşanabilir bir çevre yaratma konusunda gerekli toplumsal iradenin oluşturulması amacına katkı sağlayacak olan Biyolog Odaları ve Biyologlar Birliğine ait yasa Tasarısının desteklenmesi AB uyum sürecinde olan ülkemiz için bir avantaj olacaktır. AB ülkelerinin üçüncü ülkelerle olan ticaretlerinde Bitki Sağlığı Sertifikası geçerlidir. Üye uygulaması mevcut değildir. Bu uygulamanın yürürlüğe konabilmesi için bitki anatomisi,fizyolojisi, morfolojisi,taksonomi ve sistematiği konusunda birikimi ve terminoloji yatkınlığı olan ülkemiz biyologlarının değerlendirilmesi esas olmalıdır. AB ülkeleri ile Ortak Balıkçılık Politikasının Belirlenmesinde; etkin bir koruma ve kontrol sisteminin oluşturulması ile denizlerdeki ve iç sulardaki doğal ortamın korunması, kontrolü, ve geliştirilmesini sağlamak, kaynakların rasyonel kullanımı ile ilgili tedbirleri almak gerekecektir. Yetiştiricilikle; yapılan üretimin çevre, turizm, ulaştırma ve diğer ilgili sektörlerle etkileşimi dikkate alarak geliştirmeye ve yaygınlaştırmaya önem vermek gerekecektir. Ayrıca gerekli altyapı tamamlandıktan sonra açık deniz balıkçılığına geçmek gerekecektir. Ülke sularının ekolojik ve limnolojik özellikleri belirlenecek, ortama en uygun ve ekonomik değeri yüksek türlerin yetiştirilmesi için balıklandırma faaliyetlerine geçilerek teknik ve hijyenik şartların sağlanması gerekecektir. Yetiştiricilikten elde edilecek deniz ürünlerinin yaklaşık yüzde 80r17;inin AB ülkelerine ihraç edileceği planlanırken, bu çalışmalar içerisinde aktif olarak yer alan biyologlarla ilgili Oda ve Birlik yasasının kabul edilmesi ülkemiz biyologlarının bu çalışmalara arzu edilen katkıyı sağlayacağı anlamını taşır. Ülkemizin farklı ekolojik karakterdeki ekosistem mozaiği, binlerce hayvan ve bitki türü ile bunların ırk ve populasyonlarının barınmasına imkan sağlamıştır. Ülkemizde üç bine yakın endemik olmak üzere dokuz binin üzerinde bitki türü tespit edilmiştir. Hayvan türlerinin ise seksen bin olduğu tahmin edilmektedir. Ülkemiz aynı zamanda yeryüzünün en önemli gen merkezlerindendir. Biyolog Odaları ve Türkiye Biyologlar Birliğinin hazırlayacağı ve hazırlanacak olan koruma projelerine katılması ve giderek karar süreçlerinde etkili olması; Türkiye'nin AB' ye uyum sürecinde, uluslar arası ilişkilerin güçlenmesinde Doğa Koruma konusunda avantajlı duruma gelmesine katkı sağlayacaktır. Ulusal Politikamızın belirlenmesinde; yukarıda sözü edilen tüm konu ve kavramlara sahip çıkabilecek, onları zenginleştirecek, takipçisi olabilecek nitelikteki insan gücü olan biyologlara ve onların meslek birliği olan Biyolog Odaları ve Türkiye Biyologlar Birliğir17;ne şiddetle ihtiyaç duyulacağı göz önüne alınmalıdır. Uluslar arası sözleşmeler ve Biyologlar; Dünyada, biyolojik çeşitlilikle ilgili uluslararası sözleşmelerde fauna ve flora ile birlikte doğal kaynakların yönetimi ve yok edilişinin durdurulması çalışmalarında daha çok biyologlar sorumluluk almaktadır. Avrupa'nın Yaban Hayatı ve Yaşama Ortamlarını Koruma Sözleşmesi olarak bilinen Bern Sözleşmesi ile ilgili olarak fauna ve floranın korunarak gelecek nesillere aktarılması konularında; CITES Sözleşmesi olarak bilinen "nesli tehlikede olan yabani hayvan ve bitki türlerinin uluslararası ticaretine ilişkin sözleşme" gereği yabani türler ya da onların derileri ve trofelerinin ihracatı, transit ve ithalatı ile ilgili konularda; Sulak Alanlar Sözleşmesi olarak ifade edilen Ramsar Sözleşmesi ile sulak alan ekosistemlerindeki bitki ve hayvan toplulukları ve su kuşlarının biyolojisi, ekolojisi ve yayılışı konularında; Birleşmiş Milletler Biyolojik Çeşitlilik Sözleşmesinde biyolojik çeşitliliğin korunmasında, biyolojik kaynaklardan özellikle genetik çeşitlilikten sağlanan faydanın eşit ve adil paylaşımı konularında biyologlar görev almak zorundadır. Birleşmiş Milletlerin kuraklık ve çölleşmeye maruz ülkeler kapsamına aldığı Türkiye'de de çölleşme ile mücadelede asıl görev alması gereken biyologlardır. Birleşmiş Milletler Biyolojik Çeşitlilik Sözleşmesine ek Cartagena Biyogüvenlik Protokolü ile biyolojik çeşitlilik, transgenik canlılar, gen transferi ile ilgili konularda ve bu kapsamda taraf olacağımız diğer sözleşmelerin kapsamında olan alanlarda biyologların doğrudan görev, sorumluluk ve yetki almaları ulusal çıkarlar açısından çok önemlidir. Biyologların Şikayet ve İstekleri Türkiye'de biyologların çalışma yerlerinde konumları ile ilgili karşılaştıkları güçlükler son yıllarda aşılmaz hale gelmiştir. Bugün bu sorunlar biyologlarla ilgili gündemin ana konusunu teşkil etmektedir. Biyologların çalıştıkları sahalarda görev, sorumluluk ve yetkileri ile ilgili bir mevzuat yoktur. Ülkemizin doğal kaynaklarının korunmasında, temel tıpla ilgili uygulamalarda, ormancılık ve tarımla ilgili konularda doğrudan görev almaları gerekirken bu görevlerdeki biyologlara, araştırma, koordinasyon, inceleme, planlama, proje ve analiz aşamalarında bilfiil sorumluluk aldıkları halde yetki verilmemektedir. olarak çalışmaktadırlar. Avrupa birliğine tam üyelik aşamasında olan Türkiye'de bu yanlış uygulamalar Avrupa Birliği normlarına ve meslek standartlarına uymamaktadır. Bu nedenlerle demokratik bir ülke olan Türkiye'de biyologların hak ettikleri görev, sorumluluk ve yetkilerin tam olarak belirlenmesi ve bir mevzuat kapsamında görevlendirilmeleri bir zorunluluk haline gelmiştir. Düzenleyen karakecili Düzenleme Tarihi: 19/05/2008 Mehmet İPEK Eskişehir Osmangazi Üniversitesi Gokhan #2 Mesaj Tarihi 18/02/2008 Yönetici Mesaj Sayısı: 211 Katılım Tarihi: 07.02.08 Yasal girişimler 1991 yıllarda çok yoğunlaşmış. İlk yasa tasarısı çok yoğun tartışmalar sonucunda hazırlanmış kitap haline getirilmiş ve TBMM´ne Tınaz Titiz 'in bakanlığı döneminde verilmiştir. Meclis'de yoğun muhalefetle karşılaşılmış Tıp ve Ziraatçıların karşı çıkması ve meclisin tatile girmesi nedeniyle görüşülememiştir. Burada en önemli sorun odalaşmak isteyen meslektaşlarımızın etkin destek vermemeleridir. Bu 2007 yılına kadar böyle devam etti. Oda yasası 1995-1996 yıllarında yeniden güncellenerek TBMM için çalışmalara başlandı. Bu dönemde yasa, komisyonlarda görüşülmeye başlanmış Hükümet adına görüş otuşturmak üzere Sağlık Bakanlığı görevlendirilmiştir. Sağlık Bakanlığında yapılan toplantıya o dönemdeki yönetim ile birlikte Biyologlar Derneği danışmanı olarak üniversiteden hocalarımızda katılmıştır. Sağlık Bakanlığı, Meslek Yasası´nın çıkmasını ancak odalaşmanın karşısında olduğu konusunda bir görüş benimseyerek komisyona göndermiş ve yasanın çıkmasını engellemiştir. 2000 yılında 3. kez güncelenen yasa Osman Durmuş kanalıyla meclise gönderilmiş ama çıkarılamamıştır. 2005 yılında 4. güncellenen yasa tasarısı Kanunlar kararlar dairesine oradan da Salih Kapusuz'a verilmiş. Ne kadar haklı olursanız olun talep edenlerin hem örgütlülükleri hem de güç dengeleri üzerindeki etkinlikleri yasaların çıkması üzerinde çok etkilidir. Kanun yapma yetkisi siyasetin elindedir. Siyasetin zayıf noktası ise oy ve oy potansiyelidir. Eğer güç olamazsak hiç bir hak kazanamayız. Bunun için birlik olmalıyız ve dernek çatısı altında birleşmeliyiz. Şu anda resmi olarak kurulmuş iki dernek bulunmakta. En azından bunlardan her hangi birine üye olmalıyız ki sayı gücümüz olsun. Aksi taktirde değil meslek odası, ekmek yiyeceğimiz iş sahası bile bulamayız. Düzenleyen Gokhan Düzenleme Tarihi: 18/02/2008 BİYOLOGLAR BİRLİĞİ DERNEĞİ Genel Sekreter Gökhan KAVUNCUOĞLU Kaynak: www.biyologlarbirligi.org

http://www.biyologlar.com/turkiye-biyologlar-birligi-kanun-tasarisi

Flores'in Küçük İnsanları

Flores'in Küçük İnsanları

Flores Adası’nın ismini hiç duydunuz mu? İlk bakışta Endonezya’da şirin bir tatil yeri gibi görünen bu ada aslında tarih öncesi çağlarda barındırdığı, küçük insanları yani “Homo Floresiensisleri” sebebiyle arkeoloji ve antropoloji dünyasında önemli bir yere sahip. Homo Floresiensis'lere ev sahipliği apan Flores Adası Kayıp medeniyetler üzerinde araştırma yaptığınızda karşılaşacağınız muhtemel isimlerden biri; Flores Adası. Burada yüzyıllar önce yaşadığı tespit edilen, fiziksel özellikleri açısından “küçük” olarak tabir edebileceğimiz Homo Floresiensisler ve onların bu alanda nasıl yaşam sürdükleri konusu oldukça ilgi çekici. Antrolopoloji ve arkeoloji alanları için ilk medeniyetler, ilk insanlar, kullandıkları aletler..vs. hakkında bilgi sahibi olmak oldukça önemlidir. Bulunan kalıntılar insanlık tarihine ışık tutar. Mısır, Mezopotamya uygarlıklarını çoğumuz biliriz, bu alanlar hala gözde alanlardır. Fakat dünyanın bilinmeyen noktalarında kazara keşifler yapmak ve aslında oldukça şaşırtıcı sonuçlara ulaşmak da mümkün. Bu durum Flores Adası için de geçerli bir durum. Flores Adası’ndaki insanlık tarihi için önemli bir adım sayılan keşif; New England Armidale Üni­versitesi’nden Michael Morwood, Endonezya Arkeoloji Mer­kezinden R. P. Soejono ve ekibi tarafından gerçekleştirilmiştir. Ekip 2003 yılında “Liang Bua” adı verilen bir mağarada kazı çalışması yaparken 800 bin yıl öncesine ait olduğu belirtilen taş aletler ve sonrasında “Homo Floresiensis” olarak adlandırılacak olan insan kalıntılarına ulaşmışlardır. Bu önemli bir buluştur çünkü bulunan insan kalıntıları normal olarak tabir edebileceğimiz fiziksel özelliklerden oldukça küçük niteliklere sahiptir. Şöyle ki; radyometrik tespitlere göre bulunan insan kalıntılarının yaklaşık 1 metre boyunda, 25 kilo ağırlığında bir kadına ait olduğu tespit edilmiştir. Kafatasının oldukça küçük olması ilgi çeken diğer bir husustur. Kalıntıların en eskisinin 94.000 yıl en yenisinin ise 12.000 yıllık olduğu belirlenmiştir. Tüm bu bilgiler 2004 yılında Nature isimli dergide büyük bir heyecanla paylaşılmış ve yeni bir türün ortaya çıktığı belirtilmiştir. Bu durum da insanın evrimi üzerine yeni tartışmaları gündeme getirmiştir. Bu tartışmaları ve öne sürülen savları kısaca ele alacağız fakat öncesinde homo florensis’in insanın evrimi tablosunda aldığı konumdan kısaca bahsetmenin faydalı olacağı inancındayız. Homo Floresiensis’in aile içindeki yeri Soldan sağa: Homo Floresiensis, Lucy (Australopithecus Afarensis), Homo Erectus ve Homo Sapiens. Flores Adası’nda bulunan insan buluntularının yeni bir tür olduğu savı bir dönemin ses getiren konusu olmuştur. “Homo Floresiensis” olarak adlandırılan bu yeni türün Avrupalı Neandertalların doğu ayağını temsil eden; “Homo Erectus” ve modern insan olarak tabir edilen “Homo Sapiens”den önce yaşadığı “Australopithecus Afarensis” ile yakın özelliklere sahip olduğu savunulmuştur. Homo Floresiensis’in küçük ama oldukça zeki bir tür olduğunu savunan araştırmacılar bu savlarını onların kullandıkları karışık yapıda taş aletler ile güçlendirmeye çalışmışlardır. Homo Floresiensis’in beyin büyüklüğünün Homo Saphiens’in sahip olduğu beyin büyüklüğünün 1/3’ü olmasına rağmen zeki oldukları düşünülmektedir. Bu küçük insanların yaşadıkları çağın tehlikelerine karşı kendilerini korudukları, kullandıkları aletlere bakıldığında avcılıkla ilgilendikleri belirlenmiştir, bunların tümüne bakıldığında yüksek bir zekâyı temsil ettikleri savı güçlenmektedir. Homo Floresiensis’e yazın ve sinema tarihinde önemli yere sahip, J. R. R. Tolkien’in Yüzüklerin Efendisi isimli eserinden esinlenerek “Hobbit” adı da verilmiştir. Dünya çapında bilinen önemli eserlerden biri olan bu eserde önemli karakterlerden birini temsil eden hobbitler, küçük cüsseleri ve zekâlarıyla dikkat çekmektedir. Gerçekte de hobbitlerin var olabileceğinin savunulması heyecan uyandırmıştır. Homo Floresiensis’e dair tartışmalar Flores Adası’nda bulunan kalıntıların daha önce keşfedilmeyen yeni bir tür mü yoksa Homo Saphiens’in farklılık geçirmiş bir türü mü olduğu sorusu keşiften günümüze kadar devam eden bir tartışmaya neden olmuştur. Yazılan bilimsel makalelerde yıllara bağlı olarak gözlemlenen farklı yorumlar ilgi çekicidir. Keşfin yapıldığı 2003 yılında kesin bir şekilde dile getirilen yeni tür bulunduğuna dair sav, yapılan araştırmalar sonucu eski etkisini yitirmiştir. 1 metre boyunda, 25 kilo ağırlığında bir kadına ait olduğu tespit edilen kafatasının oldukça küçük olması dikkat çekicidir. Bulunan kalıntıların sadece dokuz tane olması, bu alanda kapsamlı bir fikir yürütmeyi engelleyici bir unsur olarak karşımıza çıkmaktadır. İlk bulunan kadın iskeletinin Homo Saphiens’in uzak bir türünü temsil ettiği, LB1 adı verilen iskeletteki anormallik nedeninin “Mikrosefali” isimli bir hastalık olduğu savı güçlenmeye başlamıştır. Mikrosefali; beyinde ortaya çıkan küçük bir urun sebep olduğu bir rahatsızlıktır ve zihinsel engele yol açmaktadır. Bu kuramı destekleyen anatomist Maciej Henneberg mikrosefalik kafatasıyla LB1 arasında muhtemel benzerlikleri vurgulamıştır. Ama az sayıda bulunan iskeletlerden yola çıkarak bir medeniyetin tamamında mikrosefali rahatsızlığının var olduğunu söylemek mümkün değildir. 2005 yılında Homo Floresiensis için en kapsamlı araştırma yapılmıştır. Florida Eyalet Üniversite­si’nden Dr. Dean Falk’un liderliğini yaptığı uluslar ara­sı bir uzman grubu LB1 kafatasının üç boyutlu bir maketini yapıp, bunu şempanze, modern insan(modern cüce), mirosefalik bir beyin ve Homo Eractus ile karşılaştırmıştır. Bu incelemeye göre LB1; modern cüce beyninden ve mikrosefalik beyinden daha farklı bir özellik taşımakta ve yeni bir türü temsil etmektedir. Bu araştırmanın doğruluğu halen tartışılan bir konudur. Kimi bilim adamlarına göre bu çalışmada mikrosefalik beyin örneği kullanılmamıştır. 2010 yılında gelindiğinde ise; bu türün Homo Saphiens’in bir türü olduğu, “Kretenizm” adı verilen hastalığın ve yaşanılan ortamın da getirisi olarak küçük bir yapıya sahip olduğu savı ortaya çıkar. Günümüzde o bölgede yaşayan halkın da minyon bir tipe sahip olması bu savı güçlendiren bir unsur olmaktadır. Bu sav belki doğru olabilir çünkü antopolojik çalışmalara göre yaşam alanının sahip olduğu coğrafi koşullar canlılarda fizyolojik farklılıklara neden olabilmektedir. Kazılarda Homo Floresiensis ile birlikte ortaya çıkan balık, kurbağa, yılan, kaplumbağa, dev sıçan, kuş, yarasa ve Stegodon (soyu tükenmiş bir tür cüce fil), Komodo ejderi ve dev kertenkele gibi diğer iri hayvanlara ait iskeletler Flores Adası’nın doğal ortamını gözler önüne sermiştir. Homo Floresiensis bu doğal ortamda varlığını devam ettirmeye çalışmıştır. Fiziksel yapının da zaman içersinde Flores’in kaynakları doğrultusunda şekillendiği inancı dikkat çekicidir. Aynı bölgede özellikle Stegodon(cüce fil)’in görülmesi bu inancı güçlendirmektedir. Homo Floresiensis’in yok oluşu Homo Floresiensis’in nasıl yok olduğu sorusunun cevabını aradığımızda kesin bir bilgiye ulaşmamız mümkün değil fakat bu konudaki en baskın görüş; Flores Adası’nda gerçekleşmiş olan bir volkanik patlama sonucu Homo Floresiensis’in yok olmasıdır. Bu görüşün kesin bir veriyi sunması imkânsızdır çünkü böyle bir doğal felaketten kurtulanların olup olmadığı ve başka bir yerde yaşamlarını devam ettirip ettirmediklerine dair bir iz yoktur. Homo Floresiensis keşfin yapıldığı 2003 yılından günümüze yaklaşık 9 yıldır tartışılan bir konu olma özelliğine sahiptir. Paleoantropologlar, anotomi uzmanları gibi farklı branşlardan bilim adamlarının ilgisini çeken bu konu her geçen sene farklı savları ortaya çıkarmaktadır. Bu konudaki son görüş; yeni bir tür olmadığı yönündedir. Fakat ilerleyen senelerde bu konuda belki de bulanacak başka veriler ışında çok farklı savlar ortaya çıkacaktır. İnsanın evrim süreci her daim merak uyandıran bir konu olduğundan bu açıdan dikkat çekici olan Homo Floresiensis’in yeni bir tür olup olmadığı sorunsalının daha pek çok yıllar tartışılması muhtemeldir. Kaynakça: Pennsylvannia State University Press Release, “No Hobbits in this Shire: Researchers say skeletal remains are pygmy ancestors”, 23 Ağustos 2006. http://insanveevren.wordpress.com/2012/04/15/tarih-oncesi-flores-adalilar-bilmecesi/ http://www.kesfetmekicinbak.com/ http://en.wikipedia.org/wiki/Homo_floresiensis http://www.sciencedaily.com/releases/2010/09/100928025514.htm http://www.sciencedaily.com/releases/2008/12/081217124418.htm Yazar hakkında: Sinem Doğan Açık Bilim Haziran 2012 http://www.acikbilim.com/2012/06/dosyalar/floresin-kucuk-insanlari.html

http://www.biyologlar.com/floresin-kucuk-insanlari

Türkiye’de Biyologların Çalışma Alanlarının Listesi

Türkiye’de Biyologların Çalışma Alanlarının Listesi

– İlaç Üretimi Yapan Fabrikalar – İlaç Tanıtımını ve Satışı Yapan Firmalar – Gıda ve Yem İşletmelerinde – Kozmetik Üretimi Yapan Fabrikalar – Okullar – İlkyardım Eğitim Merkezleri – Hijyen Eğitmeni Veren Kurslar – Gıda Kontrol Laboratuvarları – Ulusal Gıda Referans Laboratuvarı – Çevre Ölçüm ve Analiz Laboratuvarları – Çevre Referans Laboratuvarı – İş Hijyeni Ölçüm, Test ve Analiz Laboratuvarları – Veteriner Teşhis ve Analiz Laboratuvarları – Yüzme Havuzu Suyunun Analiz Laboratuvarları – Toprak Analiz Laboratuvarları – Kanatlı Hastalıkları Teşhis Laboratuvarları – Bitki Sağlığı Laboratuvarları – Kriminoloji Laboratuvarları – Halk Sağlığı Laboratuvarları – Bilimsel Araştırma Merkezleri – Araştırma Enstitüleri – Üniversiteler – Hastane Laboratuvarları – Doku Tipleme Laboratuvarları – Mikrobiyoloji Laboratuvarları – Biyokimya Laboratuvarları – Çocuk Hematoloji Flow Sitometri Laboratuvarları – Kan Hizmet Birimleri – Kan Merkezleri – Transfüzyon Merkezleri – Kan Bağışı Merkezleri – Tüp Bebek Merkezleri – Terapötik Aferez Merkezleri – Genetik Hastalıklar Tanı Merkezleri – Kök Hücre Nakil Merkezleri – İnsan Doku ve Hücrelerinin Üretim, İthalat, İhracat, Depolama ve Dağıtım Faaliyetlerini Yürüten Merkezler – Total Parenteral Nutrisyon - Home Parenteral Nutrisyon - Kemoterapi İlaç Hazırlama Merkezleri – Kordon Kanı Bankaları – Perfüzyonist – Aplikasyon Uzmanlığı – IT Uygulama Destek Uzmanlığı – ÇED Raporu ve PTD Hazırlayan Firmalar – Çevre Danışmanlık Hizmeti Veren Firmalar – Çevreye Kirletici Etkisi Olan Faaliyet ve Tesislerde Çevre Görevlisi – İş Güvenliği Uzmanlığı – Tehlikeli Madde Güvenlik Danışmanlığı – Koruma Amaçlı İmar Planı Yapan Firmalar – Yetkili Sınıflandırıcı Olarak Kurulan ve İşletilen Laboratuvarlar – Tıbbi Cihazların Satış ve Servis Şirketleri – Rüzgar Enerji Santralleri – Biyoteknoloji – Biyosidal Ürün Uygulamaları Yapan Firmalar – Havuz Suyunda Kullanılan Yardımcı Kimyasal Maddelerin Üretimini ve İthalatını Yapan Firmalar – Kuvvetli Asit veya Baz İçeren Temizlik Ürünlerinin Üretimini ve İthalatını Yapan Firmalar – Tampon, Hijyenik Ped, Göğüs Pedi, Çocuk Bezi ve Benzeri Ürünlerin Üretimini ve İthalatını Yapan Firmalar – Hava Aromatize Edici Ürünlerin Üretimini ve İthalatını Yapan Firmalar – Peloid Üretim Tesisleri – Sperma, Ovum ve Embriyo Üretim Merkezleri – Doğal Çiçek Soğanlarının Üretimi, Doğadan Toplanması ve İhracatını Yapan Firmalar – Su Ürünleri Yetiştirilen Tesisler – Deneysel ve Diğer Bilimsel Amaçlar İçin Kullanılan Hayvanların Refah ve Korunması İçin Araştırma Yapılan Merkezler – Toprakta Kirlenmiş Saha Değerlendirme ve Temizleme Çalışmalarını Yapacak Olan Firmalar – Biyosidal Ürün veya Aktif Maddeler Üreten İşletmeler – Aktif Madde İçermeyen Biyosidal Ürünlerin Üretim Yerleri – Doğal Mineralli Su Tesisleri – İçme Suyu Tesisleri – Doku Kültürü İle Tohumluk Üreticisi – Deniz Çevresinin Petrol ve Diğer Zararlı Maddelerle Kirlenmesine İlişkin Risk Değerlendirmesi ve Acil Müdahale Planlarını Hazırlayacak Kurum ve Kuruluşlar – Akustik Rapor-Gürültü Haritası-Eylem Planı Hazırlayan, Çevresel Gürültü Konusunda Değerlendirme ve Arka Plan Gürültü Seviyesinin Ölçümünü Yapan Firmalar – İhracat Yapan Firmalar – Kaplıcalar – Örnek Avlaklar – Hayvanat Bahçeleri – Yüzme Havuzları – Atıksu Arıtma Tesisleri – Kamu Kurum ve Kuruluşları TÜRKİYE’DE BİYOLOGLARIN ÇALIŞMA ALANLARI 1) 31.12.2015 tarih ve 29579 sayılı (4.mükerrer) Resmi Gazete’de yayımlanan (Ekonomi Bakanlığından) “İHRACATTA TİCARİ KALİTE DENETİMLERİNİN RİSK ESASLI YAPILMASI AMACIYLA FİRMALARIN SINIFLANDIRILMASINA İLİŞKİN TEBLİĞ” gereğince özel veya kamuya ait kurum ve kuruluşlarda laboratuvar elemanı ve sorumlu denetçi olarak çalışabilirsiniz. 2) 29.07. 2015 tarih ve 29429 sayılı Resmi Gazete’de yayımlanan (Sağlık Bakanlığından) “İLKYARDIM YÖNETMELİĞİ” gereğince İlkyardım eğitmeni sertifikasını alarak, özel veya kamuya ait kurum ve kuruluşların ilkyardım eğitim merkezlerinde mesul müdür, ilkyardım eğitmeni veya ilkyardım eğitimci eğitmeni olarak çalışabilirsiniz. 3) 03.07.2015 tarih ve 29405 sayılı Resmi Gazete’de yayımlanan (Türkiye İlaç ve Tıbbi Cihaz Kurumu) “BEŞERİ TIBBİ ÜRÜNLERİN TANITIM FAALİYETLERİ HAKKINDA YÖNETMELİK” gereğince özel sektörde ürün tanıtım temsilcisi olarak çalışabilirsiniz. 4) 25.06.2015 tarih ve 29397 sayılı Resmi Gazete’de yayımlanan (Türkiye İlaç ve Tıbbi Cihaz Kurumundan) “TIBBİ CİHAZLARIN TEST, KONTROL VE KALİBRASYONU HAKKINDA YÖNETMELİK” gereğince özel sektörde sorumlu müdür olarak çalışabilirsiniz. 5) 03.06.2015 tarih ve 29375 sayılı Resmi Gazete'de yayımlanan (Türkiye Kamu Hastaneleri Kurumundan) “TÜRKİYE KAMU HASTANELERİ KURUMU DENETİM HİZMETLERİ YÖNETMELİĞİ” gereğince Türkiye Kamu Hastaneleri Kurumunda denetçi olarak çalışabilirsiniz. 6) 20.03.2015 tarih ve 29301 sayılı Resmi Gazete’de yayımlanan (Çevre ve Şehircilik Bakanlığından) “ATIKLARIN KARAYOLUNDA TAŞINMASINA İLİŞKİN TEBLİĞ” gereğince atık taşıma faaliyetinde bulunan özel sektöre ait firmalarda tehlikeli madde güvenlik danışmanı ve çevre görevlisi olarak çalışabilirsiniz. 7) 20.03.2015 tarih ve 29301 sayılı Resmi Gazete'de yayımlanan (Türkiye Halk Sağlığı Kurumundan) “TÜRKİYE HALK SAĞLIĞI KURUMU DENETİM HİZMETLERİ YÖNETMELİĞİ” gereğince Türkiye Halk Sağlığı Kurumunda denetçi olarak çalışabilirsiniz. 8) 22.01.2015 tarih ve 29244 sayılı Resmi Gazete'de yayımlanan (Türkiye Halk Sağlığı Kurumundan) “HALK SAĞLIĞI LABORATUVARLARI VE YETKİLENDİRİLMİŞ LABORATUVARLARIN ÇALIŞMA USUL VE ESASLARI HAKKINDA YÖNETMELİK” gereğince halk sağlığı laboratuvarlarında laboratuvar sorumlusu, laboratuvar birim sorumlusu, laboratuvar teknik personeli ve kalite yönetim temsilcisi olarak çalışabilirsiniz. 9) 12.12.2014 tarih ve 29203 sayılı Resmi Gazete’ de yayımlanan (Çevre ve Şehircilik Bakanlığından) “DENİZ ÇEVRESİNİN PETROL VE DİĞER ZARARLI MADDELERLE KİRLENMESİNE İLİŞKİN RİSK DEĞERLENDİRMESİ VE ACİL MÜDAHALE PLANLARINI HAZIRLAYACAK KURUM VE KURULUŞLARIN ASGARİ ÖZELLİKLERİNE DAİR TEBLİĞ” gereğince risk değerlendirmesi ve acil müdahale planlarını hazırlayacak özel sektöre ait kurum/kuruluşlarda biyolog olarak çalışabilirsiniz. 10) 30.09.2014 tarih ve 29135 sayılı Resmi Gazete’de yayımlanan (Sağlık Bakanlığından) “ÜREMEYE YARDIMCI TEDAVİ UYGULAMALARI VE ÜREMEYE YARDIMCI TEDAVİ MERKEZLERİ HAKKINDA YÖNETMELİK” gereğince özel veya kamuya ait kurum ve kuruluşların merkezlerinde ÜYTE laboratuvarı sorumlusu ve biyolog olarak çalışabilirsiniz. 11) 22.05.2014 tarih ve 29007 sayılı Resmi Gazete’de yayımlanan (Sağlık Bakanlığından) “SAĞLIK MESLEK MENSUPLARI İLE SAĞLIK HİZMETLERİNDE ÇALIŞAN DİĞER MESLEK MENSUPLARININ İŞ VE GÖREV TANIMLARINA DAİR YÖNETMELİK” gereğince sağlık meslek mensupları ile sağlık hizmetlerinde çalışan diğer meslek mensuplarının iş ve görev tanımları yapılmıştır. 12) 22.05.2014 tarih ve 29007 sayılı Resmi Gazete’de yayımlanan (Ulaştırma, Denizcilik ve Haberleşme Bakanlığından) “TEHLİKELİ MADDE GÜVENLİK DANIŞMANLIĞI HAKKINDA TEBLİĞ” gereğince tehlikeli maddeleri taşıyan, gönderen, paketleyen, yükleyen, dolduran ve boşaltan özel sektöre ait işletmelerde tehlikeli madde güvenlik danışmanı olarak çalışabilirsiniz. 13) 15.05.2014 tarih ve 29001 sayılı Resmi Gazete’de yayımlanan (Türkiye İlaç ve Tıbbi Cihaz Kurumundan) “TIBBİ CİHAZ SATIŞ, REKLAM VE TANITIM YÖNETMELİĞİ” gereğince piyasaya arz edilen tıbbi cihazların satış, reklam ve tanıtım faaliyetlerinde bulunan özel sektöre ait firmalarda sorumlu müdür, satış-tanıtım elemanı ve klinik destek elemanı olarak çalışabilirsiniz. 14) 04.04.2014 tarih ve 28962 sayılı Resmi Gazete'de yayımlanan (Türkiye İlaç ve Tıbbi Cihaz Kurumundan) “İNSAN DOKU VE HÜCRE ÜRÜNLERİNİN RUHSATLANDIRILMASI VE BU ÜRÜNLERİN ÜRETİM, İTHALAT, İHRACAT, DEPOLAMA VE DAĞITIM FAALİYETLERİNİ YÜRÜTEN MERKEZLER HAKKINDA TEBLİĞ” gereğince özel veya kamuya ait kurum ve kuruluşların merkezlerinde merkez sorumlusu, kalite yönetim birimi sorumlusu, kalite kontrol birimi sorumlusu ve doku-işleme birimi sorumlusu olarak çalışabilirsiniz. 15) 25.12.2013 tarih ve 28862 sayılı Resmi Gazete’de yayımlanan (Çevre ve Şehircilik Bakanlığından) “ÇEVRE ÖLÇÜM VE ANALİZ LABORATUVARLARI YETERLİK YÖNETMELİĞİ” gereğince çevre mevzuatı kapsamında ölçüm ve analizleri yapacak, özel veya kamuya ait kurum ve kuruluş laboratuvarlarında laboratuvar sorumlusu, kalite yöneticisi/kalite yöneticisi temsilcisi ve ölçüm ve analiz yapacak personel olarak çalışabilirsiniz. 16) 21.11.2013 tarih ve 28828 sayılı Resmi Gazete’de yayımlanan (Çevre ve Şehircilik Bakanlığından) “ÇEVRE GÖREVLİSİ, ÇEVRE YÖNETİM BİRİMİ VE ÇEVRE DANIŞMANLIK FİRMALARI HAKKINDA YÖNETMELİK” gereğince özel veya kamuya ait kurum ve kuruluşlarda çevre görevlisi olarak çalışabilirsiniz. 17) 31.10.2013 tarih ve 28807 sayılı Resmi Gazete’de yayımlanan (Gümrük ve Ticaret Bakanlığından) “HAVUZ SUYUNDA KULLANILAN YARDIMCI KİMYASAL MADDELERİN ÜRETİMİ, İTHALATI, PİYASA GÖZETİMİ VE DENETİMİ İLE BİLDİRİM ESASLARINA DAİR TEBLİĞ” gereğince özel sektöre ait firmalarda mesul müdür olarak çalışabilirsiniz. 18) 31.10.2013 tarih ve 28807 sayılı Resmi Gazete’de yayımlanan (Gümrük ve Ticaret Bakanlığından) “KUVVETLİ ASİT VEYA BAZ İÇEREN TEMİZLİK ÜRÜNLERİNİN ÜRETİMİ, İTHALATI, PİYASA GÖZETİMİ VE DENETİMİ İLE BİLDİRİM ESASLARINA DAİR TEBLİĞ” gereğince özel sektöre ait firmalarda mesul müdür olarak çalışabilirsiniz. 19) 31.10.2013 tarih ve 28807 sayılı Resmi Gazete’de yayımlanan (Gümrük ve Ticaret Bakanlığından) “TAMPON, HİJYENİK PED, GÖĞÜS PEDİ, ÇOCUK BEZİ VE BENZERİ ÜRÜNLERİN ÜRETİMİ, İTHALATI, PİYASA GÖZETİMİ VE DENETİMİ İLE BİLDİRİM ESASLARINA DAİR TEBLİĞ” gereğince özel sektöre ait firmalarda mesul müdür olarak çalışabilirsiniz. 20) 31.10.2013 tarih ve 28807 sayılı Resmi Gazete’de yayımlanan (Gümrük ve Ticaret Bakanlığından) “HAVA AROMATİZE EDİCİ ÜRÜNLERİN ÜRETİMİ, İTHALATI, PİYASA GÖZETİMİ VE DENETİMİ İLE BİLDİRİM ESASLARINA DAİR TEBLİĞ” gereğince özel sektöre ait firmalarda mesul müdür olarak çalışabilirsiniz. 21) 03.10.2013 tarih ve 28784 sayılı Resmi Gazete'de yayımlanan (Sağlık Bakanlığından) “SAĞLIK BAKANLIĞI DENETİM HİZMETLERİ BAŞKANLIĞI YÖNETMELİĞİ” gereğince Sağlık Bakanlığında sağlık denetçisi olarak çalışabilirsiniz. 22) 20.08.2013 tarih ve 28741 sayılı Resmi Gazete’de yayımlanan (Çalışma ve Sosyal Güvenlik Bakanlığından) “İŞ HİJYENİ ÖLÇÜM, TEST VE ANALİZİ YAPAN LABORATUVARLAR HAKKINDA YÖNETMELİK” gereğince iş sağlığı ve güvenliği mevzuatı kapsamında çalışma ortamındaki kişisel maruziyetlere veya çalışma ortamına yönelik fiziksel, kimyasal ve biyolojik etkenlerle ilgili iş hijyeni ölçüm, test ve analizleri yapacak özel veya kamuya ait kurum ve kuruluş laboratuvarlarında kalite yöneticisi ve laboratuvar yöneticisi olarak çalışabilirsiniz. 23) 02.08.2013 tarih ve 28726 sayılı Resmi Gazete’de yayımlanan (Türkiye Halk Sağlığı Kurumundan) “AKTİF MADDE İÇERMEYEN BİYOSİDAL ÜRÜNLER TEBLİĞİ” gereğince özel sektöre ait üretim yerlerinde mesul müdür olarak çalışabilirsiniz. 24) 05.07.2013 tarih ve 28698 sayılı Resmi Gazete'de yayımlanan (Sağlık Bakanlığı, İçişleri Bakanlığı, Gıda, Tarım ve Hayvancılık Bakanlığından) “HİJYEN EĞİTİMİ YÖNETMELİĞİ” gereğince Hayat Boyu Öğrenme Müdürlüğü ile protokol imzalayan özel eğitim kurumlarında hijyen eğitimi verebilirsiniz. 25) 30.05.2013 tarih ve 28662 sayılı Resmi Gazete'de yayımlanan (Türkiye İlaç ve Tıbbi Cihaz Kurumundan) “TÜRKİYE İLAÇ VE TIBBİ CİHAZ KURUMU SAĞLIK DENETÇİLERİ YÖNETMELİĞİ” gereğince Türkiye İlaç ve Tıbbi Cihaz Kurumunda sağlık denetçisi olarak çalışabilirsiniz. 26) 29.05.2013 tarih ve 28661 sayılı Resmi Gazete’de yayımlanan (Milli Eğitim Bakanlığından) “MİLLİ EĞİTİM BAKANLIĞI ÖZEL MOTORLU TAŞIT SÜRÜCÜLERİ KURSU YÖNETMELİĞİ” gereğince özel motorlu taşıt sürücüleri kurslarında çalışabilirsiniz. 27) 30.04.2013 tarih ve 28633 sayılı Resmi Gazete'de yayımlanan (Türkiye İlaç ve Tıbbi Cihaz Kurumundan) “TÜRKİYE İLAÇ VE TIBBİ CİHAZ KURUMU ÜRÜN DENETMENLİĞİ YÖNETMELİĞİ” gereğince Türkiye İlaç ve Tıbbi Cihaz Kurumunda denetmen olarak çalışabilirsiniz. 28) 27.04.2013 tarih ve 28630 sayılı Resmi Gazete’de yayımlanan (Türkiye İlaç ve Tıbbi Cihaz Kurumundan) “BEŞERİ TIBBİ ÜRÜNLERİN İMALATHANELERİ HAKKINDA YÖNETMELİK” gereğince özel sektöre ait imalat yerlerinde ürün sorumlusu olarak çalışabilirsiniz. 29) 29.12.2012 tarih ve 28512 sayılı Resmi Gazete’de yayımlanan (Çalışma ve Sosyal Güvenlik Bakanlığından) “İŞ GÜVENLİĞİ UZMANLARININ GÖREV, YETKİ, SORUMLULUK VE EĞİTİMLERİ HAKKINDA YÖNETMELİK” gereğince kamu ve özel sektöre ait işyerlerinde iş güvenliği uzmanı olarak çalışabilirsiniz. 30) 19.07.2012 tarih ve 28358 sayılı Resmi Gazete’de yayımlanan (Gıda, Tarım ve Hayvancılık Bakanlığından) “DOĞAL ÇİÇEK SOĞANLARININ ÜRETİMİ, DOĞADAN TOPLANMASI VE İHRACATINA İLİŞKİN YÖNETMELİK” gereğince özel sektöre ait firmalarda teknik personel olarak çalışabilirsiniz. 31) 20.03.2012 tarih ve 28239 sayılı Resmi Gazete’de yayımlanan (Milli Eğitim Bakanlığından) “MİLLÎ EĞİTİM BAKANLIĞI ÖZEL ÖĞRETİM KURUMLARI YÖNETMELİĞİ” gereğince özel sektöre ait okullarda, kurslarda, dershanelerde, etüt eğitim merkezlerinde, hizmet içi eğitim merkezlerinde ve uzaktan eğitim merkezlerinde öğretmen, uzman öğretici veya usta öğretici olarak çalışabilirsiniz. 32) 30.12.2011 tarih 52388 sayılı Makam oluruyla yayımlanan (Sağlık Bakanlığından) “DOKU TİPLEME LABORATUVARLARI YÖNERGESİ” gereğince özel veya kamuya ait kurum ve kuruluşların doku tipleme laboratuvarlarında doku tipleme laboratuvarı sorumlusu, doku tipleme laboratuvarı sorumlu yardımcısı, tetkik ve analiz sorumlusu, laboratuvar teknisyeni ve kalite yönetim sorumlusu olarak çalışabilirsiniz. 33) 29.12.2011 tarih ve 28157 (3. mükerrer) sayılı Resmi Gazete'de yayımlanan (Gıda, Tarım ve Hayvancılık Bakanlığından) “GIDA KONTROL LABORATUVARLARININ KURULUŞ, GÖREV, YETKİ VE SORUMLULUKLARI İLE ÇALIŞMA USUL VE ESASLARININ BELİRLENMESİNE DAİR YÖNETMELİK” gereğince Gıda, Tarım ve Hayvancılık Bakanlığının gıda kontrol laboratuvarlarında çalışabilirsiniz. 34) 24.12.2011 tarih ve 28152 sayılı Resmi Gazete’de yayımlanan (Gıda, Tarım ve Hayvancılık Bakanlığından) “SPERMA, OVUM VE EMBRİYO ÜRETİM MERKEZLERİNİN KURULUŞ VE ÇALIŞMA ESASLARI HAKKINDA YÖNETMELİK” gereğince özel veya kamuya ait kurum ve kuruluşların üretim merkezlerinde sorumlu yönetici olarak çalışabilirsiniz. 35) 13.12.2011 tarih ve 28141 sayılı Resmi Gazete'de yayımlanan (Gıda, Tarım ve Hayvancılık Bakanlığından) “DENEYSEL VE DİĞER BİLİMSEL AMAÇLAR İÇİN KULLANILAN HAYVANLARIN REFAH VE KORUNMASINA DAİR YÖNETMELİK” gereğince özel veya kamuya ait kurum ve kuruluşlarda biyolog olarak çalışabilirsiniz. 36) 11.12.2011 tarih ve 28139 sayılı Resmi Gazete'de yayımlanan (Gıda, Tarım ve Hayvancılık Bakanlığından) “VETERİNER TEŞHİS VE ANALİZ LABORATUVARLARI YÖNETMELİĞİ” gereğince özel sektöre ait laboratuvarlarda teknik personel çalışabilirsiniz. 37) 24.08.2011 tarih ve 28035 sayılı Resmi Gazete'de yayımlanan (Çevre ve Şehircilik Bakanlığından) “AMBALAJ ATIKLARININ KONTROLÜ YÖNETMELİĞİ” gereğince özel sektöre ait toplama-ayırma tesislerinde çevre görevlisi olarak çalışabilirsiniz. 38) 17.06.2011 tarih ve 27967 sayılı Resmi Gazete’de yayımlanan (Çevre ve Şehircilik Bakanlığından) “TOPRAK KİRLİLİĞİNİN KONTROLÜ VE NOKTASAL KAYNAKLI KİRLENMİŞ SAHALARA DAİR YÖNETMELİK YETERLİLİK BELGESİ TEBLİĞİ” gereğince özel veya kamuya ait kurum ve kuruluşlarda proje koordinatörü ve biyolog olarak çalışabilirsiniz. 39) 29.04.2011 tarih ve 27916 sayılı Resmi Gazete’de yayımlanan “BAZI KANUN VE KANUN HÜKMÜNDE KARARNAMELERDE DEĞİŞİKLİK YAPILMASINA DAİR KANUN” gereğince 11.04.1928 tarihli ve 1219 sayılı Tababet ve Şuabatı San’atlarının Tarzı İcrasına Dair Kanunu’nda yapılan değişiklikle özel veya kamuya ait kurum ve kuruluşlarda perfüzyonist olarak çalışabilirsiniz. 40) 26.04.2011 tarih ve 27916 sayılı Resmi Gazete'de yayımlanan (Çevre ve Şehircilik Bakanlığından) “ATIK ARA DEPOLAMA TESİSLERİ TEBLİĞİ” gereğince tehlikeli atıkların dışındaki özel sektöre ait ara depolama tesislerinde çevre görevlisi olarak çalışabilirsiniz. 41) 06.03.2011 tarih ve 27886 sayılı Resmi Gazete’de yayımlanan (Sağlık Bakanlığından) “YÜZME HAVUZLARININ TABİ OLACAĞI SAĞLIK ESASLARI VE ŞARTLARI HAKKINDA YÖNETMELİK” gereğince Bakanlıkça yetkilendirilmiş özel sektöre ait laboratuvarlarda biyolog, yüzme havuzlarında ise mesul müdür ve havuz suyu operatörü olarak çalışabilirsiniz. 42) 13.06.2010 tarih ve 27610 sayılı Resmi Gazete’de yayımlanan “VETERİNER HİZMETLERİ, BİTKİ SAĞLIĞI, GIDA VE YEM KANUNU” gereğince özel veya kamuya ait kurum ve kuruluşların gıda ve yem işletmelerinde çalışabilirsiniz. 43) 04.06.2010 tarih ve 27601 sayılı Resmi Gazete’de yayımlanan (Çevre ve Şehircilik Bakanlığından) “ÇEVRESEL GÜRÜLTÜNÜN DEĞERLENDİRİLMESİ VE YÖNETİMİ YÖNETMELİĞİ” gereğince akustik rapor-gürültü haritası-eylem planı hazırlayan, çevresel gürültü konusunda değerlendirme ve arka plan gürültü seviyesinin ölçümünü yapan özel veya kamuya ait kurum/kuruluşlarda çalışabilirsiniz. 44) 10.03.2010 tarih ve 27517 sayılı Resmi Gazete'de yayımlanan (Sağlık Bakanlığından) “TERAPÖTİK AFEREZ MERKEZLERİ HAKKINDA YÖNETMELİK” gereğince özel veya kamuya ait kurum ve kuruluşların terapötik aferez merkezlerinde sertifika alarak teknik sorumlu olarak çalışabilirsiniz. 45) 31.12.2009 tarih ve 27449 sayılı (4. mükerrer) Resmi Gazete'de yayımlanan (Türkiye Halk Sağlığı Kurumundan) “BİYOSİDAL ÜRÜNLER YÖNETMELİĞİ” gereğince biyosidal ürün veya aktif maddeler üreten özel sektöre ait işletmelerde mesul müdür olarak çalışabilirsiniz. 46) 31.12.2009 tarih ve 27449 sayılı (5.mükerrer) Resmi Gazete’de yayımlanan (Sağlık Bakanlığından) “KAN HİZMET BİRİMLERİNDE GÖREV YAPACAK SAĞLIK PERSONELİNİN EĞİTİMİ VE SERTİFİKALANDIRILMASINA DAİR TEBLİĞ” gereğince özel veya kamuya ait kan hizmet birimlerinde çalışabilirsiniz. 47) 18.12.2009 tarih ve 27436 sayılı Resmi Gazete’de yayımlanan (Çevre ve Şehircilik Bakanlığından) “YETERLİK BELGESİ TEBLİĞİ” gereğince Çevresel Etki Değerlendirmesi Raporu ve Proje Tanıtım Dosyası hazırlayan özel sektöre ait şirketlerde biyolog ve rapor koordinatörü olarak çalışabilirsiniz. 48) 30.10.2009 tarih ve 27391 sayılı Resmi Gazete’de yayımlanan (Ulaştırma, Denizcilik ve Haberleşme Bakanlığından) “DENİZ ÇEVRESİNİN PETROL VE DİĞER ZARARLI MADDELERLE KİRLENMESİNDE ACİL DURUMLARDA MÜDAHALE GÖREVİ VEREBİLECEK ŞİRKET/KURUM/KURULUŞLARIN SEÇİMİNE VE YETKİ BELGESİ BULUNAN ŞİRKET/KURUM/KURULUŞLAR İLE KIYI TESİSLERİNİN ÇALIŞMA USULLERİNE İLİŞKİN TEBLİĞ” gereğince petrol ve diğer zararlı madde kirliliğine müdahale yetki belgesi almak isteyen şirket/kurum/kuruluşlarda biyolog olarak çalışabilirsiniz. 49) 24.07.2009 tarih ve 27298 sayılı Resmi Gazete'de yayımlanan (Milli Savunma Bakanlığından) “TÜRK SİLAHLI KUVVETLERİ ÇEVRE DENETİMİ YÖNETMELİĞİ” gereğince Türk Silahlı Kuvvetlerinde Çevre yönetim işlem sorumlusu ve çevre denetim görevlisi olarak çalışabilirsiniz. 50) 15.05.2009 tarih ve 27229 sayılı Resmi Gazete’de yayımlanan (Gıda, Tarım ve Hayvancılık Bakanlığından) “TOHUMCULUK SEKTÖRÜNDE YETKİLENDİRME VE DENETLEME YÖNETMELİĞİ” gereğince Tarımsal Üretim ve Geliştirme Genel Müdürlüğü’nden doku kültürü ile tohumluk üretici belgesi alarak doku kültürü ile tohumluk üreticisi iş yeri açabilirsiniz. 51) 14.01.2009 tarih ve 27110 sayılı Resmi Gazete'de yayımlanan (Gıda, Tarım ve Hayvancılık Bakanlığından) “ULUSAL GIDA REFERANS LABORATUVAR MÜDÜRLÜĞÜ KURULUŞ VE GÖREV ESASLARINA DAİR YÖNETMELİK” gereğince Gıda, Tarım ve Hayvancılık Bakanlığına ait Ulusal Gıda Referans Laboratuvarında çalışabilirsiniz. 52) 21.11.2008 tarih ve 27061 ve 27110 sayılı Resmi Gazete'de yayımlanan (Çevre ve Şehircilik Bakanlığından) “ÇEVRE DENETİMİ YÖNETMELİĞİ” gereğince çevre denetim görevlisi olarak çalışabilirsiniz. 53) 11.08.2007 tarih ve 26610 sayılı Resmi Gazete’de yayımlanan (Orman ve Su İşleri Bakanlığından) “HAYVANAT BAHÇELERİNİN KURULUŞU İLE ÇALIŞMA USUL VE ESASLARI HAKKINDA YÖNETMELİK” gereğince özel veya kamuya ait kurum ve kuruluşların hayvanat bahçelerinde sorumlu yönetici olarak çalışabilirsiniz. 54) 25.06.2007 tarih ve 26563 sayılı Resmi Gazete’de yayımlanan (Sağlık Bakanlığından) “SAĞLIK BAKANLIĞINCA YAPILACAK PİYASA GÖZETİMİ VE DENETİMİNİN USUL VE ESASLARI HAKKINDA YÖNETMELİK” gereğince piyasa gözetimi ve denetimi yapan personel olarak çalışabilirsiniz. 55) 08.10.2005 tarih ve 25960 sayılı Resmi Gazete’de yayımlanan (Sanayi ve Ticaret Bakanlığından) “YETKİLİ SINIFLANDIRICILARIN LİSANS ALMA, FAALİYET VE DENETİMİ HAKKINDA YÖNETMELİK” gereğince özel veya kamuya ait kurum ve kuruluşlarda yetkili sınıflandırıcı personel olarak çalışabilirsiniz. 56) 26.07.2005 tarih ve 25887 sayılı Resmi Gazete’de yayımlanan (Kültür ve Turizm Bakanlığından) “KORUMA AMAÇLI İMAR PLANLARI VE ÇEVRE DÜZENLEME PROJELERİNİN HAZIRLANMASI, GÖSTERİMİ, UYGULAMASI, DENETİMİ VE MÜELLİFLERİNE İLİŞKİN USUL VE ESASLARA AİT YÖNETMELİK” gereğince imar planı hazırlayan özel sektöre ait firmalarda çalışabilirsiniz. 57) 05.07.2005 tarih ve 25866 sayılı Resmi Gazete’de yayımlanan (Sağlık Bakanlığından) “KORDON KANI BANKACILIĞI YÖNETMELİĞİ” gereğince kamu kurum ve kuruluşları ile özel sağlık kurum ve kuruluşlarının banka ekibinde çalışabilirsiniz. 58) 23.05.2005 tarih ve 25823 sayılı Resmi Gazete’de yayımlanan (Türkiye İlaç ve Tıbbi Cihaz Kurumundan) “KOZMETİK YÖNETMELİĞİ” gereğince kozmetik ürünler üreten özel sektöre ait imalathane ve fabrikalarda sorumlu teknik eleman olarak çalışabilirsiniz. 59) 21.04.2005 tarih ve 25793 sayılı Resmi Gazete’de yayımlanan (Sağlık Bakanlığından) “PELOİDLERİN ÜRETİMİ VE SATIŞI HAKKINDA TEBLİĞ” gereğince özel sektöre ait peloid üretim tesislerinde mesul müdür olarak çalışabilirsiniz. 60) 17.02.2005 tarih ve 25730 sayılı Resmi Gazete’de yayımlanan (Sağlık Bakanlığından) “İNSANİ TÜKETİM AMAÇLI SULAR HAKKINDA YÖNETMELİK” gereğince özel sektöre ait firmaların içme suyu işleme fabrikalarında mesul müdür olarak çalışabilirsiniz. 61) 27.01.2005 tarih ve 25709 sayılı Resmi Gazete’de yayımlanan (Türkiye Halk Sağlığı Kurumundan) “BİYOSİDAL ÜRÜNLERİN KULLANIM USUL VE ESASLARI HAKKINDA YÖNETMELİK” gereğince halk sağlığını ve huzurunu bozan zararlılara karşı biyosidal ürün kullanarak mücadele etmek isteyen özel sektöre ait firmalarda mesul müdür ve ekip sorumlusu olarak çalışabilirsiniz. 62) 31.12.2004 tarih ve 25687 sayılı Resmi Gazete’de yayımlanan (Orman ve Su İşleri Bakanlığından) “AVCI EĞİTİMİ VE AVCILIK BELGESİ VERİLMESİ USUL VE ESASLARI HAKKINDA YÖNETMELİK” gereğince avcı eğitimi veren özel şirketlere ait kurslarda uzman öğretici olarak çalışabilirsiniz. 63) 01.12.2004 tarih ve 25657 sayılı Resmi Gazete’de yayımlanan (Türkiye Halk Sağlığı Kurumundan) “DOĞAL MİNERALLİ SULAR HAKKINDA YÖNETMELİK” gereğince özel sektöre ait doğal mineralli su tesislerinde mesul müdür olarak çalışabilirsiniz. 64) 31.07.2004 tarih ve 25539 sayılı Resmi Gazete’de yayımlanan (Adli Tıp Kurumu Başkanlığından) “ADLİ TIP KURUMU KANUNU UYGULAMA YÖNETMELİĞİ” gereğince Morg İhtisas Dairesinde ve Biyoloji İhtisas Dairesinde çalışabilirsiniz. 65) 29.06.2004 tarih ve 25507 sayılı Resmi Gazete’de yayımlanan (Gıda, Tarım ve Hayvancılık Bakanlığından) “SU ÜRÜNLERİ YETİŞTİRİCİLİĞİ YÖNETMELİĞİ” gereğince özel sektöre ait su ürünleri yetiştirilen tesislerde teknik personel olarak çalışabilirsiniz. 66) 16.05.2004 tarih ve 25464 sayılı Resmi Gazete’de yayımlanan (Orman ve Su İşleri Bakanlığından) “AVLAKLARIN KURULUŞU, YÖNETİMİ VE DENETİMİ ESAS VE USULLERİ İLE İLGİLİ YÖNETMELİK” gereğince özel sektöre ait örnek avlaklarda avlak yöneticisi olarak çalışabilirsiniz. 67) 24.07.2001 tarih ve 24472 sayılı Resmi Gazete’de yayımlanan (Sağlık Bakanlığından) “KAPLICALAR YÖNETMELİĞİ” gereğince özel sektöre ait kaplıca tesislerinde mesul müdür olarak çalışabilirsiniz. 68) 04.09.2000 tarih ve 24160 sayılı Resmi Gazete'de yayımlanan (Gıda, Tarım ve Hayvancılık Bakanlığından) “ÖZEL GIDA KONTROL LABORATUVARLARININ KURULUŞ VE FAALİYETLERİ HAKKINDA YÖNETMELİK” gereğince özel gıda kontrol laboratuvarlarında laboratuvar personeli ve sorumlu yönetici olarak çalışabilirsiniz. 69) 10.06.1998 tarih ve 23368 sayılı Resmi Gazete’de yayımlanan (Sağlık Bakanlığından) “GENETİK HASTALIKLAR TANI MERKEZLERİ YÖNETMELİĞİ” gereğince özel veya kamuya ait kurum ve kuruluşların genetik hastalıklar tanı merkezlerinde çalışabilirsiniz. 70) Sağlık Bakanlığından çıkarılan “TÜRKİYE KÖK HÜCRE KOORDİNASYON MERKEZİ ÇALIŞMA ESASLARI YÖNERGESİ” gereğince Sağlık Bakanlığına ait kök hücre koordinasyon merkezinin tarama ve eşleştirme biriminde çalışabilirsiniz. NOTLAR Not 1: Biyologların kamu kurum ve kuruluşlarına atanması ile ilgili yönetmeliklere yer verilmemiştir. Not 2: Biyologların kamu kurum ve kuruluşlarında uzman ve uzman yardımcısı olarak görev yapması ile ilgili yönetmeliklere yer verilmemiştir. Not 3: 2 adet kanun, 50 adet yönetmelik, 16 adet tebliğ ve 2 adet yönergeden oluşan toplam 70 adet mevzuata yer verilmiştir. Hazırlayan: Yalçın Dedeoğlu

http://www.biyologlar.com/turkiyede-biyologlarin-calisma-alanlarinin-listesi

Yeni çalışma sonuçlarına göre D vitamini soğuktan ve Gripten koruyor!

Yeni çalışma sonuçlarına göre D vitamini soğuktan ve Gripten koruyor!

Yeni bir araştırmaya göre, D vitamini takviyesi soğuk algınlığı ve grip de dahil olmak üzere akut solunum yolu enfeksiyonlarına karşı özellikle çok eksik kişilerde korunmaya yardımcı olabilir.

http://www.biyologlar.com/yeni-calisma-sonuclarina-gore-d-vitamini-soguktan-ve-gripten-koruyor

Antibiyotik Kıyameti Ve Bilinmesi Gerekenler

Antibiyotik Kıyameti Ve Bilinmesi Gerekenler

Antibiyotiklerin direnci bizler antibiyotikleri sıklık ve hevesle kullanmadan çok önce başlamıştır. Modern bakterilerin antibiyotiklere karşı kendilerini korumak için kullandıkları genler, 30.000 yıldan uzun bir süredir Arctic permafrost'ta donmuş antik bakterilerde bulunmuştur. (Credit: Alamy)

http://www.biyologlar.com/antibiyotik-kiyameti-ve-bilinmesi-gerekenler

Davranışın Üzerinde Genler ve Çevrenin Etkisi

Davranış nasıl türden türe aktarılır? Çevre mi Kalıtım mı daha etkilidir? Sorularını cevaplamaya yönelik yapılmış araştırmalardan ilginizi çekeceğini düşündüğüm iki tanesini sizlerle anlaşılır biçimde açıklayarak paylaşmak istedim. İlk araştırma, iki farklı kuş türünün ve çiftleşmelerinden oluşan melezlerin yuva yapım davranışlarının incelenmesi üzerine. Uzun materyal ile sıkıştırmadan yuva yapan tür: Parlak renkli Afrika papağanlarının çoğu türü ağaç kovuklarına yuvarlak kupa biçimli yuva yaparlar. Dişiler genellikle gagaları ile kestikleri bitki parçacıklarını (ya da labaratuvar ortamında kağıt) kullanarak yuvalar yaparlar. Fischer papağanları (Agapornis fischeri) isimli bir tür nispeten daha uzun parçaları kullanarak bunları bir seferde yuvasına taşır. Kısa materyal ile sıkıştırarak yuva yapan tür: Aynı gruptan pembe yüzlü papağanlar (Agapornis roseicollis) daha kısa bant biçimli bitkisel materyalleri keserler ve birkaç tur atarak yuvaya taşıdıktan sonra bunları sıkıştırarak yuvayı yaparlar. Bu sıkıştırma davranışı oldukça karmaşık bir dizi hareketi içermektedir. Zira her bir bant doğru bir düzenle yumuşak materyal ile birlikte kullanılarak yerleştirilmelidir. Bu iki türün hibriti olan dişilerin yuva yapımında orta materyal kullandığı ve ilk mevsimde başarısız oldukları gözlenir: Bu yukarıda bahsedilen iki tür oldukça yakın akrabadır. Deneysel koşullarda yapay olarak çiftleştirilebilirler. Ortaya çıkan yeni hibrit dişiler ortalama boyda olan yuva malzemeleri kullanır. Materyal ortalama boylarda kesilerek hazırlanmakta ve daha ilginci bunlar yine hibrit bir şekilde taşınmaktadır. Bazen bunları ince tüy materyalin arasına sıkıştırmakta bazen de bunu yapmadan yalnızca baş hareketlerini kullanarak dönmektedirler. Bazen de düzensiz biçimde bitkisel materyal aralara sıkıştırılmakta ya da basitçe bırakılmaktadır. Sonuçta kuşlar ince bant şeklindeki bitkisel materyali gagaları ile taşımayı öğrenmekte ve iyi-kötü bir yuva oluşturmaktadırlar. Sonraki mevsimlerde yalnızca baş çevirme gözlenir: Birkaç yıl sonra kuşlar yine baş çevirme hareketi yapmaya devam etmektedirler. Bu gözlemlere göre iki türdeki davranışa ait fenotipik farklılıklar değişik genetiplerinden kaynaklanmaktadır. Yine deneyim ile davranışta, zaman içinde düzelmeler olabileceğini gözlemledik. Örneğin, hibrit kuşlar bir süre sonra ince materyal taşımayı öğrenmiştir. Notlar: Hibrit: melez Baş çevirme hareketi: Kısa materyal kullanan pembe yüzlü papağanın yuva yaparken uyguladığı karmaşık davranışlar ritüeli. Genetip: Bir canlının sahip olduğu tüm genlerin toplamıdır. Fenotip: Bir canlının sahip olduğu genlerin o canlının davranışına, morfolojisine, fizyolojisine yansıyan özelliklerdir. Yani genotip'in canlıdaki etkin kısmı fenotip'i oluşturur. Genotipik özelliklerin tamamı aktif değildir. İkinci araştırma ise kazıcı yabanarılarının yuva yerini bulma davranışı, yani çevrenin davranışlara etkisi ile ilgili. Dişi bir kazıcı yabanarısı yer altında dört ya da beş farklı yuvaya sahiptir. Her gün düzenli olarak tüm yuvaları ziyaret eder ve larvalarına yiyecek taşır. Biyolog Niko Tinbergen yaban arılarının yuva yerini bulabilmek için bazı işaret noktaları kullandığını gösteren bir düzeneği hazırlamıştır. Tinbergen önce yuva yerilerinden birini bazı kozalakları kullanarak daire içine almıştır. Ana yabanarısı yuvayı ziyaret edip gittikten sonra Tinbergen kozalakları yuvanın birkaç metre uzağına taşıyıp aynı biçimde yeniden yerleştirmiştir. Yabanarısı geri döndüğünde yanlışlıkla, yuva yerine kozalakların oluşturduğu çemberin tam ortasına uçmuştur. Bu sonuçlar deneyin yabanarılarının yuva yerlerini bulabilmek için bazı görsel işaretleri kullandığı hipotezini doğrulamıştır. Deneyin ilerleyen aşamalarında Tinbergen kozalakları gerçek yuvanın olduğu eski yerine yerleştirmiş, ancak bu kez bunları üçgen biçiminde dizmiştir. Yuvanın yan kısmına da taşları kullanarak yuvarlak biçimli bir işaretleme hazırlamıştır. Yabanarısı geri döndüğünde taşlardan yapılmış yuvarlak işaretlere doğru uçmuştur. Bu sonuç böceğin fiziksel nesneleri değil onların düzenlenme biçimlerini gözlediklerini göstermektedir. Kaynak : Biyoloji - Campbell ; Reece- Palme Yayıncılık

http://www.biyologlar.com/davranisin-uzerinde-genler-ve-cevrenin-etkisi

Jeomorfoloji Nedir

Güneş Sistemi’nin Oluşumu Güneş Sistemi’nin oluşumu ile ilgili farklı teoriler ortaya atılmıştır. En geçerli teori sayılan Kant-Laplace teorisine Nebula teorisi de denir. Bu teoriye göre, Nebula adı verilen kızgın gaz kütlesi ekseni çevresinde sarmal bir hareketle dönerken, zamanla soğuyarak küçülmüştür. Bu dönüş etkisiyle oluşan çekim merkezinde Güneş oluşmuştur. Gazlardan hafif olanları Güneş tarafından çekilmiş, çekim etkisi dışındakiler uzay boşluğuna dağılmış ağır olanlar da Güneş’ten farklı uzaklıklarda soğuyarak gezegenleri oluşturmuşlardır. Dünya’nın Oluşumu Dünya, Güneş Sistemi oluştuğunda kızgın bir gaz kütlesi halindeydi. Zamanla ekseni çevresindeki dönüşünün etkisiyle, dıştan içe doğru soğumuş, böylece iç içe geçmiş farklı sıcaklıktaki katmanlar oluşmuştur. Günümüzde iç kısımlarda yüksek sıcaklık korunmaktadır. Dünya’nın oluşumundan bugüne kadar geçen zaman ve Dünya’nın yapısı jeolojik zamanlar yardımıyla belirlenir. Jeolojik Zamanlar Yaklaşık 4,5 milyar yaşında olan Dünya, günümüze kadar çeşitli evrelerden geçmiştir. Jeolojik zamanlar adı verilen bu evrelerin her birinde , değişik canlı türleri ve iklim koşulları görülmüştür. Dünya’nın yapısını inceleyen jeoloji bilimi, jeolojik zamanlar belirlenirken fosillerden ve tortul tabakaların özelliklerinden yararlanılır. Jeolojik zamanlar günümüze en yakın zaman en üstte olacak şekilde sıralanır. • Dördüncü Zaman • Üçüncü Zaman • İkinci Zaman • Birinci Zaman • İlkel Zaman İlkel Zaman Günümüzden yaklaşık 600 milyon yıl önce sona erdiği varsayılan jeolojik zamandır. İlkel zamanın yaklaşık 4 milyar yıl sürdüğü tahmin edilmektedir. Zamanın önemli olayları :  Sularda tek hücreli canlıların ortaya çıkışı  En eski kıta çekirdeklerinin oluşumu İlkel zamanı karakterize eden canlılar alg ve radiolariadır. Birinci Zaman (Paleozoik) Günümüzden yaklaşık 225 milyon yıl önce sona erdiği varsayılan jeolojik zamandır. Birinci zamanın yaklaşık 375 milyon yıl sürdüğü tahmin edilmektedir. Zamanın önemli olayları :  Kaledonya ve Hersinya kıvrımlarının oluşumu  Özellikle karbon devrinde kömür yataklarının oluşumu  İlk kara bitkilerinin ortaya çıkışı  Balığa benzer ilk organizmaların ortaya çıkışı Birinci zamanı karakterize eden canlılar graptolith ve trilobittir. İkinci Zaman (Mezozoik) Günümüzden yaklaşık 65 milyon yıl önce sona erdiği varsayılan jeolojik zamandır. İkinci zamanın yaklaşık 160 milyon yıl sürdüğü tahmin edilmektedir. İkinci zamanı karakterize eden dinazor ve ammonitler bu zamanın sonunda yok olmuşlardır. Zamanın önemli olayları :  Ekvatoral ve soğuk iklimlerin belirmesi  Kimmeridge ve Avustrien kıvrımlarının oluşumu İkinci zamanı karakterize eden canlılar ammonit ve dinazordur. Üçüncü Zaman (Neozoik) Günümüzden yaklaşık 2 milyon yıl önce sona erdiği varsayılan jeolojik zamandır. Üçüncü zamanın yaklaşık 63 milyon yıl sürdüğü tahmin edilmektedir. Zamanın önemli olayları :  Kıtaların bugünkü görünümünü kazanmaya başlaması  Linyit havzalarının oluşumu  Bugünkü iklim bölgelerinin ve bitki topluluklarının belirmeye başlaması  Alp kıvrım sisteminin gelişmesi  Nümmilitler ve memelilerin ortaya çıkışı Üçüncü zamanı karakterize eden canlılar nummilit, hipparion, elephas ve mastadondur. Dördüncü Zaman (Kuaterner) Günümüzden 2 milyon yıl önce başladığı ve hala sürdüğü varsayılan jeolojik zamandır. Zamanın önemli olayları :  İklimde büyük değişikliklerin ve dört buzul döneminin (Günz, Mindel, Riss, Würm) yaşanması  İnsanın ortaya çıkışı Dördüncü zamanı karakterize eden canlılar mamut ve insandır. Dünya’nın İç Yapısı Dünya, kalınlık, yoğunluk ve sıcaklıkları farklı, iç içe geçmiş çeşitli katmanlardan oluşmuştur. Bu katmanların özellikleri hakkında bilgi edinilirken deprem dalgalarından yararlanılır.  Çekirdek  Manto  Taşküre (Litosfer) Deprem Dalgaları Deprem dalgaları farklı dalga boylarını göstermektedir. Deprem dalgaları yoğun tabakalardan geçerken dalga boyları küçülür, titreşim sayısı artar. Yoğunluğu az olan tabakalarda ise dalga boyu uzar, titreşim sayısı azalır. Çekirdek : Yoğunluk ve ağırlık bakımından en ağır elementlerin bulunduğu bölümdür. Dünya’nın en iç bölümünü oluşturan çekirdeğin, 5120-2890 km’ler arasındaki kısmına dış çekirdek, 6371-5150 km’ler arasındaki kısmına iç çekirdek denir. İç çekirdekte bulunan demir-nikel karışımı çok yüksek basınç ve sıcaklık etkisiyle kristal haldedir. Dış çekirdekte ise bu karışım ergimiş haldedir. Manto Litosfer ile çekirdek arasındaki katmandır. 100-2890 km’ler arasında bulunan mantonun yoğunluğu 3,3-5,5 g/cm3 sıcaklığı 1900-3700 °C arasında değişir. Manto, yer hacminin en büyük bölümünü oluşturur. Yapısında silisyum, magnezyum , nikel ve demir bulunmaktadır. Mantonun üst kesimi yüksek sıcaklık ve basınçtan dolayı plastiki özellik gösterir. Alt kesimleri ise sıvı halde bulunur. Bu nedenle mantoda sürekli olarak alçalıcı-yükselici hareketler görülür. Mantodaki Alçalıcı-Yükselici Hareketler Mantonun alt ve üst kısımlarındaki yoğunluk farkı nedeniyle magma adı verilen kızgın akıcı madde yerkabuğuna doğru yükselir. Yoğunluğun arttığı bölümlerde ise magma yerin içine doğru sokulur. Taşküre (Litosfer) Mantonun üstünde yer alan ve yeryüzüne kadar uzanan katmandır. Kalınlığı ortalama 100 km’dir. Taşküre’nin ortalama 35 km’lik üst bölümüne yerkabuğu denir. Daha çok silisyum ve alüminyum bileşimindeki taşlardan oluşması nedeniyle sial de denir. Yerkabuğunun altındaki bölüme ise silisyum ve magnezyumdan oluştuğu için sima denir. Sial, okyanus tabanlarında incelir yer yer kaybolur. Örneğin Büyük Okyanus tabanının bazı bölümlerinde sial görülmez. Yeryüzünden yerin derinliklerine inildikçe 33 m’de bir sıcaklık 1 °C artar. Buna jeoterm basamağı denir. Kıtalar ve Okyanuslar Yeryüzünün üst bölümü kara parçalarından ve su kütlelerinden oluşmuştur. Denizlerin ortasında çok büyük birer ada gibi duran kara kütlelerine kıta denir. Kuzey Yarım Küre’de karalar, Güney Yarım Küre’den daha geniş yer kaplar. Asya, Avrupa, Kuzey Amerika’nın tamamı ve Afrika’nın büyük bir bölümü Kuzey Yarım Küre’de yer alır. Güney Amerika’nın ve Afrika’nın büyük bir bölümü, Avustralya ve çevresindeki adalarla Antartika kıtası Güney Yarım Küre’de bulunur. Yeryüzünün yaklaşık ¾’ü sularla kaplıdır. Kıtaların birbirinden ayıran büyük su kütlelerine okyanus denir. Kara ve Denizlerin Farklı Dağılışının Sonuçları Karaların Kuzey Yarım Küre’de daha fazla yer kaplaması nedeniyle, Kuzey Yarım Küre’de; • Yıllık sıcaklık ortalaması daha yüksektir. • Sıcaklık farkları daha belirgindir. • Eş sıcaklık eğrileri enlemlerden daha fazla sapma gösterir. • Kıtalar arası ulaşım daha kolaydır. • Nüfus daha kalabalıktır. • Kültürlerin gelişmesi ve yayılması daha kolaydır. • Ekonomi daha hızlı ve daha çok gelişmiştir. Hipsografik Eğri Yeryüzünün yükseklik ve derinlik basamaklarını gösteren eğridir. Kıta Platformu : Derin deniz platformundan sonra yüksek dağlar ile kıyı ovaları arasındaki en geniş bölümdür. Karaların Ortalama Yüksekliği : Karaların ortalama yüksekliği 1000 m dir. Dünya’nın en yüksek yeri deniz seviyesinden 8840 m yükseklikteki Everest Tepesi’dir. Kıta Sahanlığı : Deniz seviyesinin altında, kıyı çizgisinden -200 m derine kadar inen bölüme kıta sahanlığı (şelf) denir. Şelf kıtaların su altında kalmış bölümleri sayılır. Kıta Yamacı : Şelf ile derin deniz platformunu birbirine bağlayan bölümdür. Denizlerin Ortalama Derinliği : Denizlerin ortalama derinliği 4000 m dir. Dünya’nın en derin yeri olan Mariana Çukuru denzi seviyesinden 11.035 m derinliktedir. Derin Deniz Platformu : Kıta yamaçları ile çevrelenmiş, ortalama derinliği 6000 m olan yeryüzünün en geniş bölümüdür. Derin Deniz Çukurları : Sima üzerinde hareket eden kıtaların, birbirine çarptıkları yerlerde bulunur. Yeryüzünün en dar bölümüdür. Yerkabuğunu Oluşturan Taşlar Yerkabuğunun ana malzemesi taşlardır. Çeşitli minerallerden ve organik maddelerden oluşan katı, doğal maddelere taş ya da kayaç denir. Yer üstünde ve içinde bulunan tüm taşların kökeni magmadır. Ancak bu taşların bir kısmı bazı olaylar sonucu değişik özellikler kazanarak çeşitli adlar almıştır. Oluşumlarına göre taşlar üç grupta toplanır. • Püskürük (Volkanik) Taşlar • Tortul Taşlar • Başkalaşmış (Metamorfik) Taşlar UYARI : Tortul taşları, püskürük ve başkalaşmış taşlardan ayıran en önemli özellik fosil içermeleridir. Püskürük (Volkanik) Taşlar Magmanın yeryüzünde ya da yeryüzüne yakın yerlerde soğumasıyla oluşan taşlardır. Katılaşım taşları adı da verilen püskürük taşlar magmanın soğuduğu yere göre iki gruba ayrılır.  Dış Püskürük Taşlar  İç Püskürük Taşlar Dış Püskürük Taşlar Magmanın yeryüzüne çıkıp, yeryüzünde soğumasıyla oluşan taşlardır. Soğumaları kısa sürede gerçekleştiği için Küçük kristalli olurlar. Dış püskürük taşların en tanınmış örnekleri bazalt, andezit, obsidyen ve volkanik tüftür. Bazalt : Koyu gri ve siyah renklerde olan dış püskürük bir taştır. Mineralleri ince taneli olduğu için ancak mikroskopla görülebilir. Bazalt demir içerir. Bu nedenle ağır bir taştır. Andezit : Eflatun, mor, pembemsi renkli dış püskürük bir taştır. Ankara taşı da denir. Dağıldığında killi topraklar oluşur. Obsidyen (Volkan Camı) : Siyah, kahverengi, yeşil renkli ve parlak dış püskürük bir taştır. Magmanın yer yüzüne çıktığında aniden soğuması ile oluşur. Bu nedenle camsı görünüme sahiptir. Volkanik Tüf : Volkanlardan çıkan kül ve irili ufaklı parçaların üst üste yığılarak yapışması ile oluşan taşlara volkan tüfü denir. İç Püskürük Taşlar Magmanın yeryüzünün derinliklerinde soğuyup, katılaşmasıyla oluşan taşlardır. Soğuma yavaş olduğundan iç püskürükler iri kristalli olurlar. İç püskürük taşların en tanınmış örnekleri granit, siyenit ve diyorittir. Granit : İç püskürük bir taştır. Kuvars, mika ve feldspat mineralleri içerir. Taneli olması nedeniyle mineralleri kolayca görülür. Çatlağı çok olan granit kolayca dağılır, oluşan kuma arena denir. Siyenit : Yeşilimsi, pembemsi renkli iç püskürük bir taştır. Adını Mısır’daki Syene (Asuvan) kentinden almıştır. Siyenit dağılınca kil oluşur. Diyorit : Birbirinden gözle kolayca ayrılabilen açık ve koyu renkli minerallerden oluşan iç püskürük bir taştır. İri taneli olanları, ince tanelilere göre daha kolay dağılır. Tortul Taşlar Denizlerde, göllerde ve çukur yerlerde meydana gelen tortulanma ve çökelmelerle oluşan taşlardır. Tortul taşların yaşı içerdikleri fosillerle belirlenir. Tortul taşlar, tortullanmanın çeşidine göre 3 gruba ayrılır. • Kimyasal Tortul Taşlar • Organik Tortul Taşlar • Fiziksel Tortul Taşlar Fosil : Jeolojik devirler boyunca yaşamış canlıların taşlamış kalıntılarına fosil denir. Kimyasal Tortul Taşlar Suda erime özelliğine sahip taşların suda eriyerek başka alanlara taşınıp tortulanması ile oluşur. Kimyasal tortul taşların en tanınmış örnekleri jips, traverten, kireç taşı (kalker), çakmaktaşı (silex)’dır. Jips (Alçıtaşı) : Beyaz renkli, tırnakla çizilebilen kimyasal tortul bir taştır. Alçıtaşı olarak da isimlendirilir. Traverten : Kalsiyum biokarbonatlı yer altı sularının mağara boşluklarında veya yeryüzüne çıktıkları yerlerde içlerindeki kalsiyum karbonatın çökelmesi sonucu oluşan kimyasal tortul bir taştır. Kalker (Kireçtaşı) : Deniz ve okyanus havzalarında, erimiş halde bulunan kirecin çökelmesi ve taşlaşması sonucu oluşan taştır. Çakmaktaşı (Silex) : Denizlerde eriyik halde bulunan silisyum dioksitin (SİO2) çökelmesi ile oluşan taştır. Kahverengi, gri, beyaz, siyah renkleri bulunur. Çok sert olması ve düzgün yüzeyler halinde kırılması nedeniyle ilkel insanlar tarafından alet yapımında kullanılmıştır. Organik Tortul Taşlar Bitki ya da hayvan kalıntılarının belli ortamlarda birikmesi ve zamanla taşlaşması sonucu oluşur. Organik tortul taşların en tanınmış örnekleri mercan kalkeri, tebeşir ve kömürdür. Mercan Kalkeri : Mercan iskeletlerinden oluşan organik bir taştır. Temiz, sıcak ve derinliğin az olduğu denizlerde bulunur. Ada kenarlarında topluluk oluşturanlara atol denir. Kıyı yakınlarında olanlar ise, mercan resifleridir. Tebeşir : Derin deniz canlıları olan tek hücreli Globugerina (Globijerina)’ların birikimi sonucu oluşur. Saf, yumuşak, kolay dağılabilen bir kalkerdir. Gözenekli olduğu için suyu kolay geçirir. Kömür : Bitkiler öldükten sonra bakteriler etkisiyle değişime uğrar. Eğer su altında kalarak değişime uğrarsa, C (karbon) miktarı artarak kömürleşme başlar. C miktarı % 60 ise turba, C miktarı % 70 ise linyit, C miktarı % 80 – 90 ise taş kömürü, C miktarı % 94 ise antrasit adını alır. Fiziksel (Mekanik) Tortul Taşlar Akarsuların, rüzgarların ve buzulların, taşlardan kopardıkları parçacıkların çökelip, birikmesi ile oluşur. Fiziksel (mekanik) tortul taşların en tanınmış örnekleri kiltaşı (şist), kumtaşı (gre) ve çakıltaşı (konglomera)’dır. Kiltaşı (Şist) : Çapı 2 mikrondan daha küçük olan ve kil adı verilen tanelerin yapışması sonucu oluşan fiziksel tortul bir taştır. Kumtaşı (Gre) : Kum tanelerinin doğal bir çimento maddesi yardımıyla yapışması sonucu oluşan fiziksel tortul bir taştır. Çakıltaşı (Konglomera) : Genelde yuvarlak akarsu çakıllarının doğal bir çimento maddesi yardımıyla yapışması sonucu oluşur. Başkalaşmış (Metamorfik) Taşlar : Tortul ve püskürük taşların, yüksek sıcaklık ve basınç altında başkalaşıma uğraması sonucu oluşan taşlardır. Başkalaşmış taşların en tanınmış örnekleri mermer, gnays ve filattır. Mermer : Kalkerin yüksek sıcaklık ve basınç altında değişime uğraması, yani metamorfize olması sonucu oluşur. Gnays : Granitin yüksek sıcaklık ve basınç altında değişime uğraması yani metamorfize olması sonucu oluşur. Filat : Kiltaşının (şist) yüksek sıcaklık ve basınç altında değişime uğraması yani metamorfize olması sonucu oluşur. Yeraltı Zenginliklerinin Oluşumu Yerkabuğunun yapısı ve geçirmiş olduğu evrelerle yer altı zenginlikleri arasında sıkı bir ilişki vardır. Yer altı zenginliklerinin oluşumu 3 grupta toplanır: • Volkanik olaylara bağlı olanlar; Krom, kurşun, demir, nikel, pirit ve manganez gibi madenler magmada erimiş haldedir. • Organik tortulanmaya bağlı olanlar; Taş kömürü, linyit ve petrol oluşumu. • Kimyasal tortulanmaya bağlı olanlar; Kayatuzu, jips, kalker, borasit ve potas yataklarının oluşumu. İç Güçler ve Etkileri Faaliyetleri için gerekli enerjiyi yerin içinden alan güçlerdir. İç güçlerin oluşturduğu yerşekilleri dış güçler tarafından aşındırılır. İç güçlerin oluşturduğu hareketlerin bütününe tektonik hareket denir. Bunlar; 1. Orojenez 2. Epirojenez 3. Volkanizma 4. Depremler’dir. UYARI : İç kuvvetler gerekli olan enerjiyi mantodan alır. Deniz tabanı yayılmaları, kıta kaymaları, kıta yaylanmaları, dağ oluşumu ve tektonik depremler mantodaki hareketlerden kaynaklanır. Orojenez (Dağ Oluşumu) Jeosenklinallerde biriken tortul tabakaların kıvrılma ve kırılma hareketleriyle yükselmesi olayına dağ oluşumu ya da orojenez denir. Kıvrım hareketleri sırasında yükselen bölümlere antiklinal, çöken bölümlere ise senklinal adı verilir. Antiklinaller kıvrım dağlarını, senklinaller ise çöküntü alanlarını oluşturur. Jeosenklinal : Akarsular, rüzgarlar ve buzullar, aşındırıp, taşıdıkları maddeleri deniz ya da okyanus tabanlarında biriktirirler. Tortullanmanın görüldüğü bu geniş alanlara jeosenklinal denir. Fay Yerkabuğu hareketleri sırasında şiddetli yan basınç ve gerilme kuvvetleriyle blokların birbirine göre yer değiştirmesine fay denir. Fay elemanları şunlardır: Yükselen Blok : Kırık boyunca birbirine göre yer değiştiren bloklardan yükselen kısma denir. Alçalan Blok : Kırık boyunca birbirine göre yer değiştiren bloklardan alçalan kısma denir. Fay atımı : Yükselen ve alçalan blok arasında beliren yükseklik farkına fay atımı denir. Fay açısı : Dikey düzlem ile fay düzlemin yaptığı açıya fay açısı denir. Fay aynası : Fay oluşumu sırasında yükselen ve alçalan blok arasındaki yüzey kayma ve sürtünme nedeniyle çizilir., cilalanır. Parlak görünen bu yüzeye fay aynası denir. Faylar boyunca yüksekte kalan yerkabuğu parçalarına horst adı verilir. Buna karşılık faylar boyunca çöken kısımlara graben denir. Horstlar kırık dağlarını, grabenler ise çöküntü hendeklerini oluşturur. Türkiye’de Orojenez Türkiye’deki dağlar Avrupa ile Afrika kıtaları arasındaki Tetis jeosenklinalinde bulunan tortul tabakaların orojenik hareketi sonucunda oluşmuştur. Kuzey Anadolu ve Toros Dağları Alp Orojenezi’nin Türkiye’deki kuzey ve güney kanadını oluşturmaktadır. Ege bölgesi’ndeki horst ve grabenler de aynı sistemin içinde yer almaktadır. Epirojenez Karaların toptan alçalması ya da yükselmesi olayına epirojenez denir. Bu hareketler sırasında yeryüzünde geniş kubbeleşmeler ile yayvan büyük çukurlaşmalar olur. Orojenik hareketlerin tersine epirojenik hareketlerde tabakaların duruşunda bozulma söz konusu değildir. Dikey yönlü hareketler sırasındaki yükselmelerle jeoantiklinaller, çukurlaşmalar sırasında ise okyanus çanakları, yani jeosenklinaller oluşur. UYARI : III. Zaman sonları, IV. Zamanın başlarında Anadolu’nun epirojenik olarak yükselmesi ortalama yükseltiyi artırmıştır. Bu nedenle Anadolu’da yüksek düzlükler geniş yer kaplar. Transgresyon – Regrasyon Epirojenik hareketlere bağlı olarak her devirde kara ve deniz seviyeleri değişmiştir. İklim değişiklikleri ya da tektonik hareketler nedeniyle denizin karalara doğru ilerlemesine transgresyon (deniz ilerlemesi) , denizin çekilmesine regresyon (deniz gerilemesi) denir. Volkanizma Yerin derinliklerinde bulunan magmanın patlama ve püskürme biçiminde yeryüzüne çıkmasına volkanizma denir. Volkanik hareketler sırasında çıkan maddeler bir baca etrafında yığılarak yükselir ve volkanlar (yanardağlar) oluşur. Volkan Bacası : Mağmanın yeryüzüne ulaşıncaya kadar geçtiği yola volkan bacası denir. Volkan Konisi : Lav, kül, volkan bombası gibi volkanik maddelerin üst üste yığılması ile oluşan koni biçimli yükseltiye volkan konisi, koni üzerinde oluşan çukurluğa krater denir. Volkanlardan Çıkan Maddeler Volkanlardan çıkan maddeler değişik isimler alır : • Lav • Volkan Bombası • Volkan Külü • Volkanik Gazlar Lav Volkanlardan çıkarak yeryüzüne kadar ulaşan eriyik haldeki malzemeye lav denir. Lavın içerisindeki SİO2 (Silisyum dioksit) oranı lavın tipini ve volkanizmanın karakterini belirler. Asit Lav : SİO2 % 66 ise asit lavlar oluşur. Fazla akıcı değillerdir. Orta Tip Lav : SİO2 oranı % 33 - % 66 ise lav orta tiptir. Bu tip lavların çıktığı volkanlarda volkanik kül miktarı azdır. Bazik Lav : SİO2 oranı < % 33 ise lav bazik karakterli ve akıcıdır. Patlamasız, sakin bir püskürme oluşur. Volkan Bombası : Volkan bacasından atılan lav parçalarının havada dönerek soğuması ile oluşur. Volkan Külü : Gaz püskürmeleri sırasında oluşan, basınçlı volkan bacasından çıkan küçük taneli malzemeye kül denir. Volkanik küllerin bir alanda birikmesiyle volkanik tüfler oluşur. Volkanik Gazlar : Volkanizma sırasında subuharı, karbon dioksit, kükürt gibi gazlar magmadan hızla ayrışarak yeryüzüne çıkar. Büyük volkanik bulutların oluşmasını sağlar. Püskürme Şekilleri Volkanik hareketlerin en yoğun olduğu yerler, yerkabuğunun zayıf olduğu noktalar, çatlaklar ve yarıklardır. Magmanın yeryüzüne ulaştığı yere göre adlandırılan, merkezi çizgisel ve alansal olarak üç değişik püskürme şekli vardır : Merkezi Püskürme : Magma yeryüzüne bir noktadan çıkıyorsa, buna merkezi püskürme denir. Çizgisel Püskürme : Magma yeryüzüne bir yarık boyunca çıkıyorsa, buna çizgisel püskürme denir. Alansal Püskürme : Magma yeryüzüne yaygın bir alandan çıkıyorsa, buna alansal püskürme denir. Volkan (Yanardağ) Biçimleri Volkanların yapısı ve biçimleri yeryüzüne çıkan magmanın bileşimine, miktarına ve çıktığı yere göre değişir. Tabla Biçimindeki Volkanlar : Akıcı lavların geniş alanlara yayılmaları sonucunda oluşur. Örneğin Hindistan’daki Dekkan Platosu Kalkan Biçimindeki Volkanlar : Akıcı lavların bir bacadan çıkarak birikmesi sonucunda oluşan, geniş alanlı ve kubbemsi bir görünüşe sahip volkanlardır. Örneğin : Güneydoğu Anadolu’daki Karacadağ Volkanı Koni Biçimindeki Volkanlar : Magmadan değişik dönemlerde yükselen, farklı karakterdeki malzemenin birikmesi ile oluşur. Bu volkanların kesitinde, farklı karakterdeki malzeme katmanları ardarda görüldüğü için tabakalı volkanlar da denir. Örneğin ülkemizdeki Erciyes, Nemrut, Hasan ve Ağrı volkanları koni biçimli volkanlardır. Tüf Konileri : Volkanlardan çıkan küllerin ve diğer kırıntılı maddelerin birikmesi ile oluşan konilere denir. Örneğin ülkemizde Kula ve Karapınar çevresindeki koniler kül konileridir. Volkanik Kuşaklar Yeryüzünde bilinen volkanların sayısı binlere ulaşmasına karşın ancak 516 kadarı tarihi çağlarda faaliyet göstermiş, bu nedenle aktif volkanlar olarak kabul edilmişlerdir. Yerkabuğunu bloklar halinde bölen kırıklar üzerinde bulunan volkanlar, bir çizgi doğrultusunda sıralanmakta adeta kuşak oluşturmaktadır. Dünya’daki Volkanlar Dünya üzerindeki aktif volkanlar üç ana bölgede toplanmıştır. Volkanların en yoğun olduğu bölge Pasifik Okyanusu’nun kenarlarıdır. Volkanların aktif olduğu ikinci bölge Alp-Himalaya kıvrım kuşağı, üçüncü bölge ise okyanus ortalarıdır. Okyanus Ortaları Yerkabuğunun üst bölümünü oluşturan sial okyanus tabanlarında daha incedir. Bu ince kabuk mantodaki yükselici hareketler nedeniyle yırtılarak ayrılır. Ayrılma bölgesi adı verilen bu bölümden magma yükselir ve okyanus tabanına yayılır. Bu durum okyanus ortalarında aktif volkanların bulunmasının nedenidir. Türkiye’deki Volkanlar Alp-Himalaya kıvrım kuşağında yer alan Türkiye’de volkanlar, tektonik hatlara uygun olarak beş bölgede yoğunlaşmıştır. Ancak günümüzde Türkiye’de aktif volkan bulunmamaktadır. Depremler Yerkabuğunun derinliklerinde doğal nedenlerle oluşan salınım ve titreşim hareketleridir. Yerkabuğunun titreşimi sırasında değişik özellikteki dalgalar oluşmakta ve bunlar depremin merkezinden çevreye doğru farklı hız ve özellikle yayılmaktadır. Deprem dalgaları P, S, L dalgaları olarak 3 çeşittir. Depremlere neden olan olayların kaynaklandığı yerden uzaklaşıldıkça depremin etkisi azalır. Oluşum nedenlerine göre depremler, 3 gruba ayrılır : • Volkanik Depremler • Çökme Depremleri • Tektonik Depremler P, S, L Dalgaları P dalgaları (Primer dalgalar), titreşim hareketi ile yayılma doğrultusunun aynı yönde olduğu ve yayılma hızının en fazla olduğu dalgalardır. S dalgaları (Sekonder dalgalar), titreşim hareketlerinin yayılma doğrultusuna dik ve bir düzlem üzerinde aşağı yukarı olduğu dalgalardır. L dalgaları (Longitidunal dalgalar), yüzey dalgaları veya uzun dalgalar olarak da tanımlanır. Bu dalgaların hızları diğer dalgalara göre daha azdır. Volkanik Depremler Aktif volkanların bulunduğu yerlerde, patlama ve püskürmelere bağlı oluşan yer sarsıntılarıdır. Etki alanları dardır. Çökme Depremleri Bu tür depremler, eriyebilen taşların bulunduğu yerlerdeki yer altı mağaralarının tavanlarının çökmesiyle oluşur. Ayrıca kömür ocaklarının ve galerilerinin çökmesi de bu tür depremlere neden olur. Çok küçük ölçülü sarsıntılardır. Etki alanları dar ve zararları azdır. Tektonik Depremler Yerkabuğunun üst katlarındaki kırılmalar sırasında oluşan yer sarsıntılarıdır. Bu sarsıntılar çevreye deprem dalgaları olarak yayılır. Yeryüzünde oluşan depremlerin büyük bölümü tektonik depremlerdir. Etki alanları geniş, şiddetleri fazladır. En çok can ve mal kaybına neden olan depremlerdir. Örneğin ülkemizde 1995’te Afyon’un Dinar ilçesinde, 1998’de Adana’da oluşan depremler tektonik kökenlidir. UYARI : Tektonik depremlerin en etkili olduğu alanlar dış merkez ve yakın çevresidir. Depremin İç ve Dış Merkezi Depreme neden olan olayın kaynaklandığı noktaya odak, iç merkez ya da hiposantr denir. Yeryüzünde depremin iç merkezine en yakın olan noktaya ise, dış merkez ya da episantr denir. Depremin en şiddetli olduğu episantrdan uzaklaşıldıkça depremin etkisi azalır. Yer sarsıntıları sismograf ile kaydedilir. Deprem’in şiddeti günümüzde Richter ölçeğine göre değerlendirilir. Depremin Etkileri ve Korunma Yolları Depremler önceden tahmin edilmesi mümkün olmayan yer hareketleridir. Ancak alınacak bazı önlemlerle depremlerin zarar derecesi azaltılabilir. Depremin Etkileri : Depremin yıkıcı etkisi deprem şiddetine, dış merkeze (episantr) olan uzaklığa, zeminin yapısına, binaların özelliğine ve kütlenin eski ya da yeni oluşuna bağlı olarak değişir. Depremden Korunma Yolları Depremin yıkıcı etkisi birtakım önlemlerle azaltılabilir. Bunun için, • Yerleşim yerlerini deprem kuşakları dışında seçmek • Yerleşim birimlerini sağlam araziler üzerinde kurmak • İnşaatlarda depreme dayanıklı malzemeler kullanmak • Çok katlı yapılardan kaçınmak gerekir. Deprem Kuşakları Genç kıvrım – kırık kuşakları yerkabuğunun en zayıf yerleridir. Bu nedenle bu bölgeler volkanik hareketlerin sebep olduğu depremlerin sık görüldüğü yerlerdir. • Dünya’daki Deprem Kuşakları Depremlerin görüldüğü alanlar volkanik kuşaklarla ve fay hatlarıyla uyum içindedir. Aktif volkanların en etkili olduğu Pasifik okyanusu kenarları birinci derece deprem kuşağıdır. Anadolu’nun da içinde bulunduğu Alp-Himalaya kıvrım kuşağı ikinci derece, okyanus ortaları ise üçüncü derece deprem kuşağıdır. • Türkiye’de Deprem Kuşakları Alp-Himalaya kıvrım kuşağında bulunan Anadolu’nun büyük bir bölümü ikinci derece deprem kuşağında yer alır. Bu durum Anadolu’nun jeolojik gelişimini henüz tamamlamadığını gösterir. Türkiye’deki deprem kuşakları 5 grupta toplanır : I. Dereceden Deprem Kuşağı : Tektonik çukurluklar ve aktif kırık hatları yakınındaki alanlardır. Burada meydana gelen depremler büyük ölçüde can ve mal kaybına neden olur. II. Dereceden Deprem Kuşağı : Depremlerin birinci derece deprem kuşağındakine oranla daha az zarar verdiği alanlardır. III. Dereceden Deprem Kuşağı : Sarsıntıların az zararla geçtiği alanlardır. IV. Dereceden Deprem Kuşağı : Sarsıntıların çok az zararla ya da zararsız geçtiği alanlardır. V. Dereceden Deprem Kuşağı : Sarsıntıların çok az olduğu ya da hiç hissedilmediği alanlardır. Dış Güçler ve Etkileri Faaliyetleri için gerekli olan enerjiyi Güneş’ten alan güçlerdir. Dış güçler çeşitli yollarla yerkabuğunu şekillendirirler. Dış güçler, akarsular, rüzgarlar, buzullar ve deniz suyunun hareketleridir. Dış güçlerin etkisiyle yeryüzünde bir takım olaylar gerçekleşir. Bu olaylar aşağıda sırlanmıştır. • Taşların çözülmesi • Toprak oluşumu • Toprak kayması ve göçme (heyelan) • Erozyon Taşların Çözülmesi Yerkabuğunu oluşturan taşlar, iklimin ve canlıların etkisiyle parçalanıp, ufalanırlar. Taşların çözülmesinde taşın cinsi de etkili olmaktadır. Taşların çözülmesi fiziksel ve kimyasal yolla iki şekilde gerçekleşir: • Fiziksel (Mekanik) Çözülme • Kimyasal Çözülme UYARI : Kaya çatlaklarındaki bitkilerin, köklerini daha derinlere salması sonucunda kayalar parçalanır ve ufalanır. Bu tür çözülme, fiziksel çözülmeyi artırıcı etki yapar. Ayrıca bitki köklerinden salgılanan özsular taşlarda kimyasal çözülmeye neden olur. Fiziksel (Mekanik) Çözülme Taşların fiziksel etkiler sonucunda küçük parçalara ayrılmasına denir. Fiziksel çözülme, taşları oluşturan minerallerin kimyasal yapısında herhangi bir değişikliğe neden olmaz. UYARI : Fiziksel (mekanik) çözülme, kurak, yarı kurak ve soğuk bölgelerde belirgindir. Fiziksel (Mekanik) çözülme üç şekilde olur : • Güneşlenme yolu ile fiziksel çözülme : Gece ile gündüz, yaz ile kış arasındaki sıcaklık farklarının fazla olduğu yarı kurak ve kurak bölgelerde görülür. Gündüz, güneşlenme ve ısınmanın etkisiyle taşları oluşturan minerallerin etkisiyle taşları oluşturan minerallerin hacimleri genişler. Gece, sıcaklık farklarının fazla olduğu yarı kurak ve kurak bölgelerde görülür. Gündüz, güneşlenme ve ısınmanın etkisiyle taşları oluşturan minerallerin hacimleri genişler. Gece, sıcaklık düşünce minerallerin hacimleri yeniden küçülür. Bu hacim değişikliği taşların parçalanmasına neden olur. • Buz çatlaması yolu ile fiziksel çözülme : Sıcaklığın çok zaman donma noktasına yakın olduğu ve yağışın yeter derecede olduğu yüksek dağlar ve yüksek enlemlerde görülen çözülme şeklidir. Yağışlardan sonra taşların delik, çatlak ve ince yarıklarına sular dolar. Sıcaklık donma noktasına kadar düşünce, taşın içine sızmış olan sular donar. Donan suyun hacmi genişlediği için basınç etkisiyle taşlar parçalanır ve çözülür. • Tuz çatlaması yolu ile fiziksel çözülme : Taşların tuzlu suları emmiş bulunduğu ve buharlaşmanın çok fazla olduğu çöl bölgelerinde görülür. Kurak bölgelerde buharlaşma ile kılcal taş çatlaklarından yeryüzüne yükselen tuzlu sular, yüzeye yaklaştıkça suyunu yitirir. Çatlakların kenarında tuz billurlaşması olur. Gece nemli geçerse, suyunu yitiren tuz billurları yeniden su alır ve hacmi genişler. Basınç etkisiyle taşlar parçalanır ve çözülür. Kimyasal Çözülme Kimyasal reaksiyonlar suya ihtiyaç duyduğunda ve sıcaklık reaksiyonu hızlandırdığından, sıcak ve nemli bölgelerde yaygın olan çözülme şeklidir. Kaya tuzu, kalker gibi taşlar suda kolayca erirler. Taşlar, kimyasal yolla parçalanıp ufalanırken kimyasal bileşimleri de değişir. UYARI : Kimyasal çözülme, ekvatoral, okyanus ve muson iklim bölgelerinde belirgindir. Toprak Oluşumu Toprak, taşların ve organik maddelerin ayrışması ile oluşan, içinde belli oranda hava ve su bulunan, yerkabuğunun üstünü ince bir tabaka halinde saran örtüdür . Toprağın içinde bulunan çeşitli organizmalar toprağın oluşumuna yardım eder. Toprağın üstündeki organik maddece zengin bölüme humus adı verilir. Toprak oluşumunu etkileyen etmenler : • İklim koşulları • Ana kayanın özellikleri • Bitki örtüsü • Eğim koşulları • Oluşum Süresi’dir UYARI : Mekanik çözülmeyle toprak oluşumu zordur. Kimyasal çözülmede ise toprak oluşumu daha kolaydır. Örneğin çöllerde toprak oluşumunun yavaş olması kimyasal çözülmenin yetersiz olmasına bağlıdır. Toprak Horizonları Yerkabuğu üstünde ince bir örtü halinde bulunan toprak, çeşitli katmanlardan oluşur. Bu katmanlara horizon adı verilir. Toprağın dört temel horizonu vardır. A Horizonu : Dış etkilerle iyice ayrışmış, organik maddeler bakımından zengin, en üstteki katmandır. Tarımsal etkinlikler, bu katman üzerinde yapılmaktadır. B Horizonu : Suyun etkisiyle üst katmanda yıkanan minerallerin biriktirdiği katmandır. C Horizonu : İri parçalardan oluşan ve ana kayanın üzerinde bulunan katmandır. D Horizonu : Fiziksel ve kimyasal çözülmenin görülmediği, ana kayadan oluşan, en alt katmandır. Toprak Tipleri Topraklar yeryüzünün çeşitli bölgelerinde farklı özellikler gösterir. Bazıları mineraller bakımından, bazıları da humus bakımından zengindir. Topraklar oluştukları yerlere ve oluşumlarına göre iki ana bölümde toplanır : • Taşınmış Topraklar • Yerli Topraklar Taşınmış Topraklar Akarsuların, rüzgarların, buzulların etkisiyle yüksek yerlerden, kopartılıp, taşınan ve çukur alanlarda biriktirilen malzeme üzerinde oluşan topraklardır. Akarsuların taşıyıp biriktirdiği maddeler, alüvyon, rüzgarların biriktirdiği maddeler lös, buzulların biriktirdikleri moren (buzultaş) adını alır. Taşınmış topraklar çeşitli yerlerden getirilip, farklı özellikteki taşların ufalanmasından oluştukları için mineral bakımından zengindir. Bu nedenle çeşitli bitkilerin yetiştirilmesi için uygun, verimli topraklardır. Yerli Topraklar Dış güçlerin etkisiyle yerli kaya üzerinde sonucunda oluşan topraklardır. Özelliklerini belirleyen temel etkenler ana kayanın cinsi ve iklim koşullarıdır. Yerli topraklar iki ana bölümde toplanır: • Nemli Bölge Toprakları • Kurak Bölge Toprakları Nemli Bölge Toprakları Yağışın yeterli olduğu bölgelerde oluştukları için, mineral maddeler, tuz ve kireç toprağın alt katmanlarına taşınmıştır. Tundra Toprakları : Tundra ikliminin görüldüğü bölge topraklarıdır. Yılın büyük bir bölümünde donmuş haldedir. Yaz aylarında sadece yüzeyde ince bir tabaka halinde çözülme görülür. Geniş bataklıklar oluşur. Bitki örtüsü çok cılız olduğundan humus tabakası yoktur. Verimsiz topraklardır. Buralardaki kısa boylu ot, çalı ve yosunlara tundra adı verilir. Podzol Topraklar : Tayga adı verilen iğne yapraklı orman örtüsü altında oluşan, soğuk ve nemli bölge topraklarıdır. Toprağın aşırı yıkanması nedeniyle organik maddelerin çoğu taşınmıştır. Bu nedenle renkleri açıktır. Bu tip topraklar Sibirya, Kuzey Avrupa ve Kanada’da yaygındır. Kahverengi Orman Toprakları : Yayvan yapraklı orman örtüsü altında oluşan, ılık ve nemli bölge topraklarıdır. Kalın bir humus tabakası bulunur. Kırmızı Topraklar : Akdeniz ikliminin egemen olduğu bölgelerde kızılçam ve maki örtüsü altında gelişen topraklardır. Demir oksitler bakımından zengin olduğu için, renkleri kırmızımsıdır. Kalkerler üzerinde oluşanlara terra rossa adı verilir. Lateritler : Sıcak ve nemli bölge topraklarıdır. Yağış ve sıcaklığın fazla olması nedeniyle çözülme ileri derecededir. Buna bağlı olarak toprak kalınlığı fazladır. Demiroksit ve alüminyum bakımından zengin olduğundan renkleri kızıla yakındır. Topraktaki organik maddeler, mikroorganizmalar tarafından parçalandığı için toprak yüzeyinde humus yoktur. Kurak Bölge Toprakları Yağışların az buna bağlı olarak bitki örtüsünün cılız olması nedeniyle bu topraklarda humus çok azdır. Ayrıca yağışların azlığı nedeniyle toprak katmanları tam oluşmamıştır. Kireç ve tuzlar bakımından zengin topraklardır. Kurak bölge toprakları oluşturdukları iklim bölgesinin kuraklık derecesine göre farklılaşırlar. Çernozyemler : Nemli iklimden kurak iklime geçişte ilk görülen topraklardır. Orta kuşağın yarı nemli alanlarında, uzun boylu çayır örtüsü altında oluşan bu topraklara kara topraklar da denir. Organik madde yönünden zengin olan bu topraklar üzerinde, yoğun olarak tarım yapılır. Kestane ve Kahverenkli Step Toprakları : Orta kuşak karaların iç kısımlarındaki step alanlarının topraklarıdır. Organik maddeler ince bir tabaka oluşturmaktadır. Tahıl tarımına elverişli topraklardır. Çöl Toprakları : Çöllerde görülen, organik madde yönünden son derece fakir topraklardır. Kireç ve tuzlar bakımından zengin topraklardır. Renkleri açıktır. Tarımsal değerleri bulunmaz. Türkiye’de Görülen Toprak Tipleri Ilıman kuşakta yer alan Türkiye’de, iklim tiplerine ve zeminin yapısına bağlı olarak toprak tipleri çeşitlilik gösterir. Podzollar : İğne yapraklı orman örtüsü altında oluşan topraklardır. Toprağın aşırı yıkanması nedeniyle organik maddelerin çoğu taşınmıştır. Açık renkli topraklardır. Çay tarımına uygun topraklardır. Kahverengi Orman Toprakları : Orman örtüsü altında oluşan topraklardır. Humus yönünden zengindirler. Kırmızı Topraklar : Kızılçam ve maki örtüsü altında oluşan topraklardır. Demir oksitler bakımından zengin olduğu için, renkleri kırmızımsıdır. Kalkerler üzerinde oluşanlara terra rossa adı verilir. Bu topraklar turunçgil tarımına en uygun topraklardır. Kestane ve Kahverenkli Step Toprakları : Yarı kurak iklim koşulları ve step bitki örtüsü altında oluşan topraklardır. Yüksek sıcaklık nedeniyle kızılımsı renktedirler. Zayıf bitki örtüsü nedeniyle organik maddeler ince bir örtü oluşturur. Tahıl tarımına uygun topraklardır. Vertisoller : Genellikle kireç bakımından zengin, killi, marnlı tortullar üzerinde oluşan, toprak horizonlarının henüz gelişimini tamamlamadığı topraklardır. Aşırı miktarda kil içeren vertisoller yağışlı dönemde çok su çeker, kurak dönemde aşırı su kabedip, çatlar. Litosoller : Dağlık alanlarda, eğimli yamaçlarda veya volkanik (genç bazalt platolarının bulunduğu) düzlüklerde görülen ana kayanın ufalanmış örtüsüdür. Genelde derinliği 10 cm kadardır ve toprak horizonları gelişmemiştir. Alüvyal Topraklar : Akarsuların denize ulaştığı yerlerde görülür. Çeşitli yerlerden taşınan, farklı özellikteki taşların ufalanması ile oluşan bu topraklar mineral yönünden zengin ve çok verimlidir. Toprak Kayması ve Göçme (Heyelan) Toprağın, taşların ve tabakaların bulundukları yerlerden aşağılara doğru kayması ya da düşmesine toprak kayması ve göçmesi denir. Ülkemizde bu olayların tümüne birden heyelan adı verilir. Yerçekimi, yamaç zemin yapısı, eğim ve yağış koşulları heyelana neden olan etmenlerdir. UYARI : Heyelanın oluşumu yağışların fazla olduğu dönemlerde daha çok görülür. Yerçekimi : Heyelanı oluşturan en önemli etkendir. Yerçekimi gücü sürtünme gücünden fazla olduğu zaman yamaçtaki cisimler aşağıya doğru kayar. Yamaç Zeminin Yapısı: Suyu emerek içerisinde tutan taş ve topraklar kayganlaşır. Özellikle killi yapının yaygın olduğu yamaçlarda kil suyu içinde tuttuğu için heyelan daha sık görülür. Kalker gibi suyu alt tabakalara geçiren taşların oluşturduğu yamaçlarda ise heyelan ender görülür. Eğim : Yamaç eğimi yerçekiminin etkisini artırıcı bir rol oynar. Bu nedenle dik yamaçlarda heyelan olasılığı daha fazladır. Ayrıca tabakalar yamaç eğimine uyum sağlamışsa, yani paralelse yer kayması kolaylaşır. Yol, kanal, tünel ve baraj yapımları sırasında yamaç dengesinin bozulması, volkanizma, deprem gibi etkenler de heyelana neden olur. Yağış Koşulları : Yağmur, kar suları tabakalar arasına sızarak toprağı kayganlaştırır, toprağı doygun hale getirir. Böylece su ile doygun kütlelerin yamaç aşağı kayması kolaylaşır. Heyelan genellikle yağışlardan sonra oluşur. Heyelanın Etkileri ve Korunma Yolları Heyelan hemen her yıl can ve mal kaybına yol açmaktadır. Ancak alınacak bir takım önlemlerle heyelanın etkileri azaltılabilir. Heyelanın Etkileri İnsan ve hayvan ölümleri Tarımsal hasar ve toprak kaybı Bina hasarları Ulaşım ve taşımacılığın aksaması Heyelandan Korunma Öncelikle heyelan tehlikesi olan yerlerde setler yapılmalı, yamaçlar ağaçlandırılmalıdır. Ayrıca yol, kanal, tünel ve baraj yapımlarında yamacın bozulmamasına özen gösterilmelidir. Türkiye’de Heyalan Türkiye’de heyelan sık görülen, doğal bir felakettir. Türkiye’de arazinin çok engebeli olması toprak kaymalarını kolaylaştırmaktadır. Bölgeden bölgeye farklılık gösteren heyelanların en sık görüldüğü bölgemiz Karadeniz’dir. Bölgede arazi eğiminin fazla, yağışların bol ve killi yapının yaygın olması heyelanın sık görülmesine neden olur. Ülkemizde ilkbahar aylarında görülen kar erimeleri ve yağışlar heyelan olaylarını artırır. Erozyon Toprak örtüsünün, akarsuların, rüzgarların ve buzulların etkisiyle süpürülmesine erozyon denir. Yeryüzünde eğim, toprak, su ve bitki örtüsü arasında doğal bir denge bulunmaktadır. Bu dengenin bozulması erozyonu hızlandırıcı bir etki yapmaktadır. Dış etkenler ya da arazinin yanlış kullanılması erozyona neden olmaktadır. UYARI : Eğim fazlalığı ve cılız bitki örtüsü erozyonu artıran en önemli etkenlerdir. Bu nedenle kurak ve yarı kurak enlemlerde erozyon önemli bir sorundur. Dış Etkenler Akarsu, rüzgar gibi dış güçlerin yapmış olduğu aşındırma sonucunda toprak örtüsü süpürülür ve başka yerlere taşınır. Dış güçlerin etkisi bitki örtüsünün bulunmadığı ya da çok cılız olduğu yerlerde daha belirgindir. Ayrıca eğimin fazla olduğu yerlerde sular daha kolay akışa geçerek toprak örtüsünün süpürülmesini hızlandırır. Arazinin Yanlış Kullanılması Özellikle yamaçlardaki tarlaların yamaç eğimi yönünde sürülmesi, eğimli yerlerde tarla tarımının yaygın olması, arazinin teraslanmaması erozyon hızını artırmaktadır. Su Erozyonu Bitki örtüsünün cılız ya da hiç olmadığı yerlerde toprağın ve ana kayanın sularla yerinden kopartılarak taşınmasına su erozyonu denir. Kırgıbayır ve peribacası su erozyonu ile oluşan özel şekillerdir. Kırgıbayır : Yarı kurak iklim bölgelerinde sel yarıntılarıyla dolu yamaçlara kırgıbayır (badlans) denir. Peribacası : Özellikle volkan tüflerinin yaygın olarak bulunduğu vadi ve platoların yamaçlarında sel sularının aşındırması ile oluşan özel yeryüzü şekillerine peribacası denir. Bazı peribacalarının üzerinde şapkaya benzer, aşınmadan arta kalan sert volkanik taşlar bulunur. Bunlar volkanik faaliyet sırasında bölgeye yayılmış andezit ya da bazalt kütleridir. Peribacalarının en güzel örnekleri ülkemizde Nevşehir, Ürgüp ve Göreme çevresinde görülür. Rüzgar Erozyonu Bitki örtüsünün olmadığı ya da cılız olduğu yerlerde toprağın rüzgarlarla yerinden kopartılarak taşınmasına rüzgar erozyonu denir. Erozyonun Etkileri ve Erozyondan Korunma Yolları Oluşumu için milyonlarca yıl geçmesi gereken toprak örtüsünü yok eden ve her geçen gün etkilerini arttıran erozyon doğal bir felakettir. Alınacak bir takım önlemlerle etkileri azaltılabilir. Erozyonun Etkileri Tarım topraklarının azalması, sellerin artması, tarımsal üretimin ve verimin azalması, otlakların azalması, hayvancılığın gerilemesi, çölleşmenin başlaması. Erozyondan Korunma Yolları Var olan ormanlar ve meralar korunmalı, çıplak yerler ağaçlandırılmalı, ormanlık alanlarda keçi beslenmesi engellenmeli, yamaçlardaki tarlalar, yamaç eğimine dik sürülmeli, meyve tarımı ve nöbetleşe ekim yaygınlaştırılmalı, orman içi köylülerine yeni geçim kaynakları sağlanmalı. Türkiye’de Erozyon Türkiye’de arazi engebeli ve çok eğimli olduğu için toprak erozyonu önemli bir sorundur. Bazı bölgelerimiz dışında bitki örtüsünün cılız olması da erozyonu artırmaktadır. Ayrıca nüfusun hızla artması, tarım alanlarına olan gereksinimin artması, ormanların tahrip edilmesine yol açmaktadır. Bunlara bağlı olarak hemen hemen tüm bölgelerimizde toprak erozyon hızı yüksektir. Akarsular Yeryüzünün şekillenmesinde en büyük paya sahip dış güç akarsulardır. Yüzey sularının eğimli bir yatak içinde toplanıp akmasıyla akarsu oluşur. Akarsular küçükten büyüğe doğru dere, çay, öz, ırmak ve nehir şeklinde sıralanır. Bir akarsuyun doğduğu yere akarsu kaynağı, döküldüğü yere akarsu ağzı denir. Bir akarsu, birbirine bağlanan küçük, büyük, dar veya geniş birçok koldan oluşan bir sistemdir. Bu sistemin en uzun ve su bakımından en zengin olan kolu ana akarsudur. Akarsu Havzası (Su Toplama Alanı) Akarsuyun tüm kollarıyla birlikte sularını topladığı bölgeye akarsu havzası denir. Bir akarsu havzasının genişliği iklim koşullarına ve yüzey şekillerine bağlıdır. Akarsu havzaları iki bölümde incelenir : • Açık Havza : Sularını denize ulaştırabilen havzalara açık havza denir. Örnek : Yeşilırmak, Kızılırmak, Yenice, Sakarya, Susurluk, Gediz, Küçük Menderes, Büyük Menderes, Aksu, Göksu, Seyhan, Ceyhan, Fırat, Dicle Çoruh • Kapalı Havza : Sularını denize ulaştıramayan havzalara kapalı havza denir. Kapalı havzaların oluşmasındaki temel etken yer şekilleridir. Sıcaklık ve nem koşulları da kapalı havzaların oluşmasında etkilidir. Örnek : Van Gölü Kapalı Havzası, Tuz Gölü Kapalı Havzası, Konya Kapalı Havzası, Göller Yöresi Kapalı Havzası, Aras, Kura UYARI : Sularını Hazar Denizi’ne boşaltan Aras ve Kura ırmakları kapalı havza oluşturur. Su Bölümü Çizgisi Birbirine komşu iki akarsu havzasını birbirinden ayıran sınıra su bölümü çizgisi denir. Su bölümü çizgisi genellikle dağların doruklarından geçer. Su bölümü çizgisi; • Kurak bölgelerde, • Bataklık alanlarda, • Karistik alanlarda çoğunlukla belirsizdir. Akarsu Akış Hızı Akarsuyun akış hızı yatağın her iki kesitinde farklıdır. Suyun hızı yanlarda, dipte ve su yüzeyinde sürtünme nedeniyle azdır. Suyun en hızlı aktığı yer akarsuyun en derin yerinin üzerinde ve yüzeyin biraz altındadır. Akarsu yatağında suyun en hızlı aktığı noktaları birleştiren çizgiye hız çizgisi (talveg) denir. Akış hızı, yatağın eğimi ve genişliği ile taşınan su miktarına bağlı olarak değişir. Akarsu Akımı (Debisi) Akarsuyun herhangi bir kesitinden birim zamanda geçen su miktarına (m3) akım veya debi denir. Akarsuyun akımı yıl içerisinde değişir. Akım, akarsuyun çekik döneminde az, kabarık döneminde fazladır. Akarsu akımını; • Yağış miktarı rejimi • Yağış tipi • Zeminin özelliği • Kaynak suları • Sıcaklık ve buharlaşma koşulları etkiler. Akarsu Rejimi Akarsuyun akımının yıl içerisinde gösterdiği değişmelere rejim ya da akım düzeni denir. Akarsu rejimini belirleyen temel etken havzanın yağış rejimidir. Yağışların az, sıcaklık ve buharlaşmanın fazla olduğu dönemlerde akarsu akımı düşer. Yağışların fazla olduğu ve kar erimelerinin görüldüğü dönemlerde akım yükselir. Akarsu rejimleri 4 tiptir. Düzenli Rejim : Akımı yıl içerisinde fazla değişmeyen akarsuların rejim tipidir. Düzensiz Rejim : Akımı yıl içerisinde büyük değişmeler gösteren akarsuların rejim tipidir. Karma Rejim : Farklı iklim bölgelerinden geçen akarsuların rejim tipidir. Örneğin : Nil Nehri Sel Tipi Rejim : İlkbahar yağışları ve kar erimeleri ile bol su taşıyan, yaz aylarında ise suları yok denecek kadar azlan akarsuların rejim tipidir. Örneğin ülkemizdeki İç Anadolu Bölgesi akarsuları. İklim Bölgelerine Göre Akarsu Rejimleri Sıcaklık ve yağış koşulları ile akarsuların taşıdıkları su miktarı ve akım düzeni arasında sıkı bir ilişki vardır. Farklı iklim bölgelerindeki akarsuların rejimleri birbirinden farklı olabilir. Ancak iklim bölgelerinin yüksek ve karlı bölümlerindeki akarsuların rejimleri benzerdir. Kar erimelerinin olduğu dönemlerden akım yükselir. Kış aylarında kar yağışının fazla olması akımın düşük olmasına neden olur. Yağmurlu Ekvatoral İklimde Akarsu Rejimi : Bu iklim tipinde yağışlar bol ve yağış rejimi düzenli olduğu için Ekvatoral bölge akarsuları yıl boyunca bol su taşır. Örneğin Amazon ve Kongo nehirleri. Yağmurlu Okyanusal İklimde Akarsu Rejimi : Bu iklim tipinde yağışların bol ve düzenli olması nedeniyle akarsular yıl boyunca bol su taşır. Örneğin İngiltere’deki Thames Nehri Muson İkliminde Akarsu Rejimi : Bu iklim tipinde yaz yağışları nedeniyle akım yükselir. Kış kuraklığı akım düşer. Örneğin Ganj ve İndus nehirleri. Akdeniz İkliminde Akarsu Rejimi : Yaz kuraklığına, sıcaklık ve buharlaşmanın fazlalığına bağlı olarak yaz aylarında akım düşüktür. Kışın yağışlar, ilkbaharda kar erimeleri ile yükselir. Türkiye Akarsularının Özellikleri 1. Türkiye’nin dağlık ve engebeli bir ülke olması nedeniyle, akarsularımızın boyu genellikle kısadır. 2. Yağışlı ve kar erimelerinin olduğu dönemlerde taşan, kurak dönemlerde ise kuruyacak derecede suları azalan akarsularımızın rejimleri düzensizdir. 3. Karadeniz Bölgesi’ndeki akarsularımızın dışındakiler genellikle bol su taşımazlar. 4. Akarsularımız rejimlerinin düzensiz ve yatak eğimlerinin fazla olması nedeniyle ulaşıma uygun değildir. 5. Türkiye bugünkü görünümünü 3. ve 4. zamandaki orojenik ve epirojenik hareketlerle kazanmıştır. Bu nedenle akarsularımız henüz denge profiline ulaşamamıştır. UYARI : Türkiye’deki akarsuların yatak eğimleri ve akış hızları fazla olduğundan hidro-elektrik potansiyelleri yüksektir. Taban Seviyesi, Denge Profili Akarsuların döküldükleri deniz ya da göl yüzeyine taban seviyesi denir. Deniz yüzeyi ana taban seviyesini oluşturur. Göl yüzeyi ya da kapalı havza yüzeyi yerel taban seviyesi diye adlandırılır. Akarsular aşındırma ve biriktirmesini taban seviyesine göre yapar. Yatağını taban seviyesine indirmiş olan akarsular aşındırma ve biriktirme faaliyetini dengelemiştir. Aşınım ve birikimin eşitlendiği bu profile denge profili denir. Plato, Peneplen Akarsuların amacı bulundukları bölgeyi aşındırarak deniz seviyesine yaklaştırmak diğer bir deyişle denge profiline ulaşmaktır. Akarsuyun aşınım sürecinde görülen şekiller; plato ve peneplendir. Plato : Akarsu vadileriyle derince yarılmış düz ve geniş düzlüklerdir. Peneplen : Geniş arazi bölümlerinin, akarsu aşınım faaliyetlerinin son döneminde deniz seviyesine yakın hale indirilmesiyle oluşmuş, az engebeli şekle peneplen (yontukdüz) denir. UYARI : Bir akarsuyun denge profiline ulaşabilmesi ve arazinin peneplen haline gelebilmesi için tektonik hareketlerin görülmediği milyonlarca yıllık bir süre gerekmektedir. Denge Profilinin Bozulması İklim değişikliklerinde ve tektonik hareketlere bağlı olarak deniz seviyesinin alçalması ya da yükselmesi taban seviyesinin değişmesine neden olur. Taban seviyesinin alçalması ya da yükselmesi de akarsuyun denge profilinin bozulmasına neden olur. Taban Seviyesinin Alçalması Taban seviyesinin alçalması, akarsuyun denge profilini bozarak akarsuyun aşındırma ve taşıma gücünün artmasına neden olur. Bu nedenle akarsu yatağına gömülür. Taban Seviyesinin Yükselmesi Taban seviyesinin yükselmesi, akarsuyun denge profilini bozarak akarsuyun taşıma gücünün azalmasına neden olur. Bu nedenle akarsu menderesler çizerek birikim yapar. Menderes : Akarsuyun geni vadi tabanı içinde, eğimin azalması nedeniyle yaptığı bükümlere denir. Akarsuların Aşındırma Şekilleri : Dış güçler içerisinde en geniş alana yayılmış, nemli bölgelerde ve orta enlemlerde etkili olan en önemli dış güç akarsulardır. Akarsular aşındırma ve biriktirme yaparak yeryüzünü şekillendirir. Akarsu, hızının ve kütlesinin yaptığı etki le yatağı derine doğru kazar, yatağı boyunca kopardığı veya erittiği maddeleri taşır. Akarsu aşındırması ile oluşan şekiller vadi ve dev kazanıdır. UYARI : Akarsuların aşındırmasında yatak eğimi temel etkendir. Çünkü yatak eğimi akarsuyun akış hızını belirler. Yatak eğiminin fazla olduğu yukarı bölümlerinde derinlemesine aşındırma daha belirgindir. Vadi Akarsuyun içinde aktığı, kaynaktan ağıza doğru sürekli inişi bulunan, uzun çukurluklardır. Akarsuların aşındırma gücüne, zeminin yapısına ve aşınım süresine bağlı olarak çeşitli vadiler oluşur. UYARI : Vadi tabanları tarım, bahçecilik, ulaşım ve yerleşme bakımından elverişli alanlardır. Çentik (Kertik) Vadi : Akarsuların derine aşındırmasıyla oluşan V şekilli, tabansız, genç vadilere çentik vadi ya da kertik denir. Türkiye’nin bugünkü görünümünü 3. ve 4. zamanda kazanmış olması nedeniyle, Türkiye akarsuları henüz denge profiline ulaşmamış, geç akarsulardır. Bu nedenle ülkemizde çok sayıda çentik (kertik) vadi bulunmaktadır. Yarma Vadi (Boğaz) : Akarsuyun, iki düzlük arasında bulunan sert kütleyi derinlemesine aşındırması sonucunda oluşur. Vadi yamaçları dik, tabanı dardır. Akarsuyun yukarı bölümlerinde görülür. Türkiye’de çok sayıda yarma vadi (boğaz) bulunur. Karadeniz Bölgesi’nde, Yeşilırmak üzerinde, Şahinkaya yarma vadisi, Marmara Bölgesi’nde, Sakarya üzerinde Geyve Boğazı, Akdeniz Bölgesi’nde Atabey deresi üzerinde Atabey Boğazı başlıca örnekleridir. Kanyon Vadi : Klaker gibi dirençli ve çatlaklı taşlar içinde, akarsuyun derinlemesine aşındırmasıyla oluşur. Vadinin yamaç eğimleri çok dik olup, 90 dereceyi bulur. Kanyon vadiler Türkiye’de Toroslar’da yaygın olarak görülür. Antalya’daki Köprülü Kanyon, ülkemizdeki güzel bir örnektir. Tabanlı Vadi : Akarsu, yatağını taban seviyesine yaklaştırınca derine aşınım yavaşlar. Yatak eğiminin azalması akarsuyun menderesler çizerek yanal aşındırma yapmasına neden olur. Yanal aşındırmanın artması ile tabanlı vadiler oluşur. Menderes Akarsu yatak eğiminin azalması, akarsuyun akış hızının ve aşındırma gücünün azalmasına neden olur. Akarsu büklümler yaparak akar. Akarsuyun geniş vadi tabanı içinde, eğimin azalması nedeniyle yaptığı büklümlere menderes denir. Menderesler yapan akarsuyun, uzunluğu artar ancak akımı azalır. Taban seviyesinin alçalması nedeniyle menderesler yapan bir akarsuyun, yatağına gömülmesiyle oluşan şekle gömük menderes denir. Dev Kazanı Akarsuların şelale yaparak döküldükleri yerlerde, hızla düşen suların ve içindeki taş, çakıl gibi maddelerin çarptığı yeri aşındırmasıyla oluşan yeryüzü şeklidir. Akdeniz Bölgesi’ndeki Manavgat ve Düden şelalelerinin düküldükleri yerlerde güzel dev kazanı örnekleri bulunur. Akarsu Biriktirme Şekilleri Akarsular aşındırdıkları maddeleri beraberinde taşır. Yatak eğimleri azaldığında akarsuların aşındırma ve taşıma gücü de azalır. Bu nedenle taşıma güçlerinin azaldığı yerde taşıdıkları maddeleri biriktirirler. UYARI : Akarsuların yatak eğimi azaldığında hızları, aşındırma ve taşıma güçleri azalır. Biriktirmedeki, temel etken yatak eğimin azalmasıdır. Birikinti Konisi : Yamaçlardan inen akarsular, aşındırdıkları maddeleri eğimin azaldığı eteklerde biriktirir. Yarım koni şeklindeki bu birikimlere birikinti konisi adı verilir. Birikinti konileri zamanla gelişerek verimli tarım alanı durumuna gelebilir. Dağ Eteği Ovası : Bir dağın yamaçlarından inen akarsular taşıdıkları maddeleri eğimin azaldığı yerde birikinti konileri şeklinde biriktirirler. Zamanla birikinti konilerinin birleşmesiyle oluşan hafif dalgalı düzlüklere dağ eteği ovası adı verilir. Dağ İçi Ovası : Dağlık alanların iç kısımlarında, çevreden gelen akarsuların taşıdıkları maddeleri eğimin azaldığı yerlerde biriktirmesi ile oluşan ovalardır. Türkiye gibi engebeli ülkelerde dağ içi ovaları çok görülür. Taban Seviyesi Ovası : Akarsuların taban seviyesine ulaştığı yerlerde, eğimin azalması nedeniyle taşıdığı maddeleri biriktirmesi ile oluşturduğu ovalardır. Bu tür ovalarda akarsular menderesler yaparak akar. Gediz ve Menderes akarsularının aşağı bölümlerindeki ovalar bu türdendir. Seki (Taraça) : Yatağına alüvyonlarını yaymış olan akarsuyun yeniden canlanarak yatağını kazması ve derinleştirmesi sonucunda oluşan basamaklardır. Taban seviyesinin alçalması nedeniyle, tabanlı bir vadide akan akarsuyun aşındırma gücü artar. Yatağını derine doğru kazan akarsu vadi tabanına gömülür. Eski vadi tabanlarının yüksekte kalması ile oluşan basamaklara seki ya da taraça denir. Kum Adası (Irmak Adası) : Akarsuların yatak eğimlerinin azaldığı geniş vadi tabanlarından taşıdıkları maddeleri biriktirmesi ile oluşan şekillerdir. Kum adaları akarsuyun taşıdığı su miktarı ve akış hızına bağlı olarak yer değiştirirler. Kum adaları üzerinde yoğun bir bitki örtüsünün bulunması kum adalarının yer değiştirmediğini gösterir. Delta : Akarsuların denize ulaştıkları yerlerde taşıdıkları maddeleri biriktirmesiyle oluşan üçgen biçimli alüvyal ovalardır. Deltalar, taban seviyesi ovalarının bir çeşididir. Onlardan ayrılan yönü biriktirmenin deniz içinde olmasıdır. Bu nedenle deltanın oluşabilmesi için; • Gel-git olayının belirgin olmaması • Kıyının sığ olması • Kıyıda güçlü bir akıntının bulunmaması • Akarsu ağzında eğimin azalması gerekir. Yeraltı Suları ve Kaynaklar Yer altı Suyu (Taban Suyu) Yağış olarak yeryüzüne düşen ya da yeryüzünde bulunan suların, yerçekimi etkisiyle yerin altına sızıp, orada birikmesiyle oluşan sulardır. Yer altı suyunun oluşabilmesi için beslenme ve depolanma koşullarının uygun olması gerekir. Yer altı suyunun beslenmesini etkileyen en önemli etmen yağışlardır. Depolama koşulları ise yüzeyin eğimine, bitki örtüsüne ve yüzeyin geçirimlik özelliğine bağlıdır. Yer altı Sularının Bulunuş Biçimleri Bol yağışlı ve zemini geçirimli taşlardan oluşan alanlarda yer altı suyu fazladır. Az yağış alan, eğimi fazla ve geçirimsiz zeminlerde ise, yer altı suyunun oluşumu zordur. Kum, çakıl, kumtaşı konglomera, kalker, volkanik tüfler, alüvyonlar, geçirimli zeminleri oluşturur. Bu nedenle alüvyal ovalar ve karstik yöreler yer altı suyu bakımından zengin alanlardır. Kil, marn, şist, granit gibi taşlar ise geçirimsizdir. Yer altı suyu oluşumunu engeller. Yeraltında biriken sular Taban suyu Artezyen Karstik Yeraltı Suyu olarak bulunur. Taban Suyu Altta geçirimsiz bir tabaka ile sınırlandırılan, geçirimli tabaka içindeki sulardır. Bu sular genellikle yüzeye yakındır. Marmara Bölgesi’ndeki ovalar, Ege Bölgesi’ndeki çöküntü ovaları, Muş, Erzurum ve Pasinler ovalarındaki yer altı suları bu gruba girer. Artezyen Bu tür sular basınçlı yeraltı sularıdır. İki geçirimsiz tabaka arasındaki geçirimli tabaka içinde bulunan sulardır. Tekne biçimli ovalar ve vadi tabanlarında bu tür sular bulunmaktadır. İç Anadolu Bölgesi artezyen suları bakımından zengindir. Karstik Yer altı Suyu Karstik yörelerdeki kalın kalker tabakalar arasındaki çatlak ve boşluklarda biriken yer altı sularıdır. En önemli özelliği birbirinden bağımsız taban suları oluşturmasıdır. Karstik alanların geniş yer kapladığı Akdeniz Bölgesi karstik yeraltı suları bakımından zengindir. Kaynak Yeraltı sularının kendiliğinden yeryüzüne çıktığı yere kaynak denir. Türkiye’de kaynaklara pınar, eşme, bulak ve göze gibi adlar da verilir. Kaynaklar, yer altı suyunun bulunuş biçimine, yüzeye çıktığı yere ve suların sıcaklığına göre gruplandırılabilir. Sularının sıcaklığına göre kaynaklar, soğuk ve sıcak su kaynakları olarak iki gruba ayrılır : Soğuk Su Kaynakları Yağış sularının yeraltında birikerek yüzeye çıkması sonucunda oluşurlar. Genellikle yüzeye yakın oldukları için dış koşullardan daha çok etkilenirler. Bu nedenle suları soğuktur. Soğuk su kaynakları yeraltında bulunuş biçimine ve yüzeye çıktığı yere göre üç gruba ayrılır : Tabaka Kaynağı : Geçirimli tabakaların topoğrafya yüzeyi ile kesiştikleri yerden suların yüzeye çıkmasıyla oluşan kaynaklara tabaka kaynağı denir. Vadi Kaynağı : Yeraltına sızan suların bulunduğu tabakanın bir vadi tarafından kesilmesi ile oluşan kaynaktır. Genellikle vadi yamaçlarında görülür. Karstik Kaynak (Voklüz) : Kalın kalker tabakaları arasındaki boşlukları doldurmuş olan yer altı sularının yüzeye çıktığı kaynaktır. Bol miktarda kireç içeren bu kaynakların suları genellikle sürekli değildir. Yağışlarla beslendikleri için karstik kaynakların suları soğuktur. Toroslar üzerindeki Şekerpınarı en tanınmış karstik kaynak örneklerinden biridir. Sıcak Su Kaynakları Yerkabuğundaki fay hatları üzerinde bulunan kaynaklardır. Fay kaynakları da denir. Suları yerin derinliklerinden geldiği için sıcaktır ve dış koşullardan etkilenmez. Sular geçtikleri taş ve tabakalardaki çeşitli mineralleri eriterek bünyelerine aldıkları için mineral bakımından zengindir. Bu tür kaynaklara; kaplıca, ılıca, içme gibi adlar verilir. Sıcak su kaynaklarının özel bir türüne gayzer denir. Gayzer : Volkanik yörelerde yeraltındaki sıcak suyun belirli aralıklarla fışkırması ile oluşan kaynaklardır. UYARI : Yerin derinliklerinde bulunan suların sıcaklığı yıl içinde fazla bir değişme göstermez. Fay kaynakları volkanik ve kırıklı bölgelerde görülür. Türkiye’de Sıcak Su Kaynaklarının Dağılışı Türkiye kaplıca ve ılıca bakımından zengin bir ülkedir. Bursa, İnegöl, Yalova, Bolu, Haymana, Kızılcahamam, Sarıkaya, Erzurum, Sivas Balıklı Çermik, Afyon, Kütahya, Denizli çevresindeki kaplıca ve ılıcalar en ünlüleridir. Karstik Şekiller Yağışlar ve yer altı suları, kalker, jips, kayatuzu, dolomit gibi eriyebilen, kırık ve çatlakların çok olduğu taşların bulunduğu yerlerde, kimyasal aşınıma neden olurlar. Kimyasal aşınım sonunda oluşan şekillere karstik şekiller denir. Karstik Aşınım Şekilleri Yağışların ve yeraltı sularının oluşturduğu karstik aşınım şekillerinin aşınım şekillerinin büyüklükleri değişkendir. Karstik aşınım şekilleri şunlardır : Lapya : Kalkerli yamaçlarda yağmur ve kar sularının yüzeyi eriterek açtıkları küçük oluklardır. Oluşan çukurluklar keskin sırtlarda yan yana sıralandığından yüzey pür      

http://www.biyologlar.com/jeomorfoloji-nedir

Yağda Eriyen Vitaminler

A VİTAMİNİ: A Vitamini yağda eriyen vitaminlerdendir.Balıkyağında, karaciğerde, tereyağı ve kremada, peynirde, yumurta sarısında bulunur.Sonradan A vitamini (retinol) ne dönüşecek olan Beta Karoten ve diğer karotenoidler ise yeşil yapraklı ve sarı sebzelerde ve tahıllarda bulunur.A vitamini karaciğerde depolanır. Isıya karşı sabit ve pişirilmeye dayanıklıdır.Yüksek miktarlarda alınması toksik reaksiyonlara (zehirlenme) neden olabilir. Vitamin A miktarı Retinol Equivalant ile ölçülür. Vücuttaki Fonksiyonları Sağlıklı deri ve saçlar için gereklidir. Diş, dişeti, ve kemik gelişiminde önemli rol oynar Normal iyi görme de ve gece görme de etkilidir. Bağışıklık sistemini kuvvetlendirir. Akciğer, mide, üriner sistem ve diğer organların koruyucu epitelinin düzeninde rol oynar. Eksiklik Belirtileri 1)Gece körlüğü 2)Xerophthalmia ( korneanın anormal kuruması ve kalınlaşması = göz kuruluğu) 3)Bağışıklık sisteminin zayıflaması, enfeksiyonlara elverişli hale gelme 4)Akne (sivilce) oluşumunda artış 5)Yorgunluk 6)Diş, diseti ve kemiklerde deformiteler Aşırılık ve Zehirlenme Belirtileri 1)Karaciğer bozuklukları 2)Mide bulantısı ve kusma 3)Saç dökülmesi (saçlar çabuk kopar) 4)Başağrısı 5)Eklem ağrıları 6)Dudak çatlamaları 7)Saç kuruluğu 8)İştah kaybı D VİTAMİNİ: D Vitamini yağda eriyen vitaminlerdendir. Daha çok iki şekilde bulunur.Bunlardan aktif ergosterol, kalsiferol ve D2 vitamini gibi adlarla da bilinen ergokalsiferol ışınlanmış mayalarda bulunur.Aktif 7-dehidrokolesterol ve D3 vitamini gibi adlarla da anılan kolesalsiferol ise insan derisinde güneş ışığı ile temas sonucu meydana gelir ve daha çok balık yağında ve yumurta sarısında bulunur. Isıya karşı sabit ve pişirilmeye dayanıklıdır.Yüksek miktarlarda alınması toksik reaksiyonlara (zehirlenme) neden olabilir. Vücuttaki Fonksiyonları İnce barsaklardan kalsiyum ve fosforun emilimini düzenleyerek kemik büyümesi, sertleşmesi ve tamiri üzerinde etkili olur. Raşitizmi önler Böbrek hastalıklarında düşük kan kalsiyumu seviyesini düzenler. Postoperatif kas kasılmalarını önler. Kalsiyumla birlikte kemik gelişimini kontrol eder. Bebekler ve çocuklarda kemik ve dişlerin normal gelişme ve büyümesini sağlar. Henüz kanıtlanmamış olası etkileri: Artrit, yaşlanma belirtileri ,sivilce,alkolizm, kistik fibrozis uçuk ve herpes zoster tedavisi, kolon kanserinin önlenmesi. Vitamin D alınımına dikkat edilmesi gereken durumlar: Güneş ışığı bakımından yetersiz bölgelerde yaşayan çocuklar. Yetersiz gıda alan ve fazla kalori yakan kişiler 55 yaşın üzerindekiler, özellikle menapoz sonrası kadınlar. Emziren ve hamile kadınlar. Alkol veya uyuşturucu kullananlar. Kronik hastalığı olanlar, uzun süredir stress altında olanlar, yakın geçmişte ameliyat geçirmiş olanlar. Mide-barsak kanalının bir kısmı ameliyat ile alınmış olanlar. Ağır yaralanma ve yanığı olan kişiler. Eksiklik Belirtileri Raşitizm/(Çocuklarda D vitamini eksikliği ile oluşan hastalık)Çarpık bacaklar, kemik veya eklem yerlerinde deformasyonlar, diş gelişiminde gerilik, kaslarda zayıflık, yorgunluk, bitkinlik. Osteomalazi (yetişkinlerde D vitamini eksikliği ile oluşan hastalık) kaburga kemiklerinde,omurganın alt kısmında, leğen kemiğinde, bacaklarda ağrı, kas zayıflığı ve spazmları, çabuk kırılan kemikler. Aşırılık ve Zehirlenme Belirtileri 1)Yüksek kan basıncı 2)Mide bulantısı ve kusma 3)Düzensiz kalp atışı 4)Karın ağrısı 5)İştah kaybı 6)Zihinsel ve fiziksel gelişme geriliği 7)Damar sertliğine eğilim 8)Böbrek hasarları E VİTAMİNİ: E Vitamini yağda eriyen vitaminlerdendir.Alfa,beta,gama ve delta tokoferolleri içerir. Bitkisel yağlar ve buğday tanesi en iyi kaynağıdır. Isıya karşı sabit ve pişirilmeye dayanıklıdır. Vücuttaki Fonksiyonları En iyi Antioksidandır.Hücre zarı ve taşıyıcı moleküllerin lipid kısmını stabilize ederek hücreyi serbest radikaller, ağır met@ller, zehirli bileşikler, ilaç ve radyasyonun zararlı etkilerinden korur. İmmun sistemin aktivitesi için gereklidir.Timus bezini ve alyuvarları korur.Virütik hastalıklara karşı bağışıklık sistemini geliştirir. Göz sağlığı için hayati önem taşır.Retina gelişimi için gereklidir.Serbest radikallerin katarakt yapıcı etkilerini önler. Yaşlanmaya karşı koruyucudur.Serbest radikallerin dokular, deri ve kan damarlarında oluşturduğu dejenaratif etkiyi önler.Yaşlanmayla ortaya çıkan hafıza kayıplarını da önleyici etkisi vardır. Eksiklik Belirtileri Çocuklarda hemolitik anemi ve göz bozuklukları Yetişkinlerde Dengesiz yürüme, konsantrasyon bozukluğu, düşük tiroid hormonu seviyesi, sinir harabiyeti, uyuşukluk, anemi, bağışıklık sisteminde zayıflama. E vitamini eksikliğinde kalp hastalıkları ve kanser riski artmıştır. K VİTAMİNİ: K Vitamini yagda eriyen vitaminlerdendir.Kan pıhtılaşmasında önemli rol oynar. Lahana, karnıbahar, ıspanak ve diğer yeşil sebzelerde, soya fasülyesi ve tahıllarda bulunur.Genellikle vücutta bağırsak bakterileri tarafından sentez edilir. Vücuttaki Fonksiyonlari Kan pıhtılaşmasını sağlar. Bazi çalışmalar özellikle yaşlılarda kemikleri güçlendirdiğini göstermektedir. Pıhtılaşmada ve kemik yapımında kalsiyum'a yardımcıdır. Eksiklik Belirtileri Kontrolsuz kanamalara neden olan K vitamini eksikliği malabsorbsiyon hastaları hariç ender görülür.Doğumdan sonraki ilk 3-5 gün içerisinde bağırsak florası henüz tam gelişmemiş olduğundan K vitamini eksikliği vardır. Günlük Vitamin K ihtiyaci: Genellikle sebzelerle alınan günlük 60-85 mg. herhangi bir eklemeye gerek kalmadan yeterli olmaktadır.

http://www.biyologlar.com/yagda-eriyen-vitaminler

Gaitada Parazit

Dışkı örneği ile çalışan laboratuvarlarda potansiyel olarak bulunan tehlikeler şunlardır. Parazit yumurtası veya kistleri (cysts) yutmak, enfektif larvaların deriden geçişi yada dışkıdaki veya diğer biyolojik sıvılardaki paraziter olmayan enfeksiyöz ajanlarca enfekte olmak. Bu riskin oranı genel laboratuvar temizlik ve çalışma şartları uygulanarak azaltılabilir. Laboratuvarda çalışırken dikkat edilmesi gereken genel kuralları şu şekilde sıralayabiliriz. 1-Laboratuarda örnek incelerken (çalışırken) laboratuvar önlüğü ve lastik eldiven giymek. 2-Gerekli durumlarda biyolojik güvenlik kabini kullanılmalı (filtreli özel kabinler). 3-Çalışma ortamında yiyecek yenmemeli, sigara, çay v.b. şeyler içilmemeli, makyaj yapılmamalı, kontak lens takma-çıkarma-düzeltme yapılmamalıdır. 4- Çalışma sahası daima temiz ve düzenli tutulmalıdır. Akan, dökülen yada etrafa sıçrayan her türlü örnek yada maddeler hemen temizlenmelidir. Saha günde bir kez dekontaminasyon (bulaşıklardan uzaklaştırma- temizlik) işlemine tabi tutulmalıdır. 5-Ellerde bulunan kesik, yırtık v.b. yaralar ve ezikler yara bandı veya pansuman malzemeleri ile kapatılmalıdır. 6-Eğer keskin maddeler (bistüri ucu, iğne v.b.) kullanılmış ise bunlar hemen özel atık kutularına yerleştirilmelidir. Ortada bırakmak yada normal çöp kovalarına atmak sakıncalıdır. 7-Eldivenler çıkartılıp uygun biyolojik atık çöp kutularına atılır. Eller temizce yıkanır. Bu güvenlik kuralları mutlaka uygulanmalıdır. Hatta dışkı örneği belli fiksatifler (tespit ediciler) ve prezervatifler (koruyucular) içinde dahi olsa yukarda ki işlemler yapılmalıdır. Örneğin formalin (formaldehit) içerisinde tespit edilmis dışkıdaki bazı kalın kabuklu parazit yumurtalarının, kistlerin (cysts) yada oocystslerin (ookists) ölmesi için günler- haftalar gerekebilir. Ascaris lumbricoides’in yumurtası formalin içerisinde gelişmesine devam edebilir ve infektif duruma gelebilir. Dışkı Örneği Toplama: 1.Dışkı kuru ve sızdırmaz kaplar içerisine toplanmalıdır. Bu sırada diğer maddeler (idrar, toprak, saman v.s.) ile kontaminasyonu (bulaşması) engellenmelidir. 2.Dışkının kıvamı içeriği hakkında bilgi verebilir. Şekilli dışkıda parazitlerin daha çok kistik (cysts) formları bulunurken, sıvı (sulu) dışkı kıvamına doğru gidildikçe kistik form azalır ancak trophozoit (tırofozoid) formları daha çok görülür. İncelemeye başlarken bu durum unutulmamalıdır. 3.Taze dışkı ya hemen incelenmeli yada daha sonra incelenecekse zaman geçirmeden prezervatifler (koruyucular) içerisine konulmalıdır. Eğer prezervatifler hemen kullanılamıyorsa buzdolabında kısa süreli saklama yapılabilir. Ancak bu dışkı sadece antijen testleri için uygun olacaktır. 4.Örnekler mümkün olan en kısa sürede prezervatiflere konulmalıdır. Eğer ticari bir prezervatif kullanılıyor ise bu ürünün kullanım bilgilerine uyulmalıdır. Eğer ticari koruyucular kullanılmıyor ise; örnekler ikiye ayrılmalı ve uygun kaplarda iki ayrı prezervatif içerisine konulmalıdır. Örneğin: % 10’luk formalin ve PVA (polivinil alkol) kullanılabilir. Bir hacim dışkı üç hacim prezervatif ile karıştırılmalıdır. 5. Toplanan örneğin prezervatif ile tam olarak karıştığından emin olunmalıdır. Şekilli dışkılarında iyice dağılıp, parçalandığından emin olunmalıdır. 6. Örnek konulan kapların iyice kapatıldığından emin olunmalıdır. Kapaklar parafilm yada benzeri maddeler ile yeniden sarılmalı ve kaplar plastik torbalara konulmalıdır. 7. Belli ilaçlar dışkı içeriğini değiştirebilir. Bu durumdaki dışkılar muayene için alınmamalıdır. Örnek, herhangi bir ilaç veya madde verilmeden önce alınmalıdır. Yada örnek ilaç etkisi geçtikten sonra toplanabilir. Bu ilaçlara; antiacid, kaolin, mineral yağ veya diğer yağlı maddeler, emilmeyen anti-diyare preperatları, baryum yada bizmut (7-10 gün beklenmeli atılmaları için), antimikrobiyel ilaçlar (2-3 hafta) ve safra kesesi boyaları (3 hafta). 8. Eğer ilk incelemede sonuç negatif çıkarsa örnek alınması tekrarlanabilir. Mümkünse en az üç örnek 2-3 gün ara ile alınıp incelenmelidir. Örneklerin İncelenmesi: Dışkı örnekleri taze olarak yada prezervatiflerde korunmuş olarak incelenebilir. Taze dışkının incelenmesi: Taze dışkı incelemesi hareketli trophozoitlerin görülebilmesi açısından gereklidir. Ancak bu örnek toplandıktan sonraki ilk yarım saat (30 dakika) içerisinde incelenmelidir. Sıvı (ishal-diyare-diarhoic) dışkılar daha fazla trophozoit içerirler. Yumuşak kıvamlı dışkılar hem cysts hemde trophozoit formlarını barındırabilmektedir. Bu nedenle ilk bir saat içerisinde incelenmelidir. Eğer bu süre aşılırsa sonuç güvenli olmaz. Çünkü bu süre sonrasında trophozoitler parçalanıp dağılmaktadır. Daha kıvamlı (şekilli) dışkılar da trophozoit bulunma oranı çok azdır. Bu durumdaki örnekler bir süre saklanabilirler. Eğer gerekirse buzdolabında korunabilirler. Parazitolojik muayenelerde kullanılacak dışkılar kesinlikle dondurulmazlar. Dondurulan dışkılardaki parazit yumurta ve oocystsleri parçalanırlar. Prezervatifli Dışkının İncelenmesi: Dışkı inceleme yukarda belirtilen süreler içerisinde yapılamayacaksa , örneği prezervatiflerde saklamak gerekir. Bu amaç için kullanılabilen çeşitli prezervatifler vardır. En çok kullanılan prezervatifler %10’luk formalin, Polivinil Alkol gibi preparatlardır. Formalin (% 10) ve PVA diğer prezervatiflere göre daha fazla avantaj sağladığı için bu iki fiksatif daha çok kullanılır. Örneklerin ikiye ayrılarak bu iki prezervatiflede tespit edilmesi tavsiye edilmektedir (bir hacim dışkı ile üç hacim prezervatif karıştırılmalıdır). Prezervatife konulmuş örnekler birkaç ay korunabilir. Formalinde Tespitli Örnekler: örnekler direk olarak incelemeye alınabilirler (ıslak yuva, immunoassay, kromotrop boyama) yada yoğunlaştırma (konsantre etme) işlemi yapılarak daha sonraki testlerde kullanıma hazır hale getirilebilir. Yoğunlaştırma İşlemleri: Bu işlem parazit veya yumurtalarını dışkıdan ayırma işlemleridir. Böylece az sayıda bulunan paraziter durumları da teşhis etme şansı artmış olur. Sedimentasyon (çöktürme) ve flotasyon (yüzdürme) yöntemleri olarak iki kısma ayrılır. Flotation (flotasyon) tekniği: Bu yöntemde genellikle sofra tuzu (NaCl), şeker yada çinko sülfat (zinc sulfate) solusyonları kullanılır. Bu sıvılar organizmadan daha yüksek spesifik graviteye (özgül yoğunluğu) sahip oldukları için paraziter yapılar yüzüp yukarı çıkarken çoğu dışkı kalıntıları dibe çöker. Bu işlemin asıl avantajı sedimentasyon tekniğine göre daha temiz inceleme maddesi elde edilir. Dezavantajı ise bazı yumurta yada kistler (cysts) bu solusyonlar içerisinde büzüşebilirler yada bazı parazit yumurtaları yüzmeyebilirler. Bu durumda teşhis zorlaşabilir. Sedimentation(sedimentasyon) tekniği: Çöktürme işleminde spesifik gravitesi (özgül yağunluğu) paraziter organizmalardan daha düşük olan solusyonlar kullanılır. Böylece bu organizmalar sedimentin içerisinde yoğunlaştırılmış olurlar. Sedimentasyon tekniği genelde çok kullanılır çünkü kullanımı ve hazırlanışı kolaydır ve teknik hata yapma ihtimali çok azdır. Formalin-etil asetat (formalin- ethyl acetate) ile çöktürme işlemi çok kullanılan bir yöntemdir. Genel olarak kullanılan prezervatiflerle toplanmış örneklere de uygulanabilir. Formalin-Ethyl Acetate Sedimentasyon Konsantrasyonu 1. Örneği iyice karıştırın. 2. Dışkı örneğinin yaklaşık 5 ml’sini süzün (çay süzgeci yada mikro elek) 3. Fizyolojik tuzlu su yada % 10’luk formalini süzgeçte kalan kalıntılara dökerek tekrar süzün ve bu şekilde 15 ml deney tüpünü doldurun. Distile su kullanılması tavsiye edilmez. Çünkü eğer örnekte Blastocystsis hominis varsa bu parazit deforme olabilir yada parçalanabilir. 4. Örneği 10 dakika santrifüj et (1000 rpm- dakikada devir yada 500g) 5. Üstte kalan sıvıyı dikkatlice dök bu sırada çöküntü bozulmamalı. Sıvı dökülürken iyice sızdırmaktan kaçınılmalı. Son kısımda paraziter maddeler olabilir. 6. Çöküntü üzerine 10 ml %10’luk formalin eklenip tekrar homojen hale getirilir. 7. Üzerine 4 ml etil asetat (ethyl acetate) ileve edilir ve deney tüpü kapatılıp içerik iyice karıştırılır. 8. Tüp tekrar 10 dakika santrifüj edilir (1000 rpm-500g) 9. Tüpün üst kısmında (tepe) biriken dışkı kalıntıları bir çubukla tüpten ayrılır. Üst kısımdaki sıvılar dikkatlice boşaltılır. 10. ucuna pamuk sarılmış bir çubuk ile tüp kenarındaki kalıntılar temizlenebilir. 11. Bir kaç damla % 10’luk formalin ilave edilerek dipteki sediment sulandırılır ve örnek istenilen deney metodu için kullanıma hazırdır. PVA İçerisinde Tespit Edilmiş Örnekler: Kalıcı Trikrom boyamalar için genellikle PVA prezervatif olarak kullanılır. Boyama öncesinde şu işlemler yapılır. 1. Dışkı örneğinin iyice karışmış olmasına dikkat edilir. 2. Dışkı örneğinden 2-3 damla (dışkı yoğunluğuna bağlı) alınarak sürme preperat hazırlanır. 3. Preperat ısı ile tespit edilir (60oC – 5 dakika) yada normal oda ısısında tamamen kurutulur. 4. Insure that the specimen is well mixed. Preperat trikrom boyama yapılabileceği gibi daha sonraki boyamalar için bir kaç ay preperat koruyucu kutularda saklanabilir. Örneklerin Başka Yerlere Nakli: Bazı durumlarda bölgenizde parazitoloji laboratuvarı bulunmayabilir. Bu durumlarda dışkı örnekleri başka bölgelerdeki laboratuvarlara gönderilmesi gerekebilir. Bu durumlarda dikkat edilmesi gereken hususlar aşağıdadır. Prezervatifsiz Dışkı Örneklerinin Nakli: Bazı durumlarda laboratuvarlar şüphenelinen patojenleri izole edebilmek için prezervatif kullanılmamış örnekler isteyebilirler (örneğin microsporidia kültürü yapılacak dışkılar). Böylesi durumlarda örnekler hemen temiz bir kaba konulmalı ve gönderilene kadar buzdolabında saklanmalıdır. Örnekler alındıktan sonra en kısa sürede (ortalama 8-12 saat), soğuk taşıma şartlarında taşınarak ulaştırılmalıdır. Kullanılan kaplar sızdırmaz olmalı ve örnek ile ilgili tüm bilgiler kap üzerine yazılmalı yada not olarak yanına ilave edilmelidir. Prezervatifli Örneklerin Nakli: Prezervatifli örneklerin nakil kuralları prezervatifsiz örneklerinki ile aynıdır. Sadece buzdolabında saklamaya ve soğuk taşımaya gerek yoktur. Paketleme: Dışkı örnekleri sızıntıları engelleyecek şekilde paketlenmelidir. Paketleme kaba işlemlere dayanıklı malzemeden secilmeli ancak depolama, paletli-kızaklı sistemlerde hareket edebilir olmalıdır. Örnek hacmine göre iki farklı paketleme yöntemi kullanılabilir. Hacmi 50 ml’ye kadar olan örnekler: 1. Nakledilecek mateteryal su sızdırmaz tüp veya kaba konulmalıdır (buna birinci nakil kutusu yada birinci kutu-kap, denilebilir). 2. Birinci kap, su sızdırmaz, dayanıklı bir kutuya konulur (ikinci nakil kabı-kutusu) 3. Birden fazla birinci nakil kutusu, ikinci nakil kutusuna yerleştirilebilir ancak toplam hacim 50 ml’yi geçmemelidir. 4. Soğuk kaynağı olan buz paketi v.s. yanında, sızma ihtimaline karşı emici maddeler de kutuya konulmalıdır. Bu maddeler kutu içindeki tüm hacmi emebilecek özellikte olmalıdır. Emiciler, parçalı maddelerden, talaş v.s. olmamalıdır. 5. Daha sonra bu kutular asıl nakil kutusuna (koli, özel taşıma kutusu v.b.) yerleştirilir. 6. Asıl nakil kutusu üzerinde “Biyolojik Madde”, “Tıbbi Malzeme” gibi uygun uyarıcı yazılar mutlaka rahatca görülebilecek yerlere konulmalıdır. Hacmi 50 ml’den fazla olan örnekler: Büyük hacimli örnekler paketlenirken yukardaki kuralların hepsi uygulanmalıdır. Bunlara ilaveten aşagıdaki kurallarda yerine getirilmelidir. 1. Birinci ve ikinci taşıma kutuları arasına ve her yönde şok emici maddeler mutlaka ilave edilmelidir. Bu işlemden sonra asıl taşıma kutusuna yerleştirilmelidir. 2. Birinci taşıma paketi 1000 ml’den (bir litreden) fazla örnek taşımamalıdır. Birden fazla birinci taşıma kutusu toplam hacimleri 1000 ml’geçmemek üzere ikinci taşıma kutusuna yerleştirilebilir. 3. Asıl taşıma kutusu birden fazla ikinci taşıma kutusu taşıyacaksa toplam hacim 4000 ml’yi (4 litre) geçmemelidir. Boyama: Kalıcı boyama yöntemleri ile boyanmış yayma (sürme) prepreperatlar laboratuvarlara avantaj sağlarlar. Bu sayede hem kalıcı olarak kayıt tutulabilir hemde ihtiyaç olduğunda örnekler yeniden incelenebilir. Ayrıca farklı organizma morfolojileri ile karşılaşıldığında yada teşhis zorluğu ile karşılaşıldığında bu preperatlar referans laboratuvarlara gönderilebilirler. Yukarda sayılan nedenler yüzünden her paraziter kontrole gelen dışkı örneğinden en az bir adet sürme preperatın kalıcı boyamalar ile boyanması tavsiya edilir. Modifiya Asit-fast Boyama : Bu boyama metodu İsospora, Crptosporidium, Cyclospora gibi coccidian parazitlrin teşhisinde kullanışlıdır. Trikrom boyamaya göre teşhiste avantaj sağlar. Modifiye asit-fast boyamada, Ziehl-Neelsen boyamada olduğu gibi boyama maddelerini ısıtmaya da gerek yoktur. Örnek: Taze yada formalindeki dışkı örneği çökeltme ile konsantre edildikten sonra kullanılabilir. Diğer klinik örneklerde (duedonum sıvıları, safra yada akciğer sıvıları (balgam, bronş yıkantısı , biyopsi) yine bu boyama ile boyanarak incelenebilir. Reagentlar (Boyamada kullanılacak Solusyonlar): Asit-Fast boyamada aşağıdaki solusyonlar hazır olmalıdır. 1. Absolute Methanol (Saf Metanol) 2. Asit Alkol 10 ml Sülfirik Asit + 90 ml Absolute ethanol. Oda ısısında depolanmalıdır. 3. Kinyoun Carbol fuchsin (Karbol Fuksin) (ticari olarak satın alınabilir) 4. Malachite green %3 (Malahit yeşili) Malahit yeşilinin 3 gramını 100 ml distile suda çözdür ve oda ısısında depo et. Boyama İşlemi 1. Dışkı örneğinin sedimentinden 1-2 damla bir lam üzerine damlatılıp yayılır. Yayılan dışkı çok kalın olmamalıdır. Bu preperat 60°C’de tamamen kurutulur. 2. Preperat absolut metanol içerisinde 30 saniye tespit edilir. 3. Karbol fuksin ile bir dakika boyanır. Distile su ile hafifce yıkanır ve suyu süzdürülür. 4. Asit alkol kullanılarak iki dakika boyama nötürleştirilir (İstenmeyen boya miktarı uzaklaştırılır.) 5. Malahit yeşili (Malachite green) ile karşı boyama yapın. Distile su ile hafifce durulayın ve suyu süzdürün. 6. Preperatı sıcak havada (60°C) beş dakika kurutun. uygun bir lamel ile preperat kapatılabilir. İstenilen bölgeler örtülerek incelemeye hazır hale getirilir. 7. Preperat mikroskop altında düşük yada yüksek büyütmeler ile incelenir. Organizmaların morfolojik detaylarını görmek için immersiyon (mineral) yağ kullanılabilir. Kalite Kontrolü: Bir adet kontrol preperatı boyamanın ne denli başarılı olduğunu konrol için örnek ile beraber boyanmalıdır. Bu amaç için genellikle Cryptosporidium (% 10 ‘luk formalinde tespit edilmiş) Kullanılır. Cryptosporidiumlar kırmızımsı-pembe renkte boyanırken arkaplan yeşil boyanmış olmalıdır. Kromotrop Boyama (Chromotrope) İşlemi: Bu boyama yöntemi trikrom (trichrome) bazı boyama maddeleri kullanılarak CDC tarafından geliştirilmiştir (Centre for Disease Control and Prevention-USA). Bu metod ile microsporidia sporlarını tespit edebilmek için kullanılmaktadır. Örnek: Formalin ( %10) içerisinde korunmakta olan dışkı örneğinden 10 µl alınarak sürme preparat hazırlanır. Preperat ısı ile kurutulup tespit edilir (60°C’de 5-10 dakika). Reagents (Solusyonlar): 1. Absolute methanol 2. Chromotrope Stain )kromotrop boya) Chromotrope 2r (Kromotrop 2r) 6.00 g Fast green )Hızlı yeşil) 0.15 g Phosphotungstic acid (fosfotungistik asit) 0.70 g Glacial acetic acid (Glasiyal asetik asit) 3.00 ml Bu maddeleri karıştırıp yarım saat (30 dakika) beklet ve 100 ml distile su ilave et. Her ay taze olarak kullanmak üzere yenisini hazırla. 3. Acid alcohol: (asit alkol) 90% ethanol 995.5 ml Glacial acetic acid 4.5 ml 4. 95% ethanol 5. 100% ethanol 6. Xylene (Ksilen) Boyama İşlemi: 1. Örneği (sürme preperat) absolute methanol içinde 5 dakika tespit et. 2. Kromotrop boya içerisine koyup 90 dakika boyama yap 3. Boyamayı nötürleştir , asit alkol içerisinde 1- 3 saniye. 4. Örneği % 95’lik ethanol içerisine batırarak asit alkolü durula. 5. İki % 100’lük ethanol kabı hazırla ve örneği içerisine koyarak (sıra ile) üçer dakika beklet. 6. İki ayrı ksilen (xylene yada hemo-de) kabı hazırla ve ayrı ayrı 10 dakika burada beklet. 7. preperatı süzdür ve kurutup üzerini uygun lamel ile kapatıp tespit et. İmmersiyon oil yöntemi ile en az 200 mikroskop sahasını incele. Kalite Kontrol: Formalinde ( % 19) prezerve edilmiş microsporidialı olduğu bilinen bir örnekte, incelenecek örnek ile boyanırsa boyama kalitesini kontrol etmek mümkün olabilir. Microsporidi sporlarının duvarı pembemsi- kırmızı renkte boyanır ve çapları yaklaşık 1µm çapındadırlar. Her 10 preperat boyamasından sonra tüm solusyonlar yenilenmelidir. Boyama esnasında durulama ve kurutma işlemleri tam yapılmalıdır. Microsporidiaları tespit edebilmek için 100X’lük büyütme kullanılmalıdır. Pazitif sonuçlar ikinci bir eksper tarafından doğrulatılmasında yarar vardır. Modifiye Safranin Tekniği (Sıcak Metod) Cyclospora, Cryptosporidia ve Isospora için kullanılır: Klinik örneklerinde çoğunlukla Cyclospora oocystleri tespitinde Kinyoun’un modifiye acid-fast boyaması (soğuk boyama) kullanılır. Ancak, asit-fast boyama tekniğinde oocystsler farklı derecelerde boyanırlar. Boyanmış, yarım boyanmış yada boyanmamış oocystsler aynı örnekte görülebilir. Bu durum yanlış teşhislere yol açabilmektedir. Modifiye safranin tekniğinde daha üniform (aynı tipte) oocystsler elde edilir. Boyaalr ısıtıcılar yardımı ile kaynama noktalarına kadar ısıtılırlar. Örnekler: Concentrated sediment of fresh or formalin-preserved stool may be used. Other types of clinical specimens such as duodenal fluid may also be stained. Solusyonlar: 1. Asit Alkol (% 3 HCl/Methanol) Hidroklorik asidi (3 ml) yavaşca absolute metanol (97 ml) içerisine ilave edip ağzı sıkıca kapalı kaplarda oda ısısında sakla. 2. Safranin Boyası 3. Malachite Green (% 3) Malachite green (malahit yeşili- 3 g)distile su içerisinde (100 ml) çözdür ve oda ısısında koru. Boyama İşlemi: 1. İnce yayma (sürme) preperatı hazırla ve kurut. 2. Alkol içerisinde 5 dakika tespit et. 3. Distile su ile dikkatlice durula. 4. Kaynamakta olan safranin içerisinde 1 dakika boya. 5. Distile su ile dikkatlice durula. 6. Malachite green ile1 dakika karşı boyama yap. 7. Distile su ile durula ve preparatı kurut. 8. Kurumuş preperatı uygun yolla kapat ve incele. Kalite Kontrol: İçerisinde Cyclospora olduğu bilinen bir preperat (% 10’luk formalinde korunmuş olabilir)hazırlanır ve yeni incelenecek örnek ile beraber boyanır. Cyclospora oocystleri kırmızımsı-portakal sarısı renkte boyanırlar. Arka planın unifor yeşile boyanmış olması gerekir. Trichrome Boyama Dışkıda intestinal protozoaların incelenmesinde tek ve en iyi sonuç veren yöntem dışkıdan ince yayma preperat yaparak boyama tekniğidir. Kalıcı boyama ile boyanmış preperatlarda cysts ve trophozoit taranması, tanınması (bulma ve teşhis etme) ve devamlı kayıt maddesi (kanıt) elde edilebilir. Küçük protozoalar ıslak yöntemler ile (flotasyon vb) hazırlanan incelemelerde görünmeyebilirken (hazırlama veya inceleme hatası vs) boyanmış preperatlarda tespitleri daha kolay olmaktadır. Trichrome boyama tekniği hızlı, kolay basit bir boyama metodudur. Bu boyama ile intestinal protozoalar, insan hücreleri, mayalar yada diğer maddeler uniform olarak boyanmış halde elde edilirler. Örnek: Boyama için kullanılacak olan taze dışkı örneği bir lam üzerinde yayma yapılıp hemen tespit edilir. Tespit için, Schaudinn’s fiksative yada polivinil alkol (PVA) kullanılır ve havada veya ısıtılarak (60°C) kurutulur. Sodium acetate-acetic acid-formalin (SAF-sodyum asetat- asetik asit-formalin) ile tespit edilmiş örneklerde kullanılabilir. Solusyonlar: 1. Ethanol (% 70) + iodine: Etil alkol içerisine iyot kristalleri (iodine) ekleyerek bir stok solusyonu hazırla. Solusyon tamamen koyu bir renk alana kadar iyot ekle. Bu solusyonu kullanacağında kırmızımsı-kahve rengi yada demli çay rengi oluşana kadar % 70’lik etanol ilave et. 2. Ethanol % 70 3. Trichrome Boya 4. Acid-Ethanol % 90 Ethanol % 90 99.5 ml Acetic acid (glacial) 0.5 ml 5. Ethanol % 95 6. Ethanol % 100 7. Xylene (Ksilen) Boyama İşlemi: 1. Taze örneklerde preperatı Schaudinn’s fiksativinden çıkartıp % 70 ethanoliçerisinde 5 dakika beklet. Daha sonra % 70 Ethanol + iodine koyup bir dakika beklet. Eğer örnek PVA yayması ise preperatı % 70 ethanol + iodine içimde 10 dakika beklet. 2. Preperatı % 70 Ethanol de 5dakika beklet. 3. Preperatı ikinci % 70’lik Ethanol içinde 3 dakika beklet. 4. Trichrome boyaya koyup 10 dakika beklet. 5. Fazla boyaları % 90’lık ethanol + acetic acid ile uzaklaştır (1veya 3 saniye). 6. Örneği % 100 ethanol ile bir kaç defa durula. 7. İki kademeli % 100’lük ethanole koy (her biri 3 dakika). 8. İki kademeli xylene (ksilen) koy (her birinde 10 dakika). 9. Uygun lamel ile preperatı kapatıp yapıştır. 10. Mikroskopta 100X objektif ile (immersiyon oil) en az 200 mikroskop sahası incele. Kalite Kontrol: İçerisinde protozoa bulunduğu bilinen (Giardia gibi) PVA içerisinde tespit edilmiş bilinen bir örnek kontrol örneği olarak bilinmeyen örnekle beraber boyanmalıdır. Düzgün olarak tespit edilmiş ve doğru boyanmış preperatlarda protozoa trophozoitlerinin stoplazması mavimsi yeşil veya morumsu renklerde belirir. Cysts (Kistler) daha morumsu olarak belirirler. Çekirdek ve diğer yapılar (kromatid yapılar, bakteriler ve alyuvarlar) bazan mora kaçan kırmızı renkte görülürler.Glikojen solusyonlarda eridiği için bu bölgeler temiz alanlar olarak belirir. Geri plan ise genellikle yeşil renk boyanır ve iyi bir renk zıtlığı oluşturarak parazitlerin daha iyi belirmesini sağlar. Mikroskobik İnceleme Oküler Mikrometre kullanılarak Mikroskopların Kalibrasyonu: Doğro olarak kalibre edilmiş mikroskoplar incelemelerde çok önemlidir. Çünkü organizmaların özellikle parazitlerin büyüklükleri önemli bir teşhis aracı olarak kullanılır. Kalibrasyon için iki mikro metre kullanılır. Birinci mikro metre okülere yerleştirilir. İkinci mikrometre mikroskop sehpasında konulur ve her büyütmede iki mikrometrenin ne kadar çakıştığı belirlenir. Sehpadaki mikrometrenin, okülerde nekadar görüldüğü ve görülen mesafenin aslında nekadar olduğu ile oranlanarak kalibrasyon yapılır. Bu işlem her mikroskop için ayrı ayrı yapılmalıdır. Mikrometreyi sehpaya yerleştirip net ayarını yap ve hem 0.1 mm hem de 0.01 mm çizgilerini görüntüle. Okülerdeki mikrometrenin “0” çizgisi ile sehpadaki mikrometrenin “0” çizgilerini çakıştır. Daha sonra, diğer kısımda kalan bölümlerden hem sehpa hemde okulerdeki metrelerden tam olarak çakışan iki çizgi bulunur (bu iki aramesafenin mümkün olan en uzak mesafelerden seçilir). Okülerdeki bu mesafe ile sehpadaki mesafe arasınad oran kurularak kalibrasyon tamamlanır. Örneğin sehpadaki mikrometrenin 36 bölmesi okulerdeki 0.7 mm çizgisi ile çakıştı bu durumda 0.7/36= 0.019mm olarak hesaplanır.Yani okülerde sizin 1 mm olarak gördüğünüz cisim aslında 0.019 mm büyüklüğünde demektir. Genelde bu ölçümler milimetre yerine, mikrometre cinsinden verilir. Bu durumda mesafe 1000 ile çarpılır sonuç 19 µm olarak bulunur yani her bölüm her ünite (kesik çizgiler arası) bu mesafeye eşittir. Bu işlem her büyütme için ve her mikroskop için ayrı yapılır. Ayrıca mikroskop obyektif, oküler değişimleri vya genel temizlikleri sonrasında tekrarlanmalıdır. Kalibrasyon işlemi sonrası mikroskop yanına bu işlem sonucu kaydedilebilir. Basit Yayma Preperat Hazırlanması: Bu işlem öncesinde mikroskoplarda kalibrasyon işleminin yapılmış olması tavsiye edilir. Protozoan trophozoitleri, cysts, oocysts ve helminth yumurtaları ve larvalarbu yöntemle görülüp teşhis edilebilir. Bu işlem için bir lam, lamel ve dışkı örneği gereklidir. Az bir miktar dışkı alınıp lam üzerine konur. eğer dışkı hala kıvamlı ise bir iki damla su veya tuzlu su ile sulandırılır. Genellikle en az iki örnek hazırlanması istenir. Bu sayede bir örnek iyot ile boyanabilir. Bu yaymada dışkı kalınlığı çok olmamalıdır. Lam altına konulan yazılar üstten görünebilmeli ve okunabilmelidir (bak resim1). Eğer arzu edilirse lamel, lam üzerine yapıştırılabilir. Bu işlem için en ucuz ve kolay elde edilebilen madde tırnak cilalarıdır (oje). İlk olarak lamelin dört köşesi birer damla ile tespit edilir. Daha sonra oje lamel etrafına açık kısım kalmayacak şekilde sürülür ve kurumaya bırakılır. Bu şekilde hazırlanan preperatlar uzun süre saklanabilir. Saklanacak preperatlarda tuzlu su kullanılmamalıdır. Bu işlem için diğer yapıştırıcılarda kullanılabilir. Preperatı sistematik olarak incele. Bu işlem ilk olarak 10 X objektif ile yapılmalıdır. Her hangi bir nesne incelenmek istenirse o zaman büyük büyütme ile inceleme yapılır. Boyanmış Preperat Hazırlanması: Kalıcı boyamalar ile hazırlanmış olan preperatlar protozoan trophozoites ve cystlerini teşhis etmek yada tür tayini yapmak için hazırlanır. Ayrıca daha sonraki çalışmalar için kaynak oluşturur (uzman incelemeleri vs). İnceleme öncesinde çalışma ortamında aranan organizma ile ilgili kaynaklar (kitap, resim yada pozitif olduğu bilinen preperatlar) hazır olmalıdır. Hangi boyama yapılacağı aranan organizmaya göre belirlenir. Normalde her 3 örnekten bir tanesi kalıcı boyamalar için hazırlanılması tavsiye edilir. Eğer dışkı örneği prezervatifsiz olarak gelmiş ise hemen bir baget (çubuk) ile biraz dışkı alınıp bir lam üzerine sürülerek yayma yapılır. Dışkı çok kıvamlı ise bir iki damla su ile sulandırılabilir. Bu preperat hemen Schaudinn'in fiksativine konur. Bu aşamada preperat kurutulmaz, kurumamasına dikkat edilir. Eğer PVA ile tespit edilmiş örnek gelirse bir iki damla alınıp lam üzerine homojen olarak ve yaklaşık 22x22 genişliğindeki lamel alanı kadar yayılır. Boyama işlemi tamamlandıktan sonra preperat sistemik olarak incelenir. Bu işlem için 100x objektif kullanılır. En az 200 yada 300 mikroskop sahası taranır. Eğer varsa görülen protozoa cysts yada trophozoitleri tespit ve teşhis edilir ve rapor edilir.

http://www.biyologlar.com/gaitada-parazit

Biyoteknoloji ve Gen Teknolojilerinin Stratejik Önemi

Biyoteknoloji ve Gen Teknolojilerinin Stratejik Önemi Moleküler Biyoloji, Hücre Biyolojisi, Genombilim ve benzeri alanlardaki bilimsel ilerlemeler sayesinde, Dünyada özellikle sağlık ve tarım sektörlerindeki biyoteknolojik uygulamalarda bir patlama yaşanmaktadır. “Modern Biyoteknoloji” veya “Yeni Biyoteknoloji” olarak tanımlanan bu gelişmelerin insanlığa daha sağlıklı bir yaşam için eşi görülmemiş fırsatlar yarattığı aşikardır. Bu fırsatlar ABD gibi ülkelerde aynı zamanda ekonomik faydaya dönüştürülmüş, sağlık ve tarımla ilgili biyoteknoloji sektörü ABD ekonomisinin itici güçlerinden birisi haline gelmiştir. Benzer gelişmeler sadece Avrupa Birliği ve Japonya gibi gelişmiş endüstriyel toplumlarda değil, aynı zamanda Güney Kore, İsrail, Hindistan, Çin gibi ekonomisi büyümekte olan ülkelerde de yaşanmaktadır. Türkiye, dünyadaki bu gelişmeler karşısında henüz tutarlı bir tavır alamamıştır. Sağlıkta biyoteknoloji sadece ekonomik boyutları ile değil, sosyal devlet anlayışı çerçevesinde de ihmal edilemeyecek bir konudur. AB adaylığı ile ivme kazanan toplumsal değişim hareketi, genelinde “bilim ve teknoloji”yi, bu rapor kapsamında ise “Sağlık, Tarım, Hayvancılık ve Endüstriyel Üretim alanlarında Moleküler Biyoloji Bilimini ve Biyoteknoloji alanlarını”' kucaklamak zorundadır. Bu alanlarda gerekli adımlar zamanında atılmadığı takdirde, Türk insanının sağlığı ve Türkiye ekonomisi, ulusal olarak planlanamayan ve sadece dış dinamiklerin etkisiyle şekillenen bir yapıya dönüşecektir. Bu ve benzeri nedenlerle, Türkiye biyoteknolojinin özellikle sağlık ve tarım alanlarında kullanımı konularında acil olarak tavır almak ve kendi “Ulusal Biyoteknoloji Strateji ve Programları”nı oluşturarak bir an önce hayata geçirmek zorundadır. Biyoteknoloji ve Gen Teknolojileri Strateji Grubu, raporunu hazırlarken, Vizyon 2023 Öngörü Çalışması sonuçlarını da dikkate alarak, ancak bu sonuçlarla kendisini sınırlamadan, Biyoteknoloji ve Gen Teknolojileri stratejik alanında, ulusal, bölgesel ve küresel boyutları da içine alarak, bilimsel, teknolojik, sosyal ve ekonomik parametrelerin ekseninde çalışmaya özen göstermiştir. Biyoteknoloji ve Gen Teknolojileri Strateji belgesi, dört ana sektöre odaklanmıştır. Bunlar sırasıyla, sağlık, tarım, hayvancılık ve endüstriyel biyoteknoloji sektörleridir. İlgili sektörlerde belirlenen somut hedeflerin, öngörülen yol haritalarına sadık kalarak gerçekleştirilebilmesine bağlı olarak, Türkiye 20 yıl gibi kısa bir dönem içinde Moleküler Biyoloji, Biyoteknoloji ve Gen Teknolojilerinde küresel bir güç haline gelme şansına sahiptir. Böyle bir güç, Türkiye'ye yirmibirinci yüzyılın teknolojisi olarak tanımlanan biyoteknoloji alanında sadece insanının refah düzeyini yükseltmekle sınırlı olmayan, ekonomik ve teknolojik bir üstünlük sağlayacaktır. Ülkemiz bu gücün ve üstünlüğün işaretlerini 5-10 yıl gibi kısa bir dönemde, özellikle sağlık ve tarım sektörlerinde görmeye başlayacaktır. Gelişen dünya içinde, geniş tarım alanlarına sahip, ulusal varlıklarını teknolojiyle değerlendiren ve insanının sağlığını gözeten bir toplum olarak Türkiye’de, biyoteknolojinin sağlık, tarım ve hayvancılık alanlarındaki hedeflenen gerçekçi başarıları, uzun vadede daha cesur ve kapsamlı hedeflere yönelebilecektir.

http://www.biyologlar.com/biyoteknoloji-ve-gen-teknolojilerinin-stratejik-onemi

FİTOTERAPİ Bitkilerle tedavi

Fitoterapi, bitkilerin bilimsel temele dayalı akılcı bir yaklaşımla hastalıkların tedavisi veya önlenmesinde kullanımını anlamına gelmektedir. Bitki ve Tedavi sözcüklerinden oluşan fitoterapi, terimi ilk kez, Fransız hekim Henri Leclerc(1870-1955) tarafından `La Presse Medical` adlı dergide, 1939 yılında kullanılmış olsa da bitkilerin tedavide kullanılışı aslında insanlığın ortaya çıkışı ile başlar. İlk insanlar, bitki ve hayvanları izleyerek tedavi yollarını bulmuşlar Bitkilerle tedavi insanlığın yaratıldığı günden bu yana devam etmektedir. İnsanlar ortaya çıktıktan sonra kendilerinden önce var olan bitki ve hayvanları izleyerek tedavi yollarını deneme yanılma yolları ile bulmuşlardır. Anadolu`da insanlar çaresiz hastalıklara karşı Kaplumbağaları takip ederek onların yedikleri bitkileri kullanarak tedavi yollarını bulmuşlar. Tarih öncesi dönemde yazı olmadığı için sözlü aktarımlarla kuşaktan kuşağa geçmiştir. Bunlar yapılan kazılarla ortaya çıkmıştır. Araştırmacılar Güney Doğu Asya`daki kapalı toplumların yaşayışlarından ve iskelet kalıntılarından faydalanmışlarıdır. İnsanlar tarımı 8000 yıl önce buluyor. Göçebe hayattan yerleşik hayata geçişleri tarımı keşfetmeleri ile oluyor.`Shanider 4 kazısı`nda M.Ö. 62000 yıl öncesine ait tohumlar bulunmuş ve halen Kuzey Irak`ta tıbbi amaçlı kullanılmaktadır. Alp dağlarında yapılan kazılarda 5300 yıl öncesine ait olan buz adam cesedin yanında kancalı kurt ve mantar bulunuyor ve ölümüne bunların sebep olduğu anlaşılıyor. Yüzyıllarca denenen tıbbi bitkilere ait bilgiler yazının icadından sonra M.Ö. 2000 başlarından itibaren dikkatle kaydedilmiş ve kuşaktan kuşağa zenginleştirilerek aktarılmıştır. Sümerliler tarafından M.Ö. 3000 – 700 yıllarında Mezopotamya`da kullanılmış bitkilerle ilgili ilk yazılı bilgiler Asur Kralı Assurbanipal`in (M.Ö. 668-627) kitaplığında çivi yazısıyla yazılmış 800 kil tablette bulunur. 120 mineral maddeye karşılık 250 bitkisel drog adının geçtiği kil tabletlerdeki bilgiler aynı zamanda en eski eczacılık kayıtlarıdır. Bitkilerle tedavide kullanılan yaprak, çiçek, tohum, kök, kabuk, v.s., gibi bitki organlarına `DROG` adı verildiğini belirtelim. Bazen tüm bitki, drog olarak kullanılır. Droglar, içindeki etkili bileşikler nedeni ile hastalıkların tedavisinde kullanılır. Bu arada `İLAÇ` terimi: Birleşmiş Milletler Örgütü`ne bağlı olarak 1948`de kurulmuş Dünya Sağlık Örgütü ilacı, fizyolojik sistemleri veya patolojik durumları, kullananın yararına değiştirmek veya incelemek amacı ile kullanılan veya kullanılması öngörülen bir madde ya da ürün olarak tanımlamaktadır. İlaç, sadece patolojik duruma karşı etkili olmalı, diğer yapıları ve organizmanın fizyolojik aktivitelerini etkilememeli, etkisi doza bağımlı ve geçici olmalıdır. Bitkisel ilaç dendiğinde de tedavi edici değere sahip bitki kısımlarından ( droglardan ) hazırlanan, ekstre veya distilatlar kullanılarak üretilen pomat, damla, şurup, draje, kapsül, tablet ve injektabl preparatlar anlaşılır. Bitkilerden elde edilen maddeler doğrudan ilaç yapımında kullanılabilirler. Bitkisel ilaçları şöyle gruplayabiliriz: Bitkinin tümü, bir organı veya bunlardan hazırlanan tıbbi çaylar, tentürler, uçucu yağlar, sabit yağlar. Saf bileşikler: Droglardan izole edilen saf bileşiklerdir. Standardize edilmemiş ekstre: Kalitesi ve farmakolojik etkisi belli olmayan ekstre. Standardize ekstre: Klinik ve farmakolojik etkisi belli olan ekstre. Dünyada 250.000 kadar bitki türü bulunmaktadır. 300 tanesi dünya çapında kullanılan bu türlerin % 6`sının biyolojik aktivitesi, % 15`nin ise kimyasal içeriği bilinir. XIX. Yüzyıl başlarından itibaren, kimyanın gelişimi sonucu doğada bulunmayan ve tamamen sentezle elde edilen maddelerin tedavi edici etkisinin yanında istenmeyen yan etkilerinin olması hatta bazen bunların hayatı tehdit edici boyutta oluşu, önemli bir sorunu da beraberinde getirdi. Dünya Sağlık Örgütü günümüzde, özellikle gelişmekte olan ülkelerdeki halkın yaklaşık % 80`inin `GELENEKSEL TIP` (= folklorik tıp, yerli tıp, ortodoks olmayan tıp, alternatif tıp, halk tıbbı, resmi olamayn tıp, halk hekimliği, halk eczacılığı ) bilgilerini kullandığını bildirmektedir. Söz konusu ülkelerde modern tıp uygulamalarının yanı sıra, tarihi ve kültürel nedenlerle `Geleneksel Tıp` geçerliliğini korumaktadır. Dünya Sağlık Örgütü de, geleneksel tıp uygulamalarının modern bilimin ışığı altında değerlendirilmesine olanak sağlamak üzere, ilk olarak Çin`de uygulanan geleneksel sağlık programları ile 1970`den sonra ilgilenmeye başlamış, 1977 yılında bilimsel ve geleneksel tıbbın işbirliği gelişiminin hızlanması amacı ile, Cenevre`de bir toplantı düzenlenmiş, toplantının sonucu bir rapor halinde 1978`de yayımlanmış, aynı yıl, geleneksel tıbbı resmen tanımış, uygulamaya koyduğu `Geleneksel Tıp Programı` ( Traditional Medicine Programme) gereği Chicago`da Illinois Üniversitesi`nde NAPRALERT adlı veri tabanını kurmuştur. Bu sayede araştırıcılar, geleneksel olarak kullanılan bitkiler, bunların etkinliği ve geleneksel tıp sistemleri hakkında önemli ölçüde bilgi sahibi olmuşlardır. Bugün gelişmiş ülkelerde özellikle son yıllarda `Alternatif` ve `Tamamlayıcı` tıbba yöneliş vardır. Bitkisel ilaçları kullanmadan önce dikkat edilecek hususlar: Önerilen ilaç formülasyonları içinde, ilk sıradakini tercih etmek gerekir. Başka şekilde belirtilmemişse; infüzyon, dekoksiyon, buğu, losyon, tablet veya kapsül ve tentür hazırlanması ile ilgili standartlara uymak gerekir. Bitkinin önerilen kısmından başkası kullanılmaz. Evde yapamazsanız, güvenilir bir firmadan, tablet, fitil, uçucu yağ, merhem ve tentür alabilirsiniz. İlacı kullanmadan önce uyarıları okumak gerekir. İkiden fazla bitkisel ilacı dahilen veya haricen, kullanmamak gerekir. Bitkisel ilaçların diğer ilaçlarla uyumlu olup olmadığına dikkat etmek gerekir. Bitkisel ilaçlar rahatsızlıkla ilgili şikayetler geçene kadar kullanılır. Eğer bir ilacı 3 haftadan fazla kullanacak olursanız, muhakkak bir doktora danışın. Eğer 2 – 3 hafta içinde bir iyileşme olmazsa veya daha kötüye gidiş söz konusuysa ya da herhangi bir şüphe varsa, muhakkak bir doktorun görüşüne başvurulur. Verilen miktarlar aksi belirtilmedikçe, daima kuru droglar içindir. Çocuklar için doz belirtilmemişse, tüm dozlar erişkinler içindir. Kural olarak; 6 – 12 aylık çocuklarda, erişkin dozun 1/10`u, 1 – 6 yaş için, erişkin dozun 1/3`ü, 7 - 12 yaş için ise, erişkin dozun ½`si kullanılır. 70 yaşın üzerinde metabolizma yavaşladığından, yaşlıların erişkin öngörülen dozun ¼`ünü kullanmaları gerekir. Belirtilen doza kesinlikle uymak gerekir. Dozu iki misli arttırmak etkiyi iki misli arttırmaz. 6 aylıktan küçük bebeklere hiçbir bitkisel ilacı hazırlamaya kalkışılmaz ve hazır formülasyonlar da doktor gözetiminde dikkatli kullanılır. Hamileliğin ilk 3 ayında, çok yaşamsal değilse bitkisel ve diğer ilaçlardan kaçınmak gerekir. Tüm hamilelik sürecinde alkol içeren tentürlerden ve belirtilen bitkileri kullanmaktan kaçınmak gerekir. Genellikle tıbbi bitkiler, öncelikle sağlık sorunlarının giderilmesinde işe yararsa da, büyük bir bölümünden, vücudu temizlemede ve besin takviyesi şeklinde de yararlanılır. Diğer bir deyişle, bu bitkileri hiçbir sorunumuz yokken de kullanarak sağlığımızı sürdürebilir ve hastalıklardan korunabiliriz. Aslında tüm bitkisel tedavi şekillerinde amaçlanan, hastalığın tedavisi değil, sağlıklı yaşamın korunmasıdır. Kaynak: Merkezefendi Geleneksel Tıp Derneği

http://www.biyologlar.com/fitoterapi-bitkilerle-tedavi

Biyologlar Hakkında Kanun Teklifi Maddelerinin Gerekçeleri

BİRİNCİ KISIM BİRİNCİ BÖLÜM Amaç,Kapsam ve Tanımlar MADDE 1- Bu madde ile bu kanunun amacı Biyologların yetki ve sorumluluklarının belirlenmesi ve Biyolog Odaları ile Türkiye Biyologlar Birliğinin kurulması,işleyişi ve faaliyetlerine ilişkin esas ve usuller belirtilmiştir. MADDE 2- Bu madde ile kamu ve özel kurum ve kuruluşlarında çalışan biyologlar ile gerçek ve tüzel kişileri kapsadığı belirtilmiştir. MADDE 3- Bu madde ile bu kanunda geçen Biyolog, Bakanlık,Oda ve Birlik deyimlerinin ne ifade ettiği belirtilmiştir. İKİNCİ BÖLÜM Biyolog Unvanının Kazanılması, Görev, Yetki ve Sorumluluklar MADDE 4- Biyologların mesleki görevlerini düzenli, sürekli, verimli bir şekilde yürütebilmeleri için görev yetki ve sorumluluklarının belirlenmesi amaçlanmıştır. Ayrıca Türkiye'de mevcut Fen ve Fen-Edebiyat Fakültelerinin ve ayrıca Eğitim Fakültelerinin de biyoloji bölümlerinden değişik lisanslarla lisans diploması verilmesi kavram kargaşası yaratmaktadır. Bu nedenle bu meslek grubunun tarifine ihtiyaç duyulmuştur. MADDE 5- Biyologların çalışma alanları ve bu alanlarda neler yapabilecekleri genel olarak belirlenmesi amaçlanmıştır. Ayrıca resmi kurum ve kuruluşlarda çalışan biyologların mesai saatleri dışında da mesleklerini serbestçe yapabilmeleri amaçlanmıştır. MADDE 6- Biyologların yetkili olarak çalıştıkları alanların tarifi amaçlanmıştır. MADDE 7- Değişik hizmet sektörlerinde çalışan biyologların çalışma alanlarına göre yetki ve sorumluluklarının tek tek belirlenmesi amaçlanmıştır. MADDE 8- Özellik arz eden birim ve alanlarda çalışacak olan biyologların yeterlilik belgesi almalarının gerektiğini açıklamak için düzenlenmiştir. MADDE 9- Biyologların sahip oldukları belgelerle çalışabilecekleri alanlar tarif edilmiştir. MADDE 10- Biyologlara kanun ve yönetmeliklerde verilmemiş görev ve sorumluluklar ile başka adlar altıda çalıştırılamayacakları ifadede edilmek istenmiştir. ÜÇÜNCÜ BÖLÜM Meslekte Yeterlilik, Danışma Kurulu MADDE 11- Biyolog unvanını kullanan kişiler, gelişen bilim, teknoloji,yeni uygulamalar ve ülkenin gereksinimleri doğrultusunda mesleki bilgi ve becerilerini ilgili bakanlıkların,meslek birliklerinin, üniversite ve diğer ilgili kurum ve kuruluşların birlikte belirliyecekleri esaslar çerçevesinde sürekli geliştirmekle yükümlüdürler. Bu konu çeşitli eğitim düzeylerinden mezun olan biyologlar açısından da çok önemlidir. Biyologların eksik ve yanlış uygulamalarının önüne geçilebilmesi amacıyla bu madde düzenlenmiştir. MADDE 12- Avrupa Birliği Konseyi kararları doğrultusunda Biyolog eğitim seviyesinin yükseltilmesi,verilen hizmetlerin kalitesinin artırılması için çalışmalar yapmak, önerilerde bulunmak, mesleki alanda Ülke içinde ve uluslararası kurum ve kuruluşlar arasında mesleki bilgi alışverişinde bulunabilmek için bu madde düzenlenmiştir DÖRDÜNCÜ BÖLÜM Serbest Çalışma MADDE 13- Mesleğin serbestçe yapılabilmesi için gerekli koşulların sağlanması amacıyla bu madde düzenlenmiştir. Biyologların lisans ve uzmanlık alanlarına göre çalışma alanlarına açabilecekleri işyerleri ve alabilecekleri sorumluluklara açıklık getirilmek istenmiştir. BEŞİNCİ BÖLÜM Çeşitli Hükümler MADDE 14- Diğer meslek gruplarının haklarının korunması amaçlanmıştır. MADDE 15- Biyologların çalışma alanlarında halen çalışmakta olanların haklarının korunması amaçlanmıştır. MADDE 16- Biyolog mesleğinin ve unvanının yanlış kişiler tarafından kullanılmasının önlenmesi amaçlanmıştır. MADDE 17- Mesleki yetkilerin, hangi durumlarda kullanılmayacağı açıklanmaya çalışılmıştır. MADDE 18- Hazırlanması gereken yönetmelik ve tüzükler için düzenlenmiş bir maddedir MADDE 19 ve MADDE 20 yürürlük maddeleridir İKİNCİ KISIM Türkiye Biyologlar Birliği Kanunu Amaç ve Kapsam MADDE 1- Türkiye sınırları içinde meslek ve sanatlarını kullanmaya yetkili olan biyologların üye olmak zorunda oldukları Biyolog Odaları ile Türkiye Biyologlar Birliğinin nitelik, amaçlarının ve kapsamlarının neler olduğu açıklanmak istenmiştir. MADDE 2- Bu madde ile bu kanunda geçen Biyolog, Bakanlık,Oda ve Birlik deyimlerinin ne ifade ettiği belirtilmiştir BİRİNCİ BÖLÜM Odalar MADDE 3- Biyologların üye olacakları Biyolog Odaların tanımı amaçlanmıştır. MADDE 4-Bu madde ile odaların kuruluş usulleri,temsilciliklerin açılışına ilişkin hükümler düzenlenmiştir. MADDE 5- Bu madde ile Oda organlarının neler olduğu belirtilmiştir. MADDE 6- Bu madde ile Oda Genel Kurulunun oluşumu düzenlenmiştir. MADDE 7- Bu madde ile Oda Genel Kurulunun görev,yetki ve sorumlulukları düzenlenmiştir. MADDE 8- Bu madde ile Oda Genel Kurulunun olağan,olağan üstü toplantıları ile toplantı yeter sayısına ilişkin esas ve usuller düzenlenmiştir. MADDE 9- Bu madde ile Oda Yönetim Kurulunun üç yıllık dönem için seçilen asıl ve yedek üyelerinin sayısına ilişkin esas ve usuller düzenlenmiştir. MADDE 10- Bu madde ile Oda Yönetim Kurulunun görev paylaşımının nasıl olacağı ve Odanın kimler tarafından temsil edileceğine ilişkin usuller düzenlenmiştir. MADDE 11- Bu madde ile Oda Yönetim Kurulunun görev ve yetkileri ayrıntılı olarak düzenlenmiştir. MADDE 12- Bu madde ile Oda Yönetim Kurulunun hangi zaman aralıklarında ve nerede toplanacağına, kararların nasıl alınacağına açıklık getirilmek istenmiştir. MADDE 13- Bu madde ile Oda Disiplin Kurulunun teşkili,seçileceklerde aranan özellikler ve görev paylaşımına açıklık getirmek istenmiştir. MADDE 14- Bu madde ile Oda Disiplin Kurulunun görev ,toplantıları ve yetkileri ile soruşturmalarda taraf olanların görevlendirilemeyeceğine açıklık getirilmek istenmiştir. MADDE 15- Bu madde ile Oda Denetleme Kurulunun teşkiline açıklık getirmek istenmiştir. MADDE 16- Bu madde ile Oda Denetleme Kurulunun görev ,toplantıları ve yetkilerine açıklık getirilmek istenmiştir. MADDE 17- Bu madde ile Biyologların mesleklerini icra edebilmek için Biyolog Odalarına kayıt olma zorunluluğu açıklamak amacıyla düzenlenmiştir. MADDE 18- Bu madde ile odaların çalışmalarının sürdürebilmek için edinecekleri gelirlere açıklık getirebilmek amacıyla düzenlenmiştir. İKİNCİ BÖLÜM Türkiye Biyologlar Birliği MADDE 19- Bu madde ile Türkiye Biyologlar Birliğinin kuruluşu, amaçları ve nitelikleri açıklanmaya çalışılmıştır. MADDE 20- Bu madde ile Birliğin organları tarif edilmiştir. MADDE 21- Bu madde ile Birliğin Kurulunun oluşumu düzenlenmiştir. MADDE 22- Bu madde ile Birlik Genel Kurulunun görev,yetki ve sorumlulukları düzenlenmiştir. MADDE 23- Bu madde ile Birlik Genel Kurulunun olağan,olağan üstü toplantıları ile toplantı yeter sayısına ilişkin esas ve usuller düzenlenmiştir. MADDE 24- Bu madde ile Birlik Yönetim Kurulunun üç yıllık dönem için seçilen asıl ve yedek üyelerinin sayısına ilişkin esas ve usuller düzenlenmiştir. MADDE 25- Bu madde ile Birlik Yönetim Kurulunun görev paylaşımının nasıl olacağı ve Odanın kimler tarafından temsil edileceğine ilişkin usuller düzenlenmiştir. MADDE 26- Bu madde ile Birlik Yönetim Kurulunun görev ve yetkileri ayrıntılı olarak düzenlenmiştir. MADDE 27- Bu madde ile Birlik Yönetim Kurulunun hangi zaman aralıklarında ve nerede toplanacağına, kararların nasıl alınacağına açıklık getirilmek istenmiştir. MADDE 28- Bu madde ile Birlik Disiplin Kurulunun teşkili,seçileceklerde aranan özellikler ve görev paylaşımına açıklık getirmek istenmiştir. MADDE 29- Bu madde ile Birlik Disiplin Kurulunun görev, toplantıları ve yetkileri ile soruşturmalarda taraf olanların görevlendirilemeyeceğine açıklık getirilmek istenmiştir. MADDE 30- Bu madde ile Birlik Denetleme Kurulunun teşkiline açıklık getirmek istenmiştir. MADDE 31- Bu madde ile Birlik Denetleme Kurulunun görev ,toplantıları ve yetkilerine açıklık getirilmek istenmiştir. MADDE 32- Bu madde ile Birliğin çalışmalarının sürdürebilmek için edinebileceği gelirlere açıklık getirebilmek amacıyla düzenlenmiştir. ÜÇÜNCÜ KISIM Ortak Hükümler BİRİNCİ BÖLÜM MADDE 33- Bu madde ile Oda ve Birlik organlarına seçilebilme yeterliliği için gerekli düzenlemeler açıklanmaya çalışılmıştır. Bu madde düzenlenirken 765 sayılı Türk Ceza Kanunundan istifade edilmiştir. MADDE 34- Bu madde ile Odalar ve Birliğin organlarının seçiminde yargı gözetimi,gizli oy açık tasnif esaslarının uygulanacağı,genel kurul toplantılarına katılacakların listesinin İlçe Seçim Kurulu Başkanlığına verilişine ilişkin usul ve esaslar ile listelere yapılacak itirazların incelenmesine ilişkin esas ve usuller düzenlenmeye çalışılmıştır. MADDE 35- Bu madde ile Odalar ve Birlik organlarının denetimin Başbakanlıkça hazırlanacak yönetmelikler doğrultusunda yapılacağı anlatılmıştır. MADDE 36- Bu madde ile uluslar arası toplantılara katılımın koşulları düzenlenmiştir. MADDE 37- Bu madde ile Oda ve Birlik organlarının seçim dönemleri düzenlenmiştir. İKİNCİ BÖLÜM Çeşitli Hükümler MADDE 38- Biyologluk mesleği üzerine yaptığı çalışma ve yayımladığı eserler dolayısıyla onur üyeliği verilecek olanlara ilişkin olarak bu madde düzenlenmiştir. MADDE 39- Bu madde ile Oda ve Birlik toplantılara katılma oy kullanma zorunluluğu düzenlenmiştir. MADDE 40- Bu madde ile Biyologların açtıkları laboratuarlarda yapılacak tahlil ücretlerinin düzenlenmesi amaçlanmıştır. MADDE 41 Bu madde Oda ve Birlik organlarında görev alacaklara verilecek olan ödeneklerin cins ve miktarının Genel Kurullarca kararlaştırılacağı düzenlenmiştir. MADDE 42- Bu madde ile Biyologların ikinci görev yasağı ve bildirim için yönetim kurullarının yetki ve sorumlulukları düzenlenmeye çalışılmıştır. MADDE 43- Biyologların kayıtlı bulunduğu odalar tarafından üyeleri için bir sicil dosyası tutulacağı, bu dosyanın özelliği, biyologların nakil, tayin, işten ayrılma ve benzeri değişiklikleri en geç bir ay içinde bulundukları yerin odalarına bildirme zorunluluğu bu madde ile düzenlenmiştir. MADDE 44- Bu madde ile verilecek disiplin cezaları,meslek mensubu hakkında savunma almadan disiplin cezası verilemeyeceği, disiplin cezalarına itirazın usul ve esasları ve cezaların tebliğinin nasıl yapılacağı düzenlenmiştir. ÜÇÜNCÜ BÖLÜM Ceza Hükümleri MADDE 45- Mesleği ile ilgili işlerde simsar kullanmak, simsarlık yapmak ve yetkisi olmadığı halde mesleği icra edenlere verilecek cezalar düzenlenmiştir. MADDE 46- Bu madde ile yasaklara ve bildirim mecburiyetine uymayanlara karşı yaptırımlar düzenlenmeye çalışılmıştır. DÖRDÜNCÜ BÖLÜM Yönetmelik MADDE 47- Bu kanunda çıkarılması öngörülen tüzük ve yönetmeliklerin kanunun yayımı tarihinden itibaren bir yıl içinde çıkarılması bu madde ile düzenlenmiştir. BEŞİNCİ BÖLÜM Kayıt Zorunluluğu MADDE 48- Bu madde ile Serbest çalışan biyologların çalıştıkları bölgede kurulu olan odalara en geç bir içinde üye olmaları düzenlenmiştir. ALTINCI BÖLÜM Geçici Hükümler Geçici Madde 1- Bu kanuna göre seçilmeye engel bir hali olmayan Biyologlardan Oda kurucusu olmak isteyenlerin tabi olacak kurallar düzenlenmiştir. Geçici Madde 2- Bu kanunun kapsadığı diğer biyologlar tarif edilmiştir MADDE 49- Yürürlük maddesidir. MADDE 50- Yürütme maddesidir. Kaynak: www.biyologlarbirligi.org

http://www.biyologlar.com/biyologlar-hakkinda-kanun-teklifi-maddelerinin-gerekceleri

Bilimin Önünü Açmak İçin Biyologlara Kulak Verin

Bilimin Önünü Açmak İçin Biyologlara Kulak Verin

Dünyada önde gelen meslek gruplarından olan biyologlar, ülkemizde özlük hakları açısından yaşadıkları mağduriyetleri Sağlık Dergisi’ne ileterek çözüm önerisinde bulundular. Türkiye Biyologlar Derneği Üyesi Yalçın Dedeoğlu, “Özellikle gelişmiş ülkelerde bilimsel problemleri çözenlerin başında biyologlar geliyor. Türkiye’de ise biyologlara önem verilmiyor” dedi. Bütün canlı varlıkları, birbirleri ve çevreleri ile olan etkileşimlerini, bilimsel yöntemlerle inceleyen Biyolog, bu yöntemler sonucunda elde ettiği verileri eğitim, tarım, orman, sağlık, çevre, gıda, endüstri, biyoteknoloji gibi alanlarda uygulayan ve uygulatan, bu sonuçları rapor haline getirerek imzalama yetkisine sahiptir. Türkiye’de Fen Fakültelerinde Biyoloji Bölümlerinde halen, ortalama 25 bin öğrenci okuyor ve her yıl ortalama 6 bin öğrenci Biyoloji bölümlerinden mezun oluyor. Şuan ülke genelinde 100 bin biyolog bulunuyor. “Biyologsuz Olmaz” sloganıyla ülkemizde bilimin gelişmesi için yeni adımların atılması gerektiğini belirten Biyologlar Dayanışma Derneği Yönetim Kurulu Üyesi ve Türkiye Biyologlar Derneği Üyesi ve Tıbbi Atık Uzmanı, Çevre Görevlisi Yalçın Dedeoğlu, yaşadıkları sorunlar hakkında şunları söyledi: “Kamuda meslek unvanımızı 1933 yılında almış bir meslek grubu olarak, dünyada gelişmiş tüm ülkelerde ve Avrupa Birliği ülkelerinde Çevre, Tarım ve Sağlık sektörleri başta olmak üzere profesyonel meslekler içinde önem sırasına göre en ön sıralarda yer alan Biyologlar, ülkemizde işsiz ve gizli işsiz durumuna düşmüşlerdir. Biyoteknoloji, Biyomühendislik, Biyogenetik, Biyogüvenlik, Biyorafineri, Biyogaz v.b. terimlerinin üzerine inşa edilen hiçbir yasa ve yönetmelikte meslek unvanımız hak ettiği konularda ve konumda yer almamaktadır. Sağlıkta Dönüşümde Biyologlar Yok Sağlıkta Dönüşüm Yasası tasarı metninde 2 yıllık meslek yüksek okulları mezunları dahil tüm sağlık çalışanları var ancak “biyolog” yok. Hastanelerde Genetik Tanı Merkezlerinde çalışacak personel içinde ve özel Hastanelerde asgarî bulundurulacak Sağlık Personeli içinde “biyolog” yok. Biyogüvenlik Yasasında Bile “Biyolog” Yok İş Güvenliği Yönetmeliğinde, Biyogüvenlik yasasında, Veterinerlik Hizmetleri, Bitki Sağlığı, Gıda ve Yem kanununda biyolog yer almıyor. Tarım ve Köyişleri Bakanlığı, Çevre ve Orman Bakanlığı gibi mesleği doğrudan ilgilendiren hiçbir bakanlıkta ayrıca “biyolog” yetiştiren fakültelerin biyoloji bölümlerinde kendi kadro unvanıyla istihdam edilemiyor. Sorun Var- Çözüm Üretecek İnsan Gücü Var- Kadro Yok Günümüzde ekolojik sorunların giderek arttığı dünyamızda, Türkiye sınırları dışındaki özellikle gelişmiş ülkelerde bu problemlerle boğuşan mesleklerin başında “Biyolog” geldiği halde Türkiye’de biyologlara önem verilmiyor. Ülkemizin stratejik konumu, korumamız ve sahiplenmemiz gereken biyolojik zenginliklerimiz, su sorunu, çevre kirliliği ve küresel ısınmanın beraberinde getirdiği ekolojik sorunların giderek artması, ulusal çıkarlarımızın korunması açısından biyolojinin kapsamı ve giderek artan önemi neden görmezlikten geliniyor.  Yalçın DEDEOĞLU

http://www.biyologlar.com/bilimin-onunu-acmak-icin-biyologlara-kulak-verin

KÖK HÜCRELERE BAKIŞ:TANIMLAR, KAVRAMLAR ve SINIFLANDIRMALAR

KÖK HÜCRELERE BAKIŞ:TANIMLAR, KAVRAMLAR ve SINIFLANDIRMALAR

İki binli yıllarla beraber kök hücrelerin rejeneratif tıp (yenileyici tıp) alanındaki öneminin giderek arttığını ve tıbbın geleceğini şekillendirme potansiyelini gözlemlemekteyiz.

http://www.biyologlar.com/kok-hucrelere-bakistanimlar-kavramlar-ve-siniflandirmalar

Nörotransmitter

Nörotransmitter

Nöronlar arasında veya bir nöron ile başka bir (tür) hücre arasında iletişimi sağlayan kimyasallara nörotransmitter (uyarıcılara tepki) denir. Sinir sistemi boyunca sinirsel sinyaller bu kimyasal taşıyıcılar yardımıyla iletilir.

http://www.biyologlar.com/norotransmitter

HIV virüsünün seyrini etkilemek için hem virüsün hem de hastanın genetiği birlikte çalışıyor!

HIV virüsünün seyrini etkilemek için hem virüsün hem de hastanın genetiği birlikte çalışıyor!

Yayınlanan yeni araştırmaya göre, insan immün yetmezlik virüsü (HIV) ile enfekte olmuş kişiler arasında görülen hastalık ilerleme oranlarındaki farklılıkların yaklaşık üçte biri viral ve insan genetiğidir .

http://www.biyologlar.com/hiv-virusunun-seyrini-etkilemek-icin-hem-virusun-hem-de-hastanin-genetigi-birlikte-calisiyor

Davranış Çeşitleri

ÖĞRENİLMEMİŞ DAVRANIŞLAR 1. Doğuştan Gelen Davranışlar İçgüdüsel ve Ref leksif Davranışlar: Doğuştan getirilen türe özgü davranış örüntülerine “içgüdü” denir. İnsanda içgüdü değil içgüdüsel davranış kavramı kullanılır. Bir davranışın içgüdü olabilmesi için: •Doğuştan gelmelidir. •Bir türün tüm üyelerinde olmalıdır. Başka türlerde olmamalıdır. •Karmaşık bir davranış örüntüsü olmalıdır. •Öğrenilmemiş davranışlardır . •Ertelenemezler Ör: Kuşların göç etmesi, Bebeklerin emmesi Doğuştan getirilen belli bir uyarıcıya karşı organizmanın belli ve basit bir davranış gösterme eğilimine “refleks”denir. Refleksler; •Öğrenmeye dayanmaksızın ortaya çıkan, doğuştan getirilen •Belirli bir uyarıcıya verilen (yani ertelenmesi çok güç olan ama ertelenebilen) •Aniden olup biten •Basit sabit sistemsiz tepkiler olarak tanımlanır. Ör: Göz bebeğinin ışığa karşı tepki vermesi. 2. Geçici Davranışlar: Alkol, ilaç ve uyuşturucu maddeler alındığında, hastalık ve yorgunluk sonrasında gözlenen davranış değişiklikleridir. Başka bir ifade ile bu davranışlar bellibir etkenin etkisiyle ortaya çıkar ve organizma bu etkiden kurtulduğunda geçici davranışlar kendiliğinden ortadan kalkar. Öğrenme ürünü sayılmazlar. 3. Büyüme, sakatlanma, olgunlaşma sonucu ortaya çıkandavranışlar : Bu tür davranışlar da öğrenme ürünü sayılmaz. Ör: Yürüme, dik durma, ses çıkarma. ÖĞRENİLMİŞ DAVRANIŞLAR Sonradan kazanılan yani öğrenme ürünü olan davranışlardır. Bir davranışın öğrenme olabilmesi için; •Tekrar ve yaşantı yoluyla meydana gelmesi •Davranışta bir değişme yaratması •Değişikliğin nispeten kalıcı izli olması gerekmektedir. 1. İstendik Davranışlar: Planlı, eğitim ürünü davranışlardır. Ör: Yazı yazmak, okumak, iyi bir birey olmak. 2. İstenmedik Davranışlar: Eğitimin hatalı, yan ürünü davranışlardır. Ör: Kopya çekmek. Okuldan kaçmak.

http://www.biyologlar.com/davranis-cesitleri

SUDA ERİYEN VİTAMİNLER

C vitamini Vücudumuz C vitaminini üretemez bitkiler ve bazı hayvanlar bu vitamini üretebilmektedir. Besinlerle alınan vitamin 2 saat içersinde kullanılır 4 saat sonunda kandan uzaklaşır. Yaraların iyileşmesini, damarların sağlıklı olamalarını sağlar.Vücudun savunma sistemini artırıcı etkisi vardır. Histamin yapımını azaltarak allerjik olayların şiddetini düşürür. Eksikliğinde diş eti kanamaları ve çekilmeleri olur. B1 vitamini Kasların ve sinir sisteminin faliyeti için gereklidir.Yetersizliğinde iştahsızlık, huzursuzluk, bellek zayıflığı ve dikkat azalması görülür. B2 vitamini Eksikliğinde dilde kızarma, yanma hissi, ağız çevresi ve dudaklarda kızarma, tahriş, çatlaklar, gözlerde kaşıntı, yanma hissi, katarakt oluşumu, saçların dökülmesi, çocuklarda büyüme yavaşlaması, kilo kaybı, sindirim sorunları oluşur . B3 vitamini Yetersiz beslenme sonucu deriyi sinir sistemini tutan pellegra adlı hastalık ortaya çıkar. Hücrelerin oksijeni kullanabilmeleri için gereklidir. Midede sindirimin temel taşları olan asitlerin üretimini sağlar. B5 vitamini Doğada bol olduğu için eksikliğine rastlanmaz. Ayrıca bir miktar bağırsaklarda da yapılmaktadır. Eksikliği kan şekerinde düşme, ellerde titreme, kalp çarpıntıya neden olur . B6 vitamini Sinir sistemi ve hormonların çalışmasını düzenler.Vücudun savunmasında antikor ve akyuvar oluşumunda rol oynar. Eksikliğinde migren tipi baş ağrısı, kansızlık, ciltte kuruluk, görme problemleri, uyuşukluk, adele zayıflığı ve krampları oluşur . B8 vitamini (biyotin ya da H vitamini) Karaciğerde, yumurta sarısında, bira mayasında, pirinç kabuğunda ve yeşilliklerde bulunur B11 vitaminiKırmızı kan hücreleri ve sinir dokularının oluşumunda aktif rol oynar. Hücre bölünmesi için gereklidir. Bu etkisi ile büyümeyi de sağlar. Anne karnındaki bebeğin sinir sisteminin gelişimi için de gereklidir. Eksikliğinde iştahsızlık, kilo kaybı, bulantı, kusma, ishal, baş ağrısı, unutkanlık, çarpıntı gibi bazı kalp sorunları oluşabilir . B12 vitamini Besinlerle veya sigara gibi alışkanlıklarla vücuda giren siyanürü etkisiz hale getirir. Eksikliğinde dilde hassasiyet, şişme, kızarma, hayal görme, depresyon, adalelerde kasılmalar, sinir iltihaplarına bağlı olarak el ve ayaklarda uyuşma, karıncalanma, yanma şikayetleri oluşur .

http://www.biyologlar.com/suda-eriyen-vitaminler

Kserofitlik ve Su Ekonomisi Ökofizyolojisi

Protoplazmanın susuzluğa dayanıklılığı özellikle likenler, yosunlar, eğreltiler ve ciğerotlarında görülürse de yüksek bitkilerde susuz koşullara karşı geliştirilmiş olan daha karmaşık mekanizmalar etkili olur. Grup olarak bazı otsular, koniferler ve sklerofillerde yüksek dayanıklılık görülür. Susuzluk toleransı varyete ve genotipler düzeyinde bile büyük açılımlar gösterebilir. Örneğin ciğer otları türlerinde aynı düzeydeki su eksikliğine dayanma süresinin 6 kat düzeyinde açılım gösterdiği belirlenmiştir. Kurak ve sıcak iklimi olan bölgelere adapte olmuş çeşitli düzeylerdeki bitki taksonlarının geliştirdikleri mekanizmalar temelde dört tiptir: I. I. Kuraklıktan kaçanlar: Yağışlı mevsimde çimlenerek hızla büyüyüp, gelişen ve tohumlarını oluşturup kurak dönem öncesi yaşam devrelerini tamamlayan, kurak dönemi tohum halinde geçirenler; II. II. Kuraklıktan kaçınanlar: Su kaybını azaltacak morfoloji ve anatomiye sahip olduğu gibi su alımında etkili kök sistemi geliştiren ve özel fizyolojik, biyokimyasal mekanizmalara sahip olan bitkiler; III. III. Kuraklığa direnenler: Su depolayarak, alımının mümkün olmadığı dönemlerde bile normal yaşamlarını sürdürecek biyokimyasal ve fizyolojik mekanizmaları olan, su kaybını da en alt düzeyde tutan bitkiler. IV. IV. İğne yapraklılar, koniferler Alt gruplar olarak da: 1. 1. Derin köklü ve su kaybını azaltan bodur, dikensi yapraklı, freatofitler 2. 2. Yumrulu veya rizomlu jeofitler 3. 3. Herdem yeşil ve sklerenkimatik iskeletleri olan sklerofiller 4. 4. Kuraklıkta yaprak dökümü veya daha kserofitik olanlarla yenilenmesi ile su ekonomisi yapan odunlular 5. 5. Yapraksız ve etli, yeşil gövdeli olanlar 6. 6. Su depolayan sukkulentler 7. 7. Şiddetli kuraklukta tüm yaşamsal etkinliklerini durdurarak su bulduğunda tekrar canlılık kazanan “resurrecting” dirilen bitkiler. Çok yıllık bitkiler de mevsimsel değişimlerin getirdiği farklı koşullara karşı bu tür mekanizmaların bir kısmından oluşan gelişmeler ile uyum sağlayarak yaşamlarını sürdürürler. Kışın soğuk koşullarına karşı geliştirdikleri korunma mekanizmalarına benzer önlemlerle kurağa da direnmeye çalışırlar. Örneğin kışın su alımını ve dokularındaki suyu azaltır, su alımı ve büyümelerini tümüyle durdururlar, baharda su alımını tekrar başlatarak üreme etkinliklerini tamamlar ve kurak bölgelerde yaz süresince büyümelerini kısıtlarlar. Sonbaharda kışa hazırlanmaya başlarken kuraklığa dayanıklılıkları da artar ve kışın en üst düzeye çıkar. Kuraktan kaçanlar, adapte olanlar (evading) su kaybını az ve derin stomalar ile azaltan, kalın kütükülalı, küçük yapraklı, derin köklü olanlar, sukkulentler. Protoplazması zarar görmeden dehidrate olan toleranslılar Kuraktan kaçınanlar su kaybına stoma kapatma ve kütikülar evaporasyonu kısma, etkin su alımı ve iletimi ile yaşam devrini kurak dönemler arasına sığdıranlardır. Genelde genç doku ve organların, dokuların hücreleri yaşlı olanlardan kuraklık ve soğuğa daha dayanıklıdır. Bu durum gerek yaprak döken gerekse herdem yeşil bitkilerin yapraklarında kendini gösterir. Absisyon, yani dökülme öncesi yapraklar normal ömürlerini tamamlamadan yaşlanır, senesansa uğrar yani ihtiyarlar, sararıp, kururlar. Dokularındaki su ve tüm besin maddeleri boşalır ve gövde üzerinden genç yapraklara gönderilir. Tıpkı hayvanlardaki yavruları koruma içgüdüsü gibi bitkilerde de genç ve büyüme potansiyeli olan organları koruma mekanizmaları vardır. Graminelerin kurağa dayanıklılıkları hızlı büyüme dönemlerini tamamlayınca azalır ve kurakta büyüme hızları düşer, yaşam devirlerini tamamlayabilmek için bodur kalır ve daha erken tohum verirler. Kuraklık yeni gelişen yeraltı ve yerüstü organlarının dokularında da linyin / sellüloz oranı artışına neden olur. Bunun korunma ve adaptasyon mekanizması olarak bitkiye sağladığı avantaj ise linyinin hemisellüloz ve sellülozun hidrojen bağları ile adsorbe ederek ve zincirleri arasında tuttuğu su oranının %30 - 50 daha az oluşudur. Bu sayede de odunlaşmış çeperler üzerinden yeni büyüyen ve su gereksinimi yüksek olan hücrelere su iletimi daha bol ve hızlı olur. Kserofitik bitkilerin birçoğunun yapraklarında kokularından kolaylıkla algılanan uçucu yağ yapısında maddeler vardır. Bu maddelerin buharlaşması, terleme hızı düşük olan yaprakların serinlemesini sağlar. Hücre fizyolojisi açısından bakılınca görülen ilişki ise hücrede vaküolün oluşarak büyümesi ile dayanıklılığın azalmaya başlamasıdır. Örneğin şişmemiş tohumun embriyosu suyunu tümüyle kaybetmeye bile dayanıklıdır. Bekleneceği üzere bu ilişkilere aykırı bazı durumların varlığının gözlendiği olmuştur. Beklendiği gibi kök sistemini hızlı geliştiren, derin ve yaygın olduğu kadar büyük kütleli kökü olan bitkilerin sıcak veya soğuk kurak dönemlere dayanma gücü daha fazladır. Örneğin Pinus sylvestris ve Eucalyptus türleri toprak yüzeyine yakın lateral yayılan köklerden dibe doğru inen kökler geliştirdiklerinden kurağa dayanıklıdır. Çöl bitkilerinde 18 metreye kadar inen kök sistemleri görülmüştür. Bazı meşe türleri gibi bazı ağaçlar ise köklerinin derine inmesi yanında kök hücrelerinin saldığı asitlerle kalker kayaları gibi yumuşak ve su depolayan kayalara sızarak kayalardaki suyu bile kullanır. Diğer önemli bir parametre ise emici tüy çevrim hızıdır. Stomaların sıklığı, çukur konumu, kapanma oranı ve hızı, kütikülar terleme hızı ile kütikülanın yaprağın ısınması ile su kaybına neden olan kızılötesi ışınları yansıtma özellikleri, Stipa ve Festuca türleri gibi bazı bitkilerin yaprak ayalarının su stresinde kıvrılarak yüzey küçültmesi, güneşin geliş açısına göre büyüme ve yaprak dizilişi asimetrisi gibi mekanizmalar da cinsler ve türlerin korunma mekanizmaları arasında yer alır. Genelde kserofit bitkilerde su oranının mezofitlerden daha yüksek oluşu da oluşmuş olan korunma mekanizmalarının sonucu olan fizyolojik bir mekanizmadır. Tüm bu mekanizmaların sağladığı dayanıklılığın yanında etkili olan protoplazma fizyoloji ve biyokimyası özellikle diğerlerinin sınırlarına gelmesi halinde de tümüyle önem kazanır. Her stres dönemi etkilediği bitkinin sahibi olduğu genetik potansiyel çerçevesinde dayanıklılık mekanizmalarını harekete geçirdiğinde bitki aynı yöndeki daha şiddetli strese de hazırlık yapmış olur. Öte yandan sınır plazmolizden itibaren protoplazma üzerinde mekanik zorlama başlar ve zararlı olur, hatta membranlarda çatlama ve yırtılmalar dahi görülür. Bu nedenle de stresin kısa sürelerle tekrarlanması daha zararlı etki yapar. Kuraklık protoplazmanın akışkanlığını azaltıcı ve Ca/K oranının arttırıcı etki yaparak porların su geçirgenliğini azaltır. Yeni araştırmalar su stresi etkisi ile başlayarak yürüyen senesans olayındaki sembolik değişimler ile doğal yaşlanma sonucu olan ihtiyarlama sonucu olan sembolik madde boşalmasının birbirine çok benzer olmasına karşılık hidrolitik ve oksidativ enzim proteinleri ile aktivitelerinin farklılık gösterdiğini ortaya koymuştur. Günlük su miktarı değişimlerinin incelenmesi fotosentetik aktivitenin artışına neden olan ve nişasta taneleri gibi su oranı düşük taneciklerin biriktiği saatlerde kuru ağırlığa oranla su yüzdesinin arttığını, yapraktaki bu kuru maddelerin boşaldığı saatlerde yükseldiğini göstermiştir. Bu da taze ağırlığa oranla su yüzdesinin değil suyun toplam miktarının su ekonomisinin göstergesi olduğunu göstermiştir. Kserofitik karakterlerin, kalın kütikül, sukkulens, balmumsu örtü tabakası, küçük veya dikensi yaprak, çukur stoma, çok trikom, küçük hücreler, linyinleşme özelliklerin her zaman düşünülen sonucu sağlamadığı görülmüştür. Örneğin çöl bitkilerinin terleme düzeyi mezofitlerden yüksek olabildiği, Verbascum tüylerinin alınması gibi uygulamaların terleme düzeyini arttırmadığı, trikomların su kaybını azaltıcı değil yüksek su kaybının sonucu olduğu gibi bulgular tipik kserofitik karakterlerin fizyolojik dengelerle birlikte bir bütün oluşturduğunu göstermiştir. Kserofitlerin tipik yapıları çok farklı ekolojik koşullarda da görülebilir: Bitki örtüsünde çöllerden tuzlu, soğuk, rüzgarlı, aydınlanma şiddeti yüksek yüksek rakımlı yerlere kadar açılımlar görülebilir. Örneğin çok farklı familyaların kendileri için atipik bazı cins ve türleri sukkulent özellikte olabilir. Suyun protoplazmadaki termodinamik aktivitesi önemlidir ve bağıl değeri, aynı sıcaklık ve basınçta ölçülen bir su emici materyalin üzerindeki buhar basıncının saf su üzerindeki doymuş buharın basıncına oranıdır. Hidratür ise = bu p/po oranı x 100 dür ve hava nemini, çözelti veya hidrofil cisim üzerindeki bağıl su basıncını, % termodinamik bağıl su aktivitesini tanımlamakta kullanılabilir. Bitki hidratürü terimi protoplazma hidratürüdür, yani hücreler arası boşluk ve çeperleri içermez. Vaküollü hücrelerde özsu hidratürü ile dengededir. Protoplamik şişme ile özsu ve dış ortam arasında ilişki vardır ve özsu hidratürü osmotik potansiyel tarafından belirlenir.

http://www.biyologlar.com/kserofitlik-ve-su-ekonomisi-okofizyolojisi

Ekosistemlerin Bozulma Nedenleri

Belli bir bölgede canlı ve cansız ögelerin oluşturduğu sisteme ekosistem denir. Örneğin; Akdeniz Bölgesi, Van Gölü birer ekosistemdir. En büyük ekosistem Dünya' dır. Ekosistemleri kara ve su ekosistemi olarak gruplandırabiliriz.Çöl, orman, çayır, mera, köy karasal ekosistem; dere, nehir, baraj, göl, deniz ise birer su ekosistemidir. Bir ekosistemin varlığını sürdürebilmesi için, ekosistemdeki canlı ve cansızlar arasında sağlıklı ilişkiler olması gerekir. Ayrıca gerekli olan enerji ve besin sürekli sağlanmalıdır. Ekosistemdeki üreticiler, tüketiciler ve ayrıştırıcılar arasında doğal bir denge vardır. Bu canlı gruplarından biri yok olursa veya aralarındaki denge bozulursa ekosistemdeki diğer canlılar da bundan etkilenir.Örneğin; bir ormandaki ağaçların büyük bir bölümü kesilirse ormanda yaşayan canlılar yok olur. Ekosistemdeki ayrıştırıcılar zarar görürse bitki ve hayvan kalıntıları parçalanamaz. Madde döngüleri aksar ve ekosistemdeki canlılar olumsuz etkilenir. Bir göl veya denizdeki balıklar aşırı avlanarak yok edilirse balıklarla beslenen diğer canlıların sayısı azalır. Ekosistemlerin kendine özgü fiziksel ve kimyasal özellikleri vardır. Bu duruma orman ve göl ekosistemlerini örnek verebiliriz. Ekosistemlerdeki Koşulların Mevsime Göre Değişmesi Kara ve su ekosistemlerindeki sıcaklık, ışık, nem, tuzluluk, iklim gibi koşullar değişebilir. Canlılar bu değişmelerden etkilenir. İklim,ortamın özellerini belirleyen ana öğelerden biridir. İklim, canlıların yeryüzündeki dağılışında önemli rol oynar. Uzun bir zaman aralığı içinde belirli bir bölgede etkin olan atmosfer koşullarına,iklim adı verilir. Kutup bölgelerinden ılıman iklimlere,hatta ekvatordan sıcak ve soğuk akıntılarının bulunduğu okyanuslara kadar bir çok canlı,kendilerine uygun kilim koşullarında dağılmıştır. Sıcaklık,yağış ve diğer iklimsel etmenler,bitki ve hayvan türlerinin gelişim ve,davranış ve dünya üzerindeki dağılışlarını belirler. İklim ve yeryüzü şekilleri karşılıklı etkileşimle yaşamın sürmesi için gereken çevrenin oluşmasını sağlar. Yeşil alanların azalması volkanik etkinlikler vb. nedenlerle atmosferde artan toz tabakası,ısının azalması ,dünyadaki hava olaylarını dolayısı ile iklimi belirler. Işık,yeryüzündeki enerjinin kaynağını oluşturur. Işığın dalga boyu,şiddeti ve süresi ekosistemler üzerinde önemli etkendir. Işık bitkilerin fotosentez,terleme,çiçeklenme, ve çimlenmeleri üzerinde etkilidir. Sıcaklık, türden türe değiştiği gibi aynı türün gelişim evrelerine bağlı olarak da değişmektedir. Normal metabolik etkinliklerini 0-500 C arasında sürdürebilen canlılar,00C'un çok altında (-2000C) veya 500C'un çok üzerinde (-1000C) de yaşayabilmektedir. Hayvanlar dünyası,sıcakkanlı hayvanlar ve soğukkanlı hayvanlar olarak iki gruba ayrılır. Kuş ve memelilerin içinde olduğu sıcakkanlı hayvanlarda vücut ısısı durağandır. Omurgasız hayvanlardan kurbağa ve sürüngenlerin içinde olduğu soğukkanlı hayvanlarda ise vücut ısısı durağan olmayıp çevre sıcaklığına bağlı olarak değişir. Su canlıların temel yapısını oluşturur. Organizmaların metabolik etkinliklerini sürdürebilmeleri için hücre ve dokularda belli oranda su bulunması gerekir. Ekin durumdaki canlıların sitoplazmasındaki su oranı genelde %70 ile %90 kadardır. Bu oran kimilerinde %50 ye düşmesine karşın kimilerinde %98 kadar yükselebilir. Toprak bitkilerin gelişmesi için gerekli olan su ve mineralleri içerdiği gibi aynı zamanda bitkilerin kökleriyle tutunabilecekleri sağlam bir temeldir. EKOSİSTEMLER NEDEN DEĞİŞİYOR VE BOZULUYOR Doğadaki her varlık sürekli bir değişim içindedir. Bu değişimin bir bölümü doğal yollar la bir bölümü de insanların etkisi ile ortaya çıkar. a.Doğal Kaynaklı Bozulmalar Doğal afetler çevrenin bozulmasında etkili olur. Doğal kuvvetlerden gücünü alan depremler, seller, arazi kaymaları, yanardağ ve kuraklık olayları çevrenin değişmesine neden olur. Bu saydığımız doğal afetler aynı zamanda can ve mal kaybına da sebep olur. Ülkemizin %90'nı deprem kuşağı üzerindedir. 1900 yılından günümüze kadar ülkemizde 16 büyük deprem olmuştur. Bu depremlere 100.000 yakın insan hayatını kaybetmiştir. Deprem sonrası meydana gelen yıkıntı ve moloz yığınları çevre kirliliğine yol açar. Ayrıca, depremin neden olduğu zararları karşılaya bilmek için çok fazla kaynak tüketilmiştir. Sel felaketinin neden olduğu su baskınları, yerleşim ve tarım alanlarına zarar vermektedir.

http://www.biyologlar.com/ekosistemlerin-bozulma-nedenleri

BİYOLOJİK DOZİMETRİ VE İLGİLİ GELİŞMELER

Radyasyonun Biyolojik Etkileri Radyasyonun organizmaya olan etkileri akut ve kronik şekilde olmaktadır. Akut etkiler insanda radyasyona maruz kalındıktan kısa bir süre sonra klinik bulgular ile ortaya çıkmaktadırlar. Bunlar merkezi sinir sistemi (100 Sv ve üzeri), gastrointestinal (10-100 Sv) ve hemato­poietik (2-10 Sv) sendromlardır. Sendromların ortaya çıkışı absorbe edilen dozla ilişkilidir.4 Bu sendromlar bir süre sonra bireyi ölüme götürür. Radyasyonun kronik etkileri ise hücrenin ölümüne yol açmayan ancak genetik materyallerinde onarılamayan bozukluklara neden olan olaylar sonucunda ortaya çıkarlar. Kanser yapı­cı etkisi, genetik etkisi ve ömür kısaltıcı etkisi bunlara örnektir. Canlıların somatik ve genetik özellikleri kromozomlarda taşındığı için radyasyonun kromozomlarda meydana getirdiği zararlı etkiler günümüzde ve gelecekte toplum sağlığı açısından oldukça önemlidir. Dozimetri Çeşitleri ve Biyolojik Dozimetri Toplu halde veya bireysel olarak radyasyona maruz kalan bireylerin absorbe ettikleri radyasyon dozu; fiziksel veya biyolojik yöntemlerden biri ile yada her ikisiyle birlikte belirlenebilir. Bu işlem dozimetri olarak adlandırılır. Meslekleri gereği radyasyonla çalışanların fiziksel dozimetri çeşidi olan Film, Cep ve Termolüminesan dozimetrilerden birini taşımaları gerekir. Ancak fiziksel dozimetrenin vücut üzerindeki konumu nedeni ile yetersiz kalması, büyük kitlelerin zarar gördüğü toplumsal radyasyon kazalarında ise bireylerde fiziksel dozimetrenin bulunamaması ve biyolojik çeşitlilik nedeniyle kişilerin radyo duyarlılığının farklı olması biyolojik dozimetriye üstünlük sağlamakta bu nedenle de fiziksel ölçümlerin biyolojik metotlarla desteklenmesi gerekmektedir. Uluslararası Atom Enerjisi Ajansı(IAEA) radyasyon kazası durumlarında, fiziksel dozimetri ile birlikte biyolojik dozimetrinin de absorbe edilmiş dozun belirlenmesinde bağımsız olarak kullanılmasını önermiştir. Şekil 1’de dozimetri çeşitleri özetlenmiştir. Biyolojik dozimetri, genel anlamı ile kişilerin absorbe ettikleri radyasyon dozunun biyolojik indikatörler (belirleyiciler) kullanılarak ortaya çıkarılmasına denir. Biyolojik Dozimetri için ideal koşullar; 1-Dozları tahmin etmek için seçilen etkiler iyonizan radyasyonlara özgü olmalı (dientrik aberasyonları gibi), 2-Radyasyona maruz kalma sonucu oluşan etki kalıcı olmalı, eğer kalıcı değilse zamana bağlı olarak oluşan değişiklikler bilinmeli, 3-Oluşturulan kontrol doz-cevap eğrilerinde dozların aralığı mesleki ışınlamalarda olduğu gibi çok küçük dozları ve kaza durumlarında olduğu gibi birkaç Gy’e varan dozları da içermeli, 4-Farklı radyasyon kalitelerinde uygulanabilmeli (Co, X-ışını, nötron v.b), 5-Biyolojik materyal kolay elde edilebilmeli (kan gibi), 6-Ölçümler kolay ve hızlı olmalı kısa sürede sonuç elde edilmeli, 7-Kronik ve homojen olmayan ışınlamalara da uygun olmalı. Yukarıdaki özellikleri taşıyan ideal bir biyolojik dozimetri yöntemi bilinmemektedir. Fakat, insan periferal kanından lenfosit kültüründen kromozom analizinin yapılması bugün için bilinen en iyi biyolojik dozimetri yöntemidir. Biyolojik dozimetri çeşitlerinden olan kromozom dozimetrisi (sitogenetik dozimetri), kişilerin absorbe ettikleri radyasyon dozu ile insan lenfositlerinde oluşan kromozom aberasyonları arasındaki kantitatif ilişki esasına dayanır. İyonizan radyasyonların kromozomlarda oluşturdukları hasar 20.yy başlarından beri bilinmektedir. İlk olarak X-ışınlarının Drosophila'da kromozom aberasyonu oluşturduğunun bulunması ve takip eden yıllarda araştırıcıların yaptıkları çalışmalar sonucunda ilk olarak 1962 yılında kromozom aberasyonları, radyasyona maruz kalan bireylerde absorbe edilen radyasyon miktarını tespit etmek için kullanılmıştır. Kromozom aberasyonlarının absorbe radyasyon dozunun belirlenmesinde kantitatif biyolojik indikatör olarak kullanılmasından bu yana radyasyon kazaları sonunda absorbe edilmiş olan doz tayininde standartlaşmış bir yöntem olarak kullanılmaktadır. Radyasyonun canlılarda oluşturduğu etkileri değerlendirmek için başka biyolojik indikatör sistemler de geliştirilmiştir. Elekton spin rezonans, Biyokimyasal indikatörler (kıl, tükürük, saç, sperm vs), Retikülosit sayımı, Mutasyon noktalarının analizi, Monoklonal antibodyler vs. Bu tür sistemlerin çoğu örnek almadaki güçlükler, hücrelerin asenkron popülasyon (hücre siklusunun farklı evrelerinde) şeklinde bulunması ve hücrelerin yaşam sürelerinin kısa olması, yöntemin belli dozlarda etkili olması ve bazen de ışınlanma süresinin önemi nedeniyle dozimetri amacıyla rutin olarak kullanılamazlar. Biyolojik Dozimetri Amacıyla Kullanılan Kromozom Aberasyonları Unstabil (kalıcı olmayan) asimetrik kromozom aberasyonlarından olan disentrik aberasyonlar ve eşdeğerleri (trisentrik ve sentrik halka) absorbe radyasyon dozunun indikatörü olarak diğer aberasyonlara göre daha çok güvenilirdirler. Çünkü disentrik kromozom aberasyonları radyasyona özgüdürler yalnızca özel birkaç radiomimetik kimyasal (bleomisin, endoksan vs) tarafından oluşturulabilir. Doğal görülme sıklıkları (back-ground) düşüktür (1/2000) ve kolay belirlenirler. Bazı araştırıcılar doz tahminlerinde disentrik eşdeğeri kabul edilen sentrik halka (ring) kromozomları da disentriklerle birlikte kullanmaktadırlar. Sentrik halka oluşumu unstabil kromozomlarının oluşum yüzdesi içinde %5-10 civarında olduğundan doz hesaplamalarında kullanılmamaları önemli bir kayıp değildir. Serbest asentrikler, disentrik, trisentrik ve sentrik halka gibi kromozom aberasyonlarına eşlik etmez ve onlardan bağımsız olarak bulunurlar. Bu aberasyonlar radyasyon dışıetkenlerle de oluşturulabildikleri için tek başına doz tahmininde kullanılmamaktadırlar. Disentrik, trisentrik ve sentrik halka kromozom aberasyonlarının oluşumu Şekil 2’de şematize edilmiştir. Translokasyon olarak adlandırılan iki kro­mozom arasındaki simetrik değişimler de son yıllarda geliştirilen floresan boyama teknikleri (fluorescens in situ hybridisation; FISH) sayesinde biyolojik dozimetri amacıyla kullanılmaktadır. Kromatid tipi kırıklar büyük oranda kimyasal ajanlar tarafından oluşturulduğundan biyolojik dozimetri amacıyla kullanılmamaktadır. Son yıllarda yine insan periferal lenfositleri kullanılarak absorbe edilen radyasyon dozunun belirlenmesi amacıyla Mikronukleus testi çalışmaları yapılmaktadır. Mikronukleuslar sitoplazma içinde ana nukleusun dışında fakat nukleus ile şekil, yapı ve boyanma özellikleri bakımından aynı olan küçük küresel yapılardır. Radyasyona maruz kalmış lenfositlerde hasar gören kromozomlar ve onların asentrik parçaları veya mitotik iğdeki hatalar sonucu kromozomun tamamının kutuplara çekilememesi sonucu oluşurlar. Şekil 3 A’da bölünmekte olan binukleat bir hücrede kutuplara çekilemeyen bütün bir kromozom ve asentrik fragmentten mikronukleus, B’de ise yine binukleat bir hücrede disentrik köprüden nukleoplazmik köprü ve mikronukleus oluşumu şematize edilmiştir. Binukleat hücrelerdeki hücre başına düşen mikronukleus sıklığının mononukleat hücrelerdekinin iki kat olması nemlidir. Kromozom aberasyonlarının doğal oluşum sıklığı konusunda, farklı populasyonlar ile yapılan araştırmalarda özellikle disentrik sıklığında farklılıklar gözlenmiştir. Doğal disentrik oluşum sıklığının farklı bulunması, laboratuva koşulları, sayıcı ve değerlendiriciler arasındaki farklılıklar nedeniyle her biyolojik dozimetri laboratuarının kendi koşullarında, çeşitli radyasyon kalitelerinde ve farklı radyasyon dozlarında oluşturacakları kontrol doz-cevap eğrilerine sahip olmasını gerekli kılmıştır. Olası bir radyasyon kazasında alınacak radyas­yonun tipine göre, absorbe radyasyon dozunun miktarı o tipteki kontrol doz-cevap eğrilerin­den faydalanılarak bulunmaktadır. Kontrol doz-cevap eğrileri daha önce radyasyonla çalışmamış yada herhangi bir şekilde radyasyona maruz kalmamış sağlıklı bireyler­den alınan kanların akut ve homojen ışınlanmaları sonucunda oluşturulur. Biyolojik dozi­ metri amacıyla yapılan kontrol doz-cevap eğri­leri genellikle 50 mGy ile 4 Gy arasında yapılır. Eğriler oluşturulurken 0 ve 1 Gy arasında en az 5 doz noktasının olmasına özen gösterilir. Çünkü radyasyon kazaları genelde bu dozlar arasında meydana gelir.10 Standart eğri oluşturulurken çok küçük doz (<0.5 Gy) nokta­larında doz-cevap ilişkisini ortaya koymak için çok fazla hücre saymak gereklidir. Kalibras­yon eğrisini oluşturmak için toplam 10.000­15.000 hücre, bireysel doz tahmini yapmak için ise 500-1000 hücre saymak yeterli­dir. Elde edilen aberasyon verimi dikka­te alınarak %95 güvenilirlik sınırları içinde kontrol doz-cevap eğrisi çizilir. Aynı laboratuvar koşullarında 200 kV X-ışını ve Co­60 gamma radyasyonu ile ışınlanma sonucu oluşturulan kontrol doz-cevap eğrileri birlikte Şekil 4’de görülmektedir. GEREÇ VE YÖNTEMLER Materyalin Elde Edilmesi, Işınlanması Kontrol doz-cevap eğrilerini oluşturmak amacıyla elde edilen kan örnekleri genç, sağlıklı, sigara içmeyen, radyasyonla çalışmamış yada herhangi bir şekilde radyasyona maruz kalmamış bireylerden alınır. Kontrol grubu ve birinci mitozun (M1) ikinci mitoza (M2) oranını belirlemek için alınan kanlar ayrılır. Kan örnekleri steril, içleri heparin kaplı tüpler içine alınır. Eğriyi oluştururken, kullanılan doz noktalarına ait kan örnekleri radyasyon kalitesine uygun şekilde, doz hızı, dozun homojenitesi gibi kriterlere özen gösterilerek 370C’da ışınlanır. Kültür ve Tespit İşlemleri Kontrol doz-cevap eğrileri oluşturmak için ışınlanmış kan örnekleri ve radyasyona maruz kalmış bireylerde absorbe dozun tayini için alınan (~5 ml) kan örnekleri steril şartlarda, Moorhead ve arkadaşlarının mikrokültür tekniğine uygun olarak kültüre alınır. Bu yöntemde genellikle kültür stok medyumu olarak RPMI-1640+L-Glutamin, Penicilin ve Streptomicin kullanılır. Kültür ortamına mitojen olarak PHA (phytohemaglutinin) ve hücrelerin metafazda durmaları için Kolsemid kullanılır. Kültür süresi sonunda (toplam 48 saat) 0,075M KCL ile hipotonik şok uygulanır. Bu işlem sonunda 1:3 oranında asetik asit/metanol karışımı ile tespit işlemleri tamamlanır ve metafaz kromozomlarının lamlar üzerinde iyi bir şekilde dağılmaları sağlanır. % 5 Giemsa boyası ile boyanarak incelenecek duruma getirilir. Uygulanan kültür metodu Şekil 5’­de kısaca özetlenmiştir. M2/M1 Oranı ve Biyolojik Dozimetride Önemi İnsan vücudunda yaklaşık 5.2x1012 lenfosit dolaşır. Lenfositlerin % 70’i T- lenfositlerdir ve bunların yaklaşık %98’i ufak, hücre siklusunun bölünmeyen bir fazında (G0) bulunur. G0 fazında olmaları dolayısı ile biyolojik ömürleri uzundur. Metabolik olarak inaktiftirler. T-lenfositlerin kolay elde edilebilmeleri, radyasyona duyarlı olmaları, biyolojik ömürlerinin uzun olması (%90’nın yaşam süresi ortalama 3 yıl) (38) ve akut vücut ışınlamalarından 3 yıl sonra dahi lenfositlerdeki kromozom aberasyonlarının %50 sinin hala korunuyor olması, kaza üzerinden uzun yıllar geçse bile absorblanan dozun belirlenmesine olanak tanır. İnsan periferal kanında bulunan lenfositler stimüle edilerek G0 fazından çıkıp hücre siklusunda ilerlemeye başlarlar. Siklusta ilerleme hızı hücreler arasında farklılık gösterdiğinden periferal kanda senkronize olan lenfositler bölünmeye teşvik edildikleri invitro ortamda asenkron hücre popülasyonu haline gelirler. Bu yüzden bazı lenfositler M1 bölünmede iken siklusta hızlı ilerleyen bazı lenfo­sitler M2 da olurlar. Radyasyona maruz kalındıktan sonraki ilk bölünme (M1) de lenfositlerde oluşan disentrik kromozom aberasyonlarının %50’si kaybolur. Bu yüzden doz tahmini yapılırken, M1 lenfositlerde bulunan disentrik kromozom aberasyonlarının sayımı esas alınır. M2/M1 belirlenmesi için kültür ortamına BrdU (bromodeoksiüridin) ila­ve edilir. Timidin analogu olan BrdU, DNA replikasyonu esnasında timidinin yerini alır. DNA’nın yapısına girer. Floresan Plus Giemsa (FPG) boyama tekniği32 ile boyanan metafaz kromozomları Floresan mikroskopta incelenerek M2 ve M1’de olan hücreler ayırt edilir. Metodun iyi çalıştığının göstergesi olarak, M2 de olan hücreler M1den %10 daha az olmalıdır. Bu değerlerin üzerinde bulunduğunda absorbe radyasyon dozunun hesaplanmasında bazı düzeltme faktörleri kulanılır. Kültür ortamına BrdU ilave edildikten sonra DNA replikasyonu sırasında BrdU’nun DNA’nın yapısına girişi, M1 ve M2’deki hücrelerde BrdU almış kromozomların görünüşü Şekil 6’da gösterilmiştir. Kromozomların değerlendirilmesi Hazırlanan preparatlar değerlendirilirken kromozomları birbirinden belirgin olarak ayrılmış, görünüşleri düzgün ve iyi boyanmış diploid metafazlar dikkate alınır. Kromozomlar sayılırken sayıları 2n=46 ve üzeri olanlar değerlendirmeye alınır. Hücrede kararsız aberasyonlar (disentrik, sentrik halka ve serbest asentrik) bulunduğunda kromozom sayıları ile belirlenen aberasyonların birbirini dengelemesine özen gösterilir. Örneğin, hücrede bir disentrik aberasyonun varlığında ona eşlik eden bir asentrik ile sayının 46 da tutulması; bir sentrik halka bulunduğunda yine eşlik eden bir asentrik ile sayının 47 olması, bir trisentrik bulunduğunda ona eşlik eden 2 adet asentrik ile sayının 46 olması gibi durumlara dikkat edilir. Değerlendirmelerde bir trisentrik 2 disentriğe, bir sentrik halka bir disentriğe eşdeğer olarak kabul edilmektedir. 4 Gy 200 kv X-ışını uygulanan ve yukarıda anlatılan metoda uygun olarak hazırlanan ve değerlendirilen bir me­tafaz plağında disentrik ve asentrik kromozom aberasyonları Şekil 7’de görülmektedir. İstatistiksel ve Matematiksel Yöntemler Farklı iyonlaştırıcı radyasyonların eşit dozlarının birim uzaklıkta bıraktıkları enerjilerinin ve dolayısıyla oluşturdukları iyonlaşma yoğunluklarının farklı olması nedeniyle oluşturdukları kromozom aberasyonları verimleri de farklıdır. Düşük Lineer Enerji Transfer (LET)’li radyasyonların herhangi bir dozunda iyonizasyon rastgele dağılır. Kromozom hasarının da aynı olasılıkla ger­çekleştiği düşünülürse aberasyon dağılımı da rast gele olacaktır. Bu rast gele dağılımın düşük fre kanslarda meydana gelmesi Poisson dağılımı ile uygunluk gösterir. Bu bilgilere dayanarak X-ışınları ve γ gibi düşük LET’li radyasyon ile akut ve homojen ışınlanma sonucunda oluşan kromozom aberas­yonlarının Poisson dağılımına uygunluk gösterdiği belirlenmiştir. Yüksek LET’li radyasyonlarda ise iyonizasyon yoğunluğu fazla olduğundan iyonizasyon hücreler arasında rast gele dağılmaya­caktır. Yüksek LET’li radyasyonların absorblanması sonucu birbirine yakın hücrelerde birden fazla aberasyonlu hücre oluşacak ve bu oluşum Poisson dağılımından uzaklaşacaktır. Homojen olmayan ışınlamalarda ve kronik ışınlamalarda disentriklerin hücrelere dağılımlarının Poisson dağılımından sapmaları büyük olacağından Poisson’a uygunluk göstermez. Bu yüzden kontrol doz-cevap eğrileri oluşturulurken ışınlama homojenitesini kontrol etmek için disentriklerin Poisson dağılımına uygunluklarının belirlenmesi gerekir. Elde edilen aberasyon dağılımının (disentrik) Poisson'a uygunluğunu araştırmak için ilk önce her doz noktasına ait varyanslar (σ²) hesaplanır. Daha sonra varyansların aberasyon (disentrik) frekanslarına (Y) oranından elde edilen dağılım oranı (σ²/Y) bulunur. Bu dağılım oranları U testi formülünde yerine konularak her doz noktasına ait U değerleri hesaplanır. U testi sonuçlarının –1,96 ve +1,96 arasında olması dağılımların Poisson’a uygunluğunu ispatlar. Çoşkun M, Coşkun M. Biological dosimeter and related developments. Cerrahpaşa J Med 2003  

http://www.biyologlar.com/biyolojik-dozimetri-ve-ilgili-gelismeler

Patoloji'nin Gelişiminde Teknoloji

Hücresel ve moleküler patoloji, özellikle optik sanayisindeki gelişmeler olmaksızın ilerleyemezdi. Mikroskopun ve optik sanayisinin gelişimi hücrenin ve hastalıkların yol açtığı hücre değişikliklerinin görülmesine olanak sağlamış, günümüzde hastalıklarla ilgili bilgiler moleküler düzeyde anlaşılır duruma gelmiştir.1270 yılında Roma'da ilk kez okumak için mercek kullanıldığı bildirilmektedir. İlk mikroskop ise Hollanda'da 1600'lü yılların başında Leuvenhook tarafından kullanıldı. G. Adams, 1770'te ilk kez mikrotomu kullanarak ince doku kesitleri elde etti. 1884 yılında Jena'da optik cam sanayi kuruldu. HG Harrison, 1907'de doku kültürünü yaptı. Mikroskoplardaki gelişmeler 20. yüzyıl başında hızlandı. Polarizasyon mikroskopu 1924'te, Floresan mikroskop 1929'de, Elektronmikroskopu 1931'de, Faz kontrast mikroskopu ise 1932'de kullanıma girdi. 20. yüzyılın ikinci yarısında ise moleküler biyoloji ve genetik alanındaki gelişmeler hastalıkların tanı ve tedavisi konusunda patolojiye yeni ufuklar açtı. DNA akım sitometrisi, floresanla işaretli veya çeşitli boyalarla işaretli antikorların kullanıldığı immünohistokimya ve immünofloresan inceleme yöntemleri, özellikle tümörlerin, immünolojik mekanizmalarla ve genetik bozukluklarla ortaya çıkan hastalıkların tanısında giderek daha sık kullanılmaktadır. Türkiye'de patolojinin gelişimi Ülkemizde patolojinin tarihi 19. yüzyılın başına kadar uzanmaktadır. Kısa sayılabilecek bu tarihi dört dönemde incelemek mümkündür: a. Osmanlı dönemi b. 33 reformu öncesi (Hamdi Suat dönemi) c. 1933 Reformu sonrası (Patoloji'de Alman etkisi) d. 1945 sonrası (İstanbul ve Ankara Tıp Fakülteleri) e. 1960 sonrası (Çok merkezli dönem)

http://www.biyologlar.com/patolojinin-gelisiminde-teknoloji

Mutasyon

Mutasyon, canlının genetik yapılarında meydana gelen değişmelerdir. Bireyin kalıtsal özelliklerinin ortaya çıkmasının sağlayan genetik şifre herhangi bir nedenden dolayı (X ışını, radyasyon, ultraviyole, bazı ilaç ve kimyasal maddeler, ani sıcaklık değişimleri ) bozulabilir. Bu durumda DNA’nın sentezlediği protein veya enzim bozulur. Böylece canlının, proteinden dolayı yapısı, enzimlerinden dolayı metabolizması değişebilir. Mutasyonlar spontan ya da uyarılmış olarak oluşabilir. Spontan mutasyonlar genellikle doğada kendiliğinden oluşan mutasyonlar olup bir bazın yer değiştirmesi şeklindedirler. Uyarılmış mutasyonlarda ise bir X ışını gibi yapay bir faktör bulunur. Bununla birlikte mutasyonun en önemli sonuçlarından biri, bir sonraki kuşağa farklı genetik özellikler aktarılmasına neden olmasıdır. Bu ise farklı fiziksel özelliklere sahip bireylerin üremesidir. Çekinik olan mutasyonlar ileriki döllerde ortaya çıkabilir. Dominant olanları fenotip yapıda hemen ortaya çıkabilir. Mutasyonun diğer bir sonucu da hücre bölünmesindeki kontrol mekanizmasını ortadan kaldırabilmesidir. Bunun bilinen en tehlikeli sonucu ise hücrenin kontrolsüz bölünmesi yani kanserdir. Mutasyon (değişim) Yeni döllere aktarılacak kalıtsal bilgide,genellikle fiziksel ya da kimyasal dış etkenlerin uyarısıyla,bazen de kendiliğinden ortaya çıkan değişiklik. Mutasyon, hücredeki kalıtsal bilgiyi taşıyan, çift nükleotid zincirinden oluşan, DNA (deoksiribo nükleik asit) molekülündeki GEN adı verilen ve belirli bir özelliği kodlayan bölümündeki değişiklikten kaynaklanır. Mutasyonlar, bir DNA zincirindeki bazın (A, T, G, C) başka bir bazla yer değiştirmesi sonucunda ortaya çıkabileceği gibi, zincire bir ya da daha çok bazın eklenmesi veya zincirdeki bazların eksilmesi sonucunda da ortaya çıkabilir. DNA zincirindeki tek bir baz çiftinin(A-T veya G-C) değişmesiyle oluşan mutasyonlara nokta mutasyonu(nokta değşinimi) denir. Bu tür mutasyonlar: Karşılıklı olan bir pürin-pirimidin (örn. A-T) çiftiyle başka bir pürin-pirimidin (örn. G-C) çiftinin yer değiştirmesiyle oluşabileceği gibi, bir pirimidin-pürin (örn. C-G) ile bir pürin-pirimidin (örn. G-C) bazının çaprazlama olarak yer değiştirmesiyle de oluşabilir. Bu tür mutasyonlar kendiliğinden oluşabileceği gibi, bazı bazların benzerleriyle yer değiştirmesiyle de ortaya çıkabilir. Nokta mutasyonları genellikle tek bir kodonu etkilediğinden çok büyük değişimlere yol açmaz. Örneğin: Mutasyona uğramış kodon aynı aminoasidi kodlamaya devam eder ya da proteinin işlevini değiştirmeyen başka bir aminoasit kodlanabilir. Ama bazı durumlarda, DNA molekülündeki tek bir nükleotidin değişmesi bile çok önemli sonuçlar doğurabilir. Örnek olarak orak hücreli kansızlık verilebilir. Bu hastalık kalıtsaldır. Eğer bu hastalık böyle bir nokta mutasyonu nedeniyle meydana geliyorsa ve eğer çocuk mutasyona uğramış geni iki ebeveyninden de alıyorsa bunun sonuçları kötü olabilir. Bir aminoasidi kodlayan bir kodonu hiçbir a.a’yı kodlamayan bir kodona, örneğin bir sonlama kodonuna (stop kodonu) dönüştüren mutasyonlara “Anlamsız Mutasyon” denir. Bu tür mutasyonlar, protein sentezinin normalden önce sonlanmasına, dolayısıyla genin biyolojik işlevini görememesine yol açar. Bir a.a.’yı kodlayan kodonun, başka bir a.a.’yı kodlayan kodona dönüşmesine ise “Yanlış Anlamlı Mutasyon” denir. Eksilme ya da eklenme mutasyonları, nokta mutasyonlarından çok daha önemli değişikliklerin sorumlusudur. DNA zincirinde bir ya da birden fazla bazın eksilmesi ya da eklenmesi, genellikle eklenme ya da eksilmenin olduğu noktadan başlayarak kod okuma çerçevesinin kaymasına yol açar. Bu yüzden gen yapısında önemli değişiklikler meydana getirir. Örneğin: TAG GGC ATA ACG ATT dizisinde, ilk kodonda oluşan bir mutasyonla bir A bazının eklendiği varsayılırsa, bu yeni dizi TAA GGG CAT AAC GAT T şeklinde okunmaya başlanacak ve bu farklı dizi, okuma çerçevesindeki kayma nedeniyle bambaşka bir aminoasidi kodlayacaktır.Birden fazla kodonda ortaya çıkan bu tür değişikliklerin daha önemli ve ciddi sonuçlar doğurması doğaldır. Mutasyona uğramış DNA dizileri de tıpkı normal DNA dizileri gibi eşlenir,çoğalır ve dölden döle normal diziler gibi aktarılır. Mutasyon geçirmiş kalıtsal bilgi ancak yeni bir mutasyonla eski durumuna dönebilir. Geri dönüşlü mutasyon denen ikinci mutasyon özgün genin yapısını onarır ve yeniden normal işlevini kazandırabilir; bazen de, ilk mutasyonun oluştuğu bölgeden başka bir bölgede ortaya çıkan baskılayıcı mutasyon denen ikinci bir mutasyonun ilk mutasyonun etkisini tamamen ya da bir ölçüde yok edebilir. Eşeyli olarak üreyen insanda ve diğer tüm üstün yapılı canlılarda mutasyonlar, oluştukları hücreleri cinsinden iki grupta incelenebilir. Eşey hücrelerinde oluşan mutasyonlara “Tohumsal Mutasyon”, bunların dışındaki tüm diğer hücrelerdeki mutasyonlara ise “Somatik Mutasyon” denir. Somatik mutasyonların en çarpıcı örneği mavi gözlü insanlarda gözlenebilir. Mavi göz, bir pigmentin eksikliğinden ileri gelen çekinik(resesif) bir karakterdir. Ortaya çıkabilmesi için hem anneden hem de babadan çekinik karakter genini (b) alması gerekir. Baskın karakter geninden (B) bir tane bile alan insanlar kahverengi gözlü (Bb) olurlar. Bazen ender olarak, mavi gözlü insanların -genelde bir- gözünde kahverengi bir bölge görülür. Bu özellik büyük olasılıkla, göz hücrelerinde oluşan ve b genini B’ye değiştiren bir somatik mutasyonla oluşur. Ancak bu tür mutasyonlar eşey hücrelerini etkilemediğinden kuşaklara aktarılamaz. Ama mavi gözlü iki insanın kahverengi gözlü çocuklarının olması ancak eşey hücrelerindeki bir mutasyon sonucunda ortaya çıkar. Özellikle tohumsal mutasyonlar, kalıtımın incelenmesinde ve insan evriminin gelecekteki yönünü belirleyen ipuçları olarak da incelenmeye değer olgulardır. Yeni oluşan mutasyonların çoğu doğal dengeyi bozduğu için zararlı, hatta kalıtsal hastalıkların birçoğunda olduğu gibi ölümcüldür. Bu zararlı genlerin toplumda yayılmasını önleyebilmek, ancak mutasyona uğramış kalıtsal bilgiyi taşıyan canlının üreme yeteneğinin azalmasına ya da yok olmasına bağlıdır. Mutasyonun gözlenebilen bir etki olmadan ortaya çıkması çok az gözlenen bir olgudur. Daha çok çevreden gelen kimyasal ya da fiziksel etkiler nedeniyle olur. Bir dış etkinin mutasyona yol açabilmesi (mutajen olması) için hücre içine girip etkinliğini gösterebilmesi gerekir. Örneğin Güneş’in morötesi ışınları, girim gücü düşük olduğu için yalnızca deri hücrelerinde somatik mutasyona yol açabilirken, girim gücü yüksek olan X ışınları ya da atom bombası ışımaları tohumsal mutasyona yol açabilen çok güçlü etkenlerdir. Bu tür mutasyonların bir çok örneği yakın zamanda Çernobil patlaması sonucunda çevredeki bir çok canlı türünde gözlenmiştir. Günümüzde bile bu patlama sonrası etrafa saçılan radyoaktif maddelerin neden olduğu somatik mutasyonların görünür sonuçları vardır. Halen Rusya ve Karadeniz Bölgesi’ndeki kanser oranları çok yüksektir.

http://www.biyologlar.com/mutasyon

Kan grupları ve değişik kalıtım biçimleri

A. KAN KARAKTERLERİ1. ABO KarakteriA geni, B geni, O geni olmak üzere üç ayrı alel genle kalıtılır. A ve B genleri O genine baskın, kendi aralarında ise eşbaskındır.Kan grubu, kan alış verişinde çok etkilidir. Bireylerin kan grubunu belirleyen, alyuvarlarında bulunan antijenler (aglütinojen)'dir. Kan plazmasında (serum) ise antijenlere karşı oluşturulmuş antikorlar (aglütinin) bulunur.•* Kan Alış - Verişi Her grubun kendi grubuyla yaptığı alış-verişler idealdir. Yandaki şekilde gösterilen noktalı oklar ise, yarı çökelmeli kan nakilleridir. Ancak acil durumlarda uygulanabilir.•* Aglutinasyon (Çökelme)Uygun olmayan kan nakillerinde kan serumunda bulunan antikorlar alyuvarları birbirine yapıştırıp bağlayarak çökelmelerini sağlarlar. Buna aglütinasyon denir.A antijeni + a antikoru = ÇökelmeAlıcının antikor üreticisi olduğu durumlar kan nakli için uygun değildir. Çünkü, tam çökelme olur.2. Rh KarakteriBu karakter kan grubunun pozitif (+) veya negatifliğini (–) belirler. Pozitiflik geni negatiflik genine baskındır.•* Rh Uyuşmazlığı (Eritroblastosis fetalis)Anne Rh– ve baba Rh+ olduğu zaman, ikinci ve sonraki Rh+ çocuklarda görülebilir. Böyle çocuklar gelişmenin erken evresinde düşük olarak atılabilir veya gelişmesini tamamlayarak doğarlar.İlk gebelikte çocuk Rh+ bile olsa annenin kanı çocuğun kanını tanımaz. Doğum esnasındaki yaralanmalarla tanımış olur ve annenin kanı çocuğun Rh proteinine karşı Rh antikorunu oluşturur. Sonraki gebeliklerde bu antikorlar plasentadan geçerse çocuğun kanını çökeltir ve tahrip edebilir.B. DEĞİŞİK KALITIM BİÇİMLERİ1. Çok AlellikDeğişik canlı türlerinin bazı karakterlerinde alel gen çeşidi ikiden fazladır. Buna çok alellik denir. Ancak, bu durumda da bir birey iki adet alel gen bulundurabilir.Bu durumda bireylerin genotip çeşidi formülüyle bulunabilir.Bireylerin fenotip çeşidinin ne kadar olacağı hakkında kesin bir şey söylenemez. Çok alelliğe en iyi örnekler, insan kan grubu ve tavşanlarda post rengidir.2. Eş Baskınlık (Ekivalentlik)Bir karakteri belirleyen iki farklı gen birbirlerine baskınlık sağlayamazlarsa veya eşit değerde baskınlık oluştururlarsa, dış görünüş (fenotip) iki genin de etkisiyle ortaya çıkar. Böylece heterozigot bireyler üçüncü bir fenotipi göstermiş olurlar. Böyle karekterlerde genotip çeşidi değişmez. Fenotip çeşidi (3) genotip çeşidine eşit (3) olur.3. Çok Genli Kalıtımİnsanlara ait, boy uzunluğu, vücut iriliği, zekilik, deri rengi; hayvanlarda süt verimi, yumurta verimi, meyvelerde büyüklük, tavuklarda ibik şekli gibi birçok karakter bir’den fazla alel gen çifti ile aktarılır. İnsanda deri rengi 2 ayrı gen çiftiyle kalıtılır.Tam bir zenci AABB genotipindedir. Tam bir beyaz ise aabb’dir. Her ikisi çaprazlandığında AaBb genotipli F1 melez olacaktır. F2 de ise tam siyah zenciden beyaza doğru geniş bir açılıma rastlanır.4. Ayrılmama OlayıMayoz bölünme ile gametler meydana gelirken, bölünmenin I. anafaz safhasında homolog kromozomlar, II. anafaz da ise kardeş kromatidler birbirlerinden ayrılamayarak aynı hücreye gidebilirler.Sonuçta kromozom sayısı bir fazla ve bir eksik gametler meydana gelir. Bu anormal gametlerin normal gametlerle döllenmesiyle ise (2n + 1) ve (2n - 1) kromozomlu bireyler meydana gelir.5. Kontrol ÇaprazlamasıBaskın fenotipteki bir bireyin, heterozigot mu, yoksa homozigot mu olduğunu anlamak için yapılır. Bunun için, baskın birey, fenotipine bakıldığında genotipi tahmin edilebilen bireyle (genellikle çekinikle) çaprazlanır. Oluşan bütün bireyler baskın ise, incelenen canlı homozigottur. Ancak çekinik bireyler de oluşursa incelenen canlı heterozigottur.

http://www.biyologlar.com/kan-gruplari-ve-degisik-kalitim-bicimleri-2

Araştırmacılar Yetişkin İnsanlarda Boy Uzunluğunu Etkileyen Yeni Genetik Varyasyonlar Buldu

Araştırmacılar Yetişkin İnsanlarda Boy Uzunluğunu Etkileyen Yeni Genetik Varyasyonlar Buldu

Boy uzunluğunu etkileyen yüzlerce DNA değişimleri zaten tanımlanmıştır ama bu alışılmış DNA değişimleri boy uzunluğunu genellikle 1 mm’den az etkiler. Resim kaynağı: Popular Science Monthly, D. Appleton ve Company, 1887.

http://www.biyologlar.com/arastirmacilar-yetiskin-insanlarda-boy-uzunlugunu-etkileyen-yeni-genetik-varyasyonlar-buldu

Bilim Adamları Yağ Yakmayı Tetikleyen Beyin Sinyalizasyon Molekülünü Buldu !

Bilim Adamları Yağ Yakmayı Tetikleyen Beyin Sinyalizasyon Molekülünü Buldu !

ScrippsAraştırma Enstitüsü Dr. SupriyaSrinivasan liderliğindeki bir araştırma ekibi, bağırsakta yağ yakmayı tetikleyen bir beyin hormonunu tespit etti.

http://www.biyologlar.com/bilim-adamlari-yag-yakmayi-tetikleyen-beyin-sinyalizasyon-molekulunu-buldu-

İNSANIN EVRİMİ

19. yy’ın ortalarıydı. 1859' yılında Türlerin Kökeni adlı bir kitap yayınlandı.Kitap Darvin imzasını taşıyordu : Charles Darwin ( 1809-1882). Darwin, 19. yüzyılın dahilerinden biriydi. 1871 de ise İnsanın İnişi yayımlandı. İşte Darvin' in bu kitapları insanın doğuşunun bilimsel anlamda ilk açıklama bildirileriydi. İnsanın Afrika' da ve Ekvator yakınında "doğduğu" artık kesinleşmiştir diyebiliriz. (İnsanın Yücelişi, s: 25) Dünya, böyle gelmiş böyle mi gidiyordu? Yoksa başlangiçta durum daha mi farkliydi? Varliklarin çeşitligini nasil açiklayabilirdik? Bu yeni yoruma göre, herhangi bir zamanda varolan canli türlerin çeşitliligi zaman içinde evrim geçirmiş ve geçirmektedir. Dinsel açiklamalarla, bilimsel yaklaşim ilk kez cepheden karşikaşiya kaldi. Yaratiliş kurami yani dini açiklama ve evrim kurami. Biyologlar 1.5 milyondan fazla 'flora ve fauna' türü üzerinde çaliştilar. Bu çeşitliligin zaman içinde evrimleşme ve dogal ayiklanma ile açiklanabilecegini açikladilar.( George Basalla, Teknolojinin Evrimi, s: 1) Darvin, doğrulanıyordu yani. Evrenin evrimi, genellikle kolay kabul edilir. İşte efendim, bir toz bultuydu önce. Sıcak bir çorbaydı, sonra soğudu. Ve Tanrı, insanı yaratıp Dünya' ya gönderdi! Bu arada George Basalla, çok başka bir noktaya dikkat çekiyor. Yeryüzündeki canlilarin ve cansiz maddelerin çeşitliligi gerçekten ilginç ve hayret verici. Ama insanin kendi elleriyle " yarattiklari" çeşitlilik de canli türlerin çeşitililigi kadar şaşirtici."Taş aletlerden mikroçiplere, su degirmenlerinden uzay gemilerine, raptiyelerden gökdelenlere kadar çeşitlilik içeren yelpazeyi gözönüne getirin. 1867 yilinda Karl Marx, Ingiltere' nin Birmingham kentinde beşyüz farkli tip çekiçin üretildigini ögrendiginde çok şaşirmişti. Normal olarak buna şaşirmasi da gerekirdi. Bu çekiçlerin herbiri, endüstri ve zanaat sektöründe özel bir işlevi yerine getirmek üzere üretiliyordu" (Teknoloji nin Evrimi, s: 2) Birbirine yakın canlılar bile neden bu derece değişik özelliklere sahip? Kuşlar, Kediler, köpekler, kurt, aslan, tilki... Darwin' den önce Fransız bilgini Jean Lamarck (1744-1829) bu sorunla ilgilenmişti. Ona göre her varlık, içinde oluştuğu, yaşadığı maddesel koşullara göre oluşuyordu. Kuşu oluşturan koşullarla kediyi oluşturan koşullar aynı değildi. Bir de canlının bu koşullara uyumu ya da koşullara etkisi aynı değildi. Gereksinme, organ yaratıyordu. Gereksinme olmayan organlar köreliyordu. Ortamın zorlamasıyla oluşan özellikler, kalıtımla kuşaktan kuşağa geçiyordu. Örneğin zürafa, önceleri otla beslendiği için normal boyunlu ve normal bacaklı bir hayvandı. Sonra yaşadığı çevre çölleşti. Zürafa başka bir çevreye geçerek yiyeceğini yüksek ağaçlardan sağlamak zorunda kaldı ve giderek bacakları da boynu da uzadı... Lamarck' ın görüşleri kuşkusuz sorunlara bir yaklaşım getiriyordu. Ama yeterli de değildi. Çevresel koşulların (ortamın) etkisiyle oluşan özellikler nasıl oluyor da kuşaktan kuşağa geçiyordu? Ortam denen bilinçsiz güç, nasıl oluyor da bu denli düzenli ürünler oluşmasını sağlıyordu? Yoksa bu güç başka bir yerde miydi? Darvin' in büyük önemi, böylesi soruları bilimsel kanıtlarla yanıtlaması. O, kendinden öncekileri izledi. Lamarck, Diderot, Robinet, Charles de Bonnet gibi evrimcilerin kuramlarını incelemişti, onların eksikliklerini düzeltiyordu. Özellikle Lamarck' ın soyaçekim ve çevreye uyma varsayımlarını, doğal ayıklanma ve yaşama savaşı bulgularıyla güçlendirdi. Darvin şunu savunuyordu: Yaşam kasırgası içinde ancak yaşama gücü olanlar canlı kalır ve türlerini sürdürür. Bu , bir doğal ayıklanma ya da doğal seçmedir. Yaşama savaşında ayakta kalanlar belli özellikler gösterenlerdir. Bu özellikler, soyaçekimle yeni kuşaklara geçer hem de gelişerek. Bitki ve hayvan yetiştirenler kuraldişi özellikler gösterenleri birbirlerine aşilaya aşilaya yeni türler elde ederler. Insanlarin bile yapabildigi bu aşilamayi doga daha kolaylikla ve dogal olarak yapmaktadir. Gerçekten de, bu seçim, doğumdan önce başlamaktadır. Örneğin bir insan yaratmak için iki yüz yirmi beş milyon erkek tohumu sekiz saat süren bir yarışa girişirler. Kadın yumurtası karanlık bir köşede gizlenmiştir. İki yüz yrmi beş milyon yarışçı arasından hangisi acaba daha önce varır,yumurtayı gizlendiği köşede bulunabilirse,doğacak çocuğu o meydana getirecektir. (Düşünce Tarihi, s: 15-16... ) İnsan, Bu Değişmeyen! (Hüsnü A. Göksel) ..."Pekiy, bilimin ve tekniğini bu gelişmesine koşut olarak insanda da aynı hızda olumlu bir gelişme olduğunu söyleyebilir miyiz? Ne yazık ki hayır, söyleyemiyoruz... Neden böyle acaba? Bilimi yapan, bilimi bugüne getiren de insanın kendisi değil mi? Binlerce, onbinlerce canlı türü arasında, insan türü "Homo Sapiens" mağaradan çıktı dünyaya, dünyanın aydınlığına. Üzerinee mağaranın karanlığı bulaşmıştı. Gözleri kamaştı aydılığa çıkınca. Korktu, kapadı gözlerini, dönüp mağaranın karanlığına sığındı yine. O zamandan beri binlerce yıldır, zaman zaman mağara karanlığında güvence arar, güvence bulur insan. Ama yenemedi merakını, çıktı yine dünyaya, dünyanın aydınlığına. çevresine bakındı. Böylece " bilim" in tohumu düşmüş oldu yüreğine : merak etmek, araştırmak, öğrenmek, gerçeği bulma tutkusu. Ve o zamandan beri bu merak, bu araştırmak, bu, gerçeği bulmaya çalışma uğraşı, binlerce yıldır süregeldi. Binlerce, on binlerce canlı türleri icinde insan, varlığının, varoluşunun bilincine varan tek yaratıktır. Mağaranın karanlığından, dünyaya, dünyaaydınlığına çıkınca vardı bu bilince. Varlık bilinci yokluk bilincini, varoluş bilinci yok oluş bilincini de içinde taşır. düşündü o zaman: Neden "var" dı? Ve neden "yok" olacatı? Var olduğuna göre onu "var" eden, "yapan" biri, birileri, olmalıydı. Onu " var" eden ya da edenler, on "yok" edeceklerdi. Güçsüzlüğünün ayırımına vardı, korktu, ürktü, kendi gücünün üstünde bir güce sığınmak zorunluluğunu duydu. Bu gücü "Doğa" da gördü önce, ona sığındı. Böylece dinler tarihi başlamış oldu. Güneş' e, şimşeğe, fırtınaya, çevresinde lav püsskürten yanardağa sığındı, güvendi, tapındı. Güneş doğarken yüzünü ona dönüp secdeye kapandı. Öğleyin tepedeyken Güneş, zenit noktasında iken, ellerini gökyüzüne kaldırdı, yardım istedi ondan. yanardağ lav püskürünce ona döndü, secdeye kapandı. mısırlılar taşlardan dev gibi yaratıklar yaptı tanrı olarak. Kedi başlı kocaman bir kadın, kocaman bir Sfenks... Mezopotamyalıların tanrıları kuş başlı adamlar, aslan başlı kadınlar, yarı insan, gerçekdışı yaratıklardı. Hepsi kocaman, genellikle korkunç. Eski Yunanda tanrılar tümüyle insan figürlerine dönüştü. her şeyin her duygunun, her doğa olayının ayrı ayrı tanrıları vardı. Bu tanrılar yalnız biçim olarak değil, tüm davranıyları ile insan gibi idiler. Birbirleriyle kavga ediyorlar, aralarında dostluk, düşmanlık kuruluyor, Zeus ölümlü genç kızlarla karısı Hera' yı aldatıyor. Hera kıskançlıkla o kızları yılana çeviriyordu. Bundan sonraki dönemde heykellerin yerini doğrudan doğruya insan aldı, Kral Allahlar dönemi başladı. Böylece insanlar tanrılaştırıldı. Ve nihayet "Tek Tanrı dinleri" doğdu. Doğa dinlerinden tek Tanrı dinlerine kadar tüm dinlerin ortak yönleri Tanrı' ya insan gözü ile bakmalarıdır. Tanrı' da, insanda, yani kendisinde olan nitelikleri, yetenekleri, özellikleri görür, onda insan davranışlarını var sayar. Tanrı, ya da Tanrı' lar sever, kızar, affeder, ödüllendirir, cezalandırır. Gönlüü almak için kurbanlar verilir Tanrı' ya, tanrılara. En belirgin insan daranışı, tanrı ların ya da Tanrı' nın konuşmasıdır. "Önce Söz Vardı" söylemi bunun en belirgin örneğidir. Tanrılar ya da Tanrı insana ya da insanlara vereceği ileti (mesaj) için neden söz' e geresinim duysun ki? tanrı' da insan niteliklerini görmenin nedeni, insan beyninin, duyuların ötesinde bir varlığı algılama gücünden yoksun olmasıdır. Aklın gücü sınırsız ve sonsuz olmadığı için sınırsız ve sonsuz olan bir varlığı ve gücü algılayamaz, kavrayamaz. Dinlerin başka bir ortak yani doga dinlerinden tek tanri dinlerine kadar tüm dinlerde tanri' ya kulluk yapilirken, bedene belirli biçim verilmesi, belirli hareketler yapilmasi, belirli yöne dönülmesidir. Kibleye dönülür, yedi kollu şamdana dönülür, Ikonaya, Madonnaya, Isa' nin heykeline dönülür, Güneş' e dönüür. Diz çökülür, secdeye varilir, avuçlar birbirine yapiştirilir, gökyüzüne açilir. Görkemli tapinaklarda mimari, süsleme, müzik, dans sanatla dini bütünleştirir. Dünyanin Yedi Harikasi' ndan biridir Diyana Tapinagi. Tekbi-i ilahi ile Naat-i Şerif ile Mevlevi Semai ile Itri' nin besteleri dalgalanir görkemli kubbelerde. Ya da Haendel' in Mesih' i, Mozart' in Requiem' i. Tüm dinlerin en önemli ortak yönü hepsinde, tanrı ile kul ya da kullar arasına birilerinin girmesidir. Doğa dinlerinden tek tanrı dinlerinekadar,büyücüler girmiştir, bakıcılar girmiştir, rahipler girmiştir. Azizler, imamlar, papazlar, hahamlar, mollalar, sinagog, kilise, papa girmiştir ve nihayet kulla tanrı arasına girmeyi kendisinin görevi sanan yetkisiz, bilgisiz kimseler girmiştir. Böylece " Din, tarih boyunca, tüm insanlık tarihi boyunca, tüm dünada amaç için kullanılan araçlardan biri olmuştur. Halkın ne zaman boyundurk altındatutulması gerekti ise, din, kitleleri etkiemek için tüm ahlaki araçların ilkini ve başlıcasını oluşturmuş. Hiçbir dönemdi hiçbir felsefe, hiçbir düşünce, hiçbir güç onun yerini sürekli alamamıştır." (F.Engels) Tüm dinlerin, din öğretilerinin temelinde, iyilik, dürüstlük, başkalarının hakkını yememe, kendi hakkına razı olma, açgözlü olmama vardır. Tüm dinler yalan söylemeyi, açgözlülüğü yasaklar, lanetler. Din- Bilim ikilisinin en önemli ortak çizgisi, dürüstlüktür, yalana yer vermemektir. Ama!.. Evet ama insan mağaradan çıktı dünyaya. Dünyanın aydınlığına mağara karanlığından çıktı. Etinde, kemiğinde, beyninde mağara karanlığının bulaşığı var. Din, bilim, töreler, yasalar, eğitim, bu blaşığı arındırmayı amaçlar. Zordur bu amac erişmek. çünkü tüm bu uğraşların karşısında arındırmaya engel olanr, insanın kendi yarattığı bir başka tanrı vardır. Kimdir? Nedir Bu Tanrı? İnsan mağaradn çıkınca, kendisi gibi başka insanların da varolduğunu gördü. Dünyasına onların da ortak olduğunu gördü. dostluk, düşmanlık, alışveriş ilişkileri kurdu onlarla zorunlu olarak. Önceleri kendi gerksinimi için ve gerektiği kadar üretirken sonraları gerektiğinden fazla üretip, kendi ürünü başkalarının ürünleri ile değiş tokuş yapmaya girişti. Böylece ilkel ticaret başladı. Birkuşku düştü içine: kendi ürünü karşılığında aldığı ürün, kendi ürününün değerini karşılıyor muydu acaba? Bunu düzenleyen bir değer biri"mi olmalıydı. Ve "para" yı icat etti insan. "Homo Sapiens", "Homo Economicus" a dönüştü. "Para", ona sahip olanı da tanrılaştırıyordu. Tanrılaşmak için daha çok, daha çok malı mülkü parası olmalıydı. Bu çokluk, başkaların sırtından, başkalarının emeğinden, başkalarının hakkından kazanılamaz mıydı? "Homo Economicus, görünmez bir el tarafından, aslında istemediği bir hedef yaratmak zorunda bırakıldı." (Adam Smith' ten aktaran Erich Fromm) İnsan sömürgen oldu, "insan yiyen yaratık" oldu insan. Para karşılığında satılmayacak, satın alınamayacak şey kalmamalıydı. Marks' ın ürünü oluşturan öğelerden birinin emek olduğunu, emeğin de para karşılığında satılıp alınabileceğini, yani bir meta olduğunu söylemesinden binlerce yıl önce, köle ve serflik dönemlerinde bile " homo Economicus" dürüstlüğün, onurun, erdemin de meta olduğunu, para karşılığı satılıp alınabileceğini keşfetti.... Dinler tarihi, bilimler tarihi, din-bilim ikiliği insanın "Homo Sapiens" in beynine bulaşan bu mağara karanlığından kurtuluş için verdiği savaşımın tarihidir. Homo sapiens mağaradan uzaklaşabildiği, mağara karanlığından arınabildiği oranda "İnsan" sayılır. " (Hüsnü A. Göksel, Cumhuriyet, 8 Eylül 1996) Daktilolu Maymun DNA Üretebilir mi? "Yaygın bir görüş şudur: Bir insan DNA' sını, ortalıkta gezinenen moleküllerden yaratmak için, molekülleri çok dikkatli seçmek ve belli bir sıra ile dizmek gerekir. Sayıları da o kadar çok ki bu , seçilmiş harfleri yan yana dizerek üçyüz adet kitap yazmak ile eşdeğer bir iş. Bu DNA' nın rastgele birleşmelerle meydana çıkması ise, bir maymunu bir daktilonun başına oturtup, tuşlara rastgele basarak Shakespeare' in bütün eserlerini tesadüfen yazıvermesine benzer. Yani olmayacak bir iş." Öyleyse arasıra evrenin saatini kuran birileri, zaman zaman DNA moleküllerini özenle sıralama işiyle de uğraşıyor! Orhan Kural 'la sürdürelim: "Olaya böyle bir benzetme ile yaklaştiginizda gerçekten de hiç olmayacak bir iş gibi görünüyor. Maymunun, birakin Shakespeare' in bütün eserlerini, onun bir tek "sonnet " ini çikartabilmesi bile en az on üzeri yüzelli yil gerektirir (daha dogrusu, 1000 tane maymuna bu işi yaptirsak, ortalama başari süreleri bu olur ama bu teknik ayrintilarla kendinizi üzmeyin). Evrenin yaşi ise yaklaşik 10 milyar yil olduguna göre daha fazla bir şey söylemek gereksiz... mi acaba? Aslında uygulanan taktik, basit fakat hatalı bir benzetme ile insanların aklını karıştırıp tartışma kazanma taktiğidir ve bunun örneklerini hergün görürsünüz. Eğer benzetme yapılacaksa, bunun eldeki verilere uygun olması gerek. Herşeyden önce, "Macbeth " i yeni baştan yaratmaktan vazgeçip "agzi burnu yerinde herhangi bir ( yazilmiş ya da yazilmamiş) edebi eser " e fit olmak gerek. Olanak olsa da Dünya' yi 4 milyar yil önceki haline götürsek, bugüne geldigimizde herşeyin aynen günümüzdeki gibi olacagini düşünmek, evrimin kaotik yönünün hiç görmemek demektir. 4 milyar yillik evrim deneyini her tekrarladigimizda başka bir "bugün" e geliriz. İkinci olarak, maymun sayısını artırmak şart. Ne kadar mı? Bilmem ama herhalde ortalıkta birleşmek üzere dolaşan moleküllerin sayısı mertebesinde olmalı. Son olarak da maymunların daktilolarını atıp önlerine bilgisayar terminalleri vermek gerek. Merkez bilgisayarın içinde ise çok özel bir program yüklü olmalı. Bakın şimdi bu program neler yapacak: Maymunlarımız rastgele tuşlara bastıkça birtakım harf dizileri oluşacak. Bu harf dizilerinin anlamsız olan çok büyük bölümü program tarafından silinecek, arada bir beliren anlamlı diziler( yani kelimeler) ise ortak belleğe alınacak. Böylece kısa sürede bellekte kapsamlı (ve her dilden) bir kelime hazinesi oluşacak. Bilgisayar klavyelerinden bu kelimeleri çağırmak olanağı da olacak ve bellek doldukça bizim maymunlar (tabii farkında olmadan) bu kelimeleri giderek daha sık çağırmaya başlayacaklar. Çağrılan kelimelerden oluşan diziler bir anlam taşımıyorsa yine silinecek ama taşıyorsa onlar da cümle belleğine gönderilecek. Bu kez cümleler çağrılıp birleştirilecek (hep rastgele olarak). Bu kadar çok maymun çalıştığına göre yine kısa süre içinde bazı eserler görülmeye başlanacak. Başta belki 2-3 mısralık şiirler görülecek, sonnra yavaş yavaş daha uzun eserler belirecek, eh 4 milyar yıl beklerseniz de "ağzı burnu yerinde" epeyce eser ortaya çıkacaktır." Uzun Evrim Zincirinin Mirasları "Tabii ki en önemli miras, daha önce de birkaç kez değindiğim, "1 numaralı emir" dir. Yani, "kendini, türünü koru ve çoğal" emri. Bu, bütün canlıları kapsar. Daha ilkel olanları, daha çok çoğalma yönü ile ilgilenir ama gelişmişlik arttıkça kendini koruma ve nihayet türünü koruma da işin içine girer. İnsan' da bunu açıkcça görürüz; başimiza hizla gelen bir taş görünce hiç düyşünmeden başimizi çeker ve kendimizi korururuz, bu tamamen reflekstir. bazi durumlar ise evrim açisindan çok yenidir ve daha refleksi gelişememiştir ama harika organikmiz beyin, işin çaresine bakar. Örnegin, bindiginiz arabanin sürücüsü islak yolda hiz yapmaya kalkarsa bunun tehlikeli oldugunu bilirsiniz ve önlem almaya çalişirsiniz. Bu 1 numarali emir o kadar bilinenbir miras ki üzerinde daha fazla vakit harcamaya dagmez. Cinsiyetin keşfi önemli demiştik, bir de onun bazi sonuçlarina bakalim. Hatirlarsiniz, çogalacak hücre, kendine gen verecek bir başka hücre bulur, genleri kariştirdiktan sonra yeni genlerle çogalmaya başlar. Burada da bir noktaya parmak basmadan geçmek olmayacak, o da şu: dikkat ederseniz, esas çogalma işini üstlenen hücreyi yaniyumurtayi taşiyan, bildiginiz gibi dişi canli. Erkek ise sadece olaya çeşni katmak işini üstlenmiş. Uzun sözün kisasi, begenseniz de begenmeseniz de, türlerin esas temsilcileri her zaman dişilerdir. Bazi inanişlarda kadinin, "erkegin kaburgasindan" imal edildigi iddia edilirse de bu, büyük olasilikla bir yanliş anlamadir. Herhalde gerçek, erkegin, "kadinin kaburgasindan" imal edildigidir."( Bu satirlari yazarken "erkek" ligimizin ayaklar altina alindigini ben de görüyorum! Hani şu Sikiyönetim bildirilerini andiran " 1 nolu emir" geregi: kendini, türünü koru ve çogal. Kendimizi ve türümüzü korumak kolay da nasil "çogalacagiz"? Işte bu noktada ne yazik ki dişilere muhtaçiz!) Erkekler Dişilerin Peşinde " İşin başından beri süregelen işbölümüne bakarsanız, erkeğin ilk görevi, bir dişi bulup ona genlerini vermektir. Dolaysıyla, kalıtımsal bir özellik olarak, erkek sürekli olarak dişilerin peşindedir, diğer özellikleri bu özelliğine destek niteliğindedir. Ancak genlerini verme(yani dölleme) görevini yaptıktan sonra hayvanın türüne göre, "ailesiyle" bazen ilgilenebilir ki bu da türün sürekliliğini sağlamaya yarar. Dişinin ise ilk kalıtımsal görevi çoğalmaktır. Bunun için çevresinde bulduğu (genleri) en iyi erkeği seçer, onun genlerini aldıktan sonra çoğalır ve yavrularının yetişmesini sağlar. En ilkel biçimiyle bu, yumurtalarını tehlikeden saklamak olabilir veya daha gelişmiş biçimiyle, yıllarca yavrularına bakmak ve onları eğitmek olabilir." Şimdi de Dişiler Erkeklerin Peşinde "Dişilerin en uygun erkegi seçebilmeleri için onlarin hangisinin "en iyi" oldugunu anlamasi gerek. Bunun için erkekler yarişirlar. Yarişmalar çok degişik şekillerde olabilir. Bazen Tavuskuşu gibi güzelligini gösterir (büyük bir olasilikla bu, saglikli oldugunu gösterir), bazen Çulhakuşu gibi becerisini gösterir, dişisi en güzel yuvayi yapmiş olani seçer. Aslinda söylenenin tersine, yuvayi yapan çogunlukla erkek kuştur, dişiler başka türlü "yuva yapma" da mahirdirler. Neyse, herhalde iyi yapilmiş bir yuvanin,gelecek yavrulari yetiştirme açisindan önemi gayet açik." ( Orhan Kural hoca, nihayet yenen hakkimizin birazini olsun veriyor. Bizdi dişilere kendimizi begendirmek için daha nice hünerler var. Ama Hoca, evrimin ilk basamaklariyla düşündügünden olacak onlari atlamiş.) "Aklıma gelmişken, burada bir parantez daha açayım " diyor Orhan Kural ve biz erkeklere kaşıkla verdiğini kepçeyle geri alıyor: " Hayvanların erkekleri güzel, dişileri çirkindir" diye başlayarak Doğa' nın bile erkekleri üstün yarattığını savunanlara herhalde rastlamışsınızdır. Erkeklerin genellikle daha güzel oldukları (bence insanlar için bu tamamen geçersiz) belki doğru olabilir ama nedenine bakarsanız, bundan varılan sonucun çok yanlış olduğunu göreceksiniz. Erkeklerin güzelliği, yani göz alıcı renk ve desenleri, yanızca dişilere kendilerini beğendirmek amacını taşır. Buna karşılık, göze çok kolay battığı için de düşmanlarınca kolayca bulunur. Doğa eğer erkekleri korumak isteseydi onlara fona karışabilecek renk ve desenler verir ve onları kamufle ederdi. İşte bu iyiliği, Doğa dişilere yapmıştır. Nedeni ise açık: çoğalma işini yürüten dişiler çok daha kıymetli. Erkeklerin yarışma tarzlarının en belirginlerinden biri de aralarında dövüşme tarzıdır. Bir dişiye kenidini beğendirmekten çok, rakiplerini ortadan kaldırmak gayesini taşır. Yalnız, burada Doğa yine çok akıllı bir iş yapmıştır(Tabii ki Doğa bilinç sahibi değildir, bu sözün gelişi). Şayet iki erkek her çarpıştığında biri ölse, diğeri de sakat kalsa, kısa sürede ortada erkek kalmaz. Buna izin veren türler zaten çoktan yok olmuştur. Bunun yerine, dövüşme bir tür "oyun" olarak yapılır. kuralları bellidir, sanki boksörlerin "belden aşağı vurmak, ısırmak, dirsek atmak... yasaktır" kuralları gibi, her türdeki erkeklerin dövüşmede çok katı kuralları vardır. Örneğin iki dağ koyunu mutlaka önce karşıkarşıya dururlar, birbirlerine bakarlar sonra bizim göremediğimiz ama onlarca çok açık olan bir işaret üzerine birbirlerine bir tos vururlar, sonra tekrar karşılıklı geçerler. Bu, bir süre yinelenir, sonra koyunlardan biri pes eder ve kaçar. Kimse de büyük zarar görmez. Kurtlar gibi, isteseler rdakiplerini parçalayıp öldürebilecek yapı ve yetenekte olan hayvanlarda bile zarar verme minimal düzeydedir. Dövüşen kurtlardan biri yere yatıp boynunu diğerine sunduğu anda kavga biter. Bu, insan erkekleri arasında birinin diğerine "abimsin!" (ya da benzeri bir şey) demesine benzer. Erkekler arasında, pes etmiş olan birine zarar vermek büyük haysiyetsizlik sanılır-hem insanlarda hem de diğer hayvan türlerinde. (Lütfen "hayvanlarda ' haysiyet' kavramı var mıdır?" diye sormayın, ne demek istediğimi anladınız!). Aslında burada erkeklerin kadınlar uğruna, hele ülkemizde, yaptıkları "dövüşler" biraz geçiştirilmiş, ama bunu hocamızın inceliğine yorup geçelim! Orhan Kural Hoca, erkeklerin "oyunbaz", "kuralcı", "ödün vermesini bilen"...canlılar olduğunu örnekledikten sonra sözü yine kadınlara getiriyor: "Kadınlar için ödün vermek, asla bir seçenek değildir; hele karşılıklı "centilmenlik" yapmak, ancak gülünecek bir tutumdur. Bir tartışmada karşınızdaki erkeğe "sen haklısın" dediğiniz anda tartışma biter, hatta bazı erkekler, "yok canım, aslında sen de haklısın" gibi bir yumşatmaya gider. Eğer tartıştığınız kişi bir kadın ise ve "sen haklısın" derseniz, değil yumşatmaya gitmek, zaferini perçinlemek için büsbütün saldırır size. Tekrar ediyorum, bu söylediklerim herkes için geçerli değildir, istisnalar vardır. Neyse , şimdi bu çok tehlikeli konuyu geçelim. Bir başka konu da "saldırganlık" konusu olabilir. Saldırgan (yani "agresif") tutumun en bilinen belirtisi karşısındakinin gözünün içine dik dik bakmaktır. Memeli hayvanların çoğunda bu özellik vardır; siz bir kediyi karşınıza alıp gözlerine sabit bir bakışla dik dik bakarsanız derhal tedirgin olduğunu farkedersiniz. Vücudu adrenalin salgılar ve " saldır ya da kaç" moduna girer. Biraz sonra kararını görürsünüz. Eğer kaçmaya karar verdiyse ne ala, aksi takdirde yandınız demektir. Gorilleri anlatan doğa belgesellerinde farketmişsinizdir onlarla karşılaşma durumunda "sakın onlara bakmayın, yere bakın" diye tavsiye edilir. Saldırganlığın bir başka belirtisi, üst dişleri göstermektir. Bir köpeğin havlaması genellikle zararsızdır; ama eğer üst dişler meydanda ise, bir de derin bir sesle hırlıyorsa hiç vakit kaybetmeden önleminizi almanız iyi olur. İnsanlarda da aynı şey söz konusudur, karşınızdaki insan size dik dik bakarken üst dudaklarını oynatarak sıkılmış dişlerin arasından, hele derin bir ses ile konuşuyorsa, size "seni çok seviyorum" bile diyorsa siz aranızdakimesafeyi hızla artırmaya bakın. Eminim konuşmayı daha öğrenmemiş atalarımız da böyle davranıyorlardı. Birinin önünden çiğ et almaya kalksaydınız hemen size üst dişlerini gösterip derin bir sesle hırlardı. Aslında keşfedilmiş bir şey daha var bu konu ile ilgili olarak: Bütün hayvanlar ihtarda bulunacakları zaman seslerini kalınlaştırır, karşısındakine güven vermek istedikleri zaman seslerini inceltirler. Bir bebek ile cilveleştiğiniz zamanki sesinizi düşünün. Ya da bir köpeğin "alttan alma" sesini. Kadın ve erkek seslerinin farkını bu açıdan bir düşünün." Kural Hoca'nın Kuralları "Ben düzenli bir insanım. Herşeyi yerli yerinde severim. Bazen ev halkından birinin örneğin paltosunu, yine örneğin, salonda bıraktığı olur. O zaman içimden neredeyse öfke diyebileceğim bir kızgınlık kabarır. Neden? -" Yahu, bunun yeri burası değil ki" -" Peki sen kaldırsan ne olur, çok mu zor?" - "Anlamıyorsun, konu o değil, bu davranış beni adam yerine koymamak demektir." - " Afedersin, salondaki bir paltonun seninle ne ilgisi var? herhalde sen kızasın diye bırakılmadı" - "Olsun, kızıyorum işte". Benim bir türlü anlamak istemediğim, bu duygularımın bana çok eskilerden miras kalmış olduğudur. Hayvanların çok büyük bölümü belli bir bölgeyi "kendi bölgesi" olarak benimser, onu şu ya da bu yoldan ilan eder. Kuşlar içinde bunu öğrenerek bildirenler vardır ama aidiyet konusunu en açık seçik ilan edenler meme lilerin bir bölümüdür. Onlar katı ya da sıvı dışkılarıyla bölgelerini işaretler. Bu kokuyu alanlar hemen durumu kavrarlar. Bizler de aynı davranışı sergileriz. Örneğin kalabalık bir hava alanı bekleme salonunda otaracak bir yer bulmuşsunuz, gidip bir paket çikolata almak ihtiyacını duydunuz. Kalksanız biri hemen yerinizi kapacak, neyaparsınız? Tabii yerinize çantanızı, kitabınızı ya da ... paltonuzu bırakırsınız. (hayvanların bıraktığını bırakacak haliniz yok ya!). Bunu yaparak, "burası bana ait" diye ilan ediyorsunuz. İşte, büyük olasılıkla, ben de salondaki paltoyu böyle algılıyorum O zaman da diensefalon' dan gelen mesaj, davranışıma egemen oluyor. İstemeyerek de olsa buyazıyı burada bitirmek zorundayım, yemeğe oturacağız. Doğrusu bu ya, yiyeceğim kanlı bifteği düşününce ağzım sulanıyor. İnşallah yine "bakayım nasıl olmuş" diye tabağımdan lokma aşırmaya kalkmaz kimse. Çünkü o zaman hırlamanın dikalasını sergilerim!" ( Prof. Dr. Orhan Kural ODTÜ Makine Müh. Bölümü, Bilim ve Teknik 343. sayı) 1997 yılında Kural Hoca, arabadan içtikleri bira şişelerini yola fırlatanları uyardığı için fena halde cezalandırıldı. Basındaki fotoğraflardan anlaşıldığına göre, parmaklarından kırılanlar vardı; ayrıca kaşı gözü de yarılmıştı... Bizi Atalarımıza Götüren Hazineler: Fosiller Darwin' e "evrim fikirini veren ilk kanıtlar fosillerin incelenmesiyle ortaya çıkmıştır. Çene kemikleri, dişler, dinazorlara ait taşlaşmış dışkılar ve diğer fosilleşmiş kalıntılar. Fosil , "kazı sonucu topraktan çıkarılan canlıların taşlaşmış kalıntıları" demektir. Yüz yılı aşkın süren kazı çalışmaları, sayısı ikibini geçmeyen insan atası kalıntıları. Bunlar bizi şimdilik 5-8 milyon yıl öncesine götürüyor. Kalıntılar ve günümüz türlerinden sağlanan moleküler ipuçları, insanoğlunun şempanzelerle ortak bir atadan türediğini gösteriyor. Bulunan en eski "insanımsı" (hominid) fosilleri, Afrika kökenli ve 4.4 milyon yıl öncesine ait. Daha yeni olanları sırasıyla Avrupa, Asya, Avusturalya, Kuzey ve Güney Amerika kökenli. Bu fosiller, yaklaşık yüzbin yıl öncesine ait. Fosilleşme ender rastlanan bir durum. Çok kuru ortamlarda canli adeta mumya şeklini alir. Tuzlu bataklik ve buzullar içinde binlerce yildan beri bozulmadan günümüze ulaşan canli kalintilari bulunmuştur. Örnegin Sibirya buzullarinda günümüzden 2.5 milyon - 10 bin yil öncesini kapsayan dönemde yaşamiş mamutlara ait hemen hiç bozulmamiş örnekler bulunmuştur. Bunlarin bazilari öyle iyi korunmuş ki etleri kurt gibi hayvanlar tarafindan yenilmiştir. Kehribar da iyi bir koruyucu. Özellikle böcek gibi küçük canlilar için. Milyonlarca yil öncesinden kalma kehribar korumali canli türleri bulunmuştur. Tüm yeryüzü kazilsa bile bazi türlerin kalintilarini bulamayabiliriz.Ama kazdikça yeni kalintilar buldugumuz için bunu sürdürmeliyiz. Cambridge Üniversitesi' nden biyoantropolog Robert Foley, Afrika kökenli maymun türlerini incelemiş. O da insan ve şempanzenin üyesi oldugu evrimsel dallanmanin 7.5 milyon yil önce başladigini belirtiyor. Foley, ilk olarak dinazorlarin yok oldugu 65 milyon öncesine gidiyor. Bu dönem sirasinda memelilerin yok oluncaya veya başka bir canliya evrimleşinceye kadar, bir milyon yil boyunca varligini sürdürmüştür. (Bilim ve Teknik 332. sayı...) Hitler, 1933'te 'seçimle' başa geçti. Üstün irk kavramiyla milyonlarca insanin ölümüne neden oldu ve bilim adamlarini susturdu. Ama sonunda kendi silahini kendi agzina dayayarak yaşamina son verdi. Hem de metresi Eva Braun ile birlikte. Sovyetler Birligi’nin Hitler karşiti diktatörü Stalin, ünlü genetikçi Nikolai Vavilof' u " proleter biyoloji" görüşünü reddettigi için vatan hainligiyle suçlamişti ve ölüm cezasina çarptirmişti. Sonradan cezasi ömür boyu hapse çevrildi ve Vavilof, 1943' te hapisanede öldü. Bu ölümler normal degildir.(Şerafettin Turan,TKT s: 158) Bizler, bu ölümlerden haberdar olamayan bir kuşagiz. Haberdar edilsek de “inanmazdik” diye düşünüyorum. Onu Amerikan emperyaliziminin sosyalist sistemi alaşagi etme eyleminin bir parçasi olarak kolayca yorumlardik. Yalan mi? *** Taşlaşma Fosiller yalnızca canlıların sert kısımlarını( kemik, dişi, kabuk...) değil, aynı zamanda çeşitli organlarının ve yaşantıları ile ilgili izler taşıyon kalıpları da kapsar. Bir hayvana ait tüm bir fosil bulmak genellikle olanaksızdır. Ancak vücut parçalarının şekline göre yorum yapılabilmektedir. Örneğin çenesinin yapısından hayvanın nasıl beslenodiğini, ayak yapısından hareket biçimini öğrenebiliriz. Engözde ve kullanışlı fosil, omurgalılara ait iskelet kalıntılarıdır. kemiklenrin şeklinden, üzerindeki kas bağlantılarından, hayvanın şekli ve nasıl hareket ettiği anlaşılabilir. Killi ve çamurlu ortam, fosil oluşumu için oldukça uygundur. Bu çamurun içine herhangibir nedenle düşmüş canlinin etrafindaki maddeler sertleşir ve bir kalip ortaya çikar. Canli çürüyrek ortadan kalkar, ama kalibi kalir. Vücut parçalari, degişik mineralli sularla veya yalnizca mirnerallerle dolarsa, buna taşlaşma denir. Demir, kalsiyum ve silisyum taşlaştirici minerallerin en önemli elemntleridir. Bu taşlaşma bazen çok öyle mükemel oliur ki, anatomik incelemeler dahi yapilabilir. Örnegin 300 milyon yil önce taşlaşmiş bir köpek baliginin kaslifleri ve kaslarindaki bantlar bile görülebilir. Bu taşlaşmaya en güzel örnek Arizona' daki taşlaşmiş ormandir. Yürüyüş ve yaşam tarzini açiklayan ayak izleri, aldigi besinin kalitesini veren boşaltim artiklarinin ve çogalmasi konusunda bilgi veren yumurtalar (bir yumurtanin içerisinde dinazor yavrusunun fosili bulunmuştur) in fosilleri de bizim için önemli kanitlardir. Lavlar da fosil oluşmasina neden olabilir. Gerçi yanardaglarin patlamasiyla ortaya çikan zehirli gazlar birçok canliyi ölüdür; ama kismen sogumuş olan lavlar bunlarin üzerini örterek fosilleştirir. Ayrica belirli derinliklerdeki canlilari toprak firinlayabilir ve pişirir. Vezüv Yanardagi' nin oluşturdugu lavlarin altinda böylesi fosiller bulunmuştur. İnce yapraklı ağaçların çıkardığı reçineler, kehribar ve diğer bitkilerin oluşturduğu amber gibi konserve edici maddeler içine düşen küçük organizmalar, özellikle böcekler çok iyi saklanmıştır. Sibirya ve Alaska' da tarih öncesinde yaşayan 50' den fazla mamut fosili bulunmuştur. Buzların içinde (en -35 derece) bulunan bu tüylü mamutların- en az 25 bin yıl önce yaşamış- etleri bugün dahi yenebilmektedir. (Ali Demirsoy Kalıtım ve Evrim, 5. Baskı 1991 Ankara, s:479-480) İNSANIN EVRİMİ (Ali Demirsoy' dan) " Birçok kişi, insanlari hayvanlar aleminin içinde degerlendirmenin küçültücü ve aşagilatici olduguna inanir ve insanlari tüm diger hayvanlardan ayri olarak degerlendirmeyi yeg tutar. Fakat bugünkü bilgilerimizin işigi altinda insanlarin diger hayvanlardan belirli derecede farklilaştigini; ama onlardan tamamen ayri bir özellik göstermediklerini de biliyoruz. Hatta büyükbeynin gelişmesini bir tarafa birakirsak, onlardan çok daha yetersiz oldugumuz durumlarin ve yapilarin sayisi az degildir. Özellikle dogal korunmada çok zayifiz. Uzun, keskin pençelerimiz; uzun, keskin dişlerimiz; kuvvetli kaslarimiz yoktur. çok küçük bir panter dahi bizi parçalayacak güçtedir. Bir köpek bizden çok daha iyi koku alir; hata uykuda bizim alamayacagimiz sesleri algilayarak uyyanabilir. Bazilari, toprak üzerinde birakilan kokudan iz takip ederler. Bazi kuşlar, düşünemeyecegimiz kadar keskin görme gücüne sahitirler. havada uçan şahin veya atmaca, yarisi yaprak altinda kalmiş fare ölülerini bile derhal görebilir. Yalniz bir özelligimizle diger canlilardan üstünüz. Diger tüm canlilari bastiracak bir üstünlük veren, karmaşik ve vücudumuzun büyüklügüne göre çok gelişmiş beynimiz, en belirgin özelligimiz olarak ortaya çiktmaktadir. Heiçbir tür, çevresini kendi çikarlari için kontrol altinaalmamiş ve diger canlilar üzerinde mutlak bir baskinlik kurmamiştir. Fakat başarilarimizdan gururlanmadan önce bunun, kişisel biryetenekten ziyade, binnlerce yil süren bir bilgi ve iletişim birikiminin meyvesi oldugunu bilmemiz gerekecektir. Bu, şimdiye kadar yaşamiş milyanlarca insanin elde ettigi deneyimin görkemli bir meyvesi olarak kullanimimiza sunulmuştur. Bu iletişim ve bilgi aktarimi olmasaydi, belki biz, yine biraz daha gelişmiş bir maymun olarak agaçlar ve çalilar içinde yaşiyor olacaktik. Süper zekamiz bu sonucu büyük ölçüde degiştirmeyecekti. Çok yakin zamanlarda yapilan araştirmalar, bizim zekamizin, inanildigi gibi maymunlardan çok fazla olmadigini kanitlamiştir. Gelişmişlik olarak görünen, toplumdaki bilgi ve deneyim birikimidir."

http://www.biyologlar.com/insanin-evrimi

Veritabanı ve Veritabanları

Biyoinformatiğe yeni başlayanlar veya kendini geliştirmek isteyenler genelde genom veya proteom veritabanlarıyla başlarlar; biz de eğitimlerimizde bu yolu izliyoruz ve bu kaynakları bir araya getiren veritabanları veritabanlarından sonlarda bahsediyoruz. Ancak bir süredir bunun çok da etkin olmadığını farketmeye başladım. Temel sıkıntı, bu yaklaşımla birçok veritabanına aynı anda bakmak pek de pratik olmadığı için her bir veritabanının güçlü ve zayıf yönlerini anlamak mümkün olmuyor. Yani bu şuna benziyor; bir çamaşır makinası almak istiyorsunuz ancak her bir markayı ayrı ayrı gezdiğinizde kafanız karışıyor ve hızlı bir kıyaslama imkanı bulamıyorsunuz; bir teknoloji mağazasında aynı markaları bir arada gördüğünüzde ise karar verme süreciniz kolaylaşıyor. GeneCards'la başlayalım. Kısaca şunu yapıyor GeneCards; her bir gen için birçok veritabanındaki veriyi otomatik olarak toplayıp aynı sayfada sınıflandırarak gösteriyor. Bunu hatırlar mısınız bilmiyorum ama, eskiden (daha bilgisayarlar piyasada yokken) kütüphanelerde dizin kartlarından oluşan bir sistem vardı. Bir kitap hakkındaki tanımlayıcı her bilgi ve bazen de kısa bir özet bir kart üzerinde sunulurdu ve bu kartlar alfabetik olarak dizilip dar uzun çekmecelerde muhafaza edilirdi [geçmişten bahsettiğim için kelime seçimlerim bile değişti, korunmak yerine muhafaza'ya geçtim. Kolay kolay karşılaşamayacağınız veya bir başkasının yönlendirmesi olmadan keşfedemeyeceğiniz birçok kıymetli veritabanı GeneCards'da yer alıyor. Örneğin MDM2 üzerinden gidelim [Lisans'ta ilk ciddi raporumu bu gen için hazırlamıştım, neden seçtiğimi bilmiyorum, ismi hoşuma gitmişti sanırım]. GeneCards'ta bu geni aradığınızda bu genin kelime olarak bir şekilde ilişkilendirilebileceği birçok seçenek karşınıza çıkıyor, ardından genin kendisine tıklayıp devam edebiliyorsunuz. En önemli kısım, "Jump to Section" menüsünde yer alan ve web sayfasında da kutularla ayrılan başlıklar. Her bir başlığın altında, akademik olarak güvenilir ve referans kabul edilen veritabanlarının isimleri ve buralardan elde edilen verileri buluyorsunuz. Bir gen veya protein hakkında araştırma veya ödev yapıyorsanız, bu konuda bulabileceğiniz ve mutlaka başvurmanız gereken neredeyse tüm kaynaklar burada, tek bir sayfada. GeneCards'ı bir kez keşfedince vaz geçemeyeceksiniz. GeneCards hakkında ufak bir konudan daha bahsetmek istiyorum. Güneş tutulmasının ülkemizden çok iyi gözlenebildiği bir sene (galiba 2006'da) Antalya'da ICGEB etkinliğinde bu servisi kuran ve yürüten kişi ile tanışmıştım. 5 tam zamanlı, bir o kadar da yarı zamanlı çalışandan oluşan bir ekipten bahsetmişti; büyük kısmı öğrenciydi diye hatırlıyorum. O zaman içimden geçirmiştim, böyle bir şeyi neden biz yapamayalım diye. Ancak bizdeki kritik kütle o zaman daha oluşmamıştı, bir türlü de oluşamadı nedense. Bir diğer kritik veritabanları veritabanı ise Pathguide. Toronto'dan Gary Bader'in [BIND veritabanını hayata geçiren zât-ı muhterem] meydana getirdiği bu kaynak o kadar değerli ki, nasıl ifade etmek lazım bilemedim. Buradaki temel fayda şu: piyasadaki birçok yolak [pathway] veritabanı veya bu bilgiyle ilişkili veritabanları teker teker taranmış ve bazı özellikleri özetlenmiş. Yani yaptığınız araştırma yolak bilgisini veya sistem yaklaşımını içeriyorsa, kesinlikle başvurmanız gereken bir kaynak; hayatınızı çok kolaylaştıracak. Lisans yaz stajımda yer aldığım laboratuvar Bader ve ekibiyle ortak işler yapıyordu ve ben de tanışma ve birlikte çalışma şansına sahip olmuştum. Türkiye'den ve Bilkent'ten geldiğimi öğrenmiş ve öğrenir öğrenmez benim yanıma gelmişti, ve hemen PATIKA'yı sormuştu. PATIKA bizde çok bilinmez ancak yurtdışındaki etkisi hakikaten çok büyük. Son olarak bir eksiklikten bahsetmek istiyorum. Kaynaklarımızın neredeyse tamamı metin tabanlı, ancak biz insanlar metin yerine şekilleri algılamakta daha uzmanlaşmış durumdayız. Bu nedenle, verilerin -nasıl olacağını tam olarak kestiremiyorum ama- şekillerle temsil edilebileceği bir yaklaşıma ihtiyacımız var; büyük ihtimalle bunu keşfedebildiğimiz zaman bazı şeyler çok daha hızlanacak. Cytoscape bu bağlamda sahip olduğu eklentiler [plug-ins] ve Google Chart entegrasyonu ile büyük bir potansiyele sahip. Yapılacak ve yapılabilecek çok şey var. biyoinformatiktr.blogspot.com

http://www.biyologlar.com/veritabani-ve-veritabanlari

Anne sütündeki vitaminler ve miktarları

Anne Sütünün Antienfektif Öğeleri: • Laktoferrin: Demiri bağlayarak patojen mikroorganizmaların üreme­sini engelleyen bakteriostatik etkisi olan bir proteindir. Bağışıklık sistemini güçlendirir ve büyüme etmenidir. • Bifidus Faktörü: Barsak pH’sını düşürerek, diyareye neden olan mik­roorganizma ve mantarların üremesine engel olan Laktobasillus bifidus adlı yararlı bakterinin oluşumunu sağlar. • Lizozim: Bakterisidal etkisi olan bir enzimdir. • İnterferon, Laktoperoksidaz: Antiviral et­kili ve bakteriostatik etkisi olan bir proteindir. • İmmünoglobülinler: Sekretuvar IgA bak­terilerden E Coli, vibrio kolera, H influenza, dif­teri, pnömoni, salmonella, shigella ve virüsler­den polio, rotavirüs, HIV ve sitomegalovirusa karşı etkilidir. • Hücre ve Antikorlar: T ve B lenfositler, makrofajlar, nötrofiller, epitelyal hücreler • Komplemanlar, Fibronektin: Özellikle C3 opsonin (antijenle birleşe­rek onu fagositoza hassas kılan antikor) olarak görev alır. • Nükleotidler • Sitokinler: Anne sütünde bulunan sitokinlerden interlökin 1β, T hücrelerini aktive eder; interlökin 6, IgA yapımını, tümör nekrozis faktör α (TNFα) komplamen salgılanmasını ve dönüştürücü büyüme etmeni (transforming growth factor β; TGFβ) ise T hücrelerine dönüşümü arttırmaktadır. • Lenfositler: E. Coli’ye karşı etkindir. • Oligosakkaritler: Bakterilerin epitel dokuya bağlanmasını önlerler. Vitaminler Miktar (mg/L) Yağda Eriyen Vitaminler A Vitamini Karotenoidler 0.53 Tokoferol (E vitamini) 0.24 K Vitamin 0.015 Kolekalsiferol (D vitamini) 0.001 Suda Eriyen Vitaminler Tiamin (B1 vitamini) 0.15 Riboflavin (B2) 0.37 Pridoksin (B6) 0.10 Niasin (B3) 1.70 Kobalamin (B12) 0.0003 Folik asit (B9) 0.043 Askorbik Asit (C vitamini) 47 Enerji ve Besin Öğeleri / Anne Sütündeki Miktar (100mL) Enerji (kkal) 69 Protein (g) 1.3 Laktoz (g) 7.0 Yağ ( g) 4.1 Protein (%) 7.0 Laktoz (%) 42.0 Yağ (%) 51.0 Vitaminler Retinol (μg) 60 β karoten (μg) 27 D (IU) 0.42 E (mg) 0.34 K (μg) 0.21 Tiamin (mg) 0.02 Riboflavin (mg) 0.03 Nikotinik asit (mg) 0.22 B12 (μg) 0.10 B6 (mg) 0.01 Folat (μg) 5.0 Pantotenik asit (mg) 0.25 Biotin (μg) 0.7 C (mg) 3.7 Mineraller Sodyum (mg) 14 Potasyum (mg) 58 Klor (mg) 42 Kalsiyum (mg) 34 Fosfor (mg) 14 Magnezyum (mg) 3.0 Demir (mg) 0.07 Bakır (mg) 0.04 Çinko (mg) 0.28 İyot (μg) 3.0 Manganez (μg) 0.1 Selenyum (mg) 14 Taurin (mg) 4.6 Kükürt (mg) 14 Böbrek solüt yükü (mmol/lt) 75-80

http://www.biyologlar.com/anne-sutundeki-vitaminler-ve-miktarlari

Protoplazmanın Hidratürü

Gram k.ağ başına su miktarını belirten hidrasyonundan farklı bir terimdir ve protoplazma suyunun bağıl termodinamik aktivitesinin ölçüsüdür. Fakat fizyolojik aralıkları olan% 96 - 100 arasında aralarında doğrusal ilişki vardır, yani şişme ile hidratür paralel değişir. Protoplazma hidrasyonunun su potansiyeli - emme potansiyeli - difüzyon basıncı eksikliğine bağlı olduğu ve suya doymuş hücrede maks. olduğu görüşü termodinamik açıdan yanlıştır. Özsuyun bağıl su aktivitesi - hidratürü daima < saf su olduğundan protoplazmanın şişmesi limite gider. Özsu osmotik potansiyeli bilindiğinde protoplazma hidratürü hesaplanabilir, başka türlü de ölçülemez. Fakat OP sıcaklığa bağlı iken hidratür değildir, bu açıdan OP çöl bitkilerinin su ilişkilerinin ekolojisinde çok önemlidir. Çok değişik ekolojik ortamlarda birçok türün potansiyel osmotik basınçlarının ölçümü ile osmotik spektra elde edilir. Bu spektrum vejetasyonu oluşturan ot, sukkulent ve çalı gibi farklı yaşam formlarının osmotik basınç potansiyellerinin karşılaştırılması olanağını verir. Hidratürün tanımlanmamışolduğudönemde her tür için elde edilen en düşük ve yüksek OB potansiyelin negatifi olan potansiyel OB değerleri de belirtilerek ölçülen örnek sayısına göre ortalamaları ile beraber kullanılmıştır. Kurak alanlarda ortalama hava sıcaklığı örneğin 30 den 40 dereceye çıkarken kum yüzeyin sıcaklığı 35 den 85 dereceye kadar çıkıp gece daha hızlı olarak düşer. Hava bağıl nemi Rh-Relativ hümidite ise tam tersi ilişki gösterir, örneğin %40 dan 0a düşer ve tekrar 40’a çıkar. Kışın ise Rh ve top. suyu donma ile düşer, kuraklık etkisi yapar, bitkiler donmuş suyu alamaz, buna fizyolojik kuraklık denir. Nemli bölge ile semiarid- yarıkurak bölgenin sınırını yağış ile evaporasyon potansiyeli dengesi çizer evapotranspirasyon, yani bitki terlemesi ile topraktan buharlaşmanın toplamı esas alınr. Doğal olarak bu da havanın bağıl nemi ve dolayısı ile sıcaklığa bağlıdır. Karasal çöllerde kışın günlerin kısalığı soğuk etkisini arttırır ve hava hareketleri havanın sürekli kuru kalmasına neden olur.Yazın ise güneş enerjisi alçak basınca neden olur ve çevreden içe hava akımı yaratır. Çevre dağlık ise nem aşağıda kaldığından dağları aşamaz ve iç kısıma kuru hava akımı olur. Yaz yağışları düzensiz ve yereldir, çünkü dağları geçebilen nem yeryüzü örtüsünün heterojenitesi ve rakım farklılıkları nedeniyle konveksiyona uğrar. Kısa süreli ve yerel fırtınalar olur, özellikle sırtlar, vadiler hava akımı yarattığından bu fırtınaları destekler. Yıllık yağış çanakta 12 cm olurken dağların rüzgarlı eteklerinde 100 cm olabilir. Sukkulens ile kurağa dayanıklılık kışı sert yörelerde -1...-4 derecenin altında mineral beslenmesi ve osmotik basınca bağlı olarak direnci kırdığından karasal steplerde pek geçerli olamaz. Kış gecelerinde sıcaklıkları hava drenajı kontrol eder. Güneşin batışı ile toprak yüzeyi ve hemen üstündeki hava tabakası çabuk soğur. Soğuma ile hava yoğunluğu ve ağırlığı artar ve sırtlardan aşağıya esinti ile süzülür, çukurlarda soğuk birikirken yamaçlarda doğan boşluğu daha sıcak hava doldurur; böyle sürer. Kuvvetli bir hava akımı ve sıcaklık değişimi modeli doğar Doğal olarak çanak - tepe rakım farkları ile eğimler, kuzey ve güneye bakış önemli rol oynar. Kış yağışın bol olduğu zaman olduğundan güneye bakan yamaçlardaki daha sıcak koşullar nemin kaçmasına neden olur, kuzey yamaçlarda ise nem tutulur. Sonuçta vejetasyon- bitki örtüsü farklılıkları yüksek olur. Gün ortasındaki ortalamalar ise çanakta 15 derece iken tepelerde 4 derece gibi beklenen farklılıkları gösterir. Yazın ise koşul farklılıkları azalır, gecelerin kısalığı hava drenajı etkisini azaltır ve gece sıcaklıkları kritik değerlerden uzaktır. Anakaya jeolojisi kurak alanların erozyonu ve çölleşmesinde önemlidir. Jeomorfolojiyi ve erozyona dayanıklılığı etkiler. Çöl ortamı ana kayaç jeolojisi ile yeryüzünde cereyan eden olayların uzun süreli ilişkisi sonucudur ve aynı bölgede farklı koşullara yol açar, yani çölleşme piyesinin sahnesidir. Yeryüzündeki kayaların şekil, büyüklük ve dağılımını, ilişkilerini belirler. Erozyona bağıl dayanıklılık oranlarını hem fiziksel ve kimyasal özellikleri hem de topoğrafya ile birlikte belirlediği gibi erozyonla doğan yapıların tanecik şekil ve boyutlarını, çözünürlük ve taşınabilirliklerini de belirler. Dayanıklılığın aynı olduğu ortamlarda da iklim koşullarının etki şekli ve derecesi hem yeryüzüdeki etkisi hem de önleyici vejetasyonu sınırlayıcı etkisiyle önem kazanır. Jeolojik etki yapabilecek düzeyde yağış olmadığında rüzgar önem kazanır. Yağış hem fiziksel hem de kimyasal etkiler yaratırken rüzgarın etkisi tümüyle fizikseldir. Hava nemi ise kimyasal etki yaratır. Tipik karakteristik olan vejetasyon azlığı veya yokluğu oldukça kısa sürede de ortaya çıkabilir. Örneğin bir maden alanında 150-180cm ort. yıllık yağışa rağmen 100 km2 lik bir alan dumanlar vs.nin etkisiyle çıplaklaşıp, rüzgar ve sel etkisine açık hale gelerek erozyona uğraması sık görülebilen bir durumdur. Yoğun ve dikkatsiz tarım uygulamaları doğal vejetasyonu eriterek kuraklığı arttırıp, tarımsal verimi azaltırken, rüzgar ve su erozyonunu arttırı ve 10 yılda bile çölleşme olabilir. Entansiv tarım toprağın asitleşmesine neden olarak bitkilere yararsız hale getirir. Buna karşı toprağın kireçlenmesi gerekir. Benzer şekilde aşırı otlatma ile bitki örtüsü kaybı çölleşmeye neden olur. Semi - arid, orta kurak bölgelerdeki çorak alanlarda toprağın üst yüzeyinin kabuklaşması suyun yüzeyden akışına neden olarak topoğrafik izler bırakır. Özellikle kalker gibi çözünür kayaçları çok etkiler, yüzeydeki çentikli görünümle kendini belli eder. Fiziksel etkileri poröz kayaçlardan gevşek yapıları çekerek uzaklaştırmak suretiyle zayıflatmak ve zamanla seçii olarak bozunuma neden olmaktır. Özellikle ince taneli sedimanter kayaçlarda kendini gösterir. Kimyasal etki çözünür tuzları çekerek çöktürmesidir. Kalkerli tüf veya traverten oluşumuna neden olur. sıak dönemlerde de yüzeyde bu tuzların birikimi görülür. Çölleşme vejetasyon çeşitliliğini azaltır, toprak tekstürü, eğim, kumluluk gibi ekstrem koşullara adapte olabilen cinslerin türlerine indirgenir. Drenajı yetersiz alkali düzlüklerde vejetasyon zayıftır ve örneğin çeşitli Atriplex, Astragalus, Salvia, Thymus türleri gibi türler görülür. Halofitler de yanlarında bulunur. Sert zemin üzerindeki ağır topraklarda en iyi gelişimlerini gösteren çalı türleri özellikle Atriplex spp. dir. Yabani asma türleri yanında odunlulardan Acacia, Juniperus, Eucalyptus türleri olabilmektedir. Legüm ağaçlarından Acacia örneğinGüney Afrika, Arizona çöllerinde dahi boldur. Vejetasyon tipleri yerel topoğrafya ve edafik koşullara göre, örn. Volkanik,granitik anakaya cinsine göre farklılaşabilmektedir. Çölleşme endemik tür artışına neden olur, perenniyal/ annual oranı 3/2 gibi yüksek oranlara ulaşır. Genelde çöl türleri sürekli evrimleşme ile ortaya çıkmış ve evrimlerini sürdüren türlerdir. Özel edafik ve fizyolojik koşullarda yaşayan, sadece kuru koşullara bağlı olmayan türlerdir. Örn. tuzlu, alkalin, kumul gibi ortamlar için seçicidirler, Atriplex bunlardandır alkalin, tuzlu topraklarda susuz ortam yanında toprağın yüksek osmotik basıncına dayanıklı oluşları ile yüksek rekabet gücü elde ederler. Bazı türler çölleşme koşullarındaki mikrohabitat koşullarına alttürleri sayesinde uyum sağlamışlardır. İklim koşulları soğuk ve nemli kış koşulları ile de rekabet tablosunu etkiler. Türlere göre değişen çimlenme zamanı ve yöntemi üzerinde etkili olan başka etmenler de vardır. Empermeabl tohum kabukları sayesinde susuz ortamda desikasyona, yani kurumaya uğramadan embriyoyu canlı tutma önemlidir. Su ile yakın temas, yüksek sıcaklıkta suyun varlığı, belli bir sıcaklık değişiminin veya gündüz / gece sıcaklık ilişkisinin kurulamamış oluşu, ışık belli bir sıcaklıkta yağış gibi çok farklı etmenler çimlenmeyi engelleyebilmektedir. Çeşitli kurak bitkilerinin yapraklarından kültür ortamında diğer türlere inhibitör hatta toksik etki yapan maddeler izole edilmiştir. Bazılarının inhibitör veya zehirlerinin dökülen organlarından toprağa geçerek uzun süre etkili olabildiği ve sonra toprak biyolojik veya kşmyasal aktivitesi, yağmurun yıkaması ile bu etkinliği kaybettikleri de ortaya çıkarılmıştır. Terleme genelde yeterli su varken yüksektir. Sıcaklık, güneş ışığı, buharlaşma hızı yükselme stomalar kapanmakta terleme azalmaktadır. Mezofitlere oranla aynı koşullardaki stoma açıklığı daha yüksek kalmakta, ancak çok şiddetli ışıkta kapanmaktadırlar. Tipik olarak karanlıkta stomalar açılmaktadır. Bazı türler kurakta tüm yapraklarından kurtulmakta ve ancak su alabildiklerinde yeniden yapraklanmaktadırlar. OrtaDoğu çöl vejetasyonunun dominant perennial türlerinin çoğu herdem yeşil kamefitler olup terleme yüzeylerini mevsimsel olarak yaprak değişimi ile ayarlamaktadırlar. Tipik bir örnek türde transpirasyon yapan kütlenin %87.4 azaldığı saptanmıştır. Diğer bir faktör de vejetasyon sıklığı ile kendini gösteren rekabettir, yağış rejimine göre vejetasyon seyrelerek toplam transpirasyonu sabit tutmaktadır. Birçok sukkulent türün ekstraktlarının antibiyotik aktivitesi görülmüştür. Aynı şekilde alkaloid birikmesinin de türler arasındaki antimikrobiyal farklılıklara paralel olduğu da gösterilmiştir. Bazı sukkulentlerin gece daha az CO2 çıkarttıkları, yani asit biriktirdikleri bulunmuştur. Krassulasean asit metabolizması ileride incelenecektir. Kurak alanlarda yeraltı suyunun derinliği bitki örtüsü üzerinde etkilidir, örneğin çöllerde tabansuyu 100m. kadar derinde olabilir ve yüzeye eriştiğinde de çok tuzlu olabilir. Kalitesi iyi ise çok yararlı olur. Yeraltı sularının hareketliliği ısı, yüzey gerilimi, elektriksel alan, basınç, yerçekimi ve su kimyası gibi birçok etmenin bileşkesi olup, taban suyu üzerinde, su ile havanın beraber bulunduğu derinliklerde yüzey gerilimi ile kılcallık yer çekimini yendiğinde su yüzeye çıkar. Çöllerde toprak nemi sıcaklık değişiminin etkisi ile hareket eder. Yağıştan sonra ısınan yüzey tabakası nemi yukarı çeker ve yüzey altında depolanmasına neden olur. öellikle kil ve siltlerde kimyasal osmoz etkili olur. Çok heterojen bir dağılım gösteren toprağın kapilaritesi önemli rol oynar. Kapilariteye bağlı olarak taban suyu evapotranspirasyon etkisi ile daha kısa veya uzun sürede yeryüzüne ulaşır. Tipik olarak düzlükleri çevreleyen yamaç ve dağlardan düzlüğe süzülen ve yer altında toplanan su bu yoldan evapotranspirasyonla atmosfere geçer. Büyük düzlüklerde veya 20-40mm.lik yağışlarda ise yeryüzüne yakın kısımdan yukarı çıkarak kısa sürede evapotranspirasyona uğrar. Karbonatlı veya volkanik kayalar üzerindeki bölgelerde bu kayaçların yüksek permeabilitesi nedeniyle taban suyu hareketliliği yüksek olabilir ve yağışlı mevsimlerde vejetasyon hareketlenir. Kökleri yüzeye yakın, yatay dağılan, yüzeyde kalan suyu kullanan kserofitler ile taban suyundan yararlanan freatofitleri birbirinden ayırmak gerekir. Fretofitler tabansuyuna doymuş olan taban derinliği, evapotranspirasyonla kaybedilen oranı ve suyun kalitesi hakkında fikir verirler. Genellikle otsu freatofitler tabansuyu derinliğinin 3m.yi, çalımsı olanlar ise 10m.yi aşmadığı ortamlarda gelişirler. Ağaçlar için bu derinlik 30m.yi bulabilir. Su derinliği yanında tuzluluğu, bitki türü, toprak ve anakaya özellikleri de önemli rol oynar. Bazı türler su kalitesi indikatörüdür, örneğin tuzlu su yabani otu (pickleweed -Allenrolfea occidentalis) taban suyunun tuza doymuş olduğu yerlerde yaşar. Kavak ve söğüt içilir kalitede tabansuyu indikatörüdür, hurma su seçmez, vs. Fretofitlerin su tüketimi iklim, tür ve bireyin sağlık durumu, bitki yoğunluğu ve su derinliği ile kalitesine bağlı olarak değişir. Örneğin kavak kurak ve sıcak ortamda yılda 2000-3000mm su tüketirse iyi büyüyebilir. Genelde fterofitlerin su tüketimi yüksektir, 1 hektarlık alanda yoğun yetişme için yılda 2000m3 su gibi bir tüketim gerekir. Optimum koşullarda nemli topraktan evaporasyon doğrudan su yüzeyinden olana eşittir ve sıcak çöllerde yılda 250-320 cm cıvarındadır. Ancak suyun tuzluluğu ile bu hız azalır. Derinlerden gelen suyun evaporasyonla kaybıkapilarite tüm profilde maks. düzeyde olamadığından genelde düşüktür, Porozite 0.3 olduğunda bile ve tuzlanma yoksa yılda 0.003-0.3 mm.yi aşmaz. Fakat gene de taban suyu derinliğinin 5 m veya daha az olduğu geniş alanlarda önemli bir yer tutar. Legümlerin çoğu tuza çok duyarlıdır. Genellikle yeraltı sularında Na, Ca, Mg, HCO, Cl, SO4, H4SiO4 ve daha az oranlarda da K, CO3, Fe2 ve F bulunur. Redükleyici koşullar ve düşük pH’ta Fe++ dominant olabilir. Genel derişimler arttığında Mg(OH)+, CaSO4 ve MgCO3 önem kazanır. Genelde kurak alanlarda ve özellikle çöllerde taban suları daha tuzludur, çünkü evapotranspirasyon/yağış oranı yüksektir, yağışlar şiddetli olduğundan yukarıda toplanan tuzu tabana indirir. Freatrofik ve otsu bahar vejetasyonun tahribi, permeabilitenin iyi olmadığı topraklarda sulama ile tuzlanma,sanayileşme ile tabansuyunun kurutulması insan eliyle erozyon ve çölleşmeye neden olur.

http://www.biyologlar.com/protoplazmanin-hidraturu

Ekolojik Kirlilik

En geniş anlamıyla çevre "ekosistemler" ya da "biyosfer" şeklinde açıklanabilir. Daha açık olarak çevre, insanı ve diğer canlı varlıkları doğrudan ya da dolaylı olarak etkileyen fiziksel, kimyasal, biyolojik ve toplumsal etmenlerin tümüdür.İnsanları çevre kirliliği konusunda duyarlı hale getirebilmek için 1997 yılı çevre yılı olarak kutlandı. Çevrenin doğal yapısını ve bileşiminin bozulmasını, değişmesini ve böylece insanların olumsuz yönde etkilenmesini çevre kirlenmesi olarak tanımlayabiliriz. Artık hepimizin bildiği gibi çevreden, içindeki varlıklara göre en çok yararlanan bizleriz. Çevreyi en çok kirleten yine bizleriz. Bu nedenle "Çevreyi kirletmek kendi varlığımızı yok etmeye çalışmaktır" denilebilir. Bilinçsiz kullanılan her şey gibi temiz ve sağlıklı tutulmayan çevre de bizlere zarar verir. Bu nedenle çevre denince aklımıza önce yaşama hakkı gelmelidir. İnsanın en temel hakkı olan yaşama hakkı, canlı ya da cansız tüm varlıkları sağlıklı, temiz ve güzel tutarak dünyanın ömrünü uzatmak, gelecek kuşaklara bırakılacak en değerli mirastır. 1970'li yıllardan sonra bilincine vardığımız çevre kirliliği dayanılmaz boyutlara ulaştı. Çünkü artık temiz hava soluyamaz olduk. Ruhsal rahatlamamızı sağlayacak yeşil alanlara hasret kalmaya başladık. Yüzmek için deniz kıyısında bile yüzme havuzlarına girmek zorunda kaldık.gürültüsüz ve sakin bir uyku uyuyamaz, midemiz bulanmadan bir akarsuya bakamaz olduk. Kısaca artık kirleteceğimiz çevre tükenmek üzeredir. 2000-3000 yıl önce bir doğa cenneti ve büyük bir kısmı otlaklarla kaplı olan Anadolu'yu günümüzde bu durumlara düşürdük. Doğada kirlenmeye neden olan etmenleri, doğal etmenler ve insan faaliyetleri ile oluşan etmenler olmak üzere iki grupta inceleyebiliriz. Doğal etmenler:depremler, volkanik patlamalar, seller gibi doğadan kaynaklanan etmenlerdir. İnsan faaliyetlerinden kaynaklanan etmenler ise aşağıdaki gibi sıralanabilir. Evler, iş yerleri ve taşıt araçlarında; petrol, kalitesiz kömür gibi fosil yakıtların aşırı ve bilinçsiz tüketilmesi. Sanayi atıkları ve evsel atıkların çevreye gelişigüzel bırakılması. Nükleer silahlar, nükleer reaktörler ve nükleer denemeler gibi etmenlerle radyasyon yayılması. Kimyasal ve biyolojik silahların kullanılması. Bilinçsiz ve gereksiz tarım ilaçları, böcek öldürücüler, soğutucu ve spreylerde zararlı gazlar üretilip kullanılması. Orman yangınları, ağaçların kesilmesi, bilinçsiz ve zamansız avlanmalardır. Yukarıda sayılan olumsuzlukların önlenmesiyle çevre kirliliği büyük ölçüde önlenebilir. Çevre bilimcilere göre genelde, aşağıda verilen iki çeşit kirlenme vardır. Birinci tip kirlenme; biyolojik olarak ya da kendi kendine zararsız hale dönüşebilen maddelerin oluşturduğu kirliliktir. Hayvanların besin artıkları, dışkıları, ölüleri, bitki kalıntıları gibi maddeler birinci tip kirlenmeye neden olur. Kolayca ve kısa zamanda yok olan maddelerin meydana getirdiği kirliliğe geçici kirlilik de denir. İkinci tip kirlenme: biyolojik olarak veya kendi kendisine yok olmayan ya da çok uzun yıllarda yok olan maddelerin oluşturduğu kirliliktir. Plastik, deterjan, tarım ilaçları, böcek öldürücüler (DDT gibi), radyasyon vb. maddeler ikinci tip kirlenmeye neden olur. Kalıcı kirlenme de denilen ikinci tip kirlenmeye neden olan maddeler bitki ve hayvanların vücutlarına katılır. Sonra besin zincirinin son halkasını oluşturan insana geçerek insanın yaşamını tehlikeye sokar. Örneğin; Marmara denizine sanayi atıkları ile cıva ve kadminyum iyonları bırakılmaktadır. Zararlı atıklar besin zincirinde alglere, balıklara ve sonunda insana geçerek önemli hastalıklara ve ani ölümlere neden olmaktadır. Köy gibi kırsal yaşama birliklerindeki insanlar genellikle büyük kentlerde yaşayan insanlardan daha sağlıklı ve daha uzun ömürlüdür. Çünkü kırsal ekosistemler, çevre kirliliği yönünden kentsel ekosistemlerden daha iyi durumdadır. Bunu bilen kent insanı fırsat buldukça, çevre kirliliği en az olan kırlara, köylere koşmaktadır. Günümüzde en yaygın olan kirlilik su, hava, toprak, ses ve radyasyon kirliliğidir. Yeryüzündeki içme ve kullanma suyunun miktarı sınırlıdır. Zamanla su kaynaklarının azalması, insan nüfusunun artması ve daha önemlisi, suların kirlenmesi yaşamı giderek zorlaştırmaktadır. Su kirliliğini oluşturan etmenlerin başında lağım sularıyla sanayi atık suları gelmektedir. Bunun yanında petrol atıkları, nükleer atıklar, katı sanayi ve ev atıkları da önemli kirleticilerdir. Bunlar deniz kenarındaki bitki ve alg gibi kaynakları yok etmektedir. Kirlenme sonucu denizlerde hayvan soyu tükenmeye başlamıştır. Örneğin; Marmara denizi, kirlilik nedeniyle balıkların yaşamasına uygun ortam olmaktan çıkmıştır. Karadeniz'deki kirlenme nedeniyle hamsi ve diğer balık türleri giderek azalmaktadır. İstakozların larva halindeyken temiz su bulamamaları nedeniyle nesilleri tükenmektedir. Nehir ve göllerimizde kirlilik nedeniyle canlılar tükenmek üzeredir. Yeni yeni kurulmaya başlanan arıtma tesisleri, lağım ve sanayi atık sularını hem kimyasal hem de biyolojik olarak temizlemektedir. Böylece hem sulama suyu gibi yeniden kullanılabilir su kazanılmakta hem de denizlerin kirlenmesi önlenmektedir. Bu nedenle sanayileşme mutlaka iş yerleri planlanırken arıtma tesisleri ile birlikte düşünülmelidir. Hava, içinde yaşadığımız gaz ortamı oluşturmanın yanında yaşam için temel bir gaz olan oksijeni tutar. Oksijen yanma olaylarını da sağlayan temel bir maddedir. Temiz hava olarak nitelendirilen atmosferin alt katmanı; azot, oksijen, karbondioksit ve çok az miktarda diğer gazlardan oluşur. Ayrıca atmosferin üst katmanında bir de ozon gazının (O3) oluşturduğu tabaka vardır. Ozon, güneşten gelen zararlı ışınların çoğunu yansıtıp bir kısmını tutarak yeryüzüne ulaşmasını engeller. Evler, iş yerleri, sanayi kuruluşları ve otomobillerin çevreye verdikleri gaz atıklar havanın bileşimini değiştirir. Havaya karışan zararlı maddelerin başlıcaları kükürt dioksit (SO3), karbon monoksit (CO), karbon dioksit (CO2), kurşun bileşikleri, karbon partikülleri (duman), toz vb. kirleticilerdir. Ayrıca deodorant, saç spreyleri ve böcel öldürücülerde kullanılan azot oksitleri, freon gazları ile süpersonik uçaklardan çıkan atıklar da havayı kirletir. Zararlı gazların (özellikle kükürt bileşikleri); yağmur, bulut, kar gibi ıslak ya da yarı ıslak maddelerle karışmaları sonucunda asit yağmurları oluşur. Asit yağmurları da bir yandan orman alanları vb. yeşil alanları yok etmekte bir yandan da suları kirletmektedir. Aşırı artan CO2, atmosferin üst katmanlarında birikerek ısının, atmosfer dışına çıkmasını engeller. Böylece yeryüzü giderek daha fazla ısınır. Bu da buzulların eriyerek denizlerin yükselmesine kıyıların sularla kaplanmasına neden olabilecektir. "Sera etkisi" denilen bu olay sonucu denizlerin 16 metre kadar yükselebileceği tahmin edilmektedir. Freon, kloroflorokarbon (CFC) gibi gazların etkisiyle ozon tabakası incelmektedir. Bunun sonunda güneşin zararlı ışınlarıyeryüzüne ulaşarak cilt kanseri gibi hastalıklara ve ölümlere neden olmaktadır. Sonuçta, biyosferin canlı kitlesini yok etme tehlikesi vardır. Büyük yangınlar da önemli ölçüde hava kirliliği yaratır. Örneğin; orman yangınları, körfez savaşında olduğu gibi petrol yangınları vb. Hava kirliliği aşağıda verilen uygulamalarla önlenebilir: Hava kirliliğinin en önemli nedenlerinden olan fosil yakıtlar olabildiğince az kullanılmalı. Bunun yerine doğalgaz, güneş enerjisi, jeotermal enerji vb. enerjilerin kullanımı yaygınlaştırılmalıdır. Karayolu taşımacılığı yerine demiryolu ve deniz taşımacılığına ağırlık verilmelidir. Büyük kentlerde toplu taşıma hizmetleri yaygınlaştırılmalıdır. Böylece, otomobil egzozlarının neden olduğu kirlilik azaltılabilir. Sanayi kuruluşlarının atıklarını havaya vermeleri önlenmelidir. Yeşil alanlar artırılmalı, orman yangınları önlenmelidir. Ozon tabakasına zarar veren maddeler kullanılmamalıdır. Canlılığın kaynağı sayılabilecek toprağın yapısına katılan ve doğal olmayan maddeler toprak kirliliğine neden olur. Böyle topraklarda bitkiler yetişmez ve toprağı havalandırarak yarar sağlayan solucan vb. hayvanlar yaşayamaz duruma gelir. Topraktan bitkilere geçen kirletici maddeler, besin zinciri yoluyla insana kadar ulaşır. Hastahane atıkları gibi mikroplu atıklar, hastalıkların yayılmasına neden olur. Toprak kirliliğine neden olan başlıca etmenler: Ev, iş yeri, hastahane ve sanayi atıkları. Radyoaktif atıklar. Hava kirliliği sonucu oluşan asit yağmurları. Gereksiz yere ve aşırı miktarda yapay gübre, tarım ilacı vb. kullanılması. Tarımda gereksiz ya da aşırı hormon kullanımı. Suların kirlenmesi. Su kirliliği toprak kirliliğine neden olurken, toprak kirliliği de özellikle yer altı sularının kirlenmesine neden olur. Toprak kirliliğinin önlenmesi için aşağıdaki uygulamalar yapılmalıdır. Verimli tarım topraklarında yerleşim ve sanayi alanları kurulmamalı, yeşil alanlar artırılmalıdır. Ev ve sanayi atıkları, toprağa zarar vermeyecek şekilde toplanıp depolanmalı ve toplanmalıdır. Yapay gübre ve tarım ilaçlarının kulanılmasında yanlış uygulamalar önlenmelidir. Nükleer enerji kullanımı bilinçli şekilde yapılamlıdır. Sanayileşme ve modern teknolojinin gelişmesiyle ortaya çıkan çevre sorunlarından biri de ses kirliliğidir. Gürültü de denilen ses kirliliği, istenmeyen ve dinleyene bir anlam ifade etmeyen sesler ya da insanı rahatsız eden düzensiz ve yüksek seslerdir. Ses kirliliğini yaratan önemli etmenler; Sanayileşme Plansız kentleşme Hızlı nüfus artışı Ekonomik yetersizlikler İnsanlara, gürültü ve gürültünün yaratacağı sonuçları konusunda yeterli ve etkili eğitimin verilmemiş olmasıdır. Ses kirliliği, insan üzerinde çok önemli olumsuz etkiler yaratır. Bu etkileri aşağıdaki gibi sıralayabiliriz. İşitme sistemine etkileri: Ses kirliliği işitme sistemi üzerinde, geçici ve kalıcı etkiler olmak üzere iki çeşit etki yapar. Ses kirliliğinin geçici etkisi, duyma yorulması olarak da bilinen işitme duyarlılığındaki geçici kayıplar şeklinde olur. Duyma yorulması düzelmeden tekrar gürültüden etkilenilmesi ve etkileşmenin çok fazla olması durumunda işitme kaybı kalıcı olur. Fizyolojik etkileri: İnsanlarda görülen stresin önemli bir kaynağı ses kirliliğidir. Ani olarak oluşan gürültü insanın kalp atışlarında (nabzında), kan basıncında (tansiyonunda), solunum hızında, metabolizmasında, görme olayında bozulmalar yaratır. Bunların sonucunda uykusuzluk, migren, ülser, kalp krizi gibi olumsuz durumlar ortaya çıkar. Ancak en önemli olumsuzluk kulakta yaptığı tahribattır. Psikolojik etkileri: Belirli bir sınırı aşan gürültünün etkisinde kalan kişiler, sinirli, rahatsız ve tedirgin olmaktadır. Bu olumsuzluklar, gürültünün etkisi ortadan kalktıktan sonra da sürebilmektedir. İş yapabilme yeteneğine etkileri: Özellikle beklenmeyen zamanlarda ortaya çıkan ses kirliliği, iş veriminin düşmesi, kendini işine verememe ve hareketlerin engellenmesi şeklinde performansı düşürücü etkiler yapar. Gürültünün öğrenmeyi ve sağlıklı düşünmeyi de engellediği deneylerle saptanmıştır. Ülkemizde, insanları gürültünün zararlı etkilerinden korumak için gerekli önlemleri içeren ve çevre yasasına göre hazırlanmış olan "Gürültü kontrol yönetmeliği" uygulanmaktadır. Ancak yönetmeleğin hedeflerine ulaşabilmesi için insanların bu konuda eğitilmeleri ve bilinçlendirilmeleri gerekir. Ses kirliliğinin saptanmasında ses şiddetini ölçmek için birim olarak desibel (dB) kullanılır. İnsan için 35-65 dB sesler normaldir. 65-90 dB sesler, sürekli işitildiğinde zarar verebilecek kadar risklidir. 90 dB'in üzerindeki sesler tehlikelidir. Ses kirliliği aşağıdaki uygulamalarla önlenebilir: Otomobil kullanımını azaltacak önlemler alınmalıdır. Ev ve iş yerlerinde ses geçirmeyen camlar (ısıcam gibi) kullanılmalıdır. Eğlence yerleri vb. ortamlarda yüksek sesle müzik çalınması engellenmelidir. Gürültü yapan kuruluşlar, şehirlerin dışında kurulmalıdır. Radyoaktif element denilen bazı elementlerin atom çekirdeğinin kendiliğinden parçalanarak etrafa yaydığı alfa, beta ve gama gibi ışınlara radyasyon denir. Çevreye yayılan bu ışınlar, canlı hücreleri doğrudan etkileyerek mutasyon denilen genlerdeki bozulmaya neden olur. Çok yoğun olmayan radyasyon, canlının bazı özelliklerinin değişmesne neden olurken yoğun radyasyon, canlının ölümüne neden olabilir. Örneğin; 1945'te Japonya'ya atılan atom bombası, atıldıktan sonraki 7 gün içinde, vucutlarının tamamı 10 saniye radyasyon almış insanların % 90'ı hiç bir yara ve yanık izi olmadan öldü. 26 Nisan 1986'da Çernobil'deki nükleer kazanın; ani ölümler, gebe kadınlarda düşük olayları, kan kanseri, sakat doğumlar gibi olumsuz etkileri oldu. Bir çevredeki belli bir dozun üzerinde olan radyasyon, canlının vücut hücrelerini etkileyerek doku ve organlarda bozulmalara, anormalliklere, üreme hücrelerini etkileyerek doğacak yavrularda sakatlıklara neden olur. Uzun süre radyasyon etkisinde kalmanın yaratacağı sonuçlar aşağıdaki gibi sıralanabilir: Kanser oluşması, Ömrün kısalması (erken ölümler), Katarakt oluşması, Sakat ve ölü doğumlar şeklinde sıralanabilir Radyasyonun zararlı etkilerinden korunmak için, alınabilecek başlıca önlemler şunlardır: Özel giysiler (kurşun önlük, özel maske) kullanılmalıdır. Radyasyon kaynağından uzak durulmalı, en kısa sürede radyasyonlu ortam terk edilmelidir. Radyasyonlu cihazlarla yapılan teşhis ve tedaviye sık sık başvurulmamalıdır. Radyasyon, doğadaki radyoaktif maddelerden çok, bunların kullanıldığı ortam ve olaylardan çıkar. Bunlar; nükleer santraller, nükleer enerjiyle çalışan gemiler ve nükleer denemelerdir. Ayrıca teşhis ve tedavide kullanılan bazı cihazlar, tıbbi malzemelerin ve suların dezenfekte edilmesi için kullanılan araçlardan da radyasyon yayılmaktadır RADYASYON SES KİRLİLİĞİ TOPRAK KİRLİLİĞİ HAVA KİRLİLİĞİ SU KİRLİLİĞİ

http://www.biyologlar.com/ekolojik-kirlilik

Eklembacaklılar (Artropoda)

Eklembacaklılar (Artropoda) Tüm omurgasızlar arasında en başarılı ve çeşitli olanlar, kuşkusuz eklembacaklılardır. Bunların vücutlarının dış kısmı, sert parçalı bir dış örtü (dış iskelet) ile kaplıdır. Üyeleri eklemlidir. Böcekler Örümcekler, Akrepler, Çokbacaklılar Ve Kabuk¬lular günümüzün eklembacaklılarındandır. Fosil¬ler arasında bugün, soyları tükenmiş olan Trilobitomorflar ve Öyripteridler veya dev su akrepleri bu¬lunmuştur. Bütün bu gruplar başlangıca doğru iz¬lendiklerinde olasılıkla ortak bir atadan, Halkalı Kurt’tan meydana gelmiş gibi görünürler. Ancak birçok eklembacaklı türünün ayrı atalardan türemiş olmaları da aynı derecede güçlü bir olasılıktır. İlk eklembacaklılar, alt Kambriyum devrinde birdenbire ortaya çıkmışlar ve son derece çeşitli gruplar oluşturmuşlardır. Bu durum, söz konusu hayvanların geçmişinin Kambriyum öncesine kadar uzandığını; ancak bu devirdeki atalarının mineral-leşmiş bir iskeletlerinin bulunmadığını akla getirir. Kambriyum devrinin başlangıcında çeşitli eklem¬bacaklı sınıfları vardı. Bunların başlıcaları trilobitler ve trilobitoidlerdir ve bu iki grup Trilobitomorflar adı altında toplanır. Trilobitoidlerin çeşitleri daha fazlaydı: ancak iskeletleri ince ve mineralsiz olduğundan, fosillerine sadece Kanada'nın Kam¬briyum devri ortalarından kalma ince taneli kaya¬larında (Burges Shales) rastlanmaktadır. Burgessia ile Marella tipik trilobitoidlerdir. Burgessia, küçük bir Kral Yengeç benzer. Marella, geriye doğru uzantılarıyla ilginç bir eklembacaklıdır. Bun¬ların her ikisinde de trilobitlerinkine benzer ayak¬lar bulunur ve ayağın vücuda yakın tarafında bir solungaç dalı ve öteki tarafında ise yürüme bacağı vardır. Trilobitlerin gövdeleri ise üç loblu bir dış iskelet ile kaplıdır. Ön kısım baş (cephalon). orta kı¬sım göğüs (thorax) ve geri taraf kuyruk (pygidium) adını alır. İlk trilobitlere örnek olarak dikenli, kısa kuyruklu Olenelluslar ile küçük ve kör Agnostuslar gösterilebilir. Paleozoik, trilobitlerin şanslarının hem açıldığı hem kapandığı bir dönem olmuş; bu dönemde dikenleri kısalmış. göz yapılan gelişmiş ve iri kuyruklu türler ortaya çıkmıştır. Diğer eklembacaklı gruplarından olan kral yen¬geçler, kabuklular ve pnikoforalar da Kambriyum devrinde ortaya çıkmışlardır. Kral yengeçler. Orta Ordovik ve Perm devirleri arasında yaşamış dev Öyripteridlerle ilintilidir. Silür devrinde kara hayvanı olarak ilk gerçek akrepler ortaya çıktı; Devon devrinde keneler, örümcekler ve böcekler on¬lara katıldı. Denizde yaşamayan birçok eklemba¬caklı gruplarının fosilleri, ancak özel koşullarda birikmiş tortularda bulunur ve ''zaman içinde görü¬nüp kaybolsalar" bile, giderek artan bir çeşitliliği gösterirler. 1.2. Evrim Kavramının Gelişimi Kalıtım ve evrim, canlılığın tanımlanmasında birbiriyle çok yakından ilişkisi olan iki bilim dalıdır. Birini, diğeri olmadan anlamak olanaksızdır. Kalıtım bilimi, döller arasındaki geçişin ilkelerini açıklar. Evrim ise geçmiş ile gelecekteki olayların yorumlan¬ masını sağlayarak, bugün dünyada yaşayan canlılar arasındaki akrabalığın derecesini ve nedenini ortaya koyar. Evrimsel değişmeler kalıtıma dayalıdır. Çünkü bireysel uyumlar döllere aktarılamaz. Değişikliklerin genlerde meydana gelmesi ve gelecek¬ teki çevre değişimlerine bir ön uyum olarak varsayılması gerekir. Çeşitlenmenin ve gelişmenin değişikliklerle meydana geldiğini savunan bazı tarihsel gözlemlere kısaca göz atalım. 1.2.1. Gözlemler ve Varsayımlar Canlıların birbirinden belirli kademelerde farklılıklar gösterdiğine ve aralarında bazı akrabalıkların olduğuna ilişkin gözlemler düşünce tarihi kadar eski olmalıdır. Doğayı ilk gözleyenler, doğan yavrunun ana ve babadan belirli ölçülerde farklı oldu¬ğunu görmüşlerdir. Hatta aynı batından meydana gelen yavruların dahi birbirinden farklı olduğu ta o zamanlar farkedilmiştir. Bitki ve hayvanlarda türden başlayarak yukarıya doğru benzerlik derecelerine göre grupların oluşturulduğu (bugünkü anlam¬da cins, familya, takım vs. gözlenmiştir. Bu yakınlık dereceleri sıralanmakla beraber, kalıtsal bilgi yeterli olmadığı için tam anlamıyla bir, yorum yapılamamış ve en önemlisi bir türün binlerce yıllık tarihsel gelişimi, bir düşünür birey tarafından sürekli, olarak gözlenemediği için, evrim, daha doğrusu çeşitlenme ve akrabalık bağlan tam olarak tariflenememiştir. Çünkü bir canlının yaşamı süresince bu şekildeki bir farklılaşma kesinlikle gözlenemeyecektir. Bazı hayvan yavrularının, hatta bu yavrular içinde bazılarının yaşama şansının diğerlerine göre büyük olduğu gözlenmiş ve doğal seçme konusunda, bilinçsiz de olsa ilk adımlar atılmıştır. evrim fikri ancak yakın yıllarda gelişen bilimsel yöntemler aracılığıyla gerçek yatağına oturtulabilmiştir. Daha önceki yorumlar, bilimsel düşüncenin tarihi açısından değerli olmakla beraber, yeterince bilimsel kanıtla donatılmadığı için doyurucu olamamıştır. evrim, bir gelişimi, bir değişimi ifade eder. değişken ve sonlu bir evrende herhangi bir şeyin değişmez ve sonsuz olduğunu düşünmek bilimsel yargıya ters düşer. evrim kavramı değişik fikre saygıyı bir fikrin her ortamda, her zamanda geçerliliğini koruyamayacağını; yaşayan her şeyin zamanla, kısmen de olsa bulunduğu ortama bağlı olarak değişebileceği fikrini düşünce sistemimize sokmuştur. Dolayısıyla evrim konusundaki eğitim, toplumları yeniliklere açık yapmakla kalmaz, değişik seçeneklerin hepsinin yerine göre saygıde¬ğer ve değerli olduğu fikrini toplumlara yerleştirebilir. Biz geçmişteki evrim kavramı¬nın gelişimini kısaca vermeye çalışalım. 1.2.2. Evrim Konusundaki İlk Yorumlar Elimizdeki bilgilere göre evrim konusundaki gözlemler ve yorumlar çok eskiye dayanmaktadır. 1.2.2.1. Fosillerin Bulunması Fosiller bulunmaya başlayınca geçmişteki canlıların bugünkünden farklı oldu¬ğu anlaşılmıştır ve bunu açıklayabilmek için şu sav ileri sürülmüştür: Geçmiş devirler¬ de her canlı türü, ayrı ayrı olmak üzere, tüm canlılar bir defada yaratılmış, daha sonra bir felaket veya afetle ortadan kalkmışlardır. Bunu takiben tekrar farklı ve yeni canlı¬lar yaratılmıştır. Bilgilerin birikmesiyle fosillerin kesik kesik değil birbirini izleyen jeolojik tabakalarda sürekli ve kademeli değişim gösterdiği bulunmuştur. O zaman felaketlerin birbirini izleyen diziler halinde olduğu savunulmuştur (genellikle 7 defa olduğuna inanılmıştır). Bu kurama göre her defasında yeni canlılar yaratılmıştır. On dokuzuncu yüzyılın başlarına kadar bilimsel anlamda herhangi bir evrim kavramı gelişmemiştir. On dokuzuncu yüzyılın başlarında Georges CUVİER, Paris civarındaki kalkerli tortullardan fosil toplamış ve bugünkü hayvanlarla karşılaştırmıştır. Farklı jeofojik tabakalarda hayvanların değişik yapılan gösterdiğini ortaya koyarak zoolojik sınıflandırmaya fosilleri sokmuş ve yeni bir sınıflandırma yöntemi geliştirmiştir. 1.2.3. Evrim Fikrine Direnişler İnsanın yapısında yeni düşüncelere direnme eğilimi vardır; bu, evrim konusun¬da da kendini göstermiştir. Geçmişte ve bugün evrim kavramına birçok karşı koyma¬lar olmuştur. Hatta yerleşmiş tutucu inançları değiştirdiği için, evrim kavramını savu¬nanlar ölüme mahkum edilmiştir. Bu karşı koymalar zamanımızda, değişik ideolojile¬rin ve dinsel inancın bir parçasıymış gibi varsayılarak, birçok kişi tarafından, herhangi bir dayanağı olmaksızın, sadece dogmatizmin sonucu olarak, hâlâ sürdürülmektedir. Fakat açık olan birşey varsa, bilimsel gözlem ve bulgulara dayanmayan hiçbir düşün¬ce sürekli olamaz. Belki bugün evrim konusunda yanlış yorumlamalar olabilir; ama, gelecekteki bilimsel gelişmelerle bu yanlışlar düzeltilebilir veya eksikler tamamlanabi¬lir; çünkü bilimsel düşüncenin kapısı evrim fikriyle her zaman açık bırakılmıştır. Zaten evrimin özünde, ileriye dönüklük, değişim ve gelişim yatar. Halbuki tutucu düşünce, bilim kapısını kapattığı için yenilenemez ve zamanla tarih içine gömülerek kaybolur. Evrim, var olanı, sabitliği değil; geleceği ve değişimi inceler. Bu nedenle evrim kavra¬mının kendisi de sabit olamaz. Örneğin, Rusya'da, Stalin, 1940 yılında, bitki ıslatıcısı Trofim LYSENKO'nun gülünç savını resmi politika olarak benimsediği zaman, bu fikri benimsemeyen birçok değerli genetikçi tutuklandı, sürüldü ve bir kısmı da sonuçta öldü. 1950 yılında poli¬tika değiştiğinde, eski fikrine bağlı kalanlar için artık çok geçti. Dinsel baskılar, bu konuda çok daha yoğun ve acımasız olmuştur. Ortaçağda birçok kişi bu nedenle yaşamını yitirmiş veya savundukları fikri geri almaya zorlanmıştır. Haçlı seferleri, gibi kanlı savaşlar da yine inanç farklarından doğmuştur. Bununla beraber özellikle son zamanlarda her dinde bazı liderlerin ve keza bazı dini liderlerin yeni fikirlere açık olduğu görülmüştür. Fakat yine de yeni fikirlerin topluma yerleşmesi büyük çabalarla olmaktadır. Evrim hakkındaki fikirlerin de büyük itirazlarla karşılanması, özellikle yaratılış konusunda yeni yaklaşımlar getirmesi açısından, bazı dinlere veya din kitaplarına veya yerleşmiş tutucu inançlara ters düşmesi veya en azından bazı kişiler tarafından bilinçsizce ve belirli bir artniyet ile yanlış değerlendirilerek öyle gösterilmesi, yukarıda anlatılan insanın "itirazcı yaratılışı" bakımından doğal sayılmalıdır. Bugün birçok kişi hâlâ eski inançlara bağlı olmakla beraber, evrim kavramı, insanlar büyük emekle yetiştirilip bilimsel düşünceye sahip oldukça ve bu kayram bilimsel verilerle desteklendikçe, ancak o zaman toplumun malı olabilecektir. 2. EVRİM KONUSUNDA BİLİMSEL DÜŞÜNCELERİN GELİŞİMİ On dokuzuncu yüzyıl, bilimsel düşüncenin patlarcasına geliştiği bir dönemin başlangıcı olarak bilinir. Gözlenen olayların nedenini mistik ve spekülatif açıklamalar yerine, bilimsel deneyler ve analizlerle açıklamalar almaya başlamıştır. Sonuç olarak toplumları uzun yıllar etkisi altına alan birçok kavram, temelden sarsılmaya ve yıkıl¬maya başlamıştır. Bu akım kaçınılmaz olarak evrim ve kalıtımın ilkelerine de ulaşmış ve evrim konusunda birçok yeni fikirler geliştirilmiştir. Biz burada evrim konusuna damgasını basmış bazı gözde bilim adamlarına yer vermekle yetineceğiz. 2.1. Jean Baptiste Lamarck Ondokuzuncu yüzyılın başlarında J.B. LAMARCK adlı bir Fransız bilgini hayvanları karmaşıklığına göre düzenlemeye çalıştı. Birçok hayvan grubunun basitten kar¬maşığa doğru, bir ağacın dallara ayrılması gibi, çeşitlendiğini ve gruplara ayrıldığını gördü. Bu gözlem, O'na, evrimle, canlıların gelişebileceği fikrini verdi. Fikirlerini 1809 yılında "Philosophie Zoologique" adlı bir eserde topladı. Kitabında, basit canlılardan diğerlerinin nasıl oluştuğunu açıklamaya çalıştı. Her generasyonun çevre koşullarına daha iyi uyum yapabilmesinin nedenlerini araştırdı. Bu, dinsel dogmanın hakim olduğu bir devirde, oldukça köklü bir yaklaşımdı. Bu dönemde Fransa'da bazı idari kargaşalıklar da olduğu için, ileri sürülen bu sava dini liderlerin fazla bir itirazı olmadı. 2.1.1. Bir Organın Kullanılıp Kullanılmamasına Göre Değişimi Daha sonra yanlışlığı kesin olarak saptanan evrimsel bir kuramı ortaya attı: "Eğer bir organ fazla kullanılıyorsa; o organ gelişmesine devam ederek daha etkin bir yapı kazanır." Örneğin, bir demircinin kolları, kullandığı çekiçten dolayı güçlenir; fakat ayaklarını kullanamadığından dolayı gittikçe zayıflar. LAMARCK, bu ilkeyi, evrimin uyumsal düzeneğinin esası olarak benimsedi. Böylece kazanılmış bir özellik, bireyler tarafından döllere aktarılabiliyordu ve bir demircinin çocuğu kol kasları bakımından diğerlerine göre daha iyi gelişebiliyordu. Zürafaları örnek vererek savını desteklemeye çalıştı: Zürafalar, dibi çıplak ve çay irsi z olan ortamlarda yaşıyorlardı. Dolayısıyla besinlerini çalıların ve ağaçların yap¬raklarından sağlamak zorundaydılar. Ağaçların ucuna ulaşmak için bir zorlama vardı ve bu zorlama zürafaların zamanla ön ayaklarının ve boyunlarının uzamasına neden oldu. Her generasyon, boynunu biraz daha uzatarak, sonuçta ayaklarını kaldırmadan 4-6 metrelik yüksekliğe başını uzatabilir duruma geçtiler. LAMARCK'a göre kazanılmış özellikler dölden döle aktarılmaktaydı. Bu açıklama o zaman için geçerli görüldü. Çünkü kalıtımın yasaları henüz bulunamamıştı, özelliklerin kalıtım yoluyla geçtiğine dair fazla birşey bilinmiyordu. Daha sonra özelliklerin bireye bağlı olmadan kalıtıldığı bulununca, kuram tümüyle geçerliliğini yitirdi. Doğal olarak her birey çevre koşullarına belirli ölçülerde uyum yapar; fakat kazanılan bu özellikler bireyin ölümüyle "birlikte" yitirilir. Her generasyon kendi uyumunu, doğduğu zaman taşıdığı genlerin özellikleri içerisinde yapmak zorundadır. Vücut hücrelerinin yapacakları uyum, kalıtsal materyali etkilemeyeceği için, sonradan kazanılmış özelliklerin yavruya geçmesi olanaksızdır. 2.1.2. Lamarckizme İlişkin Diğer Örnekler LAMARCK, köstebeklerin atasının yer altında yaşadığını ve gözlerini kullanmadıkları için zamanla görme işlevine gerek kalmadığı ve dolayısıyla birkaç nesil sonra tümüyle gözlerin köreldiğini savunmuştur. Karıncaayısının, dişlerini kullanmadan, besinlerini yutarak aldığı için, dişlerinin köreldiğini ileri sürmüştür. Buna karşılık su kuşlarının birçoğunda, besin, suyun dibimde arandığından, boyun devamlı uzamıştır. Keza yüzücü kuşların parmakları arasındaki derimsi zar da kullanıldığından döller boyunca gelişerek perde ayakları meydana getirmiştir. Hatta daha ileriye giderek, doğan çocukların gözlerinin birinin devamlı çıkarılmasıyla, bir zaman sonra tek gözlü insanların da meydana gelebileceğini savunmuştur. Bütün bu görüşlere karşın iki nesil sonra CHARLES DARWIN kazanılmış özelliklerin kalıplamayacağını göstermiş ve kalıtsal olan özelliklerin içinde en iyi uyum yapanların ayakta kalabileceğini ortaya çıkarmıştır. Daha önce BUFFON ve ERASMUS DARWIN, ileri sürdükleri buna benzer fikirlerde ve açıklamalarda pek inandırıcı" olamamışlardır. Yukarıda anlatılan hayvanların ve bitkilerin çevrelerine nasıl uyum yaptıklarını açıklayan; fakat yaşantılarında kazandık¬ları özelliklerin gelecek döllere kalıtıldığını savunan (bugünkü bilgilerimizde yaşamı, süresince kazanılan özelliklerin kalıtsal olmadığı bilinmektedir) bu kurama "Lamarckizm" denir. 1887 yılında WElSMANN tarafından somatoplazma ve germplazma arasındaki kuramsal farklar bulununca, sonradan kazanılan özelliklerin kalıtsal olmadığı ortaya çıktı ve bu görüşe paralel tüm varsayımlar çürütüldü. 2.2. Charles Darwin C. DARWIN, getirdiği yepyeni yaklaşım nedeniyle, evrim biliminin babası olarak benimsenir. Evrim sözcüğü çoğunlukla Darwin ile eş anlamlı kullanılır ve bu nedenle Darwinizm denir. Biz, Darwin'in yaşamını diğerlerine göre daha ayrıntılı olarak öğreneceğiz. 2.2.1. Yaşamının İlk Evreleri ve Eğitimi Darwin, 12 Şubat 1809'da İngiltere'nin Shrewsburg şehrinde Dr. Robert Darwin'in oğlu olarak dünyaya geldi. Babası tanınmış bir doktordu ve oğlunun da doktor olmasını istiyordu. Darwin'in Latince ve Yunanca'ya ilgisi azdı. O, zamanının çoğunu böcek, bitki, kuş yumurtası ve çakıltaşı toplamakla geçiriyordu. Babası, O'nu, 16 yaşında, doktor olsun diye Edinburg Üniversitesine gönderdi. Öğreniminin ilk yıllarında bayıltılmadan bir çocuğa yapılan ameliyatı gözledi ve doktor olamayaca¬ğına karar vererek okulu bıraktı. Hukuk öğrenimi yapmak istedi; fakat bu mesleğin de kendine hitap etmediğini anladı. Son seçenek olarak babası O'nu Kambriç Üniversitesine dini bilimler (teoloji) öğrenimi yapmak için gönderdi. Orayı yeterli bir derece ile bitirdi. Fakat O'nun esas ilgisi başka bir konudaydı. DARWİN'in Edinburg'daki arkadaşlarının çoğu zooloji ve jeoloji ile ilgileniyordu. Zamanının çoğunu botanikçi arkadaşı John HENSLOW ile araziye gidip kınkanatlıları toplamakla geçirmeye başladı. Bu arada LAMARCK'ın çalışma¬sını ve kendi büyük babasının yazmış olduğu "Zoonomia" adlı şiir kitabını okudu. Kitaplarda geçen "canlılar belki tek bir soydan türemiştir" cümleciğini benimsedi; fakat genel olarak kabul edilen özel yaratılma fikrine de bağlı, kaldı. Bu arada; bir İngiliz gemisi" H.M.S. BEAGLER denizcilere hârita yapmak için, Güney Amerika'yı yakından tanımış kaptan ROBERT FITZROY'un yönetiminde/dünya turu yapmak üzere beş sene sürecek bir sefere hazırlanıyordu. Kaptan, daha önce güney Amerika'daki alışılmamış jeolojik yapıyı gözlemiş ve bu nedenle gemisine bu jeolojik yapıyı gözleyebilecek ve açıklayabilecek iyi yetişmiş bir doğa bilimcisini almak istiyordu. DARWIN, babasının itirazına karşın, arkadaşı HENSLOW'un ikna etmesiyle bu geziye çıkmayı kabul etti. 27 Aralık 1831 yılında 22 yaşındaki DARWIN, BEAGLE’nin güvertesinde, Devonport limanından denize açıldı. 2.2.2. İngiltere'deki Gözlemler Darwin, ileri süreceği fikrin yankı uyandıracağını, dolayısıyla tüm dünyanın inanması için yeterince kanıt toplanması gerektiğini biliyordu. bir şey canını sıkıyordu. Bütün kanıtlar canlılığın evrimsel işleyişini göstermekle beraber, nasıl çalıştığı konusunda herhangi doyurucu bir açıklama yapılamamıştı. Güvercin yetiştiricilerini ziyaret ederek, onların seçme yoluyla nasıl yeni özellikler elde ettiklerini öğrendi. Örneğin bir yetiştirici büyük kuyruklu bir güvercin yetiştirmek istiyorsa, yavrular arasında bu özelliği gösteren yavruları seçerek seçime devam ediyordu. Birkaç döl sonra da gerçekten büyük kuyruklu güvercinler elde ediliyordu. Buradaki evrimsel süreç, yapay seçme ile sağlanıyordu. Diğer hayvan ve bitki ıslahı çalışmalarını ve ya¬bani formların gösterdiği çevre koşullarına uymayı da dikkatlice not etti. Darwin bu düşüncelerini, 20 yıllık bir çalışmanın sonucu olarak, "Origin of Species = Türlerin Kökeni" adlı bir kitapta topladı. DARWlN'e yapay koşullar altında yapılan bu seçmenin, doğal koşullar altında da yapılabileceği fikri mantıki geldi. Bir türün tüm üyelerinin aynı uyumu gösteremeyeceğini de anlamıştı. Çünkü topladığı canlılar içinde, aynı türe bağlı bireylerin göster¬dikleri varyasyonları not etmişti. Doğanın güçleri, bu bireyler içerisinde o ortamda yasayabilecek özellikleri taşıyanları yaşatma, daha doğrusu yaygın duruma geçirme yönündeydi. 1838'in Ekim ayında THOMAS MALTHUS'un 1798 yılında yazdığı "An Essay onthe Principlesof Population = Populasyonun Kuralları Üzerine bir Deneme" adlı bir makaleyi okurken, evri¬min ikinci önemli bir işleyişini düşünmeye başladı. Bu makale, tüm türlerin, sayılarını sabit tutacak düzeyden çok daha fazla yavru meydana getirme yeteneğinde oldu¬ğunu savunuyordu. Açıkça yavruların büyük bir kısmı yaşamını sürdüremiyordu. MALTHUS, bu kavramı insana uygulamıştı ve insanların geometrik olarak çoğalması¬nın, savaş, hastalık, kıtlık ve diğer afetlerle belirli bir düzeyde tutulduğunu savun¬muştu. DARWIN, evrim sorununun açıklanamayan bir işleyişini MALTHUS'dan esinlene¬rek ortaya çıkardı. Tüm türler gerekenden fazla ürüyorlardı; bunların içerisinde başa¬rılı olan varyasyonlar uyum yaparak ayakta kalıyordu. Bu varyasyonlar özünde, gelecek için seçeneklerin doğmasını sağlıyordu. Biz tekrar DARWIN'in Türlerin Kökeni adlı yapıtına dönelim. Bu çalışmada iki gerçek ve üç varsayım ortaya çıkmıştı. Gerçekler: 1. Tüm organizmalar, gereğinden fazla yavru meydana getirme yeteneğine sahiptirler. Bununla beraber elemine edilenlerle populasyonlarda denge sağlanmak-tadır. 2. Bir türün içerisindeki bireyler, kalıtsal özellikleri bakımından farklıdır. Varsayımlar: 1. Yavruların çoğu ayakta kalabilmek için bir yaşam kavgası vermek zorundadırlar. 2. İyi uyum yapacak özellikleri taşıyan bireylerin çoğu yaşamını sürdürür; iyi uyum yapabilecek özellikleri taşımayanlar ortadan kalkar. Böylece istenen (çevre koşullarına uyum sağlayacak) özellikler kalıtsal olarak gelecek döllere aktarılır. 3. Çevre koşulları bir bölgede diğerinden farklı olduğundan özelliklerin seçimi her bölgede ve koşulda farklı olmak zorundadır. Canlılardaki varyasyonlar bu şekilde uzun süre saklanabilir ve yeterli bir zaman süreci içerisinde yeni türlere dönüşe¬bilir. Bu, çok çarpıcı bir varsayımdı ve DARWIN, bu savın desteklenmesi için yeterince kanıta da sahipti. Fakat eserini yayınlamaktan hâlâ çekiniyordu. Hatta düşüncesini arkadaşlarına açtı ve arkadaşları, O'nu, bu konuda daha ileri gelişmeleri beklemeden şimdiki durumuyla yayınlamasını istediler. O, ayrıntılı verilmiş dokümanlarla hazırlan¬mış dört bölümlük bir yayın planlamıştı. 3.4. Sınıflandırmadan Elde Edilen Kanıtlar Sınıflandırma bilimi evrim kavramından çok daha önce başlamıştır. Bu bilimin kurucusu sayılan RAY ve UNNAEUS, türlerin sabitliğine ve değişmezliğine inanmışlar¬dı. Fakat bugünkü sistematikçiler bir türün isminin ve tanımının verilmesini onun evrimsel ilişkileri içinde ele almayı zorunlu bulmuşlardır. Bugünkü sistematik akraba¬lık, gruplar arasındaki morfolojik benzerliklere dayandırılmaktadır. Bu karşılaştırma her zaman homolog (kökendeş) organlar arasında yapılmaktadır. Yaşayan canlıların özelliği, belirli bir hiyerarşik sıraya göre dizilip, tür, cins, familya, takım, sınıf ve filum meydana getirmeleridir. Bu hiyerarşik diziliş evrimin en belirli kanıtlarından biridir. Eğer bitki ve hayvanlar kendi aralarında akraba olmasaydılar, bu hiyerarşik sıra mey¬dana gelmeyecek ve birçok grup birbirine benzer olmayacak şekilde gelişmiş ola¬caktı. Sistematiğin temel birimi türdür. Tür, bir populasyondaki morfolojik, embriyolojik, fizyolojik özellik bakımından birbirine benzeyen ve doğal koşullar altında birbir¬leriyle birleşip döl meydana getirebilen, aynı fiziksel ve kimyasal uyarılara benzer tepki gösteren, aynı atadan meydana gelmiş birey topluluğudur diye tanımlanmıştır. Bütün canlılarda özellikle birkaç yaşam devresi olan türlerde (bazı sölenterlerde, parazit kurtlarda, larvadan gelişen böceklerde, kurbağagillerde vs.'de) bu tanım bir¬çok bakımlardan yetersiz kalmaktadır. Eğer bir populasyon geniş bir alana yayıl¬mışsa, kendi aralarında bölgesel birçok farklılıklara sahip olur ki biz buna alttür diyo¬ruz. Yapılan ayrıntılı araştırmalarda birçok türün kendi aralarında alttürlere bölün¬düğü ve her alttürün yanındakinden, küçük farklarla ayrıldığı (deme); fakat onlarla çiftleşebildiği gösterilmiştir. Fakat bu zincirin uçlarının bazı durumlarda farklı tür özel¬liği gösterebileceğini daha sonraki konularda anlatacağız. Bugün yasayan hayvanla¬rın büyük bir kısmının gruplandırılması kolaydır; çünkü aralarındaki geçit formları kaybolmuştur. Fakat bazı gruplarda geçit formları görüldüğü için, yani her iki grubun da özelliklerini belirli ölçüde taşıyan bazı formlar olduğundan, bu sefer iki grubu bir¬birinden nerede ayıracağımızı kestirmek oldukça zordur. Bugünkü türler, soy ağacı¬nın en uçtaki dallarıdır ve genellikle kendine en yakın olan diğer dallarla karşılaştırılır. Ana gövde ve ana dallar zamanımızda kaybolmuştur. Evrimde bütün sorun hangi dalın hangi ana daldan ve gövdeden çıktığını şematize edebilmektir. 3. EVRİMLEŞMEYİ SAĞLAYAN DÜZENEKLER 'Ayakta Kalmak için Savaşım' ve 'En iyi Uyum Yapan Ayakta Kalır' sözcükleri Darwin WALLACE Kuramının anahtarıdır. Fakat besin, yer, su, güneş vs. için bireyler arasındaki savaşımın, zannedildiği gibi büyük bir evrimsel güç olmadığı, buna karşın döller boyunca sürekli olan populasyonların evrimsel değişme için önemli olduğu daha sonra anlaşıldı. Bu durumda evrimsel değişikliklerin birimi birey¬ler değil, populasyonlardır. Biz, bir populasyonun yapısını döller boyunca süren bir etkiyle değiştiren evrimsel güçleri, önem sırasına göre inceleyelim. Özünde Hardy-Weinberg eşitliğini bozan her etki evrimsel değişikliği sağlayan bir güç olarak kabul edilir. 3.1. Doğal Seçilim Bir populasyon, kalıtsal yapısı farklı olan birçok bireyden oluşur. Ayrıca, mey¬dana gelen mutasyonlarla, populasyonlardaki gen havuzuna yeni özellikler verebile¬cek genler eklenir. Bunun yanısıra mayoz sırasında oluşan krossing -överler ve rekombinasyonlar, yeni özellikler taşıyan bireylerin ortaya çıkmasını sağlar. İşte bu bireylerin taşıdıkları yeni özellikler (yani genler) nedeniyle, çevre koşullarına daha iyi uyum yapabilme yeteneği kazanmaları, onların, doğal seçilimden kurtulma oranlarını verir. Yalnız çevre koşullan her yerde ve her zaman (özellikle jeolojik devirleri düşü¬nürsek) aynı değildir. Bunun anlamı ise şudur: Belirli özellikleri taşıyan bireyler, belirli çevre koşullarına sahip herhangi bir ortamda, en başarılı tipleri oluşturmalarına kar¬şın, birinci ortamdakinden farklı çevre koşulları gösteren başka bir ortamda, ya da zamanla çevre koşullarının değiştiği bulundukları ortamda, uyum yeteneklerini ya tamamen ya da kısmen yitirirler. Bu ise onların yaşamsal işlevlerinde güçlüklere (döl¬lenmelerinde, embriyonik gelişmelerinde, erginliğe kadar ulaşmalarında, üremelerin¬de, besin bulmalarında, korunmalarında vs.) neden olur. Böylece erginliğe ulaşanla¬rının, ulaşsalar dahi fazla miktarda yavru verenlerinin, verseler dahi bu yavruların ayakta kalanlarının sayısında büyük düşmeler görülür. Burada dikkat edilecek husus, bireylerin ayakta kalmalarının yalnız başına evrimsel olarak birşey ifade etmemesidir. Eğer taşıdıkları genler, gelecek döllere başarılı bir şekilde aktarılamıyorsa, diğer tüm özellikleri bakımından başarılı olsalar da, evrimsel olarak bu niteliklere sahip bireyler başarısız sayılırlar. Örneğin, kusursuz fiziksel bir yapıya sahip herhangi bir erkek, kısırsa ya da çiftleşme için yeterli değilse, ölümüyle birlikte taşıdığı genler de ortadan kalkar ve evrimsel gelişmeye herhangi bir katkısı olmaz. Ya da güçlü ve sağlıklı bir dişi, yavrularına bakma içgüdüsünden yok¬sunsa, ya da yumurta meydana getirme gücü az ise, populasyonda önemli bir gen frekansı değişikliğine neden olamayacağı için, evrimsel olarak başarılı nitelendirile¬mez. Demek ki doğal seçilimde başarılı olabilmek için, çevre koşullarına diğerlerin¬den daha iyi uyum yapmanın yan/sıra, daha fazla sayıda yumurta ya da yavru meydana getirmek doğal seçilim çevre koşullarına bağımlı olarak farklı şekillerde meydana gelir. Bunları sırasıyla inceleyelim. 3.1.1. Yönlendirilmiş Seçilim Doğal seçilimin en iyi bilinen ve en yaygın şeklidir. Özel koşulları olan bir çevre¬ye uzun bir süre içerisinde uyum yapan canlılarda görülür. Genellikle çevre koşulla¬rının büyük ölçüde değişmesiyle ya da koşulları farklı olan bir çevreye göçle ortaya çıkar. Populasyondaki özellikler bireylerin o çevrenin koşullarına uyum yapabileceği şekilde seçilir. Örneğin nemli bir çevre gittikçe kuraklaşıyorsa, doğal seçilim, en az su kullanarak yaşamını sürdüren canlıların yararına olacaktır. Populasyondaki bireylerin bir kısmı daha önce mutasyonlarla bu özelliği kazanmışlarsa, bu bireylerin daha fazla yaşamaları, daha çok döl vermeleri, yani genlerini daha,büyük ölçüde populasyonun gen havuzuna sokmaları sağlanır. Bu arada ilgili özelliği,sapta¬yan genlerde meydana gelebilecek mutasyonlardan, yeni koşullara daha iyi uyum sağlayabilecekler de seçileceğinden, canlının belirli bir özelliğe doğru yönlendirildiği görülür. Bu, doğal seçilimin en önemli özelliğinden biridir 'Yönlendirilmiş Yaratıcı¬lık'. Her çeşit özelliği meydana getirebilecek birçok mutasyon oluşmasına karşın, çevre koşullarının etkisi ile, doğal seçilim, başarılı mutasyonları yaşattığı için, sanki mutasyonların belirli bir amaca ve yöne doğru meydana geldiği izlenimi yaratılır. Yukarıda verdiğimiz örnekte, uyum, suyu artırımlı kullanan boşaltım organlarının yararına ise, bir zaman sonra suyu bol kullanan ilkel boşaltım organlarından, suyu en idareli kullanan böbrek şekline doğru gelişmeyi sağlayacak genler yararına bir seçim olacaktır. Su buharlaşmasını önleyen deri ve post yapısı, kumda kolaylıkla yürümeyi sağlayan genişlemiş ayak tabanı vs. doğal seçilimle bu değişime eşlik eden diğer özelliklerdir. Önemli olan, evrimde bir özelliğin ilkel de olsa başlangıçta bir defa ortaya çıkmasıdır; geliştirilmesi, mutasyon-doğal seçilim düzeneği ile zamanla sağlanır. Bu konudaki en ilginç örnek, bir zamanlar İngiltere'de fabrika dumanlarının yoğun olarak bulunduğu bir bölgede yaşayan kelebeklerde (Biston betalarla) meydana gelen evrimsel değişmedir. Sanayi devriminden önce hemen hemen beyaz renkli olan bu kelebekler (o devirden kalma koleksiyonlardan anlaşıldığı kadarıyla), ağaçların gövdelerine yapışmış beyaz likenler üzerinde yaşıyorlardı. Böylece avcıları tarafın¬ dan görülmekten kurtulmuş oluyorlardı. Sanayi devrimiyle birlikte, fabrika bacaların¬ dan çıkan siyah renkli kurum vs. bu likenleri koyulaştırınca, açık renkli kelebekler çok belirgin olarak görülür duruma geçmiştir. Bunların üzerinde beslenen avcılar, özellik¬le kuşlar, bunları kolayca avlamaya başlamıştır. Buna karşın sanayi devriminden önce de bu türün populasyonunda çok az sayıda bulunan koyu renkli bireyler bu renk uyumundan büyük yarar sağlamıştır. Bir zaman sonra populasyonun büyük bir kısmı koyu renkli kelebeklerden oluşmuştur 'Sanayi Melanizmi'. Günümüzde alı¬nan önlemler sayesinde, çevre temizlenince, beyaz renkli olanların sayısı tekrar art¬ maya başlamıştır. Son zamanlarda tıp bilimindeki gelişmeler ile, normal olarak doğada yaşayamayacak eksiklikler ile doğan birçok birey, yaşatılabilmekte ve üremesi sağlanmaktadır. Böylece taşıdıkları kalıtsal yapı, insan gen havuzuna eklenmektedir. Dolayısıyla bozuk özellikler meydana getirecek genlerin frekansı gittikçe artmaktadır, örneğin, eskiden kalp kapakçıkları bozuk, gözleri aşırı miyop ya da hipermetrop olan, gece körlüğü olan, D vitaminini sentezleme ya da hücre içine alma yeteneğini yitirmiş olan, kân şekerini düzenleyemeyen (şeker hastası), mikroplara direnci olmayan, kanama hastalığı olan; yarık damaklı, kapalı anüslü, delik kalpli ve diğer bazı kusur¬larla doğan bireylerin yaşama şansı hemen hemen yoktu. Modern tıp bunların yaşa¬masını ve üremesini sağlamıştır. Dolayısıyla insan gen havuzu doğal seçilimin etki¬sinden büyük ölçüde kurtulmaya başlamıştır. Bu da gen havuzunun, dolayısıyla bu gen havuzuna ait bireylerin bir zaman sonra doğada serbest yaşayamayacak kadar değişmesi demektir. Nitekim 10 - 15 bin yıldan beri uygulanan koruma önlemleri, bizi, zaten doğanın seçici etkisinden kısmen kurtarmıştır. Son zamanlardaki tıbbi önlemler ise bu etkiyi çok daha büyük ölçüde azaltmaktadır. Böylece doğal seçilimin en önemli görevlerinden biri olan 'Gen havuzunun yeni mutasyonların etkisinden büyük ölçüde korunmasının sağlanması ve mutasyonların gen havuzunda yayılmala¬rının önlenmesi, dolayısıyla gen havuzunun dengelenmesi ve kararlı hale geçmesi, insan gen havuzu için yitirilmeye başlanmıştır. 3.1.2. Dengelenmiş Seçilim Eğer bir populasyon çevre koşulları bakımından uzun süre dengeli olan bir ortamda bulunuyorsa, çok etkili, kararlı ve dengeli bir gen havuzu oluşur. Böylece, dengeli seçilim, var olan gen havuzunun yapısını devam ettirir ve meydana gelebilecek sapmalardan korur, örneğin, Keseliayılar (Opossum) 60 milyon, akrepler (Scorpion) 350 milyon yıldan beri gen havuzlarını hemen hemen sabit tutmuşlardır. Çünkü bulundukları çevrelere her zaman başarılı uyum yapmışlardır. 3.1.3. Dallanan Seçilim Dengeli seçilimin tersi olan bir durumu açıklar. Bir populasyonda farklı özellikli bireylerin ya da grupların her biri, farklı çevre koşulları nedeniyle ayrı ayrı korunabilir. Böylece aynı kökten, bir zaman soma, iki ya da daha fazla sayıda birbirinden farklı¬laşmış canlı grubu oluşur (ırk  alttür  tür  vs.). Özellikle bir populasyon çok geniş bir alana yayılmışsa ve yayıldığı alanda değişik çevre koşullarını içeren bir-çok yaşam ortamı (niş) varsa, yaşam ortamlarındaki çevre koşulları, kendi doğal seçilimlerini ayrı ayrı göstereceği için, bir zaman sonra birbirinden belirli ölçülerde farklılaşmış kümeler, daha sonra da türler ortaya çıkacaktır. Bu şekildeki bir seçilim 'Uyumsal Açılımı' meydana getirecektir 3.2. Üreme Yeteneğine ve Eşemlerin Özelliğine Göre Seçilim Populasyonlarda, bireyler arasında şansa dayanmayan çiftleşmelerin ve farklı üreme yeteneklerinin oluşması HARDY - WEINBERG Eşitliğine ters düşen bir durumu ifade eder. Bu özellikleri taşıyan bir populasyonda Hardy-Weinberg Eşitliği uygulanamaz. Bireylerin çiftleşmek için birbirlerini rasgele seçmelerinden ziyade, özel nite¬liklerine göre seçmeleri, bir zaman sonra, bu özellikler bakımından köken aldıkları ana populasyondan çok daha kuvvetli olan yeni populasyonların ortaya çıkmasına neden olur. Bu özel seçilim, yaşam kavgasında daha yetenekli olan (beslenmede, korunmada, gizlenmede, yavrularına bakmada vs.) populasyonların ortaya çıkmasını sağlayabilir. Eşemlerin Arasındaki Yapısal Farkların Oluşumu: Dişiler genellikle yavrula¬rını meydana getirecek, koruyacak ve belirli bir evreye kadar besleyebilecek şekilde özellik kazanmıştır. Özellikle memelilerde tam olarak belirlenemeyen bir nedenle dişiler başlangıçta çiftleşmeden kaçıyormuş gibi davranırlar. Dişilerin kuvvetli olduğu bir toplumda çitfleşme çok zor olacağından, seçilim, memelilerde, kuvvetli erkekler yönünden olmuştur. Bugün birçok canlı grubunda, özellikle yaşamları boyunca birkaç defa çiftleşenlerde erkekler, dişileri çiftleşmeye zorlar; çok defa da bunun için kuvvet kullanır. Bu nedenle erkekler dişilerinden daha büyük vücut yapısına sahip olur. Buna karşın, yaşamları boyunca bir defa çiftleşenlerde ya da çift¬leştikten sonra erkeği besin maddesi olarak dişileri tarafından yenen gruplarda (peygamber develerinde ve örümceklerde olduğu gibi), erkek, çok daha küçüktür. Çünkü seçilim vücut yapısı büyük dişiler, vücut yapısı küçük erkekler yönünde olur. İkincil eşeysel özellikler, çoğunluk eşey hormonları tarafından meydana getirilir (bu nedenle ikincil eşeysel özellikler, bireylerde eşey hormonlarının üretilmeye başla¬masından sonra belirgin olarak ortaya çıkar). Eşeysel gücün bir çeşit simgesi olan bu özellikler, eşemler tarafından sürekli olarak seçilince, özellikler gittikçe kuvvetlenir: Bu nedenle özellikle erkeklerde, yaşam savaşında zararlı olabilecek kadar büyük boy¬nuz (birçok geyikte, keçide vs.'de), büyük kuyruk (Tavuskuşunda ve Cennetkuşlarında vs.), hemen göze çarpacak parlak renklenmeler (birçok kuşta, memelide); dişiler¬de, süt meydana getirmek için çok büyük olmasına gerek olmadığı halde dişiliğin simgesi olan büyük meme bu şekilde gelişmiştir. Üreme Yeteneğinin Evrimsel Değişimdeki Etkisi: Daha önce de değindiği¬miz gibi bir bireyin yaşamını başarılı olarak sürdürmesi evrimsel olarak fazla birşey ifade etmez. Önemli olan bu süre içerisinde fazla döl meydana getirmek suretiyle, gen havuzuna, gen sokabilmesidir. Bir birey ne kadar uzun yaşarsa yaşasın, döl meydana getirmemişse, evrimsel açıdan hiçbir öneme sahip değildir. Bu nedenle bu bireylerin ölümü 'Genetik Ölüm' olarak adlandırılır. Evrimsel gelişmede en önemli değişim, gen havuzundaki gen frekansının deği¬şimidir. Gen frekansı ise birey sayısıyla saptanır. Bu durumda bir populasyonda, üreyebilecek evreye kadar başarıyla gelişebilen yavruları en çok sayıda meydana getiren bireylerin gen bileşimi bir zaman sonra gen havuzuna egemen olur. Buna 'Farklı Üreme Yeteneği' denir. 3.3. Yalıtımın (İzolasyonun) Evrimsel Gelişimdeki Etkisi Türlerin oluşumunda, yalıtım, kural olarak, zorunludur. Çünkü gen akımı,de¬vam eden populasyonlarda, tür düzeyinde farklılaşma oluşamaz. Bir populasyon, belirli bir süre, birbirlerinden coğrafik olarak yalıtılmış alt populasyonlara bölünürse, bir zaman sonra kendi aralarında çiftleşme yeteneklerini yitirerek, yeni tür özelliği kazanmaya başlarlar. Bu süre içerisinde oluşacak çiftleşme davranışlarındaki farklılaş¬malar, yalıtımı çok daha etkili duruma getirecektir. Kalıtsal yapı açısından birleşme ve döl meydana getirme yeteneklerini koruyan birçok populasyon, sadece çiftleşme davranışlarında meydana gelen farklılaşmadan dolayı, yeni tür özelliği kazanmıştır. Şekil : Allopatrik yalıtım ile tür oluşumu. Eğer bir populasyonun bir parçası coğrafik olarak yalıtılırsa, değişik evrimsel güçler yavaş yavaş bu yalıtılmış populasyonu (keza ana populasyonu) değiştirmeye başlar ve bir zaman sonra her iki populasyon aralarında verimli döl meydana getiremeyecek kadar farklılaşırlar. Üreme yalıtımının kökeninde, çok defa, en azından başlangıç evrelerinde, coğrafik bir yalıtım vardır. Fakat konunun daha iyi anlaşılabilmesi için üreme yalıtımını ayrı bir başlık altında inceleyeceğiz. Populasyonlar arasında çiftleşmeyi ve verimli döller meydana getirmeyi önleyen her etkileşme 'Yalıtım = izolasyon Mekanizması' denir. 3.3.1. Coğrafik Yalıtım (- Allopatrik Yalıtım) Eğer bir populasyon coğrafik olarak iki ya da daha fazla bölgeye yayılırsa, ev¬ rimsel güçler (her bölgede farklı olacağı için) yavaş yavaş etki ederek, populasyonlar arasındaki farkın gittikçe artmasına (Coğrafik Irklar) neden olacaktır. Bu kalıtsal farklılaşma, populasyonlar arasında gen akışını önleyecek düzeye geldiği zaman, bir zamanların ata türü iki ya da daha fazla türe ayrılmış olur Anadolu'daki Pamphaginae'lerin Evrimsel Durumu: Coğrafik yalıtıma en iyi örneklerden biri Anadolu'nun yüksek dağlarında yaşayan, kanatsız, hantal yapılı, kışı çoğunluk 3. ve 4. nimf evrelerinde geçiren bir çekirge grubudur. Özünde, bu hay¬vanlar, soğuk iklimlerde yaşayan bir kökenden gelmedir. Buzul devrinde, kuzeydeki buzullardan kaçarak Balkanlar ve Kafkaslar üzerinden Anadolu'ya girmişlerdir. Bu sı¬rada Anadolu'nun iç kısmında Batı Anadolu’yla Doğu Anadolu'yu birbirinden ayıran büyük bir tatlısu gölü bulunuyordu. Her iki bölge arasındaki karasal, bağlantı, yalnız, bugünkü Sinop ve Toros kara köprüleriyle sağlanıyordu. Dolayısıyla Kafkaslar'dan gelenler ancak Doğu Anadolu'ya, Balkanlar'dan gelenler ise ancak Batı Anadolu'ya yayılmıştı. Çünkü Anadolu o devirde kısmen soğumuş ve bu hayvanların yaşayabil¬mesi için uygun bir ortam oluşturmuştu. Bir zaman sonra dünya buzul arası devreye girince, buzullar kuzeye doğru çekilmeye ve dolayısıyla Anadolu da ısınmaya başla¬mıştı. Bu arada Anadolu kara parçası, erozyon sonucu yırtılmaya, dağlar yükselmeye ve bu arada soğuğa alışık bu çekirge grubu, daha soğuk olan yüksek dağların başına doğru çekilmeye başlamıştı. Uzun yıllardır bu dağların başında (genellikle 1500 - 2000 metrenin üzerinde) yaşamlarını sürdürmektedirler. Kanatları olmadığı için uçamazlar; dolayısıyla aktif yayılımları yoktur. Hantal ve iri vücutlu olduklarından rüzgar vs. ile pasif olarak da yayılamamaktadırlar. Belirli bir sıcaklığın üstündeki böl¬gelerde (zonlarda) yaşayamadıklarından, yüksek yerlerden vadilere inerek, diğer dağsilsilelerine de geçemezler. Yüksek dağlarda yaşadıklarından, aşağıya göre daha yoğun morötesi ve diğer kısa dalgalı ışınların etkisi altında kalmışlardır; bu nedenle mutasyon oranı (özellikle kromozom değişmeleri) yükselmiştir. Dolayısıyla evrimsel bir gelişim ve doğal seçilim için bol miktarda ham madde oluşmuştur. Çok yakın mesafelerde dahi meydana gelen bu mutlak ya da kısmi yalıtım, bir zamanlar Ana¬dolu'ya bir ya da birkaç tür olarak giren bu hayvanların 50'den fazla türe, bir o kadar alttüre ayrılmasına neden olmuştur. Bir dağdaki populasyon dahi, kendi aralarında oldukça belirgin olarak birbirlerinden ayrılabilen demelere bölünür. Çünkü yukarıda anlattığımız yalıtım koşullan, bir dağ üzerinde dahi farklı olarak etki etmektedir. Coğrafik uzaklık ile farklılaşmanın derecesi arasında doğru orantı vardır. Birbir¬lerinden uzak olan populasyonlar daha fazla farklılaşmalar gösterir. Bu çekirge gru¬bunun Hakkari'den Edirne'ye kadar adım adım değiştiğini izlemek mümkündür. Batı Anadolu'da yaşayanlar çok gelişmiş timpanik zara (işitme zarına) ve sırt kısmında tarağa sahiptir; doğudakilerde bu zar ve tarak görülmez. Toros ve Sinop bölgelerinde bu özellikleri karışık olarak taşıyan bireyler bulunur. Her türlü yalıtım mekanizmasında, ilk olarak demelerin, daha sonra alttürlerin, sonunda da türlerin meydana geldiğini unutmamak gerekir. Aynı kökten gelen; fakat farklı yaşam bölgelerine yayılan tüm hayvan gruplarında bu kademeleşme görülür, Ayrıca tüm coğrafik yalıtımları kalıtsal bir yalıtımın izlediği akıldan çıkarılmamalıdır. 3.3.2. Üreme İşlevlerinde Yalıtım (= Simpatrik Yalıtım) Yalıtımın en önemli faktörlerinden biri de, genellikle belirli bir süre coğrafik yalı¬tımın etkisi altında kalan populasyonlardaki bireylerin üreme davranışlarında ortaya çıkan değişikliklerdir. Bu farklılaşmaların oluşumunda da mutasyonlar ve doğal seçi¬lim etkilidir. Yalnız, üreme işlevlerindeki yalıtımın, coğrafik yalıtımdan farkı, ilke ola¬rak, farklılaşmanın sadece üreme işlevlerinde olması, kalıtsal yapıyı tümüyle kapsa-mamasıdır. Deneysel olarak döllendirildiklerinde yavru meydana getirebilirler. Çünkü kalıtsal yapı tümüyle farklılaşmamıştır. Coğrafik yalıtım ise hem kalıtsal yapının nem davranışların farklılaşmasını hem de üreme işlevlerinin yalıtımını kapsar. Eşeysel çekim azalınca ya da yok olunca, gen akışı da duracağı için, iki populasyon birbirinden farklılaşmaya başlar. Böylece ilk olarak hemen hemen birbirine benzeyen; fakat üreme davranışlarıyla birbirinden ayrılan 'ikiz Türler' meydana gelir. Bir zaman sonra mutasyon - seçilim etkileşimiyle, yapısal değişimi de kapsayan kalıtsal farklılıklar ortaya çıkar. Üreme yalıtımı gelişimin çeşitli kademelerinde olabilir. Bun¬lar; Üreme Davranışlarının Farklılaşması: Birbirlerine çok yakın bölgelerde yaşayan populasyonlarda, mutasyonlarla ortaya çıkan davranış farklılaşmalarıdır. Koku ve ses çıkarmada, keza üreme hareketlerinde meydana gelecek çok küçük farklılaşmalar, bireylerin birbirlerini çekmelerini, dolayısıyla döllemeyi önler. Daha sonra, bu populasyonlar bir araya gelseler de, davranış farklarından dolayı çiftleşemezler. Üreme Dönemlerinin Farklılaşması: İki populasyon arasında üreme dönemlerinin farklılaşması da kesin bir yalıtıma götürür. Örneğin bir populasyon ilkbaharda, öbürüsü yazın eşeysel gamet meydana getiriyorsa, bunların birbirlerini döllemeleri olanaksızlaşır. Üreme Organlarının Farklılaşması: Özellikle böceklerde ve ilkel bazı çok hücre¬lilerde, erkek ve dişi çiftleşme organları, kilit anahtar gibi birbirine uyar. Meydana ge¬lecek küçük bir değişiklik döllenmeyi önler. Gamet Yalıtımı: Bazı türlerin yumurtaları, kendi türünün bazen de yakın akra¬ba türlerin spermalarını çeken, fertilizin denen bir madde salgılar. Bu fertilizinin farklılaşması gamet yalıtımına götürür. Melez Yalıtımı: Eğer tüm bu kademeye kadar farklılaşma olmamışsa, yumurta ve sperma, zigotu meydana getirir. Fakat bu sefer bazı genlerin uyuşmazlığı, embri¬yonun herhangi bir kademesinde anormalliklere, ya da uygun olmayan organların or¬taya çıkmasına neden olur (örneğin küçük kalp gibi). Embriyo gelişip ergin meydana gelirse, bu sefer, kalıtsal yapılarındaki farklılaş¬malar nedeniyle erginin eşeysel hücrelerinde, yaşayabilir gametler oluşamayabilir (katırı anımsayınız!). Genlerin kromozomlar üzerindeki dizilişleri farklı olduğu için, sinaps yapamazlar ya da kromozom sayıları farklı olduğu için dengeli bir kromozom dağılımını sağlayamazlar.  KAYNAKLAR   Hayvanlar ve Bitkilerin Evrim Ansiklopedisi-Remzi Kitapevi   Kalıtım ve Evrim – Prof.Dr.Ali DEMİRSOY   Yaşamın Temel Kuralları - Prof.Dr.Ali DEMİRSOY   www.bilimaraştırmavakfı.com

http://www.biyologlar.com/eklembacaklilar-artropoda

Bitkilerde Çimlenme ve Gelişim

a-Bitkilerde gelişim olaylarından hücre bölünmesi,büyüme ve farklılaşma olayları görülür b-Çiçeksiz bitkilerde sporların çimlenmesi ile gametofit gelişir c-Çiçeksiz bitkilerde Sperm ve ovumun döllenmesi ile oluşan zigotun mitoz bölünmeleri ile sporofit gelişir d-Vegetatif üreyen bitkilerde dal,yaprak,tomurcuk vb. vücud kısımlarından yeni bitki gelişir e-Çiçekli bitkilerde tohumdan yeni bitki gelişir. Tohum A-Yapısı: a-Kabuk: 1-Tohumu örter 2-Kabuğu oluşturan hücrelerin çeperleri mantarlaşmış ve odunlaşmıştır 3-Tohumu su kayıbından,mekanik etkilerden,kimyasal ve biyolojik etkilerden korur 4-Kalınlığı şekli ve yapısal özellikleri türe göre değişir 5-Kabuğu oluşturan hücreler 2n kromozomludur b-Endosperm: 1-Açık tohumlularda sadece polar nucleuslardan döllenmeden gelişir ve n kromozomlu hücrelerden oluşur 2-Kapalı tohumlularda polar nucleusların döllenmesi ile oluşan triploid 3n kromozomlu hücrelerden oluşur 3-Türe göre farklı yoğunluklarda olmak üzere karbonhidrat,yağ ve protein depolar 4-Çimleninceye kadar hetotrof olan bitki embriyosunun madde ihtiyacını karşılar 5-Çimlenince endospermin görevini yapraklar üstlenir c-Embriyo: 1-Ovumun spermle döllenmesi ile oluşur ve 2n kromozomludur 2-Embriyonik gövde ve kök taşır 3-Tohum çimleninceye kadar yavaşca gelişir d-Çenekler (Kotiledonlar): 1-Embriyoya bağlı olarak gelişir 2-Endospermden besin alarak bitki çimleninceye kadar onu besler 3-Çimlenmeden sonra bir süre fotosentezde yapar(Dikotillerde) 4-Soğan,zambak vb.de tek çenek, sebzeler,çalılar,ağaçlar vb.de iki çenek, çamgillerde çok çenek bulunur Tohumda uyku hali: 1-Tohumda metabolizma yavaş fakat devam etmektedir 2-Süre tohum kabuğuna ve besin miktarına bağlıdır 3-Kuru ve soğuk koşullarda uyku halinde kalarak canlılığı korumakta ve neslin devamını garanti altına almaktadır 4-Tohumlarda uyku halinin devamı sağlayan hormon absisik asittir 5-Tohumlarda canlı ve çimlenme yetenekli kalma süresi türe göre değişir Çimlenme gücü: a-Tohum kabuğu kalınlığına b-Tohumdaki su miktarının azlığına c-Depo besinlerden yağ yerine nişastanın varlığına bağlı olarak artar. Tohumda çimlenme: Gerekli şartlar: 1-Su: Kabuğun çatlaması,embriyonun serbest kalması ve enzimatik reaksiyonlar için gereklidir 2-Oksijen:Artan metabolizma için gerekli enerji oksijenli solunumla karşılanır 3-Sıcaklık:Artan enzim etkinliği uygun sıcaklıklarda gerçekleşir 4-Işık:Bazı türlerde (Tütün) çimlenmede ışığa ihtiyaç duyulur. Çimlenme mekanizması: 1-Şartlar uygun olduğunda tohum su alarak şişer ve tohum kabuğu çatlar 2-Alınan su tohumda absisik asit etkinliğini kırar 3-Alınan suyun etkisi ile endosperm hücreleri giberillin üretir. 4-Giberillin absisik asidin etkinliğini azaltırken amilaz etkinliğini artırırı 5-Amilaz etkisi ile nişasta glikoza parçalanır 6-Oluşan glikoz çatlayan kabukla beraber alınan fazla miktardaki O2 kullanılarak solunumda harcanır 7-Çimlenme ile beraber tohumda ağırlık azalması gerçekleşir 8-Metabolizmanın hızlanması ile beraber hücre bölünmesi hızlanır 9-Meristem etkisi ile bitkiye yeni hücre ve dokular katılır 10-Bitki uç meristemi ile boyca,kambiyum ile ence kalınlaşarak büyür. Bitki gelişmesinde rol alan faktörler: A-Su: 1-Turgor oluşumu 2-Madde taşınımı 3-Fotosentezde organik madde sentezi 4-Terleme ile ısı düzenlenmesi 5-Stomaların çalışması 6-Enzimatik reaksiyonlar için ortam 7-Hidroliz reaksiyonlarının gerçekleşmesi B-Sıcaklık: 1-Enzim etkinliği ve metabolizmada etkendir 2-Terleme üzerine etkendir 3-Topraktan su alınımıda etkendir C-Işık: 1-Klorofil sentezinde gereklidir 2-Fotosentezde gereklidir 3-Bazı türlerde çimlenmede gereklidir D-pH,Tuz ve Mineral: 1-Enzim etkinliği için gereklidir 2-Bazı moleküllerin (Enzim,hormon,pigment vb.) yapısına katılır E-Hormonlar: Bitkisel hormonlar bitkinin büyümesi,yaprak-çiçek açması, yönelim, meyva oluşumu,Tohumda uyku ve çimlenme vb. yaşamsal olayların gerçekleşmesinde rol alırlar Not:Bu faktörlerin etkinliği farklı türler için değişebilir.Değişik türlerde özel adaptasyonlar görülür.

http://www.biyologlar.com/bitkilerde-cimlenme-ve-gelisim

Balıklarda solunum fizyolojisi

Solunum terimi, bir organizmanın hücresi ile çevresi arasındaki gaz (genellikle oksijen ve karbondioksit) alışverişini ifade eder. Tek hücreli canlılarda, gerekli gaz alışverişi pasif difüzyon ile sağlanabilir. Balık gibi komplex organizmalarda, dokulara yeteri miktarda O2 sağlamak ve CO2’i ortadan kaldırmak için, hem gaz alışverişi için gelişmiş bir yapı (solungaç), hem de bir gaz transfer sistemi (kan ve dolaşım sistemi) gerekir. Su ve dokular arasında osmoregülasyon ve asit-baz dengesini sağlamak gibi, balık solungacının başka fonksiyonları da vardır. Solunum sisteminin, elinde tuttuğu ve transferini gerçekleştirdiği su ve kan ve ayrıca O2 ve CO2 alışverişini sağladığı aşamalarının anlaşılması; balıkların fizyolojik ihtiyaçlarını giderecek ve yüksek derecede sağlık ortamı sağlayacak bir intensive kültür sisteminin mantıklı dizayn ve operasyonunu temin edecektir. Solunumun bütün işlevleri önemlidir, fakat intensive kültür sisteminin tipik özelliği olan yoğun balık stoklamalarında, gaz alışverişindeki etkilerin ani ölümlere neden olması bilinmelidir. Solungaç çevresindeki sudan transfer edilmesi ve dokulara gönderilmesi gereken O2 miktarı önemlidir. Salmonid gibi aktif soğuk su balıkları için O2 gereksinimi 100 mg.O/kg vucut ağırlığı şeklinde yüksek bir oranda veya daha fazlası olabilir. Aktif olarak yüzen balıklarda, solunum sistemi, 800 mg.O/kg/saat (20 ml.O/min civarında) kadar yüksek oranda O2 sağlayıp, karşılığında büyük oranda CO2 ortadan kaldırmalıdır. Bununla birlikte su, maximum çözünmüş O2’nin 10-12 mg/l’yi nadiren geçtiği O2 fakiri bir ortamdır. Deniz suyunda, mevcut çözünmüş yüksek tuz konsantrasyonu, mevcut DO’yu maximum 8-9 mg/l’ye kadar azaltabilir. Bunun için, balık yaşamının devamı için büyük miktarda suyun solungaçlardan geçmesi gereklidir. Salmonidler için solungaçlardan suyun geçmesi 5-20 l HO2/O2/vücut ağırlığı/saat oranındadır. Çoğu balık gerekli miktardaki suyu ağızlarıyla pompalayarak ve opercular hareketler yaparak sağlarlar. Ağız ve solungaçlar emme basma tulumbası olarak görev yaparlar ve böylece sabit bir su akışı sağlarlar. Haçerideki balıklar için, su alıp verme oranı 40-60 l/dk oranındadır. Suyun yüksek yoğunluk ve viskozitesinden dolayı solungaç ventilasyonunun enerji gideri, en az, tüketilen O2’nin %10’u kadardır. Salmonid, köpek balığı ve tuna gibi aktif balıklar, solungaçları üzerinden gerekli su akışını ram ventilasyonu (Yüzerken ağızını açarak) ile sağlarlar. Örneğin, pasifik salmon, ram ventilasyonunu 1 vücut uzunluğu/saniye’den daha yüksek hızda yüzerek kullanır. Bazı köpek balıkları, ram ventilasyonu ile sınırlandırılmıştır ve yaşamak için sürekli yüzmek zorundadır. Her iki solungaç ventilasyon metodunda da DO’nun %80’ine kadarki kısmımın (teorik olarak) kullanılması mümkündür. Çünkü solungaç anatomisi, ters yönde kan akışını sağlayacak şekilde dizayn edilmiştir (suyun solungaçlar üzerinden akışı, kanın solungaçlar içinden akışına terstir). Gerçek O2 tüketimi türlere göre farklıdır. Alabalıkta %30-40, tunada %70 ve sazanda %70-80’dir. Buna kıyasla, insan havadaki O2’nin sadece %25’ni alabilir. Su solungaçlardan geçerken, sudaki çözünmüş O2, sekonder solungaç lamelinin ince epitelyal hücrelerinin arasından geçer ve kana difüze olur. Asitlik arttıkça hemoglobinin O2’ye yakınlığı azalır (Bohr etkisi) ve bazı türlerde asitlik, hemoglobinin O2’yi tutmasındaki maksimum kapasiteyi azaltır (Root etkisi). Bu yüzden kan, dokuların kapillar yataklarından geçerken üretilen CO2’in neden olduğu asitlik Hb-O2 ağını zayıflatır ve O2 yoğunluğunun düşük olduğu hücrelere difüze olan O2’nin çıkışını kolaylaştırır. Aynı zamanda, CO2, dokulardan kana difüze olur. O2’in tersine, CO2’in çoğu plazmada erir ve bikarbonat formunda yeniden solungaçlara gönderilir. Kan solungaçlardan geçerken karbonikanhidraz enzimi, HCO3 iyonunu sonra yeniden suya difüze olan CO2 molekülüne hidroliz eder. Bir ünite kanın solungaçlar içinde kalma zamanı, sadece birkaç saniye olduğu için ve kan ve su arasındaki yüksek CO2 basıncından dolayı bu enzimatik reaksiyon son derece hızlı bir aşamadır. Bu yüzden kandaki O2 basıncı 100 mg Hg veya daha yüksek seviyeler arasında değişebilir, kandaki CO2 konsantrasyonu düşük kalır ve çok az değişir. Özellikle aktif soğuk su balıklarında Bohr etkisi büyük olur (kanın düşük CO2 düzeyinde başlar). Aquakültür sistemlerinde, örneğin eğer sudaki çözünmüş CO2 konsantrasyonu 20 mg/l’ye çıkarsa Bohr etkisi salmonidlerin O2 transferini engeller. Karışık kültürü yapılan sıcak su balıkları (Tilapya, sazan, kanal kedi balığı gibi) genellikle çözünmüş CO2 konsantrasyonuna daha az duyarlıdırlar ama, bu yetiştiricilik yöntemi, iyi bir yetiştiricilik işletmesi için, CO2 ’in havuz suyunda birikmesine engel olan durumları sağlamada iyi bir yöntemdir. CO2’in etkisiyle birlikte, laktik asit üretimi kan asitliğinin yükselmesine ve kanın O2 transferinin bozulmasını neden olur. En genel sebep; beyaz kaslarda O2 olmamasından dolayı kan ve dokularda laktik asit birikmesiyle sonuçlanan aşırı yüzme aktiviteleridir. Bu da heyecan ve stresten kaynaklanır. Örneğin, eğer kanın pH’sı 7,8-7,6’dan 6,0’a düşürülürse toplam hemoglobinin sadece çok az bir yüzdesi O2 ile doyurulabilir. Root etkisindeki Hb’in normal görevi choroid rete üzerinden O2’i göze ileten moleküler pompa görevi yapmak ve physoclistik türlerde rete mirabile üzerinden yüzme kesesini doldurmaktır. İkinci görevi, salmonidlerde (fizostomları bulunduğu için) önemsizdir ki; havayı emerek yüzme kesesini doldurmaktır. Bununla beraber, salmonid gözündeki normal O2 yoğunluğu, hem kanın, hem de suyunkinden fazladır. Bu da root etkisindeki Hb’in bu balıklarda önemli bir rol aldığını gösterir. Cadmium ve civa gibi ağır !!!!llerin öldürücü seviyelerinin altındaki dozlarına maruz kalma durumunda, root etkisindeki Hb’in normal fonksiyonunun tersi yönde etkilendiği bilinir. Bunun yoğun kültürdeki balığın sağlığı için önemi bilinmemektedir. Yoğun kültürdeki balıklar için, Bohr ve Root etkisi altında O2 transferinin azalması ile ilgili problemler, kanda yüksek laktik asit konsantrasyonu (Hyperlacticemia) veya kanda yüksek CO2 konsantrasyonu sonucu ortaya çıkar. Genel sebepleri; düşük DO durumları ve heyecandan kaynaklanan aşırı yüzme aktiviteleridir. Ayrıca yetiştirme ve transfer sırasında daha yüksek stoklama yoğunluğu sağlamak için saf O2 kullanarak havalandırma yapmak, aşırı doyurulmuş DO düzeyine ve hipercapnia’ya (yüksek DO’nun solungaç havalandırma oranını baskılaması nedeniyle oluşan bir yan etki) neden olur. Bu ise, CO2 birikmesine ve yüksek arterial PCO2 basıncına neden olur. Kana O2 transferi bundan etkilenmeyebilir. Çünkü daha yüksek arterial PO2, bohr etkisi kaynaklı azalmaları dengeler. Buna ek olarak hipercapnia, dokulara O2 naklini, sadece arta kalan asitliği normal kan dengesini aşarsa veya solunum asidosisi meydana gelirse tehlikeye sokabilir. Suyun kalitesinin iyi olduğu balık kültürlerinde Bohr etkisi kaynaklı O2 naklinin azalması ile ilgili problemler, aşırı yüzme sonunda üretilen laktik asitten dolayı ortaya çıkan !!!!bolik asidosis kökenlidir. Bohr etkisinin solunum baskısının CO2 ve DO konsantrasyonu ile olan ilişkisi ilk kez Basu (1959) tarafından belirlendi. Dokulara yeterli O2 sağlamak için vasat bir yüzme seviyesi oluşturmak için gereken DO seviyesi bunu ortaya çıkarmıştır. Bu minimum miktar, eğer çok az CO2 varsa veya hiç yoksa 6 mg/l’den, Eğer çözünmüş CO2 konsantrasyonu 30 mg/l’ civarına yükselirse, 11 mg/l’den daha yukarı çıkar. Sonuç olarak, salmonid gibi balıkların, DO seviyesinin %80 doygunluk oranının altına düşmemesi şartıyla, yeterli O2’ye sahip olmaları önerilir. Eğer çözünmüş CO2 seviyesi 30-40 mg/l’nin altında tutulmazsa, kanın O2 taşıma kapasitesi, yüksek DO konsantrasyonunun bile yetersiz olduğu, doku hipoksia’sına neden olabilecek seviyelere düşer. Bohr ve root etkisi kaynaklı solunum baskısı, heyecan ve yüzme aktivitesini azaltmak için dikkatli balık tutumu ile en aza indirilebilir. Yeterli miktarda çözünmüş O2 sağlamanın yanısıra çözülmüş CO2 ‘yi hızla ortadan kaldıran havalandırma sistemi ve su değişim oranı ile de bu sağlanabilir. Pratikte bunlar yoğun kültürdeki balığın ihtiyaçlarını sağlamada gerekli unsurlardır. Haçeri’deki çözünmüş O2’i balığın tüketme oranı yoğun kültür sistemlerinin sağlanmasında önemlidir. O2 tüketimi, balık naklinde gerekli olan havalandırma miktarı ve istenilen yükleme yoğunluğu için gerekli su alışveriş oranı gibi temel parametreleri belirler. Racewaylerdeki salmonidler en az 100 mg.O/kg/saat ile en fazla 800 mg/kg saat arasında tüketir. Bu seviye, yüzme seviyelerine, su sıcaklığına, zaman, son beslenme ve heyecan, stres derecesine göre değişir. Egzersiz, stres veya su sıcaklığının sonucu olan !!!!bolik ihtiyaçları karşılamak ve O2 tüketim oranını kontrol etmek için hormonal teknikler kullanılır. Hem soğuk su, hem de sıcak su balıklarının solunum oranı karasal omurgalılarda olduğu gibi kanda CO2 yükselmesi ile değil, DO konsantrasyonundaki düşüş ile stimüle edilir. Örneğin, balıklar elle tutularak stres olduğu zaman, adrenalin ve diğer cathekolomine hormonları (hem solungaç perfüzyon miktarını , hem de alyuvar hemoglobininin O2 taşıma kapasitesini artıran hormonlar) üretilir. Bronşal vasodilasyonun yan etkisi olarak suyun normal ozmatik akımı aşırı şekilde yükselir ve bundan sonra vücuttan atılmalıdır. Diüresis’in sonucu çok çarpıcı olabilir, kandaki elektrolitlerin bazıları üretilen çok fazla üre içinde kaçınılmaz bir şekilde kaybolur. Diüresis uzatılırsa, iyon regulasyonunda bozulmalar ortaya çıkabilir. Balık tutulduktan veya nakledildikten 1-2 gün sonra oluşan gecikmiş ölümler büyük ölçüde bu olayın bir sonucudur. Yoğun kültür sistemlerindeki balıkların O2 tüketimi, hem balığın kültürel prosedürü, hem de doğal gelişmeler nedeniyle arttırılabilir. Bunlardan, tutma nedenli stres, heyecan nedenli arttırılmış yüzme aktivitesi ve beslenmenin doğal aşamaları en önemli olanlarıdır. Örneğin Çelikbaş alabalığı juvenilleri tutulmaktan dolayı strese girerler, O2 tüketimleri 2 kat birden artabilir ve bir veya daha fazla saat yüksek oranda kalır. O2 tüketiminin artması (heyecan ve stres kaynaklı), balıklar nakil tanklarına yüklendikten sonra, birden meydana gelen DO’daki ani düşüşün sorumlusudur. O2 havalandırması varsa, balık bulunan tank suyu 14-16 mg/l’lik DO’ya kadar doyurulmalıdır ki, bu da balıkların O2 ihtiyacını karşılar. Sadece sıkıştırılmış hava varsa, havalandırma sistemini, balık yüklemeden 5-10 dakika önceden başlatmak, suyun doyurulmasını sağlayacağından bir dereceye kadar etkili olacaktır. Beslenme ve sindirimin doğal aşamaları, balığın O2 tüketimini büyük ölçüde artırır. Çünkü sindirimin, absorbsiyon ve asimilasyonun kalorik maliyeti, geri kalan !!!!bolik kalorinin %40’ı kadardır. Bu etkinin O2 tüketimindeki boyutu (Specific dynamic action of food (SDA) = .Yiyeceklerin spesifik dinamik hareketi) her zaman tam olarak değerlendirilmez. Çünkü beslenme rutin bir operasyondur. Salmonid, kanal kedi balığı ve tilapya için, her defasında balık birkaç saat beslendiği için O2 tüketim oranını %40-50 veya daha fazla arttırmak akıllıcadır. SDA’nın pratik sonucu olarak; balığın hemen tutulmaması veya nakil edilmemesi gerekir. Çünkü, beslenme ve sindirim olaylarına eklenen heyecan ve stres, onların O2 tüketimini, havalandırma sisteminin yeterli DO sağlayamayacak seviyede arttırır. Elle tutulmadan ve nakilden 24-48 saat önce balık beslemeyi durdurmak bu etkiyi önler ve O2 tüketim oranını büyük ölçüde azaltır. Yoğun kültür sisteminde O2 tüketimini etkileyen diğer önemli faktörler ise; su sıcaklığı ve yüzme aktiviteleridir. Daha yüksek su sıcaklığı, bütün !!!!bolik hızı artırarak O2 tüketimini yükseltir. Bununla beraber yüzme aktivitelerinde O2 tüketimi, kasların kasılması için, Hb doygunluğunu düşürerek kandaki O2‘yi tüketmesi ile yükselir. Gökkuşağı alabalığında, solungaç lamelleri’nin sadece %60’ı kanla perfüze olur. Hızlı yüzmeye dayanan kas kasılması, adrenalin ve diğer cathekolamine hormonlarının dolaşımını teşvik eder. Meydana gelen solungaç perfüzyonun yükselmesi ile birlikte, eritrosistlerin, hücre içi pH’sını artıran, Na / H değişiminin adrenal hormonu tarafından teşviki sağlanır. Bohr etkisi düşürülür ve hem kanda O2 oluşumu, hem de O2 ‘nin dokulara teslimi sağlanır. Isı ve yüzme aktivitelerinin O2 tüketimi üzerindeki etkisinin gerçek boyutu Brett (1973) tarafından, kontrol altında tutulan pasifik solmonu üzerinde belirlenmiştir. Daha sıcak su, O2 tüketimini bir dereceye kadar artırır. Bununla beraber, yüzmenin etkisi daha çarpıcıdır. İleri atılarak yüzme, özellikle enerji bakımından yoğundur. Çünkü sürtünme etkisi çok yüksektir. Yoğun kültür sistemindeki balığın yüzme aktivitesi genelde daha düşüktür. Salmon kültüründe racewaylerde su alışverişi öyle ayarlanmalıdır ki, o balığın O2 tüketim oranı, DO’yu son taşma sınırının yaklaşık 6 mg/l aşağısına indirmemelidir. Havalandırma sistemi ayrıca, taşıma kapasitesini artırmak için de kullanılır. Bazı durumlarda DO oranını 14-16 mg/l ‘ye çıkarmak için sıvı O2 kullanılır. Balık nakil sisteminde O2 tüketim oranı, genelde yüksek heyecan ve stres nedeniyle değişkendir. Yakaşık DO doygunluğunu sağlamak için saf O2 kullanılır. DO, balık tarafından tüketildikten sonra hemen yenilenmezse, O2 tükenmesi meydana gelir. Karasal hayvanların aksine, balığın nefes alma oranı, yükselen CO2 ile değil, düşen DO konsantrasyonu ile stimüle edilir. Alabalık, sazan, kedi balığı gibi türler düşen DO seviyesine, önce ağız ve solungaçlarını kullanıp solungaç havalandırma oranını yükselterek; kan basıncını ve kardial verimi yükseltip solungaçlardan kan akışını artırarak cevap verir. Salmonidlerde, normal DO tükenmesi bile, solungaç havalandırma oranında çarpıcı yükselmelere neden olur. Bu olaylar, ilk olarak O2 alımını yükseltir, fakat daha fazla su akışı da, solungaçlardan her geçişte çekilebilen DO oranını azaltabilir. DO düştükçe kana transfer edilen O2 miktarı da düşer (max %80’den min %15’e). Ayrıca, daha fazla suyun solungaçlar üzerinden hareket ettirilmesi, enerji maliyetini büyük oranda yükseltir (Absorbe edilen O2 ‘nin %10 ‘undan %70’e yükselmesi). Sonuç olarak; O2 elde etmek için harcanan güç, suda çözünmüş O2 miktarı düştükçe ve arterial kandaki O2 basıncı düştükçe yükselir. Arteial kan O2‘si, alyuvardaki Hb %60 doygunluktan daha az olduğu noktaya ulaşıncaya dek azaldığında; solungaç damarlarını genişleterek ve Na/H alışverişini alyuvar membranı ile sağlayıp, hücre içi PH’yı yükselten adrenalin ve diğer cathecolamine hormonları salgılanır. Bir dizi karışık olay sırasında Hb-O2 ilişkisinde değişiklikler ve Bohr ve Root effect kökenli kapasite değişiklikleri, hem solungaçlardaki O2 transferini, hem de O2 ‘nin dokulara yükselmesini kolaylaştırır. Eğer çözünmüş O2, 5 mg/l’nin altına düşerse, salmonidler, iştahsızlaşırlar. Bu, beslenme ve sindirim sırasında O2 tüketiminde meydana gelen normal yükselmeye engel olmak için geliştirilen bir davranışsal cevaptır. Salmonidlerde, O2‘nin elde edinimi ve kullanımının biyoenerjik maliyeti, DO’nun 2 mg/l civarına kadar tüketilmesinden dolayı ortaya çıkan aşırı enerji ihtiyacı ile başlar ve bilinç kaybı ve hatta ölümle sonuçlanabilir. Aquakültür için önemli olan çoğu sıcak su balığı DO seviyesi 1 mg/l’nin altına düşse bile birkaç saat hayata kalmayı başarır. Ama sonunda meydana gelen doku hipoksiası bilinçsizlik ve ölümle sonuçlanır. Aquakültür ortamında balığın tükettiği O2 oranını sürekli düşürmek en temel hedeftir. O2 tüketimini artırmak için varolan aynı biolojik ve çevresel faktörlerin çoğu onu düşürmek için de arttırılabilir. Su sıcaklığını azaltma (hipothermia) ve yüzme aktivitesini, heyecanı ve balık tutma sırasındaki stresi düşürmek için anastezik kullanımı en bilinenleridir.

http://www.biyologlar.com/baliklarda-solunum-fizyolojisi

Çevre Kanunu (Bölüm-1)

ÇEVRE KANUNU (1) (2) Kanun Numarası : 2872 Kabul Tarihi : 9/8/1983 Yayımlandığı R.Gazete : Tarih : 11/8/1983 Sayı : 18132 Yayımlandığı Düstur Tertip : 5 Cilt : 22 Sayfa : 499 BİRİNCİ BÖLÜM Amaç, Tanımlar ve İlkeler Amaç: Madde 1 – (Değişik: 26/4/2006 – 5491/1 md.) Bu Kanunun amacı, bütün canlıların ortak varlığı olan çevrenin, sürdürülebilir çevre ve sürdürülebilir kalkınma ilkeleri doğrultusunda korunmasını sağlamaktır. Tanımlar: Madde 2 – (Değişik: 26/4/2006 – 5491/2 md.) Bu Kanunda geçen terimlerden; Çevre: Canlıların yaşamları boyunca ilişkilerini sürdürdükleri ve karşılıklı olarak etkileşim içinde bulundukları biyolojik, fiziksel, sosyal, ekonomik ve kültürel ortamı, Çevre korunması: Çevresel değerlerin ve ekolojik dengenin tahribini, bozulmasını ve yok olmasını önlemeye, mevcut bozulmaları gidermeye, çevreyi iyileştirmeye ve geliştirmeye, çevre kirliliğini önlemeye yönelik çalışmaların bütününü, Çevre kirliliği: Çevrede meydana gelen ve canlıların sağlığını, çevresel değerleri ve ekolojik dengeyi bozabilecek her türlü olumsuz etkiyi, Sürdürülebilir çevre: Gelecek kuşakların ihtiyaç duyacağı kaynakların varlığını ve kalitesini tehlikeye atmadan, hem bugünün hem de gelecek kuşakların çevresini oluşturan tüm çevresel değerlerin her alanda (sosyal, ekonomik, fizikî vb.) ıslahı, korunması ve geliştirilmesi sürecini, Sürdürülebilir kalkınma: Bugünkü ve gelecek kuşakların, sağlıklı bir çevrede yaşamasını güvence altına alan çevresel, ekonomik ve sosyal hedefler arasında denge kurulması esasına dayalı kalkınma ve gelişmeyi, Alıcı ortam: Hava, su, toprak ortamları ile bu ortamlarla ilişkili ekosistemleri, Doğal varlık: Bütün bitki, hayvan, mikroorganizmalar ile bunların yaşama ortamlarını, Doğal kaynak: Hava, su, toprak ve doğada bulunan cansız varlıkları, (1)19/10/1989 tarih ve 383 sayılı KHK'nin 25 inci maddesi; bu Kanun ile Çevre Müsteşarlığına verilen yetkilerin, Özel Çevre Koruma Kurumu Başkanlığına geçeceğini hüküm altına almıştır. (2)9/8/1991 tarih ve 443 sayılı KHK'nin geçici 1 inci maddesi ile çeşitli mevzuatta geçen "Çevre Müsteşarlığı" ve "Çevreden Sorumlu Devlet Bakanlığı" ibareleri "Çevre Bakanlığı", "Çevreden Sorumlu Devlet Bakanı" ve "Çevre Müsteşarı" ibareleri "Çevre Bakanı" olarak değiştirilmiştir. Kirleten: Faaliyetleri sırasında veya sonrasında doğrudan veya dolaylı olarak çevre kirliliğine, ekolojik dengenin ve çevrenin bozulmasına neden olan gerçek ve tüzel kişileri, Ekosistem: Canlıların kendi aralarında ve cansız çevreleriyle ilişkilerini bir düzen içinde yürüttükleri biyolojik, fiziksel ve kimyasal sistemi, Atıksu: Evsel, endüstriyel, tarımsal ve diğer kullanımlar sonucunda kirlenmiş veya özellikleri kısmen veya tamamen değişmiş suları, Atıksu altyapı tesisleri: Evsel ve/veya endüstriyel atıksuları toplayan kanalizasyon sistemi ile atıksuların arıtıldığı ve alıcı ortama verilmesinin sağlandığı sistem ve tesislerin tamamını, Arıtma tesisi: Her türlü faaliyet sonucu oluşan katı, sıvı ve gaz halindeki atıkların yönetmeliklerde belirlenen standartları sağlayacak şekilde arıtıldığı tesisleri, Ekolojik denge: İnsan ve diğer canlıların varlık ve gelişmelerini doğal yapılarına uygun bir şekilde sürdürebilmeleri için gerekli olan şartların bütününü, Sulak alan: Doğal veya yapay, devamlı veya geçici, suları durgun veya akıntılı, tatlı, acı veya tuzlu, denizlerin gelgit hareketlerinin çekilme devresinde altı metreyi geçmeyen derinlikleri kapsayan, başta su kuşları olmak üzere canlıların yaşama ortamı olarak önem taşıyan bütün sular, bataklık, sazlık ve turbiyeler ile bu alanların kıyı kenar çizgisinden itibaren kara tarafına doğru ekolojik açıdan sulak alan kalan yerleri, Biyolojik çeşitlilik: Ekosistemlerin, türlerin, genlerin ve bunlar arasındaki ilişkilerin tamamını, Atık: Herhangi bir faaliyet sonucunda oluşan, çevreye atılan veya bırakılan her türlü maddeyi, Katı atık: Üreticisi tarafından atılmak istenen ve toplumun huzuru ile özellikle çevrenin korunması bakımından, düzenli bir şekilde bertaraf edilmesi gereken katı atık maddeleri, Evsel katı atık: Tehlikeli ve zararlı atık kapsamına girmeyen konut, sanayi, işyeri, piknik alanları gibi yerlerden gelen katı atıkları, Tehlikeli atık: Fiziksel, kimyasal ve/veya biyolojik yönden olumsuz etki yaparak ekolojik denge ile insan ve diğer canlıların doğal yapılarının bozulmasına neden olan atıklar ve bu atıklarla kirlenmiş maddeleri, Tehlikeli kimyasallar: Fiziksel, kimyasal ve/veya biyolojik yönden olumsuz etki yaparak ekolojik denge ile insan ve diğer canlıların doğal yapılarının bozulmasına neden olan her türlü kimyasal madde ve ürünleri, Kirli balast: Duran veya seyir halindeki tankerden, gemiden veya diğer deniz araçlarından su üzerine bırakıldığında; su üstünde veya bitişik sahil hattında petrol, petrol türevi veya yağ izlerinin görülmesine neden olan veya su üstünde ya da su altında renk değişikliği oluşturan veya askıda katı madde/emülsiyon halinde maddelerin birikmesine yol açan balast suyunu, Çevresel etki değerlendirmesi: Gerçekleştirilmesi plânlanan projelerin çevreye olabilecek olumlu ve olumsuz etkilerinin belirlenmesinde, olumsuz yöndeki etkilerin önlenmesi ya da çevreye zarar vermeyecek ölçüde en aza indirilmesi için alınacak önlemlerin, seçilen yer ile teknoloji alternatiflerinin belirlenerek değerlendirilmesinde ve projelerin uygulanmasının izlenmesi ve kontrolünde sürdürülecek çalışmaları, Proje tanıtım dosyası: Gerçekleşmesi plânlanan projenin yerini, özelliklerini, olası olumsuz etkilerini ve öngörülen önlemleri içeren, projeyi genel boyutları ile tanıtan bilgi ve belgeleri içeren dosyayı, Stratejik çevresel değerlendirme: Onaya tâbi plân ya da programın onayından önce plânlama veya programlama sürecinin başlangıcından itibaren, çevresel değerlerin plân ve programa entegre edilmesini sağlamak, plân ya da programın olası çevresel etkilerini en aza indirmek ve karar vericilere yardımcı olmak üzere katılımcı bir yaklaşımla sürdürülen ve yazılı bir raporu da içeren çevresel değerlendirme çalışmalarını, Çevre yönetimi: İdarî, teknik, hukukî, politik, ekonomik, sosyal ve kültürel araçları kullanarak doğal ve yapay çevre unsurlarının sürdürülebilir kullanımını ve gelişmesini sağlamak üzere yerel, bölgesel, ulusal ve küresel düzeyde belirlenen politika ve stratejilerin uygulanmasını, Çevre yönetim birimi/Çevre görevlisi: Bu Kanun ve Kanuna göre yürürlüğe konulan düzenlemeler uyarınca denetime tâbi tesislerin faaliyetlerinin mevzuata uygunluğunu, alınan tedbirlerin etkili olarak uygulanıp uygulanmadığını değerlendiren, tesis içi yıllık denetim programları düzenleyen birim ya da görevliyi, Çevre gönüllüsü: Bakanlıkça, uygun niteliklere sahip kişiler arasından seçilen ve bu Kanun ve Kanuna göre yürürlüğe konulan düzenlemelere aykırı faaliyetleri Bakanlığa iletmekle görevli ve yetkili kişiyi, Hassas alan: Ötrofikasyon riski yüksek olan ve Bakanlıkça belirlenecek kıyı ve iç su alanlarını, Çevreye ilişkin bilgi: Su, hava, toprak, bitki ve hayvan varlığı ile bunları olumsuz olarak etkileyen veya etkileme ihtimali bulunan faaliyetler ve alınan idarî ve teknik önlemlere ilişkin olarak mevcut bulunan her türlü yazılı, sözlü veya görüntülü bilgi veya veriyi, İş termin plânı: Atıksu ve evsel nitelikli katı atık kaynaklarının yönetmelikte belirtilen alıcı ortam deşarj standartlarını sağlamak için yapmaları gereken atıksu arıtma tesisi ve/veya kanalizasyon gibi altyapı tesisleri ile katı atık bertaraf tesislerinin gerçekleştirilmesi sürecinde yer alan yer seçimi, proje, ihale, inşaat, işletmeye alma gibi işlerin zamanlamasını gösteren plânı, Risk değerlendirmesi: Belirli kimyasal madde ya da maddelerin potansiyel tehlikelerinin belirlenmesi ve sonuçlarının hesaplanması yönünde kullanılan yöntemler bütününü, İyonlaştırıcı olmayan radyasyon: İyonlaşmaya neden olmayan elektromanyetik dalgaları, Elektromanyetik alan: Elektrik ve manyetik alan bileşenleri olan dalgaların oluşturduğu alanı, Koku: İnsanda koku alma duygusunu harekete geçiren ve kokunun algılanmasına neden olan uçucu maddelerin yarattığı etkiyi, Hava kalitesi: İnsan ve çevresi üzerine etki eden hava kirliliğinin göstergesi olan, çevre havasında mevcut hava kirleticilerin artan miktarıyla azalan kalitelerini, Bakanlık: Çevre ve Orman Bakanlığını, ifade eder. İlkeler: Madde 3 –(Değişik: 26/4/2006 – 5491/3 md.) Çevrenin korunmasına, iyileştirilmesine ve kirliliğinin önlenmesine ilişkin genel ilkeler şunlardır: a) Başta idare, meslek odaları, birlikler ve sivil toplum kuruluşları olmak üzere herkes, çevrenin korunması ve kirliliğin önlenmesi ile görevli olup bu konuda alınacak tedbirlere ve belirlenen esaslara uymakla yükümlüdürler. b) Çevrenin korunması, çevrenin bozulmasının önlenmesi ve kirliliğin giderilmesi alanlarındaki her türlü faaliyette; Bakanlık ve yerel yönetimler, gerekli hallerde meslek odaları, birlikler ve sivil toplum kuruluşları ile işbirliği yaparlar. c) Arazi ve kaynak kullanım kararlarını veren ve proje değerlendirmesi yapan yetkili kuruluşlar, karar alma süreçlerinde sürdürülebilir kalkınma ilkesini gözetirler. d) Yapılacak ekonomik faaliyetlerin faydası ile doğal kaynaklar üzerindeki etkisi sürdürülebilir kalkınma ilkesi çerçevesinde uzun dönemli olarak değerlendirilir. e) Çevre politikalarının oluşmasında katılım hakkı esastır. Bakanlık ve yerel yönetimler; meslek odaları, birlikler, sivil toplum kuruluşları ve vatandaşların çevre hakkını kullanacakları katılım ortamını yaratmakla yükümlüdür. f) Her türlü faaliyet sırasında doğal kaynakların ve enerjinin verimli bir şekilde kullanılması amacıyla atık oluşumunu kaynağında azaltan ve atıkların geri kazanılmasını sağlayan çevre ile uyumlu teknolojilerin kullanılması esastır. g) Kirlenme ve bozulmanın önlenmesi, sınırlandırılması, giderilmesi ve çevrenin iyileştirilmesi için yapılan harcamalar kirleten veya bozulmaya neden olan tarafından karşılanır. Kirletenin kirlenmeyi veya bozulmayı durdurmak, gidermek veya azaltmak için gerekli önlemleri almaması veya bu önlemlerin yetkili makamlarca doğrudan alınması nedeniyle kamu kurum ve kuruluşlarınca yapılan gerekli harcamalar 6183 sayılı Amme Alacaklarının Tahsil Usulü Hakkında Kanun hükümlerine göre kirletenden tahsil edilir. h) Çevrenin korunması, çevre kirliliğinin önlenmesi ve giderilmesi için uyulması zorunlu standartlar ile vergi, harç, katılma payı, yenilenebilir enerji kaynaklarının ve temiz teknolojilerin teşviki, emisyon ücreti ve kirletme bedeli alınması, karbon ticareti gibi piyasaya dayalı mekanizmalar ile ekonomik araçlar ve teşvikler kullanılır. ı) Bölgesel ve küresel çevre sorunlarının çözümüne yönelik olarak taraf olduğumuz uluslararası anlaşmalar sonucu ortaya çıkan ulusal hak ve yükümlülüklerin yerine getirilmesi için gerekli teknik, idarî, malî ve hukukî düzenlemeler Bakanlığın koordinasyonunda yapılır. Gerçek ve tüzel kişiler, bu düzenlemeler sonucu ortaya çıkabilecek maliyetleri karşılamakla yükümlüdür. j) Çevrenin korunması, çevre kirliliğinin önlenmesi ve çevre sorunlarının çözümüne yönelik gerekli teknik, idarî, malî ve hukukî düzenlemeler Bakanlığın koordinasyonunda yapılır. 2690 sayılı Türkiye Atom Enerjisi Kurumu Kanunu kapsamındaki konular Türkiye Atom Enerjisi Kurumu tarafından yürütülür. İKİNCİ BÖLÜM Yüksek Çevre Kurulu ve Görevleri(1) Yüksek Çevre Kurulu(1) Madde 4 – (Mülga: 9/8/1991 - KHK - 443/43 md.; Yeniden düzenleme: 26/4/2006 – 5491/4 md.) Başbakanın başkanlığında, Başbakanın bulunmadığı zamanlarda Çevre ve Orman Bakanının başkanlığında, Başbakanın belirleyeceği sayıda bakan ile Bakanlık Müsteşarından oluşan Yüksek Çevre Kurulu kurulmuştur. Diğer bakanlar gündeme göre Kurul toplantılarına başkan tarafından çağrılabilir. Kurul yılda en az bir defa toplanır. Kurulun sekretarya hizmetleri Bakanlıkça yürütülür. Kurulun çalışmaları ile ilgili konularda ön hazırlık ve değerlendirme yapmak üzere, Bakanlık Müsteşarının başkanlığında ilgili bakanlık müsteşarları, diğer kurum ve kuruluşların en üst düzey yetkili amirlerinin katılımı ile toplantılar düzenlenir. Bu toplantılara gündeme göre ilgili kamu kurumu niteliğindeki kuruluşların birlik temsilcileri, meslek kuruluşları, sivil toplum kuruluşları, yerel yönetim temsilcileri, üniversite temsilcileri ve bilimsel kuruluşların temsilcileri davet edilir. Kurulun çalışma usûl ve esasları ile diğer hususlar yönetmelikle belirlenir. Yüksek Çevre Kurulunun görevleri(1) Madde 5 – (Mülga: 13/3/1990 - KHK - 409/12 md.; Yeniden düzenleme: 26/4/2006 – 5491/5 md.) Yüksek Çevre Kurulunun görevleri şunlardır: a) Etkin bir çevre yönetiminin sağlanması için hedef, politika ve strateji belirlemek. b) Sürdürülebilir kalkınma ilkesi çerçevesinde ekonomik kararlara çevre boyutunun dahil edilmesine imkân veren hukukî ve idarî tedbirleri belirlemek. c) Birden fazla bakanlık ve kuruluşu ilgilendiren çevre konularına ilişkin uyuşmazlıklarda nihai kararı vermek. Madde 6 – 7 – (Mülga: 8/6/1984 - KHK 222/30 md.) ÜÇÜNCÜ BÖLÜM Çevre Korunmasına İlişkin Önlemler ve Yasaklar Kirletme yasağı: Madde 8 – Her türlü atık ve artığı, çevreye zarar verecek şekilde, ilgili yönetmeliklerde belirlenen standartlara ve yöntemlere aykırı olarak doğrudan ve dolaylı biçimde alıcı ortama vermek, depolamak, taşımak, uzaklaştırmak ve benzeri faaliyetlerde bulunmak yasaktır. Kirlenme ihtimalinin bulunduğu durumlarda ilgililer kirlenmeyi önlemekle; kirlenmenin meydana geldiği hallerde kirleten, kirlenmeyi durdurmak, kirlenmenin etkilerini gidermek veya azaltmak için gerekli tedbirleri almakla yükümlüdürler. ______________________________ (1) 26/4/2006 tarihli ve 5491 sayılı Kanunun 4 üncü maddesiyle ikinci bölüm başlığı “Merkezi ve Mahalli İdari Bölümleri ve Görevleri”, 4 üncü madde başlığı “Merkez Çevre Kurulu” iken metne işlendiği şekilde değiştirilmiştir. Çevrenin korunması(1) Madde 9 – (Değişik: 26/4/2006 – 5491/6 md.) Çevrenin korunması amacıyla; a) Doğal çevreyi oluşturan biyolojik çeşitlilik ile bu çeşitliliği barındıran ekosistemin korunması esastır. Biyolojik çeşitliliği koruma ve kullanım esasları, yerel yönetimlerin, üniversitelerin, sivil toplum kuruluşlarının ve ilgili diğer kuruluşların görüşleri alınarak belirlenir. b) Ülke fizikî mekânında, sürdürülebilir kalkınma ilkesi doğrultusunda, koruma-kullanma dengesi gözetilerek kentsel ve kırsal nüfusun barınma, çalışma, dinlenme, ulaşım gibi ihtiyaçların karşılanması sonucu oluşabilecek çevre kirliliğini önlemek amacıyla nazım ve uygulama imar plânlarına esas teşkil etmek üzere bölge ve havza bazında 1/50.000-1/100.000 ölçekli çevre düzeni plânları Bakanlıkça yapılır, yaptırılır ve onaylanır. Bölge ve havza bazında çevre düzeni plânlarının yapılmasına ilişkin usûl ve esaslar Bakanlıkça çıkarılacak yönetmelikle belirlenir. c) Ulusal mevzuat ve taraf olduğumuz uluslararası sözleşmeler ile koruma altına alınarak koruma statüsü kazandırılmış alanlar ve ekolojik değeri olan hassas alanların her tür ölçekteki plânlarda gösterilmesi zorunludur. Koruma statüsü kazandırılmış alanlar ve ekolojik değeri olan alanlar, plân kararı dışında kullanılamaz. d) Ülke ve dünya ölçeğinde ekolojik önemi olan, çevre kirlenmeleri ve bozulmalarına duyarlı toprak ve su alanlarını, biyolojik çeşitliliğin, doğal kaynakların ve bunlarla ilgili kültürel kaynakların gelecek kuşaklara ulaşmasını emniyet altına almak üzere gerekli düzenlemelerin yapılabilmesi amacıyla, Özel Çevre Koruma Bölgesi olarak tespit ve ilan etmeye, bu alanlarda uygulanacak koruma ve kullanma esasları ile plân ve projelerin hangi bakanlıkça hazırlanıp yürütüleceğini belirlemeye Bakanlar Kurulu yetkilidir. Bu bölgelere ilişkin plân ve projelerde; 3/5/1985 tarihli ve 3194 sayılı İmar Kanununun 9 uncu maddesi, 4/4/1990 tarihli ve 3621 sayılı Kıyı Kanununun plân onama yetkisini düzenleyen hükümleri, 21/7/1983 tarihli ve 2863 sayılı Kültür ve Tabiat Varlıklarını Koruma Kanununun 8 inci maddesinin tabiat varlıkları, doğal sit alanları ve bunların korunma alanlarının tespit ve tescili dışında kalan yetkileri düzenleyen hükümleri ile aynı Kanunun 17 nci maddesinin (a) bendi hükümleri uygulanmaz. e) Sulak alanların doğal yapılarının ve ekolojik dengelerinin korunması esastır. Sulak alanların doldurulması ve kurutulması yolu ile arazi kazanılamaz. Bu hükme aykırı olarak arazi kazanılması halinde söz konusu alan faaliyet sahibince eski haline getirilir. Sulak alanların korunması ve yönetimine ilişkin usûl ve esaslar ilgili kurum ve kuruluşların görüşü alınarak Bakanlıkça çıkarılacak yönetmelikle belirlenir. f) Biyolojik çeşitliliğin sürdürülebilirliliğinin sağlanması bakımından nesli tehdit veya tehlike altında olanlar ile nadir bitki ve hayvan türlerinin korunması esas olup, mevzuata aykırı biçimde ticarete konu edilmeleri yasaktır. g) Doğal kaynakların ve varlıkların korunması, kirliliğinin ve tahribatının önlenmesi ve kalitesinin iyileştirilmesi için gerekli idarî, hukukî ve teknik esaslar Bakanlık tarafından belirlenir. h) Ülkenin deniz, yeraltı ve yerüstü su kaynaklarının ve su ürünleri istihsal alanlarının korunarak kullanılmasının sağlanması ve kirlenmeye karşı korunması esastır. Atıksu yönetimi ile ilgili politikaların oluşturulması ve koordinasyonunun sağlanması Bakanlığın sorumluluğundadır. Su ürünleri istihsal alanları ile ilgili alıcı ortam standartları Tarım ve Köyişleri Bakanlığınca belirlenir. Denizlerde yapılacak balık çiftlikleri, hassas alan niteliğindeki kapalı koy ve körfezler ile doğal ve arkeolojik sit alanlarında kurulamaz. Alıcı su ortamlarına atıksu deşarjlarına ilişkin usûl ve esaslar Bakanlıkça çıkarılacak yönetmelikle belirlenir. ı) Çevrenin korunması ve kamuoyunda çevre bilincinin geliştirilmesi amacıyla, okul öncesi eğitimden başlanarak Millî Eğitim Bakanlığına bağlı örgün eğitim kurumlarının öğretim programlarında çevre ile ilgili konulara yer verilmesi esastır. –––––––––––––––––––– (1) Bu madde başlığı “Çevre Korunması” iken, 26/4/2006 tarihli ve 5491 sayılı Kanunun 6 ncı maddesiyle metne işlendiği şekilde değiştirilmiştir. Yaygın eğitime yönelik olarak, radyo ve televizyon programlarında da çevrenin önemine ve çevre bilincinin geliştirilmesine yönelik programlara yer verilmesi esastır. Türkiye Radyo - Televizyon Kurumu ile özel televizyon kanallarına ait televizyon programlarında ayda en az iki saat, özel radyo kanallarının programlarında ise ayda en az yarım saat eğitici yayınların yapılması zorunludur. Bu yayınların % 20’sinin izlenme ve dinlenme oranı en yüksek saatlerde yapılması esastır. Radyo ve Televizyon Üst Kurulu, görev alanına giren hususlarda bu maddenin takibi ile yükümlüdür. j) Çevre ile ilgili olarak toplanan her türlü kaynak ve gelir, tahsisi mahiyette olup, öncelikle çevrenin korunması, geliştirilmesi, ıslahı ve kirliliğin önlenmesi için kullanılır. Çevresel etki değerlendirilmesi: Madde 10 – (Değişik: 26/4/2006 – 5491/7 md.) Gerçekleştirmeyi plânladıkları faaliyetleri sonucu çevre sorunlarına yol açabilecek kurum, kuruluş ve işletmeler, Çevresel Etki Değerlendirmesi Raporu veya proje tanıtım dosyası hazırlamakla yükümlüdürler. Çevresel Etki Değerlendirmesi Olumlu Kararı veya Çevresel Etki Değerlendirmesi Gerekli Değildir Kararı alınmadıkça bu projelerle ilgili onay, izin, teşvik, yapı ve kullanım ruhsatı verilemez; proje için yatırıma başlanamaz ve ihale edilemez. Petrol, jeotermal kaynaklar ve maden arama faaliyetleri, Çevresel Etki Değerlendirmesi kapsamı dışındadır. Çevresel Etki Değerlendirmesine tâbi projeler ve Stratejik Çevresel Değerlendirmeye tâbi plân ve programlar ve konuya ilişkin usûl ve esaslar Bakanlıkça çıkarılacak yönetmeliklerle belirlenir. İzin alma, arıtma ve bertaraf etme yükümlülüğü (1) Madde 11 – (Değişik: 26/4/2006 – 5491/8 md.) Üretim, tüketim ve hizmet faaliyetleri sonucunda oluşan atıklarını alıcı ortamlara doğrudan veya dolaylı vermeleri uygun görülmeyen tesis ve işletmeler ile yerleşim birimleri atıklarını yönetmeliklerde belirlenen standart ve yöntemlere uygun olarak arıtmak ve bertaraf etmekle veya ettirmekle ve öngörülen izinleri almakla yükümlüdürler. Birinci fıkrada belirtilen yükümlülüğü bulunan tesis ve işletmeler ile yerleşim birimlerine; 1) İnşaat ruhsatı aşamasında bu yükümlülüğünü yerine getireceğini gösterir proje ve belgeleri ilgili kuruma sunmadıkça inşaat ruhsatı verilmez. 2) İnşaatı bitmiş olanlardan, bu yükümlülüğü yerine getirmeyenlere işletme ruhsatı ve/veya yapı kullanma ruhsatı verilmez. 3) İnşaat ruhsatına, yapı kullanma veya işletme ruhsatını haiz olmakla birlikte arıtma ve bertaraf yükümlülüklerini yerine getirmemeleri halinde, verilmiş yapı kullanma izni veya işletme izni iptal edilir. Faaliyetlerinde değişiklik yapmayı ve/veya tesislerini büyütmeyi plânlayan gerçek ve tüzel kişiler yönetmelikle belirlenen usûl ve esaslar çerçevesinde atıklarını arıtma veya bertaraf etme yükümlülüğünü yerine getirmek zorundadırlar. Atıksuları toplayan kanalizasyon sistemi ile atıksuların arıtıldığı ve arıtılmış atıksuların bertarafının sağlandığı atıksu altyapı sistemlerinin kurulması, bakımı, onarımı, ıslahı ve işletilmesinden; büyükşehirlerde 20/11/1981 tarihli ve 2560 sayılı İstanbul Su ve Kanalizasyon İdaresi Genel Müdürlüğü Kuruluş ve Görevleri Hakkında Kanunla belirlenen kuruluşlar, belediye ve mücavir alan sınırları içinde belediyeler, bunların dışında iskâna konu her türlü kullanım alanında valiliğin denetiminde bu alanları kullananlar sorumludur. Serbest ve/veya endüstri bölgelerinde bölge müdürlükleri, kültür ve turizm koruma ve gelişme bölgelerinde, turizm merkezlerinde Kültür ve Turizm Bakanlığı veya yetkili kıldığı birimler, organize sanayi bölgelerinde organize sanayi bölgesi yönetimi, küçük sanayi sitelerinde kooperatif başkanlıkları, mevcut yerleşim alanlarından kopuk olarak münferit yapılmış tatil köyü, tatil sitesi, turizm tesis alanları vb. kullanım alanlarında ise site yönetimleri veya tesis işletmecileri atıksu altyapı sistemlerinin kurulması, bakımı, onarımı ve işletilmesinden sorumludurlar. ––––––––––––––––––––– (1) Bu madde başlığı "İşletme izni ve haber verme yükümlülüğü:” iken, 26/4/2006 tarihli ve 5491 sayılı Kanunun 8 inci maddesiyle metne işlendiği şekilde değiştirilmiştir. Atıksu altyapı sistemlerini kullanan ve/veya kullanacaklar, bağlantı sistemlerinin olup olmadığına bakılmaksızın, arıtma sistemlerinden sorumlu yönetimlerin yapacağı her türlü yatırım, işletme, bakım, onarım, ıslah ve temizleme harcamalarının tamamına kirlilik yükü ve atıksu miktarı oranında katılmak zorundadırlar. Bu hizmetlerden yararlananlardan, belediye meclisince ve bu maddede sorumluluk verilen diğer idarelerce belirlenecek tarifeye göre atıksu toplama, arıtma ve bertaraf ücreti alınır. Bu fıkra uyarınca tahsil edilen ücretler, atıksu ile ilgili hizmetler dışında kullanılamaz. Atıksu toplama havzasının birden fazla belediye veya kurumun yetki sahasında olması halinde; atıksu arıtma tesisini işleten kurum, atıksu ile ilgili yatırım ve harcama giderlerini kirletenlerden kirlilik yükü ve atıksu miktarı nispetinde tahsil eder. Atık üreticileri uygun metot ve teknolojiler ile atıklarını en az düzeye düşürecek tedbirleri almak zorundadırlar. Atıkların üretiminin ve zararlarının önlenmesi veya azaltılması ile atıkların geri kazanılması ve geri kazanılabilen atıkların kaynağında ayrı toplanması esastır. Atık yönetim plânlarının hazırlanmasına ilişkin esaslar, Bakanlıkça çıkarılacak yönetmelikle düzenlenir. Geri kazanım imkânı olmayan atıklar, yönetmeliklerle belirlenen uygun yöntemlerle bertaraf edilir. Büyükşehir belediyeleri ve belediyeler evsel katı atık bertaraf tesislerini kurmak, kurdurmak, işletmek veya işlettirmekle yükümlüdürler. Bu hizmetten yararlanan ve/veya yararlanacaklar, sorumlu yönetimlerin yapacağı yatırım, işletme, bakım, onarım ve ıslah harcamalarına katılmakla yükümlüdür. Bu hizmetten yararlananlardan, belediye meclisince belirlenecek tarifeye göre katı atık toplama, taşıma ve bertaraf ücreti alınır. Bu fıkra uyarınca tahsil edilen ücretler, katı atıkla ilgili hizmetler dışında kullanılamaz. Üretici, ithalatçı ve piyasaya sürenlerin sorumluluğu kapsamında yükümlülük getirilen üreticiler, ithalatçılar ve piyasaya sürenler, ürünlerinin faydalı kullanım ömrü sonucunda oluşan atıklarının toplanması, taşınması, geri kazanımı, geri dönüşümü ve bertaraf edilmelerine dair yükümlülüklerinin yerine getirilmesi ve bunlara yönelik gerekli harcamalarının karşılanması, eğitim faaliyetlerinin gerçekleştirilmesi amacıyla Bakanlığın koordinasyonunda bir araya gelerek tüzel kişiliği haiz birlikler oluştururlar. Bu kapsamda yükümlülük getirilen kurum ve kuruluşların sorumluluklarının bu birliklere devrine ilişkin usûl ve esaslar Bakanlıkça çıkarılacak yönetmeliklerle belirlenir. Tehlikeli atık üreticileri, yönetmelikle belirlenecek esaslara göre atıklarını bertaraf etmek veya ettirmekle yükümlüdürler. Atık geri kazanım, geri dönüşüm ve bertaraf tesislerini kurmak ve işletmek isteyen gerçek ve/veya tüzel kişiler, yönetmelikle belirlenen esaslar doğrultusunda, ürün standardı, ürünlerinin satışa uygunluğu ve piyasadaki denetimi ile ilgili izni, ilgili kurumlardan almak kaydı ile Bakanlıktan lisans almakla yükümlüdür. Evsel atıklar hariç olmak üzere, atık taşıma ve/veya toplama işlerini yapan kurum veya kuruluşlar Bakanlıktan lisans almak zorundadır. Evsel atıkların taşıma ve toplama işlerini yapan kurum ve kuruluşlar Bakanlıkça kayıt altına alınır. Atıksu arıtımı, atık bertarafı ve atık geri kazanım tesisleri yapmak amacıyla belediyelerin hizmet birlikleri kurmaları halinde, bu hizmet birliklerine araştırma, etüt ve proje konularında Bakanlıkça teknik ve malî yardım yapılır. Tesis yapım projeleri ise bu Kanunun 18 inci maddesi çerçevesinde kredi veya yardım ile desteklenebilir. Kredi borcunun geri ödenmemesi durumunda 6183 sayılı Amme Alacaklarının Tahsil Usulü Hakkında Kanun hükümlerine göre takip yapılır ve öncelikle 2380 sayılı Belediyelere ve İl Özel İdarelerine Genel Bütçe Vergi Gelirlerinden Pay Verilmesi Hakkında Kanunun ek 4 üncü maddesi hükümleri çerçevesinde ilgili belediyelerin İller Bankasındaki paylarından tahsil olunur. Arıtma ve bertaraf etme yükümlülüğüne tâbi tesis ve işletmeler ile yerleşim birimleri, bu yükümlülüğe istinaden kurulması zorunlu olan arıtma ve bertaraf sistemleri, atıksu arıtma ve ön arıtma sistemleri ile atıksu altyapı sistemlerinin kurulması, onarımı, ıslahı, işletilmesi ve harcamalara katkı paylarının belirlenmesi ile ilgili usûl ve esaslar Bakanlıkça yönetmeliklerle düzenlenir. Bu konuda diğer kanunlarla verilen yetkiler saklıdır. Bu Kanunun uygulanmasını sağlamak üzere alınması gereken izinler ve bu izinlerin tâbi olacağı usûl ve esaslar Bakanlıkça çıkarılacak yönetmeliklerle belirlenir. Faaliyetleri nedeniyle çevreye olumsuz etkileri olabilecek kurum, kuruluş ve işletmeler tarafından, faaliyetlerine ilişkin olası bir kaza durumunda, kazanın çevreye olumsuz etkilerini kontrol altına almak ve azaltmak üzere uygulanacak acil durum plânları hazırlanması zorunludur. Buna ilişkin usûl ve esaslar Bakanlıkça çıkarılacak yönetmelikle düzenlenir. Bu plânlar dikkate alınarak Bakanlığın koordinasyonunda ilgili kurum ve kuruluşlarca yerel, bölgesel ve ulusal acil durum plânları hazırlanır. Liman, tersane, gemi bakım-onarım, gemi söküm, marina gibi kıyı tesisleri; kendi tesislerinde ve gemi ve diğer deniz araçlarında oluşan petrollü, yağlı katı atıklar ve sintine, kirli balast, slaç, slop gibi sıvı atıklar ile evsel atıksu ve katı atıkların alınması, depolanması, taşınması ve bertarafı ile ilgili işlemleri ve tesisleri yapmak veya yaptırmakla yükümlüdürler. Buna ilişkin usûl ve esaslar Bakanlıkça çıkarılacak yönetmelikle belirlenir. Denetim, bilgi verme ve bildirim yükümlülüğü(1) Madde 12 – (Değişik: 26/4/2006 – 5491/9 md.) Bu Kanun hükümlerine uyulup uyulmadığını denetleme yetkisi Bakanlığa aittir. Gerektiğinde bu yetki, Bakanlıkça; il özel idarelerine, çevre denetim birimlerini kuran belediye başkanlıklarına, Denizcilik Müsteşarlığına, Sahil Güvenlik Komutanlığına, 13/10/1983 tarihli ve 2918 sayılı Karayolları Trafik Kanununa göre belirlenen denetleme görevlilerine veya Bakanlıkça uygun görülen diğer kurum ve kuruluşlara devredilir. Denetimler, Bakanlığın belirlediği denetim usûl ve esasları çerçevesinde yapılır. Askerî işyerleri, askerî bölgeler ve tatbikatların bu Kanun çerçevesindeki denetimi ve neticelerine ait işlemler; Genelkurmay Başkanlığı, Millî Savunma Bakanlığı, İçişleri Bakanlığı ve Bakanlık tarafından müştereken hazırlanacak yönetmeliğe göre yürütülür. İlgililer, Bakanlığın veya denetimle yetkili diğer mercilerin isteyecekleri bilgi ve belgeleri vermek, yetkililerin yaptıracakları analiz ve ölçümlerin giderlerini karşılamak, denetim esnasında her türlü kolaylığı göstermek zorundadırlar. İlgililer, çevre kirliliğine neden olabilecek faaliyetleri ile ilgili olarak, kullandıkları hammadde, yakıt, çıkardıkları ürün ve atıklar ile üretim şemalarını, acil durum plânlarını, izleme sistemleri ve kirlilik raporları ile diğer bilgi ve belgeleri talep edilmesi halinde Bakanlığa veya yetkili denetim birimine vermek zorundadırlar. Denetim, bilgi verme ve bildirim yükümlülüğüne ilişkin usûl ve esaslar Bakanlıkça çıkarılacak yönetmelikle düzenlenir. Tehlikeli kimyasallar ve atıklar(2) Madde 13 – (Değişik: 26/4/2006 – 5491/10 md.) Tehlikeli kimyasalların belirlenmesi, üretimi, ithalatı, atık konumuna gelinceye kadar geçen süreçte kullanım alanları ve miktarları, etiketlenmesi, ambalajlanması, sınıflandırılması, depolanması, risk değerlendirilmesi, taşınması ile ihracatına ilişkin usûl ve esaslar ilgili kurum ve kuruluşların görüşleri alınarak Bakanlıkça çıkarılacak yönetmelikle belirlenir. Yönetmelik hükümlerine aykırı olarak piyasaya sürüldüğü tespit edilen tehlikeli kimyasallar ile bu kimyasalları içeren eşya, bunları satış ve kullanım amacıyla piyasaya süren kurum, kuruluş ve işletmelere toplattırılır ve imha ettirilir. Nakil ve imha için gereken masraflar ilgililerince karşılanır. Bu yükümlülüğün yerine getirilmemesi halinde bu masraflar, ilgili kurum, kuruluş ve işletmelerden 6183 sayılı Amme Alacaklarının Tahsil Usulü Hakkında Kanun hükümlerine göre tahsil edilir. Başbakanlık Dış Ticaret Müsteşarlığı bazı yakıtların, maddelerin, atıkların, tehlikeli kimyasallar ile bu kimyasalları içeren eşyaların ithalini, Bakanlığın görüşünü alarak yasaklayabilir veya kontrole tâbi tutabilir. Tehlikeli atıkların ithalatı yasaktır. Tehlikeli atıkların tanımı ile tehlikeli atıkların oluşum aşamasından itibaren toplanması, ayrılması, geçici ve ara depolanması, geri kazanılması, yeniden kullanılması, taşınması, bertarafı, bertaraf sonrası kontrolü, ihracatı, transit geçişi, ambalajlanması, etiketlenmesi, denetimi ve atık yönetim plânlarının hazırlanması ile ilgili usûl ve esaslar Bakanlıkça yayımlanacak yönetmelikle belirlenir. Tehlikeli kimyasalların üretimi, satışı, depolanması, kullanılması ve taşınması faaliyetleri ile tehlikeli atıkların toplanması, taşınması, geçici ve ara depolanması, geri kazanımı, yeniden kullanılması ve bertarafı faaliyetlerinde bulunanlar, bu Kanun ile getirilen yükümlülükler açısından müteselsilen sorumludurlar. Sorumlular bu Kanunda belirtilen meslekî faaliyetleri nedeniyle oluşacak bir kaza dolayısıyla üçüncü şahıslara verebilecekleri zararlara karşı tehlikeli kimyasal ve tehlikeli atık malî sorumluluk sigortası yaptırmak zorunda olup, faaliyetlerine başlamadan önce Bakanlıktan gerekli izni alırlar. Sigorta yaptırma zorunluluğuna uymayan kurum, kuruluş ve işletmelere bu faaliyetler için izin verilmez. –––––––––––––––––––– (1) Bu madde başlığı "Denetim" iken, 26/4/2006 tarihli ve 5491 sayılı Kanunun 9 uncu maddesiyle metne işlendiği şekilde değiştirilmiştir. (2) Bu madde başlığı”Zararlı kimyasal maddeler:” iken, 26/4/2006 tarihli ve 5491 sayılı Kanunun 10 uncu maddesiyle metne işlendiği şekilde değiştirilmiştir. Bu maddede öngörülen zorunlu malî sorumluluk sigortası, malî yeterliliklerine göre, Hazine Müsteşarlığınca belirlenen sigorta şirketleri tarafından ya da bağlı olduğu Bakanın onayı ile Hazine Müsteşarlığınca çıkarılacak bir yönetmelikle oluşturulacak bir havuz tarafından temin edilir. Havuzun yönetim ve işleyişi ile ilgili usûl ve esaslar da aynı yönetmelikle belirlenir. Havuz, sigorta ve/veya reasürans havuzu şeklinde oluşturulur. Kamu adına havuzda belirli bir payın korunmasına karar verilmesi hususunda Hazine Müsteşarlığının bağlı bulunduğu Bakan yetkilidir. Havuzun başlangıç giderleri için geri ödenmek üzere Hazine Müsteşarlığı bütçesinden avans kullandırılabilir. Havuzun yükümlülükleri; prim gelirleri ve bunların getirileri, piyasalardan sağlayacağı reasürans ve benzeri korumalar ve ödeme gücüyle sınırlıdır. Bakanlık, Hazine Müsteşarlığının uygun görüşünü almak kaydıyla, tehlikeli kimyasallar ve tehlikeli atıklarla ilgili faaliyetlerde bulunanların malî sorumluluk sigortası yaptırma zorunluluğunu, bu sigortaya ilişkin genel şartlar ile tarife ve talimatların yürürlüğe girmesinden itibaren en çok bir yıl ertelemeye yetkilidir. Her bir sorumlu tarafından yaptırılacak malî sorumluluk sigortasına ilişkin sigorta genel şartları Hazine Müsteşarlığınca onaylanır. Malî sorumluluk sigortası tarife ve talimatları Hazine Müsteşarlığının bağlı olduğu Bakan tarafından tespit edilir. Hazine Müsteşarlığının bağlı olduğu Bakan tarifeyi serbest bırakmaya yetkilidir. Gürültü: Madde 14 – (Değişik: 26/4/2006 – 5491/11 md.) Kişilerin huzur ve sükununu, beden ve ruh sağlığını bozacak şekilde ilgili yönetmeliklerle belirlenen standartlar üzerinde gürültü ve titreşim oluşturulması yasaktır. Ulaşım araçları, şantiye, fabrika, atölye, işyeri, eğlence yeri, hizmet binaları ve konutlardan kaynaklanan gürültü ve titreşimin yönetmeliklerle belirlenen standartlara indirilmesi için faaliyet sahipleri tarafından gerekli tedbirler alınır. Faaliyetlerin durdurulması: Madde 15 – (Değişik: 26/4/2006 – 5491/12 md.) Bu Kanun ve bu Kanun uyarınca yayımlanan yönetmeliklere aykırı davrananlara söz konusu aykırı faaliyeti düzeltmek üzere Bakanlıkça ya da 12 nci maddenin birinci fıkrası uyarınca denetim yetkisinin devredildiği kurum ve merciler tarafından bir defaya mahsus olmak üzere esasları yönetmelikle belirlenen ve bir yılı aşmamak üzere süre verilebilir. Faaliyet; süre verilmemesi halinde derhal, süre verilmesi durumunda, bu süre sonunda aykırılık düzeltilmez ise Bakanlıkça ya da 12 nci maddenin birinci fıkrası uyarınca denetim yetkisinin devredildiği kurum ve merciler tarafından kısmen veya tamamen, süreli veya süresiz olarak durdurulur. Çevre ve insan sağlığı yönünden tehlike yaratan faaliyetler süre verilmeksizin durdurulur. Çevresel Etki Değerlendirmesi incelemesi yapılmaksızın başlanan faaliyetler Bakanlıkça, proje tanıtım dosyası hazırlanmaksızın başlanan faaliyetler ise mahallin en büyük mülkî amiri tarafından süre verilmeksizin durdurulur. Süre verilmesi ve faaliyetin durdurulması, bu Kanunda öngörülen cezaların uygulanmasına engel teşkil etmez. Tehlikeli hallerde faaliyetin durdurulması: Madde 16 – (Mülga: 26/4/2006 – 5491/24 md.) DÖRDÜNCÜ BÖLÜM (1) Çevre Kirliliğini Önleme Fonu Fonun kurulması ve fondan yararlanma: Madde 17 – (Mülga: 21/2/2001 - 4629/6 md.) Çevre katkı payı alınması, diğer gelirler ve bütçe ödenekleri(2) Madde 18 – (Mülga: 21/2/2001 - 4629/6 md.; Yeniden düzenleme: 26/4/2006-5491/13 md.) Çevre kirliliğinin önlenmesi, çevrenin iyileştirilmesi ve çevre ile ilgili yatırımların desteklenmesi amacıyla; a) İthaline izin verilen kontrole tâbi yakıt ve atıkların CIF bedelinin yüzde biri ile hurdaların CIF bedelinin binde beşi oranında alınacak miktar, b) Büyükşehir belediyeleri su ve kanalizasyon idarelerince tahsil edilen su ve kullanılmış suları uzaklaştırma bedelinin yüzde biri, çevre katkı payı olarak tahsil edilir. Tahsil edilen bu tutarlar, ilgililerce en geç ertesi ayın onbeşine kadar ilgili mal saymanlıkları hesaplarına aktarılır ve bütçeye gelir kaydedilir. Ayrıca, yurt içi ve yurt dışından temin edilecek her türlü hibe, yardım ve bağışlar ile kredi anapara geri dönüşleri ve kredi faizleri de tahsil edilerek, Çevre ve Orman Bakanlığı Merkez Saymanlık Müdürlüğü hesabına yatırılır ve bütçeye gelir kaydedilir. Bu maddede sayılan gelirlerin tahsilatında 6183 sayılı Amme Alacaklarının Tahsil Usulü Hakkında Kanun hükümleri uygulanır. Bakanlar Kurulu (a) ve (b) bentlerinde yer alan oranları ayrı ayrı veya topluca sıfıra kadar indirmeye veya kanunî oranına kadar yükseltmeye yetkilidir. Atıksu arıtımı, atık bertarafı ve katı atık geri kazanım tesislerinin gözetim, fizibilite, etüt, proje ve inşaat işlerinin kredi veya yardım suretiyle desteklenmesi ile çevre düzeni plânlarının yapımı, hava, su ve toprak kalitesinin ölçüm ve izleme ağının oluşturulması, gürültünün önlenmesi ile ilgili etüt ve projelerin desteklenmesi, acil müdahale plânlarının hazırlanması, Çevresel Etki Değerlendirmesi faaliyetleri, havza koruma plânı çalışmaları, biyolojik çeşitliliğin korunması, çölleşme ve iklim değişikliği ile mücadele çalışmaları, stratejik çevresel değerlendirme, nesli tehlikede olan bitki ve hayvan türleri ile yaşama ortamlarının korunması, uluslararası sözleşmelerden kaynaklanan yükümlülüklerin karşılanması, çevre eğitimi ve yayını ile ilgili faaliyetler ve ihtisas komisyonları için yapılan harcamalar ile çevre kirliliğinin giderilmesi çalışmaları için Bakanlık bütçesine, yılı bütçe gelirleri içerisinde tahmin edilen yukarıdaki gelirler karşılığı ödenek öngörülür. Yukarıda sayılan gelirlerin tahsili ve bütçede öngörülen ödeneklerin kullanımı ile ilgili usûl ve esaslar, Maliye Bakanlığının uygun görüşü üzerine Bakanlıkça çıkarılacak yönetmelikle belirlenir. Fonun kullanılması: Madde 19 – (Mülga: 21/2/2001 - 4629/6 md.) –––––––––––––––––––– (1)“Dördüncü Bölüm” başlığı 21/2/2001 tarih ve 4629 sayılı Kanunun 6 ncı maddesiyle yürürlükten kaldırılmıştır. (2) Bu madde başlığı "Fonun gelirleri" iken, 26/4/2006 tarihli ve 5491 sayılı Kanunun 13 üncü maddesiyle metne işlendiği şekilde değiştirilmiştir.

http://www.biyologlar.com/cevre-kanunu-bolum-1

GENETİK KOPYALAMA

İşçilerin tulumları beyazdı; ellerinde soğuk, kadavra rengi kauçuk eldivenler vardı. Işık donuktu, ölüydü: Bir hayalet sanki!.. Yalnız mikroskopların sarı borularından zengin ve canlı bir öz akıyor, bir baştan bir başa uzanan çalışma masalarının üzerinde tatlı çizgiler yaratarak, parlatılmış tüpler boyunca tereyağ gibi yayılıyordu. "Bu da" dedi Müdür kapıyı açarak, "döllenme odası işte..." Doğal olarak, ilkin döllenmenin cerrahlığa dayanan başlangıcından söz etti, derken "Toplum uğruna seve seve katlanılan bir ameliyattır bu" dedi, "altı maaşlık ikramiyesi de caba... Bir yumurta bir oğulcuk, bir ergin; bu normal... Oysa, Bokanovskilenmiş bir yumurta tomurcuk açar, ürer bölünür. Eş ikizler yalnız insanların doğurduğu o eski zamanlardaki gibi yumurtanın bazen rastlantıyla bölünmesinden oluşan ikiz, üçüz parçaları değil, düzinelerle yirmişer, yirmişer." Müdür "yirmişer" diyerek sanki büyük bir bağışta bulunuyormuş gibi kollarını iki yana açtı; "yirmisi birden!.." Ama öğrencilerden biri bunun yararının ne olduğunu sormak gibi bir sersemlikte bulundu. "İlahi yavrucuğum!" Müdür olduğu yerde ona dönüvermişti. "Görmüyor musun? Görmüyor musun, kuzum?" Bir elini kaldırdı; heybetli bir duruşa geçmişti. "Bokanovski süreci toplumsal dengenin en başta gelen araçlarından biridir! Milyonlarca eş ikiz; toptan üretim ilkesinin sonunda biyolojiye uygulanmış olması..." YUKARIDAKİ PARÇA, Aldous Huxley’in 1930’larda yazdığı, geçtiğimiz ay bilim gündemini birdenbire fetheden "koyun kopyalama" deneyine değinen haberlerde sıkça gönderme yapılan, Brave New World (Cesur Yeni Dünya) romanının girişinden kısaltılarak alınmış bir bölüm. Huxley, olumsuz bir ütopya (distopya) niteliği taşıyan romanında, Alfa, Beta, Gama, Delta ve Epsilon adlarıyla, kendi içinde genetik özdeşlerden oluşan beş farklı sınıfa bölünmüş bir toplum tablosu çiziyor. Özdeş vatandaşların üretildiği bu hayali "Bokanovski Süreci", çağdaş anlamıyla klonlama (veya genetik kopyalama) olmasa da, sürecin yolaçtığı etik (ahlaki) ve toplumbilimsel kaygılar, sekiz ay önce İskoçya’da gerçekleştirilen ve geçtiğimiz ay kamuoyuna duyurulan gelişmelerin doğurduklarına denk düşüyor. Şimdi herkesin tartıştığı, son gelişmelerin insanlık için daha insanca bir dönemin mi yoksa, hızla gerçeğe dönüşen korkunç bir distopyanın mı kapısını araladığı. Şubat ayının 22’sinden itibaren, İskoçya’nın Edinburg kentinde, biyoteknoloji alanında tuhaf bir gelişme kaydedildiği, "Dünyanın sonu", "Frankenstein" gibi ifadeleri de içeren dedikodularla birlikte etrafta konu olmaya başladı. Bilim çevreleri de basın da şaşkındı, çünkü, seçkin yazarların ve bazı bilim adamlarının birkaç gündür zaten haberdar oldukları ve konuyu "patlatmayı" bekledikleri bu gelişme, bir biçimde basına sızmış, dilden dile dolaşmaya başlamıştı bile. Normalde pek de ciddiye alınmayacak böyle bir "dedikodunun" bu denli yayılabilmesi, işin içine çeşitli dallarda makalelere yer veren saygın bilimsel dergi Nature’ın adının karışmasıyla olmuştu. Gerçekten de Nature, dedikodu niteliğini fersah fersah aşan bir bilimsel gelişmeyle ilgili bir makaleyi 27 Şubat’ta yayınlayacağını bilim yazarlarına duyurmuş ve bu tarihe kadar "ambargolu" olan bir basın bülteni dağıtmıştı. Batı ülkelerinde yazarlar normal olarak bu ambargolara uyar, hazırladıkları yazıları, ambargonun bittiği tarihte, aynı anda yayına verirler. Ancak, aralarında ünlü The Observer’ın da bulunduğu bazı dergi ve gazeteler ambargoyu çoktan delmiş, konuyu kamuoyuna duyurmuştu bile. Haberin, kaynağı olan Nature ve ambargoya saygı gösteren çoğu nitelikli dergi ve gazetede yer almaması da, dedikodu trafiğini artırmış, ortaya atılan spekülasyonlarla beklenenden fazla ilgi toplanabilmişti. Hatta, Mart ayının başlarında, koyun klonlama haberinin yarattığı ilgi ortamını değerlendirmek isteyen bazı haberciler, aynı yöntemle Oregon Primat Araştırmaları Merkezi’nde maymunların klonlandığını öne sürdüler. Oysa, Oregon’da gerçekleştirilen, embriyo hücrelerinin oldukça sıradan bir yöntemle çoğaltılmasıyla yapılmış bir deneydi. Klonlama, yetişkin bir canlıdan alınan herhangi bir somatik (bedene ait) hücrenin kullanılmasıyla canlının genetik ikizinin yaratılmasını açıklamakta. Kavramsal temelleri çoktandır hazır olan bu işlemin uygulamada gerçekleştirilemeyeceği düşünülüyordu. Edinburg’daki Roslin Enstitüsünden Dr. Wilmut ve ekibi bunu başarmış gibi görünüyor. "Ben bu filmi daha önce seyretmiştim!" diyenleri rahatlatmak için hemen belirtelim ki, aynı ekip 1995 yılında embriyo hücrelerini kullanarak yine ikiz koyunlar üretmiş ve bunu duyuran makaleyi yine Nature dergisinde yayımlatmıştı. Bu deney de basına yansımış, ancak, son gelişmeler kadar yankı uyandırmamıştı. Ne de olsa bu yöntem, döllenmiş yumurtanın kazayla bölünüp tek yumurta ikizlerine yol açtığı bildik süreçlerden farksızdı. Sıklıkla unutulduğu için tekrarlamakta yarar var ki, Wilmut’un son başarısının önemi, işe somatik bir hücrenin çekirdeğiyle başlamasında yatıyor. Bu başarının ortaklarını anarken PPL Tıbbi Araştırmalar şirketini de atlamamak gerek. Borsalarda tırmanışa geçen hisseleriyle gelişmenin meyvelerini şimdiden yemeye başlayan PPL, projenin hem amaçlarını belirleyerek hem de maddi olanakları yaratarak kuzu Dolly’nin varlığının temel sebebi olmuş. Dr. Wilmut’un gerçekleştirdiği başarı şöyle özetlenebilir: Yetişkin bir koyundan alınan somatik bir hücrenin çekirdeğini dahice bir yöntemle, başka bir koyuna ait, çekirdeği alınmış bir yumurtaya yerleştirmek ve bilinen "tüp bebek" yöntemiyle yeni bir koyuna yaşam vermek. Adını, ünlü şarkıcı Dolly Parton’dan alan kuzu Dolly, isim annesinin değilse de, DNA annesinin genetik ikizi. Dolly, sevimli görünüşüyle kamuoyunun sempatisini kazanmış ve tüm bu süreç ilginç bir bilimsel oyun olarak sunulmuşsa da gerçekte deney oldukça iyi belirlenmiş bilimsel ve maddi hedefleri olan, soğukkanlı bir süreç. Zaten Dolly’nin araştırmacılar arasındaki adı da en az varlığı kadar "soğukkanlıca" seçilmiş: 6LL3... PPL’in idari sorumlusu Dr. Ron James, şirket sırlarını kaybetme kaygısıyla maddi hedeflerini pek açığa vurmamakla birlikte, hemofili hastaları için koyunlara insan kanı pıhtılaşma faktörü ürettirmeyi de içeren pek çok önemli ticari hedefin ipuçlarını veriyor. PPL ve Roslin Enstitüsü’nün çalışmaları, geçmişi çok eskilere dayanan ve önemli gelişmelerin kaydedildiği bir alan olan transjenik (gen aktarılmasıyla ilgili) araştırmaların bir üst aşamaya, nükleer transfer (çekirdek aktarılması) evresine doğru ilerletilmesinden başka birşey değil. Yıllardır başarıyla sürdürülen transjenik çalışmalarda tek boynuzlu keçi, üç bacaklı tavuk gibi görünüşte çarpıcı, yararı kısıtlı çalışmaların yanı sıra, insan proteinlerinin hayvanlara ürettirilmesi gibi, modern tıp için çığır açıcı sayılabilecek başarılar kaydedildi. Son gelişmelere imzasını atan ekip, daha önce insan bünyesince üretilen molekülleri gen transferi yöntemiyle bir koyuna ürettirmeyi başarmıştı. Söz konusu deneyde gerek duyulan moleküllerin koyunun tüm hücrelerinde değil, sadece süt bezlerinde sentezlenmesinin sağlanması, koyunun "ilaç fabrikası" olarak değerlendirilmesini beraberinde getiriyordu. Dolly başarısının en önemli potansiyel yararı da bununla ilgili zaten. Gen transferi yöntemiyle, istediğiniz maddeyi sentezleyebilen bir canlıya sahip olduğunuzda, madde verimini artırmak üzere aynı süreci zaman ve para harcayarak yinelemeye çabalamak yerine elinizdeki canlının genetik ikizlerini yaratabilirseniz, ticari değer arz edebilecek miktarda ilaç hammaddesi üretimine geçebilirsiniz. Elinizde birkaç on tane genetik özdeş canlı biriktikten sonra, bu küçük sürüyü doğal yollardan üremeye bırakacak olursanız, hem "yatırımınız" kendi kendine büyüyecek, hem de genetik çeşitlilik yeniden oluşmaya başlayacağından, tek bir virüs tipinin tüm "fabrikayı" yok etmesinin önünü alacaksınız demektir. Biraz Ayrıntı İskoç ekibin gerçekleştirdiği klonlama deneyinin, dünyanın pek çok bölgesine dağılmış sayısız standart biyoteknoloji laboratuvarında "kolayca" gerçekleştirilebileceği söyleniyor. Yine de uygulanan yöntem, günlük gazetelerdeki basit şemalarda anlatıldığı kadar kolay ve hemen tekrarlanabilir türden değil. İskoç ekibin başarısı ve önceki sayısız benzeri çalışmanın başarısızlığı, Wilmut’un, verici koyundan alınan hücre çekirdeğiyle, kullanılan embriyonik hücrenin "frekanslarını" çok hassas biçimde çakıştırabilmesine dayanıyor. Bu yöntemle araştırmacılar, yetişkin çekirdeğin genetik saatini sıfırlamayı, tüm gelişim sürecini başa almayı becerebilmişler. Yöntemin ayrıntılarına girmeden önce bazı temel kavramlara açıklık getirmekte yarar var. Çoğu memeli canlı gibi insan bedeni de milyarlarca hücreden oluşuyor. Bu hücrelerin milyonlarcası her saniye bölünmeyi sürdürerek beden gelişimini devam ettiriyor ve yıpranmış hücreleri yeniliyor. Bu hücrelerin önemli kısmı bedenimizin belli başlı bölümlerini oluşturan "somatik hücreler." Tek istisna, üreme hücreleri. Eşeyli üreme, gametlerin (sperm ve yumurta) ortaya çıktığı "mayoz bölünme"yle başlıyor. Cinsel birleşme sonucunda, spermin yumurtayı döllemesiyle de yeni bir canlının ilk hücresi "zigot" oluşuyor. Bu noktadan sonra gelişmeye dönük hücre bölünmeleri, "mayoz" değil, "mitoz" yoluyla ilerliyor. Koyun ve insan hücrelerinin de dahil olduğu ökaryotik yani, çekirdeği olan hücreler, farklı gelişim evreleri içeren bir yaşam döngüsü geçiriyorlar. Bu döngüyü, hücrenin görece durağan olduğu "interfaz" ve belirgin biçimde bölünmenin gerçekleştiği mitoz evrelerine ayırmak mümkün. Hücre, yaşam döngüsünün yüzde doksan kadarını interfaz evresinde geçiriyor. Aslında, bu duraklama evresi göründüğü kadar sakin değil; hücre, tüm bileşenlerini DNA’yı sona bırakacak biçimde çoğaltarak, bölünmeye hazırlanıyor. Alt evreleri son derece iç içe girmiş olan interfaz evresini işlevsellik açısından G1, S ve G2 alt evrelerine ayırmak yerleşmiş bir gelenek. Yani, hücrenin yaşam döngüsü bu üç evre ve M (mitoz)’dan oluşuyor. G1 evresi, DNA dışındaki bileşenlerin çoğaldığı bir dinlenme dönemi. S, DNA’nın bölünmesiyle sonuçlanan bir geçiş evresi. G2 ise, iç gelişmenin tamamlanıp, hücrenin mitoz yoluyla bölünmeye hazırlandığı süreci içeriyor. Hücrelerin hangi evreyi ne kadar sürede tamamlayacakları bir biçimde programlanmış durumda. Belli bir organizmanın tüm hücreleri bu evreleri aynı sürede tamamlıyorlar. Yine de, ani çevresel koşul değişiklikleri hücreleri G1 evresinde kıstırabiliyor; sözgelimi, besleyici maddelerin miktarı birdenbire minimum düzeye düştüğünde. G1 evresinin belli bir aşamasında, öncesinde bu duraklamaya izin verilen sabit bir kritik noktası var. Bu kritik nokta aşılırsa, çevresel koşullar ne yönde olursa olsun, DNA replikasyonunun önü alınamıyor. İleride göreceğimiz gibi, bu noktanın denetim altında tutulabilmesi, Wilmut ve ekibinin başarılı bir klonlama gerçekleştirebilmelerinin altın anahtarı olmuştur. Bu noktada bir parantez açarak G1, S, G2 ve M evrelerinin denetim altına alınmasının, hücrenin yaşam döngüsünü olduğu kadar, hücrenin özelleşmesini, sözgelimi beyinden veya kas hücrelerinden hangisine dönüşeceğini de kontrol altına alabilmeyi, bir başka deyişle, hücrenin genetik saatini sıfırlamayı sağladığını ekleyelim. Wilmut ve ekibi Dolly’i klonlayıncaya kadar bu sürecin tersinmez olduğu, söz gelimi, bir defa kas hücresi olmaya karar vermiş bir hücrenin yeniden programlanamayacağı zannediliyordu. Peki Wilmut bunu nasıl başardı? Soruyu tersinden cevaplayacak olursak, diğerlerinin bunu başaramamalarının nedeninin, kullandıkları somatik hücrelerin çekirdeklerini S veya G2 evrelerindeki konakçı hücrelere yerleştirmeleri olduğunu söyleyebiliriz. Eski kuramsal bilgilere göre bu yöntemin işe yaraması gerekiyordu, çünkü çekirdeğin mitoza yaklaşmış olması avantaj olarak görülüyordu. Ancak bu denemelerde, işler bir türlü yolunda gitmedi. Kaynaştırmadan sonra, hücre fazladan bir parça daha mitoz geçiriyor ve yararsız, kopuk kromozom parçaları meydana geliyordu. Bu "korsan" genler, gelişimin normal seyrini sürdürmesi için ciddi bir engel oluşturuyordu. Dersini çok iyi çalışmış olan Wilmut, bu olumsuz deneyleri değerlendirerek hücreyi G1 evresinin kritik noktadan önceki duraksama döneminde, "G0 evresinde" kıstırmaya karar verdi. Verici koyundan alınan meme dokusu hücrelerini kültür ortamında gelişmeye bırakan Wilmut, hücrelerin geçirdiği evreleri sıkı gözetim altında tutarak bir hücreyi G0 evresinde kıstırıp bu haliyle durağanlığa bırakmayı başarmıştı. Bunun için, hücrenin besin ortamını neredeyse öldürme sınırına kadar geriletmiş, tüm süreci dondurarak bir anlamda genetik saati de sıfırlayabilmişti. Üstelik bu evre, kaynaştırılacağı yumurta hücresinin mayoz gelişim sırasında girdiği, bu işlem için en uygun olan metafaz-II evresiyle de mükemmel bir uyum içindeydi. İşlemin diğer kısımları yemek tariflerinde olduğu kadar sıradan ve kolay uygulanabilir nitelikte. G0 evresindeki çekirdek metafaz-II evresindeki yumurtayla kaynaştırılıp, normal besin koşulları ve hafif bir elektrik şoku etkisiyle olağan çoğalma sürecine yeniden sokulduğunda, her şey tüp bebek olarak bilinen, in vitro fertilizasyon sürecindeki işleyişe uygun hale geliyor. Zigot, anne koyunun rahmine yerleştiriliyor ve gerekli hormonlarla normal hamilelik süreci başlatılıyor. Wilmut ve ekibinin gerçekleştirdikleri hakkında bilinenler, yukarıda kaba hatlarıyla anlatılanlarla sınırlı. Sürecin duyurulmayan kritik bir evresi varsa, bu ticari bir sır olarak kalacağa benziyor. Ancak, herkesin olup bitenler hakkında aynı bilgilere sahip olması, deneyin başarısı konusunda kimsenin şüphe duymamasını gerektirmiyor. 277 denemeden sadece birinin başarılı olması başta olmak üzere, çoğu uzmanın takıldığı pek çok soru işareti var. Herşeyin ötesinde, herhangi bir olgunun bilimsel gelişme olarak kabul edilmesi için, sürecin yinelenebilirliğinin gösterilmesi gerekiyor. Bir embriyolog, Jonathan Slack, çok daha temel şüpheleri öne sürüyor: "Araştırmacılar, yumurta hücresindeki DNA’ları tümüyle temizleyememiş olabilirler. Dolayısıyla Dolly, sıradan bir koyun olabilir." Slack, alınan meme hücresinin henüz tamamen özelleşmemiş olabileceğini, böyle vakalara meme hücrelerinde, bedenin diğer kısımlarına göre daha sık rastlanılabildiğini de ekliyor. Zaten Wilmut da, bedenin diğer kısımlarından alınan hücrelerin aynı sonucu verebileceğinden bizzat şüpheli. Örneğin, büyük olasılıkla kas veya beyin hücrelerinin asla bu amaçla kullanılamayacaklarını belirtiyor. Üstüne üstlük, koyun bu deneylerde kullanılabilecek canlılar arasında biraz "ayrıcalıklı" bir örnek. Koyun embriyolarında hücresel özelleşme süreci zigot ancak 8-16 hücreye bölündükten sonra başlıyor. Geleneksel laboratuvar canlısı farelerde ise aynı süreç ilk bölünmeden itibaren gözlenebiliyor. İnsanlarda ise ikinci bölünmeden itibaren... Bu durum, aynı deneyin fare ve insanlarda asla başarılı olamaması olasılığını beraberinde getiriyor. Dile getirilen açık noktalardan biri de, hücrelerde DNA barındıran tek organelin çekirdek olmayışı. Kendi DNA’sına sahip organellerden mitokondrinin özellikle önem taşıdığı savlanıyor. Memeli hayvanlarda mitokondriyal DNA, embriyo gelişimi sırasında sadece anneden alınıyor. Her yumurta hücresi, farklı tipte DNA’lara sahip yüzlerce mitokondriyle donatılmış. Bu mitokondriler zigotun bölünmesinin ileri evrelerinde, embriyo hücrelerine dengeli bir biçimde dağılıyor; ancak, canlının daha ileri gelişim evrelerinde, bu denge belli tipteki DNA’lara doğru kayabiliyor. Parkinson, Alzheimer gibi hastalıkların temelinde bu mitokondriyal DNA kayması sürecinin etkileri var. Bu yüzden kimileri, sağlıklı bir kuzu olarak doğan Dolly’nin, zigot gelişimine müdahele edilmiş olması yüzünden sağlıksız bir koyun olarak yaşlanabileceğini öne sürüyorlar. Şimdilik Dolly’nin tek sağlıksız yönü, basına teşhir edilirken sabit tutulması amacıyla fazla beslenmesi yüzünden ortaya çıkan tombulluğu. Klonlamalı mı? Klonlamanın özellikle de insan klonlama konusunun etik boyutu kamuoyunca, günlük yaşamda kültürün, temel bilimsel birikimin, tarih, siyaset ve toplumbilimin en yaygın ve temel kavramlarıyla tartışılabilir nitelik kazanmıştır. Nükleer enerji kullanımı, hormon destekli tarım, ozon tabakasına zarar veren gazların üretimi gibi, farklı toplum kesimlerince kolayca anlaşılabilir ve tartışılabilir kabul edilen klonlama, şimdiden kamuoyunun gündeminde yerini aldı. Kamuoyunun, bilimsel ve teknolojik gelişmelerin uygulanıp uygulanmaması konusunda birtakım ahlaki gerekçelerle ne şekilde ve ne ölçüde yaptırım uygulayabileceği tartışmalı olsa da, şu anda kamuoyunun isteksizliği klonlama çalışmalarının daha ileri aşamalara taşınmasına en güçlü engel olarak gösteriliyor. Oysa, "tüp bebek" diye bilinen in vitro fertilizasyonun, başlangıçtaki şiddetli tepkilerden sonra kolayca kabullenilmesi, işin içine "çocuk sahibi olma isteği ve hakkı" karıştığı durumlarda (aynı argüman klonlama konusunda da sıkça kullanılıyor) toplumun ne kadar kolay ikna olabileceğinin bir göstergesi. Bilimkurgu romanları ve filmlerinde kaba hatlarıyla çokça tartışılmış olan klonlama konusunda halihazırda belli belirsiz bir kamuoyu "oluşturulmuş" durumda. Şu anda sürmekte olan tartışmaların bilinen yanlışlara yeniden düşmemesi için birkaç temel olguya açıklık getirmek gerekiyor. Olası yanılgıların en sık rastlananı, klonlanmış bir canlının, (tartışmalara sıkça insan da dahil ediliyor) genin alındığı canlının fizyolojik özellikleri bir yana, kişilik özellikleri bakımından özdeşi olacağı kanısı. Kazanılmış özelliklerin kalıtsal yolla taşınabileceği yanılgısı, Philosophie Zooloique (Zoolojinin Felsefesi) adlı ünlü yapıtı 1809 yılında yayınlanmış olan, Fransız zoolog Jean Baptiste Lamarck’a dayanıyor. Lamarck’ın görüşlerinin takipçileri, insanların gözlemlenebilir kişilik özelliklerinin önemli ölçüde kalıtsal nitelik taşıdığını savlayarak, çevresel koşulların gelişim üzerindeki etkilerini neredeyse tamamen yadsıyorlardı. Oysa, genetik, evrim, psikoloji gibi alanların ortaya koyduğu çağdaş ölçütler, kazanılmış karakterlerin kalıtsal nitelik gösteremeyeceğini ortaya koyarak, kişilik oluşumunda çevresel etmenlerin güçlü bir paya sahip olduğunu kanıtlamıştır. Bu bağlamda, basında da yankı bulan "koyunlar zaten birbirlerine benzerler" esprisinin aslında ciddi bilimsel doğrulara işaret ettiğinin altını çizmek gerekiyor. Klonlanmış bir koyunun, genetik annesinin genetik ikizi olduğu ölçülerek gösterilebilir bir gerçektir. Oysa, gözlemlenebilir kişilik özellikleri oldukça kısıtlı olan koyunların birbirlerine benzemeleri kaçınılmazdır. Çok daha karmaşık bir organizma olan insanoğlu, sayısız gözlemlenebilir kişilik özelliği sayesinde, genetik ikizinden kolayca ayırt edilebilir. Tüm bunların ötesinde, klonlanmış bir insanın sadece kişilik bakımından değil, fizyolojik ve bedensel özellikleri bakımından da, genetik ikizinden farklı olacağını peşinen kabullenmek gerekiyor. Bir bebeğin biçimsel özelliklerinin ana rahminde geçirdiği gelişim süreci içerisinde tümüyle DNA’sı tarafından belirlendiği görüşü yaygın bir yanılgı. DNA molekülü, insan geometrisine dair tüm bilgileri en sadeleşmiş biçimiyle bile bütünüyle kapsayamayacak kadar küçük. Çoğu biçimsel özellik, akışkan dinamiği, organik kimya gibi alanlardaki temel evrensel yasaların kontrolünde meydana geliyor. Bu süreçte de, her zaman için rastlantı ve farklılaşmalara yeterince yer var. Bir genetik ikiz, kuramsal açıdan, eşine en fazla eş yumurta ikizlerinin birbirlerine benzedikleri kadar benzeyebilir. Uygulamada ise, benzerlik derecesi çok daha düşük olacaktır; aynı rahimde aynı anda gelişmediği, aynı fiziksel ve kültürel ortamda doğup büyüyemediği için... İşin bu boyutunu da göz önünde bulunduran Aldoux Huxley, romanında, Bokanovski Süreci’yle çoğaltılmış bebekleri, yetiştirme çiftliklerinde psikolojik koşullandırmaya tutma gereği duymuştu. Benzer biçimde, 1976’da yazdığı The Boys from Brazil romanında Adolf Hitler’den klonlanan genç Hitler’lerin öyküsünü kurgulayan Ira Levin, klonları, Adolf Hitler’in kişiliğinin geliştiği tüm olaylar zincirinin benzerine tabi tutma gereğini hissetmişti. Tüm bu "hal çarelerine" rağmen, kopya insanın genetik annesinden çoğu yönden farklı olması kaçınılmaz görünüyor. Diğer tüm koşullar denk olsa bile, kopya birey, aynı zamanda ikizi olan bir anneye sahip olmasından psikolojik bakımdan etkilenecektir. Sağduyumuz bize Hitler’i genlerinin değil, Weimar Cumhuriyeti sonrası sosyo-ekonomik koşulların ve genç Adolf’un kıstırıldığı maddi ve manevi bunalımların yarattığını öğretiyor. Tüm bunların ışığında, klonlama konusundaki popüler tartışmaları, tıkanıp kaldıkları, "beklenmedik bir ikize sahip olma" fobisinden kurtarılıp, daha gerçekçi zeminlere çekilmesi gerekiyor. Gen havuzunun (belli bir topluluktaki genetik çeşitlilik) daralması, hayvancılığın geleneksel yapısından koparılıp biyoteknoloji şirketlerinin güdümüne girmesi, yol açılabilecek genetik bozuklukların kontrolden çıkması, bu alanda çalışan bazı şirketlerin (söz gelimi PPL’in) tüm tekel karşıtı yasal önlemleri delerek ciddi ekonomik dengesizliklere yol açması gibi akla gelebilecek sayısız somut etik sorununun tartışılması gerekiyor. Yoksa, akademik organlardan dini cemaatlere kadar sayısız grup gelişmeleri "kitaba uydurma" çabasıyla, kısır tartışmalara girebilir. Örneğin, Budist bir araştırmacı, Dolly’nin eski yaşamında ne gibi bir kabahat işleyip de bu yaşama klonlanmış olarak gelmeyi hak ettiği üzerine kafa yoruyormuş. Aslında biyoteknolojik tekelcilik tehdidine, Cesur Yeni Dünya’da Aldous Huxley de işaret etmişti: "İç ve Dış Salgı Tröstü alanından hormon ve sütleriyle Fernham Royal’daki büyük fabrikaya hammadde sağlayan şu binlerce davarın böğürtüsü duyuluyordu..." İnsanoğlunun temel kaygıları, şimdilik bazı temel koşullarda klonlamayla çelişiyor gibi görülüyor: Bir çiftçi düşünün ki, kendisi için tüm evreni ifade eden kasabasında herkese hayranlıktan parmaklarını ısırtan bir danaya sahip olsun. Bu danayı klonlayıp tüm sürüsünü özdeş yapmayı ister miydi? Büyük olasılıkla biraz düşündükten sonra bundan vazgeçerdi. Danasının biricik oluşu ve genetik çeşitliliği sayesinde bu danaya yaşam veren sürüsünün daha da güzel bir dana doğurması olasılığı çok daha değerli. Ömrü boyunca aynı dananın ikizlerine sahip olmayı kabullenmiş bir çiftçinin komşusu her an elinde daha güzel bir danayı ipinden tutarak getirebilir. Özgür Kurtuluş Kaynaklar: Biospace Huxley A., Cesur Yeni Dünya, Çev: Gürol E., Güneş Yayınları, 1989 Nash M. J., "The Age of Cloning", Time, 10 Mart 1997 Roslin Enstitüsü Basın Bültenleri Star C., Taggart R., Biology: The Unitiy and Diversity of Life, 1989 Underwood A., "Little Lamb Who Made Thee", Newsweek, 10 Mart 1997 Wilmut I., Schnieke A. E., McWhir J., Kind A. J., Campbell K. H. S., "Viable Offspring Derived From Fetal and Adult Mammalian Cells", Nature, 27 Şubat 1997

http://www.biyologlar.com/genetik-kopyalama

Evrimin Kanıtları Var mı?

" Hayvan türlerinden biri olarak, biz insanlar, diğer türler gibi evrimin yasalarına uyarız. Bu savı, destekleyecek birçok kanıta da sahibiz. Öncelikle, diğer omurgalı hayvanlarda bulunan birçok benzer ve kökendeş (homolog) yapıya ve organa sahibiz. Diğer hayvanlarda işlev gören birçok yapıyı biz körelmiş olarak taşırız. Embriyomuz gelişirken, solungaç keselerini, basit kalbi; ilkel boşaltim tiplerini, diger omurgali hayvanlardakine benzeyen kuyrugu ve buna benzer birçok yapiyi göstermesi kökendeşligimizin tipik kanitlaridir. Kanimizin serumundaki proteinler ve kirmizi kan hücrelerindeki antijenler insansi maymunlarinkine dikkati çekecekk kadar benzerdir. Gerçekte, bu bakimdan, kuyruksuz maymunlara kuyruksuz maymunlardan daha çok benzeriz. Birçok genimiz, diger omurgali hayvanlarinkinin aynisidir. İnsan evriminin en önemli özelliği, beyin büyümesi, özellikle büyükbeyinin izlenimleri saklama ve öğrenme işlevini yüklenerek, beynindiğer kısımlarına göre oransal olarak çok daha fazla gelişmesidir. Buna bağlı olarak, üstün zekanın ortaya çıkaracağı hünerleri yerine getirebilmek için ilk olarak harektte kullanılan ön üyeler, el olarak kullanılmaya başlamıştır." ( Ali Demirsoy , Kalıtım ve Evrim, 5. Baskı, 1991 Ankara s:716-717) Atların fosilerini milyonlarca yıl geriye izleyebiliyoruz. Çünkü yeterince fosil bulunmuştur. " Halbuki insan fosilleri çok seyrek bulunur. Bunun nedeni, insanın atalarının çok yakın zamanda oluşması ve fosilleşmek için zamanın oransal olarak kısa olması; diğer hayvanlara göre yaygın ve fazla bireyli popülasyonlar oluşturmaması ve en önemlisi oransal olarak diğerlerine göre çok daha zeki olmaları nedeniyle tehlikeyi önceden sezinleyerek, bataklık, katran kuyuları ve fosilleşmenin uygun olacağı tuzaklardan uzak durmaları ve kaçmaları olarak düşünülebilir. Önsezimizle bu tuzaklardan uzaklaşmış ve tehlike sırasında da el hünerlerimizle çoğunluk kurtulmayı sağlamışızdır. Halbuki diğer hayvanlar bu olanaklardan yoksundular ve bu nedenle bol miktarda fosil bırakabilmişlerdir. Keza birçok hile ve araçla yırtıcı hayvanlardan kurtulmayı başarmış ve bu yolla kemiklerin fosilleşmesi de önlenmiştir. Bunun yanısıra, toplumsal ayaşama geçiş de bu tehlikeleri büyük ölçüde azaltmıştır. Bol miktarda fosilin bulunamaması insanın soy dizisinin açıklanmasında bazı karanlık noktalar bırakmıştır. Bütün bunlara karşın, elimizde birikmiş kanıtlar, insanın maymun benzeri bir atadan, bugünkü insana, Homo sapiens ' e geliştiğini göstermeye yeterlidir." (Demirsoy, s:717) Turkana Çocuğu Antropologlar, birbirinden ayrı düşmüş dişler, tek tek kemikler, kafatası parçaları; insana özzgü tarihöncesinin öyküsü çoğunlukla, bu ipuçlarından oluşturulur.”Umut kıracak kadar eksik olsalar da, bu ipuçlarının büyük önem taşıdığını inkar etmiyorum; onlar olmasa, insana özgü trihöncesinin öyküsünü anlatamazdık.Bu mütevazi kalıntılarla karşılaşmanın getirdiği benzersiz heyecanı da gözardı etmiyorum; bunlar, bizim geçmişimizin, et ve kandan oluşan sayısız kuyşakla bize sağlanan parçalarıdır. Ama nihai ödül yine de bütün haldeki bir iskeletin keşfedilmesidir.” (Richard Leakey, İnsanın Kökeni Varlık/Bilim s:7) " 1984 yazının sonlarında çalışma arkadaşlarımla birlikte, nefeslerimizi toplu olarak tutmuş ve sürekli artan umudumuz deneyimin katı gerçekliği karşısında sönmüş bir haldeyken, bu hayalin şekillenmeye başladığını gördük. .Eski bir kaftasına ait küçük bir parça bulduk. Dikkatle kafatasının diğer parçalarını aramaya başladık ve umduğumuzdan çok daha fazlasını bulduk. Bu keşfi izleyen ve açık sahada yedi aydan fazla bir zamana denk gelen beş kazı mevisimi boyunca ekimiz, bin beşyüz ton tortu çıkardı ve sonuçta 1.5 milyon yıldan fazla bir süre önce eski gölün kıyısında ölmüşü birinin eksiksiz iskeletini bulduk. Turkana çocuğu adını taktığımız bu birey öldüğünde yalnızca dokuz yaşındaymış; ölüm nedeni ise hala bilinmiyor.Arka arkaya fosil kemikleri çıkarmak gerçekten eşi bulunmaz bir deneyimdi:kollanr, bacaklar, omurga kemikleri, kaburgalar, leğen kemiği, çene, dişler ve yine kafatasları. Çocuğun iskeleti şekilleniyor ve 1.6 milyon yıl parçalar halinde yaşadıktan sonra birey olarak yeniden oluşturuluyordu.İnsan fosili kalıntılarında, yalnızca 100 bin yıl öncesindeki Neanderthal dönemine dek, bu iskelet kadar eksiksiz bir başka şey bulunamamıştır... Tarihöncesi insan ailesinin çeşitli türlerinin herbiri bilinmese bile bir etiket, yani tür adi, taşiyor ve bu adlari kulanmaktan kaçinmak olanaksiz. Inas türleri ailesinin de kendine özgü bir adi var: Insangiller (homonidler) Meslektaşlarimdan bazilari geçmişteki tüm insan türleri için “insangil” terimini kullanmayi yegliyorlar. “Insan” sözcügünü yalnizca bizim gibiler için kullanilmasi gerektigini savunuyorlar.Yani, yalnizca bizim düzeyimizde zekaya, ahlak duygusuna ve içedönük bilince sahip olanlari “insan” olarak tanimliyorlar. Ben farklı bir bakış açısına sahibim. Esik insangilleri dönemin diğer insansı (kuyruksuz) maymunlarından ayıran, dik durarak hareket etme evriminin, sonraki insan tarihinin temeli olduğunu düşünüyorum. Uzak atamızın iki ayaklı bir insansımaymun haline gelmesiyle birlikte pek çok diğer evrimsel yenilik de mümkün oldu ve sonuçta, Homo ortaya çıktı. Bu nedenle tüm insangil türlerine “insan” demekte haklı olacağımızı düşünüyorum. Tüm eski insan türlerinin bizim günümüzde bildiğimiz zihinsel dünyaları yaşadıklarını söylemek istemiyorum. “İnsan” tanımı en basit düzeyde, dik yürüyen- iki ayaklı- insansı maymuları içerir. .. Turkana çocuğu, insan evrimi tarihinin dönüm noktasını oluşturan bir tür olan Homo erectus ’un üyesiydi. Kimi genetik kimi de fosillerden olmak üzere farklı kanıt dizilerinden, ilk insan türünün yaklaşık 7 milyon yıl önce ortaya çıktığını biliyoruz. Yaklaşık 2 milyon yıl önce Homo erectus sahneye çıktığında, insanın tarihöncesi oldukça uzun bir yol almıştı. Homo erectus’un ortaya çıksamından önce kaç insan türünün yaşayıp öldüğünü henüz bilmiyoruz; en azzından altı, belki de bu rakamın iki katı sayıda tür olmalı. Ama Homo erectus’ tan önce yaşayan tüm insan türlerinin, iki ayaklı olkala birlikte, pek çok açıdan insansımaymun benzeri özellikler taşıdıklarını biliyoruz.Beyinler görece küçük, yüzleri sivri çeneli (yani, öne doğru çıkık) ve beden yapılarının kimi özellikleri- örneğin göğüs huni şeklinde, boyun kısa ve bel yok- insandan çok insansımaymun benzeriydi.Homo erectus ’ta beyin büyüdü, yüz düşleşti ve beden daha atletik yapili hale geldi. Homo erectus’la birlikte, kendimizde gördügümüz pek çok fiziksel özellik de ortaya çikti; anlaşilan insanin tarihöncesi, 2 milyon yil önce çok önemli bir dönem noktasindan geçmişti. Homo erectus ateş kullanan, avciligi beslenme düzeninin önemli bir parçasi haline getiren, modern insanlar gibi koşabilen, belli bir zihinsel kaliba göre taş aletler yapabilen ve harekat alanini Afrika’nin ötesine taşiyabilen ilk insan türüdür. Homo erectus’un konuşma diline sahip olup olmadigini kesin olarak bilemiyoruz; ama buna işaret eden çeşitli kanitlar var. Bu türde belli bir benlik bilinci, insansi bir bilinç olup olmadigini da bilmiyoruz ve büyük olasilikla asla bilemeyecegiz; ama ben oldugunu düşünüyorum. Homo sapiens’in en degerli özellikleri olan dil ve bilincin tarihöncesi kalintilarinda hiçbir kanit birakmadigini söylemeye herhalde gerek yok. Antropoloğun hedefi, insansımaymun benzeri bir yaratığı bizim gibi insanlara dönüştüren evrim olaylarını anlamaktır. Bu olaylar romantik bir açıdan, büyük bir tiyatro eseri gibi tanımlanmış ve gelişen insanlığa da öykünün kahramanı rolü verilmiştir. Oysa gerçek büyük olasılıkla çok daha basittir ve bu değişimi epimaceradan çok, iklimsel ve ekolojik değişimler yönlendirmiştir. Yine de bu, dönüşümün ilgimizi dahha az çekmesine neden olmuyor. Biz, doğal dünylyayı ve bu dünyadaki yerimizi merak eden türüz.Şu andaki halimeze nasıl ggeldiğimizi ve geleceğimizin nasıl olacağını bilmek istiyoruz; bilmek zorunluluğu duyuyoruz. Bulduğumuz fosiller bizi fiziksel açıdan geçkmişimize bağlıyor ve sundukları ipuçlarını, doğayı ve evrim tarihimizin izlediği yolu anlamala yolu olarak yorumlamaya yönlendiriyor. İnsanoğlunun tarihöncesine ait daha pek çok kalıntı gün ışığına çıkartılıp incelenene dek hiçbir antropolog kalkıp da, “Bu, tüm ayrıntılarıyla şöyle oldu” diyemez. Ama araştırmacılar, insan tarihöncesinin genel şekiline dair pek çok konuda aynı fikirdeler. İnsanın tarihöncesinde dört temel aşama kesinlikle saptanabiliyor. İlk aşama, 7 milyon yıl önceki, iki ayaklı ya da dik hareket eden insansımaymun benzeri bir türün geliştiği insan ailesinin kökenidir. İkinci aşama, iki ayaklı türlerin çoğalması yani biyologların uyarlayıcı ışınım adını verdikleri bir süreçtir. 7 milyon ile 2 milyon yıl öncesi arasında her biri birbirinden biraz farklı ekolojik şartlara uyarlanmış pek çok değişik iki ayaklı insansımaymun gelişti. Bu insan türleri arasından birisi, 3 milyon ile 2 milyon yıl önce arasında, önemli oranda büyük bir beyin geliştirdi. Beyin boyutundaki büyüme üçüncü aşamayi oluşturur ve insan soyagacinin, Homo erectus ’tan sonuçta Homo sapiens’e dek uzanan dali olan Homo cinsinin kökenine işaret eder. Dördüncü aşama , modern insanlarin kökenidir; bizim gibi, dogada başka hiçbir şekilde görülmeyen dile, bilince, sanatsal düş gücüne ve teknolojik yenilikçilige sahip insanlarin ortaya çikişidir. Bu dört temel olay, kitabımızdaki bilimsel anlatının yapısını oluşturuyor. İleride de görüleceği gibi, insanoğlunun tarihöncesini araştırıken yalnızca neyin, ne zaman olduğundan öte, neden olduğunu da sormaya başlıyoruz. Bizler ve atalarımız, artık tıpkı fillerin ya da atların evrimi incelenirken olduğu gibi, aşamalı bir evrim senaryosu bağlamında inceleniyoruz. Bu, Homo sapiens’in pek çok açıdan özel olduğunu yadsımak anlamına gelmiyor: en yakın evrimsel akrabamız olan şempanzeden bile bizi ayıran pek çok şey var; ama artık, doğayla bağlantımızı biyolojik anlamda anlamaya başladık. Son otuz yıl içinde bilim dalımızda, daha önce eşi görülmemiş fosil keşiflerinin ve bu fosilleri yorumlayıp sundukları ipuçlarını bütünleştirmekte kullandığımız yenilikçi yöntemlerin sayesinde, çok önemli ilerlemeler kaydedildi. tüm bilimlerde olduğu gibi antropolojide de uygulayıcı bilimler arasında dürüst ve kimi zaman da şiddetli fikir farklılıkları görülür. Bu fikir farklılıkları kimi zaman fosil ve taş aletler gibi verilerin kimi zaman da yorumlama yöntemlerinin yetersizliğinden kaynaklanır. Kısacası, insanın tarihöncesi hakkında pek zok soruya kesin yanıtlar verilemez. Örneğin: İnsan soyağacının tam şekli nedir? Gelişmiş konuşma dili ilk olarak ne zaman ortaya çıktı? İnsanın tarihöncesinde beynin çarpıcı oranda büyümsenie yol açan neydi? İlerideki bölümlerde bu fikir farklılıklarının hangi konularda ve neden oluştuğuna değinecek ve zaman zaman kendi tercihlerimi belirteceğim. Yirmi yılı aşkın antropoloji çalışmalarım sırasında pek çok eşsiz meslektaşımla birlikte çalışma şansına eriştim ve hepsine şükran duyuyorum. (Richard Leakey, İnsanın Kökeni Varlık/Bilim s: 9-14) Organik Evrimin Ana İlkeleri “Organik evrim onusunda ana ilkelerin açığa çıkarılması ve öğretilmesi toplumların düşünce sistemlerinde büyük yansımalara neden olduğu ve olacağı için, sadece doğanın temel yasalarını açıklamaya dönük olan böyle bir bilimsil alan, ne yazık ki, belirli çevrelerde tehlikeli bidr gelişim olarak değerlendirilmektedir. Çünkü evrim kavramı, zaman süreci içerisinde bir değişmeyi açıklar; sonsuzluk ve değişmemezlik evrimin ilkelerine aykırıdır. Dolaysıyla evrim kavramı. dogmatik düşünceye, yani herşeyin olduğu gibi benimsenmesine izin vermeyen bir bilim dalıdır. Bu ise, belirli koşullara ve düşüncelere, olduğu gibi, yüz yıllardır, düşünmeden uymuş toplumları; keza bunun yanısıra toplumların bu uyumundan çıkarları için yeterince yararlanan çevreleri rahatsız etmektedir. Evrim kavramının kendisi de sabit değildir, zaman süreci içerisinde yeni bilimsel çalışmaların ışığı altında değişmek zorundadır.Çünkü kendini zaman süreci içerisinde değiştiremeyen, yeni bilgilerin ve gelişimlerin etkisi altında yenileyemeyen her şey ve her kavram yok olmak zorundadır. Bu yasa, tüm canlılar ve kavramlar için geçerli görünmektedir. Evrim kavramı özünde üç alt kavramı içine alır: 1. Anorganik evrim: Cansızların değişimini inceler; özellikle evrenin oluşumundan, canlıların temel maddelerini oluşturan cansız maddelerin oluşumuna kadar ortaya çıkan olayları kapsar. 2. Organik evrim: Canlıların değişimini inceler. 3. Sosyal evrim: Toplumların değişimini inceler. Biyioloji bilimi, özellikle organik evrimi tapsar. Organik evrim buguünb de devam etmektedir.; hatta bugün tarihin birçok devrelerinden daha hızlı olmaktadır. Son binkaç yüzbbin senede yüzlerce yeni bitki ve hayvan türü meydana gelirken, yüzlercesi de yeni tür oluşumları için ayrılmaya başlamıştır.Fakat bu ayrılma ve türleşme o kadar yavaş yürümektedir ki, gözlemek yalnız tarihpsel belgelerin bir araya getirilmeleriyle ve karşılaştırılmalarıyla mümkün olacaktır. Biyilojik evrimin oluştuguna ilişkin kanitlayici tipik örnek,15. yüzyilin başlarinda Madeira yakininda, Porta Santo denen küçük bir adaya birakilan tavşanlarda gözlenmiştir. Tavşanlar, Avrupa’danh getiriymişti. Adada dger bir tavşan türü ve getirilen tavşanlarin düşmanlari olmadigi için getirilen tavşanlar anormal derecede çogaldilar ve sonuçta 400 yil sonra,Avrupa’daki anaçlarindan tamamen farkli yapilar kazandilar. Öyle ki, büyüklükleri, Avrupadakilerin yarisi kadar oldu; renklenmeleri tamamen degişti ve daha gececi hayvanlar oldular.En önemlisi, atalariyla biraraya geldiklerinde, artik çiftleşip yeni bir döl meydana getiremiyorlardi. Yani yeni bir tür özelligi kazanmiştilar. Canlılar arasında benzerliklerin ve farklılıkların nasıl ortaya çıktığı, bilimsel olarak ilk defa, Charles Darwin’in gözlemleriyle gün ışığına çıktığı ve açıklandığı için, evrim kavramı ile Darwin’in ismi ve kişiliği özdeşleştirilerek “Darwinizm” denir. Evrim Konusundaki Düşüncelerin Gelişimi Canılların birbirinden belirli derecelerde farklılıklar gösterdiğine ve aralarında belirli derecelerde akrabalıklar olduğuna ilişkin gözlemler, düşünce tarihi kadar eski olmalıdır. Yavruları atalarından, kardeşlerin birbirinden belirli ölçülerde farklı olduğu çok eskiden gözlenmişti. Bitkilerin ve hayvanların benzerlik derecelerine göre, türden başlayarak belirli gruhlar oluşturduları saptanmıştı. Fakat kalıtım konusunda bilgiler yeterli olmadığı ve özellikle bir türün binlerce yıllık gelişimi düşünür bir birey tarafından izlenemediği için, çeşitlenme ve akrabalık bağları tam olarak açıklanamamıştır. Bazı bireylerin yaşam savaşında üstün niütelikler taşıdığı, dolaysıyla ‘doğal seçme’ eskiden de bilinçsiz olarak gözlenmişti. Fakat evrim konusundaki bilimsel düşüncelerin tarihi, diğer bilim dallarına göre çok yenidir.

http://www.biyologlar.com/evrimin-kanitlari-var-mi

Regresyon Analizi Nedir

Regresyon Analizi “Minority Report” filmini seyredenler hatırlarsa; kurguda işlenen konu üç insanın geleceği görebilme yetenekleriyle ilgiliydi. Bu yetenekler kullanılarak suçların daha işlenmeden öngörülebiliyor ve polisler tarafından daha olay gerçekleşmeden engellenebiliyordu. Daha günümüze yakın benzer bir örnek Amerikan yapımı bir dizi olan “Person of Interest”. Kurgu yine benzer olmakla birlikte doğa üstü yeteneklerden farklı olarak dayanağı olan “veri” kullanılıyor. Son teknoloji bir bilgisayar ve suçluları bulacak bir algoritma kullanılarak hukuk dışı müdahaleler bulunularak suçların daha işlenmeden engellenmesi kurgusu etrafında dönen bir dizi. Bu tarz bir geleceğin çok uzakta olmadığına eminim. Etik açısından da ayrıyetten çok tartışılacak bir konu. Günümüzde şuan bu teknolojiye sahip değiliz. Fakat farklı alanlarda buna benzer büyük boyutlu veriler toplanarak gerek pazar araştırmalarında gerek biyoloji, tıp alanında göreceli büyük boyutlu verilerdan yararlanılarak ve bir kaç regresyon tekniği uygulanarak hali hazırda bir azınlık raporu yazmak mümkün. Regresyon analizi, araştırmak istediğimiz bağımlı değişkenin yada değişkenlerin üzerinde bağımsız değişkenlerin etkisi olup olmadığını ve aralarındaki ilişkiyi araştıran bir yöntemdir. Veriden öğrenerek stokastik bir model kurulur. Verinin yapısına göre regresyon yöntemleride değişmektedir. Araştırılacak bağımlı değişken kategorikte olabilir, aralıklı sayılardanda oluşabilir. Kanser ve kanser değil (0=kanser ve 1=kanser değil) kategorik bir değişkendir. Mikrodizi çipinde üretilen aralıklı (154,5; 151,1;..) bir değişken gibi de olabilir. Regresyon analizi yapılmasının amacı iki önemli soruyu cevaplamak içindir. Birincisi değişkenlerim asıl araştırmak istediğim değişkenimi veya değişkenlerimi yada var olan durumu açıklayacak düzeyde bir model kurabiliyor muyum? Eğer kurabiliyorsam doğru araştırma üzerindeyim demektir. İkincisi ise, elimde ki yeterli bilgiyi(veriyi) kullanarak bir sonraki gözlemin ne durumda olacağını tahmin edebilir miyim sorusudur? Bu son sorunun cevabı zaman zaman çözülmesi imkansız hale gelebiliyor. Çözülememesinin bir kaç nedeni olabilir. Veriyi açıklayacak yeterli değişken elde edilememiş olabilir. Yanlış değişkenler seçilmiş olabilir. Veri elde edilirken yapılmış hatalar olabilir. Regresyon yöntemlerinin algoritmasına bağlı olarak bazı varsayımlarının sağlanamamasından kaynaklanıyor olabilir yada kontrol altında tutulamayan olağanüstü (dış faktörler) durumlar olabilir. Kur, hisse senedi gibi şeylerin tahminin büyük oranda sapmasının sebebi bu diyebiliriz. Regresyon problemlerinde kullanılan bir çok algoritma vardır. Regresyon yöntemlerini birbirinden ayıran noktalardan biriside burasıdır. Bunlardan en bilinir ve yaygın olanı en küçük kareler (EKK) olarak bilinen yöntemdir. Gerçek duruma en yakın fonksiyon eğrisi oluşturmamızı sağlar. Gözlemlerin rastgeleliğinden kaynaklanan hatayı küçülterek uygun denklem katsayılarını ve uygun eğriyi çizmemizi sağlar. Bu işleme optimizasyon da denebilir. Aşağıda ki grafik üzerinde 3 farklı model görebiliriz. Kırmızı olan doğrusal regresyon modeliyle çizilmiş bir grafiktir. Siyah olan polinomik ve mavi olan ise kübik bir regreson eğrisidir. Hangi modelin veriyi daha iyi açıkladığını anlamak için birkaç kritere bakılarak karar verilebilir. Model kurulmadan önce de mutlaka keşfedici veri analizi yaparak varsayım hatalarını giderildikten sonra model kurulması daha doğru bir adım olacaktır. İstatistiksel olarak anlamlı bir regresyon modeli kurulup kurulmadığı t-testi, anova gibi hipotez testleri ile hızlıca test edilebilir. Fakat anlamlı bir model kurulsa bile analizi bitiremeyiz. Çoklu bağlantı, artıkların(hataların) etkileri, tahmini değerlerin en düşük ve en yüksek aralıkları, modelde ki katsayıların etkileri incelenmesi kesinlikle gerekmektedir. Son analiz aşamasında ekstrem bir durum bulunursa bu etkilerin giderilmesi için farklı yöntemler kullanılması gerekmektedir. Gerekirse model değiştirilebilir yada parametrik olmayan yöntemler seçilerek tekrar regresyon modeli kurulmaya çalışılabilir. Çoğu çalışmalar maalesef model kurulduktan sonra bitiriliyor ve model sonrası analiz yapılmadan yorum yapılmaya çalışılıyor.

http://www.biyologlar.com/regresyon-analizi-nedir

Hangi vitamin ne işe yarar, Hangi vitamin hangi besinde bulunur?

A vitamini: Enfeksiyonlara karşı direnci arttırır normal büyüme, üreme, kemik ve diş gelişimi, görme için gereklidir. Cildin tırnakların ve saçların sağlıklı kalmasını sağlar. Diş ve dişetleri için büyük önem taşır . Yalnızca hayvanlarda bulunan ve yağda eriyen doymamış bir alkoldur. Sütte, yumurta sarısında, ton ve morina balıklarının karaciğer yağında (balık yağı) bulunur. Havuç ve havuç benzeri sarı-turuncu renkli sebzelerde A vitamininin ön maddeleri vardır (alfa karoten). Yaşlılıkta etkinliği çok artan kolajenaz enziminin indirgeyici etkisini önlediği saptanmıştır. Bu vitamin ayrıca protein bileşimine katılır ve tümerlerde görülen hücrelerin kontrolsüz biçimde çoğalmasını önler. A vitamini eksikliğinde gözde ve deride keratoz, kseroftalmi (göz akı ve kormeanın parlaklığını kaybederek kuruması), foliküler hiperkeratoz (bir deri hastalığı) ve gece körlüğü görülür. Bulunduğu Yiyecekler: Kayısı,kuşkonmaz,maydanoz,ıspanak, havuç,kereviz, marul, portakal, erik, domates D vitamini: İnce bağırsaklardan kalsiyumun emilmesine yardımcı olur, kalsiyumun kemiklerde ve dişlerde tutulmasını sağlar . Bulunduğu Yiyecekler: Balık yağı, balık, yumurta, tereyağı, karaciğer, et, sebzeler, güneş E vitamini Antioksidan etkilidir. Alzheimer hastalığının ilerlemesini yavaşlatıyor yaşlı kişilerde bağışıklık sistemini güçlendirir. Hücrelerin daha uzun yaşamasını ve yenilenmesini sağlar . Fitol ve metil hidrokinon türevidir. İnsanda karaciğerin yanı sıra yağlı dokularda, böbrekte, kalpte, kaslarda ve böbrek üstü bezi kabuğunda depolanır. A vitamini, doymamış yağ asitleri ve C vitamini gibi maddelerin oksidasyonunu önleyerek antioksidan özellik gösterir. Nükleik asitler ve değişik enzim sistemlerinin metabolizmasına katılır.E vitamini eksikliği ender görülür ve kansızlık biçiminde ortaya çıkar. Başta tahılllar olmak üzere yeşil sebzelerde bol miktarda bulunur… Bulunduğu Yiyecekler: Buğday, tohumlu besinler, soya fasülyesi yağı, arı sütü, ceviz, marul, tere, kereviz, maydanoz, ıspanak, lahana, mısır yağı, mısır, yulafta K vitamini: Karaciğere gelen Kvitamini burada üretilen bazı pıhtılaşma faktörlerinin yapımında rol alır. Kvitamini takviyesi yanlızca kanamalı hastalarda verilir. Bulunduğu Yiyecekler:Ispanak,kabak, marul, yeşil domates, yeşil biber, inek sütü, peynir, tereyağı, yumurta, kırmızı et, pirinç, karaciğer, mısır, muz, şeftali, çilek B1 vitamini: Kasların ve sinir sisteminin faliyeti için gereklidir.Yetersizliğinde iştahsızlık, huzursuzluk, bellek zayıflığı ve dikkat azalması görülür. Bulunduğu Yiyecekler: Buğday, kepek, bira mayası, taze sebze meyve, koyun eti, sığır eti, balık eti, yumurta, süt B2 vitamini: Eksikliğinde dilde kızarma, yanma hissi, ağız çevresi ve dudaklarda kızarma, tahriş, çatlaklar, gözlerde kaşıntı, yanma hissi, katarakt oluşumu, saçların dökülmesi, çocuklarda büyüme yavaşlaması, kilo kaybı, sindirim sorunları oluşur . Bulunduğu Yiyecekler:Karaciğer, böbrek, buğday unu, patates, et, süt, yumurta, peynir, kepek, yeşil sebzeler, havuç, fındık, yer fıstığı, mercimek B3 vitamini: Yetersiz beslenme sonucu deriyi sinir sistemini tutan pellegra adlı hastalık ortaya çıkar. Hücrelerin oksijeni kullanabilmeleri için gereklidir. Midede sindirimin temel taşları olan asitlerin üretimini sağlar. Bulunduğu Yiyecekler: Bira mayası, kepek, yer fıstığı, sakatat, kırmızı et, balık, buğday, baklagiller, un, yumurta, süt, limon, kabak, incir, portakal, hurma B5 vitamini: Doğada bol olduğu için eksikliğine rastlanmaz. Ayrıca bir miktar bağırsaklarda da yapılmaktadır. Eksikliği kan şekerinde düşme, ellerde titreme, kalp çarpıntıya neden olur . Bulunduğu Yiyecekler:Karaciğer, kırmızı et, tavuk, yumurta, ekmek, sebzeler B6 vitamini: Sinir sistemi ve hormonların çalışmasını düzenler.Vücudun savunmasında antikor ve akyuvar oluşumunda rol oynar. Eksikliğinde migren tipi baş ağrısı, kansızlık, ciltte kuruluk, görme problemleri, uyuşukluk, adele zayıflığı ve krampları oluşur . Bulunduğu Yiyecekler: Karaciğer, böbrek, kırmızı et, balık, yumurta, ekmek, sebzeler B11 vitamini: Kırmızı kan hücreleri ve sinir dokularının oluşumunda aktif rol oynar. Hücre bölünmesi için gereklidir. Bu etkisi ile büyümeyi de sağlar. Anne karnındaki bebeğin sinir sisteminin gelişimi için de gereklidir. Eksikliğinde iştahsızlık, kilo kaybı, bulantı, kusma, ishal, baş ağrısı, unutkanlık, çarpıntı gibi bazı kalp sorunları oluşabilir . Bulunduğu Yiyecekler:Karaciğer, böbrek, kırmızı et, ıspanak, marul, yumurta, ekmek, portakal, muz B12 vitamini: Besinlerle veya sigara gibi alışkanlıklarla vücuda giren siyanürü etkisiz hale getirir. Eksikliğinde dilde hassasiyet, şişme, kızarma, hayal görme, depresyon, adalelerde kasılmalar, sinir iltihaplarına bağlı olarak el ve ayaklarda uyuşma, karıncalanma, yanma şikayetleri oluşur . Bulunduğu Yiyecekler:Karaciğer, yürek, böbrek, kırmızı et, tavuk, balık, süt, peynir, yumurta C vitamini: Etkin biçimi L-askorbik asittir.C vitamininin başlıca rolü doku bağlarını tutan ana protein maddesi olan kollageni üretmektir. Bağışıklık sistemi, sinir sistemi, hormonlar ve besinlerin emilimi fonksiyonlarına (E vitamini ve demir gibi )destek olur.Göz merceği ve akciğer gibi yapılarda antioksidan olarak çalışır. C vitamini ayrıca antioksidan yapıda olan E vitaminine dönüşebilir. C vitamini turunçgillerde bol miktarda, ayrıca taze sebzelerde, maydanozda, kabakta ,soğanda ve domateste bulunur.Vücudumuz C vitaminini üretemez bitkiler ve bazı hayvanlar bu vitamini üretebilmektedir. Besinlerle alınan vitamin 2 saat içersinde kullanılır 4 saat sonunda kandan uzaklaşır. Yaraların iyileşmesini, damarların sağlıklı olamalarını sağlar.Vücudun savunma sistemini artırıcı etkisi vardır. Histamin yapımını azaltarak allerjik olayların şiddetini düşürür. Eksikliğinde diş eti kanamaları ve çekilmeleri olur. Bulunduğu Yiyecekler:Siyah üzüm, narenciye, çilek, kavun, karpuz, yeşil biber, maydanoz, brokoli, havuç, soğan, bezelye

http://www.biyologlar.com/hangi-vitamin-ne-ise-yarar-hangi-vitamin-hangi-besinde-bulunur

Arid zon ve Çöl Toprakları

Aridizoller: Arid topraklar yılda 0-25 veya 0-50 cm yağış alan topraklardır. Sıcaklık ve yağış ilişkisi en önemli etmendir. Günlük, aylık ve mevsimsel açılımlar evapotranspirasyon, vejetasyon ve toprak mikroflorasını yakından etkiler. Vejetasyon seyrek ve kısa ömürlüdür. Toprakta organik madde birikimi yok veya çok azdır. U.S. Soil Conservation Service çöl topraklarını - Aridisol’leri okrik epifedonu ve tipik olan argillic-killi, natric-tuzlu, cambic; kalsik, jipsik veya salik; duripan tanı tabakalarından biri veya birkaçını içeren topraklar olarak 1967’de sınıflandırmıştır. Örneğin Mohave’daki loam - münbit toprak 100cm derinliktedir ve en altında kireç depozitleri, üstünde kahverengi, sıkı münbit kil tabakası 30-35 cm. dir, üstünde 25 cm. lik prizmatik çakıl blokajın üzerini 5-10 cm kahverengi kil, kumlu münbit ince tabaka ve kırmızımsı kumlu münbit tabaka, en üstünü ise kahverengi münbit tabaka örter. Aridizol oluşumunda rüzgarın önemli rol oynadığı, kaçan toz ve kumun cilalaması sonucu oluşan çakıllar ve kayaçlar görülür. Aridizollerde CaCO3 ve diğer tuzlar uçuşan ve yağmurda sabitleşen ince toz ve kumlardan yıkanarak aşağı süzülür. Yağış şiddeti ve süresi ile permeabilite ve ısı arasındaki dengeye göre bir derinliğe kadar inip yerleşir. Genelde denge yüzeye yakın bir yerde oluştuğundan kireçlenme ve heterojen dağılımı tipiktir. Jips te sıklıkla görülür. Entizoller: Aktüel yağışlar alan yamaçlardan gelen alüvyal çökelmeler arid toprakların incelenmesini daha da zorlaştırır. Topoğrafik yapıya göre bu kil, silt ve kum tabakalarının kalınlıkları büyük değişimler gösterir. Tüm bu etkenler genellemelerin ne kadar zor olduğunu gösterir. Litozoller, Regozoller: Arid ve yarıkurak bölgedeki entizoller olup, tabakalanmayan alüvyallerle birlikte erozyona uğrmakta olan yamaçlar, sel taşkını düzlükleri gibi erozyon materyali birikim noktalarında görülür. Çöllerde aktüel allüvyonlar-fluventler, ortentler-ince kolüvyal-alüvyal materyal, Psamentler-kumullar, kumluk alanlar önemli yer tutar. Üzerinde efemeral dahi olsa hiç vejetasyon bulunmayan alanlar topraksız sayılır. Bu konularda geniş yayınlar Arizona Univ. Office of arid Land Studiesweb sitesinde yer almaktadır. Alt tabakalar: B tabakalarıdır, fakat bir kısmı A tab.ları arasına sokulabilir özelliktedir. Arjilik: Silika kil minerallerinin hakim olduğu, erozyonun kil tabakasını açığa çıkartmış olabildiği veya üstte doğrudan yerel, veya taşınmış kil tabakasının bulunduğu üst tabaka. Genelde B, A’an daha killidir. Kambik: açık renkli, organik maddece fakir veya çok fakir, ince ve prizmatik daneli, A1 tabakası olmadığından yüzeyden görülen ve genelde CO3’ca zengin tabaka. Natrik: CEC’inin %15 veya fazlasını Na’un doldurduğu yüzey altı partikül tabakası. Prizmatik, kolonlu veya bloğumsu yapı tabakası. Salik : Soğuk suda jipsden daha yüksek çözünürlüğü olan tuzlarca enaz %2 - 25 ağ/ağ. veya daha zengin olan 5-10 cm.lik yüzeyaltı tabaka. Jipsik: Kalsik tabakaya benzer, farkı kireç yerine CaSO4-jipsce zengin oluşudur.En az 15 cm.dir ve C tabakası veya altındaki tabakadan en az %5 daha fazla jips içerir. Genel kalınlık ve jips içeriğinin en az %602ını içerir. Duripan: Bu alt tabakanın çimentosu silistir. Asitle köpürmez, genellikle demir oksitler ve karbonatlar da çimentoda yer alır. Arid topraklarda üstleri opal ve silika mikrokristalleri ile örtülüdür. Silika çimentolu kum taneleri de içerirler. Dünyada Sahra, Lut gibi gerçek, sıcak çöller azdır. 15 - 45. enlemler arasında kalanların büyük çoğunluğu steptir. Ana faktörler yağış, nem ve sıcaklık ile farkları ve topraktır. Kuru hava bu sıcaklık farklarına neden olur. Yıllık hava sıcaklığı açılımı 60, günlük olarak da 35 dereceyi bulabilir. Çölleşme rüzgarı getirir, örneğin Sahra’da 100km.ye kadar fırtınalar görülür, 15-30km hızında sürekli rüzgarlar tipiktir. Buharlaşma sıcaklık değişimi, kuruluk ve türbülansa neden olur. Sahra’da 2.5-6m, çoğu çölde 3m cıvarındadır. Tipik olarak çöllerde Bağ.nem yazın % 20-30, kışın %50 cıvarındadır, ancak vahalarda ise %90 a kadar çıkabilir. Aydınlanma/bulutluluk oranı Sahra’da %4 - 31 oluşu nedeniyle dehidrasyona ve ısınmaya neden olur. Sahra’da ortalama ışık+ısı gücü 1kW’dır ve 10000km2 ye 25 katrilyon kWh enerji düşerki 2 milyar ton yakıt eşdeğeridir. Kuraklık temelde sıcaklık ve yağışa bağlıdır ve vejetasyonu sınırlar. Canlılar açısından önemli olansa yağış/evaporasyondur. Yeraltısuyu çok derinde değilse ve porozite yeterli ise genelde varlığını yüzeydeki jips, kalsiyum ve klorürlerden oluşan tuzluluk ile ve jips kristalleri, seyrek de olsa bitkiler, özellikle Chenopodiaeae halofitleri ile belli eder. Fakat suyun çok saf olup bu tür tuzlanmaya neden olmaması da mümkündür. Toprakta su tutulma miktarı yağış sonrası giren suyun evaporasyonla kaybedilenden kalan olup arid zonda tipik olarak su üst toprak tabakalarında kalır. Aşağı iniş oranı ve derinliği tekstür ve tarla kapasitesine bağlıdır. Killi toprağın tarla kapasitesi kumlu toprağın tipik olarak 5 katı olduğundan 50mm.lik yağış kumlu toprakta 50, killi toprakta 10cm.yi TK’ine ulaştırır. Kayalık alanda çatlaktan sızabilen su ise 100cm.ye kadar inebilir. Yağış sonrası buharlaşma başlar. Killerde üst 5cm.lik tabaka hızla kurur. Süzülen suyun %50’si bitkilerce kullanılır,kum da 5 cm. kurur fakat suyun ancak %10’u buharlaşır. Kayalarda ise böyle bir kayıp sözkonusu olmaz. Sonuçta nemli iklimdekinden farklı olarak killi toprak bitkilere yararlı değildir. Üstü taşlık toprak ise en uygun yapıyı oluşturur. Ancak vadi ve çukurlardaki birikim, eğimle kayıp gibi jeomorfolojik yapı bu durumu etkiler. Necev çölünde killi toprakta bitkilerin 35mm su kullanabildiği, bu miktarın kumlut oprakta 90, kayalıkta 50mm, vadilerde 250mm olduğu görülmüştür. Bu nedenle derin kök gelişimi ancak permeabilitesi yüksek toprakta görülür, killi toprakta kök yatay gelişebilir. Kumlu ve taşlı topraklarda bu derinlik taban suyuna kadar ulaşabilir ve derin köklenebilen bitkiler kolayca gelişir. Irak’taki Basra çölünde taban suyu 15m. derinliktedir ve nehirlerce beslenir. Yıllık 120 mm.lik yağış ancak yüzeysel nemlenmeye yeterli olduğundan bitki kökleri taban suyuna erişemez ve yağışlar sonrası zayıf ve geçici bir efemeral örtü oluşur. Yerli halkın kuyular aracılığı ile çektiği su ile sulananan sebze tarımı tuzlanma nedeniyle 1 yıl ömürlü olmaktadır. Bu bitkilerin arasına serpiştirilen çok kolay köklenen Tamarix çelikleri yüzey suyunun taban suyuna ulaşabileceği kadar sulanarak köklerinin hızla geliştirilmesi ile ağaçlara dönüşmesi ormanlaştırılmıştır. Acacia tortilis’in arid zondaki kumlu topraklarda, yıllık 50 - 250mm. yağışlı Sudan steplerinde geliştiği, killi topraklarda ise ancak 400mm.lik yağışta bulunabildiği saptanmıştır. A. mellifera otsu örtü savanası da kumlu toprakta 250-400, killi toprakta ise yıllık 400 - 600mm. yağışla gelişebilmektedir. İklimsel olarak kurak alan yağışa karşı buharlaşmanın fazla, vejetasyonun zayıf ve örtünün <%25 olduğu bölge olarak tanımlanırsa da dünyanın çeşitli yerlerindeki kurak alanlar birbirine fazla benzemezler: Tropik kuşakta aylık sıcaklık ortalamaları fazla farklı değildir. Subtropik kuşakta yıl boyunca değişen sıcaklıklar donlara da neden olur. Ilıman zonda kışlar çok soğuk, yazlar sıcaktır. Vejetasyonu sınırlayıcı ana etmen aylık ve özellikle mesimlik yağış toplamlarıdır. İki yağış mevsimi olan bölgeler , yalnız kışın veya yazın yağış alan yöreler, azve rastlantısal olarak yağış gören yerler ve hiç almayanlar. Buralardaki vejetasyon üzerinde yöresel floranın değişen oranlarda etkisi vardır ve belli familyalar dominanttır. Örneğin K. Amerika’da Cactaceae, G. Amerika’da buna ek olarak bazı Bromeliaceae cinsleri, Holarktik’te Chenopodiaceae, en kurak Avustralya çöllerinde Atriplex vesicaria ve Kochia sedoides hakimdir. İklim yanında edafik faktörlerin farklılığı önemlidir. Aylık yağış ve sıcaklık seyri, kurak dönemlerin 10C / 20mm.lik birimlerinin oranı olarak sıc.ın yağışı aştığı dönemler esas alınarak kurak alan haritaları yapılır.

http://www.biyologlar.com/arid-zon-ve-col-topraklari

Biyoterörizm ve Biyolojik Silahlar

Biyoterörizm kavramı, 11 Eylül 2001 tarihini takiben ABD’de posta kaynaklı şarbon vakalarının görülmesiyle günlük hayatımıza girmiştir. Biyoterörizm kişiler, gruplar veya hükümetler tarafından gerek ideolojik, gerekse politik veya finansal kazanç sağlamak amacıyla hastalık yaratıcı patojenlerin (biyolojik savaş araçlarının-BSA) sivil halk üzerinde, hayvanlarda ve bitkilerde hastalık oluşturmak ve/veya ölüme neden olmak amacıyla açık veya gizli şekilde yayılması şeklinde tanımlanmaktadır. Peki biyolojik silahlar nedir?. Klasik olarak “Biyolojik Silahlar” sadece yaşayan canlılara kitlesel zarar veren patojen (bakteri, virüs, mantar) veya doğada patojen olmayan ancak genetik olarak değiştirilmiş mikroorganizmalar ile bu etkenlerin toksinleri olarak tanımlanmaktadır. Neden insanoğlu biyolojik silahları üretmektedir?. Nükleer, kimyasal ve konvansiyonel silahlarla karşılaştırıldıklarında biyolojik silahların çeşitliliği onları diğerlerinden ayıran en önemli özelliği oluşturmaktadır. Bulaşıcılığı yüksek, kolay ve hızlı üretilebilen, aşı ve tedavisi kullanıcı tarafından kolaylıkla kendi yandaşlarına uygulanabilen hemen hemen tüm mikroorganizmalar biyolojik saldırı amaçlı kullanılabilir. Günümüzde 43 mikroorganizma biyolojik silah adayı olarak kullanılabilir olmakla birlikte, bunlar arasında en önemlileri; şarbon, brusella, veba, Q ateşi, tularemi, çiçek, viral ensefalit, viral hemorajik ateş, botulizm toksini ve stafilokoksik enterotoksin B'dir. Biyolojik Silah Olarak mikroorganizmaların Avantajları: • Çok geniş alana dağılabilmesi (etki alanının geniş olması) • Kolay üretilebilir depolanabilir ve Üretim merkezlerinin kamufle edilebilir olması • Düşük maliyetle üretilmesi Kilometrekare kare başına düşen insan sayısının %50’sini etkileyen doz (LD50) baz alınarak maliyet hesaplandığında, konvansiyonel silahlar 2000$, nükleer silahlar 800$, kimyasal silahlar 600$, biyolojik silahlar ise 1 dolara mal olmaktadır. Bu nedenle biyolojik silahlar “Fakirin Atom Bombası” olarak tanımlanmaktadır. • Kullanımlarının kolay olması ve iz bırakmaması Biyolojik silah ajanları renksiz, kokusuz, tatsız olmaları nedeniyle insan gözüyle görülemezler. Aerosol bulutu halinde atıldığı zaman, mikroskopik boyutlardaki partiküller (1-10 m çapında) solunum ile akciğerlerin uç bölgelerine ulaşırlar. Ayrıca, etkilerinin ancak kuluçka süresinin sonunda görülmesi nedeniyle maruz kalanlar semptomlar ortaya çıkana kadar hedef olduklarının farkına varamazlar ve bu arada salgın yayılmış olur. • Az miktarının büyük kitleleri etkilemesi ve oldukça fazla sayıda insanda hastalık ve/veya ölüme neden olabilmesi: Örneğin Washington bölgesine, rüzgar yönünde 100 kg. aeresol şeklindeki şarbon sporunun yayılmasını takiben, 130000 ile 3000000 arasında ölüm gözleneceği, CDC tarafından geliştirilen bir ekonomik modele göre ise saldırıya maruz kalan her yüz bin kişi için 26.2 milyar dolarlık bir bütçe kaynağı gerektiği hesaplanmıştır. Bu da bir BSA’nın etkisinin bir megatonluk nükleer savaş başlığı etkisinden büyük, bir hidrojen bombasının etkisine ise eşit ya da daha büyük olacağı anlamına gelmektedir. • Dış ortam koşullarına dayanıklılığının yüksek olması: Örneğin şarbon sporu toprakta 40 yıldan daha uzun süre kalabilmektedir. • Bazı etkenlerin insandan insana bulaşma olasılığı: Veba, çiçek, kanamalı ateş gibi BSA’ya bağlı enfeksiyonların insandan insana bulaşarak salgın oluşturma ve böylece silahın hedef aldığı kitleden çok daha büyük bir kitleyi etkilemesi mümkün olmaktadır. Ayrıca BSA’lar yayılımı takiben insan vücudu gibi uygun bir ortam bulduklarında çoğalmaya başlarlar; bu şekilde kullanıldıkça çoğalan başka bir silah bulunmamaktadır. • Kitleler üzerinde panik etkisi yaratması ve sağlık sisteminde çökmeye neden olması sayılabilir Kendisini kullananlara zarar verebilmesi, etkilerinin önceden tahmin edilememesi ve uzun süre doğada kalabilmeleri ise BSA’ların olumsuz yönleridir. Biyolojik ajanların kullanımı temel olarak üç yolla olmaktadır: Kontamine su ve gıdalar, infekte vektörler ve aerosolizasyon aracılığıyla ile uygulanabilirler. Ancak, vektörlerin geniş kitleler üzerinde etkili olmaması ve gelişmiş ülkelerin su sistemlerindeki ileri düzeydeki arıtma teknolojisi nedeniyle BSA’nın bu şekilde kullanımı sınırlı olup, tercih edilmez. Aerosol, yapısı nedeniyle geniş bir yayılım sağladığı için biyoterörizmde kullanılan en etkin araçtır. Aerosol şeklinde hazırlanmış biyolojik silahlar; bakterilerin tarım ilaçlaması şeklinde uçaklardan veya sprey tanklarından yerleşim yerlerinin üzerine püskürtülmesi suretiyle etkili olurlar. Düşük maliyeti ve kolay uygulanabilmesi tekniğin avantajları olmakla birlikte etkili olabilmesi için ideal hava koşulları gereklidir. Şiddetli rüzgar, yağmur ve güneş ışınları gibi hava koşulları etkilerinin azalması ayrıca uygulama hatasına bağlı kullanıcının da zarar görmesi gibi olumsuzlukları da söz konusudur. BSA’nın çeşitliliği, hangisinin kullanacağının önceden bilinmemesi, kimyasal silahlarda olduğu gibi hemen belirti vermemesi, bu nedenle de olay mahallinin bilinememesi, hastalık tablosunun birbirine benzemesi dolayısıyla etkenin hangi ajan olduğunun kolayca belirlenememesi ve o bölgede doğal bir salgın olabileceği ihtimali gibi etmenler BSA’nın saptanmasını önemli ölçüde güçleştirmektedir. Yanısıra hangi ajanın ne zaman kullanılacağının bilinmemesi aşı gibi koruyucu önlemlerin uygulanmasını da imkansız kılmaktadır. Biyolojik saldırı olduktan sonra bazı bakterilere karşı antibiyotikler ile proflaksi uygulanabilirse de genetik olarak bu ilaçlara karşı dirençli hale getirilmiş BSA’nın olabileceği göz önünde bulundurulmalıdır. Etkili bir savunma için, saldırı olmadan önce ülkedeki ilgili kurum ve kuruluşların rasyonel ve ekonomik bir şekilde organizasyonu ayrıca operasyonda görev alacak teknik personelin teorik ve pratik eğitimlerinin yapılması gerekir. ABD Hastalık Kontrol ve Önleme Merkezi tarafından (CDC) biyolojik silahlara karşı savunma stratejileri beş ana başlık altında sınıflandırılmıştır. 1.Hazırlık, önlemler 2.Saptamak, gözetim (ilk olgular, otopsi) 3.Etkenin özelliklerini iyi bilme 4.Koruyucu yöntemlerin geliştirilmesi 5.İletişim ağının sağlıklı çalışması Ne zaman ve nereden geleceği tahmin edilemeyen biyoterörist saldırılara %100 hazırlıklı olmanın olanağı yoktur. Ancak, hangi BSA’nın karşı tarafın elinde olduğunu bilmek ve bu ajanlara karşı tanı, tedavi ve korunma açısından hazırlık yapmak esastır. BSA’nın kullanılmasını takiben hastanelerin aktive edilmesi, arındırma, izolasyon, karantina, proflaksi, aşılama, otopsi ve diğer koruyucu önlemlerin belirlenip sağlık örgütünün salgına vereceği savunma yanıtı için epidemiyolojik kapasitenin artırılmasına yönelik hazırlık planları geliştirilmelidir. Bu hazırlık planları, BSA’nın tanımlamasına yönelik yerel, bölgesel ve ulusal laboratuvarların tanı olanaklarına göre belirlenmiş bir laboratuvar ağı oluşturmalarını ve ajanların moleküler karakterizasyonu dahil her türlü incelemeyi yapabilecek çok gelişmiş bir referans laboratuvarının kurulmasını, laboratuvar ağı içerisinde verilerin sağlıklı paylaşımı için bilgisayar ağının kurulması, ulusal veya bölgesel düzeyde sürveyans sisteminin oluşturulması ile şüpheli olguların tanısı ve değerlendirilmesi için standart kriterlerin geliştirilmesini içermektedir. Ayrıca, sağlık personelinin nükleer, biyolojik ve kimyasal ajanlar (NBC) konusunda sürekli eğitilmesi gereklidir. Ulusal ve bölgesel düzeyde ilgili birimler arasında hızlı ve etkin bir iletişim ağının oluşturulması, kesin ya da şüpheli saldırı durumlarında paniğe meydan vermeden halkın bilgilendirilmesi sağlanmalıdır. BSA’nın ne gibi hastalıklar oluşturabileceği, tanı, tedavi ve korunma yolları hakkında toplumun eğitilmesi, biyolojik saldırı sırasında ve sonrasında halkı bilgilendirecek ve endişelerini giderecek eğitim materyallerinin hazırlanması gereklidir. Günümüzde, BSA’nın hızlı saptanmasına yönelik farklı sistemler geliştirilmiştir. Bu tanımlama sistemleri BSA kullanımına bağlı oluşan yapay bulutların analizine dayanan askeri sistemler ile (15 dakika içerisinde) olay yerine taşınabilir sistemler veya laboratuvarda uygulanan moleküler yöntemlere (bir saatten daha az zaman içerisinde) dayanmaktadır. “Biyolojik silahlara karşı korunmada en etkin yol koruyucu giysi ve maske kullanmaktır”. Savaş ortamında yapılabilecek bir biyolojik saldırıda 1-10'luk partikülleri filtre edebilen bir maske ve NBC koruyucu elbisesi birçok BSA için belli derecelerde güvenlik sağlayacaktır. Besin ve su kaynakları zincirinin de biyolojik ajan açısından izlenmesi gereklidir. Bütün teknolojik gelişmelere rağmen, sabunlu su ile vücudun ve özellikle ellerin yıkanması, halen oldukça geçerli ve önemli bir korunma yöntemidir. Biyolojik savaş ajanlarının gelişmesi ile beraber dünyada bu silahların üretimi, stoklanması ve kullanımının önlenebilmesi için 1925 yılında Cenova Protokolü, 1972 yılında Biyolojik Silahlar Konvansiyonu (BWC-Biological Weapons Convention) imzalanmış, farklı tarihlerde bu konvansiyonun gözden geçirildiği toplantılar yapılmıştır. Sonuç olarak, potansiyel BSA'ların tanısını koyabilecek referans laboratuvarların kurulması veya mevcut olanlara bu özelliklerin kazandırılması, olay yerinde tanımlama sistemlerinin sağlanması ve BSA’ları tanıyan, etkilerini ve taktik kullanımını bilen uzman biyolojik örnek alma ekiplerinin kurulmasına yönelik düzenlemelerin yapılması için bilimsel kuruluşlar, Üniversiteler ve TSK'lerin bu konularda işbirliği içinde çalışması ülkemiz güvenliği ve çıkarları açısından son derecede önemlidir. KAYNAKLAR • Bellamy RJ, Freedman AR. Bioterrorism. Q J Med 2001;94:227-234. • Kortepeter MG, Parker GW. Potential biological waeapons threats. Emer Infect Dis 1999;5(4):523-527. • Spencer RC, Lightfood NF. Preparedness and Response to Bioterrorism. J Infect 2001;43:104-110. • USAMRIID’s Medical Management of Biological Causalties Handbook.4rd ed. Feb 2001. • Henderson A, Inglesby V, O’Toole T. Bioterrorism Guidelines for Medical and Public Health Management. ASM press 2002. • Prevention of a Biological and Toxin Arms Race and the Responsibility of Scientists. Eds.Geissler E, Haynes RH. Akademie-Verlag Berlin 1991. • Public health response to biological and chemical weapons—WHO guidance(2004). Chapter 3&4, p 38-76. • Erdem H, Pahsa A. Biyolojik Silah Saldırılarına Yönelik Ulusal ve Bölgesel Yaklaşımlar. Infek Derg 2002;16(3) Ek. Uzm.Dr.Selçuk Kılıç RSHMB Salgın Hast. Arş.Md., Parazitoloji Laboratuvarı Kaynak: T.C. SAĞLIK BAKANLIĞI Refik Saydam Hıfzıssıhha Merkezi Başkanlığı ve Temel Sağlık Hizmetleri Genel Müdürlüğü Cilt:4 Sayı:5 Eylül-Ekim 2005 AYLIK EPİDEMİYOLOJİ RAPORU

http://www.biyologlar.com/biyoterorizm-ve-biyolojik-silahlar

Hücre bölünme kontrolü bozulursa ne olur?

Hücre bölünme kontrolünün ortadan kalkması sonucunda ya kanserlerde olduğu gibi aşırı hücre çoğalması ve buna bağlı hızlı hücre ölümleri, ya da hücre bölünmesinin yavaşlamasına bağlı doku kayıpları görülecektir.Yetişkin bir insanda, kan hücreleri dışında yaklaşık 1013-14 kadar hücre bulunmaktadır. Sayıları oldukça fazla olan bu yapı birimlerinde büyüklük açısından farklar da gözlenir. Örnek olarak, insanın en büyük hücresi dişi yumurta hücresi (=ovum) olup 200 μ büyüklüğündedir. Beyincikte 4 μ büyüklüğünde hücrelere rastlanırken beyinde piramidal hücreler 150 μ'a varan büyüklüktedir. Bu örnekleri genişletebiliriz. Hücre büyüklüklerinin canlıların büyüklüğü ile ilgisi yoktur. Vücut büyüklüğü hücre sayısına bağlıdır. Örnek olarak; farenin karaciğer hücresi ile filin karaciğer hücresi hemen hemen aynı büyüklüktedir. Dış görünümleri incelendiğinde her hücrenin belirli bir biçimi, büyüklüğü ve ağırlığı tanımlanır. Hücrenin kimyasal birleşimi %75-80 su, %15 protein (yapı proteinleri, enzimlen, aminoasitler) %3 yağ ve %1 elektrolitlerden oluşmuştur. Hücrenin şekli sitoplazma akıcılığı, yüzey gerilimleri ve komşu hücrelerden gelen basınç etkisi ile değişmektedir. Hücrelerin erken gelişim dönemlerindeki şekli yuvarlaktır. Organizmada Şekil 2.2'de örneklerini gördüğünüz şekilde, yuvarlak şeklini koruyan hücreler olmakla beraber, yassı, prizmatik, armutsu, piramidal ve kübik şekilli hücreler de bulunmaktadır. İnsan vücudunda 200 çeşidin üzerinde hücre tipi vardır. Bunlar epitel dokusu, bağ dokusu, kas dokusu, kemik dokusu ve sinir dokusu gibi dokularda yer alırlar. Dokularda çeşitli hücre tiplerini birarada görmek de mümkündür.

http://www.biyologlar.com/hucre-bolunme-kontrolu-bozulursa-ne-olur

Çevre Kanunu ( Bölüm-2 )

BEŞİNCİ BÖLÜM Cezai hükümler İdari nitelikteki cezalar: Madde 20 – (Değişik: 26/4/2006 – 5491/14 md.) İdarî nitelikteki cezalar şunlardır: a) Ek 4 üncü madde uyarınca emisyon ölçümü yaptırmayan motorlu taşıt sahiplerine 500 Türk Lirası, yönetmeliklerle belirlenen standartlara aykırı emisyona sebep olan motorlu taşıt sahiplerine 1.000 Türk Lirası idarî para cezası verilir. b) Hava kirliliği yönünden önemli etkileri nedeniyle kurulması ve işletilmesi yönetmelikle izne tâbi tutulan tesisleri, yetkili makamlardan izin almadan kuran ve işleten veya iznin iptal edilmesine rağmen kurmaya ve işletmeye devam eden veya bu tesislerde izin almaksızın sonradan değişiklik yapan veya yetkili makamların gerekli gördükleri değişiklikleri tanınan sürede yapmayanlara 24.000 Türk Lirası idarî para cezası verilir. Bu tesislerde emisyon miktarları yönetmelikle belirlenen sınırları aşıyorsa 48.000 Türk Lirası idarî para cezası verilir. İzne tâbi tesisleri, aldıkları izin belgesinde veya yönetmeliklerde öngörülen önlemleri almadan veya yönetmeliklerde belirlenen emisyon standartlarına ve sınırlamalarına aykırı olarak işletenlere 24.000 Türk Lirası idarî para cezası verilir. c) Hava kirliliği yönünden kurulması ve işletilmesi izne tâbi olmayan tesislerin işletilmesi sırasında yönetmelikle belirlenen standartlara aykırı emisyona neden olanlara 6.000 Türk Lirası idarî para cezası verilir. Bu Kanunun ek 9 uncu maddesine aykırı davrananlara 2.000 Türk Lirası idarî para cezası verilir. Bu bendin birinci paragrafında öngörülen fiilin konutlarla ilgili olarak işlenmesi halinde verilecek ceza toplu veya ferdî ısıtılan konutlarda her bağımsız bölüm için 300 Türk Lirasıdır. Bu cezai sorumluluk toplu ısıtılan konutlarda yöneticiye, ferdî ısıtılan konutlarda ise konutu kullanana aittir. d) Hava kirliliği yönünden özel önem taşıyan bölgelerde veya kirliliğin ciddi boyutlara ulaştığı zamanlarda ve yerlerde veya kritik meteorolojik şartlarda yönetmeliklerle öngörülen önlemleri almayan, yasaklara aykırı davranan ya da mahallî çevre kurullarınca bu konuda alınan kararlara uymayanlara bu maddenin (b) ve (c) bentlerinde öngörülen cezalar bir kat artırılarak verilir. Bu fiilin konutlarla ilgili olarak işlenmesi halinde cezai sorumluluk bu maddenin (c) bendinin üçüncü paragrafına göre tespit edilir. e) Çevresel Etki Değerlendirmesi sürecine başlamadan veya bu süreci tamamlamadan inşaata başlayan ya da faaliyete geçenlere yapılan proje bedelinin yüzde ikisi oranında idarî para cezası verilir. Cezaya konu olan durumlarda yatırımcı faaliyet alanını eski hale getirmekle yükümlüdür. Çevresel Etki Değerlendirmesi sürecinde verdikleri taahhütnameye aykırı davrananlara, her bir ihlal için 10.000 Türk Lirası idarî para cezası verilir. f) 11 inci maddeye göre kurulması zorunlu olan atık alım, ön arıtma, arıtma veya bertaraf tesislerini kurmayanlar ile kurup da çalıştırmayanlara 60.000 Türk Lirası idarî para cezası verilir. g) 12 nci maddede öngörülen bildirim ve bilgi verme yükümlülüğünü yerine getirmeyenlere 6.000 Türk Lirası idarî para cezası verilir. h) Bu Kanunun 14 üncü maddesine göre çıkarılan yönetmelikle belirlenen önlemleri almayan veya standartlara aykırı şekilde gürültü ve titreşime neden olanlara, konutlar için 400 Türk Lirası, ulaşım araçları için 1.200 Türk Lirası, işyerleri ve atölyeler için 4.000 Türk Lirası, fabrika, şantiye ve eğlence gürültüsü için 12.000 Türk Lirası idarî para cezası verilir. ı) Bu Kanunda öngörülen yasaklara ve sınırlamalara aykırı olarak ülkenin egemenlik alanlarındaki denizlerde ve yargılama yetkisine tâbi olan deniz yetki alanlarında ve bunlarla bağlantılı sularda, tabiî veya sunî göller ve baraj gölleri ile akarsularda; 1) Petrol ve petrol türevleri (ham petrol, akaryakıt, sintine, slaç, slop, rafine ürün, yağlı atık vb.) tahliyesi veya deşarjı yapan tankerlerden, bin (dahil) gros tona kadar olanlar için gros ton başına 40 Türk Lirası, bin ilâ beşbin (dahil) gros ton arasında olanlara, bu miktar ve ilave her gros ton başına 10 Türk Lirası, beşbin gros tondan fazla olanlara ise, yukarıdaki miktarlar ve ilave her gros ton başına 100 Kuruş, 2) Kirli balast tahliyesi yapan tankerlerden bin (dahil) gros tona kadar olanlar için gros ton başına 30 Türk Lirası, bin ilâ beşbin (dahil) gros ton arasında olanlara bu miktar ve ilave her gros ton başına 6 Türk Lirası, beşbin gros tondan fazla olanlara ise, yukarıdaki miktarlar ve ilave her gros ton başına 100 Kuruş, 3) Petrol türevleri (sintine, slaç, slop, akaryakıt, yağlı atık vb.) veya kirli balast tahliyesi yapan gemi ve diğer deniz vasıtalarından bin gros tona kadar olanlar için gros ton başına 20 Türk Lirası, bin ilâ beşbin (dahil) gros ton arasında olanlara bu miktar ve ilave her gros ton başına 4 Türk Lirası, beşbin gros tondan fazla olanlara ise, yukarıdaki miktarlar ve ilave her gros ton başına 100 Kuruş, 4) Katı atık bırakan veya evsel atıksu deşarjı yapan tanker, gemi ve diğer deniz araçlarından bin (dahil) gros tona kadar olanlar için gros ton başına 10 Türk Lirası, bin ilâ beşbin (dahil) gros ton arasında olanlara bu miktar ve ilave her gros ton başına 2 Türk Lirası, beşbin gros tondan fazla olanlara ise, yukarıdaki miktarlar ve ilave her gros ton başına 40 Kuruş, idarî para cezası verilir. Tehlikeli madde ve atıkların deşarjı durumunda uygulanacak idarî para cezaları, petrol ve türevleri kategorisi esas alınarak on katı verilir. Kirliliğin oluşmasını müteakip gemi veya deniz aracının kendi imkânları ile neden olduğu kirliliği giderdiğinin tespit edilmesi durumunda, idarî para cezası 1/3 oranında uygulanır. Cezanın derhal ve defaten ödenmemesi veya bu hususta yeterli teminat gösterilmemesi halinde, gemiler ve götürülebilen diğer deniz vasıtaları en yakın liman yetkilisine teslim edilerek seyrüseferden ve faaliyetten men edilir. Banka teminat mektubu veya geminin bağlı olduğu kulüp sigortacısı tarafından düzenlenecek teminat mektubu teminat olarak kabul edilir. Yabancı devlet egemenliği altındaki sularda bu devletlerin mevzuatının Türk bayraklı gemiler tarafından ihlali durumunda, ilgili devletin ceza uygulamaması ve Türkiye'nin cezalandırmasını talep etmesi durumunda bu Kanun hükümleri uygulanır. Bu bendin birinci paragrafı dışında, bu Kanun ve bu Kanun uyarınca çıkarılan yönetmeliklere aykırı olarak ülkenin egemenlik alanındaki denizlere ve yargılama yetkisine tâbi olan deniz yetki alanlarına, içme ve kullanma suyu sağlama amacına yönelik olmayan sulara atık boşaltanlara 24.000 Türk Lirası idarî para cezası verilir. Yukarıda öngörülen fiilin konutlarla ilgili olarak işlenmesi halinde her konut ve bağımsız bölüm için 600 Türk Lirası idarî para cezası verilir. Bu cezai sorumluluk, müstakil konutlarda konutu kullanana, diğer konutlarda ise yöneticiye aittir. i) Bu Kanunun ek 8 inci maddesi uyarınca yürürlüğe konulan yönetmelik hükümlerine aykırı davrananlara 1.000 Türk Lirası idarî para cezası verilir. j) Kanunda ve yönetmelikte öngörülen yasaklara veya standartlara aykırı olarak veya önlemleri almadan atıkları toprağa verenlere 24.000 Türk Lirası idarî para cezası verilir. Bu fiilin konutlarla ilgili olarak işlenmesi halinde her konut ve bağımsız bölüm için 600 Türk Lirası idarî para cezası verilir. Bu cezai sorumluluk, müstakil konutlarda konutu kullanana, diğer konutlarda ise yöneticiye aittir. k) Bu Kanunun 9 uncu maddesinin (a) bendinde belirtilen hususlara aykırı olarak biyolojik çeşitliliği tahrip edenlere, (d) bendi uyarınca ilan edilen Özel Çevre Koruma Bölgeleri için tespit edilen koruma ve kullanma esaslarına aykırı davrananlara ve (e) bendinin ikinci paragrafı uyarınca sulak alanlar için yönetmelikle belirlenen koruma ve kullanım usûl ve esaslarına aykırı davrananlar ile (f) bendinde belirlenen esaslara ve yasaklamalara aykırı davrananlara 20.000 Türk Lirası, (e) bendinin birinci paragrafına aykırı davrananlara 100.000 Türk Lirası idarî para cezası verilir. l) Bu Kanunun ek 1 inci maddesinin (c) bendine aykırı olarak anız yakanlara her dekar için 20 Türk Lirası idarî para cezası verilir. Anız yakma fiilinin orman ve sulak alanlara bitişik yerler ile meskûn mahallerde işlenmesi durumunda ceza beş kat artırılır. Bu Kanunun ek 1 inci maddesinin (d) bendi uyarınca tespit edilen esaslara aykırı olarak ülkenin egemenlik alanlarındaki denizlerden ve kazasına tâbi olan deniz yetki alanlarından, akarsular ve göller ile tarım alanlarından belirlenen esaslara aykırı olarak kum, çakıl ve benzeri maddeleri alanlara metreküp başına 120 Türk Lirası idarî para cezası verilir. m) Bu Kanunun ek 2 nci maddesinde öngörülen çevre yönetim birimini kurmayanlara 6.000 Türk Lirası, çevre görevlisi bulundurmayanlara ya da Bakanlıkça yetkilendirilmiş firmalardan hizmet almayanlara 4.000 Türk Lirası idarî para cezası verilir. n) Bu Kanunun 9 uncu maddesi uyarınca belirlenen koruma esaslarına aykırı olarak içme ve kullanma suyu koruma alanlarına, kaynağın kendisine ve bu kaynağı besleyen yerüstü ve yeraltı sularına, sulama ve drenaj kanallarına atık boşaltanlara 48.000 Türk Lirası idarî para cezası verilir. Bu fiilin konutlarla ilgili olarak işlenmesi halinde her konut ve bağımsız bölüm için 1.200 Türk Lirası idarî para cezası verilir. Bu cezai sorumluluk, müstakil konutlarda konutu kullanana, diğer konutlarda ise yöneticiye aittir. Bu alanlarda Kanuna ve yönetmeliklere aykırı olarak yapılan yapılar 3194 sayılı İmar Kanununda belirlenen esaslara göre yıktırılır. o) Bu Kanunun 11 inci maddesinde öngörülen acil durum plânlarını yönetmelikle belirlenen usûl ve esaslara uygun olarak hazırlamayan ve bu plânların uygulanması için gerekli tedbirleri almayan, ekip ve ekipmanları bulundurmayanlar ile yerel, bölgesel ve ulusal acil durum plânlarına uymayanlara 12.000 Türk Lirası idarî para cezası verilir. p) Bu Kanunun 13 üncü maddesinde öngörülen malî sorumluluk sigortasını yaptırmayanlara 24.000 Türk Lirası idarî para cezası verilir. r) Bu Kanunda ve yönetmeliklerde öngörülen usûl ve esaslara, yasaklara veya sınırlamalara aykırı olarak atık toplayan, taşıyan, geçici ve ara depolama yapan, geri kazanan, geri dönüşüm sağlayan, tekrar kullanan veya bertaraf edenlere 24.000 Türk Lirası, ithal edenlere 60.000 Türk Lirası idarî para cezası verilir. s) Umuma açık yerlerde her ne şekilde olursa olsun çevreyi kirletenlere 100 Türk Lirası idarî para cezası verilir. t) Tehlikeli atıkların her ne şekilde olursa olsun ülkeye girişini sağlayanlara ayrı ayrı 2.000.000 Türk Lirası idarî para cezası verilir. u) Tehlikeli atıkları ilgili mercilere ön bildirimde bulunmadan ihraç eden veya transit geçişini yapanlara 2.000.000 Türk Lirası idarî para cezası verilir. v) Bu Kanunda ve ilgili yönetmeliklerde öngörülen yasaklara veya sınırlamalara aykırı olarak tehlikeli atıkları toplayan, ayıran, geçici ve ara depolama yapan, geri kazanan, yeniden kullanan, taşıyan, ambalajlayan, etiketleyen, bertaraf eden ve ömrü dolan tehlikeli atık bertaraf tesislerini kurallara uygun olarak kapatmayanlara 100.000 Türk Lirasından 1.000.000 Türk Lirasına kadar idarî para cezası verilir. y) Tehlikeli kimyasallar ve bu kimyasalları içeren eşyayı bu Kanunda ve ilgili yönetmeliklerde belirtilen usûl ve esaslara, yasak ve sınırlamalara aykırı olarak üreten, işleyen, ithal ve ihraç eden, taşıyan, depolayan, kullanan, ambalajlayan, etiketleyen, satan ve satışa sunanlara, 100.000 Türk Lirasından 1.000.000 Türk Lirasına kadar idarî para cezası verilir. Bu maddenin (k), (l), (r), (s), (t), (u), (v) ve (y) bentlerinde öngörülen idarî para cezaları kurum, kuruluş ve işletmelere üç katı olarak verilir. Bu maddede öngörülen ceza miktarlarını on katına kadar artırmaya Bakanlar Kurulu yetkilidir. Bu maddenin uygulamasında Türk Ceza Kanunu ile diğer kanunların, fiilin suç oluşturması haline ilişkin hükümleri saklıdır. Kuruluş ve işletmelere verilecek idari nitelikte cezalar: Madde 21 – (Mülga: 26/4/2006 – 5491/24 md.) Gemiler için verilecek cezalar: Madde 22 – (Mülga: 26/4/2006 – 5491/24 md.) Fiillerin tekrarı: Madde 23 – (Değişik : 26/4/2006 – 5491/15 md.) Bu Kanunda belirtilen idarî para cezaları, bu cezaların verilmesini gerektiren fiillerin işlenmesinden itibaren üç yıl içinde birinci tekrarında bir kat, ikinci ve müteakip tekrarında iki kat artırılarak verilir. İdari cezalarda yetki: Madde 24 – (Değişik: 26/4/2006 – 5491/16 md.) Bu Kanunda öngörülen idarî yaptırım kararlarını verme yetkisi Bakanlığa aittir. Bu yetki, 12 nci maddenin birinci fıkrası uyarınca denetim yetkisinin devredildiği kurum ve merciler tarafından da kullanılır. Bu Kanunda öngörülen idarî yaptırım kararları Bakanlık merkez teşkilâtında genel müdürler, taşra teşkilâtında il çevre ve orman müdürlerince verilir. Bu Kanunun 12 nci maddesinin birinci fıkrası uyarınca denetim yetkisi verilen kurum ve merciler tarafından verilen idarî para cezalarının yüzde ellisi, bu Kanun uyarınca yapılacak denetimlerle ilgili harcamaları karşılamak ve diğer çevre hizmetlerinde kullanılmak üzere bu kurumların bütçesine gelir kaydedilir, yüzde ellisi ise genel bütçeye gelir kaydedilir. Bu Kanun uyarınca yapılacak denetimlerle ilgili harcamaları karşılamak ve diğer çevre hizmetlerinde kullanılmak üzere, Bakanlık bütçesine, genel bütçeye gelir kaydedilecek idarî para cezaları karşılığı gerekli ödenek öngörülür. İdarî yaptırımların uygulanması, tahsil usûlü ve itiraz(1) Madde 25 – (Değişik: 26/4/2006 – 5491/17 md.) Bu Kanunda öngörülen idarî yaptırımların uygulanmasını gerektiren fiillerle ilgili olarak yetkili denetleme elemanlarınca bir tutanak tanzim edilir. Bu tutanak denetleme elemanlarının bağlı bulunduğu ve idarî yaptırım kararını vermeye yetkili mercie intikal ettirilir. Bu merci, tutanağı değerlendirerek gerekli idarî yaptırım kararını verir. İdarî yaptırım kararı, 11/2/1959 tarihli ve 7201 sayılı Tebligat Kanunu hükümlerine göre idarî yaptırım kararını veren merci tarafından ilgiliye tebliğ edilir. İdarî yaptırım kararlarına karşı tebliğ tarihinden itibaren otuz gün içinde idare mahkemesinde dava açılabilir. Dava açmış olmak idarece verilen cezanın tahsilini durdurmaz. İdarî para cezalarının tahsil usûlü hakkında 30/3/2005 tarihli ve 5326 sayılı Kabahatler Kanunu hükümleri uygulanır. Ceza vermeye yetkili kurum ve merciler tarafından tahsil edilen idarî para cezaları, Maliye Bakanlığından izin alınarak Bakanlıkça bastırılan ve dağıtılan makbuz karşılığında tahsil edilir. Bu Kanuna göre verilecek idarî para cezalarında ihlalin tespiti ve cezanın kesilmesi usûlleri ile ceza uygulamasında kullanılacak makbuzların şekli, dağıtımı ve kontrolüne ilişkin usûl ve esaslar Maliye Bakanlığının görüşü alınarak Bakanlıkça çıkarılacak yönetmelikle belirlenir. Adlî nitelikteki cezalar(1) Madde 26 – (Değişik: 26/4/2006 – 5491/18 md.) Bu Kanunun 12 nci maddesinde öngörülen bildirim ve bilgi verme yükümlülüğüne aykırı olarak yanlış ve yanıltıcı bilgi verenler, altı aydan bir yıla kadar hapis cezası ile cezalandırılır. Bu Kanunun uygulanmasında yanlış ve yanıltıcı belge düzenleyenler ve kullananlar hakkında 26/9/2004 tarihli ve 5237 sayılı Türk Ceza Kanununun belgede sahtecilik suçuna ilişkin hükümleri uygulanır. Bu maddeye göre yargıya intikal eden çevresel etki değerlendirmesine ilişkin ihtilaflarda çevresel etki değerlendirmesi süreci yargılama sonuna kadar durur. Diğer kanunlarda yazılı cezalar: Madde 27 – Bu Kanunda yazılı fiiller hakkında verilecek idari nitelikteki cezalar, bu fiiller için diğer kanunlarda yazılı cezaların uygulanmasına engel olmaz. ALTINCI BÖLÜM Çeşitli Hükümler Kirletenin sorumluluğu: Madde 28 – (Değişik: 3/3/1988 - 3416/8.md.) Çevreyi kirletenler ve çevreye zarar verenler sebep oldukları kirlenme ve bozulmadan doğan zararlardan dolayı kusur şartı aranmaksızın sorumludurlar. ––––––––––––––––––––––– (1) Bu madde başlığı "İdari cezalara itiraz:" iken, 26/4/2006 tarihli ve 5491 sayılı Kanunun 17 nci maddesiyle metne işlendiği şekilde değiştirilmiştir. Kirletenin, meydana gelen zararlardan ötürü genel hükümlere göre de tazminat sorumluluğu saklıdır. (Ek fıkra: 26/4/2006 – 5491/19 md.) Çevreye verilen zararların tazminine ilişkin talepler zarar görenin zararı ve tazminat yükümlüsünü öğrendiği tarihten itibaren beş yıl sonra zamanaşımına uğrar. Teşvik: Madde 29 – (Değişik birinci fıkra: 26/4/2006 – 5491/20 md.) Çevre kirliliğinin önlenmesi ve giderilmesine ilişkin faaliyetler teşvik tedbirlerinden yararlandırılır. Bu amaçla her yılın başında belirlenen teşvik sistemine Bakanlığın görüşü alınmak sureti ile Hazine Müsteşarlığınca yeni esaslar getirilebilir. (Ek fıkra: 26/4/2006 – 5491/20 md.) Arıtma tesisi kuran, işleten ve yönetmeliklerde belirtilen yükümlülükleri yerine getiren kuruluşların arıtma tesislerinde kullandıkları elektrik enerjisi tarifesinin, sanayi tesislerinde kullanılan enerji tarifesinin yüzde ellisine kadar indirim uygulamaya Bakanlığın teklifi üzerine Bakanlar Kurulu yetkilidir. Teşvik tedbirleri ile ilgili esaslar yönetmelikle belirlenir. Bu Kanunda belirlenen cezalara neden olan fiilleri işleyen gerçek ve tüzelkişiler, verilen süre içinde söz konusu yükümlülüklerini yerine getirmedikleri takdirde bu maddede yazılı teşvik tedbirlerinden yararlanamazlar ve daha önce kendileri ile ilgili olarak uygulanmakta olan teşvik tedbirleri durdurulur. Bilgi edinme ve başvuru hakkı(2) Madde 30 – (Değişik: 26/4/2006 – 5491/21 md.) Çevreyi kirleten veya bozan bir faaliyetten zarar gören veya haberdar olan herkes ilgili mercilere başvurarak faaliyetle ilgili gerekli önlemlerin alınmasını veya faaliyetin durdurulmasını isteyebilir. Herkes, 9/10/2003 tarihli ve 4982 sayılı Bilgi Edinme Hakkı Kanunu kapsamında çevreye ilişkin bilgilere ulaşma hakkına sahiptir. Ancak, açıklanması halinde üreme alanları, nadir türler gibi çevresel değerlere zarar verecek bilgilere ilişkin talepler de bu Kanun kapsamında reddedilebilir. Yönetmelikler: Madde 31 – (Değişik: 3/3/1988 - 3416/9 md.) Bu Kanunun uygulanmasıyla ilgili olarak çıkarılacak yönetmelikler, ilgili Bakanlıkların görüşü alınarak Bakanlıkça hazırlanır. Kanunun yüyürürlüğe girmesinden başlayarak en geç beş ay içinde Resmi Gazede yayımlanarak yürürlüğe konulur.(3) Uygulanmayacak Hükümler Madde 32 – (Değişik: 3/3/1988 - 3416/10 md.) Bu Kanuna göre yürürlüğe konulacak yönetmeliklerin yayımından itibaren deniz kirliliğinin önlenmesi hususunda 618 sayılı Limanlar Kanununun 4 ve 11 inci maddeleri gereği yürürlükte bulunan ceza hükümleri ile 1380 sayılı Su Ürünleri Kanununun 3288 sayılı Kanunla değişik geçici 1 inci maddesi hükümleri uygulanmaz. Ek Madde –(Ek: 4/6/1986 - 3301/6 md.; Mülga: 26/4/2006 – 5491/24 md.) –––––––––––––––––––––––––––– (1) Bu madde başlığı "Mahkemece verilecek cezalar:" iken, 26/4/2006 tarihli ve 5491 sayılı Kanunun 18 inci maddesiyle metne işlendiği şekilde değiştirilmiştir. (2) Bu madde başlığı "İdari makamlara başvurma:" iken, 26/4/2006 tarihli ve 5491 sayılı Kanunun 21 inci maddesiyle metne işlendiği şekilde değiştirilmiştir. (3) 26/4/2006 tarihli ve 5491 sayılı Kanunun 22 nci maddesiyle bu maddede yeralan “Çevre Genel Müdürlüğünce” ibaresi “Bakanlıkça” olarak değiştirilmiş ve metne işlenmiştir. Ek Madde 1 – (Ek: 26/4/2006 – 5491/23 md.) Toprağın korunmasına ve kirliliğinin önlenmesine ilişkin esaslar şunlardır: a) Toprağın korunmasına ve kirliliğinin önlenmesine, giderilmesine ilişkin usûl ve esaslar ilgili kuruluşların görüşleri alınarak Bakanlıkça çıkarılacak yönetmelikle belirlenir. b) Taşocağı ve madencilik faaliyetleri, malzeme ve toprak temini için arazide yapılan kazılar, dökümler ve doğaya bırakılan atıklarla bozulan doğal yapının yeniden kazanılmasına ilişkin usûl ve esaslar ilgili kuruluşların görüşleri alınarak Bakanlıkça çıkarılacak yönetmelikle belirlenir. c) Anız yakılması, çayır ve mer'aların tahribi ve erozyona sebebiyet verecek her türlü faaliyet yasaktır. Ancak, ikinci ürün ekilen yörelerde valiliklerce hazırlanan eylem plânı çerçevesinde ve valiliklerin sorumluluğunda kontrollü anız yakmaya izin verilebilir. d) Ülkenin egemenlik alanlarındaki denizlerden, akar ve kuru dere yataklarından, göl yataklarından ve tarım arazilerinden kum, çakıl ve benzeri maddelerin alınması ile ilgili esaslar ilgili kurum ve kuruluşların görüşleri alınarak Bakanlıkça çıkarılacak yönetmelikle belirlenir. Ek Madde 2 – (Ek: 26/4/2006 – 5491/23 md.) Faaliyetleri sonucu çevre kirliliğine neden olacak veya çevreye zarar verecek kurum, kuruluş ve işletmeler çevre yönetim birimi kurmak, çevre görevlisi istihdam etmek veya Bakanlıkça yetkilendirilmiş kurum ve kuruluşlardan bu amaçla hizmet satın almakla yükümlüdürler. Bu konuyla ilgili usûl ve esaslar Bakanlıkça çıkarılacak yönetmelikle belirlenir. Ek Madde 3 – (Ek: 26/4/2006 – 5491/23 md.) Bakanlık, yönetmelikte belirtilen koşulları taşıyanları çevre gönüllüsü olarak görevlendirebilir. Bu görev için ilgililere herhangi bir ücret ödenmez. Görevini kötüye kullandığı tespit edilen çevre gönüllülerinin bu görevleri sona erdirilir. Çevre gönüllülerinin çalışma ve eğitimlerine ilişkin usûl ve esaslar Bakanlıkça çıkarılacak yönetmelikle düzenlenir. Ek Madde 4 – (Ek: 26/4/2006 – 5491/23 md.) Motorlu taşıt sahipleri, egzoz emisyonlarının yönetmelikle belirlenen standartlara uygunluğunu belgelemek üzere egzoz emisyon ölçümü yaptırmak zorundadırlar. Trafikte seyreden taşıtların egzoz emisyon ölçümleri ve standartları ile ilgili usûl ve esaslar Bakanlıkça çıkarılacak yönetmelikle belirlenir. Motorlu taşıt üreticileri de üretim aşamasında yönetmelikle belirlenen emisyon standartlarını sağlamakla yükümlüdür. Ek Madde 5 – (Ek: 26/4/2006 – 5491/23 md.) Bakanlık, bu Kanunla öngörülen ölçme, izleme ve denetleme faaliyetleri ile çevre sorunlarının çözümüne yönelik diğer faaliyetleri yerine getirmek üzere gerekli kurumsal altyapıyı oluşturur. Ek Madde 6 –(Ek: 26/4/2006 – 5491/23 md.) Hava kalitesinin korunması ve hava kirliliğinin önlenmesi için, ulusal enerji kaynakları öncelikli olmak üzere, Bakanlıkça belirlenen standartlara uygun temiz ve kaliteli yakıtların ve yakma sistemlerinin üretilmesi ve kullanılması zorunludur. Standartlara uygun olmayan yakma sistemi ve yakıt üretenlere ruhsat verilmez, verilenlerin ruhsatları iptal edilir. Bakanlıkça, belirlenen temiz hava politikalarının il ve ilçe merkezlerinde uygulanması ve hava kalitesinin izlenmesi esastır. Hava kalitesinin belirlenmesi, izlenmesi ve ölçülmesine yönelik yöntemler, hava kalitesi sınır değerleri ve bu sınır değerlerin aşılmaması için alınması gerekli önlemler ile kamuoyunun bilgilendirilmesi ve bilinçlendirilmesine ilişkin çalışmalar Bakanlıkça yürütülür. Bu çalışmalara ilişkin usûl ve esaslar Bakanlıkça çıkarılacak yönetmelikle belirlenir. Ek Madde 7 – (Ek: 26/4/2006 – 5491/23 md.) Bakanlık, çevre ile ilgili olarak gerekli gördüğü her türlü veri ve bilgiyi, kamu kurum ve kuruluşları ile gerçek ve tüzel kişilerden doğrudan istemeye yetkilidir. Kendilerinden veri ve bilgi istenen tüm kamu kurum ve kuruluşları ile gerçek ve tüzel kişiler bu veri ve bilgileri bedelsiz olarak ve talep edilen sürede vermekle yükümlüdür. Ek Madde 8 – (Ek: 26/4/2006 – 5491/23 md.) İyonlaştırıcı olmayan radyasyon yayılımı sonucu oluşan elektromanyetik alanların çevre ve insan sağlığı üzerindeki olumsuz etkilerinin önlenmesi için usûl ve esaslar, ilgili kurum ve kuruluşların görüşleri alınarak Bakanlıkça çıkarılacak yönetmelikle belirlenir. Ek Madde 9 – (Ek: 26/4/2006 – 5491/23 md.) Kokuya sebep olan emisyonların, yönetmelikle belirlenen sınır değerlerin üzerinde çevreye verilmesi yasaktır. Kokuya sebep olanlar, koku emisyonlarının önlenmesine ilişkin tedbirleri almakla yükümlüdür. Buna ilişkin idarî ve teknik usûl ve esaslar Bakanlıkça çıkarılacak yönetmelikle belirlenir. Geçici Madde 1 – (2872 sayılı Kanunun numarasız geçici maddesi olup teselsül için numaralandırılmıştır.) Bu Kanunda belirtilen ilgili yönetmelikler yürürlüğe konuluncaya kadar gemiler ve diğer deniz taşıt araçlarına 618 sayılı Limanlar Kanununun hükümlerine göre denizlerin kirletilmesi ile ilgili olarak yapılan ceza uygulamasına devam olunur. Geçici Madde 2 – (Ek: 3/3/1988 - 3416/11.md.) Bu Kanunun 12 ve 13 üncü maddelerinde belirtilen ilgili yönetmelikler yürürlüğe konuluncaya kadar, her türlü yakıt, atık, artık ve kimyasal maddenin ithali Çevre Genel Müdürlüğünün bağlı olduğu Devlet Bakanının onayına tabidir. Yürürlük: Madde 33 – Bu Kanun yayımı tarihinde yürürlüğe girer. Yürütme: Madde 34 – Bu Kanun hükümlerini Bakanlar Kurulu yürütür. 9/8/1983 TARİH VE 2872 SAYILI ANA KANUNA İŞLENEMEYEN GEÇİCİ MADDELER 1 - 3/3/1988 tarih ve 3416 sayılı Kanunun Geçici Maddesi: Geçici Madde 1 – Bu Kanunun 6 ncı maddesiyle değiştirilen 2872 sayılı Çevre Kanununun 18 inci maddesinin (b) bendi gereğince Fona ödenmesi gereken meblağ, 1986 yılı için on lira üzerinden alınır. 2 – 26/4/2006 tarihli ve 5491 sayılı Kanunun Geçici Maddeleri: Geçici Madde 1 – Bu Kanun uyarınca ilgili bakanlıkların görüşü alınmak suretiyle Bakanlıkça çıkarılacak yönetmelikler bu Kanunun yürürlüğe girmesinden itibaren en geç bir yıl; Hazine Müsteşarlığı tarafından tespit edilecek sigorta genel şartları ile Hazine Müsteşarlığının bağlı bulunduğu Bakan tarafından onaylanacak tarife ve talimatlar bu Kanunun yürürlüğe girmesinden itibaren en geç bir yıl içinde yayımlanır. Geçici Madde 2 – Bu Kanunun yürürlüğe girdiği tarihte faal durumda olan işletmelere bu Kanun ve yönetmeliklerle getirilen ek yükümlülüklerin gerçekleştirilmesi için, yönetmeliklerin yayımlanmasından sonra, Bakanlıkça bir yıla kadar süre verilebilir. 2872 sayılı Çevre Kanununun 9 uncu maddesinin (h) bendine aykırı tesisler, bu Kanunun yayımı tarihinden itibaren bir yıl içerisinde kapatılır. Geçici Madde 3 – Bu Kanunun yürürlüğe girmesinden önce Çevresel Etki Değerlendirmesi Yönetmeliği hükümlerine tâbi olduğu halde, yükümlülüklerini yerine getirmeyenlerden, halihazırda yer seçimi uygun olanlar, bu Kanunun yürürlüğe girdiği tarihten itibaren altı ay içinde, ilgili yönetmelikler çerçevesinde gerekli yükümlülüklerini yerine getirdiklerini gösterir çevresel durum değerlendirme raporunu hazırlayarak Bakanlığa sunar. İlgili yönetmeliklerde belirlenen şartları sağlayanlar başvuru tarihinden itibaren altı ay içinde karara bağlanır. Çevresel durum değerlendirme raporunu altı ay içinde Bakanlığa sunmayan ya da raporun Bakanlığa sunulmasından itibaren altı ay içerisinde gerekli çevre koruma önlemlerini almayan faaliyetler Bakanlıkça süre verilmeksizin durdurulur. Yürürlükteki mevzuat uyarınca yer seçimi uygun olmayan faaliyetler için ilgili mevzuat hükümlerinin uygulanması esastır. Geçici Madde 4 – Atıksu arıtma ve evsel nitelikli katı atık bertaraf tesisini kurmamış belediyeler ile, halihazırda faaliyette olup, atıksu arıtma tesisini kurmamış organize sanayi bölgeleri, diğer sanayi kuruluşları ile yerleşim birimleri, bu tesislerin kurulmasına ilişkin iş termin plânlarını bu Kanunun yürürlüğe girdiği tarihten itibaren bir yıl içinde Bakanlığa sunmak ve aşağıda belirtilen sürelerde işletmeye almak zorundadır. İşletmeye alma süreleri, iş termin plânının Bakanlığa sunulmasından itibaren; belediyelerde nüfusu, 100.000’den fazla olanlarda 3 yıl, 100.000 ilâ 50.000 arasında olanlarda 5 yıl, 50.000 ilâ 10.000 arasında olanlarda 7 yıl, 10.000 ilâ 2.000 arasında olanlarda 10 yıl, organize sanayi bölgeleriyle bunların dışında kalan endüstri tesislerinde ve atıksu üreten her türlü tesiste 2 yıldır. Halen inşaatı devam eden atıksu arıtma ve katı atık bertaraf tesisleri için iş termin plânı hazırlanması şartı aranmaz. Tesisin işletmeye alınma süresi bu maddede belirlenen işletmeye alınma sürelerini geçemez. Belediyeler, organize sanayi bölgeleri, diğer sanayi kuruluşları ile yerleşim yerleri bu hükümden yararlanmak için bu Kanunun yayımı tarihinden itibaren üç ay içinde Bakanlığa başvurmak zorundadır. Bu Kanunun 8 inci maddesi ile atıksu altyapı sistemlerinin ve katı atık bertaraf tesisleri kurma yükümlülüğü verilen kurum ve kuruluşların, bu yükümlülüklerini, bu maddede belirtilen süre içinde yerine getirmemeleri halinde; belediyelerde nüfusu 100.000’den fazla olanlara 50.000 Türk Lirası, 100.000 ilâ 50.000 arasında olanlara 30.000 Türk Lirası, 50.000 ilâ 10.000 arasında olanlara 20.000 Türk Lirası, 10.000 ilâ 2.000 arasında olanlara 10.000 Türk Lirası, organize sanayi bölgelerinde 100.000 Türk Lirası, bunların dışında kalan endüstri tesislerine ve atıksu üreten her türlü tesise 60.000 Türk Lirası idarî para cezası verilir. Geçici Madde 5 – Bu Kanuna ekli (1) sayılı listede gösterilen kadrolar iptal edilerek, 190 sayılı Kanun Hükmünde Kararnamenin eki (I) sayılı cetvelin Çevre ve Orman Bakanlığına ilişkin bölümünden çıkartılmış, ekli (2) sayılı listede gösterilen kadrolar ise ihdas edilerek, 190 sayılı Kanun Hükmünde Kararnamenin eki (I) sayılı cetvelin Çevre ve Orman Bakanlığına ilişkin bölümüne eklenmiştir. Geçici Madde 6 – Bu Kanunda geçen Türk Lirası ibaresi karşılığında, uygulamada 28/1/2004 tarihli ve 5083 sayılı Türkiye Cumhuriyeti Devletinin Para Birimi Hakkında Kanun hükümlerine göre Ülkede tedavülde bulunan para "Yeni Türk Lirası" olarak adlandırıldığı sürece bu ibare kullanılır. 2872 SAYILI KANUNDA EK VE DEĞİŞİKLİK YAPAN MEVZUATIN YÜRÜRLÜKTEN KALDlRDIĞI KANUN VE HÜKÜMLERİ GÖSTERİR LİSTE Yürürlükten Kaldıran Mevzuatın Yürürlükten Kaldırılan Kanun veya Kanun Hükümleri Tarihi Sayısı Maddesi ______________________________________________ ____________ __________ _________ 2872 sayılı Kanun 4, 5, 6, 7 nci maddeleri ve diğer Ka nunların bu KHK'ye aykırı hükümleri 8/6/1984 KHK222 30 2872 sayılı Kanunun 5 inci maddesi 13/3/1990 KHK-409 12 2872 sayılı Kanunun 4 üncü maddesi 9/8/1991 KHK-443 43 2872 SAYILI KANUNA EK VE DEĞİŞİKLİK GETİREN MEVZUATIN YÜRÜRLÜĞE GİRİŞ TARİHİNİ GÖSTERİR LİSTE Kanun Yürürlüğe No. Farklı tarihte yürürlüğe giren maddeler giriş tarihi KHK-222 — 18/6/1984 3301 — 19/6/1986 3362 — 26/5/1987 3416 — 11/3/1988 KHK-409 — 10/4/1990 KHK-443 — 21/8/1991 4629 –– 1/1/2002 ta- rihinden geçerli olmak üzere 3/3/2001 tarihinde 5177 10 5/6/2004 5216 24 23/7/2004 5491 1, 2, 3, 4,5,9,10,11,12,13,14,15,16,18,20,21,22,23,24,25,26, 28,29,30,31, Ek Madde, 1,2,3,4,5,6,7,8,9, İşlenemeyen Hüküm Geciçi Madde 1,2,3,4,5 ve 6 13/5/2006

http://www.biyologlar.com/cevre-kanunu-bolum-2-

CANLILARDA DAVRANIŞ VE UYARLAMA

Tüm canlılar yaşadıkları çevre ile uyum içerisinde yaşarlar. Organizmalar acaba çevresindeki değişimlere karşı nasıl davranırlar? Aynı tür canlılar birbirleri ile karşılaştı-ğında nasıl tepki gösterirler? Canlılarda kalıplaşmış ve değişmez davranışlarla mı doğar yoksa çevrenin ve yaşadığı alanın özelliklerine göre bu davranışlar sonradan mı kazanı-lır? İnsanlar bu tür sorulara hem yanıt ararlar hem de bu tür soruları artırırlar. Etoloji = (Davranış bilimi ): Canlılardaki davranışları inceleyerek bu sorulara vb arayan bilim dalına yada adı verilir Davranış: Organizmanın iç ve dış ortamdan gelen uyarılar karşısında meydana getirdiği aktivitelerin tamamıdır. Uyarı :İç yada dış ortamda meydana gelen ve canlıda tepki oluşturabilecek fiziksel, kimyasal ve biyolojik değişiklikler olarak adlandırılır. Tepki: Uyarılara karşı efektör organların verdiği cevaba denir. Davranışlar uyarılar ve tepkilerin bir sonucudur. Davranış canlıya, eş, su, besin ve barınak bulmaya yada olumsuz çevre şartlarından( düşman, kıtlık, yangın, sel vb.) uzak-laşmada yardımcı olur. Örnek olarak aç bir köpek için besinin kokusu uyarıdır. Köpeğin besin kokusunu algıladığında tükürük salgısı artar. Tükürük salgısının oluşması ve artma-sı fizyolojik bir tepkidir. Bu tepki ile köpeğin besinin yerini bulmaya çalışması ise bir dav-ranıştır. İnsanlarda terlemeyi bu olaya örnek verebiliriz. Terleme olayı insan vücudunun aşırı ısınmasını önleyen ve homeostasiyi (iç dengeyi) sağlayan fizyolojik bir tepkidir. Ter-lediğimiz zaman, üzerimizdeki kalın giysileri çıkarmak, daha serin ve soğuk bir yer ara-mak, pencereleri açmak veya ılık duş almak ise davranıştır. Bir canlının tüm özelliklerinin yanında davranışlar genetik ve çevresel olayların bileşenleri ile ortaya çıkar ve gelişir. Davranışlarda bazen genetik etmenler bazen de çevresel faktör daha ağır basar. Yumurtadan henüz yeni çıkmış, gözleri açılmamış kuş yavrularının çoğu başları-nı yukarı kaldırıp ağızlarını açarlar ve öterek yiyecek istedikleri belirtebilir. Bu davranış doğuştan gelen kalıtsal yönü ağır basan davranıştır. Her davranışın sadece genlerle ortaya çıktığı bağlı söylenemez. Bazı davranışlarda çevresel faktörler kalıtsal faktörler-den daha fazla etkilidir. İnsanda lisan öğrenme o lisanın konuşulduğu çevresel ortamda gelişen bir davranıştır. Davranış; doğuştan gelen davranış, öğrenilmiş davranış ve sosyal davranış olarak üç grupta incelenir. 1.Doğuştan Gelen Davranışlar Canlıların doğuştan itibaren yaptığı, öğrenilmiş davranışlara doğal yada doğuştan gelen davranışlar denir. Doğuştan gelen davranışlar kalıtsaldır. Çevrenin bu davranışlar üzerindeki etkisi çok azdır. Aynı tür canlıların doğuştan gelen davranışları çevresel et-kenlere bağlı olmaksızın hemen hemen aynıdır. Örneğin aslanların avlanması veya so-mon balıklarındaki üreme gibi yapılan pek çok davranış doğuştan gelen davranışlara ör-nek verilebilir. Doğuştan gelen davranışlar, refleksler ve içgüdüler olarak iki grupta incelenir. a.Refleksler Refleks: Hayvanlarda çeşitli uyarılara karşı oluşan ani ve değişmez tepkilere denir.. Sinir sistemine sahip tüm canlılarda refleks görülür. Bir çok örnek vermek mümkün-dür. Bunlar elektrik şoku verilen bir solucanın otomatik olarak büzülmesi, yeni doğan be-beğin emmesi, kedinin fareyi görünce saldırması, yumurtadan yeni çıkan balıkların yüze-bilmesi birer reflekstir. b.İçgüdüler Doğuştan gelen bir davranış da içgüdülerdir. İçgüdüler bireyin yaşamını kolaylaştırıcı role sahiptir. Bunlar üreme, yuva yapma, yavru bakımı gibi davranışlardır. İçgüdüler kalıtsaldır, öğrenmeyle oluşmaz fakat bilinçli olarak gerçekleştirilir. Hayvanlar aleminde bir çok canlıda içgüdüsel davranışlar gözlenir. Her türün, türe ait tipik içgüdüsel davranışları vardır. Örneğin arıların buldukları besinin yerini kovandaki diğer arılara bildirmek için yaptıkları dans içgüdüseldir. Kazların göçler sırasındaki dizilimleri birer içgüdüsel davranıştır. Örümcekler ağlarını içgüdüleri ile yapar. Örümceklerin yaptığı ağın şekli farklı türlerin teşhislini yapılmasın kullanılır. Böceklerde yaşamın farklı evrelerinde gösteriler davranışlar içgüdüseldir. Örneğin mayıs böceği larvaları içgüdüsel olarak ışıktan kaçar ancak erginleri ışığa doğru hareket eder. Tırtırlar pupa evresine girmeden hemen önce içgüdüsel olarak etrafına koza örer. Hayvanlarda yuva yapımı da içgüdüseldir. Örneğin kuşlarda yuva yapılacak malzemelerin bulunması, taşınması ve yuvaya özel şeklinin verilmesi içgüdüsel olarak gerçekleşir. Balıklarda yuvalarını içgüdüleri ile yapar. Erkek güneş balığı örnek olarak verilebilir. Erkek güneş balığı gölün tabanına yuva yapar. Bu yuvaya dişi balık yumurtalarını bırakır ve bu yumurtalar erkek balık tarafından döllenir. Yumurtaların bakımını sadece erkek balık yapar. Örneğin; erkek balık, kuyruk yüzgeci ile yumurtaları oksijenlendirir ve yu-murtaları açılıncaya kadar korur. Kuşlardaki göç etme davranışları da içgüdüler ile kontrol edilir. Bir çok kuş türü kışı daha iyi yaşam şartlarında geçirmek için belirli zamanlarında sıcak bölgelere göç ederler. Göçmen kuşlar her yıl aynı rotayı izler. Norveç de bilim insanları tarafından yapılan bir araştırmada ayağına halka takılan bir grup yavru kutup deniz kırlangıcı uzun yıllar izlenmiştir. Kırlangıçların, üreme yerlerinin Kuzey Kanada, Grönland, Kuzey Avrupa, Sibirya ve Alaska olmasına rağmen , sonra güneye doğru göç ederek güney kutbun da yazı ge-çirdikleri belirlenmiştir. Kırlangıçlar bu yol boyunca yaklaşık 35 bin kilometrelik yolculuğun sonunda tekrar üredikleri yere döndükleri gözlenmiştir. Bu araştırmalar sonunda 27 yıl önce Norvec'de ayağına halka takılan bir kutup deniz kırlangıcı yine aynı bölgede görülmüştür. Araştırmalar pek çok göçmen kuşun kılavuz alarak güneşi yada yıldızları kullanarak yollarını bulduklarını göstermiştir. Bir çok göçmen kuş ve balığın ise dünyanın man-yetik alanını algılayarak göç ettikleri düşünülmektedir. I. İçgülerin Kontrolü Hipotalamus içgüdüsel davranışların kontrol merkezi olarak bilinir. Hipotalamus, yeme, içme, üreme, uyku, yavru bakımı ve sıcaklık değişimlerinde de etkilidir. Canlılarda açlık, susuzluk ve hormonlar gibi bir çok fizyolojik uyarıda içgüdüleri tetikler. İç dengenin bozulması da İçgüdüsel davranışların başlamasında önemli bir etkendir. İçgüdüsel davranışların incelendiği keçilerle yapılan bir deneyde, su içme ve su arama içgüdüsünün hipotalamus tarafından kontrol edildiği hipotalamus tarafından ve bu davranışın başlamasında kandaki ozmatik dengenin bozulmasının neden olduğu bulun-muştur. Keçinin kanındaki su miktarı düşerse keçideki su içme isteği ve su arama içgüdüsü başlar. Keçinin hipotalamusu, hipofiz bezini uyararak antidiüretik hormon salgılar. Antidiüretik hormon etkisi ile böbreklerden daha fazla su geri emilir. Hipotalamus ve hipofiz tarafından salgılanan hormonların bazıları üreme ve yav-ru bakımı davranışlarını da kontrol eder. Mevsimlere bağlı olarak artan güneş ışığı miktarı hipotalamusu etkiler. Bu uyarıyı alan hipotalamus, hipofiz bezini uyarır. Hipofiz bezi de üreme organlarından hormon salgılanmasını sağlar. Bu şekilde üreme ve yavru bakımı davranışlarının düzenlenmesini sağlar. Prolaktin hormonu güvercinlerde yavru besleme davranışını başlatır. Örneğin güvercinler yavrularını kursaklarında ürettikleri güvercin sütü adı verilen beyaz renkli bir sıvı ile besler. Bu salgılanan sıvı, yavrularının yumurtadan çıkmasına yakın bir zamanda prolaktin hormonu etkisiyle üretilir. Güvercinler böylece yavruyu besleme davranışını gerçekleşir. Kuşların göç etmelerinde hipotalamustan salgı-lanan hormonlarla kontrol edilir. Kuşlar bu şekilde yavruların daha uygun şartlarda büyü-yebileceği bölgelere doğru göç başlatırlar. 2.Öğrenilmiş Davranışlar Canlıların çoğu, öğrenme ile ortaya çıkan davranışlar gösterir. Davranış şekilleri aynı türdeki canlılar arasında bile bazı farklılıklar gösterebilir. Sonradan kazanılan bu davranışların oluşmasında en önemli etken öğrenmedir. Öğrenilmiş davranışlar: Deneyimler sonucu değişen davranışlar olarak adlandırı-lır. Hafıza: Deneyimler beyinde kayıt edilerek saklanır ve ihtiyaç duyulduğunda tekrar hatırlanır buna denir. Hatırlanan olay yeni bir durum karşısında davranışın düzenlenmesinde kullanılır. Doğuştan gelen davranışların aksine öğrenilmiş davranışlar uygun davranışın gösterilmesine yardımcı olur. Neticede öğrenme, hayvanı değişiklere karşı adapte eder. Doğuştan gelen davranışlar doğrudan genlerle kontrol edilir, öğrenilmiş davranışlarda ise genlerin kontrolü dolayı yoldan gerçekleşir. Kalıtım, sinir sisteminin yapısını ve öğrenme özelliklerini belirlerken canlının uyarılara karşı gösterdiği davranış da bu sırada etkilenir. Buna örnek olarak susamış bir hayvanın su arama davranışı içgüdüsel bir dav-ranıştır. Suyu bulan hayvanın suyun bulunduğu yeri öğrendikten sonra hayvanın her susadığında aynı yere gelmesi öğrenilmiş bir davranıştır. Sinir sistemi gelişmiş olan hayvanların öğrenme kapasiteleri gelişmemişlere göre daha fazladır. Örneğin maymunun öğrenme kapasitesi fareye göre daha fazladır. Uzun yaşam süresi ve yavru bakımı olan hayvanların çoğunlukla davranışlar ebeveynlerin davranışlarından öğrenir. Örneğin yavru çıtalar avlanmayı ailesinden öğrenir. Öğrenmenin çeşitli şekilleri vardır. Bunlar; Alışma Şartlanma İzleme yolu ileöğrenme Kavrama yolu ile öğrenme 1.Alışma Belirli bir uyarıya karşı tepkimenin bir süre sonra kararlı bir şekilde azalması ve zamanla ortadan kalmasına denir. Öğrenmenin en basit şeklidir. Bu öğrenme şeklinde hayvan art arda uyarıyla karşılaştığında gösterdiği tepkinin çeşidi ve şiddeti bir süre sonra azalır. Sonunda tepki tamamen ortadan kalkar. Çevremizde alışmayla ilgili çok sayıda örnek gözleyebiliriz. Bir örümceğin ağına dokunursanız, başlangıçta hayvan hızla dokunulan yere doğru hareket eder. Aynı hareket belirli aralıklarla tekrarlandığında tepkimenin giderek azaldığı ve bir süre sonra hiç tepki vermediği görülür. Hayvanat bahçesindeki bazı maymunlar insanlara alışkındır bu hayvanlar kafeslerine yaklaşıldığında kaçmaz, verilen yiyecekleri alıp yer. Ancak aynı türün ormanda yaşayan bir hayvan bu tür bir davranış gözlenmez. Bir başka örnek ise tarlaya konulan bostan korku-luklarıdır. Başlangıçta korkuluktan kaçan kargalar, bir süre sonra bostan korkuluğunun bir zararı olma-dığını öğrenir ve kaçmaz. Fazla sayıda aracın geçtiği yol kenarlarında yaşayan bazı kuşların ise zamanla gürültüye karşı tepki-leri azalır ve araba geldiğinde kaçmaz. Alışma durumunda hayvanlar kendileri için zararlı olmayan uyaranlara karşı tepki göstermemeyi öğrenir. Buda canlıya bir uyarı karşısında gereksiz davranışlar göstermesini önler. 2.Şartlanma Refleks hareketi; canlının doğuştan sahip olduğu davranışlardır. Bu davranışlardan bazıları zamanla değiştirilebilir bu olaya şartlanma denir. Şartlanma olayı ile ilgili ilk ciddi çalışmayı Rus bilim insanı İvan Pavlov (İvan pavlof) yapmıştır. A-Köpeğe zil çalındığı zaman tepki vermez. Burada zil nötr uyarıcıdır. B-Köpeğe zil çalıp yemek verdiğimiz zaman köpeğin salyası akar.Zil sesi nötr uyarıcı,yemek koşulsuz uyarıcı,salya koşulsuz uyarıcıdır. C-Köpeğe zil çaldığımız zaman köpeğin salyası akar. Burada zil koşullu uyarıcı, salya koşullu tepkidir. Böylece Pavlov, doğuştan gelen reflekslerin, doğal uyaranlarının değiştirebileceğini kanıtlamıştır. Burada uyaranın yerine bir başka uyaran almıştır. Pavlov 'un bu çalışması şartlı refleks yada şartlanma olarak tanımlanmıştır. Şartlanmanın iki şekli vardır. Birincisi klasik şartlanmadır. Bu şartlanmada Pavlov' un örneğindeki gibi basit bir uyaran başka bir uyaran ile aynı anda verilir, bu durumda uyaranlar eşleşirler ve basit bir refleks olur. İkincisi işlevsel (operant) şartlanmadır. Bu şartlanmada öğrenme; herhangi bir uyaranın yanında başka bir ödül yada ceza ile birleştirme sonucu gerçekleşir. Başka bir ifade ile canlıya ödül veya ceza verilerek bir davranış yapması yada yapmaması öğretilir. Örneğin bilim insanı B.F. Skinner (Sikınır) yaptığı deneyde farenin yaşadığı kafesin içine bir pedal koymuş, fare pedala bastıkça yiyecek düşmesini sağlamıştır. Fare bu şekilde pedala basmayı öğrenmiştir. Bu yöntemle hayvanların çeşitli davranışları yapmaları ve eğitilmeleri sağlanır. Atlar bu şekilde eğitilerek ;eğitimi sırasında istenilen davranış gerçekleştiğinde atlara şeker yada havuç verilir. 3.İzlenim yoluyla öğrenme 1935 yılında Avustralyalı bilim insanı biyolog Konratd Lorenz bazı canlılarda yeni doğan genç bireylerin izlenimle bazı davranışları öğrendiklerini fark etmiştir. Lorenzin, bu çalışmasından önce yumurtadan çıkan ördek ve kaz yavrularının annelerini takip etmele-rinin iç güdüleri düşünülmekteydi. Lrenz yaptığı çalışmada kuluçka makinesinden çıkan ördek yavrularını gözlemlemiştir. Lrenz, ördek yumurtalarını iki guruba ayırmıştır. Bir grubu anneleri ile bırakmış diğer grubu kuluçka makinesine yerleştirmiştir. Anneleri tarafından yetiştirilen bireyler normal davranışlar göstermiştir. Kuluçka makinesinden çıkanlar ilk saatlerini LORENZ ile geçirmiş ve kararlılıkla onu izlemişlerdir. Annelerine yada aynı türden başka bireylere karşı tepki göstermemiştir. Lorenz canlıların bu şekilde gördükleri objeleri taklit ederek öğrenmelerine izlenim yoluy-la öğrenme adı verilmiştir. İzlenim, basit bit öğrenme şeklidir. Diğer bir ifadeyle yaparak, yaşayarak öğrenmedir. Bu öğrenme şekli özellikle yeni doğmuş yada yumurtadan çıkmış yavrularda görülür. Bazı hayvanların yavruları, annelerin arkasında yürümeyi, avlanmayı saklanmayı izleyerek öğrenir. 4. Kavrama yoluyla öğrenme Gelişmiş omurgalı hayvanların yeni bir sorunla karşılaştığında önceki deneyimlerinden yararlanarak sorunu çözmelerine kavranma yoluyla öğrenme yada iç yüzüyle öğrenme adı verilir. Öğrenmenin en ileri şekli olarak kabul edilen davranıştır. Gelişmiş omurgalı hayvanlarda rastlanır. Kavrama yoluyla öğrenme yeteneğine sahip bir hayvanın besin kaynağına giden yol kapatılırsa, hayvan önceki deneyimlerinden yararlanarak uygun başka bir yol seçer ve yiyeceğe giden yolu bularak yiyeceğe ulaşır. Yapılan araştırmalar ve deneyler böyle bir durumda yalnızca maymunların ve şempanzelerin yiyeceğe ilk aşamada ulaştıklarını göstermiştir. Şempanzelerin denek olarak kullanıldığı deneyde tabandan aşağıya bir ip sarkıtılmış ve ucuna besin bağlanmıştır. Aç şempanzenin çevresindeki sandıkları kullanarak besine ulaştığı görülmüştür. şempanzeler ve maymunlarda problem çözme yetenekleri gelişmiştir.. Hayvanların bireysel olarak yaptıkları davranışlarının yanında, bazı hayvan gruplarında gözlenen sosyal davranışlar vardır. 3. SOSYAL DAVRANIŞLAR Hayvanların bazıları tek başlarına bazıları da gruplar halinde yaşar. Bir çok çok çevresel etken bazı hayvanları bir araya getirir. Çeşitli çevresel etkenlerle bir araya gelmiş canlılara topluluk adı verilir. Afrika'nın zengin otlakları zebra, antilop gibi canlıların bir araya geldikleri yaşam alanları örnek olarak verilebilir. Bu örneğin yanında bir sokak lambamsı böceği kendine çeker. Bu şekilde bir araya gelen canlılar organize olmuş gruplar değildir. Bazı hayvanlar sosyal grup adı verilen organize olmuş gruplar oluşturur. bir sosyal grup belirli görevleri yerine getirmek için özelleşmiş üyelerden meydana gelen ve kendi kendine yeterli olan bir populasyondur. Grubun hayatta kalması özelleşmiş olan üyelerin yakın iş birliğine bağladır. Bundan dolayı bir sosyal grubu çok hücreli bir organizmaya benzetebiliriz. Farklı görevleri üstlenen hücrelerden meydana gelen organizma bir bütün halinde çalışır. Bir sosyal grubu oluşturan bireyler de özel görevleri yerine getirmek içi farklılaşmışlardır. Çevremizi incelediğimizde çok çeşitli sosyal grup örnekleri ile karşılaşırız. Bu tür grupları oluşturan bireylerin sergiledikleri davranışlar sosyal davranışlar olarak adlandırılır. Sosyal davranışlar iş birliğine dayalı davranışlar, çatışma davranışları ve ileti-şim davranışları şeklinde gruplandırılarak incelenebilir. Sosyaldavranışlar 1-İş birliği 2-Çatışma ve baskınlık 3-Yurt savunması 4-Sosyal iletişim 1. İş birliğine dayalı davranışlar Aynı türü oluşturan bireyler, besin bulma, düşmana karşı koyma ve savunma, yaşam alanı bulma, çiftleşme, yavruları koruyarak soylarını devam ettirme gibi davranışları karşılıklı iş birliğine dayalı olarak sergilerler. Bu davranışları, bazı balık sürülerinde, bazı kuş sürülerinde, misk öküzlerinde, aslanlarda vahşi köpeklerde ve bir çok canlı gruplarında görebiliriz. grubu oluşturan bi-reylerin hayatta kalabilmesi iletişime dayanır. grup üyeleri arasında iletişim sesle, görsel ya da kimyasal uyarıcılar ile sağlanır. Örneğin grup üyelerinden birisi bir tehlike olduğunu hissettiğinde diğer bireylere de haber verir ve bütün grubu uyarır. Böylece grup, tehlikeden kaçma davranışı gösterir. gruplar ayrıca iş birliği yaparak avcılara karşı savunma davranışı sergiler. Örneğin erkek misk öküzleri tehlike karşısında halka oluşturur ve yavruları bu halkanın ortasına alır. böylece hem yavrularını hem de kendilerini korumaya çalışır. Küçük kuşlar ise iş birliği yaparak avlanma davranışı ile kurtlar aslanlar ve vahşi köpeklerde görülür. Aile içindeki ilişkiler ebeveyn ve yavrular arasındaki iş birliğine dayalı davranışları içerir. Bu ilişkiler hem ailedeki genç bireylerin besin bulmasını savunmasını ve korunmasını sağlamada hem de ebeveynlerin soyunu sürdürmesinde önemli rol oynar. 2 Çatışma ve baskınlık davranışları Sosyal gruplar halindeki bir arada yaşayan hayvanlarda bazen karşılıklı iş birliği yerine çatışma davranışları da görülebilir. Populasyonda canlı sayısı arttıkça canlılar arasında besin yaşam alanı ve eş için rekabet artar. Rekabet grup içindeki çatışmayı artıran bir etkendir. Bu olaylar grubu oluşturan hayvanlar arasında sosyal hiyerarşinin ortaya çıkmasına neden olur. Sosyal hiyerarşi bireylerinin üstünlüklerine göre sıralanarak birbir-lerini kontrol etmesidir. Üstünlük hiyerarşisi yada tecrübeli birey üstünlüğü tür içi kavgalar sonucu kurulur. Üstünlüğünü ispatlayan birey yaşam ihtiyaçlarını diğerlerinden önce karşılama hakkına sahiptir. Bu bireyler sembolik tehdit davranışları gösterir. Bu tehdit davranışları grubun diğer bireyleri tarafından açıkça anlaşılan ve galibiyeti gösteren davranışlardır. Baskınlık davranışına örnek olarak; kurt ve köpeklerde kaybedenin yenilgiyi kabul etmesi, kazananın önünde boyun eğmesi olarak gösterilebilir. Bu durumda kazanan köpeğin saldırgan davranışları son bulur ve üstünlük pozisyonunu kurulmuş olur. Tavuklarda , ördeklerde ve hindilerde ise üstünlük gagalama davranışı ile sağlanır. Hiyerarşik olarak üst düzeyde bulunan en tecrübeli birey ihtiyaçlarını en önce karşılar. Bu durumdaki canlı; besin, su ve tüneklere ilk önce sahip olur ve diğer bireyler ta-rafından da kabul edilir. Böylece toplulukta kimin neyi alacağı konusundaki kargaşayı ortadan kaldırır. Topluluğun alt düzeyindeki bireyler yemek ve su için beklemek zorunda kalır. En alt düzeydeki bireylerin yaşama sansı azdır. Bu şekildeki bir populasyonda güçlü olanların hayatta kalma güçsüzlere göre daha fazla olur. 3.Hayvanlarda Yurt Savunması Hayvanlar yaşadıkları çevrede bir çok aktivite içindedirler. Bunlar varlıklarını sürdürmek ve yaşamlarını devam ettirmek, beslenmek ve üremektir. Yurt (territoryum, savunak,egemenlik alanı) :Bir bireyin beslenme, eşleşme ve yavru büyütme amacıyla kendi türünden başka bireylere karşı koruduğu alana denir. Yurt savunması , kuşlarda kolayca anlaşılır. Üreme döneminde erkek kuş kendine bir yer seçer. Burası için diğer kuşlarla kavga eder ve sınırları belirler. Kuşlarda bu alan küçüktür bunun yanında aslanlarda yurt çok daha büyük alana sahiptir. Sumsuk kuşlarında yurt savunması şu şekilde olur; erkek kuşlarla sınırlar tamamen belirleninceye kadar boyunlarını uzatır ve birbirlerini gagalayabilecek kadar küçük mesafeler bırakacak şekilde yuva yapar,yutlarını bağırıp çağırırarak ve birbirlerini gagala-yarak yuvalarını savunur. Yurt edinme eğilimi hayvanların yaşadığı ortamı en verimli şekilde kullanmaya yöneliktir. Yurt savunması bireyler arasındaki; 1-Tür içi çekişmeyi azaltır. 2-Populasyon büyümesini kontrol altında tutar. 3- Bireylerin habitatları içinde eşit olarak dağılmasını sağlar. 4-Abiyotik (çevresel) kaynaklar en iyi şekilde kullanılır. 4.Sosyal Gruplarda İletişim iletişim, sosyal davranışların gerçekleşmesinde önemli bir yere sahiptir. bu sebepten sosyal grubu oluşturan bireyler aralarında iletişimi sağlayan çok çeşitli mesajlar oluşturur. Bu mesajlar 1-Kimyasal mesajlar, 2-Sesli mesajlar 3-Görsel mesajlar şeklinde olabilir. 1-Kimyasal salgılar: Bir çok hayvan tarafından haberleşmede kullanılan kimyasal salgılar vardır bunlara feromon denir. Aynı türe ait bireyleri uyararak davranışlarını etkiler. Feromonlar eşeysel çekim için kullanılabilir. Aynı tür canlıların salgıladığı feromon kendine özgüdür. Dişi ipek böceği, o kadar güçlü feromon salgılar ki 3 km den daha uzaktaki erkeği uyarabilir. Feromon salgılayan canlılara örnek olarak: ipek böceği, ağaç güvesi, hamam böceği ve diğer birçok böcek verilebilir. Bunlar karşı eşeyi çekici feromonlar da salgılar. 2-Sesli mesajlar: Böceklerde , kurbağalarda, kuşlarda, balinalarda sesli mesajlar önemlidir. Örneğin erkek cırcır böcekleri, oluşturdukları sesle dişleri cezbeder. Balinalar 10 km den fazla mesafe boyunca kendi aralarında su altı şarkılarıyla iletişim kurar. 3-Görsel mesajlar: Görsel mesajlar arılar arasındaki iletişimi kurmada önemli bir yere sahiptir.. Arılar aralarındaki iletişimlerini kendilerine has vücut hareketlerinden oluşan bir çeşit dans ile sağlar. Örneğin bir arı polence ve nektarca zengin bir çiçek tarlası veya alanı bulduğunda, bu alanın yönünü ve kovana uzaklığı diğer arılara haber verir. Arılardaki iletişim davranışlarını inceleyen bilim insanı K.V.Frisch (Friş) arıların iki çeşit dans yaparak haberleştiklerini bulmuştur. Bunlar 1-Halka dansı:Bu dans,besin kovana yakın olduğunda yapılır 2.Sallanma dansı: Arı bu dansı besin, kovana uzaksa yapar. Besinin yönünün de belirlenmesi sallanma dansı ile gösterilir. Arılar besinin yönünü anlatırken güneşin konumunu ve yiyeceğin bu konumu olan açısını esas alır.

http://www.biyologlar.com/canlilarda-davranis-ve-uyarlama

Evrim Konusunda ilk Düşünceler

Dini Düşünceler: Düşünebilen insanin, dogadaki çeşitlenmeyi, canilar arasindaki benzerliklerin ve farkliliklarin derecesini gözledigi an evrim konusunda ilk düşünceler başlamiş demektir. İlk yaygın düşünceler, Asur ve Babil yazıtlarında; daha sonra bunlardan köken alan Ortadoğu kökenli dinlerde görülmüştür. Hemen hepsinde insanın özel olarak yaratıldığı ve evrende özel bir yere sahip olduğu vurgulanmış; türlerin değişmezliğine ve sabitliğine inanılmış ve diğer canlılar konusunda herhangi bir yoruma yer verilmemiştir. Bununla beraber Kuran’da yaratılışın kademeli olduğu vurgulanmıştır. Yalnız bir Türk din adamı, astronomu ve filozofu olan Hasankale’li İbrahim Hakkı(1703-1780), insanların değişik bitkilerden ve hayvanlardan köken aldığını belirtmiştir. 17. yüzyıla kadar, piskopos Ussher’in ve diğerlerinin savunduğu ‘türlerin olduğu gibi yaratıldığı ve değişmeden kaldığı fikri’ yani ‘Genesis’ geniş halk kitleleri tarafından benimsendi ve etkisini günümüze kadar sürdürdü. Ussher’e göre dünya İÖ 4040 yılında, Ekim ayının 4'ünde sabah saat 9.00'da yaratılmıştı. Bu düşünce Ussher tarafından İncil’e eklenmiştir. Daha sonra yine Hıristiyan din adamları olan Augustin (İS 354-430) ve Aquinas (İS 1225-1274) tarafından canlıların basit olarak tanrı tarafından yaratıldığı ve daha sonra değişerek çeşitlendiği savunulmuştu. Özellikle bizim toplumumuzda, birçok dini belgeden de anlaşilacagi gibi, Adem’in çamurdan yaratildigi, Havva’nin Adem’in kaburga kemiginden oluştugu ileri sürülerek, yaratilişin ilk olark inorganik kökenli oldugu ve daha sonra eşeylerin ortaya çiktigi savunulmuştur. Yunanlılardaki ve Ortaçağdaki Düşünceler: Yunan filozoflarından Empedocles, İÖ 500 yıllarında bitkilerin tomurcuklanma ile çeşitli hayvan kısımlarını, bu kısımların da birleşmesiyle hayvanların oluştuğunu savunmuştu. Thales(İÖ 624-548), Ege Denizindeki canlıları çalışmış ve denizlerin canlılığın anası olduğunu ileri sürmüştür. Aristo (İÖ 384-322) bitkiler ve hayvanlar konusunda oldukça geniş bilgiye sahipti. Onların doğruya yakın tanımlarını vermiş ve gelişmişliklerine göre sınıflandırmıştır. Canlıların metabiyolojik olarak değişerek birbirlerinden oluştuklarına ve her birinin tanrıların yeryüzündeki ilahi taslakları olduklarına inanmıştır. Daha sonra, canlıların kökenini Der Rerum Natura adlı şiirinde veren Lucretius (İÖ 99-55) u anmadan ortaçağa geçemeyeceğiz. Yeni Çağdaki ve Yakın Çağdaki düşünceler: Rönesans ile canlılar konusundaki bilgilerin, en önemlisi evrim konusundaki düşürnürlerin sayısı artmıştır. Hooke (1635-1703), Ray (1627-1705), Buffon ( 1707-1788) ve Erasmus Darwin (1731-1802) bu devrin en önemli evrimcileridir. Rönesanstan önce de bulunan hayvan kabuklarının, dişlerinin, kemiklerinin ve diğer parçalarının bugünkü canlıların benzer tarafları ve farkları saptanmıştır.Ayrıca yüksek dağların başında bulunan fosillerin, yaşayanlarla olan akrabaliklyarı gözlenmiştir. Bu gözlemlerin ışığı altında, her konuda çalışmış, düşünür ve sanatçı olan Leonardo da Vinci, canlıların tümünün bir defada yaratıldığını ve zamanla bazılarının ortadan kalktığını savunmuştur. Buna karşılık birçok doğa ibilimcisi, canlıların zaman zaman oluştuklarını doğal afetlerle tamamen ortadan kalktıklarını ve yeniden başka şekillerde yaratıldıklarını ileri sürmüştür. Bu şekilde farklı devirlerde 2arklı canlıların yaşaması kolaylıkla açıklanabiliyordu. Her doğal yıkımdan sonra, oluşan canlıların, organizasyon bakımından biraz daha gelişmiş olduklarına inanılıyordu. Bu kurama “Tufan Kuramı” denir. Bu yıkımın yedi defa olduğu varayılmıştır. Cuvier, 1812 yılında, fosiller üzerinde ünlü kitabını yanılayarak fosillerin, kesik, kesik değil, birbirlerinin devamı olacak şekilde olduklarını bilimsel olarak açıklamıştır. 18. yüzyılın sonu ile 19. yüzyılın başlangıcında, üç İngiliz jeoloğun çalışmalarıyla katstrofizm kuramı yerine ‘Uniformizmi’ kuramı getirildi. Hutton 1785'te geçmişte de bugünkü gibi jeolojik kuvvetlerin rol oynadığını, yükselmelerin ve alçalmaların, keza erozyonlaların belki de daha kuvvetli olurak meydene galdiğini ve yüksek dağlarda bulunan fosilli tabakalar ile sediman (katman) tayinlerinin yaılabileceğini buldu. John Playfair’in yapıtı 1802'de yayınlandı. Üçüncü araştırıcı, Charles Lyell, bir çok jeolojik soruna çözüm getirmenin yanısıra, canlıların büyük afetlerle değil, çevre koşullarının uzun sürede etki etmesiyle değiştiğini savundu. Kitabının bir yerinde ‘geçmişteki güçler bugünkünden hiç de çok farklı değildi’ diye yazmıştır. Bu yaklaşım, Nuh Tufanı’nın gerçeküstü olduğunu savunuyordu. Lyell’in fikirleri C.Darwin’i büyük ölçüde etkilemiştir. Lamarck’ın Düşünceleri Organik evrimi konusunda ilk kapsamlı kuram 1809 yılında ‘Philosophie Zoologique’ adlı yapıtıyla, Fransız zooloğu Jean Baptiste Lamarck’a (1774-1829) aittir. Lamarck, zamanının meslektaşları gibi, tüm canlıların, gelişimlerini ve işlevlerini denetleyen bir canlılık gücüyle donatıldığına ve değişen çevre koşullarına karşı bir savaşım gücünün olmadığına inanıyordu. Kitabında, hayvanları, karmıaşıkyıklarına göre düzenlemeye çalışırken, yanlışlığı daha sonra kesin olarak saptanan bir varsayımı ileri sürdü: “ Eğer bir onrgan fazla kullanılıyorsa, o organ gelişmesini sürdürerek, daha etkin bir yapı kazanır”. Bu varsayıma ‘lamarkizm’ denir. Ayrıca canlının yaşamı boyunca kazanmış olduğu herhangi bir özelliğin, gelecek döllere geçtiğine de inanmıştı. Örneğin demircinin oğlunun kol kasları diğerlerine göre daha iyi gelişir. Zürafalırın atası kısa boyunlu olmalıran karşın, yaşadıkları ortamın bir zaman sonra kuraklaşarak, dibi çıplak ve çayırsız ağaçların bulunduğu ortama dönüşmesi sonucu, zürafalar ağaçların yapraklarıyla beslenmek zorunda kaylmışlar ve böylece boyunları dölden döle uzamıştır. Körfarelerin gözlerini, karıncaayısının dişlerini yitirmesini; su kuşlarının perde ayakları kazanmasını bu şekilrde açıklamıştır. Bu üaçıklamalar,kalıtımın yasaları ortaya çıkarılmadan önce, çok iyi bir açıklama şekli olarak benimsendi. Fakat kalıtım konusunda bilgiler gelişince, özellikle Weismann tarafından somatoplazma ile germplazma arasındaki kuramsal farklar bulununca, evrimsel değişmenin, vücut hücrelerinde olmadığı, sadece eşeysel hücrelerdeki kalıtsal materyalin etkisi ile yürütüldüğü anlaşıldı. Böylece Lamarck’ın varsayımı tümüyle geçerliliğini yitirdi. Çünkü bir birey gerçekte belirli ölçüde çevre koşullarına uyum yapar; fakat ölümüyle birlikte bu özellikler de yitirilir. Halbuki her döl uyumunu, doğduğu zaman taşıdığı kalıtım materyalinin izin verdiği ölçüler içerisinde yapabilir ve ancak bu özellikleri gelecek döllere verebilir. Buffon ve Erasmus Darwin de buna benzer fikirler ileri sürmüşler, fakat inandırıcı olamamışlardır. Charles Darwin ve Alfred Wallace’ın Görüşleri Charles Darwin (1809-1882), evrim bilimine iki önemli katkıda bulundu. Birincisi, organik evrim düşüncesini destekleyen zengin bir kanıtlar dizisini toplayarak ve derleyerek bilim dünyasına sundu. İkincisi, evrim mekanizmasının esasını oluşturan ‘Doğal Seçilim’ ya da diğer bir deyimle ‘Doğal Seçim’ kuramının ilkelerini ortaya çıkardı.Evrim Kuramı, bilimsel anlamda 19. yy kuramıdır; ama bu kuram 20. yy’da büyük bir kuram niteliğini aldı. Bu nedenle Darwin’ i biraz daha yakından tanımalıyız: Darwin, 1809'da İngitere’de doğdu. Babas, onun hekim olmasını istiyordu; 16 yaşında Edinburg Üniversitesi’ne gönderdi. Darwin, ilk olarak başladığı hekimlik eğitimini ve daha sonra başladığı hukuk eğitimini sıkıcı bularak her ikisini de bıraktı. Sonunda Cambridge Üniversitesi’ne bağlı Christ Kolejinde teoloji (= dinibilimler) öğrenimi yaptı. Fakat Edinburg’daki arkadaşlarının çoğu jeoloji ve zooloji ile ilgileniyordu. Cambridge’de kırkanatlıları toplayan bir grupla ilişki kurdu. Bu bilim çevresi içerisinde botanikçi John Henslow’ u tanıdı ve onun önerileri ile dünya çevresinde beş sene sürecek bir geziye katılmaya karar verdi. Beagle, 1831 yılında Devonport limanından denize açıldı. Lyell’in kitabını gezisi sırasında okudu ve dünya yüzünün devamlı değiştiğini savunan düşüncesinden çok etkilendi. Gemidekiler harita yaparken, Darwin de sürekli bitki, hayvan, fosil topluyor; jeoljik katmanları inceliyor; sayısız gözlem yapıyor ve dikkatlice notlar alıyordu. Gemi, ilk olarak Güney Amerika’nın doğu sahilleri boyunca güneye inip, daha sonra batı kıyılarından kuzeye doğru yol aldı. Bu arada Arjantin’in Pampas’larında soyu tükenmiş birçok hayvanın fosilini buldu ve yine jelojik aktmanlardaki fosillerin değişimine özellikle dikkat etti. Bu gözlemleriyle, her türün özel yaratıldığına ilişkin düşüncelere olan inancını yitirmeye başladı. Yine insan da dahil, çeşitli bitki ve hayvan türlerinin değişik ortamylara yaptıkları uyumları, bu arada yaşadığı bir deprem olayı ile yeryüzünün nasıl değişebileceğini gözledi. Beagle, 1835 yılında, Güney Amerika kıtasının batı kıyısına yaklaşık 1000 km kadar uzak olar Galapagos adalarına ulaştı. Bu adalarda yaptığı gözlemlerde, büyük bir olasılıkla aynı kökenden gelmiş birçok canlının coğrafik yalıtım nedeniyle, birbirlerinden nasıl farklılaştıklarını ve her canlının bulunduğu ortamdaki koşullara nasıl uyum yaptığını bizzat gözledi. Örneğin ispinoz kuşlarının, dev kaplumbağaların, dev kertenkelelerin, adalara ve her adanın değişik koşulları taşıyan bölgeliren göre çeşitlenmelerini, yapısal uyumlarını, varyasyonlarını ve sonuç olarak uyumsal açılımlarını gördü. Buradaki bitkilerin ve hayvanların hemen hepsi, Amerika kıtasının güney sahillerindeki bitki e hayvan türlerine benzerlik gösteriyor; ama onlardan özellikle uzaklığı oranında farklılaşmalar gösteriyordu. Daha sonra araştirmalarina Pasifik Adalarindan, Yeni Zelanda’da, Avusturalya’da ve Güney Afrika Kiyilarinda devam etti. Tüm bu araştirma süreci içerisinde evrimsel uyumu destekleyecek kanitlari titizlikle topladi.1836 yilinda Ingiltere’ye ulaşti. Darwin, ileri süreceği fikrin yankı uyandıracağını, dolaysıyla yeterince kanıt toplaması gerekeceğini biliyordu. Kanıtlar evrimsel dallanmayı göstermekle birlikte, bunun nasıl olduğunu açıklamaya yetmiyordu. İngiltere’ye varışından itibaren 20 yıl boyunca biyolojinin çeşitli kollarındaki gelişmeleri de dikkatlice inceleyerek, gözlemlerini ve notlarını biraraya getirip doğal seçilim konusundaki düşüncesini ana hatlarıyla hazırladı. 1857 yılında düşüncelerini kabataslak arkadaşlarının görüşüne sundu. Bu sırada kendisi gibi, Malthus’un bilimse serisini okuyarak ve yine sekiz yıl Malaya’da ve Doğu Hindistan’da dört yıl Amazon ormanlarında bitkiler ve hayvanlar üzerinde gözlemler yaparak, bitkilerin ve hayvanların dallanmalarındaki ve yayılışlarındaki özelikleri görmüş ve doğal seçilim ilkesine ulaşmış, bir doğa bilimcisi olan Alfred Russel Wallace’ın hazırlamış olduğu bilimsel kitabın taslağını aldı. Wallace, Darwin’e yazdığı mektupta eğer çalışmasını ilginç bulursa, onu, Linnean Society kurumuna sunmasını diliyordu. Çalışmasının adı “ Orjinal Tipten Belirsiz Olarak Ayrılan Varyetelerin Eğilimi ” idi. Darwin’in yıllarını vererek bulduğu sonuç, yani canlıların yavaş yavaş değişmesine ilişkin görüş, Wallace’ın çalışmalarında yer almaktaydı. Durum, Darwin için üzücüydü. Fakat arkadaşlarının büyük baskısıyla, kendi çalışmasını, Wallace’ınkiyle birlikte basılmak üzere 1 Temmuz 1858'de Linnean Society’ye teslim etti Basılmadan duyulan bu düşünceler 24 Kasım 1859'da “Doğal Seçilim ya da Yaşam Savaşında Başarılı Irkların Korunmasıyla Türlerin Kökeni” kısaltılmış adıyla Türlerin Kökeni yayınlandı. İlk gün kitapların hepsi satıldı. Herkes, organik evrim konusunda yeni düşünceler getiren bu kitabı okumak istiyordu. Özünde organik evrimin benimsenmesi için zemin hazırladı. Çünkü jeolojide, paleontolojide, embriyolojide, karşılaştırmalı anatomide birçok aşama yapılmış ve birden yaratılmanın olanaksızlığı ortaya konmuştu. Darwin, uysal bir adam olduğundan, bir tepki yaratmamak için, eserinin son kısmını tanrısal bir yaratılış fikrini benimsediğini yazarak bitirmişti. Buna rağmen, başta din adamları ve bazı bilim adamları dini inançlara karşı geliniyor diye bu çalışmaya karşı büyük bir tepki başlattılar. Hatta eseriyle Darwin’e çok büyük yardımlarda bulunan Lyell ve gezisi sırasında geminin kaptanlığını yapan Fitzroy , bu karşı akımın öncüleri oldular. Bu arada Huxley, çok etkin bir şekilde Darwin’e destek oldu. Darwin, çalışmalarına devam etti, birinci eserinde değinmediği insanın evrimiyle ilgili düşüncelerini İnsanın Oluşumu ve Eşeye Bağlı Seçilim adlı eseriyle yayımladı. Bu eserde insanın daha önceki inançlarda benimsenen özel yaratılışı ve yeri reddeliyor, diğer memelilerin yapısal ve fizyolojik özelliklerine sahip olduğu ve iyne diğer çcanlılar gibi aynı evrimsel yasalara bağlıolduğu savunuluyordu. Ayrıca eşeyseyl seçmenin, türlerin oluşumundaki önemi belirtiliyordu. Darwin’in “İnsanın Oluşumu ” adlı eseri, başlangıçta birçok tepkiye neden olduysa da, zamanla, biyolojideki yeni gelişmeler ve bulgular, özellikle kalıtım konusundaki bilgilerin birdikmesi, Darwin’in görüşünün ana hatlarıyla doğru olduğunu kanıtlamıştır. Doğal Seçilim Kuramının Ana Hatları (Darwin- Wallace Temellerini atmıştı) Bu kuram, ana hatlarıyla iki gerçeği, üç varsayımı ortaya çıkarmıştır. Gerçekler şunlar: 1. Tüm canlılar, ortamdaki sayılarını koruyacak matematiksel oranların üzerinde çoğalma eğilimindedir. Elemine edilen bireylerle bu fazlalık azaltılır ve popülasyonların dengede kalması sağlanır. Doğal koşullar sabit kaldıkça bu denge korunur. 2. Bir türe ait popülasyondaki bireylerin kalıtsal özelliği birbirinden farklıdır. Yani canlı popülasyonlarınnın hepsi varyasyon gösterir. Darwin ve Wallace, bunun nedenini tam anlayamadılar ve varyasyonların canlıların iç özelliği olduğunu varsaydılar. Bugün bu varyasyonların mutasyonlarla oluştuğu bilinmektedir. Varsayımlar: 1. Ayakta kalan bireylerin sayısı, başlangıçta meydana gelenlerden çok daha az olduğuna göre, ayakta kalabilmek için canlılar arasında karşılıklı, besin, yer vs için, saöaşım, ayrıca sıcaklık, soğukluk, nem vs. gibi doğal koşullara karşı bir mücadele vardır. Bu savaşım ve mücadele bir ölüm kalım kavgasıdır. Gerek besin ve yer gereksinmesi aynı olan canlı türleri arasında ve gerekse normalden daha fazla sayıda bireyle temsil edilen popülasyonlardaki aynı türe bağlı bireyler arasında, yani doymuş popülasyonlarda bir yaşam kavgası vardır. Bu görüş ilk defa Malthus tarafından ortaya atılmıştır’Yaşamak İçin Savaş”. 2. İyi uyum yapacak özellikleri (= varyasyonları) taşıyan bireyler, yaşam kavgasında, bu özellikleri taşıayan bireylere karşı daha etkili bir savaşım gücü göstereceğinden, ayakta kalır, gösteremeylenler ise yok olur. Böylece bulunduğu bireye o koşullara en iyi uyum yapabilecek yeteneği veren özellikler, gelecek döllere kalıtılmış olur. Bu varsayımın anahtar cümleciği “Biyolojik olarak En İyi Uyum Yapan Ayakta Kalır”dır. 3. Bir bölgedeki koşullar digerlerinden farkli oldugundan, özelliklerin seçimi de her bölgede, koşullara göre farkli olur. Çevrede meydana gelecek yeni degişiklikler, tekar yeni uyumlarin meydana gelmesini saglar. Birçok döl boyunca meydana gelecek bu tipp uyumlar, daha dogrusu dogal seçilim, bir zaman sonra, atasindan tamamen degişik yeni bireyler toplulugunun ortaya çikmasini saglar’Uyumsal Açilim’. Farklilaşmanin derecesi, eskiyle yeni popülasyondaki bireyler bir araya getirildiginde çiftleşmeyecek, çiftleşse dahi verimli döller meydana getiremeyecek düzeye ulaşmişsa, artik bu iki popülasyon iki farkli tür olarak degerlendirilir. Bir ata popülsayondaki bir kisim bireyler, taşidiklari varyasyon yetenekleriyle herhangi yeni bir ortama uyum yaparken, diger bir kismi da taşidigi farkli varyasyonlar nedeniyle daha degişik bir ortama uyum yapabilir. Böylece uyumsal açilim ortaya çikar. Bununla beraber, bitkiler ve hayvanlar, yaşam kavgasinda, bulundugu koşullarda, yarari ya da zarari olmayan diger birçok varyasyonu da meydana getirebilir ve onlari daha sonraki döllere aktarabilir. Darwin’in kuramı o karar akla yatkın ve o kadar kuvvetli kanıtlarla desteklendi ki, birçok biyolog onu hemen kabul etti. Daha önceki varsayımlar, yararsız organların ve yapıların neden meydana geldiğini bir türlü açıklığa kavuşturamamıştı.Bugün, türler arasında görülen birçok farkın, yaşam savaşında hiç de önemli olmadığı bilinmektedir.Fakat bu küçük farkları oluşturan genlerdeki herhangibir değişiklik, yaşam savaşında büyük değerleri taşıyan fizyolojik ve yapısal değişikliklerin oluşmasına neden olabilir. Uyumsal etkinliği olmayan birçok özelliği oluşturan genler, kromozomlar içinde yaşamsal öneme sahip özellikleri oluşturan genlerle bağlantı halinde olabilir. Bu durumda bu varyasyonlar elenmeden gelecek döllere aktarılabilir. Bu uyumsal etkinliği olmayan genler, bir popülasyon içerisinde gelecekteki değişikliklerde kullanılmak üzere ya da genetiksel sürüklenmelerde kullanılmak üzere fikse edilmiş olarak bulunur. Evrim Kuramına Bilimsel İtirazlar Belki insanlık tarihinin ilk dönemlerinden beri uygulanmakta olan öğretim ve eğitim yöntemleri, belki dini inançların etkisi, belki de insanın doğal yapısı, insanın yeniliklere karşı itirazcı olmasına neden olmuştur. Bu direniş, en fazla da eksik kanıtlarla desteklenmekte olan Evrim Kuramı’na yapılmıştı ve yapılmaktadır. Özellikle dogmatik düşünceye yatkın olanlar, bu karşı koymada en önemli tarafı oluşturur. Bununla birlikte son zamanlarda, birçok aydın din bilimcisi de olmak üzere, iyi eğitim görmüş toplumların büyük bir kısmı Evrim Kuramı’na sahip çıkmaktadır. Evrim Kuramı’na, Darwin’den beri bilimsel karşı koymalar da olmuştur. Özellikle varyasyonların zamanla popülasyonlardan kaybolacağı inancı yaygındı. Çünkü bir varyasyona sahip bir birey, aynı özellikli bireyle çifleşmediği takdirde, bu varyasyonun o popülasyondan yitirileceği düşünülmüştü. Popülasyon genetiğinde, çekinik özelliklerin, yitirilmeden kalıtıldığı bulununca, itirazların geçerliliği de tümüyle kaybolmuş oldu. Darwin, Pangeneze, yani anadan ve babadan gelen özelliklerin, bir çeşit karışmak suretiyle yavrulara geçtiğine inanarak hataya düşmüşü. Eğer kalıtsal işleyiş böyle olsaydı, iyi özelliklerin yoğunluğu gittikçe azalacaktı ve zamanla kaybolacaktı. Halbuki, bugün, özelliklerin sıvı gibi değil, gen denen kalıtsal birimlerle kalıtıldığı bilinmektedir. İkinci önemli karşıkoyma, bu kadar karmaşık yapıya sahip canlıların, doğal seçimle oluşamayacağıydı. Çünkü bir canlının, hatta bir organın oluşması, çok küçük olasılıkların biraraya gelmesiyle mümkündü. Fakat cınlıların oluşmasından bugünekadar geçen uzun süre ve her bireyde muhtemelen ortaya çıkan küçük değişikliklerin, yani nokta mutasyonların, zamanla gen havuzunda birikmesi, sonuçta büyük değişikliklere neden olabileceği hesaplanınca, bu karşı koymalar da kısmen zayıflamıştır. Üçüncü bir karşikoymaya yanit vermek oldukça zordur. Karmaşik bir organ yarar saglasa da birden bire nasil oluşabilir? Örnegin omurglilarda, gözün bir çok kisimdan meydana geldigi bilinmektedir. Yalniz başina bir kismin, hehangi bir işlevi olamaz. Tümü bir araya geldigi zaman görme olayi saglanabilir. O zaman degişik kisimlarin ya ayni zamanda birden meydana geldigini varsaymak gerekiyor- bu popülasyon genetegi açisindan olanaksizdir- ya da yavaş gelşitigini herhangi bir şekilde açiklamak gerekiyor. Bir parçanin gelişmesinden sonra digerin gelişebilecegini savunmak anlamsizdir; çünkü hepsi birlikte gelişmezse, ilk gelişen kisim, işlevsiz olacagi için körelir ya da artik organ olarak ortadan zamanla kalkar. Bununla birlikte, bu teip organlarin da nokta mutasyonlarin birikmesiyle, ilkelden gelişmişe dogru evrimleştigine ilişkin bazi kanitlar vardir. Evrim Kuram’nda dördünrcü karanlık nokta, fosillerdeki eksikliktir. Örneğin balıklardan amfibilere, amfibilerden sürüngenlere, sürüngenlerden memelilere geçişi gösteren bazı fosiller bulunmakla birlikte(bazıları canlı olarak günümüzde hala yaşamaktadır), tüm ayrıntıyı verebilecek ya da akrabalık ilişkilerini kuşkusuz şekilde aydınlatabilecek, seri halindeki fosil dizileri ne yazık ki bazı gruplarda bulunanamımıştır. Bununla birlikte zamanla bulunan yeni fosiller, Evrim Kuramı’ndaki açıklıkları kapatmaktadır. Anorganik Evrim Bulutsuz bir yaz gecesi gökyüzüne bakan her insan, içinde yaşadigi evrenin nasil oluştugunu, onun sonsuzlugunu, içinde başka canlilarin, belki de düşünebilir canlilarin bulunabilecegini ya da sinirli oldugunu, özellikle o sinirin ötesinde neler olabelecegini, dünyadakilerden başka canli olmadigini, kapatilmiş oldugu evrensel yalnizligi ve karantinayi düşününce irkilir.Bu duygu coşkularimizin kaynagi, inançlarimizin temeli ve çok defa teslimiyetimizin nedeni olmuştur. Ilkçaglardan beri evrenin yapisi üzerinde varsayimlar ileriye sürülmüş ve çok defa da bu görüşler, belirli çevrelerce politik basiki araci olarak kullanilmiştir. Yüzyilimizin oyldukça güvenilir ölçümlerinin ve gözlemlerinin ışığı altında ortaya atılan Anorganik Evrim Kuramı’nı incelemeden, evrenin oluşumu konusundaki düşüncelerin tarihsel gelişimine kısaca bir göz atalım. Gerek ilkçağlarda, gerekse ortaçağda, evrenin merkezinin dünya olduğu ve dünyanın da sabit durduğu savunulmuş, diğer tüm gök cisimlerinin Dünya’nın ektrafını saran evrensel kürenin kabuğu üzerinde çakılı olduğu varsayılmıştır. Bu zarfın ötesi, Tanrısal gök olarak tanımlanmıştır. Bruno’ya kadar hemen tüm görüşler, evrenin sınırlı boyutlar içerisinde olduğu şeklindeydi. İlk -ve ortaçağın değişik bir çok toplumunda tanrı kavramının gök cisimler ile özdeşleştirildiği görülmektedir. Gökyüzünün mekaniği konusunda ilk ciddi gözlemler, Asurd, Babil, Mısır kültürlerinde yapılmış, bazı evrensel ölçümler ve ilkeler bulunmuştur.Fakat yaratılışı konusundaki düşünceler çoğunlukla din adamlarının tekeline bırakılmıştır. İlk defa Giordano Bruno, yıldızların da bizim Güneş sistemimiz gibi, gökte asılı olarak durduğunu ve evrenin sonsuz olduğunu zamanın din adamlarına ve filozoflarına karşı savundu. Çünkü Bruno’ya göre, evren, tanrının kendisiydi ve onu sınırlı düşühmek Tanrı kavramına aykırı düşmekteydi. Düşünüclerinden dolayı 17 Şubat 1600 yılında, Roma’da, halkın gözü önünde yakıldı. Immanuel Kant, Bruno’dan 150 yıl sonra, evreni Tanrının yarattığını savunarak, onun sonsuz büyük olması gerekeceğini, pozitif bir kanıta dayanmadan ileri sürdü. Daha sonra Olbers, gökyüzünün, geceleri neden karanlık olduğunu merak etti. Çünkü ışık veren gökkcisimlerinin, ana hatlarıyla evrende homojen bir dağılım gösterdiği bilinmekteydi. Fiziki yasalarından bilindiği kadarıyla, bir kaynaktan gelen ışık şiddeti uzaklığın karisi ile aazalmaktaydı.Fakat buna karşın küresel bir şekilde, hacim, yanrıçapın, yani uzaklığın küpüyle artmaktaydı. Dolaysıyla dühnyaya ışık gönderen kaynakların ışık şiddeti, uzamklıklarının karesi oranında çoğalmaktaydı. Bu durumda, evrenin çapının büyüklüğü oranında, dünyaya gelen ışık miktarı fazla olmalıydı.Halbuki geceleri karanlıktır, yani dünyanın gökyüzünü aydınlatacak kadar ışık gelmemektedir. Öyleyse evrenin boyutları sınırlı olmalıydı. Olbers’in bizzat kendisi, bu inanılmazı sınırlı evren tanımını ortadan kalrdırmak için, ışık kaynaklarının gittikçe azaldığını varsaymıştır. Yüzyılımızda, ünlü fizikçi Einstein, evren konusunda hesaplarını yaparken, onun sabit boyutlar içerisinde çıktığını gördü. Sonuç kendisine dahi inanılmız geldi. Bu nedenle sonucu değiştirmek için, denklemlerine, yanlışlığı sonradan saptanan, doğal kuvvetler dediği, bir takım kozmik terimler ekledi. Hubble, 1926 yılında, çıplak gözle görülmeyen; ama fotoğraf camında iz bırakan, bizden çok uzak birtakım spiral nebulalar saptadı. Spiral nebulaların, uzun dalgalı ışık (kırmızı ışık) çıkardıkları 1912 yılından beri bilinmekteydi. Hubble, 1929 yılında, bu nebulalaların ışığının kırmızıya kaymasını, Doppler etkisi ile açıklayarak, ünlü kuramını ortaya attı. Yani tüm nebulalar bizden ve muhtemelen birbirlerinden büyük hızlarla uzaklaşmaktaydı, yani evren her saniye yapısını değiştirmekte, genişlemekydi. Böylece dünyaya gönderdikleri ışığın frekansında, kaynağın hızla uzaklaşmasından domlayı, azalma, yani ışığın döküldüğü yerde, ışığın kırmızıya kaydığı gözlenmekteydi Işık kaynakları gözlenen yere doğru hızla yaklaşsaydı, ışıklarının maviye kaydığı, yani gözlem yerine ulaşan ışığın frekansında artma görülecekti. Bu cisimlerin hızı bizden uzaklaştıkça artmaktaydı.Gözlenebilen en uzaktaki gök cisimleri (dünyadan 8 milyar ışıkı yılı uzakta ve 240. 000 km/s hıza sahip) birkaç yıml içerisinde tamamen kayboluyor, yerlerini kuvvetli radyo dalgaları veren kuasarlara bırakıyorlardı Kuasarların nasıl birg ök cismi oldukları tam olarak bilinmemektedir. Birçok astrofizikçi, cisimlerin kuasarlara dönüştüğü bu bölgeleri, evrenin kıyıları olarak tanımlamada fikir birliği etmektedir. Hubble’ın bu bulgularını duyan Einstein, daha önce denklemlerine eklediği kozmik terimleri ve ilave sayıları sessizce geri çekti. Çünkü, onlarsız yaptığı tüm işlemler hemen henmen doğruydu. Böylece evrenin büyüklüğünün sonlu, yapısının değişken olduğu kesin olarak kanıtlanmaktaydı. Evren patlarcasına genişliyor, buna bağlı olarak birim hacimdeki madde miktarı, yani yoğunluk azalıyordu. Bu genişlemenin bir başlangıcı olmalıydı. (Demirsoy, Ali, Yaşamin Temel Kurallari Cilt-1, Kisim-1, Onbirinci Baski, Ankara 1998, s:543-555) Evrim Kuramında Bir Paradoks İngliz bilim adamı Charles Darwin (1809-1882) ve Alfred Russel Wallace (1823-1913) gerek yaptıkları seyahatler sonucunda elde etmiş oldukları coğrafik deller gerekse mevcut karşılaştırmalı anatomi çalışmalarıyla emriyoloji bilgilerini kullanmak suretiyle ve de Malthus’un da etkisiyle, şekkillendirdikleri evrim kuramında canlıların yaşamlaranı sürdürebilmelerinde iki gücün etkin olduğunu belirlemişlerdir. Bunlardan birisi doğal eleme gücüdür; canlı bu güç sayesinde çevre şartlarına uyum göstererek yaşamını devam ettirebilme şansına sahip olabilir; kendine nisbetle şartlara uyum göstermeyenler yaşamlarını sürdüremezler, yok olurlar. Uyum gösterenler ise çevre şartlarına uygun olarak değişim gösterirler. Böylece, meydana gelen değişimler sonucunda yeni türler ortaya çıkar. Ancak, canlılarda bir ikinci güç daha vardır; o da ataya dönüş gücüdür (atavizm). Canlı ne kadar asıl tipinden uzaklaşmış olursa olsun, atalarına dönüş meyli taşır ve dolaysıyla söz konusu dönüşü yapabilir. Bunun tipik örneğini Darwin, güvercinlerde göstermiştir. Evcilleştirilmiş güvercinlerin yabanıl kaya güvercinlerine dönüş göstermesi gibi. Evrim kuramını desteklemek üzere, bu iki güce ek olarak, Darwin ve Wallace ‘koruyucu benzerlik’ ten söz ederler. Buna göre canlılar yaşamlarını sürdürebilmek için doğal çevre şartlarına uyarlar; örneğin çölde yaşayan canlıların renkleri sarı tonlarındadır; ormanda yaşayan hayvanların renkleri çok parlaktır; kutuplardaki hayvanlar için ise aynı şekilde, çevreye uyum göstermiştir; genellikle beyaz renktedir. Buna paralel olmak üzere, hayvanların kendilerini korumak için bazı başka korunma yollarını da denedikleri görülmüştür. Bazı hayvanlar, sansarlar gibi, kötü koku salar ya da seslerini daha güçlü hayvanlara benzeterek düşmanlarına karşı kendilerini korur. Koruyucu benzerlik, aslında evrim kuramıyla garip bir şekilde zıt düşmektedir. Çünkü eğer canlı, mimikri, yani daha güçlüyü taklit etme şeklinde bir kuruyucu benzerlik gücüne sahipse, o takdirde, nisbeten kuvvetli olan canlılara karşı koruyucu bir silah geliştirmiş olur ve her ne kadar evrim kuramına göre, yaşamını sürdürebilmek için güçlü olması gerekiyorsa da, taklit kaabiliyeti sayesinde, zayıf olsa da, yaşamını sürdürebilme şansına sahip olur. Doğabilimler yapmış oldukları araştırmalarla, doğada birçok mimikri belirlemeyi başarmışlardır. (Esin Kahya, AÜ DTCF Felsefe Bölümü, Bilim ve Teknik, Mayıs 1995, 330. sayı) Bilgi Çocuklarımızın yüzüne aynaya bakar gibi bakıyoruz. Onlar bizim yeniden dirilişimizdir. Kendileri tıpkı bize benzer yapabilmeleri çin hücrelerinde bulunan, bizim fiziksel yapımızı belirleyen bilgiyi, onlara sperm ve yumurta olarak veriyoruz. Bu bilgi bizim geleceğe armağanımızdır. Hücre yapımı için gerekli bilgi; harita, plan veya taslak niteliğindedir. Bir rehber, bir kitap, bir broşür gibi de denebilir. Bu rehber çok özel bir yaratmayı gerçekleştirecek olan aracının veya makinenin, canlı üretme makinesinin “anlayacağı” eksiksiz bir bilgi anahtarı olmalıdır. Genler Genetek bilimi, her canlının özelliklerinin (örneğin göz rengi) kalıtımla geçtiğini, yani yavruda hassas bir şekilde yeniden ortaya çıktığını göstermişttir. Kişisel özelliklerini düzenleyen bilgi, “genler” denilen özel varlıklarla nesilden nesile geçer. Her belirgin kalıtımsal özelliğin ayrı bir geni daha vardır. Genetik biliminin kurucusu Gregor Mendel 1860'larda, genlerin kalıtımla gerçek şeyler gibi; sulandırılmadan, bölünmeden, karışmadan aktarıldığını açığa çıkardı. Öyleyse genler, her biri (s:19) organizmanın belirli bir özelliğini içeren, kalıtımla yavruya aktarılabilen küçük bilgi paketleridir diyebiliriz. 1920'lerde büyük genetikçi Thomas Hunt Morgan, genlerin hücrei içindeki yerlerini buldu. Bütün hücrelerde, çekirdek dedğimiz kapalı bir kap vardır. Hücre bölünüp iki hücre haline gelirken, ilk önce bu çekirdeğin bölündüğü, dolaysıyla hücre içinde önemli bir rolü olduğu daha önce de biliniyordu. Yani, tek hücrenin servetini yeni hücrelere eşit bölüştürme işlemi, çekirdekte başlıyordu. Dahası; mikroskop, çekirdeğin içinde kromozom denilen iplik gibi yapıları açığa çıkardı. Bu yapılar, çekirdeki bölünmeden kendilerini bir kat artırıyorlar ve her kromozom dizini, bir yeni “yavru” hücrenin içine yerleşiyordu. Bu düzenleme yüzünden, koromozomların genlerin yuvaları olmalarından kuşkulanıyorlardı. Morgan, adi meyve sineklerini deney hayvanı olarak kullanarak bunun gerçekten de doğru olduğunu, bir dizi ince deneyle kanıtladı. Bu işi tamamlandığında, genlerin kromozom ipliklerinin etrafında top top sarılmış oldukları artık biliniyordu. Genler Neden Yapılmışlardır? Kromozomlar (genler) neden yapılmışlardı? Biyolojide kuşkusuz çok önemli bir yeri olan Oswald Avery’nin deneyleri bu soruya çok açik ve parlak bir yanit getirdi. Çalişmalari, şimdi “moleküler biyoloji” dedigimiz modern çagi açti. 1940'larin başinda Avery, iki tarafli zatürreye (akciger iltihasbi) neden olan bakteriyle ugraşiyordu (penisilin bulunmadan önce, en büyük ölüm nedenlerinden biriyldi bu hastalik). Yaptigi deneylerde açiklayamadigi şaşirtici sonuçlar buldu. (s:20) Ölü zatürre bakterileri, kötü niteliklerini, zatürre yapmayan türden canli bakterilere geçirebiliyorlardi. Bu, tehlikeli ölü bakterilerin, canli ve zararsiz bakterileri tehlikeli hale getirebilmeleri demekti.Bu nitlik bir defa geçirilince artik kalici oluyor ve bir zamanlar iyi huylu olan bakterilerin gelecek kuşaklarina kalitimla geçiyordu. Hastaliga neden olabilme kapasitesi bir veya bir grup özellekten kaynaklanir. Bu özellikler, genler tarafindan kontrol edilir ve kalitimla geçirilirler. Avery, ölü baterilerin parçalandiklarini, vücutlarinin bilgi taşiyan kimyasal maddeler çikardigini, canli baketirelirn de bulari besin olarak kullandiklarini düşündü. Yani genler, canli bakterilere girip onlarin kalitimlarini belirtiyorlardi. Avery ve arkadaşlari, bu gene benzer maddeyi kesin olarak belirlemek üzere çalişmaya başladilar. İnsan, Tıp bilimi için, genlerin kimyasal özelliklerinin bulunmasından daha önemli bir problem olabileceğini düşünüemez. Ancak bu kesinlikle insanlar, hatta hayvanlar üzerinde de incelenebilecek bir problem değildi. Neyse ki zatürre yapan bakteriler, Avery’e uygun bir sistem getirdiler. Bu iyi ve değerli bir model-deney sistemi örneği oluşturuyordu. Aslında, bütün genetik bilgi birikimi, 100 yıl önce Gregor Mendel’le başlangıcından bugünkü araştırmalara kadar, büyük ölçüde basit deney modellerine dayanır. Bezelyeler, meyve sinektleri, ekmek küfü ve bakteriler... Avery’nin üzerinde çalıştığı bakteriler geretik olarak birbirinin tıpkısıydı. Başka cinslerle karışmamış, safkan bakterilerdi bunlar. Hızla üreyebiliyorlardı öyle ki kalıtım özelliklerini birçok kuşağın üzerinde izlemek olanaklıydı. Zatürreye neden olma yetenekleri, farelere verilerek kolayca ölçülebiliyordu. Avery’nin yaptığı önemli deneyleden biri, probleme açık bir yanıt getirdi. Ölü bakterilerden dağılan bir molekül karışımını aldı ve içine DNA’yı “bozan” bir enzim ekledi. DNA’nın bozulması, karışımın zararsız bakterileri zararlı bakteriye çevirebilme yeteneğine bir son verdi. Buna ek bir deneyle Avery ve arkadaşlari, zararsiz bakterileri hastalik yapan bakteriye çeviren maddenin “deoksiribonükleik asit” veya DNA oldugunu kanitladilar. DNA: Deoksiribonükleik Asit Aslında, DNA’yı Avery bulmadı. Bu işi, Avery’den altmış yıl önce Friedrich Miescher adında bir araştırmacı yapmıştı. O ve onu izleyen bilim adamları bu konuda bir sürü kimyasal bilgi toplamışlardı. DNA’nın zinci şeklinde birbirine bağlı, büyük miktarlarda fosforik asit içeren “nükleotid” denilen moleküllerden oluştuğu biliniyordu. Bunlar, o zamana kadar hücrede bilinen en büyük moleküllerdi. Avery, DNA’nın kalıtımın temel maddesi olduğunu gösterdi. Başka ir deyişle “bir şeyi kalıtımla geçirmek demek, bir parça DNA aktarmak demektir”. Genler DNA’dır. Bilgi DNA’dır ve DNA bilgidir. Avery’nin ispatından beri, DNA konusunda bilinenler öyle şaşırtıcı bir hızla arttı ki, 1960'larda (s: 22) artık bilginin DNA’da nasıl kodlandığını bu bilginin nasıl hücre maddesine dönüştüğü ve DNA’nın gelecek kuşakla paylaşılmak üzere nasıl kopya edildiğini biliyorduk. Bu zorlu yarışa bir çok bilim adamı katıldı; ama James Watson ve Francis Crick ’in DNA’nın doğru yapısının ikili sarmal, yani içiçe dönen iki zincir olduğunu düşünüp bulmaları en büyük aşamalardan biridir. Öyleyse işte DNA’nin temel özelliklerine bakalim: 1.Molekül zincir şeklindedir( Degişik basit molekül çeşitlerinin birbirine eklenmesinden oluşmuş zincir şeklindeki madde) 2.Olağanüstü uzun ve son derece incedir.Hücrenin çekirdeği 100 kere büyütülseyydi aşağı yukarı iğne ucu büyüklüğünde olacaktı, yani gözün ancak seçebileceği kadar. İte bu küçücük çekirdek içinde katlanmış durumda bulunan DNA açılırsa, boyu, bir futbol sahasının boyu kadar olur. 3. Zincirde dört çeşit halka vardir (nükleotid denilen moleküller). Isimleri adenilik asit, guanilik asit, sitidilik asit ve timidilik asit; kisaltmalari A. G, C ve T. 4. Bu dört tür halkanın bağlanma biçimi, adi bir zincirin halkaları gibi birbirinin aynıdır. 5. Halkaların şaşmaz bir düzeni vardır, bu kitaptaki harflerin düzeni gibi. Bundan sonra, zincirler üzerine söyleyecek çok şeyimiz olacak. Bir zinciri her resimleyişimizde, buradaki beş biçimden hangisi en uygun, en açiklayicisiysa onu kullanacagiz. Kuşkusuz, gerçek zincirlr bizim resimlerde gösterdiklerimizden çok daha uzundur. DNA = Dil = Bilgi Şimdi dört çeşit halkasi olan bir zincirimiz olsa ve bunun yeni bir bireyin oluşmasi için gerekli bütün bilgiyi içerdigini bilsek, bu sirrin halkalarin siralanmasinda veya düzenininde yattigi sonucunu çikarmamiz gerekir. Zincirin bu kadar çok anlam taşimasinin başka bir açiklamasi olamaz. Bilgi, böylece harita veya plan olmak yerine, düz bir yüzey üzerinde iki boyutlu bir şeye, daha dogrusu tek boyutlu “yazili” talimat dizinine dönüşür. Burada dille-benzetme (analoji) yapilabilir.DNA alfabesinin dört harfi var, ama bunlarla yazilabelecek mesajlarin sayisi sonsuzdur. Tipki iki harfli Mors alfabesiyle (nokta-çizgi) söylenebileceklerin sinir olmadigi gibi. Kitaplardaki harfler kağıt üzerindeki yerlerine göre diziler halinde bağlanmışlardır. DNA içindeki dört nükleotid halkası ise gerçek kimyasal bağlarla dizi halinde bağlanmıştır. Belli bir organizma içindeki toplam DNA’da bir kitap gibi düşünülebilir.(s:24) Bu kitapta, bütün harfler, deyimler, cümleler ve paragfraflar bir zincir oluşturacak biçimde birbirine eklidir. Organizmanın bütün bölümleri ve bütün işlevleri böylece tanımlanır. Bu organizmanın özdeş bir ikizi varsa, o da aynı DNA’ları içerir, aynı kitaptan bir tane daha diye düşünülebilir; ne bir harf, ne bir sözcük farklıdır ikisi arasında. Aynı türün başka bir organizması da, gramerda sık sık ve göze çarpıcı farklar olduğu halde, benzer bir kitabı oluşturur. Değişik türlerin kitapları, içlerinde bir sürü benzer cümleler de olsa oldukça değişik öyküler anlatırlar. Yukarıdaki benzetmede zincirin parçaları olan genler, aşağı yukarı cümlelerin krşılığıdırlar. Bir gen, organizmanın belirli bir yapısını oluşturan veya işlevini gören bir harf (nükleotid) dizidir. Genler, çok uzun bir DNA molekülünde arka arkaya eklenmiş cümleler gibidirler. Bir İnsan Oluşması İçin Ne kadar Bilgi Gerekli? Bilginin ne olduğunu gördükten sonra isterseniz, canlıları oluşturmak için ne kadar bilgi gerektiği üzerine kabaca bir fikir edinelim: 1. Bir bakteri, canlı yaratıkların en basitlerindendir, 2 000 civarında geni vardır. Her gen 100 civarında harf (halka) içerir. Buna göre, bir bakterinin DNA’sı en azından iki milyon harf uzunluğunda olmalıdır. 2. İnsanın, bakteriden 500 kat fazla geni vardır.Öyleyse DNA en azından bir milyar harf uzunluğundadır. 3. Bir bakterinin DNA’sı bu hebsaba göre, her biri 100.000 kelimelik 20 ortaama uzunlukta romana, insanın ki ise bu romanlardan 10.000 tanesine eşittir! Dilden Maddeye DNA dilinin anlamı, belirli bir canlı organizmayı tanımlamasındadır. Başka bir deyişle genler, maddenin, yaşamın gerçek özünün, gerçek canlı unsurun yaratılması için gerekli bilgiyi verirler. DNA dili fizik olarak yaşamaya, nefes almaya, hareket etmeye, et üretmeye nasıl çevrilebiliyor? Bu soruyu yanıtlamadan önce, nelerden yapılmış olduğumuzu bilmemiz gerekir. Proteinler Bu konu zor görünebilir ama aslında öyle değil. Bizi oluşturan en önemli malzeme proteindir denilebilir. Diğer yapı maddelerimiz (su, tuzlar, vitaminler, metaller, karbohidratlar, yağlar vb.) proteinlere destek olmak üzere bulunurlar. Proteinler yalnızca kütlemizin (suyu saymazsak) çoğnu oluşturmakla kalmayıp, aynı zamanda vücut ısımızı, hareketlerimizi ayarlarlar, düşüncelerimizin ve duygularımızın da temelini oluştururlar. Kısacası bizi oluşturan ve yaptığımız her şey proteinlere dayanır. Örneğin, kendimi gözlüyorum: bütün kütlesi proteindir; ne görüyorsam (kürkü, gözleri, hareket etmesi bile) proteindir. İçindeki her şyey de proteindir. Ayrıca kendime çok özel bir kişilik veren herşey de özel proteinlerle belirlenmiştir. DNA’nın yönlendirilmesiyle yapılan proteinler birey olmanın, tek olmanın, bütün türlerin fiziksel temelidir. Metal, otomobil için neyse, protein bizim için odur. Otomobilde başka malzemeler de vardır; ama yapıyı ve işlevi sağlayan en önemli eleman metaldir. Hem görünüşü, hem de işleme yeteneğini belirler. Bir arabanın diğerinden farkını; biçimini, niteliği ve metal kısımların durumu belirler.(s:26) Şimdi, yeni bir soru ve başka bir ayrintili inceleme için haziriz. Proteinler neden yapilmişlardir? İşte özelliklerinin listesi: 1. Zincir moleküldürler. 2. Uzundurlar ama DNA kadar değil. 3. Yirmi çeşit protein halkasi vardir. Bunalara amino asitler denir. 4. Yirmi birimin de bağlantı biçimi tamamen aynıdır. 5.Yirmi birimin veya halkanın düzeni veya diziliş sırası hassas ve kesindir. Bu düzen, hangi protein olduğunu ve sonuçta işlevinin ne olduğunu belirler. Amino asitler, isimlerinin ilk üç harfi eklenmiş zincir halkalariyla gösterilirler. Yirmi amino asit şunlardir: fenilalanin, leusin, izoleusin, metyonin, valin, serine, prolin, treoinin, alanin, tirosin,histidin, glutamin, asparajin, lisin, aspartik asit,glutamik asit, sistein, triptofan,arjinin,glisin. Çeviri Bu beş özelligin DNA zincirininkine ne kadar benzedigini gördünüz. Halkalari özel bir düzende olan zincirler, protein alfabesinde yirmi çeşit harften oluşuyor;DNA alfabesinde ise dört harf var. DNA bilgisinin protein maddesine dönüşmesinin aslinda dildeki gibi bir çeviri işlemi oldugu hemen (s: 27) görülebilir. Dört harfli bir alfabedeki harf dizisinden, yirmi harfli bir alfabenin harf dizisine geçilmektedir. Mors dilinden (iki harfli nokta-çizgi alfabesinden) Ingilizce gibi yirmisekiz harfli alfabesi olan bir dile çeviri yapmaya da benzetilebilir bu. Bütün olan biten aslında bu kadar.Hücerelerin protein zincirleri içinde binlerce çok ufak, son derece basit çeviri makinesi var. Bunlara “ribosomlar” deniyor. Şu şekilde çalışırlar: Önce DNA bilgisinin bir bölümü, bir gen, bir enzim (bu işlemin hızlanmasına yardım eden bir protein) tarafından kopye ediliyor. Mesajcı RNA (mesajcıribonükleik asit) dernilen bu gen kopyası da bir zincirdir. RNA molekülleri,DNA moleküllerinin hemen hemen aynı zincir moleküllerdir; ama onlar kadar uzun değildirler. Bir DNA molekülü bir çok geni içerir, bir mesajcı RNA molekülü ise yalnızca bir tek genin kopyasıdır. Bu RNA moleküllerine “mesajcı” denir, çünkü genin mesajının, ribosomlar yolu ile DNA’nın hücredeki yeri olan çekirdekten proteinlerin yapıldıkları hücrenin çekirdek dışındaki kısmına (stoplazma) taşırlar.(s:28) Gen kopyası mesajcı RNA bir ucunu ribosoma bağlar, Ribosom okuyucudur;mesajcı RNA’nın içindeki nükleotidlerin (harflerin) dizilişini okur; ama bildiğimiz anlamlı bir sözcük çıkarmak yerine protein çıkarır. Bu şu şekilde gerçekleşir: Özel enzimler amino asitleri “transfer” RNA (tRNA) denilen küçük bir RNA molekülüne bağlarlar. Yirmi amino asitin her biri özel RNA molekülüne bağlanır. Amino asite bağlanmış tRNA’lar kendilerini ribosoma yöneltirler. Ribosom, gerekli tRNA’yı (bağlı amino asitlerle birlikte) o anda mesajcı RNA’dan okuduğu deyimlere uygun olarak seçer. Yani eğere ribosom mesajcıdan ala amino asitini (alanin) belirleyen bir grup nükleotid mesajını okumuşsa, bu amino asitin (Hayatın Kökleri, s:29) bağlı olduğu gruba uygun nükleotidleri olan bir tRNA seçer. Mesajcı nükleotidin, belli bir amino asite uygunluğu, nükleotidlerin doğal uygunluk ilişkisine dayanır.Mesajcı üzerindeki her nükleotid dizisi, transfer RNA üzerindeki uygun nükleotid dizisiyle mükemmel bir şekilde eşleşir. Her yeni aminoasit ve onun tRNA’sı ribosoma gelip uygun biçimde yerleştikçe, amino asit kendisenden önce ribosoma gelmiş olan amino asitle kimyasay olarak birleşir. Böylece, halkalar sırayla birer birer bağlanır. Ribosom mesajı okudukça protein zincirinin boyu durmadan inin okunma ıbitince, bütühn protein halkası serbest bırakılır. Böylece yeni bir protein doğmuş olur. Bir genboyu DNA’nın içindeki nükleotid dizilişi, bir protein içindeki amino asit dizisini tam olarak belirler. Bir gen, bir protein. Bir gen; bir protein kavramı bizim proteinlerin nasıl oluştuğunu öğrenmemizden çok uzun zaman önce bulunmuştu.1930'larda ekmek küfü üzerine bir dizi parlak deney yapan biyokimyacı George Beadle, bir teks gen içindeki değişikyiklerin, bir tek proteinde bozulmaya yol açtığını göstermişti.Buna dayanılarak yapılan çcalışmalar bakteri kullanılarak ilerletildi ve genişletildi. Bu büyük çalışma ve burada anlatacağımız niceleri, herman Müller’in 1920'lerdeki DNA’daki değişmelerin (mutasyon), istenildiğinde canlı sistemleri x-ışınlarına tutarak sağlanabaleceğini gösteren önemli buluşu olmasaydı başarılamazdı. DNA, bir hücrdede bulunan değişik p;roteinler kadar gen içerir (bakteride 2000; insanda 200.000). Protein yapan makinenin bu çeviri işlemindeki şaşmayan hatasizligi,kuşkusuz dikkate deger. bir hücrenin yaşamasi için gerekli binlerce proteinin üretilmesinde ancak bir-iki yanlişligüa yer olabilir. Insanlarin yahptigi hiçbir makine, bunun gibi 200 romana eşdeger bir yaziyi bu kadar az yanlişla yazamaz. t-RNA’nın Bulunması Hocam Paul Zamecnik ve ben, 1956'da transfer RNA’yı birlikte bulduk ve neye yaradığını açıkladık. Zamecnik daha önce ribosomların, üzerinde proteinlerin biraraya getirildiği strüktürler olduğunu göstermişti.Ben de bu tarihten bir yıl önce amino asitlerin özel bir dizi enzimle aktif hale getireilebildiğini (yani diğer amino asitlerle reaksiyona hazırlandığını) kanıtlamıştım (bu dördüncü bölümde anlatılıyor). Ama arada eksik bir şey vardı: amino asitlerin bağlanabileceği ve onlara (Hayatın kökleri, s: 31), mesajcı RNA’ların gösterdiği yerlere yerleştirilmelerini sağlayan kimliği kazandıracak bir şey. Paul Zamecnikle birlikte, hücreler içinde amino asitlere önemli bir yatkılnığı olan, yani onlarla olağandışı bir sıklıkla bağlanabilen küçük RNA molekülleri olduğunu gördük. Proteinin yapılışnıda ki eksik olan halkayı bulduğumuzu hemen anladık. Bir sürü yoğun ve zevkli deneyden sonra, ondan sonraki yılın sonlarına doğru,tRNA’nın protein yapımına katılım yönteminin size daha önce açıkladığım oldukça tam bir resimini elde ettik. Zincirlerden Üç Boyutlu Varlıklara Buraya kadar öykü yeterince doyurucu; canlı mekanizmalar, zincirleri dil olarak kullanırlar. Plandan bitmiş üretime geçmek, basit bir çeviri işidir. Ama hala aşmamız gereken bir engelimiz var. Çeviri bir simgeyi başka bir simgeye, tek boyutu tek boyuta, bir zinciri başka bir zincire, nükleotitleri amino asitlere dönüştürülüyor. Zincirden “maddeye” nasıl varabiliriz? Protein moleküllerinin görevlerini yerine getirmelerine, dokunabildiğimiz, kavrayabildiğimiz şeylere, tohumlara, çiceklere, kurbağalara, size, bana bir boyuttan üç boyuta sıçramak zorundayız demek ki. Yanıt, protein zincirleri içindeki halkaların yani aminoasitlerin özelliğinde yatıyor. Protein molekülleri, zincir oldukları halde asılnrad (fiziki olarak) gerçek zincirlerde olduğu gibi üç boyutlu yapılardır. Proteinin yirmi değişik amino asiti, etkisiz simgeler değildirler. Herbirinin kendine özgü kimyasal özellikleri vardır. Bazıları zincirdeki ikiz eşleriyle kimyasal bağlar yapmayı yeğlerken, bazıları daha çok asit, bazıları da alkali özelliğini gösterir. Kimi suyu aramak eğilimindeyken, kimi de sudan kaçar. bazıları öyle biçimlendirilmişlerdir ki zinciri bükebilirler. (s: 32). Birkaç tanesinin de bir proteinin yalnızca bir tek işe yaramasına katkıda bulunacak özel marfetleri vardır.Bu amino asitler zincirdeki yerlerine göre zincirin son biçimini belirler. Zincirler tamamlandıkları zaman, bir çeşit ip yumağı oluşturmak için kendi kendilerine içiçe dolanıp katlanırlar. çözülmüş zincirdeki amino asitlerin “sırası”, molekülün katlanmak için hazır olduğu zaman nasıl davranacağını, ne yapacağını “şaşmaz” bir şekilde belirler. katlanma biçimi de protein molekülünün şeklini, özelliklerini, işlevini belirler. Kas proteinler için, bir gen, protein yapar makinelere son bitmiş biçiminde katlanabeilecek ve komşu liflerin üzerinedn kayabilecek çok uzun bir protein zinciri yapmasini emreder. Böylece kisalabilen uzun lifler oluşur. kan hücrelerindeki oksijen taşiyan protein zinciri hemoglobin, özel bir üç boyutlu katlahnma biçimine sahiptir. Böylece yalnizca kendisine özgü bir yolla oksijeni tutma ve serbest birakma işlevini yerine getirebilir. Sonuç olarak herbirini siralanişi, genler içindeki nükleotidlerin siralanişiyla belirlenmiş binlerce protein zinciri, özel biçimlerde katlanip, özel işlevler elde ederler. Düzen Yaratmak, Çoğu Kez Zincir Yapmaktır Birinci bölümde düzen konusunda söylediklerimizi hatırlayın: Yaşam, sürekli düzensizliğe giden bir evrende düzene yönelik çalışır.Şimdi bunun ne demek olduğunu çok daha açıkça görebiliriz. Canlı olmak, daha önceden şaşmaz bir kesinlikle tanımlanmış bir düzenle, halkaları zincire eklemektir. Düzen bir defa kurulunca, son biçimin ve işlevin elde edilmesi hemen hemen kendiliğinden gelir diye düşünülebilir. İsterseniz, bir parçayı bir başka parçanın önüne koymak (Hayatın Kökleri, s: 33) kendiliğinden sonuca götürüyor diye düşünebilirz bu düzeni. Zayıf Kimyasal Bağlantıların Önemi Hücrelerin önemli molekülleri yani DNA,RNA ve proteinler üzerine yapılan bir çalışmadan çok ilginç bir genelleme ortaya çıkmıştır. Aslında “zayıf” kimyasal bağlantılar, yaşam için son derece önemil işlevler taşırlar.Güçlü bağlantılar (sağlam kovalent bağlar), amino asitleri protein içinde birbirine bağlayanlar cinsinden veya RNA ve DNA içinde nükleotidleri bağlayanlar cinsinden olanlardır.Bunlar zincirin her halkasında komşuyu sıkıca tutarlar. Zayıf bağlantılar ise bütün büyük zincirlerde katlanma noktalarını belirleyen ve molekülün biçimini sağlayanlardır. DNA’da iki zinciri,çift sarmalı oluşturmak iççin birarada tutan nükleotidler arasında zayıf halkalar vardır. Bunlar ileride göreceğimiz gibi RNA üretiminde çok greklidirler. Proteinin içinde,onu işlevine uygun katlanmış biçimlerde tutan amini asitler arasındaki bağalantılar da zayıftır. Ribosomlar üzerinde yeni protein yapımında,transfer RNA üzerinde tamamlayıcı biçimdeki nükleotidlere uydurarak,tam yerlerini “bulurlar”. Bu önemli bağlantıların özelliği,zayı oluşları yüzünden çok kısa sürmeleridir. Görevlerini yaparlar ve sonra kolayca çözülüp yeniden kullanılabilirler. Hayatla İçli Dışlı Cansız Varlıklar: Virüsler Virüsler ya da DNA’lı ya da RNA’lı proteinden yapılmışlardır. Yani ya DNA ya da RNA biçiminde bilgiyi içerirler ve protein biçiminde birşyelerin yerine geçebilen bir kimlikleri vardır. Ama yardımcısız kendi kendilerine üreyemezler. Yardım (s:34) canlı hücereler tarafından sağlanır. Virüsün proteinleri,onun bir hücre bulup içine girmesine yol açar. Virüs, orada kandini üretecek makinaları;hücrenin makinalarının bulur. Üreme işini tamamladıktan sonra kendisi ve yeni virüsler,aynı tatsız işi başka hücrelerde yinelemek üzere o hücreden çıkarlar.Bu olaylar sırasında virüs,”ev sahibi” hücreyi öldürebilir,ona zarar verebilir,değiştirebilir veya hiçbir şey yapmaz;bu virüsün ve hücrenin cinsinei bağlıdır. Bir virüsün hücrede neden olabileceği önemli bir değişiklik de onu kansere dönüştürmesidir. Bu esrarlı olay, 8. Bölümde göreceğimiz gibi en son kanser araştırmalarındaki yoğun çabaların temelinde yatlmaktadır. Hücrelerden daha basit oldukları halde,virüslerin daha ilkel olmadıklarını sanıyoruz. çok uzak geçmişte bir zaman, normal hücerelerine parçalarıyken kopup kendi asalak “yaşama” biçimlerini kurmuş olmaları mümkün görünüyor. Virüslerin bağımsız olarak üreme yetenekleri olmadığı için kendi başlarına canlı olduklarını düşünemiyoruz. Ölümlülük ve Ölümsüzlük Şimdi,bir bireyin yaratilmasinin bir dizi yazili talimat gerektirdigini biliyoruz. Bunlar milyonlarca yildir dikkate deger bir baglilikla tekrar tekrar kopye edilmişlerdir; ama her birey yalnizca birkaç on yil içinde yaşar ve ölür. O zaman bu talimatlarin ölümsüz olup olmadiklarini sorabiliriz. En azindan bir biyolog için her hangi bir şey ne kadar ölümsüz olabilirse,genetik bilgi de o kadar ölümsüzdür diyebiliriz. Aslinda ölümlü her birey,gelecek kuşaklara geçirilecek tarifnamenin geçici koruyucusudur;sopanin DNA oldugu bir bayrak yarişinda koşucu... Bir birey yaşaminin,ancak atalarindan çocuklarina geçirdigi bilgi kadar önemi (Hayatin Kökleri, s:35) vardir. Bazi güveler agizsiz dogarlar ve dogduklari andan başlayarak açiliktan ölüme mahkimdurlar. Tek işlevleri,çiftleşip daha çabuk yumurtlayarak güve bilgisini gelecek kuşaga geçirmektedir. Eğer DNA ölümlünün ölümsüzlüğü ise,insanları inatçı merakı,daha ötesini de sormadan edemez;Bütün bunlar nasıl başladı?(Hayatın Kökleri, s:19-36). Başlangiç Hangisi önce geldi, tavuk mu yumurta mı? Bu çok duyulmuş bir sorudur ama yanıtlanamaz. Yanıtlanamamasının sebebi “tavuk yumurtadan, yumurta tavuktan vs.” diye zaman içinde bitmez tükenmez bir geriye doğru sayış gerektrmesi değil, bu şekilde geriye giderken biriken küçük değişikliklerle tavuğun tavukluktan,yumurtanın da yumurta olmaktan çıkmasıdır.Tavuğun bir milyar yıl gerilere giden soy ağacını incelersek;tüylü arkadaşımızı,hayal gücümüzü ne ölçüde zorlarsak zorlayalım adına “tavuk” diyemeyeceğimiz atalara bağlayan bir değişimle karşılaşırız. Benim tahminim, bir milyar yıl önceki tavuk atasının her halde,toplu iğne başından küçük ve okyanusta yaşayan bir yaratık olduğu. Kendi soyumuzu gerilere doğru izlersek,yine buna benzer bir sonuçlar karşılaşırız. Ne kadar geriye gidebiliriz? Bir başlangiç oldugunu düşünmemiz gerek. Bundan önçeki bölümde sözü edilen,DNA’nin ölümsüzlügünü benzetmesine şimdi daha iyi bir perspektiften bakmaliyiz.Dünyamizin şimdiki canli biçimlerini dogracak tüm bilgiyi taşiyan bu kocaman moleküllerin,çok uzak bir geçmiş zamanda, alçakgönüllü bir başlangiçlari olmasi gerek. (s: 37) En iyi tahminlere göre yaşam; bundan üç milyar yil önceki Dünya'da başladi.Üç milyar yil önce Dünya'miz iki milyar yaşindaydive canlilari barindiracak kadar sogumay başlamişti.Son derece küçük ve oldukça basit deniz yaratiklarinin iki milyar yildan daha eski fosilleri var. Bu fosilleşmiş yaratiklarin atalari herhalde daha da küçüktü.. En ilkel canli biçimi, belki de bugün bolca bulunan basit tek hücreli canlilara hiç benzemeyen bir tek-hücreydi. Öyleyse bizim yoğunlaşacağmız soru şu: bir hücre,yaşamaya ilk olarak nasıl başlamış olabilir, bu aşama nasıl mümkün olabilir? Soru”hücre nasıl yaşamaya başladı?” değil;bu hiçbir zaman yanıtlanayacak bir sorudur. Çünkü bu olaya tanıklık edecek kimse yoktu o zaman; ama yaşamın nasıl oluşabileceğini sormak hakkımızdır. Akıllıca tahminler ve olasilıkıları gösteren deneyler yapabiliriz. Gerekli Maddeler Jeologların, paleontologların, fizikçilerin,biyologların çalışmalarına dayanarak,dünyanın üç milyar yıl öncesi nasıl bir yer olabileceği konusunda oldukça iyi bir fikrimiz var. Bilim kurgu kitapları ve filmelri olayı çok canlı ve belki de doğru resimliyorlar;lav ve kayalardan oluşmuş,gri, tümüyle kısır,hiç yeşili olmayan manzaralar,patlayan yanardağlar,sivri dağ tepeleri,buharlaşan denizler,alçak bulutlar,arada çakan şimşeklerle gürültüyyle parçalanan ve sürekli yağan yağmurlar. Herhangi bir canlı tarafından görülmemiş ve duyulmamış olaylar. Kuşkusuz bu, sizin ve benim için çok sefil bir ortam olurdu. ÜAma yaşamın başlangıcı için iyi bir düzendi. Herşeyi harekete geçirmek için gerekenler şunlardı: 1. Ilık bir ortam 2. Çok miktarda su(s:38) 3. Gerekli atomların kaynakları/karbon,hidrojen,oksijen,nitrojen ve fosfor) 4. Enerji kaynağı. Su ve ısı, sorun değildi. Dünya soğurken, milyonlarca yıllık yağmur okyanusları doldurmuş hala sıcak olan Dünya bu okyanusyarı ısıtmıştı. Şimşekler bol bol enerji sağlıyorlardı. Bulutlar aralandığı sıralarda da Güneş’ten ulraviyole ışınları geliyordu(Bu ışınlar o zaman şimdi olduklarından çok daha güçlüydüler, çünkü atmosferimizi sarran ozon tabakası henüz oluşmamıştı. Ozon, yeryüzünde bitki yaşamının sonucu olarak yavaş yavaş birikmiş bir oksjijen tabakasıdır. Bu tabaka ultraviyole ışınlarını geçirmez). Bu koşullar;kuşkusuz başlangiçta,en basit birimlerin,bilgi zincirlerinin (DNA) ve hücre maddesi zincirlerinin (protein) oluşmasi için yeterince basitti. Ama zincirlerimiz olmadan önce halkalarimizin olmasi gerekir. Önce DNA nükleotidleri ve proteinlerin amino asitleri oluşmalidir. Bildigimiz gibi, bu halkalar ufak moleküllerdir. Bunlar, karbon, hidrojen,oksijen,nitrojen ve fosfor elementlerinin kimyasal olarak baglanip düzenlenmeleriyle oluşurlar. Basit Moleküllerin Doğuşu Öyleyse işte senaryomuz: Deniz suyunda erimiş karbon,hidrojen,oksijen,nitrojen ve fosfor içeren basit bileşikler, ultraviyole işinlari ve şimşeklerle sürekli bombardiman edilmiyorlar. Bu arada bir kismi kalici ve dengede olan,degişik kombinasyonlara da zorlaniyorlar. İşlem yüz milyonlarca yıl boyunca sürerken,denz, elemanlarının değişik kombinasyonları yönünden giderek zenginleşiyor. Yeni moleküller,bu arada nükleotidler ve amino asitler birikiyor. Sonunda denizin son derece bol ve bütün yeni molekül(s:39) çeşitlerini içeren koyu bir çorbaya dönüştüğüü bir zaman geliyor. Zamanın Önemi Sözkonusu süreçte zamanın önemini kavramak için biraz duralım. Zaman ne kadar uzun olursa bir şeylerin olması da o kadar olasıdır. Kimyasal tepkimeler için de bu doğrudur. Zaman sınırlaması olmazsa,yeterince uzun süre beklenirse en olanaksız tepkimeler gerçekleşebilir. Eğer bu tepkimelerin ürettikleri bileşikler kalıcı (dengeli) iseler, deniz suyunun nisbeten değişmez maddeleri haline geleceklerdir. İçinde canlı Olmadığı için Çorba Varlığını sürdürebilir Şimdidenizin çorba gibi olma düşüncesi size aşiri görünebilir. Bunun bugünkü deneylerimizle karşilaştiralabilecek hiçbir yani yoktur. Böyle zengin bir oluşumun birikmesi,canlilar onu hemen yiyip biterecegi çin bugün belik de olanaksizdir. Bakteriler ve diger açgözlü yaratiklar şimdi çok kalabaliklar ve ne zaman iyi bir besin kaynagi belirse,hemen onu tüketiyorlar. Kaynak kuruyana kadar üreyip sayilarini arttiriyorlar. Görüyorsunuz ki eskiden yaşam olmadiggi için okyanuslar çorba gibi olabilirdi. Eski Olayların Laboratuvardaki Benzerleri Aslında,anlattıklarımız hiçbir zaman kanıtlanamayacak bir hipotez. Yine de biz,laboratuvarda bunların olabileceğini gösterebiliriz,Eskiden olduğu öne sürülen koşulların laboratuvarda istenen tepkiyi sağlaması kuşkusuz olanaklıdır. Üç milyar yıl önce denizde bulunduğu (s: 40) düşünülen basit bileşikler bir cam kapta suda eritilebilirler. Kap, şimşekylerin enerji katkısını sağlamak üzere bir elektrik kaynağına bağlanır. Ssitemin bütün parçaları hiçbir canlı hücre olmadığından emin olabilmemiz için önceden sterilize edilir. sonra kaptakilerin bir süre pişmesi için elektrik verilmeye başlanabilir. sonunda kap açılıp içindekiler incelenir. Bu deneyin yapılmış olduğunu ve sonucun tümüyle inandırıcı olduğunu sevinerek söyleyebilirim. Hem nükleotidler hem amino asitler beş elementten bu şekilde oluşturulabildiler. yani yaşam zincirlerinin halkaları, deniz benzeri bir ortamda şimşikleri enerji kaynağı olarak kullanılmasıyla üretildi. Zincir Moleküllerinin Doğuşu Bundan sonraki adım,açıkça görülüyor ki halkaları,DNA gibi ve protein gibi zincirler oluşturmak için birleştirmektir.İlkel koşulların laboratuvarda yapılmış benzerlerinin,halkaların oluşumu aşamasını sağlamasına bakarak,çalışma ilerletilirse halkaların zincir biçiminde eklenebileceğini de düşünmek akla yakındır. Nitekim kısa zincirlerin oluştuğunu gröüyoruz. Basit kimyalarıyla bugünün DNA’larına ve proteinlerine benziyorlar. Yined hatırlayalım, bu deneyler yalnızca oylabileceğini gösterir, ne olduğunu değil. Durum, Thor Heyerdahl’ın Polinezya Adaları halkının Güney amerika’dan batıya yelken açarak, şimdiki yurtlarını buldukları savını kanıtlamaya çalışırken kaşılaştığından farklı değil. sal üzerinde aynı yolculuğu başarıyla yaparak,yalnızca polinezyalıların gerçekten bu yolculuğu yaptığını kanıtlamış olmadı, benzer taşıt kullanan herhangi birinin de aynı işi yapabileceğini gösterdi(s:41) Bir Hücreye Doğru Bu noktadan sonra,hücdreyi daha çok tanımak için beş önemli adıma daha göz atabiliriz. Hücrenin ikiye bölünmesi DNA’nın ikiye bölünmesi Zarlar Çift zincirli DNA Yapısal proteinler Enzimler tek zinciril DNA Proteinler Yağlar Nükleotidler Aminoasitler karbon, hidrojen,oksijen, azot(nitrojen) ve fosfor 1. Enzimlerin ortaya çıkması Enziler, hücre içindeki bütün kimyasal tepkimeleri hızlandıracak özel protein molekülleridir. Bugün canlı hücre;herbiri kenid özel işini yapan, besin maddelerini parçalayan,besinden enerji üreten, basit moleküllerden zincir yapımını kolaylaştıran ve sayısız başka işler yapan binlece enzim içerir. Olayların denizdeki başlangıt çağlarında yavaş gelişimleri, ancak enzimlerle hızlandırılabilirdi, İlk enzimler, raslatısal olaramk birbiren eklenmiş kısa aminoasit zincirleri olsa gerek. Tekrar tekrar “deneme-yanılma”yla bu kombinasyonların bazıları; birtakım reaksiyonları hızlandırabilecek,yalnız kenidlerine özgü bir yeteneği elde etmiş olmalılar.(s: 42) 2. DNA’nın çift Kat oluşu. Okyanuslar boyunca DNA zincirinin rasgele eklenen nükleotidlerle yavaş yavaş uzamasini gözünüzün önüne getirmeye çaliştiginzda baszi anlamli diziler oluşcaktir.Burada “anlamli”, birkaç yeni ilkel proteini yapmak için gereken bilgiyi içermek olarak kullanilmiştir. Bunladan bazilari, yararli enzimler veya önemli yapilarin parçalari olacktir. Basit bir çift kat halinde birleşme bunu sagladi. birbiren sarilmiş ipliklerin zarar görmesi,ayri ayri tek başlarini olduklari zamandan daha az olasiydi.Dahasi, çift kat olmak,DNA’nin üremesi için gereklidir. 3. DNA’nın Çoğalması Bu, çift sarmal DNA zincirindeki her ipliğin,kendisini tıpatıp bir kopyasını yapması,sonuçta ikinçci bir çift sarmalın(s:43) oluşması demektir. son erece basit ve zarif olan bubişlem,bir halatın çözülüp ayrılışı gibi iki zincirin birbirinden ayrılmasıyla baş

http://www.biyologlar.com/evrim-konusunda-ilk-dusunceler

LİKENLERİN TIPTAKİ KULLANIMLARI VE ANTİBİYOTİK ÖZELLİKLERİ

Likenler özellikle Ortaçağ’da şifalı ot olarak kullanılmaktaydı. Likenler yakın zamanlarda da halk ilacı olarak kullanılmaya devam etmişlerdir. Florida eyaletindeki bazı şifalı ot doktorları likenleri ilaç olarak özellikle de balgam sökücü olarak kullanırlar. Cetraria islandica İskandinavya’da şifalı ot dükkanlarında yaygın olarak satılmaktadır ve diyabet hastalıklarına, akciğer hastalıklarına ve nezleye iyi geldiğine inanılmaktadır. Peltigera canina Hindistan’da karaciğer hastalıklarına çare olarak yenilmektedir ve yüksek metiyonin aminoasitini içermesi güç kaynağı olarak kullanılmasını da sağlamaktadır . Halk ilacı olarak kullanılan çoğu likenin antibiyotik etkinliklerinin sebebi olan herhangi bir aktif madde tanımlanamamıştır. Ama likenler 1944 yılından sonra penisilin ve streptomisin bulunduktan sonra biyolojik materyaller içine katılmıştır. Kloromisetin antibiyotiğinin bulucusu Burkholder K.D. Amerika’da 52 farklı liken türünden özütün çeşitli bakteri tiplerinin büyümesini inhibe ettiğini keşfetmiştir. Bu likenlerden antibiyotik bulma yarışına dönüşmüş ve 10 senelik bir periyotta yüzlerce tür ve saflaştırılmış liken maddeleri tüm dünya laboratuarlarında test edilmiştir. Kural olarak bunlar Escherichia, Salmonella ve Shigella gibi gr ( - ) bakterilere karşı etkili değildir ancak gr ( + ) bakteriler önemli derecede usnik asit, protolichesterinik asit ve birkaç orkinol türevinden inhibe olur. Pulvinik asit ve ß – orkinol türevleri nispeten inaktiftir. Biyolojik olarak aktif ama daha henüz tanımlanamamış az sayıda bileşiklerde mikobiyont kültürlerinden izole edilmektedir. Liken maddeleri aynı zamanda bitki patolojisinde de antibiyotikler olarak incelenmektedir. Mesela likenlerden elde edilen sodyum usnatın domates çürüklüklerine (Corynebacterium michiganensis) karşı etkili olduğu bulunmuştur. Tütün mozaik virusuda çeşitli liken özütleri ile inhibe edilmiştir ve müessir maddelerin lekanorik, psoromik ve usnik asit olduğu ispat edilmiştir . Aynı zamanda liken maddelerinin antifungal özellikleri de incelenmektedir. Bir küf mantarı olan Neurospora crassa’nın büyümesi güçlü biçimde usnik asit, haematommik asit ve bazı liken maddelerinin monosiklik fenol türevleri ile inhibe olur. Nephroma arcticum’un suda çözünen özütleri ve daha az oranda Hypogymnia physodes ve Platismatia glauca’nın 7 adet odun çürüten fungus üzerinde fungisit etkisi vardır. Vulpinik, physodic, salazinic ve usnik asitlerin maviye boyanan odun fungusu Trichosporium üzerinde az derecede inhibisyon etkisi vardır. Su özütlü liken maddelerinin aynı zamanda otlarda tohum çimlenmesini ve kök başlamasını inhibe ettiği gösterilmiştir. Mesela Peltigera canina yanındaki ot kolonilerinde kök sistemleri çok az gelişir. Cladonia cinsine ait likenler Finlandiya’daki konifer ormanlarında ağaç fidelerinin çimlenmesini inhibe eder. İnhibasyon mekanizmalarından bir tanesi de metafaz evresinde kromozom hatalarında artış olarak gözükür. Toprak habitatında yaşayan diğer Cladonia türleri karayosunu sporlarının çimlenmesini inhibe eder.

http://www.biyologlar.com/likenlerin-tiptaki-kullanimlari-ve-antibiyotik-ozellikleri

 
3WTURK CMS v6.03WTURK CMS v6.0