Biyolojiye gercekci yaklasimin tek adresi.

Arama Sonuçları..

Toplam 52 kayıt bulundu.

Doku Kültürü Histoloji

Canlıdan alınan hücreleri uygun ortamda invitro olarak yaşatıp üretmek ve bunlar üzerinde inceleme yapmak esasına dayanır. Kültür ortamı olarak fizyolojik sıvılarla beraber kan plazması ya da embriyonal doku sıvıları kullanılır. Doku kültürü lamlarının ortası oyuk olup kültür sıvısı ve taze doku parçası buraya konur. Koyduğumuz doku içindeki canlı hücreler kültür sıvısında, 37°C ısıda canlılıklarını korurlar ve kısa bir süre sonra üremeye başlarlar. Bu hücreler canlı olarak faz kontrast mikroskobu ile incelenebilirler, vital boyalarla boyanabilirler.Ayrıca kültür sıvısına bazı maddeler eklenerek bu maddelerin canlı hücreler üzerine etkileri araştırılabilir.Otoradyografi Organik ya da inorganik bileşikler halinde organizmaya verilen radyoaktif elementler vücutmetabolizmasına katılır. Özellikle o maddenin sürekli ve hızlı kullanıldığı yerlerde kısa sürede o elementin yerini alır (iyotun tiroid bezlerinde tutulması gibi). O dokuya ait histolojik kesitlerde radyoaktif elementin saldığı ışınların bir fotoğraf plağını etkilemesiyle ortaya çıkan görüntünün incelenmesi bu yöntemin esasını oluşturur. Otoradyografide kullanılmaya elverişli radyoizotoplar, radyoakitf karbon, trityum, fosfor, kükürt ve iyottur.Histokimya Çeşitli organik ve inorganik maddelerin doku içindeki varlığını, miktarını, yerleşme özelliklerini ortaya koyan bir çalışma yöntemidir. Bu yöntem, aradığımız madde üzerine bu madde ile reaksiyona giren renkli bir maddenin çöktürülmesi esasına dayanır. Ya da başka bir ifade ile sadece aradığımız maddenin bulunduğu yerlerin kullandığımız boya ile boyanıyor olmasıdır. Örneğin, Prusya mavisi ile doku içindeki demirin, PAS (periyodik Asit Schiff) ile polisakkaritlerin varlığını, hatta miktarını ortaya koymak mümkündür. Renkli maddenin koyuluğu o bölgede aradığımız maddenin yoğunluğu hakkına bilgi verir. Daha kantitatif sonuçlar elde etmek için fotometrik çalışmalar bu yönteme eklenebilir.Kaynaklar: Aykaç İ., Histolojik ve Histoşimik Boya Teknikleri, Atatürk Üniversitesi Yayınları, Erzurum, 1977.Bancroft J.D., Stevens A., Theory and Practice of Histological Techniques, Churchil Livingstone, Edinburg, London and New York, 1977.Biological stain commision, Stainin Procedurs, Second Ed., The William Wilkins Comp., Baltimore, 1960.Bloom W., Fawcet D.W., A Texbook of Histology, IIth Ed., Sounders Compi Philadephia, 1986.Buck H.C., Histologishe Technic, Georg Thieme Verlag, Stuttgart, 1933.Erkoçak A., Genel Histoloji, Ankara Üniversitesi Yayınları, Ankara, 1978.Gabe M., Histological Techniques, Masson Springer Verlag, Paris, 1976.Johnson K.E., Histology and Cell Biology, Williams Wilkins Comp., Baltimore, Maryland, 1991.Kayalı H., Genel Histoloji, Taş Matbaası, İstanbul, 1985.Knoche H., Leitfaden der Histologischen Technik, Gustav Fischer Verlag Stuttgart, 1979.

http://www.biyologlar.com/doku-kulturu-histoloji

Doku Kültürü

Canlıdan alınan hücreleri uygun ortamda invitro olarak yaşatıp üretmek ve bunlar üzerinde inceleme yapmak esasına dayanır. Kültür ortamı olarak fizyolojik sıvılarla beraber kan plazması ya da embriyonal doku sıvıları kullanılır. Doku kültürü lamlarının ortası oyuk olup kültür sıvısı ve taze doku parçası buraya konur. Koyduğumuz doku içindeki canlı hücreler kültür sıvısında, 37°C ısıda canlılıklarını korurlar ve kısa bir süre sonra üremeye başlarlar. Bu hücreler canlı olarak faz kontrast mikroskobu ile incelenebilirler, vital boyalarla boyanabilirler. Ayrıca kültür sıvısına bazı maddeler eklenerek bu maddelerin canlı hücreler üzerine etkileri araştırılabilir. Otoradyografi Organik ya da inorganik bileşikler halinde organizmaya verilen radyoaktif elementler vücut metabolizmasına katılır. Özellikle o maddenin sürekli ve hızlı kullanıldığı yerlerde kısa sürede o elementin yerini alır (iyotun tiroid bezlerinde tutulması gibi). O dokuya ait histolojik kesitlerde radyoaktif elementin saldığı ışınların bir fotoğraf plağını etkilemesiyle ortaya çıkan görüntünün incelenmesi bu yöntemin esasını oluşturur. Otoradyografide kullanılmaya elverişli radyoizotoplar, radyoakitf karbon, trityum, fosfor, kükürt ve iyottur. Histokimya Çeşitli organik ve inorganik maddelerin doku içindeki varlığını, miktarını, yerleşme özelliklerini ortaya koyan bir çalışma yöntemidir. Bu yöntem, aradığımız madde üzerine bu madde ile reaksiyona giren renkli bir maddenin çöktürülmesi esasına dayanır. Ya da başka bir ifade ile sadece aradığımız maddenin bulunduğu yerlerin kullandığımız boya ile boyanıyor olmasıdır. Örneğin, Prusya mavisi ile doku içindeki demirin, PAS (periyodik Asit Schiff) ile polisakkaritlerin varlığını, hatta miktarını ortaya koymak mümkündür. Renkli maddenin koyuluğu o bölgede aradığımız maddenin yoğunluğu hakkına bilgi verir. Daha kantitatif sonuçlar elde etmek için fotometrik çalışmalar bu yönteme eklenebilir. Kaynaklar: Aykaç İ., Histolojik ve Histoşimik Boya Teknikleri, Atatürk Üniversitesi Yayınları, Erzurum, 1977. Bancroft J.D., Stevens A., Theory and Practice of Histological Techniques, Churchil Livingstone, Edinburg, London and New York, 1977. Biological stain commision, Stainin Procedurs, Second Ed., The William Wilkins Comp., Baltimore, 1960. Bloom W., Fawcet D.W., A Texbook of Histology, IIth Ed., Sounders Compi Philadephia, 1986. Buck H.C., Histologishe Technic, Georg Thieme Verlag, Stuttgart, 1933. Erkoçak A., Genel Histoloji, Ankara Üniversitesi Yayınları, Ankara, 1978. Gabe M., Histological Techniques, Masson Springer Verlag, Paris, 1976. Johnson K.E., Histology and Cell Biology, Williams Wilkins Comp., Baltimore, Maryland, 1991. Kayalı H., Genel Histoloji, Taş Matbaası, İstanbul, 1985. Knoche H., Leitfaden der Histologischen Technik, Gustav Fischer Verlag Stuttgart, 1979.

http://www.biyologlar.com/doku-kulturu

Çevre Kanunu (Bölüm-1)

ÇEVRE KANUNU (1) (2) Kanun Numarası : 2872 Kabul Tarihi : 9/8/1983 Yayımlandığı R.Gazete : Tarih : 11/8/1983 Sayı : 18132 Yayımlandığı Düstur Tertip : 5 Cilt : 22 Sayfa : 499 BİRİNCİ BÖLÜM Amaç, Tanımlar ve İlkeler Amaç: Madde 1 – (Değişik: 26/4/2006 – 5491/1 md.) Bu Kanunun amacı, bütün canlıların ortak varlığı olan çevrenin, sürdürülebilir çevre ve sürdürülebilir kalkınma ilkeleri doğrultusunda korunmasını sağlamaktır. Tanımlar: Madde 2 – (Değişik: 26/4/2006 – 5491/2 md.) Bu Kanunda geçen terimlerden; Çevre: Canlıların yaşamları boyunca ilişkilerini sürdürdükleri ve karşılıklı olarak etkileşim içinde bulundukları biyolojik, fiziksel, sosyal, ekonomik ve kültürel ortamı, Çevre korunması: Çevresel değerlerin ve ekolojik dengenin tahribini, bozulmasını ve yok olmasını önlemeye, mevcut bozulmaları gidermeye, çevreyi iyileştirmeye ve geliştirmeye, çevre kirliliğini önlemeye yönelik çalışmaların bütününü, Çevre kirliliği: Çevrede meydana gelen ve canlıların sağlığını, çevresel değerleri ve ekolojik dengeyi bozabilecek her türlü olumsuz etkiyi, Sürdürülebilir çevre: Gelecek kuşakların ihtiyaç duyacağı kaynakların varlığını ve kalitesini tehlikeye atmadan, hem bugünün hem de gelecek kuşakların çevresini oluşturan tüm çevresel değerlerin her alanda (sosyal, ekonomik, fizikî vb.) ıslahı, korunması ve geliştirilmesi sürecini, Sürdürülebilir kalkınma: Bugünkü ve gelecek kuşakların, sağlıklı bir çevrede yaşamasını güvence altına alan çevresel, ekonomik ve sosyal hedefler arasında denge kurulması esasına dayalı kalkınma ve gelişmeyi, Alıcı ortam: Hava, su, toprak ortamları ile bu ortamlarla ilişkili ekosistemleri, Doğal varlık: Bütün bitki, hayvan, mikroorganizmalar ile bunların yaşama ortamlarını, Doğal kaynak: Hava, su, toprak ve doğada bulunan cansız varlıkları, (1)19/10/1989 tarih ve 383 sayılı KHK'nin 25 inci maddesi; bu Kanun ile Çevre Müsteşarlığına verilen yetkilerin, Özel Çevre Koruma Kurumu Başkanlığına geçeceğini hüküm altına almıştır. (2)9/8/1991 tarih ve 443 sayılı KHK'nin geçici 1 inci maddesi ile çeşitli mevzuatta geçen "Çevre Müsteşarlığı" ve "Çevreden Sorumlu Devlet Bakanlığı" ibareleri "Çevre Bakanlığı", "Çevreden Sorumlu Devlet Bakanı" ve "Çevre Müsteşarı" ibareleri "Çevre Bakanı" olarak değiştirilmiştir. Kirleten: Faaliyetleri sırasında veya sonrasında doğrudan veya dolaylı olarak çevre kirliliğine, ekolojik dengenin ve çevrenin bozulmasına neden olan gerçek ve tüzel kişileri, Ekosistem: Canlıların kendi aralarında ve cansız çevreleriyle ilişkilerini bir düzen içinde yürüttükleri biyolojik, fiziksel ve kimyasal sistemi, Atıksu: Evsel, endüstriyel, tarımsal ve diğer kullanımlar sonucunda kirlenmiş veya özellikleri kısmen veya tamamen değişmiş suları, Atıksu altyapı tesisleri: Evsel ve/veya endüstriyel atıksuları toplayan kanalizasyon sistemi ile atıksuların arıtıldığı ve alıcı ortama verilmesinin sağlandığı sistem ve tesislerin tamamını, Arıtma tesisi: Her türlü faaliyet sonucu oluşan katı, sıvı ve gaz halindeki atıkların yönetmeliklerde belirlenen standartları sağlayacak şekilde arıtıldığı tesisleri, Ekolojik denge: İnsan ve diğer canlıların varlık ve gelişmelerini doğal yapılarına uygun bir şekilde sürdürebilmeleri için gerekli olan şartların bütününü, Sulak alan: Doğal veya yapay, devamlı veya geçici, suları durgun veya akıntılı, tatlı, acı veya tuzlu, denizlerin gelgit hareketlerinin çekilme devresinde altı metreyi geçmeyen derinlikleri kapsayan, başta su kuşları olmak üzere canlıların yaşama ortamı olarak önem taşıyan bütün sular, bataklık, sazlık ve turbiyeler ile bu alanların kıyı kenar çizgisinden itibaren kara tarafına doğru ekolojik açıdan sulak alan kalan yerleri, Biyolojik çeşitlilik: Ekosistemlerin, türlerin, genlerin ve bunlar arasındaki ilişkilerin tamamını, Atık: Herhangi bir faaliyet sonucunda oluşan, çevreye atılan veya bırakılan her türlü maddeyi, Katı atık: Üreticisi tarafından atılmak istenen ve toplumun huzuru ile özellikle çevrenin korunması bakımından, düzenli bir şekilde bertaraf edilmesi gereken katı atık maddeleri, Evsel katı atık: Tehlikeli ve zararlı atık kapsamına girmeyen konut, sanayi, işyeri, piknik alanları gibi yerlerden gelen katı atıkları, Tehlikeli atık: Fiziksel, kimyasal ve/veya biyolojik yönden olumsuz etki yaparak ekolojik denge ile insan ve diğer canlıların doğal yapılarının bozulmasına neden olan atıklar ve bu atıklarla kirlenmiş maddeleri, Tehlikeli kimyasallar: Fiziksel, kimyasal ve/veya biyolojik yönden olumsuz etki yaparak ekolojik denge ile insan ve diğer canlıların doğal yapılarının bozulmasına neden olan her türlü kimyasal madde ve ürünleri, Kirli balast: Duran veya seyir halindeki tankerden, gemiden veya diğer deniz araçlarından su üzerine bırakıldığında; su üstünde veya bitişik sahil hattında petrol, petrol türevi veya yağ izlerinin görülmesine neden olan veya su üstünde ya da su altında renk değişikliği oluşturan veya askıda katı madde/emülsiyon halinde maddelerin birikmesine yol açan balast suyunu, Çevresel etki değerlendirmesi: Gerçekleştirilmesi plânlanan projelerin çevreye olabilecek olumlu ve olumsuz etkilerinin belirlenmesinde, olumsuz yöndeki etkilerin önlenmesi ya da çevreye zarar vermeyecek ölçüde en aza indirilmesi için alınacak önlemlerin, seçilen yer ile teknoloji alternatiflerinin belirlenerek değerlendirilmesinde ve projelerin uygulanmasının izlenmesi ve kontrolünde sürdürülecek çalışmaları, Proje tanıtım dosyası: Gerçekleşmesi plânlanan projenin yerini, özelliklerini, olası olumsuz etkilerini ve öngörülen önlemleri içeren, projeyi genel boyutları ile tanıtan bilgi ve belgeleri içeren dosyayı, Stratejik çevresel değerlendirme: Onaya tâbi plân ya da programın onayından önce plânlama veya programlama sürecinin başlangıcından itibaren, çevresel değerlerin plân ve programa entegre edilmesini sağlamak, plân ya da programın olası çevresel etkilerini en aza indirmek ve karar vericilere yardımcı olmak üzere katılımcı bir yaklaşımla sürdürülen ve yazılı bir raporu da içeren çevresel değerlendirme çalışmalarını, Çevre yönetimi: İdarî, teknik, hukukî, politik, ekonomik, sosyal ve kültürel araçları kullanarak doğal ve yapay çevre unsurlarının sürdürülebilir kullanımını ve gelişmesini sağlamak üzere yerel, bölgesel, ulusal ve küresel düzeyde belirlenen politika ve stratejilerin uygulanmasını, Çevre yönetim birimi/Çevre görevlisi: Bu Kanun ve Kanuna göre yürürlüğe konulan düzenlemeler uyarınca denetime tâbi tesislerin faaliyetlerinin mevzuata uygunluğunu, alınan tedbirlerin etkili olarak uygulanıp uygulanmadığını değerlendiren, tesis içi yıllık denetim programları düzenleyen birim ya da görevliyi, Çevre gönüllüsü: Bakanlıkça, uygun niteliklere sahip kişiler arasından seçilen ve bu Kanun ve Kanuna göre yürürlüğe konulan düzenlemelere aykırı faaliyetleri Bakanlığa iletmekle görevli ve yetkili kişiyi, Hassas alan: Ötrofikasyon riski yüksek olan ve Bakanlıkça belirlenecek kıyı ve iç su alanlarını, Çevreye ilişkin bilgi: Su, hava, toprak, bitki ve hayvan varlığı ile bunları olumsuz olarak etkileyen veya etkileme ihtimali bulunan faaliyetler ve alınan idarî ve teknik önlemlere ilişkin olarak mevcut bulunan her türlü yazılı, sözlü veya görüntülü bilgi veya veriyi, İş termin plânı: Atıksu ve evsel nitelikli katı atık kaynaklarının yönetmelikte belirtilen alıcı ortam deşarj standartlarını sağlamak için yapmaları gereken atıksu arıtma tesisi ve/veya kanalizasyon gibi altyapı tesisleri ile katı atık bertaraf tesislerinin gerçekleştirilmesi sürecinde yer alan yer seçimi, proje, ihale, inşaat, işletmeye alma gibi işlerin zamanlamasını gösteren plânı, Risk değerlendirmesi: Belirli kimyasal madde ya da maddelerin potansiyel tehlikelerinin belirlenmesi ve sonuçlarının hesaplanması yönünde kullanılan yöntemler bütününü, İyonlaştırıcı olmayan radyasyon: İyonlaşmaya neden olmayan elektromanyetik dalgaları, Elektromanyetik alan: Elektrik ve manyetik alan bileşenleri olan dalgaların oluşturduğu alanı, Koku: İnsanda koku alma duygusunu harekete geçiren ve kokunun algılanmasına neden olan uçucu maddelerin yarattığı etkiyi, Hava kalitesi: İnsan ve çevresi üzerine etki eden hava kirliliğinin göstergesi olan, çevre havasında mevcut hava kirleticilerin artan miktarıyla azalan kalitelerini, Bakanlık: Çevre ve Orman Bakanlığını, ifade eder. İlkeler: Madde 3 –(Değişik: 26/4/2006 – 5491/3 md.) Çevrenin korunmasına, iyileştirilmesine ve kirliliğinin önlenmesine ilişkin genel ilkeler şunlardır: a) Başta idare, meslek odaları, birlikler ve sivil toplum kuruluşları olmak üzere herkes, çevrenin korunması ve kirliliğin önlenmesi ile görevli olup bu konuda alınacak tedbirlere ve belirlenen esaslara uymakla yükümlüdürler. b) Çevrenin korunması, çevrenin bozulmasının önlenmesi ve kirliliğin giderilmesi alanlarındaki her türlü faaliyette; Bakanlık ve yerel yönetimler, gerekli hallerde meslek odaları, birlikler ve sivil toplum kuruluşları ile işbirliği yaparlar. c) Arazi ve kaynak kullanım kararlarını veren ve proje değerlendirmesi yapan yetkili kuruluşlar, karar alma süreçlerinde sürdürülebilir kalkınma ilkesini gözetirler. d) Yapılacak ekonomik faaliyetlerin faydası ile doğal kaynaklar üzerindeki etkisi sürdürülebilir kalkınma ilkesi çerçevesinde uzun dönemli olarak değerlendirilir. e) Çevre politikalarının oluşmasında katılım hakkı esastır. Bakanlık ve yerel yönetimler; meslek odaları, birlikler, sivil toplum kuruluşları ve vatandaşların çevre hakkını kullanacakları katılım ortamını yaratmakla yükümlüdür. f) Her türlü faaliyet sırasında doğal kaynakların ve enerjinin verimli bir şekilde kullanılması amacıyla atık oluşumunu kaynağında azaltan ve atıkların geri kazanılmasını sağlayan çevre ile uyumlu teknolojilerin kullanılması esastır. g) Kirlenme ve bozulmanın önlenmesi, sınırlandırılması, giderilmesi ve çevrenin iyileştirilmesi için yapılan harcamalar kirleten veya bozulmaya neden olan tarafından karşılanır. Kirletenin kirlenmeyi veya bozulmayı durdurmak, gidermek veya azaltmak için gerekli önlemleri almaması veya bu önlemlerin yetkili makamlarca doğrudan alınması nedeniyle kamu kurum ve kuruluşlarınca yapılan gerekli harcamalar 6183 sayılı Amme Alacaklarının Tahsil Usulü Hakkında Kanun hükümlerine göre kirletenden tahsil edilir. h) Çevrenin korunması, çevre kirliliğinin önlenmesi ve giderilmesi için uyulması zorunlu standartlar ile vergi, harç, katılma payı, yenilenebilir enerji kaynaklarının ve temiz teknolojilerin teşviki, emisyon ücreti ve kirletme bedeli alınması, karbon ticareti gibi piyasaya dayalı mekanizmalar ile ekonomik araçlar ve teşvikler kullanılır. ı) Bölgesel ve küresel çevre sorunlarının çözümüne yönelik olarak taraf olduğumuz uluslararası anlaşmalar sonucu ortaya çıkan ulusal hak ve yükümlülüklerin yerine getirilmesi için gerekli teknik, idarî, malî ve hukukî düzenlemeler Bakanlığın koordinasyonunda yapılır. Gerçek ve tüzel kişiler, bu düzenlemeler sonucu ortaya çıkabilecek maliyetleri karşılamakla yükümlüdür. j) Çevrenin korunması, çevre kirliliğinin önlenmesi ve çevre sorunlarının çözümüne yönelik gerekli teknik, idarî, malî ve hukukî düzenlemeler Bakanlığın koordinasyonunda yapılır. 2690 sayılı Türkiye Atom Enerjisi Kurumu Kanunu kapsamındaki konular Türkiye Atom Enerjisi Kurumu tarafından yürütülür. İKİNCİ BÖLÜM Yüksek Çevre Kurulu ve Görevleri(1) Yüksek Çevre Kurulu(1) Madde 4 – (Mülga: 9/8/1991 - KHK - 443/43 md.; Yeniden düzenleme: 26/4/2006 – 5491/4 md.) Başbakanın başkanlığında, Başbakanın bulunmadığı zamanlarda Çevre ve Orman Bakanının başkanlığında, Başbakanın belirleyeceği sayıda bakan ile Bakanlık Müsteşarından oluşan Yüksek Çevre Kurulu kurulmuştur. Diğer bakanlar gündeme göre Kurul toplantılarına başkan tarafından çağrılabilir. Kurul yılda en az bir defa toplanır. Kurulun sekretarya hizmetleri Bakanlıkça yürütülür. Kurulun çalışmaları ile ilgili konularda ön hazırlık ve değerlendirme yapmak üzere, Bakanlık Müsteşarının başkanlığında ilgili bakanlık müsteşarları, diğer kurum ve kuruluşların en üst düzey yetkili amirlerinin katılımı ile toplantılar düzenlenir. Bu toplantılara gündeme göre ilgili kamu kurumu niteliğindeki kuruluşların birlik temsilcileri, meslek kuruluşları, sivil toplum kuruluşları, yerel yönetim temsilcileri, üniversite temsilcileri ve bilimsel kuruluşların temsilcileri davet edilir. Kurulun çalışma usûl ve esasları ile diğer hususlar yönetmelikle belirlenir. Yüksek Çevre Kurulunun görevleri(1) Madde 5 – (Mülga: 13/3/1990 - KHK - 409/12 md.; Yeniden düzenleme: 26/4/2006 – 5491/5 md.) Yüksek Çevre Kurulunun görevleri şunlardır: a) Etkin bir çevre yönetiminin sağlanması için hedef, politika ve strateji belirlemek. b) Sürdürülebilir kalkınma ilkesi çerçevesinde ekonomik kararlara çevre boyutunun dahil edilmesine imkân veren hukukî ve idarî tedbirleri belirlemek. c) Birden fazla bakanlık ve kuruluşu ilgilendiren çevre konularına ilişkin uyuşmazlıklarda nihai kararı vermek. Madde 6 – 7 – (Mülga: 8/6/1984 - KHK 222/30 md.) ÜÇÜNCÜ BÖLÜM Çevre Korunmasına İlişkin Önlemler ve Yasaklar Kirletme yasağı: Madde 8 – Her türlü atık ve artığı, çevreye zarar verecek şekilde, ilgili yönetmeliklerde belirlenen standartlara ve yöntemlere aykırı olarak doğrudan ve dolaylı biçimde alıcı ortama vermek, depolamak, taşımak, uzaklaştırmak ve benzeri faaliyetlerde bulunmak yasaktır. Kirlenme ihtimalinin bulunduğu durumlarda ilgililer kirlenmeyi önlemekle; kirlenmenin meydana geldiği hallerde kirleten, kirlenmeyi durdurmak, kirlenmenin etkilerini gidermek veya azaltmak için gerekli tedbirleri almakla yükümlüdürler. ______________________________ (1) 26/4/2006 tarihli ve 5491 sayılı Kanunun 4 üncü maddesiyle ikinci bölüm başlığı “Merkezi ve Mahalli İdari Bölümleri ve Görevleri”, 4 üncü madde başlığı “Merkez Çevre Kurulu” iken metne işlendiği şekilde değiştirilmiştir. Çevrenin korunması(1) Madde 9 – (Değişik: 26/4/2006 – 5491/6 md.) Çevrenin korunması amacıyla; a) Doğal çevreyi oluşturan biyolojik çeşitlilik ile bu çeşitliliği barındıran ekosistemin korunması esastır. Biyolojik çeşitliliği koruma ve kullanım esasları, yerel yönetimlerin, üniversitelerin, sivil toplum kuruluşlarının ve ilgili diğer kuruluşların görüşleri alınarak belirlenir. b) Ülke fizikî mekânında, sürdürülebilir kalkınma ilkesi doğrultusunda, koruma-kullanma dengesi gözetilerek kentsel ve kırsal nüfusun barınma, çalışma, dinlenme, ulaşım gibi ihtiyaçların karşılanması sonucu oluşabilecek çevre kirliliğini önlemek amacıyla nazım ve uygulama imar plânlarına esas teşkil etmek üzere bölge ve havza bazında 1/50.000-1/100.000 ölçekli çevre düzeni plânları Bakanlıkça yapılır, yaptırılır ve onaylanır. Bölge ve havza bazında çevre düzeni plânlarının yapılmasına ilişkin usûl ve esaslar Bakanlıkça çıkarılacak yönetmelikle belirlenir. c) Ulusal mevzuat ve taraf olduğumuz uluslararası sözleşmeler ile koruma altına alınarak koruma statüsü kazandırılmış alanlar ve ekolojik değeri olan hassas alanların her tür ölçekteki plânlarda gösterilmesi zorunludur. Koruma statüsü kazandırılmış alanlar ve ekolojik değeri olan alanlar, plân kararı dışında kullanılamaz. d) Ülke ve dünya ölçeğinde ekolojik önemi olan, çevre kirlenmeleri ve bozulmalarına duyarlı toprak ve su alanlarını, biyolojik çeşitliliğin, doğal kaynakların ve bunlarla ilgili kültürel kaynakların gelecek kuşaklara ulaşmasını emniyet altına almak üzere gerekli düzenlemelerin yapılabilmesi amacıyla, Özel Çevre Koruma Bölgesi olarak tespit ve ilan etmeye, bu alanlarda uygulanacak koruma ve kullanma esasları ile plân ve projelerin hangi bakanlıkça hazırlanıp yürütüleceğini belirlemeye Bakanlar Kurulu yetkilidir. Bu bölgelere ilişkin plân ve projelerde; 3/5/1985 tarihli ve 3194 sayılı İmar Kanununun 9 uncu maddesi, 4/4/1990 tarihli ve 3621 sayılı Kıyı Kanununun plân onama yetkisini düzenleyen hükümleri, 21/7/1983 tarihli ve 2863 sayılı Kültür ve Tabiat Varlıklarını Koruma Kanununun 8 inci maddesinin tabiat varlıkları, doğal sit alanları ve bunların korunma alanlarının tespit ve tescili dışında kalan yetkileri düzenleyen hükümleri ile aynı Kanunun 17 nci maddesinin (a) bendi hükümleri uygulanmaz. e) Sulak alanların doğal yapılarının ve ekolojik dengelerinin korunması esastır. Sulak alanların doldurulması ve kurutulması yolu ile arazi kazanılamaz. Bu hükme aykırı olarak arazi kazanılması halinde söz konusu alan faaliyet sahibince eski haline getirilir. Sulak alanların korunması ve yönetimine ilişkin usûl ve esaslar ilgili kurum ve kuruluşların görüşü alınarak Bakanlıkça çıkarılacak yönetmelikle belirlenir. f) Biyolojik çeşitliliğin sürdürülebilirliliğinin sağlanması bakımından nesli tehdit veya tehlike altında olanlar ile nadir bitki ve hayvan türlerinin korunması esas olup, mevzuata aykırı biçimde ticarete konu edilmeleri yasaktır. g) Doğal kaynakların ve varlıkların korunması, kirliliğinin ve tahribatının önlenmesi ve kalitesinin iyileştirilmesi için gerekli idarî, hukukî ve teknik esaslar Bakanlık tarafından belirlenir. h) Ülkenin deniz, yeraltı ve yerüstü su kaynaklarının ve su ürünleri istihsal alanlarının korunarak kullanılmasının sağlanması ve kirlenmeye karşı korunması esastır. Atıksu yönetimi ile ilgili politikaların oluşturulması ve koordinasyonunun sağlanması Bakanlığın sorumluluğundadır. Su ürünleri istihsal alanları ile ilgili alıcı ortam standartları Tarım ve Köyişleri Bakanlığınca belirlenir. Denizlerde yapılacak balık çiftlikleri, hassas alan niteliğindeki kapalı koy ve körfezler ile doğal ve arkeolojik sit alanlarında kurulamaz. Alıcı su ortamlarına atıksu deşarjlarına ilişkin usûl ve esaslar Bakanlıkça çıkarılacak yönetmelikle belirlenir. ı) Çevrenin korunması ve kamuoyunda çevre bilincinin geliştirilmesi amacıyla, okul öncesi eğitimden başlanarak Millî Eğitim Bakanlığına bağlı örgün eğitim kurumlarının öğretim programlarında çevre ile ilgili konulara yer verilmesi esastır. –––––––––––––––––––– (1) Bu madde başlığı “Çevre Korunması” iken, 26/4/2006 tarihli ve 5491 sayılı Kanunun 6 ncı maddesiyle metne işlendiği şekilde değiştirilmiştir. Yaygın eğitime yönelik olarak, radyo ve televizyon programlarında da çevrenin önemine ve çevre bilincinin geliştirilmesine yönelik programlara yer verilmesi esastır. Türkiye Radyo - Televizyon Kurumu ile özel televizyon kanallarına ait televizyon programlarında ayda en az iki saat, özel radyo kanallarının programlarında ise ayda en az yarım saat eğitici yayınların yapılması zorunludur. Bu yayınların % 20’sinin izlenme ve dinlenme oranı en yüksek saatlerde yapılması esastır. Radyo ve Televizyon Üst Kurulu, görev alanına giren hususlarda bu maddenin takibi ile yükümlüdür. j) Çevre ile ilgili olarak toplanan her türlü kaynak ve gelir, tahsisi mahiyette olup, öncelikle çevrenin korunması, geliştirilmesi, ıslahı ve kirliliğin önlenmesi için kullanılır. Çevresel etki değerlendirilmesi: Madde 10 – (Değişik: 26/4/2006 – 5491/7 md.) Gerçekleştirmeyi plânladıkları faaliyetleri sonucu çevre sorunlarına yol açabilecek kurum, kuruluş ve işletmeler, Çevresel Etki Değerlendirmesi Raporu veya proje tanıtım dosyası hazırlamakla yükümlüdürler. Çevresel Etki Değerlendirmesi Olumlu Kararı veya Çevresel Etki Değerlendirmesi Gerekli Değildir Kararı alınmadıkça bu projelerle ilgili onay, izin, teşvik, yapı ve kullanım ruhsatı verilemez; proje için yatırıma başlanamaz ve ihale edilemez. Petrol, jeotermal kaynaklar ve maden arama faaliyetleri, Çevresel Etki Değerlendirmesi kapsamı dışındadır. Çevresel Etki Değerlendirmesine tâbi projeler ve Stratejik Çevresel Değerlendirmeye tâbi plân ve programlar ve konuya ilişkin usûl ve esaslar Bakanlıkça çıkarılacak yönetmeliklerle belirlenir. İzin alma, arıtma ve bertaraf etme yükümlülüğü (1) Madde 11 – (Değişik: 26/4/2006 – 5491/8 md.) Üretim, tüketim ve hizmet faaliyetleri sonucunda oluşan atıklarını alıcı ortamlara doğrudan veya dolaylı vermeleri uygun görülmeyen tesis ve işletmeler ile yerleşim birimleri atıklarını yönetmeliklerde belirlenen standart ve yöntemlere uygun olarak arıtmak ve bertaraf etmekle veya ettirmekle ve öngörülen izinleri almakla yükümlüdürler. Birinci fıkrada belirtilen yükümlülüğü bulunan tesis ve işletmeler ile yerleşim birimlerine; 1) İnşaat ruhsatı aşamasında bu yükümlülüğünü yerine getireceğini gösterir proje ve belgeleri ilgili kuruma sunmadıkça inşaat ruhsatı verilmez. 2) İnşaatı bitmiş olanlardan, bu yükümlülüğü yerine getirmeyenlere işletme ruhsatı ve/veya yapı kullanma ruhsatı verilmez. 3) İnşaat ruhsatına, yapı kullanma veya işletme ruhsatını haiz olmakla birlikte arıtma ve bertaraf yükümlülüklerini yerine getirmemeleri halinde, verilmiş yapı kullanma izni veya işletme izni iptal edilir. Faaliyetlerinde değişiklik yapmayı ve/veya tesislerini büyütmeyi plânlayan gerçek ve tüzel kişiler yönetmelikle belirlenen usûl ve esaslar çerçevesinde atıklarını arıtma veya bertaraf etme yükümlülüğünü yerine getirmek zorundadırlar. Atıksuları toplayan kanalizasyon sistemi ile atıksuların arıtıldığı ve arıtılmış atıksuların bertarafının sağlandığı atıksu altyapı sistemlerinin kurulması, bakımı, onarımı, ıslahı ve işletilmesinden; büyükşehirlerde 20/11/1981 tarihli ve 2560 sayılı İstanbul Su ve Kanalizasyon İdaresi Genel Müdürlüğü Kuruluş ve Görevleri Hakkında Kanunla belirlenen kuruluşlar, belediye ve mücavir alan sınırları içinde belediyeler, bunların dışında iskâna konu her türlü kullanım alanında valiliğin denetiminde bu alanları kullananlar sorumludur. Serbest ve/veya endüstri bölgelerinde bölge müdürlükleri, kültür ve turizm koruma ve gelişme bölgelerinde, turizm merkezlerinde Kültür ve Turizm Bakanlığı veya yetkili kıldığı birimler, organize sanayi bölgelerinde organize sanayi bölgesi yönetimi, küçük sanayi sitelerinde kooperatif başkanlıkları, mevcut yerleşim alanlarından kopuk olarak münferit yapılmış tatil köyü, tatil sitesi, turizm tesis alanları vb. kullanım alanlarında ise site yönetimleri veya tesis işletmecileri atıksu altyapı sistemlerinin kurulması, bakımı, onarımı ve işletilmesinden sorumludurlar. ––––––––––––––––––––– (1) Bu madde başlığı "İşletme izni ve haber verme yükümlülüğü:” iken, 26/4/2006 tarihli ve 5491 sayılı Kanunun 8 inci maddesiyle metne işlendiği şekilde değiştirilmiştir. Atıksu altyapı sistemlerini kullanan ve/veya kullanacaklar, bağlantı sistemlerinin olup olmadığına bakılmaksızın, arıtma sistemlerinden sorumlu yönetimlerin yapacağı her türlü yatırım, işletme, bakım, onarım, ıslah ve temizleme harcamalarının tamamına kirlilik yükü ve atıksu miktarı oranında katılmak zorundadırlar. Bu hizmetlerden yararlananlardan, belediye meclisince ve bu maddede sorumluluk verilen diğer idarelerce belirlenecek tarifeye göre atıksu toplama, arıtma ve bertaraf ücreti alınır. Bu fıkra uyarınca tahsil edilen ücretler, atıksu ile ilgili hizmetler dışında kullanılamaz. Atıksu toplama havzasının birden fazla belediye veya kurumun yetki sahasında olması halinde; atıksu arıtma tesisini işleten kurum, atıksu ile ilgili yatırım ve harcama giderlerini kirletenlerden kirlilik yükü ve atıksu miktarı nispetinde tahsil eder. Atık üreticileri uygun metot ve teknolojiler ile atıklarını en az düzeye düşürecek tedbirleri almak zorundadırlar. Atıkların üretiminin ve zararlarının önlenmesi veya azaltılması ile atıkların geri kazanılması ve geri kazanılabilen atıkların kaynağında ayrı toplanması esastır. Atık yönetim plânlarının hazırlanmasına ilişkin esaslar, Bakanlıkça çıkarılacak yönetmelikle düzenlenir. Geri kazanım imkânı olmayan atıklar, yönetmeliklerle belirlenen uygun yöntemlerle bertaraf edilir. Büyükşehir belediyeleri ve belediyeler evsel katı atık bertaraf tesislerini kurmak, kurdurmak, işletmek veya işlettirmekle yükümlüdürler. Bu hizmetten yararlanan ve/veya yararlanacaklar, sorumlu yönetimlerin yapacağı yatırım, işletme, bakım, onarım ve ıslah harcamalarına katılmakla yükümlüdür. Bu hizmetten yararlananlardan, belediye meclisince belirlenecek tarifeye göre katı atık toplama, taşıma ve bertaraf ücreti alınır. Bu fıkra uyarınca tahsil edilen ücretler, katı atıkla ilgili hizmetler dışında kullanılamaz. Üretici, ithalatçı ve piyasaya sürenlerin sorumluluğu kapsamında yükümlülük getirilen üreticiler, ithalatçılar ve piyasaya sürenler, ürünlerinin faydalı kullanım ömrü sonucunda oluşan atıklarının toplanması, taşınması, geri kazanımı, geri dönüşümü ve bertaraf edilmelerine dair yükümlülüklerinin yerine getirilmesi ve bunlara yönelik gerekli harcamalarının karşılanması, eğitim faaliyetlerinin gerçekleştirilmesi amacıyla Bakanlığın koordinasyonunda bir araya gelerek tüzel kişiliği haiz birlikler oluştururlar. Bu kapsamda yükümlülük getirilen kurum ve kuruluşların sorumluluklarının bu birliklere devrine ilişkin usûl ve esaslar Bakanlıkça çıkarılacak yönetmeliklerle belirlenir. Tehlikeli atık üreticileri, yönetmelikle belirlenecek esaslara göre atıklarını bertaraf etmek veya ettirmekle yükümlüdürler. Atık geri kazanım, geri dönüşüm ve bertaraf tesislerini kurmak ve işletmek isteyen gerçek ve/veya tüzel kişiler, yönetmelikle belirlenen esaslar doğrultusunda, ürün standardı, ürünlerinin satışa uygunluğu ve piyasadaki denetimi ile ilgili izni, ilgili kurumlardan almak kaydı ile Bakanlıktan lisans almakla yükümlüdür. Evsel atıklar hariç olmak üzere, atık taşıma ve/veya toplama işlerini yapan kurum veya kuruluşlar Bakanlıktan lisans almak zorundadır. Evsel atıkların taşıma ve toplama işlerini yapan kurum ve kuruluşlar Bakanlıkça kayıt altına alınır. Atıksu arıtımı, atık bertarafı ve atık geri kazanım tesisleri yapmak amacıyla belediyelerin hizmet birlikleri kurmaları halinde, bu hizmet birliklerine araştırma, etüt ve proje konularında Bakanlıkça teknik ve malî yardım yapılır. Tesis yapım projeleri ise bu Kanunun 18 inci maddesi çerçevesinde kredi veya yardım ile desteklenebilir. Kredi borcunun geri ödenmemesi durumunda 6183 sayılı Amme Alacaklarının Tahsil Usulü Hakkında Kanun hükümlerine göre takip yapılır ve öncelikle 2380 sayılı Belediyelere ve İl Özel İdarelerine Genel Bütçe Vergi Gelirlerinden Pay Verilmesi Hakkında Kanunun ek 4 üncü maddesi hükümleri çerçevesinde ilgili belediyelerin İller Bankasındaki paylarından tahsil olunur. Arıtma ve bertaraf etme yükümlülüğüne tâbi tesis ve işletmeler ile yerleşim birimleri, bu yükümlülüğe istinaden kurulması zorunlu olan arıtma ve bertaraf sistemleri, atıksu arıtma ve ön arıtma sistemleri ile atıksu altyapı sistemlerinin kurulması, onarımı, ıslahı, işletilmesi ve harcamalara katkı paylarının belirlenmesi ile ilgili usûl ve esaslar Bakanlıkça yönetmeliklerle düzenlenir. Bu konuda diğer kanunlarla verilen yetkiler saklıdır. Bu Kanunun uygulanmasını sağlamak üzere alınması gereken izinler ve bu izinlerin tâbi olacağı usûl ve esaslar Bakanlıkça çıkarılacak yönetmeliklerle belirlenir. Faaliyetleri nedeniyle çevreye olumsuz etkileri olabilecek kurum, kuruluş ve işletmeler tarafından, faaliyetlerine ilişkin olası bir kaza durumunda, kazanın çevreye olumsuz etkilerini kontrol altına almak ve azaltmak üzere uygulanacak acil durum plânları hazırlanması zorunludur. Buna ilişkin usûl ve esaslar Bakanlıkça çıkarılacak yönetmelikle düzenlenir. Bu plânlar dikkate alınarak Bakanlığın koordinasyonunda ilgili kurum ve kuruluşlarca yerel, bölgesel ve ulusal acil durum plânları hazırlanır. Liman, tersane, gemi bakım-onarım, gemi söküm, marina gibi kıyı tesisleri; kendi tesislerinde ve gemi ve diğer deniz araçlarında oluşan petrollü, yağlı katı atıklar ve sintine, kirli balast, slaç, slop gibi sıvı atıklar ile evsel atıksu ve katı atıkların alınması, depolanması, taşınması ve bertarafı ile ilgili işlemleri ve tesisleri yapmak veya yaptırmakla yükümlüdürler. Buna ilişkin usûl ve esaslar Bakanlıkça çıkarılacak yönetmelikle belirlenir. Denetim, bilgi verme ve bildirim yükümlülüğü(1) Madde 12 – (Değişik: 26/4/2006 – 5491/9 md.) Bu Kanun hükümlerine uyulup uyulmadığını denetleme yetkisi Bakanlığa aittir. Gerektiğinde bu yetki, Bakanlıkça; il özel idarelerine, çevre denetim birimlerini kuran belediye başkanlıklarına, Denizcilik Müsteşarlığına, Sahil Güvenlik Komutanlığına, 13/10/1983 tarihli ve 2918 sayılı Karayolları Trafik Kanununa göre belirlenen denetleme görevlilerine veya Bakanlıkça uygun görülen diğer kurum ve kuruluşlara devredilir. Denetimler, Bakanlığın belirlediği denetim usûl ve esasları çerçevesinde yapılır. Askerî işyerleri, askerî bölgeler ve tatbikatların bu Kanun çerçevesindeki denetimi ve neticelerine ait işlemler; Genelkurmay Başkanlığı, Millî Savunma Bakanlığı, İçişleri Bakanlığı ve Bakanlık tarafından müştereken hazırlanacak yönetmeliğe göre yürütülür. İlgililer, Bakanlığın veya denetimle yetkili diğer mercilerin isteyecekleri bilgi ve belgeleri vermek, yetkililerin yaptıracakları analiz ve ölçümlerin giderlerini karşılamak, denetim esnasında her türlü kolaylığı göstermek zorundadırlar. İlgililer, çevre kirliliğine neden olabilecek faaliyetleri ile ilgili olarak, kullandıkları hammadde, yakıt, çıkardıkları ürün ve atıklar ile üretim şemalarını, acil durum plânlarını, izleme sistemleri ve kirlilik raporları ile diğer bilgi ve belgeleri talep edilmesi halinde Bakanlığa veya yetkili denetim birimine vermek zorundadırlar. Denetim, bilgi verme ve bildirim yükümlülüğüne ilişkin usûl ve esaslar Bakanlıkça çıkarılacak yönetmelikle düzenlenir. Tehlikeli kimyasallar ve atıklar(2) Madde 13 – (Değişik: 26/4/2006 – 5491/10 md.) Tehlikeli kimyasalların belirlenmesi, üretimi, ithalatı, atık konumuna gelinceye kadar geçen süreçte kullanım alanları ve miktarları, etiketlenmesi, ambalajlanması, sınıflandırılması, depolanması, risk değerlendirilmesi, taşınması ile ihracatına ilişkin usûl ve esaslar ilgili kurum ve kuruluşların görüşleri alınarak Bakanlıkça çıkarılacak yönetmelikle belirlenir. Yönetmelik hükümlerine aykırı olarak piyasaya sürüldüğü tespit edilen tehlikeli kimyasallar ile bu kimyasalları içeren eşya, bunları satış ve kullanım amacıyla piyasaya süren kurum, kuruluş ve işletmelere toplattırılır ve imha ettirilir. Nakil ve imha için gereken masraflar ilgililerince karşılanır. Bu yükümlülüğün yerine getirilmemesi halinde bu masraflar, ilgili kurum, kuruluş ve işletmelerden 6183 sayılı Amme Alacaklarının Tahsil Usulü Hakkında Kanun hükümlerine göre tahsil edilir. Başbakanlık Dış Ticaret Müsteşarlığı bazı yakıtların, maddelerin, atıkların, tehlikeli kimyasallar ile bu kimyasalları içeren eşyaların ithalini, Bakanlığın görüşünü alarak yasaklayabilir veya kontrole tâbi tutabilir. Tehlikeli atıkların ithalatı yasaktır. Tehlikeli atıkların tanımı ile tehlikeli atıkların oluşum aşamasından itibaren toplanması, ayrılması, geçici ve ara depolanması, geri kazanılması, yeniden kullanılması, taşınması, bertarafı, bertaraf sonrası kontrolü, ihracatı, transit geçişi, ambalajlanması, etiketlenmesi, denetimi ve atık yönetim plânlarının hazırlanması ile ilgili usûl ve esaslar Bakanlıkça yayımlanacak yönetmelikle belirlenir. Tehlikeli kimyasalların üretimi, satışı, depolanması, kullanılması ve taşınması faaliyetleri ile tehlikeli atıkların toplanması, taşınması, geçici ve ara depolanması, geri kazanımı, yeniden kullanılması ve bertarafı faaliyetlerinde bulunanlar, bu Kanun ile getirilen yükümlülükler açısından müteselsilen sorumludurlar. Sorumlular bu Kanunda belirtilen meslekî faaliyetleri nedeniyle oluşacak bir kaza dolayısıyla üçüncü şahıslara verebilecekleri zararlara karşı tehlikeli kimyasal ve tehlikeli atık malî sorumluluk sigortası yaptırmak zorunda olup, faaliyetlerine başlamadan önce Bakanlıktan gerekli izni alırlar. Sigorta yaptırma zorunluluğuna uymayan kurum, kuruluş ve işletmelere bu faaliyetler için izin verilmez. –––––––––––––––––––– (1) Bu madde başlığı "Denetim" iken, 26/4/2006 tarihli ve 5491 sayılı Kanunun 9 uncu maddesiyle metne işlendiği şekilde değiştirilmiştir. (2) Bu madde başlığı”Zararlı kimyasal maddeler:” iken, 26/4/2006 tarihli ve 5491 sayılı Kanunun 10 uncu maddesiyle metne işlendiği şekilde değiştirilmiştir. Bu maddede öngörülen zorunlu malî sorumluluk sigortası, malî yeterliliklerine göre, Hazine Müsteşarlığınca belirlenen sigorta şirketleri tarafından ya da bağlı olduğu Bakanın onayı ile Hazine Müsteşarlığınca çıkarılacak bir yönetmelikle oluşturulacak bir havuz tarafından temin edilir. Havuzun yönetim ve işleyişi ile ilgili usûl ve esaslar da aynı yönetmelikle belirlenir. Havuz, sigorta ve/veya reasürans havuzu şeklinde oluşturulur. Kamu adına havuzda belirli bir payın korunmasına karar verilmesi hususunda Hazine Müsteşarlığının bağlı bulunduğu Bakan yetkilidir. Havuzun başlangıç giderleri için geri ödenmek üzere Hazine Müsteşarlığı bütçesinden avans kullandırılabilir. Havuzun yükümlülükleri; prim gelirleri ve bunların getirileri, piyasalardan sağlayacağı reasürans ve benzeri korumalar ve ödeme gücüyle sınırlıdır. Bakanlık, Hazine Müsteşarlığının uygun görüşünü almak kaydıyla, tehlikeli kimyasallar ve tehlikeli atıklarla ilgili faaliyetlerde bulunanların malî sorumluluk sigortası yaptırma zorunluluğunu, bu sigortaya ilişkin genel şartlar ile tarife ve talimatların yürürlüğe girmesinden itibaren en çok bir yıl ertelemeye yetkilidir. Her bir sorumlu tarafından yaptırılacak malî sorumluluk sigortasına ilişkin sigorta genel şartları Hazine Müsteşarlığınca onaylanır. Malî sorumluluk sigortası tarife ve talimatları Hazine Müsteşarlığının bağlı olduğu Bakan tarafından tespit edilir. Hazine Müsteşarlığının bağlı olduğu Bakan tarifeyi serbest bırakmaya yetkilidir. Gürültü: Madde 14 – (Değişik: 26/4/2006 – 5491/11 md.) Kişilerin huzur ve sükununu, beden ve ruh sağlığını bozacak şekilde ilgili yönetmeliklerle belirlenen standartlar üzerinde gürültü ve titreşim oluşturulması yasaktır. Ulaşım araçları, şantiye, fabrika, atölye, işyeri, eğlence yeri, hizmet binaları ve konutlardan kaynaklanan gürültü ve titreşimin yönetmeliklerle belirlenen standartlara indirilmesi için faaliyet sahipleri tarafından gerekli tedbirler alınır. Faaliyetlerin durdurulması: Madde 15 – (Değişik: 26/4/2006 – 5491/12 md.) Bu Kanun ve bu Kanun uyarınca yayımlanan yönetmeliklere aykırı davrananlara söz konusu aykırı faaliyeti düzeltmek üzere Bakanlıkça ya da 12 nci maddenin birinci fıkrası uyarınca denetim yetkisinin devredildiği kurum ve merciler tarafından bir defaya mahsus olmak üzere esasları yönetmelikle belirlenen ve bir yılı aşmamak üzere süre verilebilir. Faaliyet; süre verilmemesi halinde derhal, süre verilmesi durumunda, bu süre sonunda aykırılık düzeltilmez ise Bakanlıkça ya da 12 nci maddenin birinci fıkrası uyarınca denetim yetkisinin devredildiği kurum ve merciler tarafından kısmen veya tamamen, süreli veya süresiz olarak durdurulur. Çevre ve insan sağlığı yönünden tehlike yaratan faaliyetler süre verilmeksizin durdurulur. Çevresel Etki Değerlendirmesi incelemesi yapılmaksızın başlanan faaliyetler Bakanlıkça, proje tanıtım dosyası hazırlanmaksızın başlanan faaliyetler ise mahallin en büyük mülkî amiri tarafından süre verilmeksizin durdurulur. Süre verilmesi ve faaliyetin durdurulması, bu Kanunda öngörülen cezaların uygulanmasına engel teşkil etmez. Tehlikeli hallerde faaliyetin durdurulması: Madde 16 – (Mülga: 26/4/2006 – 5491/24 md.) DÖRDÜNCÜ BÖLÜM (1) Çevre Kirliliğini Önleme Fonu Fonun kurulması ve fondan yararlanma: Madde 17 – (Mülga: 21/2/2001 - 4629/6 md.) Çevre katkı payı alınması, diğer gelirler ve bütçe ödenekleri(2) Madde 18 – (Mülga: 21/2/2001 - 4629/6 md.; Yeniden düzenleme: 26/4/2006-5491/13 md.) Çevre kirliliğinin önlenmesi, çevrenin iyileştirilmesi ve çevre ile ilgili yatırımların desteklenmesi amacıyla; a) İthaline izin verilen kontrole tâbi yakıt ve atıkların CIF bedelinin yüzde biri ile hurdaların CIF bedelinin binde beşi oranında alınacak miktar, b) Büyükşehir belediyeleri su ve kanalizasyon idarelerince tahsil edilen su ve kullanılmış suları uzaklaştırma bedelinin yüzde biri, çevre katkı payı olarak tahsil edilir. Tahsil edilen bu tutarlar, ilgililerce en geç ertesi ayın onbeşine kadar ilgili mal saymanlıkları hesaplarına aktarılır ve bütçeye gelir kaydedilir. Ayrıca, yurt içi ve yurt dışından temin edilecek her türlü hibe, yardım ve bağışlar ile kredi anapara geri dönüşleri ve kredi faizleri de tahsil edilerek, Çevre ve Orman Bakanlığı Merkez Saymanlık Müdürlüğü hesabına yatırılır ve bütçeye gelir kaydedilir. Bu maddede sayılan gelirlerin tahsilatında 6183 sayılı Amme Alacaklarının Tahsil Usulü Hakkında Kanun hükümleri uygulanır. Bakanlar Kurulu (a) ve (b) bentlerinde yer alan oranları ayrı ayrı veya topluca sıfıra kadar indirmeye veya kanunî oranına kadar yükseltmeye yetkilidir. Atıksu arıtımı, atık bertarafı ve katı atık geri kazanım tesislerinin gözetim, fizibilite, etüt, proje ve inşaat işlerinin kredi veya yardım suretiyle desteklenmesi ile çevre düzeni plânlarının yapımı, hava, su ve toprak kalitesinin ölçüm ve izleme ağının oluşturulması, gürültünün önlenmesi ile ilgili etüt ve projelerin desteklenmesi, acil müdahale plânlarının hazırlanması, Çevresel Etki Değerlendirmesi faaliyetleri, havza koruma plânı çalışmaları, biyolojik çeşitliliğin korunması, çölleşme ve iklim değişikliği ile mücadele çalışmaları, stratejik çevresel değerlendirme, nesli tehlikede olan bitki ve hayvan türleri ile yaşama ortamlarının korunması, uluslararası sözleşmelerden kaynaklanan yükümlülüklerin karşılanması, çevre eğitimi ve yayını ile ilgili faaliyetler ve ihtisas komisyonları için yapılan harcamalar ile çevre kirliliğinin giderilmesi çalışmaları için Bakanlık bütçesine, yılı bütçe gelirleri içerisinde tahmin edilen yukarıdaki gelirler karşılığı ödenek öngörülür. Yukarıda sayılan gelirlerin tahsili ve bütçede öngörülen ödeneklerin kullanımı ile ilgili usûl ve esaslar, Maliye Bakanlığının uygun görüşü üzerine Bakanlıkça çıkarılacak yönetmelikle belirlenir. Fonun kullanılması: Madde 19 – (Mülga: 21/2/2001 - 4629/6 md.) –––––––––––––––––––– (1)“Dördüncü Bölüm” başlığı 21/2/2001 tarih ve 4629 sayılı Kanunun 6 ncı maddesiyle yürürlükten kaldırılmıştır. (2) Bu madde başlığı "Fonun gelirleri" iken, 26/4/2006 tarihli ve 5491 sayılı Kanunun 13 üncü maddesiyle metne işlendiği şekilde değiştirilmiştir.

http://www.biyologlar.com/cevre-kanunu-bolum-1

Hipotez, Olgu ve Bilimin Doğası

Douglas Futuyma, çeviren Mehmet Cem Kamözüt Örneğin, DNA’nın genetik malzeme olduğundan nasıl emin olabilirsiniz? Ya bunu “kanıtlamış” olan bilimciler bir hata yapmışlarsa? Kesinlikle doğru olduğu gerçekten kanıtlanmış bir şey var mıdır? Bilim, dünyayı algılamanın farklı ve eşit derecede geçerli biçimlerinden yalnızca biri, baskın Batılı biçimi midir? Evrim bir gerçek midir, yoksa bir kuram mı? Ya da tıpkı yaratılışçıların benimseme hakkına sahip oldukları karşı görüş gibi, bu da benim benimseme hakkına sahip olduğum görüş mü? Varsayımsal bir örneği ele alalım. Bilinmeyen bir hastalıktan ölmekte olan koyunların ölüm nedenini belirlemekle görevlendirildiniz. 50 hasta, 50 sağlıklı koyundan doku örnekleri aldınız ve hasta hayvanların 20 tanesinin, sağlıklı olanların da yalnızca 10 tanesinin karaciğerinde bir tekhücreli teşhis ettiniz. Bu farklılık, iki koyun grubunun söz konusu tekhücrelinin görünme sıklığı açısından bir fark göstermediğini söyleyen SIFIR HİPOTEZİNİ reddetmeye yeterli midir? Bu soruya yanıt verebilmek için istatistiksel testler yaparak bu sayılar arasındaki farklılığın sırf şans yoluyla ortaya çıkıp çıkamayacağına bakarsınız. Ki kare (χ2) istatistiğini hesaplarsınız (burada bu değer 4,76’dır), bir ki kare değerleri tablosuna bakar ve “0,025 < p < 0,05” ifadesini bulursunuz. Benzerleriyle neredeyse tüm bilimsel veri analizlerinde karşılaştığınız bu ifade ne anlama gelir? Bulduğunuz farklılığın (hasta ve sağlıklı koyunlardan aldığınız örneklerin rastgele olduğu varsayımı altında) sırf şans eseri gerçekleşmiş olma olasılığının –yani gerçekte hasta koyunlarla sağlıklı koyunların sözkonusu tekhücreli ile enfekte olma oranları arasında bir farklılık olmaması olasılığının– 0,05’ten küçük ama 0,025’ten büyük olduğu anlamına… Bilimdeki her deney ya da gözlem daha büyük olası gözlem evreninden (bizim örneğimizde tüm koyunlar) alınan örneklemlere dayanmaktadır ve her durumda eldeki verinin bu daha büyük evrene ilişkin gerçekliği yanlış temsil etme olasılığı vardır. Yani ilişkisizlik hipotezini –koyun grupları arasında bir farklılık olmadığı, deney sonuçlarıyla oynanmasına bağlı bir etki olmadığı, ya da belirli değişkenler arasında korelasyon olmadığı hipotezini– yanlışlıkla reddetmek her zaman olanaklıdır. Ne mutludur ki bazı durumlarda, doğru bir ilişkisizlik hipotezini reddetme ve yanlış olan alternatif hipotezi doğru olarak kabul etme olasılığı 0,00001 ya da daha az olabilir. Bu durumda ilişkisizlik hipotezini güvenle reddedebilirsiniz, ama kesin olarak emin olamazsınız. O halde 100 koyunla yapılan çalışma hasta koyunlarda söz konusu tekhücrelilere rastlama olasılığımızın daha fazla olduğu varsayımını desteklemektedir; ama yalnızca zayıf bir şekilde. Ölümün nedeninin tekhücreliler olabileceğini düşünüyor ama korelasyonun yetersiz olmasından dolayı endişe duyuyorsunuz. Siz de örnekleminizi 1000 koyuna çıkardınız, karaciğer biyopsisi yaptınız; örneklerinizi tekhücreliler açısından (düşük yoğunlukta olmaları nedeniyle ilk çalışmanızda gözden kaçırmış olabileceğiniz vakarı da açığa çıkarak biçimde) daha detaylı incelediniz; ertesi yıl hangi koyunların öldüğünü kaydettiniz. Büyük bir hoşnutlukla gördünüz ki tekhücreliye rastlamadığınız koyunların yalnızca %5’i ölürken enfekte koyunların %95’i öldü. Hayatta kalanlar yıl sonunda kesildiklerinde görünürde sağlıklı olan koyunlarda hala bir enfeksiyon belirtisine rastlanmadı. Zafererinizle övünen bir biçimde danışmanınıza ölüm nedeni olarak tekhücreliyi rapor ettiniz. Doğru mu? Yanlış, dedi size. Diğer hipotezleri elememişsiniz. Belki de hastalığa, tesadüfen koyunun görece zararlı tekhücreliye karşı direncini de azaltan bir virüs neden oluyordur. Belki bazı koyunlar ömürlerini kısaltan bir gene sahip ve bu gen aynı zamanda enfeksiyon dirençlerini de azaltıyor. “Yapmanız gereken” diyor, “bir deney”. “Rastgele seçtiğiniz bazı koyunlara tek hücreliyi içeren, diğerlerine de tek hücreli dışında tüm içeriği aynı olan bir sıvı enjekte etmek”. Bunu yapıyorsunuz ve başarısız birkaç denemeden sonra koyunların tek hücreliyi oral yollardan almadıkça enfekte olmadıkları ortaya çıkıyor. Sonuçta deneysel olarak enfekte edilmiş 100 koyunun 90’ının 3 ay içinde öldüğünü, 100 “kontrol” koyununun 95’inin deneyin sürdüğü 1 yıl boyunca yaşadığını memnuniyetle rapor ediyorsunuz. Ki kare testleri p’nin 0,0001’den küçük olduğunu gösteriyor. Yani elinizdeki sonuçların şans sonucu ortaya çıkmış olması son derece düşük bir olasılık. Bu noktada tek hücrelinin hastalığa ve ölüme neden olduğuna dair dikkate değer bir güveniniz olabilir. Ama bunu hala mutlak olarak kanıtlamadınız. Koyunlara yalıtıp enjekte ettiğiniz yalnızca tek hücreli değil de görünmeyen bir virüs de olamaz mı? Koyunlara enjeksiyonu rastgele yaptığınızdan emin misiniz? Yoksa enjeksiyon için farkında olmadan zayıf görünen hayvanları seçmiş olabilir misiniz? Hipotezinize uymayan 15 hayvanın durumunu sizce ne açıklıyor? Ve her ne kadar p < 0,0001 olsa da hala kötü bir “şanslı kura” tutturmuş olma şansınız var, yok mu? Örneği uzatmaya gerek yok, buradan çeşitli dersler çıkarabiliriz. Öncelikle veriler kendi başlarına hiçbir şey anlatmazlar, önceki bilgilerimiz ve kuramımız ışığında yorumlanmalıdırlar. Bu örnekte başka bazı şeylerin yanı sıra (ki kare testi gibi istatistklerin temelinde yatan) olasılık kuramına, deneysel tasarım kuramına ve virüslerin var olduğu ve sonuçlarımızı karıştırabileceği bilgisine gereksinim duyduk. Bilim tarihi, yeni kuram ve bilgiler ışığında düzeltilmesi ya da reddedilmesi gerekmiş olan sonuçların örnekleriyle doludur. Örneğin 1950’lerin sonlarına kadar neredeyse tüm jeologlar kıtaların sabit konumda olduğuna inanıyordu; şimdi tümü levha tektoniği ve kıta kaymalarına inanıyor ve pek çok jeolojik olgunun bunun ışığında yeniden yorumlanması gerekti. İkinci olarak varsayımsal araştırma deneyimimiz güvenilir bir sonuca ulaşmak için pek çok çalışma gerektiğini göstermiştir. Ders kitaplarındaki, bir gerçeği dile getirdiğini söyleyen her tümcenin genellikle en azından bir kişinin yaşamının en az birkaç yılı boyunca büyük bir çaba harcamasını gerektirdiğini gözden kaçırmak kolaydır. Bu nedenle bilimciler sonuçlarını, birazdan tekrar söz edeceğimiz gibi dikkate değer bir güçle savunurlar. Üçüncü olarak ve bu en önemlisidir araştırma, ne kadar dikkatlice ve yorucu bir biçimde tasarlanmış ve gerçekleştirilmiş olursa olsun kanıta yaklaşır ama asla onu tam olarak elde edemez. Kabul ettiğiniz hipotezinizin günün birinde, bugün hayal edemeyeceğimiz tümüyle yeni kuramlar ya da veriler ışığında düzeltilmesi ya da reddedilmesi olasılığı –neredeyse yokmuş gibi görünebilecek olsa da– her zaman vardır. Bunun sonucu olarak neredeyse tüm bilimsel makaleler sonuçlarını, kuşkuya yer bırakan bir biçimde sergilerler. Drosophila genetiği üzerine yeni yayımlanmış bir makalede şu sonucu okudum: Deney “sperm yerdeğiştirmesinin iki bileşenini bir araya getiren farklı mekanizmalar olduğunu düşündürtüyor” (Clark et al. 1995). Aslında veriler harikaydı, deney dikkatlice tasarlanmıştı, istatistiksel analizler örnek olacak nitelikteydi, ama yazarlar görüşlerini kanıtladıklarını savlamıyorlardı. Bilimciler genellikle sonuçlarına muazzam bir güven duyarlar, ama kesinliğe sahip değillerdir. Belirsizliği yaşamın bir gerçeği olarak benimsemek iyi bir bilimcinin dünya görüşü için kaçınılmazdır. Öyleyse bilimdeki her ifade bir HİPOTEZ olarak anlaşılmalıdır. Neyin doğru olabileceğini söyleyen bir ifade. Bazı hipotezler zayıfça desteklenmektedir. Başka bazıları (örneğin dünyanın güneş çevresinde döndüğü ya da DNA’nın kalıtsal malzeme olduğu gibileri) o kadar iyi desteklenmiştir ki, onları olgu olarak görürüz. Olgu denilince, tam bir kesinlikle mutlak olarak doğru olduğunu bildiğimiz bir şey anlamak bir hatadır. Hiçbir şeyi böyle bilmiyoruz (Bazı felsefecilere göre kendimiz de dahil herhangi bir şeyin var olduğunundan bile emin olamayız. Dünyanın tanrının zihnindeki tutarlı bir düş olmadığını nasıl kanıtlayabiliriz?). Doğrusu şudur: Bir olgu bir hipotezdir, ancak delillerle o kadar güçlü desteklenmektedir ki onu doğru olarak kabul ederiz ve doğruymuş gibi davranırız. Bilimcilerin, kuvvetle desteklenmiş hipotezler ya da olgular olarak ortaya koydukları ifadelere duydukları güveni neden paylaşmalıyız? Bilimin sosyal dinamikleri yüzünden. Tek bir bilimci yanılıyor olabilir (ve çok ender de olsa bir bilimci kasıtlı olarak verileri çarpıtabilir). Ama eğer konu önemliyse, alanın ilerlemesi (örneğin bütün moleküler biyolojinin, DNA’nın yapısı ve işlevine bağlı olduğu gibi) bu konuya bağlıysa, diğer bilimciler bulguları kuşkucu biçimde sorgulayacaklardır. Bazıları bilinçli olarak deneyi yinelemeye çalışabilir; başkaları da hipotezin doğru olduğu varsayımıyla araştırmalar yürütecekler ve eğer gerçekte yanlışsa uyumsuzluklar bulacaklardır. Başka bir deyişle bu alanda çalışan araştırmacılar hataları bulmaya çalışacaktır; çünkü kendi işleri ve kariyerleri söz konusudur. Üstelik bilimciler yalnızca entelektüel merakla değil (her ne kadar başarılı olmayı nadiren umabilirlerse de) tanınma ve ünlü olma güdüsüyle de hareket ederler. Yaygın kabul görmüş bir hipotezi yanlışlamak da profesyönel alanda tanınmaya giden yolu açar. Kalıtımın DNA’ya dayanmadığını ya da AIDS’in nedeninin HIV (Human Immunodeficiency Virus, İnsan Bağışıklık Yetersizliği Virüsü) olmadığını gösterebilen bilimci, alanında ünlü olacaktır. Elbette hipotezi ilk ortaya koyanların kaybedecek çok şeyi vardır. Yatırmış oldukları yoğun bir emek –ve hatta– itibarları. Dolayısıyla tipik tutumları, görüşlerini –bazen aksi yöndeki ezici delillere rağmen– tutkuyla savunmak olacaktır. Bu sürecin sonucu her bilimsel disiplinin karşıt hipotezlerin savunucuları arasındaki tartışmalar ve entelektüel savaşlarla dolu olmasıdır. Fikirler arasında, sonucu daha çok delilin ve daha dikkatli çözümlemenin belirlediği, en inatçı skeptiklerin bile uzlaşımsal görüşe kazanılacakları (ya da ölüp gidecekleri) zamana kadar sürecek bir rekabet –bir tür doğal seçilim– vardır. Olgu ve Kuram Olarak Evrim Evrim bir olgu mudur, kuram mıdır, yoksa hipotez midir? Bilimde sözcükler genellikle kesin bir anlamda ve gündelik yaşamdaki kullanımlarından farklı çağrışımlarla kullanılırlar. Bu aşırı önemli bir durumdur ve bu kitapta pek çok örneğiyle karşılaşacağız (uyum, rastgele, korelasyon). Bu sözcükler arasında hipotez ve kuram da vardır. İnsanlar –sanki hipotez delillerle desteklenmeyen bir fikir demekmiş gibi– sıklıkla bir şeyin “sadece” bir hipotez olmasından söz ederler (“sigaranın kansere neden olduğu yalnızca bir hipotezdir” örneğindeki gibi). Ancak bilimde hipotez, neyin doğru olabileceğine ilişkin bilgi birikimimize dayanan bir ifadedir. Zayıf biçimde desteklenmiş olabilir, özellikle de başlarda. Ama görmüş olduğumuz gibi neredeyse bir olgu olacak düzeyde destek de kazanabilir. Kopernik için Dünya’nın Güneş çevresinde dönmesi orta düzeyde desteklenmiş bir hipotezdi; bizim içinse kuvvetle desteklenmiş bir hipotezdir. Benzer biçimde, bilimde bir kuram, desteksiz bir spekülasyon değildir. Bundan ziyade, usavurum ve delillere dayanan, çeşitli gözlemleri açıklayan, uyumlu, olgun, birbiriyle ilişkili bir ifadeler bütünüdür. Ya da Oxford English Dictionary’nin tanımını alırsak bir kuram “bir grup olgu ya da görüngüyü açıkladığı ya da anlaşılır kıldığı düşünülen bir fikirler ve ifadeler sistemi ya da şablonudur; gözlem ya da deneyle desteklenmiş ya da yerleşmiş ve bilinen olguları anlaşılır kıldığı söylenen ya da kabul edilen bir hipotezdir; bilinen genel yasalar, ilkeler, bilinen ya da gözlemlenmiş bir şeyin nedeninin ifadesidir”. Dolayısıyla atom kuramı, kuantum kuramı ve levha tektoniği kuramı sırf spekülasyon ya da görüş değillerdir; (sigaranın kansere yol açtığı hipotezi gibi) hatta iyi desteklenmiş hipotezler de değillerdir. Her biri delillerle kuvvetle desteklenmiş çok çeşitli olguları anlaşılır kılan, iyi işlenmiş, birbiriyle ilişkili fikirler bütünüdür. Bir kuram bir ifadeler ağı olduğundan, genellikle tek bir kritik deneye dayanarak kabul edilmez ya da çürütülmez (basit hipotezlerin başına ise sıklıkla bu gelir). Bunun yerine kuramlar, yeni görüngüler ve gözlemlerle karşılaştıkça evrilirler; kuramın bazı parçaları atılır, düzeltilir, eklemeler yapılır. Örneğin kalıtım kuramı başlangıçta Mendel yasalarından parçacıklı karakterlerin kalıtımı, baskınlık ve farklı karakterleri etkileyen “etmenler”in (genlerin) bağımsız ayrılımından ibaretti. Kısa süre içinde baskınlık ve bağımsız ayrılıma ilişkin aykırı durumlar bulundu, ama parçacıklı karakterlerin kalıtımın çekirdek ilkeleri kaldı. Genetikçiler, yirminci yüzyıl boyunca bu çekirdeği işleyerek, ona eklemeler yaparak Mendel’in düşünebileceğinden çok daha karmaşık ve ayrınıtılı bir kalıtım kuramı geliştirdiler. Kuramın bazı kısımları son derece iyi oturtulmuştur, başka bazılarıysa hala iyileştirmeye açıktır. Kalıtımın ve gelişimin mekanizmaları daha da anlaşıldıkça pek çok ekleme ve değiştirme olması beklenebilir. Yukarıdaki tartışmanın ışığında evrim bir bilimsel olgudur. Ama evrim kuramıyla açıklanır. Türlerin Kökeni’nde Darwin iki büyük hipotez ortaya koymuştur. Biri –değişiklikler yoluyla– ortak bir atadan türeme hipotezidir (kısaca değişikliklerle türeme). Bu hipotezi “evrimin tarihsel gerçekliği” olarak da anacağım. Diğer büyük hipotezi de, Darwin’in değişikliklerle türeme için önerdiği nedendir: Doğal seçilim kalıtsal çeşitlilik içinden ayıklama yapar. Darwin, evrimin tarihsel gerçekliği –yani ortak bir atadan değişerek türeme– için fazlasıyla delil sağladı. 1859’da bile bu görüşün epey desteği vardı. Yaklaşık 15 yıl içinde birkaç bağnaz dışında tüm biyolojik bilimciler bu hipotezi kabul etmişlerdi. O günden beri paleontolojiden, biyocoğrafyadan, karşılaştırmalı anatomiden, embriyolojiden, genetikten, biyokimyadan ve moleküler biyolojiden yüzbinlerce gözlem bu görüşü destekledi. Kopernik’in Güneş merkezlilik hipotezi gibi, ortak bir atadan değişiklerle türeme hipotezi de uzun süredir bilimsel bir olgu statüsündedir. Nasıl ki bir kimyacı suyun hidrojen ve oksijenden oluştuğunu gösteren bir makale yayınlamaya çalışmazsa, bugün hiçbir biyolog da “evrim için yeni kanıtlar” konulu bir makale yayınlamayı düşünmez. Yüz yılı aşkın bir süredir, bilimsel çevreler bunu tartışılacak bir konu olarak görmemektedir. Darwin, evrimin nedeninin kalıtsal çeşitlilik üzerindeki doğal seçilim olduğu hipotezini öne sürmüştü. Argümanı mantığa ve çok çeşitli dolaylı delilin yorumuna dayanıyordu ama doğrudan hiç delili yoktu. Kalıtımın anlaşılmasının ve doğal seçilim delillerinin hipotezini tam olarak desteklemesi için 70 yıldan daha uzun bir süre geçmesi gerekecekti. Üstelik bugün biliyoruz ki evrimin Darwin’in fark ettiğinden daha fazla nedeni vardır ve doğal seçilim ve kalıtsal çeşitlilik onun sandığından daha karmaşıktır. Bu kitabın büyük kısmı evrimin nedenlerine ilişkin bugünkü anlayışımızı oluşturan mutasyon, rekombinasyon, gen akışı, yalıtım, rastgele genetik sürüklenme, doğal seçilimin çeşitli biçimleri ve başka etmenlerden oluşan karmaşık düşünceler bütününe ilişkindir. Evrimin nedenleri hakkındaki bu birbiriyle ilişkili düşünceler ağı evrim kuramı ya da evrimsel kuramdır. Bu “sırf spekülasyon” değildir; çünkü tüm fikirler delillerle desteklenmiştir. Bir hipotez de değildir. Çoğu iyi desteklenmiş bir hipotezler bütünüdür. Yukarıdaki bölümde tanımlandığı anlamda, bir kuramdır. Bilimdeki tüm kuramlar gibi, tam değildir. Tüm evrimin nedenlerini henüz bilmiyor olduğumuz ve bazı ayrıntılar sonradan yanlış çıkabileceği için… Ancak evrimin ana ilkeleri o kadar iyi desteklenmiştir ki, çoğu biyolog bunları büyük bir güvenle kabul eder. www.evrimcalismagrubu.org  

http://www.biyologlar.com/hipotez-olgu-ve-bilimin-dogasi

Biyologlar Odası Kanunu Taslağı

BİRİNCİ BÖLÜM Amaç, Kapsam, Tanımlar Amaç Madde 1- Türkiye sınırları içerisinde meslek ve sanatlarını kullanmaya yetkili olup da sanatını serbest olarak yapan veya meslek diplomasından istifade etmek suretiyle resmi veya özel görev yapan biyologları teşkilatı içinde toplayan tüzel kişiliğe sahip kamu kurumu niteliğinde meslek kuruluşu olan Biyologlar Odası kurulmuştur. Madde 2- Odanın kuruluş amacı; Türkiye sınırları içerisinde meslek ve sanatlarını kullanmaya yetkili serbest olarak yapan veya meslek diplomasından istifade etmek suretiyle resmi veya özel görev yapan biyologlar arasında mesleki dayanışmayı kurmak, biyologluğun kamu ve kişi yararına uygulanıp geliştirilmesini sağlamak ve meslek mensuplarının hak ve yararlarını korumak amacıyla kurulacak olan kamu kurumu niteliğindeki Biyologlar Odası kurulmasına, teşkilat, faaliyet ve denetimlerine, organlarının seçimlerine dair esas ve usulleri düzenlemektir. Kapsam Madde 3- Türkiye hudutları dahilinde meslek ve sanatlarını icraya yasal olarak salahiyeti olup, dört yıllık fakültelerin Biyoloji bölümlerinden lisans diploması alarak mezun olanları kapsar. Tanımlar Madde 4- Bu yönetmelikte geçen; Oda: Biyologlar Odasını, Şube: Biyologlar Odası Şubesini, Temsilcilik: Biyologlar Odası Temsilciliğini, Üye: Biyologlar Odası üyesini, ifade eder. İKİNCİ BÖLÜM Biyolog Odaları görev, yetki, organ ve çalışma esasları Madde 5- Odalar, bu Kanunda yazılı esaslar dahilinde Biyolog mesleği mensuplarının ortak ihtiyaçlarını karşılamak, mesleki faaliyetlerini kolaylaştırmak, bu mesleğin kamu yararına uygun olarak gelişmesini sağlamak, meslek mensuplarının birbirleri ve meslekle ilgili ilişkilerinde dürüstlüğü ve güveni hakim kılmak üzere meslek disiplini ve ahlakını korumak maksadı ile kurulan tüzel kişiliğe sahip kamu kurumu niteliğinde meslek kuruluşlarıdır. Oda temel görev ve yetkileri; Madde 6- Odaların temel görev ve yetkileri, Biyologların mesleki gereksinmelerini karşılamak amacıyla çalışmalar yapmak, Mesleki faaliyetlerini kolaylaştırmak, Mesleğin gelişmesini sağlamak, Meslektaşları birbirleri ile hizmet verdikleri alanlardaki kişi ve gruplarla ilişkilerinde dürüstlüğü ve güveni hakim kılmak, Meslek disiplinini, ahlakını ve onurunu korumaktır. Oda Organları Madde 7- Odaların organları şunlardır: a) Oda Genel Kurulu b) Oda Yönetim Kurulu c) Oda Denetleme Kurulu d) Oda Disiplin Kurulu Oda Genel Kurulu Madde 8- a) Oda Genel Kurulu; Odanın amaç, ilke, işleyiş, görev ve yetkiler açısından en yetkili organdır. b) Oda Genel Kurulu, Odaya kayıtlı üyelerden oluşur. c) Oda Genel Kurulu, iki (3) yılda bir Nisan ayı içerisinde, Oda Yönetim Kurulunun belirleyeceği günlerde ve adreste toplanır. Toplantı tarihinin, görüşmeler Cumartesi akşamına kadar tamamlanacak ve eğer varsa Pazar günü seçimler yapılacak şekilde saptanması zorunludur. ç) Oda Genel Kurulu üye tam sayısının çoğunluğu ile toplanır. Birinci toplantıda çoğunluk sağlanamaması halinde ikinci toplantı için çoğunluk aranmaz. Toplantı yeter sayısının sağlanamaması halinde Oda Genel Kurulu ancak bir kez altmış (60) günü geçmemek üzere ertelenir. Bu durumda, Yönetim Kurulu yeni Oda Genel Kurul tarihini ve yerini, gündemin seçim olması halinde görevli hakimin onayını da alarak belirler ve toplantı tarihinden en az on (10) gün önce, bir gazetenin Türkiye baskısında ilan eder ve üyelere duyurur. d) Oda Yönetim Kurulu, Genel Kurul toplantısından en az onbeş (15) gün önce, Genel Kurula katılacak üyelerin üçer kopya olarak hazırlanmış listelerini, toplantının gündemini, yerini, gününü, saatini ve çoğunluk sağlanamadığı takdirde yapılacak ikinci toplantıya ilişkin hususları belirten bir yazıyla birlikte, görevli İlçe Seçim Kurulu Başkanlığına iletir. Gerekli incelemeden sonra hakim tarafından onaylanan listeler ve toplantıya ilişkin diğer hususlar Odanın ilan yerlerinde asılmak suretiyle ve üç gün süre ile ilan edilir. Yasal sürecin tamamlanması ve listelerin kesinleşip, Genel Kurula ilişkin diğer hususların onaylanmasını izleyen üç (3) gün içinde, Yönetim Kurulu, Genel Kurulu üyelere duyurur ve bir gazetenin Türkiye baskısında ilan eder. Çalışma Yöntemi Madde 9- Oda Genel Kurulu aşağıdaki şekilde toplanır; a) Genel Kurul toplantı yeter sayısının sağlanmasıyla, Yönetim Kurulu Başkanı, İkinci Başkanı ya da Yönetim Kurulunun kendi içinden belirleyeceği bir üye tarafından, açılır ve gündemin birinci maddesi gereğince Başkanlık Divanı seçilir. b) Başkanlık Divanı, bir Başkan ve iki Yazmandan oluşur. Başkanlık Divanı üyeliklerinin tespiti için ayrı ayrı oylama yapılır. c) Genel Kurul görüşmeleri, Yönetim Kurulunca hazırlanıp, duyurulmuş gündem maddelerine göre yapılır. Ancak, toplantıya katılan üyelerin yazılı önerisi ve Genel Kurul kararı ile gündeme madde eklenebilir ya da maddelerin sırası değiştirilebilir. ç) Oda Genel Kurulu gündeminde aşağıdaki maddelerin bulunması zorunludur; 1) Başkanlık Divanı seçimi, 2) Çalışma raporu, mali rapor ve denetleme raporunun okunması, görüşülmesi ve Oda Yönetim Kurulunun aklanması, 3) Oda Yönetim Kurulu, Denetleme Kurulu ve Disiplin Kurulu delege adaylarının ve Birlik Yönetim Kurulu aday adaylarının belirlenmesi ve duyurulması, d) Oda Genel Kurulunda bulunmak, görüşmelere katılmak, oy kullanmak ve organlara aday olmak için, Oda Yönetim Kurulu tarafından hazırlanıp, görevli hakim tarafından kesinleştirilmiş üye listelerinin imzalanması yoluyla alınmış Genel Kurul giriş kartının ve Oda kimlik kartının gösterilmesi zorunludur. Sadece oy verme sırasında, Oda kimlik kartı yerine, resmi kuruluşlarca verilmiş kimlik kartları da kullanılabilir. e) Genel Kurul, kararlarını çoğunlukla alır. Oylarda eşitlik olursa, Divan Başkanının kullandığı oy yönünde çoğunluk sağlanmış sayılır. Ancak, Bu Yönetmelikte değişiklik yapılabilmesi için görüşmelere katılanların üçte ikisinin olumlu oyu gereklidir. f) Genel Kurul görüşmeleri ve kararları bir tutanağa bağlanarak, Divan Başkanı, ve Yazmanlar tarafından imzalanıp, dosyasında saklanmak üzere Oda Yönetim Kuruluna verilir. Olağanüstü Genel Kurul Madde 10- Olağanüstü Genel Kurul, a) Odaya kayıtlı üye sayısının beşte birinin Oda Yönetim Kuruluna yazılı başvurusu ile, b) Oda Denetleme Kurulunun, Oda hesap işleriyle ilgili olarak gerek görmeleri durumunda ve oybirliği ile alacakları karar ile, c) Oda Yönetim Kurulunun üçte iki (2/3) çoğunlukla alacağı karar ile, ç) Boşalan Oda Yönetim Kurulu üyeliğine davet edilecek yedek kalmadığı durumda, yukarıdaki durumlardan herhangi birisinin oluşması üzerine, Oda Yönetim Kurulu tarafından toplantıya çağrılır. Olağanüstü Genel Kurul Toplantısı Madde 11- Bu Yönetmeliğin 10 uncu maddesinin (a), (b) ve (ç) bendinde belirtilen durumlardan herhangi birinin oluşması halinde, Oda Yönetim Kurulu, başvuru tarihinden itibaren bir hafta içinde Olağanüstü Genel Kurul için karar almak ve Genel Kurulun tarihini saptamak zorundadır. Olağanüstü Genel Kurul, karar tarihinden itibaren bir (1) ay içinde toplanır. Olağanüstü Genel Kurul Çalışma Yöntemi Madde 12- Olağanüstü Genel Kurul toplantısı da, Olağan Genel Kurul toplantısı gibi yapılır. Ancak, sadece önceden duyurulan gündemdeki maddeler görüşülüp karara bağlanır. Olağanüstü Genel Kurul toplantılarında gündeme madde eklenemez. Oda Genel Kurulunun Görev ve Yetkileri Madde 13- Oda Genel Kurulunun görev ve yetkileri şunlardır; a) Odanın çalışma alanları ile ilgili konularda ve Oda amaçlarının gerçekleşmesine ilişkin kararlar almak, b) Toplumun, mesleğin ve Odanın gelişmesi için gerekli etkinlik alanlarını ve esaslarını saptamak, c) Oda Yönetim Kurulu raporlarını incelemek, bu raporlar hakkında karar almak ve Oda Kurullarına görev, yetki ve sorumluluklar vermek, ç) Oda ve Şube hesaplarını, bilanço, gelir-gider cetvellerini, Denetleme Kurulu çalışmalarını ve raporlarını incelemek ve hakkında kararlar almak, d) Oda Yönetim Kurulunun önerileri doğrultusunda, yeni dönem gelir ve gider bütçelerini, geçici ya da sürekli ücretleri, ücretli kadroları incelemek, bu inceleme sonucunda değiştirerek ya da olduğu gibi onaylamak, e) Oda Yönetim Kurulu, Oda Disiplin Kurulu, Oda Denetleme Kurulu Üyelerinin oturum ücretlerini tespit etmek, f) Oda işlerinin yürütülmesini ve kanunların Odalara verdiği görev ve yetkilerin kullanılmasını, üyelerin mesleki onur ve çıkarlarının korunması için Oda Yönetim Kurulunca önerilen Yönetmelikleri incelemek, değişiklik teklifi yapmak ve onaylamak; gerektiğinde yönetmelik hazırlama yetkisini Oda Yönetim Kuruluna geçici süreler ile devretmek, g) Oda Yönetim Kurulunun yedi (7) asil ve yedi (7) yedek, Oda Disiplin Kurulunun beş (5) asil ve beş (5) yedek, Oda Denetleme Kurulunun üç (3) asil ve üç (3) yedek üyeliklerini, 3 yıl süre ile belirlemek ve duyurmak, ğ) Odanın sahip olduğu, ya da olacağı taşınmaz mallar hakkında karar almak, ya da bu konularda Oda Yönetim Kurulunu yetkilendirmek, h) Oda amaçlarının gerçekleştirilmesi ve Oda işlevlerinin yerine getirilmesi amacıyla yardımcı organları oluşturmak, ı) Oda Yönetim Kurulunun veya üyelerin gerekçeli önergeleri ile Şube kurmak, kapatmak, bunların yetki ve sorumluluklarını ve etkinlik alanlarını belirlemek, Oda Yönetim Kurulu, Oluşumu ve Çalışma Yöntemi Madde 14- Oda Yönetim Kurulu; a) Oda Genel Kurulu tarafından üç (3) yıllık bir süre için seçilen yedi (7) asil ve yedi (7) yedek üyeden oluşur, b) Oda Genel Kurulundan sonra yapacağı ilk toplantıda üyeler arasından bir (1) Başkan, bir (1) İkinci Başkan, bir (1) Sekreter Üye ve bir (1) Sayman Üye seçerek, Oda Yürütme Kurulunu oluşturur ve diğer Yönetim Kurulu üyeleri için görev bölümü yapar, c) Ayda en az bir (1) kez ve çoğunlukla toplanır. Toplantıyı Başkan, Başkan bulunmadığı zamanlarda İkinci Başkan, Başkan ve İkinci Başkan bulunmadığı zamanlarda Sekreter Üye yönetir. ç) Kararlarını çoğunlukla alır. Oylarda eşitlik olması halinde, toplantı yöneticisinin kullandığı oy yönünde sağlanmış sayılır. Oda Yönetim Kurulu Üyeliğinin Düşmesi Madde 15- Her nedenle olursa olsun, üç (3) ay süreyle toplantılara gelmeyen ya da, herhangi bir altı (6) aylık süre içerisinde yapılan olağan toplantıların üçte birinden (1/3) daha azına katılmış olan Yönetim Kurulu Üyesi çekilmiş sayılır ve yerine Yönetim Kurulu tarafından sıradaki Yedek Yönetim Kurulu Üyesi yazılı olarak davet edilir. Çekilen veya çekilmiş sayılan Yönetim Kurulu Üyesinin yerine Yönetim Kurulu tarafından davet edilen Yedek Yönetim Kurulu Üyesi daveti yazılı olarak kabul veya reddeder. Yedek üyenin görevi kabul etmesi durumunda, ilk Yönetim Kurulu toplantısında göreve başlama kararı alınır. Davet edilen Yedek Üyenin görevi reddetmesi veya çağrıya on beş (15) gün içerisinde yanıt vermemesi durumunda bu üye çekilmiş sayılır ve ilk Yönetim Kurulu toplantısında yerine Yönetim Kurulu tarafından sıradaki Yedek Yönetim Kurulu Üyesi yazılı olarak davet edilir. Yedek Yönetim Kurulu Üyesi Kalmaması Madde 16- İstifa eden ya da çekilmiş sayılan Oda Yönetim Kurulu üyeliğine davet edilecek yedek üye kalmadığı durumda, Oda Yönetim Kurulu, Başkan ve İkinci Başkan, tarafından Olağanüstü Oda Genel Kurulu toplantısı çağrısı yapılır. Olağanüstü Oda Genel Kurul toplantısında yeniden seçim yapılır ve seçilen Oda Yönetim Kurulu ilk Olağan Genel Kurul toplantısına kadar görev yapar. Oda Yönetim Kurulu Görev ve Yetkileri Madde 17- Oda Yönetim Kurulu, Odanın amaçları doğrultusunda aşağıdaki görevleri yerine getirmekle yükümlüdür; a) Oda Genel Kurulu tarafından kendisine verilen görev ve yetkileri kullanır, Oda Genel Kurulunda alınan kararları uygular, Oda işlerini Genel Kurulun kararları çerçevesinde yürütür. b) Oda üyelerinin, Oda Yönetmelikleri içinde hak ettiği yetkilerini iyi bir biçimde kullanmalarını gözetir, üyelerinin mesleki onur ve çıkarlarını korur ve bu konuda önlemler alır, gerekli girişimlerde bulunur. c) Mesleğin ilerlemesi için gerekli incelemeleri ve çalışmaları yapar ya da yaptırır ve bunlara ilişkin raporları Oda Genel Kurulunun değerlendirmesine sunar. ç) Resmi işlerde ve istek üzerine özel işlerde bilirkişilik, hakemlik, jüri üyeliği, danışmanlık gibi görevlere atama yapmak üzere, üyeleri arasından adaylar saptar veya görevlendirme yapar. d) biyoloji biliminin çalışma alanları ile ilgili diğer meslek kuruluşları ile ilişki kurar ve gerekli girişimlerde bulunur. Üyesi bulunduğu ya da üyelik olanağı doğan dış ülkelerdeki uzmanlığını ilgilendiren mesleki kuruluşlarla iletişim kurar ve bu ortamlarda Odanın temsil edilmesini sağlar, kongrelere katılmak için delege gönderir, yurt içi kongreler yapar. Gerekirse Birliğin ve birlik üyelerinin maddi ve manevi yardımını alır. e) Üyelerin gerek kamu kuruluşları ve gerek diğer kurum ve kişilerle olan bütün mesleki ilişkilerinde ortaklaşa uyulacak kanuni esasları hazırlar, bunlara uyulmasını sağlar ve uygulanmasını denetler. f) Üyelerin çalışma koşulları ve her türlü mesleki hizmetleri karşılığında alacağı asgari ücretleri saptar, ilgili yönetmelik, yönerge ve ücret tarifelerini hazırlar ve yayınlar, ilgililere duyurur, bunlara uyulmasını sağlar ve denetler. g) Her türlü mesleki ve teknik kitap, broşür, dergi, bülten ve benzeri yayını yayımlar. Üyelerin ve diğer ilgililerin yararına sunmak üzere, kütüphane ve arşiv kurar ve oda yayınlarının sürekli ve düzenli çıkmasını sağlar. ğ) Üyeler arasında haksız rekabeti önleyecek önlemleri önceden alır, gerekli yaptırımları uygular. h) Yasama ve yürütme organlarında Odanın amaçları ile ilgili olarak yapılacak kanun, tüzük, kararname, yönetmelik, yönerge ve genelge hazırlama veya değişikliği çalışmalarına ve uygulamalarına katılır, görüş verir ve önerilerde bulunur. ı) Mesleki, teknik eğitim ve öğretim konularında incelemelerde bulunur, ilgili kurumlarla işbirliği yapar, Oda görüşlerini oluşturur ve uygulanması için gerekli çalışmalarda bulunur. i) Odanın açacağı ve/veya Odaya karşı açılan davalarda, Odayı temsil eder, sav ve savunmada bulunur ve bu konularda vekil atar. l) Gerekli gördüğü konularda sürekli veya geçici kurul, komite, komisyon, çalışma grubu ve benzeri oluşturur, çalışmalarını yürütür ve yönetir. m) Oda Genel Kurulu hazırlıklarını ve duyurularını yapar. Oda Genel Kuruluna sunulmak üzere çalışma raporunu ve bilançoyu, yeni yıl gelir ve gider bütçelerini hazırlar, geçici ve sürekli ücretliler kadrolarını saptayarak bunları Oda Denetim Kurulu Raporu ile birlikte delege sayısına yetecek kadar çoğaltarak Oda Genel Kurulundan onbeş (15) gün öncesine kadar delegelere gönderir. n) Gerektiğinde Oda Genel Kurulunu olağanüstü toplantıya çağırır. o) Oda Genel Kurulu kararlarını ve yapılan seçim sonuçlarını üyelerine ve ilgili kurum ve kuruluşlara bildirir. ö) Oda Danışma Kurulunun eğilim kararı ile Bölge, İl ve İlçe Temsilcilik Yönetim Kurullarını atar ve bu birimlerin Oda işleyişine uygun faaliyetler yürütmesini sağlar. Gerektiğinde Oda Disiplin Kurulu ve/veya Oda Denetleme Kurulunun görüşlerine başvurarak Bölge, İl ve İlçe temsilciliklerini görevden alır. p) Odanın sahip olduğu taşınmaz malları, demirbaşları ve Oda bütçesini yönetir. Taşınmaz mallar ve demirbaşlar Oda adına satın alınır ve/veya satılır, tescil ettirilir. Taşınmaz malların alım, satım, bağış ve tescil işlemleri için Oda Genel Kurul kararı gerekir. Demirbaş malların alım, satım ve bağışı için Oda Genel Kurulunda kabul edilen bütçe esasları çerçevesinde Oda Yönetim Kurulunca verilecek görev ve yetki kapsamında ilgili birim yönetim kurulu kararı gerekir, ancak tescil işlemleri Oda Yönetim Kurulunca yapılır. Ayrıca Oda Yönetim Kurulu Odanın her türlü hizmet alımı ve diğer iş ve işlemleri ile ilgili ihale açmaya, teklif almaya, ihale vermeye, teklif ihale reddetmeye ve pazarlık yapmaya yetkilidir. r) Oda birimlerinden gelen üye kayıtlarını yapar ve belli bir düzende tutar. Üyelerin vasıf kaybetme işlemlerini yapar. ş) Oda görevlilerinin atama, yer, görev ve yetki, değiştirme, görevden alma, sicil ve benzeri özlük işlerini Yönetmelikler uyarınca düzenler. t) Gerekli gördüğünde veya başvuru üzerine söz konusu Oda üyeleri hakkında soruşturma yapar, gerek gördüğünde Oda Onur Kurulunu toplantıya çağırır. ü) Gerekli gördüğünde veya başvuru üzerine Oda Denetleme Kurulunu toplantıya çağırır. v) Şube Genel Kurulları için yeterli sayıda gözlemci seçer ve görevlendirir, gözlemcinin Şube Genel Kurul toplantısına katılmasını sağlar. y) Oda Yönetim Kurulu gerekli gördüğü hallerde, Şube Genel Kurulunun olağanüstü toplanması için Disiplin ve Denetleme Kurullarını ortak toplantıya çağırır. z) Oda Denetleme Kurulunun raporuna istinaden Şube Genel Kurulunu olağanüstü toplantıya çağırır. Oda Yönetim Kurulu Üyelerinin Görev ve Yetkileri Madde 18- Oda Yönetim Kurulu Üyelerinin görev ve yetkileri şunlardır; a) Biyologlar Odasını Yönetim Kurulu Başkanı temsil eder. Başkanın bulunmadığı zamanlarda İkinci Başkan, Başkan ve İkinci Başkanın bulunmadığı zamanlarda Sekreter Üye, Başkan, İkinci Başkan ve Sekreter Üyenin bulunmadığı zamanlarda Sayman Üye Odayı temsil eder. Gerektiğinde Odayı temsil yetkisi Yönetim Kurulu kararı ile seçilen üye ya da kurullara devredilebilir. b) Oda Başkanı; Odayı temsil etmek, Oda Yönetim Kurulunu, Danışma Kurulunu ve Oda Organlarını yönetmek ve Oda kurullarının Oda amaçları doğrultusunda düzenli olarak çalışmasını sağlamakla yetkili ve sorumludur. Odanın çıkardığı tüm yayınların sahibidir. Oda İkinci Başkanı; Oda Başkanı olmadığı zamanlarda Oda Başkanının görev ve yetkilerini sürdürmekle, Odayı temsil etmekle ve birimler arası koordinasyonu sağlamakla yetkili ve sorumludur. Sekreter Üye; Odanın sözcüsüdür. Oda işlerini Oda amaçlarına ve Oda Yönetim Kurulu kararlarına uygun olarak yürütmekle görevli ve sorumludur. Oda Yönetim Kurulu toplantılarının gündemini hazırlar ve Oda Yönetim Kurulu kararlarının uygulanmasında gerekli tüm önlemleri alır. Odanın yazışma işlemlerini yürütür ve imza eder. Tüm Oda örgütündeki üyelerin özlük işlerini yürütür. Odanın geçici ve sürekli personelinin görev amirliğini yapar. Oda Saymanı; Odanın mali işlerinin yürütülmesini, oda bütçesinin uygulanmasını, aylık olarak gönderilen şube bütçelerinin incelenmesini sağlar, gerekli önlemleri alır ve önerilerde bulunur. c) Oda Başkanı, İkinci Başkanı, Sekreter Üye ve Saymana Yönetim Kurulu kararı ile belirli bir miktara kadar harcama yetkisi verilebilir. Banka işlemlerinde Oda Yönetim Kurulu üyelerinden herhangi ikisinin imzasının bulunması gereklidir. ç) Oda Yönetim Kurulu bu maddenin (c) bendinde belirlenmiş yetkilerinin bir bölümünü, Yönetim Kurulunun diğer üyeleri ile Şube ve Temsilcilik Yönetim Kurullarına ve Temsilcilerine ve Oda çalışanlarına kendi denetim ve sorumluluğunda olmak üzere görev olarak verebilir. d) Oda Sekreter Üye ve Saymanı, yürütme görevlerinden dolayı Oda Yönetim Kuruluna karşı sorumludur. e) Oda evraklarında imza yetkisi Oda Yönetim Kurulu üyelerine aittir. Ancak bu yetki, Oda Yönetim Kurulu kararı ile belirli konularda kullanılmak üzere Oda organları üyelerine devredilebilir. Oda Disiplin Kurulunun Oluşumu MADDE 19- Oda Disiplin Kurulu, Genel Kurulca üç yıllık bir dönem için oda üyeleri arasından seçilen 5 asil ve 5 yedek üyeden oluşur. Disiplin Kuruluna seçilebilmek için bu kanuna göre genel seçilme yeterliği yanında Türkiye'de en az bilfiil 5 yıl Biyologluk yapmış olmak şarttır. Hizmet süresi bakımından yeterli sayıda aday bulunmazsa sırasıyla daha az hizmeti olanlar da aday olabilir. Disiplin Kurulu asil üyeleri ilk toplantıda gizli oyla kendi aralarında bir Başkan ve bir raportör seçerler. Oda Disiplin Kurulunun Görev ve Toplantıları MADDE 20- Oda Disiplin Kurulunun görevi, Oda Yönetim Kurulunun disiplin soruşturması açılmasına dair kararı üzerine inceleme yaparak disiplinle ilgili kararları ve cezaları vermek, Kanunla verilen diğer yetkileri kullanmaktır. Oda Disiplin Kurulu toplantıya, Yönetim Kurulu tarafından, asil üyelere toplantı tarihinden en az 3 hafta önceden taahhütlü mektup gönderilmek suretiyle çağırılır. Geçerli bir mazeret nedeniyle toplantıya katılamayacak üyelerin toplantıdan bir hafta önce durumlarını belirtmeleri üzerine yerleri yedek üyelerle doldurulur. Mazereti olmaksızın üst üste iki toplantıya katılmayan, asil üyelerin üyelikleri düşer, yerlerine sırasıyla en fazla oy alan yedek üye getirilir. Disiplin Kurulu toplantılarında Disiplin Kurulu Başkanı bulunmazsa o toplantıyı yönetmek üzere katılanlar arasından bir başkan seçilir. Seçim gerçekleşmezse kurula, toplantıya katılanların en yaşlısı başkanlık eder. Oda Disiplin Kurulu üye tam sayısının salt çoğunluğu ile toplanır. hazır bulunanların salt çoğunluğu ile karar verir. Oylarda eşitlik halinde Başkanın Bulunduğu taraf üstün sayılır. Oda Denetleme Kurulunun Oluşumu MADDE 21- Oda Denetleme Kurulunca üç yıllık bir dönem için oda üyeleri arasından seçilen üç asil ve yedek üyeden oluşur. Denetleme Kurulu'na seçilebilmek için bu Kanuna göre seçilme yeterliliğine sahip olmak şarttır. Denetleme Kurulu üyeleri ilk toplantılarında kendi aralarından bir başkan seçerler. Oda Denetleme Kurulunun Görevleri MADDE 22- Denetleme Kurulu üyeleri gerek birlikte ve gerekse ayrı ayrı Odanın işlem ve hesaplarını incelemekle görevlidirler; Oy hakları olmaksızın Yönetim Kurulu toplantılarına katılabilirler. Denetleme Kurulu hesap ve işlemlerde gördüğü aksaklıkları en geç on gün içinde Yönetim Kurulu'na ve üç yıllık denetleme sonuçlarını da bir rapor halinde Oda Genel Kurulu'na sunar. Denetleme Kurulu yılda en az bir defa kendi başkanlarının başkanlığında toplanarak, Kurul halinde denetlemede bulunurlar. ÜÇÜNCÜ BÖLÜM Üyelik Üyelik Madde 23- Türkiye Cumhuriyeti uyruğunda olup, biyologluk mühendislik mesleğini yürütmeye yetkili; yurtiçi ya da yurtdışındaki denkliği Yükseköğretim Kurulunca kabul edilmiş Biyoloji Bölümlerinden mezun olarak Biyoloji lisans diplomasına sahip; biyologlar, mesleklerinin gerektirdiği işlerle uğraşabilmek ve mesleki öğretim yapan kuruluşlarda çalışabilmek için Odaya kayıtlı olmak ve üyeliğin gereklerini yerine getirmek, kimlik bilgilerini onaylatarak üyeliklerini korumak zorundadır. Geçici Üyelik Madde 24- Türkiye’de mesleklerini uygulamalarına yasal olarak izin verilen yabancı uyruklu biyologlar ya da denkliği Yükseköğretim Kurulunca kabul edilmiş bölümlerin lisans diplomasına sahip biyologlar Odaya geçici üye olarak kaydolmak zorundadırlar. Geçici üyelik çalışma izni süresi ile sınırlıdır. Geçici üyeler Oda asil üyelerinin bütün haklarına sahiptir ve sorumluluklarını taşır, ancak Oda Genel Kuruluna katılamaz ve Oda organlarında görev alamaz. Öğrenci Üyeliği Madde 25- Biyoloji bölümü öğrencileri Odaya öğrenci üye statüsünde üye olabilirler. Öğrenci üyelerin ödenti zorunlulukları yoktur, ancak Odanın amaçları doğrultusunda faaliyet yürütmekle yükümlüdürler. Üye Yükümlülükleri Madde 26- Odaya kayıt olan üyeler; a) Mesleki örgütlenme amaçlarına uygun olarak bu kanun gereğince, kamu yararı esasına dayanarak ve kanuni mevzuata uygun olarak, mesleki etkinliklerde bulunur, b) Mesleklerini uygularken, ülke ve toplum yararı ile insan onuruna yakışır hareket etmekle yükümlüdür. İnsan ve mühendis topluluğunun onuruna aykırı biçimde mesleki rekabet yapamaz. Odayı, yetkili organlarını ve üyelerini küçük düşürücü, rencide edici davranış, hareket ve açıklamalar yapamaz, c) İlgili mevzuat çerçevesinde tanımlı makamlar ile kendilerine verilen görevleri, hakemlik, tanıklık, bilirkişilik, eksperlik ve benzeri ile bu Yönetmelik kapsamında yer alan görevleri kabul etmek ve gerçekleştirmek ve üyelik sorumluluklarını yerine getirmekle yükümlüdür, ç) Oda amaçlarına uygun olarak, ilgili düzenlemeler kapsamında, Oda Genel Kurulları, organları, kurulları, komisyonları, seçimleri ve benzeri çalışmaları içinde yer alır, d) Oda kurullarınca belirlenen yıllık ödentilerinin zamanında ödenmesiyle ve ödeme belgelerinin üyeye ait kopyalarının saklanması ile yükümlüdür, e) Odaya bildirdikleri üyelik bilgilerinin doğru olmasından sorumludur, f) Üye kimlik kartını, kimlikte yer alan bilgilerden en az birinin değişmesi sonrasında bir (1) ay içerisinde değişikliğin belgesi ile yazılı olarak bağlı bulundukları Oda birimine bildirmek, bilgilerin değişmemesi durumunda ise beş (5) yılda bir, yeni üye kimlik kartı almak zorundadır. Üyelerin bilgileri güncellenmemiş olan ve son kullanma tarihini geçen kimlik belgesi geçersizdir, bu durumun sebep olacağı tüm hukuki ve mali sorumluluk üyeye aittir. g) Adres değişikliklerini bir (1) ay içerisinde Odaya bildirmekle yükümlüdür. Üyelik Vasfının Kaybolması Madde 27- Üyelik vasfının kaybolması aşağıdaki koşullarda gerçekleşir: a) Oda Disiplin Kurulunun kararı ile Odadan ihraç cezası alan üyelerin cezası kesinleşir ve karar ile ilgili işlemlerin Oda Yönetim Kurulu tarafından uygulamaya konulması ile birlikte, üyelik vasfı kaybolur. b) Herhangi bir nedenle mesleki etkinliğini sürdürmek istemeyen, kamu kurum ve kuruluşlarında, kamu iktisadi kuruluşlarında asli ve sürekli görevde çalışırken üyelikten ayrılmak isteyen üyeler, bu durumu Oda Yönetim Kuruluna yazılı olarak bildirmek, gerektiğinde belgelemek, Oda üye kimlik kartını geri vermek ve o tarihe kadar olan üyelik ödentilerinin tümünü ödemek koşuluyla ayrılabilir. Ayrılma isteği kabul edilmeyen üyenin, Oda Genel Kuruluna itiraz hakkı vardır. Üyelikten çıkarılan ya da ayrılan üyeler, Oda süreli yayınları ile duyurulur. Yeniden Üye Olma Madde 28- Üyelikten çıkarılan üyelerin tekrar Odaya kaydolması, Oda Onur Kurulunun olumlu görüşü ve Oda Yönetim Kurulu kararı ile gerçekleşir. Her ne sebeple olursa olsun üyelik vasfı kaybolan üyenin, yeniden üyelik için başvurması durumunda, Odaya kayıt işlemleri yeni bir üye kaydı gibi yapılır. Üyelik Ödentileri Madde 29- a) Üyelik ödentileri ve üyelik ile ilgili tüm ücretler, mevcut olanak ve koşullara göre Oda Genel Kurulu tarafından veya Oda Yönetim Kurulu tarafından belirlenir. Üye yıllık ödentisi üyelerden peşin ya da Oda Yönetim Kurulunca belirlenecek esaslara göre taksitler halinde alınabilir. b) Oda Genel Kurulu ya da Oda Genel Kurulunca yetkilendirilen Oda Yönetim Kurulu, yeni üye kaydı sırasında bir defaya mahsus olmak üzere üye kayıt ücreti alınmasını kararlaştırabilir ve bu ücreti belirleyebilir, bu ücrete Üye Kimlik bedeli dahil olur. Aynı koşullarda kimlik yenileme işlemleri için kimlik bedeli alınmasını kararlaştırabilir ve Oda Yönetim Kurulu bu ücreti belirleyebilir. c) Yurtiçinde yüksek lisans öğrenimlerini gerçekleştiren üyeler için öğrenimleri süresince üye yıllık ödentisinin yarısı alınır. Üyenin bu koşuldan faydalanabilmesi için yazılı başvurusu, okul kimliği fotokopisi ve/veya öğrenci belgesi ile bağlı bulunduğu birime başvurması ve her yıl bu belgeleri yenilemesi gerekir. Başvuru ya da yenileme yapılmamış yıla ait aidat normal bedeli üzerinden alınır. ç) Yurt dışına eğitim ya da çalışma amaçlı çıkan üyelerin üyelikleri önceden yazılı başvuru yapmak ve dönüşlerini belgelendirmek koşuluyla, yurt dışında kalış süreleri boyunca askıya alınır ve yıllık üyelik ödentisinden muaf tutulurlar. Söz konusu üyelerin üyeliklerinin askıya alınabilmesi için üyeliğin askıya alınması tarihi itibariyle varsa borçlarını kapatmaları ve oda kimliklerini teslim etmeleri gerekmektedir. d) Oda üyesi olup da askerlik yükümlülüğünü yerine getirmekte olan yedek subaylar ile er ve erbaşlar önceden haber vermek ve dönüşlerinde belgelendirmeleri kaydıyla askerlik süresince üyelik ödentilerinden muaf tutulurlar. e) Tüm Oda alacaklarının tahsilatında gerekli işlemler yapıldıktan sonra başkaca bir yol kalmaması durumunda 9/6/1932 tarihli ve 2004 sayılı İcra ve İflas Kanunu hükümleri uygulanır. DÖRDÜNCÜ BÖLÜM Şubeler ve Temsilcilikler Şubeler Madde 30- Belirli illerde çalışan üyelerin sayısı, mesleki çalışmaların daha verimli bir şekilde yürütülmesi ve Odanın yükümlü bulunduğu görevleri nedeniyle gerekiyorsa, Oda Genel Kurulunun kararı ile il merkezi ve etkinlik alanına giren iller belirtilerek şube açılabilir. Şubeler, etkinlik alanında bulunan illerdeki üye toplam sayısının üçte ikisi (2/3)nin yazılı başvurusu, Şube Genel Kurulunun iki (2) kez toplanamaması ya da Olağan/Olağanüstü Şube Genel Kurulunda Şube Yönetim Kurulunun oluşamaması durumunda, Oda Yönetim Kurulunun önerisi ve Oda Genel Kurulu kararı ile kapatılabilir. Şube Organları Madde 31- Şubelerin organları şunlardır: a) Şube Genel Kurulu b) Şube Yönetim Kurulu c) Şube Danışma Kurulu Şube Genel Kurulu Madde 32- a) Şube Genel Kurulu üç yılda bir Ocak ayı içinde toplanır. Bu toplantıya katılacak üyelerin listesi Genel Kurul tarihinden otuz beş (35) gün öncesinden belirlenir. Bu tarihten otuz beş (35) gün öncesi itibariyle şubeye kayıtlı üye sayısının çoğunluğu ile toplanır. Belirtilen süre içerisinde işyerlerini ya da evlerini ilgili etkinlik alanına taşıyan üyeler ile yeni kaydolan üyeler Şube Genel Kurul toplantısına katılamaz ve şube organlarına aday olamaz. Oturma ve çalışma yerleri ayrı şubelerin etkinlik alanında bulunan üyeler yalnız ve ancak işyerlerinin bulunduğu birimin genel kurullarına katılır. b) Oda Yönetim Kurulu, Oda Onur Kurulu ve Oda Denetleme Kurulunun şubeye kayıtlı olmayan üyeleri ile diğer şubelerin yönetim kurulu üyeleri de Şube Genel Kurulunun doğal delegeleridir. Söz alır, görüş belirtir ancak oy kullanamaz. c) Şube Genel Kurullarının tarihleri Oda Danışma Kurulunun önerisi ile ilk Şube Genel Kurulu tarihinden en az kırkbeş (45) gün önce Oda Yönetim Kurulunca saptanır ve aynı gün tüm Oda birimlerine bildirilir. Şube Genel Kurulu şube merkezinin bulunduğu kentte toplanır. Şube Genel Kurulunun birinci toplantısında çoğunluk sağlanamaması durumunda ikinci toplantıda çoğunluk aranmaz. Toplantı tarihinin; görüşmeler cumartesi akşamına kadar tamamlanacak, Pazar günü seçimler yapılacak şekilde saptanması zorunludur. ç) Şube Genel Kurulu tarihinden en az otuz (30) gün önce, Şube Genel Kuruluna katılacak üyelerin listesi, Oda sicil numaralarına göre sıralanarak listelenmiş vaziyette Oda Yönetim Kuruluna gönderilir. Oda Yönetim Kurulu birden fazla Oda biriminde kaydı olduğu görülen üyelerin durumunu inceleyerek gönderilen listelerde gerekli düzeltmeler yapar ve on (10) gün içerisinde Şubeye yazılı olarak bildirir. Şube yapılan düzeltmeleri esas alarak işlem yapar. d) Şube Yönetim Kurulu, Genel Kurul toplantısından en az on beş (15) gün önce, Genel Kurula katılacak üyelerin sicil numarası sırasına göre Oda Yönetim Kurulu tarafından düzeltilmiş listelerini, toplantı gündemini, yerini, saatini ve çoğunluk sağlanamadığı takdirde yapılacak ikinci toplantıya ilişkin hususları belirten bir yazı ile birlikte görevli İlçe Seçim Kurulu Başkanlığına iletir. e) Gerekli incelemeden sonra, hakimce onaylanan listeler ile toplantıya ilişkin hususlar söz konusu şubenin ilan yerine asılarak üç (3) gün süre ile duyurulur. f) Genel Kurula katılacak üye listesi hakim tarafından kesinleştirildikten sonra, Şube Genel Kurul gündemi, toplantı yeri, günü ve saati ile, çoğunluk sağlanamazsa ikinci toplantı için aynı bilgiler toplantı gününden en az on (10) gün önce Şube Yönetim Kurulu tarafından, bir gazetenin Türkiye baskısında ilan edilir. Oda Yönetim Kurulu Şube Genel Kurulunun düzenli bir biçimde yapılamayacağının anlaşılması durumunda, toplantı başlamadan önce Şube Genel Kurulunu yalnız bir kez olmak ve on beş (15) günü geçmemek koşuluyla erteleyebilir. Bu durumda Oda Yönetim Kurulu, Şube Genel Kurulunun yeni tarihini ve yerini, görevli hakimin onayını da alarak belirler ve toplantı tarihinden en az on (10) gün önce , bir gazetenin Türkiye baskısında üyelere duyurur. g) Oda Yönetim Kurulu tüm Şubelerin genel kurullarına ilişkin bilgileri Oda süreli yayınlarında duyurur. ğ) Şube Yönetim Kurulu değiştirilmesi için zorunlu bir gerekçe olmadıkça aşağıdaki gündeme uygun olarak Genel Kurulun toplantısını ilan eder. Gündemdeki değişiklik Şube Genel Kurulu Kararı ile olur. 1) Açılış, 2) Başkanlık Divanı seçimi, 3) Oda Yönetim Kurulu ve Şube Yönetim Kurulu adına konuşmalar, 4) Şube Yönetim Kurulu raporunun incelenmesi ve karar alınması, 5) Yeni dönem çalışmaları için ilkelerin saptanması, 6) Yeni dönem bütçesinin görüşülerek Oda Yönetim Kuruluna önerilecek şeklinin sunulması, 7) Yönetim Kurulu seçimi için adayların belirlenmesi ve duyurulması, 8) Seçim. Çalışma Yöntemi Madde 33- Şube Genel Kurulu aşağıdaki şekilde toplanır; a) Şube Genel Kurulu; Şube Yönetim Kurulu Başkanı, İkinci Başkanı ya da Yönetim Kurulunun kendi içerisinden görevlendireceği bir üye tarafından gerekli çoğunluğun oluşması ve Oda Gözlemcisinin salonda hazır bulunması ile ilan edilen gündemle açılır. b) Şube Genel Kurulu Başkanlık Divanı bir (1) Başkan ve iki (2) yazmandan oluşur. c) Toplantıya katılan her üyenin gündemde değişiklik ve ekleme önerme yetkisi vardır. Ancak bu konuda karar verme hakkı Şube Genel Kurulunundur. ç) Şube Genel Kurulunda bulunarak görüşmelere katılmak, oy kullanmak ve organlara aday olmak için ilçe seçim kurulu tarafından askıya çıkartılmış ve onaylanmış listede kayıtlı olmak, Oda kimlik kartını taşımak ve göstermek zorunludur. d) Şube Genel Kurulu görüşmeleri ve kararları tutanakta saptanarak Şube Yönetim Kuruluna teslim edilir. Görev alan Şube Yönetim Kurulu bu belgelerin bir örneğini Oda Yönetim Kuruluna sunar. Olağanüstü Şube Genel Kurulu Madde 34- Şube Genel Kurulu aşağıda belirtilen koşullarda olağanüstü toplantıya çağrılır; a) Şube Yönetim Kurulunun üçte iki (2/3) oy çoğunluğuyla alacağı karar ile, b) Şubeye kayıtlı üyelerin en az beşte birinin (1/5) Şube Yönetim Kuruluna yazılı olarak başvurması durumunda, c) Oda Yönetim Kurulu, Oda Onur Kurulu ve Oda Denetleme Kurulunun ortak toplantısında üye tam sayısının üçte iki (2/3) çoğunlukla alacağı karar ile, ç) Oda Denetleme Kurulunun Şube mali işleriyle ilgili olarak zorunlu görmeleri durumunda oy birliğiyle alacağı karar ile, d) Oda Denetleme Kurulunun Şube mali işleriyle ilgili olarak vereceği denetim raporuna istinaden Oda Yönetim Kurulunun üçte iki (2/3) oy çoğunluğuyla alacağı karar ile, e) Oda Danışma Kurulu Üyelerinden en az yarısının yazılı ve gerekçeli başvurusu üzerine toplantıya katılan üyelerin dörtte üç (3/4) oy çokluğuyla yapacağı öneri doğrultusunda Oda ve/veya Şube Yönetim Kurulunun üçte iki (2/3) çoğunlukla alacağı karar ile, f) İstifa ya da çekilmiş sayılan Şube Yönetim Kurulu üyeliğine davet edilecek yedek üye kalmadığı durumda. Bu maddenin (b), (c), (ç), (d), (e) ve (f) bendinde belirtilen durumlardan herhangi birinin oluşması durumunda, Şube Yönetim Kurulu, başvuru tarihinden itibaren bir hafta içinde Şube Olağanüstü Genel Kurulu için karar almak ve Şube Olağanüstü Genel Kurulunun tarihini saptamak zorundadır. Şube Olağanüstü Genel Kurulu, karar tarihinden itibaren bir (1) ay içinde toplanır. Şube Yönetim Kurulunun herhangi bir nedenle belirtilen sürelerde karar almaması, ya da Şube Olağanüstü Genel Kurulunu toplamaması durumunda, Şube Olağanüstü Genel Kurulu Oda Yönetim Kurulu tarafından toplanır. Olağanüstü Şube Genel Kurulu Toplanma Şekli Madde 35- Şube Olağanüstü Genel Kurulu toplantısı Şube Olağan Genel Kurulu gibi yapılır. Ancak Şube Olağanüstü Genel Kurulunun toplantıya çağrılış nedeni dışında gündem maddesi eklenemez, görüşme yapılamaz ve karar alınamaz. Şube Genel Kurulu Görev ve Yetkileri Madde 36- Şube Genel Kurulunun görev ve yetkileri şunlardır: a) Oda Genel Kuruluna önermek üzere Oda amaçları ile ilgili kararlar almak, b) Şube Yönetim Kurulu raporlarını incelemek, hakkında karar almak, gelecek yıl çalışmaları için Şube Yönetim Kurulunu yönlendirici kararlar almak, c) Şube hesaplarını, bilanço ve gelir-gider cetvellerini, Oda Denetleme Kurulunun Şube ile ilgili raporunu incelemek; Şube Yönetim Kurulunun önerdiği yeni dönem gelir planını ve gider bütçesini; geçici ve/veya sürekli personel kadro çizelgelerini incelemek, olduğu gibi ya da değiştirerek Oda Genel Kurulunun onayına sunmak, ç) Şube Yönetim Kurulunun yedi (7) asil, yedi (7) yedek üyesini seçmek. Şube Yönetim Kurulu, Oluşumu ve Çalışma Yöntemi Madde 37- Şube Yönetim Kurulu; a) Şube Genel Kurulunca seçilen yedi (7) asil ve yedi (7) yedek üyeden oluşur, b) Seçimlerin yapılmasından sonra en geç yedi (7) gün içinde yapacağı ilk toplantıda bir (1) başkan, bir (1) sekreter ile bir (1) sayman üye seçerek Yürütme Kurulunu oluşturur diğer üyeleri arasında görev bölümü yapar, c) En az on beş (15) günde bir çoğunlukla toplanır. Toplantıyı Şube Yönetim Kurulu Başkanı, Başkanın bulunmadığı zamanlarda Şube Sekreter Üyesi yönetir. ç) Şube Yönetim Kurulu salt çoğunlukla toplanır ve kararlarını oy çokluğu ile alır. Oylarda eşitlik olursa başkanın kullandığı oy yönünde çoğunluk sağlanmış sayılır. Şube Yönetim Kurulu Üyeliğinin Düşmesi Madde 38- Herhangi bir nedenle, üç (3) ay süreyle toplantılara gelmeyen ya da, herhangi bir altı (6) aylık süre içerisinde yapılan olağan toplantıların üçte birinden (1/3) daha azına katılmış olan Şube Yönetim Kurulu Üyesi çekilmiş sayılır ve yerine Şube Yönetim Kurulu tarafından sıradaki Yedek Yönetim Kurulu Üyesi yazılı olarak davet edilir. Çekilen veya çekilmiş sayılan Şube Yönetim Kurulu Üyesinin yerine Yönetim Kurulu tarafından davet edilen Yedek Yönetim Kurulu Üyesi daveti yazılı olarak kabul veya reddeder. Yedek üyenin görevi kabul etmesi durumunda, ilk Yönetim Kurulu toplantısında göreve başlama kararı alınır. Davet edilen Yedek Üyenin görevi reddetmesi veya çağrıya onbeş (15) gün içerisinde yanıt vermemesi durumunda bu üye çekilmiş sayılır ve ilk Yönetim Kurulu toplantısında yerine Yönetim Kurulu tarafından sıradaki Yedek Yönetim Kurulu Üyesi yazılı olarak davet edilir. Şube Genel Kurulunun Oda Yönetim Kurulunca Olağanüstü Toplanması Madde 39- İstifa eden ya da çekilmiş sayılan Şube Yönetim Kurulu üyeliğine davet edilecek yedek üye kalmadığı durumda; Şube Genel Kurulu, Şube Yönetim Kurulu Başkanı ve Sekreteri, bunlar yoksa Oda Yönetim Kurulu tarafından olağanüstü toplantıya çağrılır. Şube Olağanüstü Genel Kurul toplantısında yeniden seçim yapılır ve yeni seçilenler ilk Olağan Genel Kurul toplantısına kadar görev yapar. Şube Yönetim Kurulu, Görev ve Yetkileri Madde 40- Şube Yönetim Kurulunun görev ve yetkileri şunlardır: a) Şube etkinlik alanı içinde özel ve kamu kesiminde çalışan üyelerin mesleki sorunlarının çözümü için çalışmak, Üye, Temsilcilik, Şube ve Oda ilişkilerini geliştirmek ve Oda politikaları çerçevesinde gerekli girişimlerde bulunmak, b) Şube etkinlik alanı içinde çevre sorunları ve bunların çözümü yolundaki uygulamalarla ilgili bilgi ve görüşleri Oda Yönetim Kuruluna ileterek bu konularda Oda politikası doğrultusunda ülke ve meslek çıkarlarını gözeten etkinlik ve girişimlerde bulunmak, c) Çevre sorunlarının çözümü için uygulanan projelerin niteliğini geliştirmek, üyelerin hak ve çıkarlarını korumak amacıyla sürdürülen mesleki denetim uygulamasını yürütmek ve Oda Yönetim Kurulunun vereceği yetkiyle mesleki projelere vize uygulamak, ç) Oda Genel Kurulunca alınacak kararları uygulamak, şube işlerini Genel Kurul kararlarına göre yönetmek, d) Şube Genel Kurulunca alınan kararları Oda Yönetim Kuruluna iletmek, e) Oda üyelerinin hak ve yetkilerinin 6235 sayılı Türk Mühendis ve Mimar Odaları Birliği Kanunu ve TMMOB Ana Yönetmeliği ile bu Yönetmelik içinde gereğince kullanılmasını gözetmek; üyelerin mesleki onur, hak ve çıkarlarını koruyacak önlemleri almak ve bu konuda Oda Yönetim Kurulunun onayı ile gerekli girişimlerde bulunmak, f) Mesleğin gelişmesini sağlayacak çalışmaları yapmak, yaptırmak ve buna ait raporları Oda Genel Kurulunun onayına sunmak, g) Şubeye kayıtlı üyelerin kayıtlarını tutmak, ayrıca büro tescil ve diğer mesleki denetim kayıtlarını düzenlemek, ğ) Oda Disiplin Kurulu ile ilgili işleri zamanında Oda Yönetim Kuruluna iletmek, h) Bilirkişilik ve hakemlik yapacak üyeleri belirlemek ve bu listeleri Oda Yönetim Kuruluna sunmak, ı) Şube Yönetim Kurulunun ilk toplantı tarihinden başlayarak en çok on beş (15) gün içerisinde, bütçe uygulamasını da kapsayan Şube yeni dönem çalışma programını hazırlayarak Oda Yönetim Kuruluna sunmak, i) Her yılın Aralık ayının 25 inci gününe kadar o yıla ait mali unsurları da içeren çalışma raporunu ve yeni dönem bütçe önerisini Oda Yönetim Kuruluna sunmak, j) Şube Genel Kuruluna sunulacak çalışma raporunu, geçmiş dönem bütçe uygulamasını da kapsayacak biçimde hazırlayarak, Şube Genel Kurul toplantısından en az bir hafta önce bölgesindeki üyelere duyurmak, k) Şube Genel Kurulu toplantısı için gerekli diğer bütün işlemleri tamamlamak, l) Şube Danışma Kurulunu oluşturmak ve düzenli olarak toplanmasını sağlamak, m) Etkinlik alanları içerisinde bulunan il ve ilçe merkezlerinde temsilcilik açılması için gerekli inceleme ve araştırmaları yapmak, yeni açılacak ve mevcut temsilciliklerin üye eğilimlerini alarak oluşturdukları Yönetim Kurullarının atanması teklifini Oda Yönetim Kuruluna sunmak, n) Etkinlik alanları içerisinde bulunan temsilcilik çalışmalarının, bu kapsamdaki iş ve işlemlerin bu Yönetmelik ve ilgili mevzuat gereğince ve Oda Yönetim Kurulu kararlarına göre yapılmasını sağlamak, denetlemek ve bu konuda Oda Yönetim Kurulunca verilen görevleri yerine getirmek, o) Gerekli gördüğü işyerlerinde, İşyeri Temsilcilikleri açmak, ö) Gerekli gördüğü konularda uzmanlık komisyonları oluşturmak ve bunların düzenli çalışmalarını sağlamak, p) Oda Yönetim Kurulunun vereceği diğer görevleri yürütmek, r) Bülten, faks bülten, bölgesel/yerel sorunlara ya da yerele özgü çevre sorunlarına yönelik araştırma raporları, broşür ve kitapçık gibi çalışmalar yapmak, arşiv ve kütüphane oluşturmak. Şube Yönetim Kurulu, çalışmaları ve hesapları yönünden Oda kamu tüzel kişiliğini temsil eden Oda Yönetim Kuruluna karşı sorumludur. Şube Yönetim Kurulu Üyelerinin Görev ve Yetkileri Madde 41- Şube Yönetim Kurulu Üyelerinin görev ve yetkileri şunlardır; a) Şube Başkanı; Şubeyi temsil etmek ve sözcülüğünü yapmak, Şube Yönetim Kurulunu yönetmek ve Oda amaçları doğrultusunda çalışmasını sağlamakla sorumludur. b) Şube Sekreter Üyesi; Başkanın olmadığı hallerde Yönetim Kurulunun yürütme öğesi ve sözcüsüdür. Şube işlemlerini zamanında ve odanın amaçlarına uygun olarak yürütmekle görevli ve sorumludur. Şube Yönetim Kurulu toplantı gündemini hazırlar. Üyelerin önerisi ile gündeme yeni maddeler eklenebilir. Oda görevlilerine ait sicillerin tutulması ve Yönetim Kurulu kararlarının uygulanması için gerekli tüm önlemleri alır. Şubenin işlemlerini yürütür ve imzalar. c) Şube Sayman Üyesi; Oda ve Şube Yönetim Kurulları kararları çerçevesinde Oda mali işleyişinin zamanında yürütülmesi, gerekli defterlerin tutulması ve demirbaşların en iyi şekilde kullanılmasından görevli ve sorumludur. Yönetim Kurulu Sayman Üyenin sorumluluğuna ortaktır. ç) Şube Başkanı, Sekreteri ve Saymanı, bu Yönetmelik ve ilgili mevzuat çerçevesinde ve bütçe olanakları içinde, Şube Yönetim Kurulunca alınan kararlara göre harcama yaparlar. Şube Mali İşleyişi Madde 42- Şubelerin her türlü gelirleri Odaya aittir. Kendi adlarına makbuz bastıramaz ve para toplayamazlar. Yapacakları bütün tahsilatları Oda hesabına yatırırlar. Şube giderleri Oda Genel Kurulunca kabul edilen Şube bütçesine göre ayrılan ödenekten karşılanır. Şube Yönetim Kurulu, kendi bütçesine göre gerekli harcamalarda bulunur. Bütçe kalemleri arasında yüzde onu (%10) aşmamak üzere aktarım yapabilir. Şube Mali Raporları Madde 43- Şube Yönetim Kurulu, her ayın ilk haftası içerisinde geride kalan aya ait şube mali raporunu Oda Yönetim Kuruluna bildirir. Bölge Temsilcilikleri Madde 44- Oda faaliyetlerinin etkin bir şekilde yürütülmesi ve Oda örgütlenmesinin yaygınlaştırılması amacı ile bölgelerden gelen somut taleplere bağlı olarak kurulur. Bölge temsilciliklerinin kuruluşu ve etkinlik alanı coğrafi yapı ve örgütsel gereksinimler göz önünde tutularak Oda Yönetim Kurulu tarafından belirlenir. Bölge Temsilciliği Yönetim Kurulunun Oluşumu Madde 45- Bölge Temsilciliği, o bölgede bulunan üyelerin eğilim seçimi ve Oda Yönetim Kurulunun ataması ile belirlenen beş (5) veya yedi (7) üyeden oluşan Bölge Temsilciliği Yönetim Kurulu tarafından yönetilir. Oda Yönetim Kurulu atamasını takiben yapılan ilk Bölge Temsilcilik Yönetim Kurulu toplantısında bir (1) başkan, bir (1) sekreter üye ve bir (1) sayman üyeden oluşan yürütme kurulu seçilir. Bölge Temsilciliği Yönetim Kurulunun Görev Süresi Madde 46- Bölge Temsilciliği Yönetim Kurulu görev süresi Oda Yönetim Kurulunun dönem görev süresi ile sınırlıdır. Oda Yönetim Kurulunun atama ve görevlendirmesi ile başlayan görev süresi, görevden alınma ya da istifa gibi nedenlerin dışında bir Oda Genel Kurulundan diğerine kadar olan süredir. Bölge Temsilciliği Yönetim Kurulunun Görevden Alınması Madde 47- Bölge Temsilciliği Yönetim Kurulu Oda işleyişine ve Oda çalışma ilkelerine aykırı bir tutum aldığında ya da Bölge Temsilciliğine kayıtlı üyelerin üçte iki (2/3) sinin Bölge Temsilciliği Yönetim Kurulunun görevden alınması yönündeki Oda Yönetim Kuruluna yaptıkları yazılı başvuru ve bu başvurunun Oda Danışma Kurulu ve sonrasında Oda Yönetim Kurulunda değerlendirilmesi ile Oda Yönetim Kurulunca görevden alınabilir. Bölge Temsilciliklerinin Görev ve Yetkileri Madde 48- Bölge Temsilciliklerinin görev ve yetkileri şunlardır: a) Bölge Temsilciliği çalışma alanı içinde özel ve kamu kesiminde çalışan üyelerin mesleki sorunlarının çözümü için çalışmak Üye, Temsilcilik, Şube ve Oda ilişkilerini geliştirmek ve Oda politikaları çerçevesinde gerekli girişimlerde bulunmak, b) Bölge Temsilciliği çalışma sınırları içinde çevre sorunları ve bunların çözümü yolundaki uygulamalarla ilgili bilgi ve görüşleri Oda Yönetim Kuruluna ileterek, bu konularda Oda politikası doğrultusunda ülke ve meslek çıkarlarını gözeten etkinlik ve girişimlerde bulunmak, c) Çevre sorunlarının çözümü için uygulanan projelerin niteliğini geliştirmek, üyelerin hak ve çıkarlarını korumak amacıyla sürdürülen mesleki denetim uygulamasını yürütmek ve Oda Yönetim Kurulunun vereceği yetkiyle mesleki projelere vize uygulamak, ç) Odaya karşı görevleri ile ilgili konularda üyeleri uyarmak, d) Oda Yönetim Kurulunca verilen görevleri yerine getirmek ve yetki aldığı konularda Odayı temsil etmek, e) Üyelerin mesleki bilgi ve tecrübelerini arttıracak konularda eğitim çalışması yapmak veya girişimde bulunmak, f) Çalışma sınırları içindeki üyelerin Oda Yönetim Kurulunca belirlenen şekilde kayıtlarını tutmak ve Oda Yönetim Kuruluna iletmek, üye aidatlarını toplamak, g) Bölge Temsilciliği çalışma sınırları içinde yapılan faaliyetler ve gelişmelerle ilgili bir faaliyet raporunu her ayın ilk haftası içinde Oda Yönetim Kuruluna sunmak, ğ) Bölge Temsilciliğine ait mali durumu gösteren bilançoyu aylık periyotlar halinde Oda Yönetim Kuruluna sunmak, h) İhtiyaç duyulması halinde bilirkişilik, hakemlik, danışmanlık gibi görevler için üyeler belirlemek ve bu isimleri içeren listeyi Oda Yönetim Kuruluna sunmak, ı) Mesleki sorunların çözümü ve eğitim etkinliklerinin hızlandırılması için komisyonlar kurmak ve bu komisyonların çalışmasını sağlamak, İl ve İlçe Temsilcilikleri Madde 49- İl ve İlçe Temsilcilikleri, Oda faaliyetlerinin etkin bir şekilde yürütülmesi ve Oda örgütlenmesinin yaygınlaştırılması amacı ile il ve ilçelerden gelen somut talepler, coğrafi yapı ve örgütsel gereksinimler göz önünde tutularak ve Şube Yönetim Kurullarının önerileri doğrultusunda kurulur. Oda Yönetim Kurulu İl ve İlçe Temsilciliği kurulmasına ve kurulan temsilciliğin hangi Oda birimine bağlı olarak faaliyet yürüteceğine karar verir ve Temsilcilik Yönetim Kurulunun atamasını yapar. Temsilciliğin kurulduğunu yörenin en büyük mülki amirine, belediye başkanlığına, cumhuriyet savcılığına ilgili kurum ve kuruluşlara bildirir. İl ve İlçe Temsilcilikleri Oluşumu Madde 50- İl ve İlçe Temsilciliğinin oluşum çalışmaları o yöredeki yerel gazetelerde duyurulur. Toplantı/toplantılar düzenlenerek eğilim seçimine gidilir. İl ve İlçe Temsilcilikleri Yönetim Kurulu Oda Yönetim Kurulu kararı ile atanır. İl ve İlçe Temsilcilikleri Yönetim Kurulu Oluşumu Madde 51- İl ve İlçe Temsilciliği Yönetim Kurulu en fazla yedi (7) en az üç (3) tek sayıda üyeden oluşur. Ancak Oda Yönetim Kurulu tarafından gerekli görülmesi halinde bir (1) üye temsilci olarak atanabilir. İl ve ilçe Temsilciliği Yönetim Kurulu atamasını takiben en geç 15 gün içinde toplanarak, kendi aralarından bir (1) Temsilci, bir (1) Sekreter ve bir (1) Sayman seçerek yürütme kurulunu oluşturur, eğer bir Şubeye bağlı ise Şube Yönetim Kuruluna, değilse Oda Yönetim Kuruluna bildirir. İl ve İlçe Temsilcilikleri Yönetim Kurulu Görev Süresi Madde 52- İl ve İlçe Temsilciliklerinin Yönetim Kurullarının görev süresi Oda Yönetim Kurulunun dönem görev süresi ile sınırlıdır. Oda Yönetim Kurulunun atama ve görevlendirmesi ile başlayan görev süresi, görevden alınma ya da istifa gibi nedenlerin dışında bir Oda Genel Kurulundan diğerine kadar olan süredir. İl ve İlçe Temsilcilikleri Yönetim Kurulunun Görevden Alınması Madde 53- İl ve İlçe Temsilciliği Yönetim Kurulu Oda işleyişine ve Oda çalışma ilkelerine aykırı bir tutum aldığında ya da İl ve İlçe Temsilciliğine kayıtlı üyelerin üçte iki (2/3) sinin İl ve İlçe Temsilciliği Yönetim Kurulunun görevden alınması yönündeki Oda Yönetim Kuruluna yaptıkları yazılı başvuru ve bu başvurunun Oda Danışma Kurulu ve sonrasında Oda Yönetim Kurulunda değerlendirilmesi ile Oda Yönetim Kurulunca görevden alınabilir. İl ve İlçe Temsilcilikleri Görev ve Yetkileri Madde 54- İl ve İlçe Temsilciliklerinin görev ve yetkileri şunlardır: a) İl ve İlçe Temsilcilikleri çalışma alanı içinde özel ve kamu kesiminde çalışan üyelerin mesleki sorunlarının çözümü için çalışmak, Üye, Temsilcilik, Şube ve Oda ilişkilerini geliştirmek ve Oda politikaları çerçevesinde gerekli girişimlerde bulunmak, b) İl ve İlçe Temsilcilikleri çalışma sınırları içinde çevre sorunları ve bunların çözümü yolundaki uygulamalarla ilgili bilgi ve görüşleri Oda Yönetim Kuruluna ileterek bu konularda Oda politikası doğrultusunda ülke ve meslek çıkarlarını gözeten etkinlik ve girişimlerde bulunmak, c) Üyelerin hak ve çıkarlarını korumak amacıyla sürdürülen mesleki denetim uygulamasını yürütmek ve Oda Yönetim Kurulunun vereceği yetkiyle mesleki projelere vize uygulamak, ç) Odaya karşı görevleri ile ilgili konularda üyeleri uyarmak, d) Oda Yönetim Kurulunca verilen görevleri yerine getirmek ve yetki aldığı konularda Odayı temsil etmek, e) Üyelerin mesleki bilgi ve tecrübelerini arttıracak konularda eğitim çalışması yapmak veya girişimde bulunmak, f) Çalışma sınırları içindeki üyelerin Oda Yönetim Kurulunca belirlenen şekilde kayıtlarını tutmak ve Oda Yönetim Kuruluna iletmek, üye aidatlarını toplamak, g) İl ve İlçe Temsilcilikleri çalışma sınırları içinde yapılan faaliyetler ve gelişmelerle ilgili bir faaliyet raporunu her ayın ilk haftası içersinde Oda Yönetim Kuruluna sunmak, ğ) İl ve İlçe Temsilciliklerine ait mali durumu gösteren bilançoyu aylık periyotlar halinde Oda Yönetim Kuruluna sunmak, h) İhtiyaç duyulması halinde bilirkişilik, hakemlik, danışmanlık gibi görevler için üyeler belirlemek ve Oda Yönetim Kuruluna sunmak, ı) Mesleki sorunların çözümü ve eğitim etkinliklerinin hızlandırılması için komisyonlar kurmak ve bu komisyonların çalışmasını sağlamak, i) Bülten, faks bülten, bölgesel/yerel sorunlara ya da yerele özgü çevre sorunlarına yönelik araştırma raporları, broşür ve kitapçık gibi çalışmalar yapmak, arşiv ve kütüphane oluşturmak. İl ve İlçe Temsilcilikleri bütün çalışmalarında Oda Yönetim Kurulunca belirtilen konularda, kendilerine verilen yetki sınırları içinde hareket eder. İl ve İlçe Temsilciliklerinin Mali İşleyişi Madde 55- İl ve İlçe Temsilciliklerinin her türlü geliri Odaya aittir. Kendi adlarına makbuz bastıramaz ve para toplayamazlar. İl ve İlçe Temsilcilikleri Oda Yönetim Kurulunun onayı ile kabul edilen yıllık bütçeye uygun olarak hareket etmek durumundadırlar. Bu bakımdan yıllık bütçelerini gösteren raporu Aralık ayının 25 inci gününe kadar Oda Yönetim Kuruluna sunmak zorundadırlar. Odaya Kayıt Zorunluluğu Madde 56- Bir Oda sınırları içinde Mesleğini icra edecek Biyologlar bir ay içinde o il veya bölge Odasına üye olmak ve üyelik görevlerini yerine getirmekle yükümlüdürler. Mesleklerini serbest olarak icra etmeksizin kamu kurum ve kuruluşları ile kamu iktisadi teşebbüslerinde asıl ve sürekli görevlerde çalışan Biyologlar ile herhangi bir sebeple mesleğini icra etmeyenler, istedikleri takdirde Odalara üye olabilirler. Özel Kanunlarında üye olamayacaklarına dair hüküm bulunanlardan mesleklerini serbest olarak icra edenler, mesleki hak, yetki, disiplin ve sorumluluk bakımından bu Kanun hükümlerine tabidirler. İkinci fıkra dışında kalan Biyologlar Odalara kaydolmadıkları takdirde meslek ve sanatlarını serbest olarak icra edemezler. Oda Gelirleri Madde 57- Odanın gelirleri şunlardır; a) Odaya kayıt ücreti, b) Üye aidatı, c) Biyologlara temin edilecek basılı belgelerden elde edilecek gelirler, d) Görevleri içine giren onaylamalardan alınacak ücretler, e) Kültürel ve sosyal faaliyetlerden elde edilecek gelirler, f) Disiplin Kurullarınca verilip kesinleşen para cezaları, g) Bağış veya yardımlar, h) Araştırma, proje çalışmaları ve bilimsel çalışmaların gelirleri, i) Danışma hizmeti gelirleri, j) Kendi içinde yapacakları sürekli eğitim çalışmaları için ilgili kişi,kurum ve kuruluşların ödeyeceği ücretler, k) Türkiye'deki ve diğer ülkelerdeki ulusal ve uluslar arası mesleki ve çalışma alanları ile ilgili kurumların veya diğer kurum ve kuruluşların bu kapsama giren konulardaki işlerinin yürütülmesine yönelik bağış, yardım ve hizmet satın alma gelirleri, l) Yarışma veya ödüllü çalışmalardan elde edilecek gelirler, m) Diğer gelirler Odaya kayıt ücreti ile üye aidatının yıllık miktarı ve ödeneceği tarihler o yıl uygulanan memur maaş katsayısının üç yüz mislinden az beş yüz mislinden fazla olmamak üzere Oda Merkez Yönetim Kurulunun önerisi üzerine Oda Genel Kurulunca kararlaştırılır. Yıllık aidatlar her yılın Mart ve Ekim ayları sonuna kadar iki taksitte ödenir. Zamanında ödenmeyen yıllık aidatlar ve her türlü cezalar ile diğer alacaklar 6183 sayılı Amme alacaklarının Tahsil Usulü Hakkında kanun hükümleri uyarınca işlem görürler. Üyenin bir Odadan başka bir Odaya naklinde kayıt ücreti ve üye aidatı yeniden alınmaz. Oda yönetim kurulu, hastalık, yaşlılık veya yoksulluk gibi nedenlerle aidatlarını ödeyemeyecek durumda olanlardan geçici veya sürekli olarak aidat alınmamasına Oda yönetim kuruluna bilgi vermek koşuluyla karar verebilir. BEŞİNCİ BÖLÜM Çeşitli Hükümler Onur Üyeliği Madde 58- Genel Sağlık, Çevre ve Biyologluk ile ilgili meslek üzerinde yaptığı çalışmalar ve yayınladığı eserler dolayısıyla ülke ve dünya çapında üne kavuşmuş veya Biyolog mesleğine Odalar maddi ve manevi yardımda bulunmuş kimselere; Oda Merkez Yönetim Kurulunun, Oda Yönetim Kurulunun teklifine dayanarak veya doğrudan doğruya isteği uyarınca, ile onur üyeliği payesi verilebilir. Onur üyeliği payesi verilebilmek için Biyolog olmak şart değildir. Onur üyeleri oy hakkı olmaksızın Oda Genel Kurul toplantılarına katılabilirler. Asgari laboratuar Tahlil Ücretlerinin Tespitinin Yöntemi Madde 59- Oda Merkez Yönetim Kurulu her yıl Aralık ayı içinde biyologların uygulayacağı laboratuar tahlil ücretlerinin asgari haddini oluşturacağı ihtisas komisyonları vasıtasıyla tespit ederek hazırlayacağı tarifeyi Oda Merkez Yönetim Kurulunun onayına sunar. Yeni tarife yürürlüğe girinceye kadar eski tarife hükümleri devam eder. Disiplin Cezaları Madde 60- Biyologluk vakar ve onuruna veya meslek düzen ve geleneklerine uymayan fiil ve hareketlerde bulunanlar ile mesleğini gereği gibi uygulamayan veya kusurlu olarak uygulayan veyahut görevin gerektirdiği güveni sarsıcı davranışlarda bulunan meslek mensupları hakkında; fiil ve hareketin niteliği ve ağırlık derecesine göre aşağıdaki disiplin cezaları verilir. Uyarma; Biyologa görevinde ve davranışlarında daha dikkatli davranması gerekliliğinin yazı ile bildirilmesidir. Kınama; Biyologu görevinde ve davranışlarında kusurlu sayıldığının yazı ile bildirilmesidir. Para cezası; bölgesinde o yıl uygulanan memur maaş katsayısının iki yüz katından az beş yüz katından fazla olmamak üzere verilecek para cezalarıdır. Meslekten geçici men; Oda bölgesinde bir aydan altı aya kadar serbest meslek yapmaktan alı konmaktır. Meslekten sürekli men; Oda bölgesinde iki defa serbest meslek yapmasından alıkoyma cezası olanların Oda bölgesi içinde serbest meslek uygulamasından sürekli olarak alı konmasıdır. Cezai takibat ve mahkumiyet kararı disiplin soruşturması yapılmasına ve disiplin cezası uygulanmasına engel değildir. Meslek mensubu hakkında savunma alınmadan disiplin cezası verilemez. Yazılı Bildirime rağmen on beş gün içinde savunmasını yapamayanlar savunma hakkından vazgeçmiş sayılırlar. Disiplin cezaları kesinleşme tarihinden itibaren uygulanır. Disiplin cezalarını gerektiren fiiller ve bu fiillere uygulanacak disiplin cezaları; bir derece ağır veya hafif disiplin cezaların uygulanacağı haller, disiplin soruşturması yapılması konusunda karar verecek merci; disiplin cezalarını vermeye yetkili merciler; disiplin cezalarına karşı yapılacak itirazın usul ve şartları; Disiplin Kurullarının çalışma usulü ve esasları; disiplinle ilgili diğer işlemler odaca düzenlenecek bir yönetmelikle gösterilir. ALTINCI BÖLÜM Ceza Hükümleri Simsar Kullanmak, Simsarlık Yapmak ve Yetkisiz Meslek İcrası Madde 61- Mesleği ile ilgili işlerde herhangi bir menfaat karşılığında aracılık yapanlar veya bu kişileri aracı olarak kullanan Biyologlar üç aydan bir yıla kadar hapis ve yüz bin liradan üçyüzbin liraya kadar ağır para cezası ile cezalandırılırlar. Meslek diplomasını herhangi bir menfaat karşılığı Biyolog mesleğini uygulama yetkisine sahip olmayan kişi veya kişilere kullandıranlar veya kendisine ait olmayan diplomayı kullanarak menfaat sağlayanlar veya yargı mercilerince ya da Oda Disiplin Kurulları tarafından haklarında, serbest meslek uygulamasından geçici veya sürekli alı konma cezası verilenlerden serbest meslek uygulamasına devam edenler, fiilleri daha ağır bir cezayı gerektirmediği taktirde birinci fıkra hükümleri uyarınca cezalandırılır. YEDİNCİ BÖLÜM Yönetmelikler Madde 62- Bu Kanunda çıkartılması öngörülen ve Kanunun uygulanması için gerekli görülecek yönetmelikler kanunun yürürlüğe girmesinden sonra en geç bir yıl içinde Oda tarafından çıkarılacaktır. SEKİZİNCİ BÖLÜM Geçici Hükümler Geçici Madde 1- Bu Kanuna göre seçilmeye yeterliliği biyologlar, Oda kurucusu olmak istedikleri takdirde, Kanunun yürürlük tarihinden itibaren üç ay içinde, mesleklerini icra etmekte oldukları valiliklerine başvurarak birer kuruculuk belgesi alırlar. Kuruculuk belgesi alan Biyologların 2/3ün bilfiil 5 yıl mesleğini icra etmesi şartı aranır. Kuruculuk belgesi alan biyologlar yedi kişiden oluşan birer geçici Yönetim Kurulu seçerler ve Valiliğe bildirirler. Bu Kanunun 4. Maddesinin birinci fıkrası kapsamına giren illerdeki Kurucu Yönetim Kurulları bu yasa hükümleri uyarınca üye kayıt işlemlerini tamamlayarak en geç bir ay içinde ilk genel kurullarını toplantıya çağırırlar ve Oda organlarının seçimini gerçekleştirirler. Bu Madde kapsamındaki Odalar, tüzel kişilik kazanır ve durum Yönetim Kurulunca ilgili Bakanlığa bildirilir. Geçici Madde 2- Bu kanun, tababet ve Şua batı Sanatlarının Tarzı İcrasına Dair 1219 sayılı Kanun ve halen yürürlükte olan yasalara göre meslek icrasına hak kazanmış Biyologlar için de uygulanır. Madde 63- Bu Kanun yayını tarihinde yürürlüğe girer. Madde 64- Bu Kanunun hükümlerini Bakanlar Kurulu yürütür.

http://www.biyologlar.com/biyologlar-odasi-kanunu-taslagi

CANLILAR ARASI ETKİLEŞİM VE EKOLOJİK NİŞ

CANLILAR ARASI ETKİLEŞİM VE EKOLOJİK NİŞ

Her tür kendi tarzı yaşamını sürdürebilmek için doğa ve diğer canlılarla mücadele etmek zorundadır.

http://www.biyologlar.com/canlilar-arasi-etkilesim-ve-ekolojik-nis

Transplantasyon immünolojisi

TRANSPLANTASYON İMMÜNOLOJİSİ VE TARİHÇESİ İmmünoloji İnsan İmmün (Bağışılık) sistemi zararlı olan organizmaları vücuttan uzaklaştırmaktadır. Bu sistem, vücudumuzun yaklaşık iki trilyon hücresini koruyan, antibadi ve sitokinler üreten hareketli askerleridir. Virüs, bakteri ve tümör hücreleri veya transplante edilmiş hücreler gibi yabancı ya da vücuda ait olmayan hücrelerle koordineli bir biçimde hızlıca çok yönlü bir atağa geçmektedir. Her ne kadar çevre immün cevabı stimüle etse de, immüniteyi kontrol eden genlerdir. Genler antibadi ve sitokinlerin hücre yüzeyini spesifik olarak kodlamaktadır. Genler aynı zamanda sitokinleri tutan hücre yüzey proteinlerini kodlamaktadır (Antijen başka bir bireyde immün cevaba neden olan bir moleküldür. Antijenler genellikle protein veya karbohidratlardır). Yabancı antijen, vücuda ait olmadığından dolayı, bir immün cevaba neden olmaktadır. Genler immüniteyi kontrol ettiğinden, oluşan değişiklikler immünolojik fonksiyonları engelleyebilmektedir. Immünitede oluşan bozukluk, otoimmün hastalıklara, allerjiye ve kansere neden olabilmektedir. Genlerin immünitede büyük rol oynamasından dolayı, teknoloji ile birlikte, hastalıkların tedavisi amacıyla immün sistem güçlendirilmeye çalışılmaktadır. Transplantasyon nedir nasıl yapılır Transplantasyon yöntemi günümüzde oldukça yaygındır. Kalp, böbrek ve başka organların bir kişiden diğerine nakledildiğini sık sık duyarız. Dişlerin transplantasyonunda iki yöntem vardır: Aynı kişiden ve başka kişiden transplantasyon. Aynı kişide bir diş bir çene yarısında dizi dışı bulunur ve normal diş sayısına oranla artıklık gösterirken, diğer tarafta herhangi nedenlerle bir dişin dizide eksik olduğu da görülebilir. Bu durumda iki olasılık vardır: Ya bir diş yuvası önceden hazırdır ya da operatör bu dişi transplante edebilmek için ilkin böyle bir yuva oluşturmalıdır. Bu durumda en uygunu, önceden hazır olduğu için yeni çekilmiş bir dişin boş olan alveolüdür. Ayrıca aynı kişiden transplantasyon dışında, dişin başka kişiden alındığı, kişiden – kişiye transplantasyon da vardır. Kişiden – kişiye transplantasyon çok eskidir de. Örneğin, ortaçağda varlıklı bir bayan bir dişini yitirdiğinde bir kölenin benzer dişini çektirttiği sık sık görülürdü; sonra bu yabancı diş çenesine transplante edilirdi. Oysa her zaman uygun dişli bir köle bulunamazdı. Bayan böyle durumlarda da transplantasyon amacıyla uygun dişini çektirtecek olan bir başka kişiye belirli bir tutar para önerirdi. Kişi artık günümüzde transplantasyonda biraz daha dikkatlidir. Benimsenme olasılığı için en uygunu; plantat-vericisi ve plan-tatralıcısının kardeşler, ana-baba, çocuklar gibi yakın akraba olmalarıdır. Ancak yabancı plantat-vericisi plantat-alıcısıyla aynı kan grubundan ise, bu plantat-vericisinin dişi de kullanılabilir. Kan uyuşmazlığının göz önüne alınmaması eskiden bir çok başarısızlıklara neden olurdu. Tüm plantasyonlarda plantat kökünün vücutta yabancı madde sayılarak atılma tehlikesi vardır. Bu nedenle, transplantat’ın sürekliliği olabildiğince uzatılsın diye gereken her şey yapılmalıdır. Genel diş ve kök tedavisi tıpkı replantasyondaki gibi uygulanır. Çoğu zaman başarı replantasyondaki kadar iyi değildir ve atılmazlığı bütünüyle plantat-alıcısmın kendisine bağlıdır. Tüm transplantasyonlarda ope­rasyondan sonra şineleme son derece önemlidir. Transplantasyon Sonrası Immün Sistemin Yeniden Programlanmasında Monoklonal Antikorların Kullanımı Transplantasyon sonrası immün sistemin yeniden yapılanması sürecinde temel amaç, graftı T lenfositlerinin yıkıcı etkilerinden korumaktır. Monoklonal antikorlar da bu amaca yönelik olarak mevcut immünsüpresif ilaçlara yardımcı olarak kullanılmaktadır. Bazıları indüksiyon tedavisinde, rejeksiyon önlenmesine yönelik olarak, bazıları da dirençli akut rejeksiyon tedavisinde kullanılırlar. Monoklonal antikorların en yaygın kullanılanları basiliksimab ve daklizumabdır. Bu IL-2 reseptör blokerleri, akut rejeksiyon oranlarında önemli azalmalar sağlamaları ve yan etkilerinin olmayışı nedeni ile oldukça benimsenen ilaçlardır. Bunların yanında rituksimab (anti-CD20) ve Campath (anti-CD52) gibi ajanlar da giderek daha çok kullanılmaya başlanan monoklonal antikorlardır. Transplantasyon immünolojisinde, T hücre aktivasyonunda görevli, bazı yeni aracı moleküllerin bulunması monoklonal antikorların da giderek çeşitleneceğini göstermektedir. Transplantasyon Hakkında Sık Sorulan Sorular 1. Canlı veya kadavra vericilerden transplantasyon yapılacak adayların hazırlıkları arasında bir fark var mıdır? Hayır, Kadavra böbreği bekleme listesindeki adaylar da tıpkı canlı vericiden transplantasyon yapılacak adaylar gibi incelenir. Ancak bir kadavra böbreği bulunma olasılığının ne zaman gerçekleşeceği belli olmadığı için. zaman geçtikçe önceden yapılmış muayene le bazı laboratuar incelemelerinde değişiklikler olabilir. Bu nedenle kadavra böbreği bekleme listesindeki hastaların belli aralıklarla, fizik muayene ve laboratuar incelemeleri yineletmeleri ger eklidir. Kısaca; kadavra böbreği bekleyen hastalar ameliyata her an hazır durumda olabilir. 2. Transplantasyon adayı hastaların kendi böbreklerine herhangi bir müdahale yapılır mı? Genellikle hastaların kendi böbreklerine dokunulmaz. Ancak, inatçı hipertansiyon, böbreklerde tedaviye dirençli infeksiyon, idrarın mesaneden böbreğe taşması, çok büyük kistik böbrekler söz konusu ise, hastalıklı böbrekler çıkarılır. Bu ameliyat bazı merkezlerde transplantasyondan önce yapılır ve 3-4 hafta sonra yeni böbrek takılır. Bazı merkezlerde ise böbrek nakli ameliyatı yapılırken aynı anda hastanın kendi böbrekleri de çıkarılır. Yalnız her iki ameliyatın aynı seansta yapılması oldukça uzun sürer ve biraz daha risklidir. 3. Kadavra böbrek listesine kayıtlı hastalar için bekleme süresi ne kadardır? ÜIkemizde bugün için kesin bir süre belirtmek mümkün değildir. Listeye çok yeni giren bir hasta, uygun tipte böbrek çıkması ile kısa zamanda transplantasyon şansına kavuşabileceği gibi bazen de uygun bir böbrek çıkmadığı için uzun süre beklenebilir. Olanaklar elverdiğince, uygun böbrek çıktığında daha uzun süre beklemiş olan hastaya öncelik tanınır. Halkımızın bilinçlenerek daha fazla organ bağışında bulunması bekleme süresini kısaltacaktır. Halkımızın bilinçlenerek daha fazla organ bağışında bulunması bekleme süresini kısaltacaktır. 4. Kadavra böbrek bulunduğunda hastalara nasıl haber verilir? Transplantasyon ünitesinde bilgisayarda kadavra böbreği bekleyen tüm hastaların telefon numaraları kayıtlıdır. Uygun bir kadavra böbreği çıktığında günün herhangi bir saatinde size telefonla haber verilere!,, transplantasyon ünitesine gelmeniz istenecektir. Size daha kolay ve kısa sürede haber verebilmemiz için. varsa, birden fazla telefon numaranızı ve yakınlarınızın da telefon numaralarını bildirmeniz faydalıdır. Telefon numaranızda bir değişiklik olduğunda bunu hemen üniteye bildirmelisiniz. 5. Böbrek bulunduğu haberi ile transplantasyon ünitesine çağrılmanız mutlaka böbreğin size takılacağı anlamına mı gelir? Hayır. Bir kadavradan elde edilen iki böbrek için yaklaşık 10 hasta üniteye çağrılmaktadır. Burada, hemen yapılan fizik muayene ve acil laboratuar incelemeleri sonucunda, ünite hekimlerinden oluşan bir kurul tarafından karar verilmekte ve durumu en uygun olan 2 hastaya böbrek takılmaktadır. Böbrek takılmayanlara ise bunun nedenleri açıklanır ve hastalar evlerine gönderilir. 6. Kadavra böbrek, transplantasyon için haber verildiğinde neler yapılmalıdır? Öncelikle bu saatten itibaren hiçbir şey yenilmemeli ve içilmemelidir. Bekleme listesindeki bu hastanın küçük bir çantada, kişisel eşyaları (pijama, terlik gibi) her an hazır olmalıdır. Özelikle şehir dışından gelecek hastaların telaşa kapılmamaları ve hazırlanmakla vakit kaybetmemeleri için önemlidir. Çağrıldığınızda yanınıza eşyaları da alarak en hızlı ulaşım aracı ile. uzak bir şehirde oturmaktaysanız mümkünse uçakla, üniteye gelmelisiniz. 7.Kadavra böbreğin size takılmasına karar verildiğinde ne tür işlemler yapılacaktır? Bu karardan sonra, artık hastanede kalacaksınız. O gün diyalize girmediyseniz acil olarak hemodiyalize alınacak ve bitiminde transplantasyon ünitesine yatırılacaksınız. Gerekli ameliyat hazırlıkları ve transplantasyon öncesi ilaç uygulamalarından sonra böbrek nakli ameliyatına alınacaksınız. Artık yeni böbreğiniz takılacak ve sizin için yeni bir yaşam dönemi başlayacaktır. TRANSPLANTASYON İMMÜNOLOJİSİ TARİHÇESİ Prof.Tbp.Kd.Alb.Ali ŞENGÜL Tarihçe; MÖ 200: Çin?de Kalp nakilleri denemeleri MÖ 600: otolog deri transplantasyonları (Hindu cerrah Sushruta- yüz plastik cerrahisi) Modern transplantasyon dönemi ise 18. Yüzyılın sonlarında deneysel cerrahinin babası olarak da bilinen Hunter tarafından başlatılmış olarak kabul edilmektedir. Carrel 1912?de vasküler anastomoz tekniği ile nobel ödülü almış ve teknik olarak başarılı nakillerin yolunu açmıştır. Daha sonra biyolojik özelliklerden immün sistem üzerine yoğunlaşılmış ve gerçek başarı ancak immünolojik gelişmelerden sonra mümkün olabilmiştir. İlk kan transfüzyonları 17. yy?da hayvanlar ve insanlar arasında denenmiş ve alınan korkunç sonuçlar nedeniyle bu konu 150 yıl boyunca bir daha gündeme gelememiştir. 1900 yılında Landsteiner ve Miller insanları kanlarındaki aglutininlere göre gruplandırarak transfüzyonları tekrar gündeme getirirken, doku tiplendirmesinin de yolunu açmışlardır. 1923 de Williamson homolog ve otolog graftlemeyi kıyaslayarak doku tiplendirmesi için çalışmaların başlamasına sebep olmuştur. 1930 larda moleküler genetikçi George Snell farelerde histokompatibilite lokusu olan H-2 lokusunu keşfetmiştir. 1937 de Gorer insanlarda ilk histokompatibilite antijenini tanımlamış ve self-nonself ayrımını izah etmiştir. 1943 de Medawar tavşanlarda deri grefti çalışmaları yapmış ve otograft-homograft ayrımında akraba olanlarla olmayanların farklılığını ortaya koymuştur. II. Dünya savaşında yanıklı hasların tedavisinde plastik cerrah Gibson ile işbirliği yaparak immün yanıtın 3 temel özelliğini (tanıma, yıkım ve hafıza) tanımlamıştır. 1952 de Dausset multiple kan transfüzyonu yapılanlarda lökoaglutininler oluştuğunu gözlemleyerek insanlarda HLA lokuslarının keşfine giden yolu açmıştır. 1964 de Terasaki ve arkadaşları sitotoksik antikorları kullanarak mikrolenfositotoksisite yöntemi ile antijenlerin serolojik olarak tanımlanmasını sağlamışlardır immünosupresyon 1950 lerde John Loutit tarafından total vücut radyasyonu (TBI) ile farelerde denenmiş, 1958 de Murray (Boston) ve Hamburger (Paris) tarafından ayrı ayrı insanlara uygulanmıştır. 1960 larda AZT geliştirilmiş ve transplantasyonda kullanılmış. Ardından Starzl AZT ile kortikosteroidi kombine ederek başarının artmasını sağlamıştır. 1960 ve 1970 lerden itibaren poliklonal antikor teknolojisi, siklosporinin keşfi, 1980 lerde monoklonal antikor teknolojisinin keşfi ile bu konudaki gelişmeler hız kazanmış, daha modern immünosupressif ajanların keşfi ile neredeyse doku uyumuna bakılmaksızın transplantasyonlar yapılmaya başlamıştır. TANIMLAR Transplantasyon: Donör / verici : Recipient / alıcı: Ortotopik transplantasyon Heterotopik transplantasyon. Rejeksiyon / red Birincil rejeksiyon ikincil rejeksiyon (Hafıza). TANIMLAR (2) Otolog greft / otogreft Oto transplantasyon / otolog transplantasyon Isogreft / syngeneik greft / syngreft Allogeneik greft / allogreft Xenogeneik greft / xenogreft Alloantijen Xenoantijen alloreaktif antikor xenoreaktif antikor ALLOGENEİK TANIMANIN MOLEKÜLER TEMELİ Haplotip identik, inbred farelerde yapılan hücre ve doku nakillerinde rejeksiyon oluşmamaktadır. Farklı inbred fareler arasında yapılan transplantasyonlarda hemen daima rejeksiyon oluşmaktadır. Farklı iki inbred fareden olan F1 dölünde, anne ve babadan alınan greftlerde rejeksiyon oluşmamaktadır. Farklı iki inbred fareden olan F1 dölünden alınan greft, anne ve babaya transplante edildiğinde rejeksiyon oluşmaktadır. MHC / HLA Minör doku uygunluk antijenleri MHC molekülleri dışındaki polimorfik alloantijenler daha zayıf ve daha yavaş bir rejeksiyon reaksiyonu oluştururlar. Bunlara Minör doku uygunluk antijenleri (minor histocompatibility antigens) adı verilmektedir. Birçok minör doku uygunluk antijeni self veya greft MHC molekülleri tarafından işlenip T hücrelerine sunulabilen protein yapısındaki moleküllerdir. MHC moleküllerinden farklı olarak bu minör antijenlerin tanınabilmesi için işlenip MHC molekülleri tarafından sunulmaları gereklidir. ALLOGENEİK TANIMANIN HÜCRESEL TEMELİ Rejeksiyon reaksiyonu, transplante edilen dokuların hem CD4+ ve hem de CD8+ hücreler tarafından tanınması sonucunda gelişir. Değişik T hücre popülasyonlarının alloantijenleri tanımalarını anlamak için mikst lenfosit reaksiyonu (MLR) güzel bir model olarak kullanılmaktadır. MLR ile şu sonuçlara ulaşılabilir: Eğer hücrelerin MHC-sınıf I antijenleri arasında farklılık yoksa CD8+ CTL oluşmayacaktır. Uyarıcı hücrenin MHC-Sınıf-I antijenlerine karşı antikorlar kullanılırsa, hücre lizis’den korunacaktır. Eğer uyarıcı ve uyarılan hücreler arasında MHC Sınıf-II antijen farklılığı varsa alloreaktif CD4+ T hücreleri uyarılacak ve prolifere olarak sitokin üretecektir. Uyarıcı hücre ile aynı MHC sınıf-II antijenlere sahip üçüncü grup hücre kültüre eklenirse alloreaktif CD4+ T hücreleri tekrar uyarılacaktır (İkincil MLR). Uyarıcı hücrenin MHC sınıf–II antijenlerine karşı antikor kullanılırsa, bu antikorlar ikincil MLR’nu önleyecektir. Rejeksiyon Rejeksiyonun değişik formlarının olduğu ve bunların her biri için farklı bulgu ve belirtilerden oluşan tanımlar olduğu bilinmektedir. Ancak çoğu kez bunları biri birinden kesin olarak ayırt edecek kriterler bulunamaz. Gerçekte aynı greftte akut ve kronik rejeksiyon sıklıkla birliktelik gösterir. Sınıflandırmada, transplantasyonu takibeden sürenin uzunluğundan çok, major sınıflandırma kriteri olarak histolojik değişikliklere dikkat etmek gereklidir. Hiperakut rejeksiyon (HAR) : Greft damarlarında hızlı trombotik oklüzyon ile karakterize bir tablodur. Anastomozu takiben dakikalar içerisinde başlar. Özellikle IgM tipi antikorların endotele bağlanarak komplemanı aktive etmesi söz konusudur. Endotelden Von Willebrand faktör sekrete edilir. Kompleman aktivasyonu da endotel hücre hasarına yol açarak koagülasyonu başlatır. Subendotelyal bazal membran proteinlerinin de trombositleri aktive etmesi sonucunda tromboz ve vasküler oklüzyon oluşarak, organda kalıcı iskemik hasar meydana gelir. Hiperakut rejeksiyon (HAR) : (2) IgM türü allo antikorlar: Bu tür antikorlara en iyi örnek ABO kan grubu antikorlarıdır. Normal barsak florasında bulunan bazı bakterilerin karbonhidrat antijenlerine karşı geliştiği düşünülen doğal antikorlar. Doğal Xenoantikorlar. IgG izotipinde alloantikorlar: Eski transplantasyonlar veya multiple gebelik durumlarında oluşurlar. Bu antikorlar Lenfosit Cross Match (LCM) ile ortaya çıkarılabilir. AKUT REJEKSİYON Transplantasyondan sonra 1 hafta ile 4 ay arasında ortaya çıkar ve ilk yıldan sonra da ataklar görülebilir. a) Akut Sıvısal Rejeksiyon : Akut sıvısal rejeksiyon, greft kan damarlarındaki bazı hücrelerde nekroz ile karakterize bir durumdur. Histolojik olarak hiperakut rejeksiyondaki trombotik oklüzyondan çok bir vaskülit sözkonusudur. Akut sıvısal rejeksiyondan endotelyal hücre antijenlerine karşı gelişmiş IgG izotipinde alloantikorlar sorumludurlar. Bu antikorlar kompleman aktivasyonuna da yol açarak etkili olurlar. Bu olaya lenfositlerin de katılması nedeniyle alternatif bir şekilde “akut, vasküler rejeksiyon” olarak da isimlendirilmektedir. Akut Hücresel Rejeksiyon : Bu tip rejeksiyon parenkimal hücrelerde nekroz ile karakterize ve genellikle lenfosit ve makrofaj infiltrasyonu ile birliktedir. Bu infiltrasyondaki lökositler greft parenkim hücrelerinin lizis’inden sorumludurlar. Akut hücresel rejeksiyondan birçok farklı effektör mekanizma sorumlu tutulabilir: CTL’e bağlı lizis, Aktive makrofajlara bağlı lizis (geç tip aşırı duyarlılık reaksiyonunda olduğu gibi), Doğal öldürücü (NK: Natural killer) hücre lizisi. KRONİK REJEKSİYON : Normal organ yapısının kaybolduğu, fibrozis ile karakterize bir durumdur. Patogenezi akut rejeksiyona oranla daha az anlaşılmıştır. Fibrozis, akut rejeksiyondaki hücre nekrozunun iyileşme sürecinde gelişiyor olabilir. Kronik geç tip aşırı duyarlılık reaksiyonunda olduğu gibi aktive makrofajların, trombosit kaynaklı büyüme faktörü gibi mezanşimal hücre büyüme faktörü salgılaması ile ya da kan damarlarındaki hasarlara bağlı olarak ortaya çıkan kronik iskemiye bir yanıt şeklinde gelişmesi ihtimali de vardır. Kronik rejeksiyonun bir başka formu, musküler arterlerde intimal düz kas proliferasyonu ile karakterize olan formdur. Bu düz kas proliferasyonu da geç tip aşırı duyarlılık reaksiyonunun bir sonucu olarak gelişebilmektedir. Greftteki damar duvarlarında bulunan alloatijenlerle uyarılan lenfositlerin makrofajları uyararak, düz kas hücresi büyüme faktörü salgılanmasına yol açtıkları düşünülmektedir Bu form özellikle renal ve kardiyak transplantasyonlarda görülmüştür. Bu şekilde gelişen bir arterioskleroz geç tip greft kayıplarındaki en önemli sebeplerden biridir. Birçok olguda arteriel hasardan önce herhangi bir histolojik bulgu tespit edilmemiştir. ALLOGRAFT REJEKSİYONDAN KORUNMA VE TEDAVİ: İmmün sistemi tam olarak fonksiyonel bir alıcıya aktarılan bir allograft eninde sonunda mutlaka rejeksiyonun bir şekli ile karşılaşacaktır23,24. Rejeksiyondan korunmak ya da rejeksiyonu geciktirmek için gerek klinik çalışmalarda, gerekse deneysel modellerde iki yöntem geliştirilmeye çalışılmıştır: Greftin immünojenitesini azaltmak Alıcının immün sistemini baskılamak Dokuların immünojenitesi Kemik iliği Deri Gastrointestinal kanal Langerhans adacıkları Kalp Böbrek Karaciğer Greftin immünojenitesini azaltmak: İnsanlardaki transplantasyonlarda graft immünojenitesini azaltmak için takip edilen ana strateji, donör ve alıcı arasındaki alloantijenik farklılıkları minimalize edecek bir seçim uygulamaktır. HAR’dan korunmak için donör ve alıcının ABO kan grubu antijenlerinin daima uyumlu olmasına dikkat edilmektedir. MHC moleküllerinin allelik farklılıklarının hem sınıf-I ve hem de sınıf-II lokusları bakımından mümkün olduğu kadar az olmasına ya da tamamen uygun olmasına dikkat edilmekte, bu amaçla donör ve alıcının HLA antijenlerini belirleyen test yöntemleri, moleküler düzeyde analiz yöntemleri ile geliştirilmektedir. Greftin immünojenitesini azaltmak (2) Kan grubu ve HLA tiplemeleri yanında mevcut bir immünizasyon varsa bunun tespiti de çok önemlidir. Bu amaçla hücresel immünizasyonun araştırılması için mikst lenfosit reaksiyonu (MLR) testi yapılmaktadır. Sıvısal bir immünizasyon için ise dolaşan antikorların varlığının araştırılması önemlidir. Lenfosit Cross Match (LCM) Panel reaktif Ab (PRA) Alıcının immün sistemini baskılamak: Greft dokularına karşı reaktif antikorların varlıklarını belirlemek ve plazmaferez gibi yöntemlerle bu antikorları azaltmak. Transplantasyondan önce alloantijenler vererek allografta tolerans oluşturmak: İmmünosupressif tedavilerle T hücrelerini baskılamak veya lizise uğratmak: İMMÜNOSUPRESYON Kortikosteroidler, Metabolik toksinler (azathioprine, cyclophosphamide v.b.), lenfoid dokuların irradiasyonu, spesifik immünosupressif ilaçlar (Cyclosporine, FK506 v.b.), T hücre yüzey moleküllerine spesifik antikorlar kullanılmaktadır. Graft Versus Host Hastalığı (GVHD) İmmünosupressif alıcıda yerleşme fırsatı bulan donör kaynaklı lenfositlerin alıcı dokularına karşı reaksiyon vermesiyle ortaya çıkar. İmmünosupressif kişilere iatrojenik olarak verilmiş immünopotent hücrelerle de ortaya çıkabilir. (Kan transfüzyonu, solid organ transplantasyonları v.b.) Allogenik kemik iliği transplantasyonunun önündeki en büyük engeldir. GVHD Deri, Gastro-intestinal sistem, karaciğer, akciğer başlıca hedef organlardır. Akut reaksiyonlar post-transplant 7-80 günlerde, Kronik formlar ise 3. Aydan sonra ortaya çıkar. Solid organ transplantasyonları sonrasında oluşan GVHD’da transplante organ self kabul edildiğinden o organa karşı reaksiyon oluşmaz. Ortaya çıkan patolojilerin GVHD’na ait olup olmadığını destekleyecek en önemli bulgu periferik kanda kimerizm araştırarak elde edilebilir. Bunun yanında daha invaziv bir yöntem olan Biyopsi de çok değerli bilgiler verebilir. TRANSPLANTASYON ve İMMÜN YANIT Prof. Dr. Mahmut Nezih Çarin İstanbul Tıp Fak. Tıbbi Biyoloji ABD, Transplantasyon Ünitesi MHC gen bölgesi 6. kromozom (6p21.31) üzerinde yerleşmiş olup, yaklaşık olarak 4 Mbp lik bir yer kaplar. En uzun haplotype (110-160 kb) DR53 grup haplotiplerdir. Jan Klein 1977 yılında Sınıf I, II ve III olmak üzere ilk tanımlamayı yapmıştır. Günümüzde HLA sınıf III’ e ait olan bölgenin telomerik ucundaki 0.3 Mbp kısmın sınıf IV bölgesi olarak isimlendirilmesi önerilmektedir. Klasik HLA antijenleri sınıf I geni icindeki HLA-A, -B, -C bölgesinde ve Sınıf II geni içindeki HLA- DR, -DQ, -DP bölgesinde kodlanır. Tüm sınıf I genler 3-6 kb, sınıf II genler ise 4-11 kb uzunluktadır. Klasik antijenleri kodlayan genler dışındaki sınıf I bölgesindeki diğer genler: HLA-E, -F, -G, -H, -J, -K, -L olup, bunlar arasından sadece HLA-E,- F,-G eksprese olmaktadır. Sınıf III bölgesinin ise gen yoğunluğu oldukça fazla olup bunların bir kısmı immün sistem ile ilişkili değildir. Sınıf II bölgesinde klasik antijenleri kodlayan genlerin yanısıra HLA-DM, -DN, -DO, TAP1, TAP2, LMP2 ve LMP7 gibi gen bölgeleride bulunmaktadır. İmmunolojik ve nonimmunolojik fonksiyonu olan bir dizi genden oluşan MHC bölgesi ilk kez farelerdeki transplantasyon çalışmaları ile Peter Gorer tarafından 1937 yılında ortaya çıkarılmıştır. Bu genlerin ürünleri olan moleküller 1958 yılında Jean Dausset tarafından (HLA-A2) tanımlamış, aynı yıl van Rood ve arkadaşları HLA-BW4 ve BW6 antijenlerini ve kan transfüzyonu yapılmış kişilerin ve çok doğum yapmış kadınların serumlarında lökositlere karşı oluşmuş antikorları göstermişlerdir. İlk doku antijenleri lökositlerde saptandığı için insan lökosit antijenleri (Human Leukocyte Antigens = HLA) olarak tanımlanmışlardır. Daha sonraki yıllarda eritrositlerin dışında bütün vücut hücrelerinde bulundukları ve çok önemli oldukları anlaşılarak bu grup antijen sistemi MHC molekülleri veya MHC antijenleri olarakta isimlendirilmiştir. MHC genel bir isimdir ve her bir türün ayrı bir MHC simgesi vardır . MHC molekülleri graft rejeksiyonun temel belirleyicileridirler. Bu nedenle aynı MHC moleküllerini eksprese eden bireyler birbirlerinin doku graftlerini kabul edebilirler veya farklı MHC gen bölgelerine sahip bireyler arasında graft rejeksiyonu gelişir. Bu lokusun keşfinden ancak 20 yıl sonra immun cevapta MHC’nin önemi ortaya çıkarılmıştır. Hugh McDevitt ve arkadaşları 1960’larda kobay ve fareler üzerine yaptıkları çalışmalarda basit polipeptidler ile yapılan immunizasyona karşı antikor oluşmadığını ve gelişen immun yanıtsızlığın MHC bölgesinin haritalanması ile otozomal dominant bir özellik olduğunu buldular. İmmun yanıtı kontrol eden genlere de İmmun yanıt genleri (Immune response =Ir ) adı verildi. Ir genlerinin protein yapıdaki antijenlere antikor yanıtında gerekli olan Th (T helper = yardımcı T) lenfositlerinin aktivasyonunu kontrol ettiğini gösterdiler. 1970’lerin sonunda MHC genlerinin protein antijenlere karşı olan esas rolü anlaşıldı. Her iki HLA antijen yapısı da iki yan yana alfa heliksi tarafından oluşturulan, hücre membranına distal konumda benzer bir girintiye sahiptir. Bu girintilere hem kendi antijenlerinden hem de yabancı antijenlerden kaynaklanan peptid antijenleri bağlanır. Böylece HLA antijenleri hem kendi hem de yabancı peptidleri T lenfositlerine sunma görevindeki moleküller olarak immün yanıt oluşumunda kilit bir fonksiyona sahiptir. Ayrıca HLA antijenlerinin kendileri de allogeneik transplantasyon, transfüzyon ve hamileliklerde güçlü immün yanıtları tetikleyebilen, fazlasıyla immünojenik moleküllerdir. MHC Sınıf I molekülleri Sınıf I molekülü a zincirinin b2 mikroglobulin ile non kovalen bağlanmasıyla oluşmaktadır. Alfa zinciri a1 (N terminal), a2 ve a3 olmak üzere üç adet ekstrasellüler domain içerir. MHC sınıf I molekülleri arasında a3 domaini oldukça korunmuş bir yapıdadır ve T lenfositlerindeki CD8 molekülü ile etkileşime giren bölgeyi oluşturmaktadır. Beta 2 mikroglobulin yapısındaki bir adet disülfit bağı ile stabilize edilmiştir. b2- mikroglobulin yokluğunda sınıf I molekülleri hücre membranında eksprese edilmez. Alfa-1 ve alfa-2 domainler 8 adet anti-paralel b strandı ve 2 adet anti-paralel a strandı ile platform oluşturmaktadır. Genel olarak çekirdekli hücrelerde eksprese edilmektedir. Ancak ekspresyon düzeyleri hücreler arasında değişmektedir. Lenfositlerde en yüksek düzeyde eksprese edilirken, Fibroblastlar, kas hücreleri, hepatositler, sperm, oosit, plasental ve merkezi sinir sistemi hücrelerinde sınıf I moleküllerinin ekspresyonu çok düşük ya da dikkate alınmayacak düzeydedir. HLA- C moleküllerinin hücre yüzeyinde HLA- A ve –B moleküllerinden 10 kat daha düşük düzeyde ortaya çıkmaktadır. Ancak HLA-C molekülleride işlevseldir ve NK (doğal öldürücüler ) tarafından tanınmak üzere ilk hedef noktalardır. MHC Sınıf II molekülleri Sınıf II molekülleri a ağır zinciri ile b hafif zincirinin non-kovalent bağlanması ile oluşan bir heterodimerdir. Alfa zincirinde a1 ve a2, beta zincirinde ise b1 ve b2 domainleri bulunmaktadır. Alfa-1 ve alfa-2 domainleri arasında kalan çukur peptid fragmanlarının bağlandığı bölgeyi oluşturmaktadır. Sınıf II molekülleri dendritik hücre, makrofaj, B ve aktive T lenfosit olmak üzere daha sınırlı sayıda hücrelerde eksprese edilmektedir. Transplantasyonda İmmun Yanıt İmmün sistemin birincil görevleri herhangi bir potansiyel infekte edici yabancı materyali tanımak ve birden çok efektör mekanizma yoluyla yanıt vererek yabancı materyali inaktif hale getirmektir. HLA antijenlerinin görevi hem kendi hem de yabancı proteinlerden türevlenen peptid fragmentlerini sunmaktır. Antijen sunum hücreleri (APCler) olarak görev yapan hücre tipleri dendritik hücreler, monositler, makrofajlar, B lenfositleri ve immün regülatör süreçlere katılan diğer hücreleri içerir. Protein moleküllerinin peptid parçalarına ayrılması ve antijenin T hücrelerine sunulması, immünitenin önemli bir bölümünü oluşturur. Sınıf I molekülleri endojen kaynaklı peptidlerin CD8 (+) T lenfositlerine, sınıf II molekülleri ise eksojen kaynaklı peptidlerin CD4 (+) T lenfositlerine sunumunda rol almaktadırlar. Peptidler önce degradasyona uğrar ve peptid fragmanları hücre içinde HLA sınıf I ve II moleküllerine bağlanır. Bu moleküller, bağlanan peptid ile birlikte hücre yüzeyine gelir. Hücrelerde proteinlerin yıkımını sağlayan iki büyük yol vardır. Bunlardan birisi lizozomal asidik ortamda gerçekleşen lizozomal proteolizis diğeri ise ubiquitin- proteasom yıkım yoludur. Çok sayıda ubiquitin ile işaretlenmiş olan protein, çok sayıda alt birimden oluşmuş olan proteaz kompleksi olan proteasom tarafından yıkılır. Ubiquitinin bağlanması ve işaretlenmesi için ATP enerjisi kullanılır. Endojen proteinler ubiquitin ile bağlanarak proteasoma yönlenirler. LMP2 ve LMP7, proteozom kompleksinin bileşenlerini oluşturan peptidleri kodlamaktadır. Proteozom, kısa ömürlü sitoplazmik proteinlerin çoğunun sindiriminde yer almaktadır. Burada 8-10 aa uzunluğunda kısa peptidlere yıkılan endojen proteinler TAP heterodimeri aracılığı ile ER aktarılırlar. TAP molekülleri zarlar arasında, oligopeptid ve daha büyük proteinler gibi farklı maddelerin taşınmasını sağlamaktadır. TAP1/TAP2 molekülleri ER zarında, sitoplazmadan lümene peptid taşıyıp yerleştiren bir kompleks oluştururlar. Taşınmış olan peptidler sınıf I molekülüne yüklenirler. Endoplasmik retikulumdan ayrılan bu yapılar golgi kompleksine gelir oradan taşıyıcı veziküller ile hücre membranına taşınarak sitotoksik T lenfositlerine sunulurlar. Eksojen kaynaklı proteinler (bakteriler gibi) ASH tarafından hücre içine endositik olarak alınıp lizozom ile birleşir ve lizozomal enzimlerin etkisi ile küçük peptidler haline dönüştürülürler. ER’da yeni sentezlenen sınıf II molekülleri invariant chain (Ii) molekülü ile bağlanarak taşıyıcı veziküller ile lizozoma gelir ve füzyon yaparlar. Lizozom icerisinde Ii molekülü küçük peptid haline dönüştürülür ve HLA-DM molekülüde peptid bağlama oluğunda bulunan parçalanmış Ii molekülü ile eksojen peptidin yer değişimini gerçekleştirir. Peptid yüklenmiş olan sınıf II molekülleri hücre membranına taşınarak CD4(+) T lenfositlerine sunulurlar. İmmün tanıma : İmmün yanıtın oluşumunda ilk basamak, kendi-HLA moleküllerince sunulan yabancı peptidin yardımcı T hücrelerince (CD4+ T hücreleri) tanınmasıdır. Tanınmanın sağlanabilmesi için T-hücre reseptörü (TCR) HLA-antijen kompleksine özgü olmalıdır. Hücrelerin birbiriyle teması üzerine TCR, yabancı peptid ve APC üzerinde yer alan MHC molekülünden oluşan trimoleküler bir kompleks meydana gelir. T hücreleri ve APC arasındaki etkileşim diğer lenfositler ve B7, CD40 gibi T hücreleri üzerinde yer alan CD4, CD8, CD28 VE CD11a/CD18 gibi APC hücre yüzey molekülleri (lökosit fonksiyonuyla bağlantılı antijen 1 [LFA-1]) ve interselüler adhezyon molekülü (ICAM-1) desteği ile sağlanır. Hücre yüzey reseptörleri ve sitokinler gibi immün modülatör molekülleri kodlayan genler uyarılır, transkribe edilir ve aktif ürünler vermek üzere translasyon geçirirler. Aktivasyonun erken evrelerinde yanıtlayıcı T hücrelerinin klonal genişlemesi ile sonuçlanan, interlökin 2 (IL-2) ve interferon-g (IFN-g) sitokinleri üretilir. Makrofajlar ve B hücreleri de ek sitokinler ve kemokinler katılarak çalıştırılmıştır ve böylelikle uyarılmış B hücrelerinin yanıtı genişletilerek olgun antikor oluşturan plazma hücrelerine dönüşmeleri sağlanır. İmmün yanıtın hem hücresel hem de hümoral kolları, nakledilen bir organın yabancı HLA antijenleri ile ilişki halindedir. Transplant yerleştirilmesinde, spesifik alloreaktif T hücrelerinin klonlarının allotanıma ve aktivasyonuna, akut rejeksiyon nöbetlerine, greft fonksiyonlarında aksamaya ve kronik rejeksiyona ve son olarak greft kaybına sebep olabilir. Direkt ya da indirekt allotanıma yolları olarak bilinen iki farklı yol, greftte yer alan yabancı HLA antijenlerin immünojenitesini oluşturur. Direkt yolda, donör MHC antijenlerinin tanınmasında spesifik TCR taşıyan alıcı T hücreler, greftin HLA antijenlerini tanırlar ve onlar tarafından direkt olarak aktive edilirler. Yabancı HLA antijeni kendi-HLA ve yabancı antijenin kombine halini taklit eder böylelikle TCR’ler ile başarılı bir şekilde bağlanırlar. Bu arada donör dendritik hücreleri, gratft ile birlikte “pessenger” lökositler olarak gelirler, ve greftten yuvalarına yani alıcı lenf nodlarına geçerler. Lenf nodlarında alıcı T hücreleri donör APCleri’nce sunulan yabancı MHC ve peptidlere yanıt verirler ve prolifere olurlar. Bu aktive olmuş alıcı hücreler daha sonra süzülerek grefte geçerler ve bozulmakta olan greftin biyopsisi sonucunda kolaylıkla gözle görülebilen red süreçlerini başlatırlar. İndirekt tanıma yolu ile oluşan yanıt, donör antijenlerinin alıcı APCleri tarafından işlenmesini ve sunulmasını gerektirir. Bu hem lenf “pessenger” lökositlerce işgal edilen alıcı lenf nodlarında gelebilir hem de greft antijeninin alıcı APCleri tarafından çıkarılan, geri alınan ve işlenen greft sitlerinde meydana gelebilir. Direkt yol grefte karsi verilen ilk yanıtlarda baskındır, indirekt yolun ise zaman geçtikçe red sürecinin sürmesinde ve yolcu lökositlerin bir uyarı olarak yok olduğu süreçte önemli olduğu var sayılmaktadır. Alloantikor yanıt: Transplantasyonun bir sonucu olarak, aktive edilmiş yardımcı T hücreleri B hücreleri ile etkileşime geçebilirler ve onları spesifik donör HLA antijenlerine yönelik alloantikor üretmeleri için stimule ederler. Transplantasyon sonrası bu tip alloantikorlar saptanması eşlik eden hücresel red yanıtının bir işaretidir. Transplantasyonun oluşturduğu uyarıya ek olarak HLA antijenlerine karşı immün yanıtlar, lökosit içeren kan transfüzyonu ile gelen HLA alloantijenlerine maruz kalma ve hamilelik gibi durumlarda oluşur. Birden fazla transfüzyon alan hastalar ve bazı multipar kadınlar HLA antijenlerine bağışıklık kazanabilirler, ve antikorlar ile spesifik HLA antjenleriyle etkileşime giren aktif T hücre klonları üretirler. Transplantları başarısızlıkla sonuçlanan hastalarda reddedilen greftin HLA antijenlerine karşı yüksek düzeyde antikor üretilmektedir. Potansiyel bir alıcı tarafından antikorlar oluşturulduğunda sensitizasyon (hassasiyet) meydana gelir ki bu da uygun bir organ donörü bulmada engel oluşturur. Hastanın sensitize olduğu belirli HLA antijen/leri içeren bir organın transplantasyonu hiperakut red ile sonuçlanabilir. Bu süreçte alıcı antikorları ile donör antijenlerinin oluşturduğu kompleksler anında greft damarlarında koagülasyonu tetikler, bu da grefte ve greft içindeki kan dolaşımının blokajı ve kesilmesi ile sonuçlanır ve böylelikle greft hızla yok edilir. Böbrek, kalp ve pankreas transplantasyonu bekleyen sensitize hastalar için önceden oluşmuş alloantikorlara hedef antijenlere sahip olmayan donörlerin seçimi kesin şarttır.Yabancı HLA antijenleri immün reddi tetiklediklerinden, alıcı ve verici arasında HLA antijen uyumunun sağlanması transplant başarısı için etkin bir stratejidir. KAYNAK: lokman.cu.edu.tr/anestezi/v_cag/new_page_2.htm VİDEO İLE İLGİLİ LİNGLER www.zaplat.com/video/saglik_videolari/41349/Organ_Nakli_Nedir www.zaplat.com/video/saglik_videolari/34884/Kalp_Nakli www.zaplat.com/video/saglik_videolari/43...alp_Transplantasyonu www.zaplat.com/video/saglik_videolari/28...migi_Tranplantasyonu

http://www.biyologlar.com/transplantasyon-immunolojisi

Koagulase Testi

Bu test, özelilkle stafilokoklarda bulunan ve kan plazmasını pıhtılaştıran koagulase enzimini (stafilokoagulase) ortaya koyma, patojenik olanlarla nonpatojenik olanları ayırmak amacı ile yapılır. Patojenik olan S. aureus pozitif reaksiyon vermesine karşın S. epidermidis ve S. saprophyticus negatif reaksiyon gösterir. Aslında koagulase'nin patojenite ile ilişkisi de tam olarak aydınlatılmamıştır. Protein karakterinde, ekstrasellüler, ısıya dayanıklı (60 °C ve 30 dakika) olan koagulase DNA'yı da ayrıştırdığı için bir deoksiribonüklease (DN'ase) karakteri taşır. Pıhtılaşmanın normal mekanizması kısaca yanda gösterildiği gibidir.Bazı araştırmacılar, koagulase enzimini, normal plasma faktörü ile reaksiyon vererek trombin benzeri subtansı oluşturan ve protrombin benzeri bir madde olduğunu da bildirmişlerdir. Bu madde sonradan fibrinojen'i aktive ederek fibrin haline dönüştürür. Stafilokoklar dışında bazı mikroorganizmalar da koagulasyon meydana getirebildikleri saptanmıştır. Ancak buradaki reaksiyon enzimatik olmayıp, plasma antikoagulatanın tahrip olması etkisinin ortadan kalkmasıyla meydana gelir. Koagulase enziminin fazla olması reaksiyonun daha çabuk ve belirgin olarak meydana gelmesine neden olur. Stafilokoklarda koagulase aktivitesinin, bu etkenlerinin oluşturduğu diğer toksik substanslarla bir bağlantısı olmadığı bildirilmiştir.Materyal 1) Steril taze insan veya tavşan plasması (heparinli veya fibrinojen)2) Taze ve saf stafilokok sıvı veya katı ortamdaki kültürü 3) Koagulase pozitif (S. aureus) ve negatif (S. epidermidis) suşlarının taze kültürleri (kontrol mikroorganizmalar)Metot1. Tüpte test: Temiz bir tüpe (13 x 100 mm) 0.5 ml kadar plasma konur. Üzerine aynı miktar S. aureus kültürlerinden damlatılır ve homojenize edilir. Sıvı kültür yerine, katı besi yerinden alınmış bir-iki saf koloni de, plasma içinde homojen bir suspansiyon yapılabilir. Eğer elde yeterince plasma varsa, bu amaç için iki ayrı tüp kullanılabilir.Tüpler 37 °C de su banyosunda 1-3-6 saat tutulur ve her saat gözle kontrol edilirler.Tüpler çok hafifçe eğilerek koagulasyon durumu belirlenir.2. Lamda test: Temiz bir lam üzerine bir damla steril fizyolojik su (veya distile su) konur. Buna taze sıvı stafilokok kültüründen bir damla ilave edilir veya agardan bir-iki koloni alınarak sıvı ile bir suspansiyon yapılır. Sonra bunun üzerine bir damla steril taze plasma konur ve homojenize edilir. Reaksiyon 3-5 saniye içinde okunabilir. Şüpheli durumlarda sonucu almak için 2-3 dakika kadar beklenebilir.Değerlendirme1. Tüp testinde: Tüp içinde bulunan plasmanın tam pıhtılaşması (fibrin oluşumu) pozitif reaksiyon olarak değerlendirilir. Eğer fibrin oluşumu tam değilse (kısmi koagulasyon) 24 saat 35° - 37° C de tekrar bekletilmelidir. Hiçbir pıhtılaşma yoksa, suspansiyon ilk baştaki gibi homojen ise, negatif reaksiyon olarak kabul edilir. Gerekirse, 24 saat yeniden inkubasyona bırakılabilir. Değerlendirme kontrollerle karşılaştırılarak yapılır.2. Lam testinde: Lam üzerinde 3-5 saniye içinde oluşan kümeleşme pozitif reaksiyon olarak kabul edilir. Bu süreden sonra bir dakikaya kadar olan kümeleşmeler geç reaksiyon olarak değerlendirilir. Bir dakikadan sonraki reaksiyonlar şüpheli ve hiçbir değişiklik yoksa negatif olarak dikkate alınır. Şüpheli ve geç reaksiyon hallerinde tüp testi ile duruma kesinlik kazandırılır.Dikkat edilecek noktalar1) Testte eski ve zayıf üreyen kültürler kullanılmamalıdır, geç ve şüpheli reaksiyonlar görülebilir.2) Kanın sitratlı alınmaması daha uygundur. Bunun yerine heparin tercih edilmelidir.3) Kullanılacak plasma taze olmalı ve filtrasyona tabi tutulmamalıdır.4) Tüp veya lâmlar hiçbir zaman kuvvetlice çalkalanmamalı ve sallanmamalıdırlar. Hafifçe eğilerek reaksiyon gözlenir. Aksi halde pıhtı parçalanır şüpheli veya negatifreaksiyon meydana gelir ve pıhtı oluşmaz.5) Lam testinde, fizyolojik su (veya distile su) ile kültür homojen olarak karıştırıldıktan sonra, yalancı granulasyon (otoaglutinasyon, pseudokoagulasyon'un) olup olmadığına dikkat edilir. Eğer, otoaglutinasyon yoksa teste devam edilir.6) Bazı araştırıcılar plasmayı ve bakteri kültürünü 1/2 - 1/5 oranlarında sulandırmayı tavsiye etmektedirler. Ancak bu konuda tam bir görüş birliği yoktur. Her iki komponentte eşit miktarlarda reaksiyona konulmalıdır.7) Plasma soğuk olarak kullanılmamalıdır. Oda sıcaklığında olmalıdır.

http://www.biyologlar.com/koagulase-testi-1

PGT Metodları

Polar Body Biyopsisi: Maternal olarak kalıtılan genetik bozukluklar için birinci polar bodynin (BPB) prekonsepsiyonel genetik analiz için kullanılması Verlinsky ve arkadaşları tarafından yoğun olarak çalışılmıştır. BPB, birinci mayotik bölünme sırasında oluşur ve başarılı fertilizasyon veya normal embriyonel belişme için gerekli değildir. IVF’da yapıldığı gibi preovulatuar oositler aspire edilir. Sekonder oositin genetik durumu BPB’nin genotipi çalışılarak anlaşılır. Kromozomal crossing over söz konusu değilse, aspire edilen BPB’de mutant alel varlığında oositte normal alel olacaktır. Bu durumda oosit IVF için kullanılacak ve daha sonra transfer edilecektir. Polar body genetik analizinin bir takım dezavantajları vardır. En önemli olanı direkt oositin genotipinin çalışılmıyor olmasıdır. Çünkü crossing over söz konusu olduğunda tanısal hata olacaktır. Crossing over honolog kromozomlar arasında DNA değişimidir ve sentromerden uzaklaşıldıkça ihtimali artar. Bu durumda, ikinci polar body veya blastomer biyopsisi gibi ileri testlere ihtiyaç vardır. Yine IVF çalışmalarında görüldüğü gibi zonanın diseke edilmesi polispermi riskini artırmaktadır, böyle bir durum polar bodynin aspire edilmesi halinde de görülebilir. Ayrıca polar cisimcik üzerinde polimeraz chain reaksiyonu (PCR) çalışması diğer tek hücre PCP çalışmalarından daha zor olabilmektedir. Polar body biyopsisi aspirasyon ve extrusion metodlarıyla yapılabilir. Sonuç olarak BPB’nin önemi, bize fertilizasyon öncesi bilgi vermesidir. Klivaj Stage Embriyo Biyopsisi: Embriyonun gelişimini bozmadan mikromanipülasyon yöntemi ile blastomer biyopsisi yapmak mümkündür. Elde edilen blastomerler genetik anomali ve sex tayini için kullanılmaktadır. İnsan embriyosundan blastomer biyopsisi ilk olarak 1989 yılında Londra’da Hammer-Smith Hastanesinde Handyside ve arkadaşlarınca yapılmıştır. 4 veya 8 hücreli embriyoda hücre sayısının yarısı oranında blastomer biyopsisi yapmak embriyo gelişimini etkilemektedir, fakat 8 hücreli embriyodan 3 adet blastomer alınması embriyo gelişimini bozmamaktadır. Blastomer biyopsisi sırasında zonada delik açıldığından dolayı implantasyon oranında artış olduğu da gösterilmiştir. Blastomer biyopsisi aspirasyon veya extrusion metodlarıyla yapılmaktadır. Bu konuda yoğun çalışmaları olan Tarin ve Handyside, optimal biyopsi metodları olarak, extrusion yönteminin varyasyonları olan displacement ve push metodlarını önermişlerdir. Ayrıca, en uygun biyopsi zamanı olarak da genetik analiz için enfazla DNA’nın elde edilebildiği, 1-3 blastomer biyopsisinin yapılabileceği 3. gün 8 hücreli embriyo safhasını önermişlerdir. Blastosit (Trofekdoderm) Biyopsisi: Gardner ve Edwards blastosit byopsisini tavşanlarda sex tayini için ilk kullananlardır. Blastosit evresinde hücreler, embriyoyu oluşturacak iç hücre kütlesi ve plasentayı oluşturacak dış hücre kütlesi, trofektoderm olarak ikiye farklılaşırlar. Trofektoderm esas olarak plasentayı oluşturduğu ve fetusun gelişiminde rol almadığı için fetusa zarar gelmeden hücresinin bir miktarı örneklenebilir. 5-6. günlerde blastositten 10-30 trofektoderm hücre biyopsisi yapılabilir. Fakat 10 hücrenin üzerinde biyopsi alınması human chorionic gonadotropin miktarını azaltacaktır. Bu düşüş, transfer sonrasında gebeliği desteklemek için dışarıdan gonadotropin verilmesiyle desteklenebilir. Biyopsi için, iç hücre kütlesinin karşı tarafında zona pellusidaya bir delik açılır; 12-18 saat sonra bu boşluktan herniye olan hücreler stereo-dissecting mikroskop altında mikroneedle ile ayrılır. Başka biyopsi yöntemleri de vardır. Blastosit biyopsisinin polar body veya 4-8 hücreli embriyo biyopsisine üstünlükleri: 1) Genetik tanıda kullanmak için daha çok hücre elde edilir. Bu da tanının doğrulanması için testlerin tekrarlanmasına ve güvenirliğin artmasına izin verir. 2)Biyopsi sırasında sadece extra-embriyonik hücreler alınır, böylece fetusa yönelik potansiyel risk en azdır. 3) Blastosit evresinde embriyonik gen ekspresyonu oldukça belirgindir, böylece daha önceki evrelerde uygulanmayan biyokimyasal metodlar genetik hastalıkların tanısı için kullanılabilir. 4) Kriyopreservasyon daha iyi tolere edildiğinden çiftler daha sonraki IVF siklusları için bu embriyoları kullanabilirler.

http://www.biyologlar.com/pgt-metodlari

Ginseng Nedir? Faydaları Nelerdir?

Ginseng Nedir? Faydaları Nelerdir?

Ginseng, ginseng bitkisinin köklerinden elde edilen oldukça popüler bir bitkisel ilaçtır. Tarihçilere göre ginseng bitkisi ilk olarak 5000 yıl önce, Kuzey Çin’in dağlık bölgelerinde keşfedildi.Başlangıçta bu bitki yemek pişirme amaçlı kullanılırken, daha sonra tedavi edici özellikleri tespit edilmiştir. Ginsengin en az 3000 yıldır popüler olarak kullanıldığı düşünülmektedir. Bir çok hastalığın tedavisinde kullanılan ginseng, geleneksel Çin tıbbında çok önemli bir yere sahiptir. Ginseng bitkisinin köklerinin insan vücuduna olan benzerliği, bu bitkinin tedavi edici özelliklerine olan inancı güçlendirdi. Tıbbi özellikleri için esas kullanılan parçası etli kökleri de olsa, yaprakları da kullanılır. Ginseng yapraklarının kökleri kadar etkili olmadığı gözlemlenmiştir bu kökler aynı zamanda oldukça pahalıdır.Yabani ginseng Asyanın dağlık bölgelerinde, özellikle de Çin’de bulunur. “Panax” cins ve “Araliaceae” ailesine ait 11 ginseng türü vardır. Etli köklere sahip bu yavaş büyüyen bitkiler soğuk iklime sahip bölgelerde yetişmektedir. Çok çeşitli ginseng bitkileri arasında en değerlileri Amerikan ginsengi olarak da bilinen Panax quinquefolius ve Asya ginsengi olarak da bilinen Panax ginseng’dir. Kore ginsengi, tüm ginseng türleri arasında en etkili olarak kabul edilir. Panax kelimesi Yunanca’da her derde deva anlamındaki “panakos” kelimesinden, ginseng ise Çince insan suretinde anlamına gelen “jen-shen” kelimesinden köken almaktadır.Fiziksel Özellikleri:Bir çok ginseng türü olmasına rağmen, Amerikan ve Asya ginsengi en değerli olanlardır ve yaygın olarak kullanılmaktadırlar. Asya ve Amerikan ginsengi görünüm olarak hemen hemen aynıdır. Bu yavaş büyüyen bitkiler genellikle dağ geçitlerinin yamaçlarında ve iyi drene olan dağlık ormanlarda yetişir.Kullanımı:Tıbbi özellikleri nedeniyle çok popüler olan ginseng, ticari olarak dünyanın birçok yerinde yetiştirilmektedir. Ginseng için gittikçe artan talep dolayısıyla yabani ginseng oldukça azalmıştır hatta tehlikeli denebilecek bir hal almıştır. Ginseng bitkisi ağırlıklı olarak tedavi edici özellikleri nedeniyle kullanılır. Yaygın bir bitkisel ilaç olarak kabul edilir ve geleneksel Çin tıbbında önemli bir bileşendir. Diyabet tedavisinde, erkeklerde cinsel fonksiyon bozukluklarında, kan şekerini düşürmede ve kan kolestrolünü azaltmada kullanılır. Aynı zamanda afrodizyak ve uyarıcı olarak etkili olduğu ve oldukça popüler bir anti-aging maddesi olduğu bilinmektedir. Ginsengin faydaları kozmetiği ve enerji içeceklerini de kapsar. Çorbalara da eklenebilir.Ginseng kökleri genellikle kurutulmuş olarak satılır. Bunları bütün ya da dilimler halinde satın alabilirsiniz. Sayısız kozmetiğin ve bitkisel takviyenin içinde bulunan bir aktif maddedir aynı zamanda ginseng çayı olarak da çay poşetleri satılmaktadır. Ginsengi medikal amaçlar için kullanmaya başlayan antik Çinlilerdir. Gözlere parlaklık vermek, güç kazanmak ve pek çok hastalık için kullanmışlar ve bu durum bir ticarete dönüşmüştür. Çinliler bu bitkiyi Kore’den ve bazı Kuzey Amerikan ülkelerinden satın almaya başlamışlardır.Ginsengin Faydaları:- Ginseng kökleri stres, anksiyete, bulantı, kusma, baş ağrısı, hazımsızlık, ishal, akciğer sorunları, artrit, astım, Crohn hastalığı, tümörler, yorgunluk, şeker hastalığı, depresyon, diş ve diş eti hastalıkları gibi hastalıklara faydalıdır.-Mide sorunlarına faydalıdır. Bir yumuşatıcı ve bir uyarıcı olarak çalışır ve sindirim sisteminin sorunsuz ve verimli çalışmasını sağlar.-Ginseng kökleri afrodizyaktır. Cinsiyet ve doğurganlıkla ilgili problemlerin düzeltilmesi için çalışır. Üreme hormonlarının üretimini düzenler ve bu hormonları arttırır.-Kökler yorgunluk, sinirlilik ve travma gibi çeşitli stres faktörlerine karşı vücudun direncini artırır. -Menstruasyonu düzenlemek, doğum ağrılarını azaltmak için kullanılabilir.-Bağışıklık sistemini güçlendirir ve enfeksiyonlara karşı vücudu güçlendirir.-Ginseng hafızayı arttırarak öğrenme yeteneklerini geliştirebilir.-Ginseng kökleri karaciğer ve kalbin sorunsuz çalışmasını sağlayarak kan şekeri ve kolestrol seviyelerini düzenler.-Düzenli olarak tüketildiğinde kanser riskini azaltır.-Solunum sisteminin verimli çalışmasına yardımcı olur.-Ginseng kökleri tüm vücudu güçlendirir, canlandırır bu nedenle bir anti-aging maddesi olarak çalışır.Uzun süreli kullanımları, fazla miktarda kullanımları, diğer ilaçlarla etkileşimleri ve alerjik insanlarda kullanımları yan etkilere neden olabilir. Ancak doğru şekilde kullanıldığında ginsengin sayısız faydaları vardır.Ginsengin Yan Etkileri:Konsantrasyon azalması, sinirlilik, çarpıntı, bulantı, kusma, şişkinlik, karın ağrısı, uykusuzluk, göğüste ağırlık, deri döküntüleri, ödem, sindirim bozuklukları ve astım ginseng köklerinin en sık görülen yan etkilerinden bazılarıdır. Yan etkiler kullanan kişinin genel sağlık durumuna göre değişebilir. Bazı kişilerde düşük kan şekerine neden olabilirken, bazılarında hipertansiyona neden olabilir. Aşırı kullanımları baş ağrısı, ishal, burun kanaması, göğüs ağrısı ve vajinal kanamaya neden olabilir. Hızlı kalp atışları ve kas krampları ile birlikte yüksek tansiyon gibi bazı nadir yan etkiler Sibirya ginsenginin bir yan etkisi olarak görülebilmektedir.İleride yapılacak olan çalışmalar ginsengin faydaları ve yan etkileri konusunda daha net bilgiler verecektir. Ginsengin yararlarıyla ilgili yapılan çalışmalar genellikle kemirgenler üzerinde yapıldığından insanlar üzerindeki etkileri çok net bilinmemektedir. Buna rağmen düzenli olarak ginseng kullananlar, bu bitkinin sağlıkları üzerine olumlu etkiler yaptığından oldukça eminler.Kaynakça:http://www.buzzle.com/articles/ginseng-plant.htmlhttp://www.buzzle.com/articles/ginseng-root.htmlYazar: Tülay Arsoyhttp://www.bilgiustam.com

http://www.biyologlar.com/ginseng-nedir-faydalari-nelerdir

Anguilla anguilla Yılan Balığı ve Özellikleri

Yılan Balıklarının Sistematikteki Yeri Yılan balıkları modern sınıflandırmada balıklar sınıfının Apodes takımından kemikli balıklar alt sınıfı Anguillidae familyasına dahildirler. Günümüzde Anguilla cinsi içinde 19 tür bulunmaktadır. Bunlar arasında en önemli yılan balığı türleri : Avrupa yılan balığı Anguilla anguilla Amerikan yılan balığı Anguilla rostrata Japon yılan balığı Anguilla japonica Yılan balıkları gerçek bir balık türüdür. Diğer balıklar gibi galsamaları vardır. İskeletleri balıklara özeldir. Omur sayılarından tür ayırımı yapılmaktadır. Omur sayıları Avrupa yılan balığında ortalama olarak 115, amerikan yılan balığında 107 , japon yılan balığında ise 116 adet olarak tespit edilmiştir. Sadece karın yüzgeçleri yoktur. Göğüs ve sırt yüzgeçlerine sahiptirler. Pulları gelişmemiş ve pulsuz olarak kabul edilebilmekle birlikte vücutları üzerinde tek tük dağılmış pullara sahiptirler. Deri kalındır ve üzerinde fazla miktarda mukus bulunur. Çenelerde ve vomer kemiğinde gayet ince tarak gibi dişler bulunur. Ayrıca karın yüzgeçlerinin yokluğu da yılan balıklarına özel bir durumdur. Yılan balıklarında diğer balıklarda olduğu gibi pektoral yüzgeçleri ve göğüs kemikleri de vardır. Alt çene, üst çeneden biraz daha uzundur. Baş solungaçların bulunduğu yarık ile son bulur. Solungaç kapağı oldukça küçüktür. Kuyruk bölgesi ise anüs ile başlar ve kuyruk sonuna kadar devam eder. Aynı tür içinde olmakla beraber bölgelere göre renk ve baş şekli bakımından birbirinden biraz farklı olan yılan balıklarına sık sık rastlanır. Sonbaharda yakalanan büyük boylu yılan balıkları genel olarak parlak renklidirler. Sırtları koyudur, yanlar bakırımsı alt kısımları ise beyazımsı parlaktır. Bu balıklar cinsel olgunlaşma döneminde olan ve tatlı sulardan çıkarak Sargossa körfezine doğru üreme için göçe çıkmış olan gümüşi yılan balıklarıdır. Bu yılan balıklarından ayrı olarak pek parlak olmayan normal yılan balıkları yakalanır ki bunlar da sarı yılan balıkları olarak tanımlanır. Bu balıklar cinsel bakımdan olgunlaşmamışlardır. Devamlı yem almakta ve gelişme döneminde bulunmaktadırlar. Göç döneminde bulunan gümüşi yılan balıklarının sindirim organları boştur. Bu üreme göçleri sırasında vücutlarında biriktirmiş oldukları yağı, besin ve enerji kaynağı olarak kullanmaktadırlar. Avrupa yılan balıklarında baş yapılarına göre de bazı farklılıklar bulunmaktadır. Renk ve baş yapısı gibi farklılıkların yem, yaşadıkları ortam, cinsiyet, cinsel olgunluğa ulaşma dönemi gibi birçok faktör tarafından etkilendiği saptanmıştır. Sınıf : Pisces (Balıklar) Alt Sınıf : Osteichthys (Kemikli Balıklar) Takım : Anguilliformes (Yılanbalığımsılar) Familya : Anguillidae (Yılanbalıkları) Tür : Anguilla anguilla (Anguilla vulgaris, Muraena anguilla) (Avrupa Yılanbalığı) Tarihçesi: M.Ö. 3. Yüzyılda yaşayan Aristo, "Toprağın bağırsakları" dediği solucanlara benzeyen bu canlılarla ciddi ciddi ilgilenmişti. M.Ö. 1. yüzyılda bir Romalı düşünür ise, "Yılanbalıklarının kaya parçalarına çarpan diğer balıkların derilerinden meydana geldiğini" ileri sürmüş. 17. yüzyılda Francesco Redi adlı doğabilimci, yılanbalığının bir balık olması nedeniyle ancak yumurta yoluyla üreyebileceğini belirtmiş. Sigmund FREUD'ta 19. yüzyılın sonlarına doğru çalışmalarında biyolojiye ağırlık verdiği dönemde, çağrıştırdığı cinsellik açısından yılan balığını tanımaya çalışmış ancak sonuçsuz kalmış. 1920 yılında Danimarkalı biyolog Johannes Schmidt, Atlantik Okyanusunda avlanırken, ağına takılan 77 mm boyunda yılanbalığı larvalarına rastladı.Bunları takip etti ve sonunda yılanbalığı larvalarının Atlas Okyanusunda, Amerikanın biraz açıklarında "Sargasso Denizi" denilen bölgede doğuyorlardı. Daha sonra uzun bir yolculuğa çıkıp Avrupa'ya kadar geliyorlar ve burada ulaştıkları tatlı sularda gelişip büyüdükten sonra yeniden denize dönüyorlardı. Avrupa kıyılarından Meksika'ya gidildikçe larvaların boyları küçülmekte, buna göre yılanbalıkları Meksika yakınlarında üremekte. Yılanbalıklarının yumurta ile üremelerine ilişkin ilk bilgi yumurtalıkların keşfi ile olmuş, ancak birçok bilim adamı yumurtaları bulmak için çok uzun bir süre uğraşmıştır. İtalyan bilim adamı Lazzaro Spallanzani, yılanbalıklarını 40 yıl boyunca incelemesine karşın yumurtalı bir bireye hiç rastlamadığını belirtmiş. 1974 yılında Japon bilim adamları yakaladıkları bir dişi yılanbalığını suni yolla döllemeyi denediler.Laboratuarda gerçekleşen deneyde,dişi yılanbalığı yumurtlar yumurtlamaz öldü.Karnı yarıldığında dönüş yolculuğunda hiç yiyeceği kalmadığı anlaşıldı. 1981 yılında Alman okyanus bilimci Friedrich Wilheim Tesch ilginç bir deney yaptı.Yakaladığı dört dişi yılanbalığını Sargasso Denizi'ne alıcılar bağlayarak bıraktı.Son sinyaller 700 metre derinlikten geldi ve daha sonra yılanbalıklarının izini kaybetti. Yılanbalığı gizemini ve efsane kimliğini hala koruyor. Genel Özellikleri Yılanbalıkları,her ne kadar sürüngene benzese de gerçek bir balık türüdür.Solungaçları vardır. Karın yüzgeçleri yoktur,ancak sırt ve göğüs yüzgeçleri vardır. Karın yüzgecinin olmaması bu balık türüne özgüdür. Üzerinde yoğun bir mukus tabakası olan, kaygan bir derileri var. Bundan dolayı çıplak elle tutulamaz.Yılanbalıkları geceleri hareketlidir,gündüzleri çamurun içine saklanırlar.Çayıra bırakıldıklarında suyun yönünü hemen bulabilirler. Susuz ortama karşı çok dayanıklıdırlar ve uzun süre su dışında kalabilirler. Çünkü bu hayvanlar,yağmurlardan sonra ıslak yerlerde, nemli çimenlerde kolaylıkla hareket edebilirler. Bundan dolayı bir nehirden başka bir nehre (yakın mesafede) bile geçebilirler. Turna balıkları,mersin balıkları ve su kuşları en büyük düşmanlarıdır.Kanları çok tehlikeli bir sinir zehiri içerir, kanı yara ve çatlaklara değmemesine özen gösterilmelidir.Isıtıldığında zehir parçalanır.Toplam 19 yılanbalığı türü vardır Vücut uzun yılan şeklinde, yanlarda hafif yassı olup küçük pullarla kaplıdır. Renk üreme zamanına kadar kahverengimsi sarı, üreme zamanı gelince gümüşidir. Ömürlerinin büyük kısmını (6-20 yaşa kadar) tatlı sularda geçirirler. Yumurtlamak üzere tatlı suları terk ederek denize açılırlar. Üremelerini Meksika Körfezinde gerçekleştirirler. Hayatlarında bir defa yumurta kaparlar. Yumurtlayan yılan balıkları ölür. Çıkan yavrular 3 yaşında, 65-70 mm boyuna geldiklerinde karasularımıza ulaşırlar. 20-60 yıl yaşarlar. Göçün ortaya çıkmasında en önemli nedenlerin başında; üremedir, yavruların yetiştirilmesi, kış gelmeden önce bulunulan bölgeden uzaklaşmaları gerekmektedir. Yaşam ortamındaki besin miktarında azalma, populasyonun artmasıyla birlikte yaşam alanının küçülmesi gelmekte.Yılanbalıklarını göçteki amacı; iç güdüsel olarak doğdukları yere ulaşıp üremek istemeleridir. Coğrafik Dağılımları: Avrupa yılan balıkları yayıldıkları bölgeler, Kuzeyde 71. Güneyde ise 23. enlemler arasında bulunmaktadır. Kuzeye doğru çıkıldıkça da yılan balıklarına daha az rastlanır. Pratik olarak yapılan yılan balığı avcılığı da 63. Enlem dairesine uzamaktadır. Kuzey Rusya ve Kuzey Sibirya’da yılan balıklarına rastlanmaz. Afrika sahillerine bakıldığında ise , Cezayir kıyılarında bulunmasına rağmen aynı sahilde bulunan Senegal’de görülmez. Bazı göllerde çok az ve bazılarında ise hiç bulunmadıkları görülmektedir. Bu durum yılan balıklarının bu göllere ulaşma imkanları ile ilgilidir. Yılan balığının yayıldığı bölgeler incelenirse pek çok yayılma alanı görülür ve ulaşabildikleri yüksek sularda bile yaşadıkları saptanmıştır. En tuzlu suda, tatlı kaynak sularında, bataklık az tuzlu sularda yaşama imkanı bulurlar. Amerikan yılan balıklarının, Avrupa yılan balıklarının çoğaldığı bölgelerde çoğaldıkları kabul edilmektedir. Kanada ve ABD kıyılarında yaygındırlar. Bu ülkelerde avcılık ve üretim az ve benzer düzeydedir. Japon yılan balığı doğu Asya kıyılarında bulunan bir türdür. Üredikleri alan kesin olarak bilinmemekle birlikte Tayvan’ın güney kısımlarında çoğaldıkları tahmin edilmektedir. Tayvan’da Taipei, İlan, Kan, Changua, ve Pingtung şehirlerine yakın nehirlerde fazla miktarda elver yakalanmaktadır. Japonya’da ise Shizuoka bölgesi nehirlerinde elver avcılığı yapılır. Japonya’da yılda 50 ton dolayında elver yakalandığı tahmin edilmektedir. Larva Dönemleri Şubat ile nisan ayları arasında dünyaya geliyorlar. Larvalarına "Leptocephal" adı verilen larvalar küçük bir dil balığı biçiminde ve vücutlarına oranla iri siyah gözleri bulunur. Şeffaf görünümde olur,kasları iç organları görülür. Uzunlukları yaklaşık 5-6 milimetre arasındadır. Sargasso Denizi'nden Avrupa'ya kadar gelişi sırasında zooplanktonlarla ve küçük kabuklularla beslenirler. Bu hayvanları 14 dişiyle parçalayarak yer. Yolculuğunu, ya kendisini akıntılara bırakarak ya da küçük sürüngenler gibi hareket ederek tamamlıyor. Dokuz ayda tam 6000 km yol katettikten sonra Avrupa Kıyılarına ve 7000 km'den sonra da Akdeniz havzasına ulaşırlar. Yavru Dönemleri Larva Avrupa kıyılarına vardığında,tatlı su ortamına uyum sağlamak ve kıyıdaki haliçleri daha kolay aşmak için metamorfoz geçirip, saydam ve minyatür yılanbalığı haline dönüşür . Bu ortamda yaşayabilmek için iç basıncını ayarlar. Larva dönemindeki dişlerini kaybeder ve bundan dolayı beslenemez. Beslenmeme döneminin uzamaması gerekir . Nehirlerde ilerlerken büyümeye başlarlar. Yılda boyları yaklaşık 10 cm, kiloları da 20 gram artar. Tatlı suya ve nehirlerin içlerine ulaşmak için çok hızlı ve gruplar halinde hareket eder. Nehirleri tırmanmaya başlayıp bazen kıyıdan 200 km içerlere kadar sokulurlar. Ancak daha fazla ilerleyemezler. Çünkü akarsular üzerinde barajlar ve setlere takılırlar. Grup halindeki dolaşmaları, kıyıdaki haliçlerde beyaz lekeler oluşturur. Belli bir süre sonra bir yere yerleşirler. Burada ikinci metamorfoz olur. Küçüklük Dönemleri Halk arasında "sarı yılanbalığı" denilen 3. aşamaya ulaşırlar. Bu metamorfoz aşamasında cinsiyeti belirlenir ve bu dönemde çok saldırgan olurlar. Derisinde beliren pigmentler nedeniyle rengi yavaş yavaş koyulaşır. Yemek borusu açıldığından yeniden beslenmeye başlıyor. Geceleri avlanmaya çıkarlar; Kız böceği, sinek, çamca balığı yiyerek beslenirler. Kış aylarında sularında soğumasıyla da kendini çamura gömerek kış uykusuna yatar. Nehir boyunca günde birkaç kilometre mesafe katederek sonunda bir süre sabit kalacağı noktaya ulaşır. Bugün yeryüzündeki yılanbalığı sayısının azalmasının temel nedenlerinden biri de onun yol aldığı bu nehirlere insanoğlunun inşa ettiği baraj ve setler. Bu dönemde uzunluğu cinse göre farklılık gösterir. Erkeklerde 5-8 yıl sürerken, dişilerde 7-12 yıl devam eder. Bu süre sonunda geldikleri yere dönmek için yola çıkarlar. Amaçları, tamamen içgüdüsel biçimde Sargasso Denizi'ne ulaşmak ve orada çiftleşmek. Yolculuğa çıkmadan son metamorfozlarını da geçirirler. Yetişkinlik Dönemleri Açık ve tuzlu su için gerekli metamorfozları geçirir. Derisi kalınlaşır,derinliklerin karanlığında yolunu daha iyi görmesi için gözlerinin hacmi artar ve bilye büyüklüğüne ulaşır. Daha önce vücudunun üçte birini oluşturan yağ tabakasını eritmeye başlar. Başını ön tarafı daha sivrileşir;böylelikle daha ince,aerodinamik bir yapı kazanır. 6 ile 13 yıl arasında bir süre bu yeni mekanında yaşıyor ve irileşiyor. Derisinin rengi ;karın kısmı gümüşümsü,sırt kısmıysa daha koyu bir görüntü kazandıktan sonra,12 gün içinde açık denizdeki yeni yolculuğuna hazırlanıyor. Boyu 1.2 metreye ulaşıyor ve vücudunun iç basıncını yeniden tuzlu suya göre ayarlıyor. Dönüş yolunda,akıntılardan mümkün olduğunca kaçınır ve bunu tamamen içgüdüsel olarak yapar. Geri dönüş yapan bir yılanbalığı bugüne kadar ,Avrupa kıyısından başlayarak tüm Atlas Okyanusu boyunca izlenememiştir. Sargasso Denizine ulaştıktan sonradaki yaşamları konusunda da bilgiler tam değildir. Dönüşü 120-200 gün süren yılanbalığı çok derin sularda yüzdükleri ve çok ağır basınç altında kaldıkları belirtiliyor. Basınç sayesinde üreme organları gelişmektedir ve hormon salgılamaya başlarlar.Sargassso Denizi'nin 600 metreye varan derinliklerinde çiftleşmeye uygun konuma gelirler. Dişilerde yumurtalar toplam kilosunun yüzde 80'ine ulaşır,yani 800 gram yumurta taşır. Renkleri: Yılanbalıklarında çeşitli renklenmeler görülür. Doğduğunda saydamdır.Nehirlere girinceye kadar bu formunu korur, nehirlere girdikten sonra renk pigmentleri oluşur. Rengi kahverengi sarımsıya döner,cinsel olgunluğa tam erişmemiştir.Bu hayvanlara sarı yılanbalıkları denir. 10-15 yaşlarında ise sırtları siyah, karın kısımları gümüşi renk alır.Cinsel olgunluğa erişmiştirler.Bu hayvanlara parlak veya gümüşi yılanbalıkları denir. Habitat ve Coğrafik Dağılımları Dipte, çamura bağlı olarak,tatlı suda ve denizde yaşarlar.Atlantik Okyanusu, Akdeniz, Batlık Denizi, Karadeniz ve bunlara akan akarsularda bulunurlar. Kuzey Afrika'da Cezayir'de görülebilirler.70 ile 25 kuzey enlemleri arasında dağılım gösterirler.Göçleri bütün Akdeniz, Baltık Denizi, Kuzey Denizi, Atlas Okyanusu ve Adriyatik Denizine dökülen nehir ve göllerden yola çıkan Avrupa yılanbalıklarının göçü Meksika Körfezi'nin 800 ile 1000 metre derinliklerinde son bulur.Sadece Avrupa yılanbalığı (Anguilla anguilla) ülkemiz iç sularında yaşar.Akdeniz ve Ege 'ye dökülen bütün göl ve nehirlerimizde bol miktarda bulunan yılanbalığı Batı Karadeniz'den Sakarya Nehri'ne kadar yayılan bir yaşam alanına sahip. Ekonomik Önemi: Bir çok ülkede beğenilen ve oldukça fazla tüketilen bir besin.Balık yetiştiriciliğinde genelde suni olarak balıkları üretmek mümkünken, yılanbalıkları suni olarak henüz üretilebilmiş değil.Yetiştiriciliği göç sonucu nehir ağızlarına gelen yılanbalığı larvalarının yakalanarak büyük havuzlarda beslenmeye alınmasıyla yapılmakta.Yakalanan yavruların bir kısmı doğrudan besin olarak tüketilir.1 kg yılanbalığı yavrusu 2800 ile 3500 arasında birey içerir.Avrupa kıyılarında yakalanan yavru balık miktarının yıllık 300 ton civarında olduğu söylenmekte.Bu miktar 900 milyar ile 1 trilyon arasında yavru balık anlamına geliyor. Türkiye kıyılarına ulaşan milyonlarca yavru balık büyük sürüler oluşturarak iç sulara girer.Nehir üzerindeki barajlara,yakındaki nehirlere,geceleri karaya çıkarak çamur ve nemli çayırlar üzerinden ilerleyerek ulaşabilir.Ülkemizde Akdeniz ve Ege kıyılarına dökülen nehirler üzerine yapılan barajlarda,balıkların yukarı çıkabilmesi için şelaleler yaparak yükselen balık merdivenleri bulunmadığından özellikle Gediz Nehri üzerindeki barajlarda, yavru balıkların türbinlere girmeleri,karaya çıkarak yukarı çıkmak istemeleri sonucu büyük kısmı telef olmakta. Nehirlere girişi,denizlerdeki akıntıları yardımıyla güney kıyılarından itibaren başlıyor. Aralık ve mart ayları arasında nehirlere giren yılanbalıkları,6-9 sene için denizlere kitlesel göç yapıyor.Yılan formunda olduğu için yerli halk tarafından tüketilmiyor ancak ;yurtdışında oldukça yüksek düzeyde alıcı buluyor. FAO'nun (Dünya Tarım Örgütü) ülkemizde yetiştiriciliğini tavsiye ettiği üç su ürünü karides,yılanbalığı ve süs balıkları arasında,ekonomik olarak en hesaplısı olan yılanbalıkları için hiçbir girişim yapılmıyor. Türkiye su ısısının Avrupa'ya göre yüksek olması,bu balığın göç dönemlerinde farklılık oluşturuyor.Avrupa'da yılanbalığı avcılığı mayıs-ekim dönemlerinde,ülkemizde ise eylül-ekim dönemlerinde gerçekleştiriliyor.Meriç Nehri 9.kilometrede Yunanistan sınırları içine kıvrılmış durumda.Bu noktadan itibaren sularının büyük bir kısmı Yunanistan sınırları içinden denize dökülmekteyken yatağındaki bu değişim, beraberinde bir çok sorunu da getirmiş. Yılanbalıkları içgüdüsel olarak akıntıya karşı yolculuk etme eğiliminde olduklarından, debisi giderek artan Yunanistan sınırlarındaki Meriç ağzında giriş yapmaya başladılar.Balıklar,geri dönüşte de aynı yol izlediklerinden, epeydir Yunanlı balıkçılar tarafından 9. kilometrede ve Meriç ağzında kurulan ağlarla avlıyorlar.Bugün Enez'de yılda sadece 1.5 tonluk bir üretimimiz var.Meriç'in 9. kilometreden ayrılan Türkiye kolunun debisinin azalmasıyla artık nehir yatağı giderek mıcır, taş yığınlarıyla dolmuş bulunuyor. Ekonomik olarak önem kazandığı yörelerimizin başlıcaları: Enez, Çandarlı (İzmir), Söke (Dalyan), Güllük (Muğla), Köyceğiz dalyanı ,Oragon çayı... Göç Sırasında Yön Bulma Yetenekleri Göç eden hayvanların yön bulma yetenekleri bilim dünyasında pek çok araştırmaya konu olmuş. Bu görüşlerden bazıları şöyledir; 1-) Göç sırasında dünyanın manyetik alanını kullandıkları görüşü: Dünyamızın bir manyetik alanı vardır. Bazı deniz memelileri, kuşlar, bazı balıklar, bazı böcekler, bazı mikro organizmalarda bu manyetik alanı saptayabilen algılayıcılar bulunur. Manyetoreseptör denen bu algılayıcıları sayesinde hayvanlar, uzun mesafeli göçte veya gezintilerinde yönlerini kolayca bulabiliyorlar. Ama bunun dışında kullandıkları referanslarda vardır. Yılanbalıklarının doğdukları yere geri dönüşleri, manyetoreseptörler ve suyun kimyasal yapısını tanımalarıyla açıklanmakta, denizlerde dahil olmak üzere her suyun, hatta her bölgenin kendine özgü bir kimyasal yapısı olur. Rota bu kimyasal bileşime göre saptanır. 2-) Sargasso Denizi'nde doğan canlılar, gelişme bölgelerine doğru göçerken suyun kimyasal yapısını belleklerine kaydederler. Gelişme dönemini tamamlayıp geri dönerken de, belleklerinde kayıtlı olan üreme alanlarına geri dönerler. Bu göçün tam anlamıyla bir yanıtı olmamakla birlikte kabul edilen bir görüşe göre dünyamızdaki kıtalar henüz birbirlerinden ayrılmamışken, yılanbalıkları bugün üredikleri yerde ürüyorlardı. Kıtaların ayrılmaya başlamasıyla, kıtalar arasındaki mesafeler uzadı. Milyonlarca yıl sonra bugün ki durumuna geldi. Göç başta kısa mesafelerde yapılırken, kıtalar birbirinden ayrılıp uzaklaşınca göç mesafesi de arttı. Sargasso Denizi belki de onların yumurtlamak için en uygun koşulları ( suyun sıcaklığı, kimyasal yapısı, bölgenin jeomanyetik alanı vb) sağlayan bir bölge olduğu için binlerce yıldır aynı bölgeye gelip yumurtlamakta. Yılanbalıkları iç güdüsel olarak göç ederler,yani ilk doğdukları yere giderek orada doğurur ve ölürler.Bu olay tamamen kalıtsal bir davranıştır. Zaten bununla ilgili görüşler ileri atılmıştır. Yılanbalıkları belirli periyotlarda bu göç olayını gerçekleştirirler ,yani; belirli bir büyüme sonunda göç etmeye başlarlar ritimleri bellidir.Göç olayı çiftleşme ,solunum gibi düşünülebilir.Sadece yılanbalıkları göç etmezler ;kuşlar,balıklar..vb İkinci Göç Bu göç, yılan balıklarının doğduğu yere üremek için yaptıkları göçtür. Gümüşi yılan balıkları sonbaharda, tatlı suları terkettiklerinde cinsi olgunlukları tamamlanmamıştır. Gümüşi yılan balığının denizdeki yaşamı çok az bilinmektedir. Sargossa"daki yumurtlama alanına ulaşıncaya ve gonatlarının tam olgunlaşacağı zamana kadar, denizde beslenmeden hayatta kalabilmektedir. 5000 km"lik uzun ve tehlikeli göçün tek hedefi, doğdukları yere ulaşıp üremektir. Üreme alanında deniz derinliği 4-5 bin metredir. Yılan balıkları yavruları ise 400-500 metrede güneş ışınlarının son ulaştığı derinliklerde yakalanırlar. Yılanbalıklarının yumurtladıktan sonra öldüğü tahmin edilmektedir. Avrupa Yılan Balığının Ürediği Yer: Sargossa Denizi Yılan balıklarının üreme alanları Peurto Rico ve Bermuda Adalarından eşit uzaklıklarda bulunmaktadır. Sargossa denizi bir kuyu şeklinde ve 1000 m derinliğe kadar bir bölgede tuzluluk oranı % 0,35 ve su sıcaklığı 17 dereceyle, yılan balıklarının üreme sahaları olarak diğer bölgelerden ayrılır. Yılan balıkları tam olarak nerede toplanıyorlar? Yumurtlamaları nerede oluyor? Erkekler nerede bu yumurtaları döllüyorlar? Bu yerler ve olaylar hiçbir kimse tarafından gözlenememiştir. Sadece bu olayların anılan bölgede olduğuna dair bir çok bilgiye sahibiz... Yılan balıkları derin su balıklarıdır. Tatlı sulara geçici olarak, büyümek için gelmektedirler. Sargossa denizinde 400 metre derinlikte yumurtadan çıkmış yılan balıkları, 15 yıl sonra tekrar üremek için aynı sulara geri dönmektedir. Üreme zamanına ulaşan yılan balıklarını, tatlı sulardan denizlere göç ettiği dönemde “gümişi yılan balığı” adı verilir. Bu dönemde yılan balıkları yumurtaları incelendiğinde üreme organı içinde yağ damlaları gözlenmektedir. Bu durum yumurtaların deniz dibinde değil orta sularda olabileceğini kanıtlamaktadır. Sargossa denizinde derinlik 4500 metre dolaylarındadır. 400-500 metre derinlik bu denizde güneş ışınlarının ulaşabildiği son derinlik olmakta, 500-600 metreden sonra ise hayat güçleşmektedir. Üremenin bu derinlikte olmasından sonra, yumurtadan çıkan larvaların büyüyerek yükselmeye başladıkları saptanmıştır. Örneğin 5-15 mm boyundaki yılan balığı larvaları 100-300 metre derinliklerde rastlanırken, biraz daha büyükleri ve bu denizden uzaklaşmış olanları 50 m civarındaki derinliklerde bulunmaktadır. Bütün bu bilgiler yılan balıklarının döllenmiş yumurtalarının bu bölgede izlenememiş olmasına rağmen, üremenin bu bölgede olduğunu kanıtlayan veriler olmaktadır. Aynı bölgede Mart ve temmuz ayında milyarlarca leptosefalus larvasının gözlenmiş olması, üremenin ilkbahar ve yaz başlangıcında olabileceğine işaret etmektedir. Yumurtlayan Yılan Balıklarına Ne Oluyor? Yumurtladıktan sonra yılan balıklarının akibetlerinin ne olduğu günümüzde hala bir bilinmezdir. Çünkü yumurtladıktan sonra Avrupa kıyılarına geri dönmüş tek bir yılan balığına raslanamamıştır. Bu durumda iki hipotez ileri sürülmektedir: Bunlardan ilki yılan balıkları yumurtladıktan sonra derin dip balığı olarak yaşamını sürdürür. Diğeri ise, yılan balıkları yumurtladıktan sonra kitle halinde ölürler. Bu iki görüşten ikincisini destekleyecek bir çok delil bulunmaktadır. Gümüşi yılan balığı olarak adlandırılan üremek için denizlere açılmaya yönelmiş bir yılan balığında anüs yapısının bozulduğu, sindirim sisteminin deforme olduğu ve kaslarda değişim başladığı gözlenmiştir. Bazı balık türlerinde de üremeden sonra ölüm olduğu bilinmektedir. Örneğin som balıkları yumurtlamak için denizlerden nehirlere göç ederler. Ve hepsinin yumurtladıktan sonra öldükleri gözlenir. Öyleyse yılan balıklarının da üredikten sonra öldüklerini kabul etmek yanlış olmayacak ve bunların 4500 m’ye varan derinliklere çöküp çürüdüklerini kabul etmekten başka yorum kalmayacaktır. Yumurtadan Çıkan Larvaların İlk Yolculuğu Yumurtadan çıktıktan sonra larvalar için önemli, uzun ve güç bir yolculuk başlar. Üreme alanının hemen çevresine üreme mevsiminde milyarlarca larva dağılarak yol almaya başlarlar. Larvalar kuzeyden Labrodor"dan gelen soğuk su akıntısı ve güneyden Ekvatordan gelen sıcak su akıntısının zararlı etkisi nedeniyle bu yönlere gitmezler. Amerika kıtasına gitmeyi tercih etseler, Amerika kıyılarına kısa sürede ulaşacaklar ve metamorfoz denilen normal vücut değişimlerini (3 yıl gerekir) sağlayamadan kıyılara ulaştıkları için ölmekten kurtulamayacaklardır. Aynı bölgede Amerikan yılan balıkları da üremesine karşın, onların yavruları tatlı suya girebilecek morfolojik değişime 1 yılda ulaşırlar, bu yüzden Avrupa kıyılarına doğru değil, Amerika kıyılarına doğru göçe başlar. Çünkü morfolojik değişimden hemen sonra beslenemez ise onlar da ölecektir. Böylece bu balıklarda, beslenme sahaları olan tatlı sulara ulaşma süreleri ile morfolojik değişimleri tamamlama süreleri birbirini takip etmektedir. Ilkbahar başında yumurtadan çıkan larvalar defne yaprağına benzer ve bunlara leptosefalus denir. Bu larvalar Meksika körfezinden başlayıp Batı Avrupa kıyılarına kadar gelen sıcak su akıntılarıyla Avrupa kıyılarına kadar göç ederler. Şimdiye kadar yakalanan en küçük larva 7 mm olup, 75- 300 metre derinliklerde rastlanmıştır. Avrupa kıyılarına yaklaştıklarında boyları 75 mm"ye ulaşmaktadır. Avrupa yılan balığı larvalarının kat ettikleri mesafe 5000 km, Amerikan yılan balıklarının 1000 km kadardır. Larvalar kıyılara ulaştıklarında, defne yaprağı şeklinden yılan balığına benzeyen silindirik bir şekle dönüşmeye başlar. Vücut büyüklüğü ve ağırlığı artar. Larva dönemine ait dişler kaybolur. Larva döneminde mikroskobik canlılarla beslenirler. Avrupa yılan balıkları su akıntılarıyla nehir ağızlarına geldiklerinde 2.5 yılı geçmiştir. Türkiye kıyılarına gelmeleri ise 3 yılı bulmaktadır. Nehirlere giren yılan balıklarının zeytin yeşili kahverengimsi, karın kısmı sarımsı beyaz rengi alır. Bu balıklara "Sarı Yılan Balığı" denir. 14-15 yıl kadar sarı yılan balığı az-çok yerleşik olarak beslenir ve barınır. Beslenme, etçil olarak dip canlılarıyla ve diğer balıklarla olmaktadır. Büyümesi yaşadığı ortama bağlıdır. Dişi balıklar (45-150 cm), erkeklerden (50 cm) daha büyüktür. Büyümedeki farklılık ve yaşadığı ortam cinsiyetin ayırt edilmesini sağlar. Erkek balıklar nehir ağzında kalırken, dişi bireyler kaynağa yakın yerlerde bulunur. Su dışında uzun süre yaşayabilen, susuz ortamda dayanıklı olan yılan balıkları, ıslak zeminlerde, nemli çimler üzerinde kolayca hareket edebilir. Hatta deniz-tatlı su bağlantılı bataklık alanlarda çamur içinde çok rahat hareket edebilen, bu balıkları, bu alanlarda 1-1,5 metre çamur içinde bulmak hiç de şaşırtıcı olmaz. 15 yaşına kadar tatlı sularda büyüyen sarı yılan balıkları ikinci bir değişim geçirir. Karın kısmı, gümüşi, sırt kısmında koyu bir renklenme görülür. Vücutlarındaki yağ oranı artar (vücut ağırlığının %30"unu geçebilir) Bu aşırı yağlanma onun Sargossa denizine yapacağı zorlu göçte dayanmasını sağlar. Zira yılan balıkları yaklaşık 18 ay sürecek bu göçte hiçbir besin almazlar. KAYNAKÇA: Alpbaz A., Hoşsucu, H., 1988. Iç Su Balıkları Yetiştiriciliği, Ege Üniversitesi Su Ürünleri Y.O. Yayınları No:12, 1-98 s. Izmir. Güner, Y., Kırtık, A. 2000, Yılan Balığı Biyolojisi ve Yetiştiriciliği. Tarım Bakanlığı Hizmet içi Seminer Notları. 32 sayfa. Bilim ve Teknik Dergisi ; Kasım 2002 Atlas Dergisi ; Mayıs 2000 Focus Dergisi ; Eylül 1998 Omurgalı Hayvanlar, Prof.Dr.Mustafa KURU   Yılan Balığı Yetiştiriciliği Yılan balıkları modern sınıflandırmada balıklar sınıfından Apodes takımından kemikli balıklar alt sınıfı Anguillidae familyasına dahildirler. Avrupa yılan balığı dışında K.Amerika ve Grönland!a ait Anguilla rostrata; Çin ve Japonya'da Anguilla japonica; Avustralya ve Y.Zelanda'da A.dieffenbachi ve A.australis türleri bulunur. Yılan balıkları kesinlikle karasal bir hayvan değildir. Bir balık türüdür. Sadece karın yüzgeçleri yoktur. Hayatları boyunca yumurtadan çıktıktan sonra 5 dönem geçirirler. İlk dönem larvaların yumurtadan çıktıktan sonraki keseli dönemidir. İkinci dönem 1-3 yıl arasında değişen larva dönemidir. Üçüncü dönem larvanın leptocephalus safhasındaki elver tabir ettiğimiz safhaya geçiş dönemidir. Dördüncü dönem elver haline gelen balıkların nehirlere veya göllere girerek yaşamalarıdır. Beşinci dönem de yılan balıklarının üremek için denize seyahat ettikleri dönemdir. Yılan balıklarının yumurtlamak için Sargossa Körfezine gittiği ve yumurtladıktan sonra öldükleri sanılmaktadır. Avrupa'da uygulandığı gibi yılan balığı yavrularının stoklanması şekliyle yetiştiriciliği yapılabilir (extansive). Bu yöntemlerde acı su (%010-20 tuzluluk) tabir edilen dalyanlarda veya göllerde yavru yılan balıkları kontrollu bir alan bırakılır. Gelişme tamamen doğal koşullara bırakılır. Yapay yem kullanılarak gelişme desteklenebilir. Üretim oranının 5-20 kg/dekar arasında değiştiği bildirilmektedir. Japonya'da uygulandığı gibi kontrollü yetiştiricilik yapılabilmektedir (Intensive). Avrupa yılan balığı yetiştiriciliği Yılan balığı yetiştiriciliğini etkileyen üç önemli zorluk bulunmaktadır. • Damızlıktan itibaren üretimi gerçekleştirilememektedir. Bu yüzden yetiştiriciler doğal ortamdan yakalanacak yavruları kullanmak zorundadırlar. Doğadan yakalanan yavru miktarı da bir yıldan diğer yıla büyük oranda değişiklik gösterir. Yavruların yakalanması şeffaf elver aşamasından itibaren başlamakta, daha sonraki aşamalarda da devam etmektedir. Örneğin, Fransa’da Languedoc kıyılarında yaklaşık 25 g ağırlığında yılan balığı yavruları yakalanmaktadır ( 9-13 Frank/kg ). Bu aşamada farklı yaş ve sağlık durumunda bireylerin bulunması, balıkların aynı kökenden gelmemesi, yem dönüşüm katsayısını yükseltir. Bu da besleme maliyetini artırmaktadır. • Tür içi rekabet fazladır. Büyük bireyler özellikle yem alımı sırasında populasyon üzerine baskınlık kurarak küçük bireylerin yeme ulaşmalarını güçleştirirler. Bu da stres olayının ortaya çıkmasına sebep olur. Yetiştirici bu durumda boy dağılımının homojen olmasını sağlamak için yavru aşamasında 3-5 haftada bir sınıflama yapmak zorundadır. Zira bu tür içi rekabet kanibalizme kadar gidebilmektedir. Bunu ortadan kaldırmak için yapılan tüm müdahaleler populasyonda belli bir strese yol açmaktadır. • Yoğun yetiştiricilikte karma yemi en iyi şekilde ete dönüştürerek eşit büyüyen bireylerin elde edilmesi gerekmektedir. Ancak bu pahalı bir besleme gerektirir. Yılan balığının çok kaygan olması, avlanmasını ve el ile tutulmasını güçleştirir. Halbuki yılan balığı yetiştiriciliği oldukça fazla el işçiliği gerektirir. Yılan balığı yetiştiriciliği özellikle Uzakdoğu’da önemli bir yer tutmaktadır. 1. Ekstansif Yılan Balığı Yetiştiriciliği Yılan balığı yetiştiriciliğini iki kısımda incelemek mümkündür. Bunlardan birincisi Avrupa’da yapıldığı gibi yılan balığı yavrularının stoklanması ile üretim sağlanmasıdır. Bu yol ekstansif üretim olarak adlandırılır. Satın alınan elverler çeşitli göl veya akarsulara bırakılır. Bu yöntemle Hollanda ve Almanya’da yetiştiricilik yapılmaktadır. Kuzey İtalya’da Venedik yakınlarında Comacchio gölü yetiştirme merkezidir. Burada etrafı çevrili 32 000 hektar “valli”lerden 1 000 ton/yıl balık elde edilmektedir. Vallilere tatlı ve tuzlu su girişi kontrollü olarak verilmektedir. Elverler buraya ya kendileri gelirler veya sahilden yakalanarak getirilirler. Verimliliğin artırılması için yapay yemle beslemeye de başlanmış, üretim veriminin 5-20 kg/dekar arasında olduğu bildirilmiştir. Kuzey İrlanda’da nehirlerde tuzaklarla yakalanan elverler 38 000 hektarlık çeşitli göl ve göletlere bırakılarak yılda 800 ton üretim sağlanmıştır. Macaristan’da İrlanda ve Fransa’dan satın alınan elverler, Balata, Valence ve Ferta göllerine bırakılır. Stoklamanın hektara 400 elver olduğu 6 yıllık bir gelişmeden sonra balıkların ortalama 650 grama ulaştığı bildirilmiştir. Fransa’da ise Marsilya yakınlarındaki 8 000 hektarlık alanda 70 ton/yıl yılan balığı elde edilmiştir. Ülkemizde çeşitli yerlerde avcılığı yapıldığı gibi bu yerlerde gelişen balıklar hasat edilerek üretim sağlanır. İzmir körfezindeki bazı dalyan işleticileri güney bölgelerinden temin ettikleri yılan balığı yavrularını dalyanlara bırakarak üretimi artırma girişiminde bulunmuşlardır. Ülkemizde avcılığı yapılan yılan balıkları genel olarak bazı göl ve nehirlerden sağlanmaktadır. Yılan balığı üretiminde önde gelen göl ve nehir dalyanları : Bafa gölü ve buna bağlı Menderes nehri, Gölmarmara, az miktarda diğer sulardır. Yıllık yılan balığı istihsalimiz DİE verilerine göre 1991 yılında 603 ton, 1995 yılında 780 ton, 1997 yılında ise 400 tondur. Yılan balığı yetiştiriciliği Japonya’da 1970 li yıllarda başlamış olup karma yemlerin kullanıldığı yoğun yetiştiriciliğe dönüşmüştür. 1990-91 yılı verilerine göre Japonya’da Anguilla anguilla 1500 ton, A. japonica üretimi 40 500 ton olarak elde edilmiştir. Tayvan’da da son yıllardaki üretim çalışmaları ile 52 500 ton A. japonica elde edilmiştir. Almanya, Fransa ve İtalya’da yılan balığı yetiştiriciliği konusunda bazı girişimler yapılmışsa da Uzakdoğu’da olduğu gibi yaygın bir gelişme ortamı sağlanamamıştır. Avrupa Yılan balığı elverleri Avrupa yılan balığına hemen hemen sıcak su akıntılarının ulaştığı tüm kuzey Avrupa nehirlerinde rastlanılmaktadır. Ayrıca Akdeniz’de pek çok nehirde de görülür. Ülkemizde Büyük Menderes nehri ve bu nehirle bağlantılı olan Bafa gölünde, Küçük menderes ve Gediz, Bakırçay nehirlerinde, Adıyaman Gölbaşı, Silifke’de Göksu nehrinde, bu nehirle irtibatlı Akgöl ve Kuğu göllerinde, Marmarada Kocabaş, Gönen ve Susurluk çaylarında yılan balığı mevcuttur. Akdeniz ile irtibatlı nehirlerde görülen, yılan balığı tüm Cebelitarık boğazını geçerek bu nehirlere ulaşmaktadır. İtalya’da özellikle Kuzey Adriyatik’te ve Venedik yakınlarındaki dalyanlarda fazla miktarda yılan balığı bulunmaktadır. Elverlerin en çok yakalandığı ülkelerden biride Fransa’dır. Özellikle Biskay körfezinde Loire ve Girondo nehirlerine büyük miktarlarda girdikleri gözlenir. Fransa’nın yılda, bu bölgesinde 800 ton dolayında elveri yakalayarak pazarladığı tahmin edilmektedir. İrlanda da Eire ve Shonnon nehirlerinde yakalanan elverler, iç göllere stoklanmasında kullanılmaktadır. İngiltere’de Severn nehri ve daha az olmak üzere Poraft nehirlerinde de elver avcılığı yapılır. Avrupa kıtalarında elverlerin periyodik olarak görülmesi yıllık olmakla beraber Bertin isimli araştırıcıya göre 6 yılda bir tekrarlanan durum arz etmektedir. Bir yıl az miktarda elver avlanırsa gelecek yıl bir azalma olduğu belirtildiği gibi, 3 yıl bir yükselme izlenip bunu takip eden 3 yılda ise bir azalma görülebildiği kaydedilmektedir. Elverlerin leptosefalus safhasından yılan balığı şeklini almaları döneminde izlenen en önemli değişiklikler şeffaflığın kaybolması ile uzunluk ve ağırlığın azalmasıdır. Kıyılara ulaşan larvaların kıyılara ulaşma periyodunda ilk gelenlerin sonra gelenlerden daha iri cüssede oldukları bilinen bir durumdur. Hatta ilk gelenlerin en son gelenlerden 6 mm daha kısa oldukları saptanmıştır. İlk yakalandığında şeffaf olan elverlerin bir süre ışıklı ortamda tutulduklarında vücutlarında hemen pigmentleşme başladığı ve renginin koyulaştığı görülmektedir. Elverlerin Göçüne etkili olan faktörler Su Sıcaklığı Elverlerin göç etmesine etkili olan faktörlerden biri su sıcaklığıdır. Ilık sularda elverlerin nehirlere göçünün daha erken ve hızlı olduğu bilinmektedir. Sıcak denizlerde elver görülmesinin, soğuk denizlere nazaran daha erken olduğu bilinmektedir. Fakat bazı yerlerde bunun tersi durumlarda zaman zaman izlenebilmektedir. Avrupa kıyılarında elverlerin ilk görüldüğü dönemlerde su sıcaklığının 4 °C dolayında olduğu ve su sıcaklığı 1 °C düştüğünde hareketlerinin azaldığı gözlenmiştir. Havanın ılıklaşması elverlerin su yüzüne yaklaşmalarına dolayısıyla avcılığının daha kolay olmasını sağlamaktadır. Işık Yılan balığı yavrularının nehirlere ilk ulaşmalarında ışığın dağıtıcı bir etkisi olduğu görülmektedir. Sadece geçiş dönemlerinde ışığa doğru hareket ettikleri görülmektedir. Hatta bazı balıkçılar, bu dönemde av yerinde elverleri su yüzeyine çekmek için ışık kullanırlar. Açık bir ay ışığı gecesinde elverler zemine yakın derinlikte hareket ederler. Pratik avcılıkta avrupa yılan balığı elverleri, genel olarak karanlık gecelerde yakalanır. Özellikle nehirlere girişlerin en yoğun olduğu periyotta, gece elver avcılığı çok daha verimli olur. Fakat med-cezir olaylarında su yükselmesinin en fazla olduğu günlerde, gündüzleri de elver göçü olur. Fakat elver miktarı geceye oranla daha azdır. Elverler genel olarak gündüzleri kum içine girerek yada kayarak, taşlar altında saklanarak günlerini geçirirler. Med-cezir Avrupa ve Japonya’da elverlerin en çok yakalandığı zaman genel olarak su yükselmesinin en fazla olduğu dönemlerde, su yüzeyine yakın olan kısımlardır. Severn nehrinde su yükselmesi ile elver girişi arasında ilişki olduğu bilinmektedir. Bunun yanında Akdeniz’de bir çok nehirde med-cezir olayları az olmakla birlikte elver girişini sağlamaktadır. Tatlı su Elverlerin nehirlere girişi daima suyun tuzluluğunun azalması ile ortaya çıkar. Denizlerden gelen elverler için nehirlerden gelen tatlı sular cezbedici bir rol oynar. Nehirlerin döküldükleri noktada tuzluluğun düşmesi ve ani yağan yağmurlar ile nehir sularının artması, nehirlere olan yönelişi daha da çabuklaştırır. Rüzgar Japonya’da, nehirlere elverlerin girişinde güney rüzgarlarının esmesi, su sıcaklığının 8-10 °C olması ve bir gün önce yağmur yağmış olmasının etkili olduğu bildirilmektedir. Elver Yakalama Yöntemleri Elver yakalamada uygulanan yöntemler bakımından ülkeler bölgeler ve nehirler arasında farklılıklar vardır. Bazı yerlerde kepçeler, bazı yerlerde tuzaklar, bazı yerlerde ise ekosaundrlardan yararlanarak avcılık yapılır. İngiltere’de elverler 1 metre uzunluk 60 cm genişlik ve 60-70 cm derinliği olan 1.5 mm göz açıklığında kepçelerle avlanırlar. Avcı kepçeyi akıntı yönünde ve mümkün olduğu kadar kıyıya yakın tutarak yüzeye yakın su sathında geceleri elver yakalamaya çalışır. Kepçe suda 5 dakika kadar tutulur ve sonra kaldırılır. Daha sonra yakalanan elverler stok yerine alınarak pazara sevk edilirler. Kuzey İrlanda da nehir yatağında yavrular belli bir alana yönlendirilir ve buradaki tuzaklarla avlanır. Bu yöntemin en iyi tarafı bölgeden geçen elverlerin tümünü yakalayabilmesidir. Bonn nehrinde bu yöntemle bir mevsimde 5-6 ton elver yakalanabildiği bildirilmektedir. Fransa’da elver yakalama işleri büyük nehir ağızlarında bir motor ile hafifçe çekilen ağlar ile yapıldığı gibi kıyılardan da yürütülmektedir. Bazı tekneler balık bulucu elektronik aletlerden yararlanırlar. Fransa’da yakalanan elverlerin çoğunluğu Japonya’ya ve bir kısmı da Avrupa ülkelerine ihraç edilmektedir. Fransa genelindeki nehirlerde 1970 yılında toplam 1 345 ton yavru yakalanırken, bu rakam 1982 de 500 ton dolaylarına düşmüştür. 1 kg da yaklaşık 3 000 adet elver bulunmaktadır. Elverlerin nehirlere giriş zamanı tüm bölgelerde aynı değildir. örneğin Avrupa’da batı İspanya sahillerine aralık-ocak, Severn nehrine ise nisan-mayıs aylarında, Fransa Biscay ve Britany de ocak-mart aylarında girmektedirler. Yılan balığı yavrularının belirli bölgelere farklı zamanlarda gelmelerinin iki esas nedeni vardır. Birincisi üreme bölgelerine yakın olan bölgelere daha erken ulaşmasıdır. İkincisi ise yılan balığı yavrularının sıcaklığı 8-10 °C den daha az olan nehirlere girmek istememeleridir. Örneğin Avrupa yılan balıkları Atlantik kıyılarına aralık aylarında ulaştıkları halde suyun soğuk olması nedeniyle nehirlere girmezler, suların ısınması için mart ayına kadar kıyılarda beklerler. Tropikal bölgeler ele alındığında, genellikle yılan balığı yavrularının nehirlere girişi ilkbahar başında olur. Nehirlere giren yavruların büyüklüğü bölgelere göre farklılık arz eder. Leptosefalus safhasından metamorfoza uğrayarak normal yılan balığı şekline giren yavrular, tatlı sulara girinceye kadar yem almazlar. Bu nedenle nehirlerin ısınmasını beklerken ağırlık kaybederler. Bunun sonucu nehirlere geç giren yavrularda canlı ağırlık daha azdır. Akdeniz’de İtalya nehirlerine giren elverlerin canlı ağırlığı, yaşıtları olan İspanya nehirlerine girenlerden daha azdır. Elverlerin nehirlere girişi özellikle suların yükselmesi sırasında en fazla olur. Elverler sadece geceleri yüzerler ve kıyılara yakın hareket ederler. Severn nehrindeki bir balıkçının sadece bir kepçe ile bir seferde 25 kg yılan balığı yavrusu tuttuğu ve bu miktar yavrunun 87 500 bireyden oluştuğu bildirilmiştir. İrlanda’da ise Bonn nehrinde kurulan özel avlanma yerinde yılda 23 milyon adet elver yakalandığı kaydedilmişti. Elverler oldukça nazik canlılardır. El ile tutulmamaları gereklidir. Kepçe ile yakalanan yavruların hemen bir ağ kafese veya bir tanka alınarak temiz suda bekletilmeleri ve süratle yetiştirilecekleri yerlere ulaştırılmaları gereklidir. Aralık-şubat aylarının soğuk günlerinde yakalanacak yavruların taşınmasında dikkatli olmak gereklidir. Elverlerin Bekletilmesi ve Taşınması Elverler yakalandıktan sonra pazara veya yetiştirme yerlerine nakledilmeden önce özel tanklarda bir süre tutulurlar. Bu hem yeterli miktarda yavrunun toplanabilmesi için yeterli zamanın sağlaması, hem de yeni ortama konulmadan önce gerekli uyum ortamını oluşturmayı sağlar. Ayrıca bu sırada dayanıksız balıklar ölür sağlıklı ve kuvvetli balılar kalır. Yavrular elver tanklarında en az iki en çok beş gün kalırlar. Daha erken nakillerde ölüm oranı artar. Elverleri bu tanklarda uygun ortamda tutabilmek için devamlı akan tatlı suya ve havalandırmaya ihtiyaç vardır. Tankların üzeri örtülü olmalıdır. Bu amaçla yavruların duvarlara tırmanarak kaçmasını önlemek için, fiberglas tanklar kullanılmalıdır. 2x2x0.6 m boyutlarındaki böyle bir tanka 100-125 kg elver konulabilir. Günlük veya saat başına bakım, beyaz denen ölü balıkların tanklardan alınmasıdır. Ölüm oranı % 5 veya daha fazla olabilir. Ölümün çok olması elverlerin tanklara konulmadan ve soğuk bir gecede kova ve leğenlerde uzun süre tutulmasından ileri gelebilir. 2-5 gün içinde ölüm nedeniyle toplam ağırlığın % 15 i kaybedilebilir. Nakilden bir gün önce yemleme kesilir. Yılan balığı yavrularının taşınmasında bir kaç yöntem uygulanır. Birincisi özel havalandırılabilen tankerlerle yapılan taşımacılıkta ortalama 17 tonluk bir su kütlesi ile 1 ton elver taşınabilir. Taşıma suyunun yarı tuzlu olması faydalıdır. İkincisi, dip kısmı bezli kutular veya içinde oksijen ve su konulmuş naylon torbalarla taşıma yapılabilir. Üçüncüsü ise hava yolu ile yapılan taşımacılıkta genel olarak strafordan yapılmış malzemeler kullanılır. Bu malzemeler hafif olduğu gibi yavruları ani sıcaklık değişimlerinden korur. Her biri 0.5 kg bir tavada 1 kg elver taşınabilir. Bu taşımacılıkta buz kullanılmaz. Nakilde önce elverler 6 °C ye kadar soğutulurlar ve ıslak kalmaları için çok az su ilave edilir. 5.2. Yılan Balığı yetiştirme Yöntemleri Yılan balığı kültüründe beş ayrı metot kullanılmaktadır. Bunlardan bazıları deneme çalışmaları olup büyük ölçüde yetiştiricilikte kullanılmamaktadır. Beş farklı yöntemi vardır: Durgun Su Yöntemi: En eski ve yaygın yöntemdir. Balıkların oksijen ihtiyacının fitoplanktonlar vasıtası ile karşılanması esasına dayalıdır. Yılan balıklarına 12 ºC'nin altında yem verilmez zaten gelişme de olmaz. Bu yetiştirme yönteminde 3-4 dekarlık havuzlar kullanılır. Metrekarede 2-4 kg. balık yetiştirilebilir. Başarılı bir yetiştirme için sıcaklığın 23-30ºC arasında olması gerekir. Başarılı bir üretimde balıkların 2 yıl veya daha az sürede 150-200 gr.a ulaşması beklenir. Akarsu Yöntemi: Bu yöntemde havuzlar küçük tutulur. Alanları 150-300 m² arasında olur. Bu yöntemin uygulanacağı yerde fazla miktarda tatlı su veya deniz suyu bulunması gerekir. Yöntemin başarılı olması için su sıcaklığının 23ºC den yüksek olması gerekir. Bu yöntemde üretime alınacak balıkların başlangıç olarak 30 gr. Civarında tutulması gerekir. Ağ Kafes Yöntemi: 2 x 3 x 1,5 m ölçülerinde 18 x 7 mm. Ağ gözlü metal veya tahta kafesler kullanılabilir. Kafes başına 20-30 kg. arası yılan balığı konulabilir. Yöntem yenidir ve hala geliştirme çalışmaları devam etmektedir. Tünel Yöntemi: Bu yöntemde ticari bir işletme kurulmamış olup, bilimsel denemeler başarılı yetiştiricilik çalışmalarının yapılabileceğini göstermiştir. Yılan balıklarının karanlıkta yem alma eğilimlerine dayanarak yapılmıştır. Bu çalışmada amaç balıkların gündüz saklanması mümkün olabilecek karanlık tünellerin hazırlanmasıyla doğal ortama yakın bir ortamın yaratılmasıdır. Sirkülasyon Yöntemi: Devamlı olarak sirkle edilen suyun kullanılması yolu ile yetiştirme yapılmasına dayana yöntemdir. Bu tür çalışmada 2 tür havuz kullanılır. Bunlardan biri yetiştirme havuzu diğeri filtre havuzudur. Yetiştirme havuzunda kullanılan sı devamlı olarak bir motopomp vasıtasıyla filtre havuzuna gönderilir. Filtre havuzunda suyun fiziksel ve biyolojik temizlenmesi yapılır. Yılan Balığının Durgun Su Yöntemi ile Üretimi İçin Alan Seçimi Yılan balığı yetiştiriciliği yapılacak bir alanda aşağıdaki koşullar aranır: • Öncelikle yeterli su bulunmalıdır. Bu su bir nehirden veya yeraltından sağlanabilir. Basit bir ifade ile 10 ton balık üretimi için günde 250 ton su gerektiği söylenebilir. • Su berrak veya az bulanık olmalı, ancak herhangi bir kirlenme söz konusu olmamalıdır. Az alkali veya nötr sular tercih edilir. Asitli sular yılan balığı için uygun değildir. içerisinde doğal olarak yılan balığı bulunan nehir veya göl suyunun ideal olduğu söylenebilir. • Arazini konumu havuzlardaki suyun tam olarak boşaltılabilmesini mümkün kılmalıdır. • Toprak az geçirgen olmalıdır. Bu nedenle tabanın killi olması istenir. • Üretim havuzlarının iyi güneş alması oksijen üretici fitoplanktonların üremesi bakımından yararlı olur. • Üretim alanının rüzgarlara açık olması suyun yüzeyi ile oksijen alışverişini kolaylaştırır. • Enerji sağlamada ve ulaşım şartlarında zorluk olmamalıdır. • Herhangi bir sel tehlikesi olmamalıdır. Japonya’da yılan balığı üretimine uygun olan su kaynağı ve nehir yakınlarında çok geniş yılan balığı yetiştirme alanları oluşmuştur. Bir çok işletmenin yan yana olması ekonomik ve diğer konularda faydalar sağlamıştır. Özellikle kurulmuş olan kooperatifler, işletmelerin pek çok ihtiyacını karşılamakta ve ürünün kar getirecek fiyatta satılmasını sağlamaktadır. Ayrıca bölgelerde devletin açtığı deneme istasyonları üreticinin sorunları yönünde çalışmalar yaparak devlet desteği sağlamaktadır. Yılan Balığı İşletmelerinin Kurulması Yılan balığı üretiminde çok başarılı olan uzak doğuda genel olarak durgun su yöntemi kullanıldığından bu yetiştirme yöntemi hakkında bilgi sunarak konu açıklanmaya çalışılacaktır. Yılan balığı üretiminde kullanılan havuzları dört grupta toplayabiliriz. Bunlar : 1. Birinci elver havuzları ( genellikle sera içerisinde ) 2. İkinci elver havuzları ( genellikle sera içerisinde ) 3. Yavru balık havuzları 4. Üretim havuzları Birinci ve İkinci Elver Havuzları Bu havuzlar genellikle sera içinde inşa edilir. Su sıcaklığı 25 °C de sabit tutulur. Böylece ilkbaharda yakalanan yavruların ilk gelişme dönemlerinin hızlı olmasına çalışılır. Yeni yakalanan elverler bu havuzlarda bir ay süre ile yetiştirilebilirler. Havuzlar 60 cm derinlikte ve 5 m çapında yapılır. Havuza verilen su kenardan ve hızlı olarak verilerek havuz içinde dairesel bir hareket elde edilmeye çalışılır. Havuzun orta kısmındaki bir boru ile fazla su tahliye edilir. Bir aylık dönemini burada tamamlayan elverler ikinci elver yetiştirme havuzuna alınırlar. İkinci elver havuzuna alınan yavrular 8-12 cm boyundadırlar. Havuzların ölçüsü 30-100 m. civarında olabilir. Derinlikleri ise 1 m dir. Her iki elver yetiştirme havuzuna da bol miktarda hava verilir. Elver havuzlarına verilen suların çok temiz olması gerekir. çünkü elverler çok hassastır. Yılan balığı yaşlandıkça dayanıklılığı artar. Yavru Balık Havuzları Yavru balık havuzları genellikle yuvarlak yapılır. Genişlikleri 200-300 m derinlikleri ise 1 m tutulur. Dip yapısının çamur olması gerekir. Yağmurlu gecelerde yılan balığı yavrularının kaçmaması için havuz kenarlarının beton olması arzu edilir. Özellikle küçük yavrularda kaçma eğilimi fazladır. Bu nedenle küçük yavruların bulunduğu havuzun kenarları içe doğru meyilli yapılarak kaçmaları engellenmeye çalışılır. 20 cm yi geçen yılan balığı yavruları pek fazla kaçma eğilimi göstermezler. Üretim Havuzları Bu havuzlar Japonya’da eskiden 6-10 dekar veya daha geniş şekilde yapılırlardı. Fakat son yıllarda daha küçük 2-3 dekarlık havuzlar tercih edilmektedir. Buna neden olarak yemleme ve hastalıklarla mücadelenin küçük havuzlarda daha kolay olması gösterilmektedir. Hatta son yılarda havuz alanı 500-1 000 m2 ye kadar küçük tutma eğiliminin arttığı gözlenmektedir. Özellikle Tayland’da bu eğilim daha fazladır. Doğal olarak akarsu yönteminin uygulandığı üretimlerde havuzlar durgun su yöntemine oranla daha küçük tutulur. Üretim havuzlarının derinliği 80-100 cm dolayında olmalıdır. Bu derinlik suyun girdiği bölgede 80-100 cm, suyun boşaltılacağı yerde 120 cm dolayında olabilir. Kenarları balıkların toprağı oyarak kaçmalarını engelleyecek şekilde taş, beton veya briketten yapılmalıdır. Havuz tabanının balıkların oyup girebileceği şekilde çamurlu olması uygun olur. Daha önceki bölümlerde belirtildiği gibi havuzun bir köşesinde su giriş ve çıkışının yapıldığı bir kısım bulunur. Suyun boşaltılmasında özel sistemler uygulanması lazımdır. Çünkü yılan balıkları kaçma eğilimi çok fazla olan ve fırsat bulduğu her yerden geçebilen balıklardır. Bu nedenle dikkatli olmak gereklidir. Aşağıda bu amaçla kullanılan bir su tahliye sistemi sunulmuştur. Durgun su yönteminin uygulandığı yılan balığı işletmelerinde verilen su miktarı çok az olduğundan su tahliyesinin kontrolü kolaylıkla yapılabilir. Bazı işletmelerde su boşaltımı havuzun sonundaki bir boru ile yapılır. Bu boru sayesinde hasat zamanında balıkların kolayca toplanmasında da yararlanılabilir. Bazı işletmelerde ise su boşaltım yeri yapılmaz. Bu tip işletmelerde her gün motopomp ile fazla su boşaltılır. Yılan balığı üretim havuzu kıyısında bir adet yemleme yeri yapılması gereklidir. Bu kısım 3x3 m ebadında ve üzeri kapalı olarak yapılır. Bu yemleme yerinin alt kısmı su yüzeyine doğru açıktır. Buradan bir kap içine konulan balık yemi suya sarkıtılır. Balıklar gündüzleri dahi loş olan bu yere gelerek rahatça yem alırlar. Bu yemleme yerleri genellikle su çalkalanmasının fazla olduğu aeratörlerin yanına kurulur. Böylece yemleme zamanında bu kısımda fazla miktarda toplanan balıkların artan oksijen ihtiyaçları karşılanmaya çalışılır. Elverlerin beslenmesi Yılan balığı üretiminin gerçekleştirilememesi nedeniyle, yetiştirilecek yavrular doğadan yakalanmak zorundadır. Ön büyütmede elverlerin mümkün olan en kısa sürede doğal yemden karma yeme geçişi gerekmektedir. Yetiştiricilik şartlarına en iyi uyum sağlayanlar seçilmelidir. Ergin yılan balıkları ile yavru yılan balıklarının beslenmeleri arasında önemli farklılıklar vardır. Özellikle ergin yılan balığı yeminde yağ oranı yüksek tutulması gerekirken, yavru balık yeminde bunun tersi bir uygulama vardır. Özellikle yeni yakalanan ve 6 000-7 000 tanesi 1 kg gelen elverlerin ağızları küçük olduğu için her yemi almak istemezler ve karma yem almaları ilk günlerde zor olmaktadır. Doğal ortamdan havuzlara alınan yılan balıkları doğrudan bu rasyonlarla beslemeye alınmaz. Şeffaf elverden, elver konumuna geçinceye kadar, yılan balıklarının yapay yeme adaptasyonu için taze sardalye kullanılması sık görülen bir uygulamadır. Başlangıçta sardalyeler bütün olarak, daha sonra balık unu ile karıştırılarak verilmektedir. Karışımdaki taze sardalye oranı tedrici olarak azaltılır ver birkaç hafta sonunda karışımdan tamamen çıkarılır. Diğer bir yöntem de ise başlangıçta küçük toprak solucanları küçük karidesler, tubifeks ve dafnia gibi canlı yem kaynaklarından yararlanır. Bu yemler tercihen geceleri bir sepet üzerine konularak verilir. Yemlemenin sabah 8:00 ile öğleden sonra 14:00 arası yapılması en uygundur. Elverlere tubifeks verilmeden bir saat süre ile %0 2 oranındaki sulfamonomethoksine solüsyonunda tutulur ve yıkandıktan sonra kullanılır. Bir kaç günlük veya tercihen haftalık bu tür beslemeden sonra diğer yemlere geçilmeye çalışılır. Elver yemlemesinde önemli bir konu da elverlerin aynı boylarda olmasıdır. Eğer küçük ve büyük balıklar aynı yerde kalırsa kanibalizm başlar. Aynı zamanda büyük balıklar küçük balıkların yem almasına da engel olur. Suyun Fiziko-kimyasal özellikleri Sıcaklık Su sıcaklığı büyüme oranını etkileyen en önemli faktördür. Yılan balığının 12 °C nin altında yem almadığı havuz tabanında hareketsiz kaldığı bilinmektedir. Bu sıcaklığın üzerinde balıkta yem alma arzusu artar ve gelişme hızlanır. Yem dönüştürme oranının en iyi olduğu sıcaklı 23 °C dir. Elverlerin gelişmesi 15 ile 25 °C arasında gerçekleşmektedir. Avrupa yılan balığı için optimum sıcaklık 23 °C , Japon yılan balığı için 26-27 °C dir (Querellou, 1974). Avrupa yılan balıkları yaşları ilerledikçe daha düşük sıcaklıkları tercih ederler. Descampes ve diğ. (1980), atom enerjisi santrali soğutma suyunda yaptıkları bir çalışmada, 15-27 °C arasında tutulan havuzlarla başlangıç ağırlıkları 13 g olan yılan balıkları 25 ay sonunda 210 g, ısıtma uygulanmayan kontrol grubunda ise (7-19 °C arası) 64 g canlı ağırlığa ulaşmışlardır. Isıtılan havuzlardaki biyomas 4 k/m3 den 34 m3 e ulaşmıştır. Başka bir önemli sonuç da ısıtılan havuzlardaki balıkların boy dağılımının homojenliğini kaybetmesidir. Uygulamada yetiştiriciler tesis yeri seçerken su sıcaklığının 20 °C nin üzerinde olduğu ay sayısını hesaplarlar. Uzak doğuda bu süre beş ay olup mayıs-eylül ayları arasına denk gelmektedir. Bazı üreticiler bu süreyi uzatmak için özel düzenekler yaparlar. Japonya ve Tayvan’da elverler için kapalı binalar özel ısıtma düzenleri kullanılır. Isıtma işlemi, elverlerin geldiği ilk ay olan kasımdan başlar nisana kadar devam eder. Dışarıda su sıcaklığı 5 °C iken içeride 20-25 °C dolayında tutulmaya çalışılır. Dışarıda su sıcaklığı 20 °C ye ulaşınca bütün ısıtma cihazları kapatılır. Yavrular dış havuzlara aktarılır. Son zamanlarda Avrupa ve Avustralya’da aynı uygulamalara başlanmıştır. Oksijen Yılan balıkları özellikle oksijen konsantrasyonu düşük olan kötü ortam şartlarına dayanıklıdırlar. Bazı araştırmacılar yılan balıklarının farklı oksijen ihtiyaçları olduğunu belirtmişlerdir. • Querellou, 1974 : 100 g ortalama ağırlıktan fazla olan bireyler için, oksijen tüketimi 100mg/saat/kg; • Fish culture, 1972: 100 g ortalama ağırlıktan fazla olan bireyler için, oksijen tüketimi 4mg/saat/kg olduğunu bildirmişlerdir. Havuz suyundaki oksijen kaynağı fitoplanktonlar ve su girişidir. Özellikle gece solunumla su içindeki oksijen miktarı 1-2 mg/l seviyesine düşerse yılan balığı başını sudan çıkarmaya başlar. Bunu ölüm takip eder. Uygulamada yetiştiriciler, oksijen konsantrasyonunun 3 mg/l nin üzerinde olmasını isterler. Su içindeki oksijen seviyesini artırmak için suyu karıştırma ve havalandırma düzenekleri yerleştirilir. Özellikle gece su akışının, havuzun bir köşesinden fazla miktarda verilerek tüm havuzu karıştırmadan diğer bir köşeden tahliyesi yapılır. Böylece yılan balıklarının bu ortama gelerek oksijen ihtiyaçlarını karşılamaları sağlanır. Elverlerin oksijen ihtiyacı büyük balıklardan daha fazladır. Bu nedenle havuzlara devamlı akan su ve basınçlı hava verilmesi gereklidir. pH Ph değeri fotosentez sonucu oksijen miktarını, balık ve plankton solunumu sonucu sudaki karbonik asit miktarındaki azalma ve çoğalmaya bağlı olarak değişir. Gündüzün pH optimum değeri 8-9 arasıdır. Gece fotosentez olmadığından pH 7 ye düşer. PH değeri 4,5-6,5 olan asitli sularda yılan balığı yetiştiriciliği iyi sonuç vermez. Ayrıca PH ın amonyak indirgenmesi üzerine etkisi olup bu kirleticinin toksisite düzeyini belirler. Tuzluluk Yılan balıkları çok farklı tuzluluk şartlarına adapte olabilirler. Bu olayda iki organ önemli rol oynar. Deniz ortamında ( hipertonik) solungaçlar, aşırı miktardaki tuzların atılımını sağlar. Tatlı suda ( hipotonik), böbrekler üriner boşaltımla organizmada su girişlerini dengeler. Euryhalin özellik yetiştiricilik açısından bir sorun oluşturmaz. Bir günlük periyot içinde çoğu kez ara tuzluluktaki suları tercih ederler. Genç ve yetişkin yılan balıklarında bu euryhalin özellik hastalıklara karşı yapılacak olan uygulamalarda deniz suyu kullanılmasına izin verir (Querellou, 1974). Uygulamada yetiştiriciler, yetiştiricilik başarısının tatlı suda acı sudan daha fazla olduğunu belirtmişlerdir. Bu durum yılan balıklarının gelişmesi ve fizyolojik olgunlaşması için kendiliğinden nehirleri aramaları ile açıklanabilir. Fitoplankton Normal sağlıklı yılan balığı havuzu fitoplankton nedeniyle yeşil görünür. Durgun su havuzlarında fitoplanktonların, suyun oksijenini kontrol etmek, fotosentez yoluyla pH seviyesini etkilemek ve büyüme sırasında balık artıklarını absorbe etmek gibi önemli görevleri vardır. Ancak havuzda çok fazla miktarda fitoplankton birikmesine izin vermemek gereklidir. Uygun bir seviyedeki fitoplankton ile havuzdaki organik sedimantasyonun, dipteki bakteri faaliyetleri ile çözünmüş maddelerin absorbsiyon oranını kontrol etmek mümkündür. Kapalı günlerde ve gecelerde fotosentez yapamadıklarından balığın büyümesine olumsuz etki yaparlar. Fitoplanktonlar havuz zemininde organik maddelerin bozulması düzenli bir şekilde olmuyorsa gerekli büyümeyi yapamaz veya bol miktarda besin tuzları bulunmasına karşın, suda yeterli karbonik asit bulunmazsa büyüme durur ve bunu ölüm takip eder. Çok miktarda zooplankton üremesi de havuzdaki fitoplanktonları bitirebilir. Normal bir havuzda fitoplankton/zooplankton oranı 97:3 tür. Havuzda çok çeşitli fitoplankton bulunmaktadır. Her biri iklim,sıcaklık,diğer mevsimsel değişikliklere göre havuzun kimyasal dengesine etkide bulunur. Scenedesmus,Pediastrum ve Chlorella yeşil algleri ilkbahar ve sonbaharda ortaya çıkarlar. Microcystis ve Chlorococcus ilkbahar ve yazın, Anabaena ve Oscillatoria sonbaharda havuzlarda görülen mavi-yeşil alglerdir. Havuz suyunda daha çok Scenedesmus bulunursa yılan balıkları yemlerini daha iştahla yemektedirler. Pediastrum , Chlorella veya Oscillatoria, Anabaena çoğunlukta olduğu zaman iştah azalır. Havuzda bulunan zooplanktonların çoğunluğunu rotifer ve su pireleri teşkil eder. Fitoplankton ölümü,dışarıdan havuza bakıldığında rengin yeşilden koyu kahverengine veya açık renge dönüşmesiyle kolayca fark edilir. Renk değişimi aynı zamanda su kalitesinin değişimi demektir. Su yüzünde oksijen arayan balıklar daha sonra iştahlarını kaybederler. Çoğu zaman bunu toplu ölümler takip eder. Su kalitesindeki değişimler yağışlı havalarda da olmaktadır. Ph değeri sabah 9.5 üzerinde,öğleden sonra 7’ nin altında seyretmesi suda amonyak formunda 3ppm azot bulunması su kalitesinin bozulduğunu göstermektedir. Su kalitesindeki değişimleri önleyebilmek için sezon başında ve sonunda havuzlara su doldurmadan önce 60-100gr/m2 sönmemiş kireç serpilir. Kireç zemin toprağını ve zemine yakın suyun kalitesini arttırır. Havuz suyunda zooplankton artışı olmaya başladığında organo fosforik asit esterleri (Dipterex) 0.2-0.3 ppm kullanılarak ortamdaki zooplankton gelişimi önlenmiş olur. Çok ileri safhalardaki su kalitesi bozukluklarında,havuz boşaltılır,balıklar başka havuza alınır. Boşaltılan havuzun dibi kurutulur. Boşaltma mümkün değilse, uygun fitoplankton gelişimi sağlanıncaya kadar havuzda karıştırıcı pedallar kullanılır. Havuz atığı Havuzda çürüyen plankton, yem ve balık artıkları kontrol edilmelidir. Çürüme ve bozulmanın ürünü olan amonyak balığı rahatsız eder, iştahını olumsuz yönde etkiler. Amonyak oksijen olmaması halinde ortaya çıkar. Her yıl havuz boşaltılarak zeminde toplanan artıklar havuzdan alınır. Bunun takiben toprak kurutulur ve kireçlenir. Sülfür Sülfat indirgeyici bakteriler suda bol bulunan sülfatları hidrojen sülfite dönüştürürler. Bu durumda balılar yetersiz oksijen nedeniyle başlarının su yüzeyine çıkarırlar. Bu şartların devam etmesi durumunda büyük kayıplar olabilir. Su demir ihtiva ederse zararsız olan demirsülfit ortaya çıkar. Bu nedenle hidrojensülfitin etkisini azaltmak için bir kaç haftada bir havuz suyuna demir oksit serpiştirilir. Azot,Fosfat, Potasyum Bu elementler fitoplanktonların gelişmesi için gereklidir. Başlangıçta yeni havuzlar gübrelenir. Bu elementlerin optimum miktarları azot için 12,7 ppm fosfat için 1,3 ppm, potasyum için 0,1 ppm dir. 5.5. Yılan balığı yavrularının beslenmesi Yılan balkıları diğer pek çok balığa nazaran farklı özellik gösterirler. Genelde geceleri yem alma alışkanlığı olan türlerdir. Uzakdoğu’da yılan balığı yetiştiriciliğinin başlaması ile birlikte pek çok besleme yöntemleri denenmiştir. Bunlar ipek böceği pupu ile besleme, taze balık eti ile besleme ve karma yem ile beslemedir. Bu yemleme yöntemleri ayrı ayrı uygulanabildiği gibi karışık olarak da ele alınabilir. İpek böceği pupları Tayvan ve Japonya’da uzun süre yılan balığı yetiştiriciliğinde başarı ile kullanılmış ise de daha sonra ekonomik nedenlerle diğer maddelerle besleme ipek böceği pupları ile yemlemenin yerini almış bulunmaktadır. Yapılan hesaplara göre 1 kg canlı ağırlık artışı için 10 kg dolayında ipek böceği pupu harcanmıştır. Uzakdoğu’da günümüzde tek başına ipek böceği pupu ile yılan balığı besiciliği hemen hemen kalmamıştır. Özellikle Japonya’da insan gıdası olarak değerlendirilmesi mümkün olmayan balık etleri ile yılan balığı besisi yaygın olarak uygulanmaktadır. Bu balıkların başında okyanus uskumrusu gelmektedir. Ayrıca orkinos gibi iri balıkların temizlenmesi sırasında elde edilen kafa ve iç organlar gibi artıklar da yemlemede yararlanılmaktadır. Yılan balıklarına diğer balık etleri kıyılarak veya bütün halinde verilir. İri balıklar gözlerinden veya solungaçlarından bir tel üzerine dizilir ve havuza yem olarak asılır. Bu yemler verilmeden önce derilerine yumuşaması için bir kaç dakika kaynar suya batırılır. Bu yapılamazsa yılan balıkları, balıkların derisini parçalayamadığından deriye yapışmış şekilde olan et değerlendirilemez. Bu da havuzda kirlenme sorunları ortaya çıkarır. Bazı işletmelerde her türlü balık ve balık artığı mikserlerle parçalanarak hamur haline getirilir ve tel sepetlerle havuza sarkıtılarak yem olarak kullanılır. Hamur yapma işleminden önce balıkların pişirilmesi ve kılçıklarından temizlenmesi ile havuz dibine çöküp kokuşması önlenir. Japonya’da balık etleri ile besleme ipek böceği pupuna göre daha başarılı olmuştur. Ancak balık etinin temini, depolanması, hazırlanması ve beslemedeki kirlilik problemleri yetiştiricileri karma yemle beslemeye yöneltmiştir. Japonya’da yılan balığı yetiştiriciliğinde günümüzde karma yem kullanım oranı % 80’ e ulaşmış bulunmaktadır. Karma yemler diğer hayvansal yemler gibi balık unu, diğer yem maddeleri vitamin ve yem karışımından oluşur. Un şeklinde pazarlanır. Yılan balığının yoğun yetiştiriciliğinde kullanılan yemlerin protein oranları çok yüksektir. Elver ve büyük balıklarda en üst düzeyde gelişmeyi sağlayabilmek için karma yemdeki protein oranı değişmekte olup % 45 ile % 59 arasında bulunmaktadır. Tayvan’da yapılan bir araştırmaya göre karma yeme katılacak balık ununun beyaz renkli olmasının daha iyi sonuçlar verdiği saptanmıştır. Balık unları % 4 oranında morina karaciğer yağı ve %30-50 su ile ıslatıldıktan sonra yoğrularak elde edilir, ve canlı ağırlığın % 2-8 oranında verilir. Japonya’da karma yeme yağ katma oranı %10’a kadar çıkabilmektedir. Yapılan hamur bir tel sepet içerisinde havuzun yüzeyine yakın daldırılır ve 10-15 dakika süre ile balıkların yemesi için bırakılır. Bu süre sonunda tüketilmeyen yemlerin havuz suyunu kirletmemesi için ortamdan uzaklaştırılır. Yılan balıkları geceleri yemlenen tür olduklarından aydınlık yerlerde yem almaktan hoşlanmazlar. Bu nedenle havuz kenarlarına üstü kapalı yemleme yerleri yapılır. Yapılan çalışmalar göstermiştir ki sudaki oksijenin yükselmesi ile birlikte balıkların iştahları da artmaya başlar. Bu nedenle yemlemenin havuz içindeki fitoplankton varlığı nedeniyle sabah güneşin doğması ile birlikte başlaması gerekmektedir. Bazı işletmelerde suda oksijen çözünmesini sağlayan aeratörler yemleme zamanında devamlı olarak çalıştırılır. Yılan balıkları yemleme yeri ve zamanını öğrenebilen verilen yemi çok iştahla tüketen canlılardır. Yem almaları suyun sıcaklılığına, havanın bulutlu olmasına bağlı olarak değişir. Su sıcaklığı 23-28 °C arasında yem alımı en üst düzeydedir. Son yıllarda 1,5 kg karma yem ile 1 kg canlı ağırlık artışı sağlanabilmektedir. Küçük yavrularda yem oranı büyüklere nazaran daha fazla olur. Yaşlı yılan balıkları gençlere nazaran yağlı yemleri daha iştahla tüketirler. Genel A, D3, E, vitaminleri içeren ve bitkisel yağlar pahalı balık yağlarına tercih edilir. Sıcaklık ve balıkların gelişme dönemine göre verilecek olan yem ve yağ miktarları tablo-2,3 de verilmiştir. Yeme katılan mineral madde miktarı da büyümeyi etkileyen önemli bir faktördür. Karma yemde mineral madde oranı % 5 den daha az olmamalıdır. Mineral medde ihtiva etmeyen veya çok az içeren yemlerle yapılan beslemede yılan balıklarının iki hafta içinde zayıflamaya başladıkları ve daha sonra kitle halinde öldükleri saptanmıştır. Bu nedenle karma yemlerde yapılan çalışmalar sonucu % 8 mineral madde katkısı en iyi sonucu vermiştir. Yusuf GÜNER Ali KIRTIK E.Ü. Su Ürünleri Fakültesi Yetiştiricilik Ana Bilim Dalı 35100 Bornova/İZMİR   Yılan Balığı Yetiştirme ve İdaresi Stoklama yoğunluğu, ağırlık veya sayı olarak birim alana birim alana konulan balık miktarı olarak tanımlanır. Uygulanan kültür metoduna göre, yoğunluk bir tesisten diğerine göre değişir. Japonya’da 1 kg ağırlıkta her biri 0,17 g gelen 6 000 adet elver bulunur. Her elver tankına 3,5 x 6 000 elver konur (m² ye 2 000 adet yada 400 g elver ). Bu oldukça fazla bir miktardır. Bu nedenle elver tanklarına daha fazla oksijen verilir. Çalışmalar büyümeye izin veren belli bir alt sınırı olduğunu göstermiştir. Bir başka deyişle stoklama çok seyrek olursa gerekli büyüme sağlanamaz. Isıtılan havuzlarda elver ağırlığı başlangıç ağırlığının üç katına çıkar. Bu noktada yoğunluk çok fazladır. Balıkların seyreltilmesi gerekir. 1 kg ağırlıkta 1 500 elver olan balıklardan 400 m² alana 150 000 adet konulur. Buna göre m² ye 400 adet yada 100 g yavru düşer. Büyüme oranı Japon yılan balıklarının ilk yıl içindeki büyüme oranları tablo x de verilmiştir. Balıkların büyütüldüğü havuz suyunda ısıtma işlemi uygulanmadığından büyüme oranı düşük çıkmıştır. Havuz suyunu ısıtarak yetiştiricilik yapan bazı işletmelerde, 7-9 ay sonunda 150-200 g canlı ağırlık elde edilebilmektedir. Geleneksel yöntemin uygulandığı daha basit şartlarda yetiştiricilik yapan işletmelerde yetiştiricilik süresi 2 yıla kadar uzar. İlk yılda 30-40 g gelen elverler hedeflenir. Boylama yapılamazsa boylar arasında büyük farklar ortaya çıkar. Bunun sonucu bazı balıklar 120 g ağırlığa ulaştığında bazıları hala 2 g ağırlıkta kalabilir. İyi bir yönetim uygulanmazsa ilk 3-4 ay içinde çok yüksek bir ölüm oranı görülür. Ölüm sebebi iyi yem alamamak ve hastalıktır. Verim Japonya’da yılan balığı Pazar ağırlığı 150-200 g dır. Durgun su kültüründe yetiştirme havuzu verimi 4 kg/m²/yıl dır. Bu verim 20 x 200 g/m²/yıl veya 40 ton/hektar/yıl şeklinde ifade edilebilir. Verim takip edilen uygulamalara, üreticinin işletmesini idare etmedeki bilgi ve becerisine göre değişir. Bazı işletmelerde 8 kg /m²/yıl verim sağlanırken bazı işetmelerde bu verim 1 kg / m²/yıl gibi düşük kalmaktadır. Bazı çiftlikler yavru yetiştirme konusunda ihtisaslaşırlar. “Futo” adı verilen bu çiftçiler balıklarını diğer yetiştiricilere satarlar. Yavru yetiştiriciliğinde amaç en kısa zamanda 10-40 g a gelen balık elde etmektir. Teorik olarak 1 kg elverden 1 ton balık elde etmek mümkündür. Teori, 1 kg balıkta 6000 elver, yaşama oranının % 80 ve yaşayan her balığın ortalama 200 g olduğu varsayımına dayanır. Fakat uygulamalardan elde edilen sonuçlar teorinin oldukça gerisine düşüldüğünü göstermiştir. Günlük bakım Su ürünleri yetiştiriciliğinde koruyucu tedbirler almak, tedaviden hem daha kolay hem de çok daha ucuza mal olur. Bu durumda kayıplar da en aza indirilmiş olur. Çok küçük kalan yada fungi taşıyan balıklar bu amaçla havuzdan ivedilikle uzaklaştırılır. Her gün suyun pH ve sıcaklığı (en düşük ve en yüksek değerleri) fitoplanktonların seviyesi ( secchi disk ile ), suyun oksijen miktarı ölçülmelidir. Tesis günde bir kaç kez dolaşılarak kontrol edilmelidir. Her havuzdaki balık sayısı dikkatle takip edilir. Her iki haftada bir örnek alınarak balık ağırlığı hesap edilir. Verilen ve artan yem miktarı hakkında kayıt tutulur. Balık hasadı ve ayrımı Havuz durumuna göre balıklar galsama ağları, kepçe ağlar ve havuzun boşaltılması ile yakalanır. Boşaltma sıcak rüzgarsız bir günde yapılır. Şayet havuz suyu tuzlu ise, hidrojen sülfitin toksik etkisini gidermek için bir gün önceden demir oksit serpiştirilir. Boşaltma günün erken saatlerinde başlar. Ve havuz yarıya indiğinde bütün boşaltma sistemleri açılarak su akıtılır. Boşaltma yapılırken balıkların bir kısmı yakalanır. Boşaltmanın erken yapılmasının nedeni gece su içinde dolaşan balıkların bazılarının gün başladıktan sonra zemin çamuruna gömülmesine müsaade etmeden su içinde yakalamaktır. Yakalanan ballıklar boylama kasalarından geçirilerek ayrılırlar. Büyük balıklar pazara gönderilir, küçükler havuza geri atılır. Japonya’da iç tüketimin % 50 si Tokyo’da, % 30 u Osaka’da geri kalanı ise diğer bölgelerde olur. 1960 yılından beri her yıl % 15 oranında artmaktadır. Japon yılan balığı Avrupa türlerine tercih edilir. Nakil öncesi aç bırakma Nakilden 3-4 gün önce yemleme tamamen kesilir. Bu sırada balıklar küçük bir yerde tutulur. Bunu yapmaktaki amaç yağ miktarını azaltmak, balık sindirim sisteminde bulunan ve ileride ortaya çıkabilecek artıklardan kurtulmaktır. Bu işlem verimliliği artırır, balığı nakil koşullarına hazırlar. Aç bırakmada üç metot kullanılır. 1 Balıklar elver tanklarında tutulur. Bol hava ve su verilir 2 Sepete konulan 20 kg balık tatlı su tankına konur. Bu amaçla kuyu suyu kullanılabilir. 3 Her biri 3 kg balık taşıyan sepetler üst üste konur. En yıkardan balıklar duşa tutulur. Bu işlem sonunda balık ağırlığı % 8 fire verir. Yusuf GÜNER Ali KIRTIK E.Ü. Su Ürünleri Fakültesi Yetiştiricilik Ana Bilim Dalı 35100 Bornova/İZMİR PDF DÖKÜMAN İNCELE : documents/ck37.pdf    

http://www.biyologlar.com/anguilla-anguilla-yilan-baligi-ve-ozellikleri

Mikroskop tipleri, patolojide kullanım alanları

Mikroskop tipleri, patolojide kullanım alanları

Mikroskop (16. yy) Lensler ve büyüteçler, Antik Yunan uygarlığında bile biliniyormuş. Ancak onlar bu lensleri yapmayı değil, sadece ortası kenarlarından daha geniş kristallerin etkilerini biliyormuş.

http://www.biyologlar.com/mikroskop-tipleri-patolojide-kullanim-alanlari


CANLILARIN EVRİMİ İLE İLGİLİ GÖRÜŞLER

A- Lamark’in Evrim Görüsü: 1-Kullanma – Kullanmama:Vücudun kullanilan organlari gelisir.Kullanilmayanlar ise körelir. 2-Kazanilan özelliklerin Kalitimi:Kullanma veya kullanmama ile kazanilan özellikler yeni nesillere aktarilir. Elestirisi: *-Kullanilan karakterler gelisir *-Kazanilan karakterler sadece bireye özgüdür *-Kazanilan karakterler kalitsal degildir *-Kazanilan karakterler kalitsal sinirlar içindedir *-Kazanilan karakterler modifikasyondur Modifikasyon:Çevresel faktörlerin etkisi ile genlerin isleyisinin degismesi ile olusan ve kalitsal olmayan degismelerdir B-Darvin’in Evrim Görüsü: 1-Canlilar geometrik dizi olarak artis gösterir 2-Populasyonlardaki birey sayisi belli sinirlar içinde kalir 3-Ayni tür bireyleri arasinda kalitsal çesitlilik(varyasyonlar) vardir A)Çevresel varyasyonlar: Modifikasyon B)Kalitsal varyasyonlar: Kalitsal varyasyonlar üç temel sekilde ortaya çikar: *-Üreme hücrelerindeki mutasyon *-Üreme hücrelerinde görülen krossing-over ve homolog kromozomlarin dagilimi *-Döllenmenin sansa bagliligi 4-Canlilar arasinda çevresel kosullar için yasam kavgasi vardir 5-Çevreye uyum (Adaptasyon) saglayanlar hayatta kalir ve üreyerek yeni nesillerinde kendi özelliklerini tasimalarina neden olurlar. Uyum saglayamayanlar ise elenerek (Dogal seleksiyon) tasidiklari türe özgü zayif kalitsal özelliklerininde ortadan kalkmasina neden olurlar. 6-Farkli çevrelerde farkli sekillerde adaptasyon yetenekleri kazanan bireyler yeni türlere dönüsürler Darvin’in evrim teorisinin dayandigi görüsler: 1) Bütün organizmalar geometrik bir oranda artima egilimlidir. 2) Bir türün her dölündeki birey sayisi hemen hemen degismez. 3) O halde yasamak için bir mücadele olmalidir. 4) Her türün bireyleri arasinda degisiklikler ( kalitsal olabilir ) vardir. 5) Bazi degisiklikler özel bir çevredeki organizmalarin çevreye uyumlarini ve sayica çogalma sanslarini arttirir. Yasayan organizmalar kalitsal degisikliklerini ogul döllere geçirirler. 6) Zamanla büyük farklar meydana gelerek eski türlerden yeni türler ortaya çikar. Evrim olayinin özeti : Mutasyon Kalitsal varyasyon Dogal seleksiyon Adaptasyon Evrim Eseyli üreme Adaptasyon:Canlilarin üreme , yasama sanslarini artiran ortama uyum saglayan özelliklerinin tümüdür. Not:Adaptasyonlar kazanilmis kalitsal özelliklerinin çevresel kosullarin degismesi ile ortaya çikar Mutasyon:Canlinin üreme hücrelerindeki genlerde gerçeklesen ve kalitsal olan degismelerdir. Sonuç: *-Evrimin ham maddesi kalitsal varyasyonlardir *-Evrimin mekanizmasi dogal seleksiyondur *-Dogal seleksiyonlar sonunda adaptasyonlar ortaya çikar Evrimin gelisim zinciri 1-Üreme hücrelerinde 2-Mayoz 3-Döllenme mutasyon bölünme Varyasyonlar Dogal seleksiyon Adaptasyon Evrim Populasyon Dengesini Bozan Etmenler Hardy-weinberg prensibi populasyon dengede kaldigi sü4rece geçerlidir.fakat populasyon daki genlerin frekansi uzun süre dengede kalamaz.Genlerin frekansinin degismesine mutasyon , seleksiyon , göçler , izolasyon ve rasgele olmayan evlilikler neden olur. 1- Göçler : Göç komsu iki populasyon arasindaki gen akisi olarak tanimlanabilir. 2- Izolasyon ( Ayrilma – Tecrit) : Büyük populasyon lar çesitli nedenlerle (dag , deniz, ve çöl olusumu ile veya kitalarin kaymasi ile) küçük populasyon lara bölünebilirler. 3- Mutasyon : Mutasyonlar genetik farklilik meydana getirmelerinden dolayi populasyon larda gen frekanslarinin degismesine yol açan en önemli faktörlerin basinda gelir. 4- Dogal seleksiyon (Seçilim) : çesitlilik gösteren bir populasyon da , belli özellikler yönüyle üstün ve zayif olan fertler bulunur. Dogal seleksiyon zayif olanlari ortadan kaldirir. 5- Genetik sürüklenme : Dogal sartlarda yasayan , özellikle küçük populasyon larda nesilden nesile veya yildan yila gen ve birey oranlarinin yapay bir etki olmadan rasgele degismesine genetik sürüklenme denir. 6- Es seçimi : Bireylerin çiftlesmek için birbirlerini rasgele seçmeleri yerine özel niteliklerine göre seçmeleri zamanla farkli özelliklerin çikmasina neden olur. Kalitsal Materyalin Degismesi - Tüm canlilarda ortak olan özellikler. - Canliyi diger türlerden ayiran türe özgü özelikler. - Canliyi türün diger bireylerinden ayiran bireysel özellikler olmak üzere üç grupta toplanabilir. Bu özelliklerin olusmasi ve yeni döllere tasinmasi DNA larin üzerinde bulunan genlerle olur. Normalde DNA lar kendilerini hatasiz esler. Genler ve kalitsal bilgi degismez. Ancak bazi durumlarda yanlisliklar olabilir. Bunlar : - DNA ya fazladan bir yada birkaç nükleotid çifti eklenebilir. - DNA dan bazi nükleotid çiftleri kopup ayrilabilir. - DNA molekülündeki baz çiftleri karsilikli yer degistirebilir. Örnegin A-T çifti T-A çiftine dönüsebilir. - Bir nükleotidin karsisina kendi esi olmayan baska bir nükleotid baglanabilir.. Örnegin sitozin nükleotidin karsisina guanin nükleotid baglanmasi gerekirken timin yada adenin nükleotid baglanabilir. - Kromozomlardan parça kopabilir yada kromozomlara parça eklenebilir. Canlilarin genetik bilgilerindeki kalici olan bu tip degismelere mutasyon (degisim) denir. Mutasyonlar sonunda canlida ortaya çikacak degismeleri 2 grupta inceleyebiliriz. 1- Canlilarin bazi özellikleri yerine yeni özellikler olusabilir. 2- Mutasyon, canlilarin belirli bir çevrede yasama ve üreme sansini arttiran özellikler kazandirabilir. Bunun tersine canlilarin yasama ve üreme sansini ortadan kaldirabilir. Not:Bazen bir gen farkli mutasyonlara ugrayarak çok sayida alel meydana getirebilir. Örnegin kedilerde kil renginin çesitli olmasini saglayan çok sayida aleller mutasyonla olusmustur. Canlilarin çok farkli özelliklere sahip olmasinin yani genetik çesitliligin nedeni bir canlida çok sayida geninin bulunmasidir. Bir gendeki mutasyon olasiliginin düsük olmasina karsin bir canlida çok sayida gen bulundugundan canlidaki toplam mutasyon olasiligi artar.

http://www.biyologlar.com/canlilarin-evrimi-ile-ilgili-gorusler

Populasyon Dengesini Bozan Etmenler

Hardy-weinberg prensibi populasyon dengede kaldigi sü4rece geçerlidir.fakat populasyon daki genlerin frekansi uzun süre dengede kalamaz.Genlerin frekansinin degismesine mutasyon , seleksiyon , göçler , izolasyon ve rasgele olmayan evlilikler neden olur. 1- Göçler : Göç komsu iki populasyon arasindaki gen akisi olarak tanimlanabilir. 2- Izolasyon ( Ayrilma – Tecrit) : Büyük populasyon lar çesitli nedenlerle (dag , deniz, ve çöl olusumu ile veya kitalarin kaymasi ile) küçük populasyon lara bölünebilirler. 3- Mutasyon : Mutasyonlar genetik farklilik meydana getirmelerinden dolayi populasyon larda gen frekanslarinin degismesine yol açan en önemli faktörlerin basinda gelir. 4- Dogal seleksiyon (Seçilim) : çesitlilik gösteren bir populasyon da , belli özellikler yönüyle üstün ve zayif olan fertler bulunur. Dogal seleksiyon zayif olanlari ortadan kaldirir. 5- Genetik sürüklenme : Dogal sartlarda yasayan , özellikle küçük populasyon larda nesilden nesile veya yildan yila gen ve birey oranlarinin yapay bir etki olmadan rasgele degismesine genetik sürüklenme denir. 6- Es seçimi : Bireylerin çiftlesmek için birbirlerini rasgele seçmeleri yerine özel niteliklerine göre seçmeleri zamanla farkli özelliklerin çikmasina neden olur. Kalitsal Materyalin Degismesi - Tüm canlilarda ortak olan özellikler. - Canliyi diger türlerden ayiran türe özgü özelikler. - Canliyi türün diger bireylerinden ayiran bireysel özellikler olmak üzere üç grupta toplanabilir. Bu özelliklerin olusmasi ve yeni döllere tasinmasi DNA larin üzerinde bulunan genlerle olur. Normalde DNA lar kendilerini hatasiz esler. Genler ve kalitsal bilgi degismez. Ancak bazi durumlarda yanlisliklar olabilir. Bunlar : - DNA ya fazladan bir yada birkaç nükleotid çifti eklenebilir. - DNA dan bazi nükleotid çiftleri kopup ayrilabilir. - DNA molekülündeki baz çiftleri karsilikli yer degistirebilir. Örnegin A-T çifti T-A çiftine dönüsebilir. - Bir nükleotidin karsisina kendi esi olmayan baska bir nükleotid baglanabilir.. Örnegin sitozin nükleotidin karsisina guanin nükleotid baglanmasi gerekirken timin yada adenin nükleotid baglanabilir. - Kromozomlardan parça kopabilir yada kromozomlara parça eklenebilir. Canlilarin genetik bilgilerindeki kalici olan bu tip degismelere mutasyon (degisim) denir. Mutasyonlar sonunda canlida ortaya çikacak degismeleri 2 grupta inceleyebiliriz. 1- Canlilarin bazi özellikleri yerine yeni özellikler olusabilir. 2- Mutasyon, canlilarin belirli bir çevrede yasama ve üreme sansini arttiran özellikler kazandirabilir. Bunun tersine canlilarin yasama ve üreme sansini ortadan kaldirabilir. Not:Bazen bir gen farkli mutasyonlara ugrayarak çok sayida alel meydana getirebilir. Örnegin kedilerde kil renginin çesitli olmasini saglayan çok sayida aleller mutasyonla olusmustur. Canlilarin çok farkli özelliklere sahip olmasinin yani genetik çesitliligin nedeni bir canlida çok sayida geninin bulunmasidir. Bir gendeki mutasyon olasiliginin düsük olmasina karsin bir canlida çok sayida gen bulundugundan canlidaki toplam mutasyon olasiligi artar.

http://www.biyologlar.com/populasyon-dengesini-bozan-etmenler

Deniz Tuzu Ve Faydaları Nelerdir?

Deniz Tuzu Ve Faydaları Nelerdir?

Deniz tuzu; deniz suyundan elde edilen, özel tesislerde üretilen bir tuz türüdür. Deniz suyunun özel havuzlarda depolanması, sonrasında güneş enerjisi yardımıyla suyun buharlaştırılması ile elde edilir. Geriye kalan madde deniz tuzudur. Daha sonra bu tuz işlenerek ambalajlanır. Yapısında bol miktarda magnezyum, demir, sülfür ve kalsiyum bulunmaktadır.İçinde bir çok tıbbi özellik bulunduran deniz tuzu mucizevi tuz olarak adlandırılır. İçinde seksenden fazla mineral bulunduran deniz tuzu oldukça faydalıdır. Cilt sorunlarından metabolizma sorunlarına kadar pek çok sorunla savaşan deniz tuzunun kullanım alanları oldukça geniştir. Deniz tuzunun kullanılabileceği alanları ve faydalarını şu şekilde maddelendirebiliriz.1. Deniz tuzu iyileştirici özelliklere sahiptir. Tırnak hastalıklarını iyileştirir.2. Saçlarda kullanılır. Saç derisini ferahlatır. İpeksi saçlara sahip olmak için kullanılır. Bir çok kozmetik markasının deniz tuzu spreyleri vardır. Bu spreyler hem saça şekil vermede hem de saç bakımında kullanılan oldukça yararlı spreylerdir.3. Deniz tuzu metabolizmayı düzenleyen bir etkiye sahiptir. Kan dolaşımını hızlandırır.4. Rafine edilmemiş deniz tuzunun sakinleştirici etkisi vardır.5. Vücut peelinginde kullanılan deniz tuzu derideki çatlakları önler. Selülit giderici bir özelliğe sahiptir. 6. Banyo suyuna deniz tuzu eklenirse; cilde esneklik kazandırır ve cildi tazeler. Pürüzsüzleştirir. Antiseptik özelliğe sahip olduğu için cildi korur.7. Deniz tuzu yüzdeki siyah noktaları ve akneleri de temizleyici bir etkiye sahiptir. Cildi temizler ve yağ dengesini korur.Deniz tuzunun bu özelliklerinden yararlanmak için yapılabilecek bazı uygulama tarifleri şunlardır:Saç bakımı:Bir çorba kaşığı deniz tuzu ile zeytin yağı veya Hint yağı karıştırılarak saç ovulur. Bir havlu sarılarak 20 dakika bekletilir ve durulanır. Bu işlem haftada bir iki kez yapıldığında güçlü, sağlıklı ve yumuşak saçlara sahip olunur.Vücut peelingi:6 kaşık deniz tuzu yoğurt ve balla karıştırılarak tüm vücuda ovalanarak uygulanır. Çok bastırmadan uygulanmalıdır. Sonrasında ılık duş alınıp cilt nemlendirilir. İçine isteğe göre lavanta yağı veya cilt için yararlı çeşitli yağlar da eklenebilir. Bu sayede vücut ölü deriden kurtulur. Kan dolaşımı hızlanır. Vücuttaki toksinleri atmaya yardımcı olur. Ve selülit giderici bir etki elde edilmiş olunur.Deri çatlakları:Banyo suyuna deniz tuzu eklenir isteğe göre küvetin içine okalüptus yağı veya lavanta yağı gibi yağlar eklenerek vücut ovalanır. Küvet veya jakuzi içinde bu şekilde dinlenirse deri çatlaklarına iyi geleceği gibi vücudu sakinleştirici ve rahatlatıcı bir etkiye de kavuşulur.Bunların yanında deniz tuzu mutfaklarda da kullanılabilecek özelliğe sahiptir. Yemeklerde kullanılabilir. Turşularda kullanılır. Zeytin, üzüm yaprağı gibi salamura edilmesi gereken yiyeceklerde kullanılabilir. Faydalı diye bol miktarda kullanmak yanlış olacaktır. Her bir alan için gerektiği ölçüde kullanılmasında yarar vardır.Yazar: Özge Yıldırımhttp://www.bilgiustam.com

http://www.biyologlar.com/deniz-tuzu-ve-faydalari-nelerdir

Besiyerleri ve Tanıtımları

Besiyerleri ve Tanıtımları

İnsan ve hayvanlarda çeşitli mikroorganizmalar hastalık oluştururlar. Bu mikroorganizmaların izolasyonu, tanımlanması ve üretilmesinde besiyerleri kullanılır. Besiyerleri canlı ve cansız ortamlar olarak ikiye ayrılırlar.

http://www.biyologlar.com/besiyerleri-ve-tanitimlari

LEVREK (Dicentrarchus labrax Lin., 1758) BALIĞININ BİYOLOJİSİ VE YETİŞTİRME TEKNİKLERİ

Yrd.Dç.Dr. Kürşat FIRAT & Şahin SAKA Ege Üniversitesi Su Ürünleri Fakültesi Yetiştiricilik BölümüYetiştiricilik Anabilim Dalı İskele-Urla, 35440 İZMİR GİRİŞ Su ürünleri yetiştirme teknolojisinin gelişimi ile beraber levrek kültürü üzerindeki çalışmalarda yoğunlaşmıştır. Ülkemizde önceleri çipura balığının besiye alınması ve daha sonrada larva üretimine geçilmesini takiben, levrek larvalarının kültür çalışmalarında yoğun artışlar gözlenmiştir. İlk defa Fabre-Domerque (1905) tarafından levreklerin yapay yolla üretilebileceği bildirilmiş olup, Barnabé (1971) levreklerin hormon müdahelesi ile kontrol altına alınabileceğini rapor etmiştir. Aynı araştırmacı (1972) levrekleri jüvenil hale kadar getirmeyi başarmış ve bugün Avrupa ülkelerinde yumurtadan pazar boyuna kadar geniş bir endüstri kolu haline gelmesine öncülük etmiştir. Ülkemizde ise levrek larva yetiştiricilik çalışmaları 1984 yılında özel bir işletme ve E.Ü. Su Ürünleri Fakültesi'nde başlamıştır. 1980'li yılların sonunda üretimlerini binli rakamlar ile ifade eden akuakültür tesisleri günümüzde yıllık larva üretimlerini milyonlara dayanan rakamlar ile ifade etmektedirler. Levrek larva üretiminde sağlanan bu gelişim, yeni türlerin aquakültürüne de öncülük etmektedir. LEVREK(Dicentrarchus labrax, L. 1758) BALIĞININ BİYOLOJİSİ Morone labrax ve Roccus labrax sinonimleri ile de adlandırılan levrek, Phylum : Vertabrata Subphylum : Pisces Classis : Osteichthyes Subordo : Percoidei Familia : Serranidae Genus : Dicentrarchus Species : labrax (Linneaus, 1758) şekliyle sistematikteki yerini almıştır. Levrek balıkları, tüm Akdeniz'den, İngiltere'nin kuzey sahillerine ve Kanarya Adaları'na kadar yayılım gösterir. Deniz fenogramlarının bulunduğu kumlu, çamurlu-sığ biotoplarda, sıcaklığa ve tuzluluğa karşı gösterdiği toleransı ile nehir ağızlarında ve lagüner bölgelerde yaşayan bir littoral bölge balığıdır. Havaların soğuması ile birlikte kışlamak için derin sulara göç ederler. Karnivor bir tür olan, bazen yalnız bazen de küçük sürüler halinde dolaşan levreklerin genç dönemlerinde eklem bacaklılardan Crangon, Gammarus ve Ligia gibi küçük karidesleri, ergin dönemlerinde küçük balıklardan özellikle Sardina türünü, kafadanbacaklılardan Sepiola ve Loligo'yu, eklembacaklılardan Carnicus, Crangon sp. ve Macropipus türlerini tercih ettiği yakalanan bireylerin mide içeriklerinden alınan örneklerden ortaya çıkmaktadır (FAO, 1991). Vücudu lateralden hafif yassılaşmış olan levrek balığının derisi ktenoid pullarla kaplıdır. Sikloid pullar ense ve yanaklar üzerindedir. Yanal çizgi üzerinde 65-80 arası pul bulunur. Birinci solungaç yayı üzerindeki brankiospin sayısı 18-27 arası değişir. Dorsal yüzgeç araları geniştir. Dorsal yüzgeçte 8-10 adet diken ışın mevcuttur. II. dorsalde 1 diken ve 10-14 adet yumuşak ışın bulunur. Muzoda pul yoktur. Operkulumda gri-siyah leke mevcuttur. Preoperkulum ve operkulum üzerinde sert diken ışınlar vardır. Renk dorsalde koyu gri-esmer, ventralde beyazdır. Göz kemiğinin üstünde siyah lekeler mevcuttur. Ağız geniş, dişler damakta ve dilde bulunur. Renkleri sırt kısmında koyu gri-esmer, yanlarda gümüşi, karın bölgesinde beyazdır. Ergin bireylerin sırt kısmı lekesiz koyu renkte olurken, gençlerde bazen siyah lekeler olabilir. 1 m'ye kadar uzayabilen boyu ortalama 50 cm. olup, ağırlığı da 12 kg' a ulaşabilir (Uçal ve Benli, 1993). Tatlı sularda büyüyebilirler, fakat üreyemezler. Levrekler 5-28 °C arası sularda yaşayıp 12-14 °C arasında yumurta bırakırlar. Doğal ortamda 1 kg'lık bir dişinin 293.000-358.000 adet yumurta bırakabildiği bildirilmişlerdir (Kennedy ve Fitzmaurice, 1972). Tuzluluk değişimlerine karşı dayanıklı olup, ‰3 tuzluluktan ‰50 tuzluluğa kadar yayılım gösterir. ‰0 tuzluğa adapte olabilir. Levreklerin düşük tuzluluk şartlarına adaptasyonu üzerine birçok çalışma yapılmış olup, bunlar adaptasyon teknikleri, düşük tuzlulukta beslenmeleri ve gelişimleri üzerinedir (Loy ve ark., 1996, Dendrinos ve Thorpe, 1985, Johnson ve Katavic, 1984). Levrek balıkları 1 yaşına gelene kadar gonadlarında bir gelişim gözlenmez. 13-15. aylarda testiküllerde ve ovaryumlar da farklılaşma başlar. Doğal şartlar altında levrekler hayatlarının ikinci yılında sperm salgılayabilirler. Ancak RGS değeri düşüktür. 3. yılda ise ergin bir birey gibi yüksek oranda sperm sağlayabilirler. Ovaryumlardaki farklılaşma, erkeklerde olduğu gibi 13-15 aylar arasında başlar ve nispeten daha uzun sürer (Brusle ve Roblin, 1984). Dişiler doğal şartlar altında ancak 3. yılda yumurta bırakabilir. Büyüme hızı bir yaş grubu bireylerinde en fazla durumdadır. Cinsi olgunluk dönemlerinde ağırlık artışının dişilerde erkeklerden daha fazla olduğu saptanmıştır. Üçüncü yaştan sonra alınan besinler gonad gelişiminde kullanılır. Akdeniz'de erkekler 2-3 yaş 25-30 cm boyda, dişiler 3-5 yaş, 30-40 cm boyda, Atlantik’te ise erkekler 4-7 yaş ve 32-37 cm boyda, dişiler ise 5-8 yaş ve 38-42 cm boyda cinsel olgunluğa ulaşırlar (Alpbaz, 1990). Levrek balıkları Akdeniz' de Ocak-Mart ayları arasında yumurta bırakırlar. LEVREK BALIĞI YETİŞTİRİCİLİĞİ Anaçlar ve Yumurtlama Anaçlarının tutulduğu tanklar, anaçların büyüklüğüne ve stok yoğunluğuna bağlı olarak değişim gösterir. Akuakültür ünitelerinde büyük, orta ve küçük hacimli anaç havuz sistemleri kullanılmaktadır. Büyük sistemler yoğun olarak Japonya ve kuzey doğu Asya ülkelerinde 50-100 m3 hacimlerde kullanılmakta ve tesis dışında kurulmaktadır. Orta büyüklükte hacime sahip tanklar Avrupa ülkelerinde kullanılmakta olup tesis içinde yer almaktadır. Tankların hacimleri 15-30 m3 arasındadır. Bunların ayrıca filtrasyon, ısıtma ve soğutma sistemleri de mevcuttur. Küçük hacimli sistemler ise 10-20 m3 arasında olup Akdeniz sahasındaki ülkelerde kullanılmaktadır (Licas, 1988). Bu tankların tüm sistemleri çevresel şartlara karşı kontrol altındadır. Tanklar genellikle koyu renkte olup yuvarlaktır. Anaç bireyler yetiştiricilik yolu ile yada doğal ortamdan çeşitli avlama metodları ile yakalanabilir. En ideali paraketa ile yapılan avcılıktır. Ağ ile yakalanan bireylerde adaptasyon dönemin de yoğun ölümler görülür. Anaç bireyler yumurtlama döneminden önce yüksek kalitede taze yem ile kalamar, sübye ve karides etine dayalı pelet yemlerle günde 1-3 kere vücut ağırlığının (kg) %1-1.5’ğu kadar beslenmelidir. Verilen yemler %50-55 protein ve %10-15 deniz orijinli canlıların yağlarından oluşan içeriğe sahip olmalıdır. Yağlar en az %5 n-3 HUFA içermeli ve temel olarak 22:6n-3 (DNA) tipinde olmalıdır. Bu durum yumurta kalitesini doğrudan etkiler. Balıklar 10-15 kg/m3 olacak şekilde stoklanır. Dişi erkek oranı anaç balığın durumuna göre 1:1, 1:2 veya 2:3 kg olacak şekilde ayarlanır. Tanklara saatte %10-20 arası debi uygulanır. Su sıcaklığı 14-15 0C olmalıdır. Tanklarda doğal deniz suyu tuzluluğu kullanılır. Yumurtaların pelajik yapısından dolayı tankların su çıkışları yüzeydendir. Bunun için tankların üst çıkışına 500 mikron göz açıklığına sahip tank içine yerleştirilmiş reküparatör sistemleri konulur. Anaç bireylerden doğal yollarla, sağım yöntemiyle ve hormon müdahalesi ile yumurta temin edilebilir. Sağım yöntemi yumurtaların küçük olmasından ve döllenme oranının düşüklüğünden dolayı uygulanmamaktadır. Yumurtaların doğal periyot içinde hormon müdahalesi olmadan alınması kaliteyi olumlu etkiler. Bunun yanı sıra doğal ortamdan yakalanan bireylerin yumurtlamaya teşvik edilmesinde hormon kullanımı oldukça başarılı sonuçlar vermektedir. Ayrıca levrek anaçlarına fotoperiyot uygulanması ile doğal yumurtlama zamanları değiştirilerek yılın çeşitli dönemlerinde yumurta sağlanabilir. Levrek balıkları hormon uygulamalarına karşı hassastır. HCG ile teşvik edilen anaçlarda kuvvetli bir bağışıklık sistemi oluşur. Hipofizden gonadotrapin (GtH) salgılanmasındaki başarısızlıktan dolayı daha önceden kullanılan anaçlarda yumurtlama ve yumurtaların oluşumu sırasında sorunlar oluştuğunu saptanmıştır. HCG enjekte edilen anaçlarda hipotalamus hipofiz eksenindeki eksilme sonucunda, anaçlarının yumurtalarını oluşturmasında azalma görülür. Bunun sebebi hipofizde gonadotropin seviyesinin artmasına rağmen dolaşım sistemine salgılanmamasıdır. LH-RH ve LH-RHa’nın çeşitli türlerin plazmalarındaki gonadotropin (GtH) düzeyini yükselttiği ve HCG hormonuna göre daha avantajlı olduğu saptanmıştır (Alvarino ve diğ., 1992a, 1992b). Bu hormonların HCG hormonuna göre avantajları şunlardır. 1. GnRH (LH-RH) balığın kendi GtH üretimini sağlar. 2. Küçük moleküllüdür. GnRH kolayca sentezlenebilir ve saf olarak temin edilebilir. 3. Yumurtlama sırasında kullanılan miktar azdır. 4. GnRH türlere göre düşük miktarda kullanılabilir. 5. Küçük polipeptidlidir ve bağışıklık yapmaz. Levreklerde LH-RH’ın uygulanmasında yumurta çapının 650 mm civarında olması istenir. Bu dönemde yani vitellogenesis safhasında toplam 10 mgr/kg olacak şekilde, 12 saat ara ile uygulanması sonucunda ilk 48 saat içinde ovulasyon görülebilir. Uygulamanın gündüz başlaması ovulasyonun hızını artırırken, gece başlaması yüzdesini etkiler. Levrek balıklarında yapılan çalışmalarda HCG 500-1800 IU, LHRH 1-20 mgr/kg olacak düzeyinde kullanılmasının yumurta kalitesi ve kantititesi üzerinde olumlu etkisi olduğu saptanmıştır (Barnabé ve Paris, 1984, Barnabé ve Barnabé-Quet, 1985, Alvarino ve diğ., 1992a,1992b). Anaçlarda Yumurta ve Sperm Olgunlaşması Üreme dönemine giren levrek balıklarının gonadlarında yumurta hücrelerinin oluşması ve atılması dört temel periyotta olur. a) Pregametik Periyot: Haziran ve Ekim aylarında gonadlarda olgunlaşma yoktur. b) Gametogenesis: Ekim ve Ocak aylarında oosit sitoplazmasında yağ damlacıkları, az sayıda yağ globülleri ve kortikol alveolleri görülür. Kasım-Aralık aylarına kadar yağ damlasında büyüme görülmekle birlikte erkeklerde sperm elde edilmesi mümkündür. c) Yumurtlama Periyodu: Ocak ayında başlar, Mart ayında biter. Bu dönemde yumurtalar dışarı atılır. d) Dinlenme Periyodu: Nisan-Mayıs ayları arasında gözlenir. Ovaryumlar da atretik oosit’ler, testislerde artık yapılar gözlenir. Levreklerin ovaryumlarındaki yumurta hücresinin gelişimi ise 12 temel aşama ile açıklanır. 1. Aşama: İlkel yumurta hücresi (Ovogenium) çok küçük bir yapıdadır. Fakat buna nazaran büyüklüğü diğer hücrelerden daha fazladır. Hücrenin çapı 10-12 µ arasındadır. Hücrelerde mitoz bölünme ile çoğalma görülür. 2. Aşama: Yumurta hücrelerinin çapları 12-20 µ ulaşır. Her yumurta hücresinin etrafında folikül oluşmaya başlamıştır. Folikül hücrelerin ikinci katını oluşturur. 3. Aşama: Bu dönemde sitoplazmanın homojenliği bozulmuştur. Hücre çekirdeğinin (Nukleus) bölümlenmesi ile çekirdeğin dış kısmının şekillenmesi başlamıştır. Hücre çekirdeğinin çapı 5-8 µ arasındayken, hücrenin bu aşamada çapı ise yaklaşık 20 µ civarındadır. 4. Aşama: Hücre içerisinde stoplazmik üç zon birbirinden ayrılmıştır. Bunlar kortikal zon, granüler yapılı orta zon ve tanecikli prinüller zon dur. 5. Aşama: Bu dönemde ilk oosit zarı farklılaşmaya başlamıştır. Ayrıca yumurta sarısının meydana gelmesi ve toplanması olarak bilinen previtellogenesis’in de ilk başlangıcı bu aşamada görülür. Bu sırada hücre çapı 30-50 µ arasındadır. 6. Aşama: Çekirdek zarında ilk yağ damlacıkları ve çekirdek çevresinde loplar meydana gelmeye başlar. Bu olay yumurta çapı yaklaşık 100 µ olduğunda başlar ve yumurta 300-350 µ gelinceye kadar devam eder. 7. Aşama: Vitellüsün iki farklı yapısının belirginleşmeye başladığı bu dönemde yumurta zarının şekillenmesi de başlamıştır. Yaklaşık 100 µ çapındaki yumurta hücresinde yağ damlacıkları ve yumurta sarısı üretimi hızla devam eder. 8. Aşama: Yumurtanın çapı yaklaşık 200 µ’dur ve vitellüsün iki karışımı görülmektedir. 9. Aşama: Bu aşamada yağ damlacıkları yumurta sarısı tarafından hücre kenarına doğru itilir ve vitellüsün üç karışımı izlenebilir. 10. Aşama: Yumurta çapı 350-400 µ civarında olup vitellogenesis sona ermiş ve çekirdek kutba doğru yönelmiştir. 11. Aşama: Yumurta 500-550 µ boya ulaşmış ve mikropil deliği bu aşamada meydana gelmiştir. Yumurta içinde vitellüs, hücre duvarı ve yağ damlası net şekilde görülmektedir. 12. Aşama : Yumurtanın gonadlardaki bu gelişiminden sonra yumurta herhangi bir değişime uğramaksızın 1-2 ay bekler. Dışarıya doğru çıkıntı yapmasına neden olurlar. Böylece folikül tekasındaki kasların kontraksiyonu ile ovulasyon meydana gelir. Eğer biotik ve abiotik şartlar uygun değilse foliküllerin deformasyonu ile yumurtaların emilimi ortaya çıkar. Levrek balıklarında spermlerin gonadlarda ki gelişimi spermatogoniumların aktif şekilde testis kanalları duvarlarında çoğalması ile başlar. İlk önce spermatogoniumlardan primer spermatozitler, onlardan da sekonder spermatozitler meydana gelir. Testiküler kanal boşluklarında toplanan ve burada uygun şartlar oluşuncaya kadar bekleme pozisyonuna giren spermler, gonadotropin etkisi ile dışarı atılmaya hazır hale gelir. Testislerde hareketsiz halde bekleyen spermler su ile temasa geçince hareketlenirler. Yumurta Özellikleri ve Kalite Kriterleri Kemikli balıkların yumurta boyları türlere ve türlerin kendi içindeki bazı koşullara göre değişiklik gösterir. Türün yumurta çapı büyüdükçe yumurta sayısı azalır, çıkan larvanın boyu ve yaşama oranı artar. Döllenmiş yumurtalar pelajik, küresel ve saydamdır. Yumurtanın kalitesi, yumurtanın yüzebilirliği, yağ damlası sayısı, açılım oranı ve normal yapıdaki larva miktarı ile orantılıdır. Levrek yumurtalarında biri merkezi konumlu olmak üzere ortalama 4-5 adet yağ damlası bulunur. Levrek yumurtalarının çapları ortalama 1150±85 µ, yağ damlalarının çapı ise 360-420 µ arasındadır. Yumurta çapları bölgelere göre değişim gösterir. İngiltere kıyılarında yumurta çapları 1.07-1.32 mm arasında ölçülmüştür. Akdeniz kıyıları boyunca yumurtaların çapları daha küçük (1.02-1.296 mm) olarak tespit edilmiştir. Kuzey Denizi'nde ise bu değerler 1.386 mm’ye kadar ulaşmıştır. Yumurta çapı su sıcaklığı ve besin içeriği ile ilişkilidir. Kış aylarındaki düşük sıcaklıkta doğal üreme periyodunda alınan yumurtaların diğer zamanlarda sabit sıcaklıklarda elde edilen yumurtalara göre daha büyük olduğu saptanmıştır. Aynı tür içindeki yumurtaların boyutları arasındaki farklılıklar anaçların beslenmesine, büyüklüğüne, yumurtlama zamanına, hormon uygulamalarına, ortam koşullarına, genetik faktörlere ve bölgesel farklılıklara bağlıdır. Bunlar aynı zamanda kaliteyi ve kantiteyi etkileyen faktörler arasında yer almaktadır. Yumurtalarda morfolojik ve genetiksel bozukluk yok ise inkübasyon koşulları aynı olduğunda yumurtanın büyük veya küçük olması larva çıkış oranını değiştirmez. İnkübasyona alınacak yumurtaların kaliteli olması ileride çıkacak larva kalitesi için çok önemlidir. Bu bozukluklar inkübasyon öncesinde ve inkübasyon süresince belirlenmelidir. Reküparatörlerden alınan yumurtaların %40’tan fazlası ölü ise bu grup üretime zorunlu kalınmadıkça alınmamalıdır. Blastomer bölünmelerinin eşit olmasına dikkat edilmeli, eksik bölünmelerin olup olmadığı tespit edilmelidir. Çok sayıda yağ damlası içeren yumurtalar yine zorunlu kalınmadıkça üretime alınmamalıdır. Yumurta içinde nokta şeklinde parçacıklar görülmesi ve blastoporun çıkıntı yapması embriyonik gelişim esnasında meydana gelen olumsuzluklardan kaynaklanan diğer bozukluklardır. Yumurtaların İnkübasyonu Uygun ortam şartlarında anaçlar tarafından bırakılan yumurtalar reküparatörlerden hassas biçimde toplanır. Yumurtalar toplama, tartım ve canlı-ölü ayrılması aşamalarında hava ile mümkün olduğunca az temas ettirilmeli ve çok miktarda yumurtanın üst üste birikmesi engellenmelidir. Yumurtalar uzun süre nakil edilecekler ise 15-20 litrelik plastik kaplar kullanılır. 24 saatlik bir taşıma için litreye 20.000 adet, 6 saatlik bir taşıma için ise litreye 80.000 adet yumurta konulur. Taşıma işlemi döllenmeden sonraki ilk 24 saat içinde yapılmalıdır. Taşıma kapları içerisindeki suyun oksijen değeri 9-11 mg/lt' ye yükseltilmelidir. Plastik kabın 3/2'sine su ve yumurta konulur. Kabın 3/1’ne ise saf oksijen basılır. Taşıma işlemi sonucunda açılım oranı %50-70 arasında değişmektedir. Yumurtalar inkübasyona alınmadan önce gerek duyulursa dezenfeksiyon işlemine tabi tutulmalıdır. Bunun için %5' lik Iadophor çözeltisinden bir litre deniz suyuna 10 ml konur ve yumurtalar içinde 8-10 dakika bekletilir. Ayrıca bu işlem için çinko içermeyen Malahit yeşili ile de 5 mg/lt oranında 40-60 dakika arası uygulama yapılarak tatbik edilir. Canlı yumurtalar temin edildikten sonra bunların inkübasyona alma işlemi başlar. İnkübatörlerin konulacağı havuzlar değişik yapıda olabilir. Yumurtaların inkübasyonu için en uygun sistem race-way tipinde olan havuzlara inkübatörlerin yerleştirilmesidir. Ayrıca larva tankları veya diğer yapıdaki tanklarda da bu işlem yapılabilir. Hassas bir çalışmanın yapılabilmesi ve kontaminasyonun engellenmesi için akuakültür tesisinde inkübasyon ünitesinin ayrı olması gereklidir. Bu ünitenin büyüklüğü ve ekipmanları tesis için gerekli yumurta miktarına göre dizayn edilir. İnkübatörlerin konulacağı tankların iç kısımları koyu renkli ve jel-kot kaplıdır. Kullanılan inkübatörlerin hacimleri 50-200 lt arasında değişebilir. İnkübatörler polyesterden yapılmış olup silindir koniktir. Silindir kısmı 300 m’luk plankton bezi ile kaplı olup konik kısım polyesterdir. Her inkübatöre alttan ayrı su girişi yapılabildiği gibi, bunların yerleştirildiği havuzlara da su giriş ve çıkışı direkt olarak yapılır. Tanklara gelen su önce 5 m' luk, sonrada 1 m'luk kartuş filtrelerden geçerek U.V. filtreye giriş yapar. Buradan da tanklara dağılır. Yapılan çalışmalarda levrek yumurtalarının ‰29-47 tuzlulukta çatladığı görülmüştür. Fakat iyi bir yumurta açılımı için tuzluluğun hem levrek hem de çipura yumurtaları için ‰34-38 arasında olması gerekir. ‰34 tuzluluğun altında yumurtalar semi-pelajik özellik gösterirler ve ‰33 tuzluluğun altında da tamamen çökerler. Levrek yumurtaları için en iyi inkübasyon sıcaklığı 14-16 0C arasındadır (Freddi, 1985). Temin edilen yumurtalar alındıkları ortamla aynı sıcaklıktaki inkübatör tanklarına yerleştirilmelidir. Sıcaklık farkı ±0.5 0C dereceyi geçmemelidir. Yumurtalar inkübatörlere ortalama 3000-5000 adet/lt olacak şekilde konulur. İnkübasyon süresince ışık kullanılmaz. İnkübatörlerin bulunduğu tanklarda saatte %40-60 su değişimi uygulanır. Su değişimi olmadan yapılan inkübasyonlar da açılım oranları %30-40 olarak tespit edilmiştir. Normal akışkanlı suda ise açılım %75-85 arasında olmaktadır. Yumurtaların Embriyolojik Gelişimi Spermin yumurtaya girmesi ile başlayan döllenme olayı, inkübasyon süresi adı da verilen embriyonun yumurtadan çıkışına kadar devam eden süreç ile son bulur. Tablo 1' de 15 ve 17 0C de levrek yumurtalarının embriyolojik gelişimleri diğer araştırmacılar ile birlikte verilmiştir. Levreklerde Larval Dönem Yumurtaların embriyolojik gelişimlerinin tamamlanması ve yumurta kapsülünü terk etmesi ile birlikte larval safhaya geçilir. Prelarval Evre Levrek larvalarının yumurtadan çıktıklarında ağız ve anüsleri kapalıdır. Larvalar pasif durumdadır, baş aşağı dururlar ve kendi vitellüs keselerinden sağladıkları enerji ile hayatlarını sürdürürler. Yumurtadan çıkan levrek larvalarının boyları 3.4-3.6 mm arasındadır. Vitellüs kesesi boyu 1.1-1.3 mm uzunluğundadır. Yağ damlası çapı ise 0.5-0.7 mm arasındadır. Ağız ve anüs kapalı olduğundan dışarıdan besleme söz konusu değildir. Larvanın sadece vitellüs kesesinden beslendiği bu döneme lecithotrophik periyot adı verilir. Vitellüs kesesi vücudun anteriorunda yer alır. Yağ damlası ise vitellüs kesesinin posteriorundadır. Anüs vücudun yaklaşık olarak ortasında yer alan 14-15. miyomerler altında yer alır. Su sıcaklığı vitellüs kesesinin tüketiminde ve ağız ile anüsün açılmasında en önemli faktördür. Pigmentasyon burunda, besin kesesinin ön kısmında, kuyruğun ventralinde, bağırsağın üstü boyunca, ağız bölgesinde ve anüsün üst tarafında yıldızsı yapıda belirginleşmeye başlamıştır. Pektoral yüzgeçler oluşmuştur, fakat kullanılmaz. İlk 24 saat içinde spazmadik yüzme vardır. İlk gün sonunda larvanın baş bölgesi yukarı doğru kalkar. Vitellüs absorbsiyonu devam etmektedir. Tuzluluğun düşürülmesi süresince ve vitellüsün absorbsiyonu ile larvalar tank ortamında yukarıdan aşağıya doğru homojen şekilde dağılırlar. Yumurtadan çıkmış prelarvaların davranışsal tepkileri esas olarak koklama duyusuna, ikincil olarak ise yanal çizgiye dayanır. Koku alma plakoidleri inkubasyonun 80. saatinde epidermal hücre katları içinde kabarcık şeklinde görülür. 65. saat civarında başın yan tarafında neusomast’lar görülür. Yumurtadan çıktıktan sonra vücut yüzeyinin yan tarafında 8 neuromast görülür. Yanal çizgideki neuromastlar baştakilerden daha büyüktür. Operkulum kenarlarında, gözlerin arasında ve kuyruk yarım dairesinde bulunurlar. Yanal çizgide de serbest neuromastlar mevcuttur. Larvanın tüm vücudunu saran bir primordial yüzgeç bulunur. Yüzgeç başın hemen arka kısmından başlayıp tüm kuyruğu geçer ve besin kesesinde son bulur. Yüzgeç ışınsız bir deri kıvrımı şeklindedir. Bu sayede larva suda hem yüzebilirliğini hem de gerek duyduğu O2 ihtiyacını karşılar. Yumurtadan henüz çıkmış larvaların ağız epitelyumu düzensiz bir şekilde ve yassı hücrelerden meydana gelen tek bir tabakadan oluşur. 3. güne doğru yer yer iki sıra hücreye rastlanır. Sindirim tüpü düz bir boru şeklinde ve 10 m kalınlığındadır. Sindirim tüpünün dorsalinde pankreas, ventral bölgesinde karaciğer farklılaşmamış küçük tomurcuksu yapıdaki hücrelerden oluşur. Mide bu dönemde bir kıvrım ve bir boğum ile belirlenir. Bağırsağın çapı mideninkinden daha fazladır. Bağırsak çeperi yumurtadan çıktıktan itibaren düz bir form izler. 1 ve 2. günlerde tek bir tabaka hücre vardır. 3. gün yoğun bir mitoz bölünme ile bu hücreler iki-üç tabaka haline gelir. Ağzı açılmamış larvanın bağırsak hücre çapları 40 hm dan daha küçük lipoprotein partiküllerinin taşınımını ve sentezini yapabilir (Diaz ve diğ., 1997). Lecithotropik dönemin sonunda larva bağırsak hücreleri fonksiyonel olmasına rağmen gelişim yavaştır. Vitellüs bol ve ana yağları içermesi ile temel besleyici rol oynar. İlk beslemeden sonra bağırsak hücreleri 200 hm çaplı lipoproteinleri sindirebilir. Lecithotropik dönem boyunca iç rezervler yavaş yavaş azalır ve sindirim kapasitesinin artması ile lecithoexotropik periyot denilen hem iç hem de dış besleme başlar. Bağırsak, larvada bir kapakçıkla postvalvular ve prevalvular bağırsak olmak üzere iki bölgeye ayrılır. Karaciğerdeki hepatik hücreler ilk günle beraber görülmeye başlar ve 10 m kalınlığındadır. 3. günden itibaren epetetial kanal ile larvaların sindirim tüpüne bağlanırken boyuda 110 m’a ulaşmıştır. Bu dönemde pankreasta gelişim proksimal, karaciğerde ise distal yöndedir. 2. günde sindirim tüpü 50 derecelik bir acı ile dönme hareketi yapar. Bununla beraber karaciğer sol laterale kayarken, pankreasta sağ laterale yerleşir. Safra kesesi karaciğer tarafından sarılır. Sindirim tüpünün dorsal bölümünde hava kesesinin ilk oluşumu başlar. Pankreas mesodermik hücre katmanları tarafından çevrilir. Hücre yapısı pyriformdur. Karaciğerde ise üçüncü günle beraber hepotoblast polirizasyon sonucu değişim redükte olunur. Bu dönemde henüz larva içinde organ oluşumları olduğundan sindirim olması söz konusu değildir. 3. günle beraber gözlerde pigmentasyon açıkça görülür. Hareket hala su debisi ile beraber olup larvalar 20-30 sn' de bir 2-3 sn yüzme hareketi yapar. Postlarval Evre Postlarval evre 15-16 0C 5.günde sonunda ağız ve anüsün açılması ile başlar. Bu dönmede ağız içinde mukositler oluşur. Bunlar ilk önce mukusla kaplanmış epitelium çukurları gibidir. Selüler çeperleri incedir. 7. güne doğru çene kıkırdakları ve kasları oluşmaya başlar. Salgı bezleri tam oluşmadığından sindirim mekanizması mükemmel değildir. Sindirim tüpü epitel yapıda dört-altı sıra hücreden oluşur ve kalınlığı 45 mikrondur. 8. güne doğru hücre sıra sayısı altı-sekiz adete ulaşır. Bu sırada bağırsak emici hücreleri işlevlik kazanmıştır. Bu dönem içinde 10-11. günlerde phanin dişlerin ilkel formları oluşmaya başlar. Mide bu dönemde daralmış bir yapı izleyerek boğumlaşmıştır. Bağırsaklara geçişi sağlayan valf mevcuttur. Midesel alt mukozayı çevreleyen kas dokusu bu günlerde iyice belirginleşmiştir. 12-15. günlerde rectum epitel hücrelerinin görülmesi proteinlerin yavaş yavaş emilmeye başlandığını gösterir. Protein emilimi pinoitosis ile hücre zarından yapılır. Yağların emilimi prevalvular bağırsaktan yapılmaktadır (Deplano ve ark., 1991). Karaciğer 13-14. günle beraber glikojeni depolayacağı bölgeyi oluşturur. 20. günle birlikte sindirim kanalı 60 µ boyuta ulaşır. Doğal olarak bu dönmede larvanın canlı yemler ile beslenmesi gerekir. Besin kesesinin çoğu absorbe olmasına rağmen az miktarda yağ damlası mevcuttur. Larva bu dönemde 60 derecelik açı içerisindeki besinleri görüp algılayabilir. İki gözün kesiştiği bölgedeki yansıması algıladıktan sonra 5-7 mm geri çekilme yaparak yılanvari şeklinde bir hareket ile avına saldırır ve tek hamlede yutar. Koku sistemleri ve yanal çizgi avlanmada diğer yardımcı faktörlerdir. Hava kesesi ilk dolumu da bu günlere rastlar. Hava kesesi oluşumu ve gelişimi, levrek larvalarında yaşama yüzdesini ve gelişimi sınırlayıcı temel fizyolojik yapıdır. Levrek genel olarak fizoglist türler içinde gösterilse de hava kesesi ile sindirim tüpünü birbirine bağlayan duktus pinomatikus’un post larval dönemde kopması ile parafizoglist türler içinde yer alır (Chatain, 1986). Levreklerde hava kesesi sindirim tüpünün dorsal diverkülünden köken alır. Üçüncü günde elektron mikroskobu ile hava kesesinin gelişen yapısı görülebilir. Larva 5.2 mm boya geldiğinde pankreasın sol tarafından gelişmeye başlar. Bu dönemde hava kesesi duktus pinomatikus ile sindirim tüpüne bağlıdır. Bu gelişim su sıcaklığıyla doğru orantılı olarak 5-6. günlerde şekillenir. Pankreas sağ taraftan hava kesesini sararken kese sindirim kanalının üstünde horizontal ve vertikal yapıda gelişmesine devam eder. Larva 5.8 mm boya ulaştığında vertikal büyüme açıkça görülür. Hava kesesinin gelişimi esnasında vitellüs kesesi ve yağ damlası hacimlerinde küçülme olur (Fırat, 1995). 5.2-6 mm boylarda hava kesesi içinde ilk hava kabarcığı görülür. Larva su yüzeyinden ilk hava kabarcığını yutarak kesesini şişirir. Hava kesesi hacim olarak büyümüş ve üzerinde peritenium parçaları şekillenmiştir. Hava kesesinin şişmesi iki safhada meydana gelir. Birinci safhada kendi içinde iki bölümde açıklanır. İlk dönem kırılgan bir hava kabarcığının olduğu şişme dönemdir. Hava kabarcığı kese hacmiyle sınırlanmamıştır. İkinci dönemi ise, ilk şişme olmadığında kesenin içinin loş ve karanlık bir yapı göstermesiyle tanımlanır. Bazen kese şişme gösterdiği halde içinde hava kabarcığı gözükmez. Bu şişme gibi gözüken yapı kese hücre duvarının kalınlaşmasından kaynaklanır. Bu anormal keseler lümenlerinde gaz yerine eosinofil jelatinöz madde içerir (Paperna ve diğ., 1977). Epitelyum hücrelerinin hipertrofisinin bileşimi ile oluşmuştur. İlk şişme olmadığı taktirde kese gelişimi şişmeden önceki dönemde durur ve fonksiyonelliğini kaybeder. Bu aşamadan sonra kesenin gelişimi imkansızdır (Chatain ve Dewavrin, 1989). Kese uzunluğu larva uzunluğunun % 3-5' i kadardır. İlk şişmenin gerçekleşebileceği maksimum. boy 6.5 mm' dir. 10.5 mm boyda kese içinde hava kabarcığı çok net bir şekilde görülürken, larva 11-12 mm boya ulaştığında ilk hava kabarcığının arkasında birincisinden daha küçük bir hava kabarcığı görülür ki buda ikici safhayı oluşturan bölümdür. Bu hava kabarcığı fizyon yoluyla ilk hava kabarcığı ile birleşerek keseye elipsoidal bir görüntü kazandırır ve keseyi arkaya doğru uzatır. Hava kabarcığı artık tek bir yapı gösterir. Bu dönemde kese boyu total uzunluğu 14 mm olan larva boyunun %10-12' si kadardır. 13-15 günlerde duktus pinomatikus dejenere olarak sindirim tüpünden ayrılır. Bundan sonra hava kesesinin doldurulması gaz bezi ve retya mirabilya ile gerçekleşir. Levrek Larva Yetiştirme Dönemleri Yumurtaların embriyolojik gelişimini tamamlayıp larvaların çıkması ile birlikte larva yetiştiriciliği de başlar. Larva yetiştiriciliği biyotik, abiyotik ve yabancı biyotik faktörlerin kontrol altına alındığı akuakültür tesislerinde yapılmaktadır. Larva yetiştirme periyodu larval dönem, sövraj (mikropartikül yeme geçiş) ve ön büyütme olarak üç bölümde gerçekleşir. Larval Dönem Prelarval dönemde, larvalar yoğun üretim koşullarında 80-200 adet/lt, olacak şekilde larva tanklarına yerleştirilir. İdeal stok yoğunluğu 100-125 adet/lt’dir. Tanklar silindir konik yapıda olup polyester malzemeden üretilmiştir. Hacimleri uygulanan tekniğe göre 2 m3'ten 15 m3'e kadar değişim gösterebilir. İdeal larva tankları 4-6 m3 hacmindedir. Havuzların iç yüzeyleri gel-coat ile kaplı olup koyu renklidir. Larvaların kolay izlenmesi için tanklara lomboz açılmalıdır. Havuzların etrafı rahat çalışmaya elverişli olmalı, alttan ve üstten su çıkışları mevcut olmalıdır. Bu tankların seçimi uygulanacak larva yetiştirme tekniği ile ilgilidir. Levrek larva yetiştiriciliğinde açık devre ve kapalı devre sistemler kullanılmaktadır. Açık devre sistemlerde su kriterleri larvanın gerek duyduğu şartlara göre ayarlanır ve üretim tanklarına gönderilir. Balıklar tarafından kullanılan su daha sonra deşarj edilir. Saatte %5 değişim ile başlayan su debisinin larva dönem sonunda saatte %50 çıktığı düşünüldüğünde kullanılan su miktarına bağlı enerji tüketiminin fazlalığı ortaya çıkar. Kapalı devre sistemlerde ise tanklarda kullanılan su önce toplama tankına gelir. Burada gerekli su yenilenmesi yapıldıktan sonra tuzluluğu tekrar ayarlanır. Buradan kum filtresine geçer ve beraberinde getirdiği süspansiyon haldeki partikül maddelerden ayrılarak ultraviyole filtreye gönderilir. Bu işlem sırasında bünyesindeki tüm canlı organizmalardan (bakteri, mantar, parazit, bazı virüsler vs.) arınarak biyolojik filtreye girer. Balık dışkıları yem atıkları ve ölü balıklardan dolayı yükselen amonyak miktarı bu aşamada aerobik bakteriler tarafından önce nitrite daha sonrada balıklar için zararlı etkisi olmayan nitrata indirgenir. İşlemleri tamamlayan su havuzlara geri dönmek üzere sistemi terk eder. Ancak havuzlara ulaşmadan önce bünyesinde getirdiği azot gazı fazlasını atmak ve oksijence %100 doygunluğa ulaşmak için saturasyon kolonlarından geçerek havuzlara gelir. Saturasyon kolonlarına girmeden önce suyun oksijen değeri 1.8-2.3 mg/lt'ye kadar düşmektedir. Bu sayede suyun O2 değeri tekrar 5-6 mg/lt’ye ulaşmaktadır. Ayrıca saturasyon kolonlarının içinde havalandırma sistemleri de mevcuttur. Kimi kapalı devre sistemlerde ultraviyole filtreler biyolojik filtrelerden sonra kullanılsa da havuzlarda gelişen patojen veya patojen olmayan mikroorganizmaların biyolojik filtrelere yerleşerek zaten zayıf yapıda olan aerobik bakterilerin yerini alması sistemin çalışmasını olumsuz etkiler (Timmons ve Losordo, 1994). Kapalı devre sistemler, suyun ısıtılmasında veya soğutulmasında kullanılan enerji açısından avantajlıdır. Bunun yanı sıra kapalı devre sistemlerde, larvalar için tehlikeli olan suyun fiziksel ve kimyasal değişimleri ani farklılıklar göstermez. Deniz ortamında özellikle yazın planlanan üretimlerde görülen bakteri patlamalarına karşı üretimi korur. Özellikle levrek larva yetiştiriciliğinde kullanılan düşük tuzluluk tekniğinin uygulanması ve tatlı su tasarrufu sağlanması yönünden avantajlıdır. Bununla birlikte kapalı devre suyunun her gün analizleri yapılarak amonyak miktarı kontrol edilmelidir, aksi halde ani ölümler görülebilir. Yetiştiricilikte sistem farkı gözetilmeksizin larva için gerekli olan fiziksel-kimyasal koşullar ve besleme özellikleri optimum düzeyde olmalıdır. İlk on günde ağız ve anüsün açılması, sindirim tüpünün faaliyete geçmesi ve hava kesesi doldurulması gibi çok önemli fizyolojik gelişimlerin olması ve larval başarıyı direkt olarak etkilemesi açısından yüksek sıcaklıkta çalışılmaktan kaçınılmalıdır. Su sıcaklığı ilk dönem 15-16 0C olup ortam karanlıktır (Bertolini ve diğ, 1991) (Tablo 2). Levrek larva yetiştiriciliğinde uygulan tuzluluk düşürme tekniği yaşama oranının olumlu yönde etkilemektedir (Johnson ve Katavic, 1986). Bunun yanı sıra hava kesesi oluşturma yüzdesini arttırması ve buna paralel olarak deformasyonun azalması bu tekniği daha da kullanılır hale getirmiştir. Tuzluluk ilk günden itibaren tedrici olarak düşürülür ve 5. günde doğal deniz suyu tuzluluğundan ‰26 tuzluluğa ulaşılır. 5-17. günler arasında bu tuzluluk değerinde sabit kalınır. 17-23. günler arasında aynı şekilde tuzluluk kademeli olarak arttırılarak doğal deniz suyu tuzluluğu düzeyine çıkarılır. Tuzluluk artırımında hava kesesi hipertrofisi ile karşılaşıldığında ‰26 tuzluluğa geri dönülmelidir (Saka, 1995). Oksijen değeri 5-6 mg/lt’dir. Türbitite miktarı 8.5-12 ITU'yu aşmamalıdır. Larva tanklarında nitritin (NO2) 0.013-0.016 mg/lt, nitratın (NO3) 0.062-0.068 mg/lt arsında olması üretim için idealdir (Equınoxe, 1990). 15-16 0C su sıcaklığında levreklerde prelarval dönem 5. günde sona erer ve postlarval dönem başlar. Ağız açılmadan önce tankların üzerinde biriken yağ tabakasının temizlenmesi için yüzey temizleyicileri tank yüzey alanına göre 1 veya 2 adet olarak yerleştirilir. Bu hava kesesi gelişimi için çok önemlidir. Larvalara uygulanan aydınlanma süresi ve yoğunluğu larvaların gelişimini, hava kesesi oluşumunu ve yaşama oranının etkiler (Cerqueria ve Chatain, 1991). Larva gelişimi artan aydınlatma koşullarında artarken, sürekli aydınlatma balıkların yaşama gücünü düşürür. Larva tanklarına prelarval evrede ışıklandırma uygulanmaz. Işıklandırma süresi ve şiddeti 5.günde 12 saat-50 lüks, 11.günde 13 saat-140 lüx, 17. gün ve sonrasında 16 saat–920 lüx olarak ayarlanmalıdır (Equipe Merea, 1990). Larval dönem beslemede canlı yem kaynakları olan rotifera (Brachionus plicatilis) ve çeşitli orijine sahip artemiaların (Artemia sp.) nauplii ve metanauplii formları kullanılır (Barnabé ve Guissi, 1993). Dünyanın çeşitli bölgelerinde farklı orijinlere sahip artemia yumurtaları temin edilmektedir. Bunların açılım oranları, besin içerikleri, bir gramdaki yumurta sayıları ve açılım sonrası nauplii boyları değişim gösterir. Artemia Systems’in ürettiği ve larva üretim tesislerinde yoğun olarak kullanılan AF tip artemiaların nauplii boyları yaklaşık 460-480 μ olup, 10 mg/gr’dan daha fazla miktarda HUFA içerirler. Bu artemiaların enleri 165-175 μ arasında değişim gösterdiğinden ağız açıklığı 400-420 μ olan levrek larvalarında ilk günden itibaren de kullanılabilir. Fakat bir haftalık dönemde rotifer ile besleme yapılması yaşama oranını olumlu etkiler. AF tip artemia naupliilerinin protein oranları %48-52, yağ oranları %19.3-21, karbonhidrat oranları %12-13, kül miktarları %8.1-8.7 ve nem oranları %4.8-5.2 arasında değişim gösterir. İkinci aşamada yine yoğun olarak kullanılan EG tip artemia naupliileri ise daha düşük oranda protein miktarına (%45-47) ve daha az doymamış yağ asitleri (5-7 mg/g HUFA) oranına sahiptirler. Ayrıca boyutları daha büyük olup 500-520 μ arasındadır. 16. günden itibaren EG1 olarak kullanılan artemia formları ise EG tip artemia naupliilerinin 24 saat boyunca SELCO türevli zenginleştirici maddeler ile beslenerek büyütülmesi ile elde edilir. SELCO ürünleri yüksek oranda HUFA (200 mg/gr), vitamin, antioksidan ve yağ (%60-65) içerdiklerinden larva gelişiminde önemli rol oynarlar. 24 saat sonunda metanauplii formuna gelen artemiaların boyutları 700-750 mikron arasındadır (Artemia Systems, 1991). Larvalara verilen canlı yemlerin tipleri ve mililitredeki oranları Tablo 2'de gösterilmiştir. Larval dönem sonunda yumurta kalitesine de bağlı olarak uygulanan yetiştirme tekniklerine göre başarı oranı %40'a kadar ulaşabilir. Sövraj (Mikropartikül Yemlere Geçiş) Dönemi Larval dönemin tamamlanması olarak kabul edilen 38-42 günler arasında larvalar canlı yemden mikropartikül yeme adapte olacakları sövraj bölümüne alınırlar. Bu bölümde işletmenin kapasitesine göre belirlenmiş sayıda 10-15 m³’lük tanklar kullanılır. Tankların dip kısımları koniktir. Su çıkışları merkezi ve diptendir. Balıkların yaşına bağlı olarak su çıkışlarına yerleştirilen krepinler göz açıklıkları 500, 1000 ve 2000 mikron arasında değiştirmektedir. Havuzlarda 1500-2000 lüx aydınlatma şiddeti sağlayacak ışıklandırma sistemleri mevcuttur. Ünitede aydınlatma süresi 16 saat olup otomatik zamanlayıcılar yardımıyla ayarlanmaktadır. Mikropartikül yemlerin dağıtımında otomatik yemlikler kullanılmaktadır. Bu bölümde de açık devre ve kapalı devre sistemler kullanılabilir. Ortama girilen toz yem su kalitesini çok hızlı değiştirdiğinden kapalı devre sistemlerde su kalitesinin sürekli kontrolü sağlanmalıdır. Hastalık risklerinin azaltılması yönünden açık devre sistemlerin bu aşamada kullanılması daha faydalı olmaktadır. Tanklara verilen su mutlaka kum ve ultraviyole filtreden geçirilerek larvalara verilmelidir. Bunların yanı sıra tanklarda saf oksijen girişi, debi metre, saturasyon kolonları ve yüzey temizleyicilerinin bulunması üretimi olumlu yönde etkiler. Mikropartükül yeme alıştırma dönemi, balıkların ortalama 19-21 mm total boya ve 35-40 mg ağırlığa ulaştıkları 38-42 günlerde başlar. Bu dönemde havuzlardaki balık yoğunluğu litrede 10-12 adettir. Saf oksijen kullanıldığı durumlarda bu oran 18-20 adet/lt'ye kadar çıkabilir. Mikropartikül yeme geçiş döneminde kullanılan Artemia’lar metanauplii II formunda olup HUFA bakımından larval dönemde metanauplii I formunda olduğu gibi zenginleştirilir. Levrek balıklarının sövrajında kullanılan mikropartikül yemler ilk dönem 80-150 mikron büyüklükten başlayarak larva gelişimine göre 500 mikron büyüklüğe kadar kullanılır. Sövraj uygulaması 15-16 gün devem eder. Larvalara günlük verilen artemia miktarı azaltılırken mikropartikül yem miktarı arttırılır. Bu dönemde mikropartikül yem besleme oranı canlı ağırlığın %8-10 kadardır. Sövraj boyunca su sıcaklığı ortalama 20 0C olup, tanklarda su debisi %50-100 arasında değişim gösterir. Ölümler sövrajın ilk günlerinde toz yeme adapte olamamaya bağlı olarak artma eğilimindedir. Larva yaşama oranı normal şartlar sağlandığı taktirde ortalama % 80-90 arasında değişim gösterir (Equipe Merea, 1990). Sövrajı tamamlayan larvalar ortalama olarak 350-400 mg ağırlığa kadar bu bölümde kaldıktan sonra ön büyütme ünitesine alınır. Ön Büyütme Bu sistemde kullanılan tankların teknik özellikleri sövraj ünitesinde kullanılan tanklar ile aynıdır Gelişim özelliklerine göre 70-80. günlerde sövraj ünitesini terk eden yavrular boylanarak, hava keseli ve hava kesesiz bireyler birbirinden ayrılır. Ön büyütmede kapalı devre sistem kullanılmaz. Balıklar burada ağ kafeslere çıkarılmak için gerekli olan 1.5-2 gram ağırlığa kadar büyütülürler. Ancak ülkemiz koşullarında yavru bireyler 0.5-1 gram arasında da kafes sistemlerine çıkarılmaktadır. Ön büyütme ünitesinde balıklar sürekli gözlenerek, hastalık risklerine karşı gerekli önlemler alınmalıdır. Ön büyütme ünitesinde de hacimleri 10-15 m3 arasında değişen silindir tanklar kullanılmaktadır. Su sıcaklığı 19-21 °C olup 16 saat ışıklandırma uygulanır. Tanklarda doğal deniz suyu tuzluluğu kullanılır. Tanklara 3000-5000 adet/m3 arasında yavru stoklanabilir. Su değişimi balık büyüklüğüne ve stok yoğunluğuna göre saate %80-150 arasında değişmektedir. Yemleme oranı %6 başlayıp %4 kadar düşme gösterir. Yaşama oranı hastalık çıkmadığı süre içinde %90-95 arasında değişim gösterir. Büyütme Akuakültür tesislerinden veya doğal ortamdan temin edilen levrek yavruları porsiyonluk boyuta getirilmek üzere karasal ve denizel ortama kurulan tesislerde farklı teknikler kullanılarak büyütülür. Ekstansif Yetiştirme Yöntemi Bunun için sahil şeridinde bulunan, dalyan ve gölet gibi doğal alanlardan yararlanılır. Buralarda yavru temini tamamen doğadan olup, ortamda diğer türlerle birlikte polikültür yapılmaktadır. Bahar aylarında daha bol besin içeriğine sahip olan dalyan alanlarına giren yavrular, yaz sonunda suların soğuması ile birlikte sıcaklığı sabit olan derin sulara göç ederler. Bu sırda dalyan sahasının çıkışına kurulan kuzuluklardan yakalanırlar. Yeterli pazar boyuna gelmeyen bireyler dalyan sahalarında yada kafes ünitelerinde besiye alınabilir. Bu amaçla dalyan alanları kendi içinde bölünerek derinleştirilir ve motopomplar ile su değişimi sağlanır. Özellikle İtalya sahillerinde yoğun olarak bu tür sistemlere rastlanmaktadır. Valikültür adı verilen bu teknikte dışarıdan besin takviyesinde de bulunulmaktadır. Bu tür alanlarda yatırım maliyetleri düşük olmasına rağmen sistemin kontrol zorlukları ve birim alandan alınan ürün miktarının az olması sistemi olumsuz yönde etkiler. Ancak ülkemizde dalyan sahalarında ortalama 20-50 kg/hektar olan verim, bu tür yapılarda hektar başına ortalama 200 kg olmaktadır. Su kalitesinin ve besleme tekniklerinin yükseltilmesine bağlı olarak 500 kg/hektar ürüne kadar çıkılabilmektedir. Yarı Entansif Yetiştirme Yöntemi Bu sistemler karasal alanlarda kurulu olan toprak veya beton havuz sistemleri ile portatif olarak kullanılan branda havuzları kapsamaktadır. Havuzların şekilleri ve büyüklükleri değişik yapılarda olabilir. Bu sistemlerde su değişimi ve beslenme kontrol altındadır. Su kalitesini arttırma için sistemlere oksijeneratörler eklenebilir. Ayrıca toprak havuzlar jeo-membran madde ile kaplanmakta ve su geçirmeyen özelliğe sahip olmaktadırlar. Bu sayede su debisi yükseltilmesi ile stoklama yoğunluğu arttırılmaktadır. Toprak havuzlarda hektar başına 1-4 ton arası ürün alınabilir. Bu oran beton havuzlarda ve iç yüzeyi kaplı toprak havuzlarda 2-5 kg/m3 arasında değişmektedir. Entansif Yetiştirme Yöntemi Dünyada ve ülkemizde yoğun olarak kullanılan bu yöntemde yüzer ağ kafes yapılarında yetiştiricilik yapılmaktadır. Akuakültür çalışmalarının gelişmesine paralel olarak birim alandan daha çok verim almayı sağlaması acısından su içerisinde yetiştirme sistemleri ağırlık kazanmıştır. Günümüzde kıyısal alanlarda, açık denizlerde ve okyanuslarda bile güvenlik içinde kurulabilecek sistemler planlanmaktadır. Günümüzde kıyı ötesi kafeslerde 2500-6000 m3' arası değişen hacimlerde tek bir sistemde yıllık 150 ton üretim yapılabilmektedir (Özden ve diğ., 1998). Kafes sistemleri sabit kafesler, yüzer kafesler, dalgıç kafesler ve döner kafesler olarak 4 ana grupta toplanır. Ağ kafeslere kurulduğu yerin özelliklerine ve su kalitesinin durumuna göre 15-30 kg/m3 arasında stoklama yapılabilir. Balıkların gelişiminde besleme ve su sıcaklığı önemli rol oynar. Besleme rejimlerinde yem kalitesinin yanı sıra balıkların ağırlıkları ile su sıcaklığı değerleri dikkate alınarak günlük besleme yapılmalıdır. Büyütme döneminde levreklerde kullanılan yemlerde protein %46-52, selüloz %2-3, ham kül %12-13, ham yağ % 10.5-11.5 kalsiyum % 1.6-2.2 ve fosfor %1.4-1.5 arasında olması, bunun yanı sıra vitaminler ve iz elementlerin yeterli miktarda kullanılması gelişimi olumlu yönde etkiler. Ege Bölgesi koşullarında 4 aylık süreyi akuakültür tesislerinde geçiren levrek yavrularının ağ kafeslere çıktıktan itibaren 14-15 aylık sürede 3-4 gram ağırlıktan 370-420 gram ağırlığa ulaşmaktadırlar. Bu süre ve ağırlık artışı yetiştirme ortamının ekolojik şartlarına, kullanılan yemin içeriğine, balık stok yoğunluğuna, hastalık etkenleri ve larva kalitesi göre değişim gösterebilir. SONUÇ Kompleks bir yapı izleyen levrek yetiştiriciliğinde meydana gelen sorunlar canlının gelişiminin yeteri kadar bilinmemesinin yanı sıra yönetim ve üretim tekniklerinin eksikliklerinden de meydana gelmektedir. Üretimlerde temin edilen yumurta ve larvaların kalitesi uygun şartlar sağlanarak kontrol altında tutulmalıdır. Cinsiyet kontrolü çalışmaları, suni seks dönüşümü için ideal periyodunun tayini ve ploidlik manuplasyonları için uygun deneysel şartlar (örneğin; monoseks üretimi için ginogenezis) üzerinde çalışılması gereken konulardır. Bu çalışmalara, premature dişilerin varlığının engellenmesi, deformasyon oranlarının azaltılması ve gelişimin yükseltilmesinin eklenmesi ile yeni ufuklar açılacaktır. Ayrıca, soy ve yumurtlamanın kalitesi üzerine anaç beslemenin etkileri ile ilgili çalışmalar oldukça hızlamıştır. Bu çalışmaların direkt sonucu, yumurta ve larval üretimin etkisini net bir şekilde arttıracaktır. Bunun yanı sıra ileri genetik çalışmalara hız verilerek, anaç seçim programları, çiftleştirme özellikleri ve yüksek kalite yem formulasyonları üzerine çalışmalar planlanmalıdır. Yetiştiricilik kalite ve kantititesinin arttırılması gelecekte uygulanacak bu tekniklerin başarısı ile ilgilidir. LİTERATÜR Artemia Systems, 1991. User’s guide Artemia Systems N.V. Belgium Alpbaz, A., G., 1990. Deniz Balıkları Yetiştiriciliği. E.Ü. Su Ürünleri Y.O. No: 20 Alvarino, J.M.R., Carrillo, M., Zanuy, S., Prat, F., Mananos, E., 1992a. Pattern of sea bass development after ovarian stimulation by LHRHa. Jour. of Fish Bio., 41, 965-70. Alvarino, J.M.R., Zanuy, S., Prat, F.Carrillo, M.,&Mananos, E., 1992b. Stimulation of ovulation and steroid secretion by LHRHa injection in the sea bass (Dicentrarchus labrax): effect of time of day. Aquaculture, 102, 177-86. Barnabé, G., 1971. Bases biologiques et ecologiques de l’aquaculture. Lavoisier-Tec. Doc. 55 pp. Barnabé, G., Rene, F., 1972. Reproduction Controlle du Loup Dicentrarchus labrax et Production en Masse D’alevins. C.R.Acad Sci, 275: 2741-2744. Barnabé, G. 1976. Chronologie de la morphogenese chez le loup ou bar Dicentrarchus labrax (L.) (Pisces, Serranidae) obtenu par reproduction artificielle. Aquaculture 8 : 351 - 363. Barnabé, G., Paris, J., 1984. Ponte avancée et ponte normale du loup Dicentrarchus labrax (L.) a la Station de Biologue Marine et Lagunaire de Séte. In L’Aquaculture du Bar et des Sparidés (eds. G. Barnabé & R. Billard), pp. 63-72. INRA, Paris. Barnabé, G., Barnabé-Quet, R., 1985. Avancement et amélioration de laponte induite chez le loup Dicentrarchus labrax (L.) a l’aide D’un analogue de LHRH injécte. Aquaculture, 49, 125-32. Barnabé, G., Guissi, A., 1993. Combined effect of diet and salinity on European sea bass Larvae D. Labrax. J. World Aqua Soc. 24 (4) :439-450. Bertolini B., Boglione G., Cataudella S., Finoia M.G., Marino G., Monaco G., 1991. Temperature induced developmental anomalies in sea bass (Dicentrarchus labrax) embryos and larvae. Acta Embryological Morphological Exp., 12 (1):77-79. Brusle, J., Roblin, C., 1984. Sexualite du loup Dicentrarchus labrax en condition d'elevage controle. In l'Aquaculture du bar et des Sparides. /eds Cerqueria, V. R., Chatain, B., 1991. Photoperiodic effects on the growth and feeding rhythm of European sea bass (Dicentrarchus labrax), larvae in intensive rearing. Larvi’ 1991 Fish and Crustacean larviculture symposium, 15: 304-306. Chatain, B., 1986. La vesie natoire chez Dicentrarchus labrax et Sparus auratus. aspects morphologiques du developement. Aquaculture 53: 303-311. Chatain, B, Dewavrin, G. 1989. Influence des anomalies de development de la vessie natatoire sur la mortalite de D. labrax au cours du sevrage. Aquaculture 78:55-61 Dendrinos, P., Thorpe, J. P., 1985. Effects of Reduced Salinity on Growth and Body Composition in the European Bass D. labrax( L.). Aquaculture 49(1985) 333-858, 25p. Deplano, M., Connes, R., Diaz, J. P., Barnabe, G., 1991. Variation in the Absorption of Macromolecular Proteins Larvae of the Sea Bass Dicentrarchus labrax L. During transition to the Exotrophic Phase. Marine Biology 110, 29 36 (1991). Devauchelle, N., Coves, D. 1988. The characteristics of sea bass (Dicentrarchus labrax) eggs: Description, biochemical composition and hatching performances. Aquatic Living Resourch. 1 : 223- 230. Diaz, J.P., Guyot, E., Vigier, S., Connes, R., 1997. First event in lipid absorption during post-embryonic development of the anterior intestine in gilthead sea bream. Journal of Fish Biology, Vol.51, No.1, pp.180-192. Equinoxe, 1990. Le magazine des reources vivan les de la mer. No.31 IFREMER Nantes-France pp.42-43 Equipe Merea, 1990. L’ elevage intensif du loup, Dicentrarchus labrax. Tec. Rapor. Chemin de Maguelone Palavas-France. Fabre-Domerque, B., 1905. Introduction a l'etude de la pisciculture marine, In ''Travail du Laboratoire de Zoolpgie Maritime de Concarneau''. Vuibert et Nony Ed. Paris, 205-243 FAO, 1991. Fiches FAO d'identification des especes. Zone de Peche 37. Medit. et M. noire Fırat, K. 1995. Levrek (D. Labrax) Larvalarında (0-45 gün) Hava Kesesi Oluşumu ve Larval Gelişim Üzerine Olan Etkileri. Doktora Tezi. E.Ü. Fen Bil. Ens. Freddi, A., 1985. Sea bass (Dicentrarchus labrax) and gilthead sea bream (Sparus aurata) larval rearing. FAO. Projet Regional Mediterraneen de Developpement de L’aquaculture, 62 pp. Jennings, S., Pawson, M. G., 1991. The Development of sea bass, Dicentrarchus labrax, eggs in relation to temperature. Journal of Marine Bilogie 71: 107 - 116. Johnson, D. W., Katavic, I., 1984. Mortality, Growth and Swim Blader Stress Syndrome of Sea Bass (Dicentrarchus labrax) Larvae Under Varied Environmental Conditions. Aquaculture 38(1984) 67-68. Johnson, D., Katavic,I., 1986. Survival and growth of sea bass larvae as influenced by temperature, salinity and delayed inital feeding. Aquaculture. 52 : 11-19. Kennedy, M., Fitzmaurice, P., 1972. The biology of the sea bass (Dicentrrachus labrax, in Irish waters. Journal of Marine Biological Association of the UK, 52, 557-597. Licas, D., 1988. Marine hatchery technology-Systems Reviews. In aquaculture Engineering Technologies for the Future. IchemE Symposium Series No: 111, pp. 65-76.EFCE Publication Series No: 66, Stirling, UK. Loy, A., Cataudella, S., Corti, M., 1996. Shape Changes During of the Sea Bass, (Dicentrarchus labrax L.) in Relation to Different Rearing Conditions. Envir. Biol. Fish. New York. Marino, G., Boglione, C., Finoia, M. G., Bronzi, P., Monaco, G., Bertolıni, B.& Cataudella, S. 1991. Effect of incubation temperature on embriyonic development and hatching of Dicentrarchus labrax (L.) eggs. Larvi ‘91-Fish and Crustacean Larviculture Symposium, EAS, 15 : 230 - 232. Özden, O., Güner, Y., Alpbaz, A. G., Altunok, M., 1998. Kıyı Ötesi Ağ Kafes Teknolojisi. E.Ü. Su Ürünleri Fakültesi Dergisi. Cilt:15 Sayı:1-2 Paperna, I., Colorni, A., Gordın, H., Kıssıl, G., 1977. Disease of Sparus aurata in Marine Culture at Elat. Aquaculture, 10: 195-213. Saka, Ş. 1995. Levrek (D. Labrax) Larva Yetiştirme Teknolojisinde Tuzluluk Değişimlerinin Üretime Etkileri. Doktora Tezi. E.Ü. Fen Bil. Ens. Saka, Ş., Fırat, K., Kamacı, O. 1999. The Development Of European Sea Bass (Dicentrarchus labrax L.) Eggs In Relation To Temperature. TÜBİTAK Türk Veteriner ve Hayvancılık Dergisi (Baskıda) Timmons, M.,B., Losordo, T.M., 1994. Aquaculture Water Resue Systems: Engineering Design and management. Elsevier Science B.V., New York Salvatorelli, F. B. G., Santulli, A., D’ Amelio, V., 1989. Otogenetic variation of same enzymes in Dicentrarchus labrax. Boll. Zool. 56 . 1 - 6. Uçal, O. 1985. Levrek ( Dicentrarchus labrax L. ) biyolojisi ve fingerling seviyesinde yetiştirilmesi. Doktora Tezi. E. Ü. Fen Bil. Ens. Uçal, O., Benli, H.A., 1993. Levrek balığı ve yetiştiriciliği. Tarım ve Köy İşleri Bakanlığı Su Ürünleri, Araştırma Enstitüsü Müdürlüğü. Bodrum. Seri A, Yayın No. 9, 72 s.

http://www.biyologlar.com/levrek-dicentrarchus-labrax-lin-1758-baliginin-biyolojisi-ve-yetistirme-teknikleri

Aminoglikozidler

Duyarlı organizmalara karşı konsantrasyona bağlı bakterisidal aktivite gösterirler.Bazısı P.aeriginosa ve diğer Gr(-) basillere,bazısı Mycobakterilere etkilidir.Paramomisin kolonun protozea enfeksiyonlarında,Spektinomisin N.gonorhae tedavisinde kullanılmıştır.Aerob Gr(-) basil ve Gr(+) koklara etkisi Penisilinler veya Sefalosporinlerle additif veya sinerjistik olabilir.Rezistans az düzeydedir ve tedavi sırasında ortaya çıkışı nadirdir. Nefrotoksisite,ototoksisite ve nöromuskuler blokaj potansiyelleri vardır.Alerjik reaksiyonlar nadirdir. İsimler ve kaynaklar:Kimyaya giriş Neomycin,Kanamycin,Gentamisin fermentasyon ürünüdür.Amikacin,Netilmicin,Dibekacin, İsepamisin doğal ürünün semisentetik deriveleridir. Yapı Aminosiklitol denen amino grubu taşıyan 6 üyeli halka vardır.Spektinomisin aminosiklitol halkasına karşın amino şeker veya glikozitik bağı olmamasıyla farklıdır. Neomycin,Paramomycin ve Kanamycin ailesi(Kanamycin,Tobramycin,Amikasin,Dibekacin) Streptomycesten,Gentamisin Microspora türünden elde edilmiştir. Amikacin kanamisin A nın,Netilmisin sisomicinin semisentetik türevleridir. Amino veya hidroksil gruplarının uzaklaştırılması antibakteriyel ve toksik potansiyellerinin kaybına yol açar. Kimyasal karakterleri Suda iyi çözünür,organik solventlerde çözünmezler.Bu lipit içeren hücre membranlarından sınırlı geçişlerini açıklar. Yapıları dondurma,4 saat 100°C ye kadar ısıtma veya çözücü pH sını birkaç saat 3 ten 12 ye kadar değişmesiyle bozulmaz.pH 7.4 te fazlaca (+) tirler veya katyoniktirler. (+) yük antimikrobial aktivite ve toksisiteye sebep olur.Antimikrobial aktivite alkalin pH lı ortamda artar,asidik pH da azalır;birçok enfekte dokunun asidik ortamı aminoglikozid monoterapisinin zayıf etkinliğinden sorumlu olabilir. b-laktam antibiyotiklerle kimyasal etkileşirler,antibakteriyal etkileri kaybolur.İnfüzyondan önce aynı solüsyonda karıştırılmamalıdır. Antimikrobial etki mekanizması Bakteri dış membrana bağlanmaları pasiftir ve enerji gerektirmez.Sonuçta hücre duvarında delikler açılır ve geçirgenliği değişir.Hücre duvarından uptakei ve penetrasyonu aerobik ve enerji bağımlı aktif transport mekanizmasıyla olmaktadır.Bu yüzden aktiviteleri anaerobik ortamda çok azalır. Membranı geçtikten sonra ilaçlar irreversible olarak bakteri stoplazmasına hapsolur. Enerji bağımlı faz İyonik bağlanmadan sonra uptake enerji bağımlı yavaş başlangıç fazı ve takip eden hızlı faz olarak ikiye ayrılabilir.İkiside enerji bağımlıdır.EDP-1;Ca ve Mg gibi divalan katyonlarla, hiperosmolarite ile,düşük pHta,anaerob ortamda inhibe olabilir.Apselerin anaerob ortamında, idrarın hiperozmolar asidik olması durumunda etkileri azalır. Birçok bakteri EDP-2nin %25ten fazlasının tamamlanmasıyla ölümcül yara alır.External aminoglikozid konsantrasyonu arttıkça ilacın içerde EDP-2yi tetikleyecek konsantrasyonu daha çabuklaşır. Aminoglikozid-Ribozom birleşimi Bakterial ribozomun 30sdeki 16s bölümüne irreversible bağlanarak protein sentezinin başlangıcını bloklayıp bakterisidal etki gösterir.Bu açıklama Makrolidler,Linkozamidler, Kloramfenikol,Tetrasiklin gibi diğer protein sentezi inhibitörlerinin bakteriostatik olmasından dolayı yetersiz olabileceğinden bakteri ölümü multifaktoriyaldir. Streptomycin 30s alt birimine bağlanırken diğer aminoglikozidler hem 30s hemde 50s alt birimlerine bağlanır. Rezistans Bakteriler Aminoglikozidlere karşı kendilerini uptake azaltımı,modifiye edici enzimlerin sentezi veya ribozomal bağlanma yerindeki değişiklik mekanizmalarıın kombinasyonuyla korur.En yaygın ve önemli olanı antibiyotiğin inaktivasyonudur. Enzimatik modifikasyon Bu direnç stafilokoklarda ve enterokoklarda görülmekle birlikte esas olarak Gr(-) aerob basillerde en fazladır.Hem Gr(+) hemde Gr(-)lerce 3 sınıf enzimle inaktive olurlar; 1-Fosfotransferaz;hidroksil grubunun ATP bağımlı fosforilasyonu, 2-Nükleotidiltransferaz(Adeniltransferaz);hidroksil grubunun ATP bağımlı adenilasyonu, 3-Asetil transferaz;bir amino grubunun AsCoA bağımlı asetilasyonu. Stafilokok ve enterokoklardaki bir enzim asetilleyici ve fosforilleyici enzimlerin bileşimidir ve bu kombinasyon Streptomycin ve Spektinomycin dışındaki bütün aminoglikozidleri inaktive eder. Modifiye edilen aminoglikozid ribozomlara zayıf bağlanır,EDP-2 uptake oluşamaz ve rezistans ortaya çıkar. Aminoglikozid rezistansını kodlayan genler genellikle ekstrakromozomal bakteri plasmidleri ve transposonlarda bulunmaktadır.Bu genler Gr(+) ten Gr(-) e aktarılabilir.Hem konjugatif hemde non-konjugatif plasmidlerde bulunmuştur.Plazmide bağımlı inaktivasyon enzimleri ile gelişen direnç kanamisinin ve son zamanlarda tobramisinin klinik uygulamadaki yerini kısıtlamıştır.Amikasin bu enzimlere en az duyarlı olan aminoglikoziddir. Aminoglikozdleri modifiye edici enzimler periplasmik aralıkta yerleşmiştir. Ribozom bağlanma yerlerinin değiştirilmesi 16s rRNA bağlanma yeri enzimatik aktivite veya mutasyonel modifikasyon sonucu değişebilir.Ribozomal direnç daha çok Streptomycine karşı gösterilmiştir. Azalmış aminoglikozid alımı Azalmış aminoglikozid alımlı mutant aerob Gr(-) basil ve stafilokok identifiye edilmiştir.P. aeroginosa da da bulunmuştur.Bütün aminoglikozidlere çapraz direnç görülür ama rezistansın derecesi enzimatik modifikasyonun sonucuyla olandan daha azdır. Aminoglikozidlerle monoterapi esnasında Staf. küçük koloni varyantları ortaya çıkabilir. Küçük koloniler genelde daha az virulandır,aminoglikozid tedavisi sırasında bakterial persistansın bir mekanizmasıdır,tedavi kesildikten sonra orijinal virulan fenotipe dönebilir ve klinik relapsa sebep olur.Eş zamanlı b-laktam tedavisi problemi önler. Hızlı,erken konsantrasyon bağımlı duyarlı bakteri öldürümünü takiben geçici aminoglikozid direnci gözlenmiştir.Refraktör period PAE periodu sonrasında sonuçlanıp yeniden gelişme zamanına geçebilir.Bu adaptif rezistans olarak adlandırılır.Aminoglikozid uptake inin enerji bağımlı fazının geçici bozulmasının sonucu olduğuna inanılmaktadır. Uptakein enerji bağımsız fazları azalmış permeabiliteye dayanan rezistansa yol açabilir.P. aeroginosa için hücre duvarı lipopolisakkaritlerinde değişiklik tanımlanmıştır. Aminoglikozid rezistan enterokoklar Enterokoklar aminoglikozidlerin düşük konsantrasyonlarına rezistandır.Aminoglikozid uptakeinin aerobik oksidatif metabolizma gerektirmesinden dolayı bu rezistansın zayıf aktif ilaç transportuyla sonuçlanan düşük derece hücre membran oksidatif metabolizmasını yansıttığına inanılmaktadır. Enterokokların aminoglikozid direnci belirtilen 3 mekanizmanın biri veya fazlasının sonucu olabilir.Hedef bölgede değişiklik ve ilaç permeabilitesine müdehale hücre kromozomunda mutasyonun sonucu iken enzimatik inaktivasyon plazmidler ve transpozonlar aracılığıyla olur. Hücre duvarı etkin b-laktam veya glikopeptid antibiyotikle aminoglikozid kombinasyonu sinerjistik bakterisidal aktivite ile sonuçlanır. Hücre duvarı etkin ilaç aminoglikozidin ribozomun 16s bölümüne ulaşmasını arttırır.Klinik rezistans ilacın uptakei ve ribozomal hedefe bağlanmasıyla aminoglikozidin enzimatik modifikasyonu arasındaki dengenin sonucuna bağlıdır. Enzim-Substrat spesifitesindeki farklılıktan dolayı yüksek düzey rezistansı için hem gentamisin hem de streptomisini test etmek önerlmektedir. Aminoglikozid rezistansının klinik epidemiyolojisi Aerobik Gr(-) basillere etkili penisilinlerden farklı olarak rezistans aminoglikozid tedavisi kürü esnasında nadiren çıkar.Aminoglikozid rezistansı incelendiğinde bunun ya uzun süre maruz kalmayı yada yanıklı ve kistik fibrozlu hastalardaki gibi organizmanın fazlaca inoküle olması gerektiği gözlenmektedir. İn-vitro antimikrobial aktivite Aminoglikozidler aerobik ve fakültatif Gr(-) basillerden oluşan geniş spektruma konsantrasyon bağımlı bakterisidal aktivite gösterir.Gr(+) bakterilere etkinlikleri kısıtlıdır. Spektrumundaki organizmalar Enterobakterlerden Pseudomonas ve Haemophilus türlerine kadar değişir.Metisilin duyarlı Staf. aureus inhibe edilir.Staf.lara genellikle etkiliyken piyojen Strep.lar nadiren duyarlıdır.Gr(+) koklara bağlı enfeksiyonlarda b-laktam ve vankomisin gibi antibiyotiklerle sinerjik etkilerinden yararlanmak amcıyla kombine tedavide kullanılırlar. Streptomycin M.tbc.e en etkili iken Amikasin M.avium intrasellulare ve atipik mikobakterilere daha etkilidir.Amikasin ve kanamisininde anti-Tbc. etkinliği vardır.Yersinia pestis için streptomycin seçilebilecek bir ilaçtır ve Francuella tularensis için hem streptomycin hem gentamisin başarılı bulunmuştur. Kanamisinin spektrumu P.aeroginosaya önemli etkisinin olmaması ve rezistan enterobakter gelişiminden dolayı sınırlanmıştır. Aminoglikozidlerin önemli etkisi oladığı diğer bakteriler: Strep. pnömonia, Strep.maltophila, Burkholderia (Pseudomonas) cepacia,Bacterioides, Clostridium ve diğer anaerobik organizmalardır.Richetsia,Mantarlar,Mikoplazma ve viruslarada klinik önemli etkisi yoktur. Listeria ve diğer Gr(+) basillerin çoğu aminoglikozidlere dirençlidir,Hemophilus ve Neisseria duyarlıdır.Duyarlı bakterilerde plasmide bağımlı inaktivasyon enzimlerine bağlı dirençte klinik kullanımı etkilemektedir.Gr(-) aerob basillerdeki aminoglikozid direnci en az amikasine karşı saptanmıştır. Haemophilus ve Leigonella ya in vitro etkisi olmakla birlikte klinikte bu enfeksiyonlar için kullanılmazlar.Leigonella intrasellülerdir ve aminoglikozidlerin intrasellüler penetrasyonu azdır.Buna karşın Brucella,Tbc.,Tularemi,Yersinyoz gibi başka intrasellüler hastalıkların tedavisinde kullanılmaktadır.Streptomycin,gentamisin ve daha az derecede netilmisin terapötik konsantrasyonlarda intrasellüler E.coli ye bakterisidal etki gösterir. Gonore enfeksiyonları için sadece Spektinomisin kullanılmıştır.Aminoglikozidler diğer ilaçlarla kombine olarak Staf.,Strep.,Enterokok,Listerya ve Mycobacteria enfeksiyonlarını tedavide kullanılmıştır. Paramomisin intestinal parazitlere karşı aktiftir.GIS ten emilmediği için Enteomoeba hystolitica tedavisinde alternatif kullanılabilir.AIDS lilerin Cryptosporidium parvum enfeksiyonlarında yararlı olabilir. Üre aminoglikozidlerin GÜS patojenlerine etkisini inhibe eder.Bu düşük pH ve yüksek osmolaliteye bağlıdır. Anaeroblar,Fakültetif anaeroblar,Funguslar,Listeria,Nocardia,Spiroketler İn vitro antimikrobial aktivitenin zaman içinde gidişatı Aminoglikozidler hızlı bakterisidaldir ve bakteri öldürmeleri antibiyotik konsantrasyonu arttıkça artar. Post antibiyotik etki Aminoglikozidler gibi bazı ilaçlar için PAE ile tüm doz arası boyunca serum konsantrasyonlarının MIC değerinin üstünde olması şart değildir.Aminoglikozid konsantrasyonu ve oksijen gerilimi arttıkça PAE uzar,test ortamının pH sı azaldıkça kısalır.İmipenemle aminoglikozid kullanımı hariç;ki bu aminoglikozidin tek başına olduğundan daha uzun süre PAE sağlar,herhangi bir b-laktamla kombinasyonda PAE aminoglikozidinkidir. Antimikrobial sinerji Aminoglikozidle hücre duvarı aktif antimikrobial (Penisilin,Sefalosporin,Monobaktam, Karbapenem,Glikopeptid) sinerjisi (+) bir etkileşimdir.Etki additiften fazladır. MRSA suşları için aminoglikozid + hücre duvarı aktif ilaç kombinasyonu endike değildir. Aminoglikozidlerin bakterisidal etkisi Kloramfenikol veya Tetrasiklin gibi bakteriostatik ajanlarca antagonize edilebilir.Burda aminoglikozidin enerji bağımlı uptake inin inhibisyonu ve ribozomun mRNA üzerinde hareketine müdehale postulatları vardır. Hayvan modellerindeki enfeksiyonlarda antibakterial etkinlik Doz rejiminin önemi Tahmin edileceği üzere aminoglikozid uptake ini kolaylaştırmak için hem penisilinin hemde aminoglikozidin aynı anda var olması gerekmektedir.Tersine penisilin duyarlı Strep. endokarditi için penisilin ve tobramisin kombinasyonlarının total günlük doz veya dozlama rejimlerinden bağımsız olarak eşit etkili olduğu bildirilmiştir. Aerob Gr(-) basiller için günlük tek doz aminoglikozidin aynı dozun bölünerek uygulanmasıyla aynı etkide olduğu bildirilmiştir.Sonuçlar aminoglikozidlerin konsantrasyon bağımlı öldürme ve PAE sinden ibarettir.Nötropenik hayvanlarda aminoglikozidlerin PAE leri daha kısadır.Ek olarak b-laktamın etkili kan seviyesi devamlı sağlanmalıdır. İlaç rezistansının önlenmesi Aminoglikozidin kombinasyonun parçası olarak kullanımı aminoglikozide veya birlikteki ilaca rezistan bakteri çıkışını önliyebilir veya geciktirebilir. Farmakoloji Uygulanım Aminoglikozidler 15-30 dakikalık iv. Periodda uygulanır.Yüksek tek doz kullanımda infüzyon süresi nöromuskuler blokaj yapabilecek hızlı serum konsantrasyonunu önlemek için 30-60 dakikaya uzatılabilir.İm. aminoglikozid hızla tamamen emilir.Emilim hipotansif ve yetersiz doku perfüzyonlu hastalarda gecikebilir. Çok az lipofilik olduklarından GIS ten minimal emilir.Terapötik indeksleri dardır.Hepatik ensefalopati ve bozuk renal fonksiyonlu hastalarda oral neomisin kullanımından sonra sağırlık oluşabilir.İnflame deriye topikal uygulanım minimum emilime neden olur.Buna karşın yaygın yanıklı veya başka ciddi deri yaralanmalı hastalarda ilaç emilimi olabilir ve toksisite riski vardır.Plevral boşluk veya peritoneal kaviteye damla damla verilebilir.Emilim hızlıdır. Aminoglikozidlerin hızlı emilim ve nöromusküler blokajı bildirildiğinden abdominal irrigasyon solusyonlarında kullanımı önerilmez.Buna karşın mesane temizleyici ve aerosol olarak kanda ölçülebilir konsantrasyonları olmadan kullanılmşlardır. Dağılım Streptomycin hariç plazma proteinlerine çok az bağlanırlar.Düşük derece proteine bağlanan ve suda yüksek derecede çözünen diğer ilaçlar gibi vasküler alana ve birçok dokunun interstisyel alanına serbestçe yayılırlar.Büyük ölçüde ekstrasellüler sıvıya yayılırlar.Asit,yanık ve bazı ağır enfeksiyonlardaki ödematöz durumlarda yayılım hacmi artar,şişmanlarda azalır. Transport mekanizmaları olan renal tübüler hücreler ve iç kulak hücreleri hariç biyolojik membranlardan az geçerler. Parenteral uygulama bronş sekresyonlarında düşük konsantrasyona yol açar.Daha yüksek konsantrasyonlar aerosol şekliyle sağlanabilir. Kan-BOS,Kan-Beyin bariyerini az geçerler.Penetrasyon yenidoğanda daha iyidir.İntratekal uygulamayla BOS ta yüksek düzey sağlanırken intraventriküler düzeyi düşüktür, intraventriküler uygulamada ise ikisindede yüksek konsantrasyon sağlanır.Yetişkinde Gr(-) basillere bağlı menenjitte intraventriküler yol önerilir.Yenidoğanda intraventriküler yol iv. yoldan fazla etkili değildir ve daha toksiktir. Renal tübüler hücre absorbsiyonu ve salınımından dolayı tek dozdan sonra idrar seviyeleri birkaç gün terapötik dozdan yüksek kalır. Sinovial sıvıya kolay geçerler.Streptomycin hariç safra içine giremezler,çeşitli salgı ve dokularda,hücre içinde düşük düzeyde bulunurlar.Kan-Göz engelinide çok az geçerler; endoftalmit tedavisinde direkt intravitreal enjeksiyon önerilir. İnflamasyon varsa peritoneal ve perikardial boşluklara penetrasyonları artar.Fötal dolaşıma az da olsa geçerler.Azitromisin,Klindamisin,İmipenem,Metranidazol,TMP,Vankomisin gibi hamilelikte sınırlı kullanılabilecek ilaçlardandırlar. Metabolizma Vücutta metabolize edilmezler. Atılım Parenteral dozun %99 u değişmeden böbrekten glomerüler filtrasyonla kalanda feçes ve tükrükle atılır. Farmakokinetik 3 fazlıdır;1.(a):İlacın vasküler alandan ekstravasküler alana yayılımının sonucudur. 2.(b):İlacın plazmadan ekstravasküler alana atılımının sonucudur.GFR ile ilişkilidir ve doz rejiminde en önemli fazdır.1 haftadan ufaklarda ve DDA lılarda yarı ömür uzar.Yarı ömür febril hastalıklarda kısalırken renal fonksiyonu azaltan durumlarda uzar.Yaşlılarda yarı ömür uzaması yaşa bağlı renal fonksiyon bozulmasındandır. 3.(g):Böbrekte biriken ilacın uzamış ve yavaş eliminasyonudur.Doz hesaplamalarında göz önüne alınmaz. Uygulanan dozla serum düzeyleri ararsında iyi bir korelasyon yoktur. Toksisite Spektinomisin dışında ranal prox. kıvrımlı tubul hasarı,kohlea veya vestibular apparata hasar ve nöromuskuler blokaj potansiyelleri vardır.En sık ve en önemli yan etkileri bunlardır. Hipersensitivite,iv. infüzyon yerinde flebit nadirdir.Plevral boşluğa,abdominal kaviteye, BOS a verilmeleri irritasyon yapmaz.Hepatotoksisite,fotosensitivite yapmazlar.Hematopoeze, koagülasyon kaskadına yan etkileri yoktur. Klinik nefrotoksisite Nefrotoksisite insidansı %0-50 arasında değişir.En fazla Gentamisinde gözlenir. GFR de azalmaya neden olan prox.tübülde hasarla peritübüler aralıkta aminoglikozid birikimine bağlıdır.Tübüler hasar reversible dır ve az sayıda hastada tedavinin devamına rağmen iyileşme bildirilmiştir. Sıklığını arttıran kofaktörler;yüksek yaş (çocuklarda sık değildir),furasemid gibi diüretiklerle (Volüm ve elektrolit konsantrasyonunu azaltarak indirekt etkili olurlar), sikloserin, amfoterisin B (Kendisinin nefrotoksisite potansiyeli vardır.),vankomisin(Çocuklarda değil), sefalotin,Foskarnet ve iv. radyokontrast ajanlar (Teorik olarak kendi toksisite potansiyelleri vardır.),Klindamisin (İstatistiki olarak risk faktörüdür.) gibi ilaçlarla birlikte kullanım, böbrek ve karaciğer yetmezliği, dehidratasyon, aminoglikozidin serum düzeylerinin yüksekliği ve tedavi süresinin 10 günü aşması şeklinde hastaya,birlikteki ilaca ve aminoglikozide bağlı olan faktörler olarak sınıflanabilir. Özellikle septik şok veya sepsiste olanlar olmak üzere hipotansif hastalarda renal yetmezlik riski artar.Bu durumda enfeksiyona bağlı düşük perfüzyon,koagülopati,sitokin aracılı endotel hasarı ve başka faktöler GFR azalımında etyolojik faktör olabileceğinden aminoglikozidlerin rolü belirsizdir. Nefrotoksisite tedavinin birkaç gününden sonra serum kreatininde artmayla belli olur.Tersine 1 günde veya daha kısa sürede kazara çok yüksek doz verimi ATN ile sonlanmamıştır. Streptomycin nadiren nefrotoksisiteye sebep olur.Tobramisinin gentamisinden daha az, Amikasin gentamisinle eşit,Netilmisin tobramisinden daha az nefrotoksisite riski taşır. Nefrotoksisite doz azaltımı veya tedavi kesimiyle reversable dır.Çalışmalarda günlük tek doz aminoglikozid güvenli ve etkili tedavi metodu olarak görünmektedir.Günlük tek doz ilaç toksisitesini önlemez ama riski azaltır. Birlikte kullanılan ilaçların GFR yi azaltmasının riski arttırdığı belirtilmektedir.Çift kör prospektif bir çalışmada Cephalotin + Aminoglikozidin bir Penisilin + aminoglikozidden daha nefrotoksik olduğu bildirilmiştir.Ceftazidimin gentamisinin enzimürisini arttırdığı görülmüştür. Febril nötropenik hastalarda Gentamisin veya Tobramisin + Karbenisilin veya Tikarsilinin aminoglikozidin başka b-laktamla kombinasyonundan daha az nefrotoksik olduğu görülmüştür.Eş zamanlı Piperasilin kullanımıylaysa risk artımı görülür.Piperasilinin daha az Na içeriğinin farkı açıklıyabileceği söylenmiştir. Deneysel olarak aminoglikozid nefrotoksisitesini arttıran Siklosporin ve Sisplatinin klinik olarak nefrotoksisiteyi arttırmadığı belirtilmelidir. Renal fonksiyonlarda bozulma olursa tedaviyi kesmek önerilir.Birkaç gün içinde başka nefrotoksinlerin,hipotansiyonun,başka etyolojiye bağlı renal kortikal nekrozun ve başka klinik faktörlerin yokluğunda spontan iyileşme olur.Anürik renal yetmezliğe ilerleyiş nadirdir. Pseudomonas endokarditi gibi tedaviyi kesmenin önerilmediği durumlarda aminoglikozid dozu ayarlanır ve tedaviye devam edilir.Aminoglikozid tedavisine devam ederken renal fonksiyonların düzeldiği bildirilmiştir. Doz ayarlaması; 1-Bir defada uygulanacak doz hastanın kreatinin değerine bölünerek bulunan miktar doz olarak uygulanır, 2-Doz azaltılmadan doz aralığı açılarak ayarlama yapılabilir. KLİNİK AMİNOGLİKOZİD NEFROTOKSİSİTESİ İÇİN RİSK FAKTÖRLERİ ARTTIRANLAR AZALTANLAR HASTAYA AİT Yaşlı Genç Önceden böbrek hastalığı olan Normal böbrek fonksiyonlu Hipovolemik,Hipotansif Normotensif Hepatik disfonksiyon Karaciğer fonksiyonları normal AMİNOGLİKOZİDE AİT Yakın zamanda aminoglikozid tedavisi Yakın zamanda aminoglikozid kullanmama Yüksek doz Düşük doz 3 gün veya daha uzun süre kullanma 3 günden az kullanma Gentamisin gibi ilaç seçimi Tobramisin gibi ilaç seçimi Sık doz arası Günlük tek doz EŞ ZAMANLI KULLANILAN İLAÇLARA AIT Vancomycin Geniş spektrumlu penisilin Amfoterisin B Furosemid Clindamycin Piperasilin Metoksifluoran İv. kontrast maddeler Serum düzeyleri ve nefrotoksisite Hayvan deneylerinde aminoglikozid dozu arttıkça serum düzeylerinin ve toksisite riskinin arttığı gözlenmiştir.Antibakterial etkinlik için yeterli düzeyin olduğundan emin olmak ve çok yüksek dozdan kaçınmak için serum zirve seviyesi ölçülmelidir.Serum kreatinini 3-5 günde bir izlenmelidir. Ototoksisite Aminoglikozidler irreversible vestibülotoksik ve kohleotoksiktir.Nadiren ikisi birlikte olabilir.Tedaviyi sonlandırdıktan sonra tekrarlayan karşılaşmalarla ortaya çıkabilir.En fazla Streptomycinde görülür. Streptomycine bağlı işitme kaybı ve baş dönmesi bildirilmiştir.İlginç olarak aynı hastada hem nefrotoksisite hem ototoksisite görülmesi alışılmış değildir. Kohlear toksisite İnsidans:Az sayıda aminoglikozid kullanıcısı işitme kaybından yakınır,asemptomatiklerde yüksek frekans audigramlar tekrarlandığında insidans %62 olarak bildirilmiştir. Kohleanın dış tüylü hücreleri aminoglikozidlere en duyarlı hücrelerdir,bunlar yüksek frekanslı seslerin duyulduğu yerdedir.Konuşma sesinde kaybın anlaşılması için 25-30 dB kayıp olması gerekir.Bu yüzden hasta anlamadan bile kohlear hasar oluşabilir. Patofizyoloji:Aminoglikozid toksisitesinin yeri iç kulaktaki corti organının dış tüylü hücreleridir.Toksinin intrasellüler hedefi bilinmemektedir.Bir postulata göre Gentamisin Fe’le birleşir ve toksik serbest radikaller üretir.2. hipoteze göre Aminoglikozidler kohlear sinapslardaki glutamat reseptörlerini aşırı aktive ederler. Tüylü hücre kaybı irreversibledır. Kalıtsal risk:En büyük risk genetik predispozisyon olabilir. Mutant rRNA aminoglikozidlere bağlanır.İlginçtir ki;daha toksik ilaçlara bağlanma (paramomisin,neomisin) diğerlerinden (gentamisin,tobramisin) daha sıkıdır. Diğer risk faktörleri:Risk uzun tedavi,özelllikle böbrek yetmezlikli hastalardaki gibi yüksek serum konsantrasyonları,hipovolemi,özellikle Etakrinik asit gibi ototoksinlerle eş zamanlı kullanım ile artar.Toksik potansiyelin sırası;Neomisin>Gentamisin>Tobramisin> Amikasin>Netilmisin. Eş zamanlı loop diüretikler ve Vankomisin kullanımındada risk artar. Klinik özellikler:Ototoksisite azalmış işitme ve vestibüler imbalansla belli olur. Kohlear hasar ilaç kullanımını bıraktıktan günler veya haftalar sonra olabilir.Kümülatif doz ve tedavi süresi serum konsantrasyonlarından daha önemlidir. Hem kohlear hem de vestibüler toksisite riski renal yetmezlikli hastalarda daha yüksektir. Asemptomatik yüksek ton işitme kaybı daha sık bildirilmiştir;ki öncelikle bu olur. Bazı hastalar erken hasarı gösterebilecek tinnitus veya kulakta dolgunluk hissinden yakınabilirler. Vestibüler toksisite İlaç toksisitesinin hedefi ampulla kristanın tip I tüylü hücreleridir.Bulantı,kusma,vertigo ile kuşkulanılır.Nistagmus olabilir.Tüylü hücre rejenarasyonu olasıdır. Korunma Tedaviyi uygun olduğu kadar kısa tutarak ve peryodik olarak renal fonksiyonları değerlendirerek ototoksisite riski minimalize edilebilir.Tedavi 4 günden fazla sürecekse hastanın odyometri ile yüksek frekans sesleri işitmesi kontrol edilebilir. Nöromuskuler blokaj Nadir ama ölümcül olabilen bir etkidir.Genellikle nöromuskuler iletimi etkileyen bir hastalık durumunda veya eş zamanlı ilaç kullanımında ortaya çıkar.Serum ilaç konsantrasyonunun hızlı artımıda risk faktörüdür. Klinik belirtileri;solunum kaslarında güçsüzlük,flask paralizi,dilate pupil olabilir.DTR ler (-), azalmış veya (+) olabilir.İlaçla karşılaşma intraperitoneal,İv.,İm.,intrapleural,oral,topikal veya retroperitoneal olabilir.Neomisin en potent olanıdır.Streptomisin kullanımında da sık bildirilmiştir. Risk D-tubakürarin,süksinilkolin veya benzer ilaç kullanımıyla artar.Hipomagnesemi, hipokalsemi,Ca kanal blokerleri riski arttırabilir.İnfant botulizmli hastalar risk altındadırDaha önceden var olan solunum depresyonuda risk yaratır.Myastenia gravis ve Parkinson hastalığı olan kişilerde,anestezi sonrası görülebilir. Blokaj presinaptik asetil kolin salınımının inhibisyonu ve post sinaptik asetilkolin reseptörlerinin blokajının sonucudur.Aminoglikozidler Ca un presinaptik bölgeye girişini engeller.Bu asetil kolin salınımından önce gereklidir.Neomisin presinaptik salınımı bozmada en etkili iken, Streptomisin ve Netilmisin post sinaptik en etkilidirler.Blokaj iv. Ca-glukonat uygulanımıyla hızla düzeltilebilir.İnfüzyonu 20-30 dakikada veya daha uzun sürede yapmayla önlenebilir Klinik indikasyonlar Ampirik tedavi Gentamisin,Tobramisin,Amikasin P.auroginosa yıda içerecek şekilde Gr(-),aerob basillere bağlı olduğu düşünülen enfeksiyonların ampirik tedavisinde etkilidir.Aminoglikozidler in vitro S.aureus a etkilidir ama eş zamanlı anti-stafilokoksik ß-laktam veya Vankomisin kullanılmaması halinde 24 saat içinde rezistan küçük koloniler oluşabilir.Enterokok türlerine etki eş zamanlı penisilin veya Vankomisin kullanımını gerektirir.Pnömokok veya anaeroblara etkileri yoktur.Additif veya sinerjistik etki için ß-laktam,Vankomisin veya anaeroblara etkili bir antibiyotikle kombine edilirler.Bazı mycobakteriel enfeksiyonlar hariç bir aminoglikozidi bir fluorokinolonla kombine etmeye gerek yoktur. Belirtilen enfeksiyonların ampirik tedavisinde başka antimikrobiklerde eşit etkiyi sağlıyabilir. Febril nötropenik hastalarda aminoglikozid monoterapisiyle yüksek oranda yetersizlik olduğundan aerob Gr(-) basillere etkili bir ß-laktamla kombine kullanılır. Klinik deneyler geniş spektrumlu penisilin ve sefalosporinlerin, ß-laktamazsız ß-laktam ve fluorokinolonların aminoglikozidlerin Gr(-) basillere etkisinin yerini alabileceğini göstermektedir. AMİNOGLİKOZİDLER İÇİN AMPİRİK İNDİKASYON ÖRNEKLERİ(Diğer antibiyotiklerle kombine başlangıç kullanımı) Enfeksiyon tipi Örnek Olası bakteriyemi Kaynak bulunamayan ateş Yanık yarası Yanık yarası enfeksiyonu Enfektif endokardit Strep.,Enterokok,Staf. Intra-abdominal Apendisit,Divertikülit,Kolesistit,Peritonit Menenjit Post-travmatik,Post-operatif Nötropeni ve ateş Kemoterapi sonrası Okuler Endoftalmit Osteomyelit/Septik artrit Post-op. Veya Post-travmatik Otit Diabetik hastada maligne external otit Pnömoni Respiratuara bağlı pnömoni Pyelonefrit Kronik Foley kateter enfeksiyonlu hastalar Seksüel geçişli hastalık PID Deri-Subkutanöz doku Enfekte diabetik ayak Spesifik tedavi Eğer P.auroginosa izole edilirse bir aminoglikozid bir antipseudomonal penisilin (Tikarsilin) veya sefalosporinle (Seftazidim) kombine edilir,Rifampisinde eklenebilir.Non-nötropenik orta ciddiyette GÜSE unda aminoglikozidle monoterapi yeterli olabilir. P.auroginosa için Tobramisin daha etkili olduğunda tercih edilebilir.Gentamisin Serratia ya daha etkilidir.Diğer aerob Gr(-) basiller için Amikasin,Gentamisin,Netilmisin ve Tobramisin eşit etkinlikte görünmektedir. Bruselloz tedavisinde Gentamisin + Doksisiklinin,Tularemide Streptomycin ve Gentamisinin etkinliği kanıtlanmıştır. Aminoglikozidler görüldüğü gibi genelde kombinasyon tedavilerinde kullanılır.Değişik sınıflardan aerob Gr(-) basillere etkili ilaçların artmasıyla aminoglikozid tedavisine 2-3 günden sonra devam etmemek hem olası hemde önerilendir.Böylece hem aminoglikozidlerin etkinliğinden yararlanılır hemde toksisite riskinden kaçınılır. AMİNOGLİKOZİDLER İÇİN SPESİFİK ENDİKASYONLAR PATOJEN AMİNOGLİKOZİD KOMBİNASYONDA KULLANILAN İLAÇLAR Aerob Gr(-) basil Klebsiella Amikasin,Gentamisin,Netilmisin,Tobramisin Antipseudomonal Pen.,Geniş spektrumlu Sef. Enterobakter aerogenes Amikasin,Gentamisin,Netilmisin,Tobramisin Antipseudomonal Pen.,Geniş spektrumlu Sef. Serratia marcescens Gentamisin Antipseudomonal Pen.,Geniş spektrumlu Sef. Francisella tularensis Streptomycin,Gentamisin Brucella abortus Gentamisin veya Streptomycin Doksisiklin Yersinia pestis Streptomycin,Gentamisin Vibrio vulnifikus Amikasin,Gentamisin,Netilmisin,Tobramisin Geniş spektrumlu Sef. Aerob Gr(+) kok Viridans strep. Gentamisin Pen. G Enterococcus faecalis Gentamisin Pen. G Staf. aureus Gentamisin Nafsilin Staf. epidermidis Gentamisin Vancomisin (Rifampin) N.gonorrhoeae Spektinomisin M.avium-intracellulare Amikasin Çoklu M.tbc. Streptomycin Çoklu Entamoeba histolytica Paromomycin Cryptosporidium parvum Paromomycin Profilaksi GIS,GÜS cerrahileri hastaya enterokok bakteriyemisi riski yaratır.Valvüler kalp hastalığı varsa Ampisilin + Gentamisin profilaksisi önerilir.Penisilin alerjik hastalarda ampisilin yerine Vankomisin kullanılabilir. Özetle; Streptomisin; 1-Tbc. tedavisinde genellikle INH ve Etambutolle birlikte, 2-Bakteriyel endokarditte penisilinle kombine, 3-Brusellozda tetrasiklinlerle birlikte, 4-Tularemi ve vebada ilk ilaç olarak kullanılır. Neomisin;topikal veya barsak sterilasyonu amacıyla oral kullanılır. Kanamisin;yedek bir antitüberkülostatiktir. Yalnızca İYE da tek başlarına kullanılırlar,bunun dışında genelde bir ß-laktamla kombine kullanılır. Başlıca indikasyonları; 1-Hastanede gelişen pnömonilerden genellikle Gr(-) basiller sorumlu olduğundan tedavide bir antipseudomonal penisilin veya sefalosporinle kombine bir aminoglikozid kullanılır. 2-Nasokomial bakteriyemilerin ampirik tedavisinde bir aminoglikozidle bir ß-laktam kombine kullanılır. 3-Hatanede yatan hastalarda ürolojik cerrahi bir işlem sonucu veya ürogenital anomolisi olanlarda çoklu dirençli bakterilerin etken olduğu ağır ürogenital enfeksiyonlarda genellikle bir 3. kuşak sefalosporinle kombine kullanılır. 4-Bakteriyel endokarditlerin ampirik tedavisinde sinerjik etkilerinden yararlanmak amacıyla genellikle penisilinle kombine kullanılır.Etken üretilebilirse antibiyograma göre bir ß-laktamla Streptomisin veya Gentamisin kombine edilir. 5-İntraabdominal infeksiyonların tedavisinde;bir aminoglikozid,Klindamisin,bir 5-nitroimidazol türeviyle veya Sefoksitinle kombine kullanılır. 6-Nötropenik hastada ateş durumunda bir anti-pseudomonal ß-laktamla bir aminoglikozid birlikte kullanılır. 7-Hastanede gelişen infeksiyöz artrit ve osteomiyelit tedavisinde kombine tedavide aminoglikozidler yer alır. 8-Pseudomonaslara bağlı maligne otit ekstarna tedavisinde aminoglikozidler, bir anti-pseudomonal penisilin veya anti- pseudomonal sefalosporinlerle birlikte kullanılır. 9-Pseudomonas ve enterobakter gibi dirençli Gr(-) basillere bağlı menenjitlerde,3. kuşak sefalosporinlerle kombine olarak kullanılırlar.Aminoglikozidler BOS a tedavi edici dozlarda geçemezlersede menenjit tedavisinde sinerjik etkilerinden yararlanmak amacıyla veya intratekal ya da intraventrüküler uygulanırlar. KLİNİK KULLANIMLARI:TEK BAŞLARINA;Gr(-) bakteriyal enfeksiyonlar Üriner sistem enfeksiyonları Nosokomial pnömoni Menenjit Bakteriyemi Diğer(Osteomyelit,Peritonit vb.) KOMBİNE TEDAVİDE:Pseudomonal enfeksiyonlar İnfektif endokardit Nötropenik konakçıda ciddi enf. Intraabdominal ve pelvik enf. Brusellozis Tbc. Aminoglikozidlerin doz ayarı Normal renal fonksiyonlu hastalar için aminoglikozidler multiple dozda uygulanabilir,bu Streptomycin ve Amikasin için 2×1,Gentamisin,Tobramisin;netilmisin için 3×1 dir. Multiple günlük doz Yükleme dozu:Bu doz renal fonksiyonlardan bağımsızdır. Ciddi yanıklı,asitli,ödematöz durumlarda dağılım hacmi artar.Tersine dehidratasyon veya kas yıkımı dağılım hacmini azaltır. İv. tedavi edilen hastalar için yükleme dozu 15-30 dakika içinde verilmelidir. İdame dozu:Hesaplanması böbrek fonksiyonlarının değerlendirilmesini gerektirir.GF yaşla ve bazı hastalıklarla azalır.GFR ını endojen keratinin klirensi yansıtır. Kas kitlesinde ciddi kayıplı hastalıklar düşük serum kreatinine yol açar. Normal böbrek fonksiyonu:Serum zirve ve daimi seviyelerinin idame dozunun 2.-3. dozlarından sonra ölçümü önerilir.3-5 günde bir serum kreatinine bakılır.Kreatinin değeri stabilse aminoglikozid ölçümü şart değildir.Böbrek fonksiyonları değişirse doz yeniden hesaplanır. Renal fonksiyon yetmezliği:Doz ayarlamasında 2 metod vardır; 1-Aynı dozda araları açmak, 2-Dozu azaltıp Gentamisin ve Tobramisin için 8,Amikasin için 12 saatte birle devam etmek. Dializ hastalarında dozlama:Hemodializ,peritoneal dailiz aminoglikozid klirensini arttırır. Hemodialize alınan hastalarda kabaca dolaşan aminoglikozidin 2/3 ü alınır.Aminoglikozid klirensi dializ membranın yapısına,dializ süresine,hastanın kan basıncına bağlı olarak değişir. Aminoglikozidin post dializ dozundan sonra serum zirve seviyesinin ölçümü önerilir. Günde tek doz uygulama Günde tek doz aminoglikozid tedavisi konsepti 3 farklı ama ilişkili gözlemden kaynaklanmıştır; 1-Hayvanlarda deneysel nefrotoksisite ve ototoksisitenin günlük tek doz uygulamayla aynı dozun 2-3 doza bölünerek uygulanmasından daha az ciddi olması;Günlük tek doz verilen hayvanlar renal kortexte daha az ilaç biriktirirler.Aynı sonuç elektif nefrektomiden önce aminoglikozid almayı kabul eden hastalarda da gözlenmiştir. 2-Aminoglikozidlerin in vivo ve in vitro aerob Gr(-) basillere PAE göstermesi;PAE nin süresi arttıkça aminoglikozid zirve konsantrasyonu artar.Normal hayvanlarda PAE nötropenik olanlardan uzundur. 3-Aminoglikozidlerin antibakteriyal etkinliğinin yüksek zirve konsantrasyonuyla artımı. Günlük tek doz uygulama enfekte hayvan modellerinde güvenli ve etkili bulunmuştur. Klinik çalışmalar:Özet olarak günlük tek aminoglikozid uygulaması; 1-Geleneksel multiple doz metodu kadar etkilidir. 2-İlaca bağlı nefrotoksisite ve ototoksisite riskini azaltır. 3-Daha ucuz ve kolaydır. 4-Enterokok endokarditli hastalarda kullanılmamalıdır. 5-Hamilelik,Kistik fibroz,aerob Gr(-) basil menenjitlerive osteomiyelitte kullanımı için daha ileri çalışmalar gerekmektedir. 6-Çok ağır,ventile edilen hastalarda bile nöromusküler fonksiyonu kötüleştirmemektedir.Buna karşın hızlı iv. infüzyondan sakınılmalıdır. Total günlük doz-Normal böbrek fonksiyonlu:Normal böbrek fonksiyonu CrCl 80 ml/dk olarak tanımlanır.Bu hesaplama serum kreatininin 0.5 mg/dl olduğu az kas kütlelilerde yetrsiz kalabilir. Bir yaklaşım FDA nın kanıtlanmış multi doz rejimleri için olanın toplamını kullanır; Gentamisin,Tobramisin için 3×1.7 mg/kg dan 5.1 mg/kg/g,Netilmisin için 6 mg/kg/g, Amikasin için 15 mg/kg/g.Bu metodun avantajı dozdan 12-18 saat sonra serum düzeyinin 1 µg/ml nin altına düşeceğinden ve nefrotoksisite riskini azaltacağından emin olmaktır. Disavantajı;ödematöz durumda (KKY,asit)artan volümden veya bakteriyeminin sonucu olarak kapillerlerden sızıntı yüzüden artmış ilaç dağılım hacmine bağlı olarak Gentamisin ve Tobramisin için hedflenen serum konsantrasyonu 16-24 µg/ml nin sağlanmasının yetersizliğidir. 2. bir metod ortalama serum konsantrasyonunu ve bakterisidal aktiviteyi arttırmak için Gentamisin veya Tobramisinin günlük dozunu 7 mg/kg/g e arttırmaktır.Yüksek doz artmış volümlü hastalarda avantajlıdır ve nöromusküler blokaj bildirilmemiştir.Multiple günlük dozda olduğu gibi obesite söz konusuysa ayarlama yapılmalıdır. Çok ağır hastalar için Gentamisin ve Tobramisin 7 mg/kg/g den başlanıp sonradan birkaç gün içinde 5.1 mg/kg/ge inilebilir. Total günlük doz-Bozuk böbrek fonksiyonlu:Bir metod günlük dozu CrCl indeki düşmeyle orantılı olarak azaltır. CrCl i 30-80 ml/dk olanlar için doz aralığı 24 saat,30 ml/dk dan azlar için 48 saate uzatılabilir. CrCl i 40 ml/dk dan az olanlar için günlük tek dozun teorik avantajı ortadan kalkar. 2. metod total günlük dozu azaltmadan dozların arasını açar. Günlük tek doz rejimlerinde serum düzeyinin izlenmesi:Kürün başında serum düzeylerine bakmak şarttır.Serum zirve seviyesi etkili olmalı ve devamlı düzey toksisite riskini azaltmalıdır. Stabil renal fonksiyonlu 3 günden fazla tedavi alan hastalarda ek serum düzeyleri gereksizdir. CrCl si haftada 1-2 kez ölçülmelidir,değişiklik dozu değiştirmeyi gerektirir. Özel durumlar Çocuklar Yenidoğan ve infantlarda Aminoglikozidlerin farmakokinetiği yetişkinlerden farklıdır;renal klirensleri azalmıştır;yarı ömürleri uzar,doz azaltılmalıdır.Normal doğum ağırlıklı infantlarda 7 günden sonra yarı ömür yetişkinlerinkine yaklaşır. Yenidoğanlarda yetişkinlere kıyasla aminoglikozid dağılım hacmi vücut ağırlığı yüzdesine göre daha fazladır. Günlük tek doz deneyimi sınırlıdır,ama etkili bulunmuştur. Kitik fibroz İlerlemiş KF lu hastalar P.aeroginosa nın hava yolu kolonizasyonuna mağdurdurlar.Hastalılk ilerledikçe trakeobronşit ve pnömoni episotlarının sıklığı artar ve bu anti-pseudomonal ß laktam ve aminoglikozid kombinasyon tedavisini kaçınılmaz kılar. KF lularda kronik tedavi ihtiyacından dolayı aminoglikozid tedavisi azalmış farmakokinetik (glomerüler filtrasyonda artma,kısa yarı ömür ve artmış dağılım hacmi nedeniyle), azalmış antibakteriyel etkinlik (mukusa gömülmüş organizmalara ulaşmada güçlük ve bakterinin olası azalmış replikasyonundan dolayı) ve ototoksisite riski (özellikle kohlear) yüzünden komplikedir.End-stage KF lu ve aylarca kontinüe aminoglikozid tedavisi ihtiyacı olan hastaların çoğu kohlear hasar vae sağırlıktan yakınır.Nefrotoksisite ve vestibüler toksisite nadirdir. Parenteral tedavi:İlacın dozu arttırılmalıdır.Genellikle P.aeroginosa ya karşı düşük MIC i olduğundan dolayı Tobramisin seçilir. Günlük tek doz tedavisi alternatif bir yaklaşımdır. Aerosol tedavi:Avantajları:Balgamda yüksek ilaç seviyesi sağlaması,daha az sistemik ilaca maruz kalma,hastanın evde kendi uygulıyabilmesi ve akciğer fonksiyonlarında artmadır. Yetişkinler ve 6 yaş üstü çocuklar için FDA nın onayladığı doz 28 gün nebülazatörle 2×1 300 mg.dır.Sonra 28 gün ara verilip tekrarlanır. Seruma emilim azdır.Ototoksisite bildirilmemiştir ama geçici tinnitus olabilir.Nefrotoksisite gözlenmemiştir.Pahalıdır. İnfektif endokardit Aminoglikozidlerin enterokoklara etkisi için hem bir hücre duvarı etkin bir antibiyotiğin (Ampisilin) hemde aminoglikozidin devamlı varlığı gerekmektedir.Viridans Sterp. ve enterokok endokarditi için Pen. G + Gentamisin (Normal böbrek fonksiyonlularda;3 mg/kg/g 3×1) önerilmektedir. Devamlı ambulatuar peritoneal dializ sırasında peritonit Aminoglikozidler duyarlı organizmaların yapacağı dialize bağlı peritoniti tedavi için peritoneal dializ sıvılarında kullanılırlar.Bu şekilde ilaç kullanımı sistemik hastalığı olanlar için önerilmez. Spektinomisin ve gonore Spektinomisin gonokok enfeksiyonlarının tedavisinde kullanılır.T.pallidium ve Cl.trachomatis te etkili değildir.Tükrükte terapötik konsantrasyona ulaşmadığından faringeal gonokoku elimine etmez.Nefrotoksik ototoksik değildir.Komplike olmayan üretral,servikal ve dissemine gonore tedavisinde kullanılır.Penisiline alerjik veya gonokokun penisilinaz üreten türleriyle hasta olanlarda alternetiftir.Cervix veya üretra enfeksiyonunda 2 gr. tek sefer im. uygulanır.Gonokoksemi için 3 gün 12 saatte bir 2 gr. im. önerilir.İv. formu yoktur. PREPARATLAR:Amikasin sulfat;Amikaver Netilmycin;Netromycine Amiklin Streptomycin sülfat;Enteristin Amikozit Guanamisin Mikasin Strep-Deva Gentamisin sülfat;Garamycin Otomygen Tobramycin sülfat;Nebcin Gensif Thilomaxine Genta Tobel Gentaderm Tobrased Gentagut Tobrex Gentamin Tobsin Gentasol Genthaver Gentreks Getamisin

http://www.biyologlar.com/aminoglikozidler

BİTKİLEDE SİTOLOJİK KARAKTELER

Sitolojik karakterlerin taksonomide uygulanışı da palinolojik ve embriyolojik karakterler gibi yeni sayılır. Her ne kadar bitkilerin kromozom sayıları ve özellikleri çok önceden biliniyordu ise de bunların taksonomiye uygulanışı oldukça yenidir. Bu konuda en önemli kaynaklar Tischler (1950), Darlington ve Wylio (1955), Löve ve Löve (1961), ...vb. dır. Son yıllarda yalnız sitolojik özelliklerine göre bitkilerin sınıflandırılacağını ileri sürenler de vardır. Taksonomide kullanılan sitolojik özelliklerin başında kromozom sayısı ve kromozom morfolojisi gelir. a. Kromozom Sayısı: Bazı istisnaları olmakla beraber, genellikle türler için kromozom sayısı sabittir. Bu yüzden türleri yarımada geniş biçimde kullanılır. Türlere ait kromozomların değişimi poliploidi ve melezlemeden ileri gelir. Örneğin Hymenocallis calathinun’da (Amaryllidaceae) kromozom sayısı 23-83 arasında değişir. Bu farklılıkta bitkiyi kültüre almanın da rolü vardır. Bugün yeryüzünde bilinen 250.000 kadar çiçekli bitki türünden yalnız 20.000 kadarının kromozom sayısı bilinmektedir. Bunların da çoğu bir tek örnekte ve kültür türlerinde araştırılmıştır. Bu yüzden bitkilerin kromozom sayıları üzerinde bir genelleme yapma olanağı yoktur. Aynı zamanda, kullanılan teknik de kromozom sayısının saptanmasında önemlidir. Çünkü kromozomlar çok küçük olduğundan çoğu kez fazla yada eksik sayılabilmektedir. Ayrıca kromozom sayan kişinin hem sitolog, hem de taksonomist olması gerekir. Ancak bu şekilde kromozomlar gerçek sayı ve özellikleriyle saptanabilir. Tohumlu bitkilerde bilinen kromozom sayıları 2 ile 263 arasında değişmektedir. Haplopappus gracilis’te (Asteraceae) n=2, Poa litorosa’da (Poaceae) n=263. Taksonomik gruplarla (taxa) ilişkileri yönünden kromozom sayılarının durumu 3 grupta toplanabilir. 1. Bir taksonda, örneğin bir genusta, kromozom sayısı değişmeyebilir. Örneğin, tüm Pinus ve Quercus türlerinde kromozom sayısı, n=12 dir. Bu durumda kromozom sayısı türleri ayırmada bir işe yaramaz, ancak genusların ayırımında kullanılabilir. 2. Bir taksonda temel kromozom sayısı (x) poliploidi ile katlanarak artabilir. Tetraploit (4x), Oktoploit (8x).. gibi. Triploit (3x) ve heksaploit (6x) ise değişik düzeylerdeki melezler arasında da meydana gelebilir. Poliploit seriye en iyi örnek Taraxacum’dur: 2n= 16, 24, 32, 40, 48 (Burada kromozom temel sayısı, x=dir). Poliploid sayısında en belirgin ğeişiklik Malvaceae familyasında görülür. Bu familyada x=5, 6, 7, 13 lopu poliploidi 15x e kadar çıkar. Normal olarak kromozom sayısı değişik bitkiler farklı tür olarak kabul edildiğinden burada tür sayısı da buna bağlı olarak artar. Poliploidi değişik türler arasında da görülür. Örneğin, Rosaceae familyasının Pomoideae alt familyasının temel kromozam sayısı, x=17’dir. Bu alt familyanın, temel sayısı x=7 olan Rasa genusundan türevlendiği kabul edilmektedir. Fakat öbür 10 sayısının nereden geldiği kesinlikle bilinmemektedir. Bazı araştırıcılara göre ise bu alt familyanın, Spiroideae (x=8 alt familyalarından türevlendiği ileri sürülmektedir. Pomoideae alt familyasında ayrıca poliploit türler de çoktur. Böyle iki farklı temel sayının birleşmesiyle oluşan poliplodiye “dibazik poliploidi” denir. Birleşen kromozomlar ikinci bir poliploidide x2 ile, triploidid, x3 le gösterilir. Örneğin Brassica oleracea (2x=18) ve B. rapa (2x20) çaprazlandığında B. napus (4x=2x2=38 meydana gelir. Dibazik sayılar özellikle subgenusları karakterize eder. Örneğin Veronica da x=7, 8, 9; x3=26’dır. Bu durumda, türler arasındaki poliploitlerde çoğu kez temel kromozom sayısını bulmak oldukça güçtür. 3. Bir taksonda kromozom sayılları arasında ilişki bulunmayabilir. Örneğin Carex’te (Cyperaceae) kromozomsayısı n=6 ile n=112 arasında değişir. Böyle durumlarda genellikle işin içinden çıkmak oldukça güçleşir. Bunlar genellikle kromozom sayılarının azalması veya çoğalmasıyla açıklanır. Bunun değişik nedenleri arasında, hücre bölünmesi sırasında meydana gelen anormallikler yada kromozomların kendi kendilerine meydana getirdikleri değişiklikler (fragmentasyon ve sentromerin yanlış bölünmesi gibi) vardır. Kromozom sayısındaki azalama genellikle kromozomlar arasındaki eşit olmayan alışverişten (krossingover sırasında ileri gelir. Crepis’te (Asteraceae) kromozom sayısı, bu şekilde 6 dan 3 e inmiştir. Böylece meydana gelen eşit olmayan karşılıklı bir translokasyonla C. fuliginosa’nın kromozom sayısı 3’e düşmüş ve sentromeri de kaybolmuştur. Bazı bitkilerde temel kromozom sayısı sabit kalır ve buna yeni sayılar eklenebilir. Burada iki mekanizma vardır. a. Polizomi ve Monozomi: Mayoz bölünme sırasında meydana gelen anormallikler nedeniyle hücrenin bir kromozom kazanması veya kaybıdır (n+1, n-1). Bu şekilde meydana gelen fertlerden 2n + 1 kromozomlu olana “trizomik”, 2n-1 kromozomlu olana ise “monozomik fert”denir. Trizomikler özellikle Nicotiana (Tütün) ve Lycopersicum (Domtes) türleri üzerinde araştırılmıştır. Deneysel olarak da elde edilen bu fertler fonotipik farklılıklarda gösterir. En önemli özellikleri ise tohumdan üreyememeleri, yalnızca vejetatif olarak üremeleridir. b. Yalancı Kromozomlar: Bunlara B kromozomlarıda denir. Bunlar bir populasyonun sadece bazı fertlerinde görülür ve nasıl ortaya çıktıkları kesinlikle bilinmez. Bu nedenle ikinci sınıf kromozomlar veya hayalet kromozomlar olarak da adlandırılır. Ufak ve heterokrematik özellikte olup mayoz bölünme sırasında A kromozomlarıyla eşleşmez, sadece birbirleriyle eşleşirler. B kromozomlar 60 yıl kadar önce Lutz tarafından Diaprotica böcek genusunun türlerinde görülmüş, 1927’de ise lik kez bitkilerde Zea mays’ta görülmüşlerdir. O günden bu yana bunlar üzerinde sayısız araştırma yapılmıştır. Pek çok bulunmakla beraber bazı familyalara özgü oldukları saptanmıştır. Bu kromozomların etkileri değişiktir. Secale gibi polen ana hücresi veya embriyo kesesinin bölünmesini durdurarak üretkenliği azaltabilirler. Bazı durumlarda ise bitkinin ortama uyumunu kolaylaştırırlar (Festuca ve Centaurea’da olduğu gibi). Bunların populasyondan değişimi, iklimsel ve öteki ekolojik faktörlerle ilişkili olduklarını gösterir. Havanın nem oranı toprağın kil oranı bunların bulunuşunu artıran etmenlerin başlıcalarıdır. Poliploit fertlerden çok diploit fertlerde bulunurlar. Bunun, aşırı ortam koşullarına, poliploidiye gitmeden bir adaptasyon sağladığı sanılmaktadır. B kromozomların A kromozomlardan türevlendiği sanılmaktadır. A kromozomların telosentrik kollarının yanlış bölünme sonucu meydana getirdiği sentrik parçacıklar olabileceği Oenothera (Oenotheraceae) ve Caltha (Ranunculaceae) türleri üzerinde yapılan araştırmalarla ortaya koymuştur. b. Kromozom Morfolojisi: Kromozom büyüklüğü olarak kontrollü olup tür düzeyinde değişmeyen bir özelliktir. Bununla beraber, familya ve genus düzeylerinde büyüklük oldukça değişkendir. Genellikle monokotil kromozomları dikotil bitkilerin kromozomlarıdan daha iridir. Bununla beraber dikotiledanlaın ilkel familyalarıda da iri kromozomalara rastlanır. Örneğin Pacenin genusu bu özelliğinden ötürü Ranunculaceae familyasından ayrılarak yeni bir familyaya (Paeoniaceae) aktarılmıştır. Yapılan araştırmalar göstermiştir ki kromozom sayısı fazla olan bitkilerle kromozomlar, az sayıda olanlara oranla daha küçüktür. Örneğin 16 kromozomlu Anemone kromozomları aynı genusun 14 kromozomlu türlerinden daha küçüktür. Aynı taksonun (genus yada familya) değişik coğrafik bölgelerde bulunan üyelerinin kromozomları birbirinden farklıdır. Örneğin K. Amerika’da yetişen bir grup Liliaceae üyelerinin kromozomları 2-5 mikron iken Doğu Asya’da yetişen üyelerinin kromozomları 4-14 mikrondur. Poliploit türlerin kromozomları diploit türlerinkinden daha küçüktür. Caryophyllaceae ve Asteraceae familyalarında bu durum iyi izlenebilir. Ayrıca tek yıllık türlerin kromozomları çok yıllıklarınkinden, odunlu türlerin kromozomları ise otsu türlerinkinden daha küçüktür. Bütün bu bilgilere rağmen kromozom büyüklüğünün filogenetik değeri yeterince aydınlanmamıştır. Kromozomların büyüklükleri yanında birbirlerine göre hacim ve biçimleri de önem taşır. Bu değişiklikler genellikle “idiogram” ve “karyogram” olarak bilinen diagramlarla gösterilir. Bu tip değişiklikler, genellikle mitotik metafazda iyi izlenebilir. Bu yüzden bu devrede incelenen kromozomlar sistematikte önemli rol oynar. Bu konuda Ranunculaceae, Solanaceae ve Liliaceae familyaları üzerinde araştırmalar yapılmıştır. Kromozomlar soya çekim mekanizmasıyla çok yakından ilgili olduğundan sitolojik karakterler taksonomide büyük değerler taşır. Bu yüzden, eğer filogenetik akrabalıklar esas kabul edilirse, sitolojik karakterler genel morfolojik karakterlerden daha önemlidir. Bununla beraber sistametikçiler daha çok herbaryum materyali üzerinde çalıştıklarından, morjolojik karakterlere daha çok değer verirler. Taksonomide rol oynayan sitolojik özelliklerin başında poliploidi gelir. Bugün bilinen çiçekli bitki türlerinin % 2’si (5.000 tür) poliploittir. Poliploidi, bilindiği gibi, başlıca ikiye ayrılır : a. Otopoliplodidi (Otoploidi): Melez olmayan diploitlerin meydana getirdiği benzer genomlu kromozom kompementi. b. Allopoliploidi (Alloploidi): İki diploit arasındaki melezlerin oluşturduğu farklı genomlu kromozom kompementi. Eğer benzer genomların herbiri A,B,C ile gösterilirse bir dipolit AA, BB,CC, bir ototetrapolit AAAA, BBBB, CCCC olur. Bir allotetropolit ise AABB, AACC, BBCC olur. Alloploidi tür oluşumunda önemli rol oynar. Örnekler: Poa supina (2n=14) x P.infirma (2n=14) P.annua (2n=28); Nicotiana sylvestris (2n=14) x N. tomentosiformia (2n=24) N. tabacum (2n=48); Brassica rapa (2n=20) x B. olareceae (2n=18) Allopolidi bazen genuslar arasında meydana gelebilir. Örnekler : Raphanus – Brassica Rapharobrassica; Malus x sorbus x Malosorbus, ..vb.

http://www.biyologlar.com/bitkilede-sitolojik-karakteler

RUTİN HİSTOLOJİK TAKİP

1-Parça alma 2-Tespit 3-Sudan kurtarma 4-Şeffaflandırma 5-Gömme 6-Kesit alma 7-Boyama 8-Kapatma 1-PARÇA ALMA: Parçalar ölümden, biyopsiden ve cerrahi işlemden hemen sonra veya en kısa zamanda alınmalıdır. Büyük parçalar, dokunun ezilmesini önlemek için çok keskin bistüri veya jiletle daha küçük parçalara ayrılmalıdır. Parçaların kalınlığı 2-4 mm’yi (1 mm3) geçmemelidir. 2-TESPİT: Canlı öldüğünde içerdiği katabolik enzimler nedeniyle otoliz olmaya başlar. Bu olay, ölüm sonrası bozulma (postmortem dejenerasyon) olarak bilinir. Otolizde hücre içi enzim hareketleri değiştiğinden proteinler yıkılarak hücreler sıvı hale geçer. Otoliz, soğukta geçiktirilir, 37 0C‘de hızlanır. 57 0C‘de otoliz tamamen durur. Otolizde beyin, böbrek gibi iyi farklanmış organlar, elastik ve kollajen fibrillere göre daha çok etkilenir. Otoliz olmuş hürelerde çekirdeklerde piknoz, parçalanma (karyoreksis), lizis ve erime (karyoliz) görülür. Sitoplazma şişer ve granüler hale gelebilir. Doku granüler ve homojenöz bir kütle haline gelir ve boyanma reaksiyonlarında azalma olur. Otolizde epitel dökülür ve bazal membrandan ayrılır. Glikojen miktarı azalır ve tespit olmadığından dokuya yayılır. Bakteriler de dokularda otolize benzer sonuçlar çıkarır. Septisemide hastadaki bakteriler ya da normal flora bakterileri çoğalır. Tespit ile tüm bakteriler ölür. Tespitin (fiksasyonun) amacı: 1-Hücre ve dokuların canlı hale en yakın biçimde muhafaza etmektir. Ancak bu tam gerçekleştirilemez. 2-Otolizi, bakteriyel bozuma ve çürümeyi önlemek. 3-Kolaylıkla diffüzyon olan maddelerin kaybını önlemek. 4-Sağlığa zararlı kötü etkilere karşı dokuyu kuvvetlendirmek. 5-Dokunun boyalarla ve diğer reaktiflerle boyanmasını kolaylaştırmak. Fiksasyonda doku proteinleri ve yapı taşları koagüle olur. Böylece takip sırasında kayıpları ve diffüzyonları en aza iner. Ancak koagülasyon, dokularda artifakta yol açaçaktır. Bir fiksatif, takip sırasındaki haraplayıcı etkilere karşı koruyucu olmalıdır. Taze dokular suda yıkanırsa hücreler patlar. Önce tespit uygulanırsa yıkamanın etkisi olmaz. Fiksasyon, dokuların kırma indislerini değiştirerek optik differansiyasyon sağlar. Bazı hücre bileşenlerinin kırma indisi çevreleyen ortama çok yakın olduğundan klasik mikroskopla incelendiğinde görülemezler. Fiksasyon, boya hareketlerini kolaylaştırır. Çekirdek boyası carmalum, formalin fiksasyonunda az, civa klorür boyasında ise daha iyi boyar. Bazen tespit ajanı özel doku bileşeni ve doku arasında mordant gibi hareket edebilir. Hematoksilen ile miyelin gösteriminde dokunun potasyum dikromatla bu şekilde hareket eder. Fiksasyonla proteinler, tuzlar, karbohidratlar veya lipitler çökertilir ve doku sertleşir, katılaşır. Doku sertleştiğinden ince kesitlerin alımı kolaylaşır. Fiksatifteki kimyasalların etkisiyle enzimler inaktifleşir veya muhafaza edilir. Fiksatif seçilirken, dokunun boyutu, tipi, tazeliği ve uygulanacak boya bilinmelidir. Bir fiksatif bütün dokular ve boyalar için ideal değildir. FİKSASYONUN UYGULANMASI: Fiziksel (ısı, kurutma ve dondurma) ve kimyasal yolla yapılabilir. Isı ile fiksasyon, bozulmaya yol açtığından artık kullanılmamaktadır. Kurutma ile fiksasyon, kan ve kemik iliği yaymalarında kullanılır. Dondurma ile fiksasyon, lipitler, enzimler ve ameliyat parçalarının hızlı tespitinde kullanılır. Dondurulan örnekler aynı zamanda sertleştiğinden hemen dondurma mikrotomu ile kesit alınır. Kimyasal fiksasyon en çok uygulanan yöntemdir. Çeşitli kimyasal maddeler kullanarak fiksatif adı verilen çözeltiler hazırlanır. Alınan örnekler ya fiksatife atılır (daldırma=immersiyon yöntemi) ya da anestezi altında organı besleyen arter yolu ile önce serum fizyolojik verilerek damardaki kan boşaltılır ardından fiksatif verilerek organ daha vücutta iken kısmen tespit edilir. İncelenecek örnekler ardından fiksasyonun tamamlanması için fiksatif çözeltisine daldırılır. Bu yöntemde yapı daha iyi korunduğundan araştırmalarda tercih edilir. 3-SUDAN KURTARMA (Dehidrasyon):Tespitten sonra suyun ve bazı sıvıların uzaklaştırılması gerekir. Dehidrasyonda genellikle alkol ve aseton kullanılır. Dokular genellikle fazla miktarda su içerir. Bu suyun çıkarılmasıyla erimiş parafin doku parçalarının boşluklarına girebilir. Tespitten çıkarılan dokular genellikle yıkanır. Ardından % 30-50’lik etil alkolle başlayarak %60-70-80-96-96-100-100-100’lük etil alkolden birer saat geçirilir. Böylelikle dokular büzülmeden sudan kurtarılır. Embriyonik dokular gibi hassas dokularda dehidrasyonun % 30luk basamakla başlaması önerilir. 4-ŞEFFAFLANDIRMA (Clearing): Bu terim, dehidratlayıcı ajanı uzaklaştırmak için seçilmiş sıvının uygulanmasından sonra dokuların görünümünü ifade etmektedir. Doku bu işlemle yarı şeffaf hale getirilir. Bir şeffaflayıcı ajandan esas beklenen hem dehidrantla hem gömme ajanı ile karışabilir olma özelliğidir. Şeffaflandırıcı ajanı seçerken şunlara dikkat edilmelidir. 1-Alkolü uzaklaştırma hızı 2-Erimiş gömme ortamı ile uzaklaştırılmasının kolaylığı 3-Dokulara karşı nezaketi 4-Yanıcılık 5-Toksisie 6-Fiyat Yanıcı olduklarından dikkatli kullanılmalıdır. Otomatik takip aletleriyle işlemde geniş ve dens bloklar için süre uzatılmalı ancak küçük parçalar etkilenmemelidir. Şeffaflandırmada, ksilen, toluen, kloroform, benzen, karbontetrakorür, propilen oksit (özellikle e.m.de), karbondisülfit, amilasetat, sedir yağı, karanfil yağı trikloroetilen kullanılabilir. Genellikle 2-3 değişim bu sıvılardan geçirilerek dokular şeffaflandırılır ve parafinin işlemesine uygun hale getirilir. 5-PARAFİNE GÖMME (Embedding):Gömme ortamı olarak parafin, selloidin, selloidin-parafin kullanılabilir. Amaç, dokuları yarı sert ve kolayca kesilen materyel içine yerleştirmek ve şeffaflandırıcı ajanı dokudan uzaklaştırmaktır. Parafin en çok kullanılan ortamdır. Uygun takip hızı ve seri kesit için uygun kıvamı vardır. İstenilen kalınlıkta kesit alınabilir. Erime derecesi 45-50 0C olan parafin yumuşaktır. 56-60 0C’ lik ise daha serttir. Ortam ısısı, gömülecek mataryelin yapısı ve kesit kalınlığına uygun parafin seçilmelidir. Sıcak iklimde 450C’lik parafinle 3-5 µm lik kesit almak zordur. 55-60 0C’ lik parafin etüvündeki 3 kap erimiş parafinden geçirilen örnekler cam veya fayans üzerinde L-biçimli Leuckhart plakları ile hazırlanan kalıplara yerleştirilir. Kalıba önce erimiş parafin, ardından istenilen yönde doku yerleştirilir ve tekrar kalıp parafinle doldurulur. Bir etiket yerleştirilerek soğumaya bırakılır. Gömme Hataları: 1-Parafin dokuya işlememişse bloklar iyi kesilemez, yırtılır. 2-Sıvı parafin çok sıcak ise doku büzülür. 3-Hızlı hareket edilmezse hava kabarcıkları, kristaller oluşabilir. 6-KESİT ALMA (Sectioning): Mikrotom ile 5-7 µm lik kesitler alınır. Bıçak keskin olmalı ve uygun açıda kullanılmalıdır. Kesitler, açılmaları için 45-50 0C’lik ben mariye atılır. Ben mariye kesitlerin lama kolay yapışması için jelatin eklenebilir. Ben mari soğuksa kesitler açılmaz, çok sıcaksa ani açılma ile yırtılabilir. Kesitler lama alınarak havada ya da etüvde kurutulur. 7-BOYAMA (Staining): Dokuları ilk kez Leuwenhoek (1719) safran kullanarak boyamaya çalışmış ve başaramamıştır. Boya endüstrisinin gelişmesi ile carmin boyası ile dokular hafifçe renklendirilmiş, Gerlach (1858)’ de tesadüfen cerebellumu boyayabilmiştir. 1863’te hematoksilen kullanılmaya başlanmış, 2 yıl sonra Böhmer mordant olarak alum kullanmış ve başarılı olmuştur. Anilin boya endüstrisinin gelişmesi ile dokular mükemmel olarak renklendirilebilmiştir. Boyanmamış preparatlarda doku elemanlarının kırma indisleri birbirine yakın olduğundan ayrıntılar izlenemez. Farklı boyalar kullanarak dokular ve hücre bileşenleri birbirinden ayrılabilir. Doku bileşenlerinin ayırt edilmesi için kullanılan histolojik tekniklerde ya doku kontrastında değişiklik veya renkte değişiklik yapılır. Doku kontrastında değişiklikler faz-kontrast ve polarize mikroskobu ile veya metal çöktürme yöntemleri ile gerçekleştirilir. Histolojik boyama yöntemlerinde genellikle boya ile boyanma ile renk oluşturulur. Böylelikle boyanmış dokunun içinden geçen ışığın dalga boyu değiştirilir. Genellikle dokular asit ve bazik boya ile boyanırlar. Bazik boya ile boyanan doku elemanları bazofilik; asit boya ile boyananlar ise asidofilik olarak adlandırılırlar. Genel olarak bazik boyalar dokuları mavi-mor, asit boyalar ise pembe-kırmızı renklerde boyar. Boyalar sulu bir çözelti içinde anyon ve katyonlarına ayrılır. Boyaların renk verme özellikleri anyon ve katyonlardaki boya taşıyan organik gruplara bağlıdır. Eğer boya taşıyan grup katyonda ise boya bazik (katyonik); anyonda ise asit (anyonik) bir boyadır. Dokularda protein, lipoprotein ve glikoproteinler amfoteriktir. Yani pH’ya ve diğer çevre şartlarına bağlı olarak iyonize olabilirler. Bir protein elektrik yüküne ve boyanmanın olduğu pH’ daki yüküne göre boyanır. Proteinin negatif ve pozitif yüklerinin eşit olduğu pH’ ya o proteinin izoelektrik noktası denir. İzoelektrik noktalarında proteinler çok az boyanır. İzoelektrik noktasının üstünde anyonik gruplarının iyonize olması ile bazik boyalarla; altında ise katyonlarının iyonize olması ile asidik boyalarla boyanır. Proteinlerin amino asit içerikleri farklı olduğundan farklı izoelektrik noktaları vardır. 8-KAPATMA (Mounting): Boyanan kesitlere bir damla Kanada balzamı veya entelan damlatılır. Lamel kapatılır, hava kabarcıkları çıkartılır. Bu maddeler hem mikroskopta inceleme için uygun kırma indisi sağlar hem de boyanmış kesitlerin yıllarca korunmasını sağlar.

http://www.biyologlar.com/rutin-histolojik-takip

Hipotez, Olgu ve Bilimin Doğası

Hipotez, Olgu ve Bilimin Doğası http://evrimcalismagrubu.org/ceviriler/37-ceviriler/68-hipotez-olgu-ve-bilimin-doas.html Dilara Karadeniz tarafından yazıldı Çarşamba, 30 Nisan 2008 23:12 Douglas Futuyma, çeviren Mehmet Cem Kamözüt Örneğin, DNA’nın genetik malzeme olduğundan nasıl emin olabilirsiniz? Ya bunu “kanıtlamış” olan bilimciler bir hata yapmışlarsa? Kesinlikle doğru olduğu gerçekten kanıtlanmış bir şey var mıdır? Bilim, dünyayı algılamanın farklı ve eşit derecede geçerli biçimlerinden yalnızca biri, baskın Batılı biçimi midir? Evrim bir gerçek midir, yoksa bir kuram mı? Ya da tıpkı yaratılışçıların benimseme hakkına sahip oldukları karşı görüş gibi, bu da benim benimseme hakkına sahip olduğum görüş mü? Varsayımsal bir örneği ele alalım. Bilinmeyen bir hastalıktan ölmekte olan koyunların ölüm nedenini belirlemekle görevlendirildiniz. 50 hasta, 50 sağlıklı koyundan doku örnekleri aldınız ve hasta hayvanların 20 tanesinin, sağlıklı olanların da yalnızca 10 tanesinin karaciğerinde bir tekhücreli teşhis ettiniz. Bu farklılık, iki koyun grubunun söz konusu tekhücrelinin görünme sıklığı açısından bir fark göstermediğini söyleyen SIFIR HİPOTEZİNİ reddetmeye yeterli midir? Bu soruya yanıt verebilmek için istatistiksel testler yaparak bu sayılar arasındaki farklılığın sırf şans yoluyla ortaya çıkıp çıkamayacağına bakarsınız. Ki kare (χ2) istatistiğini hesaplarsınız (burada bu değer 4,76’dır), bir ki kare değerleri tablosuna bakar ve “0,025 < p < 0,05” ifadesini bulursunuz. Benzerleriyle neredeyse tüm bilimsel veri analizlerinde karşılaştığınız bu ifade ne anlama gelir? Bulduğunuz farklılığın (hasta ve sağlıklı koyunlardan aldığınız örneklerin rastgele olduğu varsayımı altında) sırf şans eseri gerçekleşmiş olma olasılığının –yani gerçekte hasta koyunlarla sağlıklı koyunların sözkonusu tekhücreli ile enfekte olma oranları arasında bir farklılık olmaması olasılığının– 0,05’ten küçük ama 0,025’ten büyük olduğu anlamına... Bilimdeki her deney ya da gözlem daha büyük olası gözlem evreninden (bizim örneğimizde tüm koyunlar) alınan örneklemlere dayanmaktadır ve her durumda eldeki verinin bu daha büyük evrene ilişkin gerçekliği yanlış temsil etme olasılığı vardır. Yani ilişkisizlik hipotezini –koyun grupları arasında bir farklılık olmadığı, deney sonuçlarıyla oynanmasına bağlı bir etki olmadığı, ya da belirli değişkenler arasında korelasyon olmadığı hipotezini– yanlışlıkla reddetmek her zaman olanaklıdır. Ne mutludur ki bazı durumlarda, doğru bir ilişkisizlik hipotezini reddetme ve yanlış olan alternatif hipotezi doğru olarak kabul etme olasılığı 0,00001 ya da daha az olabilir. Bu durumda ilişkisizlik hipotezini güvenle reddedebilirsiniz, ama kesin olarak emin olamazsınız. O halde 100 koyunla yapılan çalışma hasta koyunlarda söz konusu tekhücrelilere rastlama olasılığımızın daha fazla olduğu varsayımını desteklemektedir; ama yalnızca zayıf bir şekilde. Ölümün nedeninin tekhücreliler olabileceğini düşünüyor ama korelasyonun yetersiz olmasından dolayı endişe duyuyorsunuz. Siz de örnekleminizi 1000 koyuna çıkardınız, karaciğer biyopsisi yaptınız; örneklerinizi tekhücreliler açısından (düşük yoğunlukta olmaları nedeniyle ilk çalışmanızda gözden kaçırmış olabileceğiniz vakarı da açığa çıkarak biçimde) daha detaylı incelediniz; ertesi yıl hangi koyunların öldüğünü kaydettiniz. Büyük bir hoşnutlukla gördünüz ki tekhücreliye rastlamadığınız koyunların yalnızca %5’i ölürken enfekte koyunların %95’i öldü. Hayatta kalanlar yıl sonunda kesildiklerinde görünürde sağlıklı olan koyunlarda hala bir enfeksiyon belirtisine rastlanmadı. Zafererinizle övünen bir biçimde danışmanınıza ölüm nedeni olarak tekhücreliyi rapor ettiniz. Doğru mu? Yanlış, dedi size. Diğer hipotezleri elememişsiniz. Belki de hastalığa, tesadüfen koyunun görece zararlı tekhücreliye karşı direncini de azaltan bir virüs neden oluyordur. Belki bazı koyunlar ömürlerini kısaltan bir gene sahip ve bu gen aynı zamanda enfeksiyon dirençlerini de azaltıyor. “Yapmanız gereken” diyor, “bir deney”. “Rastgele seçtiğiniz bazı koyunlara tek hücreliyi içeren, diğerlerine de tek hücreli dışında tüm içeriği aynı olan bir sıvı enjekte etmek”. Bunu yapıyorsunuz ve başarısız birkaç denemeden sonra koyunların tek hücreliyi oral yollardan almadıkça enfekte olmadıkları ortaya çıkıyor. Sonuçta deneysel olarak enfekte edilmiş 100 koyunun 90’ının 3 ay içinde öldüğünü, 100 “kontrol” koyununun 95’inin deneyin sürdüğü 1 yıl boyunca yaşadığını memnuniyetle rapor ediyorsunuz. Ki kare testleri p’nin 0,0001’den küçük olduğunu gösteriyor. Yani elinizdeki sonuçların şans sonucu ortaya çıkmış olması son derece düşük bir olasılık. Bu noktada tek hücrelinin hastalığa ve ölüme neden olduğuna dair dikkate değer bir güveniniz olabilir. Ama bunu hala mutlak olarak kanıtlamadınız. Koyunlara yalıtıp enjekte ettiğiniz yalnızca tek hücreli değil de görünmeyen bir virüs de olamaz mı? Koyunlara enjeksiyonu rastgele yaptığınızdan emin misiniz? Yoksa enjeksiyon için farkında olmadan zayıf görünen hayvanları seçmiş olabilir misiniz? Hipotezinize uymayan 15 hayvanın durumunu sizce ne açıklıyor? Ve her ne kadar p < 0,0001 olsa da hala kötü bir “şanslı kura” tutturmuş olma şansınız var, yok mu? Örneği uzatmaya gerek yok, buradan çeşitli dersler çıkarabiliriz. Öncelikle veriler kendi başlarına hiçbir şey anlatmazlar, önceki bilgilerimiz ve kuramımız ışığında yorumlanmalıdırlar. Bu örnekte başka bazı şeylerin yanı sıra (ki kare testi gibi istatistklerin temelinde yatan) olasılık kuramına, deneysel tasarım kuramına ve virüslerin var olduğu ve sonuçlarımızı karıştırabileceği bilgisine gereksinim duyduk. Bilim tarihi, yeni kuram ve bilgiler ışığında düzeltilmesi ya da reddedilmesi gerekmiş olan sonuçların örnekleriyle doludur. Örneğin 1950’lerin sonlarına kadar neredeyse tüm jeologlar kıtaların sabit konumda olduğuna inanıyordu; şimdi tümü levha tektoniği ve kıta kaymalarına inanıyor ve pek çok jeolojik olgunun bunun ışığında yeniden yorumlanması gerekti. İkinci olarak varsayımsal araştırma deneyimimiz güvenilir bir sonuca ulaşmak için pek çok çalışma gerektiğini göstermiştir. Ders kitaplarındaki, bir gerçeği dile getirdiğini söyleyen her tümcenin genellikle en azından bir kişinin yaşamının en az birkaç yılı boyunca büyük bir çaba harcamasını gerektirdiğini gözden kaçırmak kolaydır. Bu nedenle bilimciler sonuçlarını, birazdan tekrar söz edeceğimiz gibi dikkate değer bir güçle savunurlar. Üçüncü olarak ve bu en önemlisidir araştırma, ne kadar dikkatlice ve yorucu bir biçimde tasarlanmış ve gerçekleştirilmiş olursa olsun kanıta yaklaşır ama asla onu tam olarak elde edemez. Kabul ettiğiniz hipotezinizin günün birinde, bugün hayal edemeyeceğimiz tümüyle yeni kuramlar ya da veriler ışığında düzeltilmesi ya da reddedilmesi olasılığı –neredeyse yokmuş gibi görünebilecek olsa da– her zaman vardır. Bunun sonucu olarak neredeyse tüm bilimsel makaleler sonuçlarını, kuşkuya yer bırakan bir biçimde sergilerler. Drosophila genetiği üzerine yeni yayımlanmış bir makalede şu sonucu okudum: Deney “sperm yerdeğiştirmesinin iki bileşenini bir araya getiren farklı mekanizmalar olduğunu düşündürtüyor” (Clark et al. 1995). Aslında veriler harikaydı, deney dikkatlice tasarlanmıştı, istatistiksel analizler örnek olacak nitelikteydi, ama yazarlar görüşlerini kanıtladıklarını savlamıyorlardı. Bilimciler genellikle sonuçlarına muazzam bir güven duyarlar, ama kesinliğe sahip değillerdir. Belirsizliği yaşamın bir gerçeği olarak benimsemek iyi bir bilimcinin dünya görüşü için kaçınılmazdır. Öyleyse bilimdeki her ifade bir HİPOTEZ olarak anlaşılmalıdır. Neyin doğru olabileceğini söyleyen bir ifade. Bazı hipotezler zayıfça desteklenmektedir. Başka bazıları (örneğin dünyanın güneş çevresinde döndüğü ya da DNA’nın kalıtsal malzeme olduğu gibileri) o kadar iyi desteklenmiştir ki, onları olgu olarak görürüz. Olgu denilince, tam bir kesinlikle mutlak olarak doğru olduğunu bildiğimiz bir şey anlamak bir hatadır. Hiçbir şeyi böyle bilmiyoruz (Bazı felsefecilere göre kendimiz de dahil herhangi bir şeyin var olduğunundan bile emin olamayız. Dünyanın tanrının zihnindeki tutarlı bir düş olmadığını nasıl kanıtlayabiliriz?). Doğrusu şudur: Bir olgu bir hipotezdir, ancak delillerle o kadar güçlü desteklenmektedir ki onu doğru olarak kabul ederiz ve doğruymuş gibi davranırız. Bilimcilerin, kuvvetle desteklenmiş hipotezler ya da olgular olarak ortaya koydukları ifadelere duydukları güveni neden paylaşmalıyız? Bilimin sosyal dinamikleri yüzünden. Tek bir bilimci yanılıyor olabilir (ve çok ender de olsa bir bilimci kasıtlı olarak verileri çarpıtabilir). Ama eğer konu önemliyse, alanın ilerlemesi (örneğin bütün moleküler biyolojinin, DNA’nın yapısı ve işlevine bağlı olduğu gibi) bu konuya bağlıysa, diğer bilimciler bulguları kuşkucu biçimde sorgulayacaklardır. Bazıları bilinçli olarak deneyi yinelemeye çalışabilir; başkaları da hipotezin doğru olduğu varsayımıyla araştırmalar yürütecekler ve eğer gerçekte yanlışsa uyumsuzluklar bulacaklardır. Başka bir deyişle bu alanda çalışan araştırmacılar hataları bulmaya çalışacaktır; çünkü kendi işleri ve kariyerleri söz konusudur. Üstelik bilimciler yalnızca entelektüel merakla değil (her ne kadar başarılı olmayı nadiren umabilirlerse de) tanınma ve ünlü olma güdüsüyle de hareket ederler. Yaygın kabul görmüş bir hipotezi yanlışlamak da profesyönel alanda tanınmaya giden yolu açar. Kalıtımın DNA’ya dayanmadığını ya da AIDS’in nedeninin HIV (Human Immunodeficiency Virus, İnsan Bağışıklık Yetersizliği Virüsü) olmadığını gösterebilen bilimci, alanında ünlü olacaktır. Elbette hipotezi ilk ortaya koyanların kaybedecek çok şeyi vardır. Yatırmış oldukları yoğun bir emek –ve hatta– itibarları. Dolayısıyla tipik tutumları, görüşlerini –bazen aksi yöndeki ezici delillere rağmen– tutkuyla savunmak olacaktır. Bu sürecin sonucu her bilimsel disiplinin karşıt hipotezlerin savunucuları arasındaki tartışmalar ve entelektüel savaşlarla dolu olmasıdır. Fikirler arasında, sonucu daha çok delilin ve daha dikkatli çözümlemenin belirlediği, en inatçı skeptiklerin bile uzlaşımsal görüşe kazanılacakları (ya da ölüp gidecekleri) zamana kadar sürecek bir rekabet –bir tür doğal seçilim– vardır. Olgu ve Kuram Olarak Evrim Evrim bir olgu mudur, kuram mıdır, yoksa hipotez midir? Bilimde sözcükler genellikle kesin bir anlamda ve gündelik yaşamdaki kullanımlarından farklı çağrışımlarla kullanılırlar. Bu aşırı önemli bir durumdur ve bu kitapta pek çok örneğiyle karşılaşacağız (uyum, rastgele, korelasyon). Bu sözcükler arasında hipotez ve kuram da vardır. İnsanlar –sanki hipotez delillerle desteklenmeyen bir fikir demekmiş gibi– sıklıkla bir şeyin “sadece” bir hipotez olmasından söz ederler (“sigaranın kansere neden olduğu yalnızca bir hipotezdir” örneğindeki gibi). Ancak bilimde hipotez, neyin doğru olabileceğine ilişkin bilgi birikimimize dayanan bir ifadedir. Zayıf biçimde desteklenmiş olabilir, özellikle de başlarda. Ama görmüş olduğumuz gibi neredeyse bir olgu olacak düzeyde destek de kazanabilir. Kopernik için Dünya’nın Güneş çevresinde dönmesi orta düzeyde desteklenmiş bir hipotezdi; bizim içinse kuvvetle desteklenmiş bir hipotezdir. Benzer biçimde, bilimde bir kuram, desteksiz bir spekülasyon değildir. Bundan ziyade, usavurum ve delillere dayanan, çeşitli gözlemleri açıklayan, uyumlu, olgun, birbiriyle ilişkili bir ifadeler bütünüdür. Ya da Oxford English Dictionary’nin tanımını alırsak bir kuram “bir grup olgu ya da görüngüyü açıkladığı ya da anlaşılır kıldığı düşünülen bir fikirler ve ifadeler sistemi ya da şablonudur; gözlem ya da deneyle desteklenmiş ya da yerleşmiş ve bilinen olguları anlaşılır kıldığı söylenen ya da kabul edilen bir hipotezdir; bilinen genel yasalar, ilkeler, bilinen ya da gözlemlenmiş bir şeyin nedeninin ifadesidir”. Dolayısıyla atom kuramı, kuantum kuramı ve levha tektoniği kuramı sırf spekülasyon ya da görüş değillerdir; (sigaranın kansere yol açtığı hipotezi gibi) hatta iyi desteklenmiş hipotezler de değillerdir. Her biri delillerle kuvvetle desteklenmiş çok çeşitli olguları anlaşılır kılan, iyi işlenmiş, birbiriyle ilişkili fikirler bütünüdür. Bir kuram bir ifadeler ağı olduğundan, genellikle tek bir kritik deneye dayanarak kabul edilmez ya da çürütülmez (basit hipotezlerin başına ise sıklıkla bu gelir). Bunun yerine kuramlar, yeni görüngüler ve gözlemlerle karşılaştıkça evrilirler; kuramın bazı parçaları atılır, düzeltilir, eklemeler yapılır. Örneğin kalıtım kuramı başlangıçta Mendel yasalarından parçacıklı karakterlerin kalıtımı, baskınlık ve farklı karakterleri etkileyen “etmenler”in (genlerin) bağımsız ayrılımından ibaretti. Kısa süre içinde baskınlık ve bağımsız ayrılıma ilişkin aykırı durumlar bulundu, ama parçacıklı karakterlerin kalıtımın çekirdek ilkeleri kaldı. Genetikçiler, yirminci yüzyıl boyunca bu çekirdeği işleyerek, ona eklemeler yaparak Mendel’in düşünebileceğinden çok daha karmaşık ve ayrınıtılı bir kalıtım kuramı geliştirdiler. Kuramın bazı kısımları son derece iyi oturtulmuştur, başka bazılarıysa hala iyileştirmeye açıktır. Kalıtımın ve gelişimin mekanizmaları daha da anlaşıldıkça pek çok ekleme ve değiştirme olması beklenebilir. Yukarıdaki tartışmanın ışığında evrim bir bilimsel olgudur. Ama evrim kuramıyla açıklanır. Türlerin Kökeni’nde Darwin iki büyük hipotez ortaya koymuştur. Biri –değişiklikler yoluyla– ortak bir atadan türeme hipotezidir (kısaca değişikliklerle türeme). Bu hipotezi “evrimin tarihsel gerçekliği” olarak da anacağım. Diğer büyük hipotezi de, Darwin’in değişikliklerle türeme için önerdiği nedendir: Doğal seçilim kalıtsal çeşitlilik içinden ayıklama yapar. Darwin, evrimin tarihsel gerçekliği –yani ortak bir atadan değişerek türeme– için fazlasıyla delil sağladı. 1859’da bile bu görüşün epey desteği vardı. Yaklaşık 15 yıl içinde birkaç bağnaz dışında tüm biyolojik bilimciler bu hipotezi kabul etmişlerdi. O günden beri paleontolojiden, biyocoğrafyadan, karşılaştırmalı anatomiden, embriyolojiden, genetikten, biyokimyadan ve moleküler biyolojiden yüzbinlerce gözlem bu görüşü destekledi. Kopernik’in Güneş merkezlilik hipotezi gibi, ortak bir atadan değişiklerle türeme hipotezi de uzun süredir bilimsel bir olgu statüsündedir. Nasıl ki bir kimyacı suyun hidrojen ve oksijenden oluştuğunu gösteren bir makale yayınlamaya çalışmazsa, bugün hiçbir biyolog da “evrim için yeni kanıtlar” konulu bir makale yayınlamayı düşünmez. Yüz yılı aşkın bir süredir, bilimsel çevreler bunu tartışılacak bir konu olarak görmemektedir. Darwin, evrimin nedeninin kalıtsal çeşitlilik üzerindeki doğal seçilim olduğu hipotezini öne sürmüştü. Argümanı mantığa ve çok çeşitli dolaylı delilin yorumuna dayanıyordu ama doğrudan hiç delili yoktu. Kalıtımın anlaşılmasının ve doğal seçilim delillerinin hipotezini tam olarak desteklemesi için 70 yıldan daha uzun bir süre geçmesi gerekecekti. Üstelik bugün biliyoruz ki evrimin Darwin’in fark ettiğinden daha fazla nedeni vardır ve doğal seçilim ve kalıtsal çeşitlilik onun sandığından daha karmaşıktır. Bu kitabın büyük kısmı evrimin nedenlerine ilişkin bugünkü anlayışımızı oluşturan mutasyon, rekombinasyon, gen akışı, yalıtım, rastgele genetik sürüklenme, doğal seçilimin çeşitli biçimleri ve başka etmenlerden oluşan karmaşık düşünceler bütününe ilişkindir. Evrimin nedenleri hakkındaki bu birbiriyle ilişkili düşünceler ağı evrim kuramı ya da evrimsel kuramdır. Bu “sırf spekülasyon” değildir; çünkü tüm fikirler delillerle desteklenmiştir. Bir hipotez de değildir. Çoğu iyi desteklenmiş bir hipotezler bütünüdür. Yukarıdaki bölümde tanımlandığı anlamda, bir kuramdır. Bilimdeki tüm kuramlar gibi, tam değildir. Tüm evrimin nedenlerini henüz bilmiyor olduğumuz ve bazı ayrıntılar sonradan yanlış çıkabileceği için... Ancak evrimin ana ilkeleri o kadar iyi desteklenmiştir ki, çoğu biyolog bunları büyük bir güvenle kabul eder.      

http://www.biyologlar.com/hipotez-olgu-ve-bilimin-dogasi-1

IMViC TESTİ

IMViC TESTİ İsim, içeriğindeki testlerin baş harflerinden oluşmaktadır. I -Indol M -Metil kırmızısı Vi-Voges-Proskauer C -Sitrat Indol Testi Sıvı ve yüksek oranda triptofan içeren buyyon içerisine örneğin ekimi yapılır ve 24 saatlik enkübasyona bırakılır. Enkübasyon süresi sonunda Kovacs ya da Ehrlich ayracından 0,5 ml eklenir. Eğer bakteri besiyerinde bulunan triptofan'ı indol'e dönüştürebilmiş ise tüp üzerinde kırmızı/mor halka oluşacaktır. Bu durumda test sonucu pozitiftir. Eğer iki dakika içerisinde kırmızı/mor renkli halka yerine açık sarı halka gözlenirse test negatif olarak kabul edilir. Metil Kırmızısı (MR) Bakterilerin besiyerindeki glikozu fermente edebilme yetisini gösteren testtir. Eğer bakteriler besiyerinde bulunan glikozu fermente ederek kuvvetli asit oluştururlarsa bu testte de pozitif sonuç elde edilir. Deney için Clark Lubs besiyerine ekim yapılır. 24 saatlik enkübasyon sonucunda Metil Kırmızısı (MR) ayracı eklenir. Kırmızı renk oluşumu pozitif olarak değerlendirilir. Voges-Proskauer (VP) Bu testte amaç, bakterinin glikozu parçalayarak asetoin (acetyl methyl carbinol) oluşturmasını tayin etmektir. Deney için Clark Lubs besiyerine ekim yapılır. 24 saatlik enkübasyon sonrasında alfa naftol ve KOH içeren ayraç eklenir. Deney tüpünde kırmızı/pembe renk oluşumu pozitif olarak değerlendirilir. Sitrat Bakterilerin karbon kaynağı olarak sitrat'ı, azot kaynağı olarak da amonyum tuzlarını kullanabildiğini gösteren testtir. Test için saf kültürden Simons Sitrat besiyerine çizgi ekim yapılır. 24 saatlik enkübasyon sonucunda besiyerinin mavi/lacivert renk alması testin pozitif sonuç verdiğini, yeşil olarak kalması da negatif sonuç verdiğini gösterir. Kullanım Alanı Koliform bakterilerin (Özellikle Enterobacteriaceae ailesinin) cins tanımlanmasında kullanılır. Bu teste yardımcı olmak için ayrıca Ürease Testi de eklenebilir. Bakteri İndol MR VP Sitat Escherichia coli + + - - Proteus vulgaris + + - - Salmonella spp. - + - + Enterobacter aerogenes - - + + Shigella spp. - + - -

http://www.biyologlar.com/imvic-testi

Mutasyonlar Zararlı mıdır?

Soru : Evrim mutasyonlara bağlı ve çoğu mutasyon zararlı değil midir? Cevap: Hayır, mutasyonların çoğu ne zararlı ne de faydalıdır. Bu kısa cevaptı. Uzun cevap şudur; mutasyonlar nötr (ne zararlı ne de yararlı) olabilirler, çok zararlı ya da çok yararlı olabilirler ve en önemlisi mutasyonların zararlı ya da yararlı olmaları çevreye bağlıdır. Çoğu mutasyon ya nötrdür ya da etkileri çevreye bağlıdır. Gelin bir mutasyonun şartlara bağlı olarak nasıl yararlı ya da zararlı olabileceğini açıklayan bir örneği inceleyelim. İngiliz biberli kelebekleri* iki farklı türdür, açık ve koyu. Sanayi devriminden önce, koyu renkli kelebeklere nadir rastlanıyordu. Sanayi devriminin en kötü yıllarında hava çok isliyken koyu renkli kelebekler daha sık görülmeye başlandı. Geçtiğimiz yıllarda, havanın temizlenmesi için büyük çabalar gösterildiğinden beri, açık renkli kelebekler, koyu renklilerin yerini almaktadır. Bu fenomen ile ilgili olarak H B. D. Kettlewell ünlü makalesinde aşağıdaki açıklamayı önermiştir: Kuşlar en iyi görebildikleri tür kelebekleri yer. Sanayi devriminden önce İngiltere'de, ağaçlar açık renkli likenlerle kaplıydı. Bu durum açık renkli kelebeklerin yararına olmuştu, çünkü ağaçların kabuklarında görülmeleri çok zordu, koyu renkli kelebekler ise kolay görülebiliyordu, kuşlar koyu renklileri yiyorlardı. Sanayi devriminin en yoğun olduğu yıllarda, hava isliydi, bu sebeple ağaç kabukları da is yüzünden koyu idi. Bu sefer koyu kelebekleri görmek zorlaşmıştı, açık renkli kelebekler kolay görünür olmuştu ve kuşlar açık renkli kelebekleri yediler. Netice olarak koyu renkli kelebekler artarken açık renkli kelebekler azalmıştı. Yaratılışçıların eleştirilerine rağmen bu açıklama zamanın sınamasına ayak diredi. Sanayi devriminden önce, açık renkli kelebekleri koyu renkli kelebeklere çeviren mutasyon elverişsiz (zararlı) iken, daha sonraki yıllarda elverişli bir mutasyon haline gelmiştir. Mutasyonların neden yararlı ya da zararlı olmadıklarını anlamak için, mutasyonların ne olduğunu biraz bilmek yararlı olur. Mutasyon, kalıtımı kontrol eden genetik maddedeki bir değişikliktir. Genetik madde kromozomlarda bulunur. Bitkiler ve hayvanlarda her kromozomdan bir çift mevcutken, bakterilerde sadece tek kromozom vardır. Bütün kromozomlardan bir çift ihtiva eden organizmalara diploid, tek kromozom ihtiva edenlere ise haploid denir. Kromozomlar genlere ayrılır, gen bir sıra DNA uzantısıdır, diğer bir deyişle nükleotidler (kısaca A,G,C,T) dizisidir. Genin bulunduğu yere lokus denir (Gen içindeki nükleotidin pozisyonu ile karıştırmayın). Bir yaratıktan diğerine belirli bir lokusta bulunan DNA diziliminin küçük bir biçimde farklı bulabilirsiniz. Bunlar, bazen karıştırılarak farklı genler olarak nitelense de, çoğunlukla farklı aleller olarak bilinir. Gelin karıştırmamak için farklı aleller diyelim, zaten bu standart terimdir. Eğer hayvan ve bitki popülasyonlarına bakarsak, genlerin %10 ile %20'si arasında birden fazla alel buluruz. Diğer bir deyişle bir popülasyonun tüm üyelerine baktığımızda, belirli bir lokusta %10 ile %20 arası, birden fazla çeşit DNA dizisi görürüz. Bir popülasyonda belirli bir gen için ikiden fazla alel olabilir. Biberli kelebeklerimizin, kelebeğin açık ya da koyu renkli olduğunu belirleyen bir geni vardır. Kelebekler diploid olduklarından tüm genlerden iki tane vardır. Eğer belirli bir genin alelleri aynıysa, kelebek bu gen için homozigot'dur, eğer aleleler farklı ise kelebek bu gen için heterozigot'dur. Eğer her iki alel de aynı ise, hangi alelin olduğuna bağlı olarak kelebek açık veya koyu renkli olacaktır. Bazen "hangi gen" deniyor ama bu, gen ve alel karıştırıldığı için şaşırtıcı olur. Eğer bir kelebek iki farklı alele sahipse, diğer bir deyişle heterozigot ise, kelebeğin rengi hangi alelin baskın olduğuna bağlıdır. Biberli kelebeklerde koyu renk baskındır, yani heterozigot açıktan ziyade koyu olacaktır. Şimdi bir genin nasıl değişebileceğini, yani bir alelin nasıl başka bir alele dönüştüğünü tartışalım. Bu dönüşüme yol açabilecek birkaç yol vardır. Bir nükleotidin yerini başka bir nükleotidin alması halinde nokta mutasyonu elde ederiz. Bir bölüm uç uca takas edilebilir. Bir bölüm kesilip atılabilir. Bir bölüm eklenebilir. Veya tüm gen kopyalanmış olabilir. (Daha fazla bilgi için "Mutasyonun farklı türleri ve etkileri" bölümüne bakınız.) Bunlardan biri olunca sonuç nedir? Çoğunlukla bu değişimin ya herhangi görünür bir etkisi olmaz ya da ölümcül olur. Protein kodlayan genler uzerinde protein dizisi genetik kod halinde yazilidir. Genetik kod gerekenden fazladır (teknik olarak dejenere denir) yani farklı nükleotid üçlüleri aynı aminoasiti kodlarlar. Bu gerekenden fazlalık dolayısıyla nokta mutasyonunun kodlanan protein üstünde hiç etkisi olmayabilir; bu mutasyonlar sessiz mutasyon olarak bilinir. Eğer dizin atılma veya takas sebebi ile değiştirilmişse kodlama dizini (üçlü okuntu) bozulduğundan sonuç olasılıkla ölümcüldür. Bununla beraber bu her zaman geçerli değildir. Çünkü bir şekilde DNA bölümlerini genlerden atan veya genlere ekleyen ve kodlamayı bozmayan süreçler vardır. Diyelim ki bu ne sessiz ne ölümcül olmayan mutasyonlardan biri söz konusu. Sonuç olarak biraz değişik bir protein elde ederiz. Genelde bu yeni proteinin çalışma şekli eskisine çok yakın olur ve tepkimeleri katalize eder. Bazen bu değişimin işlevsel yeteneği değişir ve farklı bir tepkimeyi katalize eder. Bu olduğunda, özgün görevi yerine getiren başka bir protein de olabilir ve bu durumda yeni bir yetenek katmış oluruz. Eğer başka protein olmasaydı, özgün yeteneği kaybetmiş ve yenisi ile yer değiştirmiş olurduk. Enzimlerdeki değişiklikler (tepkimeleri katalize eden proteinler) nadiren ya-hep-ya-hiç önermelerdir. Gen ikileşmesi yeni genler elde etmenin bir yolu olduğu için önemlidir. Gen ikileştiğinde kopyalardan biri değişirken diğeri aynı kalır. Genler, organizmaya zarar vermeden ne kadar değiştirilebileceklerine göre çok fazla değişirler. Temel metabolizmaları ve ikileşme (replikasyon), yazılma (transkripsiyon), ve (çeviri) translasyon mekanizmaları gibi bileşenleri kodlayan bazı genleri zarar görmeksizin değiştirmek zordur. Bir organizmadan diğerine bunlarda çok az değişiklik görürüz. Bu çeşit genlere korunmuş genler denir. Net sonuç nedir diye sorabilirsiniz. Bazı mutasyonlar ölümcül ya da çok zararlıdır. Bu mutasyonlar anında elenir. Bazıları sessiz ve önemsizdirler. Bazen bir mutasyon kesinlikle avantajlıdır, bu nadirdir ama olabilir. Sessiz olmayan ve elenmemiş mutasyonların hemen hepsi, ne tamamen avantajlı ne de yıkıcıdır. Mutasyon biraz farklı bir protein üretir, ve hücre ve canlı organizma biraz farklı çalışır. Bir mutasyonun zararlı veya faydalı olması çevreye bağlıdır, ikisi de olabilir. Eğer bunun hakkında düşünürseniz, hayatın şu şekilde işlemesi gereklidir, mutasyonlar (genetik maddedeki değişimler) her zaman oluyor. Ortalama bir insanın 50 ila 100 arası mutasyonu vardır ama yaklaşık 3 tanesi kayda değerdir, fiilen bir proteini değiştirirler. Eğer bu mutasyonlar zararlı olsalardı, yaşam kısa sürede sona ererdi. Çoğu mutasyon düzenli olarak ne zararlı ne de yararlı olmasına rağmen, belirli bir çevre içinde zararlı ya da yararlı olabilir. Çevreler sürekli değişim halindedir ve bir popülasyonun her üyesi, diğerlerinden biraz daha farklı bir çevrede yaşar. Bazı organizmalar yaşar, bazıları yaşamaz. Bazıları ürer, bazıları üremez. Hem yaşayıp, hem üremeyi başaran canlıların genleri aktarılır. Organizmada çevreye göre elverişli olan her farklılık gelişir. Mutasyonların çevreye bir tepki olarak ortaya çıkmadığını anlamak önemlidir, sadece meydana gelirler. Gayet sıklıkla bir mutasyon bir popülasyonda meydana geldikten sonra kaybolur, çünkü organizmanın dölü yoktur veya mutasyonu dölüne aktarması vuku bulmamıştır; mutasyonun yararlı olsa bile bu olabilir. Bazen bir mutasyon popülasyon içinde, herhangi bir avantaj sağlamadığı halde şans eseri yerleşebilir; bu genetik sürüklenme olarak bilinir. Mutasyonların bir kerelik ortaya çıkmadığının bilinmesi de önemlidir. Nadiren oluşurlar ama bir tür içinde tekrar tekrar olmayı sürdürürler. Mutasyon etki olarak elmadan bir lokma almaktan daha fazlasını ifade eder; eğer ilk görüldüğü zaman ortaya çıkmasa bile başka bir şansı olur. *Biberli kelebek : Biston betularia, çeşitli gri tonlarda bulunur. 150 Yıl önce hemen tamamıyla açık gri pullar serpiştirilmiş siyah benekler görünümünde olduğu için biber ekilmiş anlamında biberli kelebek olarak adlandırıldı. [Bu yazı www.talkorigins.org/faqs/mutations.html adresindeki yazının bir bölümünün çevirisidir.]

http://www.biyologlar.com/mutasyonlar-zararli-midir

TRANSPLANTASYON İMMÜNOLOJİSİ VE TARİHÇESİ

İmmünoloji İnsan İmmün (Bağışılık) sistemi zararlı olan organizmaları vücuttan uzaklaştırmaktadır. Bu sistem, vücudumuzun yaklaşık iki trilyon hücresini koruyan, antibadi ve sitokinler üreten hareketli askerleridir. Virüs, bakteri ve tümör hücreleri veya transplante edilmiş hücreler gibi yabancı ya da vücuda ait olmayan hücrelerle koordineli bir biçimde hızlıca çok yönlü bir atağa geçmektedir. Her ne kadar çevre immün cevabı stimüle etse de, immüniteyi kontrol eden genlerdir. Genler antibadi ve sitokinlerin hücre yüzeyini spesifik olarak kodlamaktadır. Genler aynı zamanda sitokinleri tutan hücre yüzey proteinlerini kodlamaktadır (Antijen başka bir bireyde immün cevaba neden olan bir moleküldür. Antijenler genellikle protein veya karbohidratlardır). Yabancı antijen, vücuda ait olmadığından dolayı, bir immün cevaba neden olmaktadır. Genler immüniteyi kontrol ettiğinden, oluşan değişiklikler immünolojik fonksiyonları engelleyebilmektedir. Immünitede oluşan bozukluk, otoimmün hastalıklara, allerjiye ve kansere neden olabilmektedir. Genlerin immünitede büyük rol oynamasından dolayı, teknoloji ile birlikte, hastalıkların tedavisi amacıyla immün sistem güçlendirilmeye çalışılmaktadır. Transplantasyon nedir nasıl yapılır Transplantasyon yöntemi günümüzde oldukça yaygındır. Kalp, böbrek ve başka organların bir kişiden diğerine nakledildiğini sık sık duyarız. Dişlerin transplantasyonunda iki yöntem vardır: Aynı kişiden ve başka kişiden transplantasyon. Aynı kişide bir diş bir çene yarısında dizi dışı bulunur ve normal diş sayısına oranla artıklık gösterirken, diğer tarafta herhangi nedenlerle bir dişin dizide eksik olduğu da görülebilir. Bu durumda iki olasılık vardır: Ya bir diş yuvası önceden hazırdır ya da operatör bu dişi transplante edebilmek için ilkin böyle bir yuva oluşturmalıdır. Bu durumda en uygunu, önceden hazır olduğu için yeni çekilmiş bir dişin boş olan alveolüdür. Ayrıca aynı kişiden transplantasyon dışında, dişin başka kişiden alındığı, kişiden – kişiye transplantasyon da vardır. Kişiden – kişiye transplantasyon çok eskidir de. Örneğin, ortaçağda varlıklı bir bayan bir dişini yitirdiğinde bir kölenin benzer dişini çektirttiği sık sık görülürdü; sonra bu yabancı diş çenesine transplante edilirdi. Oysa her zaman uygun dişli bir köle bulunamazdı. Bayan böyle durumlarda da transplantasyon amacıyla uygun dişini çektirtecek olan bir başka kişiye belirli bir tutar para önerirdi. Kişi artık günümüzde transplantasyonda biraz daha dikkatlidir. Benimsenme olasılığı için en uygunu; plantat-vericisi ve plan-tatralıcısının kardeşler, ana-baba, çocuklar gibi yakın akraba olmalarıdır. Ancak yabancı plantat-vericisi plantat-alıcısıyla aynı kan grubundan ise, bu plantat-vericisinin dişi de kullanılabilir. Kan uyuşmazlığının göz önüne alınmaması eskiden bir çok başarısızlıklara neden olurdu. Tüm plantasyonlarda plantat kökünün vücutta yabancı madde sayılarak atılma tehlikesi vardır. Bu nedenle, transplantat’ın sürekliliği olabildiğince uzatılsın diye gereken her şey yapılmalıdır. Genel diş ve kök tedavisi tıpkı replantasyondaki gibi uygulanır. Çoğu zaman başarı replantasyondaki kadar iyi değildir ve atılmazlığı bütünüyle plantat-alıcısmın kendisine bağlıdır. Tüm transplantasyonlarda ope­rasyondan sonra şineleme son derece önemlidir. Transplantasyon Sonrası Immün Sistemin Yeniden Programlanmasında Monoklonal Antikorların Kullanımı Transplantasyon sonrası immün sistemin yeniden yapılanması sürecinde temel amaç, graftı T lenfositlerinin yıkıcı etkilerinden korumaktır. Monoklonal antikorlar da bu amaca yönelik olarak mevcut immünsüpresif ilaçlara yardımcı olarak kullanılmaktadır. Bazıları indüksiyon tedavisinde, rejeksiyon önlenmesine yönelik olarak, bazıları da dirençli akut rejeksiyon tedavisinde kullanılırlar. Monoklonal antikorların en yaygın kullanılanları basiliksimab ve daklizumabdır. Bu IL-2 reseptör blokerleri, akut rejeksiyon oranlarında önemli azalmalar sağlamaları ve yan etkilerinin olmayışı nedeni ile oldukça benimsenen ilaçlardır. Bunların yanında rituksimab (anti-CD20) ve Campath (anti-CD52) gibi ajanlar da giderek daha çok kullanılmaya başlanan monoklonal antikorlardır. Transplantasyon immünolojisinde, T hücre aktivasyonunda görevli, bazı yeni aracı moleküllerin bulunması monoklonal antikorların da giderek çeşitleneceğini göstermektedir. Transplantasyon Hakkında Sık Sorulan Sorular 1. Canlı veya kadavra vericilerden transplantasyon yapılacak adayların hazırlıkları arasında bir fark var mıdır? Hayır, Kadavra böbreği bekleme listesindeki adaylar da tıpkı canlı vericiden transplantasyon yapılacak adaylar gibi incelenir. Ancak bir kadavra böbreği bulunma olasılığının ne zaman gerçekleşeceği belli olmadığı için. zaman geçtikçe önceden yapılmış muayene le bazı laboratuar incelemelerinde değişiklikler olabilir. Bu nedenle kadavra böbreği bekleme listesindeki hastaların belli aralıklarla, fizik muayene ve laboratuar incelemeleri yineletmeleri ger eklidir. Kısaca; kadavra böbreği bekleyen hastalar ameliyata her an hazır durumda olabilir. 2. Transplantasyon adayı hastaların kendi böbreklerine herhangi bir müdahale yapılır mı? Genellikle hastaların kendi böbreklerine dokunulmaz. Ancak, inatçı hipertansiyon, böbreklerde tedaviye dirençli infeksiyon, idrarın mesaneden böbreğe taşması, çok büyük kistik böbrekler söz konusu ise, hastalıklı böbrekler çıkarılır. Bu ameliyat bazı merkezlerde transplantasyondan önce yapılır ve 3-4 hafta sonra yeni böbrek takılır. Bazı merkezlerde ise böbrek nakli ameliyatı yapılırken aynı anda hastanın kendi böbrekleri de çıkarılır. Yalnız her iki ameliyatın aynı seansta yapılması oldukça uzun sürer ve biraz daha risklidir. 3. Kadavra böbrek listesine kayıtlı hastalar için bekleme süresi ne kadardır? ÜIkemizde bugün için kesin bir süre belirtmek mümkün değildir. Listeye çok yeni giren bir hasta, uygun tipte böbrek çıkması ile kısa zamanda transplantasyon şansına kavuşabileceği gibi bazen de uygun bir böbrek çıkmadığı için uzun süre beklenebilir. Olanaklar elverdiğince, uygun böbrek çıktığında daha uzun süre beklemiş olan hastaya öncelik tanınır. Halkımızın bilinçlenerek daha fazla organ bağışında bulunması bekleme süresini kısaltacaktır. Halkımızın bilinçlenerek daha fazla organ bağışında bulunması bekleme süresini kısaltacaktır. 4. Kadavra böbrek bulunduğunda hastalara nasıl haber verilir? Transplantasyon ünitesinde bilgisayarda kadavra böbreği bekleyen tüm hastaların telefon numaraları kayıtlıdır. Uygun bir kadavra böbreği çıktığında günün herhangi bir saatinde size telefonla haber verilere!,, transplantasyon ünitesine gelmeniz istenecektir. Size daha kolay ve kısa sürede haber verebilmemiz için. varsa, birden fazla telefon numaranızı ve yakınlarınızın da telefon numaralarını bildirmeniz faydalıdır. Telefon numaranızda bir değişiklik olduğunda bunu hemen üniteye bildirmelisiniz. 5. Böbrek bulunduğu haberi ile transplantasyon ünitesine çağrılmanız mutlaka böbreğin size takılacağı anlamına mı gelir? Hayır. Bir kadavradan elde edilen iki böbrek için yaklaşık 10 hasta üniteye çağrılmaktadır. Burada, hemen yapılan fizik muayene ve acil laboratuar incelemeleri sonucunda, ünite hekimlerinden oluşan bir kurul tarafından karar verilmekte ve durumu en uygun olan 2 hastaya böbrek takılmaktadır. Böbrek takılmayanlara ise bunun nedenleri açıklanır ve hastalar evlerine gönderilir. 6. Kadavra böbrek, transplantasyon için haber verildiğinde neler yapılmalıdır? Öncelikle bu saatten itibaren hiçbir şey yenilmemeli ve içilmemelidir. Bekleme listesindeki bu hastanın küçük bir çantada, kişisel eşyaları (pijama, terlik gibi) her an hazır olmalıdır. Özelikle şehir dışından gelecek hastaların telaşa kapılmamaları ve hazırlanmakla vakit kaybetmemeleri için önemlidir. Çağrıldığınızda yanınıza eşyaları da alarak en hızlı ulaşım aracı ile. uzak bir şehirde oturmaktaysanız mümkünse uçakla, üniteye gelmelisiniz. 7.Kadavra böbreğin size takılmasına karar verildiğinde ne tür işlemler yapılacaktır? Bu karardan sonra, artık hastanede kalacaksınız. O gün diyalize girmediyseniz acil olarak hemodiyalize alınacak ve bitiminde transplantasyon ünitesine yatırılacaksınız. Gerekli ameliyat hazırlıkları ve transplantasyon öncesi ilaç uygulamalarından sonra böbrek nakli ameliyatına alınacaksınız. Artık yeni böbreğiniz takılacak ve sizin için yeni bir yaşam dönemi başlayacaktır. TRANSPLANTASYON İMMÜNOLOJİSİ TARİHÇESİ Prof.Tbp.Kd.Alb.Ali ŞENGÜL Tarihçe; MÖ 200: Çin?de Kalp nakilleri denemeleri MÖ 600: otolog deri transplantasyonları (Hindu cerrah Sushruta- yüz plastik cerrahisi) Modern transplantasyon dönemi ise 18. Yüzyılın sonlarında deneysel cerrahinin babası olarak da bilinen Hunter tarafından başlatılmış olarak kabul edilmektedir. Carrel 1912?de vasküler anastomoz tekniği ile nobel ödülü almış ve teknik olarak başarılı nakillerin yolunu açmıştır. Daha sonra biyolojik özelliklerden immün sistem üzerine yoğunlaşılmış ve gerçek başarı ancak immünolojik gelişmelerden sonra mümkün olabilmiştir. İlk kan transfüzyonları 17. yy?da hayvanlar ve insanlar arasında denenmiş ve alınan korkunç sonuçlar nedeniyle bu konu 150 yıl boyunca bir daha gündeme gelememiştir. 1900 yılında Landsteiner ve Miller insanları kanlarındaki aglutininlere göre gruplandırarak transfüzyonları tekrar gündeme getirirken, doku tiplendirmesinin de yolunu açmışlardır. 1923 de Williamson homolog ve otolog graftlemeyi kıyaslayarak doku tiplendirmesi için çalışmaların başlamasına sebep olmuştur. 1930 larda moleküler genetikçi George Snell farelerde histokompatibilite lokusu olan H-2 lokusunu keşfetmiştir. 1937 de Gorer insanlarda ilk histokompatibilite antijenini tanımlamış ve self-nonself ayrımını izah etmiştir. 1943 de Medawar tavşanlarda deri grefti çalışmaları yapmış ve otograft-homograft ayrımında akraba olanlarla olmayanların farklılığını ortaya koymuştur. II. Dünya savaşında yanıklı hasların tedavisinde plastik cerrah Gibson ile işbirliği yaparak immün yanıtın 3 temel özelliğini (tanıma, yıkım ve hafıza) tanımlamıştır. 1952 de Dausset multiple kan transfüzyonu yapılanlarda lökoaglutininler oluştuğunu gözlemleyerek insanlarda HLA lokuslarının keşfine giden yolu açmıştır. 1964 de Terasaki ve arkadaşları sitotoksik antikorları kullanarak mikrolenfositotoksisite yöntemi ile antijenlerin serolojik olarak tanımlanmasını sağlamışlardır immünosupresyon 1950 lerde John Loutit tarafından total vücut radyasyonu (TBI) ile farelerde denenmiş, 1958 de Murray (Boston) ve Hamburger (Paris) tarafından ayrı ayrı insanlara uygulanmıştır. 1960 larda AZT geliştirilmiş ve transplantasyonda kullanılmış. Ardından Starzl AZT ile kortikosteroidi kombine ederek başarının artmasını sağlamıştır. 1960 ve 1970 lerden itibaren poliklonal antikor teknolojisi, siklosporinin keşfi, 1980 lerde monoklonal antikor teknolojisinin keşfi ile bu konudaki gelişmeler hız kazanmış, daha modern immünosupressif ajanların keşfi ile neredeyse doku uyumuna bakılmaksızın transplantasyonlar yapılmaya başlamıştır. TANIMLAR Transplantasyon: Donör / verici : Recipient / alıcı: Ortotopik transplantasyon Heterotopik transplantasyon. Rejeksiyon / red Birincil rejeksiyon ikincil rejeksiyon (Hafıza). TANIMLAR (2) Otolog greft / otogreft Oto transplantasyon / otolog transplantasyon Isogreft / syngeneik greft / syngreft Allogeneik greft / allogreft Xenogeneik greft / xenogreft Alloantijen Xenoantijen alloreaktif antikor xenoreaktif antikor ALLOGENEİK TANIMANIN MOLEKÜLER TEMELİ Haplotip identik, inbred farelerde yapılan hücre ve doku nakillerinde rejeksiyon oluşmamaktadır. Farklı inbred fareler arasında yapılan transplantasyonlarda hemen daima rejeksiyon oluşmaktadır. Farklı iki inbred fareden olan F1 dölünde, anne ve babadan alınan greftlerde rejeksiyon oluşmamaktadır. Farklı iki inbred fareden olan F1 dölünden alınan greft, anne ve babaya transplante edildiğinde rejeksiyon oluşmaktadır. MHC / HLA Minör doku uygunluk antijenleri MHC molekülleri dışındaki polimorfik alloantijenler daha zayıf ve daha yavaş bir rejeksiyon reaksiyonu oluştururlar. Bunlara Minör doku uygunluk antijenleri (minor histocompatibility antigens) adı verilmektedir. Birçok minör doku uygunluk antijeni self veya greft MHC molekülleri tarafından işlenip T hücrelerine sunulabilen protein yapısındaki moleküllerdir. MHC moleküllerinden farklı olarak bu minör antijenlerin tanınabilmesi için işlenip MHC molekülleri tarafından sunulmaları gereklidir. ALLOGENEİK TANIMANIN HÜCRESEL TEMELİ Rejeksiyon reaksiyonu, transplante edilen dokuların hem CD4+ ve hem de CD8+ hücreler tarafından tanınması sonucunda gelişir. Değişik T hücre popülasyonlarının alloantijenleri tanımalarını anlamak için mikst lenfosit reaksiyonu (MLR) güzel bir model olarak kullanılmaktadır. MLR ile şu sonuçlara ulaşılabilir: Eğer hücrelerin MHC-sınıf I antijenleri arasında farklılık yoksa CD8+ CTL oluşmayacaktır. Uyarıcı hücrenin MHC-Sınıf-I antijenlerine karşı antikorlar kullanılırsa, hücre lizis’den korunacaktır. Eğer uyarıcı ve uyarılan hücreler arasında MHC Sınıf-II antijen farklılığı varsa alloreaktif CD4+ T hücreleri uyarılacak ve prolifere olarak sitokin üretecektir. Uyarıcı hücre ile aynı MHC sınıf-II antijenlere sahip üçüncü grup hücre kültüre eklenirse alloreaktif CD4+ T hücreleri tekrar uyarılacaktır (İkincil MLR). Uyarıcı hücrenin MHC sınıf–II antijenlerine karşı antikor kullanılırsa, bu antikorlar ikincil MLR’nu önleyecektir. Rejeksiyon Rejeksiyonun değişik formlarının olduğu ve bunların her biri için farklı bulgu ve belirtilerden oluşan tanımlar olduğu bilinmektedir. Ancak çoğu kez bunları biri birinden kesin olarak ayırt edecek kriterler bulunamaz. Gerçekte aynı greftte akut ve kronik rejeksiyon sıklıkla birliktelik gösterir. Sınıflandırmada, transplantasyonu takibeden sürenin uzunluğundan çok, major sınıflandırma kriteri olarak histolojik değişikliklere dikkat etmek gereklidir. Hiperakut rejeksiyon (HAR) : Greft damarlarında hızlı trombotik oklüzyon ile karakterize bir tablodur. Anastomozu takiben dakikalar içerisinde başlar. Özellikle IgM tipi antikorların endotele bağlanarak komplemanı aktive etmesi söz konusudur. Endotelden Von Willebrand faktör sekrete edilir. Kompleman aktivasyonu da endotel hücre hasarına yol açarak koagülasyonu başlatır. Subendotelyal bazal membran proteinlerinin de trombositleri aktive etmesi sonucunda tromboz ve vasküler oklüzyon oluşarak, organda kalıcı iskemik hasar meydana gelir. Hiperakut rejeksiyon (HAR) : (2) IgM türü allo antikorlar: Bu tür antikorlara en iyi örnek ABO kan grubu antikorlarıdır. Normal barsak florasında bulunan bazı bakterilerin karbonhidrat antijenlerine karşı geliştiği düşünülen doğal antikorlar. Doğal Xenoantikorlar. IgG izotipinde alloantikorlar: Eski transplantasyonlar veya multiple gebelik durumlarında oluşurlar. Bu antikorlar Lenfosit Cross Match (LCM) ile ortaya çıkarılabilir. AKUT REJEKSİYON Transplantasyondan sonra 1 hafta ile 4 ay arasında ortaya çıkar ve ilk yıldan sonra da ataklar görülebilir. a) Akut Sıvısal Rejeksiyon : Akut sıvısal rejeksiyon, greft kan damarlarındaki bazı hücrelerde nekroz ile karakterize bir durumdur. Histolojik olarak hiperakut rejeksiyondaki trombotik oklüzyondan çok bir vaskülit sözkonusudur. Akut sıvısal rejeksiyondan endotelyal hücre antijenlerine karşı gelişmiş IgG izotipinde alloantikorlar sorumludurlar. Bu antikorlar kompleman aktivasyonuna da yol açarak etkili olurlar. Bu olaya lenfositlerin de katılması nedeniyle alternatif bir şekilde “akut, vasküler rejeksiyon” olarak da isimlendirilmektedir. Akut Hücresel Rejeksiyon : Bu tip rejeksiyon parenkimal hücrelerde nekroz ile karakterize ve genellikle lenfosit ve makrofaj infiltrasyonu ile birliktedir. Bu infiltrasyondaki lökositler greft parenkim hücrelerinin lizis’inden sorumludurlar. Akut hücresel rejeksiyondan birçok farklı effektör mekanizma sorumlu tutulabilir: CTL’e bağlı lizis, Aktive makrofajlara bağlı lizis (geç tip aşırı duyarlılık reaksiyonunda olduğu gibi), Doğal öldürücü (NK: Natural killer) hücre lizisi. KRONİK REJEKSİYON : Normal organ yapısının kaybolduğu, fibrozis ile karakterize bir durumdur. Patogenezi akut rejeksiyona oranla daha az anlaşılmıştır. Fibrozis, akut rejeksiyondaki hücre nekrozunun iyileşme sürecinde gelişiyor olabilir. Kronik geç tip aşırı duyarlılık reaksiyonunda olduğu gibi aktive makrofajların, trombosit kaynaklı büyüme faktörü gibi mezanşimal hücre büyüme faktörü salgılaması ile ya da kan damarlarındaki hasarlara bağlı olarak ortaya çıkan kronik iskemiye bir yanıt şeklinde gelişmesi ihtimali de vardır. Kronik rejeksiyonun bir başka formu, musküler arterlerde intimal düz kas proliferasyonu ile karakterize olan formdur. Bu düz kas proliferasyonu da geç tip aşırı duyarlılık reaksiyonunun bir sonucu olarak gelişebilmektedir. Greftteki damar duvarlarında bulunan alloatijenlerle uyarılan lenfositlerin makrofajları uyararak, düz kas hücresi büyüme faktörü salgılanmasına yol açtıkları düşünülmektedir Bu form özellikle renal ve kardiyak transplantasyonlarda görülmüştür. Bu şekilde gelişen bir arterioskleroz geç tip greft kayıplarındaki en önemli sebeplerden biridir. Birçok olguda arteriel hasardan önce herhangi bir histolojik bulgu tespit edilmemiştir. ALLOGRAFT REJEKSİYONDAN KORUNMA VE TEDAVİ: İmmün sistemi tam olarak fonksiyonel bir alıcıya aktarılan bir allograft eninde sonunda mutlaka rejeksiyonun bir şekli ile karşılaşacaktır23,24. Rejeksiyondan korunmak ya da rejeksiyonu geciktirmek için gerek klinik çalışmalarda, gerekse deneysel modellerde iki yöntem geliştirilmeye çalışılmıştır: Greftin immünojenitesini azaltmak Alıcının immün sistemini baskılamak Dokuların immünojenitesi Kemik iliği Deri Gastrointestinal kanal Langerhans adacıkları Kalp Böbrek Karaciğer Greftin immünojenitesini azaltmak: İnsanlardaki transplantasyonlarda graft immünojenitesini azaltmak için takip edilen ana strateji, donör ve alıcı arasındaki alloantijenik farklılıkları minimalize edecek bir seçim uygulamaktır. HAR’dan korunmak için donör ve alıcının ABO kan grubu antijenlerinin daima uyumlu olmasına dikkat edilmektedir. MHC moleküllerinin allelik farklılıklarının hem sınıf-I ve hem de sınıf-II lokusları bakımından mümkün olduğu kadar az olmasına ya da tamamen uygun olmasına dikkat edilmekte, bu amaçla donör ve alıcının HLA antijenlerini belirleyen test yöntemleri, moleküler düzeyde analiz yöntemleri ile geliştirilmektedir. Greftin immünojenitesini azaltmak (2) Kan grubu ve HLA tiplemeleri yanında mevcut bir immünizasyon varsa bunun tespiti de çok önemlidir. Bu amaçla hücresel immünizasyonun araştırılması için mikst lenfosit reaksiyonu (MLR) testi yapılmaktadır. Sıvısal bir immünizasyon için ise dolaşan antikorların varlığının araştırılması önemlidir. Lenfosit Cross Match (LCM) Panel reaktif Ab (PRA) Alıcının immün sistemini baskılamak: Greft dokularına karşı reaktif antikorların varlıklarını belirlemek ve plazmaferez gibi yöntemlerle bu antikorları azaltmak. Transplantasyondan önce alloantijenler vererek allografta tolerans oluşturmak: İmmünosupressif tedavilerle T hücrelerini baskılamak veya lizise uğratmak: İMMÜNOSUPRESYON Kortikosteroidler, Metabolik toksinler (azathioprine, cyclophosphamide v.b.), lenfoid dokuların irradiasyonu, spesifik immünosupressif ilaçlar (Cyclosporine, FK506 v.b.), T hücre yüzey moleküllerine spesifik antikorlar kullanılmaktadır. Graft Versus Host Hastalığı (GVHD) İmmünosupressif alıcıda yerleşme fırsatı bulan donör kaynaklı lenfositlerin alıcı dokularına karşı reaksiyon vermesiyle ortaya çıkar. İmmünosupressif kişilere iatrojenik olarak verilmiş immünopotent hücrelerle de ortaya çıkabilir. (Kan transfüzyonu, solid organ transplantasyonları v.b.) Allogenik kemik iliği transplantasyonunun önündeki en büyük engeldir. GVHD Deri, Gastro-intestinal sistem, karaciğer, akciğer başlıca hedef organlardır. Akut reaksiyonlar post-transplant 7-80 günlerde, Kronik formlar ise 3. Aydan sonra ortaya çıkar. Solid organ transplantasyonları sonrasında oluşan GVHD’da transplante organ self kabul edildiğinden o organa karşı reaksiyon oluşmaz. Ortaya çıkan patolojilerin GVHD’na ait olup olmadığını destekleyecek en önemli bulgu periferik kanda kimerizm araştırarak elde edilebilir. Bunun yanında daha invaziv bir yöntem olan Biyopsi de çok değerli bilgiler verebilir.

http://www.biyologlar.com/transplantasyon-immunolojisi-ve-tarihcesi

Transplantasyon Hakkında Sık Sorulan Sorular

1. Canlı veya kadavra vericilerden transplantasyon yapılacak adayların hazırlıkları arasında bir fark var mıdır? Hayır, Kadavra böbreği bekleme listesindeki adaylar da tıpkı canlı vericiden transplantasyon yapılacak adaylar gibi incelenir. Ancak bir kadavra böbreği bulunma olasılığının ne zaman gerçekleşeceği belli olmadığı için. zaman geçtikçe önceden yapılmış muayene le bazı laboratuar incelemelerinde değişiklikler olabilir. Bu nedenle kadavra böbreği bekleme listesindeki hastaların belli aralıklarla, fizik muayene ve laboratuar incelemeleri yineletmeleri ger eklidir. Kısaca; kadavra böbreği bekleyen hastalar ameliyata her an hazır durumda olabilir. 2. Transplantasyon adayı hastaların kendi böbreklerine herhangi bir müdahale yapılır mı? Genellikle hastaların kendi böbreklerine dokunulmaz. Ancak, inatçı hipertansiyon, böbreklerde tedaviye dirençli infeksiyon, idrarın mesaneden böbreğe taşması, çok büyük kistik böbrekler söz konusu ise, hastalıklı böbrekler çıkarılır. Bu ameliyat bazı merkezlerde transplantasyondan önce yapılır ve 3-4 hafta sonra yeni böbrek takılır. Bazı merkezlerde ise böbrek nakli ameliyatı yapılırken aynı anda hastanın kendi böbrekleri de çıkarılır. Yalnız her iki ameliyatın aynı seansta yapılması oldukça uzun sürer ve biraz daha risklidir. 3. Kadavra böbrek listesine kayıtlı hastalar için bekleme süresi ne kadardır? ÜIkemizde bugün için kesin bir süre belirtmek mümkün değildir. Listeye çok yeni giren bir hasta, uygun tipte böbrek çıkması ile kısa zamanda transplantasyon şansına kavuşabileceği gibi bazen de uygun bir böbrek çıkmadığı için uzun süre beklenebilir. Olanaklar elverdiğince, uygun böbrek çıktığında daha uzun süre beklemiş olan hastaya öncelik tanınır. Halkımızın bilinçlenerek daha fazla organ bağışında bulunması bekleme süresini kısaltacaktır. Halkımızın bilinçlenerek daha fazla organ bağışında bulunması bekleme süresini kısaltacaktır. 4. Kadavra böbrek bulunduğunda hastalara nasıl haber verilir? Transplantasyon ünitesinde bilgisayarda kadavra böbreği bekleyen tüm hastaların telefon numaraları kayıtlıdır. Uygun bir kadavra böbreği çıktığında günün herhangi bir saatinde size telefonla haber verilere!,, transplantasyon ünitesine gelmeniz istenecektir. Size daha kolay ve kısa sürede haber verebilmemiz için. varsa, birden fazla telefon numaranızı ve yakınlarınızın da telefon numaralarını bildirmeniz faydalıdır. Telefon numaranızda bir değişiklik olduğunda bunu hemen üniteye bildirmelisiniz. 5. Böbrek bulunduğu haberi ile transplantasyon ünitesine çağrılmanız mutlaka böbreğin size takılacağı anlamına mı gelir? Hayır. Bir kadavradan elde edilen iki böbrek için yaklaşık 10 hasta üniteye çağrılmaktadır. Burada, hemen yapılan fizik muayene ve acil laboratuar incelemeleri sonucunda, ünite hekimlerinden oluşan bir kurul tarafından karar verilmekte ve durumu en uygun olan 2 hastaya böbrek takılmaktadır. Böbrek takılmayanlara ise bunun nedenleri açıklanır ve hastalar evlerine gönderilir. 6. Kadavra böbrek, transplantasyon için haber verildiğinde neler yapılmalıdır? Öncelikle bu saatten itibaren hiçbir şey yenilmemeli ve içilmemelidir. Bekleme listesindeki bu hastanın küçük bir çantada, kişisel eşyaları (pijama, terlik gibi) her an hazır olmalıdır. Özelikle şehir dışından gelecek hastaların telaşa kapılmamaları ve hazırlanmakla vakit kaybetmemeleri için önemlidir. Çağrıldığınızda yanınıza eşyaları da alarak en hızlı ulaşım aracı ile. uzak bir şehirde oturmaktaysanız mümkünse uçakla, üniteye gelmelisiniz. 7.Kadavra böbreğin size takılmasına karar verildiğinde ne tür işlemler yapılacaktır? Bu karardan sonra, artık hastanede kalacaksınız. O gün diyalize girmediyseniz acil olarak hemodiyalize alınacak ve bitiminde transplantasyon ünitesine yatırılacaksınız. Gerekli ameliyat hazırlıkları ve transplantasyon öncesi ilaç uygulamalarından sonra böbrek nakli ameliyatına alınacaksınız. Artık yeni böbreğiniz takılacak ve sizin için yeni bir yaşam dönemi başlayacaktır.

http://www.biyologlar.com/transplantasyon-hakkinda-sik-sorulan-sorular

Biyolüminesans Nedir? Nasıl Çalışır?

Hayvanlar bir yerden diğer yere hareket etmek için görme duyularını kullanırlar. Genelikle ışıksız bir yerde hareket etmek için zorlanmaktadırlar. Baykuş gibi bazı hayvanlar çok büyük gözleriyle ışığın pek çoğunu gözlerinde toplayarak kullanır. Ayrıca onlar çevreleriyle ilgili bilgileri anlamak için diğer duyularını da kullanırlar. Diğer taraftan insanlar,taşınabilir bir yaratım içerisinde çok emek harcayarak buna sahip olmuşlardır ve suni ışık kaynaklarından LED’lere ve ampullere kadar pek çok gelişim yaşamışlardır. Bir organizma tarafından yayılan ışık (veya tarafından atılır) organizma içerisinde meydana gelen kimyasal reaksiyonlar serbest enerji ile üretilmesine “biyolüminesans” denir. Bazı biyolüminesans özelliği olan yaşam formları,tamamıyla farklı bir tarza sahiptir. Onlar kendi ışıklarını kendi üretir ve o ışığı vücutlarının çevresinde taşırlar. Işığı üreten hayvanlar ve insanlar aynı yolla ışığı kullanmaktadırlar.Fakat hayvanlar ampüllerin ürettiği ışıktan farklı olarak kendi ışıklarını üretirler.Geleneksel ampüller ışığı akkorlayarak üretirler.Bu da içerisindeki iplik şeklindeki metali ısıtır ve ışık ışınları meydana gelir.Ampülün icat edildiğinden beri bu,çok verimli bir olay değildir. Işıldayan hayvanlar, ışığı lüminesans olarak üretirler. Lüminesans üreten hayvanlar,kimyasal bileşimleri diğerleriyle karıştırarak parlaklık elde ederler.Bu da maddenin ışık çubuklarının iç kısmıyla biraraya getirerek ışığı elde etmelerini sağlar. Lüminesans,akkorlanmaya göre oldukça verimlidir.Çok fazla sıcaklık oluşturmadan ve sıcaklık gerektirmeden ışık elde edildiği için buna “soğuk ışık “da denmektedir. Bilim adamları, akkor ve lüminesans arasındaki farkın 2,500 yıldan daha uzak olmadığını düşünmektedirler. 1600′lü yıllarda,araştırmacılar hayvanların nasıl ışık ürettiğini araştırmaya başlamışlardır.Fakat farklı hayvanların farklı maddeleri kullanmasından beri, bilim adamları hala her biyolüminesans üreten türün nasıl ışık ürettiğini tam olarak bilmiyor.Araştırmacılar neden hayvanların neden ışık ürettiğini veya bunu nasıl açıp kapattıklarını anlayamamaktadırlar.Pek çok hayvanın lüminesans kabiliyeti bilindiğinden beri, biyolüminesans çalışılması oldukça zor bir konudur.Diğer bir deyişle,üretimin kontrolü ışık üreten maddelerin yıkılmasıyla olur. Biyolüminesanslı canlılar, deniz anası,ahtapot,karides, kril, deniz solucanları ve balıklardır vebu canlılar deniz diplerinde yaşarlar.Çoğunlukla bu canlılar 440-479 nanometre dalga boyuna sahip ışık üretirler. Bu bulgu mavi-yeşil güneş ışığı okyanusun bu kısmında bulunur. Parlayan hayvanlar uzun yollar katedebilir ve okyanusun üst kısımdan gelen ışıkla kendi ışığını harmanlayabilir. Bu hayvanlar okyanusun güneş ışığı almayan yerlerinde ışığın birincil kaynaklarıdır. Hayvanlar Nasıl Işık Üretir? Genel olarak, biyolüminesans ışık-üretim reaksiyonlarındaki maddelerin 2 tip kombinasyonunu kapsamaktadır.Birincisi, lüsiferindir (bir ışık üretici madde). Diğeri ise lusiferazdır. (reaksiyonları katalizleyen bir enzim). Diğer bir deyişle, lusiferin fotoprotein diye bilinen bir proteindir ve ışık üretme süreci için reaksiyonu aktive etmek üzere bir iyonu şarj etmek gereklidir. Nörolojik, mekanik, kimyasal ya da henüz çözülememiş bazı dürtüler ışık üretmek için reaksiyonları başlatabilir. Süreç, diğer maddelerin varlığını gerektirir. Örneğin; oksijen ya da ATP (Adenin Trifosfat).ATP, insan vücudunda da olan pek çok canlı organizmanın kullandığı,enerjiyi depo eden ve taşıyan bir moleküldür.Lusiferin-Lusiferaz reaksiyonları, oksilusiferin ve su gibi ürünler tarafından oluşturulabilir. Lusiferin ve Lusiferaz ikisi de Latince “Lucifer” olan “ışık getiren” anlamına gelmektedir. Onlar belirli kimyasalların adlarından daha geniş kapsamlıdır.Birçok farklı madde Lusiferin ve lusiferaz gibi davranabilir. Bu durum biyolüminesans yaşam formlarının türlerinde beklenebilir. Örneğin,lusiferin koelenterazin deniz biyolüminesansında genel olarak görülür. Dinoflagellatlar (ateş rengi algler), fotosenteze karşı olarak besin elde etmek için klorofile benzeyen bir lusiferin kullanırlar. Onların lüminesansları güneşli günlerden sonra daha parlaktır.Bazı karides ve balıklar diğer canlıları yemeden önce onlara kendi lusiferin ürünlerini gösterirler. Kaynakça: science.howstuffworks.com/zoology/all-ab...bioluminescence1.htm Yazar: Gülseren Billur Akdeniz www.bilgiustam.com

http://www.biyologlar.com/biyoluminesans-nedir-nasil-calisir

Organik Tarımın Avantajları & Dezavantajları

Avantajları * Türkiye’de sentetik kimyasallar çiftçilerin büyük bir kısmı tarafından ya çok az kullanılıyor, ya da hiç kullanılmıyor. Bu nedenle ekolojik tarıma geçişin kolay olması beklenebilir. * Üretici geliri ürüne bağlı olarak artıyor (Ortalama yüzde 10 artış olduğu tahmin ediliyor). * Fiyatı hızla artan kimyasal gübre, pestisit ve enerji girdilerinden tasarruf ediliyor. * Sözleşmeli tarımla üreticinin tüm ürününün alınması garanti ediliyor. Ekolojik ürünlerin ihraç fiyatı diğer ürünlerden yüzde 10-20 oranında daha yüksek. * Organik ürünlerin ihracatı ile Türkiye tarım ürünleri için ilave bir kapasite yaratılıyor. Dolayısıyla ihraç edilen her ton daha önce ulaşılamayan tüketici kitlesine gidiyor. * Özel bilgi isteyen organik tarım modeli ziraat mühendisleri için yeni istihdam sahaları yaratıyor. Dezavantajları * Türkiye’de tarımsal ürün arzında yıldan yıla önemli dalgalanmalar görülüyor. Hızla artıp gençleşen nüfus, tüketim düzeyinin ve çeşitliliğinin sürekli artması ve çevredeki ülkelerin hemen hepsinin tarımsal ürün talep eden özellikleri sebebiyle organik tarımın (verimde meydana gelebilecek azalma nedeniyle) kısa vadede gelişmesi zor görünüyor. * Organik tarım yöntemiyle bitkisel üretimde ortaya çıkan bir sorun, arazilerin çok küçük, parçalı ve birbirine yakın olması. Bu durum organik üretimi olumsuz yönde etkiliyor. Çünkü organik üretim yapan bir işletmenin çevrede üretim yapan diğer klasik işletmelerde kullanılan kimyasallardan etkilenmemesi mümkün değil. * Ekolojik tarım sisteminde yetiştirilen ürünlerin pazarlanması özellikle iç piyasa için yeni ve belirsiz bir konu. * Konunun yeni olması nedeniyle yeterli tarımsal yayım çalışmaları ve eleman bulunmaması

http://www.biyologlar.com/organik-tarimin-avantajlari-dezavantajlari

Klonlama Riskleri Nelerdir

Yüksek Başarısızlık Oranı Bilinen ve uygulanan teknoloji ile başarı oranı yüzde 0.1 ile yüzde 3 arasında değişmektedir. Başka bir ifadeyle, 100 denemeden 97 ile 99.9’unun başarısızlıkla sonuçlanacağı anlamına gelmektedir. Bunun nedenleri şöyle sıralanabilir: Transfer edilen çekirdekle, ev sahibi yumurta birbiriyle uyumlu olmayabilir, çekirdek eklenmiş ev sahibi yumurta bölünmeye başlamayabilir veya uygun bir şekilde gelişmeyebilir. Embriyonun ev sahipliği yapan annenin rahmine yerleştirilmesi başarısızlıkla sonuçlanabilir veya hamilelik başarısız bir süreç olabilir. - Sonraki Gelişme Döneminde Yaşanan Problemler Klonlanan canlılar doğum anında, doğal olarak doğan cinslerinden vücut olarak çoğunlukla daha büyük olurlar. Araştırmacılar buna Büyük Yavru Sendromu (Large Offspring Syndrome) adını verirler. Bu sendromdan etkilenen klonlar anormal şekilde büyük organlara sahiptirler. Bu da solunum, kan dolaşımı, ve başka problemlere sebep olur. Bu sendrom her zaman olmadığından, araştırmacılar da daha önceden bu sendromun klon da ortaya çıkıp çıkmayacağını öngöremezler. Bunun yanında, bu sendromdan etkilenmeyen bazı klonlar da, böbrek ve beyinde şekil bozukluğu ve kusurlarından ve hasarlı bağışıklık sistemlerinden etkilenmektedirler. - Anormal Gen İfadesi Seyri Klonlamada yaşanan zorluklardan bir diğeri de nakledilen çekirdeğin, embriyonik hücreye aitmiş gibi davranması için yeniden programlanmasıdır. Klonun doğru geni doğru zamanda aktif hale getirmesi gerekir. Doğal olarak yaratılmış bir embriyonda, embriyon belirli genleri aktif hale getirmek için programlanmıştır. Embriyon hücreleri daha sonraki aşamalarda farklılaştıkça, hücrelerin kullandıkları programlar da birbirinden farklılaşmaktadır. Örneğin, farklılaşmış her tip hücre için - deri, kan, kemik, veya sinir – çalışan program farklıdır. Klonlamada, nakledilen çekirdek doğal bir embriyonla aynı programa sahip değildir. Çekirdeğin yeniden programlanması araştırmacılar tarafından yapılır, tıpkı yaşlı köpeğe yeni numaraların öğretilmesi gibi. Normal veya normale yakın gelişim için, eksiksiz yeniden programlanmaya gereksinim vardır. Eksik programlama embriyonun anormal gelişimine veya bozulmasına neden olur. - Telomerik Farklılıklar Hücreler bölündükçe, kromozomlar kısalaşır. Bunun sebebi de, telomer adı verilen kromozmoların ucundaki DNA dizileri, DNA’nın her kopyalanmasında boy olarak kısalırlar. Bir canlı yaşlandıkça telomerleri kısalır, çünkü hücreleri pek çok kere bölünmüştür. Bu da yaşlanmanın doğal bir yansımasıdır. Bu durum da, yaşlı çekirdek klonlanmada nakledildiğinde ne olur sorusunu doğurur. Kısalmış telomerler canlının gelişme sürecini veya ömrünü etkileyecek midir? Araştırmacılar, klonlanan canlıların telomerlerine baktıklarında kesin bir cevap bulamamışlardır. Klonlanan sığır ve fare kromozomları normalden daha uzun telomerlere sahiptiler. Klonlanan bu canlılar daha genç özellikler gösterdiler ve normalden daha uzun ömür yaşadılar. Bunun yanında, Dolly’nin kromozomları normalden daha kısaydı. Bundan dolayı Dolly’nin hücreleri normal koyundan daha hızlı yaşlandı. Araştırmacılar, klonlanan canlıların telomer uzunluklarının neden farklılık gösterdiği sorusunun yanıtını henüz bilmiyorlar. Kök Hücre Araştırmaları Klonlama teknolojisinin tedavi amaçlı uygulaması olan kök hücre teknolojisi günümüzün en aktif araştırma alanlarından biridir. Farklı hücre tiplerine dönüşebilme potansiyeline ve kendisini yenileyebilme gücüne sahip olan hücrelere "kök hücre" denir. Kendisini yenileme gücüne sahip olan kök hücreler, bir bakıma diğer hücre türleri için tükenmez bir kaynak görevi üstlenmektedirler. Bu özellikleri bakımından kök hücreler kanser, sinir sistemi hastalıkları (Alzheimer) ve hasarları, metabolik hastalıklar (diyabet), organ yetmezlikleri, romatizmal hastalıklar, kalp hastalıkları, kemik hastalıkları ve daha birçok alanda kullanıma sahiptirler. Günümüzde bu hastalıkların bazılarının tedavisinde organ veya doku nakilleri yapılmaktadır. Ancak, organ veya doku nakli gerektiren hastaların çokluğu, uygun organ ve dokunun her zaman bulunamaması gibi sorunlarla sürekli karşılaşılmaktadır. Bilim ve teknolojideki son gelişmeler doğrultusunda kök hücrelerin bu alanda kullanılması gündeme gelmiştir. İlk olarak 1998 yılında insan embriyosundan kök hücre elde edilip kültürlerde çoğaltılmasından sonra kök hücre araştırmaları hız kazandı. Değişik hücre türlerine dönüşebilme potansiyeli olan kök hücreleri, kontrol edilebildikleri taktirde laboratuar ortamında istenilen hücre türüne dönüştürülebiliyorlar. Böylece vücutta eskiyen, hastalanan veya ölen hücrelerin veya organların yerini doldurmak üzere laboratuarda kök hücrelerinden yeni hücreler, hatta yeni bir organ elde edilebilir. Ancak bunu başarabilmek için hücrenin genetik şifresini ve kontrol mekanizmalarını çok iyi bilmek gerekiyor. Kök Hücre Tedavisinin Kullanımı Çeşitli hastalıklarda kök hücre tedavinin kullanımına ilişkin çalışmalar devam etmektedir. Kanser hastalıklarında : Günümüzde genel olarak yapılan uygulamalar kemik iliği ve kordon kanından elde edilen kök hücre nakilleridir. Bu uygulamalar ışın tedavisi ve yoğun kemoterapi sonrasında hasar gören kan hücrelerinin yerine konulmasını sağlamak amacıyla yapılırlar. Tüp Bebek: Kısırlık tedavisinde kök hücre kullanımı iki açıdan önem taşımaktadır. Bunlardan ilki, yetişkin kök hücrelerden gamet dediğimiz yumurta ve sperm hücrelerinin elde edilmesidir, İkincisi ise endometrium denilen rahim içerisindeki, bebeğin yerleştiği tabakanın onarılması veya desteklenmesidir. Bu şekilde, yaşlanma veya erken menopoz nedeniyle yeterli veya hiç yumurta edilemeyen kadınların kendi yumurtaları ile gebe kalmasının sağlanması amaçlanmaktadır. Erkeklerde de sperm elde edilemeyen olgularda erkeğin kendi vücut hücresini kullanarak aynı genetik yapıyı taşıyan spermlerin elde edilmesidir. Kök hücre ile ilgili bu çalışmalarla birlikte kimi toplumlarda etik tartışmalara yol açabilen yumurta veya sperm bağışı gibi, başkasından gamet hücresi alarak gebelik elde etme gibi yöntemlerin de tamamen ortadan kalkmasa da sona ermesi beklenebilir. Tip I olarak adlandırılan diyabet hastalığında vücut insulin üretemez. Gelişen teknoloji ile birlikte Tip I diyabet hastalarında vücutta hasar gömüş olan insulin üreten hücreleri yerine koymak amacıyla yeni tedavi biçimleri gündeme gelmiştir. Bu tedavi biçimleri genel olarak 1) insulin üreten yetişkin adacık hücrelerinin hastalara doğrudan nakli veya 2) kök hücre tedavileridir.      

http://www.biyologlar.com/klonlama-riskleri-nelerdir

Tümör Aşısı Nedir?

Tümör (kanser) aşıları kanseri tedavi etmek veya kanser gelişimini engellemek amacıyla geliştirilmiştir. Tümör aşıları vücudun bağışıklık sistemini tümöre karşı duyarlı hale getirmekte ve bağışıklık sisteminin vücudun diğer hücrelerine zarar vermeksizin kanser hücrelerini öldürmesini kolaylaştırmaktadır. Tümör aşıları koruyucu aşılar ve tedavi edici aşılar olarak iki gruba ayrılır. Tümör aşıları çeşitli kanserlerin tedavisinde yoğun olarak kullanılmakta ve araştırılmaktadır. Normal bir organizmada kanser hücresine dönüşme eğilimde olan veya kanser hücresi özelliğini kazanan hücreler vücudun bağışıklık sistemi tarafından yok edilirler. Bağışıklık sisteminin zayıfladığı durumlarda kanser görülme sıklığı artar. Herşeye rağmen, bağışıklık sistemi genellikle kendi bulunduğu organizmaya ait hücrelerdedn kaynaklandığı için tümörleri zararlı ve yabancı olarak görmeyebilir. Bunun yanı sıra tümör hücreleri bağışıklık sisteminden kurtulabilmek için çeşitli yöntemler geliştirirler. Bu nedenlerle bağışıklık sitemi gelişen tümöre karşı kuvvetli bir yanıt vermemektedir. Vücuda yabancı bir mikroorganizma girdiğinde vücudun bağışıklık sistemi bu mikroorganizmayı yüzeyindeki değişik yapılardan dolayı tanır. Yüzeylerinde değişik yapılar bulunduran kanser hücreri de aynı mekanizma ile ortadan kaldırılır. Erken dönemde bağışıklık sistemi tarafından tanınıp yok edilemezlerse kanser hücreleri üremeye devam ederler ve sonuçta tümöral bir yapıya dönüşürler. Tümör aşıları kanser hücrelerinin yüzeylerindeki yapıların bağışıklık sistemine tanıtılması ve bağışıklık siteminin uyarılması esasına dayanır. Bilim adamları, kansere özgü yüzey yapılarını tanıtan bir aşı vücuda verildiğinde diğer vücut hücrelerine zarar vermeksizin bağışıklık siteminin kanser hücrelerine karşı bir saldırıda bulunacağını düşünmektedir. Kanser hücrelerinin yüzeylerindeki yapılar bağışıklık sitemine birkaç yolla tanıtılır. 1. Bu yapılar bağışıklık siteminin yanıt vermesine neden olabilecek bir başka proteine eklenebilir. 2. Hastanın kendisinden veya başka hastalardan elde edilen hücrelerden "tam hücre aşıları" hazırlanıp hastaya verilir 3. Hastadan alınan kandaki kök hücreler hücreleri laboratuarda "dendritik hücre" denilen özelleşmiş hücrelere dönüştürülür. Bu hücreler kanser hücrelerinin yüzey yapılarına karşı duyarlı hale getirilip tekrar hastaya verilir. 4. Bazı kanser hücrelerinin kendisi tarafından üretilen proteinler (B hücreli lenfomalarda idiotip antikorlar) yüzey yapıları gibi bağışıklık sitemini uyarmak için kullanılabilir.

http://www.biyologlar.com/tumor-asisi-nedir

Dünyanın En İyi Korunan Veri Bankası: DNA

Lineer kromozomların sonlarında, tekrar eden DNA dizilimleri vardır. Bu dizilimlere, Telomeres adı verilir. Telomeres’lerin önemli bir fonksiyonu bulunur. Savunmasız kromozom sonlarını, moleküler saldırılardan korurlar. Ancak, telomereslerin kendilerinin de bir korumaya ihtiyaçları vardır. Telomeresler, düzensiz genom parçacıklarına benzerler. Ancak, onları bir arada tutan bir protein vardır. Bu protein DNA replikasyonunun kromozom sonuna kadar kusursuz bir şekilde işlenmesi ile sorumludur. TRF1 isimli bu protein, shelterin isimli altı proteinli bir yapının parçasıdır. Bu protein, telomeresler boyunca DNA replikasyonunun hatasız çalışmasını sağlamak için özel olarak yaratılmıştır. Bu proteinin bulunmaması durumunda, telomeresler savunmasız kalacak, DNA replikasyonu tamamlanamayacaktır. DNA, son derece hassas dengelere dayalı bir sisteme sahiptir. Bu sistemde, replikasyonun tamamlanaması gibi en ufak bir aksaklık, kanser gibi çok ciddi hastalıklara yol açar. TF1 isimli protein, genetik çoğaltmanın (replikasyonun) devam etmesi için adeta tüm engelleri ortadan kaldırmaktadır. Bilindiği üzere, DNA’da çok sayıda tamir mekanizması bulunmaktadır. Bu protein ile birlikte, DNA’da sadece mutasyonlara ve dış etkenlere karşı tamir mekanizmalarının değil koruma mekanizmalarının da bulunduğu keşfedilmiştir. Bu, son derece önemli bir bilgidir. Dünyanın en iyi yazılım programlarının bile, açıkları vardır. İçlerindeki bilgiler kolaylıkla hasara uğrayabilir, veri kaybı yaşanabilir ya da heklenebilir. Bu durumu önlemek için, geliştirilen her antivirüs programı düzenli güncellenmek zorundadır. Çünkü veri bankasına yapılan saldırılar, sürekli güçlenir. DNA’da da durum aynıdır. DNA, dünyanın en büyük veri bankasıdır. Ve dünyadaki en iyi yazılım programlarından bile daha korunaklıdır. Bir bilgisayarın işlem kapasitesi ile DNA’nın işlem kapasitesi arasında elbette ki kıyas yapılamaz. DNA, her saniye kendini kopyalamaktadır. Verilerini sürekli aktarmakta, sürekli işlem yapmakta ve hayatımız boyunca bir an bile durmadan dinlenmeden çalışmaktadır. O hiç durmadan çalışırken, sürekli saldırılar olur. Moleküler saldırılar, DNA’yı heklemeye, şifresini kırmaya ve sarmallarındaki bilgilerin arasına sızmaya çalışırlar. Ancak, ne kadar sızmaya çalışırlarsa çalışsınlar, bu imkansızdır. Çünkü DNA, hem tamir mekanizmalarıyla hem de TRF1 proteinin de olduğu gibi çok özel koruma sistemleriyle donatılmıştır. Üstelik, herhangi bir güncelleme yapmak da gerekmez. Sistem, hatasız ve açıksız olarak kusursuzca işler. DNA gibi ufacık bir bilgi parçasında, her biri ince ince işlenmiş böyle yüz binlerce detay vardır. Evrimciler tarafından, insan vücudunda kusurlu zannedilen pek çok mekanizma ve sistemin son derece detaylı olarak yaratılması çok özel bir durumdur.

http://www.biyologlar.com/dunyanin-en-iyi-korunan-veri-bankasi-dna

DNA Replikasyonunda Rol Alan Enzimler

DNA molekülünün replikasyonunda, DNA zincirinin uzatılmasını DNA polimerazlar katalizlemekle birlikte, replikasyonda rol alan başka enzimler de bulunmaktadır. Bu enzimler ve özellikleri ise: i. DNA Primaz: Replikasyon sırasında, DNA polimerazın DNA zinciri sentezini başlatabilmesi için kullandığı RNA primerleri, DNA primaz adı verilen özel RNA polimerazlar tarafından sentezlenir (bkz. kısım 4.3). Bu enzim çoğunlukla DNA’ya bağlanır, fakat kalıp olmaksızın da primer sentezini başlatabilir. İn vitro substrat olarak, NTP veya dNTP’ları kullanabilir ve DNA kalıbının tamamlayıcısı olan 10-15 nükleotid uzunluğundaki primerleri sentezler. ii. DNA ligaz: DNA ligaz veya kısaca ligaz adı ile bilinen bu enzimler, bütün hücrelerde bulunmaktadır ve replikasyonda kritik bir role sahiptirler. DNA ligazlar, nükleik asitlerin onarım ve rekombinasyonlarında önemli bir rol oynarlar. Bilinen bütün DNA ligazlar, DNA’da bulunan bir kırıktaki komşu deoksiribonükleotidlerin 5' P ve 3' OH grupları arasında fosfodiester bağının oluşumunu katalizlerler. Bütün ligazların gereksinimi, ligasyon için yan yana gelen iki DNA molekülünün uçlarında en az bir fosfat kalıntısına gereksinim duymasıdır. Bu enzimler, serbest durumdaki tek zincirli iki DNA parçacığını birbirine bağlayamazlar, bu DNA zincirlerinin çift sarmal yapıdaki bir DNA molekülünün parçaları olması gerekir (ligazlar hakkında daha detaylı bilgi için bkz. kısım 13.1.2). iii. DNA Helikaz: Replikasyon çatalına yakın yerden DNA molekülüne bağlanarak repilasyonu yapılacak olan DNA zincirlerini birbirinden ayırır. iv. Deoksiribonükleazlar (DNaz’lar): DNA zincirlerinde nükleotidler arsındaki fosfodiester bağlarını kırarak DNA’nın hidrolizine yol açarlar. Endonükleaz ve eksonüklez aktivitesi gösteren DNaz’lar ise daha detaylı olarak sırasıyla kısım 13.1.1. ve 13.1.7’de daha detaylı olarak ele alınmıştır. v. DNA giraz (topoizomeraz II): Lineer DNA moleküllerinde ikili sarmalın çözülmesi, molekülün kendi ekseni etrafında dönmesiyle teşvik edilir ve kolaylaşır. Fakat kapalı, dairesel DNA moleküllerinin çözülmesi esnasında moleküldeki negatif dönümler azalırken, pozitif süper dönümlerin de sayıları artmaya başlar. Pozitif süper dönümlerin artması ise replikasyon çatalının ilerlemesine engel teşkil eder. Bu sorunun giderilmesi, yani pozitif süper dönümlerin yok edilmesi ise DNA giraz tarafından sağlanır (bkz. kısım 2.3.1.2.1.). DNA giraz, DNA omurgasındaki fosfodiester bağlarını önce kesip sonra kapatarak pozitif süper dönümleri yok eder ve reaksiyon sırasında ATP’ye gereksinim göstermez. DNA giraz bu aktivitesine ek olarak, ATP’nin hidrolizi yardımı ile kapalı halka şeklindeki DNA’da negatif süper dönümler de meydana getirebilir. Bu dönümler ise ana molekülün replikasyon çatalındaki çözülmesini teşvik eder. DNA replikasyonu esnasında görev alan enzim ve proteinlerin adları ve fonksiyonları ise Tablo 4.2’de özetlenmiş olarak verilmektedir. Enzim-protein Aktivite Hücredeki fonksiyon Restriksiyon endonukleaz DNA ligaz DNA polimeraz I DNA polimeraz III DNA giraz (topoizomeraz II) DNA helikaz DNaz DNA metilaz Primaz (RNA polimeraz) Topoizomeraz I DnaA DnaB (rep protein) DnaC SSBP DNA’yı spesifik baz sekanslarından keser. DNA moleküllerini ekler. Büyümekte olan DNA nükleotidlerine bağlanır, primer RNA’yı uzaklaştırır. Büyümekte olan DNA nükleotidlerine bağlanır, her eklenen nukleotidin doğruluğunu kontrol eder. DNA katlanmasını artırır, süper katlanmayı sağlar. Replikasyon çatalına yakın yerden DNA’ya bağlanır. DNA’yı nükleotidlerine parçalar. DNA bazlarını metiller, böylece endonukleaz aktivitesini inhibe eder. DNA kalıbını kullanarak kısa RNA zincirlerini sentezler. Katlanmış olan DNA’yı açar. DNA’da tekrarlanan dizilere bağlanarak açık kompleks oluşturur. Helikaz aktivitesi gösterir DnaB ile kompleks oluşturur Tek zincirli yapıyı sabitleştirir. Yabancı DNA’yı parçalar. Replikasyonu tamamlar. DNA tamiri esnasında DNA’daki boşlukları doldurur, primerleri uzaklaştırır. DNA’yı replike eder. DNA’nın kompakt yapısını korur. DNA zincirlerini ayırır. DNA’yı parçalar. Hücresel DNA’yı metilleyerek hücrenin kendi nukleazlarından korur. DNA polimerazların gereksinimi olan RNA primerlerini oluşturur. DNA katlanmasının doğru olarak korunmasına yardım eder. Replikasyonun başlamasında görev alır. Replikasyon çatalının oluşumunu sağlar. Replikasyonun başlamasında görev alır. DNA zincirinin açılan bölgelerinin stabilizasyonunu sağlar 4.3. Prokaryotik DNA Replikasyonunun Temel İlkeleri DNA molekülünün replikasyonu ile ilgili problemlerin en basit ifadesi: DNA ikili sarmalının her bir zincirinde yan yana yer alan baz sekanslarının doğru olarak duplikasyonu sonucunda yeni DNA moleküllerinin oluşumu sağlanmalıdır. Hücre, çok kompleks görünen bu problemi çözmek için mükemmel bir sistem olan komplementer baz eşleşmesi sistemini geliştirmişitr. Daha önceki kısımlarda da ele alındığı gibi, adenin bazı spesifik olarak timin ile, sitozin ise guanin ile komplementer oluşturmaktadır (bkz. kısım 1.4.1.1). Şayet, DNA ikili sarmalı açılırsa, her bir diziye komplementer olan yeni dizi sentezlenecektir. Kısım 1.7.1.1’de incelendiği gibi replikasyon, senikonservatif replikasyon mekanizması ile gerçekleştirilmektedir. 1956’lı yıllardan günümüze kadar yapılan replikasyon çalışmalarının moleküler seviyede nasıl gerçekleştiği ve olaya katılan moleküller hakkındaki bilgilerin hemen hemen tamamı prokaryotlardaki araştırmaların sonuçlarına dayanmaktadır. Bu nedenle, günümüzde konuya ilişkin bilgilerin çoğu prokaryotik DNA replikasyonuna aittir. Bundan dolayı, çift sarmallı DNA molekülünün replikasyonunun anlaşılabilmesi için en kolay yol ise gerçek bir örneğin seçilmesi olacaktır. E. coli ile yapılan replikasyon çalışmaları, replikasyonun temel ilkelerinin aşağıdaki gibi olduğunu ortaya koymuştur: i. DNA replikasyonu, kromozom üzerinde belirli ve spesifik nükleotid dizilerinin bulunduğu orijin noktalarından başlar ve yine belirli bitiş-tamamlama noktalarında tamamlanır. Bakteri ve virüs kromozomlarında, genellikle bir orijin (başlama) bir tane de bitiş noktası bulunmaktadır. E. coli’nin dairesel olan kromozomunun replikasyon orijininde ise yaklaşık olarak 300 baz çifti bulunmaktadır ve bu orijin noktası, replikasyonu başlatan proteinler tarafından spesifik olarak tanınmaktadır. Son yıllardaki araştırma sonuçlarına göre, E. coli’de oriE olarak adlandırılan başlangıç bölgesinde, replikasyonun başlatılabilmesi için en az 6 proteinden oluşan bir kompleksin görev aldığı anlaşılmıştır. Tek bir ökaryotik kromozomda ise, çok sayıda orijin noktası vardır ve bunlar birbirlerine 30-40 kbp uzaklıktadırlar. Ökaryotik kromozomlarda çok sayıda orijin noktalarının bulunmasının tek nedeni ise sadece ökaryotik DNA moleküllerinin prokaryotlarınkine oranla çok daha uzun olması değildir. Bunun nedenlerinden birisi, belki de ökaryotik DNA polimerazlarının prokaryotlardaki DNA polimerazlar kadar hızlı sentez yapamamalarıdır. Orijin bölgelerindeki çözülmeler ise temelde, bu bölgeya bağlanan protein kompleksi içerisinde yer alan DNA helikaz enzimleri tarafından sağlanır. Bu proteinler, DNA molekülünün çözülmesi için gerekli olan enerjiyi ATP’nin hidrolizinden sağlarlar. Çözülmenin oluşumunda ilk aşama, DnaA proteininin orijin noktasındaki yaklaşık 300 bp’lik bir bölgede yer alan AT’ce zengin ve tekrarlanma gösteren iki ayrı diziye bağlanmasıdır. Bu bağlanma sonucunda DNA, bu noktalarda açık bir kompleks oluşturur. Daha sonra ise DnaB ve DnaC proteinleri, bu açık kompleks ile etkileşime girerek DnaB’nin helikaz aktivitesi ile DNA molekülünün tam olarak çözülmesi sağlanır. DnaB, büyük bir olasılıkla potansiyel replikasyon çatalının tek zincirli yapısını tanıyarak DnaA’nın yerini almakta ve DNA molekülünün esas çözülmesini gerçekleştirmektedir. ii. Replikasyonun bir yönü vardır. Replikasyon, kromozom üzerinde belirli bir yerden (orijin) başlar ve her iki yönde birbirine zıt olarak ilerler (Şekil 4.5 ve 4.6). Dairesel DNA moleküllerinde iki yölü devam eden replikasyon ise teta yapısı olarak adlandırılan karakteristik yapının oluşmasına yol açar (Şekil 4.5). İç kısımda bir ilmeği kapsayan bu yapı, bakterilerdeki DNA molekülünün replikasyon sırasında dairesel yapısını koruduğunu göstermektedir. Aynı zamanda, yeni DNA zincirleri sentezinin ana moleküldeki bölgesel çözülmelerle sıkı ilişki gösterdiğini de kanıtlamaktadır. Replikasyonun bizzat devam ettiği bölgelerde, atasal DNA zincirleri birbirlerinden ayrılıp, yeni zincirlerin sentezi için kalıplık ederler. Replikasyon çatalı (Şekil 4.7) adını alan bu bölgelerin sayısı ve başlama noktasına olan uzaklıkları, replike edilen DNA’nın uzunluğuna göre değişir. Replikasyon çatalında DNA ikili sarmalı helikaz adı verilen özel bir enzim ile açılarak DNA molekülünün kısa, tek zincirli bölgeler oluşturması sağlanır. Helikaz, ATP’ye bağlı bir enzim olup, ATP moleküllerini hidroliz ederek replikasyon çatalının ilerlemesini sağlamaktadır. Kapalı halka şeklindeki DNA moleküllerinin çözülmesi esnasında, negatif dönümlerin azalarak pozitif süper dönümlerin sayısının giderek artmasıyla ortaya çıkan ve çatalın ilerlemesini engelleyen topolojik sorun ise DNA giraz (topoizomeraz II) tarafından giderilir. DNA giraz ise çatalın ilerlemesi esnasında ortaya çıkan pozitif süper dönümleri giderir (bkz. kısım 4.2.3). Replikasyon çatalında açılmış olan tek zincirli DNA bölgeleri ise tek zincir bağlama proteinleri (SSBP = Single Strand Binding Protein) ile kaplanarak, molekül içi H bağlarının oluşması önlenmektedir. Bu proteinlerin, DNA zincirinin şeker-fosfat omurgasına bağlandığı ve tutunma noktalarındaki bazların çeşidiyle ilişkili olmadığı düşünülmektedir. Şekil 4.5: Dairesel DNA moleküllerinin orijin noktalarından başlayarak iki yönlü ilerleyen replikasyonu Yunan alfabesindeki teta () harfine benzer bir ara ürün oluşturduğu için bu ara ürün teta formu olarak adlandırılmaktadır (Madigan ve ark.’dan). Şekil 4.6: Orijin noktasından itibaren DNA replikasyonunun iki yönlü olarak ilerlemesi (Alberts ve ark.’dan modifiye edilerek çizilmiştir). Şekil 4.7: E. coli’de replikasyon çatalının şeması (Alberts ve ark.’dan). iii. DNA molekülünün sentezini, yani nukleotidlerin birbirine eklenmesini katalizleyen enzimler DNA polimerazlar olarak adlandırılırlar. Bütün DNA polimeraz enzimleri, yeni DNA molekülünün sentezini 5' 3' yönünde gerçekleştirmektedirler. E. coli’de üç tip DNA polimeraz enzimi bulunmakta olup bunlar, DNA polimeraz I, II ve III olarak adlandırılırlar (bkz. kısım 4.2.1). Replikasyon çatallarında kalıp DNA zincirlerine komplementer olarak sentezlenecek yeni DNA zincirinin sentezi, primer RNA’lar ile başlatılır. Bilinen hiçbir DNA polimeraz enzimi, kalıp DNA zincirlerinin karşısında yeni bir DNA zincirinin sentezini başlatamamaktadır. Çünkü, tüm DNA polimeraz enzimleri, bir kalıp DNA’dan başka serbest 3' OH grubu taşıyan bir primer (başlatıcı) moleküle de gereksinim duyarlar. Halbuki, RNA polimeraz enzimleri bir başlatıcı moleküle ve serbest 3' OH grubuna gerek duymadan RNA sentezini başlatabilmektedirler (bkz. kısım 5.1). Onun için, orijin noktalarında DNA zincirleri birbirlerinden ayrılır (Şekil 4.5 ve 4.6) ve ayrılan her bir DNA zincirinin karşısında, RNA polimeraz (primaz) enzimi küçük bir RNA ipliğinin (yaklaşık 10-15 nükleotid uzunluğunda) sentezini başlatır. Primer sentezini katalizleyen primaz, tek zincirli DNA’daki özel dizileri tanıyan bir RNA polimerazdır. Primazın fonksiyonunu etkin bir şekilde yapabilmesi için 6-7 kadar proteinle bir kompleks oluşturması gerekmektedir. Primer sentezi için gerekli reaksiyonlara katılan bu protein kompleksine primozom adı verilir. Primozom, DNA boyunca hareket ederek tek zincir bağlama proteinlerinin yerini alır ve bu şekilde primaz için uygun başlangıç noktası tanınır. Primaz, kalıp DNA’yı kullanarak yaklaşık 10-15 bazlık kısa bir RNA primeri sentezlemeye başlar. RNA primerinin sentezi sırasında, hangi ribonükleotidlerin hangi sırada yer alacakları, kalıp DNA’da Okazaki başlangıç noktalarında bulunan nükleotidler tarafından belirlenir. Ribonükleotidlerin sayısı 10-15 nükleotide ulaşınca, primer RNA’nın 5' 3' yönündeki sentezi de tamamlanmış olur (Şekil 4.6 ve 4.7). Daha sonra, bu primer RNA’nın 3' OH ucuna, DNA polimeraz III enziminin katalizörlüğünde deoksiribonükleotid monomerleri eklenmeye başlar ve bu sentez replikasyon çatalının sonundaki bitiş noktasına kadar devam eder. iv. DNA nükleotidleri, büyüyen yeni DNA zincirinin 3' OH ucuna DNA polimeraz III enziminin katalizörlüğünde tek tek eklenerek zincirin yapısına katılırlar. Böylece, DNA sentezi 5' 3' yönünde devam eder. DNA sarmalında iki zincirin birbirine zıt yönde parelel olması nedeni ile (3'5' veya 5'3') bu zincirleri kalıp olarak kullanan bir replikasyon kompleksi, yeni zincirlerin sentezini de birbirlerine zıt yönde yürütmek zorundadır. Teorik olarak, 3' 5' yönündeki kalıp DNA zincirinin üzerinden yeni DNA zincirinin sentezi, RNA primerleri yardımı ile başlatılıp 5'3' yönünde ve kesintisiz bir şekilde devam ettirilebilir. Fakat, DNA’nın 5' 3' yönlü öteki zinciri kalıp olarak kullanılırken, yeni sentezlenecek zincirin yönü 5'  3' yönünde, buna karşılık genel büyüme 3' 5' yönünde gerçekleştirilmek zorundadır. Acaba bu nasıl başarılmaktadır? Bu sorunun cevabı, bakteri ve faj kromozomları üzerine yaptığı otoradyografik çalışmalar sonucu, Okazaki ve arkadaşları (1968) tarafından verilmiştir. Okazaki’ye göre, yeni sentezlenen DNA, 1000-2000 (7-11S) baz uzunluğundaki kısa iplikçikler (Okazaki parçacıkları) halinde sentezlenmektedir ve bu DNA parçacıkları daha sonra birbirlerine eklenerek uzun zincirleri meydana getirmektedir. Okazaki parçacıkları, replikasyon çatalı bölgesinde çok kısa bir süre bulunurlar. Replikasyon devam ettikçe, DNA ligaz tarafından kovalent olarak birbirine bağlanan Okazaki parçacıkları yavru zincirlerden birisini oluştururlar. Diğer zincir ise kesintisiz olarak sentezlenir. Böylece, 5' 3' yönlü kalıp DNA zinciri üzerinden yine 5'3' yönlü yeni DNA sentezi sağlanmaktadır (Şekil 4.6 ve 4.7). Kesik kesik yapılan bu DNA sentezi işlemi için de, yine 3' OH uçlu primer RNA’lara gereksinme vardır. Gerçekten de Okazaki kendi adı ile anılan bu parçacıkların 5' uçlarında 10-15 nükleotid uzunluğunda RNA primerlerinin varlığını göstermiştir. Bu primer RNA’nın 3' OH ucuna, DNA polimeraz III enziminin katalizörlüğünde deoksiribonükleotid monomerleri eklenmeye başlar. DNA polimeraz III, daha önce sentezlenen Okazaki parçasının başlangıç kısmına yaklaşınca yerini DNA polimeraz I enzimine bırakır. DNA polimeraz I enzimi, bir taraftan önündeki primer RNA iplikçiğini monomerlerine parçalarken (3'  5' eksonukleaz aktivitesi göstererek) bir taraftan da boşalan yerlere deoksiribonükleotidlerin bağlanmasını kataliz eder. RNA primerinin yok edilmesi ile DNA parçaları arasında meydana gelen boşluklar yine DNA polimeraz I tarafından onun zincir uzatma ve nick translation* aktivitesi ile doldurur. Buna göre DNA polimeraz I, nükleotidleri DNA parçalarının 3' ucuna eklerken aynı anda da RNA primerini 5' 3' eksonukleaz aktivitesiyle parçalar. DNA polimeraz I, en son primer RNA nükleotidini de kırdıktan sonra yerini DNA ligaz enzimine bırakır. Böylece, parça parça sentezlenmiş olan yeni DNA parçalarının 3' ve 5' uçlarının birbirlerine fosfodiester bağları ile bağlanması, DNA ligaz enzimi tarafından katalizlenir. Bu ekleme, kalıplık eden DNA zincirindeki baz sırasının komplementeri olacak şekilde, aradaki boşluklara yeni deoksiribonükleotidlerin doldurulması ile yapılmaktadır. Buradan da anlaşılmaktadır ki, DNA yapısından çıkarılan RNA primerlerinin replikasyondaki görevi, DNA sentezini başlatmaktan ileri gitmemektedir. v. Tek ve dairesel bir kromozoma sahip olan bakterilerde replikasyon, aynı anda zıt yönde ve yaklaşık olarak aynı hızda devam eder. Zıt yönde ilerleyen replikasyon çatalları bir yerde karşılaşırlar. Örneğin, E. coli’de bu karşılaşma yeri trp geni (E. coli genom haritasının 25. dakikasında) yakınında olmaktadır. Bu nokta ise replikasyon başlangıç yerinin (oriE) hemen hemen tam karşısına gelmektedir. Buna göre, replikasyonun sona ermesi için özel tamamlanma işaretleri gerekli olmayabilir. Bununla beraber, yeni sentezlenmiş olan DNA moleküllerinin ayrılması kendiliğnden gerçekleşmez. Çünkü, bu moleküller birbirlerine yaklaşık olarak 20-30 kadar dönümle bağlı kalırlar. Bu iç içe geçmiş olan halkaların birbirinden ayrılması, topoizomeraz II benzeri enzimlerin (bkz. kısım) çift zincir kırıkları oluşturması ve sonra da çift sarmalları birbirinin içinden geçirip kırıkları kapatmalarıyla mümkün olmaktadır. Bunun dışında, replikasyonun başlama ve uzama reaksiyonları için gerekli proteinler oldukça iyi bilindiği halde, tamamlamayla ilişkili proteinler ve şayet varsa, terminus bölgedeki dizi spesifikliği hakkında henüz hiç bir bilgi bulunmamaktadır. Sürekli ve kesikli sentez özellikleri, zincirlerin ilerleme hızlarını bir ölçüde etkileyeceği için, 5'  3' yönünde ve kesintisiz olarak sentezlenen zincire önde giden zincir, Okazaki parçacıklarından oluşan 3' 5' yönündeki zincire ise arkadan gelen zincir denmektedir. Semikonservatif replikasyon mekanizması, replikasyon sırasında DNA zincirlerinin birbirlerinden ayrılıp, her birisinin sentezlenecek yeni zincirler için kalıplık ettiğini açıklamakta, fakat DNA sentezinin gerek fiziksel olarak ve gerekse moleküler düzeyde nasıl yürütüldüğü konusunda pek bir açıklık getirmemektedir. Son yıllarda yapılan çalışmalar, bu olayın yalnızca karmaşık olduğunu göstermekle kalmayıp, aynı zamanda mutasyon ve DNA onarımı gibi önemli hücresel olaylarla olan ilişkisini de ortaya koymaktadır (bkz. mutasyonlar ve DNA onarımı). Replikasyon çatalında açılan atasal DNA zincirlerinin kalıp olarak kullanılmasıyla, biri sürekli olarak (3'5' zincirine komplementer olanı) diğeri parça parça, (5'3' zincirine komplementer olanı) iki yeni DNA zinciri sentezlenir. Sentezlenen biri yeni ve biri eski DNA zincirinde A ile T ve G ile C karşı karşıya gelerek aralarında hidrojen bağları kurulur (bkz. kısım 1.4.1.1). Böylece, çift sarmallı bir atasal DNA molekülünden yine çift sarmallı iki DNA molekülü sentezlenmiş olur. Tüm bu olaylar Şekil 4.5; 4.6 ve 4.7’de görülmektedir. E. coli polimeraz II enziminin DNA replikasyonuna katılmadığı bilinmektedir. Buna rağmen, bu enzim Arkebakteriler ve Ökaryotlardaki temel kromozomal DNA polimeraz enzimine oldukça benzemektedir. Replikasyon çatallarında DNA sentezi gerçekleştirilirken DNA molekülünün heliks yapısı da değişmekte ve kıvrım açıcı ve topoizomeraz enzimleri aracılığı ile DNA molekülü modifiye edilmektedir (bkz. kısım 1.4.1.2). DNA, replikasyonla kendisinin kopyasını meydana getirebildiği gibi transkripsiyon ile de taşıdığı bilgiyi m-RNA’ya aktarabilir. m-RNA daki bilgi ise translasyon ile protein sentezine dönüştürülür. DNA’nın tüm bu işlevlerine ise sentral dogma denir (bkz. Şekil 1.2). 4.4. Lineer Genetik Elementlerin Replikasyonu DNA replikasyonunun aşamaları incelenirken, dairesel DNA molekülleri ele alınmış bulunmaktadır. Prokaryotik organizmalar arasında dairesel DNA molekülleri oldukça yaygın olup, plazmidlerin çoğu ve bazı viral genomlar da dairesel olarak bulunmaktadır. Kromozomal DNA’lar ister dairesel ister lineer olsun, neredeyse bütün replikasyon basamakları birbirinin aynıdır. Buna rağmen, lineer kromozomların replikasyonunda dairesel kromozomların replikasyonunda rastlanmayan bir problem bulunmaktadır. Bu problem ise, her DNA molekülünün iki ucunda yer alan 5' uçlarıdır. Problemin daha iyi anlaşılabilmesi için Şekil 4.9’a bakmak yararlı olacaktır. Şekil 4.9’daki diyagramın sol ucunun lineer bir DNA molekülünün gerçekten bir ucu olduğunu düşünelim. Bu uçta yer alan 5' ucu ile başlayan dizinin komplementer zincirinin sentezini başlatan primer RNA molekülü, çok kısa dahi olsa ve bu primeri uzaklaştıran spesifik enzimler bulunsa dahi bütün DNA polimeraz enzimlerinin aktivite gösterebilmesi için serbest 3' OH ucuna, yani bir primere gereksinim duyması nedeni ile hiçbir DNA polimeraz enzimi bu primer RNA molekülünü buradan uzaklaştırarak bunun yerine deoksiribonükleotidleri ekleyemeyecektir. Bu nedenle, bu primer RNA’nın yeni sentezlenen DNA zincirinden uzaklaştırılması için hiçbir şey yapılmayacak olursa, DNA molekülü her replikasyon sonunda bir miktar kısalacaktır. Oysa ki lineer olan genetik elementler bu problemi çok net bir şekilde çözmüşlerdir. Şekil 4.8: DNA sentezinin başlangıcı esnasında oluşan RNA-DNA kombinasyonu (Madigan ve ark.’dan). Gerçekte bu problemin çözümü çok farklı şekillerde gerçekleştirilmektedir. Lineer kromozoma sahip olan bazı virüsler, kromozom uçlarında yer alan yapışkan uçlar aracılığı ile kromozomlarını replikasyondan önce dairesel duruma getirebilmektedirler (bkz. Şekil 1.13). Bazı virüsler ise kromozomlarının uçlarında tekrarlamalı dizilere sahiptirler. Bu virüslerde, farklı DNA moleküllerinin uçlarında yer alan tekrarlamalı dizilerin birbirine eklenmesini sağlayan bir rekombinasyon prosesi gerçekleştirilmektedir. Böylece, uç uca eklenen ve çok uzun olan bu bileşik DNA molekülünden kopyalanan DNA’lar endonukleazlar tarafından kesilerek yeni genomik DNA’lar oluşturulmaktadır. Lineer DNA molekülüne sahip olan birkaç virüs ile çok sayıdaki plazmid ise replikasyon problemini RNA primerleri yerine protein primerler kullanarak çözmüşlerdir. Bütün DNA polimeraz enzimleri, nükleotidleri sadece serbest 3' OH ucuna ekleyebildikleri halde bazı DNA polimerazlar ilk nukleotidi lineer kromozomların uçlarında bağlı bulunan spesifik proteinlerin uçlarında yer alan –OH gruplarına ekleyebilmektedirler (Şekil 4.10). Lineer kromozomların uçlarına bağlanan proteinler ise virüsler veya plazmidler tarafından kodlanmaktadırlar ve bu proteinler, kromozomların uçlarına bağlanma fonksiyonuna sahiptirler. Lineer kromozomların uçlarında yer alan bu primer proteinler ise primer RNA’larda olduğu gibi uzaklaştırılmazlar. Bu nedenle, lineer kromozom taşıyan bu virüs ve plazmidlerin DNA molekülleri, 5' uçlarında kovalent olarak bağlanmış olan bu spesifik proteinleri sürekli olarak taşımaktadırlar. Bu olay Streptomyces lividans gibi bazı bakterilerde de kromozomal DNA’nın replikasyonu sırasında kullanılmaktadır. Lineer DNA replikasyonunda kullanılan bu metotların hiç birisi, ökaryotik kromozomların uçlarında yer alan baz dizilerini (telomerler) tamamlamak için kullanılmamaktadır. Ökaryotik kromozomların telomerleri ise tekrarlamalı DNA dizileri içermektedir. Bu diziler ise genellikle 6 bp’den meydana gelen kısa diziler olup, birbiri arkasına 20 ila birkaç yüz defa tekrarlar oluşturacak şekilde yer almaktadırlar (Şekil 4.11, a). Farklı ökaryotların telomerlerinde yer alan sekanslar ise birbirine oldukça benzemekte olup, DNA molekülünün zincirlerinde birisi her zaman birkaç guanin taşımaktadır. Guanin bakınından zengin olan bu sekanslar ise telomeraz enzimi aracılığı ile DNA molekülünün 3' OH ucuna eklenebilmektedirler (Şekil 4.11). Telomerazlar lineer DNA molekülünün 3' uçlarına ekleme yapan enzimler olup, ko-faktör olarak küçük bir RNA kalıbına sahip oldukları için DNA kalıbına gerek duymazlar. Bu enzimler, daha uzun uzantıların oluşturulması için tekrar tekrar çalışabilirler. Uzantılar yeterli uzunluğa eriştiğinde, diğer diziye ise normal replikasyonda olduğu gibi bir RNA primeri eklenebilir. Telomerlerde yer alan tekrarlamalı dizilerin uzunlukları için tam bir sınır bulunmamaktadır. DNA replikasyonu esnasında genetik bilginin eksilmesine neden olmayacak kadar uzunluktaki bir tekrarlamalı dizi genellikle yeterli olmaktadır. Şekil 4.9: Protein primerleri kullanılarak DNA replikasyonunun gerçekleştirilmesi. Yeni sentezlenecek olan DNA dizisi kalıp zincirin 5' ucuna kovalnet olarak bağlana proteini primer olarak kullanır (Madigan ve ark.’dan). Şekil 4.10: Telomeraz enziminin, ökaryotik kromozomların bir ucundaki aktivitesini gösteren model. (a) Bir DNA telomerinde 4 G bakımından zengin olan tekrarlamalı sekans ve kısa bir RNA kalıbı içeren telomeraz enzimi. (b) G bakımından zengin olan dizinin telomeraz enzimi tarafından uzatılması (Madigan ve ark.’dan). 4.5. Ökaryotlarda DNA Replikasyonu Ökaryotlarda DNA moleküllerinin replikasyonu, prokaryotik hücre DNA’sının replikasyonundan daha kompleks bir olay olmakla beraber, büyük ölçüde ona benzer şekilde cereyan eder. En azından ökaryotik organizmaların DNA’larının da semikonservatif replikasyon mekanizmasına göre replike olduğu yapılan deneysel çalışmalar ile gösterilmiştir. Ökaryotlarda DNA replikasyonu, hücrenin hayat döngüsünün S (sentez) fazında gerçekleşir ve bu evre, gelişmiş yapılı bir ökaryotik hücrede genellikle en az birkaç saat sürer. S fazının sonunda hücre tetraploid (4C*) durumundadır ve bu şekilde G2 fazına başlar. Daha sonra da mitoz bölünmeyle (M fazı) kromozomlar, dolayısı ile genetik materyal yavru hücrelere diploid sayıyı (2C) koruyacak şekilde paylaştırılır. Ayrıca, ökaryotik hücreler prokaryotlara oranla çok fazla miktarda DNA içerirler. Bu nedenle, ökaryotik hücrelerin DNA molekülleri, E. coli’deki gibi tek bir orijin (oriE) noktasından başlayarak replikasyonlarını gerçekleştirseler idi, S fazının oldukça uzun sürmesi gerekirdi. Oysa ki, ökaryotik hücreler bu sorunu her bir DNA molekülü üzerinde çok sayıda replikasyon başlangıç noktasına sahip olarak çözmüşlerdir. Bu nedenle, ökaryotik hücrelerin DNA molekülleri üzerinde prokaryotların DNA’larında olduğu gibi bir tane değil de çok sayıda replikasyon orijini bulunmaktadır. İlk kez 1968 yılında Huberman ve Riggs, ökaryotik DNA moleküllerinin arkası arkasına dizilmiş çok sayıda replikasyon çatallarına sahip olduğunu göstermişlerdir. Gerek elektron mikroskobu ve gerekse otoradyografik araştırmalar örneğin, Drosophila’nın yumurta hücrelerindeki DNA replikasyonunun prokaryotlarda olduğu gibi iki yönlü ve birbirine zıt olarak gerçekleştiğini göstermektedir. Bu nedenle, ökaryotik DNA moleküllerindeki her bir replikasyon çatalında gerçekleşen DNA sentezi, yarı kesikli biçimde yürütülmektedir. Bu kesikli sentez mekanizmasında oluşan Okazaki parçacıklarının uzunlukları ise prokaryotlardakilerine oranla daha kısa olup, 100-200 nükleotid uzunluğundadırlar. Replikasyonun tamamlanma noktalarında ise komşu replikasyon çatalları birleşir. Buna göre, tamamlanma noktaları (terminus) büyük bir olasılıkla sabit değildir. Ayrıca, ökaryotik DNA moleküllerindeki replikasyon orijinleri arasındaki mesafe, oldukça kısa olup replikasyon hızları da prokaryotlarınkinden tamamen farklıdır (Tablo 4.2 Temizkan 6.4). Prokaryotik DNA moleküllerinde bir tane replikasyon orijini bulunurken, ökaryotik kromozomların her birinde organizmanın genom yapısına bağlı olarak değişen ve yaklaşık olarak birkaç bin kadar olan replikasyon başlangıç noktaları bulunmaktadır. Ökaryotik DNA moleküllerinin replikasyon hızı ise prokaryotlardaki DNA moleküllerinin replikasyon hızına oranla çok daha yavaştır. Örneğin, bakterilerde 50 000 bp dak-1 olan replikasyon hızı memelilerde 1000-3000 bp dak-1’ya düşmektedir. Bitkilerdeki replikasyon hızı ise hem prokaryotlardaki hem de memelilerdeki replikasyon hızına oranla çok daha düşüktür. Ökaryotlardaki replikasyon hızının prokaryotlara oranla çok daha yavaş olmasına rağmen, ökaryotik DNA molekülleri üzerinde çok sayıda replikasyon orijinlerinin bulunması ve bu orijinlerin hepsinde de replikasyonun aynı anda devam etmesi nedeni ile ökaryotik DNA moleküllerinin replikasyonu da uygun bir sürede tamamlanabilmektedir. Ökaryotik DNA moleküllerinin replikasyonu ile ilgili olarak bu özelliklerinden de anlaşıldığına göre, kromozomlardaki DNA replikasyonunun süresi, replikasyon başlangıç noktalarının sayı ve replikasyon çatallarının kapladığı alan tarafından kontrol edilmektedir. Ayrıca, ökaryotik hücrelerdeki DNA moleküllerinin kromatin yapısında oluşu, çözülme ve replikasyonun başlaması için gereksinimleri daha da karmaşıklaştırmaktadır. Bu durumda, kromatindeki yoğun histon-DNA komplekslerinin ortadan kaldırılması, daha sonra ise replikasyon devam ederken oluşan yeni DNA moleküllerinin ise eş zamanlı olarak kromatin yapısını kazanmaları gerekmektedir (Şekil 4.8). Bütün bu sorunlara ilave olarak, ökaryotik DNA moleküllerinin lineer yapıda olması, replikasyonun tamamlanmasına ilişkin bazı sorunları da ortaya çıkarmaktadır. Oysa ki lineer yapıda olan prokaryotik DNA moleküllerinin replikasyonunda ortaya çıkabiliecek olan bu sorunlar çeşitli mekanizmalar ile çözülmüş bulunmaktadır (bkz. kısım 4.7). Ökaryotların lineer olan DNA moleküllerinin replikasyonunda ortaya çıkan sonlandırma problemi ise kromozom uçlarında (telomerlerde) replikasyonun tamamlanabilmesi için bazı özel mekanizmaların geliştirilmesinin zorunluluğunu ortaya çıkarmaktadır. Son zamanlarda elde edilen bulgulara göre, ökaryotik kromozomların uçları farklı bir mekanizma ile replike edilmektedir. Mayalar, omurgasızlar, omurgalılar ve bitkilerde kromozoların uçlarında biribirne benzeyen ve değişik özellikte bir yapının bulunduğu anlaşılmıştır. Bu bulguların ilki ise bir protozoon olan Tetrahymena ile yapılan çalışmalardan elde edilmiş olup, bu protozoonun kromozomlarının telomerlerinde DNA çift sarmalının 3' ve 5' uçlarını bir arada tutan saç tokası biçiminde bir ilmeğin ve çok sayıda (30-70 defa) arkası arkasına tekrarlanan kısa bir dizinin (5'-TTGGGG-3') varlığı tesbit edilmiştir. DNA zincirlerinden birinde, saç tokası ilmeğinin yakınındaki tekrarlanan dizi kümesi içinde, çok sayıda zincir kırılmaları da vardır (bkz. kısım 2.3.1.3). Telomerlerde, replikasyonun tamamlanmasına ve sonuçta bu yapısal özelliklerin meydana gelmesine ise bir terminal deoksinükleotidil transferaz olan (bkz. kısım 4.7) telomeraz enziminin yol açtığı anlaşılmıştır. Buna göre, ribonükleoprotein yapıdaki telomeraz, replikasyondan sonra 3' ucu kullanarak ve bu uca tekrarlanan 5'-TTGGGG-3' dizileri ekleyerek zinciri uzatır. Daha sonra, primaz ve DNA polimeraz bu kalıptan yararlanarak yeni 5'-CCCCAA-3' dizileri sentezler. Ligasyonun tamamlanmaması, C bakımından zengin olan zincirde kırıklara yola açar. Ayrıca, 5'-TTGGGG-3' dizili zincirin 3' ucundaki ilmek, G-C eşleşmesiyle oluşur. Tek hücreli ökaryotlarda açıklanan ve doğrulanan bu mekanizmanın büyük olasılıkla tüm ökaryotlar için geçerli olduğu düşünülmektedir.

http://www.biyologlar.com/dna-replikasyonunda-rol-alan-enzimler

Lipitlerin Sınıflandırılması

Lipitlerin Sınıflandırılması

Lipidler değişik şekillerde sınıflandırılabilir. Yapılarına bakılarak lipidler Basit Lipidler, Bileşik Lipidler, Türev Lipidler gibi sınıflandırılabilir. Burada lipidlerin %50'lik alkolde hazırlanan KOH çözeltisiyle hidroliz olup olmamalarına yani sabunlaşıp sabunlaşmadıklarına göre 2 sınıfa ayrılması esasına dayanan sistem kullanılmıştır. Bunların da alt sınıfları vardır. http://upload.wikimedia.org/wikipedia/commons/thumb/f/fb/Lipid_bilayer_and_micelle.png/350px- Sabunlaşabilen Lipidler 1-Açilgliseroller (Gliseridler) 2-Fosfoaçilgliseroller 3-Sfingoaçilgliseroller 4-Ester Tipi Mumlar Sabunlaşmayanabilen Lipidler 1-Terpenler 2-Steroidler 3-Prostaglandinler 4-Alkol ve Keton Tipi Mumlar Sabunlaşabilen Lipidler 1 - Gliseridler (Açilgliseroller) Gliserin tatlı, kıvamlı, sıvı tabiatında üç değerli bir alkoldür. Su ve etil alkolde her oranda karışabilir. Eter, kloroform ve benzolde erimez. Hafif alkalik ortamda demir tuzları yanında H2O2 ile oksitlenirse gliseraldehit ve dihidroksiaseton karışımı oluşur. Gerek gliseraldehit ve gerekse dihldroksiaseton indirgeyici özelliğe sahiptir. Gliserin su çekici özelliği sahip olması ve ıslaklık temin etmesi nedeiytle özellikle kozmetik sanayide ve ilaç endüstrisinde çok kullanılmaktadır. Gliserinin hayvanar için zararlı bir etkisi yoktur. Gliserinin karbon atom numaraları sırası ile a -, b - ve a ’-karbon atomları olarak da bilinir. Açilgliseroller (Gliseridler) ise gliserinin yağ asitleri ile vermiş oldukları esterlerdir. Gliserin 3 hidroksilli bir alkol olduğundan üç tür gliserid (açilgliserol) verebilir. Gliserinin bir alkol grubu bir yağ asidi ile esterleşirse monoaçilgliserol meydana gelir. Esterleşme gliserinin iki alkol grubu ile 2 molekül yağ asidi arasında ise diaçilgliserol oluşur. Triaçilgliserolde ise 3 molekül yağ asidinin gliserinle yapmış olduğu esterlerdir. Mono- ve diaçilgliserollere de doğada rastlanmakla (bunların miktarı oldukça azdır) birlikte bunlardan en önemlisi triaçilgliserolerdir. Triaçilgliseroller genelde besin maddesi olarak kullanılan bitkisel ve hayvansal yağların temel bileşenleridir. Açilgliserollerin temel bileşenleri ise yağ asitleridir. Doğal olarak meydana gelen yağlarda 3 ester konumunun hepsinde de aynı yağ asidi artığını taşıyan triaçilgliserol (trigliserid) moleküllerinin (basit açilgliseroller) oranı küçüktür. Bunların hemen tümü karışık (miks) triaçilgliserollerdir. Basit triaçilgliserolde (trigliserid) gliserine üç stearik asit bağlanmışsa buna tristeroilgliserol, üç palmitik asit bağlanmışsa buna tripalmitoilgliserol yada üç oleik asit bağlanmışsa trioleilgliserol adı verilmektedir. Bu bileşenlere daha çok kullanılan tristearin, tripalmitin yada triolein adı da verilmektedir. Di- ve triaçilgliserollerde yağ asitleri farklı farklı ise isimlendirmede gliserinin karbon atom sırasına göre hareket edilir ve isimde bu numaralar belirtilir. Trigliseridlerin Fiziksel özellikleri Triaçilliserollerin erime derecesi yapılarını oluşturan yağ asidi komponentleri tarafından belirlenmektedir. Genellikle doymuş yağ asitlerinin miktarına ve zincir uzunluğuna paralel olarak yağların erime derecesi yükselmektedir. örneğin tripalmitin, tristarin gibi doymuş yağ asitlerinin triaçilgliserolleri vucut sıcaklığında katıdır. Doymamış yağ asitlerinden oluşan triolein veya trilinolein ise sıvıdır. Trigliserid suda çözünmezler ve kendiliklerinden oldukça dağılmış miseller oluşturmazlar. Buna karşın monoaçilgliserol ve diaçilgliserol serbest hidroksil gruplarından dolayı belli bir polariteye sahiptirler ve misel oluştururlar. Bu nedenle mono- ve diaçilgliseroller gıda endüstrisinde besinlerin hazırlanmasında geniş kullanım alanına sahiptir. Bu yağlar sindirilebiir özelliğe sahip olup biyolojik olarak da enerji amacıyla kullanılabilir. Açilgliseroller eter, kloroform, benzen ve sıcak etanolde gözünürler. Bunların spesifik ağırlıkları sudan düşüktür. Trigliserid Kimyasal özellikleri 1 - Sabunlaşma Bütün yağlar ester olduklarından ester reaksiyonlarını verirler. Çift bağlı yağ asidi taşıyanlar çift bağa ait reaksiyonları, hidroksilli ya alkolik hidroksil grubuna ait reaksiyonları verirler. Yağlar kuvvetli bazlarla kaynatılırsa sabunlar ile gliserole parçalanırlar. Bu olaya sabunlaşma denir. Bu olay alkol ilavesi (yağ eritkeni) ile kolaylaşmaktadır. 2 - Hidrolize Olmaları Yağlar ya lipaz enzimi yada yüksek ısı ve basınç altında ve katalizör olarak asitlerin kullanılması halinde su ile hidrolize edilebilier. Bu reaksiyonda 1 molekül triaçilgliserol 3 molekül su alarak 3 molekül yağ asidi ve 1 molekül gliserole hidrolize olur. 3- Açilgliserollerin Yapısındaki Doymamış Yağ Asitleri ile İlgili Reaksiyonlar Yağlarda bulunan doymamış bağlara, nikel katalizörlüğünde hidrojen eklenebilir. örneğin oleinde bulunan çift bağlar hidrojen ile doyurulursa stearin teşekkül eder. Triolein (Olein) + 3 H2 -> Tristearin (Stearin) Yağlardaki doymamış bağlara klor, brom, iyot gibi halojenler de eklenebilir. Sonuçta halojenle doyurulmuş açilgliserol elde edilir. Bir molekül oleinde bulunan 3 çift bağa, çift bağdan her birine 2 şer atom brom bağlanması sonucu hekzabromostearin oluşur. Triolein + 3 Br2 -> Hekzabromostearin Eğer doymamış yağ asidi içeren triaçilglisroller hava ile temasta havanın oksijeni ile reaksiyona girerek oksidsyona uğrarlar. Doymamış yağ asitlerinin kimyasal özellikleri bölümünde bu durum lipid peroksidasyonu olarak adlandırılmıştı. Doymamış yağ asitleri invivo ortamda otooksidasyona uğramaz. E vitamini, askorbik asit gibi bazı moleküller ve bazı doymamış yağ asitlerinin oksidasyonunu engellemektedir. Bu kimyasal özelliklerden başka yağları karakterize eden ve yağdan yağa farklı olan 5 sayı vardır. Bunlar; 1 - Sabunlaşma sayısı 2 - İyot sayısı 3 - Asit sayısı 4- Asetil sayısı ve 5 - Reichert-Meissl (Uçucu Yağ Asitleri Sayısı) dır. 1- Sabunlaşma Sayısı : 1 g yağın sabunlaşması için gerekli olan KOH’in mg cinsinden miktarına “sabunlaşma sayısı” denir. Bir gram stearinin sabunlaşması için 189 mg KOH ve 1 g butirinin sabunlaşması için 557 mg KOH’a ihtiyaç vardır. Yani stearinin sabunlaşma sayısı 189 ve butirinin sabunlaşma sayısı 557’dir. 2 – İyot Sayısı : 100 g yağın absorbe ettiği iyotun g cinsinden miktarına “iyot sayısı” denir. Yani gliseridin absorbe ettiği halojen miktarı üzerinden yağların nisbi doymamışlıklarının hesaplanması için kullanılır. 3 – Asit Sayısı : 1 g yağda bulunan serbest yağ asitlerinin nötralize edilmesi için gerekli olan KOH’in mg cinsinden miktarına “asit sayısı” denir. Bu sayı yağda bulunan serbest yağ asitlerinden ileri gelen acılaşmanın tayininde kullanılır. 4 – Asetil Sayısı : 1 g asetilleşmiş yağın sabunlaştırılması ile oluşan asetik asidin bağlanması için gereken KOH’in mg cinsinden miktarına “asetil sayısı” denir. 5 – Uçucu Yağ Asidi Sayısı (Reichert-Meissl Sayısı): 5 g yağdan sabunlaştırma, asitleştirme ve buharla damıtma yöntemleri il elde edilen uçucu yağ asidinin nötralize edilmesi için gereken 0.1 N alkalinin ml cinsinden miktarına “uçucu yağ asidi sayısı” denir. 1.2 – Fosfogliseridler (Fosfolipidler) Gliserin ve esterleşmiş halde fosforik asit taşıyan gliseridlerdir. Fosfogliseridlere fosfolipidler yada fosfatidler de denilmektedir. Fosfolipidler membranların ana yapı elementidir. Bütün hayvan ve bitki hücrelerinde bulunur. Yumurta, beyin, karaciğer, böbrek, pankreas, akciğer ve kalp kası fosfolipidler yönünden zengindir. Suda çözünmeleri pek iyi değildir. Fosfogliseridler asetonda erimezler. Ancak su-kloroform ve metanol karışımı ile dokulardan ekstrakte edilirler. Fosfatidler hava ile temas ettiklerinde yapılarındaki doymamış yağ asit gruplarının havanın oksijeni ile okside olmaları nedeniyle koyulaşırlar. 1 Mol. gliserin, 2 mol. yağ asidi ve 1 mol. fosforik asitden oluşan yapıya fosfatidik asit adı verilir. Gliserolün bir ve ikinci hidroksil grubuna genel olarak uzun zincirli iki yağ asidi bağlanmıştır. Yağ asitlerinin birisi doymuş diğeri doymamıştır. Bu yağ asitleri genellikle 16 yada 18 C lu yağ asitleridir. Ancak üçüncü hidroksil grubu ise fosforik asitle ester tipi bir bağ yapmıştır. Fosfogliseridler polar olmayan uzun bir hidrokarbon kuyruk ile bir de polar baş ihtiva etmektedirler. Yani suyu seven ve sevmeyen gruplar bir arada bulunmaktadır. Fosfatidik asidin biyoaktif türevleri daha yaygın olarak karşımıza çıkmaktadır. Zaten gliserolün 3. hidroksil grubuna bağlanan fosforik asit grubu genellikle yalnız kalmaz. Aktif bir amino alkol ester bağı ile buradan yapıya girer. Bu fosfatın hidroksil grubuna kolin, etanolamin, serin ve inositolün bağlanması ile de stoplazma ve organellerin membran yapısında en çok rastlanan, fosfadidilkolin (lesitin), fosfadiletanolamin (kefalin), fosfatidilserin (sefalin) ve fosfoinozitol gibi farklı fosfoaçilgliseroller (fosfolipidler) meydana gelmektedir. Kardiolipin (Difosfatidilgliserol) ve plazmalogen diğer önemli fosfolipidlerdir. Kardiolpinin yapısında bir mol gliserol aracılığı ile birleşen iki mol fosfatidik asit bulunmaktadır. Yani 1,3 difosfatidil gliserindir. Mitekondri zarının temel lipididir. Özelllikle kalp kasından elde edilir ve frenginin teşhisinde kullanılmaktadır. Plazmalogenlerin yapısı fosfogliseridlerden biraz farklıdır. Plazmalogenlerde gliserolün bir hidroksil grubu ile esterleşmiş uzun zincirli bir yağ asidi, diğer bir hidroksil grubunda alfa-beta karbonları arasında doymamış bir bağ bulunan uzun zincirli yağ asidi aldehidi vardır. Gliserolün 3. karbon atomu önce fosforik asitle birleşmiş, fosforik asitte etanolamina bağlanmıştır. Etanolamin yerinde kolin, serin, inositol de bulunabilir. Plazmalogenler kas ve beyin-sinir hücresi membranlarında bol olarak bulunmaktadır. 1.3 - Sfingolipidler Bu bileşikler gliserol ihtiva etmezler. Bu nedenle de sfingozin bazının (4-sfingenin) veya dihidrosfingozin'in (D-sfinganin) türevleri olarak kabul edilirler. Bu bazları ihtiva eden lipidlere de basitce sfingolipidler denilmektedir. Sfingozinin amino grubuna 18 veya 26 karbonlu doymuş veya tek doymamış yağ asidinin amid bağı ile bağlanması ile seramidler meydana gelmektedir. Bütün sfingolipidlerde karekteristik olan seramidlerde iki nonpolar kuyruk bulunmaktadır. Farklı polar baş grupları ise ancak sfingozinin 1. pozisyonundaki hidroksil grubuna bağlanmaktadır. O halde sfingozinin amino grubuna bir yağ asidi karboksil grubu ile amid bağı şeklinde bağlanmakta ve seramidler meydana gelmektedir. Hidroksil grubuna bağlanan polar başlar nedeniyle de farklı sfingolipidler oluşmaktadır. Sfingolipidler hayvan ve bitki hücrelerinin membranlarında yapısal komponent olarak önemli görevler yapmaktadır. Özellikle çok miktarda beyin ve sinir dokuda bulunmakta ancak eser miktarda depolanmaktadır. Sfingolipidler sfingomyelinler, serebrositler ve gangliositler olarak üç ana sınıfta incelenmektedir. Bunlardan sfingomyelimler fosfat grubu ihtiva ettikleri halde serebrositler ve gangliositler fosfat grubu ihtiva etmezler. Sfingomyelinler özellikle membranlarda ve bu arada belirli sinir hücrelerinin etraflarını saran myelin kılıfta oldukça çok olarak bulunurlar. Bunlar seramidlerin fosfokolin veya fosfo-etanolamin türevidir. Yapılarında fosfat grubu taşıdıklarından bazen fosfolipid olarak da sınıflandırılabilirlerse de gliserin taşımadıklarından bu grupta incelemek daha doğrudur. Atların ve sığırların tırnaklarında, yine insanların epidermis, saç ve tırnaklarında sülfür ihtiva eden bir seramid bulunmaktadır. Bu maddeye ungulik asit adı verilir. Ungulik asit seramide ilaveten ekimolar oranda sialik asit, galaktoz, galaktozamin ve sülfat ihtiva etmektedir. Serebrositler beyinde ve sinirlerin myelin kılıflarında çok miktarda bulunan seramid monosakkaritlerdir. Sfingomyelinlerden farklı olarak yapılarında fosforik asit ihtiva etmezler. Bunun yerine çoğunlukla glukoz veya galaktoz gibi bir şeker ihtive ederler. Buradaki şeker genellikle galaktozdur. Ancak bazı çeşitlerinde D-glukoz veya N-asetil glukozamin de olabilir. Yapılarında kolin gibi herhangi bir bazda yoktur. Serebrositler yapılarında yer alan yağ asidinin çeşidine göre isimlendirilir. Polar başı oluşturan şeker üniteleri nedeniyle glikosfingolipler olarak da adlandırılan serebrositler daha çok hücre membranlarının dış kısmında ve hücre yüzeyinde yapısal komponent olarak yer almaktadır. Serebrositlerde galaktoz bulunması, yavrularda beyin ve sinir sisiteminin gelişmesi bakımından süt şekerinin önemini göstermektedir. Çünkü laktoz glikoz ile galaktoz'dan kuruludur. Ganglositler ise özellikle sinir ve dalak dokusunda bulunmaktadır. Gangliositler yapıca serebrositlere benzemekle birlikte, serebrositlerdeki heksoza ilave olarak birkaç molekül daha karbonhidrat ihtiva ederler. Bu karbonhidrat en az bir mol. N-asetil galaktozamin veya N-asetil glukozamin ile en az 1 mol. N-asetil nöyraminik asit (sialik asit) olabilir. Gangloisitler hücre membranlarının dış yüzeylerindeki spesifik reseptör bölgelerinin önemli yapısal elementidir. Ör. ganglositler sinir sonlarında bulunurlar ve neurotransmitter moleküllere bağlanarak implusun kimyasal transmisyon ile bir sinirden diğer bir sinire ge‡mesinde rol oynarlar. Hekzsozlar ve N-asetil ne”yraminik asidin sayı ve bağlanışları bakımından gangliositlerin 20 farklı türüne rastlanmıştır. Gangliositler hücre membran yüzeylerindeki hormon-reseptör bölgelerinde de bulunmaktadır. Bazı nötral glikosfingolipidler eritrositlerin dış yüzeylerinde bulunarak kan gruplarına özgüllük kazandırdıkları gibi organ ve dokulara da özgüllük kazandırmaktadır. 1.4 - Ester Tipi Mumlar Mumlar yüksek yağ asitlerinin bir hidroksilli yüksek alkollerle teşkil ettikleri esterlerdir. Bu asit ve alkollerin uzunluğu C16-c30 olabilir. Mumların genel formülü tamamen basit esterlerin genel formül, R-CO-O-R' gibidir. Birçok bitki ve hayvanın vucudu mum tabakaları ile örtülmüştür. Mum tabakaları bir taraftan suların nüfuzuna, diğer taraftan da kuruluğa engel olur. Doğadaki görevleride budur. Hem bitkiler ve hem de hayvanlar doğal mumlar meydana getirirler. Mumllar genellikle esterlerin bir karışımıdır ve ek olarak mumlarda yüksek miktarlarda serbest yüksek yağ asitleri, yüksek alkoller, yüksek molekül ağırlığına sahip doymuş hidrokarbonlar da bulunur. Geniş bir sıcaklık aralığında erirler (35-100 ° C) Suda hemen hiç çözünmezler. Organik çözücülerde çok iyi çözünürler. Mumlarda en çok bulunan alkoller -> lauril alkol, setil alkol, seril alkol ile mirisil alkol olup asitler ise -> miristik asit, palmitik asit, serotik asit ve melissik asittir. Balmumu palmitik asidin C26-C34 karbonlu yağ alkolleri ile verdiği esterlerin bir karışımıdır. Balmumunda büyük oranda miristat, C13H27CO-O-C26H53, ile serotik asidin, C25H51COOH, bazı esterleri ve % az miktar da hidrokarbondan meydana gelmiştir. 62-65 ° C de erir ve ayakkabı cilası, mum ve mumlu kağıt yapımında kullanılır. Karnauba Mumu Brezilya hurmasınını lifleri üzerinde (kaplamış halde) bulunan bitkisel bir mum olup ana maddesie mirisil serotat'dır C25H51COOC31H63. 80-87 ° C de erir. Cilacılıkta, mumlu teksir kağıdı yapmakta kullanılır. Balina Mumu başlıca setil palmitat, C15H31CO-O-C16H33, ile bir miktar serbest setil alkolden C16H33OH meydana gelmiştir. Erkek balinaların kafa boşluğundan elde edlir. 42-45 ° C de erier. En çok merhemlerde ve kozmetiklerde yumşatıcı olarak kullanılır. Lanolin, Lanosterolün bir yağ asidi esteridir. Serbest ve esterleşmiş kolestrol ihtiva eder. Yün telciklerinin üzerinde koruyucu bir tabaka teşkil eder ve yağ olmaktan ziyade bir mumdur. Çok kompleks bir yapıya sahiptir. Lanolin kendisi erimeden çok miktarda su alıp tutma özelliğine sahiptir. Bu nedenle merhemlerin ve değişik kozmetik ürünlerin hazırlanmasında kullanılır. 2.0 Sabunlaşmayan Lipidler 2.1 - Terpenler Terpenler izoprenin (2-metil-1,3-bütadien) oligomer veya polimerleridir. İzopren molekülünde bulunan çift bağlar konjugedir. Yani iki çift bağ arasında yalnız bir tek bağ bulunmaktadır. Böyle konjuge çift bağ taşıyan maddeler büyük reaksiyon yeteneğine sahiptirler ve başka maddelerle kolayca birleşebilirler. Aynı reaksiyon yeteneğine dayalı olarak izopren molekülleri kendi aralarında da birleşebilirler (polimerizasyon). İzopren molekülleri polimerize olmadan önce dehidre olmaları gerekir. Izoprenin kendisi doğal olarak bulunmadığı halde doğada izopren moleküllerinin polimerizasyonu sonucu oluşan bileşikler yaygındır. Doğal bileşiklerin çoğunda izopren moleküllerinden birisinin baş kısmı ile diğerinin kuyruk kısmı birleşmiştir. Bununla birlikte iki baş yada kuyruğun birleştiği maddelerde vardır. Terpenlerin çoğu hidrokarbon, diğerleri alkol, eter, aldehit, keton ve asittir. Büyük bir kısmı güzel kokar. Hafifçe ısıtılarak yada subuharı damıtımıyla diğer bitkisel maddelerden ayrılabilir. Terpenlerin bazıları parfümlerde, tat vermede ve tıpta kullanılır. Terpenlerin en önemli grubu olan Karotinoidler tetraterpendir (C40). Açık sarıdan kırmızı-menekşeye kadar değişen renkte maddelerdir. Karotinoidlere bu renkleri veren faktör taşıdıkları çift bağlardır. Bazı karotinoidler, likopin gibi, asiklik (halkasız) olmalarına karŸın bazıları da zincirin her iki ucunda hidroaromatik birer halka ile kapanmışlardır. Böyle karotinoidlere karotinler denir. Karotinlerde halkalar dört izopren molekülünün iki ucunda yer alır. Zincir uçlarındaki bu hidroaromatik halkalara iyonon halkaları adı verilir. İyonon halkaları a -, b - ve pseudoiyonon halkalarıdır. a - ve b -iyonon halkaları kapalı olup yalnız bir çift bağ ihtiva ederler. Çift bağın yerleri a - ve b -halkalarında farklıdır. Pseudoiyonon halkası ise 2 çift bağ taşır ve açıktır. Taşıdıkları iyonon halkalarına göre a -, b - ve gama karotinler şekillenir. a -karotinde bir a - ve bir de b -iyonon halkası vardır. a -karotinde ise, zincirin her iki ucunda da b -iyonon halkası vardır. Gamma-karotinde ise zincir uçlarında bir a - ve bir de pseudoiyonon halkası mevcuttur. Karotinler vitamin A'nın ön maddeleridir. 2.2 - Steroidler Bu maddeler steran (siklopentanoperhidrofenantren) halkasına sahiptirler. Fenantren halkası 3 benzol halkasından ibarettir. Bu halka hidrojenle doyurulursa çift bağ açılır ve perhidrofenantren halkası meydana gelir. Perhidrofenantren halkasına da bir siklopentan halkası eklenirse siklopentanoperhidrofenantren (steran) halkası oluşur. Steroidler bunun karbonlu yan zincir, alkol, aldehit, keton, çift bağ şeklinde bazı fonksiyonlu grup taşıyan türevleridir. Doğal olarak bulunan, farklı fonksiyon yada aktiviteye sahip pek çok steroid, özellikle A halkasındaki 3 nolu karbona, C halkasındaki 11 nolu karbona ve D halkasındaki 17 nolu karbona farklı grupların bağlanması ile birbirinden ayrılmaktadır. Steran halkasını veya bunun değişik şekillerini taşıyan ve biyolojik önemi olan maddeler sterinler (Steroller) ve Vitamin D Grubu Maddeler, safra asitleri ile adrenal korteks hormonları ve cinsiyet hormonlarıdır. 2.2.1- Sterinler Sterinler bir steran halkası ile bir yan zincire sahiptirler. Sterinlerin hepsinde de 3 numaralı karbonda alkolik hidroksil grubu bulunur. Sterinlere steroller de denir. Yün yağında bulunan lanosterol, bitkisel kökenli olan ergosterol ve stigmasterol ile kolesterol en iyi bilinen sterinlerdir. Sterinler; zoosterinler, mükosterinler (mantar ve maya sterinleri) ve fitosterinler olarak üç grupta incelenir. Zoosterinler Zoosterollerin en önemli üyesi kolesteroldür. Kolesterol bütün hayvansal dokularda, pek çok hayvansal hücrenin membranlarında, kan plazmasının lipoproteinlerinde bulur ve karaciğerde sentezlenir. Bitkilerde bulunmaz. Antihemolitik etkiye sahiptir. Bu özelliğinden dolayı bakteri toksinlerinin, yılan zehirlerinin, safra tuzlarının ve diğer hemolitik maddelerin hemolitik etkilerine karşı etkilidir. Kolesterol dokularda serbest ve ester şeklinde olmak üzere 2 halde bulunmaktadır. Dokulardaki kolesterol miktarı geniş hudutlar içerisindedir. Bilhassa beyin sinir dokusu, adrenal bezler ve yumurta sarısında çok miktarda bulunmaktadır. Beynin beyaz maddesinin kurutulmuş şekli % 14 kolesterol ihtiva eder. Kolesterolün lipid metabolizmasında, lipidlerin taşınmasında önemli rolü vardır. Safra asitleri, cinsel hormonlar ve diğer steroidlerin sentezinde prekürsördür. Lipid metabolizması bozukluklarında ve yaşlılıkta kolesterol yağ asidi esterleri damar çeperlerine çökelip yapışarak arteroskleroza neden olur. Vucuttaki mevcut kolesterolün % 90'ı safra asitlerinin ve % 10'unun da steroid hormonların sentezinde kullanıldığı kabul edilmektedir. Kolesterinde steran halkasının 3 nolu C da bir hidroksil grubu, 5-6 nolu C'lar arasında bir çift bağ, 10 ve 13. karbonlarda birer metil grubu, 17 nolu karbonda da 8 karbonlu bir yan zincir taşır. Yani 3-hidroksi-5-dehidrokolestandır. Kolesterole kimyasal özelliğini veren faktörler, taşıdıkları sekunder alkol grubu ve çift bağdır. 3. C daki hidroksil grubu aracılığı ile yağ asitleri ve diğer asitlerle esterleşir. Bu esterler kanda ve dokularda yaygındır. Yine bu hidroksil grubundan oksidanlarla ketonlaşır, mesela kolestenon'u verir. Çift bağa hidrojen ve halojenler yerleşir. Kolesterol katalitik olarak hidrojenlendiğinde, yani çift bağa 2 hidrojen girerek doyarsa birbirinin geometrik izomeri olan kolestanol ve koprostanol olarak adlandırılan 2 bileşik meydana gelir. Kolestanol ve koprostanol kolesterolün barsak bakterileri tarafından indirgenmesiyle meydana gelir. Bu nedenle kalın barsakta ve dışkıda bulunmaktadır. Kolesterolde ve kolestanolde 3 nolu karbondaki hidroksil grubu ile 10 nolu karbondaki CH3 grubu ile aynı tarafta ve hallka yüzeyinin üzerinde bulunur. Bu şekle sis konfigürsyon demiştik. Koprostanolde ise 3. nolu karbondaki hidroksil grubu 10. karbondaki metil grubu ile zıt tarafta bulunur ve bu trans konfigürasyon adını alır. Kolestanol'deki 3 nolu karbon atomuna bağlı olan -OH grubu halka yüzeyinin altında yer alırsa (5 nolu karbondaki -H atomu ile halka yüzeyinin aynı tarafında ) altında yer alırsa epikolestanol adı verilen başka bir bileşik oluşur. Koprostanolde 3 numaralı karbondaki -OH grubu ile 5 nolu karbondaki H atomu halka yüzeyinin ters yönlerinde, OH grubu altta, H atomu üstte yer alırsa epikoprostanol adı verilen başka bir izomer türer. Kolesterin oksitlenir ve konjuge bir çift doymamış bağ oluşursa, 7-dehidrokolesterin meydana gelir. Bu vitamin D3'ün (Kolekalsiferol)'ün önmaddesidir. 7 dehidrokolesterin uv ışığa maruz kalırsa vitamin D3'e dönüşmektedir. İlk bakışta kolesterole benzeyen lanosterol ise 17. karbonundaki yan zincirde bir çift çift bağ içermesi, steran halkasındaki çift bağın 5-6. karbonlar değil 8-9. karbonlar arasında bulunası ile kolesterolden ayrılır. Ayrıca 4. karbon atomunda iki molekül CH3 ve yine 14 nolu karbona bağlı bir molekül CH3 bulunur. Mükosteroller İsminden de anlaşılacağı üzere maya ve mantarlarda (çavdar mahmuzu) bulunan sterollerdir. En önemli üyesi ergosteroldür. Ergosterolde 17. C bağlı 9 karbonlu bir yan zincir, yan zincirde bir çift bağ, 3.nolu C da bir OH grubu, 10 ve 13 C'larda birer metil grubu, 5 ve 6. C lar ve 7 ve 8. karbonlar arasında 2 adet çift bağ vardır. Ergosterol vitamin D2 nin önmaddesidir. UV ışığı etkisiyle vitamin haline dönüşür. Vitamin D etkisi gösteren bileşiklerden vitamin D3 hayvansal dokularda, vitamin D2'de bitkilerde meydana gelir. 7-dehidrokolesterin yüksek derecede organize olmuş hayvamlarda kolayca sentez edilir. Bunun vitamin D3'e dönüştürülmesi ise UV şık etkisi ile deri altı yağ dokusunda mümkün olmaktadır. Ergosterol'de yine UV şık etkisi ile bitkilerde vitamin D2 haline dönüştürülmektedir. Besinlerle alınan ergosterolün vitamin D olarak bir değeri yoktur. Memeliler vitamin D2 ve Vitamin D3'e takriben birbirine eşit derecede değerlendirebilmektedir. Fitosterol'ler Bitkisel steroller olup 10 C lu bir yan zincire sahiptirler ve stigmasterol ve Sitosterol olmak üzere iki önemli üyesi vardır. Yapısı kolesterole çok benzer. Ancak yan zincirinde 22-23 øC arasında fazladan bir çift bağ ile bir de etil grubu vardır. Soya fasülyesi ve yoncada çok miktarda bulunmaktadır. Progesteron'a çevrildiği laboratuvar deneyleri ile gösterilmiştir. b -Sitosterol ise stigmasterolün yan zincirdeki çift bağın 2 H atomu ile doymasıyla meydana gelir. Tahıllarda bol miktarda bulunur. 2.2.2- Safra Asitleri Safra asitleri 24 C'lu steroidlerdir. ön madde olarak kolesterinden yararlanılarak tüm hayvansal organizmalarda sentezlenebilir. Kolesterolün yan zincirindeki son üç karbon atomu oksidasyona uğrayarak parçalanır ve karboksil grubu oluşarak safra asitleri meydana gelir. Bütün safra asitlerinin kolanik asitten türedikleri kabul edilir. Kolanik asit 5 karbonlu yan zinciri COOH grubu ile biten, 10. ve 13. karbonlarında metil grubu taşıyan maddelerdir. Başlıca karaciğerde sentezlenirler. Safra kesesinde toplanırlar ve bir kanalla ince barsağa salgılanır. Safra asitlerinin oluşturduğu tuzlar (anyonlar) yağları emülsiyon haline getirerek, lipaz enziminin yağlarla değme yüzeylerini artırır ve kolaylıkla hidroliz olmalarını sağlar. Bu özellikleri ile (kolik asit anyonları) çok güçlü doğal deterjanlardır. Kolanik asitte, steran halkasının 3., 6., 7., 12. karbonlarına en fazla 3 hidroksil grubunun girmesiyle aşağıdaki kolanik asit türevleri, yani diğer safra asitleri meydana gelir. Kolik asit -> 3,7,12 - trihidroksikolanik asit Dezoksikolik asit -> 3,12 - dihidroksikolanik asit Litokolik asit -> 3 - hidroksikolanik asit Hiyodezoksikolik asit -> 3,6 - dihidroksikolanik asit Kenodezoksikolik asit -> 3,7 - dihidroksikolanik asit Safrada en çok bulunan safra asitleri kolik asit ve kenodezoksikolik asittir. İnsan safrasında serbest safra asidi yoktur. Safra asitleri karboksil grupları aracılığı ile glisin veya taurin ile konjuge halde safrada bulunurlar. Hepsi birleşmiş haldedir. Bunlara birleşik (konjuge) safra asitleri denir. Glisin kolik asitle glikokolik asidi, dezoksikolik asit ile glikodezoksikolik asidi ve litokolik asitle de glikolitokolik asidi verir. Yine kolik asit, dezoksikolik asit ve litokolik asit taurin ile birleşerek sırasıyla, taurokolik asit, taurodezoksikolik asit ve taurolitokolik asidi meydana getirirler. Safra asitlerinin tuzları yani kolatlar yapıları nedeniyle (büyük kısmı apolar, ufak bir kısmı polar moleküler) yüzey gerilimini azaltıcı ve emülsiyon yapıcı özelliğe sahiptirler. Suda erimeyen koesterolü, yağları, fosfatidleri, yağda erir vitaminleri emülsüyon haline getirerek barsaklardan rezorbsiyonunda önemli rol oynarlar. Yağların yüzeylerini genişleterek enzimlerin yağlara daha iyi etkimelerini sağlarlar. 2.2.3- Adrenal Korteks ve Cinsiyet hormonları Kolesterolün yan zincirinin kırılması oksidasyonu sonucu pregnenolon oluşur. Pregnenolondan da diğer steroidler üretilir. Cinsel hormonlar insanların ve diğer omurgalıların kuşların ve sürüngenlerin üreme fonksiyonlarının düzenlenmesinde etkin görev alırlar. Androjenler tesosteron ve dihidrotestosterondur. Testislerde biyosentezlenir. Dihidrotestosteron testosterondan daha etkilidir. Österojenler başlıca östron ve östradioldür. Aromatik halka içerir. Estrodiol östrondan daha etkindir. Daha ayrıntılı bilgi için hormonlar ders notuna bakınız. 2.3 - Prostaglandinler Prostat bezinde sentezlenmesi ve ilk kez seminal sıvıdan izole edildiği için bu adı almıştır. Yapıları ve etkileri 1960 larda anlaşılmıştır. ön maddesi arahidonik asittir. 20 karbonlu doymamış yağ asidi olan arahidonik asidin halkasal yapı kazanması ile meydfana gelmektedir. Bundan türeyen prostanoik asitten diğer prostaglandinler oluşur. Günümüzde 30 kadar prostaglandin bilinmektedir. Hemen her doku prostaglandin ihtiva eder ve hemen her biyolojik olay bunlardan iz miktarda da olsa etkilenir. Bunlar yangıya ve ağrıya olan duyarlığı artırırlar. Asprin ve benzeri ila‡lar prostaglandin sentezindeki enzimlerin etkilerini inhibe ederek antagonist etki gösterirler. Yine kortizon ve diğer steroidlerin yangı önleyici etkileri prostaglandin sentezini önlemelerinden kaynaklanmaktadır. Prostaglandinlerin diğer etkileri kan basıncını düşürme ve uterus kasları gibi düz kasların kontraksiyonlarını uyarmalarıdır. Prostaglandinlerden en iyi bilinenleri PGE1, PGE1a ve PGE2a dır. PGE2 ve PGE2a ise zor doğumlarda kullanılmakta ve uterus kaslarının kontraksiyonunu artırarak bebeğin doğumunu kolaylaştırmaktadır.

http://www.biyologlar.com/lipitlerin-siniflandirilmasi

Koagulase Testi

Bu test, özelilkle stafilokoklarda bulunan ve kan plazmasını pıhtılaştıran koagulase enzimini (stafilokoagulase) ortaya koyma, patojenik olanlarla nonpatojenik olanları ayırmak amacı ile yapılır. Patojenik olan S. aureus pozitif reaksiyon vermesine karşın S. epidermidis ve S. saprophyticus negatif reaksiyon gösterir. Aslında koagulase'nin patojenite ile ilişkisi de tam olarak aydınlatılmamıştır. Protein karakterinde, ekstrasellüler, ısıya dayanıklı (60 °C ve 30 dakika) olan koagulase DNA'yı da ayrıştırdığı için bir deoksiribonüklease (DN'ase) karakteri taşır. Pıhtılaşmanın normal mekanizması kısaca yanda gösterildiği gibidir. Bazı araştırmacılar, koagulase enzimini, normal plasma faktörü ile reaksiyon vererek trombin benzeri subtansı oluşturan ve protrombin benzeri bir madde olduğunu da bildirmişlerdir. Bu madde sonradan fibrinojen'i aktive ederek fibrin haline dönüştürür. Stafilokoklar dışında bazı mikroorganizmalar da koagulasyon meydana getirebildikleri saptanmıştır. Ancak buradaki reaksiyon enzimatik olmayıp, plasma antikoagulatanın tahrip olması etkisinin ortadan kalkmasıyla meydana gelir. Koagulase enziminin fazla olması reaksiyonun daha çabuk ve belirgin olarak meydana gelmesine neden olur. Stafilokoklarda koagulase aktivitesinin, bu etkenlerinin oluşturduğu diğer toksik substanslarla bir bağlantısı olmadığı bildirilmiştir. Materyal 1) Steril taze insan veya tavşan plasması (heparinli veya fibrinojen) 2) Taze ve saf stafilokok sıvı veya katı ortamdaki kültürü 3) Koagulase pozitif (S. aureus) ve negatif (S. epidermidis) suşlarının taze kültürleri (kontrol mikroorganizmalar) Metot 1. Tüpte test: Temiz bir tüpe (13 x 100 mm) 0.5 ml kadar plasma konur. Üzerine aynı miktar S. aureus kültürlerinden damlatılır ve homojenize edilir. Sıvı kültür yerine, katı besi yerinden alınmış bir-iki saf koloni de, plasma içinde homojen bir suspansiyon yapılabilir. Eğer elde yeterince plasma varsa, bu amaç için iki ayrı tüp kullanılabilir.Tüpler 37 °C de su banyosunda 1-3-6 saat tutulur ve her saat gözle kontrol edilirler.Tüpler çok hafifçe eğilerek koagulasyon durumu belirlenir.2. Lamda test: Temiz bir lam üzerine bir damla steril fizyolojik su (veya distile su) konur. Buna taze sıvı stafilokok kültüründen bir damla ilave edilir veya agardan bir-iki koloni alınarak sıvı ile bir suspansiyon yapılır. Sonra bunun üzerine bir damla steril taze plasma konur ve homojenize edilir. Reaksiyon 3-5 saniye içinde okunabilir. Şüpheli durumlarda sonucu almak için 2-3 dakika kadar beklenebilir. Değerlendirme 1. Tüp testinde: Tüp içinde bulunan plasmanın tam pıhtılaşması (fibrin oluşumu) pozitif reaksiyon olarak değerlendirilir. Eğer fibrin oluşumu tam değilse (kısmi koagulasyon) 24 saat 35° - 37° C de tekrar bekletilmelidir. Hiçbir pıhtılaşma yoksa, suspansiyon ilk baştaki gibi homojen ise, negatif reaksiyon olarak kabul edilir. Gerekirse, 24 saat yeniden inkubasyona bırakılabilir. Değerlendirme kontrollerle karşılaştırılarak yapılır. 2. Lam testinde: Lam üzerinde 3-5 saniye içinde oluşan kümeleşme pozitif reaksiyon olarak kabul edilir. Bu süreden sonra bir dakikaya kadar olan kümeleşmeler geç reaksiyon olarak değerlendirilir. Bir dakikadan sonraki reaksiyonlar şüpheli ve hiçbir değişiklik yoksa negatif olarak dikkate alınır. Şüpheli ve geç reaksiyon hallerinde tüp testi ile duruma kesinlik kazandırılır. Dikkat edilecek noktalar 1) Testte eski ve zayıf üreyen kültürler kullanılmamalıdır, geç ve şüpheli reaksiyonlar görülebilir. 2) Kanın sitratlı alınmaması daha uygundur. Bunun yerine heparin tercih edilmelidir. 3) Kullanılacak plasma taze olmalı ve filtrasyona tabi tutulmamalıdır. 4) Tüp veya lâmlar hiçbir zaman kuvvetlice çalkalanmamalı ve sallanmamalıdırlar. Hafifçe eğilerek reaksiyon gözlenir. Aksi halde pıhtı parçalanır şüpheli veya negatif reaksiyon meydana gelir ve pıhtı oluşmaz. 5) Lam testinde, fizyolojik su (veya distile su) ile kültür homojen olarak karıştırıldıktan sonra, yalancı granulasyon (otoaglutinasyon, pseudokoagulasyon'un) olup olmadığına dikkat edilir. Eğer, otoaglutinasyon yoksa teste devam edilir. 6) Bazı araştırıcılar plasmayı ve bakteri kültürünü 1/2 - 1/5 oranlarında sulandırmayı tavsiye etmektedirler. Ancak bu konuda tam bir görüş birliği yoktur. Her iki komponentte eşit miktarlarda reaksiyona konulmalıdır. 7) Plasma soğuk olarak kullanılmamalıdır. Oda sıcaklığında olmalıdır.

http://www.biyologlar.com/koagulase-testi

Kan Transfüzyon Komplikasyonları ve İlkeleri

Kan transfüzyonu ilkelerine uyulmadığı taktirde bir çok problem ortaya çıkabilir. Bunlardan sakına­bilmek için a- Alıcı verici arasında ABO ve Rh grupları açı­sından serolojik uygunluk sağlanmalıdır. Zorunlu hallerde A, B veya AB grubundan bir hastaya 0 gru­bundan kan verilebilir. 0 grubundan 1-2 ünite kan çoğu kez alıcıda bir reaksiyona yol açmaz. Çok acil olamadıkça her hastaya cross mach uygunluğu olan kendi kan grubundan kan verilmelidir. b- Transfüzyondan önce alıcı verici arasındaki serolojik uygunluğu kontrol için alıcının serumu ile vericinin eritrositleri arasında çapraz karşılaştırma yapılır. Aglütinasyon varlığında gruplar arasında uyuşmazlık olduğu düşünülür. c- Depolanmış kan ile transfüzyona başlanma­dan önce vücut ısısına yakın bir ısıya getirilmelidir. Bu özellikle büyük miktarda kan transfüzyonu ya­pılacak hastalarda önem kazanır. d- Kan setinden herhangi bir ilaç verilmez ve kana herhangi bir ilaç katılmaz. Transfüzyon bittikten sonra aynı setten serum verilecekse bu serumda kalsiyum iyonu bulunmamalıdır. e- Transfüzyon hızı rutin uygulamalarda 4-5 ml/dak olarak ayarlanır. Yani 500 mi kanın ortala­ma infüzyon süresi 2 saattir. Hızlı transfüzyonlar CVP (santral venöz basınç) kontrolü altında yapıl­malıdır. Yaklaşık 10 damla kan 1 ml’dir. Kan Transfüzyonu Komplikasyonları 1-Yanlış Kan Transfüzyonu: Uygun olmayan kanın transfüzyonu şeklinde yada büyük çapta kan transfüzyonundan kaynaklanır. a- Uygun olmayan kanın transfüzyonu: Çoğu zaman kayıt sistemlerindeki eksikliklerden veya uy­gulayıcıların dikkatsizliği sonucu meydana gelir. Grubu uygun olmayan, saklanma zamanı geçmiş, cross match yapılmamış, uygun ısıtılmamış, depo­lanma zamanı geçmiş kanın vb. transfüzyonu şek­lindeki uygulamaları kapsar. Yanlış kan transfüzyonu birçok reaksiyona yol açar. Bu reaksiyonlarm büyüklüğü insan hayatını tehdit etmeden önemsiz boyutlara kadar değişebilir. Meydana gelebilecek hemolitik reaksiyonlar dola­şımdaki eritrositler ile antikorlar arasında meydana gelen immun komplekse bağlıdır. Oluşan immun kompleks kompleman kaskatını aktive eder, anaf-laktik reaksiyonlar ve tüketim koagülopatisi meyda­na gelir. Bu reaksiyonlar gebelikte immünize oldu­ğu için kadınlarda daha sıklıkla meydana gelebil­mektedir. Bu immünizasyonda meydana gelen IgM yapısındaki antikorlar eritrositlere hemen bağlana­rak onları hemolize uğratma yeteneğindedirler. Bu tür reaksiyonlar nadir olmakla birlikte çoğu zaman kayıt işlerindeki yanlışlıktan kaynaklanmaktadır. Klinikte kendini daha çok titremeli veya titremesiz ateşle belli eder. Anksiyete, göğüs ve sırt ağrısı, flas-hing, dispne taşikardi ve hipotansiyon diğer semp­tomlardır. Bu tür reaksiyonlar renal yetmezlik, şok ve DIC gibi hayatı tehdit eden komplikasyonlara yol açabilir. Eğer hasta genel anestezi altında ise bu semptomlar görülmeyecektir. Yalnızca şiddetli hi­potansiyon, ameliyat sahasında sızma şeklinde ka­namalar ve hemoglobinüri ana semptomlardır. Tedavide transfüzyon hemen durdurulmalıdır. Kan örnekleri alınarak laboratuara gönderilmelidir. Hemolitik reaksiyonun şiddeti transfüze edilen kan volümüne bağlıdır. İnfüzyona NaCl ile devam edi­lerek idrar atımı saatte 100 mi olacak şekilde kan ba­sıncı normal sınırlarda tutulmaya çalışılmalıdır. Te­daviye renal perfüzyonu sağlayan diüretikler, vazo-aktif droglar ilave edilir. Eğer renal yetmezlik geliş­mişse elektrolit balansı için diyaliz gerekir. Gecik­miş reaksiyonlar daha az şiddetlidir ve eritrositler transfüzyondan 2-10 gün sonra yıkılır. Genellikle damar dışı bir olay olarak gelişir. Direkt antiglobu-lin test genellikle pozitiftir. Çoğu vakada spesifik bir tedavi gerekmez. Çok az vakada şiddetli reaksiyon­lar iyi bir hidrasyonla tedavi edilebilir. Sebebe yöne­lik araştırma bir önceki durumda olduğu gibi yapı­lır. Yalancı hemoliz olaylarında intravasküler hemo-liz meydana gelir, ancak olayı açıklayacak bir sebep bulunamaz. Bu durum başka sebeplerle izah edil­melidir. Hemolitik reaksiyonları taklit eden bu du­ruma yersinia gibi bakteriyel kontaminasyon, çeşitli droglar ve vasküler protez sebep olabilir. b- Büyük çapta transfüzyonların yol açtığı so­runlar: Transfüzyon hızı 100 ml/dak’dan fazla veya 24 saat içinde 5000 mi veya daha fazla kan verilme­si zorunluluğu, aşağıdaki bazı özel sorunların doğ­masına yol açar. Kanamalar: Banka kanındaki labil pıhtılaşma fak­törlerinin (I,V) ve trombositlerin bulunmaması, bu kanlarla hastanın damarı doldurulunca hastanın kendi labil faktörlerinin ve trombositlerinin dilüsyo-na uğraması sonucu kanamalar görülebilir. (Her 4 üniteden birinin plastik torbalı taze kan olması, di-lüsyonun önlenmesi için yeterlidir.) Asidoz nedir: Fazla miktarda düşük pH’lı banka kanı transfüzyonu kuramsal olarak asidoza yo açar. Or­ganizmanın tamponlama rezervi çoğu zaman bunu önlemektedir. Sürat toksisistesi: Hipotansif, karaciğer veya böb­rek harabiyeti olan hastalarda ve henüz sitratı meta-bolize edemeyen çocuklarda sitratlı kanın masif transfüzyonu sonucu meydana gelir. Sonuçta tre-mor, tetani veya kardiyak aritmiler ile karakterize bir tablo ortaya çıkar. Tam kan yerine eritrosit süs­pansiyon kullanılması ve kanın transfüzyondan ön­ce özel kan ısıtıcıları ile 25°C’ye kadar ısıtılması bu toksisiteyi önlemede faydalıdır. Hiperpotasemi nedir: Potasyumu artmış banka kanları­nın trasfüzyonu derin oligüri veya anüri yoksa önemli bir sorun yaratmaz. Hipotenni: Fazla kan verilirken bu kanların vücut ısısında olması gerekir. Çünkü soğuk kanın yol açtı­ğı hipotermi kalp iletim hızında azalma ve kan pH’sında düşmeye neden olur. Bunun için özel kan ısıtıcı cihazlar geliştirilmiştir. Oksijen taşıma kapasitesinde azalma: Kanın bekle­me süresi uzadıkça eritrositlerdeki 2,3-difosfoglise-rat (2,3-DPG) düzeyi giderek düşer. Transfüzyon-dan sonra 2,3-DPG düzeyinin kanda yeniden etkili olması en az 12 saat zaman alır. 2- Hemolitik Transfüzyon Reaksiyonları: Erit­rosit antijenlerine karşı gelen antikorlar eritrosit destrüksiyonuna yol açabilir. Böyle reaksiyonların klinik önemi yaşamı tehdit edebilen olaylar zinciri­ne yol açmasıdır. Hemolitik reaksiyonlar, gebelik esnasında immünizasyon dolayısı ile bayanlarda daha sık görülür. Klinik, erken ve geç hemolitik reaksiyonlar şek­linde görülür. İnsidans erken ve geç tipte sırayla 1/6200, 1/1400′dır. Erken tip reaksiyonlar yanlış transfüzyonlar başlığı altında anlatılmıştır. Geç tip reaksiyonlar transfüzyondan 2-10 gün sonra görü­lür. Transfüzyon öncesi tesbit edilemeyen eritrosit antijenlerinin varlığı bu tip reaksiyondan sorumlu tutulmuştur. Gecikmiş tip reaksiyonlarda sensitize eritrositlerin yıkımı ekstra vaskülerdir. Ateş ve re-kürrent anemi en sık ve sabit bulgudur. Diğer semp­tomlar sarılık hemoglobinemi ve hemoglobinüridir. Spesifik bir tedavi gerekli değildir. Şiddetli durumlarda yeterli hidrasyon uygulanmalıdır. 3- Allerjik Reaksiyonlar: Transfüzyon yapılan hastaların %1-3′ünde allerjik reaksiyon oluşur. Be­lirtileri ürtiker, kaşıntı ve kızarıklıktır. Tedavi için transfüzyon durdurulur ve hastaya kalçadan veya başka bir damardan antihistaminik ilaçlar verilir. 4- Pirojen Reaksiyonlar: Kan transfüzyonunun en sık rastlanan komplikasyonudur. Bu reaksiyon­lar kan içinde bulunan pirojen maddelere veya mi­nör bakteriyel kontaminasyona bağlı olabilir. Daha önce kan transfüzyonu yapılmış kişilerde ve çok do­ğurmuş kadınlarda sık rastlanır. Bu kişilerde verici yada fetüsün lökosit ve trombositlerine karşı alıcıda, önceden oluşmuş antikorlar bulunabilmesidir. Te­davide transfüzyon durdurulur ve iv. antihistami­nik ve hidrokortizon 100 mg verilir. Tedaviye anti-piretik (aspirin) ve iv. 50 mg dolantin eklenebilir. 5- Bakteriyel Sepsis: Nadir olmakla beraber orta­ya çıktığında öldürücüdür. Kan alımı sırasında veri­cinin derisinden, kanın alındığı şişe veya torba için­deki iyi sterilize edilmemiş sitrattan kontamine olan kanın transfüzyonu sonucu ortaya çıkar. Klinik belir­tiler transfüzyonun hemen başlarında ortaya çıkan titreme, ateş, abdominal kramplar, yaygın vücut ağ­rısı, kusma ve kanlı diyaredir. Sepsisten şüphelenil-diğinde transfüzyon kesilir, kan kültürü alınır. Kan kültür sonucu beklenmeden ortaya çıkan endotokse-mi hem aerob hemde anaeroblara yönelik antibiyo­tikler başlanarak septik şok tedavisine başlanır. Bu komplikasyonları önlemek için asepsi-antisepsi ku­rallarına uyarak, kan 2 saat içinde ısıtılarak kullanıl­malı ve bir daha soğutucu içine konulmamalıdır. 6- Hava Embolisi: Normal bir erişkin 200 mi ha­va içeren embolizmi tolere edebilir. Ancak daha az miktarda havanın öldürücü olabileceğini unutma­mak gerekir. Bu komplikasyon transfüzyonu hızlan­dırmak amacıyla hava deliğinden kan şişesine hava pompalanmasına bağlı ortaya çıkar. Klinik belirtiler siyanoz, öksürük, dispne, hipotansiyon, taşikardi ve senkoptur. Tedavi için hastaya başı aşağıda ayakla­rı yukarıda olmak üzere sol yan pozisyon verilir. 7- Tromboflebit: Asepsi antisepsi kurallarına uyulmadan yapılan ve uzun süren transfüzyonlar sonucu meydana gelebilir. Tedavide infüzyona son verilir ve lokal olarak kompresler uygulanır. 8- Dolaşım Yüklenmesi: Kalp hastalarında, ane­mik kişilerde, yaşlılarda ve çocuklarda kan veya di­ğer sıvıların hızlı infüzyonu dolaşım yüklenmesine yol açabilir. Bu kişilerde ve büyük miktarda sıvı ve­rilecek kişilerde santral venöz basıncın ölçülmesi, dolaşım yüklenmesi olasılığını önemli ölçüde azal­tır. Ayrıca bu durumlarda kan transfüzyonu yerine eritrosit süspansiyonu tercih edilebilir. Bu tablonun klinik belirtileri öksürük, taşikardi, solunum güçlü­ğü ve boyun venlerinde dolgunluktur. Dinlemekle akciğer bazallerinde yaş railer duyulur. Tedavide infüzyon hemen kesilir, hasta oturtulur, dijitalize edilir, iv. diüretik (furosemid) uygulanır ve gerekti­ğinde damardan 500 cc kan alınır. 9- Hastalık İletimi: Kan transfüzyonu ile bir çok hastalık alıcıya nakledilebilmektedir. En sık karşımı­za çıkanlar tablo 11/6′da özetlenmiştir. Kan trans­füzyonu ile en önemli hastalık serum hepatitidir. Tam kan transfüzyonu yapılan hastaların %1′inde, bir çok vericinin kanından hazırlanan kuru plazma verilenlerin %12′sinde serum hepatiti görüldüğü saptanmıştır. Serum hepatitinin görülme sıklığı %3-5′dir. Son yılların en güncel konusu kan transfüzyonu ile HlV’in nakli ve AİDS hastalığının ortaya çıkma­sıdır. Birçok ülkede donör kimselerde bu virusa karşı antikorların varlığı esasına dayanan testler ru­tin olarak yapılmaktadır. HIV ısıya duyarlı olduğu için ısı kullanılarak hazırlanan koagülasyon faktör­leri HIV nakline sebep olmaz. Transfüzyonla gelişe­bilecek AİDS hastalığını önlemede en etkili yöntem lüzumsuz, endikasyonsuz kan transfüzyonlarından kaçınmaktır. 10- İmmunsüpresyon: Tanımlanması güç bir komplikasyondur. Ancak son zamanlarda bir çok sayıda klinik çalışmada, kan transfüzyonunun im-mün sisteme direkt etkisi olduğu savunulmaktadır.

http://www.biyologlar.com/kan-transfuzyon-komplikasyonlari-ve-ilkeleri

HAYATIN BAŞLANGICI VE EVRİM TEORİLERİ

1. Abiyogenez (Kendiliğinden Oluşum) : Canlı cansız maddelerden kendiliğinden oluşmuştur fikrini savunur.Bu görüşü Aristo ileri sürmüştür. * Canlı , cansızdan birden bire oluşur. * Oluşan canlı , basit veya evrimleşmiş olabilir. * Canlının , cansızdan oluşması süreklidir. 2. Biyogenez (Moleküler Yaradılış) :Bir canlının yalnız kendine benzer başka bir canlıdan oluşabileceği görüşüdür. Biyogenez 1862 de Louis Pasteur ’un yaptığı deneylerle kabul edilmiştir.Günümüzde de geçerlidir. Pasteur , yaptığı bir dizi kontrollü deneyle canlı , cansızdan oluşur görüşünü yıkmıştır. Bu iki görüş ilk canlılığın nasıl başladığına yanıt aramaz. 3.Panspermia Hipotezi : Dünyadaki hayatın uzaydan yeryüzüne gelen spor ve tohumlarla başladığını öne sürer.Hayatın yani canlılığın gezegenlerde nasıl başladığını açıklayamaz. 4. Ototrof Hipotezi : Bu hipoteze göre ilk oluşan canlılar ototrofturlar.Ototroflar fotosentez , kemosentezle kendi besinini kendi yapanlardır. Yani ilk canlının kompleks yapıda olduğu savunmaktadır. Evrim teorisi , heterotrof hipotezi ile çelişir. 5.Heterotrof Hipotezi : *İlk organizmaların kendi besinini hazır olarak aldıklarını iddia eder. *Canlı , cansızdan uzun süren bir evrim sonucu oluşmuştur. *Oluşan canlı basit yapılıdır. *Canlı , cansız maddeden bir kez oluşur.Sonraki canlılar bu canlıdan ortaya çıkar. *Bu hipotez canlı oluşumunu Dünyanın oluşumunu paralel olarak izah eder. *Heterotrof hipotezi evrim teorisine dayanır. *Heterotrof hipotezi ile abiyogenez cansızdan , canlı oluşmuştur fikrini savunurlar. Hipotezin şematik izahı :İnorganik moleküller (H2O , NH3 , CH4 , H2 ) [ İlkel atmosferde varolduğu kabul edilen gazlar.] Sıcaklık ve U.V. ışınlar. Basit organik moleküller ( Aminoasitler vb. ) Sıcaklık Kompleks organik moleküller ( Protein , yağ , karbonhidrat ) Koaservat (Bir sıvı içerisinde bir arada duran protein , enzim ve benzeri maddelerden oluşan kümeler.) Nükleoprotein yapılar ve ilkel heterotrof canlı oluşur.İlk canlının oluşumunu formülleştirirsek: Basit gazlar Aminoasit Protein Koeservat Miller Fox Oparin Koeservatların Özellikleri: 1) Dış ortamdan ayıran zarları vardır. 2) Büyüme ve çoğalma yetenekleri vardır. 3) PH değişimlerine karşı dayanıksızdırlar. Ancak dayanıklı olarak evrimleşerek hayatın öncüsü olan organik molekül kümesini oluşturmuştur. 4) Brown ( titreme , sigillenme) hareketi gösterirler. 5) Hücresel zar yapma ve büyük molekülleri sentezlemek için gerekli enerjiyi organik moleküllerin bağlarındaki kimyasal enerjiden sağlar. Heteretrof hipotezini destekleyen varsayımlar. 1) İlkel atmosfer bugünkünden farklı yapıda idi . 2) İlk canlı oluşmadan önce organik moleküller oluşmuştur. 3) İlk organik moleküller ilkel atmosferdeki gazlardan yapılırlar. 4) İlkel canlı cansız maddelerin uzun süren kimyasal evrimi ile oluşur basit yapılıdır , hazır besinle beslenir , oksijensiz solunum yapar. 5) Fotosentezin evrimi ile ilkel atmosferin yapısı değişmiştir. Atmosfere oksijen girmiştir. 6) oksijenli solunum fotosentezden sonra evrimleşmiştir Hipotez iki yönden önemlidir. 1.Evrimci bir anlayışa sahiptir. 2.Miller bu konuda başarılı deneyler yapmıştır.Fakat deneyde kullanılan gazların ilk atmosferde varolduğunun ispatlanması söz konusu değildir.Uzun sürede oluştuğu belirtilen maddelerin , Miller deneyinde bir hafta gibi kısa bir zamanda oluşturulması bu hipoteze karşı tenkitlere yol açmıştır. Evrim Teorisi: Evrim , canlı ve cansızların uzun bir süreç içinde geçirdiği ve geçirmekte olduğu değişiklikleri açıklar.İlkeler : 1.Bütün canlılar aynı kökenden evrimleşmiştir. 2.canlılar arasında hem ortak , hem farklı özellikler bulunur. 3.Canlılar arasında devamlı varyasyonlar (değişim,farklılık) meydana gelir. 4.Tür sayısı devamlı artar , sabit değildir. 5.Günümüzde de canlılar arası değişiklikler ve tür oluşumu sürmektedir. Kimyasal evrim: CH4 U.V.ışınlar-Şimşek-Yıldırım A.asit Protein NH2 Yağmur - Isı Yağ asitleri Karbonhidrat H2 Gliserin Yağ Koaservat H2O (O2 yok) Monosakkaritler Vitamin Nucleotidler Nucleik asitler Biyolojik evrim: Koaservat Heterotrof Ototrof (O2 siz solunum) (Klorofil gelişti) (Madde ve O2 sentezlendi) (O2 li solunum başladı)Lamark’ın Evrim Görüşü: 1-Kullanma – Kullanmama:Vücudun kullanılan organları gelişir.Kullanılmayanlar ise körelir. 2-Kazanılan özelliklerin Kalıtımı:Kullanma veya kullanmama ile kazanılan özellikler yeni nesillere aktarılır. Eleştirisi: *-Kullanılan karakterler gelişir *-Kazanılan karakterler sadece bireye özgüdür *-Kazanılan karakterler kalıtsal değildir *-Kazanılan karakterler kalıtsal sınırlar içindedir *-Kazanılan karakterler modifikasyondur Modifikasyon:Çevresel faktörlerin etkisi ile genlerin işleyişinin değişmesi ile oluşan ve kalıtsal olmayan değişmelerdir Darvin’in Evrim Görüşü: 1-Canlılar geometrik dizi olarak artış gösterir 2-Populasyonlardaki birey sayısı belli sınırlar içinde kalır 3-Aynı tür bireyleri arasında kalıtsal çeşitlilik(varyasyonlar) vardır A)Çevresel varyasyonlar: Modifikasyon B)Kalıtsal varyasyonlar: Kalıtsal varyasyonlar üç temel şekilde ortaya çıkar: *-Üreme hücrelerindeki mutasyon *-Üreme hücrelerinde görülen krossing-over ve homolog kromozomların dağılımı*-Döllenmenin şansa bağlılığı4-Canlılar arasında çevresel koşullar için yaşam kavgası vardır 5-Çevreye uyum (Adaptasyon) sağlayanlar hayatta kalır ve üreyerek yeni nesillerinde kendi özelliklerini taşımalarına neden olurlar. Uyum sağlayamayanlar ise elenerek (Doğal seleksiyon) taşıdıkları türe özgü zayıf kalıtsal özelliklerininde ortadan kalkmasına neden olurlar. 6-Farklı çevrelerde farklı şekillerde adaptasyon yetenekleri kazanan bireyler yeni türlere dönüşürler Darvin’in evrim teorisinin dayandığı görüşler: 1) Bütün organizmalar geometrik bir oranda artıma eğilimlidir. 2) Bir türün her dölündeki birey sayısı hemen hemen değişmez. 3) O halde yaşamak için bir mücadele olmalıdır. 4) Her türün bireyleri arasında değişiklikler ( kalıtsal olabilir ) vardır. 5) Bazı değişiklikler özel bir çevredeki organizmaların çevreye uyumlarını ve sayıca çoğalma şanslarını arttırır. Yaşayan organizmalar kalıtsal değişikliklerini oğul döllere geçirirler. 6) Zamanla büyük farklar meydana gelerek eski türlerden yeni türler ortaya çıkar. Evrim olayının özeti : Mutasyon Kalıtsal varyasyon Doğal seleksiyon Adaptasyon Evrim Eşeyli üreme Adaptasyon:Canlıların üreme , yaşama şanslarını artıran ortama uyum sağlayan özelliklerinin tümüdür. Not:Adaptasyonlar kazanılmış kalıtsal özelliklerinin çevresel koşulların değişmesi ile ortaya çıkar Mutasyon:Canlının üreme hücrelerindeki genlerde gerçekleşen ve kalıtsal olan değişmelerdir. Sonuç: *-Evrimin ham maddesi kalıtsal varyasyonlardır *-Evrimin mekanizması doğal seleksiyondur *-Doğal seleksiyonlar sonunda adaptasyonlar ortaya çıkar Evrimin gelişim zinciri 1-Üreme hücrelerinde 2-Mayoz 3-Döllenme mutasyon bölünme Varyasyonlar Doğal seleksiyon Adaptasyon Evrim Populasyon Dengesini Bozan Etmenler Hardy-weinberg prensibi populasyon dengede kaldığı sü4rece geçerlidir.fakat populasyon daki genlerin frekansı uzun süre dengede kalamaz.Genlerin frekansının değişmesine mutasyon , seleksiyon , göçler , izolasyon ve rasgele olmayan evlilikler neden olur. 1- Göçler : Göç komşu iki populasyon arasındaki gen akışı olarak tanımlanabilir. 2- İzolasyon ( Ayrılma – Tecrit) : Büyük populasyon lar çeşitli nedenlerle (dağ , deniz, ve çöl oluşumu ile veya kıtaların kayması ile) küçük populasyon lara bölünebilirler. 3- Mutasyon : Mutasyonlar genetik farklılık meydana getirmelerinden dolayı populasyon larda gen frekanslarının değişmesine yol açan en önemli faktörlerin başında gelir. 4- Doğal seleksiyon (Seçilim) : çeşitlilik gösteren bir populasyon da , belli özellikler yönüyle üstün ve zayıf olan fertler bulunur. Doğal seleksiyon zayıf olanları ortadan kaldırır. 5- Genetik sürüklenme : Doğal şartlarda yaşayan , özellikle küçük populasyon larda nesilden nesile veya yıldan yıla gen ve birey oranlarının yapay bir etki olmadan rasgele değişmesine genetik sürüklenme denir. 6- Eş seçimi : Bireylerin çiftleşmek için birbirlerini rasgele seçmeleri yerine özel niteliklerine göre seçmeleri zamanla farklı özelliklerin çıkmasına neden olur. Kalıtsal Materyalin Değişmesi- Tüm canlılarda ortak olan özellikler.- Canlıyı diğer türlerden ayıran türe özgü özelikler.- Canlıyı türün diğer bireylerinden ayıran bireysel özellikler olmak üzere üç grupta toplanabilir. Bu özelliklerin oluşması ve yeni döllere taşınması DNA ların üzerinde bulunan genlerle olur. Normalde DNA lar kendilerini hatasız eşler. Genler ve kalıtsal bilgi değişmez. Ancak bazı durumlarda yanlışlıklar olabilir. Bunlar :- DNA ya fazladan bir yada birkaç nükleotid çifti eklenebilir.- DNA dan bazı nükleotid çiftleri kopup ayrılabilir.- DNA molekülündeki baz çiftleri karşılıklı yer değiştirebilir. Örneğin A-T çifti T-A çiftine dönüşebilir.- Bir nükleotidin karşısına kendi eşi olmayan başka bir nükleotid bağlanabilir.. Örneğin sitozin nükleotidin karşısına guanin nükleotid bağlanması gerekirken timin yada adenin nükleotid bağlanabilir.- Kromozomlardan parça kopabilir yada kromozomlara parça eklenebilir. Canlıların genetik bilgilerindeki kalıcı olan bu tip değişmelere mutasyon (değişim) denir. Mutasyonlar sonunda canlıda ortaya çıkacak değişmeleri 2 grupta inceleyebiliriz. 1- Canlıların bazı özellikleri yerine yeni özellikler oluşabilir. 2- Mutasyon, canlıların belirli bir çevrede yaşama ve üreme şansını arttıran özellikler kazandırabilir. Bunun tersine canlıların yaşama ve üreme şansını ortadan kaldırabilir. Not:Bazen bir gen farklı mutasyonlara uğrayarak çok sayıda alel meydana getirebilir. Örneğin kedilerde kıl renginin çeşitli olmasını sağlayan çok sayıda aleller mutasyonla oluşmuştur.evrim nedir,evrim darwin,liberalizm,doğal seleksiyon,biyoloji,mutasyon,darwin insan nedir,insan resimleri,insan hakları,insan vücudu,insan yayınları,hayvan Canlıların çok farklı özelliklere sahip olmasının yani genetik çeşitliliğin nedeni bir canlıda çok sayıda geninin bulunmasıdır. Bir gendeki mutasyon olasılığının düşük olmasına karşın bir canlıda çok sayıda gen bulunduğundan canlıdaki toplam mutasyon olasılığı artar.

http://www.biyologlar.com/hayatin-baslangici-ve-evrim-teorileri

Mutasyon Nedir ? Tarihçesi

Mutasyon ya da değişinim, bir canlının genomu içindeki DNA ya da RNA diziliminde meydana gelen kalıcı değişmelerdir. Mutasyona sahip bir organizma ise mutant olarak adlandırılır.Mutasyonlar, genel olarak germ hattı mutasyonları ve somatik mutasyonlar olmak üzere ikiye ayrılır. Doku hücreleri içinde gerçekleşen bir mutasyon, kalıtsal olamayacağı için kuşaktan kuşağa aktarılmaz. Bedensel (somatik) mutasyonlar bu anlamda kalıtsal değildir. Eşey (üreme) hücresi mutasyonları, diğer ismiyle germ hattı mutasyonları ise kalıtsaldır ve bir sonraki nesillere aktarılır.Bireyin,kalıtsal özelliklerinin ortaya çıkmasını sağlayan genetik şifre, herhangi bir nedenden dolayı (DNA onarımı, mayoz bölünme veya DNA replikasyonu sırasında meydana gelen hatalar, transpozonlar, virüsler, X ışını, radyasyon, ultraviyole, bazı ilaç ve mutajen kimyasallar, ani sıcaklık değişimleri vb. etkenlerle) bozulabilir. Bunun yanında hipermutasyon gibi hücresel süreçlerde organizmanın kendisi tarafından da tetiklenebilir. Bu durumda DNA’nın sentezlediği protein veya enzim bozulur. Böylece canlının, proteinden dolayı yapısı, enzimlerinden dolayı metabolizması değişebilir. Mutasyon ters evrimin temelini oluşturur.Mutasyonlar, kalıtsal materyalin normal kombinasyonunu değiştirmeyen, kalıtsal yapıda meydana gelen bütün değişikliklerdir. Mutasyon terimi genel olarak,    Kromozom yapısının değişmesini,    Kromozom sayısının değişmesini,    Genlerdeki değişiklikleri kapsar.Bu anlamda mutasyonlar, sitogenetikte, değişimlerin kapsamlarına göre, Genom mutasyonu, Kromozom mutasyonu ve Gen mutasyonu olarak adlandırılıp üçe ayrılırlar. Genom mutasyonları kromozom sayısındaki değişmeler olup kromozom mutasyonları ise ışık mikroskobu altında incelenebilen ve kromozomun iç yapısında oluşan değişimlerdir. Gen mutasyonları ise ışık mikroskobu altında görünmeyen ve tek bir geni kapsayan mutasyonlardır.Mutasyonlar, dizilimlerde farklı türde değişimlere yol açabilirler; Bu anlamda bir mutasyon, canlı organizmanın fenotipik özelliklerinde negatif veya pozitif etkilere sahip olabileceği gibi nötr mutasyonlar hiçbir etkiye sahip olmayabilirler (durağan veya sessiz mutasyonlar). Bu tür değişimler, bir gen ürünün değişmesinde veya genin doğru ya da tamamen işlemesini engellemede herhangi bir etkileri olmayabilir. Drosophila melanogaster sineği üzerinde yapılan çalışmalar, gen tarafından oluşturulan bir proteinin mutasyonunda, bu mutasyonun yaklaşık %70'inin zararlı etkilere sahip olduğunu, geri kalanının ise ya nötr ya da zayıf faydalı etki gösterdiğini ortaya koymaktadır. Mutasyonların genler üzerindeki zararlı etkileri nedeniyle, organizmalar mutasyonları gidermek için DNA onarımı gibi mekanizmalara sahiptir.Genetik materyal olarak RNA kullanan virüsler, sürekli ve hızlı bir şekilde çoğalıp geliştikleri için onlara avantaj sağlayan hızlı mutasyon oranlarına sahiptir, ve bu şekilde insan bağışıklık sistemi gibi savunma mekanizmalarını atlatabilir ve reaksiyonlardan kaçabilirler.TarihçesiTarihsel olarak "mutasyon" terimi ilk kez 1901 yılında Hugo de Vries tarafından akşamsefası bitkisiyle yaptığı çaprazlamalarda gözlemlediği varyasyonu tanımlamak için kullanılmıştır. Varyasyonların çoğu çoklu translokasyonlar nedeniyle oluşmuştur. Daha sonra iki vakanın, DNA'nın kimyasal kompozisyonunda gerçek değişiklikler olan gen mutasyonları sonucunda olduğu gösterilmiştir. Mutasyon çalışmaları ilerledikçe, meydana gelen değişikliklerin nötr, yararlı ya da zararlı olduğu, evrim süreciyle test edilerek anlaşılır..Mutasyon çeşitleriMutasyon türleriMutasyonlar genetik çalışmaların temelini oluştururlar. Mutasyonun en önemli sonuçlarından biri, bir sonraki kuşağa farklı genetik özellikler aktarılmasına neden olmasıdır. Bu ise, farklı fiziksel özelliklere sahip bireylerin meydana gelmesidir.Bu değişimler sonucu ortaya çıkarılan fenotipik çeşitlilik, genetikçilerin değişikliğe uğramış olan özelliği kontrol eden genleri çalışmalarına olanak sağlar. Genetik araştırmalarda mutasyonlar, nesilden nesile geçişlerde takip edilebilen, "marker"lar olarak kullanılırlar. Tarihte mutasyonların sunduğu fenotipik çeşitlilik olmasaydı, örneğin Mendel'in araştırmalarını yaptığı bezelye bitkisinin fenotipi tek olsaydı, bu deneyler hiçbir zaman sonuç bulamayacaktı.Bazı canlıların kısa olan hayatlarından yararlanılarak, kolayca tanınabilecek ve çalışılabilecek mutasyonlar bu canlılarda elde edilirler. Mutasyon ve mutagenez çalışmalarında özellikle virüsler, bakteriler, mantarlar, meyve sinekleri, bazı bitkiler ve fareler kullanılmaktadır. Bu canlılar, genetik hakkında bilgilerin elde edilmesinde çok yararlı olmuşlardır.Kromozom yapısının değişmesiMayoz bölünmenin ilk evrelerinde crossing-over ile kromozomlardan kopan parçalar yer değiştirip tekrar kromozomlara bağlanabilirler. Crossing-over, homolog kromatitler arasındaki alışılagelmiş parça değişimidir; ancak genlerin rekombinasyonlarına neden olur; fakat kromozomlarda yapı değişikliklerine neden olmaz. Bazen kromatitler, crossing-over olmadan parça değişimine, yitirilmesine ya da kazanılmasına neden olur.Kromozom sayısının değişmesiKromozomlar mitoz ve mayoz bölünme sırasında bazen düzenli olarak ayrılmazlar. Sonuçta kromozom sayısı bakımından farklı hücreler meydana gelir ve kalıtsal açıdan bazı sorunlar oluşturur. Birçok bitki doğadaki diploit kökenli diğer bitkilerden türemiştir. Aynı gen lokusunda meydana gelecek öldürücü bir mutasyon, bu şekilde, diğer normal genleri taşıyan poliploit kromozomlar tarafından korunabilir. Başlangıçta öldürücü ya da engelleyici görünen bu genler bir zaman sonra canlının ayakta kalmasını sağlamak bakımından önemli bir duruma geçebilir. Bu tip bitkiler belli bir süre sonra kısır olarak kalırlar ve çelikleme ya da yumru ile çoğaltılırlar. Hayvanlar, vücutlarının belli bir parçasından üretilemedikleri için, triploidi ve tetraploidi bunlarda bir önem arz etmez. İnsanlardaki kromozom sayısı değişimleri;    Down sendromu,    Edward sendromu,    Patau sendromu,    Cri du Chat sendromu,    Kronik miyelojenik lösemi gibi hastalıklara neden olur ve bu insanlarada değiştirilemeyen sorunlara neden olarak kalırlar.Gen (Nokta) mutasyonları    Ana madde: Nokta mutasyonKromozomların yapısında ya da sayısında herhangi bir değişiklik olmadan, doğal ya da deneysel olarak meydana gelen ve mikroskopta görülmeyen mutasyonlardır. Mutasyonu meydana getiren aracılara "mutajenik faktör" denir. Mutasyona uğramış bir gen nadir olarak eski haline dönebilir.Gen mutasyonları, hücredeki kalıtsal bilgiyi taşıyan, çift nükleotid zincirinden oluşan, DNA (deoksiribonükleikasit) molekülündeki gen denilen ve belirli bir özelliği kodlayan bölümündeki değişiklikten kaynaklanır. Mutasyonlar, bir DNA zincirindeki bazın (A, T, G, C) başka bir bazla yer değiştirmesi sonucunda ortaya çıkabileceği gibi, zincire bir ya da daha çok bazın eklenmesi veya zincirdeki bazların eksilmesi sonucunda da ortaya çıkabilir.Mutasyonların türlerine göre ayrımıKalıtıma göre ayrımGerm hattı mutasyonları     Yumurta veya sperm ya da bunların öncüleri ile ilişkili olan ve germ hattı üzerinden gelecek nesillere aktarılan mutasyonlardır. Bu mutasyonlar bir nesilden gelecek nesile aktarıldıklarından evrim için önemlidir. Genellikle germ hattı mutasyonları, onların yer aldığı organizmalar üzerinde doğrudan etkilere sahip olmazlar.Somatik mutasyonlar     Üreme hücrelerin dışındaki diğer somatik hücrelerde meydana gelen mutasyonlardır. Ortaya çıktığı organizmalar üzerinde etkilere sahip olmakla birlikte bunlar gelecek nesile aktarılmazlar. Bu şekilde normal hücreler kontrolsüz çoğalan kanser hücrelerine dönüşürler. Bunun yanında somatik mutasyonlar bir organizmanın yaşlanma sürecinde de rol oynadıklarından tıp için önem taşırlar.Nedenlerine göre ayrımKendiliğinden mutasyonlar     dış etkenler olmadan meydana gelen mutasyonlardır. Bu anlamda bir nükleotitin kimyasal bozulumu (örneğin sitozinin oksidatif deaminasyonu sonucu kendiliğinden urasil meydana gelmesi) veya tünel etkisi (DNA'daki proton tünelleri) gibi nedenler kendiliğinden meydana gelen mutasyonlara yol açabilirler.Uyarılmış mutasyonlar     mutajenler (mutasyona neden olan maddeler ya da radyasyon) tarafından oluşturulan mutasyonlardır.Mekanizmalarına göre ayrımDNA replikasyonundaki hatalar     DNA polimerazları farklı hata oranlarına sahiptir.Yetersiz bilgi okuma ve düzeltme etkinliği     Bazı DNA polimerazları hatalı yapıları bağımsız olarak tanıma ve düzeltme olanaklarına sahiptir. Ancak, ökaryotlardaki A ailesi DNA polimerazları okuma ve düzeltme etkinliğine sahip değildirler.Pre- ve postreplikatif onarım hataları     Mesela urasil gibi olağan dışı bir nükleotit DNA'ya gelip yerleştiğinde çıkartılarak uzaklaştırılır. Onarımdan sorumlu enzimler, iki tipik DNA nükleotiti arasında oluşan olası bir hatalı eşleşmede ise yüzde 50 oranında bir hata olasılığıyla ikisi arasında bir karar vermek zorunda kalırlar.Dengesiz Krosover     Bir DNA dizisi üzerinde birbirlerinin yakınlarında yer alan satelit DNA veya transpozonlar gibi benzer veya özdeş sekansların mayoz bölünme sırasında hatalı çiftleşmesi sonucu oluşan bir mutasyon türüdür.Hücre bölünmesi sırasında eş kromozomların bölünmemesi     kromozomların yanlış dağılımına ve aynı zamanda böylece trizomi ve monozomi oluşumuna yol açar.Transpozonların veya retrovirüslerin bütünleşmesi ya da dışarı çıkması     Bu öğeler genlere veya gen düzenleyici bölgelere entegre olup onlarla bütünleşirler.Değişimlerin boyutuna göre ayrımGen mutasyonu    Sadece bir geni etkileyen kalıtımsal değişimlerdir. Nokta mutasyonları ve çerçeve kayması mutasyonları buna örnektir. Nokta mutasyonunda sadece bir organik baz mutasyona uğrar. Çerçeve kayması mutasyonu, tek bir bazın insersiyonu (eklenmesi)veya delesyonu (silinmesi) olup genetik kod içinde var olan üçlü şifreleme nedeniyle bir genin tüm yapısını değiştirir ve bu nedenle genelde çok daha büyük etkilere sahiptir. Gen mutasyonun başka bir olası sonucu alternatif bağlamadır. Uzun dizilerin delesyonu (silinmesi) ve kromozomların belirli bölümlerinin iki veya daha fazla bir kata çıktığı gen duplikasyonları da bahsedilen Gen mutasyonlarına dahildir.Kromozomal veya yapısal Kromozom anomalileri     Tek bir kromozomun yapısında oluşan kalıtımsal değişimlerdir. Bu durumda kromozomun sadece ışık mikroskobunda görünebilir olan bölümleri değişime uğrar. Bu şekilde, kromozom parçaları kaybolabilir veya başka bir kromozomun parçaları eklenebilir. Buna bir örnek Kromozom 5'in kaybolduğu kedi miyavlaması sendromudur (veya tıptaki adıyla Cri du chat sendromu). Bu şekilde birçok gen eksik kalarak fenotipte hasarlara ve büyük değişimlere yol açar.Genom mutasyonları veya sayısal kromozom anomallileri     Tüm kromozomların veya kromozom kümelerinin çoğalarak artış gösterdiği (anöplodi ve poliploidi) veya aksine kaybolduğu değişimlerdir. İnsanlarda bilinen örneği Down sendromudur. Down sendromunda insanın kromozom 21 çiftinde fazladan bir kromozom bulunur.Organizma üzerindeki etkilerine göre ayrımLetal (öldürücü) mutasyonlar     Bir organizmada görüldükten sonra yaşamının hangi evresinde bulunursa bulunsun, bundan bağımsız olarak o canlıyı her durumda öldüren mutasyonlardır.Koşullu öldürücü mutasyonlar     Gen ürününde yol açtıkları değişimin canlı organizmayı sadece belirli yetişme koşullarında öldüren mutasyonlardır.Fonksiyon kaybedici mutasyonlar (Loss-of-function-mutation )     Burada gen ürünü, gendeki bir mutasyon tarafından işlevsiz hale getirilir. Bu durum da bir genin mutasyona uğradıktan sonra artık işe yaramamasına ve herhangi bir şeyi kodlayamamasına yol açar. Eğer gen ürünü işlev ve fonksiyonlarını tamamıyla kaybetmişse buna null alel veya amorf alel denir. Eğer yaban tipi fonksiyonlarından bir bölümünü muhafaza edebilmişse buna hipomorfik alel denir. Hipomorfik mutasyon, herhangi bir genin ifadelenmesini (transkripsiyon) azaltan ancak tamamen durdurmayan mutasyonlardır.        Fonksiyon kaybedici mutasyonlar, bir genin fonksiyon kaybı başka bir alel tarafından da telafi edilebileceğinden genellikle çekinik olup resesiftir.Fonksiyon kazandırıcı mutasyonlar (Gain-of-Function-mutation)     Herhangi bir genin transkripsiyonunu artıran bir mutasyon türüdür. Burada gen etkinlik ve hareketlilik kazanır ve bu gen hipermorf olarak adlandırılır. Eğer mutasyon tamamen yeni bir fenotip oluşturursa bu durumda bu alel de hipermorf denir.        Fonksiyon kazandırıcı mutasyonlar fark edilir bir fenotip oluşturuyorsa bu mutasyonlar "baskın" olarak tanımlanır. Eğer fonksiyon kazandırıcı alel bir fenotipi sadece homozigot durumda ortaya çıkarıyorsa buna da resesif fonksiyon kazandırıcı mutasyon denir.Nötr mutasyonlar     Bu tür mutasyonlar fenotiplerde değişimlere yol açsalar da biyolojik uyumluluk üzerinde herhangi bir etkileri yoktur.Durgun veya sessiz mutasyonlar     Organizmalar üzerinde hiçbir etkisi olmayan mutasyonlardır.Nedenleri ve etkileriMutasyonlar birkaç sebepten dolayı meydana gelebilir.1) DNA'nın kendini doğru olarak kopyalayamaması: Hücre bölünürken, DNA'sının bir kopyasını çıkarır - ve bazen bu kopyalar birebir olmaz. Orijinal DNA diziliminde meydana gelen bu farklılık bir mutasyondır. Doğal sebeplerden ötürü gerçekleşir.2) Dış etkiler mutasyona sebep olabilir: Mutasyonlar ayrıca belirli kimyasallara ya da radyasyona maruz kalındığında gerçekleşebilir. Bunlar DNA'da bozulmaya sebep olur. Doğal olmayan yollarla gerçekleşmesi zorunlu değildir - en izole ve bozulmamış çevrelerde bile, DNA bozulur. Bu durumda, hücre DNA'yı onarırken, her zaman mükemmel şekilde gerçekleştiremez. Böylece, hücre orijinalinden farklı bir DNA ile son bulur; sonuç olarak, bir mutasyondur.Mutasyonlar; genellikle DNA'nın kopyalanması ya da onarımı sırasındaki hatalarla ortaya çıkar. Genetik çeşitliliğin ana kaynağıdır.Mutasyonlar; yararlı, etkisiz ya da zararlı olabilir. DNA'daki bir değişiklik oraganizmanın herhangi bir özelliğinde değişime sebep olabilir.Mutasyonun gözlenebilen bir etki olmadan ortaya çıkması çok az gözlenen bir olgudur. Daha çok çevreden gelen kimyasal ya da fiziksel etkiler nedeniyle olur. Bir dış etkinin mutasyona yol açabilmesi (mutajen olması) için hücre içine girip etkinliğini gösterebilmesi gerekir. Örneğin Güneş’in morötesi ışınları, girim gücü düşük olduğu için yalnızca deri hücrelerinde somatik mutasyona yol açabilirken, girim gücü yüksek olan X ışınları ya da atom bombası ışımaları, tohumsal mutasyona yani nesilden nesile aktarılabilen mutasyona yol açabilen çok güçlü etkenlerdir. Bu tür mutasyonların birçok örneği yakın zamanda Çernobil patlaması sonucunda çevredeki birçok canlı türünde gözlenmiştir. Günümüzde bile bu patlama sonrası etrafa saçılan radyoaktif maddelerin neden olduğu somatik mutasyonların görünür sonuçları vardır. Halen Rusya ve Karadeniz Bölgesi’ndeki kanser oranları çok yüksektir.Mutasyonun diğer bir sonucu da hücre bölünmesindeki kontrol mekanizmasını ortadan kaldırabilmesidir. Bunun bilinen en tehlikeli sonucu ise hücrenin kontrolsüz bölünmesi yani kanserdir.

http://www.biyologlar.com/mutasyon-nedir-tarihcesi

Eosin - Eozin Boyasının Hazırlanışı

Eozin: Eosine-Y ve Eosine-B formunda bulunur. Ancak Eosine-Y (Yellowish, Acid Red 87) daha fazla tercih edilir. Kullanıcak kimyasallar: Eosine-Y (Yellowish) %95’lik etil alkol %80’lik etil alkol Glacial acetic acid Distile su 1.0 gram Eosine-Y (Yellowish), 20.0 ml distile su içerisinde iyice homojenize olana kadar eritilir. Karışıma, 80.0 ml %95’lik etil alkol eklenir. Bu Stock Eozin’dir. 1 kısım Stock eozin üzerine 3 kısım %80’lik etil alkol eklenirse Working Eozin (boyama işleminde kullanılacak) oluşur. Working eozin üzerine 5 ml Glasiel asetik asit eklenebilir. Eozin katrandan elde edilen turuncu-pembe renkli bir boyadır. Eozin boyasının mikroskopik incelemelerde en yaygın kullanım alanı, nötral boyaların yapısında yer almasıdır. En tanınmış nötral boyalar tiyazin ve ksanten grubunda yer alan boyar maddelerin karışımlarından oluşmaktadır. Ksanten-tiyazin grubu boyaların en çok bilinenleri ve Türkiye'de kullanılanları, Giemsa, May Grünwald, Wright, MacNeal, Jenner ve Leishman boyalarıdır. Bu boyalar, asidik-bazik, mavi-kırmızı komponentleri bünyelerinde muhafaza ederler. Dolayısıyla boyama metodundaki etap sayısı düşer. Mikroskopide birden fazla etabı olan boyama prosedürlerinde de kullanılır. En çok kullanıldığı çok etaplı boyama metodları, tiyazin-ksanten hızlı boyamaları, Papanicolaou boyamaları ve hematoksilin-eozin boyamalarıdır. Çok etaplı tiyazin-ksanten boyamalarında eozin boyası, tiyazin boyalarıyla birlikte bulunmaz. Ayrı bir çözelti şeklindedir. Türkiye'de son yıllardaki kullanımı çok yaygınlaşmaktadır. En tanınmışları Field ve Diffquick modifikasyonlarıdır. Türkiye'de eozin boyasının en çok kullanıldığı çok etaplı boyama metodlarından biri Papanicolaou boyama metodudur. Bu metodun etaplarından birinde kullanılan EA boya çözeltilerinde (EA-36, EA-50, EA-65 vb.) diğer boyar maddelerle birlikte bulunur. Hematoksilin eozin boyama metodu, hayvan (insan dahil) doku kesitlerinin incelenmesinde Türkiye'deki histopatoloji uzmanları tarafından çok kullanılmaktadır. Hücre sitoplazması, kollajen ve kas liflerini boyamak için genellikle hücre çekirdeğini boyayan hematoksilin ile birlikte kullanılır. Hematoksilinin de kullanıldığı ikili boyamaya hematoksilin ve eosin boyaması adı verilir. Bu boyamanın amacı, normalde şeffaf olan hücreleri mikroskop altında görüntüleyip dokuların yapısını inceleyebilmektir. H ve E boyaması ile boyanmış dokularda stoplazma pembe-turuncu, hücre çekirdeği ise koyu mavi-mor görünür. Eosin aynı zamanda eritrositleri koyu kırmızıya boyar. Eosin, hücrenin bazik bölümlerin, boyayan asidik bir boyadır. Bunun tersine hematoksilin, hücrenin asidik bölümlerini boyayan bazik bir boyadır. Örneğin nükleik asitlerin (DNA ve RNA) yoğun şekilde bulundukları hücre çekirdeği gibi. Eosin ile boyanan yapılara "eosinofilik" denir. Aslında eosin adı, birbirine benzer iki farklı maddeye verilmiştir. Bu maddelerden daha yaygın şekilde kullanılan eosin Y (aynı zamanda eosin Y ws, sarımtrak eosin, Asit Kırmızı 87, C.I. 45380, bromoeosine, bromofluoreseik asit, D&C Red No. 22 isimleriyle de anılır), boyadığı yapılara biraz daha sarı bir renk verir. Diğer eosin, yani eosin B (mavimtrak eosin, Asit Kırmızı 91, C.I. 45400, Safrozin, Eosin Scarlet ya da imparatorluk kırmızısı) ise çok hafif bir maviliğe sahiptir. Her iki boya da birbirinin yerine kullanılabilir ve belli bir deney için bunlardan birinin seçimi tamamen kişinin tercihine kalmıştır. Eosin Y floresinin tetrabromo türevidir. Eosin B ise floresinin dibromo dinitro türevidir.

http://www.biyologlar.com/eosin-eozin-boyasinin-hazirlanisi

Deniz ürünlerindeki ağır metaller ve insan sağlığına etkisi

AĞIR METALLERİN SUDAKİ TOKSİK ETKİLERİ     Elementlerin Fonksiyonları Kültür suyunun iyonik yapısı su hayvanlarının metabolizma prosesleri üzerinde hayati bir rol oynar.Elementlerin elektrokimyasal, katalitik Ve yapısal olmak üzere üç fonksiyonu vardır. Elementler,metabolik enerji kaynağı olarak kullanıldıklarında, elektrokimyasal olarak rol oynarlar. Bütün temelelementler enzim aktivatörleri olarak davranırlar ve biyokimyasal reaksiyonları ayarlamaya yardımederler, işte o zaman katalitik olarak rol oynarlar. Protein ve aminoasitler gibi maddelerin sentezindepek çok element gereklidir. Bu ise elementlerin yapısal fonksiyonudur ve element son ürününvazgeçilmez bileşenidir.Bilinen elementlerin çoğu tabii sularda bulunurlar. Pek çoğunun ölçülebilir etkileri yoktur vemuhtemelen çok önemli değildirler. Verilen bir X elementinin sudaki canlılar için önemi şu faktörlere bağlıdır:  a) Eğer X elementi yoksa organizma büyüyemez ya da hayat çevrimi-ni tamamlayamaz. b ) Başka bir element X in yerini alamaz , c) X organizmanın metabolik fonksiyonlarını direkt olarak etkiler  Elementler hayvanlara iki mekanizma ile girer: basit difüzyon ve aktif olarak alma.Difüzyon olayında bir iyon sudaki yüksek konsantrasyonlu bölgeden hareket ederek daha seyreltikolan hücre sıvısına geçer.Aktif olarak alınmada ise, organizmada bir elementin konsantrasyonu düşünce o element sudanseçimli olarak ekstrakte edilir. Bu olay, temperatüre sıkı sıkıya bağlıdır ve 10 °C lik bir sıcaklık artışıabsorpsiyonu %100 azaltır. Aktif olarak alma, mevcut oksijene de bağlıdır. Solunma engellendiğindeortadan iyonlar aktif olarak alınır.  Elementlerin Toksik Etkileri  Pek azı dışında, saf tuz çözeltileri su hayvanları için toksikür. Deniz suyundaki elementler, ancakiyonlar arası rekabetin tek bir iyonun zehirli etkisini ortadan kaldırdığı dengeli kombinasyonlardabesleyici ve hayatı devam ettirici özelliktedirler. Çok değerli iyonlar iki veya tek değerli iyonlardandaha kolay alınırlar. Bu hem katyon hem de anyonlar için gerçektir.Bir hücre içindeki adsorpsiyon rekabeti aynı özellikteki iyonlar arasında görülür.Örneğin gerçek bir rekabet K ve Rb, Ca2 ve Sr 2 gibi iyonlarda görülür. Bu gibi durumlardaortamdaki bir iyonun fazlalığı diğer iyonun alınmasını azaltır.  Ağır Metallerin Toksik Etkileri  Pb, Hg, Cu, Zn gibi ağır metaller suda çok az miktarlarda bulunurlar. Bunların hepsi su hayvanlarıiçin toksiktir. Çoğu 1 ppm sınırında öldürücüdür.Çinko normal miktarlarda bazı enzimatik fonksiyonlar için gereklidir ve birçok proteinlerde yapıelementi olarak bulunur. Bakır bazı enzimlerde bulunur ve pek çok omurgasızın kan proteinindesolunum pigmenti halinde mevcuttur.Çinko ve bakır özellikle deniz balıklarındaki protozonlardan meydana gelen hastalıkların tedavisindekullanılır. Burada metalin toksik etkileri bir süre sonra CaCO3 ile çökelmeyle giderilir. Çinko ve bakır balıklarda aşırı salgılanmaya neden olur ve balıklara zararlı olan bazı organizmaları öldürürler.Kelatlaşma bakırın balıklara karşı zehirliliğini azaltır. Örneğin sitrik asitle kelatlaşan CuS04 daha aztoksiktir. pH = 6-8.5 arasında kelatlaş-ma bakırın %90 ının suda çözülmüş kalmasını sağlar.Kelatlaşmış bakır, bakırın uzun süre çözülmüş miktarlarda kalması istendiğinde denizde uygulanır.Fakat birçok bakteriler, hastalıktan koruyucu düzeylerde bakıra direnç gösterdiklerinden organikkelatları tedricen bozundururlar. Böylece Cu+2 iyonları karbonat iyonlarıyla birleşerek çöker.Balıklarda görülen ağır metal zehirlenmelerinde bakır, solungaç yüzeylerinde çözünmeyenorganometalik bileşikler oluşturur. Başka bir görüşe göre solungaçlar içindeki proteinler kimyasalbozunmaya uğrar. Ayrıca bakırın, deniz balıklarının kan ve dokularında toplandığı gözlenmiştir.Pb(NO3)2, ZnSO4ve HgCl2 çözeltilerine konmuş bazı tatlı su balıklarında soluma hızının arttığıgörülmüştür. Bu esnada oksijen harcama hızında düşme olur. Artan soluma hızı bakırla muameleedilmiş sulardaki balıklarda gözlenir.Ağır metaller solungaç üzerine çökerler ve salgıyı pıhtılaştırırlar. Böylece Oksijen alınma zorlaşır.  Metal Zehirlenmesine Etki Eden Faktörler  Ağır metallerin toksisitesi pH, çözünmüş oksijen, temperatür, balığın büyüklüğüne oranla çözeltininhacmi, çözeltinin yenilenme frekansı, çözeltideki diğer maddeler ve sinerjetik etki gibi faktörlerebağlıdır.  Ağır Metallerin İnsan Sağlığına Etkileri  Ağır Metallerin İnsan Vücuduna Zararları - Metallerin İnsan Vücuduna Katkıları Nelerdir - Ağır Metallerin İnsan Vücuduna Etkileri Nelerdir KURSUN AGIRMETALİNİN Sağlık Üzerine Etkileri: Kurşun, organizmaya genel olarak hava yoluyla (solunarak), daha az olarak de sindirim yoluyla (su ve gıdalar aracılığıyla) alınır. Cilt yoluyla emilim sınırlıdır. Solunum yoluyla alınan kurşun akciğerlerden, sindirim yoluyla alınan kurşun mide sıvısında çözülerek ve mideden emilerek, cilt yoluyla emilen kurşun ise ciltaltı damarlar aracılığıyla kana karışır. Kurşun, kan aracılığıyla karaciğer, böbrekler, akciğer, beyin, dalak, kalp ve kaslara ulaşır. Esas yerleşim yeri kemikler ve dişlerdir. Yetişkinlerde organizmadaki kurşunun yaklaşık % 94’ü diş ve kemiklerde bulunur. Kan aracılığıyla organizmada dolaşan kurşun, idrar, dışkı ve terlemeyle organizma dışına atılmaya çalışılır. Kurşunun organizmadaki hedefi öncelikle sinir sistemidir. Kurşun etkilenimi sonucu;- Parmaklar, el ve ayak bileklerinde güçsüzlük oluşur,- Kan yapım sürecinin bozulması sonucu anemi (kansızlık) gelişir,- Kan basıncında yükselme (hipertansiyon) oluşabilir,- Hafıza kaybı ve konsantrasyon problemleri yaşanabilir,- Yüksek düzeyde etkilenmede beyin ve böbrekler zarar görebilir,- Yüksek düzeyde etkilenmede erkeklerde sperm yapımı zarar görebilir,- Dişetlerinde çizgilenme (Burton çizgisi) görülebilir,- Gebelerde bebeğin beyin gelişimine zarar verebilir. Ani (akut) zehirlenme: Kısa sürede yoğun kurşun etkilenimi sonucu ortaya çıkar. Salgılarda artış ve kusma, şiddetli karın ağrısı (barsak kolikleri), idrar çıkarmada zorluk oluşabilir. Ölümle sonuçlanabilir. Yavaş (kronik) zehirlenme: Cilt ve mukozalarda solukluk, genel yorgunluk ve bitkinlik, baş ve eklem ağrıları, iştahsızlık, mide-barsak bozuklukları, kabızlık. Anemi (kansızlık) bulguları ile birlikte kanda kurşun seviyesi yüksekliği ve idrarda hemoglobin sentezi bozulmasına bağlı delta amino levülinik asit ile koproporfirin tespit edilir. Zehirlenme düzeyi arttıkça tabloya şiddetli karın ağrısı, bulantı, kusma, kabızlık, ciltte kurşuna özel gri-sarımsı solukluk, uç sinirlerde felçler (sıklıkla elde), şiddetli baş ağrısı ve huzursuzluk, dalgınlık, damar daralmaları sonucu organ yetmezlikleri (özellikle böbrek) eklenebilir. CIVA AĞIR METALİNİN Sağlık Üzerine Etkileri Cıva; hava, su, gıdalar ve deri yoluyla vücuda girer. Su ve gıdalar ile alınan cıva mide ve incebarsaktan, solunum yoluyla alınan ise akciğerlerden kana karışır. Deri yoluyla emilim sınırlıdır. Gıdalarda ağırlıklı olarak methylmercury formu bulunur ve bu formun yaklaşık olarak % 95’i sindirim sisteminden emilir. Oda ısısında kolayca buharlaşan cıvanın solunum yoluyla etkilenimi de önem taşır. Kana karışan cıva organizmada haftalar ve aylarca kalabilir, en fazla beyin ve böbrekleri etkiler ve bu organlarda birikir. Atılımı dışkı ve idrar yoluyla olur. Gebelerde bebek üzerine etkilidir ve inorganik cıva bileşikleri anne sütüne de geçer. Sinir sistemi cıvadan en fazla etkilenen yapıdır. Sinir sistemi etkilenimi ile beyin ve böbreklerde birikim sonucu ortaya çıkan bulgular:- Davranış değişiklikleri (aşırı hassasiyet, korku ve sinirli davranışlar),- El, kol, bacaklar ve başta titremeler,- Hafızada bozulma ve his kaybı,- Görme alanı daralması, işitme kaybı, konuşma bozukluğu,- Kaslarda koordinasyon kaybı,- Böbreklerdeki birikim sonrası böbreğin kanı filtre etme fonksiyonu azalır ve bunun sonucu olarak da atılamayan cıvadan etkilenim daha da artar. Cıvanın ani (akut) etkilenimi sonucu görülen bulgular ise:- Mide-barsak bozukluğu bulguları,- İdrar çıkartamamaya varan böbrek bozukluk bulguları,- Soluk almada zorlanma (soluk borusu ve bronşlarda irritasyon),- Kan basıncı ve kalp hızında artış,- Deride kızarıklık ve gözlerde hassasiyet,- Ağız ve dişetlerinde yara oluşumu, salya artışı, dişlerde dökülmeler. Gebelikte ve emzirme döneminde etkilenme bebek üzerince ciddi zararlara yol açabilmektedir. Bebeğin zeka gelişimi olumsuz etkilenmekte, koordinasyon bozukluğu, görme kaybı, kas gücü azalması, konuşma bozukluğu gibi bulgular ortaya çıkabilmektedir. Hayvan deneylerinde; bebek gelişimi ve sperm üretimi üzerinde olumsuz etkileri olduğu, erken doğum ve düşüklerde artışında neden olduğu gözlemlenmiştir Cıva (Hg) Cıva, çevrede doğal olarak bulunan bir elementtir. Metal formunda, cıva tuzu veya organik cıva bileşikleri halinde, bulunabilir. Metalik cıva çeşitli ev eşyalarında; barometrede, termometrede ve floresan lambalarda, kullanılır. Bu aletlerde bulunan cıva kapalı bir şekilde haznelerinde bulunduğundan tehlikesizdir ve sağlık problemi yaratmaz. Fakat, termometre kırıldığında buharlaşan cıvanın solunmasıyla ciddi oranda cıvaya maruz kalınabilir. Bu durum; sinir, beyin ve böbrek zedelenmeleri, akciğer tahrişi, göz tahrişi, deri dökülmesi, kusma ve ishal gibi zararlı etkilere neden olabilir. Cıva gıdalarda doğal olarak bulunmaz. Fakat, insanlar tarafından tüketilen balık gibi gıdalar yoluyla besin zinciri içerisinde kendilerine yer bulur ve yayılabilirler. Balıktaki cıva konsantrasyonu içinde yaşadığı suda bulunan cıva konsantrasyonundan daha fazladır. Tarlalardaki çevresel kirlenmeden dolayı et önemli miktarda cıva ihtiva edebilir. Bitkisel ürünlerde cıva bulunmaz, fakat tarımsal uygulamalar esnasında cıva içeren spreylerin kullanılmasıyla sebzelerden ve diğer ürünlerden insan vücuduna taşınabilir. Cıvanın insanlar üzerinde birçok olumsuz etkisi vardır. Başlıca olumsuz etkileri şunlardır: Sinir sistemi bozukluklarına sebep olur: Beyin fonksiyonlarına zarar verir DNA ve kromozomlara zarar verir Alerjik reaksiyonlara, deri isiliklerine, yorgunluğa ve baş ağrısına yol açar üreme ile ilgili negatif etkiler; spermlere zarar vermek, sakat doğumlar ve düşük doğum gibi. Beyin fonksiyonlarının zarar görmesi, öğrenme bozukluğuna, kişilik değişikliklerine, titremeye, görünüm bozukluklarına, sağırlığa, kas koordinasyon kaybına ve hafıza kaybına yol açar. Kromozomların zarar görmesi ise mongolizme yol açar. Gıdalara bağlı cıva zehirlenmesi çok nadir olmakla beraber, cıvadan kaynaklanan neredeyse tüm zehirlenmeler çevre kirliliğine bağlıdır. KADMİYUM AĞIR METALİ Sağlık Üzerine Etkileri Kadmiyum, gıdalar, içme suyu, hava, sigara ve çalışma ortamı havasıyla insan vücuduna girebilmektedir. Ciltten emilimi yoktur. Vücuda giren kadmiyum çok yavaş olarak böbrekler ve dışkı ile dışarıya atılır. Böbrekler ve karaciğer tarafından elemine edilmeye çalışılırken bu organlar ciddi biçimde zarar görürler. Ayrıca, su ve gıdalarla alınımında mide-barsak sistemi ile solunum sistemi ile alınan kadmiyum da akciğerlere zarar verir. Sindirim yoluyla alınan kadmiyumun yaklaşık % 5’i, solunum yoluyla alınanın ise yaklaşık % 30’u organizmaya girerek kan dolaşımına karışır. Atlımı çok yavaş olduğu için organizmada birikir. Organizmada yarılanma süresi oldukça uzundur (15-20 yıl). Solunum yoluyla ani ve çok miktarda alınması durumunda, burun, boğaz ve akciğer de tahrişe neden olur. Öksürük, yutma zorluğu, göğüs ağrısı, terleme, titreme, çarpıntı gibi bulgular sonrasında akciğer ödemi de gelişebilir. Solunum yoluyla yoğun miktar kadmiyum alınımı ölüme de neden olabilir. Ağız yoluyla çok miktarda alındığında, bulantı, mide ağrısı, ishal, baş dönmesi, baş ağrısı, sindirim bozukluğu gibi bulgular sonrası baygınlık oluşabilir. Uzun süreli ve yavaş etkilenim sonrası; aşırı yorgunluk, solunum yolu problemleri, soluma zorluğu, böbreklerde fonksiyon bozukluğu, sindirim sisteminde etkilenme ve karaciğer zararları ortaya çıkar. Böbreklerin kadmiyumla zarar görmesi sonrasında kemik kırıklarının kolaylaştığı görülmüştür. Uluslararası kanser araştırmaları ajansı (IARC) ve EPA kadmiyumun insanlarda karsinojen olabileceğini belirtmişlerdir. ARSENİK AĞIR METALİSağlık üzerine etkileri: Hava, su ve gıdalar yoluyla alınan arsenik hızla organizmaya girer ve vücuda dağılır. Cilt yoluyla emilim ve etkilenim hızı diğer yollardan daha kısıtlıdır. Organizmada karaciğer tarafından zararsız organik forma dönüştürülmeye çalışılır, böbrekler aracılığıyla idrar yoluyla atılır. Diğer salgı sistemleri ve dışkıyla da daha az oranda atılırlar. Arsenik bileşikleri öncelikle kılcal damarları etkiler ve dolaşım bozukluğu yaratırlar. Kemik iliği ve dokularda bozulmalara neden olur. Uzun dönemli etkilenim sonucu cilt kanseri oluşumuna yol açabilir. Arsenik bileşikleri organizmada fazlaca birikmezler ve genellikle yarılanma süreleri 2 gündür. Karaciğer, böbrekler, kemikler, cilt ve tırnaklar depolanma alanlarıdır. Akut (ani) etkilenimle oluşan sağlık sorunları: Solunum yoluyla yoğun etkilenim sonucu oluşur. Kramplı öksürük nöbeti yanında solunum güçlüğü, göğüs ağrısı, mide-barsak bozukluğu ve sinir sistemi etkileri oluşur. Kusma, ishal, mide krampı, baş ağrısı, dalgınlık, titreme ve bilinç kaybı gelişebilir. Ciltten giriş yerinde kızarıklık, yara ve hassasiyet oluşur. Göz, burun, yutak, boğazda hassasiyet yaratır. Burun septumunda (orta bölme) delinmeye neden olabilir. Kronik (uzun erimli) etkilenimle oluşan sağlık sorunları:- Cilt reaksiyonları, ciltte kalınlaşma ve renk koyulaşması (pigmentasyon), saç dökülmesi ve tırnaklarda kolay kırılmalar görülür. Ciltte lekeleri bulunan kişilerde bu reaksiyonlara bağlı kanser oluşumunu kolaylaştırır.- Kemik iliği etkilenimi sonucu kansızlık (anemi),- Kalp ritim bozukluğu,- Kılcal damar etkilenimi sonucu dolaşım bozukluğu ve cilt renginde bozulma ve gangrenli dolaşım bozukluğu yaraları,- Sarılık ile seyredebilen karaciğer ve böbrek fonksiyon bozukluğu,- Gözde konjunktiva ve kornea hastalıkları,- Ağır bronşit,- Arsenik az miktarda da olsa anne sütüne geçebilmektedir.- Cilt, karaciğer, mesane, böbrek, prostat, akciğer ve solunum yolu kanserleri oluşumunda rol oynamaktadır. IARC (Uluslar arası kanser araştırmaları ajansı) tarafından arsenik, insanlar için kanserojen olarak belirtilmiştir. EPA (Çevre koruma ajansı) da bilinen insan karsinojeni olarak tanımlamıştır. KROM Sağlık Üzerine Etkileri: Solunum yoluyla organizmaya giren krom partikülleri akciğerde önce birikir. Burada depolanan krom partikülleri zaman içinde ve yavaşça dolaşım sistemine geçer ve vücuda dağılır. Böbreklerden süzülen krom idrar yoluyla organizmadan uzaklaştırılır. Gıdalar ve su ile sindirim sistemi aracılığıyla alınan kromun büyük kısmı birkaç gün içinde dışkıyla atılır. Bu yoldan alınan kromun çok az kısmı ince barsaktan emilerek kana karışır. Gıdalarla alınan III değerli krom, ince barsak ve mideden dolaşıma katılır ve organizmanın fonksiyonlarında (şeker, yağ ve protein metabolizmasında) işlev görür. Cilt yoluyla emilim de sınırlıdır. Kromun organizmada neden olabildiği etkileri;- Krom, kuvvetli oksidan etkisi nedeniyle hücreleri parçalayabilir ve zarara uğratabilir.- VI değerli krom bileşikleri III değerli krom bileşiklerinden çok daha toksiktir ve bunlar ciltte hassasiyet yaratır, ciltte alerjik reaksiyon oluşturabilir veya yaraların oluşumuna yol açabilir.- Akciğerde biriken krom, bronş kanserine neden olabilir. Sigara içenlerde bu etki artabilir. Krom ve bileşikleriyle uzun süre çalışanlarda akciğer kanseri oranı, diğer toplum kesimi ile karşılaştırıldığında 100- 1.000 kez daha fazla olduğu saptanmıştır.- Yüksek miktarda (2 mikrogram/m3’den fazla) krom solunması durumunda solunum yolu ve özellikle burunda yaralara kadar varan hassasiyet ve rahatsızlık yaratarak burun orta duvarında (septum) delinmeye neden olabilir.- Çalışma ortamı havasında yüksek miktarda krom bulunursa, alerjik akciğer hastalıkları ve astma ataklarına neden olabilir.- Sindirim yoluyla yüksek miktarda (kazayla) krom VI alınması, mide ülseri, böbrekler ve karaciğerde fonksiyon bozulması ve ölüme neden olabilir. Kromun akut (ani) etkilenimiyle oluşan sağlık sorunları:• Gözde konjunktivit ve kornea zararları,• Ciltte alerjik reaksiyon ve zor iyileşen yaralar,• Sindirim yoluyla alınma sonrasında ağızda, midede ağrı ve yaralar, yutma güçlüğü, kusma ve kanlı ishal,• Solunum yoluyla yoğun alınım sonrası burun, üst solunum yolları ve akciğerde tahriş,• Sindirim yoluyla yoğun miktarda alınması sonrası dolaşım bozukluğu, kramplar, bilinç kaybı, böbrek yetmezliği, koma ve ölüm oluşabilir. Bilimsel deliller, havada bulunan ağır metal bileşenlerinin insanlar için genotoksik kanserojen kaynağı olduğunu gösteriyor. Stronsiyum (Sr) Suda çözünmeyen stronsiyum bileşikleri kimyasal reaksiyonlar sonucunda suda çözünür hale gelebilirler. Suda çözünen bileşikler çözünmeyenlere göre insan sağlığını daha fazla tehdit eder. Bu sebeple, suda çözünen stronsiyum bileşikleri suyu kirletebilecek özelliğe sahiptirler. Fakat, içme suyundaki konsantrasyonları çok düşüktür.İnsanlar, hava ve toz soluyarak, gıda ve içecek tüketerek yada stronsiyum içeren toprakla temas ederek düşük miktarlarda radyoaktif stronsiyuma maruz kalabilirler. İnsanlar çoğunlukla stronsiyumu yeme ve içme yoluyla alırlar. Gıdalardaki stronsiyum konsantrasyonu stronsiyumun insan vücudundaki konsantrasyonunu etkiler. Tahıllar, yapraklı sebzeler ve süt ürünleri önemli miktarda stronsiyum içeren gıda maddeleridir.İnsanların birçoğu için stronsiyum alımı orta derecededir. Az miktarda bile insan sağlığına zararı olduğu düşünülen tek stronsiyum bileşiği stronsiyum kromattır. Stronsiyum kromatın akciğer kanserine yol açtığı bilinmektedir. Fakat insanların stronsiyum kromata maruz kalma riski şirketlerdeki güvenlik önlemleri sayesinde büyük ölçüde azaltılmıştır. Böylece stronsiyum kromat artık önemli bir sağlık riski taşımamaktadır. Genellikle yüksek stronsiyum konsantrasyonlarının alımı insan sağlığı için büyük bir tehlike olarak görülmemektedir. Sadece bir kişinin stronsiyuma alerjik reaksiyon gösterdiği belirlenmiş, bunun haricinde tespit edilen bir vaka olmamıştır. Çocuklarda, yüksek oranda stronsiyum alımı sağlık için riskli olabilir, kemik gelişimi ile ilgili problemlere sebep olabilir. Stronsiyum tuzlarının deri döküntülerine ve cilt ile ilgili diğer problemlere sebep olduğuna rastlanmamıştır. Çok yüksek miktarlardaki stronsiyum alımı kemik gelişimini olumsuz etkileyebilir. Fakat bu etki, stronsiyum alımı kg (vücut ağırlığı) için gram seviyelerinde olursa görülür. Gıdalarda ve içme suyundaki stronsiyum seviyeleri belirtilen sorunlara sebep olacak kadar yüksek değildir. Sütlerde ''ağır metal'' tehlikesi Çevre kirliliği nedeniyle süt ve ürünlerine arsenik, cıva, kadmiyum ve kurşun gibi ağır metallerin bulaştığı, bu maddelerin vücutta birikmeye başlamalarıyla birçok ciddi hastalığa yol açabildikleri iddia edildi. Konya İl Kontrol Laboratuvarı Kalıntı Laboratuvar Şefi ziraat yüksek mühendisi Ömer Osman Kılıç, yaptığı açıklamada, günümüzün en büyük sorunlarından birisinin teknolojiye paralel olarak artan ve yaşamı olumsuz etkileyen çevre kirliliği olduğunu belirtti. Kirlenen çevre nedeniyle miktarları giderek artan ve önemli kirleticilerden biri olan ağır metallerin çevrede bulaşıcı kaynaklar haline geldiğini vurgulayan Kılıç, gıda maddelerine bulaşan ağır metallerin gıda zinciri yoluyla insan vücuduna ulaştığını bildirdi. Ağır metallerin bulunduğu gıdaların tüketilmesi durumunda içindeki metal miktarına bağlı olarak ani ölümlerin görülebildiği sağlık sorunlarının ortaya çıkabileceğini dile getiren Kılıç, şunları kaydetti: ''Ağır metaller konusunda dikkat edilmesi gereken gıdalardan biri de beslenme açısından büyük önem taşıyan sütlerdir. Ağır metaller süt ve süt ürünlerine su, hava, yem ve üretim aşamasında kullanılan ekipmanlar yoluyla bulaşabiliyor. Arsenik, cıva, kadmiyum, bakır, nikel, kurşun gibi ağır metallerin birikimleri ve yüksek dozda alınmaları durumunda vücutta tehlikeli biyokimsayal yıkımlara neden olurlar. Bu metaller özellikle merkezi sinir sistemi, karaciğer, böbrek, dalak ve dolaşım sistemini olumsuz etkiler.'' KANSER VE ANİ ÖLÜMLERE YOL AÇABİLİYOR Vücutta birikmeye başlamalarıyla birlikte ağır metallerin sinir sistemi bozuklukları, baş dönmeleri, iştahsızlık, kalp ve damar hastalıkları, kanser, anemi, ani ölümler ve tanımlanmamış birçok hastalığa yol açabildiklerini belirten Kılıç, ağır metallerin sütlere gübre, kanalizasyon atıkları, egzoz atıkları ile yeşil alanlardan geçebildiğini bildirdi. Dünya Sağlık Örgütü'nün süt ve ürünlerindeki ağır metaller üzerinde hassas olduğunu ve bu konuda araştırmalar yapıldığını vurgulayan Kılıç, şöyle devam etti: ''Türkiye'de yapılan araştırmalarda özellikle endüstriyel bölgelerde yapılan çalışmalarda kritik değerlerin üzerinde ağır metal içeren süt ve ürünlerine rastlanmıştır. Konya'daki laboratuvarda yaptığımız araştırmalarda da ağır metalin bulaştığı, limitlerin üzerinde miktarların bulunduğu süt ve ürünlerine rastladık. Bu metallerin gıdalardan uzaklaştırılması ve temizlenmesi son derece zor ve masraflıdır.'' Kılıç, böylesine önemli bir gıda maddesi olan sütlerin bu şekilde kirlenmesinin önlenmesi için çevre kirliliğinin önüne geçilmesi ve gıdalara bulaşmasının engellenmesi gerektiğini sözlerine ekledi. Ağır Metaller ve Sağlığımıza Etkileri     Bildiğimiz üzere metaller yüksek ısı ve elektrik iletkenliğine sahip olan, işlenip şekillendirilebilen, oksijenli bileşikleri bazik oksit veren elementler olup günlük yaşamımızda ve endüstrinin her dalında kullanılmaktadır. Periyodik tablonun 105 elementinden 80’ini metaller oluşturmaktadır. Evlerde tencere, teknolojide, elektronik alaşımlarda, gemilerde, arabalarda aklımıza gelebilecek birçok yerde metallerden yararlanmaktayız. Kısacası metalleri günlük yaşamda her yerde kullanmaktayız. Peki bu metallere nasıl maruz kalıyoruz? Metaller; doğal veya antropolojik etkilerce hava, su ve toprak yoluyla besinlerimize ve içme sularımıza karışmaktadırlar. Metaller zararlı mıdır? Aslında birçok metal insan vücudu için esansiyeldir ve alınması gerekmektedir. Örneğin kanımızdaki alyuvarlarda bulunan hemoglobin proteininde bulunan Fe+2(Demir) solunumumuzu devam ettirebilmemiz için gerekli olan oksijeni bağlar. Bu şekilde insan sağlığı için gerekli çinko, bakır gibi birçok metal vardır fakat bu metallerin vücutta fazla olması bir takım zararlara neden olabilmektedir. Bu şekilde eksikliğinde olumsuz etkilerinin yanında fazla alındıklarında insanlarda bazı toksik(zehirli) etkilerin gözlendiği yapılan çalışmalarda görülmüştür. Ağır Metaller ve ZararlarıSu ürünlerinde çok önemli yeri olan bir konuda ağır metal birikimidir. Sanayinin gelişmesiyle ve endüstri atıklarının denizlere boşaltılması sonrası denizlerde bir takım metal iyonlarının (Pb, Cr, Zn, Cu, Ni, Co, Cd, Fe, Hg, Ag) artışı ve canlıların bu iyonları bünyesine katmasıyla oluşan bir takım zararlı etkiler meydana gelir. Sanayi ve insan etkilerinin yanı sıra toprak erezyonuyla, atmosferdeki gazlar yoluyla, akarsularla, tarım yoluyla, denizaltı volkanik aktiviteler gibi yollarla denizlere metal iyonları taşınır. Deniz suyunda metaller fiziksel olarak dört esas formda bulunur. Bunlar; Suda çözünmüş olarak, kolloid parçacıkları olarak, canlı organizmaların bünyesinde, diğer kolloid parçacıkları üzerindedir.İnsanların vücutlarında biriken metal iyonlarının vücuttan atılması çok uzun yıllar gerektirmektedir. Bu metal iyonlarının vücutta birikimi toksik etkiye neden olmaktadır. Bu duruma en bilindik örnek Japonya’da görülmüş olan cıva zehirlenmesi ile oluşan Minamata hastalığıdır. Bunun nedeni Minamata’ da kurulan bir fabrikadan metil-cıva bileşiğinin körfeze dökülmesi ile o körfezde bulunan balıkların vücutlarında birikmesi ve o balıklarla beslenen bölge halkının ağır metal olan cıva (Hg) zehirlenmesiyle felç ve ölümlere neden olmasıydı.Kadmiyum(Cd) bilinen en zehirli metal elementlerinden biridir. Vücutta fazla birikimi İtai itai olarak bilinen kemiklere ve iskelete zararı olan romatizmalı bir hastalıktır. İlk 1947 yılında Japonya’da görülmüştür. Metal iyonları birikimi sinir iletimini engelleyebilmektedir bu nedenle sinirsel iletim bozukluğu ve insanın kaslarını kontrol edemediği hastalıklar ağır metal kirliliği ile meydana gelmektedir. Kurşunda (Pb) biyolojik olarak parçalanamaz ve toksik olmayan forma çevrilemez ve ciğerlerde birikerek insan sağlığını olumsuz etkiler. Alüminyum, bakır, nikel vücuda alındığında diğer ağır metaller gibi insan sağlığını olumsuz etkiler. Sonuç: Metaller denizlerde daha çok dibe(sedimente) çökerler bu nedenle dipte yaşayan canlılarda özellikle midye ve deniz çayırlarında birikiminin yüksek olduğu yapılan biyo- akümülasyon çalışmalarında görülmüştür. Besin zincirinde bu canlılarla beslenen diğer balıkların bünyesinde ağır metal birikiminin devam etmesi ve soframıza kadar gelmesi kısa zamanda olmasa da uzun zamanda insan sağlığını olumsuz etkilediği bilinmektedir. Gerekli ölçüde alındığında insan sağlığına yararı olan birkaç metalin dışında ağır metaller vücuda alındığında zehirleyici etkiler göstermektedir ve insan vücudundan atılamazlar. Bu nedenle sağlığımız için çok fazla yararı olan balıktan vazgeçmek yerine denizlerimizi bu ağır metal ve kirlilik etkenlerinden korumaya özen göstermeliyiz. Deniz Bilimci Onur KASAP Kaynak: www.denizbilimi.com

http://www.biyologlar.com/deniz-urunlerindeki-agir-metaller-ve-insan-sagligina-etkisi

CRISPR Gen Düzenleme Aracı İlk Kez İnsanda Kullanıldı

CRISPR Gen Düzenleme Aracı İlk Kez İnsanda Kullanıldı

Çinli bilim insanları güçlü CRISPR-Cas9 düzenleme aracını ilk kez bir akciğer kanseri hastasında kullanarak, insan üzerinde kullanıma geçti.

http://www.biyologlar.com/crispr-gen-duzenleme-araci-ilk-kez-insanda-kullanildi

Artan Deniz Seviyeleri, Dünya’nın Dönüş Hızını Yavaşlatıyor

Artan Deniz Seviyeleri, Dünya’nın Dönüş Hızını Yavaşlatıyor

Küresel sıcaklıkların gerçekten eşi benzeri görülmemiş bir şekilde artmasıyla, Dünya’da bulunan buzullar eriyor.

http://www.biyologlar.com/artan-deniz-seviyeleri-dunyanin-donus-hizini-yavaslatiyor

Biyolüminesans Nedir?

Biyolüminesans Nedir?

Hayvanlar bir yerden diğer yere hareket etmek için görme duyularını kullanırlar. Genelikle ışıksız bir yerde hareket etmek için zorlanmaktadırlar. Baykuş gibi bazı hayvanlar çok büyük gözleriyle ışığın pek çoğunu gözlerinde toplayarak kullanır. Ayrıca onlar çevreleriyle ilgili bilgileri anlamak için diğer duyularını da kullanırlar. Diğer taraftan insanlar,taşınabilir bir yaratım içerisinde çok emek harcayarak buna sahip olmuşlardır ve suni ışık kaynaklarından LED’lere ve ampullere kadar pek çok gelişim yaşamışlardır. Bir organizma tarafından yayılan ışık (veya tarafından atılır) organizma içerisinde meydana gelen kimyasal reaksiyonlar serbest enerji ile üretilmesine “biyolüminesans” denir. Bazı biyolüminesans özelliği olan yaşam formları,tamamıyla farklı bir tarza sahiptir. Onlar kendi ışıklarını kendi üretir ve o ışığı vücutlarının çevresinde taşırlar. Işığı üreten hayvanlar ve insanlar aynı yolla ışığı kullanmaktadırlar.Fakat hayvanlar ampüllerin ürettiği ışıktan farklı olarak kendi ışıklarını üretirler.Geleneksel ampüller ışığı akkorlayarak üretirler.Bu da içerisindeki iplik şeklindeki metali ısıtır ve ışık ışınları meydana gelir.Ampülün icat edildiğinden beri bu,çok verimli bir olay değildir. Işıldayan hayvanlar, ışığı lüminesans olarak üretirler. Lüminesans üreten hayvanlar,kimyasal bileşimleri diğerleriyle karıştırarak parlaklık elde ederler.Bu da maddenin ışık çubuklarının iç kısmıyla biraraya getirerek ışığı elde etmelerini sağlar. Lüminesans,akkorlanmaya göre oldukça verimlidir.Çok fazla sıcaklık oluşturmadan ve sıcaklık gerektirmeden ışık elde edildiği için buna “soğuk ışık “da denmektedir. Bilim adamları, akkor ve lüminesans arasındaki farkın 2,500 yıldan daha uzak olmadığını düşünmektedirler. 1600′lü yıllarda,araştırmacılar hayvanların nasıl ışık ürettiğini araştırmaya başlamışlardır.Fakat farklı hayvanların farklı maddeleri kullanmasından beri, bilim adamları hala her biyolüminesans üreten türün nasıl ışık ürettiğini tam olarak bilmiyor.Araştırmacılar neden hayvanların neden ışık ürettiğini veya bunu nasıl açıp kapattıklarını anlayamamaktadırlar.Pek çok hayvanın lüminesans kabiliyeti bilindiğinden beri, biyolüminesans çalışılması oldukça zor bir konudur.Diğer bir deyişle,üretimin kontrolü ışık üreten maddelerin yıkılmasıyla olur. Biyolüminesanslı canlılar, deniz anası,ahtapot,karides, kril, deniz solucanları ve balıklardır vebu canlılar deniz diplerinde yaşarlar.Çoğunlukla bu canlılar 440-479 nanometre dalga boyuna sahip ışık üretirler. Bu bulgu mavi-yeşil güneş ışığı okyanusun bu kısmında bulunur. Parlayan hayvanlar uzun yollar katedebilir ve okyanusun üst kısımdan gelen ışıkla kendi ışığını harmanlayabilir. Bu hayvanlar okyanusun güneş ışığı almayan yerlerinde ışığın birincil kaynaklarıdır. Hayvanlar Nasıl Işık Üretir? Genel olarak, biyolüminesans ışık-üretim reaksiyonlarındaki maddelerin 2 tip kombinasyonunu kapsamaktadır.Birincisi, lüsiferindir (bir ışık üretici madde). Diğeri ise lusiferazdır. (reaksiyonları katalizleyen bir enzim). Diğer bir deyişle, lusiferin fotoprotein diye bilinen bir proteindir ve ışık üretme süreci için reaksiyonu aktive etmek üzere bir iyonu şarj etmek gereklidir. Nörolojik, mekanik, kimyasal ya da henüz çözülememiş bazı dürtüler ışık üretmek için reaksiyonları başlatabilir. Süreç, diğer maddelerin varlığını gerektirir. Örneğin; oksijen ya da ATP (Adenin Trifosfat).ATP, insan vücudunda da olan pek çok canlı organizmanın kullandığı,enerjiyi depo eden ve taşıyan bir moleküldür.Lusiferin-Lusiferaz reaksiyonları, oksilusiferin ve su gibi ürünler tarafından oluşturulabilir. Lusiferin ve Lusiferaz ikisi de Latince “Lucifer” olan “ışık getiren” anlamına gelmektedir. Onlar belirli kimyasalların adlarından daha geniş kapsamlıdır.Birçok farklı madde Lusiferin ve lusiferaz gibi davranabilir. Bu durum biyolüminesans yaşam formlarının türlerinde beklenebilir. Örneğin,lusiferin koelenterazin deniz biyolüminesansında genel olarak görülür. Dinoflagellatlar (ateş rengi algler), fotosenteze karşı olarak besin elde etmek için klorofile benzeyen bir lusiferin kullanırlar. Onların lüminesansları güneşli günlerden sonra daha parlaktır.Bazı karides ve balıklar diğer canlıları yemeden önce onlara kendi lusiferin ürünlerini gösterirler. Kaynakça:science.howstuffworks.com/zoology/all-ab...bioluminescence1.htm Yazar: Gülseren Billur Akdenizwww.bilgiustam.com

http://www.biyologlar.com/biyoluminesans-nedir-1

Türk bilim insanları tamamen yerli yapay kan üretmeyi başardı

Türk bilim insanları tamamen yerli yapay kan üretmeyi başardı

Türk bilim insanları, laboratuar koşullarında tamamen yerli yapay kan üretimeyi başardılar. Eskişehir Osmangazi Üniversitesi (ESOGÜ) ve Anadolu Üniversitesi’nden bir grup bilim insanının başını çektiği ve Tübitak’a sunulan Multidisipliner Araştırma Projesi önerisi kapsamında tamamen yerli hemoglobin bazlı yapay kan üretiminde ön çalışmalar başarı ile tamamlandı. Projeye ilişkin açıklamalarda bulunan ESOGÜ Fen Edebiyat Fakültesi Biyoloji Bölümü Öğretim Üyesi Doç. Dr. Adnan Ayhancı, Amerika, Rusya ve Çin başta olmak üzere birçok ülkenin yapay kan üretmeye başladıklarını, ülkemizin de bu hayati ürünü üretmekte geri kalmaması gerektiğini ifade etti. VÜCUTTA OKSİJENİ TAŞIMAK ÖNEMLİKanın temel işlevlerinden birisinin vücuda oksijen taşımak olduğunu belirten Doç. Dr. Ayhancı, şu bilgileri verdi: “Oksijeni dokulara bırakıp onun yerine karbondioksiti alır. Bu işlev, kırmızı kan hücrelerinde (eritrositler) bulunan ve hemoglobin adı verilen, oksijen taşıyıcı hemoproteinlerle sağlanır. Bir vericiden alınan kanın nakli olağan ve güvenli bir yol olsa da, kanın yerini alabilecek maddelerin geliştirilmesi için önemli nedenler bulunmaktadır: İnsan alyuvarlarının, klinik etkilerini uzatacak ve enfeksiyon bulaşma riskini azaltacak şekilde saklanması zordur. Bu ise, kanın afet bölgelerinde ve savaşlarda ulaşılabilir olmasını sınırlamaktadır. Ayrıca, yapay kanlar enfeksiyona yol açan patojenlere karşı sterilizasyona daha uygun olacaklarından ve kan grubu antijenleri içermeyeceklerinden, çapraz eşlemeye de gerek duymayacaklardır.KATI SAKLAMA KOŞULLARI GEREKTİRMEMESİ ÖNEMLİ BİR ÇÖZÜMTüm bu olumsuzlukların aşılması için katı saklama koşulları gerektirmeyecek yapay kan geliştirilmesi, çok önemli bir çözüm olarak gözükmektedir. Diğer taraftan yapay kan üretimi klasik kan bağışına ve nakline bir alternatif değil, aksine destektir. Araştırma ekibimiz kan bağışının aynı hızla devam etmesi gerektiğine inanmaktadır.Proje kapsamında geliştirilmesi hedeflenen nano-Hb sistemlerinin tamamı, özgün ve yeni biyonanomalzemeler olup yapay kan araştırmalarına yeni bir yön vereceği inancını taşımaktayız. Eritrositi taklit edecek nano-Hb sistemleri için PCT ve USPTO’ ya patent başvurusunda bulunulmuştur” diye konuştu.YAPAY KAN ANİ VE ACİL İHTİYAÇ ANINDA KULLANILACAKÜrettikleri yapay kanın ani ve acil ihtiyaç olduğu durumlarda kullanılacağını ifade eden Doç. Dr. Ayhancı, “Hemen verilebilecek bir ürün, kan yerine geçebilecek alyuvar fonksiyonu gösteren bir ürün. Dolayısıyla hayat kurtaracak bir sıvı. Kan bankalarında kan alındıktan sonra bir aydan fazla saklanamaz, hemen bozulur. Oysa yapay kanı ürettikten sonra bir sene saklayabiliyoruz. Özellikle son zamanlardaki AİDS hastalığını ve diğer birtakım kan yoluyla bulaşan hastalıkları düşünürsek, yapay kan ile bunların önüne geçmiş olacağız. Son olarak istediğimiz kadar yapay kanı hızlı ve daha ucuz üretebileceğiz” dedi.KAN GRUBUNA BAKILMADAN HERKESE VERİLEBİLECEK”Doç. Dr. Adnan Ayhancı, ürettikleri yapay kanı, kan grubuna bakılmaksızın herkese verilebileceğini vurguladı. “Tamamen yerli bir ürün olacağı için, Türkiye’nin belki de ileride oluşabilecek kan ihtiyaçlarını dışarıdan karşılanması zorunluluğunun da önüne geçeceğiz” diyen Ayhancı, “Kan ürünleri çok hayati olduğu kadar çok da tehlikelidir. Birtakım istenmeyen kimyasallar veya biyolojik etmenler eklenebilir.Bu nedenle ülkemizin ihtiyacı olan hemoglobin bazlı kan stokunu kendimizin sağlamsı son derece önemlidir” ifadelerini kullandı.“DÜNYA BU İŞE BAŞLADI, BİZ GERİDE KALAMAYIZ”Tüm dünyanın yapay kan üzerinde çalışmalara uzun süre önce başladığını hatırlatan Doç. Dr. Ayhancı, Türkiye’nin bu alanda ciddi bir açığı ve ihtiyacı olduğunu söyledi. Doç. Dr. Ayhancı, şöyle devam etti: “Projemiz Tübitak’ın öncelikli alanlarda açtığı “1003-SAB-ILAC-2015-2 Kan ve Kan Ürünleri” çağrısının “Universal kan ürünleri ve yapay kan araştırmaları” ile “kan ürünlerinin rekombinant olarak üretilmesi” hedefleriyle örtüşmektedir.”TUBİTAK BİLİM İNSANLARINA BÜTÜN KAYNAKLARI AÇMIŞ DURUMDAKendilerinin, proje ekibi ile birlikte düşünüp bu projeyi TUBİTAK’a sunduklarını anlatan ESOGÜ Fen Edebiyat Fakültesi Biyoloji Bölümü Öğretim Üyesi Doç. Dr. Adnan Ayhancı, TUBİTAK’ın son zamanlarda arge yapılması için her türlü imkanı sunduğunu belirtti. Ayhancı, “Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TUBİTAK) zaten birçok bilim insanına araştırma için kaynakları sonuna kadar açmış durumda.Gerçekten son 10-15 yıldır ülkemiz inanılmaz derecede kaynaklarını araştırma harcamalarına açtı. Gerek Bilimsel Araştırma Projeleri (BAP) gerekse TUBİTAK kayda değer araştırmaları desteklemektedir” diye konuştu.BİRÇOK ÜNİVERSİTE İÇİN GENİŞ TABANLI DÜZEN OLUŞTURULDUProje kapsamında Eskişehir Osmangazi, Anadolu, Kars Kafkas ve Dicle üniversiteleri ve bir Teknopark Şirketi olan Bionkit Biyo-Nano Kimya Teknolojileri Mühendislik-Danışmanlık tarafından verilen destekle oluşturulan geniş tabanlı bir Yönetim Düzeni oluşturuldu. Proje geniş tabanlı bir yönetim düzeni oluşturuldu. Bu düzende, çok farklı disiplinlerden bilim insanlarının görev alması planlandı. Bunun dışında projede, 2 Analitik Kimya, 1 Anorganik Kimya, biri doktora sonrası olmak üzere 2 Biyokimya, biri doktora sonrası araştırmacı olmak üzere 2 Moleküler Biyoloji ve Genetik, 1 Biyomühendislik disiplinlerinden olmak üzere “8” temel araştırmacı planlandı.http://www.medikalakademi.com.tr

http://www.biyologlar.com/turk-bilim-insanlari-tamamen-yerli-yapay-kan-uretmeyi-basardi

Neden Meyve Sinekleri Dev Spermler Üretiyorlar?

Neden Meyve Sinekleri Dev Spermler Üretiyorlar?

Hayvanlar aleminde, sperm genellikle yumurtadan oldukça küçüktür; bu sebeple erkekler çok sayıda sperm üretirler. Fazla sayıda üretilen küçük sperm, başarılı üreme ihtimalini artırabilir.

http://www.biyologlar.com/neden-meyve-sinekleri-dev-spermler-uretiyorlar

Kök Hücre ve Rejeneratif Tıp Alanında Dünya ve Türkiye’deki Gelişmeler

Kök Hücre ve Rejeneratif Tıp Alanında Dünya ve Türkiye’deki Gelişmeler

Prof. Dr. Y. Murat ELÇİN TÜBA / Asosye Üyesi TÜBA Kök Hücre Çalışma Grubu Yürütücüsü Ankara Üniversitesi Fen Fakültesi ve Kök Hücre Enstitüsü Öğretim Üyesi www.elcinlab.org

http://www.biyologlar.com/kok-hucre-ve-rejeneratif-tip-alaninda-dunya-ve-turkiyedeki-gelismeler

Genetiği Değiştirilmiş Organizmalar: Genel Bakış, Ürünlere Örnekler ve Dikkat Edilmesi Gereken Sorunlar

Genetiği Değiştirilmiş Organizmalar: Genel Bakış, Ürünlere Örnekler ve Dikkat Edilmesi Gereken Sorunlar

Genetiği Değiştirilmiş Organizmalar (GDO) ile ilgili tartışmalar aralıklarla gündeme gelse de, bu tartışmalardan yola çıkarak gerçek anlamıyla bilimsel bir algının halk arasında yaratılmasının oldukça güç olduğu görülmektedir.

http://www.biyologlar.com/genetigi-degistirilmis-organizmalar-genel-bakis-urunlere-ornekler-ve-dikkat-edilmesi-gereken-sorunlar

CRISPR gen düzenleme aracı ilk kez insanda kullanıldı

CRISPR gen düzenleme aracı ilk kez insanda kullanıldı

Çinli bilim insanları güçlü CRISPR-Cas9 düzenleme aracını ilk kez bir akciğer kanseri hastasında kullanarak, insan üzerinde kullanıma geçti. CRISPR adı verilen bu gen düzenleme teknolojisi aynı bir genetik makasa benziyor.

http://www.biyologlar.com/crispr-gen-duzenleme-araci-ilk-kez-insanda-kullanildi-1

2016 Yılında BİYOLOJİ Bilim Dünyasında Neler Oldu?

2016 Yılında BİYOLOJİ Bilim Dünyasında Neler Oldu?

2016 yılı biyolojik gelişmelerine geçmeden önce bizlere çevirileri ve makaleleri ile destek veren tüm köşe yazarlarımıza TEŞEKKÜR ederiz...

http://www.biyologlar.com/2016-yilinda-biyoloji-bilim-dunyasinda-neler-oldu

Gen Terapisi Nedir?

Gen Terapisi Nedir?

Gen terapisi, genetik bir hastalığı tedavi etmek için DNA'nın hastaya verilmesidir. Yeni DNA genellikle hastalığa neden olan bir mutasyonun etkilerini düzeltmek için işleyen bir gen içerir.

http://www.biyologlar.com/gen-terapisi-nedir

Mide Kanseri

Mide Kanseri

Mide kaburgaların altında karnın üst bölgesinde yer alan içi boş büyük bir organdır. Yiyecekler ağızdan özefagus (yemek borusu) aracılığıyla mideye ulaşırlar.

http://www.biyologlar.com/mide-kanseri

 
3WTURK CMS v6.03WTURK CMS v6.0