Biyolojiye gercekci yaklasimin tek adresi.

Arama Sonuçları..

Toplam 648 kayıt bulundu.

Vitamin türleri

Herkes tarafından bilinen 13 vitamin vardır. Bunlar temelde, yağda çözünenler ve suda çözünenler olarak iki gruba ayrılır ama gerçekte 20 vitamin vardır. En küçük vitamin A, C, D ve K vitaminleriyken, en büyük vitamin türü E vitaminidir. Orta boy moleküllü B vitaminleri ise pek kullanılmaz. Dört vitamin türü, yağda çözünebilir ve bu sayede vücudun yağ dokusunda depolanırlar. Bunlar: A vitamini, D vitamini, E vitamini ve K vitamini. A Vitamini Göz sağlığı için çok önemlidir. E vitaminiyle alınırsa daha iyi gözlere sahip olunur. Yumurta, avokado, karaciğer, süt, havuç, sebze, ceviz, balık yağı gibi besinlerde vardır. Oluşumu sırasında böbreklerin rolü vardır. Zaten A vitamini böbreklerde bulunan tek vitamindir. Yeşil sebzelerde bulunur. Kalorisi yüksektir. A vitamininin (diğer yağda eriyen vitaminler olan D, E, K vitaminleri gibi) fazlası zararlıdır. Özellikle gebe kalmayı planlayanlarla gebelerin A vitamini içeren ilaçlardan ve yiyeceklerden (karaciğer) uzak durması önerilmektedir. Gebelikte düşük ve anormallik yapma riski vardır. Çoklu vitamin içeren ve gebelerce çok tüketilen ilaçlarda da ne yazık ki A vitamini bulunmaktadır. Yağda eriyen, vücutta depolanan bu tarz ilaçların gebelere verilen dozun toksik (zehirleyici) dozda olmaması özgürce alınabileceği anlamına gelmemektedir. İlaç olarak alınan A vitaminin doğal yollarla alınan A vitaminine göre daha riskli olduğu kabul edilmektedir. Nitekim İngiltere Royal Kolej yayınladığı "Gebe Takip Kılavuzu"nda A vitamini içeren ilaçların ve yiyeceklerden karaciğerin gebelere verilmemesini önermektedir. A vitamini fazlalığı aşağıdakilere neden olabilir: Doğum anormallikleri, Karaciğer problemleri, Kemik mineral yoğunluğunda azalma ve osteoporoz, Uygunsuz kemik büyümesi, Deride uygunsuz renk değişimi, Saç dökülmesi, Yoğun cilt kuruluğu ve pullanmalar A vitamini eksikliğinde görülen hastalıklar: Gece körlüğü, Bağışıklık sistemi zayıflığı, Büyüme-gelişme yavaşlaması D Vitamini Provitamin şeklinde alınan D vitamini deri altında uv. ışınları ile aktifleşir. D vitamini Ca ve P'un emilmesini ve kemiklerde depo edilmesini sağlar. D vitamini eksikliğinde çocuklarda raşitizm,yetişkinlerde osteomalazi hastalıklarının oluşmasını sağlar. Fazlası kireçlenmeye neden olur. En önemli kaynak güneş ışınıdır. Ayrıca karaciğer, balık, yumurta, tereyağı, peynir ve mantarda bulunur. E Vitamini Çocukların büyümesi için E vitamini gereklidir. Yaralarının iyileşmesi için E vitamini gerekir (protein yarayı kötüleştirir). Karaciğer, yağ dokusu, ince bağırsak ve mide E vitamini sentezler. Kimyasal yapı itibarı ile bir tokoferol olup antisterilite vitamin olarak da bilinir. Tokol ve tokotrienoltürevlerinin farklı bileşikleri E vitamini aktivitesi gösterir. En aktifi alfa-tokoferoldür. Provitamin olarak kullanılır. D vitamininden daha güçlüdür. E vitamini sinir sisteminin, kasların, hipofiz ve sürrenaller gibi endokrin bezlerin ve üreme organlarının fonksiyonları için öneme sahiptir. E vitamini, biyolojik bir antidoksidan olup, atardamar hastalıklarının ve kanserin önlenmesi için gerekli olan bir antioksidandır. Bitkisel ve sıvı yağlarda, kırmızı et, karaciğer, tahıl, tahıl ürünleri vb. lerde bulunan E vitamini eksikliğinde kaslar gelişemez ve E vitamini yapıcı-onarıcı özelliğe sahip her şeyi yaptığı için, bazı kozmetik ürünleri de E vitamini içermektedir. Kozmetik ürünlerinde sadece B5 ve E vitaminleri bulunur. Tokoferol (E1) vitamininin tokoferolleri: Alfa tokoferol - E1A (Diğer adı: Provitamin E) Beta tokoferol - E1B (Diğer adı: Pro-E1B) Gama tokoferol - E1G (Diğer adı: EProteinToko1) Delta tokoferol - E1D (Diğer adı: DeltE1) Mega tokoferol - E1M (Diğer adı: Megadel) K Vitamini K vitamini, yeşil sebze, çay ve ciğerde bulunan ve kan pıhtılaşmasında önemli bir yeri olan vitamindir. Karaciğerde protrombin yapılmasında kullanılır. Yokluğunda kan ile ilgili belirtiler ortaya çıkar. Normal olarak bağırsaklarda bulunan bakteriler tarafından sentezlenir. Yetersizliğinde pıhtılaşmada sorunlar ve aşırı kanama ortaya çıkar. Vücudumuzdaki bakteriler tarafından da üretilir. Vücudumuzu hastalıklardan korur. yaraların iyileşmesi için K vitamini gereklidir. Suda çözünenler Diğer dokuz vitamin türü ise suda çözünür ve pek çoğu vücutta depolanmaz. Bunlar: C vitamini, tiyamin (B1), riboflavin (B2), niyasin (B3), pantotenik asit (B5), piridoksin (B6), siyanokobalamin (B12), biyotin, folik asit (folacin). C Vitamini (askorbik asit) C vitamini veya askorbik asit, turunçgiller, koyu yeşil sebzeler ve patateslerde bulunan ve kollajen sentezinde yer alan, antioksidan bir vitamindir. Ayrıca demir emilimini de olumlu etkiler. Yetersizliğinde eklem ağrıları, yaraların geç iyileşmesi, skorbüt gibi sorunlara neden olabileceği gibi enfeksiyonlara karşı kişiyi daha zayıf kılar. Küçük yaşlarda diş eti kanaması ve grip C vitamini eksikliğinde, fazlalığında da ishal görülür. B1 Vitamini (tiyamin) Hemen hemen tüm canlı dokularda bulunur ve pirofosforik ester şeklinde görülür. Pentozfosfat çeviriminde alfa-keto asit dekarboksilazların ve transketolazın koenzimidir. Eksikliği başta sinir ve kalp hücreleri olmak üzere beslenmeleri için özellikle glikoza gereksinim duyan hücrelerde metabolizma bozukluğuyla sonuçlanır ve beriberiye neden olur. B2 Vitamini (riboflavin) Tahıllar, et ve ciğerde bulunan bir vitamindir. FAD'ın içeriklerindendir. Yetersizliğinde ariboflavinoz görülebilir. B3 Vitamini (niyasin) Et, balık ve kuru yemişlerde bulunan ve NAD ile NADP koenzimlerinin içeriklerinden olan, solunum için önemli bir vitamindir. Yetersizliğinde pellagra görülebilir. B5 Vitamini (pantotenik asit) Birçok gıdada, özellikle de ciğer ve baklagillerde bulunan önemli bir vitamindir. E vitamininin içeriği olan pantotenik asit, karbonhidrat ve yağ metabolizmasında yer alır. Yetersizliğinde yorgunluk ve uyuşukluk hissedilebilir. B12 Vitamini (siyanokobalamin) Siyanokobalamin veya B12 ciğer, balık ve süt ürünlerinde bulunan ve DNA metabolizmasında koenzim olarak yer alan bir vitamindir. Alyuvarların olgunlaşmasında da gereklidir. Yetersizliğinde anemi ve kilo kaybı görülebilir.

http://www.biyologlar.com/vitamin-turleri

AMİNO ASİT TANIMA REAKSİYONLARI

Doğada 300’den fazla amino asit tanımlanmış olmasına rağmen memelilerde bunlardan yalnızca 20 tanesi proteinlerin yapısında yer almaktadır. Amino asitler prolin dışında aynı karbon üzerinde amino (-NH2) ve karboksil (-COOH) grubu bulundururlar. Prolin ise siklik bir yapıya sahiptir ve amino grubu yerine imino grubu taşır. Amino asitlerin genel gösterimleri R-CH-NH2-COOH şeklindedir. R grubu değişken gruptur. R grubunun değişmesiyle 20 çeşit primer veya standart amino asit meydana gelir. Bu 20 çeşit amino asitin değişik sayı ve sıra ile dizilimi çok sayıda proteinin ortaya çıkmasına yol açar. Glisin dışındaki tüm amino asitlerin en az bir tane asimetrik karbonu vardır ve optik olarak aktiftirler. Bunlar da D ve L olarak iki ayrı konfigürasyonda olabilirler. Ancak proteinlerin yapısında bulunan tüm amino asitler L konfigürasyonundadırlar. D amino asitler ise bazı antibiyotiklerde ve bakteriyel hücre duvarında bulunurlar.Amino asitler amfoterik moleküllerdir. Yani hem asidik hem de bazik gruplar içerirler. Monoaminomonokarboksilik asitler sulu çözeltilerde dipolar çözeltiler yani zwitterion şeklinde bulunurlar. a-karboksil grubu dissosiye ve negatif yüklüdür, a-amino grubu protonlanmış ve pozitif yüklüdür, yani molekül nötrdür. Asidik pH’da karboksil grubu bir proton alır ve molekülün net yükü pozitif olur. Bazik pH’da ise amino grubu proton kaybeder ve net yük negatif olur. Bir amino asidin net yükünün sıfır olduğu pH’a izoelektrik nokta denir. Amino asitler renksiz, suda tamamen, etil alkolde ise kısmen çözünmelerine karşılık, eterde hiç çözünme özellikleri olmayan organik bileşiklerdir. Amino asit çözeltilerinin görünür bölgede ışık absorblama özellikleri yoktur. Ancak UV bölgede (280 nm’de) tirozin, triptofan, fenilalanin ve histidin gibi halkalı yapıya sahip amino asitlerin ışık absorblama yetenekleri vardır. Bu özellik biyolojik sıvılardaki protein miktarının belirlenmesinde zaman zaman faydalanılabilen bir özelliktir.Amino amino asitler, bulundurduğu karboksil ve amino grupları, reaksiyon gücü oldukça yüksek fonksiyonel gruplar oldukları için bu grupların verdiği bütün reaksiyonları verirler. Amino asitlerin verdiği bu reaksiyonlar gerek biyolojik sıvılardaki serbest amino asitlerin cinsi ve miktarı, gerekse protein yapısına giren amino asitlerin miktarı, cinsi ve sırasını tespit etmede son derece önemlidir. I. Amino Asit Tayininin Klinik ÖnemiDolaşımdaki amino asitler böbrekte glomerüler membranlar tarafından filtre edilirler. Bu filtrattaki amino asit konsantrasyonu plazmadakine yakındır. Ancak filtrattaki amino asitlerin büyük bir kısmı tübüler sistemde özel transport sistemleri ile geri emilip dolaşıma verilirler. Çok az bir kısmı ise idrarla atılır. Normal yetişkin bir kişinin 24 saatlik idrar amino asit düzeyi 50-200 mg arasında değişir. Bu değişimde etkili faktör diyettin tabiatıdır. Kan amino asit seviyeleri yükseldiği zaman idrarla amino asit atılımında artış meydana gelir. Bu duruma aminoasidüri denir. İki tip aminoasidüriden bahsedilebilir. 1) Taşma tipi (overflow tipi) : Amino asit metabolizmasında rol oynayan enzimlerin eksik veya hatalı olması sonucu görülür. Böbrek eşik düzeylerinin aşılması sebebiyle böbrekler normal çalıştığı halde böbreğin reabsorbsiyon kapasitesi aşıldığından idrar amino asit düzeyi artar. Fenilketonüri, tirozinozis, alkaptonüri ve akçaağaç şurubu idrar hastalığı buna örnektir.2) Renal tip:Böbrek tubuluslarındaki bozukluk sonucu oluşan aminoasidüri türüdür. Bunu sebebi konjenital veya akkiz olabileceği gibi ağır metal zehirlenmeleri, fenol zehirlenmesi veya yanıklar da olabilir. Fankoni sendromu, sistinozis, Wilson hastalığı ve nefrotik sendrom gibi.II. Amino Asitlerin Kalitatif ve Kantitatif Tayininde Kullanılan MetotlarProteinlerin amino asit kompozisyonunu tespit belirlemek için kullanılan metotlar üç basamakta toplanır:1. Proteinlerin amino asitlerine hidrolizi (6N HCl, +110oC’de 24 saat ısıtma)2. Karışımdaki amino asitlerin ayırımı 3. Her bir amino asidin miktarının belirlenmesia) Ninhidrin Reaksiyonuα-amino grubunun en karakteristik reaksiyonu olan ninhidrin reaksiyonu amino asitlerin hem kalitatif hem de kantitatif tayininde sıklıkla kullanılan bir reaksiyondur. Bütün α-amino asitler ve peptidler bu renk reaksiyonunu verirler. Ancak bazı amino asitler mavi kompleks yerine değişik renklerle ortaya çıkarlar. Örneğin, prolin ve hidroksiprolin sarı, asparagin ise kahverengi renk oluşturur. Diğer amino asitler ise mavinin değişik tonları şeklinde kompleksler oluştururlar. b) Gazometrik ÖlçümAmino asitlerin α-amino grubu HNO2 (nitröz asit) ile reaksiyona girdiği zaman karboksilli asitlerin hidroksi türevlerini meydana getirir. Bu reaksiyon sırasında açığa çıkan N2 gazometrik olarak ölçülür. c) Kromatografik YöntemlerAmino asitleri ve peptidleri ayırmada kullanılan değişik kromatografik yöntemler vardır. Bunlar arasında kağıt kromatografisi, ince tabaka kromatografisi, iyon değiştirme kromatografisi, gaz kromatografisi ve yüksek basınçlı sıvı kromatografisi (HPLC) en sık kullanılanlardır. d) Elektroforetik YöntemlerYüksek elektrikli bir ortamda amino asitlerin yük ve büyüklük farklılıklarından faydalanılarak ayrılması tekniğidir. e) Amino Asit Sırası Tayinine Yönelik YöntemlerPeptid ve proteinlerin sırasının belirlenmesi birçok genetik kusurun ortaya çıkarılmasında faydalı olacaktır. Bir proteindeki amino asit sırasını belirlemek için N-terminal ya da C-terminal amino asit rezidülerine spesifik reaksiyonlar kullanılır. N-terminal amino asitlerin belirlenmesinde kullanılan yöntemler.Sanger YöntemiAlkali ortamda bir polipeptidin N-terminal amino asidinin amino grubu ile 2,4 dinitrofluorobenzen (DNF) reaksiyona girerek sarı renkli 2,4-dinitrofenol türevlerini meydana getirirler. Bu türevler elde mevcut olan amino asitlerin aynı reaktifle reaksiyona sokulmasıyla hazırlanmış olan standartları ile kağıt kromatografisi işlemine tabi tutulur. Kromatografi kağıdında elde edilen lekeler değerlendirilerek amino asidin cinsi tespit edilir. Dansil Klorür YöntemiBir polipeptidin N-terminal aminosidinin amino grubu ile floresans bir madde olan dansil klorür yüksek pH’da reaksiyona girer. Böylece dansil klorür ile işaretlenen amino asit florometrik olarak ölçülür. Bu metodla amino asit türevlerinin düşük miktarları (1 nM) bile belirlenir.Edman YöntemiEn önemli ve en çok kullanılan metoddur. Edman reaksiyonuyla sadece N-terminal ucu tanınmaz aynı zamanda bu reaksiyonun tekrarlanması ile uzun polipeptidlerin amino asit sırası tam olarak tespit edilir. Fenilizotiyosiyanat alkali ortamda peptidin N-terminal amino grubu ile reaksiyona girerek N-terminal amino asidin fenilizotiyosiyanat türevi oluşur. Sanger ve dansil klorür yöntemlerinden farklı olarak polipeptid parçalanmaz, sadece bir amino asit eksik polipeptid kalır. Daha sonra oluşan bu türev gaz kromotografisi ile tespit edilir.C-terminal amino asitlerinin belirlenmesinde kullanılan metodlarPolipeptidin C-terminal kalıntılarını tespit etmek için kullanılan metodlar N-terminali tespit etmek için kullanılanlar kadar kesin sonuç vermezler. Ancak bu amaç için kullanılan iki metod vardır.Hidrazinle parçalanma (Hidrazinoliz)Bu reaksiyon sırasında hidrazin ile C terminalindeki aminoasitler ayrılır. Karboksi peptidazla parçalanma Protein parçalayıcı bir enzim olan karboksipeptidaz bir proteindeki en son peptid bağına (C-terminal) etki ederek C-terminal amino asidinin koparılmasını sağlar. Elde edilen serbest amino asit, amino asitlere spesifik reaksiyonlarla tespit edilir. Bu işleme devam edilerek her defasında yeni bir C-terminal amino asit belirlenebilir. III. Kalitatif Amino Asit Tayin YöntemleriKalitatif amino asit tayini kan ve idrar örneklerinde yapılabilir. İdrar örnekleri günün herhangi bir saatinde alınan (rastgele) idrar örneği olabileceği gibi 24 saatlik idrar da olabilir. Hücre içi amino asit seviyesi kan dolaşımından (plazma) 10 kat daha yüksektir. Kan örneği alınırken bu özellik dikkate alınmalıdır. Amino asit seviyesine plazmada bakılır. Kan heparinize enjektörle alınmalıdır. Hemolizden sakınılmalıdır. Yapılacak DeneylerFenil Pirüvik Asit Deneyi4 ml idrar üzerine 1 ml magnezyum ayıracı (11 gr MgCl2, 14 gr NH4Cl ve 20 ml der-NH4OH/litre) konarak 5 dakika bekletilir, süzülür. Süzüntü 2 damla % 10’luk HCl ile asidik hale getirilir. 2 damla % 10’luk FeCl3 ilave edilir. Mavi-yeşil renk oluşursa deney pozitifdir. Fenilketonüride sıklıkla kullanılmaktadır. Triptofan Deneyi2 ml örnek üzerine 2 ml derişik CH3COOH ilave edilir. Bu karışımın üzerine damla damla tabaka oluşturacak şekilde tüp cidarından derişik H2SO4 sızdırılır. İki sıvının birleşme yerinde mor halkanın oluşumu örnekte triptofan bulunduğunu (pozitif reaksiyon) gösterir. (örnek: Hartnup hastalığı)Ninhidrin Deneyia) Deneyin PrensibiBu deneyde normalde sarı olan ninhidrin, amino asitlerle reaksiyona girerek mavi-menekşe rengine dönüşür ve bu metot bu renk oluşumunun tespitine dayanır.Bu reaksiyon sırasında 1. basamakta ninhidrin ile amino asit reaksiyona girerek amino asitten bir karbon eksik bir aldehit, redükte ninhidrin, NH3 ve CO2 meydana gelir. İkinci aşamada açığa çıkan NH3, bir mol okside ninhidrinle bir mol redükte ninhidrin arasında köprü kurarak mavi-mor renkli kompleks oluşturur.Ninhidrin NH2-C-COOH’daki serbest a-amino grubu ile reaksiyona girer. Bu grup tüm amino asitlerde, polipeptidlerde ya da proteinlerde bulunmaktadır. Dekarboksilasyon reaksiyonu serbest amino asitlerde meydana gelmekte iken, peptidlerde ve proteinlerde meydana gelmemektedir. Böylelikle teorik olarak yalnızca amino asitler renk değişimine neden olurlar. Ancak peptidler ya da proteinler her zaman için interferansa yol açabilirler.b) Reaktifler ve Malzemeler A. Malzemeler B. Reaktifler® Test tüpleri ® Ninhidrin Solüsyonu® Pipetler ° Ninhidrin: 0.35 g® Ocak ° 100 ml etanol® Spektrofotometre c) Deneyin Yapılışı1 ml ninhidrin solüsyonu (0.35 g ninhidrinin 100 ml etanole tamamlanması ile hazırlanır.) 5 ml numuneye (plazma) eklenir. Test tüpünün ağzı parafilm ile kapatılır. ( buharlaşmadan dolayı meydana gelebilecek kayıpları önlemek için) 2. Hafifçe karıştırılarak 4-7 dakika süreyle kaynatma işlemine tabi tutulur.3. Daha sonra soğuk su altında tutularak oda ısısına kadar soğutulur. Not: Isopropanol ya da 1/1 aseton/butanol karışımı ninhidrin solüsyonunun hazırlanmasında etanol yerine kullanılabilir.

http://www.biyologlar.com/amino-asit-tanima-reaksiyonlari-2


Virüslerin Kesifi

Virüs latince zehir anlamına gelir. Virüsler 19. Yüzyılın sonlarına doğru keşfedilmiştir. Robert KOCH, Louis PASTAEUR ve diğer bakteriyologlar , canlılarda görülen birçok hastalıklara bakterilerin sebep olduğunu bulmuşlardır. Fakat bazı hastalıklar onları çok şaşırtıyordu. Çünkü hastalığın meydana geldiği organizmada, bu hastalığa sebep olabilecek bir bakteri bulunamıyordu. Araştırmacıların dikkatini çeken böyle bir hastalığa tütün yaprağında rastlanmıştı. Hasta bitkinin yaprakları , mozayik bir şekilde lekelenip buruştuğu için , bu hastalığa tütün mozaiyik hastalığı adı verilmiştir. Virüsler önceleri bakterilerin salgıladığı bir zehirli madde olarak kabul ediliyordu. Daha sonra, virüsün bir organizmaya bulaşarak bakterilerin salgıladığıbir zehirli madde olarak kabul ediliyordu. Daha sonra, virüsün bir organizmaya bulaşarak hastalık yapabileceği gösterildi. Hasta olan tütün bitkisinden çıkarılan özüt, porselen bir filtreden geçirilerek bakteriler tutuldu. Süzülen özüt, sağlıklı tütün bitkisinin yapraklarına sürüldüğünde, bitkinin hastalandığı görüldü. Hollandalı mikrobiyolog M.W. BEIJERINCK hastalığın kısa zamanda bitkinin bütün organlarına yayıldığını tespit etmiştir. Özütte hiç bakteri kalmadığı halde, sağlıklı bitkiyi hastalandıran bu faktöre, BEIJERINCK, “hastalık yapan canlı sıvı” adını vermiştir. 20. yüzyılın başlarında, tütün mozayik virüsünden başka, bitki, insan ve hayvanlarda çeşitli hastalıklar yapan virüsler keşfedilmiştir. Mesela bunlar arasında salatalık, marul ve patateste mozayik hastalığı yapan virüsler sayılabilir. Ayrıca insanlarda sarı humma, çocuk felci, grip, kızamık, kızamıkçık, kabakulak ve suçiçeği gibi hastalıklara sebeb olan virüsler de bilinmektedir. 1930 yılına kadar, virüslerin sebeb olduğu bir çok hastalık tanımlanmasına rağmen, virüslerin yapısı ve özellikleri hakkında fazla bilgi elde edilememiştir. Amerikalı mikrobiyolog Wendell M. STANLEY, 1935 yılında tütün mozayik virüsünü, yaşadığı bitkiden ayırmayı başarmıştır. Bu araştırmacı, saf olarak elde ettiği virüs kitlesini mikroskopta incelediğinde, iğne şeklinde kristaller görmüştür. Daha sonra bu kristallerin nükloproteinler olduğu anlaşılmıştır. Aynı yıllarda STANLEY, izole ettiği tütün mozayik virüsü (TMV) kristallerini elektron mikroskobunda inceleyerek çubuk şeklinde yapılar olduğunu görmüştür. İzole edilmiş tütün mozayik virüsleri cansız gibi görünmesine rağmen, suda biraz bekletilerek tütün yaprağına sürüldüğünde, bitkinin hastalandığı tespit edilmiştir. Bu çalışmalarla, virüslerin ancak canlı hücrelere üreyebildiği anlaşılmıştır. Virüsler, canlı hücrelerde yaşayan mecburi parazitler olup, içinde yaşadığı hücrenin metabolik mekanizmasını kendi hesabına kullanabilen canlılardır. Gerçekten, bir virüs konukçu hücreye girdikten sonra, kendisi için gerekli proteinleri ve nükleik asitleri üretebilmektedir. Yani virüsler, girdiği hücrelerde, metabolizma makinasının direksiyonunu ele geçirmekte ve onu kendi lehine yönlendirebilmektedir. Virüslerin Özelikleri genom: Bir organizmanın sahip olduğu genleri taşıyan DNA’nın tamamıdır. Her organizmanın kendi genomu vardır. Kalıtım maddeleri (genomları) DNA veya RNA olabilir. Sadece proteinkılıf + DNA dan oluşurlar. Bu yapılarından dolayı kopmuş kromatin parçasına benzerler. Hücre organelleri, sitoplazmaları, enerji üretim sistemleri ve metabolizma enzimleri yoktur.Hem canlı hem cansız olarak sayılırlar. Virüslerin canlı sayılmasının nedeni cnalı bir hücre içine girdiğinde DNA eşlemesi yapabilmeleridir. Virüslerin cansız sayılmalarının nedeni hücre dışında cansızların özelliği olan kristal yapıda bulunmalarıdır. Bazı virüslerde virüsün bir hücrenin içine girmesini sağlayan enzimlerde buluna bilir.virüsün üremesi için canlı bir hücreye girmesi şarttır. Virüs girdiği hücrenin ATP’sini ,enzimlerini, nükleotitlerini kısaca herşeyini kendi leyhine kullanan tam bir parazittir. Virüs DNA sının içine girdiği bakteri DNA sından baskın olması ve bu bakteriyi kendi hesabına yönetmesi DNA nın yönetici özelliğine en iyi örnektir.bakteri içine girenvirüse bakteriyofaj denir. Virüs bir hayvan hücresine girdiğinde interferon denilen hormon benzeri bir madde salgılar. Bu madde diğer hücrelere vücutta virüs bulunduğunu haber vererek korumayı sağlar. Virüslerin Büyüklüğü ve Şekli Bütün virüsler o kadar küçüktür ki , bunlar ışık mikroskobunda ayrı parçalar halinde görülemezler. Ancak elektron mikroskobunda belirli şekilde görülmektedir. Büyüklükleri genel olarak 15-450 milimikron arasında değişir. Çocuk felci virüsünün elektron mikroskobuyla alınan fotoğrafı, virüs parçacıklarının pinpon topuna benzer minik yuvarlaklar halinde olduğunu göstermiştir. Virüslerin Yapısı Biyologlar virüslerin canlı tabiatının eşiğinde yani en alt basamağında bulunan varlıklar olarak kabul ederler. Çok küçük çok ilksel organizmalardır. Bu bakımdan virüsler hakkındaki bilgilerimiz henüz çok değildir. Biyologlar çok ince ve dikkatli araştırmaları sonucu virüslerin bir nükleit asit RNA öz maddesi ile bunu saran bir protein kılıftan meydana geldiğini bulmuşlardır. Öz madde virüsün çeşidine göre bir RNA veya DNA olabilir. Yapısında DNA bulunan bir virüs çeşidi vardır ki, bunlar bakteri hücrelerine girer, onların içinde çoğalırlar. Bu virüslere Bakteriyofaj (bakteri yiyen virüs) denir. Bakteriyofajlar bakterileri yiyerek yaşarlar. Bakterilerin içinde ürer ve en sonunda içinde yaşadıkları hücreleri yok ederler. İnsan ve hayvanlarda hastalık yapan virüslerin çoğu da, etrafı protein kılıf ile çevrili DNA ipliğinden başka bir şey değildir. Yapısında DNA bulunan bir virüs çeşidi vardır ki, bunlar bakteri hücrelerine girer ve onların içinde çoğalırlar. Bu virüslere bakteriyofaj veya kısaca faj (faj virüsleri) denir. Faj bakteri yiyen anlamına gelir. Virüslerin Yaşama Şekilleri Canlı hücrelerden alınan virüsler hücre dışında yaşayamazlar; fakat, yeniden bir hücreye bulaştırılırlarsa hemen çoğalmaya başlarlar. Şu halde, virüsler mecburi parazit olup, ancak canlı hücrelerin içinde yaşayabilirler. Virüsler; çiçekli bitkilerde, böceklerde, bakterilerde, hayvan ve insan hücrelerinde yaşarlar. Bazen çeşitli hastalıklara sebep olurlar. Hattâ bir görüşe göre, bazı kanserlerin bile sebebi virüslerdir. Çiçekli bitkilerden tütün, patates, domates, şeker kamışı ve şeftali gibi faydalı bitkilerin hastalıkları üzerinde yapılan çalışmalarda, 100’den fazla değişik bitki virüsü bulunmuştur. Arı, sinek ve kelebek gibi bazı böcek takımlarının bir çok türlerinde yaşayan virüsler vardır. Bu virüsler, özellikle böcek larvalarında hastalıklara sebep olurlar. Böceklerde hastalık yapan virüsler, zararlı böcveği ortadan kaldırmak için biyolojik mücadelede de kullanılmaktadır. Birçok bakteri ve bazı mantarlarda yaşayan fajlar bulunmuştur. Omurgalılardan sadece balıklarda, kurbağalarda, memelilerde, kuşlarda ve bihassa kümes hayvanlarında yaşayan virüsler tespit edilmiştir. Her virüs çeşidi çoğunlukla vücudun belli bir kısmına girer ve belirli hücreler içinde çoğalabilir. Sarı humma virüsleri karaciğerde;kuduz virüsleri beyinde ve omurilikte; çiçek, kızamık, siğil virüsleri ise deride çoğalır. Virüsler sadece hücre içinde faaliyet gösterdiklerinden hücreye zarar verir ve antibiyotiklerden etkilenmez. Belli bazı virüslerin bulaştığı hücreler, aynı tipten ikinci bir virüs enfeksiyonuna karşı bağışıklık kazanır. Hücre, canlı veya sıcaklıktan öldürülmüş bir virüsle muamele edilince “interferon” denilen bir madde salgılar. İnterferon bazı hastalıklar için hücrelerde bağışıklık meydana getirir. Meselâ kızamık, kabakulak ve kızıl gibi hastalıkları geçirenler, kolay kolay bu hastalığa yeniden yakalanmazlar. Vücudun ve virüslerin bu özelliğine dayanarak bazı virüs hastalıklarına karşı aşılar geliştirilmiştir. Çiçek, sarı humma ve kuduz aşıları belli başlı virütik aşılardır Virüslerin Üremesi Virüsün canlılığını sürdürmek için bulunduğu canlıya konak canlı adı verilir. Virüs konak canlıya girdiğinde konak canlının DNA sı virüsün hesabına çalışmaya başlar. Yani virüs girdiği canlıyı yönetimi altına alır. Artık konak canlı kendi eşlenmesi yerine virüsün yönetici maddesini eşler. Ribozomlarıyla virüsün proteinlerini sentezler. Konak canlıda sayısı hızla artar. Konak canlının hücre zarı parçalanarak virüsler açığa çıkar. Kendilerine yeni konak canlı ararlar. Eğer canlı bir hücre yoksa kristaller meydana getirirler. Devamlı üreyen virüslere Litik Virüs denir.bazı hallerde virüs girdiği konak canlıya zarar vermeden kalabilir. Virüsün yönetici maddesi konak canlının yönetici maddesine yapışırsa konak canlı virüsün yönetimine girmez. Konak canlının yönetici maddesinin bir parçası haline gelebilir. Virüs çoğalamadığı içinde konak canlıya zarar veremeyecektir. Böyle virüslere Lizogenik Virüs denir. Virüsler bitkilerde ve hayvanlarda hastalık meydana getirirler. Ancak bu zarar girdikleri bitki veya hayvan hücresinde yönetimi ele geçirirlerse mümkündür. Virüslerin nükleik asitlerindemutasyonlar meydana gelebilir. Biyolojik açıdan eniyi incelenen virüsler “Bakteriyofaj”lardır. Bunlara bakteri yiyen virüslerde denilebilir. Birde kuyrukları vardır. Kuyruk bakteriye deydiğinde bakterinin o bölgesini eritir. Yönetici molekülü böylece bakteriye geçer. Lizogenik virüsse bakteri kromozomuna yapışır, orada profajı oluşturur.(Girdiği bakterinin kromozomuna yapışarak üremeden kalabilen Lizogenik virüs kromozomuna profaj denir.) Özet Olarak Virüsler 1-Canlı ve cansız arasında geçit oluştururlar. 2-Protein kılıf ve nükleik asitten oluşurlar.(DNA veya RNA) 3-Kristalleşebilirler 4-Kompşex enzim sstemleri yoktur. 5-DNA taşıyanlar bakterileri yiyebilir bunlara bakteriyofaj veya faj denir. 6-Grip, nezle, kızamık, frengi, kabakulak gibi hastalıkları yaparlar. 7-Virüs bir canlı hücrenin (örneğin bakterinin) çeperine yapışır. 8-Virüs DNA’si bakterinin içine enjekte olur. 9-Bakteri DNA’sının eşlenmesi durur. 10-Virüs DNA’sı bakterinin bütün biyokimyasal sistemlerini kullanarak kendini eşlemeye başlar. 11-Bakterinin protein sentezi sistemi virüs için gerekli protein kılıfı v.s. gibi yapıları bakteri malzemesi kullanılarak sentezlenir.bu yolla 100’den fazla virüs oluşur. 14-Bakterinin hücre duvarını delici enzimlerinde sentezlenmesi ve hücre duvarının erimesiyle virüsler dışarı çıkar.

http://www.biyologlar.com/viruslerin-kesifi

Mutasyon

Mutasyon, canlının genetik yapılarında meydana gelen değişmelerdir. Bireyin kalıtsal özelliklerinin ortaya çıkmasının sağlayan genetik şifre herhangi bir nedenden dolayı (X ışını, radyasyon, ultraviyole, bazı ilaç ve kimyasal maddeler, ani sıcaklık değişimleri ) bozulabilir. Bu durumda DNA’nın sentezlediği protein veya enzim bozulur. Böylece canlının, proteinden dolayı yapısı, enzimlerinden dolayı metabolizması değişebilir. Mutasyonlar spontan ya da uyarılmış olarak oluşabilir. Spontan mutasyonlar genellikle doğada kendiliğinden oluşan mutasyonlar olup bir bazın yer değiştirmesi şeklindedirler. Uyarılmış mutasyonlarda ise bir X ışını gibi yapay bir faktör bulunur. Bununla birlikte mutasyonun en önemli sonuçlarından biri, bir sonraki kuşağa farklı genetik özellikler aktarılmasına neden olmasıdır. Bu ise farklı fiziksel özelliklere sahip bireylerin üremesidir. Çekinik olan mutasyonlar ileriki döllerde ortaya çıkabilir. Dominant olanları fenotip yapıda hemen ortaya çıkabilir. Mutasyonun diğer bir sonucu da hücre bölünmesindeki kontrol mekanizmasını ortadan kaldırabilmesidir. Bunun bilinen en tehlikeli sonucu ise hücrenin kontrolsüz bölünmesi yani kanserdir. Mutasyon (değişim) Yeni döllere aktarılacak kalıtsal bilgide,genellikle fiziksel ya da kimyasal dış etkenlerin uyarısıyla,bazen de kendiliğinden ortaya çıkan değişiklik. Mutasyon, hücredeki kalıtsal bilgiyi taşıyan, çift nükleotid zincirinden oluşan, DNA (deoksiribo nükleik asit) molekülündeki GEN adı verilen ve belirli bir özelliği kodlayan bölümündeki değişiklikten kaynaklanır. Mutasyonlar, bir DNA zincirindeki bazın (A, T, G, C) başka bir bazla yer değiştirmesi sonucunda ortaya çıkabileceği gibi, zincire bir ya da daha çok bazın eklenmesi veya zincirdeki bazların eksilmesi sonucunda da ortaya çıkabilir. DNA zincirindeki tek bir baz çiftinin(A-T veya G-C) değişmesiyle oluşan mutasyonlara nokta mutasyonu(nokta değşinimi) denir. Bu tür mutasyonlar: Karşılıklı olan bir pürin-pirimidin (örn. A-T) çiftiyle başka bir pürin-pirimidin (örn. G-C) çiftinin yer değiştirmesiyle oluşabileceği gibi, bir pirimidin-pürin (örn. C-G) ile bir pürin-pirimidin (örn. G-C) bazının çaprazlama olarak yer değiştirmesiyle de oluşabilir. Bu tür mutasyonlar kendiliğinden oluşabileceği gibi, bazı bazların benzerleriyle yer değiştirmesiyle de ortaya çıkabilir. Nokta mutasyonları genellikle tek bir kodonu etkilediğinden çok büyük değişimlere yol açmaz. Örneğin: Mutasyona uğramış kodon aynı aminoasidi kodlamaya devam eder ya da proteinin işlevini değiştirmeyen başka bir aminoasit kodlanabilir. Ama bazı durumlarda, DNA molekülündeki tek bir nükleotidin değişmesi bile çok önemli sonuçlar doğurabilir. Örnek olarak orak hücreli kansızlık verilebilir. Bu hastalık kalıtsaldır. Eğer bu hastalık böyle bir nokta mutasyonu nedeniyle meydana geliyorsa ve eğer çocuk mutasyona uğramış geni iki ebeveyninden de alıyorsa bunun sonuçları kötü olabilir. Bir aminoasidi kodlayan bir kodonu hiçbir a.a’yı kodlamayan bir kodona, örneğin bir sonlama kodonuna (stop kodonu) dönüştüren mutasyonlara “Anlamsız Mutasyon” denir. Bu tür mutasyonlar, protein sentezinin normalden önce sonlanmasına, dolayısıyla genin biyolojik işlevini görememesine yol açar. Bir a.a.’yı kodlayan kodonun, başka bir a.a.’yı kodlayan kodona dönüşmesine ise “Yanlış Anlamlı Mutasyon” denir. Eksilme ya da eklenme mutasyonları, nokta mutasyonlarından çok daha önemli değişikliklerin sorumlusudur. DNA zincirinde bir ya da birden fazla bazın eksilmesi ya da eklenmesi, genellikle eklenme ya da eksilmenin olduğu noktadan başlayarak kod okuma çerçevesinin kaymasına yol açar. Bu yüzden gen yapısında önemli değişiklikler meydana getirir. Örneğin: TAG GGC ATA ACG ATT dizisinde, ilk kodonda oluşan bir mutasyonla bir A bazının eklendiği varsayılırsa, bu yeni dizi TAA GGG CAT AAC GAT T şeklinde okunmaya başlanacak ve bu farklı dizi, okuma çerçevesindeki kayma nedeniyle bambaşka bir aminoasidi kodlayacaktır.Birden fazla kodonda ortaya çıkan bu tür değişikliklerin daha önemli ve ciddi sonuçlar doğurması doğaldır. Mutasyona uğramış DNA dizileri de tıpkı normal DNA dizileri gibi eşlenir,çoğalır ve dölden döle normal diziler gibi aktarılır. Mutasyon geçirmiş kalıtsal bilgi ancak yeni bir mutasyonla eski durumuna dönebilir. Geri dönüşlü mutasyon denen ikinci mutasyon özgün genin yapısını onarır ve yeniden normal işlevini kazandırabilir; bazen de, ilk mutasyonun oluştuğu bölgeden başka bir bölgede ortaya çıkan baskılayıcı mutasyon denen ikinci bir mutasyonun ilk mutasyonun etkisini tamamen ya da bir ölçüde yok edebilir. Eşeyli olarak üreyen insanda ve diğer tüm üstün yapılı canlılarda mutasyonlar, oluştukları hücreleri cinsinden iki grupta incelenebilir. Eşey hücrelerinde oluşan mutasyonlara “Tohumsal Mutasyon”, bunların dışındaki tüm diğer hücrelerdeki mutasyonlara ise “Somatik Mutasyon” denir. Somatik mutasyonların en çarpıcı örneği mavi gözlü insanlarda gözlenebilir. Mavi göz, bir pigmentin eksikliğinden ileri gelen çekinik(resesif) bir karakterdir. Ortaya çıkabilmesi için hem anneden hem de babadan çekinik karakter genini (b) alması gerekir. Baskın karakter geninden (B) bir tane bile alan insanlar kahverengi gözlü (Bb) olurlar. Bazen ender olarak, mavi gözlü insanların -genelde bir- gözünde kahverengi bir bölge görülür. Bu özellik büyük olasılıkla, göz hücrelerinde oluşan ve b genini B’ye değiştiren bir somatik mutasyonla oluşur. Ancak bu tür mutasyonlar eşey hücrelerini etkilemediğinden kuşaklara aktarılamaz. Ama mavi gözlü iki insanın kahverengi gözlü çocuklarının olması ancak eşey hücrelerindeki bir mutasyon sonucunda ortaya çıkar. Özellikle tohumsal mutasyonlar, kalıtımın incelenmesinde ve insan evriminin gelecekteki yönünü belirleyen ipuçları olarak da incelenmeye değer olgulardır. Yeni oluşan mutasyonların çoğu doğal dengeyi bozduğu için zararlı, hatta kalıtsal hastalıkların birçoğunda olduğu gibi ölümcüldür. Bu zararlı genlerin toplumda yayılmasını önleyebilmek, ancak mutasyona uğramış kalıtsal bilgiyi taşıyan canlının üreme yeteneğinin azalmasına ya da yok olmasına bağlıdır. Mutasyonun gözlenebilen bir etki olmadan ortaya çıkması çok az gözlenen bir olgudur. Daha çok çevreden gelen kimyasal ya da fiziksel etkiler nedeniyle olur. Bir dış etkinin mutasyona yol açabilmesi (mutajen olması) için hücre içine girip etkinliğini gösterebilmesi gerekir. Örneğin Güneş’in morötesi ışınları, girim gücü düşük olduğu için yalnızca deri hücrelerinde somatik mutasyona yol açabilirken, girim gücü yüksek olan X ışınları ya da atom bombası ışımaları tohumsal mutasyona yol açabilen çok güçlü etkenlerdir. Bu tür mutasyonların bir çok örneği yakın zamanda Çernobil patlaması sonucunda çevredeki bir çok canlı türünde gözlenmiştir. Günümüzde bile bu patlama sonrası etrafa saçılan radyoaktif maddelerin neden olduğu somatik mutasyonların görünür sonuçları vardır. Halen Rusya ve Karadeniz Bölgesi’ndeki kanser oranları çok yüksektir.

http://www.biyologlar.com/mutasyon

Histoloji Preparatlarının Hazırlanması

Canlılardan alınan doku ya da organ parçalarını mikroskopla incelenir duruma getirebilmek için takip ettiğimiz işlemlerin tümüne birden histolojik teknik adını veriyoruz. Bu amaçla kullanılan yöntemler uygulayacağımız mikroskobi tekniğine bağlı olarak ilk bakışta bazı farklılıklar görünse de temelde prensipler aynıdır. Bu konuyla ilgili temel prensipleri anlayabilmek için klasik ışık mikroskobunda inceleyeceğimiz bir preparatın hazırlanışını görelim.Tespit (Fiksasyon)Bir histolojik incelemenin sağlıklı bir şekilde yapılabilmesi için dokuya ait yapı özelliklerinin, kimyasal içeriklerinin iyi korunmuş olması gerekir. Bunun için canlılara ait preparatların hazırlanışında ilk temel prensip hücre ve dokuları canlıdakine en yakın şekilde tutabilmektir.Bunun için ilk hedef otolizi engellemek olmadır. Canlı hücre içinde, etrafı membranla çevrili, eritici enzimler içeren, lizozom adını verdiğimiz organeller vardır. Hücre bu yapıları sindirim amacıyla kullanır. Ölümden sonra eritici enzimler sitoplazma içine geçerek hücreyi eritmeye başlar. Bu olaya kendini eritme anlamına gelen otoliz adı verilir. Otolize uğramış hücreler normal görünümünü kaybederek incelenmesi imkansız hale gelir. Otolizi engellemek amacıyla kullanılan bazı maddeler lizozomların içindeki enzimlerin sitoplazmaya geçişini ve erimeyi önlerler. Bu olaya tespit ya da fiksasyon, bu amaçla kullanılan maddelere de fiksatör adı verilir. Pek çok tespit maddesi ve tespit yöntemi vardır. Uygulayacağımız tespitin sonraki işlemlere, özellikle boyama işlemine bir zarar vermiyor olmasına dikkat etmek gerekir. Örneğin, klasik yöntemlerle tespit ve takip edilen dokularda yağ hücreleri içindeki  depo yağını korumak imkansızdır. Hücrelerdeki yağ içeriği takip işlemleri esnasında akar, hücrelerin içleri sonradan boş görünür. Eğer bir çalışmada bu hücreleri yağ içerikleri ile beraber görmek istiyorsak fiziksel bir tespit yöntemi olan dondurma tekniğine başvurabiliriz.Fiziksel olarak tespit yöntemlerine örnek olarak periferik kan yayma preparatlarının boyanmadan önce ısıtılarak ya da doğrudan kurutularak tesbitini verebiliriz.Otoliz nedir? Fiksasyon hangi amaçla yapılır?Kimyasal tespit yöntemleri hem kullanılma sıklığı hem de kullanılan fiksatörlerin çeşitliliği açısından daha çok zenginlik gösterir. En bilinen ve yaygın kullanılan fiksatör formoldür. Formol genellikle %10'luk sulu çözeltisi şeklinde kullanılır. Ticari formol %100'lükmüş gibi kabul edilerek 1 kısım formol, 9 kısım suyla karıştırılarak tesbit sölüsyonu hazırlanır. Ayrıca, glutaraldehit, osmium tetraoksit, bazı asitler, alkoller ya da bunların kombine formları daha az sıklıkla kullanılan kimyasal fiksatörlere örnek olarak verilebilir. Bütün fiksatiflerin istenenözelliklerinin yanı sıra istenmeyen bazı etkileri de vardır. Değişik kombinasyonlar kullanılarak istenen tespit özelliklerinin artmasını, istenmeyen bazı etkilerin en aza indirgenmesini sağlamak mümkündür. Birleşik olarak kullanılan fiksatörler çoğu kere ilk bulup kullanan araştırıcının adıyla anılırlar (Bouin, Carnoy, Zenker gibi).Elektron mikroskopta incelenecek preparatların hazırlanmasında ultrastruktürel yapının detaylı incelenebilmesi için çift fiksasyon işlemine gereksinim vardır. Bu işlemde önce tamponlanmış glutaraldehit ilk fiksatör olarak, daha sonra tamponlanmış osmium tetroksit ikinci fiksatör olarak kullanılır.Birleşik tespitten ne anlıyorsunuz?Doku ve organlardan alınan parçaların tespitinde aşağıdaki konulara dikkat etmek gerekir:- Tespit ve takipte kullanılan sölüsyonların dokunun içine iyi işlemesi için parçaların yeterince küçültülmüş olmasına özen gösteriniz. Parçanın boyutlarının 0.5 cm. yi geçmiyor olması daha olumlu sonuç verecektir.- Parçalar alındıktan hemen sonra bekletilmeden tespit sıvısına konulmalıdır.- Parçalar büyük ve kanlı ise tespit sıvısı yenilenmelidir.- Tespit sıvısının, hacim olarak konulan parça ya da parçaların minimum kırk katı fazlalığında olmasına çalışılmalıdır.- Uygulayacağımız her tespit yöntemi için önerilen süreye uyulmalıdır.- Tespitten sonra parçalar iyi yıkanmalı, yapay görüntülere neden olmaması için tespit maddesi dokudan tamamen uzaklaştırılmalıdır.- Ayrıca SAĞLIĞIMIZ AÇISINDAN:Histoloji laboratuvarlarında kullanılan pek çok madde gibi tespit maddelerinin buharlarının canlı hücre ve organizma için son derece zararlı olduğunu aklımızdan çıkarmayıp, bu işlemlerin çeker ocak denilen yerlerde yapılmasına dikkat etmeliyiz. Eğer bu mümkün olmuyorsa laboratuvar ortamının çok iyi havalandırılıyor olmasına özen göstermeliyiz.Tespitte uyulması gereken kurallar nelerdir?Tespit işlemleri ne tür yerlerde yapılmalıdır, neden?DehidratasyonTespit edilmiş parçalar bu aşamadan sonra suyundan arındırılır. Bu işleme dehidratasyon adı verilir. Dehidratasyon işlemi için suyu kolaylıkla kendi bünyesine kabul eden etil alkol, izopropil alkol, dioksan, anilin gibi maddeler kullanılır. Bunlardan en yaygın kullanılanı etil alkoldür. Derecesi absolu alkole kadar ulaşan banyolardan geçirilen parçalar daha sonra ışığı geçirgen hale getirilir. Bu işleme şeffaflaştırma (clearing) işlemi denir. Bu amaçla en sık kullanılan madde ksiloldur. Ayrıca benzen, toluen, kloroform gibi maddeler bu amaçlakullanılan maddelere örnektir.Bu işlemler petri kutuları gibi buharlaşmayı engellemek için düzgün kapaklı cam kaplarda elle takip şeklinde yapılabildiği gibi otomatik takip makineleri ile de yapılabilir. Otomatik takip makineleri zaman ayarlaması yapılabilen, doku parçalarının istenilen kaplarda istediğmiz kadar kalmasını sağlayan makinelerdir.Dehidratasyon nedir? Hangi maddeler bu amaçla kullanılırElektron mikroskop için hazırlanan preparatlar da doku parçaları dehitratasyon işleminden geçirilir. Bu işlem için de yine ethanol kullanılır. Gömme işleminden önce plastik eritici olan propilen oksit gibi maddelerde infiltre edilir.Bloklama (Gömme)Parçalardan rahatça kesitler alabilmek, düzgün kesit yüzeyleri sağlayabilmek için gömme ya da bloklama olarak ifade ettiğimiz işleme başvururuz. Parafin, jelatin, selloidin, karbovaks gibi maddeler bu işleme uygundur. En yaygın kullanılan madde parafindir. 56-60 derecede sıvılaşan parafin etüvde hazır tutulur. Parça prizmatik kalıplar içine konur, üzerine sıvı parafin dökülür. Parafin laboratuvar ısısında mum gibi donarak sertleşir. Kalıptan çıkarınca içinde bizim doku parçamız da bulunan düzgün prizmatik bir parafin bloku elde ederiz. Parafinintersüller boşluklara hatta hücrelerin içine bile penetre olarak dokuyu daha sabit ve kesilebilir hale getirir. Elektron mikroskop için ışık mikroskobuna oranla çok daha ince kesitlere ihtiyaç vardır. Bu nedenle gömme ya da bloklama işleminde daha sert plastik maddeler gereklidir. Bunun için epon, araldit gibi epoxy plastik maddeler kullanılır.Bloklama işleminde ne tür maddeler kullanılır?Kesit AlmaBlokladığımız doku ve organ parçalarında düzgün ince kesitler almak için kullandığımız aletlere mikrotom denir. Işık mikroskop incelemeleri için kullandığımız mikrotomlar mikron düzeylerinde ince kesitler alabilirlerken elektron mikroskop araştırmalarında kullanılan ultramikrotomlar angström inceliklerinde kesitler sağlarlar. Işık mikroskobu için kesitler almakta kullandığımız mikrotomlarda çelik bıçaklar kullanılırken, EM için kesitler aldığımızultra mikrotomlarda cam ya da daha iyisi elmas bıçaklar kullanılır. Işık mikroskop çalışmalarında genellikle 6-10 mikronluk kesitler kullanılır. Mikrotomların bıçakların hareketli olduğu kızaklı mikrotom denilen tipleri ya da bıçaklarının sabit, kesilecek blokların hareketli olduğu rotari mikrotom tipleri vardır. Mikrotom aracılığıyla parafin bloklardan isteğimiz kalınlıklarda dilimler keserken blok içindeki parçadan da aynı kalınlıkta kesitler elde etmiş oluruz. Daha sonra lam üzerinde alınan kesitler boyama işlemine hazır olurlar.Xylol gibi bazı solventler doku içindeki lipidler gibi bazı maddeleri eritebilirler. Bu istenmeyen etkinin önüne geçmek için cryostat adı verilen dondurma mikrotomları kullanılır. Dokular bu yöntemle düşük ısıda aniden dondurularak takip işlemlerinden geçirilmeden ve bloklanmadan kesit alınabilir hale gelir.Mikrotom ve Ultramikrotom neye denir?Boyama (Kolorasyon)Çok ufak ayrıcalıklar dışında dokuların büyük bir kısmı renksizdir ve boyanmadığı sürece ışık mikroskobunda incelenmesi zordur. Çeşitli doku ve hücre kısımlarının yapıları nedeniyle farklı kimyasal özellikteki boyaları farklı bir şekilde tutmaları histolojide boyamanın esasını teşkil eder. Histolojik araştırmalarda kullanılan boyaların büyük bir çoğunluğu asit veya baz özelliğinde olup dokudaki ionize köklerle elektrostatik bağlantı yaparlar. Bu şekilde doku ve hücrelerin daha belirgin bir şekilde ortaya çıkması sağlanırken diğer yandan kimyasalyapısını bildiğimiz boyalarla reaksiyona giren yapıların kimyasal özellikleri ortaya konmuş olur. Histolojik boyalar renklendirici gruplarının asit ya da baz oluşuna göre asit ve bazik boyalar olmak üzere iki ana grupta toplanırlar. Bazik boyaları çeken, o boyanın renginde boyanan hücre ve doku kısımları bazofil boyanıyor ya da bazofili gösteriyor diye tanımlanır.Genel olarak granüllü endoplazmik retikulumun yoğun olduğu kısımlar, hücre çekirdeği bazofili gösteren yapılardır. Asit boyalarla reaksiyona girerek onun renginde boyanan hücre ya da doku kısımları için asidofil boyanıyor ya da asidofili gösteriyor denir. Bazı ayrıcalıkları olmakla birlikte hücre sitoplazması, kollajen lifler, mitokondrium ve lizozomlar asidofilik yapılardır. Bazik boyalara örnek olarak Metilen Mavisi, Jansiyan Viyole, Bazik Füksin, Azokarmin, Safranin, Hematoksilin, Nükleer Fast Red verilebilir. Eozin, Pikrik Asit, AsitFüksin, Oranj G, Eritrosin, Kongo Kırmızısı, Light Green gibi boyalar asit boyalara örnektir.Boyalar bazı yöntemlerde tek olarak kullanılır. Bazı yöntemlerde ikili ya da daha çok boya içeren birleşik yöntemler dediğimiz şekillerde kullanılırlar. Birleşik yöntemlerde kesitler birbiri ardından bazik ve asit boyalarla işleme tabi tutulurlar. Birleşik boya yöntemlerinden ikili olanlara örnek olarak çok yaygın bir boyama yöntemi olan Hematoksilin+Eozin (HE) yöntemi gösterilebilir. Azokarmin, Oranj G ve Anilin Mavisinden oluşan Heidenhein İn Azan yöntemi ise üçlü bir boyama yöntemidir.Asidofili ve bazofili neye denir?Birleşik boyama neye denir?Bazı boyalar, bazı yapıları boyanan çözelti renginden farklı bir renge boyarlar. Bu olaya metakromazi, böyle boyalara da metakromatik boyalar denir. Örneğin toluidin mavisi dokuya düşük konsantrasyonda bağlandığında mavi renkte boyar (ortokromatik). Oysa bir yapıya yüksek konsantrasyonda bağlandığında mor-kırmızı renkte boyar (metakromatik). Toluidin mavisinin Mast hücrelerinin granüllerini mor-kırmızı boyaması metakromatik boyanmadır.Bazı lipidler, makromoleküller metafosfat, sülfomukopolisakkaritler, nükleik asitler metakromazi gösteren yapılardır. Toluidin mavisi, Metilen mavisi, Azur A gibi boyalar ise metakromatik boyalara örnek verilebilir.Ortokromazi ve metakromazi nedir?Bazı boyalar deneysel amaçla doğrudan canlıya verilebilir. Bu renkli maddeler organizmada bazı yerlerde tutularak canlıda boyanma sağlarlar. Örneğin, tripan mavisi deney hayvanının dolaşımına verildiğnide karaciğer kupffer hücreleri tarafından tutulur. Böylece hayvan daha canlıyken sitoplazması mavi tanecikler tarzında boyunmış olur. Vital boyalardan Tripan mavisi, Kongo kırmızısı, Çini mürekkebi, Alizarin ve Lityum karmin asit karakterde vital boyalardır. Metilen Mavisi, Nötral Red, Janus Green, Krezil Viyole ve Nigrosin bazik karakterdevital boyalardır.Vital boyamanın diğer boyama yöntemlerinden farkı nedir?Boyama işleminden sonra kesitler yeni baştan dehidrate edilir ve şeffaflaştırılır. Daha sonra üzerlerine lamel kapatılarak korunur. Preparatların kapatılmasında Kanada Balsamı ya da son zamanlarda ucuzluğu ve çabuk kuruması yönünden tercih edilen bazı sentetik yapıştırıcılar kullanılmaktadır. Uzun süre saklanılması düşünülen preparatları doğrudan güneş ışığı ya da kuvvetli ışıklardan sakınmak gerekir. Aksi takdirde boya solacaktır.Dokuların renkli boyalarla boyanmasının yanı sıra altın, gümüş gibi bazı metallerin seçici olarak bazı kısımlara çöktürülmesi de o bölgelerin mikroskop altında kolayca belirlenmesini sağlayan boyadışı bir renklendirme yöntemi olarak karşımıza çıkar.

http://www.biyologlar.com/histoloji-preparatlarinin-hazirlanmasi-1

HİSTOLOJİ PREPARATLARININ HAZIRLANMASI

Canlılardan alınan doku ya da organ parçalarını mikroskopla incelenir duruma getirebilmek için takip ettiğimiz işlemlerin tümüne birden histolojik teknik adını veriyoruz. Bu amaçla kullanılan yöntemler uygulayacağımız mikroskobi tekniğine bağlı olarak ilk bakışta bazı farklılıklar görünse de temelde prensipler aynıdır. Bu konuyla ilgili temel prensipleri anlayabilmek için klasik ışık mikroskobunda inceleyeceğimiz bir preparatın hazırlanışını görelim. Tespit (Fiksasyon) Bir histolojik incelemenin sağlıklı bir şekilde yapılabilmesi için dokuya ait yapı özelliklerinin, kimyasal içeriklerinin iyi korunmuş olması gerekir. Bunun için canlılara ait preparatların hazırlanışında ilk temel prensip hücre ve dokuları canlıdakine en yakın şekilde tutabilmektir. Bunun için ilk hedef otolizi engellemek olmadır. Canlı hücre içinde, etrafı membranla çevrili, eritici enzimler içeren, lizozom adını verdiğimiz organeller vardır. Hücre bu yapıları sindirim amacıyla kullanır. Ölümden sonra eritici enzimler sitoplazma içine geçerek hücreyi eritmeye başlar. Bu olaya kendini eritme anlamına gelen otoliz adı verilir. Otolize uğramış hücreler normal görünümünü kaybederek incelenmesi imkansız hale gelir. Otolizi engellemek amacıyla kullanılan bazı maddeler lizozomların içindeki enzimlerin sitoplazmaya geçişini ve erimeyi önlerler. Bu olaya tespit ya da fiksasyon, bu amaçla kullanılan maddelere de fiksatör adı verilir. Pek çok tespit maddesi ve tespit yöntemi vardır. Uygulayacağımız tespitin sonraki işlemlere, özellikle boyama işlemine bir zarar vermiyor olmasına dikkat etmek gerekir. Örneğin, klasik yöntemlerle tespit ve takip edilen dokularda yağ hücreleri içindeki depo yağını korumak imkansızdır. Hücrelerdeki yağ içeriği takip işlemleri esnasında akar, hücrelerin içleri sonradan boş görünür. Eğer bir çalışmada bu hücreleri yağ içerikleri ile beraber görmek istiyorsak fiziksel bir tespit yöntemi olan dondurma tekniğine başvurabiliriz. Fiziksel olarak tespit yöntemlerine örnek olarak periferik kan yayma preparatlarının boyanmadan önce ısıtılarak ya da doğrudan kurutularak tesbitini verebiliriz. Otoliz nedir? Fiksasyon hangi amaçla yapılır? Kimyasal tespit yöntemleri hem kullanılma sıklığı hem de kullanılan fiksatörlerin çeşitliliği açısından daha çok zenginlik gösterir. En bilinen ve yaygın kullanılan fiksatör formoldür. Formol genellikle %10'luk sulu çözeltisi şeklinde kullanılır. Ticari formol %100'lükmüş gibi kabul edilerek 1 kısım formol, 9 kısım suyla karıştırılarak tesbit sölüsyonu hazırlanır. Ayrıca, glutaraldehit, osmium tetraoksit, bazı asitler, alkoller ya da bunların kombine formları daha az sıklıkla kullanılan kimyasal fiksatörlere örnek olarak verilebilir. Bütün fiksatiflerin istenen özelliklerinin yanı sıra istenmeyen bazı etkileri de vardır. Değişik kombinasyonlar kullanılarak istenen tespit özelliklerinin artmasını, istenmeyen bazı etkilerin en aza indirgenmesini sağlamak mümkündür. Birleşik olarak kullanılan fiksatörler çoğu kere ilk bulup kullanan araştırıcının adıyla anılırlar (Bouin, Carnoy, Zenker gibi). Elektron mikroskopta incelenecek preparatların hazırlanmasında ultrastruktürel yapının detaylı incelenebilmesi için çift fiksasyon işlemine gereksinim vardır. Bu işlemde önce tamponlanmış glutaraldehit ilk fiksatör olarak, daha sonra tamponlanmış osmium tetroksit ikinci fiksatör olarak kullanılır. Birleşik tespitten ne anlıyorsunuz? Doku ve organlardan alınan parçaların tespitinde aşağıdaki konulara dikkat etmek gerekir: - Tespit ve takipte kullanılan sölüsyonların dokunun içine iyi işlemesi için parçaların yeterince küçültülmüş olmasına özen gösteriniz. Parçanın boyutlarının 0.5 cm. yi geçmiyor olması daha olumlu sonuç verecektir. - Parçalar alındıktan hemen sonra bekletilmeden tespit sıvısına konulmalıdır. - Parçalar büyük ve kanlı ise tespit sıvısı yenilenmelidir. - Tespit sıvısının, hacim olarak konulan parça ya da parçaların minimum kırk katı fazlalığında olmasına çalışılmalıdır. - Uygulayacağımız her tespit yöntemi için önerilen süreye uyulmalıdır. -Tespitten sonra parçalar iyi yıkanmalı, yapay görüntülere neden olmaması için tespit maddesi dokudan tamamen uzaklaştırılmalıdır. - Ayrıca SAĞLIĞIMIZ AÇISINDAN: Histoloji laboratuvarlarında kullanılan pek çok madde gibi tespit maddelerinin buharlarının canlı hücre ve organizma için son derece zararlı olduğunu aklımızdan çıkarmayıp, bu işlemlerin çeker ocak denilen yerlerde yapılmasına dikkat etmeliyiz. Eğer bu mümkün olmuyorsa laboratuvar ortamının çok iyi havalandırılıyor olmasına özen göstermeliyiz. Tespitte uyulması gereken kurallar nelerdir? Tespit işlemleri ne tür yerlerde yapılmalıdır, neden? Dehidratasyon Tespit edilmiş parçalar bu aşamadan sonra suyundan arındırılır. Bu işleme dehidratasyon adı verilir. Dehidratasyon işlemi için suyu kolaylıkla kendi bünyesine kabul eden etil alkol, izopropil alkol, dioksan, anilin gibi maddeler kullanılır. Bunlardan en yaygın kullanılanı etil alkoldür. Derecesi absolu alkole kadar ulaşan banyolardan geçirilen parçalar daha sonra ışığı geçirgen hale getirilir. Bu işleme şeffaflaştırma (clearing) işlemi denir. Bu amaçla en sık kullanılan madde ksiloldur. Ayrıca benzen, toluen, kloroform gibi maddeler bu amaçla kullanılan maddelere örnektir. Bu işlemler petri kutuları gibi buharlaşmayı engellemek için düzgün kapaklı cam kaplarda elle takip şeklinde yapılabildiği gibi otomatik takip makineleri ile de yapılabilir. Otomatik takip makineleri zaman ayarlaması yapılabilen, doku parçalarının istenilen kaplarda istediğmiz kadar kalmasını sağlayan makinelerdir. Dehidratasyon nedir? Hangi maddeler bu amaçla kullanılır Elektron mikroskop için hazırlanan preparatlar da doku parçaları dehitratasyon işleminden geçirilir. Bu işlem için de yine ethanol kullanılır. Gömme işleminden önce plastik eritici olan propilen oksit gibi maddelerde infiltre edilir. Bloklama (Gömme) Parçalardan rahatça kesitler alabilmek, düzgün kesit yüzeyleri sağlayabilmek için gömme ya da bloklama olarak ifade ettiğimiz işleme başvururuz. Parafin, jelatin, selloidin, karbovaks gibi maddeler bu işleme uygundur. En yaygın kullanılan madde parafindir. 56-60 derecede sıvılaşan parafin etüvde hazır tutulur. Parça prizmatik kalıplar içine konur, üzerine sıvı parafin dökülür. Parafin laboratuvar ısısında mum gibi donarak sertleşir. Kalıptan çıkarınca içinde bizim doku parçamız da bulunan düzgün prizmatik bir parafin bloku elde ederiz. Parafin intersüller boşluklara hatta hücrelerin içine bile penetre olarak dokuyu daha sabit ve kesilebilir hale getirir. Elektron mikroskop için ışık mikroskobuna oranla çok daha ince kesitlere ihtiyaç vardır. Bu nedenle gömme ya da bloklama işleminde daha sert plastik maddeler gereklidir. Bunun için epon, araldit gibi epoxy plastik maddeler kullanılır.  Bloklama işleminde ne tür maddeler kullanılır?  Kesit Alma Blokladığımız doku ve organ parçalarında düzgün ince kesitler almak için kullandığımız aletlere mikrotom denir. Işık mikroskop incelemeleri için kullandığımız mikrotomlar mikron düzeylerinde ince kesitler alabilirlerken elektron mikroskop araştırmalarında kullanılan ultramikrotomlar angström inceliklerinde kesitler sağlarlar. Işık mikroskobu için kesitler almakta kullandığımız mikrotomlarda çelik bıçaklar kullanılırken, EM için kesitler aldığımız ultra mikrotomlarda cam ya da daha iyisi elmas bıçaklar kullanılır. Işık mikroskop çalışmalarında  genellikle 6-10 mikronluk kesitler kullanılır. Mikrotomların bıçakların hareketli olduğu kızaklı mikrotom denilen tipleri ya da bıçaklarının sabit, kesilecek blokların hareketli olduğu rotari mikrotom tipleri vardır. Mikrotom aracılığıyla parafin bloklardan isteğimiz kalınlıklarda dilimler keserken blok içindeki parçadan da aynı kalınlıkta kesitler elde etmiş oluruz. Daha sonra lam üzerinde alınan kesitler boyama işlemine hazır olurlar. Xylol gibi bazı solventler doku içindeki lipidler gibi bazı maddeleri eritebilirler. Bu istenmeyen etkinin önüne geçmek için cryostat adı verilen dondurma mikrotomları kullanılır. Dokular bu yöntemle düşük ısıda aniden dondurularak takip işlemlerinden geçirilmeden ve bloklanmadan kesit alınabilir hale gelir. Mikrotom ve Ultramikrotom neye denir? Boyama (Kolorasyon) Çok ufak ayrıcalıklar dışında dokuların büyük bir kısmı renksizdir ve boyanmadığı sürece ışık mikroskobunda incelenmesi zordur. Çeşitli doku ve hücre kısımlarının yapıları nedeniyle farklı kimyasal özellikteki boyaları farklı bir şekilde tutmaları histolojide boyamanın esasını teşkil eder. Histolojik araştırmalarda kullanılan boyaların büyük bir çoğunluğu asit veya baz özelliğinde olup dokudaki ionize köklerle elektrostatik bağlantı yaparlar. Bu şekilde doku ve hücrelerin daha belirgin bir şekilde ortaya çıkması sağlanırken diğer yandan kimyasal yapısını bildiğimiz boyalarla reaksiyona giren yapıların kimyasal özellikleri ortaya konmuş olur. Histolojik boyalar renklendirici gruplarının asit ya da baz oluşuna göre asit ve bazik boyalar olmak üzere iki ana grupta toplanırlar. Bazik boyaları çeken, o boyanın renginde boyanan hücre ve doku kısımları bazofil boyanıyor ya da bazofili gösteriyor diye tanımlanır. Genel olarak granüllü endoplazmik retikulumun yoğun olduğu kısımlar, hücre çekirdeği bazofili gösteren yapılardır. Asit boyalarla reaksiyona girerek onun renginde boyanan hücre ya da doku kısımları için asidofil boyanıyor ya da asidofili gösteriyor denir. Bazı ayrıcalıkları olmakla birlikte hücre sitoplazması, kollajen lifler, mitokondrium ve lizozomlar asidofilik yapılardır. Bazik boyalara örnek olarak Metilen Mavisi, Jansiyan Viyole, Bazik Füksin, Azokarmin, Safranin, Hematoksilin, Nükleer Fast Red verilebilir. Eozin, Pikrik Asit, Asit Füksin, Oranj G, Eritrosin, Kongo Kırmızısı, Light Green gibi boyalar asit boyalara örnektir. Boyalar bazı yöntemlerde tek olarak kullanılır. Bazı yöntemlerde ikili ya da daha çok boya içeren birleşik yöntemler dediğimiz şekillerde kullanılırlar. Birleşik yöntemlerde kesitler birbiri ardından bazik ve asit boyalarla işleme tabi tutulurlar. Birleşik boya yöntemlerinden ikili olanlara örnek olarak çok yaygın bir boyama yöntemi olan Hematoksilin+Eozin (HE) yöntemi gösterilebilir. Azokarmin, Oranj G ve Anilin Mavisinden oluşan Heidenhein İn Azan yöntemi ise üçlü bir boyama yöntemidir. Asidofili ve bazofili neye denir? Birleşik boyama neye denir? Bazı boyalar, bazı yapıları boyanan çözelti renginden farklı bir renge boyarlar. Bu olaya metakromazi, böyle boyalara da metakromatik boyalar denir. Örneğin toluidin mavisi dokuya düşük konsantrasyonda bağlandığında mavi renkte boyar (ortokromatik). Oysa bir yapıya yüksek konsantrasyonda bağlandığında mor-kırmızı renkte boyar (metakromatik). Toluidin mavisinin Mast hücrelerinin granüllerini mor-kırmızı boyaması metakromatik boyanmadır. Bazı lipidler, makromoleküller metafosfat, sülfomukopolisakkaritler, nükleik asitler metakromazi gösteren yapılardır. Toluidin mavisi, Metilen mavisi, Azur A gibi boyalar ise metakromatik boyalara örnek verilebilir. Ortokromazi ve metakromazi nedir? Bazı boyalar deneysel amaçla doğrudan canlıya verilebilir. Bu renkli maddeler organizmada bazı yerlerde tutularak canlıda boyanma sağlarlar. Örneğin, tripan mavisi deney hayvanının dolaşımına verildiğnide karaciğer kupffer hücreleri tarafından tutulur. Böylece hayvan daha canlıyken sitoplazması mavi tanecikler tarzında boyunmış olur. Vital boyalardan Tripan mavisi, Kongo kırmızısı, Çini mürekkebi, Alizarin ve Lityum karmin asit karakterde vital boyalardır. Metilen Mavisi, Nötral Red, Janus Green, Krezil Viyole ve Nigrosin bazik karakterde vital boyalardır. Vital boyamanın diğer boyama yöntemlerinden farkı nedir? Boyama işleminden sonra kesitler yeni baştan dehidrate edilir ve şeffaflaştırılır. Daha sonra üzerlerine lamel kapatılarak korunur. Preparatların kapatılmasında Kanada Balsamı ya da son zamanlarda ucuzluğu ve çabuk kuruması yönünden tercih edilen bazı sentetik yapıştırıcılar kullanılmaktadır. Uzun süre saklanılması düşünülen preparatları doğrudan güneş ışığı ya da kuvvetli ışıklardan sakınmak gerekir. Aksi takdirde boya solacaktır. Dokuların renkli boyalarla boyanmasının yanı sıra altın, gümüş gibi bazı metallerin seçici olarak bazı kısımlara çöktürülmesi de o bölgelerin mikroskop altında kolayca belirlenmesini sağlayan boyadışı bir renklendirme yöntemi olarak karşımıza çıkar.

http://www.biyologlar.com/histoloji-preparatlarinin-hazirlanmasi

Evrim Konusunda ilk Düşünceler

Dini Düşünceler: Düşünebilen insanin, dogadaki çeşitlenmeyi, canilar arasindaki benzerliklerin ve farkliliklarin derecesini gözledigi an evrim konusunda ilk düşünceler başlamiş demektir. İlk yaygın düşünceler, Asur ve Babil yazıtlarında; daha sonra bunlardan köken alan Ortadoğu kökenli dinlerde görülmüştür. Hemen hepsinde insanın özel olarak yaratıldığı ve evrende özel bir yere sahip olduğu vurgulanmış; türlerin değişmezliğine ve sabitliğine inanılmış ve diğer canlılar konusunda herhangi bir yoruma yer verilmemiştir. Bununla beraber Kuran’da yaratılışın kademeli olduğu vurgulanmıştır. Yalnız bir Türk din adamı, astronomu ve filozofu olan Hasankale’li İbrahim Hakkı(1703-1780), insanların değişik bitkilerden ve hayvanlardan köken aldığını belirtmiştir. 17. yüzyıla kadar, piskopos Ussher’in ve diğerlerinin savunduğu ‘türlerin olduğu gibi yaratıldığı ve değişmeden kaldığı fikri’ yani ‘Genesis’ geniş halk kitleleri tarafından benimsendi ve etkisini günümüze kadar sürdürdü. Ussher’e göre dünya İÖ 4040 yılında, Ekim ayının 4'ünde sabah saat 9.00'da yaratılmıştı. Bu düşünce Ussher tarafından İncil’e eklenmiştir. Daha sonra yine Hıristiyan din adamları olan Augustin (İS 354-430) ve Aquinas (İS 1225-1274) tarafından canlıların basit olarak tanrı tarafından yaratıldığı ve daha sonra değişerek çeşitlendiği savunulmuştu. Özellikle bizim toplumumuzda, birçok dini belgeden de anlaşilacagi gibi, Adem’in çamurdan yaratildigi, Havva’nin Adem’in kaburga kemiginden oluştugu ileri sürülerek, yaratilişin ilk olark inorganik kökenli oldugu ve daha sonra eşeylerin ortaya çiktigi savunulmuştur. Yunanlılardaki ve Ortaçağdaki Düşünceler: Yunan filozoflarından Empedocles, İÖ 500 yıllarında bitkilerin tomurcuklanma ile çeşitli hayvan kısımlarını, bu kısımların da birleşmesiyle hayvanların oluştuğunu savunmuştu. Thales(İÖ 624-548), Ege Denizindeki canlıları çalışmış ve denizlerin canlılığın anası olduğunu ileri sürmüştür. Aristo (İÖ 384-322) bitkiler ve hayvanlar konusunda oldukça geniş bilgiye sahipti. Onların doğruya yakın tanımlarını vermiş ve gelişmişliklerine göre sınıflandırmıştır. Canlıların metabiyolojik olarak değişerek birbirlerinden oluştuklarına ve her birinin tanrıların yeryüzündeki ilahi taslakları olduklarına inanmıştır. Daha sonra, canlıların kökenini Der Rerum Natura adlı şiirinde veren Lucretius (İÖ 99-55) u anmadan ortaçağa geçemeyeceğiz. Yeni Çağdaki ve Yakın Çağdaki düşünceler: Rönesans ile canlılar konusundaki bilgilerin, en önemlisi evrim konusundaki düşürnürlerin sayısı artmıştır. Hooke (1635-1703), Ray (1627-1705), Buffon ( 1707-1788) ve Erasmus Darwin (1731-1802) bu devrin en önemli evrimcileridir. Rönesanstan önce de bulunan hayvan kabuklarının, dişlerinin, kemiklerinin ve diğer parçalarının bugünkü canlıların benzer tarafları ve farkları saptanmıştır.Ayrıca yüksek dağların başında bulunan fosillerin, yaşayanlarla olan akrabaliklyarı gözlenmiştir. Bu gözlemlerin ışığı altında, her konuda çalışmış, düşünür ve sanatçı olan Leonardo da Vinci, canlıların tümünün bir defada yaratıldığını ve zamanla bazılarının ortadan kalktığını savunmuştur. Buna karşılık birçok doğa ibilimcisi, canlıların zaman zaman oluştuklarını doğal afetlerle tamamen ortadan kalktıklarını ve yeniden başka şekillerde yaratıldıklarını ileri sürmüştür. Bu şekilde farklı devirlerde 2arklı canlıların yaşaması kolaylıkla açıklanabiliyordu. Her doğal yıkımdan sonra, oluşan canlıların, organizasyon bakımından biraz daha gelişmiş olduklarına inanılıyordu. Bu kurama “Tufan Kuramı” denir. Bu yıkımın yedi defa olduğu varayılmıştır. Cuvier, 1812 yılında, fosiller üzerinde ünlü kitabını yanılayarak fosillerin, kesik, kesik değil, birbirlerinin devamı olacak şekilde olduklarını bilimsel olarak açıklamıştır. 18. yüzyılın sonu ile 19. yüzyılın başlangıcında, üç İngiliz jeoloğun çalışmalarıyla katstrofizm kuramı yerine ‘Uniformizmi’ kuramı getirildi. Hutton 1785'te geçmişte de bugünkü gibi jeolojik kuvvetlerin rol oynadığını, yükselmelerin ve alçalmaların, keza erozyonlaların belki de daha kuvvetli olurak meydene galdiğini ve yüksek dağlarda bulunan fosilli tabakalar ile sediman (katman) tayinlerinin yaılabileceğini buldu. John Playfair’in yapıtı 1802'de yayınlandı. Üçüncü araştırıcı, Charles Lyell, bir çok jeolojik soruna çözüm getirmenin yanısıra, canlıların büyük afetlerle değil, çevre koşullarının uzun sürede etki etmesiyle değiştiğini savundu. Kitabının bir yerinde ‘geçmişteki güçler bugünkünden hiç de çok farklı değildi’ diye yazmıştır. Bu yaklaşım, Nuh Tufanı’nın gerçeküstü olduğunu savunuyordu. Lyell’in fikirleri C.Darwin’i büyük ölçüde etkilemiştir. Lamarck’ın Düşünceleri Organik evrimi konusunda ilk kapsamlı kuram 1809 yılında ‘Philosophie Zoologique’ adlı yapıtıyla, Fransız zooloğu Jean Baptiste Lamarck’a (1774-1829) aittir. Lamarck, zamanının meslektaşları gibi, tüm canlıların, gelişimlerini ve işlevlerini denetleyen bir canlılık gücüyle donatıldığına ve değişen çevre koşullarına karşı bir savaşım gücünün olmadığına inanıyordu. Kitabında, hayvanları, karmıaşıkyıklarına göre düzenlemeye çalışırken, yanlışlığı daha sonra kesin olarak saptanan bir varsayımı ileri sürdü: “ Eğer bir onrgan fazla kullanılıyorsa, o organ gelişmesini sürdürerek, daha etkin bir yapı kazanır”. Bu varsayıma ‘lamarkizm’ denir. Ayrıca canlının yaşamı boyunca kazanmış olduğu herhangi bir özelliğin, gelecek döllere geçtiğine de inanmıştı. Örneğin demircinin oğlunun kol kasları diğerlerine göre daha iyi gelişir. Zürafalırın atası kısa boyunlu olmalıran karşın, yaşadıkları ortamın bir zaman sonra kuraklaşarak, dibi çıplak ve çayırsız ağaçların bulunduğu ortama dönüşmesi sonucu, zürafalar ağaçların yapraklarıyla beslenmek zorunda kaylmışlar ve böylece boyunları dölden döle uzamıştır. Körfarelerin gözlerini, karıncaayısının dişlerini yitirmesini; su kuşlarının perde ayakları kazanmasını bu şekilrde açıklamıştır. Bu üaçıklamalar,kalıtımın yasaları ortaya çıkarılmadan önce, çok iyi bir açıklama şekli olarak benimsendi. Fakat kalıtım konusunda bilgiler gelişince, özellikle Weismann tarafından somatoplazma ile germplazma arasındaki kuramsal farklar bulununca, evrimsel değişmenin, vücut hücrelerinde olmadığı, sadece eşeysel hücrelerdeki kalıtsal materyalin etkisi ile yürütüldüğü anlaşıldı. Böylece Lamarck’ın varsayımı tümüyle geçerliliğini yitirdi. Çünkü bir birey gerçekte belirli ölçüde çevre koşullarına uyum yapar; fakat ölümüyle birlikte bu özellikler de yitirilir. Halbuki her döl uyumunu, doğduğu zaman taşıdığı kalıtım materyalinin izin verdiği ölçüler içerisinde yapabilir ve ancak bu özellikleri gelecek döllere verebilir. Buffon ve Erasmus Darwin de buna benzer fikirler ileri sürmüşler, fakat inandırıcı olamamışlardır. Charles Darwin ve Alfred Wallace’ın Görüşleri Charles Darwin (1809-1882), evrim bilimine iki önemli katkıda bulundu. Birincisi, organik evrim düşüncesini destekleyen zengin bir kanıtlar dizisini toplayarak ve derleyerek bilim dünyasına sundu. İkincisi, evrim mekanizmasının esasını oluşturan ‘Doğal Seçilim’ ya da diğer bir deyimle ‘Doğal Seçim’ kuramının ilkelerini ortaya çıkardı.Evrim Kuramı, bilimsel anlamda 19. yy kuramıdır; ama bu kuram 20. yy’da büyük bir kuram niteliğini aldı. Bu nedenle Darwin’ i biraz daha yakından tanımalıyız: Darwin, 1809'da İngitere’de doğdu. Babas, onun hekim olmasını istiyordu; 16 yaşında Edinburg Üniversitesi’ne gönderdi. Darwin, ilk olarak başladığı hekimlik eğitimini ve daha sonra başladığı hukuk eğitimini sıkıcı bularak her ikisini de bıraktı. Sonunda Cambridge Üniversitesi’ne bağlı Christ Kolejinde teoloji (= dinibilimler) öğrenimi yaptı. Fakat Edinburg’daki arkadaşlarının çoğu jeoloji ve zooloji ile ilgileniyordu. Cambridge’de kırkanatlıları toplayan bir grupla ilişki kurdu. Bu bilim çevresi içerisinde botanikçi John Henslow’ u tanıdı ve onun önerileri ile dünya çevresinde beş sene sürecek bir geziye katılmaya karar verdi. Beagle, 1831 yılında Devonport limanından denize açıldı. Lyell’in kitabını gezisi sırasında okudu ve dünya yüzünün devamlı değiştiğini savunan düşüncesinden çok etkilendi. Gemidekiler harita yaparken, Darwin de sürekli bitki, hayvan, fosil topluyor; jeoljik katmanları inceliyor; sayısız gözlem yapıyor ve dikkatlice notlar alıyordu. Gemi, ilk olarak Güney Amerika’nın doğu sahilleri boyunca güneye inip, daha sonra batı kıyılarından kuzeye doğru yol aldı. Bu arada Arjantin’in Pampas’larında soyu tükenmiş birçok hayvanın fosilini buldu ve yine jelojik aktmanlardaki fosillerin değişimine özellikle dikkat etti. Bu gözlemleriyle, her türün özel yaratıldığına ilişkin düşüncelere olan inancını yitirmeye başladı. Yine insan da dahil, çeşitli bitki ve hayvan türlerinin değişik ortamylara yaptıkları uyumları, bu arada yaşadığı bir deprem olayı ile yeryüzünün nasıl değişebileceğini gözledi. Beagle, 1835 yılında, Güney Amerika kıtasının batı kıyısına yaklaşık 1000 km kadar uzak olar Galapagos adalarına ulaştı. Bu adalarda yaptığı gözlemlerde, büyük bir olasılıkla aynı kökenden gelmiş birçok canlının coğrafik yalıtım nedeniyle, birbirlerinden nasıl farklılaştıklarını ve her canlının bulunduğu ortamdaki koşullara nasıl uyum yaptığını bizzat gözledi. Örneğin ispinoz kuşlarının, dev kaplumbağaların, dev kertenkelelerin, adalara ve her adanın değişik koşulları taşıyan bölgeliren göre çeşitlenmelerini, yapısal uyumlarını, varyasyonlarını ve sonuç olarak uyumsal açılımlarını gördü. Buradaki bitkilerin ve hayvanların hemen hepsi, Amerika kıtasının güney sahillerindeki bitki e hayvan türlerine benzerlik gösteriyor; ama onlardan özellikle uzaklığı oranında farklılaşmalar gösteriyordu. Daha sonra araştirmalarina Pasifik Adalarindan, Yeni Zelanda’da, Avusturalya’da ve Güney Afrika Kiyilarinda devam etti. Tüm bu araştirma süreci içerisinde evrimsel uyumu destekleyecek kanitlari titizlikle topladi.1836 yilinda Ingiltere’ye ulaşti. Darwin, ileri süreceği fikrin yankı uyandıracağını, dolaysıyla yeterince kanıt toplaması gerekeceğini biliyordu. Kanıtlar evrimsel dallanmayı göstermekle birlikte, bunun nasıl olduğunu açıklamaya yetmiyordu. İngiltere’ye varışından itibaren 20 yıl boyunca biyolojinin çeşitli kollarındaki gelişmeleri de dikkatlice inceleyerek, gözlemlerini ve notlarını biraraya getirip doğal seçilim konusundaki düşüncesini ana hatlarıyla hazırladı. 1857 yılında düşüncelerini kabataslak arkadaşlarının görüşüne sundu. Bu sırada kendisi gibi, Malthus’un bilimse serisini okuyarak ve yine sekiz yıl Malaya’da ve Doğu Hindistan’da dört yıl Amazon ormanlarında bitkiler ve hayvanlar üzerinde gözlemler yaparak, bitkilerin ve hayvanların dallanmalarındaki ve yayılışlarındaki özelikleri görmüş ve doğal seçilim ilkesine ulaşmış, bir doğa bilimcisi olan Alfred Russel Wallace’ın hazırlamış olduğu bilimsel kitabın taslağını aldı. Wallace, Darwin’e yazdığı mektupta eğer çalışmasını ilginç bulursa, onu, Linnean Society kurumuna sunmasını diliyordu. Çalışmasının adı “ Orjinal Tipten Belirsiz Olarak Ayrılan Varyetelerin Eğilimi ” idi. Darwin’in yıllarını vererek bulduğu sonuç, yani canlıların yavaş yavaş değişmesine ilişkin görüş, Wallace’ın çalışmalarında yer almaktaydı. Durum, Darwin için üzücüydü. Fakat arkadaşlarının büyük baskısıyla, kendi çalışmasını, Wallace’ınkiyle birlikte basılmak üzere 1 Temmuz 1858'de Linnean Society’ye teslim etti Basılmadan duyulan bu düşünceler 24 Kasım 1859'da “Doğal Seçilim ya da Yaşam Savaşında Başarılı Irkların Korunmasıyla Türlerin Kökeni” kısaltılmış adıyla Türlerin Kökeni yayınlandı. İlk gün kitapların hepsi satıldı. Herkes, organik evrim konusunda yeni düşünceler getiren bu kitabı okumak istiyordu. Özünde organik evrimin benimsenmesi için zemin hazırladı. Çünkü jeolojide, paleontolojide, embriyolojide, karşılaştırmalı anatomide birçok aşama yapılmış ve birden yaratılmanın olanaksızlığı ortaya konmuştu. Darwin, uysal bir adam olduğundan, bir tepki yaratmamak için, eserinin son kısmını tanrısal bir yaratılış fikrini benimsediğini yazarak bitirmişti. Buna rağmen, başta din adamları ve bazı bilim adamları dini inançlara karşı geliniyor diye bu çalışmaya karşı büyük bir tepki başlattılar. Hatta eseriyle Darwin’e çok büyük yardımlarda bulunan Lyell ve gezisi sırasında geminin kaptanlığını yapan Fitzroy , bu karşı akımın öncüleri oldular. Bu arada Huxley, çok etkin bir şekilde Darwin’e destek oldu. Darwin, çalışmalarına devam etti, birinci eserinde değinmediği insanın evrimiyle ilgili düşüncelerini İnsanın Oluşumu ve Eşeye Bağlı Seçilim adlı eseriyle yayımladı. Bu eserde insanın daha önceki inançlarda benimsenen özel yaratılışı ve yeri reddeliyor, diğer memelilerin yapısal ve fizyolojik özelliklerine sahip olduğu ve iyne diğer çcanlılar gibi aynı evrimsel yasalara bağlıolduğu savunuluyordu. Ayrıca eşeyseyl seçmenin, türlerin oluşumundaki önemi belirtiliyordu. Darwin’in “İnsanın Oluşumu ” adlı eseri, başlangıçta birçok tepkiye neden olduysa da, zamanla, biyolojideki yeni gelişmeler ve bulgular, özellikle kalıtım konusundaki bilgilerin birdikmesi, Darwin’in görüşünün ana hatlarıyla doğru olduğunu kanıtlamıştır. Doğal Seçilim Kuramının Ana Hatları (Darwin- Wallace Temellerini atmıştı) Bu kuram, ana hatlarıyla iki gerçeği, üç varsayımı ortaya çıkarmıştır. Gerçekler şunlar: 1. Tüm canlılar, ortamdaki sayılarını koruyacak matematiksel oranların üzerinde çoğalma eğilimindedir. Elemine edilen bireylerle bu fazlalık azaltılır ve popülasyonların dengede kalması sağlanır. Doğal koşullar sabit kaldıkça bu denge korunur. 2. Bir türe ait popülasyondaki bireylerin kalıtsal özelliği birbirinden farklıdır. Yani canlı popülasyonlarınnın hepsi varyasyon gösterir. Darwin ve Wallace, bunun nedenini tam anlayamadılar ve varyasyonların canlıların iç özelliği olduğunu varsaydılar. Bugün bu varyasyonların mutasyonlarla oluştuğu bilinmektedir. Varsayımlar: 1. Ayakta kalan bireylerin sayısı, başlangıçta meydana gelenlerden çok daha az olduğuna göre, ayakta kalabilmek için canlılar arasında karşılıklı, besin, yer vs için, saöaşım, ayrıca sıcaklık, soğukluk, nem vs. gibi doğal koşullara karşı bir mücadele vardır. Bu savaşım ve mücadele bir ölüm kalım kavgasıdır. Gerek besin ve yer gereksinmesi aynı olan canlı türleri arasında ve gerekse normalden daha fazla sayıda bireyle temsil edilen popülasyonlardaki aynı türe bağlı bireyler arasında, yani doymuş popülasyonlarda bir yaşam kavgası vardır. Bu görüş ilk defa Malthus tarafından ortaya atılmıştır’Yaşamak İçin Savaş”. 2. İyi uyum yapacak özellikleri (= varyasyonları) taşıyan bireyler, yaşam kavgasında, bu özellikleri taşıayan bireylere karşı daha etkili bir savaşım gücü göstereceğinden, ayakta kalır, gösteremeylenler ise yok olur. Böylece bulunduğu bireye o koşullara en iyi uyum yapabilecek yeteneği veren özellikler, gelecek döllere kalıtılmış olur. Bu varsayımın anahtar cümleciği “Biyolojik olarak En İyi Uyum Yapan Ayakta Kalır”dır. 3. Bir bölgedeki koşullar digerlerinden farkli oldugundan, özelliklerin seçimi de her bölgede, koşullara göre farkli olur. Çevrede meydana gelecek yeni degişiklikler, tekar yeni uyumlarin meydana gelmesini saglar. Birçok döl boyunca meydana gelecek bu tipp uyumlar, daha dogrusu dogal seçilim, bir zaman sonra, atasindan tamamen degişik yeni bireyler toplulugunun ortaya çikmasini saglar’Uyumsal Açilim’. Farklilaşmanin derecesi, eskiyle yeni popülasyondaki bireyler bir araya getirildiginde çiftleşmeyecek, çiftleşse dahi verimli döller meydana getiremeyecek düzeye ulaşmişsa, artik bu iki popülasyon iki farkli tür olarak degerlendirilir. Bir ata popülsayondaki bir kisim bireyler, taşidiklari varyasyon yetenekleriyle herhangi yeni bir ortama uyum yaparken, diger bir kismi da taşidigi farkli varyasyonlar nedeniyle daha degişik bir ortama uyum yapabilir. Böylece uyumsal açilim ortaya çikar. Bununla beraber, bitkiler ve hayvanlar, yaşam kavgasinda, bulundugu koşullarda, yarari ya da zarari olmayan diger birçok varyasyonu da meydana getirebilir ve onlari daha sonraki döllere aktarabilir. Darwin’in kuramı o karar akla yatkın ve o kadar kuvvetli kanıtlarla desteklendi ki, birçok biyolog onu hemen kabul etti. Daha önceki varsayımlar, yararsız organların ve yapıların neden meydana geldiğini bir türlü açıklığa kavuşturamamıştı.Bugün, türler arasında görülen birçok farkın, yaşam savaşında hiç de önemli olmadığı bilinmektedir.Fakat bu küçük farkları oluşturan genlerdeki herhangibir değişiklik, yaşam savaşında büyük değerleri taşıyan fizyolojik ve yapısal değişikliklerin oluşmasına neden olabilir. Uyumsal etkinliği olmayan birçok özelliği oluşturan genler, kromozomlar içinde yaşamsal öneme sahip özellikleri oluşturan genlerle bağlantı halinde olabilir. Bu durumda bu varyasyonlar elenmeden gelecek döllere aktarılabilir. Bu uyumsal etkinliği olmayan genler, bir popülasyon içerisinde gelecekteki değişikliklerde kullanılmak üzere ya da genetiksel sürüklenmelerde kullanılmak üzere fikse edilmiş olarak bulunur. Evrim Kuramına Bilimsel İtirazlar Belki insanlık tarihinin ilk dönemlerinden beri uygulanmakta olan öğretim ve eğitim yöntemleri, belki dini inançların etkisi, belki de insanın doğal yapısı, insanın yeniliklere karşı itirazcı olmasına neden olmuştur. Bu direniş, en fazla da eksik kanıtlarla desteklenmekte olan Evrim Kuramı’na yapılmıştı ve yapılmaktadır. Özellikle dogmatik düşünceye yatkın olanlar, bu karşı koymada en önemli tarafı oluşturur. Bununla birlikte son zamanlarda, birçok aydın din bilimcisi de olmak üzere, iyi eğitim görmüş toplumların büyük bir kısmı Evrim Kuramı’na sahip çıkmaktadır. Evrim Kuramı’na, Darwin’den beri bilimsel karşı koymalar da olmuştur. Özellikle varyasyonların zamanla popülasyonlardan kaybolacağı inancı yaygındı. Çünkü bir varyasyona sahip bir birey, aynı özellikli bireyle çifleşmediği takdirde, bu varyasyonun o popülasyondan yitirileceği düşünülmüştü. Popülasyon genetiğinde, çekinik özelliklerin, yitirilmeden kalıtıldığı bulununca, itirazların geçerliliği de tümüyle kaybolmuş oldu. Darwin, Pangeneze, yani anadan ve babadan gelen özelliklerin, bir çeşit karışmak suretiyle yavrulara geçtiğine inanarak hataya düşmüşü. Eğer kalıtsal işleyiş böyle olsaydı, iyi özelliklerin yoğunluğu gittikçe azalacaktı ve zamanla kaybolacaktı. Halbuki, bugün, özelliklerin sıvı gibi değil, gen denen kalıtsal birimlerle kalıtıldığı bilinmektedir. İkinci önemli karşıkoyma, bu kadar karmaşık yapıya sahip canlıların, doğal seçimle oluşamayacağıydı. Çünkü bir canlının, hatta bir organın oluşması, çok küçük olasılıkların biraraya gelmesiyle mümkündü. Fakat cınlıların oluşmasından bugünekadar geçen uzun süre ve her bireyde muhtemelen ortaya çıkan küçük değişikliklerin, yani nokta mutasyonların, zamanla gen havuzunda birikmesi, sonuçta büyük değişikliklere neden olabileceği hesaplanınca, bu karşı koymalar da kısmen zayıflamıştır. Üçüncü bir karşikoymaya yanit vermek oldukça zordur. Karmaşik bir organ yarar saglasa da birden bire nasil oluşabilir? Örnegin omurglilarda, gözün bir çok kisimdan meydana geldigi bilinmektedir. Yalniz başina bir kismin, hehangi bir işlevi olamaz. Tümü bir araya geldigi zaman görme olayi saglanabilir. O zaman degişik kisimlarin ya ayni zamanda birden meydana geldigini varsaymak gerekiyor- bu popülasyon genetegi açisindan olanaksizdir- ya da yavaş gelşitigini herhangi bir şekilde açiklamak gerekiyor. Bir parçanin gelişmesinden sonra digerin gelişebilecegini savunmak anlamsizdir; çünkü hepsi birlikte gelişmezse, ilk gelişen kisim, işlevsiz olacagi için körelir ya da artik organ olarak ortadan zamanla kalkar. Bununla birlikte, bu teip organlarin da nokta mutasyonlarin birikmesiyle, ilkelden gelişmişe dogru evrimleştigine ilişkin bazi kanitlar vardir. Evrim Kuram’nda dördünrcü karanlık nokta, fosillerdeki eksikliktir. Örneğin balıklardan amfibilere, amfibilerden sürüngenlere, sürüngenlerden memelilere geçişi gösteren bazı fosiller bulunmakla birlikte(bazıları canlı olarak günümüzde hala yaşamaktadır), tüm ayrıntıyı verebilecek ya da akrabalık ilişkilerini kuşkusuz şekilde aydınlatabilecek, seri halindeki fosil dizileri ne yazık ki bazı gruplarda bulunanamımıştır. Bununla birlikte zamanla bulunan yeni fosiller, Evrim Kuramı’ndaki açıklıkları kapatmaktadır. Anorganik Evrim Bulutsuz bir yaz gecesi gökyüzüne bakan her insan, içinde yaşadigi evrenin nasil oluştugunu, onun sonsuzlugunu, içinde başka canlilarin, belki de düşünebilir canlilarin bulunabilecegini ya da sinirli oldugunu, özellikle o sinirin ötesinde neler olabelecegini, dünyadakilerden başka canli olmadigini, kapatilmiş oldugu evrensel yalnizligi ve karantinayi düşününce irkilir.Bu duygu coşkularimizin kaynagi, inançlarimizin temeli ve çok defa teslimiyetimizin nedeni olmuştur. Ilkçaglardan beri evrenin yapisi üzerinde varsayimlar ileriye sürülmüş ve çok defa da bu görüşler, belirli çevrelerce politik basiki araci olarak kullanilmiştir. Yüzyilimizin oyldukça güvenilir ölçümlerinin ve gözlemlerinin ışığı altında ortaya atılan Anorganik Evrim Kuramı’nı incelemeden, evrenin oluşumu konusundaki düşüncelerin tarihsel gelişimine kısaca bir göz atalım. Gerek ilkçağlarda, gerekse ortaçağda, evrenin merkezinin dünya olduğu ve dünyanın da sabit durduğu savunulmuş, diğer tüm gök cisimlerinin Dünya’nın ektrafını saran evrensel kürenin kabuğu üzerinde çakılı olduğu varsayılmıştır. Bu zarfın ötesi, Tanrısal gök olarak tanımlanmıştır. Bruno’ya kadar hemen tüm görüşler, evrenin sınırlı boyutlar içerisinde olduğu şeklindeydi. İlk -ve ortaçağın değişik bir çok toplumunda tanrı kavramının gök cisimler ile özdeşleştirildiği görülmektedir. Gökyüzünün mekaniği konusunda ilk ciddi gözlemler, Asurd, Babil, Mısır kültürlerinde yapılmış, bazı evrensel ölçümler ve ilkeler bulunmuştur.Fakat yaratılışı konusundaki düşünceler çoğunlukla din adamlarının tekeline bırakılmıştır. İlk defa Giordano Bruno, yıldızların da bizim Güneş sistemimiz gibi, gökte asılı olarak durduğunu ve evrenin sonsuz olduğunu zamanın din adamlarına ve filozoflarına karşı savundu. Çünkü Bruno’ya göre, evren, tanrının kendisiydi ve onu sınırlı düşühmek Tanrı kavramına aykırı düşmekteydi. Düşünüclerinden dolayı 17 Şubat 1600 yılında, Roma’da, halkın gözü önünde yakıldı. Immanuel Kant, Bruno’dan 150 yıl sonra, evreni Tanrının yarattığını savunarak, onun sonsuz büyük olması gerekeceğini, pozitif bir kanıta dayanmadan ileri sürdü. Daha sonra Olbers, gökyüzünün, geceleri neden karanlık olduğunu merak etti. Çünkü ışık veren gökkcisimlerinin, ana hatlarıyla evrende homojen bir dağılım gösterdiği bilinmekteydi. Fiziki yasalarından bilindiği kadarıyla, bir kaynaktan gelen ışık şiddeti uzaklığın karisi ile aazalmaktaydı.Fakat buna karşın küresel bir şekilde, hacim, yanrıçapın, yani uzaklığın küpüyle artmaktaydı. Dolaysıyla dühnyaya ışık gönderen kaynakların ışık şiddeti, uzamklıklarının karesi oranında çoğalmaktaydı. Bu durumda, evrenin çapının büyüklüğü oranında, dünyaya gelen ışık miktarı fazla olmalıydı.Halbuki geceleri karanlıktır, yani dünyanın gökyüzünü aydınlatacak kadar ışık gelmemektedir. Öyleyse evrenin boyutları sınırlı olmalıydı. Olbers’in bizzat kendisi, bu inanılmazı sınırlı evren tanımını ortadan kalrdırmak için, ışık kaynaklarının gittikçe azaldığını varsaymıştır. Yüzyılımızda, ünlü fizikçi Einstein, evren konusunda hesaplarını yaparken, onun sabit boyutlar içerisinde çıktığını gördü. Sonuç kendisine dahi inanılmız geldi. Bu nedenle sonucu değiştirmek için, denklemlerine, yanlışlığı sonradan saptanan, doğal kuvvetler dediği, bir takım kozmik terimler ekledi. Hubble, 1926 yılında, çıplak gözle görülmeyen; ama fotoğraf camında iz bırakan, bizden çok uzak birtakım spiral nebulalar saptadı. Spiral nebulaların, uzun dalgalı ışık (kırmızı ışık) çıkardıkları 1912 yılından beri bilinmekteydi. Hubble, 1929 yılında, bu nebulalaların ışığının kırmızıya kaymasını, Doppler etkisi ile açıklayarak, ünlü kuramını ortaya attı. Yani tüm nebulalar bizden ve muhtemelen birbirlerinden büyük hızlarla uzaklaşmaktaydı, yani evren her saniye yapısını değiştirmekte, genişlemekydi. Böylece dünyaya gönderdikleri ışığın frekansında, kaynağın hızla uzaklaşmasından domlayı, azalma, yani ışığın döküldüğü yerde, ışığın kırmızıya kaydığı gözlenmekteydi Işık kaynakları gözlenen yere doğru hızla yaklaşsaydı, ışıklarının maviye kaydığı, yani gözlem yerine ulaşan ışığın frekansında artma görülecekti. Bu cisimlerin hızı bizden uzaklaştıkça artmaktaydı.Gözlenebilen en uzaktaki gök cisimleri (dünyadan 8 milyar ışıkı yılı uzakta ve 240. 000 km/s hıza sahip) birkaç yıml içerisinde tamamen kayboluyor, yerlerini kuvvetli radyo dalgaları veren kuasarlara bırakıyorlardı Kuasarların nasıl birg ök cismi oldukları tam olarak bilinmemektedir. Birçok astrofizikçi, cisimlerin kuasarlara dönüştüğü bu bölgeleri, evrenin kıyıları olarak tanımlamada fikir birliği etmektedir. Hubble’ın bu bulgularını duyan Einstein, daha önce denklemlerine eklediği kozmik terimleri ve ilave sayıları sessizce geri çekti. Çünkü, onlarsız yaptığı tüm işlemler hemen henmen doğruydu. Böylece evrenin büyüklüğünün sonlu, yapısının değişken olduğu kesin olarak kanıtlanmaktaydı. Evren patlarcasına genişliyor, buna bağlı olarak birim hacimdeki madde miktarı, yani yoğunluk azalıyordu. Bu genişlemenin bir başlangıcı olmalıydı. (Demirsoy, Ali, Yaşamin Temel Kurallari Cilt-1, Kisim-1, Onbirinci Baski, Ankara 1998, s:543-555) Evrim Kuramında Bir Paradoks İngliz bilim adamı Charles Darwin (1809-1882) ve Alfred Russel Wallace (1823-1913) gerek yaptıkları seyahatler sonucunda elde etmiş oldukları coğrafik deller gerekse mevcut karşılaştırmalı anatomi çalışmalarıyla emriyoloji bilgilerini kullanmak suretiyle ve de Malthus’un da etkisiyle, şekkillendirdikleri evrim kuramında canlıların yaşamlaranı sürdürebilmelerinde iki gücün etkin olduğunu belirlemişlerdir. Bunlardan birisi doğal eleme gücüdür; canlı bu güç sayesinde çevre şartlarına uyum göstererek yaşamını devam ettirebilme şansına sahip olabilir; kendine nisbetle şartlara uyum göstermeyenler yaşamlarını sürdüremezler, yok olurlar. Uyum gösterenler ise çevre şartlarına uygun olarak değişim gösterirler. Böylece, meydana gelen değişimler sonucunda yeni türler ortaya çıkar. Ancak, canlılarda bir ikinci güç daha vardır; o da ataya dönüş gücüdür (atavizm). Canlı ne kadar asıl tipinden uzaklaşmış olursa olsun, atalarına dönüş meyli taşır ve dolaysıyla söz konusu dönüşü yapabilir. Bunun tipik örneğini Darwin, güvercinlerde göstermiştir. Evcilleştirilmiş güvercinlerin yabanıl kaya güvercinlerine dönüş göstermesi gibi. Evrim kuramını desteklemek üzere, bu iki güce ek olarak, Darwin ve Wallace ‘koruyucu benzerlik’ ten söz ederler. Buna göre canlılar yaşamlarını sürdürebilmek için doğal çevre şartlarına uyarlar; örneğin çölde yaşayan canlıların renkleri sarı tonlarındadır; ormanda yaşayan hayvanların renkleri çok parlaktır; kutuplardaki hayvanlar için ise aynı şekilde, çevreye uyum göstermiştir; genellikle beyaz renktedir. Buna paralel olmak üzere, hayvanların kendilerini korumak için bazı başka korunma yollarını da denedikleri görülmüştür. Bazı hayvanlar, sansarlar gibi, kötü koku salar ya da seslerini daha güçlü hayvanlara benzeterek düşmanlarına karşı kendilerini korur. Koruyucu benzerlik, aslında evrim kuramıyla garip bir şekilde zıt düşmektedir. Çünkü eğer canlı, mimikri, yani daha güçlüyü taklit etme şeklinde bir kuruyucu benzerlik gücüne sahipse, o takdirde, nisbeten kuvvetli olan canlılara karşı koruyucu bir silah geliştirmiş olur ve her ne kadar evrim kuramına göre, yaşamını sürdürebilmek için güçlü olması gerekiyorsa da, taklit kaabiliyeti sayesinde, zayıf olsa da, yaşamını sürdürebilme şansına sahip olur. Doğabilimler yapmış oldukları araştırmalarla, doğada birçok mimikri belirlemeyi başarmışlardır. (Esin Kahya, AÜ DTCF Felsefe Bölümü, Bilim ve Teknik, Mayıs 1995, 330. sayı) Bilgi Çocuklarımızın yüzüne aynaya bakar gibi bakıyoruz. Onlar bizim yeniden dirilişimizdir. Kendileri tıpkı bize benzer yapabilmeleri çin hücrelerinde bulunan, bizim fiziksel yapımızı belirleyen bilgiyi, onlara sperm ve yumurta olarak veriyoruz. Bu bilgi bizim geleceğe armağanımızdır. Hücre yapımı için gerekli bilgi; harita, plan veya taslak niteliğindedir. Bir rehber, bir kitap, bir broşür gibi de denebilir. Bu rehber çok özel bir yaratmayı gerçekleştirecek olan aracının veya makinenin, canlı üretme makinesinin “anlayacağı” eksiksiz bir bilgi anahtarı olmalıdır. Genler Genetek bilimi, her canlının özelliklerinin (örneğin göz rengi) kalıtımla geçtiğini, yani yavruda hassas bir şekilde yeniden ortaya çıktığını göstermişttir. Kişisel özelliklerini düzenleyen bilgi, “genler” denilen özel varlıklarla nesilden nesile geçer. Her belirgin kalıtımsal özelliğin ayrı bir geni daha vardır. Genetik biliminin kurucusu Gregor Mendel 1860'larda, genlerin kalıtımla gerçek şeyler gibi; sulandırılmadan, bölünmeden, karışmadan aktarıldığını açığa çıkardı. Öyleyse genler, her biri (s:19) organizmanın belirli bir özelliğini içeren, kalıtımla yavruya aktarılabilen küçük bilgi paketleridir diyebiliriz. 1920'lerde büyük genetikçi Thomas Hunt Morgan, genlerin hücrei içindeki yerlerini buldu. Bütün hücrelerde, çekirdek dedğimiz kapalı bir kap vardır. Hücre bölünüp iki hücre haline gelirken, ilk önce bu çekirdeğin bölündüğü, dolaysıyla hücre içinde önemli bir rolü olduğu daha önce de biliniyordu. Yani, tek hücrenin servetini yeni hücrelere eşit bölüştürme işlemi, çekirdekte başlıyordu. Dahası; mikroskop, çekirdeğin içinde kromozom denilen iplik gibi yapıları açığa çıkardı. Bu yapılar, çekirdeki bölünmeden kendilerini bir kat artırıyorlar ve her kromozom dizini, bir yeni “yavru” hücrenin içine yerleşiyordu. Bu düzenleme yüzünden, koromozomların genlerin yuvaları olmalarından kuşkulanıyorlardı. Morgan, adi meyve sineklerini deney hayvanı olarak kullanarak bunun gerçekten de doğru olduğunu, bir dizi ince deneyle kanıtladı. Bu işi tamamlandığında, genlerin kromozom ipliklerinin etrafında top top sarılmış oldukları artık biliniyordu. Genler Neden Yapılmışlardır? Kromozomlar (genler) neden yapılmışlardı? Biyolojide kuşkusuz çok önemli bir yeri olan Oswald Avery’nin deneyleri bu soruya çok açik ve parlak bir yanit getirdi. Çalişmalari, şimdi “moleküler biyoloji” dedigimiz modern çagi açti. 1940'larin başinda Avery, iki tarafli zatürreye (akciger iltihasbi) neden olan bakteriyle ugraşiyordu (penisilin bulunmadan önce, en büyük ölüm nedenlerinden biriyldi bu hastalik). Yaptigi deneylerde açiklayamadigi şaşirtici sonuçlar buldu. (s:20) Ölü zatürre bakterileri, kötü niteliklerini, zatürre yapmayan türden canli bakterilere geçirebiliyorlardi. Bu, tehlikeli ölü bakterilerin, canli ve zararsiz bakterileri tehlikeli hale getirebilmeleri demekti.Bu nitlik bir defa geçirilince artik kalici oluyor ve bir zamanlar iyi huylu olan bakterilerin gelecek kuşaklarina kalitimla geçiyordu. Hastaliga neden olabilme kapasitesi bir veya bir grup özellekten kaynaklanir. Bu özellikler, genler tarafindan kontrol edilir ve kalitimla geçirilirler. Avery, ölü baterilerin parçalandiklarini, vücutlarinin bilgi taşiyan kimyasal maddeler çikardigini, canli baketirelirn de bulari besin olarak kullandiklarini düşündü. Yani genler, canli bakterilere girip onlarin kalitimlarini belirtiyorlardi. Avery ve arkadaşlari, bu gene benzer maddeyi kesin olarak belirlemek üzere çalişmaya başladilar. İnsan, Tıp bilimi için, genlerin kimyasal özelliklerinin bulunmasından daha önemli bir problem olabileceğini düşünüemez. Ancak bu kesinlikle insanlar, hatta hayvanlar üzerinde de incelenebilecek bir problem değildi. Neyse ki zatürre yapan bakteriler, Avery’e uygun bir sistem getirdiler. Bu iyi ve değerli bir model-deney sistemi örneği oluşturuyordu. Aslında, bütün genetik bilgi birikimi, 100 yıl önce Gregor Mendel’le başlangıcından bugünkü araştırmalara kadar, büyük ölçüde basit deney modellerine dayanır. Bezelyeler, meyve sinektleri, ekmek küfü ve bakteriler... Avery’nin üzerinde çalıştığı bakteriler geretik olarak birbirinin tıpkısıydı. Başka cinslerle karışmamış, safkan bakterilerdi bunlar. Hızla üreyebiliyorlardı öyle ki kalıtım özelliklerini birçok kuşağın üzerinde izlemek olanaklıydı. Zatürreye neden olma yetenekleri, farelere verilerek kolayca ölçülebiliyordu. Avery’nin yaptığı önemli deneyleden biri, probleme açık bir yanıt getirdi. Ölü bakterilerden dağılan bir molekül karışımını aldı ve içine DNA’yı “bozan” bir enzim ekledi. DNA’nın bozulması, karışımın zararsız bakterileri zararlı bakteriye çevirebilme yeteneğine bir son verdi. Buna ek bir deneyle Avery ve arkadaşlari, zararsiz bakterileri hastalik yapan bakteriye çeviren maddenin “deoksiribonükleik asit” veya DNA oldugunu kanitladilar. DNA: Deoksiribonükleik Asit Aslında, DNA’yı Avery bulmadı. Bu işi, Avery’den altmış yıl önce Friedrich Miescher adında bir araştırmacı yapmıştı. O ve onu izleyen bilim adamları bu konuda bir sürü kimyasal bilgi toplamışlardı. DNA’nın zinci şeklinde birbirine bağlı, büyük miktarlarda fosforik asit içeren “nükleotid” denilen moleküllerden oluştuğu biliniyordu. Bunlar, o zamana kadar hücrede bilinen en büyük moleküllerdi. Avery, DNA’nın kalıtımın temel maddesi olduğunu gösterdi. Başka ir deyişle “bir şeyi kalıtımla geçirmek demek, bir parça DNA aktarmak demektir”. Genler DNA’dır. Bilgi DNA’dır ve DNA bilgidir. Avery’nin ispatından beri, DNA konusunda bilinenler öyle şaşırtıcı bir hızla arttı ki, 1960'larda (s: 22) artık bilginin DNA’da nasıl kodlandığını bu bilginin nasıl hücre maddesine dönüştüğü ve DNA’nın gelecek kuşakla paylaşılmak üzere nasıl kopya edildiğini biliyorduk. Bu zorlu yarışa bir çok bilim adamı katıldı; ama James Watson ve Francis Crick ’in DNA’nın doğru yapısının ikili sarmal, yani içiçe dönen iki zincir olduğunu düşünüp bulmaları en büyük aşamalardan biridir. Öyleyse işte DNA’nin temel özelliklerine bakalim: 1.Molekül zincir şeklindedir( Degişik basit molekül çeşitlerinin birbirine eklenmesinden oluşmuş zincir şeklindeki madde) 2.Olağanüstü uzun ve son derece incedir.Hücrenin çekirdeği 100 kere büyütülseyydi aşağı yukarı iğne ucu büyüklüğünde olacaktı, yani gözün ancak seçebileceği kadar. İte bu küçücük çekirdek içinde katlanmış durumda bulunan DNA açılırsa, boyu, bir futbol sahasının boyu kadar olur. 3. Zincirde dört çeşit halka vardir (nükleotid denilen moleküller). Isimleri adenilik asit, guanilik asit, sitidilik asit ve timidilik asit; kisaltmalari A. G, C ve T. 4. Bu dört tür halkanın bağlanma biçimi, adi bir zincirin halkaları gibi birbirinin aynıdır. 5. Halkaların şaşmaz bir düzeni vardır, bu kitaptaki harflerin düzeni gibi. Bundan sonra, zincirler üzerine söyleyecek çok şeyimiz olacak. Bir zinciri her resimleyişimizde, buradaki beş biçimden hangisi en uygun, en açiklayicisiysa onu kullanacagiz. Kuşkusuz, gerçek zincirlr bizim resimlerde gösterdiklerimizden çok daha uzundur. DNA = Dil = Bilgi Şimdi dört çeşit halkasi olan bir zincirimiz olsa ve bunun yeni bir bireyin oluşmasi için gerekli bütün bilgiyi içerdigini bilsek, bu sirrin halkalarin siralanmasinda veya düzenininde yattigi sonucunu çikarmamiz gerekir. Zincirin bu kadar çok anlam taşimasinin başka bir açiklamasi olamaz. Bilgi, böylece harita veya plan olmak yerine, düz bir yüzey üzerinde iki boyutlu bir şeye, daha dogrusu tek boyutlu “yazili” talimat dizinine dönüşür. Burada dille-benzetme (analoji) yapilabilir.DNA alfabesinin dört harfi var, ama bunlarla yazilabelecek mesajlarin sayisi sonsuzdur. Tipki iki harfli Mors alfabesiyle (nokta-çizgi) söylenebileceklerin sinir olmadigi gibi. Kitaplardaki harfler kağıt üzerindeki yerlerine göre diziler halinde bağlanmışlardır. DNA içindeki dört nükleotid halkası ise gerçek kimyasal bağlarla dizi halinde bağlanmıştır. Belli bir organizma içindeki toplam DNA’da bir kitap gibi düşünülebilir.(s:24) Bu kitapta, bütün harfler, deyimler, cümleler ve paragfraflar bir zincir oluşturacak biçimde birbirine eklidir. Organizmanın bütün bölümleri ve bütün işlevleri böylece tanımlanır. Bu organizmanın özdeş bir ikizi varsa, o da aynı DNA’ları içerir, aynı kitaptan bir tane daha diye düşünülebilir; ne bir harf, ne bir sözcük farklıdır ikisi arasında. Aynı türün başka bir organizması da, gramerda sık sık ve göze çarpıcı farklar olduğu halde, benzer bir kitabı oluşturur. Değişik türlerin kitapları, içlerinde bir sürü benzer cümleler de olsa oldukça değişik öyküler anlatırlar. Yukarıdaki benzetmede zincirin parçaları olan genler, aşağı yukarı cümlelerin krşılığıdırlar. Bir gen, organizmanın belirli bir yapısını oluşturan veya işlevini gören bir harf (nükleotid) dizidir. Genler, çok uzun bir DNA molekülünde arka arkaya eklenmiş cümleler gibidirler. Bir İnsan Oluşması İçin Ne kadar Bilgi Gerekli? Bilginin ne olduğunu gördükten sonra isterseniz, canlıları oluşturmak için ne kadar bilgi gerektiği üzerine kabaca bir fikir edinelim: 1. Bir bakteri, canlı yaratıkların en basitlerindendir, 2 000 civarında geni vardır. Her gen 100 civarında harf (halka) içerir. Buna göre, bir bakterinin DNA’sı en azından iki milyon harf uzunluğunda olmalıdır. 2. İnsanın, bakteriden 500 kat fazla geni vardır.Öyleyse DNA en azından bir milyar harf uzunluğundadır. 3. Bir bakterinin DNA’sı bu hebsaba göre, her biri 100.000 kelimelik 20 ortaama uzunlukta romana, insanın ki ise bu romanlardan 10.000 tanesine eşittir! Dilden Maddeye DNA dilinin anlamı, belirli bir canlı organizmayı tanımlamasındadır. Başka bir deyişle genler, maddenin, yaşamın gerçek özünün, gerçek canlı unsurun yaratılması için gerekli bilgiyi verirler. DNA dili fizik olarak yaşamaya, nefes almaya, hareket etmeye, et üretmeye nasıl çevrilebiliyor? Bu soruyu yanıtlamadan önce, nelerden yapılmış olduğumuzu bilmemiz gerekir. Proteinler Bu konu zor görünebilir ama aslında öyle değil. Bizi oluşturan en önemli malzeme proteindir denilebilir. Diğer yapı maddelerimiz (su, tuzlar, vitaminler, metaller, karbohidratlar, yağlar vb.) proteinlere destek olmak üzere bulunurlar. Proteinler yalnızca kütlemizin (suyu saymazsak) çoğnu oluşturmakla kalmayıp, aynı zamanda vücut ısımızı, hareketlerimizi ayarlarlar, düşüncelerimizin ve duygularımızın da temelini oluştururlar. Kısacası bizi oluşturan ve yaptığımız her şey proteinlere dayanır. Örneğin, kendimi gözlüyorum: bütün kütlesi proteindir; ne görüyorsam (kürkü, gözleri, hareket etmesi bile) proteindir. İçindeki her şyey de proteindir. Ayrıca kendime çok özel bir kişilik veren herşey de özel proteinlerle belirlenmiştir. DNA’nın yönlendirilmesiyle yapılan proteinler birey olmanın, tek olmanın, bütün türlerin fiziksel temelidir. Metal, otomobil için neyse, protein bizim için odur. Otomobilde başka malzemeler de vardır; ama yapıyı ve işlevi sağlayan en önemli eleman metaldir. Hem görünüşü, hem de işleme yeteneğini belirler. Bir arabanın diğerinden farkını; biçimini, niteliği ve metal kısımların durumu belirler.(s:26) Şimdi, yeni bir soru ve başka bir ayrintili inceleme için haziriz. Proteinler neden yapilmişlardir? İşte özelliklerinin listesi: 1. Zincir moleküldürler. 2. Uzundurlar ama DNA kadar değil. 3. Yirmi çeşit protein halkasi vardir. Bunalara amino asitler denir. 4. Yirmi birimin de bağlantı biçimi tamamen aynıdır. 5.Yirmi birimin veya halkanın düzeni veya diziliş sırası hassas ve kesindir. Bu düzen, hangi protein olduğunu ve sonuçta işlevinin ne olduğunu belirler. Amino asitler, isimlerinin ilk üç harfi eklenmiş zincir halkalariyla gösterilirler. Yirmi amino asit şunlardir: fenilalanin, leusin, izoleusin, metyonin, valin, serine, prolin, treoinin, alanin, tirosin,histidin, glutamin, asparajin, lisin, aspartik asit,glutamik asit, sistein, triptofan,arjinin,glisin. Çeviri Bu beş özelligin DNA zincirininkine ne kadar benzedigini gördünüz. Halkalari özel bir düzende olan zincirler, protein alfabesinde yirmi çeşit harften oluşuyor;DNA alfabesinde ise dört harf var. DNA bilgisinin protein maddesine dönüşmesinin aslinda dildeki gibi bir çeviri işlemi oldugu hemen (s: 27) görülebilir. Dört harfli bir alfabedeki harf dizisinden, yirmi harfli bir alfabenin harf dizisine geçilmektedir. Mors dilinden (iki harfli nokta-çizgi alfabesinden) Ingilizce gibi yirmisekiz harfli alfabesi olan bir dile çeviri yapmaya da benzetilebilir bu. Bütün olan biten aslında bu kadar.Hücerelerin protein zincirleri içinde binlerce çok ufak, son derece basit çeviri makinesi var. Bunlara “ribosomlar” deniyor. Şu şekilde çalışırlar: Önce DNA bilgisinin bir bölümü, bir gen, bir enzim (bu işlemin hızlanmasına yardım eden bir protein) tarafından kopye ediliyor. Mesajcı RNA (mesajcıribonükleik asit) dernilen bu gen kopyası da bir zincirdir. RNA molekülleri,DNA moleküllerinin hemen hemen aynı zincir moleküllerdir; ama onlar kadar uzun değildirler. Bir DNA molekülü bir çok geni içerir, bir mesajcı RNA molekülü ise yalnızca bir tek genin kopyasıdır. Bu RNA moleküllerine “mesajcı” denir, çünkü genin mesajının, ribosomlar yolu ile DNA’nın hücredeki yeri olan çekirdekten proteinlerin yapıldıkları hücrenin çekirdek dışındaki kısmına (stoplazma) taşırlar.(s:28) Gen kopyası mesajcı RNA bir ucunu ribosoma bağlar, Ribosom okuyucudur;mesajcı RNA’nın içindeki nükleotidlerin (harflerin) dizilişini okur; ama bildiğimiz anlamlı bir sözcük çıkarmak yerine protein çıkarır. Bu şu şekilde gerçekleşir: Özel enzimler amino asitleri “transfer” RNA (tRNA) denilen küçük bir RNA molekülüne bağlarlar. Yirmi amino asitin her biri özel RNA molekülüne bağlanır. Amino asite bağlanmış tRNA’lar kendilerini ribosoma yöneltirler. Ribosom, gerekli tRNA’yı (bağlı amino asitlerle birlikte) o anda mesajcı RNA’dan okuduğu deyimlere uygun olarak seçer. Yani eğere ribosom mesajcıdan ala amino asitini (alanin) belirleyen bir grup nükleotid mesajını okumuşsa, bu amino asitin (Hayatın Kökleri, s:29) bağlı olduğu gruba uygun nükleotidleri olan bir tRNA seçer. Mesajcı nükleotidin, belli bir amino asite uygunluğu, nükleotidlerin doğal uygunluk ilişkisine dayanır.Mesajcı üzerindeki her nükleotid dizisi, transfer RNA üzerindeki uygun nükleotid dizisiyle mükemmel bir şekilde eşleşir. Her yeni aminoasit ve onun tRNA’sı ribosoma gelip uygun biçimde yerleştikçe, amino asit kendisenden önce ribosoma gelmiş olan amino asitle kimyasay olarak birleşir. Böylece, halkalar sırayla birer birer bağlanır. Ribosom mesajı okudukça protein zincirinin boyu durmadan inin okunma ıbitince, bütühn protein halkası serbest bırakılır. Böylece yeni bir protein doğmuş olur. Bir genboyu DNA’nın içindeki nükleotid dizilişi, bir protein içindeki amino asit dizisini tam olarak belirler. Bir gen, bir protein. Bir gen; bir protein kavramı bizim proteinlerin nasıl oluştuğunu öğrenmemizden çok uzun zaman önce bulunmuştu.1930'larda ekmek küfü üzerine bir dizi parlak deney yapan biyokimyacı George Beadle, bir teks gen içindeki değişikyiklerin, bir tek proteinde bozulmaya yol açtığını göstermişti.Buna dayanılarak yapılan çcalışmalar bakteri kullanılarak ilerletildi ve genişletildi. Bu büyük çalışma ve burada anlatacağımız niceleri, herman Müller’in 1920'lerdeki DNA’daki değişmelerin (mutasyon), istenildiğinde canlı sistemleri x-ışınlarına tutarak sağlanabaleceğini gösteren önemli buluşu olmasaydı başarılamazdı. DNA, bir hücrdede bulunan değişik p;roteinler kadar gen içerir (bakteride 2000; insanda 200.000). Protein yapan makinenin bu çeviri işlemindeki şaşmayan hatasizligi,kuşkusuz dikkate deger. bir hücrenin yaşamasi için gerekli binlerce proteinin üretilmesinde ancak bir-iki yanlişligüa yer olabilir. Insanlarin yahptigi hiçbir makine, bunun gibi 200 romana eşdeger bir yaziyi bu kadar az yanlişla yazamaz. t-RNA’nın Bulunması Hocam Paul Zamecnik ve ben, 1956'da transfer RNA’yı birlikte bulduk ve neye yaradığını açıkladık. Zamecnik daha önce ribosomların, üzerinde proteinlerin biraraya getirildiği strüktürler olduğunu göstermişti.Ben de bu tarihten bir yıl önce amino asitlerin özel bir dizi enzimle aktif hale getireilebildiğini (yani diğer amino asitlerle reaksiyona hazırlandığını) kanıtlamıştım (bu dördüncü bölümde anlatılıyor). Ama arada eksik bir şey vardı: amino asitlerin bağlanabileceği ve onlara (Hayatın kökleri, s: 31), mesajcı RNA’ların gösterdiği yerlere yerleştirilmelerini sağlayan kimliği kazandıracak bir şey. Paul Zamecnikle birlikte, hücreler içinde amino asitlere önemli bir yatkılnığı olan, yani onlarla olağandışı bir sıklıkla bağlanabilen küçük RNA molekülleri olduğunu gördük. Proteinin yapılışnıda ki eksik olan halkayı bulduğumuzu hemen anladık. Bir sürü yoğun ve zevkli deneyden sonra, ondan sonraki yılın sonlarına doğru,tRNA’nın protein yapımına katılım yönteminin size daha önce açıkladığım oldukça tam bir resimini elde ettik. Zincirlerden Üç Boyutlu Varlıklara Buraya kadar öykü yeterince doyurucu; canlı mekanizmalar, zincirleri dil olarak kullanırlar. Plandan bitmiş üretime geçmek, basit bir çeviri işidir. Ama hala aşmamız gereken bir engelimiz var. Çeviri bir simgeyi başka bir simgeye, tek boyutu tek boyuta, bir zinciri başka bir zincire, nükleotitleri amino asitlere dönüştürülüyor. Zincirden “maddeye” nasıl varabiliriz? Protein moleküllerinin görevlerini yerine getirmelerine, dokunabildiğimiz, kavrayabildiğimiz şeylere, tohumlara, çiceklere, kurbağalara, size, bana bir boyuttan üç boyuta sıçramak zorundayız demek ki. Yanıt, protein zincirleri içindeki halkaların yani aminoasitlerin özelliğinde yatıyor. Protein molekülleri, zincir oldukları halde asılnrad (fiziki olarak) gerçek zincirlerde olduğu gibi üç boyutlu yapılardır. Proteinin yirmi değişik amino asiti, etkisiz simgeler değildirler. Herbirinin kendine özgü kimyasal özellikleri vardır. Bazıları zincirdeki ikiz eşleriyle kimyasal bağlar yapmayı yeğlerken, bazıları daha çok asit, bazıları da alkali özelliğini gösterir. Kimi suyu aramak eğilimindeyken, kimi de sudan kaçar. bazıları öyle biçimlendirilmişlerdir ki zinciri bükebilirler. (s: 32). Birkaç tanesinin de bir proteinin yalnızca bir tek işe yaramasına katkıda bulunacak özel marfetleri vardır.Bu amino asitler zincirdeki yerlerine göre zincirin son biçimini belirler. Zincirler tamamlandıkları zaman, bir çeşit ip yumağı oluşturmak için kendi kendilerine içiçe dolanıp katlanırlar. çözülmüş zincirdeki amino asitlerin “sırası”, molekülün katlanmak için hazır olduğu zaman nasıl davranacağını, ne yapacağını “şaşmaz” bir şekilde belirler. katlanma biçimi de protein molekülünün şeklini, özelliklerini, işlevini belirler. Kas proteinler için, bir gen, protein yapar makinelere son bitmiş biçiminde katlanabeilecek ve komşu liflerin üzerinedn kayabilecek çok uzun bir protein zinciri yapmasini emreder. Böylece kisalabilen uzun lifler oluşur. kan hücrelerindeki oksijen taşiyan protein zinciri hemoglobin, özel bir üç boyutlu katlahnma biçimine sahiptir. Böylece yalnizca kendisine özgü bir yolla oksijeni tutma ve serbest birakma işlevini yerine getirebilir. Sonuç olarak herbirini siralanişi, genler içindeki nükleotidlerin siralanişiyla belirlenmiş binlerce protein zinciri, özel biçimlerde katlanip, özel işlevler elde ederler. Düzen Yaratmak, Çoğu Kez Zincir Yapmaktır Birinci bölümde düzen konusunda söylediklerimizi hatırlayın: Yaşam, sürekli düzensizliğe giden bir evrende düzene yönelik çalışır.Şimdi bunun ne demek olduğunu çok daha açıkça görebiliriz. Canlı olmak, daha önceden şaşmaz bir kesinlikle tanımlanmış bir düzenle, halkaları zincire eklemektir. Düzen bir defa kurulunca, son biçimin ve işlevin elde edilmesi hemen hemen kendiliğinden gelir diye düşünülebilir. İsterseniz, bir parçayı bir başka parçanın önüne koymak (Hayatın Kökleri, s: 33) kendiliğinden sonuca götürüyor diye düşünebilirz bu düzeni. Zayıf Kimyasal Bağlantıların Önemi Hücrelerin önemli molekülleri yani DNA,RNA ve proteinler üzerine yapılan bir çalışmadan çok ilginç bir genelleme ortaya çıkmıştır. Aslında “zayıf” kimyasal bağlantılar, yaşam için son derece önemil işlevler taşırlar.Güçlü bağlantılar (sağlam kovalent bağlar), amino asitleri protein içinde birbirine bağlayanlar cinsinden veya RNA ve DNA içinde nükleotidleri bağlayanlar cinsinden olanlardır.Bunlar zincirin her halkasında komşuyu sıkıca tutarlar. Zayıf bağlantılar ise bütün büyük zincirlerde katlanma noktalarını belirleyen ve molekülün biçimini sağlayanlardır. DNA’da iki zinciri,çift sarmalı oluşturmak iççin birarada tutan nükleotidler arasında zayıf halkalar vardır. Bunlar ileride göreceğimiz gibi RNA üretiminde çok greklidirler. Proteinin içinde,onu işlevine uygun katlanmış biçimlerde tutan amini asitler arasındaki bağalantılar da zayıftır. Ribosomlar üzerinde yeni protein yapımında,transfer RNA üzerinde tamamlayıcı biçimdeki nükleotidlere uydurarak,tam yerlerini “bulurlar”. Bu önemli bağlantıların özelliği,zayı oluşları yüzünden çok kısa sürmeleridir. Görevlerini yaparlar ve sonra kolayca çözülüp yeniden kullanılabilirler. Hayatla İçli Dışlı Cansız Varlıklar: Virüsler Virüsler ya da DNA’lı ya da RNA’lı proteinden yapılmışlardır. Yani ya DNA ya da RNA biçiminde bilgiyi içerirler ve protein biçiminde birşyelerin yerine geçebilen bir kimlikleri vardır. Ama yardımcısız kendi kendilerine üreyemezler. Yardım (s:34) canlı hücereler tarafından sağlanır. Virüsün proteinleri,onun bir hücre bulup içine girmesine yol açar. Virüs, orada kandini üretecek makinaları;hücrenin makinalarının bulur. Üreme işini tamamladıktan sonra kendisi ve yeni virüsler,aynı tatsız işi başka hücrelerde yinelemek üzere o hücreden çıkarlar.Bu olaylar sırasında virüs,”ev sahibi” hücreyi öldürebilir,ona zarar verebilir,değiştirebilir veya hiçbir şey yapmaz;bu virüsün ve hücrenin cinsinei bağlıdır. Bir virüsün hücrede neden olabileceği önemli bir değişiklik de onu kansere dönüştürmesidir. Bu esrarlı olay, 8. Bölümde göreceğimiz gibi en son kanser araştırmalarındaki yoğun çabaların temelinde yatlmaktadır. Hücrelerden daha basit oldukları halde,virüslerin daha ilkel olmadıklarını sanıyoruz. çok uzak geçmişte bir zaman, normal hücerelerine parçalarıyken kopup kendi asalak “yaşama” biçimlerini kurmuş olmaları mümkün görünüyor. Virüslerin bağımsız olarak üreme yetenekleri olmadığı için kendi başlarına canlı olduklarını düşünemiyoruz. Ölümlülük ve Ölümsüzlük Şimdi,bir bireyin yaratilmasinin bir dizi yazili talimat gerektirdigini biliyoruz. Bunlar milyonlarca yildir dikkate deger bir baglilikla tekrar tekrar kopye edilmişlerdir; ama her birey yalnizca birkaç on yil içinde yaşar ve ölür. O zaman bu talimatlarin ölümsüz olup olmadiklarini sorabiliriz. En azindan bir biyolog için her hangi bir şey ne kadar ölümsüz olabilirse,genetik bilgi de o kadar ölümsüzdür diyebiliriz. Aslinda ölümlü her birey,gelecek kuşaklara geçirilecek tarifnamenin geçici koruyucusudur;sopanin DNA oldugu bir bayrak yarişinda koşucu... Bir birey yaşaminin,ancak atalarindan çocuklarina geçirdigi bilgi kadar önemi (Hayatin Kökleri, s:35) vardir. Bazi güveler agizsiz dogarlar ve dogduklari andan başlayarak açiliktan ölüme mahkimdurlar. Tek işlevleri,çiftleşip daha çabuk yumurtlayarak güve bilgisini gelecek kuşaga geçirmektedir. Eğer DNA ölümlünün ölümsüzlüğü ise,insanları inatçı merakı,daha ötesini de sormadan edemez;Bütün bunlar nasıl başladı?(Hayatın Kökleri, s:19-36). Başlangiç Hangisi önce geldi, tavuk mu yumurta mı? Bu çok duyulmuş bir sorudur ama yanıtlanamaz. Yanıtlanamamasının sebebi “tavuk yumurtadan, yumurta tavuktan vs.” diye zaman içinde bitmez tükenmez bir geriye doğru sayış gerektrmesi değil, bu şekilde geriye giderken biriken küçük değişikliklerle tavuğun tavukluktan,yumurtanın da yumurta olmaktan çıkmasıdır.Tavuğun bir milyar yıl gerilere giden soy ağacını incelersek;tüylü arkadaşımızı,hayal gücümüzü ne ölçüde zorlarsak zorlayalım adına “tavuk” diyemeyeceğimiz atalara bağlayan bir değişimle karşılaşırız. Benim tahminim, bir milyar yıl önceki tavuk atasının her halde,toplu iğne başından küçük ve okyanusta yaşayan bir yaratık olduğu. Kendi soyumuzu gerilere doğru izlersek,yine buna benzer bir sonuçlar karşılaşırız. Ne kadar geriye gidebiliriz? Bir başlangiç oldugunu düşünmemiz gerek. Bundan önçeki bölümde sözü edilen,DNA’nin ölümsüzlügünü benzetmesine şimdi daha iyi bir perspektiften bakmaliyiz.Dünyamizin şimdiki canli biçimlerini dogracak tüm bilgiyi taşiyan bu kocaman moleküllerin,çok uzak bir geçmiş zamanda, alçakgönüllü bir başlangiçlari olmasi gerek. (s: 37) En iyi tahminlere göre yaşam; bundan üç milyar yil önceki Dünya'da başladi.Üç milyar yil önce Dünya'miz iki milyar yaşindaydive canlilari barindiracak kadar sogumay başlamişti.Son derece küçük ve oldukça basit deniz yaratiklarinin iki milyar yildan daha eski fosilleri var. Bu fosilleşmiş yaratiklarin atalari herhalde daha da küçüktü.. En ilkel canli biçimi, belki de bugün bolca bulunan basit tek hücreli canlilara hiç benzemeyen bir tek-hücreydi. Öyleyse bizim yoğunlaşacağmız soru şu: bir hücre,yaşamaya ilk olarak nasıl başlamış olabilir, bu aşama nasıl mümkün olabilir? Soru”hücre nasıl yaşamaya başladı?” değil;bu hiçbir zaman yanıtlanayacak bir sorudur. Çünkü bu olaya tanıklık edecek kimse yoktu o zaman; ama yaşamın nasıl oluşabileceğini sormak hakkımızdır. Akıllıca tahminler ve olasilıkıları gösteren deneyler yapabiliriz. Gerekli Maddeler Jeologların, paleontologların, fizikçilerin,biyologların çalışmalarına dayanarak,dünyanın üç milyar yıl öncesi nasıl bir yer olabileceği konusunda oldukça iyi bir fikrimiz var. Bilim kurgu kitapları ve filmelri olayı çok canlı ve belki de doğru resimliyorlar;lav ve kayalardan oluşmuş,gri, tümüyle kısır,hiç yeşili olmayan manzaralar,patlayan yanardağlar,sivri dağ tepeleri,buharlaşan denizler,alçak bulutlar,arada çakan şimşeklerle gürültüyyle parçalanan ve sürekli yağan yağmurlar. Herhangi bir canlı tarafından görülmemiş ve duyulmamış olaylar. Kuşkusuz bu, sizin ve benim için çok sefil bir ortam olurdu. ÜAma yaşamın başlangıcı için iyi bir düzendi. Herşeyi harekete geçirmek için gerekenler şunlardı: 1. Ilık bir ortam 2. Çok miktarda su(s:38) 3. Gerekli atomların kaynakları/karbon,hidrojen,oksijen,nitrojen ve fosfor) 4. Enerji kaynağı. Su ve ısı, sorun değildi. Dünya soğurken, milyonlarca yıllık yağmur okyanusları doldurmuş hala sıcak olan Dünya bu okyanusyarı ısıtmıştı. Şimşekler bol bol enerji sağlıyorlardı. Bulutlar aralandığı sıralarda da Güneş’ten ulraviyole ışınları geliyordu(Bu ışınlar o zaman şimdi olduklarından çok daha güçlüydüler, çünkü atmosferimizi sarran ozon tabakası henüz oluşmamıştı. Ozon, yeryüzünde bitki yaşamının sonucu olarak yavaş yavaş birikmiş bir oksjijen tabakasıdır. Bu tabaka ultraviyole ışınlarını geçirmez). Bu koşullar;kuşkusuz başlangiçta,en basit birimlerin,bilgi zincirlerinin (DNA) ve hücre maddesi zincirlerinin (protein) oluşmasi için yeterince basitti. Ama zincirlerimiz olmadan önce halkalarimizin olmasi gerekir. Önce DNA nükleotidleri ve proteinlerin amino asitleri oluşmalidir. Bildigimiz gibi, bu halkalar ufak moleküllerdir. Bunlar, karbon, hidrojen,oksijen,nitrojen ve fosfor elementlerinin kimyasal olarak baglanip düzenlenmeleriyle oluşurlar. Basit Moleküllerin Doğuşu Öyleyse işte senaryomuz: Deniz suyunda erimiş karbon,hidrojen,oksijen,nitrojen ve fosfor içeren basit bileşikler, ultraviyole işinlari ve şimşeklerle sürekli bombardiman edilmiyorlar. Bu arada bir kismi kalici ve dengede olan,degişik kombinasyonlara da zorlaniyorlar. İşlem yüz milyonlarca yıl boyunca sürerken,denz, elemanlarının değişik kombinasyonları yönünden giderek zenginleşiyor. Yeni moleküller,bu arada nükleotidler ve amino asitler birikiyor. Sonunda denizin son derece bol ve bütün yeni molekül(s:39) çeşitlerini içeren koyu bir çorbaya dönüştüğüü bir zaman geliyor. Zamanın Önemi Sözkonusu süreçte zamanın önemini kavramak için biraz duralım. Zaman ne kadar uzun olursa bir şeylerin olması da o kadar olasıdır. Kimyasal tepkimeler için de bu doğrudur. Zaman sınırlaması olmazsa,yeterince uzun süre beklenirse en olanaksız tepkimeler gerçekleşebilir. Eğer bu tepkimelerin ürettikleri bileşikler kalıcı (dengeli) iseler, deniz suyunun nisbeten değişmez maddeleri haline geleceklerdir. İçinde canlı Olmadığı için Çorba Varlığını sürdürebilir Şimdidenizin çorba gibi olma düşüncesi size aşiri görünebilir. Bunun bugünkü deneylerimizle karşilaştiralabilecek hiçbir yani yoktur. Böyle zengin bir oluşumun birikmesi,canlilar onu hemen yiyip biterecegi çin bugün belik de olanaksizdir. Bakteriler ve diger açgözlü yaratiklar şimdi çok kalabaliklar ve ne zaman iyi bir besin kaynagi belirse,hemen onu tüketiyorlar. Kaynak kuruyana kadar üreyip sayilarini arttiriyorlar. Görüyorsunuz ki eskiden yaşam olmadiggi için okyanuslar çorba gibi olabilirdi. Eski Olayların Laboratuvardaki Benzerleri Aslında,anlattıklarımız hiçbir zaman kanıtlanamayacak bir hipotez. Yine de biz,laboratuvarda bunların olabileceğini gösterebiliriz,Eskiden olduğu öne sürülen koşulların laboratuvarda istenen tepkiyi sağlaması kuşkusuz olanaklıdır. Üç milyar yıl önce denizde bulunduğu (s: 40) düşünülen basit bileşikler bir cam kapta suda eritilebilirler. Kap, şimşekylerin enerji katkısını sağlamak üzere bir elektrik kaynağına bağlanır. Ssitemin bütün parçaları hiçbir canlı hücre olmadığından emin olabilmemiz için önceden sterilize edilir. sonra kaptakilerin bir süre pişmesi için elektrik verilmeye başlanabilir. sonunda kap açılıp içindekiler incelenir. Bu deneyin yapılmış olduğunu ve sonucun tümüyle inandırıcı olduğunu sevinerek söyleyebilirim. Hem nükleotidler hem amino asitler beş elementten bu şekilde oluşturulabildiler. yani yaşam zincirlerinin halkaları, deniz benzeri bir ortamda şimşikleri enerji kaynağı olarak kullanılmasıyla üretildi. Zincir Moleküllerinin Doğuşu Bundan sonraki adım,açıkça görülüyor ki halkaları,DNA gibi ve protein gibi zincirler oluşturmak için birleştirmektir.İlkel koşulların laboratuvarda yapılmış benzerlerinin,halkaların oluşumu aşamasını sağlamasına bakarak,çalışma ilerletilirse halkaların zincir biçiminde eklenebileceğini de düşünmek akla yakındır. Nitekim kısa zincirlerin oluştuğunu gröüyoruz. Basit kimyalarıyla bugünün DNA’larına ve proteinlerine benziyorlar. Yined hatırlayalım, bu deneyler yalnızca oylabileceğini gösterir, ne olduğunu değil. Durum, Thor Heyerdahl’ın Polinezya Adaları halkının Güney amerika’dan batıya yelken açarak, şimdiki yurtlarını buldukları savını kanıtlamaya çalışırken kaşılaştığından farklı değil. sal üzerinde aynı yolculuğu başarıyla yaparak,yalnızca polinezyalıların gerçekten bu yolculuğu yaptığını kanıtlamış olmadı, benzer taşıt kullanan herhangi birinin de aynı işi yapabileceğini gösterdi(s:41) Bir Hücreye Doğru Bu noktadan sonra,hücdreyi daha çok tanımak için beş önemli adıma daha göz atabiliriz. Hücrenin ikiye bölünmesi DNA’nın ikiye bölünmesi Zarlar Çift zincirli DNA Yapısal proteinler Enzimler tek zinciril DNA Proteinler Yağlar Nükleotidler Aminoasitler karbon, hidrojen,oksijen, azot(nitrojen) ve fosfor 1. Enzimlerin ortaya çıkması Enziler, hücre içindeki bütün kimyasal tepkimeleri hızlandıracak özel protein molekülleridir. Bugün canlı hücre;herbiri kenid özel işini yapan, besin maddelerini parçalayan,besinden enerji üreten, basit moleküllerden zincir yapımını kolaylaştıran ve sayısız başka işler yapan binlece enzim içerir. Olayların denizdeki başlangıt çağlarında yavaş gelişimleri, ancak enzimlerle hızlandırılabilirdi, İlk enzimler, raslatısal olaramk birbiren eklenmiş kısa aminoasit zincirleri olsa gerek. Tekrar tekrar “deneme-yanılma”yla bu kombinasyonların bazıları; birtakım reaksiyonları hızlandırabilecek,yalnız kenidlerine özgü bir yeteneği elde etmiş olmalılar.(s: 42) 2. DNA’nın çift Kat oluşu. Okyanuslar boyunca DNA zincirinin rasgele eklenen nükleotidlerle yavaş yavaş uzamasini gözünüzün önüne getirmeye çaliştiginzda baszi anlamli diziler oluşcaktir.Burada “anlamli”, birkaç yeni ilkel proteini yapmak için gereken bilgiyi içermek olarak kullanilmiştir. Bunladan bazilari, yararli enzimler veya önemli yapilarin parçalari olacktir. Basit bir çift kat halinde birleşme bunu sagladi. birbiren sarilmiş ipliklerin zarar görmesi,ayri ayri tek başlarini olduklari zamandan daha az olasiydi.Dahasi, çift kat olmak,DNA’nin üremesi için gereklidir. 3. DNA’nın Çoğalması Bu, çift sarmal DNA zincirindeki her ipliğin,kendisini tıpatıp bir kopyasını yapması,sonuçta ikinçci bir çift sarmalın(s:43) oluşması demektir. son erece basit ve zarif olan bubişlem,bir halatın çözülüp ayrılışı gibi iki zincirin birbirinden ayrılmasıyla baş

http://www.biyologlar.com/evrim-konusunda-ilk-dusunceler

EKOLOJİ VE BESİN ZİNCİRİ

EKOLOJİ VE BESİN ZİNCİRİ

Canlıların birbirleri ile ve çevreleri ile etkileşimini inceleyen bilim dalıdır. Ekolojiyi anlamak için madde ve canlı organizasyonunun bilinmesi gerekir. Madde organizasyonu: Atom – Molekül – Organel – Sitoplazma – Hücreler – Dokular – Organlar - Sistemler –Organizmalar - Populasyonlar – Komüniteler – Ekosistemler – Biyosfer- Dünya – Gezegenler – Solar sistemler – Galaksiler – Evren şeklindedir. Ekoloji ile ilgili önemli terimler: Biyosfer:Canlı yaşamına uygun ,okyanus derinlikleri ile atmosferin 10 000 m. yüksekliğine kadar olan tabakasıdır. Ekosistem:Komünitelerle cansız (Abiyotik) çevre koşullarının karşılıklı etkileşimleri. Biyotop:Canlıların yaşamlarını sürdürmek için uygun çevresel koşullara sahip coğrafi bölgedir. Komünite:Belirli yaşam alanına uyumlu populasyonlar topluluğudur. Populasyon:Belirli coğrafi sınırlar içinde yaşayan aynı türe ait bireyler topluluğudur. Habitat:Bir canlı türünün rahatça beslendiği,barındığı,ürediği yaşam alanına denir. Niş:Yaşam alanında kalıtsal özellikleri ile ilgili gerçekleştirdiği yaşamının devamına yönelik faaliyetlerin tümüdür Flora:Belirli bir bölgeye adapte olmuş ,o bölgede yaşamını sürdüren bitki topluluğudur. Fauna:Belirli bir bölgeye adapte olmuş ve o bölgede yaşamını sürdüren hayvan topluluğudur. Canlılar bulundukları yaşam ortamında canlı ve cansız faktörlerle etkileşim halindedirler. Canlıyı etkileyen: Biyotik faktörler: 1) Üreticiler 2) Tüketici 3)Ayrıştırıcılar Abiyotik faktörler: İkiye ayrılır. 1) İklimsel faktörler : a) Işık b) Isı c) Su 2) Toprak faktörler : a)Toprak yapısı b)Mineral ve tuzlar c)Toprak ph’ sı BİYOTİK FAKTÖRLER Üreticiler: Fotosentez ve kemosentez mekanizmaları ile inorganik maddelerden organik madde sentezleyebilen ototrof bakteriler,mavi yeşil algler,kloroplast taşıyan protistalar ve bitkilerdir. Enerji ve maddenin canlıların kullanabileceği hale dönüşümünü sağlayan canlılardır. Tüketiciler: İhtiyacı olan besinleri diğer canlılardan hazır olarak alan hayvanlar ,protistalar,parazit bitki ve mantarlar,hetotrof bakterilerdir. Tüketiciler üç grupta incelenir: 1- Bitkilerle beslenen: (1.Tükticiler) 2- Hayvanlarla beslenen(2.Tüketici) 3- Yırtıcılar: (3.Tüketiciler) Ayrıştırıcılar: Bitki,hayvan ölüsü ve artıklarını besin olarak kullanan saprofit bakteri ve mantarlardır. ABİYOTİK FAKTÖRLER 1-İklim faktörleri:Canlılar yaşamlarını sürdürürken güneş ışını,ısı,basınç,nem,hava hareketleri gibi iklim faktörlerden etkilenirler. A) Işık: a) Işığın kalitesi,şiddeti,süresi önemlidir b) Canlıların temel enerji kaynağıdır c) Fotosentez için gereklidir d) Bitkide çimlenme,büyüme,yönelme. klorofil sentezi için gereklidir e) Işık bitkilerin yaşam alanını belirler f) Hayvanlarda üreme,göç,pigmentasyon,bazı vitaminlerin sentezi ,sucul hayvanlarda solunum üzerine etkilidir b) Isı: Canlılarda yaşamsal olaylar belirli ısıda gerçekleşir. Yüksek ve düşük ısıda yaşamsal olaylar azalır hatta durur. Bitkilerde : a) Çimlenme b) Köklerle su alınımı c) Fotosentez Hayvanlarda : a) Üreme b) Gelişmenin devamı c) Değişken ısılı hayvanlarda (Omurgasızlar,Balıklar , Kurbağalar , Sürüngenler ) metabolizmanın devamı C) Su: a) Organik maddelerin sentezlenmesi b) Maddelerin çözülmesi ,emilmesi,taşınması c) Biyokimyasal olayların gerçekleşmesi d) Fazla ısının uzaklaştırılması e) Boşaltım maddelerinin dışa atılması f) Bitkilerde çimlenmenin gerçekleşmesi ,hayvanlarda embriyonun gelişmesi g) Bazı canlılar için yaşam ve hareket alanıdır Canlılar yaşadıkları ortam ve suya duydukları ihtiyaç farklıdır. Özel adaptasyonları ile en iyi uyumu yapmışlardır. Hayvanlarda: 1) Deride su kayıbını önleyen plaka,tüy ,kitin dış iskelet gibi yapıların oluşması. 2) Solunum yüzeyinin vücud içine alınması 3) Boşaltımla su kayıbını önleyen mekanizmaların gelişimi 4) Yaşam alanı olarak suya yakın çevrelerin seçilmesi Bitkilerde: 1) Su kayıbının sağlandığı stomaların;a)Açılıp kapanmasının kontrol edilebilmesi (Terlemenin fazla olduğu zamanlar ve suyun az olduğu zamanlar stomalar kapanır) 2) Köklerin suya yönelimi vardır 3) Kurak ortam bitkilerinde gövde ve yapraklar su kayıbını önleyecek değişikliklere sahiptir. Canlıların ihtiyacı olan suyu şu şekillerde karşılarlar: 1) Suyun doğrudan alınması.( Sindirim sistemi, kökler) 2) Deri ile su almak (Kurbağalar,Bazı omurgasızlar) 3) Besinlerin yapısındaki sudan karşılamak 4) Metabolik su kullanmak EKOLOJİK PİRAMİTLER Ekolojik piramitler ekosistemlerdeki komüniteyi oluşturan birey sayısı (Biyokütle) veya enerji dikkate alınıp hazırlanı Biyokütleye ve enerjiye dayanan piramitler · Piramidin tabanını üreticiler oluşturur · Tepe basamağı yırtıcılar oluşturur · 2. ve 3. basamağı tüketiciler oluşturur tüketiciler= a- Birincil tüketiciler (Herbivorlar) b- İkincil tüketiciler (Karnivorlar) c- Üçüncül tüketiciler (Karnivorlar) · Taban üreticilerden oluşur · Biyokütle tepeye doğru gittikçe her basamakta 10 kat azalır · Enerji tepeye doğru her basamakta 10 kat azalarak aktarılır · Biyolojik birikim (Kimyasal zehirler,radyoaktivite vb.) tepeye doğru gittikçe artar CANLILARDA BESLENME ŞEKİLLERİ A)Ototroflar: İhtiyacı olan organik besinleri kendileri sentezleyebilen canlılardır. Besin sentezlerken kullandıkları enerjinin şekline göre iki tip ototrof canlı vardır: a) Fotoototroflar: Klorofilleri sayesinde ışık enerjisi kullanarak organik besin sentezleyenler. Klorofilli bakteriler,Mavi-yeşil algler, Kloroplast taşıyan protistalar ve bitkiler bu gruptan canlılardır. b) Kemoototroflar: Kuvvetli oksidasyon enzimleri sayesinde oksitledikleri inorganik maddelerden (H,Fe,NH3,nitrit vb.) elde ettikleri kimyasal enerjiyi kullanan bakteriler bu gruptur. Hetotroflar: İhtiyacı olan organik besinleri diğer canlıların vücudundan karşılarlar. Besinlerini almaları bakımından üç gruba ayrılırlar. a) Holojoik beslenme: · Besinlerini katı parçalar halinde alırlar · Sindirim sistemleri ve enzimleri gelişkindir · Hareket sistemleri gelişkindir · Gelişkin duyulara sahiptirler Holojoik canlılar kullandıkları besinin özelliklerine göre sindirim sistemleri ve beslenme davranışlara sahiptir. 1) Herbivorlar: Bitkisel besinlerle beslenenler · Öğütücü dişler gelişkindir · Sindirim kanalları gelişkindir · Mide gelişkin ve bölmelidir · Bitkisel besinlerin besleyici değeri az olduğundan fazla besin alırlar · Beslenmeleri uzun sürer · Bitkisel besinlerden yararlanma azdır · Bazı gruplar sindirim sistemlerinde selüloz sindiren enzimlere sahip bakteri vb. canlılara simbiyoz yaşarlar. 2) Karnivorlar: Hayvansal besinlerle beslenenler · Parçalayıcı(Köpek) dişler gelişkindir · Sindirim kanalı kısadır · Hareket ve duyu sistemleri gelişkindir · Etin besleyici değeri fazla olduğundan beslenmeleri kısa sürer · Uzun süre aç kalabilirler 3) Omnivorlar:Hem hayvansal hemde bitkisel besinlerle beslenebilenler · Sindirim Özellikleri ile karnivorlara benzerler · Selüloz hariç diğer bitkisel besinlerden faydalanacak enzimlere sahiptirler · Tohum,meyve ve hücre öz suları bitkisel besinlerini oluşturur b) Saprofit beslenme · Sindirim sistemleri yoktur · Sindirim enzimleri vardır · Hücre dışı sindirim vardır · Ölü bitki ve hayvan artıkları üzerinden beslenir · Doğada madde döngüsü için önemli canlılardır · Bazı bakteriler ve mantarlar bu gruptandır · Üzerinde yaşadıkları canlıya zarar verirler c) Parazit beslenme Hayvansal parazitler endo ve ekto olmak üzere ikiye ayrılır -Ekto parazitler: · Sindirim sistemleri ve enzimleri vardır . · Hareket sistemleri ve duyuları gelişmiştir · Konakçının vücudu üzerinden besinlerini karşılarlar -Endo parazitler: · Sindirim sistemleri yoktur · Sindirim enzimleri yoktur · Üreme sistemleri hariç diğer sistemleri körelmiştir Parazit canlıların konağa olan bağımlılığı bakımından ikiye ayrılırlar: 1) Yarı parazitlik: Belirli besinler için konağa bağlanan canlılar Örnek:Ökseotu Fotosentez yapmalarına karşı su ve mineralleri başka bitkilerin iletim demetlerinden emeçleri ile alırlar 2) Tam parazitlik: Bütün besinlerini konakçıdan alan parazitlerdir Bu parazitlerde üreme hariç diğer sistemler körelmiştir Bazı özel parazitlik durumları: -Parazit-patojen:Konukçu canlıda hastalık ve ölümlere neden olurlar -Obligat parazitler:Yaşamsal evrelerinin çoğunu konukçu vücudunda geçirirler. Bazı yaşamsal olayları ancak konukçu vücudunda gerçekleştirebilir. C) Hem ototrof hem hetotrof beslenme: Bazı ototrof canlılar fotosentezle besinlerini üretebilirler ancak ihtiyaç duyduklarında diğer canlılarıda besin olarak kullanabilirler. Örnekler: a)Protistalarda EUGLENA · Tek hücreli · Hücre ağızlarından aldıkları besinlerle hetotrof beslenirle · İhtiyaç duyduklarında kloroplastları ile fotosentez yaparak ototrof beslenirler · Göz lekeleri bulunur · Hücre içi sindirim görülür Örnek: b)Bitkilerden Dionea,Drosera,Nephentes gibi insektivorlar · Kloroplastları vardır ve fotosentez yaparlar · Azotça fakir sulak topraklarda yaşarlar · Yaprakları metamorfozla böcek kapanı haline gelmiştir · Azot ihtiyaçlarını yaprakları ile yakaladıkları böcekleri, yapraklarında sindirerek sağlarlar · Hücre dışı sindirim görülür CANLILAR ARASINDAKİ BESLENME BAĞINTILARI Bazı canlı türleri yaşamsal olaylarını devam ettire bilmek için diğer canlılarla beraber yaşamak zorundadırlar. Canlılar beslenme, üreme,barınma,hareket,korunma gibi yaşamsal olaylarda başka canlılara ihtiyaç duyarlar. Bu ilişki yarar zarar ilişkisine göre üç şekilde gerçekleşir. 1) Kommensalizm: Birlikte yaşayan türlerden biri birliktelikten yarar sağlarken diğer tür yarar veya zarar görmez. 2) Mutualizm: Birlikte yaşayan iki ayrı türde birliktelikten yarar sağlarlar. 3) Parazitizm: Birlikte yaşayan iki ayrı tür bireylerinden biri bu durumdan faydalanırken diğeri bundan zarar görür. BESİN ZİNCİRİ VE BESİN PİRAMİTLERİ Besin zincirleri Doğada canlılar başka bir canlıyı besin olarak kullanırken kendileride başka canlıların besini olurlar. Canlıların birbirlerini tüketmelerine göre sıralanmaları ile oluşan zincire besin zinciri denir. Zincirin her halkası ayrı bir tür tarafından oluşturulur. Ancak hiçbir zaman doğada tek sıralı zincire rastlanmaz. Bir canlı besin olarak birden fazla türü besin olarak kullanırken kendiside birden çok türün besini olur. Bu durum zincirlerin birbirine karışıp beslenme ağları oluşturmasına neden olur. · Besin zincirleri ile canlılar arasında organik madde ve enerji akışı gerçekleşir. · Zincir ne kadar kısa ise madde ve enerji o kadar ekonomik kullanılır. · İlk halkada ototroflar bulunur · Son halkada 3.tüketiciler (Yırtıcılar) bulunur · Zincirdeki canlılar fonksiyonlarına göre üç tiptir 1) Üreticiler 2) Tüketiciler: a) Birincil tüketiciler (Herbivorlar) b) İkincil tüketiciler (Karnivorlar) c) Üçüncül tüketiciler (Karnivorlar) 3) Ayrıştırıcılar · Ayrıştırıcılar zincire her halkadan katılabilir · Her halkada önceki halkadan alınan organik madde ve enerjinin %90 ‘ı canlının yaşamsal olaylarında tüketilirken , canlı vücudunda saklı tutulan % 10 ‘u besini olduğu sonraki halkaya geçer. Bu duruma % 10 yasası denir. YAŞAM BİRLİKLERİ (KOMÜNİTELER) Sınırları belli bir coğrafi ortamda yaşayan tüm populasyonların oluşturduğu birliktir. Biyosferde iki tip yaşam birliği vardır. A-Kara yaşam birliği (Orman, Çayır, Step, Tundra, Çöl, Mağara. vb.) B-Su yaşam birlikleri (Deniz, Göl, Akarsu, Havuz, Bataklık, Pınar, vb.) Yaşama birliklerinin özellikleri: · Baskın türler vardır:Komünitede gerek sayısal gerekse yaşamsal aktiviteleri bakımından en çok rastlanan türdür. · Her yaşam birliği belirli iklimsel koşullara sahip ortamlara uyumlu türlerden oluşur: Ormanlarda topraktan ağacın tepesine kadar farklı şartlara sahip microklima katmanları ve bu katmanlarda şartlara uyumlu bitki ve hayvan türleri bulunur. · Yaşam birliklerinin sınırları vardır. Ancak bazı yaşam birlikleri içiçe olabilir. · Yaşam birliklerinde canlıların sayıları ile vücud büyüklükleri ters orantılıdır. · Yaşam birliğinin baskın türü biyotik ve abiyotik nedenlerle zamanla ortadan kalkabilir ve yerini başka bir tür alabilir .Bu olaya süksesyon denir. POPULASYONLAR Sınırlandırılmış coğrafik bölgede yaşayan aynı tür bireylerin oluşturduğu topluluktur.Populasyoınlar biyolojik birimdir. Populasyonlarda bir birey doğar, büyür ve ölür ancak populasyonlar varlığını sürdürür. Populasyonların incelenmesinin sağladığı faydalar şunlardır. · Canlı ile çevresi arasındaki ilişkileri anlamak · Doğadaki madde ve enerji akışını tanımak ,önemini kavramak · Yaşanabilir doğayı öğrenmek ,tanımak ve korumanın önemini kavramak · Canlıların genetik yapı ve evrimini öğrenmek POPULASYONLARIN ÖZELLİKLERİ 1) Populasyon büyüme şekilleri: Populasyona doğum ve içe göçle birey katılarak büyür. Ölüm ve dışa göçle bireyler azalarak küçülür. Eğer populasyonun bulunduğu alanda çevresel koşullar değişmeden kalıyorsa populasyonlarda birey sayısı dengeye ulaşır. Populasyonların gelişme,gerileme ve dengesi şu formülle hesaplanır. P=Populasyon büyüklüğündeki değişme A=Doğum + İçe göç (Birey sayısı artışı) B=Ölüm + Dışa göç (Birey sayısı azalması) KAYNAK: belgeci.com

http://www.biyologlar.com/ekoloji-ve-besin-zinciri

BAĞIŞIKLIK SİSTEMİNİ NEDİR

İnsan vücudu, hastalıklara karşı bir savunma sistemi ile donatılmıştır ve bu yüzden de kendi kendini iyileştirme yeteneğine sahiptir. Hastalığa yol açan maddeler tarafından uyarıldığında bu sistem hemen harekete geçer. Bu bazen adaptasyon tepkisi olarak adlandırılır. Sistem, yabancı olarak algıladığı bir mikroorganizma ile karşılaştığında, belirli hücreler bundan kurtulmak için savaşmaya başlar. Aşılama bağışıklık kazanmanın suni şeklidir. İşlemden geçirilmiş ya da ölü organizma aşı içinde vücuda enjekte edilir. Her gelişmiş sistemde olduğu gibi,sistem kötü işlediğinde sonuçlar ciddidir. Bağışıklık Sisteminde Dengeyi Korumak; Bağışıklık sistemini dengede tutmak önemlidir. Güçsüz bağışıklık sistemi gibi aktif olan sistemde sorun oluşturabilir. Bağışıklık sistemini dengede tutmak için anti-oksidan mikro besin maddeleri sağlayabilir. Dengede tutmak için ilk önce C ve E vitamini betakaroten ve selenyumun vücut tarafından alınması çok önemlidir. Bunun dışında taze meyve ve sebze yemeyi ihmal etmemek gerekir. Bağışıklık Sistemini Olumsuz Etkileyen Besinler... 1.FLÜORİD: Bağışıklık sistemini yavaşlatır,beyaz hücrelerin yabancı hücreleri yok etme gücünü azaltır. 2.CIVA: Vücudun enfeksiyonla savaşma gücünü olumsuz etkiler,antikorlarınkendi hücrelerinin zehirlenmesine yol açar. 3.KADMİYUM: Antikor içeren bazı enzimlerin fonksiyonlarını baskılar. 4.ALÜMİNYUM: Kalsiyum kullanımını engeller,hemoglobin üretimini etkiler. Etkin Bir Bağışıklık Sistemi... * Enfeksiyonların şiddetini azaltacaktır. * Soğuk algınlığı,nezle ve diğer enfeksiyonlara yakalanma riskini azaltacaktır. * Kanser hücrelerinin yok edilmesini en yüksek seviyeye çıkaracaktır. * Canlılığı azaltan toksit kimyasalların birikmesini önleyerek,enerji düzeylerini arttıracaktır. * Vücudu çevredeki radyasyon ve kirlerden koruyacaktır. * Yaşlanma sürecini yavaşlatacaktır. Bağışıklıkla İlgili Yaygın Hastalıkların Bazıları... * AIDS(Kazanılmış bağışıklık eksikliği sendromu) * Kanser ve tümörler * Alerjiler * Yiyeceklere karşı hassasiyet Bozulmuş Bağışıklık Sistemi Belirtileri... * Hazımsızlık * Şiş ve ağrılı bezler * Koku alamama,salgı yokluğu,solunum güçlüğü * Saç dökülmesi ve donuk saç rengi * Kırışık ve kuru cilt * Sertleşmiş ve şiş eklemler * Dikkat bozukluğu,ilgisizlik,isteksizlik ve halsizlik * Depresyon ve irritabilite

http://www.biyologlar.com/bagisiklik-sistemini-nedir

Canlıların Ortak Özellikleri

Canlı ve cansızların aynı kimyasal ve fiziksel yasalara bağlı olduğuna inanan felsefeye Materyalizm ya da mekanik görüş, buna karşılık canlıların farklı yasalar altında hareket ettiğini ve canlılığın mistik bir güç ile meydana geldiğini benimseyen görüşe de Vitalizm ya da kadercilik denir. Her iki görüşün de temelinde belirli kimyasal ve fiziksel ilkelerin yattığı bir gerçektir. Canlılk ile cansızlığı virüslerde birbirinden ayırmak oldukça zordur (uygun koşullarda canlı özelliği, uygun olmayan koşullarda ise kristal hale geçerek cansız özelliği gösterir). Daha ileriki kademelerde canlılık özelliği belirgin hale geçerken, o zaman da canlının bitki mi yoksa hayvan mı olduğu konusunda bazı sorunlar ortaya çıkar. Nitekim birhücreli bazı hayvan grupları bugün hem botanikçiler hem de zoologlar tarafından incelenmektedir. (Örneğin; kamçılılardan öglenanın karanlıkta hayvansal, ışıkta bitkisel davranması, evrimsel gelişimde her iki grubun bu kademede ortak bir organizasyona ve ataya sahip olduğu fikrini güçlendirmektedir.) Bu aşamadaki ortaklık, daha sonraki kademelerde "bu bir canlıdır"yargısını açıkça verdirecek ortak özellikleri beraberinde vermiş; uyuma göre bu özellikler sonradan geliştirilmiştir. A. ÖZEL BİR KİMYASAL DİZİLİME SAHİP OLMALARI Cansızlar, kimyasal bağların izin verdiği ölçüler içerisinde bir bileşime sahiptirler. Canlılar ise bu kimyasal bağların dizilimini özel bir şekilde saptarlar. Tüm canlılar genleri oluşturan çekirdek asitlerini -genellikle DNA (bazı virüslerde RNA)- içerirler. Gensiz bir canlılık düşünemeyiz. Çünkü genler değişik yaşam formlarının sentez ve replikasyonundan (eşlenmesinden) sorumludur. Tüm genler aynı birimlerden; fakat değişik dizilimlerden oluşmuştur. Dolayısıyla tüm canlıların yapısına giren protein, bu genlerin yapısal değişikliğine uygun olarak, her hücrede farklı amino asit dizilimine sahip olurlar. İlave olarak karbonhidrat, yağ, ve su içerirler. Tüm bu maddelerin özel karışımı protoplazmayı meydana getirir. B. HÜCRESEL DİZİLİM Canlıların büyük bir kısmı (kural olarak çokhücreliler) hücre olarak bilinen birimlerden yapılmıştır. Her hücre çok ince zarla (plazma zarı) çevrilmiştir. Bu zar erimiş maddelerin ve suyun hücre içerisine girip çıkmasına izin verir. Her iki yönde de geçirim bakımından çok özelleşmiş seçici bir yeteneği vardır. Hücre bir çok kimyasal değişimin yapılabilmesi için değişik enzimleri ve en önemlisi yalnız başına kendinin aynını üretebilecek yeteneğe sahiptir. C. ORGANİZASYON Canlıların vücut kısımlarının görev bölümüne ve belirli kurallar içerisinde canlılık etkinliğini devam ettirmelerine organizasyon denir. Bütün hayvan ve bitkilerin vücudu, yapısal ve işlevsel olarak birim kabul edilen hücrelerden yapılmış olmasına karşın homojen değildir. Farklılaşmış vücut kısımları değişik görevleri üzerine almıştır. Hatta birhücreli canlılarda, ergin evrede, boy ve şekil sabit olmakla beraber, hücrenin farklı kısımları farklı görevleri üzerine almıştır. D. UYARILMA Bütün canlıların çevrelerindeki fiziksel ve kimyasal koşulların değişmesine karşı tepkileri kalıtsaldır. Basit organizmalarda uyarı, genel olarak bütün vücutla algılandığı halde, yüksek organizmalarda duyu organlarının yeri merkezileşmiştir. Örneğin; ışık gözle, koku burunla, tat dille, basınç ve sıcaklık deriyle vs. Uyarının alınması ve gerekli tepkinin gösterilmesi, canlının evren içerisinde en uygun yerde ve koşullarda yaşamasını sağlamayı yaratmaktadır. E. HAREKET Beslenme, korunma, üreme, yayılma, en rahat edebileceği bölgeyi bulma vs. gibi yaşamın temel işlevlerini yürütebilmek için, ilkel organizmalarda ya vücudun tamamıyla protoplazmik hareket ya bir kısmıyla sil ve kamçı hareketi ya da yüksek organizmalarda görülen, yürüme, yüzme, ve uçmanın sağlanması için belirli organ oluşumları görülür. Birçok canlı tüm yaşamı süresince belirli bir yere bağlı kalmasına karşın, vücudun değişik kısımlarının çevre koşullarına göre değişimi de hareket olarak kabul edilir. Örneğin; bitkilerde ışığa (fototropizm), yerçekimine (geotropizm), neme (higrotropizm), vs. ye yönelim bir hareket kavramı içerisinde değerlendirilir. F. ENERJİ KULLANIMI Canlılığın en önemli öğelerinden biri büyüme, üreme, yenilenme vs. için enerjiye olan gereksinimleridir. Hücre kendi başına enerji üretemez; dışarıdan kaynak sağlamak zorundadır. Hayvanlar enerji bağları içeren molekülleri yıkmak (katabolik tepkimeler) suretiyle gerekli enerjiyi sağlarlar. (karbonhidrat, yağ ve proteinden). Küçük molekülleri büyük moleküller halinde bağlayarak (anabolik tepkimeler) yapı taşlarını ve enerji depolanmasını da yapabilirler. Bu tepkimelerin tümüne birden biyoenerjitik denir. Bir moleküldeki enerjinin büyük bir kısmını kullanma oksijen kullanmakla olur; yani tamamıyla oksitlenmelidir (aerobik solunum=oksijenli solunum). İlkel canlıların bir kısmı (bazı mikroorganizmalar, özellikle mayalar) ve bazı endoparazitler (bağırsak solucanları gibi) bu kaynak maddeleri oksijensiz yıktığı için enerjinin pek az bir kısmından yararlanabilir (anaerobik solunum=oksijensiz solunum). Pek az bir organizma grubu da bazı inorganik maddeleri yıkmak suretiyle enerji elde eder; azot, demir ve kükürt bakterileri bunlara tipik örneklerdir. Dünyada serbest oksijenin olmadığı devirlerde, canlılar enerjilerini bu yollarla sağlıyorlardı. Bitkiler ise (saprofit ve parazit olanların bir kısmı hariç) enerji kaynağı olarak güneş ışınlarını kullanır. Güneş ışınlarının kuantlarındaki enerjiyi kimyasal bağlar halinde (nişasta) tutarlar ve bu kimyasal bağlar tüm adrıbeslek (heterotrof) canlıların enerji kaynağını ve yapı maddelerini oluşturur. İlk evrelerde (bitkiler oluşmadan önce) enerji kaynağı olarak UV ışınlarının katalizlediği bazı ilkin organik moleküller kullanılmıştır. Ozon perdesi oluştuktan sonra bu kaynak büyük ölçüde kurumuştur. G. ÇEVREYE UYUM Canlılar kural olarak yaşadığı ortamın koşullarına uyum yapabilecek yeteneğe sahiptir. Bu durum homeostatik tepki olarak bilinir. Değişik koşulların bulunduğu ortamda en uygun yeri seçmeye çalışır; şayet tam anlamıyla uygun ortam bulamazsa, yapısal değişikliklerle (mutasyonların yardımıyla) bu uyum sağlanmaya çalışılır. Günlük uyumlardan binlercesini farkında olmadan yaparız. Örneğin gözün karanlığa ve aydınlığa uyum yapması gibi. Çevre koşullarının değişmesi canlı bünyesine en az etki bırakacak şekilde iletilmeye çalışılır (özellikle sıcakkanlılarda); örneğin çölde ve kutuplarda insan kanı her zaman aynı sıcaklıktadır. Canlı, uyum yapabildiği oranda hayatta kalma şansına sahiptir. Bu oran ise kalıtsal yapı ile saptanmıştır. Bu sınırların dışındaki uyumlar ancak mutasyonlarla sağlanabilir. H. ÜREME Hiçbir canlı sonsuz olarak yaşamını devam ettiremez. Herhangi bir şekilde, üremeyle, kalıtsal materyal gelecek kuşaklara aktarılır. Birhücrelilerde bölünme aynı zamanda çoğalmayı sağlamasına karşın, çokhücrelilerde üreme belirli vücut kısımlarına özgü bir yetenek olarak ortaya çıkmıştır. Bazı canlı gruplarında gen değişimi olmaksızın (eşeysiz) üreme görülmesine karşın (birhücrelilerde mitoz bölünme; çokhücrelilerde tomurcuklanma, dallanma, partenogenez çoğalma, bitkilerde çeliklenme vs.) kural olarak eşeyli üreme çok daha sıktır. Bu şekilde değişik gen kombinasyonları ortaya çıkarak daha başarılı döllerin meydana gelmesini sağlar. Bu, evrim mekanizmasının en önemli ögelerinden biridir. İ. EVRİMSEL UYUM VE VARYASYONLARIN KALITIMI Tüm canlılar genlere sahiptir ve genlerin tümü de mutasyonla değişebilir. Bu, aynı türün farklı bireylerinin kalıtsal olarak değişmesini sağlar. Dolayısıyla o anda faydalı olan mutasyonları taşıyan bireyler seçilir, zararlı olanlar uyum yapamadığı için ortadan kaldırılır ve evrimsel bir yönlendirme ortaya çıkar. Bu, zamanla türün değişmesine neden olur; özellikle çevre koşulları değiştiği zaman. Kalıtsal uyumlar meydana gelmeseydi, hiçbir tür yaşamını sürdüremeyecekti; çünkü çevre koşulları devamlı olarak değişmektedir. I. BÜYÜME Çevresindeki anorganik (ham) maddeleri kendi protoplazma yapısına çevirme, büyüme olarak bilinir. Bitkilerde (çok yıllık) kural olarak sınırsız bir büyüme görülmekle beraber, hayvanlarda her türün kendine özgü şekil ve büyüklüğe ulaşmasına kadar devam eder. Çok hücreli hayvanlarda genellikle bir büyüme evresi vardır. Bu evrede büyüme hızlıdır. Daha sonraki evre olgunluk evresidir, büyüme yoktur; fakat protoplazmanın yenilenmesi için devamlı besin yadımlaması (asimilasyonu) vardır. Protoplazma, metabolik tepkimeler sonucu sürekli olarak yıkılır, eğer yaşam devam edecekse bu protoplazmanın yenilenmesi gerekir. Birhücrelilerde büyüme, çoğalma ile sonuçlanmasına karşın; çokhücrelilerde vücudun gelişmesini ve irileşmesini sağlar. Yaşlılık evresinde protoplazmanın yenilenmesi gittikçe azalır; hücre yavaş yavaş işlevini; ilerlemiş ve yaygınlaşmış durumlarda da yaşamını yitirir. Bu bozulma herhangi bir yaşta, yeterince besin alınmadığında veya nitelik bakımından doyurucu olmadığında da ortaya çıkabilir. Yenilenmenin kusursuz olması protoplazmanın içerdiği maddelerin eksiksiz olmasıyla sağlanabilir. Büyüme her türde kalıtsal yapıyla sınırlandırılmıştır. Bunun alt ve üst sınırları çevre koşullarıyla belirlenmistir.

http://www.biyologlar.com/canlilarin-ortak-ozellikleri-2

Virüslerin Özellikleri

1-Canlı ve cansız arasında geçit oluştururlar. 2-Protein kılıf ve nükleik asitten oluşurlar.(DNA veya RNA) 3-Kristalleşebilirler 4-Kompşex enzim sstemleri yoktur. 5-DNA taşıyanlar bakterileri yiyebilir bunlara bakteriyofaj veya faj denir. 6-Grip, nezle, kızamık, frengi, kabakulak gibi hastalıkları yaparlar. 7-Virüs bir canlı hücrenin (örneğin bakterinin) çeperine yapışır. 8-Virüs DNA’si bakterinin içine enjekte olur. 9-Bakteri DNA’sının eşlenmesi durur. 10-Virüs DNA’sı bakterinin bütün biyokimyasal sistemlerini kullanarak kendini eşlemeye başlar. 11-Bakterinin protein sentezi sistemi virüs için gerekli protein kılıfı v.s. gibi yapıları bakteri malzemesi kullanılarak sentezlenir.bu yolla 100’den fazla virüs oluşur. 14-Bakterinin hücre duvarını delici enzimlerinde sentezlenmesi ve hücre duvarının erimesiyle virüsler dışarı çıkar.

http://www.biyologlar.com/viruslerin-ozellikleri

Epitel Doku

Epitel dokusu, sıkıca biraraya gelmiş polihedral hücreler ile çok az hücrelerarası maddeden oluşur. Bu hücreler arasındaki bağlantılar güçlüdür. Böylece, oluşan hücresel tabakalar vücudun yüzeyini örter ve boşluklarını döşer. Epitel dokusunun başlıca görevleri: Yüzeyleri örtmek ve döşemek (deri) Emilim (barsaklar) Salgılama (bezlerin epitelyal hücreleri) Duyu algılama (nöroepitel) Kasılma (miyoepitelyal hücreler) Kökeni: Her 3 germ yaprağından da gelişir. Deriyi, ağız, burun ve anüsü döşeyen epitel ektodermal; solunum, sindirim sistemi ve sindirim sisteminin bezleri (pankreas ve karaciğer) endodermal; kan damarlarının endotel örtüsü mezodermal orijinlidir. Hücre şekli: Yüksek prizmatikten, kübiğe ve alçak yassıya kadar değişirken , boyutları da değişiktir. Çekirdeğin şekli çoğunlukla ve kabaca hücre şekline uyar. Bütün epitel hücreleri, altlarında bulunan bağ dokusu ile temas halindedir. Bunların bazal yüzeyindeki tabaka bazal lamina olarak isimlendirilir. Yalnızca elektron mikroskopta görülen bu tabaka ince fibrillerin oluşturduğu narin bir ağdan meydana gelen 20-100 nm kalınlığında yoğun bir tabaka olarak belirir ve lamina densa olarak adlandırılır. Lamina densa’nın yanısıra bazal laminadaki yoğun tabakanın tek ya da her iki yanında elektron-geçirgen tabakalar bulunabilir, bunlar lamina rara ya da lamina lusida olarak isimlendirilir. Bazal laminanın ana bileşenleri 1-Tip IV kollajen 2-Laminin (glikoprotein) 3-Heparan sülfat (proteoglikan) dır. Bazal lamina, altındaki bağ dokusuna tip VII kollajenle ve yüzeysel dermisin elastik elementlerinden olan mikrofibril demetleri ile tutunur. Bazal lamina yalnızca epitelyal dokularda değil, aynı zamanda bağ dokusu ile temas eden diğer hücre tiplerinde de bulunur. Bazal lamina, bağ dokusu ile diğer dokular arasında makromoleküllerin değiş – tokuşunu sınırlayan yada düzenleyen bir bariyer oluşturur. Hücrelerarası etkileşim için gerekli bilgileri de içerir. Bir diğer fonksiyonu ise epitelyal hücrelerin yerini ve hareketlerini düzenler. Bazal laminanın bileşenleri epitel, kas, yağ ve Schwan hücreleri tarafından salgılanır. Bazen retiküler lifler, bazal lamina ile sıkı bir ilişki içinde olan ve retiküler lamina adı verilen bir tabaka oluştururlar. Bu retiküler lifler, bağ dokusu hücreleri tarafından üretilirler. Bazal membran, akciğer alveolleri ve böbrek glomerüllerinde her iki epitel hücre tabakasına ait bazal laminaların kaynaşması ile oluşan, bu nedenle bazal laminadan daha kalın olan ve ışık mikroskobu ile görülebilen yapılardır. PAS + dir. Genellikle 2 bazal laminanın kaynaşması ile oluşabildiği gibi bazen bir bir bazal bir retiküler laminanın birleşmesi ile oluşur. Epitel Dokusunun İnnervasyonu: Epitel dokularının çoğu lamina propriadaki sinir pleksuslarından zengin duyu sinir sonlanmaları alır. Epitel Hücrelerinin Yenilenmesi: Epitel dokuları dayanıksız yapıdadır, hücreler mitotik aktivite ile devamlı olarak yenilenir. Yenilenme hızı ince bağırsakta süratli (2-5 gün), pankreasta yavaştır (50 günde bir). Çok katlı ve yalancı çok katlı epitelde mitoz, germinal tabakada meydana gelir. Metaplazi: Bazı fizyolojik ve patolojik şartlar altında bir epitel tipi değişime uğrayarak başka bir epitel tipine dönüşür. Polarite: Epitel hücrelerinin önemli bir özelliğidir. Vücut dışını veya vücut boşluğunu sınırlayan apikal yüzü ve bazal laminaya oturan, iç vücut yapılarına dönük bazal yüzeyi vardır. Kan damarları epitele girmediğinden bütün besinlerin lamina proprianın altında bulunan kapillerlerden çıkarak epitele geçmesi gerekir. Besinler ve epitelyal hücre ürünlerinin öncülleri, bazal laminadan diffüzyonla geçerek bazo-lateral yüzeylerinden genellikle de enerji gerektiren bir işlemle hücre içine alınır. Epitel hücrelerinin aktivitelerini etkileyen hormonlar, nörotransmitterler gibi kimyasal ulakların reseptörleri de bazo-lateral membranda toplanır. Absorbtif hücrelerde, apikal hücre membranı yapısındaki membran, proteinlerin yanısıra disakkaritler ve peptidazlar gibi enzimleri de içerir. Bu enzimler, emilen moleküllerin sindirimini tamamlar. Sıkı bağlantıların, çeşitli hücre membran bölgelerindeki esas membran proteinlerinin birbirine karışmasını önlemeye yardımcı olduğu düşünülmektedir.   Vücudun iç ve dış yüzeyini örter.Bunun 4 görevi vardır;Bulundukları organı dış etkilerden korumak,Salgı yapmak,Emmek, Mukus ve benzeri maddeleri iletmek.Epitel doku işlevine göre 2 grupta incelenir; 1.Örtü epiteli:Asıl görevi korumaktır.Ancak bazen emilim görevide yaparlar.Hücrelerinin sıralanışına göre Tek katlı ve Çok katlı olmak üzere ayrılırlar. A.Tek katlı epitel:Yan yana dizilmiş hücrelerden oluşur.Hücreleri yassı,kübik veya silindiriktir., a.Tek katlı yassı epitel: Akciğer alveolleri,kan damarlarının iç yüzü ve kılcal damarlarda bulunur. b.Tek katlı kübik epitel:Omurgalı böbreklerinde,tiroit bezinde bulunur. c.Tek katlı silindirik epitel:Omurgalının solunum yollarında,incebağırsakta bulunan silindirik epitel emme görevi yapar. B.Çok katlı epitel:Üst üste sıralanmış hücrelerden oluşur.Omugalıların derisinde bu doku vardır.Bu epitel dokuyu incelediğimizde en altta silindirik,ortada kübik,üstte ise yassı epitelden oluşmuştur.En üstteki epitel genellikle ölüdür.Bu ölü hücre alttaki canlı hücreleri dış etkilerden korur.Kan damarı içermez. 2.Salgı(Bez) epiteli;Salgı yapma yeteneğindeki hücrelerdir.Tükürük bezi,mide bezleri,ter bezleri,hipofiz,tiroit gibi salgı yapan organlarda bulunur.Hücre sayısına göre; A.Tek hücreli bezler ; Silindirik hücrelerden oluşur.Bunlara “goblet” hücresi denir.Toprak solucanının derisinden,sindirim kanalından,solunum organlarından salgılanan mukus buna örnektir. B.Çok hücreli bezler; Salgı yapan hücrelerin bir araya gelmesi ile oluşurlar.Salgılarını bir kanala ve buradan vücut boşluğuna veren bezlere ekzokrin(dış salgı) bezi denir.Tükrük bezi,mide ve bağırsak bezleri ile gözyaşı bezleri dış salgı bezleridir.Salgılarını doğrudan kana veren bezlere endokrin(iç salgı) bezi denir.Bunlar kanalsız bezlerdir.Salgılarına hormon denir.Hipofiz,tiroit,paratiroit,böbreküstü bezleri birer iç salgı bezidir

http://www.biyologlar.com/epitel-doku

Fotosentez

Dünya, canlı yaşamına en uygun olacak şekilde, özel olarak tasarlanmış bir gezegendir. Atmosferindeki gazların oranından, güneşe olan uzaklığına, dağların varlığından, suyun içilebilir olmasına, bitkilerin çeşitliliğinden yeryüzünün sıcaklığına kadar kurulmuş olan pek çok hassas denge sayesinde dünya yaşanabilir bir ortamdır. Yaşamı oluşturan öğelerin devamlılığının sağlanabilmesi için de hem fiziksel şartların hem de bazı biyokimyasal dengelerin korunması gereklidir. Örneğin nasıl ki canlıların yeryüzünde yaşamaları için yer çekimi kuvveti vazgeçilmez ise, bitkilerin ürettiği organik maddeler de yaşamın devamı için bir o kadar önemlidir. İşte bitkilerin bu organik maddeleri üretmek için gerçekleştirdikleri işlemlere, daha önce de belirttiğimiz gibi fotosentez denir. Bitkilerin kendi besinlerini kendilerinin üretmesi olarak da özetlenebilecek olan fotosentez işlemi, bunların diğer canlılardan ayrıcalıklı olmasını sağlar. Bu ayrıcalığı sağlayan, bitki hücresinde insan ve hayvan hücrelerinden farklı olarak güneş enerjisini direkt olarak kullanabilen yapılar bulunmasıdır. Bu yapıların yardımıyla, bitki hücreleri güneşten gelen enerjiyi insanlar ve hayvanlar tarafından besin yoluyla alınacak enerjiye çevirirler ve yine çok özel yollarla depolarlar. İşte bu şekilde fotosentez işlemi tamamlanmış olur. Gerçekte bütün bu işlemleri yapan, bitkinin tamamı değildir, yaprakları da değildir, hatta bitki hücresinin tamamı da değildir. Bu işlemleri bitki hücresinde yer alan ve bitkiye yeşil rengini veren "kloroplast" adı verilen organel gerçekleştirir. Kloroplastlar, milimetrenin binde biri kadar büyüklüktedir, bu yüzden yalnızca mikroskopla gözlemlenebilirler. Yine fotosentezde önemli bir rolü olan kloroplastın çeperi de, metrenin yüz milyonda biri kadar bir büyüklüktedir. Görüldüğü gibi rakamlar son derece küçüktür ve bütün işlemler bu mikroskobik ortamlarda gerçekleşir. Fotosentez olayındaki asıl hayret verici noktalardan biri de budur. SIR DOLU BİR FABRİKA: KLOROPLAST Kloroplastta fotosentezi gerçekleştirmek üzere hazırlanmış thylakoidler, iç zar ve dış zar, stromalar, enzimler, ribozom, RNA ve DNA gibi oluşumlar vardır. Bu oluşumlar hem yapısal hem de işlevsel olarak birbirlerine bağlıdırlar ve her birinin kendi bünyesinde gerçekleştirdiği son derece önemli işlemler vardır. Örneğin kloroplastın dış zarı, kloroplasta madde giriş-çıkışını kontrol eder. İç zar sistemi ise "thylakoid" olarak adlandırılan yapıları içermektedir. Disklere benzeyen thylakoid bölümünde pigment (klorofil) molekülleri ve fotosentez için gerekli olan bazı enzimler yer alır. Thylakoidler "grana" adı verilen kümeler meydana getirerek, güneş ışığının en fazla miktarda emilmesini sağlarlar. Bu da bitkinin daha fazla ışık alması ve daha fazla fotosentez yapabilmesi demektir. Bunlardan başka kloroplastlarda "stroma" adı verilen ve içinde DNA, RNA ve fotosentez için gerekli olan enzimleri barındıran bir de sıvı bulunur. Kloroplastlar sahip oldukları bu DNA ve ribozomlarla hem kendilerini çoğaltırlar, hem de bazı proteinlerin üretimini gerçekleştirirler. Fotosentezdeki başka bir önemli nokta da bütün bu işlemlerin çok kısa, hatta gözlemlenemeyecek kadar kısa bir süre içinde gerçekleşmesidir. Kloroplastların içinde bulunan binlerce "klorofil"in aynı anda ışığa tepki vermesi, saniyenin binde biri gibi inanılmayacak kadar kısa bir sürede gerçekleşir. Bilim adamları kloroplastların içinde gerçekleşen fotosentez olayını uzun bir kimyasal reaksiyon zinciri olarak tanımlarlarken, işte bu hız nedeniyle fotosentez zincirinin bazı halkalarında neler olduğunu anlayamamakta ve olanları hayranlıkla izlemektedirler. Anlaşılabilen en net nokta, fotosentezin iki aşamada meydana geldiğidir. Bu aşamalar "aydınlık evre" ve "karanlık evre" olarak adlandırılır. AYDINLIK EVRE Bitkilerin fotosentez işleminde kullanacakları tek enerji kaynağı olan güneş ışığı değişik renklerin birleşimidir ve bu renklerin enerji yükü birbirinden farklıdır. Güneş ışığındaki renklerin ayrıştırılması ile ortaya çıkan ve tayf adı verilen renk dizisinin bir ucunda kırmızı ve sarı tonları, öbür ucunda da mavi ve mor tonları bulunur. En çok enerji taşıyanlar tayfın iki ucundaki bu renklerdir. Bu enerji farkı bitkiler açısından çok önemlidir çünkü fotosentez yapabilmek için çok fazla enerjiye ihtiyaçları vardır. Bitkiler en çok enerji taşıyan bu renkleri hemen tanırlar ve fotosentez sırasında güneş ışınlarından tayfın iki ucundaki renkleri, daha doğrusu dalga boylarını soğururlar, yani emerler. Buna karşılık tayfın ortasında yer alan yeşil tonlardaki renklerin enerji yükü daha az olduğu için, yapraklar bu dalga boylarındaki ışınların pek azını soğurup büyük bölümünü yansıtırlar. Bunu da kloroplastların içinde bulunan klorofil pigmentleri sayesinde gerçekleştirirler. İşte yaprakların yeşil gözükmesinin nedeni de budur. Fotosentez işlemi bitkilerin yeşil görünmesine neden olan bu pigmentlerin güneş ışığını soğurmasından kaynaklanan hareketlenme ile başlar. Acaba klorofiller bu hareketlenme ile fotosentez işlemine nasıl başlamaktadırlar? Bu sorunun cevabının verilebilmesi için öncelikle kloroplastların içinde bulunan ve klorofilleri içinde barındıran Thylakoid'in yapısının incelenmesinde fayda vardır. "Klorofiller, "klorofil-a" ve "klorofil-b" olarak ikiye ayrılırlar. Bu iki çeşit klorofil güneş ışığını soğurduktan sonra elde ettikleri enerjiyi fotosentez işlemini başlatacak olan fotosistemler içinde toplarlar. Thaylakoid'in detaylı yapısının anlatıldığı resimde de görüldüğü gibi fotosistemler kısaca, thylakoid'in içinde yer alan bir grup klorofil olarak tanımlanabilir. Yeşil bitkilerin tamamına yakını bir fotosistem ile tek aşamalı fotosentez gerçekleştirirken, bitkilerin %3'ünde fotosentezin iki aşamalı olmasını sağlayacak iki farklı fotosistem bölgesi bulunur. "Fotosistem I", ve "Fotosistem II" olarak adlandırılan bu bölgelerde toplanan enerji daha sonra tek bir "klorofil-a" molekülüne transfer edilir. Böylece her iki fotosistemde de reaksiyon merkezleri oluşur. Işığın emilmesiyle elde edilen enerji, reaksiyon merkezlerindeki yüksek enerjili elektronların gönderilmesine, yani kaybedilmesine neden olur. Bu yüksek enerjili elektronlar daha sonraki aşamalarda suyun parçalanıp oksijenin elde edilmesi için kullanılır. Bu aşamada bir dizi elektron değiş tokuşu gerçekleşir. "Fotosistem I" tarafından verilen elektron, "Fotosistem II" den salınan elektron ile yer değiştirir. "Fotosistem II" tarafından bırakılan elektronlar da suyun bıraktığı elek-tronlarla yer değiştirir. Sonuç olarak su, oksijen, protonlar ve elektronlar olmak üzere ayrıştırılmış olur. Ortaya çıkan protonlar thylakoid'in iç kısmına taşınarak hidrojen taşıyıcı molekül olan NADP (nikotinamid adenin dinükliotid fosfat) ile birleşirler. Neticede NADPH molekülü ortaya çıkar. Suyun ayrışmasından sonra ortaya çıkan protonlardan bazıları ise thylakoid zarındaki enzim kompleksleri ile birleşerek ATP molekülünü (hücrenin işlemlerinde kullanacağı bir enerji paketçiği) meydana getirirler. Bütün bu işlemler sonucunda bitkilerin besin üretebilmesi için ihtiyaç duydukları enerji artık kullanılmaya hazır hale gelmiştir. Bir reaksiyonlar zinciri olarak özetlemeye çalıştığımız bu olaylar fotosentez işleminin sadece ilk yarısıdır. Bitkilerin besin üretebilmesi için enerji gereklidir. Bunun temin edilebilmesi için düzenlenmiş olan "özel yakıt üretim planı" sayesinde diğer işlemler de eksiksiz tamamlanır. KARANLIK EVRE Fotosentezin ikinci aşaması olan Karanlık Evre ya da Calvin Çevrimi olarak adlandırılan bu işlemler, kloroplastın "stroma" diye adlandırılan bölgelerinde gerçekleşir. Aydınlık evre sonucunda ortaya çıkan enerji yüklü ATP ve NADPH molekülleri, karanlık evrede kullanılan karbondioksiti, şeker ve nişasta gibi besin maddelerine dönüştürürler. Burada kısaca özetlenen bu reaksiyon zincirini kaba hatlarıyla anlayabilmek bilim adamlarının yüzyıllarını almıştır. Yeryüzünde başka hiçbir şekilde üretilemeyen karbonhidratlar ya da daha geniş anlamda organik maddeler milyonlarca yıldır bitkiler tarafından üretilmektedir. Üretilen bu maddeler diğer canlılar için en önemli besin kaynaklarındandır. Fotosentez reaksiyonları sırasında farklı özelliklere ve görevlere sahip enzimler ile diğer yapılar tam bir iş birliği içinde çalışırlar. Ne kadar gelişmiş bir teknik donanıma sahip olursa olsun dünya üzerindeki hiçbir laboratuvar, bitkilerin kapasitesiyle çalışamaz. Oysa bitkilerde bu işlemlerin tümü milimetrenin binde biri büyüklüğündeki bir organelde meydana gelmektedir. Şekilde görülen formülleri, sayısız çeşitlilikteki bitki hiç şaşırmadan, reaksiyon sırasını hiç bozmadan, fotosentezde kullanılan hammadde miktarlarında hiçbir karışıklık olmadan milyonlarca yıldır uygulamaktadır. Ayrıca fotosentez işlemi ile, hayvanların ve insanların enerji tüketimleri arasında da önemli bir bağlantı vardır. Aslında yukarıda anlatılan karmaşık işlemlerin özeti, bitkilerin fotosentez sonucu canlılar için mutlaka gerekli olan glukozu ve oksijeni meydana getirmeleridir. Bitkilerin ürettiği bu ürünler diğer canlılar tarafından besin olarak kullanılırlar. İşte bu besinler vasıtasıyla canlı hücrelerinde enerji üretilir ve bu enerji kullanılır. Bu sayede bütün canlılar güneşten gelen enerjiden faydalanmış olurlar. Canlılar fotosentez sonucu oluşan besinleri yaşamsal faaliyetlerini sürdürmek için kullanırlar. Bu faaliyetler sonucunda atık madde olarak atmosfere karbondioksit verirler. Ama bu karbondioksit hemen bitkiler tarafından yeniden fotosentez için kullanılır. Bu mükemmel çevirim böylelikle sürer gider. FOTOSENTEZ İÇİN GEREKLİ OLAN HER ŞEY GİBİ GÜNEŞ IŞIĞI DA ÖZEL OLARAK AYARLANMIŞTIR Bu kimyasal fabrikada her şey olup biterken, işlemler sırasında kullanılacak enerjinin özellikleri de ayrıca tespit edilmiştir. Fotosentez işlemi bu yönüyle incelendiğinde de, gerçekleşen işlemlerin ne kadar büyük bir hassasiyetle tasarlanmış olduğu görülecektir. Çünkü güneşten gelen ışığın enerjisinin özellikleri, tam olarak kloroplastın kimyasal tepkimeye girmesi için ihtiyaç duyduğu enerjiyi karşılamaktadır. Bu hassas dengenin tam anlaşılabilmesi için güneş ışığının fotosentez işlemindeki fonksiyonlarını ve önemini şöyle bir soruyla inceleyelim: Güneş'in ışığı fotosentez için özel olarak mı ayarlanmıştır? Yoksa bitkiler, gelen ışık ne olursa olsun, bu ışığı değerlendirip ona göre fotosentez yapabilecek bir esnekliğe mi sahiptirler? Bitkiler hücrelerindeki klorofil maddelerinin ışık enerjisine karşı duyarlı olmaları sayesinde fotosentez yapabilirler. Buradaki önemli nokta klorofil maddelerinin çok belirli bir dalga boyundaki ışınları kullanmalarıdır. Güneş tam da klorofilin kullandığı bu ışınları yayar. Yani güneş ışığı ile klorofil arasında tam anlamıyla bir uyum vardır Amerikalı astronom George Greenstein, The Symbiotic Universe adlı kitabında bu kusursuz uyum hakkında şunları yazmaktadır: Fotosentezi gerçekleştiren molekül, klorofildir... Fotosentez mekanizması, bir klorofil molekülünün Güneş ışığını absorbe etmesiyle başlar. Ama bunun gerçekleşebilmesi için, ışığın doğru renkte olması gerekir. Yanlış renkteki ışık, işe yaramayacaktır. Bu konuda örnek olarak televizyonu verebiliriz. Bir televizyonun, bir kanalın yayınını yakalayabilmesi için, doğru frekansa ayarlanmış olması gerekir. Kanalı başka bir frekansa ayarlayın, görüntü elde edemezsiniz. Aynı şey fotosentez için de geçerlidir. Güneş'i televizyon yayını yapan istasyon olarak kabul ederseniz, klorofil molekülünü de televizyona benzetebilirsiniz. Eğer bu molekül ve Güneş birbirlerine uyumlu olarak ayarlanmış olmasalar, fotosentez oluşmaz. Ve Güneş'e baktığımızda, ışınlarının renginin tam olması gerektiği gibi olduğunu görürüz. FOTOSENTEZİN SONUÇLARI Milimetrenin binde biri büyüklükte yani ancak elektron mikroskobuyla görülebilecek kadar küçük olan kloroplastlar sayesinde gerçekleştirilen fotosentezin sonuçları, yeryüzünde yaşayan tüm canlılar için çok önemlidir. Canlılar havadaki karbondioksitin ve havanın ısısının sürekli olarak artmasına neden olurlar. Her yıl insanların, hayvanların ve toprakta bulunan mikroorganizmaların yaptıkları solunum sonucunda yaklaşık 92 milyar ton ve bitkilerin solunumları sırasında da yaklaşık 37 milyar ton karbondioksit atmosfere karışır. Ayrıca fabrikalarda ve evlerde kaloriferler ya da soba kullanılarak tüketilen yakıtlar ile taşıtlarda kullanılan yakıtlardan atmosfere verilen karbondioksit miktarı da en az 18 milyar tonu bulmaktadır. Buna göre karalardaki karbondioksit dolaşımı sırasında atmosfere bir yılda toplam olarak yaklaşık 147 milyar ton karbondioksit verilmiş olur. Bu da bize doğadaki karbondioksit içeriğinin sürekli olarak artmakta olduğunu gösterir. Bu artış dengelenmediği takdirde ekolojik dengelerde bozulma meydana gelebilir. Örneğin atmosferdeki oksijen çok azalabilir, yeryüzünün ısısı artabilir, bunun sonucunda da buzullarda erime meydana gelebilir. Bundan dolayı da bazı bölgeler sular altında kalırken, diğer bölgelerde çölleşmeler meydana gelebilir. Bütün bunların bir sonucu olarak da yeryüzündeki canlıların yaşamı tehlikeye girebilir. Oysa durum böyle olmaz. Çünkü bitkilerin gerçekleştirdiği fotosentez işlemiyle oksijen sürekli olarak yeniden üretilir ve denge korunur. Yeryüzünün ısısı da sürekli değişmez. Çünkü yeşil bitkiler ısı dengesini de sağlarlar. Bir yıl içinde yeşil bitkiler tarafından temizleme amacıyla atmosferden alınan karbondioksit miktarı 129 milyar tonu bulur ki bu son derece önemli bir rakamdır. Atmosfere verilen karbondioksit miktarının da yaklaşık 147 milyar ton olduğunu söylemiştik. Karalardaki karbondioksit-oksijen dolaşımında görülen 18 milyar tonluk bu açık, okyanuslarda görülen farklı değerlerdeki karbondioksit-oksijen dolaşımıyla bir ölçüde azaltılabilmektedir. Yeryüzündeki canlı yaşamı için son derece hayati olan bu dengelerin devamlılığını sağlayan, bitkilerin yaptığı fotosentez işlemidir. Bitkiler fotosentez sayesinde atmosferdeki karbondioksidi ve ısıyı alarak besin üretirler, oksijen açığa çıkarırlar ve dengeyi sağlarlar. Atmosferdeki oksijen miktarının korunması için de başka bir doğal kaynak yoktur. Bu yüzden tüm canlı sistemlerdeki dengelerin korunması için bitkilerin varlığı şarttır. BİTKİLERDEKİ BESİNLER FOTOSENTEZ SONUCUNDA OLUŞUR Bu mükemmel sentezin hayati önem taşıyan bir diğer ürünü de canlıların besin kaynaklarıdır. Fotosentez sonucunda ortaya çıkan bu besin kaynakları "karbonhidratlar" olarak adlandırılır. Glukoz, nişasta, selüloz ve sakkaroz karbonhidratların en bilinenleri ve en hayati olanlarıdır. Fotosentez sonucunda üretilen bu maddeler hem bitkilerin kendileri, hem de diğer canlılar için çok önemlidir. Gerek hayvanlar gerekse insanlar, bitkilerin üretmiş olduğu bu besinleri tüketerek hayatlarını sürdürebilecek enerjiyi elde ederler. Hayvansal besinler de ancak bitkilerden elde edilen ürünler sayesinde var olabilmektedir. Buraya kadar bahsedilen olayların yaprakta değil de herhangi bir yerde gerçekleştiğini varsayarak düşünsek acaba aklınızda nasıl bir yer şekillenirdi? Havadan alınan karbondioksit ve su ile besin üretmeye yarayan aletlerin bulunduğu, üstelik de o sırada dışarıya verilmek üzere oksijen üretebilecek teknik özelliklere sahip makinaların var olduğu, bu arada ısı dengesini de ayarlayacak sistemlerin yer aldığı çok fonksiyonlu bir fabrika mı aklınıza gelirdi? Avuç içi kadar bir büyüklüğe sahip bir yerin aklınıza gelmeyeceği kesindir. Görüldüğü gibi ısıyı tutan, buharlaşmayı sağlayan, aynı zamanda da besin üreten ve su kaybını da engelleyen mükemmel mekanizmalara sahip olan yapraklar, tam bir tasarım harikasıdırlar. Bu saydığımız işlemlerin hepsi ayrı özellikte yapılarda değil, tek bir yaprakta (boyutu ne olursa olsun) hatta tek bir yaprağın tek bir hücresinde, üstelik de hepsi birarada olacak şekilde yürütülebilmektedir. Buraya kadar anlatılanlarda da görüldüğü gibi bitkilerin bütün fonksiyonları, asıl olarak canlılara fayda vermesi için nimet olarak yaratılmışlardır. Bu nimetlerin çoğu da insan için özel olarak tasarlanmıştır. Çevremize, yediklerimize bakarak düşünelim. Üzüm asmasının kupkuru sapına bakalım, incecik köklerine… En ufak bir çekme ile kolayca kopan bu kupkuru yapıdan elli altmış kilo üzüm çıkar. İnsana lezzet vermek için rengi, kokusu, tadı her şeyi özel olarak tasarlanmış sulu üzümler çıkar. Karpuzları düşünelim. Yine kuru topraktan çıkan bu sulu meyve insanın tam ihtiyaç duyacağı bir mevsimde, yani yazın gelişir. İlk ortaya çıktığı andan itibaren bir koku eksperi gibi hiç bozulma olmadan tutturulan o muhteşem kavun kokusunu ve o ünlü kavun lezzetini düşünelim. Diğer yandan ise, parfüm üretimi yapılan fabrikalarda bir kokunun ortaya çıkarılmasından o kokunun muhafazasına kadar gerçekleşen işlemleri düşünelim. Bu fabrikalarda elde edilen kaliteyi ve kavunun kokusundaki kaliteyi karşılaştıralım. İnsanlar koku üretimi yaparken sürekli kontrol yaparlar, meyvelerdeki kokunun tutturulması içinse herhangi bir kontrole ihtiyaç yoktur. İstisnasız dünyanın her yerinde kavunlar, karpuzlar, portakallar, limonlar, ananaslar, hindistan cevizleri hep aynı kokarlar, aynı eşsiz lezzete sahiptirler. Hiçbir zaman bir kavun karpuz gibi ya da bir mandalina çilek gibi kokmaz; hepsi aynı topraktan çıkmalarına rağmen kokuları birbiriyle karışmaz. Hepsi her zaman kendi orijinal kokusunu korur. Bir de bu meyvelerdeki yapıyı detaylı olarak inceleyelim. Karpuzların süngersi hücreleri çok yüksek miktarda su tutma kapasitesine sahiplerdir. Bu yüzden karpuzların çok büyük bir bölümü sudan oluşur. Ne var ki bu su, karpuzun herhangi bir yerinde toplanmaz, her tarafa eşit olacak şekilde dağılmıştır. Yer çekimi göz önüne alındığında, olması gereken, bu suyun karpuzun alt kısmında bir yerlerde toplanması, üstte ise etsi ve kuru bir yapının kalmasıdır. Oysa karpuzların hiçbirinde böyle bir şey olmaz. Su her zaman karpuzun içine eşit dağılır, üstelik şekeri, tadı ve kokusu da eşit olacak şekilde bu dağılım gerçekleşir.   Doğada meydana gelen ve canlılığın ışık ile iletişim gösteren en belirgin temel olaylarından biri "fotosentez" dir. Fotosentez ışık enerjisinin biyolojik olarak kimyasal enerjiye dönüşümü olayıdır. Enerji yönünden tüm canlı organizmalar kesinlikle fotosenteze bağımlıdır, çünkü gerekli besin maddelerinin ve hatta atmosferdeki oksijenin kökeni fotosentezdir. Canlı hücrelerin büyük bir çoğunluğu, basit bir algden, büyük ve karmaşık kara bitkilerine kadar fotosentez yaparlar. İnsan yaşadığı ortamda kendi gereksinmelerine göre bir çok değişiklikleri yapma yeteneğine sahip olmasına rağmen, tüm beslenme sorunu için tamamıyla diğer organizmalara bağlıdır. Bu besin piramidinin tabanını fotosentez yapan bitkiler oluşturur. Yediğimiz her şey, ya doğrudan doğruya bitkisel kökenli, ya da bu kökenden türemiş maddelerdir. Gerçekten fotosentez tek başına büyük bir olaydır. Her yıl dünyada 690 milyar ton karbon dioksit (CO2) ve 280 milyar ton su (H2 O) dan fotosentez yolu ile 500 milyar ton karbonhidrat üretilmekte ve 500 milyar ton oksijen atmosfere verilmektedir. Canlıların büyük bir çoğunluğu için oksijen, besin kadar önemlidir. Oksijen (O2) hayatsal olayların sürekliliği için gerekli olan, besinlerde depo edilmiş enerjiyi serbest hale getirir. Canlıların çoğu havadaki serbest oksijeni kullanır. Bir kısım organizmalar (bazı bir hücreliler, ilkel bitkiler, yassı ve yuvarlak parazit solucanlar) enerji elde etmek üzere çevrelerindeki eser miktarda oksijenden bile faydalanabilirler. Diğer bir kısım organizmalar ise serbest oksijen olmadan da enerji elde edebilirler (Anaerobik solunum). Fakat kompleks yapılı bitki ve hayvanlar, yaşamak için çok miktarda oksijen kullanmak zorundadırlar (Aerobik solunum). Öyleyse kompleks yapılı organizmaların canlılığının devamı ve yayılması oksijenin varlığına bağlıdır. Deney 1. Klorofil Elde Edilmesi Yeşil bitkilerin kloroplastlarında meydana gelen fotosentez de, havanın karbon dioksidi ve suyun varlığında karbonhidrat ve oksijen oluşturulmasıdır. Fotosentez olayını detaylı bir şekilde ortaya koymadan önce klorofil ile ilgili bazı deneyler gösterilecektir. Araç ve Gereçler: Isırgan otu (Urtica) yaprağı, kum, havan, kurutma kağıdı, tebeşir, benzen, alkol, su. Uygulama: Bir havan içine hücrelerin parçalanmasını kolaylaştırmak için kum ve alkol konulup ısırgan otunun yaprakları ilave edilerek iyice ezilir. Bunun sonucunda koyu yeşil boyalı bir eriyik elde edilir. Buna ham klorofil ekstresi adı verilir. Ham klorofil ekstresi hem klorofil, hem de diğer renk maddelerinden olan karotin ve ksantofil boyalı maddeleri de içermektedir. Bunları ayırmak için ekstre filitre kağıdından süzülür. Süzülen bu berrak ekstreden bir miktar alınarak bir deney tüpüne aktarılır. Tübün üzerine aynı miktarda benzen ile bir kaç damla su ilave ediler. Su ilave edilmesinin amacı alkol karışımının yoğunluğunu arttırıp, benzenin kolayca tübün üst kısmına çıkmasını sağlamaktır. Bir süre sonra tübün üst kısmında benzende eriyen klorofilin , alt kısmında ise alkolde kalan sarı renkli karotin ve ksantofil bulunur. Bu şekilde ayırmak, kaba bir yöntemdir. Bu ayrımı daha ayrıntılı bir biçimde gözleye bilmek için kağıt ve tebeşir yardımıyla basitçe yapılabilecek olan bazı uygulamaları örnek olarak verebiliriz. Bu uygulamada yukarıda adı geçen renkli maddeler molekül ağırlığı ve adsorbsiyon derecelerine göre ayrılırlar. Bir petri içine süzülmüş olan berrak klorofil ekstresinden bir miktar koyulur. İçerisine şerit şeklinde kesilerek hazırlanmış kurutma kağıdı ile tebeşir yerleştirilir. Bir süre sonra kağıdın ve tebeşirin üst kısımlarında sarı renkli karotin ve ksantofil, alt kısımda ise yeşil renkli klorofilin toplandığı görülür. Bu kademeli renk farkı adı geçen renk maddelerinin molekül ağırlıklarının ve adsorbsiyon derecelerinin farklı olmasında ileri gelir. Fotosentez Olayında Organik Madde Sentezlendiğinin Gösterilmesi Fotesentezde ışığın katalizörlüğü altında karbon dioksit ve suyun bitkiler tarafından birleştirilerek organik madde (glikoz) sentezlenmesidir. Bu maddeler ya olduğu gibi ya da uzun zincirler şeklinde paketlenerek nişasta şeklinde depolanırlar. Amacımız fotosentezin bir ürünü olan glikozun sentezlendiğini ortaya koymaktır. Araç ve Gereçler : Ebegümeci ve yaprağı iki renkli olan bir bitki yaprağı, siyah renkli kağıt, potasyum iyodür (KI), sıcak su. Uygulama : Yaprağı iki renkli olan bitkiyi alarak uzun bir müddet ışık altında tutunuz. Ebegümeci bitkisinin bir yaprağının yarısını siyah bir kağıt ile kapatarak diğer bitkiyle birlikte aynı sürede olmak şartıyla ışık altında bırakınız. Daha sonra bu bitkileri saplarından keserek kaynamakta olan suyun içerisinde hücrelerinin ölmesini ve çeperlerinin dağılmalarını sağlayınız. Bu iş için iki dakikalık bir süre yeterli olacaktır. Yapraklar yeşil rengini kaybedince potasyum iyodürle muamele ediniz. Işıkta kalmış yeşil renkli bölgelerin nişasta oluşumundan dolayı mavi bir renk aldığını, yeşil olmayan kısımların ise renk vermediğini göreceksiniz (Şekil 4. 3). Deney 3. Fotosentez İçin Karbondioksitin Varlığının Zorunlu Olduğunun Gösterilmesi Yeşil bir bitki oldukça yoğun olarak ışık altında bırakılsa bile, eğer ortamda karbon dioksit bulunmuyorsa bitki bir süre sonra sararmaya başladığı ve gelişiminin durduğu gözlenir. Bunu aşağıdaki gibi bir deneyle ispatlamak mümkündür. Araç ve Gereçler : Bir dal parçası, kavanoz, tüp, tıpa, potasyum hidroksit (KOH), su. Uygulama : Bir bitki dalı alınarak iki yaprağı içerisinde su ve potasyum hidroksit bulunduran bir tüple birlikte (tüpün ağzı açık durumda) geniş ağızlı bir şişe veya kavanoz içerisine bırakılır. Bir süre sonra dalın kavanoz içerisinde kalan kısmında yaprakların sararıp solduğu görülür. Bir müddet daha sonra ise yapraklar tamamen ölür. Buna neden olan faktör, büyük şişedeki karbon dioksitin potasyum hidroksit tarafından emilerek şişe içerisindeki yaprakların ışık ve suyu aldıkları halde karbon dioksit yetersizliğinden fotosentezi yapamamalarındandır. Böylece fotosentez için ortamda karbondioksite kesinlikle gereksinim duyulduğu ispatlanmış olur (Şekil 4. 4). Deney 4. Fotosentezi Etkileyen Faktörlerin Birlikte İncelenmesi Aynı canlı materyeli üzerinde, fotosentezi etkileyen faktörlerin birinin etkisini değiştirip (ışık, karbon dioksit, sıcaklık gibi) diğerlerininkinin sabit tutulması ile fotosentez hızında meydana gelen değişikliklerin incelenmesi ve bu faktörlerin etkilerinin karşılaştırılması şeklinde gösterilecektir. Araç ve Gereçler: Elodea bitkisi, beher, huni, ışık kaynağı, %4'lük potasyum bikarbonat (KHCO3), %1'lik KHCO3, termometre, ispirto ocağı, milimetrik kağıt. Uygulama: Bu deney için Elodea su bitkisi kullanılacaktır. Elodea bitkisi içi su dolu bir cam kaba alınır. Bitkinin üzeri çıkacak olan gaz kabarcıklarını toplayacak olan bir huniyle şekilde görüldüğü gibi kapatılır (Şekil 4. 5). Işık faktörünün etkisini ölçmek için önce normal ışıktaki kabarcık çıkışı tespit edilir. Bir lamba yardımıyla düzeneğe ışık verilir ve kabarcık çıkışı gözlenir. Fotosentez hızı ile aydınlatma şiddeti arasındaki ilişki grafikte gösterilir. Karbondioksit konsantrasyonunun etkisini inceleyebilmek için de başka bir kaba yine ortamı su ile hazırlanmış %4'lük KHCO3 çözeltisi konur. Yine bitki bu düzeneğin içine yerleştirilip bu konsantrasyondaki fotosentez hızı ölçülür. Aynı işlem %1'lik KHCO3 için tekrarlanır. KHCO3 konsantrasyonuna karşı kabarcık sayısındaki değişim grafiği çizilir. Sıcaklığın fotosentez üzerine etkisini ölçmek içinde aynı düzeneğin sıcaklığı ölçülür ve bu sıcaklıktaki kabarcık sayısı saptanır. Daha sonra sıcaklık ispirto ocağı yardımıyla arttırılır ve kabarcık sayısı belirlenir. Sıcaklık kabarcık çıkışı durana kadar arttırılır. Sıcaklık ile fotosentez ilişkisi bir grafikte gösterilir. Deney 5. Aerobik Solunum Bu deneyle karbonhidratların havadan alınan O2 ile CO2 ve H2 O ya kadar yıkılıp enerji açığa çıktığını göreceksiniz. Araç ve Gereçler: Çimlenmekte olan bezelye taneleri, balon joje, cam boru, beher, KOH, renkli bir sıvı. Uygulama: Bu deney için, CO2 tutma özelliğine sahip potasyum hidroksit (KOH) kristalleri pamuğa sarılarak çimlenmekte olan bezelye taneleri ile birlikte bir balon joje içine yerleştirilir. Daha sonra balon şekilde görüldüğü gibi bir ucu renkli sıvıya batırılmış kılcal boru ile birleştirilir. Bir süre sonra bezelyelerin solunum yapması sonucu O2 alınıp CO2 verilir. Dışarıya verilen bu CO2, KOH kristalleri tarafından tutulur ve azalan hacim kadar kılcal boruda sıvı yükselir. Deney 6. Anaerobik Solunum Havanın serbest oksijeni ile temas halinde olmayan bazı bitkiler, kendileri için gerekli olan enerjiyi, organik maddeleri enzimatik faaliyetlerle parçalayarak sağlarlar. Bu parçalanma sonucunda açığa çıkan gaz CO2 'tir. Araç ve Gereçler: Çimlenmekte olan nohut, deney tüpü, civa, beher. Uygulama: Çimlenmekte olan bir kaç nohut tanesini deney tüpünün içine yerleştirin. Sonra tüpü tamamıyla civa ile doldurun ve ters çevirerek yine civa dolu bir kabın içine batırın. Daha sonra cıva dolu kabın üzerine su ilave edin. Bir süre sonra tohumların anaerobik solunumu sonucu ortaya çıkan gaz tüpteki civayı aşağıya doğru ittiğini göreceksiniz (Şekil 4. 7). Bu da bize havadaki serbest oksijen yerine bitki dokularındaki bağlı oksijenin kullanıldığını gösterir. Deney 7. Fermantasyon Bazı organizmaların solunumu sonucunda substrat CO2 gibi çok basit bir ürüne kadar parçalanmaz. Solunum sonucunda daha kompleks bir madde açığa çıkar. Bu olaya fermantasyon denir. Araç ve Gereçler: %1 'lik glikoz çözeltisi, % 20 'lik Baryum hidroksit (Ba(OH)2), taze bira mayası, erlenmayer, cam boru, tıpa. Uygulama: Bir erlenin içine 200 cm3 %1 lik glikoz çözeltisi konulur. Daha sonra bu karışımın içine bir miktar taze bira mayası ilave edilir. Erlenin ağzı şekilde görüldüğü gibi cam boru takılmış tıpa ile kapatılır ve cam borunun diğer ucu yine tıpa ile kapatılmış % 20 'lik Ba(OH)2 çözeltisi içine batırılır. Ba(OH)2 içeren tüpte çökelmenin meydana gelmesi, olay sonucunda CO2 açığa çıktığını, alkol kokusu da fermentasyon sonucu alkolün meydana geldiğini gösterir Özet Doğada meydana gelen ve canlılığın ışık ile iletişim gösteren en belirgin temel olaylarından biri "fotosentez"dir. Fotosentez ışık enerjisinin biyolojik olarak kimyasal enerjiye dönüşümü olayıdır. Enerji yönünden tüm canlı organizmalar kesinlikle fotosenteze bağımlıdır, çünkü gerekli besin maddelerinin ve hatta atmosferdeki oksijenin kökeni fotosentezdir. Canlıların büyük bir çoğunluğu için oksijen, besin kadar önemlidir. Oksijen (O2) hayatsal olayların sürekliliği için gerekli olan, besinlerde depo edilmiş enerjiyi serbest hale getirir. Canlıların çoğu havadaki serbest oksijeni kullanır. Bir kısım organizmalar (bazı bir hücreliler, ilkel bitkiler, yassı ve yuvarlak parazit solucanlar) enerji elde etmek üzere çevrelerindeki eser miktarda oksijenden bile faydalanabilirler. Bu ünitede bitkilerde fotosentez olayını, fotosenteze etki eden faktörleri, oksijenli ve oksijensiz solunum olaylarını, fermantasyon olayının nasıl meydana geldiği bazı deneylerle gösterilmeye çalışılmıştır. Değerlendirme Soruları Aşağıdaki soruların yanıtlarını verilen seçenekler arasından bulunuz. 1. Fotosentez için aşağıdakilerden hangisi gerekli değildir? A. CO2 B. Işık C. Klorofil D. KOH E. H2O 2. Aşağıdaki bileşiklerden hangisi CO2 tutabilme özelliğine sahiptir? A. H2O B. KHCO3 C. BaCO3 D. NaOH E. KOH 3. Fermantasyon sonucu aşağıdaki maddelerden hangisi oluşur? A. Glikoz B. Karbonhidrat C. Alkol D. Oksijen E. Protein 4. Aerobik solunumda karbonhidratlar, aşağıdaki hangi maddenin yardımıyla en küçük yapı taşları ve enerjiye kadar parçalanırlar? A. O2 B. CO2 C. H2 O D. KOH E. NaOH 5. Aşagıdakilerden hangisi fotosentezin hızına etki etmez? A. CO2 B. Glikoz C. Sıcaklık D. Işık E. Klorofil Yararlanılan ve Başvurulabilecek Kaynaklar Ocakverdi, H., Konuk, M., (1989) Bitki Fizyolojisi Laboratuvar Kılavuzu, Selçuk Üniv. Eğitim Fak. Yay: 14, Konya. Önder, N. Yentür, S., (1991) Bitki Fizyolojisi Laboratuvar Kılavuzu, İstanbul. Üniv. Fen Fak.Yay. No: 220, İstanbul. Önder, N., (1985) Genel Bitki Fizyolojisi, İstanbul Üniv. Fen Fak. Yay. No: 189, İstanbul. Ayrıntılar ve şekiller için tıklayınız: http://www.aof.anadolu.edu.tr/kitap/IOLTP/2282/unite04.pdf

http://www.biyologlar.com/fotosentez

Rutin histopatolojik uygulamalar

Tespit (fiksasyon) Dokular insan vücudundan ayrıldıkları anda canlıdırlar ve taşıdıkları hastalığın (varsa) morfolojik bulgularını sergilerler. Tespit, dokuların o andaki görünümünün ısı, nem ve enzimlerin etkisiyle değişmesini, bozulmasını önlemek amacıyla yapılır. Tespit edilmeyen dokulardaki hücreler bir süre sonra bakterilerin ve içerdikleri sindirici enzimlerin etkisiyle otolize uğrar, morfolojik özelliklerini yitirir ve tanısal amaçlı incelemelerde kullanılamayacak duruma gelirler. Tespit işlemi için genellikle özel sıvılar kullanılır. Doku ve organlar kendi hacimlerinin 10-20 katı kadar tespit sıvısı içine bırakılırlar. Patolojide rutin amaçlar için en yaygın olarak kullanılan tespit sıvısı formalindir. Bu, seyreltik bir formaldehit (H-CHO) solüsyonudur. Tespit işlemi dokunun türü ve kalınlığına göre birkaç saat (karaciğer iğne biyopsisi) ile birkaç hafta (beyin) arasında değişen sürelerde olabilir. Yüzde seksenlik etil alkol, Bouin solüsyonu, Zenker solüsyonu, B5 solüsyonu, Carnoy solüsyonu ve glutaraldehit gibi başka tespit sıvıları da yeri geldikçe kullanılabilir. Sitolojik örneklerin havada kurutulmaları veya ısıtılmaları da tespit yöntemleri arasındadır. Bu tür tespit yöntemlerine daha çok hematolojik ve mikrobiyolojik boyalar kullanılacaksa başvurulur. Uygun formalin solüsyonunda bekletilen dokular aylar-yıllar sonra bile histopatolojik olarak rahatlıkla değerlendirilebilir. Takip (doku işleme) Tespitten sonraki aşamaların hemen hepsi otomatik makinelerde yapılabilir. İlk aşama, çoğunluğu sudan oluşan tespit sıvısının ve dokunun kendisinin başlangıçta içerdikleri suyun uzaklaştırılmasıdır (dehidratasyon). Bu, dokunun sertleşmesine yardım eder. Sert dokuların sonraki aşamalarda çok ince kesilebilmesi mümkün olur. (Bayat ekmekle taze ekmeğin kesilmeleri arasındaki fark gibi). Alkol, dokunun kırılganlığını artıran bir maddedir. Onun da ksilol yardımıyla ortamdan uzaklaştırılması gerekir. Daha sonra da, dokuda başlangıçta su içeren, sonra sırasıyla alkolle ve ksilolle infiltre olan aralıklara ısıtılarak sıvılaştırılmış parafinin girmesi sağlanır. Kullanılan parafin oda sıcaklığında katılaşır.Takibe alınan bütün örnekler numaralanır. Bu numaralar sonraki bütün aşamalarda dokuların konduğu kasetlerin üzerinde, bloklarda, preparatlarda ve raporlarda yer alır. Takip işlemleri, oda sıcaklığı ile 60 C arasındaki sıcaklıklarda yapılır. Negatif basınç (vakum) uygulanması ile, dokuların daha iyi ve daha kısa sürede işlenmeleri sağlanabilir. Ayrıca, özel mikrodalga fırınlar kullanılarak, normal olarak 8-16 saat süren bu işlemlerin süresini belirgin olarak kısaltmak ve 2 saatin altına indirmek mümkündür. Bloklama Parafinle infiltre edilmiş dokular, dikdörtgen prizma biçimindeki kalıplara konulur ve üzerlerine ısıtılmış parafinin dökülüp soğutulmasıyla bloklar elde edilir. Bu durumdaki dokuların çok ince kesilebilmeleri mümkün olur. Kesme Parafin bloklar; mikrotom adlı aygıt ile istenilen kalınlıkta (genellikle 4-5 mikron) kesilir, kesitler ılık su banyosuna, oradan da lamlar üzerine alınırlar. Bu kesitler önce ısıtılıp sonra bir solvent olan ksilole konularak deparafinize edilir, daha sonra da giderek daha sulu hale gelen alkollerden geçirilerek istenilen boyanın uygulanmasına geçilir. Boyama Rutin olarak kullanılan boya hematoksilen (mavi) ve eosindir (kırmızı). Kısaca "HE" veya "H&E" denilir. Bu yöntem ile, hücrelerin çekirdekleri mavi, sitoplazma olarak adlandırılan ve çekirdeği saran kısımları kırmızı-pembe boyanır. Çoğu hastalığın kesin teşhisi için bu yöntem ile boyanmış preparatların değerlendirilmesi yeterli olur. "Frozen section" ve intraoperatif konsültasyon Yukarıdaki rutin histopatolojik işlemlerin sağlıklı olarak yapılabilmesi için en az 10-15 saatlik bir süreye (mikrodalgalı yöntemler dışında) gereksinme vardır. Bu da, rutin patolojik incelemeye alınan bir örneğin tanısının en iyi olasılıkla ancak bir gün sonra verilebileceği anlamına gelir. Oysa, ameliyat sırasında hastada ameliyatın gidişini değiştirebilecek bir durumla karşılaşıldığında, dakikalar içinde verilecek bir tanıya gereksinme duyulabilir. Hastanın anestezi alma süresini uzatmamaya ve yeniden ameliyata alınmasına engel olmaya yönelik bir uygulama olarak "frozen section"a (dondurarak kesme) büyük hastanelerde sıkça başvurulur. Bu yöntem, dokuların istenilen incelikte kesilebilmeleri için dondurulmaları temeline dayanır. Özel bir aygıt (kriyostat) yardımıyla dokular -20 C sıcaklıkta kesilir ve hazırlanan kesitler hızlandırılmış yöntemle boyanırlar. Patolog, bu kesitleri inceleyerek vardığı sonucu ameliyatı yapan cerraha bildirir. Bütün bu işlemler, ameliyathaneye komşu bir patoloji bölümünde yapıldığında, 10-15 dakika kadar sürer. Bazı patoloji bölümlerinin ameliyathane içinde bu amaçla çalışan bir birimi bulunmaktadır. Dondurarak kesme yöntemiyle hazırlanan kesitlerin değerlendirilmesi güçtür ve bu işlem ancak deneyimli patologlar tarafından yapılabilir. Cerrahlar patologlardan "intraoperatif histolojik inceleme" istediklerinde, bu isteklerini mümkünse operasyondan önce, değilse operasyon sırasında ve hasta hakkındaki tüm önemli bilgileri sunarak iletmelidirler. İletişim eksikliği, intraoperatif histolojik incelemeden istenilen verimin alınmasını engeller ve bu uygulamanın hastaya zarar vermesine bile yol açabilir.Sitolojik yöntemler Dokuların insan vücudundan hiç can yakmadan alınması mümkün değil gibidir. Hastalar, seçme şansları olduğunda, tanılarının canları yakılmadan konulmasını tercih ederler. Gelişmiş ülkelerde hastaların bilinçlenmesine ve tıp teknolojisinin gelişmesine paralel olarak, doku almadan da morfolojik değerlendirme yapılabilmesini sağlayan yöntemler hızla yaygınlaşmaktadır. Romanyalı Dr. Aurel Babes tarafından 1927'de ilk kez bildirilen, 1950'lerde George Papanicolaou tarafından yaygınlaştırılan servikovaginal yayma yöntemiyle, rahim ağzından kendiliğinden dökülen hücrelerin morfolojik olarak incelenmesiyle, bir kanserin daha klinik bulgu vermeden yakalanabileceği ilk kez ve kesin olarak gösterilmiştir. Bu yöntemin uygulanması sayesinde, bugün kadınların serviks kanserinden ölmelerine seyrek rastlanmakta ve çoğu kanser daha oluşma aşamasındayken tam olarak çıkarılabilmektedir. Kapladıkları yüzeyden dökülen hücrelerin sitolojik olarak incelenmelerine 'eksfolyatif sitoloji' denilmektedir. (Servikovaginal yayma ve idrar sitolojisi gibi). Ayrıca, bu yöntemle birlikte veya ondan ayrı olarak, deri ve mukozayı kazıyarak hücre elde etmek mümkündür (kazıma yöntemi). Gittikçe yaygınlaşmakta olan 'aspirasyon sitolojisi' yöntemi ise, ulaşabileceği doku ve organların hemen hemen sınırsız olmasıyla diğer bütün sitolojik yöntemlerden ayrılmaktadır. Bu yöntemle, palpe edilebilen bütün organlardaki lezyonlara anesteziye ve özel aletlere gerek duyulmadan ince (dar çaplı) bir enjeksiyon iğnesiyle girilmekte ve aspire edilen hücreler lamlara yayılmaktadır. Derindeki organlara da ultrasound veya bilgisayarlı tomografi gibi görüntüleme yöntemleri eşliğinde girilebilmektedir. Elde edilen hücrelerin değerlendirilmesinde, her organ için ayrı bir bilgi birikimine ve deneyime gereksinme vardır. Bu nedenle, yöntemin yaygınlaşmasının önündeki en büyük engel, bu konuda yetişmiş patolog sayısının azlığıdır. Bir sitolojik incelemenin sonucu değişik koşullarda değişik anlamlar taşıyabileceği için, bu yöntemi uygulamak isteyen klinik doktorlarının patolog ile yakın ilişkide olmaları zorunludur. Dünyada ve ülkemizde pek çok birimde, yüzeysel lezyonların aspirasyonu da patolog tarafından yapılmaktadır. Bu yolla; örneklerin daha iyi alınması, gerekirse aspirasyonun hemen tekrarlanabilmesi ve tanının hem daha çabuk hem daha doğru konulması mümkün olmaktadır.

http://www.biyologlar.com/rutin-histopatolojik-uygulamalar

ARGULUS SP

Argulus spp. Diğer adıyla balık biti, tatlı su ve deniz balıklarının ektoparazitlerinden olup, tüm dünyada yaygındır. Konağın kanını ve diğer doku sıvılarını emerek beslendiklerinden ve sekonder enfeksiyon etkenlerine taşıyıcılık da yaptıklarından konakları için tehlike oluşturmaktadırlar. Kan emdikten sonra konağı terk ettiklerinden fakültetif parazittirler. Argulus, konağın derisini deldikten sonra salgıladığı maddeyi yara içine akıtmakta, deldikleri kan damarından kan emmektedirler. Argulus’lar erişkin forma ulaşıncaya kadar balığın deri, yüzgeç ve solungaçlarına tutunarak ve kan emerek yaşamaktadırlar. ETİYOLOJİ: Pylum: Artropoda Subpylum: Crustacea (Brünnich,1772) Clasis: Maxillipoda (Dahl,1956) Subclasis: Branchiura (Thorell,1864) Ordo: Arguloida (Wilson,1932) Familya: Argulidae (Rafinesque,1815) Genus: Argulus (Müler,1785) Argulus’lar en büyük parazitlerdendir ve çıplak gözle görülebilirler. 5mm ile 10 mm arasında değişen uzunlukları vardır. Balıklar üzerinde küçük koyu renkte noktalar gibi görülürler ve hareket edene kadar onların Argulus olduğu anlaşılamayabilir. Vücudun yassı ve kalkana benzer kısmı karapastır ve kafayla kaynaşmış, ayrıca göğüsün de bir kısmını kaplamıştır. Baş kısmında iki tane bileşik göz lekesi bulunmaktadır. Argulus’un karnı, arkada uzamış kuyruk gibi gözükmektedir. Dört çift yüzücü ayakları vardır. EPİZOOTİYOLOJİ: Argulus (Crustacea:Branchiura) cinsi dünya çapında oldukça fazla yayılım göstermektedir ve Afrika, Avrupa, Asya, Avustralya, Kuzey, Orta ve Güney Amerika kıtalarından bilinmektedir. (Ringuelet, 1943; Fryer, 1968; Yamaguti, 1963; Hewitt ve Hine, 1972; Byrnes, 1985; Heegaard, 1962) Amerika’daki deniz ve göllerde 23 türün olduğu Cressey tarafından saptanmıştır.(1972) Argulus japonicus ve Argulus foliaceus’un İngiltere’deki birçok göl balığı türlerinde görüldüğü kaydedilmiştir. Avrupa’da Argulus’un bulunan üç göl türünün (A.foliaceus, A.coregoni, A,japonicus) yazın sonlarında ve sonbaharın başlarındaki dönemlerde maksimum bollukta bulundukları kaydedilmiştir.(Lester&Roubal, 1995) Bütün türlerin sert kışlarda yaşamlarını sürdürebilecek yumurtlama evreleri vardır.(Shimura,1983; Mikheev 2001) Ayrıca A.foliaceus erginlik evrelerinde de kış koşullarında yaşayabilirler.(Kimura, 1970) Hatta Bowershore (1940),kışın ılımlı olduğu koşullarda A.foliaceus’un yıl içerisinde yumurtlayabileceğini de savunmuştur. Argulus sp. Şu anda bilinen 150 türüyle neredeyse tüm dünyada bulunmaktadır. Avrupa’da kaydedilen üç tür Argulus foliaceus, Argulus japonicus ve Argulus coregoni’dir. Ayrıca Argulus foliaceus kahverengi alabalık,tatlı su levreği,sazan,turna ve çipurada da görülmektedir. Genellikle yüzgeçlerin arkasında veya kafa çevresinde yerleşmiş olarak bulunurlar. Saydam yüzgeçlerde daha iyi görülebildikleri için en iyi görüldüğü yerler yüzgeçlerdir. Tablo 1. Üç Argulus türü arasındaki farklılıklar Türler Vücut uzunluğu(mm) Cephalothoracic karapasın arka lopları Karın Karnın arka kenarının tırtıklaşması(Posterior emargination of abdomen) A.foliaceus 6-7 Başlangıcın ötesine uzamamış Yuvarlak loplar Ortaya ulaşmamış A.japonicus 4-8 Karnın orta seviyelerine kadar uzamış Yuvarlak loplar (A.foliaceus’tan daha fazla noktalı) Ortaya ulaşmış A.coregoni 12 Karnın başlangıcına kadar uzamamış Sivri loplar Ortanın ötesine ulaşmış Güney Amerika’da bulunan göze çarpan türler Argulus multicolor’dur. Argulus japonicus bütün dünyada yayılım göstermektedir ve bunun asıl nedeni de altın balık (Carassius auratus) ve aynalı sazan (Cyprinus carpio)’da oldukça fazla görülmesidir. Argulus coregoni İskoçya’da Clyde nehrindeki kahverengi alabalık (Salmo turta) üzerinde bulunmuştur. (Campbell, 1971) Argulus foliaceus da kahverengi alabalıkta görülmekle beraber buna ek olarak dikenli balıkta (Gasterosteus aculeatus), kızılkanatta (Rutilus rutilus), tatlı su levreğinde (Perca fluviatilis), aynalı sazanda (Cyprinus carpio), kadife balığında (Tinca tinca) ve turnada (Esox lucius) görülür. Argulus foliaceus’un görünüşü KLİNİK BULGULAR VE PATOJENİTE: Argulus kendini konakçı balığa, emme organelleriyle, ikinci maxillae, diken veya kancalarıyla bağlar; preoral dikenli iğnesini veya hortumunu deriye batırarak toksik salgıyı iletir.(Sindirim enzimleri ve salgı maddesi-anticoagulant madde-) ve konakçının vücudu üstünden kanı emer. Derinin delinmesi konakçı balığın şiddetli kaşınmasına ve vücudun zarar görerek iltihaplanmasına neden olur. Yaralar kanlı nekroza neden olur ve ikincil olarak da Aeronomas, Pseudomonas gibi bakteriler ve Saprolegnia gibi mantarların bulaşmasına neden olur ve bunun sonucu da derin ülserleşme ve ölümdür. Eritrosit ve lökosit sayısında düşüş, hemoglobin yoğunlaşması, kandaki hematokrit değerindeki toplam protein, toplam kolesterol ve kalsiyum konsantrasyonları gibi hematolojik değişimler görülür. Buna ek olarak, solungaçlar ciddi bir şekilde zarar görerek kanda oksijen azlığına neden olarak ölüme sebebiyet verirler. OTOPSİ BULGULARI: Argulozis hastalığı balıklarda en sık rastlanan hastalıklardan biridir. Parazitler balıkların üzerinde kolayca görülürler. Bu parazitler yarı saydam olduğu, larva ve gençlik dönemlerinde küçük olduğu için,ilk bakışta fark edilemezler. Ancak bu durumlarda balık hastalık belirtisi gösterir. Bu parazitin konakçı balık üzerindeki etkisi enfestasyon şiddetine (Balık üzerindeki parazit sayısı) ve konakçı balığın büyüklüğüne bağlıdır. (Roberts, 1978) Yoğun istilaya uğrayan balık uyuşukluk gösterir, yemekten kesilir, renkte açılma ve yüzgeç düşmesi gibi durumlar gözlenir.(Lester&Roubal, 1995) Argulus sp. Tarafından enfeksiyona uğrayan balıklarda çoğunlukla küçük hemorojik bölgeler görülür. Mikroskobik incelemeler bu bölgelerin, hyperplazi yüzünden yaranın kenarındaki epidermal dokuda oluşturulan kraterler olduğunu gösterir. Bütün balıklarda, mukus ve club hücreleri kraterdeki epidermal dokuda bulunmaz, fakat mukus hücreleri yara kenarı çevresindeki dokuda bolca bulunurlar. TEŞHİS: Argulus bulaşmış balıklar uyuşuklaşırlar, düzensiz hareket ederler ve sık sık kuyruklarını suya çarparlar. Aynı zamanda güçsüzleşirler ve su yüzeyinde yüzerek bazen stres belirtileri gösterirler. Derileri donuk hale gelir ve üzerinde siyah noktalar oluşur. Yüzgeçleri saçaklanır ve gözleri çekilir. Balıklar beslenmeyi bırakırlar. KORUMA: Balık yetiştiriciliğinde hijyen kurallarına uyulması,stok yoğunluğunun iyi belirlenmesi,hastalık belirtisi gösteren balıkların karantinaya alınması önemlidir. Fakat büyük ölçekli balık üretimi için (örneğin alabalık çiftliği) uygun değildir. TEDAVİ: Larvalar için genellikle haftada 2-3 doz (daha düşük sıcaklıklarda daha uzun) Trichlorfon gerekir. Tavsiye edilen Trichlorfon oranları; 27 C sıcaklığın altına litre başına 0,25 mg Trichlorfon, 27 C sıcaklığın üstünde litre başına 0,50 mg Trichlorfon Organophoshate masoten: (Peter Waddington) 13 C sıcaklığın üsütnde 0,7 mg/litre (UK) 13 C sıcaklığın altında 0,4 mg/litre (UK) Olgunlaşmış parazitler elle uzaklaştırılabilirler, ayrıca; Lufenuron 15 mg/litre, Sodyum klorid 3 mg/litre ile tankta 3 hafta süreyle tedavi edilebilirler. Olgunlaşmamış bir Argulus 2 günlük tedavi sonunda deri parçaları üzerinde bulunur. Tedavinin başlamasından 28 gün sonra deri parçaları üzerinde parazite rastlanmaz. Tedavinin sağlığa zararlı bir etkisi yoktur. KAYNAKÇA: www.science.siu.edu/zoology/grad ... gulus.html ryoko.biosci.ohio-state.edu/~par ... gulus.html www.fishdoc.co.uk/disease/argulus.htm www.isrvma.org/article/57_3_6.htm www.drpez.com/pz18b.htm www.aquabase.org/crustacea/view.php3?id=25 www.maine.gov/ifw/fishing/fishlab/vol2issue5.htm

http://www.biyologlar.com/argulus-sp

E. coli Besiyerleri

Geliştirme koşullarından bağımsız olarak yeterli bir aktivite gösteren karakteristik yapısal enzimlerin belirlenmesi bakterilerde hızlı bir identifikasyon sağlamaktadır. E. coli, bir kaç Salmonella ve Shigella suşu dışında ß-D-glucuronidase (MUGase) enzimine sahip Enterobacteriaceae üyesi olan tek türdür. Bu enzim, 4-methylumbelliferyl-ß-D-glucuronide (MUG)'i uzun dalga boylu UV ışığı altında fluoresans veren 4-methylumbelliferon 'a parçalar. E. coli aranması/sayılması için hazırlanan besiyerlerine MUG ilave edilmesi, geliştirilmesin bu besiyerinde yapılması ve sonuçta sıvı kültürün/koloninin uzun dalga boylu UV lamba ile kontrolü E. coli tayinini hemen hemen bitirmektedir. Sahte pozitif reaksiyonlardan kurtulmak için indol testi yeterli olmaktadır. Hepsi Merck/fluorocult cinsi olmak üzere; BRILA (Brillant Green Bile Broth), CASO (Tryptic Soy) Agar, DEV Lactose Peptone Broth, ECD (E. coli direct) Agar, Lauryl Sulphate Broth, LMX Broth besiyerlerinde UV ile fluoresans pozitif alındıktan sonra doğrudan sıvı besiyerinde gelişen kültürün üzerine veya katı besiyerinde gelişen koloni üzerine Kovac's indol ayıracı damlatılarak indol testi yapılır. Floresan ve indol pozitif tek bakteri E. coli 'dir.Bazı kültürlerde MUG reaksiyonu (fluoresans) net bir şekilde belirlenemez. Bu gibi durumlarda 1N NaOH 'den 1 mL kadar ilave edilmesi ile fluoresans reaksiyon netleşir. MUG, selektif katkı olarak besiyeri üreten diğer firmalar tarafından da pazarlanmaktadır.E. coli 0157: H7 Agar (Merck)Enterohemorajik E. coli 0157: H7 'nin izolasyonu ve ayrımı için geliştirilmiş bir besiyeridir. Bileşimindeki sodium deoxycholate gram pozitiflerin gelişimini inhibe eder. Bromothymol blue pH indikatörü olarak sorbitolun kullanımını gösterir. Sorbitol pozitif bakteri kolonileri sarı renk alırken sorbitol negatif koloniler yeşil renkli olarak kalırlar. Sodium thiosulphate ve ammonium iron (III) citrate, H2S oluşturan patojenlerin ayrımında rol alır. E. coli 0157: H7, diğer E. coli suşlarından farklı olarak MUG negatif bir özellik gösterir. Bu besiyerinde gelişebilen farklı bakterilerin kültürel özellikleri aşağıdaki gibidir.Bakteri Koloni rengi Presipitat MUG SorbitolE. coli 0157: H7 yeşilimsi - - -E. coli sarı ± + +Proteus mirabilis siyah-kahve - - -Shigella sonnei yeşilimsi - + -Enterobacter aerogenes sarı ± - +Chromocult Coliform Agar (Merck)Karakteristik bakteriyel enzimlerin kromojenik bir substrat ile belirlenmesine yönelik hızlı bir identifikasyon yöntemi ve bu yönteme dayalı besiyeridir. Kromojenik substrat besiyeri bileşimine dahil edilmiştir. İdentifikasyon, karakteristik koloni rengi ile bir anlamda tamamlanır. Renk bir kaç gün stabil kalır, pH 'dan sıcaklıktan ve ışıktan etkilenmez. Renk, besiyerine difüze olmadığı için yüksek sayıda koloni varlığında dahi tek koloni izolasyonu mümkündür.Besiyeri formülasyonu içinde yer alan seçilmiş peptonlar, pyruvate ve fosfat tampon aşırı hasar görmüş koliformlar için gelişme ortamı sağlar. Lauryl sulphate koliform bakteriler için bir olumsuzluk yaratmazken Gram pozitif bakterilerin gelişimini önemli ölçüde inhibe eder.Koliform grubu bakteriler için karakteristik olan ß-D-galactosidase enzimi kromojenik bir substrat olan Salmon-GAL ile, E. coli için karakteristik olan ß-D-glucuronidase enzimi ise yine kromojenik bir substrat olan X-glucuronide ile belirlenir.35-37 oC 'da 24-48 saat inkübasyon sonunda koyu mavi-menekşe renkli koloniler üzerine Kovac's çözeltici damlatılarak indol reaksiyonu belirlenebilir. Bu besiyerinde gelişen bakterilerin kültürel özellikleri aşağıdaki gibidir.Salmon X-Bakteri Koloni rengi -GAL Glucuronide IndolE. coli koyu mavi/menekşe + + + Citrobacter freundii kırmızı + - -Klebsiella pneumoniae kırmızı + - -Enterobacter cloacae kırmızı + - -Salmonella enteritidis renksiz - - -Shigella flexneri renksiz - - -

http://www.biyologlar.com/e-coli-besiyerleri

KAN GLUKOZ TAYİN YÖNTEMLERİ

Glukoz insan kanında bulunan en önemli monosakkarittir. Glukoz insan ve hayvan dokularının enerjisini sağlar. Bu canlıların kalori ihtiyaçlarının yarısından fazlası glukoz tarafından sağlanmaktadır. Glukoz altı karbona sahip bir aldoheksozdur. Glukoz meyve sularında, nişastada, şeker kamışında, maltoz ve laktozda bulunur. Hidroliz ile açığa çıkar. Organizmanın kullandığı ve kanda taşınan en önemli şekerdir. Diabetes mellutuslu hastalarda idrarda da bulunur. İndirgeyici bir şekerdir. Maya tarafından fermente olur. Nitrik asidde çözünerek sakkarik asid oluşturur.Glukoz barsaklardan emilerek kana geçtikten sonra vücudun enerji ihtiyacı doğrultusunda glikolitik yola girerek piruvata kadar yıkılır. Glukozun piruvata yıkımı aerobik glukoliz ile olmaktadır ki bu yolu mitokondriye sahip hücreler kullanmaktadırlar. Ertrositler, kornea, lens ve retina hücreleri çok az mitokondri içerirler bu nedenle glikolitik yol bu dokuların pirimer enerji gereksinimlerini karşıladıkları yoldur. Bu dokularda aneorobik glikoliz olur ki son ürün laktik asiddir.Glukozun kandan hücrelere kullanılmak üzere girişinden sorumlu yegane hormon insülindir. İnsülin anabolizan bir hormondur. İnsüline zıt olarak çalışan bir diğer hormon ise glukagon hormonudur. Dolayısı ile kan glukoz konsantrasyonunu bu iki hormon öncelikli olarak etkilemektedirler. Kan glukozu azaldığında ve hücrelerin enerji ihtiyaçları arttığında glukagon hormonunun etkisi ile glikojen depoları boşalmaya ve kan şekeri artmaya başlar. Kan şekeri arttığında ise hücrelere glikozun girişi insülin hormonu aracılığı ile olmaktadır. Kan glukoz seviyesi karaciğer tarafından düzenlenir.Kan glukozunun kontrolü başlıca iki hormonun kontrolündedir. Bunlar insülin ve glukagon hormonlarıdır. Etkileri ise şu şekildedir.İNSÜLİN GLUKAGON Glikolisis Glikojenılisis ­Glikogenesis ­ Glikojen ® Glukoz Glukoz ® glikojen ® piruvat®acetyl-CoA Glikoneogenesis ­ Lipogenesis ­ Yağ asidi ® Asetil CoA ® KetonGlikojenolisis¯ Proteinler ® Amino asidler Kan glukoz ölçümlerinin başlıca iki amacı vardır. Bunlar ya hiperglisemiyi yada hipoglisemiyi tespit etmektir.*** Normal açlık plazma glikoz seviyesi : FPG < 110 mg / dl olmalıdır.HİPERGLİSEMİ HİPOGLİSEMİAçlıkKan glikozu > 110 mg / dl İlaçlarDiabetes mellitus EtanolHepatik hastalıklarTip I . İnsülinomaBeta- cell yıkımı . Doğmasal hiperinsülinizmAbsolut insülin yetmezliği G-6 Fosfataz yetmezliği ( Vov Gierke’s hast )Otoantibadiler İslet-cell otoantibadiler İnsülin otoantibadilerGlutmik asid dekarboksilaz otoantibadilerTip IIİnsülin resistansıRelatif insülin yetmezliğiDiğerSekonderBeta-cell genetik fonksiyon yetmezliğiPankreas hastalıklarıEndokrin hastalıklarİlaçlarİnsülin reseptör abnormalitesiGestasyonelGebelikte glikoz intoleransıMetabolik ve hormonal değişime bağlı KAN GLUKOZ TAYİN YÖNTEMLERİMODİFİYE SOMOGYI-NELSON METODU:Prensip:Glukoz tayini yapılacak olan kan, plazma, yada serum örneği,, içersinde glukozun yanı sıra indirgeyici özelliği bulunan proteinleri çöktürmek ve ortamdan uzaklaştırmak için deproteinize edilir. Bu amaçla Çinko Hidroksit kullanılır. Daha sonra numune Alkali Bakır solüsyonu ile ısıtılır. Cuprik ( cu+2 ) bakır iyonları glukozu okside eder ve Cuprous ( cu+1 ) iyonları oluşur. Bu esnada oluşan bu bakır miktarına eşit miktarda Arsenomolibdat indirgenir. Renk değişimi kolorimetrik olarak ölçülür ve glukoz kantitasyonu yapılır.Normal kan glukoz değeri: Tam kanda ( açlık ) 65 –110 mg / 100 ml’dir.Numune: Bu yöntemle tam kan, serum, plazma yada serebrospinal sıvıda glukoz tayini yapılabilir. Plazma için herhangi bir antikoagulant madde kullanılabilir. Tam kan hemen ölçümlerde kullanılmayacaksa, içersine glikolizisi durdurmak için Sodyum Florid katılarak buzdolabında saklanmalıdır.Reaktifler:1- 1- Sodyum hidroksit ( NaOH ), 0,08 N2- 2- Sodyum hidroksit ( NaOH ), 1 N3- 3- % 5’lik Çinko sülfat solüsyonu, ( ZnSO4 )4- 4- % 10 Bakır Sülfat solusyonu, ( CuSO4 )5- 5- Alkalen bakır solüsyonu,Çözelti A. 12 gr. Na2CO38 gr. NaOH CO36 gr. Potasyum sodyum tartarat ( C4N4KNaO6 ( 4H2O )72 gr. Na2SO4 Anhdril.Saf suda eritilir ve 400 ml ye tamamlanır.Çözelti B. 28 gr. Disodyum fosfat anhdr. ve 40 gr. Rochelle tuzu ( KnaC4H4O6 . 4H2O ) tartılıp bir bir balon jojede 700 ml saf suda eritilir. Magnetik karıştırıcıda bunlar çözünürler iken üzerine 100 ml 1 N Sodyum hidroksit ve 80 ml % 10 Bakır sülfat yavaş yavaş eklenir. Daha sonra üzerine 180 gr Sodyum sülfat anhdr. eklenir ve en son balon joje saf su ile 1 L ye tamamlanır.Kullanmadan önce 4 volüm A çözeltisi 1 volüm B çözeltisi ile karıştırılır.6- 6- Arsenomolibdat Çözeltisi: 25 gr. ( NH4 )6Mo7O27 . 4H2O ( amonyum molibdat ) 450 ml saf suda eritilir. 21 ml derişik H2SO4 ilave edilip karıştırılır. 25 ml saf suda eritilmiş 3 gr Disodyum hidrojen arsenat ( Na2HasO4 . H2O) ilave edilir. Çözelti karıştırıldıktan sonra etüvde 37 C0 de 24-48 saat bekletilir.7- 7- Standart glukoz çözeltisi: % 50 mg, % 100 mg, %200 mg, % 300 mg, % 400 mg.Standart Kalibrasyon Eğrisi: Stok standardı 10 ml.lik tüplerde 0.5, 1.0, 2.0, 3.0 ve 4.0 ml dilüe edilir. Bu çalışma standartları 50, 100, 200, 300, 400 mg glukoz / 100 ml konsantrasyona eşittir. Daha sonra test prosedürü bunlara aynen uygulanır. Blank referanslığında 530 nm dalga boyunda spektrofotometrede absorbansları alındıktan sonra, alınan absorbansa ve konsantrasyona göre bir grafik çizilir.Test Prosedürü:15 x 125 mm’lik deney tüplerine aşağıdaki sırada blank, numune ve standart çöeltileri sırayla konur. Sodyum hidroksit konduktan sonra 5 dk. kadar beklenir ve Çinko sülfat eklenir. Tüpler iyice karıştırılır. BLANK            NUMUNE              STANDARTSaf su ( ml )                                        1 ml                     0                         0Standart ( ml )                                      0                       0                        1.0Numune ( kan, serum, CSF ) ml                0                      1.0                       0NaOH, 0,08 M                                       7.0                     7.0                     7.0ZnSO4 ( ml ) ml                                     2.0                     2.0                    2.0· · Tüm tüpler 2500 rpm’de 5 dk. Santrifüj edilir.· · Blank için 1, standart ve numune sayısı kadar da Folin- Wu tüpleri alınır. Bu tüplere süpernatanttan birer ml konur. Her tüp mutlaka etiketlenmelidir.· · Her tüpe 2.0 ml Alkali bakır çözeltisi konur ve karıştırılır.· · Tüpler su banyosunda 15 dk kaynatılır. İşlem sonunda akan musluk suyunda tüpler soğutulur.· · Her tüpe 1.0 ml Arsenomolibdat reaktifi konur ve tüpler karıştırılır. Tüpler saf su ile 25 ml ‘lik hacime tamamlanır.· · 550 nm dalga boyuna ayarlanmış spektrofotometrede tüm tüpler köre karşı okunur.· · Standart eğrinin referanslığında numunenin glukoz konsantrasyonu hesaplanır.Not: Eğer standart grafik değilde tek bir standart kullanılıyorsa şu formül yardımı ile numunenin glukoz konsantrasyonu hesaplanabilir.Nc = NAB / SAB x Sc Nc : Numunenin konsantrasyonuNAB: Numunenin absorbansıSAB : Standardın absorbansıSc : Standart konsantrasyonuGLUKOZ OKSİDAZ ( Fermco Test ) METODUPrensip : Serum, plazma, CSF’ de bulunan glukoz moleküler oksijen tarafından Glukonic asid ve H2O2’ ye okside edilir. Bu reaksiyonu Glukoz Oksidaz enzimi katalizler. H2O2 Kromojen Peroksidaz enziminin etkisi ile renkli bir bileşiğe oksitlenir. Bu bileşik H2SO4 etkisi ilekalıcı kırmızı renk verir. Ölçüm kolorometrik olarak yapılır.1. Glukoz + O2 + H2O Glukoz Oksidaz Glukonik asid + H2O22. H2O2 + Chromogen Peroksidaz amber compaund3. Amber Compaund + H2SO4 ........... Stable red pigmentNormal Değerleri:Serum- Plazma ( açlık ) : 70 – 110 mg / 100 mlSerebrosipinal sıvı ( açlık ) : 45 – 80 mg / 100 mlNumune:Kan alındığında eritrosit hemolizinin olmamasına dikkat edilmelidir. Çünkü eritrositlerin sitoplazmik glikolitik enzimler serum-plazma glukozunun yanlış ölçülmesine yol açarlar. Bunu engellemek için Florid kullanılmamalıdır. Çünkü florid glikolitik enzimleri baskılamakla kalmaz deneyde kullanılan enzimleri de baskılar. En iyi ölçüm kan alındıktan hemen sonra serumu çıkartılıp yapılan ölçümdür.Reaktifler:1- 1- Enzim- Kromogen Buffer Reagent.2- 2- Sülfirik Asid ( 7.2 N )3- 3- Glukoz Standardları: 300 mg anhidroz reagent-grade glukoz ( dextroz ), 80 ml deiyonize suda çözülür. Üzerine 0,25 g benzoik asid ilave edilir ve karıştırılır. Karışımın üzeri 100 ml ye tamamlanır. Bu stok solüsyonda 60, 120 ve 240 mg / 100 ml’lik standart çalışma solüsyonları hazırlanır.Test Prosedürü:· · 13 x 120 mm’lik deney tüplerine numune, standard ve kör için birer ml enzim-kromogen karışımı reaktifinden konarak tüpler 37 C0 da su banyosuna kaldırılır.· · Aynı anda 20 ml bilinmeyen serumdan numune tüpünün üzerinde tabaka oluşturacak şekilde konur ve hemen karıştırılır. Blank sadece enzim- kromojen reaktifi içermelidir. Standartlar için de numuneye yapılan işlem yapılır.· · 10 dk. sonra reaksiyon her tüpe 4,0 ml 7,2 N H2SO4 eklenerek durdurulur.· · Blank referanslığında standard ve numunenin absorbansları 540 nm dalga boyunda spektrofotometrik olarak okunur.Hesaplama: Aşağıdaki formül yardımı ile glikoz konsantrasyonu bilinmeyen örneğin glukoz konsantrasyonu hesaplanır.Numunenin absorb. / Standardın absorb. X Standardın konstr. = Glukoz ( mg / 100 ml )

http://www.biyologlar.com/kan-glukoz-tayin-yontemleri-1

Bitkilerde Beslenme Fizyolojisi

Bitkilerde Beslenme Fizyolojisi

Bilindiği gibi canlıların ortamdan sağladığı, olduğu gibi tüketerek kullandıkları besin maddeleri büyük canlı gruplarında farklılıklar gösterir.

http://www.biyologlar.com/bitkilerde-beslenme-fizyolojisi

Endoplazma Retikulumu ve Ribozomlar

Endoplazma retikulum elektron mikroskobu araştırmalarının ortaya çıkardığı organellerden birisidir. Granüllü ve granülsüz olmak üzere iki tipi bulunur. Granüllü endoplazma retikulumu membranına düzenli aralıklarla ribonükleoprotein parçacıkları (=ribozom) dizilmiştir. Ribozomlar tübülüslere tanecikli bir görünüm kazandırırlar. Ribozomların varlığı granüllü endoplazmik retikuluma bazik boyanma özelliği kazandırır. Büyük büyülmelerde, endoplazma retikulumu ince tüp şeklinde zarsı yapıların sık sık dallanmalar göstererek birbirleri ile ağızlaştığı ağ şeklinde düzenlenen bir sistem olduğu gözlenir. İnce tübüller kimi yerde genişleyerek kese şeklinde görülür. Tübüllerin içi sıvı ile doludur. Granüllü endoplazma retikulumu hücrenin protein yapımı ile görevli organelidir. Protein sentezini yapan mikromakineler ribozom tanecikleridir. Ribozomlar, %65 RNA ve %35 proteinden oluşmuş yuvarlak yapılardır. 120-200 oA büyüklüğündedirler. Hücrede ya endoplazma retikulumu membranına tutunmuş ya da serbest tanecikler halinde bulunurlar. Serbest ribozomlar genellikle hücrenin kendi gereksinimi olan hücre içi proteinleri üretirler. Granülsüz endoplazma retikulumu granüllü tipe oranla daha ince membranı olan kısa tübülüslerden oluşur. Asidofilik boyanma özelliği gösterirler. Granülsüz endoplazma retikulumunun görevleri çeşitlidir. Steroid hormon salgılayan hücrelerde iyi gelişmiştir. Çizgili kaslarda kasılma olayını, kolesterol ve safra yapımını, ilaçların veya zehirli maddelerin olumsuz etkilerinin yok edilmesi gibi değişik metabolizma olaylarını düzenler. Bu önemli görevlerini yerine getirebilmek için ise kırktan fazla sayıda enzim içerirler. Enzimlerin aktiviteleri ırklara, topluluklara ve bireylere göre farklılık gösterir.

http://www.biyologlar.com/endoplazma-retikulumu-ve-ribozomlar

Gen Terapi

Hastalıkları tedavi etme ya da fiziksel etkilerini azaltma amacıyla hastanın vücuduna genetik materyalin sokulması, tıp tarihinde bir devrim olmuştur. İlk başlarda genetik hastalıkların tedavisi amacıyla planlanan gen terapisi artık, kanser, AIDS gibi diğer pek çok hastalığın tedavisi için de kullanılmaya başlanmıştır. Genlerin tanımlanması ve genetik mühendisliğinde kaydedilen önemli gelişmeler sonunda bilim adamları artık hastalıklarla savaşabilmek ve onlardan korunabilmek için bazı örneklerde genetik materyali değiştirme aşamasına geldiler. Gen terapisinin temel amacı, hücrelerin hastalığa yol açan eksik ya da kusurlu genleri yerine, sağlıklı kopyalarının hücreye yerleştirilmesidir. Bu işlem, gerçek anlamda bir devrimdir. Hastaya, genetik bozukluktan kaynaklanan semptomların kontrol edilmesi ve/veya tedavisi için ilaç verilmiyor. Bunun yerine, sorunun kaynağına inilip hastanın bozuk genetik yapısı düzeltilmeye çalışılıyor. Çeşitli gen terapisi stratejileri olmakla birlikte, başarılı bir gen terapisi için gereken ortak temel elemanlar vardır. Bunların en önemlisi hastalığa neden olan genin belirlenmesi ve klonlanmasıdır. "Human Genome Project" olarak adlandırılan ve insanın gen haritasını çıkarmayı amaçlayan proje tamamlandığında, istenilen genlere ulaşmanın çok daha kolay olacağına inanılmaktadır. Genin tanımlanmasından sonraki aşamada, genin hedeflenen hücrelere nakledilmesi ve orada ekspresyonu, yani kodladığı proteinin üretimi gelir. Gen terapisinin öteki önemli elemanlarıysa tedavi edilmek istenilen hastalığı ve gen nakli yapılacak hücreleri iyi tanımak ve gen naklinin olası yan etkilerini anlamaktır. Gen terapisi iki ana kategoride incelenebilir: Eşey hücresi ve vücut hücresi gen terapisi. Eşey hücresi gen terapisinde, genetik bir bozukluğu önlemek için eşey hücrelerinin (sperm ya da ovum) genleri değiştirilir. Bu tip terapide, genlerde yapılan değişiklik kuşaktan kuşağa aktarılabileceğinden, olası bir eşey hücresi gen terapisi hem etik, hem de teknik sorunlar yaratacaktır. Öte yandan vücut hücresi gen terapisi eşey hücrelerini etkilemez; sadece ilgili kişiyi etkiler. Günümüzde yapılan gen terapisi çalışmalarının çoğu vücut hücresi gen terapisidir. Gen terapisi aynı zamanda bir ilaç taşıma sistemi olarak da kullanılabilir. Burada ilaç, nakledilen genin kodladığı proteindir. Bunun için, istenilen proteini kodlayan bir gen, hastanın DNA'sına yerleştirilebilir. Örneğin ameliyatlarda, pıhtılaşmayı önleyici bir proteini kodlayan gen, ilgili hücrelerin DNA'sına yerleştirilerek, tehlikeli olabilecek kan pıhtılarının oluşumu önlenebilir. Gen terapisinin ilaç taşınmasında kullanılması, aynı zamanda, hem harcanan güç ve emeği hem de parasal giderleri azaltabilir. Böylece, genlerin ürettiği proteinleri çok miktarda elde etmek, bu ürünleri saflaştırmak, ilaç formülasyonunu yapmak ve bunu hastalara vermek gibi, çok zaman alan karmaşık işlemlere gerek kalmayabilir. Gen Terapisinin Temel Sorunları Bilim adamlarına göre gen terapisinin üç temel sorunu var: Gen nakli, gen nakli ve gen nakli. Bu alanda çalışan tüm araştırmacılar, gen nakli için etkili bir yol bulmaya çalışmaktadırlar. Genleri istenilen hücrelere taşıyabilmek için kullanılan yöntemler genel olarak iki kategoride toplanmaktadır: Fiziksel yöntemler ve biyolojik vektörler. Fiziksel yöntemler, DNA'nın doğrudan doğruya enjeksiyonu, lipozom formülasyonları ve balistik gen enjeksiyonu yöntemlerini içerir. Doğrudan DNA enjeksiyonunda ilgili gen DNA'sını taşıyan plazmit, doğrudan doğruya, örneğin kas içine, enjekte edilir. Yöntem basit olmasına karşın kısıtlı bir uygulama alanı vardır. Lipozomlar, lipidlerden oluşan moleküllerdir. DNA'yı içlerine alma mekanizmalarına göre iki guruba ayrılırlar: Katyonik lipozomlar ve pH-duyarlı lipozomlar. Birinci gurup lipozomlar artı yüklü olduklarından, eksi yüklü olan DNA ile dayanıklı bir kompleks oluştururlar. İkinci gurup lipozomlarsa negatif yüklü olduklarından DNA ile bir kompleks oluşturmaz, ama içlerinde taşırlar. Parça bombardımanı ya da gen tabancası olarak da adlandırılan balistik DNA enjeksiyonu, ilk olarak bitkilere gen nakli yapmak amacıyla geliştirilmiştir. Bu ilk uygulamalarından sonra, bazı değişiklikler yapılarak memeli hücrelerine gen nakli amacıyla kullanılmaya başlanmıştır. Bu yöntemde, genellikle altın ya da tungstenden oluşan 1-3 mikron boyutunda mikroparçacıklar, tedavi edici geni taşıyan plazmit DNA'sı ile kaplanır, sonra da bu parçacıklara hız kazandırılarak, hücre zarını delip, içeri girmeleri sağlanır. Basit olmalarına karşın fiziksel yöntemler verimsizdir; ayrıca, yabancı genler, sadece belirli bir süre fonksiyonal kalabilmektedirler. Bu nedenle araştırmacıların çoğu, genellikle virüs kökenli vektörlere yönelmişlerdir. "Vektör" kelimesinin bir anlamı da "taşıyıcı"dır. Benzer şekilde, gen terapisinde genleri hücrelere taşıma amacıyla kullanılan ve genetik olarak zararsız hale getirilmiş virüslere de vektör denir. Milyarlarca yıllık evrim sonucunda virüsler, hedefledikleri hücrelere kendi genetik materyallerini aktarmak için etkili yöntemler geliştirmişlerdir, ama ne yazık ki bu işlem duyarlı organizmalarda hastalıkla sonuçlanmaktadır. Günümüzde yapılan araştırmalarda, virüslerin hastalığa yol açan gen parçalarının yerine, hastaları iyileştirme amacıyla rekombinant genler yerleştirilmektedir. Bu amaçla değiştirilmiş hücreler kullanılmaktadır. Bu hücrelere tedavi edici geni taşıyan bir genetik yapı sokulduğunda, tedavi edici geni içinde taşıyan virüsler elde edilir. Bu şekilde değiştirilmiş virüsler hücreye girmek için kendi yöntemlerini kullanırlar ve genomlarının ekspresyonu sonucu, genin kodladığı protein üretilmeye başlanır. Öte yandan, virüsün kendisini çoğaltmak için ihtiyaç duyduğu genler, tedavi edici genlerle değiştirilmiş olduğundan, virüs çoğalıp hücreyi patlatamaz. Bunu yerine, hücrede virüsün taşıdığı hastalığı düzeltici genin ekspresyonu olur, genin kodladığı protein (yani ilaç) üretilir ve genetik bozukluk nedeniyle üretilemeyen proteinin yerini alır. En çok kullanılan viral vektörler, retrovirüsler, adenovirüsler, herpesvirüsler (uçuk virüsü) ve adeno-ilişkili virüslerdir. Ama her vektörün kendine özgü dezavantajları vardır: Bölünmeyen hücreleri enfekte edememek (retrovirüs), olumsuz immünolojik etkiler (adenovirüs), sitotoksik etkiler (herpesvirüs) ve kısıtlı yabancı genetik materyal taşıyabilme kapasitesi (adeno-ilişkili virüs). İdeal bir vektörde aranan özellikler yüksek titraj, kolay tasarlanabilme, integre olabilme yeteneği ve gen transkripsiyonunun kontrol edilebiliyor olmasının yanında, imünolojik etkilerin olmamasıdır. Genlerin Vücuda Sokulma Yöntemleri Genleri vücuda sokmanın çeşitli yolları vardır: Ex vivo, in vivo ve in situ. Ex vivo gen terapisinde, hastadan alınan hücreler laboratuvar ortamında çoğaltılır ve vektör aracılığıyla iyileştirici genler bu hücrelere nakledilir. Daha sonra, başarılı bir şekilde genleri içine almış hücreler seçilir ve çoğaltılır. Son aşamadaysa, çoğaltılan bu hücreler tekrar hastaya verilir. In vivo ve in situ gen terapisindeyse, genleri taşıyan virüsler doğrudan doğruya kana ya da dokulara verilir. Engeller Gen terapisinde, nakledilecek genler hücre içi ve hücre dışı engellerle de başa çıkmak zorundadır. Hücre içi engeller, naklin yapılacağı hücreden kaynaklanır ve hücre zarı, endozom ve çekirdek zarını içerir. Hücre dışı engellerse, belirli dokulardan ve vücudun savunma sisteminden kaynaklanır. Bütün bu engeller, gen transferinin etkinliğini önemli ölçüde azaltır. Bunun ölçüsü, geni taşımakta kullanılan vektör sistemine ve naklin yapılacağı hedef dokuya bağlıdır. Hücre zarı, geni hücreye sokma işleminde karşılaşılan ilk engeldir. Bu engel aşıldıktan sonra sırada endozomlar bulunur. Vektörün lizozomlara ulaşmadan önce endozomdan kaçması gerekir, yoksa lizozomlar taşınan tedavi edici geni enzimlerle parçalar, etkisiz hale getirirler. En son hücre içi engel çekirdek zarıdır. Yabancı DNA'ların çekirdek zarından içeri girmesi kolay değildir. Çapı 10 nm'den az olan bazı küçük moleküller ve küçük proteinler bu deliklerden kolayca geçebilirken, daha büyük moleküllerin içeriye alınması enerji gerektirir. Yabancı DNA'ların çekirdeğin içine girme mekanizması tam olarak bilinmemekle birlikte, mekanizmanın büyük moleküllerin çekirdeğe alınmasında kullanılan mekanizmaya benzediği tahmin edilmektedir. Çekirdeğin içinde ve sitoplazmada bulunan ve nükleik asitleri parçalayan nükleaz gurubu enzimler de ayrı bir problemdir. In vivo gen terapisinde, tedavi edici genlerin hastaya direkt yolla verilmesi sonucunda vektörler, hücre içi engellerin yanısıra hücre dışı engellerle de karşılaşırlar. Hücre dışı engeller iki kategoride incelenebilir: Dokuların kendilerine özgü yapıları ve savunma sistemi engelleri. Örneğin bağ dokusu, gen transferi için büyük bir engeldir. Eğer kas dokuya enjeksiyon yapılacaksa, kaslarda bulunan bağ dokusu katmanları, enjekte edilen vektörlerin yayılmasını ve enfekte etme yeteneklerini engeller. Epitel hücreleri vektörlerin daha derinlerdeki hücrelere ulaşmasına olanak vermez. Serumu oluşturan maddeler de çeşitli gen nakli vektörlerini etkisiz hale getirir. Örneğin çıplak DNA, serumda bulunan pek çok pozitif yüklü proteine bağlanıp etkisiz hale gelebilir. Serumdaki protein ve nükleik asitleri parçalayan proteaz ve nükleaz enzimleri de gen terapisi vektörlerini parçalayabilir. In vivo gen terapisinde adenovirüs ya da retrovirüslerin vektör olarak kullanıldığı bazı durumlarda, bunlara karşı vücutta antikor üretildiği gözlenmiştir. Savunma sisteminin etkilerinden kurtulmak için, tedavide savunma sistemini baskılayıcı ilaçlar da kullanılmaktadır, ama onların da bazı sakıncaları vardır.

http://www.biyologlar.com/gen-terapi-1

E. coli Besiyerleri

Geliştirme koşullarından bağımsız olarak yeterli bir aktivite gösteren karakteristik yapısal enzimlerin belirlenmesi bakterilerde hızlı bir identifikasyon sağlamaktadır. E. coli, bir kaç Salmonella ve Shigella suşu dışında ß-D-glucuronidase (MUGase) enzimine sahip Enterobacteriaceae üyesi olan tek türdür. Bu enzim, 4-methylumbelliferyl-ß-D-glucuronide (MUG)'i uzun dalga boylu UV ışığı altında fluoresans veren 4-methylumbelliferon 'a parçalar. E. coli aranması/sayılması için hazırlanan besiyerlerine MUG ilave edilmesi, geliştirilmesin bu besiyerinde yapılması ve sonuçta sıvı kültürün/koloninin uzun dalga boylu UV lamba ile kontrolü E. coli tayinini hemen hemen bitirmektedir. Sahte pozitif reaksiyonlardan kurtulmak için indol testi yeterli olmaktadır. Hepsi Merck/fluorocult cinsi olmak üzere; BRILA (Brillant Green Bile Broth), CASO (Tryptic Soy) Agar, DEV Lactose Peptone Broth, ECD (E. coli direct) Agar, Lauryl Sulphate Broth, LMX Broth besiyerlerinde UV ile fluoresans pozitif alındıktan sonra doğrudan sıvı besiyerinde gelişen kültürün üzerine veya katı besiyerinde gelişen koloni üzerine Kovac's indol ayıracı damlatılarak indol testi yapılır. Floresan ve indol pozitif tek bakteri E. coli 'dir.Bazı kültürlerde MUG reaksiyonu (fluoresans) net bir şekilde belirlenemez. Bu gibi durumlarda 1N NaOH 'den 1 mL kadar ilave edilmesi ile fluoresans reaksiyon netleşir. MUG, selektif katkı olarak besiyeri üreten diğer firmalar tarafından da pazarlanmaktadır.E. coli 0157: H7 Agar (Merck)Enterohemorajik E. coli 0157: H7 'nin izolasyonu ve ayrımı için geliştirilmiş bir besiyeridir. Bileşimindeki sodium deoxycholate gram pozitiflerin gelişimini inhibe eder. Bromothymol blue pH indikatörü olarak sorbitolun kullanımını gösterir. Sorbitol pozitif bakteri kolonileri sarı renk alırken sorbitol negatif koloniler yeşil renkli olarak kalırlar. Sodium thiosulphate ve ammonium iron (III) citrate, H2S oluşturan patojenlerin ayrımında rol alır. E. coli 0157: H7, diğer E. coli suşlarından farklı olarak MUG negatif bir özellik gösterir. Bu besiyerinde gelişebilen farklı bakterilerin kültürel özellikleri aşağıdaki gibidir.Bakteri Koloni rengi Presipitat MUG SorbitolE. coli 0157: H7 yeşilimsi - - -E. coli sarı ± + +Proteus mirabilis siyah-kahve - - -Shigella sonnei yeşilimsi - + -Enterobacter aerogenes sarı ± - +Chromocult Coliform Agar (Merck)Karakteristik bakteriyel enzimlerin kromojenik bir substrat ile belirlenmesine yönelik hızlı bir identifikasyon yöntemi ve bu yönteme dayalı besiyeridir. Kromojenik substrat besiyeri bileşimine dahil edilmiştir. İdentifikasyon, karakteristik koloni rengi ile bir anlamda tamamlanır. Renk bir kaç gün stabil kalır, pH 'dan sıcaklıktan ve ışıktan etkilenmez. Renk, besiyerine difüze olmadığı için yüksek sayıda koloni varlığında dahi tek koloni izolasyonu mümkündür.Besiyeri formülasyonu içinde yer alan seçilmiş peptonlar, pyruvate ve fosfat tampon aşırı hasar görmüş koliformlar için gelişme ortamı sağlar. Lauryl sulphate koliform bakteriler için bir olumsuzluk yaratmazken Gram pozitif bakterilerin gelişimini önemli ölçüde inhibe eder.Koliform grubu bakteriler için karakteristik olan ß-D-galactosidase enzimi kromojenik bir substrat olan Salmon-GAL ile, E. coli için karakteristik olan ß-D-glucuronidase enzimi ise yine kromojenik bir substrat olan X-glucuronide ile belirlenir.35-37 oC 'da 24-48 saat inkübasyon sonunda koyu mavi-menekşe renkli koloniler üzerine Kovac's çözeltici damlatılarak indol reaksiyonu belirlenebilir. Bu besiyerinde gelişen bakterilerin kültürel özellikleri aşağıdaki gibidir.Salmon X-Bakteri Koloni rengi -GAL Glucuronide IndolE. coli koyu mavi/menekşe + + + Citrobacter freundii kırmızı + - -Klebsiella pneumoniae kırmızı + - -Enterobacter cloacae kırmızı + - -Salmonella enteritidis renksiz - - -Shigella flexneri renksiz - - -

http://www.biyologlar.com/e-coli-besiyerleri-1

SALGININ KİMYASAL YAPISINA GÖRE BEZLER

Seröz (Albuminöz ) Bezler: Seröz salgı, berrak, sulu ve protein yapısındadır. Çoğu seröz glandlar, sindirim enzimlerinden bir veya birkaçını içerirler. Asinuslardaki salgı hücreleri genellikle piramidal şekilli, yuvarlak nukleuslu hücrelerdir. Bazal infranükleer bölgede bu hücreler yoğun bazofili gösterir (GER+polizomlardan dolayı ) (muköz bezlerden ayırma ölçütü), Apikal kısımda iyi gelişmiş Golgi kompleksi ve yuvarlak membranlı salgı granüllerini içerir. Sindirim enzimleri üreten hücrelerde bu yapılar enzim içerir ve zimojen granüller adını alır (Parotis, ekzokrin pankreas, mide fundik bezleri). Müköz Bezler: Müköz salgı glikoprotein yapısındadır. Yapışkan, akışkanlığı az, kayganlaştırıcı jel kıvamındadır. Hücrenin apikal kutbunda iri, açık renk boyanan kuvvetli hidrofilik glikoprotein tabiatında musin granülleri yer alır. Nukleus genellikle hücre tabanında yer alır. Bu bölge GER’den zengindir. Golgi kompleksi nukleusun hemen üst bölgesinde yer alır ve iyi gelişmiştir. Salgı ile dolduklarında nukleus iyice bazale itilip yassılaşır. Örnek olarak, cellula caliciformis, dil kökünde Weber bezleri, mide, tükrük bezleri, solunum sistemi ve genital sistemindeki bazı bezler verilebilir. Seromuköz (karışık – miks ) Bezler: Seröz ve müköz, her 2 tipte salgı hücrelerine sahip olan bezlerdir. Seröz ve müköz salgı hücrelerinin oluşturduğu son kısımlar ayrı ayrı gözlenirler. Ayrıca müköz son kısımların dışında onları yarımay şeklinde saran seröz hücrelerin (Gianuzzi yarımayları ) varlığı sıklıkla gözlenir. Örn:Gld. Submandibularis ve sublingualis

http://www.biyologlar.com/salginin-kimyasal-yapisina-gore-bezler

Patolojinin Tarihçesi

İlk çağlarda; hastalıkların tanrıların insanları cezalandırmak için kullandıkları bir araç olduğuna inanılıyordu. Her hastalık bir günahın, suçun cezasıydı. Bu inanç, din adamlarının etkinliğini ve gücünü de artırıyordu. Batı Anadolu ağırlıklı eski Yunan uygarlığında ve sonraları ibni Sina'nın yaklaşımlarında, hastalıklar ile tanrı(lar) arasındaki bağı koparma çabaları olmuştur. Atardamarlarda hava değil, kan bulunduğunun anlaşılması bile, insanlık tarihinin yakın dönemlerindedir (Galen, MS 200). Orta çağ boyunca Avrupa'da hastalıkların içsel ve dışsal nedenleri olduğu yönünde (ilahi olmayan) düşünceler ortaya atılmış ve böyle düşünenler genellikle bundan zarar görmüşlerdir! Rönesans ile birlikte, hastalıklar konusunda fiziksel neden-sonuç ilişkileri gündeme gelmiş, salgın hastalıklardan insandan insana geçen etkenlerin sorumlu olabileceği gibi görüşler "gözleme dayanarak" ortaya atılmıştır. Dolayısıyla, "gözlem"in hastalıkları anlama açısından önem kazanması ve bugün anladığımıza yakın anlamda patolojik incelemeler yapılması rönesans ile başlar. Eski Mısır uygarlığında da "haruspex" isimli saray görevlilerinin belli hayvanların organlarını kesip inceledikleri bilinmektedir. Özellikle karaciğerin kesit yüzünü değerlendiren "haruspex"leri ilk patologlar olarak görmek mümkün olabilir. Ancak, "haruspex"lerin (sözcük anlamı:kâhin)incelemeleri o karaciğerde ne olduğunu açıklamayı değil, uğruna bir hayvanın karaciğeri çıkarılan kişinin geleceğinin ne olduğunu tahmin etmeyi amaçlıyordu! Patologluk, bu falcılık yönünü zamanla kaybetmiştir!. Patolojinin büyükbabası olarak kabul edilebilecek kişi, Padua Üniversitesi anatomi profesörü Giovanni Battista Morgagni'dir (1682-1771 veya 1777). Morgagni'nin 1761'de yayımladığı kendi yaptığı 700 otopsiyi anlattığı kitabı bir dönüm noktasıdır. Bundan sonraki dönemde "etiyoloji", "lezyon" ve "semptom" arasında ilişki kurularak bugün bildiğimize yakın, tanrısal yönü olmayan, bir "hastalık" kavramı oluşmuştur. Bu dönemde Bichat, Laennec, Dupuytren, Hodgkin, Addison, Paget, Rokitansky gibi adları bugün de yaşayan hekimler, patoloji bilgisinin artmasına katkıda bulunmuşlardır. Giovanni Baptista Morgagni (1682-1771), Valsalva'nın öğrencisidir. İtalya'da Padua Üniversitesinde 50 yıldan uzun süre görev yapmış ünlü bir hekim olan Morgagni, 1761 yılında, 80 yaşındayken De Sedibus adlı kitabını yayımlamış ve burada 700'den fazla olguda klinik bulgular ile otopsi bulgularını karşılaştırmıştır. Tanımladıkları arasında; mitral darlığı, endokardit, angina pektoris, siroz, spina bifida, patent duktus arteriosus, foramen ovale bulunmaktadır. Kolposkobu bulan, parasentezi ilk gerçekleştiren hekimdir. İnsan ve hayvanların aynı mikroskobik yapıtaşlarından (hücrelerden) yapıldığını ilk kez söyleyen, histolojinin babası olarak kabul edilen Theodor Schwann (1810-1882) da böyledir. Patolojinin 1980'lere kadar kullanılmakta olan yaklaşımlarının hemen tümünün kaynağı olarak "hücresel patoloji"nin kurucusu Rudolph Ludwig Karl Virchow gösterilmektedir. Histopatolojik incelemeye dayanan bu yaklaşımda "hücre"; yaşamı, hastalıkları ve ölümü açıklamaya yönelik tüm çabaların odak noktasını oluşturur. Virchow, hastalıklı hücrelerin de sağlam hücrelerden oluştuğunu vurgulayan ilk bilim adamıdır. Rudolph Ludwig Karl Virchow (1821-1902), günümüzdeki anlamı ile patolojinin babası olarak kabul edilir. Mikroskobun hastalıkların tanısında etkin biçimde kullanımını savunmuştur. Döneminin pek çok ünlü hekimi (Rokitansky dahil), mikroskobik incelemenin önemine inanmıyor ve bu yaklaşımı küçümsüyorlardı. Virchow; tromboz, atrofi, hiperplazi ve iskemi terimlerini ilk kez kullanmış, pek çok hastalığı bu gün bildiğimiz biçimleriyle ilk kez tanımlamıştır. Yaşadığı dönem için devrim niteliğinde olan -hemen tümünde haklı olduğu zamanla anlaşılan- görüşleri nedeniyle zorluklarla karşılaşmıştır. Daha 30 yaşına gelmeden fibrinojen, lökositoz ve lökemiyi tanımlamış; yerel lezyonlara cerrahi girişim yapılmasının anlamsız olduğunu düşünenlere karşı çıkmıştır. İnfarktüs, amiloid, kalsifikasyon ilk kez Virchow tarafından doğru biçimde açıklanmıştır. Lösin ve tirozin amino asitleri Virchow tarafından tanımlanmıştır. Her hücrenin bir hücreden meydana gelmesi gerektiğini (omnis cellula a cellula) yüksek sesle ve inatla söyleyen ilk doktordur. (Bu görüş, o zamanlar çoğunluk tarafından gülünç bulunuyordu). Art arda verdiği 20 konferansın ardından 1858'de yayımlanan Fizyolojik ve Patolojik Histolojiye Dayanan Hücresel Patoloji kitabı, hastalıkların mikroskobik incelenmesi yaklaşımının temeli olarak kabul edilir. Anatomik patolojinin tıp fakültelerinde zorunlu bir ders olarak kabul edilmesi de Virchow sayesindedir. Politik radikalliği ile de bilinen Virchow'un 2000 kadar makalesi ve kitabı bulunmaktadır. Günümüzde, moleküler yöntemlerin gelişmesi ile bu tür yöntemler de patolojik incelemelerde gittikçe artan biçimde kullanılmaya başlanmıştır. Bunlar arasında, DNA başta olmak üzere, "genetik materyal" ile ilgili olanların önemi özellikle artmaktadır. Ülkemizde patoloji, Osmanlı döneminin tek tıp fakültesi olan askeri tıp fakültesinde (Gülhane) Alman bilim adamları tarafından ilk kez uygulanmıştır. Dolayısıyla, Patoloji Türkiye'ye Gülhane ile gelmiştir. İlk Türk patologlarının tümü askerdir. Ülkemizde patolojinin kısa bir tarihi bu konuda daha fazla bilgi edinmenizi sağlayabilir. Tıp eğitiminde patolojinin yeri Günümüzde tıp fakültesi düzeyindeki bütün okullarda patoloji en ağırlıklı derslerden biri olarak okutulmakta ve ders saati sayısının çokluğu açısından da pek çok kurumda ilk sırayı almaktadır. Bu dersler bir veya iki seneye yayılmaktadır. Gelişmiş ülkelerde de, yalnızca 'ders anlatma' yolu ile öğretim pek çok kurumda neredeyse tümüyle ortadan kalkmakta olmasına rağmen, öğrencinin başarısının değerlendirilmesinde patoloji bilgisinin ölçülmesi önemini korumaktadır. Patoloji öğretiminden beklenen; öğrencinin hastalıklı doku ve organları inceleyerek, neden (etiyoloji) ve sonuç (hastalık bulguları) arasındaki bağlantıları kavrayabilmesini sağlamaktır. Patoloji eğitimi, hastalıklar bilgisine görsel bir boyut kattığı için, öğrenilenlerin daha anlaşılır ve kalıcı olmasını sağlama açısından önemlidir. Bu yönleriyle patoloji, 'temel' bir tıp dalıdır. Patolojide öğrenilenler, hemen tüm klinik dallarda o dala özgü bilgilerin öğrenilmesini kolaylaştırır. Tıp pratiğinde patolojinin yeri ve patoloji uzmanının işlevleri Patolog, hemen yalnızca yataklı sağlık kurumlarında hizmet veren, hem cerrahi hem dahili bilim dalları ve servisler ile ilişkili bir uzmandır. Patolog, aşağıda ayrıntılı olarak sıralanan işlevleri yerine getirirken özel laboratuar yöntemlerinden sürekli olarak yararlanır; bu açıdan patoloji bir 'laboratuar' bilim dalı olarak görülebilir. Ülkemizdeki akademik uygulamalarda ise patoloji, 'cerrahi' bilim dalları arasında yer alır. Tıp Fakültelerinde Patoloji Anabilim Dalı, idari açıdan Cerrahi Tıp Bilimleri Bölüm Başkanlığı'na bağlıdır. Tanı: Patologdan en çok beklenen, hastalıklı olduğu düşünülen doku ve organları inceleyerek hastaya belli bir hastalık tanısı koyması veya konulmuş olan bir tanının doğruluğunu değerlendirmesidir. Doku ve organlar vücuttan değişik biçimlerde alınır ve patoloğun incelemesine sunulurlar. (Örnekler: Lenf düğümü biyopsisi ile lenfoma adlı kötü huylu tümörün tanısının konulması; endoskobik yolla alınmış bir mide biyopsisi örneğinde gastrit mi, peptik ülser mi, kanser mi bulunduğunun saptanması...) Tedavi: Patolog, koyduğu tanıyla tedavinin biçimini belirleyebilir.(Örnek: Lenf düğümü biyopsisinde tüberküloz tanısı anti tüberküloz ilaçların, lenfoma tanısı ise antineoplastik ilaçların kullanılacağını belirler). Gittikçe daha yaygınlaşan bir diğer işlev ise, dokuda tedavinin yol açtığı değişikliklerin incelenmesiyle tedavinin etkinlik derecesinin belirlenmesidir. Bu uygulama, hastalığın gidişi konusunda tahmin yapmaya da olanak verir. (Örnek: Kemoterapiden sonra osteosarkoma dokusunun tümüyle ortadan kalkmış olması hastanın kullanılmış olan ilaçlardan yararlandığını gösteren bir bulgudur). Transplantasyon uygulamalarının yaygınlaşmasıyla, patologların transplante edilecek organı transplantasyondan önce ve sonra incelemeleri istenmektedir. Bir organın transplantasyona uygun olup olmadığı hemen yalnızca patolojik inceleme ile belirlenebilir. Fonksiyonları bozulmaya yüz tutan transplante bir organdaki sorunlar da patolojik inceleme yapılmadan tam olarak anlaşılamaz. Bulunacak çözüm yolları patolojik inceleme ile belirlenir. Patologların hastaların tedavisindeki rolü, her zaman dolaylıdır. Tarama: Görülme sıklığı yüksek olan hastalıkların belirgin bozukluklara yol açmadan saptanabilmesi için, risk altındaki kişilerin olabildiğince kolay ve ucuz yollarla incelenmesi anlamında kullanılır. Patoloji pratiğinde bu, ya kendiliğinden dökülen veya küçük bir travmayla dökülmesi sağlanabilen hücrelerin (doku veya organ değil !) incelenmesiyle (sitolojik inceleme) yapılır. (Örnek: Yakınması olmayan orta yaşlı bir kadın hastada tarama amacıyla yapılan vaginal yaymada normal olmayan hücrelerin saptanması ve çok kötü gidişli olabilecek bir tümörün henüz gelişme sürecindeyken yok edilebilmesinin sağlanması). Öte yandan, sitolojik yöntemlerin önemli bir kısmı "tarama" değil "tanı" amaçlıdır. Bunların kullanım alanı hızla genişlemektedir. Dünyanın pek çok ülkesinde olduğu gibi, ülkemizde de böyle sitolojik incelemeler patoloji uzmanları tarafından yapılmaktadır. Otopsi: Tıp eğitiminin en önemli öğelerinden biri olan otopsi, öğrencilere ve doktorlara derslerin ve kitapların sağlayabileceğinin çok ötesinde yarar sağlayan bir eğitim yöntemidir. Tıp teknolojisinin ve buna dayalı tanı/tedavi yöntemlerinin çok gelişmiş olduğu ülkelerde bile hastanede ölen hastaların otopsilerinde, hasta yaşarken tanısı konulamamış pek çok hastalık saptanmaktadır. Bunların bazıları, hastanın tedavi biçiminin değiştirilmesini gerektirebilecek niteliktedir. (Örnek: Metabolik hastalığı olduğu düşünülen bir olguda kötü huylu tümör saptanması). Kitap sayfalarında kalan veya ezberlenen bilgilerin morfolojik karşılıklarının görülmesi, edinilen bilgilerin özümlenmesini sağlamaktadır. Bu nedenle, bir doktorun otopsi eğitimi olmadan yetişmesi bağışlanamaz bir eksikliktir. Çoğu patoloji anabilim Dalında yılda 1-2 tıbbi otopsi bile yapılmamaktadır. Bu sayı kabul edilemeyecek kadar düşüktür. Patolojik yöntem ve yaklaşımlar Patolojinin bir tıp dalı olarak yöntemleri ve işleyişi diğer dallardan kısmen farklıdır. Klinik bir dal olmamasına rağmen, patoloji, çoğu kez klinik çalışmaların ya içinde yer alır veya çalışmalarından elde ettiği verilerle hastaların tanı ve tedavilerine doğrudan katkılarda bulunur. Patolojinin çalışma alanı hastalıklı organ ve dokuların incelenmesiyle sınırlı değildir. Deneysel, teorik ve teknik pek çok konuda patolojik çalışmalar yapılmaktadır. Patolojik inceleme ve çalışmalar ancak yeterli anatomi, histoloji ve fizyoloji bilgisine sahip kişilerce yürütülebilir. Patolog, ilgili uzmanların bulunabildiği akademik ortamlar dışında, çoğu kez bu konulardaki klinik soruları en kolay cevaplayabilecek kişi konumundadır. Bir hastanenin işleyişi içinde patoloji bölümünün katkısı; hastalardan tarama veya tanı amacıyla hücre/doku örneklerinin alınmasıyla veya organların çıkarılmasıyla başlar. Bu örneklerin önce dış görünümleri (makroskobi) değerlendirilir ve mikroskop altında incelenmesi gerekli görülen kısımlar seçilerek ayrılır. Patolojik incelemenin en kritik ve en çok deneyim gerektiren aşamasının bu olduğu kabul edilebilir. Patolojiyi en iyi yansıttığı düşünülen kısımlar örneklenip, çok ince (4-5 mikron kalınlıkta) kesitlerin alınabilmesine olanak verecek işlemlerden (doku takibi) geçirilir ve hazırlanan kesitler rutin olarak "hematoksilen-eosin" yöntemiyle boyanır. (Hücre çekirdekleri mavi, sitoplazmalar kırmızı boyanır). Daha sonra, bu boyanmış kesitlerin ışık mikroskobunda incelenmesiyle morfolojik bir değerlendirme yapılır. Bu değerlendirmenin birtakım kuralları olmakla birlikte, temelde, morfolojik incelemeler subjektiftir. Bu subjektifliğin asıl nedeni, canlı organizmaların özellikleri için 'normal'in kesin sınırlı olarak tanımlanamamasıdır. (Normal saç rengi nedir? Normal boy kaç santimetredir?) Dolayısıyla; belli bir organ veya hücrenin görünümünün normalden ne kadar sapmış olduğu sorusunun yanıtı, kaçınılmaz olarak kişisel ve subjektiftir. Patolojik incelemenin sonuçta subjektif olması, onun kuralları ve sistematiği olmasına engel değildir. Tıbbi bir değerlendirmenin işe yararlılığının ve güvenilirliğinin ölçüsü, hastanın tanı ve tedavisine yapılan katkıdır. Bir dokudaki bütün atomların adlarını ve miktarlarını objektif, bilimsel (ve pahalı!) yollarla saptamak mümkündür ancak, bunun bir lenfoma olgusunun tanı ve tedavisine katkısı yoktur! Subjektif morfolojik değerlendirme, patoloğun tanıya ulaşmada kullandığı yollardan yalnızca birisidir. Patolog, yeri geldiğinde biyokimyasal, farmakolojik, mikrobiyolojik, genetik, moleküler biyolojik verileri kullanabilir; özel yöntem ve düzeneklerin yardımıyla dokular üzerinde nitel (kalitatif ) veya nicel (kantitatif) incelemeler yapabilir. Bunlar arasında histokimya, immunohistokimya, in situ hibridizasyon, DNA sitometrisi, digital görüntü analizi gibi yöntemler sayılabilir. Bu yöntemlerin hemen tümü, GATA Patoloji Anabilim Dalı'nda da kullanılmaktadır. Ülkemizde patolojik değerlendirmelerin objektif, ölçülebilir, yinelenebilir biçimde yapılmasına olanak veren ilk Nicel Patoloji Laboratuvarı Gülhane'dedir. Patoloğun en sık kullandığı düzenek ışık mikroskobudur. Işık mikroskobu ile sağlanabilecek büyültme yaklaşık x 1000 ile sınırlıdır ve görünür ışığın dalga boyundan kaynaklanan bu sınırın teknolojik ilerleme ile aşılması mümkün değildir. Laser, X ışını, ultrasound kullanarak veya digital yöntemlerle değişik mikroskoplar yapılmakta ve bunların kendilerine özgü kullanım alanları bulunmaktadır. Günümüzde, tek tek atomların görüntülenmesine izin veren özel mikroskoplar (scanning tunneling microscope) bile geliştirilmiştir. 'Elektronmikroskop' ise, temel olarak "tarayıcı" (scanning) ve "geçişimsel" (transmission) adlı iki biçimde kullanılmaktadır. Bunların ilki, çok çarpıcı "üç boyutlu" görüntüler sağlayabilmesine rağmen, dar bir kullanım alanına sahiptir ve sık görülen hastalıkların tanısında hemen hemen hiç rolü yoktur. "Transmission" elektronmikroskopi ise daha çok araştırma amacıyla kullanılmakta, nadiren tanısal açıdan da gerekli olabilmektedir. Bu mikroskopların büyültme gücü ışık mikroskobundan yüzlerce kere fazladır. Ancak, büyültme ne kadar fazlaysa tanının o kadar kolay ve doğru olacağını düşünmek yanlış olur. Her inceleme yönteminin olduğu gibi, elektron mikroskobinin de kendine özgü bir kullanım alanı vardır. Önünüzdeki sayfayı okumak için bir dürbün veya teleskop kullanmaya çalışırsanız, elektron mikroskobunun ne zaman işe yarayabileceği konusunda sağlıklı bir görüşe ulaşabilirsiniz! Çok pahalı ve emek-yoğun olan elektronmikroskopla rın yerine (onlardan çok daha ucuz olmayan!) "lazer taramalı konfokal mikroskoplar" da kullanılmaya başlanmıştır. Işık kaynağı lazer olan bu mikroskoplarda büyültme elektronmikroskopla rdakine yakındır. Lazer taramalı konfokal mikroskopları özel yapan, kesit kalınlığından etkilenmemeleri, daha az emek-yoğun olmaları ve sağladıkları verilerin tümüyle digital olmasıdır. Bu sayede hiçbir boya maddesi kullanmadan hücre organellerini değişik renklerde göstermek ve üç boyutlu görüntüler elde etmek mümkün olmaktadır. Bu mikroskopların henüz rutin patolojik incelemede yeri yoktur. Patoloji; doku kültürü, in situ hibridizasyon, immunohistokimya, akım sitometrisi, digital görüntü analizi gibi daha pek çok yöntemi tanısal veya araştırma amaçlı olarak kullanır. Bunların kullanımı gittikçe artmakta ve patolojik incelemede morfolojinin rolü yıldan yıla azalmaktadır. Bu, Virchow ekolünün yerini artık moleküler yaklaşımların almakta olduğunun göstergesidir; buna göre, hastalıkların değerlendirileceği temel birimler artık "hücre altı" yapılardır... Patolog, yukarıdaki yöntemlerden biri veya birkaçı ile yaptığı incelemesinin sonunda bir rapor düzenler. Bu rapor yalnızca bir tanı içerebileceği gibi, bir ayırıcı tanı veya öneriler listesi biçiminde de olabilir. Patolog, tıbbi konsültasyon ve danışma mekanizmasının bir parçasıdır; bu nedenle, bir hasta ile ilgili düşüncesi sorulduğunda (kendisine organ veya doku örneği gönderildiğinde) bütün klinik bulgular ve değerlendirmelerden haberdar edilmelidir. Patologdan herhangi bir hastanın herhangi bir yerinden alınmış herhangi bir örneğe tanı koymasını istemek, bir doktorun ellerini, gözlerini bağlayıp kulaklarını tıkayarak bir hastaya tanı koymasını ve onu tedavi etmesini istemekten farksızdır. Patolojik incelemenin en çok bilinen yolu 'sorular zinciri'dir. Bu yol, özellikle patolojik inceleme yöntemleri konusunda kısıtlı bilgi ve deneyimi olanlar tarafından izlenir. Deneyim arttıkça, tanı adeta otomatikleşir ve tanılar milisaniyelerle belirtilen süreler içinde konulabilir. Sorular zincirine (basitleştirilmiş) bir örnek: Sıra Soru Karşılık 1 Bu bir lenf düğümü mü? Evet 2 Bu görünüm normal mi? Hayır 3 Burada olmaması gereken türde hücreler var mı? Hayır 4 Hücrelerin birbirine oranı değişmiş mi? Evet 5 Hücreler atipik mi? Evet 6 Bu bir lenfoma mı? Evet Yukarıdaki sıra ile yapılan bir akıl yürütme sonucunda ulaşılan tanı lenfoma olacaktır. Yukarıdaki tabloda anlatılan, öğrencilerin laboratuar çalışmaları sırasında inceleyecekleri bütün hematoksilen-eosin boyalı kesitler (preparatlar) karşısında izlemeleri gereken yoldur. Örnek: Bu appendiks vermiformis mi ? 'evet' ; mukozada ülserasyon var mı? 'evet' ; düz kas tabakasında nötrofil lökosit infiltrasyonu görülüyor mu? 'evet' ; tanı: akut appendisit. Deneyimli patologlar sorular zincirine ek olarak "patern (örnek, model, biçim) tanıma" yöntemini de (çoğu kez farkında olmadan) kullanırlar. Bu yöntem, patoloğun mikroskoptaki görüntü ile karşılaştığı anda lezyona tanı koyması biçiminde özetlenebilir. Saptanan görüntü ile o patoloğun daha önce karşılaştığı ve adını bildiği bir görüntü arasında yeterli derecede benzerlik varsa, bu süreç çok kısa süre içinde tanı ile sonlanır. "Cognitive" (bilişsel) psikolojinin alanına giren bu çok karmaşık ve ilgi çekici sürecin ayrıntıları bilinmemektedir. Rutin histopatolojik uygulamalar Tespit (fiksasyon) Dokular insan vücudundan ayrıldıkları anda canlıdırlar ve taşıdıkları hastalığın (varsa) morfolojik bulgularını sergilerler. Tespit, dokuların o andaki görünümünün ısı, nem ve enzimlerin etkisiyle değişmesini, bozulmasını önlemek amacıyla yapılır. Tespit edilmeyen dokulardaki hücreler bir süre sonra bakterilerin ve içerdikleri sindirici enzimlerin etkisiyle otolize uğrar, morfolojik özelliklerini yitirir ve tanısal amaçlı incelemelerde kullanılamayacak duruma gelirler. Tespit işlemi için genellikle özel sıvılar kullanılır. Doku ve organlar kendi hacimlerinin 10-20 katı kadar tespit sıvısı içine bırakılırlar. Patolojide rutin amaçlar için en yaygın olarak kullanılan tespit sıvısı formalindir. Bu, seyreltik bir formaldehit (H-CHO) solüsyonudur. Tespit işlemi dokunun türü ve kalınlığına göre birkaç saat (karaciğer iğne biyopsisi) ile birkaç hafta (beyin) arasında değişen sürelerde olabilir. Yüzde seksenlik etil alkol, Bouin solüsyonu, Zenker solüsyonu, B5 solüsyonu, Carnoy solüsyonu ve glutaraldehit gibi başka tespit sıvıları da yeri geldikçe kullanılabilir. Sitolojik örneklerin havada kurutulmaları veya ısıtılmaları da tespit yöntemleri arasındadır. Bu tür tespit yöntemlerine daha çok hematolojik ve mikrobiyolojik boyalar kullanılacaksa başvurulur. Takip (doku işleme) Tespitten sonraki aşamaların hemen hepsi otomatik makinelerde yapılabilir. İlk aşama, çoğunluğu sudan oluşan tespit sıvısının ve dokunun kendisinin başlangıçta içerdikleri suyun uzaklaştırılmasıdır (dehidratasyon). Bu, dokunun sertleşmesine yardım eder. Sert dokuların sonraki aşamalarda çok ince kesilebilmesi mümkün olur. (Bayat ekmekle taze ekmeğin kesilmeleri arasındaki fark gibi). Alkol, dokunun kırılganlığını artıran bir maddedir. Onun da ksilol yardımıyla ortamdan uzaklaştırılması gerekir. Daha sonra da, dokuda başlangıçta su içeren, sonra sırasıyla alkolle ve ksilolle infiltre olan aralıklara ısıtılarak sıvılaştırılmış parafinin girmesi sağlanır. Kullanılan parafin oda sıcaklığında katılaşır. Takibe alınan bütün örnekler numaralanır. Bu numaralar sonraki bütün aşamalarda dokuların üzerinde, bloklarda, preparatlarda ve raporlarda yer alır. Takip işlemleri, oda sıcaklığı ile 60 C arasındaki sıcaklıklarda yapılır. Negatif basınç (vakum) uygulanması ile, dokuların daha iyi ve daha kısa sürede işlenmeleri sağlanabilir. Ayrıca, özel mikrodalga fırınlar kullanılarak, normal olarak 8-16 saat süren bu işlemlerin süresini belirgin olarak kısaltmak ve 2 saatin altına indirmek mümkündür. Otomatik doku işleme aygıtlarında yaygın olarak uygulanmakta olan program şöyledir: Formalin (3 saat), alkoller (4 saat), aseton (30 dakika), ksilol (1,5 saat), parafin (2 saat). Program, akşam başlatılmakta; sabah, dokular bloklanmaya hazır olmaktaBloklama Parafinle infiltre edilmiş dokular, dikdörtgen prizma biçimindeki kalıplara konulur ve üzerlerine ısıtılmış parafinin dökülüp soğutulmasıyla bloklar elde edilir. Bu durumdaki dokuların çok ince kesilebilmeleri mümkün olu Kesme Parafin bloklar; "mikrotom" adlı aygıt ile istenilen kalınlıkta (genellikle 4-5 mikron) kesilir, kesitler ılık su banyosuna, oradan da lamlar üzerine alınırlar. Bu kesitler önce ısıtılıp sonra bir solvent olan ksilole konularak deparafinize edilir, daha sonra da giderek daha sulu hale gelen alkollerden geçirilerek hidrate edilir ve istenilen boyanın uygulanmasına geçilir. Sayfa başına dön! Boyama Rutin olarak kullanılan boya hematoksilen (mavi) ve eosindir (kırmızı). Kısaca "HE" veya "H&E" denilir. Otomatik boyama aygıtlarında yaygın olarak uygulanmakta olan program şöyledir: Ksiloller (6 dakika), alkoller (3 dakika), su (2 dakika), hematoksilen (6 dakika), su (1 dakika), asit-alkol (10 saniye), su (1 dakika), amonyak (5 saniye), su (1 dakika), eozin (45 saniye), su (1 dakika), alkoller (1 dakika), ksiloller (5 dakika). "Frozen section" ve intraoperatif konsültasyon Yukarıdaki rutin histopatolojik işlemlerin sağlıklı olarak yapılabilmesi için en az 10-15 saatlik bir süreye (mikrodalgalı yöntemler dışında) gereksinme vardır. Bu da, rutin patolojik incelemeye alınan bir örneğin tanısının en iyi olasılıkla ancak bir gün sonra verilebileceği anlamına gelir. Oysa, ameliyat sırasında hastada ameliyatın gidişini değiştirebilecek bir durumla karşılaşıldığında, dakikalar içinde verilecek bir tanıya gereksinme duyulabilir. Hastanın anestezi alma süresini uzatmamaya ve yeniden ameliyata alınmasına engel olmaya yönelik bir uygulama olarak "frozen section"a (dondurarak kesme) büyük hastanelerde sıkça başvurulur. Bu yöntem, dokuların istenilen incelikte kesilebilmeleri için dondurulmaları temeline dayanır. Özel bir aygıt ("cryotome") yardımıyla dokular -20 C sıcaklıkta kesilir ve hazırlanan kesitler hızlandırılmış yöntemle boyanırlar. Patolog, bu kesitleri inceleyerek vardığı sonucu ameliyatı yapan cerraha bildirir. Bütün bu işlemler, ameliyathaneye komşu bir patoloji bölümünde yapıldığında, 10-15 dakika kadar sürer. Bazı patoloji bölümlerinin ameliyathane içinde bu amaçla çalışan bir birimi bulunmaktadır. Dondurarak kesme yöntemiyle hazırlanan kesitlerin değerlendirilmesi güçtür ve bu işlem ancak deneyimli patologlar tarafından yapılabilir. Cerrahlar patologlardan "intraoperatif histolojik inceleme" istediklerinde, bu isteklerini mümkünse operasyondan önce, değilse operasyon sırasında ve hasta hakkındaki tüm önemli bilgileri sunarak iletmelidirler. İletişim eksikliği, intraoperatif histolojik incelemeden istenilen verimin alınmasını engeller ve bu uygulamanın hastaya zarar vermesine bile yol açabilir. Sitolojik yöntemler Dokuların insan vücudundan hiç can yakmadan alınması mümkün değil gibidir. Hastalar, seçme şansları olduğunda, tanılarının canları yakılmadan konulmasını tercih ederler. Gelişmiş ülkelerde hastaların bilinçlenmesine ve tıp teknolojisinin gelişmesine paralel olarak, doku almadan da morfolojik değerlendirme yapılabilmesini sağlayan yöntemler hızla yaygınlaşmaktadır. Romanyalı Dr. Aurel Babes tarafından 1927'de ilk kez bildirilen, 1950'lerde George Papanicolaou tarafından yaygınlaştırılan 'servikovaginal yayma' yöntemiyle, uterus boynundan (cervix uteri) kendiliğinden dökülen hücrelerin morfolojik olarak incelenmesiyle, bir kanserin daha klinik bulgu vermeden yakalanabileceği ilk kez ve kesin olarak gösterilmiştir. Bu yöntemin uygulanması sayesinde, bugün kadınların serviks kanserinden ölmelerine seyrek rastlanmakta ve çoğu kanser daha oluşma aşamasındayken tam olarak çıkarılabilmektedir. Kapladıkları yüzeyden dökülen hücrelerin sitolojik olarak incelenmelerine 'eksfolyatif sitoloji' denilmektedir. (Servikovaginal yayma ve idrar sitolojisi gibi). Ayrıca, bu yöntemle birlikte veya ondan ayrı olarak, deri ve mukozayı kazıyarak hücre elde etmek mümkündür (kazıma yöntemi). Gittikçe yaygınlaşmakta olan 'aspirasyon sitolojisi' yöntemi ise, ulaşabileceği doku ve organların hemen hemen sınırsız olmasıyla diğer bütün sitolojik yöntemlerden ayrılmaktadır. Bu yöntemle, palpe edilebilen bütün organlardaki lezyonlara anesteziye ve özel aletlere gerek duyulmadan ince (dar çaplı) bir enjeksiyon iğnesiyle girilmekte ve aspire edilen hücreler lamlara yayılmaktadır. Derindeki organlara da ultrasound veya bilgisayarlı tomografi gibi görüntüleme yöntemleri eşliğinde girilebilmektedir. Elde edilen hücrelerin değerlendirilmesinde, her organ için ayrı bir bilgi birikimine ve deneyime gereksinme vardır. Bu nedenle, yöntemin yaygınlaşmasının önündeki en büyük engel, bu konuda yetişmiş patolog sayısının azlığıdır. Bir sitolojik incelemenin sonucu değişik koşullarda değişik anlamlar taşıyabileceği için, bu yöntemi uygulamak isteyen klinik doktorlarının patolog ile yakın ilişkide olmaları zorunludur. Dünyada ve ülkemizde pek çok birimde, yüzeysel lezyonların aspirasyonu da patolog tarafından yapılmaktadır. Bu yolla; örneklerin daha iyi alınması, gerekirse aspirasyonun hemen tekrarlanabilmesi ve tanının hem daha çabuk hem daha doğru konulması mümkün olmaktadır. Otomatik boyama aygıtlarında yaygın olarak uygulanmakta olan program (Papanicolaou boyası) şöyledir: Hematoksilen (8 dakika), su (3 dakika), alkol (1 dakika), orange-G (5 dakika), su (1 dakika), alkol (15 saniye), EA-50 (5 dakika), su (2 dakika), alkoller (2 dakika), ksiloller (6 dakika). Sayfa başına dön! Sonuç Patoloji; anatomi ve fizyolojide öğrenilen bilgilere, hastalıklı organların çıplak gözle veya mikroskop altındaki anormal görünüşlerini ekleyerek hastalıkların daha kolay anlaşılmasını sağlar. Görünüşlerin karar vermeye çok yardımcı olduğu alanlarda, patolojik incelemenin tanıya ve uygun tedavi yönteminin belirlenmesine katkısı da çok büyüktür. Günümüzde, tümörlerin tanısı başta olmak üzere, pek çok hastalığın kesin tanısı için patolojik inceleme gereklidir.

http://www.biyologlar.com/patolojinin-tarihcesi

B6 Vitamini

B6 VİTAMİNİ: Pyridoxine Pyridoxine olarak da adlandırılan B6 vücutta depolanmayan ve suda eriyen bir vitamindir. Diyetle veya ek vitamin olarak mutlaka alınmalıdır. Üç farklı formu vardır. Alkol, aldehit ve amin. Hayvansal ve bitkisel besinlerde düşük yoğunlukta bulunur. Yararları: Vücutta diğer birçok vitaminden daha fazla hayati fonksiyonları destekleyici rol oynar. Karbonhidrat, yağ ve protein metabolizmasında yer alır. Hormonlar, kırmızı kan hücreleri, sinir hücreleri ve enzimlerin oluşumunda rol oynarlar. Ayrıca B6 vitamini iştahımızı, ağrıya karşı duyarlılığımızı, uyku düzenimizi, ruh durumumuzu etkileyen serotonin adlı maddenin yapımında da etkili olmaktadır. B6 vitamini bağışıklık sistemini güçlendirir, kolesterol birikimine engel olarak kalbi korur, böbrek taşı oluşumunu engeller. karpal tunel sendromu, adet öncesi gerginlik sendromu, artritler, alerjiler, geceleri oluşan bacak kramplarının tedavisinde de kullanılır. B6 vitamini birçok enzimin oluşumuna katılır. Örneğin, demirin hemoglobin yapısına katılmasını sağlayan enzimlerin içinde de bulunurlar. Ensefalopati ve polinevrit gibi nörolojik hastalıkların tedavisinde B6 vitamini etken madde olarak kullanılır. Hangi besinlerde bulunur? Başlıca Vitamin B6 kaynakları arasında muz, avakado, tavuk eti, patates, ıspanak, bezelye, bira mayası, havuç, yumurta, balık ve bütün hububatlar gelmektedir. Tavuk, balık, ıspanak, patates, muz, kepekli ekmek, kuruyemiş diğer önemli kaynaklarıdır. Eksikliği nelere yol açar? B6 vitamini eksikliği son derece enderdir. Bu durumda deri, sindirim sistemi ve sinir sistemi rahatsızlıkları ortaya çıkar. Dudak ve dil çatlaması, egzama gibi fiziksel belirtiler görülür. B6 vitamini eksikliğinde ani uykusuzluk ve santral sinir sisteminin çalışmasında bozukluklar oluşmaktadır. Eksikliğinde depresyon, kusma, anemi (kansızlık), böbrek taşları, dermatitler, uyuşukluk, bağışıklık sisteminin zayıflamasına bağlı olarak sık hastalanma görülebilir. Yeni doğanlarda B6 vitamini eksikliğine bağlı olarak aşırı sinirlilik, huysuzluk; bazende kasılma nöbetleri görülebilir.

http://www.biyologlar.com/b6-vitamini

Biyoteknoloji

Biyoteknoloji; hücre ve doku biyolojisi kültürü, moleküler biyoloji, mikrobiyoloji, genetik, fizyoloji ve biyokimya gibi doğa bilimleri yanında mühendislik ve bilgisayar mühendisliğinden yararlanarak, DNA teknolojisiyle bitki, hayvan ve mikroorganizmaları geliştirmek, doğal olarak var olmayan veya ihtiyacımız kadar üretilemeyen yeni ve az bulunan maddeler (ürünleri) elde etmek için kullanılan teknolojilerin tümüdür. Biyoteknoloji, temel bilim buluşlarını kısa sürede yararlı ticari ürünlere dönüştürebilmesiyle bir anlamda kendi talebini de yaratabilir. Bu yönüyle de diğer teknolojilerden ayrılır. Örneğin sıcak su kaynaklarında yaşayan bakterilerin birinden elde edilen yüksek sıcaklığa dayanıklı bir enzim, günümüzde uygulama ve temel bilim çalışmalarının ayrılmaz bir parçası olan PCR'nin önemli bir girdisidir. Biyoteknoloji uygulamaları; mikrobiyoloji, biyokimya, moleküler biyoloji, hücre biyolojisi, immünoloji, protein mühendisliği, enzimoloji ve biyoproses teknolojileri gibi farklı alanları bünyesinde toplar. Bu nedenle de biyoteknoloji birçok bilimsel disiplinle karşılıklı ilişki içinde gelişir. Bitki, hayvan veya mikroorganizmaların tamamı ya da bir parçası kullanılarak yeni bir organizma (bitki, hayvan ya da mikroorganizma) elde etmek veya var olan bir organizmanın genetik yapısında arzu edilen yönde değişiklikler meydana getirmek amacı ile kullanılan yöntemlerin tamamına Biyoteknoloji denmektedir. Biyoteknoloji, insan, hayvan ve bitki hücrelerinin fonksiyonlarını anlamak ve değiştirmek amacıyla uygulanan çeşitli teknikleri ve işlemleri tanımlamak için kullanılan bir terimdir. Canlıların iyileştirilmesi ya da endüstriyel kullanımına yönelik ürünler geliştirilmesini, modern teknolojinin doğa bilimlerine uygulanmasını kapsar. Uygulamalar arasında; İnsan sağlığına yönelik olarak proteinlerin üretilmesi Bazı hormon, antikor, vitamin ve antibiyotik üretilmesi Çok zor şartlara sahip çevrelerde (sıcak, kurak,tuzlu...) yaşayan organizmaların enzimlerini ve biyomoleküllerini saflaştırarak bunların sanayide kullanılması Yeni sebze ve meyve üretimi İnsandaki zararlı genlerin elemine edilmesi Aşı, pestisit, tıbbi bitki üretimi.

http://www.biyologlar.com/biyoteknoloji-1

HİSTOLOJİ LABORATUVARI TEMEL BOYAMA YÖNTEMLERİ

Boyanmamış preperatlarda çoğu doku elemanları renksizdirler. Değişik kırma indeksine sahip olmaları nedeniyle ışık mikroskobu ile hücresel detayı görmek güçtür. Farklı morfolojik kısımların, farklı boyalarla boyanması gereklidir. Bu durumda çekirdek sitoplazmadan, kas bağ dokusundan farklı boyanarak, morfolojik inceleme kolaylaşır. Boyalar histokimyasal işlemlerle, dokuların kimyasal reaksiyonlarını ortaya koyar.Histolojik Boyamanın Kimyasal Temeli:Genel olarak kesitler iki boya ile boyanırlar. Bazik ve asit boyalarla boyanan kesitleri mikroskop altında incelediğinde bazik ve asit boyaların bazı doku elemanlarını boyadıkları görülür. Bazik boya ile boyanan doku elemanları "bazofilik'' asit boya ile boyananlar ise "asidofilik" olarak adlandırılırlar. Bazı doku elemanları bazik, bazıları ise asit boyaları tutmaktadır. Genel olarak kullanılan bazik boyalar doku elemanları ile mavi-mor, asit boyalar ise pembe-kırmızı renk verirler.Boyalar sulu bir solusyon içinde anyon ve katyonlara ayrılırlar. Boyaların renk verme kabiliyeti, anyon ve katyonlardaki boya taşıyan organik gruplara bağlıdır. Eğer boya taşıyan grup katyonda ise boya bazik (katyonik) , anyonda ise asit ( anyonik) bir boyadır. Boyaların doku elemanlarına bağlanma mekanizması genel olarak şöyledir: Doku kesitlerindeki protein, lipoprotein ve glikoproteinler amphoteric' tirler. Yani pH'ya ve çevrelerindeki çeşitli diğer şartlara bağlı olarak iyonize olabilirler. Bir protein,sahip olduğu elektrik yüküne ve boyanmanın meydana geldiği pH' da geldiği ( - ) ve (+ ) yüklerin cebirsel toplamına bağlı olarak asit veya baz olarak hareket eder. Bu her iki tür proteinin (-) ve (+) yük sayılarının eşit olduğu bir pH vardır. Bu pH' ya o proteinin "izoelektrik noktası'' denir. Bu pH'da o protein çok az boyanır. Fakat izoelektrik noktanın üstünde proteinin anyonik gruplarının iyonizasyonu kolaylaşır ve protein, metilen mavisi veya bazik fuksin gibi bazik boyalara bağlanır. Bu izoelektrik noktasının altında, aynı protein, pozitif yüke sabiptir ve bu durumda eosin, orange G veya light green gibi asidik ( anyonik) boyalarla birleşirler. Dokulardaki proteinlerin amino asitleri nisbi miktar bakımından oldukça farklıdırlar ve farklı izoelektrik noktalarına sahiptirler. Dolayısıyla histolojik boyama için kullanılan mutat pH' da, bazı elemanlar daha çok bazik boyaları alarak bazofilik, bazıları ise aynı pH' da asit boyalarla asidofilik olarak boyanır. Eritrositler, eosinofilik lökositlerin granülleri ve midedeki parietal hücrelerin sitoplazmaları pH 6' da asit boyalarla boyanırlar. Buna karşılık çekirdek kromatini sinir hücrelerinin sitoplazmaları ve kıkırdak dokusunun ara maddesi ise bütün bazik boyalarla boyanmaktadır. Dokuları boyamak için ilk girişim, Leuwenhoek(l7l9) tarafından safran kullanılarak yapılmıştır. Bu girişim başarılı olmadığı gibi diğer araştırıcılar tarafından da takip edilmemiştir.l9. yüzyıl ortalarında dokuların mikroskobik yapıları ayrıntılı olarak açıklanmaya başlanmıştır (Kölliker, l852). Bu dönemde boya endüstrisi gelişmiştir. Histolojide ticari boyaların uygulanması, önceden görülemeyen hücresel yapı detaylarını saptamayı, görülmesini ve çalışılmasını sağlamıştır. Boya teknikleri son yüzyılın ikinci yarısında gelişmiştir ve birçok yöntem o zamandan beri çok az değişikliğe uğramıştır. İki botanikçi ilk kez Carmin boyama yöntemini tanıtmışlardır ancak bu yöntemle sadece dokuların hafifçe renklenmesini sağlayabilmişlerdir. Seçici çekirdek boyamasının ilk kullanımının, sinir hücrelerini boyamaya çalışan Gerlach (l858) tarafından yapıldığı kabul edilmektedir. Başlangıçtaki başarısızlıktan sonra potasyum bikromatta sertleştirilen bir cerebellum kesiti yanlışlıkla fazlasıyla seyreltik amonyaklı carmin solusyonunda bırakılmış ve 24 saat sonra bulunduğunda çok güzel boyanmış olduğu, sinir fibrilleri ve sinir hücrelerinin ayrılabildiği görülmüştür. Gerlach aynı zamanda zayıf asetik asitle differansiyasyonla gerileyen (çekinik) boyanmayı da keşfetmiştir. Hematoksilen ilk kez yetersiz sulu ekstrak olarak kullanılmıştır. Fakat iki yıl sonra Böhmer (l865), hematoksileni bir mordant olarak alumla (şapla) karıştırmıştır ve daha spesifik boyanma elde etmiştir.Endüstriyel kullanım için anilin boyalar geliştirildikten sonra bu boyalar, hematoksilenle birlikte hala histolojide çok yaygın kullanılmaktadır. Eski boya yöntemlerinin büyük bölümü hala kullanılmaktadır. Carmin , histolojide daha az kullanılmakla beraber, zoologlar tarafından günümüzde bütün haldeki cestodlar, medusalar vs gibi hayvanların boyanmasında kullanllmaktadır.Günümüzdeki boyama yöntemleri genellikle klasik yöntemlerin modifikasyonlarıdır. Son yöntemler genellikle spesifik kimyasal yapıların ve enzimlerin tayini için renkli reaksiyonlar veren histokimyasal yöntemlerdir.  Histologlarca kullanılan temel boyama teknikleri aşagıdaki tabloda verilmiştir.Tablo :Histolojide Kullanılan Boyama Süreçlerinin Esas TipleriBOYAMA YÖNTEMİ BELİRLEDİĞİ YAPILAR NEREDE NE İLE1- Vital Boyama a-partiküllerin Makrofaj sistemi. canlı dokular trypan mavisfagositozub-canlı yapıların Mitokondri canlı hücreler Janus greenspesifik boyanması 2- Seçilen Çözünebilirlik yağ damlacıkları dondurma kesitler Sudan boyaları gibi lizokromlar 3- Renkli kimyasal madde-lerin yapımıa-Stabil bileşikler Ferrik demir tüm kesitler Perls' yöntemib-Stabil olmayan bi- Enzimler özel hazırlanmış kesitler Histokimyasal Yön. 4 -Metal Çöktürme a-Intrasellüler yapılar Melanin tüm kesitler Fontana gümüşb-Fibriller Reticulin tüm kesitler Gümüş yöntemi 5- Boyalarla Boyamaa-Genel kimyasal ve Doku yapıları tüm kesitler H+Efiziksel hareketler b-Metakromazi kıkırdak, amyloid " " Thionin, crystal violet c-Bir boyanın lokal DNA parafin kesit Feulgen reak. Şekillenmesi Enzim histokimyasından, gumüş çöktürme yöntemine kadar tüm yöntemlerin fizikokimyasal temelleri aynıdır. Bütün boyama yöntemlerinde sorulacak en önemli sorular şunlardır:a-Doku kompenentleri neden boyanır?b-Neden boyanmış kompenentler boyalı olarak kalırlar?c-Neden tüm kompenentler boyanmazlar?

http://www.biyologlar.com/histoloji-laboratuvari-temel-boyama-yontemleri

Lizozomlar

Sitoplazma içinde yuvarlak şekilli etrafı zarla çevrili organellerdir. Eritrositler dışında her hücrede bulunurlar. Lizozomlar içinde düşük pH'da etkili 50 eritici enzim tanımlanmıştır. Enzimler hücrenin kendi sitoplazmasına zarar vermezler. Ölüm sonrası değişimler lizozom zarının geçirgenliğini bozar. Enzimler sitoplazmayı eritmeye başlar. Histolojik tespit maddelerinin bu aşamada kullanıldığını görmüştük. Tespit maddeleri lizozom içi enzimleri makromoleküller halinde oldukları yere çöktürür. Bu şekilde enzimlerin sitoplazmaya geçişleri engellenir.

http://www.biyologlar.com/lizozomlar

Likenler

Likenler ya da Lichenes; başlı başına birer organizma değildirler. Mantarlar ve fotosentetik alglerden meydana gelen simbiyotik birlikteliklerdir. Şekil ve yaşayış bakımından kendilerini oluşturan alg ve mantarlardan tamamen ayrı bir yapı gösterirler. Renksiz bir mantar hifinden oluşan tallusun yapısına katılan fotosentetik canlı (fotobiyont), genellikle yeşil alg ya da bir siyanobakteridir; fakat bazı sarı-yeşil alglerden ve kahverengi alglerden de oluştukları bilinir. En çok Cyanophyta ve Chlorophyta'ya ait cinsler ve Xanthophyta ve Phaeophyta'dan bazı alg türleri görülür. Mantarlarda ise genellikle Ascomycetes ve az olarak Basidiomycetes'e ait cinsler görülür. Alg ve mantarın birbirleri ile birleşmeleri farklı şekillerde olabilir. Eğer alg ve mantar dağılımı homojen tek bir tabaka şekildeyse bu likenler; "Homeomerik liken", heterojen bir dağılım ve farklı tabakalar varsa "Heteromerik liken" olarak isimlendirilirler. Homeomerik likenlerde, alg ve mantar ayrı bir katman oluşturmadan birleşir, tallus jelatini andıran müsilajımsı yapıdadır. Heteromerik likenlerde, üst kabuk katmanı (korteks) ile orta kısım arasında algler bulunur, diğer kısımlar sıkı ya da gevşek dizilmiş mantar hiflerinden oluşur. Çoğu liken bu grupta yer alır. Likenler, birçok yerde bulunabilen organizmalardır. Morfolojilerine veya dış görünüşlerine göre göre; Kabuksu likenler, genellikle kayalar üzerinde gelişen likenlerdir. Tallus kabuk biçimindedir. Kayaları eritebilen enzimleri bulunabilir, bu yüzden "Endolitik likenler" de denirler. Yapraksı likenler, tallusları loblar halinde olan ve genellikle rozetler oluşturan likenlerdir. Dalsı likenler, ağaçlar bazen de kayalar üzerinde gelişen, oldukça büyük talluslu, sık dallanma gösteren likenlerdir.   Likenler Tabiatta bazı kayaların, toprakların ağaç gövde ve dallarının üzerinde yaşayan yosunlara benzeyen, köksüz, gövdesiz ve yapraksız bitkiler, Likenler bir kısım mantarlarla bazı su yosunlarının beraberce bir bütün halinde ortak yaşadığı bitkilerdir. Bu iki ayrı çeşit bitki kendine benzemeyen tamamen farklı bir organizma meydana getirirler. Herhangi birisi olmasa liken meydana gelemez. Liken, su yosunları (alg) vasıtasiyle özümleme yapar. Mantarlar da iplikleri ile suyu temin eder ve likeni bulunduğu yere tesbit eder. Likenler, zengin bir bitki grubudur. Dünyanın hemen her bölgesinde yayılmış olarak çeşitli yetişme yerlerinde yaşarlar. Kutuplardan Ekvatora, deniz kıyısından, ovalardan dağların en yüksek yerlerine kadar hemen hemen her yerde, diğer organizmaların yaşayamayacağı yetişme yerlerinde yetişebilirler. Kızgın güneş altında (70°C) sıcağa ve çok düşük dereceli soğuğa, haftalarca süren kuraklığa dayanabilirler, dünya üzerinde de 20.000 kadar türü bulunmaktadır. Likenlerin besin maddelerine olan ihtiyaçları azdır. Yalnız havası temiz olan yerlerde yaşayabilirler. Kirli havaya karşı çok duyarlılık gösterirler. Bunun için likenler, bir bölgenin havasının temiz olup olmadığını belirten iyi bir göstericidir. Likenlerin yapısının büyük kısmını mantar iplikleri meydana getirir. Çoğunlukla likenin üst ve alt kısmında mantar ipliklerinden meydana gelen sıkı bir kabuk tabakası, orta kısmında ise daha gevşek bir örgü dokusu bulunur. Üst kabuk tabakasının altında suyosunları yer alır. Likenin eşeysiz üremesini suyosunları sağlar. Eşeyli üremeyi ise sadece mantar sağlar. Likenler çok yavaş büyürler. El büyüklüğünde bir liken, ekseriya 50 yılda meydana gelir. Çalımsı likenlerin birkaç cm yükselebilmesi ise ancak 100-200 yılda olabilir.” Likenler, şekillerine göre üç grupta toplanabilir. 1. Kabuksu likenler: Liken tamamen ağaç kabuğuna veya kayalara tutunmuş olup, kabuk şeklinde, yassı ve sıkı bir örtü meydana getirirler. Mesela; lecanora, lecidea, rhizocarpon (harita likeni) likenleri gibi. 2. Yapraksı likenler: Liken şerit veya levha şeklinde küçük veya büyük dilimli yaprak şeklindedir. Mesela, İslanda likeni (cetraria) gibi. 3. Çalımsı likenler: İnce şerit şeklinde ve iplik şeklinde dallanmış olup, bir çalıyı andırarak ya dik olarak veya ağaçlardan aşağı doğru sarkan likenlerdir. Mesela; sakal likeni (Usnea), kadeh likeni (Cladonia) gibi. Memleketimizde yetişen önemli likenler şunlardır: Harita likeni: (Rhizocarpon geographicum): Kayalar üzerinde yaşayan sarımsı-yeşil renkte kabuklu likenlerdir. Parmelia furfuraceae: Ağaçlar üzerinde yaşayan grimsi-siyah likenlerdir. Evernia prunastri: Çok yaygındır. Meşe, kayın, gürgen, kavak ve karaağaç üzerinde yaşayan sarımsı-yeşil renkli likenlerdir. Sakal likeni (Usnea barbata): Çam, köknar, kayın ağacı dallarından sarkan çalımsı likenlerdir. Ciğer likeni (lobaria pulmonaria): Yaprak şeklinde, derimsi, yeşilimsi gri likenlerdir. Kadeh likeni (Cladonia pyxidata): Orman kenarlarındaki güneşli yerlerde ve kireçli topraklarda yaşayan grimsi-yeşil kadeh şeklindeki likenlerdir. Likenlerin kullanılışı: Likenler çok eskiden beri tıpta kullanılmıştır. Ancak bu kullanma ilmi esaslara göre değil de o zamanki kurala göre, benzetildiği hasta organının tedavisinde kullanılırdı. Mesela sakal likeni saç çıkarmada, ciğer likeni akciğer hastalıklarında kullanılmıştır. Likenler, antibiyotik etkileri incelenmekte olan bitkilerdir. Bugün likenlerden elde edilen 60 kadar antibiyotik vardır. Bu etkisinin de, taşıdıkları liken asitlerinden ileri geldiği düşünülmektedir. Antibiyotik maddeler çoğunlukla, cladonia, evernia, cetaria, usnea romalina cinsi türlerinden elde edilen usnik asit, vulpinik asit, evernin asidi, önemli antibiyotik asitlerdir. Usnik asit, evernin asidi ve liken yağ asitlerinin karışımından Evosin elde edilir ki bunun kuvvetli bir antibiyotik etkisi vardır. Gram (+) kokuslara karşı etkilidir. Usnik asidin sodyum tuzunun da staphylococcus, streptococcus ve mycobacteriuma karşı kuvvetli bir antibiyotik etkisi vardır. İki liken türü, lethraria vulpina ve cetraira pinastri zehirlidir. İskandinav ülkelerinde kurtları zehirlemek için kullanılır. Bu iki liken türünden başka hiçbir liken zehirli değildir. Yalnız çoğu, ihtiva ettikleri asitlerden dolayı barsak bozukluklarına sebep olur. Tabiatta likenlerin büyük kısmı, hayvanların besinlerini sağlar. Kuzey ülkelerinde ren geyikleri, kar altında cladonia alpestris likenini tercih ederek ararlar. Ayrıca Arktik ve Subarktik kuzey bölgelerinde bulunan İslanda likeni (Cetraria islandica), yabani mandaların, domuzların önemli yem bitkisidir. Kuzey bölgelerinde yerli halk, evcil hayvanları için bol miktarda liken toplarlar. Liken, insanlar için de yiyecek maddesi olarak kullanılır. İki kg liken unu, 1 kg buğday ununa eşittir. Orta doğunun kurak bölgelerinde ve çöllerindeki Manna likeni(kudret helvası), besin olarak kullanılan likenlerdendir. Develerin besinini temin ettiği gibi, insanlar da bundan ekmek yaparlar. Orta Asyada bu liken türünden yapılan ekmeğe Kırgız ekmeği denir. Likenlerde az miktarda da olsa vitaminler vardır. Ren geyiği likeninde (Cladonia rangiflerina), A,C ve D vitaminleri mevcuttur. Likenlerden sanayide de faydalanılır. Roccella tinctoria ve R. fuciformis liken türlerinden, asit, baz endikatörü olarak kullanılan turnusol mahsulü ve kağıdı yapılır. Bundan başka Orsey adı verilen yün, ipek, hatta odunu boyamada kullanılan kırmızı bir boya elde edilir. Bazı liken türleri de ortaçağdan beri parfümeride kullanılmıştır. Fransa''da bir liken türünden orman çayı adı verilen aromatik bir içecek yapılır.     Likenler ya da Lichenes; başlı başına birer organizma değildirler. Mantarlar ve fotosentetik alglerden meydana gelen simbiyotik birlikteliklerdir. Şekil ve yaşayış bakımından kendilerini oluşturan alg ve mantarlardan tamamen ayrı bir yapı gösterirler. Renksiz bir mantar hifinden oluşan tallusun yapısına katılan fotosentetik canlı (fotobiyont), genellikle yeşil alg ya da bir cyanobakteridir; fakat bazı sarı-yeşil alglerden ve kahverengi alglerden de oluştukları bilinir. En çok Cyanophyta ve Chlorophyta'ya ait cinsler ve Xanthophyta ve Phaeophyta'dan bazı alg türleri görülür. Mantarlarda ise genellikle Ascomytcetes ve az olarak Basidiomycetes'e ait cinsler görülür. Alg ve mantarın birbirleri ile birleşmeleri farklı şekillerde olabilir. Eğer alg ve mantar dağılımı homojen şekildeyse bu likenler; "Homeomerik liken", heterojen bir dağılım varsa "Heteromerik liken" olarak isimlendirilirler. Homeomerik likenlerde, alg ve mantar ayrı bir katman oluşturmadan birleşir, tallus jelatini andıran müsilajımsı yapıdadır. Heteromerik likenlerde, üst kabuk katmanı (korteks) ile orta kısım arasında algler bulunur, diğer kısımlar sıkı ya da gevşek dizilmiş mantar hiflerinden oluşur. Çoğu liken bu grupta yer alır. Likenler, birçok yerde bulunabilen organizmalardır. Bulundukları yere göre; •Kabuksu likenler, kayalar üzerinde gelişen likenlerdir. Tallus kabuk biçimindedir. Kayaları eritebilen enzimleri bulunabilir, bu yüzden "Endolitik likenler" de denirler. •Yapraksı likenler, toprakta yaşayan, tallusları loblar halinde olan likenlerdir. •Dalsı likenler, ağaçlar üzerinde gelişen, oldukça büyük talluslu, sık dallanma gösteren likenlerdir. Üremeleri Likenler; 1.Eşeysiz 2.Eşeyli olarak çoğalabilen bir canlı grubudur. 1. Eşeysiz Üreme Bu çoğalma tipi "Sored" denilen mantar hifleri ile çevrili birkaç alg hücresinden oluşan tallus parçacıkları ile gerçekleştirilir. Soredler tallusun korteksinin parçalanması ile serbeste hale geçerek toz gibi çevreye dağılırlar, ulaştıkları yerlerde tutunarak, yeni bireyleri oluştururlar. 2. Eşeyli Üreme Likenlerin yalnızca mantarlarında görülür. Alg bu yapının içinde vejetatif olarak çoğalır. Mantarların meydana getirdiği fruktifikasyonlar serbest yaşayan mantarlarınkinden oldukça farklıdır. Liken yapısındaki mantarın cinsine göre oluşturulan fruktifikasyonlar farklılık gösterir. Metabolizma Likenleri oluşturan alg ve mantarlar arasında bazı fizyolojik iş bölümleri vardır. Simbiyotik organizmalardan alg, klorofil taşıdığından fotosentez yapar ve birliğin karbonhidrat gereksinimini karşılar. Mantar ise su ve madensel maddelerin alınmasında görev alır. Likenlerde metabolik aktivite su, ısı ve ışıkla değişkenlik gösterir. Su içeriği %65-90 arasında olduğunda fotosentez oranı artar, 15-200C fotosentez için en uygun sıcaklıktır. Depo maddesi olarak nişasta bulunur. Likenlerin metabolizmaları sonucu ekonomik öneme sahip bazı maddeler oluşur. Bunlar tıpta, boya sanayinde ve besin olarak kullanlan maddelerdir. Tıpta; öksürük ve göğüs hastalıklarında, diabette, nefrit, nezle de ve iştah açıcı olarak kullanım alanları mevcuttur. İnsanlarca Lecanora esculenta ve Ren geyiklerince Cladonia rangiferina besin olarak kullanılır. Ekoloji Dünyada geniş bir yayılım alanına sahip ve denizlerden yüksek dağlara, sıcak bölgelerden kutuplara kadar yerleşim yerlerinde ve zor koşullarda bulunurlar. Tallus yavaş gelişir, ağaç, toprak ve kayalar üzerinde bulunurlar.üzerinde bulunduğu kayaları parçalayarak toprak oluşumuna katkı sağlarlar.

http://www.biyologlar.com/likenler-1

Genetik ve Biyomühendislik

Genetik ve Biyomühendislik bö¬lümü iki mühendislik branşının yani Genetik Mühendisliği ve Biyomühendisliğin birleşmiş halidir. Dolayısıyla bu bölümü anlatmaya bu iki branşı anlatarak devam edeceğiz. Genetik Mühendisliği Doğal yollarla oluşma ihtimali olma¬yıp insan eli ile oluşturulan genetik de¬ğişiklikler genetik mühendislik olarak olarak adlandırılmaktadır. Hayvan ve bitkilerde bilinen geleneksel melezleme ve mutasyon oluşturma teknikleri yerine rekombinant DNA teknikleri kullanılır. Oluşan yeni canlı genetiği değiştirilmiş organizma olarak adlandırılır. Bu yön¬temlerle ilk üretilmiş canlı 1973 yılında bir bakteridir. Daha sonra 1974'te fare, 1982 yılında insülin üreten bir bakteri ve 1994 yılında da gıda bitkisi üretilip satılmaya başlanmıştır. Genetiği değişti¬rilmiş ilk bitki, 1986 yılında geliştirilen yabani ot ilacına karşı dirençli tütündür. En yaygın olarak genetik mühendis¬lik uygulaması, fonksiyonu bilinen bir genin başka bir canlının kromozomuna dahil ederek fonksiyonel hale getirilme¬sidir. Diğer bir uygulama da canlıda var olan bir genin sakatlanmasıyla fonksiyo¬nunun ortadan kaldırılmasıdır. Günümüzde biyoteknoloji ve tıp gibi birçok alanda genetik mühendisliği kul-lanılmaktadır. Tıpta insülin ve büyüme hormonu üretimi, deneysel amaçlı re-kombinant fare üretimi örnek verilebi¬lir. Tarımda, böcek ve tarım ilaçlarına dirençli bitki üretimi, bitkilerde ilaç üre¬timi, sütünde rekombinant protein sal¬gılanan keçi üretimi yapılabilmektedir. Farklı bir organizmadan gen akta¬rılmış canlıya transgenik denir. Transgenik canlının oluşturulmasındaki ilk adım özelliğinden faydalanılacak genin izole edilmesidir. Farklı bir canlı türün¬den de elde edilebilen bu gen, vektör a¬dı verilen taşıyıcılara aktarılır. Vektörler yapısı değiştirilmiş virüs veya plazmid yapısında olabilir. Bu aşamada genin yapısında ilaveler ve değişiklikler ekle¬nerek yeni özellikler eklenebilmektedir. Daha sonra hedef canlının kromozom yapısına bu gen aktarılır. Bu aşamalarda kullanılan teknikler her geçen gün daha da geliştirilmekte ve son derece karma¬şık ve ileri teknoloji gerektiren laboratu-var ortamlarına ihtiyaç duyulmaktadır. Kullanım alanları: Genetik mühendisliği, tıp, araştırma, endüstri ve tarım gibi alanlarda yaygın olarak kullanılmaktadır. Hayvanlarda, bitkilerde ve çeşitli mikro organizmalar üzerinde değişiklikler yapılmaktadır. Tıpta kullanım alanlarına örnek ola¬rak; insülin, büyüme hormonu, albümin, monoklonal antikorlar, aşı ve bir¬çok ilaç üretimini verebiliriz. İnsandaki hastalıkların daha iyi anlaşılıp tedavi metodu geliştirilebilmesi için deney hayvanlarında hastalık modelleri oluş¬turulabilmektedir. Kanser, obezite, kalp hastalıkları, şeker hastalığı, artritler, yaşlanma ve Parkinson hastalığı gibi hastalıklar için genetik mühendisliği ile fare modelleri geliştirilmiştir. Bu model¬ler üzerinde çalışılarak yeni ilaç ve teda¬vi yolları test edilip geliştirilmektedir. İnsandaki bazı genetik hastalılar da bu yöntemlerle tedavi edilmektedir. Sınırlı olmakla beraber kalıtsal bağışıklık siste¬mi hastalığındaki tedaviyi örnek olarak verebiliriz. Yöntemler sürekli gelişti¬rilmekte ve daha verimli sonuçlar elde edilmeye çalışılmaktadır. Endüstriyel alanda birçok transgenik bakteri kullanılmaktadır. Endüstriyel önemi olan enzimlerin üretilmesinde, petrol veya kimyasal atıklarla kirlenmiş olan su ve toprağın temizlenmesinde, biyolojik atıkların dönüştürülmesinde ve enerji elde edilmesinde bakterilerden ve onlardan elde edilen enzimlerden ya¬rarlanılmaktadır. Günümüzde 25 ülkede genetiği değiş¬tirilmiş bitkilerin tarımı yapılmaktadır. Rekombinant bitkiler, viral, bakteriyel ve mantar hastalılarına karşı direnç ka¬zanırlar. Bu uygulamalarla tarımda kul¬lanılan kimyasal ilaçlara ihtiyacı ortadan kaldırmakta, çevre kirliliğini azaltmada katkı sağlamaktadır. Bu bitkiler soğuğa, kuraklığa ve aşırı tuzlanma gibi farklı toprak yapısına dirençli olmaktadır¬lar. Ayrıca vitamin, mineral ve protein değerleri de arttırılabilmektedir. Tıpta kullanılmak amacıyla bitkilerde çeşitli ilaçlar ve aşılar da üretilebilmektedir.

http://www.biyologlar.com/genetik-ve-biyomuhendislik

PROBİYOTİKLER HAKKINDA BİLGİ

Değişik sebeplerden ileri gelen ve insan sağlığı üzerinde olumsuz etkileri olan farklı oluşumlara karşı uzun yıllardan beri değişik antibiyotikler kullanılmıştır. Antibiyotiklerin belli periyotlarda ve belli dozlardaki kullanımı neticesinde, metabolizmada gözlenen rahatsızlıklar tedavi edilebilmiştir. Ancak zaman içerisinde kullanılan antibiyotik türleri ve bunların tedavideki dozlarının insan metabolizmasında yararlı faaliyetleri olan (özellikle de intestinal florada) mikroorganizmaları inaktive ettiği ya da populasyonunu azalttığı ve bunun neticesinde de normal floranın bozularak, vücutta antibiyotiklerden kaynaklanan bazı rahatsızlıkların (alerji, diyare, gaz vb. gibi) ortaya çıktığı belirlenmiştir. Bunun yanında araştırıcılar günlük yaşamın getirdiği bazı olumsuzluklardan (çevrede olan ani değişmeler, su ve besinlerin kaliteleri, hayvansal ürünlerin aşırı miktarları, kafein, alkol kullanımı) ve değişik türdeki patojenlerin enfeksiyonlarından dolayı (sinirsel yorgunluk ve stres gibi) vücudun normal florasının etkilendiğini de ortaya koymuşlardır. Vücudun doğal intestinal florasında bulunan ve organizma için yararlı olan bakterilerin gitgide sayılarının azalması, tamamen yok olması karşısında bilim dünyası bu yararlı florayı korumak ya da tekrar geri kazanmak için arayışa girmiş ve “Probiyotik mikroorganizmalar” değişik ürünler (mandıra ürünleri, meyve suları, çikolata ve et ürünleri) ile tüketime sunulmuşlardır. Probiyotikler; yaşayan mikroorganizmalar olup mukozal ve sistemik bağışıklığı ayarlayarak konağa tesir ederler. Ayrıca intestinal sistemdeki mikrobiyal dengeyi sağlarlar. Sağlıklı bir insan vücudunda probiyotik mikroorganizmalar belli oranlarda bulunmaktadır. Probiyotik mikroorganizma florası, vücudun mukoz membranlarında ve sindirim bölgelerinde kolonize olan bakterilerdir. Vücuttaki mikroorganizma florasında 400 ile 500 arasında farklı türde, sindirim bölgesinde yerleşmiş durumda bulunan, gerek patojen gerekse sağlığa yararlı mikroorganizmalar mevcuttur. Sindirim sisteminin önemli bir parçası olan bağırsaklarda, ilaç kullanımı veya hastalıklar sırasında açığa çıkan zararlı bakteriler, aynı ortamda bulunan iyi huylu bakterilere karşı atağa geçerler ve bağırsağa yerleşmeye çalışırlar. Probiyotik bakteri suşları ise bağırsak duvarına tutunarak, bu zararlıların içeriye girmesini önler. Probiyotik Olarak Kullanılan Mikroorganizmalar Probiyotikler esas olarak laktik asit bakterileridir. Bunun yanında araştırmalar mayaların da probitotik özelliğe sahip olduğunu göstermiştir. Yoğurt yapımında kullanılan mikroorganizmalar (Lactobacillus bulgaricus ve Streptococcus thermophilus) dışında tüm laktik asit bakterileri bağırsak florası elemanlarıdır. Bir probiyotik ürün bu mikroorganizmalardan birini ya da birkaçını içerebilir. İçerdiği mikroorganizma sayısı arttıkça probiyotiğin kullanım alanı genişlemektedir. Probiyotik Bakterilerin Özellikleri Probiyotik bakteriler Gram (+), sporsuz, basil şeklindedir. L. acidophilus’un üreme sıcaklığı 35 – 380C ‘dir. Probiyotik bakteriler mide asitliğine diğer bakterilere göre daha dayanıklıdır. Safra tuzuna ve lizozim enzimine daha dirençlidir. Lactobacillus türleri, ince bağırsakta fazla sayıda bulunurken, Bifidobacterium’lar kalın bağırsaktadırlar. Probiyotik bakteriler laktik asit, asetik asit, bakteriyosin gibi antimikrobiyal maddeler üreterek, bağırsaklarda istenmeyen mikroorganizmaların çoğalma hızını kontrol ederler ve doğal floranın denge içinde bulunmasını sağlarlar. Gram (+) bakteriler, bakteriyosinlere çok duyarlıdır. Beslenmede bitkisel besinlerin fazla olması, hayvansal besinlerin aksine bağırsaklardaki probiyotik bakterilerin sayısını artırır. Sağlıklı kişilerin bağırsak florasında probiyotik bakterilerin (örneğin Bifidobacterium’ların) sayısı zaman içerisinde sabitleşmekte; ancak günlük yaşamın getirdiği; antibiyotik kullanımı, stres, sinirsel yorgunluk, dengesiz beslenme, fazla alkol alımı, hastalık ve bağırsak ameliyatları gibi sonuçlar, bu bakterilerin azalmasına neden olur. Bunun sonucunda bağırsaklarda enterik bakteriler çoğalır ve enterik rahatsızlıklar ortaya çıkar. Probiyotik bakterilerin önemli özelliklerinden biri de, bağırsak çeperine tutunabilme yeteneğine sahip olmalarıdır. Bu tutunma en önemli ve hatta biyolojik etki gösterebilmeleri için mutlaka olması gereken bir özellik olarak belirtilmiştir. Probiyotik bakteriler, bağırsak çeperine tutunarak patojen mikroorganizmaların tutunmasını engellerler. Ayrıca sindirim sırasında bağırsak hareketlerinden çok fazla etkilenmeden hızla üreyerek orijinal populasyonda azalmayı engellerler. Bütün bunları maddeleyecek olursak; probiyotik olarak kullanılan mikroorganizmalarda aranan özellikler şunlardır: - Güvenilir olmalıdır, kullanıldığı insan ve hayvanda yan etki oluşturmamalıdır. - Stabil olmalıdır, düşük pH ve safra tuzları gibi olumsuz çevre koşullarından etkilenmeden bağırsakta metabolize olmalıdır. - Bağırsak hücrelerine tutunabilmeli ve kolonize olabilmelidir. - Kanserojenik ve patojenik bakterilere antagonist etkili olmalıdır. - Antimikrobiyal maddeler üretmelidir. - Konakta hastalıklara direnç artışı gibi yararlı etkiler oluşturma yeteneğinde olmalıdır. - Antibiyotiklere dirençli olmalıdır. Antibiyotiğe bağlı (diyare) ortaya çıkan hastalıklarda bağırsak florasını düzeltmek amacı ile kullanılabileceğinden, bağırsaktaki antibiyotiklerden etkilenmemelidir. - Minimum etki dozları bilinmediğinden, canlı hücrelerde büyük miktarlarda bulunabilmelidir. Probiyotik Olarak Kullanılan Mikroorganizmalar Lactobacillus Türleri: Lactobacillus bulgaricus, Lactobacillus cellebiosus Lactobacillus delbrueckii, Lactobacillus lactis Lactobacillus acidophilus, Lactobacillus reuteri Lactobacillus brevis, Lactobacillus casei Lactobacillus curvatus, Lactobacillus fermentum Lactobacillus plantarum, Lactobacillus johsonli Lactobacillus rhamnosus, Lactobacillus helveticus Lactobacillus salivarius, Lactobacillus gasseri Bifidobacterium Türleri: Bifidobacterium adolescentis, Bifidobacterium bifidum Bifidobacterium breve, Bifidobacterium infantis Bifidobacterium longum, Bifidobacretium thermophilum Bacillus Türleri: Bacillus subtilis, Bacillus pumilus, Bacillus lentus Bacillus licheniformis, Bacillus coagulans Pediococcus Türleri Pediococcus cerevisiae, Pediococcus acidilactici Pediococcus pentosaceus Streptococcus Türleri : Streptococcus cremoris, Streptococcus thermophilus Streptococcus intermedius, Streptococcus lactis Streptococcus diacetilactis Bacteriodes Türleri : Bacteriodes capillus,Bacteriodes suis Bacteriodes ruminicola, Bacteriodes amylophilus Propionibacterium Türleri : Propionibacterium shermanii, Propionibacterium freudenreichii Leuconostoc Türleri: Leuconostoc mesenteroides Küfler: Aspergillus niger, Aspergillus oryzae Mayala: Saccharomyces cerevisiae, Candida torulopsis Probiyotikler Tarafından Üretilen Esas Maddeler Vitaminler: K vitamini, folik asit, biotin, B1, B2, B12, Niasin ve priydoksin. Enzimler: Laktaz gibi sindirim enzimleri (esas olarak süt ürünlerin sindiriminde), serbest bölgelerin düzenlenmesine yardımcı olan karbonhidrat enzimleri, sindirim ve protein enzimleri, yağ enzimleri. Uçucu Yağ Asitleri: Besinlere ait yağ asitlerinin kısa zincirleri yardımıyla üretilen bu yağ asitleri sayesinde, optimum düzeyde sindirim için gerekli olan pH dengesinin sağlanması. İnsan sağlığına faydalı etkilerinin olduğu düşünülen canlı bakteri hücreleri üç temel kaynaktan yenmektedir: - Fermente süt ürünleriyle - Gıdalara ve içeceklere bu bakterilerin canlı hücrelerinin eklenmesiyle (meyve suları, çikolata, et ürünleri v.b.) - Probiyotik bakterilerin canlı hücrelerinden hazırlanan farmakolojik ürünler olarak tablet veya kapsüllerin hazırlanmasıyla. Probiyotik Süt Ürünleri En önemli probiyotik süt ürünü yoğurttur. Bununla birlikte, Lactobacillus acidophilus içeren diğer süt ürünleri olan Acidophilus quarkı, Acidophilus’lu süt, Acidophilus’lu tereyağı, Acidophilus’lu süt tozu da bu grupta yer alan diğer ürünlerdir. Probiyotik süt ürünleri ülkemizde yeni üretilmekle birlikte, birçok ülkede bu ürünlerin tüketimi gün geçtikçe artmaktadır. İnsan sağlığı üzerindeki etkileri de dikkate alındığında Lactobacillus acidophilus içeren ürünlerin üretim yöntemleri ile ilgili çalışmaların geliştirilmesi yararlı olacaktır. Bağırsak sisteminde bulunan Lactobacillus türlerinden fermente süt ürünlerinde en çok kullanılanları Lactobacillus acidophilus ve Bifidobacterium bifidum’dur. Lactobacillus acidophilus, yoğurt bakterilerinin aksine, insan sindirim sisteminin doğal bir üyesi olup, sindirim sisteminde bulunan yüksek asitlik ve bir takım enzimlerin inhibe edici etkisine ve safra kesesi tuzlarına dayanıklıdır. Bifidobacterium türlerinin başlangıçta yalnızca bebeklerin bağırsak florasında olduğu düşünülmüşse de, sonraki çalışmalarda bunların erişkin insanlarda ve sıcak kanlı hayvanlarda da bulunduğu ortaya konmuştur. Acidophilus ve Bifidobacterium türleri, ince bağırsaktaki mukoz membran tarafından tutulmakta, burada oluşturdukları asit ve diğer metabolik ürünler ile patojen ve diğer mikroorganizmalara karşı direnç göstermektedir. Bu durumda, Lactobacillus acidophilus ve Bifidobacterium bifidum ile üretilen ürünlerin düzenli olarak tüketilmesi bu bakterilerin bağırsak sistemlerine tutunmasını sağlamakta ve tedavi edici bir özellik göstermesine neden olmaktadır. Bu nedenle, son yıllarda mide – bağırsak enfeksiyonları için klasik antibiyotik tedavilerine alternatif olarak probiyotik ürünler kullanılmaktadır. Nitekim antibiyotik kullanımına bağlı olarak ortaya çıkan diyarenin önlenmesinde, Clostridium difficile ile meydana gelen kolik diyarenin tekrarlama olasılığının düşürülmesinde, fermente süt ürünlerinden yoğurda aşılanan Saccharomyces boulardii’nin, günde 1 g. yenmesi ile Enterococcus faecium SF68 yada Lactobacillus rhamnosus GG suş’unun fermente süt ürünleri ile alınması neticesinde, hastalarda pozitif yönde gelişmeler olduğu tespit edilmiştir. Yoğurt etkisi altında ağız yolu ile yapılan beslenmenin düzenli olarak uygulanması ile organizmaya patojen bakteri bulaşımının azaldığı kesin olarak ispatlanmıştır. Konu ile ilgili olarak çalışan diğer araştırmacılar da ağız yolu ile yapılan bu beslenme sonucunda, vücudun virüslere karşı bir etki oluşturduğunu bildirmektedirler. Günümüzde tıp alanında birçok hastalığın tedavi edilmesinde yada tekrarının önlenmesinde, Probiyotiklerin kullanılma olgusunun ve bunların en yaygın olarak fermente süt ürünleri ile diyetlerde uygulanmasının, tıp alanında yeni tedavi oluşumlarına kaynak teşkil ettiği görülmektedir. Bağırsak Rahatsızlıklarının Önlenmesi Probiyotik bakteriler, barsak hareketlerini hızlandırarak bağırsak içeriğinin kolayca atılmasını sağlar. Bazı koşullar altında (örneğin antiboyotik alımı), bağırsaklarda faydalı bakterilerin azalmasına ve istenmeyen bakterilerin (Clostridium difficile, E. coli gibi) artışıyla enterik enfeksiyonlar ortaya çıkabilir. Bu problem, probiyotik bakterilerin canlı hücrelerinin gıdalarla veya farmakolojik ürünlerin yenmesiyle önlenebilir. Probiyotik bakterilerin bağırsak yüzeyine tutunarak istenmeyen bakterilerin tutunmasını engellemeleri ve ürettikleri antimikrobiyal maddelerle (asitler, bakteriyosinler, reuterin gibi) çoğalmalarını kontrol altına alırlar. Safranın parçalanması safra asidine göre daha fazla antimikrobiyal etki gösterdiğinden, enterik bakterilerin çoğalması inhibe edilir. Yapılan değişik araştırmalarda, probiyotik bakterilerin özellikle çocuklarda enterik enfeksiyonlara karşı etkili olduğu belirtilmiştir. Araştırmalarda probiyotik bakterilerin süt ürünleriyle veya süte eklenerek bir süre yendiklerinde, bireylerin bağırsak florasında, C. perfingens, C. dificile, E. coli, Salmonella gibi enterik bakterilerin sayısında azalma ve buna karşılık probiyotik popülasyonda artış saptanmıştır. Ayrıca probiyotik bakterilerin yaşlı kişilerde görülen kabızlık gibi bağırsak problemlerini ve yine her yaş grubundaki kişilerde çeşitli nedenlere bağlı olarak görülen ishal, kabızlık, gaz oluşumu, karın şişliği gibi bağırsak rahatsızlıklarını önledikleri belirtilmiştir. Probiyotik bakteriler, bağırsak florasında bulunan Bacteroid, Clostridium, Enterobacter, Fusabacterium, Salmonella, Shigella, Campylobacter jejuni, Candida albicans, Staphylococcus aureus gibi patojen bakterilerin biyojenik amin, amonyak fenol gibi tehlikeli bileşikler üretmelerini engellerler. Probiyotik bakterilerin patojenler üzerindeki bu etkisi, bağırsaklarda laktik ve asetik asit üretmeleri ve pH’nın azalması ile açıklanmaktadır. Laktoz Hidrolizi Laktoz intolerant (bağırsak hipolaktemia) kişiler, laktozu hidrolize edecek beta galaktosidaz enzimini genetik rahatsızlık nedeniyle üretemezler. Sadece Kuzey Avrupalılar, beyaz Amerikalılar ve Afrika’da bazı kabileler laktozu parçalayacak beta-galaktosidaz enzimini oluştururlar. Laktoz intolerant kişiler süt veya dondurma ile laktoz yediklerinde, laktoz ince bağırsakta emilmeden kalın bağırsağa geçer. Kalın bağırsakta laktoz değişik bakteriler tarafından glikoz ve galaktoza hidrolize edildikten sonra asit ve gaza dönüştürülür. Asit ve gaz oluşumu bağırsaklardan sıvı emilmesini engeller ve bunun sonucunda bağırsak şişliği şeklinde rahatsızlıklar ortaya çıkar. Yoğurdun, asidophilus eklenmiş sütün (çoğunlukla L. acidophilus) ve probiyotik bakterilerin farmakolojik ürünlerinin yenmesi, ince bağırsaklara laktozu hidrolize edecek canlı bakteri bağladığından, laktozdan kaynaklanan rahatsızlıklar görülmez. Fermente ürünlerde laktoz, laktik asit bakterileri tarafından parçalandığından ve ürünlerde bakterilerin ürettiği beta-galaktosidaz enziminin bulunması nedeniyle fermente gıdaların sağlık üzerine faydaları bulunmaktadır. Lactobacillus bulgaricus ve Streptococcus thermophilus mide asitliğine dayanamaz ve normal bağırsak bakterisi değildirler. Fakat süte göre yoğurttan laktozun azalması, bağırsak rahatsızlıklarının ortaya çıkmasını engeller. Bağırsak bakterileri ve çoğunlukla bazı Lactobacillus türleri, belirli koşullarda ince bağırsaklara yerleşerek yiyeceklerle alınan laktozu hidrolize ederler. Serum Kolesterol Düzeyinin Düşürülmesi Farelerle yapılan bir çalışmada, farelere L. acidophilus içeren süt verilmesi sonucunda düşük serum kolesterol düzeyi bulunmuştur. Probiyotik bakteriler ile üretilen fermente süt ürünlerinin veya bu bakterilerin canlı hücrelerinin yenmesi, insanlarda düşük kolesterol düzeyinin oluşması, olası dört faktörden kaynaklanabilir: Yukarıda belirtilen beta-galaktosidaz enziminin fermente süt ürünlerinde bulunması. Bazı bağırsak bakterilerinin yiyeceklerle alınan kolesterolü metabolize etme yeteneğinde olması. Böylece kana geçmesinin azalmasına neden olur. Bakterilerin bağırsaklarda kolesterol prekürsörlerini veya kolesterolü azaltılır. Bazı Laktobasillerin safra tuzlarını parçalamasıyla safra tuzlarının karaciğer tarafından emilmesi engellenir. Böylece safra tuzu absorbe edemeyen karaciğerin, safra tuzu sentezlemek için fazla miktarda serum kolesterolünü kullanması sonucunda serumda kolesterol miktarını azaltır. Fakat bazı araştırma sonuçları, probiyotik bakterilerin vücutta kolesterol düzeyini azalttığı şeklindeki bulguları desteklememektedir. Bunun farklı deney düzenekleri, farklı mikroorganizma kültürü kullanılması gibi nedenlerden kaynaklanabileceği belirtilmiştir. Örneğin kolesterol hidroliz etmeyen veya safra asidini parçalamayan bakteri türünün kullanılması gibi. Kalın Bağırsak Kanserinin Azaltılması 1962 yılında laktik asit bakterilerinin antikarsinojenik etkiye sahip olduğu ileri sürülmüştür. Daha sonraki yıllarda hayvanlar üzerinde yapılan arıştırmalarda; deney hayvarları yoğurt ve yoğurda L. acidophilus, L.bulgaricus, L. casei, Bifidobakterium’un türleri gibi bakteriler ekleyerek beslenmiş, deney hayvanları üzerinde antikarsinojenik bir etki bulunmuş ve tümör riskinin azaldığı belirtilmiştir. Birçok araştırmada, probiyotik bakterilerin fazla miktarda ağızdan alımı sonucunda, istenmeyen bağırsak bakterilerinin oluşturduğu beta-glucuronidaz, azoredüktaz ve nitroredüktaz enzimlerinin azalmasını sağladığı belirtilmiştir. L. acidophilus’un fermente ürünlerle birlikte yenmesiyle bağırsaklarda kanserojenik maddelerin kanserojen maddelere dönüşümünde rol oynayan beta-glukoronidaz, nitroredüktaz ve azoredüktaz enzimlerinin düzeyinde iki ile dört kat azalma saptanmıştır. Probiyotik bakteriler kanser genlerinin aktivasyonundan sorumlu olan bakterilerin enzimatik aktivitelerinin düzenlenmesinde, kanser genlerinin bileşiminin ve toksik etkilerinin önlenmesinde yararlı oldukları kaydedilmiştir. Süt ürünlerinin, deney hayvanlarında tümör büyümesini baskılayan konjuge linoleik asitten anlamlı miktarlarda içerdikleri belirtilmiştir. İstenmeyen bakteriler, bağırsak normal pH’sının düşmesiyle laktik ve asetik asit ürettiklerinden dolayı, bağırsaklardan aminlerin ve amonyağın emilmesi azalır. Bu da kanser oluşumunda, tansiyon ve kolesterolün yükselişinde etkili olan nitroz aminlerin serumda artışına neden olur. Probiyotik bakteriler enterik bakterilerin aktivitelerini engelleyerek, serumda nitroz aminlerin artışını dolaylı olarak önlerler. İstenmeyen birçok bakteri türünün bağırsaklarda gıdalarla alınan kanserojen preküsörlerini aktive eden enzimleri üreterek, aktif karsinojen maddelerin oluşumuna neden oldukları belirtilmiştir. Probiyotik bakteriler, istenmeyen mikroorganizmaların çoğalmasını inhibe ederek bu enzimlerin oluşmasını engellerler. Bağışıklık Sistemine Etkileri Probiyotik bakterilerin canlı hücrelerinin bağırsaklarda bulunmaları halinde, bağışıklık sistemini uyardıkları ve kuvvetlendirdikleri belirtilmiştir. Spesifik laktik asit bakteri suşları ile fermente edilen süt ürünlerinin tüketilmesiyle bağışıklığı artıran peptidlerin üretiminde artış olduğu ve bunlardan bazılarının antitümör etkinliğe sahip oldukları belirtilmiştir. Bağışıklık sisteminin uyarılmasıyla serumda IgA gibi antikorların artması virüs, Clostridium, E. coli gibi patojenlere karşı vücudun dirençliliğinin arttığı kaydedilmiştir. Metabolizmaya Yardımcı Olmaları Probiyotik bakteriler, gıdaların sindiriminde bağırsaklara yardımcı olurlar ve sağlıklı bir metabolik aktivitenin oluşmasını sağlarlar. Bu şekilde beslenmeye ve büyümeye yardım ederler. Bağırsaklarda selüloz ve diğer sindirilemeyen gıda bileşenlerini parçalayarak sindirim sistemine yardımcı olurlar. Bağırsak Doğal Florasının Korunması Probiyotik bakteriler; yeni doğanlarda, antibiyotik kullanımında veya günlük yaşamın getirdiği koşullara bağlı olarak bozulan bağırsak doğal florasının oluşmasına yardımcı olurlar. İstenmeyen bakterilerin, mayaların ve küflerin çoğalmasını kontrol altında tutarak bağırsak doğal florasının bozulmasını engellerler. Vitamin Üretimi Probiyotik bakteriler bağırsak florasında yeterli sayıda bulunduklarında, vitamin ve amino asit sentezledikleri belirtilmiştir. Bu bakterilerin ürettiği vitaminlerin en önemlileri, tiyamin (B1), riboflavin (B2), piridoksin (B6) ve naftokinin (K)’dır. Bir araştırmada, B. bifidum’un bağırsak florasında bulunduğunda, bağırsaklarda B6 vitaminin %400 artığı belirtilmiştir. Gıdalara Katılması Bifidobacterium gibi probiyotik bakteriler, bebek yiyecek ve içeceklerinde katkı olarak kullanılabilmektedir. Bu bakteriler yeni doğanlarda koruyucu antimikrobiyaller, vitaminler, asetik ve laktik asit üreterek enterik enfeksiyonlara karşı korunmalarına ve beslenmelerine yardımcı olurlar. Probiyotik bakteriler ishalin önlenmesinde, kemoterapik veya diğer amaçlar için gıdalara katılmaktadırlar. Özetle Probiyotiklerin Faydaları Yiyeceklerle alınan toksik (zehirli) maddelerin detoksifiye edilmesine (vücuttan atılmasına), kabızlık sorununun giderilmesine destek olurlar. Ağız kokusu sorununun giderilmesine yardımcı olurlar. İnce ve kalın bağırsaklardaki kötü ve zararlı bakterilerin yerine geçerek, onları kontrol altına alıp, bağışıklık sistemini güçlendirerek bir çok hastalığa karşı vücut direncinin artmasına katkıda bulunurlar. Antibiyotik ilaç kullanımı nedeniyle doğal florası bozulan bağırsakların dengesini düzeltmeye yardımcı olurlar. B grubu ve K vitamini üretimini ve emilimini sağlarlar. Kalsiyumun bağırsaklardan emilimini artırıp; kemik erimesini (osteoporoz) önlerler. Kötü bakterilerin neden olduğu enfeksiyonları yavaşlatırlar. Vajinal florayı dengede tutarak, vajinal enfeksiyonlara sebep olan patojen mikroorganizmaların (Candida) gelişimini baskılarlar. İdrar yolu enfeksiyonlarına ve seyahatlerde ishale sebep olan E. coli bakterisinin gelişimini engellemeye yardımcı olurlar. Alerji belirtisini azaltırlar. Zehirli maddelerin vücuttan atılmasına ve cildin görünümünün iyileşmesine yardımcı olurlar. Sindirim kanalında sağlıklı bir bakteri dengesi oluşturup, bazı gerekli enzimleri üreterek sindirime katkıda bulunurlar. Laktoz ve protein sindirimini kolaylaştırırlar. Probiyotik mikroorganizmalar ile ilgili bazı hususlar henüz aydınlatılabilmiş değildir. Örneğin; probiyotik mikroorganizmaların vücut içerisinde bir organdan başka bir organa geçişleri ile ilgili olarak herhangi bir belge yoktur. Ayrıca, gıdalarla alınan probiyotik bakteriler ile ilgili hiçbir enfeksiyon olgusu literatürde yer almayıp, sadece Sacchoromyces boulardii `ye ait enfeksiyonun raporlarda yer aldığı görülmektedir. Kaynaklar: 1- www.sutas.com.tr 2- forummate.com 3- www.gencbilim.com 4- H.M. Timmerman, C.J.M. Koning, L. Mulder, F.M. Rombouts, A.C. Beynen (2004). Monostrain, multistrain and multispecies probiotics- A comparison of functionality and efficacy, International Journal of Food Microbiology, 96, 219– 233 5- Robert Penner, Richard N Fedorak, Karen L Madsen (2005). Probiotics and nutraceuticals: non-medicinal treatments of gastrointestinal diseases, Current Opinion in Pharmacology, 5(6):596-603.

http://www.biyologlar.com/probiyotikler-hakkinda-bilgi

Peroksizomlar (=Mikrocisimler)

Peroksizomlar sitoplazmada çapları lizozomlara yakın yuvarlak şekilli organellerdir. Katalaz, peroksidaz ve oksidaz enzimleri içerirler. Oksidazlar yolu ile mitokondriyonlar gibi enerji üretirler. Ancak bir hücrede enerji üretiminin yaklaşık %90'ı mitokondriyonlarda, %10'u peroksizomlardadır. Diğer enzimlerin işlevleri çeşitlidir. Peroksizomlar hemen bütün hücrelerde bulunurlar. Metabolik aktivitesi çok olan hücrelerde sayıca fazladırlar.

http://www.biyologlar.com/peroksizomlar-mikrocisimler

HİSTOLOJİK PREPARAT TESPİT AJANLARI

A-SIVI TESPİT AJANLARI: Tek ya da diğer sıvılarla ve katılarla karıştırılarak kullanılan en çok kullanılan sıvı tespit ajanları, alkol, aseton, formalin, gluter aldehit ve asetik asittir. Trikloroasetik asit daha az kullanılır. Son yıllarda trikloroasetik asit hem fiksatif hem de dekalsifiye ajanı olarak kullanılmaktadır.1-Absolu Alkol: 78 C de kaynayan, renksiz, tutuşabilen bir sıvıdır. Glikojeni iyi korur ancak çekirdek detayının kaybına ve sitoplazmanın büzülmesine neden olur.2-Soğuk Aseton: Özellikle lipazlar ve fosfatazlar gibi enzimlerin histokimyasal çalışmalarında tercih edilir. Rutin fiksatif olarak kullanılmaz. Çekirdek detayının kaybına ve sitoplazmanın büzülmesine neden olur. Glikojeni iyi korumaz.3-Formaldehit: Ağırlığının yaklaşık %40 ı kadar suda çözunebilen bir gazdır ve formaldehit (%40) veya formalin adı altında satılmaktadır. Proteinleri precipite etmez ve diğer hücre bileşenlerini ise kısmen precipite eder. Albümini sertleştirmez ve çözünür halde tutar ve sonraki dehidratasyonda alkollerle sertleşmeyi engeller Formalin yağları ne korur ne de haraplar. Kompleks lipidler için iyi bir fiksatiftir fakat nötral lipidler üzerine etkisi yoktur. Formalin karbohidratlar için seçilen bir fiksatif olmamasına rağmen glikojeni kolaylıkla çözünmesini engelleyerek korur. Frozen kesitler için ideal bir fiksatiftir. Solusyonun nötralizasyonu arzu edilir. Tampon tuzları nötralizasyon sağlanabilir. Konsantre asit formalin sonuçta çıkan CO2 in labarotuvarda ciddi patlamalara yol açtığından Mg veya CaCO3 ile muamale edilmemelidir. Kalsiyuım karbonat dokularda pseudokalsifikasyon oluşturabilir. Konsantre formalin solusyonu bazen paraformaldehit oluşumu nedeni ile bulanıklaşır, solusyonun gücü azalır. Fakat filtre edilirse kullanılabilir. Formalin renksiz olmalıdır. Sarı solusyonlar kullanılan demir kaptan kaynaklanan demir iyonları ile kontamine olmuştur. Demir içeren formalinle fikse edilen dokuların kesitleri pozitif Prusya mavisi reaksiyonu verir ve kontamine olacağı düşünülen formalin örnekleri aynı yöntemle test edilebilir. Formalini konsantre solusyon olarak kullanmak uygun değildir ve çesme suyuyla serum fizyolojik ile veya tampon tuz solusyonları ile yaygın olarak %10 luk olarak seyreltilir. Bu solusyonlar %4 oranında formaldehit içermektedir.Formalin, özellikle bazı kişilerde gözlere, solunum epiteli iridasyonuna yol açan istenmeyen bir duman çıkarır. Bu nedenle formalinle tespit edilen dokuların diseksiyonu için iyi havalandırılan oda kullanılmalı, tüm saklama kaplarının ağzı sıkıca kapatılmalı, korozyona dirençli kapaklar kullanılmalıdır. Bunlara ek olarak eldiven veye etkili krem bariyer, formalinle tespit edilmiş materyal tutulduğunda kullanılmalıdır. Bazı çalışmalar bu etkilere bağışıktır fakat bazıları bu solusyona ellerini daldırdıktan sonra istenmeyen "formalindermatitis" den yakınırlar. Formalin, ideal bir fiksatif olarak önerilse de bazı çekirdek şişmeleri oluşabilir. Asetik asit formalini ile post fikse edilirse bu etki ortadan kaldırılır ve H-E ile parlak boyanma sağlanır. Formalin, kromatlar formik asite oksitleyeceğinden kromatlarla kullanılmamalıdır.4-Gluter Aldehit: Formaldehitten daha yavaş penetre olur.Elektron mikroskopi ve enzim histokimyası için çok yararlıdır. E.m için standart bir fiksatiftir ve OsO4 den önce birinci fiksatif olarak kullanılmaktadır. Fikse edilen örnekler solusyonda aylarca kalabilir. GA ile tespit edilen kesitler PAS+reaksiyon vermeye meyillidirler. Formaline göre daha pahalıdır.5-Trikloro Asetik Asit: Günümüzde kullanılmamaktadır. Sistin, sistein ve metionin gibi sülfür grubu amino asitleri iyi korur. Dekalsifiye ajanı olarak kullanılmaktadır.6-Asetik Asit: Tek olarak kullanılmaz. Hızlı ve iyi penetre olur ancak alyuvarların lizisine yol açar. Kollajen fibrilleri şişirir, nukleoproteinleri precipite eder ve bazı sitoplazmik granüller üzerine çözücü bir etkiye sahiptir. B-KATI TESPİT AJANLARI:1-Civa Klorür (HgCl2): Çok zehirli ve metallere korosivdir. Merkurik klorid kapları kesinlikle metal kapaklı olmamalı ve kullanılan metal aletler parafine daldırılarak kullanılmalıdır. Civa klorür, kuvvetli bir protein precipitantıdır. Dokuya hızla penetre olur ve dokuyu sertleştirir. Dokuyu büzer fakat eğri büğrü etmez. Hem nukleusu hem de sitoplazmayı iyi fikse eder. Çekirdeğin özellikle sitoplazmanın asit boyalarla boyanmasını sağlar. Diğer fiksatiflerle (özelikle formalin, potasyum dikromat ve asetik asit) karıştırılarak kullanır fakat dokunun her tarafına uniform olarak dağılan kahverengiden siyaha kadar değişen granüler madde oluşturur. "Mercury pigment'' olarak adlandırılan bu madde alkolik iodinde, çözünür ve daha sonraki boyamayı etkilemez. Dehidratasyon sırasında bloklardan %70-80 alkoldeki %0.-25-05 iodin eklenmesiyle veya kesitleri boyamadan önce aşağıdaki gibi işlemden geçirerek uzaklaştırılır.İşleml-Ksilol ile muamele ederek parafin uzaklaştırııir.2-%100'lük alkolde yıka3-%70'lik alkolle hazırlanmış %0.5'lik iodinle 3-5 dakika muamele et4-Çeşme suyunda kısa bir süre çalkala5-%2.5 luk sodyum thiosulfatla(hipo) beyazlaşıncaya kadar (30 saniye-iki dakika) muamele et6-Akarsuda 5 dakika yıka7-Boyamayı yap 2-Potasyum Dikromat: Potasyum dikromat solusyonlarının pH’sı fiksasyonu önemli ölçüde etkiler. pH 3.4-3.8 arasında sitoplazma homojen olarak ve mitokondriler fikse olurken, nukleoproteinler korunamazlar. Daha asidik olduğunda ise kromik asit gibi davranır; hem nukleus hem sitoplazma mitokondri harabiyeti ile birlikte precipite olur. Potasyum dikromat diğer maddelerle karıştırılarak birçok önemli fiksatif elde edilir. Potasyum dikromatla tespit edilen dokular, çözülemeyen precipitelerin oluşumunu engellemek için alkolden geçirilmeden önce akarsuda yıkanmalıdır. Dokuya uzun süre maruz bırakmak (günlerden haftalara kadar) özellikle parafine gömülmüşse gevrekleşerek kesit almada zorluk çıkarır.3-Kromik Asit: Kromik asit anhidritin(Cr03)' in koyu kırmızı kristallerini distile suda çözerek hazırlanır. %2'lik solusyon fiksatiflerin hazırlanması için uygundur. Proteinleri precipite eder ve karbohidratları tespitler. Kuvvetli bir oksitleyici ajan olarak genel olarak alkol veya formalinle karıştırılmamalıdır. Kromik asitle fiksasyondan sonra dokular alkolle muamele edilmeden önce akarsuda yıkanmalıdır. Böyle yapılmazsa dokularda çözünemez precipat oluşumuyla sonuçlanabilir. 4-Pikrik Asit: Pikrik asit parlak sarı kristalin bir maddedir. Isıtılırsa patlayıcı özelliği vardır. Tedbirli olarak suda oda ısısında yaklaşık %1 oranında, benzende %10 oranında çözünür. Pikrik asit nukleoproteinleri precipite eder ve biraz büzer fakat hafif sertleştirir. Sitoplazmik boyalarla zenginleştirir ve glikojen için kullanılan fiksatiflerin faydalı bir elemanıdır. Pikrik asit fiksasyonundan sonra dokular direkt olarak alkole alınırlar. 5-Osmiyum Tetroksit: Yaygın olarak söylendiği gibi osmik asit, 0.5 veya 1 gramlık etiketli ampullerde bulunan soluk sarı kristal bir maddedir. Pahalıdır. Hem kristalin hem de çözeltinin dumanı iridanttır ve tehlikelidir. Gözün dumana maruz kalmasından sıkı gözlük kullanarak kaçınılmalıdır. Kullanıldığı şişe sıkıca kapatılmalıdır. Çözelti aşağıdaki gibi hazırlanır.Etiketi çıkarın.Tüpteki yapışkanı suyla (sıcak su değil) yıkayıp çıkarın.Temiz bir bezle ampulu kurulayın, ortasından kırın. Her iki yarısını uygun miktarda distile su içeren koyu renkli cam şişeye koyun. Kristallerin çözünmesi zaman alır. Fakat hızlandırmak için ısı kullanılmamalıdır. Şişenin cam kapağı olmalı ve soğukta muhafaza edilmelidir. OSO4' ışık, ısı veya organik etkenlerle kolaylıkla gri veya siyah lower okside indirgenir ve bir kere kullanılan solusyon, stok şişesine geri konulmamalıdır. İndirgenmeyi önlemenin etkili bir yolu her 10 cc lik solusyona bir damla suda doyurulmuş merkurik klorid eklemektir. OSO4, formalin gibi protein ile additive bileşikler oluşturur, miyelini de içeren çoğu lipidler OS04 in lower okside indirgenmesiyle siyahlaşır. Penetrasyonu zayıftır. Küçük objeler, smearler ve ince kesitler sıvıya daldırmaksızın dumanıyla fikse olabilir. Genel histolojik ve histopatolojik çalışmalarda az kullanılmasına rağmen (fiat yüksek, kullanımdaki sınırlamalar) e.m de yaygın kullanılmaktadır.

http://www.biyologlar.com/histolojik-preparat-tespit-ajanlari

Nematoda

Vücutları silindirik yapıda ve segmentsizdir. Bir kısmı serbest, bir kısmı ile simbiyotik olarak yaşar. MORFOLOJİK VE FİZYOLOJİK ÖZELLİKLERİErişkinlerde; dişiler genellikle erkeklerden daha büyük ve her iki uçları sivridir. Erkeklerin ise ön ucu sivridir. Arka tarafta kutikulanın şemsiye şeklinde genişlemesinden oluşan yapı bursa copulatrix tir. Bazı erkeklerde ise kuyruk kanatları denilen kutikula genişlemeleri yer alır. Vücutları renksiz ve saydam olan "kutikula" ile örtülmüştür. Kutikulanın altında hipodermis tabakası bulunur. Kutikula hipoderimisin salgılarıyla oluşmuştur. Hipodermis vücut boşluğuna doğru 4 tane çıkıntı yapar. Çıkıntıların biri dorsalde, diğeri ventralde, kalan ikisi de lateral kenarlarda yer almaktadır. Üst ve alttaki kordonlardan sinr kordonları, yandaki çıkıntılardan ise boşaltım kanalları geçer. Hipodermisin altında kas tabakası bulunur. Kas tabakasının altında coelom (vücut boşluğu) bulunur. Vücut boşluğunda yüksek basınçlı bir sıvı vardır. Bu sıvının görevi vücudun sertliğini ve şeklini korumaktır. Kütikula değişiklikleri: 1.Taç yaprakları: Ağız kapsülünü içten ya da dıştan kuşatan ardışık olarak dizilmiş parmak şeklindeki çıkıntılardır. Strongyloidea üstailesindeki bir kısım nematodda rastlanır. 2.Boyun ve kuyruk papilleri: Boyun papillleri oesophagus bölgesinin ön kısmında, kuyruk papilleri kuyruk kısmında görülür. Parmak veya diken benzeri çıkıntılardır. Dokunma duyusu organelleridirler. 3.Boyun ve kuyruk kanatları: Kutikulanın kananrt biçimind egenişlemesinden oluşmuşlardır. Boyun kantalrı oesophagus bölgesinde, kuyruk kanatları kuyurk bölgesinde yer alır. 4.Baş ve boyun vezikülleri: Baş vezikülü ağız deliğinin çevresini, boyun veziküü oesophagus bölgesinin etrafını kuşatan kesemsi, şeffaf şişkinliklerdir. 5.Bursa copulatrix: Erkek nematodlarda görülür. Kuyruk kanadının daha fazla genişlemesinden oluşmuştur. Kesenin içinde parmak biçiminde, destekleyici görevi olan kaburga (costa) denen yapılar mevcuttur. Çiftleşme kesesi iki büyük lateral ve bir küçük dorsal lobdan ibarettir. Bu organın görevi çiftleşmede dişiyi yakalamaktır. 6.Plak ve kordon Sindirim sistemi: Vücudun ön kısmı ağız ile başlar. Bir çok nematodda ağız sadece bir delikten ibarettir. Bazı nematodlarda ise ağız dudakla çevrilidir. Her iki tipte de ağız doğrudan yemek borusuna açılır. Buna karşın Strongyloidea üstailesinde ağız büyük olup, ağız boşluğuna açılır. Bu boşluğa ağız kapsülü denir. Yemek borusu kaslıdır. Bursa copulatrix'e sahip nematodlarda yemek borusunun arka tarafı hafif bir şişkinlik gösterir. Buna filariform tip oesophagus denir. Ascarioidea üstailesinde yemek borusunun arkasında görülen bu şişlik çok büyüktür. Buna bulbuslu oesophagus tipi adı verilir. tipi adı verilir. Oxyuridea üstailesindeki nematodlarda oesophagus'un ön ve arka tarafında şişkinlikler bulunur. Bu tip oesophagus'a ise çift bulbuslu tip denir. Spirurioidea ve Filaroidea üstailesindekilerde yemek borusunun üst kısmı kaslı arka kısmı ise bezli bir yapıdadır. Bu tipe kaslı-bezli tip oesophagus denir. Trichuroidea'larda yemek borusu tek sayıda çok sayıda hücrenin arka arkaya dizilmesinden oluşmuştur ve çok ince bir yapı gösterir. Buna stikosom tip oesophagus adı verilir. Rhabditiform oesophagus'un ise ön ve arka kısmı hafif şişkin ve ortası dardır. Barsak boru şeklindedir. Lumene bakan hücreler mikrovillusludur. Dişi nematodlarda barsak anus ile sonlanır. Erkek nematodlarda ise barsak sonu deferens kanalı ile birleşir ve bir kloaka oluşturur. Ağız kapsülü büyük olan nematodlar beslenirken bir parça mukozayı negatif basınç ile kapsül içine çekerler. Çekilen mukoza parçası ağız kapsülünde sindirilir. Sindirim enzimleri oesophagus bezlerinden salgılanır. Sindirilen gıda oesophagus yoluyla barsaklara pompalanır. Emilim barsaklarda olur. Ağız kapsülleri küçük ya da ağızları sadece bir delikten ibaret olanlar mukoza sıvısı ya da ölü hücre artıklarıyla beslenirler. Oxyuridea üstailesindekiler kalın barsak içeriği, kanda ya da dokularda yaşayan nematodlar (Filarioidea) sadece doku sıvıları ya da plasma ile beslenirler. Boşaltım sistemi: Boşaltım kanalları nematodun her iki yanında seyereder. Yemek borusu bölgesinde birleşerek boşaltım deliğine açılırlar. Sinir sistemi: Sinir sistemi oesophagusu çevreleyen bir sinir halkası ve buradan çıkıp öne ve arkaya uzanan sinir iplikçiklerinden ibarettir. Duyu organelleri: Bunlar kimyasal reseptörler ve dokunma duyusu reseptörlerinden ibarettir. Kimyasal reseptörler amfid ve fasmidlerdir. Genital organlar: Dişi üreme organları ovarium, oviduct, recepteculum seminis, uterus, vagina ve vulvadan ibarettir. Uterus vaginaya açılır. Vagina vulva ile sonuçlanır. Bazı türlerde vulva kapaklıdır. Bazı türlerde de yumurtanın atılmasına yardımcı olan ovojektör adı verilen organ bulunur. Erkek üreme organları tek bir testis, bundan çıkan deferens kanalı, vesicula seminalis ve kaslı ejakülatör kanaldan oluşur. Spikulum, gubernakulum ve telemon çiftleşmede yer alır. Görevleri dişiye tutunmak ve vulvayı açmaktır. Bursa copulatrix ve kuyruk kantları da çiftleşmeye yardımcı olur. Döllenme recepteculum seministe meydana gelir. Zigot oluştuktan sonra etrafını hemen döllenme zarı sarar. Bu zar daha sonra kalınlaşarak kitinli kabuğu oluşturur. Vitellin membran denen ikinci bir zar da kitinli kabuğun iç kısmında şekillenir. Döllenen yumurtalar ovojektörle vulvadan dışarı atılır. Eğer yumurta atıldığında içinde gelişme az ise ve içinde sadece bir veya birkaç blastomer bulunuyorsa bu tip nematodlara ovipar nematodlar denir. Yumurta atıldığında içinde larva bulunuyorsa bunlara ovovivipar nematodlar denir. Bazı nematodlarda uterus içinde bulunan yumurta içinde iyice gelişir ve larva yumurtayı uterusta terk eder. Bunlar vivipar nematodlardır. Dolaşım ve solunum sistemi: Nematodlarda dolaşım ve solunum sistemi yoktur. Yumurtaları: Çoğunda tabaka sayısı 3'tür. 1) Strongil tip yumurta: İnce kabuklu, ovaldir . İçinde çok sayıda blastomer bulunur. 2) Askaridoid tip yumurta: Kalın kabukludur. İçinde tek bir blastomer bulunur. 3) Oksiroid tip yumurta: Oval, asimetrik ve bir kutbunda tıkaç bulunan yumurtalardır. 4) Spiruroid tip yumurta: İçinde L1 bulunur. Kabuk ince/kalındır. 5) Trichurioid tip yumurta: Limon biçimindedir. Kalın kabukludur. İki ucunda tıkaç vardır. Larvaları: Yaşamlarında 5 devre vardır. İlk dördü larva dönemidir. Genital organlar L4 evresinde gelişmeye başlar. Her larva döneminin sonunda larvalar gömlek değiştirir. Gömlek değiştirme sırasında larva beslenmez ve dış uyarımlara tepki göstermez, letarjiktir. 1) Mikrofiler: Bir çeşit L-1 dönemi larvadır. Sindirim kanalı gelişmemiştir. Filaroidea takımında görülür. 2) Rhabtidiform larva: Sindirim kanalı gelişmiştir. Oesophagus'u rhabtidiform niteliktedir. 3) Filariform larva: Sindirim kanalı gelişmiştir. Oesophagus filariform niteliktedir. Son konak için enfektif larvalar çoğu nematodda bu tiptedir. Yasam çemberleri: Çiftleşmeden sonra dişiler yumurta ya da larva çıkarırlar. Homoxene gelişenler: Konağı terketmeyerek larva olarak kalanlarda konaktan onağa bulaşma kanibalizm ya da karnivorizm ile olur. konağı terkedenlerde ise dışarı çıkan yumurta veya larvalar çoğu türde dış ortamda gelişerek enfektif forma ulaşır ve konağa girer. Heteroxene gelişenler: Son konağı terketmeyip larva olarak kalanlarda son konaktan son konağa bulaşma bir vektör aracılığıyla olur. son konağı terkedenlerde ise dışarı çıkan yumurta veya larvalr çoğu türde dış ortamda gelişerek ara konak için enfektif forma ulaşır ve arakonağa girer. Bazı türlerde ise son konağı terkeden larvalar dış ortamda gelişme göstermeden ara konağı enfekte eder. Son konak paraziti ara konak aracılığıyla alır. Konağı terk ediş yolları: Türlere göre değişmek üzere bu yollar dışkı, idrar, balgam ve kusmuktur. Vivipar nematodların L1'lerinin ise konağı terk edişleri ancak ya bir vektör aracılığı ile ya da konağın başka bir konak tarafından yenmesi ile gerçekleşir. Dış ortamdaki gelişme: Yumurta ve larvalar için optimal sıcaklık 18°-27°C ve optimal nisbi nem de %80-100'dür. Larva çevreden aldığı sıcaklık ve rutubet uyarımlarıyla lipaz enzimi salgılar. Yumurtanın en içindeki lipid yapısındaki tabakayı eritir. Böylece yumurta içine dışarıdan su girmeye başlar. Larva bu suyu bünyesinde toplayarak büyür, yumurta içine sığmaz ve kabuğun geri kalan tabakalarını parçalar. Son konak enfeksiyonu ve son konakta gelişme: Son konak enfeksiyonu yumurta, larva, ara konak ya da vektör enfeksiyonu ile olur. yumurta ve ara konak enfeksiyonu pasif, larva enfeksiyonları ise aktif/pasif olarak gerçekleşir. Vektörle parazitin bulaşması ise pasif bir bulaşma şeklidir. Konağa giren larvalar gömlek değiştirmelerini tamamlar ve erişkin nematodlar oluşur. Bunlar çiftleşir ve dişiler yeni jenerasyonları üretir. ***Bazı nematodlar yaşadıkları organa yerleşmeden önce vücut içinde bir göç geçirirler. Bu esnada değişik organ ve dokularda gömlek değiştirirler. Bazı nematodlarda ise konağın parazite karşı bağışık olduğu durumlarda ya da enfektif larvaların konağa girmeden önce dış ortamdakötü koşullar (kuraklık, don) geçirmesi durumunda konakta doku ve organlarda latent halde beklerler. Bu olaya hipobiyoz denir. Hipobiyotik larvalar konağın bağışıklığının ortadan kalktığı ve/veya hava şartlarının iyileştiği durumlarda tekrar gelişmelerine devam ederler. Eğer bu bağışıklığı kırıcı faktör gebelik, kortikosteroid tedavisi vs. ise bazı nematodların inhibe larvalar tekrar aktivite kazanarak transpalsental ve galaktojen yolla yavruya geçer ve gelişmelerini yavruda tamamlar. ***Belli bir dönemde (doğum öncesi/sonrası) hayvanlardan çıkarılan nematod yumurtalarının sayıca fazla olmasına periparturient rise denir. 3 temel nedeni vardır: 1) İnhibe larvaların olgunlaşıp yumurta üretmesi 2) Meradan yoğun etken alınması 3) İlkbaharda parazitlerin yumurta üretim kapasitelerinin artması Self cure ise konağın ağır enfestasyonlara verdiği cevaptır. Larva konağa girdikten sonra IgE'ler mast hücreleri ile bir kompleks oluştururlar. Bu kompleks antijen ile bir araya geldiğinde vazoaktif aminleri içeren mast hücresi degranüle olur. konakta vazodilatasyon, ödem, mukozada kalınlaşma, barsakta peristaltiğin artması gibi reaksiyonlardan sonra larva vücuttan atılır. 2 sonucu vardır: 1) Konak geçici olarak paraziter enfestasyondan korunmuş olur. 2) Parazitin yeni nesillerine yer açılmış olur. TAKIM: STRONGYLIDA ÜST AİLE : STRONGYLOIDEA (ayrıntı için tıklayın!) ÜST AİLE : TRICHOSTRONGYLOIDEA (ayrıntı için tıklayın!) ÜST AİLE : METASTRONGYLOIDEA (ayrıntı için tıklayın!) ÜST AİLE: ANCYLOSTOMATOIDEA (ayrıntı için tıklayınız!) TAKIM: ASCARIDIDA ÜST AİLE: ASCARIDOIDEA (ayrıntı için tıklayınız!) TAKIM: OXYURIDA ÜST AİLE: OXYUROIDEA (ayrıntı için tıklayınız!) TAKIM: RHABDITIDA ÜST AİLE: RHABDITOIDEA (ayrıntı için tıklayınız!) TAKIM: SPIRURIDA ÜST AİLE: SPIRUROIDEA (ayrıntı için tıklayınız!) ÜST AİLE: THELAZIOIDEA (ayrıntı için tıklayınız!) ÜST AİLE: FILARIOIDEA (ayrıntı için tıklayınız!) ÜST AİLE: HABRONEMATOIDEA (ayrıntı için tıklayınız!) TAKIM: ENOPLIDA Cins: Trichuris Türler: Trichuris vulpis -köpek T.globulosa - sığır T.discolor - sığır T.ovis - koyun T.skrjabini - koyun T.trichura - insan Yerleşim: Caecum, colon Morfoloji: Ön kısmı ince, arka kısmı kalındır. Yumurtaları koyu sarı renklidir, limona benzer, iki kutbunda da tıkaç bulunur. Biyoloji: İçinde L1 bulunan yumurtalar enfektiftir. Patogenez: En patojenleri olan T.vulpis erişkin dönemde mukoza hücreleri ve kanla beslenir. Tanı: Dışkıda tipik yumurtalar görülür. Sağaltım: Avermectine ve Benzimidazole kullanılır. Cins: Capillaria Türler: Capillaria obsignata , C.caundiflata Morfoloji: 1-5 cm uzunluktadırlar. Yumurtaları Trichuris yumurtalarına benzer ancak yanlardan daha basık olmalarıyla ayrılırlar. Tanı: Dışkı bakısında tipik yumurtalar görülür. Sağaltım: Levamisole 30mg/kg içme suyuna katılır Moxidectin 0.2mg/kg i.m. (güvercinlerde) Fenbendazole 20mg/kg yeme katılır Tür: Capillaria hepatica Erişkinleri fare ve ratların karaciğerinde bulunur. Yumurtalar buraya bırakılır. Yumurtalar konak reaksiyonu sonucu etrafı çevrilerek dışarı çıkamazlar. Karnivorlar bu canlıları yerse karaciğerin sindirilmesi sonucu dışkıyla bu parazitin yumurtalarını atarlar. Yumurtalar dış oratamda gelişir ve içlerinde enfektif larvalar oluşur. Gıdayla bu yumurtaları alan canlılar enfeste olur. Cins: Trichinella Türler: T.spiralis T.nelsoni T.nativa T.pseudospiralis Trichinella spiralis için: Son konak: İnsan, domuz, fare, rat, ayı, nadiren diğer memeliler ve kanatlılar Yerleşim: Erginleri ince barsakların mukozasındaki larvaları ise çizgili kaslarda kistler içinde bulunur. Morfoloji: Erkekler 1.4-1.6 mm uzunluktadır. Dişiler ise 3-4 mm uzunluktadır. Biyoloji: Aynı konak üzerinde hem erginleri hem de larvaları bulunan tek nematoddur. Çiftleşmeden sonra erkekler ölür. Dişiler Lieberkühn bezlerine ve Peyer plaklarına girer. Çiftleşmeden 3 gün sonra dişiler L1 çıkarmaya başlarlar. Larvalar lenf yolu ile dolaşıma girer ve büyük dolaşımla tüm organ ve dokulara yayılırlar. Sadece çizgili kaslara giden larvalar canlı kalır. Kaslardaki bu larvalar kanibalizm, karnivorizm veye leş yeme ile başka bir konak tarafından alındığında gelişme bu konaktea devam eder. Konakta parazite karşı aşırı bir duyarlılık şekillenmişse veya konak ishalli ise ince barsaklara gelen larvalar dışkı ile atılır. Nadiren pranatal enfestasyon görülür. Leş yiyen kuşlar paratenik konaklık yapabilir. Patogenez: Erişkin parazitler enteritis ve kusmaya neden olurlar. Kaslara giden larvalar ise akut myositis, ateş ve eosinofiliye yol açarlar. Ek oalrak göz bölgesinde ödem, fotofobi görülür. Beyinde dolaşan larvalar encephalitise yol açar. Epizootiyoloji: Bulaşma başlıca domuz olmak üzere diğer hayvaların etinin iyi pişmemiş olarak yenmesiyle olur. domuzlar için enfestasyonun kaynağı fareler ve birbirlerini yemeleridir. Tanı: Mezbahalarda et kontrolü sırasında larvalar tesbit edilebilir. Sağaltım: Mebendazole, Ivermectin Tür: Dioctophyma renale Son konak: Vizon, karnivorlar, domuz, bazen insan Ara konak: Tatlı suda yaşayan bazı halkalı solucanlar. Bazı talı su balu-ıkları ve kurbağalar da paratenik konaktır. Yerleşim: Böbrek parankimi Morfoloji: Evcil hayvanların en büyük nematodudur. Dişilerin uzunluğu 100-120cm, eni 1 cm kadardır. Patogenez: Parazit böbrek parankimini tamamen tahrip eder. Sağaltım: Cerrahi sağaltım yapılır.

http://www.biyologlar.com/nematoda

MAKROFAJ SİSTEMİ (Mononükleer Fagositik Sistem)

Ortak fonksiyonları fagositoz ve pinositoz ile vücut savunması ve çöpçülük; kökenleri kemik iliği kanda monosit bağ dokularında makrofaj olan ve ortak morfoloji olarak bol lizozom, GER, iyi gelişmiş Golgi kompleksi ve pseudopodlara sahip hücrelerin oluşturduğu bir sistemdir. Bu sistemin hücreleri normalde bağ dokularında histiyosit , aktive olduklarında aktive edilmiş makrofaj şeklinde bulunurlar. Hücreleri; *Karaciğerde Kuppfer hücreleri *MSS’de mikroglia hücreleri *Osteoklast *Alveolar makrofaj Mast Hücreleri (Labrosit- Mastzellen ): Granülleri fagositoz ürünü sanıldığından İyi beslenmiş hücre anlamına gelen mast zellen olarak adlandırılmışlardır. Kemik iliği orjinli bu hücreler kan yoluyla dokuya gider ve çoğalırlar. 20-30 µm çapında, oval ya da yuvarlak hücrelerdir. Çekirdek küçük ve merkezi yerleşimlidir. İri granüllü hücrelerdir. Granüller çekirdeği maskeleyebilir. Granülleri, glikozaminoglikan içerikleri nedeni ile polianyonik olduklarından bazofilik ve metakromatiktir. 0,3-0,5 µm çapında ve membranlı olan granülleri tomar, kristal, tanecikli ve karışık olmak üzere 4 tiptir. Granüllerinde; Histamin:Bronşiyolar düz kaslarda kontraksiyon ve kapiller permiabilitede artışa yol açar. Heparin: Proteoglikan yapısındadır. Kan pıhtılaşmasını önler ve damarların yaşam boyunca açık kalmasını sağlar. Lökotrien (Slow reacting factor of anafilaksi=SRS-A): Düz kaslarda yavaş kontraksiyonlar yapar. Hücre içinde depolanmaz. Sitimulasyonla membran fosfolipidlerinden sentezlenip, hemen salınır. ECF-A (Anaflaksinin eozinofil kemotaktik faktörü ): Kan eozinofillerini kendine çeker. Nötral proteazlar: Mastositlerde mitoz nadirdir. Analog hücresi olan bazofillerde ise mitoz görülmez. İnsanda mast hücre sayısı bazofil hücre sayısına eşittir. Parakrin hücrelerdir. En çok dermiste, sindirim ve solunum yollarında bulunur. MSS’de ise sadece meninkslerde bulunur. Mastositler esas olarak iltihabi yanıtta kullanılacak kimyasal aracıların depolanması fonksiyonunu üstlenirler. Mast hücrelerinin 2 tipi vardır; Bağ dokusu mast hücreleri; Granüllerinde bir proteoglikan olan heparin hakimdir. Mukozal mast hücreleri: Granüllerinde bir glikozaminoglikan olan kondroitin – sulfat hakimdir. Mast hücrelerinin yüzeylerinde Ig E için spesifik reseptörler bulunur. *Yabancı maddeler (antijen) vücuda girdiğinde makrofajlar B-lenfositlere bilgi aktarır. B-lenfositler, plazma hücrelerine dönüşür ve bunların salgıladıkları Ig E mast hücre yüzeyindeki reseptörlere tutunur. Aynı antijen ya da benzer antijen vücuda tekrar girdiğinde bu yapılar üzerine tutunur. Tüm granüller deşarj olur. Birkaç dakika içinde yerel yanıt (ürtiker) ya da yaygın yanıt olan ani yüksek duyarlılık reaksiyonu ya da özel bir tipi anaflaktik şok ortaya çıkarak ölüme yol açar. Plazma Hücreleri: Az sayıda, daha çok intestinal mukozada ve kronik iltihaplı alanlarda yerleşik büyük, oval hücrelerdir. Nukleusları eksentrik yerleşimlidir. Nukleus kromatini araba tekerleği ya da saat kadranı gibi dağılım gösterir. Sitoplazmalarında çok iyi gelişmiş GER sisternaları ve Golgi kompleksi yer alır. GER sisternaları ve eksentrik yerleşimli çekirdekleri ile kesitlerde kolaylıkla tanınırlar. Yan yana gelmiş plazma hücreleri şaşı göz hücreleri olarak da adlandırılır. B-lenfositlerden farklanırlar. Nadiren bölünürler. Ömürleri 10-20 gündür. Fonksiyonları, antikor sentezleyerek organizmanın sıvısal (humoral) savunulmasıdır. Yağ Hücreleri (Adiposit): Nötral yağların depolanması ve ısı üretilmesi için özelleşmiş hücreler. Kandan Gelen Hücreler: Fonksiyonlarını bağ dokularında gerçekleştiren, diyapedez ile dolaşımdan çıkarak bağ dokularına giden ve geri dönemeyen kan hücreleridir. Nötrofiller: 3-5 loplu çekirdeğe sahip, granüllerinde alkalen fosfataz ve fagositinleri içeren fagositik hücrelerdir. İltihabi reaksiyonlarda sayıları artar. Nötrofiller, fagositozdan kısa bir süre sonra ölürler. Bu süreç çok enerji gerektirdiğinden hücre tüm glikojen rezervlerini tüketirler. Öldüklerinde, lizozomal enzimlerini ekstrasellüler ortama bırakır ve komşu dokunun liquefactionuna yol açar. Ölü nötrofiller, doku sıvısı ve abnormal materyal Pü (cerahat) olarak adlandırılır. Eozinofiller: Çekirdekleri 2 loplu ve asidofil boyanan granüllere sahip hücrelerdir. Aktif fagositik hücre değillerdir. Ancak ortamda antijen – antikor kompleksi varsa fagositoz yaparlar. Allerjik ve parazitik enfeksiyonlarda sayıları artar. Mastosit ve bazofilden salgılanan ECF-A, eozinofillerin ortama kemotaksis ile gelmesine yol açar. Eozinofiller, aril sulfataz ve histaminaz salgılar. Bu enzimler, lökotrien ve histamine tutunarak inhibe eder. Bu süreçle allerjik reaksiyonların şiddeti azaltılır. Bazofil :Fonksiyonları ve yapıları mast hücrelerine benzediğinden kan mastositleri olarak da adlandırılırlar. Lenfositler: Hücresel savunma (T-lenfositler ) ve sıvısal savunma (B-lenfositler) yapan hücrelerdir. T–lenfositler uzun ömürlüdür. B-lenfositler, daha kısa ömürlüdür ve uyarıldıklarında antikor salgılayan plazma hücrelerine ve bellek hücrelerine farklanırlar.

http://www.biyologlar.com/makrofaj-sistemi-mononukleer-fagositik-sistem

ATP sentezi için neler gereklidir? Mitokondriyon enzimleri nerede bulunur?

ATP sentezi için birçok enzim gerekir. Bu enzimler mitokondriyon iç ve dış zarı ile, zarlararası kısım ve matrikste bulunur.

http://www.biyologlar.com/atp-sentezi-icin-neler-gereklidir-mitokondriyon-enzimleri-nerede-bulunur

Canlıların Sınıflandırılması nedir,nasıl yapılır

CANLILARIN SINIFLANDIRILMASI Dünyamızda yaşamakta olan canlılar incelenirse özelliklerinin çok farklı olduğu gözlenir.Bu farklara rağmen bu canlıları derece derece ve birbirlerine benzeyenleri bir araya toplayarak gruplandırmak mümkündür.Canlıların benzerliklerine göre gruplandırılmasına sınıflandırma (sistematik) denir.Hayvanlar ve bitkiler belirli bir düzen içerisinde sınıflandırılır. SINIFLANDIRMA SİSTEMİNİN GELİŞİMİ Canlılar; monera, protista, fungi, bitki ve hayvan olmak üzere gözle görülmeyen çok küçük organizmalardan dev ağaçlara ve binalara kadar bir dağılım gösterirler.Bu büyük hayat çeşitliliğini tanıyabilmek için, büyük grupları daha küçük gruplara ayırmak gerekir.Biyologlar dünyadaki canlıları sınıflandırmamış olsalardı, bu kadar çeşitli olan canlılara ulaşmak mümkün olmayacaktı. Sınıflandırmanın amacı, canlıları bir sistematiğe oturtmak ve tabiatı daha kolay anlaşılabilir hale getirmektir. İlk sınıflandırmayı Yunan Filozofu Aristoteles (m.ö.383-322) yapmıştır.Aristoteles bitkileri otlar, çalılar, ağaçlar; hayvanları ise yaşadıkları yere göre karada, suda ve havada yaşayanlar şeklinde gruplandırmıştır.Aristoteles’in sınıflandırması canlıların görülebilen ve morfolojik özelliklerine göre yapılmıştır. Günümüzdeki sınıflandırılmada, canlıların bütün özellikleri göz önünde bulundurulur. Örneğin yarasanın kanatlarına bakarak onu kuşlar sınıfında incelemek mümkün değildir.Yarasa bütün özellikleri ile bir memeli hayvandır. Sınıflandırma, canlıların görülen bir veya birkaç özelliğine göre yapılırsa ‘suni sınıflandırma’ (yapay sınıflandırma) adını alır. Aristo’nun yapmış olduğu sınıflandırma yapay sınıflandırmadır. Buna ampirik sınıflandırma da denir. Günümüzde sınıflandırma, canlıların akrabalık ilişkilerine göre yapılır. Sınıflandırılmada canlıların tüm özellikleri göz önünde bulundurulur.Bu çeşit sınıflandırmaya ‘tabii sınıflandırma’ (doğal sınıflandırma) denir. Doğal sınıflandırma bilimsel olan sınıflandırılmadır.Buna filogenetik sistematik da denir. Bir canlıyı türün evrim sistematiğine geçirdiği gelişmelere filogeni (soy oluş), embriyo döneminde geçirdiği değişmelere ontogeni (birey oluş) denir. SINIFLANDIRMA BİRİMLERİ Sınıflandırmanın en küçük birimi tür dür.Sınıflandırmada tür kavramını ilk kuran kişi John Ray dır. Tür ortak bir atadan gelem,yapı görev bakımından ortak özelliklere sahip olan, kendi aralarında çiftleşerek verimli döller meydana getirebilen bireylerin oluşturduğu topluluktur. Sistematikte her tür iki isimle adlandırılır.Bu iki isimden 1. si canlının cinsini 2. si tanımlayıcı özelliğini belirtir.Her türün iki isimle adlandırılması ilk kez Carolus Linnaeus tarafından kullanılmıştır. Türlerden daha büyük topluluklar da vardır.Bunlar sırasıyla cins, familya, takım, sınıf, şube ve alem dir. Birbirlerine çok benzeyen yakın türlerin gruplaşmasıyla cinsler ortaya çıkar.Örneğin kedi, aslan ve kaplan türleri ‘felis’ cins adı altında toplanır. Felis domesticus :Kedi Felis leo :Aslan Felis tigris :Kaplan Her tür kendi cinsiyle belirtilir.Bu kural bütün dünyada kullanılır. Böylece karışıklık önlenir.Cinslerin ortak karakterlerine göre gruplaşmasına familyalar meydana gelir.Benzer familyalar takımları oluşturur.Benzer takımların gruplaşmasıyla sınıflar ortaya çıkar. Sınıfların bir araya gelmesiyle şubeler, şubelerin bir arya gelmesiyle alem meydana gelir. Sınıflandırmada birimler büyükten küçüğe doğru gidildikçe, birimin kapsadığı birey sayısı artar, aralarındaki benzerlik azalır.Büyük biriden küçük birime doğru gidildikçe birey sayısı azalır, benzerlik artar. BİLİMSEL SINIFLANDIRMANIN DAYANDIGI TEMELLER Günümüzde geçerli olan sınıflandırma filogenetik sınıflandırmadır. Bu sınıflandırmaya göre bütün canlıların ortak bir atası vardır.Bu sınıflandırmanın açıklanabilmesi için akrabalık derecelerinin açıklanması gerekir.Akrabalık derecelerinin belirlenmesinde bazı temel kurallar göz önüne alınır. 1) Homolog Organlar: Yapıları ve gelişimleri birbirlerine benzeyen fakat farklı görevleri olan organlara homolog organlar denir.Örneğin fok balığının ön yüzgeci, yarasanın kanadı, kedinin pençesi, atın ön bacağı, insanın eli homolog organlardır.bunları her biri yaklaşık olarak aynı sayıda kemik, kas, sinir ve kan damarlarına sahiptir.Aynı plana göre düzenlenmiş ve aynı gelişme biçimine sahiptir.homolog organlar canlıların ortak bir atadan geldiğinin kanıtlarından biri olarak ileri sürülmektedir. Bazı organlar aynı kökten gelmedikleri halde, yaptıkları görev aynıdır. Bu organlara anolog organlar denir.Kuş ve böcek kanatları analog organlardır. 2) Embriyolojik Benzerlik: Canlıların embriyo dönemlerinde geçirdikleri evreler ve farklılaşmalar birbirine çok benziyorsa bu canlılar yakın akrabadır.Omurgalı hayvanlarının embriyolarının ilk evreleri çok belirgin bir benzerlik gösterir.İlk evrede balık ve domuz embriyosunu ayırmak çok zordur. 3)Biyokimyasal Benzerlik: Çeşitli hayvanların plazma proteinleri arasındaki benzerlik derecelerinin antijen-antikor tekniği ile denenir. Her hayvan türünün kan içeriği kendine özgün bir protein bileşimine sahiptir.yakın akraba olan canlıların plazma proteinlerinin benzerliği daha fazadır. Bütün hayvanlarda hücrenin çalışması ve kalıtım faktörlerinin dölden döle geçmesi kromozomlar tarafından kontrol edilir.Bütün canlılarda kromozomların kimyasal yapısını DNA (deoksiribonükleik asit) meydana getirir.Akrabalık derecesi yakın olan canlıların DNA’larının baz dizilimlerinin benzerliği de artmaktadır. Hayvanlar, protein metabolizması sonucu oluşan azotlu artıkları üre, ürik asit ve amonyak şeklinde idrarla vicuttan uzaklaştırılabilir. Sınıflandırılmada canlıların idrarlarının bileşimi de dikkate alınır. Memeli canlılarının çoğunda sindirim için aynı veya benzer enzimler kullanılır.Bu olaylar canlıların ortak bir kökten geldiğinin kanıtlarından biri olarak gösterilmektedir. Bunlar başka yumurta tiplerinin benzerliği, organizmaların simetri şekilleri anatomik yapılarındaki benzerlikler gibi özellikler de doğal sınıflandırma yapılırken dikkate alınır. Bazı organizmalar mevcut bir sınıflandırma sistemine koymak oldukça zordur.Çünkü canlıların taşıdıkları özelliklerin bazısı bir gruba, bazısı da diğer bir gruba ait olabilir.Örneğin tek hücreli olan euglena; hareketli , kloroplast taşıyan ve kendi besinini yapabilen canlıdır. Euglena, hareketinden dolayı hayvan, kloroplast taşıdıgı ve kendi besinini kendisi yaptığından dolayı da bitki olarak kabul edilmiştir. Bakteriler: Heteretroflardır. Parazit yada saprofit beslenirler. Fotosentez ya da kemosentez yapan ototrof olanları vardır. Mavi-Yeşil algler:Fotosentez yaparlar.Kloroplastları yoktur. Fotosentez olayı stoplazma içine dağılmış klorofiller aracılığı ile olur. PROTİSTA a) Kamçılılar: Tek hücreli yapıya sahiptirler. Suda hareket ederler. Heterotrof ve otorotrof olanları vardır.Örnek:Euglena. b) Kök ayaklılar: Tek hücreli olan bu protozoalar besinlerini yalancı ayakları ile alır ve hareket eder.Örnek:Amip c) Sporlular: Sporla ürerler. parazityaşarlar. Örnek: Plazmadizmmalaria d) Silliler: Hücrenin çevresi hareket ve besin almayı saglayan sillerle çevrilidir. Örnek: Şapkalı mantar. FUNGİ Çok çekirdekli hücrelere sahip olup, sporlarla ürerler. Örnek: Şapkalı mantar. BİTKİLER Algler, çiçeksiz bitkiler ve çiçekli bitkiler olmak üzere üç grupta incelenir. Algler: İletim demetleri yoktur.İletim demetleri olmadığından su ve suda erimiş madensel tuzları tüm bitki tüzeyi ile alırlar.Doku farklılaşması yoktur. Çiçeksiz Bitkiler: Kendi arasında ikiye ayrılır. 1) Kara yosunları: İletim demetleri yoktur.Eşeyli ve eşeysiz üreme, döl değişimi şeklinde birbirini takip eder. Gametleri gametongium denen keselerde oluşturur.döllenme sonucu oluşan zigot bir süre ebeveyne bağlı kalır. 2) Eğrelti otları: İletim demetleri vardır.Gerçek kökleri yoktur. Eşeyli ve eşeysiz üreme döl değişimi şeklinde birbirini takip eder. Çiçekli Bitkiler:İyi gelişmiş iletim sistemleri vardır.Üreme organları çiçek şeklinde özelleşmiştir.Açık ve kapalı tohum olak üzere iki grupta incelenir. 1) Açık tohumlular: Her zaman yeşildirler.Soymuk demetlerinde kalburlu hücreler vardır, arkadaş hücreleri yoktur.Çiçekleri daima tek eşeylidir.Tohumları daima çok çeneklidir.Tohum taslakları yumurtalık dışına gelişir. 2) Kapalı tohumlular: En gelişmiş bitki sınıfıdır.Her zaman yeşil değildirler.Çiçekleri genelde erseliktir.Çiçeklerinde çanak ve taç yaprak farklılaşması vardır.Kapalı tohumların iki önemli sınıfı vardır. 1)Monokotiledonlar (bir çenekliler): Embriyolarında tek çenek yaprağı taşırlar.Otsu bitkilerdir.Tek yada çok yıllık olabilirler.İletim demetleri dağınık ve düzensiz sıralanmıştır.Korteksi incedir.Meristem kambiyumu yoktur.Yaprakları paralel damarlıdır. Saçak kök sistemi bulunur. 2) Dikotiledonlar(iki çenekliler): Embriyolarında iki çenek yaprağı taşırlar.Otsu ve odunsu bitkilerdir.Tek yada çok yıllık olabilirler. İletim demetleri dairesel çizilmiştir. Korteksi incedir.Enine kalınlaşmasını sağlayan kambiyum (meristem) bulunur.Yaprakları ağsı damarlıdır.Ana kök ve buna bağlı yarı kökler gelişmiştir. HAYVANLAR Çok hücreli heterotrof canlılarıdır.Aktif hareket ederler. Omurgalılar ve omurgasızlar olmak üzere iki gruba ayrılırlar. Omurgalılar(kordalılar) Omurgalılar ve ilkel kordalılar olmak üzere iki gruba ayrılırlar. A) Omurgalılar:Vücutlarının sırt tarafında bir sinir kordonu bulunur.İç iskelet eklemlidir. İskelete bağlı kaslar hareketi sağlar.Hepsinde beyin ve beyini koruyan kafatası vardır.Dolaşım sistemleri kapalıdır.Holozoik olarak beslenirler.Çoğu ayrı eşeylidir.Balıklar, kuşlar, kurbağalar, sürüngenler ve memeliler olmak üzere beş sınıfa ayrılırlar. 1) Balıklar: Vicutları pullarla örtülüdür.İç iskelet kemikten ya da kıkırdaktan oluşmuştur.Solungaç solunumu yaparlar.Kalpleri iki odacıklıdır.Kalplerinde sürekli kirli kan bulunur.Vücutlarında temiz kan dolaşır.Soğuk kanlı hayvanlardır.Boşaltım organları mezonefros tipi böbreklerdir.Boşaltım maddelerinin, üreme hücrelerinin ve sindirim artıklarının toplandığı kloak denilen yapıya sahiptirler.Örnek:köpek balığı, alabalık, sazan. 2) Kuşlar: Akciğer solunumu yaparlar.Kalpleri dört odacıklıdır.Kalbin sol karıncığından çıkan aort sağa kıvrılarak dallanır.Sıcakkanlıdırlar.Boşaltım organı metanefroz tipi böbreklerdir, vücut tüylerle kaplıdır.Tüysüz olan bölgeler pullarla örtülüdür.Kloaklıdırlar. Dişleri yoktur.Örnek:martı, bülbül, tavuk, ördek, deve kuşu. 3) Kurbağalar: Lavralar solungaç solunumu, erginleri akciğer ve deri solunumu yaparlar.Kalpleri üç odacıklıdır.Vücutlarında karışık kan dolaşır.Soğukkanlıdırlar.Azotlu dolaşım maddesi amonyaktır.Boşaltım organı mezonefroz tipi böceklerdir.Kloak lıdır.Derilerinin mukus salgısı olan mukus, deriyi kaygan tutar.Örnek:semender, kuyruklu kurbağa, su kurbağası. 4) Sürüngenler: Akciğer solunumu yaparlar.Kalpleri üç odacıklıdır (timsah hariç).Soğukkanlıdırlar.Erginlerinin boşaltım organları metanefroz tipi böbreklerdir.kloak lıdırlar.Dişilerde yumurta kanalının bir bölümü yumurta akı, diğer bölümü yumurta kabuğu yapacak şekilde özelleşmiştir.Vücut keratinle kaplı olduğundan kurudur. Örnek:yılan, timsah, kaplumbağa, kertenkele. 5) Memeliler: Akciğer solunumu yaparlar.Kalpleri dört odacıklıdır.Kalbin sol karıncığından çıkan aort sola kıvrılarak dallanır. Sıcakkanlı hayvanlardır.Kloak yoktur.Ürogenital sistem sindirim sisteminden ayrı olarakdışarıya açılır.Boşaltım organı metanesaz tipi böbreklerdir.Sinir sistemleri çok gelişmiştir.Örnek:fare, yarasa, kirpi, insan,balina.  B) İlkel kordalılar: İskeletleri kıkırdaktır.Yutak bölgesinde solungaç yarıkları, sırt tarafında da sırt ipliği bulunur.Bu grubun tek örneğiAmfiyoksüs tür. OMURGASIZLAR Süngerler, sölentereler, solucanlar, yumuşakçalar, eklembacaklılar ve derisi dikenliler olmak üzere gruplandırılmışlardır. a) Süngerler: Yapısını oluşturan hücreler arasında iş bölümü vardır.Hücresel farklılaşma görülmesine karşın hücrelerde doku oluşturmak için iş bölümü yoktur. b) Sölenterler: Bu şube üyeleri oyu bir kese gibi düzenlenmiş tek açıklı sindirim boşluklarına sahiptirler.Örnek:deniz anası, hidra, mercanlar. c) Yassı solucanlar: Sinir ve üreme sistemlerine sahiptirler.Örnek: tenya, planoria. d) Yuvarlak solucanlar: Bitki ve hayvanlarda parazit yaşarlar.Örnek: bağırsak solucanı. e) Böcekler: Vücutlarının tamamı epidermisin salgıladığı kitin ile kaplıdır.Trache solunumu yaparlar. CANLILARDA BESLENME İLİŞKİLERİ Besleme sistemine göre canlılar üreticiler(ototroflar) ve tüketiciler(heterotroflar) olmak üzere iki grupta incelenir.Üretici canlılar(ototroflar) kendi besinlerini yapar.Tüketiciler(heterotroflar) besinlerini kendileri yapamaz.Doğrudan veya dolaylı olarak ototrof canlılardan sağlar. OTOTROF BESLENME Kendi besinini kendisi sentezleyebilen organizmalara ototrof (üretici) canlı denir.Enerji sayesinde inorganik maddelerden organik madde sentezleyebilirler.Bitkiler, algler ve bazı bakteriler ototrof canlılardır.Kullanılan enerji kaynağına göre, ototrof organizmalar fotosentez yapanlar ve kemosentez yapanlar olmak üzere iki bölümde incelenir.fotosentez yapan canlıların klorofili vardır.bunlar klorofilleri sayesinde güneş ışınlarını soğurarak organik besinlerde kimyasal bağ enerjisine çevirirler. Kemosentez yapan organizmalar genellikle bakterilerdir.Bunlar gerekli enerjiyi amonyak, hidrojen, sülfür gibi belirli inorganik maddeleri oksitleyerek sağlar. Nitrit bakterileri amonyağı nitrite, nitrat bakterileri nitriti, nitrata dönüştürür.bu sırada açığa çıkan enerji bakteriler tarafından ATP sentezinde kullanılır.Bu şekilde gerçekleşen ATP sentezine kemosentetik fosforilasyon denir.Bu ATP inorganik maddelerden organik maddelerin sentezi sırasında kullanılır. Nitrit ve nitrat bakterileri azot döngüsünde rol oynar.Amonyağı, yeşil bitkilerin kolayca alıp kullanabileceği nitrat bileşiklerine dönüştürür.Amonyağın nitrata dönüştürülmesine nitrifikasyon denir. HETEROTROF BESLENME İnorganik maddelerden organik besin yapamayan, organik besinleri hazır olarak alan canlıların beslenme biçimine heterotrof beslenme denir.Böyle beslenen canlılara dış beslek veya tüketiciler adı verilir. Heterotrof canlıların beslenme ve yaşama şekilleri holozoik, simbiyoz, saprofit olmak üzere üç grupta incelenir. a) Holozoik Beslenme:Bu şekilde beslene canlılar besinlerini katı parçalar halinde alarak sindirirler.bunların sindirim sistemleri, avlarını yakalayabilmek için duyu organları, sinir sistemleri ve kas yapıları gelişmiştir.Otçul hayvanlar, etçil hayvanlar ve hem otçul hem etçil hayvanlar bu grupta incelenir. b) Birlikte Yaşama:İki veya daha fazla türün bir arada kurdukları yaşam şekline simbiyosim denir.Bu canlılardan biri konak diğeri konuk adını alır.Birlikte yaşama yararlı ve zararlı birliktelikten oluşur.Yararlı birliklerin beslenme biçimi kommensalizm ve mutualizm dir.Zararlı birlikteliklerin ise parazitizmdir. 1) Mutualizm:Bir arada yaşayan canlıların karşılıklı olarak yarar sağlaması şeklindeki beslenme biçimidir.Bu beslenme biçimine en tipik örnek likenlerdir.Liken, mantar ve yeşil algler in birlikte oluşturdugu bir yaşama birliğidir. 2) Kommensalizm:Bir canlı üzerinde yaşadığı canlıya zarar vermeden bu canlıdan yararlanıyorsa bu yaşama şekline kommensalizm denir.Örnek olarak yengeçlerin solungaçlarına tutunarak yaşayan bazı yassı kurtlar. 3) Parazitizm:Bir arada yaşayan iki canlıdan birinin digerini sömürerek ona zarar vermesi şeklinde olan beslenme ilişkisidir.Bazı bakterilerin sindirim enzimleri yoktur.Önemli monomerleri diğer canlı organizmalardan sağlarlar.Böyle bakterilere parazit bakteriler denir. Hastalık yapan parazit bakterilere de patojen bakteriler denir. Bir canlı diğer bir canlının deri ve solungaçlarına yapışarak yaşıyorsa bu canlılara ektoparazit (dış parazit) denir.Koku ve diğer duyu organları iyi gelişmiştir.Bit, pire, tahtakurusu, uyuz böceği, sivrisinek bir ekoparazittir. Bir canlı diğer bir canlının iç kısmında yaşıyorsa endoparazit denir. Bu parazitler hücre içerisinde yaşıyorsa bunlara hücre parazitleri denir.Örneğin sıtmaya neden olan parazit plazmadium al yuvar hücresinde yaşar.Endoparazitler çok sayıda gamet oluştururlar. Bundan dolayı üreme sistemleri çok gelişmiştir Bitki üzerinde yaşayan ve konak organizmanın odun borularından su ve madensel tuzlar alarak fotosentez yapabilen parazitlere yarı parazit denir.Üzerinde yaşadığı konak bitkinin soymuk borularından hazır organik maddeler alarak yaşayan parazit bitkilere tam parazit denir. c) Saprofit (çürükçül) beslenme:Biramayası, küf mantarı ve bakterilerin çoğu besinlerini katı olarak alamazlar.Bunlar gerekli olan organik besin maddelerini kokuşmaya yüz tutmuş bitki ve hayvan ölüleri üzerinden canlı artık ve salgılarından sağlarlar.Saprofitler öncelikle dışarı salgıladıkları enzimle besinlerini sindirir.Daha sonra küçük molekülleri emerler.Bu şekilde heterotrof beslenmeye saprofit beslenme denir.Saprofit bakterilerinin bir kısmı çürümede, bir kısmı ise mayalanmada rol oynar. HEM OTOTROF HEM HETEROTROF BESLENME Sinek kapan ve ibrik otu gibi böcek yiyen bitkiler fotosentezle organik madde yapar.Ayrıca yakaladıkları böcekleri salgıladıkları enzimlerle hücre dışında sindirirler.Daha sonra bu besinleri emerler. DOGADA MADDE DEVRİ Organik artıklar ve cesetler ayrıştırılarak inorganik maddelere dönüştürülür.Bu yollarla serbest kalan inorganik maddeler yeniden fotosentez ve kemosentez de kullanılır hale getirilir.Fotosentez ve kemosentez olaylarıyla inorganik maddeler yeniden organik bileşiklere dönüştürülür. Bu dönüşümlere doğada madde döngüsü denir. Karbon devri: Bir dönümlük şeker kamışı her yıl atmosfer tabakasından 20 ton kadar karbondioksit kullanır.Bitki ve hayvan enerji elde etmek için organik maddeleri yıkar.Karbondioksit ve su ya kadar parçalanır.Hücre solunumu denen bu olay sonucunda oluşan karbondioksit tekrar atmosfer tabakasına verilir. Azot devri: Bitkiler aminoasit ve protein sentezi yapabilmek için gerekli olan azotu, nitrat tuzları olarak topraktan alırlar.Bitkiler tarafından alınan nitratlar bitki hücreleri tarafından aminoasit ve protein sentezinde kullanılır. Ölmüş bitki ve hayvanla, canlıların artıkları ve salgılarındaki proteinli maddeler saprofitler tarafından amonyağa dönüştürülür.Bu olaya pütrüfikasyon (kokuşma) denir. Amonyak nitrit bakterileri tarafından nitrite; nitritte nitrat bakterileri tarafından nitrata dönüştürülür.Bu olaya nitrifikasyon denir. Bitki tarafından kullanılmayan nitratlar azot bozan bakteriler ile parçalanır.Bu parçalanmadan açığa çıkan azot tekrar havaya karışır.Bu olaya denitrifikasyon denir. Havanın azotu toprağa iki şekilde geçer: 1)Yıldırım çakması sonucu azot oksijenle birleşir.Daha sonra su ile etkileşince nitrik asit meydana gelir.Yağmurla toprağa inen nitrik asit toprakta bulunan sodyum ve potasyum bileşikleri ile etkileşerek nitrat tuzlarını oluşturur. 2)Toprakta, havanın serbest azotunu bağlayabilen ve kullanabilen azot bakterileri vardır.baklagillerin köklerindeki urlarda yaşayan ribozom da havanın serbest azotunu bağlayabilir ve azotlu madde yapar.Bu bakterilerin ölüleri topraktaki azotlu organik artıkları oluşturur.

http://www.biyologlar.com/canlilarin-siniflandirilmasi-nedirnasil-yapilir

PCR Nedir? (Polimeraze Chain Reaction )

Yukarıdaki izleyeceğiniz animasyon PCR Polimeraz Chain Reaction ) ,türkçe adlansırılması ile Dna kopyalanması ve çoğaltılması olayıdır.Bu mekanizma 1985 yılında Celera genomics calışanı Carry Mullis tarafından tanımlanmış ve günümüze kadar birçok defa geliştirilerek kullanılmaya devam edilmiştir. Temel olarak mekanizma yüksek sıcaklıkta yapısı bozulmayan bir DNA polimeraz kullanılarak ,bir Thermo Cycler (Isı Düzenleyici) yardımıyla Dna replikasyonunu in vitro ortamda tekrarlanması sonucu dna nın çoğaltılmasını sağlamaktır.Bu mekanizma günümüzde moleküler biyoloji ve genetik labratuarlarının sıkça kullandığı bir yöntemdir. Genetik tanı, gen klonlaması , Babalık tayini ,Nokta mutasyonları analizi ,prenatal tanı da ve birçok diğer uygulama alanı olması nedeniyle çok önemli bir keşif olarak biyoloji biliminde yeni ufuklar açmıştır. Pcr reaksiyonu ile ilgili geniş bir akademik bilgiyi www.genetiklab.com/yontemler.htm adresinden alabilirsiniz. PCR (POLİMERAZ ZİNCİR REAKSİYONU) Laboratuvar ortamında spesifik DNA dizilerinin ;primer denilen sentetik oligonükleotid diziler yardımıyla çoğaltılması işlemidir Standart bir PCR Protokolü yoktur. Bileşenler çoğaltılacak DNA bölgesinin özelliklerine göre değişir. KLASİK PCR: Hedef DNA dizisinin her iki ucuna özgü spesifik primerler kullanılarak termostabil DNA polimeraz yardımıyla uygulanan PCR çeşididir.Daha sonraki analizler için döngü sayısına göre üstel oranda artan düzeyde ürün elde edilir.Tipik bir PCR üç temel basamakta gerçekleşir: *Denatürasyon:İlk aşamada DNA molekülünün çift zincirli yapısı yüksek ısı yardımıyla birbirinden ayrılır(denatürasyon) .Çoğunlukla 94°C- 97°C arasında 15-60 sn süresince uygulanır.(İlk denatürasyon tek saykıl olarak 15 dakikaya kadar uygulanır) *Annealing(Bağlanma):Denatürasyonu takiben daha düşük ısılarda oligonükleotid primerler, ayrılmış olan tek zincirli DNA üzerinde kendi eşlenikleri olan bölgelere bağlanırlar.Bu olay çoğunlukla 47°C- 60°C arasında 30-60 sn ‘de gerçekleşir.(G/C oranı yüksek olan bölgelerde bağlanma ısısı 68°C’ye kadar arttırılabilir) *Elongasyon(uzama):Son aşamada ısı 72°C’ye kadar arttırılarak DNA polimeraz enziminin tamamlayıcı DNA zincirini uzatması sağlanır.Elongasyon basamağının süresi kullanılan polimerazın cinsine ve amplifiye edilecek DNA‘nın uzunluğuna göre 30sn ile 3 dakika arasında değişir. Termal sayklırın bu üç basamağı her tekrarında DNA miktarı teorik olarak iki katına çıkar.Oluşan ürün; ilk koyulan DNA miktarı ve saykıl sayısına bağlıdır. 25-40 saykıl uygulanır. Klasik PCR normalde sayısal (quantitatif) bir değerlendirme ölçüsü değildir fakat quantitatife dönüştürülür.Jel elektroforez de ürünler karşılaştırılarak veya most probable number (MPN) yardımıyla sonuca ulaşılır.MNP yönteminde ardarda seyreltmeler ve MNP hesaplayıcısı kullanılır. Tercih edilmeyen bir yöntemdir.Bir diğer yöntem de competitive (karşılaştırmalı) PCR’dir. Karşılaştırmada delesyon veya insersiyon taşıyan örneklerle (farklı uzunlukta bant oluştururlar) elde edilen ürün jel elektroforezde karşılaştırılır. MULTİPLEX PCR: Klasik veya Real-time PCR’nin modifikasyonuyla iki veya daha fazla farklı PCR amplifikasyonunun aynı reaksiyonda gercekleştirilmesine dayanır.Klasik PCR ile aynı basamaklarda gerçekleşir fakat her bir reaksiyonda çoklu primer setleri kullanılır.Multiplex PCR ile daha az zamanda daha çok hedef bölge amplifikasyonu gerçekleştirildiğinden kullanışlı bir inceleme yöntemidir.Fakat önemli derecede optimizasyon gerektirir.Değişik hedeflerin aynı reaksiyon şartlarında amplifikasyonunu sağlamak için kullanılacak primerlerin dikkatli seçilmesi ,annealing ısılarının birbirine uygun olması, birbirleriyle dimerizasyona girmemeleri gibi bazı önemli şartları gerçekleştirilmesi gereklidir.Farklı primer çiftlerinin en iyi konsantrasyonlarının seçimi ve non spesifik amplifikasyonların önlenmesi birçok deneme gerektirir. Reverse Transcription (RT)-PCR: mRNA ve viral RNA gibi RNA hedef dizilerinin amplifikasyonu amacıyla kullanılır.Bu PCR çeşidinde bir reverse transkriptaz enzimi ve DNA primeri kullanılır.DNA primeri genellikle dT oligonükleotidi içerir ( sadece hexamer yapıda thymidine nükleotidi) veya bir spesifik primerdir.dT messenger RNA’ nın poli A kuyruğuna bağlanır ( 5’ ucunda). dT hexameri tüm RNA çeşitlerinde bulunmakla birlikte dezavantajı 25°C de hibridize olması ve ortamda RNase inhibitörü bulunmaz ise çabuk bozunmasıdır. Reverse transcription ve PCR amplifikasyonu bir veya iki aşamada uygulanabilir.Ayrı ayrı iki aşama halinde uygulanan RT-PCR daha hassas ; tek aşamalı ise daha az kontaminasyon riski taşır ( çünkü tüp transkripsiyondan sonra açılmamaktadır).Hangi yöntemin kullanılacağının belirlenmesi bizim hassasiyetmi yoksa kontaminasyondan kaçınmakmı istediğimize bağlıdır.RT-PCR için birkaç çeşit reverse transcriptase enzimi vardır.Bir veya iki aşamalı reaksiyon seçimi ve daha sonraki aplikasyonlara göre enzim karekteristiği seçilir.Bu seçimde RNase aktivitesinin olup olmaması , iyon gerekliliği,dUTP ekleyebilme yeteneği ve optimum çalışma ısısı gibi etmenlerde önemlidir. NESTED PCR: Komplex mikrobiyal popülasyonlara ait hedef dizilerin spesifik bir şekilde amplifikasyonu klasik PCR yöntemleriyle bazen mümkün olmayabilir.Eğer amplifikasyonunu yapmaya çalıştığımız fragment uzunluğunda non-spesifik fragment(ler) amplifiye olmuş ise bu bizi yanlış sonuca götürebilir.Bundan kaçınmak için Nested PCR yöntemleri uygulanır.Bu metod ; klasik PCR’ye farklı primer takımlarıyla ikinci bir amplifikasyon uygulamaktan ibarettir.İlk amplifikasyonda elde edilen ürün ikinci PCR için kalıp olarak kullanılır.Kullanılan ikinci primer takımı diziye özgüdür. KULLANILAN ENZİMLER: Termofilik bir bakteri olan Thermus aquaticus’ dan elde edilen Taq DNA polymeraz ve modifikasyonları neredeyse tüm DNA amplifikasyonlarında kullanılır.Diğer DNA polimerazlar da birbirlerinden nükleotid ekleme hızları, yarılanma ömürleri, ısı tolerans farklılıkları, eksonükleaz özelliklerinin olup olmaması gibi yönleriyle ayrılırlar.Hot-start DNA polimeraz enzimleri non-spesifik ürün oluşumunu engellemesi, yüksek ısılara dayanabilmesi, düşük annealing ısılarında da çalışabilmesi gibi nedenlerle tercih edilmektedir. Enzim tipinin seçimini yapılacak amplifikasyonun koşulları belirler.Bir tek enzim kullanıldığı gibi kombinasyon da oluşturulabilir. Bio A. İsmet ÇAPHAN

http://www.biyologlar.com/pcr-nedir-polimeraze-chain-reaction-

BİTKİLERDE AZOT KAPSAMAYAN ORGANİK BİLEŞİKLER

1)Karbonhidratlar 2)Lipitler Bunlar da karbonhidratlar,bitkide kuru maddenin yaklaşık %50-80’ini oluşturur.Kimi karbonhidratlar yaygın bulunmalarına rağmen,kimileri daha özeldir(Zarda olanlar).Yani türe özel,zar ve sitoplazmaya özel veya serbest ve depo maddesi şeklinde faaliyet göstermekte olan özel karbonhidratlar vardır.Karbonhidratların en ilginç yönü moleküllerin hızlı ve sürekli olarak birinin diğerine dönüşmesidir.Fizyolojik olarak aktif hücrelerde görülen bu dönüşüm ve parçalanma sonucu açığa çıkan enerji bitki hücrelerinde çeşitli sentez olaylarında kullanılır.Bitkilerde karbonhidrat dönüşümünü çok sayıda faktör etkiler: a) Sıcaklık: Düşük sıcaklık bitki hücrelerinde nişastanın şekere dönüşmesi için uygun bir ortamdır. Örneğin tüm yıl yeşil kalan bitkilerin yapraklarında soğuk aylarda çözünebilir karbonhidratlar birikirken,sıcak aylarda ise nişasta biriktirmektedir.Çok düşük sıcaklıklarda (donma noktasının biraz üstünde -2oC) saklanan patates yumrularında nişasta miktarı azalırken şeker miktarı (asal olarak sakaroz) artmaktadır.İşte kışın pazarlanan patateste görülen tatlı lezzetin nedeni bu açıklamadır.Yapılan araştırmaya göre patates yumrularında nişastanın şekere dönüşümü esasen fosforilizasyon sonucu ortaya çıkar.Düşük sıcaklıklarda saklanan patates yumrularında glikoz-1-fosfat yüksek iken normal şartlarda saklananlarda yok denecek kadar azdır.Bunlarda ise glikoz-6-fosfat fruktoz-6-fosfat bulunmaktadır.Nişastanın sentezi ve hidrolizi üzerine sıcaklığın etkisi bitki türüne göre önemli değişiklik gösterir.Olgunlaşan muz meyvelerinde nişastanın hidrolizi 21-26 oC’de hızlanırken 10 oC’de pratik olarak durmaktadır. b) Su: Solma noktasında su kapsayan bitki yapraklarında hemen hemen nişastanın tamamı şekere dönüşür. Genellikle bitkilerde suyun yeterli düzeyde bulunması ise nişasta sentezini olumlu yönde etkiler.O nedenle büyüme ve gelişme için bütün bitkilerde su muhteviyatı daima solma nokatsının üzerinde olmalıdır. c) Hidrojen iyonu konsantrasyonu (pH):Ortamın pH’sı enzimlerin faaliyetleri üzerine etkili olmak suretiyle karbonhidratların dönüşümlerini dolaylı olarak etkiler.Kuşkusuz ortamın pH’sı sadece enzimatik tepkimeler üzerinde değil,aynı zamanda da tepkimenin yönü üzerinde de etkili olmaktadır.Geri dönüşü olan karbonhidrat dönüşüm reaksiyonları daha çok stoma hücrelerinde görülmektedir. d) Şeker konsantrasyonu:Bitki hücrelerinde şeker konsantrasyonunun yüksek olması kural olarak nişasta sentezinin fazla olmasını,az olmasını da nişasta sentezinin yavaş olması sağlar.Fotosentezin yüksek düzeyde olduğu ve dolayısıyla bitkide fazla miktarda şekerin oluştuğu şartlarda artmaktadır.karşıt durumda azalmaktadır.Karanlık ortamda bırakılan bitkilerde nişasta miktarı süratle azalır.Çünkü fotosentez yapamadığı için su alıp nişastayı glikoza çevirip harcar.

http://www.biyologlar.com/bitkilerde-azot-kapsamayan-organik-bilesikler

Virüslerin Önemi ve İnsan Sağlığı ile İlişkisi

Virüslerin hemen her canlı çeşidinde yaşayan ve hastalık yapan çeşitleri vardır. Virüslerin yaptıkları hastalıklara virütik ya da viral hastalık denir. Virütik hastalıklar canlının sakatlanmasına ya da ölmesine neden olabilir. Virütik hastalıklar çok bulaşıcıdır. Çünkü virüsler bir canlıdan başka bir canlıya kolaylıkla taşınabilir. Bitki virüsleri yaprak ve köklerin birbirlerine dokunması, tohum, aşı ve böceklerle bir bitkiden diğerine kolaylıkla taşınabilir. Hayvan virüsleri ise öpüşme, konuşma, öksürme, cinsel temas, kan, böcek ve hayvanlarla başka bir canlıya taşınabilir. Virüslerin çok küçük olmaları ve sık sık mutasyona uğrayarak değişmeleri, virütik hastalıklarla mücadeleyi güçleştirir. Örneğin, uzun çabalar sonucunda oluşturulan grip aşısı ertesi yıl etkinliğini kaybeder. Çünkü her aşı belli bir mikroba özgüdür. Mutasyonlarla grip virüsü değiştiğinden daha önceki grip virüsüne karşı oluşturulan aşının etkisi kalmaz. Bu durumda değişen yeni grip virüsüne karşı yeni bir aşının geliştirilmesi gereklidir. Virüsler hücre içi parazit olduklarından antibiyotiklerden etkilenmez. Genellikle antibiyotikler, bakterilerin enzimlerini bloke edip çoğalmalarını engelleyerek etkili olurlar. Virüslerin enzim sistemleri olmadığından antibiyotikler fayda etmez. Bu nedenle grip gibi virütik hastalıklarda antibiyotik kullanılması gereksizdir. Grip hastalarının iyi beslenmeleri, C vitamini içeren besinler almaları ve dinlenmeleri gerekir. Bazı virüsler ise yararlı işlerde kullanılabilir: Örneğin böceklerde hastalık yapan virüsler, bitkilere zarar veren böceklerin ortadan kaldırılmasında kullanılır. Böylece tarımda büyük üretim kayıplarına neden olan böcekleri yok etmek için zehirli ilaçlar yerine bazı virüsler, biyolojik mücadele aracı olarak kullanılırlar.

http://www.biyologlar.com/viruslerin-onemi-ve-insan-sagligi-ile-iliskisi

Zehirli Bitkiler

Tarihin ilk çağlarından günümüze kadar insanlar bitkilerden besinlerini sağlamış ve şifa aramışlardır ve beslenmelerinin yanında önemli hastalıklarını da şifalı bitkilerle tedavi edebilmişlerdir. Ancak her bitkinin düşüldüğü kadar yararlı olmadığı ya da yararlı etkilerinin yanında zararlı olabilen başka etkilerinin de olduğu görülmüştür. Günümüzde de devam eden her ottan şifa arama geleneği özellikle kırsal yörelerde birçok kaza zehirlenmelerinin ortaya çıkmasına neden olmaktadır. Merak sonucu özellikle çocukların bilmedikleri bir bitkinin yemiş, yaprak ya da başka bir kısmının tadına bakmaları ya da zararsız başka bitkilere benzetip toksik bitkiyi yemeleri sonucu sık sık zehirlenmeler olmaktadır. Birçok bitki çok toksik olmalarına karşın kontrollü kullanıldıklarında tedavide yararlı olabilmektedir. Örneğin Digitalis (yüksük otu) afyon (haşhaş), belladon alkaloidleri, veratrum alkaloidleri, vinca alkaloidleri, ipeka vb, gibi birçok bitkisel toksik Madde günümüzde doğal ya da yarı sentetik türevler şeklinde tedavide kullanılmaktadırlar. Ancak bilinçsiz bir şekilde supraterapötik (aşırı) dozlarda uygulandıklarında çok ağır zehirlenme tablolarının ortaya çıkmasına yol açabilirler. Rönesans döneminin ünlü Alman hekimlerinden Paracelsus (l493-1541)’un ‘yalnız miktar zehiri belirler’ (Dosis sola facit venonum) cümlesi bitkisel maddeler için de geçerlidir. Zehirli mantarlar başta olmak üzere diğer toksik bitkilerle akut zehirlenmelerin şiddetini yenilen miktar belirlenmektedir. Bitkilerle zehirlenmeler daha çok kabuklu yemiş ya da meyve kısmıyla olmaktadır. Örneğin Akdiken (Rhamni cathartica) yılan yastığı (Dracunculus vulgaris), güzel avrat otu (Atropa belladonna), hanımeli (Lonicera japonica), yaban yasemini (Solanum dulcamara), taflan (Prunus laurocerasus), ardıç (Juniperus sp.) ökse otu (Viscum album), çoban püskülü (İlex aquifoİiıım) porsuk ağacı (Taxus bacata), sarmaşık (Parthenocissus sp.), it üzümü (Solanum, nigrum) vb, gibi bitkiler kabuksuz ya da kabuklu meyvelerinde bulunan aktif toksik kısımlarıyla zehirlenmelere neden olmaktadırlar. Buna karşılık, birçok bitki diğer kısımlarıyla ya da tüm bitki olarak toksiktirler. Dikenleri ya da keskin kenarlı yapraklarıyla mekanik olarak. özellikle ciltte irritasyon şeklinde toksik etkilere yol açmaktadırlar. Günlük gıda olarak kullandığımız bazı sebzelerin az ya da çok toksik olabildiklerini unutmamak gerekir. Örneğin patatesin toprak üstündeki yeşil kısımları orta şiddette sindirim bozukluklarına neden olmaktadır. Buna karşın,birçok taze sebzenin kurutulmasıyla içerdikleri toksik maddeler aktivitesini kaybetmektedir. Bazı bitkiler aynı cinsten olmalarına karşın toksik etkileri büyük ölçüde değişebilmektedir. Örneğin Aconitum napellus tehlikeli bitkiler içinde en zehirli olanıdır. Buna karşın aynı cinsten Aconitum septentrionale Eskimolar tarafından sebze olarak yenmelerine karşın hiçbir zehirlenmeye neden olmamaktadır. Aynı şekilde Digitalis purpurea güçlü kardiyotoksik etkisi olmasına karşı aynı cinsten olan Digitalis jaune aynı oranda toksik değildir. Bu nedenle, gerek tedavide gerekse gıda olarak kullanılmalarında bitki cins ve türlerinin tanınması gerekir. Bitkilerin içerdikleri toksik maddelerin kaynağı çeşitlidir. Bazıları alkaloid (Protein), bazıları da glikozid ya da heterosid (Saponinli steroidik yapılı siyanojenli vb.) içerebildikleri gibi birçoğunda olduğu gibi karmaşık kompleks yapılı bir toksik madde de içerebilmektedirler. Zehirli bitkilerde bulunan bu toksik maddeler insan ve hayvanlarda iç organlarda meydana getirdikleri lezyonlar sonucu metabolizmayı bozabildikleri gibi deri ve mukozalarda irritasyonlar yaparak hafif ya da ağır bazı zehirlenme belirtilerinin ortaya çıkmasına neden olmaktadırlar. Ancak, farklı hayvan türlerinin ve insanın zehirli bitkilere verdikleri reaksiyon her zaman aynı şiddette ve özellikte olmayabilir. Örneğin. salyangozlar belladonla beslendikleri halde zehirlenmezler, halbuki bu gibi hayvanları yiyen insan ya da memeli hayvanlarda belladon zehirlenme belirtileri görülebilmektedir. 1. ZEHİRLİ BİTKİLERİN TOKSİK UNSURLARI Bitkisel zehirlerin toksik bileşenleri kimyasal yapılan yönünden önemli farklılıklar gösterir. Toksik unsurların çoğu organik karakterdedir. Kimi bitkiler ise, bazı mineral maddeleri, bünyelerinde toksik dozlarda akümüle edebilirler.Alkaloitler ve protidler azotlu organik; glikozitler, tanenler, laktonlar ve benzerleri azotsuz organik zehirlerdir. Selenyum, nitrat-nitrit gibi mineral zehirler ile kimyasal yapılarından çok, etki mekanizmaları daha iyi bilinen östrojenik etkili özdekler, antiVitaminik faktörler ve fotodinamik ajanlar zehirli bitkilerin başlıca toksik unsurlardır. 1.1. Alkaloidler Alkaloitler güçlü farmakolojik etki ve toksisiteye sahip olan, moleküler yapılarında azot bulunan alkali karakterde bitkisel kökenli özdeklerdir. Azot, çoğunlukla heterosiklik bir halkada ya da lateral zincirde bulunur. Genellikle katı ve renksizdirler. Baz halde iken suda çözünmezler; asitlerle oluşturdukları tuzlar suda çözünür. Alkaloitlerin tannat ve iyodür tuzları suda çözünmez. Bu özellik nedeniyle, alkaloit içeren bitkilerle zehirlenmelerde tanenli bileşikler ve iyodürler, sindirim kanalından alkoloit emilimini engellemek için kimyasal antidot olarak kullanılırlar. Alkaloitlerin etki mekanizmaları çok farklıdır Çoğu sentral sinir sistemi (opium alkaloitleri) ve otonom sinir sistemi (antikolinerjik solanase alkaloit ve alfa adrenolitik ergot alkaloitleri) aracılığıyla etkir. Kolşisin ve benzerleri emeto katartik; pirolizidin alkaloitleri de hepatotoksik olarak etkirler. 1.2. Glikozitler (Heterositler) Hidroliz (enzimatik ya da asit ortamda) sonucu bir ya da birkaç molekül şeker (glikoz) ile karbonhidrat olmayan ve aglikoz (genin) olarak adlandırılan ve toksik etkiden sorumlu olan bir madde veren özdeklerdir. Glikoz ve aglikoz arasındaki bağın karakterine göre 0 - glikozitler (Oksijen atomu eterik bağ) ve S - glikozitler (kükürt atomu) olmak üzere iki gruba ayrılırlar. 1.2.1. O-Glikozitler 1.2.1.1. Siyanogenetik Glikozitler Aglikozları, çoğunlukla nitrilli bir alkoldür. Enzimatik hidroliz sonucu şeker molekülleri, siyanhidrik asit (HCN) ve bir keton ya da aromatik aldehit oluşur. Toksiditeden sorumlu olan hidroliz ürünü siyanhidrik asittir. Farklı ailelere ait çoğu yem bitkisi ve yabani türlerde bulunan siyanogenetik glikozitler özellikle ruminantlarda selüler respirasyondan sorumlu enzim sistemini inhibe ederek, akut formda ve yüksek mortaliteyle seyreden zehirlenmeye neden olurlar. Hidroliz, aynı bitkide bulunan özel enzimler ( lineaceae; keten tohumu, emulsin; acı badem) tarafından katalize edildiği gibi, ruminantlarda retikülo-rumen mikroflorası tarafından salgılanan enzimlerle de gerçekleştirilebilir. Vejetasyonun ilk dönemlerinde yüksek olan glikozit düzeyi vejetasyon ilerledikçe azalabilmektedir. Kuraklık, donma ve çiğnenme gibi bitkilerin normal büyüme hızını bozan faktörler HCN düzeyinde artışa neden olur. Silaj glikozitlerin hidrolizini hızlandırır. Böylelikle serbest hale geçen HCN silajın havalandırılmasıyla giderilebilir. Ancak, bu işlem sırasında çalışanların kendileri için önlem almaları gerekir. - Bitki hormonu herbisitler uygulandıkları yörelerde yetişen bitkilerde siyanogenetik glikozit düzeyinin artışına (fitohormonların dolaylı toksisitesi) neden olurlar. HCN düzeyinde fosfatlı gübreler azalmaya azotlu gübreler ve bitki parazitleri ise artışa neden olur. Siyanogenetik glikozit taşıyan bitkilerin toksisitesi değinilen koşullara göre değişkenlik gösteren HCN düzeyi ve glikozit yanında tüketilen bitki miktarı ve tüketim süreci, HCN’in sindirim kanalında liberasyon hızı ile emilim ve dokularda detoksikasyon düzeyine bağımlıdır. Bu nedenle, toksik dozu belirlemek zordur. Siyanogenetik glikozitlere karşı en duyarlı hayvanlar ruminantlardır. Koyun ve keçi muhtemelen enzimatik farklılık nedeniyle sığıra oranla daha dayanıklıdırlar. Tek midelilerde, midenin asit ortamında glikozidi hidrolize eden enzim, kısmen de olsa yıkımlanabilir. HCN, karaciğerde spesifik bir enzim (rodanaz) tarafından tiyosiyanata dönüştürülerek metabolize edilir. Ancak, özellikle sığırda başka metabolik olayların olduğu da düşünülmektedir. Serbest HCN’in ruminantlarda letal dozu 2-2.3 mg/kg dolayındadır. Bu miktar HCN’i glikozit formunda (4-4.5 mg/kg) kısa sürede tüketen ruminantlarda ağır zehirlenme tablosu şekillenir. Otlakta bir hayvan saatte 4 mg/kg düzeyde glikozide saatlerce tolore edebilir. Koyun, günde (gün boyu) 15-20 mg/kg HCN´i detoksike edebilir. Genelde 100 gramında 20 mg (200 ppm) HCN içeren bitkiler, hayvanlarda zehirlenmeye neden olur. Sindirim ya da solunum yoluyla emilen HCN ve siyanürler, selüler respirasyon (hücre solunumu) enzim sistemini (sitokrom a3) bloke ederek histotoksik anoksiye neden olurlar. 1.2.1.2. Steroidik Glikozitler kalp yetmezliğinin etkin ilaçları olan ve çok küçük dozlarda kardiyotonik olarak kullanılan kalp glikozitlerini (dijitalikler) kapsayan bu grup moleküllerin aglikozu, asteroit (siklopentano-perhidrofenantren) halka sistemi ve bunun 17 no’lu karbonuna bağlanan beşgen ya da altıgen bir lakton halkasından ibarettir. Majör glikozit kaynağı olan bitkilerden yüksük otu türleri (Digitalis cariensis, D. davisiana, D. ferruginea D. grandiflora, D. lanata, D. trojana D. viridiflora) ile ada soğanı (Urginea maritima) yanında glikozit kaynağı olarak kullanılmayan, ancak toksik unsur olarak kardiyotonik etkili glikozit içeren inci çiçeği (Convallaria majalis) adonis türleri (A. aestivalis -keklikgözü, A. flammea - kandamlası), zakkum (Nerium oleander) ve kimi Helleborus türleri (Bohça otu, H. orientalis, H. vesicarius) de Anadolu ve Trakya’da yaygın olarak yetişmektedir. Bununla birlikte anılan bu bitkilerle evcil hayvanlarda zehirlenme insidensi azdır.Kimi kaynaklarda saponinler (saponositler) de bu grupta gösterilmektedir. Saponinlerin aglikozu (sapogenin) steroidik ya da triterpenik (oleanan çekirdekli) yapıdadır. Sistemik toksiditeleri az olan saponinler yem bitkilerinde de yaygın olarak bulunurlar. Yaklaşık 80 aileye ait 500’ü aşkın bitki türünden Saponin izole edilmiştir. Ruminantlarda meteorizasyonun temel nedenleri arasındadırlar; kanatlılarda ise, gelişme ve yumurta verimini inhibe ederler. Antrasenik glikozitlerin aglikozları ise, antrasen halkalı bir polifenoldür. Işkın, kara akçaağaç gibi bitkilerde bulunan bu glikozitler yüksek dozda şiddetli purgasyona neden olurlar. 1.2.2. S - Glikozitler (Glusinolatlar) Özellikle Cruciferae (turpgiller) ailesine ait bitkilerin yaprak gövde kök ve özellikle tohumlarında bulunan ve genellikle uçucu olan, S - glikozitler, enzimatik (myrosinase) hidroliz sonucu glikoz ve organik aglikoz oluşturur. Organik aglikoz bir izotiyosiyanat (senevol) bir tiyosiyanat ya da bir organik nitril ve kükürttür. Glusinolatların hidroliz ürünlerinden izotiyosiyanatlar, deri ve mukozalarda irkiltici etkiye (gastro-intestinal, respiratuvar ve renal lejyonlar) sahiptirler. Ayrıca, guatrojenik (proguatrin) etkileriyle tiroid bozukluğuna neden olurlar. Tiyosiyanatlar ise, tiroid bezinde iyot düzeyini düşürürler; böylelikle iyot uygulamasıyla sağaltılabilen bozuklukları oluştururlar. Brassica türü bitkilerde (kolza, lahana, ot lahanası, şalgam) bulunan 5-glikozitler hidrolizle stabil olmayan izotiyosiyanat’a, bu da kristalizasyonla goitrine dönüşür. S-glikozitlerin hidroliz ürünü izotiyosiyanatlar irritan ve antitroit; goitrin ise guatrojen etkilidir. Bu nedenle s-glikozit içeren bitkilerle zehirlenme klinik yönden farklı seyreder 1. Akut zehirlenme izotiyosiyanatların irritan etkisinden kaynaklanan bu sendrom sindirim, solunum bozuklukları ile renal lezyonlar ve nefritle karakterizedir (hardal, turp). 2. Tiroit bozuklukları Bitkilerin yeşil kısımlarında bulunan glusinolatların hidroliz ürünü inorganik izotiyosiyanatlar, dönüşümlü kompetisyonla, tiroitte iyot akümülasyonunu önleyerek iyot yönünden fakir rasyonla beslenen- hayvanlarda guatr şekillenmesine neden olurlar. Bu sendrom iyotla sağaltılabilir. Proguatrinin son ürünü olan goitrin ise tiroksin formasyonunu inhibe ederek iyot kullanımıyla sağaltılamayan tiroit bozukluğuna neden olur. Glusinolatların hidroliz ürünleri plasenta engelini geçer ve sütte de atılırlar. Bu nedenle, gebeliği döneminde glusinolatlı bitkilerle beslenen hayvanların yavrularında (keçi) ve süt emenlerde de tiroit bozuklukları görülür. Glusinolat içeren kimi bitkiler, özellikle kolza ve Lahana etyolojisi tam bilinmeyen, anemi ve hemoglobinüriyle karakterize olan zehirlenmeye de neden olabilirler. 1.3. Saponinler (Saponositler) Kalıcı köpük oluşturmaları ve acı lezzetleriyle karakterize olan saponinler, azotsuz nötr ya da hafif asit karakterli, glikozit benzeri maddelerdir. Aglikon ya da sapogeninleri steroit veya oleanan çekirdekli triterpenik yapıdadır. Soğukkanlı (poiklioterm) hayvanlar için çok toksiktirler. Yerel olarak irkiltici etki oluşturur; eritrositlerin hemolizine neden olurlar. Bitkiler aleminde oldukça yaygındırlar; 500’ü aşkın bitki türünden saponin izole edilmiştir. Kaba yonca (Medicago sativa), karamuk (Agrostemma githago), sabun otu (Saponaria officinalis), gazel boynuzu (Lotus corniculatus), tırfıl (Trifolium repens, T. fragiferum), at kestanesi (Aesculus hippocastanum), bohçaotu (Helleborus orientalis), yılan yastığı (Arum maculatum) yüksek düzeyde saponin içeren bitkilerdir. Saponinlerin toksisitesi kaynak bitkiye, yapılarına ve alınan miktara bağımlıdır. Acı lezzette oluşları tüketimi sınırlandırabilir. Tanen ve kolesterol bağlanmayla saponinleri inaktive edebilirler. Toksisite saponinden çok hidroliz ürünü sapogeninle ilgilidir. Bu nedenle, saponinlerin hidrolizini gerçekleştirebilen sindirim kanalı mikroflorası da (Butryrivibrio) toksisiteyi etkiler. Saponin içeren yem bitkileri ruminantlarda meteorizasyonun başlıca nedenleridir. Rumen içeriğinin yüzeysel tansiyonunu azaltarak stabil köpük oluştururlar. Böylelikle, fermantasyon gazları geğirmeyle (erukasyon) vücut dışına çıkarılamaz. Meteorizasyon oluşumunda kuşkusuz diğer faktörlerin, özellikle sitoplazmik proteinlerin (kaba yoncada % 4) de rolü vardır. Öte yandan, saponin ve sitoplazmik proteinler yanında, bunlarla inaktif kompleks oluşturabilen taneni de içeren bitkilerin (gazel boynuzu) meteorizasyon oluşturma insidensi düşüktür. Kimi saponinler, sindirim kanalından salgılanan enzimleri, özellikle kimotripsini inhibe ederler. Bu özellikteki saponinler sindirim kanalında irritasyona neden olurlar. Saponinler kanatlılarda gelişme ve yumurta verimini inhibe ederler piliç rasyonlarına % 5 oranında katılan kaba yonca unu, içerdiği saponinler nedeniyle, piliçlerde büyümeyi geciktirir. Yumurta tavuğu yemlerine katılan kaba yonca unu (% 10) yumurta verimini düşürür. Saponinlerin bu etkisi, rasyona kolesterol ilavesiyle giderilebilir. Saponinli bitkilerle zehirlenmeye karşı profilaktik önlemler alınmalıdır Bitkilerin pek çoğunda kendilerini savunmaları için bir miktar zehir bulunur. Sonuçta onlar bitki ve bir tehlike anında kaçacak yerleri yok. Bazılarını şirin görüntüsüne aldanmayın çünkü öldürücü olabilirler. Hint baklası Hint yağını bilen ya da kullanan herkes yağı oluşturan maddelerden birinin yani hint baklasındaki bir bileşenin kişiyi birkaç dakikada öldürecek zehre sahip olduğunu tahmin etmez. Meyankökü Bu meyankökü bitkisinin şirin bir görüntüsü var ancak aslında dünyanın en zehirli maddelerinden birisi eğer çiğnenir ya da yutulursa hemen ardından kişinin ölümü gerçekleşir. Boğanotu Canlı mor rengine aldanıp sakın zararsız olduğunu düşünmeyin zira bu bitki en ölümcül bitkilerden bir tanesi. Bushman zehri Afrika’da yaşayan ve oklarının ucuna taktıkları zehirli bitkilerle avlanan bushman insanları bu zehirli bitkiyi özellikle avlanmak için kullanırlar. Çan çiçeği Bu çiçeği salladığınızda çıkan güzel ses sizi aldatmasın. Bir keresinde tadını merak ettiği için bu bitkiden çay yapan 18 yaşındaki bir genç zehirlenerek komaya girdi. Su baldıranı Zehirli baldıran Sokrates tarafından içildiği için çok bilinen bir zehirli bitkidir. Ama su baldıranı da en az onun kadar zehirlidir. İngiliz porsuğu Dünyadaki en zehirli ağaçlardan birisidir. Muhteşem görüntüsü böylesi bir zehri taşıyabileceğini göstermese de panzehiri olmayan ve çabuk etki yapan bir zehirli bitkidir. Loğusa otu Bu bitki daha çok inekler ve koyunlar için tehlikelidir çünkü beyaz çiçeğine ve yemyeşil gövdesine aldanan hayvanlar bitkiyi yerler ve ne yazık ki bu hayvanların ürünlerini tüketen insanlar da zehirlenirler. Kargabüken özü Kloepatra emrindeki hizmetkârlarına bu bitkiyle intihar etmelerini söylemiştir. Çünkü kendisi de intihar etmek istediğinden zehrin etkili olup olmadığını görmek istemiştir. Menispermum bitkisi Bu bitki kuşlar için zehirli olmamasına rağmen insanlar yediğinde ölümcül bir zehre dönüşüyor. Nergis Zehirli bileşenleri olsa da eski zamanlardan beri bu bitki bir şifa bitkisi olarak da kullanılır. Hatta bazı kültürlerde kelliğe iyi geldiği de düşünülür. Zakkum Zakkumun bir yaprağı bile bir kişiyi öldürmeye yeter. Ama ölümler daha çok atlarda ve besi hayvanlarında görülür. Funda Çiçeklerin en güzeli olan funda bitkilerin de en zehirlilerinden birisidir. Yabani acı kiraz Bu kirazlar küçük ama asla yenmezler. Zehir öncelikle solunum sistemini etkiler ve ardından zehirlenme gerçekleşir. Köpeküzümü Bu bitki baştan aşağıya kara zehir taşır. Bunun bir parçasını bile yiyen insanlar görecekler ki öncelikle sesleri kısılacak çünkü bu bitki öncelikle solunumu etkiler

http://www.biyologlar.com/zehirli-bitkiler

Bakerilerde Hücre dışı yapılar

Hücre zarının dışında bakteriyel hücre duvarı bulunur. Bakteriyel hücre duvarları peptidoglikan (eski metinlerde mürein olarak adlandırılırdı)'dan oluşur. Peptidoglikan, peptit zincirlerle birbirine çapraz bağlanmış polisakkarit zincirlerden oluşur, bu peptitler, hücredeki diğer protein ve peptitlerden farklı olarak, D-amino asitler içerir. Bakteri hücre duvarları bitki ve mantar hücre duvarlarından farklıdırlar; bitki hücre duvarları selülozdan, mantarlarınkiler ise kitinden oluşur. Bakteri hücre duvarları arkelerinkinden de farklıdır, bunlarda peptidoglikan bulunmaz. Hücre duvarı çoğu bakterinin varlığını sürdürmesi için gereklidir, bu yüzden bir antibiyotik olan penisilin tarafından peptidoglikan sentezinin engellemesi bakterilerin ölümüne neden olur. Bakterilerde başlıca iki tip hücre duvarı olduğu söylenebilir, bunlar Gram-negatif ve Gram-pozitif olarak adlandırılır. Bu adlar, hücrelerin Gram boyasıyla tepkimesinden kaynaklanır. Bu, bakterilerin sınıflandırılmasında çok eskiden beri kullanılan bir testtir. Gram-pozitif hücreler, pek çok peptidoglikan ve teikoik asit tabakasından oluşan kalın bir hücre duvarına sahiptir. Buna karşın, Gram-negatif bakteriler birkaç peptidoglikan tabakası bulunur, bunun etrafını ikinci bir hücre zarı sarar, bu zarda lipopolisakkaritler ve lipoproteinler bulunur. Çoğu bakteri Gram-negatif bir hücre duvarına sahiptir, sadece Firmicutes ve Actinobacteria'lar (bunlar daha evvel düşük G+C ve yüksek G+C Gram pozitif bakteriler diye bilinirdi) Gram-pozitif, düzene sahiptirler. Bu yapısal farklılık, antibiyotiklere duyarlılıkta farklılık yaratabilir; örneğin vankomisin Gram-pozitif bakterileri öldürmesine karşın, Haemophilus influenzae veya Pseudomonas aeruginosa gibi Gram-negatif patojenlere karşı etkisizdir. Çoğu bakteride hücrenin dışını proteinlerden oluşmuş sert bir bir S-tabakası kaplar. Bu tabaka, hücre yüzeyine kimyasal ve fiziksel bir koruma sağlar ve makromoleküllerin difüzyonuna karşı bir engel oluşturur. S-tabakalarının çeşitli ama az anlaşılmış işlevleri vardır. Kampilobakter'lerde virülans faktörü olarak etki ettikleri ve Bacillus stearothermophilus 'ta yüzey enzimleri içerdikleri bilinmektedir. Kamçılar (flagellum, çoğul hali flagella), sert protein yapılardır, çapları yaklaşık 20 nanometre olup uzunlukları 20 mikrometreyi bulabilir, hareket etmeye yararlar. Kamçının hareketi için gereken enerji, hücre zarının iki yanı arasındaki bir elektrokimyasal gradyan boyunca iyonların taşınması sonucu elde edilir. Fimbrialar ince protein iplikçiklerdir, sadece 2-10 nanometre çaplı olup uzunlukları birkaç mikrometreyi bulabilir. Hücrenin yüzeyine dağılıdırlar, elektron mikroskobunda ince saçlara benzerler. Fimbriaların, sert yüzeylere veya başka hücrelere bağlanmakla ilişkili oldukları sanılmaktadır, ve bazı bakterilerin virülansı için gereklidirler. Piluslar fimbrialardan biraz daha büyük hücresel uzantılardır, konjügasyon denen bir süreç ile bakteri hücreleri arasında genetik malzeme aktarılmasını sağlarlar (aşağıda bakteri genetiği ile ilgili bölüme bakınız). Çoğu bakteri kapsül veya sümük tabakaları üreterek kendilerini bunlarla çevreler. Bu yapılar farklı derecede karmaşıklık gösterir: hücre dışı bir polimer olan sümük tabakası tamamen düzensizdir, kapsül veya glikokaliks ise çok düzenlidir. Bu yapılar, bakterileri makrofaj gibi ökaryotik hücreler tarafından yutulmaya karşı korur. Bunlar ayrıca antijen olarak etki edip hücre tanınmasında rol oynayabilir, ayrıca yüzeylere bağlanmak ve biyofilm oluşmasına yardımcı olabilir. Bu hücre dışı yapıların biraraya gelmesi salgı sistemlerine dayalıdır. Bunlar proteinleri sitoplazmadan periplazmaya veya hücre dışı ortama aktarırlar. Çeşitli salgı sistemleri bilinmektedir ve bu yapılar virülans için gerekli olduğu için yoğun bir sekilde araştırılmaktdadır.

http://www.biyologlar.com/bakerilerde-hucre-disi-yapilar

Hücre Fizyolojisi

Hücreler yaşayan organizmaların yapısal ve fonksiyonel birimleridir. Hücreler küçük fakat kompleks yapılardır. Yaşamın bu temel birimi hakkında ayrıntılı bilgiler ilk kez 17. Yüzyılda ışık mikroskobunun geliştirilmesi ile edinildi. Bir müze müdürü olan İngiliz Robert Hooke 1663 yılında mantar ve diğer bitki örneklerini bir jiletle keserek mikroskop altında 30 kat büyüterek inceledi. Bu incelemeler sonucunda bitkilerin "hücre" adını verdiği küçük bölmelerle dolu olduğunu buldu. Anton van Leeuwenhoek isimli bir Alman dükkancı ise doku örneklerini 300 kat büyüterek, bakteri, kan hücresi, sperm hücresi gibi tek hücreli organizmaları inceledi. Bu organizmalara hayvancık anlamına gelen "animalcules" adını verdi. Hücrelerin Genel Özellikleri: Hücreler hem morfolojik (şekilsel) hem de metabolik olarak çok büyük farklılıklar gösterirler. E.coli isimli bakteri 1m m (m m=mikrometre= 1 metrenin milyonda biri) uzunluğundayken, aksonları 1 metre uzunluğunda olan sinir hücreleri vardır. Ama yine de hücrelerin çok büyük bir çoğunluğu 1-30 m m arasındadır. Hücreler küçük olmak zorundadırlar, çünkü metabolizmalarında diffüzyon çok önemlidir. Diffüzyon, termal hareketle moleküllerin rasgele hareket etmesidir. Diffüzyon moleküllerin, yüksek konsantrasyon bölgesinden düşük konsantrasyon bölgesine doğru, her yerde eşit dağılıncaya kadar olan, rastgele hareketleridir. Diffüzyon termodinamiğin 2. Kanuna bir örnektir. Bu kanuna göre entropi (düzensizlik ya da rasgelelik) sürekli olarak artar. Evrendeki düzensizliğin derecesi sadece ve sadece artabilir. Hücrelerin çoğu aktivitelerinin büyük bir bölümünü diffüzyon ile düzenlerler. Diffüzyon, molekülün özelliğine (büyüklük gibi) ve çevreye (vizkozite, membran gibi) bağlıdır. Bir partikül (madde parçası) tarafından katedilen mesafe zamanın karekökü ile doğru orantılıdır. Yani bir partikül 1 saniyede 1 m m gidiyorsa, 4 saniyede 2 m m ve 100 saniyede 10 m m ve 3 saatte (10.000 saniye) 100 m m gidecek demektir. Hücrelerin Fonksiyonel Özellikleri: Hücreler ortamdan ham materyali alırlar. Enerji üretirler: Bu enerji iç ortam dengesini sağlamak, ve sentez reaksiyonlarını yürütmek için gereklidir. Termodinamiğin 2. Kanununa karşı koymak ancak enerji ile mümkündür. Kendi moleküllerini sentez ederler. Organize bir şekilde büyürler. Çevreden gelen uyarılara cevap verirler. Çoğalırlar (bazı istisnalar haricinde). Hücrelerin Yapısal Özellikleri: Kalıtsal bilgiler DNA içinde saklanır. Genetik kod temelde aynıdır. Bilgi DNA dan proteinlere RNA aracılığı ile geçer. Proteinler ribozomlar tarafından yapılır. Proteinler hücrenin fonksiyon ve yapısını düzenlerler. Bütün hücreler seçici geçirgen bir zar olan plazma membranı ile çevrilmiştir. HÜCRELERİ BİRBİRİNDEN AYIRAN ÖZELLİKLER Hücreler arasında pek çok benzerlik olmasına rağmen, çok belirgin farklılıklar da vardır. Bu farklılıklar hücreleri çeşitli ana guruplara ayırmamıza yardımcı olur. İki yaygın ana gurup şunlardır. Prokaryotlar Eukaryotlar Prokaryotlarla Eukaryotlar arasındaki en temel farklar prokaryotların bir nükleusa (çekirdek) ve membrana bağlı organellerinin (birkaç istisna haricinde) olmamasıdır. Her ikisinin de DNA sı, hücre zarı, ribozomları vardır. HÜCRE ORGANELLERİNİN YAPI VE FONKSİYONLARI Hücreler ışık mikroskopu ile incelendiği zaman, sitoplazma ve çekirdek adı verilen iki bölümden oluştuğu görülür. Ancak daha büyük büyütme sağlayan elektron mikroskopuyla yapılan incelemeler, hücrenin bir takım alt birimlerden, hücre organellerinden oluştuğunu ortaya koymuştur. Hücre şunlardan oluşmuştur. Hücre zarı Sitozol Organeller Çekirdek Hücre Zarı: Zar ya da membranlar yaşam için çok önemlidir, çünkü bir hücre 2 sebebten dolayı kendisini dışarıdaki ortamdan ayırmak zorundadır. DNA, RNA ve benzeri yaşamsal moleküllerini dağılmaktan korumalıdır. Hücre molekül yada organellerine zarar verebilecek yabancı molekülleri uzak tutmalıdır. Ancak hücre bu iki kurala uyarken bir taraftan da çevreyle haberleşmeli, dış ortamı sürekli olarak izlemeli ve ortam değişikliklerine ayak uydurmak zorundadır. Ayrıca hücre besin maddelerini dışarıdan almalı ve metabolizması sonucunda ürettiği toksik (zehirli) maddeleri dış ortama vermelidir. Biyolojik membranlar Şekil 1 de görüldüğü gibi bilipit katmandan oluşur. Şekildeki her bir fosfolipiti temsil eder. Daire ya da baş negatif yüklü fosfat gurubudur, ve iki kuyruk da çok hidrofobik (hidrofobik=suyu iten) olan hidrokarbon zincirlerini temsil eder. Fosfolipit zincirlerinin Şekil 1. De görüldüğü düzenlenmesi sonucu hidrofobik kısımlar membranın içinde kalır. Membran yaklaşık 5 nanometre (1 nanometre = 1 metrenin milyarda biri) kalınlığındadır. Membran semipermeabledır (yarı geçirgen), yani bazı maddelerin membrandan serbestçe geçmesine (diffüze olmasına) izin verir. Membran büyük moleküllere geçirgen değilken, yüklü iyonları çok az geçirir, ve yağda eriyen küçük moleküllere oldukça geçirgendir. Tüm biyolojik membranlar gibi hücre zarı (membranı) da lipit, protein ve az miktarda karbonhidrattan oluşmuştur. Hücre zarı, hücre içinde ve dışında bazı uzantılarla devam eder. Hücre dışına doğru olan uzantılar hücrenin yüzeyinden interstisiyel mesafeye doğru uzanırlar, bu uzantılara mikrovillus denir. Hücre içine doğru devam eden zar sistemi ise dış ortamın hücre içiyle daha yakın ilişki kurmasını sağlar. Bu sisteme endoplazmik retikulum denir. Endoplazmik Retikulum: Endoplazmik retikulum lipid, protein (ribozomlar aracılığı ile) ve kompleks karbonhidratların yapım yeridir. Endoplazmik retikulum hücredeki toplam membranların yarısından fazlasını oluşturur. Endoplazmik retikulum iki membrandan oluşur, iki membran arasında kalan boşluğa endoplazmik retikulum lümeni denir. İki tip endoplazmik retikulum vardır. Granüllü Endoplazmik Retikulum: Üzerinde ribozomlar vardır. Sisterna denilen yassılaşmış keseler şeklindedir. Golgi Kompleksi: Golgi kompleksi hem yapı hem de fonksiyon yönünden endoplazmik retikulum ile yakından ilişkilidir. Bu organel birbirine paralel bir dizi membranöz kanaldan oluşur ve salgı yapan hücrelerde iyi gelişmiştir. Golgi kompleksinin fonksiyonu endoplazmik retikulumda sentezlenen maddelere son şeklini vermek ve bu maddeleri bir membranla çevrelemektir. Ayrıca hücre zarının yenilenmesi ve yüzeyinin genişletilmesi görevini de üstlenir. Lizozom: Lizozomlar 0,2 ila 2 m m çapında organellerdir. Hücreiçi sindirimi sağlamak üzere yaklaşık 40 civarında enzim içerirler. Lizozom membranı lizozomun hücreyi tümüyle sindirmesini önler. Bu enzimler için optimal pH 5 civarıdır. Lizozomlarda ATP hidrolizi ile çalışan H+ pompası vardır. Bu sayede lizozomun pH I düşük tutularak enzimlerin etkin hale geçmesi önlenir. Peroksizom: Peroksizom membranında spesifik proteinler ve oksidasyon enzimleri vardır. Karaciğerdeki peroksizomların ana görevi detoksifikasyondur (bir maddeyi zararsız hale getirme). Ribozom: Ribozomlar proteinlerin sentez edildikleri yerdir. Protein sentezi için gerekli bilgi DNA dadır, bu bilgi RNA ya transfer edilir, ve ribozomlarda RNA daki bu bilgiyle protein yapılır. Bir hücre için protein sentezi çok önemlidir, bu yüzden de hücrede binlerce ribozom bulunur. Ribozomlar ya sitoplazmada serbestçe yüzerler ya da endoplazmik retikuluma bağlı olarak bulunur. Ribozomların membranı yoktur. Protein sentezlemedikleri zaman 2 alt gurup halinde bulunurlar. Alt guruplar ribozomal RNA (rRNA) ve ribozomal proteinlerden oluşur. Mitokondri: Mitokondriler eukaryotik hücrelerde ana enerji üretim merkezleridir. Biri iç diğeri dış olmak üzere iki membranı vardır. İç membranda çok sayıda katlanmalar vardır, bu membranın yüzey alanını genişleterek, membran bağımlı raksiyonların daha fazla sayıda olamasını sağlar. Mitokondrilerin kendi DNA ve ribozomları vardır. Çekirdek (Nükleus): Nükleus DNA nın bulunduğu ve DNA daki bilginin RNA ya aktarıldığı yerdir. Çift katlı bir membranla sarılmıştır, bu membranda çok sayıda büyük porlar bulunur. Çekirdeğin içini dolduran esas madde DeoksiriboNükleik Asit ve protein molekülleridir. Bu DNA molekülleri nükleus içinde rastgele dağılmış olamayıp kromozom denilen yapılar içinde protein molekülleri ile birlikte organize olmuşlardır. İnsanda 46 adet (23 çift) kromozom bulunur. DNA molekülleri hücrede mevcut bütün proteinlerin nasıl yapılacağının genetik bilgisini içerirler. Bilgi nükleusdadır fakat proteinler sitoplazmada yapılır, bu sebeple bilginin sitoplazmaya aktarılması gereklidir. Bu amaçla DNA kalıp gibi kullanılarak, bu kalıptan RNA yapılır, oluşan RNA sitoplazmaya geçerek, protein yapım yeri olan ribozomlara protein sentezi için gerekli bilgiyi aktarır. Çekirdek hücrenin kontrol merkezidir, buradaki genetik mekanizmalar yoluyla sadece hücre içindeki kimyasal olaylar değil, aynı zamanda hücrenin özelliklerinin yeni hücre nesillerine aktarılması da sağlanır. Hücre İskeleti: Aslında hücre iskeleti terimi yanlış bir deyimdir. Hücre iskeleti transparan olduğu için hem ışık hem de elektron mikroskobu preperatlarında görülmez. Hücre çizimlerinde de gösterilmemesine rağmen önemli bir hücre komponenttidir. Hücre iskeleti hücrenin şeklini, hücre organellerinin yerinde durmasını sağlar, ve hücre hareketinden sorumludur. Hücre iskeleti şunlardan oluşmuştur. Sentriyoller Mikrotübüller Aktin filamentleri Sentriyoller çekirdeğe yakın olarak yer alan bir çift silindirik yapıdır. Her biri üçerli guruplar halinde dokuz tübülden oluşmuştur. Sentriyoller hücre bölünmesi sırasında kromozomların hücre kutuplarına çekilmesini sağlarlar. Mikrutübüller tübülin denilen alt birimlerden oluşmuştur. Görevi hücreyi yerinde tutmaktır, aynı zamanda silya ve flagellanın da ana bileşenidir. Aktin filamentleri ise hücrenin şeklini değiştirmesinde görev alırlar.

http://www.biyologlar.com/hucre-fizyolojisi

Bitki Fizyolojisi Bölüm 1

Fizyolojinin başlangıçı tohumun çimlenmesiyle başlar.Çünkü bitkilerin hayat devreleri spor ya da tohum faaliyetleriyle başlar.Çimlenme embriyodan ekolojik isteğe göre optimum koşullarda normal bitki yapılarını oluşturma yeteneğidir.Bir tohum gömleğinden radikula belirmesi çimlenmenin en önemli kısmıdır.Bu devrede sert koruyucunun engel olmaktan çıkarılması esnasında ise bir çok fizyolojik olayların başlamasıdır.Çünkü buradaki fizyolojik olayların sonucunda hücre bölünmeleri başlayıp tohumda büyüme dolayısıyla hacminde artma olacaktır.O halde radikula belirmesinden itibaren(çimlenmenin başlangıcı) henüz ayrıntısı bilinmeyen biyokimyasal(Fizyolojik) olaylar meydana gelmekle beraber bu olayların en önemlisi solunumun artmasıdır.Bu durumdan sonra çimlenmede 2. derecedeki metabolik aktivite enzim aktivitesinin artmasıdır.Burada faaliyet gösteren enzimlerin bir kısmı önceden tohumda vardır,bir kısmı da hücre tarafında sonra üretilmektedir.Bütün bunlar bize çimlenmeyle metabolik faaliyetlerin başladığı ve hücre için ihtiyacı olay her şeyi üretebildiği fikrini vermektedir.Örneğin çimlenme esnasında tohumda üretilen amilaz enzimi depo maddelerinin parçalanmasında önemlidir.Ayrıca RNA-az ve proteolitik enzimlerde çimlenme sırasında üretilen enzimlerdir.Tohum çimlendikten yaklaşık ½ saat sonra ,bu kez protein sentezinin aniden arttığı görülmektedir.Çünkü çimlenmeden yarım saat sonra mevcut hücrede polizomların sayısı aniden artar.Hücrenin bir iskeleti vardır ve hücrede bir bölgeden bir bölgeye geçiş kolay değildir.Hücrede proteinlere az ihtiyaç olduğu zamanlarda Ribozomda üretilen protein yeterliyken hücre tam inhibitörle karşılaştığında bu yeterli olmamaktadır. Çünkü hücredeki bu zehrin dışarı atılması için daha enzime ve proteine ihtiyaç olduğundan ve bunu da ribozomda üretilen protein yeterli olmadığından dolayı polizomlardaki protein üretimi aniden artar. Mevcut enzimler ve bunların aktivitelerindeki artış su alıp turgorunu artıran ve buradaki reaksiyonların endosperme doğru hareketlerini de beraberinde getirir. Endospermdeki besinler parçalanıp eritilerek embriyonun beslenmesi için aktive edilir. Bir tohumun hem çimlenmeden önce hem de çimlendikten sonra biyolojik polimerler tarafından deneye tabii tutulursa çimlendikten sonra bunların atıldığı görülür.Söz konusu azalma çimlenmenin ilk evrelerinde maksimumdur (Bölünme o devrede fazla olduğu için). Tohumda fizyolojik faaliyetlerin gerçek anlamda başlayıp normal bir çimlenme olması iki faktöre bağlıdır.Bunlar: • İç Faktörler: 1. İç faktörün asıl özelliği tohumun biyolojik yapısı ve ekolojik isteği tarafıdan tayin edilir.Bundan sonraki endospermdeki enzim ve hormonların bozulmamış olması,patikte buna tohumların canlılığını sürdürmesi denir.Bu durumda tohum dormansi durumundadır. 2. Tohumları olgunlaşmış olması 3. Embriyonun yaralanmamış ya da zedelenmemiş olması. 4. Tohum parazitleri ve zararlıları tarafında yaralanmamış olması. 5. Büyüme ve gelişme esnasında oluşacak tohum kabuğunun endospermi koruyacak şekilde güçlü çimlenmeye engel olacak şekilde bir yapı göstermesi gerekir. • Dış faktörler: Dış faktörler tohumun çimlenmesinde iç nedenlere oranla çok daha etkili ve yaygındır.Bu da habitat ve nişin ekolojik koşullarını kapsar.Bunlardan en önemlisi de tohumun çevresinde yeterli nem kullanabilir ve oksijene ulaşması gereklidir.Yukarıdaki faktörler optimum koşullarda olmazsa tohum tohuma geçemez. İç faktörler bazen genel olarak çimlenme için dış faktörler yeterli olsa da uygun olmuyor. Aynı durum bitkilerin diğer organlarında da görülebilir.Ama esasen dış koşullar dikkate alınmadan iç faktörler gelişmeye engel olabilmektedir.O yüzden çevre koşullarının uygun dönemi başlamasına rağmen bir çok tohum çimlenmeye geçmiyor.Bu olaya çimlenme durgunluğu anlamındaki dormansi denir. Tohumda çimlenmenin olmaması her zaman dormansi değildir.Çünkü çimlenme sırasındaki büyüme ve gelişme döneminde çeşitli nedenlerle gerileme olabilir.Dormanisinin doğal ve kültür bitkilerinde spesifik durumları vardır. Doğal bitkilerde yukarıda açıklanan içsel nedenlerle,kültür bitkilerinde ise tohumun derinde kalması,çeşitli engelleyiciler,kimyasal ilaçlar vs. çimlenmeyi engelleyebilir.O yüzden tohum ya da başka bir bitki organındaki pasifliği dormansi olarak nitelendiremeyiz. Çevre koşullarının etkisiyle bir bitki organının gelişmesindeki gecikme daha çok dinlenme hali bu sözcük ile ifade edilir. Sonuç olarak bitkilerdeki her dinlenme dormansi değil,ancak her dormansi bir dinlenmedir.Dormanside yukarıdaki iç nedenlere ilaveten tohum kabuğunun su ve gazlara karşı geçirimsiz olması kabuğun mekanik olarak embriyonun gelişimini engellemesi ve bazı doğal inhibitörlere sahip olmasıdır.Dış etkenlerden çimlenmede rol oynayanlar nem ve suyun etkisi olup bitki dünyası bu bakımdan iki guruba ayrılır.Bunlardan bir grubunun çimlenmesi için toprak nemi yeterlidir.Oysa aynı olay için diğer gruba aktif su gereklidir.Halbuki habitatta her ne kadar toprak suyu ve nem birbirinin tamamlayıcısı ise de hem aktif suyun minimum miktarının azalmasıdır. 1)Su ve Nemin Etkisi:Çoğu bitki tohumunun çimlenmesi için yeteri kadar su gerekmektedir.Ancak bazı tohumlar toprağın su kapasitesi %50 bazılarında %75 olduğunda çimlenir.Tohumları çimlenmesi için niş suyunu %50-75 olmalıdır.Buna rağmen tüm tohumlar tarla kapasitesinde su absorbe edebilirler.buna göre tohumların çimlenme suyunun tarla kapasitesi olduğu söylenir.Kuru topraktaki tohumların suyu emme kuvveti ne kadar fazla olursa olsun aldıkları su şişmelerine yeterli olsa bile ancak kısmen çimlenme sağlanır. Görülüyor ki ortamın osmotik basıncı ile çimlenme şansı paralellik gösterir.Tohumlara sağlanan fazla ve sürekli su çimlenmeyi hızlandırır.Ancak kademeli olmayan sürekli artış sınırlayıcıdır.Genel olarak havada %90 nem olduğunda tohum sadece bundan 2 gün faydalanabilir.Tohumun aktif suyla ıslanması 1-1.5 gündür.Uzayan süre ket vurucu olabilir.Burada tohumun emdiği su enzim faaliyetleri için ortam sağladığı gibi çözünen protein,yağ vs. besin maddelerini embriyonun büyüme noktalarına taşınmasını sağlar. Tohumdaki su alımı kabuktaki hidratasyon suyunda biraz yükselmiş atmosferden alınır. 2)Sıcaklığın Etkisi: Sıcaklığın çimlenmeye özel etkisi tam anlaşılamamasına rağmen su varlığında reaksiyonların başlaması ve hızına,suyun absorbsiyonuna ve tohumun oksijen alımına önemli etkileri olduğu kesindir.Bitkilerde türler arasında olduğu gibi aynı türün diğer bireyleri arasında görülen sıcaklık farkı isteği(niş durumunda) tohumlardan ziyade olgunluk çağında daha kolay belirlenmiş bitki yaşı ile depolama şartlarına bağlanmıştır.Oysa bitkilerin tohumdan tohuma kadar habitatta eko-fizyolojik koşullarda yaşar.Aynı türün bireyleri farklı sıcaklıklardaki habitatlarda yaşabiliyorsa bu onların ekolojik koşullara karşı toleransın sonucudur.Çünkü daima ekolojik koşullar optimum koşullar için gösterilir.Genel olarak serin iklim bitkileri sıcak iklim bitkilerinde daha düşük sıcaklıkta çimlenir.Bu nedenle kozmopolit bitkiler dünyanın %50’sinde yaygındır. Bitkilerin tohum çimlenme anındaki sıcaklık isteğini karmaşık hale getiren yetişme dönemidir.Örneğin,Colchium,Crocus,Muscari,Gagea vs. gibi bitkiler kar tabakası çözündüğü an;Phlomis,Cardus,Carthamus vs.sıcaklık 14-25oC’ye arttığında;Cyclamen,Muscari ve Gagea bazı türleride 8-14oC’de çimlenir.Bu gruplardan ilki ilkbahar geofiti,ikincisi yaz geofitleri, üçüncüsü ise sonbahar geofitleri denir.Genel olarak bir çok serin iklim bitkisi 20oC,sıcak iklim bitkileri35oC’de çimlenir.Bu iki durumdan meydana gelen sapmalar.gece-gündüz arasındaki sıcaklığı farkı çimlenmeye teşvik etmesinden kaynaklanır. 3)Işığın Etkisi:Bilhassa doğal bitkiler çimlenmede ışık gereksinimi bakımından ışığı seven,ışığa ihtiyat duyan ve fazla ışıktan zarar gören şekline üçe ayrılır.Bilhassa tohumda ışığa karşı davranış embriyo sitoplazmasındaki bir foto-kimyasal sistemin fitokrom denen bir pigmenti üretmesinden anlaşılır.Fitokrom pigmenti fotoreversibl(Dönüşebilen ışıkları emebilen) olduğu için çimlenmede iş yapan eko-fizyolojik olayların ışıkta ya da karanlıkta olduğuna karar veren metabolik kontrol düğmesidir.Örneğin fitokrom kendisi ışıkta çimlenen karanlıkta çimlenmeyen tohumlar için özellikle kırmızı ışığı emerken,bunun tersinde ışık emilimini engeller.Dolayısıyla bu metabolik anahtar alınacak ışığın miktarını ayarladığı için bitki dünyasında çok ışık kullanan(uzun gün bitkileri),az ışık kullanan(kısa gün bitkileri) ve sadece difüz ışık kullanan(gölge bitkileri)şeklinde üçe ayrılır.Çimlenmede etkin olan en önemli faktör ise vernalizasyon olayıdır.Deneysel çalışmalar çimlenmenin sadece ışıkla değil düşük sıcaklık periyodu ile ilgili olduğu görülmektedir.Çünkü bu olayla oluşan uyartı sadece soğuk periyotlarda oluşmuştur.Uyarıya neden olan faktörler ise soğuk ve ışığın etkisiyle üretilen ve özel uyarıcı görev yapan vernalin hormonudur.Bu olayın anlamı ilk baharlaştırma ya da düşük sıcaklıkta akımın(indüksiyon) hızlandırılması anlamına gelir. Bitkilerde vernalizasyonun en açık görüldüğü yer vejetasyon konileri ve tohumlardır. Vernalin hormonu hem tohumlarda oluşup embriyo sitoplazmasının metabolizmasında rol oynar hem de vejetasyon konisinden alınan uyartının diğer kısımlara aktarılmasında rol oynar. Olay her bitkide az çok belli bir indüksiyon ısısıyla bu ısının belli bir etkinlik süresi (vernalizasyon süresi)vardır ve türe göre değişir.Buna göre deneyler bitkileri vernalizasyon açısından da obligat ve fakültatif şeklinde ikiye ayrılmıştır.Obligatlar uzun gün bitkileri olup soğuk periyot şarttır.Diğerlerinde çimlenmeyi hızlandırmasına karşın eksikliliğinde de çiçeklenme olabilir.Ancak tohumların tohuma geçmesi garanti değildir. Deneyler tohum halde vernalize edilen türlerin soğuk periyot ihtiyacını fakültatif,fide ve sonraki dönemlerde vernalize edilenlerin ise obligat olması gerektiğini ortaya koymuştur. Örneğin çevremizde gördüğümüz buğdaylar ekimde tarlaya atılır.Su periyodu gelinceye kadar fide olur.Soğuk periyodu öyle geçirir. 4)Oksijenin Etkisi:Çimlenmede tohumdaki besin maddelerinin oksidasyonu içi oksijen gerekmektedir.Çünkü bu katabolik olayla açığa çıkacak enerji embriyonun hayatını sürdürecek en önemli kaynaktır.Burada hücre büyüdükçe embriyo büyür ve oksijen ihtiyacı artar.Çoğu tohumlar kuru iken geçirimsizdir.Fasulye ve bezelye tohumları bu konuda gaddardır.Tohumlar su geçirmeye başladığı zaman oksijen girişi de başlar.Fakat tohumdaki hidratasyon suyu çimlenmeye ket vurucu yöndedir. O halde çimlenmenin gerçekleşmesinde tohumun en az %20 oksijen temas halinde olması gerekir.Doğal bitki tohumları derinlere gömüldüğünde ve oksijen almadığı sürece çimlenmez,fakat hayatta kalırlar.Ekosistemin dengesi için son derece önemli olan tohumlar her durunda sisteme en önemli katkıyı yapmaktadır.Ancak işleme karıştırma,erozyon ya da başka bir yolla toprak yüzeyine yaklaşmada çimlenir.O halde çimlenmede nişin durumu çok önemlidir(tohum yatağı).Nişte nem artınca nem azaldığında bu ikisini birlikte kapsayan topraklar iyidir.Sonuçta yukarıda belirtilen faktörlerin bir arada bulunması halinde nişteki tohumun hava almasıyla kuru ağırlığı %60-100 artarak çimlenir.Olayda en önemli rolü şişme göstermiştir.Yani su metabolizmasıyla ilgili olan olaylar tamamlanmıştır(difüzyon,osmoz). Sonra tohumda depolanmış ilk şekerler suda erir,nişasta ise diastaz enziminin etkisiyle su alarak maltoza dönüşür.Buradaki maltozda maltaz enziminin etkisiyle glikoza çevrilir.böylece glikoz difüzyon-osmoz kuvvetleriyle hücreden hücreye geçerek yeni uyanmaya başlayan fideciğe ulaşır ve orada ilk etapta selüloz ve nişasta gibi maddeleri teşkil eder.Proteinler ise başka enzimlerle aminoasitler ve amidlere parçalanarak fidecik büyümesinde değişik şekilde kombine olarak farklı proteinlerin yapımı için kullanılır.Özellikle yağlı tohumlardaki yağlarda lipaz enzimiyle yağ asitleri ve gliserine parçalanır. Bunlara da çeşitli kimyasal değişikliklerle şeker yağların yapımında kullanılır. Çimlenmedeki fizyolojik faaliyetler ve büyümede kullanılan enerji,solunuma alınan oksijen vasıtasıyla karbonun Karbondioksite,H’nin su haline gelmesiyle(biyolojik oksidasyon) saptanır.Bu nedenle çimlenme halindeki bir tohumda solunum,kuru haline göre yüzlerce kat fazladır.Örneğin 1kg buğday çimlenirken 1 m3 havanın içerdiği oksijenin yarısını kullanır.Böylece solunumla oksijen devreye girince başlayan büyüme ve gelişme olaylarında diğer elementlerde ihtiyaç haline gelir.Tohum,kökleriyle aktif su alımına geçmeden önce ihtiyaç duyduğu en önemli elementler nitratlardır.Çünkü nitratlar tohum fide haline geldiğinde yaprağı oluştururken yapacağı fotosentez olayını düzenlemek için ışığa karşı istek ve hatta tohumdaki çimlenmeyi artırırken vejetatif metabolizmayı da artırmaktadır.Çimlenmede nitratlar sınırlayıcıdır.Çimlenme bittikten sonra büyüme ve gelişme olaylarını 3 temel gruba toplamak mümkündür: 1. Metabolik olaylar fizyolojisi 2. Büyüme ve gelişme fizyolojisi 3. Hareket fizyolojisi O halde madde değişimi olan metabolizmayı metabolizma fizyolojisi diğerlerini ise 2 ve 3. maddeler inceler. 1)Metabolizma Fizyolojisi:Burada bitki hücreleri ve dokuları fiziksel ve kimyasal değişiklerle yönlenir.Su,gaz ve eriyiklerin bitkilerce nasıl alındığını ;bunların bitkilerde hücreler dokular ve organlar arasında nasıl taşındığını;besin ve kompleks bileşiklerin (hormonlar)nasıl sentezlendiğini;büyüme ve gelişme olaylarında ihtiyaç enerjisinin sentezlenen bileşiklerden nasıl sağlandığını;yeni dokuların nasıl yapıldığını ve vejetatif bazı dönemlerinde üreme organlarının teşekkülüne ne zaman başladığını araştıran bir fizyoloji koludur.Bu temel olaylar iki yönde ele alınır: a) AnabolizmaSentez ya da asimilasyon olaylarını gerçekleştiren bu devre bitkilerin değişik yollarla ortamdan aldıkları ham besin maddelerini bünyelerinde yararlı bileşikler yapımı olayıdır.Yani metabolizmanın yapıcı kısmıdır. b) KatabolizmaParçalanma olayları olup bitki biyolojik dinanizmde gerekli enzimce zengin bileşiklerin kullanılması için bileşiklerin parçalanması olayıdır.Yani metabolizmanın yıkıcı kısmıdır. Metabolizma fizyolojisinde en önemli unsur bitkileri oluşturan elementlerdir ve ayrıntılı incelenmeleri gerekmez.İlkel analizle elde edilen sonuçlar metabolik olaylar hakkında zaten yeterli bilgi veriyor.Tüm canlı hücrelerinde olduğu gibi bitki hücrelerinde de su maksimum düzeyde bulunur.Alınan suyun çoğu atmosfere verilir.Bir bölümü dokularda su olarak kalır ve diğer kısmı da değişik bileşikler yapmakta kullanılır.Bitki nişinde suyun az ya da aşırı bulunması gelişimi diğer faktörlere oranla daha fazla etkiler.Su azlığında yeterli turgor sağlanmaz.Hücrelerin büyüyüp gelişmesinde turgor basıncıyla meydana gelen reaksiyonlar sonucu sağlana enerjiye bağlı olduğu için biyolojik dinanizm(BD) minimuma iner.Yine bitkilerde su azlığında yaşlı organlardan gençlere su nakli yapılarak bu ekstrem koşulun önüne geçilir.Su noksanlığında bitkinin ilk kontrolü stomalara müdahale etmektir.Su fazlalığında akuatik bitkiler hariç diğerlerinin gelişimini olumsuz etkiler.örneğin nişte biriken su toksik etkisi yapan maddeleri artırır,solunum için gerekli oksijeni azaltır.Daha da önemlisi bitki topraktan nitratları alamaz.Böylece kök gelişmesi azalır.Bu da genel metabolizma düşüşüne neden olduğundan kök gelişmesi nedeniyle verim düşer.Bitki gevşek yapılı olur ve direnç azalır.Bitkideki su miktarı türe,aynı türün farklı organlarına ,aynı organların günün değişik zamanlarındaki durumuna ve mevsimlere,bitkinin yaşına,toprağın tarla kapasitesine, absorbsiyon transporasyon miktarlarına ve toprağın mineral zenginliğine göre daima değişkendir.Bir çam tohumuyla yapılan deneyde tohum çimlenmeden önce %7 su içerirken, çimlenme esnasında bu miktar %172 artar.Meritemlerde %90 su içeren kök ve yumrularda daha az su bulunur.Bitkilerdeki su kapasitesinin en değişken dönemi günün farklı saatleri ve mevsimleridir.Bu durum tamamen kuru madde artışı ve kuru madde işgalinden dolayı su miktarı azalmasından kaynaklanır.Ama özel olarak günü farklı saatlerindeki değişme ise suyun absorbsiyonu ile transporasyonu ile alakalıdır.Güneşli günlerde sabah erkenden öğlene doğru transporasyonda da artış olur.Bu olayın temelinde sabahın erken saatlerinde bitkinin suyu taşıma güçlülüğü vardır.Yani absorbsiyon yetersizdir

http://www.biyologlar.com/bitki-fizyolojisi-bolum-1

Bitki Fizyolojisi Bölüm 2

Bilindiği gibi fizyoloji organeller, hücre ve dokular ile organ ve organizmaların canlılığını sağlayan işlevlerini, ilişkilerini ve cansız çevre ile etkileşimlerini inceleyen bilim dalıdır. Bitki fizyolojisi de bu çerçevede mikroalglerden ağaçlara kadar tüm bitkilerde bu konuları araştırır. Günümüzde bilgi birikiminin ve iletiminin çok hızlı artışı nedeniyle bilim dallarının sayılarındaki artış yanında sürekli yeni ara dalların ortaya çıkması sonucu bilim dalları arasındaki sınırları çizmek zorlaşmış ve giderek anlamını yitirmeye başlamıştır. Fizyoloji fizik ve kimya ile moleküler biyoloji, sitoloji, anatomi ve morfoloji ile biyofizik, biyokimya verileri ve bulgularından yararlanarak tıp ve veterinerlik, ekoloji ve çevre, tarım ve ormancılık ile farmasi ve gıda, kimya mühendisliği gibi uygulamalı bilimlerrindeki gelişmeler için altyapı sağlamaktadır. Bitki fizyolojisi de bitkilerle ilgili olan konularda aynı şekilde çalışarak.diğer temel ve uygulamalı bilimlerin gelişmesine katkıda bulunmaktadır. Uzunca bir süre önce fizyoloji ile biyokimyanın konuları arasındaki sınır netliğini kaybetmiştir. Giderek diğer bilim dalları ile aradaki sınırlar da bilgibirikiminin artışı sonucunda zayıflayacaktır. BİTKİ FİZYOLOJİSİNİN KONUSU VE DALLARI Klasik olarak fizyoloji, beslenme fizyolojisi, metabolizma fizyolojisi ve büyüme gelişme fizyolojisi olarak üç ana dala ayrılır. Bu yaklaşımla bitki fizyolojisinde beslenme kara bitkilerinin havadan, su bitkilerinin de sudan sağladığı gazlar ve kara bitkilerinin havadan sağladığı su buharı ile toprak veya sudan sağladıkları mineral iyonları, nasıl alındıkları ile ilgili konular beslenme fizyolojisi başlığı altında toplanır. Metabolizma fizyolojisi de bu çerçevede alınan hammaddelerin, hangi maddelere dönüştürüldüğü ve kullanıldığı, işlevlerinin neler olduğu, hangi durumlarda bu tabloda ne yönde ve nasıl değişimler olduğunu inceler. Biyokimya ile en yakın olan daldır. Metabolizma fizyolojisinin karmaşık ve genişkapsamlı oluşu nedeniyle de primer ( birincil, temel ), sekonder ( ikincil ) ve ara metabolizma, primer metabolitlerin depolanan ve gerektiğinde sindirilen dönüşüm ürünlerini konu alan alt dallara ayırılması gereği ortaya çıkmıştır. Büyüme ve gelişme fizyolojisi ise beslenme ile alınan, metabolize edilen maddelerin kullanılması ile organellerden, bitki hücrelerinin embriyo düzeyinden başlayarak organlar ile bitki organizmalarına kadar büyümelerini, belli bir yönde farklılaşarak özel işlevler kazanmalarını, bütün bu olayları etkileyen etmenleri ve etkileşimlerin mekanizmalarını inceler. Büyüme ve gelişme fizyolojisi hem moleküler biyoloji hem de biyokimya ve ekoloji ile yakından ilişkilidir. Çünkü büyümeyi ve sonra gelişmeyi tetikleyen mekanizma ve özellikle farklılaşmanın şekilleri açısından kapasite genetik yapı ve baskı, biyokimyasal özellikler ile çevre koşulları ile yakından ilişkilidir. Bilgi birikiminin artışı ile bitki gruplarına has özellikleri inceleyen veya yüksek bitkilerin yaşamında ve uygulamalı bilimlerde önemli yer tutan belli olgu ve gelişmeleri konu alan alt dallar ortaya çıkmıştır. Bitki hücre fizyolojisi, alg fizyolojisi, çimlenme fizyolojisi, çiçeklenme fizyolojisi, stres fizyolojisi, bunlardandır. Ayrıca fizyolojik olayların açıklanabilmesi gerekli temel bilgileri sağlayan fizik, enerjetik, kimya, fizikokimya ve biyokimya gibi dalların katkıları oranına göre de biyofizik, fiziksel biyokimya, biyo-organik veya inorganik kimya gibi dallara benzer şekilde biyofiziksel, biyokimyasal fizyoloji gibi alt dallara ayrılır. Günümüzde botaniğin ve diğer temel ve teknolojik bilimler ile dallarının konuları ile ilişkinin yoğunluğuna göre adlandırılan alt dallara da ayrılmıştır. Bitki ökofizyolojisi, ürün fizyolojisi, depolama fizyolojisi, fizyolojik fitopatoloji bu alt dallara örnek olarak verilebilir. Bu tür konu sınıflandırmaları çerçevesinde bitki fizyolojisini, fizyolojinin temel konularının bitkileri diğer canlılardan ayıran temel özelliklerin fizyolojik yönlerinden başlayarak ele almak ve bu temeller üzerinde açılım gösteren özel konulara yönelerek işlemek yararlı olabilir. Bilindiği gibi canlıların en temel özellikleri aldıkları enerjiyi belli sınırlar içinde olmak üzere çevreden alabilmeleri, kullanabilmeleri, depolayabilmeleri ve gerektiğinde açığa çıkarabilmeleri, biyolojik iş yapabilmeleridir. Cansızlardan enerjice etkin olmaları ile ayrılırlar, doğal cansız evren enerji karşısında tümüyle edilgendir. Bu nedenle de bitki fizyolojisini biyolojinin temeli olan biyoenerjetiğin temel konularını anımsayarak incelemeye başlamak gerekir. ENERJETİK VE BİYOENERJETİK Adından anlaşılacağı üzere enerji bilimi olan enerjetiğin temel dalı olan termodinamik ısı, sıcaklık, iş enerji dönüşümleri ve türleri arasındaki ilişkileri, bu arada meydana gelen yan olayları inceler. Fiziğin bir anadalı olan termodinamiğin fiziksel özellikler ile enerji arasındaki ilişkiler de konusudur. Kimyasal termodinamik ise fiziksel özellik değişimleri yanında meydana gelen kimyasal dönüşüm ve değişimleri inceler. Termodinamik olgu ve olayları makro ölçekte inceler, yani olayın gelişme şekli, yolu neolursaolsun başlangıç ve bitiş noktalarındaki durumları ile ilgilenir. Örneğin çekirdek enerjisinin nükleer bombanın patlatılması veya bir santralda kontrollu olarak uzun sürede tüketilerek açığa çıkarılan miktarı aynı olduğundan termodinamik açıdan aynı olaydır. Termodinamiğin birinci yasası da bu örnekte belirtilen şekildeki kütle – enerji arası dönüşüm olaylarının tümüyledönüşümden ibaret olduğunu, kütle ve enerji toplamının sabit kaldığını belirtir. Yani bu dönüşümlerde kütle + enerji toplamında artış veya kayıp söz konusu olamaz. Yasanın tanımladığı kütle + enerji kavramının anlaşılır olması için madde ve enerjinin ölçülebililir büyüklükler olması gerekir. Bunu sağlayan da enerji ve kütlesi tanımlanmış olansistem kavramıdır. Termodinamikte inceleme konusu olarak seçilen, ilk ve son enerji + kütle miktarı bilinen, ölçülen ve değerlendirilen sistem, onun dışında kalan tüm varlıklar ve boşluk ise çevredir. Örneğin güneş sisteminin termodinamiği incelenmek istenirse uzay çevredir. Güneşin termodinamik açıdan incelenmesinde ise gezegenlerle uydular da çevre içinde kalır. Evren sistem olarak ele alındığında ise çevre olarak değerlendirilebilecek bir şey kalmadığından evrende enerji + madde toplamı sabittir, enerji veya madde yoktan var edilemez ancak enerji – madde dönüşümü olabilir. Burdan çıkan sonuç da maddenin yoğunlaşmış olan enerji olduğudur. Enerjiyi ancak maddeye veya işe dönüştüğü zaman algılayabildiğimiz, gözlemleyebildiğimiz için maddedeki gizli enerjiyi ölçemeyiz. İkinci yasa bütün enerjetik olayların kendiliğinden başlaması ve sürmesinin ancak sistemdeki toplam maddenin en az ve enerjinin en üst düzeyde olacağı yönde olabileceğini belirtir. Bu durum sağlandığında sistem dengeye varır, entropisi – düzensizliği – başıboşluğu (S) maksimum olur. Bunun tersi yönünde gelişen olaylar ise reverzibl – tersinirolaylardır. Örneğin canlının bir termodinamik sistem olarak oluşması ve büyüyüp gelişmesi tersinir, ölmesi ise irreverzibl – tersinmez olaylardır. Canlı sistemde ölüm termodinamik denge halidir. Aynı şey kimyasal tepkimeler içinde geçerlidir, dışarıdan enerji alarak başlayan ve yürüyen endotermik tepkimeler kendiliğinden başlayamaz ve süremez, birim sürede çevreden aldığı ve verdiği enerjinin eşitlendiği, enerji alışverişinin net değerinin sıfır olduğu denge durumunda durur, kinetik dengeye ulaşır. Ancak eksotermik, enerji açığaçıkarantepkimelerkendiliğinden yürüyebilir. Canlılığın oluşumu ve sürmesini sağlayan biyokimyasal sentez tepkimeleri de dengeye ulaşan reverzibl tepkimelerdir ve ancek ürünlerinin tepkime ortamından uzaklaşmasını sağlayan zincirleme tepkime sayesinde termodinamik dengenin kurulamaması ile sürebilir. Üçüncü yasa termodinamik bir sistemde entropinin, yani madde halinde yoğuşmamış olan enerjinin sıfır olacağı -273 derece sıcaklığa ulaşılamayacağını belirtir. Bitkilerdeki biyoenerjetik olayların anlaşılması açısından önemli olan diğer enerjetik kavramları ise entalpi, ve serbest enerji ile görelilik kuramının ışık kuantı ile ilgili sonucudur. Termodinamik incelemenin başlangıç ve bitim noktalarında ölçülen entalpi - toplam enerji farkı (DH) olay sonundaki madde kaybı veya kazancının da bir ölçüsü olur. Canlılarda çevreden alınan enerjinin azalmasına neden olan koşullarda bu etkiye karşı iç enerji kaynaklarından yararlanma yolu ile etkinin azaltılmasına çalışan mekanizmalar harekete geçer. Evrimin üst düzeyindeki sıcak kanlılarda vücut sıcaklığını sabit tutan bir enerji dengesinin oluşu çok zorlayıcı koşulların etkili olmasına kadar entalpi farkını önler. Entropinin ölçümü çok zor olduğundan sistemdeki düzensizlik enerjisi yerine entropi artışı ile ters orantılı olarak azalan iş için kullanılabilir, işe çevirilebilir serbest enerji (G)ölçülür. Serbest enerji sistem dengeye varıncaya kadarki entalpi farkının bir bölümünü oluşturur. Entalpi farkının entropi enerjisine dönüşmeyen, yani atom ve moleküllerin termik hareketliliklerinin artışına harcanmayan kısmıdır. Termik hareketlilik doğal olarak sıcaklığa, atom ve moleküllerin çevrelerinden aldıkları enerji düzeyine ve hareketliliklerine,hareket yeteneklerine bağlıdır; atom veya molekül ağırlığı, aralarındaki çekim kuvvetlerinin artışı hareketliliklerini azaltır. Bir sistemde serbest enerji artışı entropi enerjisi azalırsa da çevrenin entropi enerjisi artışı daha fazla olur ve 2. yasada belirtildiği şekilde sistem + doğanın entropisi sürekli artar. Canlı sistem ele alındığında canlının oluşup, büyümesi ile sürekli artan serbest enerji karşılığında çevreye verilen entropi enerjisinin daha fazla olmasını sağlayan canlının çevresine aktardığı gaz moleküllerinin termik hareketlilik enerjisi gibi enerji formlarıdır. Einstein’ın E = m . c 2 fomülü ile açıkladığı enerji – kütle ilişkisi sonucunda astronomların güneşe yakın geçen kozmik ışınların güneşin kütle çekimi etkisiyle bükülmeleri gözlemleriyle dahi desteklenen ışığın tanecikli, kuant şeklinde adlandırılan kesikli dalga yapısı fotosentez olayının mekanizmasının anlaşılmasını sağlamıştır. Kimyasal termodinamikte yararlanılan temel kavramlardan olan kimyasal potansiyel fizyoloji ve biyokimyada da kullanılan ve birçok canlılık olayının anlaşılmasını sağlayan bir kavramdır. Bir sistemdeki kimyasal komponentlerin her bir molünün serbest enerjisini tanımlar. Sistemde bir değişim olabilmesi, iş yapılabilmesi için bir komponentinin kullanacağı enerji düzeyini belirtir. Eğer değişim, dönüşüm sırasında bir komponentin serbest enerjisi artıyorsa bir diğer komponentinki daha yüksek oranda azalıyor demektir. İki sistem arasında kimyasal potansiyel farkı varsa bu fark oranında kendiliğinden yürüyen bir değişme olur ve iletim görülür. Bu suda çözünen katı maddelerin – solutların, pasif – edilgen şekildeki hareketini açıklamakta da kullanılan bir terimdir. Bu terimin su komponenti için kullanılan şekli su potansiyelidir. Kimyasal potansiyel basınç değişimi ile ilgili olayları da içerdiğinden su basıncı – hidrostatik basınç tanımı da kullanılır. Elektriksel potansiyel farkı da kimyasal potansiyelin bir şekli olduğundan sulu iyonik çözeltilerde katyonların katod durumundaki, anyonların da anod durumundaki sabit ve yüklü kutuplara doğru hareketine neden olur. Söz konusu potansiyellerin mutlak değerleri değil aralarındaki fark itici güçtür. İki nokta arasındaki basınç, derişim, elektriksel yük, serbest enerji farkı gibi farklılıkların tümü canlılıkta rol oynar ve karmaşık dengeleri yürümesini sağlar. Bu denge birarada bulunan komponentlerin birbirleri ile etkileşmelerinden etkileneceğinden etkileşim potansiyelinin de değerlendirilmesi gerekir. Bunun için kullanılan terimler ise aktiflik – etkinlik sabiti ve efektiv – etkin derişimdir. Etkin derişim, etkinlik sabiti yüksek maddenin veya maddelerin derişim farkına dayanarak sistemdeki değişim potansiyelini değerlendirir. Sistemin değişim potansiyelini ortaya çıkarır. Bu çerçevede su potansiyeli sistemdeki bir mol suyun sabit basınç altında ve sabit sıcaklıkta yer çekiminin etkisi sıfır kabul edilerek sistemdeki saf su ortamından etkin derişimin daha düşük olduğu yere gitme potansiyelidir. Yani hidrostatik basınç artışına paralel olarak su potansiyeli artar. Daha önceleri Difüzyon basıncı eksikliği ve emme basıncı, emme kuvveti şeklinde tanımlanmış olan su potansiyeli günümüzde en geçerli olarak benimsenen, kuramsal temelleri sağlam olan terimdir. BESLENME FİZYOLOJİSİ Bilindiği gibi canlıların ortamdan sağladığı, olduğu gibi tüketerek kullandıkları besin maddeleri büyük canlı gruplarında farklılıklar gösterir. Bitkiler aleminde de özellikle su bitkilerinin sudan, kara bitkilerinin topraktan sağladığı inorganiklerin çeşitleri ve özellikle oranlarında farklılıklar görülür. Tipik bitki besini olarak kullanılan elementlerin hepsi inorganik formdadır. Ancak bitki köklerinin organik maddelerden de yararlandığı görülmüştür. Saprofit ve parazit bitkiler ise konukçuldan inorganikler yanında doğrudan organik madde de sağlarlar. Canlıların tükettiği maddeleri oluşturan elementler canlılıktaki işlevleri açısından esas olan ve esas olmayan elementler olarak ikiye ayrılır. Günümüzde benimsenmiş olan ayırım bir elementin hücrede canlılık için esas olan bir molekülün yapısına girip, girmemesine göre yapılır. Bu da noksanlığı halinde bitkinin vejetativ gelişmesini tamamlayamaması ve karakteristik, tekrarlanır bazı belirtilerin açık şekilde ortaya çıkması ve element eksikliği giderilince ortadan kaybolması şeklinde kendini gösterir. Suyun hidrojeni yanında karbon canlıların yapısını oluşturan ve canlılığı sağlayan organik moleküllerin tümünde bulunduğundan en önemli elementlerdir, canlılığın temel taşları olan nükleik asit ve proteinlerin yapısına girdiğinden, azot birçok organik maddenin maddenin yapısında önemli bir yere sahip olduğundan temel besin elementidir. Fosfor da tüm canlılarda enerji metabolizmasındaki yeri nedeniyle temel elementtir. Oksijen de solunumdaki rolü ile anaerob mikrobiyolojik canlılar dışındaki bitkiler için önemi ile onları izler. Yeşil bitkilerin yaşamı için şart olan maddeler arasında miktar açısından temel besinleri su ve karbon dioksit ile oksijendir. Kemosentez yapan bakteriler için de farklı formları halinde alınsa da karbon temel elementtir. Bunun yanında inorganik azotlu bileşikler de besin olarak çok önemli yer tutar. Çünkü bazı Cyanophyta grubu ilksel bitkiler yanında Leguminosae ve Mimosoidae familyaları gibi bazı yüksek bitkileri ancak Rhizobium bakterilerinin simbiyont olarak katkısı ile havanın azotundan yararlanabilirler. Bu grupların dışında bitkiler havada yüksek oranda bulunan serbest azotu besin olarak kullanamazlar. Tüm canlılarda mutlaka ve yüksek oranlarda bulunması gereken bu elementler yanında besin olarak alınan elementler alkali ve toprak alkali mineral elementleri grubuna giren ve tüketimleri, gereksinim duyulan miktarları nedeniyle makroelement denen inorganiklerdir. Bu elementlerden çok daha düşük oranlarda gerekli olan ve daha yüksek miktarları ile toksik etki yapan mikroelementler konusunda ise farklı bir tablo görülür. Bitki gruplarında cins ve tür düzeyinde bile seçicilik, tüketim ve yararlanma ile yüksek derişimlerinin varlığına dayanıklılık, zarar görmeden depolayabilme farklılıkları görülebilen elementlerdir. Bitkiler aleminde bulunan elementlerin toplam olarak sayıları 60 kadardır. Bu elementlerin toplam bitki ağırlığına, organ ağırlıklarına, doku ve hücreler ile organellerin ağırlıklarına ve kuru ağırlıklarına oranları yaşam evrelerine, çevre koşullarına ve bunlar gibi birçok etmene göre farklılıklar gösterir. Bitkiler için yaşamsal önem taşıyan esas element sayısı 17dir. Makro elementler tipik olarak 1 kg. kuru maddede 450 mg. cıvarında olan arasındaki oranlarda bulunan C, O, 60 mg. cıvarındaki H, 15 mg. cıvarında olan N, 10 mg. kadar olan K, 5 mg. cıvarındaki Ca, 2 mg. cıvarındaki P, Mg ve 1 mg. kadar olan S elementleridir. Mikroelementler arasında yer alan esas elementlerden Cl ve Fe 0.1, Mn 0.05 ve B ve Zn 0.02, Cu 0.006, Mo 0.0001mg / kuru ağırlık düzeyinde bulunurlar. Makroelementler hücre yapısında yer alan, mikroelementler yapıya girmeyip metabolizmada etkin rol alan elementlerdir. Esas makroelementler olarak bitkilerin canlılığı için şart olanlar arasında P, S, Ca, K, Mg, Fe yer alır. Bunların yanında Na deniz bitkileri ile tuzcul olan yüksek bitkiler için esas makroelementtir. Esas mikroelementlerden Fe ve Mo özellikle yüksek bitkiler için, B birçok yüksek bitkiler ve V bazı algler için esas elementtir. Kükürt dışındaki mikroelementler özellikle canlılık için önemli bazı enzimlerin kofaktörü olarak işlev yaparlar. S ise özellikle kükürtlü amino asitler üzerinden sitoplazmik protein zincirlerinin kuvvetli bağlarla sağlam bir yapı oluşturması nedeniyle önemlidir. Se, Al gibi bazı iz elementleri alarak depolayan fakat metabolizmada kullanmayan, o element için seçici olmayan türler de vardır. BESİN ALIMI Su içinde serbest yaşayan bitkilerin besinlerini doğal olarak suda çözünmüş halde bulunan gaz ve katı maddeler oluşturur ve difüzyon, osmoz yolları ile alınır. Yüksek su bitkileri ise buna ek olarak zemine tutunmalarını sağlayan sualtı gövdeleriyle topraktan da beslenirler. Gaz halinde bulunan besinler tüm bitkiler tarafından yayınım – difüzyonla alınır. Canlılık için sürekli kullanılması gereken temel besinler olduklarından, bu gazlardan yararlanma yeteneği olan canlı hücrenin lümenine girip, protoplazmasına geçtiklerinde hemen kullanılırlar. Bu nedenle de yayımımla alınmaları süreklidir. Su ve suda çözünmüş olan katı besinler ise aşağıda görüleceği üzere difüzyona ek olarak osmoz, ters osmoz ve aktif alım yolları ile alınırlar. Atmosferde doğal şartlarda %0.03 oranında bulunan CO2 güneş ışınlarının ısıya dönüşür kuantlarını içeren kızılötesi, yani 1 – 10 m dalgaboyundaki kesimini soğurarak canlılığın sürmesini sağlar. Suda çözündüğünde karbonik asit oluşturarak pH değerini düşürür ve suyun çözme kuvvetini genel olarak arttırdığı gibi özellikle alkalilerin çözünürlüğünü arttırır. Bu şekilde de beslenmeyi ve mineral madde alımını kolaylaştırır. Mineral madde iyonları sudaki karbonik asit ve diğer organik asitlerle tuz yaparak tuz – asit çiftinin sağladığı pH tamponu etkisiyle canlı özsuyunda pH değerinin canlılığa zarar verecek düzeyde değişmesini, pH 4 – 8.5 aralığı dışına çıkması riskini azaltır. O2 de suda çözünen bir gazdır ve çözündüğünde red – oks tepkimelerine girer. Tatlı suda 20 derece sıcaklıkta hacimce %3 oranında çözünür. Havadan ağır olduğundan atmosferdeki oksijenin suyla teması ve doygunluğa kadar çözünmesi süreklidir. Likenler, kserofitler gibi bazı bitkiler havanın neminden su temininde yararlanır. Ayrıca hücreler arası boşluklardaki hava da bu şekilde gaz besin sağlar. Tüm bu gaz halindeki besin alımları yayınımla olur. Kütle Akışı ve Şişme ile Su alımı Sıvıların yerçekimi etkisiyle akışı ve benzeri olayları hidrostatik basınç farkı gibi potansiyel enerji farklılıkları sağlar. Bu şekilde DH değerinin sıfırdan büyük olduğu yer değiştirme olayına kütle akışı – “mass flow” denir. Bu tür olaylarda çözücü ve çözünen tüm maddelerin atom ve molekülleri aynı şekilde hareket eder. Kütle akışı vaküolde, hücrelerarası boşluklarda ve canlı hücreler arasında da plazmodezmler üzerinden olur. Canlılardaki kütle akışında kapilarite önemli rol oynar, çünkü hücre ve hücrelerarası serbest akış yolları ancak mikron ve askatları düzeyindedir. Kapilerden geçiş ise geçen sıvınınviskozitesi – akışkanlığı ile yakından ilişkilidir. Viskozite, akış hızı değişiminin sabit tutulması için gerekli enerji miktarı şeklinde de tanımlanabilir. Bu değer de her bir sıvı için özgül bir değerdir. Çünkü akışkanlık sıvının bir molekül tabakasının diğerinin üzerinden kaymasına karşı gösterilen dirençtir ve bu direnç sıcaklıkla azalır, çünkü ısıl hareketlilik artar, dirence neden olan fizikokimyasal ve kimyasal bağlar zayıflar. Suyun elektrostatik olarak yüksüz kapilerlerden kütle akışı ile geçiş miktarı ve hızı yüksektir, çünkü dipol su moleküllerinin birbiriyle yaptıkları bağlar suyun yüzey tansiyonuna – basıncına sahip olmasını sağlar. Suda bulunan lipofilik maddeler suyun bu özelliği nedeniyle su yüzeyinde toplanır ve su ile beraber hareket ederler. Suda çözünen maddeler ise yüzey basıncını değişen oranlarda değiştirerek kapiler hareketliliğini ve dolayısı ile de kendi iletimlerini etkilerler. Suda iyonlaşarak çözünen maddelerin kimyasal potansiyeli hidrostatik basınç veya yerçekimi etkisinden çok daha büyük bir enerji farkı yaratacak düzeyde olan elektrokimyasal potansiyelleridir. Kütle akışı kuru olan tohumların ortamdan su alarak hacim artışı göstermeleri gibi pasif, edilgen olaylarda önemli yer tutar. Alınan su yapısal protein ve polisakkarit zincirleri arasındaki boşluklara da girerek, adsorbe olur, yapışır ve hidrasyonlarına ve hacımlerinin artışına, canlı veya canlı artığı dokunun da şişmesine neden olur. Yayınım – Difüzyon ve Geçişme – Osmoz Yayınım olayında ise olayın başladığı ve bittiği veya dengeye vardığında atom ve moleküller arası ilişkileri farklıllık gösterir. Uçucu maddelerin sıvı veya katı formdan gaz faza geçerek yayınması ve suyun buharlaşması buhar basıncı farkı sonucunda başlayıp yürüyen bir yayınım olayıdır ve DH = 0 olduğunda net, gözlenebilir, ölçülebilir yayınım durur. İki kapalı kap arasında yayınımı sağlayacak bir açıklık oluştuğunda gazların bağıl basınç oranları, yani herbirinin özgül toplam enerjileri arasındaki farka göre değişen şekillerde yayınım gösterirler. Kısmi, oransal gaz basıncı ile difüzyon basıncının doğrusal ilişkisi nedeniyle bir karışımda yer alan maddelerin yayınım oranları değişir. Ayrıca her birinin sıcaklık ve karşı basınç değişimlerine tepkileri de farklılık gösterir. Tüm bu farklılıkların temel nedeni atom ve moleküler yapılarının, ağırlıklarının yani özelliklerinin farkından doğan termik hareketlilik ve serbest enerji farklılığıdır. Bu da maddeye has bir özellik olduğundan yayınım - difüzyon sabitesi adını alır. Difüzyon hızı geçişi sağlayan açıklığın veya seçiciliği olmayan membranın alanı, yayınım konusu maddenin iki taraftaki derişim farkı ve yayınım sabitesine bağlıdır. Yayınımın da itici gücü ısıl hareketlilik olduğundan sıcaklık artışı ile hızı artar, daha kısa sürede dengeye ulaşır, fakat denge noktası sıcaklıktan bağımsızdır. Difüzyonu başlatan ve yürüten derişim farkı olduğundan yayınıma konu iki taraf arasındaki uzaklık artışı olayın yürüme hızını global olarak azaltır. Çünkü yayınım moleküler düzeyde derişim farkı dilimleri halinde yürür. Bu nedenle de hücre ve organel düzeyindeki hızı çok yüksektir. Üç gaz formundaki besin olan su buharı, O2 ve CO2 için 20 derece sıcaklıkta ölçülen yayınım sabiteleri saniyede yayınım alanı olarak sırası ile 0.25, 0.20 ve 0.16 cm2 dir, yani katıların sıvı ortamdaki yayınım sabitelerinden ortalama 10(4) kat fazladır. Bunun da nedeni gaz ortamında çok daha seyrek olan moleküllerin ısıl hareketle çarpışma nedeniyle zaman ve enerji kaybının çok daha az oluşudur. Bu tabloya karşın fotosentez hızının ışık ve sıcaklık tarafından sınırlanmadığı durumlarda karbon dioksidin kloroplastlara kadar yayınımı için geçen sürenin sınırlayıcı olduğu belirlenmiştir. Aynı şekilde terleme hızının hücre çeperlerinden su buharı yayınım hızı tarafından sınırlandığı ve bu şekilde de bitkilerin stomalarından gereksiz su kaybını önleyen bir mekanizma olarak yarar sağladığı saptanmıştır. Elektrostatik yüklü maddeler ile kolloidal maddelerin çözeltiler arasında yayınımları gazların ve gazlarla aynı davranışı gösteren yüksüz maddelerinkinden farklıdır. Çünkü hareketlilikleri zıt yüklü tanecikler arasındaki çekim kuvvetlerinin rastlantısal olarak değişen etki düzeyine bağlı olarak değişir. Canlılarda ise çözeltide serbest olarak bulunan ve yapısal, sabit durumda yüklü moleküller söz konusudur. Bu karmaşık ilişkiler de bitkilerde yayınım olayının orta lamel ve hücre çeperlerinin elektrostatik yapılarına bağlı değişimler göstermesine neden olur. Bu ilişkiler hücre veya doku düzeyinde hücre çeperlerinin permeabilitesi – geçirgenliği ölçülebilir terimiyle belirtilir. Yüklü madde yayınımı yük durumları ile sabit ve hareketli olan maddelerin yük durumu arasındaki denge nedeniyle miktar ve hız açısından belli bir seçicilikle karşılaşmış olur. Geçişme - Osmoz difüzyonun özel bir halidir. Yarıgeçirgen, seçici zar yanlızca çözgeni veya çözgenle birlikte çözeltideki bazı çözünmüş maddeleri geçirirken bazılarını geçirmemesinin sonucudur. Osmoza giren her bir madde kendi termodinamik sistemindeki entropiyi en üst düzeye çıkartacak şekilde hareket ettiğinden, membrandan geçemeyen molekülün yoğun olduğu tarafta geçebilen maddelerin derişimi artar. Bu birikme sonucunda toplam madde artışı ve sonucunda da membranın o yanında hacım artışı olur. Hücreler arası madde aktarımında da bu şekilde özsuda çözünmüş ve membrandan geçemeyen madde derişimi artışı çözgen olan suyun oransal derişiminin azalmasına neden olduğundan su alınmasına neden olur. Sonuç olarak kütle akışı ve difüzyonda maddelerin akışı birbirinden bağımsız başlar ve yürürken osmozda maddelerin bağıl oranı etkilidir. Canlı hücre membranı suya karşı geçirgen özellikte ve özsuda çözünmüş madde miktarı yüksek olduğunda su alımı kendiliğinden yürür. Canlılar bu mekanizma sayesinde su alımını ortamda su bulunduğu sürece garanti altına almış olur. Gözlenen hücreler ve organeller gibi canlı yapılarda net su alımının hücrenin çeperi, komşu hücrelerin veya dıştaki sıvı ortamın hücre üzerindeki karşı basıncının etkisi ile dengeye vardığında duruşudur, bu sayede yapının şişerek patlaması engellenmiş olur. Bu basınca da geçişme – osmoz basıncı, osmotik basınç denir. Çünkü büyüklüğü osmotik alımla sağlanan çözünmüş madde miktarı ile doğrudan ilişkilidir. Sonucu olarak da bir hücrenin hacminde değişime neden olan etkin osmotik basınç farkı yarı – geçirgenlik ve seçicilik sayesinde yayınımla sağlanabilecek olan madde hareketi miktarından çok daha yüksek olur. Temeldeki denge ise aynı türden iyonların membranın iki yüzü arasındaki kimyasal potansiyel farkının sıfır olmasıdır ve hidrostatik basınç farkının bu dengeye katkısı ihmal edilebilecek kadar küçüktür. Ana değişken ise membranın iki yüzü arasındaki elektriksel potansiyel farkıdır ve küçük bir orandaki değişimi bile çok daha büyük orandaki kimyasal potansiyel farkını, yani derişim farkını dengeleyebilir. Gene bu mekanizma canlı hücreye membrandaki iyonik madde kompozisyonunu düzenleyerek kolayca iyon alımı olayını denetleme olanağı verir. 20. yüzyılın başlarında Nernst başta olmak üzere araştırıcılar tarafından kuramsal temelleri atılarak asrın ortalarında kesinleşen bu bulgular 1967 yılında Vorobie tarafındanChara tatlısu alginin K iyonu alımı üzerindeki deneylerle kanıtlanmıştır. Hücre çeperi gibi hücrenin denetimi dışında kalan ve kütle akışı ile difüzyonun geçerli olduğu kısım için kullanılan terimlerden biri belirgin serbest alan (BSA) – “apparent free space”dir. Su alımı için iç osmotik basıncın dış ortamdan yüksek, hücre özsuyunun hipertonik olması gerekir. Yani toplam çözünmüş madde derişimi daha yüksek olmalıdır. Bu durumda herbir maddenin difüzyon basıncı farklı olacağından su moleküllerini geçiren zardan su kendi kinetik difüzyon dengesini sağlayıncaya kadar geçiş yapar. Hipertonik hücre turgor halindedir, sitoplazma çepere yapışık durumdadır. Çünkü osmotik basınç artışı çeperin karşı yöndeki basıncı ile dengelenmiştir. Hücre özsuyununizotonik osmotik basınca sahip olması halinde bir kısım suyunu kaybeder ve sitoplazmanın çeperden ayrılmaya başladığı görülür. Bu duruma sınır plazmoliz adı verilir ve izotonik osmotik basıncın ölçümünde kullanılır. Hücrenin iç osmotik basıncının dış basınçtan daha düşük olduğu hipertonisite durumunda sitoplazma çeperden ayrılarak ortaya toplanmaya başlar, hücre plazmolize olur. Hücrede plazmoliz ilerledikçe klasik deyimi ile emme kuvveti artar, daha yeni terminolojideki karşılıkları ile difüzyon basıncı eksikliği -“diffusion pressure deficit” – DPD” (DBE), su potansiyeli artar. Bunun da nedeni serbest haldeki suyun serbest enerjisinin adsorpsiyon veya adezyon, kohezyon ile tutulmuş olan sudan az oluşudur. Hücrenin yeniden turgor haline geçme,deplazmolize olma, yani plazmoliz durumundan kurtulma eğiliminin sonucudur. Tam turgor halindeki hücrede ise iç ve dış basınçlar eşit olduğundan su potansiyeli, yani net su alımı sıfır olur. Burada devreye doğal olarak hücre çeperinin elastiklik derecesi de girer. Bu nedenle ve henüz alöronlar gibi susuz bir hacim oluşturan yapılar olmadığından hacme oranla su miktarı meristematik dokularda yüksektir. Plazmoliz sırasında protoplazmanın tümüyle küçüldüğü, büzüldüğü deplazmolizde ise şiştiği görülür. Hücre özsuyunda serbest çözücü durumundaki suyun kaybından sonra sitoplazmik proteinlerin hidratasyon kaybı - dehidratasyonu sitoplazma hacminin değişmesine neden olur. Difüzyon basıncı eksikliğinin en yüksek olduğu tohumlar, dehidrate likenler gibi yapılarda su alımı ile deplazmoliz sertleşmiş alçıyı parçalayabilecek oranda hidratasyona ve deplazmolize neden olur. Hidratasyon termik hareketliliğin ve entropinin artışına neden olarak yapısal protein, sellüloz gibi moleküllerin zincirlerininin gevşemesine ve daha kolay bozunur hale gelmesine neden olur. Bu yüzden bir süre ıslatılmış olan bakliyat daha kolay pişer. Hücreler arasında su alışverişinin debisi bu çerçevede çeper ve membranların geçirgenliği ile DBE farkına bağlıdır. Fakat izotonik çözeltiler arasında bile plazma membranları madde alışverişini sağlar. Su içinde yaşayan bitkilerde süreklilik gösteren bu durumda madde alışverişini sağlayan kütle akımı ve özellikle de elektroosmozdur. Elektroosmoz bir iyon iletimi mekanizması ise de polarite nedeniyle hidrate olan iyonların yani kinetik taneciklerin çevrelerindeki su moleküllerini sürüklemesi sayesinde suyun da taşınmasını sağlar. Kinetik tanecikler iyonlar ile onları çeviren dipol su moleküllerinden oluşan, yani birarada termik hareketliliği olan tanecikler olup toplam kütlelerinin daha yüksek oluşu ve elektrostatik bağların zayıf oluşu nedeniyle termik hareketlilikleri yüksek taneciklerdir. Membranlardaki porlar boyunca yaratılan elektrik alanları, yani endotermik olarak belli bir yönde kutuplandırılan polar molekül dizilişleri üzerinden kayarak iyonik maddelerin taşınması gerçekleştirilir. Bu konu mineral madde beslenmesi içinde ele alınacaktır. Su moleküllerinin iyonlara kendiliğinden yapışarak kinetik tanecikler halinde iletilmesi iyon kaynağı durumundaki hücrede serbest su derişimini azalttığından DBE artar. Bu tür enerji gerektiren iyon ve su beslenmesine aktif madde alımı adı verilir. Örneğin tuzcul bitkiler, halofitler osmotik basıncı yüksek tuzlu topraklarda dahi beslenmelerini sağlarlar. Kserofitler çok kurak koşullarda kuru topraklardan su alabilirler. Aktif iyon alımı yaygın görülen bir olaydır, buna karşılık aktif su alımı özel durumlarda görülür. Bu nedenle aktif iyon alımı bitki yaşamında daha önemli yer tutar. Mineral Madde Beslenmesi Mekanizmaları Elektroosmozun bir iyon iletimi mekanizması olduğu, hidrate iyonların su moleküllerini sürükleyen ve membranlardaki porlar, kapilerler boyunca yaratılan elektrik alanları, yani potansiyel farklılıkları ile iyonik madde taşınması gerçekleştirdiği belirtilmişti. Elektriksel potansiyel farkı DE, elektriksel yükün bir noktadan diğerine gitmesi ile yapılan işin ölçütüdür. Daha önce değinildiği üzere yukarıda kısaca incelenmiş olan itici güçlerden de çok daha daha etkindir. Biyolojik bir membranın iki yanındaki E farkı ölçümleri hidrostatik veya kimyasal potansiyel farkı ölçümlerinden elde edilen sonuçlarla karşılaştırıldığında binlerce kez daha büyük olduğu görülmüştür. Bu nedenle de organeller ve hücreler arasında elektriksel yüklü madde iletimi çok daha etkin olarak yürür. Elektriksel bir yük ile DE arasında sabit bir ilişki vardır ki buna kapasitans denir, yani bir net yük biriminin yarattığı DE ile arasındaki sabit, özgül oranı belirtir. Yararlanılan sonucu ise bir bölgede yüksek oranlı potansiyel düşmesine neden olmadan serbest yük bulundurma, depolama kapasitesi – sığasının ölçüsü olmasıdır. Biyolojik membranların kapasitans ölçümleri bu değerin koşullardan oldukça bağımsız, sabit kalan bir değer olduğunu göstermiştir. Bitki hücrelerinde de bu değer tipik olarak -100 mV ölçülmüştür. Yükü membranların içindeki anyon derişiminin katyonlarınkinden yüksek olduğunu, değeri ise membranın iki yanındaki potansiyelin pek farklı olmadığını göstermiştir. Aynı şekilde bitki hücrelerindeki toplam iyon derişiminin de tipik olarak 0.1M düzeyinde ve koşullardan oldukça bağımsız sabit bir değer olduğunu belirlenmiştir. Bu derişimde 100mV kapasitans ise anyon / katyon oranının 100 000 olduğunun göstergesidir. Buna karşılık bitkilerde kuru ağırlık bazındaki mineral madde katyon /anyon derişimi oranı ortalama olarak 10 dur. Hücrelerin çevrelerinden önemli oranda katyon almalarına karşın elektrostatik dengenin ters yönde oluşmasının nedeni organik moleküllerdeki anyonik grupların yüksek oluşudur. Bu sayede organik metabolizmayı denetleyerek sürekli şekilde katyon alımına açık bir dengeden yararlanırlar. Güneş ışınları ve hava gibi topraktaki mineral elementlerinden daha kolay sağlayabildikleri kaynaklardan yararlanarak sentezledikleri organik anyonik maddeler sayesinde mineral katyonlarının alımını denetim altında tutabilirler. Yüksüz maddelerden farklı olarak iyonların derişimindeki artış aralarındaki uzaklığın, termik hareketlilikleri ile çarpışma olasılığını üssel olarak artışına yol açacak şekilde azalması demektir. Çünkü elektriksel çekim gücünün etkisi katlanarak büyür. Bağlanmaları ise, iyonik bağın kuvvetli oluşu nedeniyle bağlanma öncesindeki ısıl hareketliliklerinin önemli oranda azalmasına neden olur. Bir sistemdeki hareketlilik komponentlerinin hareketliliklerin toplamı olduğundan sistemi etkiler. Elektriksel yük elektriksel alan yarattığından etkisi çok yönlüdür ve nötrleşmesi ile diğer komponentler üzerinde çok yönlü etkiler yaratır. Bu nedenle de bir iyon türünün aktivite sabitesi çözeltisindeki tüm iyonların özellik ve derişimleri ile ilişkilidir. İyonun değerliliği arttıkça etkinliği de arttığından hücre özsuyu gibi iyonca zengin bir çözeltide iyonik aktivite değişimleri yüksek oranlı olur. Bu sayede de kara ve su bitkileri çok farklı özelliklerdeki topraklara, sulara adapte olarak yaşama olanağı bulabilirler. Gene canlıların denetimini sağlayan bir olgu da iyonların canlı membranın iki yanındaki aktivitelerinin dengeye varmasının iyonların iki yandaki aktiviteleri yanında membranın iki yüzü arasındaki elektriksel potansiyel farkına daha da kuvvetle bağlı oluşudur. Bu sayede de membranın elektriksel potansiyelini membran proteinleri ve lipid / fosfolipidleri ile denetleyebilen hücre dengeyi kurma olanağı bulur. Bu mekanizma hücrenin gereksinimine göre iyonları seçici olarak alması açısından önemli rol oynar. İyonların lameldeki porlardan ve plazmodezmlerden geçişinde iyon yükü / çapı ilişkisine bağlı olan seçici bir mekanizma oluşur. Donnan Dengesi Benzer şekilde örneğin bitki hücre çeperindeki orta lamelde yer alan pektik asitlerin karboksil kökü, membran lipidleri arasındaki fosfolipidler gibi sabit iyonların yerleştiği iyon kanalları kütle akışı ile mineral iyonlarının ile geçişine elektrokimyasal direnç gösterir. Görünür serbest alanda dahi iyonların suyla birlikte hareketine engel olur. Sitoplazmik membranlardaki lipidlerin çok yüksek direncinin fosfolipidlerce dengelenmesinde olduğu gibi direnci amfoterik karakteri nedeniyle değişken olan proteinler seçici bir denetim sağlar. Protein helislerinin iyon kanalı görevi oluşturdukları porun girişinde serin gibi polar amino asitlerin bulunmasına bağlıdır. Bu ( – ) yüklü amino asitler katyon difüzyonunu destekleyerek seçicilik sağlar. Porların işleyişinin anlaşılması sayesinde porları kapayan maddelerin keşfi 1991 tıp nobelini alan ilaç grubunun bulunmasını sağlamıştır. Küçük mineral iyonlarını içeren çözeltiler membrandaki sabit iyonik moleküllerle aralarında Donnan potansiyeli denen elektriksel bir potansiyel farkının doğmasına ve Donnan dengesi adı verilen dengenin oluşmasına neden olur. Bu dengenin de sağlanması için zıt yüklü maddelerin ters yönde geçişi veya suda çözünmeyen formlarının çözünür hale dönüştürülmesi gerekir. Elektrostatik Donnan dengesinin çeşitli ölçeklerde oluşması hücre içi ve hücreler arası iyonik maddelerin taşınımında ve dağılımında önemli rol oynar. Bu terimle belirtilen olayın ayırt edici temel özelliği hareketi sağlayan difüzyon potansiyel farkının membranın bir tarafındaki sulu çözelti ile membranın diğer tarafta kalan yüzü arasında oluşmasıdır. Sitoplazmadaki nükleik asitler, fosfat grupları ile ve proteinler de karboksilleri ile Donnan fazları oluştururlar. Bu anyonik gruplar membranın her iki tarafındaki katyonları kendilerine çekerek yönlendirirler. Bu şekilde de net olarak bir geçişmenin görülmediği elektrostatik bir denge kurulur. Sıvı fazdaki katyonların membrana yönlenmesi anyonların da ters yönde artan bir derişim değişimi oluşturmalarına neden olur. Termik hareketliliğin artışı bu dengenin sarsılmasına ve hareketli iyonların elektriksel potansiyel farklılıkları yaratmasına, bu arada oluşan kimyasal potansiyel farklarını dengeleyecek şekilde de geçişme yapmalarına neden olur. Canlı hücre çözünmüş maddelerin derişimini ilgili maddeleri suda çözünmeyen bileşikleri haline dönüştürerek ortamdan uzaklaştırmak veya tersine tepkimeyle serbest hale geçirerek de denetim altında tutar. Çözünür maddelerin çözünmeyen bileşiklerine dönüştürülmesi entropi azalmasına neden olan kimyasal bağlanma ile sağlanabildiğindenendojen, enerji harcanarak yürütülen aktif bir olaydır. Ancak canlı hücrede gerçekleşebilir. Bu olayın temelinde iyon aktivitesi ve bu değerin özgüllüğünden doğan sabitesi yatar. İyon aktivitesi iyonun derişimine bağlı kimyasal ve yüküne bağlı elektriksel potansiyellerinin açıklayamadığı bazı konuları açıklamakta kullanılan bir terimdir. Yükleri eşit olan iki iyondan kütlesi küçük ve elektron sayısı az olanın yükünün dipol su moleküllerini çekerek çevresine toplama gücü daha fazladır. Çevresinde daha kalın bir su zarfı oluşturur. Sözü edilen denge, seçicilik sonucu bir taraftan diğerine geçişi kısıtlanan veya engellenen iyonik maddelerin birikmesine neden olur. Bu birikimin konusu olan yüklü maddeler serbest halde kalamadığından zıt yüklü iyonlarla birleşerek çözeltinin nötralizasyonununu sağlar. Bu nötralizasyon dengesi için gereken iyonik maddelerin çözünür hale geçmesi veya dışarıdan alınması gerekir. Örneğin Ca++ iyonu, iyonik yük / su zarfı oranı büyük olduğundan porlar üzerinde büzücü etki yaparak su zarfı büyük ve iyonik yükü küçük iyonların geçişini kısıtlar, K + iyonu ise tersine olarak şişirici etki yapar ve bu iyonların geçişini kolaylaştırır. Genelde bitki hücrelerinin yoğun şekilde K, Na ve Cl alış verişi yaptığı görülür. Bu iyonların hareketlilikleri de membranlarda potansiyel farklarının doğmasına neden olur ve Cl net yükün iki taraftaki dağılımının sıfıra eşitlenmesini sağlar. Goldmann denklemi ise K, Na ve Cl iyonu geçirgenliğinin büyük oranda K seçiciliği yönünde olduğunu göstermiştir. Elektroosmoz da membrandaki bir porun iç yüzeyinde sabit halde dizilmiş iyoniklerin yüklerinin tuttuğu su zarfları zıt yüklü iyonik maddelerin su zarflarını çekmesi sonucu yürüyen osmotik alımdır. Bu şekilde oluşan elektriksel alan membranın iki tarafında elektriksel yük farklılığı doğurur. Bu da sabitlenmemiş kinetik taneciklerin kütle akışı ile çekilerek ters yönlü bir alan oluşturmasına neden olur. Bu iki zıt yönlü alanın oluşumu sırasında doğan hareketlilik ile su molekülleri sürüklenir ve iletilir, elektroosmotik su alımı olur. Benzer şekilde membran veya çeperde pektik veya proteinik iyonlara zayıf -H bağları gibi bağlarla tutulmuş, adsorbe olmuş olan zıt yönlü yonlar yerlerini alabilecek başka iyonlarla yer değiştirerek serbest hale geçer ve iletilir. Bu olaya da iyon değişimi adı verilir. İyon değişiminde aynı yüklü iyonlar birbirini ittiğinden dengeye çabuk ulaşılır, yani az miktarda madde bu olaya girebilir. Bağlanmayı sağlayan kuvvet adsorpsiyon kuvvetinden daha yüksek enerjilidir, kopması daha zordur. Ancak iyonlaşmış asidik veya bazik maddelerin hidroksonyum ve hidroksil veya karboksil kökleri bağlanmış olan katyon veya anyonların yerini alabilir. Bu arada açığa çıkan hidroksonyum ve hidroksiller de su oluşturduğundan su iletimi de sağlanmış olur. Bu olayların tümünde hidroksonyum ve hidroksil iyonları önemli rol oynadığından membranların ve özsuyun pH değeri ve değişimleri önemli rol oynar. Hücre organik asit sentezi ile pH ve amfoterlik denetimi, sentez yolu ile özsudaki serbest maddeyi bağlama veya başka maddeye dönüştürme gibi yollarla kimyasal potansiyel artışı yönünde aktif alım yaparken solunum enerjisi kullanır ve solunumun hızlandığı görülür. Ayrıca osmotik basınç ölçümlerinin kriyoskopik yöntemle yapıldığında sınır plazmoliz yöntemiyle elde edilen değerlerlerden farklı değerler vermesi ek bir su potansiyelinin olduğunu göstermiştir. Birçok bitki türünde yerüstü organları kesilerek terlemenin emiş kuvveti ortadan kaldırıldığında da kök ksileminden su salgılanması, kış uykusu kırılan birçok odunlu türünde daha hiç yaprak oluşmamışken sürgünlere su yürümesi kök basıncı denen aktif su alımının ve pompalanmasının kanıtlarıdır. Bu basıncın gün içinde değişim göstermesi, solunum inhibitörleri ve bazı bitki hormonları gibi uygulamalarla durdurulabilmesi de göstergeleridir. Aktif alım ve iletimin önemli bir göstergesi iyonun içine girdiği membranın iç tarafında, yani sitoplazma veya organelin içinde elektrik yükü artışı olmasıdır. Pasif alımda elektriksel nötralliği sağlayacak şekilde zıt yüklü iyon alımı veya aynı yüklü iyonun boşaltımı söz konusudur. Aktif geçişde membranın iki yüzü arasında da membranın kapasitansı ile orantılı olarak belli miktar membran potansiyeli farkı oluşur. Bu fark kısa bir süre sonra boşalarak sıfırlanır ve sonra tekrar artar, bu mekanizmaya da iyon pompası adı verilir. İyon pompası çalışınca membrandaki pasif geçiş olayları da doğal bir şekilde etkilenir ve membrandaki değişimi dengeleyecek yönde farklılaşır, difüzyon potansiyeli artışı ile elektrik potansiyelinin düşmesi sağlanır. Bitki hücresi membranlarının kompozisyonuna göre elektriksel dirençleri 1 – 8 Kohm / cm2 arasında değiştiğinden pompaların etkinliği membran kompozisyonunun denetlenmesi yolu ile hücre tarafından denetlenebilir. Bu sayede de bitkiler tuzlu topraklara dahi adaptasyon sağlayabilir. Membran direncinin yüksek oluşu, pompanın etkili çalışması ile aktif iletimin neden olduğu potansiyel farkı da arttığından saniyede 20 pikomol / cm2 gibi yüksek bir debi ile iyon alınabilmektedir. Aktif iletimin bir özelliği de pasif olarak yürüyen diğer olaylara göre sıcaklık değişimlerinden çok daha büyük oranda etkilenmesidir. Pasif olayların Q10 değeri yaklaşık olarak 1 civarında iken aktif alım ve iletimde bu değer birçok enzimatik olayda olduğu gibi 2 civarındadır. Bunun da nedeni membranın yaptığı enerji bariyeri etkisidir. Tıpkı enzimatik tepkimelerin aktivasyon enerjisi gereksinimindeki gibi aktif alımın olabilmesi için bu enerji düzeyinin aşılması gerekir. Bu nedenle aktif iyon alımı mekanizması bir pompaya benzer şekilde çalışır. Gerekli enerji depolanıncaya kadar alım işlemi kesintiye uğrar. Sıcaklık artışı da bu mekanizma aracılığı ile etkili olur. Aktif iyon alımının enzim kinetiğindeki Michaelis-Menten denklemine uyan değişimleri enzimler aracılığı ile yürüyen bir olay olduğunu göstermiştir. Bu tür olaylara enerji sağlayan madde bekleneceği üzere ATP’dir ve ATPaz enzimi aktivitesi de olayın denetimini sağlar. ATP hidrolizi ile açığa çıkan hidroksonyum iyonları ise ters yönde hareket ederek elektrostatik dengeyi sağlar. En iyi bilinen Na+ / K+ ATPaz’dır. İki peptid çiftinden oluşur ve Mg++ tarafından katalizlenen ATP hidrolizine bağımlıdır. Çeşitli iyon pompaları olup belli iyonlar için seçici oldukları bilinmektedir. Aktif alımın iyon seçici özelliği vardır ve yukarıda anlatılan mekanizma bunu açıklamak için yeterli değildir. Bu nedenle 1930 larda seçiciliği olan aktif taşıyıcı moleküllerin varlığı fikri ortaya atılmıştır. Deneyler benzer K+, Rb+ iyonlarının ve Ca++ ile Sr++ iyonlarının aynı taşıyıcı için rekabet ettiğini, bazı hücrelerde K+ iyonunu alıp, Na+ iyonunu boşaltan ve aynı mekanizma ile Mg++ ve Mn++ için çalışan diğer bir pompanın olduğu, Cl-, B- ve I- taşıyan tek bir sistem olduğunu gösteren deneysel veriler elde edilmiştir. Bu kadar seçici maddelerin ancak proteinler olabileceği belirtilmiş ise de 50 yıl kadar uzun bir süre kesin kanıtlar ortaya konamamıştır. Aktif pompaların varlığının bir kanıtı da dıştaki iyon derişiminin artışı ile artan solunum ve iyon alımının belli bir derişime ulaşıldıktan sonra doygunluğa erişmesidir. Bitkilerde bu değer tipik olarak 1 – 10 mmol/ gr. taze ağırlık – saatdir. Aktif alım mekanizmalarının ortaya çıkarılıp genel çerçevesi ortaya çıkarıldıktan sonra iyon alımının büyük oranda pasif şekilde alındığı ve aktif alımın hücrenin gereksinim tablosuna göre belli iyonların seçici olarak alımında rol aldığı, tamamlayıcı olduğu anlaşılmıştır. Yüksek Bitkilerde Su ve Mineral Madde Beslenmesi Tohumun şişme ile su almasından sonra yeni bir bitki oluşturmak üzere büyüme ve gelişmesi başladığında ilk olarak gelişen ve işlev görmeye başlayan organı kök taslağından oluşan köktür. Tohumun kotiledon kısmında depolanmış olan organik maddelerin sindirimi ve solunumla elde edilen madde ile enerji fotosentetik organların yeni metabolik maddeleri sağlayabilecek hale gelmeleri için gereken büyüme ve gelişme için yeterlidir. Fakat tohumun serbest akış ve hidrasyon ile kazandığı su ile şişmesinin sağladığı su ortalama %80 – 90 oranında su içeren bitkinin oluşması için çok yetersizdir. Bilindiği gibi kökün su ve mineral beslenmesini sağlayan yapılar emici tüylerdir. Kaliptranın arkasındaki meristematik bölgeden sonra gelen genç hücrelerin boyuna büyüme bölgesini izleyen gelişme ve farklılaşma zonunun epidermisinde görülürler. Canlı epidermis hücrelerinin enine eksende uzayarak tübüler çıkıntılar oluşturması ile ortaya çıkarlar. Yüksük hücreleri gibi dış yüzleri kaygan pektik maddelerle kaplıdır. İşlevsel ve fiziksel olarak ömürleri çok kısadır ve sürekli büyüyen kökün ileri doğru büyümesi sırasında yerlerini yenilerine bırakırlar. Bitki türlerinin su için rekabet gücünde kökün büyüme hızı yanında emici tüylerin çevrim hızı da önemli yer tutar. Hidrofitik bitkilerin su ve mineral beslenmesi yukarıda anlatılmış olan genel mekanizmalarla olur. Kara bitkilerinin beslenmesi ise daha geniş bir çerçevede ele alınarak anlaşılıp, değerlendirilebilir. Toprak Yapısı ve Su Verimliliği Toprağın bitkilere su sağlayabilme potansiyelini belirlemek üzere kullanılan Tarla Kapasitesi, Daimi Solma Noktası veya Yüzdesi, Su Basıncı (P), Su Tansiyonu, Nem eşdeğeri, Su Potansiyeli veya Yayınım Basıncı Eksikliği, Toplam Toprak Suyu Stresi, Kılcallık Kapasitesi gibi birçok terimler vardır. Burada konu bunlar arasında en yaygın olarak kullanılan bazı terimlerle ele alınacaktır. Toplam toprak su stresi, (Total soil moisture stress) konuya enerjetik açıdan yaklaştığı için bu konudaki en bilimsel terimdir. Konuya toprakta bulunan suyun serbest enerjisini azaltan iki temel kuvvet grubunun etkinliği çerçevesinde yaklaşır ve toprak suyunun serbest enerjisini azaltan bu iki grubu : Toprak suyu tansiyonunun ögeleri olan hidrostatik kuvvetler, yerçekimi ve adsorpsiyon kuvvetleri, Toprak çözeltisinin osmotik kuvvetleri olarak tanımlar. Hidrostatikler bilindiği gibi su basıncı, yüzey gerilimi gibi kuvvetler, adsorpsiyon kuvvetleri de su ile toprak kolloidlerini oluşturan kil gibi mineraller ve organik maddelerle su arasında etkili olan, suyun yerçekimi etkisini yenebilmesini sağlayan kuvvetlerdir. Osmotik kuvvetler de topraktaki su çözeltisinin içerdiği iyonlarla ilişkilerinin sonucu olan kuvvetlerdir. Toprak çözeltisinde çözünmüş iyon derişimi suyun azalması ve çözünür iyon miktarı artışı ile artar. Yani toprak kurudukça su alımı zorlaşır, kuraklığın zorlayıcı etkisi

http://www.biyologlar.com/bitki-fizyolojisi-bolum-2

Hücre teorisi

1)Bütün canlılar hücrelerden meydana gelmiştir. 2)Hücreler bağımsız hareket ettikleri halde birlikte iş görürler. 3)Hücreler bölünerek çoğalırlar. Bilinen en büyük hücre deve kuşu yumurtasıdır.Bilinen en uzun hücre ise sinir hücresidir. Hücreler ökaryot ve prokaryot olmak üzere iki kısımda incelenir. Prokaryot hücre: Kalıtım maddesi etrafında çekirdek zarı bulunmayan ve ribozom hariç hücre organellerine sahip olmayan ilkel hücre tipidir. Bakteri ve mavi – yeşil alg örnek verilebilir. Ökaryot hücre Kalıtım maddesi etrafında çekirdek zarı bulunan ve hücre organellerine sahip olan gelişmiş hücre tipidir. Ökaryot hücre üç kısımda incelenir. 1) HÜCRE ZARI · Yağ,protein az miktarda karbonhidrattan oluşur.Hücre zarının yapısı akıcı-mozaik zar modeli ile açıklanır.Bu modele göre zar; yağ denizinde yüzen proteinlerden oluşmuştur. · Karbonhidratlar hücre zarındaki yağlarla birleşerek glikolipid, proteinlerle birleşerek glikoprotein şeklinde bulunur.Bunun sağladığı avantaj ise hücrelerin birbirini tanıması ve bağışıklıktır.Hücre zarının özgüllüğünü veren kimyasal madde glikoproteindir. Glikolipidi ve glikoproteini golgi sentezler. · Madde giriş-çıkışı proteinler üzerindeki porlardan olur. · Zarın özellikleri : Canlıdır,saydamdır,esnektir ve seçici geçirgendir. · Zardaki proteinler enzim görevi yapar. · Zarın görevleri : Hücreyi dağılmaktan korur. Hücreye şekil verir. Hücreyi dış etkilerden korur. Madde alışverişini sağlar. Zarın seçici-geçirgen olması onun canlı olduğunu gösterir. Hücre çeperi cansızdır,esnek değildir,tam geçirgendir.Hücrenin dayanıklılığını arttırır, hücreye şekil verir.Üzerindeki deliklere geçit denir. Selülozik yapıdadır. Prokaryot hücrelerde de bulunur ama yapısı selülozik değildir. 2) SİTOPLAZMA Hücre zarı ile çekirdek arasını dolduran, canlı, renksiz, yarısaydam, suda çözünmeyen bir sıvıdır. İki kısımdır. a) Sıvı kısım: Su,protein,yağ,karbonhidrat,mineral,vitamin,RNA çeşitleri,nükleotidler,ATP ve enzimler gibi organik ve inorganik maddelerden oluşmuştur Görevi: 1) Biyokimyasal reaksiyonlar için zemin oluşturmak 2) Organellere yataklık etmek. 3) Rotasyon ve sirkülasyon hareketleri ile organellerin hareketini sağlamak. b) Organeller:Özel yapı ve görevi olan sitoplazmik cisimlerdir. ENDOPLAZMİK RETİKULUM Hücre zarından çekirdek zarına kadar uzanan zarlı kanallar sistemidir. Memeli alyuvarı hariç bütün çekirdekli hücrelerde bulunur. Hücre içine ve dışına madde taşır.Bazı maddeleri depolar.(Ca ve protein). Çekirdek zarı ve golgiyi yapar.Hücreyi bölmelere ayırarak,sitoplazmadaki asidik ve bazik tepkimelerin birbirini etkilemeden yapılabilmesini sağlar. Üzerinde ribozom bulunanlarına granüllü ER; bulundurmayanlara da granülsüz ER denir. Granüllü ER enzim salgılayan hücrelerde, granülsüz ER yağ sentezleyen hücrelerde çoktur. GOLGİ Çekirdeğe yakın bulunur.Hücre zarı yapımına katılır. Salgı maddelerin yapılması,paketlenmesi ve salgılanmasından sorumludur.Onun için süt bezi, tükrük bezi,ter bezi gibi salgı yapan hücrelerdeki sayısı diğer hücrelerdekilere oranla daha fazladır. Enzimleri paketliyerek lizozomu oluşturur.Hücre zarı yapımına katılır. Glikoprotein,lipoprotein,mukus,bağ dokusu ara maddesi ve ayrıca bitkilerde selülozlu maddeler salgılar. Memeli alyuvarı hariç bütün çekirdekli hücrelerde bulunur. LİZOZOM Büyük moleküllü besinleri parçalar.Kurbağa larvalarında kuyruğun kopması,salgılama dönemi biten memelilerde süt bezlerinin körelmesi,pasif kalan kasların küçülmesi,harap olmuş dokuların, yaşlı alyuvarların ve vücuda giren mikropların yok edilmesi lizozom sayesindedir. Fagositoz ve pinositoz yapan hücrelerde çoktur.ÖRNEK:Akyuvar hücresi ve tek hücreliler. Lizozom parçalanırsa hücre kendini sindirir.Buna otoliz denir. Lizozomun etrafındaki zar golgiden oluşur. İçerisindeki enzimler ribozomlarda üretilir. Üretilen enzimler ER ile taşınır. ER ile taşınan enzimler golgide paketlenerek lizozom oluşturulur. · Yani lizozomun oluşmasında ribozom,golgi ve ER etkilidir. NOT 1 : (Bazı kitaplara göre)Hayvanlara özgüdür.Bitkilerde ise lizozom benzeri yapılara fitolizozom denir. RİBOZOM Bütün hücrelerde bulunan en küçük organeldir. Protein ve rRNA’dan oluşur.Çekirdekçikte üretilir. Zarsızdır ve iki birimdir.Üst birim(büyük birim) protein,alt birimse(küçük birim) rRNA’dan oluşur. Protein ve enzim sentezler. Granüllü ER ve çekirdek zarı üzerinde,mitekondri ve kloroplastın sıvısında ve ayrıca sitoplazma da bulunabilir. Yoğun protein sentezi sırasında yan yana gelerek polizomları oluştururlar. Her canlıda ribozomların farklı olmasının sebebi rRNA’ ların farklılığındandır. Bir hücrenin canlılığını sürdürebilmesi için mutlaka ribozoma ihtiyacı vardır.(Enzimlerden dolayı) Enzim salgılayan bez hücrelerinde sayısı daha fazladır. MİTOKONDRİ Çift zarlıdır.İç zar kıvrımlıdır. Kıvrımlara krista,zarların arasını ve içini dolduran sıvıya matriks denir. Oksijenli solunum yaparak enerjinin üretildiği ve depolandığı yerdir. Enerji ihtiyacı fazla olan kas,sinir ve karaciğer gibi hücrelerde sayısı daha fazladır. Bulundukları hücrenin de enerjiye en çok ihtiyaç olan bölümlerinde toplanırlar. ÖRNEK:Sinirlerin sinaps bölgelerinde,spermlerin kuyruklarında ve kasların kasılma bölgelerinde,karaciğer hücrelerinde ve beyin hücrelerinde çok bulunur. Kendine ait DNA,RNA,ribozom ve ETS’si bulunur. Kendi DNA’sı olmasına rağmen hücre DNA’ sına bağımlıdır. Bitkilerde mesozom ve klorofil bulunduğundan dolayı mitokondri miktarı daha azdır. Prokaryotlarda ve memeli alyuvarında bulunmaz. SENTROZOM Bazı su yosunu,mantar,hayvan ve insan hücrelerinde bulunur. Sentriol denilen iki alt birimden oluşur. Hücre bölünmesi sırasında kendini eşleyerek zıt kutuplara çekilir ve iğ ipliklerinin oluşmasını sağlar. Hücre dışına uzanan kirpik,kamçı,sil gibi yapıları oluşturur. Sentrioller dikine duran dokuz çift tüpçükten oluşur. PLASTİDLER Sadece bitki hücrelerinde bulunan renk maddesidir.3 tiptir. a) Kloroplast Bitkiye yeşil rengini verir. Çift zarlıdır.İç zarı katmanlıdır.Bu katmanlara grana,içini dolduran sıvıya ise stroma denir. Fotosentez yaparak besin üretir. Kendine has DNA,RNA,ribozom ve ETS’si bulunur. Granalar içinde bitkiye yeşil rengini veren ve fotosentez için gerekli ışığı absorbe eden klorofil vardır. Bütün bitki hücrelerinde bulunmaz.ÖRNEK:Kökte. b) Kromoplast Bitkilerde meyve ve çiçeklerin rengini verir.Likopin(kırmızı),ksantofil(sarı) ve karoten (turuncu) olmak üzere üç çeşittir. Bitkilerde diğer renkler; koful öz suyunun asit veya baz oluşuna göre renk değiştiren aktokyan denen maddeler ile oluşturulur. c) Lökoplast Renksizdir.Genelde kök,gövde ve tohumda bulunur. Nişasta,yağ ve protein depolar. Işıkla karşılaşınca kloroplastlara dönüşür. KOFUL ER’dan,golgiden,hücre zarından ve lizozomdan oluşabilir. Hayvansal hücrelerde az ve küçük,bitkisel hücrelerde ise gençken küçük,yaşlandıkça büyürler.Çünkü tuzlu artıklar kofullarda biriktirilir. Hücre içi osmatik basınç ve pH’ı ayarlar. Kofulda bulunan su turgor basıncı oluşturarak hücreye diklik ve direnç verir. Metabolizmanın aktiflik derecesini belirler.Eğer koful büyük ve sitoplazmada miktarı çok ise metabolizma yavaşlar. Besin kofulu : Fagositoz ve pinositozla alınan besinlerin bir zarla çevrilmesiyle oluşur.Akyuvarlar mikropları fagositoz ve pinositozla aldığında dolayı,akyuvarlarda daha fazla sayıda besin kofulu bulunur. Kontraktil (vurgan) koful : Tatlı su tek hücrelilerinde bulunan daimi kofuldur.Fazla suyu dışarı atar. Boşaltım kofulu : Artık maddeleri ekzositozla dışarı atar. PEROKSİZOM Bitkisel ve hayvansal hücrelerde bulunan ve içerisinde katalaz enzimi bulunan organeldir. İçerisindeki katalaz enzimi H2O2 ‘yi H2O ve O2′ye parçalar. H2O2 hücre için çok tehlikelidir.Çünkü O2′nin reaksiyona girmesini yani solunumu önler. Sitoplazmanın pH derecesi 8,0′dır. Hücre Çeperi: Hücre zarı üzerinde selüloz birikmesi ile oluşur. Bitki hücresine sertlik ve desteklik verir. Bitki hücrelerinde bulunur.ölüdür.bazen yapısına bağlı olarak kütin, lignin mum gibi maddeler katılır. 3) ÇEKİRDEK Hücre bölünmesini sağlar.Kalıtım bilgisini taşır. Hücresel olayların yönetilmesinde ve karakterlerin sonraki nesillere aktarılmasında görevlidir4 bölümdür. A) ÇEKİRDEK ZARI · Çift katlı bir zardır. · Üzerindeki deliklere por denir.Bunlar hücre zarındaki porlardan daha büyüktür. · Hücre bölünmesi sırasında kaybolan bu zarın bölünmeden sonra yeniden yapılmasında ER ve golgi görevlidir   B) ÇEKİRDEK SIVISI · Homojen görünümlüdür.İçerisinde bol miktarda ATP,nükleotit,ribozom ve protein bulunur. C) ÇEKİRDEKÇİK · Bol miktarda RNA ve protein bulunur.Ribozom sentezi yapılır.Bakterilerde yoktur. D) KROMATİN İPLİK · Hücrede en çok bulunan maddedir. · DNA’nın kendisi olup kromozomları oluşturur.Kromozomlar DNA ve proteinden oluşmuştur. Kalıtsal karakterleri taşır.Üreme ve büyümeyi sağlar.Hücreyi yönetir. Kromozom sayısı, türlere göre değişkenlik gösterir. Örneğin insanda 46, soğanda 16 kromozom bulunur. Homolog Kromozom:Birisi anneden diğeri babadan gelen şekil ve yapısı aynı olan karşılıklı lokuslarında aynı karakter üzerine etkili genleri taşıyan kromozomlara denir. Homolog kromozom taşıyan hücrelere diploid( 2n) hücre denir.Üreme hücreleri gibi (n) kromozom taşıyan hücrelere haploid hücre denir.

http://www.biyologlar.com/hucre-teorisi

Biyokimya 2 final soruları

1-yağ asidi sentez ve yıkım arasındaki farklar 2-transaminasyon ve deaminasyon a örnek vererek açıkla 3-keton cisimciklerinin sentez ve yıkımını anlat.nerelerde olduğunu,hangi enzimlerin kullanıldığını vs. 4-kolesterol sentezindeki kontrol basamaklarını açıkla 5-koenzimler,terminojen,lipoprotein,malonil-koA,betahidroksimetilbetametilglutaril koA redüktaz ı açıkla 6-malatasoartat mekiği ile gliserol fosfat ı anlat 7-malik enzimin önemi? 8-atp nin sentezini anlat

http://www.biyologlar.com/biyokimya-2-final-sorulari

Biyokimya 2 vize soruları

1-glikolitik yolu anlat(formülleri çizin ve enzimleri eksiksiz yazın) 2-glikolitik yol ile glukoneogenezi karşılaştırın 3-enzim sınırlayıcı tepkime nedir?örnek ver 4-glikolitik yoldaki kontrol noktalarını anlat 5-sitrik asit döngüsündeki kontrol noktolarını anlat 6-PFK-2, pirüvat dehidrogenaz kompleksini,yağ açili sentazı anlat 7-fruktozun glikolitik yola giriş yollarını anlat 8-pentozfosfat yolunun önemi nedir 9-anaplerotik tepkimeleri yazıp ne işe yaradığını açıkla? 10-glioksalat döngüsünün kontrol noktaları ve önemi nedir? 11-glikoneogenez ve glikolitik yolun ortak kontrolü nasıldır 12-glikojen sentezini anlat 13-şilomikron,VLDL,LDL,HDL nedir ve taşınımları nasıldır

http://www.biyologlar.com/biyokimya-2-vize-sorulari

Mikrobiyal Biyoteknoloji Bölüm 4

MİKROBİYAL FİTAZLAR Tahıl ve baklagil tohumlarının olgunlaşması sırasında fitik asitin (myo-inositol-1,2,3,4,5,6-hexakis dihidrojen fosfat) önemli bir miktarı birikmekte olup (Honke ve ark. 1998) bu tohumların çoğunda ve yan ürünlerinde %1-2 fitik asit bulunmaktadır (Reddy ve ark. 1982). Fitik asit; tahıl, baklagil ve yağlı tohumlarda fosforun ana depo formudur. Kimyasal olarak tam tarifi myo-inositol 1,2,3,4,5,6-hekza-dihidrojen fosfat’tır (IUPAC-IUB 1977). Moleküler formülü ise C6H18O24P6’dır. Fitik asitin tuzları fitat olarak tanımlanır. Fitat, fitik asitin potasyum-magnezyum ve kalsiyum tuzlarının karışımıdır (Vohra ve Satyanarayana 2003) Fitaz (myo-inositol hexakisphosphate phosphohydrolase), fitik asiti (myo-inositol hekzafosfat), inorganik monofosfat, myo-inositol fosfat ve serbest myo-inositol’e hidrolize eden enzimdir (Kerovuo 2000). Bitkilerde, hayvansal dokularda ve çeşitli mikroorganizmalarda fitaz aktivitesinin olduğu bildirilmiştir (Miksch ve ark. 2002). Fitatı parçalayan enzimler IUPAC-IUB (International Union of Pure and Applied Chemistry and the International Union of Biochemistry) tarafından iki sınıfa ayrılmıştır: Fitatın D3 pozisyonundaki ortofosfatı uzaklaştıran 3-fitaz (myo-inositol-hekzakisfosfat 3-fosfohidrolaz, EC 3.1.3.8) ve myo-inositol halkasındaki L-6 (D-4) pozisyonundaki defosforilasyonu sağlayan 6-fitaz (myo-inositol-hekzakisfosfat 6-fosfohidrolaz, EC 3.1.3.26). Mikrobiyal fitazlar genellikle 3-fitaz sınıfında yer alırken bitkisel kökenli fitazlar 6-fitaz sınıfında yer almaktadır (Konietzny ve Greiner 2002). Fitaz parçalayan enzimlerle yem hammaddelerinde ve insanlar için hazırlanan gıdalardaki fitat içeriğini azaltmak amacıyla özellikle son yıllarda birçok çalışma yürütülmektedir. Fitatı parçalayan enzimler bitkisel materyalin besleyici değerini artırmak amacı ile tavsiye edilmektedir. Son yıllarda fitaz enzimlerinin özellikle entansif hayvan yetiştiriciliği yapılan alanlarda hayvan gübresiyle ortaya çıkan fosfor kirliliğini azaltmak amacıyla kullanımını da gündeme getirmiştir. Yapılan bir çok çalışmada fitatı parçalayan enzimlerin fitatdan fosfor kullanımını artırmakta olduğu ve çevrede ortofosfat birikimini önemli derecede azalttığı bildirilmiştir (Cromwell ve ark. 1995, Simons ve ark. 1990). Ayrıca bunların yanı sıra myo-inositol fosfatların hazırlanması, kağıt endüstrisi ve toprak iyileştirme alanlarında da fitaz enzimi kullanılmaktadır. Ayrıca son yıllarda biyoteknoloji alanındaki gelişmeler sonucunda heterolog mikrobiyal ekspresyon sistemleriyle büyük miktarlarda ve düşük maliyetli fitaz üretimi de mümkün olabilmektedir. Fitaz enzimi bitkilerde, mikroorganizmalarda ve bazı hayvansal dokularda bulunmasına rağmen yapılan son araştırmalar mikrobiyal fitazların biyoteknolojik uygulamalar için en ümit verici olduğunu göstermiştir (Pandey ve ark. 2001, Vohra ve Satyanarayana 2003). Bakteri, maya ve funguslardan fitaz enzimleri karakterize edilmiş olup, günümüzde ticari olarak üretimde toprak fungusu olan Aspergillus üzerinde durulmaktadır. Ancak substrat spesifitesi, proteolisise karşı direnç göstermesi ve katalitik aktivitesi gibi özelliklerinden dolayı bakteriyel fitazlar, fungal enzimlere alternatif oluşturabilmektedir (Konietzyn ve Greiner 2004). Bakteriyel fitazların ortalama olarak moleküler ağırlığı (40-55 kDa) glukolizasyon farkı olduğu için fungal fitazlardan (80-120 kDa) daha küçüktür (Choi ve ark. 2001, Golovan ve ark. 2000, Han ve Lei 1999, Kerovuo ve ark. 1998, Rodriguez ve ark. 2000a, Van Hartingveldt ve ark.1993). İzole edilen fitazların çoğunun pH optimumu 4.5-6.0 arasında yer almaktadır. Ancak Bacillus sp.’ye ait nötral veya alkali fitazlar da bulunmaktadır (Choi ve ark. 2001, Kim ve ark. 1998). A. niger fitazının (phyA) pH optimumu ise asidik sınırlarda olup 2.5 ve 5.5’dir. Bu iki sınır arasında aktivitede azalma meydana gelmektedir. Mikrobiyal fitazların çoğunun sıcaklık optimumu ise 45-60°C arasında yer almaktadır. Ancak Pasamontes ve ark. (1997a,b) A. fumigatus’a ait sıcaklığa dirençli fitazın 100°C’ye kadar olan sıcaklıklarda 20 dakikalık inkübasyonlarda sadece %10’luk kayıpla aktivitesini koruduğunu bildirmişlerdir. E. coli ve Citrobacter braakii fitazı, ticari olarak kullanılan Aspergillus niger fitazına kıyasla pepsin ve pankreatine daha dirençlidir (Kim ve ark. 2003; Rodriquez ve ark. 1999). Ayrıca C. braakii fitazı tripsine de dirençlidir (Rodriquez ve ark. 1999). E. coli fitazı, Bacillus fitazı ile karşılaştırıldığında, pankreatine benzer hassasiyetlik gösterirken pepsine karşı daha hassastır (Simon ve Igbasan 2002). E. coli ve C. braakii fitazları yem katkısı olarak uygun özelliklere sahiptirler. E. coli fitazı asidik koşullar altında yüksek bir pH stabilitesine sahip olup pH 2.0’de birkaç saat sonunda bile önemli bir aktivite kaybı göstermemektedir (Greiner ve ark. 1993). Fitaz Enziminin Uygulama Alanları 1-) Yem katkısı: Fitat, tohumların çimlenmesi sırasında enerji ve fosfor kaynağı olarak görev alsa da bağlı fosfor tek mideli hayvanlarca çok az miktarda kullanılabilmektedir. Bu nedenle inorganik fosfor yenilenemez ve pahalı bir mineral olup kanatlı, domuz ve balık rasyonlarında fosfor kaynağı olarak ilave edilmektedir (Lei ve Porres 2003). Fitat ve fitata bağlı fosfor tüm kanatlı rasyonlarında bulunmakta ve fitat fosforunun da kısmen kullanıldığı bilinmekteydi (Lowe ve ark. 1939). İlk olarak Warden ve Schaible (1962), broylerde, ekzogen olarak verilen fitazın, fitat fosforunun kullanımını ve kemikteki mineralizasyonu artırdığını bildirmişlerdir. Ancak bundan yaklaşık 30 yıl sonra, yem katkısı olarak, fitata bağlı fosforu serbest bırakacak ve fosfor atığını azaltacak Aspergillus niger fitazının ticari olarak kullanımı başlamıştır. Günümüzde tek mideli hayvanlarda yem katkısı olarak fitaz kullanımı oldukça yaygınlaşmış olup hatta nişasta tabiatında olmayan polisakkaritleri parçalayan enzimlerden daha fazla kullanılmaktadır (Bedford 2003). Geçtiğimiz 10 yıl içerisinde kanatlı ve domuz rasyonlarında mikrobiyal fitaz kullanımı ile bu konudaki bilimsel çalışmalar ve deneyimler artmakta ve yem katkısı yeni fitaz enzimleri araştırılmakta ve kullanılmaktadır. Bazı kanatlı yem maddelerindeki toplam fosfor, fitat fosforu ve toplam fosfordaki fitat fosfor oranları Çizelge 2’de verilmiştir. Ruminantlar ise, rumendeki mikrobiyal flora tarafından üretilen fitaz enzimi ile fitatı parçalayabilmektedirler (Yanke ve ark. 1998). Fitatın parçalanması ile açığa çıkan fosfor hem mikrobiyal flora hem de konakçı ruminant tarafından kullanılmaktadır. Birçok farklı kaynaktan elde edilen mikrobiyal fitaz ürünleri günümüzde ticari olarak kullanılmaktadır. Bunlar arasında yem katkısı olarak en yaygın olarak kullanılanları A. niger (3-fitaz), Peniophora lycii (6-fitaz) ve Escherichia coli (6-fitaz) fitazlarıdır. Kanatlı rasyonlarına fitaz, granül veya sıvı formda veya yüksek peletleme sıcaklığındaki (>80ºC) enzim denatürasyonu probleminden kaçınmak için peletleme sonrasında uygulanabilmektedir (Selle ve Ravindran 2006). Bitkisel fosfor kaynaklarındaki kullanılmayan fitat fosforu zaman içerisinde birikmekte ve entansif olarak hayvan yetiştirciliği yapılan alanlarda çevre kirliliğine neden olmaktadır. Topraktaki aşırı fosfor deniz ve göllere akmakta ve burada yaşayan canlılarda birikerek insanlarda da nerotoksik etki oluşturmaktadır (Lei ve Porres 2003). Su ürünleri üretiminde, soya küspesi ve diğer bitki kökenli küspeler kullanılarak birçok çalışma yürütülmüştür (Mwachireya ve ark. 1999). Pahalı protein kaynakları yerine daha düşük fiyatlı bitkisel protein kaynakları kullanıldığında masraflarda önemli derecelerde azalmaların olabildiği bildirilmektedir. Balık üretim masraflarının %70’ini yem giderleri oluşturmaktadır (Rumsey 1993). Kanatlı ve domuzlarda olduğu gibi balıklarda yem maddeleri içerisindeki fitin fosforundan yararlanacak sindirim enzimine sahip olmadığından suda fosfor birikimi meydana gelmektedir. Bu nedenle fitaz su ürünleri üretmede, hem düşük fiyatlı bitkisel kökenli maddelerin kullanımını artırmak hem de suda fosforu kabul edilebilir seviyede tutabilmek amaçları ile kullanılmaktadır. Balık beslemesinde, yüksek seviyelerde bitkisel kökenli maddeler içeren yemlerde fitaz enziminin kullanılması ile ilgili birçok çalışma yürütülmektedir (Robinson ve ark. 1996, Mwachireya ve ark. 1999). 2-) Gıda sanayi: Fitik asit tuzları olarak tanımlanan fitatlar, bitki tohumları ve danelerde fosfat ve inositolün başlıca depo formudur. Fitat bitki tohumlarının olgunlaşması sırasında oluşur ve olgun tohumlarda toplam fosfatın %60-90’nını oluşturur (Loewus 2002). Fitat bu nedenle bitkisel kökenli gıdaların başlıca bileşenidir. Bazı bitkisel kökenli gıdalardaki kuru maddedeki fitat miktarı Çizelge 3’de verilmiştir. Diyetlerdeki bitki kökenli gıdaların miktarına ve gıdaların işlenme derecelerine bağlı olarak günlük fitat tüketimi en fazla 4500 mg’a kadar yükselmelidir. Ortalama olarak vejetaryen diyetlerinde ve gelişmekte olan ülkelerde kırsal kesimlerde günlük fitat tüketimi yaklaşık 2000-2600 mg olup bu değer karışık diyetlerde 150-1400 mg’dır (Reddy 2002). Diyetlerde fitatın varlığı ile ilgilenilmesinin nedeni mineral alımındaki negatif etkisidir. Bu mineraller çinko, demir, kalsiyum, magnezyum, manganez ve bakırdır (Konietzny ve Greiner 2003, Lopez ve ark. 2002). Fizyolojik pH değerlerinde çözünmez mineral-fitat komplekslerinin oluşumu düşük mineral emiliminin temel nedeni olarak bildirilmektedir. Çünkü bu kompleksler aslında insan sindirim sisteminde absorbe olmamaktadır. Ayrıca sindirim sisteminin üst kısmında sınırlı miktarda mikrobiyal popülasyonun olması ve içsel fitatı hidrolize edici enzimlerin olmaması nedenleri ile ince bağırsakta, fitat çok sınırlı miktarda hidroliz olabilmektedir (Iqbal ve ark. 1994). Fitat, asidik ve alkali pH’da proteinlerle kompleks oluşturmaktadır (Cheryan 1980). Bu interaksiyon proteinin yapısında değişiklikler meydana getirmekte ve bunun sonucunda enzimatik aktivitede, proteinin çözünürlüğünde ve proteolitik parçalanmada azalmalar meydana gelebilmektedir. Fitaz enzimi yem katkısı olarak kullanılmasının yanı sıra gıda sanayinde de büyük bir potansiyele sahiptir. Ancak şimdiye kadar marketlerde fitaz enzimi kullanılmış gıdalar bulunmamaktaydı. Bu alandaki çalışmalar, gıda işlemede teknik geliştirmenin yanı sıra bitki kökenli gıdaların besleyici değerlerinin artırılması üzerine yoğunlaşmıştır. Fitat içeriği yüksek diyetler mineral maddelerin absorbsiyonunu oldukça azaltmakta (Konietzny ve Greiner 2003, Lopez ve ark. 2002) ve gıdaların işlenmeleri sırasında fitatın defosforilasyonu, sadece kısmen fosforile olmuş myo-inositol fosfat esterlerinin oluşmasına neden olmaktadır (Sandberg ve ark. 1999, Sandström ve Sandberg 1992, Han ve ark. 1994). Myo-inositol fosfat esterleri insanlar için önemli fizyolojik özelliklere sahiptir (Shears 1998). Bu nedenle fitaz enziminin gıda üretimi sırasında kullanılması ile fonksiyonel gıdaların üretilmesi mümkün olacak (Greiner ve ark. 2002) ve böylelikle fitaz enzimi ile biyokimyasal olarak aktif myo-inositol fosfat esterleri oluşacak ve insanlarda mineral maddelerin emilmesi de sağlanmış olacaktır. Gıda sanayinde gıdaların işlenmesi sırasında fitaz ilavesi ekmek yapımı (Haros ve ark. 2001), bitkisel protein izolatlarının üretimi (Fredrikson ve ark. 2001, Wang ve ark. 1999) ve tahıl kepeklerini parçalamada kullanılmaktadır (Kvist ve ark. 2005). Gıda işleme ve hazırlama sırasında, fitat genel olarak, bitkilerde ve mikroorganizmalarda doğal olarak bulunan fitazlarla tamamen hidrolize olmamaktadır. Özellikle demir olmak üzere minerallerin yararlanımını artırmak için fitat çok düşük düzeylere indirilmelidir (Hurrell 2003). Myo-İnositol fosfatların hazırlanması: Günümüzde, transmembran sinyalizasyonunda ve intraselülar kaynaklardan kalsiyumun hareketini sağlamada görev alan inositol fosfat ve fosfolipidlere olan ilginin artması, çeşitli inositol fosfatların hazırlanmasını gündeme getirmiştir (Billington 1993). S.cerevisiae fitazı kullanılarak fitik asitin enzimatik hidrolizi ile D-myo-inositol 1,2,6-trifosfat, D-myo-inositol 1,2,5-trifosfat, L-myo-inositol 1,3,4-trifosfat ve myo-inositol 1,2,3-trifosfatların hazırlandığı bildirilmiştir (Siren 1986a). Ayrıca E. coli fitazı kullanılarak inositol 1,2,3,4,5-pentakisfosfat, inositol 2,4,5-trifosfat ve inositol 2,5-bifosfat da hazırlanmaktadır (Greiner ve Konietzny 1996). İnositol fosfat türevleri enzim stabilizatörü (Siren 1986b), enzim inhibitörü, biyokimyasal ve metabolik araştırmalarda enzim substratı ve ilaç olarak da kullanılmaktadır (Laumen ve Ghisalba 1994). İnositol fosfat karışımları eklem iltihabı ve astım gibi solunum hastalıklarına karşı kullanıldığı ve spesifik inositol trifosfatların ağrı kesici olarak önerildiği de bildirilmiştir (Siren 1998). İnositol veya inositol fosfatların endüstriyel üretiminde, fitik asitten myo-inositol fosfat türevleri, serbest myo-inositoller ve inorganik fosfat eldesinde fitaz enzimi kullanımı önerilmektedir (Brocades 1991). Bu enzimatik hidrolizin avantajı fitaz enziminin spesifitesi ve reaksiyon koşullarına uygun olmasıdır. 3-) Kağıt endüstrisi: Kağıt endüstrisinde bitki fitik asitinin uzaklaştırılması oldukça önemlidir. Günümüzde termostabil fitazlar, kağıt hamuru ve kağıt yapma aşamalarında fitik asiti parçalamak amacıyla kullanılan biyolojik maddelerdir. Fitik asitin enzimatik olarak parçalanması sonucunda kanserojen veya toksik maddeler içeren ürünler oluşmaz. Bu nedenle kağıt endüstrisinde fitaz enzimlerinin kullanımı, daha temiz bir teknolojinin kullanılmış olması ve dolayısıyla çevreyi koruma açısından önem taşımaktadır (Liu ve ark. 1998). 4-) Toprak iyileştirme: Bazı alanlarda toprakta, fitik asit ve türevleri toplam organik fosforun %50’sini oluşturabilmektedir (Dalal 1978). Findenegg ve Nelemans (1993), mısır bitkisi için topraktaki fitik asitten fosforun kullanılabilmesinde fitazın etkisini araştırmışlardır. Toprağa fitaz ilave edildiğinde fitinin parçalanma oranının artmasına bağlı olarak büyümeyi uyardığını bildirmişlerdir. Bu çalışma bitkilerin köklerinde fitaz geninin ekspresyonu ile transgenik bitkilerle topraktaki fosforun kullanılabileceği düşüncesini ortaya çıkarmıştır (Day 1996). 5-) Biyoteknoloji : Geçtiğimiz 20 yıl içerisinde fitaz enzimi, besleme, çevre koruma ve biyoteknoloji alanlarındaki bilim adamlarının dikkatini çekmektedir. Fitazlar özellikle biyoteknolojik uygulamalarda (özellikle yem ve gıdalardaki fitat içeriğini azaltmada) büyük bir önem taşımaktadır (Lei ve Stahl 2001, Vohra ve Satyanarayana 2003). ANTİBİYOTİKLER Ticari olarak üretilen mikrobiyal ürünlerin içerisinde en önemlisi antibiyotiklerdir. Antibiyotikler mikroorganizmalar tarafından üretilen, diğer mikroorganizmaları öldüren veya büyümesini inhibe eden kimyasal maddelerdir. Antibiyotikler tipik sekonder metabolitlerdir. Ticari olarak faydalı antibiyotiklerin birçoğu filamentöz funguslar ile Bacteria’nın aktinomiset grubu tarafından üretilmektedir. Endüstriyel fermentasyonla büyük ölçekte üretilen en önemli antibiyotikler Çizelge1’de gösterilmiştir. Çizelge 1. Ticari olarak üretilen bazı antibiyotikler. Antibiyotik Üreten mikroorganizma* Basitrasin Sefalosporin Kloramfenikol Siklohekzimid Sikloserin Eritromisin Griseofulvin Kanamisin Linkomisin Neomisin Nistatin Penisilin Polimikzin B Streptomisin Tetrasiklin Bacillus licheniformis (EOB) Cephalosporium sp.(F) Kimyasal sentez (daha önce Streptomyces venezuela’ (A)dan mikrobiyal yolla üretilmekteydi) Streptomyces griseus (A) Streptomyces orchidaeus (A) Streptomyces erythreus (A) Penicillium griseofulvin (F) Streptomyces kanamyceticus (A) Streptomyces lincolnensis (A) Streptomyces fradiae (A) Streptomyces noursei (A) Penicillium chrysogenum (F) Bacillus polymyxa (EOB) Streptomyces griseus (A) Streptomyces rimosus (A) *EOB, endospor oluşturan bakteri; F, fungus; A, aktinomiset Günümüzde 8000’in üzerinde antibiyotik maddesi bilinmektedir ve her yıl yüzlercesi keşfedilmektedir. Daha fazla antibiyotik keşfedilmesi beklenmektedir mi, buna gerek var mıdır diye bazı sorular akla geldiğinde bunun cevabı evettir. Bu nedenle Streptomyces, Bacillus, Penicillium gibi birkaç genusa ait mikroorganizmaların çoğu antibiyotik üretip üretmedikleri açısından sürekli olarak incelenmektedir. Antibiyotikler konusunda araştırma yapan birçok araştırıcı, diğer mikroorganizma gruplarının da incelenmesi sonucunda birçok yeni antibiyotiğin keşfedileceğine inandıklarını belirtmektedir. Son yıllarda büyük ilerleme gösteren genetik mühendisliği tekniklerinin yeni antibiyotiklerin yapılmasına izin vereceği ve yeni ilaçlar için kompüter modellemesinin klasik eleme (screening) metotlarının er geç yerini alacağı düşünülmektedir. Fakat günümüzde bunlar henüz çok yaygın bir kullanıma sahip olmadığı için yeni antibiyotikler klasik yol olan “screening” yoluyla keşfedilmektedir. Screening yaklaşımında, çok sayıda muhtemelen antibiyotik üreticisi olan mikroorganizma izolatı doğadan saf kültürler halinde izole edilmektedir (Şekil 1-a) daha sonra bu izolatlar Staphylococcus aureus gibi bir test bakterisinin büyümesini inhibe eden diffüzlenebilen maddeler üretip üretmedikleri açısından test edilmektedir. Şekil 1-a’daki fotoğrafta görülen kolonilerin çoğu Streptomyces türlerine aittir ve antibiyotik üreten bazı kolonilerin etrafında indikatör organizmanın (Staphylococcus aureus) büyüyemediği inhibisyon zonları görülmektedir. Bu amaçla kullanılan test bakterileri çok çeşitli ve genellikle bakteriyal patojenlere yakın veya onları temsil eden türler olup çeşitli literatürlerde tip kültür numaralarıyla belirtilmektedir. Antibiyotik üretimi için yeni mikrobiyal izolatların test edilmesinde, “karşıt-çizgi metodu” (Şekil 1-b) yaygın olarak kullanılan bir yöntemdir. Bu yöntemde Streptomyces gibi potansiyel üretici olduğu bilinen bir tür petrinin üçte birlik kısmını kaplayacak şekilde bir köşesine ekilir ve petri uygun sıcaklıkta inkübe edilir. İyi bir büyüme elde edildikten sonra sıvı besi yerinde geliştirilmiş olan test bakterileri Streptomyces hücre kütlesine dikey olacak şekilde çizilerek inkübasyona bırakılır. Şekil 1-b’deki fotoğrafta da görüldüğü gibi bazı test bakterilerinin Streptomyces hücre kütlesine yakın kısımlarda büyüyemediği görülmektedir. Bu Streptomyces’in test bakterilerinin büyümesini inhibe eden bir antibiyotik ürettiğini göstermektedir. Fotoğrafta (Şekil 1-b) görülen test organizmaları (soldan sağa): Escherichia coli, Bacillus subtilis, Staphylococcus aureus, Klebsiella pneumonia, Mycobacterium smegmatis’tir. Bu şekilde ekim yapılan izolatlardan antibiyotik üretimi belirlenenler daha sonra daha ileri denemelere alınarak antibiyotiğin yeni olup olmadığı bakımından test edilirler. Çoğu screening (eleme) programlarında elde edilen izolatların çoğu bilinen antibiyotikleri üretmektedir. Bu nedenle endüstriyel mikrobiyologların bilinen antibiyotik üreticilerini çok hızlı belirlemesi gerekmektedir böylece çalışmalarında hem zamanın hem de kaynakların boşa gitmesi önlenecektir. Bir organizmanın yeni bir antibiyotik ürettiği keşfedildiğinde bu antibiyotik yapısal analizler için yeterli miktarlarda üretilmelidir ve daha sonra enfekte olmuş hayvanlarda terapötik aktivite ve toksisite için test edilmelidir. Burada yeni antibiyotiğin selektif toksisiteye sahip olup olmadığı ortaya çıkmaktadır. Maalesef yeni bulunan antibiyotiklerin bir çoğu hayvan testlerini geçemezken sadece birkaç tanesi geçebilmektedir. Bu nedenle her yıl yüzlerce yeni antibiyotik bulunmasına karşılık bunların sadece birkaç tanesinin medikal kullanım için yararlı olduğu kanıtlanabilmekte ve ticari olarak üretilmektedir. VİTAMİNLER VE İLİŞKİLİ BİYOFAKTÖRLER Dengesiz beslenme ve besin işleme alışkanlıkları, gıda kıtlığı, açlıktan dolayı hayvan ve bitki orijinli vitaminlerden başka ekstra vitaminlere ihtiyaç duyulmaktadır. Vitaminlerin kullanım alanları gıda/yem sektörü, sağlık ve tıbbi alanlardır. Ekstra vitaminler günümüzde kimyasal veya biyoteknolojik olarak fermentasyon ya da biyodönüşüm prosesleriyle hazırlanmaktadır. Vitaminler ve diğer biyofaktörlerin çoğu kimyasal olarak veya ekstraksiyon işlemi ile üretilirken bazıları da hem kimyasal hem de mikrobiyal proseslerle üretilmektedir. Bunun yanı sıra vitamin B12 ve B13 gibi vitaminler ise sadece mikrobiyolojik yolla üretilmektedir. Aşırı miktarlarda vitamin üreten mikrobiyal suşların doğadan taranması ve bulunması veya bunların genetik mühendisliği yoluyla yapımı zordur, bunun yerine geliştirilmiş fermentasyon prosesleri ve immobilize biyokatalist biyodönüşümleri önem kazanmıştır. ENZİMLER Bütün organizmalar hücresel faaliyetlerini sürdürebilmek için küçük miktarlarda çok çeşitli enzimleri üretmektedir. Günümüze kadar tanımlanmış olan 3000’den fazla enzimin büyük bir çoğunluğu mezofilik organizmalardan izole edilmektedir. Buna karşılık bazı enzimler bazı organizmalar tarafından çok yüksek miktarlarda üretilmekte ve hücre içinde tutulmayarak hücre dışına salgılanmaktadır. Ekstraselüler enzimler olarak isimlendirilen bu enzimler selüloz, protein, nişasta, vb. gibi suda çözünmeyen polimerleri parçalama yeteneğindedir. Bu ekstraselüler enzimlerin bazıları gıda, tekstil ve ilaç endüstrilerinde kullanılmaktadır ve mikrobiyal sentez yoluyla büyük miktarlarda üretilmektedir. Son yıllarda enzim terminolojisinde ortaya çıkan yeni bir terim olan “ekstremozimler” ise ekstrem çevrelerde yaşayan prokaryotlardan elde edilen enzimleri ifade etmektedir. Ekstremozimler, ekstrem olarak yüksek sıcaklık, düşük sıcaklık, çok yüksek tuz, çok yüksek asit veya alkalin pH’larda yaşayan ve “ekstremofiller” olarak isimlendirilen mikroorganizmalar tarafından üretilmektedir. Bu enzimleri yüksek miktarlarda üreten mikrobiyal kaynakları doğadan izole etmek için çeşitli yöntemler kullanılmaktadır ve yeni mikrobiyal kaynakların araştırılması sürekli olarak devam eden bir iştir. Burada biyoçeşitlilik önemli bir konu olup farklı ve yabancı çevrelerden (ekstrem çevreler) izole edilen mikroorganizmalar önemli enzim kaynakları olarak düşünülmektedir. Ülkemiz en önemli ekstrem çevreler olan sıcak su kaynakları (kaplıcalar) açısından çok zengindir. Ayrıca soda gölleri, tuz gölleri, vb. ekstrem çevrelere de sahip olduğumuz göz önüne alınırsa, buralardaki biyoçeşitliliğin bir an önce belirlenerek ortaya konması ülkemiz açısından çok önemli bir konudur. Lipazlar bakteri, maya ve küfleri içeren mikrobiyal flora tarafından bol miktarda üretilmektedir. Lipazlar gıda endüstrisinde, biyomedikal uygulamalarda, biyosensörler ve pestisidlerin yapımında, deterjan ve deri sanayiinde, çevre yönetiminde, kozmetik ve parfüm sanayiinde uygulama alanları bulmaktadır. Endüstriyel olarak en yaygın kullanılan lipaz üreticisi mikroorganizmalar Candida spp., Pseudomonas spp., Rhizopus spp.’dir. Son yıllarda biyoteknoloji alanında lipazların kullanımında eksponansiyel bir artış gözlenmektedir. Bu nedenle lipazların aşırı üretimini sağlamak amacıyla yönlü mutasyonlar yardımıyla suş geliştirme çalışmalarına ağırlık verilmiştir. Endüstriyel olarak en fazla üretilen enzimlerden biri olan proteazlar ise ekmekçilikte, deterjan ve temizleme sanayiinde, biyomedikal uygulamalarda, gıda sanayiinde etlerin olgunlaştırılmasında, tabaklama sanayiinde, atık arıtımı ve kimyasal endüstride kullanılmaktadır. Son yıllarda alkalofilik mikroorganizmaların ürettiği ve aşırı alkali ortamlarda aktivite gösteren alkalin proteazlar endüstriyel olarak çok önem kazanmıştır.Şu anda alkalin proteazların ticari üretimi Bacillus licheniformis ve diğer alkalofilik Bacillus spp.’den yapılmaktadır. Bu enzimlerin üretimi için öncelikle ümit verici organizmaların seçilmesine olanak sağlayan farklı izolasyon yöntemlerinin belirlenmesi daha sonra endüstriyel suş geliştirilmesi için mutasyon ve/veya rekombinant DNA teknolojisinin kullanımı üzerinde yoğun çalışmalar sürdürülmektedir. α-amilaz, β-amilaz ve glukoamilaz gibi mikrobiyal amilazlar, enzimler arasında en önemlileri olup günümüzde biyoteknolojide oldukça büyük önem kazanmışlardır. Mikrobiyal amilazlar uygun preparasyonlarda hazırlandıktan sonra ilaç sanayiinde analitik kimya alanında, nişastanın sakkarofikasyonu, tekstil ve gıda sanayiinde, bira sanayii ve damıtma endüstrilerinde geniş bir uygulama alanına sahiptir. Hayvanlar ve bitkilerde de bulunmasına karşılık amilazlar en yaygın olarak mikroorganizmalarda bulunmaktadır. Amilazların ticari üretiminde birçok bakteri ve fungus türleri kullanılmaktadır. α-amilazın ticari üretiminde Bacillus türleri çok önemlidir. Ticari amilaz üreticisi suşların geliştirilmesinde gen klonlama yöntemleri kullanılmaktadır. Gen klonlmanın en temel amaçları; termostabil enzimlerin ifade edilmesi, yüksek enzim verimliliği ve iki enzimin aynı organizmada ifade edilmesinin sağlanmasıdır. AMİNOASİTLER Organizmaların primer metabolitleri arasında en önemlileri amino asitlerdir. 1950’lerin sonlarına doğru Corynebacterium glutamicum’un bazı suşlarının doğal olarak önemli miktarlarda L- glutamat sentezlediğinin bulunmasının ardından amino asit üreticisi mikroorganizmaların taranması ve ıslah edilmesi çalışmaları büyük hız kazanmıştır. O zamandan beri amino asit salgılama yeteneğinde olan bir çok organizma belirlenmiş ve bu konu endüstriyel mikrobiyolojinin önemli bir konusu olmuştur. Dünya çapında 1.5x106 ton amino asit üretimi gerçekleşmektedir. Amino asitler tıpta, gıda endüstrisinde katkı maddesi olarak, kimya endüstrisinde başlatıcı maddeler olarak kullanılmaktadır. En önemli ticari amino asit lezzet arttırıcı olarak monosodyum glutamat (MSG) formunda kullanılan Glutamik asittir. Diğer iki önemli amino asit diyet içecekler ve yiyeceklerde tatlandırıcı olarak kullanılan Aspartam’ın bileşenleri olan Aspartik asit ve Fenil alanindir. Bundan başka lisin, glutamin , arjinin, triptofan, treonin, izolösin ve histidin amino asitleri de ticari olarak mikrobiyolojik yolla üretilmektedir.Mikrobiyolojik üretim için Corynebacterium ve Brevibacterium türleri ile Escherichia coli en bilinen ticari türlerdir. Corynebacterium ve Brevibacterium türlerinde metabolizma nispeten basit olduğu için regülasyon sistemlerinin kolaylıkla değiştirilmesiyle, Enterobacteriaceae üyelerinde ise karmaşık rekombinant DNA tekniklerinin kullanımıyla verimli amino asit üreticileri elde edilebilmektedir. Kaynak: Doç. Dr. Rengin ELTEM /Ege Üniversitesi /Mühendislik Fakültesi Biyomühendislik Bölümü POLİMER ÜRETİMİ Modern biyoteknolojiyi komodite amaçlı ürünlerin üretiminde de kullanmak mümkündür. En çarpıcı örneklerden biri, mikroorganizmaları uygun ortamlarda besleyip polimer ürettirmektir. Birçok mikroorganizma besin kısıtlaması koşullarında, tepkisel olarak hücre içinde polimer biriktirir. (Şekil 3’de hücre içindeki beyaz dairesel şekilli olanlar). Bunlar bilimsel adıyla “polialkalonatlar”, “mikrobiyal poliesterler” dir. Polibuturat ve poli(buturat-valarat) teknolojik olarak üretilen mikrobiyal poliesterlerdir. Bunların işlenmesi biraz zor, komodite plastiklere göre biraz pahalı, ancak doğada parçalanabilen türden, dolayısıyla çevre dostu polimerlerdir. Bunlardan üretilen şampuan, parfüm, vb. şişeleri piyasaya sunulmuş durumdadır. Buradaki ilginç gelişme yine genetik modifiye mikroorganizmaların kullanımıdır. Bunlarda hücre içinde polimer birikimi kuru ağırlıkta %99’lara kadar çıkarılmıştır, dolayısıyla verim çok yüksektir. Bu yöntemle üretilen polimerlerin molekül ağırlıkları sentetik yollarla çıkılması çok yüksek değerlerdedir (20 milyon hatta daha fazla). Mikroorganizmalar ile polimer üretimi teknolojisini bitkilere de uygulamak mümkündür. Özellikle mısır’ın çok da değerli olmayan koçanında ve kabuğunda polimerler biriktirilebilir. Faj Yerdeğiştirme “phage display” Teknolojisi Alternatif yöntemlerden biri de genetik modifiye mikroorganizmaları kullanmaktır. Yaygın olarak E.Coli’nin kullanıldığı “faj yerdeğiştirme” (“phage display”) tekniği böyle bir yaklaşımdır. Burada, istenilen üretim bilgisini taşıyan DNA, B lenfositlerinden izole edilir ve bakteriye yerleştirilir. Daha sonra bakteri, filament fajlar (bir çeşit virüs) ile enfekte edilir. Fajlar, bakteri içinde, genellikle çok sayıda antibadi fragmanını da taşıyacak şekilde çoğalır. İstenilen fragmanı taşıyan fajlar, bir biyoafinite sistemi ile ayrılır ve bunlarla yine bakteriyi enfekte edilerek üretimi gerçekleştirilir. Elde edilen monoklonal antibadi fragmanları saflaştırılıp ya doğrudan yada bir antibadi gövdesine takılarak kullanılabilir. Bu teknikte kullanılan reaktörler, hibridoma teknolojisinde kullanılanlardan çok daha düşük fiyatlı ve iyi tanımlanmış klasik fermentörlerdir, dolayısıyla üretim ucuz ve kolaydır. Kaynak: www.biyomedtek.com/bmt-konular-no3.htm Hazırlayanlar: Enver Ersoy ANDEDEN&Ahmet TEZER

http://www.biyologlar.com/mikrobiyal-biyoteknoloji-bolum-4

Mikrobiyal Biyoteknoloji Bölüm 1

Biyoteknoloji Nedir ? - Biyolojik araç, sistem ve süreçlerin üretim ve hizmet endüstrilerine uygulanması - Endüstriyel uygulamalarda başarılı olabilmek için Biyokimya, Mikrobiyoloji ve Mühendislik bilimlerinin ortak kullanımı ile mikroorganizmaların, doku ve hücre kültürlerinin kapasitelerinin artırılması - Çeşitli yararlı maddelerin üretilmesi için biyolojik özellikleri kullanan bir teknoloji olması - Biyolojik araçlar tarafından üretilen materyallerin daha iyi ürün ve hizmet vermek üzere bilim ve mühendislik ilkelerinin uygulanması - Biyoteknoloji sadece teknik ve süreçlerin toplamına verilen bir addır. - Biyoteknoloji canlı organizmaları ve onların yapıtaşlarını tarım, gıda ve diğer endüstrilerde kullanan bir tekniktir. - Biyoteknoloji konu olarak “multidisipliner” yani bağımsız pek çok bilim dalını birarada barındırır. Eğer biyoteknoloji çalışması yapanları bir liste altında toplamak gerekirse Biyokimyacılar, Mikrobiyologlar,Genetikçiler, Moleküler biyologlar, Hücre biyologları, Botanikçiler, Ziraat mühendisleri, Virologlar, Analitik kimyacılar, Biyokimya mühendisleri, Kimya mühendisleri, Kontrol mühendisleri, Elektronik mühendisleri ve Bilgisayar mühendisleri bu liste içerisinde sayılabilir. BİYOTEKNOLOJİDE MİKROBİYAL SİSTEMLER 1-)Bakteriler ve Cyanobacteria (mavi-yeşil bakteriler) A-) Bakteriler: Toprak, hava, su, hayvan ve bitki yüzeylerinde bulunurlar. Bazıları hastalık etkeni olmakla beraber çoğu zararsız ve organik atıkların geri dönüşümü sırasındaki yararlı etkileri ve birçok faydalı ürünü üretmeleri nedeniyle biyoteknolojide oldukça önemli bir yere sahiptirler. Aynı genusa ait bazı türler endüstriyel açıdan faydalı özelliklere sahipken bazıları insanlar için zararlıdır. Örneğin Bacillus türleri toprakta yaşarlar ve aerop veya fakültatif anaerop metabolizmaya sahiptirler. § B. subtilis endüstride kullanılan amilaz enziminin kaynağıdır. § B. thruringiensis ise birçok bitki zararlısı böceğin patojenidir. Ve bu nedenle böceklere dirençli bitkilerin oluşturulmasında genetik mühendisliğinin önemli çalışma konularından birini oluşturur. § B.athracis ise insanlara patojen etkiye sahiptir ve şarbon hastalığının nedenidir. Prokaryotik biyolojik sistemler: § E.coli dışındaki diğer prokaryotlar § Acremonium chrysogenum § Bacillus brevis § Basillus subtilis, Basillus thuringiensis § Corynebacterium glutamicum § Erwinia herbicola § Peudomonas spp § Rhizobium spp § Streptomyces spp § Trichoderma resei § Xanthomonas campestris § Zymomonas mobilis Bu organizmalar iki grup altında toplanabilir. 1-) Özel bir fonksiyona sahip bir gen için konak olma. Ör: termofillerden izole edilen ve PCR teknolojisinde kullanılan ısıya dirençli DNA polimeraz enziminin E.coli’de klonlanması ve üretimin gerçekleşmesi. 2-)Belirli işleri çok daha etkin yapabilmek için genetik mühendisliği ile geliştirilme. Ör: Endüstriyel açıdan önemli amino asitlerin çok fazla üretilmesi için Corynebacterium glutamicum’un çeşitli türlerinin geliştirilmesi. 2-) Cyanobacteria (mavi-yeşil bakteriler): Mavi-yeşil bakteriler prokaryotlar sınıfına dahil olup fotosentez özelliğine sahiptir. Örnek olarak Anabaena cylindris, Nostok muskorum, Spirulina platensis türleri verilebilir. İlk kez varlıkları fosillerde saptanmıştır. Dünya oluşumunda belki de ilk canlı organizmalardır. Tatlı ve tuzlu suların yüzeylerinde bulunurlar. Karada ise ışığın ve nemin olduğu çamur ve kaya, tahta veya bazı canlı organizmaların yüzeylerinde bulunabilirler. Koyu yeşilimsi-mavi pigmentlerinden dolayı bu isimle adlandırılırlar. Sadece birkaç organizma atmosferik azotu amonyağa redüklemek yoluyla a.a. ve proteinleri üretmek üzere organik asitlere dönüştürülebilir. Azot fikse edebilen bakteriler gibi mavi-yeşil bakterilerde böyle bir yeteneğe sahiptir. Hücreler nitrogenaz enzimi ile bu reaksiyonu gerçekleştirirler. Bu enzim oksijen ile inaktive olur. Bu nedenle azot fikse eden hücrelerin içindeki koşullar anaerobik olmalıdır. Anabaena gibi bazı mavi-yeşil bakterler azot fiksasyonundan sorumlu heterosit adı verilen özel kalın duvarlı hücrelere sahiptirler Mavi-yeşil bakterilerin biyoteknolojik önemi: Mavi-yeşil bakteriler fotosentez yetenekleri, yüksek protein içerikleri ve basit besiyerlerinde hızlı çoğalmaları nedeniyle besin kaynağı olarak kullanım alanına sahiptir. Tek hücre proteini (THP) elde edilmesinde en çok denenen günümüzde insan ve hayvanların beslenmesinde geniş uygulama alanı olan mavi-yeşil bakteriler, diğer mikroorganizmalardan farklı olarak yeterli miktarda karbondioksit, belirli derecede aydınlatma, geniş üretim ortamı gibi özel koşullara gereksinim gösterirler. Sprilulina platensis Afrika ve güney Amerika’da ki sığ göllerde doğal olarak bulunur. Binlerce yıldan beri yöredeki insanlar tarafından toplanan bu algler kurutulduktan sonra besin kaynağı olarak çoğunlukla sos şeklinde veya çorba içinde kullanılmaktadır. Nostoc ise Peru ve Güney doğu Asya ‘da besin maddesi olarak kullanılan bir diğer siyanobakteridir. Gübre olarak kullanılmaları: Mavi-yeşil bakterilerin azot fiksasyon özelliği saptandıktan sonra kurutulmuş Tolypthrix tenuis pirinç tarlasına serpildiğinde azot fiksasyonunda ve verimde artış gözlenmiştir. M-Y bakterilerin Hindistan da pirinç tarlalarında gübre olarak kullanımıyla toprağın havalandırılması sonucunda su geçişi ve toprağın sıcaklığının daha homojen olması sağlanmaktadır. Azot fiksasyonu için M-Y bakterilerin Rhizobium’ların yerini almasının bazı avantajları vardır. Mavi-Yeşil bakteriler havadaki azotu amonyuma redüklerken fotosentez metabolik yolunu kullanırlar. Yani bir bitki ile simbiyotik bir yaşam ve enerji kaynağı olarak herhangi bir organik molekül ilavesi gerekmez. Tarımda azot fikse eden mavi-yeşil bakteriler organik gübre olarak kullanılabilir. Çin, Hindistan, Filipinler gibi pirinç tüketimi fazla olan bölgelerde büyük oranlarda ürerler. Pirincin büyüme sezonunun başında eğer suya siyanobakterlerin başlangıç kültürleri ekilirse pirinç veriminde %15-20 oranında artış olduğu bildirilmektedir. Mavi-Yeşil bakteriler antibiyotiklerin ve diğer biyolojik olarak aktif moleküllerin ticari boyutlardaki üretimi için büyük bir potansiyel oluştururlar. Çünkü Mavi-Yeşil bakteriler heterotrofturlar. Bu özellikleri de onların fermentasyon koşullarında üretilmelerine olanak sağlar. Henüz araştırma aşamasında olan Anacystis nidulans ile yapılan rekombinant DNA teknolojisi çalışmalarıyla nadir bileşiklerin üretiminde kullanımları amaçlanmaktadır. Araştırmalar Mavi-Yeşil bakterilerin güneş enerjisi dönüşüm sisteminde yer alması için devam etmektedir. Anabaena cylindrica heterocystleri vejatatif hücrelerde fotosentez yoluyla oluşturdukları oksijeni dışarı verirler. Azot yokluğunda ise heterositlerde nitrogenaz enzimi katalizörlüğünde elektronlar H+ iyonuna transfer edilerek Hidrojen gazı açığa çıkarırlar. Oksijen ve Hidrojen her ikisi de endüstride ihtiyaç duyulan gazlardır. Sonuç olarak; Fermentör koşullarında üreyebilirler, uzun süreli fizyolojik stabiliteye, basit besin gereksinimine, köpük oluşturmama özelliğine sahiptirler. Diğer alglerden farklı olarak azot fiksasyonu yapabilme farklılığına sahiptirler. Optimum sıcaklık 35oC dir. Karanlıkta veya gün ışığında heterotrofik olarak ürerler. 2-) MAYALAR: Tek hücreli tomurcuklanma veya bölünerek eşeysiz çoğalan ökaryotik mikroorganizmalardır. Mayaların tanımlanması maya biyoteknolojisi için oldukça önemlidir. Örneğin endüstriyel süreçlerde yabani ve kültüre edilmiş mayalar arasındaki farkı gösterebilmek esastır. Bira üretiminde üründe istenmeyen aroma oluşumuna neden olan yabani ırkın karışması veya ekmek mayası üretiminde şeker transport yeteneği daha fazla olan Candida utilis mayasının karışması ekmek mayası üretiminde kullanılan Saccharomyces cerevisiae mayasının üremesini engelleyecektir. Maya genuslarının ayrımında fizyolojik testlerle birlikte morfolojik testler de kullanılır. Günümüzde 700 civarında maya türü tanımlanmıştır. Fakat bu sayı maya çeşitliliğinde sadece çok küçük bir bölümü temsil etmektedir. Tanımlanmamış maya genus ve tür sayısı çok daha fazladır. Maya biyologları için maya çeşitliliğini tanımlamak kadar diğer önemli bir nokta özellikle biyoteknolojik öneme sahip türleri belirleyip saklamak ve koruyabilmektir. Moleküler biyoloji tekniklerinin yaklaşımıyla türler daha hızlı ve kolay bir şekilde karakterize edilebilmektedir. Günümüzde 6 mayanın genom projesi tamamlanmış ve işlevsel genomik çalışmaları ile genlerin işlevlerinin belirlenmesine devam edilmektedir. Maya hücreleri klorofil içermez ve zorunlu olarak kemoorganotrofiktirler. Üremek için organik karbona gerek duyarlar. Karbon metabolizmaları çok çeşitlidir. Örneğin basit şekerleri, polioller, organik ve yağ asitleri alifatik alkoller, hidrokarbonlar ve çeşitli heterosiklik ve polimerik bileşikleri karbon kaynağı olarak kullanabilirler. Bu özellikleri nedeniyle farklı habitatlar için özelleşmiş türler kolaylıkla saptanabilir. Mayalar toprak, hava ve sudan izole edilebilirler. Bazı mayalar ekstrem ortamlarda örneğin ozmofilik mayalar şeker bakımından zengin ortamlarda yaşayabilirler. Bu tür mayalar genellikle gıda bozucu olarak bilinir. Bunun dışında fırsatçı patojen olarak bazı maya türleride örneğin Candida albicans pek çok infeksiyondan sorumludur. Mayalar insanlar için; ekonomik, sosyal ve sağlık açısından oldukça önemli en eski evcilleştirilmiş organizmalardır. Alkollü içeçeklerin üretiminde, ekmek yapımında hamurun kabarması için binlerce yıl öncesinden beri kullanılmaktadırlar. Gerçekte bira yapımı belkide dünyanın ilk biyoteknolojisini temsil etmektedir. Günümüzde mayalar geleneksel gıda fermentasyonunun dışında çok çeşitli alanlarda da kullanılmaktadır. Özellikle genetik mühendisliğiyle geliştirilmiş mayalar hastalıkların önlenmesinde ve tedavisinde kullanılan pek çok farmasötik ajanın üretilmesinde yaygın bir şekilde kullanılmaktadır. Biyoteknolojik Öneme Sahip Bazı Mayalar - Axula adeninivorans: Nitrat ve aminleri asimile eder, 45 C üzerinde üreyebilir, pek çok hidrolaz salgılayabilir. - Candida türleri: C.albicans hidrokarbonlardan aminopenisillanik asit ve B6 vitamin üretimi, C.boidinii NAD, FAD metil ketonlar ve sitrik asit üretimi, C.famata riboflavin, C.maltosa biyokütle proteini için yağ asiti ve alkan kullanımı, C.tropicalis triptofan, C.pelliculosa selülozik materyalden biyokütle proteini, C.utilis, pek çok ürün eldesi, ksilozda üreyebilme, klonlama teknolojisinde kullanım, C.shehatae ksiloz fermentasyonu - Hansenula polymorpha: Heterolog gen anlatımı için kullanılabilen metilotrofik maya. - Kluyveromyces marxianus ve K.lactis: Laktoz ve polyfruktosanı fermente eder. Doğal kakao fermentayonu. Pek çok enzim için kaynak olabilir, klonlama teknolojisinde kullanılabilir. - Pachysolen tannophilus: Bitki lignoselülozik hidrolizatlarından kaynaklı pentoz şekerlerinin fermentasyonu. - Phaffia rhodozyma ve Pichia türleri: Gıda boyası olan astaksantin pigment üretimi. P.guilliermondii riboflavin sentezi ve hidrokarbonlardan biomas protein eldesi. P.methanolica etanol biosensörü olarak kullanılan alkol oksidaz üretimi.P.pastoris metanolden biomas protein eldesi, heterolog gen anlatımı ve insan terapötik proteinlerini üretebilen metilotrofik maya. - Rhodosporidium toruloides: Fenilketanüri tedavisinde kullanılan PAL enzim kaynağı. - Saccharomyces türleri: S.cerevisiae klasik gıda fermentasyonu. Bira, şarap, ekmek, rom, cin yapımı. Yakıt, alkol, gliserol, invertaz ve hayvan besini kaynağı.Rekombinant DNA teknolojisiyle sayısız protein üretimi. - Saccharomycopsis türleri: S.fibuligera amilolitik maya - Schizosaccharomyce pombe: Geleneksel Afrika alkollü bira yapımı. Şarapların deasidifikasyonu. Yüksek etanol ozmotik tolerans, biyokütle protein eldesi, heterolog gen anlatımı ve mutagenez testlerinde kullanım - Schwanniomyces türleri: S.castellii ve S.occidentalis amilolitik mayalar. Nişastanın ve inülinin etanole çevrimi ve heterolog gen anlatımında kullanılabilirler. - Trichosporon cutaneum: Fenol varlığına ilişkin bisensor olarak kullanılır. - Yarrowia lipolytica: Lipid ve hidrokarbonlardan biomas protein eldesi. Sitrik asit ve hücredışı enzim üretimi. Ø Zygosaccharomyces rouxii: Japon soya sosu karakteristik aromasını vermede kullanılan halofilik ve ozmotolerant maya türü. Alkollü içeçeklerin üretiminde mayalar Endüstriyel mayaların çoğu, özellikle de fermente içeçeklerin üretiminde kullanılanlar, genetik bakımından karmaşıktırlar ve stabil bir haploidi göstermezler. Örneğin bira yapımında kullanılan Sacchoromyces türleri poliploid veya anöpliod (diploid-heptaploid) ırklardır. Bu nedenle geliştirilmelerinde eşeyli üreme özelliklerinden yararlanılamaz. Bunun yerine klasik bira tadını veren organoleptik özellikleri iyi olan karakteristik fermentasyon yapan ırklardan doğal seçimle en iyi olan şeçilir. Bunun dışında endüstriyel mayaların geliştirilmesinde şüphesiz genetik mühendisliğinin önemi oldukça fazladır. Rekombinant DNA teknolojisi ile geliştirilen rekombinant mayalar tarafından üretilen biyolojik olarak aktif rekombinant proteinlerin veriminin arttırılmasında iki önemli yaklaşım vardır. Bunlar; moleküler genetik tekniklerin kullanımı ve fermentasyon teknolojisidir. Gıda tüzüğüne uygun olarak ekmek mayasının (glikoz baskısından kaçınmak ve hamurlaşmayı önlemek için) maltoz kullanım genleri değiştirilmiştir. Bira mayasında ise Maltodekstrinleri kısmi olarak parçalayan STA2 genini içeren plazmid bulunmaktadır. Genetik mühendisliği ile geliştirilmiş mayaların lignoselülozik (odunsu) atıkları substrat olarak kullanarak etanol üretmeleri yönünde yoğun çalışmalar yapılmaktadır. Etanol dışında mayaların ürettiği diğer biyoalkoller; gliserol ( alkollü içecekler için aroma katıcı, nitrogliserin türevli patlatıcılar yapımında), ksilitol (şeker yerine diyabetik ürünlerin yapımında), sorbitol, arabinitol (düşük şeker içerikli gıdaların yapımında; ilaçların kaplanmasında yenilebilir kaplama maddesi olarak) Etanolün yenilenebilir kaynaklardan mayalar kullanarak üretilmesi tüm dünyanın ilgisini çeken konulardan biridir. İlk üretim 1930’larda başlamıştır fakat petrol fiyatları düşürülünce teknoloji bırakılmıştır. 1970’deki petrol krizi ile birlikte yeniden gündeme gelmiştir. Brezilya, şeker kamışını ve melası substrat olarak kullanarak ürettiği petrolü yakıt amaçlı kullanmaktadır. Brezilya’da otomobillerin çoğu alkol veya alkol+benzin karışımı (gasohol) ile çalışmaktadır. KÜFLER Küfler hifli mantarlardır. Birçok organizma ve gıda maddesi ( ekmek, meyve, sebze.. vb) üzerinde oluşturdukları pamuk görüntüsündeki doku nedeniyle mayalardan çok daha önce keşfedilmişlerdir. Küfler, endüstride birçok ürünün eldesinde, atıklardan değerli ürünlerin oluşturulmasında kullanılan farklılaşma göstermeyen ve klorofil içermeyen mikroorganizmalardır. Doğada ve toprakta yaygın olarak bulunan küflerden endüstriyel mikrobiyoloji alanında önem taşıyanlar mikroskobik olanlardır. Küflerin üredikleri ortama proteaz, lipaz, karbonanhidrazlar gibi litik enzimleri salgılamaları ve küflerin ürettikleri çeşitli metabolitlerin birçok alanda kullanılabilir olması bu organizmaların endüstrideki önemini oldukça artırmaktadır. Ayrıca insan, hayvan ve bitkiler için patojen olan türleride bulunmaktadır. Küflerin Biyolojisi: Bir küf, protoplazma iplikleri veya uzantıları olan hiflerden ve sporlardan oluşur. Hiflerin yaptığı yumağı misel adı verilir. Hifler, bölmeli hifler ve bölmesiz hifler olarak ikiye ayrılır. Bölmeli hifler bölmeler ile hücrelere ayrılırlar ve her hücrede bir veya iki hücre çekirdeği bulunur. • Bölmesiz hiflere sönositik hif adı da verilir. • Bölme içermezler ve çok çekirdeklidirler. • Üreme hifleri genellikle koloninin yüzeyinde bulunan ve üreyen hücreleri veya sporları taşıyan hiflerdir. • Hifsel üreme ortamın besin koşulları ile yakından ilgilidir. • Beslenme hifleri ise koloniye besin sağlayan hiflerdir. Beslenme hifleri sayesinde hücrenin bulunduğu noktadan uzakta olan substratlara ulaşmaları sağlanır. • Küflerin hücre duvarı glukan, kitosan ve kitin gibi farklı glukoz polimerlerinden yapılabilir.

http://www.biyologlar.com/mikrobiyal-biyoteknoloji-bolum-1

 
3WTURK CMS v6.03WTURK CMS v6.0