Biyolojiye gercekci yaklasimin tek adresi.

Arama Sonuçları..

Toplam 725 kayıt bulundu.

Tipulidae

Sıcak ilkbahar ve yaz aylarında genellikle akarsu kenarlarındaki çayırlıklar ve fundalıklar ile ormanlar gibi nemli ve gölgeli yerlerde bulunan tipulidler iri vücutları, uzun bacakları ve hantal uçuşları ile kolayca tanınabilirler. Turna ya da çayır sivrisinekleri olarak da bilinen tipulidler, culisidlerin aksine sokucu iğneleri olmadığından kesinlikle sokamaz ve kan ememezler. Ergin evrede pek azında beslenme vardır. Bu da nektar veya serbest bitki öz sularını emme şeklindedir. Tipulidae, dünya çapında yaklaşık olarak 4250, palearktik bölgede ise 17 cins ve 33 alt cinse dahil yaklaşık 1250 türü bilinmektedir. Avrupa'da ise yaklaşık 500 türle temsil edilmektedir. Kubbemsi yapılı toraksın dorsalinde "V" şeklinde mesonotal suturların bulunması, 5 segmentli olan palpin son segmentinin kamçı şeklinde uzaması, basit gözlerinin bulunmaması, 2 kaide (scapus ve pedicellus) ve 11 kamçı segmentine sahip antenlerinin bulunması tipulidlerin en karakteristik özellikleridir. Bileşik gözler büyük ve ayrı olup dairesel ya da oval şekillidir. Uzun yapılı olan rostrum uzun ya da kısa bir nasus taşır. Dar yapılı kanatları dinlenme esnasında yarı açılır veya abdomenin üstünde birbiri üzerine katlanır. Kanatları iki anal damarlı, diskoid hücreli, genelde büyük, uzun ve uç kısmında daha fazla damarlanmıştır. Subcosta, R1+2'de sonlanır ya da costa'ya R3+4 ile bağlanır. R5, kanat ucunda sonlanır. Serbest durumlu olan halter daima belirgindir. Uzun, ince yapılı ve oldukça narin olan bacaklar 5 segmentli olup eklem yerlerinden kolayca kırılabilir. Tipulidler bitkiler üzerinde beslenirken, kuvvetli rüzgârlarla bitkilerde meydana gelen salıntılar, tipulidlerin bacak eklemlerinin kıvrımları ile o denli azaltılır ki gövde bu salıntılardan çok az etkilenir. Tibia apikalde mahmuzsuz veya 1 ya da 2 belirgin mahmuzludur. Beş segmentli olan tarsusun son segmenti bir çift tırnak ve empodium taşır. İnce ve uzun yapılı olan abdomen, 9-10 segmentten oluşmuştur. Abdomen sonu, dişilerde sivri olmakla birlikte erkekte daima genişlemiş ve özellikle önceki segmentten daha kalındır. Hypopygium olarak adlandırılan erkek terminali bir takım karakteristik yapılar taşır ki bu yapılar bilhassa türlerin ayrımında kullanılır. Hypopygium türler için karakteristik özellik gösteren bilhassa kitinleşmiş 9. segment ile çiftleşme organını (aeadegus) içerir. Dokuzuncu tergit yan tarafta 9. sternit ile kaynaşmış (T. (Yamatotipula)) ya da membranımsı bir deri sayesinde ayrılmış olabilir. Belirgin ve iyi gelişmiş 9. sternit postero-lateral kenarında iki çift çıkıntı taşır (Forceps, Gonopod, Distystylus, Gonostylus). Bunlardan dıştaki dış gonostylus, içteki iç gonostylus olarak adlandırılır. Çeşitli şekillerde modifiye olmuş olan dış gonostylus genelde etsi bir yapıda olmakla birlikte bazen Nephrotoma'da olduğu gibi kısmen kitinleşmiş de olabilir. İç gonostylus en fazla 4 kısımdan (Bilhasa Tipula (s.str.) türlerinde), gelişmiş yüksek yapılı türlerde ise (örneğin Tipula (Lunatipula)) üç ana kısmından oluşur. İç gonostylus çiftinin arasında 9. sternitin orta dorsal kenarında aedeagus için hem yönlendirici hem de destek görevi yapan ve Adminiculum olarak adlandırılan kitinleşmiş bir yapı bulunur. Ovipositor olarak adlandırılan dişi terminali yumurta bırakma ve çiftleşmeyi sağlayacak yapılar taşır. Ovipositor özellikle birkaç grupta çok uzun kılıç şeklinde (Xiphura), sivri ve kuvvetli kitinleşmiştir. Ovipositor çift haldeki bir dorsal kapak (cercus) ile ventral kapaktan (hypovalve) oluşur. Cercus uzun ve sivri veya küt uçludur. Hypovalve küt ya da çeşitli şekillerde çıkıntılarla sonlanmış olabilir. Hypovalvenin kitinleşmiş kaideleri arasında yumurtlamadan önce yumurtaların gelip geçtiği 9. sternit bulunur. Bunun dışında genital açıklığın hemen dorsalinde 10. tergitin altında genelde iki loblu ve kıllı bir yapı gösteren 10. sternit bulunur. Hayat döngüleri genelde kısa bir yumurta evresi (1-2 hafta) ve 4 larval gelişim dönemi ile kısa bir pupa evresinden oluşur (1-2 hafta). Birçok tipulid 3. larval evrede dikkate değer bir gelişim gösterir. Tam bir döngü 10 hafta kadar kısa bir süre olabildiği gibi 6 yıl kadar uzun olabilir. Ilıman türler genellikle univoltin olmasına rağmen birçok tür bivoltindir. Sadece birkaç Tipula türü 2 yıllık hayat döngüsüne(semivoltin) sahiptir. Tipula carinifrons 4-5 yıllık bir hayat döngüsüne (Merovoltin) sahiptir. Birçok Dolichopeza türünde yılda 2 nesil (bivoltin) görülür. Yumurtlama çiftleşmeden hemen sonra meydana gelir ve türler arasında farklı yumurtlama davranışı gözlenir. Bazı türler yumurtalarını uçarken bırakırlar ama yumurtlama genelde nemli toprağa veya çamura yapılır. Abdomenin uç kısmı yumurta bırakılacak toprak içine sık sık batırılır ama her seferinde yumurta bırakılmaz. Belki de zemin uygunluğu Cerci üzerindeki duyu organları tarafından test edilir. Bazı türler yumurtalarını kuru zemin içine, tüm abdomenlerini sokarak bırakırlar. Bırakılan yumurta sayısı vücut boyutu ile yakından alakalıdır, ortalama birkaç yüz olmakla birlikte Tipula oleracea'da 1300 kadar olabilir. Tipulid yumurtaları genellikle siyah renkli, pürüzsüz bir koryona sahip ve higroskopik filamentlidir. Bu filamentler Tipula'nın su içinde, nemli habitatlarda yaşayan birçok türünde mevcuttur. Tipulid yumurtaları sıcaklığa, yeni çıkan larvalara göre dayanıklı olmasına rağmen, duyarlıdır. Toprak içinde bulunan yumurtaların yaşama şansı su içindeki larvalardan daha fazladır. Birçok tür yumurtalarını ılık aylar boyunca bırakır. Tipula subnodicornis yumurtaları için 5°C'de ölüm oranı yüksektir, ama Tipula czizeki yumurtaları kış boyunca Avrupa'da dondurucu soğuğa karşı koyarlar. Uzun ve silindirik yapılı olan larvalar dayanıklı derili ve 12 segmentlidir. Baş kapsülü büyüktür ve çoğunlukla protoraksın içine girer (hemicephal). Solunum metapneustic'tir. Sularda yaşayanlar öncelikle deri solunumu yaparlar ki bu solunum tipinde trake borucukları ile donatılmış vücut uzantıları önemli rol oynar. Vücutlarının son segmentinin ventralinde kirpikli boru ve solunum borusu bulunur. Bazı larvalar havayı son abdomen segmentinde birbirinin yanında duran iki stigma ile alırlar. Bu stigmaların kapanma mekanizmaları yoktur ama duvar kısmında bulunan kıllar su kaybını azaltır. Stigmalar birçok uzantı ile çevrilmişlerdir. Tipulidae larvalarında lob şeklinde 6 tane stigma uzantısı vardır. Bu uzantılar, larva suyun dibine kaçınca veya çamura girince stigmaları kapatarak yabancı maddelerin içeri kaçmasını engeller. Larvalar kısmen aquatik, genelde yarı aquatik ya da karasal ortamlarda bulunurlar. Yeterli miktarda nemin ve besinin ortamda bulunuşu larval safha için oldukça önemlidir. Akarsu, göl ve bataklık gibi nemli yerlerde çürümekte olan bitkilerin kök, gövde ve yaprakları, rutubetli tarla toprakları, sığır gübresi, ağaç kovukları, ağaçların yosunlu ya da çürük kısımları, nemli orman altı toprak tabakası larvaların gelişimi için uygun habitatlardır. Larvaların büyük bir kısmı saprofit, bir kısmı fitofag (yaprak, kök ve odun yiyenler), bir kısmı yırtıcı, pek az kısmı da mantar ve diatome gibi tek hücreli canlılarla beslenir. Tarımsal ürün zararlısı olarak bilinen larvaları özellikle zirai bitkilere (buğday, şeker kamışı ve şeker pancarı, yonca, pamuk), ormanlardaki ağaçların kök ve genç sürgünlerine zarar verirler. Bitkilerin ya da fidanların sürgünlerini toprak üzerinden ya da altından keserek koparırılar. Tipula oleracea, T. paludosa, T. czizeki, T. vernalis ile Nephrotoma pratensis ve N. appendiculata'nın çimenlik ve kültür ortamlarındaki çok büyük sayılardaki larvaları bitkilerin ısırılması ve köklerin kemirilmesi şeklinde zarar vermektedir. T. paludosa'nın genç larvaları bitki yapraklarını, yaşlı larvaları ise kökleri yerler. Tipulidlerin hem larvaları hem de erginleri diğer canlılar için besin teşkil etmeleri bakımından önemlidir. En azından New York eyaletinde sadece 91 kuş türünün tipulidlerle beslendiği bilinmektedir. Tipulid larvaları kuzey Alaska tundrasında sahil kuşlarının, kış sonundan temmuz sonuna kadar da İskoçya'da sığırcıkların değişmez besin kaynağını oluştururlar. Kuşlar, yarasalar, örümcekler, su bakireleri, yırtıcı sinek ve arılar doğal düşmanlarıdır. Larvaları ise kuşlar, kurbağalar, köstebekler, tarla fareleri, balıklar ve tel kurtları tarafından zarara uğratırlar. Birçok tatlı su habitatlarında özellikle gölcük, dere ve selin oluşturduğu ovalarda tipulid larvaları yaprak döküntülerini parçalayarak diğer türlerin beslenmeleri için daha küçük organik partiküller oluştururlar. Obtecta tipte olan pupalar kahverengimsi ya da sarımsı renkli, hafif eğrilmiş, boynuzumsu bir ön stigma taşır. Anten, kanat ve bacaklar kılıf içinde açıkça görülebilir. Dördüncü-7. abdominal segmentler posterior kenarları boyunca dikenlidir. Pupaların boyu 12-15 mm olup, pupal kutikulanın her iki sternit ve tergitinde bulunan dikenler ve abdomendeki çıkıntıları ile küçük yer değişimleri yapabilirler. Sularda pupa dönemine girenler suyun üzerine uzanan havalandırma çıkıntıları yaparlar.

http://www.biyologlar.com/tipulidae


Ok kurbağaları kendilerini nasıl zehirlemeden yaşarlar?  İşte evrimsel nedeni:

Ok kurbağaları kendilerini nasıl zehirlemeden yaşarlar? İşte evrimsel nedeni:

Zehirli kurbağalar sinir sistemleri yardımıyla toksinler üretirler. Bir ok kurbağasında bulunan zehir miktarı 150 insanı öldürebilecek güce sahiptir. Photo: Dirk Ercken/Shutterstock

http://www.biyologlar.com/ok-kurbagalari-kendilerini-nasil-zehirlemeden-yasarlar-iste-evrimsel-nedeni

Biyoinformatik

"Biyoinformatik, biyolojik bilgilerin yaratılması ve saklanması için veritabanlarının oluşturulmasıdır. Bu konudaki çalışmaların çoğu biyolojik verilerin analizi ile ilgilidir. Artan sayıdaki projelerde biyolojik bilgilerin organizasyonu gerekmektedir. Bu alanda oluşturulan veritabanlarının büyük bir kısmını nükleik asitler oluşturmaktadır. Milyonlarca nükleotidin depolanması ve organizasyonu için veritabanlarının oluşturulması, araştırıcıların bu bilgilere ulaşabilmeleri ve yeni veriler girebilmeleri için ilk aşamadır. Biyoinformatik’te nükleotid dizi bilgilerinin organizasyonu ve depolanması görevini üstlenmiş üç kuruluş vardır. Genbankası (GenBank), Avrupa Moleküler Biyoloji Laboratuvarı (EMBL) ve DNA Japonya veritabanıdır (DDBJ). Bu üç kuruluş, araştırıcıların yararlanmasına açık, nükleotid dizi bilgilerinin toplanması ve yayılmasında işbirliği içinde çalışmaktadır. Gen Bankası ABD’de Maryland, Bethesda’da, Avrupa Moleküler Biyoloji Laboratuvarı, İngiltere’deki Hinxton’da ve DNA Japonya veritabanı ise Japonya’da Mishima’da yeni dizi bilgilerinin alışverişinde,İnternet üzerinde günlük olarak e-mail, ortak kullanılan ftp ve www üzerinden hizmet sunmaktadırlar. Protein dizi verileri ile ilgili başlıca hizmet sağlayıcılar ise GenBank, EMBL, PIR International ve Swiss-Prot’tur. NIH’in National Center for Biotechnology Information merkezi, biyoinformatik gereci sunan başlıca web sayfalarından biridir. BLAST program ailesi Veritabanlarında araştırma yapabilmek için tasarlanmış pek çok bilgisayar programı vardır. Bunlardan birisi de BLAST (Basic Local Aligment Search Tool) programıdır. Veritabanında homoloji araştırması için öncelikle uygun BLAST programının seçilmesi gerekir. BLASTN bir nükleotid dizisi ile komplementer diziyi ele alarak nükleotid dizisi veritabanlarıyla karşılaştırır. Hız amacıyla tasarlanmıştır. Yüksek duyarlılık aranan durumlar için uygun değildir. BLASTN ve BALSTX; EST verilerinin analizi, ekson yakalama yöntemi ve genomik dizi örneklemlerinin incelenmesinde kullanılır. NCBI’nın sunduğu diğer bir servis ENTREZ servisidir. ENTREZ servisinin en önemli özelliği veritabanları arasında çapraz gezinme olanağı sunmasıdır. Örneğin, bir dizi için BLAST araştırması yaptıktan sonra, ilgili gen ile ilgili literatür bilgileri MEDLINE’dan elde edilebilir. Daha sonra ilgili grafik programlarının yüklenmesi sonrasında protein yapısıyla ilgili veritabanları kullanılarak, proteinin iki veya üç boyutlu yapısı izlenebilir. Protein dizilerindeki işlevsel motifleri araştırmak amacıyla kullanılan bazı veritabanları ise PROSITE ve BLOCKS’tur. NCBI’nin bir başka alt hizmeti olan OMIM, genler ve genetik hastalıklarla ilgili ayrıntılı biyoteknolojik ve tıbbi bilgilerin bulunduğu servistir. Bu servis altında pek çok gende bugüne kadar tanımlanmış mutasyonlar ve ilgili klinik ilişkiler özetlendiğinden çok yararlıdır. Mikroarraylerle genomik yaklaşımlarda en kapsamlı proje ABD Ulusal İnsan Genom Araştırmaları Enstitüsünün Microarray projesidir (µAP). Microarray bulgularının yorumu da diğer yüksek çıktılı (highthroughput) genomik teknikler gibi biyoinformatik yöntemlerin kullanımına ihtiyaç yaratmıştır. Biyoinformatik Türkiye’de de yeni bir daldır. TUBITAK bünyesinde, Marmara Araştırma Merkezi (MAM) Gen Mühendisliği ve Biyoteknoloji Araştırma Enstitüsü diğer kuruluşlar ve uluslararası kuruluşlar arasında köprü görevi görerek ülkemizde biyoteknoloji alanında bir sanayi oluşmasına ve genişlemesine yardımcı olmaktadır. Veritabanlarındaki bazı sorunlar; vektöriyel dizilerle kirlilik, bir gene ait dizi parçaçıklarının veritabanına birden çok kez girilmesi ile ortaya çıkan kalabalık, aynı gene ait birden fazla EST (Ekspressed Sequence Tag) içeren EST veritabanlarının olması gibi durumlardır. Bu durumlar; genom projelerinin ileri aşamalarını oluşturan UNIGENE, VecScreen gibi projelerle ortadan kaldırılmaya çalışılmaktadır. Biyoinformatiğin ikinci özelliği; saklanan biyolojik bilgilerin analizidir. Analiz kapsamına giren konular; 1-Çeşitli organizmalardaki DNA dizilerinin hangi genlere ait olduğunun belirlenmesi 2-Yeni keşfedilen proteinlerin ve RNA dizilerinin yapı işlev ilişkilerinin belirlenebilmesi için yöntem geliştirilmesi 3-Protein dizilerinin ilgili gen ailelerine kümelernmesi ve protein modellerinin geliştirilmesi 4-Benzer proteinlerin sıralanarak evrimsel ortaya çıkaracak filogenetik ailelerin oluşturulmasıdır."

http://www.biyologlar.com/biyoinformatik-1

CARETTA CARETTA ( DENİZ KAPLUMBAĞALARI ) MORFOLOJİK ÖZELLİKLERİ

CARETTA CARETTA ( DENİZ KAPLUMBAĞALARI ) MORFOLOJİK ÖZELLİKLERİ

Deniz kaplumbağalarının yaklaşık 100-200 milyon yıldan beri dünyamızda yaşadığı bilinmektedir. Karadan denize geçen en eski sürüngen türü olan deniz kaplumbağaları artık yaşamlarını denizde geçirmektedirler. VİDEOLAR İÇİN TIKLAYINwww.cyprusseaturtles.org/videolar/Turler..._Chelonia_mydas.html www.cyprusseaturtles.org/videolar/Turler...Caretta_caretta.html Günümüzde Dünyada yaşayan sekiz tür deniz kaplumbağası (Dermochelys coriacea, Eretmochelys imbricata, Lepidochelys kempii, Lepidochelys olivacea, Chelonia mydas, Chelonia agassizi, Natator depressus, Caretta caretta ) vardır. Ancak Akdeniz’de düzenli olarak yuvalayan türler Chelonia mydas ve Caretta caretta’dır. Dünyamızı çevreleyen ılıman denizlerde ve okyanuslarda yaşam mücadelesi vermektedirler. Günümüzde Dünyada yaşadığı bilinen sekiz tür deniz kaplumbağası; Dermochelys coriacea, Eretmochelys imbricata, Lepidochelys kempii, Lepidochelys olivacea, Chelonia mydas, Chelonia agassizi, Natator depressus, Caretta caretta vardır. Caretta caretta (Deniz Kaplumbağası): >> Yeşil kaplumbağadan biraz daha ufak olan bir türdür. Kabuk boyu 1 metreye, ağırlığı 100-120 kiloya kadar ulaşabilir. Besinlerini deniz kabukluları, omurgasız deniz canlıları(yumuşakcalar), yengeçler, deniz anaları, deniz hıyarları, deniz kestaneleri ve diğer deniz canlıları oluşturur. Büyük ve kalın bir kafasının oluşu ile diğer türlerden kolayca ayırt edilir. Kabuğu açık kahve yada koyu kızıl kahve renktedir. Üreme mevsiminde her yuvaya yaklaşık 100 kadar yumurta bırakabilmektedir. Chelonia mydas (Yeşil Kaplumbağa): >> Günümüzde yaşamlarını devam ettiren deniz kaplumbağaları içerisinde önemli bir yer tutar. Kabuk rengi zeytin yeşilinden gri-kahverengiye, hatta koyu kahverengiye kadar değişir. Kabuk boyu 1.20 m. olabilir. Ağırlıkları 100-150 Kg kadardır. Dişileri sadece üreme mevsiminde karaya çıkar. Her seferinde yaklaşık 100- 150 yumurta bırakır. Kıyılara yakın sığ sulardaki deniz otlarını yiyerek beslenirler. Deniz otlarıyla beslenmesinden ve vücudundaki yağın renginin yeşilimtırak olmasından dolayı “Yeşil Kaplumbağa” diye adlandırılmıştır. Akciğer solunumu yaparlar. Dermochelys coriacea: IUCN tarafından “CR” “Kritik Olarak Tehlike Altında” ilan edilen bir türdür. Dünyada geniş bir dağılım gösterirler. Kabuk boyları 120-240 cm, ağırlıkları 210-520 kg. Kadardır. Vücutlarında boynuzsu plaklar yoktur. Kabuk deriyle kaplı ve uzunlamasına yedi adet kabartılı çizgi bulunur. 2-3 yılda bir yuva yaparlar ve her üreme sezonunda 6-9 defa yuva yapabilirler. Her yuvaya ortalama 80 döllenmiş ve 30 adet küçük döllenmemiş yumurta bırakırlar. Kuluçka süresi yaklaşık 65 gündür. Chelonia agassizi: Güney ve Kuzey Amerika’nın pasifik kıyılarında bulunur. Yaklaşık 125 kg ağırlığında ve 115 cm. boyundadırlar. Yeşil kaplumbağanın çok yakın bir türüdür adını renginin siyahımsı olmasından dolayı almıştır. Eretmochelys imbricata: IUCN tarafından “CR” “Kritik Olarak Tehlike Altında” ilan edilen bir türdür. Atlantik, pasifik ve Hint Okyanuslarının tropikal bölgelerinde bulunurlar. Kabuk boyları 76-91 cm, ağırlıkları yaklaşık olarak 40-60 kg. Kadardır. 2-3 yılda bir yuva yaparlar ve her yuvaya ortalama 160 yumurta bırakırlar. Kuluçka süresi ortalama 60 gündür. Lepidochelys kempii: IUCN tarafından “EN” “Tehlike Altında” ilan edilen bir türdür. Meksika körfezi çevresinde sınırlı olarak bulunurlar. Kabuk boyları 62-70 cm, ağırlıkları 35-45 kg. Kadardır. Her üreme sezonunda 2 kez yuva yaparlar ve her yuvaya ortalama 110 yumurta bırakırlar. Kuluçka süreleri yaklaşık 55 gün kadardır. Lepidochelys olivacea: IUCN tarafından “EN” “Tehlike Altında” ilan edilen bir türdür. Atlantik, Pasifik ve Hint Okyanusunun tropical bölgelerinde dağılım gösterirler. Erginlerde Kabuk boyu 62-70 cm, ağırlıkları 35-45 kg. kadardır. Baş oldukca Küçük, Kabuk karinasız ve plaklar oldukca büyüktür. Sırtta 6 veya daha fazla lateral plak bulunur. Her yıl yumurtlamak için sahillere çıkarlar ve her sezonda 2 defa yuva yaparlar. Her yuvaya ortalama 105 yumurta bırakırlar. Kuluçka süresi 55 gün kadardır. Natator depressus: IUCN tarafından “DD” “Yetersiz Bilgi” olarak ilan edilen bir türdür. Avustralya, Papua Körfezi ve Gine’nin kuzey batı, kuzey ve kuzey doğu bölgelerinde çok kısıtlı oranda bulunur. Kabuk boyları 97 cm., ağırlıkları yaklaşık 80 kg. Kadardır. Her üreme sezonunda 4 defa yuva yaparlar ve her yuvaya yaklaşık olarak 50 yumurta bırakırlar. [Morfolojik özellikler] Deniz kaplumbağalarında türlerin tanımlanması için kabuk ve baş üzerinde yer alan plak diziliş ve sayıları kullanılmaktadır. » Caretta caretta Başta prefrontal plak sayısı 2 çifttir. Ancak zaman zaman bu dört plak arasında fazladan bir plak daha bulunabilir. Oval şekilde olan karapaks arkaya doğru daralma gösterir. Karapaksı örten keratin plakların üst üste binme durumu yoktur. 5 çift kostal plağın ilk çifti nukal plakla temas etmektedir. Genelde 11-12 çift marjinal plak ve geride 2 adet suprakaudal plak vardır. » Chelonia mydas Başta prefrontal plak sayısı 1 çifttir. Karapaks oval şekildedir, karapaksın arkası önüne oranla daha dardır. Karapaksı örten keratin plakların üst üste binme durumu yoktur. Kostal plak sayısı tipik olarak 4 çifttir ve birinci çift nukal plakla temas etmez. Genelde 11 çift marjinal plak ve geride 2 adet suprakaudal plak vardır. İskelet yapıları Deniz kaplumbağaları, omurgalı hayvanlar sınıfına dahil olan türlerdir. Kollar değişime uğrayarak yüzme görevini yerine getirebilecek forma gelmiştir. İskelet Karapaks (Dış kabuk), Plastron (Alt kısım), baş ve kollardan oluşmaktadır. Besinleri Chelonia mydas ve Carretta caretta türü deniz kaplumbağalarının yavruları karnivordurlar, yani etçil olarak beslenirler. Besinlerini deniz kabukluları, deniz anaları ve yumuşakcalar oluşturur. Genç bireylerde beslenme alışkanlıklarında farklılaşma başlar. Caretta caretta türü kaplumbağa genç bireyleri etcil olarak beslenmeye devam ederken Chelonia mydas genç bireyleri otcul olarakta beslenmeye başlar. Ergin bireylerde ise farklı beslenme şekli belirgin bir hal almaktadır. Caretta caretta erginlerinin besinlerini deniz kabukluları, deniz kestaneleri, süngerler, yumuşakcalar ve deniz hıyarları oluştururken, ergin Chelonia mydas’ların besinlerini ise sadece deniz algleri oluşturmaktadır. Üreme biyolojileri Sahile çıkma: Sahile yaklaşan dişi kaplumbağaları zemine basıp dinlenebilecekleri bir yerde başlarını sudan çıkarıp sahili bir süre izlerler. Bu sırada oldukca duyarlıdırlar. Sahilde ya da belli bir uzaklığa kadar sahil gerisinde doğal olmayan görüntü, ses, hareketli nesneler, yapay ışıklar ve en küçük bir tehlike sezinlediklerinde hemen geri denize dönerler. Duraklama esnasında herhangi bir tehlike sezinlememe durumunda dişi kaplumbağalar sahile çıkarlar. İleri doğru harekette baş ve boyun alçaltılır, duraklama sırasında ise baş yukarıya kaldırılarak çevre izlenir. Bazı hallerde dişi, yuva yapmadan sahilde geniş bir bölgede gezinebilir. Bu davranış sırasında dişi kaplumbağa yumurtlayabileceği uygun yer arar. Gövde çukurunun oluşturulması: Uygun yuva yeri seçen dişi kaplumbağa, her dört ayağınıda kullanarak kumda gövdesinden biraz büyük C.caretta türü sığ, C.mydas türü ise tüm gövdesini sığacak şekilde bir çukur oluşturur. Çukur içerisine yerleşerek çevreden daha az farkedilecek bir konuma gelmiş olur. Genelde gövde çukuru hayvanın arka kısmında daha derin bir şekildedir. Yumurta çukurunun oluşturulması: Arka ayakların aşağı doğru kazma hareketleriyle bu dönem başlamış olur. İki ayağın birlikte hareket etmesi sözkonusudur. İlkinde bir dönme hareketi ile kum yumuşatılır, ikincisinde ayak kum içerisine daldırılarak “avuçlama hareketi” ile kum dışarı taşınır ve oluşturulmakta olan yumurtlama çukurunun olabildiğince uzağına savrulur. Yumurta çukurunu kazılmasında arka ayakların uyumlu bir şekilde hareket edebilmesi için gövde arkası sağa sola kaydırılır. Bu sırada ön ayaklar gövdenin ön kısmının sabit kalmasını sağlar. Yumurta çukuru derinleştikce kaplumbağa ön ayakları üzerinde vücudunu yükselterek arka ayakların yuva dibine ulaşabilmesini sağlar. Her bir kazma döngüsü 30-40 saniye zaman alırken ara sıra 10-15 saniyelik dinlenme periyotları gözlemlenir. Arka ayaklar yuva dibine ulaşamaz hale geldiğinde bir süre de yumurta çukurunun zemininin yan taraflarından kum alınarak kazmaya devam edilir ve sonuçta alt kısmı üst açıklığa oranla daha geniş bir yuva kazılmış olur. Yuva kazma süresi C.caretta türü kaplumbağalarda 10-20 dakika, C.mydas türü kaplumbağalarda ise 20-40 dakika kadardır. Yumurta çukuru oluşturan dişi kaplumbağanın yaşına bağlı olarak yuva derinliği farklılıklar gösterebilmektedir. Ancak C.caretta’larda ortalama 40-50 cm C.mydas larda ortalama 60-70 cm kadardır. Yuva ağız çapı ise yaklaşık her iki türdede 20-30 cm kadardır. Yumurtlama: Yumurta çukurunun kazılmasından sonra 15-20 saniye ile birkaç dakika arasında sınırlı olan bir dinlenme süresinden sonra yumurtlama başlar. Yumurtalar tek tek bırakılabildiği gibi 2-4 lü guruplar halinde de bırakılabilir. Bu yumurta bırakmalar arasında 5-30 saniyelik dinlenmeler olmaktadır. Yumurtalma süresi C.caretta türlerinde C.mydas türlerine oranla daha kısa olmaktadır. Yumurtlama başlayana kadar çevreye çok duyarlı olan dişi kaplumbağalar yumurtlama başladıktan sonra çevreden etkilenme eşiği giderek yükselir, yani çeşitli ürkütücü faktörlerden artık etkilenmez olur. Bu durum tüm yumurtalar bırakılıncaya kadar sürer. Yumurta çukurunun kapatılması: Yumurtlamasını bitiren dişi kaplumbağa bir süre dinlendikten sonra arka ayaklarını kullanarak yumurtaların üzerini örtmeye başlar. 10-15 dakika süren kapatma işleminde gövdesi ile sağa sola doğru hareketler yapan dişi yuva üzerinin iyice kumla örtülmesini sağlar. Yuva kapatma işlemi yaklaşık 5-15 dakika sürer. Gövde çukurunun kapatılması ve yuva yerinin gizlenmesi: Yumurtaların üzeri örtülüp kumun sıkıştırılmasından sonra dişi kaplumbağa yavaş yavaş öne doğru ilerlerken ön ayakları ile arkaya kum atmaya başlar. Bu hareketler sonucunda geride kalan gövde çukuru kum ile doldurulur. Bu önden kazıp arkaya doldurma hareketi, gövde çukurunun öne doğru taşınmasına, asıl çukurun ise örtülüp gizlenmesine yol açar. Yüzeysel yapılacak olan bir inceleme ile yuvanın nereye kazılmış olduğunu anlamak oldukca zordur. Yuvanın örtülmesi ve gizlenmesi yaklaşık olarak 10-30 dakikalık bir süreyi gerektirmektedir. Denize dönüş: Yumurtlamasını tamamlayan deniz kaplumbağası ortalama 15 gün sonra birkez daha yumurtlamak üzere denize doğru yol almaya başlar.

http://www.biyologlar.com/caretta-caretta-deniz-kaplumbagalari-morfolojik-ozellikleri

Biyoloji Mesleğine Gereken Değerin Verilmesi Bizim Elimizdedir.

Sevgili Meslektaş Kardeşlerim, Bölümümüz ve mesleğimiz ileri çağın bölümü-mesleğidir ve her geçen gün global çapta Biyoloji Bilimi ileri düzeydeki araştırmalarıyla, hayata sunduğu buluş ve imkanlarıyla Biyologluğun ne kadar nadide ve ehemmiyet teşkil eden bir meslek olduğunu göstermektedir... Ancak bununla birlikte ülkemizde çoğu meslektaş gurubumuzda yer alan insan(biyolog), Türkiye de mesleğimize verilen değerin hiç de kendi ehemmiyetine yakışır durumunda olmadığından büyük bir üzüntü duymakta ama her nedense bunun neden böyle olduğunu araştırmaya ve görmeye bile çalışmayıp, bu konuda hiçbir çözüm yolu bulmaya, sözkonusu durumdan ötürü organize olup, son derece samimi bir çözüm getirmeye çalışmamaktadır...Bu da çoğunluk teşkil eden kitlenin, samimiyetsiz tutumundan kaynaklanmakta ve bu şekilde tutumlar da organize olarak, çok samimi bir şekilde, meslek çapında insanlarımızı bilinçlendirmeye engel teşkil etmektedir.Bilinçli olarak mesleklere detaylı bakamayan bir toplumda ise; gerçeklerden kopuk, son derece mesleklere sıradan basit bir bakış söz konusu olacak,çağın bilimsel gelişmelerine paralel bir bakış açısıyla,bir mesleğin çok mühim bir bilim dalı olmasıyla fazla ilgilenilmeden, geleneksel bir yaklaşımla mesleklere değer verilmeye devam edilecektir...Bu da toplumun, çağın bilim seviyesinden daha aşağıda bir yer teşkil etmesine sebep olacak ve diğer toplumların buluşlarını kendileri elde edemeyeceğinden çağın seviyesine ulaşmak için dışarıdan getirmeye mecbur olacak bu da elbette toplumu çok yönlü etkilemeye devam edecektir... Ama eğer insanlar bu önemli konularda bilinçlendirilirse toplumda mesleklere son derece sıradan bilgisizce yaklaşımlar oluşmaz, her mesleğe hakkı kadar değer verilir; birçok nadide mesleğin önü açılır araştırma alanları korunur, iş sahaları daralmaz ve toplum aktif bir bilimsel araştıma nimetini elde ederek çağın seviyesine kendi aktif üst düzey çabalarıyla ulaşır..Bu şekilde toplumda büyük bir refah ve kalite yaşanır... Ancak çoğu bahsettiğimiz gerçek samimiyetten uzak insan, mesleğe sadece para ve kendimi kurtarayım benim ne işim var bilimle falan kazancım olan bir iş olsun yeter psikolojisiyle baktığı için meslek konusunda yakınmaları sadece bu kapsamda olmakta ve sadece bu konuda çaba sarfetmektedirler.Bu çok basit bencil bir düşüncedir ve bu şekilde düşünen insanlar yüzünden meslekler kendini düşünen hakiki hizmet vermeyen insanlarla dolmakta ve bu şekilde bir durumdan ötürü iş sahlarını asıl kendileri ellerinden aldırmaktadırlar...Oysa bir bilim dalının ve çağın önemli bir mesleğinin toplum içinde pasif kalması o toplumu bilimsel anlamda dışarıya bağımlı hale getirmekde bu da toplumu çok yönlü etkilemektedir...Toplumda pasif kalan önemi anlaşılamamış meslek her ne kadar mühim bir meslek gurubuna dahi girmiş olsa da iş sahasında toplum içinde bazı problemlerle karşılaşacaktır ve toplumda yeteri kadar kendini gösteremeyecek meslek gurubundaki insanların bir kesminin farklı bir meslekte hizmet etmesine neden olacaktır... İşte insanların çoğunluğunu oluşturan bir kısım, mesleklere para ve sadece 'kendilerini kurtarabilecekleri bir iş elde etme' gözüyle baktıkça bu mühim konu asla düşünülmeyecek bilim adına samimi çalışmalar olabilecek dereceden az olacak toplumda mesleklere gine çağın getirdiği bilim düzeyinde değilde geleneksel yaklaşımlarla değer biçilecek böylece nadide birçok meslek toplumda geri kalacak ve korunamayan iş sahaları tek tek elin altından kayıp gidecektir...Tüm bunların çözümü ise; samimi olarak kendimi kurtarayım mantığıya değil de, Bilim adına toplumun bilim çapında ilerlemesini göz önüne alıp hizmet anlayışla mesleği en iyi şekilde temsil etmek toplumu mesleki olarak bilinçlenmdirmeye çalışmakla mümkündür...Bu şekilde meslek sahalrı korunbilir araştırma sahaları güvenilir bir şekilde meslektaşlarımıza verilerek güzel sonuçlar beklenir ve de samimi hiçbir biyolog kardeşimiz ne işşiz ve de makasız kalır...Tek çözüm mesleğimizi gerek bilimsel icraatlerimizle gerek yer geldiğinde insanlara her yönüyle en güzel şekilde anlatmayla mesleğimizin kendine yakışır konuma gelmesi mümkündür...Bu konuda hepinizin daha bilinçli ve duyarlı olacağına inanıyorum inşaAllah değerli kardeşlerim... SaygılarımlaMurat KÖSEDAĞ

http://www.biyologlar.com/biyoloji-meslegine-gereken-degerin-verilmesi-bizim-elimizdedir-

Lökositlerin işlevleri

Lökositler (akyuvarlar) vücudumuzu çeşitli mikroplara ve yabancı maddelere karşı savunan ve bağışıklığı sağlayan kan hücreleridir. İşlevlerine göre farklı alt gruplara ayrılırlar. Nötrofil parçalılar (granülositler). Vücudumuza giren  mikropları ve yabancı maddeleri yutarak yok ederler (fagositoz). Kemik iliğinden kana geçen nötrofiller dolaşımda  eritrositler gibi uzun süre kalmazlar, dokulara ya da iltihap bölgelerine geçerler. Dolaşımda kalma süreleri  kısadır (4-6 saat).  Dokularda yuttukları  mikropları sindirdikten sonra  dejenere olur  ve ölürler. Nötrofil sayısı çok azaldığında (nötropeni) , gelişen infeksiyonların bir belirtisi olarak hastalarda yüksek ateş görülür. Eozinofil parçalılar. Eozinofil hücrelerin de nötrofiller gibi bakterileri yutma ve öldürmeyetenekleri vardır. Buna ek olarak özellikle allerji ve bağışıklık olaylarında rol alırlar. Bazofil parçalılar. Bazofiller ve bunların doku şekilleri olan mast hücreleri (mastosit) bazı allerji  (aşırı duyarlık) reaksiyonlarının gelişiminde rol oynarlar. Monositler. Nötrofiller gibi fagositoz yeteneğine sahip hücrelerdir. Ancak çevre kanını nötrofillere göre daha yavaş terkederler (12-24 saat). Dokulara geçtikten sonra makrofaj adı verilen büyük hücrelere dönüşürler. Dokularda aylarca yaşayabilen makrofajlar vücuda yaygın bir şekilde dağılmışlardır (akciğerler, karaciğer, dalak, lenf düğümleri, kemik iliği, vd). Monosit  ve makrofajların çok sayıda önemli işlevleri vardır. Bunların başında   yaşlanmış ya da bozuk kan hücrelerini ortadan kaldırma,  bağışıklık olaylarının gelişmesinde  lenfositlerle sıkı iş birliği içinde bulunma gelir. Lenfositler. Bağışıklık sistemimizin en önemli hücreleri, bir anlamda baş aktörleridir. Dolaşan kandan daha çok lenf düğümleri ve lenf yollarında, dalakta, sindirim, solunum yollarının içini döşeyen zarların altında yoğunlaşmışlardır. Yıllarca ölçülecek denli uzun ömürlüdürler. Lenf, lenf yolları ve lenfositler, ilerde daha ayrıntılı olarak ele alınacaktır. Şimdilik çevre kanında, lenfositlerin yapı ve işlevlerine göre üç gruba ayrıldıklarını söylemekle yetinelim: B lenfositler, T lenfositler ve NK lenfositler (NK: ing. naturel killer: doğal katil hücreler).

http://www.biyologlar.com/lokositlerin-islevleri

Biyoinformatik ve dna dizi analizi

DNA dizi analizi Dizi analizinde homoloji (benzerlik) araştırması; yeni bulunan bir dizinin bilinen tüm diğer dizilerle karşılaştırılması ve bunun sonucunda benzerlerdeki veritabanında ya da literatürde tanımlanmış bazı biyolojik işlevlerin yeni bulunan diziye yakıştırılması olarak tanımlanabilir. Bu yöntemi, genomik DNA içinden hızla ekson bulma çabasında olan pozisyonel klonlama yapan araştırma grupları tercih ederler. Bu yöntemle, dizi; benzerlikler ve protein kodlama potansiyeli yönünden araştırılarak genler belirlenir. Ve gendeki mutasyonlar ortaya konulur. İntrinsik dizi özelliklerinin araştırılması yaklaşımı ise en çok öncelikli hedefi genom dizilerini belirlemek ve üstüste çakışan dizileri (contig) birleştirmek olan dizi analizcileri tarafından kullanılır. Amaç çakışan dizilerin birleştirilmesiyle tüm gen yapısının modellenmesidir. Çoğu zaman her iki yaklaşım birlikte kullanılır. Benzerlik analizinde veritabanı araştırmaları ve dizi sıralamaları yapılırken, intrinsik analizde istatiksel özelliklerden yararlanarak eksonların belirlenmesinden protein yapısının ortaya konmasının ilk aşamalarına kadar geniş yelpazede bulgular elde edilir. Dizi bilgileri veritabanlarında iki formda bulunur Bunlardan birincisi; yazarlar/diziyi veritabanına ilk işleyenler, kaynak gösterimleri, biyolojik atıflar ve dizinin kendisiyle; intronlar, eksonlar, başlangıç ve bitiş kodonları vb bilgiyi içeren bir tablodan oluşan tam bilgi İkincisi ise; hızlı benzerlik araştırmaları için kullanılan ve sadece diziyi içeren FASTA formatıdır. Accession (ulaşma) numaraları, herbir diziyi belirleyen özgün kimliklerdir ve dizi veritabanına ilk kez girildiğinde verilir. Dizi bilgileri, patent ofisleri gibi çeşitli kaynaklardan veritabanına ulaştığından, örneğin, NCBI; non redundant (yinelenmeyen) nr (nükleotid/protein) verikümeleri oluşturmaktadır. BLAST program ailesi Veritabanlarında araştırma yapabilmek için tasarlanmış pekçok bilgisayar programı vardır. Bunlardan birisi de BLAST (Basic Local Aligment Search Tool) programıdır. Veritabanında homoloji araştırması için öncelikle uygun BLAST programının seçilmesi gerekir. BLASTN bir nükleotid dizisi ile komplementer diziyi ele alarak nükleotid dizisi veritabanlarıyla karşılaştırır. Hız amacıyla tasarlanmıştır. Yüksek duyarlılık aranan durumlar için uygun değildir. BLASTN ve BALSTX; EST verilerinin analizi, ekson yakalama yöntemi ve genomik dizi örneklemlerinin incelenmesinde kulanılır. NCBI’nın sunduğu diğer bir servis ENTREZ servisidir. ENTREZ servisinin en önemli özelliği veritabanları arasında çapraz gezinme olanağı sunmasıdır. Örneğin, bir dizi için BLAST araştırması yaptıktan sonra, ilgili gen ile ilgili literatür bilgileri MEDLINE’dan elde edilebilir. Daha sonra ilgili grafik programlarının yüklenmesi sonrasında protein yapısıyla ilgili veritabanları kullanılarak, proteinin iki veya üç boyutlu yapısı izlenebilir. Protein dizilerindeki işlevsel motifleri araştırmak amacıyla kullanılan bazı veritabanları ise PROSITE ve BLOCKS’tur. NCBI’nin bir başka alt hizmeti olan OMIM, genler ve genetik hastalıklarla ilgili ayrıntılı biyoteknolojik ve tıbbi bilgilerin bulunduğu servistir. Bu servis altında pekçok gende bugüne kadar tanımlanmış mutasyonlar ve ilgili klinik ilişkiler özetlendiğinden çok yararlıdır. Mikroarraylerle genomik yaklaşımlarda en kapsamlı proje ABD Ulusal İnsan Genom Araştırmaları Enstitüsünün Microarray projesidir (µAP). Microarray bulgularının yorumu da diğer yüksek çıktılı (highthroughput) genomik teknikler gibi biyoinformatik yöntemlerin kullanımına ihtiyaç yaratmıştır. Biyoinformatik Türkiye’de de yeni bir daldır. TUBITAK bünyesinde, Marmara Araştırma Merkezi (MAM) Gen Mühendisliği ve Biyoteknoloji Araştırma Enstitüsü diğer kuruluşlar ve uluslararası kuruluşlar arasında köprü görevi görerek ülkemizde biyoteknoloji alanında bir sanayi oluşmasına ve genişlemesine yardımcı olmaktadır.

http://www.biyologlar.com/biyoinformatik-ve-dna-dizi-analizi

BİYOLOJİK DOZİMETRİ VE İLGİLİ GELİŞMELER

Radyasyonun Biyolojik Etkileri Radyasyonun organizmaya olan etkileri akut ve kronik şekilde olmaktadır. Akut etkiler insanda radyasyona maruz kalındıktan kısa bir süre sonra klinik bulgular ile ortaya çıkmaktadırlar. Bunlar merkezi sinir sistemi (100 Sv ve üzeri), gastrointestinal (10-100 Sv) ve hemato­poietik (2-10 Sv) sendromlardır. Sendromların ortaya çıkışı absorbe edilen dozla ilişkilidir.4 Bu sendromlar bir süre sonra bireyi ölüme götürür. Radyasyonun kronik etkileri ise hücrenin ölümüne yol açmayan ancak genetik materyallerinde onarılamayan bozukluklara neden olan olaylar sonucunda ortaya çıkarlar. Kanser yapı­cı etkisi, genetik etkisi ve ömür kısaltıcı etkisi bunlara örnektir. Canlıların somatik ve genetik özellikleri kromozomlarda taşındığı için radyasyonun kromozomlarda meydana getirdiği zararlı etkiler günümüzde ve gelecekte toplum sağlığı açısından oldukça önemlidir. Dozimetri Çeşitleri ve Biyolojik Dozimetri Toplu halde veya bireysel olarak radyasyona maruz kalan bireylerin absorbe ettikleri radyasyon dozu; fiziksel veya biyolojik yöntemlerden biri ile yada her ikisiyle birlikte belirlenebilir. Bu işlem dozimetri olarak adlandırılır. Meslekleri gereği radyasyonla çalışanların fiziksel dozimetri çeşidi olan Film, Cep ve Termolüminesan dozimetrilerden birini taşımaları gerekir. Ancak fiziksel dozimetrenin vücut üzerindeki konumu nedeni ile yetersiz kalması, büyük kitlelerin zarar gördüğü toplumsal radyasyon kazalarında ise bireylerde fiziksel dozimetrenin bulunamaması ve biyolojik çeşitlilik nedeniyle kişilerin radyo duyarlılığının farklı olması biyolojik dozimetriye üstünlük sağlamakta bu nedenle de fiziksel ölçümlerin biyolojik metotlarla desteklenmesi gerekmektedir. Uluslararası Atom Enerjisi Ajansı(IAEA) radyasyon kazası durumlarında, fiziksel dozimetri ile birlikte biyolojik dozimetrinin de absorbe edilmiş dozun belirlenmesinde bağımsız olarak kullanılmasını önermiştir. Şekil 1’de dozimetri çeşitleri özetlenmiştir. Biyolojik dozimetri, genel anlamı ile kişilerin absorbe ettikleri radyasyon dozunun biyolojik indikatörler (belirleyiciler) kullanılarak ortaya çıkarılmasına denir. Biyolojik Dozimetri için ideal koşullar; 1-Dozları tahmin etmek için seçilen etkiler iyonizan radyasyonlara özgü olmalı (dientrik aberasyonları gibi), 2-Radyasyona maruz kalma sonucu oluşan etki kalıcı olmalı, eğer kalıcı değilse zamana bağlı olarak oluşan değişiklikler bilinmeli, 3-Oluşturulan kontrol doz-cevap eğrilerinde dozların aralığı mesleki ışınlamalarda olduğu gibi çok küçük dozları ve kaza durumlarında olduğu gibi birkaç Gy’e varan dozları da içermeli, 4-Farklı radyasyon kalitelerinde uygulanabilmeli (Co, X-ışını, nötron v.b), 5-Biyolojik materyal kolay elde edilebilmeli (kan gibi), 6-Ölçümler kolay ve hızlı olmalı kısa sürede sonuç elde edilmeli, 7-Kronik ve homojen olmayan ışınlamalara da uygun olmalı. Yukarıdaki özellikleri taşıyan ideal bir biyolojik dozimetri yöntemi bilinmemektedir. Fakat, insan periferal kanından lenfosit kültüründen kromozom analizinin yapılması bugün için bilinen en iyi biyolojik dozimetri yöntemidir. Biyolojik dozimetri çeşitlerinden olan kromozom dozimetrisi (sitogenetik dozimetri), kişilerin absorbe ettikleri radyasyon dozu ile insan lenfositlerinde oluşan kromozom aberasyonları arasındaki kantitatif ilişki esasına dayanır. İyonizan radyasyonların kromozomlarda oluşturdukları hasar 20.yy başlarından beri bilinmektedir. İlk olarak X-ışınlarının Drosophila'da kromozom aberasyonu oluşturduğunun bulunması ve takip eden yıllarda araştırıcıların yaptıkları çalışmalar sonucunda ilk olarak 1962 yılında kromozom aberasyonları, radyasyona maruz kalan bireylerde absorbe edilen radyasyon miktarını tespit etmek için kullanılmıştır. Kromozom aberasyonlarının absorbe radyasyon dozunun belirlenmesinde kantitatif biyolojik indikatör olarak kullanılmasından bu yana radyasyon kazaları sonunda absorbe edilmiş olan doz tayininde standartlaşmış bir yöntem olarak kullanılmaktadır. Radyasyonun canlılarda oluşturduğu etkileri değerlendirmek için başka biyolojik indikatör sistemler de geliştirilmiştir. Elekton spin rezonans, Biyokimyasal indikatörler (kıl, tükürük, saç, sperm vs), Retikülosit sayımı, Mutasyon noktalarının analizi, Monoklonal antibodyler vs. Bu tür sistemlerin çoğu örnek almadaki güçlükler, hücrelerin asenkron popülasyon (hücre siklusunun farklı evrelerinde) şeklinde bulunması ve hücrelerin yaşam sürelerinin kısa olması, yöntemin belli dozlarda etkili olması ve bazen de ışınlanma süresinin önemi nedeniyle dozimetri amacıyla rutin olarak kullanılamazlar. Biyolojik Dozimetri Amacıyla Kullanılan Kromozom Aberasyonları Unstabil (kalıcı olmayan) asimetrik kromozom aberasyonlarından olan disentrik aberasyonlar ve eşdeğerleri (trisentrik ve sentrik halka) absorbe radyasyon dozunun indikatörü olarak diğer aberasyonlara göre daha çok güvenilirdirler. Çünkü disentrik kromozom aberasyonları radyasyona özgüdürler yalnızca özel birkaç radiomimetik kimyasal (bleomisin, endoksan vs) tarafından oluşturulabilir. Doğal görülme sıklıkları (back-ground) düşüktür (1/2000) ve kolay belirlenirler. Bazı araştırıcılar doz tahminlerinde disentrik eşdeğeri kabul edilen sentrik halka (ring) kromozomları da disentriklerle birlikte kullanmaktadırlar. Sentrik halka oluşumu unstabil kromozomlarının oluşum yüzdesi içinde %5-10 civarında olduğundan doz hesaplamalarında kullanılmamaları önemli bir kayıp değildir. Serbest asentrikler, disentrik, trisentrik ve sentrik halka gibi kromozom aberasyonlarına eşlik etmez ve onlardan bağımsız olarak bulunurlar. Bu aberasyonlar radyasyon dışıetkenlerle de oluşturulabildikleri için tek başına doz tahmininde kullanılmamaktadırlar. Disentrik, trisentrik ve sentrik halka kromozom aberasyonlarının oluşumu Şekil 2’de şematize edilmiştir. Translokasyon olarak adlandırılan iki kro­mozom arasındaki simetrik değişimler de son yıllarda geliştirilen floresan boyama teknikleri (fluorescens in situ hybridisation; FISH) sayesinde biyolojik dozimetri amacıyla kullanılmaktadır. Kromatid tipi kırıklar büyük oranda kimyasal ajanlar tarafından oluşturulduğundan biyolojik dozimetri amacıyla kullanılmamaktadır. Son yıllarda yine insan periferal lenfositleri kullanılarak absorbe edilen radyasyon dozunun belirlenmesi amacıyla Mikronukleus testi çalışmaları yapılmaktadır. Mikronukleuslar sitoplazma içinde ana nukleusun dışında fakat nukleus ile şekil, yapı ve boyanma özellikleri bakımından aynı olan küçük küresel yapılardır. Radyasyona maruz kalmış lenfositlerde hasar gören kromozomlar ve onların asentrik parçaları veya mitotik iğdeki hatalar sonucu kromozomun tamamının kutuplara çekilememesi sonucu oluşurlar. Şekil 3 A’da bölünmekte olan binukleat bir hücrede kutuplara çekilemeyen bütün bir kromozom ve asentrik fragmentten mikronukleus, B’de ise yine binukleat bir hücrede disentrik köprüden nukleoplazmik köprü ve mikronukleus oluşumu şematize edilmiştir. Binukleat hücrelerdeki hücre başına düşen mikronukleus sıklığının mononukleat hücrelerdekinin iki kat olması nemlidir. Kromozom aberasyonlarının doğal oluşum sıklığı konusunda, farklı populasyonlar ile yapılan araştırmalarda özellikle disentrik sıklığında farklılıklar gözlenmiştir. Doğal disentrik oluşum sıklığının farklı bulunması, laboratuva koşulları, sayıcı ve değerlendiriciler arasındaki farklılıklar nedeniyle her biyolojik dozimetri laboratuarının kendi koşullarında, çeşitli radyasyon kalitelerinde ve farklı radyasyon dozlarında oluşturacakları kontrol doz-cevap eğrilerine sahip olmasını gerekli kılmıştır. Olası bir radyasyon kazasında alınacak radyas­yonun tipine göre, absorbe radyasyon dozunun miktarı o tipteki kontrol doz-cevap eğrilerin­den faydalanılarak bulunmaktadır. Kontrol doz-cevap eğrileri daha önce radyasyonla çalışmamış yada herhangi bir şekilde radyasyona maruz kalmamış sağlıklı bireyler­den alınan kanların akut ve homojen ışınlanmaları sonucunda oluşturulur. Biyolojik dozi­ metri amacıyla yapılan kontrol doz-cevap eğri­leri genellikle 50 mGy ile 4 Gy arasında yapılır. Eğriler oluşturulurken 0 ve 1 Gy arasında en az 5 doz noktasının olmasına özen gösterilir. Çünkü radyasyon kazaları genelde bu dozlar arasında meydana gelir.10 Standart eğri oluşturulurken çok küçük doz (<0.5 Gy) nokta­larında doz-cevap ilişkisini ortaya koymak için çok fazla hücre saymak gereklidir. Kalibras­yon eğrisini oluşturmak için toplam 10.000­15.000 hücre, bireysel doz tahmini yapmak için ise 500-1000 hücre saymak yeterli­dir. Elde edilen aberasyon verimi dikka­te alınarak %95 güvenilirlik sınırları içinde kontrol doz-cevap eğrisi çizilir. Aynı laboratuvar koşullarında 200 kV X-ışını ve Co­60 gamma radyasyonu ile ışınlanma sonucu oluşturulan kontrol doz-cevap eğrileri birlikte Şekil 4’de görülmektedir. GEREÇ VE YÖNTEMLER Materyalin Elde Edilmesi, Işınlanması Kontrol doz-cevap eğrilerini oluşturmak amacıyla elde edilen kan örnekleri genç, sağlıklı, sigara içmeyen, radyasyonla çalışmamış yada herhangi bir şekilde radyasyona maruz kalmamış bireylerden alınır. Kontrol grubu ve birinci mitozun (M1) ikinci mitoza (M2) oranını belirlemek için alınan kanlar ayrılır. Kan örnekleri steril, içleri heparin kaplı tüpler içine alınır. Eğriyi oluştururken, kullanılan doz noktalarına ait kan örnekleri radyasyon kalitesine uygun şekilde, doz hızı, dozun homojenitesi gibi kriterlere özen gösterilerek 370C’da ışınlanır. Kültür ve Tespit İşlemleri Kontrol doz-cevap eğrileri oluşturmak için ışınlanmış kan örnekleri ve radyasyona maruz kalmış bireylerde absorbe dozun tayini için alınan (~5 ml) kan örnekleri steril şartlarda, Moorhead ve arkadaşlarının mikrokültür tekniğine uygun olarak kültüre alınır. Bu yöntemde genellikle kültür stok medyumu olarak RPMI-1640+L-Glutamin, Penicilin ve Streptomicin kullanılır. Kültür ortamına mitojen olarak PHA (phytohemaglutinin) ve hücrelerin metafazda durmaları için Kolsemid kullanılır. Kültür süresi sonunda (toplam 48 saat) 0,075M KCL ile hipotonik şok uygulanır. Bu işlem sonunda 1:3 oranında asetik asit/metanol karışımı ile tespit işlemleri tamamlanır ve metafaz kromozomlarının lamlar üzerinde iyi bir şekilde dağılmaları sağlanır. % 5 Giemsa boyası ile boyanarak incelenecek duruma getirilir. Uygulanan kültür metodu Şekil 5’­de kısaca özetlenmiştir. M2/M1 Oranı ve Biyolojik Dozimetride Önemi İnsan vücudunda yaklaşık 5.2x1012 lenfosit dolaşır. Lenfositlerin % 70’i T- lenfositlerdir ve bunların yaklaşık %98’i ufak, hücre siklusunun bölünmeyen bir fazında (G0) bulunur. G0 fazında olmaları dolayısı ile biyolojik ömürleri uzundur. Metabolik olarak inaktiftirler. T-lenfositlerin kolay elde edilebilmeleri, radyasyona duyarlı olmaları, biyolojik ömürlerinin uzun olması (%90’nın yaşam süresi ortalama 3 yıl) (38) ve akut vücut ışınlamalarından 3 yıl sonra dahi lenfositlerdeki kromozom aberasyonlarının %50 sinin hala korunuyor olması, kaza üzerinden uzun yıllar geçse bile absorblanan dozun belirlenmesine olanak tanır. İnsan periferal kanında bulunan lenfositler stimüle edilerek G0 fazından çıkıp hücre siklusunda ilerlemeye başlarlar. Siklusta ilerleme hızı hücreler arasında farklılık gösterdiğinden periferal kanda senkronize olan lenfositler bölünmeye teşvik edildikleri invitro ortamda asenkron hücre popülasyonu haline gelirler. Bu yüzden bazı lenfositler M1 bölünmede iken siklusta hızlı ilerleyen bazı lenfo­sitler M2 da olurlar. Radyasyona maruz kalındıktan sonraki ilk bölünme (M1) de lenfositlerde oluşan disentrik kromozom aberasyonlarının %50’si kaybolur. Bu yüzden doz tahmini yapılırken, M1 lenfositlerde bulunan disentrik kromozom aberasyonlarının sayımı esas alınır. M2/M1 belirlenmesi için kültür ortamına BrdU (bromodeoksiüridin) ila­ve edilir. Timidin analogu olan BrdU, DNA replikasyonu esnasında timidinin yerini alır. DNA’nın yapısına girer. Floresan Plus Giemsa (FPG) boyama tekniği32 ile boyanan metafaz kromozomları Floresan mikroskopta incelenerek M2 ve M1’de olan hücreler ayırt edilir. Metodun iyi çalıştığının göstergesi olarak, M2 de olan hücreler M1den %10 daha az olmalıdır. Bu değerlerin üzerinde bulunduğunda absorbe radyasyon dozunun hesaplanmasında bazı düzeltme faktörleri kulanılır. Kültür ortamına BrdU ilave edildikten sonra DNA replikasyonu sırasında BrdU’nun DNA’nın yapısına girişi, M1 ve M2’deki hücrelerde BrdU almış kromozomların görünüşü Şekil 6’da gösterilmiştir. Kromozomların değerlendirilmesi Hazırlanan preparatlar değerlendirilirken kromozomları birbirinden belirgin olarak ayrılmış, görünüşleri düzgün ve iyi boyanmış diploid metafazlar dikkate alınır. Kromozomlar sayılırken sayıları 2n=46 ve üzeri olanlar değerlendirmeye alınır. Hücrede kararsız aberasyonlar (disentrik, sentrik halka ve serbest asentrik) bulunduğunda kromozom sayıları ile belirlenen aberasyonların birbirini dengelemesine özen gösterilir. Örneğin, hücrede bir disentrik aberasyonun varlığında ona eşlik eden bir asentrik ile sayının 46 da tutulması; bir sentrik halka bulunduğunda yine eşlik eden bir asentrik ile sayının 47 olması, bir trisentrik bulunduğunda ona eşlik eden 2 adet asentrik ile sayının 46 olması gibi durumlara dikkat edilir. Değerlendirmelerde bir trisentrik 2 disentriğe, bir sentrik halka bir disentriğe eşdeğer olarak kabul edilmektedir. 4 Gy 200 kv X-ışını uygulanan ve yukarıda anlatılan metoda uygun olarak hazırlanan ve değerlendirilen bir me­tafaz plağında disentrik ve asentrik kromozom aberasyonları Şekil 7’de görülmektedir. İstatistiksel ve Matematiksel Yöntemler Farklı iyonlaştırıcı radyasyonların eşit dozlarının birim uzaklıkta bıraktıkları enerjilerinin ve dolayısıyla oluşturdukları iyonlaşma yoğunluklarının farklı olması nedeniyle oluşturdukları kromozom aberasyonları verimleri de farklıdır. Düşük Lineer Enerji Transfer (LET)’li radyasyonların herhangi bir dozunda iyonizasyon rastgele dağılır. Kromozom hasarının da aynı olasılıkla ger­çekleştiği düşünülürse aberasyon dağılımı da rast gele olacaktır. Bu rast gele dağılımın düşük fre kanslarda meydana gelmesi Poisson dağılımı ile uygunluk gösterir. Bu bilgilere dayanarak X-ışınları ve γ gibi düşük LET’li radyasyon ile akut ve homojen ışınlanma sonucunda oluşan kromozom aberas­yonlarının Poisson dağılımına uygunluk gösterdiği belirlenmiştir. Yüksek LET’li radyasyonlarda ise iyonizasyon yoğunluğu fazla olduğundan iyonizasyon hücreler arasında rast gele dağılmaya­caktır. Yüksek LET’li radyasyonların absorblanması sonucu birbirine yakın hücrelerde birden fazla aberasyonlu hücre oluşacak ve bu oluşum Poisson dağılımından uzaklaşacaktır. Homojen olmayan ışınlamalarda ve kronik ışınlamalarda disentriklerin hücrelere dağılımlarının Poisson dağılımından sapmaları büyük olacağından Poisson’a uygunluk göstermez. Bu yüzden kontrol doz-cevap eğrileri oluşturulurken ışınlama homojenitesini kontrol etmek için disentriklerin Poisson dağılımına uygunluklarının belirlenmesi gerekir. Elde edilen aberasyon dağılımının (disentrik) Poisson'a uygunluğunu araştırmak için ilk önce her doz noktasına ait varyanslar (σ²) hesaplanır. Daha sonra varyansların aberasyon (disentrik) frekanslarına (Y) oranından elde edilen dağılım oranı (σ²/Y) bulunur. Bu dağılım oranları U testi formülünde yerine konularak her doz noktasına ait U değerleri hesaplanır. U testi sonuçlarının –1,96 ve +1,96 arasında olması dağılımların Poisson’a uygunluğunu ispatlar. Çoşkun M, Coşkun M. Biological dosimeter and related developments. Cerrahpaşa J Med 2003  

http://www.biyologlar.com/biyolojik-dozimetri-ve-ilgili-gelismeler

Balıklarda biyolojik sistemlerin işleyişi

Balıklarda sindirim sisteminde büyük farklılıklar gözlenir Bütün balıklarda görülen karaciğer genel olarak büyüktür ve yumuşak bir dokudan oluşur. Kıkırdaklı balıkların dışında, pankreasın yerini ya mide ile barsağın birleştiği mide kapısının çevresinde bulunan özel bir dokudan oluşmuş körbarsaklar ya da barsağın başlangıcında bulunan bu dokunun kendisi alır. Ağzı donatan dişler de büyük ölçüde değişkenlik gösterir. Yalnızca birkaç türde hiç diş bulunmaz. Dişler, genellikle avı tutmaya ya da parçalamaya yarar. Balıkların çoğu hayvansal besinlerle beslenirler. Yırtıcı olanların büyük bir bölümü, kendi türlerinden olanları bile ayırt etmeksizin balıklara saldırarak beslenirler. Bazılarıysa kabukluları ve yumuşakçaları yer. Az sayıda balık türüyşe bitkicildir (bitkisel maddelerle beslenirler) ya da midelerini mikroskopik hayvancıklarla dolu suların çamuruyla doldururlar. Balıkların böbrekleri omurga boyunca uzanır; ama sidik torbası göden barsağınm üstündedir ve memeililerdekinin tersine, anüs ile üreme açıklığının arkasından dışarı açılır. Balıkların sinir sistemi Balıkların beyni, bedene oranla çok küçüktür ve beyni oluşturan çeşitli bölümler eşit olmayan biçimde gelişmiştir. Bununla birlikte, beyinden çıkan sinirlerin dağılımı, öbür omurgalılar ınkiyle tam bir benzerlik gösterir. Duyu organları arasında, genellikle büyük olan göz, geniş ve çok açık olan gözbebeğiyle dikkati çeker. Derin deniz balıklarının gözleri ya körelmiş ya da çok gelişmiştir. Kulağın yapısı yalındır: Yalnızca içkulaktan oluşur.Koku alma organı, tabanı kıvrımlı bir zarla çok düzenli biçimde döşenmiş kapalı bir uçla son bulan, iki boşluktan oluşur; balıklar kokulara karşı çok duyarlıdırlar (hiç akıntı olmasa bile uzaktan yemin bulunduğu yere doğru gelirler). Buna karşılık, tat alma pek gelişmemiştir. Balıkların dili kemiktendir ve yapısında çok az sinir yer alır; ayrıca, balıklar besinlerini ağızlarında tutmazlar. Dokunma duyusu son derece gelişmiştir; böylece balıklar, şaşırtıcı bir keskinlikle, suyun en küçük titreşimlerini hissedebilir ve geldikleri yeri belirleyebilirler. Dokunmanın başlıca merkezi, omurgaya koşut olarak gövde boyunca uzanan ve yan çizgi adı verilen bir oluk içindedir. Dokunma duyusuna dudaklar da yardımcı olabilir. Balıklarda üreme Balıklarda yumurtalar genellikle beden dışında döllenir (yani ovipardırlar). Son derece ince, suyu ve dölleyici sıvıyı geçiren bir zarla kaplı olan yumurtaların büyüklüğü değişkendir. Bazı türler bir milyondan çok yumurta yumurtlar. Bütün bu yumurtalar iki zarla sarılmış bir vitellüsten oluşurlar; bazı köpekbalıklarında bir eten vardır. Dişi,, yumurtlama dönemindeyken, yumurtalar çok büyük bir gelişme gösterirler ve aşağı yukarı bütün karın boşluğunu doldururlar. Erkekte balıksütü denen sperma için de aynı şey söz konusudur. Üreme sırasında dişi ve erkek balıklar, olağanüstü etkinlik gösterirler: Su bitkilerini hareket ettirir, kıyılara yaklaşırlar ve dişi, sığ yerlere yumurtalarını döker. Yumurtalar bırakılır bırakılmaz, erkek balıklar üstlerine spermalarını bırakarak onları döllerler. Sonra erkek ve dişi, yumurtaları bırakıp giderler. Ama, dikenbalıkları, horozbinalar, yayınbalıklan gibi bazı balıkların, yuva yapma içgüdüsüyle yumurtalarını koruma altına aldıkları bilinmektedir. Bazen yalnızca erkek balığın yuvanın başında beklediği ve yavrularını koruduğu görülür. Bazı türlerde de erkek ve dişi, yavruların çevresinde durur ve bir tehlike sezdikleri anda onları geniş ağızlarının içine alarak korurlar. Bazı balık türleriyse çiftleşirler ve yumurtalar ana karnında açılır (yani ovovivipardırlar); yavrular kısa bir kanalla dışarı çıkarlar. Yalnızca köpekbalıklarında, yumurtalıktan ayrı, çoğunlukla gerçek bir dölyatağıyla son bulan uzun yumurtalık kanalları vardır. Köpekbalıkları ya canlı yavrular ya da bağsı bir maddeyle sarılmış büyük yumurtalar üretirler.

http://www.biyologlar.com/baliklarda-biyolojik-sistemlerin-isleyisi

Protoplazmanın Hidratürü

Gram k.ağ başına su miktarını belirten hidrasyonundan farklı bir terimdir ve protoplazma suyunun bağıl termodinamik aktivitesinin ölçüsüdür. Fakat fizyolojik aralıkları olan% 96 - 100 arasında aralarında doğrusal ilişki vardır, yani şişme ile hidratür paralel değişir. Protoplazma hidrasyonunun su potansiyeli - emme potansiyeli - difüzyon basıncı eksikliğine bağlı olduğu ve suya doymuş hücrede maks. olduğu görüşü termodinamik açıdan yanlıştır. Özsuyun bağıl su aktivitesi - hidratürü daima < saf su olduğundan protoplazmanın şişmesi limite gider. Özsu osmotik potansiyeli bilindiğinde protoplazma hidratürü hesaplanabilir, başka türlü de ölçülemez. Fakat OP sıcaklığa bağlı iken hidratür değildir, bu açıdan OP çöl bitkilerinin su ilişkilerinin ekolojisinde çok önemlidir. Çok değişik ekolojik ortamlarda birçok türün potansiyel osmotik basınçlarının ölçümü ile osmotik spektra elde edilir. Bu spektrum vejetasyonu oluşturan ot, sukkulent ve çalı gibi farklı yaşam formlarının osmotik basınç potansiyellerinin karşılaştırılması olanağını verir. Hidratürün tanımlanmamışolduğudönemde her tür için elde edilen en düşük ve yüksek OB potansiyelin negatifi olan potansiyel OB değerleri de belirtilerek ölçülen örnek sayısına göre ortalamaları ile beraber kullanılmıştır. Kurak alanlarda ortalama hava sıcaklığı örneğin 30 den 40 dereceye çıkarken kum yüzeyin sıcaklığı 35 den 85 dereceye kadar çıkıp gece daha hızlı olarak düşer. Hava bağıl nemi Rh-Relativ hümidite ise tam tersi ilişki gösterir, örneğin %40 dan 0a düşer ve tekrar 40’a çıkar. Kışın ise Rh ve top. suyu donma ile düşer, kuraklık etkisi yapar, bitkiler donmuş suyu alamaz, buna fizyolojik kuraklık denir. Nemli bölge ile semiarid- yarıkurak bölgenin sınırını yağış ile evaporasyon potansiyeli dengesi çizer evapotranspirasyon, yani bitki terlemesi ile topraktan buharlaşmanın toplamı esas alınr. Doğal olarak bu da havanın bağıl nemi ve dolayısı ile sıcaklığa bağlıdır. Karasal çöllerde kışın günlerin kısalığı soğuk etkisini arttırır ve hava hareketleri havanın sürekli kuru kalmasına neden olur.Yazın ise güneş enerjisi alçak basınca neden olur ve çevreden içe hava akımı yaratır. Çevre dağlık ise nem aşağıda kaldığından dağları aşamaz ve iç kısıma kuru hava akımı olur. Yaz yağışları düzensiz ve yereldir, çünkü dağları geçebilen nem yeryüzü örtüsünün heterojenitesi ve rakım farklılıkları nedeniyle konveksiyona uğrar. Kısa süreli ve yerel fırtınalar olur, özellikle sırtlar, vadiler hava akımı yarattığından bu fırtınaları destekler. Yıllık yağış çanakta 12 cm olurken dağların rüzgarlı eteklerinde 100 cm olabilir. Sukkulens ile kurağa dayanıklılık kışı sert yörelerde -1...-4 derecenin altında mineral beslenmesi ve osmotik basınca bağlı olarak direnci kırdığından karasal steplerde pek geçerli olamaz. Kış gecelerinde sıcaklıkları hava drenajı kontrol eder. Güneşin batışı ile toprak yüzeyi ve hemen üstündeki hava tabakası çabuk soğur. Soğuma ile hava yoğunluğu ve ağırlığı artar ve sırtlardan aşağıya esinti ile süzülür, çukurlarda soğuk birikirken yamaçlarda doğan boşluğu daha sıcak hava doldurur; böyle sürer. Kuvvetli bir hava akımı ve sıcaklık değişimi modeli doğar Doğal olarak çanak - tepe rakım farkları ile eğimler, kuzey ve güneye bakış önemli rol oynar. Kış yağışın bol olduğu zaman olduğundan güneye bakan yamaçlardaki daha sıcak koşullar nemin kaçmasına neden olur, kuzey yamaçlarda ise nem tutulur. Sonuçta vejetasyon- bitki örtüsü farklılıkları yüksek olur. Gün ortasındaki ortalamalar ise çanakta 15 derece iken tepelerde 4 derece gibi beklenen farklılıkları gösterir. Yazın ise koşul farklılıkları azalır, gecelerin kısalığı hava drenajı etkisini azaltır ve gece sıcaklıkları kritik değerlerden uzaktır. Anakaya jeolojisi kurak alanların erozyonu ve çölleşmesinde önemlidir. Jeomorfolojiyi ve erozyona dayanıklılığı etkiler. Çöl ortamı ana kayaç jeolojisi ile yeryüzünde cereyan eden olayların uzun süreli ilişkisi sonucudur ve aynı bölgede farklı koşullara yol açar, yani çölleşme piyesinin sahnesidir. Yeryüzündeki kayaların şekil, büyüklük ve dağılımını, ilişkilerini belirler. Erozyona bağıl dayanıklılık oranlarını hem fiziksel ve kimyasal özellikleri hem de topoğrafya ile birlikte belirlediği gibi erozyonla doğan yapıların tanecik şekil ve boyutlarını, çözünürlük ve taşınabilirliklerini de belirler. Dayanıklılığın aynı olduğu ortamlarda da iklim koşullarının etki şekli ve derecesi hem yeryüzüdeki etkisi hem de önleyici vejetasyonu sınırlayıcı etkisiyle önem kazanır. Jeolojik etki yapabilecek düzeyde yağış olmadığında rüzgar önem kazanır. Yağış hem fiziksel hem de kimyasal etkiler yaratırken rüzgarın etkisi tümüyle fizikseldir. Hava nemi ise kimyasal etki yaratır. Tipik karakteristik olan vejetasyon azlığı veya yokluğu oldukça kısa sürede de ortaya çıkabilir. Örneğin bir maden alanında 150-180cm ort. yıllık yağışa rağmen 100 km2 lik bir alan dumanlar vs.nin etkisiyle çıplaklaşıp, rüzgar ve sel etkisine açık hale gelerek erozyona uğraması sık görülebilen bir durumdur. Yoğun ve dikkatsiz tarım uygulamaları doğal vejetasyonu eriterek kuraklığı arttırıp, tarımsal verimi azaltırken, rüzgar ve su erozyonunu arttırı ve 10 yılda bile çölleşme olabilir. Entansiv tarım toprağın asitleşmesine neden olarak bitkilere yararsız hale getirir. Buna karşı toprağın kireçlenmesi gerekir. Benzer şekilde aşırı otlatma ile bitki örtüsü kaybı çölleşmeye neden olur. Semi - arid, orta kurak bölgelerdeki çorak alanlarda toprağın üst yüzeyinin kabuklaşması suyun yüzeyden akışına neden olarak topoğrafik izler bırakır. Özellikle kalker gibi çözünür kayaçları çok etkiler, yüzeydeki çentikli görünümle kendini belli eder. Fiziksel etkileri poröz kayaçlardan gevşek yapıları çekerek uzaklaştırmak suretiyle zayıflatmak ve zamanla seçii olarak bozunuma neden olmaktır. Özellikle ince taneli sedimanter kayaçlarda kendini gösterir. Kimyasal etki çözünür tuzları çekerek çöktürmesidir. Kalkerli tüf veya traverten oluşumuna neden olur. sıak dönemlerde de yüzeyde bu tuzların birikimi görülür. Çölleşme vejetasyon çeşitliliğini azaltır, toprak tekstürü, eğim, kumluluk gibi ekstrem koşullara adapte olabilen cinslerin türlerine indirgenir. Drenajı yetersiz alkali düzlüklerde vejetasyon zayıftır ve örneğin çeşitli Atriplex, Astragalus, Salvia, Thymus türleri gibi türler görülür. Halofitler de yanlarında bulunur. Sert zemin üzerindeki ağır topraklarda en iyi gelişimlerini gösteren çalı türleri özellikle Atriplex spp. dir. Yabani asma türleri yanında odunlulardan Acacia, Juniperus, Eucalyptus türleri olabilmektedir. Legüm ağaçlarından Acacia örneğinGüney Afrika, Arizona çöllerinde dahi boldur. Vejetasyon tipleri yerel topoğrafya ve edafik koşullara göre, örn. Volkanik,granitik anakaya cinsine göre farklılaşabilmektedir. Çölleşme endemik tür artışına neden olur, perenniyal/ annual oranı 3/2 gibi yüksek oranlara ulaşır. Genelde çöl türleri sürekli evrimleşme ile ortaya çıkmış ve evrimlerini sürdüren türlerdir. Özel edafik ve fizyolojik koşullarda yaşayan, sadece kuru koşullara bağlı olmayan türlerdir. Örn. tuzlu, alkalin, kumul gibi ortamlar için seçicidirler, Atriplex bunlardandır alkalin, tuzlu topraklarda susuz ortam yanında toprağın yüksek osmotik basıncına dayanıklı oluşları ile yüksek rekabet gücü elde ederler. Bazı türler çölleşme koşullarındaki mikrohabitat koşullarına alttürleri sayesinde uyum sağlamışlardır. İklim koşulları soğuk ve nemli kış koşulları ile de rekabet tablosunu etkiler. Türlere göre değişen çimlenme zamanı ve yöntemi üzerinde etkili olan başka etmenler de vardır. Empermeabl tohum kabukları sayesinde susuz ortamda desikasyona, yani kurumaya uğramadan embriyoyu canlı tutma önemlidir. Su ile yakın temas, yüksek sıcaklıkta suyun varlığı, belli bir sıcaklık değişiminin veya gündüz / gece sıcaklık ilişkisinin kurulamamış oluşu, ışık belli bir sıcaklıkta yağış gibi çok farklı etmenler çimlenmeyi engelleyebilmektedir. Çeşitli kurak bitkilerinin yapraklarından kültür ortamında diğer türlere inhibitör hatta toksik etki yapan maddeler izole edilmiştir. Bazılarının inhibitör veya zehirlerinin dökülen organlarından toprağa geçerek uzun süre etkili olabildiği ve sonra toprak biyolojik veya kşmyasal aktivitesi, yağmurun yıkaması ile bu etkinliği kaybettikleri de ortaya çıkarılmıştır. Terleme genelde yeterli su varken yüksektir. Sıcaklık, güneş ışığı, buharlaşma hızı yükselme stomalar kapanmakta terleme azalmaktadır. Mezofitlere oranla aynı koşullardaki stoma açıklığı daha yüksek kalmakta, ancak çok şiddetli ışıkta kapanmaktadırlar. Tipik olarak karanlıkta stomalar açılmaktadır. Bazı türler kurakta tüm yapraklarından kurtulmakta ve ancak su alabildiklerinde yeniden yapraklanmaktadırlar. OrtaDoğu çöl vejetasyonunun dominant perennial türlerinin çoğu herdem yeşil kamefitler olup terleme yüzeylerini mevsimsel olarak yaprak değişimi ile ayarlamaktadırlar. Tipik bir örnek türde transpirasyon yapan kütlenin %87.4 azaldığı saptanmıştır. Diğer bir faktör de vejetasyon sıklığı ile kendini gösteren rekabettir, yağış rejimine göre vejetasyon seyrelerek toplam transpirasyonu sabit tutmaktadır. Birçok sukkulent türün ekstraktlarının antibiyotik aktivitesi görülmüştür. Aynı şekilde alkaloid birikmesinin de türler arasındaki antimikrobiyal farklılıklara paralel olduğu da gösterilmiştir. Bazı sukkulentlerin gece daha az CO2 çıkarttıkları, yani asit biriktirdikleri bulunmuştur. Krassulasean asit metabolizması ileride incelenecektir. Kurak alanlarda yeraltı suyunun derinliği bitki örtüsü üzerinde etkilidir, örneğin çöllerde tabansuyu 100m. kadar derinde olabilir ve yüzeye eriştiğinde de çok tuzlu olabilir. Kalitesi iyi ise çok yararlı olur. Yeraltı sularının hareketliliği ısı, yüzey gerilimi, elektriksel alan, basınç, yerçekimi ve su kimyası gibi birçok etmenin bileşkesi olup, taban suyu üzerinde, su ile havanın beraber bulunduğu derinliklerde yüzey gerilimi ile kılcallık yer çekimini yendiğinde su yüzeye çıkar. Çöllerde toprak nemi sıcaklık değişiminin etkisi ile hareket eder. Yağıştan sonra ısınan yüzey tabakası nemi yukarı çeker ve yüzey altında depolanmasına neden olur. öellikle kil ve siltlerde kimyasal osmoz etkili olur. Çok heterojen bir dağılım gösteren toprağın kapilaritesi önemli rol oynar. Kapilariteye bağlı olarak taban suyu evapotranspirasyon etkisi ile daha kısa veya uzun sürede yeryüzüne ulaşır. Tipik olarak düzlükleri çevreleyen yamaç ve dağlardan düzlüğe süzülen ve yer altında toplanan su bu yoldan evapotranspirasyonla atmosfere geçer. Büyük düzlüklerde veya 20-40mm.lik yağışlarda ise yeryüzüne yakın kısımdan yukarı çıkarak kısa sürede evapotranspirasyona uğrar. Karbonatlı veya volkanik kayalar üzerindeki bölgelerde bu kayaçların yüksek permeabilitesi nedeniyle taban suyu hareketliliği yüksek olabilir ve yağışlı mevsimlerde vejetasyon hareketlenir. Kökleri yüzeye yakın, yatay dağılan, yüzeyde kalan suyu kullanan kserofitler ile taban suyundan yararlanan freatofitleri birbirinden ayırmak gerekir. Fretofitler tabansuyuna doymuş olan taban derinliği, evapotranspirasyonla kaybedilen oranı ve suyun kalitesi hakkında fikir verirler. Genellikle otsu freatofitler tabansuyu derinliğinin 3m.yi, çalımsı olanlar ise 10m.yi aşmadığı ortamlarda gelişirler. Ağaçlar için bu derinlik 30m.yi bulabilir. Su derinliği yanında tuzluluğu, bitki türü, toprak ve anakaya özellikleri de önemli rol oynar. Bazı türler su kalitesi indikatörüdür, örneğin tuzlu su yabani otu (pickleweed -Allenrolfea occidentalis) taban suyunun tuza doymuş olduğu yerlerde yaşar. Kavak ve söğüt içilir kalitede tabansuyu indikatörüdür, hurma su seçmez, vs. Fretofitlerin su tüketimi iklim, tür ve bireyin sağlık durumu, bitki yoğunluğu ve su derinliği ile kalitesine bağlı olarak değişir. Örneğin kavak kurak ve sıcak ortamda yılda 2000-3000mm su tüketirse iyi büyüyebilir. Genelde fterofitlerin su tüketimi yüksektir, 1 hektarlık alanda yoğun yetişme için yılda 2000m3 su gibi bir tüketim gerekir. Optimum koşullarda nemli topraktan evaporasyon doğrudan su yüzeyinden olana eşittir ve sıcak çöllerde yılda 250-320 cm cıvarındadır. Ancak suyun tuzluluğu ile bu hız azalır. Derinlerden gelen suyun evaporasyonla kaybıkapilarite tüm profilde maks. düzeyde olamadığından genelde düşüktür, Porozite 0.3 olduğunda bile ve tuzlanma yoksa yılda 0.003-0.3 mm.yi aşmaz. Fakat gene de taban suyu derinliğinin 5 m veya daha az olduğu geniş alanlarda önemli bir yer tutar. Legümlerin çoğu tuza çok duyarlıdır. Genellikle yeraltı sularında Na, Ca, Mg, HCO, Cl, SO4, H4SiO4 ve daha az oranlarda da K, CO3, Fe2 ve F bulunur. Redükleyici koşullar ve düşük pH’ta Fe++ dominant olabilir. Genel derişimler arttığında Mg(OH)+, CaSO4 ve MgCO3 önem kazanır. Genelde kurak alanlarda ve özellikle çöllerde taban suları daha tuzludur, çünkü evapotranspirasyon/yağış oranı yüksektir, yağışlar şiddetli olduğundan yukarıda toplanan tuzu tabana indirir. Freatrofik ve otsu bahar vejetasyonun tahribi, permeabilitenin iyi olmadığı topraklarda sulama ile tuzlanma,sanayileşme ile tabansuyunun kurutulması insan eliyle erozyon ve çölleşmeye neden olur.

http://www.biyologlar.com/protoplazmanin-hidraturu

Ekolojik Kirlilik

En geniş anlamıyla çevre "ekosistemler" ya da "biyosfer" şeklinde açıklanabilir. Daha açık olarak çevre, insanı ve diğer canlı varlıkları doğrudan ya da dolaylı olarak etkileyen fiziksel, kimyasal, biyolojik ve toplumsal etmenlerin tümüdür.İnsanları çevre kirliliği konusunda duyarlı hale getirebilmek için 1997 yılı çevre yılı olarak kutlandı. Çevrenin doğal yapısını ve bileşiminin bozulmasını, değişmesini ve böylece insanların olumsuz yönde etkilenmesini çevre kirlenmesi olarak tanımlayabiliriz. Artık hepimizin bildiği gibi çevreden, içindeki varlıklara göre en çok yararlanan bizleriz. Çevreyi en çok kirleten yine bizleriz. Bu nedenle "Çevreyi kirletmek kendi varlığımızı yok etmeye çalışmaktır" denilebilir. Bilinçsiz kullanılan her şey gibi temiz ve sağlıklı tutulmayan çevre de bizlere zarar verir. Bu nedenle çevre denince aklımıza önce yaşama hakkı gelmelidir. İnsanın en temel hakkı olan yaşama hakkı, canlı ya da cansız tüm varlıkları sağlıklı, temiz ve güzel tutarak dünyanın ömrünü uzatmak, gelecek kuşaklara bırakılacak en değerli mirastır. 1970'li yıllardan sonra bilincine vardığımız çevre kirliliği dayanılmaz boyutlara ulaştı. Çünkü artık temiz hava soluyamaz olduk. Ruhsal rahatlamamızı sağlayacak yeşil alanlara hasret kalmaya başladık. Yüzmek için deniz kıyısında bile yüzme havuzlarına girmek zorunda kaldık.gürültüsüz ve sakin bir uyku uyuyamaz, midemiz bulanmadan bir akarsuya bakamaz olduk. Kısaca artık kirleteceğimiz çevre tükenmek üzeredir. 2000-3000 yıl önce bir doğa cenneti ve büyük bir kısmı otlaklarla kaplı olan Anadolu'yu günümüzde bu durumlara düşürdük. Doğada kirlenmeye neden olan etmenleri, doğal etmenler ve insan faaliyetleri ile oluşan etmenler olmak üzere iki grupta inceleyebiliriz. Doğal etmenler:depremler, volkanik patlamalar, seller gibi doğadan kaynaklanan etmenlerdir. İnsan faaliyetlerinden kaynaklanan etmenler ise aşağıdaki gibi sıralanabilir. Evler, iş yerleri ve taşıt araçlarında; petrol, kalitesiz kömür gibi fosil yakıtların aşırı ve bilinçsiz tüketilmesi. Sanayi atıkları ve evsel atıkların çevreye gelişigüzel bırakılması. Nükleer silahlar, nükleer reaktörler ve nükleer denemeler gibi etmenlerle radyasyon yayılması. Kimyasal ve biyolojik silahların kullanılması. Bilinçsiz ve gereksiz tarım ilaçları, böcek öldürücüler, soğutucu ve spreylerde zararlı gazlar üretilip kullanılması. Orman yangınları, ağaçların kesilmesi, bilinçsiz ve zamansız avlanmalardır. Yukarıda sayılan olumsuzlukların önlenmesiyle çevre kirliliği büyük ölçüde önlenebilir. Çevre bilimcilere göre genelde, aşağıda verilen iki çeşit kirlenme vardır. Birinci tip kirlenme; biyolojik olarak ya da kendi kendine zararsız hale dönüşebilen maddelerin oluşturduğu kirliliktir. Hayvanların besin artıkları, dışkıları, ölüleri, bitki kalıntıları gibi maddeler birinci tip kirlenmeye neden olur. Kolayca ve kısa zamanda yok olan maddelerin meydana getirdiği kirliliğe geçici kirlilik de denir. İkinci tip kirlenme: biyolojik olarak veya kendi kendisine yok olmayan ya da çok uzun yıllarda yok olan maddelerin oluşturduğu kirliliktir. Plastik, deterjan, tarım ilaçları, böcek öldürücüler (DDT gibi), radyasyon vb. maddeler ikinci tip kirlenmeye neden olur. Kalıcı kirlenme de denilen ikinci tip kirlenmeye neden olan maddeler bitki ve hayvanların vücutlarına katılır. Sonra besin zincirinin son halkasını oluşturan insana geçerek insanın yaşamını tehlikeye sokar. Örneğin; Marmara denizine sanayi atıkları ile cıva ve kadminyum iyonları bırakılmaktadır. Zararlı atıklar besin zincirinde alglere, balıklara ve sonunda insana geçerek önemli hastalıklara ve ani ölümlere neden olmaktadır. Köy gibi kırsal yaşama birliklerindeki insanlar genellikle büyük kentlerde yaşayan insanlardan daha sağlıklı ve daha uzun ömürlüdür. Çünkü kırsal ekosistemler, çevre kirliliği yönünden kentsel ekosistemlerden daha iyi durumdadır. Bunu bilen kent insanı fırsat buldukça, çevre kirliliği en az olan kırlara, köylere koşmaktadır. Günümüzde en yaygın olan kirlilik su, hava, toprak, ses ve radyasyon kirliliğidir. Yeryüzündeki içme ve kullanma suyunun miktarı sınırlıdır. Zamanla su kaynaklarının azalması, insan nüfusunun artması ve daha önemlisi, suların kirlenmesi yaşamı giderek zorlaştırmaktadır. Su kirliliğini oluşturan etmenlerin başında lağım sularıyla sanayi atık suları gelmektedir. Bunun yanında petrol atıkları, nükleer atıklar, katı sanayi ve ev atıkları da önemli kirleticilerdir. Bunlar deniz kenarındaki bitki ve alg gibi kaynakları yok etmektedir. Kirlenme sonucu denizlerde hayvan soyu tükenmeye başlamıştır. Örneğin; Marmara denizi, kirlilik nedeniyle balıkların yaşamasına uygun ortam olmaktan çıkmıştır. Karadeniz'deki kirlenme nedeniyle hamsi ve diğer balık türleri giderek azalmaktadır. İstakozların larva halindeyken temiz su bulamamaları nedeniyle nesilleri tükenmektedir. Nehir ve göllerimizde kirlilik nedeniyle canlılar tükenmek üzeredir. Yeni yeni kurulmaya başlanan arıtma tesisleri, lağım ve sanayi atık sularını hem kimyasal hem de biyolojik olarak temizlemektedir. Böylece hem sulama suyu gibi yeniden kullanılabilir su kazanılmakta hem de denizlerin kirlenmesi önlenmektedir. Bu nedenle sanayileşme mutlaka iş yerleri planlanırken arıtma tesisleri ile birlikte düşünülmelidir. Hava, içinde yaşadığımız gaz ortamı oluşturmanın yanında yaşam için temel bir gaz olan oksijeni tutar. Oksijen yanma olaylarını da sağlayan temel bir maddedir. Temiz hava olarak nitelendirilen atmosferin alt katmanı; azot, oksijen, karbondioksit ve çok az miktarda diğer gazlardan oluşur. Ayrıca atmosferin üst katmanında bir de ozon gazının (O3) oluşturduğu tabaka vardır. Ozon, güneşten gelen zararlı ışınların çoğunu yansıtıp bir kısmını tutarak yeryüzüne ulaşmasını engeller. Evler, iş yerleri, sanayi kuruluşları ve otomobillerin çevreye verdikleri gaz atıklar havanın bileşimini değiştirir. Havaya karışan zararlı maddelerin başlıcaları kükürt dioksit (SO3), karbon monoksit (CO), karbon dioksit (CO2), kurşun bileşikleri, karbon partikülleri (duman), toz vb. kirleticilerdir. Ayrıca deodorant, saç spreyleri ve böcel öldürücülerde kullanılan azot oksitleri, freon gazları ile süpersonik uçaklardan çıkan atıklar da havayı kirletir. Zararlı gazların (özellikle kükürt bileşikleri); yağmur, bulut, kar gibi ıslak ya da yarı ıslak maddelerle karışmaları sonucunda asit yağmurları oluşur. Asit yağmurları da bir yandan orman alanları vb. yeşil alanları yok etmekte bir yandan da suları kirletmektedir. Aşırı artan CO2, atmosferin üst katmanlarında birikerek ısının, atmosfer dışına çıkmasını engeller. Böylece yeryüzü giderek daha fazla ısınır. Bu da buzulların eriyerek denizlerin yükselmesine kıyıların sularla kaplanmasına neden olabilecektir. "Sera etkisi" denilen bu olay sonucu denizlerin 16 metre kadar yükselebileceği tahmin edilmektedir. Freon, kloroflorokarbon (CFC) gibi gazların etkisiyle ozon tabakası incelmektedir. Bunun sonunda güneşin zararlı ışınlarıyeryüzüne ulaşarak cilt kanseri gibi hastalıklara ve ölümlere neden olmaktadır. Sonuçta, biyosferin canlı kitlesini yok etme tehlikesi vardır. Büyük yangınlar da önemli ölçüde hava kirliliği yaratır. Örneğin; orman yangınları, körfez savaşında olduğu gibi petrol yangınları vb. Hava kirliliği aşağıda verilen uygulamalarla önlenebilir: Hava kirliliğinin en önemli nedenlerinden olan fosil yakıtlar olabildiğince az kullanılmalı. Bunun yerine doğalgaz, güneş enerjisi, jeotermal enerji vb. enerjilerin kullanımı yaygınlaştırılmalıdır. Karayolu taşımacılığı yerine demiryolu ve deniz taşımacılığına ağırlık verilmelidir. Büyük kentlerde toplu taşıma hizmetleri yaygınlaştırılmalıdır. Böylece, otomobil egzozlarının neden olduğu kirlilik azaltılabilir. Sanayi kuruluşlarının atıklarını havaya vermeleri önlenmelidir. Yeşil alanlar artırılmalı, orman yangınları önlenmelidir. Ozon tabakasına zarar veren maddeler kullanılmamalıdır. Canlılığın kaynağı sayılabilecek toprağın yapısına katılan ve doğal olmayan maddeler toprak kirliliğine neden olur. Böyle topraklarda bitkiler yetişmez ve toprağı havalandırarak yarar sağlayan solucan vb. hayvanlar yaşayamaz duruma gelir. Topraktan bitkilere geçen kirletici maddeler, besin zinciri yoluyla insana kadar ulaşır. Hastahane atıkları gibi mikroplu atıklar, hastalıkların yayılmasına neden olur. Toprak kirliliğine neden olan başlıca etmenler: Ev, iş yeri, hastahane ve sanayi atıkları. Radyoaktif atıklar. Hava kirliliği sonucu oluşan asit yağmurları. Gereksiz yere ve aşırı miktarda yapay gübre, tarım ilacı vb. kullanılması. Tarımda gereksiz ya da aşırı hormon kullanımı. Suların kirlenmesi. Su kirliliği toprak kirliliğine neden olurken, toprak kirliliği de özellikle yer altı sularının kirlenmesine neden olur. Toprak kirliliğinin önlenmesi için aşağıdaki uygulamalar yapılmalıdır. Verimli tarım topraklarında yerleşim ve sanayi alanları kurulmamalı, yeşil alanlar artırılmalıdır. Ev ve sanayi atıkları, toprağa zarar vermeyecek şekilde toplanıp depolanmalı ve toplanmalıdır. Yapay gübre ve tarım ilaçlarının kulanılmasında yanlış uygulamalar önlenmelidir. Nükleer enerji kullanımı bilinçli şekilde yapılamlıdır. Sanayileşme ve modern teknolojinin gelişmesiyle ortaya çıkan çevre sorunlarından biri de ses kirliliğidir. Gürültü de denilen ses kirliliği, istenmeyen ve dinleyene bir anlam ifade etmeyen sesler ya da insanı rahatsız eden düzensiz ve yüksek seslerdir. Ses kirliliğini yaratan önemli etmenler; Sanayileşme Plansız kentleşme Hızlı nüfus artışı Ekonomik yetersizlikler İnsanlara, gürültü ve gürültünün yaratacağı sonuçları konusunda yeterli ve etkili eğitimin verilmemiş olmasıdır. Ses kirliliği, insan üzerinde çok önemli olumsuz etkiler yaratır. Bu etkileri aşağıdaki gibi sıralayabiliriz. İşitme sistemine etkileri: Ses kirliliği işitme sistemi üzerinde, geçici ve kalıcı etkiler olmak üzere iki çeşit etki yapar. Ses kirliliğinin geçici etkisi, duyma yorulması olarak da bilinen işitme duyarlılığındaki geçici kayıplar şeklinde olur. Duyma yorulması düzelmeden tekrar gürültüden etkilenilmesi ve etkileşmenin çok fazla olması durumunda işitme kaybı kalıcı olur. Fizyolojik etkileri: İnsanlarda görülen stresin önemli bir kaynağı ses kirliliğidir. Ani olarak oluşan gürültü insanın kalp atışlarında (nabzında), kan basıncında (tansiyonunda), solunum hızında, metabolizmasında, görme olayında bozulmalar yaratır. Bunların sonucunda uykusuzluk, migren, ülser, kalp krizi gibi olumsuz durumlar ortaya çıkar. Ancak en önemli olumsuzluk kulakta yaptığı tahribattır. Psikolojik etkileri: Belirli bir sınırı aşan gürültünün etkisinde kalan kişiler, sinirli, rahatsız ve tedirgin olmaktadır. Bu olumsuzluklar, gürültünün etkisi ortadan kalktıktan sonra da sürebilmektedir. İş yapabilme yeteneğine etkileri: Özellikle beklenmeyen zamanlarda ortaya çıkan ses kirliliği, iş veriminin düşmesi, kendini işine verememe ve hareketlerin engellenmesi şeklinde performansı düşürücü etkiler yapar. Gürültünün öğrenmeyi ve sağlıklı düşünmeyi de engellediği deneylerle saptanmıştır. Ülkemizde, insanları gürültünün zararlı etkilerinden korumak için gerekli önlemleri içeren ve çevre yasasına göre hazırlanmış olan "Gürültü kontrol yönetmeliği" uygulanmaktadır. Ancak yönetmeleğin hedeflerine ulaşabilmesi için insanların bu konuda eğitilmeleri ve bilinçlendirilmeleri gerekir. Ses kirliliğinin saptanmasında ses şiddetini ölçmek için birim olarak desibel (dB) kullanılır. İnsan için 35-65 dB sesler normaldir. 65-90 dB sesler, sürekli işitildiğinde zarar verebilecek kadar risklidir. 90 dB'in üzerindeki sesler tehlikelidir. Ses kirliliği aşağıdaki uygulamalarla önlenebilir: Otomobil kullanımını azaltacak önlemler alınmalıdır. Ev ve iş yerlerinde ses geçirmeyen camlar (ısıcam gibi) kullanılmalıdır. Eğlence yerleri vb. ortamlarda yüksek sesle müzik çalınması engellenmelidir. Gürültü yapan kuruluşlar, şehirlerin dışında kurulmalıdır. Radyoaktif element denilen bazı elementlerin atom çekirdeğinin kendiliğinden parçalanarak etrafa yaydığı alfa, beta ve gama gibi ışınlara radyasyon denir. Çevreye yayılan bu ışınlar, canlı hücreleri doğrudan etkileyerek mutasyon denilen genlerdeki bozulmaya neden olur. Çok yoğun olmayan radyasyon, canlının bazı özelliklerinin değişmesne neden olurken yoğun radyasyon, canlının ölümüne neden olabilir. Örneğin; 1945'te Japonya'ya atılan atom bombası, atıldıktan sonraki 7 gün içinde, vucutlarının tamamı 10 saniye radyasyon almış insanların % 90'ı hiç bir yara ve yanık izi olmadan öldü. 26 Nisan 1986'da Çernobil'deki nükleer kazanın; ani ölümler, gebe kadınlarda düşük olayları, kan kanseri, sakat doğumlar gibi olumsuz etkileri oldu. Bir çevredeki belli bir dozun üzerinde olan radyasyon, canlının vücut hücrelerini etkileyerek doku ve organlarda bozulmalara, anormalliklere, üreme hücrelerini etkileyerek doğacak yavrularda sakatlıklara neden olur. Uzun süre radyasyon etkisinde kalmanın yaratacağı sonuçlar aşağıdaki gibi sıralanabilir: Kanser oluşması, Ömrün kısalması (erken ölümler), Katarakt oluşması, Sakat ve ölü doğumlar şeklinde sıralanabilir Radyasyonun zararlı etkilerinden korunmak için, alınabilecek başlıca önlemler şunlardır: Özel giysiler (kurşun önlük, özel maske) kullanılmalıdır. Radyasyon kaynağından uzak durulmalı, en kısa sürede radyasyonlu ortam terk edilmelidir. Radyasyonlu cihazlarla yapılan teşhis ve tedaviye sık sık başvurulmamalıdır. Radyasyon, doğadaki radyoaktif maddelerden çok, bunların kullanıldığı ortam ve olaylardan çıkar. Bunlar; nükleer santraller, nükleer enerjiyle çalışan gemiler ve nükleer denemelerdir. Ayrıca teşhis ve tedavide kullanılan bazı cihazlar, tıbbi malzemelerin ve suların dezenfekte edilmesi için kullanılan araçlardan da radyasyon yayılmaktadır RADYASYON SES KİRLİLİĞİ TOPRAK KİRLİLİĞİ HAVA KİRLİLİĞİ SU KİRLİLİĞİ

http://www.biyologlar.com/ekolojik-kirlilik

BİYOTEKNOLOJİK ÜRÜNLER, ORGANİK ÜRÜNLER VE ULUSLARARASI TİCARETTEKİ GELİŞMELER

Modern biyoteknoloji ifadesi, genel olarak, modern bilgi ve tekniklerin uygulanması ile yapılan, genetik mühendisliğine dayalı tekniklerle gerçekleştirilen biyoteknolojiyi tanımlamakta kullanılmaktadır. Günümüzde özellikle tarım ve eczacılık sanayi alanlarında, modern biyoteknoloji yöntemleri kullanılarak çeşitli özelliklere sahip yeni canlı türleri elde etmek mümkün hale gelmiş, bu şekilde üretilen tarım ürünleri ve bunları içeren işlenmiş ürünler ile eczacılık sanayi ürünleri uluslararası ticarete giderek artan oranda konu olmaya başlamıştır. Pahalı ve ileri teknoloji altyapısını gerektiren bu ürünler bünyelerinde birtakım riskleri de barındırmaktadırlar. Çeşitli çevrelerde, bu ürünlerin doğal canlı çeşitliliğine, insan sağlığına ve sosyo-ekonomik yapıya zarar verebileceği öngörüleri bulunmakta, ancak bu zararın boyutları tahmin edilememektedir. Bu nedenle bir çok ülke, bu alandaki ulusal politikalarını tespit ederek, anılan ürünlerin ticaretini, doğaya salımını ve kullanımını disiplin altına almışlardır. Organik ürün ifadesi, üründen çok ilgili ürünün üretim sürecini öne çıkaran bir anlam içermektedir. Uluslararası Gıda Kodeksi tanımına göre, organik tarım; “topraktaki biyolojik hareketi, biyolojik dönüşümü ve biyolojik çeşitliliği de içeren tarımsal eko sistem sağlığını artıran ve zenginleştiren bir üretim ve işletim sistemidir”. Organik tarım denildiğinde, sentetik girdilerin kullanımının yasaklandığı, toprağın doğal zenginliğini artıran bir ürün ekim sıralamasına göre üretimin esas alındığı, insan ve çevre sağlığı üzerinde zararlı etkileri olmayan doğal girdilerin kullanımının gerekli tutulduğu bir üretim süreci anlaşılmaktadır. Son zamanlarda, özellikle gelişmiş ülkelerde organik tarım ürünlerine yönelen talep gelişme yolundaki ülkeler için yeni ihracat olanakları ortaya çıkarmıştır. Buna bağlı olarak, belirli ülkelerdeki organik ürün üretimi ve ihracatında büyük bir gelişme kaydedilmiştir (Örneğin: AB’- deki bebek gıda sanayiinin talebini karşılamak üzere üretilen tropik meyveler, Güney Afrika pazarı için üretilen Zimbabwe baharatları, AB pazarı için altı Afrika ülkesinde üretilen pamuk, vs.). Bu açıklamalar ışığında, bu çalışmada genelde tarım ürünlerinin, özelde modern biyoteknoloji yöntemleriyle üretilen ürünler ve organik ürünlerin uluslararası ticaretinde kaydedilen gelişmeler; uygulanan çok taraflı ticaret kuralları; Dünya Ticaret Örgütü (DTÖ)’ nde tarım ürünleri ticaretini ilgilendiren yeni müzakere sürecinde bu ürünlerle ilgili olarak ortaya çıkabilecek gelişmeler ve bu ürünlere yönelik tüketici yaklaşımları konusuna yer verilmektedir. I. Küreselleşme, Dünya Ticaretindeki Gelişmeler, Biyoteknolojik ve Organik Ürünler: Dünya ticaret hacmindeki gelişmeler, uluslararası sermaye hareketlerindeki artış, çok uluslu şirketlerin gün geçtikçe daha fazla büyümesi ve güçlenmesi küreselleşmede etkili olan unsurlardır. Bu unsurlar aynı zamanda tarım ve gıda sektöründeki gelişmelerde ve teknolojik ilerlemelerde de etkili olmuştur. Küreselleşme ve iletişim olanaklarındaki gelişmeler dünya ticaretinde değişikliklere yol açmış, yeni ürünleri ve kavramları ortaya çıkarmıştır. Modern biyoteknolojideki gelişmelere bağlı olarak biyoteknolojik ürünlerin ve ayrıca, refah ve bilinçlenme düzeyindeki artışa bağlı olarak organik ürünlerin ticareti konusu gündeme gelmiştir. Uruguay Round çok taraflı ticaret müzakereleri sonucunda kabul edilen anlaşmaların 1995 yılında hayata geçmesiyle birlikte tarım sektörünün küresel ekonomiye entegrasyonu hızlanmış ve çok taraflı ticaret sisteminde tarım ürünleri ticaretine uygulanacak kurallar hükme bağlanmış; teknik engel ve sağlık önlemi olarak yapılacak uygulamalar belirli bir disiplin altına alınmış; fikri mülkiyet hakları alanında uygulanacak kurallar belirlenmiş; yeni bir kurumsal yapıyla etkin olarak çalışan bir uluslararası kuruluşa -Dünya Ticaret Örgütü (DTÖ)- hayat verilmiştir. Günümüzde, genel olarak, konvansiyonel ürünler olarak tanımlanan geleneksel ürünler ile modern biyoteknoloji yöntemleri kullanılarak üretilen genetik ürünler ve organik ürünlere uygulanan çok taraflı ticaret kuralları arasında farklılıklar bulunmamaktadır. Çok taraflı ticaret sisteminin bütün bu ürünler için geçerli olan en temel prensipleri; yerli ve yabancı ürünler arasında ayırım yapmamayı öngören milli muamele kuralı, bir ülke ürünlerine yönelik lehteki uygulamanın bütün diğer üye ülkelerin ürünlerine yönelik olması gerektiği konusundaki MFN kuralı ve ayrıca, dış ticaret uygulamalarında açıklığı öngören şeffalık kuralıdır. İlgili DTÖ Anlaşmalarına -Ticarette Teknik Engelller Anlaşması (TBT) Sağlık ve Bitki Sağlığı Önlemleri Anlaşması (SPS)- göre ticarette sağlık önlemi veya teknik önlem olarak yapılmasına izin verilen uygulamalarda, modern biyoteknoloji yöntemleriyle üretilen ürünler için özel düzenlemelere yer verilmemiştir. Fakat, ilgili Anlaşmalara göre, bilimsel temellerinin olması ve uluslararası standartlara dayanması koşuluyla, bu ürünlerin dış ticaretinde teknik önlem veya sağlık önlemi alınması mümkün bulunmaktadır. Diğer taraftan, DTÖ Ticaretle Bağlantılı Fikri Mülkiyet Hakları (TRIPS) Anlaşması, sanayide uygulanabilir olması ve bir yeniliği de beraberinde getirmesi koşuluyla teknolojik gelişmelerin patente bağlanabileceği hükmünü içermektedir. Bu kapsamda biyoteknolojik üretimdeki gelişmeler de patent konusu olabilmektedir. Modern biyoteknoloji yöntemleriyle üretilen ürünlerin ticaretinde uygulanacak kurallar konusu 1999 yılının başlarında DTÖ gündemine gelmiştir. Bu ürünlerin büyük bir ticari potansiyel olarak ortaya çıkması, Biyolojik Çeşitlilik Sözleşmesi kapsamında hazırlanan ve Cartagena’da yapılan Biyogüvenlik Protokolü taraflar toplantısının başarısızlıkla sonuçlanması ve bunu izleyen dönemde çeşitli DTÖ üyesi ülkelerin biyoteknolojik yöntemlerle üretilen çeşitli ürünlerin ticareti, üretimi ve kullanımında bu ürünleri doğal ürünlerden ayıran kontrol mekanizmalarını oluşturduklarına ilişkin (izin, risk değerlendirme veya etiketleme zorunluluğu) bildirimlerini DTÖ’ ne iletmeleri sonucunda konu özellikle tarımla bağlantılı olarak DTÖ gündemine girmiştir. DTÖ’nün Seattle Bakanlar Konferansı hazırlıkları sırasında ABD, Japonya ve Kanada gündeme getirdikleri bir öneri ile, genetik olarak değiştirilmiş mikroorganizmalardan üretilen ürünlerin ticaretindeki uygulamalar ve bunların ilgili DTÖ Anlaşmaları kapsamında incelenmesi amacıyla, bir çalışma grubu kurulmasını istemişlerdir. Dünya ticaretindeki diğer konuların yanısıra, tarım ürünleri ticaretinde de geniş kapsamlı yeni bir serbestleşme hareketini ve daha ileri bir entegrasyonu başlatması beklenen ve Millenium Round olarak tanımlanan ticaret müzakereleri; geçtiğimiz yıl Aralık ayında Seattle’da yapılan DTÖ’ nün III. Bakanlar Konferansında, gündemdeki konular üzerinde uzlaşmaya varılamaması nedeniyle başlatılamamıştır. Biyoteknolojik ürünler ve organik ürünlere uygulanacak kurallar konusu sadece DTÖ’ de değil, aynı zamanda farklı uluslararası kuruluşlarda da ele alınmaktadır. Temel gıda güvenliğini kontrol amacıyla uygulanacak genel standartları oluşturma görevi, Birleşmiş Milletler Gıda ve Tarım Örgütü (FAO) ile Dünya Sağlık Örgütü (WHO) tarafından, ortak gıda standart programını uygulamak üzere kurulan "Codex Allimentarious Commission"a verilmiştir. Bu kapsamda anılan Komisyon, biyoteknolojik yöntemlerle üretilen ürünler ve organik ürünler için uygulanacak temel gıda standart programlarını oluşturmaktadır. Konuyla ilgili diğer uluslararası kuruluşlar ise; Birleşmiş Milletler Sanayi Kalkınma Teşkilatı (UNIDO), Birleşmiş Milletler Gıda ve Tarım Örgütü (FAO), Dünya Sağlık Örgütü (WHO), Uluslararası Genetik Mühendisliği ve Biyoteknoloji Merkezi (ICGEB), Ekonomik İşbirliği ve Kalkınma Teşkilatı (OECD), Birleşmiş Milletler Çevre Programı (UNEP), Biyolojik Çeşitlilik Sözleşmesi (CBD), Uluslararası Hayvan Hastalıkları Ofisi (OIE), Uluslararası Organik Tarım Hareketleri Federasyonu (IFOAM)dır. II.Gelişme Yolundaki Ülkeler, Seattle Konferansı ve Biyoteknolojik Ürünlerin Ticareti: Dünya ticaretini yönlendiren kuralların belirlendiği tek uluslararası kuruluş olan DTÖ’ nün toplam 136 üyesinin %80’nden fazlası; gelişme yolundaki ülkeler, en az gelişmiş ülkeler ve pazar ekonomisine geçiş sürecini yaşayan ülkelerden oluşmaktadır. Günümüzde, çok taraflı ticaret kurallarının gelişmiş ülkelerin tekelinde şekillenmediğini belirtmek mümkündür. Dünya ticaretinde büyük beklentilere yol açan ancak, başarısızlıkla sonuçlanan Seattle Bakanlar Konferansı sırasında, gelişmiş ülkelerin dünya ticaretindeki gelişmeleri tek başlarına yönlendiremeyecekleri ve gelişmekte olan ülkelerin çıkarlarını da dikkate almak zorunda oldukları anlaşılmıştır. Seattle görüşmelerinin yeni çok taraflı ticaret müzakerelerini başlatmaktaki başarısızlığının altında yatan en önemli iki nedenden birincisi, gündemdeki konular üzerinde, özellikle de çevre, sağlık, tarım, kültürel çeşitlilik, tekstil, fikri mülkiyet hakları, sosyal standartlar, rekabet gibi hassas konularda, gelişmiş ve gelişme yolundaki ülke çıkarları ve beklentileri arasında önemli farklılıkların bulunması ve her iki tarafın da taviz vermemesidir. İkinci neden ise, kamuoyu baskısıdır. Küreselleşmeyle birlikte birçok konunun birbiriyle bağlantılı olarak ele alınması gerekliliği ortaya çıkmış ve kamuoyu kendisini ilgilendiren alanlardaki gelişmelere karşı duyarlılığını sivil toplum kuruluşları kanalıyla, yoğun bir biçimde ortaya koymuştur. Gelişme yolundaki ülkelerin ve kamuoyunun, modern biyoteknoloji yöntemleriyle üretilen ürünlerin ticaretiyle ilgili olarak, üzerinde önemle durdukları ve hassas oldukları konular şunlardır: Modern biyoteknolojinin tarım sektöründeki eski sorunlara yeni çözümler üreterek kırsal kalkınmaya katkı sağlayabileceği belirtilmektedir. Ancak, biyoteknolojik araştırma yöntemleri geleneksel yöntemlere göre daha pahalıdır ve daha zor uygulanabilmektedir. Bu nedenle araştırmalar az sayıdaki ülkede, belirli firmalar tarafından sürdürülmektedir. Geleneksel yöntemlere göre sürdürülebilir gıda üretimi iklim, toprak ve su koşullarına bağlıdır. Modern biyoteknolojik yöntemlerle yapılan üretimde bunlardan bağımsız olarak üretim yapabilme olanağı bulunmaktadır. Ancak bu tür bir üretimin biyolojik çeşitlilik, insan, hayvan ve bitki sağlığı üzerinde kısa, orta ve uzun dönemde oluşturabileceği olumsuzlukların bilinmesi ve önlenmesi gerekmektedir. Modern biyoteknoloji yöntemleriyle yapılacak üretimde, kullanılan teknolojinin ne kadarının dışarıdan ithal edileceği, ne kadarının içeride üretileceği önemlidir. Bu yöntemlere başvurulduğunda sadece ürünün alınması yeterli olmayacak, teknolojinin de alınması gerekecektir. Modern biyoteknoloji alanındaki pek çok yenilik patente bağlanmıştır. Patent uygulaması, teknolojiyi üretmeyen ancak kullanmak durumunda olan ülkeler açısından ağır bir bedel ödenmesi anlamına gelmektedir. Çok uluslu şirketlerin zengin biyolojik çeşitliliğe sahip gelişme yolundaki ülkelerdeki canlı türlerinin genetik materyallerini patente bağlamaları ve ticari ürün olarak kullanmalarının önüne geçilmesi gerekmektedir. III. DTÖ Tarım Müzakereleri ve Biyoteknolojik Ürünlerin Ticareti: Her nekadar, DTÖ Seattle Bakanlar Konferansı yeni ticaret müzakerelerini başlatmak konusunda başarısızlıkla sonuçlanmış ise de, bu durum DTÖ Tarım Anlaşması kapsamında yapılması gereken tarım müzakerelerinin başlatılmasına engel olamamıştır. DTÖ Tarım Komitesi’nin 23 Mart 2000 tarihinde başlayan toplantısında tarım ürünleri ticaretindeki çok taraflı ticaret müzakerelerinin başlatılmasına karar verilmiştir. Tarımdaki reform sürecinin devamı ile ilgili olarak, DTÖ Tarım Anlaşmasının 20. Maddesi kapsamında yapılması öngörülen ticaret müzakerelerinde: tarımsal desteklemelerde azaltma, tarımdaki korumaların azaltılması, doğrudan ticaretle ilgili olmayan konular (tarımın çok yönlülüğü), başlıkları altında; pazara girişin kolaylaştırılması, iç destekler ve ihracat desteklerinin azaltılması, “peace clause” olarak tanımlanan sulh hükmünün gözden geçirilmesi, tarımın çok yönlü etkilerinin tartışılması, gıda güvenliği ve kalitesi konularının ele alınması beklenmektedir. Müzakereler sırasında, gıda güvenliği ve tarım ürünleri ticaretindeki engellerin kaldırılması başlıkları altında, belirli ülkelerin, özellikle de ABD'nin, modern biyoteknoloji yöntemleri kullanılarak üretilen genetik ürünlerin ticaretini kolaylaştırmaya yönelik uluslararası çerçevenin oluşturulması konusunda ısrarlı davranmaları beklenmektedir. Bu doğrultuda, DTÖ’de, yeni tarım müzakereleri döneminde, üzerinde önemli pazarlıkların yapılabileceği alanlardan birinin modern biyoteknoloji ile üretilen tarım ürünlerinin ticaretinde uygulanacak kurallar olduğunu belirtmek yanlış olmayacaktır. IV.Tüketici Eğilimleri ve Organik Ürünlerin Ticareti: Son zamanlarda, özellikle gelişmiş ülkelerdeki tüketici talebi refah ve bilinçlenme düzeyindeki artışa, iletişim ve ulaşım olanaklarındaki gelişmeye bağlı olarak organik ürünlere yönelmektedir. Tarım ürünü üreticisi ve ihracatçısı bazı gelişmekte olan ülkeler, bu talebi karşılamak üzere, organik tarım ürünlerinin üretimi ve ticareti üzerine yoğunlaşmaktadırlar. Organik tarımın öneminin sürekli arttığını belirtmek mümkündür. Ancak, organik ürün ve pazarlarla ilgili araştırmalar sınırlı, geleceğe ilişkin tahminler ise yetersizdir. Diğer taraftan, Dünya ticaretinde, organik ürünlerin ticareti biyoteknolojik ürünlerin ticareti kadar hızla artmamaktadır. Organik tarım ürünlerine yönelen talep gelişme yolundaki ülkeler için yeni ihracat olanakları yaratmıştır. Ancak, organik tarım ürünlerinin, organik olmayan ürünlere göre daha pahalıya üretilmesi ve satılması; organik tarım işletmeciliğine geçişin belirli bir zamanı gerektirmesi; organik üretimin sertifikayla belgelenmek durumunda olması ve organik ürün ve pazarlarla ilgili araştırmaların sınırlı olması organik ürün ticaretinin yaygınlaşmasının önündeki en önemli nedenlerdir. 1997 yılı itibariyle dünyada 10.455 milyon dolar tutarında olduğu belirlenen organik ürün perakende satışlarının % 50'sinden fazlası Avrupa ülkelerinde gerçekleşmiştir. Avrupada en gelişmiş organik gıda ve içecek pazarına sahip olan ülkeler Almanya, Fransa, İtalya ve İngiltere'dir. 1997 yılındaki satışların yaklaşık % 40'ı ABD'de, %10'u ise Japonya'da yapılmıştır. V. Biyoteknolojik Ürünlerin Ticareti: Dünya ticaretinde biyoteknolojik ürünlerin pazar payı hızla artmaktadır. Bu yöntemle büyük ölçekli üretim yapılabilmesi ve ayrıca, biyoteknolojik ürünlerin üretilmesi için gerekli teknolojik gelişmenin patent haklarının saklı tutulabilmesi nedenleriyle ticari kazancın boyutları da hızla artmaktadır. Modern biyoteknoloji yöntemleriyle elde edilen ürünlerin yaklaşık %74'ü ABD'de, geriye kalanı ise Arjantin (%15); Kanada (%10); Avustralya, Meksika, İspanya, Fransa Güney Afrika ve Çin Halk Cumhuriyeti'nde (%1) üretilmektedir. Bugün için, modern biyoteknoloji yöntemleriyle üretilen yaklaşık 80 adet genetik ürünün uluslararası ticarete konu olduğu bilinmektedir. Yapılan araştırmalar, 1998 yılında biyoteknolojik yöntemlerle üretilen bitkilerin tüm satışlarının 1,5 milyar dolar civarında olduğunu, bu ürünlerin 1995-1998 dönemindeki satış gelirlerinin % 20 oranında arttığını göstermektedir. Bu trendin devam etmesi halinde, sözkonusu bitkilerin tüm satışlarının bu yıl 3 milyar dolara, 2005 yılında 8 milyar dolara, 2010 yılında ise 25 milyar dolara ulaşabileceği tahminleri yapılmaktadır. Biyoteknolojik ürünlerin tamamında, orta ve uzun dönemde, 100-150 milyar dolarlık potansiyel bir ticaret hacminden söz edilmektedir. VI. Tüketici Tercihleri ve Uluslararası Ticaret: Uluslararası ticareti yönlendiren unsurlardan biri tüketici tercihleridir. Tüketiciler bilimsel ve teknolojik gelişmeler karşısında daha bilinçli davranmak durumunda olan kesimdir. Bu kesim konuya sağlık, çevre ve etik kurallar olmak üzere üç farklı açıdan yaklaşmaktadır. Genel olarak tüketiciler, teknolojik gelişmelerin çok yönlü etkilerinin bulunduğunu ve bu etkilerin bazılarının olası riskleri de beraberinde getirdiğini bilirler ve kararlarını bilinçli olarak vermek isterler. Ayrıca, bunları bilimsel ve etik değerlendirmelerin gerektirdiği kritik kararlar olarak görürler. Yapılan araştırmalar, OECD ülkeleri arasında, Kuzey Amerika ülkeleri ile Avrupa ülkeleri arasında, biyoteknolojik ürünlere yaklaşım şeklinde önemli farklılıklar bulunduğunu ortaya koymaktadır. Bir kesim -Amerikalılar- gıda üretimi için modern biyoteknolojinin kullanımına olumlu yaklaşır ve modern biyoteknolojinin gıda üretimi açısından olduğu gibi, çevrenin de yararına olduğunu belirtirken, diğer kesim -Avrupalılar- bu düşüncenin aksine konuya şüpheyle yaklaşmaktadır. Amerika ve Avrupa ülkeleri arasındaki bu yaklaşım farklılığı mevzuat düzenlemelerine de yansımıştır. AB genetik olarak değiştirilmiş mikroorganizmalardan üretilen ürünlerin onaylanması konusunda ABD'den farklı bir süreç izlemekte ve uygulamaları "ihtiyatlılık" ilkesine dayanmaktadır. AB'nin Yeni Gıdalar Yasası, biyoteknolojik yöntemlerle üretilen ürünlerin etiketlenmesini gerektirmektedir. Biyoteknolojik ürünlerin ticaretinde uygulanacak kurallar konusunda, AB ile ABD arasında ciddi görüş farklılıkları bulunmaktadır. AB uluslararası kuruluşlardaki çalışmalarda, biyoteknolojik ürünlere yönelik etiket uygulamasının yaygınlaşması için çalışmaktadır. ABD ise, bu ürünlerin besin değeri, sağlık üzerine etkileri ve alerjik özellikleri bakımından incelendiğini ilgili kuruluşlar tarafından onaylanan genetik ürünlerin geleneksel benzerlerinden farklı bir sağlık riski taşımadığının kanıtlandığını belirtmekte, AB'yi ticarette korumacı uygulamalar yapmakla suçlamaktadır. Her iki taraf konuyu Transatlantik Ekonomik Ortaklığı, Transatlantik İş Diyaloğu ve OECD bünyesinde ve ayrıca, DTÖ tarım müzakereleri kapsamında görüşmektedir. Tüketiciler açısından esas olan kaygı, gıda üretiminde genetik biliminin kullanılmasının olası bilinmeyen riskleridir. Bu durum sağlık ve çevre açısından kabul edilebilir risk düzeyinin tanımlanmasını da güçleştirmektedir. Bu kaygılar tüketicileri, modern biyoteknoloji yöntemleriyle üretilen ürünlerin etiketlenmesi veya bu ürünlerin orta ve uzun dönemli etkileri konusunda risk değerlendirmesinin yapılması yönünde talepte bulunmaya yönlendirmektedir. VII. Etiketleme Uygulaması ve Uluslararası Ticaret: Çoğu kez, modern biyoteknoloji yöntemleriyle üretilen ürünler ile geleneksel yöntemlerle üretilen ürünleri birbirinden ayırt edebilmek mümkün değildir. Ancak, etkin pazar çözümlerine ulaşabilmek için, tüketicilerin aldıkları ürünle ilgili her türlü bilgiye ulaşabilmeleri gerekir. Bu doğrultuda etiketleme, uluslararası ticarette sıkça karşılaşılan ve tartışılan bir uygulamadır. Uluslararası ticarette önemli olan etiketleme uygulamasının ne şekilde yapılacağıdır. Uygulama gönüllü mü olmalıdır, yoksa zorunlu mu? Etikette ürünün içeriği mi tanımlamalıdır, yoksa üretim süreci mi? Etiketlerde yer verilecek bilginin kapsamı ne olmalıdır? Uluslararası ticarette yaygın olarak karşılaşılan uygulama, ürünün içeriğinin tanımlandığı etiket uygulamalarıdır. Genel olarak, üretim ve işleme yöntemleri (production and process methods) etiket programlarına konu olmamıştır. Genetik ürünlerin dış ticarete konu olmasıyla birlikte, OECD ve DTÖ'de, ticarette teknik engeller ve çevre ile bağlantılı ticaret önlemleri kapsamında, üretim ve işleme yöntemlerine ilişkin bilginin de etiketlemeye konu olabilmesi tartışılmaya başlanmıştır. Bu konu üzerinde henüz bir uzlaşmaya varılamamıştır. 1999 yılı içerisinde Japonya, Avustralya, Yeni Zelanda, AB, İsviçre, Norveç gibi ülkeler biyoteknolojik ürünlerle ilgili ulusal etiket programlarını devreye sokmuşlardır. Modern biyoteknoloji yöntemleriyle üretilen ve ayrıca, herhangi bir işlemden geçmeyen ürünlerde doğrudan etiketleme yapılabilmekte ancak, bunların işlenerek kullanılması durumunda etiketleme uygulamasında güçlük bulunmaktadır. Yapılan çeşitli araştırmalarda, bütün dünyada tüketiciye sunulan işlenmiş gıda maddelerinin yarısında modern biyoteknoloji yöntemleriyle üretilen genetik ürünlerin bulunduğu tahminleri yapılmaktadır. Ürünün çiftlikten alınıp nihai ürün olarak tüketiciye sunulmasına kadar geçen her aşamada, kullanılan girdilerin tanımlanmasını gerektiren ve üretici ve tüketiciler için gıda zincirindeki bütün ürünleri izleyebilme olanağı veren bir yöntem olan ve organik ürünler için de uygulanabilen "identity preservation" sisteminin getirdiği yüksek maliyet nedeniyle biyoteknolojik yöntemler kullanılarak üretilen ürünlere uygulanmasında güçlük bulunmaktadır. Genel olarak, ürünün paketi ile ilgili olan etiketleme uygulaması, ürünün niteliğini ilgilendiren ve sağlık önlemi olarak uygulanan ürün standartlarına göre ticareti daha az bozucu uygulamalar olarak kabul edilmektedir. Ayrıca biyoteknolojik yöntemlerle üretilen ürünler için tüketicinin satın alma kararını olumsuz yönde etkileyen bu uygulama, organik ürünlerin ticaretinde teşvik edici bir etki yaratmaktadır. VIII. Türkiye'de, Biyoteknolojik Ürünlerin İthalatı, Organik Ürünlerin İhracatı: Ülkemiz İthalat Rejimi kapsamında kamu ahlakı, kamu düzeni ve kamu güvenliği ile insan, hayvan ve bitki sağlığının korunması veya sınai ve ticari mülkiyetin korunması amacıyla ilgili mevzuat hükümleri çerçevesinde önlem uygulanan ürünler kapsamı dışındaki tüm ürünlerin ithali serbesttir. Ayrıca, bütün tarım ve gıda maddelerinin ithalatında Tarım ve Köyişleri Bakanlığı'ndan, eczacılık sanayi ürünlerinin ithalatında ise Sağlık Bakanlığı'ndan kontrol belgesi alınması gerekmektedir. Dış ticaretle ilgili veriler arasında, ülkemize modern biyoteknoloji yöntemleriyle üretilen tarım ve gıda maddelerinin ithal edildiği yönünde bir bilgi bulunmamaktadır. Ancak, önümüzdeki dönemde kaydedilecek gelişmelere bağlı olarak, bu konunun gündeme gelmesi kaçınılmaz olacaktır. Bu nedenle, modern biyoteknoloji yöntemleriyle üretilen ürünler için geçerli olacak çok taraflı ticaret kurallarının oluşturulmasından önce, bu alanı düzenleyen ulusal düzenlemelerin yapılmasında yarar bulunmaktadır. Ancak, ulusal düzenlemeler yapılırken, modern biyoteknoloji alanındaki gelişmelerin de düzenli bir şekilde izlenmesi ve bunun sonuçlarının ulusal düzenlemelere yansıtılması gerekmektedir. Bu kapsamda, çağdaş sistemlerde geçerli bir uygulama olan ve tüketicilere almak istedikleri ürünle ilgili her türlü bilgiye ulaşabilmeleri imkanını veren etiketleme uygulamasına geçilmesi etkin pazar çözümlerine ulaşabilmek bakımından yararlı olacaktır. Diğer taraftan, Türkiye'de 1997 yılı sonu itibariyle 18 000 hektar alanda organik tarım üretimi yapılmaktadır. 1998 yılı sonuna kadar bu miktarın % 25 oranında artması beklenmektedir. Türkiye'deki organik tarım üretimi ağırlıklı olarak ihracata yöneliktir ve en önemli ihracat pazarları AB ve ABD'dir. Tarım sektörünün geleceği ile ilgili stratejik değerlendirmeler kapsamında organik tarımın Türkiye'nin dış ticaretinde yeni açılımlar sağlayabilecek önemli bir üretim alanı olarak görülmesi mümkündür. Ancak, bu durumda organik tarım yöntemleriyle yapılacak üretimin gerektirdiği altyapının (bilgi, belgelendirme ve kurumsal yapı, vs.) oluşturulması ve desteklenmesi gerekmektedir. DTÖ'nde yeni başlayan tarım müzakereleri kapsamında bu konulara ilişkin olarak gündeme getirilen önerilerin dikkatle izlenmesi ve bu ürünlerin uluslararası ticaretinde uygulanacak prensipleri de içerebilecek yeni çok taraflı ticaret kurallarının ülkemiz şartları ve önceliklerine göre şekillendirilmesine çalışılmasında yarar görülmektedir. Kaynakça: DTÖ Belgeleri. OECD Belgeleri. FAO Belgeleri. Codex Allimentarious Commission Belgeleri. ITC, Organic Food and Beverages:World Supply and Major European Markets. Center For International Development at Harvard university (CID), Biotechnology in International Trade Gernot Brodnig; Weatherhead Center for International Affairs, Harvard University. DPT 8. Beş Yıllık Kalkınma Planı, Biyoteknoloji ve Biyogüvenlik Özel İhtisas Komisyonu Taslak Raporu İGEME Dış Ticaret Bülteni- Şubat 2000.

http://www.biyologlar.com/biyoteknolojik-urunler-organik-urunler-ve-uluslararasi-ticaretteki-gelismeler

Balıklarda solunum fizyolojisi

Solunum terimi, bir organizmanın hücresi ile çevresi arasındaki gaz (genellikle oksijen ve karbondioksit) alışverişini ifade eder. Tek hücreli canlılarda, gerekli gaz alışverişi pasif difüzyon ile sağlanabilir. Balık gibi komplex organizmalarda, dokulara yeteri miktarda O2 sağlamak ve CO2’i ortadan kaldırmak için, hem gaz alışverişi için gelişmiş bir yapı (solungaç), hem de bir gaz transfer sistemi (kan ve dolaşım sistemi) gerekir. Su ve dokular arasında osmoregülasyon ve asit-baz dengesini sağlamak gibi, balık solungacının başka fonksiyonları da vardır. Solunum sisteminin, elinde tuttuğu ve transferini gerçekleştirdiği su ve kan ve ayrıca O2 ve CO2 alışverişini sağladığı aşamalarının anlaşılması; balıkların fizyolojik ihtiyaçlarını giderecek ve yüksek derecede sağlık ortamı sağlayacak bir intensive kültür sisteminin mantıklı dizayn ve operasyonunu temin edecektir. Solunumun bütün işlevleri önemlidir, fakat intensive kültür sisteminin tipik özelliği olan yoğun balık stoklamalarında, gaz alışverişindeki etkilerin ani ölümlere neden olması bilinmelidir. Solungaç çevresindeki sudan transfer edilmesi ve dokulara gönderilmesi gereken O2 miktarı önemlidir. Salmonid gibi aktif soğuk su balıkları için O2 gereksinimi 100 mg.O/kg vucut ağırlığı şeklinde yüksek bir oranda veya daha fazlası olabilir. Aktif olarak yüzen balıklarda, solunum sistemi, 800 mg.O/kg/saat (20 ml.O/min civarında) kadar yüksek oranda O2 sağlayıp, karşılığında büyük oranda CO2 ortadan kaldırmalıdır. Bununla birlikte su, maximum çözünmüş O2’nin 10-12 mg/l’yi nadiren geçtiği O2 fakiri bir ortamdır. Deniz suyunda, mevcut çözünmüş yüksek tuz konsantrasyonu, mevcut DO’yu maximum 8-9 mg/l’ye kadar azaltabilir. Bunun için, balık yaşamının devamı için büyük miktarda suyun solungaçlardan geçmesi gereklidir. Salmonidler için solungaçlardan suyun geçmesi 5-20 l HO2/O2/vücut ağırlığı/saat oranındadır. Çoğu balık gerekli miktardaki suyu ağızlarıyla pompalayarak ve opercular hareketler yaparak sağlarlar. Ağız ve solungaçlar emme basma tulumbası olarak görev yaparlar ve böylece sabit bir su akışı sağlarlar. Haçerideki balıklar için, su alıp verme oranı 40-60 l/dk oranındadır. Suyun yüksek yoğunluk ve viskozitesinden dolayı solungaç ventilasyonunun enerji gideri, en az, tüketilen O2’nin %10’u kadardır. Salmonid, köpek balığı ve tuna gibi aktif balıklar, solungaçları üzerinden gerekli su akışını ram ventilasyonu (Yüzerken ağızını açarak) ile sağlarlar. Örneğin, pasifik salmon, ram ventilasyonunu 1 vücut uzunluğu/saniye’den daha yüksek hızda yüzerek kullanır. Bazı köpek balıkları, ram ventilasyonu ile sınırlandırılmıştır ve yaşamak için sürekli yüzmek zorundadır. Her iki solungaç ventilasyon metodunda da DO’nun %80’ine kadarki kısmımın (teorik olarak) kullanılması mümkündür. Çünkü solungaç anatomisi, ters yönde kan akışını sağlayacak şekilde dizayn edilmiştir (suyun solungaçlar üzerinden akışı, kanın solungaçlar içinden akışına terstir). Gerçek O2 tüketimi türlere göre farklıdır. Alabalıkta %30-40, tunada %70 ve sazanda %70-80’dir. Buna kıyasla, insan havadaki O2’nin sadece %25’ni alabilir. Su solungaçlardan geçerken, sudaki çözünmüş O2, sekonder solungaç lamelinin ince epitelyal hücrelerinin arasından geçer ve kana difüze olur. Asitlik arttıkça hemoglobinin O2’ye yakınlığı azalır (Bohr etkisi) ve bazı türlerde asitlik, hemoglobinin O2’yi tutmasındaki maksimum kapasiteyi azaltır (Root etkisi). Bu yüzden kan, dokuların kapillar yataklarından geçerken üretilen CO2’in neden olduğu asitlik Hb-O2 ağını zayıflatır ve O2 yoğunluğunun düşük olduğu hücrelere difüze olan O2’nin çıkışını kolaylaştırır. Aynı zamanda, CO2, dokulardan kana difüze olur. O2’in tersine, CO2’in çoğu plazmada erir ve bikarbonat formunda yeniden solungaçlara gönderilir. Kan solungaçlardan geçerken karbonikanhidraz enzimi, HCO3 iyonunu sonra yeniden suya difüze olan CO2 molekülüne hidroliz eder. Bir ünite kanın solungaçlar içinde kalma zamanı, sadece birkaç saniye olduğu için ve kan ve su arasındaki yüksek CO2 basıncından dolayı bu enzimatik reaksiyon son derece hızlı bir aşamadır. Bu yüzden kandaki O2 basıncı 100 mg Hg veya daha yüksek seviyeler arasında değişebilir, kandaki CO2 konsantrasyonu düşük kalır ve çok az değişir. Özellikle aktif soğuk su balıklarında Bohr etkisi büyük olur (kanın düşük CO2 düzeyinde başlar). Aquakültür sistemlerinde, örneğin eğer sudaki çözünmüş CO2 konsantrasyonu 20 mg/l’ye çıkarsa Bohr etkisi salmonidlerin O2 transferini engeller. Karışık kültürü yapılan sıcak su balıkları (Tilapya, sazan, kanal kedi balığı gibi) genellikle çözünmüş CO2 konsantrasyonuna daha az duyarlıdırlar ama, bu yetiştiricilik yöntemi, iyi bir yetiştiricilik işletmesi için, CO2 ’in havuz suyunda birikmesine engel olan durumları sağlamada iyi bir yöntemdir. CO2’in etkisiyle birlikte, laktik asit üretimi kan asitliğinin yükselmesine ve kanın O2 transferinin bozulmasını neden olur. En genel sebep; beyaz kaslarda O2 olmamasından dolayı kan ve dokularda laktik asit birikmesiyle sonuçlanan aşırı yüzme aktiviteleridir. Bu da heyecan ve stresten kaynaklanır. Örneğin, eğer kanın pH’sı 7,8-7,6’dan 6,0’a düşürülürse toplam hemoglobinin sadece çok az bir yüzdesi O2 ile doyurulabilir. Root etkisindeki Hb’in normal görevi choroid rete üzerinden O2’i göze ileten moleküler pompa görevi yapmak ve physoclistik türlerde rete mirabile üzerinden yüzme kesesini doldurmaktır. İkinci görevi, salmonidlerde (fizostomları bulunduğu için) önemsizdir ki; havayı emerek yüzme kesesini doldurmaktır. Bununla beraber, salmonid gözündeki normal O2 yoğunluğu, hem kanın, hem de suyunkinden fazladır. Bu da root etkisindeki Hb’in bu balıklarda önemli bir rol aldığını gösterir. Cadmium ve civa gibi ağır !!!!llerin öldürücü seviyelerinin altındaki dozlarına maruz kalma durumunda, root etkisindeki Hb’in normal fonksiyonunun tersi yönde etkilendiği bilinir. Bunun yoğun kültürdeki balığın sağlığı için önemi bilinmemektedir. Yoğun kültürdeki balıklar için, Bohr ve Root etkisi altında O2 transferinin azalması ile ilgili problemler, kanda yüksek laktik asit konsantrasyonu (Hyperlacticemia) veya kanda yüksek CO2 konsantrasyonu sonucu ortaya çıkar. Genel sebepleri; düşük DO durumları ve heyecandan kaynaklanan aşırı yüzme aktiviteleridir. Ayrıca yetiştirme ve transfer sırasında daha yüksek stoklama yoğunluğu sağlamak için saf O2 kullanarak havalandırma yapmak, aşırı doyurulmuş DO düzeyine ve hipercapnia’ya (yüksek DO’nun solungaç havalandırma oranını baskılaması nedeniyle oluşan bir yan etki) neden olur. Bu ise, CO2 birikmesine ve yüksek arterial PCO2 basıncına neden olur. Kana O2 transferi bundan etkilenmeyebilir. Çünkü daha yüksek arterial PO2, bohr etkisi kaynaklı azalmaları dengeler. Buna ek olarak hipercapnia, dokulara O2 naklini, sadece arta kalan asitliği normal kan dengesini aşarsa veya solunum asidosisi meydana gelirse tehlikeye sokabilir. Suyun kalitesinin iyi olduğu balık kültürlerinde Bohr etkisi kaynaklı O2 naklinin azalması ile ilgili problemler, aşırı yüzme sonunda üretilen laktik asitten dolayı ortaya çıkan !!!!bolik asidosis kökenlidir. Bohr etkisinin solunum baskısının CO2 ve DO konsantrasyonu ile olan ilişkisi ilk kez Basu (1959) tarafından belirlendi. Dokulara yeterli O2 sağlamak için vasat bir yüzme seviyesi oluşturmak için gereken DO seviyesi bunu ortaya çıkarmıştır. Bu minimum miktar, eğer çok az CO2 varsa veya hiç yoksa 6 mg/l’den, Eğer çözünmüş CO2 konsantrasyonu 30 mg/l’ civarına yükselirse, 11 mg/l’den daha yukarı çıkar. Sonuç olarak, salmonid gibi balıkların, DO seviyesinin %80 doygunluk oranının altına düşmemesi şartıyla, yeterli O2’ye sahip olmaları önerilir. Eğer çözünmüş CO2 seviyesi 30-40 mg/l’nin altında tutulmazsa, kanın O2 taşıma kapasitesi, yüksek DO konsantrasyonunun bile yetersiz olduğu, doku hipoksia’sına neden olabilecek seviyelere düşer. Bohr ve root etkisi kaynaklı solunum baskısı, heyecan ve yüzme aktivitesini azaltmak için dikkatli balık tutumu ile en aza indirilebilir. Yeterli miktarda çözünmüş O2 sağlamanın yanısıra çözülmüş CO2 ‘yi hızla ortadan kaldıran havalandırma sistemi ve su değişim oranı ile de bu sağlanabilir. Pratikte bunlar yoğun kültürdeki balığın ihtiyaçlarını sağlamada gerekli unsurlardır. Haçeri’deki çözünmüş O2’i balığın tüketme oranı yoğun kültür sistemlerinin sağlanmasında önemlidir. O2 tüketimi, balık naklinde gerekli olan havalandırma miktarı ve istenilen yükleme yoğunluğu için gerekli su alışveriş oranı gibi temel parametreleri belirler. Racewaylerdeki salmonidler en az 100 mg.O/kg/saat ile en fazla 800 mg/kg saat arasında tüketir. Bu seviye, yüzme seviyelerine, su sıcaklığına, zaman, son beslenme ve heyecan, stres derecesine göre değişir. Egzersiz, stres veya su sıcaklığının sonucu olan !!!!bolik ihtiyaçları karşılamak ve O2 tüketim oranını kontrol etmek için hormonal teknikler kullanılır. Hem soğuk su, hem de sıcak su balıklarının solunum oranı karasal omurgalılarda olduğu gibi kanda CO2 yükselmesi ile değil, DO konsantrasyonundaki düşüş ile stimüle edilir. Örneğin, balıklar elle tutularak stres olduğu zaman, adrenalin ve diğer cathekolomine hormonları (hem solungaç perfüzyon miktarını , hem de alyuvar hemoglobininin O2 taşıma kapasitesini artıran hormonlar) üretilir. Bronşal vasodilasyonun yan etkisi olarak suyun normal ozmatik akımı aşırı şekilde yükselir ve bundan sonra vücuttan atılmalıdır. Diüresis’in sonucu çok çarpıcı olabilir, kandaki elektrolitlerin bazıları üretilen çok fazla üre içinde kaçınılmaz bir şekilde kaybolur. Diüresis uzatılırsa, iyon regulasyonunda bozulmalar ortaya çıkabilir. Balık tutulduktan veya nakledildikten 1-2 gün sonra oluşan gecikmiş ölümler büyük ölçüde bu olayın bir sonucudur. Yoğun kültür sistemlerindeki balıkların O2 tüketimi, hem balığın kültürel prosedürü, hem de doğal gelişmeler nedeniyle arttırılabilir. Bunlardan, tutma nedenli stres, heyecan nedenli arttırılmış yüzme aktivitesi ve beslenmenin doğal aşamaları en önemli olanlarıdır. Örneğin Çelikbaş alabalığı juvenilleri tutulmaktan dolayı strese girerler, O2 tüketimleri 2 kat birden artabilir ve bir veya daha fazla saat yüksek oranda kalır. O2 tüketiminin artması (heyecan ve stres kaynaklı), balıklar nakil tanklarına yüklendikten sonra, birden meydana gelen DO’daki ani düşüşün sorumlusudur. O2 havalandırması varsa, balık bulunan tank suyu 14-16 mg/l’lik DO’ya kadar doyurulmalıdır ki, bu da balıkların O2 ihtiyacını karşılar. Sadece sıkıştırılmış hava varsa, havalandırma sistemini, balık yüklemeden 5-10 dakika önceden başlatmak, suyun doyurulmasını sağlayacağından bir dereceye kadar etkili olacaktır. Beslenme ve sindirimin doğal aşamaları, balığın O2 tüketimini büyük ölçüde artırır. Çünkü sindirimin, absorbsiyon ve asimilasyonun kalorik maliyeti, geri kalan !!!!bolik kalorinin %40’ı kadardır. Bu etkinin O2 tüketimindeki boyutu (Specific dynamic action of food (SDA) = .Yiyeceklerin spesifik dinamik hareketi) her zaman tam olarak değerlendirilmez. Çünkü beslenme rutin bir operasyondur. Salmonid, kanal kedi balığı ve tilapya için, her defasında balık birkaç saat beslendiği için O2 tüketim oranını %40-50 veya daha fazla arttırmak akıllıcadır. SDA’nın pratik sonucu olarak; balığın hemen tutulmaması veya nakil edilmemesi gerekir. Çünkü, beslenme ve sindirim olaylarına eklenen heyecan ve stres, onların O2 tüketimini, havalandırma sisteminin yeterli DO sağlayamayacak seviyede arttırır. Elle tutulmadan ve nakilden 24-48 saat önce balık beslemeyi durdurmak bu etkiyi önler ve O2 tüketim oranını büyük ölçüde azaltır. Yoğun kültür sisteminde O2 tüketimini etkileyen diğer önemli faktörler ise; su sıcaklığı ve yüzme aktiviteleridir. Daha yüksek su sıcaklığı, bütün !!!!bolik hızı artırarak O2 tüketimini yükseltir. Bununla beraber yüzme aktivitelerinde O2 tüketimi, kasların kasılması için, Hb doygunluğunu düşürerek kandaki O2‘yi tüketmesi ile yükselir. Gökkuşağı alabalığında, solungaç lamelleri’nin sadece %60’ı kanla perfüze olur. Hızlı yüzmeye dayanan kas kasılması, adrenalin ve diğer cathekolamine hormonlarının dolaşımını teşvik eder. Meydana gelen solungaç perfüzyonun yükselmesi ile birlikte, eritrosistlerin, hücre içi pH’sını artıran, Na / H değişiminin adrenal hormonu tarafından teşviki sağlanır. Bohr etkisi düşürülür ve hem kanda O2 oluşumu, hem de O2 ‘nin dokulara teslimi sağlanır. Isı ve yüzme aktivitelerinin O2 tüketimi üzerindeki etkisinin gerçek boyutu Brett (1973) tarafından, kontrol altında tutulan pasifik solmonu üzerinde belirlenmiştir. Daha sıcak su, O2 tüketimini bir dereceye kadar artırır. Bununla beraber, yüzmenin etkisi daha çarpıcıdır. İleri atılarak yüzme, özellikle enerji bakımından yoğundur. Çünkü sürtünme etkisi çok yüksektir. Yoğun kültür sistemindeki balığın yüzme aktivitesi genelde daha düşüktür. Salmon kültüründe racewaylerde su alışverişi öyle ayarlanmalıdır ki, o balığın O2 tüketim oranı, DO’yu son taşma sınırının yaklaşık 6 mg/l aşağısına indirmemelidir. Havalandırma sistemi ayrıca, taşıma kapasitesini artırmak için de kullanılır. Bazı durumlarda DO oranını 14-16 mg/l ‘ye çıkarmak için sıvı O2 kullanılır. Balık nakil sisteminde O2 tüketim oranı, genelde yüksek heyecan ve stres nedeniyle değişkendir. Yakaşık DO doygunluğunu sağlamak için saf O2 kullanılır. DO, balık tarafından tüketildikten sonra hemen yenilenmezse, O2 tükenmesi meydana gelir. Karasal hayvanların aksine, balığın nefes alma oranı, yükselen CO2 ile değil, düşen DO konsantrasyonu ile stimüle edilir. Alabalık, sazan, kedi balığı gibi türler düşen DO seviyesine, önce ağız ve solungaçlarını kullanıp solungaç havalandırma oranını yükselterek; kan basıncını ve kardial verimi yükseltip solungaçlardan kan akışını artırarak cevap verir. Salmonidlerde, normal DO tükenmesi bile, solungaç havalandırma oranında çarpıcı yükselmelere neden olur. Bu olaylar, ilk olarak O2 alımını yükseltir, fakat daha fazla su akışı da, solungaçlardan her geçişte çekilebilen DO oranını azaltabilir. DO düştükçe kana transfer edilen O2 miktarı da düşer (max %80’den min %15’e). Ayrıca, daha fazla suyun solungaçlar üzerinden hareket ettirilmesi, enerji maliyetini büyük oranda yükseltir (Absorbe edilen O2 ‘nin %10 ‘undan %70’e yükselmesi). Sonuç olarak; O2 elde etmek için harcanan güç, suda çözünmüş O2 miktarı düştükçe ve arterial kandaki O2 basıncı düştükçe yükselir. Arteial kan O2‘si, alyuvardaki Hb %60 doygunluktan daha az olduğu noktaya ulaşıncaya dek azaldığında; solungaç damarlarını genişleterek ve Na/H alışverişini alyuvar membranı ile sağlayıp, hücre içi PH’yı yükselten adrenalin ve diğer cathecolamine hormonları salgılanır. Bir dizi karışık olay sırasında Hb-O2 ilişkisinde değişiklikler ve Bohr ve Root effect kökenli kapasite değişiklikleri, hem solungaçlardaki O2 transferini, hem de O2 ‘nin dokulara yükselmesini kolaylaştırır. Eğer çözünmüş O2, 5 mg/l’nin altına düşerse, salmonidler, iştahsızlaşırlar. Bu, beslenme ve sindirim sırasında O2 tüketiminde meydana gelen normal yükselmeye engel olmak için geliştirilen bir davranışsal cevaptır. Salmonidlerde, O2‘nin elde edinimi ve kullanımının biyoenerjik maliyeti, DO’nun 2 mg/l civarına kadar tüketilmesinden dolayı ortaya çıkan aşırı enerji ihtiyacı ile başlar ve bilinç kaybı ve hatta ölümle sonuçlanabilir. Aquakültür için önemli olan çoğu sıcak su balığı DO seviyesi 1 mg/l’nin altına düşse bile birkaç saat hayata kalmayı başarır. Ama sonunda meydana gelen doku hipoksiası bilinçsizlik ve ölümle sonuçlanır. Aquakültür ortamında balığın tükettiği O2 oranını sürekli düşürmek en temel hedeftir. O2 tüketimini artırmak için varolan aynı biolojik ve çevresel faktörlerin çoğu onu düşürmek için de arttırılabilir. Su sıcaklığını azaltma (hipothermia) ve yüzme aktivitesini, heyecanı ve balık tutma sırasındaki stresi düşürmek için anastezik kullanımı en bilinenleridir.

http://www.biyologlar.com/baliklarda-solunum-fizyolojisi

Çevre Kanunu (Bölüm-1)

ÇEVRE KANUNU (1) (2) Kanun Numarası : 2872 Kabul Tarihi : 9/8/1983 Yayımlandığı R.Gazete : Tarih : 11/8/1983 Sayı : 18132 Yayımlandığı Düstur Tertip : 5 Cilt : 22 Sayfa : 499 BİRİNCİ BÖLÜM Amaç, Tanımlar ve İlkeler Amaç: Madde 1 – (Değişik: 26/4/2006 – 5491/1 md.) Bu Kanunun amacı, bütün canlıların ortak varlığı olan çevrenin, sürdürülebilir çevre ve sürdürülebilir kalkınma ilkeleri doğrultusunda korunmasını sağlamaktır. Tanımlar: Madde 2 – (Değişik: 26/4/2006 – 5491/2 md.) Bu Kanunda geçen terimlerden; Çevre: Canlıların yaşamları boyunca ilişkilerini sürdürdükleri ve karşılıklı olarak etkileşim içinde bulundukları biyolojik, fiziksel, sosyal, ekonomik ve kültürel ortamı, Çevre korunması: Çevresel değerlerin ve ekolojik dengenin tahribini, bozulmasını ve yok olmasını önlemeye, mevcut bozulmaları gidermeye, çevreyi iyileştirmeye ve geliştirmeye, çevre kirliliğini önlemeye yönelik çalışmaların bütününü, Çevre kirliliği: Çevrede meydana gelen ve canlıların sağlığını, çevresel değerleri ve ekolojik dengeyi bozabilecek her türlü olumsuz etkiyi, Sürdürülebilir çevre: Gelecek kuşakların ihtiyaç duyacağı kaynakların varlığını ve kalitesini tehlikeye atmadan, hem bugünün hem de gelecek kuşakların çevresini oluşturan tüm çevresel değerlerin her alanda (sosyal, ekonomik, fizikî vb.) ıslahı, korunması ve geliştirilmesi sürecini, Sürdürülebilir kalkınma: Bugünkü ve gelecek kuşakların, sağlıklı bir çevrede yaşamasını güvence altına alan çevresel, ekonomik ve sosyal hedefler arasında denge kurulması esasına dayalı kalkınma ve gelişmeyi, Alıcı ortam: Hava, su, toprak ortamları ile bu ortamlarla ilişkili ekosistemleri, Doğal varlık: Bütün bitki, hayvan, mikroorganizmalar ile bunların yaşama ortamlarını, Doğal kaynak: Hava, su, toprak ve doğada bulunan cansız varlıkları, (1)19/10/1989 tarih ve 383 sayılı KHK'nin 25 inci maddesi; bu Kanun ile Çevre Müsteşarlığına verilen yetkilerin, Özel Çevre Koruma Kurumu Başkanlığına geçeceğini hüküm altına almıştır. (2)9/8/1991 tarih ve 443 sayılı KHK'nin geçici 1 inci maddesi ile çeşitli mevzuatta geçen "Çevre Müsteşarlığı" ve "Çevreden Sorumlu Devlet Bakanlığı" ibareleri "Çevre Bakanlığı", "Çevreden Sorumlu Devlet Bakanı" ve "Çevre Müsteşarı" ibareleri "Çevre Bakanı" olarak değiştirilmiştir. Kirleten: Faaliyetleri sırasında veya sonrasında doğrudan veya dolaylı olarak çevre kirliliğine, ekolojik dengenin ve çevrenin bozulmasına neden olan gerçek ve tüzel kişileri, Ekosistem: Canlıların kendi aralarında ve cansız çevreleriyle ilişkilerini bir düzen içinde yürüttükleri biyolojik, fiziksel ve kimyasal sistemi, Atıksu: Evsel, endüstriyel, tarımsal ve diğer kullanımlar sonucunda kirlenmiş veya özellikleri kısmen veya tamamen değişmiş suları, Atıksu altyapı tesisleri: Evsel ve/veya endüstriyel atıksuları toplayan kanalizasyon sistemi ile atıksuların arıtıldığı ve alıcı ortama verilmesinin sağlandığı sistem ve tesislerin tamamını, Arıtma tesisi: Her türlü faaliyet sonucu oluşan katı, sıvı ve gaz halindeki atıkların yönetmeliklerde belirlenen standartları sağlayacak şekilde arıtıldığı tesisleri, Ekolojik denge: İnsan ve diğer canlıların varlık ve gelişmelerini doğal yapılarına uygun bir şekilde sürdürebilmeleri için gerekli olan şartların bütününü, Sulak alan: Doğal veya yapay, devamlı veya geçici, suları durgun veya akıntılı, tatlı, acı veya tuzlu, denizlerin gelgit hareketlerinin çekilme devresinde altı metreyi geçmeyen derinlikleri kapsayan, başta su kuşları olmak üzere canlıların yaşama ortamı olarak önem taşıyan bütün sular, bataklık, sazlık ve turbiyeler ile bu alanların kıyı kenar çizgisinden itibaren kara tarafına doğru ekolojik açıdan sulak alan kalan yerleri, Biyolojik çeşitlilik: Ekosistemlerin, türlerin, genlerin ve bunlar arasındaki ilişkilerin tamamını, Atık: Herhangi bir faaliyet sonucunda oluşan, çevreye atılan veya bırakılan her türlü maddeyi, Katı atık: Üreticisi tarafından atılmak istenen ve toplumun huzuru ile özellikle çevrenin korunması bakımından, düzenli bir şekilde bertaraf edilmesi gereken katı atık maddeleri, Evsel katı atık: Tehlikeli ve zararlı atık kapsamına girmeyen konut, sanayi, işyeri, piknik alanları gibi yerlerden gelen katı atıkları, Tehlikeli atık: Fiziksel, kimyasal ve/veya biyolojik yönden olumsuz etki yaparak ekolojik denge ile insan ve diğer canlıların doğal yapılarının bozulmasına neden olan atıklar ve bu atıklarla kirlenmiş maddeleri, Tehlikeli kimyasallar: Fiziksel, kimyasal ve/veya biyolojik yönden olumsuz etki yaparak ekolojik denge ile insan ve diğer canlıların doğal yapılarının bozulmasına neden olan her türlü kimyasal madde ve ürünleri, Kirli balast: Duran veya seyir halindeki tankerden, gemiden veya diğer deniz araçlarından su üzerine bırakıldığında; su üstünde veya bitişik sahil hattında petrol, petrol türevi veya yağ izlerinin görülmesine neden olan veya su üstünde ya da su altında renk değişikliği oluşturan veya askıda katı madde/emülsiyon halinde maddelerin birikmesine yol açan balast suyunu, Çevresel etki değerlendirmesi: Gerçekleştirilmesi plânlanan projelerin çevreye olabilecek olumlu ve olumsuz etkilerinin belirlenmesinde, olumsuz yöndeki etkilerin önlenmesi ya da çevreye zarar vermeyecek ölçüde en aza indirilmesi için alınacak önlemlerin, seçilen yer ile teknoloji alternatiflerinin belirlenerek değerlendirilmesinde ve projelerin uygulanmasının izlenmesi ve kontrolünde sürdürülecek çalışmaları, Proje tanıtım dosyası: Gerçekleşmesi plânlanan projenin yerini, özelliklerini, olası olumsuz etkilerini ve öngörülen önlemleri içeren, projeyi genel boyutları ile tanıtan bilgi ve belgeleri içeren dosyayı, Stratejik çevresel değerlendirme: Onaya tâbi plân ya da programın onayından önce plânlama veya programlama sürecinin başlangıcından itibaren, çevresel değerlerin plân ve programa entegre edilmesini sağlamak, plân ya da programın olası çevresel etkilerini en aza indirmek ve karar vericilere yardımcı olmak üzere katılımcı bir yaklaşımla sürdürülen ve yazılı bir raporu da içeren çevresel değerlendirme çalışmalarını, Çevre yönetimi: İdarî, teknik, hukukî, politik, ekonomik, sosyal ve kültürel araçları kullanarak doğal ve yapay çevre unsurlarının sürdürülebilir kullanımını ve gelişmesini sağlamak üzere yerel, bölgesel, ulusal ve küresel düzeyde belirlenen politika ve stratejilerin uygulanmasını, Çevre yönetim birimi/Çevre görevlisi: Bu Kanun ve Kanuna göre yürürlüğe konulan düzenlemeler uyarınca denetime tâbi tesislerin faaliyetlerinin mevzuata uygunluğunu, alınan tedbirlerin etkili olarak uygulanıp uygulanmadığını değerlendiren, tesis içi yıllık denetim programları düzenleyen birim ya da görevliyi, Çevre gönüllüsü: Bakanlıkça, uygun niteliklere sahip kişiler arasından seçilen ve bu Kanun ve Kanuna göre yürürlüğe konulan düzenlemelere aykırı faaliyetleri Bakanlığa iletmekle görevli ve yetkili kişiyi, Hassas alan: Ötrofikasyon riski yüksek olan ve Bakanlıkça belirlenecek kıyı ve iç su alanlarını, Çevreye ilişkin bilgi: Su, hava, toprak, bitki ve hayvan varlığı ile bunları olumsuz olarak etkileyen veya etkileme ihtimali bulunan faaliyetler ve alınan idarî ve teknik önlemlere ilişkin olarak mevcut bulunan her türlü yazılı, sözlü veya görüntülü bilgi veya veriyi, İş termin plânı: Atıksu ve evsel nitelikli katı atık kaynaklarının yönetmelikte belirtilen alıcı ortam deşarj standartlarını sağlamak için yapmaları gereken atıksu arıtma tesisi ve/veya kanalizasyon gibi altyapı tesisleri ile katı atık bertaraf tesislerinin gerçekleştirilmesi sürecinde yer alan yer seçimi, proje, ihale, inşaat, işletmeye alma gibi işlerin zamanlamasını gösteren plânı, Risk değerlendirmesi: Belirli kimyasal madde ya da maddelerin potansiyel tehlikelerinin belirlenmesi ve sonuçlarının hesaplanması yönünde kullanılan yöntemler bütününü, İyonlaştırıcı olmayan radyasyon: İyonlaşmaya neden olmayan elektromanyetik dalgaları, Elektromanyetik alan: Elektrik ve manyetik alan bileşenleri olan dalgaların oluşturduğu alanı, Koku: İnsanda koku alma duygusunu harekete geçiren ve kokunun algılanmasına neden olan uçucu maddelerin yarattığı etkiyi, Hava kalitesi: İnsan ve çevresi üzerine etki eden hava kirliliğinin göstergesi olan, çevre havasında mevcut hava kirleticilerin artan miktarıyla azalan kalitelerini, Bakanlık: Çevre ve Orman Bakanlığını, ifade eder. İlkeler: Madde 3 –(Değişik: 26/4/2006 – 5491/3 md.) Çevrenin korunmasına, iyileştirilmesine ve kirliliğinin önlenmesine ilişkin genel ilkeler şunlardır: a) Başta idare, meslek odaları, birlikler ve sivil toplum kuruluşları olmak üzere herkes, çevrenin korunması ve kirliliğin önlenmesi ile görevli olup bu konuda alınacak tedbirlere ve belirlenen esaslara uymakla yükümlüdürler. b) Çevrenin korunması, çevrenin bozulmasının önlenmesi ve kirliliğin giderilmesi alanlarındaki her türlü faaliyette; Bakanlık ve yerel yönetimler, gerekli hallerde meslek odaları, birlikler ve sivil toplum kuruluşları ile işbirliği yaparlar. c) Arazi ve kaynak kullanım kararlarını veren ve proje değerlendirmesi yapan yetkili kuruluşlar, karar alma süreçlerinde sürdürülebilir kalkınma ilkesini gözetirler. d) Yapılacak ekonomik faaliyetlerin faydası ile doğal kaynaklar üzerindeki etkisi sürdürülebilir kalkınma ilkesi çerçevesinde uzun dönemli olarak değerlendirilir. e) Çevre politikalarının oluşmasında katılım hakkı esastır. Bakanlık ve yerel yönetimler; meslek odaları, birlikler, sivil toplum kuruluşları ve vatandaşların çevre hakkını kullanacakları katılım ortamını yaratmakla yükümlüdür. f) Her türlü faaliyet sırasında doğal kaynakların ve enerjinin verimli bir şekilde kullanılması amacıyla atık oluşumunu kaynağında azaltan ve atıkların geri kazanılmasını sağlayan çevre ile uyumlu teknolojilerin kullanılması esastır. g) Kirlenme ve bozulmanın önlenmesi, sınırlandırılması, giderilmesi ve çevrenin iyileştirilmesi için yapılan harcamalar kirleten veya bozulmaya neden olan tarafından karşılanır. Kirletenin kirlenmeyi veya bozulmayı durdurmak, gidermek veya azaltmak için gerekli önlemleri almaması veya bu önlemlerin yetkili makamlarca doğrudan alınması nedeniyle kamu kurum ve kuruluşlarınca yapılan gerekli harcamalar 6183 sayılı Amme Alacaklarının Tahsil Usulü Hakkında Kanun hükümlerine göre kirletenden tahsil edilir. h) Çevrenin korunması, çevre kirliliğinin önlenmesi ve giderilmesi için uyulması zorunlu standartlar ile vergi, harç, katılma payı, yenilenebilir enerji kaynaklarının ve temiz teknolojilerin teşviki, emisyon ücreti ve kirletme bedeli alınması, karbon ticareti gibi piyasaya dayalı mekanizmalar ile ekonomik araçlar ve teşvikler kullanılır. ı) Bölgesel ve küresel çevre sorunlarının çözümüne yönelik olarak taraf olduğumuz uluslararası anlaşmalar sonucu ortaya çıkan ulusal hak ve yükümlülüklerin yerine getirilmesi için gerekli teknik, idarî, malî ve hukukî düzenlemeler Bakanlığın koordinasyonunda yapılır. Gerçek ve tüzel kişiler, bu düzenlemeler sonucu ortaya çıkabilecek maliyetleri karşılamakla yükümlüdür. j) Çevrenin korunması, çevre kirliliğinin önlenmesi ve çevre sorunlarının çözümüne yönelik gerekli teknik, idarî, malî ve hukukî düzenlemeler Bakanlığın koordinasyonunda yapılır. 2690 sayılı Türkiye Atom Enerjisi Kurumu Kanunu kapsamındaki konular Türkiye Atom Enerjisi Kurumu tarafından yürütülür. İKİNCİ BÖLÜM Yüksek Çevre Kurulu ve Görevleri(1) Yüksek Çevre Kurulu(1) Madde 4 – (Mülga: 9/8/1991 - KHK - 443/43 md.; Yeniden düzenleme: 26/4/2006 – 5491/4 md.) Başbakanın başkanlığında, Başbakanın bulunmadığı zamanlarda Çevre ve Orman Bakanının başkanlığında, Başbakanın belirleyeceği sayıda bakan ile Bakanlık Müsteşarından oluşan Yüksek Çevre Kurulu kurulmuştur. Diğer bakanlar gündeme göre Kurul toplantılarına başkan tarafından çağrılabilir. Kurul yılda en az bir defa toplanır. Kurulun sekretarya hizmetleri Bakanlıkça yürütülür. Kurulun çalışmaları ile ilgili konularda ön hazırlık ve değerlendirme yapmak üzere, Bakanlık Müsteşarının başkanlığında ilgili bakanlık müsteşarları, diğer kurum ve kuruluşların en üst düzey yetkili amirlerinin katılımı ile toplantılar düzenlenir. Bu toplantılara gündeme göre ilgili kamu kurumu niteliğindeki kuruluşların birlik temsilcileri, meslek kuruluşları, sivil toplum kuruluşları, yerel yönetim temsilcileri, üniversite temsilcileri ve bilimsel kuruluşların temsilcileri davet edilir. Kurulun çalışma usûl ve esasları ile diğer hususlar yönetmelikle belirlenir. Yüksek Çevre Kurulunun görevleri(1) Madde 5 – (Mülga: 13/3/1990 - KHK - 409/12 md.; Yeniden düzenleme: 26/4/2006 – 5491/5 md.) Yüksek Çevre Kurulunun görevleri şunlardır: a) Etkin bir çevre yönetiminin sağlanması için hedef, politika ve strateji belirlemek. b) Sürdürülebilir kalkınma ilkesi çerçevesinde ekonomik kararlara çevre boyutunun dahil edilmesine imkân veren hukukî ve idarî tedbirleri belirlemek. c) Birden fazla bakanlık ve kuruluşu ilgilendiren çevre konularına ilişkin uyuşmazlıklarda nihai kararı vermek. Madde 6 – 7 – (Mülga: 8/6/1984 - KHK 222/30 md.) ÜÇÜNCÜ BÖLÜM Çevre Korunmasına İlişkin Önlemler ve Yasaklar Kirletme yasağı: Madde 8 – Her türlü atık ve artığı, çevreye zarar verecek şekilde, ilgili yönetmeliklerde belirlenen standartlara ve yöntemlere aykırı olarak doğrudan ve dolaylı biçimde alıcı ortama vermek, depolamak, taşımak, uzaklaştırmak ve benzeri faaliyetlerde bulunmak yasaktır. Kirlenme ihtimalinin bulunduğu durumlarda ilgililer kirlenmeyi önlemekle; kirlenmenin meydana geldiği hallerde kirleten, kirlenmeyi durdurmak, kirlenmenin etkilerini gidermek veya azaltmak için gerekli tedbirleri almakla yükümlüdürler. ______________________________ (1) 26/4/2006 tarihli ve 5491 sayılı Kanunun 4 üncü maddesiyle ikinci bölüm başlığı “Merkezi ve Mahalli İdari Bölümleri ve Görevleri”, 4 üncü madde başlığı “Merkez Çevre Kurulu” iken metne işlendiği şekilde değiştirilmiştir. Çevrenin korunması(1) Madde 9 – (Değişik: 26/4/2006 – 5491/6 md.) Çevrenin korunması amacıyla; a) Doğal çevreyi oluşturan biyolojik çeşitlilik ile bu çeşitliliği barındıran ekosistemin korunması esastır. Biyolojik çeşitliliği koruma ve kullanım esasları, yerel yönetimlerin, üniversitelerin, sivil toplum kuruluşlarının ve ilgili diğer kuruluşların görüşleri alınarak belirlenir. b) Ülke fizikî mekânında, sürdürülebilir kalkınma ilkesi doğrultusunda, koruma-kullanma dengesi gözetilerek kentsel ve kırsal nüfusun barınma, çalışma, dinlenme, ulaşım gibi ihtiyaçların karşılanması sonucu oluşabilecek çevre kirliliğini önlemek amacıyla nazım ve uygulama imar plânlarına esas teşkil etmek üzere bölge ve havza bazında 1/50.000-1/100.000 ölçekli çevre düzeni plânları Bakanlıkça yapılır, yaptırılır ve onaylanır. Bölge ve havza bazında çevre düzeni plânlarının yapılmasına ilişkin usûl ve esaslar Bakanlıkça çıkarılacak yönetmelikle belirlenir. c) Ulusal mevzuat ve taraf olduğumuz uluslararası sözleşmeler ile koruma altına alınarak koruma statüsü kazandırılmış alanlar ve ekolojik değeri olan hassas alanların her tür ölçekteki plânlarda gösterilmesi zorunludur. Koruma statüsü kazandırılmış alanlar ve ekolojik değeri olan alanlar, plân kararı dışında kullanılamaz. d) Ülke ve dünya ölçeğinde ekolojik önemi olan, çevre kirlenmeleri ve bozulmalarına duyarlı toprak ve su alanlarını, biyolojik çeşitliliğin, doğal kaynakların ve bunlarla ilgili kültürel kaynakların gelecek kuşaklara ulaşmasını emniyet altına almak üzere gerekli düzenlemelerin yapılabilmesi amacıyla, Özel Çevre Koruma Bölgesi olarak tespit ve ilan etmeye, bu alanlarda uygulanacak koruma ve kullanma esasları ile plân ve projelerin hangi bakanlıkça hazırlanıp yürütüleceğini belirlemeye Bakanlar Kurulu yetkilidir. Bu bölgelere ilişkin plân ve projelerde; 3/5/1985 tarihli ve 3194 sayılı İmar Kanununun 9 uncu maddesi, 4/4/1990 tarihli ve 3621 sayılı Kıyı Kanununun plân onama yetkisini düzenleyen hükümleri, 21/7/1983 tarihli ve 2863 sayılı Kültür ve Tabiat Varlıklarını Koruma Kanununun 8 inci maddesinin tabiat varlıkları, doğal sit alanları ve bunların korunma alanlarının tespit ve tescili dışında kalan yetkileri düzenleyen hükümleri ile aynı Kanunun 17 nci maddesinin (a) bendi hükümleri uygulanmaz. e) Sulak alanların doğal yapılarının ve ekolojik dengelerinin korunması esastır. Sulak alanların doldurulması ve kurutulması yolu ile arazi kazanılamaz. Bu hükme aykırı olarak arazi kazanılması halinde söz konusu alan faaliyet sahibince eski haline getirilir. Sulak alanların korunması ve yönetimine ilişkin usûl ve esaslar ilgili kurum ve kuruluşların görüşü alınarak Bakanlıkça çıkarılacak yönetmelikle belirlenir. f) Biyolojik çeşitliliğin sürdürülebilirliliğinin sağlanması bakımından nesli tehdit veya tehlike altında olanlar ile nadir bitki ve hayvan türlerinin korunması esas olup, mevzuata aykırı biçimde ticarete konu edilmeleri yasaktır. g) Doğal kaynakların ve varlıkların korunması, kirliliğinin ve tahribatının önlenmesi ve kalitesinin iyileştirilmesi için gerekli idarî, hukukî ve teknik esaslar Bakanlık tarafından belirlenir. h) Ülkenin deniz, yeraltı ve yerüstü su kaynaklarının ve su ürünleri istihsal alanlarının korunarak kullanılmasının sağlanması ve kirlenmeye karşı korunması esastır. Atıksu yönetimi ile ilgili politikaların oluşturulması ve koordinasyonunun sağlanması Bakanlığın sorumluluğundadır. Su ürünleri istihsal alanları ile ilgili alıcı ortam standartları Tarım ve Köyişleri Bakanlığınca belirlenir. Denizlerde yapılacak balık çiftlikleri, hassas alan niteliğindeki kapalı koy ve körfezler ile doğal ve arkeolojik sit alanlarında kurulamaz. Alıcı su ortamlarına atıksu deşarjlarına ilişkin usûl ve esaslar Bakanlıkça çıkarılacak yönetmelikle belirlenir. ı) Çevrenin korunması ve kamuoyunda çevre bilincinin geliştirilmesi amacıyla, okul öncesi eğitimden başlanarak Millî Eğitim Bakanlığına bağlı örgün eğitim kurumlarının öğretim programlarında çevre ile ilgili konulara yer verilmesi esastır. –––––––––––––––––––– (1) Bu madde başlığı “Çevre Korunması” iken, 26/4/2006 tarihli ve 5491 sayılı Kanunun 6 ncı maddesiyle metne işlendiği şekilde değiştirilmiştir. Yaygın eğitime yönelik olarak, radyo ve televizyon programlarında da çevrenin önemine ve çevre bilincinin geliştirilmesine yönelik programlara yer verilmesi esastır. Türkiye Radyo - Televizyon Kurumu ile özel televizyon kanallarına ait televizyon programlarında ayda en az iki saat, özel radyo kanallarının programlarında ise ayda en az yarım saat eğitici yayınların yapılması zorunludur. Bu yayınların % 20’sinin izlenme ve dinlenme oranı en yüksek saatlerde yapılması esastır. Radyo ve Televizyon Üst Kurulu, görev alanına giren hususlarda bu maddenin takibi ile yükümlüdür. j) Çevre ile ilgili olarak toplanan her türlü kaynak ve gelir, tahsisi mahiyette olup, öncelikle çevrenin korunması, geliştirilmesi, ıslahı ve kirliliğin önlenmesi için kullanılır. Çevresel etki değerlendirilmesi: Madde 10 – (Değişik: 26/4/2006 – 5491/7 md.) Gerçekleştirmeyi plânladıkları faaliyetleri sonucu çevre sorunlarına yol açabilecek kurum, kuruluş ve işletmeler, Çevresel Etki Değerlendirmesi Raporu veya proje tanıtım dosyası hazırlamakla yükümlüdürler. Çevresel Etki Değerlendirmesi Olumlu Kararı veya Çevresel Etki Değerlendirmesi Gerekli Değildir Kararı alınmadıkça bu projelerle ilgili onay, izin, teşvik, yapı ve kullanım ruhsatı verilemez; proje için yatırıma başlanamaz ve ihale edilemez. Petrol, jeotermal kaynaklar ve maden arama faaliyetleri, Çevresel Etki Değerlendirmesi kapsamı dışındadır. Çevresel Etki Değerlendirmesine tâbi projeler ve Stratejik Çevresel Değerlendirmeye tâbi plân ve programlar ve konuya ilişkin usûl ve esaslar Bakanlıkça çıkarılacak yönetmeliklerle belirlenir. İzin alma, arıtma ve bertaraf etme yükümlülüğü (1) Madde 11 – (Değişik: 26/4/2006 – 5491/8 md.) Üretim, tüketim ve hizmet faaliyetleri sonucunda oluşan atıklarını alıcı ortamlara doğrudan veya dolaylı vermeleri uygun görülmeyen tesis ve işletmeler ile yerleşim birimleri atıklarını yönetmeliklerde belirlenen standart ve yöntemlere uygun olarak arıtmak ve bertaraf etmekle veya ettirmekle ve öngörülen izinleri almakla yükümlüdürler. Birinci fıkrada belirtilen yükümlülüğü bulunan tesis ve işletmeler ile yerleşim birimlerine; 1) İnşaat ruhsatı aşamasında bu yükümlülüğünü yerine getireceğini gösterir proje ve belgeleri ilgili kuruma sunmadıkça inşaat ruhsatı verilmez. 2) İnşaatı bitmiş olanlardan, bu yükümlülüğü yerine getirmeyenlere işletme ruhsatı ve/veya yapı kullanma ruhsatı verilmez. 3) İnşaat ruhsatına, yapı kullanma veya işletme ruhsatını haiz olmakla birlikte arıtma ve bertaraf yükümlülüklerini yerine getirmemeleri halinde, verilmiş yapı kullanma izni veya işletme izni iptal edilir. Faaliyetlerinde değişiklik yapmayı ve/veya tesislerini büyütmeyi plânlayan gerçek ve tüzel kişiler yönetmelikle belirlenen usûl ve esaslar çerçevesinde atıklarını arıtma veya bertaraf etme yükümlülüğünü yerine getirmek zorundadırlar. Atıksuları toplayan kanalizasyon sistemi ile atıksuların arıtıldığı ve arıtılmış atıksuların bertarafının sağlandığı atıksu altyapı sistemlerinin kurulması, bakımı, onarımı, ıslahı ve işletilmesinden; büyükşehirlerde 20/11/1981 tarihli ve 2560 sayılı İstanbul Su ve Kanalizasyon İdaresi Genel Müdürlüğü Kuruluş ve Görevleri Hakkında Kanunla belirlenen kuruluşlar, belediye ve mücavir alan sınırları içinde belediyeler, bunların dışında iskâna konu her türlü kullanım alanında valiliğin denetiminde bu alanları kullananlar sorumludur. Serbest ve/veya endüstri bölgelerinde bölge müdürlükleri, kültür ve turizm koruma ve gelişme bölgelerinde, turizm merkezlerinde Kültür ve Turizm Bakanlığı veya yetkili kıldığı birimler, organize sanayi bölgelerinde organize sanayi bölgesi yönetimi, küçük sanayi sitelerinde kooperatif başkanlıkları, mevcut yerleşim alanlarından kopuk olarak münferit yapılmış tatil köyü, tatil sitesi, turizm tesis alanları vb. kullanım alanlarında ise site yönetimleri veya tesis işletmecileri atıksu altyapı sistemlerinin kurulması, bakımı, onarımı ve işletilmesinden sorumludurlar. ––––––––––––––––––––– (1) Bu madde başlığı "İşletme izni ve haber verme yükümlülüğü:” iken, 26/4/2006 tarihli ve 5491 sayılı Kanunun 8 inci maddesiyle metne işlendiği şekilde değiştirilmiştir. Atıksu altyapı sistemlerini kullanan ve/veya kullanacaklar, bağlantı sistemlerinin olup olmadığına bakılmaksızın, arıtma sistemlerinden sorumlu yönetimlerin yapacağı her türlü yatırım, işletme, bakım, onarım, ıslah ve temizleme harcamalarının tamamına kirlilik yükü ve atıksu miktarı oranında katılmak zorundadırlar. Bu hizmetlerden yararlananlardan, belediye meclisince ve bu maddede sorumluluk verilen diğer idarelerce belirlenecek tarifeye göre atıksu toplama, arıtma ve bertaraf ücreti alınır. Bu fıkra uyarınca tahsil edilen ücretler, atıksu ile ilgili hizmetler dışında kullanılamaz. Atıksu toplama havzasının birden fazla belediye veya kurumun yetki sahasında olması halinde; atıksu arıtma tesisini işleten kurum, atıksu ile ilgili yatırım ve harcama giderlerini kirletenlerden kirlilik yükü ve atıksu miktarı nispetinde tahsil eder. Atık üreticileri uygun metot ve teknolojiler ile atıklarını en az düzeye düşürecek tedbirleri almak zorundadırlar. Atıkların üretiminin ve zararlarının önlenmesi veya azaltılması ile atıkların geri kazanılması ve geri kazanılabilen atıkların kaynağında ayrı toplanması esastır. Atık yönetim plânlarının hazırlanmasına ilişkin esaslar, Bakanlıkça çıkarılacak yönetmelikle düzenlenir. Geri kazanım imkânı olmayan atıklar, yönetmeliklerle belirlenen uygun yöntemlerle bertaraf edilir. Büyükşehir belediyeleri ve belediyeler evsel katı atık bertaraf tesislerini kurmak, kurdurmak, işletmek veya işlettirmekle yükümlüdürler. Bu hizmetten yararlanan ve/veya yararlanacaklar, sorumlu yönetimlerin yapacağı yatırım, işletme, bakım, onarım ve ıslah harcamalarına katılmakla yükümlüdür. Bu hizmetten yararlananlardan, belediye meclisince belirlenecek tarifeye göre katı atık toplama, taşıma ve bertaraf ücreti alınır. Bu fıkra uyarınca tahsil edilen ücretler, katı atıkla ilgili hizmetler dışında kullanılamaz. Üretici, ithalatçı ve piyasaya sürenlerin sorumluluğu kapsamında yükümlülük getirilen üreticiler, ithalatçılar ve piyasaya sürenler, ürünlerinin faydalı kullanım ömrü sonucunda oluşan atıklarının toplanması, taşınması, geri kazanımı, geri dönüşümü ve bertaraf edilmelerine dair yükümlülüklerinin yerine getirilmesi ve bunlara yönelik gerekli harcamalarının karşılanması, eğitim faaliyetlerinin gerçekleştirilmesi amacıyla Bakanlığın koordinasyonunda bir araya gelerek tüzel kişiliği haiz birlikler oluştururlar. Bu kapsamda yükümlülük getirilen kurum ve kuruluşların sorumluluklarının bu birliklere devrine ilişkin usûl ve esaslar Bakanlıkça çıkarılacak yönetmeliklerle belirlenir. Tehlikeli atık üreticileri, yönetmelikle belirlenecek esaslara göre atıklarını bertaraf etmek veya ettirmekle yükümlüdürler. Atık geri kazanım, geri dönüşüm ve bertaraf tesislerini kurmak ve işletmek isteyen gerçek ve/veya tüzel kişiler, yönetmelikle belirlenen esaslar doğrultusunda, ürün standardı, ürünlerinin satışa uygunluğu ve piyasadaki denetimi ile ilgili izni, ilgili kurumlardan almak kaydı ile Bakanlıktan lisans almakla yükümlüdür. Evsel atıklar hariç olmak üzere, atık taşıma ve/veya toplama işlerini yapan kurum veya kuruluşlar Bakanlıktan lisans almak zorundadır. Evsel atıkların taşıma ve toplama işlerini yapan kurum ve kuruluşlar Bakanlıkça kayıt altına alınır. Atıksu arıtımı, atık bertarafı ve atık geri kazanım tesisleri yapmak amacıyla belediyelerin hizmet birlikleri kurmaları halinde, bu hizmet birliklerine araştırma, etüt ve proje konularında Bakanlıkça teknik ve malî yardım yapılır. Tesis yapım projeleri ise bu Kanunun 18 inci maddesi çerçevesinde kredi veya yardım ile desteklenebilir. Kredi borcunun geri ödenmemesi durumunda 6183 sayılı Amme Alacaklarının Tahsil Usulü Hakkında Kanun hükümlerine göre takip yapılır ve öncelikle 2380 sayılı Belediyelere ve İl Özel İdarelerine Genel Bütçe Vergi Gelirlerinden Pay Verilmesi Hakkında Kanunun ek 4 üncü maddesi hükümleri çerçevesinde ilgili belediyelerin İller Bankasındaki paylarından tahsil olunur. Arıtma ve bertaraf etme yükümlülüğüne tâbi tesis ve işletmeler ile yerleşim birimleri, bu yükümlülüğe istinaden kurulması zorunlu olan arıtma ve bertaraf sistemleri, atıksu arıtma ve ön arıtma sistemleri ile atıksu altyapı sistemlerinin kurulması, onarımı, ıslahı, işletilmesi ve harcamalara katkı paylarının belirlenmesi ile ilgili usûl ve esaslar Bakanlıkça yönetmeliklerle düzenlenir. Bu konuda diğer kanunlarla verilen yetkiler saklıdır. Bu Kanunun uygulanmasını sağlamak üzere alınması gereken izinler ve bu izinlerin tâbi olacağı usûl ve esaslar Bakanlıkça çıkarılacak yönetmeliklerle belirlenir. Faaliyetleri nedeniyle çevreye olumsuz etkileri olabilecek kurum, kuruluş ve işletmeler tarafından, faaliyetlerine ilişkin olası bir kaza durumunda, kazanın çevreye olumsuz etkilerini kontrol altına almak ve azaltmak üzere uygulanacak acil durum plânları hazırlanması zorunludur. Buna ilişkin usûl ve esaslar Bakanlıkça çıkarılacak yönetmelikle düzenlenir. Bu plânlar dikkate alınarak Bakanlığın koordinasyonunda ilgili kurum ve kuruluşlarca yerel, bölgesel ve ulusal acil durum plânları hazırlanır. Liman, tersane, gemi bakım-onarım, gemi söküm, marina gibi kıyı tesisleri; kendi tesislerinde ve gemi ve diğer deniz araçlarında oluşan petrollü, yağlı katı atıklar ve sintine, kirli balast, slaç, slop gibi sıvı atıklar ile evsel atıksu ve katı atıkların alınması, depolanması, taşınması ve bertarafı ile ilgili işlemleri ve tesisleri yapmak veya yaptırmakla yükümlüdürler. Buna ilişkin usûl ve esaslar Bakanlıkça çıkarılacak yönetmelikle belirlenir. Denetim, bilgi verme ve bildirim yükümlülüğü(1) Madde 12 – (Değişik: 26/4/2006 – 5491/9 md.) Bu Kanun hükümlerine uyulup uyulmadığını denetleme yetkisi Bakanlığa aittir. Gerektiğinde bu yetki, Bakanlıkça; il özel idarelerine, çevre denetim birimlerini kuran belediye başkanlıklarına, Denizcilik Müsteşarlığına, Sahil Güvenlik Komutanlığına, 13/10/1983 tarihli ve 2918 sayılı Karayolları Trafik Kanununa göre belirlenen denetleme görevlilerine veya Bakanlıkça uygun görülen diğer kurum ve kuruluşlara devredilir. Denetimler, Bakanlığın belirlediği denetim usûl ve esasları çerçevesinde yapılır. Askerî işyerleri, askerî bölgeler ve tatbikatların bu Kanun çerçevesindeki denetimi ve neticelerine ait işlemler; Genelkurmay Başkanlığı, Millî Savunma Bakanlığı, İçişleri Bakanlığı ve Bakanlık tarafından müştereken hazırlanacak yönetmeliğe göre yürütülür. İlgililer, Bakanlığın veya denetimle yetkili diğer mercilerin isteyecekleri bilgi ve belgeleri vermek, yetkililerin yaptıracakları analiz ve ölçümlerin giderlerini karşılamak, denetim esnasında her türlü kolaylığı göstermek zorundadırlar. İlgililer, çevre kirliliğine neden olabilecek faaliyetleri ile ilgili olarak, kullandıkları hammadde, yakıt, çıkardıkları ürün ve atıklar ile üretim şemalarını, acil durum plânlarını, izleme sistemleri ve kirlilik raporları ile diğer bilgi ve belgeleri talep edilmesi halinde Bakanlığa veya yetkili denetim birimine vermek zorundadırlar. Denetim, bilgi verme ve bildirim yükümlülüğüne ilişkin usûl ve esaslar Bakanlıkça çıkarılacak yönetmelikle düzenlenir. Tehlikeli kimyasallar ve atıklar(2) Madde 13 – (Değişik: 26/4/2006 – 5491/10 md.) Tehlikeli kimyasalların belirlenmesi, üretimi, ithalatı, atık konumuna gelinceye kadar geçen süreçte kullanım alanları ve miktarları, etiketlenmesi, ambalajlanması, sınıflandırılması, depolanması, risk değerlendirilmesi, taşınması ile ihracatına ilişkin usûl ve esaslar ilgili kurum ve kuruluşların görüşleri alınarak Bakanlıkça çıkarılacak yönetmelikle belirlenir. Yönetmelik hükümlerine aykırı olarak piyasaya sürüldüğü tespit edilen tehlikeli kimyasallar ile bu kimyasalları içeren eşya, bunları satış ve kullanım amacıyla piyasaya süren kurum, kuruluş ve işletmelere toplattırılır ve imha ettirilir. Nakil ve imha için gereken masraflar ilgililerince karşılanır. Bu yükümlülüğün yerine getirilmemesi halinde bu masraflar, ilgili kurum, kuruluş ve işletmelerden 6183 sayılı Amme Alacaklarının Tahsil Usulü Hakkında Kanun hükümlerine göre tahsil edilir. Başbakanlık Dış Ticaret Müsteşarlığı bazı yakıtların, maddelerin, atıkların, tehlikeli kimyasallar ile bu kimyasalları içeren eşyaların ithalini, Bakanlığın görüşünü alarak yasaklayabilir veya kontrole tâbi tutabilir. Tehlikeli atıkların ithalatı yasaktır. Tehlikeli atıkların tanımı ile tehlikeli atıkların oluşum aşamasından itibaren toplanması, ayrılması, geçici ve ara depolanması, geri kazanılması, yeniden kullanılması, taşınması, bertarafı, bertaraf sonrası kontrolü, ihracatı, transit geçişi, ambalajlanması, etiketlenmesi, denetimi ve atık yönetim plânlarının hazırlanması ile ilgili usûl ve esaslar Bakanlıkça yayımlanacak yönetmelikle belirlenir. Tehlikeli kimyasalların üretimi, satışı, depolanması, kullanılması ve taşınması faaliyetleri ile tehlikeli atıkların toplanması, taşınması, geçici ve ara depolanması, geri kazanımı, yeniden kullanılması ve bertarafı faaliyetlerinde bulunanlar, bu Kanun ile getirilen yükümlülükler açısından müteselsilen sorumludurlar. Sorumlular bu Kanunda belirtilen meslekî faaliyetleri nedeniyle oluşacak bir kaza dolayısıyla üçüncü şahıslara verebilecekleri zararlara karşı tehlikeli kimyasal ve tehlikeli atık malî sorumluluk sigortası yaptırmak zorunda olup, faaliyetlerine başlamadan önce Bakanlıktan gerekli izni alırlar. Sigorta yaptırma zorunluluğuna uymayan kurum, kuruluş ve işletmelere bu faaliyetler için izin verilmez. –––––––––––––––––––– (1) Bu madde başlığı "Denetim" iken, 26/4/2006 tarihli ve 5491 sayılı Kanunun 9 uncu maddesiyle metne işlendiği şekilde değiştirilmiştir. (2) Bu madde başlığı”Zararlı kimyasal maddeler:” iken, 26/4/2006 tarihli ve 5491 sayılı Kanunun 10 uncu maddesiyle metne işlendiği şekilde değiştirilmiştir. Bu maddede öngörülen zorunlu malî sorumluluk sigortası, malî yeterliliklerine göre, Hazine Müsteşarlığınca belirlenen sigorta şirketleri tarafından ya da bağlı olduğu Bakanın onayı ile Hazine Müsteşarlığınca çıkarılacak bir yönetmelikle oluşturulacak bir havuz tarafından temin edilir. Havuzun yönetim ve işleyişi ile ilgili usûl ve esaslar da aynı yönetmelikle belirlenir. Havuz, sigorta ve/veya reasürans havuzu şeklinde oluşturulur. Kamu adına havuzda belirli bir payın korunmasına karar verilmesi hususunda Hazine Müsteşarlığının bağlı bulunduğu Bakan yetkilidir. Havuzun başlangıç giderleri için geri ödenmek üzere Hazine Müsteşarlığı bütçesinden avans kullandırılabilir. Havuzun yükümlülükleri; prim gelirleri ve bunların getirileri, piyasalardan sağlayacağı reasürans ve benzeri korumalar ve ödeme gücüyle sınırlıdır. Bakanlık, Hazine Müsteşarlığının uygun görüşünü almak kaydıyla, tehlikeli kimyasallar ve tehlikeli atıklarla ilgili faaliyetlerde bulunanların malî sorumluluk sigortası yaptırma zorunluluğunu, bu sigortaya ilişkin genel şartlar ile tarife ve talimatların yürürlüğe girmesinden itibaren en çok bir yıl ertelemeye yetkilidir. Her bir sorumlu tarafından yaptırılacak malî sorumluluk sigortasına ilişkin sigorta genel şartları Hazine Müsteşarlığınca onaylanır. Malî sorumluluk sigortası tarife ve talimatları Hazine Müsteşarlığının bağlı olduğu Bakan tarafından tespit edilir. Hazine Müsteşarlığının bağlı olduğu Bakan tarifeyi serbest bırakmaya yetkilidir. Gürültü: Madde 14 – (Değişik: 26/4/2006 – 5491/11 md.) Kişilerin huzur ve sükununu, beden ve ruh sağlığını bozacak şekilde ilgili yönetmeliklerle belirlenen standartlar üzerinde gürültü ve titreşim oluşturulması yasaktır. Ulaşım araçları, şantiye, fabrika, atölye, işyeri, eğlence yeri, hizmet binaları ve konutlardan kaynaklanan gürültü ve titreşimin yönetmeliklerle belirlenen standartlara indirilmesi için faaliyet sahipleri tarafından gerekli tedbirler alınır. Faaliyetlerin durdurulması: Madde 15 – (Değişik: 26/4/2006 – 5491/12 md.) Bu Kanun ve bu Kanun uyarınca yayımlanan yönetmeliklere aykırı davrananlara söz konusu aykırı faaliyeti düzeltmek üzere Bakanlıkça ya da 12 nci maddenin birinci fıkrası uyarınca denetim yetkisinin devredildiği kurum ve merciler tarafından bir defaya mahsus olmak üzere esasları yönetmelikle belirlenen ve bir yılı aşmamak üzere süre verilebilir. Faaliyet; süre verilmemesi halinde derhal, süre verilmesi durumunda, bu süre sonunda aykırılık düzeltilmez ise Bakanlıkça ya da 12 nci maddenin birinci fıkrası uyarınca denetim yetkisinin devredildiği kurum ve merciler tarafından kısmen veya tamamen, süreli veya süresiz olarak durdurulur. Çevre ve insan sağlığı yönünden tehlike yaratan faaliyetler süre verilmeksizin durdurulur. Çevresel Etki Değerlendirmesi incelemesi yapılmaksızın başlanan faaliyetler Bakanlıkça, proje tanıtım dosyası hazırlanmaksızın başlanan faaliyetler ise mahallin en büyük mülkî amiri tarafından süre verilmeksizin durdurulur. Süre verilmesi ve faaliyetin durdurulması, bu Kanunda öngörülen cezaların uygulanmasına engel teşkil etmez. Tehlikeli hallerde faaliyetin durdurulması: Madde 16 – (Mülga: 26/4/2006 – 5491/24 md.) DÖRDÜNCÜ BÖLÜM (1) Çevre Kirliliğini Önleme Fonu Fonun kurulması ve fondan yararlanma: Madde 17 – (Mülga: 21/2/2001 - 4629/6 md.) Çevre katkı payı alınması, diğer gelirler ve bütçe ödenekleri(2) Madde 18 – (Mülga: 21/2/2001 - 4629/6 md.; Yeniden düzenleme: 26/4/2006-5491/13 md.) Çevre kirliliğinin önlenmesi, çevrenin iyileştirilmesi ve çevre ile ilgili yatırımların desteklenmesi amacıyla; a) İthaline izin verilen kontrole tâbi yakıt ve atıkların CIF bedelinin yüzde biri ile hurdaların CIF bedelinin binde beşi oranında alınacak miktar, b) Büyükşehir belediyeleri su ve kanalizasyon idarelerince tahsil edilen su ve kullanılmış suları uzaklaştırma bedelinin yüzde biri, çevre katkı payı olarak tahsil edilir. Tahsil edilen bu tutarlar, ilgililerce en geç ertesi ayın onbeşine kadar ilgili mal saymanlıkları hesaplarına aktarılır ve bütçeye gelir kaydedilir. Ayrıca, yurt içi ve yurt dışından temin edilecek her türlü hibe, yardım ve bağışlar ile kredi anapara geri dönüşleri ve kredi faizleri de tahsil edilerek, Çevre ve Orman Bakanlığı Merkez Saymanlık Müdürlüğü hesabına yatırılır ve bütçeye gelir kaydedilir. Bu maddede sayılan gelirlerin tahsilatında 6183 sayılı Amme Alacaklarının Tahsil Usulü Hakkında Kanun hükümleri uygulanır. Bakanlar Kurulu (a) ve (b) bentlerinde yer alan oranları ayrı ayrı veya topluca sıfıra kadar indirmeye veya kanunî oranına kadar yükseltmeye yetkilidir. Atıksu arıtımı, atık bertarafı ve katı atık geri kazanım tesislerinin gözetim, fizibilite, etüt, proje ve inşaat işlerinin kredi veya yardım suretiyle desteklenmesi ile çevre düzeni plânlarının yapımı, hava, su ve toprak kalitesinin ölçüm ve izleme ağının oluşturulması, gürültünün önlenmesi ile ilgili etüt ve projelerin desteklenmesi, acil müdahale plânlarının hazırlanması, Çevresel Etki Değerlendirmesi faaliyetleri, havza koruma plânı çalışmaları, biyolojik çeşitliliğin korunması, çölleşme ve iklim değişikliği ile mücadele çalışmaları, stratejik çevresel değerlendirme, nesli tehlikede olan bitki ve hayvan türleri ile yaşama ortamlarının korunması, uluslararası sözleşmelerden kaynaklanan yükümlülüklerin karşılanması, çevre eğitimi ve yayını ile ilgili faaliyetler ve ihtisas komisyonları için yapılan harcamalar ile çevre kirliliğinin giderilmesi çalışmaları için Bakanlık bütçesine, yılı bütçe gelirleri içerisinde tahmin edilen yukarıdaki gelirler karşılığı ödenek öngörülür. Yukarıda sayılan gelirlerin tahsili ve bütçede öngörülen ödeneklerin kullanımı ile ilgili usûl ve esaslar, Maliye Bakanlığının uygun görüşü üzerine Bakanlıkça çıkarılacak yönetmelikle belirlenir. Fonun kullanılması: Madde 19 – (Mülga: 21/2/2001 - 4629/6 md.) –––––––––––––––––––– (1)“Dördüncü Bölüm” başlığı 21/2/2001 tarih ve 4629 sayılı Kanunun 6 ncı maddesiyle yürürlükten kaldırılmıştır. (2) Bu madde başlığı "Fonun gelirleri" iken, 26/4/2006 tarihli ve 5491 sayılı Kanunun 13 üncü maddesiyle metne işlendiği şekilde değiştirilmiştir.

http://www.biyologlar.com/cevre-kanunu-bolum-1

&quot;Caretta caretta&quot; Davutlar Sahiline İlk Kez Yumurta Bıraktı

"Caretta caretta" Davutlar Sahiline İlk Kez Yumurta Bıraktı

08.06.2012 gece saat 24.00 sıralarında Aydın-Kuşadası-Davutlar Beldesi Mersin Oteli Plajında bir adet Caretta Caretta yumurtlamış ve tarafımızdan görüntüleri çekilmiştir. Mersin Club Otel yöneticilerinin ihbarıyla Caretta caretta’nın bu alana yumurta bıraktığının anlaşılması üzerine 09.06.2012 tarihinde Orman ve Su İşleri IV. Bölge Müdürlüğümüz personeli tarafından, olayın olduğu yeri koruma altına almışlardır. Ülkemiz kıyılarında Dalyan’dan başlamak üzere genellikle Güney Ege ve Akdeniz kıyılarını üreme alanı olarak seçen Caretta caretta cinsi iribaş bir deniz kaplumbağası, Davutlar kumsallarına ilk kez yuva yaparak yumurta bıraktı.   Caretta Caretta’ nın yuva yaptığı yerin denize çok yakın olması nedeniyle, Pamukkale Üniversitesi’nden Dalyan DEKAMER (Deniz Kaplumbağaları Araştırma Kurtarma ve Rehabilitasyon Merkezi) Müdürü Prof. Dr. Yakup Kaska’ya bilgi verildi. Birlikte yapılan inceleme sonrasında deniz suyunun gelebileceği noktalar tespit edildi. Caretta Caretta’ nın yumurtalarının zarar görebileceğine karar verilerek, yuvada bulunan yumurtaların dalgaların ulaşamayacağı bir noktaya transferlerinin yapılması için kumdaki nem durumları kontrol edildi. Prof. Dr. Yakup Kaska’ nın önerisiyle en uygun alan seçildi. Yumurtaların bulunduğu yuva Prof. Dr. Yakup Kaska tarafından büyük bir hassasiyetle itina gösterilerek açıldı.  Anne Caretta’ nın yuvaya bıraktığı şekilde yumurtalar tek tek, uygun olarak döndürülmeden yumurta kolilerine çıkan kumlardan konularak üzerlerine bırakıldı. Çıkarılan yumurtalar büyük bir dikkat ve kıpırdatmadan, diğer yuvaya taşındı. Yuvadan 81 yumurtanın çıktığı tespit edildi. Yumurtaların çıkış sırasına göre, Prof. Dr. Yakup Kaska tarafından yumurtalar eski yuvanın ölçülerine göre yapılan yeni yuvaya tek tek yerleştirildi. Yuvanın etrafı örgülü telle çevrilerek koruma altına alındı. Prof. Dr. Yakup Kaska, “Kuşadası bölgesinde ilk kez Caretta yuvası tespit edildi. Bugüne kadar bu bölgede hiç Caretta yuvası tespit edilmemişti. Buradaki yuvanın yeri denize çok yakın olması nedeniyle, yumurtalar uygun şekilde, döndürmeden taşındı.  Toplam 81 yumurtanın 4-5 adedinin döllenmemiş olduğu görüldü. Çiftleşen kaplumbağalar 15 gün sonra yumurta yapar ve bir dişi bir sezonda 3-5 yuva yapar. Bu nedenle bu kaplumbağa eğer tekrar bu kumsala gelirse, bu kumsala ait olup olmadığı anlaşılabilir” dedi. Bölge Müdürü Rahmi BAYRAK  ise konuşmasında; “Bölge Müdürlüğümüzce, Caretta Caretta’ nın Kuşadası sahiline yumurta bırakmasından sonra büyük duyarlılık gösterilerek, tüm ilgili kurumları koruma çalışmaları için Kuşadası’na gönderdik. Caretta Carettalar deniz ekosisteminin en önemli canlıları arasındadır. Kurum olarak bu konuda her türlü hassasiyeti gösteriyoruz. Kuşadası’nda ilk kez böyle bir durumla karşılaştık. Yavruların yumurtadan çıkışına kadar, korumaya ve takip etmeye devam edeceğiz. Bakanlığımız, Kaymakamlık, Yerel Yönetim, Üniversite, Sivil Toplum Kuruluşu ve yöredeki vatandaşların işbirliğiyle çok güzel bir çalışma gerçekleştirildi. Bunun sonucunu yine hep birlikte takip ederek, yöre insanlarını da bilgilendirip, duyarlılığa teşvik ederek, yumurtaların çıkmasını bekleyeceğiz.”  dedi. Kaynak: http://www.milliparklar.gov.tr

http://www.biyologlar.com/caretta-caretta-davutlar-sahiline-ilk-kez-yumurta-birakti

Hayatın Kuşları Çalınıyor

Hayatın Kuşları Çalınıyor

Bulunmuş olduğu coğrafik konum, uygun iklim koşulları nedeniyle yüzlerce kuş türüne ev sahipliği yapan Hatay’ın kuşları tehdit altında. Hatay’da yoğun bir şekilde bulunan Saka (Carduelis carduelis)  kuşu doğadan yakalanıp satılıyor. Arap uyruklu bazı kimseler yerelden tanıdıkları vasıtasıyla özellikle Kırıkhan ve cevresinde yoğun bir şekilde  saka kuşlarını  yakalanarak satıldıkları yönünde ciddi duyumlar almaktayız. Ayrıca bir çok tür yırtıcı kuş, özellikle atmaca ve doğan türleri, Ortadoğu ülkelerine satılmak için kaçak olarak yakalanıyorlar. Oysa bu bir suç.Bu duruma tanık olan her vatandaşımızın bağlı bulundukları bölgenin kolluk güçlerine ve milli park yetkililerine ihbarda bulunmaları gerekmektedir. Kuşların birçok ekolojik ve ekonomik hizmetleri var. Böcek yiyen kuşlar birçok tarım zararlısını kontrol altında tutar ve bu kuşların elma, kayısı, erik, pamuk gibi önemli bitki ve ağaçlara  dadanan böcekleri yiyerek bu yönde ekonomik fayda sağladıkları bilimsel olarak yapılan çalışmalarda ıspatlanmıştır.Bunun yanında, sivrisinek gibi insan sağlığı için risk taşıyan birçok böceği de yerler. Türkiye'de sivrisinek ve kum sineklerinden gecen sıtma ve sark çıbanı vakaları geçmiş yıllarda sıkca görülmekteydi.Bunun yanında sürekli katledilen birçok yırtıcı kuş, sıçan ve diğer kemirgenleri yiyerek çiftçimize ve diğer insanlara büyük hizmetler sağlamaktadırlar. Halkımızın bu konuda duyarlı olmasını ve kolluk kuvvetlerine yardım etmesini bekliyoruz. Abdullah ÖĞÜNÇ Türkiye Tabiatını Koruma Derneği Hatay Şubesi Yönetim Kurulu Başkanı Ttkd.hatay@hotmail.com Abdullah.ogunc@dogadernegi.org 0533 369 7721 http://www.ttkder.org.tr

http://www.biyologlar.com/hayatin-kuslari-caliniyor

Mikobakteri Kültür Yöntemleri

Mikroskopik muayenede ARB araştırılması, TBC tanısı için oldukça değerli, basit ve ucuz bir yöntem olup ön tanı değeri taşır. Fakat tüberkülozun kesin tanısı için etken ajanın kültür ortamında tekrar gösterilmesi ve bazı in vitro testler ile doğrulanması gerekir. Kültür yöntemi; M.tuberculosis için “altın standart” olarak kabul edilmektedir. Mikobakterilerin üretilmesinde çalışılacak laboratuvar ortamının imkanları ölçüsünde standart besiyerlerinden MGIT, BACTEC gibi komplike sistemlere kadar farklı kültür yöntemleri uygulanabilir. Mikobakterilerin izolasyonu için ideal ortam;Az sayıdaki mikobakterilerin hızlı ve bol miktarda üremelerine izin vermeli, Ekonomik olmalı, içeriğinde bulunan maddelerin temininde ve hazırlanmasında zorluk yaşanmamalı, Pigment oluşumu ve koloni morfolojisine dayanarak izolatlar arasındaki farklılıkları saptamaya yardımcı olmalı, Mikobakteri dışındaki kontaminant mikroorganizmaların üremesini inhibe etmeli, İlaç duyarlılık testleri uygulamak için uygun olmalıdır. Tüberkülozda kullanılan standart besiyerleri değişik başlıklar altında toplanabilir:İçerikleri yönünden; Sentetik besiyerleri (Sauton, Long vb.) Yarı sentetik besiyerleri (Yumans, Dubos, Middlebrook vb.) Kompleks besiyerleri (Löwenstein Jensen, Ogawa, Trudeau) Görünüm yönündenKatı besiyerleri (Yumurtalı ve agarlı; Löwenstein Jensen, agarlı Middlebrook, Treduau vb.) Sıvı besiyerleri (Middlebrook, Youmans, Sula vb.) Karışık besiyerleri (Gliserinli, patatesli buyyon vb.) Kullanım amacına görePrimo kültür - ilk izolasyon (Löwenstein Jensen, agarlı Middlebrook, Trudeau, Ogawa vb.) Araştırma Üretim (Tüberkülin, BCG; Sauton, Proskauer, Long vb.) Antimikrobiyal madde içeriğine göreNonselektif: Antibiyotik içermezler. Selektif: Antibiyotik içerirler. Günümüzde mikobakterilerin ilk izolasyonunda en sık kullanılanlar yumurtalı besiyerleri ve/veya agarlı besiyerleridir. Agarlı besiyerlerine göre yumurtalı besiyerlerinin hazırlanması daha zahmetli fakat daha ucuzdur ve koloni görüntüsü daha tipiktir. Bu nedenle Türkiye dahil Tüberküloz hastalığının sık görüldüğü ülkelerde en sık yumurtalı besiyerleri, bunlardan da en sık Löwenstein Jensen besiyeri kullanılmaktadır. Yine yumurtalı ve katı olan Ogawa besiyeri de basit ve ucuz bir besiyeridir. Uzak Doğu’da özellikle Japonya’da kullanılır. Amerika’da yumurtalı besiyeri olarak Treduau ve ayrıca agarlı besiyeri olarak Middlebrook 7H10 ve 7H11 en sık kullanılan besiyerleridir. Petragnani besiyeri özellikle yoğun kontamine örneklerden mikobakteri izolasyonunda tercih edilir. American Thoracic Society Medium (ATSM), diğerlerine göre daha düşük oranda malaşit yeşili içerdiğinden özellikle BOS, plevra sıvısı, biyopsi gibi steril örneklerde tavsiye edilir. Löwenstein Jensen besiyerinin klinik örneklerden mikobakteri izolasyonundaki duyarlılığı; üreme zamanının daha uzun olması, koloni oluşumunun daha geç tespit edilmesi gibi nedenlerden dolayı, Middlebrook 7H10, 7H11 ve sıvı formu (broth) olan 7H9 besiyerleri ile karşılaştırıldığında daha düşüktür. Balgam kültürlerinde ilk seçenek yumurtalı besiyerleridir. Balgam dışı örneklerde ise en verimli yöntem sıvı besiyerlerini kullanmaktır. Ekonomik yeterliliği olan laboratuvarlarda özellikle BOS, vücut boşluk sıvıları ve biyopsi gibi tekrarlanamayan örneklerde sıvı besiyerlerinin kullanılması tavsiye edilmektedir.Yumurtalı BesiyerleriAvantajları 1. Hazırlanması kolaydır. 2. Mevcut en ucuz besiyeridir ve tüberküloz bakterisinin iyi üremesine müsaade eder. 3. Taze yumurtadan hazırlandığı, sıkı kapaklı tüplerde saklandığı ve buharlaştırarak sıvı artığının minumuma indirildiği durumlarda haftalarca buzdolabında saklanabilir. 4. Tüplere dağıtıldıktan sonra koagüle edildiğinden ve ayrıca eklenen malaşit yeşili mikobakteri dışındaki diğer bakterilerin üremesini engellediğinden kontaminasyon riski düşüktür.Dezavantajları1. Pozitifliğin saptanma süresi uzundur. Özellikle örnekte az sayıda bakteri bulunması ya da güçlü dekontaminasyon işlemi uygulanması durumunda belirgin kolonilerin izlenmesi 6-8 hafta gibi uzun bir süreyi alabilir.2. Kontaminasyon durumunda çoğu kez besiyerinin tüm yüzeyi etkilendiğinden sıklıkla besiyeri kaybedilir. Besiyeri Hazırlarken Dikkat Edilmesi Gereken Kurallar:İyi kalitede bir besiyeri elde etmek için kullanılan kimyasal maddelerin saf olması, cam malzemelerin ve distile suyun steril olması gerekir. Besiyeri hazırlama yönteminde yer alan kurallar aynen uygulanmalı, değişikliklerden kaçınılmalıdır. 1. Çalıştığınız ortamı mümkün olduğu kadar temiz tutunuz. Tezgahın üzerini uygun bir dezenfektan (1/10 ya da 1/20 oranında sulandırılmış çamaşır suyu gibi) ile siliniz. Yerleri toz oluşmasını engellemek için nemli bezlerle siliniz.2. Cam malzemeleri ve diğer aletleri steril ettikten sonra kullanınız.3. Kimyasal maddelerin tavsiye edilen saflıkta olmasına dikkat ediniz.4. Koagülatör ısısını önceden kontrol ediniz.5. Asepsi kurallarına özenle uyunuz (tüplerin ve şişelerin ağzını alevden geçirme vb.).6. Yumurtaların kabuklarını kırmadan önce mutlaka temizleyiniz.7. Koagülasyonda tavsiye edilen ısının ve sürenin üzerine çıkmayınız.8. Hazırlamış olduğunuz besiyerlerini ışıklı ortamda (özellikle UV altında) tutmayınız. Buzdolabında saklayınız (Buzdolabı ışığının kapak kapatıldıktan sonra söndüğünden emin olunuz). 9. Tüplere dağıtım aşamasında besiyeri hacmini kullandığınız tüplere göre ayarlayınız (6-8 ml küçük şişelere, 20 ml deney tüpüne). Gereksiz tasarruflardan kaçınınız. LOWENSTEIN - JENSEN BESİYERİ HAZIRLANMASITuz Solüsyonu Monopotasyum Fosfat 2400 mgMagnezyum Sülfat 240 mgMagnezyum Sitrat 600 mgL- Asparagine 3600 mg Gliserin 12 mlDistile Su 600 ml Yukarıdaki maddeler tartılıp büyük bir balona konularak eriyinceye kadar benmaride kaynatılır. Otoklavda 121oC’de 30 dakika sterilize edilir.Besiyeri İçin Gerekli Yumurtanın Hazırlanması1. Önce, 2 gr malaşit yeşili tartılır, 100 ml distile su içinde eritilir. Bu şekilde hazırlanmış % 2’lik malaşit yeşili stok çözeltisi koyu renkli bir aktarılır, güneş ışığından uzak bir yerde muhafaza edilir. 2. 25 adet sağlam, taze yumurta alınır, üzeri kirli olanlar sabunlu suyla iyice fırçalanır. Yumurtalar geniş bir kaba konulur. Steril bir kapta UV lambası altında 45 dakika bekletilerek sterilize edilir. UV lamba yoksa yumurtalar, %70’lik etil alkol ile doldurulmuş geniş ve derin bir kapta 15 dakika bekletilir. 3. Bu sterilize edilmiş yumurtalar, ağzı lastik tıpa ile kapatılabilen steril bir balona, steril huni vasıtasıyla kırılır. Balonun ağzı kapatılarak balonda toplanan yumurtalar homojen hale gelinceye kadar çalkalanır. Daha önce hazırlanıp steril edilmiş büyük balondaki tuz solüsyonuna steril bir tülbentten süzülerek ilave edilir. 4.Bunun üzerine % 2 lik malaşit yeşilinden 25 ml ilave edilir, hepsi birlikte çalkalanır. 5. Özel tevzi (dağıtım) cihazları ile 6-8 ml hacimlerde, 160x16 mm’lik tüplere steril şartlarda dağıtılır. 6. Aral Gürsel sulu tip koagülatörde 78-80oC’de 1 saat koagüle edilir. 7. Koagüle edilen besiyerleri, 37oC’lik etüvde 24 saat bekletilir. Ertesi gün kontamine olmuş besiyerleri ayrılır. Steril ve sağlam olan besiyerleri 2-8oC’de (buzdolabında) saklanır. İlaçlı Löwenstein-Jensen besiyerlerinin raf ömrü 2 ay; ilaçsız (normal) Löwenstein-Jensen besiyerinin (kurumasına mani olunduğu taktirde) raf ömrü ise 6 aydır. 8. Ticari olarak baz Lowenstein-Jensen besiyeri temin edilebilir. Bunlarda benzer şekilde hazırlanır. Ancak bu besiyerleri patates unu içerdiğinden ilaçlı besiyeri yapımında kullanılmaz. SIVI KÜLTÜR SİSTEMLERİSolid besiyerlerine göre mikobakterilerin, daha kısa sürede üremesine olanak sağlarlar. Bactec ve MGIT sistemleri bu amaçla kullanılmaktadır.BACTEC Bactec yöntemi sıvı besiyerinde üreyen mikobakterinin üremesinin radyometrik olarak izlenmesi esasına dayanır.Temel prensip 14C ile işaretli substrat içeren besiyerinde bu substratı kullanarak üreyen mikobakterilerin 14CO2 üretmesidir. Tespit edilen 14CO2 miktarı vial içindeki üremenin miktarı ve oranını yansıtır ve üreme indeksi olarak tanımlanır. İlaç duyarlılık testleri Bactec sistemi kullanılarak yapılabilir.MGITMGIT yöntemi mikobakterilerin klinik örneklerden (kan ve idrar hariç) hızlı izolasyonunu optimize etmek için geliştirilmiş in vitro bir sistemdir. Hastalardan alınan örnekler işlendikten sonra MGIT tüplerine inoküle edilir. MGIT tüplerinin dip kısımlarında fluorescent içeren silikon bulunur ve sıvı besiyerinde bulunan çözünmüş haldeki O2 varlığına duyarlıdır. Sıvı besiyerinde üreyen mikobakterilerin açığa çıkardığı çözünmüş haldeki oksijen floresan açığa çıkarır ve üremenin tespit edilmesini sağlar.

http://www.biyologlar.com/mikobakteri-kultur-yontemleri

Keneler Hakkında Bilgi

Keneler Keneler zorunlu kan emici artropodlar olup, Dünya’nın her bölgesinde gözlenmektedirler. Ülkemizde halk arasında kene, sakırga, yavsı, kerni gibi isimlerle bilinmektedirler. Kenelerin sistematikteki yeri ve önemli türlerin isimleri aşağıda verilmiştir. Anaç: ARTHROPODA Anaç bölümü : CHELICERATA Sınıf altı: Acarina (Acari) Dizi: Metastigmata Aile: İxodidae Soy: İxodes Tür: İxodes ricinus Soy:Hyalomma Tür: Hyalomma anatolicum anatolicum Tür: Hyalomma anatolicum excavatum Tür: Hyalomma detritum Tür: Hyalomma marginatum marginatum Tür: Hyalomma marginatum rufipes Tür: Hyalomma marginatum turanicum Tür: Hyalomma aegyptium Soy: Amblyomma (Türkiye’de yok) Tür: Amblyomma variegatum Soy: Haemaphysalis Tür: Haemaphysalis parva Tür: Haemaphysalis sulcata Tür: Haemaphysalis punctata Tür: Haemaphysalis inermis Soy: Dermacentor Tür: Dermacentor marginatus Tür: Dermacentor niveus Soy: Boophilus Tür: Boophilus annulatus calcaratus Soy: Rhipicephalus Tür: Rhipicephalus sanguineus Tür: Rhipicephalus bursa Tür: Rhipicephalus turanicus Tür: Rhipicephalus appendiculatus (Türkiye’de yok) Aile:Argasidae Soy: Ornithodorus Tür: Ornithodorus lahorensis Soy: Argas Tür: Argas reflexus Tür: Argas persicus Soy: Otobius Tür: Otobius megnini Günümüzde Argasidae ve Ixodidae ailelerine bağlı 850 türü bilinmektedir. Amblyomma soyu dışındaki soylara bağlı birçok kene türü, Türkiye’de yaygın olarak bulunmaktadır. Doç.Dr. Zati Vatansever vatansev@veterinary.ankara.edu.tr zativet@hotmail.com Genel Morfolojik ve Biyolojik Özellikler Keneler morfolojik olarak diğer artropodlardan farklı olup, vücütları tek bir parçadan oluşmuştur. Vücudun ön tarafında ağız organelleri yer almktadır. 1.Aile: İxodidae (şekil 1) İxodidae ailesindeki türlere sert kene, mera kenesi veya yaz kenesi denir. Bu ailede bulunan türlerde caput, thorax ve abdomen tamamen birbirleriyle birleşmiştir. Olgunlarında ve nimflerinde 4 çift ayak , larvalarında ise 3 çift ayak vardır. Nimflerinde genital organlar henüz oluşmamıştır. Dorsalden bakılınca ağız organelleri görülebilir. Ağız organellerinin oturduğu kısıma basis caputili denir. Ağız organellerinin arkasında dişilerde vücudun önünde ve üst kısmında okul önlüğü yakası şeklinde kitini bir organ teşekkül ederki buna scutun denir. Erkeklerde bu oluşum dorsalde tüm vücudu kaplar, buna conscutum denir. Bu bakımdan erkekler kan emdiği zaman vücutlarında değişiklik olmaz. Buna karşılık dişiler kan emip doyunca normal büyüklüğünün 10 katı kadar genişleyebilir. Ağız organelleri 1 çift chelicer, chelicer kılıfı ve hipostom denilen delmeye ve kan emmeye yarayan organelden oluşur. Bu organellere rostellum denir. Rostellumun iki yanında bir çift palp bulunur. Ayrıca kenelerin dorsal kısmında, tür tayininde önemi olan, çukurluklar, feston, cervical oluklar ve noktalamalar bulunur. Ventralde ise anüs ile ikinci çift coxalar hizasında genital delik bulunur. Bu yüzde dişilerde anal oluk, erkeklerde ise kitini plaklar yer alır. Yine ventralde 4’üncü coxanın arkasında bir çift stigma bulunur. Ayaklarının sonunda bir çift tırnak ve tırnakların ventral yüzeyinde ise tutunmaya yarayan zar şeklinde pulvillum adı verilen organel vardır. (Argasidae’lerde bu organel yoktur). Önde birinci çift ayakta tarsuslar üzerinde Haller organeli denen bir çukurluk yer almıştır. Bu yapı duyu organelidir. Dişi kenelerde ovaryum ile barsak irtibat halindedir. Bu yüzden bazı keneler kan emerken parazitleri sindirim sisteminden ovaryumlarına geçirirler. Bu parazitler ovaryumdan yumurtaya geçerek, yumurtadan çıkan larvaları enfekte ederler. Bu larvalar kan emerken parazitleri de hayvanlara taşırlar (transovaryal nakil). Doç.Dr. Zati Vatansever vatansev@veterinary.ankara.edu.tr zativet@hotmail.com Biyoloji Keneler kan emerek beslenir, ancak bu diğer kan emen artropodlardan farklıdır. Keneler konakların tutunup ağız organellerini deri içine sokarlar ve burada sabitlenip doyana kadar aynı yerden kan emerler. Argasidaeler çok kısa sürelerde çok miktarda kan emip doydukları halde, Ixodidae ailesindeki kenelerin doyması için birkaç gün ile birkaç hafta arasında süre gerekmekte, hata bu süre içinde bazı Ixodidae türleri gömlek değiştirip diğer gelişme dönemlerine geçmektedirler. İxodidae türleri, genellikle ilkbahar ve sonbahar mevsimleri arasında aktiftirler. Bunlar evcil hayvanların kulak kepçesi içinde ve dışında, boyun altında, karın, anal ve perianal bölgeler ile sırt ve kuyruk üzerinde bulunurlar. Dişi keneler, erkeklerden daha fazla kan emerler. Hayatları boyunca geçirdikleri her dönemde (larva-nimf-olgun ) mutlaka kan emmek zorundadırlar. Erkek ve dişiler kan emme esnasında çiftleşirler. Ovipardırlar. Dişi keneler yumurtalarını taş, toprak ve merada yaprakların altına, toplu ve birbirine yapışık şekilde bırakırlar.Yumurtlama süresi ve miktarı, dişi kenenin az veya çok kan emmesine ve diğer dış faktörlere bağlı olarak değişir. Ayrıca türlere göre de yumurta sayısı değişiklik gösterir. Ortalama 3.000-15.000 arasında yumurta yumurtlarlar. Dişiler yumurtladıktan sonra ölürler. (Argasidae türleri ölmez). Yumurtadan çıkan larvalar 3 çift bacaklıdır. Birinci çift ayak tarsuslarında bulunan Haller organı konak bulmaya yarar. Türlere göre farklı sürelerde konaklardan kan emerler ve kan emdikten sonra yine değişen sürede gömlek değiştirirerek. 4 çift ayaklı nimf olurlar. Nimflerde larvalar gibi henüz genital organlar gelişmemiştir. Aç olan nimfler kan emer doyar ve gömlek değiştirdikten sonra aç olgun hale gelir. Erkek ve dişi olgun keneler kan emerken çiftleşir ve doyduktan sonra dişi toprağa düşer ve yumurtlar. Bu siklus böyle devam eder. Biyolojik gelişmeye göre konak değiştirmeleri esas alınarak İxodidae ailesine bağlı türler 3 grupta toplanır. a-Bir konaklı kene: Merada yumurtadan çıkan larvalar konak hayvana hücum eder, ondan kan emip doyduktan sonra konak üzerinde gömlek değiştirip nimf olur. Aç nimf kan emip doydukyan sonra konak üzerinde gömlek değiştirir. Ortaya çıkan aç olgun kenenin erkek ve dişisi kan emdikten sonra çiftleşir, dişiler konak hayvanı terkedip toprağa düşer yumurtlar ve ölür. Yani larva-nimf ve olgun safhalar bir hayvanda geçer. Örneğin, Boophilus annulatus. Doç.Dr. Zati Vatansever vatansev@veterinary.ankara.edu.tr zativet@hotmail.com b-İki konaklı kene: İki konaklı kenelerde, larva ve nimf dönemini bir konakda geçirir, nimfler kan emip doyduktan sonra konak hayvanı terkederler. Meskende veya merada gömlek değiştirip aç olgun hale gelirler. Aç olgun keneler ikinci bir hayvana hücum ederek ondan kan emer, çiftleşir ve doyar. Daha sonra dişi kene toprağa düşer, yumurtlar ve ölür. Yani larva-nimf bir hayvanda, olgunu ise başka bir hayvanda geçer. Örneğin, Hyalomma türleri ve Rhipicephalus bursa. c-Üç konaklı kene: Üç konaklı kenede larva bir hayvandan kan emip doyar ve toprağa düşer.Toprakta gömlek değiştirip aç nimf olur.Aç nimf’ler ikinci bir hayvana hücum ederler. Ondan kan emip doyduktan sonra toprağa düşerler ve gömlek değiştirip aç olgun kene haline gelirler. Aç olgun keneler üçüncü bir hayvana hücum eder, kan emer ve çiftleşirler. Doyduktan sonra dişiler konak hayvanı terkedip toprakta yumurtlar ve ölürler. Yani bu kene türleri, larva, nimf ve olgun dönemlerinde ayrı ayrı veya aynı hayvana 3 kez gelmek suretiyle kan emer, gömlek değiştirme dönemlerini ise toprakta geçirirler. Dişiler yine yumurtalarını tprağa bırakırlar. Örneğin, İxodes ricinus, Dermacentor marginatus ve Haemophysalis punctata. İxodidae ailesine bağlı soylar, kenelerin ağız organellerinin uzun yada kısa olmasına göre birbirinden ayırtedilebilir. Ayrıca anal oluğun anüsü önden ve arkadan çevirmesi de soy ayrımında kullanılır. Buna göre İxodidae ailelerinde 7 soy vardır (Şekil 2). Doç.Dr. Zati Vatansever vatansev@veterinary.ankara.edu.tr zativet@hotmail.com Şekil 2. Ixodidae ailesinde bulunan soyların ayırım anahtarı. Doç.Dr. Zati Vatansever vatansev@veterinary.ankara.edu.tr zativet@hotmail.com Şelil 2. Ixodidae ailesindeki soyların ayırım anahtarı Anal oluk anusun önünde Soy: BOOPHILUS Soy: RHIPICEPHALUS Soy: DERMACENTOR Soy: ANOCENTOR 7 feston 11 feston Feston var, anal oluk belirgin, Coxa I’de derin yarık var Feston yok, anal oluk belirsiz, Coxa I bütün Basis capituli altıgen şeklinde Basis capituli dikdörtgen şeklinde Soy: HAEMAPHYSALIS II. Palp eklemi laterale çıkıntı yapar II. Palp eklemi düz Soy: AMBLYOMMA Soy: HYALOMMA Ağız organelleri Basis capituliden çok daha uzun, II. Palp ekleminin boyu eninden daha fazla Ağız organelleri Basis capituli ile yakın uzunlukta, II. Palp ekleminin eni ile boyu birbirine yakın Soy: IXODES Anal oluk anusun arkasında Capitulum terminalde yerleşmiş, üstten bakıldığında görülür, Scutum var Capitulum ventralde yerleşmiş, üstten görülmez, Scutum yok Argasidae Ixodidae Basis capituli II. Palp segmenti Basis capituli II. Palp segmenti Anal oluk Anus Ağız organelleri uzun olanlar Soy: İxodes Sadece bu soyda anal oluk anüsü önden çevirir. Ayak çiftleri öne yakındır. Göz yoktur. Türkiye’de tek türü bulunur. Tür: İxodes ricinus Soy:Hyalomma Palplerin ikinci ekleminin boyu eninin 2 katıdır.Bacakları uzun yapılıdır (Şekil 3). Göz vardır. Bu soya bağlı 5 tür Türkiye’de bulunmaktadır. Tür: Hyalomma anatolicum anatolicum Tür: Hyalomma anatolicum excavatum Tür: Hyalomma detritum Tür: Hyalomma marginatum marginatum Tür: Hyalomma marginatum rufipes Tür: Hyalomma marginatum turanicum Tür: Hyalomma aegyptium Şekil 3. Hyalomma sp. (erkek) Soy: Amblyomma Bu soya bağlı türler Afrika keneleridir. Ağız organelleri çok uzundur. Scutum üzerinde renkli alanlar mevcuttur.Göz vardır. Bir tür Türkiye’de Suriye sınırında bir vakada bildirilmişse de, ülkemizde olmadığı kabul edilmekltedir. Ağız organelleri kısa olanlar Soy: Haemophysalis Palplerin ikinci eklemi bazis caputuliyi yanlardan aşar. Göz yoktur. Daha çok Sonbahar ve Kış aylarında görülür. Bu soya bağlı 4 tür Türkiye’de bulumaktadır Tür: Haemophysalis parva Tür: Haemophysalis sulcata Tür: Haemophysalis punctata Tür: Haemophysalis inermis Soy: Dermacentor Bazis caputuli ağız organellerini yanlardan aşmıştır. Göz vardır. Scutum üzeri gri, açık kahverengi ve beyaz renklerde nakışlıdır. Daha çok Sonbahar aylarında aktiftirler ve konak hayvanların koyruk uçların bulunurlar. Türkiye’de 2 türü yaygındır. Tür: Dermacentor marginatus Tür: Dermacentor niveus Soy: Boophilus Ağız organelleri çok kısa olup, coxa 1’de yarık yoktur. Göz vardır. Türkiye’de bir türü bulunur. Tür: Boophilus annulatus calcaratus Soy: Rhipicephalus Coxa 1’de derin bir yarık olmasıyla Boophilus türlerinden ayrılır.Göz vardır. Bu soya bağlı 3 tür Türkiye’de yaygındır. Tür: Rhipicephalus sanguineus Tür: Rhipicephalus bursa Tür: Rhipicephalus turanicus Doç.Dr. Zati Vatansever vatansev@veterinary.ankara.edu.tr zativet@hotmail.com Keneler, insan ve hayvan hastalıklarının naklinde rol oynayan en önemli vektörlerdendir ve diğer artropod gruplarının aksine bir çok çok farklı yapıdaki enfeksiyöz etkenleri (bakteri, virus, parazit, mantar) taşıyabilme yeteneğine sahiptirler. Kırım-Kongo Kanamalı Ateşi ve Keneler KKKA ile kenelerin ilişkisi ilk defa 1944-45 yıllarında Kırım’da hasat toplayan çiftçilere yardım eden askerlerde hastalığın oluşması ve etkenin kenelerden izole edilmesi sonucunda önem kazanmıştır. Ixodidae ve Argasidae ailesine bağlı 31 kene türünün virusun vektörü olabileceği bildirilmesine rağmen, bunların tümünün vektör potansiyeli gösterilememiştir. Kenenin tam anlamı ile vektör kabul edilebilmesi için, etken izolasyonu dışında, kenenin virusu duyarlı hayvanlara aktarabilme ve viremik hayvanlardan alabilme yeteneğinin de olması gerekmektedir. Bu kriterler yukarıda bildirilen 29 türden sadece bazılarında gözlenebilmiştir. Bunun yanında bazı türler virusu hem transovarial hem de transtadial olarak taşırken bazıları sadece transtadial olarak taşıyabilmektedir. Günümüzde hastalığın başlıca vektörlerinin Hyalomma marginatum marginatum, H.m.rufipes ve H.anatolicum anatolicum olduğu kabul edilmektedir. Ancak, Hyalomma türlerinin olmadığı bazı ülkelerde etkenin Ixodes ricinus, Dermacentor spp., Rhipicephalus spp. ve Boophilus annulatus gibi kenelerden izole edilmiş olması, diğer kenelerin de vektörlük potansiyelinin düşünülmesi gerektiğini göstermektedir. H.a.anatolicum ve H.m.marginatum genellikle iki konutlu gelişim gösterirler. H.a.anatolicum’un, gerek larva ve nimfleri, gerekse erişkinleri genellikle evcil ruminantları (özellikle sığırları) tercih etmesine karşı, H.m.marginatumun’un genç gelişme dönemleri (larva ve nimf) çoğunlukla küçük hayvanları (tavşan, kirpi, kanatlılar, fare, yabani memeliler) ve az olarak da büyük memeliler ve insanı tercih etmekte, erişkinleri ise ağırlıklı olarak evcil memeliler (sığır, at, koun, keçi, köpek) ve az olarak da küçük memeliler (tavşan, kirpi) ile insanı tercih etmektedir (Şekil 4). Göç eden kuşlar bu kenenin bölgeler arasında yayılışından büyük ölçüde sorumludur. H.marginatum, Güney Avrupa, Kuzey Afrika, Anadolu, Kafkaslar ve Eski Sovyet Cumhuriyet’lerini içine alan geniş bir yayılış alanına sahiptir. Bu keneler Şubat ile Aralık ayları arasında hayvanlar üzerinde görülebilse de, erişkinler Mart-Ağustos, larva ve nimfler ise Haziran-Kasım dönemlerinde aktif olarak kan emerler. Kışı, genellikle doymuş nimf veya aç erişkin şeklinde, ahırlardaki duvar çatlaklarında veya meralardaki (yarı-ormanlık alanlarda) kemirici yuvaları, toprak içinde veya ağaç kovuklarında geçirirler. Doç.Dr. Zati Vatansever vatansev@veterinary.ankara.edu.tr zativet@hotmail.com Şekil 4. Hyalomma m.marginatum’un yaşam döngüsü. (Konak hayvanların büyüklükleri kenenin tercih sırasına göre orantılanmıştır). Kenelerle Mücadele Günümüze kadar kullanılan hiç bir mücadele yöntemi (bir kaç sınırlı alan hariç), tam bir kene eradikasyonu sağlayamamıştır. Hali hazırda kene eradikasyonunun neredeyse olanaksız olduğu kabul edilmektedir. Yapılan çalışmalar 2 temele dayanmaktadır: I. Kenelerle nakledilen hastalıkların ortadan kaldırılması veya azaltılması (aşı çalışmaları vs) II. İnsan ve hayvanlardan kan emen kenelerin sayısını düşük maliyetlerle kabul edilebilir sınırlara indirilmesi a. Akarisid kullanımı Kenelerle mücadele genellikle konak hayvanların ve çevrenin düzenli aralıklarla akarisid ilaçlarla ilaçlanması esasına dayanmaktadır. Bu konu üzerinde çok uzun yıllar boyunca durulmuş olmasına rağmen, bir türlü istenen düzeyde başarı sağlanamamıştır. Her ne kadar akarisid kullanımı gerekli olsa da, bu oldukça zahmetli ve masraflıdır. Kaldı ki, büyük çapta programlı uygulamaların yapılması oldukça zordur. Akarisid ile kene konrolünün başlıca 7 zorluğu vardır 1. Kenelerin yoğun biçimde tarım ve orman alanları içinde yayılmış olması, çevreye zarar verecek düzeyde akarisid kullanımını gerektirmektedir. 2. Akarisilerin kenelerin konakları üzerinde tutundukları bölgelere ulaşabilmesi ancak konağın tüm vüudunun yıkanmasını gerektirmektedir 3. Konak üzerinde bulunmadıkları süre içinde keneler akarisid ilaçların ulaşamayacağı yerlerde saklanmaktadır. Doç.Dr. Zati Vatansever vatansev@veterinary.ankara.edu.tr zativet@hotmail.com 4. Kenelerin yüksek orandaki üreme yeteneği (3000-7000 yumurta) ilaçlamaların düzenli bir sıklıkta yapılmasını gerektirmktedir. 5. Kenelerin uygun olmayan çevre koşullarında çok uzun süreler boyunca canlı kalabilmeleri. 6. Kenelerin konak seçiminde çok alternatifinin olması 7. Akarisid direncinin oluşması b- Kenelerin yaşam alanlarının değişrtirilmesi 1- Herbisidal ilaç kullanımı 2- Arazi yakma 3- Arazinin sürülmesi 4- Kuru yaprak tabakasının hatta orman taban örtüsünün kaldırılması Ancak, bu gibi önlemlerin uygulanması sonucunda kene populasyonunda sağlanan azalma, kenelerin yok edilmesinden çok, konak hayvanların bu gibi elverişsiz hale gelmiş ortamlardan uzaklanmasına bağlanmaktadır c- Konak hayvanların ortadan kaldırılması Bu yöntem özellikle dar bölgelerde kısıtlı konak kullanan keneler için kullanılsa da (Amblyomma americanum’un eradikasyonu için belli bölgelerde geyik populasyonunu ortadan kaldırmak), bu yöntem çok miktarda konak alternatifi olan keneler için uygun değildir. d- Biyolojik kontrol Kenelerin doğal düşmanlarının ortama salınması üzerinde çalışmalar olsa da, çok pratik değeri yoktur e-Kendi kendini ilaçlama Bu yöntem özellikle yaban hayvanları üzerindeki keneleri de etkilediğinden oldukça umut vericidir. Hayvanların ilgisini çekecek çeşitli obejelerin (yemlik, içinde yem bulunan plastik boru, ilaçlı pamuk) üzerine uzun etkili akarisid salınımını sağlayan düzenekler kurularak hayvanların kendi kendilerini ilaçlaması sağlanmaktadır. Doç.Dr. Zati Vatansever vatansev@veterinary.ankara.edu.tr zativet@hotmail.com

http://www.biyologlar.com/keneler-hakkinda-bilgi

PH-Tuzluluk- Kireç ve Bitkiler için Önemi

Toprak Reaksiyonu (pH) Nedir? Toprak pH'sı, bir toprak çözeltisindeki asitliği veya alkaliliği tanımlayan bir ölçüdür. Asitliğin miktarı öncelikle H+ ve OH ֿ iyonlarının konsantrasyonlarına bağlıdır. Toprak daha fazla asidik olurken H+ iyonları konsantrasyonu artar, bunun sonucunda pH azalır. pH=7'de H+ ve OH ֿ iyonlarının konsantrasyonları birbirine eşittir. Toprak pH'sı doğrudan ve/veya dolaylı olarak toprak içerisinde meydana gelen birçok fiziksel, kimyasal ve biyolojik olayı etkiler. Toprak reaksiyonu ile toprak canlıları arasında sıkı bir ilişki mevcuttur; örneğin mantarlar 4-5, bakteriler ise 6-8 pH derecelerinde daha etkindir. Ayrıca pH derecesi, toprakta mevcut bitki besin maddelerinin bitki için yarayışlılığında önemli rol oynamaktadır. Örneğin; azot, fosfor ve potasyumun bitkiler tarafından alımı açısından en uygun değerler 6,5-7,5 arasıdır. Fosfor, 6.0'dan düşük pH değerlerinde Al ve Fe ile, 7,5'den büyük değerlerde ise Ca ile bağlanır. Bu nedenle bitkiler tarafından alınması zorlaşmaktadır. 5,0'dan küçük değerlerde, Al ve Mn bitkiler için toksik etki yapmaktadır. 7,5 den büyük değerlerde ise; Fe, Cu, Zn, Mn gibi mikro elementler çözünemez forma geçtiğinden, bitkiler için yarayışlılığı yüksek oranda azalmaktadır. Kısacası toprak tepkimesi; pedogenetik bakımdan, toprak oluşumu ve gelişimi; ekolojik açıdan da besin maddeleri ekonomisi üzerinde önemli rollere sahiptir Yukarıda aktarılmaya çalışılan nedenlerden dolayı toprak pH'sının bilinmesi ve düzenlenmesi, bitki beslenmesi açısından büyük önem taşımaktadır. Genellikle alkali karakterli topraklarda; ortamdaki H+ iyonları konsantrasyonunu arttırmak ve/veya mevcut H+ iyonlarını aktif hale geçirmek için, toprağa toz kükürt ve organik madde ya da jips uygulaması yapılır. Toprak tepkimesinin düşük olduğu durumlarda ise, kireçleme yapmakta yarar vardır (Bkz. Kireç) Tuzluluk Toprak tuzluluğu kavramı, birim hacımdaki toprakta bulunan çözünebilir tuzların miktarını belirtir. Genellikle Cl ֿ ve SO4 ֿֿ anyonlarının iki değerlikli katyonlarla, özellikle Ca++, Toprağın tuz içeriği laboratuvar koşullarında, elektriki geçirgenlik ölçüm cihazıyla belirlenir ve elde edilen verilerin değerlendirmesi aşağıdaki sınıflandırmaya göre yapılır. Tuzluluğa yol açan etmenler; anamateryal, topoğrafya, kapalı havzalar, iklim, taban suyu ve hatalı sulama ve gübrelemedir. Ayrıca tuz içeriği yüksek olan sulama suyu da zaman içerisinde, toprakta tuz birikimine yol açabilir. Tuzluluğun meydana getirdiği zarar, bilhassa yıllık yağışın düşük olduğu kurak bölge topraklarında daha fazladır. Doğal koşullardaki tuz birikimi iki şekilde meydana gelir. Bunlardan Birincisi, yağış sularının, geçtiği yerlerdeki çözünebilir tuzları eriterek birikme havzalarına taşıması; diğeri ise, yüksek sıcaklık altında, toprak suyunun buharlaşıp kapillarite ile yüzeye çıkması ve yükselirken beraberinde tuzları da yüzeye taşıyarak burada biriktirmesidir. Tuzlu topraklar iki şekilde meydana gelmektedir. Bunlardan Birincisi, sularla taşınan çözünmüş tuzların toplama havzalarında çökelmesiyle; diğeri ise, denizlerden arta kalan sedimentlerin etkisiyle oluşan tuzlu topraklardır Ağaç ve çalıların en iyi yetiştikleri toprak tuzluluk sınırı 2,0 mmhos/cm'nin altındadır. Tüm ağaçlar toprakta bulunan yüksek orandaki tuzdan zarar görür. Çünkü tuzluluk, toprakların stürüktürünü olumsuz yönde etkiler. Ayrıca toprak suyunun ozmotik potansiyelini arttırarak bitki köklerinin su alımını engeller. Bunların dışında çözünebilir tuzların yapısında, yüksek oranda bulunan sodyum, klor ve bor gibi bazı elementler bitkiler için toksik etki (zehir etkisi) gösterir. Tuzluluğa yol açan etmenler; anamateryal, topoğrafya, kapalı havzalar, iklim, taban suyu ve hatalı sulama ve gübrelemedir. Ayrıca tuz içeriği yüksek olan sulama suyu da zaman içerisinde, toprakta tuz birikimine yol açabilir. Tuzluluğun meydana getirdiği zarar, bilhassa yıllık yağışın düşük olduğu kurak bölge topraklarında daha fazladır. Doğal koşullardaki tuz birikimi iki şekilde meydana gelir. Bunlardan Birincisi, yağış sularının, geçtiği yerlerdeki çözünebilir tuzları eriterek birikme havzalarına taşıması; diğeri ise, yüksek sıcaklık altında, toprak suyunun buharlaşıp kapillarite ile yüzeye çıkması ve yükselirken beraberinde tuzları da yüzeye taşıyarak burada biriktirmesidir. Tuzlu topraklar iki şekilde meydana gelmektedir. Bunlardan Birincisi, sularla taşınan çözünmüş tuzların toplama havzalarında çökelmesiyle; diğeri ise, denizlerden arta kalan sedimentlerin etkisiyle oluşan tuzlu topraklardır Ağaç ve çalıların en iyi yetiştikleri toprak tuzluluk sınırı 2,0 mmhos/cm'nin altındadır. Tüm ağaçlar toprakta bulunan yüksek orandaki tuzdan zarar görür. Çünkü tuzluluk, toprakların stürüktürünü olumsuz yönde etkiler. Ayrıca toprak suyunun ozmotik potansiyelini arttırarak bitki köklerinin su alımını engeller. Bunların dışında çözünebilir tuzların yapısında, yüksek oranda bulunan sodyum, klor ve bor gibi bazı elementler bitkiler için toksik etki (zehir etkisi) gösterir. KİREÇ Topraktaki kireç miktarı bitkiler için önemlidir. Temel kireç bileşikleri; kalsiyum ile magnezyum karbonatlar ve dolomittir. Laboratuvar koşullarında, karbonat miktarı nicel olarak belirlenerek % toplam CaCO3 miktarı cinsinden ifade edilir. Toprak kireç içeriği sınıflaması genel olarak aşağıdaki gibi yapılmaktadır Kireç miktarının artmasıyla birlikte toprak pH'sı da yükselir. Kireç oranı yüksek olan topraklarda, pH 8,5'e kadar Ca++ katyonu başat durumdadır. Toprakta Ca++ katyonu konsantrasyonu yükseldikçe ortamdaki alınabilir fosfor ve demir iyonları kalsiyum ile çözünemez formda bileşikler oluşturur. Yüksek kireç içeriğine sahip topraklarda, bitkilerde kireç klorozu olarak adlandırılan ve demir noksanlığından kaynaklanan sararmalar meydana gelir Kireç miktarının yüksek olması kadar, çok düşük olması da bitki beslenmesi açısından sakıncalıdır. Çünkü kalsiyum bitki hücre duvarlarının yapısında yer almaktadır. Ayrıca topraktaki kalsiyum karbonat; toprak kırıntılılığını, biyolojik aktiviteyi arttır ve toprak profilinin yıkanmasını güçleştirir. Bu nedenlerden dolayı kireç miktarı çok düşük olan topraklarda kireçleme yapılması gerekir. Kireçleme materyali olarak CaO, CaOH2, CaCO3 ve dolomit kullanılmaktadır BU ÖLÇÜTLERİN ARAZİDEKİ UYGULAMALARI pH ve Tuzluluk Ölçümü Ön etüd çalışmalarında, pH ve tuzluluk ölçümü için arazi kitleri yaygın olarak kullanılmaktadır. Ancak, bu kitlerle yapılan ölçümler yaklaşık olarak sonuç vermektedir. İdeal sonuçların elde edilebilmesi ise laboratuvar analizleriyle mümkündür .Cep ph-metre ve kondüktometreleriyle 1:1 vb. oranlarda toprak-saf su karışımların pH ve elektriki geçirgenliği ölçülebilir. Ayrıca özel olarak hazırlanmış "indikatör çözeltileri veya kağıtları"ndan da yararlanılabilir. Kitlerin üzerinde ya da kullanma kılavuzunda verilen sınıflandırma bilgileri veyahut renk skalaları ile değerlendirm yapılır. Kireç Ölçümü Arazide topraktaki kireç miktarının belirlenmesi için genellikle 1/10 seyreltik HCl kullanılır. Bir saat camı üzerine alınan ince toprak örneği üzerine 5-6 damla asit damlatılır. Meydana gelen kabarmanın şiddetine ve süresine göre toprağın kireç içeriği kabaca aşağıdaki tablodan belirlenir. TOPRAĞIN pH, TUZ, KİREÇ DURUMU ve TÜR SEÇİMİ Tür seçimi konusunda; toprağın pH'sı, tuzluluğu ve kireç miktarı mutlaka göz önünde bulundurulması gereken önemli ölçütlerdir. Ancak Bitkilerin yaşamında tüm ekolojik faktörler birbirleriyle sıkı bir ilişki içerisinde bulunmakta ve her biri önem taşımaktadır. Bu nedenle bir toprağın pH, tuzluluk ve kireç miktarı değerleri irdelenirken değerlendirme, mutlak surette diğer ekolojik faktörler ve toprak özellikleri de göz önünde bulundurularak yapılmalıdır Toprak pH'sı, tuzluluğu ve kireç miktarı bakımından türlerin isteklerinin belirlenmesi amacıyla pek çok bilimsel çalışma gerçekleştirilmiştir. Ancak elde edilen araştırma sonuçları, çalışmanın yapıldığı yörenin içinde bulunduğu ekolojik koşullar için geçerlidir. Bu nedenle literatür incelemelerinden elde edilen bilgilerin, söz konusu ekolojik şartlarda ya da benzeri koşullar altında geçerli olabileceğini kesinlikle unutmamak ve buna göre değerlendirme yapmak gerekir. Ayrıca ön etüd çalışmalarında, incelemesi yapılan sahadaki birtakım özelliklere dikkat etmek suretiyle toprağın pH, tuzluluk ve kireç miktarı ile ilgili bazı fikirler edinmek mümkündür. Örneğin orman altındaki diri örtü pH'ye daha duyarlı olduğundan, bitki örtüsüne bakılarak da pH konusunda bir yargıya varılabilir. Örneğin, karaçam sahalarında bu türe eşlik eden defne yapraklı laden (Cistus laurufolius) ile kızılçam sahalarında bulunan diğer laden türü (Cistus creticus), birer müşir (indikatör) bitki niteliğindedir. Tuzlu toprakların olduğu sahalarda, ılgın (tamariks) gibi halofit yani tuzcul Bitkilerin dışında başka türlere rastlamak mümkün değildir. Ancak Halepçamı, okaliptus, iğde, palmiye ve hurma gibi bazı türlerin tuza dayanıklılığının diğer türlere göre daha fazla olduğu bilinmektedir. Nusret DİRENÇ( Ziraat Mühendisi ) Dr. Rabia ŞİŞANECİ ( Ziraat Mühendisi )

http://www.biyologlar.com/ph-tuzluluk-kirec-ve-bitkiler-icin-onemi

YAPRAKLARIN GENEL YAPISI

Bitkiler besinlerini üretirken sadece topraktan faydalanmazlar. Topraktaki minerallerin yanında, suyu ve havadaki CO2'i de kullanırlar. Bu hammaddeleri alıp yapraklarındaki mikroskobik fabrikalardan geçirerek fotosentez yaparlar. Fotosentez işleminin aşamalarını incelemeden önce fotosentezde son derece önemli bir role sahip olan yaprakların incelenmesinde fayda vardır. YAPRAKLARIN GENEL YAPISI Hem genel yapı olarak, hem de mikrobiyolojik açıdan incelendiğinde yaprakların her yönüyle en fazla enerji üretimini sağlamak üzere planlanmış, çok detaylı ve kompleks sistemlere sahip oldukları görülecektir. Yaprağın enerji üretebilmesi için ısı ve karbondioksidi dış ortamdan alması gerekir. Yapraklardaki tüm yapılar da bu iki maddeyi kolaylıkla alacak şekilde düzenlenmiştir. Öncelikle yaprakların dış yapılarını inceleyelim. Yaprakların dış yüzeyleri geniştir. Bu da fotosentez için gerekli olan gaz alış-verişlerinin (karbondioksidin emilmesi ve oksijenin atılması gibi işlemlerin) kolay gerçekleşmesini sağlar. Yaprağın yassı biçimiyse tüm hücrelerin dış ortama yakın olmasını sağlar. Bu sayede de gaz alış-verişi kolaylaşır ve güneş ışınları, fotosentez yapan hücrelerin hepsine ulaşabilir. Bunun aksi bir durumu gözümüzün önüne getirelim. Yapraklar eğer yassı ve ince bir yapıya değil de herhangi bir geometrik şekle ya da anlamsız rasgele bir şekle sahip olsalardı yaprak fotosentez işlevini sadece güneş ile doğrudan temas eden bölgelerinde gerçekleştirebilecekti. Bu da bitkilerin yeterli enerji ve oksijen üretememesi anlamına gelecekti. Bunun canlılar için en önemli sonuçlarından biri de hiç kuşkusuz ki yeryüzünde bir enerji açığının ortaya çıkması olurdu. Yapraklardaki özel olarak "tasarlanmış" olan sistemler sadece bunlarla sınırlı değildir. Yaprak dokusunun önemli bir özelliği daha vardır. Bu özellik ışığa karşı duyarlı olmasıdır. Bu sayede ışık kaynağına yönelme, yani fototropizm adı verilen olay gerçekleşir. Bu, saksı bitkilerinde de rahatça gözlemlenen, bitkilerin yapraklarını güneşin geldiği yöne doğru çevirmesine neden olan olaydır. Bitki böylelikle güneş ışığından daha fazla faydalanabilir. Yapraklar bitkilerin hem nükleer enerji üreten santralleri, hem besin üreten fabrikaları, hem de önemli reaksiyonları gerçekleştirdikleri laboratuvarlarıdır. Yapraklarda hayati önem taşıyan bu işlemlerin nasıl gerçekleştirildiğini anlamak için yaprakların fizyolojik yapısını da kısaca incelemek gerekir. Yaprağın iç yapısının enine kesiti alınarak bakılacak olursa dört tabakalı bir yapı olduğu görülecektir. Bu yapılardan ilki kloroplast içermeyen epidermis tabakasıdır. Yaprağı alttan ve üstten örten epidermis tabakasının özelliği, yaprağı dış etkilerden korumasıdır. Epidermisin üstü koruyucu ve su geçirmez mumsu bir madde ile sarılıdır. Bu maddeye kütiküla adı verilir. Yaprağın iç dokusuna baktığımızda ise genelde iki hücre tabakasından oluştuğunu görürüz. Bunlardan iç dokuyu oluşturan Palizad dokuda kloroplastça zengin hücreler, aralarında hiç boşluk bırakmadan yan yana dizilirler. Bu doku fotosentezi yürüten dokudur. Bunun altında bulunan Sünger doku ise, solunumu sağlayan dokudur. Sünger dokudaki hücreler, diğer bölümlerdeki hücrelere göre daha gevşek bir şekilde birbirine kenetlenmiştir. Ayrıca bu dokunun hücreleri arasında hava ile dolu boşluklar vardır. Görüldüğü gibi bu dokuların hepsi yaprağın yapısında son derece önemli görevlere sahiptir. Bu tür düzenlemeler yaprakta ışığın daha iyi dağılıp yayılmasını sağlayarak fotosentez işleminin gerçekleşmesi açısından son derece büyük bir önem taşırlar. Bütün bunların yanı sıra yaprak yüzeyinin büyüklüğüne göre yaprağın işlem yapma (solunum, fotosentez gibi) yeteneği de artar. Örneğin birbirine geçmiş tropikal yağmur ormanlarında genellikle geniş yapraklı bitkiler yetişir. Bunun çok önemli sebepleri vardır. Sürekli ve çok miktarda yağmurun yağdığı, birbirine geçmiş ağaçlardan oluşan tropikal ormanlarda güneş ışığının bitkilerin her yerine eşit ulaşması oldukça zordur. Bu da ışığı yakalamak için gerekli olan yaprak yüzeyinin artırılmasını gerekli kılar. Güneş ışığının zor girdiği bu alanlarda bitkilerin besin üretebilmeleri için yaprak yüzeylerinin büyük olması hayati önem taşımaktadır. Çünkü bu özellikleri sayesinde tropik bitkiler değişik yerlerden, en fazla faydalanacak şekilde güneş ışığına ulaşmış olurlar. Tam aksine kuru ve sert iklimlerde ise küçük yapraklar bulunur. Çünkü bu iklim şartlarında bitkiler için dezavantaj olan asıl nokta ısı kaybıdır. Ve yaprak yüzeyi genişledikçe su buharlaşması, dolayısıyla ısı kaybı artar. Bu yüzden ışık yakalayan yaprak yüzeyi, bitkinin su tasarrufu yapabilmesi için iktisatlı davranacak şekilde tasarlanmıştır. Çöl ortamlarında yaprak kısıtlaması aşırı seviyelere ulaşır. Örneğin kaktüslerde yaprak yerine artık dikenler vardır. Bu bitkilerde fotosentez etli gövdenin kendisinde yapılır. Ayrıca gövde suyun depolandığı yerdir. Fakat su kaybının kontrol edilmesi için bu da tek başına yeterli değildir. Çünkü her ne kadar yaprak küçük olsa da gözeneklerin bulunması su kaybını devam ettirecektir. Bu yüzden buharlaşmayı dengeleyecek bir mekanizmanın varlığı zorunludur. Bitkiler de, fazla buharlaşmayı düzenleyen bir çıkış yoluna sahiptirler. Bünyelerindeki su kaybını, gözenek açıklığının kontrolü ile denetim altında tutarlar. Bunun için gözenek açıklıklarını genişletir veya daraltırlar(porları) Yaprakların tek görevi fotosentez için ışığı hapsetmeye çalışmak değildir. Havadaki karbondioksidi yakalayıp onu fotosentezin oluştuğu yere ulaştırmaları da aynı derecede önemlidir. Bitkiler bu işlemi de yaprakların üzerinde yer alan gözenekler vasıtasıyla gerçekleştirirler. KUSURSUZ BİR TASARIM: GÖZENEKLER Yaprakların üzerindeki bu mikroskobik delikler ısı ve su transferi sağlamak ve fotosentez için gerekli olan CO2'i atmosferden temin etmekle görevlidirler. Gözenek olarak adlandırılan bu delikler, gerektiğinde açılıp kapanabilecek bir yapıya sahiptirler. Gözenekler açıldığında yaprağın hücreleri arasında bulunan oksijen ve su buharı, fotosentez için gereken karbondioksit ile değiştirilir. Böylece üretim fazlalıkları dışarı atılırken, ihtiyaç duyulan maddeler değerlendirilmek üzere içeri alınmış olur. Gözeneklerin ilgi çekici yönlerinden biri, yaprakların çoğunlukla alt kısımlarında yer almalarıdır. Bu sayede, güneş ışığının olumsuz etkisinin en aza indirilmesi sağlanır. Bitkideki suyu dışarı atan gözenekler, eğer yaprakların üst kısımlarında yoğun olarak bulunsalardı, çok uzun süre güneş ışığına maruz kalmış olacaklardı. Bu durumda da bitkinin sıcaktan ölmemesi için gözenekler bünyelerindeki suyu sürekli olarak dışarı atacaklardı, böyle olunca da bitki aşırı su kaybından ölecekti. Gözeneklerin bu özel tasarımı sayesinde ise, bitkinin su kaybından zarar görmesi engellenmiş olur. Yaprakların üst deri dokusu üzerinde çifter çifter yerleşmiş bulunan gözeneklerin biçimleri fasulyeye benzer. Karşılıklı içbükey yapıları, yaprakla atmosfer arasındaki gaz alışverişini sağlayan gözeneklerin açıklığını ayarlar. Gözenek ağzı denilen bu açıklık, dış ortamın koşullarına (ışık, nem, sıcaklık, karbondioksit oranı) ve bitkinin özellikle su ile ilgili iç durumuna bağlı olarak değişir. Gözenek ağızlarının açıklığı ya da küçük oluşu ile bitkinin su ve gaz alışverişi düzenlenir. Dış ortamın tüm etkileri göz önüne alınarak düzenlenmiş olan gözeneklerin yapısında çok ince detaylar vardır. Bilindiği gibi dış ortam koşulları sürekli değişir. Nem oranı, sıcaklık derecesi, gazların oranı, havadaki kirlilik… Yapraklardaki gözenekler tüm bu değişken şartlara uyum gösterebilecek yapıdadırlar. Bunu bir örnekle şöyle açıklayabiliriz. Şeker kamışı ve mısır gibi uzun süre sıcağa ve kuru havaya maruz kalan bitkilerde, gözenekler suyu muhafaza edebilmek için gün boyunca tamamen ya da kısmen kapalı kalırlar. Bu bitkilerin de gündüz fotosentez yapabilmek için karbondioksit almaları gerekir. Normal şartlar altında bunu sağlayabilmek için de gözeneklerinin olabildiğince açık olması gerekir. Bu imkansızdır. Çünkü böyle bir durumda bitki, sıcaklığa rağmen sürekli açık olan gözenekleri yüzünden devamlı su kaybeder ve bir süre sonra da ölür. Bu nedenle bitkinin gözeneklerinin kapalı olması gereklidir.

http://www.biyologlar.com/yapraklarin-genel-yapisi

Yassı Solucanların Anatomisi

Polycclad Yassı Solucanların Anatomisi İsmininin de önerdiği gibi, serbest yaşayan solucanlar dorso-ventrally yassılanmış olup birkaç milimetreden daha kalın değildirler Boyutlar bir milimetreden daha azdan balar ve 30 cm nin üzerine kadar uzanır. Çoğu polycladler son derece hassastırlar ve tipik olarak düz bir dorsal yüzey içeren ve/veya oval şekillerine sahiptirler. Bununlar birlikte, dorsal papillae (Acanthozoan, Thysomozoan) sergilerler. Solucanların anteriorlarında uç kısımlarda dokanaç (tentacle) yer aldığından ve çok parlak renklere sahiptirler ve nadiren de olsa bazen yanlışlıkla nudribranc olarak kabul edilirmişlerdir. Fakat nudribranclara karşıt olarak, anterior sınırında dokanaçlar çoğunlukta basit bir yapı halinde tutunmuşlardır. Onlar yol boyunca nudribranclara nazaran daha fazla hareket ederler ve aynı zamanda çok ince yapıya sahiptirler ve elle tutulduklarında kırılmaya çok eğilimlidirler. Bununda ötesinde, onların özel terleme organları (gills) yoktur ve terleme solucanların tüm yüzeylerinde difuzyon yoluyla gerçekleştirilmektedir. Tüm yüzeylerinde difuzyon yoluyla gerçekleştirilir. Polycladler geniş bir renk çeşitliliği ve yapısı sergilerler. Onlar marginal buruşukluklara sahiptirler ve boyutları ile sayıca artmaya eğilimlidirler. Donük türler haricinde (siyah ve esas itibariyle siyah renkli) türler transparenttirler ve iç organları epidermis boyunca görülebilir. Özellikle ovarisleri parlak veya koyu renkli mor renklere sahiptir ve dorsal yüzeyin en dış kısmı binlerde vurucu cilia ile beraber engelleyici epidermistirler (ectodermal orijinli bir tek hücre tabakası). Onun da altında, dairesel kasın dış tabakası ve kasların iç tabakası birbirine parallel uzantı şeklindedir ve aralarında vucut plastisitesi mevcuttur. Dorsal ve ventral epidermis arasındaki boşluk parenchymal doku ile dolmuştur ku bu çok sayıda gizli hücrelere sahiptir ve bununla sümükler dışarı atabilirler ve diğer bileşenler epidermal boşluklarla oluşmuştur. Dorsal ve ventral epidermis arasındaki boşluk parenchymall doku ile dolmuştur ve çok dallanmış bağırsak ve üreme sistemi gibi organları içermektedir. Parenchymal doku mesodermal kökenli olup sümük dışarı ataliben çok yüksek sayıda gizli hücreler ve epidermal boşluklar içermektedir. Polyclad hidrostatik iskelete sahiptir ki bu sulu hayata çok güzel adapte olmasını sağlamaktadır. Mesodermdeki içsel vucut sıvısı kapalı vucut kompartmanında basınç altında tutulmakta ve vucut duvar kaslarının hareketine destek sağlama amacıyla hidrostatik iskelete karşı kuvvet uygulamaktadırlar. İki yönle hareket vardır. Küçük boyutlu türler ince kıla benzeyen ventral cilia ile vuruşlarla taban boyunca kaymasını sağlar. Büyük boyutlu türleri ise (Tysanozoan sp. gibi) aşağıda sol panelde gösterildiği gibi vucut kaslarının ritmik vuruşlarıyla yüzmeye muktedir olabilirler. Solucanlar vucutlarını ileri ve kıyıya atarak bir seri dalgalandırma yaratırlar ve yer üzerinde ileriye doğru sürünürler. Polycladlerin iki yönlü vucut şekilli hali cephalize olmuştur, bu tanımlanabilen baş bölgelerine sahip olduğu anlamındadır ve orada sinir fonksiyonları ve duyu yapıları yer almaktadır. Solucanların sinir sistemi merdiven şekline benzeyen uzun boylu sinir ipi çiftine sahiptir ve bunlar çapraz olarak birleşmişlerdir. Beyinsel anteriordaki ganglion düğümde son bulurlar ve kafanın içinde veya dışında yeralan sinirsel büyük bir top şekline sahiptirler. Son zamanlarda bazı poyclad türlerinde küçük ama iyi tanımlanmış beyin sinirbiyolojisinde model sistem olarak servis yapan beyin cytoarchitecture ve sinirsel tamir mekanizmasını araştırmalar yapılmıştır (Bakınız Bölüm: Polyclads ve Neurobiology). Başın görünen karakteri dokunaçların oluşumudur ki çoğu durumlarda anterior sinirinin belirtilmesi (=pseudotentacle) gereklidir. Bu kör bir basit boru şeklinde veya geniş kapaklı olarak olarak gösterilirler. Çoğunlukla, Thysonozoon sp.‘nın kafa bölgesinde görüldüğü gibi kulağa benzerler (sol panel). Anterior beyinsel ganglion düğüm ve onun büyük iç sinirlerine benzerler ve solucanların “beyin” i çok sayıda foto ve kimyasal hassas hücrelerinden oluşan sinir sinyallerinin analizi esas olarak, kafada ve Pseudotentaclelerde konsantre olmuşlardır. İlave olarak, yüksek sayıda mekaniksel alıcılar epidermiste dağılmış vaziyette yer almışlardır. Fotoya duyarlı hücreler beyinsel göznoktalarında bulunur ki orada yuvarlak salkım olarak çeşitli gözler yeralmışlardır. İleri gözler, ventral ve dorsal yalancı dokanaçlarda yeralmışlardır. Bu gözler gelen görüntünün şekillenmesine kabiliyetli değildirler ama ışık istikameti ve yoğunluğunun değişimine hassatırlar. Yassı kurdun parlak ışığa duyarlı olduğu zaman, özellikle koyu yerlere doğru geri çekilirler. Vertebrateler ile mukayese edildiklerinde, poycladlerin gözlerinin organizasyonu oldukça basittir. Bu tip göz, birçok lens ile kapatılmış olup “pigment cup ocellus” olarak tarif edilirler. Ocelli beyinsel göznoktasının bir parçasıdır ve çeşitli ışığa duyarlı hücrelerden oluşurlar ve konkav kap şekline sahiptirler. Kabın duvarları pigment içermektedir ve bunlar uç taraftan gelen ışığın sızmasını enlellerler. Hücrelerin ışığa duyarlı kısımları (microvilli) opak kabın içersinde düzenlenmişlerdir ve yanlızca bir yönden gelecek ışığa karşı duyarlıdırlar. Gelen ışığın açısına bağlı olarak, loş kısımler ışığa duyarlı yapıların üzerine gölge olarak düşerler. Kap aktif olarak kaslar tarafından döndürüldüğünden çabuk değişen gölge izleri yaratılır. Sinir sinyallerine karşılık olarak, beyinsel ganglion’a gönderilirler ki orada bilgiler analiz edilirler, uç boyutlu oryentasyon ve uygun davranış reaksiyonu gösterirler. Polycladlerin görsel duyularından dolayı çevresel oryentasyonu için yeterli olmayabilir ve polycladler iyi gelişmiş kimyasal dedektörlü batarya vardır ve molekülleri tanımaktadırlar. Kimyasal bileşenlerin besin ve eş bulmada önemli rol oynadıkları düşünülmektedir. Besin ve eş bulmada belirgin moleküller boşalarak akış ile içeri girerler. Bu solucanlar kimyasal alıcıları tarafından algılanarak koku yayarlar. Bunlar özellikle ventral yalancı dokanaçlarda yerleşmişlerdir ve orada yivli ciliate şeklinde salkımlanmışlardır. Aktif solucanlardaki yalancı dokanaçlar hareket halinde meşgul görülürler ve bu kimyasal duyarlı alet solucanların yönünü bulmalarında ve koku çıkarmalarında temel karar veren davranış olarak kabul edilir. Auricle ve göz noktalarına ilave olarak (Bakınız: yukarıdaki sol foto ve alçak panel) yassı solucanlar statocyst adı verilen ilkel denge organları vardır ki basınca duyarlı saç ve küçük taneli materyalli hücreler içerirler ve bu hayvanların yukarıya doğru gitmesinde büyük rol oynarlar. Yassı solucanın dinlenme, tamirat ve cam slaylarda hazırlanmasından sonra (wholemounts) ventral bakış karakterlerinde ölü solucanlar gözlenerek incelenir. Bu karakterlerin coğu türlerin taxonomi belirlenmesinde önemli rol oynarlar ki bu oldukca zor bir görevdir. Basın yanında ağız ve pharynx gözlenebilir. Genel olarak, polycladlar pharynx plicatus’a sahiptirler. Bu tip pharyngeal tüb uzun be dairesel kas tabakası sergiler ki o pharynx’in şeklini çok fazla değiştirir ve sıvıyı bağırsak boşluklarına doğru pompalar. Bununda ötesinde, pharyngeal ceplerini ayıran özelliğine sahiptir ki orada kullanılmadığında dışarı atılırlar. Pharynx boru şeklinden çeşitli şekillere kadar yapı gösterirler (örneğin, yuvarlak veya oval çok sayıda pharyngeal lob içeren çok buruşuk şekiller). Beslenmede, pharynx ağızdan çıkıntı yapar ve Pseudobiceros türünün bazı tiplerinde tüm hayvanları yutacak boyutta açılırlar. Ventral yanın ortasında, alt sınıf Cotylea yapışkan organa sahiptir ve vantuz olarak adlandırılır. Arazi gözlemlerinde bu organ hayvanların alt tabakalara yapışmasında kullanılır. Küçük invertebratelerin yakalanmasında ve yiyeceklerin hazmında işlev görür. Ender olarak, Pseudobiceros örneğinde ve Pseudoceros’da iki eşit olmayan vantuz bulunmuştur. Diğer tür polycladlerin belirgin karakterleri erkek ve dişi üreme sistemlerinin anotomisidir. Polycladler hermaphrodiktir. Onların ikiside erkek ve dişi üreme organları yumurta ve sperm üretirler. Yetişkin solucanlar, ki esas olarak üremeye geçmişlerdir, vucut hacminin yüksek yüzdesi testes ve ovarislerden oluşmuştur. Çoğu türlerde, bu serpistirilmiş haldedir ve ventral ve dorsal parenchyma da yerleşmiştir. Bununla birlikte, dışarıdan yanlızca erkek ve dişi gonophore’lar gözlenmiştir. Genel olarak, erkek boşluk pharynx’de posterior olarak bulunmuştur ve penis papilla ve penial stylet tutarlar, organları eş için uzanırlar. Pseudobiceros türünün çift erkek üreme sistemi, iki erkek boşluk ve erkek organları ile karakterize edilirler. Dişi boşluk daima açıkca erkek boşlukta ayrılmıştır ve posterior’da yerleşmiştir. Çoğu türler (Pseudoceros, Pseudobiceros)’in bir tek dişi boşluğu vardır bununla fakat Nymphozoon’in çok sayıda dişi boşluğu vardır. Dişi üreme sistemi yumurtalık, yumurta sarısı, kabuk beze, bir yarı hazne, ve döl yatağı bulunur ve orada yumurtalar döllenir. Eşleşmeden sonra (Bakınız, Bölüm: Eşleşme ve yeniden üreme) spermler dişi vucuda enjekte edilir (Hypodermal insemination) dişinin üreme aygıtına ve yarı hazneye doğru depolanma amacıyla göçederler. Yumurtalar yumurtalıktan oviduct’a doğru geçerler ve yarı haznede sperm tarafından döllenirler ve yumurta sarısı ile kaplanmış ve kabuk beze ile gizlenirler. Daha sonra üreme organlarına geçerler ve düzensiz yumurta kütlesi şeklinde depolanırlar. Yeniden üreme sisteminin yanında, çok sayıda yanal dallara sahip bağırsak solucanlarının vücut hacminin yüksek yüzdesini teskil eden ikinci organdır. Nutrientlerin vücut hücresine transferinde bağırsak sistemi (intestial), vucudun hemen hemen her tarafına uzanmış olup vurucu cilia ile kaplanmışlardır. Yarı saydam solucanların haricinde (Aquaplana sp.) bağırsak dallarının dağılımı ve onların anotomik detayları gözlenmede çok zordur. Polycladlerin kör sindirme sistemi bulunduğundan sindirilemeyen materyaller pharynx’e doğru yani yiyeceklerin geldiği aynı açıklığa doğru dışlanırlar. Soldaki foto (PHOTO © Bill Rudman) Paraplanocera oligoglena’nin ventral gorünüşünü vermektedir ve hemen hemen transparent olan vucudun çoğu organlarını gosterirler. Beyaz kollu merkezi yapı cok buruşuk pharyngeal tüpdür (pharynx plicatus) ve ağıza doğru ağız vucudun merkezinde yerlemiştir. Donuk beyazımsı network, vucudun çoğu bolgelerine uzanmış çok dallı bagırsak ki bu solucanlara “polyclad” (yunanca = çok dallı) adı verilir. Erkeğin ve dişinin diğer tüm organları yeniden üreme sistemidir. Salgı ve osmoregulation için polycladler özel fonksiyonlu birimlere sahiptirler, bunlara protonephridia (tekil protonephridium) denir. Onlar iki veya daha fazla kapalı uzun tüp dalları halindeki networka benzerler ve vucut boyunca uzanırlar. Osmotik su dengesini kontrol eden özel yapılara sahiptirler ve böbreklerin atık suyu çıkarttığı gibi çalışırlar. Vucut boyunca Protonephridium dallanma yüksek özellikli hücreler tarafından cilia izli kap şeklindeki yapılarla kapatılmıştır. Cilia vurusu, kırpışan aleve benzediği için bu hücreye “alev hücresi” adı verilmiştir. Bu hücrelerden bir kaçı tüplü fonksiyonlar ile hücrelere bağlantılıdır. İç sıvı nitrojen atıkla yüklenmiştir, tübe doğru gitmesinde zorlanır ve alev hücreleri ile akan tüp sistemi yardımıyla bir veya daha fazla boşluktan taşınırak yol alırlar ve son bölümde atıklar gizlenir. Protonephridium ilkel böbreğe bir örnektir ve salgı çıkaran ve osmoregulator bir sistem olarak gözönüne alınırlar. Yassı Solucanlara Genel Giriş Platyhelminthes (Yunanca: platy – flat, helminthes: worm) Kingdom Animalia’ya ait olup bir baş ve uçta bir kuyruk ile bölümlenmeyen yassı solucanlardır. Onlar en ilkel iki bacaklı, iki yanal simetrik hayvan olarak düşünülürler. İki yanlı simetrik anlamı, vucutlarının kıç eksen boyunca, üst ve alt yüzeyler olmak üzere tariflenen anterior ve posterior bitişin bir ayna görüntüsünde olmasıdır. Vucudun iki taraflı şekilli olması önemli bir özelliktir çünkü bu cephalization’a bir örnektir ve kafanın duyu yapılarının konsantrasyonu ve sinir fonksiyonu (kafa ganglion) yeralir. Bu da gelişimde önemli bir eğilimdir. Bunun ötesinde, yassı solucanlar triploblastikdir, bunun anlamı vucut yapısı uç temel hücre yapısından meydana gelmesidir (endoderm, mesoderm ve ectoderm). Üçüncü karaktere göre, onların barsaktan başka vucut boşlukları yoktur (coclom) ve organizasyona acoelomate adı verilmektedir. Anüsleri yoktur, bu nedenle, aynı pharyngeal açıklığından hem yiyecek alımı ve hem de atığın dışarıya atılması sağlanır. Dış hücre tabakası (=epidermis) ile belirgin ic organların arasındaki boşluk bir yumuşak doku ile dolmuştur (parenchyma). Mesodermal orijinli bu doku boşluklar tarafından ayıklanır (=schizocoelium) ve nütrientleri vucudun kısımlarına taşımak için cok dallanmış bağırsak mevcuttur. Terleme sistemi ve kan taşıma sistemi tamamen yoktur ve bu nedenle oksijenin transferinde difüzyon kullanılır. Bu da yassı solucanların düz olmasını sağlamaktadır. Metabolizimin tesisinde, hiç bir hücre dışarıdan uzakta değildir, zorunlu olan vucut şeklinin yassılanmasını sağlarlar. Hemen hemen bütün türler sahip oldukları oldukca kompleks üreme sistemiyle hermaphrodites’lerdir. Çoğu durumlarda, erkek ve dişi üreme yapılarının sayısı ve ayarlanması ile oldukca belirgin özel türlerdir ve çok benzer türlerin morfolojisinin ayırt edilmesinde taksonomik çalışmalarda kullanılabilirler. Yassi solucanların uzunluğu bazı serbest yaşayan türlerde 0.4 mm ve parasitik şekillilerde çeşitli metrelerde (fish tapeworm, Diphyllobothrium latum: 25 m in length) bulunurlar. Yassı solucanlar üç gruba ayrılırlar; 20,000 türü bilinen, 14,000 parasitler Cestoda (tapeworms) veya Trematoda (flukes) sınıfına aittirler. Tapeworm vertebrate’de bağırsak parasitleridir ve anatomik ve parasitims’in hayat tarihi ve modifikasyonlarını gösterirler. Flukes tamamen parasitik olarak bilinirler ve tape wormlara kıyasla kompleks hayat zincirine sahiptirler. Bir kaç genç stepden geçerler; bir, iki veya daha fazla hayvanın üzerinde yetişkin düzeye gelirler ve sonunda bir hayvanın üzerinde parazitik olarak yaşarlar. Bunun karsıtı olarak, Turbellaria serbest olarak yaşamakta olup tatlı suda ve nemli karasal ortamda coğunluktadırlar. Turbellarian yassı solucanların çoğu denizel ortamlarda ve okyanuslarda bentik olarak bulunurlar ve ayrıca sığ sularda da çok bulunurlar. Turbellaria’nin bir taksonomik alt grubu yüksek belirgin serbest yaşayan yassı solucanlar içeren order Polycladida’dir. Bu order’in üyeleri anatomik olarak çok dallanmış ve düzensiz bağırsak pharynx plicatus olarak buruşuklu pharygeal tüb ıle karakterıze edilirler. İlk bakışta, polyclad’ler çarpıcı şekilde goze hoş gelen renkli yassı solucanlardır. Tropikal resiflerde 150 yıldır yasadıkları bilinmektedir. Tropikal sularda yüzlerce türleri olduğuna inanılmasına rağmen şimdiye kadar çok az kısmı tamamen tarif edilebilmiştir. Rejenerasyon Karşıt olarak, yüksek vertebrates, bazı serbest yaşayan yassı solucanlar yeniden oluşmada muhtesem kabiliyetli olduklarını göstermektedir. Kafasının kesilmesi ve bir yenisinin büyümesidir. Kafanın yanal olarak ikiye, üçe veya daha fazlaya bölünmesiyle bir, iki, üç veya çok başlı solucan ile sonuçlanmasıdır. Solucanlar on parçaya bölünebilirler on tamamlanmış küçük solucan meydana gelir (Bakiniz: alt şekil, sol panel-tatlısu triclad Dagesia tigrina). Biyologların yeniden büyümeye büyük ilgi duymaları nedeniyle yeniden oluşumun üzerinde yapılan yoğun çalışmalar çeşitli yassı solucan taxa sistem modeline servis yapmaktadır (Bakınız: Bölüm: Sinirbiyolojisi’nde polycladler). Son zamanlarda, yeniden oluşum ile ilgili detaylı bilgi temelde polycladler üzerindedir (Order: Polycladida) ve tatlı su triclads (Order:Tricladida-üç-dört bağırsaklı anlamına gelir) ve diğeri planarians olarak bilinir (Bakınız: Bölüm: Phytogeny). Biyologların yeniden oluşumun üzerinde yüzyıldır yaptığı çalışmalara rağmen, bazı sorulara cevaplar, özellikle yeniden oluşumun kontrolu ve moleküler mekanism işleminin yakalanması zor görünmektedir. Bilim adamları planaria’nin temelde yeniden oluşumun yeteneğine sahip olduğuna hemfikirdirler ve neoblast adı verilen emriyonik dal hücreleri depolanmasını kullanırlar. Türlere bağlı olarak neoblastlar yetişkin solucanlarda toplam hücre sayısının 30% ‘unu kapsarlar. Bu totiponent hücreler, solucanın vücudunda serpiştirilmiş olup diğer hücre türlerinin büyümesinde yeteneklidirler ve iki rol oynarlar. Onlar, normal fizyolojik koşullarda ölenin yerine yeni hücre alarak yeniden oluşum için ham materyalini ve daha sonra iyileşmeyi sağlarlar. Yeniden oluşum oldukça hızlıdır. Kesilmeden 15 dakika içinde yaranın ucundaki epithelilal hücreler lesion’a yakındır. Birgün içersinde, yüksek sayıda neblast yaralı epithelium altındaki yeni diferansiyel yapılar büyüyen blastema içinde delil haline gelir ve yeniden oluşumun kesilmeden 10 gün içersinde optimal koşullar altında kaybolan kısımları tamamlanır (Baguma vd., 1994). Planaria kuvvetli kafa-kuyruk organlarına sahiptir (anterior-posterior kutuplanma). Kesildiğinde, anterior kesim yüzeyi hemen hemen daima yeniden oluşur ve yeni bir kafayı üretir ve aynı zamanda posterior kesim yüzeyi kuyruk yapıyı yeniden üretir. Solucanların bilgilerinin belirlenmesinin yeniden üretimde bir baş ve bir kuyruktan olup olmadığına dair bir mekanizmasının olması gereklidir. Şu anda, anterior ve posterior kutuplaşmasını açıklayan iki adet hipotez mevcuttur. Biri yeni oluşan epithelium arasında tumevarımsal iç hareket, başlangıç iyileşme işlemini kapsar ve blastema hücrelerinin altından geçer. Diğer hipotez ise anterior-posterior belirlenmesinde faktörlerinin moleküler gradientinin sıralanmasını önerir. Deneysel datanın çokluğuna rağmen her bakış için kesin bir delil yoktur. Çoğu tatlısu planaria sexual olarak yeniden oluşur ve oviparoustur (yumurtanın kuluçkası ile depolanır). Bazı türler parthenogenesis ile asexual yenide oluşum gösterirler. (spermsiz olarak yumurtanın aktivitesi). Bununla birlikte, taxonomik ailenin yassısolucanları Dugesiidae ve Planariidae (Order: Tricladida) nadir olarak ikili bölünme ile yeniden ürerler (Bakınız: üst şekil, sağ panel-tatlısu triclad Planarıa fissipara). Yetişkinler ikili bölünme ile bir küçük kuyruk parçası pharynx diferansiyeli ve iki hafta içinde de beslenen solucan haline gelir. Dugesia trigria’nin tabi olduğu toplulukta yeniden üreme araştırmalarında optimal sıcaklık koşullarının 24 C altında solucanların 20% si bölünme ile olduğu ortaya çıkmıştır. Çift bölünme ile asexual üreme bu dokumanda da belirtildiği gibi deniz polycladlerde de mümkündür (Bakınız: soldaki foto). Prostheceraeus (Familya: Euryleptidae)’nin polyclad’i de bölünme işlemini vermektedir. Kuyruk parçası ok ile belirlenmiş ve bölünmeden sonra yeni bir solucan oluşturarak ve alt hücre yeniden organasyon olacaktır. Bununla birlikte, yeniden üreme işlemi hakkında diğer bir açıklama, diğer hayvanların atağından ve “kuyruk kısmının bölünmesi” nden sonra beslenme amaclı ataklar neticesinde (Bakınız: Bölüm. Predation ve Defence) oluşmasıdır. Yiyecek ve Beslenme Çoğu bilinen, polycladler aktif etobur hayvanlardır ve leşle beslenirler ve aynı zamanda çeşitli sessile invertebrateslerin beslenmesinde kullanılırlar. Bazı türleri herbivorous olup yeşil alg ve bentik diatom’da özelleşmişlerdir. Acoella order’inin bir kaç yassı solucan türlerinde (bir eski taksonomik order, Polycladida’den ayırt edilen) sindirilen mikroalgler derecelenmemiştir ama endosymbionts (Zoochlorella) haline gelmiştir. Bu symbiotik ilişkide bağırsakta alg fotosentezde aktif olarak kalarak pareneyma hücre ve solucanların energy depolanmasında önemli katkılarda bulunur. Convoluta (canvolata reocoffansis - sağdaki foto Arthur Hauck)’nın bazı türleri genç solucanlar yüksek sayıdadırlar (Tetraselmis convolata, her bireyde takriben 25,000 adet). Yetişkin duruma geldiklerinde, canalıcı anotemiksel olarak değişimlerinin yansımasında endosysmbiontlara bağlıdır ve pharynx ve ağız fonksiyonlarının kaybederler. Beslenme için, C. roscoffensis alçak gelgitin parlak ışığında yüzeye gelir ve orada symbiotic alg vücudun epidermis boyunca serpilmişlerdir ve aktif olarak fotosentetiktirler (Holligan vd., 1977). Algler tarafından üretilen yiyecek (şeker) yassı solucanlar tarafından kullanılır. Bu manzara Fransa’nın korunmus kumlu sahillerinde ve İngiltere’nin bazı bölgelerinde gözlenebilir. Optimum cevresel pozisyonlarda bu solucanlar alçak gelgitte kumda mükemmel yeşil yapılar yapar. Pseudocerotidae familyasının birçok türü koloni yaşamayı tercih etttikleri düşünülmektedir ve katı ascidianlar, süngerler, ve bryozoonlar rejimlerinde normal özellik göstermezler. Beslenmede, çok buruşuk pharynx (pharynx plicatus) niçin ve nezaman kullanılmadığında bir cep içinde, çıkıntılarda koloni ascidianlarda bireysel zooidlerde genişlemis olabilirler. Proteolytic nesneleri dışarı atarken dokusal dallı bağırsak oluşmuştur. Gastrovascular boşluk, bütün besin parçalarını vucudun tamamına transfer eder. Pseudobiceros türlerinin gözlemi önerilir, av hayvanı dokusal pharynx tarafından yütülür (Bakınız: aşağıdaki görüntü) ve bütün hayvanlarda aynı ölçüde genişlerler. Bu türler, katı ascidian Corella willmeriana mantosuna sızar ve delme deliğini kullanarak birkaç saatte tamamını emerler. Tunicate’nin içersinde gençler bile bulunmuştur. Bütün şeyleri yedikten sonra, kayalara çapraz olarak sürünürler. Yassı solucanların yığını oluştuğunda insanlık açısından denizel ortamında bir felaket etkisi sözkonusudur. Tropikal polycladler istiridye’nin musibetidir ve dev deniz taraklarıdır (Stylochus matatası). Gastrovasküler boşluğundaki besinler yiyecek parçacıklarının ileri enzimatik derecelenmesinden sonra bağırsak dallarına doğru transfer olurlar ve yüksek bir absorb edebilen yüzeye benzerler. Çoğu yiyecek parçacıkları gastrodermal hücre tabakasının phagocytosis tarafından yutulurlar ve ileri enzimatik düzeyde iç hücresel parçalanma oluşur. Sindirilemeyen materyal pharynx’a doğru, yani yiyeceklerin girdiği deliğe doğru atılırlar, çünkü yassı solucanların kör sindirim sistemi bulunmaktadır. Bazı türlerde bu gözlenmiştir ve sindirimin tamamlanmasından sonra bağırsak fıskırtılan su yardımıyla temizlenir. Tür çeşitliliği ve polyclad yassı solucanların değişimi tropikal suların inanılmaz değişimi ile taxon’a benzer (Newman & Cannon, 1994), Bakınız.Bölüm: Taxonomi). Oldukça uzun zamanda, renk izleri muhteşem renklenmiş olan solucanlar sınıflandırılmada yeterli düşünülmüştür (Hyman, 1954, 1959). Bununla birlikte, birçok türlerin tanımlanmasında yeterli kimliğe sahip değildirler (Faubel, 1983, 1984). Newman & Cannon (1994)’de yaptıkları arazi çalışmalarında farklı genera’da (Pseudoceros - Pseudobiceros; Pseudoceros - Pseudoceros) çok benzer ve hemen hemen tamamen aynı renkli izleri taşıdığı ortaya çıkmıştır ve türler arası farklılığında farklı aileler üzerinde (Pseudocerotidae-Euryleptidae) daha detaylı inceleme gereklidir. Mukayese anatomisi uygun karakterleri kullanılarak göz numarası, göz ayarı, yalancı dokanakların şekli, pharynx ve özellikle üreme sisteminin ince yapısının analizi kanıtlanması için turbellarianlarin tür diagnosisleri için temel araçtır (Newman & Cannon, 1994). Erkek ve dişi üreme yapılarının seri olarak yeniden yapımı zordur ve özel lab aletlerine ihtiyaç vardır ve uzmanlar tarafından arzu edilir. Son zamanlarda, benzer polyclad türlerini ayırt etmede, molekuler data (DNA) sıklığı kullanılmıştır. Böyle araçları kullanmadan, polyclad yassı solucanların sınıflandırılması bazı durumlarda hatalı olabilir. Benzer renk izleri büyük farkla benzemesine rağmen ayni genetiksel olarak belirlenmiş renk ve örnek çeşitliliği ayni tür özellilerine sahiptir. Diğer bir değişle, tamamen aynı renkteki örnek belki farklı türde genera’ya veya hatta familya üyesi olabilir. Bu nedenle, eğer benzer renk örneklerinde olan iki polyclad örneği mukayese edıldiklerinde, çeşitli mümkün senaryolar akla uygundur. 1) Farklı genera ve hatta familyaya sahip solucanlarda, genel seçilmiş basınç ve aynı çevre kosulları altında aynı renk örneklerinin gelişiminde evrimsel gelişim kuvvetlidir. Phylogenetik terim açıklaması; bir benzer renk ilişkili gene seti (=allels) veya bir müşterek gene farklılığı phenotype sonuçlari üzerinde secilmiş basınç tarafından tercih edilir. Bu gibi olayların sıklığı analogous gelişim olarak düşünülür. 2) İkinci senaryoda, iki solucan aynı atayı paylaşırlar. Tahminler ışığında, bu ata daha önce avantajlı renklere ulaşmıştır, her iki örneğin renkli izlerinin mukayesesi hatta anotomiksel ve diğer genetik farklılıklara rağmen çok benzer olabilir. 3) Evrim gelişmekte olan işlemdir ve hiçbir zaman durmaz! Genesin renk örnek ilişkisinde gelişigüzel müşterekliliği, protein kodlama bölgelerinde veya düzenli DNA sıklığında, ışık, sıcaklık, beslenme gibi çevresel faktörlerin etkileri ile beraber polyclad renk izlerini etkilemektedir. Rahatça söylenebilir ki, evrim renkler ile oynamadır. Varsayılan predatörlerin farklılığı daha etkilidir: Mimicry ve Predation ve Defence). Phylogenetik zaman aralığında, bir türün görünümünde veya spectation değişim atlamasında, yeni türlerin tehlikesinde önder olabilir. Takip eden foto paneli açıkca ortaya koymakta ve farklı türler ile bir tek türün üyeleri arasında renk izlerini açıkca göstermektedir. Solucanların morfolojik ve DNA sıklığının kilitlenmesi nedeniyle hangi tariflenmiş senaryoların örnek için uygun olduğu gerçekte belirsizdir. Toxin Aposematic renklenme (Bakiniz.Bölüm: Mimicry) denizel invertebrate hayvanların içersinde bilinen genel defense mekanizmasıdır. Çok sayıda göze çarpan renkli slugları toxic alıkonmuştur. Polyclad yassı solucanlar açısından doğrudur. Polyclad yassı solucanların Pseudoceron concineu ve Planocera tentaculata kimyasal defens araştırması ve staurosporine türevlenmesi gibi yüksek toxic kimyasal bileşen açığa çıkarmıştır (Schupp vd., 1977 ve 1999) ve tetrododoxin (Miyazama vd., 1987). Tetrodotoxin proteinsiz bileşen (aminoperhydroqumazoline) olup günümüzde bilinen en kuvvetli paralytic toxinlerden birisidir. Sodyum (Na+) kanallarında voltaj-kapılı cok belirgin engelleyicidir ve büyük integral protein üyesi sinirsel hücrelerin plazma membranına doğru boşluk oluşturur ve Na+ iyonlarına izin verir. Çeşitli uyarıcı cevaplar, boşluklar (=genes), ve açık ve kapalı mebrane potensiyelinin değişimi gibi hücre dışı ve içi belirli kimyasalların varlığı ve uygun fonksiyonelliği sinirsel hareket potensiyelinde temel teşkil etmektedir. Bunula birlikte, tetrododoxin kanalları bloke eder. Tetrodotoxin ve onun habercisi yüksek konsantrasyonlu mukus, sindirim organlarında, polyclad Planocera multietentacula (Miyazawa vd. 1987, Noguchi vd, 1991) yumurtalarda ve üreme organlarında önerirler. Yassı solucanlar predatorlere karşı defans ve alarm maddesi tetratoxine sahiptir. Tetratoxin geniş farklı hayvan örnekleri tarafından izole edilmiştir bunlar pufferfish (photo: Arothon nigropunctatus, order: Tetraodontiformers), parrotfish, genus Atelopus’un zehirli oklu kurbagalar, mavi-cevreli ahtopot, deniz yıldızı, angelfish ve xanthid crabdir. Japon mutfağında pufferfish hassas olduğundan, tetrodoxoxinden zehirlenme Japonya’da halk sağlığını ilgilendirmektedir. Yumurtalık, çiğer, bağırsak ve pufferfish derisi tetradotoxin miktarını içerir ve bu da hızlı ve zorlu üremeye yeterlidir. Geleneksel olarak çok küçük miktarda ciğer et ile tüketilir. Dudakların oluşum duygusu ve dil gercek akşam yemeği tecrübesidir. Fugu’nun hazırlanması ve satışı özel restaurantlarda olduğundan oradakiler eğitilir ve evde hazırlanmasından ve tüketiminden yanlış tanımlandığı ve yanlış donmuş balık ürünleri nedeniyle bireysel olarak zehirleme olayı (30/100 kışı/yıl) olur. Pufferfish zehirliliği hakkında daha fazla bilgi için Bakınız. FDA/CFSAN web sitesinde Amerikan Besin Emniyeti & Nutrient Aplikasyonu’na başvurunuz. Eşleşme ve Üreme Polycladler oldukça ilkel oldukları için kimyasal bilesenler besin bulmada ve partneri ile arkadaşlık kurmasında anahtar rol oynarlar. Büyük yalancı dokanaclarda anterior sinirinin ayrıntıyla donatılması bir delildir ve bu solucanlar temelde resif çevrenin kavranmasında ve davranışlarıyla kararda kimyasal duyu aleti olarak kullanılır. Genel olarak, polycladler derialtında erkek ve dişi üreme organlarina sahiptirler. Onlar karşılıklı dollenme ile birleşerek çiftleşirler. Bir kere, aynı türe sahip yetişkin solucan oldukca kaba çiftleşme hareketi yaparlar, bu derialtı döllenme olarak tarif edilir (üst görüntü, Pseudoceros bifurcus). Solucanların çiftleşme zamanında birbirlerine doğru hareket ettiği, değdiği ve birbirlerine sarıldıklarında (sol görüntü aşağıda, Pseudoceros graveri) eş zamanlı olarak penis papillae ve stylet dışarı çıkar (İki görüntü aşağı sağda, Pseudobiceros bedfordi). Onlar, daha sonra birbirlerini başka yere çekmeyi denerler, bazen de kendi ortaklarına zarara sebep verirler. Yaralı solucanlar 24 saatte sağlıklarına yeniden kavuşurlar. Ne zamanki biri diğerine penetre ederse, birkaç dakika partnerinin epidermiste içine oturtur. Bu zamanda, erkek dol hücresi partnerine enjekte edilir (Üst görüntü, sağ). Son zamanlarda, Pseudoceros bifus’in eşleşme davranışları gözlenmesinde (Michiels& Newman, Nature, vol.391:647), bireysel polyclad sperm vermeyi arttırır. Erkekler için, spermlerin enjeksiyonu direk yumurtalara gider ki orada dişi yarasının iyileşmesinin maliyeti taşıma kapasitesini ve döllenmede kontrolu kaybeder. Bu nedenle, dişilerdeki çok kuvvetli secme bu maliyetten kaçınmaktadır. Bu arka yukarı ile buna ulaşılır, bir eş davranışı her iki striking ve parrying’de etkilidir. Bireyselde her ikisi de deneme cekingesiyle davranırlar. Gelişme olarakta bu girişim sperm donatısında daha fazla sperm verilmesini sağlar. Daha fazla başarılı döllenme ile daha iyi döllenme sağlar. Derialtı döllenmeden sonra sperm aktif olarak parenchyma yumurta kanalına doğru hareket eder. Onlar muhtemelen oocytes tarafından veya dişi üreme kanalının değer hücrelerde serbest hale getirilen moleküllerin gradienti tarafından cazip olurlar. Döllenmiş yumurtalar daha sonra birkaç yüz yumurtanın düzensiz yumurta yığını halinde depolanir ki daha sonra sıkıca paketlenmiş bir tabaka haline gelirler. Diğerinde, iri çakılların altında ascidian kolonileri halinde bulunurlar ve tercih ettikleri avlanmadan biridir. Serbestce yüzmenin gelişmesinden on gün sonra, transparent larva kuluçkası oluşur (=Muller’s larva). Çizelgeden de anlaşılacağı gibi gelişmelerinde bibirini takip eden üç step vardır. Müller larvası sekiz lob tarafından karakterize edilirler. Loblar vurus yapan cilia taşırlar ki bu ciliate’e benzer yüzmeye izin verir (en soldaki foto: koyu arazi mikroskobu altındaki larva stepi). Larva plaktonik bölüme girerek yerleşmeden ve metamorfize olmadan önce birkaç gün yüzer. Gelişmesi esnasında, larva lobları absorbe olmaya devam eder ki orada sindirimleri gelisir. Minyatür yetişkin solucanlar haline gelindiğinde metamorfoz tamamlanır, yanlızca birkaç mm boyutundadırlar ve hayatın bentik bölümüne girerler. Larvaların nudibranch metamorfisinde yapılan gelişmiş ileri düzeyde çalışmalardan elde edilen bilgilere göre, türlerin tercih ettiği besinler tarafından kimyasal bileşikler üretilmesi hedeflenir. Bu mekanizma, yerleşme alanı genç organizmaların yetişmesinde yeterli yiyecek sağlamasına emin olur ve bu nedenle, bu hayatta kalabilmek için daha büyük bir şanstır. Polycladler lab. koşullari altında larva halinde yerleşmeksizin kuluçka olduktan sonra iki hafta içersinde solucan olabildikleri için, polycladlerin bentik hayat bölümüne girmelerinde dış güçlerin zorunluluğu bilinmemektedir. Polycladlerin Taksonomisi Polycladida (class: Turbellaria)’nin taksonomik order’i bir kaç yüz tanımlanmıs türleri kapsar. Bunların çoğunluğu (7 adet genera’da 200 kadar tür) ve Pseudocerotidal familyasında toplanırlar ki bu bugünün en iyi tropikal polyclad familyası olarak kabul edilir. Pseudocerotis en muhteşem renkli yassı solucanlardır ve daha sonraki en belirgin tropikal polyclad ailesinden Euryleptidae (130 türle birlikte) buruşuk pharynxleri tarafından karaterize edilirler ve ayırt edilirler ve aynı zamanda onlarda tüp halinde pharynx mevcuttur. Pseudocerotidsin diğer genera’si daha az yanıltıcı olmakla birlikte çok az bilinmektedir. Bazıları hatta monospecific’tir. Polyclad yassı solucanlar için Tayler. S & Bush L.F, 1988 web sayfasına giriniz. Turbellarian platyhelminths Taxonomisi Polyclad yassı solucanlar üzerinde taxonomik çalışmalar oldukça zordur. Onların uygun boyut, şekil, renk ve markalamaları, göz ayarlamaları, yalancı dokanaçlar, pharynx, gonopore’ların topoğrafyası ve emme gibi karakteleri gözonüne alınmalıdır. Bazı durumlarda, tanımlamada bu karakterler yetersiz ise, üreme sisteminin karşılaştırmalı morfolojisi özel lab. aletleri kullanılması temel araçtır ve uzmanlar tarafından tercih edilir. Son zamanlarda, moleküler DNA (DNA sıklığı) ayni türdeki benzer polycladlerin farklılığının ayırt edilmesinde kullanılmaktadır (Bakınız.Bölüm:Phylogeny). Takip eden tablo dalan ve UW fotoğrafcılar için polyclad yassı solucanların tanımlanmasında faydalı bir araçtır. Filojeny İlk Metozoa’nın hemen hemen radyal hayvan olduğu için, iki taraflı simetrik (Bilateral) nin radyal atalarından yayılmıştır ve radyalden iki taraflı simetri arasında değişim olmuştur. Bu değişim hala oluşmaktadır ve çeşitli yüksek düzeyde spekulatif bağlantılar yapılmıştır (Brusca & Brusca, 1995). Paleontolojik ve moleküler data gösterir ki çoğu iki taraflı phyla ve Cambrian explosion zamanında bölünmüşlerdir, M.O. 56 ve 520 yıllarında oluşmuştur (Wang, vd., 1999). Phylum platyhelminthes erken Metasoanın farklı grup oluşturduğu ki bu metazoa’nin orijini ve evriminin anlaşılmasında anahtar rol oynamıştır. Coğu zooloji ders kitaplarında, erken ortaya çıkan clade formasyonu, iki taraflı simetri (Bilatera) ile bütün hayvanların kızkardeş grubu olarak tarif edilmiştir. Diğer yazarlar görmüşlerdir ki, çoğu Protostomia’nin kızkardeş grubu veya grup protostome coelomate atalarından türemişlerdir. Filojenik yerleşmenin doğruluğu esas zorluluktur ve bütün Platyhelminthes için synapomorfilerin iknasının kapanmasıdır. Bu belirtir ki onlar polyphyletic’tir. Basitleştirilmiş taxonomik şekilde, phylum Platyhelminthes dört sınıfı tutar. Trematodal (fluxes), monogenea ve Cestoda (tapeworms) ki bunlar vertabratenin endo/ectoparasiteyi sunar. Bazıları kompleks, hayat döngüşü, ve sınıf Turbellaria ana serbest yaşayan yassı solucan türlerini verir. Turbellaria 9 adet order içerir. Coğu açıklanan orderler bu çizelgede gösterilmemiştir. Acoel yassı solucan (Acoela) uzun zamandır, Turbellaria’nin order’i olarak sınıflandırılmıştır. Onlar en ilkel turbellarian order olarak düşünülmüş ve bazal metazoan olarak manzaralanmıştır ki ciliate protozoans (=syncytial veya ciliate=acoel theory) veya diploblast ve triploblast arasında direk link vardır (=planuloid-acoeloid theory)’den evrim geçirerek oluşmuşlardır. Onların basit organizasyonu yorumlanmıştır ve daha kompleks ataları (regressive evrim) ikincil özelliklerinin kaybolması incelenmiştir. Bugün, teorinin destek delillerinin birçok çizgisi, bilinmeyen iki taraflı atalardan Kambrien radyasyondan önce. acoels dallanmasıyla olmuştur. Örneğin, aceoller diğer platyhelminthes iki loblu ve neuropile’li beyinleri var olup sinir hücreleri ile cevrilmiş olduğunu sinir sistemi yapısı işaret eder (Bakınız. Bölüm: Polyclad ve Neurobiology). Karşıt olarak, acoellerin sinir sistemi sinir hücrelerinin salkımı tarafından basit beyin olarak oluşmuştur ve cok sayıda uzun sinir kordları ortagon yapmazlar (Ruitz-Trillo vd., 1999). Son zamanlarda, DNA (desorxy-bonucleic acid) moleküler teknik ve protein sıklığı başarılı kullanılmıştır. Phylogenetic hayat ağacı kurulur ve hayvan taxa’ları arasında filojenetik ilişkisi araştırılır. En yaygını, DNA sıklığı yüksek düzeydeki gene’leri muhafaza etmesidir, mesela, ribozomal RNA (rRNA) genes kodu bu gibi çalışmalarda kullanılmıştır. 18 S ribozomal DNA genesinin sıklık datası mukayesesinde ve diğer Metazoa kanıtları Acoel’in Platyhelminthes’e ait olmadığı belirlenmiştir. Bu buluşlar önerirki basit radyal simetrik organizma (jelyfish gibi) ve daha komplex iki taraflı simetrik organizmalar (arthropods ve vertebrates) boşluk (gap) vardır. Onlar kendi phylum’larına yerleştirilmelidirler (Ruisz Trillo vd., 1999). Bazı çarpıcı özellikleri vermesi polyclad genera’da en yaygın tanımlamada yardımcı olacaktır. DNA sıklılığı dataları aynı zamanda aynı organizmaların morfolojilerinin ayırt edilmesinde de kullanılır. Bu Goggin & Newmann (1996) tarafından pseudoceroid turbellarianlar için teşhir edilmiştir. Ribozomdaki RNA (rRNA) gene salkımındaki spacer-1 (JTS-1)’dan elde edilen Nucleotide sıklığı dataları (Pseudoceros jebborun, Pseudoceros paralaticlavus) ve pseudocerotid polycladların generasında (Ps. jebborum ve paralatic lavus versus Pseudobiceros gratus) türlerin ayırt edilmesinde kullanılmıştır. Ps’in ITS-1’nin nukleotide sıklığı Ps. paralatic lavus’dan 6% farklıdır ve Pseudobiceros gratus’tan 36% farklıdır. Beklenildiği gibi bu sonuçlar aynı genusun türleri farklı genera’dan alınan türlere kıyasla phylogenetiksel olarak yakın ilişkili olduğunu kanıtlamaktadır. Bu nedenle, ITS-1’den elde edilen data sıklığı pseudocerotid yassı solucanlar ayırt edilmesinde faydalı bir taksonomik araçtır. Ribozomal DNA Salkımı Büyümekte olan bir hücre 10 Mio ribozomlar ihtiva eder, protein üretiminde hücresel araçtır (mRNA’nin proteine transferi). Ribozomal RNA her tip ribozomal RNA molekülü (5 S, 5.8 S, 18 S, 28 S rRNA) nin temel yapısal komponenttir ve protein sentezinde hücre ihtiyaçlarında birleşmesi açısından her hücre generasyonunda sentez edilmelidir. Ribozomal RNA’nın yeterli miktarda üretimi için eukaryotic hücreler ribosomal RNA (rRNA genes = rDNA) nın kollanmasında çok sayıda genes kopyası içerirler. İnsan hücreleri her haploid genome’de aşağı yukarı 200 rRNA gene kopyası içerirler ve beş farklı kromozomda (chromosomes 13, 14, 15, 21, 22) küçük salkımlar halinde dağılmışlardır. Kurbağa hücreleri Xenopus leveis bir kromozomda bir tek salkımda 600 rRNA gene kopyası içerir. Bununla birlikte, genel rRNA izleri bir kromozomda bir tek salkımda rRNA gene organizasyonunun genel izinde bütün eukayot hücrelerde tamamen aynıdır. Verilen kromozomda yüksek dereceden rRNA genesinin çok sayıda kopyasının gelişigüzel serileri ayarlanmıştır, her bir gene diğer bolgedekinden ayrılmıştır, DNA boşluk yaratıcı olarak da bilinir ve türler içinde uzunluğu ve sıklığı değişmektedir. Bir tek salkım rRNA genes’i 18 S, 5.8 S, ve 28 S rRNA molekülü içerir ki o (ITS-1 ve ITS-2) tarafından içten ayrılır. Bitişik salkımlar 10,000 nucleotide uzunluğundadır ve herbiri dışsa açıklı bölgeler (ETS) olarak ayrılmıştır. rRNA genes’i RNA polymerase tarafından kopya edilmiştir ve her bir genes seti aynı temel RNA’yi üretir, 45 S öncü rRNA (pre-rRNA) olarak bilinir. Önce kurulmuş ribozomal partiküllerindeki nukleusu terkeder, 45 S pre-rRNA (takriben 5,000 nucleotides, 18 S Rrna (takriben 2,000 nucleotides, ve 5.8 rRNA ( takriben 160 nucleotides). Geri kalan kısımda her temel kopya (ETS, ITS-1 ve ITS-2) olarak derecelenmistir. Takriben 200 farklı hücresel protein ve bir 5 S rRNA diğer kromozom locus’tan türetilir ve ribozomların paketlenmesinde yeni sentezlenmiş rRNA kullanılmıştır. Bu paketleme nucleusta oluşur ve bu büyük geçirgen yapı nucleus olarak adlandırılır. Bozulmamış rRNA molekulleri ribosome üretiminde temel olduğu için, protein sentezi ve hüçre fonksiyonu, kuvvetli basınç seciminde (evrim) fonksiyonel rRNA mevcuttur. Böylece, ecukaryotic hücrelerde çoğu genişler ribosomal genese bağlıdır bu da müthiş bir benzerlik sıklığı gösterir ve hatta phylogenetik taxa dahil olmak üzere. Bununla birlikte, iç alan bölgede (ITS-1 ve ITS-2) daha az homoloji bulunmuştur çünkü bu DNA bölgeleri yapısal RNA’ya katkıda bulunmaz. Bu nedenle, daha az secilmiş basınç uygulanmakta ve DNA sıklığı da farklı olmaktadır (müşterek nokta), aynı genusun türleri arasında bile bu bölgede elde edilmiştir. Bu ilişki rDNA datasındaki molekuler özellikler (Hayat ağaçi) çok faydalıdır ve yakın ilişkili türlerin ayırt edilmesinde kullanılır. Neurobiyolojide Polycladler Serbest yaşayan polyclad yassı solucanlarda Notoplana acticola gibi beyin ve peripheral sinir network araştırma halindeki en ilkelsinir sistemini sunar. Küçük ama iyi tanımlanmış beyin (sağ panel) ve uzun sinir ipleri ve çapraz hatlar tarafından çok sayıda dairesel motoneuronlarla bağlanmıstır. Bu sinir sistemi yassı solucanların cevresel değişimlerinin iç ve dış etkileri mümkündür. Yüzeysel olarak Netoplama articola’nin beyni diğer invertebratedekilere benzemesine rağmen hücreleri cok sayıda vertebrate özelliklerine sahiptir. Hücre tiplerinde tamamlanmış, dallanmış izlerle beraber çok şaşırtıcı farklılık vardır. Çok kutuplu neurone’ler yaygın tipik, iki kutuplu hücreler olarak ayırt edilebilir. Küçük çok kutuplu hücreler glial veya interneurones beyinde serpiştirilmiş olarak bulunmuştur (Keenaneld, 1981). Daha önceki çizimden çıkartıldığı gibi, bazı tabaka tarafından çevrilmiştir. Uzun sinir kordları ve neuronlar dairesel alıcı hücreleri bağlar (ocellinin fotoduyarlı hücreleri) beyinden direk olarak uzanırlar. Ventral sinir kordu dorsal sinir korduna nazaran daha kuvvetli gelişmiştir. Yassı solucanlar Sinirbiyolojisi araştırmaları, beyin araştırmaları açısından en mükemmel model sistemidir cünkü oldukça ince olup beyinleri birkaç mm büyüklüğünde yanlızca birkaç 100 – 1000 hücre içeriler ve deneysel çalışmalarda hazırlanmıştır. Son zamanlarda, çeşitli konular sinirselbiyoloji ve elektrofizyoloji ilgisi adreslenmiştir. Cytoarchitecture’in Analizi ve Sinirsel Bağlantılar Bu sayfadaki bilgilerin Powerpoint Sunumunu (ppt dosyasını) www.sunumbankasi.net adresinde bulabilirsiniz You can find the powerpoint presentation of this web page content at www.sunumbankasi.net Polyclad yassı solucanların beyinlerinin üç boyutlu yapısınin kontrolu için sinir hücreleri özel olarak boyanmıştır. Camillo Golpi (1843-1926) metoduna göre yürütülmüştür (20. yüzyil biyologlar tarafından bilinenlerden en iyisi). Florosan boyaları kullanılarak ic hücrelerdeki iontofarlar ile beyin içindeki sinir konfigürasyonu araştırılmıştır. Bu deneysel yaklaşımda, Koopwitz ve arkadaşları (1966) tarafında belirlendiği gibi, Notoplana articula’nin örneği aneztezi edilmiştir. Sonuç olarak, sinir sistemi dakika cubuğu ve aletleri kullanılarak belirlenmiştir. Beyin örtüsü protesae sindirimi ile ortadan kaldırıldı, beyine ve ganglion hücrelerine direk girebilmek için tek sinir hücrelerinde ultra ince cam mikroelektrot tekniği kullanılmıştır ve lucifer yellow gibi florosan boya ile doldurulmuştur. Enjekte edilen boya hücre içinde sağa doğru axonların ucuna kadar göç etmiş ve florosan mikroskopta izlenmiştir. Laser taramalı florosan mikroskobu kullanarak digital data serili iki-boyutlu resimlerden üç-boyutluya çevrildi ve mümkün olan polyclad beynindeki sinirsel cytoarchhitecture gelişmeler harita haline getirilmiştir. Sinir Tamir ve Sinirsel Plastisite Çalışmaları Şimdiye kadar incelenen bütün invertebrate ve vertebrate türlerideki çalışmalara göre, Notoplana acticola beyin dokusu yeniden üretemez. Bununla birlikte, sinirsel tamir hızlı ve yüksek oranda elverişlidir. Polyclad beyni yassı solucana taşındığında yeni bağlantılar organ nakli edilen beyin ile dairesel network sinir alıcı uçları ameliyattan 24 saat sonra tesis edilmiştir. Bunun gibi organ nakli deneyler Davies ve çalışma arkadaşları (1985) tarafından tarif edilmiştir. Deneylerde dört beyin organ nakli oryentasyonu; normal, ters, ters yüz, ve ters ters yüz olmak üzere kullanılmıştır. Beyin organ naklinin fonksiyonu test edildi ve her iki davranış ve elektrofizyolojik kriterler olçülmüştür. 23 gün içinde, organ naklinin 56% si solucan ve diğerleri organ naklinin iyileştirilmesindeki doğru davranış, kaçınma dönüşü, ditatix hareket, ve beslenme gibi dört davranışta test edilmislerdir. Beyindeki mevcut sinirler kendilerine en yakın dairesel sinirlerle birleşirler. Ameliyattan 36 sonra bazı normal davranışlar gözlenebilir. Kontrol eksikliği olan yassı solucanlar organ nakli olmadan davranışlarını kurtaramazlar. Birkaç beyin davranışında hücre içi kayıtlar da dairesel sinir hücreleri ile uygun bağlantılar yeniden kurulmuştur. Bu sinirlerdeki boyanmış hücreler ters oryentasyonlu beyin ortaya çıkarmıştır, bireysel sinir hücre işlemlerinin beyini terketmesinden sonra uygun olmayan bir şekilde sinir kordu ile ilişki kurmakta olup, bazı işlemlerde 180 0 li sinir kordu , ki onlar normal olarak yerleşen operasyona maruz kalmamış solucanlardır (Davies vd, 1985). Molekuler temeli ve yeniden bağlanan belirgin sinirleri ortaya çıkarmak çok ilginçtir. Konakladığı hayvanın davranışında bazı bilgiler çok önemlidir, paraplegia veya kazadan sonra sinir sisteminin ciddi olarak yaralanması gibi. Dağıtım ve Buluş Polycladler boyutları, renk örnekleri, sıvı içindeki hareketleri nedeniyle SCUBA dalgıçları tarafından tesbit edilebilirler. En yaygını, gün esnasında onlar resif eğimlerin dışında, üzerinde veya uçlarında görülebilirler. Onlar yarıklarda, kaya altlarında, bazende çıplak sedimentlerde veya çamurlu tabakalarda bulunurlar. Bazı türleri resif sırtlarında yüzerken görülmüşlerdir. Polycladler tercih ettikleri yiyeceklerin üstünde veya yanında dinlenirler çok nadiren de olsa süngerlerin veya koloni ascidianlarin üzerinde , çoğu resif sırtında çok iri çakılların altında bulunmuşlardır. Crytic türleri çok ender bulunurlar çünkü kendilerinin normal hayatları zamanında yeraltında karışmışlardır. SCUBA dalgıçlarına ve UW fotoğrafçılarından ilgi duyanlara polyclad türlerini bulmak için çakıl altlarında ve çoral taşlarının etrafında bulabileceklerini tavsiye ederiz. Şans ve sabırla polyclad türleri bulunabilir. Bununla birlikte, bu hassas solucanlara dikkatlice değmek ve ele almak gerekmektedir. Polycladler stress altında kendi-kendini imha etme özellikleri vardır. Onlar otoliz, mukoz parçalarını kirarlar veya buruştururlar ve daha sonra yapılacak incelemeler için fotoğraf çekilmesini imkansız hale getirirler. Bununda ötesinde, kendi belirgin renkli örneklerini kaybederler. Bu nedenle çoğu fotoğraflar mümkün olduğu kadar onlari yaşam yerinden rahatsız edilmemelidir.Yeni türlerin tarifi, örneklerin toplama, koruma, ve detaylı çalışmada, tamirde özel teknikler mümkündür. Polyclad’e ilgi duyan dalgıçlar yeni türlerin tanımlanmasında katkıda bulunacakların Dr.Leslie Newman ile kontak kurmaları (Schooling Resource Science and Management, Southern Cross University, P.O. Box 117, Lismore, NSW, Australi 2480) çünkü kendisi tamir ve koruma konusunda güvenilir metod geliştirmiştir. Leslia şimdi Indo-Pacific polycladlar üzerinde çalışmaktadır. Dünya capında 350 tür içeren database ile onların besin ve üremeleri hakkında bilgi vermektedir. Oya Bezen Çakın  

http://www.biyologlar.com/yassi-solucanlarin-anatomisi

NanoTeknoloji Nedir?

NanoTeknoloji Nedir?

1974 yılında Tokyo Üniversitesinde Norio Taniguchi tarafından ortaya atılan nanoteknoloji mevcut teknolojilerin daha ileri düzeyde duyarlılık ve küçültülmesine dayalı olarak hızla ortaya çıkan teknolojilerdir. Gelecekte bu teknoloji muhtemelen Moleküler Nanoteknolojisi (MNT) adıyla nano büyüklüğündeki boyutlarıyla yapı makineleri ve mekanizmalarını da içerecektir.Nanoteknoloji ölçü olarak nanometre adı verilen(kısa şekli nm) bir ölçme birimini kullanılır. Her bir ölçüde 1 milyar nm vardır. Her bir nm sadece üç ile 5 atom genişliğindedir yani ortalama bir insan saç kalınlığından yaklaşık 40,000 kez daha küçüktür. Natoteknolojinin bir yönü de süper küçük bilgisayarlar (bakteri büyüklüğünde) ya da milyarlarca dizüstü bilgisayar gücünde küp şeker büyüklügünde süper bilgisayarlar yada günümüzün bilgisayarlarindan trilyonlarca daha güçlü belirli bir büyüklükte masaüstü modelleri gibi nano boyutunda yapılabilmesidir. Nanoteknolojinin yüksek potansiyeli Kuantum fiziğinin kanunları sayesinde açığa çıkmakdatır. Bu aşamada ve nano ölçülerde kuantum fizik yasaları devreye girer ve optik, elektronik, manyetik depolama, hesaplama, katalist ve diger alanlarda yeni uygulamalara olanak sağlar. Nanoteknolojisi genellikle genel-amaçlı teknoloji olarak adlandırılır. Çünkü gerçeklestirildiği zaman nanoteknoloji neredeyse bütün sektörlerde ve toplumun her alanında önemli bir yeri olacaktır. Daha iyi yapılmış, daha uzun süre dayanan, daha temiz, güvenli ve akıllı ürünleri evde, iletişimde, tıpta, ulaşımda, tarım ve endüstrinin her alanında kullanabileceğiz. İnsan vücudunda dolaşarak kanser hücrelerini yayılmadan bulup yok eden tibbi bir araç düşünün; ya da çelikten çok daha hafif ama ondan on kat daha güçlü materyali gözünüzde canlandırın. Neden nanoteknolojisi duyarlı kullanılmalı? Elektrik veya bilgisayarlar gibi nanoteknoloji de hayatımızın her aşamasında daha iyi olanaklar sunacak. Fakat her yeni teknolojinin olduğu gibi nanoteknolojinin de iki yönlü kullanımı var, yani ticari kullanımı ve askeri alanda nanoteknoloji sayesinde çok daha güçlü silahlar ve gözetleme araçları yapılabilecek. Bu yüzden nanoteknoloji insanlar için yararları ile birlikte aynı zamanda bazı riskleride getirmektedir. Nanoteknolojinin önemli yanlarından biri de sadece daha iyi ürünler değil, aynı zamanda daha gelismişmiş üretim araçları sunmasıdır. Bir bilgisayar veri dosyalarını kopyalayabilir mi? Özellikle de çok düşük bir maliyetde yada ücretsiz olarak istediğiniz kadar kopya yapabilirsiniz. İşte nanoteknolojide aynı bilgisayar örneğinde olduğu gibi herhangi bir şeyi üretmeyi aynı dosyaların kopyalanması kadar kolay ve ucuz hale getirebiliyor. Bu yüzden nanoteknoloji bir çoğuna göre bir sonraki sanayi devrimi olarak adlandırılmaktadır. Nanoteknoloji sadece çok düşük maliyetle birçok yüksek kalitede ürünün yapılmasına olanak saglamayacak, aynı zamanda düşük maliyette ve aynı yüksek hızda yeni nano fabrikalarının da yapılmasını sağlayacaktır. Nano teknolojisisin hızla artan bir teknoloji olarak adlandırılmasının nedeni kendi üretim araçlarını yeniden üretebilme yeteneğidir. Nanoteknoloji; daha hızlı, düşük maliyetli ve temiz üretim sistemi getirmektedir. Üretim araçları katlanarak yeniden üretilebilecektir, böylece birkaç hafta içersinde birkaç nano fabrikası milyarlarca fabrikayı üretecektir. Bu bir devrimsel, yenilikçi, güçlü ve potansiyel olarak da çok tehlikeli- ya da faydalı bir teknolojidir. Tüm bu gelişmeler ne kadar kısa zamanda gerçekleşebilir? Genel tahminler bunun 20 ila 30 yıl arasında, hatta daha da geç olabileceği yönündedir. Fakat optik, nano litografi, mekanik kimya ve 3D prototip teknolojileri konusundaki kaydedilen hızlı ilerlemeler bu süreyi kısaltabilir. Burada önemli olan sadece böyle bir gelişmenin ne kadar kısa bir zamanda yapılabileceği değil aynı zamanda bizim bu yeni teknojiye ne kadar hazır olabileceğimizdir. Belki kendimize aşağıdaki sorulardan bazılarını sorduğumuzda bu konuyu daha iyi algılayabiliriz.Bu teknolojiye kim sahip olacak? Bu çok sınırlı mı olacak yoksa herkes erişebilecek mi? Fakir ve zengin arasındaki farki kapatmak için ne yapacak? Tehlikeli silahlar nasil kontrol altina alinacak ve tehlikeli kisilerin eline geçmesi engellenecek? Bu soruların çogu 10 yıl önce ortaya atılmasına rağmen hala pek bir cevap bulmuş gibi görünmüyor. Bu teknolojinin ne zaman hayata geçirileceğini tam olarak söylemek zor, bunun bir nedeni de gizli askeri veya endüstriyel geliştirme programlarının normal bir vatandaşın bilgisi dışında ve büyük bir gizlilikle yürütülüyor olmasıdır.Tam ölçekli olarak nanoteknolojinin önümüzdeki beş veya on yıl içersinde geliştirilip geliştirilmeyeceğini kesin olarak söyleyemeyiz. Fakat şimdiden ihtiyatı elden bırakmayıp bütün senaryolara karşı hazırlıklı olup nanoteknoloji ve gelişimini yakından takip etmeliyiz. Kaynak: bilgiustam.com

http://www.biyologlar.com/nanoteknoloji-nedir

Fotosentez

Dünya, canlı yaşamına en uygun olacak şekilde, özel olarak tasarlanmış bir gezegendir. Atmosferindeki gazların oranından, güneşe olan uzaklığına, dağların varlığından, suyun içilebilir olmasına, bitkilerin çeşitliliğinden yeryüzünün sıcaklığına kadar kurulmuş olan pek çok hassas denge sayesinde dünya yaşanabilir bir ortamdır. Yaşamı oluşturan öğelerin devamlılığının sağlanabilmesi için de hem fiziksel şartların hem de bazı biyokimyasal dengelerin korunması gereklidir. Örneğin nasıl ki canlıların yeryüzünde yaşamaları için yer çekimi kuvveti vazgeçilmez ise, bitkilerin ürettiği organik maddeler de yaşamın devamı için bir o kadar önemlidir. İşte bitkilerin bu organik maddeleri üretmek için gerçekleştirdikleri işlemlere, daha önce de belirttiğimiz gibi fotosentez denir. Bitkilerin kendi besinlerini kendilerinin üretmesi olarak da özetlenebilecek olan fotosentez işlemi, bunların diğer canlılardan ayrıcalıklı olmasını sağlar. Bu ayrıcalığı sağlayan, bitki hücresinde insan ve hayvan hücrelerinden farklı olarak güneş enerjisini direkt olarak kullanabilen yapılar bulunmasıdır. Bu yapıların yardımıyla, bitki hücreleri güneşten gelen enerjiyi insanlar ve hayvanlar tarafından besin yoluyla alınacak enerjiye çevirirler ve yine çok özel yollarla depolarlar. İşte bu şekilde fotosentez işlemi tamamlanmış olur. Gerçekte bütün bu işlemleri yapan, bitkinin tamamı değildir, yaprakları da değildir, hatta bitki hücresinin tamamı da değildir. Bu işlemleri bitki hücresinde yer alan ve bitkiye yeşil rengini veren "kloroplast" adı verilen organel gerçekleştirir. Kloroplastlar, milimetrenin binde biri kadar büyüklüktedir, bu yüzden yalnızca mikroskopla gözlemlenebilirler. Yine fotosentezde önemli bir rolü olan kloroplastın çeperi de, metrenin yüz milyonda biri kadar bir büyüklüktedir. Görüldüğü gibi rakamlar son derece küçüktür ve bütün işlemler bu mikroskobik ortamlarda gerçekleşir. Fotosentez olayındaki asıl hayret verici noktalardan biri de budur. SIR DOLU BİR FABRİKA: KLOROPLAST Kloroplastta fotosentezi gerçekleştirmek üzere hazırlanmış thylakoidler, iç zar ve dış zar, stromalar, enzimler, ribozom, RNA ve DNA gibi oluşumlar vardır. Bu oluşumlar hem yapısal hem de işlevsel olarak birbirlerine bağlıdırlar ve her birinin kendi bünyesinde gerçekleştirdiği son derece önemli işlemler vardır. Örneğin kloroplastın dış zarı, kloroplasta madde giriş-çıkışını kontrol eder. İç zar sistemi ise "thylakoid" olarak adlandırılan yapıları içermektedir. Disklere benzeyen thylakoid bölümünde pigment (klorofil) molekülleri ve fotosentez için gerekli olan bazı enzimler yer alır. Thylakoidler "grana" adı verilen kümeler meydana getirerek, güneş ışığının en fazla miktarda emilmesini sağlarlar. Bu da bitkinin daha fazla ışık alması ve daha fazla fotosentez yapabilmesi demektir. Bunlardan başka kloroplastlarda "stroma" adı verilen ve içinde DNA, RNA ve fotosentez için gerekli olan enzimleri barındıran bir de sıvı bulunur. Kloroplastlar sahip oldukları bu DNA ve ribozomlarla hem kendilerini çoğaltırlar, hem de bazı proteinlerin üretimini gerçekleştirirler. Fotosentezdeki başka bir önemli nokta da bütün bu işlemlerin çok kısa, hatta gözlemlenemeyecek kadar kısa bir süre içinde gerçekleşmesidir. Kloroplastların içinde bulunan binlerce "klorofil"in aynı anda ışığa tepki vermesi, saniyenin binde biri gibi inanılmayacak kadar kısa bir sürede gerçekleşir. Bilim adamları kloroplastların içinde gerçekleşen fotosentez olayını uzun bir kimyasal reaksiyon zinciri olarak tanımlarlarken, işte bu hız nedeniyle fotosentez zincirinin bazı halkalarında neler olduğunu anlayamamakta ve olanları hayranlıkla izlemektedirler. Anlaşılabilen en net nokta, fotosentezin iki aşamada meydana geldiğidir. Bu aşamalar "aydınlık evre" ve "karanlık evre" olarak adlandırılır. AYDINLIK EVRE Bitkilerin fotosentez işleminde kullanacakları tek enerji kaynağı olan güneş ışığı değişik renklerin birleşimidir ve bu renklerin enerji yükü birbirinden farklıdır. Güneş ışığındaki renklerin ayrıştırılması ile ortaya çıkan ve tayf adı verilen renk dizisinin bir ucunda kırmızı ve sarı tonları, öbür ucunda da mavi ve mor tonları bulunur. En çok enerji taşıyanlar tayfın iki ucundaki bu renklerdir. Bu enerji farkı bitkiler açısından çok önemlidir çünkü fotosentez yapabilmek için çok fazla enerjiye ihtiyaçları vardır. Bitkiler en çok enerji taşıyan bu renkleri hemen tanırlar ve fotosentez sırasında güneş ışınlarından tayfın iki ucundaki renkleri, daha doğrusu dalga boylarını soğururlar, yani emerler. Buna karşılık tayfın ortasında yer alan yeşil tonlardaki renklerin enerji yükü daha az olduğu için, yapraklar bu dalga boylarındaki ışınların pek azını soğurup büyük bölümünü yansıtırlar. Bunu da kloroplastların içinde bulunan klorofil pigmentleri sayesinde gerçekleştirirler. İşte yaprakların yeşil gözükmesinin nedeni de budur. Fotosentez işlemi bitkilerin yeşil görünmesine neden olan bu pigmentlerin güneş ışığını soğurmasından kaynaklanan hareketlenme ile başlar. Acaba klorofiller bu hareketlenme ile fotosentez işlemine nasıl başlamaktadırlar? Bu sorunun cevabının verilebilmesi için öncelikle kloroplastların içinde bulunan ve klorofilleri içinde barındıran Thylakoid'in yapısının incelenmesinde fayda vardır. "Klorofiller, "klorofil-a" ve "klorofil-b" olarak ikiye ayrılırlar. Bu iki çeşit klorofil güneş ışığını soğurduktan sonra elde ettikleri enerjiyi fotosentez işlemini başlatacak olan fotosistemler içinde toplarlar. Thaylakoid'in detaylı yapısının anlatıldığı resimde de görüldüğü gibi fotosistemler kısaca, thylakoid'in içinde yer alan bir grup klorofil olarak tanımlanabilir. Yeşil bitkilerin tamamına yakını bir fotosistem ile tek aşamalı fotosentez gerçekleştirirken, bitkilerin %3'ünde fotosentezin iki aşamalı olmasını sağlayacak iki farklı fotosistem bölgesi bulunur. "Fotosistem I", ve "Fotosistem II" olarak adlandırılan bu bölgelerde toplanan enerji daha sonra tek bir "klorofil-a" molekülüne transfer edilir. Böylece her iki fotosistemde de reaksiyon merkezleri oluşur. Işığın emilmesiyle elde edilen enerji, reaksiyon merkezlerindeki yüksek enerjili elektronların gönderilmesine, yani kaybedilmesine neden olur. Bu yüksek enerjili elektronlar daha sonraki aşamalarda suyun parçalanıp oksijenin elde edilmesi için kullanılır. Bu aşamada bir dizi elektron değiş tokuşu gerçekleşir. "Fotosistem I" tarafından verilen elektron, "Fotosistem II" den salınan elektron ile yer değiştirir. "Fotosistem II" tarafından bırakılan elektronlar da suyun bıraktığı elek-tronlarla yer değiştirir. Sonuç olarak su, oksijen, protonlar ve elektronlar olmak üzere ayrıştırılmış olur. Ortaya çıkan protonlar thylakoid'in iç kısmına taşınarak hidrojen taşıyıcı molekül olan NADP (nikotinamid adenin dinükliotid fosfat) ile birleşirler. Neticede NADPH molekülü ortaya çıkar. Suyun ayrışmasından sonra ortaya çıkan protonlardan bazıları ise thylakoid zarındaki enzim kompleksleri ile birleşerek ATP molekülünü (hücrenin işlemlerinde kullanacağı bir enerji paketçiği) meydana getirirler. Bütün bu işlemler sonucunda bitkilerin besin üretebilmesi için ihtiyaç duydukları enerji artık kullanılmaya hazır hale gelmiştir. Bir reaksiyonlar zinciri olarak özetlemeye çalıştığımız bu olaylar fotosentez işleminin sadece ilk yarısıdır. Bitkilerin besin üretebilmesi için enerji gereklidir. Bunun temin edilebilmesi için düzenlenmiş olan "özel yakıt üretim planı" sayesinde diğer işlemler de eksiksiz tamamlanır. KARANLIK EVRE Fotosentezin ikinci aşaması olan Karanlık Evre ya da Calvin Çevrimi olarak adlandırılan bu işlemler, kloroplastın "stroma" diye adlandırılan bölgelerinde gerçekleşir. Aydınlık evre sonucunda ortaya çıkan enerji yüklü ATP ve NADPH molekülleri, karanlık evrede kullanılan karbondioksiti, şeker ve nişasta gibi besin maddelerine dönüştürürler. Burada kısaca özetlenen bu reaksiyon zincirini kaba hatlarıyla anlayabilmek bilim adamlarının yüzyıllarını almıştır. Yeryüzünde başka hiçbir şekilde üretilemeyen karbonhidratlar ya da daha geniş anlamda organik maddeler milyonlarca yıldır bitkiler tarafından üretilmektedir. Üretilen bu maddeler diğer canlılar için en önemli besin kaynaklarındandır. Fotosentez reaksiyonları sırasında farklı özelliklere ve görevlere sahip enzimler ile diğer yapılar tam bir iş birliği içinde çalışırlar. Ne kadar gelişmiş bir teknik donanıma sahip olursa olsun dünya üzerindeki hiçbir laboratuvar, bitkilerin kapasitesiyle çalışamaz. Oysa bitkilerde bu işlemlerin tümü milimetrenin binde biri büyüklüğündeki bir organelde meydana gelmektedir. Şekilde görülen formülleri, sayısız çeşitlilikteki bitki hiç şaşırmadan, reaksiyon sırasını hiç bozmadan, fotosentezde kullanılan hammadde miktarlarında hiçbir karışıklık olmadan milyonlarca yıldır uygulamaktadır. Ayrıca fotosentez işlemi ile, hayvanların ve insanların enerji tüketimleri arasında da önemli bir bağlantı vardır. Aslında yukarıda anlatılan karmaşık işlemlerin özeti, bitkilerin fotosentez sonucu canlılar için mutlaka gerekli olan glukozu ve oksijeni meydana getirmeleridir. Bitkilerin ürettiği bu ürünler diğer canlılar tarafından besin olarak kullanılırlar. İşte bu besinler vasıtasıyla canlı hücrelerinde enerji üretilir ve bu enerji kullanılır. Bu sayede bütün canlılar güneşten gelen enerjiden faydalanmış olurlar. Canlılar fotosentez sonucu oluşan besinleri yaşamsal faaliyetlerini sürdürmek için kullanırlar. Bu faaliyetler sonucunda atık madde olarak atmosfere karbondioksit verirler. Ama bu karbondioksit hemen bitkiler tarafından yeniden fotosentez için kullanılır. Bu mükemmel çevirim böylelikle sürer gider. FOTOSENTEZ İÇİN GEREKLİ OLAN HER ŞEY GİBİ GÜNEŞ IŞIĞI DA ÖZEL OLARAK AYARLANMIŞTIR Bu kimyasal fabrikada her şey olup biterken, işlemler sırasında kullanılacak enerjinin özellikleri de ayrıca tespit edilmiştir. Fotosentez işlemi bu yönüyle incelendiğinde de, gerçekleşen işlemlerin ne kadar büyük bir hassasiyetle tasarlanmış olduğu görülecektir. Çünkü güneşten gelen ışığın enerjisinin özellikleri, tam olarak kloroplastın kimyasal tepkimeye girmesi için ihtiyaç duyduğu enerjiyi karşılamaktadır. Bu hassas dengenin tam anlaşılabilmesi için güneş ışığının fotosentez işlemindeki fonksiyonlarını ve önemini şöyle bir soruyla inceleyelim: Güneş'in ışığı fotosentez için özel olarak mı ayarlanmıştır? Yoksa bitkiler, gelen ışık ne olursa olsun, bu ışığı değerlendirip ona göre fotosentez yapabilecek bir esnekliğe mi sahiptirler? Bitkiler hücrelerindeki klorofil maddelerinin ışık enerjisine karşı duyarlı olmaları sayesinde fotosentez yapabilirler. Buradaki önemli nokta klorofil maddelerinin çok belirli bir dalga boyundaki ışınları kullanmalarıdır. Güneş tam da klorofilin kullandığı bu ışınları yayar. Yani güneş ışığı ile klorofil arasında tam anlamıyla bir uyum vardır Amerikalı astronom George Greenstein, The Symbiotic Universe adlı kitabında bu kusursuz uyum hakkında şunları yazmaktadır: Fotosentezi gerçekleştiren molekül, klorofildir... Fotosentez mekanizması, bir klorofil molekülünün Güneş ışığını absorbe etmesiyle başlar. Ama bunun gerçekleşebilmesi için, ışığın doğru renkte olması gerekir. Yanlış renkteki ışık, işe yaramayacaktır. Bu konuda örnek olarak televizyonu verebiliriz. Bir televizyonun, bir kanalın yayınını yakalayabilmesi için, doğru frekansa ayarlanmış olması gerekir. Kanalı başka bir frekansa ayarlayın, görüntü elde edemezsiniz. Aynı şey fotosentez için de geçerlidir. Güneş'i televizyon yayını yapan istasyon olarak kabul ederseniz, klorofil molekülünü de televizyona benzetebilirsiniz. Eğer bu molekül ve Güneş birbirlerine uyumlu olarak ayarlanmış olmasalar, fotosentez oluşmaz. Ve Güneş'e baktığımızda, ışınlarının renginin tam olması gerektiği gibi olduğunu görürüz. FOTOSENTEZİN SONUÇLARI Milimetrenin binde biri büyüklükte yani ancak elektron mikroskobuyla görülebilecek kadar küçük olan kloroplastlar sayesinde gerçekleştirilen fotosentezin sonuçları, yeryüzünde yaşayan tüm canlılar için çok önemlidir. Canlılar havadaki karbondioksitin ve havanın ısısının sürekli olarak artmasına neden olurlar. Her yıl insanların, hayvanların ve toprakta bulunan mikroorganizmaların yaptıkları solunum sonucunda yaklaşık 92 milyar ton ve bitkilerin solunumları sırasında da yaklaşık 37 milyar ton karbondioksit atmosfere karışır. Ayrıca fabrikalarda ve evlerde kaloriferler ya da soba kullanılarak tüketilen yakıtlar ile taşıtlarda kullanılan yakıtlardan atmosfere verilen karbondioksit miktarı da en az 18 milyar tonu bulmaktadır. Buna göre karalardaki karbondioksit dolaşımı sırasında atmosfere bir yılda toplam olarak yaklaşık 147 milyar ton karbondioksit verilmiş olur. Bu da bize doğadaki karbondioksit içeriğinin sürekli olarak artmakta olduğunu gösterir. Bu artış dengelenmediği takdirde ekolojik dengelerde bozulma meydana gelebilir. Örneğin atmosferdeki oksijen çok azalabilir, yeryüzünün ısısı artabilir, bunun sonucunda da buzullarda erime meydana gelebilir. Bundan dolayı da bazı bölgeler sular altında kalırken, diğer bölgelerde çölleşmeler meydana gelebilir. Bütün bunların bir sonucu olarak da yeryüzündeki canlıların yaşamı tehlikeye girebilir. Oysa durum böyle olmaz. Çünkü bitkilerin gerçekleştirdiği fotosentez işlemiyle oksijen sürekli olarak yeniden üretilir ve denge korunur. Yeryüzünün ısısı da sürekli değişmez. Çünkü yeşil bitkiler ısı dengesini de sağlarlar. Bir yıl içinde yeşil bitkiler tarafından temizleme amacıyla atmosferden alınan karbondioksit miktarı 129 milyar tonu bulur ki bu son derece önemli bir rakamdır. Atmosfere verilen karbondioksit miktarının da yaklaşık 147 milyar ton olduğunu söylemiştik. Karalardaki karbondioksit-oksijen dolaşımında görülen 18 milyar tonluk bu açık, okyanuslarda görülen farklı değerlerdeki karbondioksit-oksijen dolaşımıyla bir ölçüde azaltılabilmektedir. Yeryüzündeki canlı yaşamı için son derece hayati olan bu dengelerin devamlılığını sağlayan, bitkilerin yaptığı fotosentez işlemidir. Bitkiler fotosentez sayesinde atmosferdeki karbondioksidi ve ısıyı alarak besin üretirler, oksijen açığa çıkarırlar ve dengeyi sağlarlar. Atmosferdeki oksijen miktarının korunması için de başka bir doğal kaynak yoktur. Bu yüzden tüm canlı sistemlerdeki dengelerin korunması için bitkilerin varlığı şarttır. BİTKİLERDEKİ BESİNLER FOTOSENTEZ SONUCUNDA OLUŞUR Bu mükemmel sentezin hayati önem taşıyan bir diğer ürünü de canlıların besin kaynaklarıdır. Fotosentez sonucunda ortaya çıkan bu besin kaynakları "karbonhidratlar" olarak adlandırılır. Glukoz, nişasta, selüloz ve sakkaroz karbonhidratların en bilinenleri ve en hayati olanlarıdır. Fotosentez sonucunda üretilen bu maddeler hem bitkilerin kendileri, hem de diğer canlılar için çok önemlidir. Gerek hayvanlar gerekse insanlar, bitkilerin üretmiş olduğu bu besinleri tüketerek hayatlarını sürdürebilecek enerjiyi elde ederler. Hayvansal besinler de ancak bitkilerden elde edilen ürünler sayesinde var olabilmektedir. Buraya kadar bahsedilen olayların yaprakta değil de herhangi bir yerde gerçekleştiğini varsayarak düşünsek acaba aklınızda nasıl bir yer şekillenirdi? Havadan alınan karbondioksit ve su ile besin üretmeye yarayan aletlerin bulunduğu, üstelik de o sırada dışarıya verilmek üzere oksijen üretebilecek teknik özelliklere sahip makinaların var olduğu, bu arada ısı dengesini de ayarlayacak sistemlerin yer aldığı çok fonksiyonlu bir fabrika mı aklınıza gelirdi? Avuç içi kadar bir büyüklüğe sahip bir yerin aklınıza gelmeyeceği kesindir. Görüldüğü gibi ısıyı tutan, buharlaşmayı sağlayan, aynı zamanda da besin üreten ve su kaybını da engelleyen mükemmel mekanizmalara sahip olan yapraklar, tam bir tasarım harikasıdırlar. Bu saydığımız işlemlerin hepsi ayrı özellikte yapılarda değil, tek bir yaprakta (boyutu ne olursa olsun) hatta tek bir yaprağın tek bir hücresinde, üstelik de hepsi birarada olacak şekilde yürütülebilmektedir. Buraya kadar anlatılanlarda da görüldüğü gibi bitkilerin bütün fonksiyonları, asıl olarak canlılara fayda vermesi için nimet olarak yaratılmışlardır. Bu nimetlerin çoğu da insan için özel olarak tasarlanmıştır. Çevremize, yediklerimize bakarak düşünelim. Üzüm asmasının kupkuru sapına bakalım, incecik köklerine… En ufak bir çekme ile kolayca kopan bu kupkuru yapıdan elli altmış kilo üzüm çıkar. İnsana lezzet vermek için rengi, kokusu, tadı her şeyi özel olarak tasarlanmış sulu üzümler çıkar. Karpuzları düşünelim. Yine kuru topraktan çıkan bu sulu meyve insanın tam ihtiyaç duyacağı bir mevsimde, yani yazın gelişir. İlk ortaya çıktığı andan itibaren bir koku eksperi gibi hiç bozulma olmadan tutturulan o muhteşem kavun kokusunu ve o ünlü kavun lezzetini düşünelim. Diğer yandan ise, parfüm üretimi yapılan fabrikalarda bir kokunun ortaya çıkarılmasından o kokunun muhafazasına kadar gerçekleşen işlemleri düşünelim. Bu fabrikalarda elde edilen kaliteyi ve kavunun kokusundaki kaliteyi karşılaştıralım. İnsanlar koku üretimi yaparken sürekli kontrol yaparlar, meyvelerdeki kokunun tutturulması içinse herhangi bir kontrole ihtiyaç yoktur. İstisnasız dünyanın her yerinde kavunlar, karpuzlar, portakallar, limonlar, ananaslar, hindistan cevizleri hep aynı kokarlar, aynı eşsiz lezzete sahiptirler. Hiçbir zaman bir kavun karpuz gibi ya da bir mandalina çilek gibi kokmaz; hepsi aynı topraktan çıkmalarına rağmen kokuları birbiriyle karışmaz. Hepsi her zaman kendi orijinal kokusunu korur. Bir de bu meyvelerdeki yapıyı detaylı olarak inceleyelim. Karpuzların süngersi hücreleri çok yüksek miktarda su tutma kapasitesine sahiplerdir. Bu yüzden karpuzların çok büyük bir bölümü sudan oluşur. Ne var ki bu su, karpuzun herhangi bir yerinde toplanmaz, her tarafa eşit olacak şekilde dağılmıştır. Yer çekimi göz önüne alındığında, olması gereken, bu suyun karpuzun alt kısmında bir yerlerde toplanması, üstte ise etsi ve kuru bir yapının kalmasıdır. Oysa karpuzların hiçbirinde böyle bir şey olmaz. Su her zaman karpuzun içine eşit dağılır, üstelik şekeri, tadı ve kokusu da eşit olacak şekilde bu dağılım gerçekleşir.   Doğada meydana gelen ve canlılığın ışık ile iletişim gösteren en belirgin temel olaylarından biri "fotosentez" dir. Fotosentez ışık enerjisinin biyolojik olarak kimyasal enerjiye dönüşümü olayıdır. Enerji yönünden tüm canlı organizmalar kesinlikle fotosenteze bağımlıdır, çünkü gerekli besin maddelerinin ve hatta atmosferdeki oksijenin kökeni fotosentezdir. Canlı hücrelerin büyük bir çoğunluğu, basit bir algden, büyük ve karmaşık kara bitkilerine kadar fotosentez yaparlar. İnsan yaşadığı ortamda kendi gereksinmelerine göre bir çok değişiklikleri yapma yeteneğine sahip olmasına rağmen, tüm beslenme sorunu için tamamıyla diğer organizmalara bağlıdır. Bu besin piramidinin tabanını fotosentez yapan bitkiler oluşturur. Yediğimiz her şey, ya doğrudan doğruya bitkisel kökenli, ya da bu kökenden türemiş maddelerdir. Gerçekten fotosentez tek başına büyük bir olaydır. Her yıl dünyada 690 milyar ton karbon dioksit (CO2) ve 280 milyar ton su (H2 O) dan fotosentez yolu ile 500 milyar ton karbonhidrat üretilmekte ve 500 milyar ton oksijen atmosfere verilmektedir. Canlıların büyük bir çoğunluğu için oksijen, besin kadar önemlidir. Oksijen (O2) hayatsal olayların sürekliliği için gerekli olan, besinlerde depo edilmiş enerjiyi serbest hale getirir. Canlıların çoğu havadaki serbest oksijeni kullanır. Bir kısım organizmalar (bazı bir hücreliler, ilkel bitkiler, yassı ve yuvarlak parazit solucanlar) enerji elde etmek üzere çevrelerindeki eser miktarda oksijenden bile faydalanabilirler. Diğer bir kısım organizmalar ise serbest oksijen olmadan da enerji elde edebilirler (Anaerobik solunum). Fakat kompleks yapılı bitki ve hayvanlar, yaşamak için çok miktarda oksijen kullanmak zorundadırlar (Aerobik solunum). Öyleyse kompleks yapılı organizmaların canlılığının devamı ve yayılması oksijenin varlığına bağlıdır. Deney 1. Klorofil Elde Edilmesi Yeşil bitkilerin kloroplastlarında meydana gelen fotosentez de, havanın karbon dioksidi ve suyun varlığında karbonhidrat ve oksijen oluşturulmasıdır. Fotosentez olayını detaylı bir şekilde ortaya koymadan önce klorofil ile ilgili bazı deneyler gösterilecektir. Araç ve Gereçler: Isırgan otu (Urtica) yaprağı, kum, havan, kurutma kağıdı, tebeşir, benzen, alkol, su. Uygulama: Bir havan içine hücrelerin parçalanmasını kolaylaştırmak için kum ve alkol konulup ısırgan otunun yaprakları ilave edilerek iyice ezilir. Bunun sonucunda koyu yeşil boyalı bir eriyik elde edilir. Buna ham klorofil ekstresi adı verilir. Ham klorofil ekstresi hem klorofil, hem de diğer renk maddelerinden olan karotin ve ksantofil boyalı maddeleri de içermektedir. Bunları ayırmak için ekstre filitre kağıdından süzülür. Süzülen bu berrak ekstreden bir miktar alınarak bir deney tüpüne aktarılır. Tübün üzerine aynı miktarda benzen ile bir kaç damla su ilave ediler. Su ilave edilmesinin amacı alkol karışımının yoğunluğunu arttırıp, benzenin kolayca tübün üst kısmına çıkmasını sağlamaktır. Bir süre sonra tübün üst kısmında benzende eriyen klorofilin , alt kısmında ise alkolde kalan sarı renkli karotin ve ksantofil bulunur. Bu şekilde ayırmak, kaba bir yöntemdir. Bu ayrımı daha ayrıntılı bir biçimde gözleye bilmek için kağıt ve tebeşir yardımıyla basitçe yapılabilecek olan bazı uygulamaları örnek olarak verebiliriz. Bu uygulamada yukarıda adı geçen renkli maddeler molekül ağırlığı ve adsorbsiyon derecelerine göre ayrılırlar. Bir petri içine süzülmüş olan berrak klorofil ekstresinden bir miktar koyulur. İçerisine şerit şeklinde kesilerek hazırlanmış kurutma kağıdı ile tebeşir yerleştirilir. Bir süre sonra kağıdın ve tebeşirin üst kısımlarında sarı renkli karotin ve ksantofil, alt kısımda ise yeşil renkli klorofilin toplandığı görülür. Bu kademeli renk farkı adı geçen renk maddelerinin molekül ağırlıklarının ve adsorbsiyon derecelerinin farklı olmasında ileri gelir. Fotosentez Olayında Organik Madde Sentezlendiğinin Gösterilmesi Fotesentezde ışığın katalizörlüğü altında karbon dioksit ve suyun bitkiler tarafından birleştirilerek organik madde (glikoz) sentezlenmesidir. Bu maddeler ya olduğu gibi ya da uzun zincirler şeklinde paketlenerek nişasta şeklinde depolanırlar. Amacımız fotosentezin bir ürünü olan glikozun sentezlendiğini ortaya koymaktır. Araç ve Gereçler : Ebegümeci ve yaprağı iki renkli olan bir bitki yaprağı, siyah renkli kağıt, potasyum iyodür (KI), sıcak su. Uygulama : Yaprağı iki renkli olan bitkiyi alarak uzun bir müddet ışık altında tutunuz. Ebegümeci bitkisinin bir yaprağının yarısını siyah bir kağıt ile kapatarak diğer bitkiyle birlikte aynı sürede olmak şartıyla ışık altında bırakınız. Daha sonra bu bitkileri saplarından keserek kaynamakta olan suyun içerisinde hücrelerinin ölmesini ve çeperlerinin dağılmalarını sağlayınız. Bu iş için iki dakikalık bir süre yeterli olacaktır. Yapraklar yeşil rengini kaybedince potasyum iyodürle muamele ediniz. Işıkta kalmış yeşil renkli bölgelerin nişasta oluşumundan dolayı mavi bir renk aldığını, yeşil olmayan kısımların ise renk vermediğini göreceksiniz (Şekil 4. 3). Deney 3. Fotosentez İçin Karbondioksitin Varlığının Zorunlu Olduğunun Gösterilmesi Yeşil bir bitki oldukça yoğun olarak ışık altında bırakılsa bile, eğer ortamda karbon dioksit bulunmuyorsa bitki bir süre sonra sararmaya başladığı ve gelişiminin durduğu gözlenir. Bunu aşağıdaki gibi bir deneyle ispatlamak mümkündür. Araç ve Gereçler : Bir dal parçası, kavanoz, tüp, tıpa, potasyum hidroksit (KOH), su. Uygulama : Bir bitki dalı alınarak iki yaprağı içerisinde su ve potasyum hidroksit bulunduran bir tüple birlikte (tüpün ağzı açık durumda) geniş ağızlı bir şişe veya kavanoz içerisine bırakılır. Bir süre sonra dalın kavanoz içerisinde kalan kısmında yaprakların sararıp solduğu görülür. Bir müddet daha sonra ise yapraklar tamamen ölür. Buna neden olan faktör, büyük şişedeki karbon dioksitin potasyum hidroksit tarafından emilerek şişe içerisindeki yaprakların ışık ve suyu aldıkları halde karbon dioksit yetersizliğinden fotosentezi yapamamalarındandır. Böylece fotosentez için ortamda karbondioksite kesinlikle gereksinim duyulduğu ispatlanmış olur (Şekil 4. 4). Deney 4. Fotosentezi Etkileyen Faktörlerin Birlikte İncelenmesi Aynı canlı materyeli üzerinde, fotosentezi etkileyen faktörlerin birinin etkisini değiştirip (ışık, karbon dioksit, sıcaklık gibi) diğerlerininkinin sabit tutulması ile fotosentez hızında meydana gelen değişikliklerin incelenmesi ve bu faktörlerin etkilerinin karşılaştırılması şeklinde gösterilecektir. Araç ve Gereçler: Elodea bitkisi, beher, huni, ışık kaynağı, %4'lük potasyum bikarbonat (KHCO3), %1'lik KHCO3, termometre, ispirto ocağı, milimetrik kağıt. Uygulama: Bu deney için Elodea su bitkisi kullanılacaktır. Elodea bitkisi içi su dolu bir cam kaba alınır. Bitkinin üzeri çıkacak olan gaz kabarcıklarını toplayacak olan bir huniyle şekilde görüldüğü gibi kapatılır (Şekil 4. 5). Işık faktörünün etkisini ölçmek için önce normal ışıktaki kabarcık çıkışı tespit edilir. Bir lamba yardımıyla düzeneğe ışık verilir ve kabarcık çıkışı gözlenir. Fotosentez hızı ile aydınlatma şiddeti arasındaki ilişki grafikte gösterilir. Karbondioksit konsantrasyonunun etkisini inceleyebilmek için de başka bir kaba yine ortamı su ile hazırlanmış %4'lük KHCO3 çözeltisi konur. Yine bitki bu düzeneğin içine yerleştirilip bu konsantrasyondaki fotosentez hızı ölçülür. Aynı işlem %1'lik KHCO3 için tekrarlanır. KHCO3 konsantrasyonuna karşı kabarcık sayısındaki değişim grafiği çizilir. Sıcaklığın fotosentez üzerine etkisini ölçmek içinde aynı düzeneğin sıcaklığı ölçülür ve bu sıcaklıktaki kabarcık sayısı saptanır. Daha sonra sıcaklık ispirto ocağı yardımıyla arttırılır ve kabarcık sayısı belirlenir. Sıcaklık kabarcık çıkışı durana kadar arttırılır. Sıcaklık ile fotosentez ilişkisi bir grafikte gösterilir. Deney 5. Aerobik Solunum Bu deneyle karbonhidratların havadan alınan O2 ile CO2 ve H2 O ya kadar yıkılıp enerji açığa çıktığını göreceksiniz. Araç ve Gereçler: Çimlenmekte olan bezelye taneleri, balon joje, cam boru, beher, KOH, renkli bir sıvı. Uygulama: Bu deney için, CO2 tutma özelliğine sahip potasyum hidroksit (KOH) kristalleri pamuğa sarılarak çimlenmekte olan bezelye taneleri ile birlikte bir balon joje içine yerleştirilir. Daha sonra balon şekilde görüldüğü gibi bir ucu renkli sıvıya batırılmış kılcal boru ile birleştirilir. Bir süre sonra bezelyelerin solunum yapması sonucu O2 alınıp CO2 verilir. Dışarıya verilen bu CO2, KOH kristalleri tarafından tutulur ve azalan hacim kadar kılcal boruda sıvı yükselir. Deney 6. Anaerobik Solunum Havanın serbest oksijeni ile temas halinde olmayan bazı bitkiler, kendileri için gerekli olan enerjiyi, organik maddeleri enzimatik faaliyetlerle parçalayarak sağlarlar. Bu parçalanma sonucunda açığa çıkan gaz CO2 'tir. Araç ve Gereçler: Çimlenmekte olan nohut, deney tüpü, civa, beher. Uygulama: Çimlenmekte olan bir kaç nohut tanesini deney tüpünün içine yerleştirin. Sonra tüpü tamamıyla civa ile doldurun ve ters çevirerek yine civa dolu bir kabın içine batırın. Daha sonra cıva dolu kabın üzerine su ilave edin. Bir süre sonra tohumların anaerobik solunumu sonucu ortaya çıkan gaz tüpteki civayı aşağıya doğru ittiğini göreceksiniz (Şekil 4. 7). Bu da bize havadaki serbest oksijen yerine bitki dokularındaki bağlı oksijenin kullanıldığını gösterir. Deney 7. Fermantasyon Bazı organizmaların solunumu sonucunda substrat CO2 gibi çok basit bir ürüne kadar parçalanmaz. Solunum sonucunda daha kompleks bir madde açığa çıkar. Bu olaya fermantasyon denir. Araç ve Gereçler: %1 'lik glikoz çözeltisi, % 20 'lik Baryum hidroksit (Ba(OH)2), taze bira mayası, erlenmayer, cam boru, tıpa. Uygulama: Bir erlenin içine 200 cm3 %1 lik glikoz çözeltisi konulur. Daha sonra bu karışımın içine bir miktar taze bira mayası ilave edilir. Erlenin ağzı şekilde görüldüğü gibi cam boru takılmış tıpa ile kapatılır ve cam borunun diğer ucu yine tıpa ile kapatılmış % 20 'lik Ba(OH)2 çözeltisi içine batırılır. Ba(OH)2 içeren tüpte çökelmenin meydana gelmesi, olay sonucunda CO2 açığa çıktığını, alkol kokusu da fermentasyon sonucu alkolün meydana geldiğini gösterir Özet Doğada meydana gelen ve canlılığın ışık ile iletişim gösteren en belirgin temel olaylarından biri "fotosentez"dir. Fotosentez ışık enerjisinin biyolojik olarak kimyasal enerjiye dönüşümü olayıdır. Enerji yönünden tüm canlı organizmalar kesinlikle fotosenteze bağımlıdır, çünkü gerekli besin maddelerinin ve hatta atmosferdeki oksijenin kökeni fotosentezdir. Canlıların büyük bir çoğunluğu için oksijen, besin kadar önemlidir. Oksijen (O2) hayatsal olayların sürekliliği için gerekli olan, besinlerde depo edilmiş enerjiyi serbest hale getirir. Canlıların çoğu havadaki serbest oksijeni kullanır. Bir kısım organizmalar (bazı bir hücreliler, ilkel bitkiler, yassı ve yuvarlak parazit solucanlar) enerji elde etmek üzere çevrelerindeki eser miktarda oksijenden bile faydalanabilirler. Bu ünitede bitkilerde fotosentez olayını, fotosenteze etki eden faktörleri, oksijenli ve oksijensiz solunum olaylarını, fermantasyon olayının nasıl meydana geldiği bazı deneylerle gösterilmeye çalışılmıştır. Değerlendirme Soruları Aşağıdaki soruların yanıtlarını verilen seçenekler arasından bulunuz. 1. Fotosentez için aşağıdakilerden hangisi gerekli değildir? A. CO2 B. Işık C. Klorofil D. KOH E. H2O 2. Aşağıdaki bileşiklerden hangisi CO2 tutabilme özelliğine sahiptir? A. H2O B. KHCO3 C. BaCO3 D. NaOH E. KOH 3. Fermantasyon sonucu aşağıdaki maddelerden hangisi oluşur? A. Glikoz B. Karbonhidrat C. Alkol D. Oksijen E. Protein 4. Aerobik solunumda karbonhidratlar, aşağıdaki hangi maddenin yardımıyla en küçük yapı taşları ve enerjiye kadar parçalanırlar? A. O2 B. CO2 C. H2 O D. KOH E. NaOH 5. Aşagıdakilerden hangisi fotosentezin hızına etki etmez? A. CO2 B. Glikoz C. Sıcaklık D. Işık E. Klorofil Yararlanılan ve Başvurulabilecek Kaynaklar Ocakverdi, H., Konuk, M., (1989) Bitki Fizyolojisi Laboratuvar Kılavuzu, Selçuk Üniv. Eğitim Fak. Yay: 14, Konya. Önder, N. Yentür, S., (1991) Bitki Fizyolojisi Laboratuvar Kılavuzu, İstanbul. Üniv. Fen Fak.Yay. No: 220, İstanbul. Önder, N., (1985) Genel Bitki Fizyolojisi, İstanbul Üniv. Fen Fak. Yay. No: 189, İstanbul. Ayrıntılar ve şekiller için tıklayınız: http://www.aof.anadolu.edu.tr/kitap/IOLTP/2282/unite04.pdf

http://www.biyologlar.com/fotosentez

Evrim Nedir

“Bilimler, düşündügümüzün tam tersi bir düzen içinde geliştiler. Bize en uzak olan şeylerin yasalari en önce bulundu, sonra yavaş yavaş daha yakinlara sira geldi: Ilkin gökler, arkadan yer, sonra hayvanlarla bitmkilerin yaşami, sonra insan gövedesi en sonra da (Yine de en yarim yamala) insan zihni. Bu durumun anlaşilamayaca bir yani yoktur... Yalniz teme doga yasalarinin bulunmasi degil, dünyanin uzun süreli gelişmesiyle ilgil ögretinin kurulmasi da gökbilimle başladi; ama bu ikinci öncekinden ayri bir konuya gezegenimizde yaşamin başlayip gelişmesi konusunua uygulaniyordu daha çok. Şimdi gözden geçirecegimiz evrim ögretisi gökbilimle başlamişsa da yerbilim ile biyoloji açilarindan daha büyük bir önem kazanmiş, ayrica Copernicus sisteminin zaferinden sonra gökbilimin karşisina dikilen daha rinegen tanribilimsel önyargilarla savaşmak zorunda kalmiştir. Modern kafanın, uzun süreli bir gelişme kavramının ne denli yeni olduğunu görmes güçtür; gerçekte de bütünüyle Newton’dan sonraki bir düyşüncedir bu. Kutsal Kitap ’a dayanan inanca göre evren altı günde yaratılmış, o zamandan beri, şimdi içinde bulanan bütün göklü yaratıklara, bütün phayvanlarla bitkilere, Büyük Sel’in yokettiği daha başka birçok canlııya yurtluk etmişti.Birçok tanrıbilimcinin söylediklerine, bütün Hıristiyanların inandıklarına göre Düşüşş zamanında evrene yasa olabilecek bir gelişme şöyle dursun, her türlü kötülüğün korkunç bir kaynaşması görülüyordu. Tanrı, Adem ile Havva’ya belli bir ağacın meyvesini yememesini söyledi; ama onlar dinlemeyip yediler.Bunun üzerine Tanrı , onların, kendi soylarından gelecekelerin bütünüyle birlikte ölümlü olmalarını, küçük bir azınlık bir yana, en uzak torunlarının bile cehennemde sonsuz ceza çekmelerini emretti; bu küçük azınlığın da neye göre seçileceği tartışmalıydı. Adem, günahı işler işlemez, hayvanlar birbirlerini avlamaya, dikenler göğermeye başlamış, birbirinden ayrı mevsimler ortaya çıkmış, toprak da lanetlenmiş, ağır bir emek karşılığı olmadıkça insanoğluna hiçbir şey vermemesi emredilmişti. İnsanlar öyelesine azalmışlardı ki, Tanrı, Nuh ile üç oğlu ve karılarından başka hepsini Büyük Sel’de boğmuştu. Bu cezadan sonra da uslandıkları sanılmıyordu; ama Tanrı, artık başka bir evrensel felaket göndermeyeceğine söz vermişti ancak arasıra yaptığı su basıknlarıyla, depremlerle yetiniyordu. Bilmeliyiz ki bütün bunlar ya doğrudan doğruya Kutsal Kitap ’ta yer alan, ya da Kutsal Kitap ’takilerden, tümdengelimden çıkarılan kesin gerçekler olarak benimseniyorlardı. Dünya’nın yaratılış yılı, Oluş (Genesis ) da adı anılan her atanın, en büyük oğlu doğduğunda kaç yaşında olduğunu söyleyen soy dizilerinden çıkarılabilir. Bu konularda,İ brani yazması ile Septuagint yazması (Tevrat’ın İÖ 270 yılında 70 kişi tarafından başlanılan Yunanca çevirisi) arasındaki ayrılıklardan ya da anlaşılma güçlüklerinden doğan karıştıtlıklar da ortaya çıkabilyordu; sonunda Protestanlar genel olarak başpiskopos Usher’in ileri sürdüğü İÖ 4004 yılını dünanın yaratılış yılı kabul ettiler. Cambridge Üniversitesi’nin Yardımcı Başkanı Dr. Lightfood yaratıtılış yılı konusunda bu bilgiyi benimsemiş, Oluş’un yakından incelenmesiyle daha başka bir çok konunun da büyük bir seçiklik kazanacağını düyşünmüştü; onun söylediğine göre insan 23 Ekim sabahı saat 9'da yaratılmıştır; ama bu da bir inanç sorunuydu;Oluş’tan çıkaracağınız birtakım kanıtlara dayanarak, Adem ile Havva’nın, 16 Ekim’de ya da 30 Ekim’de varedildiklerine inanmanızda, dinsiz sayılma sakıncası yoktur. Yaratılış gününün Cuma olduğu da biliniyordu tabi, çünkü Tanrı, Cumartesi günü dinlenmişti. Bilimin de bu dar sınırlar içinde kalması istenmiş, gördüğümüz evrenin 6000 yıllık değil çok daha yaşlı olduğunu düşünenler alay konusu olmuşlardır. Gerçi böyle kimseler artık yakılmıyor, hapsedilmiyorlardı; ama tanrıbilimciler bunlarını yaşamalaranı zehir etmek, öğretilerinin yayılmasına engel olmak için ellerinden geleni geri koymuyorlardı. Newton, Copernicus sistemi kabul edildikten sonra, dinsel inançları sarsacak bir şey yapmış olmuyordu. Kendisi de koyu bir Hıristiyan, Kutsal Kitap ’a inanan bir kimseydi. Onun evreni, içinde gelişmeler bulunmayan bir evren değildi, söylediklerinde bu konuya hiç rastlamıyoruz; ama herhalde bütün evrenin tek parçadan yaratıldığına inanıyordu. Gezegenlerin Güneşin çekiminden kurtulmalarını sağlayan teğetsel hızlarını açıklarken, hepsinin başlangıçta Tanrı eliyle boşluğa fırlatılmış olduklarının tasarlıyordu; bundan sonra olup bitenler de genel çekim yasasıyla açıklanıyordu. Newton’un, Bentley’e yazmış olduğu özel bir mektupta bütün evrenin Güneş sisteminin ilkel bir parçalanmasından doğmuş olabileceğini ileri sürdüğü doğrudur; ama topluluk karşısında ya da resmi olarak söylediklerine bakılırsa, Güneş ile gezegenlerin birdenbire yaratılmış olduklarını benimseyen, evrensel evrime hiçbir şey tanımayan bir düşünceden yana olduğu görülür. 18. yüzyılın özel inanç biçim Newton’dan alınmadır; buna göre evrenin ilk yaratıcısı olan Tanrı, temel yasalar da koymuş, yaptığı kurallarla da gelecekteki bütün olayları kendisinin bir daha araya girmesini gerektirmeyecek biçimde belirlemiştir. Koyu dinciler göre yasalarla açıklanamayacak durumlar da vardı: dinle ilgili mucizeler. Ama yaratancılara göre herşey doğal yasalarla yönetiliyordu. Pope’ un İnsan Üstüne Deneme iki görüşle de karşılaşırız. Bir parçada: Her şeye yeterli ilk güç, ayri ayri degil, genel yasalarla hareket eder, pek azdir bunun dişinda kalan. Ama dinsel bağın unutulduğu anlarda, hiçbir duruma ayrıcalık tanımaz: Doğa’nğın zincirinden hangi halkayı koparsanız, onuncu olsun, on birinci olsun fark etmez, kırılıverir zincir. Aşamalı sistemler, şaşkınlık veren o bütüne uyarak, hep birbirleri gibi yuvarlanıp giderlerken en küzük bir karışıklık koca bir sistemi yıkmakla kalmaz, bütünü de yıkar. Yer dengesini yitirir, fırlar yörengesinden; gezgenler, güneşler, yasasız koşarlar gökyüzünde; yönetici melekler göklerinden uğrarlar, varlık varlık üstüne dünya dünya üstüne yığılır; bütün temelleri göklerin eğilir merrkeze doğru. Doğa titrer tahtı önünde Tanrının! Yasaların Yetkisi sözünden, Kraliçe Anne zamanında olduğu gibi, politik durulma anlaşılıyor, devrimler çağının geçtiğine inanılıyordu. İnsanlar yeniden değişiklik istemeye başlayınca, doğal yasaların işlyeşi ikonusundaki görüşleri de kural olmaktan çıktı. Güneşin gelişimi konusunda ciddi bir bilimsel kuram koymaya girişen ilk kimse 1755 yilinda Göklerin Genel Doga Tarihi ile Kurami ya da Newton Ilkelerini Uygulayarak Evrenin Bütün Yapisinin Kuruluşu ve Mekaki Kynagi Üzerinde Araştirma adli kitabiyla Kant olmuştur. Bu kitap, kimi yönleriyle modern gökbilimin sonuçlarini önceden gören çok önemli bir yapittir. Çiplak gözle görülebilen bütün yildizlarin tek sisteme, Samanyolu’na bagli olduklarini söyleyerek başlar. Bütürn bu yildizlar hemen hemen bir düzlemde yer alirlar. Kant’a göre bunlar arasinda da tipki Güneşş sistemindekine benzer bir birlik göze çarpar. Olagaüstü bir düşsel karayişla Nebula’nin da sonsuz uzaklikta yildiz kümelerinden başka bir şey olmadigini söylemiştir; bugün de genellikle tutulan görüş budur. Nebula’nin, Samanyolu’nun, yildizlarin, gezegenlerin takimyildizlarinin gerçekte dağınık olan bir maddenin küme küme yoğunlaşmasından ortaya çıktıklarını ileri süren-yer yer, matematik kanıtlara dayanmamakla birlikte, daha sonraki buluşların eşiğine dayanmış- bir kuramı vardır. maddesel evrenin sınırsızlığına inanır, bunun Yaratıcı’nın sınırsızlığına yaraşacak tek görüş olduğunu söyler. Kant’ın düşüncesine göre karışıklıktan örgütlenmeye doğru aşamalı bir geçiş evrenin çekim merkezinden başlar, yavaş yavaş bu noktadan en uzak kesimlere değin yayılır; sonsuz bir uzayda olup biten sonsuz zaman isteyen bir işledir bu. Kant’ın yapıtının önemli yönlerinden birincisi maddesel evreni bir bütün, Samanayoluyla Nebula’nın da bu bütünün birimleri olarak düşünen görüş; ikincisi de uzaydaki hemen hemen anlaşılmaz bir madde dağılmasından doğan aşamalaı gelişim fikridir. Bu, birden yaratılma düşüncesi yerine evrimi koyan ilk adaımdır, böyle bir görüşün Dünya’yla değil de göklerle ilgili bir kuramla ortaya çıkmış olması da ilgi çekicidir. Türlü nedenlerden dolayı Kant’ın yapıtına ilgi azdı. (B.Russel, Din ile Bilim s: 35-39) Kitap yayımlandığı zaman Kant otuz bir yaşındaydı., büyük bir üne ulaşmış değildi daha. Bir matematikçi ya da fizikçi değil, filozoftu; kendi başına olan bir sistemin, durup dururken bir dönme kazanacağını tasarlaması, dinamik konusundaki yetersizliğini gösterir. Ayrıca, kuramı yer yer katıksız bir düştü; örneğin bir gezegen Güneşten ne denli uzaksa içinde yaşayanlar da o denli daha üstündür diye düşünüyordu; bu görüş insan soyu konusunda gösterdiği alçakgönülüllükle birlikte, bilimsel dayanaklardan yoksundur. Bu nedenlerden dolayı Laplace aynı konuda daha yetkili bir kuram ortaya koyuncaya dek Kant’ın yapıtı hemen hemen göze çarpmamıştır bile. Laplace’ın ünlü varsayımı ilk olarak, 1796'da Dünya Sisteminin Açıklaması adlı kitabın yayımlanmasıyla ortaya çıktı; Laplace, söylediklerinin çoğunun daha önce Kant tarafından söylenmiş oluduğunu bilmiyordu bile. Söylediğinin bir varsayımdan başka hiçbir şey olmadığına inanıyor; bunu “gözlem ya da hesap sonucu olmayan herşeydeki güvensizlik” diyen bir notla belirtiyordu; ama şimdi değişmiş olan bu varsalyım o zaman bütün bir yüzyıl boyunca düşünce alanına egemen oldu. Laplace’a göre Güneş sistemi ile gezeneler sistemi bu zamanlar çok geniş bir nebulaydı; bu nebula yavaş yavaş büzüldü. Büzülünce de daha hızlı dönmeye başladı; merkeçkaç gücü ile koparak uçan topraklar gezegen oldular; aynı işlemin tekrarlanmasıyla gezegenlerin uyduları ortaya çıktı. Laplace, Fransız Devrimi çağında yaşadığı için tam bir özgür düşünürdü. Yaratılışı bütünüyle yadsıyordu. Göklü bir hükümdara beslenen inancın yeryüzü hükümdarlarına da saygı uyandıracağına inanan Napoleon, Laplace’ın büyük yapıtı Celestial Mechanics ’de Tanrı adının neden hiç anılmadığını sorunca, büyük gökbilimci, “Efendimiz, o varsayımla işim yok benim ” diye karşılık vermişti. Tanrıbilimciler diş biliyorlardı tabii; ama Laplace’a olan öfkeleri, tanrıtanımazlık akımı ile devrim Fransa’sının türlü azgınlıkları karşısında duydukları korku yanında hiç kalıyordu. Hem o güne dek gökbilimcilere açtıkları her savaş boşuna çaba olmuştu. Yerbilimsel görüşün gelişmesi, bir bakima gökbilimdekinin tam tersi oldu. Gökbilimde göksel cizsimlerin degişmezi oldugu kanisi, yerini göksel cisimlerin aşamali bir gelişim geçirdiklerini söyleyen kurama birakti; ama yerbilimde, hizli, karmakarişik degişikliklerin geçirilmiş oldugu eski bir dönemin varligina inanilirken, bilim ilerledikçe, degişikliklerin her zaman için, uzun bir süreyi gerektirdikleri inanci yerleşti. Oysa daha önce, bütün dünya tarihini alti bin yila sigdirmak gerekiyordu. Tortul kayalardan, lav birikintilerinden elde edilen kanitlar incelenirken, bunlarin ilgili bulundugu felaketlerin eskiden çok yaygin olduklari tasarlaniyordu, çünkü sinirli bir zaman içinde olup bitmişti hepsi. Bilimsel gelişme yönünden yerbilimin gökbilimden ne denli geri kaldigi,Newton zamanindaki durumundan anlaşilabilir. 1695'te Woodward “yer kabugundaki bütün kalinti katmanlari birkaç ay içinde birikmiştir” diyordu. On dört yil önce (1681'de) sonralari Charterhouse’a başkanlik etmiş olan Thomas Burnet, Yer’in Aslini Şimdiye Dek Geçirmiş Oldugu ya da Her şey Bütünleniceye Dek Geçirecegi Degişiklikleri Açiklayan Kutsal Yer Kurami adili kitabini yayimlamişti. Büyük Sel’den önce Güneş yörengesi düzleminde bulunan Ekvator’un, selden sonra şimdiki egik duruma geldigine inaniyordu (Bu degişikligin Düşüş sirasinda oldugunu düşünen Milton’un görüşü tanribilimsel yönden daha dogrudur) Burnet’in düşüncesine göre, güneşin isisiyla yerkabugu çatlamiş, yeraltindaki sularin bu yariklardan fişkirmasiyla sel olmuştur. Ikinci bir felaketin, büyük selden bin yil sonra görüldügüne inaniyordu. Görüşlerini incelerken yine de dikkatli olmak gerekir, örnegin tanrisal cezaya inanmiyordu. Daha da kötsü, Düşüşü’ün ders alinacak bir öyküden başka bir şey olmadigin söylüyordu. Encylpaedia Britannicca’dan ögrendigimize göre, bu ininçlarindan dolayi “kral onu saray rahipliginden uzaklaştirmak zorunda kalmiştir”. Whiston 1696'da yayimladigi kitabinda Burnet’in Ekvator’la ilgili yanliş görüşüyle öbür yanlişlarindan kaçinmaya çalişmiştir. Bu kitabin yazilmasinda bir bakima 1680 kuyrukluyildizinin payi olmuştur; bu belki de Whiston’a, Büyük Sel’in de bir kuyruklu yildizdan ileri gelmiş olabilecegini düşündürmüştür. Bir noktada, Kutsal Kitap ’a bagliligin derecesi tartişma götürür; yaratiliştaki alti günün bildigimiz günlerden daha uzun olduklarini düşünüyordu. Woodward, Burnet ve Whiston’un, çağlarının öbür yerbilimcilerinden daha aşağı oldukları sanılmamalıdır. Tam tersine zamanlarını en iyi yerbilimcileriydiler; Whiston, Locke’un çok büyük övgülerine konu oluşturmuştur. 18. yy’da, hemen hemen her şeyin sudan geldigini söyleyen Neptün’cü okulla, her şeyi yanardaglarla depremlere baglayan Volakanci okul arasinda uzun bir çatişma görülür. Birinciler durmadan Büyük Sel’in kanitlarini topluyorlar, daglarin yüksek kesimlerinde bulunan taşil (fosil) kalintilara büyük bir önem yüklüyorlardi. Dinsel görüşe daha çok bagliydilar, bundan dolayi bu görüşün düşmanlari, bulununa taşillarin gerçek hayvan kalinilari olamayacagini söylemeye kalkiştilar. Voltaire aşiri şüpheyle davrandi bu konuda; bu taşillarin gerçekten yaşamiş hayvanlardan kalma olduklarını yadsımayacak duruma gelince, bunların dağlardan yolu geçen hacılarca atılmış, düşürülmüş olduklarını ileri sürdü. Bu örenkte, dogmatik özgür düşünce, bilime aykırılıkla dinsel düşünceden daha baskın çıkmıştır. Büyük doğacı Buffon, 1749'da yayımladığı Doğal Tarih adıl kitabında, Paris’teki Sorbonne Tanrıbilim Fakültesinin “Kilise öğretisine aykırı” olmakla suçlandırdığoı on dört önerme ileri sürdü. Bu önermelerden biri, yerbilimle ilgili olarak: “ Şimdi yeryüzünde bulunan dağlar, vadiler ikincil nedenlerden doğmuştur, aynı nedenler zamanla bütün kıtaları, tepeleri, vadileri yok ederek yerlerine yenilerini getireceklerdir” diyordu. Burada “ikincil nedenler” Tanrı’ın yaratıcı emirleri dışında kalan büün öbür nedenler anlamındadır; oysa 1749'da dinsel görüş, dağlarıyla, vadileriyle, denizlerinin, karalarının, dağılışıyla bütün dünyanın, şimdi gördüğümüz biçimde yaratılmış olduğuna inanmayı gerektiriyordu; yalnız bir mucize ile değişikliğe uğramış olan Lut Gölü bunun dışında sayılıyordu. Buffon, Sorbonne ile bir çatışmaya girişmenin iyi olmayacağını düşündü. Sözlerini geri alarak şu itirafı yayımlamak zorunda kaldı: “Kutsal Kitap ’a aykırı şeyler söylemek amacında olmadığımı; Kutsal Kutap’ta yaratışı konusunda söylenenlerin gerçekliğine, belirtilen sürelerin doğruluğuna bütün gücümle inandığımı; kitabımda, yerin oluşumu konusunda bütün söyledilerimden, genel olarak Musa’nın söyledikleriyle çelişebilecek bir şeyden vazgeçtiğimi açıklarım.” Burada açıkça görüldüğü gibi, tanrıbilimcilerin Galilei ile olan çatışmadan aldıkları ders gökbilim sınırları içinde kalmıştı. Yerbilim konusunda modern bir bilimsel görüş ortaya koyan ilk yazar, ilkin 1788'de, sonra daha genişleterek 1795'te yayimladigi Yer Kurami adli kitabi ile Hutton olmuştur.Söyledigine göre, geçmiş çaglarda yer yüzeyinin geçirmiş oldugu degişiklikler bugün de sürüp gitmekte olan nedenlerden ileri gelmişti, bu nedenlerin eski çaglarda şimdikinden daha etkili olduklarini düşünmek yersizdi.Bu, temel bakimdan saglam bir görüşse de, Hutton bu görüşün kimi yönlerini çok geliştirmiş, kimi yönleri üzerinde de geregi ölçüsünde durmamiştir. Deniz dibinde biriken tortulara bakarak, kitalarin ortadan kalkişini aşinmaya bagliyordu; ama yeni kitalarin ortaya çikişini,birden gelmiş büyük degişikliklerle açikliyordu. karalarin birden bire batmasini ya da yavaş bir süreyle yükselmesini, gerektigi ölçüde anlayamamiştir. Ama onun gününden beri bütün yerbilimciler, geçmişteki degişiklikleri yapan etkenlerin bugün kiyilarin yavaş yavaş degişmelerinde, dag yüksekliklerinin artip eksilmesinde, deniz dibinin yükselip alçalmasinda payi olan etkenlerden ayri olmadiklarini söyleyen yöntemi benimsemişlerdir. (B. Russel, Din ile Bilim s:40-43 ) İnsanların bu görüşü daha önce benimsememiş olmaları, yalnızca Musa’cı zaman bilgisi yüzündendir. Oluş’a bağlı kimseler, Hutton ile öğrencisi Playfair’e çok ağır saldırılarda bulunmuşlardır.Lyell “Din tutkusu Hutton öğretilerine karşı coşmuştu, bu çatışmada başvurulan hileler, aşırılıklar inanılacak gibi değildir, İngilliz halkının düşüncelerinin o zamanlar nasıl ateşli bir heyecanla kamçılandığını anımsayamayan okur bütün bunları anlayamaz.” diyor. “Fransa’da birtakım yazarlar yıllardır bütün güçleriyle Hıristiyan inancının temellerini çökertmeye çalışıyorlardı; bir yandan bu yazarların başarıları, bir yandan da Devrim’in sonuçları, en gözüpek kafaları uyandırmıştı; ama daha yüreksiz olanların kafalarında yenilik korkusu, korkunç bir düş gibi sürüp gidiyordu.” 1795 İngiltere’sinde hemen hemen bütün zenginler Kutsal Kutap’a karşıt her öğretiyi mallarına yönelmiş bir saldırı, bir giyotin tehditi olarak görüyorlardı. İngiliz düşüncesi yıllarca, Devrim’den önceki özgürlüğünden bile yoksun kaldı. Taşillarin soyu tükenmiş canlilara, yaşam biçimlerine birer kanit olduklari düşünülerek yerbilimin daha sonraki gelişimi biyolojininki ile karişti.Dünyanin ilkçaglari söz konusu olunca, yerbilim il e tanribilim alti “gün”ün alti “çag” sayilmasi gerektigini söyleyerek uzlaşiyorlardi. Ama canlilar konusunda tanribilimin ileri sürdügü bir sürü kesinlemeyi, bilimle uzlaştirmak gitgide daha güç bir iş oldu. Düşüş zamanina dek hayvanlardan hiçbiri öbürünü yememişti; şimdi varolan hayvanlar Nuh’un gemisine alinan hayvanlarin soyundandirlar(Dip not: Bu düşüncenin de güçlükleri yok degildi. St Augustine tanri’nin sinekleri yaratmasindaki nedeni bilmedigini söylmek zorunda kalmişti. Luther daha da ileri giderek, sineklerin, iyi kitaplar yazarken kendisini rahatsiz etsinler diye Şeytan tarafindan yaratildiklarini söylemiştir. Bu ikinci düşünce daha degerlidir kuşkusuz), şimdi soyu tükenmiş olanlar ise selde bogulmuşlardir. Yaratilan türler hiçbir degişiklige ugrayamazlardi; herbiri ayri bir yaratma eyleminin sonucuydu. Bu önermelerin herhangibiriyle ilgili bir soru sormak, tanribilimcileri öfkelendirmek demekti. Güçlükler Yeni Dünya’nın bulunmasıylla başlamıştı. Amerika, Ağrı Dağından çok uzakta bir ülkeydi; ama yine de aradaki ülkelerin hiçbirinde görülmeyen birçok hayvan yaşıyordu orada. Bu hayvanlar bunca uzak yoldan nasıl gelmişlerdi, üstelik, türlerinden bir tekini bile yolda bırakmamışlardı. Kimileri onları denizcilerin getirmiş olduklarını düşündüler ama kendisini Kızılderilileri dine sokmaya adayan, sonra kendi inancını da güç kurtarabilen sofu Jesuit Joseph Acosta böyle bir varsayımı şaşkınlıkla karşılamıştı. Kızılderililerin Doğal ve Töresel Tarihi (1590) adlı yapıtında bu sorunu çok olumlu bir biçimde tartışır der ki: “ İnsanların bunca uzak bir yolculukta, Peru’ya tilkiler götürmek için başlarını derde sokmuş olduklarını kim düşünüebilir, hele şimdiye dek gördüklerimin en pisi olan o ‘Acias’ türünü? Kaplanlar ya da aslanlar götürmüş olduklarını kim söyleyebilir? Böyle düşünenlere gülünse yeridir doğrusu. Bir fırtınayla ellerinde olmaksızın, bunca uzun, bilinmez bir yolculuğa sürüklenmiş olan insanlar kendi canlarının derdine düşmüşlerdir herhalde, yoksa başlarına gelenler yetmiyormuş gibi kurtlar, tilkiler götürmeye kalkışıp iki taşın arasında, bir de onları beslemekle uğraşmamışlardır. Bunun üzerine tanrıbilimciler pis Acias’la benzeri hayvanların Güneş etkisiyle kendiliklerinden, bataklıklardan türemiş olduklarına inandılar; ne yazık ki Nuh’un gemisinde bununla ilgili hiçbir ipucu yoktu. Ama başka çıkar yol da yoktu. Örneğin, adlarının da belirtildiği gibi, yerlerinden zor kımıldayan Sloth’lar (Sloth, Amerika’da yaşayan, ağır ağır yürür, ağaçlara tırmanır hayvanlar, Bu sözcük ayrıca tembellik anlamına da gelir.) nasıl Ağrı Dağı’ndan yola çıkıp hep birlikte Amerika’ya ulaşmış olabilirler? Başka bir güçlük de hayvanbilimin gelişmesiyle elde edilen, hayvan türlerinin sayisindan dogdu. Şimdi bu sayi iki imilyonu bulmuştu, her türden iki hayvanin gemiye alindigi göz önünde tutulunca, geminin biraz fazlaca kalabalik olabilecegi düşünüldü. Hem, Adem hepsine ayri ayri ad takmişti; bunca çok sayida hayvani adlandirmak yaşamin tam başlangicinda biraz agir bir iş olurdu. Avusturalya’nin bulunmasi yeni güçlükler çikardi. Neden bütün kangurular Torres Bozagi’ndan atlamişlar, geride bir çift bile kalmamişti? Biyoloji alanindaki gelişmeler yüzünden, Güneş’in etkisiyle batakliklardan bir çift kangurunun türemiş oldugunu düşünmek de pek güçtü artik; ama böyle bir kuram her zamankinden daha gerekliydi. Bu türden güçlükler, bütün 19. yy boyunca din adamlarının kafalarını oyaladı durdu. Örneğin, Tanrı’nın Zorunlu Varlığı ’nın yazarı William Gillespie’nin Hugh Miller ve Başkalarından Verilmiş Örneklerle Yerbilimcilerin Tanrıbilimi adlı kitapçığı okuyunuz Bir İskoç tanrıbilimcisinin yazdığı bu kitap 1859'da Darwin’in Türlerin Kökeni ile aynı yılda çıktı. Yerbilimcilerin korkunç önermeleri üzerinde durur, onyların “düşünülmesi bile korkunç günahların öncüleri” olduklarını söyler. Yazarın üzerinde durduğu ana sorun, Hugh Miller’in Kayaların Tanıklığı adlı kitabında ileri sürdüğü “insan ilk günahı işleyip acı çekmeye başlamadan önce de hayvanlar arasında şimdiki savaş vardı” düşüncesidir. Hugh Miller, insanın yaratılışından önce yaşayıp soyları tükenmiş hayvan türlerini birbirlerine karşı başvurdukları ölüm, işkence yollarını bütün korkulu yanlarıyla, canlı bir biçimde anlatır. Dine bağlı bir kimse olduğu için tanrı’nın günahsız yaratıklara neden böyle acı çektirdiğini bir türlü anlayamıyordu. Mr. Gillespie, kanıtlara gözlerini kapayarak, küçük hayvanların insanın ilk günahından dolayı acı çektiklerini, yine bundan dolayı öldüklerini söyleyen dinsel görüşü körükörüne savunuyor; Kutsal Kitap’tan aldığı “insanla geldi ölüm” sözleriyle, Adem’in elmayı yediği zamana değin hiçbir hayvanın ölmemiş olduğunu tanıtlamaya kalkışıyordu(Dip not: Bütün eski öğretilerin ortak görüşüydü bu. tıpkı bunun gibi Wesley, Düşüş’ten önce “Örümcek de sinek gibi dokuncasızdı, kan için pusuda beklemiyordu” der). Hugh Miller’in, soyu tükenmiş hayvanların boğuşmaları konusunda söylediklerini göstererek, İyiliksever bir Yaratıcı böyle canavarlar yaratmış olamaz diyordu. Bütün bunlara peki diyelim Ama daha aşırı düşünceleri pek gariptir. Herhalde yerbilimin kanıtlarını yadsımaya yeltenmiş, ama yiğitliği daha baskın çıkmıştır. Belki de vardı böyle canavarlar, ama onlar doğrudan doğruya Tanrı eliyle yaratılmamışlardır, diyordu. Başlangıçta iyi yaratıklardı, sonradan şeytan ayarttı onları; ya da belki Gadarene domuzu gibi, cinleri barındıran hayvan gövdeleriydi bunlar. Tevrat’ın, birçokları için sürçme-taşı olan Gadarene domuzu öyküsüne neden yer verdiği anlaşılır burda. Biyoloji alanında, dinsel görüşü kurtarmak için, Edmund Gosse’un babası, doğa bilgini Gosse garip bir yelteni gösterdi.Dünyanın eskiliği konusunda yerbilimcilerin ileri sürmüş oldukları bütün kanıtları kabul etti; ama Yaratılış sırasında herşeyin eskiymiş gibi yapılmış olduğunu ileri sürdü. Kuramının gerçek olmadığını tanıtlayacak, mantığa uygun bir yol yoktur. Tanrıbilimciler, Adem’le Havva’nın tıpkı doğumla dünyaya gelen insanlar gibi göbekleri olduğunu söylüyorlardı.(Belki de Gosse kitabına Omphalos adını bunun için vermiştir) Bunun gibi, öbür yaratılanla da eski bir biçimde yaratılmışlardı belki.Kayalar taşıl kanıtlarla doldurulmuş volkanların ya da tortul birikmelerin etkisine uğramış gibi yapılmış olabilirlerdi. Ama böyle olanaklar bir kez benimsendi mi, dünya şu zaman ya da bu zaman yaratılmıştır diye tartışmanın hiçbir anlamı kalmaz. Hepimiz anılarla, çoraplarımızda delikler, saçımız sakalımız uzamış bir halde bir halde beş dakika önce dünyaya gelmiş olabiliriz. Mantıkça olağan bu duruma, kimse inanamazdı; Gosse umduğunun tam tersine , din ile bilim arasında yaptığı, mantık yönünden eşsiz uzlaştırmaya, hiçmkmisenin inanmadığını gördü. Onun oüşüncelerini tanımayan tanrıbilimciler, daha önceki öfkelerinin çoğunu bırakıp azıyla durumlarını kurtarmaya çalıştılar. Bitkilerle hayvanların üreme, değişme yoluyla uzun süreli bir evrim geçirdiklerini söyleyen öğreti biyolojiye yerbilimden geldi daha çok; bu kuram üçe ayrılabilir..İlk gerçek,-ancak, uzak çağlarla ilgili bir gerçekten umulabilecek kesinlikte bir gerçek bu- küçük canlıların daha eski oldukları, daha karmaşık bir bir yapı taşıyan canlıların ise gelişmenin sonlarına doğru ortaya çıktıklarıdır. İkincisi, daha sonraki, çok daha üstün yapılı canlılar kendiliklerinden ortaya çıkmamışlar, bir değişmeler dizisinden geçerek daha önceki canlılardan türemişlerdir; biyolojide “evrim” ile söylenmek istenen budur. Üçüncüsü, bütünlükten uzak olkala birlikte, evrimin işleyişini, örneğin değişmenin belli canlıların yaşayıp öbürlerinin silinip gitmlerinin nedenlerini araştıran bir çalışma vardır. İşleyşişkonusunda daha birçok karanlık noktalar bulunmakla birlikte, evrim öğretisi bugün bütün evrence benimsenmiştir. Darwin’in başlıca tarihsel evrimi daha olağan gösteren bir işleyiş- doğal seçim- ileri sürmüş olmasıdır; ama ileri sürdüğü, kendisinden hemen sonra gelenlerce kolay benimsenmişse de, yirminci yüzyılın bilim adamlarına göre pek yetersizdir. Evrim öğrtisine önem veren ilk biyoloji bilgini Lamarck (1744-1829) oldu. Öğretileri kabul edilmedi, çünkü türlerin değişmezliği konusundaki önyargı geçerlikteydi daha, üstelik ileri sürdüğü değişim süreci de bilimsel kafaların benimseyebileceği gibi değildi. Bir hayvanın gövdesinde beliren yeni bir organın, duyulan yeni bir istekten ileri geldiğine inanıyor, tek örnekte görülen bu yeniliğin, sonra bütün soya geçtiğini düşünüyordu. İkinci varsayım olmadan, birincisi evrim için pek yetersiz bir açıklamaydı Birinci varsayımın, yeni türlerin gelişiminde önemli bir öğe olmayacağını söyleyen Darwin, kendi issteminde pek geniş bir yer tutmamasına karşın, ikinciyi benimsiyordu. Tek örneklerde ortaya çıkan değişikliklerin bütün bir soya geçktiğini söyleyen ikinci varsayıma Weissmann bütün gücüyle karşı koydu, bu çekişme bugün bile sürüp gitmektedir, ama elde edilen kanıtlar bir kaç ayırıcı durum dışında, soya geçen bütün yeni özeliklerin yumurta hücdresiyle ilgili değişiklikler olduğunu göstermektedir. Bu bakımdan Lamarck’ın evrimi işleyişi konusunda söyledikleri kabul edilemez. Lyell’in yeryuvarlağı ile yaşamın eskiliğini sağlam kanıtlarla savunan Yerbilimin (Jeolojinin) İlkeleri adlı kitabı 1839'da ilk baıldığı zaman dine bağlı kimseler arasında büyük bir yaygarayla karşılandı, oysa kitabın ilk basıkıılarında canlıların evrimi varbsayımını savunan çok şey yoktu. Lamarck’ın kuramlarını titizlikle eleştiriyor, bilimsel kanıtlara dayanarak çürütyordu. Darwin’in Türlerin Kökeni (1859) çıkışından sonra yaptığı yeni baskılarda ise evrim kuramını savunuyordu. Darwin’in kuramı, laisser-faire ekonomi düzeniyle işleyen bitki hayvan dünyasını da kavramaktaydı, Malthus nüfus kuramı da Darwin kuramına dayanıyordu. Bütün canlıların büyük bir hızla yayılmalarından dolayı, her kuşağın büyük çoğunluğunun daha çoğalma çağına varmadan ölmesi gerekmektedir. Dişi bir morina balığı yılda 9 milyon yumurta yumurtlar. Bu yumurtaların hepsinden yeni morina balıkları çıksa, birkaç yıla varmaz bütün deniz silme morinayla dolar, karalar yeni bir sele uğrardı. Fillerden başka, öbür hayvanların hepsinden daha yavaş artan insan topluluklarının da her yirmi beş yıl içinde iki kat olduklarıbilinmektedir. Bütün dünyadaki insanlar bu hızla çoğalsalar, önümüzdeki iki yüz yıl içinde insan sayısı beşyüzbin milyonu bulur. Oysa, hayvan-bitki topluluklarının gerçekte, bir kural gereği sayıca hep aynı düzeyde kaldıklarını görüyoruz; birçok dönemlerde insan toplulukları için de durum aynı olmuştur. Buradan çıkan sonuca göre bir türün, kendilerine üstünlük sağlayan bir yanlarıyla öbürlerinden ayrılan kimi üyelerinin, süreklilikleri daha olağandır. Ayrılan özellik sonradan kazanılma ise arkadan gelen kuşaklara geçmez ama doğuştansa yeni kuşaklarda, küçük bir oran da olsa bile izler bırakabilir.Lamarck zürafanın boyunun yüksek dallara ulaşabilme çabasından dolayı uzadığını, bu çabanın sonucunun da soydan soya geçtiğini düşünüyordu; Weismann’ın yaptığı değişikliklerle Darwinci görüş, zürafaların, uzun boyunluluğa doğuştan bir eğilim taşıdıklarını, böylece açlıktan ölebilme sakıncasından kurtulduklarını, bundan dolayı kendilerinden sonraya da yine uzun boyunlu, daha çok sayıda zürafa bıraktıklarını, kimilerini anne babalarından da daha uszun boyunlu olduklarını söylüyordu. Böylece zürafanın bu özelliği, daha çok uzamanın hiçbir yarar sağlamayacağı zamanına dek gitgide gelişecekti. Darwinin kuramı, nedenelri bilinmeyen tek tük değişikliklerin görülmesine dayanıyordu.Ele alınan herhangi bir çiftin bütün çocuklarının aynı olmadıkları bir gerçekti. Evcil hayvanlar yapay seçmeler sonucunda büyük bir değişikliğe uğruyorlardı: İnsanın aracılığı ile inekler daha çok süt vermeye başlıyor, yarış atları daha hızlı koşuyorlar, koyunlar daha çok yün veriyorlardı. Böyle olgular, seçmenin ne sonuçlar doğurabileceği konusunda Darwin’e en açık kanıtları sağlıyorlardı. Yetiştiricilerin bir balığı keseli bir hayvana, keseli bir hayvanı bir maymuna dönüştüremeyecekleri açıktır; ama bu gibi büyük değişikliklerin, yerbilimcilerin söylediği sayısız çağlar sonucunda ortaya çıkmaları olağan bir şeydir. Hem birçok durumlarda ataların ortaklığına kanıtlar da vardır.Taşıllar, geçmiş çağlarda şimdi çok yaygın olan türlerin karışımı hayvanların yaşadıklarını gösteriyorlar; Pterodaktil, örneğin, yarı kuş yarı sürüngendi. Döllenme konusunda çalışan bilginler, gelişme evreleri sırasında, kimi olgunlaşmamış hayvanlarda daha önceki biçimlerin yeniden ortaya çıktıklarını göstermişlerdir; belli bir dönemde bir memelide, iyice gelişmemiş balık solungaçları göze çarpar; bunlar bütünüyle yarasızdırlar, ancak soyla ilgili tarihsel değişikliklerin başlıca etkenlerinin evrim ile doğal seçme olduğunu göstermek için, türlü yollardan kanıtlar ileri sürüldü. Darwincilik, tanrıbilime Copernicus’culuktan geri kalmayan bir tokat oldu. Yalnızca Oluş’ta ileri sürülen ayrı ayrı yaratma eylemlerini, türlerin değişmezliklerini çürütmekle; yaşamın başlangıcından beri, dinsel görüşe taban tabana karşıt, usa sığmaz bir sürenin geçmiş olduğunu söylemekle; Tanrı’nın iyilikseverliği ile açıklanan, canlıların çevreye uyumunu, doğal seçmeye bağlamakla kalmıyor; hepsinden kötüsü, evrimciler insanın daha aşağı hayvan soylarından türediğini savunuyorlardı. Tanrıbilimcilerle öğrenimsiz kimseler, gerçekte kuramın bu noktasına takılıyorlardı. “Darwin insanın maymun soyundan geldiğini söylüyor!” diye bir yaygara koptu dünyada. Bir ara, kendisinin maymuna benzerliğinden dolayı böyle bir şeye inandığı söylendi( oysa benzemiyordu). Çocukken, öğretmenlerimden biri büyük bir ciddiyetle şu sözleri söylemişti bana: “Darwinci olursan acırım sana, bir kimse hem Darwinci hem Hıristiyan olamaz ” Bugün bile Tennessee’de evrim öğretisini yaymak yasalara aykırıdır, çünkü bu öğreti Tanrı Sözü’ne karşıt sayılmaktadır. Her zaman olduğu gibi tanrıbilimciler, yeni öğretinin doğuracağı sonuçları, bu öğretiyi savunanlardan daha çabuk kavradılar, ileri sürülen kanıtlara inanmakla birlikte dine bağlılıkla dirediler, önceki inançlarını ellerinden geldiğince korumaya çabaladılar.Özellikle 19. yy’da yeni öğreti, savunucularının düşüncesizliğinden dolayı büyük bir hız gösterdi, bu yüzden, daha ağır bir değişikliğe alışılmadan arkadan öbürü bastırdı.Bir yeniliğin bütün sonuçları bir arada ileri sürülürse, alışkanlıkların tepkisi öyle büyük olur ki bu tepkiyle yeniliğin bütünü birden terslenir; oysa her on ya da yirmi yılda bir atılacak yeni adımlarla, gelişme yolu boyunca büyük bir direnmeyle karşılaştırılmadan, alışkanlıklar yavaş yavaş uyutabilirdi. 19. yy’ın büyük adamları gerekliği sugötürmez bir devrimi başarıya ulaştırmak istiyorlardı ama kafaları ya da politikaları yönünden devrimci görünmüyorlardı Yenilikçilerin bu yolda davranışları 19. yy’ın önemli bir gelişme çağı olmasına yardım etti. Tanrıbilimciler yine de neyin olup bittiğini halktan daha iyi biliyorlardı. İnsanların ruhlarının ölümsüz olduğunu, maymunlarda ise böyle bir özelliğin bulunmadığını;İsa’nın maymunları değil insanları kurtarmak için öldüğünü; insanlarda tanrıca bir iyiyi kötüyü ayırt etme duygusu varken, maymunların yalnızca içgüdülerle hareket ettiklerini söylemeye başladılar.İnsanlar kavranamayacak ölçüde uzun süreli bir değişme sonunda maymundan türedilerse, tanrıbilimce önemli olan bu özellikleri ne zaman kazandılar ansızın? 1860'ta, Türlerin Kökeni ’nin yayımlanmasından bir yıl sonra, Bishop Wilberforce Darwinciliğe karşı gürleyerek bayrak açtı: “Bu doğal seçme ilkesi bütünüyle Tanrı Sözü’ne aykırıdır” Ama bütün parlak sözler bir işe yaramadı, Darwin’i başarıyla savunan Huxley bu sözleri herkesin anlayabileceği biçimde çürüttü. Artık kilisenin kızgınlığına kimse aldırmıyşordu., Chichester başpapazı bir ünversite vaazında: “İlk anne-babamızın yaratılış tarihini, anlamındaki bütün açıklığa karşın kabul etmeyip, yerine şu modern evrim düşünü koymak isteyenler isnoğlunun kurtuluşu konusundaki bütün düşünceleri çökertmlektedirler diyerek Oxford’u uyarmaya çalıştı; öte yandan Kutsal Kitap’ın öğretisine bağlı olmamakla birlikte dinsel görüşü destekleyen Carlyle, Darwin için “kirli bir dinin peygamberi” dedi, ama bunların hepsi etkisiz kaldı, hayvan-bitki türlerinin evrimi kısa zamanda biyoloji bilginlerinin de benimsedikleri bir öğreti oldu. Bilim çevreleri dışındaki laik Hıristiyanların tutumuna, Gladstone’un davranışı iyi bir örnektir. Bu özgür önder bütün çabalarına karşın, çağının özgür bir çağ olmasını önleyemedi.1864'te tanrısal adalete inanmadıklarından dolayı cezalandırılmaları istenen iki din adamıyla ilgili karar, Kral’ın Danışma Kurulu’nun yargıçları tarafından bozulunca, Gladstone öfkelenerek, böyle olursa “Hıristiyanlığa inanmak ya da inanmamak konusunda büyük bir umursamazlık”çıkar ortaya demişti. Darwin’in kuramı ilk basıldığında, yöneticiliğe alışmış bir kimsenin halden anlarlığıyla: “ ... evrim diye adlandırılan gerçek ile, Tanrı’nın yaratma işine son verilmiş; dünyayı değişmez yasalar uyarınca yönetmekten uzaklaştırılmıştır” demişti. Ama Darwin’e özel bir kızgınlığı yoktu. Yavaş yavaş tutumunu değiştirdi, 1877'de Darwin’le görüşmeye bile gitti, bütün görüşme sırasında da durmadan Bulgar zulmünden söz etti Ayrıldığında Darwin büyük bir saflıkla : “ Böyle büyük bir adamın beni görmeye gelmesi ne onur!” diyordu. Gladstone’da Darwin’le ilgili izlenim kalıp kalmadığı konusunda ise tarih bir şey söylemiyor. Günümüzde din, evrim öğretisine göre kendisine çekidüzen vermiş, yeni yeni düşünceler bile sürmüştür ortaya. “Çağlar içinden akıp gelen, büyüyen bir amaç vardır.” Evrim de Tanrı’nın kafasındaki bir düşüncenin çağlar boyunca açılmasıdır. Bütün bunlardan, Hugh Miller’i uzun uzun uğraştıran, hayvanların, birbirlerine korkunç boynuzlarla, can alıcı iğnelerle işkence ettikleri o çağlarda her şeye yeterli tanrının elini kolunu bağlayıp daha da çetin işkence yollarıyla gitgide daha artan zorbalığıyla, eninde sonunda insanoğlunun ortaya çıkmasını beklediği anlaşılıyordu. Büyük Yaratıcı, neden böyle birtakım işlemlere başvurdu da doğrudan doğruya gerçekleştirmedi isteğini, bunu söylemiyorlar modern tanrıbilimciler. Bu konudaki şüphelerimizi giderecek çok şey de söylemiyorlar. Alfabeyi öğrendikten sonra, elde ettiği şeyin bunca emeğe değmediğini düşünen bir çocuk gibi duyuyoruz kendimizi ister istemez. Ama bu bir beeni sorunudur ne de olsa. Evrim üzerine kurulmuş herhangi bir tanribilim ögretisine yöneltilebilecek daha agir bir itiraz vardir. Bin sekiz yüz altmiş, yetmiş siralarinda, evrimin geçen moda oldugu siralarda, gelişim, dünyanin bir yasasi sayiliyordu. Her yil daha zengin olmuyor muyduk, azalan vergilere karşin bütçemiz gitgide kabarmiyor muydu? Bizim kurdugumuz düzen dünyaya parmak isirtan bir düzen, parlamentomuz bütün yabanci aydinlarin öykündügü bir örnek degil miydi? Gelişimin hep böyle sürüp gideceginden şüphe den var miydi? Böyle bir dünyada evrim, günlük yaşamin bir genellemesinden başka bir şey degildi sanki. Ama zaman bile daha düşünceli olanlar, öbür yani görebiliyordu. Gelişim saglayan yasalar çöküşü de hazirlar. Bir gün Güneş soguyacak, yeryüzünde yaşam sona erecektir. Bütün bu hayvanlar, bitkiler tarihi, çok sicak çaglarla çok soguk çaglar arasinda bir geçiş dönemi olacaktir. Evrensel gelişim yasasi olmayacak, yalniz enerji dagilimi yüzünden dünyada hafifçe aşagiya egimli, yukari aşagi bir salinma görüleceketir. Bugünkü bilimin çok olagan saydigi, bizim umutlari kirilmiş kuşagimizin da kolayca inanacagi bir sondur bu. Şimdiki bilgimizle kavrayabildigimiz ölçüde evrimden, iyimser sonuçlara baglayabilecegimiz bir felsefe çikarilamaz. (B. Russel, Din ile Bilim s: 44-53) “1953'te, AmerikalıJ ames Watson ve İngiliz Francis Crick tarafından DNA’nın ikili sarmal yapısına, ardından, 60'lı yıllarda, genetik kodlama mekanizmasına ilişkin olağanüstü keşiflerden sonra, moleküler biyoloji yerinde saymıştı. Vaatlerini tutar gibi görünmüyordu. Öyle ki bakterilerin genomu (genetik programın bütünü) üzerindeki çalışmalardan hayvana ve a fortiori insana gidecek olan yol, geçit vermez görünüyordu. Bakteri genomonon işlevi hakkında çok şey bilinyordu; ama gelişmiş hayvanların DNA’sı ile çalışılmaya geçildiğinde bir bilmece silsilesiyle karşılaşıylıyordu. Genetiğin pratik uygulamalarının belirsiz bir geleceğe itelenmiş olmasından kaygı duyulabilirdi. Derken 70'lı yıllarda, Amerikalı araştırmacılardan oluşan küçük bir ekipten, hayvan ya da insan geninin bir bakteri aracılığıyla yeniden üretimine olanak sağlayan bir bilim kurgu tekniği çıkageldi. Bir geni ya da insan genomunun bir kısmını parçalara ayırıp sonra da bunu bir bakterini içine yerleştirmek mümkün oluyordu. Bakteri, birkaç saatte, içine yerleştirilmiş genin kopyasıyla birlikte, milyarlarca örnek halinde çoğalıyordu (bu işlem, genlerin klonajı diye adlandırılır). Ve bu milyarlarca bakteriden yola çıkarak, bir okadar sayıdaki gen saf halre eldeediliyordu. Araştirmacilar daha da iyisini başardilar: bir insan genini bir bakteri içinde klonlamayi başardiklari andan itibaren, o genin bakterinin içinde faaileyt göstermesini sagladilar, yani sonuçta, bakteriye, genin kodladigi proteini büyük miktarlarda üretebildiler. Aslinda, bakterideki bir genin açiga çikarilmasi çok özel koşullar gerektirir ve genellikle işlem çok hassastir. Böylece, istenen genlerin ve iyi belirlenmiş genom parçalarinin tükenmez mitarlarina ulaşilmasi, genetik araştirmasinda yepyeni ufuklar açiyordu. Ve tip alaninda dogrudan DNA üzerinde çalişilabilecegi düşüncesi dogmaya başliyordu. Bugün moleküler biyoloji diye kutsanana terim, sözü uzatmaktan başka bir terim degildir. Eger biyoloji moleküler degilse, o zaman başkaca nasil bir biyoloji olabilecegini sormak gerekir. Ama bu her zaman böyle degildi. 1940'li yillarda DNA molekülü keşfedildiginde, bazilari , başlangiçta, hiçbir işe yaramayan kimyasal bir maddenin söz konusu oldugunu düşündü! 1978'de Jean Dausset’in laboratuvari, DNA konusundaki çalişmaya henüz bütünüyle yabanciydi... Genetik etkenler (DNA’nın taşıdığı bilgiler), tıpkı otuz yıl önce Jean Dausset’nin yaptığı gibi hücreler, daha doğrusu hücre yüzeyleri incelenerek, hep dolaylı bir biçimde çözümlenirdi. Çok uzun bir süre bir antite olarak kalan genin kendisi üzerinde hiç çalışılmazdı. Yalnız şu da var: hiçbir şey, bir proteini çözümlemektendaha zor değildir. Gen, ince ve uzun bir iplikçikten başka bir şey değilken protein en sık olarak küresel bir biçimle karşımıza çıkar. Aslında, proteinin kendisi de bir iplikçiktir; ama az çok düzensiz bir küre biçimini alacak şekilde kıvrılmış ve yumaklaşmış bir iplikçik. Birbirine çok benzer yapıdaki iki alel (bir bakıma iki kardeş gen) ile kodlanmış iki proteni birbirinden ayırmak, özellikle nankör bir iş demektir. Buna karşilik, genetik dehanin en yeni araçlari yakindan bilindigi anda DNA molekülünü oluşturan kimyasal elementler zincirini okumanin da çok daha kolay oldugu ortaya çikiyordu. Çünkü DNA tipki manyetik bir bant gibi, çizgisel tarzda okunur... Proteinler üzerndeki araştirma, kazanilmiş bir alandi. Üstelik çok önemli bir alan. Birilerinin, bu alana incelemeyi sürdürmesi zorunluydu. Zaten bugün arayştirma teknikleri de daha etkin bir hale gelmişti. Proteinlerin yapi ve işlevlerini çözümlemeye olanak saglayan biyolojik araçlar, hele bir tümüyle yetkinleşsinler, yakin bir gelecekte, genetik işlemlerdeki patlamadan sonra proteinleri kullanma çalişmasindan da benzer bir patlamayla pekala karşilaşilabilirdi. Araştirmanin yollari da tipki yaşaminkiler gibi, çogu zaman gereginden fazla uzundur. DNA’ya duyulan hayranlık, onun olağanüstü bir kolaylıkla çözümlenebilmesinden kaynaklanır. Bir kez tekniklerde ustalaştınız mı, kolayca başarılı olursunuz.Her şeyin kökeni olarak görülen bu tanrısal moleküle dokununca, kendinizi sihirbaz sanırsınız. Gerçekte bu, ölü, haretesiz bir molekül, bir kayıt kütüğüdür. Protein ise tersine, olağanüstü duyarlı ve tepki veren canlı bir maddedir. Toprak ve taş için bitkiler ne ise DNA için de proteinler odur. toprağa temel atıp tuğlaları döşemek, yaşamın bahçesini ekip, bakımını yapmaktan daha kolaydır. (Daniel Cohen, Umudun Genleri, s: 25-29 )

http://www.biyologlar.com/evrim-nedir

ÇEVRE KİRLENMESİ

ÇEVRE KİRLENMESİ

I – HAVA KİRLENMESİ a) İnsana ve Çevreye Etkisi b) Sonuçları (Asit Yağmurları)   Asit Yağmurlarının Toprağa Etkisi   Asit Yağmurlarının Sulara Etkisi   Asit Yağmurlarının Yapılara Etkisi   Asit Yağmurlarının Bitkilere Etkisi   Asit Yağmurlarının İnsan Sağlığına Etkisi c) Çeşitli Gazların İnsan ve Çevresine Etkisi   İnsan Sağlığına   Hayvan ve Bitkilere   İklime d) Ormanların ve Yeşil Alanların Çevre Kirliliğini Önlemeleri Yönünden İşlevleri   Fiziksel İşlevler   Fizyolojik İşlevler e) Ormanların Su ve Toprak Kirliliği Üzerine Etkileri II – SU KİRLENMESİ a) Kirlenmeye Yol Açan Kaynaklar 1 – Tarımsal Çalışmaların neden olduğu Kirlilik 2 – Endüstrinin Neden Olduğu Kirlilik 2.1.) Kimyasal Kirlilik 2.2.) Fiziksel Kirlilik 2.3.) Fizyolojik Kirlilik 2.4.) Biyolojik Kirlilik 2.5.) Radyoaktif Kirlilik 3 – Yerleşim Alanlarındaki Atıkların Neden Olduğu Kirlilik III – TOPRAK KİRLENMESİ 1 – Kentlerin Neden Olduğu Kirlilik 2 – Endüstrinin Neden Olduğu Kirlilik 3 – Toprak Uğraşlarının Neden Olduğu Kirlilik 4 – Toprak Kirliliğinin İnsan ve Çevresine Etkileri IV – DİĞER ETMENLER a) Gürültü Kirliliği   Gürültünün İnsan ve Çevresine Etkileri b) Radyasyon ÇEVRE KİRLENMESİ Her türlü madde ya da enerjinin (örn: ısı, ses...) doğal birikiminin çok üstündeki mik-tarlarda çevreye katılmasına çevre kirlenmesi denir. Kirlenme, kirleticilerin etkilediği ortamın niteliğine göre, hava, su, toprak kirlenmesi ve diğer etmenler olarak sınıflandırılır. İnsanın yaşamı sürekliliği için doğayı kullanması, do-ğayı değiştirmesi olağandır. Ancak bu kullanışta doğayı düşünmeksizin yalnızca insan açısın-dan ve tek yönlü yararlanma söz konusu olduğunda, umulan olumlu sonuçlar, bir süre sonra çözümü zor ve hatta olanaksız birçok karmaşık sorunlara neden olurlar. Bilimsel açıdan bakıldığında, bir ortamın fiziksel birleşiminde olmaması gereken şey “kir” dir. Yaşamın söz konusu olduğu her yerde muhakkak kir, yani artık madde bulunacak-tır. Fakat bu madde, oluştuğu ortam içinde belirli sınırlar altında kaldığı sürece doğal yapı bu artık maddeyi çözümlemekte ve sonuçta kirlenme çıplak gözle görülmemektedir. O halde ya-şamın getirdiği bir kirlenme hep olacaktır. Ama doğal denge bozulmadıkça, çevre ile etkileşen yaşam, kirlenmeden etkilenmeyecek ve dolayısıyla çevre kirlenmesi sorunu, doğal yapı içinde çözümlenecektir. HAVA KİRLİLİĞİ Erişkin bir insan, günde 2,5 kg kadar su ve 1,5 kg kadar besin almasına karşılık 15 kg kadar hava alır. O halde, insanın dışarıdan aldığı maddeler arasında hava, miktar bakımın-dan başta gelmektedir. Bir insan açlığa 60 gün, susuzluğa 6 gün dayanabildiği halde havasızlığa 6 dakika da-yanamaz. Barınak ve fabrika bacalarından çıkan dumanlar, otomobillerden çıkan eksoz gazları içinde bulunan ve canlılar için zararlı olan çeşitli maddelerin havaya karışması ve onun bileşimini bozması, 20. yüzyıl insanını hava kirliliği sorunu ile karşı karşıya bırakmıştır. Normal temiz bir hava içerisinde, % 78,9 hacim azot, % 20,95 hacim oksijen, %0,03 hacim karbondioksit, %0,93 hacim argon gazı bulunan fakat, duman toz tanecikleri, kükürt dioksit ve diğer gazlar bulunmayan ya da çok az bulunan hava demektir. Kirli hava ise fazla miktarda duman, kü-kürt di oksit, karbon mono oksit, azot oksit gibi gazları, ozon gibi oksidin maddeleri, kurşun, nikel gibi metalleri, lastik parçacıkları ve toz taneciklerini kapsayan ve fena kokan havadır. Diğer bir tanımla, hava kirliliği, atmosferde toz, gaz, duman, koku, su buharı şeklinde bulu-nabilecek kirleticilerin insan ve diğer canlılar ile eşyaya zarar verici miktara yükselmesi ola-rak ifade edilebilir. Metreküpü içinde 7 mikrogramdan fazla miktarda duman ve 100 – 150 mikrogramdan fazla SO2 gazı bulunması havanın kirliliği için bir ölçü olarak kabul edilmektedir. Özellikle duman ve SO2 gazının verilen bu miktarın üzerine çıkması, sağlık için zararlı bir ortamın meydana gelmesine neden olmaktadır. Hava kirliliğini oluşturan başlıca kaynaklar, endüstri merkezlerinden çıkan kirli dumanlar ve gazlar, kalorifer ve soba bacalarından dağılan isler ve dumanlarla motorlu taşıtların eksozlarından çıkan karbonmonoksit, kurşun, azot oksit gibi kimyasal maddelerdir. Bunlar-dan birkaçını tanıyalım: Karbon monoksit (CO): Havadan biraz daha hafif, renksiz, kokusuz, zehirli bir gazdır. Yanma sürecinde yakıttaki karbonun eksik yanma sonucunda tümüyle karbondioksite yük-seltgenmeyip bir bölümünün karbon monoksite dönüşmesiyle oluşur. Başlıca karbon monok-sit kaynağı içten yanmalı motorlardır. Katı ya da sıvı maddelerin parçacıkları, kurum ya da is biçiminde gözle görülebilen-lerden ancak elektron mikroskobuyla gözlenebilecek olanlara kadar değişen boyutlardadır. Çevreyi kirleten parçacıkların oluşumuna yol açan başlıca nedenler hareketsiz merkezlerde yakıt kullanımı ile sanayi etkinlikleridir; orman yangınları da küçük bir yüzde oluşturur. Kükürt oksitleri, kükürt içeren yakıtların yanmasıyla oluşan zehirli gazlardır. Her yıl açığa çıkan kükürt oksitlerin yaklaşık yüzde 60’ı kömürün yakılmasıyla oluşur. Kentsel böl-gelerde yoğunlaşmış olan akaryakıt kullanımı ve kükürtten yararlanan sanayi tesisleri de kü-kürt oksitlerinin oluşumuna yol açan önemli kaynaklardır. Hidrokarbonlar da, karbon monoksit gibi eksik yanan yakıtlardan kaynaklanır. Ama karbon monoksidin tersine, atmosferde normal olarak bulundukları yoğunlukta zehirli değil-lerdir. Bununla birlikte, fotokimyasal sise yol açtıklarından kirliliğin artmasında önemli rol oynarlar. Havadaki hidro karbonlar genellikle, çöp fırınları gibi büyük tesislerde atık madde-lerin yakılmasından, sanayide kullanılan çözücülerin buharlaşmasından ve odun ile kömürün yakılmasından kaynaklanır. Ama en önemli etken, buharlaşma yoluyla ve içten yanmalı mo-torların egzozundan havaya karışan benzindir. Bu yüzden havadaki hidrokarbonların yakla-şık yüzde 60’ı, çok sayıda motorlu taşıtın bulunduğu kentsel alanlarda yoğunlaşmıştır. Azot oksitleri, yakıtın çok yüksek sıcaklıkta yanmasıyla oluşur. Bu kirletici de gene motorlu taşıtlardan ve elektrik enerji santralleri ile sanayide kullanılan buhar kazanlarının yakım sistemlerinden kaynaklanır. Havada normal olarak eylemsiz halde bulunan azot, yan-ma sırasındaki yüksek sıcaklıkta oksijenle birleşir ve gaz halinde dışarı atıldığında çabuk so-ğursa, bu durumda kalır. Azot oksitleri, hidrokarbonlarla birleşerek fotokimyasal yükselt genleri oluştururlar. Bu yükselt genler de, havadaki katı ve sıvı parçacıklarla birleşerek hava kirliliğine yol açarlar. Fotokimyasal yükselt gen kirleticiler ozon, azot di oksit, aldehitler, akrolein ve peroksiaçillerdir. Kentsel bölgelerdeki hava kirliliğine yol açan bir başka önemli madde de kurşundur. Kurşun, sanayi tesislerinden, zararlı canlılarla mücadelede kullanılan kimyasal maddelerden, kömür ve çöp yakımından ve kurşunlu benzin kullanan otomobil motorlarından kaynaklana-rak havaya karışır. Kirleticiler dışında, bazı doğal etkenler de hava kirlenmesine yol açar. Güneş ışığındaki morötesi ışınlar, hidrokarbonlarla birleşerek fotokimyasal sis oluştururlar ve bu da sıcaklık terslenmesi dönemlerinde atmosfer durgunluğuna neden olur. Bu olay, sı-caklığın, yer yüzünde troposferin (alt atmosfer) içlerine doğru arttığı durumlarda görülür; olaya terslenme denmesinin nedeni de normal olarak sıcaklığın yükseklikle birlikte azalması-dır. Sıcaklık terslenmesi havanın yükselmesini engelleyerek kirletici içeren alt hava katmanı-nın asılı halde kalmasına yol açar. Havada önemli bir yanal hareket gerçekleşmediği sürece kirlilik kalıcı olur. İNSANA VE ÇEVREYE ETKİSİ Havada kirlenmeye yol açan maddelerin insanlar üzerinde çeşitli etkileri vardır. Ha-vadan solunan karbon monoksit, kandaki oksijenin yerini alarak vücuttaki hücrelere taşınan oksijen miktarının azalmasına yol açar. Kentlerin havasında bulunduğu miktarıyla karbon monoksit, zihinsel yetilerin gerilemesine ve en sağlıklı insanlarda bile tepkilerin ağırlaşmasına neden olur; bu da kent yaşamında görülen kazalarda önemli bir etkendir. Ayrıca kansızlık, kalp yetersizliği ve kan hastalıkları ile kronik akciğer rahatsızlıkları bulunan kişilerin sağlık durumu üzerinde daha da olumsuz etkilerde bulunur. Kükürt oksitleri, solunum borusunu ve akciğer dokularını etkileyerek, solunum siste-minde geçici ya da kalıcı rahatsızlıklara yol açabilir. Fotokimyasal yükselt genler göz rahat-sızlıklarına neden olur; ayrıca araştırmalar, azot oksitlerinin de insan sağlığına neden oldu-ğunu, özellikle çocuklarda gribe karşı direnci azalttığını ortaya koymuştur. Başka pek çok kirletici de, etkileri doğrudan ya da kısa sürede gözlenememesine kar-şın, halk sağlığı konusundaki kaygıların giderek çoğalmasına neden olmaktadır. Araştırma-lar, kentlerde yaşayan insanların vücudunda bulunan kurşun miktarının, vücudun kan üre-timini olumsuz yönde etkileyecek oranda olduğunu göstermektedir. Ama çevrede bulunan kurşunun insan sağlığına doğrudan mı zararlı olduğu, yoksa asıl tehlikenin gelecekte besin zincirinde ortaya çıkacak bir kurşun yoğunlaşmasına mı yattığı tartışması sonuçlanmış değil-dir. Hava kirliliği, insanların yanı sıra bitki yaşamı, yapılar ve çeşitli eşyalar üzerinde de son derece zararlı etkilerde bulunmaktadır. Pek çok büyük kentin çevresindeki bitki örtüsü hava kirliliği nedeniyle büyük ölçüde yok olmuştur. Ayrıca kentlerde kükürtlü kömür ve a-karyakıt kullanımı, buralardaki çelik ürünlerinin kırsal bölgelere oranla dört kat daha hızlı aşınmasına yol açmaktadır. Kükürt oksitleri de yapıların ve heykellerin aşınmasını hızlandı-rır; havadaki parçacıklar öteki kirleticilerin aşındırıcı etkisini arttırır; ozon ise, kauçuk ürün-lerinin daha çabuk parçalanmasına yol açar. Hava kirlenmesinden kaynaklanan ve 1980’lerin ortalarında gündeme gelen bir başka önemli tehlike de, atmosferin ozon tabakasının incelmesidir. Havalandırma sistemlerinde, spreylerde, otomobillerde ve buzdolaplarında kullanılan kloroflorokarbon kökenli kimyasal yapılarda maddelerin yol açtığı delinme, kutup bölgelerinde yoğunlaşmıştır. Yeryüzüne ula-şan morötesi ışınların zararlı etkilerini azaltan ozon katmanının delinmesi, bazı uzmanlara göre 20 – 30 yıl içinde etkisini gösterecek, yeryüzünde 40 milyon dolayında insanın cilt kanseri olmasına ve yalnızca ABD’de yaklaşık 800 bin kişinin ölümüne yol açacaktır. Bazı uzmanlar bu tahminlerde büyük yanılgı payının bulunduğunu öne sürmekle birlikte, ozon katmanının delinmesinin yeryüzü için büyük bir tehdit oluşturduğu üzerinde herkes aynı düşüncededir. HAVA KİRLİLİĞİNİN SONUÇLARI (ASİT YAĞMURLARI) Asit yağmurları, kendilerini çeşitli ortam ve canlılar üzerinde belli eder. ASİT YAĞMURLARIN TOPRAĞA ETKİSİ Asit yağmurlar, toprağın kimyasal yapısı ve biyolojik koşulları üzerinde etkide bulu-narak, bu topraklar üzerinde yetişen bitkilere zararlı olmaktadır. Toprağa erişen sülfürik asit, toprak çözeltisinin asitliğini yani aktif hidrojen iyonları-nın yoğunluğunu arttırmaktadır. Miktarı artan hidrojen iyonları, toprağın koloidal komp-leksleri olan kil mineralleri ve humus koloitleri tarafından tutulmakta olan başta Ca olmak üzere K, Mg ve Na gibi bitki besin elementlerinin yerine geçerek, bu elementlerin topraktan taban suyuna karışmak üzere yıkanmalarına neden olmaktadır. ASİT YAĞMURLARININ SULARA ETKİSİ Asit yağmurları, tatlı su göllerinde de asitliği arttırarak bu göllerde asitliğe duyarlı balık ve yumuşakçıların tür ve miktarının azalmasına etkili olmaktadır. Amerika Birleşik Devletlerinde bulunan 100 bin gölden yaklaşık 20 bininde ya hiç ba-lık kalmamış, ya da bu yönde olumsuz bir gelişme vardır. Halen birçok gölde aşırı asitliği gidermek üzere kalsiyum hidroksit püskürtülmektedir. İsveç’te bu amaçla her yıl 40 milyon dolar sarf edilmekte olduğu bilinmektedir. ASİT YAĞMURLARIN YAPILARA ETKİSİ Asit yağmurları maruz kalan özellikle kireç taşları, mermerden inşa edilen tarihi yapı-lar ve anıtlar orijinal durumlarını hızla kaybetmektedirler. Asit yağmurların binalarda meydana getirdiği diğer bir zarar da, binalarda çatı örtüsü olarak kullanılan çinko gibi metal levhalarda görülen yıpranmalardır. ASİT YAĞMURLARIN BİTKİLERE ETKİSİ Kükürt di oksit ve azot oksitler, stomlar yoluyla ibre ve yaprak dokularına girmekte, özellikle SO2 bir yönden oksijen alımını önlemekte, diğer yönden de bünyede H2SO4’e dönüşe-rek parçalama, yakma ya da kemirme etkisi yapmaktadır. Kükürt dioksitin yaprak ve ibre-lerde oluşturduğu sülfürik asidin sünger mezofil hücreleri içerisinde bulunan kloro – plastlardaki magnezyumu giderek kuruttuğu, klorofili ve plazmayı tahrip ettiği, dolayısıyla özümlemeyi engellediği, bunların sonuçta ölüme neden olduğu bilinmektedir. ASİT YAĞMURLARIN İNSAN SAĞLIĞINA ETKİSİ Asit yağmurları insan sağlığına olan etkileri kendini dolaylı şekilde belli eder. Asitleşen topraklardan kaynaklanan asitliği yükselmiş olan sular, mide asiditesini arttırarak mide ülse-rine neden olmakta, ayrıca asit yağmurlar topraktaki iyodu eriterek o topraklarda yetişen sebze ve meyvelerin ve içilen suların iyot miktarlarının düşmesini sonuçlandırarak bunları kullanan insanlarda troid bezi rahatsızlıkları (guatr) hastalığına neden olmaktadır. Asit yağmurlar, gazlar ve birlikte bulunan toksit metal iyonları ile insanlar ve hayvan-larda da zararlı olmaktadır. Havada dolaşan kuru kirleticiler be bunlar arasında sülfatlar, üst solunum yolu hastalıklarından kronik bronşit, astım ve anfizeme neden olmaktadır. ÇEŞİTLİ GAZLARIN İNSAN VE ÇEVRESİNE ETKİLERİ İNSAN SAĞLIĞINA ETKİLERİ Hava, yaşamın temel öğesi olduğuna göre, havadaki kirliliğin insan sağlığı yönünden önemi açıktır. Havanın taşıdığı karbon parçacıkları, ozon, karbon monoksit, kükürt dioksit, doyma-mış hidrokarbonlar, aldehitler ile kanserojen maddeler gibi kirleticiler insanların solunum yollarını etkileyerek normal mekanizmasını bozar; bronşlarda iltihaplara ve daralmalara neden olur. Bu değişmeler sonunda da, kronik bronşit ve anfizem meydana gelir. Araştırma-lar akciğer kanserinin meydana gelmesinde ve artmasında da hava kirliliğinin önemli bir ne-den olduğunu göstermektedir. Gaz ve buharlar içinde en tehlikelisi olan kükürt dioksit bilindiği gibi ev ve endüstri bacalarından ve bunlara oranla daha az olarak motorlu taşıtların bacalarından havaya karı-şır. Yapılan araştırmaların sonucuna göre, kükürt dioksitin bronşitten dolayı ölümleri arttırmak-ta olduğu saptanmış, atmosferde SO2 miktarının arttığı sisli havalarda kronik bronşitli bazı hastalarda nefes darlığının şiddetlendiği gözlenmiştir. Ayrıca kirlilik derecesinin yüksek ol-duğu zamanlarda bazı hastalıklara tutulmuş kişilerde ölümlerin bir hayli arttığı görülmüştür. Ozon gazı, ara madde olarak oluşur. Ozon, gözlerde ve bronşlarda iltihaplanma, akci-ğerlerde ödem yapar. Bazı durumlarda bellek zayıflığı yaptığı söylenmektedir. Milyonda bir kısım, göz ve akciğerlerde iltihaplanmaya neden olmaktadır. Nitrojen oksitler, SO2 gazından sonra en önemli hava kirleticisidirler. Kimyasal mad-delerin yapılması sırasında özellikle nitrik ve sülfürik asit ve naylon fabrikalarından, benzin, yağ, doğal gazların ve mazot yanması sonucu ve yine çeşitli petrol arıtma işlemlerinden sonra açığa çıkmaktadır. Dumanla ve sağlık arasında çok sıkı bir ilişki bulunduğunu herkes bilir. Duman, özel-likle sisle birlikte bulunacak olursa havada bulunan SO2 ile birlikte aerosol halinde hızla ya-yılmakta, sonuç olarak kısa veya uzun süreli dönemlerde duygulu olma haline, cinsiyete göre değişmek üzere özellikle bebek, çocuk ve yaşlı insanlarda, kalp, damar ve solunum yolu hasta-lıklarına yakalanmış olanlarda etkisini göstermektedir. Duruma göre farenjit, larenjit, solu-num güçlükleri, bronşit, kronik bronşit, astım ve anfizem meydana gelmektedir. Bu hastalık-lara tutulmuş olanlarda hastalığın şiddeti artmaktadır. Duman, güneşin özellikle ültraviyole ışınlarının yere inmesine engel olur. Bu şekilde havada bulunan mikrop ve virüslerin canlı kaldığı hatta antibiyotiklere karşı direnç kazana-cak şekilde fizyolojik değişikliklere uğradıkları bilinmektedir. Bunun sonucu olarak çocuk-larda raşitizm artmakta, kanda hemoglobin değeri ile birlikte renk indeksi ve B 1 vitamini azalmakta, alkali fosfatlarda yükselme ve proteinlerde değişme kemikleşmede gerileme gö-rülmektedir. Günümüzde kanserin oluşmasının nedeni kesinlik kazanmamış olmakla beraber, bazı etmenler vardır ki, bunları ortaya çıkarıcı ve kolaylaştırıcıdır. Bunlara, kanserojen maddeler denir. Kanserojen maddeler, insanların günlük yaşamını tehdit eder duruma gelmiştir. Kan-ser oluşmasında, kimyasal kanserojenler yüzde 80 oranında olup, yüksek düzeydedir. Bunla-rın büyük bir kısmı çevremizden, hava, besinler ve içecekler yoluyla vücuda alınmaktadır. Özellikle havadan alınan bu kanserojen maddeler şu şekilde sıralanabilir: is, katran, zift, as-falt, parafin gibi maddeler. HAYVAN VE BİTKİLERE ETKİLERİ İnsanlarda görülen hava kirliliği etkilerine, bir ölçüde hayvanlar da rastlamaktadır. İnsanlar ve hayvanlar dışında bitkilerde hava kirliliğinin etkileri ile karşı karşıyadırlar. Daha önce de işaret edildiği gibi, hava kirliliğini oluşturan gazlardan bazıları, özellikle SO2 gazı, bitkilerde fotosentez olayını yavaşlatmakta, bitkilerde oksidasyon işlemine engel olmakta, kloroplastlardaki magnezyumu kurutmaktadır. Flüoritler, bitkiler üzerinde toplanarak bunları kısmen kurutmakta, Aldehitler, bitki-lerde yaprakların stomaları etrafındaki hücrelerde tahribata neden olmaktadır. Ozon gazı, bitkiler üzerinde zehirli alanlar oluşturmakta, ağaçların zamanından öce yaprak dökmesine yol açmakta ve özellikle genç bitkileri etkilemektedir. Tüm bu olumsuz etkiler, özellikle kültür bitkilerinde bir ölçüde ürün azalmasına, geniş alanlar kaplayan orman vejetasyonunun kurumasına neden olmaktadır.   İKLİME ETKİLERİ Hava kirliliğinin değiştirdiği atmosfer koşulları, iklimi de etkilemektedir. Genel ola-rak, kentlerdeki ısı ortalamalarının kırsal alanlardan daha fazla olduğu görülmektedir. Ayrı-ca, meteorolojik ölçmeler, hava kirliliğinin arttığı, büyük kentlerde rüzgar hızının da düştü-ğünü göstermektedir. Rüzgarın ısıyı ve nemi etkilemesi nedeniyle, bu hız azalmasının önemi çok büyüktür. Hava kirliliği, ayrıca, büyük kentlerin yağış miktarlarının da artmasına neden olmaktadır. Havayı ısıtan enerji sonucu, mikroskobik maddelerin çokluğu bulutların oluşma-sını kolaylaştırdığından yağışlar artmaktadır. Diğer yönden hava kirliliği sonucu kentlerin üstünde oluşan tabaka, ültraviyole ışınlarının da önemli derece kaybına yol açmakta, bu ise gün ışığının azalması sonucu doğmaktadır. ORMAN VE YEŞİL ALANLARIN ÇEVRE KİRLİLİĞİNİ ÖNLEMELERİ YÖNÜNDEN İŞLEVLERİ Bir ormanın ekonomik yararları dışında fiziksel, fizyolojik bir takım işlevleri de bu-lunmaktadır. Yapılan çeşitli araştırmaların sonuçlarına göre bu işlevler aşağıdaki gibi özetle-nebilir:   FİZİKSEL İŞLEVLER: 1. Ormanlar rüzgarın hız ve yönünü önemli ölçüde değiştirir. Bu işlev, ormanın sıklılığına ve tepe kapalılığına göre değişir. 2. Ormanlar, fiziksel hava kirlenmesini oluşturan toza karşı filtre görevi yaparlar. 3. Ormanlar, park – bahçe ve benzeri bitki örtüsü, gürültüyü yansıtma ve absorbe etmek suretiyle azaltıcı bir etkiye sahiptirler. 4. Ormanların, radyoaktif hava kirlenmesine karşı koruyucu işlevleri vardır.   FİZYOLOJİK İŞLEVLER: 1. Ormanlar ve benzeri yeşil örtü, fotosentez olayı sonucu çok önemli ölçüde CO2 kullanarak atmosferdeki CO2 konsantrasyonunu etkiler. 2. Ormanlar ve yeşil alanlardan fotosentez reaksiyonu sonucu oksijen üretimi doğal olarak sağlanmakta, böylece doğal oksijen ve karbon dengesini koruyucu bir öğe olarak görev yapmaktadır. 3. Bir orman örtüsü altında topraktan sıcaklık etkisi ile fiziksel olarak meydana gelen bu-harlaşma, açık alanlara oranla önemli ölçüde azalmaktadır. 4. Orman vejetasyonu, serbest hava hareketlerini engelledikleri için bulundukları yerin hava ve toprak sıcaklıklarını etkilemektedir. Orman vejetasyonu tepe çatısına çarpan güneş ı-şınlarının bir kısmını yansıtıp bir kısmını absorbe edip bir kısmını da dağıttığından or-man içine daha az ışık girer. Bunun dışında gerek transprasyon, gerekse nem miktarı faz-la olan orman havasının ısıtılması için yüksek oranda enerji harcanır. Bu nedenlerle koyu gölgeli yerlerde yazın hava serin olur. Kışın ise ormanın tepe çatısı ve nemli havası ile ka-rasal radyasyona engel olduğundan, çıplak alanlara oranla daha sıcak olur. ORMANLARIN SU VE TOPRAK KİRLİLİĞİ ÜZERİNE ETKİLERİ Toprak ve buna bağlı olarak meydana gelen su kirliliğinin nedenleri arasında toprağa verilen gübreler ile toprak taneciklerinde tutulan pestisitler bulunur. Toprak yüzeyinde ölü veya diri örtünün bulunuşu yüzeysel akışı azaltır. Yüzeyden a-kan suyun hızını mekanik olarak engelleyerek toprağa sızması için zaman kazandırır. Böylece gübreleme için verilen kimyasal maddelerin ve zararlılara karşı kullanılan pestitlerin yüzeysel sularla akarsulara, göllere ve denizlere ulaşması engellenmiş olur. E-rozyon olayını durdurarak, barajların zamanla sedimentle dolması oranı da ortadan kal-kar. SU KİRLİLİĞİ Su, doğal durumunda pek çok çözünmüş madde, parçacık, canlı organizma içerir. Evlerde ve sanayide kullanılan suya çeşitli kimyasal maddeler de katılmıştır. Sulara karışan atıklar, çok çeşitlilik gösterse de, başlıca inorganik bileşenleri sodyum, potasyum, amonyum, kalsiyum, magnezyum, klorür, nitrat, bikarbonat, sülfat ve fosfattır. Zararlı organik bileşenler ise çok çeşitlidir ve tümü bilinmemektedir; buna karşılık belirlenmiş olanları, böcek ilaçları, deter-janlar,fenollü maddeler ve karboksilli asitlerdir. Kirlilik uzun vadede, sudaki canlıların ya-şamında ve dağılımında değişikliğe yol açar.; bazı balıkların sayısı azalırken, kirleticilere di-rençli başka canlılar sayıca artış gösterir. Su kirliliği ayrıca, göllerin yaşlanmasına ve kuru-masına yol açan ötrofikasyonu hızlandırır. Böylece suyun çeşitli amaçlarla insanlar tarafın-dan kullanılması da kısıtlanmış olur. Sanayi atıklarının, böcek ilaçlarının ve öteki zehirli madde atıklarının sudaki çözünmüş oksijeni tüketmesi, balıkların kitle halinde ölmesine ne-den olur. Organik ve ısıl atıklar gibi çeşitli kirleticilerin zararlı etkileri doğal süreçlerle ortadan kalkabilir ya da azalabilir. Sulardaki organik atıkların başlıca kaynağı kentlerdeki kanalizas-yon sistemleridir. Suda çok büyük miktarlarda yoğunlaşmadıkları sürece bu maddeler, bak-teriler ve öteki organizmalar tarafından kararlı inorganik maddelere dönüştürülebilir. Bu kendi kendini arıtma süreci sudaki oksijenin yardımıyla gerçekleşir. Ama eğer organik mad-de miktarı çok fazlaysa, yeterli oksijen olmadan arıtım kötü kokulara yol açabilir. Suda çözünen tuzlar, gazlar ve parçacık durumundaki maddeler ise bu yolla arıtıla-maz. Ayrıca, sanayiden kaynaklanan bu atıklarda kadmiyum, cıva ve kurşun gibi zehirli me-taller vardır. Bu maddelerin ne ölçüde zararlı olduğu bilinmemekle birlikte, büyük miktarda cıva içeren sulardan avlanan balık ve benzeri ürünleri yiyen kişilerde ölüm olayına ve sinir sisteminde kalıcı bozukluklara çok rastlanmıştır. Ayrıca sudaki asılı parçacıklar, öteki mad-deleri soğurarak bakteri gelişiminde ve başta DDT gibi böcek öldürücüler olmak üzere pek çok zararlı maddenin dip çamurlarında çökelmesine neden olur. KİRLENMEYE YOL AÇAN KAYNAKLAR Evlerden, ticaret ve sanayi kuruluşlarından kaynaklanan kanalizasyon atıkları, su kirlenme-sine yol açan başlıca etmenlerdendir. Genellikle kullanılan kanalizasyon sistemlerinde, atık sular yağmur suyundan ayrılamamaktadır. Bu yüzden toplam su miktarı sistemin kapasitesi-ni aştığında atık suların büyük bölümü doğrudan akarsulara boşalan kanallara akar. Büyük kentsel bölgelerde yağmur suyunu toplamak için ayrı sistemler ya da göletler yapılmasına yüksek maliyetler yüzünden başvurulamamakta, bu kirlenmesini ciddi biçimde etkilemekte-dir. Sudan yararlanan sanayi tesisleri de bir dizi değişik etkisi olan kirleticilerin sulara karışmasına yol açar. Sanayileşmenin hızla ilerlemesiyle, sanayi atıkları kanalizasyon atıkla-rını birkaç kat aşmıştır. Su kirliliğinde en önemli rolü oynayan sanayi dalları kağıt,kimya, petrol ve demir – çeliktir; enerji santralları da büyük miktarda atık ısının sulara karışmasına neden olur. Plastik üretiminde kullanılan polikloroditenil, insan,hayvan ve bitki yaşamı için büyük tehlike oluşturmaktadır. Bu madde canlı hücrelerde biriktiğinden ve besin zinciri için-de yoğunlaştığından, başlangıçta çok küçük miktarlarda bulunsa bile, besinler insanlarca kul-lanılmaya başlayana kadar tehlikeli miktarlara ulaşmış olur. Tarım ilaçları, böcek öldürücüler ve kimyasal gübreler de su kirlenmesinde önemli rol oyna-makla birlikte bu tarım atıklarının etkileri, kentler ile kentlerin çevresinde yoğunlaşmış yerle-şim birimlerinin atıkları ve sanayi atıkları kadar büyük boyutlarda değildir. Kentlerin dışın-da su kirlenmesine neden olan başka bir etken de, çoğunlukla bırakılmış madenlerdeki asitle-rin çevredeki akarsulara karışmasıdır. Atık ısı: Sanayi tesislerinde, atıkların taşınması gibi işlevlerin yanı sıra soğutma ama-cıyla da büyük miktarlarda su kullanılır. Bu tesislerin başında elektrik enerjisi santralları gelmektedir. Yoğunlaştırıcıların soğutulması için doğal bir kaynaktan alınan su, sıcaklığı 10 yaklaşık 7 C artmış olarak kaynağa geri boşaltılır. Nükleer santrallar, fosil yakıt kullanan aynı kapasitedeki santrallardan yaklaşık yüzde 50 daha çok su kullanır. Bu nedenle, enerji santrallarının soğutulması, çevre kirlenmesinde son derece önemli rol oynayan etkenlerden biridir. Isıl kirlenme, biyolojik ve kimyasal tepkimeleri hızlandırır ve çözünmüş oksijen mik-tarının hızla azalmasına yol açar. Su sıcaklığı, balıkların yaşamasına olanak vermeyecek dü-zeye yükselebilir; bu durum, zararlı alglerin gelişmesine de ortam hazırlayarak besleyici –madde atıkları , deterjan, kimyasal gübre ve insan atıkları gibi kirleticilerin etkisini çoğaltır. Sonuçta atık ısı, göllerdeki ötrofikasyonu hızlandırır. Su kirlenmesinin nedenleri üç gruba ayrılarak incelenebilir:   Tarımsal çalışmaların neden olduğu kirlilik Tarımsal çalışmaların gereği olarak bitki hastalıkları ile mücadele amacıyla uygulanan pestisidlerin, verimin arttırılması için toprağa verilen gübrelerin ve çeşitli kullanımlar altın-daki alanlardan oluşan yüzey akışı, erozyon ve toprağın sürülmesi sonucu oluşan katı ve sıvı atıkların neden olduğu kirliliğe tarımsal kirlilik denir. Tarımsal çalışmalarda daha fazla ürün elde etmek amacıyla arazilere uygulanan kimyasal gübrelerin neden olduğu kirlilikler vardır. Bunlar arasında en önemlileri ise azot ve fosforun doğal düzen içindeki dönüşümleri sonucunda kirlilik meydana gelmesidir. Kimyasal gübrelerin arazilere uygulanması ile verimde bir artış olacağı doğaldır. Ancak bu gübrelemenin, suların kirliliğine hangi oranda etkili olacağının da saptanması gerekir. Su kirliliğine neden olan bitki besin maddelerinden azot ve fosfor, tüm canlı varlıklar için belili miktarlarda gerekli ise da fazla miktarının çeşitli sakıncaları bulunmaktadır. Belli başlı etki-leri, akarsular ve göllerdeki ötrofikasyon olayına neden olmasıdır. Bunun yanında fazla mik-tarda azot nedeniyle, azot zehirlenmesinden ölen toplu balık gruplarına da rastlanmaktadır. Hayvansal artıkların yarattığı kirlilik ise, hayvancılıkla ilgili olarak ahır ve ağıllardan ya-ğışlarla yıkanan hayvan idrar ve dışkı artıklarının temizleme sularına, oradan yüzey sularına karışması ve ya hayvan gübresinin tarlalara serilmesinden sonra yağışlarla yıkanarak yüzey sularına karışması şeklinde oluşan bir kirlilik şeklidir.   Endüstrinin neden olduğu kirlilik Bugün bu konuda bilinen kirlilikler beş alt grupta toplanabilir. 1. Kimyasal Kirlilik Bu kirlilik, sularda organik ve inorganik maddelerin bulunmasıyla oluşur. En çok karşıla-şılan tipi ise, proteinler, yağlar, gıda maddeleri ve hidrokarbonlar nedeniyle oluşan organik kirlenmedir. Zamk ve jelatin üreten fabrikaların artıkları, mezbahaların artık sularında ol-dukça fazla miktarda protein bulunur. Kağıt ve tekstil fabrikalarının artıklarında ise fazla miktarda karbonhidrat bulunmaktadır. Sentetik deterjanlar da kimyasal kirliliğe neden olan maddeler arasındadır. Az miktarda bulunmaları halinde dahi sularda köpük meydana getirdiklerinden suyun havalanmasını ön-ler, arıtma sistemlerinin randımanına düşürürler. 2. Fiziksel Kirlilik Fiziksel kirlenme, suyun sıcaklık, renk, bulanıklık ve koku gibi fiziksel özelliklerine etki eden bir kirlilik tipidir. Termal kirlenme, fiziksel kirlenmenin diğer bir tipidir. Soğutma suyuna gereksinme du-yulan termal enerji üreten istasyonlarda ve endüstrideki soğutma işlemleri sonucunda ortaya çıkan sıcak suların, akarsu, göl ve körfezlere dökülmesi termal kirlenmeye neden olmaktadır. Alıcı suyun sıcaklığında meydana gelen artış,sudaki biyolojik faaliyeti durdurmakta, suyun oksijen miktarını düşürmekte, reaksiyonu değiştirerek bir kısım kimyasal maddelerin çökel-mesine ve bir kısım maddelerin açığa çıkmasına neden olarak sudaki canlılar üzerinde değişik etkiler yapmaktadır. 3. Fizyolojik Kirlilik Suyun tadını ve kokusunu etkileyen bir kirlilik tipidir. Gıda endüstrisi artıkları ile kent kullanma suyu artıkları azotlu maddelerce zengin olduğundan son derece kötü bir kokuya neden olurlar. Endüstri artık sularının demir, mangan, fenoller vb. kimyasal maddeler içe-renleri suya özel, hoş olmayan bir koku ve tad verirler. 4. Biyolojik Kirlilik Sularda patojenik bakteri, mantar, alg, patojenik protozoa vb. bulunması nedeniyle mey-dana gelen kirlilik tipi biyolojik kirlenmedir. Diğer bir deyişle, suların tifo, kolera, amipli di-zanteri vb. çeşitli hastalıkları yapan organizmalarla kirlenmesi olmaktadır. Endüstri artık maddelerinin ve özellikle kanalizasyon sularının herhangi bir arıtma işle-mine tutulmadan plajlara dökülmesi nedeniyle hastalık yapan maddeler çoğalmakta ve denize girenlerde başta kulak, burun, boğaz yanmaları; sinüzit, bağırsak hastalıkları karaciğer ra-hatsızlıkları ve tifoya neden olur. 5. Radyoaktif Kirlilik Atmosferdeki atom patlamalarının ve nükleer enerji santrallerinin neden olduğu kirlilik-tir. Atmosferdeki radyoaktif maddeler, yağışlarla yeryüzüne düşmekte, akarsulara karış-makta, bitkiler tarafından absorbe edilmekte, buradan ot yiyenlere oradan da et yiyenlere geçerek gıda zincirinin üst halkasını oluşturan insanlara ulaşmaktadır. Nükleer santrallerin artık maddeleri oldukça önemli çevre kirleticilerindendir. Bu atık-lardan deniz dibine depo edilenlerden meydana gelen sızıntılar, son yılların önemli deniz kir-leticisi olarak sayılmaktadır.   Yerleşim Alanlarındaki Artıkların Neden Olduğu Kirlilik Bu kirliliğin iki önemli kaynağı, kanalizasyon ve çöplerdir. Bulaşıcı hastalık tehlikesi, kentleri, kapalı kanalizasyon sistemine zorlarken, yine kentlerdeki su sistemleri ile kanalizas-yon arasında bir bağlantı göze çarpmaktadır. Kanalizasyon sistemine verilen pis suların bo-şaltılması genellikle akarsulara, göllere veya denizlere yapıldığından, kent artık suları, önemli bir kirlilik nedeni olmaktadır. Çeşitli şekillerde kirlenen karasal kaynaklı akar suların genellikle ulaştıkları en son nokta denizler ve okyanuslarıdır. Bu nedenle karasal kaynaklı akar suları kirleten kaynak ve işlev-ler denizleri de kirletiyor demektir. Bununla beraber denizlerin kirlenmesi olayını şöyle özet-leyebiliriz: 1. Denizlerin havadan kirlenmesi:   Hava taşıt araçlarının meydana getirdiği kirlenme   Endüstri ve yerleşim bölgelerinde oluşan hava kirliliğinin, kimyasal reaksiyonlar (asit yağmurlar) sonucu sudaki maddelerle birleşmesi 2. Denizlerin denizlerden kirlenmesi   Deniz trafiğinin meydana getirdiği kirlenme. Dünya denizlerinde deniz trafiğinin yoğun-laşmış olması, özellikle ham petrolün deniz yoluyla taşınması denizlerde önemli kirlenme-lere neden olmaktadır. Petrol yüklü tankerlerin herhangi bir nedenle kazaya uğraması so-nucu denize dökülen petrol, deniz eko sisteminde geniş çapta ve uzun süreli zararlar mey-dana getirmektedir. Şu yada bu şekilde denize dökülmüş petrol veya petrol artıklarının zararları başlıca üç grup altında toplanabilir: # Bir litre petrol artığı kırk bin litrelik deniz suyunda oksijeni yok ederek yaşamı ortadan kaldırabilir. # Suyun üzerini kaplayan yağ tabakası suyun buharlaşmasını engelleyerek bir ölçüde ya-ğışların azalmasına neden olmaktadır. # Suyun üzerindeki bu örtü güneş ışığının denizlerin derinliklerine ulaşmasını engelleye-rek oksijeni azaltmakta ve bu da canlıların yaşam olanağını azaltmaktadır. Benzer zararlara denize pasa kül, moloz, safra, yağ, çöp gibi maddeleri atan, tank yıka-yan yük, yolcu gemileri ve tankerler de neden olmaktadır. Deniz eko sisteminde ortaya çıkan dengesizlik üretimde kayıplar şeklinde kendini belli etmektedir. Bugüne kadar yapılmış ince-lemelerin sonuçları, petrol artıklarından en çok etkilenen toplulukların, yumurta, lavra ve genç fertlerden oluşan topluluklar olduğunu göstermiştir.   Limanlarda meydana gelen kirlilik.   Deniz dibi kaynaklarından petrolün çıkarılması sırasında meydana gelen sızıntı ve ka-çaklar.   Deniz ürünlerini elde etmede uygulanan yöntemler.   Denizlerde sürdürülen askeri faaliyetler ve savaş. 3. Denizlerin karalardan kirletilmesi:   Yerleşim yerlerinden denize dökülen kirlilik.   Çöpler.   Kullanılmış sular, kanalizasyon artık ve suları.   Endüstri kuruluşlarından denize atılan kirlilik.   Tarımdan gelen kirlilik.   Turizmin (örneğin yat turizminin) doğurduğu kirlilik. TOPRAK KİRLENMESİ Tarımsal ve mineral atıklar, yeryüzündeki toplam katı atıkların önemli bir bölümünü o-luşturmakla birlikte, kirletici olarak görece daha az zararlıdır. Bunun başlıca nedeni de, yer-leşim bölgelerinden ve sanayiden kaynaklanan atıklar gibi belli noktalarda yoğunlaşmış ol-mayıp daha geniş alanlara yayılmalarıdır. Katı atıklar: Hayvan dışkısı, mezbahalardan ve her türlü ekin biçme etkinliğinden gelen atıklar, toprak kirlenmesinin en önemli kaynağıdır. Sığır, domu, koyun ve tavuk gibi çiftlik hayvanları, toplam insan nüfusundan 1000 kat daha çok dışkı üretir. Geçmişte besin madde-leri, otlak ya da çiftlikteki hayvanların aracılığıyla yeniden toprağa dönerken, günümüzde kullanılan yenilikler bu atıkların belli alanlarda yoğunlaşmasına neden olmaktadır. Pek çok kimyasal madde içeren tarım ilaçlarının (örn. Böcek öldürücüler, ot öldürücüler, mantar ilaçları) su ve toprak kirlenmesinde önemli payı vardır. Bunlar, besin zincirinde daha ileri organizmalara geçtikçe, her aşamada giderek artan oranda yoğunlaşır ve giderek zinci-rin son halkasını oluşturan etçillere önemli zararlar verir. Yani zararlı kimyasal maddeler, basit organizmalarda çok küçük miktarlarda bulunur, bu organizmalar daha karmaşık orga-nizmalarca yendikçe yoğunlaşır; otçulları yiyen etçillere ulaştığında ise zararlı boyutlara varmıştır. Özellikle şahin, atmaca, kartal gibi yırtıcı kuşlarda ve pelikan, karabatak gibi ba-lıklarla beslenen kuşlarda zararlı ilaçlarının olumsuz etkileri gözlenmiştir. Hücrelerinde biri-ken DDT (Diklor difenil triklor) ve benzeri bileşikler bu canlıların üreme yeteneğini sınırla-maktadır. Örneğin dişilerin, üstünde kuluçkaya yatılamayacak biçimde yumuşak kabuklu ya da kabuksuz yumurta vermesi sonucunda, Avrupa, Japonya ve Kuzey Amerika’da bazı türle-rin sayısında önemli azalmalar olmuştur. Tarım ilaçlarının biyolojik etkileri üzerinde yapılan yeni araştırmalar, bu maddelerin za-rarlılar üzerindeki etkisinin giderek azaldığını ortaya çıkarmaktadır. Pek çok böcek türü bu maddelere bağışıklık kazanmış durumdadır; ayrıca, kalıtım yoluyla sonraki kuşakların zehir-li ilaçlara karşı direnci artmaktadır. Öte yandan bu kimyasal maddelerin sürekli olarak kul-lanılması, bazı bölgelerde de önceden bulunmayan zararlı topluluklarının türemesine yol aç-mıştır. Bunun başlıca nedeni, tarım ilaçlarının, otçul böcek nüfusunun denetim altında tutan etçil böcekleri yok etmesidir. Aşınma sonucu biriken tortullar, toprağın bozulmasına ve suların bulanıklaşmasına yol açan bir başka etmendir. Tortul üretimi, orman ve tarım alanlarının kötü kullanımından kaynaklanan ve giderek boyutları büyüyen bir sorundur. Madencilik ve inşaat etkinlikleri de bu alanda rol oynar. Mineral katı atıkların başlıca kaynağı, madencilik etkinlikleri ve ilgili sanayilerdir. Özel-likle açık kömür işletmeciliğinin yol açtığı kirlenme, akarsuları, ve akaçlama havzalarını etki-lediği gibi, toprağın da kıraçlaşmasına yol açmaktadır. Yerleşim bölgelerinden ve sanayi tesislerinden kaynaklanan katı atıklar arasında kağıt, besin maddeleri, metal, cam, tahta, plastik, kumaş, kauçuk ürünleri, deri ve çöp sayılabilir. Bu maddelerin bir bölümü açık çöp alanlarına boşaltılır, bir bölümü çöp çukurlarına atılıp üstü kapatılır, bir bölümü ise fırınlarda yakılarak yok edilir. geriye kalan küçük bir bölümü de rüzgarlarla taşınmaya ya da çürümeye bırakılır ya da başka biçimlerde değerlendirilir. Toprağı kirleten nedenleri şöyle özetleyebiliriz:   Kentlerin neden olduğu toprak kirliliği Kentleşmenin yoğun bulunduğu bölgelerde toprak niteliği hissedilir ölçüde bozulmakta-dır. Bunda arazinin kötü kullanılması kadar, inşaat tekniklerinin kirliliği, alt yapı yetersizlik-leri dolayısıyla kirli su ve kanalizasyonun toprağa karışması ve çöp birikmesinde rol oyna-maktadır. Ayrıca kent suyunun yetersizliği kirli suların pompalanmasında fazla yardımcı olmadığı için, daha kolay şekilde toprakta kalmaktadır. Kent çevresinde toprak kirliliğine yol açan en önemli nedenlerden birisi de fosseptik yöntemiyle kent artıklarının toprakta birikti-rilmesidir. Bu yolla yoğunlaşan kirlilik, toprağın daha derin tabakalarına sızarak yer altı su-larını da kirletmektedir. Çöp sorunu da aynı şekilde kirliliğe yol açmaktadır. Çöp yalnız toprak üzerinde kalan katı madde olarak değil, zamanla toprağa karışan bir kirlilik öğesidir. Kent çevresinde toprak kirliliğine yol açan diğer bir konu da hava kirliliğidir. Gerek ken-tin ısınması sırasında bacalardan çıkan zehirli gazlar, gerekse taşıtların egzoz gazları, yoğun-laşarak toprakla kaynaşmakta ve topraktaki canlı yaşamı öldürmektedir.   Endüstrinin meydana getirdiği toprak kirliliği Endüstri uğraşları sırasında meydana gelen su ve hava kirlilikleri kimyasal yollarla top-rağa karışma eğilimindedir. Bunun yanı sıra çeşitli endüstri artıklarının fabrikalar yöresinde ve ya daha açıkta bir yere yayılması alışıla gelmiş bir uygulamadır. Bazı endüstri kollarının, şeker endüstrisi gibi, toprağın üstüne atılan posa maddesi çok olmaktadır. Bazı uğraşlar, ba-kır gibi, önemli derecede kirleticiliğe sahiptir. Endüstrinin toprak kirlenmesine yol açan önemli bir kusuru da yer seçim kriterlerine uymakta özen göstermemesidir. Ele geçirilen herhangi bir arsa üzerine kurulan bir fabrika-nın kirlilik meydana getirmesi ve çevresindeki toprağın canlı yaşamını tahrip ederek verimini düşürmektedir.   Tarım uğraşlarının meydana getirdiği toprak kirliliği Yanlış toprak kullanımı, yanlış tarım yöntemleri veya yanlış ürün seçimi toprakta tahri-bat yapabilir. Ancak, genellikle tarım uğraşlarının oluşturduğu toprak kirliliğinden, tarım ilaçları ve gübreleme sonucu meydana gelen kirlilik anlaşılmaktadır. Toprağın böcek öldürücülerle veya ot öldürücülerle doğrudan doğruya ilaçlanması ya-nında, havadaki tozlara yapışarak toprağa karışanlar veya bitkilerin yapraklarında kalan miktarların yağmur ve sulama sularıyla yıkanması sonucunda toprağa karışanlar, toprağın kirlenmesine yol açmaktadır. Tarım ilaçlarının biyokimyasal özellikleri, topraktaki mikroorganizmaların ve diğer can-lıların yaşama ve büyüme fonksiyonlarını engellemektedir. Kalıcı ve birikici özellik taşıyan klorlanmış hidrokarbon pestisidler, toprakta mevcut toprak mikroorganizmalarını öldürebi-lir, geçici olarak miktarını azaltabilir veya toprak yapısında değişmelere neden olabilirler. Üretimi arttırmak amacıyla kullanılan yapay gübreler, çok görülen bir toprak kirlenme-sine neden olmaktadır. Bu gübreler içinde bazıları bitki besin maddelerinin tuzla tutulmasına bir neden olurken giderek toprakta tuzluluk sorununu yaratmaktadır. Toprak Kirliliğinin İnsan ve Çevresine Etkileri Toprak sorunları ve kirliliği insan yaşamına ve çevresine çok önlü olarak etkide bulun-maktadır. Bu etkiler başlıca beş ana başlık altında toplanabilir.   Erozyonun etkileri   Yaşlık ve çoraklığın etkileri   Taşlılık ve kayalığın etkileri   Gübre ve gübrelemenin etkileri   Tarım arazisi bozulmalarının etkileri Erozyonun etkileri, toprak kayıplarında artma, üretkenlik potansiyelinde azalma, bitki besin maddelerinin kaybı, ürünlerde nitelik düşüklüğü, su tutma kapasitesinde azalma, ve-rimli toprakların sedimentlerle örtülmesi, toprak yapısının bozulması, çeki gücüne duyulan gereksinmedeki artma, sel oyuntuları ile arazi kaybı, sedimantasyon, akarsu yataklarında ve rezervuarlarda kapasite ve depolama azalması, uygun su temini masraflarının artması, baraj ve sulama sistemlerinde yıpranma ve normal bakım masraflarının artması şeklinde kendini göstermektedir. Gübre ve gübrelemenin etkileri, toprağı tanımadan ve özelliklerini bilmeden yapılan güb-relemelerle, toprağın gereksinimi olmayan gübreyi toprağa uygulamakla kendisini belli eder. Yanlış cins ve aşırı miktarda kullanılan gübre, toprak ph’ nın normalden uzaklaşmasına, top-rak strüktürünün bozulmasına, mikroorganizma yaşamını olumsuz yönde etkilemesine neden olmaktadır. Gereğinden fazla kullanılan gübre, örneğin azotlu gübre kullanılması, topraktan yıkan-malara, içme suları ve akarsularda nitrat miktarının artmasına; aşırı ölçüde fosforlu gübre kullanılması içme suları ve akarsuların fosfor içeriğinin yükselmesine; yüksek düzeyde kulla-nılan nitrojenli gübreler, bitkilerde nitrozamin gibi kanserojen maddelerin oluşmasına yol açmaktadır. DİĞER ETMENLER GÜRÜLTÜ KİRLİLİĞİ Bilimsel yönden “düzensiz ses” olarak nitelendirilen gürültü, hoşa gitmeyen, rahatsız edi-ci duygular uyandıran bir akustik olgu veya beğenilmeyen, istenmeyen sesler topluluğu ola-rak tanımlanır. Gürültü, tüm dünyada özellikle büyük kentlerde hızla kentleşmenin, endüstrileşmenin, ulaşımın artan nüfusun vb. etkenlerin yarattığı önemli bir sorun olarak karşımıza çıkmakta-dır. Örneğin ülkemizdeki büyük kentlerde son yıllarda artan kara trafiğinin gürültünün ne denli etkili olduğu herkes tarafından bilinmektedir. Bunu gibi açık pazarlar, eğlence yerleri, çocuk parkı ve bahçeleri, endüstri kuruluşları, yapı ve yol yapım ve onarımları, hava ve deniz trafiği gibi gürültü kaynakları düşünüldüğünde, bunun da gerçekten önemli bir çevre kirliliği yarattığı söylenebilir. Gürültü düzeyleri “desibel” (dB) birimi ile değerlendirilir. Ses 35 – 40 desibele ulaştığın-da gürültü olarak değerlendirilmektedir. 100 dB’nin üzerindeki gürültüler çok şiddetli gürül-tüler olarak tanımlanır. Sokak gürültüleri 60 – 90 dB arasında, bazı zamanlar bunların dışın-da değerler gösterilebilir. Büro gürültüleri, ortalama 35 – 65 dB, eğer çok gürültülü çalışan makineler varsa 80 – 85 dB olabilir. Evlerde 40 – 50 dB fon gürültüsü düşünülebilir. Büyük kentlerde kent içi gürültüsü 103 dB’ e ulaşırken motosiklet gürültüsü 110 dB, hava kompres-yonu ile çalışan delici tabancalar 120 dB civarında gürültüye neden olurlar. Gürültünün İnsan ve Çevresine Etkileri Gürültünün de insan sağlığını en az hava ve su kirlenmesi kadar etkilediği saptanmıştır. Nabız ve soluma hızlarını arttırarak insanların fizyolojik durumunda değişikliklere yol aça-bildiği gibi, geçici ya da kalıcı işitme bozuklukları da yaratabilir. Gürültüden kaynaklanan işitme bozukluğu milyonlarca sanayi işçisini ve bazı askeri personeli tehdit etmektedir. Ayrıca gürültünün kalp krizine ve yüksek tansiyon, ülser gibi kronik rahatsızlıklara neden olduğu yolunda tıbbi bulgular vardır. Bununla beraber kulak çınlaması – sağırlık, kalp ritminin artması, kaslarda yorgunluk, iş ritminin artması, iş veriminde düşüş, salgı düzeni ve sindirim sisteminde bozukluk, dikkat dağılımı, uyku düzeninde aksaklıklar gibi durumlarda insana zarar verebilir. İnsan kulağı 165 dB şiddetindeki bir sese 0,003 saniye; 145 dB şiddetindeki bir sese ise 0,3 saniye süre ile kalıcı bir etki olmadan dayanabilmektedir. Bu şiddetteki seslerin uzun sürmesi için kulak zarı yırtılmaları, özengi kemiği çıkıkları, orta kulakta kanama, iç kulakta önemli arızalar ortaya çıkar. Sesin sürekli olması, kesikli olmasından daha tahrip edicidir. Günlük 8 saat çalışan kişinin bu süre içinde sürekli olarak çalışabileceği gürültü şiddeti 93 dB olursa günlük çalışma 4 saat, 96 olursa bu süre en fazla 2 saat olmalıdır. RADYASYON Çevreye zarar veren bir etken de radyasyondur. Düşük etkili, insan ürünü radyasyon X ışınlarından, radyoaktif maddelerden ve televizyon gibi elektronik aygıtlardan kaynaklanır. Tıpta kullanılan araçlardan kaynaklanan radyasyon, insan ürünü radyasyonun yüzde 94’ünü, ortalama bireyin aldığı toplam radyasyonun da yüzde 30’unu oluşturur. Yüksek doz-da radyasyonun lösemi ve öteki kanserlere, düşük düzeyde radyasyonun da kalıtsal hastalık-lara yol açtığı ortaya konmuştur. Atmosferde, uzayda ve su altında yapılan nükleer denemele-rin uluslar arası antlaşmalarla yasaklanması, 1960’lardan bu yana doğal çevredeki radyasyon düzeyinin azalmasını sağlamıştır. Doğal çevreye karışan radyoaktif atomların hemen hemen tümü nükleer santrallardan kaynaklanmaktadır. Açığa çıkan başlıca maddeler kripton – 85 ile trityum havaya ve su sis-temlerine karışır; ama bunlar, dünya nüfusunun aldığı radyasyon miktarını önemli ölçüde arttırmamaktır.

http://www.biyologlar.com/cevre-kirlenmesi

Biyolojik Silahlar

Kimyasal ajanlar gibi, biyolojik silahlar da neyse ki popüler kültürdeki şöhretlerine yakışır şekilde kullanılmış değiller henüz. 1971′de Kazakistan’daki bir iaboratuvardan kaçan ve silah olarak kullanılmak üzere hazırlanan çiçek hastalığı mikrobu yüzünden ölenlerin sayısı yalnızca 3. Üstelik hastalık salgın halinde ilerleme de göstermemiş. 1979′da şimdiki adı Ekaterinburg oian Sverdiovsk’taki bir fabrikadan sızan şarbon mikrobu içeren bir biyolojik silah yüzünden 68 kişi yaşamını yitirdi ve yine hastalık yayılmadı. İnsanların bu yüzden yaşamlarını yitirmeleri çok acı ama, yine de yaşam kaybı tek bir bombanın neden olacağından daha fazla değil. 1989′da Washington’da birkaç kamu işçisi kaza sonucu Ebola virüsüne maruz kaldı. Durum fark edilene kadar, birkaç gün boyunca bu işçiler sosyal yaşamlarını sürdürmüş, aile ve arkadaşlarıyla birlikte olmuşlardı. Buna karşın, bu olayda kimse yaşamını yitirmeden gerekli önlemler alınabildi. Gerçek şu ki, evrim milyonlarca yıl boyunca memeiilere, mikroplara karşı direnç gösterme özettiği kazandırdı. Örneğin kara veba, tarihte bilinen en kötü hastalıklardan biriydi; yetersiz sağlık hizmetleri ve kötü yaşam koşullarının hakim olduğu Orta Çağ Avrupası’nda at koşturdu. Ama salgın, insanlığı yok edemedi: birçok kişi hastalığı yendi. Bu senaryoların korku saçtığı günümüz batı toplumlarındaysa, hangi mikrop ya da virüs ortaya çıkarsa çıksın, daha sağlıklı insanlarla, gelişmiş sağlık hizmetleriyle ve biyoajanları yok etmek üzere geliştirilmiş ilaçlarla karşılaşacağı kesin. Belki günün birinde, bağışıklık sistemimizi ek-tisiz hale getirecek bir virüs üretebilen bir deli ortaya çıkar. Aslında mümkün olduğundan bir “süper hastalık” yaratılabilir ya da çiçek gibi, zaten var olan bir hastalık, mikrobun genleriyle oynanarak daha zararlı hale getirilebilir. Üstelik, zamanla biyoîeknolojinin gelişip, denetiminin daha güç olacağı düşünülürse, birtakım kişi ya da grupların, zararlı mikrop ya da virüsleri kolaylıkla üretebileceklerini de kabul edebiliriz. Ancak, yine de bilim adamları daha önce hiçbir korkunç hastalığın insanlığı ortadan kaldırmayı başaramadığı gibi, gelecekte de bunun pek olası olamayacağını söylüyorlar. Biyolojik silahlar diğer canlılar üzerinde zararlı etkiler yaratmak maksadıyla kullanılan bakteri, virüs, mikrobiyal toksinler, vb. ajanlardır. Bu tanım genellikle biyolojik olarak elde edilen toksinleri ve zehirleri de kapsayacak şekilde genişletilir. Biyolojik savaş araçları, yaşayan mikroorganizmaları (bakteri, protozoa, riketsia, virüs ve mantar) içerdiği gibi mikroorganizmalar, bitkiler ve hayvanlar tarafından üretilen toksinleri (kimyasallar) de kapsar. Yaşayan biyolojik maddeler kokusuz, tatsız ve havaya bulutu halinde atıldığı zaman 1 ila 5 mikron boyutunda son derece küçük parçacıklardan oluştuğundan insan gözüyle görülemez. Silah olarak kullanılabilecek biyolojik ajanlar şu şekilde sıralanabilir; Bakteriler: Küçük-serbest yaşayan organizmalar olup çoğunluğu katı veya sıvı kültür ortamında üretilebilirler. Bu organizmalar sitoplazma, hücre zarı ve nükleer materyaller içeren bir yapıya sahiptir. Basit bölünme ile ürerler. Oluşturdukları hastalıklar genellikle spesifik antibiyotik tedavilerine cevap verirler. Virüsler: İçlerinde çoğalabilecekleri canlı organizmalara ihtiyaç duyan organizmalardır. Bundan dolayı da enfeksiyoz etkileri büyük oranda konak hücrelere bağımlıdır. Virüsler genellikle antibiyotik tedavilere cevap vermeyen fakat antiviral bileşimlerin bir kısmına ve sınırlı kullanıma uygun preparatlara cevap veren hastalıklara neden olurlar. Riketsialar: Hem bakterilerin hem de virüslerin genel karakterlerini taşıyan mikroorganizmalardır. Bakteriler gibi metabolik enzimler ve hücre zarından oluşurlar ve oksijen kullanırlar ve geniş çaplı antibiyotiklere karşı duyarlıdırlar. Yaşayan hücreler içinde üremelerinden dolayı da virüsleri andırırlar. Klamidya: Kendi enerji kaynaklarını üretemediklerinden zorunlu hücre içi parazitlerdir. Bakteriler gibi geniş spekturumlu antibiyotiklere cevap verirler. Çoğalmak için virüsler gibi yaşayan hücrelere ihtiyaç duyarlar. Mantarlar: Fotosentez yapamayan, çürüyen bitkisel olgulardan besin ihtiyaçlarını sağlarlar. Toksinler: Yaşayan bitkiler, hayvanlar veya mikroorganizmalardan elde edilen zehirli maddelerdir. Bazı toksinler kimyasallara da dönüştürülebilirler. Toksinlere özel antiserum ve seçilmiş farmakolojik ajanlarla karşı konulabilir Literatürde çok sayıda biyolojik savaş ajanı belirtilmektedirler. Bunların arasında; Bacillus anthraksis (Şarbon Etkeni) Botulinum Toksinleri (Konserve Zehiri) Brucelloz (“Malta Humması” Etkeni) Vibrio Cholera ( Kolera Etkeni) Clostridium perfirenges (Gazlı Gangren Etkeni ) Salmonella typhi (Tifo Etkeni) Psoudomanas psoudomallei (Melioidozis hastalığı Etkeni) Psoudomanas mallei (Ruam hastalığı Etkeni) Yersinia pestis (Veba Etkeni) Francisella tularensis (Tularemi Etkeni) Coxiella burnetti ( Q Ateşi Etkeni) Smallpox virüs (Çiçek Hastalığı Etkeni) Congo-Crimean Hemorajik Ateşi Virüsü Ebola Virüsü Stafilokoksik Enterotoksin B Rift Valley Ateşi Virüsü Trichothecene mycotoxins Venezüella At Ensefaliti Plazmodium vivax (Sıtma Etkeni) Saxitoksin (predominant olarak doğada deniz dinoflajellileri tarafından üretilir) Kaynak:www.genbilim.com

http://www.biyologlar.com/biyolojik-silahlar

PROTOZOONLARIN SUCUL EKOSİSTEMLERDEKİ GÖREVLERİ

Protozoonlar sucul ekosistemlerde madde ve enerji döngüsünün önemli organizma grubunu oluşturur. Hızlı büyüme yetenekleri, alg, bakteri ve çözünmüş besin kaynaklarını kullanabilmeleri, kendilerinden daha büyük diğer yaşam formlarına av oluşturmaları nedeni ile sucul besin ağında anahtar role sahiptirler. Bazı üyeleri fotosentetik yolla besinlerinin bir kısmını sentezleme yeteneğine sahip olmakla birlikte, serbest yaşayan formların tamamı kendilerinden daha küçük mikroorganizmaları besin olarak kullanırlar. Çoğu kez üzerinden beslendikleri avları ile eş büyüme potansiyeline sahip olduklarından büyük populasyonlar meydana getirirler ve diğer mikrobiyal populasyonların gelişimini kontrol ederler. Protozoon predasyonu sucul ekosistemlerdeki bakteriyel ölümün en büyük kaynağını oluşturur. Tek hücreli veya filametöz alglerin en önemli tüketicileridir. Aynı zamanda diğer protozoonları hatta metazoon yumurtaları ve küçük krustaseleri besin olarak kullanabilirler. Bununla birlikte, metazooplanktonlar gibi küçük omurgasız canlılar ile bazı balık larvaları gibi daha büyük canlılar için da besin oluştururlar [17, 24-26]. Yakın zamanlara kadar sucul habitatlardaki besin ve enerji akışının, diyatom ve dinoflagellatlar gibi büyük fitoplanktonlar üzerinden beslenen zooplanktonlar aracılığıyla, balıklar gibi daha büyük organizmalara doğru olduğu düşünülmekteydi. Son zamanlarda bu görüş değişmiştir. Sucul primer üretimin büyük bir kısmının küçük ökaryotik algler ve siyanobakteriler tarafından üretildiği ve bu üretimin önemli bir miktarının protozoonlar tarafından tüketildiği bilinmektedir. Aynı zamanda primer üretimin önemli bir kısmı çözünmüş organik madde olarak ortama salınmakta ve bu maddeler bakteriler tarafından kullanılmaktadır. Bakteriler diğer organizmaların ölmesinden ve salgılarından oluşan organik maddeleri de besin olarak kullanırlar [27]. Protozoonlar, bakteriler üzerinden beslenerek bu kaynakları da zooplanktonlar aracılığı ile besin ağının daha ileri kısımlarına pompalayan anahtar organizmalar olarak karşımıza çıkarlar Protozoon kommuniteleri dinamik yapılar olup, ortamın fiziksel ve kimyasal koşullarında meydana gelen değişikliklere duyarlıdır. Çevresel koşullarda meydana gelen değişikliklere hücre bölünmesi, kist oluşturma ve kistten çıkma şeklinde hızla cevap verirler. Bundan dolayı, protozoon çeşitliliği ve spesifik türler, ekosistemdeki değişikliklerin indikatörü olarak kullanılabilir [5, 28]. Protozoa organik olarak kirletilmiş suların doğal arıtım sürecinde de rol alır. Ortamdaki çözünmüş ve partiküler organik materyali besin olarak kullanarak bu maddelerin ortamdan uzaklaştırılmasını sağladıkları gibi, bunların üzerinden beslenen bakterileri tüketerek onların aktivitelerini de uyarır. Sucul habitatlarda bulunan protozoonların tümü faydalı organizmalar değildirler. Bazıları halk sağlığında ciddi problemlere neden olan insan bağırsak parazitleridir. Bunların kistleri ile kontamine olmuş sular aracılığıyla, bir konaktan diğerine geçerler: Giardia lamblia (flagellat), Entamoeba histolytica (amip), Cryptosporidium spp. (sporozoon). Parazitik E. histolytica dışında insan bağırsağında yaşayan diğer amip türleri (E. hartmanni, E. coli, Endolimax nana, Iodamoeba buetschlii) zararsız kommensaller olup, patojen değildirler. Bazı küçük amip türleri doğal olarak sularda ya da nemli topraklarda serbest yaşarlar, ancak insana ve diğer memelilere bulaştıklarında patojen özellik kazanırlar. Naegleria fowleri ve çeşitli Acanthamoeba türleri öldürücü amibik meningoensefalite neden olurlar. Bazı serbest yaşayan tek hücreli formlar da patojenik bakteri taşırlar ve hastalık reservuarları olarak fonksiyon görürler. Bakteriler tek hücreli sitoplazmasında sadece yaşamlarını devam ettirmezler, aynı zamanda çoğalarak sitoplazmayı doğal habitat olarak kullanırlar [5]. Fotosentetik dinoflagellatların ekzotoksinleri, balık ve denizel omurgasızlar tarafından alınarak besin zinciri vasıtasıyla insana kadar taşınırlar. Bu ekzotoksinler birikim sonucunda öldürücü olabilirler. Bazı protozoon türleri ise tatlı su balıklarında ekto- (örneğin Icthyophthirus multifilis, Tetrahymena corlissi, Trichodina spp., Chilodonella piscicola, Icthyobodo necator, Piscinoodinium sp., Epistylis spp.) ve endoparazit (örneğin Octomitus salmonis, Trypanoplasma borreli) olarak yaşarlar ve kültür balıkçılığında önemli zararlara neden olurlar.

http://www.biyologlar.com/protozoonlarin-sucul-ekosistemlerdeki-gorevleri

BİYOTEKNOLOJİK GELİŞMELER

BİYOTEKNOLOJİK GELİŞMELER

Bu makale iki bölümden oluşmuştur. Birinci bölümünde, biyoteknoloji ile değişen dünya düzeninde olası devrimsel gelişmeler ve söz konusu gelişmelerin eğitim bilimleri açısından öngörülen doğurgusu ele alınmıştır.

http://www.biyologlar.com/biyoteknolojik-gelismeler

Bitkilerde Davranış

Bitkilerde çimlenme,çiçek açma,yaprak dökme,tropizma ve nasti bitkilerde görülen önemli davranışlardır.Uyaran ışık,ısı,su,kimyasallar ve travmalar olabilir.Tepkilerin verilmesinde hormonlar düzenleyicidir. Tepki ise mitoz,turgor değişimi veya asimetrik büyüme ile gerçekleşir. Yapılan çalışmalar bitkilerinde belli bir alanda ürettikleri özel salgılarla birbirlerinin metabolizmalarını kontrol ettikleri görülmüştür.Ayrıca etilenin etkisinde unutmamak gerekir. Bitkilerde nasti ve tropizma kalıtsal davranışlardır. 1-Tropizma(Yönelim):Asimetrik büyümeler sonucu gelişir.Hormonların dağılımında görülen asimetri sonucu, dengesiz turgor ve hücre bölünmeleri ile gerçekleşir.Yavaş gerçekleşen davranıştır. Bu durum bitkinin farklı kısımlarının hormonlara farklı cevap vermesinden kaynaklanır. Tropizmada daha çok uç meristeminden salgılanan oksin hormonu etkilidir. Örneğin uç kısımdaki oksin hormonu ışık varlığına göre farklı dağılım gösterir Bu durum bitkide yönelmeyi gerçekleştirir. Oksinlerin dağılımı karanlıkta ve ışığın tepeden geldiği durumlarda dengelidir. Bu yüzden bitkide her hangi bir yönelme görülmez, ancak eğer ışık bir yönden geliyorsa ışığın geldiği yönde oksin miktarı az, ışığın geldiği tarafın karşısında oksin miktarı fazladır a-Fototropizma (Uyaran: ışık) Gövde pozitif tepki kök ise negatif tepki verir. b-Jeotropizma (Uyaran:Yerçekimi) Gövde negatif kök ise pozitif tepki verir. Bataklık ve sulak ortam bitkilerinin bazı kökleri negatif jeotropizma gösterir. Bu tip kökler havalandırma kökleri olarak adlandırılır ve bataklık toprağında O 2 nin az olmasından dolayı köklerin gaz alış verişinde rol alırlar. c-Hidrotropizma (Uyaran :Su) Kökler pozitif hidrotropizma göstererek suyun fazla olduğu ortamlara doğru yönelirler. d-Kemotropizma (Uyaran:Kimyasallar=asitler,bazlar,gübre) Kökler kimyasallara karşı pozitif (Gübre) veya negatif (Asit) tropizma gösterirler. e-Travmatropizma (Uyaran:Yaralanma) Kökler yaralanmaya neden olan faktörlere karşı negatif tropizma gösterir. f-Haptotropizma (Uyaran:Temas) Sarmaşık ve fasulyenin sülük gövdelerinde değmeye karşı pozitif tropizma gösterir. 2-Nasti(İrkilme):Bazı bitkiler ise uyartıların yönüne bağlı olmaksızın çok hızlı tepki gösterebilirler. Bu tür davranışlarında etken olan faktör turgor olayıdır. Örnek:Küstüm otunun duyarlı yaprak¬ları dokununca hemen kapanır. Örnek: Böcek yiyen bitkilerin çiçeğine böcek konunca çiçeğin yaprakları hemen kapanır. Bu hareketler turgor basıncındaki değişmelerle düzenlenir ve nasti hareketleri adını alır.Uyaranın yönüne bağlı olmaksızın gerçekleşen tepki tarzındaki hareketlerdir.Uyarana göre adlandırılır. a-Fotonasti.......(Uyaran:ışık):Papatya çiçeklerinde b-Termonasti....(Uyaran:Isı):Çiğdemin yaprak hareketlerinde c-Sismonasti....(Uyaran:Sarsıntı,Değme):Küstüm otunda d-Tigmonasti....(Uyaran okunma):Böcek kapan bitkilerde

http://www.biyologlar.com/bitkilerde-davranis

ÇEVRE TAHRİBATININ NEDENLERİ

Çağımızda Çevre kelimesinin yepyeni bir anlamı doğmuş ve insanlığın hal ve özellikle geleceği üzerinde sonsuz etki yapabilir bir durum ortaya çıkmış bulunmaktadır. Hızlı gelişme ile beraber meydana gelen Çevre kirlenmesinden söz edildiği zaman bunun önemini dimağına yerleştirilmiş kimseler derin , derin düşünmektedirler, zira gelecekte çok önemli ekolojikdeğişikliklerin görülebileceğini tahmin edebilmektedirler. Çevre kirlenmesinin önemi sanayileştirme faaliyeti ile orantılı olarak insanlar, hayvanlar ve bitkiler için durmadan artmakta ve dünyamızdaki hayat zincirini ciddi bir şekilde tehdit etmektedir. Bugün dünyamızın her hangi bir bölgesinde canlı varlıklar dengesi bozuluyorsa, yani üreme miktarı tahrip olandan az ise ve oradaki canlı varlıklar zorlanıyor ise * Çevre sorunu * var demektir. O bölgedeki çevre kirlenmesi sürekli ve aynı zamanda etrafa durmadan yayılıyor ise, oradaki çevre sorunu vahimdir. Acil önlem almak gerekir. İnsanlar etkisi olmadan da canlı varlıklar arasında varolan dengeler az veya çok bozulabilirler, yani çevre sorunu meydana gelebilir. Bu olaylar genellikle o kadar yavaş meydana geliyor ki, çoğu zaman insan ömrü bunları görmeye yetmiyor. Nedeni insan olmayan pek çok çevre sorunu yani hayat zincirindeki bozulmalar, doğa tarafından kısa veya uzun sürede düzeltilebilir. Başka türlü ifade edelim : Doğa alışık olduğu olayların yaralarını rahatlıkla tedavi edebiliyor. Tahribat yaparak çevre sorunlarına neden olabilen tabii olaylar arasında, seller, yıldırımlar, yıldırımların sebep oldukları yangınlar, depremler, kasırgalar, kuraklıklar, büyük sıcaklık değişmeleri vs. sayılabilir. Bunlar ve bunlara benzeyen çevre sorunlarında çok fazla etkili önlem alamayız. Bu gibi değişiklikler insan iradesinin dışındadırlar. İnsanların sayısız etkinliklerinden dolayı dünyadaki sular toprak ve diğer katı maddeler ile bunları çevreleyen atmosfer hızla kirlenmektedirler. Dünyamızda mevcut olan hayat zinciri, çeşitli etkinlikler sonucunda meydana gelebilen pek çok madde daha önce mevcut olmadıklarından, doğa bunları ya hiç yok edemiyor veya uzun yıllar sonra yok edebilecektir. Bu gibi suni maddelerin çevreyi gittikçe daha fazla kirletmelerinin nedeni budur. Denebilir ki, güzel dünyamızın, insanların faaliyetlerinden dolayı şimdiye kadar maruz kaldığı bütün kirlenme veya bu kirlenmenin büyük bir kısmı çağımız dediğimiz son bir buçuk yüzyıl içinde meydana gelmiştir. Yani, dünyadaki çevre kirlenmesinin tek sorumlusu çağımızda yaşamış ve yaşamakta olan birkaç insan jenerasyonudur. Dünyamızda mevcut olan milyarlarca ton fosil madde (petrol,doğalgaz,çeşitli maden kömürü vs.) milyonlarca yıldan beri hemen, hemen hiç azalmadan oldukları gibi duruyorlardı. Parçalanınca bol miktarlarda enerji verebilen uranyum ve radyum gibi radyoaktif madenlere de çağımıza kadar iltifat eden kimse yoktu. Dünyamız da bunların kullanılmasından ve parçalanmasından dolayı her hangi bir kirlenmeye maruz kalmıyordu. Bugün ise bir çok kıymetli yer altı hazinelerinin ne zaman bitebileceğinin hesabı yapılmakta ve insanları ciddi bir şekilde düşündürmektedir. Bu gibi maddelerin gerek enerji üretimine kullanılması ve gerekse diğer amaçlar için işlenilmesi, çevre kirlenmesinin en önemli kaynağını teşkil etmektedirler. Kuşkusuz çağımız, dünya tarihinde en hızlı gelişme ve ilerlemelere sahne olmaktadır. Beşeriyetin sanayileşme ve tekniğin her alanında gelişmesinin azami noktası yaşamakta olduğumuz zaman içindedir. Bu hızlı gelişme durmadan artmaktadır. Bu arada, insanların doğal zenginlik kaynaklarını hızla tüketmeleri ve çevreyi pek çok yer ve şekilde hızla kirletmelerine çağımızda rastlanmaktadır. Etkili ve geniş kapsamlı önlemler alınmaz ise dünyamızdaki tüm canlı varlıklar için yaşama şartları durmadan bozulmaya mahkumdur. Çevre kirlenmesinin önemi hızlı sanayileşme ile beraber (on dokuzuncu yüzyılın ikinci yarısından itibaren) anlaşılmış ve takdir edilmiş, dolayısı ile gerekli önlemler alınmış olsaydı, dünyamız bugün bu çapta büyük bir tehlike ile karşı karşıya bulunmazdı. Hızlı sanayileşme ile beraber çevrenin hızla kirlenmesi ve bu durumun doğurabileceği sınırsız tehlike, ancak son çeyrek yüzyılda yeterince anlaşılabildi. Gerekli etkili çalışmalara da bundan dolayı çok geç başlanıldı. Bir madde veya enerji üretirken çevrenin kirlenmemesine çaba göstermek, kirlenmiş çevreyi temizlemek insanların ve tüm canlı yaratıkların geleceği bakımından şarttır. Madde üretmek, yeni , yeni ürünleri bulup insanların hizmetine sunmak, bu ürünleri elde etmek için çeşitli yollardan değişik şekillerde enerji elde etmek, insanların refah ve saadetlerini ve konforlarını artırıcı girişimlerde bulunmak bütün insanların başlıca uğraşlarıdır. Bu etkinlikler insanlık tarihi ile başlar ve sonuna kadar da devam edecektir. Ama tabiatı bozacak, çevreyi kirletecek, dolayısı ile dünyadaki tüm canlı varlıkları tehlikeye sokabilecek faaliyette bulunmak hiç kimsenin, hiçbir toplumun hakkı değildir. Bu işler cinayet sayılmalıdır. Bu gibi faaliyetlerin doğurduğu kirlilik, önlemler alınmaz ise zamanla birikir ve mevcut hayatın tükenmesine neden olur ki, bunu hiç bir mantık ve sağduyu hoş görmez. Bu gün ilim ve teknik o kadar gelişmiştir ki, insanların her sıkıntıları ve arzularına olduğu gibi çevrenin kirlenmesine veya kirlenmiş çevrenin temizlenmesine de çare bulunabilir, yeter ki gerekli olan ek külfete katlanılsın ve mevcut olan imkanlar hoyratça harcanmasın. Bundan çeyrek yüzyıl kadar önce Çevre mefhumu o kadar yaygın değildi. Bugün bütün dünyada bu konunun üzerinde önemle durulması ve çevre temizliğini korumak için gittikçe artan miktarda çaba harcanması, aslında çok önemli ve olumlu bir gelişmedir. Bunun nedenlerini kısaca şu şekilde özetlemek mümkündür. Her alanda olduğu gibi çevre konusunda da sanayileşmiş ilkelerde bilgi ve tecrübe birikimi vardır. Bu gibi ülkelerde sanayi ve enerji üretme tesislerinin bol olmasından dolayı çevre kirlenmesi o oranda fazla olmaktadır. Kuşkusuz her türlü sanayi artığı, radyoaktif maddelerin radyasyonu ve gürültüyü meydana getiren ses titreşimleri de mevcut olan tesisler ile az çok orantılıdır. Gelişmiş ülkenin insanları sağlık bakımından hastalıklara karşı daha duyarlıdır, zira gelişmiş ülke insanı bolluk içimdedir, temiz çevreye alışkındır, fazla sıkıntıya pek dayanıklı değildir. Kirlenmiş çevre bu gibi insanları daha kolay ve çabuk etkileyebilir. Gelişmemiş ülke insanları içinde çevre kirlenmesinin önemi büyüktür. Nedenlerini kısaca özetleyelim. Gelişmemiş ülkelerde de az çok sanayi tesisleri bakımından zengin olan bölgeler vardır. Örneğin Türkiye, gelişmekte olan bir ülke olmakla beraber Kocaeli, İstanbul ve Bursa gibi sanayi tesisleri bakımından zengin m olan bölgelerimiz vardır. Gelişmiş ülkelerin nükleer enerji tesislerinin etkisi sınır tanımadan uzaklara kadar yayılabilmektedir. Dolayısı ile bu tesislerin etkisi uzakta bulunan pek çok gelişmemiş ülke halkını da rahatsız edebilir. Atmosfer gibi sular da (kapalı sular hariç) insanların ortak malıdır ve suların yardımı ile birçok ülke birbirine bağlanmaktadır. Akdeniz de sahili olan bir ülke diğer ülkelerin denizi kirletici etkinliklerinden zarar görebilir. Şirin İzmit Körfezimizin, özen gösterilmediğinden ne hale geldiği meydandadır. Bu körfezin hiç bir canlı varlığın barınamayacağı kadar kirlenmesine ve ‘ölü bir deniz parçası ‘ haline gelmesine çok az kaldı. Gerekli etkili önlemler alınırsa İzmit körfezi bu korkunç sonuçtan kurtarılabilir. Başkentimiz Ankara dahil olmak üzere bazı büyük şehirlerimiz, kalitesiz yakıttan dolayı kış mevsiminde öldürücü derecede kirli bir gaz tabakası ile kaplanmaktadır. Sanayileşmek, ilerlemek ve daha konforlu ve rahat bir hayat seviyesine ulaşabilmek her insan topluluğunun tabii hakkıdır. Ancak bu gibi faaliyetleri yaparken olumsuz etkilere sebep olmamak veya hiç değilse meydana gelebilecek çevre kirlenmesini en aza indirmek de insanların kaçınılmaz görevidir. Tabiatta yaşayan her türlü canlı varlıklar arasında beslenme kaynaklarında bir denge hüküm sürer. Her canlı varlık bu dengede yerini alır. Ezelden beri bu iş böyle süregelmiş. Bu sistemdeki değişiklikler, insanın müdahalesi olmazsa çok yavaş vuku buluyor. İnsanın ömrü, hatta bazen pek çok milletlerin ömrü dahi bu değişiklikleri yaşamaya, müdahale etmeye yetmiyor. Çağımıza değin (19.yüzyılın ikinci kısma ve 20.yüzyıl) insanların faaliyeti hayat zincirinin üzerinde hissedilir etki yapmamıştır denebilir. Fakat maden kömürü, petrol, tabii gaz bulununca, buhar kuvveti ile elektrik keşfedilince, maddenin mahiyeti ve onun yapı taşları ( atom, molekül, nötron, proton vs.) biraz açıklık kazanınca, hızlı devir başladı ve bu hıza paralel olarak dünyayı tüketme işi de devreye girdi. Şimdiden bilhassa gelişmiş ülkelerde her türlü canlı varlıklar için kullanılmaz hale gelen pek çok arazi ve su adacıkları vardır. Buralardaki bozuklukların sınırı gittikçe genişlemektedir. İnsanların girişimleri olmasa idi canlılar arasındaki alışveriş sessiz sedasız sürüp gidecekti. Şimdilik C rumuzu ile gösterdiğimiz kömürün hayat dengesindeki durumunu gözden geçirelim. Karbon ( C ), ister yakılsın ister gıda olarak kullanılsın oksijen alıp okside oluyor ve karbondioksit meydana geliyor. C + O2 = CO2 (kömür,petrol, (oksijen) (karbondioksit) odun,gaz vs.) Bu da tipik bir kimyasal reaksiyondur. Yakıt yakılınca bacadan, vs. karbon, karbondioksit (şayet iyi yanma olmamış ise kısmen de karbon monoksit ) olarak atmosfere karışır. Karbonu ihtiva eden çeşitli gıda maddeleri insanlar ve hayvanlar tarafından yenilince gene aynı şekilde karbon, karbondioksit haline gelir ve atmosfere karışır. C + O2 = CO2 gıda maddelerindeki oksijen yavaş yanma karbondioksit karbon Demek ki insanlar ve hayvanlar yaşamlarını sürdürdükçe havayı karbondioksit bakımından zenginleştirir.halbuki bitkiler bu reaksiyonun tam tersini yaparlar, kısacası : (güneş ışını) CO2 + H2O = CH2O + O2 (foto sentez) (foto aldehit) oksijen Form aldehit klorofil < k a t a l i z a t ör l ü ğ ü n de > meydana gelen en basit organik madde ve karbonhidratların en basit yapı taşıdı ve daha sonra pek çok önemli organik gıda maddelerini meydana getirir. Şematik olarak kısaca : Form aldehit = glikoz = sakaroz = nişasta = selüloz Karbon, güneş enerjisi yardımı ile redüksiyona uğrayıp organik maddelerin bünyelerine girmek sureti ile adeta tekrar değerli ve kullanışlı hale gelir. Karbon yanınca veya gıda maddesinde iken sindirilince kullanışsız olan CO2 haline gelir. Fotosentez ile organik madde haline gelince kaybetmiş olduğu enerjiyi güneşten tekrar tamamlamış olur. Hayvanların en geniş gıda maddesi kaynağı hiç şüphesiz bitkilerdir. Fakat istisnasız her hayvan dışarıya attığı çeşitli maddelerle ve öldükten sonra çürüyecek olan maddeleri ile bitkilere bir bakıma gıda olur, çünkü ; bu bakiyeler bitki yetiştiren topraklar için değerli birer gübredirler. Kimya sanayiinin çevreye yapabileceği kötü etkilere birkaç örnek verelim : İnsanların çeşitli faaliyetleri neticesinde bu düzenli devir ciddi bir şekilde bozulmaktadır. Örneğin zirai mücadelede bir zamanlar çok yaygın halde kullanılan DDT’ yi ele alalım DDT değerli bitkiler için zararlı olan birçok haşereyi kısa zamanda yok eder. (zamanla bazı haşere türünün DDT’ ye karşı bağışıklık kazandığı da malumdur.) ölen haşere leşlerindeki DDT kalıntıları kolayca çürümediğinden bunları yiyen kümes hayvanları dahil pek çok kuş türü bir müddet sonra insanlara zehirli gıda olarak ulaşabilirler. DDT kullanılmasının bu mahsuru 15-20 yıl sonra anlaşılmış ve üretimi ile kullanılışı düşmeye başlamıştır. Bu gibi tarım mücadele ilaçlarının en kötü tarafı tabii koşullarda çok uzun ömürlü olmalarıdır. Bu maddeler daha önce dünyamızda mevcut değillerdi. Onun için tabiat bunları sindiremiyor, kusuyor. Hülasa: Kimyasal faaliyetlerin çevreye olumsuz etkilerinin hepsini saymak mümkün değildir. Kimyasal proses, maddenin derin bir şekilde değişmesi, yepyeni maddelerin meydana gelmesidir. Kısaca madde mahiyet değiştirir. Yeni meydana gelen madde tabiatta daha önce mevcut ise etkili ve sürekli çevre sorunu pek meydana gelmez. Mesela tuz ruhunun kireç taşına etkisi gibi. Genel bir ifade ile, çevre ya maddi olarak kirlenir, yani gaz, sıvı veya katı haldeki maddeler etrafa sıçrar, veya maddi olmayan hava titreşimi (gürültü) ve yene maddi olmayan çeşitli ışın yayılması ile kirlenir. İnsan faaliyeti veya tabii olaylar sonucunda kıymetli arazinin bozulmasına da çevre kirlenmesi denilebilir. Çevreyi en fazla etkileyen, dolayısı ile kirleten maddeler daha önce mevcut olmayıp insanlar tarafından imal edilenlerdir. Tabiat kendi ürünü olan maddeleri, artıkları sindirip zararsız hale getirmesini bilir. Ama ekolojik dengeyi bozmaya neden olan maddeler yani insanların imal ettikleri yapay maddeler tabiat tarafından kolaylıkla sindirilemiyorlar. Bundan dolayı suni madde artıklarının kirleticiliği uzun, belki de çok uzun zaman sürecektir. Örneğin tabiatta yetişmekte olan herhangi bir bitkisel veya hatta hayvansal madde arttığı etrafa saçılınca kuşkusuz çevreyi kirletiyor, lakin bu madde fermantasyon vs. olaylarından veya herhangi bir canlı mahluk yem veyahut gübre olarak kullanılmasından dolayı bir müddet sonra parçalanıp çevreyi kirletme niteliğini kaybedecektir. Fakat sonradan insanlar tarafından imal edilip etrafa saçılarak çevreyi kirleten maddelerin bir kısmı oksit tas yon ve fermantasyona mukavim oldukları gibi canlı varlıklara yem ve gübre olma görevini de kolay, kolay yerine getiremiyorlar. KISACASI Tabiatta mevcut her türlü madde bu arada bitki ve hayvan artıkları genellikle uzun vadeli çevre sorunlarına sebep olmadan canlı varlıklar arasındaki dengelerde yerlerini bulup şekil değiştirerek yok olmakta ve zararsız şekil e girmektedirler. Bu durumu şöyle ifade edebiliriz : Her canlı varlık, tabiat tarafından parçalanıp tekrar değerlendirilir. Ama mesela insan yapısı olan pek çok kimyasal madde ve bu arada plastik türleri bozulmadan uzun zaman dayanabilmektedirler. Bu suni maddeler her türlü etkenlere karşı çok dirençli olduklarından, çevre için olumsuz etkileri de uzun ömürlüdür. ÇEVRE TAHRİBADINA KARŞI ALINACAK ÖNLEMLER İnsanlar daha rahat, daha konforlu, daha hızlı velhasıl daha uygar ve daha yüksek bir hayat düzeyine kavuşabilmeleri için hammadde kullanarak mamul madde üretirler. Şüphesiz burada istenilen sonuç, madde ve malzeme yerine enerji çeşitleri de olabilir. İşte bu işlemlerde % 100 dönüme olamıyor. Çoğu zaman madde veya enerji olarak artıklar meydana gelmektedir. Bu artıkların çıkmasını mümkün mertebe azaltmak, etrafa saçılmalarını önlemek, bu artıkları yararlı hale getirmek üzere başka şekildeki madde ve enerjiye çevirmek, her ne suretle olursa olsun yayılmayı ve saçılmayı önlemek, bu artıkların insan, hayvan ve bitki üzerindeki olumsuz etkilerini yok etmek ve azaltmak, çevreyi koruma faaliyetinin önemli kısmını teşkil eder. Ayrıca hava titreşiminden (gürültü) etrafın rahatsız olmaması için her türlü önlemi almak da, bu ana amaçlar arasında yer alır. Doğada bütün canlı varlıklar da mevcut denge ve düzeni korumaya yardım etmek, bozulmuş olanı tekrar onarmak, insan faaliyetinden ve tabii olaylardan ötürü kıymetli kültür arazisini bozulmaya karşı korumak ve bozulmuş olan bölgeleri onarmak ve eski ekolojik şartları tekrar geri getirmek de çevre faaliyetlerinde önemli bir yer işgal eder. Sıralanan bütün bu amaçlara varmak için her ülke için gerekli organizasyon ve teşkilatı kurmak, tedbir almak, mevzuat hazırlamak, gerekli ölçümleri yapmak, kirlilik standartları ve koruyucu önlemler tespit etmek ve icabında müeyyide uygulamak çevreyi koruma faaliyetinin çerçevesi içinde yer almaktadır. Şu hale göre nerede ve ne isimde kurulmuş olursa olsun çevre organizasyon ve kuruluşları, burada anlatılan esaslara uygun ve paralel olarak hareket etmelidirler. Çevre korunması için harcanan çabalar netice itibariyle işletmelerin randımanının da artmasını sağlayabilirler. Yani başlangıçta yük gibi görünen işler sonuçta ürünlerin maliyetinde indirici etkiler de yapabilirler. Bu hususu kısaca şöyle izah etmek de mümkündür : Etrafı ve dolayısı ile çevreyi kirleten her şey aslında kontrolden kaçmış bir şeydir. Bu kayıp hem ara ve son madde veya enerji olabilir. Çoğu zaman etrafa yayılması ile rahatsız etme vasfını taşır hale gelen bu gibi artık madde ve enerjiyi toplamak sureti ile kullanmak veya bir veya birkaç işlemden geçirdikten sonra kullanılır hale getirmek çoğu zaman mümkündür. Şu hale göre çevreyi kurtarmaya hizmet etmek iki yönden yarar sağlar. Birincisi, çevrenin temiz tutulmasının sağlanmasıdır. İkinci yarar ise artıkların işe yarar hale getirilmesinin temin edilmesidir. Çevre faaliyetini teşkil eden işlerin en önemli adımı, ülkelerin bu işin önemini vakit geçirmeden takdir etmeleri ve gerekli mevzuatı bir an önce hazırlayıp yürürlüğe koymalarıdır. Çevrenin önemini anayasalarında belirleyen ülkeler mevcuttur ve bunların adedi artmaktadır.

http://www.biyologlar.com/cevre-tahribatinin-nedenleri

B2 Vitamini

B2 VİTAMİNİ: RİBOFLAVİN B2 suda eriyen bir vitamindir ve vücutta depolanmaz. Yararları: Biboflavin olarak da adlandırılan B2 vitamini enerji üretimi, enzim fonksiyonu, normal yağ asidi ve aminoasit sentezi için önem taşımaktadır. Besinlerden enerjinin serbest bırakılmasında rol oynar. A vitamini ile birlikte kullanıldığında solunum, sindirim, dolaşım ve boşaltım sisteminin mukozasının sağlıklı olmasını sağlar. Sinir sistemi, deri ve gözleri korur. Normal büyüme ve gelişmeye yardımcı olur. Enfeksiyon, alkolizm, yanık, mide ve karaciğer hastalıkları tedavisine yardımcı olur. Migren, katarakt, orak hücreli anemi tedavisinde kullanılır. Yetersiz kalorili diyet alanlar, beslenme bozukluğu olanlar veya kalori ihtiyacı artmış kişiler. Gebe veya emziren kadınlar, alkol veya diğer madde bağımlıları, kronik hastalığı olanlar, uzun süreli stres altında olanlar, yakın geçmişte operasyon geçirmiş kişiler, sporcular ve beden işçileri, sindirim sisteminin bir bölümü operasyonla alınmış olanlar, ağır yanık veya yaralanması olan hastalar, doğum kontrol hapı veya östrojen kullananlar yoğun B2 vitamini ihtiyacı duyarlar. Hangi besinlerde bulunur? Açık yeşil sebze ve meyvelerde bulunur. Diğer B2 kaynakları: badem, bira mayası, peynir, tavuk, sığır eti, böbrek, buğday. Eksikliği nelere yol açar? Ağır B2 eksikliğine nadir olarak rastlanır. Alkol bağımlılarında görülebilir. Ancak çok ağır olmasa da tehlikeli düzeyde riboflavin eksikliği yaşlıların yaklaşık yüzde 33'ünde görülebilmektedir. 2 eksikliği ağız kenarlarında çatlaklar, dil ve dudaklarda iltihaplanmalar, ışığa duyarlı gözler, ciltte kaşıntı, sersemlik, uykusuzluk, öğrenme güçlüğü, gözlerde yanma ve kaşıntı ve kornea hasarına yol açabilir.

http://www.biyologlar.com/b2-vitamini

BİYOLOJİK SİLAHLARDAN KORUNMA

Biyolojik silahlardan korunma birbiriyle bağlantılı beş aşamadan oluşmaktadır; Önleme. Biyolojik silahların kullanılmasını engellemek için çeşitli çalışmalar yapılmaktadır. Uluslararası silahsızlanma ve teftiş rejimleri biyolojik ajanların biyolojik savaş durumunda üretimini ve kullanımını caydırmaktadır. İstihbarat çalışmaları sonucunda potansiyel tehlikeler belirlenerek gerekli önleyici tedbirler alınabilir. Doğal olarak ortaya çıkan ajanlara karşı aşılama önemli bir tedbirdir, ancak genetik mühendisliği ile bu aşıların etkisini sınırlayan ajanlar üretilmiştir. Korunma. Biyolojik ajanlara karşı korunma yöntemleri sınırlıdır. Koruyucu elbiseler, maskeler kısa süreli koruma sağlayabilirler. Bununla beraber, şarbon gibi etkinliğini uzun süre koruyabilen kimi ajanlar için bu tedbirler sadece ilk aşamada faydalı olabilirler. Herhangi bir şekilde yediğimiz yiyeceklerin biyolojik ajanlarla bulaşmış olabileceğini düşündüğümüz anda o yiyeceğin yenmemesi gerekir. Biyolojik tehlikenin olabileceği zamanlarda gıdalarımızın temizliğine özellikle yıkanmasına her zamankinden daha fazla özen gösterilmeli. Yıkama işlemi önemli ölçüde mikrobiyal yükü azaltır. Bunun yanında sebze türü yiyeceklerin 1 %’lik hipoklorit içerisinde iki üç dakika tutulması canlı mikroorganizmaların öldürülmesine yeterlidir, bu işlemden sonra mutlak surette iyice yıkanmalılar. Solunum kaynaklı bulaşmalar söz konusu olduğunda ıslak bir mendil gibi eşyaların ağız ve buruna tutularak o anda hava yoluyla oluşacak bulaşma engellenebilir. Herkesin koruyucu elbise giyemeyeceğine göre insanlar özellikle yiyeceklerinin, eşyalarının ve çevrelerinin temizliğine dikkat etmeli. Herhangi bir durumda bir bulaşmaya maruz kaldığını hisseden kişi hemen doktora başvurmalı. Çünkü biyolojik ajanın bulaşmasından sonra kişinin kendi başına tedavi olması mümkün değildir. Pişirilecek yemeklere yeterli ısısal işlem uygulanmalı, özellikle yüz dereceye varan ısı uygulanmalı. Biyolojik silah olarak kullanılabilen bazı bakteri sporları yüz derecelik ısıtmada 20-30 dakika canlı kalabilmektedir. Belirleme: Tedavi: Tedaviyi yukarda belirtildiği gibi kişi kendi yapamaz, biyolojik ajanlara karşı tedaviyi ancak bir hekim uygulayabilir. Tedavi yöntemleri enfeksiyon gelişen kişilerde maruz kalınan ajanın belirlenebilmesine bağlıdır. Eğer belirlenemiyorsa hekim farklı yöntemlerle tedaviyi sağlamaya çalışır. Ajanın tespiti durumunda ise duyarlı antibiyotikler tercih edilerek tedaviye başlanır. Örneğin şarbon etkeni tespit edilmişse; her iki saatte bir , iki milyon ünite penisilin tedavisi uygulanabilir. Toksinlere karşı uygun antiserumlar varsa kullanılır, yoksa destek tedavisi uygulanır. Bunların hepsi o anki hastanın durumuna göre gerekli tedaviyi hekim kararlaştırır. Dekontaminasyon-temizleme. Zamanla dağılarak etkilerini kaybeden kimyasal silahların tersine biyolojik silahlar zaman geçtikçe etkilerini artırıp çoğalabilirler. Şarbon toprakta en az kırk yıl aktif olarak kalır ve çevre şartlarına karşı dirençlidir. Bu sebeple biyolojik savaş ajanlarının etkilerinin ortadan kalkması yıllar alabilir. Biyolojik Savaş Ajanlarının gelişmesi ile beraber dünyada bu silahların kullanım ve üretimini sınırlamak maksadı ile 1925 yılında Cenova Protokolü, 1972 yılında Biyolojik Silahlar Konvansiyonu (BWC-Biological Weapons Convention) imzalanmış, farklı tarihlerde bu konvansiyonun gözden geçirildiği toplantılar yapılmıştır. İnsanların bu tür silahların yapımını düşünmeleri bile ürkütücüdür. Ancak bunun artık bir düşünce olmanın ötesine, bazı ülkelerde bu silahların yüksek miktarlarda stoklandığı da bir gerçektir. Bunu gelişmiş ülkelerdee gelişmemiş ülkelerde yapmaktadır. Gelişmemiş ülkelerin kontrolü gelişmiş ülkelerce sağlanabilmekte ama gelişmiş ülkelerin kontrolünü şu anda sağlamak imkanı yoktur. Çünkü bir süper güç anlaşmaları göz ardı edebiliyor ve kimse buna sesini çıkaramıyor. Bu nedenlerle biyolojik silah tehlikelerden insanlığın arındırılması mümkün değildir. Bu durumda ona karşı gerekli önlemler alınmalı ve insanları bu konuda bilinçlendirilmeli. Dünya klonlanma etiğini tartışırken asıl sorun olan genetik mühendislik yöntemi ile geliştirilmiş biyolojik silahlar gözden uzak kalmıştır. Olası bir biyolojik silah saldırısına karşı, yüksek teknik eğitim almış ekiplerin kurularak ulusal ve uluslar arası işbirliği ile potansiyel biyolojik silah üretici ve kullanıcılarının yakından takip edilmesi, hastanelerde bu tip saldırılar için özel donanımlı servisler oluşturulması, yapılacak olan ulusal felaket planlarının bir parçası olmalıdır. Dünya Tabipler Birliği 1990 yılında, 42. oturumunda Kimyasal ve Biyolojik Silahlar Konulu Bildirgeyi kabul etmiş, Tokyo bildirgesiyle de sağlık hizmeti vermesi beklenen hekimlerin, kimyasal ve biyolojik silahların araştırılmasına katılmasını, kişisel ve bilimsel bilgilerini bu silahların keşfi ve üretiminde kullanmalarının etik olmadığını bildirmiştir. Kaynak: www.genbilim.com

http://www.biyologlar.com/biyolojik-silahlardan-korunma

Gen Terapi

Hastalıkları tedavi etme ya da fiziksel etkilerini azaltma amacıyla hastanın vücuduna genetik materyalin sokulması, tıp tarihinde bir devrim olmuştur. İlk başlarda genetik hastalıkların tedavisi amacıyla planlanan gen terapisi artık, kanser, AIDS gibi diğer pek çok hastalığın tedavisi için de kullanılmaya başlanmıştır. Genlerin tanımlanması ve genetik mühendisliğinde kaydedilen önemli gelişmeler sonunda bilim adamları artık hastalıklarla savaşabilmek ve onlardan korunabilmek için bazı örneklerde genetik materyali değiştirme aşamasına geldiler. Gen terapisinin temel amacı, hücrelerin hastalığa yol açan eksik ya da kusurlu genleri yerine, sağlıklı kopyalarının hücreye yerleştirilmesidir. Bu işlem, gerçek anlamda bir devrimdir. Hastaya, genetik bozukluktan kaynaklanan semptomların kontrol edilmesi ve/veya tedavisi için ilaç verilmiyor. Bunun yerine, sorunun kaynağına inilip hastanın bozuk genetik yapısı düzeltilmeye çalışılıyor. Çeşitli gen terapisi stratejileri olmakla birlikte, başarılı bir gen terapisi için gereken ortak temel elemanlar vardır. Bunların en önemlisi hastalığa neden olan genin belirlenmesi ve klonlanmasıdır. "Human Genome Project" olarak adlandırılan ve insanın gen haritasını çıkarmayı amaçlayan proje tamamlandığında, istenilen genlere ulaşmanın çok daha kolay olacağına inanılmaktadır. Genin tanımlanmasından sonraki aşamada, genin hedeflenen hücrelere nakledilmesi ve orada ekspresyonu, yani kodladığı proteinin üretimi gelir. Gen terapisinin öteki önemli elemanlarıysa tedavi edilmek istenilen hastalığı ve gen nakli yapılacak hücreleri iyi tanımak ve gen naklinin olası yan etkilerini anlamaktır. Gen terapisi iki ana kategoride incelenebilir: Eşey hücresi ve vücut hücresi gen terapisi. Eşey hücresi gen terapisinde, genetik bir bozukluğu önlemek için eşey hücrelerinin (sperm ya da ovum) genleri değiştirilir. Bu tip terapide, genlerde yapılan değişiklik kuşaktan kuşağa aktarılabileceğinden, olası bir eşey hücresi gen terapisi hem etik, hem de teknik sorunlar yaratacaktır. Öte yandan vücut hücresi gen terapisi eşey hücrelerini etkilemez; sadece ilgili kişiyi etkiler. Günümüzde yapılan gen terapisi çalışmalarının çoğu vücut hücresi gen terapisidir. Gen terapisi aynı zamanda bir ilaç taşıma sistemi olarak da kullanılabilir. Burada ilaç, nakledilen genin kodladığı proteindir. Bunun için, istenilen proteini kodlayan bir gen, hastanın DNA'sına yerleştirilebilir. Örneğin ameliyatlarda, pıhtılaşmayı önleyici bir proteini kodlayan gen, ilgili hücrelerin DNA'sına yerleştirilerek, tehlikeli olabilecek kan pıhtılarının oluşumu önlenebilir. Gen terapisinin ilaç taşınmasında kullanılması, aynı zamanda, hem harcanan güç ve emeği hem de parasal giderleri azaltabilir. Böylece, genlerin ürettiği proteinleri çok miktarda elde etmek, bu ürünleri saflaştırmak, ilaç formülasyonunu yapmak ve bunu hastalara vermek gibi, çok zaman alan karmaşık işlemlere gerek kalmayabilir. Gen Terapisinin Temel Sorunları Bilim adamlarına göre gen terapisinin üç temel sorunu var: Gen nakli, gen nakli ve gen nakli. Bu alanda çalışan tüm araştırmacılar, gen nakli için etkili bir yol bulmaya çalışmaktadırlar. Genleri istenilen hücrelere taşıyabilmek için kullanılan yöntemler genel olarak iki kategoride toplanmaktadır: Fiziksel yöntemler ve biyolojik vektörler. Fiziksel yöntemler, DNA'nın doğrudan doğruya enjeksiyonu, lipozom formülasyonları ve balistik gen enjeksiyonu yöntemlerini içerir. Doğrudan DNA enjeksiyonunda ilgili gen DNA'sını taşıyan plazmit, doğrudan doğruya, örneğin kas içine, enjekte edilir. Yöntem basit olmasına karşın kısıtlı bir uygulama alanı vardır. Lipozomlar, lipidlerden oluşan moleküllerdir. DNA'yı içlerine alma mekanizmalarına göre iki guruba ayrılırlar: Katyonik lipozomlar ve pH-duyarlı lipozomlar. Birinci gurup lipozomlar artı yüklü olduklarından, eksi yüklü olan DNA ile dayanıklı bir kompleks oluştururlar. İkinci gurup lipozomlarsa negatif yüklü olduklarından DNA ile bir kompleks oluşturmaz, ama içlerinde taşırlar. Parça bombardımanı ya da gen tabancası olarak da adlandırılan balistik DNA enjeksiyonu, ilk olarak bitkilere gen nakli yapmak amacıyla geliştirilmiştir. Bu ilk uygulamalarından sonra, bazı değişiklikler yapılarak memeli hücrelerine gen nakli amacıyla kullanılmaya başlanmıştır. Bu yöntemde, genellikle altın ya da tungstenden oluşan 1-3 mikron boyutunda mikroparçacıklar, tedavi edici geni taşıyan plazmit DNA'sı ile kaplanır, sonra da bu parçacıklara hız kazandırılarak, hücre zarını delip, içeri girmeleri sağlanır. Basit olmalarına karşın fiziksel yöntemler verimsizdir; ayrıca, yabancı genler, sadece belirli bir süre fonksiyonal kalabilmektedirler. Bu nedenle araştırmacıların çoğu, genellikle virüs kökenli vektörlere yönelmişlerdir. "Vektör" kelimesinin bir anlamı da "taşıyıcı"dır. Benzer şekilde, gen terapisinde genleri hücrelere taşıma amacıyla kullanılan ve genetik olarak zararsız hale getirilmiş virüslere de vektör denir. Milyarlarca yıllık evrim sonucunda virüsler, hedefledikleri hücrelere kendi genetik materyallerini aktarmak için etkili yöntemler geliştirmişlerdir, ama ne yazık ki bu işlem duyarlı organizmalarda hastalıkla sonuçlanmaktadır. Günümüzde yapılan araştırmalarda, virüslerin hastalığa yol açan gen parçalarının yerine, hastaları iyileştirme amacıyla rekombinant genler yerleştirilmektedir. Bu amaçla değiştirilmiş hücreler kullanılmaktadır. Bu hücrelere tedavi edici geni taşıyan bir genetik yapı sokulduğunda, tedavi edici geni içinde taşıyan virüsler elde edilir. Bu şekilde değiştirilmiş virüsler hücreye girmek için kendi yöntemlerini kullanırlar ve genomlarının ekspresyonu sonucu, genin kodladığı protein üretilmeye başlanır. Öte yandan, virüsün kendisini çoğaltmak için ihtiyaç duyduğu genler, tedavi edici genlerle değiştirilmiş olduğundan, virüs çoğalıp hücreyi patlatamaz. Bunu yerine, hücrede virüsün taşıdığı hastalığı düzeltici genin ekspresyonu olur, genin kodladığı protein (yani ilaç) üretilir ve genetik bozukluk nedeniyle üretilemeyen proteinin yerini alır. En çok kullanılan viral vektörler, retrovirüsler, adenovirüsler, herpesvirüsler (uçuk virüsü) ve adeno-ilişkili virüslerdir. Ama her vektörün kendine özgü dezavantajları vardır: Bölünmeyen hücreleri enfekte edememek (retrovirüs), olumsuz immünolojik etkiler (adenovirüs), sitotoksik etkiler (herpesvirüs) ve kısıtlı yabancı genetik materyal taşıyabilme kapasitesi (adeno-ilişkili virüs). İdeal bir vektörde aranan özellikler yüksek titraj, kolay tasarlanabilme, integre olabilme yeteneği ve gen transkripsiyonunun kontrol edilebiliyor olmasının yanında, imünolojik etkilerin olmamasıdır. Genlerin Vücuda Sokulma Yöntemleri Genleri vücuda sokmanın çeşitli yolları vardır: Ex vivo, in vivo ve in situ. Ex vivo gen terapisinde, hastadan alınan hücreler laboratuvar ortamında çoğaltılır ve vektör aracılığıyla iyileştirici genler bu hücrelere nakledilir. Daha sonra, başarılı bir şekilde genleri içine almış hücreler seçilir ve çoğaltılır. Son aşamadaysa, çoğaltılan bu hücreler tekrar hastaya verilir. In vivo ve in situ gen terapisindeyse, genleri taşıyan virüsler doğrudan doğruya kana ya da dokulara verilir. Engeller Gen terapisinde, nakledilecek genler hücre içi ve hücre dışı engellerle de başa çıkmak zorundadır. Hücre içi engeller, naklin yapılacağı hücreden kaynaklanır ve hücre zarı, endozom ve çekirdek zarını içerir. Hücre dışı engellerse, belirli dokulardan ve vücudun savunma sisteminden kaynaklanır. Bütün bu engeller, gen transferinin etkinliğini önemli ölçüde azaltır. Bunun ölçüsü, geni taşımakta kullanılan vektör sistemine ve naklin yapılacağı hedef dokuya bağlıdır. Hücre zarı, geni hücreye sokma işleminde karşılaşılan ilk engeldir. Bu engel aşıldıktan sonra sırada endozomlar bulunur. Vektörün lizozomlara ulaşmadan önce endozomdan kaçması gerekir, yoksa lizozomlar taşınan tedavi edici geni enzimlerle parçalar, etkisiz hale getirirler. En son hücre içi engel çekirdek zarıdır. Yabancı DNA'ların çekirdek zarından içeri girmesi kolay değildir. Çapı 10 nm'den az olan bazı küçük moleküller ve küçük proteinler bu deliklerden kolayca geçebilirken, daha büyük moleküllerin içeriye alınması enerji gerektirir. Yabancı DNA'ların çekirdeğin içine girme mekanizması tam olarak bilinmemekle birlikte, mekanizmanın büyük moleküllerin çekirdeğe alınmasında kullanılan mekanizmaya benzediği tahmin edilmektedir. Çekirdeğin içinde ve sitoplazmada bulunan ve nükleik asitleri parçalayan nükleaz gurubu enzimler de ayrı bir problemdir. In vivo gen terapisinde, tedavi edici genlerin hastaya direkt yolla verilmesi sonucunda vektörler, hücre içi engellerin yanısıra hücre dışı engellerle de karşılaşırlar. Hücre dışı engeller iki kategoride incelenebilir: Dokuların kendilerine özgü yapıları ve savunma sistemi engelleri. Örneğin bağ dokusu, gen transferi için büyük bir engeldir. Eğer kas dokuya enjeksiyon yapılacaksa, kaslarda bulunan bağ dokusu katmanları, enjekte edilen vektörlerin yayılmasını ve enfekte etme yeteneklerini engeller. Epitel hücreleri vektörlerin daha derinlerdeki hücrelere ulaşmasına olanak vermez. Serumu oluşturan maddeler de çeşitli gen nakli vektörlerini etkisiz hale getirir. Örneğin çıplak DNA, serumda bulunan pek çok pozitif yüklü proteine bağlanıp etkisiz hale gelebilir. Serumdaki protein ve nükleik asitleri parçalayan proteaz ve nükleaz enzimleri de gen terapisi vektörlerini parçalayabilir. In vivo gen terapisinde adenovirüs ya da retrovirüslerin vektör olarak kullanıldığı bazı durumlarda, bunlara karşı vücutta antikor üretildiği gözlenmiştir. Savunma sisteminin etkilerinden kurtulmak için, tedavide savunma sistemini baskılayıcı ilaçlar da kullanılmaktadır, ama onların da bazı sakıncaları vardır.

http://www.biyologlar.com/gen-terapi-1

Besiyeri Hazırlanmasında Kullanılan Maddeler

Besiyeri bileşimine giren maddeler gelişme açısından; a) Gelişme için gerekli olanlar, b) inhibitörler olarak 2 gruba ayrılabilir. Gelişme için gerekli olan maddeler doğrudan mikroorganizmaların beslenme şekilleri ile ilgilidir ve bu maddeler besiyeri içinde bir anlamda zorunlu olarak bulunurlar. İnhibitörler ise gelişmesi istenmeyen mikroorganizmalar için gerektiğinde selektif besiyerlerine ilave edilirler. Besiyerlerine giren kimyasal maddeler hakkında aşağıda kısaca bilgi verilmiştir.1. SuBesiyeri hazırlamada kullanılan suyun; distilasyon veya deiyonizasyon ile taze hazırlanmış olması, başta bakır olmak üzere toksik metallerden arı olması gerekir. İyon değiştirici reçineden geçirilerek elde edilen deiyonize (= demineralize) su kullanıldığında bu suyun içinde yüksek sayıda mikroorganizma bulunabileceği dikkate alınmalıdır. Destile (= Distile) su için en ideali cam sistemlerin kullanılmasıdır.Gerek deiyonize, gerek destile su eldesinde saf su sisteminin ve benzer şekilde saf suyun depolandığı kapların belirli aralıklarla temizlenmesi gerekir.Taze hazırlanmış saf suyun pH'sı 6,5-7,5 arasında olmalıdır. Depolanmış saf su atmosferik karbondioksitin absorbe edilmesi sonucu asit pH gösterir. Eğer saf suyun pH'sı 5,5'in altında ise bu su ısıtılarak CO2 uzaklaştırılır ve pH yeniden kontrol edilir. Eğer pH hala düşük ise NaOH ile saf su nötral pH 'ya getirilir ve saf su sistemi kontrol edilir. Besiyeri hazırlamada kullanılan su, asit özellik gösteriyor ise ve besiyeri bileşimde bikarbonat tamponlar varsa bunları etkileyerek hazırlanmış besiyerinde bir takım olumsuzluklara yol açabilir.2. Peptonlar"Pepton" deyimi ilk kez 1880 yılında Nageli tarafından kullanılmıştır. Nageli, kemoorganotrof mikroorganizmaların kısmen parçalanmış (hazmedilmiş = sindirilmiş = digested) protein içeren besiyerinde iyi geliştiklerini ilk açıklayan bakteriyologdur. Bugün pepton deyimi, proteinlerin hidrolizi ile elde edilen ürünlere verilen genel isimdir. Yaşayan tüm hücreler gibi mikroorganizmalar da azot, karbon, tuzlar ve diğer besin maddelerine gereksinirler. İstisnalar dışında mikroorganizmalar genel olarak proteini azot kaynağı olarak kullanamazlar ve azotlu bileşikleri daha kolay kullanabilecekleri protein hidrolizatlarına gerek duyarlar.Peptonlar sadece azot değil, aynı zamanda karbon kaynağı olarak da mikroorganizmalar tarafından kullanılırlar. Bunun yanında peptonların bileşiminde bulunan bazı aminoasitler ve vitaminler bazı mikroorganizmaları için gelişme faktörü olarak işlev görürler.Proteinler; kuvvetli asitler, kuvvetli alkaliler ile ya da enzimatik olarak temel bileşenleri olan peptit ve amino asitlere ayrışırlar. Bu amaçla en çok kullanılan proteolitik enzimler papain, pepsin ve pankreatin'dir.Peptonlar çeşitli ticari firmalar tarafından çeşitli hayvansal dokulardan, sütten ve soyadan farklı yöntemlerle elde edilirler ve farklı ticari isimler ile pazarlanır ve/veya dehidre besiyerleri içine ilave edilirler. Hammadde ve üretim yöntemi farklılığı doğal olarak peptonların bileşimlerinde farklılıklar oluşturur. Dolayısı ile farklı amaçlar için farklı peptonlar kullanılır.3. Ekstraktlar1. Maya EkstraktıMaya ekstraktı (maya özütü = yeast extract) otolize edilmiş (parçalanmış) bira mayasının (Saccharomyces cerevisiae) sulu ekstraksiyonu ile elde edilir. Özellikle yüksek B kompleksi vitamin konsantrasyonu nedeniyle çoğu mikroorganizmanın iyi bir şekilde gelişmesini sağlar. Bileşimindeki amino asitler, peptidler, vitaminler, karbohidratlar ve mineraller sayesinde pek çok mikrobiyolojik çalışmada kullanılır. Doğal karbohidratları nedeniyle fermentatif çalışmalarda kullanılmaz.2. Et EkstraktıEt ekstraktı (et özütü= meat extract = beef extract = lab lemco powder) genellikle yağı ve tendonları ayrılmış, ekstraksiyon öncesi hafifçe hidrolize edilmiş etten elde edilir. Karbohidrat içermez. Bu nedenle fermentasyon çalışmalarında kullanılabilir. Besiyerlerinde et peptonları yerini alabilir.3. Malt EkstraktıMalt ekstraktı (malt özütü = malt extract) biralık arpadan elde edilir. Başta maltoz olmak üzere çeşitli karbohidratların yüksek konsantrasyonuna bağlı olarak maya ve küflerin geliştirilmesi için kullanılır.4. Beyin ve Kalp EkstraktıBeyin ekstraktı (= brain extract) ve kalp ekstraktı (heart extract) zor gelişen (= fastidious) patojen bakterilerin (streptokoklar, pneumokoklar, meningokoklar, gonokoklar vs) geliştirilmesi için besiyeri bileşimine katılır (Brain Heart Broth, Brain Hearth Infusion).5. Pirinç EkstraktıPirinç ekstraktı (rice extract), başta Candida türleri olmak üzere mayaların ayrımında kullanılan Rice Extract Agar 'ın bileşimine girer. Bu besiyerinde besin maddesi olarak sadece pirinç ekstraktı bulunur.4. Jelleştiriciler1. AgarBesiyerlerinin katı hale getirilmesi için en çok kullanılan jelleştirici agar (= agar agar)'dır. Agar, bir poligalaktozid olup "agarophytes" olarak tanımlanan bazı kırmızı deniz yosunlarından (Gellidium, Eucheuma, Gracilaria, Acanthopeltis, Ahnfeltia, Pterocladia türleri) elde edilir. Bazı hidroksil grupları sülfürik asit ile esterifiye edilmiştir.Katılaştırma (= jelleştirme) özelliğini bileşimindeki D-galakton sağlar. Bileşiminde ayrıca inorganik tuzlar, çok az miktarda protein benzeri maddeler ve eser miktarda yağ vardır. Mikrobiyolojide kullanılan agarlar özel olarak saflaştırılırlar ve antimikrobiyel maddelerden arındırılırlar.Agarın bileşimindeki agaroz ve agaropektin adlı 2 polisakkarit agarın etkisini belirler. Agaroz, agarın yüksek jelleştirme özelliğinden sorumlu iken, agaropektin viskoz özellikler verir. Agardaki agaroz : agaropektin oranı hammaddelere göre değişmekle beraber agaroz oranı % 75'e kadar çıkabilir.Agar, besiyeri bileşimine sadece jelleştirici olarak katılır. Bir kaç istisna dışında mikroorganizmalar için agar, uzun ve dallanmış zincir yapısı nedeniyle mikroorganizmalar için besin maddesi değildir.Agar, 85 oC'da erir, 40 oC'da jelleşir. Gerek erime, gerek jelleşme sıcak-lığına ortamın pH'sı etkilidir. 5'in altındaki pH 'larda agar jelleşme özelliğini yitirir. Agarın jelleşme sıcaklığı literatürde 32-36 oC ve 32-39 oC olarak verilmektedir. Bununla beraber, petri kutularına döküm sırasında petri kutularının oda sıcaklığında (20 oC) olduğu ve dolayısıyla petri kutusu ile besiyeri arasında ısı değişimi olacağı dikkate alınarak döküm sıcaklığının 40 oC kadar olması gerekir.Agar, besiyerine amaca göre % 0,05-3 gibi geniş bir sınırda ilave edilebilir. Düşük agar konsantrasyonları (% 0,05-0,3) genellikle hareketliliğin belirlenmesi, mikroaerofillerin geliştirilmesi vb özel amaçlarla kullanılır. Standart kullanım konsantrasyonu %1-1,5'dur. Yüksek konsantrasyonlar ise yüksek asitli besiyerlerinde agarın jelleşme özelliğini göreceli olarak geri kazanması amacıyla kullanılır.2. JelatinMikrobiyolojinin gelişme yıllarında ilk kez Robert KOCH tarafından jelleştirici olarak kullanılan jelatin bu gün daha ziyade proteolitik aktivitenin belirlenmesi amacıyla kullanılmaktadır.Kollegen protein yapısında olup fermente olabilir karbohidratları içermez. Jelleştirici olarak besiyerine ilave edildiğinde jelatinin ısıya duyarlığı nedeni ile 115 oC 'da 10 dakika gibi düşük sterilizasyon normu kullanılmalıdır. Jelatin, 121 oC'da sterilizasyonda ise jelleşme özelliğini kayda değer ölçüde yitirir. Besiyeri bileşimine % 12-15 düzeyinde katılır. Yaklaşık 28 oC 'da eridiğinden jelatin kullanılan besiyerleri 28 oC 'ın altında inkübe edilmelidir.5. KarbohidratlarBazı besiyerlerinin bileşimine bakteriler için enerji ve karbon kaynağı olarak katılan karbohidratların bir başka kullanım şekli karbohidrat fermentasyonuna dayalı identifikasyon testleridir.Besiyeri bileşiminde karbon kaynağı olarak en çok kullanılan karbohidratlar glukoz, laktoz ve sakkarozdur. Bunlardan glukoz pek çok bakteri tarafından kullanılabildiği için daha çok genel besiyeri bileşimlerinde yer alır.Adonitol, arabinoz, sellobioz, sellüloz, dekstroz (= glukoz), dulsitol, galaktoz, inositol, inulin, laktoz, levuloz (= fruktoz), maltoz, mannitol, mannoz, melezitoz, mellibioz, nişasta, rafinoz, rhamnoz, sakkaroz (= sukroz), salisin, sorbitol, trehaloz, ksiloz çeşitli fermentasyon testlerinde kullanılmak üzere sıvı besiyerlerine katılabilmektedir.Glukoz, laktoz sakkaroz, mannitol gibi bazı karbohidratlar çeşitli katı besiyerlerine yine fermentasyonun izlenmesi ve buna göre koloninin ön identifikasyonunda yararlanmak amacı ile katılır.Koliform grup bakterilerin geliştirileceği besiyerlerinin hemen hepsinde C kaynağı olarak laktoz kullanılır. Koliform grubun geliştirilmesine yönelik olarak hazırlanmış besiyerlerinde laktozdan gaz oluşumu koliform grup için belirleyicidir.Nişasta, kullanımı (hidrolizi) bazı bakteriler için tipik olduğundan çeşitli özel besiyerlerinin bileşimine katılır.Karbohidratların genel olarak filitrasyon ile sterilize edilmesi önerilir. Bazı besiyerlerinin bileşimine katılan glukoz, laktoz, sakkaroz gibi bazı şekerler besiyeri ile birlikte otoklavda sterilize edilebilirler.6. TuzSodyum klorür, çoğu besiyerinin bileşimine izotonik bir ortam oluşturmak için katılır. Tuza dayanıklı bakterilerin selektif izolasyonu için yüksek konsantrasyonlarda özel besiyerlerinin bileşimine katılır.7. Tampon MaddelerMikroorganizmalar genel olarak nötr ve nötre yakın pH 'larda iyi gelişirler. Bazı mikroorganizmalar alkali pH 'ları yeğlerken (örneğin Rhizobium bakterileri) bazıları (örneğin mayalar, küfler, asidofilik bakteriler) asidik ortamları severler.Bir besiyerinde elden geldiğince çok sayıda mikroorganizma geliştirilmesi isteniyorsa pH nötre yakın değerde olmalı, tersine olarak geliştirilmesi istenen mikroorganizma yüksek asitliğe veya yüksek alkaliliğe dirençli (= rezistans) ise besiyeri pH'sı bu mikroorganizmanın gelişebileceği pH 'ya ayarlanmalıdır.Asitlik/alkalilik, besiyerlerinin selektivite kazandırılmasında çok kolay ve dolayısıyla çok yaygın olarak kullanılan bir faktördür. Örneğin maya ve küflerin, asidofilik bakterilerin geliştirileceği ortamlarda pH düşürülerek pek çok mikroorganizmanın gelişmesi kayda değer ölçüde önlenir/kısıtlanır.Metabolizmaya bağlı olarak besiyeri pH 'sında değişmeler meydana gelir. Bazı çalışmalarda inkübasyon sırasında pH 'nın değişmesi geliştirilmesi istenen mikroorganizmaya zarar vereceği için istenmez. pH değişmesinin minimumda tutulması amacıyla besiyerine çeşitli tampon (buffer) maddeler ilave edilir. Tampon olarak en çok kullanılan maddeler, fosfatlar (K2HPO4, KH2PO4, Na2HPO4, ß gliserofosfat), karbonatlar, asetatlar ve sitrat 'dır.8. İndikatörler1. pH İndikatörleriMikrobiyel metabolizma sonunda bazı besiyeri bileşenlerinden çeşitli asit veya alkali ürünler meydana gelir. PH 'daki değişme en kolay olarak pH indikatörleri ile belirlenir ve pH indikatörlerinin renk değişimine bağlı reaksiyonlar o besiyerinde gelişen mikroorganizmalar için önemli göstergelerdir.Aşağıda, besiyeri bileşiminde kullanılan çeşitli pH indikatörleri ve pH 'ya bağlı renkler verilmiştir.İndikatör Asit pH / renkAlkali pH / renkFenol blueFenol redBrom Cresol GreenBrom Cresol PurpleBrom Thymol BlueCresol RedLitmusMetil RedNeutral RedRosalic Asit 2. Redoks indikatörleriEn yaygın olarak kullanılan redoks indikatörü TTC (2,3,5 Triphenyl-tetrazolium chloride)'dir. Enterokokların selektif geliştirilmesinde yaygın olarak kullanılır. Enterokoklar TTC 'yi indirgeyerek kırmızı renkli bir bileşiğe (formazon) dönüştürürler. Özel besiyerinde oluşan kırmızı renkli kolonilerin enterokok kolonileri olduğu bu şekilde anlaşılır.Resazurin, yaygın olarak kullanılan bir diğer redoks indikatörüdür.3. Diğer İndikatörlerMikrobiyel metabolizmaya bağlı olarak bazı kimyasalların çeşitli reaksiyonlar sonucu oluşturdukları ürünlerin belirlenmesi bu besiyerlerinde gelişen mikroorganizmaların ön identifikasyonunda kullanılır. Aşağıda bu tip reaksiyonlarda kullanılan indikatörlere örnekler verilmiştir.- MUG (4-Methylumbelliferyl-ß-Glucuronide): E. coli tanımında son yıllarda en yaygın olarak kullanılan bir bileşiktir. E. coli 'deki MUGase enzimi MUG 'u UV ile fluoresans veren bir bileşiğe parçalar. MUG hakkında aşağıda 7.1.1. bölümünde ayrıntılı bilgi verilmiştir.- Kan: Defibrine kan (çoğunlukla koyun kanı) hemoliz reaksiyonunun belirlenmesi için besiyeri bünyesine katılır.- Lesitin: Yumurta sarısı ve soya fasulyesinde bulunan lesitin, çeşitli bakterilerdeki lesitinaz enzim aktivitesi sonunda parçalanır ve lesitin katılmış katı besiyerinde koloni etrafında berrak zonlar görülür.- Jelatin ve kazein: Jelatin ve kazein proteolitik bakterilerin belirlenmesi amacıyla besiyeri bünyesine katılır. Proteolitik bakteri kolonileri etrafında proteoliz sonunda berrak zonlar oluşur.- Tributirin: Lipolitik aktivitenin belirlenmesi için kullanılır. Lipolitik bakteri kolonileri etrafında lipoliz sonunda berrak zonlar oluşur.9. İnhibitörlerSelektif besiyeri bileşimlerinde istenmeyen mikroorganizmaların gelişmesini engelleyen/baskılayan çeşitli inhibitör maddeler kullanılır.İnhibitör maddelerin etki şekilleri çok farklıdır. Etkileri, öncelikle konsantrasyonlarına bağlıdır.Bir yaklaşıma göre her maddenin yüksek konsantrasyonlarda inhibisyon etkisi vardır. Örneğin çoğu besiyerine ozmotik basınç sağlamak için katılan NaCl, yüksek konsantrasyonlarda pek çok mikroorganizmanın gelişimini engeller. Çoğu mikroorganizma için C kaynağı olarak kullanılan glukoz, % 50 konsantrasyonda ozmofilik/ozmotolerant mayaların gelişimine izin verirken, diğer mikroorganizmaların gelişimini inhibe eden bir etki yapar.Besiyerlerinde inhibitör olarak kullanılan maddeler genel ve selektif inhibitörler olarak kabaca 2'ye ayrılabilir. Genel inhibitörler daha geniş bir spektrumda istenmeyen mikroorganizma gelişimini engellerken, selektif inhibitörler belirli mikroorganizmaların gelişimini etkiler.İnhibisyon etki, yukarıda belirtildiği gibi öncelikle konsantrasyona bağlıdır. Bunun dışında mikroorganizma cinsi ve hatta türü inhibisyonda önemlidir. Belirli bir madde (örneğin tellurit) bazı bakteriler için inhibitör etki yaparken bazı bakteriler telluriti metalik telluriuma indirgerler, sonuçta gri-siyah renkli koloni oluşumu tipik bir morfolojik göstergedir.İnhibitör olarak kullanılan maddenin görevi, istenmeyen mikroorganizmaların gelişmesini önlemek iken, kuşkusuz gelişmesi istenen mikroorganizma için inhibitör etki yapmamalıdır. Sadece belirli bir türün dışında tüm mikroorganizmaların gelişimini etkileyen inhibitör madde kullanımı oldukça nadirdir. Örneğin Malahit yeşili (Malachite Green) ve Cetrimide, Pseudomonas aeruginosa dışında, tüm refakatçi florayı inhibe eder.Besiyerinde tek bir inhibitör kullanımı yerine birden fazla inhibitör kullanmak ve/veya gelişmesi istenmeyen mikroorganizmayı kısıtlı besin maddesi bulundurmak, O/R potansiyelini değiştirmek, inkübasyon sıcaklığını ayarlamak vb yöntemlerle engellemek yaygın olarak uygulanan inhibisyon şekilleridir.İnhibitör olarak kullanılan tüm maddelerin hangi mikroorganizmalar için hangi konsantrasyonda ve hangi mekanizma ile inhibisyon etki sağladıklarını listelemek çok güçtür ve bu kitabın kapsamı dışındadır. Bununla beraber en çok kullanılan inhibitörler hakkında aşağıda kısaca bilgi verilmiştir.- Boyalar: Metakrom sarısı (Metachrome Yellow) Proteus kolonilerinin yayılmasını; Eosin Y, metilen mavisi (Methylen Blue) gram pozitif bakterilerin gelişimini; malahit yeşili (Malachite green) Pseudomonas aeruginosa dışındaki refakatçi floranın gelişimini engeller/baskılar.- Sodyum Azid: Gram negatif bakterilerin gelişimini engeller.- Safra Tuzları (Bile salts, Ox bile): Gram pozitiflerin gelişimi engeller. - Antibiyotikler: Genellikle bakterileri engellemek için geniş spektrumlu olarak küf geliştirme besiyerlerinde veya refakatçi bakteriyel florayı inhibe etmek için dar spektrumlu olarak kullanılırlar.- Deoksiçolat (Deoxycholate): Gram pozitif bakterileri, kısmen koliformları ve zayıf olarak Shigella 'yı engeller.Bunların dışında selenit, tetratiyonat, bizmut, lauryl sülfat, yüksek konsantrasyonda asetat vb maddeler çeşitli besiyerlerinde inhibitör madde olarak kullanılırlar.

http://www.biyologlar.com/besiyeri-hazirlanmasinda-kullanilan-maddeler

Çıkmış biyoloji soruları

A. Doğru şıkkı işaretleyiniz. ( 12*3 puan= 36 ) 1. İnsanlarda besin ve enerji tüketimi fazla olan dokulardaki kılcal kan damarı oranı , diğerlerine göre daha fazladır. Buna göre aşağıdaki dokulardan hangisindeki kılcal damar oranı diğerlerinden daha fazladır? a- Epitel doku ve kas doku c- Yağ dokusu ve epitel doku c- Kas dokusu ve sinir doku d- Kıkırdak doku ve yağ doku 2. Kemiklerin sağlığını korumak için, I. Yeterli ve dengeli olarak beslenmek. II. Sportif hareketler yapmak. III. Aşırı ve ağır yük taşıma . Şeklindeki faaliyetlerden hangilerinin yapılması gereklidir? a. Yalnız 1 b. Yalnız 2 c. 1 ve 2 d. 1,2 ve 3 3. Bol miktarda köfte yiyen bir insanın kanına hangi besinden en fazla gider? a. Glikoz b. Vitamin c. Aminoasit d. Mineral 4. Kalın bağırsaktan hangisi kana geçemez? a. Su b. Vitamin c. Mineral d. Selüloz 5. Vücut ağırlığının artmasında aşağıdakilerden hangisi etkilidir? a- Normalden fazla solunum yapılması b- Şekerlerin yağa çevrilerek depolanması c- İskelet kasların fazla miktarda etkinlik göstermesi d- Vücuttaki artıkların dışarıya boşaltılması 6. Kandaki şeker miktarını hangi hormonlar ayarlar? a- Adrenalin ve insülin b- Tiroksin ve hipofiz c- Hipofiz ve glukagon d- İnsülin ve glukagon 7. Aşağıdakilerden hangisi sindirim sisteminin görevidir? a- Havadaki oksijenin vücuda alınıp kana karışmasını sağlar. b- Besinlerin parçalanıp kana karışmasını sağlar. c- Besinleri dişler ve kaslar yardımıyla parçalar. d- Sistemlerin çalışmasını denetler. 8. Aşağıdakilerden hangisi vücudun engellerindendir? a- Ter b-Deri c- Solunum yolları d- Hepsi 9. Aşağıdakilerden hangisinde oynar eklem vardır? a- Boyun b- Kalça c- Kafatası d- Bel 10. Aşağıdaki hangi olay beyin kabuğundaki merkezler tarafından kontrol edilmez? a. Hareket b. Görme c- Düşünme d- Denge 11. Aşağıdakilerden hangisinin görevi kanın pıhtılaşmasını sağlamaktır? a- Alyuvar b- akyuvar c- kan pulcukları d- kalp 12. Kandan zararlı ve atık maddeleri hangi organ ayırır? a- Böbrek b- Akciğer c- Karaciğer d- akyuvar B-Aşağıdaki boşlukları doldurunuz. (7*2 puan=14) 1- Eklemleri oluşturan kemiklerin ucu __________________kaplıdır. Kemiklerin sürtünmesini engeller. 2- Böbreğimizde kanı temizleyen 1.000.000 tane küçük filtre _____________vardır. 3- Boşaltım sistemi üzerine uzmanlaşmış doktorlara ___________ denir. 4- Kolumuzdaki kaslar ______ _______________ kaslardır. 5- Kemiklerin birleştiği yere ______________denir. Hareketi kolaylaştırırlar. 6- Nezle, kabakulak ve AIDS hastalığına _____________ neden olur. Kolera , difteri, verem hastalığına __________________neden olur. 7- Akciğerleri ________________, beyni ________________ dıştan korur. C-. Aşağıdaki soruları yanıtlayınız.(20*2.5 puan=50) 1- Kimyasal sindirim ve mekanik sindirimi anlatınız. 2- Sindirimin izlediği yolu yazınız. 3- Dolaşım sistemini oluşturan yapıları yazınız. 4- Kalbin görevi nedir? 5- Büyük ve küçük kan dolaşımını açıklayınız. 6- Kan hücrelerini yazınız.Görevlerini açıklayınız. 7- Kan grupları hakkında bilgi veriniz. 8- Lenf sistemini açıklayınız. Önemini belirtiniz. 9- Aşı ve serumun farkı nedir? 10- Nefes alıp- verme nasıl olur? Solunumla farkı nedir? 11- Alveollerin görevi nedir? 12- Eklem çeşitlerini birer örnek vererek açıklayınız. 13- Böbreğin görevi nedir? 14- Sinir sisteminin kısımlarını açıklayınız. 15- Beyin kabuğunda hangi merkezler yer alır? 16- Omurilik, beyin ve beyinciğin görevlerini yazınız. 17- Adrenalin hormonu nereden salgılanır? Görevi nedir? 18- Vücudumuzda şeker ayarlamasını hangi hormonlar yapar? 19- İskeletin görevi nedir? 20- Kalp kası , düz ve çizgili kası açıklayınız. A. Doğru şıkkı işaretleyiniz.(8*4 puan= 32) 1- Gözde göz yuvarlağının içine ulaşabilecek ışık miktarını aşağıdakilerden hangisi ayarlar? a. Retina b. Kornea c. İris d. Optik sinir 2-Gözde ışığa duyarlı hücreleri içeren en iç tabaka aşağıdakilerden hangisidir? a.Retina b. Kornea c. İris d. Optik sinir 3- İç kulakta denge duyusunu algılamamızı sağlayan hangi yapılardır? a. Kohlea b. Kulak kemikçileri c. Yarım daire kanalları d. Östaki borusu 4. Aşağıdakilerden hangisi kulak kemikçiklerinden değildir? a. Çekic b. Örs c. Östaki d. Üzengi 5.Retinanın ışığa en duyarlı bölgesine ne denir? a. kör nokta b. Sarı leke c. Ağ tabaka d. Kornea 6. Retinada oluşan görüntü nasıl bir şekilde olur? a. Başaşağı ve 3 boyutlu b. Başaşağı ve 2 boyutlu c. Yukarı doğru ve 2 boyutlu d. Yukarı doğru ve 3 boyutlu 7. Hipermetrop göz bozukluğunu düzeltmek için nasıl mercek kullanılır? a. İnce kenarlı b. Kalın kenarlı c. Dışbükey d. İnce lens 8. Miyop göz bozukluğunu düzeltmek için nasıl mercek kullanılır? a. İnce kenarlı b. Kalın kenarlı c. Boşbükey d. İnce lens B. Boşlukları doldurunuz. (4*2 puan=8) 1. Gözün farklı mesafelerdeki cisimleri odaklayabilmesine ________ __________ denir. 2. Ortamda az ışık varsa _________________ büyür. Ortamda çok ışık varsa gözbebeği küçülür. 3. _________ ___________ orta kulak ile dış ortam arasındaki basıncı dengeleyip kulak zarının zarar görmesini engeller. 4. Göz kapakları gözün dış kısmını ____________, göz yaşı gözün dış kısmını ______________. C -Aşağıdaki soruları yanıtlayınız.( 15*4 puan=60) 1- Duyu organları nelerdir? 2- Konjanktiva nerede bulunur? Görevi nedir? 3- Uzaktaki ve yakındaki cismi nasıl görebiliyoruz? 4- Hipermetrop göz ve miyop göz hakkında bilgi veriniz. 5- Derinin görevi nedir? 6- Dilde hangi tatları alırız? Şekil üzerinde gösteriniz. 7- Deride bulunan duyu alıcıları nelerdir? 8- Burunda sarı bölge nereye denir? Görevi nedir? 9- Pacini cissimciği nedir? 10- Kulak kaç bölümde incelenir, isimleri nelerdir? 11- İşitme olayını açıklayınız. 12- Görme olayını açıklayınız. 13- Renkli görmemizi sağlayan yapılar nelerdir? 14- Katarakt nedir? 15- Gözdeki kör nokta, optik sinir ve kirpiksi kasların özelliklerini yazınız.

http://www.biyologlar.com/cikmis-biyoloji-sorulari

GDO Sınırdan Girince

GDO Sınırdan Girince

DOĞADER'in de etkin üyesi olarak çalışmalarına katıldığı GDO'ya Hayır Platformu, ithal edilen GDO'lu ürünlerin tozlaşma yoluyla istemsiz ve denetimsiz çoğalması konusuna dikkati çekmek için bir basın bildirisi hazırladı.GDO SINIRDAN GİRİNCE YAYILMASI ÖNLENEMİYOR!Türkiye Yem Sanayicileri Birliği Derneği İktisadi İşletmesi ile Beyaz Et Sanayicileri ve Damızlıkçıları Birliği Derneği İktisadi İşletmesi (BESD-BİR) tarafından yem amaçlı ithalatı talep edilen GDO’lu 3 kolza ve 1 şeker pancarı çeşidi ile ilgili olarak hazırlanan bilimsel komite raporları 21 Eylül / 12 Ekim 2012 tarihleri arasında Türkiye Biyogüvenlik Bilgi Değişim Mekanizması vasıtasıyla halkın görüşüne sunulmuştur. Her ne kadar yem amaçlı bir başvuru yapılmış da olsa, dünyadaki örnekler GDO’ların sınırdan içeri girdikten sonra çevreye yayılmasının durdurulamadığını göstermektedir.İsviçre’de GDO’lu kolza tarımı ve ithalatı yasak olmasına karşın, 2011-2012 yıllarını kapsayan bir çalışma, bu ülkede GDO’lu kolzanın çevreye yayılmasının önlenemediğini göstermektedir. GDO’lu kolzanın transit taşımacılığının yapıldığı demiryolu hattı boyunca kendiliğinden yetişen kolzalardan alınan 2403 numunenin 50 tanesinin GDO’lu olduğu tespit edilmiştir.Japon araştırmacıların 2005 yılında gerçekleştirdikleri incelemelerde, o dönemde kolza tarımı yapılmamasına rağmen, uluslararası ticaret yapılan limanların çevresindeki kırsal alanda GDO’lu kolzaların varlığını tespit etmişlerdir. Japonya o zamandan beri GDO’lu kolzalarını yok etmeye çalışmaktadır. Çiftçi yetiştirmekte olduğu turp, brokoli, hardal ve GDO’suz kolzasına GDO’lu kolzadan genetik bulaşıklık olabileceği korkusu ile tarım yapmaktadır.İsveç’te yapılan bir çalışma, GDO’lu kolza tohumlarının çevreye yayılmaları halinde 10 yıl süreyle canlılıklarını devam ettirebildiklerini ve uygun bir ortam bulduklarında çimlenebildiklerini göstermiştir.Halkın görüşüne açılan bilimsel komite raporlarında da belirtildiği üzere kolza yabancı döllenme özelliği olan bir bitkidir. Pek çok araştırma, Kuzey Amerika’da GDO’lu kolza taşıyan araçlardan saçılan tohumların karayolları boyunca yol kenarlarında geliştiklerini göstermektedir. Bu tür GDO’lu ürünler adeta bir GDO havuzu durumundadır ve gerek GDO’suz kolzalarda gerekse yabani akrabalarında gen kaçışı yoluyla bulaşıklık oluşturduğundan biyolojik çeşitlilik bundan olumsuz etkilenmektedir.Yukarıdaki örneklerde net bir şekilde görüldüğü üzere bir ülkeye GDO’lu kolza ister denizyolu isterse de karayolu veya demiryolu vasıtasıyla girsin gen kaçışı ve bulaşıklık kaçınılmazdır. Yabancı ot ilacına dayanıklılık geni içeren bu kolzaları tarım ilacı kullanarak ortadan kaldırmak mümkün olamayacak, günümüzde kullanımı yasaklanmış çok daha zehirli tarım ilaçları kullanılmak zorunda kalınacak, bu da canlı yaşamı ve doğa üzerinde geri dönüşü olmayacak tahribatlara yol açacaktır.Biyolojik çeşitliliği zengin ülkemize GDO’lu kolza hiçbir şekilde sokulmamalıdır.Şeker ihtiyacımızın üzerinde şeker pancarı üretildiği gerekçesiyle ülkemizde 2001 yılında Şeker Yasası yürürlüğe girmiştir. Bu çerçevede 1998 yılında 5 milyon hektar olan şeker pancarı ekim alanımız günümüzde 2,9 milyon hektara kadar düşmüştür. 1998 yılında şeker pancarı üretimimiz 22 milyon ton iken, yasa sonrasında 12 milyon tona gerilemiş, günümüzde ise daha yeni 16 milyon ton düzeyine ulaşabilmiştir. Diğer yandan şeker fabrikalarımız birbiri ardına özelleştirilmekte, şeker üretimimiz sağlık açısından son derece tartışmalı olan mısırdan üretilen Nişasta Bazlı Şeker’e (NBŞ) kaydırılmaktadır.Durum böyle iken daha önce gıda amaçlı, şimdi de yem amaçlı GDO’lu şeker pancarı ithalat talebinin mantığını anlayabilmek mümkün değildir. Ülkemiz kendi şeker pancarı ihtiyacını karşılayabilecek potansiyele sahiptir. GDO’suz şeker pancarı üretimi yasa ile sınırlanan bir ülkede GDO’lu şeker pancarı ithalatının talep edilmesi, tarım politikasında gelinen başarısızlığın önemli bir göstergesidir.GDO’lu şeker pancarı ülkemize hiçbir şekilde sokulmamalıdır.Son derece duyarlı ve titiz bir şekilde hazırlanmış bilimsel komite raporlarına Biyogüvenlik Kurulumuzun da aynı duyarlılıkla yanaşmasını bekliyor, GDO’lu 3 kolza ve 1 şeker pancarına olumsuz görüş verilerek, GDO ile mücadele noktasında önemli bir adım daha atılacağına inanıyoruz.*GDO’ya Hayır Platformu*GDO’ya Hayır Platformu, 2004 yılından bu güne seksenden fazla kurumsal üyesiyle çevre, ekoloji, biyoçeşitlilik, insan ve hayvan sağlığını koruma mücadelesini, bilgilendirme ve bilinçlendirme çalışmalarını yılmadan sürdürmektedir.http://dogader.org

http://www.biyologlar.com/gdo-sinirdan-girince

Besiyeri Çeşitleri

Besiyerleri farklı mantıklar altında gruplandırılabilir. Örneğin, besiyerleri fiziksel özelliklerine göre sıvı ve katı olmak üzere 2 gruba ayrılırken bir başka bakış açısı ile orijinlerine göre bitkisel, hayvansal, sentetik, türev, karışık vb şekillerde sınıflandırılabilirler. Besiyerlerinin kullanım amacına (=fonksiyonlarına) göre sınıflandırılması ise bir anlamda besiyerlerinin formülasyonları ile doğrudan ilgilidir ve sınıflandırmada en çok kullanılan şekildir.Besiyerlerinin kullanım amaçlarına göre sınıflandırılmalarında da farklı yaklaşımlar vardır. Bir kısım araştırıcıya/kullanıcıya göre belirli bir grupta yer alan bir besiyeri bir diğer kısmına göre ise başka bir grupta sınıflandırılmaktadır. Aşağıda, besiyerleri kullanım amacına göre en çok kabul gören sınıflandırma şekli ile gruplandırılmıştır. Bu sınıflama şeklinde besiyerleri öncelikle "genel besiyerleri" ve "özel besiyerleri" olarak 2 gruba ayrılmakta, özel besiyerleri ise kendi içinde alt gruplara ayrılmaktadır.1. Genel BesiyerleriHerhangi bir inhibitör madde içermeyen, besin maddelerince yeterli veya zengin, herhangi bir mikroorganizma grubunun gelişmesini özel olarak desteklemeyen, bazı zor gelişen (fastidious) mikroorganizmaların da dahil olduğu çok sayıda bakterinin gelişmesini sağlayan besiyerleridir.Genel besiyerleri başlıca, çeşitli örneklerdeki toplam mezofil aerob bakteri sayımı, toplam psikrofil aerob bakteri sayımı, bozulma/hastalık etmeninin ön izolasyonu amaçları ile kullanılır.- Başta gıda maddeleri olmak üzere pek çok örnekte "toplam mezofil aerob bakteri sayısı" ile "toplam psikrofil aerob bakteri sayısı" tayinleri önemli kalite kriterleridir. Toplam mezofil aerob bakteri sayısından kasıt 37 oC'da gelişebilen aerob bakterilerin sayısıdır. Kuşkusuz 37 oC'da gelişebilen aerob bakterilerin tümü bu tip besiyerlerinde gelişemez. Ancak pratik uygulamada genel besiyerlerinde gelişebilenler dikkate alınır.- Nedeni hakkında bir ön fikir edinilemeyen bozulma/hastalık etmeninin izolasyonu için yine genel besiyeri kullanılır. Burada amaç, "bozulma/hastalık etmeninin her ne olursa olsun öncelikle izole edilmesidir" ve genel bir besiyeri kullanmak bir anlamda zorunludur. Bozulma/hastalık etmeninin zor gelişen bir mikroorganizma olabileceği varsayımı ile bu tip izolasyonlarda zor gelişen mikroorganizmaların da gelişebileceği besiyerleri kullanmak daha doğru olur.Tüm bakterilerin geliştirilebileceği nitelikte bir genel besiyeri yoktur. Genel besiyerleri, zor gelişen bakterilerin sadece bir bölümünün gelişmesini sağlayabilir. İnkübasyon koşullarının değiştirilmesi ile psikrofillerin, mikroaerofillerin, aerotolerantların ve özel inkübasyon koşullarının sağlanması ile kısmen anaerobların geliştirilmesinde kullanılır.2. Özel BesiyerleriBir tarife göre genel besiyerleri dışında kalan tüm besiyerleri "özel besiyerleri" grubuna girer.2.1. Selektif BesiyerleriSelektif besiyerleri, karışık bir mikrobiyel floradan gelişmesi istenmeyenleri baskılamak ve inhibe etmek, ancak gelişmesi istenenler için herhangi bir olumsuz etki yapmamak üzere formülüze edilirler. Bu amaçla çeşitli inhibitör maddeler kullanılır.İnhibitör maddelerin konsantrasyonu ile inhibe edilmesi hedeflenen mikroorganizma(lar)ın cins ve türlerine göre değişmek üzere, selektif besiyerleri istenmeyen mikroorganizmalar için zayıf, orta veya yüksek selektivite gösterirler. Selektif besiyerleri, belirli bir grup hatta yüksek selektivite gösterenlerde tek bir cins/tür mikroorganizmanın gelişmesine izin vereceğinden bu besiyerleri selektif izolasyon, selektif sayım ve hatta ön identifikasyon amaçları ile kullanılır.Bir besiyerine selektivite kazandırılması her zaman inhibitör madde ilavesi ile yapılmaz. Geliştirilmesi istenilen mikroorganizmanın kullanabileceği, ancak refakatçi mikroflora tarafından kullanılamayan besin maddeleri besiyerine karbon ve azot kaynağı olarak verilerek selektivite sağlanabilir. Örneğin GSP Agar (Merck) besiyerinde glutamat ve nişastadan başka besin maddeleri yoktur. Nişasta ve glutamat Pseudomonas ve Aeromonas türleri tarafından besin maddesi olarak kullanılırken gıda maddeleri, atık sular ve gıda endüstrisi ekipmanında bu bakteriler ile birlikte bulunan bakteriler (=refakatçi mikroflora) bu maddeleri metabolize edemez ve dolayısıyla gelişemez ya da bu maddeleri çok kısıtlı olarak kullanabilenler ihmal edilebilecek kadar küçük koloni oluştururlar.2.2. Diferansiyel BesiyerleriSelektif besiyeri hazırlamak ve kullanmak; inhibitörlerin gelişmesi istenen mikroorganizmaya az da olsa bir miktar zarar verebilmesi, inhibitör kullanımı ile istenmeyen mikroorganizmaların inhibisyonun her zaman mümkün olmaması, bazı inhibitörlerin insan sağlığı için de zararlı olması vb nedenlerle her zaman istenilen sonucu vermemektedir. Mikrobiyolojide besiyeri olarak selektif ortamlar yerine diferansiyel besiyerlerinin hazırlanması ve kullanılması ile çoğu kez tatmin edici sonuçlar alınmaktadır.Diferansiyel besiyerlerinde gelişmesi istenen mikroorganizma yanında diğer mikroorganizmalar da gelişebilir, ancak başta koloni morfolojisi olmak üzere çeşitli farklılıklar ile hedef mikroorganizma diğerlerinden ayrılır.Bu tarif altında diferansiyel besiyerleri zayıf ve orta güçte selektivite gösteren selektif besiyerlerinin modifikasyonu olarak nitelendirilebilir.Ayırt edici (fark ettirici) koloni özelliği, çeşitli pH indikatörleri, boya maddeleri, indirgeyiciler, diğer indikatörler vb maddelerin besiyerine ilavesi ile yapılır. En basit olarak besiyeri bünyesine, ayırt edilmek istenen mikroorganizmanın kullanabileceği, ancak ortamda bulunan diğer bakterilerin yararlanamayacağı bir karbohidrat ilave edilir ve mikroorganizmanın bu karbohidratı kullandığı çeşitli indikatörlerle belirlenir. Örneğin koliform grup bakteriler için laktozdan gaz oluşturulması tipik bir ayırt edici özelliktir ve gaz oluşumu durham tüpleri kullanılarak belirlenir. Pek çok mikroorganizma belirli bir karbohidratı kullanırken asit oluşturur ve bu asitlik pH indikatörü ile rahatlıkla belirlenebilir. Tersine olarak gelişmesi istenen mikroorganizma besiyerine katılan bir maddeden alkali ürünler oluşturabilir. Bu durum yine pH indikatörleri ile belirlenebilir. Ya da mikroorganizmanın jelatinaz, lipaz, lesitinaz vb enzim aktiviteleri besiyerinde oluşan çeşitli berrak zonlar ile belirlenebilir.Diferansiyel besiyerinde gelişen mikroorganizmaların ayrımı koloni morfolojisi, enzimatik aktivitelerin belirlenmesi, gaz oluşumunun izlenmesi vb çıplak gözle yapılabileceği gibi bunlara ilave olarak fluoresansa dayalı olarak da yapılabilmektedir. MUG ilave edilmiş besiyerleri E. coli için yaygın bir şekilde kullanılırken, setrimid (=cetrimide) katılmış besiyerlerinde Pseudomonas aeruginosa yine UV ile ayırt edilmektedir.Diferansiyel besiyerleri sadece selektif besiyerlerinin bir modifikasyonu değildir. Çeşitli genel besiyerlerine ilave edilen özel bazı katkılar bu besiyerlerine diferansiyel bir nitelik kazandırabilir. Hemoliz reaksiyonları için kullanılan kanlı agar besiyeri buna en tipik örnektir. CASO Agar (Merck) besiyerine MUG ilave edilerek yapılan besiyerinde toplam mezofil aerob bakteri sayımı yanında E. coli sayımı da fluoresans ile yapılabilmektedir.Diferansiyel besiyerleri, amaca göre selektif izolasyon, selektif sayım ve ön identifikasyon amaçları ile kullanılmaktadır.2.3. Zenginleştirme BesiyerleriKarışık bir mikroflora içinde hedeflenen bir mikroorganizmayı geliştirmek, sayısını artırmak vb amaçlarla kullanılan zenginleştirme besiyerleri, önzenginleştirme besiyerleri ve selektif zenginleştirme besiyerleri olarak 2 alt gruba ayrılırlar.Önzenginleştirme besiyerleri genel olarak hasar görmüş (= injured = yaralanmış) mikroorganizmaların aktivitelerini kazanmaları için kullanılan, bileşiminde inhibitör içermeyen ve dolayısı ile aktivite kazanması istenen mikroorganizma yanında refakatçi mikrofloranın da gelişmesini sağlayan sıvı besiyerleridir ve bu tarif altında "özel amaçla kullanılan genel besiyerleri" olarak nitelendirilebilir. Önzenginleştirmede kullanılan besiyerlerine en tipik örnek gıdalarda Salmonella aranmasına yönelik çalışmaların ilk aşaması olan "önzenginleştirme" amacıyla kullanılan Tamponlanmış Peptonlu Su besiyeridir. Bileşiminde litrede 10 g et peptonu, 5 g NaCl ve 10 g fosfat tampon olan bu besiyerinde Salmonella yanında ortamdaki diğer bakteriler de gelişebilmektedir.Selektif zenginleştirme besiyerleri ise özel amaçla kullanılan selektif sıvı besiyerleridir. Bunlara en tipik örnekler ise Listeria ve Salmonella aranmasında kullanılan besiyerleridir. Selektif zenginleştirme aşamasında karışık kültür olarak bulunan bakterilerden gelişmesi istenmeyenler çeşitli selektif inhibitörler ile engellenir. Selektif zenginleştirme aşamasını genellikle selektif bir katı besiyerine sürme yapılarak aranan bakterinin selektif izolasyonu aşaması izler. Bu çerçevede selektif zenginleştirmenin amacı, selektif izolasyonda başarı şansını artırmak için aranan mikroorganizmanın karışık kültür içindeki sayısını artırmaktır.Selektif zenginleştirme aşaması her zaman önzenginleştirme aşamasını izlemez. Gıda maddelerinde Salmonella aranırken yukarıda da belirtildiği gibi işlem sırası önzenginleştirme/selektif zenginleştirme/selektif katı besiyerine sürme şeklinde iken Salmonella 'dan şüphe edilen gayta (=dışkı) örnekleri doğrudan selektif zenginleştirme /selektif katı besiyerine sürme aşamalarını izler. 2 farklı örneğe farklı işlem uygulanmasının nedeni gayta örneğinde aktif ve yüksek sayıda Salmonella olmasıdır. Gıda maddesi ise önzenginleştirme aşamasından geçirilerek bir anlamda önzenginleştirme kültürü Salmonella sayısı ve aktivitesi açısından gayta örneğine benzer bir hale getirilir.2.4. İdentifikasyon BesiyerleriTam selektif ve diferansiyel besiyerlerinin ön identifikasyonda kullanılabileceğine yukarıda değinilmiş idi.Tam selektif bir besiyerinde gelişen bir mikroorganizmanın identifikasyonu cins ve hatta bazı durumlarda tür bazında tamamlanabilir. Diferansiyel besiyerlerinde de aynı durum geçerlidir.Bir mikroorganizma izolatının identifikasyonu için en çok kullanılan testler biyokimyasal nitelikli olanlardır. İdentifikasyon besiyerleri, mikroorganizmanın belirli bir besin maddesini (genellikle karbohidratlar) kullanıp/kullanmadığının saptanması, belirli bir besin maddesinden metabolizma sonunda tayin edilebilecek metabolitleri (örneğin triptofandan indol) oluşturup/oluşturmadığının belirlenmesi vb amaçlar ile kullanılır. Bakterinin hareketli olup olmadığının saptanması amacıyla kullanılan yarı katı (semi solid) besiyerleri de identifikasyon besiyerleri grubuna katılmaktadır.3. Diğer BesiyerleriAntimikrobiyel duyarlık testlerinde kullanılan agar disk difüzyon besiyerleri ile minimal inhibisyon konsantrasyonu testlerinde kullanılan sıvı ve katı besiyerleri, vitaminlerin ve amino asitlerin mikrobiyel yolla belirlenmesinde kullanılan besiyerleri, saf kültürlerin korunması (=kolleksiyonu) amacıyla kullanılan besiyerleri gibi özel amaçlara yönelik olarak kullanılan çeşitli besiyerleri de vardır.BESİ YERİ AYRINTILI BİLGİ İÇİN http://www.orlab.net/mikrobiyoloji/942300030.pdf TIKLAYIN

http://www.biyologlar.com/besiyeri-cesitleri

HİSTOLOJİ PREPARATLARI BOYAMA TEKNİKLERİ VE BOYALAR

Belki de alınmamaktadır. Negatif boyamada yapıların şekilleri boyanın penetre olrnasından değil boya ile çevrelendiğinden gösterilmektedir. Bazen boyalar yenir. Daha kusursuz olarak, boya reaktifleri organizmanın fizyolojik aktivitelerine bağlı olan değişik yollarla canlı hücre içine alınabilir. Bu ise vital boyama ve supra-vital boyama olarak adlandırılır.Daha da genellersek, boya alınımı, boya-doku veya reaktif-doku affiniteleri nedeniyledir. Bazı doku kompenentlerinin bazı boyalar için yüksek bir affiniteye sahip olduğu söylendiğinde, spesifik kullanım şartlarında-kompenent yoğun olarak boyanacaktır. Öte yandan dokuya boyayı bağladığı düşünülen Coulomb, hidrojen bağı ve diğer bağlar gibi çekici kuvvetleri de açıklamak için de kullanılmaktadır. Bu yüzden affinite, bir boya maddesini boya banyosundan bir kesite transfer olma eğiliminin bir ölçümü olarak düşünülebilir ve affinitenin önemi (büyüklüğü), bu prosese eklenen veya engellenen her faktöre bağlıdır. 1-VİTAL BOYAMACanlı hücreler, boyama sıvılarındaki ayrışma ile (supra-vital boyama) veya canlı organizma içine boyanın enjeksiyonu ile (intra-vital boyama) boyanabilirler. Bu yöntemler, tespit edilmiş dokudan alınan kesitlere uygulanmaz. Fakat boyanmış kesitlerin karşılaştırılmasında değerli bir kontrol olarak kullanılabilirler. Canlı hücrelerin boyanması için ilk uygulama, önce metilen blue'yu (l887), daha sonra nötral red'i (l894) kullanan Paul Ehrlich' ten gelmiştir. Vital boyamada önce sitoplazmik yapılar ortaya konur. Canlı hücrelerin çekirdek zarı boyalara geçirgen değildir ve canlı çekirdeği boyamak mümkün değildir. Trypan mavisi ile makrofaj sistem hücrelerinin vital boya ile gösterimi, sitoplazmik fagositoza bir örnek oluşturur. Bu boya kolloidaldir. Çini mürekkebi gibi ince süspansiyonlar, Makrofaj Sistemi hücreleri ve diğer hücrelerce fagositik kapasiteleri ile alınmaktadır. Hücresel bileşenlerin gerçek vital boyanması, mitokondrilerin Janus green ile gösterilmesidir.2-SEÇİLEN ÇÖZÜNURLUKLE BOYAMASu, hücrenin her tarafında geniş olarak dağıldığı için sulu boyalar uygun değildir ve boyama çok gevşek olacaktır. Dokularda çözünen maddeler ''Lysochrom'' lar olarak bilinmektedir. Hemen hemen tüm lysokromlar lipidde çözünür ve doku kesitlerinde lipidlerin gösterimi için histolojide kullanılırlar. Yağ damlacıkları, eğer boya yağda alkolden daha çözünürse, alkolik solusyonlardaki (sıklıkla % 70' lik) boyalarla seçici olarak renklenirler. Solusyonla başarılı histolojik boyama esas olarak yağ boyaları ile sınırlandırılmıştır ve lysokromlar, parlak renkli, lipidlerde yüksek çözünür olmalı ve seçilen tercihli çözünürlükler hariç diğer hücresel yapıların hiçbirine affinitesi olmamalıdır. 3-DOKULARDAKİ RENKLİ MADDELERİN KİMYASAL URUNLERİ İLE BOYAMABazı boyama yöntemlerinde, doku kompenentleri ile reaksiyona girip renkli maddeler üretecek soluk veya renksiz solusyonlar kullanılır. Bu reaksiyonların sonunda oluşan renkli ürünler ya gerçek boyalar veya boya olmayan renkli kimyasal ürünlerdir.Birinci gruba örnek olarak PAS reaksiyonunda kullanılan Schiff reaktifi ve Feulgen reaksiyonu verilebilir. Saman renkli veya renksiz solusyon, dokulardaki aldehitlerin varlığı ile mor renge dönüşür. Histokimyasal reaksiyonların ikinci grubu renkli olan fakat bir boya olmayan final ürününe sahiptir. Reaksiyona örnek olarak demirin gösteriminde kullanılan Perls' reaksiyonu verilebilir. Potasyum ferrosiyanid, potasyum ferric ferrosiyanid (prusya mavisi) oluşturmak için demir iyonları ile birleşir (+3 değerlikli Fe). Bu basit bir kimyasal reaksiyondur. Ürün olan Prusya mavisi bir boya değildir ve boya olarak kullanılmaz. Fakat görülebilen, koyu boyanmış çözünmeyen bir birikimdir. Dokuların böylesi renklendirilmesinin bir diğer değişik tipi enzim histokimyasında görülmektedir. Enzimler, renkli son ürünler oluşturmak üzere kimyasal substratlarla birleşmezler ya enzim aktivitesi olan alanlarda substratları renkli maddelere dönüştürerek ya da iki basamaklı bir reaksiyonda renkli bir bileşikle yer değiştirebilecek renksiz bir ürün oluşturarak substratları üzerine etki yaparlar. Renkli bir final reaksiyon bileşiği üretimi ile ilgili tüm bu yöntemlerin sonuçları benzerdir. Reaksiyonun yoğunluğu, dokulardaki aktif reaktifin miktarı ile orantılıdır. Histolojik kesitlerdeki bu kimyasal reaksiyonların başarısı, aktif hücresel yapıların hücre içindeki orijinal yerlerinde ve orijinal konsantrasyonlarında korunmasına bağlıdır; glikojen veya enzimler gibi stabil olmayan maddelerin kaybından kaçınmak için özel önlemler alınmalıdır. Ayrıca son ürünler opak veya koyu boyanmış olmalıdır. 4-METALİK ÇÖKTÜRMEBazı metalik bileşikler dokular tarafından opak, genellikle siyah birikinti oluşturarak metalik duruma indirgenebilirler. Kolayca indirgendiğinden ve depo edilmiş gümüş stabil olduğundan Ag(NH3)20H çözeltileri histoloji için çok uygundur. Melanin gibi tyrosin türevleri ve intestinal bezlerin Kultschitzky hücre granüllerinde bulunan fenolik bileşikler, görülebilen birikinti oluşturmak üzere Ag(NH3)2)OH’ı indirgeme kapasitesine sahiptir. Bu tip hücreler arjentaffin hücreler bilinirler. (Ag(NH3)2)OH’ ı direkt olarak indirgeyemeyen fakat bunu dışarıdan ilave edilen bir indirgeyicinin eklenmesi ile gerçekleştiren hücreler argirofil hücreler olarak bilinir.Metalik çöktürme aynı zamanda fibrillerin gösterilmesinde kullanılan standart bir yöntemdir. Sinir fibrilleri ve retiküler fibriller gibi diğer fibril1er Ag(NH3)2OH ile birleşirler ve bu transparan indirgenmemiş gumüş, bir fotografik developer tarafından veya tekniğin ikinci basamağındaki diğer bazı indirgeyici ajanlar tarafından opak metalik gümüş olarak fibril1er üzerinde birikebilir. Metalik çöktürme ile boyama, dokulardaki indirgeyici ajanlar yeterli güçte ise tek basamaklı bir teknik olabilir. Fakat fibrillerin impregrasyonla gösteriminde, argirofil hücrelere benzer olarak genellikle iki basamaklı indirgenmeye gereksinim olacaktır. Hassaslaştırıcı ajanların ve gümüş yöntemlerinin varyasyonlarını kullanarak, birçok hücresel yapı, pigmentler, spiroketler ve funguslar metalik impregnasyonla gösterilebilir.5-DOĞAL VE YAPAY BOYALARLA BOYAMABoyama tekniklerinin büyük bölümü bu gruba girmektedir. Ticari boyalara ait bilgilerin histolojiye aktarımı, dokularla boya kombinasyonları ile ilgili birçok faktörü anlamamıza yardım etmiştir.Histolojide Kullanılan BoyalarHistolojide iki tip boya kullanılmaktadır. Bunlar:a-Doğal boyalar b-Yapay (sentetik) boyalar dır.Doğal Boyalar: Örnek/ Carmin ve Hematoksilendir. Carmin boyası, Orta Amerika sulak ormanlarında yaşayan Dactylopius cacti türü dişi böceğin (kırmız böceği) kurutulmuş gövdelerinden elde edilir. Carminik asit, kırmız böceğinin suda kaynatılması ile ve kimyasal saflaştırmayı takiben ekstre edilmesi ile elde edilmektedir. Kaba form olan Carmin, kırmızın potasyum alimunyum sulfatla çöktürülmesi ile hazırlanır.Hematoksilen ise Meksika'dan orijin almış ve Jamaika'da ıslah edilmiş Haematoxylen campechianum türü küçük bir ağacın tahtalarından ekstrakte edilmektedir. Hematoksilen histolojide en çok kul1anılan boyalardandır. Hematoksilenin doğal formunun boyama yeteneği çok azdır veya yoktur. Bu nedenle ya hava ile temas ederek doğal yoldan ya da sodyum iodat veya mercuric oksit gibi oksitleyici ajan kullanarak kimyasal yoldan hemateine okside olması gerekmektedir.Yapay Boyalar: Kömür-gaz endüstrisinde kömürden elde edilen organik bileşiklerdir. Son yıllarda petrol yağları önemli bir alternatif kaynak haline gelmiştir. Benzen, toluen ve naftalin gibi hidrokarbonlar; fenol ve cresol' ler gibi fenoller primer ürünlerdir. Yapay boyaların büyük bir bölümü üç olası alternatif yapısal formülü bir türevli moleküldür a-Benzen b-Quinone c-Anilin Resonans, ışığın absorbsiyonu ve renk oluşumu ile ilgilidir. Benzen renksiz bir bileşik olmasına rağmen, ultraviyole bandında bir absorbsiyon bandına sahiptir ve eğer gözlerimiz ultraviyole ışığa duyarlı olsaydı benzen renkli görünecekti. Benzenden renkli bir bileşik yapmak için, bazı kimyasal değişiklikler yapmaya gereksinim vardır ve renk oluşturan kimyasal konfügirasyonlar "kromofor ‘ lar olarak bilinmektedir. Üç esas tip chromofor vardır (Şekil ). Bunlar:l-Quinonoid halka (genellikle paraquinonoid, bazen orto-quinonoid)2-Azo-eşlenme3-Nitro-gruplanma, NO2 d-Nitro-gruplanma(nitrobenzen) QİNONE, sarı renkte, önemli bir kromofor içeren bileşiktir. Daha kompleks organik bileşiklerde bir quinonoid halkanın bulunuşu, parlak daha koyu renkler oluşturur. Kromoforları içeren bileşikler ' Kromojen' ler olarak bilinirler. Dokuları ve kumaşları renklendirirler. Oluşan renkler sabit değildir ve basit solusyonlarda yıkama ile kolaylıkla uzaklaşabilirler. Kromojenler solusyonlarda moleküller oluşturarak çözünürler. Halbuki tatmin edici boyalar iyonlar şeklinde çözünürler. Bir kromojeni gerçek bir boyaya çevirmek için iyonize edici bir grubun ortama verilmesine gereksinim vardır.Bu iyonlaştırıcı gruplar ''auxokrom'' lar olarak bilinirler ve rengin yoğunluğunu artırırlar. Auxokromlar ya asidik veya baziktirler ve tüm molekülün boyanma hareketini belirleyen boya parçalarıdır.En önemli bazik auxokrom, amino-qrubu (-NH2) dur. Boya endüstrisinin temelini oluşturan anilin halkayı içeren boyalar (Şekil-c), histolojide birçok boyama tekniğinde hala kullanılmaktadır.Asidik auxochromlar ise şunlardır:sülfür grubu (-SO3)karboksil grubu (-COOH)hidroksil grubu (-OH) Bir boya bileşiği içeren asidik veya bazik auxokromların büyük bir bölümü, bazik (katyonik) veya asidik (anyonik) boya karakterlerinin gücünü belirler. Bir bazik ve bir asidik gruba sahip boyalar baziktir ve bazik grup predominanttır fakat asidik grubun varlığı ile boyama özelliği zayıflamıştır. Boyalar modifier ' ler olarak adlandırılan ve boyanın rengini değiştirme etkisine sahip ek kimyasal gruplar içerirler. Bunlar metil (-CH3) veya etil (-C2H5 grupları olabilir ve boyanın rengini daha belirginleştirirler. Rosanilin, pararosanilin' den rengi biraz daha mavi yapan bir metil grubuna sahip olması ile ayrılır. Eğer bazik amino-auxochromların hidrojenleri metil veya aril grupları ile yer değiştirirse, boya daha mavi olur. Kristal viyole birden fazla modifiere sahip boyalara örnek olarak verilebilir. Şöyleki, bir koromofor ile renklenmiş ve bir auxokrom ile iyonize edilmiş organik bileşikten oluşmuş bir boyanın final rengi, bir modifier ile değiştirilir veya kuvvetlendirilir. Örnekler aşağıda verilmiştir.QUİNONOİD BOYALAR:Asit ve bazik fuksinKrista1 viyoleAnilin blueEozinThioninMetilen blueNötral redDoğal boyalardan hematein ve karminik asitAZO BOYALAR : Küçük bir boya grubudur .Orange GCongo RedTrypan blueNİTRQ BOYALAR :En küçük boya grubudur.Pikrik asit (trinitrofenol) Aurantia a-Quinoid boya (hematein) b-Azo boya (Orange G) c-Nitro-boya (Pikrik Asit)

http://www.biyologlar.com/histoloji-preparatlari-boyama-teknikleri-ve-boyalar

İdrar Analizi

İdrar analizi renal veya sistemik bir hastalık olup olmadığını, bu hastalığın türünü, nasıl bir gidiş gösterdiğini tahmin etmek için başvurulan basit, noninvaziv  önemli bir testtir. İdrar analizi genel uygulamada; 1-Genel ve kimyasal özelliklerine (strip ile) göre 2-Mikroskopik özelliklerine göre analiz edilir. İdrarın Genel Karakteristiğinin İncelenmesi 1.Rengi 2.Görünümü 3.Dansitesi 4.Ph'na bakılır 1.İDRAR RENGİ İdrar görünüşü ve rengi berrak ve açık sarıdır. Konsantre (koyu) idrar koyu kehribardan portakal rengine kadar değişebilir. Düşük dansiteli idrar ise açık renklidir. İdrar rengi aşağıdaki durumlarda değişebilir. 2. İDRARIN GÖRÜNÜMÜ Normal taze idrar berraktır. Ürat ve fosfatların presipitasyonu, hematüri, bakteriüri, pyüri ile idrar bulanıklaşabilir. Taze idrar amonyak kokar. Beklemiş idrar E.coli ile meydana gelen enfeksiyon sonucu balık gibi kokar. Soğuk algınlıklar ve bazı ilaç alımlarından sonrada idrar kokabilir. 3. İDRAR DANSİTESİ Böbreklerin idrarı konsantre ve dilüe etme yeteneğinin göstergesidir. Normalde 1015-1025 arasıdır. Ancak normal bir böbrek dansiteyi 1008-1030 arasında değiştirebilir. Hipostenüri (düşük dansite) : Dİ, tübüler hasar, GMN, pyelonefrit Hiperstenüri (yüksek dansite): DM, nefroz su kaybı,KKY,ADH artışı, gebelik toksemis 4.İDRAR ASİDİTESİ Böbreğin idrarı asidifiye etmesinin kaba bir göstergesidir, 4-8 arasındadır. Asit-baz metabolizması bozuklukları, Taş hastalığı, İdrar yolu enfeksiyonu, Değişik ilaçlar ve kristalleri değerlendirmedeyol göstericidir. Asit İdrar Nedenleri Yüksek proteinli diyet Asidoz Ateş Su kısıtlaması Potasyum eksikliği Gut Metanol zehirlenmesi İlaçlar (amonyum klorid vb.) Alkali İdrar Nedenleri Vejeteryan diyet İdrarın üreaz pozitif mikroorganizma ile kontaminasyonu veya infeksiyonu Alkaloz Distal renal tübüler asidoz Su diürezi İlaçlar (asetazolamide, thiazid, sodyum bikarbonat…) İdrarın Kimyasal Özelliklerinin  İncelenmesi 1.Glukoz 2.Protein 3.Bilirubin 4.Ürobilinojen 5.Nitrat 6.Keton yönünden incelenir 1.İDRAR GLUKOZU Normal koşullarda idrarda glukoz bulunmaz. (proksimal tubuler reabsorbsiyon) Normal renal fonksiyonlu hastalarda plazma glukoz konsantrasyonu >180 mg/dl olunca glukozüri gözlenir. DM, tirotoksikoz, Cushing Sendromu, akromegali, tubuler hasarda; idrarda glukoz artar Normal glukoz düzeylerine rağmen idrarda glukozun varlığı; Renal glukozüriyi gösterir. 2.İDRARDA PROTEİN Sağlıklı bir ürogenital sisteme sahip kişinin idrar tahlilinde protein negatiftir. Glomerüler hasar-Azalmış tubuler reabsorbsiyon Spot idrarda protein pozitifliği 24 saatlik idrarda protein ölçümünü gerektirir. Hafif zincirler ve bazı düşük molekül ağırlıklı proteinlerin bu yöntemle saptanamaz. Yanlış pozitif sonuçlar, Alkali idrarda (pH> 7.5) dipstick uzun süre içeride tutulduğunda, Yüksek konsantrasyonlu idrarda, Ciddi hematüride, Penisilin, sulfonamid veya talbutomid gibi ilaçların kullanımında, Meni ve vajinal salgılarla kontaminasyon Yanlış negatif sonuçlar; Dilüe idrarda (dansitesi<1015) Protein içeriğinin albumin olmadığı veya düşük moleküler ağırlıklı proteinler olduğu durumlarda Mikroalbüminüri Günlük albümin atılımının 30 ile 300 mg arasında olduğu durumlardır. Renal hastalıkların tanımlanmasında proteinüriden daha duyarlıdır. Diabetes mellitusda nefropatinin en erken bulgusudur. Kardiyovasküler olaylar yönünden bağımsız risk faktörüdür. 24 saatlik idrarda protein İdrarda artmış miktarda protein varlığı böbrek hastalıkları için önemli bir belirteçdir. Normalde<150 mg/gün, 150-600 mg arası takip Bazal membran hasarı,BM elektriksel yük değişimi, glomerüler kapiller basınç artışı patolojik sebeptir. Daha çok albumin atılır.Terminolojik olarak proteinüri kavramı = albuminüri Büyük moleküllü globülinlerin atlımı fazlaysa(MPGMN) kötü prognoz işaretidir. 3.ÜROBİLİNOJEN Bozulmuş karaciğer fonksiyonlarının ve hemolizin en duyarlı göstergelerindendir. Safra yollarının tıkandığı hallerde azalır. 4.BİLİRUBİN Normalde idrarda negatifdir. Hemolizde negatif, biliyer tıkanmada pozitifdir. Hepatik hasarda pozitifnegatif olabilir. 5.KETON İdrar keton pozitifliği = ketonüri (diyabetik ketoasidoz, uzamış açlıkta). Bu yöntemle aseton varlığı tespit edilmektedir. Glisemi yüksekliği, asidoz, gebelikte ketonüri takibi gereklidir. 6.NİTRİT Pozitif nitrit testi anlamlı miktarda bakteri varlığıdır. E.coli gibi gram negatif bakteriler pozitif sonuç verebilirler. Duyarlılığı sınırlıdır.

http://www.biyologlar.com/idrar-analizi

B6 Vitamini

B6 VİTAMİNİ: Pyridoxine Pyridoxine olarak da adlandırılan B6 vücutta depolanmayan ve suda eriyen bir vitamindir. Diyetle veya ek vitamin olarak mutlaka alınmalıdır. Üç farklı formu vardır. Alkol, aldehit ve amin. Hayvansal ve bitkisel besinlerde düşük yoğunlukta bulunur. Yararları: Vücutta diğer birçok vitaminden daha fazla hayati fonksiyonları destekleyici rol oynar. Karbonhidrat, yağ ve protein metabolizmasında yer alır. Hormonlar, kırmızı kan hücreleri, sinir hücreleri ve enzimlerin oluşumunda rol oynarlar. Ayrıca B6 vitamini iştahımızı, ağrıya karşı duyarlılığımızı, uyku düzenimizi, ruh durumumuzu etkileyen serotonin adlı maddenin yapımında da etkili olmaktadır. B6 vitamini bağışıklık sistemini güçlendirir, kolesterol birikimine engel olarak kalbi korur, böbrek taşı oluşumunu engeller. karpal tunel sendromu, adet öncesi gerginlik sendromu, artritler, alerjiler, geceleri oluşan bacak kramplarının tedavisinde de kullanılır. B6 vitamini birçok enzimin oluşumuna katılır. Örneğin, demirin hemoglobin yapısına katılmasını sağlayan enzimlerin içinde de bulunurlar. Ensefalopati ve polinevrit gibi nörolojik hastalıkların tedavisinde B6 vitamini etken madde olarak kullanılır. Hangi besinlerde bulunur? Başlıca Vitamin B6 kaynakları arasında muz, avakado, tavuk eti, patates, ıspanak, bezelye, bira mayası, havuç, yumurta, balık ve bütün hububatlar gelmektedir. Tavuk, balık, ıspanak, patates, muz, kepekli ekmek, kuruyemiş diğer önemli kaynaklarıdır. Eksikliği nelere yol açar? B6 vitamini eksikliği son derece enderdir. Bu durumda deri, sindirim sistemi ve sinir sistemi rahatsızlıkları ortaya çıkar. Dudak ve dil çatlaması, egzama gibi fiziksel belirtiler görülür. B6 vitamini eksikliğinde ani uykusuzluk ve santral sinir sisteminin çalışmasında bozukluklar oluşmaktadır. Eksikliğinde depresyon, kusma, anemi (kansızlık), böbrek taşları, dermatitler, uyuşukluk, bağışıklık sisteminin zayıflamasına bağlı olarak sık hastalanma görülebilir. Yeni doğanlarda B6 vitamini eksikliğine bağlı olarak aşırı sinirlilik, huysuzluk; bazende kasılma nöbetleri görülebilir.

http://www.biyologlar.com/b6-vitamini

TARIMSAL İLAÇLAR REÇETE İLE SATILACAK

Bitki Koruma Ürünlerinin Reçeteli Satışı Hakkındaki Yönetmelik 1 Ocak 2009 tarihinden itibaren yürürlüğe girecektir. Yönetmelik doğrultusunda İlimizde bitki koruma ürünleri ancak reçeteye dayalı olarak satışa sunulacaktır. Bu doğrultuda bitki sağlığı, çevre sağlığı ve insan sağlığına daha duyarlı tarımsal üretim gerçekleştirilecektir. Bu doğrultuda İl Merkezinde Bitki Koruma Şubesindeki Ziraat Mühendisleri ile İlçelerde bitki koruma biriminde görev yapan ve köylerde sözleşmeli olarak görev yapan Ziraat Mühendisleri ile bu birimde en az beş yıldan beri görev yapmakta olan teknikerler ve teknisyenlere (toplam 25 kişi) İl Tarım Müdürlüğümüzde 3 gün süre ile mevzuat, bitki koruma ürünleri, bitki hastalık ve zararlılarının teşhisi ve tedavisi, pestisit kalıntısı ve çevre (toksikoloji ve ekotoksikoloji) konularında eğitim verilecektir. Eğitim sonucunda yapılacak sınavda başarılı olan teknik elemanlar “Bitki Koruma Ürünü Reçete Yazma Yetki Belgesi” almaya hak kazanacaklardır. Bu tarihten itibaren il genelinde bitkisel ilaçlamalarda bu teknik elemanlarca verilen reçeteye bağlı olarak bitkisel mücadele ilacı kullanılacaktır. Ayrıca ticari amaçlı meyve ve sebze üretimi yapan üreticicilere Müdürlüğümüzce kayıt defteri verilerek kullanılan tarımsal ilaçlar her aşamada kontrol edilecektir. Kaynak: duzcetarim.gov.tr

http://www.biyologlar.com/tarimsal-ilaclar-recete-ile-satilacak

Köpek Hastalıkları

Tüm hayvanlar yaşamları boyunca çeşitli enfeksiyonlara maruz kalırlar.Anneden alınan antikorların etkisi sona erdiğinde enfeksiyonlara karşı zayıf hale gelirler.Enfeksiyona yakalanmadan önce,kendi bağışıklıklarını geliştirmeleri için gerekli olan yeterli miktarda antikoru üretecek B hücrelerine sahip olmaları gerekir.Özellikle köpek üretim merkezleri,barınaklar,pansiyonlar,pet shop ve dog showlar gibi kalabalık çevrelerde bulunan yavrular yüksek risk altındadır.Bu nedenle,viral ve bakteriyel aşıları tamamlanmış olan yavru köpeklerin,dog show gibi etkinliklere katılması doğru değildir. VİRAL HASTALIKLAR Gençlik Hastalığı : (Canine Distemper) Köpeklerin gençlik hastalığı bulaşıcı viral bir hastalıktır.Kolostrum (anneden ilk emzirme sırasındaalınan süt,ağız sütü,yüksek miktarda antikor içerir.)almış yavrularda.maternal(anneden alınan) antikorlar yavruyu % 12 hafta korur.Kolostrum almamış olanlarda ise bu süre 1-4 haftadır.Bu nedenle hastalık genelikle 3-12 aylık köpeklerde yaygındır.Fakat daha yaşlı köpeklerde de rastlanabilmektedir.Yüksek ateş (40-41C) ile başlayan hastalık,iştahsızlık,depresyon,burun ve göz akıntıları,kusma ve ishal ile devam eder.Hastalığa yakalanan köpeklerin büyük kısmı (%60-80) ölür.Hastalığın en çok görülen tipi solunum tipi olmak üzere sindirim sistemi ile ilgili ve sinirsel belirtilerin gözlendiği hastalık formları daha sık görülür.Hastalığın sinirsel formunda sara tipi nöbetler,tikler ve felçler gözlenir.Distemper virüsü T ve B hücreleri ile makrofajları etkiler.Köpek iyileşse bile virüsün bağışıklık sisteminde yaptığı bozukluk kalıcı olur.Distemper virusünün hastalık yapma yeteneği köpek makrofajları üzerindeki bu replikasyon yeteneğinden ileri gelmektedir. Kanlı İshal :(Canine Coronavirüs) Kanlı ishale neden olan parvovirüsler nisbeten yeni virüslerdendir ve kedilerin gençlik hastalığı virüsleri ile yakkınlıkları vardır.İlk olarak 1978 yılında ortaya çıkan ve yüzbinlerce köpeğin ölümüne neden olan bu hastalık köpeklerin afeti olarak tanımlanmaktadır.İlk olarak Kuzey Amerika'da tanımlanan hastalık bundan sonra Avustralya,Yeni Zelanda,Asya,Merkez Amerika ve Güney Afrika'da görülmüştür.1983'lü yıllarda itibaren 50'yi aşkın ülkede gözlendiği bildirilmiştir.Hastalık her yaştaki köpekte gastrointestinal belirtilere,yavru köpeklerde kalp kasının iltihabına(miyokarditis) neden olur.Özellikle yavru köpekler için tehlikeli olan parvoviral enteritise,3 yaşın altındaki köpeklerde rastlanmaktadır.Yeni zelanda'da yapılan bir araştırmaya göre 0-7 haftalık köpeklerde hastalığın insidansı %63, 8-12 haftalık köpeklerde %29, 3-6 aylık köpeklerde %23, 6-12 aylık köpeklerde %14, 1-2 yaşındakilerde ise %9, bir yaşından sonra da %11 olarak tespit edilmiştir.Bu virüs özellikle hızlı olarak bölünen hücreleri hedef alır.Bu hücrelerde organizmada barsakta bulunan ve alınan besinlerin değerlendirilmesi ile ilgili olan hücrelerdir. Parvoviral hastalığın ilk belirtisi şiddetli kusmadır.Kusmuk gri-beyaz renkte ve suludur.Kusmayı sulu,kötü kokulu,sarıdan kahverengiye kadar değişen renkte ishal izler.İshal halinde çıkarılan dışkıda taze ya da pıhtılaşmış halde kan bulunur.Ateş 41.C kadar yükselir.Kusma ve ishal nedeni ile oluşan sıvı kayıpları sonucu çoğu yavru köpekler ilk 24 saat içerisinde ölür.Kalbin etkilendiği durumlarda ise çoğu zaman yavru köpekler ölü bulunurlar.Bu hastalıkta ölüm oranı %50'nin üzerindedir. Parvovirüslerin bağışıklık sistemini baskıladıkları bilinmektedir.Ancak bunun mekanizması ve lenfosit fonksiyonlarını nasıl etkiledikleri henüz açıklığa kavuşmamıştır.Virüslerin bağışııklık sistemini nasıl baskıladıklarına ilgli 4 ana mekanizma vardır.Bu mekanizma lar sayesinde virüsler,vücudun bağışıklık sisteminin zayıf taraflarını araştırarak kendi varlıklarını garentiye alırlar.Virüsler: 1)T ve B hücrelerinin fonksiyonlarını bozar veya onları yok ederler. 2)Bağışıklık sisteminin düzeninde dengesizliğe yol açarak,baskılayıcı T hücrelerinin aşırı aktif hale gelmesine neden olurlar. 3)Makrofajlar bu virüsleri yutarken,makrofajlara zarar verebilir vemakrofajları enfekte edebilirler. 4)Hedef hücrelerin genetik kodlarını çalabilirler. Virüsler özellikle belirli bir hücreyi etkileyen kimyasal habercilerin reseptörlerine kendi genetom proteinlerini yerleştirirler.Bu şekilde virüs, habercinin gönderdiği kamutları bozar veya ortadan kaldırır.Modifiye canlı parvovirüs aşıları,köpeklerde 2-5 haftalık bir süre için bağışıklık sistemini baskılayıcı etki gösterir. Bulaçıcı Karaciğer Hastalığı : (Infectıous Canine Hepatitis, CAV-1) Bu hastalığın etkeni adenovirüslerdir (CAV-1) ve bulaşma hasta köpeklerin idrarı ile olur.Hastalığın en şiddetli formları yavru köprklerde görülmektedir.Aşılı anneden doğan yavru köpekleri kolostrum 5-7 haftaya kadar koruyabilir.Bulaşıcı karaciğer hastalığının 13 yaşındaki köpeklerde bile ölüme yol açtığı bilinmektedir.Adenovirüsler tüm dokuları enfekte edebilme yeteneğindedir.Fakat daha çok karaciğer hücreleri ile ilgilidirler ve bu organda şiddetli yangıya neden olur.Hastalığın ilerleyen dönemlerinde gözlerde kornoval opasite (kornoal bulanıklık) şekillenir.Mavi göz olarak daadlandırılan bu bozukluğun nedeni gözlerin pigmentli tabakasının yangısıdır ve aşılamayı takibende gözlemlenir. Adenovirüs Tip-2 Enfeksiyonu : (Canine Adenovirüs Type-2 CAV-2) Bu virüs daha çok solunum sisteminde hastalık yapmaktadır."Trache obronşitis veya Kennel Cough" olarak adlandırılan köpek öksürüğü hastalığının etkenlerinden biridir.Özellikle kalabalık ortamlarda barınan köpekler arasında yaygındır.CAV-2 aşısı aynı zamanda CAV-1 aşı virüsü nedeniyle oluşabilecek korneal reaksiyonlarıda önler. Köpek Nezlesi : (Canine Parainfluenza) Bu viral enfeksiyon solunum sisteminde orta dereceli bir yangıya neden olur.Ancak CAV-2 virüsü ve Bordetalla bronchiseptica bakterisi ile kombine halde çok şiddetli ve ölümcül enfeksiyonlara neden olurlar. Koronavirüs İshali : (Canine Coronavirüs) Koronaviaral enfeksiyon genellikle subklinik olarak seyreder.Klinik belirtileri ateşle ve hafif bir inestial akıntı ile başlar,sonraları kusma ve ishal gözlenir.Koronaviral hastalık tek başına şiddetli enfeksiyonlara neden olmamakla birlikte,özellikle parvoviral enfeksiyonlarla birleştiği zaman,hem klinik belirtilerin şiddeti hem de ölüm oranında artış görülür. Kuduz :(Rabies) Kuduz sıcak kanlı hayvanların merkezi sinir sistemini etkileyen viral bir hastalıktır.Bu eski ve korkunç hastalığın etkeni olan Rhabdovirüsler beyinde yangı(iltihap) meydana getirirler.Bu virüs enfekte hayvanların salyası ile taşınır.İnkubasyon periyodu(Etkeni aldıktan hsatalığın başlamasına kadar geçen zaman periyodu.) 10 gün ile birkaç ay arasında değişir.Kuduz ölümcül bir hastalıktır.Klinik belirtiler ortaya çıktıktan sonra tedavinin faydası yoktur.Birçok vahşi hayvan(ratlar,racoonlar,yarasalar,tilkiler) kuduzun rezarvuarı durumundadır.Aristotlr "Hayvanın Tarihçesi" adlı kitabında kuduzu éköpek Deliliği" şeklinde tanımlamıştır.Kuduzdan korunma için modifiye canlı ve ölü aşılar bulunmaktadır.Son yıllarda ölü aşıların daha etkili bulunması,modifiye canlı aşıların vazgeçilmelerine neden olmuştur. BAKTERİYEL HASTALIKLAR Bordetelloz: Bu hastalığın etkeni olan Bordetella bronchiseptica bakterisi Adenovirüs Tip-2 ve Parainfluenza ile birleşerek Köpek Öksürüğü diye adlandırılan hastalığı meydana getirir.Köpek bordetellozisi şiddetli öksürüğe neden olur.Aşı özellikle intranazal (burun içi) olarak uygulandığı zaman çok etkili koruma sağlar.Toplam 13 antijenlik tip bu hastalığa neden olabilmektedir.Fakat sadece 3 tanesine karşı aşı geliştirilmiştir.Ancak bu üçü %90 nın üzeindeki vakadan sorumlu olan antijenlerdir. Leptospiroz: Klinik tablosu oldukça değişik olan bu enfeksşyonda ateş ile başlayan hastalık tablosu böbrek yetmezliği ile sonuçlanır.Böbrek fonksiyonlarının bozulması üremiye neden olur.Başlıca belirtileri halsizlik,uyuşukluk,deprosyon,iştahsızlık,ishal,kusma,ağız ve göz mukozalarının yangısı,anormal sinirsel belirtiler ve ölüme neden olan kan pıhtılaşması bozukluklarıdır.Bulaşma enfekte köpek ve ratların idrarları ile olur.Bu hstalığın en önemli özelliği insanlarada bulaşabilmesidir. AŞISI BULUNMAYAN ÖNEMLİ KÖPEK HASTALIKLARI Herpesvirüs : Bu viral enfeksiyon özellikle yavru köpekler için öldürücü bir hastalıktır.Süt emme çağındaki yavru köpeklerde hafif derecede solunum yolu enfeksiyonuna neden olur.Kalıcı enfeksiyonlar olgun dişilerde meydana gelebilir.Herpesvirüsler sinir hücrelerine yerleşerek bağışıklık sisteminden korunabilme yeteneğindedirler.Brusellosizin aksine,herpesvirüsle enfekte olan gebeler doğum yaparlar.Ancak matarnal antikor geçişini sağlayamazlar.Bu annelerden doğan yavrular herpesvirüslere karşı duyarlıdırlar. Bruselloz: Bu bakteriye hastalığın ne aşısı nede tedavisi vardır.Hasta köpekler devamlı taşıyıcı durumundadırlar.spontan yavru atmalar brusellosizin ilk göstergesidir.Bulaşma oral ve mukoz membranlar yoluyla olmaktadır.erkek köpekler enfeksiyonu çiftleşme yoluyla enfekte dişi köpeklerden alırlar.Ayrıca hasta dişilerin vulvalarının yalanması ve idrarlarnın alınması yolu ilede bulaşmalar olmaktadır.Dişiler de yine çiftleşme ve hastalığın etkeni olan bakterilerin ağız yolu ile alınması neticesinde hastalığa yakalanırlar.Bu nedenle dişi köpekler üreme öncesinde brusellosiz yönünden kontrol edilmelidir.

http://www.biyologlar.com/kopek-hastaliklari

Kanser Tedavisinde Yeni Silahlar

Kanser Tedavisinde Yeni Silahlar

İnsanlık, bildiğimiz kadarı ile, yazılı tarih boyunca kendi tarihi kadar eski ve bir o kadar da ürkütücü kanserle mücadele etmiş ve hala bu mücadelesine devam etmekte. M.Ö. 3000 yıllarında yazıldığı tahmin edilen eski Mısır metinlerinde meme ülserlerinin (o zaman henüz kanser kelimesi literatürde yoktu) koterle yakılarak alındığı anlatılıyor. Günümüzde ise kanser hastaları radyoterapi, kemoterapi ve cerrahi müdahaleler ile tedavi edilmeye çalışılmakta. Bu tedavi yöntemlerinin kanserli hücre kadar sağlıklı hücrelere de saldırması nedeni ile kusma, saç dökülmesi, enfeksiyon riskinin artması gibi istenmeyen etkiler hastalarda sıklıkla görülüyor. Kanser araştırmacıları, sağlıklı hücrelere zarar vermeyecek, ancak kanserli hücreleri öldürecek ilaçlar ve tedavi yöntemleri geliştirmeye çalışmaktalar. Sağlıklı hücreler ile kanser hücrelerini birbirinden ayırmak için kanser hücrelerinin genetik yapısının anlaşılması önemli olduğu biliniyor. Nitekim, 2010 yılında yapılan bir meta-analiz çalışması, kanser araştırmacıları arasında tümör biyolojisi ve kanser genetiği araştırmalarının popüler olduğunu gösteriyor [1]. Meme ülserlerinden bahseden eski Mısır metinlerinin üzerinden 5000 yıl, Hipokrat’ın “karsinoma” terimini kullanarak çeşitli kanser türlerini tanımlamasından 2400 yıl sonra kanser araştırmaları on beş yıldır umut vaat eden yeni bir alanda seyrini sürdürüyor: Kanser kök hücreleri (KKH). Şekil 1: KKH’lerin kendilerini yinelemeleri ve farklılaşmaları. (A) karesi içerisinde mavi renkle gösterilen KKH kendini sınırsız yineleyebilme özelliğine sahiptir. Bu özellik dönümlü ok ile temsil edilmiştir. KKH kendini yinelerken (B) karesi içerisindeki gibi kendinin aynısı kanser kök hücrelerini üretebilir. Bu KKH’ler de hem sınırsız kök hücre üretme, hem de farklılaşma yetisine sahiptir. (A) karesindeki KKH farklılaşırken ise önce (C) karesinde açık mavi ile gösterilen hücreyi üretir. Bu hücre bir miktar (soru işaretinin gösterdiği üzere) kendini tekrar üretme yetisine sahipken bu hücreden bölünerek farklılaşan diğer hücreler artık sınırsız kendilerini yineleme ya da farklılaşma yetisine sahip değildir. Kanser, basitçe anlatımı ile hücrelerin kontrolsüz büyümesi nedeni ile oluşan yüzden farklı hastalığa verilen genel bir isimdir. Ancak bu kadar basitçe tanımlanabilmesi kanserlerin basit, kolay anlaşılır hastalıklar olduğu anlamına gelmiyor. Kanserli bir dokuda farklı kanser hücreleri bulunuyor. KKH hipotezine göre bu hücrelerin bir kısmı tedavi süresince ilaçlara dayanıklılık geliştirebilen kanser kök hücreleri. Kök hücreleri bölünmeleri sırasında kendilerinin birebir aynısı iki kopya yapmazlar. Oluşan yavru hücrelerin bir tanesi ana hücrenin tıpkı kopyası iken diğer hücre (Şekil C) planlanan işleve göre farklılaşır. Kanser kök hücreleri de benzer bir şekilde asimetrik olarak bölünür. Bu hücrelerin bölünmesi sırasında oluşan hücrelerden bir tanesi standart kanser hücresi olarak yaşamına devam ederken diğer hücre  (Şekil B)kanser kök hücresi olarak kalır ve daha fazla kanser hücresi üretmeye devam eder [Şekil 1]. Yavru kök  hücrelerinin kendilerini yeniden üretme yetilerine sahip oldukları kadar radyoterapiye ve kanser ilaçlarına direnç kazandıkları da gözlemlenmiştir. Kanser araştırmalarında kök hücre fikrinin aslında çok yeni bir fikir olmadığı söylenebilir. Tümörlerin heterojen histolojik (histoloji: doku ve hücrelerin mikroskobik anatomilerinin incelenmesi bilimi) özellikler gösterdiği 19. yüzyıldan bu yana araştırmacılar tarafından biliniyor. Ancak kanser kök hücrelerinin varlıkları akut myeloid lösemi (AML) üzerinde yapılan araştırmalar sonucunda ortaya çıkarılmış. AML hücrelerinin sık bölünmediğini gören araştırmacılar “temel” bir hücre tipinin AML hücrelerini ürettiği fikrini test etmek amacı ile fareler üzerinde çeşitli deneyler yapmışlar. Bu deneyler sırasında araştırmacılar insan kökenli AML hücrelerini fareye nakil etmişler ve bir tip hücrenin kemik iliğine yerleşerek lösemi hücreleri ürettiğini gözlemlemişler. Gözlenen bu hücreler kanser kök hücreleri olarak adlandırılmış. Daha sonraki çalışmalar meme ve kalın bağırsak kanseri başta olmak üzere pek çok katı tümörde de KKH’lerin bulunduğunu gösteren sonuçlara ulaşmış. Önceleri tümörlü bir yapı içerisinde kanser kök hücrelerinin oranının çok düşük (binde birden daha az) olduğu varsayılmaktaymış ama 2007 yılında yapılan bir çalışma farelere enjekte edilen lösemi ve lenfoma hücrelerinin %10 kadarının in vivo (canlı organizma içinde yapılan araştırmalar) ortamda kanser geliştirme yetisine sahip olduğunu göstermiş. Başka bir çalışma ise ileri derece melanomlardan (oldukça saldırgan bir cilt kanseri türü) toplanan hücrelerin %25’inin bağışıklık yetmezliği olan fareler üzerinde kanser hücreleri oluşturduğunu belirlemiş [2]. Tümörler içerisindeki KKH miktarı konusunda hala tartışmalar devam etmekte olsa da yapılacak çalışmalar ile önümüzdeki yıllarda bu sorunun yanıtına ulaşılacak gibi gözükmekte. Şekil 2. Kanser Kök Hücreleri – Olası tedavi hedefleri Kansere karşı etkili, tümör oluşturan hücreleri hedefleyen tedavi yöntemleri geliştirilerek tümörleri yok etmek için [Şekil 2], kanserli doku içerisindeki oranları ne olursa olsun KKH hipotezinin test edilmesinin gerekli olduğu araştırmacılar tarafından vurgulanıyor. Konu ile ilgili bilim insanları KKH’lerin kanser hücresi üretme yetilerine yol açan özel biyolojik ve genetik yapıları ile uyumlu olarak bu hücrelerin antitümör ilaçlarına karşı duyarlılıklarının da diğer kanser hücrelerinden farklı olabileceğini düşünmekteler. Bu hücrelerin nasıl yok edileceği sorusu ise bilim dünyasını meşgul eden diğer bir soru. Ama bu soruya yanıtlar gelmeye başlamış. Bilim insanları, KKH’lerin bölünmesi sırasında kullandıkları üç farklı moleküler yolağı tanımlamayı başarmışlar: Notch yolağı, Hedgehog yolağı ve Wnt/beta-katenin yolağı. Bu üç yolağı kullanarak kanser kök hücrelerinin tümör üretim aktivitelerini durduracak tedavi yöntemleri üzerine çalışmaların devam ettiği çeşitli kaynaklarda bildiriliyor. Her ne kadar tümör içindeki oranları, her bireyde ve kanserli yapıda gösterdikleri farklılıklar hala tartışmaya açık olsa da KKH hipotezi gelecekte kanser tedavileri için bir umut ışığı yakmış gibi görünmektedir. Üniversiteler ve araştırma kuruluşları AML hücrelerinde kanser kök hücrelerinin tanımlanmasından bu yana KKH araştırmalarına yüksek miktarlarda yatırım yapmışlardır. A.B.D. Ulusal Kanser Enstitüsü tarafından yönetilen Kanser Genom Atlası Projesi kapsamında binlerce tümör örneğinin gen dizilimlerinin belirlenmesi çalışmalarına önümüzdeki beş yıl içerisinde 1 milyar dolar harcanması planlanmaktadır. Bu çalışmaların kanser kök hücreleri ve kanser biyolojisine ait bilgilerimizi arttıracağı tartışma götürmezken, kanser tedavisinde yeni çığırlar açma olasılığı da hem bilim dünyası hem de kanser hastaları için heyecan vericidir. Kaynaklar 1. “A close look at cancer”, Allison Farrell, Nature Medicine, March 2011, Vol. 17, Number 32. “Solving an age-old problem”, Barbara Dunn, Nature, March 2012, Vol. 4833. “The cancer stem cell: premises, promises and challenges”, Hans Clevers, Nature Medicine, March 2011, Vol. 17, Number 34. “Recent advances in cancer stem cells”, Robert W Cho and Michael F Clarke, Current Opinion in Genetics & Development , 2008, 185. “Cancer stem cell: target for anti-cancer therapy”, Carol Tang, Beng T. Ang, and Shazib Pervaiz, The FASEB Journal, December 2007, Vol. 21 Bahadır Ürkmez http://www.acikbilim.com/2012/11/dosyalar/kanser-tedavisinde-yeni-silahlar.html

http://www.biyologlar.com/kanser-tedavisinde-yeni-silahlar

Likenler

Likenler ya da Lichenes; başlı başına birer organizma değildirler. Mantarlar ve fotosentetik alglerden meydana gelen simbiyotik birlikteliklerdir. Şekil ve yaşayış bakımından kendilerini oluşturan alg ve mantarlardan tamamen ayrı bir yapı gösterirler. Renksiz bir mantar hifinden oluşan tallusun yapısına katılan fotosentetik canlı (fotobiyont), genellikle yeşil alg ya da bir siyanobakteridir; fakat bazı sarı-yeşil alglerden ve kahverengi alglerden de oluştukları bilinir. En çok Cyanophyta ve Chlorophyta'ya ait cinsler ve Xanthophyta ve Phaeophyta'dan bazı alg türleri görülür. Mantarlarda ise genellikle Ascomycetes ve az olarak Basidiomycetes'e ait cinsler görülür. Alg ve mantarın birbirleri ile birleşmeleri farklı şekillerde olabilir. Eğer alg ve mantar dağılımı homojen tek bir tabaka şekildeyse bu likenler; "Homeomerik liken", heterojen bir dağılım ve farklı tabakalar varsa "Heteromerik liken" olarak isimlendirilirler. Homeomerik likenlerde, alg ve mantar ayrı bir katman oluşturmadan birleşir, tallus jelatini andıran müsilajımsı yapıdadır. Heteromerik likenlerde, üst kabuk katmanı (korteks) ile orta kısım arasında algler bulunur, diğer kısımlar sıkı ya da gevşek dizilmiş mantar hiflerinden oluşur. Çoğu liken bu grupta yer alır. Likenler, birçok yerde bulunabilen organizmalardır. Morfolojilerine veya dış görünüşlerine göre göre; Kabuksu likenler, genellikle kayalar üzerinde gelişen likenlerdir. Tallus kabuk biçimindedir. Kayaları eritebilen enzimleri bulunabilir, bu yüzden "Endolitik likenler" de denirler. Yapraksı likenler, tallusları loblar halinde olan ve genellikle rozetler oluşturan likenlerdir. Dalsı likenler, ağaçlar bazen de kayalar üzerinde gelişen, oldukça büyük talluslu, sık dallanma gösteren likenlerdir.   Likenler Tabiatta bazı kayaların, toprakların ağaç gövde ve dallarının üzerinde yaşayan yosunlara benzeyen, köksüz, gövdesiz ve yapraksız bitkiler, Likenler bir kısım mantarlarla bazı su yosunlarının beraberce bir bütün halinde ortak yaşadığı bitkilerdir. Bu iki ayrı çeşit bitki kendine benzemeyen tamamen farklı bir organizma meydana getirirler. Herhangi birisi olmasa liken meydana gelemez. Liken, su yosunları (alg) vasıtasiyle özümleme yapar. Mantarlar da iplikleri ile suyu temin eder ve likeni bulunduğu yere tesbit eder. Likenler, zengin bir bitki grubudur. Dünyanın hemen her bölgesinde yayılmış olarak çeşitli yetişme yerlerinde yaşarlar. Kutuplardan Ekvatora, deniz kıyısından, ovalardan dağların en yüksek yerlerine kadar hemen hemen her yerde, diğer organizmaların yaşayamayacağı yetişme yerlerinde yetişebilirler. Kızgın güneş altında (70°C) sıcağa ve çok düşük dereceli soğuğa, haftalarca süren kuraklığa dayanabilirler, dünya üzerinde de 20.000 kadar türü bulunmaktadır. Likenlerin besin maddelerine olan ihtiyaçları azdır. Yalnız havası temiz olan yerlerde yaşayabilirler. Kirli havaya karşı çok duyarlılık gösterirler. Bunun için likenler, bir bölgenin havasının temiz olup olmadığını belirten iyi bir göstericidir. Likenlerin yapısının büyük kısmını mantar iplikleri meydana getirir. Çoğunlukla likenin üst ve alt kısmında mantar ipliklerinden meydana gelen sıkı bir kabuk tabakası, orta kısmında ise daha gevşek bir örgü dokusu bulunur. Üst kabuk tabakasının altında suyosunları yer alır. Likenin eşeysiz üremesini suyosunları sağlar. Eşeyli üremeyi ise sadece mantar sağlar. Likenler çok yavaş büyürler. El büyüklüğünde bir liken, ekseriya 50 yılda meydana gelir. Çalımsı likenlerin birkaç cm yükselebilmesi ise ancak 100-200 yılda olabilir.” Likenler, şekillerine göre üç grupta toplanabilir. 1. Kabuksu likenler: Liken tamamen ağaç kabuğuna veya kayalara tutunmuş olup, kabuk şeklinde, yassı ve sıkı bir örtü meydana getirirler. Mesela; lecanora, lecidea, rhizocarpon (harita likeni) likenleri gibi. 2. Yapraksı likenler: Liken şerit veya levha şeklinde küçük veya büyük dilimli yaprak şeklindedir. Mesela, İslanda likeni (cetraria) gibi. 3. Çalımsı likenler: İnce şerit şeklinde ve iplik şeklinde dallanmış olup, bir çalıyı andırarak ya dik olarak veya ağaçlardan aşağı doğru sarkan likenlerdir. Mesela; sakal likeni (Usnea), kadeh likeni (Cladonia) gibi. Memleketimizde yetişen önemli likenler şunlardır: Harita likeni: (Rhizocarpon geographicum): Kayalar üzerinde yaşayan sarımsı-yeşil renkte kabuklu likenlerdir. Parmelia furfuraceae: Ağaçlar üzerinde yaşayan grimsi-siyah likenlerdir. Evernia prunastri: Çok yaygındır. Meşe, kayın, gürgen, kavak ve karaağaç üzerinde yaşayan sarımsı-yeşil renkli likenlerdir. Sakal likeni (Usnea barbata): Çam, köknar, kayın ağacı dallarından sarkan çalımsı likenlerdir. Ciğer likeni (lobaria pulmonaria): Yaprak şeklinde, derimsi, yeşilimsi gri likenlerdir. Kadeh likeni (Cladonia pyxidata): Orman kenarlarındaki güneşli yerlerde ve kireçli topraklarda yaşayan grimsi-yeşil kadeh şeklindeki likenlerdir. Likenlerin kullanılışı: Likenler çok eskiden beri tıpta kullanılmıştır. Ancak bu kullanma ilmi esaslara göre değil de o zamanki kurala göre, benzetildiği hasta organının tedavisinde kullanılırdı. Mesela sakal likeni saç çıkarmada, ciğer likeni akciğer hastalıklarında kullanılmıştır. Likenler, antibiyotik etkileri incelenmekte olan bitkilerdir. Bugün likenlerden elde edilen 60 kadar antibiyotik vardır. Bu etkisinin de, taşıdıkları liken asitlerinden ileri geldiği düşünülmektedir. Antibiyotik maddeler çoğunlukla, cladonia, evernia, cetaria, usnea romalina cinsi türlerinden elde edilen usnik asit, vulpinik asit, evernin asidi, önemli antibiyotik asitlerdir. Usnik asit, evernin asidi ve liken yağ asitlerinin karışımından Evosin elde edilir ki bunun kuvvetli bir antibiyotik etkisi vardır. Gram (+) kokuslara karşı etkilidir. Usnik asidin sodyum tuzunun da staphylococcus, streptococcus ve mycobacteriuma karşı kuvvetli bir antibiyotik etkisi vardır. İki liken türü, lethraria vulpina ve cetraira pinastri zehirlidir. İskandinav ülkelerinde kurtları zehirlemek için kullanılır. Bu iki liken türünden başka hiçbir liken zehirli değildir. Yalnız çoğu, ihtiva ettikleri asitlerden dolayı barsak bozukluklarına sebep olur. Tabiatta likenlerin büyük kısmı, hayvanların besinlerini sağlar. Kuzey ülkelerinde ren geyikleri, kar altında cladonia alpestris likenini tercih ederek ararlar. Ayrıca Arktik ve Subarktik kuzey bölgelerinde bulunan İslanda likeni (Cetraria islandica), yabani mandaların, domuzların önemli yem bitkisidir. Kuzey bölgelerinde yerli halk, evcil hayvanları için bol miktarda liken toplarlar. Liken, insanlar için de yiyecek maddesi olarak kullanılır. İki kg liken unu, 1 kg buğday ununa eşittir. Orta doğunun kurak bölgelerinde ve çöllerindeki Manna likeni(kudret helvası), besin olarak kullanılan likenlerdendir. Develerin besinini temin ettiği gibi, insanlar da bundan ekmek yaparlar. Orta Asyada bu liken türünden yapılan ekmeğe Kırgız ekmeği denir. Likenlerde az miktarda da olsa vitaminler vardır. Ren geyiği likeninde (Cladonia rangiflerina), A,C ve D vitaminleri mevcuttur. Likenlerden sanayide de faydalanılır. Roccella tinctoria ve R. fuciformis liken türlerinden, asit, baz endikatörü olarak kullanılan turnusol mahsulü ve kağıdı yapılır. Bundan başka Orsey adı verilen yün, ipek, hatta odunu boyamada kullanılan kırmızı bir boya elde edilir. Bazı liken türleri de ortaçağdan beri parfümeride kullanılmıştır. Fransa''da bir liken türünden orman çayı adı verilen aromatik bir içecek yapılır.     Likenler ya da Lichenes; başlı başına birer organizma değildirler. Mantarlar ve fotosentetik alglerden meydana gelen simbiyotik birlikteliklerdir. Şekil ve yaşayış bakımından kendilerini oluşturan alg ve mantarlardan tamamen ayrı bir yapı gösterirler. Renksiz bir mantar hifinden oluşan tallusun yapısına katılan fotosentetik canlı (fotobiyont), genellikle yeşil alg ya da bir cyanobakteridir; fakat bazı sarı-yeşil alglerden ve kahverengi alglerden de oluştukları bilinir. En çok Cyanophyta ve Chlorophyta'ya ait cinsler ve Xanthophyta ve Phaeophyta'dan bazı alg türleri görülür. Mantarlarda ise genellikle Ascomytcetes ve az olarak Basidiomycetes'e ait cinsler görülür. Alg ve mantarın birbirleri ile birleşmeleri farklı şekillerde olabilir. Eğer alg ve mantar dağılımı homojen şekildeyse bu likenler; "Homeomerik liken", heterojen bir dağılım varsa "Heteromerik liken" olarak isimlendirilirler. Homeomerik likenlerde, alg ve mantar ayrı bir katman oluşturmadan birleşir, tallus jelatini andıran müsilajımsı yapıdadır. Heteromerik likenlerde, üst kabuk katmanı (korteks) ile orta kısım arasında algler bulunur, diğer kısımlar sıkı ya da gevşek dizilmiş mantar hiflerinden oluşur. Çoğu liken bu grupta yer alır. Likenler, birçok yerde bulunabilen organizmalardır. Bulundukları yere göre; •Kabuksu likenler, kayalar üzerinde gelişen likenlerdir. Tallus kabuk biçimindedir. Kayaları eritebilen enzimleri bulunabilir, bu yüzden "Endolitik likenler" de denirler. •Yapraksı likenler, toprakta yaşayan, tallusları loblar halinde olan likenlerdir. •Dalsı likenler, ağaçlar üzerinde gelişen, oldukça büyük talluslu, sık dallanma gösteren likenlerdir. Üremeleri Likenler; 1.Eşeysiz 2.Eşeyli olarak çoğalabilen bir canlı grubudur. 1. Eşeysiz Üreme Bu çoğalma tipi "Sored" denilen mantar hifleri ile çevrili birkaç alg hücresinden oluşan tallus parçacıkları ile gerçekleştirilir. Soredler tallusun korteksinin parçalanması ile serbeste hale geçerek toz gibi çevreye dağılırlar, ulaştıkları yerlerde tutunarak, yeni bireyleri oluştururlar. 2. Eşeyli Üreme Likenlerin yalnızca mantarlarında görülür. Alg bu yapının içinde vejetatif olarak çoğalır. Mantarların meydana getirdiği fruktifikasyonlar serbest yaşayan mantarlarınkinden oldukça farklıdır. Liken yapısındaki mantarın cinsine göre oluşturulan fruktifikasyonlar farklılık gösterir. Metabolizma Likenleri oluşturan alg ve mantarlar arasında bazı fizyolojik iş bölümleri vardır. Simbiyotik organizmalardan alg, klorofil taşıdığından fotosentez yapar ve birliğin karbonhidrat gereksinimini karşılar. Mantar ise su ve madensel maddelerin alınmasında görev alır. Likenlerde metabolik aktivite su, ısı ve ışıkla değişkenlik gösterir. Su içeriği %65-90 arasında olduğunda fotosentez oranı artar, 15-200C fotosentez için en uygun sıcaklıktır. Depo maddesi olarak nişasta bulunur. Likenlerin metabolizmaları sonucu ekonomik öneme sahip bazı maddeler oluşur. Bunlar tıpta, boya sanayinde ve besin olarak kullanlan maddelerdir. Tıpta; öksürük ve göğüs hastalıklarında, diabette, nefrit, nezle de ve iştah açıcı olarak kullanım alanları mevcuttur. İnsanlarca Lecanora esculenta ve Ren geyiklerince Cladonia rangiferina besin olarak kullanılır. Ekoloji Dünyada geniş bir yayılım alanına sahip ve denizlerden yüksek dağlara, sıcak bölgelerden kutuplara kadar yerleşim yerlerinde ve zor koşullarda bulunurlar. Tallus yavaş gelişir, ağaç, toprak ve kayalar üzerinde bulunurlar.üzerinde bulunduğu kayaları parçalayarak toprak oluşumuna katkı sağlarlar.

http://www.biyologlar.com/likenler-1

Trematoda

Trematoda sınıfına kelebeklerde denir. - Vücutları dorso-ventral basıktır. - Vücut boşluğu yoktur. - Tüm vücut tek bir bölümden oluşmuştur. - Tüm organlar tek bir paranşim içinde toplanmıştır. -Çekmen/çengelleri vardır. -Genellikle anüsleri yoktur. -Schistosomatidae ailesi dışındakiler hermafrodittir. -Direk/indirek gelişirler. 3 tane alt sınıf vardır : -Monogenea -Aspidogastrea - Digenea MONOGENEA : - Soğukkanlı ve suda yaşayan hayvanlarda (balık, amfibi, sürüngen) parazitlenirler. -Genellikle ektoparazittirler. -Vivipar ya da ovipardırlar. -Larvaları olgunlarına benzer. -Tutunma organeli olarak arka kısımlarında çekmen/çengelleri vardır. -Direk gelişirler. Ör: Gyrodactylus Dactylogyrus ASPIDOGASTREA : - Yaklaşık 80 türü vardır. -Balık, sümüklü, kabuklu ve kaplumbağalarda parazitlenir. -Hiçbir türünün ekonomik önemi yoktur. -Digenea'lara benzerler. -Çok sayıda alveol/çekmene sahip bir ventral disk taşırlar. -Çekmen bulunmaz -Tegumentte mikrotubuller vardır. -Ekto ya da endoparazit olabilirler. Medikal açıdan önemli olan altsınıf Digenea'dır. DIGENEA : - Boyutları 0,3 mm ile 10 cm arasındadır. -Vücut segmentsiz ve tek bölümlüdür. Paramphistomum soyu tesbih tanesi gibi, Schistosoma soyu da ince, uzun ve silindirik bir yapıya sahip olamsına rağmen genellikle yaprak şekilde dorso-ventral basık bir formdadırlar. -Vücut tegument ile kaplıdır. Tegument düz (Dicrocoelium) ya da dikenli (Fasciola) olabilir. -Ağız ve karında olmak üzere 2 tane çekmen vardır. Bazılarında (Heterophyes) genital çekmen bulunur. -Bazı türlerde (Echinostomatidae) ön kısımda bir yaka ve bu yakada 1-2 sıralı diken bulunur. Sindirim sistemi : Basittir. Ağız / prepharynx / pharynx / oesophagus / barsak (kör olarak sonlanır). Anus yoktur. Beslenme doku artıkları sayesinde olur. Sindirim barsaklarda gerçekleştirilir. Sinir sistemi : Oesophagus çevresinde bir sinir tasması bulunur. Buradan çıkan sinir iplikçikleri vücuda dağılır. Boşaltım sistemi : Paranşimde kirpikli ateş hücreleri varıdır. Buradan çıkan boşaltım kanalları daha büyük kanallarla buluşup arka kısımdaki boşaltım deliğinr açılır. Üreme sistemi : Schistosoma hariç hermafrodittirler. Erkekte:2 testis / vasa deferens / sirrus kesesi (ves.seminalis + penis +sirrus) / genital delik. Dişide : ovarium / oviduct / ootip / uterus. Ootip çevresinde salgılarıyla yumurta kabuğunun şekillenmesini sağlayan Mehlis bezleri vardır. Parazitin iki yanınada ve ootipa açılan vitellojen bezlerin salgısıyla da yumurta sarısı oluşturulur. Döllenme ootipte olur. Larva dönemleri : a) Miracidium : Ön tarafı geniş, arka ksımı dardır.Üzeri kirpikli epitelle kaplıdır. Ön uçta arakonağı delmeye yarayan dikenli çıkıntı vardır.Bazı türlerde 1-2 göz lekesi bulunabilir. b) Sporokist : İnce duvarlı bir kesedir. İç duvarında bölünme yeteneğine sahip hücreler vardır. c) Redi : Silindirik yapıdadır.Ön kısımda ağız çekmeni vardır .Sindirim kanalı ve boşaltım sistemi şekillenmiştir. Vücudun vbir tarafına açılan bir doğum deliği vardır. d) Serker : Vücut gövde ve kuyruktan oluşur. Ağız, karın çekmeni, sindirim kanalı, boşaltım ve sinir sistemi gelişmiştir. Kuyruk tek ya da türe göre çatallı (furkoserker) olabilir. e) Metaserker : Serkerin gövdesini kistleşmiş şeklidir. Genellikle enfektif formdur. Schistosomalarda enfektif dönem serker dönemidir. Metaserker dönemi gözlenmez. Yumurtalar :2 tiptir : -Çift çeperli, kalın kabuklu,dikensiz,kapaklı -Çift çeperli,kalın kabuklu,dikenli,kapaksız (Örn:Schistosomatidae) Teşhis : Sedimentasyon yöntemi ile dışkı bakısı yapılır. Biyoloji : - Gelişme indirektir. -1-2 arakonak kullanılır. Genellikle 1.arakonak sümüklülerdir. 2.arakonak ise genellikle suda yaşayan balık, kabuklulardır. -Son konakata bulunan parazitten dışarı atılan yumurtalarda miracidium gelişir. Miracidium suda yumurtayı terkeder. Bazı türlerde ise (Dicrocoelium dendriticum) terketmez. Miracidium / sporokist (arakonakta serbest halde) / redi / serker / metaserker / çevre koşulları uygun olmazsa kız redi *Dicrocoelium dışındaki tüm digenik trematodların aracıları su sümüklüleridir. 1.AILE : FASCIOLIDAE Cins: Fasciola Tür: F.hepatica,F.gigantica Hastalık: fasciolosis Cins:Fascioloides Tür:F.magna Cins:Fasciolopsis Tür:F.buski Fasciola hepatica : Son konaklar: Sığır, koyun, insan dahil birçok memeli Ara konaklar: Lymnea truncatula (su yüzeyinde yaşar, beyaz renkli ve şeffaftır) Yerleşim: Karaciğer (gençler parankimde, olgunları safra yollarında) Yayılışı: Yurdumuzun her bölgesinde yaygındır Morfoloji: F.hepatica Uzunluk 2-2,5 cm Genişlik 8-15 cm Arka kısım daha sivri Kenarlar daha sivri F.gigantica Uzunluk:2,5-2,7 cm. Genişlik:3-15 cm. Arka kısım küt Kenarlar paralel Rengi sarı-kahverengidir. Kanla beslenir. Doymuşsa kırmızı gözükebilir. 2 tane çekmeni vardır. Ağzı ağız çekmeni kuşatır. Ağzı pharynx, oesophagus ve barsaklar (dallanma gösterir) takip eder. Sindirim sistemi kör olarak sonlanır. Anus yoktur. Vitallojen bezler, ovaryum (yumurta ile dolu ise siyah renkte gözükür) va testisler (arka kısımda bulunur, dallanma gösterir) üreme sistemini oluşturur. Tegument dikenlerle kaplıdır. Biyoloji: Y/M/R/S/M Yumurta safra yoluyla barsaklara karışır, dışkı ile dışarı atılır. Yumurta kapaklı, dikensiz, tek blastomerli, içi tamamen yumurta sarısıyla dolu, sarı renklidir. Dışarı atılan yumurtanın içinde uygun koşullarda 9-10 gün içinde miracidium şekillenir. Işıklı ve sulu ortamda kapağı açılan yumurtadan miracidium dışarı çıkar ve suda serbest olarak yüzmeye başlar. Suda serbest olarak yaşama süresi 1 gündür. Bu süre içinde ara konağa girmelidir. Miracidium arakonağın (L.truncatula) yumuşak dokusunu delerek ara konağa dahil olur. sporokist, redi ve serker dönemlerini geçirdikten sonra ara konağı terkeder. Ara konağı terkeden serker suda kuyruğuyla ilerler. Bir süre sonra kuyruğu kopan serker, metaserkere dönüşür. Gıdalarla birlikte serker son konağın vücuduna girer. Son konakta açılan metaserkerdenn genç kelebek açığa çıkar. Genç kelebek barsak duvarını delerek karın boşluğuna, oradan da karaciğer parankimine geçer. Karaciğer parankiminde yaklaşık 5-6 haftalık göç geçirir. Safra yollarına gelerek olgunlaşır. Prepatent süre 11-12 haftada, tüm biyolojisi ise 17-18 haftada tamamlanır. Uygun olmayan şartlarda bu süre uzar. Klinik belirtiler: Perakut dönemde: Ani ölüm karaciğer kapsülünde yırtılma, karın boşluğunda kan birikimi görülür (enfestasyon durumunda). Akut dönemde: Halsizlik, solunum güçlüğü, karın şişliği, ve ağrı (sternum'a palpasyonla teşhis edilir) görülür. Karın boşluğunda kanlı, fibrinli sıvı birikimi vardır. Ayrıca karaciğerde büyüme, kanama, hematom, göç izleri ve genç kelebekler görülür. Hastalık koyunlarda genelde akut seyreder. Kronik dönemde : Anemi, kaşeksi, çene ve karınaltında ödem, verim düşüklüğü görülür. Karaciğerde setleşme, kenarlarında düzensizlik, safra yollarında kalınlaşma, fibrosis ve kireçlenme vardır. Sığırlarda çok şiddetli reaksiyon oluştuğundan hastalık geneldekronik seyreder. Nekrotik hepatitis'te genellikle belirti görülmez. Genç kelebeklerin barsaklardan karaciğere göçü sırasında barsaklardaki bazı bakteriler de karaciğere gelie. Toksemiden ani ölüm şekillenir. Karında ağrı ve kan birikimi yoktur. Daha çok 2-4 yaşındaki iyi kondisyonlu hayvanlarda görülür. Halk arasında kara hastalık (Black disease) olarak bilinir. Etken bakteri B tipi Clostiridium novyi'dir. Derisi yüzülen hayvanlarda derialtı damarları birden siyahlaşır. Epizootiyoloji: Konak-mera-su Arakonaklar suya ve çamura girip çıkarlar (amfibiktirler). Çamurlu ve pH'ı hafif asit oaln bölgeler ara konaklar için elverişlidir. Yağış; ara konak yaşamı, miracidium ve serkerin çıkışı, toprağın nemi dolayısıyla yumurtanın gelişimi ayrıca meralar için gereklidir. Yumurtadan miracidium ve ara konakların gelişimi için optimal sıcaklık 22-26°C'dir. 10°C'nin altında gelişme durur. Kışın -4°C'nin altında yumurta, metaserker ve çoğu sümüklü ölür. İlaçlama: Stratejik ilaçlam meraya çıkıştan sonraki 1 ay içinde ve kışa girerken yapılabilir. Teşhis: Akut dönemde : Otopside karaciğerde genç kelebekler görülür. Kronik dönemde : Sedimentasyon yöntemi ile dışkı bakısı yapılarak parazit yumurtaları aranır. Kanda gamaglutamik transpeptidaz enzim seviyesine bakılabilir. İnsanlarda ultrasonografi yöntemi denenebilir. Sağaltım: Kontrol: 1) Arakonaklarla mücadele: Molluscisid kullanılarak ve drenaj ile yaşadıkları alanlar kurutularak. 2) Sonkonakların sağlatımı ile: Hayvanlarda parazitin (ilkbaharda ve sonbaharda), merada metaserkerin (ilkbaharda) en çok olduğu zaman. İlaç kullanımında biyoloji dikkate alınır. 3) Hayvanlar enfekte meraya sokulmaz. 2.AILE: DICROCOELIDAE Cins: Dicrocoelium Tür: Dicrocoelium dendriticum (kum kelebeği) Hastalık: Dicrocoeliosis Son konak: Özellikle ruminantlar. Nadiren insan, domuz ve kemiriciler. Ara konak: I. Kara sümüklüleri (Helicella, Zebrina vs.) II. Formica cinsi karıncalar Yerleşim: Karaciğer safra kanalı ve safra kesesi. Yayılış: Yurdumuzda her yerde yaygındır. Patojenite: Fazla patojenitesi yoktur. Sağaltım: İlaçlara çok dirençlidir. Thiabendazole, Netovmin, Albendazole, Praziquantel kullanılır. Biyoloji: Dışkıyla dışarıya miracidiumlu gelişmiş yumurta atılır. Kara sümüklüsü pasif olarak yumurta ve miracidiumu alır. Metaserker dışarıya çıkar®sporokist®serker (dışarı). Atılan sümüksü yumağı karıncalar alır. Serkerlerden bazıları karıncanın beynine gider ve yaptıkları tahribat sonucu karıncanın anormal davranışlarına neden olur.En tipik hareket, sabahın erken saatinde otların tepesine tırmanmak ve ağızlarıyla ota tutunup kalmaktır. Karıncanın çene kasları felç olmuştur. Otların tepesindeki metaserker taşıyan karıncaları alan son konaklar enfekte olur. metaserkerler açılır, genç kelebek serbest duruma geçer. Barsaklardan ductus choleduchus yolu ile karaciğere geçer. Prepatent süre zundur, 10-12 hafta. 3.AILE: OPISTORCHIIDAE Cins: Opistorchis Tür: O.tenuicollis (1) O.sinensis (2) Hastalık: Opistorchiosis Son konak: Köpek, kadi (1), insan (2), diğer balık yiyen etçiller Ara konak: I. Tatlı su sümüklüleri II. Tatlı su balıkları Yerleşim: Karaciğer safra yolları Yayılış: Türkiye, Uzakdoğu Patogenez: Dikenli tegument safra kanalı epitelini irrite ederek papillom ve karsinom gibi tümör oluşumuna neden olur. Teşhis: Dışkıda yumurtaların görülmesi ile taşhis yapılır. Sağaltım: Hexachlorophen 20 mg/kg Morfoloji: Dicrocoelium'a benzer ama testisler arkadadır. 4.AILE HETEROPHYDAE Cins: Heterophyes Tür: Heterophyes heterophyes Son konak: Karnivor ve insan Ara konak: I. Tatlı su sümüklüleri II. Tatlı su balıkları ( Mugil vs.) Yerleşim: İnce barsaklar Yayılış: Türkiye, Ortadoğu, Uzakdoğu Morfoloji: 1,5 mm uzunluk, genital deliği çevreleyn bir GENİTAL ÇEKMEN var. Teşhis: Yumurta (D.dendriticum'unkine benzer ama açık kahverengi) Sağaltım: Praziquantel, Niclosamide,Niclofolan Biyoloji: İnce barsaktaki yumurta dışkı ile atılır. I. ara konaklar yumurtayı Dicrocoelium'daki gibi pasif olarak alırlar. Serkerler II. ara konaklarca alınır. Kaslarda metaserkerler gelişir. Çiğ ya da az pişmiş balıkları yiyen son konaklar enfeksiyona yakalanır. 5.AILE TROGLOTREMATIDAE Cins: Paragonimus Tür: Paragonimus westermanii Son konak: İnsan, karnivor Ara konak: Yengeç, kerevit Yerleşim: Akciğer Cins:Troglotrema Tür:Troglotrema acutum Son konak:Tilki,vizon vb. Yerleşim:Sinüs(frontal ve etmoidal) 6.AILE ECHINOSTOMATIDAE Cins: Echinostoma , Echinochasmus , Echinoparphium Tür: Echinostoma revolutum , Son konak: kanatlı, memeli Tür: Echinoparphium recurvatum , Son konak: kanatlı Tür: Echinochasmus perfoliatus , Son konak: köpek, kedi Yerleşim: İnce barsak 7.AILE PARAMPHISTOMATIDAE Cins: Paramphistomum (RUMEN KELEBEĞİ) Türler: Paramphistomum cervi , Paramphistomum ichikawai Hastalık: Paramphistomosis Ara konaklar: Su sümüklüleri (Planorbis , Bulinus) Son konaklar: Ruminantlar Yerleştiği yer: Gençleri duadenuma, erişkinleri rumen ve reticuluma Yayılışı: Türkiye dahil birçok ülkede. (özellikle eskişehir,bolu) Morfoloji: -Şekli:Kesik koni biçiminde ,yuvarlak -Büyüklüğü: Erişkinler 1 cm.kadar,göç halindeki gençler 0.5 mm.den küçük -Rengi: Pembe,kırmızı -Karın çekmeni: Parazitin arka tabanında bulunur. Biyoloji: F.hepatica ve F.gigantica'ya benzerlik gözterir.Son konakların rumeninde bulunan olgun parazitlerin yumurtaları dışkıyla dışarıya atılır.Dışarıda yumurtadan miracidium gelişir ve miracidium yumurtayı terkeder.Daha sonra miracidium tatlısu sümüklüsüne girer.Sümüklüde sporokist,redi,serker gelişir ve serker dışarıya atılır.Daha sonra serker otlarda ,suda kistlenir,kuyruğu kopar ve metaserker haline gelir.Bunu gıdalarıyla birlikte alan sonkonaklar enfekte olurlar.Metaserker sindirim sisteminde açılır.Genç parazitler önce duadenuma gelir.Daha sonra geri dönerek rumen ve reticuluma gelip olgunlaşırlar. Prepatent süre yaklaşık 7-10 haftadır. Patogenez ve klinik belirtiler: -Akut dönem:Duadenum ve abomasumdaki göç halindeki genç parazitlerden ileri gelir.Parazitler mukozaya bazen kas ve serozaya kadar gömülür.Bağırsakta boğulma,ülser,kanama ve nekroza neden olurlar.Plazma albuminleri bağırsağa sızar.Kanda Ca seviyesi düşer.Plazma proteinlerinin seviyesinin düşmesi sonucu vucut boşluklarında sıvı toplanır.(ödem).İştahsızlık,kilo kaybı,açlık atrofisi, ishal ve bitkinlik görülür. -Kronik dönem:Bazen karın çekmenleri ile rumen papillalarını boğarak atrofiye neden olurlar. Teşhis: Akut dönemde ishalli dışkıda prinç tanesi büyüklüğünde pembe,beyaz renkli parazitler aranır.Kronik dönemde dışkıda yumurtalar aranır. Sağaltım: mg/kg 8.AILE SCHISTOMATIDAE Cins: Schistosoma Orientobilharzia Türler Son konak Yerleştiği vena S.mansoni insan portal, mezenterik S.haematobium insan idrar kesesi S.bovis çift tırnaklı portal, mezenterik S.japonicum insan,hayvan portal, mezenterik S.matthei çift tırnaklı portal ,mezenterik S.nasale çift ve tek tırnaklı burun mukozası O.turkestanicum memeliler portal, mezenterik Hastalık: Schistomosis, Orientobilharziosis Arakonaklar: Tatlısu sümüklüleri (Bulinus, Planorbis, Lymnea) Son konaklar: Memeli ve kanatlı Yerleştiği yer: Vena (portal ve mezenterik) Yayılışı: Orientobilharzia turkestanicum Türkiyede vardır.Koyunlarda görülmüştür. Özellikleri: -Ayrı eşeylidir. -Vucutları silindiriktir. -Yumurtaları kapaksız ve dikenlidir. -Serkerleri çatal kuyrukludur.(furcoserker). -Redi ve Metaserker dönemi yoktur. Morfoloji: -Uzunluğu 2cm.kadardır. -Erkekleri dişilerden daha geniş ve yassıdır. -Dişileri silindiriktir. -Erkek dişiyi ventralinde bulunan bir kanalda (Gynaechophoric kanal) taşır. Biyoloji: İnsan ve hayvanlarda bulunan olgun parazitlerin yumurtaları bulundukları venayı dikenleriyle delerek en yakın kanaldan dışarıya atılırlar.(Eğer idrar kesesi venasındaysa idrarla,Burun boşluğu mukozasındaki bir venadaysa sümükle,mezenterik bir venadaysa dışkıyla).Yumurta atıldığında içerisinde miracidium vardır.(Miracidium sonkonakta gelişir.).Suyla temas ettiği zaman miracidium yumurtayı terkeder ve suda uygun aracılara girer.Aracıda sporokist ve serker gelişir.Serker çatalkuyrukludur.(Furcoserker).Furcoserker kendi aktif hareketiyle sonkonakların derisinden girerek veya suyla,gıdalarla birlikte alınarak sonkonağa girer. -Prepatent süre 6-7 haftadır. -Hava kötüyse sporokistten ikinci kuşak sporokistler gelişir. -Arakonaktaki gelişim süresi 5 haftadır. -Deriden girer girmez kuyruk kopar .Ağız boşluğundan alındıysa mukozayı delerek kana karışır,kuyruğu kopar,kalp,akciğer,karaciğer yoluyla yerleşecekleri venalara giderler veerişkin duruma gelirler. -Kuyruğu koptuktan sonraki döneme SCHİSTOSUMUL denir. -Redi, metaserker dönemi yoktur. Patogenez ve klinik belirti: 1.İnvazyon dönemi: Serker (banyo) dermatitisi oluşur.Deriden giren serkerlerin çıkardıkları sekret, sitolitik enzimler ve ölen serkerlerin vucut antijenleri deride gecikmiş tip aşırı duyarlılığa neden olurlar. (Özellikle o konak için yabancı serkerlerin ölmesi sonucu).(Deri - larva migransı) 2.Göç dönemi: Schistosomaların kan yoluyla kalp,akciğer,karaciğer ve portal sisteme göç ettiği dönemdir.Akciğerlerde pneumoni tablosu şekillenebilir. 3.Olgunlaşma dönemi: Schistosomulların karaciğerde olgunlaştıkları dönemdir. 4.Yumurtlama dönemi: En patojen dönemdir.Yumurtalar damarları yırtarlar.Kanamalara neden olurlar.Anemi şekillenir. Bir kısım yumurta konağı terketmeyerek dokularda(bağırsak mukozası,karaciğer) tutulur.Buralarda yangı ve fibrosise neden olurlar. Teşhis:Dışkı ,idrar ve burun akıntısında yumurtaları görerek yapılır. Sağaltım: Genellikle antimon bileşikleri verilir.(Stibufon gibi)

http://www.biyologlar.com/trematoda

Koyun Ve Keçilerde önemli Hastaliklar

BRUSELLOSİS ( Brusella, (Koyun Ve Keçilerin Bulaşıcı Yavru Atma Hastalığı, Düşük, Bırakma, Sıkıt, Mal Hastalığı) Koyun ve keçilerde yavru atımına sebep olan Brusella mikroplarının meydana getirdiği bulaşıcı bir hastalıktır. Brusella mikropları hayvanlarda hastalık yaptıktan sonra meme ve üreme organlarına yerleşir. Brusella, hastalıklı hayvanların çiğ sütlerini içen ve bu sütlerden yapılan krema, tereyağı, kaymak, taze peynir yiyen insanlara da bulaşır. İnsanlarda Malta humması veya Akdeniz humması, dalgalı humma isimlerini alırlar. Brusella mikropları atık yavru, yavru zarı, vajen akıntısı, süt, idrar ve çeşitli vücut akıntıları ile yem ve sulara bulaşır. Koyun ve keçiler hastalığı daha çok brusella mikropları ile bulaşık yem ve sulardan alırlar. Hastalık tüm evcil ve yabani hayvan türlerinde görülür. Brusella mikrobunu alan gebe hayvanların durumları normaldir. Herhangi bir bozukluk görülmez. Sonra bir gün yavrusunu atar. Bu durum çoğunlukla gebeliğin üçüncü ve dördüncü aylarında ortaya çıkar. Bazen yavru atmadan sonra, yavru zarları içeride kalabilir. Hayvandan bir akıntı gelmeye başlar. Sürüde ard arda yavru atmalar görülüyorsa brusella aklımıza gelmelidir. Hastalık başlarsa sürüdeki gebe hayvanlardan yarısına yakını yavru atabilir. Bazen yarıyı bile geçer. Bir koyundan yavru alamamak, süt alamamak büyük bir kayıp. Öyle ise hastalığın yayılmasını en kısa zamanda önlemek gerek. Hastalığın yayılması nasıl önlenir? İlk iş tecrittir. Yani yavru atan hasta hayvanları ayırmaktır. Yavru atanlar, ağıldan uzak bir yere alınır. En az 3-4 hafta sağlamlardan ayrı tutulur. Sonra ağılın ve çevrenin temizliği gelir. Atık yapan koyun-keçilerin yavrusu, yavru zarı, akıntısı, idrarı, gübresi neyi varsa güzelce toplanır. Ya yakılır ya da derin çukurlara konularak üzerine sönmemiş kireç dökülür. Ardından dezenfeksiyon gelir. Ağılda ve çevrede tüm temizlik işlemleri yapılır. Her yer tertemiz olduktan sonra, mikrop öldürücü ilaçlarla dezenfekte edilir. Ağıl 10-15 gün boş bırakılır, sonra bir kez daha dezenfekte edilir. Hastalığın kesin teşhisi , atık yavrunun ve yavru zarlarının laboratuvarda muayenesi ile olur. Atık yapan hayvanlardan alınan kanın muayenesi ile de kesin teşhis yapılabilir. Hastalığa yakalanmış hayvanlar tedavi edilmezler. O bakımdan, hastalık çıkmadan önce koruyucu olarak aşı yaptırılmalıdır. Brusella hastalığının aşısı vardır. Dişi kuzularla, oğlaklara 3-5 aylık iken Brusella aşısı yaptırılmalıdır. Aşılanan hayvanlar hastalığa karşı 4-5 yıl korunmuş olurlar. Hastalıkla mücadelede hayvanlara aşı yaptırmak yetmez. Bunun yanında ağılın ve çevrenin temiz tutulması her şeyden önce gelir, temizlik asla ihmal edilmemelidir. Birde sürüye hayvan katarken dikkatli olmalı ve muayeneden geçirilmelidir. Hastalık taşıyan koçlar ve bunların sperması asla kullanılmamalıdır. Brusella hastalığı insanlara da bulaşır , hastalıklı hayvanların çiğ sütlerini içen veya bu mikroplu sütlerden yapılan taze peynir, krema ve tereyağı gibi gıdaların yenilmesi ile insanlara geçer. İnsanlarda dalgalı ateş, terleme, halsizlik, uykusuzluk, iştahsızlık, baş ve eklem ağrıları görülür. Hastalıktan korunmak için süt ürünleri hazırlanmadan önce , sütler iyice kaynatılır veya pastörize edilerek mikroplar öldürülür. Kaynatılmış veya pastörize sütlerden yapılan süt ürünleri hastalık kaynağı oluşturmaz. İnsanı Brusella'dan koruma çaresi hayvanlarda hastalığın mücadelesi ile mümkündür. Hastalığa yakalanan kişiler hemen bir hekime baş vurmalıdır. Koyunlarda kitle halinde yavru atma görüldüğünde, Tarım ve Köyişleri Bakanlığına bağlı İl ve İlçe Müdürlüklerine müracaat edilmelidir. Gerekli önlemleri alarak, insanları ve hayvanları bu hastalığın zararlılarından korumayı görev bilmeliyiz. MASTİTİS (Süt Kesen Hastalığı) Koyunların mastitise yakalanmasında bir çok faktör rol oynar. Sağım hijyeni, barınak temizliği, meraların durumu gibi çevresel faktörler önemlidir. Mastitis oluşmasına Stafilokok, Streptokok vs. gibi mikroorganizmalar sebep olmaktadır. Koyun ve keçilerde Mycoplasma agalactiae adını verdiğimiz mikroorganizma halk arasında süt kesen hastalığı da denen mastitislere sebep olur. Salgın bir hastalıktır. Dikkat edilmezse ve hastalar ayrılmazsa sürüye yayılabilir. Hastalığın belirtileri ve yayılması Süt Kesen hastalığı, koyun ve keçilerde sütün kesilmesi, göz korneasının iltihaplanması, perde inmesi, eklem yangısı, topallıkla karakterize olan bulaşıcı bir hastalıktır. Mikroorganizma hasta hayvanların sütü ve gözyaşı ile dışarı çıkar ve sürüdeki diğer hayvanlara bulaşır. Memedeki belirtiler Hastalık beden ısısının hafif yükselmesi ile başlar, bulaşma süresi 1-2 hafta kadardır. Meme, göz ve eklemlerde yerleşirler. Meme şişer, sertleşir ve süt salgısı azalır. Memeden, önce pıhtı içeren iltihaplı, daha sonra ise su gibi bir akıntı gelir. Meme dokusu sertleşir ve körelir. Gözdeki belirtiler Hastalığın ilerlediği durumlarda erkek ve dişi hayvanların gözlerinde hastalık belirtileri şekillenir. Gözler kızarmış, iltihaplı akıntı oluşmuştur. Korneada ülserleşme ve sonuçta körlük oluşur. Hayvan kaşıntıdan dolayı gözlerini etrafa sürer ve böylece hem yaralanmasına ve hem de mikrobun etrafa yayılmasına neden olur. Bacaklardaki belirtiler Enfeksiyonun ilerlemesi ile ayak ve bacak eklemlerinde de bozukluklara rastlanır. Eklemler şişmiş, ödemli ve eklem sıvısı bulanıktır. Eklemler zamanla açılarak içindeki eksudat dışarı çıkar. Açılan yaraya dışarıdan da mikrop girebilir ve iltihaplı eklem yangısına dönüşür. Hayvan ayağını basamaz, topallar. Hayvanlar çok zayıflar, genel durum iyice kötüleşir ve tedavi zorlaşır. Hastalık tedavi edilmezse Eğer zamanında tedaviye başlanmazsa memelerin körelmesi, gözde körlük, eklemlerde iltihaplanma ve şişme görülebilir. Ölüm oranı oldukça düşüktür. Hasta hayvanlar ayrılmadığı sürece sürüdeki diğer hayvanlara hastalık yayılır. Hastalığın hafif seyrettiği durumlarda kendiliğinden iyileşme görülebilir. Tedavi Hasta hayvanlar ayrılır, tozsuz ve temiz bir yere alınır. Veteriner Hekimin verdiği reçeteye göre hastalık memede ise meme içine geniş etkili antibiyotikler, gözde ise terramisinli göz pomatları kullanılır. Eklem yangılarının tedavisinde geniş etkili antibiyotiklerden yararlanılır. Tedavinin başarılı olabilmesi için erken teşhis ve tedaviye erken başlanılması şarttır. Korunma ve öneriler 1- Hasta hayvan sürüden ayrılarak, ayrı bir yerde muhafaza edilmeli, sık sık sağılarak meme boşaltılmalıdır. Meme sertleşmiş ise ılık kompreslerle, yumuşatıcı kremlerle meme boşaltılmaya çalışılmalıdır. Daha sonra Veteriner Hekimin tavsiye ettiği ilaçlar kullanılmalıdır.Teda vi esnasında hayvanın sütü tüketime sunulmamalıdır. 2- Mastitisli memeleri emen kuzular da hastalanacağından, mastitisli koyunların yavrularını ayırıp suni olarak beslemelidir. 3- Tedavisi uza***** ekonomik olarak değerini aşan durumlarda koyunlar kasaba sevk edilmelidir. 4- Ağıl ve ahırların zemini kuru, havalandırılabilir olmalı ve zemin akıntı için eğimli olmalıdır. 5- Koyun ve keçiler, ineklerle birlikte tutulmamalı ve inekleri sağan şahıs tarafından sağılmamalıdırlar. 6- Sağımcıların tırnakları kesilmiş, elleri her sağımdan önce iyice sabunlanmış olmalı, sağım kapları temiz ve yıkanmış olmalıdır. 7- Koyun ve keçiler süt kesen hastalığına karşı aşılanmalıdır. ENTERO-TOKSEMİ HASTALIĞI Bu hastalığa halk arasında çeşitli bölgelerde değişik isimler verilir. Bohça hastalığı, başak hastalığı, anız hastalığı gibi. Her yaştaki koyun ve kuzularda birdenbire hiçbir belirti göstermeden ani ölümlere neden olur. Hastalık besi durumu iyi olan koyunlarda daha çok görülür. Hastalık nasıl bulaşır? Bu hastalığın etkeni bir mikroptur. Bu mikrop meralarda ve hayvanların sindirim sisteminde daima bulunur. Hastalığın meydana gelmesinde mevsim ve gıda değişiklikleri kesif tane yemle beslenmeler büyük rol oynar. Kuru yemden meraya veya meradan kuru yeme geçişler hastalığın çıkması için başlıca nedenlerdir. Hasta olan hayvanlar herhangi bir belirti göstermeksizin ani olarak ölürler. Genel olarak yetiştiriciler, hayvanlarını ağılda ölü olarak bulurlar. Besi durumu iyi, akşam sağlam olan hayvanlar, sabahleyin ölü olarak bulunurlar. Hastalık belirtilerini görmek nadiren mümkündür. Bu belirtiler hayvanda genel bir halsizlik ve dengesizlik, güçlükle yerinden kalkma, yerde bir tarafı üzerinde yatma ve sinirsel belirtiler gösterir. Yem yemeyi bırakır, dişlerini gıcırdatır, etrafında döner, bazen de ishal görülebilir. Ölen hayvanlara otopsi yapıldığında bağırsakların gazla ve işkembenin yemle dolu olması, karın boşluğunda bol bir sıvının bulunması, kalpte kanamalar, kalp kesesinde berrak ve hava temasında pıhtılaşan bir sıvının bulunması, böbreklerin şiş ve yumuşak bir kıvamda, genel bir bağırsak yangısının görülmesi hastalığı hatırlatan en önemli bulgulardır. Hastalığın kısa sürmesi, ölümlerin ani oluşu, mevsim ve yem değişiklikleri, gıda rejimindeki düzensizlikler bu hastalıktan şüphelendirir. Hastalığın kesin tanımı için ince bağırsaklar içeriği ile ayrı bir kapta, ayrıca karaciğer, böbrek taze olarak laboratuvara gönderilmelidir. Nasıl tedavi edilir? Hastalığın pratikte etkili bir tedavi şekli yoktur. Korunmada şu hususlar dikkate alınmalıdır: 1- Yem değişiklikleri birdenbire değil, alıştırılarak yapılmalıdır. 2- Tane yemler verilirken yeterli miktarda kaba yemde verilmelidir. 3- Hayvanlara küflü ve bozuk gıdalar verilmemelidir. 4- Koruyucu amaçla hayvanlar aşılanmalıdır. 5- Hayvanlardaki mide ve bağırsak parazitleriyle mücadele edilmelidir. 6- Hastalık çıktığında yem veya meralar değiştirilmelidir. 7- Kuzular ahır besisine alındığında yemlerine yeterli miktarda antibiyotik ilave edilmelidir. ENFEKSİYÖZ NEKROTİK HEPATİTİS Enfeksiyöz nekrotik hepatitis hastalığı, halk arasında Kara Hastalık, Kara Bohça isimleriyle bilinir. Koyunlarda bazen de sığırlarda ani ölümlere sebep olur. Genellikle 2 ila 4 yaşlar arasındaki iyi beslenmiş koyunlar hastalığa karşı daha duyarlıdır. Kuzu ve 1 yaşlı koyunlar fazla duyarlı olmamakla beraber 6 aylık kuzularda dahi bu hastalığa rastlanmıştır. Hastalığa sürülerde yakalanma oranı %5 ila %50 arasındadır. Hastalık koyunlarda öldürücü bir seyir takip eder. Bilhassa karaciğer parazitlerinin fazla bulunduğu yerlerde dikkati çeker. Karaciğer parazitlerinin gelişmesine uygun olarak mevsimsel bir seyir takip eder. Bu itibarla daha çok yaz ve sonbahar aylarında görülür.

http://www.biyologlar.com/koyun-ve-kecilerde-onemli-hastaliklar

FİKSASYONDAN SONRA DOKULARA UYGULANAN İŞLEM

%10' luk formal-saline%1O'1uk tamponlanmış formalin %70'1ik alkol ileBouinFormal-sublimat %8O-90'lık alkolleSusa %95' lik alkolleCarnoy %95'lik ve %lOO' lük alkolleZenker Çeşme suyu ile yıkama (l2-24 saat)Helly Çeşme suyu ile yıkama (l2-24 saat)Sanfelice Çeşme suyu ile yıkama (l2-24 saat)Flemming Çeşme suyu ile yıkama (l2-24 saat)Lewitsky-Baker Çeşme suyu ile yıkama (l2-24 saat)Orth Çeşme suyu ile yıkama (l2-24 saat)İKİNCİ FİKSASYON%10' luk formal-salin ile tespit edilen dokuların hala diğer ve daha etkili precipitant fiksatiflerin etkilerine duyarlı olduğunu gösterilmiştir. Uygulama ''ikinci fiksasyon'' olarak adlandırılır. Civa klorür-formalin ve Helly fiksatifi özellikle ikincil fiksatif olarak yararlıdır. Böylelikle dokular daha iyi korunur ve boyanırlar.Post-kroming ve post mordantlama: Korunmayı ve özel doku bileşenlerini boyamayı kolaylaştıran ve doku bloklarının (fiksasyondan sonra) veya kesitlerinin bir krom tuzu ile muamele edilmesiyle yapılan yöntemlerdir. Yöntem özellikle mitokondri ve miyelini göstermek için kullanılır. Postfiksasyon: Bazı doku proteinlerinin çoğu fiksatiflerin tam penetrasyonunu önleyen yağsı maddelerle maskelenir veya saklanır. Bu protein sonradan yağ çözücüleri ile şeffaflandırma sırasında yağsı maddenin ortadan kaldırılmasından sonra kaybolur. Dokular bir yağ çözücü içinde tespit edilip, sudan kurtarma, şeffaflandırma ve sonradan tekrar şeffaflandırma ve parafine gömmeden önce absolu alkolde postfikse edilirse iyi sonuçlar verir. Hemen kesit alınmasına gerek olmayan formalinle tespitlenmiş dokular fiksatif değiştirilmeden uzun yıllar fiksatifde kalabilir.Tamponlanmış nötral solusyonlar bu etkiyi geçiktirmesine rağmen, boyanma kalitesi kademeli olarak bozulur. Diğer bir yöntemde fiksasyondan ve fiksatifin yıkanarak uzaklaştırılmasından sonra saklama solusyonu olarak %70'lik alkole koymaktır. Formal-sublimat ve yıkamadan sonra %30’luk gliserol, %10-20' lik dietilen g1ikol önerilmektedir.

http://www.biyologlar.com/fiksasyondan-sonra-dokulara-uygulanan-islem-1

Fosil Yaşlarının Hesaplanması

Arkeolojide kullanılan tarihlendirme yöntemlerini radyoaktif olan ve radyoaktif olmayan diye kabaca iki bölüme ayırmak mümkündür. Radyoaktif olan yöntemler yine kendi içinde iki ayrı bölümde incelenir. Bunlardan birincisi radyoaktif maddelerin miktarının zamanla azalmasına dayanan, Karbon-14 ve Potasyum/Argon gibi yöntemlerdir. İkincisi ise, radyoaktiviteden dolayı çıkan enerjinin madde içinde biriktirilmesi olayına dayanır ki elektron spin rezonans bu tür tarihlendirme yöntemlerine bir örnektir. Uzun zamandır yaş tayininde kullanılagelen bu gruptaki termolüminesans (TL) yöntemiyle aynı prensibi paylaşmasına karşın ESR yönteminin TL yöntemine göre bazı üstünlükleri vardır. Bunlar şöyle sıralanabilir: 1. Ölçüm sırasında ESR merkezleri bozulmadığı için ölçü istenilen sayıda aynı örnekle tekrarlanabilir. 2. ESR yüzeysel olaylara karşı daha az duyarlı olduğu için kullanılan maddenin taneciklerinin belirli bir büyüklükte olma şartı yoktur. 3. Örnek hazırlama ve oda sıcaklığında ölçü alma işlemleri çok daha kolaydır. 4. Tekstil vs gibi organik maddelerin incelenmesinde de bu yöntem başarı ile kullanılmaktadır. ESR Yöntemi : Radyoaktif elementler kararsız olup parçalanarak kimyasal olarak farklı özellikte elementlere dönüşürler. Bu oluşum sırasında farklı adlarda (alfa, beta, gama) enerji taşıyan parçacık veya ışınım salarlar. Böyle radyoaktif elementler birçok kayaç ve minarellerin kristal yapısında eser miktarda bulunur ve saldıkları enerji taşıyan parçacıklar yapıdaki elektronları bağlı bulundukları yerlerden koparırlar. Normalde elektronlar bağlı oldukları çekirdek etrafında dolanırken kendi eksenleri etrafında da dönerler (spin hareketi) ve zıt yönde spio hareketi yapan elektron çiftleri şeklinde bulunurlar. Bunlardan birinin yerinden koparılması halinde geride tek elektron kalır. Buna çiftleşmemiş elektron da diyebiliriz. Böyle bir elektronun spin hareketi bu elektrona manyetik bir özellik kazandırır ve bu elektron bir mıknatıscık olarak düşünülebilir. Bu özelliğe sahip maddelere paramanyetik maddeler denir. Bir manyetik alana konmadığı takdirde madde içindeki bu mıknatıscıklar gelişi güzel yönlerde dağılmışlardır ve hepsi aynı enerjiye sahiptirler. Madde manyetik alana konduğunda bu mıknatıscıklar ya manyetik alan yönünde ya da buna zıt yönde yönlenirler. Manyetik alan H ise, H M kadar artacak, H nın aynı yönündenın zıt yönünde yönlenenlerin enerjileri elektronunH) azalacaktır. Burada yönlenenlerin enerjileri ise aynı miktar ( : Bohr magneton ve g: = : spin kuvantum sayısı, manyetik momenti olup elektronun çekirdek etrafında dolanmasının ve spin hareketinin mıknatıs özelliğine katkı derecesini gösteren faktör. Böylece elektronlar manyetik alanla aynı yönde yönlenenler veya zıt yönde yönlenenler olarak iki gruba ayrılırlar. H kadar enerji farkıİki grubun enerjileri farklı değerdedir ve aralarında g vardır. Enerjisi bu enerji farkına eşit olan bir elektromanyetik dalga maddeye gönderilirse düşük enerjiye sahip olan elektronlar bu enerjiyi alıp yüksek enerjili elektron grubuna dönüşürler. Diğer bir deyişle, H manyetik alanı yönünde yönlenmiş elektron mıknatısları elektromanyetik enerjiyi alınca H manyetik alanının zıt yönünde yönlenirler. TERMOLÜMİNESANS YÖNTEMİ İLE ARKEOLOJİK YAŞ TAYİNİ Keramik, pişmiş tuğla, yanmış çakmaktaşı ve obsidyen, volkanik, kül, meteor, curuf, sarkıt ve dikit gibi kalsit oluşumları ve benzeri inorganik obje ve malzemelerin içerisinde şifreli saat gibi çalışan fiziksel mekanizmalar vardır. Bu şifreli saat bir arkeolojik zaman-ölçer aygıtı gibi çalışır; hem sıfırlama özelliği vardır hem de otomatiktir. Temel problem, saatin şifresini çözerek gerçek zamanı, yani arkeolojik yaşı bulmaktır. Saati inceleyip şifresini çözen fiziksel yöntemlerden biri de termolüminesans (TL) yöntemidir. Burada amacımız TL yöntemini ve bu yöntemin arkeolojideki uygulamalarını kısaca anlatmak; bir başka deyişle saatin çalışma prensiplerini ve şifresinin çözüm tekniğini genel çizgileriyle sunmaktır. Yalnız yöntemi anlatmaya başlamadan önce TL olayının ne olduğunu, böyle bir amaç için nasıl kullanılabildiğini kısaca görelim. Termolüminesans : Bazı maddeler ısıtıldıkları zaman ışıma yaparlar. Bu fiziksel olaya ısıtma ile ışıma anlamına gelen termolüminesans (TL) denir. Hemen belirtelim ki, TL olayı başka bir olayın sonucunda oluşmaktadır. Maddelerin içlerinde ve çevrelerinde eser miktarda uranyum (U) toryum (Th) ve potasyum (K) gibi )) ve beta (radyoaktif elementler vardır. Bunlardan çıkan radyasyonlar [alfa ( ) ışınları] maddenin atomları ile etkileşerekparçacıkları ile gama ( enerjilerini yitirirler. Bu enerjinin bir kıssmı madde içinde birikir ve maddenin 300 0C – 500 0C ye kadar ısıtılma durumunda ışık olarak çıkar. Çıkan ışık miktarı maddenin biriktirdiği radyasyon enerjisi miktarına bağlıdır. Ne kadar çok enerji birikirse o kadar çok ışık çıkar. Hiç enerji birikmemiş ise, veya biriken enerji herhangi bir nedenle, örneğin ısınma ile, boşalmış ise, doğal olarak hiç ışık görünmeyecek yani hiç TL olmayacaktır. Demek oluyor ki TL, maddenin etkileştiği toplam radyasyon miktarı (dozu) sonucunda biriken enerjinin ve bu enerjinin birikmesi için geçen sürenin dolaylı bir ölçüsüdür. Yöntemin temel problemi de bu sürenin bulunmasıdır. Maddede enerji birikimi şu şekilde olmaktadır: maddenin atomları ile etkileşen radyasyonlar atomları bağlı elektronların bazılarını koparır ve enerji kazandırırlar. Bu elektronların bir kısmı kazandığı enerjiyi anında geri vererek eski yerlerine veya benzer yerlere geri dönerler. Bir kısmı ise maddenin kristal yapısınd çeşitli nedenlerle oluşan ve tuzak denilen yerlere bağlanırlar ve böylece eski yerlerine dönen elektronların tersine radyasyondan aldıkları enerjiyi geri vermeyip bu tuzaklarda biriktirmiş olurlar. Biriken enerjinin saklanabilme süresi, yani elektronların tuzaklarda kalma süreleri çevre şartlarına ve tuzak özelliklerine bağlıdır. Birkaç dakikadan bir milyon yıla kadar elektronları tutabilen tuzaklar vardır. Doğal olarak bizi ilgilendiren uzun ömürlü tuzaklardır. Çünkü, ancak bu tuzaklar baştan itibaren yakaladıkları tüm elektronları korurlar ve böylece radyasyonla sağlanan enerji tam olarak birikmiş olur. İleriki satırlarda da belirttiğimiz gibi, bu tarihleme için sağlanması gereken koşullardan biridir Karbon 14 izotopu ile nasıl yaş tayini yapılır? Onbinlerce yıl önce yaşamış olan canlıların kalıntıları bulunduğunda, hangi yıllarda yaşamış olduğu karbon-14 yöntemi ile saptanır. Bütün yaşayan organizmaların yapılarında karbon bulunmasından dolayı böyle bir yöntem geliştirilmiştir. Çekirdekte meydana gelen radyoaktif bozunma oranı sabittir. Onbinlerce yıl öncesine ait karbon içeren maddeler de C-14 ün yarılanma süresinden hareket edilerek bulunur. C-14 ün yarı ömrü 5730 yıldır. C-14 kozmik ışımalar bombardımanı sonucunda oluşur. Kozmik ışınlar uzaydan gelen radyasyonlardır ve alfa parçacıkları, protonlar ve daha ağır iyonlar içerir. Bu radyasyonlar atmosferin üst tabakasında çarpışarak nötronlar gibi değişik parçacıklar oluşturur. Nötron ile nitrojen-14 çekirdeğinin çarpışması ile karbon-14 çekirdeği meydana gelir. Karbon dioksit ve karbon-14 alt atmosferde karışır. Canlı organizmalarda atmosferdeki O2 yi kullandıkları için yapılarında C-12’nin yanı sıra belirli oranlarda C-14 ihtiva ederler. Ancak bu canlı organizmalar öldükleri andan itibaren yapılarındaki C-14 ile atmosferdeki C-12 arasında var olan denge bozulur. C-14 radyoaktif bozunmaya uğrar ve C-14 ün C-12 ye olan oranı giderek düşmeye başlar. Bu yol ile karbon izotopları arasındaki bu oransal değişim, bir çeşit saat görevi görür. Buradan hareketle canlıların ne zaman öldükleri bilgisini elde edebiliriz. Bugün yaşayan bir organizmadaki C-14'ün C-12'ye oranı 1/1012 dir. Eğer son 50.000 yıl içerisinde karbon izotoplarının oranının değişmediğini varsayarsak, herhangi bir ölü organizmanın, fosillerin vb. yaş tayinini yapmak mümkün. Bunun için C-14'ün radyoaktif bozunması sonucu oluşan beta ışımalarını ölçmek yeterli. C-14 → N-14 + eֿ Örneğin, volkanik patlamalar sonucu yanmış bir ağaç fosilinin yaşını tespit edelim. Bu fosilde 1 gram karbonda 1 dakikada 7,0 C-14 bozunması olduğu bilinsin. Günümüzde yaşayan bir organizmanda 1 gram karbonda 1 dakikadaki C-14 bozunması 15,3 tür. C-14 ün yarı ömrünün (t1/2) 5730 yıl olduğunu biliyoruz. t zaman sonra bir örnekteki çekirdek miktarını k = 0,693 / t1/2 olarak düşüneceğiz. Log Nt/N0=-kt/2,303=-0,693t/2.303 t1/2 <=> t=(2,303 t1/2 /0,693)xlog N0/Nt N0/Nt oranını bulmak için atmosferdeki C-14 ve C-12 oranının sabit kaldığını varsaymak gerekir. Aslında bu varsayım tam olarak doğru değildir. Bilim adamları, binlerce yıl önce doğada (atmosferdeki CO2 nin içerisinde) bulunan C-14 miktarının şimdikinden daha fazla olduğunu düşünüyor. Son yüzyılda yapılan atmosferik nükleer testler ve fosillerin yakıt olarak kullanılması da bu görüşü kuvvetlendiriyor. N0/Nt = 15,3 / 7,0 = 2,2 ve t1/2 = 5730 yıl olduğuna göre, fosilin yaşı yaklaşık olarak: t = (2,303 t1/2 / 0,693) x log N0/Nt = (2,303 x 5730 / 0,693) x log2,2 = 6500 yıl olarak bulunur. KAYNAK: maydalin.com  

http://www.biyologlar.com/fosil-yaslarinin-hesaplanmasi

PROBİYOTİKLER HAKKINDA BİLGİ

Değişik sebeplerden ileri gelen ve insan sağlığı üzerinde olumsuz etkileri olan farklı oluşumlara karşı uzun yıllardan beri değişik antibiyotikler kullanılmıştır. Antibiyotiklerin belli periyotlarda ve belli dozlardaki kullanımı neticesinde, metabolizmada gözlenen rahatsızlıklar tedavi edilebilmiştir. Ancak zaman içerisinde kullanılan antibiyotik türleri ve bunların tedavideki dozlarının insan metabolizmasında yararlı faaliyetleri olan (özellikle de intestinal florada) mikroorganizmaları inaktive ettiği ya da populasyonunu azalttığı ve bunun neticesinde de normal floranın bozularak, vücutta antibiyotiklerden kaynaklanan bazı rahatsızlıkların (alerji, diyare, gaz vb. gibi) ortaya çıktığı belirlenmiştir. Bunun yanında araştırıcılar günlük yaşamın getirdiği bazı olumsuzluklardan (çevrede olan ani değişmeler, su ve besinlerin kaliteleri, hayvansal ürünlerin aşırı miktarları, kafein, alkol kullanımı) ve değişik türdeki patojenlerin enfeksiyonlarından dolayı (sinirsel yorgunluk ve stres gibi) vücudun normal florasının etkilendiğini de ortaya koymuşlardır. Vücudun doğal intestinal florasında bulunan ve organizma için yararlı olan bakterilerin gitgide sayılarının azalması, tamamen yok olması karşısında bilim dünyası bu yararlı florayı korumak ya da tekrar geri kazanmak için arayışa girmiş ve “Probiyotik mikroorganizmalar” değişik ürünler (mandıra ürünleri, meyve suları, çikolata ve et ürünleri) ile tüketime sunulmuşlardır. Probiyotikler; yaşayan mikroorganizmalar olup mukozal ve sistemik bağışıklığı ayarlayarak konağa tesir ederler. Ayrıca intestinal sistemdeki mikrobiyal dengeyi sağlarlar. Sağlıklı bir insan vücudunda probiyotik mikroorganizmalar belli oranlarda bulunmaktadır. Probiyotik mikroorganizma florası, vücudun mukoz membranlarında ve sindirim bölgelerinde kolonize olan bakterilerdir. Vücuttaki mikroorganizma florasında 400 ile 500 arasında farklı türde, sindirim bölgesinde yerleşmiş durumda bulunan, gerek patojen gerekse sağlığa yararlı mikroorganizmalar mevcuttur. Sindirim sisteminin önemli bir parçası olan bağırsaklarda, ilaç kullanımı veya hastalıklar sırasında açığa çıkan zararlı bakteriler, aynı ortamda bulunan iyi huylu bakterilere karşı atağa geçerler ve bağırsağa yerleşmeye çalışırlar. Probiyotik bakteri suşları ise bağırsak duvarına tutunarak, bu zararlıların içeriye girmesini önler. Probiyotik Olarak Kullanılan Mikroorganizmalar Probiyotikler esas olarak laktik asit bakterileridir. Bunun yanında araştırmalar mayaların da probitotik özelliğe sahip olduğunu göstermiştir. Yoğurt yapımında kullanılan mikroorganizmalar (Lactobacillus bulgaricus ve Streptococcus thermophilus) dışında tüm laktik asit bakterileri bağırsak florası elemanlarıdır. Bir probiyotik ürün bu mikroorganizmalardan birini ya da birkaçını içerebilir. İçerdiği mikroorganizma sayısı arttıkça probiyotiğin kullanım alanı genişlemektedir. Probiyotik Bakterilerin Özellikleri Probiyotik bakteriler Gram (+), sporsuz, basil şeklindedir. L. acidophilus’un üreme sıcaklığı 35 – 380C ‘dir. Probiyotik bakteriler mide asitliğine diğer bakterilere göre daha dayanıklıdır. Safra tuzuna ve lizozim enzimine daha dirençlidir. Lactobacillus türleri, ince bağırsakta fazla sayıda bulunurken, Bifidobacterium’lar kalın bağırsaktadırlar. Probiyotik bakteriler laktik asit, asetik asit, bakteriyosin gibi antimikrobiyal maddeler üreterek, bağırsaklarda istenmeyen mikroorganizmaların çoğalma hızını kontrol ederler ve doğal floranın denge içinde bulunmasını sağlarlar. Gram (+) bakteriler, bakteriyosinlere çok duyarlıdır. Beslenmede bitkisel besinlerin fazla olması, hayvansal besinlerin aksine bağırsaklardaki probiyotik bakterilerin sayısını artırır. Sağlıklı kişilerin bağırsak florasında probiyotik bakterilerin (örneğin Bifidobacterium’ların) sayısı zaman içerisinde sabitleşmekte; ancak günlük yaşamın getirdiği; antibiyotik kullanımı, stres, sinirsel yorgunluk, dengesiz beslenme, fazla alkol alımı, hastalık ve bağırsak ameliyatları gibi sonuçlar, bu bakterilerin azalmasına neden olur. Bunun sonucunda bağırsaklarda enterik bakteriler çoğalır ve enterik rahatsızlıklar ortaya çıkar. Probiyotik bakterilerin önemli özelliklerinden biri de, bağırsak çeperine tutunabilme yeteneğine sahip olmalarıdır. Bu tutunma en önemli ve hatta biyolojik etki gösterebilmeleri için mutlaka olması gereken bir özellik olarak belirtilmiştir. Probiyotik bakteriler, bağırsak çeperine tutunarak patojen mikroorganizmaların tutunmasını engellerler. Ayrıca sindirim sırasında bağırsak hareketlerinden çok fazla etkilenmeden hızla üreyerek orijinal populasyonda azalmayı engellerler. Bütün bunları maddeleyecek olursak; probiyotik olarak kullanılan mikroorganizmalarda aranan özellikler şunlardır: - Güvenilir olmalıdır, kullanıldığı insan ve hayvanda yan etki oluşturmamalıdır. - Stabil olmalıdır, düşük pH ve safra tuzları gibi olumsuz çevre koşullarından etkilenmeden bağırsakta metabolize olmalıdır. - Bağırsak hücrelerine tutunabilmeli ve kolonize olabilmelidir. - Kanserojenik ve patojenik bakterilere antagonist etkili olmalıdır. - Antimikrobiyal maddeler üretmelidir. - Konakta hastalıklara direnç artışı gibi yararlı etkiler oluşturma yeteneğinde olmalıdır. - Antibiyotiklere dirençli olmalıdır. Antibiyotiğe bağlı (diyare) ortaya çıkan hastalıklarda bağırsak florasını düzeltmek amacı ile kullanılabileceğinden, bağırsaktaki antibiyotiklerden etkilenmemelidir. - Minimum etki dozları bilinmediğinden, canlı hücrelerde büyük miktarlarda bulunabilmelidir. Probiyotik Olarak Kullanılan Mikroorganizmalar Lactobacillus Türleri: Lactobacillus bulgaricus, Lactobacillus cellebiosus Lactobacillus delbrueckii, Lactobacillus lactis Lactobacillus acidophilus, Lactobacillus reuteri Lactobacillus brevis, Lactobacillus casei Lactobacillus curvatus, Lactobacillus fermentum Lactobacillus plantarum, Lactobacillus johsonli Lactobacillus rhamnosus, Lactobacillus helveticus Lactobacillus salivarius, Lactobacillus gasseri Bifidobacterium Türleri: Bifidobacterium adolescentis, Bifidobacterium bifidum Bifidobacterium breve, Bifidobacterium infantis Bifidobacterium longum, Bifidobacretium thermophilum Bacillus Türleri: Bacillus subtilis, Bacillus pumilus, Bacillus lentus Bacillus licheniformis, Bacillus coagulans Pediococcus Türleri Pediococcus cerevisiae, Pediococcus acidilactici Pediococcus pentosaceus Streptococcus Türleri : Streptococcus cremoris, Streptococcus thermophilus Streptococcus intermedius, Streptococcus lactis Streptococcus diacetilactis Bacteriodes Türleri : Bacteriodes capillus,Bacteriodes suis Bacteriodes ruminicola, Bacteriodes amylophilus Propionibacterium Türleri : Propionibacterium shermanii, Propionibacterium freudenreichii Leuconostoc Türleri: Leuconostoc mesenteroides Küfler: Aspergillus niger, Aspergillus oryzae Mayala: Saccharomyces cerevisiae, Candida torulopsis Probiyotikler Tarafından Üretilen Esas Maddeler Vitaminler: K vitamini, folik asit, biotin, B1, B2, B12, Niasin ve priydoksin. Enzimler: Laktaz gibi sindirim enzimleri (esas olarak süt ürünlerin sindiriminde), serbest bölgelerin düzenlenmesine yardımcı olan karbonhidrat enzimleri, sindirim ve protein enzimleri, yağ enzimleri. Uçucu Yağ Asitleri: Besinlere ait yağ asitlerinin kısa zincirleri yardımıyla üretilen bu yağ asitleri sayesinde, optimum düzeyde sindirim için gerekli olan pH dengesinin sağlanması. İnsan sağlığına faydalı etkilerinin olduğu düşünülen canlı bakteri hücreleri üç temel kaynaktan yenmektedir: - Fermente süt ürünleriyle - Gıdalara ve içeceklere bu bakterilerin canlı hücrelerinin eklenmesiyle (meyve suları, çikolata, et ürünleri v.b.) - Probiyotik bakterilerin canlı hücrelerinden hazırlanan farmakolojik ürünler olarak tablet veya kapsüllerin hazırlanmasıyla. Probiyotik Süt Ürünleri En önemli probiyotik süt ürünü yoğurttur. Bununla birlikte, Lactobacillus acidophilus içeren diğer süt ürünleri olan Acidophilus quarkı, Acidophilus’lu süt, Acidophilus’lu tereyağı, Acidophilus’lu süt tozu da bu grupta yer alan diğer ürünlerdir. Probiyotik süt ürünleri ülkemizde yeni üretilmekle birlikte, birçok ülkede bu ürünlerin tüketimi gün geçtikçe artmaktadır. İnsan sağlığı üzerindeki etkileri de dikkate alındığında Lactobacillus acidophilus içeren ürünlerin üretim yöntemleri ile ilgili çalışmaların geliştirilmesi yararlı olacaktır. Bağırsak sisteminde bulunan Lactobacillus türlerinden fermente süt ürünlerinde en çok kullanılanları Lactobacillus acidophilus ve Bifidobacterium bifidum’dur. Lactobacillus acidophilus, yoğurt bakterilerinin aksine, insan sindirim sisteminin doğal bir üyesi olup, sindirim sisteminde bulunan yüksek asitlik ve bir takım enzimlerin inhibe edici etkisine ve safra kesesi tuzlarına dayanıklıdır. Bifidobacterium türlerinin başlangıçta yalnızca bebeklerin bağırsak florasında olduğu düşünülmüşse de, sonraki çalışmalarda bunların erişkin insanlarda ve sıcak kanlı hayvanlarda da bulunduğu ortaya konmuştur. Acidophilus ve Bifidobacterium türleri, ince bağırsaktaki mukoz membran tarafından tutulmakta, burada oluşturdukları asit ve diğer metabolik ürünler ile patojen ve diğer mikroorganizmalara karşı direnç göstermektedir. Bu durumda, Lactobacillus acidophilus ve Bifidobacterium bifidum ile üretilen ürünlerin düzenli olarak tüketilmesi bu bakterilerin bağırsak sistemlerine tutunmasını sağlamakta ve tedavi edici bir özellik göstermesine neden olmaktadır. Bu nedenle, son yıllarda mide – bağırsak enfeksiyonları için klasik antibiyotik tedavilerine alternatif olarak probiyotik ürünler kullanılmaktadır. Nitekim antibiyotik kullanımına bağlı olarak ortaya çıkan diyarenin önlenmesinde, Clostridium difficile ile meydana gelen kolik diyarenin tekrarlama olasılığının düşürülmesinde, fermente süt ürünlerinden yoğurda aşılanan Saccharomyces boulardii’nin, günde 1 g. yenmesi ile Enterococcus faecium SF68 yada Lactobacillus rhamnosus GG suş’unun fermente süt ürünleri ile alınması neticesinde, hastalarda pozitif yönde gelişmeler olduğu tespit edilmiştir. Yoğurt etkisi altında ağız yolu ile yapılan beslenmenin düzenli olarak uygulanması ile organizmaya patojen bakteri bulaşımının azaldığı kesin olarak ispatlanmıştır. Konu ile ilgili olarak çalışan diğer araştırmacılar da ağız yolu ile yapılan bu beslenme sonucunda, vücudun virüslere karşı bir etki oluşturduğunu bildirmektedirler. Günümüzde tıp alanında birçok hastalığın tedavi edilmesinde yada tekrarının önlenmesinde, Probiyotiklerin kullanılma olgusunun ve bunların en yaygın olarak fermente süt ürünleri ile diyetlerde uygulanmasının, tıp alanında yeni tedavi oluşumlarına kaynak teşkil ettiği görülmektedir. Bağırsak Rahatsızlıklarının Önlenmesi Probiyotik bakteriler, barsak hareketlerini hızlandırarak bağırsak içeriğinin kolayca atılmasını sağlar. Bazı koşullar altında (örneğin antiboyotik alımı), bağırsaklarda faydalı bakterilerin azalmasına ve istenmeyen bakterilerin (Clostridium difficile, E. coli gibi) artışıyla enterik enfeksiyonlar ortaya çıkabilir. Bu problem, probiyotik bakterilerin canlı hücrelerinin gıdalarla veya farmakolojik ürünlerin yenmesiyle önlenebilir. Probiyotik bakterilerin bağırsak yüzeyine tutunarak istenmeyen bakterilerin tutunmasını engellemeleri ve ürettikleri antimikrobiyal maddelerle (asitler, bakteriyosinler, reuterin gibi) çoğalmalarını kontrol altına alırlar. Safranın parçalanması safra asidine göre daha fazla antimikrobiyal etki gösterdiğinden, enterik bakterilerin çoğalması inhibe edilir. Yapılan değişik araştırmalarda, probiyotik bakterilerin özellikle çocuklarda enterik enfeksiyonlara karşı etkili olduğu belirtilmiştir. Araştırmalarda probiyotik bakterilerin süt ürünleriyle veya süte eklenerek bir süre yendiklerinde, bireylerin bağırsak florasında, C. perfingens, C. dificile, E. coli, Salmonella gibi enterik bakterilerin sayısında azalma ve buna karşılık probiyotik popülasyonda artış saptanmıştır. Ayrıca probiyotik bakterilerin yaşlı kişilerde görülen kabızlık gibi bağırsak problemlerini ve yine her yaş grubundaki kişilerde çeşitli nedenlere bağlı olarak görülen ishal, kabızlık, gaz oluşumu, karın şişliği gibi bağırsak rahatsızlıklarını önledikleri belirtilmiştir. Probiyotik bakteriler, bağırsak florasında bulunan Bacteroid, Clostridium, Enterobacter, Fusabacterium, Salmonella, Shigella, Campylobacter jejuni, Candida albicans, Staphylococcus aureus gibi patojen bakterilerin biyojenik amin, amonyak fenol gibi tehlikeli bileşikler üretmelerini engellerler. Probiyotik bakterilerin patojenler üzerindeki bu etkisi, bağırsaklarda laktik ve asetik asit üretmeleri ve pH’nın azalması ile açıklanmaktadır. Laktoz Hidrolizi Laktoz intolerant (bağırsak hipolaktemia) kişiler, laktozu hidrolize edecek beta galaktosidaz enzimini genetik rahatsızlık nedeniyle üretemezler. Sadece Kuzey Avrupalılar, beyaz Amerikalılar ve Afrika’da bazı kabileler laktozu parçalayacak beta-galaktosidaz enzimini oluştururlar. Laktoz intolerant kişiler süt veya dondurma ile laktoz yediklerinde, laktoz ince bağırsakta emilmeden kalın bağırsağa geçer. Kalın bağırsakta laktoz değişik bakteriler tarafından glikoz ve galaktoza hidrolize edildikten sonra asit ve gaza dönüştürülür. Asit ve gaz oluşumu bağırsaklardan sıvı emilmesini engeller ve bunun sonucunda bağırsak şişliği şeklinde rahatsızlıklar ortaya çıkar. Yoğurdun, asidophilus eklenmiş sütün (çoğunlukla L. acidophilus) ve probiyotik bakterilerin farmakolojik ürünlerinin yenmesi, ince bağırsaklara laktozu hidrolize edecek canlı bakteri bağladığından, laktozdan kaynaklanan rahatsızlıklar görülmez. Fermente ürünlerde laktoz, laktik asit bakterileri tarafından parçalandığından ve ürünlerde bakterilerin ürettiği beta-galaktosidaz enziminin bulunması nedeniyle fermente gıdaların sağlık üzerine faydaları bulunmaktadır. Lactobacillus bulgaricus ve Streptococcus thermophilus mide asitliğine dayanamaz ve normal bağırsak bakterisi değildirler. Fakat süte göre yoğurttan laktozun azalması, bağırsak rahatsızlıklarının ortaya çıkmasını engeller. Bağırsak bakterileri ve çoğunlukla bazı Lactobacillus türleri, belirli koşullarda ince bağırsaklara yerleşerek yiyeceklerle alınan laktozu hidrolize ederler. Serum Kolesterol Düzeyinin Düşürülmesi Farelerle yapılan bir çalışmada, farelere L. acidophilus içeren süt verilmesi sonucunda düşük serum kolesterol düzeyi bulunmuştur. Probiyotik bakteriler ile üretilen fermente süt ürünlerinin veya bu bakterilerin canlı hücrelerinin yenmesi, insanlarda düşük kolesterol düzeyinin oluşması, olası dört faktörden kaynaklanabilir: Yukarıda belirtilen beta-galaktosidaz enziminin fermente süt ürünlerinde bulunması. Bazı bağırsak bakterilerinin yiyeceklerle alınan kolesterolü metabolize etme yeteneğinde olması. Böylece kana geçmesinin azalmasına neden olur. Bakterilerin bağırsaklarda kolesterol prekürsörlerini veya kolesterolü azaltılır. Bazı Laktobasillerin safra tuzlarını parçalamasıyla safra tuzlarının karaciğer tarafından emilmesi engellenir. Böylece safra tuzu absorbe edemeyen karaciğerin, safra tuzu sentezlemek için fazla miktarda serum kolesterolünü kullanması sonucunda serumda kolesterol miktarını azaltır. Fakat bazı araştırma sonuçları, probiyotik bakterilerin vücutta kolesterol düzeyini azalttığı şeklindeki bulguları desteklememektedir. Bunun farklı deney düzenekleri, farklı mikroorganizma kültürü kullanılması gibi nedenlerden kaynaklanabileceği belirtilmiştir. Örneğin kolesterol hidroliz etmeyen veya safra asidini parçalamayan bakteri türünün kullanılması gibi. Kalın Bağırsak Kanserinin Azaltılması 1962 yılında laktik asit bakterilerinin antikarsinojenik etkiye sahip olduğu ileri sürülmüştür. Daha sonraki yıllarda hayvanlar üzerinde yapılan arıştırmalarda; deney hayvarları yoğurt ve yoğurda L. acidophilus, L.bulgaricus, L. casei, Bifidobakterium’un türleri gibi bakteriler ekleyerek beslenmiş, deney hayvanları üzerinde antikarsinojenik bir etki bulunmuş ve tümör riskinin azaldığı belirtilmiştir. Birçok araştırmada, probiyotik bakterilerin fazla miktarda ağızdan alımı sonucunda, istenmeyen bağırsak bakterilerinin oluşturduğu beta-glucuronidaz, azoredüktaz ve nitroredüktaz enzimlerinin azalmasını sağladığı belirtilmiştir. L. acidophilus’un fermente ürünlerle birlikte yenmesiyle bağırsaklarda kanserojenik maddelerin kanserojen maddelere dönüşümünde rol oynayan beta-glukoronidaz, nitroredüktaz ve azoredüktaz enzimlerinin düzeyinde iki ile dört kat azalma saptanmıştır. Probiyotik bakteriler kanser genlerinin aktivasyonundan sorumlu olan bakterilerin enzimatik aktivitelerinin düzenlenmesinde, kanser genlerinin bileşiminin ve toksik etkilerinin önlenmesinde yararlı oldukları kaydedilmiştir. Süt ürünlerinin, deney hayvanlarında tümör büyümesini baskılayan konjuge linoleik asitten anlamlı miktarlarda içerdikleri belirtilmiştir. İstenmeyen bakteriler, bağırsak normal pH’sının düşmesiyle laktik ve asetik asit ürettiklerinden dolayı, bağırsaklardan aminlerin ve amonyağın emilmesi azalır. Bu da kanser oluşumunda, tansiyon ve kolesterolün yükselişinde etkili olan nitroz aminlerin serumda artışına neden olur. Probiyotik bakteriler enterik bakterilerin aktivitelerini engelleyerek, serumda nitroz aminlerin artışını dolaylı olarak önlerler. İstenmeyen birçok bakteri türünün bağırsaklarda gıdalarla alınan kanserojen preküsörlerini aktive eden enzimleri üreterek, aktif karsinojen maddelerin oluşumuna neden oldukları belirtilmiştir. Probiyotik bakteriler, istenmeyen mikroorganizmaların çoğalmasını inhibe ederek bu enzimlerin oluşmasını engellerler. Bağışıklık Sistemine Etkileri Probiyotik bakterilerin canlı hücrelerinin bağırsaklarda bulunmaları halinde, bağışıklık sistemini uyardıkları ve kuvvetlendirdikleri belirtilmiştir. Spesifik laktik asit bakteri suşları ile fermente edilen süt ürünlerinin tüketilmesiyle bağışıklığı artıran peptidlerin üretiminde artış olduğu ve bunlardan bazılarının antitümör etkinliğe sahip oldukları belirtilmiştir. Bağışıklık sisteminin uyarılmasıyla serumda IgA gibi antikorların artması virüs, Clostridium, E. coli gibi patojenlere karşı vücudun dirençliliğinin arttığı kaydedilmiştir. Metabolizmaya Yardımcı Olmaları Probiyotik bakteriler, gıdaların sindiriminde bağırsaklara yardımcı olurlar ve sağlıklı bir metabolik aktivitenin oluşmasını sağlarlar. Bu şekilde beslenmeye ve büyümeye yardım ederler. Bağırsaklarda selüloz ve diğer sindirilemeyen gıda bileşenlerini parçalayarak sindirim sistemine yardımcı olurlar. Bağırsak Doğal Florasının Korunması Probiyotik bakteriler; yeni doğanlarda, antibiyotik kullanımında veya günlük yaşamın getirdiği koşullara bağlı olarak bozulan bağırsak doğal florasının oluşmasına yardımcı olurlar. İstenmeyen bakterilerin, mayaların ve küflerin çoğalmasını kontrol altında tutarak bağırsak doğal florasının bozulmasını engellerler. Vitamin Üretimi Probiyotik bakteriler bağırsak florasında yeterli sayıda bulunduklarında, vitamin ve amino asit sentezledikleri belirtilmiştir. Bu bakterilerin ürettiği vitaminlerin en önemlileri, tiyamin (B1), riboflavin (B2), piridoksin (B6) ve naftokinin (K)’dır. Bir araştırmada, B. bifidum’un bağırsak florasında bulunduğunda, bağırsaklarda B6 vitaminin %400 artığı belirtilmiştir. Gıdalara Katılması Bifidobacterium gibi probiyotik bakteriler, bebek yiyecek ve içeceklerinde katkı olarak kullanılabilmektedir. Bu bakteriler yeni doğanlarda koruyucu antimikrobiyaller, vitaminler, asetik ve laktik asit üreterek enterik enfeksiyonlara karşı korunmalarına ve beslenmelerine yardımcı olurlar. Probiyotik bakteriler ishalin önlenmesinde, kemoterapik veya diğer amaçlar için gıdalara katılmaktadırlar. Özetle Probiyotiklerin Faydaları Yiyeceklerle alınan toksik (zehirli) maddelerin detoksifiye edilmesine (vücuttan atılmasına), kabızlık sorununun giderilmesine destek olurlar. Ağız kokusu sorununun giderilmesine yardımcı olurlar. İnce ve kalın bağırsaklardaki kötü ve zararlı bakterilerin yerine geçerek, onları kontrol altına alıp, bağışıklık sistemini güçlendirerek bir çok hastalığa karşı vücut direncinin artmasına katkıda bulunurlar. Antibiyotik ilaç kullanımı nedeniyle doğal florası bozulan bağırsakların dengesini düzeltmeye yardımcı olurlar. B grubu ve K vitamini üretimini ve emilimini sağlarlar. Kalsiyumun bağırsaklardan emilimini artırıp; kemik erimesini (osteoporoz) önlerler. Kötü bakterilerin neden olduğu enfeksiyonları yavaşlatırlar. Vajinal florayı dengede tutarak, vajinal enfeksiyonlara sebep olan patojen mikroorganizmaların (Candida) gelişimini baskılarlar. İdrar yolu enfeksiyonlarına ve seyahatlerde ishale sebep olan E. coli bakterisinin gelişimini engellemeye yardımcı olurlar. Alerji belirtisini azaltırlar. Zehirli maddelerin vücuttan atılmasına ve cildin görünümünün iyileşmesine yardımcı olurlar. Sindirim kanalında sağlıklı bir bakteri dengesi oluşturup, bazı gerekli enzimleri üreterek sindirime katkıda bulunurlar. Laktoz ve protein sindirimini kolaylaştırırlar. Probiyotik mikroorganizmalar ile ilgili bazı hususlar henüz aydınlatılabilmiş değildir. Örneğin; probiyotik mikroorganizmaların vücut içerisinde bir organdan başka bir organa geçişleri ile ilgili olarak herhangi bir belge yoktur. Ayrıca, gıdalarla alınan probiyotik bakteriler ile ilgili hiçbir enfeksiyon olgusu literatürde yer almayıp, sadece Sacchoromyces boulardii `ye ait enfeksiyonun raporlarda yer aldığı görülmektedir. Kaynaklar: 1- www.sutas.com.tr 2- forummate.com 3- www.gencbilim.com 4- H.M. Timmerman, C.J.M. Koning, L. Mulder, F.M. Rombouts, A.C. Beynen (2004). Monostrain, multistrain and multispecies probiotics- A comparison of functionality and efficacy, International Journal of Food Microbiology, 96, 219– 233 5- Robert Penner, Richard N Fedorak, Karen L Madsen (2005). Probiotics and nutraceuticals: non-medicinal treatments of gastrointestinal diseases, Current Opinion in Pharmacology, 5(6):596-603.

http://www.biyologlar.com/probiyotikler-hakkinda-bilgi

 
3WTURK CMS v6.03WTURK CMS v6.0