Biyolojiye gercekci yaklasimin tek adresi.

Arama Sonuçları..

Toplam 366 kayıt bulundu.

Biyocoğrafya Nedir

Biyocoğrafya, bitki ve hayvan türlerinin dağılımını ve bu dağılımın nedenlerini inceleyen bilim dalıdır. Biyocoğrafya araştırmaları yürütülebilmesi için yeryüzü, özellikle kıtalar ve adalar, öbür bölgelerden değişik ama kendi sınırları içinde ortak özellikte bitki ve hayvan varlığını barındıran belirli bölgelere ayrılmıştır. Bitki ve hayvan topluluklarının özelliklerini dağılışlarını ve insan yaşamı üzerine etkilerini inceleyen fiziki coğrafya alt dalıdır. Biyoloji, botanik, zooloji ve tıp canlılar biliminin yardımcı bilim dallarıdır.. Bitki coğrafyası bölgeleri Kuzey bölgesi Paleotropikal bölge Neotropikal bölge Güney Afrika bölgesi Avustralya bölgesi Antarktika bölgesi Hayvan coğrafyası bölgeleri Palearktik bölge Oryantal bölge Avustralyen bölge Etiyopyen bölge Nearktik bölge Antarktika bölgesi Neotropikal bölge

http://www.biyologlar.com/biyocografya-nedir

Parazitolojiye Giriş

Öğrencilerin Öğrenmesi Beklenilen Noktalar 1.Parazitler anlatılırken, parazitizmin özünü anlamak. 2.Parazitolojide kullanılan terimler (terminoloji) ile aşina olmak 3.Taxanomic şemaları kullanarak parazitleri sınıflandırmak 4.Hedeflenen paraziti bilimsel (genus-cins, species- tür) ve halk arasındaki adı ile tanımak, patalojisini, ekonomik etkisini ve kullanılan ilaçlara cevabını öğrenmek. 5.Her parazit için asıl konakçıyı yada konakçı gurubunu bilmek. Hedeflenen parazitin hangi konakçı yada konakçıları etkilediğini öğrenmek. 6.Aksidental (kaza ile oluşan parazitlik) yada rezervuar (kaynak) parazitliğin anlamlarını ve bunların önemini öğrenmek. 7.Her parazitin, tür veya aile olarak asıl konakçı ve hedef konakçılarını öğrenmek 8.Parazitlerin konakçı spektrumunu (konak olarak seçtikleri hayvan türlerinin neler olduğunu) öğrenmek 9.Aksidental (kaza sonu) konakçı ve rezervuar (kaynak) konakçı anlamlarını ve bunların etkilerinin neler olduğunu öğrenmek. 10.Parazit yayılmasındaki rotaları (bulaşma yolları) anlamak ve tanımlayabilmek. oDirek bulaşma, başka bir konakçı kullanmadan oluşan yayılma (bulaşma) oBiolojik (gelişme olan developmental) arakonakçı (intermediate hosts), yada vektörler kullanarak, biolojik yada mekanik oParatenic konakçı (gelişme olmayan - nondevelopmental) yada taşımacı konakçı (transport hosts). 11.Parazit türlerinin dağılımını (ülke ve dünyada) anlamak: oParazitler cosmopolitan (birden fazla kaynaktan köken alan) yada universal (tüm dünyaya yayılan) oCoğrafik yapı yada vektör dağılımına bağlı olarak belli bölgelerle sınırlanmış oMevsimsel değişilerden etkilenme durumları 12.Görülen paraziti tanımak ve teşhis etmek.: oTeşhis için uygun morfolojik karakterlerini kullanarak oParazitin hayat siklusundaki evreleri, yumurtası, kisti , larvası gibi tanıyarak. oLaboratuvar tekniklerini kullanarak örnekte paraziti bularak oParazitin yerleştiği konakçıyı, konakçının hangi organ veya doku kısmına yerleştiğini bilerek tahmini teşhis yapabilmek. 13.Parazitlerin hedef konakçılardaki asıl enfeksiyon bölgelerini, bu bölgelere hangi göç yolları ile ulaştıklarını öğrenip açıklayabilmek. 14.Klinikpatoloji semptomlarına (belirtilere) gözlemleyerek patofizyolojik ve immunolojik cevapları açıklayabilmek. Bu sayede konakçının asıl konakçımı yoksa aksidental konakçı mı olduğunu açıklamak. 15.Anti paraziter ilaçları bilmek: oKimyasal (chemical) sınıfı oEtki genişliği (spectrum) hangi parazitleri etkilediği oHedef parazitin hangisi olduğu oİlacın paraziti nasıl (hangi yolla) etkilediği oİlacın etkili, yeterli dozları oHangi yolla kullanılması gerektiği (IM, SC, IV, oral, vb ) oGüvenliği (Terapötik endeksi) oİlacın kullanılmaması gereken (kontraendike- contraindication) durumlar oTavsiye edilen özel uygulama proğramı 16.Konakçı hayvanların ve çevrelerinin parazitlerden nasıl arındırılacağı konusunda tavsiye edilen kontrol ölçülerini detayları ile bilmek. 17.Paraziter zoonozların halk sağlığındaki önemini anlamak.  

http://www.biyologlar.com/parazitolojiye-giris

Hayvan Coğrafyası

Hayvan coğrafyası, hayvanların yeryüzündeki dağılımını inceler. Diğer bir deyişle, Hayvan coğrafyasının görevi, Dünyadaki hayvan türlerinin bugün bulundukları alanları ve geçmişteki yayılışlarını saptamaktır. Bu saptamaları yaparken, canlılarım çevreleri ile ilişkilerini de (özellikle yayılışlarını kolaylaştıran ya da zorlaştıran nedenleri) ortaya çıkarmaya çalışır. Evrim kuramının düzenlenişi sırasında ilk ve kesin kanıtlar hayvan coğrafyasından elde edilmiştir. Hayvan coğrafyası, Zoolojinin bir koludur. Ancak konuları ne tam Zoolojiye ve ne de tam Coğrafyaya göre düzenlenmiştir. Bu alan daha çok zoologlar tarafından benimsenmiş ve üzerinde çalışılmış, ancak Coğrafyacılar için aynı ölçüde ilginç bulunmamıştır. Bitkilerin yeryüzündeki dağılışını Bitki Coğrafyası inceler. Hayvan Coğrafyası ile Bitki Coğrafyası birlikte Biyocoğrafyayı oluşturur. Buna Canlı Coğrafyası da denir. Hayvan coğrafyasının oluşmasında Aristo (M.Ö. 350), Buffon (1750), Linne (1758) Lamarck (1820), Darwin (1852), Huxley (1868), Wallace(1878), Wegener (1912) gibi bilim adamları göze çarpmaktadır. Çoğu konuda olduğu gibi, hayvan coğrafyası konusunda da en eski çalışmalardan biri Aristo’nun Anadolu ve Ege Adaları’nda bulunan canlıları isimlendirerek yaptığı çalışmadır. Bu çalışma ilk yazılı zoocoğrafik gözlem olarak kabul edilmektedir. Buffon yaptığı çalışmayla Yenidünya’daki canlıların, Eskidünya canlılarından oldukça farklı olduğunu saptamıştır. Diğer bilim adamlarının yaptıkları çalışmalarla Eskidünya’da da bir çok bölgenin birbirinden çok farklı canlı türlerine sahip olduğu anlaşılmıştır. “Binomial Adlandırma” ilkelerinin kurucusu Carl Von Linne, “Habitat” kavramını canlıların sınırlı alanda dağılımını açıklamak için kullanmış ve bir çok hayvan ve bitki türünün tanımını yapmıştır. Lamarck, Darwin ve Wallace gibi bilim adamlarının öncülüğünde geliştirilen Evrim Kuramı canlıların sadece bir merkezden yayılma ile değil, her yayılan hattın gittiği yerde evrimleşmesiyle çeşitlenmenin sağlanabileceğini ortaya koymuşlardır. Bu yaklaşım hayvan coğrafyasına bazı kolaylıklar sağladı. Özellikle Darwin’in Galapagos adalarında yaşayan ispinoz kuşlarındaki çeşitliği anlaşılır bir şekilde açıklaması hayvan coğrafyasına önemli katkılar sağlamıştır. Çok sayıda fosilin bulunması, jeolojik bilgi birikiminin artması, fauna ve flora ile ilgili bilgilerin derlenmesi ve “Kıtaların Kayma Kuramı”’nın uzay çalışmaları sonucu kanıtlanması gibi olgulardan dolayı hayvan coğrafyası konusunda çok daha sağlam yaklaşımlar ve açıklamalar ortaya çıkmıştır. Hayvan coğrafyası, öncelikle dünyanın geçmişteki jeolojisiyle yakından ilgilenir. Geçmişte ortaya çıkan topografik değişikliklerin bilinmesi gerekir. Örneğin, iki kara parçası arasındaki karasal bir köprü ya da iki su ortamı arasındaki karasal bariyer fauna tarihini büyük ölçüde etkiler. Bu nedenle bir zoocoğrafyacı geçmişteki çoğrafik yapıyı (topografik yapı, geçitlerin fiziksel, kimyasal ve biyolojik nitelikleri gibi) iyi bilmesi gerekir. Jeolojik zaman içinde çok kısa sürelerle olan su seviyelerindeki değişmeler (yükselme ve alçalmalar) hayvan coğrafyası açısından oldukça önemlidir. İki fauna bileşiminin arasındaki tür ve cinslerin benzerliği, o iki faunanın geçmişten şimdiye kadar olan bağlantı oranını verir. Bu olayın tersi de (yani cins ve tür farklılığı) yalıtımın etkinliğini gösterir. Eğer iki fauna ana hatlarıyla benzer; fakat ayrıntılarda farklı ise, bu iki fauna arasındaki bariyerlerin yakın zamanda ortaya çıktığını veya bariyerlerin yalıtım düzeylerinin düşük olduğunu gösterir. Bugün saptanan hayvanlar, yaşadıkları bölgenin durumu hakkında da önemli bilgiler verir. Örneğin Avustralya’da yaşayan keseli memelilerin varlığı, bu bölgenin Tersiyer ( yaklaşık 65 milyon yıl önce)’in başından beri dünyanın diğer bölgelerinden yalıtıldığını gösterir. Tersiyer için en önemli zoocoğrafik bilgiler yaşayan memelilerden elde edilmiştir. Memeliler bu devirde hem dallanmış, hem yaygınlaşmış, hem de iyi fosiller bırakmışlardır.

http://www.biyologlar.com/hayvan-cografyasi

BİYOLOJİK DOZİMETRİ VE İLGİLİ GELİŞMELER

Radyasyonun Biyolojik Etkileri Radyasyonun organizmaya olan etkileri akut ve kronik şekilde olmaktadır. Akut etkiler insanda radyasyona maruz kalındıktan kısa bir süre sonra klinik bulgular ile ortaya çıkmaktadırlar. Bunlar merkezi sinir sistemi (100 Sv ve üzeri), gastrointestinal (10-100 Sv) ve hemato­poietik (2-10 Sv) sendromlardır. Sendromların ortaya çıkışı absorbe edilen dozla ilişkilidir.4 Bu sendromlar bir süre sonra bireyi ölüme götürür. Radyasyonun kronik etkileri ise hücrenin ölümüne yol açmayan ancak genetik materyallerinde onarılamayan bozukluklara neden olan olaylar sonucunda ortaya çıkarlar. Kanser yapı­cı etkisi, genetik etkisi ve ömür kısaltıcı etkisi bunlara örnektir. Canlıların somatik ve genetik özellikleri kromozomlarda taşındığı için radyasyonun kromozomlarda meydana getirdiği zararlı etkiler günümüzde ve gelecekte toplum sağlığı açısından oldukça önemlidir. Dozimetri Çeşitleri ve Biyolojik Dozimetri Toplu halde veya bireysel olarak radyasyona maruz kalan bireylerin absorbe ettikleri radyasyon dozu; fiziksel veya biyolojik yöntemlerden biri ile yada her ikisiyle birlikte belirlenebilir. Bu işlem dozimetri olarak adlandırılır. Meslekleri gereği radyasyonla çalışanların fiziksel dozimetri çeşidi olan Film, Cep ve Termolüminesan dozimetrilerden birini taşımaları gerekir. Ancak fiziksel dozimetrenin vücut üzerindeki konumu nedeni ile yetersiz kalması, büyük kitlelerin zarar gördüğü toplumsal radyasyon kazalarında ise bireylerde fiziksel dozimetrenin bulunamaması ve biyolojik çeşitlilik nedeniyle kişilerin radyo duyarlılığının farklı olması biyolojik dozimetriye üstünlük sağlamakta bu nedenle de fiziksel ölçümlerin biyolojik metotlarla desteklenmesi gerekmektedir. Uluslararası Atom Enerjisi Ajansı(IAEA) radyasyon kazası durumlarında, fiziksel dozimetri ile birlikte biyolojik dozimetrinin de absorbe edilmiş dozun belirlenmesinde bağımsız olarak kullanılmasını önermiştir. Şekil 1’de dozimetri çeşitleri özetlenmiştir. Biyolojik dozimetri, genel anlamı ile kişilerin absorbe ettikleri radyasyon dozunun biyolojik indikatörler (belirleyiciler) kullanılarak ortaya çıkarılmasına denir. Biyolojik Dozimetri için ideal koşullar; 1-Dozları tahmin etmek için seçilen etkiler iyonizan radyasyonlara özgü olmalı (dientrik aberasyonları gibi), 2-Radyasyona maruz kalma sonucu oluşan etki kalıcı olmalı, eğer kalıcı değilse zamana bağlı olarak oluşan değişiklikler bilinmeli, 3-Oluşturulan kontrol doz-cevap eğrilerinde dozların aralığı mesleki ışınlamalarda olduğu gibi çok küçük dozları ve kaza durumlarında olduğu gibi birkaç Gy’e varan dozları da içermeli, 4-Farklı radyasyon kalitelerinde uygulanabilmeli (Co, X-ışını, nötron v.b), 5-Biyolojik materyal kolay elde edilebilmeli (kan gibi), 6-Ölçümler kolay ve hızlı olmalı kısa sürede sonuç elde edilmeli, 7-Kronik ve homojen olmayan ışınlamalara da uygun olmalı. Yukarıdaki özellikleri taşıyan ideal bir biyolojik dozimetri yöntemi bilinmemektedir. Fakat, insan periferal kanından lenfosit kültüründen kromozom analizinin yapılması bugün için bilinen en iyi biyolojik dozimetri yöntemidir. Biyolojik dozimetri çeşitlerinden olan kromozom dozimetrisi (sitogenetik dozimetri), kişilerin absorbe ettikleri radyasyon dozu ile insan lenfositlerinde oluşan kromozom aberasyonları arasındaki kantitatif ilişki esasına dayanır. İyonizan radyasyonların kromozomlarda oluşturdukları hasar 20.yy başlarından beri bilinmektedir. İlk olarak X-ışınlarının Drosophila'da kromozom aberasyonu oluşturduğunun bulunması ve takip eden yıllarda araştırıcıların yaptıkları çalışmalar sonucunda ilk olarak 1962 yılında kromozom aberasyonları, radyasyona maruz kalan bireylerde absorbe edilen radyasyon miktarını tespit etmek için kullanılmıştır. Kromozom aberasyonlarının absorbe radyasyon dozunun belirlenmesinde kantitatif biyolojik indikatör olarak kullanılmasından bu yana radyasyon kazaları sonunda absorbe edilmiş olan doz tayininde standartlaşmış bir yöntem olarak kullanılmaktadır. Radyasyonun canlılarda oluşturduğu etkileri değerlendirmek için başka biyolojik indikatör sistemler de geliştirilmiştir. Elekton spin rezonans, Biyokimyasal indikatörler (kıl, tükürük, saç, sperm vs), Retikülosit sayımı, Mutasyon noktalarının analizi, Monoklonal antibodyler vs. Bu tür sistemlerin çoğu örnek almadaki güçlükler, hücrelerin asenkron popülasyon (hücre siklusunun farklı evrelerinde) şeklinde bulunması ve hücrelerin yaşam sürelerinin kısa olması, yöntemin belli dozlarda etkili olması ve bazen de ışınlanma süresinin önemi nedeniyle dozimetri amacıyla rutin olarak kullanılamazlar. Biyolojik Dozimetri Amacıyla Kullanılan Kromozom Aberasyonları Unstabil (kalıcı olmayan) asimetrik kromozom aberasyonlarından olan disentrik aberasyonlar ve eşdeğerleri (trisentrik ve sentrik halka) absorbe radyasyon dozunun indikatörü olarak diğer aberasyonlara göre daha çok güvenilirdirler. Çünkü disentrik kromozom aberasyonları radyasyona özgüdürler yalnızca özel birkaç radiomimetik kimyasal (bleomisin, endoksan vs) tarafından oluşturulabilir. Doğal görülme sıklıkları (back-ground) düşüktür (1/2000) ve kolay belirlenirler. Bazı araştırıcılar doz tahminlerinde disentrik eşdeğeri kabul edilen sentrik halka (ring) kromozomları da disentriklerle birlikte kullanmaktadırlar. Sentrik halka oluşumu unstabil kromozomlarının oluşum yüzdesi içinde %5-10 civarında olduğundan doz hesaplamalarında kullanılmamaları önemli bir kayıp değildir. Serbest asentrikler, disentrik, trisentrik ve sentrik halka gibi kromozom aberasyonlarına eşlik etmez ve onlardan bağımsız olarak bulunurlar. Bu aberasyonlar radyasyon dışıetkenlerle de oluşturulabildikleri için tek başına doz tahmininde kullanılmamaktadırlar. Disentrik, trisentrik ve sentrik halka kromozom aberasyonlarının oluşumu Şekil 2’de şematize edilmiştir. Translokasyon olarak adlandırılan iki kro­mozom arasındaki simetrik değişimler de son yıllarda geliştirilen floresan boyama teknikleri (fluorescens in situ hybridisation; FISH) sayesinde biyolojik dozimetri amacıyla kullanılmaktadır. Kromatid tipi kırıklar büyük oranda kimyasal ajanlar tarafından oluşturulduğundan biyolojik dozimetri amacıyla kullanılmamaktadır. Son yıllarda yine insan periferal lenfositleri kullanılarak absorbe edilen radyasyon dozunun belirlenmesi amacıyla Mikronukleus testi çalışmaları yapılmaktadır. Mikronukleuslar sitoplazma içinde ana nukleusun dışında fakat nukleus ile şekil, yapı ve boyanma özellikleri bakımından aynı olan küçük küresel yapılardır. Radyasyona maruz kalmış lenfositlerde hasar gören kromozomlar ve onların asentrik parçaları veya mitotik iğdeki hatalar sonucu kromozomun tamamının kutuplara çekilememesi sonucu oluşurlar. Şekil 3 A’da bölünmekte olan binukleat bir hücrede kutuplara çekilemeyen bütün bir kromozom ve asentrik fragmentten mikronukleus, B’de ise yine binukleat bir hücrede disentrik köprüden nukleoplazmik köprü ve mikronukleus oluşumu şematize edilmiştir. Binukleat hücrelerdeki hücre başına düşen mikronukleus sıklığının mononukleat hücrelerdekinin iki kat olması nemlidir. Kromozom aberasyonlarının doğal oluşum sıklığı konusunda, farklı populasyonlar ile yapılan araştırmalarda özellikle disentrik sıklığında farklılıklar gözlenmiştir. Doğal disentrik oluşum sıklığının farklı bulunması, laboratuva koşulları, sayıcı ve değerlendiriciler arasındaki farklılıklar nedeniyle her biyolojik dozimetri laboratuarının kendi koşullarında, çeşitli radyasyon kalitelerinde ve farklı radyasyon dozlarında oluşturacakları kontrol doz-cevap eğrilerine sahip olmasını gerekli kılmıştır. Olası bir radyasyon kazasında alınacak radyas­yonun tipine göre, absorbe radyasyon dozunun miktarı o tipteki kontrol doz-cevap eğrilerin­den faydalanılarak bulunmaktadır. Kontrol doz-cevap eğrileri daha önce radyasyonla çalışmamış yada herhangi bir şekilde radyasyona maruz kalmamış sağlıklı bireyler­den alınan kanların akut ve homojen ışınlanmaları sonucunda oluşturulur. Biyolojik dozi­ metri amacıyla yapılan kontrol doz-cevap eğri­leri genellikle 50 mGy ile 4 Gy arasında yapılır. Eğriler oluşturulurken 0 ve 1 Gy arasında en az 5 doz noktasının olmasına özen gösterilir. Çünkü radyasyon kazaları genelde bu dozlar arasında meydana gelir.10 Standart eğri oluşturulurken çok küçük doz (<0.5 Gy) nokta­larında doz-cevap ilişkisini ortaya koymak için çok fazla hücre saymak gereklidir. Kalibras­yon eğrisini oluşturmak için toplam 10.000­15.000 hücre, bireysel doz tahmini yapmak için ise 500-1000 hücre saymak yeterli­dir. Elde edilen aberasyon verimi dikka­te alınarak %95 güvenilirlik sınırları içinde kontrol doz-cevap eğrisi çizilir. Aynı laboratuvar koşullarında 200 kV X-ışını ve Co­60 gamma radyasyonu ile ışınlanma sonucu oluşturulan kontrol doz-cevap eğrileri birlikte Şekil 4’de görülmektedir. GEREÇ VE YÖNTEMLER Materyalin Elde Edilmesi, Işınlanması Kontrol doz-cevap eğrilerini oluşturmak amacıyla elde edilen kan örnekleri genç, sağlıklı, sigara içmeyen, radyasyonla çalışmamış yada herhangi bir şekilde radyasyona maruz kalmamış bireylerden alınır. Kontrol grubu ve birinci mitozun (M1) ikinci mitoza (M2) oranını belirlemek için alınan kanlar ayrılır. Kan örnekleri steril, içleri heparin kaplı tüpler içine alınır. Eğriyi oluştururken, kullanılan doz noktalarına ait kan örnekleri radyasyon kalitesine uygun şekilde, doz hızı, dozun homojenitesi gibi kriterlere özen gösterilerek 370C’da ışınlanır. Kültür ve Tespit İşlemleri Kontrol doz-cevap eğrileri oluşturmak için ışınlanmış kan örnekleri ve radyasyona maruz kalmış bireylerde absorbe dozun tayini için alınan (~5 ml) kan örnekleri steril şartlarda, Moorhead ve arkadaşlarının mikrokültür tekniğine uygun olarak kültüre alınır. Bu yöntemde genellikle kültür stok medyumu olarak RPMI-1640+L-Glutamin, Penicilin ve Streptomicin kullanılır. Kültür ortamına mitojen olarak PHA (phytohemaglutinin) ve hücrelerin metafazda durmaları için Kolsemid kullanılır. Kültür süresi sonunda (toplam 48 saat) 0,075M KCL ile hipotonik şok uygulanır. Bu işlem sonunda 1:3 oranında asetik asit/metanol karışımı ile tespit işlemleri tamamlanır ve metafaz kromozomlarının lamlar üzerinde iyi bir şekilde dağılmaları sağlanır. % 5 Giemsa boyası ile boyanarak incelenecek duruma getirilir. Uygulanan kültür metodu Şekil 5’­de kısaca özetlenmiştir. M2/M1 Oranı ve Biyolojik Dozimetride Önemi İnsan vücudunda yaklaşık 5.2x1012 lenfosit dolaşır. Lenfositlerin % 70’i T- lenfositlerdir ve bunların yaklaşık %98’i ufak, hücre siklusunun bölünmeyen bir fazında (G0) bulunur. G0 fazında olmaları dolayısı ile biyolojik ömürleri uzundur. Metabolik olarak inaktiftirler. T-lenfositlerin kolay elde edilebilmeleri, radyasyona duyarlı olmaları, biyolojik ömürlerinin uzun olması (%90’nın yaşam süresi ortalama 3 yıl) (38) ve akut vücut ışınlamalarından 3 yıl sonra dahi lenfositlerdeki kromozom aberasyonlarının %50 sinin hala korunuyor olması, kaza üzerinden uzun yıllar geçse bile absorblanan dozun belirlenmesine olanak tanır. İnsan periferal kanında bulunan lenfositler stimüle edilerek G0 fazından çıkıp hücre siklusunda ilerlemeye başlarlar. Siklusta ilerleme hızı hücreler arasında farklılık gösterdiğinden periferal kanda senkronize olan lenfositler bölünmeye teşvik edildikleri invitro ortamda asenkron hücre popülasyonu haline gelirler. Bu yüzden bazı lenfositler M1 bölünmede iken siklusta hızlı ilerleyen bazı lenfo­sitler M2 da olurlar. Radyasyona maruz kalındıktan sonraki ilk bölünme (M1) de lenfositlerde oluşan disentrik kromozom aberasyonlarının %50’si kaybolur. Bu yüzden doz tahmini yapılırken, M1 lenfositlerde bulunan disentrik kromozom aberasyonlarının sayımı esas alınır. M2/M1 belirlenmesi için kültür ortamına BrdU (bromodeoksiüridin) ila­ve edilir. Timidin analogu olan BrdU, DNA replikasyonu esnasında timidinin yerini alır. DNA’nın yapısına girer. Floresan Plus Giemsa (FPG) boyama tekniği32 ile boyanan metafaz kromozomları Floresan mikroskopta incelenerek M2 ve M1’de olan hücreler ayırt edilir. Metodun iyi çalıştığının göstergesi olarak, M2 de olan hücreler M1den %10 daha az olmalıdır. Bu değerlerin üzerinde bulunduğunda absorbe radyasyon dozunun hesaplanmasında bazı düzeltme faktörleri kulanılır. Kültür ortamına BrdU ilave edildikten sonra DNA replikasyonu sırasında BrdU’nun DNA’nın yapısına girişi, M1 ve M2’deki hücrelerde BrdU almış kromozomların görünüşü Şekil 6’da gösterilmiştir. Kromozomların değerlendirilmesi Hazırlanan preparatlar değerlendirilirken kromozomları birbirinden belirgin olarak ayrılmış, görünüşleri düzgün ve iyi boyanmış diploid metafazlar dikkate alınır. Kromozomlar sayılırken sayıları 2n=46 ve üzeri olanlar değerlendirmeye alınır. Hücrede kararsız aberasyonlar (disentrik, sentrik halka ve serbest asentrik) bulunduğunda kromozom sayıları ile belirlenen aberasyonların birbirini dengelemesine özen gösterilir. Örneğin, hücrede bir disentrik aberasyonun varlığında ona eşlik eden bir asentrik ile sayının 46 da tutulması; bir sentrik halka bulunduğunda yine eşlik eden bir asentrik ile sayının 47 olması, bir trisentrik bulunduğunda ona eşlik eden 2 adet asentrik ile sayının 46 olması gibi durumlara dikkat edilir. Değerlendirmelerde bir trisentrik 2 disentriğe, bir sentrik halka bir disentriğe eşdeğer olarak kabul edilmektedir. 4 Gy 200 kv X-ışını uygulanan ve yukarıda anlatılan metoda uygun olarak hazırlanan ve değerlendirilen bir me­tafaz plağında disentrik ve asentrik kromozom aberasyonları Şekil 7’de görülmektedir. İstatistiksel ve Matematiksel Yöntemler Farklı iyonlaştırıcı radyasyonların eşit dozlarının birim uzaklıkta bıraktıkları enerjilerinin ve dolayısıyla oluşturdukları iyonlaşma yoğunluklarının farklı olması nedeniyle oluşturdukları kromozom aberasyonları verimleri de farklıdır. Düşük Lineer Enerji Transfer (LET)’li radyasyonların herhangi bir dozunda iyonizasyon rastgele dağılır. Kromozom hasarının da aynı olasılıkla ger­çekleştiği düşünülürse aberasyon dağılımı da rast gele olacaktır. Bu rast gele dağılımın düşük fre kanslarda meydana gelmesi Poisson dağılımı ile uygunluk gösterir. Bu bilgilere dayanarak X-ışınları ve γ gibi düşük LET’li radyasyon ile akut ve homojen ışınlanma sonucunda oluşan kromozom aberas­yonlarının Poisson dağılımına uygunluk gösterdiği belirlenmiştir. Yüksek LET’li radyasyonlarda ise iyonizasyon yoğunluğu fazla olduğundan iyonizasyon hücreler arasında rast gele dağılmaya­caktır. Yüksek LET’li radyasyonların absorblanması sonucu birbirine yakın hücrelerde birden fazla aberasyonlu hücre oluşacak ve bu oluşum Poisson dağılımından uzaklaşacaktır. Homojen olmayan ışınlamalarda ve kronik ışınlamalarda disentriklerin hücrelere dağılımlarının Poisson dağılımından sapmaları büyük olacağından Poisson’a uygunluk göstermez. Bu yüzden kontrol doz-cevap eğrileri oluşturulurken ışınlama homojenitesini kontrol etmek için disentriklerin Poisson dağılımına uygunluklarının belirlenmesi gerekir. Elde edilen aberasyon dağılımının (disentrik) Poisson'a uygunluğunu araştırmak için ilk önce her doz noktasına ait varyanslar (σ²) hesaplanır. Daha sonra varyansların aberasyon (disentrik) frekanslarına (Y) oranından elde edilen dağılım oranı (σ²/Y) bulunur. Bu dağılım oranları U testi formülünde yerine konularak her doz noktasına ait U değerleri hesaplanır. U testi sonuçlarının –1,96 ve +1,96 arasında olması dağılımların Poisson’a uygunluğunu ispatlar. Çoşkun M, Coşkun M. Biological dosimeter and related developments. Cerrahpaşa J Med 2003  

http://www.biyologlar.com/biyolojik-dozimetri-ve-ilgili-gelismeler

Balıklarda biyolojik sistemlerin işleyişi

Balıklarda sindirim sisteminde büyük farklılıklar gözlenir Bütün balıklarda görülen karaciğer genel olarak büyüktür ve yumuşak bir dokudan oluşur. Kıkırdaklı balıkların dışında, pankreasın yerini ya mide ile barsağın birleştiği mide kapısının çevresinde bulunan özel bir dokudan oluşmuş körbarsaklar ya da barsağın başlangıcında bulunan bu dokunun kendisi alır. Ağzı donatan dişler de büyük ölçüde değişkenlik gösterir. Yalnızca birkaç türde hiç diş bulunmaz. Dişler, genellikle avı tutmaya ya da parçalamaya yarar. Balıkların çoğu hayvansal besinlerle beslenirler. Yırtıcı olanların büyük bir bölümü, kendi türlerinden olanları bile ayırt etmeksizin balıklara saldırarak beslenirler. Bazılarıysa kabukluları ve yumuşakçaları yer. Az sayıda balık türüyşe bitkicildir (bitkisel maddelerle beslenirler) ya da midelerini mikroskopik hayvancıklarla dolu suların çamuruyla doldururlar. Balıkların böbrekleri omurga boyunca uzanır; ama sidik torbası göden barsağınm üstündedir ve memeililerdekinin tersine, anüs ile üreme açıklığının arkasından dışarı açılır. Balıkların sinir sistemi Balıkların beyni, bedene oranla çok küçüktür ve beyni oluşturan çeşitli bölümler eşit olmayan biçimde gelişmiştir. Bununla birlikte, beyinden çıkan sinirlerin dağılımı, öbür omurgalılar ınkiyle tam bir benzerlik gösterir. Duyu organları arasında, genellikle büyük olan göz, geniş ve çok açık olan gözbebeğiyle dikkati çeker. Derin deniz balıklarının gözleri ya körelmiş ya da çok gelişmiştir. Kulağın yapısı yalındır: Yalnızca içkulaktan oluşur.Koku alma organı, tabanı kıvrımlı bir zarla çok düzenli biçimde döşenmiş kapalı bir uçla son bulan, iki boşluktan oluşur; balıklar kokulara karşı çok duyarlıdırlar (hiç akıntı olmasa bile uzaktan yemin bulunduğu yere doğru gelirler). Buna karşılık, tat alma pek gelişmemiştir. Balıkların dili kemiktendir ve yapısında çok az sinir yer alır; ayrıca, balıklar besinlerini ağızlarında tutmazlar. Dokunma duyusu son derece gelişmiştir; böylece balıklar, şaşırtıcı bir keskinlikle, suyun en küçük titreşimlerini hissedebilir ve geldikleri yeri belirleyebilirler. Dokunmanın başlıca merkezi, omurgaya koşut olarak gövde boyunca uzanan ve yan çizgi adı verilen bir oluk içindedir. Dokunma duyusuna dudaklar da yardımcı olabilir. Balıklarda üreme Balıklarda yumurtalar genellikle beden dışında döllenir (yani ovipardırlar). Son derece ince, suyu ve dölleyici sıvıyı geçiren bir zarla kaplı olan yumurtaların büyüklüğü değişkendir. Bazı türler bir milyondan çok yumurta yumurtlar. Bütün bu yumurtalar iki zarla sarılmış bir vitellüsten oluşurlar; bazı köpekbalıklarında bir eten vardır. Dişi,, yumurtlama dönemindeyken, yumurtalar çok büyük bir gelişme gösterirler ve aşağı yukarı bütün karın boşluğunu doldururlar. Erkekte balıksütü denen sperma için de aynı şey söz konusudur. Üreme sırasında dişi ve erkek balıklar, olağanüstü etkinlik gösterirler: Su bitkilerini hareket ettirir, kıyılara yaklaşırlar ve dişi, sığ yerlere yumurtalarını döker. Yumurtalar bırakılır bırakılmaz, erkek balıklar üstlerine spermalarını bırakarak onları döllerler. Sonra erkek ve dişi, yumurtaları bırakıp giderler. Ama, dikenbalıkları, horozbinalar, yayınbalıklan gibi bazı balıkların, yuva yapma içgüdüsüyle yumurtalarını koruma altına aldıkları bilinmektedir. Bazen yalnızca erkek balığın yuvanın başında beklediği ve yavrularını koruduğu görülür. Bazı türlerde de erkek ve dişi, yavruların çevresinde durur ve bir tehlike sezdikleri anda onları geniş ağızlarının içine alarak korurlar. Bazı balık türleriyse çiftleşirler ve yumurtalar ana karnında açılır (yani ovovivipardırlar); yavrular kısa bir kanalla dışarı çıkarlar. Yalnızca köpekbalıklarında, yumurtalıktan ayrı, çoğunlukla gerçek bir dölyatağıyla son bulan uzun yumurtalık kanalları vardır. Köpekbalıkları ya canlı yavrular ya da bağsı bir maddeyle sarılmış büyük yumurtalar üretirler.

http://www.biyologlar.com/baliklarda-biyolojik-sistemlerin-isleyisi

Zika Enfeksiyonunun İnsan Hücresini Nasıl Değiştirdiğini Görün...

Zika Enfeksiyonunun İnsan Hücresini Nasıl Değiştirdiğini Görün...

Bu görsel özet, hem insan hepatomu hem de nöronal progenitör hücrelerde Zika virüsü enfeksiyonunun hücresel mimarinin önemli yapısal değişikliğe neden olduğunu gösteren Cortese ve arkadaşlarının bulgularını göstermektedir.

http://www.biyologlar.com/zika-enfeksiyonunun-insan-hucresini-nasil-degistirdigini-gorun-

Protoplazmanın Hidratürü

Gram k.ağ başına su miktarını belirten hidrasyonundan farklı bir terimdir ve protoplazma suyunun bağıl termodinamik aktivitesinin ölçüsüdür. Fakat fizyolojik aralıkları olan% 96 - 100 arasında aralarında doğrusal ilişki vardır, yani şişme ile hidratür paralel değişir. Protoplazma hidrasyonunun su potansiyeli - emme potansiyeli - difüzyon basıncı eksikliğine bağlı olduğu ve suya doymuş hücrede maks. olduğu görüşü termodinamik açıdan yanlıştır. Özsuyun bağıl su aktivitesi - hidratürü daima < saf su olduğundan protoplazmanın şişmesi limite gider. Özsu osmotik potansiyeli bilindiğinde protoplazma hidratürü hesaplanabilir, başka türlü de ölçülemez. Fakat OP sıcaklığa bağlı iken hidratür değildir, bu açıdan OP çöl bitkilerinin su ilişkilerinin ekolojisinde çok önemlidir. Çok değişik ekolojik ortamlarda birçok türün potansiyel osmotik basınçlarının ölçümü ile osmotik spektra elde edilir. Bu spektrum vejetasyonu oluşturan ot, sukkulent ve çalı gibi farklı yaşam formlarının osmotik basınç potansiyellerinin karşılaştırılması olanağını verir. Hidratürün tanımlanmamışolduğudönemde her tür için elde edilen en düşük ve yüksek OB potansiyelin negatifi olan potansiyel OB değerleri de belirtilerek ölçülen örnek sayısına göre ortalamaları ile beraber kullanılmıştır. Kurak alanlarda ortalama hava sıcaklığı örneğin 30 den 40 dereceye çıkarken kum yüzeyin sıcaklığı 35 den 85 dereceye kadar çıkıp gece daha hızlı olarak düşer. Hava bağıl nemi Rh-Relativ hümidite ise tam tersi ilişki gösterir, örneğin %40 dan 0a düşer ve tekrar 40’a çıkar. Kışın ise Rh ve top. suyu donma ile düşer, kuraklık etkisi yapar, bitkiler donmuş suyu alamaz, buna fizyolojik kuraklık denir. Nemli bölge ile semiarid- yarıkurak bölgenin sınırını yağış ile evaporasyon potansiyeli dengesi çizer evapotranspirasyon, yani bitki terlemesi ile topraktan buharlaşmanın toplamı esas alınr. Doğal olarak bu da havanın bağıl nemi ve dolayısı ile sıcaklığa bağlıdır. Karasal çöllerde kışın günlerin kısalığı soğuk etkisini arttırır ve hava hareketleri havanın sürekli kuru kalmasına neden olur.Yazın ise güneş enerjisi alçak basınca neden olur ve çevreden içe hava akımı yaratır. Çevre dağlık ise nem aşağıda kaldığından dağları aşamaz ve iç kısıma kuru hava akımı olur. Yaz yağışları düzensiz ve yereldir, çünkü dağları geçebilen nem yeryüzü örtüsünün heterojenitesi ve rakım farklılıkları nedeniyle konveksiyona uğrar. Kısa süreli ve yerel fırtınalar olur, özellikle sırtlar, vadiler hava akımı yarattığından bu fırtınaları destekler. Yıllık yağış çanakta 12 cm olurken dağların rüzgarlı eteklerinde 100 cm olabilir. Sukkulens ile kurağa dayanıklılık kışı sert yörelerde -1...-4 derecenin altında mineral beslenmesi ve osmotik basınca bağlı olarak direnci kırdığından karasal steplerde pek geçerli olamaz. Kış gecelerinde sıcaklıkları hava drenajı kontrol eder. Güneşin batışı ile toprak yüzeyi ve hemen üstündeki hava tabakası çabuk soğur. Soğuma ile hava yoğunluğu ve ağırlığı artar ve sırtlardan aşağıya esinti ile süzülür, çukurlarda soğuk birikirken yamaçlarda doğan boşluğu daha sıcak hava doldurur; böyle sürer. Kuvvetli bir hava akımı ve sıcaklık değişimi modeli doğar Doğal olarak çanak - tepe rakım farkları ile eğimler, kuzey ve güneye bakış önemli rol oynar. Kış yağışın bol olduğu zaman olduğundan güneye bakan yamaçlardaki daha sıcak koşullar nemin kaçmasına neden olur, kuzey yamaçlarda ise nem tutulur. Sonuçta vejetasyon- bitki örtüsü farklılıkları yüksek olur. Gün ortasındaki ortalamalar ise çanakta 15 derece iken tepelerde 4 derece gibi beklenen farklılıkları gösterir. Yazın ise koşul farklılıkları azalır, gecelerin kısalığı hava drenajı etkisini azaltır ve gece sıcaklıkları kritik değerlerden uzaktır. Anakaya jeolojisi kurak alanların erozyonu ve çölleşmesinde önemlidir. Jeomorfolojiyi ve erozyona dayanıklılığı etkiler. Çöl ortamı ana kayaç jeolojisi ile yeryüzünde cereyan eden olayların uzun süreli ilişkisi sonucudur ve aynı bölgede farklı koşullara yol açar, yani çölleşme piyesinin sahnesidir. Yeryüzündeki kayaların şekil, büyüklük ve dağılımını, ilişkilerini belirler. Erozyona bağıl dayanıklılık oranlarını hem fiziksel ve kimyasal özellikleri hem de topoğrafya ile birlikte belirlediği gibi erozyonla doğan yapıların tanecik şekil ve boyutlarını, çözünürlük ve taşınabilirliklerini de belirler. Dayanıklılığın aynı olduğu ortamlarda da iklim koşullarının etki şekli ve derecesi hem yeryüzüdeki etkisi hem de önleyici vejetasyonu sınırlayıcı etkisiyle önem kazanır. Jeolojik etki yapabilecek düzeyde yağış olmadığında rüzgar önem kazanır. Yağış hem fiziksel hem de kimyasal etkiler yaratırken rüzgarın etkisi tümüyle fizikseldir. Hava nemi ise kimyasal etki yaratır. Tipik karakteristik olan vejetasyon azlığı veya yokluğu oldukça kısa sürede de ortaya çıkabilir. Örneğin bir maden alanında 150-180cm ort. yıllık yağışa rağmen 100 km2 lik bir alan dumanlar vs.nin etkisiyle çıplaklaşıp, rüzgar ve sel etkisine açık hale gelerek erozyona uğraması sık görülebilen bir durumdur. Yoğun ve dikkatsiz tarım uygulamaları doğal vejetasyonu eriterek kuraklığı arttırıp, tarımsal verimi azaltırken, rüzgar ve su erozyonunu arttırı ve 10 yılda bile çölleşme olabilir. Entansiv tarım toprağın asitleşmesine neden olarak bitkilere yararsız hale getirir. Buna karşı toprağın kireçlenmesi gerekir. Benzer şekilde aşırı otlatma ile bitki örtüsü kaybı çölleşmeye neden olur. Semi - arid, orta kurak bölgelerdeki çorak alanlarda toprağın üst yüzeyinin kabuklaşması suyun yüzeyden akışına neden olarak topoğrafik izler bırakır. Özellikle kalker gibi çözünür kayaçları çok etkiler, yüzeydeki çentikli görünümle kendini belli eder. Fiziksel etkileri poröz kayaçlardan gevşek yapıları çekerek uzaklaştırmak suretiyle zayıflatmak ve zamanla seçii olarak bozunuma neden olmaktır. Özellikle ince taneli sedimanter kayaçlarda kendini gösterir. Kimyasal etki çözünür tuzları çekerek çöktürmesidir. Kalkerli tüf veya traverten oluşumuna neden olur. sıak dönemlerde de yüzeyde bu tuzların birikimi görülür. Çölleşme vejetasyon çeşitliliğini azaltır, toprak tekstürü, eğim, kumluluk gibi ekstrem koşullara adapte olabilen cinslerin türlerine indirgenir. Drenajı yetersiz alkali düzlüklerde vejetasyon zayıftır ve örneğin çeşitli Atriplex, Astragalus, Salvia, Thymus türleri gibi türler görülür. Halofitler de yanlarında bulunur. Sert zemin üzerindeki ağır topraklarda en iyi gelişimlerini gösteren çalı türleri özellikle Atriplex spp. dir. Yabani asma türleri yanında odunlulardan Acacia, Juniperus, Eucalyptus türleri olabilmektedir. Legüm ağaçlarından Acacia örneğinGüney Afrika, Arizona çöllerinde dahi boldur. Vejetasyon tipleri yerel topoğrafya ve edafik koşullara göre, örn. Volkanik,granitik anakaya cinsine göre farklılaşabilmektedir. Çölleşme endemik tür artışına neden olur, perenniyal/ annual oranı 3/2 gibi yüksek oranlara ulaşır. Genelde çöl türleri sürekli evrimleşme ile ortaya çıkmış ve evrimlerini sürdüren türlerdir. Özel edafik ve fizyolojik koşullarda yaşayan, sadece kuru koşullara bağlı olmayan türlerdir. Örn. tuzlu, alkalin, kumul gibi ortamlar için seçicidirler, Atriplex bunlardandır alkalin, tuzlu topraklarda susuz ortam yanında toprağın yüksek osmotik basıncına dayanıklı oluşları ile yüksek rekabet gücü elde ederler. Bazı türler çölleşme koşullarındaki mikrohabitat koşullarına alttürleri sayesinde uyum sağlamışlardır. İklim koşulları soğuk ve nemli kış koşulları ile de rekabet tablosunu etkiler. Türlere göre değişen çimlenme zamanı ve yöntemi üzerinde etkili olan başka etmenler de vardır. Empermeabl tohum kabukları sayesinde susuz ortamda desikasyona, yani kurumaya uğramadan embriyoyu canlı tutma önemlidir. Su ile yakın temas, yüksek sıcaklıkta suyun varlığı, belli bir sıcaklık değişiminin veya gündüz / gece sıcaklık ilişkisinin kurulamamış oluşu, ışık belli bir sıcaklıkta yağış gibi çok farklı etmenler çimlenmeyi engelleyebilmektedir. Çeşitli kurak bitkilerinin yapraklarından kültür ortamında diğer türlere inhibitör hatta toksik etki yapan maddeler izole edilmiştir. Bazılarının inhibitör veya zehirlerinin dökülen organlarından toprağa geçerek uzun süre etkili olabildiği ve sonra toprak biyolojik veya kşmyasal aktivitesi, yağmurun yıkaması ile bu etkinliği kaybettikleri de ortaya çıkarılmıştır. Terleme genelde yeterli su varken yüksektir. Sıcaklık, güneş ışığı, buharlaşma hızı yükselme stomalar kapanmakta terleme azalmaktadır. Mezofitlere oranla aynı koşullardaki stoma açıklığı daha yüksek kalmakta, ancak çok şiddetli ışıkta kapanmaktadırlar. Tipik olarak karanlıkta stomalar açılmaktadır. Bazı türler kurakta tüm yapraklarından kurtulmakta ve ancak su alabildiklerinde yeniden yapraklanmaktadırlar. OrtaDoğu çöl vejetasyonunun dominant perennial türlerinin çoğu herdem yeşil kamefitler olup terleme yüzeylerini mevsimsel olarak yaprak değişimi ile ayarlamaktadırlar. Tipik bir örnek türde transpirasyon yapan kütlenin %87.4 azaldığı saptanmıştır. Diğer bir faktör de vejetasyon sıklığı ile kendini gösteren rekabettir, yağış rejimine göre vejetasyon seyrelerek toplam transpirasyonu sabit tutmaktadır. Birçok sukkulent türün ekstraktlarının antibiyotik aktivitesi görülmüştür. Aynı şekilde alkaloid birikmesinin de türler arasındaki antimikrobiyal farklılıklara paralel olduğu da gösterilmiştir. Bazı sukkulentlerin gece daha az CO2 çıkarttıkları, yani asit biriktirdikleri bulunmuştur. Krassulasean asit metabolizması ileride incelenecektir. Kurak alanlarda yeraltı suyunun derinliği bitki örtüsü üzerinde etkilidir, örneğin çöllerde tabansuyu 100m. kadar derinde olabilir ve yüzeye eriştiğinde de çok tuzlu olabilir. Kalitesi iyi ise çok yararlı olur. Yeraltı sularının hareketliliği ısı, yüzey gerilimi, elektriksel alan, basınç, yerçekimi ve su kimyası gibi birçok etmenin bileşkesi olup, taban suyu üzerinde, su ile havanın beraber bulunduğu derinliklerde yüzey gerilimi ile kılcallık yer çekimini yendiğinde su yüzeye çıkar. Çöllerde toprak nemi sıcaklık değişiminin etkisi ile hareket eder. Yağıştan sonra ısınan yüzey tabakası nemi yukarı çeker ve yüzey altında depolanmasına neden olur. öellikle kil ve siltlerde kimyasal osmoz etkili olur. Çok heterojen bir dağılım gösteren toprağın kapilaritesi önemli rol oynar. Kapilariteye bağlı olarak taban suyu evapotranspirasyon etkisi ile daha kısa veya uzun sürede yeryüzüne ulaşır. Tipik olarak düzlükleri çevreleyen yamaç ve dağlardan düzlüğe süzülen ve yer altında toplanan su bu yoldan evapotranspirasyonla atmosfere geçer. Büyük düzlüklerde veya 20-40mm.lik yağışlarda ise yeryüzüne yakın kısımdan yukarı çıkarak kısa sürede evapotranspirasyona uğrar. Karbonatlı veya volkanik kayalar üzerindeki bölgelerde bu kayaçların yüksek permeabilitesi nedeniyle taban suyu hareketliliği yüksek olabilir ve yağışlı mevsimlerde vejetasyon hareketlenir. Kökleri yüzeye yakın, yatay dağılan, yüzeyde kalan suyu kullanan kserofitler ile taban suyundan yararlanan freatofitleri birbirinden ayırmak gerekir. Fretofitler tabansuyuna doymuş olan taban derinliği, evapotranspirasyonla kaybedilen oranı ve suyun kalitesi hakkında fikir verirler. Genellikle otsu freatofitler tabansuyu derinliğinin 3m.yi, çalımsı olanlar ise 10m.yi aşmadığı ortamlarda gelişirler. Ağaçlar için bu derinlik 30m.yi bulabilir. Su derinliği yanında tuzluluğu, bitki türü, toprak ve anakaya özellikleri de önemli rol oynar. Bazı türler su kalitesi indikatörüdür, örneğin tuzlu su yabani otu (pickleweed -Allenrolfea occidentalis) taban suyunun tuza doymuş olduğu yerlerde yaşar. Kavak ve söğüt içilir kalitede tabansuyu indikatörüdür, hurma su seçmez, vs. Fretofitlerin su tüketimi iklim, tür ve bireyin sağlık durumu, bitki yoğunluğu ve su derinliği ile kalitesine bağlı olarak değişir. Örneğin kavak kurak ve sıcak ortamda yılda 2000-3000mm su tüketirse iyi büyüyebilir. Genelde fterofitlerin su tüketimi yüksektir, 1 hektarlık alanda yoğun yetişme için yılda 2000m3 su gibi bir tüketim gerekir. Optimum koşullarda nemli topraktan evaporasyon doğrudan su yüzeyinden olana eşittir ve sıcak çöllerde yılda 250-320 cm cıvarındadır. Ancak suyun tuzluluğu ile bu hız azalır. Derinlerden gelen suyun evaporasyonla kaybıkapilarite tüm profilde maks. düzeyde olamadığından genelde düşüktür, Porozite 0.3 olduğunda bile ve tuzlanma yoksa yılda 0.003-0.3 mm.yi aşmaz. Fakat gene de taban suyu derinliğinin 5 m veya daha az olduğu geniş alanlarda önemli bir yer tutar. Legümlerin çoğu tuza çok duyarlıdır. Genellikle yeraltı sularında Na, Ca, Mg, HCO, Cl, SO4, H4SiO4 ve daha az oranlarda da K, CO3, Fe2 ve F bulunur. Redükleyici koşullar ve düşük pH’ta Fe++ dominant olabilir. Genel derişimler arttığında Mg(OH)+, CaSO4 ve MgCO3 önem kazanır. Genelde kurak alanlarda ve özellikle çöllerde taban suları daha tuzludur, çünkü evapotranspirasyon/yağış oranı yüksektir, yağışlar şiddetli olduğundan yukarıda toplanan tuzu tabana indirir. Freatrofik ve otsu bahar vejetasyonun tahribi, permeabilitenin iyi olmadığı topraklarda sulama ile tuzlanma,sanayileşme ile tabansuyunun kurutulması insan eliyle erozyon ve çölleşmeye neden olur.

http://www.biyologlar.com/protoplazmanin-hidraturu

Eklembacaklılar (Artropoda)

Eklembacaklılar (Artropoda) Tüm omurgasızlar arasında en başarılı ve çeşitli olanlar, kuşkusuz eklembacaklılardır. Bunların vücutlarının dış kısmı, sert parçalı bir dış örtü (dış iskelet) ile kaplıdır. Üyeleri eklemlidir. Böcekler Örümcekler, Akrepler, Çokbacaklılar Ve Kabuk¬lular günümüzün eklembacaklılarındandır. Fosil¬ler arasında bugün, soyları tükenmiş olan Trilobitomorflar ve Öyripteridler veya dev su akrepleri bu¬lunmuştur. Bütün bu gruplar başlangıca doğru iz¬lendiklerinde olasılıkla ortak bir atadan, Halkalı Kurt’tan meydana gelmiş gibi görünürler. Ancak birçok eklembacaklı türünün ayrı atalardan türemiş olmaları da aynı derecede güçlü bir olasılıktır. İlk eklembacaklılar, alt Kambriyum devrinde birdenbire ortaya çıkmışlar ve son derece çeşitli gruplar oluşturmuşlardır. Bu durum, söz konusu hayvanların geçmişinin Kambriyum öncesine kadar uzandığını; ancak bu devirdeki atalarının mineral-leşmiş bir iskeletlerinin bulunmadığını akla getirir. Kambriyum devrinin başlangıcında çeşitli eklem¬bacaklı sınıfları vardı. Bunların başlıcaları trilobitler ve trilobitoidlerdir ve bu iki grup Trilobitomorflar adı altında toplanır. Trilobitoidlerin çeşitleri daha fazlaydı: ancak iskeletleri ince ve mineralsiz olduğundan, fosillerine sadece Kanada'nın Kam¬briyum devri ortalarından kalma ince taneli kaya¬larında (Burges Shales) rastlanmaktadır. Burgessia ile Marella tipik trilobitoidlerdir. Burgessia, küçük bir Kral Yengeç benzer. Marella, geriye doğru uzantılarıyla ilginç bir eklembacaklıdır. Bun¬ların her ikisinde de trilobitlerinkine benzer ayak¬lar bulunur ve ayağın vücuda yakın tarafında bir solungaç dalı ve öteki tarafında ise yürüme bacağı vardır. Trilobitlerin gövdeleri ise üç loblu bir dış iskelet ile kaplıdır. Ön kısım baş (cephalon). orta kı¬sım göğüs (thorax) ve geri taraf kuyruk (pygidium) adını alır. İlk trilobitlere örnek olarak dikenli, kısa kuyruklu Olenelluslar ile küçük ve kör Agnostuslar gösterilebilir. Paleozoik, trilobitlerin şanslarının hem açıldığı hem kapandığı bir dönem olmuş; bu dönemde dikenleri kısalmış. göz yapılan gelişmiş ve iri kuyruklu türler ortaya çıkmıştır. Diğer eklembacaklı gruplarından olan kral yen¬geçler, kabuklular ve pnikoforalar da Kambriyum devrinde ortaya çıkmışlardır. Kral yengeçler. Orta Ordovik ve Perm devirleri arasında yaşamış dev Öyripteridlerle ilintilidir. Silür devrinde kara hayvanı olarak ilk gerçek akrepler ortaya çıktı; Devon devrinde keneler, örümcekler ve böcekler on¬lara katıldı. Denizde yaşamayan birçok eklemba¬caklı gruplarının fosilleri, ancak özel koşullarda birikmiş tortularda bulunur ve ''zaman içinde görü¬nüp kaybolsalar" bile, giderek artan bir çeşitliliği gösterirler. 1.2. Evrim Kavramının Gelişimi Kalıtım ve evrim, canlılığın tanımlanmasında birbiriyle çok yakından ilişkisi olan iki bilim dalıdır. Birini, diğeri olmadan anlamak olanaksızdır. Kalıtım bilimi, döller arasındaki geçişin ilkelerini açıklar. Evrim ise geçmiş ile gelecekteki olayların yorumlan¬ masını sağlayarak, bugün dünyada yaşayan canlılar arasındaki akrabalığın derecesini ve nedenini ortaya koyar. Evrimsel değişmeler kalıtıma dayalıdır. Çünkü bireysel uyumlar döllere aktarılamaz. Değişikliklerin genlerde meydana gelmesi ve gelecek¬ teki çevre değişimlerine bir ön uyum olarak varsayılması gerekir. Çeşitlenmenin ve gelişmenin değişikliklerle meydana geldiğini savunan bazı tarihsel gözlemlere kısaca göz atalım. 1.2.1. Gözlemler ve Varsayımlar Canlıların birbirinden belirli kademelerde farklılıklar gösterdiğine ve aralarında bazı akrabalıkların olduğuna ilişkin gözlemler düşünce tarihi kadar eski olmalıdır. Doğayı ilk gözleyenler, doğan yavrunun ana ve babadan belirli ölçülerde farklı oldu¬ğunu görmüşlerdir. Hatta aynı batından meydana gelen yavruların dahi birbirinden farklı olduğu ta o zamanlar farkedilmiştir. Bitki ve hayvanlarda türden başlayarak yukarıya doğru benzerlik derecelerine göre grupların oluşturulduğu (bugünkü anlam¬da cins, familya, takım vs. gözlenmiştir. Bu yakınlık dereceleri sıralanmakla beraber, kalıtsal bilgi yeterli olmadığı için tam anlamıyla bir, yorum yapılamamış ve en önemlisi bir türün binlerce yıllık tarihsel gelişimi, bir düşünür birey tarafından sürekli, olarak gözlenemediği için, evrim, daha doğrusu çeşitlenme ve akrabalık bağlan tam olarak tariflenememiştir. Çünkü bir canlının yaşamı süresince bu şekildeki bir farklılaşma kesinlikle gözlenemeyecektir. Bazı hayvan yavrularının, hatta bu yavrular içinde bazılarının yaşama şansının diğerlerine göre büyük olduğu gözlenmiş ve doğal seçme konusunda, bilinçsiz de olsa ilk adımlar atılmıştır. evrim fikri ancak yakın yıllarda gelişen bilimsel yöntemler aracılığıyla gerçek yatağına oturtulabilmiştir. Daha önceki yorumlar, bilimsel düşüncenin tarihi açısından değerli olmakla beraber, yeterince bilimsel kanıtla donatılmadığı için doyurucu olamamıştır. evrim, bir gelişimi, bir değişimi ifade eder. değişken ve sonlu bir evrende herhangi bir şeyin değişmez ve sonsuz olduğunu düşünmek bilimsel yargıya ters düşer. evrim kavramı değişik fikre saygıyı bir fikrin her ortamda, her zamanda geçerliliğini koruyamayacağını; yaşayan her şeyin zamanla, kısmen de olsa bulunduğu ortama bağlı olarak değişebileceği fikrini düşünce sistemimize sokmuştur. Dolayısıyla evrim konusundaki eğitim, toplumları yeniliklere açık yapmakla kalmaz, değişik seçeneklerin hepsinin yerine göre saygıde¬ğer ve değerli olduğu fikrini toplumlara yerleştirebilir. Biz geçmişteki evrim kavramı¬nın gelişimini kısaca vermeye çalışalım. 1.2.2. Evrim Konusundaki İlk Yorumlar Elimizdeki bilgilere göre evrim konusundaki gözlemler ve yorumlar çok eskiye dayanmaktadır. 1.2.2.1. Fosillerin Bulunması Fosiller bulunmaya başlayınca geçmişteki canlıların bugünkünden farklı oldu¬ğu anlaşılmıştır ve bunu açıklayabilmek için şu sav ileri sürülmüştür: Geçmiş devirler¬ de her canlı türü, ayrı ayrı olmak üzere, tüm canlılar bir defada yaratılmış, daha sonra bir felaket veya afetle ortadan kalkmışlardır. Bunu takiben tekrar farklı ve yeni canlı¬lar yaratılmıştır. Bilgilerin birikmesiyle fosillerin kesik kesik değil birbirini izleyen jeolojik tabakalarda sürekli ve kademeli değişim gösterdiği bulunmuştur. O zaman felaketlerin birbirini izleyen diziler halinde olduğu savunulmuştur (genellikle 7 defa olduğuna inanılmıştır). Bu kurama göre her defasında yeni canlılar yaratılmıştır. On dokuzuncu yüzyılın başlarına kadar bilimsel anlamda herhangi bir evrim kavramı gelişmemiştir. On dokuzuncu yüzyılın başlarında Georges CUVİER, Paris civarındaki kalkerli tortullardan fosil toplamış ve bugünkü hayvanlarla karşılaştırmıştır. Farklı jeofojik tabakalarda hayvanların değişik yapılan gösterdiğini ortaya koyarak zoolojik sınıflandırmaya fosilleri sokmuş ve yeni bir sınıflandırma yöntemi geliştirmiştir. 1.2.3. Evrim Fikrine Direnişler İnsanın yapısında yeni düşüncelere direnme eğilimi vardır; bu, evrim konusun¬da da kendini göstermiştir. Geçmişte ve bugün evrim kavramına birçok karşı koyma¬lar olmuştur. Hatta yerleşmiş tutucu inançları değiştirdiği için, evrim kavramını savu¬nanlar ölüme mahkum edilmiştir. Bu karşı koymalar zamanımızda, değişik ideolojile¬rin ve dinsel inancın bir parçasıymış gibi varsayılarak, birçok kişi tarafından, herhangi bir dayanağı olmaksızın, sadece dogmatizmin sonucu olarak, hâlâ sürdürülmektedir. Fakat açık olan birşey varsa, bilimsel gözlem ve bulgulara dayanmayan hiçbir düşün¬ce sürekli olamaz. Belki bugün evrim konusunda yanlış yorumlamalar olabilir; ama, gelecekteki bilimsel gelişmelerle bu yanlışlar düzeltilebilir veya eksikler tamamlanabi¬lir; çünkü bilimsel düşüncenin kapısı evrim fikriyle her zaman açık bırakılmıştır. Zaten evrimin özünde, ileriye dönüklük, değişim ve gelişim yatar. Halbuki tutucu düşünce, bilim kapısını kapattığı için yenilenemez ve zamanla tarih içine gömülerek kaybolur. Evrim, var olanı, sabitliği değil; geleceği ve değişimi inceler. Bu nedenle evrim kavra¬mının kendisi de sabit olamaz. Örneğin, Rusya'da, Stalin, 1940 yılında, bitki ıslatıcısı Trofim LYSENKO'nun gülünç savını resmi politika olarak benimsediği zaman, bu fikri benimsemeyen birçok değerli genetikçi tutuklandı, sürüldü ve bir kısmı da sonuçta öldü. 1950 yılında poli¬tika değiştiğinde, eski fikrine bağlı kalanlar için artık çok geçti. Dinsel baskılar, bu konuda çok daha yoğun ve acımasız olmuştur. Ortaçağda birçok kişi bu nedenle yaşamını yitirmiş veya savundukları fikri geri almaya zorlanmıştır. Haçlı seferleri, gibi kanlı savaşlar da yine inanç farklarından doğmuştur. Bununla beraber özellikle son zamanlarda her dinde bazı liderlerin ve keza bazı dini liderlerin yeni fikirlere açık olduğu görülmüştür. Fakat yine de yeni fikirlerin topluma yerleşmesi büyük çabalarla olmaktadır. Evrim hakkındaki fikirlerin de büyük itirazlarla karşılanması, özellikle yaratılış konusunda yeni yaklaşımlar getirmesi açısından, bazı dinlere veya din kitaplarına veya yerleşmiş tutucu inançlara ters düşmesi veya en azından bazı kişiler tarafından bilinçsizce ve belirli bir artniyet ile yanlış değerlendirilerek öyle gösterilmesi, yukarıda anlatılan insanın "itirazcı yaratılışı" bakımından doğal sayılmalıdır. Bugün birçok kişi hâlâ eski inançlara bağlı olmakla beraber, evrim kavramı, insanlar büyük emekle yetiştirilip bilimsel düşünceye sahip oldukça ve bu kayram bilimsel verilerle desteklendikçe, ancak o zaman toplumun malı olabilecektir. 2. EVRİM KONUSUNDA BİLİMSEL DÜŞÜNCELERİN GELİŞİMİ On dokuzuncu yüzyıl, bilimsel düşüncenin patlarcasına geliştiği bir dönemin başlangıcı olarak bilinir. Gözlenen olayların nedenini mistik ve spekülatif açıklamalar yerine, bilimsel deneyler ve analizlerle açıklamalar almaya başlamıştır. Sonuç olarak toplumları uzun yıllar etkisi altına alan birçok kavram, temelden sarsılmaya ve yıkıl¬maya başlamıştır. Bu akım kaçınılmaz olarak evrim ve kalıtımın ilkelerine de ulaşmış ve evrim konusunda birçok yeni fikirler geliştirilmiştir. Biz burada evrim konusuna damgasını basmış bazı gözde bilim adamlarına yer vermekle yetineceğiz. 2.1. Jean Baptiste Lamarck Ondokuzuncu yüzyılın başlarında J.B. LAMARCK adlı bir Fransız bilgini hayvanları karmaşıklığına göre düzenlemeye çalıştı. Birçok hayvan grubunun basitten kar¬maşığa doğru, bir ağacın dallara ayrılması gibi, çeşitlendiğini ve gruplara ayrıldığını gördü. Bu gözlem, O'na, evrimle, canlıların gelişebileceği fikrini verdi. Fikirlerini 1809 yılında "Philosophie Zoologique" adlı bir eserde topladı. Kitabında, basit canlılardan diğerlerinin nasıl oluştuğunu açıklamaya çalıştı. Her generasyonun çevre koşullarına daha iyi uyum yapabilmesinin nedenlerini araştırdı. Bu, dinsel dogmanın hakim olduğu bir devirde, oldukça köklü bir yaklaşımdı. Bu dönemde Fransa'da bazı idari kargaşalıklar da olduğu için, ileri sürülen bu sava dini liderlerin fazla bir itirazı olmadı. 2.1.1. Bir Organın Kullanılıp Kullanılmamasına Göre Değişimi Daha sonra yanlışlığı kesin olarak saptanan evrimsel bir kuramı ortaya attı: "Eğer bir organ fazla kullanılıyorsa; o organ gelişmesine devam ederek daha etkin bir yapı kazanır." Örneğin, bir demircinin kolları, kullandığı çekiçten dolayı güçlenir; fakat ayaklarını kullanamadığından dolayı gittikçe zayıflar. LAMARCK, bu ilkeyi, evrimin uyumsal düzeneğinin esası olarak benimsedi. Böylece kazanılmış bir özellik, bireyler tarafından döllere aktarılabiliyordu ve bir demircinin çocuğu kol kasları bakımından diğerlerine göre daha iyi gelişebiliyordu. Zürafaları örnek vererek savını desteklemeye çalıştı: Zürafalar, dibi çıplak ve çay irsi z olan ortamlarda yaşıyorlardı. Dolayısıyla besinlerini çalıların ve ağaçların yap¬raklarından sağlamak zorundaydılar. Ağaçların ucuna ulaşmak için bir zorlama vardı ve bu zorlama zürafaların zamanla ön ayaklarının ve boyunlarının uzamasına neden oldu. Her generasyon, boynunu biraz daha uzatarak, sonuçta ayaklarını kaldırmadan 4-6 metrelik yüksekliğe başını uzatabilir duruma geçtiler. LAMARCK'a göre kazanılmış özellikler dölden döle aktarılmaktaydı. Bu açıklama o zaman için geçerli görüldü. Çünkü kalıtımın yasaları henüz bulunamamıştı, özelliklerin kalıtım yoluyla geçtiğine dair fazla birşey bilinmiyordu. Daha sonra özelliklerin bireye bağlı olmadan kalıtıldığı bulununca, kuram tümüyle geçerliliğini yitirdi. Doğal olarak her birey çevre koşullarına belirli ölçülerde uyum yapar; fakat kazanılan bu özellikler bireyin ölümüyle "birlikte" yitirilir. Her generasyon kendi uyumunu, doğduğu zaman taşıdığı genlerin özellikleri içerisinde yapmak zorundadır. Vücut hücrelerinin yapacakları uyum, kalıtsal materyali etkilemeyeceği için, sonradan kazanılmış özelliklerin yavruya geçmesi olanaksızdır. 2.1.2. Lamarckizme İlişkin Diğer Örnekler LAMARCK, köstebeklerin atasının yer altında yaşadığını ve gözlerini kullanmadıkları için zamanla görme işlevine gerek kalmadığı ve dolayısıyla birkaç nesil sonra tümüyle gözlerin köreldiğini savunmuştur. Karıncaayısının, dişlerini kullanmadan, besinlerini yutarak aldığı için, dişlerinin köreldiğini ileri sürmüştür. Buna karşılık su kuşlarının birçoğunda, besin, suyun dibimde arandığından, boyun devamlı uzamıştır. Keza yüzücü kuşların parmakları arasındaki derimsi zar da kullanıldığından döller boyunca gelişerek perde ayakları meydana getirmiştir. Hatta daha ileriye giderek, doğan çocukların gözlerinin birinin devamlı çıkarılmasıyla, bir zaman sonra tek gözlü insanların da meydana gelebileceğini savunmuştur. Bütün bu görüşlere karşın iki nesil sonra CHARLES DARWIN kazanılmış özelliklerin kalıplamayacağını göstermiş ve kalıtsal olan özelliklerin içinde en iyi uyum yapanların ayakta kalabileceğini ortaya çıkarmıştır. Daha önce BUFFON ve ERASMUS DARWIN, ileri sürdükleri buna benzer fikirlerde ve açıklamalarda pek inandırıcı" olamamışlardır. Yukarıda anlatılan hayvanların ve bitkilerin çevrelerine nasıl uyum yaptıklarını açıklayan; fakat yaşantılarında kazandık¬ları özelliklerin gelecek döllere kalıtıldığını savunan (bugünkü bilgilerimizde yaşamı, süresince kazanılan özelliklerin kalıtsal olmadığı bilinmektedir) bu kurama "Lamarckizm" denir. 1887 yılında WElSMANN tarafından somatoplazma ve germplazma arasındaki kuramsal farklar bulununca, sonradan kazanılan özelliklerin kalıtsal olmadığı ortaya çıktı ve bu görüşe paralel tüm varsayımlar çürütüldü. 2.2. Charles Darwin C. DARWIN, getirdiği yepyeni yaklaşım nedeniyle, evrim biliminin babası olarak benimsenir. Evrim sözcüğü çoğunlukla Darwin ile eş anlamlı kullanılır ve bu nedenle Darwinizm denir. Biz, Darwin'in yaşamını diğerlerine göre daha ayrıntılı olarak öğreneceğiz. 2.2.1. Yaşamının İlk Evreleri ve Eğitimi Darwin, 12 Şubat 1809'da İngiltere'nin Shrewsburg şehrinde Dr. Robert Darwin'in oğlu olarak dünyaya geldi. Babası tanınmış bir doktordu ve oğlunun da doktor olmasını istiyordu. Darwin'in Latince ve Yunanca'ya ilgisi azdı. O, zamanının çoğunu böcek, bitki, kuş yumurtası ve çakıltaşı toplamakla geçiriyordu. Babası, O'nu, 16 yaşında, doktor olsun diye Edinburg Üniversitesine gönderdi. Öğreniminin ilk yıllarında bayıltılmadan bir çocuğa yapılan ameliyatı gözledi ve doktor olamayaca¬ğına karar vererek okulu bıraktı. Hukuk öğrenimi yapmak istedi; fakat bu mesleğin de kendine hitap etmediğini anladı. Son seçenek olarak babası O'nu Kambriç Üniversitesine dini bilimler (teoloji) öğrenimi yapmak için gönderdi. Orayı yeterli bir derece ile bitirdi. Fakat O'nun esas ilgisi başka bir konudaydı. DARWİN'in Edinburg'daki arkadaşlarının çoğu zooloji ve jeoloji ile ilgileniyordu. Zamanının çoğunu botanikçi arkadaşı John HENSLOW ile araziye gidip kınkanatlıları toplamakla geçirmeye başladı. Bu arada LAMARCK'ın çalışma¬sını ve kendi büyük babasının yazmış olduğu "Zoonomia" adlı şiir kitabını okudu. Kitaplarda geçen "canlılar belki tek bir soydan türemiştir" cümleciğini benimsedi; fakat genel olarak kabul edilen özel yaratılma fikrine de bağlı, kaldı. Bu arada; bir İngiliz gemisi" H.M.S. BEAGLER denizcilere hârita yapmak için, Güney Amerika'yı yakından tanımış kaptan ROBERT FITZROY'un yönetiminde/dünya turu yapmak üzere beş sene sürecek bir sefere hazırlanıyordu. Kaptan, daha önce güney Amerika'daki alışılmamış jeolojik yapıyı gözlemiş ve bu nedenle gemisine bu jeolojik yapıyı gözleyebilecek ve açıklayabilecek iyi yetişmiş bir doğa bilimcisini almak istiyordu. DARWIN, babasının itirazına karşın, arkadaşı HENSLOW'un ikna etmesiyle bu geziye çıkmayı kabul etti. 27 Aralık 1831 yılında 22 yaşındaki DARWIN, BEAGLE’nin güvertesinde, Devonport limanından denize açıldı. 2.2.2. İngiltere'deki Gözlemler Darwin, ileri süreceği fikrin yankı uyandıracağını, dolayısıyla tüm dünyanın inanması için yeterince kanıt toplanması gerektiğini biliyordu. bir şey canını sıkıyordu. Bütün kanıtlar canlılığın evrimsel işleyişini göstermekle beraber, nasıl çalıştığı konusunda herhangi doyurucu bir açıklama yapılamamıştı. Güvercin yetiştiricilerini ziyaret ederek, onların seçme yoluyla nasıl yeni özellikler elde ettiklerini öğrendi. Örneğin bir yetiştirici büyük kuyruklu bir güvercin yetiştirmek istiyorsa, yavrular arasında bu özelliği gösteren yavruları seçerek seçime devam ediyordu. Birkaç döl sonra da gerçekten büyük kuyruklu güvercinler elde ediliyordu. Buradaki evrimsel süreç, yapay seçme ile sağlanıyordu. Diğer hayvan ve bitki ıslahı çalışmalarını ve ya¬bani formların gösterdiği çevre koşullarına uymayı da dikkatlice not etti. Darwin bu düşüncelerini, 20 yıllık bir çalışmanın sonucu olarak, "Origin of Species = Türlerin Kökeni" adlı bir kitapta topladı. DARWlN'e yapay koşullar altında yapılan bu seçmenin, doğal koşullar altında da yapılabileceği fikri mantıki geldi. Bir türün tüm üyelerinin aynı uyumu gösteremeyeceğini de anlamıştı. Çünkü topladığı canlılar içinde, aynı türe bağlı bireylerin göster¬dikleri varyasyonları not etmişti. Doğanın güçleri, bu bireyler içerisinde o ortamda yasayabilecek özellikleri taşıyanları yaşatma, daha doğrusu yaygın duruma geçirme yönündeydi. 1838'in Ekim ayında THOMAS MALTHUS'un 1798 yılında yazdığı "An Essay onthe Principlesof Population = Populasyonun Kuralları Üzerine bir Deneme" adlı bir makaleyi okurken, evri¬min ikinci önemli bir işleyişini düşünmeye başladı. Bu makale, tüm türlerin, sayılarını sabit tutacak düzeyden çok daha fazla yavru meydana getirme yeteneğinde oldu¬ğunu savunuyordu. Açıkça yavruların büyük bir kısmı yaşamını sürdüremiyordu. MALTHUS, bu kavramı insana uygulamıştı ve insanların geometrik olarak çoğalması¬nın, savaş, hastalık, kıtlık ve diğer afetlerle belirli bir düzeyde tutulduğunu savun¬muştu. DARWIN, evrim sorununun açıklanamayan bir işleyişini MALTHUS'dan esinlene¬rek ortaya çıkardı. Tüm türler gerekenden fazla ürüyorlardı; bunların içerisinde başa¬rılı olan varyasyonlar uyum yaparak ayakta kalıyordu. Bu varyasyonlar özünde, gelecek için seçeneklerin doğmasını sağlıyordu. Biz tekrar DARWIN'in Türlerin Kökeni adlı yapıtına dönelim. Bu çalışmada iki gerçek ve üç varsayım ortaya çıkmıştı. Gerçekler: 1. Tüm organizmalar, gereğinden fazla yavru meydana getirme yeteneğine sahiptirler. Bununla beraber elemine edilenlerle populasyonlarda denge sağlanmak-tadır. 2. Bir türün içerisindeki bireyler, kalıtsal özellikleri bakımından farklıdır. Varsayımlar: 1. Yavruların çoğu ayakta kalabilmek için bir yaşam kavgası vermek zorundadırlar. 2. İyi uyum yapacak özellikleri taşıyan bireylerin çoğu yaşamını sürdürür; iyi uyum yapabilecek özellikleri taşımayanlar ortadan kalkar. Böylece istenen (çevre koşullarına uyum sağlayacak) özellikler kalıtsal olarak gelecek döllere aktarılır. 3. Çevre koşulları bir bölgede diğerinden farklı olduğundan özelliklerin seçimi her bölgede ve koşulda farklı olmak zorundadır. Canlılardaki varyasyonlar bu şekilde uzun süre saklanabilir ve yeterli bir zaman süreci içerisinde yeni türlere dönüşe¬bilir. Bu, çok çarpıcı bir varsayımdı ve DARWIN, bu savın desteklenmesi için yeterince kanıta da sahipti. Fakat eserini yayınlamaktan hâlâ çekiniyordu. Hatta düşüncesini arkadaşlarına açtı ve arkadaşları, O'nu, bu konuda daha ileri gelişmeleri beklemeden şimdiki durumuyla yayınlamasını istediler. O, ayrıntılı verilmiş dokümanlarla hazırlan¬mış dört bölümlük bir yayın planlamıştı. 3.4. Sınıflandırmadan Elde Edilen Kanıtlar Sınıflandırma bilimi evrim kavramından çok daha önce başlamıştır. Bu bilimin kurucusu sayılan RAY ve UNNAEUS, türlerin sabitliğine ve değişmezliğine inanmışlar¬dı. Fakat bugünkü sistematikçiler bir türün isminin ve tanımının verilmesini onun evrimsel ilişkileri içinde ele almayı zorunlu bulmuşlardır. Bugünkü sistematik akraba¬lık, gruplar arasındaki morfolojik benzerliklere dayandırılmaktadır. Bu karşılaştırma her zaman homolog (kökendeş) organlar arasında yapılmaktadır. Yaşayan canlıların özelliği, belirli bir hiyerarşik sıraya göre dizilip, tür, cins, familya, takım, sınıf ve filum meydana getirmeleridir. Bu hiyerarşik diziliş evrimin en belirli kanıtlarından biridir. Eğer bitki ve hayvanlar kendi aralarında akraba olmasaydılar, bu hiyerarşik sıra mey¬dana gelmeyecek ve birçok grup birbirine benzer olmayacak şekilde gelişmiş ola¬caktı. Sistematiğin temel birimi türdür. Tür, bir populasyondaki morfolojik, embriyolojik, fizyolojik özellik bakımından birbirine benzeyen ve doğal koşullar altında birbir¬leriyle birleşip döl meydana getirebilen, aynı fiziksel ve kimyasal uyarılara benzer tepki gösteren, aynı atadan meydana gelmiş birey topluluğudur diye tanımlanmıştır. Bütün canlılarda özellikle birkaç yaşam devresi olan türlerde (bazı sölenterlerde, parazit kurtlarda, larvadan gelişen böceklerde, kurbağagillerde vs.'de) bu tanım bir¬çok bakımlardan yetersiz kalmaktadır. Eğer bir populasyon geniş bir alana yayıl¬mışsa, kendi aralarında bölgesel birçok farklılıklara sahip olur ki biz buna alttür diyo¬ruz. Yapılan ayrıntılı araştırmalarda birçok türün kendi aralarında alttürlere bölün¬düğü ve her alttürün yanındakinden, küçük farklarla ayrıldığı (deme); fakat onlarla çiftleşebildiği gösterilmiştir. Fakat bu zincirin uçlarının bazı durumlarda farklı tür özel¬liği gösterebileceğini daha sonraki konularda anlatacağız. Bugün yasayan hayvanla¬rın büyük bir kısmının gruplandırılması kolaydır; çünkü aralarındaki geçit formları kaybolmuştur. Fakat bazı gruplarda geçit formları görüldüğü için, yani her iki grubun da özelliklerini belirli ölçüde taşıyan bazı formlar olduğundan, bu sefer iki grubu bir¬birinden nerede ayıracağımızı kestirmek oldukça zordur. Bugünkü türler, soy ağacı¬nın en uçtaki dallarıdır ve genellikle kendine en yakın olan diğer dallarla karşılaştırılır. Ana gövde ve ana dallar zamanımızda kaybolmuştur. Evrimde bütün sorun hangi dalın hangi ana daldan ve gövdeden çıktığını şematize edebilmektir. 3. EVRİMLEŞMEYİ SAĞLAYAN DÜZENEKLER 'Ayakta Kalmak için Savaşım' ve 'En iyi Uyum Yapan Ayakta Kalır' sözcükleri Darwin WALLACE Kuramının anahtarıdır. Fakat besin, yer, su, güneş vs. için bireyler arasındaki savaşımın, zannedildiği gibi büyük bir evrimsel güç olmadığı, buna karşın döller boyunca sürekli olan populasyonların evrimsel değişme için önemli olduğu daha sonra anlaşıldı. Bu durumda evrimsel değişikliklerin birimi birey¬ler değil, populasyonlardır. Biz, bir populasyonun yapısını döller boyunca süren bir etkiyle değiştiren evrimsel güçleri, önem sırasına göre inceleyelim. Özünde Hardy-Weinberg eşitliğini bozan her etki evrimsel değişikliği sağlayan bir güç olarak kabul edilir. 3.1. Doğal Seçilim Bir populasyon, kalıtsal yapısı farklı olan birçok bireyden oluşur. Ayrıca, mey¬dana gelen mutasyonlarla, populasyonlardaki gen havuzuna yeni özellikler verebile¬cek genler eklenir. Bunun yanısıra mayoz sırasında oluşan krossing -överler ve rekombinasyonlar, yeni özellikler taşıyan bireylerin ortaya çıkmasını sağlar. İşte bu bireylerin taşıdıkları yeni özellikler (yani genler) nedeniyle, çevre koşullarına daha iyi uyum yapabilme yeteneği kazanmaları, onların, doğal seçilimden kurtulma oranlarını verir. Yalnız çevre koşullan her yerde ve her zaman (özellikle jeolojik devirleri düşü¬nürsek) aynı değildir. Bunun anlamı ise şudur: Belirli özellikleri taşıyan bireyler, belirli çevre koşullarına sahip herhangi bir ortamda, en başarılı tipleri oluşturmalarına kar¬şın, birinci ortamdakinden farklı çevre koşulları gösteren başka bir ortamda, ya da zamanla çevre koşullarının değiştiği bulundukları ortamda, uyum yeteneklerini ya tamamen ya da kısmen yitirirler. Bu ise onların yaşamsal işlevlerinde güçlüklere (döl¬lenmelerinde, embriyonik gelişmelerinde, erginliğe kadar ulaşmalarında, üremelerin¬de, besin bulmalarında, korunmalarında vs.) neden olur. Böylece erginliğe ulaşanla¬rının, ulaşsalar dahi fazla miktarda yavru verenlerinin, verseler dahi bu yavruların ayakta kalanlarının sayısında büyük düşmeler görülür. Burada dikkat edilecek husus, bireylerin ayakta kalmalarının yalnız başına evrimsel olarak birşey ifade etmemesidir. Eğer taşıdıkları genler, gelecek döllere başarılı bir şekilde aktarılamıyorsa, diğer tüm özellikleri bakımından başarılı olsalar da, evrimsel olarak bu niteliklere sahip bireyler başarısız sayılırlar. Örneğin, kusursuz fiziksel bir yapıya sahip herhangi bir erkek, kısırsa ya da çiftleşme için yeterli değilse, ölümüyle birlikte taşıdığı genler de ortadan kalkar ve evrimsel gelişmeye herhangi bir katkısı olmaz. Ya da güçlü ve sağlıklı bir dişi, yavrularına bakma içgüdüsünden yok¬sunsa, ya da yumurta meydana getirme gücü az ise, populasyonda önemli bir gen frekansı değişikliğine neden olamayacağı için, evrimsel olarak başarılı nitelendirile¬mez. Demek ki doğal seçilimde başarılı olabilmek için, çevre koşullarına diğerlerin¬den daha iyi uyum yapmanın yan/sıra, daha fazla sayıda yumurta ya da yavru meydana getirmek doğal seçilim çevre koşullarına bağımlı olarak farklı şekillerde meydana gelir. Bunları sırasıyla inceleyelim. 3.1.1. Yönlendirilmiş Seçilim Doğal seçilimin en iyi bilinen ve en yaygın şeklidir. Özel koşulları olan bir çevre¬ye uzun bir süre içerisinde uyum yapan canlılarda görülür. Genellikle çevre koşulla¬rının büyük ölçüde değişmesiyle ya da koşulları farklı olan bir çevreye göçle ortaya çıkar. Populasyondaki özellikler bireylerin o çevrenin koşullarına uyum yapabileceği şekilde seçilir. Örneğin nemli bir çevre gittikçe kuraklaşıyorsa, doğal seçilim, en az su kullanarak yaşamını sürdüren canlıların yararına olacaktır. Populasyondaki bireylerin bir kısmı daha önce mutasyonlarla bu özelliği kazanmışlarsa, bu bireylerin daha fazla yaşamaları, daha çok döl vermeleri, yani genlerini daha,büyük ölçüde populasyonun gen havuzuna sokmaları sağlanır. Bu arada ilgili özelliği,sapta¬yan genlerde meydana gelebilecek mutasyonlardan, yeni koşullara daha iyi uyum sağlayabilecekler de seçileceğinden, canlının belirli bir özelliğe doğru yönlendirildiği görülür. Bu, doğal seçilimin en önemli özelliğinden biridir 'Yönlendirilmiş Yaratıcı¬lık'. Her çeşit özelliği meydana getirebilecek birçok mutasyon oluşmasına karşın, çevre koşullarının etkisi ile, doğal seçilim, başarılı mutasyonları yaşattığı için, sanki mutasyonların belirli bir amaca ve yöne doğru meydana geldiği izlenimi yaratılır. Yukarıda verdiğimiz örnekte, uyum, suyu artırımlı kullanan boşaltım organlarının yararına ise, bir zaman sonra suyu bol kullanan ilkel boşaltım organlarından, suyu en idareli kullanan böbrek şekline doğru gelişmeyi sağlayacak genler yararına bir seçim olacaktır. Su buharlaşmasını önleyen deri ve post yapısı, kumda kolaylıkla yürümeyi sağlayan genişlemiş ayak tabanı vs. doğal seçilimle bu değişime eşlik eden diğer özelliklerdir. Önemli olan, evrimde bir özelliğin ilkel de olsa başlangıçta bir defa ortaya çıkmasıdır; geliştirilmesi, mutasyon-doğal seçilim düzeneği ile zamanla sağlanır. Bu konudaki en ilginç örnek, bir zamanlar İngiltere'de fabrika dumanlarının yoğun olarak bulunduğu bir bölgede yaşayan kelebeklerde (Biston betalarla) meydana gelen evrimsel değişmedir. Sanayi devriminden önce hemen hemen beyaz renkli olan bu kelebekler (o devirden kalma koleksiyonlardan anlaşıldığı kadarıyla), ağaçların gövdelerine yapışmış beyaz likenler üzerinde yaşıyorlardı. Böylece avcıları tarafın¬ dan görülmekten kurtulmuş oluyorlardı. Sanayi devrimiyle birlikte, fabrika bacaların¬ dan çıkan siyah renkli kurum vs. bu likenleri koyulaştırınca, açık renkli kelebekler çok belirgin olarak görülür duruma geçmiştir. Bunların üzerinde beslenen avcılar, özellik¬le kuşlar, bunları kolayca avlamaya başlamıştır. Buna karşın sanayi devriminden önce de bu türün populasyonunda çok az sayıda bulunan koyu renkli bireyler bu renk uyumundan büyük yarar sağlamıştır. Bir zaman sonra populasyonun büyük bir kısmı koyu renkli kelebeklerden oluşmuştur 'Sanayi Melanizmi'. Günümüzde alı¬nan önlemler sayesinde, çevre temizlenince, beyaz renkli olanların sayısı tekrar art¬ maya başlamıştır. Son zamanlarda tıp bilimindeki gelişmeler ile, normal olarak doğada yaşayamayacak eksiklikler ile doğan birçok birey, yaşatılabilmekte ve üremesi sağlanmaktadır. Böylece taşıdıkları kalıtsal yapı, insan gen havuzuna eklenmektedir. Dolayısıyla bozuk özellikler meydana getirecek genlerin frekansı gittikçe artmaktadır, örneğin, eskiden kalp kapakçıkları bozuk, gözleri aşırı miyop ya da hipermetrop olan, gece körlüğü olan, D vitaminini sentezleme ya da hücre içine alma yeteneğini yitirmiş olan, kân şekerini düzenleyemeyen (şeker hastası), mikroplara direnci olmayan, kanama hastalığı olan; yarık damaklı, kapalı anüslü, delik kalpli ve diğer bazı kusur¬larla doğan bireylerin yaşama şansı hemen hemen yoktu. Modern tıp bunların yaşa¬masını ve üremesini sağlamıştır. Dolayısıyla insan gen havuzu doğal seçilimin etki¬sinden büyük ölçüde kurtulmaya başlamıştır. Bu da gen havuzunun, dolayısıyla bu gen havuzuna ait bireylerin bir zaman sonra doğada serbest yaşayamayacak kadar değişmesi demektir. Nitekim 10 - 15 bin yıldan beri uygulanan koruma önlemleri, bizi, zaten doğanın seçici etkisinden kısmen kurtarmıştır. Son zamanlardaki tıbbi önlemler ise bu etkiyi çok daha büyük ölçüde azaltmaktadır. Böylece doğal seçilimin en önemli görevlerinden biri olan 'Gen havuzunun yeni mutasyonların etkisinden büyük ölçüde korunmasının sağlanması ve mutasyonların gen havuzunda yayılmala¬rının önlenmesi, dolayısıyla gen havuzunun dengelenmesi ve kararlı hale geçmesi, insan gen havuzu için yitirilmeye başlanmıştır. 3.1.2. Dengelenmiş Seçilim Eğer bir populasyon çevre koşulları bakımından uzun süre dengeli olan bir ortamda bulunuyorsa, çok etkili, kararlı ve dengeli bir gen havuzu oluşur. Böylece, dengeli seçilim, var olan gen havuzunun yapısını devam ettirir ve meydana gelebilecek sapmalardan korur, örneğin, Keseliayılar (Opossum) 60 milyon, akrepler (Scorpion) 350 milyon yıldan beri gen havuzlarını hemen hemen sabit tutmuşlardır. Çünkü bulundukları çevrelere her zaman başarılı uyum yapmışlardır. 3.1.3. Dallanan Seçilim Dengeli seçilimin tersi olan bir durumu açıklar. Bir populasyonda farklı özellikli bireylerin ya da grupların her biri, farklı çevre koşulları nedeniyle ayrı ayrı korunabilir. Böylece aynı kökten, bir zaman soma, iki ya da daha fazla sayıda birbirinden farklı¬laşmış canlı grubu oluşur (ırk  alttür  tür  vs.). Özellikle bir populasyon çok geniş bir alana yayılmışsa ve yayıldığı alanda değişik çevre koşullarını içeren bir-çok yaşam ortamı (niş) varsa, yaşam ortamlarındaki çevre koşulları, kendi doğal seçilimlerini ayrı ayrı göstereceği için, bir zaman sonra birbirinden belirli ölçülerde farklılaşmış kümeler, daha sonra da türler ortaya çıkacaktır. Bu şekildeki bir seçilim 'Uyumsal Açılımı' meydana getirecektir 3.2. Üreme Yeteneğine ve Eşemlerin Özelliğine Göre Seçilim Populasyonlarda, bireyler arasında şansa dayanmayan çiftleşmelerin ve farklı üreme yeteneklerinin oluşması HARDY - WEINBERG Eşitliğine ters düşen bir durumu ifade eder. Bu özellikleri taşıyan bir populasyonda Hardy-Weinberg Eşitliği uygulanamaz. Bireylerin çiftleşmek için birbirlerini rasgele seçmelerinden ziyade, özel nite¬liklerine göre seçmeleri, bir zaman sonra, bu özellikler bakımından köken aldıkları ana populasyondan çok daha kuvvetli olan yeni populasyonların ortaya çıkmasına neden olur. Bu özel seçilim, yaşam kavgasında daha yetenekli olan (beslenmede, korunmada, gizlenmede, yavrularına bakmada vs.) populasyonların ortaya çıkmasını sağlayabilir. Eşemlerin Arasındaki Yapısal Farkların Oluşumu: Dişiler genellikle yavrula¬rını meydana getirecek, koruyacak ve belirli bir evreye kadar besleyebilecek şekilde özellik kazanmıştır. Özellikle memelilerde tam olarak belirlenemeyen bir nedenle dişiler başlangıçta çiftleşmeden kaçıyormuş gibi davranırlar. Dişilerin kuvvetli olduğu bir toplumda çitfleşme çok zor olacağından, seçilim, memelilerde, kuvvetli erkekler yönünden olmuştur. Bugün birçok canlı grubunda, özellikle yaşamları boyunca birkaç defa çiftleşenlerde erkekler, dişileri çiftleşmeye zorlar; çok defa da bunun için kuvvet kullanır. Bu nedenle erkekler dişilerinden daha büyük vücut yapısına sahip olur. Buna karşın, yaşamları boyunca bir defa çiftleşenlerde ya da çift¬leştikten sonra erkeği besin maddesi olarak dişileri tarafından yenen gruplarda (peygamber develerinde ve örümceklerde olduğu gibi), erkek, çok daha küçüktür. Çünkü seçilim vücut yapısı büyük dişiler, vücut yapısı küçük erkekler yönünde olur. İkincil eşeysel özellikler, çoğunluk eşey hormonları tarafından meydana getirilir (bu nedenle ikincil eşeysel özellikler, bireylerde eşey hormonlarının üretilmeye başla¬masından sonra belirgin olarak ortaya çıkar). Eşeysel gücün bir çeşit simgesi olan bu özellikler, eşemler tarafından sürekli olarak seçilince, özellikler gittikçe kuvvetlenir: Bu nedenle özellikle erkeklerde, yaşam savaşında zararlı olabilecek kadar büyük boy¬nuz (birçok geyikte, keçide vs.'de), büyük kuyruk (Tavuskuşunda ve Cennetkuşlarında vs.), hemen göze çarpacak parlak renklenmeler (birçok kuşta, memelide); dişiler¬de, süt meydana getirmek için çok büyük olmasına gerek olmadığı halde dişiliğin simgesi olan büyük meme bu şekilde gelişmiştir. Üreme Yeteneğinin Evrimsel Değişimdeki Etkisi: Daha önce de değindiği¬miz gibi bir bireyin yaşamını başarılı olarak sürdürmesi evrimsel olarak fazla birşey ifade etmez. Önemli olan bu süre içerisinde fazla döl meydana getirmek suretiyle, gen havuzuna, gen sokabilmesidir. Bir birey ne kadar uzun yaşarsa yaşasın, döl meydana getirmemişse, evrimsel açıdan hiçbir öneme sahip değildir. Bu nedenle bu bireylerin ölümü 'Genetik Ölüm' olarak adlandırılır. Evrimsel gelişmede en önemli değişim, gen havuzundaki gen frekansının deği¬şimidir. Gen frekansı ise birey sayısıyla saptanır. Bu durumda bir populasyonda, üreyebilecek evreye kadar başarıyla gelişebilen yavruları en çok sayıda meydana getiren bireylerin gen bileşimi bir zaman sonra gen havuzuna egemen olur. Buna 'Farklı Üreme Yeteneği' denir. 3.3. Yalıtımın (İzolasyonun) Evrimsel Gelişimdeki Etkisi Türlerin oluşumunda, yalıtım, kural olarak, zorunludur. Çünkü gen akımı,de¬vam eden populasyonlarda, tür düzeyinde farklılaşma oluşamaz. Bir populasyon, belirli bir süre, birbirlerinden coğrafik olarak yalıtılmış alt populasyonlara bölünürse, bir zaman sonra kendi aralarında çiftleşme yeteneklerini yitirerek, yeni tür özelliği kazanmaya başlarlar. Bu süre içerisinde oluşacak çiftleşme davranışlarındaki farklılaş¬malar, yalıtımı çok daha etkili duruma getirecektir. Kalıtsal yapı açısından birleşme ve döl meydana getirme yeteneklerini koruyan birçok populasyon, sadece çiftleşme davranışlarında meydana gelen farklılaşmadan dolayı, yeni tür özelliği kazanmıştır. Şekil : Allopatrik yalıtım ile tür oluşumu. Eğer bir populasyonun bir parçası coğrafik olarak yalıtılırsa, değişik evrimsel güçler yavaş yavaş bu yalıtılmış populasyonu (keza ana populasyonu) değiştirmeye başlar ve bir zaman sonra her iki populasyon aralarında verimli döl meydana getiremeyecek kadar farklılaşırlar. Üreme yalıtımının kökeninde, çok defa, en azından başlangıç evrelerinde, coğrafik bir yalıtım vardır. Fakat konunun daha iyi anlaşılabilmesi için üreme yalıtımını ayrı bir başlık altında inceleyeceğiz. Populasyonlar arasında çiftleşmeyi ve verimli döller meydana getirmeyi önleyen her etkileşme 'Yalıtım = izolasyon Mekanizması' denir. 3.3.1. Coğrafik Yalıtım (- Allopatrik Yalıtım) Eğer bir populasyon coğrafik olarak iki ya da daha fazla bölgeye yayılırsa, ev¬ rimsel güçler (her bölgede farklı olacağı için) yavaş yavaş etki ederek, populasyonlar arasındaki farkın gittikçe artmasına (Coğrafik Irklar) neden olacaktır. Bu kalıtsal farklılaşma, populasyonlar arasında gen akışını önleyecek düzeye geldiği zaman, bir zamanların ata türü iki ya da daha fazla türe ayrılmış olur Anadolu'daki Pamphaginae'lerin Evrimsel Durumu: Coğrafik yalıtıma en iyi örneklerden biri Anadolu'nun yüksek dağlarında yaşayan, kanatsız, hantal yapılı, kışı çoğunluk 3. ve 4. nimf evrelerinde geçiren bir çekirge grubudur. Özünde, bu hay¬vanlar, soğuk iklimlerde yaşayan bir kökenden gelmedir. Buzul devrinde, kuzeydeki buzullardan kaçarak Balkanlar ve Kafkaslar üzerinden Anadolu'ya girmişlerdir. Bu sı¬rada Anadolu'nun iç kısmında Batı Anadolu’yla Doğu Anadolu'yu birbirinden ayıran büyük bir tatlısu gölü bulunuyordu. Her iki bölge arasındaki karasal, bağlantı, yalnız, bugünkü Sinop ve Toros kara köprüleriyle sağlanıyordu. Dolayısıyla Kafkaslar'dan gelenler ancak Doğu Anadolu'ya, Balkanlar'dan gelenler ise ancak Batı Anadolu'ya yayılmıştı. Çünkü Anadolu o devirde kısmen soğumuş ve bu hayvanların yaşayabil¬mesi için uygun bir ortam oluşturmuştu. Bir zaman sonra dünya buzul arası devreye girince, buzullar kuzeye doğru çekilmeye ve dolayısıyla Anadolu da ısınmaya başla¬mıştı. Bu arada Anadolu kara parçası, erozyon sonucu yırtılmaya, dağlar yükselmeye ve bu arada soğuğa alışık bu çekirge grubu, daha soğuk olan yüksek dağların başına doğru çekilmeye başlamıştı. Uzun yıllardır bu dağların başında (genellikle 1500 - 2000 metrenin üzerinde) yaşamlarını sürdürmektedirler. Kanatları olmadığı için uçamazlar; dolayısıyla aktif yayılımları yoktur. Hantal ve iri vücutlu olduklarından rüzgar vs. ile pasif olarak da yayılamamaktadırlar. Belirli bir sıcaklığın üstündeki böl¬gelerde (zonlarda) yaşayamadıklarından, yüksek yerlerden vadilere inerek, diğer dağsilsilelerine de geçemezler. Yüksek dağlarda yaşadıklarından, aşağıya göre daha yoğun morötesi ve diğer kısa dalgalı ışınların etkisi altında kalmışlardır; bu nedenle mutasyon oranı (özellikle kromozom değişmeleri) yükselmiştir. Dolayısıyla evrimsel bir gelişim ve doğal seçilim için bol miktarda ham madde oluşmuştur. Çok yakın mesafelerde dahi meydana gelen bu mutlak ya da kısmi yalıtım, bir zamanlar Ana¬dolu'ya bir ya da birkaç tür olarak giren bu hayvanların 50'den fazla türe, bir o kadar alttüre ayrılmasına neden olmuştur. Bir dağdaki populasyon dahi, kendi aralarında oldukça belirgin olarak birbirlerinden ayrılabilen demelere bölünür. Çünkü yukarıda anlattığımız yalıtım koşullan, bir dağ üzerinde dahi farklı olarak etki etmektedir. Coğrafik uzaklık ile farklılaşmanın derecesi arasında doğru orantı vardır. Birbir¬lerinden uzak olan populasyonlar daha fazla farklılaşmalar gösterir. Bu çekirge gru¬bunun Hakkari'den Edirne'ye kadar adım adım değiştiğini izlemek mümkündür. Batı Anadolu'da yaşayanlar çok gelişmiş timpanik zara (işitme zarına) ve sırt kısmında tarağa sahiptir; doğudakilerde bu zar ve tarak görülmez. Toros ve Sinop bölgelerinde bu özellikleri karışık olarak taşıyan bireyler bulunur. Her türlü yalıtım mekanizmasında, ilk olarak demelerin, daha sonra alttürlerin, sonunda da türlerin meydana geldiğini unutmamak gerekir. Aynı kökten gelen; fakat farklı yaşam bölgelerine yayılan tüm hayvan gruplarında bu kademeleşme görülür, Ayrıca tüm coğrafik yalıtımları kalıtsal bir yalıtımın izlediği akıldan çıkarılmamalıdır. 3.3.2. Üreme İşlevlerinde Yalıtım (= Simpatrik Yalıtım) Yalıtımın en önemli faktörlerinden biri de, genellikle belirli bir süre coğrafik yalı¬tımın etkisi altında kalan populasyonlardaki bireylerin üreme davranışlarında ortaya çıkan değişikliklerdir. Bu farklılaşmaların oluşumunda da mutasyonlar ve doğal seçi¬lim etkilidir. Yalnız, üreme işlevlerindeki yalıtımın, coğrafik yalıtımdan farkı, ilke ola¬rak, farklılaşmanın sadece üreme işlevlerinde olması, kalıtsal yapıyı tümüyle kapsa-mamasıdır. Deneysel olarak döllendirildiklerinde yavru meydana getirebilirler. Çünkü kalıtsal yapı tümüyle farklılaşmamıştır. Coğrafik yalıtım ise hem kalıtsal yapının nem davranışların farklılaşmasını hem de üreme işlevlerinin yalıtımını kapsar. Eşeysel çekim azalınca ya da yok olunca, gen akışı da duracağı için, iki populasyon birbirinden farklılaşmaya başlar. Böylece ilk olarak hemen hemen birbirine benzeyen; fakat üreme davranışlarıyla birbirinden ayrılan 'ikiz Türler' meydana gelir. Bir zaman sonra mutasyon - seçilim etkileşimiyle, yapısal değişimi de kapsayan kalıtsal farklılıklar ortaya çıkar. Üreme yalıtımı gelişimin çeşitli kademelerinde olabilir. Bun¬lar; Üreme Davranışlarının Farklılaşması: Birbirlerine çok yakın bölgelerde yaşayan populasyonlarda, mutasyonlarla ortaya çıkan davranış farklılaşmalarıdır. Koku ve ses çıkarmada, keza üreme hareketlerinde meydana gelecek çok küçük farklılaşmalar, bireylerin birbirlerini çekmelerini, dolayısıyla döllemeyi önler. Daha sonra, bu populasyonlar bir araya gelseler de, davranış farklarından dolayı çiftleşemezler. Üreme Dönemlerinin Farklılaşması: İki populasyon arasında üreme dönemlerinin farklılaşması da kesin bir yalıtıma götürür. Örneğin bir populasyon ilkbaharda, öbürüsü yazın eşeysel gamet meydana getiriyorsa, bunların birbirlerini döllemeleri olanaksızlaşır. Üreme Organlarının Farklılaşması: Özellikle böceklerde ve ilkel bazı çok hücre¬lilerde, erkek ve dişi çiftleşme organları, kilit anahtar gibi birbirine uyar. Meydana ge¬lecek küçük bir değişiklik döllenmeyi önler. Gamet Yalıtımı: Bazı türlerin yumurtaları, kendi türünün bazen de yakın akra¬ba türlerin spermalarını çeken, fertilizin denen bir madde salgılar. Bu fertilizinin farklılaşması gamet yalıtımına götürür. Melez Yalıtımı: Eğer tüm bu kademeye kadar farklılaşma olmamışsa, yumurta ve sperma, zigotu meydana getirir. Fakat bu sefer bazı genlerin uyuşmazlığı, embri¬yonun herhangi bir kademesinde anormalliklere, ya da uygun olmayan organların or¬taya çıkmasına neden olur (örneğin küçük kalp gibi). Embriyo gelişip ergin meydana gelirse, bu sefer, kalıtsal yapılarındaki farklılaş¬malar nedeniyle erginin eşeysel hücrelerinde, yaşayabilir gametler oluşamayabilir (katırı anımsayınız!). Genlerin kromozomlar üzerindeki dizilişleri farklı olduğu için, sinaps yapamazlar ya da kromozom sayıları farklı olduğu için dengeli bir kromozom dağılımını sağlayamazlar. 4. KAYNAKLAR  Hayvanlar ve Bitkilerin Evrim Ansiklopedisi-Remzi Kitapevi  Kalıtım ve Evrim – Prof.Dr.Ali DEMİRSOY  Yaşamın Temel Kuralları - Prof.Dr.Ali DEMİRSOY  www.bilimaraştırmavakfı.com

http://www.biyologlar.com/eklembacaklilar-artropoda

Arid zon ve Çöl Toprakları

Aridizoller: Arid topraklar yılda 0-25 veya 0-50 cm yağış alan topraklardır. Sıcaklık ve yağış ilişkisi en önemli etmendir. Günlük, aylık ve mevsimsel açılımlar evapotranspirasyon, vejetasyon ve toprak mikroflorasını yakından etkiler. Vejetasyon seyrek ve kısa ömürlüdür. Toprakta organik madde birikimi yok veya çok azdır. U.S. Soil Conservation Service çöl topraklarını - Aridisol’leri okrik epifedonu ve tipik olan argillic-killi, natric-tuzlu, cambic; kalsik, jipsik veya salik; duripan tanı tabakalarından biri veya birkaçını içeren topraklar olarak 1967’de sınıflandırmıştır. Örneğin Mohave’daki loam - münbit toprak 100cm derinliktedir ve en altında kireç depozitleri, üstünde kahverengi, sıkı münbit kil tabakası 30-35 cm. dir, üstünde 25 cm. lik prizmatik çakıl blokajın üzerini 5-10 cm kahverengi kil, kumlu münbit ince tabaka ve kırmızımsı kumlu münbit tabaka, en üstünü ise kahverengi münbit tabaka örter. Aridizol oluşumunda rüzgarın önemli rol oynadığı, kaçan toz ve kumun cilalaması sonucu oluşan çakıllar ve kayaçlar görülür. Aridizollerde CaCO3 ve diğer tuzlar uçuşan ve yağmurda sabitleşen ince toz ve kumlardan yıkanarak aşağı süzülür. Yağış şiddeti ve süresi ile permeabilite ve ısı arasındaki dengeye göre bir derinliğe kadar inip yerleşir. Genelde denge yüzeye yakın bir yerde oluştuğundan kireçlenme ve heterojen dağılımı tipiktir. Jips te sıklıkla görülür. Entizoller: Aktüel yağışlar alan yamaçlardan gelen alüvyal çökelmeler arid toprakların incelenmesini daha da zorlaştırır. Topoğrafik yapıya göre bu kil, silt ve kum tabakalarının kalınlıkları büyük değişimler gösterir. Tüm bu etkenler genellemelerin ne kadar zor olduğunu gösterir. Litozoller, Regozoller: Arid ve yarıkurak bölgedeki entizoller olup, tabakalanmayan alüvyallerle birlikte erozyona uğrmakta olan yamaçlar, sel taşkını düzlükleri gibi erozyon materyali birikim noktalarında görülür. Çöllerde aktüel allüvyonlar-fluventler, ortentler-ince kolüvyal-alüvyal materyal, Psamentler-kumullar, kumluk alanlar önemli yer tutar. Üzerinde efemeral dahi olsa hiç vejetasyon bulunmayan alanlar topraksız sayılır. Bu konularda geniş yayınlar Arizona Univ. Office of arid Land Studiesweb sitesinde yer almaktadır. Alt tabakalar: B tabakalarıdır, fakat bir kısmı A tab.ları arasına sokulabilir özelliktedir. Arjilik: Silika kil minerallerinin hakim olduğu, erozyonun kil tabakasını açığa çıkartmış olabildiği veya üstte doğrudan yerel, veya taşınmış kil tabakasının bulunduğu üst tabaka. Genelde B, A’an daha killidir. Kambik: açık renkli, organik maddece fakir veya çok fakir, ince ve prizmatik daneli, A1 tabakası olmadığından yüzeyden görülen ve genelde CO3’ca zengin tabaka. Natrik: CEC’inin %15 veya fazlasını Na’un doldurduğu yüzey altı partikül tabakası. Prizmatik, kolonlu veya bloğumsu yapı tabakası. Salik : Soğuk suda jipsden daha yüksek çözünürlüğü olan tuzlarca enaz %2 - 25 ağ/ağ. veya daha zengin olan 5-10 cm.lik yüzeyaltı tabaka. Jipsik: Kalsik tabakaya benzer, farkı kireç yerine CaSO4-jipsce zengin oluşudur.En az 15 cm.dir ve C tabakası veya altındaki tabakadan en az %5 daha fazla jips içerir. Genel kalınlık ve jips içeriğinin en az %602ını içerir. Duripan: Bu alt tabakanın çimentosu silistir. Asitle köpürmez, genellikle demir oksitler ve karbonatlar da çimentoda yer alır. Arid topraklarda üstleri opal ve silika mikrokristalleri ile örtülüdür. Silika çimentolu kum taneleri de içerirler. Dünyada Sahra, Lut gibi gerçek, sıcak çöller azdır. 15 - 45. enlemler arasında kalanların büyük çoğunluğu steptir. Ana faktörler yağış, nem ve sıcaklık ile farkları ve topraktır. Kuru hava bu sıcaklık farklarına neden olur. Yıllık hava sıcaklığı açılımı 60, günlük olarak da 35 dereceyi bulabilir. Çölleşme rüzgarı getirir, örneğin Sahra’da 100km.ye kadar fırtınalar görülür, 15-30km hızında sürekli rüzgarlar tipiktir. Buharlaşma sıcaklık değişimi, kuruluk ve türbülansa neden olur. Sahra’da 2.5-6m, çoğu çölde 3m cıvarındadır. Tipik olarak çöllerde Bağ.nem yazın % 20-30, kışın %50 cıvarındadır, ancak vahalarda ise %90 a kadar çıkabilir. Aydınlanma/bulutluluk oranı Sahra’da %4 - 31 oluşu nedeniyle dehidrasyona ve ısınmaya neden olur. Sahra’da ortalama ışık+ısı gücü 1kW’dır ve 10000km2 ye 25 katrilyon kWh enerji düşerki 2 milyar ton yakıt eşdeğeridir. Kuraklık temelde sıcaklık ve yağışa bağlıdır ve vejetasyonu sınırlar. Canlılar açısından önemli olansa yağış/evaporasyondur. Yeraltısuyu çok derinde değilse ve porozite yeterli ise genelde varlığını yüzeydeki jips, kalsiyum ve klorürlerden oluşan tuzluluk ile ve jips kristalleri, seyrek de olsa bitkiler, özellikle Chenopodiaeae halofitleri ile belli eder. Fakat suyun çok saf olup bu tür tuzlanmaya neden olmaması da mümkündür. Toprakta su tutulma miktarı yağış sonrası giren suyun evaporasyonla kaybedilenden kalan olup arid zonda tipik olarak su üst toprak tabakalarında kalır. Aşağı iniş oranı ve derinliği tekstür ve tarla kapasitesine bağlıdır. Killi toprağın tarla kapasitesi kumlu toprağın tipik olarak 5 katı olduğundan 50mm.lik yağış kumlu toprakta 50, killi toprakta 10cm.yi TK’ine ulaştırır. Kayalık alanda çatlaktan sızabilen su ise 100cm.ye kadar inebilir. Yağış sonrası buharlaşma başlar. Killerde üst 5cm.lik tabaka hızla kurur. Süzülen suyun %50’si bitkilerce kullanılır,kum da 5 cm. kurur fakat suyun ancak %10’u buharlaşır. Kayalarda ise böyle bir kayıp sözkonusu olmaz. Sonuçta nemli iklimdekinden farklı olarak killi toprak bitkilere yararlı değildir. Üstü taşlık toprak ise en uygun yapıyı oluşturur. Ancak vadi ve çukurlardaki birikim, eğimle kayıp gibi jeomorfolojik yapı bu durumu etkiler. Necev çölünde killi toprakta bitkilerin 35mm su kullanabildiği, bu miktarın kumlut oprakta 90, kayalıkta 50mm, vadilerde 250mm olduğu görülmüştür. Bu nedenle derin kök gelişimi ancak permeabilitesi yüksek toprakta görülür, killi toprakta kök yatay gelişebilir. Kumlu ve taşlı topraklarda bu derinlik taban suyuna kadar ulaşabilir ve derin köklenebilen bitkiler kolayca gelişir. Irak’taki Basra çölünde taban suyu 15m. derinliktedir ve nehirlerce beslenir. Yıllık 120 mm.lik yağış ancak yüzeysel nemlenmeye yeterli olduğundan bitki kökleri taban suyuna erişemez ve yağışlar sonrası zayıf ve geçici bir efemeral örtü oluşur. Yerli halkın kuyular aracılığı ile çektiği su ile sulananan sebze tarımı tuzlanma nedeniyle 1 yıl ömürlü olmaktadır. Bu bitkilerin arasına serpiştirilen çok kolay köklenen Tamarix çelikleri yüzey suyunun taban suyuna ulaşabileceği kadar sulanarak köklerinin hızla geliştirilmesi ile ağaçlara dönüşmesi ormanlaştırılmıştır. Acacia tortilis’in arid zondaki kumlu topraklarda, yıllık 50 - 250mm. yağışlı Sudan steplerinde geliştiği, killi topraklarda ise ancak 400mm.lik yağışta bulunabildiği saptanmıştır. A. mellifera otsu örtü savanası da kumlu toprakta 250-400, killi toprakta ise yıllık 400 - 600mm. yağışla gelişebilmektedir. İklimsel olarak kurak alan yağışa karşı buharlaşmanın fazla, vejetasyonun zayıf ve örtünün <%25 olduğu bölge olarak tanımlanırsa da dünyanın çeşitli yerlerindeki kurak alanlar birbirine fazla benzemezler: Tropik kuşakta aylık sıcaklık ortalamaları fazla farklı değildir. Subtropik kuşakta yıl boyunca değişen sıcaklıklar donlara da neden olur. Ilıman zonda kışlar çok soğuk, yazlar sıcaktır. Vejetasyonu sınırlayıcı ana etmen aylık ve özellikle mesimlik yağış toplamlarıdır. İki yağış mevsimi olan bölgeler , yalnız kışın veya yazın yağış alan yöreler, azve rastlantısal olarak yağış gören yerler ve hiç almayanlar. Buralardaki vejetasyon üzerinde yöresel floranın değişen oranlarda etkisi vardır ve belli familyalar dominanttır. Örneğin K. Amerika’da Cactaceae, G. Amerika’da buna ek olarak bazı Bromeliaceae cinsleri, Holarktik’te Chenopodiaceae, en kurak Avustralya çöllerinde Atriplex vesicaria ve Kochia sedoides hakimdir. İklim yanında edafik faktörlerin farklılığı önemlidir. Aylık yağış ve sıcaklık seyri, kurak dönemlerin 10C / 20mm.lik birimlerinin oranı olarak sıc.ın yağışı aştığı dönemler esas alınarak kurak alan haritaları yapılır.

http://www.biyologlar.com/arid-zon-ve-col-topraklari

Toprağın Mineral Madde Verimliliği

Toprakta bitkilerin gereksinim duyduğu maddeler de toprak suyu gibi değişik formlarda bulunur ve bu formların bazıları bitkilerin yararlanmasına uygun, diğerleri ise yararsızdır. Bu değişik formların bir kısmı arasında dinamik ilişkiler olması bitkilerin sürekli besin sağlayabilmesine olanak verir. Topraktaki su iyi bir çözücü olduğundan serbest haldeki, çözünür iyonik mineral maddelerin çözünmesini sağlar ve bitkilerin en kolay şekilde besin elementi sağlayabildiği toprak çözeltisini oluşturur. Bu çözeltideki iyonların bitki köklerince tüketilmesi ile doğan kimyasal potansiyel ile çözelti toprak taneciklerinden ve toprak organik maddesinden çözünebilir iyon çeker. Yukarıda bitki hücreleri için anlatılmış olan ve canlılık olayları ile doğrudan ilgili olmayan pasif kuvvetlerin etkili olduğu mekanizmalar ile toprak çözeltisi ve toprak tanecikleri arasında dinamik dengeler kurulur. Bu dengeler toprak çözeltisinin bileşimini belirler. Toprak çözeltisinin iyonik maddelerce zenginliği çözeltinin elektriksel iletkenliği ile ölçülür. Canlı materyalden farklı olarak toprağın pH değeri geniş bir aralıkta değişir. Canlıların solunumla çıkan CO2 in suda çözünmesi ile oluşan bikarbonat (HCO3 - ) ve sembolik olarak sentezlenen organik asitlerden bazik karakterli  hidroksitlerine kadar açılım gösteren maddeler yanında red-oks tepkimeleri ve özellikle amfoter karakterli proteinler arasındaki dengelerle sağladıkları aktif tamponlama kapasitesi ürünü olan fizyolojik pH aralığı toprak için söz konusu değildir. Toprağın pH değerinin farklılığı ise toprak çözeltisindeki mineral elementi kompozisyonunda büyük değişikliklere yol açar. Çünkü maddelerin iyonlaşarak çözünmeleri yanında iyon değişimi olayları pHa bağlıdır. Asidik ve alkali veya nötr topraklar için seçicilik bitki türlerinin farklı yayılışlar göstermesine neden olan çok önemli bir etmendir. Bunun da nedeni bu farklı toprak tiplerinin bitkilere sağladığı besim elementi kompozisyonunun da çok farklı oluşudur. Toprağın tamponlama kapasitesi, yani pH değişimlerine karşı direnme gücü toprak taneciklerinde ve bitki artıklarının bozunması ile oluşmuş olan toprak organik maddesi, humusda adsorbe edilmiş olan iyon kapasitesi ve bileşimi ile iyon değişimine girebilen iyon miktarı ve bileşimine bağlıdır. Bu ilişkiler toprak çözeltisinin aktüel pH değeri, çözünmüş besin elementi yanında depo pH değeri ve değiştirilebilir katyon kapasitesi (CEC) ile belirtilir. Genelde K+, Na+, Ca++ ve Mg++ un mek.gr. olarak çözünür tuzları haline geçirilmesi için gereken H3O derişimi veya tersi olarak belirtilir ve 20-200 mek=mg H+/kg. toprak aralığında değişir. Toprak mineral maddesinde ortalama %70-80 oranında silis, %10-15 alümina, %5 kadar demir oksitler, % 2 civarında potasyum oksit, %1 kadar kalsiyum oksit ile aynı oranlarda mağnezyum oksit bulunur ve diğer tüm element oksit ve tuz formları ancak %3 oranı civarındadır. Yani temel olarak toprak silikatlar ile oksitler ve organik maddeden oluşur, su e haa içerir. Toprak azotlu mineral içermez, çünkü bu inorganik azot tuzları yüksek sıcaklıklarda durağan yapılı değildir ve mağma soğurken gazlaşmışlardır. Bundan dolayı atmosferin %78i azot gazıdır. Toprakta azot organik maddede bulunur. Bu nedenle de uzun süre bitki örtüsüz kalan ve mikroflorası zayıflamış topraklar azotça fakirleşir. Toprağın azotça zenginliği humus adı verilen, nemli ortamda mikrobiyolojik aktivite ile bozunmuş organik madde miktarına bağlıdır. Humus mineral partiküllerini çevirerek örter ve koyu kahve rengini renk verir. Bunun en tipik örneği kahverengi orman toprağıdır. Humus kolloidaldir, oluşumu gereği toprağın en üst tabakasında, toprağın A horizonunda yığılır. Bunun altındaki B tabakası genelde killi, Al silikatlarınca zengin tabakadır. Bu en ince tanecikli Al silikat mineralleri tabakası da kolloidal özelliği nedeniyle su adsorbe ederek şişme özelliğine sahiptir. Al silikatların zamanla bozunma eğilimleri farklıdır, bu nedenle toprak yaşlandıkça B tabakasında bozunmaya daha dayanıklı olan Al silikatlar kalır, bozunanlar daha alt tabakalara iner. Çünkü A tabakası güneş, rüzgar ve yağış ile donma ve çözülmenin etkilerine açıktır. Sonuç olarak toprak yaşlanması üst tabakada dirençli ve toprak çözeltisine yeni mineral madde sağlama kapasitesi düşük tabaka oluşmasına neden olur. Çok yaşlı topraklarda killerin büyük kısmı süzülen su ve yerçekimi etkisiyle B tabakasına toplanır ve A - B horizonları farklılaşır. Erozyona uğramadan çok yaşlanan topraklarda B horizonu da aynı şekilde fakirleşir. Erozyon ile üst tabakaları sürüklenen topraklar organik madde ve kilce fakirleştiğinden verimliliğini kaybeder. Eğimli yerlerde bitki artıklarının ve organik maddelerin sürüklenmesi sonucu aynı anakayadan oluşan topraklar düz arazidekinden farklı yapıda olur. Toprakların temel karakteristikleri oluşum kaynağı olan anakayanın özelliklerine bağlıdır. Anakayanın jeolojik devirlerdeki temel özellikleri ve parçalanma eğilimleri, topografya, etkisinde kaldıkları iklim koşulları gibi etkenlere göre mineralojik ve kimyasal özellikleri farklılık gösterdiğinden üzerlerinde oluşan topraklar da çok farklı olur. Ayrıca anakayanın su altında kalması ile üzerinde sedimanter kayaç oluşması gibi ikincil gelişmeler etkili olur. İklim de aynı anakayadan oluşan topraklar arasında farklılıklara neden olan önemli etkenlerdendir. Sonuç olarak toprak anakaya, topoğrafya, iklim ve bitki örtüsü ile süreç, tarihçenin ürünüdür. Bu 5 değişkenin 10(5) farklı tip oluşturması mümkündür. Temel kimyasal yapıları ise alüminyum ve demir silikatlar, yani Si, Al ve Fe ile Oksijenin ana elementleri olması, önemli miktarlarda Ca, Mg ve K ile Na içermeleri nedeniyle benzerdir. Bu katyonlar topraktaki silikat ve karbonatların bozunması ürünüdürler, toprak organikmaddesine bağlanmadıklarından anak iyondeğişimi dengesine girdikleri oranda toprakta tutunabilir, aksi halde yıkanarak derinliklere doğru süzülürler. Esas makroelementlerin diğer grubu olan azot, fosfor ve sülfür ise organik maddeyle yakın ilişkili olan elementlerdir ve organik madde bozulumu ile toprağa karışırlar. Fe ve Al gibi polivalentlerin iki değerlikleri hidroksille ve ancak bir değerlikleri diğer bir anyonla birleşir. Fosfatın -1, 2 veya üç değerlikli formlarının birbirine oranı ise toprak pHdeğerine bağlıdır. Topraklar içerdikleri kum, silt, kil ve organik madde oranlarına göre tekstür sınıflandırması sisteminde kum, kil ve silt üçgenine yerleştirilen organik maddeli kum, kumlu organik madde gibi sınıflara ayırılır. Bu sınıflandırma elek analizine, yani tanecik boyutlarına göre oranlamaya dayanır. Killer, kolloidal düzeye kadar çok ince taneciklere kadar ayrışmış toprak mineralleri karışımıdır. Bu incelme mineral kristallerinin parçalanmasına kadar ilerlemiş olduğundan anyonik ve katyonik bileşikler içerirlerse de çok büyük oranda - yükler hakimdir ve bu nedenle killi toprakların CEC değeri yüksektir. Bu kapasitenin hidroksonyum veya Ca, Mg, K veya Na tarafından doyurulması toprağın depo pH değerini belirler. Topraktaki K kaynağı genellikle Al silikatları olan biyotit, muskovit gibi minerallerdir ve depo K oranı yüksektir. Fakat bitkilere yarayışlı K oranı düşük olduğu gibi bunun bir kısmı da az yarayışlıdır. Çünkü K lu silikatların bozunma ürünlerindeki K tuzları büyük oranda kolay çözünüp suyla yıkanır maddelerdir ve toprak CEC inin büyük kısmı H+, Na+, Ca++ ve Mg+ tarafından kullanılır. Çünkü K+ un su zarfı / iyonik çekim kuvveti oranı diğerlerinden büyüktür ve tipik olarak kapasitenin %5 ini kullanabilir, diğer kısmını Ca >% 60, H >%20, Mg>%10 oranında paylaşır. Bu üç K fazı arasında kinetik bir denge vardır ve tipik oranları >%90 depo, % 1 - 2 tam yarayışlı çözünür K fazı, aradaki fark da değiştirilebilir fazdır. Bu fazlar arası dengeler de organik madde ve kil, mineralojik bozunum düzeyi, K ile değişim kapasitesi rekabeti gösteren katyonlar, toprak nemi gibi etmenlere bağlıdır. K+ su sferi genelde birçok killerin kristalografik kafes yapısına uyumlu olduğundan adsorpsiyonu ve iyon değişim kapasitesine girmesi kolay olmakta ve bu sayede bitkilere sağlanması süreklilik kazanmaktadır. Ancak kaolen gibi su alarak şişme özelliği düşük olan bazı killer ile uyuşmadığından toprakların K değişim kapasitesi farklı olmaktadır. Önemli bir etmen de toprak pH sıdır, asitleşme H3O rekabeti ile, alkalileşme ise su sferi küçük ve iyonik kuvveti daha çok olan Ca+2 rekabeti ile K bağlama kapasitesini azaltır, bu nedenle tipik olarak pH 5.5 - 8.5 aralığında değişebilir K oranı artar. K+ bağlayan killerin tutma kapasitesi için benzeri özelliklere sahip amonyum da rekabet eder. Ayrıca toprağın donması ve çözülmesi, ıslanıp kuruması olaylarının tekrarı da değişim kapasitesini arttırırken çözünmüş K miktarını azaltır. Yağış bitki örtüsü zayıf toprakta K yıkanması ile kaybına neden olur ve bu nedenle seyrek, düzensiz ve şiddetli yağış alan bölgelerde bitki örtüsünün giderek daha da zayıflamasına neden olur. Bitki örtüsü yeterli olan yörelerde de otlatma, hasat gibi olayların tekrarı aynı şekilde etkili olur. Çünkü, ancak derindeki yıkanmış K kapasitesini kullanabileek derin köklü bitkiler ve taban suyuna kadar inen K un yüzeydeki buharlaşmanın emme kuvveti ile dipten K çekmesi dışında toprakta N gibi K döngüsü yoktur. Kum oranı yüksek ve kili az topraklar su tutma kapasitesi ve mineral verimliliği düşük topraklardır. Havalanmaları iyidir ve suyu kolay alırlar. Bu nedenle de organik maddeleri yüksek verimli topraktırlar. Killi topraklar iyi tekstürlü topraklardır, iyon değişim kapasiteleri yüksektir, yalnız yaşlandıkça bu kapasiteleri azalır, toprak çözeltisiyle birlikte iyonları alt tabakalara doğru yıkanarak (leaching) kil dağılımı A zonunda %10, B zonunda %50 oranına kadar çarpılabilir. Nemli ılıman bölgelerde verimlilikleri yüksektir, ancak derindeki kil tabakası şiddetli yağışlarda taşmaya da neden olabilir. Kurak ve sıcak bölgelerde ise az killi topraklar daha yüksek verim sağlar, çünkü üst tabakadaki kilin tuttuğu su buharlaşarak kaybolur ve bitki köklerine ulaşamaz. Buralarda ancak saçak köklü ve yüzeye yakın kök sistemi olan bitki türleri yaşamlarını sürdürebilir. Böyle ortamlarda kilin aşağı tabakalar indiği yaşlı topraklar daha yüksek verimlilik sağlar. Yaşlı topraklarda C horizonunda biriken kum e siltin bozunarak kile dönüşmesi de görülür. Kum, kil ve organik madde dengesi iyi olan ve derin üst tabaka yeterli su tutma ve iyon değişimi, düşük buharlaşma ve yüksek su geçirgenliği (permeabilitesi) ile ideal üst horizon tabakasıdır. B tabakasında yeterli kil bulunursa süzülen su da bitkilerce kullanılabilir ve buharlaşma halinde de yukarıya yönelerek su deposu oluşturur. Yeterince killi topraklar topaklanarak ideal strüktür sağlarlar, kumlu veya siltli ve organik maddeli olanlar ise masif yapılar oluşturur ki bunların porozitesi çok düşüktür. Toprak taneciklerinin agregalar halinde topaklanması, fungus ve aktinomiset miselleri, kolloidal kil taneciklerinin katyonları ile organik maddelerin anyonları veya kil anyonları ile organik anyonların mineral katyon kelatları halinde birleşmesi gibi mekanizmalarla olur. Organik madde en üst tabakanın % 1 - 6 sını, ortalama olarak %3 ünü oluşturur. Kuru ağırlık olarak %20 civarında organik madde içeren topraklara organik, diğerlerine mineral toprak adı verilir. Organik madde bitki ve hayvan artıkları, bozunma ürünleri ve canlı eya ölü mikroorganizmaları içerir. Organik madde azot kaynağıdır ve özellikle humus su tutma kapasitesini, iyon dezorpsiyonu ve değişimi kapasitesini arttırarak bitkilerin büyüyüp, gelişme şansını arttırır. Kimyasal ve biyolojik ayrışma ve dönüşümler sonucunda kolloidal, gri - kahverengi - mor - siyah renk aralığında ve ortalama olarak % 60 C, % 6 N ile P ve S içeren humus meydana gelir. Bakteriler, fungi ve protozoa ile mikro artropod, solucan gibi canlıların etkinlik ürünü olarak meydana gelir. Bol miktarda polimerleşmiş organik asitleri içerir. Humik asit adı verilen bu yapı jel halinde, kil tanecikleri arasında çimento oluşturarak sağlam bir su ve iyon tutucu yapı meydana getirir. Renk polimerleşmenin ilerlemesi ile koyulaşır. Humuslaşma bitki artıkları, mikro populasyonların etkinlik oranları ve ortam şartları ile toprağın mineralojik yapısına göre farklılıklar gösterir ve buna göre gerek humus tipleri, gerekse topraklar sınıflandırılır. Örneğin mor tip humus asidiktir ve özellikle soğuk bölgelerdeki iğne yapraklı ormanlarında görülür, fulvik asit denen az polimerleşmiş humik asit podzoller adı verilen toprakları oluşturur. Humus tipi podzollerin kil oranını değiştirmesine göre de alt toprak tiplerini ortaya çıkartır. Canlı artıklarında C/N oranının düşük oluşu mikrobiyal aktiviteyi arttırarak bozunmayı hızlandırır. C mikroorganizmalar tarafından kullanıldıktan sonra CO2 olarak salındığından zamanla toprak organik maddesindeki C/N oranı düşer e bu oran 1/17 oranına geldiğinde mikroflora azotu kendi metabolizması için kullanamaz hale gelerek NH3 halinde salgılar ve toprak organik maddesi bozunması bu iki gazın çıkışı ile sürer. Oran 1/11 civarına indiğinde de organik madde bozunması dengeye yaklaşır ve yavaşlar. Kayaçlarda azotlu mineral bulunmaması, mağmanın soğuması sırasında azotun gaz halinde atmosfere geçmesi nedeniyle yeryüzündeki tüm azot canlılar tarafından fikse edilmiş olan azottur. Havadaki azot kozmik ışınlar ve yıldırım düşmesi gibi enerji sağlayan olaylarla toprakta fikse edilebilirse de bu önemsiz düzeydedir. Havadaki azotun fikse edilmesini, bitkiler tarafından kullanılır hale getirilmesinde rol alan mikroorganizmalar Azotobacter, Beijerinckia, Clostridium, Nitrobacter, Nitrosomonas ile bitkilerle ortak yaşayan Rhizobium ve Spirillium bakterileridir. Rhizobium Leguminosae ve Mimosoidae familyaları cins ve türleri bitkilerin köklerinde ortak yaşayarak azot fikse eden nodüller oluşturduğundan, Spirillium ise Graminae türleri simbiyontu olarak diğer serbest yaşayan cinslerden farklıdır. Azotobacter hava azotu fiksasyonunda rol alan ototroflar arasındaki en önemli gruptur ve tümü toprak organik maddesinde C/N oranı yüksek olduğunda çoğalıp etkili olmaya başlarlar. Serbest azot termodinamik açıdan çok kararlı bir molekül olduğundan tepkimeye sokulması için çok enerji gerekir. Bu açıdan azot fikse eden bakterilerin canlılığın sürmesindeki rolü fotosentetik canlılar kadar önemlidir. Tipik olarak toprak üst tabakasında %3 - 5 oranında olan organik maddede %5 civarında azot bulunur. Oran bunun altına doğru azaldıkça bu bakteri grubunun etkinliği artar. Karbohidratları kullanarak havanın azotunu amonyak ve nitrata çevirirler. Ortalama olarak 1 ton topraktaki 100 kg. karbohidratı uygun nem ve sıcaklıkta 20 günde tüketirler, arazi koşullarında ise 1 dönümde ancak 10 - 15 kg. azotlu biyomas oluştururlar. Fakat ortamda diğer mikroorganizmalarca sağlanan inorganik azot bileşikleri varsa tercih ederler. Mavi - yeşil alglerden Anabaena, Nostoc cinsleri de havanın azotunu fikse edebilen canlılardır. Bakterilerle funguslar arasında bulunan aktinomisetler gene kalsiyumca zengin ve otların hakim olduğu topraklarda bulunur, funguslar ise asidik topraklara dayanıklıdır ve orman topraklarında boldurlar, bakterilerden daha az sayıda olmakla birlikte toplam kütleleri daha yüksektir. Toprakta mikrobiyolojik aktivite artışına paralel olarak onlarla beslenen protozoa da artarsa toprak organik madde artışına önemli katkıda bulunur. Topraktaki amonyak ve amonyumu nitrata oksitleyen ototrofik nitrifikasyon bakterileri çevrimi nemli ve sıcak, iyi havalanan toprakta en etkin olarak yürüten aerobik canlılardır. Enerjiyi canlı artıklarından, azotu havadan sağlayan bakteriler yanında Leguminosae ve Mimosoidae türlerinin kök nodüllerinde yaşayan ve enerji ile karbon gereksinimini bitkiden sağlayan bakteriler de vardır. Nitrifikasyon yüksek sıcaklıklarda solunumun artışı sonucu fosfor dekompozisyonunun da maksimum olmasını sağlar. Genellikle kalsiyum gereksinimleri yüksek olduğundan hafif alkali topraklarda gelişirler. Nemli, sıcak ve iyi havalanan hafif alkali topraklarda 1 gr. toprakta yoğunlukları 1 milyar bakteri / 1 gr. toprağa kadar yükselebilir. Amonyaklaşma canlı artıklarının anaerobik ortamda mikrobiyal bozunma ürünüdür ve havaya karışır veya amonyum hidroksit halinde çözünür, ya da oksitlenerek fikse edilir. Nitrobacteriaceae familyasından Nitrosomonas, Nitrosospira, Nitrosococcus ve Nitrosolobus nitrozobakterileri amonyağı nitritlere yükseltger. Bitki ve hayvanlar için toksik olan nitritler ise özellikle Nitrobacter ve Nitrospina, Nitrococcus tarafından nitratlara yükseltgenir. Organik maddenin bozunması sırasında proteinlerin azotu amonyak haline açığa çıkarsa da suyla hemen oluşturduğu amonyum hidroksit bakterilerce oksitlenerek nitrata dönüştürüldüğünde çözünürlüğü yüksek tuzlar yapar. Cinsler arasında amonyum ve nitrat alım oranları açısından farklılıklar görülür, örneğin bazı Graminae cinsleri özellikle ilk büyüme ve gelişme dönemlerinde amonyumu daha etkili kullanırken pamukta durum tersinedir. Azotobacter, Clostrodium, Nitrosomonas ve Nitrobacter havanın azotunun amonyağa ve daha sonra da oluşan amonyum hidroksitin nitröz asidi üzerinden nitrik aside oksidasyonunu sağlar, son ürün olarak ta CaNO3 başta olmak üzere tuzlar oluşur, bitkilerce alınarak kullanılır. Rhizobium ise legümler ve Mimosoidae türleri ile diğer bazı odunlu cinslerinin köklerinde oluşturdukları nodüllerde azot fiksasyonu yaparlar ve özellikle nötr-hafif asidik, yeterli P, Ca, Mo içeren topraklarda etkilidirler. Azotobacter alkali, Clostrodium ise asidik topraklarda daha etkindir. Azotobacter C/N oranı 33 den büyük ve P, Ca, Fe ve Mo elementleri yeterli topraklarda yeterli etkinlik gösterebilir. Toprakta azot iz miktarlardaki N2O, NOx ve daha yüksek olabilen NH3 gazları, NH4+, NO2- , NO3- iyonlarının asit ve özellikle tuzları halinde bulunur. Tuzlar bitkilerce alınamazsa kolayca yıkanarak alt horizonlara iner. Bu nedenle erozyon toprağın azotça fakirleşmesine neden olur. Günümüzde artan hava kirliliği nedeniyle atmosferde biriken NOx gazlarının yağışla toprağa inmesi sonucu oluşan azotlu asitler ve toprakta dönüştükleri tuzları bitkilere önemli oranda azot kaynağı sağlayabilmektedir. Öte yandan azotlu gübrelerin kullanımı da kirletii azotlu gazların oluşumu ile hava kirliliğine, yıkanan nitrit ve nitratlarla da toprak ve su kirliliğine katkı yapmaktadır. Nemli koşullarda organik maddece zengin ve fakir topraklar arasında da CO2 ve NH3 çıkışı toplamı arasında 1/11 gibi büyük bir fark vardır. Toprağın alt horizonlarında ise C/N oranı 6/1e kadar düşebilmektedir. Toprak organik maddesindeki proteinler ve peptidlerin bozunması ile amino gruplarını içeren maddelerin bir karışımı oluşur. Bu aminasyon ürünleri mikrobiyolojik aktivite sonucu su ile birleşerek amonyağa dönüşür. Amonifikasyon sonrası açığa çıkan amonyağın bir kısmı ototrof nitrifikasyon bakterilerince nitrite yükseltgenir. Bu bakteriler enerji kaynağı olarak inorganik tuzları, C kaynağı olarak da CO2 i kullanırlar. Amonyağı oksijenle birleştirerek nitritlere dönüştürürken hidroksonyum açığa çıkışı olur ve bakteriler enerji elde ederler. Nitritlerin oksijenle nitratlara yükseltgenmesi de eksotermiktir. Oksijen gereksinimi nedeniyle bakteryel etkinlik iyi havalanan, kaba tekstürlü topraklarda artar ve toprak organik maddesinin pH değeri biraz düşer. N2 + 10 H3O + 8 e- ® 2 NH4 + 3O2 ® 2 NO2- + 2 H2O + 4 H3O+ + E ® 2 NO3- + E nitrojenazlar Özellikle anaerobik koşullarda organik biyoması sübstrat olarak kullanan ve elektron kaynağı olarak Mo, Fe veya Cu, V içeren nitrit redüktaz etkisiyle denitrifikasyon sonucu serbest N2 çıkışı azot çevrimini tamamlar. Anaerob koşullar N2 benzeri koordinasyon molekülü olan O2 in rekabetini engeller, aerobik koşullarda ise heme proteinleri gibi Fe li O2 akseptörleri ile bakteri rekabeti önler. Amonyak ve nitrat bitkiler tarafından alınarak organik azot bileşiklerine çevirilebilen azot formlarıdır. Amonyum ise killerce değişebilir ve sabitleşmiş şekilde adsorbe edilir ve çözeltiye geçen oranı düşüktür. Köklerce özellikle iyon değişimi ile alınır. Killerin mineralojik bileşimlerine göre amonyum değiştirme ve fikse etme oranları değişir. Fiksasyon oranı arttıkça mikrobiyolojik veya bitkilerce kullanılabilir oran uzun vadeli olarak düşer. Topraktaki tipik yararlı/ toplam azot oranı %2, organik maddece zengin üst katmanda fikse azot ise %7dir. Derinlere doğru fikse azot oranı %60 a kadar artar. Bu nedenle toprak ıslahı için derin köklü ve azot fikse edebilen nodüllere sahip bitki dikiminden yararlanılır. Bitkiler genelde nitratın birkaç ppm düzeyindeki miktarlarından yararlanabilir. Çünkü daha yüksek miktarları toksiktir. Ancak kumul bitkileri organik maddesiz ortamda normal gelişimlerini gösterebilir. Organik madde bozulumu moleküler düzeye kadar sürdüğünden iyon bağlama kapasiteleri yüksektir. Özellikle linyin gibi dayanıklı moleküller CE depo kapasitesini arttırırlar. 1 gr. toprak organik maddesinin CEC değeri 1 gr. kilinkinden daha yüksek olduğundan en verimli topraklar orman topraklarıdır. Organik maddede de CEC > AECdir, çünkü reaktiv grupların çoğunluğunu karboksiller oluşturur. Sülfür bakterileri de topraktaki S formu dönüşümlerinde çok önemli yer tutar. Topraktaki pirit (-2 değerlikli iyonik FeS2 ) veya FeS, CuS, CuFeS2 içeren mineralleri ve elementel S ü, CO2 i redükte ederek elde ettikleri elektronlarla suda sülfürik asit olarak çözünen SO3 e oksitleyen Thiobacillus türleri gibi kemoototroflar ağır toksisitesi ve düşük pH a dayanıklılıkları ile dikkat çekicidirler. Topraktaki S kaynakları iklim bölgelerinde farklılık gösterir. Nemli iklimlerde özellikle pirit- FeS2, jips - CaSO4 mineralleri halinde bulunur ve tipik olarak %0.01 - 0.15 oranında toplam S ile 50 - 500 ppm çözünür sülfat sağlar. Kurak ve yarı-kurak bölgelerde ise toplam miktarının çoğunu çözünür toprak alkali sülfatları oluşturursa da toplam S %80 -90 oranında organik maddede bulunur. Sülfat killerce, özellikle Al ve Fe oksitleri tarafından AEC çerçevesinde depo olarak tutulabilmektedir. Organik maddedeki biyolojik S büyük oranda proteinlerdeki -S-H ve S-S bağları ile bağlı olan, az bir kısmı ise çözünür sülfat tuzlarından oluşur. Aerobik koşullarda sülfat mikroorganizmalar ve bitkilerce alınır veya yıkanarak derinlere inerken proteinlerdeki sülfürün bir kısmı oksitlenir, diğer kısmı ise önce redüklenerek hidrojen sülfür gazına dönüşür. S ancak mikrobiyolojik canlıların O2 ile H2S ü tersinir bir tepkimeyle oksitleyerek sülfata dönüştürmesiyle yararlı hale geçebilir. Bu arada toprak asitleşirse de fosfatdan farklı olarak toprak kolloidlerince adsorplanabildiğinden toprağın organik ve kil kolloid miktarı artışı asitleşmeyi azaltır. Topraktaki S yıkanma ve bitkisel tüketime ek olarak erozyon etkisiyle tükenebilir. Özellikle bazı türler çok S kullanırlar ve toprağı fakirleştirirler, hava kirliliği ve asit yağmurları ise toprağa S sağlar. Topraktaki S genelde %0.05 civarındadır ve üst tabakada 500 kg/dönüm kadar bulunur.

http://www.biyologlar.com/topragin-mineral-madde-verimliligi

Kene İle Bulaşan Hastalıklar

ÖZET Parazitlerin neden olduğu hastalıklar önemli sağlık problemidir. Endoparazit ve ektoparaziter hastalıklar mevcuttur. Kenelerle bulaşan hastalıklar en sık görülen vektör kaynaklı hastalıklardır. Keneler bakteri, virüs spiroket, protozoa, nematod ve toksinler gibi patojenleri yayabilir ve böylece ektoparaziter kaynaklı hastalıklara sebep olurlar. Ülkemizde keneler için iklim koşulları, bitki örtüsü ve yüzey şekli bakımından uygun koşullar vardır. Bu makalemizde kenelerle bulaşan hastalıkları özetlemeye çalıştık. SUMMARY Paraziter diseases are important medical problems.There are endoparasitic and ectoparasitic diseases. Tick-borne diseases are the most common vector-borne illnesses. Ticks can spread bacteria, viruses, spiroketia, protozoa, nemadot and toxins and by so they made ectoparasitic diseases. Our country has suitable conditions to continue biologic activity of ticks acording to seasons, plants and surface forms. In this article we have tried to summary tick-borne diseases. İrfan Nuhoğlu1, Murat Aydın1, Süleyman Türedi2, Abdülkadir Gündüz2, Murat Topbaş3 1KTÜ Tıp Fakültesi İç Hastalıkları Anabilim Dalı, 2Acil Tıp Anabilim Dalı, 3Halk Sağlığı AD, Trabzon. Anahtar Kelimeler: Kene, Kırım- Kongo Kanamalı Ateşi, Lyme Hastalığı. Key words: Tick, Crimean-Congo Haemorhagic Fever, Lyme disease. Sorumlu yazar/ Corresponding author: İrfan Nuhoğlu, KTÜ Tıp Fakültesi İç Hastalıkları AD, Trabzon irfannuhoglu@hotmail.com GİRİŞ Parazitlere bağlı hastalıklar günümüzde önemli sağlık problemlerindendir. Bu durum endoparazitlerden kaynaklanabileceği gibi; kene gibi ektoparazitlerden de kaynaklanır (1). Keneler tüm dünya üzerindeki memeli, kuş ve sürüngenlerden kan emen eksternal parazitlerdir (2). Keneler Araknidea sınıfına ait artropodlardan olup balıklar dışındaki tüm omurgalıların kanlarıyla beslenebilirler. Dünya üzerinde omurgalıları etkileyen 899 adet kene türü mevcuttur. Bunların 185’i Argasidae, 713’ü İxodidae, 1 tanesi ise Nuttalliellidae soyuna bağlıdır (5,6). Bakteri, spiroket, rickettsia, protozoa, virüs, nematod ve toksinler gibi birçok farklı patojeni taşıyabilir ve yayabilirler (3). Tıbbi ve ekonomik önemleri insanlara ve hayvanlara hastalık bulaştırabilme kabiliyetlerinin olduğunun fark edilmesiyle anlaşılmıştır. İnsanlar üzerinde oluşturdukları önemli sağlık sorunları yanında çiftlik hayvanları üzerinde büyük ekonomik kayıplara neden olabilirler. Türkiye; iklimi, yüzey şekli ve bitki örtüsü bakımından, kenelerin biyolojik aktivitelerini sürdürmeleri için uygun koşullara sahip bir ülkedir (7-9). Günümüze kadar kullanılan hiçbir mücadele yöntemi, tam bir kene eradikasyonu sağlayamamıştır. Bugünkü bilgiler ışığında kene eradikasyonunun neredeyse imkânsız olduğu kabul edilmektedir. KIRIM KONGO KANAMALI ATEŞİ (KKKA) KKKA Afrika’nın bazı bölgelerinde, Asya, Doğu Avrupa ve Orta Doğu’da görülen ölümcül bir viral enfeksiyondur (10,11). Bildirilmiş mortalite oranı % 3-30 olan bu hastalığa neden olan virüs Bünyavirüs ailesinden Nairo virüs genusuna bağlı olup; insanda ciddi hastalığa neden olur (11-12). Tıbbi olarak önemi kene ile taşınan virüsler arasında en yaygın coğrafi dağılıma sahip olmasıdır(13). Hastalık ilk kez 12.yy’da bugünkü Tacikistan topraklarında hemorajik bir sendrom olarak tanımlanmıştır (10). KKKA ile kenelerin ilişkisi ilk defa 1944-45 yıllarında Kırım’da hasat toplayan çiftçilere yardım eden 200 Sovyet askerinde hastalığın oluşması ve etkenin kenelerden izole edilmesi sonucunda gösterildi (10,11). Virüsün yaşam çevrimi ‘kene-omurgalı-kene’ şeklinde olup; hayvanlarda hastalık yaptığına dair bir delil yoktur (11). Virüsler Hyalomma genusu keneleri ile taşınır. TAF Preventive Medicine Bulletin, 2008: 7(5) 462 Resim 1. Türkiye’de Kırım Kongo Kanamalı Ateşi Vakalarının Dağılımı Enfekte anneden yumurtaya transovarial; larvanymph- erişkin şeklinde transstadial olarak geçiş gösterirler. Virüsün Avrupa’daki ana taşıyıcısı Akdeniz hyalomması olarak bilinen H.marginatum marginatum’dur (10,11). Komşu bazı ülkelerde 1970’lerden beri epidemiler bildirilmesine rağmen Türkiye’de virüsle enfekte vakalar ilk kez 2002 yılında bildirilmiştir. 2002-2005 yılları arasında Sağlık Bakanlığı’na 500 vaka bildirilmiş ve bunların 26’sı (% 5,2) ölmüştür (Resim 1) (13-16). Türkiye’de ki salgında vakaların % 90’ı çiftçilerdi (13,14). İnsan vücudu; enfekte kenelerin ısırması ile veya hasta olan bir kişiyle enfeksiyonun akut fazı sırasında temas ettikten sonra enfekte olabilir. Ayrıca içinde virüs bulunan kan ve dokularla temastan sonra geçiş olabilir. Hastalığın ortaya çıktığı insan vücudu virüsün bilinen tek konağıdır (17). Hastalığın seyrinde 4 faz vardır: 1. İnkübasyon fazı kene ısırığını takiben 3-7 gündür (18). Bu dönemde herhangi bulgu vermez. Türkiye’de 5,5 gün olan bu fazın süresi viral doz ve bulaşma yoluna bağlıdır (12). 2. Prehemorajik faz; ani yükselen ve 39-41 derece arasında seyreden ateşle karakterizedir. Ateş 4-5 gün sebat eder(10). Baş ve kas ağrısı, baş dönmesi, ishal, burun akıntısı ve kusma olabilir (19).Yüz boyun ve göğüste hiperemi, skleral konjesyon, konjuktivit görülebilir. 1-7 gün sürebilen bu fazın ortalama süresi 3 gündür(10). 3. Hemorajik faz; genellikle 2-3 gün gibi kısa sürer. Genellikle hastalığın 3-5. günlerinde başlar ve hızlı bir seyir gösterir. Bu dönemin ateşle herhangi bir ilişkisi yoktur (10). Hemoraji peteşiden başlayarak, müköz membran ve derideki büyük hematomlara kadar ilerleyebilir. Diğer bölgelerden kanamalar vajen, diş eti ve serebral kanamaları içerir(20). En sık kanayan bölgeler ise burun, GİS (hematemez, melena ve intraabdominal), genital (menometroraji), idrar (hematüri) ve solunum yollarıdır. Türkiye’de vakaların % 20-40’ında hepatomegali; % 14-23’ünde ise splenomegali bulunur (15). 4. Konvalesan faz hastalık başlamasıyla beraber 10-20 gün içinde başlar. Bu dönemde değişken nabız, taşikardi, komplet saç kaybı, polinörit, solunum zorluğu, kserostomi, görme azlığı, işitme kaybı, hafıza kaybı olabilir(10). Tanıda trombositopeni, lökopeni, AST-ALT-LDHCKP düzeylerinde artış, PT ve aPTT sürelerinde uzama, fibrinojen düzeyinde azalma ve fibrin yıkım ürünlerinde artma görülebilir. CBC ve Biyokimyasal testler 5-9 günde normal seviyelerine inerler (21). Virüs izolasyonu 2-5 günde sağlanabilir ama hücre kültürleri sensitiviteden yoksundur ve genellikle hastalığın ilk 5 gününde karşılaşılan yüksek viremi ilişkisini gösterir (22). KKKA virüs enfeksiyonunun hızlı laboratuar teşhisi için seçilecek metot Revers Transkriptaz PCR’dir. Bu yöntem hızlı, yüksek sensitif ve yüksek spesifiktir (23). Hastalık ortaya çıktıktan sonra ilk 7 gün içinde İg M ve İg G TAF Preventive Medicine Bulletin, 2008: 7(5) antikorları serolojik olarak ELİSA ve İmmünfloresan yöntemi ile tespit edilebilir(24). Tedavinin temeli; trombosit, TDP ve eritrosit ile yapılan destekleyici tedaviye dayanır. Hastada potansiyel kanama alanları tespit edilmeli ve bulaştırma riski için koruyucu önlemler alınmalıdır. Sıvı elektrolit dengesine dikkat edilmelidir. Etki mekanizması açık olmamakla beraber Ribavirin tavsiye edilen antiviral ajandır. Bu ilacın akut respiratuar sendrom tedavisinde kullanımına bağlı hemolitik anemi, hipokalsemi ve hipomagnezemi yan etkileri bildirilmiştir (25,26). ROCKY DAĞLARI BENEKLİ ATEŞİ (RDBA) Amerikan Köpek Kenesi (Dermecentor variabilis) ile taşınan bakteriyel (Ricketsia ricketsii) bir enfeksiyondur (27). Kan damarlarının endoteliyal ve düz kas hücrelerini etkileyen küçük, pleomorfik,zorunlu hücre içi parazitidir. Hastalık Amerika’nın kuzeybatısında ilk kez 19.yy ın sonlarında tanımlanmıştır. Hastalık etkeni ajan ise 1900’lü yılların başlarında Howard Ricketts tarafından tanımlanmıştır (28). İnsandan insana geçiş tanımlanmamıştır (29). Hastalık kuzey, orta ve güney Amerika da endemiktir. İsmine rağmen yıllık vakaların sadece % 2’si Rocky dağları bölgesinde görülür (27). 5-9 yaşlarındaki çocuklar ve 60 yaşın üstündeki erişkinler olmak üzere iki tepesi olan bimodal yaş dağılımına sahiptir. 1998 yılında 365 vaka bildirilmiştir (29). Çoğu vaka 1 Mayıs-31 Temmuz arasında bildirilir ki bu dönem köpek kenesi populasyonunun en yüksek seviyede olduğu dönemdir. Hastalık çoğunlukla vahşi hayvan ve kenelerin birlikte bulundukları alanlarda ortaya çıkar. İmmatür evrelerde keneler tarla faresi gibi küçük kemirgenler üzerinde; erişkin olanlar ise insan ve köpek gibi daha büyük canlılar üzerinde yaşarlar (27). Ricketsia ile enfekte olan hastalar genellikle ısırık sonrasındaki 5-10 günlük bir inkübasyon periyodunu takiben hastalık ortaya çıktıktan sonraki ilk hafta içinde doktora başvururlar (30). Hastalık; ateş, bulantı, kusma, iştahsızlık, baş ve kas ağrısını içeren başlangıç belirtileri verir (27,31). Ateşin 2-5’ inci gününde önkol, el ve ayak bileği üzerinde küçük, düz, pembe ve kaşıntısız noktalar şeklinde benekli bir döküntü gelişir (30,31). Bu benekler üzerlerine basınç uygulandığında solarlar. Hastalığa ait bu karakteristik döküntü genellikle 6. güne kadar ortaya çıkmaz ve hastaların % 35-65 inde görülür (31,32). Döküntü genç hastalarda yaşlılara göre daha erken gelişir (30). Döküntü daha sonra avuç içi ve ayakaltı dâhil vücudun geri kalan bölümlerine yayılır (27). Bu durum ise hastaların % 50-80’ inde ve ancak geç evrelerde görülebilir. Hastaların % 10-15’ inde ise hiçbir zaman döküntü gelişmez (30,31). Temel laboratuar testlerinde normal veya hafifçe baskılanmış WBC, trombositopeni, yükselmiş karaciğer transaminazları ve hiponatremi bulunur. BOS incelendiğinde monosit hâkimiyeti olan bir beyaz küre artışı tespit edilir (31,32). Hastalığın ensefalit, non kardiyojenik pulmoner ödem, ARDS, kardiyak aritmiler, koagülopati, GİS kanaması ve deri nekrozunu da içeren major komplikasyonları vardır. Eğer tedavi edilmezse 8-15 gün içerisinde ölüm gerçekleşebilir. Mortalite oranı tedavi edilmemiş vakalarda % 25; tedavi edilmiş vakalarda % 5 olarak rapor edilmiştir (28). Tanı öykü ve fizik muayeneye dayanır. Eğer döküntü mevcut ise rickettsial organizma deriden yapılan biyopsideki vasküler endotel içinde direk immünofloresan veya immünoperoksidaz boyama yöntemiyle tespit edilebilir (31,33). Ama bu yöntem çok sık kullanılmamaktadır (34). Seroloji tanıyı destekleyebilir ancak bu da hastalığın ortaya çıkışından 7-10 gün sonra pozitifleşir (31). Mümkün olan en kısa sürede antibiyotik tedavine başlamak önemlidir (27,35). Tetrasiklin ve kloramfenikol tedavide etkindir. Bazı hastalarda doksisiklin birinci tercihtir. Tedavi en az 5-7 gün devam etmeli veya hasta en az iki gün afebril olana kadar sürmelidir (31,36). Ölümlerin çoğu medikal tedavideki gecikme nedeniyledir. Hastalık erken fark edilip tedavi edilirse hızlı bir düzelme gösterir (27). LYME HASTALIĞI Kalp, eklem ve sinir sistemini de içeren; ciddi problemler oluşturabilen Lyme hastalığı siyah bacaklı olarak adlandırılan geyik kenesi (İxodes scapularis) ile taşınan bir bakteriyel hastalıktır (27). Sıcaklık 35 Fahrenheit üzerinde olduğu sürece tüm yıl boyunca aktif kalabilirler. Zirve aktivite ayları nymphler için Mayıs-Haziran; erişkinler için ise Ekim-Kasım aylarıdır. Borelia burgdorferi adlı spiroketin neden olduğu Lyme hastalığı hem ABD de hem de dünyada kene ile taşınan en yaygın hastalıktır (28,35,36). Birleşik devletlerde ilk kez 1975 yılında Connecticut’ta bulunan Lyme bölgesinde çok fazla sayıda çocukta görülen artrit vakaları sonucunda bildirildi (26). Borelia hastalığa neden olan ajan olarak 1980’li yılların başlarında izole edilebilmiştir (33). Hastalığın 15 yaş gençlerde ve 29 yaşlarda olan iki tepeli bimodal bir yaş dağılımı vardır ve birçok vaka Mayıs-Eylül döneminde meydana gelir. ABD’de TAF Preventive Medicine Bulletin, 2008: 7(5) 464 1999 yılında hastalık kontrol ve korunma merkezine (CDC) 16273 vaka rapor edilmiştir (37). ABD’de ki araştırmalar kenelerin Lyme hastalığını nymph evresinde beslenmenin 2 ya da daha sonraki günlerinde naklettiklerini göstermiştir (26). Bu evrede 2 mm den küçük olduklarından sıklıkla fark edilmezler; beslenmek ve enfeksiyonu yaymak için fazla zamanları vardır. Erişkin keneler ise daha büyük olduklarından fark edilmeleri ve vücuttan uzaklaştırılmaları daha kolaydır. Kene uygun teknikle erken dönemde çıkarılırsa enfeksiyonu yayma şansı çok azdır (26). Lyme hastalığının 3 evresi bunlunur: 1. Erken lokalize evrede; kene ısırığını takiben günler içinde (7-14 gün) hastaların % 60-80 inde Eritema Cronicum Migrans adı verilen kırmızı, yavaşça genişleyen boğa gözü şeklinde döküntü meydana gelir (34,30). Isırık etrafında küçük, kırmızı bir papül olarak başlar; günler içerisinde merkezden dışa doğru genişler. Lezyonun merkezinde hiperemik, deriden kabarık bir beneklenme kalabilir ve ortalama çapı 16 cm olan lezyonun çapı bazı vakalarda 70cm’ye kadar ulaşabilir. Döküntü ile beraber yorgunluk, kas ağrısı, eklem ve baş ağrısı, ateş ve üşümeyi içeren sistemik semptomlar olabilir. Fizik muayenede boyun sertliği, bölgesel adenopati ve ısırık bölgesinden bağımsız bölgelerde, primer lezyondan daha küçük sekonder deri lezyonları görülebilir. Eğer tedavi edilmezse genellikle birkaç haftadan daha uzun bir sürede kendiliğinden iyileşir (34,35). 2. Hastalığın erken dissemine formu kene ısırığını takiben günler-aylar içinde birçok sistemi de içeren semptomlarla ortaya çıkar. Birçok hasta kene tarafından ısırılıp ısırılmadığını hatırlamaz. Hastalarda eritema kronikum migrans olmayabilir. Lenfositik menenjit, sıklıkla Bell palsi gibi kraniyel sinir palsileri, azalmış duyu, güçsüzlük ve refleks yokluğunu da içeren nörolojik semptomlar olabilir (5- 2). Kardiyak semptomlar çoğunlukla erkeklerde olur, bitkinlik ve çarpıntı şeklinde ortaya çıkar. Çeşitli derecede atriyoventriküler bloklar ve orta derecede peri/miyokardit olabilir. Artrit genelde geç ortaya çıkar ama bu evrede de görülebilir. Bölgesel veya jeneralize adenopati, konjonktivit, iritis, hepatit ve mikroskopik hematüri veya proteinüri görülebilir (32,34,35) 3. Hastalığın geç evresi sıklıkla kronik artritle karakterizedir. Bu durum tedavi edilmemiş eritema migransı olan hastaların yaklaşık % 10 unda meydana gelir. Büyük eklemleri özellikle de diz eklemini içeren mono veya asimetrik oligoartriküler artrit olarak tanımlanmıştır. Nörolojik sistem subakut ensefalopati, aksonal polinöropati ve lökoensefalopati şeklinde etkilenebilir. Geç bulgular genelde birkaç yıl içinde spontan olarak iyileşir (30,32). Teşhis edilmesi zor bir hastalıktır (38).Tanı, öykü ve fizik muayeneye dayanır. Rutin laboratuar testleri tanıda rolü azdır. Seroloji testleri tanıyı doğrular ancak hastalığın ortaya çıkmasından 4-6 hafta sonrasına kadar tanı değerleri yoktur (30). ELİSA testi % 89 sensitif, % 72 spesifiktir. Pozitif test sonuçları Western Blot ile desteklenmelidir. PCR özellikle etkilenmiş eklemlerden alınan eklem sıvılarında yararlıdır (40). Eğer nörolojik bulgular varsa BOS’tan çalışma yapılabilir. Sinoviyal sıvı artritin ayırıcı tanısını yapmak için alınır. Organizmanın doku ve vücut sıvılarından izolasyonu çok zordur (31). Hastalığın sahip olduğu ciddi sekel potansiyeli nedeniyle erken tanı ve tedavi önem taşır. Ciddi vakalarda parenteral antibiyotikler gerekir. Erken dönemde yakalanırsa oral antibiyotiklerle tedavi edilebilir(26). Amoksisilin ve doksisiklin 2-3 hafta süre ile tedavide tercih edilir. Komplike olmayan vakalarda tedavi en az 14-21 gün; ciddi veya komplike vakalarda 30 gündür (41). Hastalık nadir görülür ama oldukça fatal seyreder (30). 1998 yılında Amerikan Gıda ve İlaç Dairesi hastalıktan korunma da kullanılmak üzere ilk kez bir aşıya onay verdi. Rekombinant OspA (LYMErix) aşısı üzerindeki iki çalışma aşının semptomatik enfeksiyondan korunmada % 76-92 arasında etkili olduğunu göstermiştir. Aşı keneye maruziyet açısından yüksek veya orta riskli kişilere önerilmiş, düşük riskli veya risksiz olan kişilere, 15 yaşından gençlere, 70 yaşını geçmiş yaşlılara ve yeterli çalışma olmamasından dolayı hamilelere önerilmemektedir (42). ERLİKİYOZ Hastalık küçük, gram-negatif, pleomorfik, zorunlu hücre içi bir organizma olan Ehrlichia tarafından oluşturulur. ABD’ de Ehrlichia chaffeensis ve Ehrlichia ewingii’ nin neden olduğu İnsan Monositik Erlikiyozu (İME) ve henüz isimlendirilmemiş bir ehrlichia türünün, muhtemel Ehrlichia phagocytophila/Ehrlichia equi’nin neden olduğu İnsan Granülositik Erlikiyozu (İGE) olmak üzere iki farklı formu vardır (43). Ehrlichia chaffeensis yıldız kenesi olan Amblyomma americanum tarafından taşınır. Beyaz kuyruklu geyik bu kenenin tek major konağıdır ve tek doğal rezervuardır (35). Hastalık ilk kez 1935 yılında bir grup araştırma köpeğinde tespit edildi. 1986 yılında insanda tanımlandı. Dünya çapında yaygın bir hastalık TAF Preventive Medicine Bulletin, 2008: 7(5) olmasına rağmen vakaların çoğu ABD’ de bildirilmektedir. Her iki türün de çoğu vakası Nisan- Eylül döneminde görülür. Vakaların % 75’ten fazlası erkeklerde görülür ve yaşlılar daha sık etkilenir. Klinik her iki türde de birbirine benzer. Hastalar kene ısırığı sonrası 7-10 günlük bir inkübasyon periyodunu takiben hastalanmanın ilk haftası içinde sağlık kuruluşuna başvururlar. Belirtiler ateş, baş ağrısı, kırgınlık ve kas ağrısıdır. Buna ek olarak bulantı, kusma, ishal, öksürük, eklem ağrısı, konfüzyon ve vucutta döküntü olabilir (35). Döküntü; İME olan erişkin hastaların yarısından biraz azında; İGE olan erişkin hastaların ise % 10’ undan biraz azında görülür. Bununla beraber enfekte çocuk hastaların % 60’ında döküntü görülmeyebilir. Döküntü gövdeyi içerir ama elleri ve ayakları tutmaz ve ısırık bölgesiyle ilişkili değildir. Maküler, papüler, retiküler, makülopapüler veya peteşiyel şekillerde olabilir. İGE de respiratuar veya renal yetersizlik, fırsatçı enfeksiyonlar veya hemoraji(DİC) gibi komplikasyonlar çok sık görülür (29). Laboratuar bulguları ise lökopeni, trombositopeni ve artmış karaciğer transaminazlarından oluşur. İGE de orta derecede bir anemi; hem İGE hem de İME de artmış ESR, BUN, kreatinin; İME de ise yükselmiş protein düzeyi ve lenfositik pleositozu olan BOS bulunabilir (44). Tanı öykü, fizik muayene ve laboratuar bulgularına dayanır. Seroloji tanıyı destekler ancak 1-2 haftada pozitifleşir. PCR da tanıyı destekler ancak akut safhada yapılmalıdır. Kültürler yararlı değildir. Tanıdaki temel metot konvelasan evredeki serokonversiyonun tespitidir. Tedavide tercih edilecek ilaç Doksisiklin’dir. Alternatif olarak kloramfenikol ve rifampin kullanılabilir. Tedavi süresi en az iki hafta olmalıdır. Tedavi edilmediği zaman tüm hasta grubunun % 50 sine varan bir oranda hospitalizasyon gerektiren ciddi bir hastalık oluşabilir. Uzamış ateş, böbrek yetersizliği, DİC, ARDS, meningoensefalit, nöbet veya koma şeklinde ciddi manifestasyonlar olabilir. Öngörülen mortalite oranı % 2-3 dür ve E.chaffeensis tarafından oluşturulan enfeksiyon diğer erlikiyoz türlerinden daha ciddidir (35). TULAREMİ Tularemi; küçük, gram negatif, hareketsiz bir kokobasil olan Francisella tularensis tarafından oluşturulan enfeksiyöz bir hastalıktır. Hastalık aynı zaman da Tavşan ateşi olarakta bilinir. İnsanlara sindirim, inokülasyon, inhalasyon ve kontaminasyon yollarıyla bulaşabilir. Amerika ‘da vakaların yarısından fazlasında kene ısırığı sorumludur (31). Her yıl bu ülkede 150-300 arasında vaka rapor edilir. Hastalık erkeklerde sık görülür. Özellikle kış aylarında avcılıkla uğraşanların derilerideki küçük lezyonların avlanan enfekte tavşanla teması ile bulaşır. Yaz ve sonbahar mevsimlerinde zirve yapar (45). İyi pişmemiş enfekte etler ve kontamine sular da bulaşma nedenidir. İnkübasyon periyodu ortalama 3-5 gündür. Birçok hastada ateş, üşüme, baş ağrısı, kırgınlık, anoreksi, yorgunluk, öksürük, kas ağrısı, göğüste rahatsızlık hissi, kusma, karın ağrısı ve ishali de içeren generalize semptomlar bulunur. Bunlara ek olarak hasta 6 farklı klasik modelden biriyle gelebilir: 1. Ülseroglandüler model: en sık görülen ve en kolay fark edilendir. Hastalar içerdiği lenf bezlerine drene olan bölgedeki ağrılı deri ülseriyle beraber olan, lokalize, hassas lenfadenopatilerden sikayetçidirler. En sık tutulan lenf bezleri çocuklarda servikal ve oksipital; erişkinlerde inguinal bölgede olanlardır. 2. Glandüler tip ise ülseroglandüler tip ile benzerdir ama bunda deri ülseri yoktur. 3. Oküloglandüler tipte organizmalar konjonktivaya yerleşmişlerdir. Vakaların % 90’ında tek taraflı tutulum olur. Fotofobi ve artmış lakrimasyonu içeren erken belirtiler vardır. Geç dönemde hastalarda göz kapağı ödemi, skleral enjeksiyonu olan ağrılı konjonktivit, kemozis ve küçük yeşil konjonktival ülser veya papül gelişir. Priaurikülar, submandibular ve servikal bezler sıklıkla tutulur. 4. Faringeal tipte ise organizmalar orofarinkse yerleşmişlerdir. Ciddi boğaz ağrısı bulunur. Fizik muayenede eksudatif farenjit veya tonsilit; servikal, preparotit veya retrofarengeal lanfadenopati bulunabilir. 5. Tifoid model ise herhangi bir lenfadenopati ile ilişkili değildir. Diğer tiplerde belirtilen genel semptomlara ek olarak burada sulu ishal vardır. 6. Pnömonik tip ise akut respiratuar bir hastalık olarak ortaya çıkar. Belirtiler ateş, minimal balgamlı veya balgamsız öksürük, substernal göğüs hassasiyeti ve plörotik göğüs ağrısından oluşur. Radyografilerde lobar, apikal veya miliyer infiltrasyonlar, hiler adenopati ve plevral efüzyon bulunabilir (45). Tanı; hikâye ve fizik muayeneye dayanır. Laboratuar testleri genellikle spesifik değildir. WBC ve ESR düzeyleri normal yâda hafif yüksektir. Organizma kültürde üretilebilir ama bu yöntem laboratuar çalışanlarına bulaşma riskinden dolayı sıklıkla kullanılan bir yöntem değildir. Göğüs radyografilerinde oval opasite, hiler adenopati ve plevral efüzyon triadından oluşan bulgular olabilir. Seroloji yaklaşık iki haftalık bir süre içinde tanıyı destekler (31). TAF Preventive Medicine Bulletin, 2008: 7(5) 466 www.korhek.org Hastada menenjit düşünülmüyorsa streptomisin ilk seçilecek ilaçtır. Alternatif olarak gentamisin, tetrasiklin, kloramfenikol ve florokinolonlar düşünülebilir. Tedavi 7-14 gün sürmelidir. Korunmada canlı aşı mevcuttur ve laboratuar çalışanları ve patojene tekrarlayan maruziyeti olan kişilere uygulanabilir. BABESİYOZ Hastalık etkeni eritrositleri enfekte eden ve hemolizlerine neden olan Babesia genusuna ait protozoal bir parazit olan Babesia divergens veya Babesia microti’ dir. Hastalık geçişi İxodes kenelerinin farklı türleri ile olur. Etken geyik kenesi ile taşınır (46). Hastaların % 5 kadarında fulminan seyrederek hospitalizasyon veya ölümle sonuçlanan bir tablo oluşturur. Özellikle splenektomi yapılmış hastalarda ciddi hastalık tablosu oluşturur. Tripanozoma’dan sonra memelilere kan yoluyla bulaşan en sık ikinci parazittir (47). Semptomlar diğer kene ile geçen hastalıklara benzer ve inokülasyondan bir hafta sonra başlayan influenza benzeri belirtiler verir. Ateş, terleme, kas ağrısı ve baş ağrısı görülür. Hemolitik anemi, hemoglobinüri, böbrek yetersizliği yapabilir. Enfeksiyon genç erişkinlerde yıllarca asemptomatik olarak kalabilir (46). Nadir de olsa oftalmik tutulum olabilir. Hastada ateş, hemolitik anemi ve uygun temas öyküsü varsa babesiyoz düşünülebilir. Tanı kan yaymalarda protozoanın tespitine dayanır. Karakteristik olarak Malta Haçı görünümü vardır. Serolojik testler ve PCR yardımcı yöntemleridir. Orta derecedeki vakalar semptomatik tedavi gerektirir. Persistan yüksek ateş, progresif anemi, yükselen parasitemi olan ciddi vakalarda Kinin+Klindamisin veya Atovaquon+Azitromisin en az 7-10 gün boyunca kullanılmalıdır. Yüksek parasitemisi olan ciddi hastalarda exchange transfüzyon yapılabilir (46). KOLORADO KENE ATEŞİ Hastalık bir ağaç kenesi olan D.andersoni tarafından nakledilen RNA orbivirus tarafından oluşturulur. Çoğunlukla Amrikadaki Rocky dağları bölgesinde her yıl 200-300 arasında vaka tespit edilir. İmmün yetmezliği olan ve splenektomi geçirmiş olan hastalar ciddi komplikasyonlar açısından risk altındadır (46). İnokülasyondan sonra bir hafta içinde influenza benzeri semptomlar başlar. Hastaların üçte birinde boğaz ağrısı bulunur. En önemli özelliği; menenjit, döküntü ve konjuktivit ile ilişkili olan bifazik ateştir. Hastalık genellikle 7-10 gün arasında sonlanır. Tanı genellikle immünfloresan boyama ile konur. Bununla beraber lökopeni ve trombositopeni bulunabilir. Spesifik bir tedavi yoktur. Destek tedavisi verilir. Belirtiler ortaya çıkmışsa diğer kene geçişli hastalıkları kapsayan ampirik olarak tetrasiklin, doksisiklin veya kloramfenikol kullanılabilir. DÖNEK ATEŞ Hastalığa Borrelia genusundan bir spiroket neden olur. Ornithodoros genus keneler esas vektördür. Tipik olarak hastalık sporadiktir (48). Ortalama inokülasyon periyodu bir haftadır. İnfluenza benzeri semptomlar, artralji, bulantı ve kusma olur. Genellikle 40 derecenin üzerinde, düzensiz ve bazen deliryumla ilişkili ateş olabilir. Hastaların çoğunda splenomegali bulunur. Meningeal bulgular olabilir. Epistaksis hemoptizi, iridosiklit, koma, kraniyel sinir palsi, pnomonit, miyokardit ve dalak rüptürünü içeren komplikasyonlar olabilir. Tanı; kan, kemik iliğinde ve ateş epizotu sırasında BOS’da spiroketin tespitiyle konulabilir. Lökosit sayısı normal veya orta derecede artmıştır. Trombositopeni tespit edilebilir. Tedavide 5-10 gün boyunca doksisiklin tercih edilir. Alternatif olarak eritromisin kullanılabilir. Eğer ilaçlar geç febril evrede verilirse Jarisch- Herxheimer reaksiyonu meydana gelebilir. Antibiyotik tedavisinin öncesi ve sonrasındaki 2 saatlik periyotlarda asetaminofen uygulanması reaksiyonun ciddiyetini azaltabilir. KOMBİNE ENFEKSİYONLAR Aynı kene birden fazla enfeksiyöz patojende taşıyabilir. Bundan dolayı bir ısırıkla birden fazla hastalığı bulaştırabilir. Örneğin İ.scapularis; erlikiyoz, lyme hastalığı ve babesiyozu bulaştırabilir. Lyme hastalığı bulunanların % 23’ünde babesiyoz; % 10-30 unda erlikiyoz bulunur. Kombine enfeksiyonların daha ciddi semptomlar oluşturacağı akılda bulundurulmalıdır. KAYNAKLAR 1. Rajput ZI, Hu S, Chen W, Arıjo AG, Xiao C. Importance of ticks and their chemical and immunological control livestock. Journal of Zhejiang University. 2006; 7(11): 912-921. TAF Preventive Medicine Bulletin, 2008: 7(5) www.korhek.org 467 2 Furman DP, Loomis EC. The ticks of California (Ascari: Ixodida). University of California Publications. Bulletin of the California Insect Survey. 1984; 25: 1-239. 3. Edlow JA, Danzl D, Halamka J, Pollack VC. Tick- Borne Diseases. www.eMedicine.com. 4. Snelson JT. Animal ectoparasites and disease vector causing major reduction in world food supplies. FAO Plant Prodection Bulleton. 1975; 13: 103-114. 5. Barker SC, Murrell A. Systematics and evolution of ticks with alist of valid genus and species names. Parasitology. 2004; 129(7):15-36. 6. Klompen JSH, Black WC, Keirans JE, Oliver JH. Evolition of tiks. Annu Rev Entomol. 1996; 41(1): 141-161. 7. Güler S, 198. Ankara ve civarındaki koyun ve keçilerde kış ixodidaeleri üzerine araştırmalar. U. Ü. Vet. Fak. Derg. 1 :54-55. 8. Güler S, Özer E, Erdoğmş SZ, Köroğlu E, Bektaş İ. Malatya ve bazı Güneydoğu Anadolu illerinde sığır, koyun ve keçilerde bulunan kene türleri. Doğa-Tr. J. Of Veterinary and animal Science. 1993; 17: 229-231. 9. Karaer Z, Yukarı BA, Aydın L. Türkiye keneleri ve vektörlükleri. Parazitolojide Andropod Hastalıkları ve Vektörler. İzmir, Türkiye. Parazitoloji Derneği Yayın No: 13, 1997, p. 363-434. 10. Hoogstraal H. The epidemiologymof tick borne Crimean-Congo hemorrhagic fever in Asia, europe and Africa. J Med Entomol 1979; 15: 307- 417. 11. Watts DM, Ksiazek TG, Linthicum KJ, Hoogstraal H. Crimean-Congo hemorrhagic fever. In:Monath TP, ed. The arboviruses: epidemiology and ecology, volume 2. Boca Raton, FL, USA:CRC Pres, 1988, p. 177-260. 12. Ergönül O, Celikbaş A, Dokuzoğuz B, Eren S, Baykam N, Esener H. The characteristicks of Crimean-Congo hemorhagic fever in a recent outbreak in Turkey and the impact of oral ribavirin therapy. Clin Infect Dis. 2004; 39: 285-89. 13. Ergönül Ö. Crimean-Congo haemorrhagic fever. The Lancet. 2006; 6: 203-214. 14. Kartı SS, Odabaşı S, Korten V, et al. Crimean- Congo hemorrhagic fever in Turkey. Emerg Infect Dis. 2004; 19: 1379-84. 15. Ozkurt Z, Kiki I, Erol S, et al. Crimean-Congo hemorrhagic fever in Eastern Turkey: clinical features, risk factors and efficacy of ribavirin therapy. J Infect. 2006; 52: 207-15. 16. Türkiye’de KKKA yayılım haritası. www.tvhb.org.tr 17. Whitehause CA. Crimean-Congo hemorrhagic fever. Antivir Res 2004; 64: 145-60. 18. Swanepoel R, Gill DE, Shepherd AJ, et al. The clinical pathology of Crimean-Congo hemorrhagic fever. Rev Infect Dis. 1989; 11: 794-800. 19. Smego RA, Sarwari AR, Siddiqui AR. Crimean- Congo hemorrhagic fever: Prevention and control limitations in a resource poor country. Clin Infect Dis. 2004; 38: 1731-35. 20. Swanepoel R, Shepherd AJ, Leman PA, et al. Epidemiologic and clinical features of Crimean- Congo hemorrhagic fever in southern Africa. Am J Trop Med Hyg. 1987;36: 120-32. 21. Ergönül O, Celikbaş A, Baykam N, Eren S, Esener H, Dokuzoğuz B. Analysis of the mortality among the patients with Crimean-Congo hemorrhagic fever virus infection. Clin Microbiol Infect (in press). 22. Burt FJ, Leman PA, Abott JC, Swanepoel R. Serodiagnosis of Crimean-Congo haemorhagic fever. Epidemiol Infect. 1994;113: 551-62. 23. Schwarz TF, Nsanze H, Longson M, et al. Polymerase chain reaction for diagnosis and identification of distinct variants of Crimean- Congo hemorrhagic fever virus in the United Arab Emirates. Am J Trop Med Hyg. 1996; 55: 190-96. 24. Ahephered AJ, Swanepoel R, Leman PA. Antibody response in Crimean-Congo hemorrhagic fever. Rev Infect Dis. 1989; 11: 801- 806. 25. Knowles SR, Phillips EJ, Dresser I, Matukas I. Common adverse events associated with the use of ribavirin for severe acte respiratory syndrome in Canada. Clin Infect Dis. 2003; 37: 1139-42. 26. Chiou HE, LiuCI, Buttrey MJ, et al. Advere effects of ribavirin and outcome in severe acute respiratory syndrome: experience in two medical centers. Chest. 2005; 128: 263-72. 27. Ticks. www.co.franklin.oh 28. Walker DH, Raoult D. Rickettsia rickettsii and other spotted fever group rickettsiae (Rocky Mountain spotted fever and other spotted fevers). In: Mandel GL, Douglas RG, Bennett JE Dolin R, eds. Mandell, Douglas and Bennett’s Principles and practice of infectious diseases. 5th ed. Philadelphia. Churchill Livingstone, 2000, p. 2393-402. 29. Walker DH. Tick-transmitted infectious diseases in the United States. Annu Rev public Health 1998; 19: 237-69. 30. Tick information. www.cdc.gov. 31. Spach DH, Liles WC, Campbell GL, Quick RE, Anderson DE Jr, Fritsche TR: Tick-borne diseases in the United States. N Engl J Med. 1993; 329: 936-47. 32. Thorner AR, Walker DH, Petri WA Jr. Rocky mountain spotted fever. Clin Ifect Dis. 1998; 27: 1353-60. TAF Preventive Medicine Bulletin, 2008: 7(5) 468 www.korhek.org 33. Steeve AC. Lyme borreliosis. In: Kasper DL, Harrison TR: Harrison’s Manual of medicine.16th ed. New York: McGraw-Hill, 2005, p. 995-9. 34. Tick-borne diseases. www.aafp.org. 35. Centers for Disease Control and Prevention. Rocky Mountain spotted fever. Accessed online April 11 2005. at: www.cdc.gov. 36. Taege AJ. Tick trouble: overview of tick-borne diseases. Cleve Clin J Med. 2000; 67: 245-9. 37. Ticks. www.health.nsw.gov.au. 38. Centers for disease control and prevention. Lyme disease-United States, 1999. MMWR morb Mortal Wkly Rep. 2001; 50: 181-85. 39. Steere AC, Bartenhagen NH, Craft JE, Hutchinson GJ, Newman JH, Rahn DW, et al. The early clinical manifestation of Lyme disease. Ann Intern Med. 1983; 99: 76-82. 40. Beers MH, Berkow R. The Merck manual of diagnosis and therapy. 17th ed. Merck Research Laboratories. Whitehause Station, n.J, 1999. 41. Treatment of Lyme disease. Med Lett Drugs Ther. 2000; 42: 37-9. 42. Deborah SF. Prevent Tick bites: Prevent Lyme Disease. Rutgers Coperative extensions. 1992, FS637. 43. Belman AL. Tick-borne diseases. Semin Pediatr Neurol. 1999; 6: 249-66. 44. Fritz CL, Glaser CA. Erlichsis. Infect Dis Clin North Am. 1998; 12: 123-36. 45. Cox SK, Everett ED. Tularemia, an analysis of 25 cases. Mo Med 1981; 78: 70-4. 46. Bratton RL; Corey GR. Tick-Borne Diseases. www.aafp.org. 47. Kjemtrup AM, Conrad PA. Human babesiosis: an emerging tick-borne disease. Int J Parasitology. 2000; 30: 1323-1337. Kaynak:TAF Preventive Medicine Bulletin, 2008: 7(5) Konu İle İlgili PDF formatını buradan indire bilirsiniz http://www.korhek.org/khb/khb_007_05-461.pdf

http://www.biyologlar.com/kene-ile-bulasan-hastaliklar

KPSS İle Sağlıkçı Alımında Yeni Gelişme

KPSS İle Sağlıkçı Alımında Yeni Gelişme

ÖSYM geçen hafta resmi internet sitesinden yaptığı duyuruda 6-11 haziran tarihlerinde Sağlık Bakanlığı için 4.B personel alımı yapılacağını duyurmuştu. Çalışma Bakanı Faruk ÇELİK'in  bugün ajanslara yaptığı açıklamada ise KPSS-2012/1 ile 17 Bin 387 Personel Alınacak' dedi. Tarih olarakta 18-27 haziran 2012 tarihini açıkladı. Açıklamasında 7 bin 114 sağlıkçı alınacağı belirtildi. Hem ÖSYM hemde Bakanın açıklamalarına bakılınca 6-11 haziran ve 18-27 haziranda iki farklı alım olacağı görülmektedir.Her iki açıklamada da ayrı ayrı kpss/2012-1 ve kpss 2012-4 alımları açıkça görülüyor BAKAN ÇELİK'İN AÇIKLAMASI; Çalışma ve Sosyal Güvenlik Bakanı Faruk Çelik, 2012/1 yerleştirmelerinde, kamu kurum ve kuruluşlarınca toplam 17 bin 387 kadro ve pozisyon için yerleştirme talebinde bulunulduğunu bildirdi. Kamu Personel Seçme Sınavı (KPSS) sonuçlarına göre haziran ayında yapılacak merkezi yerleştirme işlemlerine ilişkin yazılı açıklama yapan Çelik, kamu kurum ve kuruluşlarınca Devlet Personel Daire Başkanlığı'na bildirilen kadro ve pozisyonların, incelenerek, ilan edilmek üzere ÖSYM Başkanlığı'na gönderildiğini belirtti. Bu yıla ait KPSS yerleştirme takvimine göre, 18-27 Haziran tarihleri arasında tercihlerin alınacağını belirten Çelik, 2010 KPSS sonuçlarının, merkezi yerleştirmelerde son defa kullanılacağını kaydetti. Çelik, 2012/1 yerleştirmelerinde, kamu kurum ve kuruluşlarınca toplam 17 bin 387 kadro ve pozisyon için yerleştirme talebinde bulunulduğunu, bunların yüzde 16,53'ünün ortaöğretim, yüzde 27,47'sinin önlisans, yüzde 56'sının lisans düzeyinde olduğunu bildirdi. -Kadro ve pozisyonların dağılımı- Kadro ve pozisyonların kamu kurum ve kuruluşlarına göre dağılımı şöyle: ''Üniversiteler hariç 190 sayılı Kanun Hükmünde Kararname'ye tabi kurumlar 10 bin 813; üniversiteler 3 bin 956, mahalli idareler bin 36, kamu iktisadi teşebbüsleri (KİT) bin 582, sağlık ve yardımcı hizmetler sınıfı 7 bin 114, genel idare hizmetleri sınıfı 5 bin 511, teknik hizmetler sınıfı 2 bin 533, avukatlık hizmetleri sınıfı 491, yardımcı hizmetler sınıfı 134, eğitim öğretim hizmetleri sınıfı 22.'' KİT pozisyonlarının öğrenim durumlarına göre dağılımı da ''ortaöğretim 82, önlisans 130, lisans bin 370'' şeklinde gerçekleşti.-- EDİTÖRÜN NOTU: SAĞLIK BAKANLIĞI SADECE SAĞLIK PERSONELİ ALACAK. ÜNİVERSİTELER İSE DÜZ MEMUR, ŞOFÖR, HİZMETLİ,VHKİ VE SAĞLIK PERSONELİ ALACAK. ÜNİVERSİTELERE AYRILAN KADRONUN TAMAMI SAĞLIKÇI DEĞİLDİR.   Devamını Oku: http://www.personelsaglik.com.tr

http://www.biyologlar.com/kpss-ile-saglikci-aliminda-yeni-gelisme

EKOSİSTEMLERİN BELİRGİN ÖZELLİKLERİ

Canlılarla (hayvanlar,bitkiler,mikroorganizmalar) içinde bulundukları maddi ortamı birleştiren fonksiyonel (işlevsel) bütün. Yeryüzünde canlı yaratıkların tümü, biyosfer denilen ince bir kabukta yaşar. Biyosferin belirgin özelliği onu oluşturan hayvan ve bitki türlerinin çok çeşitliliği ve yapısındaki düzensizliktir. Bu düzensizlik, canlı yaratıklarla fizik ortam öğelerinin eşitsizlik eşitsiz dağılımında açıkça görülür. Ama bu çeşitliliğe karşın, canlıların biyosferdeki yerleşimi bir kargaşa şeklinde değildir. 1935 yılında ingiliz botanikçisi Arthur C. Tansley'in ekosistem adına verdiği birimler halindedir. Belirli bir ortamda yaşayan canlıların tümüne biyosenoz, bunların barındıkları ortama da biyotop denir. Ekosistem bu ikisinin ilişkisi ortak tanımlanabilir ; Biyotop + Biyosentez = Ekosistem EKOSİSTEMLERİN BELİRGİN ÖZELLİKLERİ Bir ekosistem biyosferin, bir bölümü ya da parçasıdır ; büyüklüğü ya da genişliği çok değişik olabilir. Bir su birikintisi, bir buğday tarlası birer ekosistemdir. Fakat kurumuş bir ağaç kütüğü gibi son derece belirgin ve dar sınırlı öğeler de birer ekosistem parçası sayılabilir. Ama kısıtlı ekosistemelerin genellikle zaman içinde sınırlı bir yaşamı vardır. Bu yüzden bunlar birer ekosistem parçası sayılır, sinüzi adıyla anılır. Bunun tam tersine Afrika savanaları ya da Avrupa'nın geniş yapraklı ormanları gibi, kimi ekosistemler çok geniş bölgeleri kaplar. İklimin denetimi altında bulunan kutuplardan ekvatora kadar az çok paralel bölgelere yayılan bu öğeler deformasyon (oluşum) veya biyom adıyla anılır. Bunlar, bir genel görünümün kendine özgü bir direy (fauna) ve bitey (flora) içeren karakteristik ana öğeleridir. Boyutları ne olursa olsun, bir ekosistemin sınırları az çok belirgindir. Çoğunlukla birbirine komşu ekosistem arasında bir geçiş bölgesi (ekoton) vardır. Geçiş bölgesi, bir ormanın kıyı çizgisi gibi veya ekvator ormanından savanalara geçişte olduğu gibi yaygın bir bölge olabilir. Ekotonların belirgin özelliği, kendine özgü iklimi ve daha zengin direyidir. Bunun için, kıyı kuşu türlerinin sayısı kara ve açık deniz kuşlarınınkinden fazladır. (Çünkü kıyı kesimi, anakara ile okyanus arasında bir ekoton oluşturur.) Ekosistemlerin sınırlarının belirlenmesi, özellikle hayvan sayısı gözönünde bulundurulacak olursa, hiç de kolay değildir. Bu konuda birçok örnekleme ve istatistik verilerini değerlendirme yöntemleri bulunmuştur. Bu bakımdan, bellibaşlı hayvan türlerinin bolluğunu, dağılımını, yıllık çevrimlerini, sayılarının azalıp çoğalmasını, metabolizmalarını bilmek gerekir. Bu veriler ya yerinde ya da yetiştirme yoluyla elde edilebilir. Bu birinci aşama tamamlandıktan sonradır ki, ekosistemleri yapısını ve işleyişini incelemeye başlamakmümkün olabilir. EKOSİSTEMLERİN EVRİMİ Bir ekosistem, insana durağan gözükse bile, jeolojik ölçü içinde evrime uğrar. Nitekim, ılıman Avrupa'da, çıplak toprağa canlıların yerleşmesi, otsu bitkilerin öncü olarak yerleşmesiyle başladı. Sonradan bunun yerini, birbirini izleyen çeşitli bitki toplulukları aldı ve klimaks da denen son evrede ormanlar ortaya çıktı. Ekosistemlerin bu evrimi de bazı yasalarla yönetilir. Evrim süresinde ekosistemlerin karmaşıklığı giderek artar ; türlerin sayısı çoğalır ; canlıyığın büyür, genişler. Brüt üretkenlik canlıyın oranı azalır, brüt üretkenlik solunum oranı bire yaklaşır. Bunun sonucu olarak da net üretkenlik sıfıra yönelir. Klimaks evresindeki bir ekosistem kararlı bir durumdadır : canlıyığını artık büyümez. EKOSİSTEM ÇEŞİTLERİ Belirli bölgede bulunan ve birbiri ile dolaylı ya da dolaysız ilişkide olan canlılarla bu canlıların yer aldığı cansız çevre ekosistemi oluşturur. Doğada büyük ekosistemler ve bunların içerisinde de daha küçük ekosistemler bulunur. Tabiat farklı özellikte pek çok ekosistemin birleşmesinden oluşur. Kara ve su ekosistemi olmak üzere başlıca iki çeşit ekosistem bulunur. Kara ekosistemlerini çayırlar, çöller, mağara, step, tundra, ova, dağ gibi daha küçük olan ekosistem parçaları oluşturur. Su ekosistemlerini de okyanus, deniz, göl, ırmak, havuz, bataklık gibi ekosistem parçaları oluşturur. Çevredeki ekosistemlerin birleşmesiyle yeryüzünün doğal ortamı oluşmaktadır. Çevredeki her ekosistem çeşidinin kendisine has olan farklı fiziksel ve kimyasal özellikleri bulunur. EKOSİSTEMDEKİ BOZULMALARIN ÇEVREYE ETKİLERİ Ekosistemdeki bozulma bir bütün olan çevrenin yapı ve işleyişini olumsuz etkiler. Bazı varlıkların azalması diğer bazı varlıkların azalmasına da neden olur. Madde döngülerinin gerçekleşmesi zorlaşır. Sonuçta doğadaki enerji tükenmeye doğru gider. 1. Dünya Coğrafyasının Değişmesi Ekosistemin yapı ve işleyişini oluşturan iklim, toprak, hava, bitki hayvan gibi faktörlerin olumsuz yönde değişmesi çevrenin ekolojik özelliklerini de değiştirir. - Uzun süren kuraklıklar sonucu bir ekosistemdeki bitki ve hayvan sayısı hızla azalır. - Suların kirlenmesi sonucu suya ışık girişi azalır, suyun hava oranı düşer. Toprakta oluşan tahribat ve kirlenmeler önce bitkilerin sonrada diğer canlıların zamanla ölmesine neden olur

http://www.biyologlar.com/ekosistemlerin-belirgin-ozellikleri

Yassı Solucanların Anatomisi

Polycclad Yassı Solucanların Anatomisi İsmininin de önerdiği gibi, serbest yaşayan solucanlar dorso-ventrally yassılanmış olup birkaç milimetreden daha kalın değildirler Boyutlar bir milimetreden daha azdan balar ve 30 cm nin üzerine kadar uzanır. Çoğu polycladler son derece hassastırlar ve tipik olarak düz bir dorsal yüzey içeren ve/veya oval şekillerine sahiptirler. Bununlar birlikte, dorsal papillae (Acanthozoan, Thysomozoan) sergilerler. Solucanların anteriorlarında uç kısımlarda dokanaç (tentacle) yer aldığından ve çok parlak renklere sahiptirler ve nadiren de olsa bazen yanlışlıkla nudribranc olarak kabul edilirmişlerdir. Fakat nudribranclara karşıt olarak, anterior sınırında dokanaçlar çoğunlukta basit bir yapı halinde tutunmuşlardır. Onlar yol boyunca nudribranclara nazaran daha fazla hareket ederler ve aynı zamanda çok ince yapıya sahiptirler ve elle tutulduklarında kırılmaya çok eğilimlidirler. Bununda ötesinde, onların özel terleme organları (gills) yoktur ve terleme solucanların tüm yüzeylerinde difuzyon yoluyla gerçekleştirilmektedir. Tüm yüzeylerinde difuzyon yoluyla gerçekleştirilir. Polycladler geniş bir renk çeşitliliği ve yapısı sergilerler. Onlar marginal buruşukluklara sahiptirler ve boyutları ile sayıca artmaya eğilimlidirler. Donük türler haricinde (siyah ve esas itibariyle siyah renkli) türler transparenttirler ve iç organları epidermis boyunca görülebilir. Özellikle ovarisleri parlak veya koyu renkli mor renklere sahiptir ve dorsal yüzeyin en dış kısmı binlerde vurucu cilia ile beraber engelleyici epidermistirler (ectodermal orijinli bir tek hücre tabakası). Onun da altında, dairesel kasın dış tabakası ve kasların iç tabakası birbirine parallel uzantı şeklindedir ve aralarında vucut plastisitesi mevcuttur. Dorsal ve ventral epidermis arasındaki boşluk parenchymal doku ile dolmuştur ku bu çok sayıda gizli hücrelere sahiptir ve bununla sümükler dışarı atabilirler ve diğer bileşenler epidermal boşluklarla oluşmuştur. Dorsal ve ventral epidermis arasındaki boşluk parenchymall doku ile dolmuştur ve çok dallanmış bağırsak ve üreme sistemi gibi organları içermektedir. Parenchymal doku mesodermal kökenli olup sümük dışarı ataliben çok yüksek sayıda gizli hücreler ve epidermal boşluklar içermektedir. Polyclad hidrostatik iskelete sahiptir ki bu sulu hayata çok güzel adapte olmasını sağlamaktadır. Mesodermdeki içsel vucut sıvısı kapalı vucut kompartmanında basınç altında tutulmakta ve vucut duvar kaslarının hareketine destek sağlama amacıyla hidrostatik iskelete karşı kuvvet uygulamaktadırlar. İki yönle hareket vardır. Küçük boyutlu türler ince kıla benzeyen ventral cilia ile vuruşlarla taban boyunca kaymasını sağlar. Büyük boyutlu türleri ise (Tysanozoan sp. gibi) aşağıda sol panelde gösterildiği gibi vucut kaslarının ritmik vuruşlarıyla yüzmeye muktedir olabilirler. Solucanlar vucutlarını ileri ve kıyıya atarak bir seri dalgalandırma yaratırlar ve yer üzerinde ileriye doğru sürünürler. Polycladlerin iki yönlü vucut şekilli hali cephalize olmuştur, bu tanımlanabilen baş bölgelerine sahip olduğu anlamındadır ve orada sinir fonksiyonları ve duyu yapıları yer almaktadır. Solucanların sinir sistemi merdiven şekline benzeyen uzun boylu sinir ipi çiftine sahiptir ve bunlar çapraz olarak birleşmişlerdir. Beyinsel anteriordaki ganglion düğümde son bulurlar ve kafanın içinde veya dışında yeralan sinirsel büyük bir top şekline sahiptirler. Son zamanlarda bazı poyclad türlerinde küçük ama iyi tanımlanmış beyin sinirbiyolojisinde model sistem olarak servis yapan beyin cytoarchitecture ve sinirsel tamir mekanizmasını araştırmalar yapılmıştır (Bakınız Bölüm: Polyclads ve Neurobiology). Başın görünen karakteri dokunaçların oluşumudur ki çoğu durumlarda anterior sinirinin belirtilmesi (=pseudotentacle) gereklidir. Bu kör bir basit boru şeklinde veya geniş kapaklı olarak olarak gösterilirler. Çoğunlukla, Thysonozoon sp.‘nın kafa bölgesinde görüldüğü gibi kulağa benzerler (sol panel). Anterior beyinsel ganglion düğüm ve onun büyük iç sinirlerine benzerler ve solucanların “beyin” i çok sayıda foto ve kimyasal hassas hücrelerinden oluşan sinir sinyallerinin analizi esas olarak, kafada ve Pseudotentaclelerde konsantre olmuşlardır. İlave olarak, yüksek sayıda mekaniksel alıcılar epidermiste dağılmış vaziyette yer almışlardır. Fotoya duyarlı hücreler beyinsel göznoktalarında bulunur ki orada yuvarlak salkım olarak çeşitli gözler yeralmışlardır. İleri gözler, ventral ve dorsal yalancı dokanaçlarda yeralmışlardır. Bu gözler gelen görüntünün şekillenmesine kabiliyetli değildirler ama ışık istikameti ve yoğunluğunun değişimine hassatırlar. Yassı kurdun parlak ışığa duyarlı olduğu zaman, özellikle koyu yerlere doğru geri çekilirler. Vertebrateler ile mukayese edildiklerinde, poycladlerin gözlerinin organizasyonu oldukça basittir. Bu tip göz, birçok lens ile kapatılmış olup “pigment cup ocellus” olarak tarif edilirler. Ocelli beyinsel göznoktasının bir parçasıdır ve çeşitli ışığa duyarlı hücrelerden oluşurlar ve konkav kap şekline sahiptirler. Kabın duvarları pigment içermektedir ve bunlar uç taraftan gelen ışığın sızmasını enlellerler. Hücrelerin ışığa duyarlı kısımları (microvilli) opak kabın içersinde düzenlenmişlerdir ve yanlızca bir yönden gelecek ışığa karşı duyarlıdırlar. Gelen ışığın açısına bağlı olarak, loş kısımler ışığa duyarlı yapıların üzerine gölge olarak düşerler. Kap aktif olarak kaslar tarafından döndürüldüğünden çabuk değişen gölge izleri yaratılır. Sinir sinyallerine karşılık olarak, beyinsel ganglion’a gönderilirler ki orada bilgiler analiz edilirler, uç boyutlu oryentasyon ve uygun davranış reaksiyonu gösterirler. Polycladlerin görsel duyularından dolayı çevresel oryentasyonu için yeterli olmayabilir ve polycladler iyi gelişmiş kimyasal dedektörlü batarya vardır ve molekülleri tanımaktadırlar. Kimyasal bileşenlerin besin ve eş bulmada önemli rol oynadıkları düşünülmektedir. Besin ve eş bulmada belirgin moleküller boşalarak akış ile içeri girerler. Bu solucanlar kimyasal alıcıları tarafından algılanarak koku yayarlar. Bunlar özellikle ventral yalancı dokanaçlarda yerleşmişlerdir ve orada yivli ciliate şeklinde salkımlanmışlardır. Aktif solucanlardaki yalancı dokanaçlar hareket halinde meşgul görülürler ve bu kimyasal duyarlı alet solucanların yönünü bulmalarında ve koku çıkarmalarında temel karar veren davranış olarak kabul edilir. Auricle ve göz noktalarına ilave olarak (Bakınız: yukarıdaki sol foto ve alçak panel) yassı solucanlar statocyst adı verilen ilkel denge organları vardır ki basınca duyarlı saç ve küçük taneli materyalli hücreler içerirler ve bu hayvanların yukarıya doğru gitmesinde büyük rol oynarlar. Yassı solucanın dinlenme, tamirat ve cam slaylarda hazırlanmasından sonra (wholemounts) ventral bakış karakterlerinde ölü solucanlar gözlenerek incelenir. Bu karakterlerin coğu türlerin taxonomi belirlenmesinde önemli rol oynarlar ki bu oldukca zor bir görevdir. Basın yanında ağız ve pharynx gözlenebilir. Genel olarak, polycladlar pharynx plicatus’a sahiptirler. Bu tip pharyngeal tüb uzun be dairesel kas tabakası sergiler ki o pharynx’in şeklini çok fazla değiştirir ve sıvıyı bağırsak boşluklarına doğru pompalar. Bununda ötesinde, pharyngeal ceplerini ayıran özelliğine sahiptir ki orada kullanılmadığında dışarı atılırlar. Pharynx boru şeklinden çeşitli şekillere kadar yapı gösterirler (örneğin, yuvarlak veya oval çok sayıda pharyngeal lob içeren çok buruşuk şekiller). Beslenmede, pharynx ağızdan çıkıntı yapar ve Pseudobiceros türünün bazı tiplerinde tüm hayvanları yutacak boyutta açılırlar. Ventral yanın ortasında, alt sınıf Cotylea yapışkan organa sahiptir ve vantuz olarak adlandırılır. Arazi gözlemlerinde bu organ hayvanların alt tabakalara yapışmasında kullanılır. Küçük invertebratelerin yakalanmasında ve yiyeceklerin hazmında işlev görür. Ender olarak, Pseudobiceros örneğinde ve Pseudoceros’da iki eşit olmayan vantuz bulunmuştur. Diğer tür polycladlerin belirgin karakterleri erkek ve dişi üreme sistemlerinin anotomisidir. Polycladler hermaphrodiktir. Onların ikiside erkek ve dişi üreme organları yumurta ve sperm üretirler. Yetişkin solucanlar, ki esas olarak üremeye geçmişlerdir, vucut hacminin yüksek yüzdesi testes ve ovarislerden oluşmuştur. Çoğu türlerde, bu serpistirilmiş haldedir ve ventral ve dorsal parenchyma da yerleşmiştir. Bununla birlikte, dışarıdan yanlızca erkek ve dişi gonophore’lar gözlenmiştir. Genel olarak, erkek boşluk pharynx’de posterior olarak bulunmuştur ve penis papilla ve penial stylet tutarlar, organları eş için uzanırlar. Pseudobiceros türünün çift erkek üreme sistemi, iki erkek boşluk ve erkek organları ile karakterize edilirler. Dişi boşluk daima açıkca erkek boşlukta ayrılmıştır ve posterior’da yerleşmiştir. Çoğu türler (Pseudoceros, Pseudobiceros)’in bir tek dişi boşluğu vardır bununla fakat Nymphozoon’in çok sayıda dişi boşluğu vardır. Dişi üreme sistemi yumurtalık, yumurta sarısı, kabuk beze, bir yarı hazne, ve döl yatağı bulunur ve orada yumurtalar döllenir. Eşleşmeden sonra (Bakınız, Bölüm: Eşleşme ve yeniden üreme) spermler dişi vucuda enjekte edilir (Hypodermal insemination) dişinin üreme aygıtına ve yarı hazneye doğru depolanma amacıyla göçederler. Yumurtalar yumurtalıktan oviduct’a doğru geçerler ve yarı haznede sperm tarafından döllenirler ve yumurta sarısı ile kaplanmış ve kabuk beze ile gizlenirler. Daha sonra üreme organlarına geçerler ve düzensiz yumurta kütlesi şeklinde depolanırlar. Yeniden üreme sisteminin yanında, çok sayıda yanal dallara sahip bağırsak solucanlarının vücut hacminin yüksek yüzdesini teskil eden ikinci organdır. Nutrientlerin vücut hücresine transferinde bağırsak sistemi (intestial), vucudun hemen hemen her tarafına uzanmış olup vurucu cilia ile kaplanmışlardır. Yarı saydam solucanların haricinde (Aquaplana sp.) bağırsak dallarının dağılımı ve onların anotomik detayları gözlenmede çok zordur. Polycladlerin kör sindirme sistemi bulunduğundan sindirilemeyen materyaller pharynx’e doğru yani yiyeceklerin geldiği aynı açıklığa doğru dışlanırlar. Soldaki foto (PHOTO © Bill Rudman) Paraplanocera oligoglena’nin ventral gorünüşünü vermektedir ve hemen hemen transparent olan vucudun çoğu organlarını gosterirler. Beyaz kollu merkezi yapı cok buruşuk pharyngeal tüpdür (pharynx plicatus) ve ağıza doğru ağız vucudun merkezinde yerlemiştir. Donuk beyazımsı network, vucudun çoğu bolgelerine uzanmış çok dallı bagırsak ki bu solucanlara “polyclad” (yunanca = çok dallı) adı verilir. Erkeğin ve dişinin diğer tüm organları yeniden üreme sistemidir. Salgı ve osmoregulation için polycladler özel fonksiyonlu birimlere sahiptirler, bunlara protonephridia (tekil protonephridium) denir. Onlar iki veya daha fazla kapalı uzun tüp dalları halindeki networka benzerler ve vucut boyunca uzanırlar. Osmotik su dengesini kontrol eden özel yapılara sahiptirler ve böbreklerin atık suyu çıkarttığı gibi çalışırlar. Vucut boyunca Protonephridium dallanma yüksek özellikli hücreler tarafından cilia izli kap şeklindeki yapılarla kapatılmıştır. Cilia vurusu, kırpışan aleve benzediği için bu hücreye “alev hücresi” adı verilmiştir. Bu hücrelerden bir kaçı tüplü fonksiyonlar ile hücrelere bağlantılıdır. İç sıvı nitrojen atıkla yüklenmiştir, tübe doğru gitmesinde zorlanır ve alev hücreleri ile akan tüp sistemi yardımıyla bir veya daha fazla boşluktan taşınırak yol alırlar ve son bölümde atıklar gizlenir. Protonephridium ilkel böbreğe bir örnektir ve salgı çıkaran ve osmoregulator bir sistem olarak gözönüne alınırlar. Yassı Solucanlara Genel Giriş Platyhelminthes (Yunanca: platy – flat, helminthes: worm) Kingdom Animalia’ya ait olup bir baş ve uçta bir kuyruk ile bölümlenmeyen yassı solucanlardır. Onlar en ilkel iki bacaklı, iki yanal simetrik hayvan olarak düşünülürler. İki yanlı simetrik anlamı, vucutlarının kıç eksen boyunca, üst ve alt yüzeyler olmak üzere tariflenen anterior ve posterior bitişin bir ayna görüntüsünde olmasıdır. Vucudun iki taraflı şekilli olması önemli bir özelliktir çünkü bu cephalization’a bir örnektir ve kafanın duyu yapılarının konsantrasyonu ve sinir fonksiyonu (kafa ganglion) yeralir. Bu da gelişimde önemli bir eğilimdir. Bunun ötesinde, yassı solucanlar triploblastikdir, bunun anlamı vucut yapısı uç temel hücre yapısından meydana gelmesidir (endoderm, mesoderm ve ectoderm). Üçüncü karaktere göre, onların barsaktan başka vucut boşlukları yoktur (coclom) ve organizasyona acoelomate adı verilmektedir. Anüsleri yoktur, bu nedenle, aynı pharyngeal açıklığından hem yiyecek alımı ve hem de atığın dışarıya atılması sağlanır. Dış hücre tabakası (=epidermis) ile belirgin ic organların arasındaki boşluk bir yumuşak doku ile dolmuştur (parenchyma). Mesodermal orijinli bu doku boşluklar tarafından ayıklanır (=schizocoelium) ve nütrientleri vucudun kısımlarına taşımak için cok dallanmış bağırsak mevcuttur. Terleme sistemi ve kan taşıma sistemi tamamen yoktur ve bu nedenle oksijenin transferinde difüzyon kullanılır. Bu da yassı solucanların düz olmasını sağlamaktadır. Metabolizimin tesisinde, hiç bir hücre dışarıdan uzakta değildir, zorunlu olan vucut şeklinin yassılanmasını sağlarlar. Hemen hemen bütün türler sahip oldukları oldukca kompleks üreme sistemiyle hermaphrodites’lerdir. Çoğu durumlarda, erkek ve dişi üreme yapılarının sayısı ve ayarlanması ile oldukca belirgin özel türlerdir ve çok benzer türlerin morfolojisinin ayırt edilmesinde taksonomik çalışmalarda kullanılabilirler. Yassi solucanların uzunluğu bazı serbest yaşayan türlerde 0.4 mm ve parasitik şekillilerde çeşitli metrelerde (fish tapeworm, Diphyllobothrium latum: 25 m in length) bulunurlar. Yassı solucanlar üç gruba ayrılırlar; 20,000 türü bilinen, 14,000 parasitler Cestoda (tapeworms) veya Trematoda (flukes) sınıfına aittirler. Tapeworm vertebrate’de bağırsak parasitleridir ve anatomik ve parasitims’in hayat tarihi ve modifikasyonlarını gösterirler. Flukes tamamen parasitik olarak bilinirler ve tape wormlara kıyasla kompleks hayat zincirine sahiptirler. Bir kaç genç stepden geçerler; bir, iki veya daha fazla hayvanın üzerinde yetişkin düzeye gelirler ve sonunda bir hayvanın üzerinde parazitik olarak yaşarlar. Bunun karsıtı olarak, Turbellaria serbest olarak yaşamakta olup tatlı suda ve nemli karasal ortamda coğunluktadırlar. Turbellarian yassı solucanların çoğu denizel ortamlarda ve okyanuslarda bentik olarak bulunurlar ve ayrıca sığ sularda da çok bulunurlar. Turbellaria’nin bir taksonomik alt grubu yüksek belirgin serbest yaşayan yassı solucanlar içeren order Polycladida’dir. Bu order’in üyeleri anatomik olarak çok dallanmış ve düzensiz bağırsak pharynx plicatus olarak buruşuklu pharygeal tüb ıle karakterıze edilirler. İlk bakışta, polyclad’ler çarpıcı şekilde goze hoş gelen renkli yassı solucanlardır. Tropikal resiflerde 150 yıldır yasadıkları bilinmektedir. Tropikal sularda yüzlerce türleri olduğuna inanılmasına rağmen şimdiye kadar çok az kısmı tamamen tarif edilebilmiştir. Rejenerasyon Karşıt olarak, yüksek vertebrates, bazı serbest yaşayan yassı solucanlar yeniden oluşmada muhtesem kabiliyetli olduklarını göstermektedir. Kafasının kesilmesi ve bir yenisinin büyümesidir. Kafanın yanal olarak ikiye, üçe veya daha fazlaya bölünmesiyle bir, iki, üç veya çok başlı solucan ile sonuçlanmasıdır. Solucanlar on parçaya bölünebilirler on tamamlanmış küçük solucan meydana gelir (Bakiniz: alt şekil, sol panel-tatlısu triclad Dagesia tigrina). Biyologların yeniden büyümeye büyük ilgi duymaları nedeniyle yeniden oluşumun üzerinde yapılan yoğun çalışmalar çeşitli yassı solucan taxa sistem modeline servis yapmaktadır (Bakınız: Bölüm: Sinirbiyolojisi’nde polycladler). Son zamanlarda, yeniden oluşum ile ilgili detaylı bilgi temelde polycladler üzerindedir (Order: Polycladida) ve tatlı su triclads (Order:Tricladida-üç-dört bağırsaklı anlamına gelir) ve diğeri planarians olarak bilinir (Bakınız: Bölüm: Phytogeny). Biyologların yeniden oluşumun üzerinde yüzyıldır yaptığı çalışmalara rağmen, bazı sorulara cevaplar, özellikle yeniden oluşumun kontrolu ve moleküler mekanism işleminin yakalanması zor görünmektedir. Bilim adamları planaria’nin temelde yeniden oluşumun yeteneğine sahip olduğuna hemfikirdirler ve neoblast adı verilen emriyonik dal hücreleri depolanmasını kullanırlar. Türlere bağlı olarak neoblastlar yetişkin solucanlarda toplam hücre sayısının 30% ‘unu kapsarlar. Bu totiponent hücreler, solucanın vücudunda serpiştirilmiş olup diğer hücre türlerinin büyümesinde yeteneklidirler ve iki rol oynarlar. Onlar, normal fizyolojik koşullarda ölenin yerine yeni hücre alarak yeniden oluşum için ham materyalini ve daha sonra iyileşmeyi sağlarlar. Yeniden oluşum oldukça hızlıdır. Kesilmeden 15 dakika içinde yaranın ucundaki epithelilal hücreler lesion’a yakındır. Birgün içersinde, yüksek sayıda neblast yaralı epithelium altındaki yeni diferansiyel yapılar büyüyen blastema içinde delil haline gelir ve yeniden oluşumun kesilmeden 10 gün içersinde optimal koşullar altında kaybolan kısımları tamamlanır (Baguma vd., 1994). Planaria kuvvetli kafa-kuyruk organlarına sahiptir (anterior-posterior kutuplanma). Kesildiğinde, anterior kesim yüzeyi hemen hemen daima yeniden oluşur ve yeni bir kafayı üretir ve aynı zamanda posterior kesim yüzeyi kuyruk yapıyı yeniden üretir. Solucanların bilgilerinin belirlenmesinin yeniden üretimde bir baş ve bir kuyruktan olup olmadığına dair bir mekanizmasının olması gereklidir. Şu anda, anterior ve posterior kutuplaşmasını açıklayan iki adet hipotez mevcuttur. Biri yeni oluşan epithelium arasında tumevarımsal iç hareket, başlangıç iyileşme işlemini kapsar ve blastema hücrelerinin altından geçer. Diğer hipotez ise anterior-posterior belirlenmesinde faktörlerinin moleküler gradientinin sıralanmasını önerir. Deneysel datanın çokluğuna rağmen her bakış için kesin bir delil yoktur. Çoğu tatlısu planaria sexual olarak yeniden oluşur ve oviparoustur (yumurtanın kuluçkası ile depolanır). Bazı türler parthenogenesis ile asexual yenide oluşum gösterirler. (spermsiz olarak yumurtanın aktivitesi). Bununla birlikte, taxonomik ailenin yassısolucanları Dugesiidae ve Planariidae (Order: Tricladida) nadir olarak ikili bölünme ile yeniden ürerler (Bakınız: üst şekil, sağ panel-tatlısu triclad Planarıa fissipara). Yetişkinler ikili bölünme ile bir küçük kuyruk parçası pharynx diferansiyeli ve iki hafta içinde de beslenen solucan haline gelir. Dugesia trigria’nin tabi olduğu toplulukta yeniden üreme araştırmalarında optimal sıcaklık koşullarının 24 C altında solucanların 20% si bölünme ile olduğu ortaya çıkmıştır. Çift bölünme ile asexual üreme bu dokumanda da belirtildiği gibi deniz polycladlerde de mümkündür (Bakınız: soldaki foto). Prostheceraeus (Familya: Euryleptidae)’nin polyclad’i de bölünme işlemini vermektedir. Kuyruk parçası ok ile belirlenmiş ve bölünmeden sonra yeni bir solucan oluşturarak ve alt hücre yeniden organasyon olacaktır. Bununla birlikte, yeniden üreme işlemi hakkında diğer bir açıklama, diğer hayvanların atağından ve “kuyruk kısmının bölünmesi” nden sonra beslenme amaclı ataklar neticesinde (Bakınız: Bölüm. Predation ve Defence) oluşmasıdır. Yiyecek ve Beslenme Çoğu bilinen, polycladler aktif etobur hayvanlardır ve leşle beslenirler ve aynı zamanda çeşitli sessile invertebrateslerin beslenmesinde kullanılırlar. Bazı türleri herbivorous olup yeşil alg ve bentik diatom’da özelleşmişlerdir. Acoella order’inin bir kaç yassı solucan türlerinde (bir eski taksonomik order, Polycladida’den ayırt edilen) sindirilen mikroalgler derecelenmemiştir ama endosymbionts (Zoochlorella) haline gelmiştir. Bu symbiotik ilişkide bağırsakta alg fotosentezde aktif olarak kalarak pareneyma hücre ve solucanların energy depolanmasında önemli katkılarda bulunur. Convoluta (canvolata reocoffansis - sağdaki foto Arthur Hauck)’nın bazı türleri genç solucanlar yüksek sayıdadırlar (Tetraselmis convolata, her bireyde takriben 25,000 adet). Yetişkin duruma geldiklerinde, canalıcı anotemiksel olarak değişimlerinin yansımasında endosysmbiontlara bağlıdır ve pharynx ve ağız fonksiyonlarının kaybederler. Beslenme için, C. roscoffensis alçak gelgitin parlak ışığında yüzeye gelir ve orada symbiotic alg vücudun epidermis boyunca serpilmişlerdir ve aktif olarak fotosentetiktirler (Holligan vd., 1977). Algler tarafından üretilen yiyecek (şeker) yassı solucanlar tarafından kullanılır. Bu manzara Fransa’nın korunmus kumlu sahillerinde ve İngiltere’nin bazı bölgelerinde gözlenebilir. Optimum cevresel pozisyonlarda bu solucanlar alçak gelgitte kumda mükemmel yeşil yapılar yapar. Pseudocerotidae familyasının birçok türü koloni yaşamayı tercih etttikleri düşünülmektedir ve katı ascidianlar, süngerler, ve bryozoonlar rejimlerinde normal özellik göstermezler. Beslenmede, çok buruşuk pharynx (pharynx plicatus) niçin ve nezaman kullanılmadığında bir cep içinde, çıkıntılarda koloni ascidianlarda bireysel zooidlerde genişlemis olabilirler. Proteolytic nesneleri dışarı atarken dokusal dallı bağırsak oluşmuştur. Gastrovascular boşluk, bütün besin parçalarını vucudun tamamına transfer eder. Pseudobiceros türlerinin gözlemi önerilir, av hayvanı dokusal pharynx tarafından yütülür (Bakınız: aşağıdaki görüntü) ve bütün hayvanlarda aynı ölçüde genişlerler. Bu türler, katı ascidian Corella willmeriana mantosuna sızar ve delme deliğini kullanarak birkaç saatte tamamını emerler. Tunicate’nin içersinde gençler bile bulunmuştur. Bütün şeyleri yedikten sonra, kayalara çapraz olarak sürünürler. Yassı solucanların yığını oluştuğunda insanlık açısından denizel ortamında bir felaket etkisi sözkonusudur. Tropikal polycladler istiridye’nin musibetidir ve dev deniz taraklarıdır (Stylochus matatası). Gastrovasküler boşluğundaki besinler yiyecek parçacıklarının ileri enzimatik derecelenmesinden sonra bağırsak dallarına doğru transfer olurlar ve yüksek bir absorb edebilen yüzeye benzerler. Çoğu yiyecek parçacıkları gastrodermal hücre tabakasının phagocytosis tarafından yutulurlar ve ileri enzimatik düzeyde iç hücresel parçalanma oluşur. Sindirilemeyen materyal pharynx’a doğru, yani yiyeceklerin girdiği deliğe doğru atılırlar, çünkü yassı solucanların kör sindirim sistemi bulunmaktadır. Bazı türlerde bu gözlenmiştir ve sindirimin tamamlanmasından sonra bağırsak fıskırtılan su yardımıyla temizlenir. Tür çeşitliliği ve polyclad yassı solucanların değişimi tropikal suların inanılmaz değişimi ile taxon’a benzer (Newman & Cannon, 1994), Bakınız.Bölüm: Taxonomi). Oldukça uzun zamanda, renk izleri muhteşem renklenmiş olan solucanlar sınıflandırılmada yeterli düşünülmüştür (Hyman, 1954, 1959). Bununla birlikte, birçok türlerin tanımlanmasında yeterli kimliğe sahip değildirler (Faubel, 1983, 1984). Newman & Cannon (1994)’de yaptıkları arazi çalışmalarında farklı genera’da (Pseudoceros - Pseudobiceros; Pseudoceros - Pseudoceros) çok benzer ve hemen hemen tamamen aynı renkli izleri taşıdığı ortaya çıkmıştır ve türler arası farklılığında farklı aileler üzerinde (Pseudocerotidae-Euryleptidae) daha detaylı inceleme gereklidir. Mukayese anatomisi uygun karakterleri kullanılarak göz numarası, göz ayarı, yalancı dokanakların şekli, pharynx ve özellikle üreme sisteminin ince yapısının analizi kanıtlanması için turbellarianlarin tür diagnosisleri için temel araçtır (Newman & Cannon, 1994). Erkek ve dişi üreme yapılarının seri olarak yeniden yapımı zordur ve özel lab aletlerine ihtiyaç vardır ve uzmanlar tarafından arzu edilir. Son zamanlarda, benzer polyclad türlerini ayırt etmede, molekuler data (DNA) sıklığı kullanılmıştır. Böyle araçları kullanmadan, polyclad yassı solucanların sınıflandırılması bazı durumlarda hatalı olabilir. Benzer renk izleri büyük farkla benzemesine rağmen ayni genetiksel olarak belirlenmiş renk ve örnek çeşitliliği ayni tür özellilerine sahiptir. Diğer bir değişle, tamamen aynı renkteki örnek belki farklı türde genera’ya veya hatta familya üyesi olabilir. Bu nedenle, eğer benzer renk örneklerinde olan iki polyclad örneği mukayese edıldiklerinde, çeşitli mümkün senaryolar akla uygundur. 1) Farklı genera ve hatta familyaya sahip solucanlarda, genel seçilmiş basınç ve aynı çevre kosulları altında aynı renk örneklerinin gelişiminde evrimsel gelişim kuvvetlidir. Phylogenetik terim açıklaması; bir benzer renk ilişkili gene seti (=allels) veya bir müşterek gene farklılığı phenotype sonuçlari üzerinde secilmiş basınç tarafından tercih edilir. Bu gibi olayların sıklığı analogous gelişim olarak düşünülür. 2) İkinci senaryoda, iki solucan aynı atayı paylaşırlar. Tahminler ışığında, bu ata daha önce avantajlı renklere ulaşmıştır, her iki örneğin renkli izlerinin mukayesesi hatta anotomiksel ve diğer genetik farklılıklara rağmen çok benzer olabilir. 3) Evrim gelişmekte olan işlemdir ve hiçbir zaman durmaz! Genesin renk örnek ilişkisinde gelişigüzel müşterekliliği, protein kodlama bölgelerinde veya düzenli DNA sıklığında, ışık, sıcaklık, beslenme gibi çevresel faktörlerin etkileri ile beraber polyclad renk izlerini etkilemektedir. Rahatça söylenebilir ki, evrim renkler ile oynamadır. Varsayılan predatörlerin farklılığı daha etkilidir: Mimicry ve Predation ve Defence). Phylogenetik zaman aralığında, bir türün görünümünde veya spectation değişim atlamasında, yeni türlerin tehlikesinde önder olabilir. Takip eden foto paneli açıkca ortaya koymakta ve farklı türler ile bir tek türün üyeleri arasında renk izlerini açıkca göstermektedir. Solucanların morfolojik ve DNA sıklığının kilitlenmesi nedeniyle hangi tariflenmiş senaryoların örnek için uygun olduğu gerçekte belirsizdir. Toxin Aposematic renklenme (Bakiniz.Bölüm: Mimicry) denizel invertebrate hayvanların içersinde bilinen genel defense mekanizmasıdır. Çok sayıda göze çarpan renkli slugları toxic alıkonmuştur. Polyclad yassı solucanlar açısından doğrudur. Polyclad yassı solucanların Pseudoceron concineu ve Planocera tentaculata kimyasal defens araştırması ve staurosporine türevlenmesi gibi yüksek toxic kimyasal bileşen açığa çıkarmıştır (Schupp vd., 1977 ve 1999) ve tetrododoxin (Miyazama vd., 1987). Tetrodotoxin proteinsiz bileşen (aminoperhydroqumazoline) olup günümüzde bilinen en kuvvetli paralytic toxinlerden birisidir. Sodyum (Na+) kanallarında voltaj-kapılı cok belirgin engelleyicidir ve büyük integral protein üyesi sinirsel hücrelerin plazma membranına doğru boşluk oluşturur ve Na+ iyonlarına izin verir. Çeşitli uyarıcı cevaplar, boşluklar (=genes), ve açık ve kapalı mebrane potensiyelinin değişimi gibi hücre dışı ve içi belirli kimyasalların varlığı ve uygun fonksiyonelliği sinirsel hareket potensiyelinde temel teşkil etmektedir. Bunula birlikte, tetrododoxin kanalları bloke eder. Tetrodotoxin ve onun habercisi yüksek konsantrasyonlu mukus, sindirim organlarında, polyclad Planocera multietentacula (Miyazawa vd. 1987, Noguchi vd, 1991) yumurtalarda ve üreme organlarında önerirler. Yassı solucanlar predatorlere karşı defans ve alarm maddesi tetratoxine sahiptir. Tetratoxin geniş farklı hayvan örnekleri tarafından izole edilmiştir bunlar pufferfish (photo: Arothon nigropunctatus, order: Tetraodontiformers), parrotfish, genus Atelopus’un zehirli oklu kurbagalar, mavi-cevreli ahtopot, deniz yıldızı, angelfish ve xanthid crabdir. Japon mutfağında pufferfish hassas olduğundan, tetrodoxoxinden zehirlenme Japonya’da halk sağlığını ilgilendirmektedir. Yumurtalık, çiğer, bağırsak ve pufferfish derisi tetradotoxin miktarını içerir ve bu da hızlı ve zorlu üremeye yeterlidir. Geleneksel olarak çok küçük miktarda ciğer et ile tüketilir. Dudakların oluşum duygusu ve dil gercek akşam yemeği tecrübesidir. Fugu’nun hazırlanması ve satışı özel restaurantlarda olduğundan oradakiler eğitilir ve evde hazırlanmasından ve tüketiminden yanlış tanımlandığı ve yanlış donmuş balık ürünleri nedeniyle bireysel olarak zehirleme olayı (30/100 kışı/yıl) olur. Pufferfish zehirliliği hakkında daha fazla bilgi için Bakınız. FDA/CFSAN web sitesinde Amerikan Besin Emniyeti & Nutrient Aplikasyonu’na başvurunuz. Eşleşme ve Üreme Polycladler oldukça ilkel oldukları için kimyasal bilesenler besin bulmada ve partneri ile arkadaşlık kurmasında anahtar rol oynarlar. Büyük yalancı dokanaclarda anterior sinirinin ayrıntıyla donatılması bir delildir ve bu solucanlar temelde resif çevrenin kavranmasında ve davranışlarıyla kararda kimyasal duyu aleti olarak kullanılır. Genel olarak, polycladler derialtında erkek ve dişi üreme organlarina sahiptirler. Onlar karşılıklı dollenme ile birleşerek çiftleşirler. Bir kere, aynı türe sahip yetişkin solucan oldukca kaba çiftleşme hareketi yaparlar, bu derialtı döllenme olarak tarif edilir (üst görüntü, Pseudoceros bifurcus). Solucanların çiftleşme zamanında birbirlerine doğru hareket ettiği, değdiği ve birbirlerine sarıldıklarında (sol görüntü aşağıda, Pseudoceros graveri) eş zamanlı olarak penis papillae ve stylet dışarı çıkar (İki görüntü aşağı sağda, Pseudobiceros bedfordi). Onlar, daha sonra birbirlerini başka yere çekmeyi denerler, bazen de kendi ortaklarına zarara sebep verirler. Yaralı solucanlar 24 saatte sağlıklarına yeniden kavuşurlar. Ne zamanki biri diğerine penetre ederse, birkaç dakika partnerinin epidermiste içine oturtur. Bu zamanda, erkek dol hücresi partnerine enjekte edilir (Üst görüntü, sağ). Son zamanlarda, Pseudoceros bifus’in eşleşme davranışları gözlenmesinde (Michiels& Newman, Nature, vol.391:647), bireysel polyclad sperm vermeyi arttırır. Erkekler için, spermlerin enjeksiyonu direk yumurtalara gider ki orada dişi yarasının iyileşmesinin maliyeti taşıma kapasitesini ve döllenmede kontrolu kaybeder. Bu nedenle, dişilerdeki çok kuvvetli secme bu maliyetten kaçınmaktadır. Bu arka yukarı ile buna ulaşılır, bir eş davranışı her iki striking ve parrying’de etkilidir. Bireyselde her ikisi de deneme cekingesiyle davranırlar. Gelişme olarakta bu girişim sperm donatısında daha fazla sperm verilmesini sağlar. Daha fazla başarılı döllenme ile daha iyi döllenme sağlar. Derialtı döllenmeden sonra sperm aktif olarak parenchyma yumurta kanalına doğru hareket eder. Onlar muhtemelen oocytes tarafından veya dişi üreme kanalının değer hücrelerde serbest hale getirilen moleküllerin gradienti tarafından cazip olurlar. Döllenmiş yumurtalar daha sonra birkaç yüz yumurtanın düzensiz yumurta yığını halinde depolanir ki daha sonra sıkıca paketlenmiş bir tabaka haline gelirler. Diğerinde, iri çakılların altında ascidian kolonileri halinde bulunurlar ve tercih ettikleri avlanmadan biridir. Serbestce yüzmenin gelişmesinden on gün sonra, transparent larva kuluçkası oluşur (=Muller’s larva). Çizelgeden de anlaşılacağı gibi gelişmelerinde bibirini takip eden üç step vardır. Müller larvası sekiz lob tarafından karakterize edilirler. Loblar vurus yapan cilia taşırlar ki bu ciliate’e benzer yüzmeye izin verir (en soldaki foto: koyu arazi mikroskobu altındaki larva stepi). Larva plaktonik bölüme girerek yerleşmeden ve metamorfize olmadan önce birkaç gün yüzer. Gelişmesi esnasında, larva lobları absorbe olmaya devam eder ki orada sindirimleri gelisir. Minyatür yetişkin solucanlar haline gelindiğinde metamorfoz tamamlanır, yanlızca birkaç mm boyutundadırlar ve hayatın bentik bölümüne girerler. Larvaların nudibranch metamorfisinde yapılan gelişmiş ileri düzeyde çalışmalardan elde edilen bilgilere göre, türlerin tercih ettiği besinler tarafından kimyasal bileşikler üretilmesi hedeflenir. Bu mekanizma, yerleşme alanı genç organizmaların yetişmesinde yeterli yiyecek sağlamasına emin olur ve bu nedenle, bu hayatta kalabilmek için daha büyük bir şanstır. Polycladler lab. koşullari altında larva halinde yerleşmeksizin kuluçka olduktan sonra iki hafta içersinde solucan olabildikleri için, polycladlerin bentik hayat bölümüne girmelerinde dış güçlerin zorunluluğu bilinmemektedir. Polycladlerin Taksonomisi Polycladida (class: Turbellaria)’nin taksonomik order’i bir kaç yüz tanımlanmıs türleri kapsar. Bunların çoğunluğu (7 adet genera’da 200 kadar tür) ve Pseudocerotidal familyasında toplanırlar ki bu bugünün en iyi tropikal polyclad familyası olarak kabul edilir. Pseudocerotis en muhteşem renkli yassı solucanlardır ve daha sonraki en belirgin tropikal polyclad ailesinden Euryleptidae (130 türle birlikte) buruşuk pharynxleri tarafından karaterize edilirler ve ayırt edilirler ve aynı zamanda onlarda tüp halinde pharynx mevcuttur. Pseudocerotidsin diğer genera’si daha az yanıltıcı olmakla birlikte çok az bilinmektedir. Bazıları hatta monospecific’tir. Polyclad yassı solucanlar için Tayler. S & Bush L.F, 1988 web sayfasına giriniz. Turbellarian platyhelminths Taxonomisi Polyclad yassı solucanlar üzerinde taxonomik çalışmalar oldukça zordur. Onların uygun boyut, şekil, renk ve markalamaları, göz ayarlamaları, yalancı dokanaçlar, pharynx, gonopore’ların topoğrafyası ve emme gibi karakteleri gözonüne alınmalıdır. Bazı durumlarda, tanımlamada bu karakterler yetersiz ise, üreme sisteminin karşılaştırmalı morfolojisi özel lab. aletleri kullanılması temel araçtır ve uzmanlar tarafından tercih edilir. Son zamanlarda, moleküler DNA (DNA sıklığı) ayni türdeki benzer polycladlerin farklılığının ayırt edilmesinde kullanılmaktadır (Bakınız.Bölüm:Phylogeny). Takip eden tablo dalan ve UW fotoğrafcılar için polyclad yassı solucanların tanımlanmasında faydalı bir araçtır. Filojeny İlk Metozoa’nın hemen hemen radyal hayvan olduğu için, iki taraflı simetrik (Bilateral) nin radyal atalarından yayılmıştır ve radyalden iki taraflı simetri arasında değişim olmuştur. Bu değişim hala oluşmaktadır ve çeşitli yüksek düzeyde spekulatif bağlantılar yapılmıştır (Brusca & Brusca, 1995). Paleontolojik ve moleküler data gösterir ki çoğu iki taraflı phyla ve Cambrian explosion zamanında bölünmüşlerdir, M.O. 56 ve 520 yıllarında oluşmuştur (Wang, vd., 1999). Phylum platyhelminthes erken Metasoanın farklı grup oluşturduğu ki bu metazoa’nin orijini ve evriminin anlaşılmasında anahtar rol oynamıştır. Coğu zooloji ders kitaplarında, erken ortaya çıkan clade formasyonu, iki taraflı simetri (Bilatera) ile bütün hayvanların kızkardeş grubu olarak tarif edilmiştir. Diğer yazarlar görmüşlerdir ki, çoğu Protostomia’nin kızkardeş grubu veya grup protostome coelomate atalarından türemişlerdir. Filojenik yerleşmenin doğruluğu esas zorluluktur ve bütün Platyhelminthes için synapomorfilerin iknasının kapanmasıdır. Bu belirtir ki onlar polyphyletic’tir. Basitleştirilmiş taxonomik şekilde, phylum Platyhelminthes dört sınıfı tutar. Trematodal (fluxes), monogenea ve Cestoda (tapeworms) ki bunlar vertabratenin endo/ectoparasiteyi sunar. Bazıları kompleks, hayat döngüşü, ve sınıf Turbellaria ana serbest yaşayan yassı solucan türlerini verir. Turbellaria 9 adet order içerir. Coğu açıklanan orderler bu çizelgede gösterilmemiştir. Acoel yassı solucan (Acoela) uzun zamandır, Turbellaria’nin order’i olarak sınıflandırılmıştır. Onlar en ilkel turbellarian order olarak düşünülmüş ve bazal metazoan olarak manzaralanmıştır ki ciliate protozoans (=syncytial veya ciliate=acoel theory) veya diploblast ve triploblast arasında direk link vardır (=planuloid-acoeloid theory)’den evrim geçirerek oluşmuşlardır. Onların basit organizasyonu yorumlanmıştır ve daha kompleks ataları (regressive evrim) ikincil özelliklerinin kaybolması incelenmiştir. Bugün, teorinin destek delillerinin birçok çizgisi, bilinmeyen iki taraflı atalardan Kambrien radyasyondan önce. acoels dallanmasıyla olmuştur. Örneğin, aceoller diğer platyhelminthes iki loblu ve neuropile’li beyinleri var olup sinir hücreleri ile cevrilmiş olduğunu sinir sistemi yapısı işaret eder (Bakınız. Bölüm: Polyclad ve Neurobiology). Karşıt olarak, acoellerin sinir sistemi sinir hücrelerinin salkımı tarafından basit beyin olarak oluşmuştur ve cok sayıda uzun sinir kordları ortagon yapmazlar (Ruitz-Trillo vd., 1999). Son zamanlarda, DNA (desorxy-bonucleic acid) moleküler teknik ve protein sıklığı başarılı kullanılmıştır. Phylogenetic hayat ağacı kurulur ve hayvan taxa’ları arasında filojenetik ilişkisi araştırılır. En yaygını, DNA sıklığı yüksek düzeydeki gene’leri muhafaza etmesidir, mesela, ribozomal RNA (rRNA) genes kodu bu gibi çalışmalarda kullanılmıştır. 18 S ribozomal DNA genesinin sıklık datası mukayesesinde ve diğer Metazoa kanıtları Acoel’in Platyhelminthes’e ait olmadığı belirlenmiştir. Bu buluşlar önerirki basit radyal simetrik organizma (jelyfish gibi) ve daha komplex iki taraflı simetrik organizmalar (arthropods ve vertebrates) boşluk (gap) vardır. Onlar kendi phylum’larına yerleştirilmelidirler (Ruisz Trillo vd., 1999). Bazı çarpıcı özellikleri vermesi polyclad genera’da en yaygın tanımlamada yardımcı olacaktır. DNA sıklılığı dataları aynı zamanda aynı organizmaların morfolojilerinin ayırt edilmesinde de kullanılır. Bu Goggin & Newmann (1996) tarafından pseudoceroid turbellarianlar için teşhir edilmiştir. Ribozomdaki RNA (rRNA) gene salkımındaki spacer-1 (JTS-1)’dan elde edilen Nucleotide sıklığı dataları (Pseudoceros jebborun, Pseudoceros paralaticlavus) ve pseudocerotid polycladların generasında (Ps. jebborum ve paralatic lavus versus Pseudobiceros gratus) türlerin ayırt edilmesinde kullanılmıştır. Ps’in ITS-1’nin nukleotide sıklığı Ps. paralatic lavus’dan 6% farklıdır ve Pseudobiceros gratus’tan 36% farklıdır. Beklenildiği gibi bu sonuçlar aynı genusun türleri farklı genera’dan alınan türlere kıyasla phylogenetiksel olarak yakın ilişkili olduğunu kanıtlamaktadır. Bu nedenle, ITS-1’den elde edilen data sıklığı pseudocerotid yassı solucanlar ayırt edilmesinde faydalı bir taksonomik araçtır. Ribozomal DNA Salkımı Büyümekte olan bir hücre 10 Mio ribozomlar ihtiva eder, protein üretiminde hücresel araçtır (mRNA’nin proteine transferi). Ribozomal RNA her tip ribozomal RNA molekülü (5 S, 5.8 S, 18 S, 28 S rRNA) nin temel yapısal komponenttir ve protein sentezinde hücre ihtiyaçlarında birleşmesi açısından her hücre generasyonunda sentez edilmelidir. Ribozomal RNA’nın yeterli miktarda üretimi için eukaryotic hücreler ribosomal RNA (rRNA genes = rDNA) nın kollanmasında çok sayıda genes kopyası içerirler. İnsan hücreleri her haploid genome’de aşağı yukarı 200 rRNA gene kopyası içerirler ve beş farklı kromozomda (chromosomes 13, 14, 15, 21, 22) küçük salkımlar halinde dağılmışlardır. Kurbağa hücreleri Xenopus leveis bir kromozomda bir tek salkımda 600 rRNA gene kopyası içerir. Bununla birlikte, genel rRNA izleri bir kromozomda bir tek salkımda rRNA gene organizasyonunun genel izinde bütün eukayot hücrelerde tamamen aynıdır. Verilen kromozomda yüksek dereceden rRNA genesinin çok sayıda kopyasının gelişigüzel serileri ayarlanmıştır, her bir gene diğer bolgedekinden ayrılmıştır, DNA boşluk yaratıcı olarak da bilinir ve türler içinde uzunluğu ve sıklığı değişmektedir. Bir tek salkım rRNA genes’i 18 S, 5.8 S, ve 28 S rRNA molekülü içerir ki o (ITS-1 ve ITS-2) tarafından içten ayrılır. Bitişik salkımlar 10,000 nucleotide uzunluğundadır ve herbiri dışsa açıklı bölgeler (ETS) olarak ayrılmıştır. rRNA genes’i RNA polymerase tarafından kopya edilmiştir ve her bir genes seti aynı temel RNA’yi üretir, 45 S öncü rRNA (pre-rRNA) olarak bilinir. Önce kurulmuş ribozomal partiküllerindeki nukleusu terkeder, 45 S pre-rRNA (takriben 5,000 nucleotides, 18 S Rrna (takriben 2,000 nucleotides, ve 5.8 rRNA ( takriben 160 nucleotides). Geri kalan kısımda her temel kopya (ETS, ITS-1 ve ITS-2) olarak derecelenmistir. Takriben 200 farklı hücresel protein ve bir 5 S rRNA diğer kromozom locus’tan türetilir ve ribozomların paketlenmesinde yeni sentezlenmiş rRNA kullanılmıştır. Bu paketleme nucleusta oluşur ve bu büyük geçirgen yapı nucleus olarak adlandırılır. Bozulmamış rRNA molekulleri ribosome üretiminde temel olduğu için, protein sentezi ve hüçre fonksiyonu, kuvvetli basınç seciminde (evrim) fonksiyonel rRNA mevcuttur. Böylece, ecukaryotic hücrelerde çoğu genişler ribosomal genese bağlıdır bu da müthiş bir benzerlik sıklığı gösterir ve hatta phylogenetik taxa dahil olmak üzere. Bununla birlikte, iç alan bölgede (ITS-1 ve ITS-2) daha az homoloji bulunmuştur çünkü bu DNA bölgeleri yapısal RNA’ya katkıda bulunmaz. Bu nedenle, daha az secilmiş basınç uygulanmakta ve DNA sıklığı da farklı olmaktadır (müşterek nokta), aynı genusun türleri arasında bile bu bölgede elde edilmiştir. Bu ilişki rDNA datasındaki molekuler özellikler (Hayat ağaçi) çok faydalıdır ve yakın ilişkili türlerin ayırt edilmesinde kullanılır. Neurobiyolojide Polycladler Serbest yaşayan polyclad yassı solucanlarda Notoplana acticola gibi beyin ve peripheral sinir network araştırma halindeki en ilkelsinir sistemini sunar. Küçük ama iyi tanımlanmış beyin (sağ panel) ve uzun sinir ipleri ve çapraz hatlar tarafından çok sayıda dairesel motoneuronlarla bağlanmıstır. Bu sinir sistemi yassı solucanların cevresel değişimlerinin iç ve dış etkileri mümkündür. Yüzeysel olarak Netoplama articola’nin beyni diğer invertebratedekilere benzemesine rağmen hücreleri cok sayıda vertebrate özelliklerine sahiptir. Hücre tiplerinde tamamlanmış, dallanmış izlerle beraber çok şaşırtıcı farklılık vardır. Çok kutuplu neurone’ler yaygın tipik, iki kutuplu hücreler olarak ayırt edilebilir. Küçük çok kutuplu hücreler glial veya interneurones beyinde serpiştirilmiş olarak bulunmuştur (Keenaneld, 1981). Daha önceki çizimden çıkartıldığı gibi, bazı tabaka tarafından çevrilmiştir. Uzun sinir kordları ve neuronlar dairesel alıcı hücreleri bağlar (ocellinin fotoduyarlı hücreleri) beyinden direk olarak uzanırlar. Ventral sinir kordu dorsal sinir korduna nazaran daha kuvvetli gelişmiştir. Yassı solucanlar Sinirbiyolojisi araştırmaları, beyin araştırmaları açısından en mükemmel model sistemidir cünkü oldukça ince olup beyinleri birkaç mm büyüklüğünde yanlızca birkaç 100 – 1000 hücre içeriler ve deneysel çalışmalarda hazırlanmıştır. Son zamanlarda, çeşitli konular sinirselbiyoloji ve elektrofizyoloji ilgisi adreslenmiştir. Cytoarchitecture’in Analizi ve Sinirsel Bağlantılar Bu sayfadaki bilgilerin Powerpoint Sunumunu (ppt dosyasını) www.sunumbankasi.net adresinde bulabilirsiniz You can find the powerpoint presentation of this web page content at www.sunumbankasi.net Polyclad yassı solucanların beyinlerinin üç boyutlu yapısınin kontrolu için sinir hücreleri özel olarak boyanmıştır. Camillo Golpi (1843-1926) metoduna göre yürütülmüştür (20. yüzyil biyologlar tarafından bilinenlerden en iyisi). Florosan boyaları kullanılarak ic hücrelerdeki iontofarlar ile beyin içindeki sinir konfigürasyonu araştırılmıştır. Bu deneysel yaklaşımda, Koopwitz ve arkadaşları (1966) tarafında belirlendiği gibi, Notoplana articula’nin örneği aneztezi edilmiştir. Sonuç olarak, sinir sistemi dakika cubuğu ve aletleri kullanılarak belirlenmiştir. Beyin örtüsü protesae sindirimi ile ortadan kaldırıldı, beyine ve ganglion hücrelerine direk girebilmek için tek sinir hücrelerinde ultra ince cam mikroelektrot tekniği kullanılmıştır ve lucifer yellow gibi florosan boya ile doldurulmuştur. Enjekte edilen boya hücre içinde sağa doğru axonların ucuna kadar göç etmiş ve florosan mikroskopta izlenmiştir. Laser taramalı florosan mikroskobu kullanarak digital data serili iki-boyutlu resimlerden üç-boyutluya çevrildi ve mümkün olan polyclad beynindeki sinirsel cytoarchhitecture gelişmeler harita haline getirilmiştir. Sinir Tamir ve Sinirsel Plastisite Çalışmaları Şimdiye kadar incelenen bütün invertebrate ve vertebrate türlerideki çalışmalara göre, Notoplana acticola beyin dokusu yeniden üretemez. Bununla birlikte, sinirsel tamir hızlı ve yüksek oranda elverişlidir. Polyclad beyni yassı solucana taşındığında yeni bağlantılar organ nakli edilen beyin ile dairesel network sinir alıcı uçları ameliyattan 24 saat sonra tesis edilmiştir. Bunun gibi organ nakli deneyler Davies ve çalışma arkadaşları (1985) tarafından tarif edilmiştir. Deneylerde dört beyin organ nakli oryentasyonu; normal, ters, ters yüz, ve ters ters yüz olmak üzere kullanılmıştır. Beyin organ naklinin fonksiyonu test edildi ve her iki davranış ve elektrofizyolojik kriterler olçülmüştür. 23 gün içinde, organ naklinin 56% si solucan ve diğerleri organ naklinin iyileştirilmesindeki doğru davranış, kaçınma dönüşü, ditatix hareket, ve beslenme gibi dört davranışta test edilmislerdir. Beyindeki mevcut sinirler kendilerine en yakın dairesel sinirlerle birleşirler. Ameliyattan 36 sonra bazı normal davranışlar gözlenebilir. Kontrol eksikliği olan yassı solucanlar organ nakli olmadan davranışlarını kurtaramazlar. Birkaç beyin davranışında hücre içi kayıtlar da dairesel sinir hücreleri ile uygun bağlantılar yeniden kurulmuştur. Bu sinirlerdeki boyanmış hücreler ters oryentasyonlu beyin ortaya çıkarmıştır, bireysel sinir hücre işlemlerinin beyini terketmesinden sonra uygun olmayan bir şekilde sinir kordu ile ilişki kurmakta olup, bazı işlemlerde 180 0 li sinir kordu , ki onlar normal olarak yerleşen operasyona maruz kalmamış solucanlardır (Davies vd, 1985). Molekuler temeli ve yeniden bağlanan belirgin sinirleri ortaya çıkarmak çok ilginçtir. Konakladığı hayvanın davranışında bazı bilgiler çok önemlidir, paraplegia veya kazadan sonra sinir sisteminin ciddi olarak yaralanması gibi. Dağıtım ve Buluş Polycladler boyutları, renk örnekleri, sıvı içindeki hareketleri nedeniyle SCUBA dalgıçları tarafından tesbit edilebilirler. En yaygını, gün esnasında onlar resif eğimlerin dışında, üzerinde veya uçlarında görülebilirler. Onlar yarıklarda, kaya altlarında, bazende çıplak sedimentlerde veya çamurlu tabakalarda bulunurlar. Bazı türleri resif sırtlarında yüzerken görülmüşlerdir. Polycladler tercih ettikleri yiyeceklerin üstünde veya yanında dinlenirler çok nadiren de olsa süngerlerin veya koloni ascidianlarin üzerinde , çoğu resif sırtında çok iri çakılların altında bulunmuşlardır. Crytic türleri çok ender bulunurlar çünkü kendilerinin normal hayatları zamanında yeraltında karışmışlardır. SCUBA dalgıçlarına ve UW fotoğrafçılarından ilgi duyanlara polyclad türlerini bulmak için çakıl altlarında ve çoral taşlarının etrafında bulabileceklerini tavsiye ederiz. Şans ve sabırla polyclad türleri bulunabilir. Bununla birlikte, bu hassas solucanlara dikkatlice değmek ve ele almak gerekmektedir. Polycladler stress altında kendi-kendini imha etme özellikleri vardır. Onlar otoliz, mukoz parçalarını kirarlar veya buruştururlar ve daha sonra yapılacak incelemeler için fotoğraf çekilmesini imkansız hale getirirler. Bununda ötesinde, kendi belirgin renkli örneklerini kaybederler. Bu nedenle çoğu fotoğraflar mümkün olduğu kadar onlari yaşam yerinden rahatsız edilmemelidir.Yeni türlerin tarifi, örneklerin toplama, koruma, ve detaylı çalışmada, tamirde özel teknikler mümkündür. Polyclad’e ilgi duyan dalgıçlar yeni türlerin tanımlanmasında katkıda bulunacakların Dr.Leslie Newman ile kontak kurmaları (Schooling Resource Science and Management, Southern Cross University, P.O. Box 117, Lismore, NSW, Australi 2480) çünkü kendisi tamir ve koruma konusunda güvenilir metod geliştirmiştir. Leslia şimdi Indo-Pacific polycladlar üzerinde çalışmaktadır. Dünya capında 350 tür içeren database ile onların besin ve üremeleri hakkında bilgi vermektedir. Oya Bezen Çakın  

http://www.biyologlar.com/yassi-solucanlarin-anatomisi

Evrim Nedir

“Bilimler, düşündügümüzün tam tersi bir düzen içinde geliştiler. Bize en uzak olan şeylerin yasalari en önce bulundu, sonra yavaş yavaş daha yakinlara sira geldi: Ilkin gökler, arkadan yer, sonra hayvanlarla bitmkilerin yaşami, sonra insan gövedesi en sonra da (Yine de en yarim yamala) insan zihni. Bu durumun anlaşilamayaca bir yani yoktur... Yalniz teme doga yasalarinin bulunmasi degil, dünyanin uzun süreli gelişmesiyle ilgil ögretinin kurulmasi da gökbilimle başladi; ama bu ikinci öncekinden ayri bir konuya gezegenimizde yaşamin başlayip gelişmesi konusunua uygulaniyordu daha çok. Şimdi gözden geçirecegimiz evrim ögretisi gökbilimle başlamişsa da yerbilim ile biyoloji açilarindan daha büyük bir önem kazanmiş, ayrica Copernicus sisteminin zaferinden sonra gökbilimin karşisina dikilen daha rinegen tanribilimsel önyargilarla savaşmak zorunda kalmiştir. Modern kafanın, uzun süreli bir gelişme kavramının ne denli yeni olduğunu görmes güçtür; gerçekte de bütünüyle Newton’dan sonraki bir düyşüncedir bu. Kutsal Kitap ’a dayanan inanca göre evren altı günde yaratılmış, o zamandan beri, şimdi içinde bulanan bütün göklü yaratıklara, bütün phayvanlarla bitkilere, Büyük Sel’in yokettiği daha başka birçok canlııya yurtluk etmişti.Birçok tanrıbilimcinin söylediklerine, bütün Hıristiyanların inandıklarına göre Düşüşş zamanında evrene yasa olabilecek bir gelişme şöyle dursun, her türlü kötülüğün korkunç bir kaynaşması görülüyordu. Tanrı, Adem ile Havva’ya belli bir ağacın meyvesini yememesini söyledi; ama onlar dinlemeyip yediler.Bunun üzerine Tanrı , onların, kendi soylarından gelecekelerin bütünüyle birlikte ölümlü olmalarını, küçük bir azınlık bir yana, en uzak torunlarının bile cehennemde sonsuz ceza çekmelerini emretti; bu küçük azınlığın da neye göre seçileceği tartışmalıydı. Adem, günahı işler işlemez, hayvanlar birbirlerini avlamaya, dikenler göğermeye başlamış, birbirinden ayrı mevsimler ortaya çıkmış, toprak da lanetlenmiş, ağır bir emek karşılığı olmadıkça insanoğluna hiçbir şey vermemesi emredilmişti. İnsanlar öyelesine azalmışlardı ki, Tanrı, Nuh ile üç oğlu ve karılarından başka hepsini Büyük Sel’de boğmuştu. Bu cezadan sonra da uslandıkları sanılmıyordu; ama Tanrı, artık başka bir evrensel felaket göndermeyeceğine söz vermişti ancak arasıra yaptığı su basıknlarıyla, depremlerle yetiniyordu. Bilmeliyiz ki bütün bunlar ya doğrudan doğruya Kutsal Kitap ’ta yer alan, ya da Kutsal Kitap ’takilerden, tümdengelimden çıkarılan kesin gerçekler olarak benimseniyorlardı. Dünya’nın yaratılış yılı, Oluş (Genesis ) da adı anılan her atanın, en büyük oğlu doğduğunda kaç yaşında olduğunu söyleyen soy dizilerinden çıkarılabilir. Bu konularda,İ brani yazması ile Septuagint yazması (Tevrat’ın İÖ 270 yılında 70 kişi tarafından başlanılan Yunanca çevirisi) arasındaki ayrılıklardan ya da anlaşılma güçlüklerinden doğan karıştıtlıklar da ortaya çıkabilyordu; sonunda Protestanlar genel olarak başpiskopos Usher’in ileri sürdüğü İÖ 4004 yılını dünanın yaratılış yılı kabul ettiler. Cambridge Üniversitesi’nin Yardımcı Başkanı Dr. Lightfood yaratıtılış yılı konusunda bu bilgiyi benimsemiş, Oluş’un yakından incelenmesiyle daha başka bir çok konunun da büyük bir seçiklik kazanacağını düyşünmüştü; onun söylediğine göre insan 23 Ekim sabahı saat 9'da yaratılmıştır; ama bu da bir inanç sorunuydu;Oluş’tan çıkaracağınız birtakım kanıtlara dayanarak, Adem ile Havva’nın, 16 Ekim’de ya da 30 Ekim’de varedildiklerine inanmanızda, dinsiz sayılma sakıncası yoktur. Yaratılış gününün Cuma olduğu da biliniyordu tabi, çünkü Tanrı, Cumartesi günü dinlenmişti. Bilimin de bu dar sınırlar içinde kalması istenmiş, gördüğümüz evrenin 6000 yıllık değil çok daha yaşlı olduğunu düşünenler alay konusu olmuşlardır. Gerçi böyle kimseler artık yakılmıyor, hapsedilmiyorlardı; ama tanrıbilimciler bunlarını yaşamalaranı zehir etmek, öğretilerinin yayılmasına engel olmak için ellerinden geleni geri koymuyorlardı. Newton, Copernicus sistemi kabul edildikten sonra, dinsel inançları sarsacak bir şey yapmış olmuyordu. Kendisi de koyu bir Hıristiyan, Kutsal Kitap ’a inanan bir kimseydi. Onun evreni, içinde gelişmeler bulunmayan bir evren değildi, söylediklerinde bu konuya hiç rastlamıyoruz; ama herhalde bütün evrenin tek parçadan yaratıldığına inanıyordu. Gezegenlerin Güneşin çekiminden kurtulmalarını sağlayan teğetsel hızlarını açıklarken, hepsinin başlangıçta Tanrı eliyle boşluğa fırlatılmış olduklarının tasarlıyordu; bundan sonra olup bitenler de genel çekim yasasıyla açıklanıyordu. Newton’un, Bentley’e yazmış olduğu özel bir mektupta bütün evrenin Güneş sisteminin ilkel bir parçalanmasından doğmuş olabileceğini ileri sürdüğü doğrudur; ama topluluk karşısında ya da resmi olarak söylediklerine bakılırsa, Güneş ile gezegenlerin birdenbire yaratılmış olduklarını benimseyen, evrensel evrime hiçbir şey tanımayan bir düşünceden yana olduğu görülür. 18. yüzyılın özel inanç biçim Newton’dan alınmadır; buna göre evrenin ilk yaratıcısı olan Tanrı, temel yasalar da koymuş, yaptığı kurallarla da gelecekteki bütün olayları kendisinin bir daha araya girmesini gerektirmeyecek biçimde belirlemiştir. Koyu dinciler göre yasalarla açıklanamayacak durumlar da vardı: dinle ilgili mucizeler. Ama yaratancılara göre herşey doğal yasalarla yönetiliyordu. Pope’ un İnsan Üstüne Deneme iki görüşle de karşılaşırız. Bir parçada: Her şeye yeterli ilk güç, ayri ayri degil, genel yasalarla hareket eder, pek azdir bunun dişinda kalan. Ama dinsel bağın unutulduğu anlarda, hiçbir duruma ayrıcalık tanımaz: Doğa’nğın zincirinden hangi halkayı koparsanız, onuncu olsun, on birinci olsun fark etmez, kırılıverir zincir. Aşamalı sistemler, şaşkınlık veren o bütüne uyarak, hep birbirleri gibi yuvarlanıp giderlerken en küzük bir karışıklık koca bir sistemi yıkmakla kalmaz, bütünü de yıkar. Yer dengesini yitirir, fırlar yörengesinden; gezgenler, güneşler, yasasız koşarlar gökyüzünde; yönetici melekler göklerinden uğrarlar, varlık varlık üstüne dünya dünya üstüne yığılır; bütün temelleri göklerin eğilir merrkeze doğru. Doğa titrer tahtı önünde Tanrının! Yasaların Yetkisi sözünden, Kraliçe Anne zamanında olduğu gibi, politik durulma anlaşılıyor, devrimler çağının geçtiğine inanılıyordu. İnsanlar yeniden değişiklik istemeye başlayınca, doğal yasaların işlyeşi ikonusundaki görüşleri de kural olmaktan çıktı. Güneşin gelişimi konusunda ciddi bir bilimsel kuram koymaya girişen ilk kimse 1755 yilinda Göklerin Genel Doga Tarihi ile Kurami ya da Newton Ilkelerini Uygulayarak Evrenin Bütün Yapisinin Kuruluşu ve Mekaki Kynagi Üzerinde Araştirma adli kitabiyla Kant olmuştur. Bu kitap, kimi yönleriyle modern gökbilimin sonuçlarini önceden gören çok önemli bir yapittir. Çiplak gözle görülebilen bütün yildizlarin tek sisteme, Samanyolu’na bagli olduklarini söyleyerek başlar. Bütürn bu yildizlar hemen hemen bir düzlemde yer alirlar. Kant’a göre bunlar arasinda da tipki Güneşş sistemindekine benzer bir birlik göze çarpar. Olagaüstü bir düşsel karayişla Nebula’nin da sonsuz uzaklikta yildiz kümelerinden başka bir şey olmadigini söylemiştir; bugün de genellikle tutulan görüş budur. Nebula’nin, Samanyolu’nun, yildizlarin, gezegenlerin takimyildizlarinin gerçekte dağınık olan bir maddenin küme küme yoğunlaşmasından ortaya çıktıklarını ileri süren-yer yer, matematik kanıtlara dayanmamakla birlikte, daha sonraki buluşların eşiğine dayanmış- bir kuramı vardır. maddesel evrenin sınırsızlığına inanır, bunun Yaratıcı’nın sınırsızlığına yaraşacak tek görüş olduğunu söyler. Kant’ın düşüncesine göre karışıklıktan örgütlenmeye doğru aşamalı bir geçiş evrenin çekim merkezinden başlar, yavaş yavaş bu noktadan en uzak kesimlere değin yayılır; sonsuz bir uzayda olup biten sonsuz zaman isteyen bir işledir bu. Kant’ın yapıtının önemli yönlerinden birincisi maddesel evreni bir bütün, Samanayoluyla Nebula’nın da bu bütünün birimleri olarak düşünen görüş; ikincisi de uzaydaki hemen hemen anlaşılmaz bir madde dağılmasından doğan aşamalaı gelişim fikridir. Bu, birden yaratılma düşüncesi yerine evrimi koyan ilk adaımdır, böyle bir görüşün Dünya’yla değil de göklerle ilgili bir kuramla ortaya çıkmış olması da ilgi çekicidir. Türlü nedenlerden dolayı Kant’ın yapıtına ilgi azdı. (B.Russel, Din ile Bilim s: 35-39) Kitap yayımlandığı zaman Kant otuz bir yaşındaydı., büyük bir üne ulaşmış değildi daha. Bir matematikçi ya da fizikçi değil, filozoftu; kendi başına olan bir sistemin, durup dururken bir dönme kazanacağını tasarlaması, dinamik konusundaki yetersizliğini gösterir. Ayrıca, kuramı yer yer katıksız bir düştü; örneğin bir gezegen Güneşten ne denli uzaksa içinde yaşayanlar da o denli daha üstündür diye düşünüyordu; bu görüş insan soyu konusunda gösterdiği alçakgönülüllükle birlikte, bilimsel dayanaklardan yoksundur. Bu nedenlerden dolayı Laplace aynı konuda daha yetkili bir kuram ortaya koyuncaya dek Kant’ın yapıtı hemen hemen göze çarpmamıştır bile. Laplace’ın ünlü varsayımı ilk olarak, 1796'da Dünya Sisteminin Açıklaması adlı kitabın yayımlanmasıyla ortaya çıktı; Laplace, söylediklerinin çoğunun daha önce Kant tarafından söylenmiş oluduğunu bilmiyordu bile. Söylediğinin bir varsayımdan başka hiçbir şey olmadığına inanıyor; bunu “gözlem ya da hesap sonucu olmayan herşeydeki güvensizlik” diyen bir notla belirtiyordu; ama şimdi değişmiş olan bu varsalyım o zaman bütün bir yüzyıl boyunca düşünce alanına egemen oldu. Laplace’a göre Güneş sistemi ile gezeneler sistemi bu zamanlar çok geniş bir nebulaydı; bu nebula yavaş yavaş büzüldü. Büzülünce de daha hızlı dönmeye başladı; merkeçkaç gücü ile koparak uçan topraklar gezegen oldular; aynı işlemin tekrarlanmasıyla gezegenlerin uyduları ortaya çıktı. Laplace, Fransız Devrimi çağında yaşadığı için tam bir özgür düşünürdü. Yaratılışı bütünüyle yadsıyordu. Göklü bir hükümdara beslenen inancın yeryüzü hükümdarlarına da saygı uyandıracağına inanan Napoleon, Laplace’ın büyük yapıtı Celestial Mechanics ’de Tanrı adının neden hiç anılmadığını sorunca, büyük gökbilimci, “Efendimiz, o varsayımla işim yok benim ” diye karşılık vermişti. Tanrıbilimciler diş biliyorlardı tabii; ama Laplace’a olan öfkeleri, tanrıtanımazlık akımı ile devrim Fransa’sının türlü azgınlıkları karşısında duydukları korku yanında hiç kalıyordu. Hem o güne dek gökbilimcilere açtıkları her savaş boşuna çaba olmuştu. Yerbilimsel görüşün gelişmesi, bir bakima gökbilimdekinin tam tersi oldu. Gökbilimde göksel cizsimlerin degişmezi oldugu kanisi, yerini göksel cisimlerin aşamali bir gelişim geçirdiklerini söyleyen kurama birakti; ama yerbilimde, hizli, karmakarişik degişikliklerin geçirilmiş oldugu eski bir dönemin varligina inanilirken, bilim ilerledikçe, degişikliklerin her zaman için, uzun bir süreyi gerektirdikleri inanci yerleşti. Oysa daha önce, bütün dünya tarihini alti bin yila sigdirmak gerekiyordu. Tortul kayalardan, lav birikintilerinden elde edilen kanitlar incelenirken, bunlarin ilgili bulundugu felaketlerin eskiden çok yaygin olduklari tasarlaniyordu, çünkü sinirli bir zaman içinde olup bitmişti hepsi. Bilimsel gelişme yönünden yerbilimin gökbilimden ne denli geri kaldigi,Newton zamanindaki durumundan anlaşilabilir. 1695'te Woodward “yer kabugundaki bütün kalinti katmanlari birkaç ay içinde birikmiştir” diyordu. On dört yil önce (1681'de) sonralari Charterhouse’a başkanlik etmiş olan Thomas Burnet, Yer’in Aslini Şimdiye Dek Geçirmiş Oldugu ya da Her şey Bütünleniceye Dek Geçirecegi Degişiklikleri Açiklayan Kutsal Yer Kurami adili kitabini yayimlamişti. Büyük Sel’den önce Güneş yörengesi düzleminde bulunan Ekvator’un, selden sonra şimdiki egik duruma geldigine inaniyordu (Bu degişikligin Düşüş sirasinda oldugunu düşünen Milton’un görüşü tanribilimsel yönden daha dogrudur) Burnet’in düşüncesine göre, güneşin isisiyla yerkabugu çatlamiş, yeraltindaki sularin bu yariklardan fişkirmasiyla sel olmuştur. Ikinci bir felaketin, büyük selden bin yil sonra görüldügüne inaniyordu. Görüşlerini incelerken yine de dikkatli olmak gerekir, örnegin tanrisal cezaya inanmiyordu. Daha da kötsü, Düşüşü’ün ders alinacak bir öyküden başka bir şey olmadigin söylüyordu. Encylpaedia Britannicca’dan ögrendigimize göre, bu ininçlarindan dolayi “kral onu saray rahipliginden uzaklaştirmak zorunda kalmiştir”. Whiston 1696'da yayimladigi kitabinda Burnet’in Ekvator’la ilgili yanliş görüşüyle öbür yanlişlarindan kaçinmaya çalişmiştir. Bu kitabin yazilmasinda bir bakima 1680 kuyrukluyildizinin payi olmuştur; bu belki de Whiston’a, Büyük Sel’in de bir kuyruklu yildizdan ileri gelmiş olabilecegini düşündürmüştür. Bir noktada, Kutsal Kitap ’a bagliligin derecesi tartişma götürür; yaratiliştaki alti günün bildigimiz günlerden daha uzun olduklarini düşünüyordu. Woodward, Burnet ve Whiston’un, çağlarının öbür yerbilimcilerinden daha aşağı oldukları sanılmamalıdır. Tam tersine zamanlarını en iyi yerbilimcileriydiler; Whiston, Locke’un çok büyük övgülerine konu oluşturmuştur. 18. yy’da, hemen hemen her şeyin sudan geldigini söyleyen Neptün’cü okulla, her şeyi yanardaglarla depremlere baglayan Volakanci okul arasinda uzun bir çatişma görülür. Birinciler durmadan Büyük Sel’in kanitlarini topluyorlar, daglarin yüksek kesimlerinde bulunan taşil (fosil) kalintilara büyük bir önem yüklüyorlardi. Dinsel görüşe daha çok bagliydilar, bundan dolayi bu görüşün düşmanlari, bulununa taşillarin gerçek hayvan kalinilari olamayacagini söylemeye kalkiştilar. Voltaire aşiri şüpheyle davrandi bu konuda; bu taşillarin gerçekten yaşamiş hayvanlardan kalma olduklarını yadsımayacak duruma gelince, bunların dağlardan yolu geçen hacılarca atılmış, düşürülmüş olduklarını ileri sürdü. Bu örenkte, dogmatik özgür düşünce, bilime aykırılıkla dinsel düşünceden daha baskın çıkmıştır. Büyük doğacı Buffon, 1749'da yayımladığı Doğal Tarih adıl kitabında, Paris’teki Sorbonne Tanrıbilim Fakültesinin “Kilise öğretisine aykırı” olmakla suçlandırdığoı on dört önerme ileri sürdü. Bu önermelerden biri, yerbilimle ilgili olarak: “ Şimdi yeryüzünde bulunan dağlar, vadiler ikincil nedenlerden doğmuştur, aynı nedenler zamanla bütün kıtaları, tepeleri, vadileri yok ederek yerlerine yenilerini getireceklerdir” diyordu. Burada “ikincil nedenler” Tanrı’ın yaratıcı emirleri dışında kalan büün öbür nedenler anlamındadır; oysa 1749'da dinsel görüş, dağlarıyla, vadileriyle, denizlerinin, karalarının, dağılışıyla bütün dünyanın, şimdi gördüğümüz biçimde yaratılmış olduğuna inanmayı gerektiriyordu; yalnız bir mucize ile değişikliğe uğramış olan Lut Gölü bunun dışında sayılıyordu. Buffon, Sorbonne ile bir çatışmaya girişmenin iyi olmayacağını düşündü. Sözlerini geri alarak şu itirafı yayımlamak zorunda kaldı: “Kutsal Kitap ’a aykırı şeyler söylemek amacında olmadığımı; Kutsal Kutap’ta yaratışı konusunda söylenenlerin gerçekliğine, belirtilen sürelerin doğruluğuna bütün gücümle inandığımı; kitabımda, yerin oluşumu konusunda bütün söyledilerimden, genel olarak Musa’nın söyledikleriyle çelişebilecek bir şeyden vazgeçtiğimi açıklarım.” Burada açıkça görüldüğü gibi, tanrıbilimcilerin Galilei ile olan çatışmadan aldıkları ders gökbilim sınırları içinde kalmıştı. Yerbilim konusunda modern bir bilimsel görüş ortaya koyan ilk yazar, ilkin 1788'de, sonra daha genişleterek 1795'te yayimladigi Yer Kurami adli kitabi ile Hutton olmuştur.Söyledigine göre, geçmiş çaglarda yer yüzeyinin geçirmiş oldugu degişiklikler bugün de sürüp gitmekte olan nedenlerden ileri gelmişti, bu nedenlerin eski çaglarda şimdikinden daha etkili olduklarini düşünmek yersizdi.Bu, temel bakimdan saglam bir görüşse de, Hutton bu görüşün kimi yönlerini çok geliştirmiş, kimi yönleri üzerinde de geregi ölçüsünde durmamiştir. Deniz dibinde biriken tortulara bakarak, kitalarin ortadan kalkişini aşinmaya bagliyordu; ama yeni kitalarin ortaya çikişini,birden gelmiş büyük degişikliklerle açikliyordu. karalarin birden bire batmasini ya da yavaş bir süreyle yükselmesini, gerektigi ölçüde anlayamamiştir. Ama onun gününden beri bütün yerbilimciler, geçmişteki degişiklikleri yapan etkenlerin bugün kiyilarin yavaş yavaş degişmelerinde, dag yüksekliklerinin artip eksilmesinde, deniz dibinin yükselip alçalmasinda payi olan etkenlerden ayri olmadiklarini söyleyen yöntemi benimsemişlerdir. (B. Russel, Din ile Bilim s:40-43 ) İnsanların bu görüşü daha önce benimsememiş olmaları, yalnızca Musa’cı zaman bilgisi yüzündendir. Oluş’a bağlı kimseler, Hutton ile öğrencisi Playfair’e çok ağır saldırılarda bulunmuşlardır.Lyell “Din tutkusu Hutton öğretilerine karşı coşmuştu, bu çatışmada başvurulan hileler, aşırılıklar inanılacak gibi değildir, İngilliz halkının düşüncelerinin o zamanlar nasıl ateşli bir heyecanla kamçılandığını anımsayamayan okur bütün bunları anlayamaz.” diyor. “Fransa’da birtakım yazarlar yıllardır bütün güçleriyle Hıristiyan inancının temellerini çökertmeye çalışıyorlardı; bir yandan bu yazarların başarıları, bir yandan da Devrim’in sonuçları, en gözüpek kafaları uyandırmıştı; ama daha yüreksiz olanların kafalarında yenilik korkusu, korkunç bir düş gibi sürüp gidiyordu.” 1795 İngiltere’sinde hemen hemen bütün zenginler Kutsal Kutap’a karşıt her öğretiyi mallarına yönelmiş bir saldırı, bir giyotin tehditi olarak görüyorlardı. İngiliz düşüncesi yıllarca, Devrim’den önceki özgürlüğünden bile yoksun kaldı. Taşillarin soyu tükenmiş canlilara, yaşam biçimlerine birer kanit olduklari düşünülerek yerbilimin daha sonraki gelişimi biyolojininki ile karişti.Dünyanin ilkçaglari söz konusu olunca, yerbilim il e tanribilim alti “gün”ün alti “çag” sayilmasi gerektigini söyleyerek uzlaşiyorlardi. Ama canlilar konusunda tanribilimin ileri sürdügü bir sürü kesinlemeyi, bilimle uzlaştirmak gitgide daha güç bir iş oldu. Düşüş zamanina dek hayvanlardan hiçbiri öbürünü yememişti; şimdi varolan hayvanlar Nuh’un gemisine alinan hayvanlarin soyundandirlar(Dip not: Bu düşüncenin de güçlükleri yok degildi. St Augustine tanri’nin sinekleri yaratmasindaki nedeni bilmedigini söylmek zorunda kalmişti. Luther daha da ileri giderek, sineklerin, iyi kitaplar yazarken kendisini rahatsiz etsinler diye Şeytan tarafindan yaratildiklarini söylemiştir. Bu ikinci düşünce daha degerlidir kuşkusuz), şimdi soyu tükenmiş olanlar ise selde bogulmuşlardir. Yaratilan türler hiçbir degişiklige ugrayamazlardi; herbiri ayri bir yaratma eyleminin sonucuydu. Bu önermelerin herhangibiriyle ilgili bir soru sormak, tanribilimcileri öfkelendirmek demekti. Güçlükler Yeni Dünya’nın bulunmasıylla başlamıştı. Amerika, Ağrı Dağından çok uzakta bir ülkeydi; ama yine de aradaki ülkelerin hiçbirinde görülmeyen birçok hayvan yaşıyordu orada. Bu hayvanlar bunca uzak yoldan nasıl gelmişlerdi, üstelik, türlerinden bir tekini bile yolda bırakmamışlardı. Kimileri onları denizcilerin getirmiş olduklarını düşündüler ama kendisini Kızılderilileri dine sokmaya adayan, sonra kendi inancını da güç kurtarabilen sofu Jesuit Joseph Acosta böyle bir varsayımı şaşkınlıkla karşılamıştı. Kızılderililerin Doğal ve Töresel Tarihi (1590) adlı yapıtında bu sorunu çok olumlu bir biçimde tartışır der ki: “ İnsanların bunca uzak bir yolculukta, Peru’ya tilkiler götürmek için başlarını derde sokmuş olduklarını kim düşünüebilir, hele şimdiye dek gördüklerimin en pisi olan o ‘Acias’ türünü? Kaplanlar ya da aslanlar götürmüş olduklarını kim söyleyebilir? Böyle düşünenlere gülünse yeridir doğrusu. Bir fırtınayla ellerinde olmaksızın, bunca uzun, bilinmez bir yolculuğa sürüklenmiş olan insanlar kendi canlarının derdine düşmüşlerdir herhalde, yoksa başlarına gelenler yetmiyormuş gibi kurtlar, tilkiler götürmeye kalkışıp iki taşın arasında, bir de onları beslemekle uğraşmamışlardır. Bunun üzerine tanrıbilimciler pis Acias’la benzeri hayvanların Güneş etkisiyle kendiliklerinden, bataklıklardan türemiş olduklarına inandılar; ne yazık ki Nuh’un gemisinde bununla ilgili hiçbir ipucu yoktu. Ama başka çıkar yol da yoktu. Örneğin, adlarının da belirtildiği gibi, yerlerinden zor kımıldayan Sloth’lar (Sloth, Amerika’da yaşayan, ağır ağır yürür, ağaçlara tırmanır hayvanlar, Bu sözcük ayrıca tembellik anlamına da gelir.) nasıl Ağrı Dağı’ndan yola çıkıp hep birlikte Amerika’ya ulaşmış olabilirler? Başka bir güçlük de hayvanbilimin gelişmesiyle elde edilen, hayvan türlerinin sayisindan dogdu. Şimdi bu sayi iki imilyonu bulmuştu, her türden iki hayvanin gemiye alindigi göz önünde tutulunca, geminin biraz fazlaca kalabalik olabilecegi düşünüldü. Hem, Adem hepsine ayri ayri ad takmişti; bunca çok sayida hayvani adlandirmak yaşamin tam başlangicinda biraz agir bir iş olurdu. Avusturalya’nin bulunmasi yeni güçlükler çikardi. Neden bütün kangurular Torres Bozagi’ndan atlamişlar, geride bir çift bile kalmamişti? Biyoloji alanindaki gelişmeler yüzünden, Güneş’in etkisiyle batakliklardan bir çift kangurunun türemiş oldugunu düşünmek de pek güçtü artik; ama böyle bir kuram her zamankinden daha gerekliydi. Bu türden güçlükler, bütün 19. yy boyunca din adamlarının kafalarını oyaladı durdu. Örneğin, Tanrı’nın Zorunlu Varlığı ’nın yazarı William Gillespie’nin Hugh Miller ve Başkalarından Verilmiş Örneklerle Yerbilimcilerin Tanrıbilimi adlı kitapçığı okuyunuz Bir İskoç tanrıbilimcisinin yazdığı bu kitap 1859'da Darwin’in Türlerin Kökeni ile aynı yılda çıktı. Yerbilimcilerin korkunç önermeleri üzerinde durur, onyların “düşünülmesi bile korkunç günahların öncüleri” olduklarını söyler. Yazarın üzerinde durduğu ana sorun, Hugh Miller’in Kayaların Tanıklığı adlı kitabında ileri sürdüğü “insan ilk günahı işleyip acı çekmeye başlamadan önce de hayvanlar arasında şimdiki savaş vardı” düşüncesidir. Hugh Miller, insanın yaratılışından önce yaşayıp soyları tükenmiş hayvan türlerini birbirlerine karşı başvurdukları ölüm, işkence yollarını bütün korkulu yanlarıyla, canlı bir biçimde anlatır. Dine bağlı bir kimse olduğu için tanrı’nın günahsız yaratıklara neden böyle acı çektirdiğini bir türlü anlayamıyordu. Mr. Gillespie, kanıtlara gözlerini kapayarak, küçük hayvanların insanın ilk günahından dolayı acı çektiklerini, yine bundan dolayı öldüklerini söyleyen dinsel görüşü körükörüne savunuyor; Kutsal Kitap’tan aldığı “insanla geldi ölüm” sözleriyle, Adem’in elmayı yediği zamana değin hiçbir hayvanın ölmemiş olduğunu tanıtlamaya kalkışıyordu(Dip not: Bütün eski öğretilerin ortak görüşüydü bu. tıpkı bunun gibi Wesley, Düşüş’ten önce “Örümcek de sinek gibi dokuncasızdı, kan için pusuda beklemiyordu” der). Hugh Miller’in, soyu tükenmiş hayvanların boğuşmaları konusunda söylediklerini göstererek, İyiliksever bir Yaratıcı böyle canavarlar yaratmış olamaz diyordu. Bütün bunlara peki diyelim Ama daha aşırı düşünceleri pek gariptir. Herhalde yerbilimin kanıtlarını yadsımaya yeltenmiş, ama yiğitliği daha baskın çıkmıştır. Belki de vardı böyle canavarlar, ama onlar doğrudan doğruya Tanrı eliyle yaratılmamışlardır, diyordu. Başlangıçta iyi yaratıklardı, sonradan şeytan ayarttı onları; ya da belki Gadarene domuzu gibi, cinleri barındıran hayvan gövdeleriydi bunlar. Tevrat’ın, birçokları için sürçme-taşı olan Gadarene domuzu öyküsüne neden yer verdiği anlaşılır burda. Biyoloji alanında, dinsel görüşü kurtarmak için, Edmund Gosse’un babası, doğa bilgini Gosse garip bir yelteni gösterdi.Dünyanın eskiliği konusunda yerbilimcilerin ileri sürmüş oldukları bütün kanıtları kabul etti; ama Yaratılış sırasında herşeyin eskiymiş gibi yapılmış olduğunu ileri sürdü. Kuramının gerçek olmadığını tanıtlayacak, mantığa uygun bir yol yoktur. Tanrıbilimciler, Adem’le Havva’nın tıpkı doğumla dünyaya gelen insanlar gibi göbekleri olduğunu söylüyorlardı.(Belki de Gosse kitabına Omphalos adını bunun için vermiştir) Bunun gibi, öbür yaratılanla da eski bir biçimde yaratılmışlardı belki.Kayalar taşıl kanıtlarla doldurulmuş volkanların ya da tortul birikmelerin etkisine uğramış gibi yapılmış olabilirlerdi. Ama böyle olanaklar bir kez benimsendi mi, dünya şu zaman ya da bu zaman yaratılmıştır diye tartışmanın hiçbir anlamı kalmaz. Hepimiz anılarla, çoraplarımızda delikler, saçımız sakalımız uzamış bir halde bir halde beş dakika önce dünyaya gelmiş olabiliriz. Mantıkça olağan bu duruma, kimse inanamazdı; Gosse umduğunun tam tersine , din ile bilim arasında yaptığı, mantık yönünden eşsiz uzlaştırmaya, hiçmkmisenin inanmadığını gördü. Onun oüşüncelerini tanımayan tanrıbilimciler, daha önceki öfkelerinin çoğunu bırakıp azıyla durumlarını kurtarmaya çalıştılar. Bitkilerle hayvanların üreme, değişme yoluyla uzun süreli bir evrim geçirdiklerini söyleyen öğreti biyolojiye yerbilimden geldi daha çok; bu kuram üçe ayrılabilir..İlk gerçek,-ancak, uzak çağlarla ilgili bir gerçekten umulabilecek kesinlikte bir gerçek bu- küçük canlıların daha eski oldukları, daha karmaşık bir bir yapı taşıyan canlıların ise gelişmenin sonlarına doğru ortaya çıktıklarıdır. İkincisi, daha sonraki, çok daha üstün yapılı canlılar kendiliklerinden ortaya çıkmamışlar, bir değişmeler dizisinden geçerek daha önceki canlılardan türemişlerdir; biyolojide “evrim” ile söylenmek istenen budur. Üçüncüsü, bütünlükten uzak olkala birlikte, evrimin işleyişini, örneğin değişmenin belli canlıların yaşayıp öbürlerinin silinip gitmlerinin nedenlerini araştıran bir çalışma vardır. İşleyşişkonusunda daha birçok karanlık noktalar bulunmakla birlikte, evrim öğretisi bugün bütün evrence benimsenmiştir. Darwin’in başlıca tarihsel evrimi daha olağan gösteren bir işleyiş- doğal seçim- ileri sürmüş olmasıdır; ama ileri sürdüğü, kendisinden hemen sonra gelenlerce kolay benimsenmişse de, yirminci yüzyılın bilim adamlarına göre pek yetersizdir. Evrim öğrtisine önem veren ilk biyoloji bilgini Lamarck (1744-1829) oldu. Öğretileri kabul edilmedi, çünkü türlerin değişmezliği konusundaki önyargı geçerlikteydi daha, üstelik ileri sürdüğü değişim süreci de bilimsel kafaların benimseyebileceği gibi değildi. Bir hayvanın gövdesinde beliren yeni bir organın, duyulan yeni bir istekten ileri geldiğine inanıyor, tek örnekte görülen bu yeniliğin, sonra bütün soya geçtiğini düşünüyordu. İkinci varsayım olmadan, birincisi evrim için pek yetersiz bir açıklamaydı Birinci varsayımın, yeni türlerin gelişiminde önemli bir öğe olmayacağını söyleyen Darwin, kendi issteminde pek geniş bir yer tutmamasına karşın, ikinciyi benimsiyordu. Tek örneklerde ortaya çıkan değişikliklerin bütün bir soya geçktiğini söyleyen ikinci varsayıma Weissmann bütün gücüyle karşı koydu, bu çekişme bugün bile sürüp gitmektedir, ama elde edilen kanıtlar bir kaç ayırıcı durum dışında, soya geçen bütün yeni özeliklerin yumurta hücdresiyle ilgili değişiklikler olduğunu göstermektedir. Bu bakımdan Lamarck’ın evrimi işleyişi konusunda söyledikleri kabul edilemez. Lyell’in yeryuvarlağı ile yaşamın eskiliğini sağlam kanıtlarla savunan Yerbilimin (Jeolojinin) İlkeleri adlı kitabı 1839'da ilk baıldığı zaman dine bağlı kimseler arasında büyük bir yaygarayla karşılandı, oysa kitabın ilk basıkıılarında canlıların evrimi varbsayımını savunan çok şey yoktu. Lamarck’ın kuramlarını titizlikle eleştiriyor, bilimsel kanıtlara dayanarak çürütyordu. Darwin’in Türlerin Kökeni (1859) çıkışından sonra yaptığı yeni baskılarda ise evrim kuramını savunuyordu. Darwin’in kuramı, laisser-faire ekonomi düzeniyle işleyen bitki hayvan dünyasını da kavramaktaydı, Malthus nüfus kuramı da Darwin kuramına dayanıyordu. Bütün canlıların büyük bir hızla yayılmalarından dolayı, her kuşağın büyük çoğunluğunun daha çoğalma çağına varmadan ölmesi gerekmektedir. Dişi bir morina balığı yılda 9 milyon yumurta yumurtlar. Bu yumurtaların hepsinden yeni morina balıkları çıksa, birkaç yıla varmaz bütün deniz silme morinayla dolar, karalar yeni bir sele uğrardı. Fillerden başka, öbür hayvanların hepsinden daha yavaş artan insan topluluklarının da her yirmi beş yıl içinde iki kat olduklarıbilinmektedir. Bütün dünyadaki insanlar bu hızla çoğalsalar, önümüzdeki iki yüz yıl içinde insan sayısı beşyüzbin milyonu bulur. Oysa, hayvan-bitki topluluklarının gerçekte, bir kural gereği sayıca hep aynı düzeyde kaldıklarını görüyoruz; birçok dönemlerde insan toplulukları için de durum aynı olmuştur. Buradan çıkan sonuca göre bir türün, kendilerine üstünlük sağlayan bir yanlarıyla öbürlerinden ayrılan kimi üyelerinin, süreklilikleri daha olağandır. Ayrılan özellik sonradan kazanılma ise arkadan gelen kuşaklara geçmez ama doğuştansa yeni kuşaklarda, küçük bir oran da olsa bile izler bırakabilir.Lamarck zürafanın boyunun yüksek dallara ulaşabilme çabasından dolayı uzadığını, bu çabanın sonucunun da soydan soya geçtiğini düşünüyordu; Weismann’ın yaptığı değişikliklerle Darwinci görüş, zürafaların, uzun boyunluluğa doğuştan bir eğilim taşıdıklarını, böylece açlıktan ölebilme sakıncasından kurtulduklarını, bundan dolayı kendilerinden sonraya da yine uzun boyunlu, daha çok sayıda zürafa bıraktıklarını, kimilerini anne babalarından da daha uszun boyunlu olduklarını söylüyordu. Böylece zürafanın bu özelliği, daha çok uzamanın hiçbir yarar sağlamayacağı zamanına dek gitgide gelişecekti. Darwinin kuramı, nedenelri bilinmeyen tek tük değişikliklerin görülmesine dayanıyordu.Ele alınan herhangi bir çiftin bütün çocuklarının aynı olmadıkları bir gerçekti. Evcil hayvanlar yapay seçmeler sonucunda büyük bir değişikliğe uğruyorlardı: İnsanın aracılığı ile inekler daha çok süt vermeye başlıyor, yarış atları daha hızlı koşuyorlar, koyunlar daha çok yün veriyorlardı. Böyle olgular, seçmenin ne sonuçlar doğurabileceği konusunda Darwin’e en açık kanıtları sağlıyorlardı. Yetiştiricilerin bir balığı keseli bir hayvana, keseli bir hayvanı bir maymuna dönüştüremeyecekleri açıktır; ama bu gibi büyük değişikliklerin, yerbilimcilerin söylediği sayısız çağlar sonucunda ortaya çıkmaları olağan bir şeydir. Hem birçok durumlarda ataların ortaklığına kanıtlar da vardır.Taşıllar, geçmiş çağlarda şimdi çok yaygın olan türlerin karışımı hayvanların yaşadıklarını gösteriyorlar; Pterodaktil, örneğin, yarı kuş yarı sürüngendi. Döllenme konusunda çalışan bilginler, gelişme evreleri sırasında, kimi olgunlaşmamış hayvanlarda daha önceki biçimlerin yeniden ortaya çıktıklarını göstermişlerdir; belli bir dönemde bir memelide, iyice gelişmemiş balık solungaçları göze çarpar; bunlar bütünüyle yarasızdırlar, ancak soyla ilgili tarihsel değişikliklerin başlıca etkenlerinin evrim ile doğal seçme olduğunu göstermek için, türlü yollardan kanıtlar ileri sürüldü. Darwincilik, tanrıbilime Copernicus’culuktan geri kalmayan bir tokat oldu. Yalnızca Oluş’ta ileri sürülen ayrı ayrı yaratma eylemlerini, türlerin değişmezliklerini çürütmekle; yaşamın başlangıcından beri, dinsel görüşe taban tabana karşıt, usa sığmaz bir sürenin geçmiş olduğunu söylemekle; Tanrı’nın iyilikseverliği ile açıklanan, canlıların çevreye uyumunu, doğal seçmeye bağlamakla kalmıyor; hepsinden kötüsü, evrimciler insanın daha aşağı hayvan soylarından türediğini savunuyorlardı. Tanrıbilimcilerle öğrenimsiz kimseler, gerçekte kuramın bu noktasına takılıyorlardı. “Darwin insanın maymun soyundan geldiğini söylüyor!” diye bir yaygara koptu dünyada. Bir ara, kendisinin maymuna benzerliğinden dolayı böyle bir şeye inandığı söylendi( oysa benzemiyordu). Çocukken, öğretmenlerimden biri büyük bir ciddiyetle şu sözleri söylemişti bana: “Darwinci olursan acırım sana, bir kimse hem Darwinci hem Hıristiyan olamaz ” Bugün bile Tennessee’de evrim öğretisini yaymak yasalara aykırıdır, çünkü bu öğreti Tanrı Sözü’ne karşıt sayılmaktadır. Her zaman olduğu gibi tanrıbilimciler, yeni öğretinin doğuracağı sonuçları, bu öğretiyi savunanlardan daha çabuk kavradılar, ileri sürülen kanıtlara inanmakla birlikte dine bağlılıkla dirediler, önceki inançlarını ellerinden geldiğince korumaya çabaladılar.Özellikle 19. yy’da yeni öğreti, savunucularının düşüncesizliğinden dolayı büyük bir hız gösterdi, bu yüzden, daha ağır bir değişikliğe alışılmadan arkadan öbürü bastırdı.Bir yeniliğin bütün sonuçları bir arada ileri sürülürse, alışkanlıkların tepkisi öyle büyük olur ki bu tepkiyle yeniliğin bütünü birden terslenir; oysa her on ya da yirmi yılda bir atılacak yeni adımlarla, gelişme yolu boyunca büyük bir direnmeyle karşılaştırılmadan, alışkanlıklar yavaş yavaş uyutabilirdi. 19. yy’ın büyük adamları gerekliği sugötürmez bir devrimi başarıya ulaştırmak istiyorlardı ama kafaları ya da politikaları yönünden devrimci görünmüyorlardı Yenilikçilerin bu yolda davranışları 19. yy’ın önemli bir gelişme çağı olmasına yardım etti. Tanrıbilimciler yine de neyin olup bittiğini halktan daha iyi biliyorlardı. İnsanların ruhlarının ölümsüz olduğunu, maymunlarda ise böyle bir özelliğin bulunmadığını;İsa’nın maymunları değil insanları kurtarmak için öldüğünü; insanlarda tanrıca bir iyiyi kötüyü ayırt etme duygusu varken, maymunların yalnızca içgüdülerle hareket ettiklerini söylemeye başladılar.İnsanlar kavranamayacak ölçüde uzun süreli bir değişme sonunda maymundan türedilerse, tanrıbilimce önemli olan bu özellikleri ne zaman kazandılar ansızın? 1860'ta, Türlerin Kökeni ’nin yayımlanmasından bir yıl sonra, Bishop Wilberforce Darwinciliğe karşı gürleyerek bayrak açtı: “Bu doğal seçme ilkesi bütünüyle Tanrı Sözü’ne aykırıdır” Ama bütün parlak sözler bir işe yaramadı, Darwin’i başarıyla savunan Huxley bu sözleri herkesin anlayabileceği biçimde çürüttü. Artık kilisenin kızgınlığına kimse aldırmıyşordu., Chichester başpapazı bir ünversite vaazında: “İlk anne-babamızın yaratılış tarihini, anlamındaki bütün açıklığa karşın kabul etmeyip, yerine şu modern evrim düşünü koymak isteyenler isnoğlunun kurtuluşu konusundaki bütün düşünceleri çökertmlektedirler diyerek Oxford’u uyarmaya çalıştı; öte yandan Kutsal Kitap’ın öğretisine bağlı olmamakla birlikte dinsel görüşü destekleyen Carlyle, Darwin için “kirli bir dinin peygamberi” dedi, ama bunların hepsi etkisiz kaldı, hayvan-bitki türlerinin evrimi kısa zamanda biyoloji bilginlerinin de benimsedikleri bir öğreti oldu. Bilim çevreleri dışındaki laik Hıristiyanların tutumuna, Gladstone’un davranışı iyi bir örnektir. Bu özgür önder bütün çabalarına karşın, çağının özgür bir çağ olmasını önleyemedi.1864'te tanrısal adalete inanmadıklarından dolayı cezalandırılmaları istenen iki din adamıyla ilgili karar, Kral’ın Danışma Kurulu’nun yargıçları tarafından bozulunca, Gladstone öfkelenerek, böyle olursa “Hıristiyanlığa inanmak ya da inanmamak konusunda büyük bir umursamazlık”çıkar ortaya demişti. Darwin’in kuramı ilk basıldığında, yöneticiliğe alışmış bir kimsenin halden anlarlığıyla: “ ... evrim diye adlandırılan gerçek ile, Tanrı’nın yaratma işine son verilmiş; dünyayı değişmez yasalar uyarınca yönetmekten uzaklaştırılmıştır” demişti. Ama Darwin’e özel bir kızgınlığı yoktu. Yavaş yavaş tutumunu değiştirdi, 1877'de Darwin’le görüşmeye bile gitti, bütün görüşme sırasında da durmadan Bulgar zulmünden söz etti Ayrıldığında Darwin büyük bir saflıkla : “ Böyle büyük bir adamın beni görmeye gelmesi ne onur!” diyordu. Gladstone’da Darwin’le ilgili izlenim kalıp kalmadığı konusunda ise tarih bir şey söylemiyor. Günümüzde din, evrim öğretisine göre kendisine çekidüzen vermiş, yeni yeni düşünceler bile sürmüştür ortaya. “Çağlar içinden akıp gelen, büyüyen bir amaç vardır.” Evrim de Tanrı’nın kafasındaki bir düşüncenin çağlar boyunca açılmasıdır. Bütün bunlardan, Hugh Miller’i uzun uzun uğraştıran, hayvanların, birbirlerine korkunç boynuzlarla, can alıcı iğnelerle işkence ettikleri o çağlarda her şeye yeterli tanrının elini kolunu bağlayıp daha da çetin işkence yollarıyla gitgide daha artan zorbalığıyla, eninde sonunda insanoğlunun ortaya çıkmasını beklediği anlaşılıyordu. Büyük Yaratıcı, neden böyle birtakım işlemlere başvurdu da doğrudan doğruya gerçekleştirmedi isteğini, bunu söylemiyorlar modern tanrıbilimciler. Bu konudaki şüphelerimizi giderecek çok şey de söylemiyorlar. Alfabeyi öğrendikten sonra, elde ettiği şeyin bunca emeğe değmediğini düşünen bir çocuk gibi duyuyoruz kendimizi ister istemez. Ama bu bir beeni sorunudur ne de olsa. Evrim üzerine kurulmuş herhangi bir tanribilim ögretisine yöneltilebilecek daha agir bir itiraz vardir. Bin sekiz yüz altmiş, yetmiş siralarinda, evrimin geçen moda oldugu siralarda, gelişim, dünyanin bir yasasi sayiliyordu. Her yil daha zengin olmuyor muyduk, azalan vergilere karşin bütçemiz gitgide kabarmiyor muydu? Bizim kurdugumuz düzen dünyaya parmak isirtan bir düzen, parlamentomuz bütün yabanci aydinlarin öykündügü bir örnek degil miydi? Gelişimin hep böyle sürüp gideceginden şüphe den var miydi? Böyle bir dünyada evrim, günlük yaşamin bir genellemesinden başka bir şey degildi sanki. Ama zaman bile daha düşünceli olanlar, öbür yani görebiliyordu. Gelişim saglayan yasalar çöküşü de hazirlar. Bir gün Güneş soguyacak, yeryüzünde yaşam sona erecektir. Bütün bu hayvanlar, bitkiler tarihi, çok sicak çaglarla çok soguk çaglar arasinda bir geçiş dönemi olacaktir. Evrensel gelişim yasasi olmayacak, yalniz enerji dagilimi yüzünden dünyada hafifçe aşagiya egimli, yukari aşagi bir salinma görüleceketir. Bugünkü bilimin çok olagan saydigi, bizim umutlari kirilmiş kuşagimizin da kolayca inanacagi bir sondur bu. Şimdiki bilgimizle kavrayabildigimiz ölçüde evrimden, iyimser sonuçlara baglayabilecegimiz bir felsefe çikarilamaz. (B. Russel, Din ile Bilim s: 44-53) “1953'te, AmerikalıJ ames Watson ve İngiliz Francis Crick tarafından DNA’nın ikili sarmal yapısına, ardından, 60'lı yıllarda, genetik kodlama mekanizmasına ilişkin olağanüstü keşiflerden sonra, moleküler biyoloji yerinde saymıştı. Vaatlerini tutar gibi görünmüyordu. Öyle ki bakterilerin genomu (genetik programın bütünü) üzerindeki çalışmalardan hayvana ve a fortiori insana gidecek olan yol, geçit vermez görünüyordu. Bakteri genomonon işlevi hakkında çok şey bilinyordu; ama gelişmiş hayvanların DNA’sı ile çalışılmaya geçildiğinde bir bilmece silsilesiyle karşılaşıylıyordu. Genetiğin pratik uygulamalarının belirsiz bir geleceğe itelenmiş olmasından kaygı duyulabilirdi. Derken 70'lı yıllarda, Amerikalı araştırmacılardan oluşan küçük bir ekipten, hayvan ya da insan geninin bir bakteri aracılığıyla yeniden üretimine olanak sağlayan bir bilim kurgu tekniği çıkageldi. Bir geni ya da insan genomunun bir kısmını parçalara ayırıp sonra da bunu bir bakterini içine yerleştirmek mümkün oluyordu. Bakteri, birkaç saatte, içine yerleştirilmiş genin kopyasıyla birlikte, milyarlarca örnek halinde çoğalıyordu (bu işlem, genlerin klonajı diye adlandırılır). Ve bu milyarlarca bakteriden yola çıkarak, bir okadar sayıdaki gen saf halre eldeediliyordu. Araştirmacilar daha da iyisini başardilar: bir insan genini bir bakteri içinde klonlamayi başardiklari andan itibaren, o genin bakterinin içinde faaileyt göstermesini sagladilar, yani sonuçta, bakteriye, genin kodladigi proteini büyük miktarlarda üretebildiler. Aslinda, bakterideki bir genin açiga çikarilmasi çok özel koşullar gerektirir ve genellikle işlem çok hassastir. Böylece, istenen genlerin ve iyi belirlenmiş genom parçalarinin tükenmez mitarlarina ulaşilmasi, genetik araştirmasinda yepyeni ufuklar açiyordu. Ve tip alaninda dogrudan DNA üzerinde çalişilabilecegi düşüncesi dogmaya başliyordu. Bugün moleküler biyoloji diye kutsanana terim, sözü uzatmaktan başka bir terim degildir. Eger biyoloji moleküler degilse, o zaman başkaca nasil bir biyoloji olabilecegini sormak gerekir. Ama bu her zaman böyle degildi. 1940'li yillarda DNA molekülü keşfedildiginde, bazilari , başlangiçta, hiçbir işe yaramayan kimyasal bir maddenin söz konusu oldugunu düşündü! 1978'de Jean Dausset’in laboratuvari, DNA konusundaki çalişmaya henüz bütünüyle yabanciydi... Genetik etkenler (DNA’nın taşıdığı bilgiler), tıpkı otuz yıl önce Jean Dausset’nin yaptığı gibi hücreler, daha doğrusu hücre yüzeyleri incelenerek, hep dolaylı bir biçimde çözümlenirdi. Çok uzun bir süre bir antite olarak kalan genin kendisi üzerinde hiç çalışılmazdı. Yalnız şu da var: hiçbir şey, bir proteini çözümlemektendaha zor değildir. Gen, ince ve uzun bir iplikçikten başka bir şey değilken protein en sık olarak küresel bir biçimle karşımıza çıkar. Aslında, proteinin kendisi de bir iplikçiktir; ama az çok düzensiz bir küre biçimini alacak şekilde kıvrılmış ve yumaklaşmış bir iplikçik. Birbirine çok benzer yapıdaki iki alel (bir bakıma iki kardeş gen) ile kodlanmış iki proteni birbirinden ayırmak, özellikle nankör bir iş demektir. Buna karşilik, genetik dehanin en yeni araçlari yakindan bilindigi anda DNA molekülünü oluşturan kimyasal elementler zincirini okumanin da çok daha kolay oldugu ortaya çikiyordu. Çünkü DNA tipki manyetik bir bant gibi, çizgisel tarzda okunur... Proteinler üzerndeki araştirma, kazanilmiş bir alandi. Üstelik çok önemli bir alan. Birilerinin, bu alana incelemeyi sürdürmesi zorunluydu. Zaten bugün arayştirma teknikleri de daha etkin bir hale gelmişti. Proteinlerin yapi ve işlevlerini çözümlemeye olanak saglayan biyolojik araçlar, hele bir tümüyle yetkinleşsinler, yakin bir gelecekte, genetik işlemlerdeki patlamadan sonra proteinleri kullanma çalişmasindan da benzer bir patlamayla pekala karşilaşilabilirdi. Araştirmanin yollari da tipki yaşaminkiler gibi, çogu zaman gereginden fazla uzundur. DNA’ya duyulan hayranlık, onun olağanüstü bir kolaylıkla çözümlenebilmesinden kaynaklanır. Bir kez tekniklerde ustalaştınız mı, kolayca başarılı olursunuz.Her şeyin kökeni olarak görülen bu tanrısal moleküle dokununca, kendinizi sihirbaz sanırsınız. Gerçekte bu, ölü, haretesiz bir molekül, bir kayıt kütüğüdür. Protein ise tersine, olağanüstü duyarlı ve tepki veren canlı bir maddedir. Toprak ve taş için bitkiler ne ise DNA için de proteinler odur. toprağa temel atıp tuğlaları döşemek, yaşamın bahçesini ekip, bakımını yapmaktan daha kolaydır. (Daniel Cohen, Umudun Genleri, s: 25-29 )

http://www.biyologlar.com/evrim-nedir

KITALARIN VE KARA PARÇALARININ KONUMLANMASI İLE İLGİLİ GÖRÜŞ VE KURAMLAR

Mevcut hayvan yayılışının açıklanmasında Kararlılık, Köprüler ve Kıtaların kayma kuramı olmak üzere üç temel kuramdan yararlanılmıştır. Bunlar: 1. Kararlılık (Permanenz) Kuramı Dünyadaki kıtaların ve bununla ilgili olarak ana karaların ve deniz tabanlarının oluşumundan beri ufak abzı değişiklilikerin dışında durumunu ve konumunu koruduğu ve değişmediğini varsayılmıştır. Bu kuramın en önemli savunucularından olan Wallace (1876) zoocoğrafik yayılışın, göçler ve bugünkü kara ve su bağlantıları ile açıklamaya çalışır. Bu kurama destek veren Darlington (1957) geç ortaya çıkmış olan memeli hayvanların günümüzde bu yoları etkin biçimde kullandıklarını öne sürmüştür. 2. Kara Köprüleri Kuramı Bir çok canlı grubunun yayılışını bugünkü kıta konumlanması ile açıklamak oldukça zordur. Bu nedenle 1800 yılların başından itibaren kara köprülerinin kabul edilmesi eğilimi ortaya çıktı. Bu kurama göre; Dünyadaki büyük kıta ve kara parçaları arasındaki hayvan geçişinin dar bağlantılar, suların buz ve kar halinde yüksek dağ başlarına veya kutuplarda tutulması sonucunda deniz seviyesinin düşmesiyle oluşan kara köprüleri aracılığı ile gerçekleşmiş olduğunu ileri sürmektedir. Wallace bu kurama da destek vermiştir. Farbes (1846) İngiltere’nin ana kıta ile olan bir karasal bağlantı yoluyla faunalarının bezerliğini açıklamıştır. Hooker (1847) Avustralya ve Güney Amerika kıtaları arasındaki bağlantıyı, bir zamanlar var olduğu öne sürdüğü “ Transokyanusya” kara parçasına bağlamaktadır. Bununla ilgili çok sayıda kara köprüleri ile ilgili kuramlar ortaya konulmuştur. Çoğu bilim adamının vardığı önemli kurama göre, büyük kıtalar arasındaki geçiş, ya dar bağlantılarla ya da suların buz ve kar halinde yüksek dağların başına ve kutuplara yığılması sonucunda denizlerdeki su seviyesinin düşmesi ile oluşan kara köprüleri aracılığı ile sağlanmıştır. ( örneğin Bering boğazının Asya ile Kuzey Amerika arasındaki geçişi sağlaması gibi). Kara köprüleri ile İngiltere ile Avrupa, Asya ile Japonya arasındaki geçişler açıklanmıştır. Afrika ile Güney Amerika arasındaki köprü (Atlantis) bir varsayımdan öte geçmemiştir. Ana kıtalara yakın ve sığ sularda bulunan adalara geçişler, bu yaklaşımlarla kolay açıklanabilmektedir. Uçamayan kuşların kıtalardaki dağılımı kara köprüleri kuramlarına göre de tam açıklanamıyordu. Günümüzde yaşayan deve kuşlarının yapısal özellikleri, hepsinin ortak bir atadan türediğini göstermektedir. Bu kanatsız kuşların okyanuslardaki büyük mesafeleri aşması olanaksız görülmektedir. Kıtaların kayma kuramı bu soruna açıklık getirmiştir. Kara köprüleri kuramı bir açıdan da geçerli bir kuramdır. 2.1. Buzullaşmalar ve Kara Köprülerinin Oluşumu Buzul dönemlerinde, bugünkü buz birikiminin yaklaşık 3 katı daha fazla buz birikimi olmuştur. Buzla kaplı alanların miktarı, Antartika hariç, bugünkünün 13 katı daha fazlaydı. Buzulların ortalama kalınlığı yaklaşık 2 km civarındaydı. Kuzey yarımküre’deki buz miktarı , Güney Yarımküre’den kabaca iki kat fazlaydı Güneyde, buzullar Antartika kıtasının dışına taşmamıştı. Buna karşın Kuzey Amerika ve Avrasya’da, buzlar karalara büyük ölçüde yayılmıştı. İskandinavya’daki buzullar 48o enleme kadar inmişti. Kuzey Amerika’daki nemli iklim ve büyük miktardaki kar yağışı ise 37 o enleme kadar inmişti. Son buzul dönemindeki, buzulların yayılışı, hareketi ve konumlanması ayrıntılı olarak haritalanmıştır. Avrasyadaki buzlar bir çok yeri tamamen örtmüştü (İngiltere, Benelüks ve İskandinavya ülkeleri Almanya’nın önemli bir bölümü ve Sibirya gibi yerler buzlar altında kalmıştı). Buzulların yığılmasıyla birlikte, altlarında bulunan taşküre, dengeyi sağlayabilmek için, magmaya gömülmeye başlar ve buzul arası dönemlerde de tersi ortaya çıkar. Böylece kara parçaları bir duba gibi yükselir ve alçalır. Buzulların erimesiyle karaların yükselmesi yaklaşık 15 000 yıldan beri sürmektedir. Suların buz halinde kıtalara yığılması deniz seviyesinin düşmesine, erimesi ise yükselmesine neden olmuştur. Denizlerde yaşayan kabuklu hayvanların fosillerini kıyılardaki katmanlarda saptamak ve izlemek yoluyla su seviyesindeki değişmeler gözlemlenebilir. Genel bir kabul, buzul devirlerde, deniz düzeyinin bugünkünden 100-150 m’den daha fazla düştüğü yönündedir. Buzullar arası dönemlerde ise deniz düzeyi bugünkünden yaklaşık 20 m. daha fazla yükseldiği kabul edilmektedir. Böylece kara ve su köprülerinin oluşmasının yanı sıra, keza bitki ve hayvanlar için yaşam alanlarının genişlemesi veya kısıtlaması durumu ortaya çıkmıştır. Hem buzul arası dönemin sürmesi, hem de CO2 birikimi ile dünya atmosferinin normal seyrinden daha fazla ısınması, dünyadaki buzların erime sürecini hızlandırmıştır. Antartika ve Grönland’daki buzların erimesi, dünya denizlerinin 6 m. yükselmesine, bu da bir çok kıyı şeridi ile birlikte bugünkü liman şehirlerinin bir çoğunun su altında kalmasına neden olacaktır. Buzullaşma dönemine girseydik, deniz düzeyi en an 100 m düşeceği için, kıyılarda bir çok yeni toprak elde edilecekti. Buzul dönemlerinde bölgeler arasındaki sıcaklık farkları çok daha fazla olduğundan, meydana gelen rüzgarların miktarı, şiddeti ve yönleri bugünkülerden farklıydı. Pleistosen’de (kuaterner’in ilk dönemi, 1 milyon 800 bin yıl önce başlamış, 10 bin yıl öncesine kadar devam etmiş olan jeolojik bölüm) ortaya çıkan buzullaşmalar zoocoğrafya açısından oldukça önemlidir. Pleistosen’de belirgin olarak 4 buzul dönemi saptanmıştır. Her buzul döneminin arasında, sıcaklığın bugünkü gibi yüksek olduğu bir dönem vardır. Tropiklerde ve subtropiklerde kurak (arid) ve yağışlı (pluvial) iklimler birbirini izlemiştir. Zamanımız buzularası (interglasiyal) evredir. Pleistsende meydana gelen buzul dönemleri, dünyanın tümünü etkilemiştir. Tundra yapısında olan Holarktik bir çok canlı için yaşanamaz duruma gelmiştir. Tersiyer türlerinin bir kısmı tamamen ortadan kalkmış, bir kısmı güneye sığınmıştır. Doğu-Batı yönünde uzanan sıradağlar (Alpler, Toroslar, v.s), güneye olan göçü büyük ölçüde önlemiştir. Sonuç olarak Tersiyer’in tür zenginliği ortadan kalkmıştır. Bir çok tür refigiyum (=sığınak) denen uygun ortamlara sığınarak, tür ve alttür oluşumuna zemin hazırlamış ve buzularası dönemde bu refigiyumlar yeniden bir yayılma ya da gen merkezi olarak görev yapmıştır. Anadolu önemli bir refigiyum olarak buzul dönemleri sırasında hizmet vermiştir. Bu dönemde Avrupa’da Alp dağları ve diğer dağlar arasına sığınmış türlere arktik-alpin türler denir. Deniz canlıları da buzullardan etkilenmiştir (suların soğumasından dolayı). Akdeniz, bu dönemde sıcak seven türlerinin hemen hepsini yitirmiştir. Suların buz halinde karalara yığılası ile birbirine 100-150 m sığlıktaki denizlerle bağlanmış kara parçaları arasında kara köprüleri kurulmuş; kara canlıları için yeni yayılma yolları açılmış; fakat daha önce yalıtılmış olan bazı adalarda oluşmuş birçok tür de, ana kıtadan gelen yeni türlerle ortadan kaldırılmıştır. İç sular arasında da buzulların etkisiyle su köprüleri kurulmuştur. Buzul dönemlerinde güneye göç edenlerin bir kısmı, buzul arası dönemlerde tekrar kuzeye gelirken , bir kısmı da yüksek dağların başına çekilerek soğuk yerler aramıştır. Böylece yüksek dağların belirli yüksekliklerinde Arktik Relikt adı verilen bir çok canlı yerleşmiştir. Darwin bu konuda da araştırma yapmıştır. 2.2. Kara Köprüleri Canlıların yayılmasında önemli rol oynayan kara köprüleri iki şekilde oluşmuştur. Birincisi tektonik nedenlerle, yani kara parçalarının yükselmesi ile "Isostatic"; diğeri ise buzul devirlerde deniz düzeyinin düşmesi ile (bu sonuncular "Eustatic" diye adlandırılır) ortaya çıkar. BERİNG KANALI VE KÖPRÜSÜ Senozoyik'in sonlarına doğru Kuzey Amerika ile Avrasya arasında oluşmuş geniş bir kara köprüsüydü. Deniz seviyesinin 100 m. düşmesiyle yaklaşık Alaska'nın genişliğinde bir köprü oluşmuştur (HOPKİNS, 1967). İlave olarak iki kıta arasında Senozoyik boyunca, Miyosen'den sonra, kısa aralıklarla da olsa zaman zaman açılıp kapanan kıstaklar "İsthmus" oluşmuştu. Bu kıstaklar. Kuzey Yarımküre'de, geniş ölçüde buz kütlesi oluşmadan önce, büyük bir olasılıkla, yer hareketiyle oluşmuştu. Fakat esas fauna ve flora alışverişinin olduğu dönem, deniz düzeyinin, östatik (= eustatic= buzullaşma) nedenlerle düşmesi sonucu gerçekleşmiştir. Bu kara köprüsü yaklaşık 12.000 yıl açık kalmıştır. Bering Köprüsü, en azından Geç Pleistosen'de, boreal ormanlardan arınmış, yağış miktarı oransal olarak az olan, tundra ve çayırlık özelliğinde bir köprüydü. Böyle bir bitki örtüsü, ancak, steplerde ve tundralarda yaşamaya uyum yapmış memelilerin göçlerine olanak sağlamıştı. Bununla birlikte, birçok dönemde, iklim, büyük bir olasılıkla, bugünkü boreal iklimden fazla farklı değildi; çünkü Kuzey Pasifik akıntısı kısmen buraları ısıtıyordu. Buradaki iklim ve bitki örtüsü, her defasında, bir süzgeç gibi görev yaparak, ancak, bazı farklı hayvan türlerinin geçmesine izin vermiştir. Bu da Amerika ya da Asya kıtasında bulunan her hayvanın neden diğer kıtaya göç edemediğinin açık kanıtıdır. Bu geçişten en çok yararlananlar, boreal sıcaklıkta, birincil olarak otlayan (çayır, mera ve otlağa bağlı) hayvanlardır. İNGİLİZ KANALI Avrupa Kıtası'nı, Britanya Adaları'na bağlamıştır. Tabanı, Kuzey Denizi ile bağlantılıdır. Buzullaşma olduğu; fakat bizzat bu bölgeler buzullarla örtülmediği zaman, su düzeyinin düşmesiyle kara köprüsü oluşmuştur. İngiliz Kanalı, en azından onun dar bir kısmı. Pleistosen boyunca ya da büyük bir kısmında, hatta deniz düzeyinin yükseldiği buzularası dönemin bir kısmında, kıstak (köprü) özelliğini korumuştur. Bu değişim sırasında, birçok türün yanısıra, fil, gergedan, geyik ve su aygırınm geçtiğini kanıtlayan fosiller bulunmuştur. Bu kıstağın tamamen kapanması, M.Ö. 8000 yıllarında gerçekleşmiştir. İRLANDA KANALI Buzul dönemleri sırasında Weichsel Buzullaşması'na kadar, köprü özelliğini korumuştur. Memelilere dayalı kanıtlar bunu göstermektedir. Örneğin Weichsel Buzullaşması'yla ilişkili (ve daha sonraki dönemler için) hiçbir karasal memeli fosili İrlanda'da henüz bulunmamıştır. İngiltere ve İrlanda arasındaki dar köprü, M.Ö. 8000 yıllarında deniz düzeyinin yükselmesi ile (Flandrian Yükselmesi) kesilmiştir.

http://www.biyologlar.com/kitalarin-ve-kara-parcalarinin-konumlanmasi-ile-ilgili-gorus-ve-kuramlar

ÇEVRE KİRLENMESİ

I – HAVA KİRLENMESİ a) İnsana ve Çevreye Etkisi b) Sonuçları (Asit Yağmurları)  Asit Yağmurlarının Toprağa Etkisi  Asit Yağmurlarının Sulara Etkisi  Asit Yağmurlarının Yapılara Etkisi  Asit Yağmurlarının Bitkilere Etkisi  Asit Yağmurlarının İnsan Sağlığına Etkisi c) Çeşitli Gazların İnsan ve Çevresine Etkisi  İnsan Sağlığına  Hayvan ve Bitkilere  İklime d) Ormanların ve Yeşil Alanların Çevre Kirliliğini Önlemeleri Yönünden İşlevleri  Fiziksel İşlevler  Fizyolojik İşlevler e) Ormanların Su ve Toprak Kirliliği Üzerine Etkileri II – SU KİRLENMESİ a) Kirlenmeye Yol Açan Kaynaklar 1 – Tarımsal Çalışmaların neden olduğu Kirlilik 2 – Endüstrinin Neden Olduğu Kirlilik 2.1.) Kimyasal Kirlilik 2.2.) Fiziksel Kirlilik 2.3.) Fizyolojik Kirlilik 2.4.) Biyolojik Kirlilik 2.5.) Radyoaktif Kirlilik 3 – Yerleşim Alanlarındaki Atıkların Neden Olduğu Kirlilik III – TOPRAK KİRLENMESİ 1 – Kentlerin Neden Olduğu Kirlilik 2 – Endüstrinin Neden Olduğu Kirlilik 3 – Toprak Uğraşlarının Neden Olduğu Kirlilik 4 – Toprak Kirliliğinin İnsan ve Çevresine Etkileri IV – DİĞER ETMENLER a) Gürültü Kirliliği  Gürültünün İnsan ve Çevresine Etkileri b) Radyasyon ÇEVRE KİRLENMESİ Her türlü madde ya da enerjinin (örn: ısı, ses...) doğal birikiminin çok üstündeki mik-tarlarda çevreye katılmasına çevre kirlenmesi denir. Kirlenme, kirleticilerin etkilediği ortamın niteliğine göre, hava, su, toprak kirlenmesi ve diğer etmenler olarak sınıflandırılır. İnsanın yaşamı sürekliliği için doğayı kullanması, do-ğayı değiştirmesi olağandır. Ancak bu kullanışta doğayı düşünmeksizin yalnızca insan açısın-dan ve tek yönlü yararlanma söz konusu olduğunda, umulan olumlu sonuçlar, bir süre sonra çözümü zor ve hatta olanaksız birçok karmaşık sorunlara neden olurlar. Bilimsel açıdan bakıldığında, bir ortamın fiziksel birleşiminde olmaması gereken şey “kir” dir. Yaşamın söz konusu olduğu her yerde muhakkak kir, yani artık madde bulunacak-tır. Fakat bu madde, oluştuğu ortam içinde belirli sınırlar altında kaldığı sürece doğal yapı bu artık maddeyi çözümlemekte ve sonuçta kirlenme çıplak gözle görülmemektedir. O halde ya-şamın getirdiği bir kirlenme hep olacaktır. Ama doğal denge bozulmadıkça, çevre ile etkileşen yaşam, kirlenmeden etkilenmeyecek ve dolayısıyla çevre kirlenmesi sorunu, doğal yapı içinde çözümlenecektir. HAVA KİRLİLİĞİ Erişkin bir insan, günde 2,5 kg kadar su ve 1,5 kg kadar besin almasına karşılık 15 kg kadar hava alır. O halde, insanın dışarıdan aldığı maddeler arasında hava, miktar bakımın-dan başta gelmektedir. Bir insan açlığa 60 gün, susuzluğa 6 gün dayanabildiği halde havasızlığa 6 dakika da-yanamaz. Barınak ve fabrika bacalarından çıkan dumanlar, otomobillerden çıkan eksoz gazları içinde bulunan ve canlılar için zararlı olan çeşitli maddelerin havaya karışması ve onun bileşimini bozması, 20. yüzyıl insanını hava kirliliği sorunu ile karşı karşıya bırakmıştır. Normal temiz bir hava içerisinde, % 78,9 hacim azot, % 20,95 hacim oksijen, %0,03 hacim karbondioksit, %0,93 hacim argon gazı bulunan fakat, duman toz tanecikleri, kükürt dioksit ve diğer gazlar bulunmayan ya da çok az bulunan hava demektir. Kirli hava ise fazla miktarda duman, kü-kürt di oksit, karbon mono oksit, azot oksit gibi gazları, ozon gibi oksidin maddeleri, kurşun, nikel gibi metalleri, lastik parçacıkları ve toz taneciklerini kapsayan ve fena kokan havadır. Diğer bir tanımla, hava kirliliği, atmosferde toz, gaz, duman, koku, su buharı şeklinde bulu-nabilecek kirleticilerin insan ve diğer canlılar ile eşyaya zarar verici miktara yükselmesi ola-rak ifade edilebilir. Metreküpü içinde 7 mikrogramdan fazla miktarda duman ve 100 – 150 mikrogramdan fazla SO2 gazı bulunması havanın kirliliği için bir ölçü olarak kabul edilmektedir. Özellikle duman ve SO2 gazının verilen bu miktarın üzerine çıkması, sağlık için zararlı bir ortamın meydana gelmesine neden olmaktadır. Hava kirliliğini oluşturan başlıca kaynaklar, endüstri merkezlerinden çıkan kirli dumanlar ve gazlar, kalorifer ve soba bacalarından dağılan isler ve dumanlarla motorlu taşıtların eksozlarından çıkan karbonmonoksit, kurşun, azot oksit gibi kimyasal maddelerdir. Bunlar-dan birkaçını tanıyalım: Karbon monoksit (CO): Havadan biraz daha hafif, renksiz, kokusuz, zehirli bir gazdır. Yanma sürecinde yakıttaki karbonun eksik yanma sonucunda tümüyle karbondioksite yük-seltgenmeyip bir bölümünün karbon monoksite dönüşmesiyle oluşur. Başlıca karbon monok-sit kaynağı içten yanmalı motorlardır. Katı ya da sıvı maddelerin parçacıkları, kurum ya da is biçiminde gözle görülebilen-lerden ancak elektron mikroskobuyla gözlenebilecek olanlara kadar değişen boyutlardadır. Çevreyi kirleten parçacıkların oluşumuna yol açan başlıca nedenler hareketsiz merkezlerde yakıt kullanımı ile sanayi etkinlikleridir; orman yangınları da küçük bir yüzde oluşturur. Kükürt oksitleri, kükürt içeren yakıtların yanmasıyla oluşan zehirli gazlardır. Her yıl açığa çıkan kükürt oksitlerin yaklaşık yüzde 60’ı kömürün yakılmasıyla oluşur. Kentsel böl-gelerde yoğunlaşmış olan akaryakıt kullanımı ve kükürtten yararlanan sanayi tesisleri de kü-kürt oksitlerinin oluşumuna yol açan önemli kaynaklardır. Hidrokarbonlar da, karbon monoksit gibi eksik yanan yakıtlardan kaynaklanır. Ama karbon monoksidin tersine, atmosferde normal olarak bulundukları yoğunlukta zehirli değil-lerdir. Bununla birlikte, fotokimyasal sise yol açtıklarından kirliliğin artmasında önemli rol oynarlar. Havadaki hidro karbonlar genellikle, çöp fırınları gibi büyük tesislerde atık madde-lerin yakılmasından, sanayide kullanılan çözücülerin buharlaşmasından ve odun ile kömürün yakılmasından kaynaklanır. Ama en önemli etken, buharlaşma yoluyla ve içten yanmalı mo-torların egzozundan havaya karışan benzindir. Bu yüzden havadaki hidrokarbonların yakla-şık yüzde 60’ı, çok sayıda motorlu taşıtın bulunduğu kentsel alanlarda yoğunlaşmıştır. Azot oksitleri, yakıtın çok yüksek sıcaklıkta yanmasıyla oluşur. Bu kirletici de gene motorlu taşıtlardan ve elektrik enerji santralleri ile sanayide kullanılan buhar kazanlarının yakım sistemlerinden kaynaklanır. Havada normal olarak eylemsiz halde bulunan azot, yan-ma sırasındaki yüksek sıcaklıkta oksijenle birleşir ve gaz halinde dışarı atıldığında çabuk so-ğursa, bu durumda kalır. Azot oksitleri, hidrokarbonlarla birleşerek fotokimyasal yükselt genleri oluştururlar. Bu yükselt genler de, havadaki katı ve sıvı parçacıklarla birleşerek hava kirliliğine yol açarlar. Fotokimyasal yükselt gen kirleticiler ozon, azot di oksit, aldehitler, akrolein ve peroksiaçillerdir. Kentsel bölgelerdeki hava kirliliğine yol açan bir başka önemli madde de kurşundur. Kurşun, sanayi tesislerinden, zararlı canlılarla mücadelede kullanılan kimyasal maddelerden, kömür ve çöp yakımından ve kurşunlu benzin kullanan otomobil motorlarından kaynaklana-rak havaya karışır. Kirleticiler dışında, bazı doğal etkenler de hava kirlenmesine yol açar. Güneş ışığındaki morötesi ışınlar, hidrokarbonlarla birleşerek fotokimyasal sis oluştururlar ve bu da sıcaklık terslenmesi dönemlerinde atmosfer durgunluğuna neden olur. Bu olay, sı-caklığın, yer yüzünde troposferin (alt atmosfer) içlerine doğru arttığı durumlarda görülür; olaya terslenme denmesinin nedeni de normal olarak sıcaklığın yükseklikle birlikte azalması-dır. Sıcaklık terslenmesi havanın yükselmesini engelleyerek kirletici içeren alt hava katmanı-nın asılı halde kalmasına yol açar. Havada önemli bir yanal hareket gerçekleşmediği sürece kirlilik kalıcı olur. İNSANA VE ÇEVREYE ETKİSİ Havada kirlenmeye yol açan maddelerin insanlar üzerinde çeşitli etkileri vardır. Ha-vadan solunan karbon monoksit, kandaki oksijenin yerini alarak vücuttaki hücrelere taşınan oksijen miktarının azalmasına yol açar. Kentlerin havasında bulunduğu miktarıyla karbon monoksit, zihinsel yetilerin gerilemesine ve en sağlıklı insanlarda bile tepkilerin ağırlaşmasına neden olur; bu da kent yaşamında görülen kazalarda önemli bir etkendir. Ayrıca kansızlık, kalp yetersizliği ve kan hastalıkları ile kronik akciğer rahatsızlıkları bulunan kişilerin sağlık durumu üzerinde daha da olumsuz etkilerde bulunur. Kükürt oksitleri, solunum borusunu ve akciğer dokularını etkileyerek, solunum siste-minde geçici ya da kalıcı rahatsızlıklara yol açabilir. Fotokimyasal yükselt genler göz rahat-sızlıklarına neden olur; ayrıca araştırmalar, azot oksitlerinin de insan sağlığına neden oldu-ğunu, özellikle çocuklarda gribe karşı direnci azalttığını ortaya koymuştur. Başka pek çok kirletici de, etkileri doğrudan ya da kısa sürede gözlenememesine kar-şın, halk sağlığı konusundaki kaygıların giderek çoğalmasına neden olmaktadır. Araştırma-lar, kentlerde yaşayan insanların vücudunda bulunan kurşun miktarının, vücudun kan üre-timini olumsuz yönde etkileyecek oranda olduğunu göstermektedir. Ama çevrede bulunan kurşunun insan sağlığına doğrudan mı zararlı olduğu, yoksa asıl tehlikenin gelecekte besin zincirinde ortaya çıkacak bir kurşun yoğunlaşmasına mı yattığı tartışması sonuçlanmış değil-dir. Hava kirliliği, insanların yanı sıra bitki yaşamı, yapılar ve çeşitli eşyalar üzerinde de son derece zararlı etkilerde bulunmaktadır. Pek çok büyük kentin çevresindeki bitki örtüsü hava kirliliği nedeniyle büyük ölçüde yok olmuştur. Ayrıca kentlerde kükürtlü kömür ve a-karyakıt kullanımı, buralardaki çelik ürünlerinin kırsal bölgelere oranla dört kat daha hızlı aşınmasına yol açmaktadır. Kükürt oksitleri de yapıların ve heykellerin aşınmasını hızlandı-rır; havadaki parçacıklar öteki kirleticilerin aşındırıcı etkisini arttırır; ozon ise, kauçuk ürün-lerinin daha çabuk parçalanmasına yol açar. Hava kirlenmesinden kaynaklanan ve 1980’lerin ortalarında gündeme gelen bir başka önemli tehlike de, atmosferin ozon tabakasının incelmesidir. Havalandırma sistemlerinde, spreylerde, otomobillerde ve buzdolaplarında kullanılan kloroflorokarbon kökenli kimyasal yapılarda maddelerin yol açtığı delinme, kutup bölgelerinde yoğunlaşmıştır. Yeryüzüne ula-şan morötesi ışınların zararlı etkilerini azaltan ozon katmanının delinmesi, bazı uzmanlara göre 20 – 30 yıl içinde etkisini gösterecek, yeryüzünde 40 milyon dolayında insanın cilt kanseri olmasına ve yalnızca ABD’de yaklaşık 800 bin kişinin ölümüne yol açacaktır. Bazı uzmanlar bu tahminlerde büyük yanılgı payının bulunduğunu öne sürmekle birlikte, ozon katmanının delinmesinin yeryüzü için büyük bir tehdit oluşturduğu üzerinde herkes aynı düşüncededir. HAVA KİRLİLİĞİNİN SONUÇLARI (ASİT YAĞMURLARI) Asit yağmurları, kendilerini çeşitli ortam ve canlılar üzerinde belli eder. ASİT YAĞMURLARIN TOPRAĞA ETKİSİ Asit yağmurlar, toprağın kimyasal yapısı ve biyolojik koşulları üzerinde etkide bulu-narak, bu topraklar üzerinde yetişen bitkilere zararlı olmaktadır. Toprağa erişen sülfürik asit, toprak çözeltisinin asitliğini yani aktif hidrojen iyonları-nın yoğunluğunu arttırmaktadır. Miktarı artan hidrojen iyonları, toprağın koloidal komp-leksleri olan kil mineralleri ve humus koloitleri tarafından tutulmakta olan başta Ca olmak üzere K, Mg ve Na gibi bitki besin elementlerinin yerine geçerek, bu elementlerin topraktan taban suyuna karışmak üzere yıkanmalarına neden olmaktadır. ASİT YAĞMURLARININ SULARA ETKİSİ Asit yağmurları, tatlı su göllerinde de asitliği arttırarak bu göllerde asitliğe duyarlı balık ve yumuşakçıların tür ve miktarının azalmasına etkili olmaktadır. Amerika Birleşik Devletlerinde bulunan 100 bin gölden yaklaşık 20 bininde ya hiç ba-lık kalmamış, ya da bu yönde olumsuz bir gelişme vardır. Halen birçok gölde aşırı asitliği gidermek üzere kalsiyum hidroksit püskürtülmektedir. İsveç’te bu amaçla her yıl 40 milyon dolar sarf edilmekte olduğu bilinmektedir. ASİT YAĞMURLARIN YAPILARA ETKİSİ Asit yağmurları maruz kalan özellikle kireç taşları, mermerden inşa edilen tarihi yapı-lar ve anıtlar orijinal durumlarını hızla kaybetmektedirler. Asit yağmurların binalarda meydana getirdiği diğer bir zarar da, binalarda çatı örtüsü olarak kullanılan çinko gibi metal levhalarda görülen yıpranmalardır. ASİT YAĞMURLARIN BİTKİLERE ETKİSİ Kükürt di oksit ve azot oksitler, stomlar yoluyla ibre ve yaprak dokularına girmekte, özellikle SO2 bir yönden oksijen alımını önlemekte, diğer yönden de bünyede H2SO4’e dönüşe-rek parçalama, yakma ya da kemirme etkisi yapmaktadır. Kükürt dioksitin yaprak ve ibre-lerde oluşturduğu sülfürik asidin sünger mezofil hücreleri içerisinde bulunan kloro – plastlardaki magnezyumu giderek kuruttuğu, klorofili ve plazmayı tahrip ettiği, dolayısıyla özümlemeyi engellediği, bunların sonuçta ölüme neden olduğu bilinmektedir. ASİT YAĞMURLARIN İNSAN SAĞLIĞINA ETKİSİ Asit yağmurları insan sağlığına olan etkileri kendini dolaylı şekilde belli eder. Asitleşen topraklardan kaynaklanan asitliği yükselmiş olan sular, mide asiditesini arttırarak mide ülse-rine neden olmakta, ayrıca asit yağmurlar topraktaki iyodu eriterek o topraklarda yetişen sebze ve meyvelerin ve içilen suların iyot miktarlarının düşmesini sonuçlandırarak bunları kullanan insanlarda troid bezi rahatsızlıkları (guatr) hastalığına neden olmaktadır. Asit yağmurlar, gazlar ve birlikte bulunan toksit metal iyonları ile insanlar ve hayvan-larda da zararlı olmaktadır. Havada dolaşan kuru kirleticiler be bunlar arasında sülfatlar, üst solunum yolu hastalıklarından kronik bronşit, astım ve anfizeme neden olmaktadır. ÇEŞİTLİ GAZLARIN İNSAN VE ÇEVRESİNE ETKİLERİ  İNSAN SAĞLIĞINA ETKİLERİ Hava, yaşamın temel öğesi olduğuna göre, havadaki kirliliğin insan sağlığı yönünden önemi açıktır. Havanın taşıdığı karbon parçacıkları, ozon, karbon monoksit, kükürt dioksit, doyma-mış hidrokarbonlar, aldehitler ile kanserojen maddeler gibi kirleticiler insanların solunum yollarını etkileyerek normal mekanizmasını bozar; bronşlarda iltihaplara ve daralmalara neden olur. Bu değişmeler sonunda da, kronik bronşit ve anfizem meydana gelir. Araştırma-lar akciğer kanserinin meydana gelmesinde ve artmasında da hava kirliliğinin önemli bir ne-den olduğunu göstermektedir. Gaz ve buharlar içinde en tehlikelisi olan kükürt dioksit bilindiği gibi ev ve endüstri bacalarından ve bunlara oranla daha az olarak motorlu taşıtların bacalarından havaya karı-şır. Yapılan araştırmaların sonucuna göre, kükürt dioksitin bronşitten dolayı ölümleri arttırmak-ta olduğu saptanmış, atmosferde SO2 miktarının arttığı sisli havalarda kronik bronşitli bazı hastalarda nefes darlığının şiddetlendiği gözlenmiştir. Ayrıca kirlilik derecesinin yüksek ol-duğu zamanlarda bazı hastalıklara tutulmuş kişilerde ölümlerin bir hayli arttığı görülmüştür. Ozon gazı, ara madde olarak oluşur. Ozon, gözlerde ve bronşlarda iltihaplanma, akci-ğerlerde ödem yapar. Bazı durumlarda bellek zayıflığı yaptığı söylenmektedir. Milyonda bir kısım, göz ve akciğerlerde iltihaplanmaya neden olmaktadır. Nitrojen oksitler, SO2 gazından sonra en önemli hava kirleticisidirler. Kimyasal mad-delerin yapılması sırasında özellikle nitrik ve sülfürik asit ve naylon fabrikalarından, benzin, yağ, doğal gazların ve mazot yanması sonucu ve yine çeşitli petrol arıtma işlemlerinden sonra açığa çıkmaktadır. Dumanla ve sağlık arasında çok sıkı bir ilişki bulunduğunu herkes bilir. Duman, özel-likle sisle birlikte bulunacak olursa havada bulunan SO2 ile birlikte aerosol halinde hızla ya-yılmakta, sonuç olarak kısa veya uzun süreli dönemlerde duygulu olma haline, cinsiyete göre değişmek üzere özellikle bebek, çocuk ve yaşlı insanlarda, kalp, damar ve solunum yolu hasta-lıklarına yakalanmış olanlarda etkisini göstermektedir. Duruma göre farenjit, larenjit, solu-num güçlükleri, bronşit, kronik bronşit, astım ve anfizem meydana gelmektedir. Bu hastalık-lara tutulmuş olanlarda hastalığın şiddeti artmaktadır. Duman, güneşin özellikle ültraviyole ışınlarının yere inmesine engel olur. Bu şekilde havada bulunan mikrop ve virüslerin canlı kaldığı hatta antibiyotiklere karşı direnç kazana-cak şekilde fizyolojik değişikliklere uğradıkları bilinmektedir. Bunun sonucu olarak çocuk-larda raşitizm artmakta, kanda hemoglobin değeri ile birlikte renk indeksi ve B 1 vitamini azalmakta, alkali fosfatlarda yükselme ve proteinlerde değişme kemikleşmede gerileme gö-rülmektedir. Günümüzde kanserin oluşmasının nedeni kesinlik kazanmamış olmakla beraber, bazı etmenler vardır ki, bunları ortaya çıkarıcı ve kolaylaştırıcıdır. Bunlara, kanserojen maddeler denir. Kanserojen maddeler, insanların günlük yaşamını tehdit eder duruma gelmiştir. Kan-ser oluşmasında, kimyasal kanserojenler yüzde 80 oranında olup, yüksek düzeydedir. Bunla-rın büyük bir kısmı çevremizden, hava, besinler ve içecekler yoluyla vücuda alınmaktadır. Özellikle havadan alınan bu kanserojen maddeler şu şekilde sıralanabilir: is, katran, zift, as-falt, parafin gibi maddeler.  HAYVAN VE BİTKİLERE ETKİLERİ İnsanlarda görülen hava kirliliği etkilerine, bir ölçüde hayvanlar da rastlamaktadır. İnsanlar ve hayvanlar dışında bitkilerde hava kirliliğinin etkileri ile karşı karşıyadırlar. Daha önce de işaret edildiği gibi, hava kirliliğini oluşturan gazlardan bazıları, özellikle SO2 gazı, bitkilerde fotosentez olayını yavaşlatmakta, bitkilerde oksidasyon işlemine engel olmakta, kloroplastlardaki magnezyumu kurutmaktadır. Flüoritler, bitkiler üzerinde toplanarak bunları kısmen kurutmakta, Aldehitler, bitki-lerde yaprakların stomaları etrafındaki hücrelerde tahribata neden olmaktadır. Ozon gazı, bitkiler üzerinde zehirli alanlar oluşturmakta, ağaçların zamanından öce yaprak dökmesine yol açmakta ve özellikle genç bitkileri etkilemektedir. Tüm bu olumsuz etkiler, özellikle kültür bitkilerinde bir ölçüde ürün azalmasına, geniş alanlar kaplayan orman vejetasyonunun kurumasına neden olmaktadır.  İKLİME ETKİLERİ Hava kirliliğinin değiştirdiği atmosfer koşulları, iklimi de etkilemektedir. Genel ola-rak, kentlerdeki ısı ortalamalarının kırsal alanlardan daha fazla olduğu görülmektedir. Ayrı-ca, meteorolojik ölçmeler, hava kirliliğinin arttığı, büyük kentlerde rüzgar hızının da düştü-ğünü göstermektedir. Rüzgarın ısıyı ve nemi etkilemesi nedeniyle, bu hız azalmasının önemi çok büyüktür. Hava kirliliği, ayrıca, büyük kentlerin yağış miktarlarının da artmasına neden olmaktadır. Havayı ısıtan enerji sonucu, mikroskobik maddelerin çokluğu bulutların oluşma-sını kolaylaştırdığından yağışlar artmaktadır. Diğer yönden hava kirliliği sonucu kentlerin üstünde oluşan tabaka, ültraviyole ışınlarının da önemli derece kaybına yol açmakta, bu ise gün ışığının azalması sonucu doğmaktadır. ORMAN VE YEŞİL ALANLARIN ÇEVRE KİRLİLİĞİNİ ÖNLEMELERİ YÖNÜNDEN İŞLEVLERİ Bir ormanın ekonomik yararları dışında fiziksel, fizyolojik bir takım işlevleri de bu-lunmaktadır. Yapılan çeşitli araştırmaların sonuçlarına göre bu işlevler aşağıdaki gibi özetle-nebilir:  FİZİKSEL İŞLEVLER: 1. Ormanlar rüzgarın hız ve yönünü önemli ölçüde değiştirir. Bu işlev, ormanın sıklılığına ve tepe kapalılığına göre değişir. 2. Ormanlar, fiziksel hava kirlenmesini oluşturan toza karşı filtre görevi yaparlar. 3. Ormanlar, park – bahçe ve benzeri bitki örtüsü, gürültüyü yansıtma ve absorbe etmek suretiyle azaltıcı bir etkiye sahiptirler. 4. Ormanların, radyoaktif hava kirlenmesine karşı koruyucu işlevleri vardır.  FİZYOLOJİK İŞLEVLER: 1. Ormanlar ve benzeri yeşil örtü, fotosentez olayı sonucu çok önemli ölçüde CO2 kullanarak atmosferdeki CO2 konsantrasyonunu etkiler. 2. Ormanlar ve yeşil alanlardan fotosentez reaksiyonu sonucu oksijen üretimi doğal olarak sağlanmakta, böylece doğal oksijen ve karbon dengesini koruyucu bir öğe olarak görev yapmaktadır. 3. Bir orman örtüsü altında topraktan sıcaklık etkisi ile fiziksel olarak meydana gelen bu-harlaşma, açık alanlara oranla önemli ölçüde azalmaktadır. 4. Orman vejetasyonu, serbest hava hareketlerini engelledikleri için bulundukları yerin hava ve toprak sıcaklıklarını etkilemektedir. Orman vejetasyonu tepe çatısına çarpan güneş ı-şınlarının bir kısmını yansıtıp bir kısmını absorbe edip bir kısmını da dağıttığından or-man içine daha az ışık girer. Bunun dışında gerek transprasyon, gerekse nem miktarı faz-la olan orman havasının ısıtılması için yüksek oranda enerji harcanır. Bu nedenlerle koyu gölgeli yerlerde yazın hava serin olur. Kışın ise ormanın tepe çatısı ve nemli havası ile ka-rasal radyasyona engel olduğundan, çıplak alanlara oranla daha sıcak olur. ORMANLARIN SU VE TOPRAK KİRLİLİĞİ ÜZERİNE ETKİLERİ Toprak ve buna bağlı olarak meydana gelen su kirliliğinin nedenleri arasında toprağa verilen gübreler ile toprak taneciklerinde tutulan pestisitler bulunur. Toprak yüzeyinde ölü veya diri örtünün bulunuşu yüzeysel akışı azaltır. Yüzeyden a-kan suyun hızını mekanik olarak engelleyerek toprağa sızması için zaman kazandırır. Böylece gübreleme için verilen kimyasal maddelerin ve zararlılara karşı kullanılan pestitlerin yüzeysel sularla akarsulara, göllere ve denizlere ulaşması engellenmiş olur. E-rozyon olayını durdurarak, barajların zamanla sedimentle dolması oranı da ortadan kal-kar. SU KİRLİLİĞİ Su, doğal durumunda pek çok çözünmüş madde, parçacık, canlı organizma içerir. Evlerde ve sanayide kullanılan suya çeşitli kimyasal maddeler de katılmıştır. Sulara karışan atıklar, çok çeşitlilik gösterse de, başlıca inorganik bileşenleri sodyum, potasyum, amonyum, kalsiyum, magnezyum, klorür, nitrat, bikarbonat, sülfat ve fosfattır. Zararlı organik bileşenler ise çok çeşitlidir ve tümü bilinmemektedir; buna karşılık belirlenmiş olanları, böcek ilaçları, deter-janlar,fenollü maddeler ve karboksilli asitlerdir. Kirlilik uzun vadede, sudaki canlıların ya-şamında ve dağılımında değişikliğe yol açar.; bazı balıkların sayısı azalırken, kirleticilere di-rençli başka canlılar sayıca artış gösterir. Su kirliliği ayrıca, göllerin yaşlanmasına ve kuru-masına yol açan ötrofikasyonu hızlandırır. Böylece suyun çeşitli amaçlarla insanlar tarafın-dan kullanılması da kısıtlanmış olur. Sanayi atıklarının, böcek ilaçlarının ve öteki zehirli madde atıklarının sudaki çözünmüş oksijeni tüketmesi, balıkların kitle halinde ölmesine ne-den olur. Organik ve ısıl atıklar gibi çeşitli kirleticilerin zararlı etkileri doğal süreçlerle ortadan kalkabilir ya da azalabilir. Sulardaki organik atıkların başlıca kaynağı kentlerdeki kanalizas-yon sistemleridir. Suda çok büyük miktarlarda yoğunlaşmadıkları sürece bu maddeler, bak-teriler ve öteki organizmalar tarafından kararlı inorganik maddelere dönüştürülebilir. Bu kendi kendini arıtma süreci sudaki oksijenin yardımıyla gerçekleşir. Ama eğer organik mad-de miktarı çok fazlaysa, yeterli oksijen olmadan arıtım kötü kokulara yol açabilir. Suda çözünen tuzlar, gazlar ve parçacık durumundaki maddeler ise bu yolla arıtıla-maz. Ayrıca, sanayiden kaynaklanan bu atıklarda kadmiyum, cıva ve kurşun gibi zehirli me-taller vardır. Bu maddelerin ne ölçüde zararlı olduğu bilinmemekle birlikte, büyük miktarda cıva içeren sulardan avlanan balık ve benzeri ürünleri yiyen kişilerde ölüm olayına ve sinir sisteminde kalıcı bozukluklara çok rastlanmıştır. Ayrıca sudaki asılı parçacıklar, öteki mad-deleri soğurarak bakteri gelişiminde ve başta DDT gibi böcek öldürücüler olmak üzere pek çok zararlı maddenin dip çamurlarında çökelmesine neden olur. KİRLENMEYE YOL AÇAN KAYNAKLAR Evlerden, ticaret ve sanayi kuruluşlarından kaynaklanan kanalizasyon atıkları, su kirlenme-sine yol açan başlıca etmenlerdendir. Genellikle kullanılan kanalizasyon sistemlerinde, atık sular yağmur suyundan ayrılamamaktadır. Bu yüzden toplam su miktarı sistemin kapasitesi-ni aştığında atık suların büyük bölümü doğrudan akarsulara boşalan kanallara akar. Büyük kentsel bölgelerde yağmur suyunu toplamak için ayrı sistemler ya da göletler yapılmasına yüksek maliyetler yüzünden başvurulamamakta, bu kirlenmesini ciddi biçimde etkilemekte-dir. Sudan yararlanan sanayi tesisleri de bir dizi değişik etkisi olan kirleticilerin sulara karışmasına yol açar. Sanayileşmenin hızla ilerlemesiyle, sanayi atıkları kanalizasyon atıkla-rını birkaç kat aşmıştır. Su kirliliğinde en önemli rolü oynayan sanayi dalları kağıt,kimya, petrol ve demir – çeliktir; enerji santralları da büyük miktarda atık ısının sulara karışmasına neden olur. Plastik üretiminde kullanılan polikloroditenil, insan,hayvan ve bitki yaşamı için büyük tehlike oluşturmaktadır. Bu madde canlı hücrelerde biriktiğinden ve besin zinciri için-de yoğunlaştığından, başlangıçta çok küçük miktarlarda bulunsa bile, besinler insanlarca kul-lanılmaya başlayana kadar tehlikeli miktarlara ulaşmış olur. Tarım ilaçları, böcek öldürücüler ve kimyasal gübreler de su kirlenmesinde önemli rol oyna-makla birlikte bu tarım atıklarının etkileri, kentler ile kentlerin çevresinde yoğunlaşmış yerle-şim birimlerinin atıkları ve sanayi atıkları kadar büyük boyutlarda değildir. Kentlerin dışın-da su kirlenmesine neden olan başka bir etken de, çoğunlukla bırakılmış madenlerdeki asitle-rin çevredeki akarsulara karışmasıdır. Atık ısı: Sanayi tesislerinde, atıkların taşınması gibi işlevlerin yanı sıra soğutma ama-cıyla da büyük miktarlarda su kullanılır. Bu tesislerin başında elektrik enerjisi santralları gelmektedir. Yoğunlaştırıcıların soğutulması için doğal bir kaynaktan alınan su, sıcaklığı 10 yaklaşık 7 C artmış olarak kaynağa geri boşaltılır. Nükleer santrallar, fosil yakıt kullanan aynı kapasitedeki santrallardan yaklaşık yüzde 50 daha çok su kullanır. Bu nedenle, enerji santrallarının soğutulması, çevre kirlenmesinde son derece önemli rol oynayan etkenlerden biridir. Isıl kirlenme, biyolojik ve kimyasal tepkimeleri hızlandırır ve çözünmüş oksijen mik-tarının hızla azalmasına yol açar. Su sıcaklığı, balıkların yaşamasına olanak vermeyecek dü-zeye yükselebilir; bu durum, zararlı alglerin gelişmesine de ortam hazırlayarak besleyici –madde atıkları , deterjan, kimyasal gübre ve insan atıkları gibi kirleticilerin etkisini çoğaltır. Sonuçta atık ısı, göllerdeki ötrofikasyonu hızlandırır. Su kirlenmesinin nedenleri üç gruba ayrılarak incelenebilir:  Tarımsal çalışmaların neden olduğu kirlilik Tarımsal çalışmaların gereği olarak bitki hastalıkları ile mücadele amacıyla uygulanan pestisidlerin, verimin arttırılması için toprağa verilen gübrelerin ve çeşitli kullanımlar altın-daki alanlardan oluşan yüzey akışı, erozyon ve toprağın sürülmesi sonucu oluşan katı ve sıvı atıkların neden olduğu kirliliğe tarımsal kirlilik denir. Tarımsal çalışmalarda daha fazla ürün elde etmek amacıyla arazilere uygulanan kimyasal gübrelerin neden olduğu kirlilikler vardır. Bunlar arasında en önemlileri ise azot ve fosforun doğal düzen içindeki dönüşümleri sonucunda kirlilik meydana gelmesidir. Kimyasal gübrelerin arazilere uygulanması ile verimde bir artış olacağı doğaldır. Ancak bu gübrelemenin, suların kirliliğine hangi oranda etkili olacağının da saptanması gerekir. Su kirliliğine neden olan bitki besin maddelerinden azot ve fosfor, tüm canlı varlıklar için belili miktarlarda gerekli ise da fazla miktarının çeşitli sakıncaları bulunmaktadır. Belli başlı etki-leri, akarsular ve göllerdeki ötrofikasyon olayına neden olmasıdır. Bunun yanında fazla mik-tarda azot nedeniyle, azot zehirlenmesinden ölen toplu balık gruplarına da rastlanmaktadır. Hayvansal artıkların yarattığı kirlilik ise, hayvancılıkla ilgili olarak ahır ve ağıllardan ya-ğışlarla yıkanan hayvan idrar ve dışkı artıklarının temizleme sularına, oradan yüzey sularına karışması ve ya hayvan gübresinin tarlalara serilmesinden sonra yağışlarla yıkanarak yüzey sularına karışması şeklinde oluşan bir kirlilik şeklidir.  Endüstrinin neden olduğu kirlilik Bugün bu konuda bilinen kirlilikler beş alt grupta toplanabilir. 1. Kimyasal Kirlilik Bu kirlilik, sularda organik ve inorganik maddelerin bulunmasıyla oluşur. En çok karşıla-şılan tipi ise, proteinler, yağlar, gıda maddeleri ve hidrokarbonlar nedeniyle oluşan organik kirlenmedir. Zamk ve jelatin üreten fabrikaların artıkları, mezbahaların artık sularında ol-dukça fazla miktarda protein bulunur. Kağıt ve tekstil fabrikalarının artıklarında ise fazla miktarda karbonhidrat bulunmaktadır. Sentetik deterjanlar da kimyasal kirliliğe neden olan maddeler arasındadır. Az miktarda bulunmaları halinde dahi sularda köpük meydana getirdiklerinden suyun havalanmasını ön-ler, arıtma sistemlerinin randımanına düşürürler. 2. Fiziksel Kirlilik Fiziksel kirlenme, suyun sıcaklık, renk, bulanıklık ve koku gibi fiziksel özelliklerine etki eden bir kirlilik tipidir. Termal kirlenme, fiziksel kirlenmenin diğer bir tipidir. Soğutma suyuna gereksinme du-yulan termal enerji üreten istasyonlarda ve endüstrideki soğutma işlemleri sonucunda ortaya çıkan sıcak suların, akarsu, göl ve körfezlere dökülmesi termal kirlenmeye neden olmaktadır. Alıcı suyun sıcaklığında meydana gelen artış,sudaki biyolojik faaliyeti durdurmakta, suyun oksijen miktarını düşürmekte, reaksiyonu değiştirerek bir kısım kimyasal maddelerin çökel-mesine ve bir kısım maddelerin açığa çıkmasına neden olarak sudaki canlılar üzerinde değişik etkiler yapmaktadır. 3. Fizyolojik Kirlilik Suyun tadını ve kokusunu etkileyen bir kirlilik tipidir. Gıda endüstrisi artıkları ile kent kullanma suyu artıkları azotlu maddelerce zengin olduğundan son derece kötü bir kokuya neden olurlar. Endüstri artık sularının demir, mangan, fenoller vb. kimyasal maddeler içe-renleri suya özel, hoş olmayan bir koku ve tad verirler. 4. Biyolojik Kirlilik Sularda patojenik bakteri, mantar, alg, patojenik protozoa vb. bulunması nedeniyle mey-dana gelen kirlilik tipi biyolojik kirlenmedir. Diğer bir deyişle, suların tifo, kolera, amipli di-zanteri vb. çeşitli hastalıkları yapan organizmalarla kirlenmesi olmaktadır. Endüstri artık maddelerinin ve özellikle kanalizasyon sularının herhangi bir arıtma işle-mine tutulmadan plajlara dökülmesi nedeniyle hastalık yapan maddeler çoğalmakta ve denize girenlerde başta kulak, burun, boğaz yanmaları; sinüzit, bağırsak hastalıkları karaciğer ra-hatsızlıkları ve tifoya neden olur. 5. Radyoaktif Kirlilik Atmosferdeki atom patlamalarının ve nükleer enerji santrallerinin neden olduğu kirlilik-tir. Atmosferdeki radyoaktif maddeler, yağışlarla yeryüzüne düşmekte, akarsulara karış-makta, bitkiler tarafından absorbe edilmekte, buradan ot yiyenlere oradan da et yiyenlere geçerek gıda zincirinin üst halkasını oluşturan insanlara ulaşmaktadır. Nükleer santrallerin artık maddeleri oldukça önemli çevre kirleticilerindendir. Bu atık-lardan deniz dibine depo edilenlerden meydana gelen sızıntılar, son yılların önemli deniz kir-leticisi olarak sayılmaktadır.  Yerleşim Alanlarındaki Artıkların Neden Olduğu Kirlilik Bu kirliliğin iki önemli kaynağı, kanalizasyon ve çöplerdir. Bulaşıcı hastalık tehlikesi, kentleri, kapalı kanalizasyon sistemine zorlarken, yine kentlerdeki su sistemleri ile kanalizas-yon arasında bir bağlantı göze çarpmaktadır. Kanalizasyon sistemine verilen pis suların bo-şaltılması genellikle akarsulara, göllere veya denizlere yapıldığından, kent artık suları, önemli bir kirlilik nedeni olmaktadır. Çeşitli şekillerde kirlenen karasal kaynaklı akar suların genellikle ulaştıkları en son nokta denizler ve okyanuslarıdır. Bu nedenle karasal kaynaklı akar suları kirleten kaynak ve işlev-ler denizleri de kirletiyor demektir. Bununla beraber denizlerin kirlenmesi olayını şöyle özet-leyebiliriz: 1. Denizlerin havadan kirlenmesi:  Hava taşıt araçlarının meydana getirdiği kirlenme  Endüstri ve yerleşim bölgelerinde oluşan hava kirliliğinin, kimyasal reaksiyonlar (asit yağmurlar) sonucu sudaki maddelerle birleşmesi 2. Denizlerin denizlerden kirlenmesi  Deniz trafiğinin meydana getirdiği kirlenme. Dünya denizlerinde deniz trafiğinin yoğun-laşmış olması, özellikle ham petrolün deniz yoluyla taşınması denizlerde önemli kirlenme-lere neden olmaktadır. Petrol yüklü tankerlerin herhangi bir nedenle kazaya uğraması so-nucu denize dökülen petrol, deniz eko sisteminde geniş çapta ve uzun süreli zararlar mey-dana getirmektedir. Şu yada bu şekilde denize dökülmüş petrol veya petrol artıklarının zararları başlıca üç grup altında toplanabilir: # Bir litre petrol artığı kırk bin litrelik deniz suyunda oksijeni yok ederek yaşamı ortadan kaldırabilir. # Suyun üzerini kaplayan yağ tabakası suyun buharlaşmasını engelleyerek bir ölçüde ya-ğışların azalmasına neden olmaktadır. # Suyun üzerindeki bu örtü güneş ışığının denizlerin derinliklerine ulaşmasını engelleye-rek oksijeni azaltmakta ve bu da canlıların yaşam olanağını azaltmaktadır. Benzer zararlara denize pasa kül, moloz, safra, yağ, çöp gibi maddeleri atan, tank yıka-yan yük, yolcu gemileri ve tankerler de neden olmaktadır. Deniz eko sisteminde ortaya çıkan dengesizlik üretimde kayıplar şeklinde kendini belli etmektedir. Bugüne kadar yapılmış ince-lemelerin sonuçları, petrol artıklarından en çok etkilenen toplulukların, yumurta, lavra ve genç fertlerden oluşan topluluklar olduğunu göstermiştir.  Limanlarda meydana gelen kirlilik.  Deniz dibi kaynaklarından petrolün çıkarılması sırasında meydana gelen sızıntı ve ka-çaklar.  Deniz ürünlerini elde etmede uygulanan yöntemler.  Denizlerde sürdürülen askeri faaliyetler ve savaş. 3. Denizlerin karalardan kirletilmesi:  Yerleşim yerlerinden denize dökülen kirlilik.  Çöpler.  Kullanılmış sular, kanalizasyon artık ve suları.  Endüstri kuruluşlarından denize atılan kirlilik.  Tarımdan gelen kirlilik.  Turizmin (örneğin yat turizminin) doğurduğu kirlilik. TOPRAK KİRLENMESİ Tarımsal ve mineral atıklar, yeryüzündeki toplam katı atıkların önemli bir bölümünü o-luşturmakla birlikte, kirletici olarak görece daha az zararlıdır. Bunun başlıca nedeni de, yer-leşim bölgelerinden ve sanayiden kaynaklanan atıklar gibi belli noktalarda yoğunlaşmış ol-mayıp daha geniş alanlara yayılmalarıdır. Katı atıklar: Hayvan dışkısı, mezbahalardan ve her türlü ekin biçme etkinliğinden gelen atıklar, toprak kirlenmesinin en önemli kaynağıdır. Sığır, domu, koyun ve tavuk gibi çiftlik hayvanları, toplam insan nüfusundan 1000 kat daha çok dışkı üretir. Geçmişte besin madde-leri, otlak ya da çiftlikteki hayvanların aracılığıyla yeniden toprağa dönerken, günümüzde kullanılan yenilikler bu atıkların belli alanlarda yoğunlaşmasına neden olmaktadır. Pek çok kimyasal madde içeren tarım ilaçlarının (örn. Böcek öldürücüler, ot öldürücüler, mantar ilaçları) su ve toprak kirlenmesinde önemli payı vardır. Bunlar, besin zincirinde daha ileri organizmalara geçtikçe, her aşamada giderek artan oranda yoğunlaşır ve giderek zinci-rin son halkasını oluşturan etçillere önemli zararlar verir. Yani zararlı kimyasal maddeler, basit organizmalarda çok küçük miktarlarda bulunur, bu organizmalar daha karmaşık orga-nizmalarca yendikçe yoğunlaşır; otçulları yiyen etçillere ulaştığında ise zararlı boyutlara varmıştır. Özellikle şahin, atmaca, kartal gibi yırtıcı kuşlarda ve pelikan, karabatak gibi ba-lıklarla beslenen kuşlarda zararlı ilaçlarının olumsuz etkileri gözlenmiştir. Hücrelerinde biri-ken DDT (Diklor difenil triklor) ve benzeri bileşikler bu canlıların üreme yeteneğini sınırla-maktadır. Örneğin dişilerin, üstünde kuluçkaya yatılamayacak biçimde yumuşak kabuklu ya da kabuksuz yumurta vermesi sonucunda, Avrupa, Japonya ve Kuzey Amerika’da bazı türle-rin sayısında önemli azalmalar olmuştur. Tarım ilaçlarının biyolojik etkileri üzerinde yapılan yeni araştırmalar, bu maddelerin za-rarlılar üzerindeki etkisinin giderek azaldığını ortaya çıkarmaktadır. Pek çok böcek türü bu maddelere bağışıklık kazanmış durumdadır; ayrıca, kalıtım yoluyla sonraki kuşakların zehir-li ilaçlara karşı direnci artmaktadır. Öte yandan bu kimyasal maddelerin sürekli olarak kul-lanılması, bazı bölgelerde de önceden bulunmayan zararlı topluluklarının türemesine yol aç-mıştır. Bunun başlıca nedeni, tarım ilaçlarının, otçul böcek nüfusunun denetim altında tutan etçil böcekleri yok etmesidir. Aşınma sonucu biriken tortullar, toprağın bozulmasına ve suların bulanıklaşmasına yol açan bir başka etmendir. Tortul üretimi, orman ve tarım alanlarının kötü kullanımından kaynaklanan ve giderek boyutları büyüyen bir sorundur. Madencilik ve inşaat etkinlikleri de bu alanda rol oynar. Mineral katı atıkların başlıca kaynağı, madencilik etkinlikleri ve ilgili sanayilerdir. Özel-likle açık kömür işletmeciliğinin yol açtığı kirlenme, akarsuları, ve akaçlama havzalarını etki-lediği gibi, toprağın da kıraçlaşmasına yol açmaktadır. Yerleşim bölgelerinden ve sanayi tesislerinden kaynaklanan katı atıklar arasında kağıt, besin maddeleri, metal, cam, tahta, plastik, kumaş, kauçuk ürünleri, deri ve çöp sayılabilir. Bu maddelerin bir bölümü açık çöp alanlarına boşaltılır, bir bölümü çöp çukurlarına atılıp üstü kapatılır, bir bölümü ise fırınlarda yakılarak yok edilir. geriye kalan küçük bir bölümü de rüzgarlarla taşınmaya ya da çürümeye bırakılır ya da başka biçimlerde değerlendirilir. Toprağı kirleten nedenleri şöyle özetleyebiliriz:  Kentlerin neden olduğu toprak kirliliği Kentleşmenin yoğun bulunduğu bölgelerde toprak niteliği hissedilir ölçüde bozulmakta-dır. Bunda arazinin kötü kullanılması kadar, inşaat tekniklerinin kirliliği, alt yapı yetersizlik-leri dolayısıyla kirli su ve kanalizasyonun toprağa karışması ve çöp birikmesinde rol oyna-maktadır. Ayrıca kent suyunun yetersizliği kirli suların pompalanmasında fazla yardımcı olmadığı için, daha kolay şekilde toprakta kalmaktadır. Kent çevresinde toprak kirliliğine yol açan en önemli nedenlerden birisi de fosseptik yöntemiyle kent artıklarının toprakta birikti-rilmesidir. Bu yolla yoğunlaşan kirlilik, toprağın daha derin tabakalarına sızarak yer altı su-larını da kirletmektedir. Çöp sorunu da aynı şekilde kirliliğe yol açmaktadır. Çöp yalnız toprak üzerinde kalan katı madde olarak değil, zamanla toprağa karışan bir kirlilik öğesidir. Kent çevresinde toprak kirliliğine yol açan diğer bir konu da hava kirliliğidir. Gerek ken-tin ısınması sırasında bacalardan çıkan zehirli gazlar, gerekse taşıtların egzoz gazları, yoğun-laşarak toprakla kaynaşmakta ve topraktaki canlı yaşamı öldürmektedir.  Endüstrinin meydana getirdiği toprak kirliliği Endüstri uğraşları sırasında meydana gelen su ve hava kirlilikleri kimyasal yollarla top-rağa karışma eğilimindedir. Bunun yanı sıra çeşitli endüstri artıklarının fabrikalar yöresinde ve ya daha açıkta bir yere yayılması alışıla gelmiş bir uygulamadır. Bazı endüstri kollarının, şeker endüstrisi gibi, toprağın üstüne atılan posa maddesi çok olmaktadır. Bazı uğraşlar, ba-kır gibi, önemli derecede kirleticiliğe sahiptir. Endüstrinin toprak kirlenmesine yol açan önemli bir kusuru da yer seçim kriterlerine uymakta özen göstermemesidir. Ele geçirilen herhangi bir arsa üzerine kurulan bir fabrika-nın kirlilik meydana getirmesi ve çevresindeki toprağın canlı yaşamını tahrip ederek verimini düşürmektedir.  Tarım uğraşlarının meydana getirdiği toprak kirliliği Yanlış toprak kullanımı, yanlış tarım yöntemleri veya yanlış ürün seçimi toprakta tahri-bat yapabilir. Ancak, genellikle tarım uğraşlarının oluşturduğu toprak kirliliğinden, tarım ilaçları ve gübreleme sonucu meydana gelen kirlilik anlaşılmaktadır. Toprağın böcek öldürücülerle veya ot öldürücülerle doğrudan doğruya ilaçlanması ya-nında, havadaki tozlara yapışarak toprağa karışanlar veya bitkilerin yapraklarında kalan miktarların yağmur ve sulama sularıyla yıkanması sonucunda toprağa karışanlar, toprağın kirlenmesine yol açmaktadır. Tarım ilaçlarının biyokimyasal özellikleri, topraktaki mikroorganizmaların ve diğer can-lıların yaşama ve büyüme fonksiyonlarını engellemektedir. Kalıcı ve birikici özellik taşıyan klorlanmış hidrokarbon pestisidler, toprakta mevcut toprak mikroorganizmalarını öldürebi-lir, geçici olarak miktarını azaltabilir veya toprak yapısında değişmelere neden olabilirler. Üretimi arttırmak amacıyla kullanılan yapay gübreler, çok görülen bir toprak kirlenme-sine neden olmaktadır. Bu gübreler içinde bazıları bitki besin maddelerinin tuzla tutulmasına bir neden olurken giderek toprakta tuzluluk sorununu yaratmaktadır. Toprak Kirliliğinin İnsan ve Çevresine Etkileri Toprak sorunları ve kirliliği insan yaşamına ve çevresine çok önlü olarak etkide bulun-maktadır. Bu etkiler başlıca beş ana başlık altında toplanabilir.  Erozyonun etkileri  Yaşlık ve çoraklığın etkileri  Taşlılık ve kayalığın etkileri  Gübre ve gübrelemenin etkileri  Tarım arazisi bozulmalarının etkileri Erozyonun etkileri, toprak kayıplarında artma, üretkenlik potansiyelinde azalma, bitki besin maddelerinin kaybı, ürünlerde nitelik düşüklüğü, su tutma kapasitesinde azalma, ve-rimli toprakların sedimentlerle örtülmesi, toprak yapısının bozulması, çeki gücüne duyulan gereksinmedeki artma, sel oyuntuları ile arazi kaybı, sedimantasyon, akarsu yataklarında ve rezervuarlarda kapasite ve depolama azalması, uygun su temini masraflarının artması, baraj ve sulama sistemlerinde yıpranma ve normal bakım masraflarının artması şeklinde kendini göstermektedir. Gübre ve gübrelemenin etkileri, toprağı tanımadan ve özelliklerini bilmeden yapılan güb-relemelerle, toprağın gereksinimi olmayan gübreyi toprağa uygulamakla kendisini belli eder. Yanlış cins ve aşırı miktarda kullanılan gübre, toprak ph’ nın normalden uzaklaşmasına, top-rak strüktürünün bozulmasına, mikroorganizma yaşamını olumsuz yönde etkilemesine neden olmaktadır. Gereğinden fazla kullanılan gübre, örneğin azotlu gübre kullanılması, topraktan yıkan-malara, içme suları ve akarsularda nitrat miktarının artmasına; aşırı ölçüde fosforlu gübre kullanılması içme suları ve akarsuların fosfor içeriğinin yükselmesine; yüksek düzeyde kulla-nılan nitrojenli gübreler, bitkilerde nitrozamin gibi kanserojen maddelerin oluşmasına yol açmaktadır. DİĞER ETMENLER GÜRÜLTÜ KİRLİLİĞİ Bilimsel yönden “düzensiz ses” olarak nitelendirilen gürültü, hoşa gitmeyen, rahatsız edi-ci duygular uyandıran bir akustik olgu veya beğenilmeyen, istenmeyen sesler topluluğu ola-rak tanımlanır. Gürültü, tüm dünyada özellikle büyük kentlerde hızla kentleşmenin, endüstrileşmenin, ulaşımın artan nüfusun vb. etkenlerin yarattığı önemli bir sorun olarak karşımıza çıkmakta-dır. Örneğin ülkemizdeki büyük kentlerde son yıllarda artan kara trafiğinin gürültünün ne denli etkili olduğu herkes tarafından bilinmektedir. Bunu gibi açık pazarlar, eğlence yerleri, çocuk parkı ve bahçeleri, endüstri kuruluşları, yapı ve yol yapım ve onarımları, hava ve deniz trafiği gibi gürültü kaynakları düşünüldüğünde, bunun da gerçekten önemli bir çevre kirliliği yarattığı söylenebilir. Gürültü düzeyleri “desibel” (dB) birimi ile değerlendirilir. Ses 35 – 40 desibele ulaştığın-da gürültü olarak değerlendirilmektedir. 100 dB’nin üzerindeki gürültüler çok şiddetli gürül-tüler olarak tanımlanır. Sokak gürültüleri 60 – 90 dB arasında, bazı zamanlar bunların dışın-da değerler gösterilebilir. Büro gürültüleri, ortalama 35 – 65 dB, eğer çok gürültülü çalışan makineler varsa 80 – 85 dB olabilir. Evlerde 40 – 50 dB fon gürültüsü düşünülebilir. Büyük kentlerde kent içi gürültüsü 103 dB’ e ulaşırken motosiklet gürültüsü 110 dB, hava kompres-yonu ile çalışan delici tabancalar 120 dB civarında gürültüye neden olurlar. Gürültünün İnsan ve Çevresine Etkileri Gürültünün de insan sağlığını en az hava ve su kirlenmesi kadar etkilediği saptanmıştır. Nabız ve soluma hızlarını arttırarak insanların fizyolojik durumunda değişikliklere yol aça-bildiği gibi, geçici ya da kalıcı işitme bozuklukları da yaratabilir. Gürültüden kaynaklanan işitme bozukluğu milyonlarca sanayi işçisini ve bazı askeri personeli tehdit etmektedir. Ayrıca gürültünün kalp krizine ve yüksek tansiyon, ülser gibi kronik rahatsızlıklara neden olduğu yolunda tıbbi bulgular vardır. Bununla beraber kulak çınlaması – sağırlık, kalp ritminin artması, kaslarda yorgunluk, iş ritminin artması, iş veriminde düşüş, salgı düzeni ve sindirim sisteminde bozukluk, dikkat dağılımı, uyku düzeninde aksaklıklar gibi durumlarda insana zarar verebilir. İnsan kulağı 165 dB şiddetindeki bir sese 0,003 saniye; 145 dB şiddetindeki bir sese ise 0,3 saniye süre ile kalıcı bir etki olmadan dayanabilmektedir. Bu şiddetteki seslerin uzun sürmesi için kulak zarı yırtılmaları, özengi kemiği çıkıkları, orta kulakta kanama, iç kulakta önemli arızalar ortaya çıkar. Sesin sürekli olması, kesikli olmasından daha tahrip edicidir. Günlük 8 saat çalışan kişinin bu süre içinde sürekli olarak çalışabileceği gürültü şiddeti 93 dB olursa günlük çalışma 4 saat, 96 olursa bu süre en fazla 2 saat olmalıdır. RADYASYON Çevreye zarar veren bir etken de radyasyondur. Düşük etkili, insan ürünü radyasyon X ışınlarından, radyoaktif maddelerden ve televizyon gibi elektronik aygıtlardan kaynaklanır. Tıpta kullanılan araçlardan kaynaklanan radyasyon, insan ürünü radyasyonun yüzde 94’ünü, ortalama bireyin aldığı toplam radyasyonun da yüzde 30’unu oluşturur. Yüksek doz-da radyasyonun lösemi ve öteki kanserlere, düşük düzeyde radyasyonun da kalıtsal hastalık-lara yol açtığı ortaya konmuştur. Atmosferde, uzayda ve su altında yapılan nükleer denemele-rin uluslar arası antlaşmalarla yasaklanması, 1960’lardan bu yana doğal çevredeki radyasyon düzeyinin azalmasını sağlamıştır. Doğal çevreye karışan radyoaktif atomların hemen hemen tümü nükleer santrallardan kaynaklanmaktadır. Açığa çıkan başlıca maddeler kripton – 85 ile trityum havaya ve su sis-temlerine karışır; ama bunlar, dünya nüfusunun aldığı radyasyon miktarını önemli ölçüde arttırmamaktır.

http://www.biyologlar.com/cevre-kirlenmesi

Bitkilerde Davranış

Bitkilerde çimlenme,çiçek açma,yaprak dökme,tropizma ve nasti bitkilerde görülen önemli davranışlardır.Uyaran ışık,ısı,su,kimyasallar ve travmalar olabilir.Tepkilerin verilmesinde hormonlar düzenleyicidir. Tepki ise mitoz,turgor değişimi veya asimetrik büyüme ile gerçekleşir. Yapılan çalışmalar bitkilerinde belli bir alanda ürettikleri özel salgılarla birbirlerinin metabolizmalarını kontrol ettikleri görülmüştür.Ayrıca etilenin etkisinde unutmamak gerekir. Bitkilerde nasti ve tropizma kalıtsal davranışlardır. 1-Tropizma(Yönelim):Asimetrik büyümeler sonucu gelişir.Hormonların dağılımında görülen asimetri sonucu, dengesiz turgor ve hücre bölünmeleri ile gerçekleşir.Yavaş gerçekleşen davranıştır. Bu durum bitkinin farklı kısımlarının hormonlara farklı cevap vermesinden kaynaklanır. Tropizmada daha çok uç meristeminden salgılanan oksin hormonu etkilidir. Örneğin uç kısımdaki oksin hormonu ışık varlığına göre farklı dağılım gösterir Bu durum bitkide yönelmeyi gerçekleştirir. Oksinlerin dağılımı karanlıkta ve ışığın tepeden geldiği durumlarda dengelidir. Bu yüzden bitkide her hangi bir yönelme görülmez, ancak eğer ışık bir yönden geliyorsa ışığın geldiği yönde oksin miktarı az, ışığın geldiği tarafın karşısında oksin miktarı fazladır a-Fototropizma (Uyaran: ışık) Gövde pozitif tepki kök ise negatif tepki verir. b-Jeotropizma (Uyaran:Yerçekimi) Gövde negatif kök ise pozitif tepki verir. Bataklık ve sulak ortam bitkilerinin bazı kökleri negatif jeotropizma gösterir. Bu tip kökler havalandırma kökleri olarak adlandırılır ve bataklık toprağında O 2 nin az olmasından dolayı köklerin gaz alış verişinde rol alırlar. c-Hidrotropizma (Uyaran :Su) Kökler pozitif hidrotropizma göstererek suyun fazla olduğu ortamlara doğru yönelirler. d-Kemotropizma (Uyaran:Kimyasallar=asitler,bazlar,gübre) Kökler kimyasallara karşı pozitif (Gübre) veya negatif (Asit) tropizma gösterirler. e-Travmatropizma (Uyaran:Yaralanma) Kökler yaralanmaya neden olan faktörlere karşı negatif tropizma gösterir. f-Haptotropizma (Uyaran:Temas) Sarmaşık ve fasulyenin sülük gövdelerinde değmeye karşı pozitif tropizma gösterir. 2-Nasti(İrkilme):Bazı bitkiler ise uyartıların yönüne bağlı olmaksızın çok hızlı tepki gösterebilirler. Bu tür davranışlarında etken olan faktör turgor olayıdır. Örnek:Küstüm otunun duyarlı yaprak¬ları dokununca hemen kapanır. Örnek: Böcek yiyen bitkilerin çiçeğine böcek konunca çiçeğin yaprakları hemen kapanır. Bu hareketler turgor basıncındaki değişmelerle düzenlenir ve nasti hareketleri adını alır.Uyaranın yönüne bağlı olmaksızın gerçekleşen tepki tarzındaki hareketlerdir.Uyarana göre adlandırılır. a-Fotonasti.......(Uyaran:ışık):Papatya çiçeklerinde b-Termonasti....(Uyaran:Isı):Çiğdemin yaprak hareketlerinde c-Sismonasti....(Uyaran:Sarsıntı,Değme):Küstüm otunda d-Tigmonasti....(Uyaran okunma):Böcek kapan bitkilerde

http://www.biyologlar.com/bitkilerde-davranis

DENİZ ATI

Dünya ve ülkemiz sularinda nesli tükenmekte olan bir çok tür bulunmaktadir. Akdeniz foku , deniz kaplumbagalari , mercan türleri , deniz memelileri ve denizatlari nesli tükenmekte olan canlilar arasinda yer alir.Bizler size bu ilk yazimizda bu canlilardan biri olan Sngnathidae familyasi hakkinda bilgilerimizi paylasacagiz. Syngnathidae familyasi üyeleri yüzgeç durumlarina göre 2 ye ayrilir : - Pektoral yüzgeçleri (gögüs yüzgeci) ve anal yüzgeçleri olmayanlar ; Synganathus ve Neropsis genusu üyeleri olan denizigneleri - Iyi gelismis pektoral yüzgeçleri ve birkaç radiuslu (isinli) anal yüzgeçleri olan ancak caudal yüzgeci olmayan Hippocampus genusuna ait denizatlaridir. Benim denizatlariyla ilgili bilgi toplamaya baslamam 1 sene önce balikçi aglarina takilarak ölen bireylerin cesetleriyle karsilasmama dayanir. Caddebostan açiklarinda avlanmakta olan balikçilarin aglarina takilan 450 kadar denizati balikçilar tarafindan tekneye alinmis ve ölen bireyler elime ulasmisti. Bu durum beni gerçekten çok üzmüstü . Bir seyler yapabilecegimi düsünerek bilgi toplamaya basladim. Ilk buldugum bilgi bu canlilarin birer balik oldugu ve yumurtalari erkeklerin tasidigiydi.Bilgi toplarken onlari gözlemem gerektigini düsünerek balikçilarin gösterdikleri yerlerde dalislar yaptik. Marmara sahilinde Maltepe,Kartal ve Caddebostan kiyilarinda 10m dalislarinda zeminde alglere tutunmus olarak buldugum denizatlarindan 12 adet aldim.Hazirlamis oldugum akvaryumda mercan,bir deniz çayiri türü olan Zoestera ve beslenmeleri için bir zooplankton olan Artemia vardi.Su sicakligini 22oC ayarladiktan sonra denizatlarini akvaryuma koydum. Yaklasik boylari 10mm-300mm arasinda ve agirligi 25gramdan fazla olan bu genusun bilinen 40 türü olmasina karsin sularimizda yalnizca 2 türü bulunmaktadir.Hippocampus hippocampus ve Hippocampus ramulosus türleridir. Türler arasi farka gelince ; H. ramulosus da postanal bölgede (bas ile kuyruk ucu arasinda kalan bölge) halka sayisi 36-40, dorsal yüzgeçte (sirt yüzgeci) 18-21 ve pektoral yüzgeçte (gögüs yüzgeç) 15-18 adet isin bulunur.Bas boyu diger türlere göre daha uzundur ve gövdede deri uzantilari vardir.Renk genellikle kahve - siyah olmasina karsin sari yada kirmizi renge de rastlanir.Nokta ve çizgimsi süslerde tasiyabilen bu hayvanlar çevrenin hakim rengini alarak motifi veya alacali olarak da bulunur. H.hippocampus  da ise 38 den az halka bulunur. Pektoral yüzgeçte 15 , dorsal yüzgeçte ise 13-15 adet isin var . Burun nispeten kisa ve deri çikintilari çok az sayida yada hiç bulunmaz. Topladigim bilgiler isiginda elimdeki denizatlarinin H.hippocampus türüne ait bireyler oldugunu buldum.Akvaryumda sakin ve hareketsiz bu canlilarda bir hareketlenme baslamisti. Birbirlerini kuyruklarindan tutup bir süre hareketsiz kaliyor hayvanlardan biri renk degistirinceye kadar bu islem sürüyordu. Çesitli literatürlere baktim ve bunun bir çesit düello oldugunu ögrendim.Erkeklerin diger bir düello sekliyse burunlarini rakibe dogrultarak üfleyen erkek rakibi alabora olana kadar bu olaya devam etmesiymis.Yani erkekler begendigi disisini elde etmek için elinden geleni yapiyor. Akvaryumdaki 14 denizatindan yalniz bir çiftin çiftlesmesi ilgimi çekmisti.Daha sonra bu canlilarin yüksek monogami oldugunu ve bu olayinda nedenin bu oldugunu ögrendim. Oldukça zor es seçen bireyler bulduklari eslerine oldukça sagdik kalirlar.Çesitli nedenlerle birbirini kaybeden eslerden disi olani yasam alani içinde sabit kalip beklerken , erkek birey kendine en uygun disisini aramak için gezinir.Yasami boyunca disisine sadik kalan erkek yeni bir disi bulmak için bazen haftalarca dolanabilir.Genis dagilimi olmayan, enerjisi ve zamani kisitli olan bu hayvan tekrar bir es bulamayarak ölebilir bile.Bu olay eslerine sadik olmayan hayvanlar dünyasinda oldukça ilginçtir. Denizatlarinin üremeleri suyun isisina bagli olmakla birlikte genellikle nisan ve agustos aylari arasinda sig ve sakin sularda deniz çayirlari ve algler arasinda gerçeklesmektedir. Diger hayvanlarda oldugu gibi spermatozoitler erkekte , ovaryum ise diside bulunur. Farkli olan sey ise disilerin oldukça iri olan (2 - 2,5 mmØ) ve yasa göre 20-200 taneye kadar olan döllenmis yumurtalarinin erkeklerde bulunan kuluçka kesesi içine , salgiladiklari yapiskan bir salgi ile yapistirmalaridir.Familyanin bazi cinslerinde bu gibi kuluçka kesesi bulunmamaktadir.Bu durumda disiler gene yumurtalarini salgiladiklari yapiskan maddeyle dogrudan erkegin karnina yapistirmaktadir.(Syngnathus ve Nerophis denen deniz ignelerinin de bu familyanin üyeleri oldugunu unutmamak gerekir).Bu hamilelik memelilerinkine oldukça benzer.Deniz atlarinin erkeklerinde de prolaktin hormonu bulunmakta ve bu hormon hamileligi kontrol etmektedir. Embriyoyu erkek boyunca besler ve gerekli her seyi kendi yapar. Böylece erkegin kuluçka kesesine veya karin kismina yapistirilmis olan döllenmis yumurtalar 6-10 gün içerisinde kuluçka evresini tamamlayarak küçük birer yavru halinde babalari tarafindan suya birakilirlar.Bu olay tam olarak bir dogurma sayilmaz. Yumurtadan çikan genç yavrular kisa süre babalariyla birlikte dolasarak planktonla beslenirler ve yavas yavas uzaklasarak kendi baslarina serbest yüzmeye baslarlar. Çevre kirliliginin artmasiyla Zoestera ve Posedonia gibi bir çok deniz çayiri popülasyonu gittikçe azalmakta bununla birlikte mercan resifleri tükenmektedir.Bu olumsuz gelismelerse deniz atlarinin yasam alanlarinin yok olmasina neden olmaktadir.Genellikle tropik sularda yasamlarini sürdüren bu hayvanlarin en önemli sorununu çevre kirliligi olusturmasina karsin baska sorunlari da yok degildir.Planktonik organizmalarla beslenen bu baliklara diger balik türleri cazip bir besin olarak bakmamasina karsin bazi karides türleri , yengeç ve penguenler için iyi birer yiyecek sayilabilirler.Aktif yüzücü olmayan , su hareketleriyle hareket eden bu hayvanlar firtinalar sirasinda yasam alanlarindan koparak farkli yerlere sürüklenmekte hatta bazen enerjileri tükenerek ölmektedirler.Tüm bu çevresel kosullarin yani sira bu hayvanlarin ticareti de yapilmaktadir.Önceleri önemsemeyen bu meslek bu hayvanlarin nüfusunu tehdit edecek kadar artmistir.Çin halki deniz atlarini astim , damar sertligi, kemik kirilmalari, idrar kaçirma, böbrek yetmezligi, tiroid bezi hastaliklari gibi bir çok hastaligin tedavisinde kullanilir. Taiwan da deniz atlari öncelikle afrodizyak olarak veya losyon olarak kullanilir. Deniz atlari daha ziyade bir çok bitki ile beraber hastanin ihtiyaçlarini karsilamak için kullanilir.Alternatif tedaviler deniz atini haslamayi ve elde edilen siviyi içmeyi kapsar fakat deniz ati genellikle yenmez. Deniz atlari ayni sekilde, kuvvetli alkol içinde diger bazi tibbi maddelerle birlikte mayalanmaya birakilir ve bu sivi çogunlukla kuvvetli bir yenileyici veya genel kuvvetlendirici ilaç olarak içilir. 19965 yilinda Hong-Kong , Çin ve Vietnam da satisa sunulan orta boyda kurutulmus deniz atlarinin agirligi 3,6 gr olarak ölçülmüstür.Hong-Kong da satilan çogu deniz ati tüketici talebine istinaden kimyasal islemlerle beyazlatilarak satisa sunulur.Beyazlatilmis deniz atlari çogunlukla Hong-Kong dan üretici ülkelerde ki ( Endonezya ve Filipinler) gibi TCM (geleneksel Çin tibbi) dükkanlarina tekrar ithal edilir. Balikçilar deniz atlarini özellikle hedef alabilir, baska türleri yakalamak için onlari gözleyebilir ve diger baliklari avlama yöntemlerinde yem olarak kullanabilirler .Bazi balikçilar hedeflenen deniz atlarini , gün boyunca toplamada sandaldan uzatilan uzun, agli kepçelerden yararladirlar.Diger sahlar içinde koleksiyoncular deniz atlarini gece elle yakalarlar. Dünya genelinde hediyelik esya dükkanlarinda deniz atlari hatira esyasi veya anahtarliklarda, mücevherlerde ve çesitli süslerde kullanilirlar.Her ne kadar gida olarak tüketilmese de bazi özel restorantlar da menü de bulunabilirler. Deniz ati ticareti yapan ülkeler listesinde Avusturalya , Brezilya , Belize, Çin , Dubai , Ekvator, Misir ,Endonezya ,Japonya , Kuveyt , Meksika , Yeni Zelanda,Pakistan , Singapur , Ispanya ,Taiwan , Tayland ,Amerika , Vietnam vardir. Listedeki ülkelerle beraber etnik Çin toplumu deniz atlarini hem ithal hem de ihraç ederler. Çin en büyük kullanicidir (yaklasik 60 milyon deniz ati ).Bunu Taiwan 11,26 ton yani 3 milyon deniz ati kayitli ihracati ile , Hong-Kong yaklasik 3 milyon ve Singapur 2 - 3 milyon ile takip etmektedir. Japonya ve Kore denizati ihraç etmekle bilinirler ve büyük miktarlarda denizati tüketebilirler. Bunda tibbi geleneklerinin TCM ile ayni kökenden gelmesi etkilidir. Ölüler daha degerlidir çünkü fiyatlar ölüler için agirlikla çogalirken yasayanlar için sabittir.Akvaryum ticareti dünya çapinda milyonlarca canli denizatini kapsar ve hediyelik esya ticareti de Tayland ve Florida gibi turistik bölgelerde önemlidir.Kurutulmus denizatlari yüksek fiyatlarla alici bulabilirler. Örnegin; nisan 95 de Hong-Kong da orta boyda karisik türde beyazlatilmamis deniz atlarinin kilosu 280$ ; büyük ve beyazlatilmis deniz atlarinin kilosu 1200$ civarindadir. Korunmalari için henüz çok fazla harcanmamasina karsin 1995 yili Traffic Bulletin de yayinlanan açiklamaya göre korunmalari için uygulanmasi uygun olan yöntemler sunlardir: - Bölgesel topluluklara dayanan kaliplasmis koruma teknikleri olusturmak - Yakalama limitlerindeki ölçülerini degistirmek - Akvaryum kültürünü artan denizati sayimlari sayesinde degistirmek ve üreme alanlari oluşturmak.

http://www.biyologlar.com/deniz-ati

TIBBİ ATIKLARIN YÖNETİMİ

Prof. Dr. Günay Kocasoy Katı Atık Kirlenmesi Araştırma ve Denetimi Türk Milli Komitesi Boğaziçi Üniversitesi, Çevre Bilimleri Enstitüsü Tıbbi atıklar miktar olarak az olmalarına rağmen, yüksek oranda risk taşıyan çok önemli bir atık grubudur. Bu atıklar enfekte olmalarının yanısıra tehlikeli kimyasallar, ilaçlar, toksinler, radyoaktif maddeler gibi çok miktarda tehlikeli maddeleri de içerirler. Tüm dünyada olduğu gibi tıbbi atıkların yönetimi ve bertarafı ülkemizde de önemli çevre sorunlarından biri olarak yer almaktadır. Sağlık kuruluşlarında üretilen tıbbi atıklar, genelde katı atıklarla birlikte karışık olarak toplanabilmekte ve gelişigüzel depolanmaktadır. Bu şekilde düzensiz yönetilen tıbbi atıklar, bu atıkları ayrıştıran personele ve topluma olan sağlık tehditleri başta olmak üzere çok sayıda çevresel sorunlara yol açmaktadır. Sağlık kuruluşlarında üretilen atıkların % 75 - 80’i kentsel atık özelliği taşımakta olup kalan % 20 - 25’i özel işlem gerektiren özelliktedir (enfekte, patolojik, kesici delici atık). Bu atıklar daima kentsel katı atıklardan daha tehlikeli olarak kabul edilmektedir. Bu durum tıbbi atıkların çevreyi patojenik faktörler ve bakteriler ile kirletme potansiyelinden kaynaklanmaktadır. Tıbbi atık üretiminin en aza indirilmesi, tıbbi atık akımının yönetiminde merkezi bir yere sahiptir. Tıbbi atıklardan kaynaklanan sorunların en aza indirilebilmesi için aşağıda belirtilen çeşitli önlemler mevcuttur: Tıbbi atık üretiminin önlenmesi Üretilen tıbbi atık miktarının kaynağında azaltılması Tekrar kullanım ile söz konusu materyalin tıbbi atık akışından ayrılması Atık bileşenlerinin geri dönüştürülmesi Enfekte ve tehlikeli atıkların uygun teknolojilerle zararsız hale getirilmesi / bertarafı Ülkemizde tıbbi atıkların yönetimi esasları, 20 Mayıs 1993 tarihinde yürürlüğe girmiş olan ve 22.07.2005 tarihinde revize edilen ‘Tıbbi Atıkların Kontrolü Yönetmeliği”nde belirtilmektedir. Tıbbi Atıkların Kontrolü Yönetmeliği uyarınca, atıkların üretilmesinden nihai bertaraflarına kadar geçen sürede atık üreticileri ve yerel yöneticiler birlikte sorumludurlar. Yönetmelik hükümlerinin uygulanması ise, belediye ve mücavir alanlar sınırları içerisinde belediyeler, belediye sınırları dışında ise mülki amirlerin yetkisindedir. 1. ÜNİTE İÇİ ATIK YÖNETİM PLANI Sağlık kuruluşlarında atık yönetim planlarının oluşturulması ve bu planın uygulanmasından sorumlu bir kişi/heyet tespit edilmesi gerekmektedir. Bir sağlık kuruluşunda atık yönetim planının geliştirilebilmesi için, atık yönetim biriminin, hastanede üretilen tüm atıkların türünü ve miktarını bilmesi gerekmektedir. Bu amaç için atık üretilen tüm birimlerde günlük üretilen atık miktarı tartılmak suretiyle tespit edilir. Yeteri kadar tekrar edilen bu analizler sonunda üretilen atık miktarının hassas bir şekilde tespiti mümkün olabilmektedir. Sağlık kuruluşlarının atık üretimlerinin birbiri ile karşılaştırılmasında “spesifik atık üretimi” (kg/yatak.gün) değeri esas alınarak yapılır. Bu konuda ülkemizde Katı Atık Araştırma ve Denetimi Türk Milli Komitesi tarafından yapılmış en kapsamlı tıbbi atık araştırması olan ve Avrupa Birliği tarafından desteklenen LIFE 00/TCY/TR/000054 “İstanbul Entegre Tıbbi Atık Yönetimi” Projesi kapsamında İstanbul’daki sağlık kuruluşlarından elde edilen sonuçlar Tablo 1’de özetlenmiştir. Atık gruplarının verilen sınıflandırmaya uygun olarak düzenlenmiş dağılımı ise Şekil 1’de görülmektedir. Bu verilere göre İstanbul’da “kırmızı torba”larda toplanan spesifik atık miktarı 0,540-0,580 kg/yatak.gün’dür. Özel işlem gerektiren atık miktarının ülkemizde yüksek olması atık ayrıştırılmasına yeterli özen gösterilmediğinin göstergesidir. Tedavide kullanılan her türlü atığın “enfekte” olarak ayrılması da atık miktarının artmasında önemli bir diğer etkendir. Tıbbi atık üreticileri, Yönetmeliğin 8. ve 10. maddelerinde de belirtildiği gibi atıkların kaynağında ayrı toplanması ve biriktirilmesi, atıkların toplanması/taşınmasında kullanılacak ekipman ve araçlar, atık miktarları, toplama sıklığı, geçici depolama sistemleri, toplama ekipmanlarının temizliği ve dezenfeksiyonu, kaza anında alınacak önlemler ve yapılacak işlemler, bu atıkların yönetiminden sorumlu personel ve eğitimleri başta olmak üzere detaylı bilgileri içeren Ünite İçi Atık Yönetim Planı’nı hazırlamak ve uygulamak zorundadırlar. Tablo 1. İstanbul hastanelerinde spesifik atık üretimi Atık tipi Avrupa Yakası Asya Yakası Ortalama Üretim (kg/yatak/gün) % Ortalama Üretim (kg/yatak/gün) % Evsel 0.910 49.18 1.124 51.42 Patolojik 0.110 5.94 0.389 17.79 Radyoaktif 0.011 0.01 0.003 0.13 Kimyasal 0.035 1.89 0.162 7.36 Enfekte 0.320 17.92 0.121 5.53 Kesici-delici 0.110 5.94 0.070 3.20 Farmasotik 0.024 1.29 0.047 2.15 Basınçlı kaplar 0.042 2.27 0.012 0.55 Geri kazanılabilir 0.288 15.56 0.258 11,80 Toplam 1.85 100.00 2.186 100.00 Şekil 1. İstanbul hastanelerinde oluşan atık gruplarının dağılımı 1.1. Organizasyon Yapısı ve Sorumluluk Alanlarının Belirlenmesi Tıbbi atık yönetiminin uygun şekilde yapılabilmesi, büyük oranda iyi yönetim ve organizasyonun yanı sıra yeterli mevzuat ve mali güç ile bilgi ve bilinçlendirilmiş personelin aktif katılımına bağlıdır. Tıbbi atık yönetiminde, yönetmeliklerin de öngördüğü şekilde kabul edilebilir sonuçlar elde edebilmesi için kurumların tüm yönetici ve çalışanlarının uygun eğitim almaları zorunludur. Hastane başhekimi atık yönetim planı geliştirmeleri için bir atık yönetim birimi oluşturulması gerekmektedir. Bu birim aşağıdaki üyelerden oluşabilir: Başhekim Hastane müdürü Enfeksiyon kontrol sorumlusu Hastane bölümlerinin başkanları Atık yönetim sorumlusu Eczane sorumlusu Radyoloji sorumlusu Başhemşire İdari mali işler sorumlusu Hastane çalışanları arasından görevlendirilecek Atık Yönetim Sorumlusu (AYS), hastane atık yönetimi planının geliştirilmesi, günlük işlemlerin gerçekleştirilmesi ve atık bertaraf sisteminin izlenmesi ile ilgili tüm sorumluluğu üstlenir. Atıkların toplanması açısından AYS: Atık konteynerlerinin toplanmasını ve hastane bünyesindeki geçici depolama yerine taşınmasını günlük olarak kontrol eder. Hastane satın alma müdürlüğü ile işbirliği yaparak üretilen atıklar için uygun torba ve konteynerlerin, çalışanlar için koruyucu elbise ile tekerlekli taşıma araçlarının daima mevcut olmasını sağlar. Hastane çalışanlarının, dolan torbaları ve konteynerleri, vakit geçirmeden, yenileri ile değiştirmelerini sağlar. Hastane içerisinde üretilen atığın toplanması ile görevlendirilen çalışanların sevk ve idaresinde söz sahibidir. Atıkların depolanması açısından AYS: Tıbbi atıkların depolanacağı geçici atık depolarının uygun kullanımını sağlar. Bunlar kilitli olmalı ve sadece atıklardan görevli personel tarafından ulaşılabilir olmalıdır. Atık konteynerlerinin hastane içinde ve dışında kontrolsüz boşaltılmalarını önlemelidir. Atıkların toplanması ve bertarafının kontrolu açısından AYS: Tüm atık bertaraf işlemlerinin koordinasyonu ve izlenmesinden sorumludur. Atıkların kurum içinde ve dışında uygun şekilde toplanmasını ve öngörülen arıtma ve bertaraf yerine kadar yine uygun şekilde taşınmasını sağlar. Atıkların yönetmelikte öngörülen süreden daha uzun bir süre kurum içinde depolanmamasına dikkat eder ve yerel yönetim veya görevlendireceği üstlenici atık nakliye firmasının atıkları düzenli olarak almasını sağlar. Çalışanların eğitimi ve bilgilendirilmesi açısından AYS: Başhemşire ve hastane müdürü ile işbirliği yaparak hemşire ve diğer sağlık personelinin atıkların ayrı toplanması konusundaki görev ve sorumluluklarını yerine getirmesini sağlarken, atıkları toplayan personelin sorumluluklarının sadece atık torba ve konteynerlerinin toplanması ve taşınması ve yerlerine yenilerinin konulması ile sınırlı olduğunu belirtir. Hastane bölüm başkanları ile irtibata geçerek tüm doktor ve diğer klinik personelinin, atıkların ayrılması ve depolanması ile ilgili kendi sorumluluklarının bilincinde olmalarını sağlar. Atıkları toplayan/taşıyan personele, atıkların kaynağında ayrılması işlemine karışmamalarını, sadece uygun şekilde hazırlanmış torba ve konteynerleri taşımakla görevli olduklarını hatırlatır/bildirir. Beklenmeyen durumların meydana gelmesi açısından AYS: Yazılı acil durum yöntemlerinin hazırlanmasını ve ulaşılabilir olmasını, personelin acil durumlarda yapmaları gereken işler hakkında haberdar olmalarını sağlar. Tıbbi atıklarla ilgili oluşturulan raporları kontrol eder ve araştırır. 1.2. Atık Yönetim Planının Geliştirilmesi Sağlık kuruluşları için atık yönetim sistemi geliştirilmesi sırasında atıkların kuruluş içerisinde üretimden kurum dışına taşınmaya kadar geçen sürecin detaylı incelenmesi ve uygun düzenlemelerin yapılması gerekmektedir. Bu kapsamda incelenmesi gereken konular: Mevcut durumun tespiti Üretilen atık miktarı Hastane içinde uygulanan işleme, taşıma ve depolama teknikleri Hedeflerin belirlenmesi Atık azaltma, tekrar kullanım ve geri dönüşüm imkanları Atık yönetim planının yürütülebilmesi için stratejiler Eğitim Atık yönetim maliyetinin belirlenmesi Sağlık kuruluşu içerisinde mevcut durumun tespitini takiben, hedefler belirlenmeli ve bu hedefe ulaşmak için gerekli stratejiler oluşturulmalıdır. Bu kapsamda en önemli kısım sağlık kuruluşlarında görevli personelin gerekli eğitimi almalarıdır. 1.2.1. Personel Eğitimi Eğitim ile ilgili kurslar bu konuda uzmanlaşmış kuruluşlar ile birlikte değişik eğitim düzeylerinde düzenlenmelidir. Bu kurslarda öncelikle aşağıdaki konular işlenmelidir: Personelin bilgilendirilmesi ve motivasyonu Atıkların tanınması ve sınıflandırılması Atıkların kaynağında sınıflarına ayrıştırılması Hastane içi taşıma ve depolama için uygun şekilde hazırlanması Uygun ekipman ve malzemelerin seçilmesi ve hazırlanması Personel için uygun koruyucu ekipmanın temin edilmesi, kullanılması Toplama ve taşıma ekipmanının bakımı temizlenmesi ve dezenfeksiyonu Atıkların sağlık kuruluşu içinde geçici depolanması Nihai bertaraf yöntemleri ve teknolojileri 2. SAĞLIK KURULUŞLARINDA TIBBİ ATIKLARIN YÖNETİMİ 2.1. Atıkların Kaynağında Azaltılması ve Ayrıştırılması Hastane içerisinde atık azaltma işleminin başarılı bir şekilde gerçekleştirilebilmesi için hastane yönetimi ve çalışanların tümü hazırlanacak plana dahil edilmelidir. Hastane yönetimi, çalışanların atık azaltma işleminde birlikte çalışmalarını teşvik edecek şekilde iletişim sistemi oluşturmalıdır. Bu olguya yazılı şekilde bir “atık azaltma stratejisi” oluşturmak ile ulaşılabilir. Sağlık kuruluşlarında üretilen atıkların en aza indirilmesi ve etkili yönetim için atıkların tanımlanması ile uygun ve etkili ayrıştırma anahtar rol oynar. Atıkların tiplerine uygun işlem, arıtma ve bertaraf maliyetlerini azaltacağı gibi, halk sağlığının da korunmasını artırır. Atıkların ayrıştırılması daima atık üreticilerinin sorumluluğunda olmalıdır ve atığın oluştuğu yere mümkün olduğu kadar en yakın yerde gerçekleşmelidir. Atıklar depolama alanlarında ve taşıma sırasında da ayrı tutulmalıdır. Atıkların etkili ayrıştırılması hastane çalışanlarının görevidir. Hastanelerde üretilen atıkların sınıflarına göre ayrılmasında en etkili yol atığın farklı renklerde plastik torba veya konteynerlerde biriktirilmesi ile elde edilmektedir. Atıkların ayrı toplanması için her serviste ağızlar kapalı ayak pedallı atık kutuları bulunmalıdır Şekil 3. a) Atıkların ünitelerde ayrı toplanması b) Kesici-delici atıkların toplandığı rijit kaplar Atık kutularının üzerinde ait oldukları atık sınıfı ve hangi atıkların biriktirilebileceği büyük harflerle yazılı olmalıdır. Atıkların ayrılması atığın üretildiği anda, örneğin enjeksiyonun yapıldığı veya gerekli ekipmanın ambalajından çıkartıldığı anda yapılmalıdır. Hastane atıkları daima tıbbi atıklar ve evsel nitelikteki atıklar olmak üzere ayrılmalıdır. Atık yönetiminin hedefi, özel işlem ve bertaraf gerektiren atıkların miktarının azaltılmasıdır. Bu atık sınıflarının emniyetli şekilde işlenmesi ve bertarafı normal olarak, genel atık sınıfından 10 kat daha fazla maliyetli olduğundan, tehlikeli olmayan atıklar evsel atık gibi düşünülmeli ve mavi ve siyah torbalarda toplanmalıdırlar. Kesici ve delici aletler dışında hiç bir tıbbi atık, enjektör kutularında biriktirilmemelidir, zira bu kutuların hacimleri küçük ve satın alma maliyetleri, enfekte atıklar için öngörülen kırmızı torbalardan daha yüksektir. Bu tür önlemler sağlık kuruluşlarındaki atık toplama ve bertaraf maliyetlerini azaltmada yardımcı olacaktır. Örneğin plastik bir enjektör seti kullanıldığında ambalajı siyah renkli torbaya atılırken, enjektörün enjektör konteynerine atılması gerekmektedir. Yaralanma tehlikesi nedeniyle, iğne enjektörden ayrılmamalı, eğer ayrılması gerekiyorsa, özel önlem alınmalıdır. Atıkların üretildikleri noktalarda uygun türde torba ve konteyner bulundurulmalıdır. Atık üreticilerine hatırlatıcı olması amacı ile atık tanımlaması ve ayrılması ile ilgili kısa ve özet bilgiler/afişler atık toplama noktalarında görünür şekilde yerleştirilmelidir. Konteynerlerin dörtte üçü dolduğunda boşaltılmalıdır. Torba ve enfekte atık kutularının yanabilir özellikte ve halojenik bileşikler içermeyen plastiklerden üretilmesi tavsiye edilmektedir. Personel hiç bir zaman ayırma sırasında olabilecek bir yanlışı düzeltmeye davranmamalı, torba veya konteynerlerden atık geri almaya veya bir torbayı farklı renkte bir diğerinin içine yerleştirmeye çalışmamalıdır. Örneğin evsel nitelikteki atıklar ile tehlikeli veya enfekte atığın yanlışlıkla karışması durumunda, bu atık tehlikeli atık olarak işlem görmelidir. Kırmızı ve siyah renkteki torbaları içeren atık kutuları hemşire masası veya servis yönetim odası yakınına yerleştirilmesi, mavi renkli genel atık torbalarının bulunduğu atık kutularının koridorlarda bulunması (iki oda arasında bir kutu) uygundur. Hasta odalarında atık kutusu bulunmamalıdır. Yönetmelikte EK-2’de belirtilen atık sınıflandırılması kapsamında uygulanabilecek atık ayırma ve biriktirme işlemleri için tavsiye edilen sistem maddeler halinde, aşağıda belirtilmektedir: Atık tipi A: Genel atık sınıfı. Bir çok hastanede halen uygulanmakta olduğu gibi siyah torbalarda biriktirilir. Atık tipi B: Geri dönüşümlü malzemeler, mavi renkli torbalarda biriktirilebilir Atık tipi C, D ve E özel konteynerler gerektirmektedir. Bu tip atıkların üretildiği her noktaya ağzı kapaklı metal ayaklı torba tutucular yerleştirilebilir. Kullanılacak torbalar kırmızı renkli ve üzeri amblemli, en az 100 mikron kalınlığında 60 x 100 cm boyutlarında veya 70 litre hacminde olmalıdır. İleri düzeyde enfekte olmuş atığın derhal otoklav kullanılarak sterilize edilmesi gereklidir. Bu nedenle bu tür atıkların biriktirileceği kırmızı torbaların otoklavlanmaya uygun olması gerekmektedir. Özellikle büyük hastane ve araştırma merkezlerinde üretilen Sitotoksik atıklar (Atık sınıfı F), sağlam ve sızdırmasız konteynerlerde biriktirilmeli ve üzerine “Sitotoksik Atık” yazısı yazılmalıdır. Az miktarlardaki kimyasal ve farmasotik atıklar diğer enfekte atıklar ile birlikte toplanabilir. Servislerde bulunan bozulmuş veya son kullanma zamanı geçmiş farmasotikler ilaç firmalarına bertaraf için geri gönderilir. Büyük miktarlarda kimyasal atıklar kimyasal açıdan dayanıklı konteynerde biriktirilir ve tehlikeli atık bertaraf tesisine gönderilir. Konteynerler üzerinde kimyasalların adı ve özellikleri açık olarak yazılmalı, farklı tiplerdeki kimyasal atıklar hiç bir zaman birbirleri ile karıştırılmamalıdırlar. Yüksek miktarda ağır metal içeren atıklar ayrı toplanmalıdır (Atık sınıfı F). Amputasyon yapılmış vücut parçaları, vücut dokuları, plasenta vs. polietilenden imal edilmiş ağzı sıkı şekilde kapanabilen sızıntı yapmayacak konteynerlerde biriktirilir. Bu konteynerler tek kullanımlıktır. Bu maddeler gömülerek bertaraf edilmemeleri durumunda kırmızı torbalarda biriktirilirler. Kesici, delici ve sivri uçlu maddeler (enjektör iğneleri, bıçaklar veya kırık cam) sağlam ve rijit konteynerlerde biriktirildikten sonra, kırmızı torbalara konularak bertaraf edilirler. Konteynerler basınca karşı dayanıklı ve iyi oturan kapaklı ve sızdırmaz olmalıdır, bu şekilde enjektörlerle birlikte içlerinde bulunacak az miktardaki sıvı da emniyetli şekilde depolanmış olur. Plastik veya metal konteynerlerin pahalı olması durumunda kalın kartondan yapılmış kutular da kullanılabilir (Şekil 3b). Radyoaktif atıklar diğerlerinden ayrı toplanmalı ve Türk Atom Enerjisi Komisyonu tarafından alınarak bertaraf edilmelidir. 2.2. Atıkların Ünite İçinde Ayrılması, Toplanması Evsel Nitelikli Atıklar (Madde 11) Yönetmeliğin Ek-2 olarak verilen atıklar listesinde A grubu altında yer alan evsel nitelikli atıklar, tıbbi, tehlikeli ve ambalaj atıklarından ayrı olarak siyah renkli plastik torbalarda toplanırlar. Ayrı toplanan evsel nitelikli atıklar, ünite içinde sadece bu iş için ayrılmış taşıma araçları ile taşınarak geçici atık deposuna veya konteynerine götürülür ve ayrı olarak geçici depolanırlar. Evsel nitelikli atıklar toplanmaları sırasında tıbbi atıklar ile karıştırılmazlar. Karıştırılmaları durumunda tıbbi atık olarak kabul edilirler. Toplanan evsel nitelikli atıkların, Katı Atıkların Kontrolü Yönetmeliği hükümleri doğrultusunda taşınmaları ve bertaraf edilmeleri sağlanır. Ambalaj Atıkları (Madde 12) EK-2’de B grubu altında yer alan kağıt, karton, plastik ve metal ambalaj atıkları, kontamine olmamaları şartıyla diğer atıklardan ayrı olarak mavi renkli plastik torbalarda toplanırlar. Serum ve ilaç şişeleri gibi cam ambalaj atıkları ise yine kontamine olmamaları şartıyla cam ambalaj kumbaralarında, kumbara olmaması halinde ise diğer ambalaj atıkları ile birlikte mavi renkli plastik torbalarda toplanırlar. Kullanılmış serum şişeleri ayrı toplanmadan önce, uçlarındaki lastik, hortum, iğne gibi hasta ile temas eden kontamine olmuş materyallerden ayrılır. Kontamine olmuş malzemeler diğer tıbbi atıklar ile birlikte 13 üncü maddede belirtilen esaslara göre toplanır. Toplanan ambalaj atıklarının, Ambalaj ve Ambalaj Atıklarının Kontrolü Yönetmeliği hükümleri doğrultusunda geri kazanılmaları sağlanır. Tıbbi Atıklar (Madde 13) EK-2’de C, D ve E grupları altında yer alan tıbbi atıklar, başta doktor, hemşire, ebe, veteriner, diş hekimi, laboratuvar teknik elemanı olmak üzere ilgili sağlık personeli tarafından oluşumları sırasında kaynağında diğer atıklar ile karıştırılmadan ayrı olarak biriktirilir. Toplama ekipmanı, atığın niteliğine uygun ve atığın oluştuğu kaynağa en yakın noktada bulunur. Tıbbi atıklar hiçbir suretle evsel atıklar, ambalaj atıkları ve tehlikeli atıklar ile karıştırılmaz. Tıbbi atıkların toplanmasında; yırtılmaya, delinmeye, patlamaya ve taşımaya dayanıklı; orijinal orta yoğunluklu polietilen hammaddeden sızdırmaz, çift taban dikişli ve körüksüz olarak üretilen, çift kat kalınlığı 100 mikron olan, en az 10 kilogram kaldırma kapasiteli, her iki yüzünde görülebilecek büyüklükte “Uluslararası Biyotehlike” amblemi ile “DİKKAT TIBBİ ATIK” ibaresi taşıyan kırmızı renkli plastik torbalar kullanılır. Torbalar en fazla ¾ oranında doldurulur, ağızları sıkıca bağlanır ve gerekli görüldüğü hallerde her bir torba yine aynı özelliklere sahip diğer bir torbaya konularak kesin sızdırmazlık sağlanır. Bu torbalar hiçbir şekilde geri kazanılmaz ve tekrar kullanılmaz. Tıbbi atık torbalarının içeriği hiçbir suretle sıkıştırılmaz, torbasından çıkarılmaz, boşaltılmaz ve başka bir kaba aktarılmaz. Tıbbi atıkların basınçlı buhar ile sterilizasyon işlemine tabi tutulması durumunda atıklar otoklav torbaları ile otoklavlanabilir kesici-delici tıbbi atık kutularına konulurlar. Otoklav torbalarının yukarıda belirtilen teknik özelliklerin yanı sıra 1400C’a kadar nemli-basınçlı ısıya dayanıklı ve buhar geçirgenliğine haiz olması zorunludur. Sıvı tıbbi atıklar da uygun emici maddeler ile yoğunlaştırılarak yukarıda belirtilen torbalara konulur. Kesici ve delici özelliği olan atıklar diğer tıbbi atıklardan ayrı olarak delinmeye, yırtılmaya, kırılmaya ve patlamaya dayanıklı, su geçirmez ve sızdırmaz, açılması ve karıştırılması mümkün olmayan, üzerinde “Uluslararası Biyotehlike” amblemi ile “DİKKAT! KESİCİ ve DELİCİ TIBBİ ATIK” ibaresi taşıyan plastik veya aynı özelliklere sahip lamine kartondan yapılmış kutu veya konteynerler içinde toplanır. Bu biriktirme kapları, en fazla ¾ oranında doldurulur, ağızları kapatılır ve kırmızı plastik torbalara konur. Kesici-delici atık kapları dolduktan sonra kesinlikle sıkıştırılmaz, açılmaz, boşaltılmaz ve geri kazanılmaz. Tıbbi atık torbaları ve kesici-delici atık kapları ¾ oranında doldukları zaman derhal yenileri ile değiştirilirler. Yeni torba ve kapların kullanıma hazır olarak atığın kaynağında veya en yakınında bulundurulması sağlanır. Tehlikeli Atıklar (Madde 14) EK-2’de F grubu altında yer alan genotoksik atıklar, farmasötik atıklar, ağır metal içeren atıklar, kimyasal atıklar ve basınçlı kaplar diğer atıklardan ayrı olarak toplanırlar. Bu atıkların bertarafı Tehlikeli Atıkların Kontrolü Yönetmeliğine göre yapılır. Bu grupta yer alan kimyasal atıklar, toksik, korozif (pH<2 ve pH>12), yanıcı ve reaktif (su ile reaksiyon verebilen, şoklara hassas) özelliklerinin en az birine sahip olmaları durumunda tehlikeli atık olarak kabul edilirler. Bu özelliklerden hiçbirine sahip olmayan tehlikesiz kimyasal atıklardan katı olanlar evsel atıklar ile birlikte toplanırlar, sıvı olanlar ise kanalizasyon sistemi ile uzaklaştırılırlar. Ünitelerde oluşan röntgen banyo suları, Tehlikeli Atıkların Kontrolü Yönetmeliği hükümleri doğrultusunda geri kazanılır veya bertaraf edilirler. Tehlikeli atıklar kesinlikle kanalizasyon sistemine boşaltılmaz, doğrudan havaya verilmez, düşük sıcaklıklarda yakılmaz, evsel atıklarla karıştırılmaz ve depolanarak bertaraf edilmezler. Radyoaktif Atıklar (Madde 15) Radyoaktif atıklar hakkında bu Yönetmelik hükümleri uygulanmaz. Bu atıkların bertarafı Türkiye Atom Enerjisi Kurumu mevzuatı doğrultusunda yapılır. 2.3. Atıkların Kurum İçerisinde Taşınması Servis hemşireleri ve diğer klinik personeli, kırmızı renkli, atık torbalarının, dörtte üçü dolduktan sonra, iyi bir şekilde kapatıldığından emin olmalıdır. Hafif olan torbaların ağızları düğümlenmeli, daha ağır olanların ağızları plastik şeritler ile kapatılmalıdır. Kesici delici atıkların biriktirildiği kutular da kırmızı renkli atık torbalarına yerleştirilir. Bu atıkların üretildikleri noktalarda biriktirilmesine izin verilmez. Servislerde bu atıklar için ayrılmış olan yerde bulunan tekerlekli ağzı kapaklı konteynerlerde biriktirilen atıklar her gün, bu atıkların taşınmasında görevli olan personel tarafından hastanenin zemin veya bodrum katında, yönetmeliğe uygun şekilde inşa edilen geçici atık depolarına taşınırlar. Bu işlem için yük asansörleri kullanılabilir. Atıkların toplanmasından sorumlu olan çalışanların uyması gereken kurallar: Kişisel korunma önlemleri mutlaka alınmalıdır. Atıklar günlük toplanmalı ve belirlenen geçici atık depolama yerine taşınmalıdır. Tüm atık üretim noktalarında yeterli sayıda torba ve konteyner bulundurulmalıdır. 2.3.1. Kişisel Emniyet, Temizlik ve Dezenfeksiyon Enfekte atıkların biriktirilmesi ve taşınmasında kullanılan tekrar kullanılabilir özellikteki konteynerlerin her boşaltmadan sonra iyi bir şekilde yıkanması ve dezenfekte edilmesi zorunludur. Atıkların konteyner içerisine yerleştirilen torbalarda biriktirilmesi durumunda konteynerin gerekli olduğunda dezenfekte edilmesi yeterlidir. Dezenfeksiyon için başvurulabilecek yöntemler arasında aşağıdakiler sayılabilir: En az 85 oC’deki sıcak su ile minimum 15 saniye muamele En az üç dakika süre ile aşağıdaki kimyasallardan birisi kullanılarak iç yüzeylerin silinmesi veya kimyasalın içine daldırılması Hipoklorid çözeltisi (500 ppm serbest klor). Fenol çözeltisi (500 ppm aktif madde). Iodoform çözeltisi (100 ppm serbest iyod). Amonyum çözeltisi (400 ppm aktif madde). 2.3.2. Tıbbi Atıkların Ünite İçerisinde Taşınması (Madde 16) Tıbbi atık torbaları ünite içinde bu iş için eğitilmiş personel tarafından, tekerlekli, kapaklı, paslanmaz metal, plastik veya benzeri malzemeden yapılmış, yükleme-boşaltma esnasında torbaların hasarlanmasına veya delinmesine yol açabilecek keskin kenarları olmayan, yüklenmesi, boşaltılması, temizlenmesi ve dezenfeksiyonu kolay ve sadece bu iş için ayrılmış araçlar ile toplanır ve taşınırlar. Tıbbi atıkların ünite içinde taşınmasında kullanılan araçlar turuncu renkli olacak, üzerlerinde “Uluslararası Biyotehlike” amblemi ile “Dikkat! Tıbbi Atık” ibaresi bulunacaktır. Tıbbi atık torbaları ağızları sıkıca bağlanmış olarak ve sıkıştırılmadan atık taşıma araçlarına yüklenir, toplama ve taşıma işlemi sırasında el veya vücut ile temastan kaçınılır. Atık torbaları asla elde taşınmazlar. Taşıma işlemi sırasında atık bacaları ve yürüyen şeritler kullanılmaz. Tıbbi atıklar ile evsel nitelikli atıklar aynı araca yüklenmez ve taşınmazlar. Atık taşıma araçları her gün düzenli olarak temizlenir ve dezenfekte edilirler. Araçların içinde herhangi bir torbanın patlaması veya dökülmesi durumunda atıklar güvenli olarak boşaltılır ve taşıma aracı ivedilikle dezenfekte edilir. EK-1 c’de belirtilen ünitelerde az miktarlarda üretilen tıbbi atıklarda, diğer atıklardan ayrı olarak 13. maddede özellikleri belirtilen tıbbi atık torbaları ve kesici-delici atık kapları ile toplanırlar ve 22. maddede açıklandığı şekilde geçici olarak depolanırlar. Tıbbi atıkların ünite içinde taşınması ile görevlendirilen personelin, taşıma sırasında 26. maddede belirtilen şekilde özel nitelikli turuncu renkli elbise giymesi ve bu kıyafetlerin ilgili ünite tarafından karşılanması zorunludur. Ünite içinde uygulanan toplama programı ve atık taşıma araçlarının izleyeceği güzergah, hastaların tedavi olduğu yerler ile diğer temiz alanlardan, ziyaret, hastane personeli ve hasta trafiğinin yoğun olduğu bölgelerden mümkün olduğunca uzak olacak şekilde belirlenmelidir. 2.4. Atıkların Geçici Depolanması Personel tarafından ünitelerden toplanan atıklar sınıflarına göre ayrı depolarda depolanırlar. Kırmızı torbalarda toplanan atıkların depolanacağı mekanların Yönetmeliğin 19, 20 ve 21. maddelerinde belirtilen özelliklere sahip olması gerekmektedir. 2.4.1. Geçici Depolama (Madde 18) Yönetmeliğin ekinde (EK-1) yer alan ve en az 20 yatak kapasitesine sahip üniteler geçici atık deposu inşa etmekle, daha az yatağa sahip üniteler ise aynı işlevi görecek konteyner bulundurmakla yükümlüdürler (Şekil 4). Atıklar, bertaraf sahasına taşınmadan önce 48 saatten fazla olmamak üzere bu depolarda veya konteynerlerde bekletilebilir. Bekleme süresi, geçici atık deposu içindeki sıcaklığın 4 °C nin altında olması koşuluyla bir haftaya kadar uzatılabilir. Kırmızı torbaların depolanması Geçici atık deposu olarak konteyner kullanımı Mavi torbaların (genel atık) depolanması 2.4.2. Geçici Atık Deposu (Madde 19) Geçici atık deposunun özellikleri şunlardır: Geçici atık deposu iki bölmeli kapalı bir mekan olarak inşa edilir. Birinci bölmede tıbbi atıklar, ikinci bölmede ise evsel nitelikli atıklar depolanır. Geçici atık deposunun hacmi en az iki günlük atığı alabilecek boyutlarda olmalıdır. Deponun tabanı ve duvarları sağlam, geçirimsiz, mikroorganizma ve kir tutmayan, temizlenmesi ve dezenfeksiyonu kolay bir malzeme ile kaplanmalıdır. Depolarda yeterli bir aydınlatma ve pasif havalandırma sistemi bulunmalı ve sıcak bölgelerde depo özel olarak soğutulmalıdır. Depo kapıları dışarıya doğru açılmalı veya sürgülü olmalıdır. Kapılar daima temiz ve boyanmış durumda olmalıdır. Tıbbi atıkların konulduğu bölmenin kapısı turuncu renge boyanır, üzerinde görülebilecek şekilde ve siyah renkli “Uluslararası Biyotehlike” amblemi ile siyah harfler ile yazılmış “Dikkat! Tıbbi Atık” ibaresi bulunmalıdır. Depo kapıları kullanımları dışında daima kapalı ve kilitli tutulmalı, yetkili olmayan kişilerin girmelerine izin verilmemelidir. Depo ve kapıları, içeriye herhangi bir hayvan/haşarat girmeyecek şekilde inşa edilmelidir. Geçici atık depolarının içi ve kapıları görevli personelin rahatlıkla çalışabileceği, atıkların kolaylıkla boşaltılabileceği, depolanabileceği ve yüklenebileceği boyutlarda inşa edilmelidir. Geçici atık deposu, atık taşıma araçlarının kolaylıkla ulaşabileceği ve yanaşabileceği yerlerde ve şekilde inşa edilmelidir. Geçici atık deposu, hastane giriş ve çıkışı ve otopark gibi yoğun insan ve hasta trafiğinin olduğu yerler ile gıda depolama, hazırlama ve satış yerlerinin yakınlarına inşa edilmemelidir. Tıbbi atıkların konulduğu bölmenin temizliği ve dezenfeksiyonu kuru olarak yapılır. Bölme atıkların boşaltılmasını müteakiben temizlenip, dezenfekte edilmeli ve gerekirse ileçlanmalıdır. Tıbbi atık içeren bir torbanın yırtılması veya boşalması sonucu dökülen atıklar uygun ekipman ile toplandıktan, sıvı atıklar ise uygun emici malzeme ile yoğunlaştırıldıktan sonra tekrar kırmızı renkli plastik torbalara konulmalı ve kullanılan ekipman ile birlikte bölme derhal dezenfekte edilmelidir. Evsel nitelikli atıkların konulduğu bölmede kanalizasyona bağlı ızgaralı bir drenaj sistemi ve bölmenin kolaylıkla temizlenebilmesi için basınçlı bir su musluğu bulunur. Bölme atıkların boşaltılmasını müteakiben temizlenir, dezenfekte edilir ve ilaçlanır. Temizlik ekipmanı, koruyucu giysiler, atık torbaları ve konteynerler geçici atık depolarına yakın yerlerde depolanırlar. 2.4.3 Geçici Atık Depolarına Ruhsat Alınması (Madde 20) Geçici atık deposu kurmakla yükümlü olan ünitelere yapı ruhsatı vermeye; belediye ve mücavir alan sınırları içinde kalan ve büyükşehir belediyesi olan yerlerde büyükşehir belediye başkanlığı, diğer yerlerde belediye başkanlıkları, belediye ve mücavir alan sınırları dışında kalan yerlerde valilikler yetkilidir. 2.4.4. Konteynerlerin Geçici Atık Deposu Olarak Kullanılması (Madde 21) 20’den az yatağa sahip üniteler, geçici atık deposu olarak konteyner kullanmak zorundadırlar. Bu amaçla kullanılacak konteynerlerin aşağıdaki teknik özelliklere haiz olması zorunludur: Konteynerler ünitenin en az iki günlük tıbbi atığını alabilecek boyutta ve sayıda olmalıdır. Konteynerler, kullanıldıkları ünitenin bulunduğu parsel sınırları içinde; doğrudan güneş almayan; hastane giriş-çıkışı, otopark ve kaldırım gibi yoğun insan ve hasta trafiğinin olduğu yerler ile gıda depolama, hazırlama ve satış yerlerinden uzağa yerleştirilmelidir. Konteynerlerin iç yüzeyleri yükleme-boşaltma sırasında torbaların hasarlanmasına veya delinmesine yol açabilecek keskin kenarlar ve dik köşeler içermemelidir. Kesişen yüzeyler yumuşak dönüşlerle birbirine birleşmelidir. Konteynerlerin kapakları kullanımları dışında daima kapalı ve kilitli tutulmalı, yetkili olmayan kişilerin açmasına izin verilmemelidir. Kapaklar, konteynerin içine herhangi bir hayvan/haşarat girmeyecek şekilde dizayn ve inşa edilmelidir. Konteynerlerin dış yüzeyleri turuncu renge boyanmalı, üzerlerinde görülebilecek uygun büyüklükte ve siyah renkte “Uluslararası Biyotehlike” amblemi ile siyah harfler ile yazılmış “Dikkat! Tıbbi Atık” ibaresi bulunmalıdır. Konteynerler daima temiz ve boyanmış durumda olmalıdır. Konteynerler, atıkların boşaltılmasını müteakiben her gün veya herhangi bir kazadan hemen sonra temizlenmeli ve dezenfekte edilmelidir. EK-1’de belirtilen ve 20’den az yatağa sahip üniteler, istedikleri takdirde geçici atık deposu da inşa edebilirler. 2.4.5. Küçük Miktarlarda Üretilen Tıbbi Atıkların Geçici Depolanması (Madde 22) EK-1 c’de belirtilen ünitelerde oluşan ve tıbbi atık torbaları ile kesici-delici atık kapları ile toplanan tıbbi atıklar, teknik özellikleri 16. maddede belirtilen taşıma araçları ile en yakında bulunan geçici atık deposuna veya konteynerine götürülür. Böyle bir imkanın olmaması halinde üretilen tıbbi atıkların ilgili belediyenin tıbbi atık toplama ve taşıma aracı tarafından alınması sağlanır. Bu durumda tıbbi atıklar güvenli bir şekilde muhafaza edilir ve gerekirse ikinci bir tıbbi atık torbasının içine konulur. Atıklar, tıbbi atık toplama aracı gelmeden önce kesinlikle dışarıya bırakılmaz, evsel atıklar ile karıştırılmaz ve evsel atıkların toplandığı konteynerlere konulmaz. Bu sağlık kuruluşları, ilgili mercilerden çalışma izni almadan önce, atıklarının geçici depolanması konusunda en yakında bulunan geçici atık deposu veya konteynerin ait olduğu sağlık kuruluşu ya da atıklarının toplanması konusunda ilgi belediye ile anlaşma yapmak ve bu anlaşmayı valiliğe ibraz etmekle yükümlüdürler. 2.5. Atıkların Nihai Bertaraf Alanına Taşınması Sağlık kuruluşlarındaki geçici atık depolarında biriktirilen atıkların toplanması TAKY kapsamında yerel yönetimlerin sorumluluğuna verilmiştir. Bu atıklardan “kırmızı” torbalarda biriktirilmiş olanların nihai bertaraf alanına, Yönetmeliğin 25-28. maddelerinde belirtilen özelliklere sahip taşıtlar tarafından taşınması gerekmektedir (Şekil 5). Bu işlem sırasında 30. madde gereği düzenlenmesi gereken ve 20.05.1993 tarihli ilk Yönetmelikte verilmiş olan “Tıbbi Atık Alındı Belgesi/Makbuzu” Şekil 6’da görülmektedir. Şekil 5. Atık taşıma işlemi ve kullanılan araçlar 2.5.1. Tıbbi Atıkların Taşınması (Madde 25) Tıbbi atıkların geçici atık depoları ve konteynerler ile EK-1 c’de belirtilen diğer ünitelerden alınarak bertaraf tesisine taşınmasından Büyükşehirlerde Büyükşehir belediyeleri, diğer yerlerde ise belediyeler ile yetkilerini devrettiği kişi ve kuruluşlar sorumludur. Bu kurum ve kuruluşlar, tıbbi atıkların taşınması ile görevli personeli periyodik olarak eğitmek, sağlık kontrolünden geçirmek ve diğer koruyucu tedbirleri almakla yükümlüdürler. 2.5.2. Personelin Özel Giysileri (Madde 26) Tıbbi atıkları taşımakla görevlendirilen temizlik personeli çalışma sırasında eldiven, koruyucu gözlük, maske kullanmalı; çizme ve özel koruyucu turuncu renkli elbise giymelidir. Taşıma işleminde kullanılan özel giysi ve ekipmanlar ayrı bir yerde muhafaza edilmelidir. Bunların temizlenmesi belediyece veya belediyenin görevlendireceği kuruluşça yapılır. ATIK KAYNAĞI Atıkların kaynaklandığı ünitenin isim, adres ve telefonu Tarih Miktar Torba Sayısı Kg Dikkat Edilecek Hususlar Atıkların Özellikleri Depolama sırasında vuku bulan kazalar ve alınan önlemler ( ) Enfekte ( ) Toksik ( ) Delici – Yırtıcı ( ) Şoklara Karşı Hassas ( ) Su ile Reaksiyona Girer ( ) Kolaylıkla Reaksiyona Girer ( ) Radyoaktif Teslim Eden Teslim Alan B. TAŞIMA Taşımayı Yapan Kuruluşun İsim, Adres ve Telefonu Aracın Plakası: Aracın Marka ve Modeli: Aracın Atıklarını Taşıdığı Üniteler 1- 3- 2- 4- Taşıma Sırasında Vuku Bulan Kazalar ve Alınan Tedbirler: Atıkların Teslim Edildikleri İmha Sahası: Teslim Alan (İsim, ünvan) C. BERTARAF TESİSİ Bertaraf Sahasının Adı ve Yeri: Gömme ile uzaklaştırıldı ise gömüldüğü yer: Yakma ile uzaklaştırıldığı takdirde kül ve diğer kalıntıların uzaklaştırma yeri ve yöntemi Bertaraf Yöntemi: ( ) Gömme ( ) Yakma ( ) Diğer (açıklayın) Atıkların uzaklaştırılmadan önce tabi olduğu işlemler: Atığın Miktarı Torba Sayısı /kg Uzaklaştırma Tarihi Sorumlunun İsim ve ünvanı Belgenin belediyeye teslim edildiği tarih:…………………………………………. Belgeyi alan belediye yetkilisinin ismi:……………………………………………. 2.6. Kaza ve Yaralanma Anında Alınacak Önlemler Sağlık kuruluşlarında kaza ve yaralanma anında alınacak tedbirleri içeren ünite içi atık yönetim planının hazırlanması ve uygulanmasının temel amaçları: kaza ve yaralanmaları önlemek; hastalar, hasta yakınları, personel, ziyaretçiler ve hastaneyle etkileşim halinde olan kişiler için güvenli ortamlar sağlamak ve tehlike ve risklerin azaltılması ve kontrol altında tutulması için gerekli tedbirleri almaktır. Kaza anında alınacak tedbirleri içeren ünite içi “acil atık yönetim planı”nın hazırlanması sırasında aşağıdaki parametreler özellikle dikkate alınmalıdır: Tıbbi malzemelerin taşınması, depolanması ve kullanımına ilişkin hususlar, Tehlikeli malzeme ve atıkların envanteri, uygun şekilde etiketlenmesi, Dökülme, korunamama ve diğer kazaların denetimi ve raporlanması, Kullanım, dökülme ya da korunamama sırasında uygun koruyucu ekipman ve uygulanacak yöntemler/işlemler, İzin, ruhsat ya da diğer düzenleme ihtiyaçlarını içeren dokümantasyon. Bu amaçla, kaza ve yaralanma anında alınacak tedbirleri içeren, kurum yetkilileri tarafından gerçekleştirilmesi gereken temel işlemler aşağıda verilmiştir: Hastanede acil durumlarda görev alacak personelin görev, yetki ve sorumlulukları belirlenmelidir. Acil bir durumda ilgili personelin kime/nereye haber vereceği belirtilmelidir. Tıbbi atık içeren bir torbanın yırtılması veya boşalması sonucu dökülen atıklar uygun ekipman ile toplandıktan, sıvı atıklar ise uygun emici malzeme (talaş, vb.) ile yoğunlaştırıldıktan sonra tekrar kırmızı renkli plastik torbalara konulmalı ve kullanılan ekipman ile birlikte bölme derhal dezenfekte edilmelidir. Enfekte olmuş iğne vb. malzemelerden enfeksiyon kapma riski veya enfekte atıkların bulunduğu ortamlarda havayı teneffüs etme sonucu ortaya çıkabilecek sağlık problemlerine karşı tıbbi atıklardan sorumlu personel için acil ilkyardım planı hazırlanmalı, anında müdahele ile personelin sağlık kontrolü gerşekleştirilmelidir. Sağlık kuruluşları içinde “Enfeksiyon Kontrol ve Önleme Komitesi” kurulmalı ve bu komite tarafından enfeksiyon kontrol ve önleme programları gerçekleştirilmelidir. İşe yeni başlayan personelin işe ilk girişte konu ile ilgili olarak bilgilendirilmesi, kaza ve yaralanma anında alınacak tedbirler ile ilgili eğitim verilmesi gereklidir. Hastanenin enfeksiyon kontrol programına rehberlik eden talimatlara, süreçlere ve uygulamalara odaklı eğitimler hazırlanmalıdır. Hastane içi tıbbi atık yönetimi uygulamaları düzenli aralıklarla gerçekleştirilecek denetimler ile kontrol edilmelidir. İzleme faaliyetlerinden elde edilen bulgular değerlendirilmeli ve gerekli önlemler alınmalıdır. Periyodik denetlemeler yazılı olarak rapora dönüştürülmeli ve hazırlanan raporlar değerlendirilerek hastanede uzun vadeli iyileştirmeler gerçekleştirilmelidir. SONUÇ Sağlık kuruluşlarında Yönetmelik’te belirtilen kurallara uyulması ile gerek bu kuruluşlarda görev yapan sağlık personelinin ve gerekse toplumun belli risklere maruz kalması önlenecektir. Ayrıca oluşan atıkların doğru sınıflandırılarak ayrıştırılması sonucu gereksiz bertaraf masraflarından tasarruf edileceği gibi, geri kazanılabilecek maddelerden belli bir ekonomik kazanç elde edilmesi de mümkündür. Kaynak: www.ankaracevreorman.gov.tr

http://www.biyologlar.com/tibbi-atiklarin-yonetimi

Zeitgeist ve Biyoinformatik

Zamanın ruhu. Enteresan bir kavram. Bu kavramın biyoinformatikle olan ilişkisini anlatabilmek için bu konuyu iki ayrı yazıda ele alacağım. Geçen gün sıradışı bir belgesel izledim: "How Earth Made Us: Winds". Rüzgarların medeniyetleri nasıl şekillendirdiğini anlatıyordu. Birbirini bu kadar az çağrıştıran iki kavramın birbiriyle belki hiç bir şeyin olmadığı kadar içiçe olması çok şaşırtıcı geldi bana; ve bunu ancak bu yüzyılda keşfedebilmemiz de bir o kadar hayret verici. Belgeseli yarısında izlemeye başlamıştım ancak bahsedilen ilişki o kısa zaman diliminde beni çarpmaya yetti. Diyordu ki; dünyayı şekillendiren birkaç büyük hava akımı döngüsü var, ve bunların bazıları yıllık, bazıları on yıllık, ve bazıları 50 yıllık döngüler. Bu döngülerdeki değişim yağmurun dünya üzerindeki dağılımını sürekli değiştiriyor fakat bazıları o kadar uzun sürelerde etkili ki, insan ömrü bunları tespit ve takip edebilmek için yeterli gelmiyor. Bu nedenle de bazı motiflerin [pattern] tespiti bu yüzyıla gelinceye kadar mümkün değildi. Suyun miktarındaki değişim, özellikle de azalma o su kaynağına bağımlı olarak ortaya çıkan bir medeniyetin kaderini doğrudan etkiliyor. Hatta bu nedenle sırf kuraklıktan ötürü tamamen terkedilen yerleşim yerleri ve sona eren medeniyetler varmış; günümüzün temiz su şebekeli şehir yapısında bunu düşünebilmek çok zor geliyor. Ve bilim ancak bu günkü kadar gelişip de, birçok fiziksel etkinin arkasında yatan büyük resmi görmeye başladıkça bazı şeyler anlamlandırılabiliyor. Gelelim zamanın ruhuna. Deniyor ki, herhangi bir zaman diliminde tarihin nasıl şekilleneceği büyük oranda dış etkenlere bağlıdır, buna da zamanın ruhu denir. Bundan birkaç asır önce bir su kaynağına yakın olmadıkça bir medeniyet inşa etmek mümkün değilken, artık bir çöl dahi ehlileştirilebiliyor. Gerçi bu ehlileştirme teknolojisini de o çölün sakinleri değil, birçok açıdan kanlı bıçaklı oldukları bir ülke geliştiriyor. Tolstoy diyor ki, liderlik büyük ölçüde kişilerin değil, bulundukları zamanın bir ürünüdür. Dolayısıyla o zamanın şartları büyük ölçüde kimin lider olacağını empoze eder; bunu rüzgar ve medeniyet ilişkisi paralelinde düşünelim. Bu açılardan bakınca, aslında yaşadığımız zaman diliminde ortaya çıkan, önem kazanan, önem kaybeden, veya farkedilmeden yok olup giden kavramların/disiplinlerin aslında zamanın ruhu tarafından şekillendirildiğini farkedebiliyoruz. Diyebilirsiniz ki, bunu farketmek bu kadar da zor değil. Evet, insanın önüne hazır olarak konulduğunda fazlasıyla kolay, ancak zor olanın, bu yaklaşım gözlüğünü takarak dünyaya tekrar bakmak olduğunu düşünüyorum. Bu bakış açısının bize kattığı en büyük şey, geleceği öngörebilmek, veya farklı ve yeni bir kelimeyle, uzgörebilmek. Sonunda biyoinformatiğin zamanın ruhuyla olan ilişkisine gelebildik. Zamanın ruhunun son birkaç yüzyıldaki değişimi, standardizasyonun dünya üzerinde yaygınlaşmasını beraberinde getirdi. Bilim bu nedenle bu denli gelişti ve hızlandı, sanayi ve teknoloji de yine aynı şekilde bundan nasibini aldı. İçiçe geçen birçok şeyin arkasında, zamanın son dönemde hızlanması yatıyor aslında. Zamanın hızlanmasıyla da kitlesel alışkanlıklarımız bu hıza ayak uydurabilmek adına şekil değiştirmeye başladı. Yalnız perde arkasında şöyle bir durum var; bu değişim o kadar büyük ki, hayatı yeniden öğrenmek ve keşfetmek zorunda kalmaya başladık. Abarttığımı düşünüyorsanız cep telefonunuza bakın, bilgisayarınıza bakın, biraz daha geri gidip ulaşım dönüşümüne bakın, bilginin yayılımına bakın. Örneğin, bundan 20 sene önce herhangi bir bilgiye ilişkin ansiklopedi vardı, ve o ne derse oydu. Bu nedenle de güvenilir olduğunu düşündüğümüz kişiler tarafından yazılır ve kontrol edilirdi, yani bilginin güvenilirliği çoğu zaman büyük bir problem değildi. Ancak şimdi, herkes malumat veya bilgi üretebiliyor ve herkesin ulaşımına sunabiliyor; artık bilgiye ulaşmanın kendisinden öte bilginin güvenilirliğine ilişkin kaygılar ön plana çıktı ve bu nedenle daha önce yapılabilmesi mümkün olmayan bir proje dünyaya geldi: Wikipedia. Bilginin güvenilirliğine ilişkin bir otokontrol mekanizması kuruldu; bilgisayarlar bu kadar yaygınlaşmadan önce böyle bir şeyin mümkün olamayacağını rahatlıkla söyleyebiliriz.  

http://www.biyologlar.com/zeitgeist-ve-biyoinformatik

LÖKOSİT FORMÜLÜ (PERİFERİK YAYMA)

Gerekli Malzemeler:1-Mikroskop2-Lam3-Lamel4-Lanset, alkol, pamuk5-May-Grünwald, Wright veya Giemsa boyası6-Distile suYayma Preperatının Hazırlanması:a) Lam metodu:1- Lam, alkol ve sıcak su ile yıkanıp kurulanır. Temizlenen lam kirlenmemesi için kenarından tutulur.2- Kan alınacak parmak alkol ile temizlenerek, hafifçe sıkılır. Steril lansetle delinir. Kuru pamukla ilk damla silinir.3- Parmak aşağı doğru çevrilir. Lama değdirmeden mercimek tanesi büyüklüğünde kan damlası lamın bir kenarına alınır.4- İkinci bir lamın kısa kenarı kan damlasına 30⁰ açıyla değdirilir. Kan iki cam arasında ikinci lamın kenarı boyunca yayılana kadar beklenir.5- Üstteki lam ters yönde ve iki lam arası açı değiştirilmeden ileri doğru yavaş ve sabit bir hızla hareket ettirilir. Bu hareketin yavaş yapılması kanın ince yayılmasını sağlar.6- Lamın kenarına kan alınan kişinin adı yazılır ve havada kurutmaya bırakılır.Tekniğe uygun iyi bir yayma yapabilmek için aşağıdaki noktalara dikkat etmek gerekir. Aksi halde basit gibi görünen bu metoda başarı sağlanmaz.1. Yayılan kan damlası büyük ise yayma çok kalın olacaktır ve hücrelerin morfolojik incelemesi mümkün olmayacaktır.2. Kan damlası çok küçük ise yayma gereğinden fazla ince olacaktır.3. Lamları birbirine fazla sürterek yayma yapılmış ise hücreler bu travma ile parçalanır, yaymada fazla miktarda artefakta rastlanır.4. Lamın kenarı düz değil ise yayma esnasında lam üzerine iyice değmez. Alınan yayma yeterli değildir.5. Lamın yeterince temiz olmaması veya yayma esnasında üzerine pudra, su, toz, v.s. dökülmesi yaymanın bozulmasına sebep olur.6. Kan damlası lam üzerine alınır alınmaz yayma yapmalıdır. Gecikirse beyaz kürelerin dağılımı değişir. Büyük lökositler yaymanın ince kenarlarında toplanır. Eritrositlerde rulo teşekkülü, trombositlerin kümeleşmesi görülür.b) Lamel Metodu:1- Lamelin iki ucu başparmak ve işaret parmağı arasında tutulur.2- Küçük bir damla kan lamel üzerine damlatılır.,3- Diğer el ile ikinci bir lamelin iki ucu baş parmak ve işaret parmağı arasında tutulur.4- İkinci lamel birinci lamele temas ettirilir. Aşağıdaki şekilde görüldüğü gibi köşeler birbirine değmeyecek şekilde yerleştirilir. Kan damlası iki lamel arasında yayılır.5- Lameller birbiri üzerinden horizontal olarak kaydırılarak çekilir.6- Yayma yapılan yüzler, yukarıda tutulmasına dikkat edilerek lameller havada bir süre kurutulur ve boyamaya hazır hale gelir. Önemli noktalar:1- Parmak ucu veya topuktan kan alınırken cilt lamelle temas etmemelidir.2- Lamele kan alınır alınmaz ikinci lamelle derhal temas ettirilip yayma yapılmalıdır. Lamel üzerinde kanın 3-5 saniye beklemesi trombositlerin ve beyaz kürelerin kümeleşmesine, eritrositlerin rulo yapmasına neden olur.Yayma Preperatının Boyanması:a) Papenheim Metodu İle Boyama:1- Lam yayılmış tarafı üste gelecek şekilde bir küvetin veya cam kabın üzerine yerleştirilmiş iki çubuk üzerine konur.2- Lamın üzeri May-Grünwald boyasıyla örtülür. 3dk. Bekledikten sonra üzerine distile su eklenir. 5dk.sonra dökülerek bol distile suyla yıkanır.3- Giemsa boyası 1ml. suya 1damla şeklinde sulandırılarak preperat üzerine dökülür. 15dk. Sonra boya dökülerek bol distile suyla yıkanır.4- Preperatın altı musluk suyuyla yıkanır ve havada kurutulur.b) Wright Metodu İle Boyama1- Lamın üzerine bütün preperatı kaplayacak şekilde Wright boyası dökülür, 1 dk. bekletilir.2- Wright tampon çözeltisinden veya pH 6,7 olan sudan boyanın damlası kadar damlatılır. 3 dk. bekletilir.3- Karışım dökülür, tampon çözeltiyle yıkanır, havada kurutulur.Periferik Yaymanın İncelenmesi:Yayma incelenirken lamelin üzerine 1 damla sedir yağı damlatılır. İmmersiyon objektifinden incelenir. Preperatta her üç tip kan hücresi de incelenir.1- En çok görülen ve bütün alanı kaplayan hücreler eritrositlerdir. Bikonkav yapıları nedeniyle ortaları daha açık boyanır ve içi boş halkalar şeklinde görülürler. Çekirdekleri yoktur. Ancak ender olarak içinde çekirdek kalıntıları olan eritrositler (retikülosit) görülebilir. Eritrositler boya tutuşlarına göre Hipokrom, Hiperkrom veya normokrom olarak, hücre büyüklüklerine göre Makrosit, Normosit, Mikrosit olarak isimlendirilirler. Eritrositler normal olan bikonkav şekillerinden farklı şekillerde görülebilirler. Aldıkları şekle göre Elipsoid, Sferosit, olarak hücre isimlerini alırlar.Eritrosit yapım bozukluklarında eritrositler görülebilir. Periferik yayma ile eritrositlerin sayısı hesaplanamaz.2- Trombositler diğer hücrelerin arasında küme şeklinde görülür. Farklı sahalarda birkaç trombosit kümesinin görülmesi kabaca trombosit sayısının yeterli olduğunu gösterir. Periferik yaymada trombositler sayılmaz.3- Periferik yaymada incelenen esas hücreler lökositlerdir. Sayım yapılırken preperat yukarı doğru hareket ettirilirken alandaki lökosit tipleri kaydedilir. Alt köşeye ulaşınca preperat yana doğru hafifçe kaydırılacak şekilde oklarla gösterildiği gibi bütün preperat araştırılır. 100 hücre sayılarak hücre tipleri % olarak ifade edilir. Resim 1. Eritrositler A) Yaymanın kalın “baş” kısmında eritrositler üst üste binmiştir. B) Yaymanın eritrosit morfolojisinin incelenmesine uygun orta kısmı. Burada eritrositler tek tek ve birbirlerine değmeden yakın dururlar. Ortalarında hücrenin 1/3 ünü aşmayan soluk bir alan vardır. C) Uç “kuyruk” kısmında ise eritrositler yassılaşmışlardır. Merkezdeki soluk alan kaybolmuştur. Bu iki bölgede (A ve C) eritrosit morfolojisi hakkında sağlıklı bilgi elde edilemez.Şekil :lökosit formül preperatının taranması.Lökositler Granüllü ve Granülsüz Olmak Üzere İkiye Ayrılır:a) Granüllüler (Polinükleer Lökositler):1- Nötrofil (% 55-65)2- Eozinofil (%2-3)3- Bazofil (% 0.5-1)b) Agranülositler (Mononükleer Lökositler):1- Monosit (% 5-6)2- Lenfosit (%25-30)a)Granülositler: Çok çekirdekli (Polinükleer) görünümündedirler. Sitoplazmalarında kum tanesi gibi granüller bulunur. Granüllerin boyama özelliklerine göre gruplandırılır.1- Nötrofiller: Lökositlerin % 55-65’ini oluştururlar. 12-15 μm çapındadırlar. Nukleusları ince kromatin iplikleri ile bağlanan 3-5 lob (genellikle 3 lob) içerir. Sitoplazmalarında çok ince toz şeklinde granüleri bulunur. Bu çok ince granüller hem asit hem baz boyalarla boyandıkları için pembe-mavi homojen görünümdedirler.Resim 2. Nötrofil parçalılar (A B) Çekirdeklerindeki lob sayısı beşten az olan olgun nötrofil parçalılar. C) Çekirdekte henüz loblaşmanın başlamadığı nötrofil çomak evresi. Bu genç hücreler arttığında “sola kayma” dan söz edilir. D) Çekirdeği beşten fazla loblu (hipersegmente) parçalı. Çoğaldıklarında “sağa kayma” dan söz edilir. E) Sitoplazmada toksik granülasyon. F) Kadınlarda iki X kromozomuna tekabül eden davul tokmağı şeklindeki çekirdek çıkıntısı (Barr cisimciği).Bazı nötrofillerin nükleusları loblara ayrılmamıştır. “C” veya “S” şeklinde olabilirler. Bu hücreler nötrofillerin genç şekilleridir. Çomak veya Stab olarak isimlendirilirler. Çomakların oranı normalde %5’i geçmez.Nötrofil yapımı çok arttığı zaman genç hücrelerin oranı artar. Buna “Sola Kayma” denir.Sola kayma enfeksiyonun şiddeti hakkında fikir verir. Nükleus loblarının sayısının 5t’en fazla olmasına “hiper segmentasyon”denir. Bu durum genellikle yaşlı nötrofillerde görülür. Hiper segmentasyonun artmasına “sağa kayma” denir. Çok ağır enfeksiyonlarda aşırı lökositoz ile birlikte, ancak kemik iliğinde görülen hücrelerin de kanda görülmesine “lökomoid reaksiyon” denir.Kanda nötrofil sayısının artmasına nötrofili, azalmasına nötropeni denir.Nötrofili sebepleri:a) Fizyolojik sebepler:1 Egzersiz2 Sempatik aktivasyon.b) Patolojik Sebepler:1- Travmalar2- Kanamalar3- Tümörler (Özellikle Hodgkin Lenfoma)4- Enfeksiyonlar (Akut enfeksiyonlar, lokal enfeksiyonlar, sepsis)5- Yabancı protein girişi.6- Zehirlenmeler7- Operasyonlar8- Myokard enfarktüs9- Akciğer enfarktüsü10- Yanıklar11- Akut hemoliz sonrası12- Kolljen doku hastalıkları (SLE, PAN)13- Akut böbrek yetmezliği14- Myeloproliferatif hastalıklar15- Kortizon tedavisi16- Fulminan hepatit17- Eklampsi18- Diabetik asidoz19- Dehidratasyon2. Eozinofiller (=Asidofil Granulosit) : Lökositlerin %2-3’ünü oluştururlar. 12-15 μm çapındadırlar. Nükleusları genellikle 2-3 lobludur. Lobların duruş şeklinden dolayı çekirdekleri Heybe veya Gözlük şekline benzetilir. Sitoplazmaları iri kırmızı-pembe granüllerle doludur.Eozinofil sayısının artmasına Eozinofili denir.Resim 3. Eozinofil parçalılar. A, B, C) Normal eozinofillerde, çekirdek genellikle iki lobludur. Koyu portakal sarısı boyanan granüller çekirdeği örtmez. D, E, F) Bazofil parçalılar. Siyaha yakın koyu mavi boyanan bazofil granüller genellikle çekirdeği de örttüğünden çekirdek yapısı iyi seçilemez.Eozinofili nedenleri:1- Paraziter hastalıklar (barsak kurtları, kist hidatik, trişinozis.)2- Alerjik durumlar (ürtiker, bronşiyel astım, alerjik rinit, anaflaksi, anjiyonörotik ödem.)3- Deri hastalıkları (psoriazis, egzema)4- Malign tümörler (Hodgkin hastalığı, myeloproliferatif hastalıklar, splenektomi sonrası, ışın tedavisi sonrası)3. Bazofiller: Lökositlerin %0,5-1’ini oluştururlar. 14-16 μm çapındadırlar. Preperatlarda bulunmaları oldukça güçtür. İri granülleri yüzünden nükleusları zor görülür. Bazofil artışına Bazofili denir.b) Agranülositler: sitoplazmalarında granül yoktur. Çekirdekleri iri ve tek parçalıdır.1. Lenfositler: Lökositlerin % 25-30’unu oluşturur. Çapları 6-8 μm arasında olanlar küçük lenfositlerdir. Kanda az sayıda çapları 18 μm’ye ulaşabilen orta boy ve büyük boy lenfosit grupları bulunur.Nükleusları tek parça, yuvarlak, çok koyu mavi ve sitoplazmanın bir kenarına itilmiş durumdadır. Küçük lenfositlerin sitoplazmaları çok daha azdır. Çekirdeğin etrafında hilal şeklinde görülür. Artışına Lenfositoz denir. Lenfositoz sebepleri:1- Kronik enfeksiyonlar2- Viral enfeksiyonlar3- Lösemi4- Non Hodgkin Lenfoma5- Hipertiroidi6- Addison hastalığı7- Hipopitütiarizm 2. Monositler: lökositlerin %5-6’sını oluştururlar. Çaplan 12-20 um arasıdadır. Periferik kandakien büyük hücrelerdir Nükleusları kırmızı-mor renkte, yuvarlak, oval, badem veya fasulye şeklinde olabilir. Sitoplazmaları geniştir. Gri-mavi veya pembe mor renkli olabilir. Monositler çevre kanının en büyük hücreleridir (15 – 22 μm). Çekirdek çeşitli şekillerde (yuvarlak, oval, böbrek, at nalı şeklinde ya da loblu) olabilir. Çekirdek kromatini gevşek bir yapıya sahiptir. Gevşek bırakılmış bir yün çilesine benzetilir. Açık mavi ya da kül renginde boyanan sitoplazmada - özellikle EDTA’lı kandan hazırlanan yaymalarda - vaküollere sık rastlanır. Sitoplazmada ince azürofil granüller bulunabilir. Monositoz sebepleri: 1- Kronik bakteriyel enfeksiyonlar (tüberküloz, bruselloz, subakut bakteriyel endokardit) 2- Akut enfeksiyonların nekahat dönemi. 3- Sıtma 4- Kala azar 5- Tifüs 6- Hodgkin hastalığı 7- Ulserotif kolit 8- Regional Enterit (Crohn Hastalığı) 9- Kollogen doku hastalıklan 10- Lösemi   KONU İLE İLGİLİ PDF DOSYASINI BURADAN İNDİREBİLİRSİNİZ. KAYNAK: www.labderoda.org

http://www.biyologlar.com/lokosit-formulu-periferik-yayma

T-Testi ve Guinness Biraları

Hipotez testlerinde sıklıkla kullanılan t-testinin keşfinin aslında ilginç bir öyküsü var. 1900'lü yılların başında Guinness bira fabrikası kaliteli bira üretimini arttırarak diğer üreticilerden farklılaşmak istiyordu. Guinness bira fabrikasında kimyager olarak çalışan William Gosset de bu yüzden biranın tadını geliştirmeye çalışıyordu. Şimdiye kadar üretilen biralarla kendi geliştirdiği biralar arasındaki kaliteyi ölçmek için örnekler aldı. Kimyasal analizler yaptıktan sonra örnek aldığı biraların kıvamlarını karşılaştırdı. O zamanlar örneklemler üzerinden karşılaştıracak uygun bir istatistik testi bulunmadığı için kendisi küçük örneklemler için kullanılacak bir test geliştirdi. Gosset daha sonra bulduğu bu testi yayınlamak istedi fakat Guinness diğer bira üreticilerinde bu testin kullanılacağı düşüncesiyle karşı çıktı (O günün şartıyla düşünürsek Guinness adı altında geliştirdiği için telif hakkı Guinness’a aitti diyebiliriz). Sonunda Guinness ve Gosset, makalenin Gosset’in takma adı altında yayınlaması koşuluyla, anlaştılar ve “Student” takma adıyla test yayınladı (Böylece t-testinin bira üretiminin kalite kontrolünde kullanıldığı saklanmış oldu). Bu sebeple t-testi, Student’s t testi olarak da bilinir. T-testi adını “student” kelimesinin son harfinden almaktadır. T dağılımdan yararlanılarak hesaplanır. Anakütlenin normal dağılımdan geldiği şartı altında ve 30’dan küçük gözlemlerde kullanılır. Gosset’in makalesinde, eğer örnek aldığımız kütle normal dağılıyorsa t istatistiğinin örneklem dağılımının normal dağılıma benzeyeceği söylenilmektedir. T-testi tek örnekleme ilişkin ortalamanın testinde ya da iki grup arasında farkın olup olmadığı gibi durumlar incelenmek istendiğinde kullanılır. Biyoinformatikte ise genellikle ikinci dediğim durumla karşılaşılır. Örneğin bir hastalık için belirli bir genin, gen ifade düzeylerinin, hasta ile sağlıklı kişiler arasında ifade düzeylerinin anlamlı bir fark olup olmadığı incelenmek istendiğinde kullanılabilir. Başka amaçlarla, gen seçiminde ya da boyut azaltmak ( anlamsız değişkenleri elemek ) için de kullanılabilir. T ve z testleri (Gauss) birbirine çok benzer. Anakütleye ait parametrelerin bilindiği durumlarda kullanılır fakat gerçek hayatta anakütleye ait parametrelerin bilinmesi çok nadir olduğu için örneklemin 30’dan büyük olduğu durumlarda örnekleme ait istatistikler kullanılabilir. Uygulamalarda göstermektedir ki gözlem sayısı 30’u aştığında örneklem istatistikleri anakütle parametre değerlerine oldukça yaklaşmaktadır. T-testi bir düzeltme terimine sahip olduğu için de örneklemin az olduğu durumlarda kullanılır. Fakat değişkenliği z-testine göre daha geniş olduğu unutulmamalıdır. T-testinin bazı varsayımları sağlanmadığında alternatif testleri de mevcuttur. Onlardan da ilerideki yazılarımda bahsedeceğim.

http://www.biyologlar.com/t-testi-ve-guinness-biralari

BİTKİ GENETİK KAYNAKLARININ TOPLANMASI

Dr. Ayfer TAN Dr. Tuncer TAŞKIN Uzm. Abdullah İNAL Bitki genetik kaynakları, çevresel ve diğer baskılarla genetik erozyona uğramaktadır. Bitki genetik kaynaklarındaki çeşitliliğin saptanması, toplanması ve korunması, bitkisel çeşitliliğin sürdürülebilirliği bakımından son derece önemlidir. Genetik çeşitlilik türlerin yerel çeşitlerinin, yabani akrabalarının ve geçit formlarının birlikte bulunduğu yerlerde yoğunlaşmıştır. Türler kendi içlerinde milyonlarca genotip içerir. Toplanan örnekler toplam varyasyonun çok küçük bir modelidir. Bu nedenle, bitki genetik kaynaklarının korunmasında en geniş varyasyonu temsil edecek örneklerin toplanması önemlidir. Bitki genetik kaynakları materyali tohumla ve vejetatif çoğaltılan türleri içerdiğinden toplama prensipleri farklı olacaktır. Toplamanın amacına göre ekipte genetik bilgi birikimine sahip botanikçi, ıslahçı, agronomist, ekolojist ve taksonomistin bulunması gerekebilir. Ekip en az iki uzman kişiden oluşmalıdır. Başarılı bir toplama yapmak için iyi bir planlama, yörenin özellikleri ve hedef türler hakkında bilgi toplamak gerekir. Gerekirse hedef yöre ve türler için daha detay bilgi edinebilmek için bir sörvey programı (inceleme gezisi) düzenlenmelidir. Toplama programında zamanlama önemlidir. Böylece aşağıdaki yararlar sağlanabilir: -Uygun süre içinde en geniş genetik varyasyon toplanabilir. -Hedef türlerin olgunluk zamanları yakalanabilir. -Aynı yörede pek çok duraktan örnek toplanabilir. -Tarlalarda veya tarla kenarlarında geçit formları gözlenebilir. -Hedef türlerin yakın akrabaları gözlenebilir. -Toprak, iklim, yükseklik ve kültürel uygulamalardaki varyasyon yakalanabilir. Gerekli Ekipman Toplama programı süresince kullanılması gerekli ekipman; toplanacak materyal, iklim, yöresel koşullar, seyahat biçimi gibi etkenlerle çok yakından ilişkilidir. Toplama ekipmanı: Bitki türüne göre değişik ölçülerde bez torba, naylon torba, tohum örneklerinin konulacağı sağlam kağıt zarflar, tohum paketlerinin konulacağı kutu veya çantalar, çakı, çapa, çepin, küçük el küreği, şaşula, not defteri, kalem, silgi, kalemtraş, lastik bant, ataç, ip, tel zımba, yapıştırıcı bant, etiket, makas, el çantası, herbaryum presi, kurutma kağıdı, gazete kağıtları. Bilimsel ekipman: Altimetre, GPS, kompas, pusula, padometre, klinometre, digital fotoğraf makinesi, fon için beyaz bez, higrometre, lup, maximum-minimum termometre, harita, pH indikatör kağıtları, flora kitapları ve monograflar. Ulaşım ekipmanı: Arazi aracı, arazi koşullarına uygun giyim (tercihen çok cepli tişört gömlek ve pantolonlar, yağmurluk, şapka, güneş gözlüğü, bot vb.). Genel İlkeler Toplama stratejisinin belirlenmesinde materyalin yabani ve geçit formu, ıslah edilmemiş çeşit/primitif kültür formu, yerel çeşit/ yerel tipler olacağı hususu göz önünde bulundurulmalıdır. Bitki genetik kaynakları materyali dört değişik kaynaktan (habitat) toplanabilir: -Dağlar, vadiler, nehir yatakları, deniz kıyıları ormanlar gibi doğal alanlar, -Kültür tarlaları, tarla kenarları, -Kapama bahçeler ve ev bahçeleri, -Üretici ambarları, yerel köy dükkanları, pazarlar, aktarlar, tohumcular. Örnekleme stratejisi: Bitki genetik kaynakları materyalinin toplanmasında iki farklı örnekleme yöntemi uygulanabilmektedir: Rastgele (random) örnekleme: Genelde rastgele örnekleme yöntemi kullanılır. Örneğin bulunduğu alanda ön yargısız olarak, tüm alanı temsil edebilecek ve geniş varyasyonu içerecek şekilde örnek (tohum, soğan , rizom, yumru, çelik, aşı gözü gibi) alınmalıdır. Kültür, yabani ve geçit formları için kullanılan bu yöntem, az zamanda geniş bir alandan örnek alabilmek ve toplayıcının tüm alanı görmesini sağlaması açısından avantajlıdır. Ön yargılı (biased) örnekleme: Bu yöntemde fenotipik özellikler göz önüne alınarak örnekleme yapılır. Fenotipik durum her zaman genotipik farklılığı göstermediği için ön yargılı örneklemeden dolayı bazı genotiplerin örnek içinde yer alması güçleşebilir. Bir populasyon örneğinin bulunduğu ve ekolojik özelliklerinin kayıt edildiği yere durak adı verilir. Örneklemede, bir duraktan alınacak bitki sayısı, durak sayısı ve durakların toplama bölgesindeki dağılımı konuları ayrı bir öneme sahiptir. Genellikle genetik varyasyonun yüksek olduğu yabani türler ve geçit formları toplanırken bir duraktan toplanacak örnek sayısının belirlenmesinde duraktaki maksimum varyasyonun sağlanmasına dikkat edilmelidir. Bu nedenle etkin populasyon büyüklüğünün dikkate alınması gereklidir. Türlerin toplanmasında durak sayısını doğru belirleme açısından toplayıcı, hedeflediği toplama alanının tümünü örnekleyebilecek vejetasyon bilgisine sahip olmalıdır. Eğer yabani türlerin ve geçit formlarının toplanması hedefleniyorsa durak sayısı populasyonun büyüklüğü ve vejetasyonun değişmesine bağlı olarak yapılmalıdır. Toplama durakları hedeflenen bölge içerisinde uygun olarak dağıtılmalıdır. Bu konuda iki farklı yöntem uygulanabilir: -Durakların hedeflenen bölgedeki dağılımı homojendir (tek yıllık kültür formları için daha uygundur), -Durakların beşerli gruplar halinde olmak üzere hedeflenen bölgeye dağılımı homojendir (yabani ve geçit türleri için daha uygundur). Toplanan örneklerin sağlıklı ve hasar görmemiş olması gerekir. Tohumlu Bitkilerin Toplanması Tohumlu bitkilerin toplanmasında genel ilkeler uygulanmakta yabani ve kültür formlarına has hususlar dikkate alınmalıdır. Yabani türler ve geçit formları: Yabani türler doğal habitatlardan, yabani karakterli geçit formları ise tarla içleri ve kenarları gibi ikincil habitatlardan toplanırlar. Yabani ve geçit türlerinde türler içi ve türler arası doğal melezleme olabileceği göz önüne alınmalıdır. Bu nedenle populasyonlardaki varyasyonu temsil edebilecek olası genotipleri yakalayabilecek yeterli örneğin alınabilmesini sağlamak amacıyla örneklenen bitki sayısı daha fazla olmalıdır. Durakta tek veya birkaç bitki görülmesi halinde bu durum kaydedilmeli, bu bitkilerden tohum alınmamalıdır. Durak sayısı populasyonun büyüklüğü ve vejetasyonun değişmesine bağlı olarak değişir. Kültür formları: Toplama alanları tarlalar, bahçeler üretici ambarları, yerel köy dükkanları ve pazarlar, aktarlar, tohumcular olabilir. Tek yıllık kültür formlarında, eğer üreticiler farklı tohum kaynağı kullanıyorlarsa hepsinden ayrı örnekler, aynı kaynaklı tohum kullanıyorlarsa örneklerin karışımı ile oluşturulan tek bir örnek alınmalıdır. Ayrıca farklı isimlere sahip yerel çeşitlerin toplanması sırasında bu yerel çeşitlere ait bilgi alarak örnekleme yapmak gerekir. Yerel çeşit ve primitif çeşitlerin toplanmasında da durak sayısı önemlidir. Tek yıllık bitkilerde üreticiler kendi tohumlarını kullanıyorlarsa her tarla veya her çiftlikte bir durak yapılmalıdır. Gerek yabani gerekse kültür formlarında toplayıcının bitkisini iyi tanımasını gerekir. Tohumlar meyve içerisinde ise örnekler meyve olarak (olgun ve iri meyveler) alınır, gazete kağıtlarına veya bez torbalara sarılır ve tohumlar daha sonra meyve etinden ayrılır. Meyvelerin tohumunu çıkarmada en uygun yol, meyvenin parçalanarak bir süzgeç içinde yıkanması ve süzülerek tohumların kurutma kağıdı ya da gazete kağıdı üzerine serilerek gölgede kurutulmasıdır. Alınacak meyve sayısı da meyvelerin içerdiği tohum sayısına göre değişir. Gen bankasında uzun süreli muhafaza prensipleri doğrultusunda örnekteki tohum sayısı yabancı döllenen bitkilerde 10000-12000, kendine döllenen bitkilerde ise 8000 olmalıdır. Bu nedenle üretim ve yenileme gerekiyor ise hemen programa alınmalıdır. Vejetatif Üretilen Bitkilerin Toplanması Vejetatif üretime kolaylıkla tepki vermeyen türlerde tohum toplanmalıdır. Ancak vejetatif üretilen materyalde de tohum toplanabilir. Bu durumda tohumla üretilen bitki türlerine ait toplama prensipleri uygulanmalıdır. Tohum meyve türlerinden toplanıyorsa ve çevrede bu tür ile gen alışverişi yapabilecek türler varsa bunlarla ilgili bilgiler dikkate alınmalıdır. Bazı durumlarda sörveyler sırasında da meyve tipleri hakkında ön bilgi edinebilmek amacıyla meyve toplanarak bunların tohumları da değerlendirilebilir. Genelde muhafaza amaçlı tohum toplanması, orman ağaçları, ağaççıkları ve çalı formlu bitkiler ile tohum veren soğanlı, rizomlu ve yumrulu bitkiler ile sınırlıdır. Vejetatif materyalin korunabilmesi için, bitki türüne de bağlı olarak, birçok değişik çoğaltım metodu vardır. Bu nedenle çoğaltım tekniğine ve toplanacak bitki türüne bağlı olarak farklı vejetatif materyal (çelik, aşı gözü, aşı kalemi, soğan, yumru, rizom, sürgünler, köklerdeki piçler gibi) toplanır. Toplanan vejetatif materyal uygun bir koruyucu malzemeye sarılarak buz kutusu içerisinde nemli ve soğuk ortamda korunabilir veya zaman kaybetmeden çoğaltılacak şekilde korumanın yapılacağı kuruluşa yollanır. Vejetatif üretilen türlerin kültür formlarında (yerel meyve tipleri, eski ev bahçelerinde halen ekilmekte olan süs bitkileri vb.) ve yabani türlerinde (meyve, süs bitkisi, tıbbi ve kokulu bitki türleri vb.) genel toplama ilkeleri dikkate alınmalıdır. Endemik ve tehdit altında olan türlerde toplama sırasında yerinde kayıplara sebebiyet vermeyecek önlemler alınmalıdır. Yerel tiplerin toplanması sırasında, toplama yöresindeki bir köyde yerel tipin tohumdan yetiştirildiği saptanmış ise o tip için tüm köy tek bir durak kabul edilerek rastgele örnekleme yapılmalıdır. Eğer ağaçların, özel olarak seçilmiş geleneksel tiplerden klonal olarak üretildiği belirlenmişse köydeki her bir farklı tipin toplanması ve her birinin ayrı bir örnek olarak korunması gerekir. Toplama Sırasında Tutulacak Kayıtlar Toplama sırasında gerek tohumlu bitkiler ve gerekse vejetatif üretilen bitkilerde toplanan türler, toplama ve pasaport bilgileri ile toplama yöresi ile ilgili bilgilerin standart olması iyi bir veri tabanı yönetimi için gereklidir. Bu nedenle veriler standart toplama formlarına dikkatli bir şekilde kaydedilmelidir. Kayıtlarda özetle aşağıdaki bilgiler yer almalıdır: -Toplama numarası (toplama ekibi, toplama tarihi, durak numarası, duraktaki örnek numarası), -Habitat ve kaynağı, -Bitkinin botanik adı (cins, tür, alt tür gibi) ve yöresel adı, -Yöre (il, ilçe, köy, yön, vb.), -Koordinatlar (enlem, boylam ve yükseklik), -Materyal tipi (tohum, vejetatif) ve durumu (yabani, geçit veya kültür formu), -Populasyonun yöredeki büyüklüğü, -Topografya bilgileri (toprak, arazinin durumu vb.), -Birlikte bulunduğu diğer türler, -Tanımlayıcı notlar (Bitki ve yöreye ait ek notlar). Muhafaza Öncesi İşlemler Toplanan materyal ivedilikle muhafazaya alınacak şekilde muhafaza öncesi işleme tabi tutulmalıdır. Bunların başında kayıt işlemi gelmektedir. Materyal tohum örneği ise ivedilikle temizlenmelidir. Miktarı kontrol edilmeli ve üretilmesi gerekiyorsa üretim programına dahil edilmeli ve bu örnekler toplama numarası ile geçici kayda alınmalıdır. Üretimi gerekmeyen örnekler Gen Bankasında muhafazaya alınmak üzere esas kayda alınmalı (ülke kodu ve ardışık numara, TR 35444 gibi) ve tüm toplama bilgileri veri tabanına yüklenmek üzere elektronik ortamda ve standart formlarda Dokümantasyon Birimine iletilmelidir. Vejetatif materyal ise çoğaltılıp, bitkinin gelişimini tamamlayarak muhafaza parsellerine geçirilecek duruma gelene dek (fidan, olgun ve adapte olmuş sağlıklı bitki) toplama numarası ile geçici kayda alınır. Muhafaza parsellerine aktarılan ve oraya adapte olan sağlıklı örnekler ise esas kayda alınmalıdır. Muhafaza parsellerindeki örnekler ile ilgili Vejetatif Materyal İzleme Raporu hazırlanarak muhafaza bilgileri güncelleştirilmelidir. Kaynak: www.etae.gov.tr

http://www.biyologlar.com/bitki-genetik-kaynaklarinin-toplanmasi

SU EKOSİSTEMLERİNİN DOĞAL SİSTEMLERİN İŞLEYİŞİNE ETKİSİ

Su ekosistemleri ikiye ayrılır: 1) Karasal (Göl ekosistemleri, Nehir ekosistemleri, Bataklık ekosistemleri) Göl Nehir Bataklık 2) Denizel (Okyanus ekosistemleri, Deniz ekosistemleri) Su ekosistemlerini kara ekosistemlerindeki gibi, coğrafi sınırlarla belirlemek çok zordur. Çünkü sular, atmosferik olaylardan, karaların etkilendiği oranda etkilenmemektedirler. Ancak, deniz, tatlı su ve haliç gibi su havzalarının derinlikleri ve bileşimlerindeki farklı maddeler nedeniyle, sularda da farklı canlı bölgelerinden söz edilebilir. Buradan hareketle, su biyomları; deniz biyomları (tuzlu su) ve tatlı su biyomları olmak üzere, iki başlık altında incelenebilir. DENİZ BİYOMLARI Denizlerdeki tür topluluklarının dağılımında en önemli etken derinliktir. Neiritik alan diye adlandırılan, 200 m derinliğe kadar olan deniz ortamı, tür topluluklarının en zengin oldukları bölgeyi oluşturmaktadır. Neiritik alanların, akarsularla beslenmesi, güneş ışınını fazla almaları, oksijen ve birçok çözünmüş maddenin fazla olması nedeniyle, deniz canlılarının en çok yoğunlaştığı bölgelerdir. Neiritik alan deniz canlılarının % 90’ını barındırmaktadır. Daha derin sahalara ise güneş ışınları daha az ulaştığı ve besin maddeleri az olduğu için canlı türleri çok azalmaktadır. Bu bölgelerdeki canlılar, daha üst tabakalardan inen besinlerle beslenmektedir. NOT:Deniz ve okyanuslar doğada ısının dağılmasında ve atmosferde tuz dağılımında son derece önemlidir.Bu tuz kristalcikleri yoğuşma olayında son derece önemlidir.Aerosol denilen bu parcacıklar bulut oluşumuna yardımcı olur…

http://www.biyologlar.com/su-ekosistemlerinin-dogal-sistemlerin-isleyisine-etkisi-1

Likenler

Likenler ya da Lichenes; başlı başına birer organizma değildirler. Mantarlar ve fotosentetik alglerden meydana gelen simbiyotik birlikteliklerdir. Şekil ve yaşayış bakımından kendilerini oluşturan alg ve mantarlardan tamamen ayrı bir yapı gösterirler. Renksiz bir mantar hifinden oluşan tallusun yapısına katılan fotosentetik canlı (fotobiyont), genellikle yeşil alg ya da bir siyanobakteridir; fakat bazı sarı-yeşil alglerden ve kahverengi alglerden de oluştukları bilinir. En çok Cyanophyta ve Chlorophyta'ya ait cinsler ve Xanthophyta ve Phaeophyta'dan bazı alg türleri görülür. Mantarlarda ise genellikle Ascomycetes ve az olarak Basidiomycetes'e ait cinsler görülür. Alg ve mantarın birbirleri ile birleşmeleri farklı şekillerde olabilir. Eğer alg ve mantar dağılımı homojen tek bir tabaka şekildeyse bu likenler; "Homeomerik liken", heterojen bir dağılım ve farklı tabakalar varsa "Heteromerik liken" olarak isimlendirilirler. Homeomerik likenlerde, alg ve mantar ayrı bir katman oluşturmadan birleşir, tallus jelatini andıran müsilajımsı yapıdadır. Heteromerik likenlerde, üst kabuk katmanı (korteks) ile orta kısım arasında algler bulunur, diğer kısımlar sıkı ya da gevşek dizilmiş mantar hiflerinden oluşur. Çoğu liken bu grupta yer alır. Likenler, birçok yerde bulunabilen organizmalardır. Morfolojilerine veya dış görünüşlerine göre göre; Kabuksu likenler, genellikle kayalar üzerinde gelişen likenlerdir. Tallus kabuk biçimindedir. Kayaları eritebilen enzimleri bulunabilir, bu yüzden "Endolitik likenler" de denirler. Yapraksı likenler, tallusları loblar halinde olan ve genellikle rozetler oluşturan likenlerdir. Dalsı likenler, ağaçlar bazen de kayalar üzerinde gelişen, oldukça büyük talluslu, sık dallanma gösteren likenlerdir.   Likenler Tabiatta bazı kayaların, toprakların ağaç gövde ve dallarının üzerinde yaşayan yosunlara benzeyen, köksüz, gövdesiz ve yapraksız bitkiler, Likenler bir kısım mantarlarla bazı su yosunlarının beraberce bir bütün halinde ortak yaşadığı bitkilerdir. Bu iki ayrı çeşit bitki kendine benzemeyen tamamen farklı bir organizma meydana getirirler. Herhangi birisi olmasa liken meydana gelemez. Liken, su yosunları (alg) vasıtasiyle özümleme yapar. Mantarlar da iplikleri ile suyu temin eder ve likeni bulunduğu yere tesbit eder. Likenler, zengin bir bitki grubudur. Dünyanın hemen her bölgesinde yayılmış olarak çeşitli yetişme yerlerinde yaşarlar. Kutuplardan Ekvatora, deniz kıyısından, ovalardan dağların en yüksek yerlerine kadar hemen hemen her yerde, diğer organizmaların yaşayamayacağı yetişme yerlerinde yetişebilirler. Kızgın güneş altında (70°C) sıcağa ve çok düşük dereceli soğuğa, haftalarca süren kuraklığa dayanabilirler, dünya üzerinde de 20.000 kadar türü bulunmaktadır. Likenlerin besin maddelerine olan ihtiyaçları azdır. Yalnız havası temiz olan yerlerde yaşayabilirler. Kirli havaya karşı çok duyarlılık gösterirler. Bunun için likenler, bir bölgenin havasının temiz olup olmadığını belirten iyi bir göstericidir. Likenlerin yapısının büyük kısmını mantar iplikleri meydana getirir. Çoğunlukla likenin üst ve alt kısmında mantar ipliklerinden meydana gelen sıkı bir kabuk tabakası, orta kısmında ise daha gevşek bir örgü dokusu bulunur. Üst kabuk tabakasının altında suyosunları yer alır. Likenin eşeysiz üremesini suyosunları sağlar. Eşeyli üremeyi ise sadece mantar sağlar. Likenler çok yavaş büyürler. El büyüklüğünde bir liken, ekseriya 50 yılda meydana gelir. Çalımsı likenlerin birkaç cm yükselebilmesi ise ancak 100-200 yılda olabilir.” Likenler, şekillerine göre üç grupta toplanabilir. 1. Kabuksu likenler: Liken tamamen ağaç kabuğuna veya kayalara tutunmuş olup, kabuk şeklinde, yassı ve sıkı bir örtü meydana getirirler. Mesela; lecanora, lecidea, rhizocarpon (harita likeni) likenleri gibi. 2. Yapraksı likenler: Liken şerit veya levha şeklinde küçük veya büyük dilimli yaprak şeklindedir. Mesela, İslanda likeni (cetraria) gibi. 3. Çalımsı likenler: İnce şerit şeklinde ve iplik şeklinde dallanmış olup, bir çalıyı andırarak ya dik olarak veya ağaçlardan aşağı doğru sarkan likenlerdir. Mesela; sakal likeni (Usnea), kadeh likeni (Cladonia) gibi. Memleketimizde yetişen önemli likenler şunlardır: Harita likeni: (Rhizocarpon geographicum): Kayalar üzerinde yaşayan sarımsı-yeşil renkte kabuklu likenlerdir. Parmelia furfuraceae: Ağaçlar üzerinde yaşayan grimsi-siyah likenlerdir. Evernia prunastri: Çok yaygındır. Meşe, kayın, gürgen, kavak ve karaağaç üzerinde yaşayan sarımsı-yeşil renkli likenlerdir. Sakal likeni (Usnea barbata): Çam, köknar, kayın ağacı dallarından sarkan çalımsı likenlerdir. Ciğer likeni (lobaria pulmonaria): Yaprak şeklinde, derimsi, yeşilimsi gri likenlerdir. Kadeh likeni (Cladonia pyxidata): Orman kenarlarındaki güneşli yerlerde ve kireçli topraklarda yaşayan grimsi-yeşil kadeh şeklindeki likenlerdir. Likenlerin kullanılışı: Likenler çok eskiden beri tıpta kullanılmıştır. Ancak bu kullanma ilmi esaslara göre değil de o zamanki kurala göre, benzetildiği hasta organının tedavisinde kullanılırdı. Mesela sakal likeni saç çıkarmada, ciğer likeni akciğer hastalıklarında kullanılmıştır. Likenler, antibiyotik etkileri incelenmekte olan bitkilerdir. Bugün likenlerden elde edilen 60 kadar antibiyotik vardır. Bu etkisinin de, taşıdıkları liken asitlerinden ileri geldiği düşünülmektedir. Antibiyotik maddeler çoğunlukla, cladonia, evernia, cetaria, usnea romalina cinsi türlerinden elde edilen usnik asit, vulpinik asit, evernin asidi, önemli antibiyotik asitlerdir. Usnik asit, evernin asidi ve liken yağ asitlerinin karışımından Evosin elde edilir ki bunun kuvvetli bir antibiyotik etkisi vardır. Gram (+) kokuslara karşı etkilidir. Usnik asidin sodyum tuzunun da staphylococcus, streptococcus ve mycobacteriuma karşı kuvvetli bir antibiyotik etkisi vardır. İki liken türü, lethraria vulpina ve cetraira pinastri zehirlidir. İskandinav ülkelerinde kurtları zehirlemek için kullanılır. Bu iki liken türünden başka hiçbir liken zehirli değildir. Yalnız çoğu, ihtiva ettikleri asitlerden dolayı barsak bozukluklarına sebep olur. Tabiatta likenlerin büyük kısmı, hayvanların besinlerini sağlar. Kuzey ülkelerinde ren geyikleri, kar altında cladonia alpestris likenini tercih ederek ararlar. Ayrıca Arktik ve Subarktik kuzey bölgelerinde bulunan İslanda likeni (Cetraria islandica), yabani mandaların, domuzların önemli yem bitkisidir. Kuzey bölgelerinde yerli halk, evcil hayvanları için bol miktarda liken toplarlar. Liken, insanlar için de yiyecek maddesi olarak kullanılır. İki kg liken unu, 1 kg buğday ununa eşittir. Orta doğunun kurak bölgelerinde ve çöllerindeki Manna likeni(kudret helvası), besin olarak kullanılan likenlerdendir. Develerin besinini temin ettiği gibi, insanlar da bundan ekmek yaparlar. Orta Asyada bu liken türünden yapılan ekmeğe Kırgız ekmeği denir. Likenlerde az miktarda da olsa vitaminler vardır. Ren geyiği likeninde (Cladonia rangiflerina), A,C ve D vitaminleri mevcuttur. Likenlerden sanayide de faydalanılır. Roccella tinctoria ve R. fuciformis liken türlerinden, asit, baz endikatörü olarak kullanılan turnusol mahsulü ve kağıdı yapılır. Bundan başka Orsey adı verilen yün, ipek, hatta odunu boyamada kullanılan kırmızı bir boya elde edilir. Bazı liken türleri de ortaçağdan beri parfümeride kullanılmıştır. Fransa''da bir liken türünden orman çayı adı verilen aromatik bir içecek yapılır.     Likenler ya da Lichenes; başlı başına birer organizma değildirler. Mantarlar ve fotosentetik alglerden meydana gelen simbiyotik birlikteliklerdir. Şekil ve yaşayış bakımından kendilerini oluşturan alg ve mantarlardan tamamen ayrı bir yapı gösterirler. Renksiz bir mantar hifinden oluşan tallusun yapısına katılan fotosentetik canlı (fotobiyont), genellikle yeşil alg ya da bir cyanobakteridir; fakat bazı sarı-yeşil alglerden ve kahverengi alglerden de oluştukları bilinir. En çok Cyanophyta ve Chlorophyta'ya ait cinsler ve Xanthophyta ve Phaeophyta'dan bazı alg türleri görülür. Mantarlarda ise genellikle Ascomytcetes ve az olarak Basidiomycetes'e ait cinsler görülür. Alg ve mantarın birbirleri ile birleşmeleri farklı şekillerde olabilir. Eğer alg ve mantar dağılımı homojen şekildeyse bu likenler; "Homeomerik liken", heterojen bir dağılım varsa "Heteromerik liken" olarak isimlendirilirler. Homeomerik likenlerde, alg ve mantar ayrı bir katman oluşturmadan birleşir, tallus jelatini andıran müsilajımsı yapıdadır. Heteromerik likenlerde, üst kabuk katmanı (korteks) ile orta kısım arasında algler bulunur, diğer kısımlar sıkı ya da gevşek dizilmiş mantar hiflerinden oluşur. Çoğu liken bu grupta yer alır. Likenler, birçok yerde bulunabilen organizmalardır. Bulundukları yere göre; •Kabuksu likenler, kayalar üzerinde gelişen likenlerdir. Tallus kabuk biçimindedir. Kayaları eritebilen enzimleri bulunabilir, bu yüzden "Endolitik likenler" de denirler. •Yapraksı likenler, toprakta yaşayan, tallusları loblar halinde olan likenlerdir. •Dalsı likenler, ağaçlar üzerinde gelişen, oldukça büyük talluslu, sık dallanma gösteren likenlerdir. Üremeleri Likenler; 1.Eşeysiz 2.Eşeyli olarak çoğalabilen bir canlı grubudur. 1. Eşeysiz Üreme Bu çoğalma tipi "Sored" denilen mantar hifleri ile çevrili birkaç alg hücresinden oluşan tallus parçacıkları ile gerçekleştirilir. Soredler tallusun korteksinin parçalanması ile serbeste hale geçerek toz gibi çevreye dağılırlar, ulaştıkları yerlerde tutunarak, yeni bireyleri oluştururlar. 2. Eşeyli Üreme Likenlerin yalnızca mantarlarında görülür. Alg bu yapının içinde vejetatif olarak çoğalır. Mantarların meydana getirdiği fruktifikasyonlar serbest yaşayan mantarlarınkinden oldukça farklıdır. Liken yapısındaki mantarın cinsine göre oluşturulan fruktifikasyonlar farklılık gösterir. Metabolizma Likenleri oluşturan alg ve mantarlar arasında bazı fizyolojik iş bölümleri vardır. Simbiyotik organizmalardan alg, klorofil taşıdığından fotosentez yapar ve birliğin karbonhidrat gereksinimini karşılar. Mantar ise su ve madensel maddelerin alınmasında görev alır. Likenlerde metabolik aktivite su, ısı ve ışıkla değişkenlik gösterir. Su içeriği %65-90 arasında olduğunda fotosentez oranı artar, 15-200C fotosentez için en uygun sıcaklıktır. Depo maddesi olarak nişasta bulunur. Likenlerin metabolizmaları sonucu ekonomik öneme sahip bazı maddeler oluşur. Bunlar tıpta, boya sanayinde ve besin olarak kullanlan maddelerdir. Tıpta; öksürük ve göğüs hastalıklarında, diabette, nefrit, nezle de ve iştah açıcı olarak kullanım alanları mevcuttur. İnsanlarca Lecanora esculenta ve Ren geyiklerince Cladonia rangiferina besin olarak kullanılır. Ekoloji Dünyada geniş bir yayılım alanına sahip ve denizlerden yüksek dağlara, sıcak bölgelerden kutuplara kadar yerleşim yerlerinde ve zor koşullarda bulunurlar. Tallus yavaş gelişir, ağaç, toprak ve kayalar üzerinde bulunurlar.üzerinde bulunduğu kayaları parçalayarak toprak oluşumuna katkı sağlarlar.

http://www.biyologlar.com/likenler-1

Donnan Dengesi Nedir

Donnan Dengesi Nedir

Benzer şekilde örneğin bitki hücre çeperindeki orta lamelde yer alan pektik asitlerin karboksil kökü, membran lipidleri arasındaki fosfolipidler gibi sabit iyonların yerleştiği iyon kanalları kütle akışı ile mineral iyonlarının ile geçişine elektrokimyasal direnç gösterir.

http://www.biyologlar.com/donnan-dengesi-nedir

BİTKİLERDE TERLEME VE DAMLAMA

Terleme, otların biçildikten sonra kuruması olayında açıkça görülür. Kesilen yeri tıkansa bile biçilen bitkilerin otsu kısımları hemen pörsür. Demek ki bitkilerin bütün yüzeyi su kaybetmektedir. Bu su kaybı bitkinin belli bir süre içinde kaybettiği ağırlıkla ölçülebilir.Bu ölçümler şiddetli terleme döneminde nemcil bitkilerde saatte desimetrekare başına 10 gram su, mezofitlerde 1 gram ve kurakçıl bitkilerde 0,1 gram su atıldığını gösterir; 15 metre boyunda bir akçaağaç bir yaz gününde saatte 300 litre su kaybedebilir. Bir gram katı madde sentezlemek için 300 gramlık bir su iletiminin gerektiği hesaplanmıştır. Bu değerler, bitkilerin morfolojik ve anotomik özelliklerine (havadaki kısımların yüzeyi, dış koşullara uyum), gözeneklerin sayısına ve konumuna bağlıdır. Bitkinin çıkardığı su, birtakım kimyasal reaktifler kullanarak ortaya konabilir; Mesela kuruyken mavi olan kobalt klorür su buharıyla temas edince pembeleşir; Yahut çıkan su buharını emen kalsiyum klorür deneyden önce ve sonra tartılmak suretiyle emilen suyun miktarı ölçülür. Hücrenin içindeki su hücre zarını ıslatır, bitkinin damarlarında dolaşır. Bu su, bitkilerin üst derisi yoluyla çıkan su, bitkilere göre değişik olmakla beraber genellikle azdır; suyun çoğu asıl terleme organı olan gözenekler yoluyla çıkar. Gözeneklerin rolü Gareau deneyiyle anlaşılabilir: bunun için bir yaprağın her iki tarafındaki üst derinin belli bir kısmı içinde kalsiyum klorür bulunan iki çan arasına yerleştirilir. Böylece yaprağın her iki yüzünde çıkan suyun miktarı ölçülür. Bu miktar gözenekli olan yüzeyde çok daha fazladır. Böylece gözeneksiz olan yüzeyde dericik yoluyla ne kadar terleme olduğu ölçülebilir (dericik terlemesinin fazla olduğu körpe yapraklar dışında bu miktar toplam terlemenin 1/10’u veya 1/20’si kadardır.). Transpirasyon olarak da bilinen terleme bitkilerde su kaybıdır. Gözenekler yardımıyla olur. Gözenekler yaprak yüzeyinin %1’den az bir alanı kaplayan küçük solunum açıklarıdır. Karanlık, yüksek sıcaklık ve bitki dokularında su yetersizliği terlemenin durmasına yol açar. Buna karşılık aydınlık, bol su ve bitki için uygun sıcaklıklar terlemeyi arttırır. Terlemenin bitkideki gerçek işlevi kesin olarak saptanamadığından bilimsel tartışmalar sürüp gitmektedir. Bitkinin kökleri aracılığıyla aldığı suyu yukarıdaki organlara iletebilmesi için gerekli enerjiyi ve suyun buharlaşmasıyla oluşan soğuma sayesinde doğrudan gelen güneş ısısının dengeli bir biçimde dağılmasını sağlamak en yaygın görüştür. Bitkinin atmosferden karbondioksit alması ve fotosentezle havaya oksijen vermesi sırasında gözeneklerin rolünü ve önemini göz önünde tutan bazı uzmanlar ise terlemenin bu olaylar sırasında zorunlu olarak çıktığını savunurlar. Terlemeyi havanın nemi, rüzgar, toprağın yapısı ve nemi, sıcaklık ve ışık etkiler. Bitkilerin su alıp vermeleri havanın bağıl nemi ile sıcaklığa bağlı olarak mevsimden mevsime, mevsimler içinde de değişik günlerde, hatta saatlerde değişik olur. Çok şiddetli veya çok zayıf ışık gözeneklerin kapanmasına yol açar. Kırmızı, mavi veya mor ışınlar terlemeyi arttırır; nemde gözeneklerin açılıp kapanmasında önemli rol oynar (fazla nem açılmasına sebep olur); sıcaklıkta aynı şekilde bir etkendir. Bitkilerin sahip oldukları serinleme mekanizmaları olmasaydı, güneş altındaki birkaç saat bile bitkiler için ölümcül olurdu. Bir nevi su mühendisliği olarak nitelendirilebilecek olan bu bitki faaliyetleri Allah'ın yaratışındaki kusursuzluğu gösterir. Aynı yerde bulunan bitki ve bir taş parçası, eşit miktarda güneş enerjisi almalarına rağmen aynı derecede ısınmazlar. Güneş altında kalan her canlıda mutlaka olumsuz bir etki oluşur. Öyleyse bitkilerin sıcaktan minimum derecede etkilenmelerini sağlayan nedir? Bitkiler bunu nasıl başarırlar? Muazzam bir sıcaklıkta, bütün yaz boyunca yaprakları güneşin altında kavrulmasına rağmen, bitkilere neden hiçbir şey olmamaktadır? Ayrıca bitkiler kendi bünyelerindeki ısınmanın haricinde, dışarıdan da ısı alarak dünyadaki ısı dengesini de sağlarlar. Bu ısı tutma işlemini yaparken kendileri de bu sıcağa maruz kalırlar. Peki gittikçe artan bu sıcaktan etkilenmek yerine, bitkiler nasıl olup da dışarının da ısısını almaya devam edebilmektedirler? Yapıları itibariyle sürekli güneş altında olan bitkiler, doğal olarak diğer canlılara oranla daha fazla miktarda suya ihtiyaç duyarlar. Bitkiler aynı zamanda yapraklarında oluşan terleme vasıtasıyla da sürekli su kaybederler. Daha önceki bölümlerde de değinildiği gibi, bu su kaybını önlemek için, yaprakların güneşe dönük olan üst yüzleri çoğunlukla "kütiküla" adı verilen bir tür su geçirmez, koruyucu cilayla örtülüdür. Bu sayede yaprakların üst yüzeylerindeki su kaybı önlenmiş olur. Peki ya alt yüzleri? Bitki bu bölümden de su kaybettiği için, gaz alış-verişini sağlamakla görevli özel deri hücreleri olan gözenekler genellikle yaprağın alt yüzünde bulunurlar. Gözeneklerin açılıp kapanması bitki tarafından karbondioksit alıp oksijen vermeye yetecek, ancak su kaybına yol açmayacak biçimde denetlenecektir. Bitkilerde Isı Dağıtım Sistemi Bunların yanı sıra bitkiler ısıyı farklı şekillerde dağıtırlar. Bitkilerde iki önemli ısı dağıtım sistemi bulunmaktadır. Bunlardan birincisi, yaprağın ısısı eğer çevrenin ısısından daha fazlaysa, hava dolaşımının yapraktan dış ortama doğru olmasıdır. Isı naklinden kaynaklanan hava değişimi, sıcak havanın soğuk havadan daha az yoğun olması nedeniyle, havanın yükselmesine dayanır. Bu yüzden yaprakların yüzeyinde ısınan hava yükselir ve yüzeyden ayrılır. Soğuk hava daha yoğun olduğu için yaprağın yüzeyine doğru iner. Böylece sıcaklık azaltılmış ve yaprak serinlemiş olur. Bu işlem yaprağın yüzey ısısı çevredeki ısıdan yüksek olduğu müddetçe devam eder. Çok kuru koşullarda, yani çöllerde dahi bu durum değişmez Bitkilerdeki ısı dağıtım sistemlerinden diğeri de yapraklardan su buharı verilerek terlemenin sağlanmasıdır. Bu terleme sayesinde su buharlaşırken bitkinin serinlemesi de sağlanmış olur. Bu dağıtım sistemleri bitkilerin yaşadıkları ortamın şartlarına uygun olacak şekilde ayarlanmıştır. Her bitki, neye ihtiyacı varsa, o sisteme sahiptir. Son derece karmaşık bir yapısı olan bu sistemin dağılımı tesadüfen gerçekleşmiş olabilir mi? Bu sorunun cevabını verebilmek için çöl bitkilerini ele alalım. Çöllerdeki bitkilerin yaprakları genelde çok kalındır. Suyu buharlaştırmaktan daha çok, muhafaza etme yönünde dizayn edilmişlerdir. Bu bitkiler için ısı dağıtma işlemini buharlaşma ile gerçekleştirmek ölümcül bir sonuç getirecektir. Çünkü çöl ortamında kaybedilen suyun telafisi mümkün değildir. Görüldüğü gibi, bu bitkiler ısılarını her iki yolla da dağıtabilecekken, sadece bu yollardan birini, üstelik de yaşamaları için tek geçerli olan yolu kullanmaktadırlar. Çünkü tasarımları çöl ortamına göre yapılmıştır. Bunun tesadüflerle açıklanması ise mümkün değildir. Bitkilerde Serinleme Bitkilerin sahip oldukları bu serinleme mekanizmaları olmasaydı, güneş altındaki birkaç saat bile bitkiler için ölümcül olurdu. Öğle saatlerinde bir dakika kadar direkt olarak alınan güneş ışığı, bir santimetrekarelik yaprak yüzeyinin ısısını 37oC'ye kadar yükseltebilir. Bitki hücreleriyse, bünyelerindeki sıcaklık 50-60oC'ye çıktığında ölmeye başlarlar. Yani bitkinin ölmesi için öğle vakti 3 dakika kadar güneş ışığı alması yeterlidir. İşte bitkiler öldürücü sıcaklıklardan bu iki mekanizma sayesinde mekanizması sayesinde korunabilirler.

http://www.biyologlar.com/bitkilerde-terleme-ve-damlama

FİKSATİFLER VE HAZIRLANIŞLARI

Fiksatifler kullanımlarına göre iki gruba ayrılabilir.l-Mikro-anotomik fiksatifler: Bu fiksatifler doku tabakaları arasındaki bağlantıları ve geniş hücre kümelerinin diğeri ile bağlantılarını tam olarak korumak amaçlandığında kullanılır. Normal ve patolojik histolojinin rutin çalışmalarının çoğu bu tip fiksatiflerle yapılmaktadır. 2-Sitolojik fiksatifler: Hücreyi oluşturan elementleri korumak istendiğinde kullanılırlar. Penetre olma gücü, büyük doku kütleleri ile çalışma yeteneği, kesit almayı veya boyamayı engellememeli. Şöyleki Flemming fiksatifinde ara zon çok güzel fikse olurken en dış ve iç parçalar kötü fikse olabilirler. % 10’luk FormalinFormalin 100 ccÇeşme Suyu 900 cc %10'luk Formal SalinFormalin 100 ccNaCl 8.5 grÇeşme suyu 900 cc %10' luk Tamponlanmış Formalin (pH=7.0)Formalin 100 ccÇeşme suyu 900 ccNaH2P04 : H20 4 gr .Na2HP04 6.5 grFormalini nötralize etmek için %2' lik kalsiyum asetat birçok araştırıcı tarafından tavsiye edilmiştir. Fakat yumuşak dokularda artifakta benzer alanlar oluşturabilir. %10' luk formal-salin histolojik fiksatiflerin ençok kullanılanıdır. Aşırı bir sertleşme olmaksızın dokuyu sertleştirir. Fiksasyon süresine dayanıklıdır. Genellikle formalin fiksasyonundan sonra dokuların doğal rengini kısmen veya tamamen korumak mümkündür. Bu fiksatif, müze örneklerinin hazırlanmasında özel bir değere sahiptir. Özellikle nötral tamponlanmış olarak kullanıldığında kırmızı kan hücrelerinin korunması içeren iyi fiksatiftir.Formalinde uzun süre kalma (aylarca-yıllarca) dokunun kesit alma niteliğini bozmaz. Dokunun bazik boyalarla boyanmasında biraz kayba yol açabilir. Bazı gümüş çöktürme tekniklerindeki sonuçlar daha iyiye gidebilir. İnce bloklar % 10'luk formal-salinle 24-48 saatte iyi şekilde fikse olurlar fakat optimum fiksasyon süresi 7-10 gündür. Formalin fiksasyonundan sonra, değişen miktarlarda kan içeren dokular bir artifakt pigmenti (formalin pigmenti) gösterebilirler. Bu, kahverengi, granüler, ekstraselüler bir materyeldir. Çoğunlukla post-mortem dokularda bulunur, saklandıkca artar ve sıklıkla formaline daldırdıktan birkaç saat sonra yoktur fakat birkaç gün sonra dokularda çok geniş ve fazla olarak depo edilir. Kanla asit formalin pigmente yol açar ve nötral tamponlu solusyonlar kullanarak bunlardan kurtulabilir. Pikrik asidin alkolde doymuş solusyonunda 20 dakika ya da daha fazla tutarak kesitlerden uzaklaştırılabilir. Pigmentin görünümü ve özellikleri malarya pigmentine benzemektedir fakat malarya pigmenti intraselülerdir.% 10' luk formal-saline mikroanotomik bir fiksatiftir. Birçok boyama yöntemi için uygundur. Hematoksilenle iyi sonuçlar verir. Nadiren belirli hiçbir neden olmaksızın formal-salinle tespit edilip, H+E ile boyanmış kesitlerde garip bir artifakt görüIür. Nukleusların hematoksilen ile kısmen veya tamamen boyanmamasına, bunun yerine eozini almasına sonuçta ise çekirdek kenarlarının kaybına yol açar. Ençok lenfoid ve epitel dokusunda göze çarpan artifakt, dağılımında aşırı olarak bozuktur ve garip bir şekilde fiksasyonu iyi yapılmış dokularda ortaya çıkar. Nadiren otolize olmasına rağmen, postmortem dokularda da görülür. Bu artifakt "pembe hastalık" olarak açıklanmıştır ve ortaya çıkmaması için %1O'luk formalindeki %2' lik asetik asit kullanımı ile korunur veya olduğunda parafini alınmış kesitlerin hematoksilenle boyanmasından önce absolu alkoldeki %l'lik HCl ile 1 saat bırakarak uzaklaştırılır. Formalin fiksasyonundan sonra hiçbir şeye gereksinim yoktur ve dokular gömmeden önce direkt % 70'lik alkole alınabilir veya dondurma yöntemi ile kesit alınabilir .ALKOL-FORMALİN SOLUSYONU: Nötralize edilmiş formalin 10 cc %95 Alkol 90 cc , Bu fiksatifte parçalar 2-4 saat içinde çabucak tespit olur. Eğer doku parçaları kalın olursa, bu solusyon içinde buzdolabında 24 saat kalmalıdır. Bilhassa polisakkaridlerin gösterilmesi için kullanılan fiksatiflerden biridir. ALKOL FİKSATİFLERİ: Absolu alkol (%99) özellikle hücrelerde glikojenin gösterilmesinde kullanılan bir fiksatiftir. Eğer buzdolabında veya daha düşük derecede kullanılmazsa dokuda büzülmelere sebep olur. Doku parçaları absolü alkolde 20C'de iki gün bırakılacak olursa en elverişli şekilde, büzülrne meydana gelmeden tespit olurlar. %80 alkol fiksatif ise 5C'de 24-48 saat arasında dokuyu büzmeden tesbit etme özelliğine sahiptir. Bu solusyon alkaline phosphatasın gösterilmesinde kullanılır. Alkol fiksatifleri oda ısısında kullanıldiklarında bunların %65-%70' lik solusyonları kullanılmalıdır. Aksi halde dokuda çok fazla büzülme ve değişikliklere sebep olurlar. LİSON VOKAER' İN GLİKOJEN TESPİT ÇÖZELTİSİ: %96' lık alkolde doymuş picricasit çözeltisinden 85 ml; 10 ml formalin, 5 ml asetik asit. Küçük parçaları buzdolabında 5-10 saatte tespit eder. Glikojen için iyi tespit edicidir. Tespitten sonra absolu alkolden geçirilerek gömme işlemi yapılmalıdır. Çünkü gıikojen suda erir. MERKÜRİK KLORİD-FORMALİN (FORMAL-SUBLİMATE)Suda doymuş merkürik klorid 900ccFormalin 100 cc Mükemmel bir mikro-anotomik fiksatiftir. Formal-salindeki distorsion olmadan dokuyu büzer. Asit boyalarla çok parlak boyadığı gibi mükemmel bir sitoplazma korunması sağlar ve metakromaziyi artırır.Formal-saline göre sinir fibrilleri ve hücreler için gümüş çöktürme tekniklerinde daha az elverişli olmasına rağmen mükemmel retiküler fibril impregnasyonu elde edilebilir. Bloklar 12-24 saat tespit edilir fakat uzun süre işlem kesit almayı zorlaştıran bir sertlik yaratmaz. Formal-sublimat özellikle formal-salinle birinci fiksasyondan sonra ikinci fiksatif olarak yararlıdır. En büyük dezavantajı pahalı olması ve metallere korosiv olmasıdır. Dokular fiksasyondan sonra %70-90' lık alkole aktarılmalı ve mercury pigmenti kesitlerden daha önce açıklandığı gibi uzaklaştırılmalıdır. SUSA FİKSATİFİ ( HEİDENHAIN 1916)Merkürid klorid 45 grSodyum klorid 5 grTrikloroasetik asit 20 grAsetik asit 40 ccFormalin 200 ccDistile su 800 cc Özellikle biopsi materyelleri için uygun bir fiksatiftir. İyi bir mikro-anotomik fiksatiftir. Nedeni açık olmamakla birlikte Susa' dan sonra elastik fibriller Weigert'in (1898) elastik fibril boyası ile zayıf boyanırlar. Hazırlanması için gerekli maddelerin çokluğu dezavantajdır. Ancak karışım bir önceki formal-sublimata göre biraz daha avantajlıdır.Bloklar 3-24 saatte fikse olurlar ve direkt olarak % 95' lik etil alkole aktarılırlar. Daha sulu solusyonlara aktarma kollajen fibril1erin şişmesine yol açmaktadır. ZENKER FİKSATİFİ ( ZENKER 1894)Merkürik klorid 5 grPotasyum dikromat 2.5 grSodyum sülfat 1 gr .Distile su 100 ccAsetik asit 5 cc (kullanımdan hemen önce eklenir) Asetik asitsiz stok solusyon iyi korunur. Zenker etkili bir mikro-anotomik fiksatiftir ve özellikle sitoplazmik ve fibril boyaları üzerine çok yararlı etkisinden dolayı kullanılmaktadır. Taze materyelde post-mortem dokulara göre daha yararlıdır. Alyuvarları iyi korumazlar. Bloklar 3-8 saatte fikse olurlar ve fazla dikromatı uzaklaştırmak için çeşme suyuyla yıkanırlar. Mercury pigmenti ise daha önceki yöntemle uzaklaştırılır. HELLY SIVISI ( VEYA ZENKER-FORMAL, HELLY 1903) Zenkerdeki asetik asit yerine 5 cc formalin kullanmadan hemen önce eklenir. Helly sıvısı bir oksitleyici ajan (potasyum dikromat ve bir indirgeyici ajan (formalin) içermesine rağmen rnükemmel bir fiksatiftir. Helly özellikle kemik iliği, dalak, lenf bezleri, hipofiz ve pankreas için çok yararlıdır. Bloklar 6-24 saat tespit edilmeli ve mercury pigmenti Zenkerdeki gibi uzaklaştırılmalıdır. Helly hem mikro-anotomik hem de sitolojik (sitoplazmik) fiksatif olarak kullanılabilir ve formal-sublimat gibi % 10' luk formal-salinden sonra ikinci fiksatif olarak da uygulanabilir. BOUİN FİKSATİFİ ( BOUİN l897) Suda doyurulmuş pikrik asit 75 cc Formalin 25 ccAsetik asit 5 cc Bouin, alyuvarların kısmen veya tamamen lizisine yol açar ve kollajen fibrilleri şişebilir. Aşırı sertleşmeye yol açmaz. Sitoplazmik boyalarla parlak boyanma sağlar. Glikojen çok iyi korunur (özellikle yukardaki karışımın alkolik varyantı ile) fakat böbrek iyi korunamaz. Bazı sitoplazmik granüller çözünebilir. Bouin, bir mikro-anotomik fiksatif veya kromozomların gösterilmesi için kul1anıldığında da sitolojik (nükleer) fiksatiftir. Bloklar 6-24 saat fikse edilirler ve % 70 lik alkole aktarılırlar. Dokuların sarı boyanması çok küçük örnekler için avantaj oluşturur. Fakat kesitlerden bu boya, alkolü takiben bazik anilin boyaları kullanmadan önce % 2.5 lik sodyum thiosulfat kullanarak uzaklaştırılmalıdır, aksi takdirde precipat oluşacaktır. CARNOY FİKSATİFİ (CARNOY, 1887)Absolü alkol 60 ccKloroform 30 ccAsetik asit 10 cc Carnoy, hızla penetre olan ve hareket eden bir fiksatiftir. Acil teşhis için dokuların hızlı tespit edilmesi ve kısmi dehidrasyonu için kullanılır. Kromozom çalışmaları için kullanılır fakat alyuvarların lizisine ve fazla büzülmeye yol açar. Glikojen korunur fakat bazı sitoplazmik granüller çözünebilir. 3 mm' den kalın olmayan dokular 30-90 dakikada fikse edilmeli ve % 95'lik ya da % 100' lük alkole transfer edilmelidir. Bir mikro-anotomik veya sitolojik (nükleer) fiksatifdir. SANFELİCE FİKSATİFİ (SANFELİCE, 1918)Çözelti A Çözelti BFormalin 128 cc %l'1ik kromik asit 100 ccAsetik asit 16 cc Karışım: Kullanmadan az önce hazırlanır. 9 cc A +16 cc B Genellikle mitotik figürler ve kromozomlar için mükemmel bir fiksatifdir. 3 mm den kalın olmayan küçük parçalar 12-24 saatte tespit edilmeli ve sonra akarsu ile yıkanmalıdır. Sitolojik (nükleer) fiksatiftir. FLEMİNG FİKSATİFİ (FLEMMİNG, 1884) % l'1ik kromik asit 15 cc%2' lik OSO4 4 ccAsetik asit 1 cc ya da daha az Kullanmadan önce hazırlanmalıdır. Penetrasyon eşit olmayabilir ve tam olmayan fiksasyonla yüzeyel tabakaların aşırı kararmasına neden olabilir ve sonradan en içteki hücrelerin zayıf boyanmasına yol açabilir. Page (1970), Flemming sıvısını formalin fiksasyonunu takip eden ikinci fiksatif olarak kullanarak miyelini .başarılı şekilde göstermiştir. İki mm kalınlığındaki küçük parçalar 12-48 saat tespit edilmeli ve sonradan akarsuda yıkanmalıdır. Asetik asit içeriği ile bir nükleer fiksatiftir. Lipidler OSO4 ile siyahlaşır. Bu fiksatiften sonra alum hematoksilen nükleer boyaları kolaylıkla alınmaz, bunun yerine safranin kullanılmalıdır.FLEMİNG SIVISlNIN LEWITSKY-BAKER MODIFIKASYONUFlemming sıvısını asetik asitsiz fakat % O.75'lik sulu NaCl solusyonunu distile su yerine çözücü olarak ekleyerek hazırlanır. 12-24 saatlik fiksasyondan sonra dokular akarsuya aktarılır. Sitolojik (sitoplazmik) fiksatif, bu ve diğer krom-osmium karışımlar omurgasız ve alt omurgalıların dokuları ile çok iyi sonuçlar verirler. Helly sıvısı memeli dokuları için tavsiye edilmemektedir. ORTH FİKSATİFİ ( ORTH 1896) Formalin 10 ccMüller sıvısı (Potasyum dikromat 2.5 gr +sodyum sülfat 1 gr+distile su 100cc) 100 cc Taze olarak hazırlanmalıdır. Formalin ve Müller sıvısını karıştırma mitokondri gibi sitolojik yapılar üzerine ve kromaffin reaksiyonundaki mordantlama özelliği nedeni ile çok yararlıdır. Bloklar çeşme suyuyla yıkanmadan veya distile sudaki %2.5'lik potasyum dikromatla ileri kromasyondan önce 24-48 saat tespit edilmelidir.Bazen potasyum dikromatla uzun süre muamele etme hemen hemen kaçınılmaz olarak kırılganlıkta artış ve parafin kesitlerden kesit alma zorluğu ile (özellikle yumuşak dokularda, dalak ve beyin gibi) sonuçlanmaktadır.

http://www.biyologlar.com/fiksatifler-ve-hazirlanislari-1

NANOBİYOTEKNOLOJİ

Nanobiyoteknoloji kelimesi iki kavramıiçinde barındırıyor: Bunlardan birincisi bir büyüklük tanımı: Nano, yani milimetrenin milyonda birine karşılık gelen bir büyüklük. İkincisi ise biyoteknoloji kavramı, yani biyoloji ve biyokimya temelli yöntemlerin uygulamalarını araştıran, ortaya koyan, onları ürüne dönüştüren, teknoloji temelli çalışma alanı. İkisinin birleşmesi ile ortaya çıkan nanobiyoteknoloji ise, bir yandan canlı hücrenin milyarlarca yıllık evrimi sırasında şekillenmiş nano-yapıları ve nanomakineleri, yani DNA’yı, RNA’yı, lipidleri, proteinleri, polisakkaritleri, bunların birbirleri ile etkileşimlerini ve hareketlerini araştırırken diğer yandan bu yapıları ve etkileşimleri daha dayanıklı, daha hızlı hareket eden, istendiği zaman planlanmış hedefe varacak materyaller ve yapılar kullanarak taklit edebilmeyi planlıyor. Nanobiyoteknolojinin bir üçüncü ilgi alanı ise moleküler biyoloji araştırmalarında nano seviyesinde bilgi toplayabilecek ve biyolojik sistemlerin nano düzeyde araştırılmasına olanak verecek sistem ve düzeneklerin tasarlanarak ürüne dönüştürülmesi olarak düşünülüyor. Nanobiyoteknolojinin İlaç Salınımına Etkisi Su an kullanılan ilaçların çoğu hedef hücrelerine ulaşma esnasında hidrofob alanlardan ve enzim yıkımından korunamadığı için etkilerini istenilen şekilde gösterememektedir. Ayrıca ilaçların istenilen süre etki gösterememesi ve hedef doku haricinde de etkisini tüm vücutta göstermesi istenmeyen olaylar olarak karsımıza çıkmakta. Bir diğer problem ise; verilen ilaçların vücuttaki bariyerleri aşıp hedef alana ulaşamaması(Parkinson hastalığı tedavisinde ihtiyaç duyulan dopaminin kan beyin bariyerini geçememesi. Bu nedenle kan-beyin bariyerini geçebilen L-DOPA kullanılır). Ortaya çıkan bu sorunların çözümünde nanoteknoloji bir takım çözümler sunuyor. Nanoboyutlarda üretilen taşıyıcılar, kan-beyin bariyeri, solunum sistemindeki bronşiyoller ve derideki sıkı bağlantılar gibi çeşitli anatomik ve biyolojik bariyerleri geçebilir ve ilaçların istenilen hedef dokuya ulaştırılmasını sağlar. Nanotaşıyıcılar vücuttaki dar alanlarda daha iyi dağılırlar ve düşük çözünürlüklü ilaçların çözünürlüğünü arttırabilirler. Nanoboyutta üretilen araçların olağanüstü özellikler göstermesinden yararlanılarak ilaçların fonksiyonu arttırılıp yeni özellikler kazandırılabilir. İlaç toksisitesini azaltabilir ve daha verimli ilaç dağılımını sağlayabilir. Küçük moleküller, proteinler, peptitler ve nükleik asitlerin hedef doku tiplerine bağlanması için modifiye edilebilir. Bunların yüzey özellikleri immün sistem tarafından tanınmaları için modifiye edilebilirler. Tüm bu işlemlerle ilacın sadece hasta bölgeye etki etmesi, tek uygulamada ilacın kanda uzun sure etkin bir şekilde kalması, ilacın belirli bir hızda ve gerekli miktarda salınması sağlanmış olur. Ancak ilaçların salınımında kullanılan bu nanotaşıyıcılar bir takım problemlere yol açabilir. Nanotaşıyıcıları elde etmek ve depolamak zordur. Düşük potansiyelli ilaçlar için uygun değildirler. Bazı durumlarda istenmeyen bölgelere ulaşarak zarara neden olabilirler. Hücrenin nükleer zarfını geçerek genetik hasara ve mutasyonlara yol açabilirler. Nanobiyoteknolojinin Kanser Araştırmalarında Kullanımı Kanser hücrelerinin sağlıklı hücrelere zarar vermeden öldürülmesi üzerine çok yeni ve farklı metotlar üstünde ve sadece dünyada birkaç laboratuvarda sürdürülen çok ileri düzeyde araştırmalar sürdürülmektedir. Örneğin, bakteri DNA’sının bizim DNA’mızdan yapısal farklılıklar gösterdiğinin keşfiyle DNA moleküllerinin bağışıklık sistemi üzerine olan uyarıcı etkisinden yararlanarak yeni DNA kökenli ilaçlar tasarlanmaktadır. bu ilaçları yeni jenerasyon aşı geliştirmekten, antikanser ve anti allerjik uygulamalara ve aşısı olmayan hastalıklardan immün koruyucu ajan olarak kullanmaya kadar geniş bir yelpazedeki araştırmalar başlamıştır. Sadece kanserli dokulara veya civarına kontrollü bir şekilde DNA’yı ve istendiğinde de kemoterapi ajanını da birlikte salabilen nanokeseciklerle antikanser terapileri geliştirilmekte ve bunların deney hayvanlarındaki etkinlikleri tayin edilmektedir. Bu terapi yöntemi ile, insanda baş ve boyun da oluşan ve çok hızlı bir şekilde ilerleyebilen bu kütle kanseri modeli farelerde %90’ın üzerinde bir başarıyla ortadan kaldırılabilmektedir. STARWARS21

http://www.biyologlar.com/nanobiyoteknoloji

NANOBİYOTEKNOLOJİ

Nanobiyoteknoloji kelimesi iki kavramıiçinde barındırıyor: Bunlardan birincisi bir büyüklük tanımı: Nano, yani milimetrenin milyonda birine karşılık gelen bir büyüklük. İkincisi ise biyoteknoloji kavramı, yani biyoloji ve biyokimya temelli yöntemlerin uygulamalarını araştıran, ortaya koyan, onları ürüne dönüştüren, teknoloji temelli çalışma alanı. İkisinin birleşmesi ile ortaya çıkan nanobiyoteknoloji ise, bir yandan canlı hücrenin milyarlarca yıllık evrimi sırasında şekillenmiş nano-yapıları ve nanomakineleri, yani DNA’yı, RNA’yı, lipidleri, proteinleri, polisakkaritleri, bunların birbirleri ile etkileşimlerini ve hareketlerini araştırırken diğer yandan bu yapıları ve etkileşimleri daha dayanıklı, daha hızlı hareket eden, istendiği zaman planlanmış hedefe varacak materyaller ve yapılar kullanarak taklit edebilmeyi planlıyor. Nanobiyoteknolojinin bir üçüncü ilgi alanı ise moleküler biyoloji araştırmalarında nano seviyesinde bilgi toplayabilecek ve biyolojik sistemlerin nano düzeyde araştırılmasına olanak verecek sistem ve düzeneklerin tasarlanarak ürüne dönüştürülmesi olarak düşünülüyor. Nanobiyoteknolojinin İlaç Salınımına Etkisi Su an kullanılan ilaçların çoğu hedef hücrelerine ulaşma esnasında hidrofob alanlardan ve enzim yıkımından korunamadığı için etkilerini istenilen şekilde gösterememektedir. Ayrıca ilaçların istenilen süre etki gösterememesi ve hedef doku haricinde de etkisini tüm vücutta göstermesi istenmeyen olaylar olarak karsımıza çıkmakta. Bir diğer problem ise; verilen ilaçların vücuttaki bariyerleri aşıp hedef alana ulaşamaması(Parkinson hastalığı tedavisinde ihtiyaç duyulan dopaminin kan beyin bariyerini geçememesi. Bu nedenle kan-beyin bariyerini geçebilen L-DOPA kullanılır). Ortaya çıkan bu sorunların çözümünde nanoteknoloji bir takım çözümler sunuyor. Nanoboyutlarda üretilen taşıyıcılar, kan-beyin bariyeri, solunum sistemindeki bronşiyoller ve derideki sıkı bağlantılar gibi çeşitli anatomik ve biyolojik bariyerleri geçebilir ve ilaçların istenilen hedef dokuya ulaştırılmasını sağlar. Nanotaşıyıcılar vücuttaki dar alanlarda daha iyi dağılırlar ve düşük çözünürlüklü ilaçların çözünürlüğünü arttırabilirler. Nanoboyutta üretilen araçların olağanüstü özellikler göstermesinden yararlanılarak ilaçların fonksiyonu arttırılıp yeni özellikler kazandırılabilir. İlaç toksisitesini azaltabilir ve daha verimli ilaç dağılımını sağlayabilir. Küçük moleküller, proteinler, peptitler ve nükleik asitlerin hedef doku tiplerine bağlanması için modifiye edilebilir. Bunların yüzey özellikleri immün sistem tarafından tanınmaları için modifiye edilebilirler. Tüm bu işlemlerle ilacın sadece hasta bölgeye etki etmesi, tek uygulamada ilacın kanda uzun sure etkin bir şekilde kalması, ilacın belirli bir hızda ve gerekli miktarda salınması sağlanmış olur. Ancak ilaçların salınımında kullanılan bu nanotaşıyıcılar bir takım problemlere yol açabilir. Nanotaşıyıcıları elde etmek ve depolamak zordur. Düşük potansiyelli ilaçlar için uygun değildirler. Bazı durumlarda istenmeyen bölgelere ulaşarak zarara neden olabilirler. Hücrenin nükleer zarfını geçerek genetik hasara ve mutasyonlara yol açabilirler. Nanobiyoteknolojinin Kanser Araştırmalarında Kullanımı Kanser hücrelerinin sağlıklı hücrelere zarar vermeden öldürülmesi üzerine çok yeni ve farklı metotlar üstünde ve sadece dünyada birkaç laboratuvarda sürdürülen çok ileri düzeyde araştırmalar sürdürülmektedir. Örneğin, bakteri DNA’sının bizim DNA’mızdan yapısal farklılıklar gösterdiğinin keşfiyle DNA moleküllerinin bağışıklık sistemi üzerine olan uyarıcı etkisinden yararlanarak yeni DNA kökenli ilaçlar tasarlanmaktadır. bu ilaçları yeni jenerasyon aşı geliştirmekten, antikanser ve anti allerjik uygulamalara ve aşısı olmayan hastalıklardan immün koruyucu ajan olarak kullanmaya kadar geniş bir yelpazedeki araştırmalar başlamıştır. Sadece kanserli dokulara veya civarına kontrollü bir şekilde DNA’yı ve istendiğinde de kemoterapi ajanını da birlikte salabilen nanokeseciklerle antikanser terapileri geliştirilmekte ve bunların deney hayvanlarındaki etkinlikleri tayin edilmektedir. Bu terapi yöntemi ile, insanda baş ve boyun da oluşan ve çok hızlı bir şekilde ilerleyebilen bu kütle kanseri modeli farelerde %90’ın üzerinde bir başarıyla ortadan kaldırılabilmektedir. STARWARS21

http://www.biyologlar.com/nanobiyoteknoloji-1

Alglerin Ekolojik Önemi

Algler, gerek yapisal olarak gerekse de dis görünüsleri bakimindan oldukça farkli görünümdedirler. Yapisal olarak eukaryotik (gelismis hücre tipi) ve prokaryotik (basit yapili hücre tipi) olmak üzere iki büyük gruba ayrilirlar. Buna göre Mavi-Yesil algler göstermis olduklari hücre organizasyonlari bakimindan prokaryot hücre özelligi tasimaktadirlar. Belirgin bir hücre çekirdeginin olmamasi ve çok basit olan kromatofor yapisindaki pigmentlerin dagilimi ve prokaryotik hücre özellikleri bakimindan diger alglerden ayrilirlar. Dis görünümleri bakimindan tek hücreli ve ipliksi formlardan karisik olarak gelismis bireylere kadar degisik biçimlerde gözlenebilmektedirler. Her canli gibi, algler de nesillerini devam ettirebilmek için çogalmak zorundadirlar. Algler üç farkli üreme sistemine sahiptirler. Bunlar; vejatatif üreme, eseyli ve eseysiz üremelerdir. Alglerde vejatatif üreme yaygin bir durum göstermektedir. Bazi türlerde hücrelerin büyüyerek koloni olusturmasina ve bunlarin daha sonra normal büyüme sonucu bölünmesine dayanir. Diger bazi türlerde ise tallusun büyümesi ya da ana bitkinin büyümesinin sürmesiyle gerçeklesmektedir. Genellikle alglerin ilkel gruplarinda görülen eseysiz üreme çok degisik biçimlerde ortaya çikmaktadir. Kamçili alglerin bazi gruplarinda vejatatif üreme ile eseysiz üreme arasinda büyük benzerlikler bulunmaktadir. Bu tip bir üremeye sahip alg hücrelerinden bazi tiplerin farklilasmasi ve sonuçta bunlarin birer birey olusturarak ana hücreden ayrilmalariyla gerçeklesmektedir. Son üreme sekli olan eseyli üreme ise alglerin genel bir özelligi degildir. Bu tip üreme genellikle gelismis organizmalarda görülmektedir. Alglerde eseyli üreme çogunlukla ayni tür iki organizmanin plazmalarinin ve çekirdeklerinin birlesmesiyle gerçeklesmektedir. Bu durum çok basit olarak morfolojik yapilari ayni olan 2 gametin birlesmesiyle olmaktadir. Gametler flagellatlara benzerler ve hareketlidirler. Bazi türlerde gametler yapilarina göre büyük ve küçük olarak ayrilabilirler. Algler, her ne kadar ekstrem olarak morfolojik, sitolojik ve üreme varyasyonlari bakimindan diger bitkilerle farklilik gösterse de, basit biyokimyasal mekanizmalarinin benzer oldugu görülmektedir. Örnegin, klorofil-a yapilari ve bu pigmentler yoluyla çalisan fotosentetik sistemleri, basit besin ihtiyaçlari ve asimilasyonun son ürünleri olan karbonhidrat ve proteinler, yüksek bitkiler ile benzerlik göstermektedir. Ekolojik olarak algler, karli alanlar, tamamen buzla kapli alanlar da bulunabilirler. Fakat % 70'nin dagildigi asil yayilim alani sulardir. Bu ortamlarda organik karbon bileseklerinin major primer üreticisidirler. Mikroskobik fitoplankton formunda meydana gelebilirler. Makroskobik ve mikroskobik formlarin her ikisi de kara ve su hatti boyunca ve bu ortamlarin her ikisinde meydana gelir. Gövde ya da benzer islevlere sahip yapilari ile derelerin alt kisimlari ve sedimenlere, toprak partiküllerine ya da kayalara tutunurlar. Yukarida da belirtildigi gibi buzla kapli alanlarda bulunduklari gibi 70 0C ya da daha yüksek sicakliktaki kaynak sularinda da yasayabilirler. Bazilari çok tuzlu su ortamlarinda bile gelisebilirler. Göllerde ve denizlerde yüzeyden 100 m asagida ya da daha düsük isik yogunlugu ve yüksek basinç altinda yasayabilirler. Denizlerde yüzeyden 1 km asagida da yasayabildikleri görülmüstür. Algler ile ilgili ekolojik çalismalarin ana hedefleri asagidaki gibidir; alglerin yasadigi habitatlarin siniflandirilmasi, her bir habitat içindeki flora kompozisyonunun tanimlanmasi, floralar arasindaki iliskiler ve habitattaki biyolojik, fiziksel ve kimyasal faktörlerin direkt ya da indirekt etkileri, populasyon içindeki türlerin çalisilmasi ve onlarin üremelerini kontrol eden faktörler ekolojik çalismalarin kapsamini olusturmaktadir. Tüm bu yaklasimlar, çevrenin fiziksel ve kimyasal degisimlerine bagli olarak cografik bir dagilim göstermektedir. Algler su ortaminda primer üretici canlilardir. Yapilarindaki pigmentleri sayesinde karbondioksit ve suyu isigin etkisi ile karbonhidratlara çevirirler, böylece su ortamindaki besin degerinin ve çözünmüs oksijen oraninin artmasini saglarlar. Sonuçta kendi gelisimlerini saglayarak besin zincirinin ilk halkasini olustururlar. Bu sekilde üretime olan katkilari ve üst basamaktaki canlilarla olan iliskileri açisindan önem tasimaktadirlar. Alglerin üretimleri çevresel faktörlerle sinirlanmistir. Bunlar isik, sicaklik ve besindir. Bu sinirlayici faktörler iyilestirilirse, üretim düzeyi artar. Üretim artisinin belli bir düzeyi asmasinin dogal bir sonucu olarak da çevresel denge bozulur ve bu geliseme eutrofikasyon adi verilir. Eutrofik bir ortamda besin madde girdisinin fazlaligindan dolayi, (özellikle azotlu bilesikler ve fosfat gibi alglerin gelisimini arttiran bilesikler) alg ve bakteri faliyetleri ile bulaniklik artar ve isigin suyun alt kisimlarina geçmesi engellenir. Oksijen dip kisimlarda sinirlayici bir özellik kazanir. Bu da bentik bölgede yasayan canlilar için ölümle sonuçlanabilir. Insan faaliyetleri, evsel, endüstriyel ve tarimsal atiklar son yillarda ötrofikasyon direkt etkide bulunmaktadir. Bunun yanisira atmosferden difüzyon ile suya karisan azot, yagmur sularinin alici ortamlara tasidigi besin maddeleri, drenaj yoluyla ortama tasinan maddeler kirlenme sürecini hizlandiran dogal gelisimlerdir. Eutrofikasyonun sonuçlarindan birisi de asiri alg patlamalarinin görülmesidir. Bunun anlami, fitoplankton (alglerin serbest yüzen formlari) populasyonlarinin suyun rengini, kokusunu ve ekolojik dengesini bozacak yeterli yogunluga ulasmasidir. Bunun yani sira alglerin asiri gelismesi, sucul ortamdaki bir çok canli için toksik etkilere neden oldugu için ölümler görülebilmektedir. Örnegin, Dinoflagellatlardan Gymnodinium ve Gonyanlax'a ait türler asiri çogalma sonucu, hayvanlarin sinir sistemlerini etkileyen, yüksek oranda suda çözünebilen toksik madde üretirler (Elliot et. al., 1992). Diger patlamalara ise Mavi-Yesil alglerden Microcystis, Anabaena, Nostoc, Aphanizomenon, Gloeotrichia ve Oscillatoria, Chrysophyte'den Prymnesium parvum neden olmaktadir. Algleri bulunduklari sistem içerisindeki etkilerini bu sekilde belirttikten sonra insanlar için ekonomik anlamda sagladiklari katkilara kisaca deginmek gereklidir. Besin maddesi olarak: Çogunlugu Phaeophyceae ve Phodophycea olan 100'den fazla tür içerdikleri protein, karbonhidrat, vitamin ve minerallerin varligindan dolayi dünyanin çesitli yerlerinde insanlar tarafindan besin kaynagi olarak kullanilirlar. Agar: Kirmizi alglerin hücre duvarlarinda bulunan, jelimsi bir özellige sahip olan bir polisakkarittir. Bazi algler ve bakterilerle ve birçok fungus'un kültürü için laboratuarda hazirlanan farkli kültür ortamlarinda temel olarak kullanilir. Ayrica önceden hazirlanmis yiyeceklerin paketlenmesi, kabizligin tedavisi, kozmetik, deri, tekstil ve kagit endüstrilerinde kullanilmaktadir (Sharma, 1986). Carrageenin: Kirmizi alglerin hücre duvarlarindan elde edilen baska bir polisakkarittir. Bu madde mayalama, kozmatik, tekstil, boya, endüstrilerinde ve tip alaninda kan pihtilayicisi olarak kullanilmaktadir. Alginatlar: Alginat türevleri ve alginik asit, kahverengi alglerin hücre duvarlarindan extre edilen bir karbonhidrattir. Alginatlar kauçuk endüstrisi, boyalar, dondurma, plastik dondurucularda kullaniliyorlar. Ayrica kanamalari durdurmak için alginik asit kullaniliyor. Funori: Kirmizi alglerden elde edilir. Kagit ve elbiseler için yapistirici olarak kullanilir. Kimyasal olarak sülfat ester grubu'n içermesi disinda agar-agar'a benzemektedir. Mineral Kaynagi Olarak: Bazi yosunlar demir, bakir, manganez, çinko bakimindan zengin kaynaklardir. Hayvan Yemi Olarak: Phaeophyceae, Rhodophyceae ve bazi yesil algler besin kaynagi olarak bir çok hayvan yemi için kullanilir. Bunun yanisira Protozoa, Crustacea'ler, baliklar va diger sucul canlilarin en büyük besin kaynagi planktonik alglerdir. Diatomite: Diatomite, diatomlarin hücre duvari materyalidir. Diatom kabuklarinin üst üste birikmesiyle genis yüzey alanlari olustururlar. Diatomite'ler, seker rafinerisi ve bira sanayisi, isi yalitimi, temizleme sanayi, cam bardak fabrikalari'nda kullanilirlar. Gübre Olarak: Dünyanin birçok sahil yöresindeki yosunlar, fosfor, potasyum ve bazi iz elementlerin varligindan dolayi gübre olarak kullanilirlar. Antibiyotikler: Chlorellin adindaki bir antibiyotik, yesil alglereden olan Chlorella'dan elde edilir. Ayrica gram negatif ve gram pozitif bakterileri karsi efektif olan bazi antibakterial maddeler Ascophyllum nodosum, Rhodomela larix, Laminaria digitata, Pelvetia ve Polysiphonia'nin bazi türlerinden elde edilmektedir. Bunlarin yanisira kahverengi ve diger alglerden elde edilen bir çok ilaç tip alaninda kullanilmaktadir. Atiklarin Aritilmasinda: Evsel ve endüstriyel kaynaklardan gelen atiklar, çözünmüs ya da askidaki organik ve inorganik bilesikleri içerir. Bu atiklarin temizlenme prosesleri oksijenli bir ortamda gerçeklesir ve bu oksijenlendirme bazi algler tarafindan saglanir. Ayrica, temizlenmesi güç olan azot ve fosfor gibi bilesikler alglerin bulundugu tanklara alinarak, algler tarafindan besin kaynagi olarak kullanilmalari suretiyle ortamdan uzaklastirilabilmektedirler. Yunus Akbulut Kaynaklar: Güner, H., 1991, Tohumsuz Bitkiler Sistematigi, Sharma, O. P., Text Book of Algea, 395 s., New Delhi. Round, F. E., 1973, The Biology of Algea, 2 nd. Ed., Edward Arnold, London. Elliot. W., Stoching, C. R., Barbour, M. G., Rost, T. L., 1982, Botany, An Introduction to Plant Biology, 6 nd. Ed., John Wiley and Sons, Singapure.

http://www.biyologlar.com/alglerin-ekolojik-onemi-1

ALGLERİN EKOLOJİK VE EKONOMİK ÖNEMLERİ

Algler, gerek yapısal olarak gerekse de dış görünüşleri bakımından oldukça farklı görünümdedirler. Yapısal olarak eukaryotik (gelişmiş hücre tipi) ve prokaryotik (basit yapılı hücre tipi) olmak üzere iki büyük gruba ayrılırlar. Buna göre Mavi-Yeşil algler göstermiş oldukları hücre organizasyonları bakımından prokaryot hücre özelliği taşımaktadırlar. Belirgin bir hücre çekirdeğinin olmaması ve çok basit olan kromatofor yapısındaki pigmentlerin dağılımı ve prokaryotik hücre özellikleri bakımından diğer alglerden ayrılırlar. Dış görünümleri bakımından tek hücreli ve ipliksi formlardan karışık olarak gelişmiş bireylere kadar değişik biçimlerde gözlenebilmektedirler (Round, 1973). Her canlı gibi, algler de nesillerini devam ettirebilmek için çoğalmak zorundadırlar. Algler üç farklı üreme sistemine sahiptirler. Bunlar; vejatatif üreme, eşeyli ve eşeysiz üremelerdir. Alglerde vejatatif üreme yaygın bir durum göstermektedir. Bazı türlerde hücrelerin büyüyerek koloni oluşturmasına ve bunların daha sonra normal büyüme sonucu bölünmesine dayanır. Diğer bazı türlerde ise tallusun büyümesi ya da ana bitkinin büyümesinin sürmesiyle gerçekleşmektedir. Genellikle alglerin ilkel gruplarında görülen eşeysiz üreme çok değişik biçimlerde ortaya çıkmaktadır. Kamçılı alglerin bazı gruplarında vejatatif üreme ile eşeysiz üreme arasında büyük benzerlikler bulunmaktadır. Bu tip bir üremeye sahip alg hücrelerinden bazı tiplerin farklılaşması ve sonuçta bunların birer birey oluşturarak ana hücreden ayrılmalarıyla gerçekleşmektedir. Son üreme şekli olan eşeyli üreme ise alglerin genel bir özelliği değildir. Bu tip üreme genellikle gelişmiş organizmalarda görülmektedir. Alglerde eşeyli üreme çoğunlukla aynı tür iki organizmanın plazmalarının ve çekirdeklerinin birleşmesiyle gerçekleşmektedir. Bu durum çok basit olarak morfolojik yapıları aynı olan 2 gametin birleşmesiyle olmaktadır. Gametler flagellatlara benzerler ve hareketlidirler. Bazı türlerde gametler yapılarına göre büyük ve küçük olarak ayrılabilirler (Güner, 1991). Algler, her ne kadar ekstrem olarak morfolojik, sitolojik ve üreme varyasyonları bakımından diğer bitkilerle farklılık gösterse de, basit biyokimyasal mekanizmalarının benzer olduğu görülmektedir. Örneğin, klorofil-a yapıları ve bu pigmentler yoluyla çalışan fotosentetik sistemleri, basit besin ihtiyaçları ve asimilasyonun son ürünleri olan karbonhidrat ve proteinler, yüksek bitkiler ile benzerlik göstermektedir. Ekolojik olarak algler, karlı alanlar, tamamen buzla kaplı alanlar da bulunabilirler. Fakat % 70'nin dağıldığı asıl yayılım alanı sulardır. Bu ortamlarda organik karbon bileşeklerinin major primer üreticisidirler. Mikroskobik fitoplankton formunda meydana gelebilirler. Makroskobik ve mikroskobik formların her ikisi de kara ve su hattı boyunca ve bu ortamların her ikisinde meydana gelir. Gövde ya da benzer işlevlere sahip yapıları ile derelerin alt kısımları ve sedimenlere, toprak partiküllerine ya da kayalara tutunurlar. Yukarıda da belirtildiği gibi buzla kaplı alanlarda bulundukları gibi 70 0C ya da daha yüksek sıcaklıktaki kaynak sularında da yaşayabilirler. Bazıları çok tuzlu su ortamlarında bile gelişebilirler. Göllerde ve denizlerde yüzeyden 100 m aşağıda ya da daha düşük ışık yoğunluğu ve yüksek basınç altında yaşayabilirler. Denizlerde yüzeyden 1 km aşağıda da yaşayabildikleri görülmüştür (Elliot et. al., 1992). Algler ile ilgili ekolojik çalışmaların ana hedefleri aşağıdaki gibidir; alglerin yaşadığı habitatların sınıflandırılması, her bir habitat içindeki flora kompozisyonunun tanımlanması, floralar arasındaki ilişkiler ve habitattaki biyolojik, fiziksel ve kimyasal faktörlerin direkt ya da indirekt etkileri, populasyon içindeki türlerin çalışılması ve onların üremelerini kontrol eden faktörler ekolojik çalışmaların kapsamını oluşturmaktadır. Tüm bu yaklaşımlar, çevrenin fiziksel ve kimyasal değişimlerine bağlı olarak coğrafik bir dağılım göstermektedir. Algler su ortamında primer üretici canlılardır. Yapılarındaki pigmentleri sayesinde karbondioksit ve suyu ışığın etkisi ile karbonhidratlara çevirirler, böylece su ortamındaki besin değerinin ve çözünmüş oksijen oranının artmasını sağlarlar. Sonuçta kendi gelişimlerini sağlayarak besin zincirinin ilk halkasını oluştururlar. Bu şekilde üretime olan katkıları ve üst basamaktaki canlılarla olan ilişkileri açısından önem taşımaktadırlar. Alglerin üretimleri çevresel faktörlerle sınırlanmıştır. Bunlar ışık, sıcaklık ve besindir. Bu sınırlayıcı faktörler iyileştirilirse, üretim düzeyi artar. Üretim artışının belli bir düzeyi aşmasının doğal bir sonucu olarak da çevresel denge bozulur ve bu gelişeme eutrofikasyon adı verilir. Eutrofik bir ortamda besin madde girdisinin fazlalığından dolayı, (özellikle azotlu bileşikler ve fosfat gibi alglerin gelişimini arttıran bileşikler) alg ve bakteri faliyetleri ile bulanıklık artar ve ışığın suyun alt kısımlarına geçmesi engellenir. Oksijen dip kısımlarda sınırlayıcı bir özellik kazanır. Bu da bentik bölgede yaşayan canlılar için ölümle sonuçlanabilir. İnsan faaliyetleri, evsel, endüstriyel ve tarımsal atıklar son yıllarda ötrofikasyon direkt etkide bulunmaktadır. Bunun yanısıra atmosferden difüzyon ile suya karışan azot, yağmur sularının alıcı ortamlara taşıdığı besin maddeleri, drenaj yoluyla ortama taşınan maddeler kirlenme sürecini hızlandıran doğal gelişimlerdir. Eutrofikasyonun sonuçlarından birisi de aşırı alg patlamalarının görülmesidir. Bunun anlamı, fitoplankton (alglerin serbest yüzen formları) populasyonlarının suyun rengini, kokusunu ve ekolojik dengesini bozacak yeterli yoğunluğa ulaşmasıdır. Bunun yanı sıra alglerin aşırı gelişmesi, sucul ortamdaki bir çok canlı için toksik etkilere neden olduğu için ölümler görülebilmektedir. Örneğin, Dinoflagellatlardan Gymnodinium ve Gonyanlax'a ait türler aşırı çoğalma sonucu, hayvanların sinir sistemlerini etkileyen, yüksek oranda suda çözünebilen toksik madde üretirler (Elliot et. al., 1992). Diğer patlamalara ise Mavi-Yeşil alglerden Microcystis, Anabaena, Nostoc, Aphanizomenon, Gloeotrichia ve Oscillatoria, Chrysophyte'den Prymnesium parvum neden olmaktadır. Algleri bulundukları sistem içerisindeki etkilerini bu şekilde belirttikten sonra insanlar için ekonomik anlamda sağladıkları katkılara kısaca değinmek gereklidir. Besin maddesi olarak: Çoğunluğu Phaeophyceae ve Phodophycea olan 100'den fazla tür içerdikleri protein, karbonhidrat, vitamin ve minerallerin varlığından dolayı dünyanın çeşitli yerlerinde insanlar tarafından besin kaynağı olarak kullanılırlar. Agar: Kırmızı alglerin hücre duvarlarında bulunan, jelimsi bir özelliğe sahip olan bir polisakkarittir. Bazı algler ve bakterilerle ve birçok fungus'un kültürü için laboratuarda hazırlanan farklı kültür ortamlarında temel olarak kullanılır. Ayrıca önceden hazırlanmış yiyeceklerin paketlenmesi, kabızlığın tedavisi, kozmetik, deri, tekstil ve kağıt endüstrilerinde kullanılmaktadır (Sharma, 1986). Carrageenin: Kırmızı alglerin hücre duvarlarından elde edilen başka bir polisakkarittir. Bu madde mayalama, kozmatik, tekstil, boya, endüstrilerinde ve tıp alanında kan pıhtılayıcısı olarak kullanılmaktadır. Alginatlar: Alginat türevleri ve alginik asit, kahverengi alglerin hücre duvarlarından extre edilen bir karbonhidrattır. Alginatlar kauçuk endüstrisi, boyalar, dondurma, plastik dondurucularda kullanılıyorlar. Ayrıca kanamaları durdurmak için alginik asit kullanılıyor. Funori: Kırmızı alglerden elde edilir. Kağıt ve elbiseler için yapıştırıcı olarak kullanılır. Kimyasal olarak sülfat ester grubu'n içermesi dışında agar-agar'a benzemektedir. Mineral Kaynağı Olarak: Bazı yosunlar demir, bakır, manganez, çinko bakımından zengin kaynaklardır. Hayvan Yemi Olarak: Phaeophyceae, Rhodophyceae ve bazı yeşil algler besin kaynağı olarak bir çok hayvan yemi için kullanılır. Bunun yanısıra Protozoa, Crustacea'ler, balıklar va diğer sucul canlıların en büyük besin kaynağı planktonik alglerdir. Diatomite: Diatomite, diatomların hücre duvarı materyalidir. Diatom kabuklarının üst üste birikmesiyle geniş yüzey alanları oluştururlar. Diatomite'ler, şeker rafinerisi ve bira sanayisi, ısı yalıtımı, temizleme sanayi, cam bardak fabrikaları'nda kullanılırlar. Gübre Olarak: Dünyanın birçok sahil yöresindeki yosunlar, fosfor, potasyum ve bazı iz elementlerin varlığından dolayı gübre olarak kullanılırlar. Antibiyotikler: Chlorellin adındaki bir antibiyotik, yeşil alglereden olan Chlorella'dan elde edilir. Ayrıca gram negatif ve gram pozitif bakterileri karşı efektif olan bazı antibakterial maddeler Ascophyllum nodosum, Rhodomela larix, Laminaria digitata, Pelvetia ve Polysiphonia'nın bazı türlerinden elde edilmektedir. Bunların yanısıra kahverengi ve diğer alglerden elde edilen bir çok ilaç tıp alanında kullanılmaktadır. Atıkların Arıtılmasında: Evsel ve endüstriyel kaynaklardan gelen atıklar, çözünmüş ya da askıdaki organik ve inorganik bileşikleri içerir. Bu atıkların temizlenme prosesleri oksijenli bir ortamda gerçekleşir ve bu oksijenlendirme bazı algler tarafından sağlanır. Ayrıca, temizlenmesi güç olan azot ve fosfor gibi bileşikler alglerin bulunduğu tanklara alınarak, algler tarafından besin kaynağı olarak kullanılmaları suretiyle ortamdan uzaklaştırılabilmektedirler. Kaynaklar: Güner, H., 1991, Tohumsuz Bitkiler Sistematiği, I. Cilt, Ege Üniversitesi Fen Fak. Kitaplar Serisi No:108, 251 s., İzmir Sharma, O. P., Text Book of Algea, 395 s., New Delhi. Round, F. E., 1973, The Biology of Algea, 2 nd. Ed., Edward Arnold, London. Elliot. W., Stoching, C. R., Barbour, M. G., Rost, T. L., 1982, Botany, An Introduction to Plant Biology, 6 nd. Ed., John Wiley and Sons, Singapure.

http://www.biyologlar.com/alglerin-ekolojik-ve-ekonomik-onemleri

BİYOCOĞRAFİK BÖLGELER VE HAYVANLARI

Bitki örtüsü, hayvan toplulukları (zoosönoz) ve ortam koşulları biyotopun bir parçası gibi değerlendirilir. Bitki toplulukları (fitosönoz) bulundukları yerin koşullarına doğrudan bağlıdır. Yeryüzündeki hayvan topluluklarının yayılışı da bitkilerin yayılışına uygunluk gösterir. Aynı ekosistemlere sahip olan bölgelerin benzer biyotoplarında, hayvansal ve bitkisel izosönozlar hüküm sürdüğünden, yeryüzünün belirli bölgelerinin karşılaştırılması kolaylaşır. Karaların biyolojik bölgelerinin ilke olarak coğrafik bölgelere paralel olarak oluşması, sıcaklık etmeninin asıl önemli rolü oynadığını göstermektedir. Kutuplara doğru sıcaklık düşmekte ve farklı nem oranları ortaya çıkmaktadır. Aşağıdaki şekilde yeryüzünün karasal biyolojik bölgelerinin dağılımı gösterilmiştir. Toprak yapısında da bir farklılık vardır . Bütün bunlar aynı zamanda hayvansal bölgelerin dağılımına da temel oluşturmaktadır.

http://www.biyologlar.com/biyocografik-bolgeler-ve-hayvanlari

Herbaryum Yaparken Familya Düzeyinde Dikkat Edilmesi Gereken Hususlar (Yildirim ve Ercis, 1990; Seçmen ve Ark., 1995)

Alismataceae: Çiçek ve meyvelerden örnekler alinmali, erkek ve disi çiçekler toplanmalidir. Amaranthaceae: Olgunlasmis meyve örnegi alinmali, Monoik veya dioik oldugu not edilmelidir. Apiaceae (Umbelliferae): Uzun boylu bitkilerde taban ve gövde yapraklarindan da örnekler alinmali, bitki boyu not edilmeli, özellikle meyveli örnek toplanmasina dikkat edilmelidir. Aracea: Bitki toplanirken meyveli örnek tek basina pek yeterli olmamaktadir. Çiçekler, çiçek durumu, toprak alti parçalari ve yapraklar daha önemli olmaktadir. Aristolochiaceae: Periant'in rengi ve sekli not edilmeli,bir kaç periant açilarak preslenmelidir. Asteraceae (Compositae): Kapitula'daki tüpsü ve dilsi çiçeklerin renkleri ayri ayri not edilmeli, büyük kapitulali örneklerde 1-2 kapitula ortadan ikiye kesilerek preslenmeli, büyük boylu bitkilerde taban yapraklarindan da örnekler alinmalidir. Boraginaceae: Korolla tüpünün iç özelliklerini not etmek yani bogaz kisminda tüylerin veya pulsu yapilarin bulunup bulunmadigim belirtmek,ayrica stamenlerin baglanma yerlerini not etmek; meyveli örneklerden de toplamaya çalismak yararli olur. Brassicaceae (Cruciferae): Cruciferae taksonomisinde meyve özellikleri büyük önem tasidigindan, meyvesiz örneklerin teshisi cins düzeyinde de olsa hemen hemen imkansiz gibidir. Bu bakimdan çiçekli örneklerin yani sira olgun meyveli örneklerin toplanmasina dikkat edilmelidir. Campanulaceae: Korollanin dis sekli ve gözlenebildigi kadariyla kapsüllerin açilis yerleri, stigma, lop sayisi not edilmelidir. Caryophyllaceae: Stilus sayisi ile kapsül dis veya kapaklarinin sayisi not edilmelidir. Chenopodiaceae. Bu familyada monoik ve polygam esey dagilimi yaygindir. Özellikle meyveli örneklerin toplanmasi gerekir. Mümkün olabildigince periant parçalari, stamen ve stiluslarin sayilari not edilmelidir. Bu is için %10'luk el büyüteci gerekir. Türlerin pek çogu halofittir (turlu topraklarda yetisen), çorak ve ruderal yerlere adapte olmuslardir. Çiçeklenme ve meyvelenmeleri geç oldugundan genellikle ideal örneklerin toplanmasi Agustos-Eylül sonlarindan itibaren olmalidir. Convolvulaceae: Birkaç petal yaprak yarilarak preslenmelidir. Cucurbitaceae: Monoik veya dioik esey dagilimi, korollanin sekli not edilmelidir. Cuscutaceae: Üzerinde yasadigi bitki not edilmeli, çiçekli ve meyveli örnekler toplanmalidir. Cyperaceae: Olgunlasmis meyve, çiçek ve toprak alti kisimlari toplanmalidir. Dipsacaceae: Olgunlasmis meyve toplanmali, Kapitula sekli ve çiçek rengi not edilmelidir. Euphorbiaceae: Glandlarin sekli ve rengi gerektiginde çizilerek not edilmelidir. Fabaceae (Leguminosae): Çiçekli ve meyveli örneklerin toplanmasi, korolla renginin not edilmesi gerekir. Geraniaceae: Olgunlasmis meyve, yaprak ve toprak alti kisimlarindan örnekler alinmali, bitkinin genel durusu not edilmelidir. Iridaceae: Bir kaç çiçek yarilarak preslenmeli; yumrulu örneklerde tunikanin doku sekli ve rengi not edilmelidir. Juncaceae: Meyve ve toprak alti kisimlardan örnekler alinmali, stamen sayisi, yaprak sekli not edilmelidir. Lamiaceae (Labiatae): Stamenlerin sekli, pozisyonu, sayisi ve stilus çikis yeri not edilmelidir. Lemnaceae: Çiçek ve yapraklardan örnekler alinmali, köklerin sayisina dikkat edilmelidir. Liliaceae: Yaprak sekilleri not edilmeli,muhakkak toprak alti organlari ile birlikte toplanmali. Soganli örneklerde ikiye yarilarak preslenmeli, tunikanin doku sekli (ipliksi,levhali,agsi) not edilmelidir. Linaceae: Petalleri çabuk döküldügünden ayri naylon torbalarda korunarak bir an önce dikkatlice preslenmelidir. Loranthaceae: Çiçek ve meyvelerden örnekler alinmali, çiçek sekilleri ve hangi agacin üzerinde bulunduguna dikkat edilmelidir. Malvaceae: Çiçek, olgun meyve ve toprak alti kisimlarindan örnekler alinmali, çiçeklerin rengi not edilmeli ve yarilarak preslenmelidir. Orchidaceae: Çiçek rengi ve sekli not edilmeli.Mümkünse renkli fotografi çekilmelidir. Orabanchaceae: Çiçek rengi ve hangi bitki kökleri üzerinde yasadigi not edilmeli, ayrica gövdeleri succulent (suca zengin) oldugundan boyuna yarilarak veya gövde üzerinde çaki ile boyuna çizilip açilarak preslenmelidir. Papaveraceae: Çiçek rengi ve petallerin sekli not edilmelidir. Meyveli örneklerden de toplanmalidir. Papaver (Gelincik) de petaller çok ince ve kolay döküldügünden bunlar ayri naylon torbalarda toplanmali ve kisa zamanda preslenmelidir. Ayrica preslerken çiçekli kisimlarin altina kagit mendil sermek yararli olur. Poaceae (Gramineae): Anterlerin renkleri; ligulanin bulunup bulunmadigi, sekli, uzunlugu not edilmelidir. Polygonaceae: Meyve ve toprak alti kisimlarindan örnekler alinmali, bitkinin genel durusu ve çiçek rengi not edilmelidir. Potamogetonaceae: Meyve, stipül ve suya yatik yapraklardan örnekler alinmali, Stipuller düzgün ve kolaylikla görülebilecek bir sekilde pres edilmelidir. Primulaceae: Çiçek, yaprak, olgunlasmis meyve ve toprak alti kisimlarindan örnekler alinmali, çiçek sekli ve rengi not edilmelidir. Ranunculaceae: Meyveli örneklerin de toplanmasina gayret edilmeli; petallerin sayi, renk ve sekilleri, sepallerin geriye dönük olup olmadigi not edilmelidir. Resedaceae: Olgunlasmis meyvelerden örnekler alinmali, çiçek rengi edilmelidir. Rosaceae: Hem çiçekli hem de meyveli örneklerin toplanmasina gayret edilmelidir. Drupa ve elma tipi meyveye sahip örneklerde birkaç meyve ortadan kesilerek preslenmelidir. Rubiaceae: Çiçek ve yapraklardan örnekler alinmali, çiçek rengi not edilmelidir. Salicaceae: Erkek ve disi bitkilerden çiçekli ve yaprakli örneklerin ayri ayri toplanmasina özen gösterilmelidir. Scrophulariaceae: Özellikle Verbascum cinsinin taban ve gövde yapraklarindan örnekler alinmali; stamenlerin sayisi, fiamentlerin tüylülük durumu ve tüylerin rengi, anterlerin baglanis sekilleri not edilmelidir. Korollalari çabuk döküldügünden preslemede itina gösterilmelidir. Solanaceae: Çiçek ve meyvelerden örnekler alinmali, çiçekler yarilarak preslenmeli ve meyve rengi not edilmelidir. Typhaceae: Çiçek ve yapraklardan örnekler alinmalidir. Violaceae: Petallerin rengi, mahmuzlarin rengi ve boyu not edilmelidir.

http://www.biyologlar.com/herbaryum-yaparken-familya-duzeyinde-dikkat-edilmesi-gereken-hususlar-yildirim-ve-ercis-1990-secmen-ve-ark-1995

Ekosistemlerin Belirgin Özelikleri

Bir ekosistem biyosferin, bir bölümü ya da parçasıdır ; büyüklüğü ya da genişliği çok değişik olabilir. Bir Su birikintisi, bir Buğday tarlası birer ekosistemdir. Fakat kurumuş bir Ağaç kütüğü gibi son derece belirgin ve dar sınırlı öğeler de birer ekosistem parçası sayılabilir. Ama kısıtlı ekosistemelerin genellikle zaman içinde sınırlı bir yaşamı vardır. Bu yüzden bunlar birer ekosistem parçası sayılır, sinüzi adıyla anılır. Bunun tam tersine Afrika savanaları ya da Avrupa’nın geniş yapraklı ormanları gibi, kimi Ekosistemler çok geniş bölgeleri kaplar. İklimin denetimi altında bulunan kutuplardan ekvatora kadar az çok paralel bölgelere yayılan bu öğeler deformasyon (oluşum) veya biyom adıyla anılır. Bunlar, bir genel görünümün kendine özgü bir direy (fauna) ve bitey (flora) içeren karakteristik ana öğeleridir. Boyutları ne olursa olsun, bir Ekosistemin sınırları az çok belirgindir. Çoğunlukla birbirine komşu ekosistem arasında bir geçiş bölgesi (ekoton) vardır. Geçiş bölgesi, bir ormanın kıyı çizgisi gibi veya ekvator ormanından savanalara geçişte olduğu gibi yaygın bir bölge olabilir. Ekotonların belirgin özelliği, kendine özgü iklimi ve daha zengin direyidir. Bunun için, kıyı kuşu türlerinin sayısı kara ve açık deniz kuşlarınınkinden fazladır. (Çünkü kıyı kesimi, anakara ile Okyanus arasında bir ekoton oluşturur.) Ekosistemlerin sınırlarının belirlenmesi, özellikle hayvan sayısı gözönünde bulundurulacak olursa, hiç de kolay değildir Bu konuda birçok örnekleme ve istatistik verilerini değerlendirme yöntemleri bulunmuştur. Bu bakımdan, bellibaşlı hayvan türlerinin bolluğunu, dağılımını, yıllık çevrimlerini, sayılarının azalıp çoğalmasını, metabolizmalarını bilmek gerekir. Bu veriler ya yerinde ya da yetiştirme yoluyla elde edilebilir. Bu birinci aşama tamamlandıktan sonradır ki, Ekosistemleri yapısını ve işleyişini incelemeye başlamakmümkün olabilir.

http://www.biyologlar.com/ekosistemlerin-belirgin-ozelikleri-1

Histolojide Kullanılan Yöntemler

1-Preparasyon Yöntemleri Taze hücre ve dokular: Kan ve lenf gibi sıvısal örnek hücreleri, derialtı bağ dokusu hücreler direkt olarak incelenebilir. Doku kalın veya katı bir organ halindeyse tuz çözeltisi içinde diderek veya ayırarak hücrelerin birbirinden ayrılması sağlanır. Taze preparatlarda hücreler gerçek morfolojilerini yitirmeden incelenir. Ancak kontrast azlığından dolayı vital boyama uygulanmalı ya da faz-kontrast mikroskop kullanarak incelenmelidir.Canlı ve taze materyelin çalışılması için lam ve lameller temiz olmalı. Canlı numuneler için kullanılan pipetler, cam eşyalar ve aletler kimyasal maddeler için kullanılanlar ile asla karıştırılmamalıdır. Herbir kültürden alınacak küçük organizmalar için ayrı bir pipet kullanılır. Her kimyasal madde için de ayrı pipet kullanılmalıdır. Saf kültür için çalışmaya başlanmadan önce cam eşyayı ve ortamı sterilize etmek gereklidir. Canlı ve taze materyel için bright-Field illumination- ışıklandırma dikkatli kontrol edilmeli, çünkü canlı hücrenin birçok yapısı refraktif indeks veya renkte çok az fark ile ayırt edilir. Küçük ve şeffaf organizmalar, serbest yaşayan protozoalar, küçük sölenteratlar, rotiferler, ectoproct lar, yassı kurtlar, nematod lar snnelidler, krustaseler ve omurgasızların ve aşağı omurgalıların larvaları, embriyoları ve yumurtaları bir iki damla su içinde incelenebilir. Tatlı su ve toprakta yaşayanlar tatlı suda ve deniz suyu veya tuzlu ve acı suda yaşıyanlar uygun tuzluluktaki suda incelenirler. Ancak su metaller, chlorine veya diğer zehirler ile kirlenmemiş olmamalıdır.Tatlı su organizmaları için havuz veya kültür kabından alınan su yeterlidir. Deniz suyu yalnız cam, porselen, toksik tipte olmayan bazı plastik ile temasta olmalı, metal borular birçok organizma için toksiktir. Vital boyama ile hücrelerin sitoplazmasına renk ve kontrast kazandırılır. Vital boyama 2 şekilde uygulanır. Canlı hücreler boya solusyonunda ayrılarak (supra-vital boyama ) veya canlı organizmaya boyanın injeksiyonu ile (intra-vital) boyanabilirler. Canlı hücre kısımları gösterildiğinden bu yöntemler idealdir. Vital boyama ile sitoplazmik yapılar gösterilir. Çekirdek zarı vital boyalara dirençlidir. Çekirdek zarının boyalara geçirgenleşmesi hücre ölümünün ifadesidir. 2-Sitolojik YöntemlerHücre içeren sıvılar, aspire kemik iliği gibi ince doku parçaları lam üzerine alınır ve hücrelerin görünüşlerini koruyabilmeleri için tespit edilir. Organlar ve dokular da lama sürülerek ve smearler hücre yapısını göstermek için boyanırlar. Boyanmış smearlerin incelenmesi eksfolyatif sitolojide standart bir yöntemdir. Atipik hücrelerin bulunuşu malignite hakkında fikir verir. Diagnostik sitolojideki gelişmeler Beale (1860) ‘nin karsinoma hücreleri için vücut sıvılarını incelemesi ile başlamış ve Papanicolaou (1943) yöntemi ile ilerlemeler kaydetmiştir.Dalak ve kemik iliği gibi organlarının kesi yüzeyine veya organın bir parçasına lam değdirilerek uygulanan impression yöntemi ile dokunun küçük bir artitektürel düzeni hakkında fikir edinilebilir. Yumuşak tümörlerde malignite bu teknikle hızla çalışılabilir. Smearlerde hücreler yassıldıkları, dokulardan hazırlanan kesitlerdeki hücrelerden daha geniş olduklarından ve dokunun artitektürünü koruduklarından hücresel ayrıntılar daha kolaylıkla izlenir. Kesitsel tekniklere ek olarak smearler kullanılabilir. 3-Kesitsel YöntemlerDoku parçalarından alınan örnekler yaklaşık olarak 1 hücre kalınlığında dilimlere ayrılırlar. Hücresel yapıyı görmek için bu kesitler değişik tekniklerle boyanırlar. Kesitlerin yorumu, kesitler dikey ya da yatay konumda alınmamışsa tecrübe gerektirir.Histolojide doğru sonuç veren birçok kesitsel yöntem vardır. Seri kesitlerin alınması ile küçük bir dokunun rekontriksüyonu yapılabilir. Tüm örneklerden numaralandırılarak kesitler alınır, boyanır ve incelenir. Doku büyük ise belirli aralıklarla alınan kesitler örneğin tüm yapısını kapsamlı olarak açıklayabilir. Bu yöntem basamaklı kesit alma (step-sectioning) olarak bilinir. Taze veya tespit edilmiş dokulardan jilet ile mikrotomsuz kesit alınabilir. Sadece yüzey boyanacağından histolojik yapı iyi gözlenemez. Bu yöntem hala dokuları tanımanın hızlı ve kolay yoludur. Mikrotom kullanarak uygulanan kesitsel yöntemlerin çoğunda doku uygun bir kıvama getirilir, parafin, selloidin veya sentetik resinlere gömülür ya da dondurma (freezing) yapılabilir. Frozen kesitler taze dokulardan alındığı için tespite gerek duyulmaz. Diğerleri için tespit gereklidir.Histolojik kesitler genellikle 4-7 mm kalınlığında alınır. Yağ damlacıkları, sinir fibrilleri ve kan damarları gibi geniş yapılar için 10-25 mm daha uygundur. Sentetik rezinlere gömülen dokulardan 1 mm’luk kesitler alınabilir. Doğal olarak hücresel ayrıntı daha iyi olacaktır. Elektronmikrospobik gözlemler için ultratom ile 50-100 nm’ lik kesitler alınır. Genellikle gösterim ve eğitim için çıplak gözle incelemek üzere 300-400 mm’ luk kesitler alınabilir. Bu amaçla jelatine gömülmüş organlardan geniş bir mikrotom ile kesitler alınarak incelenir.Dokuların çoğu yumuşaktır. Dişler, kemik gibi bazı dokular ise çok serttir. Bu nedenle kesitten önce dekalsifikasyona gereksinim vardır. Matriksin kalsifikasyonun normal olup olmadığı ise dekalsifiye edilmemiş örneklerde araştırılır. Bu amaçla dens gömme ortamları ve ağır mikrotomların kullanılması gereklidir. Mikroskobik inceleme için dokuların renge ve kontrasta gereksinimi olduğundan kesitlerin boyanması yapılır. Preperatların uygun bir kırma indisi olmalıdır. Boyama; renkli olan veya floresansı artıran boyalarla, renkli son ürünler oluşturan kimyasal reaksiyonlarla veya metalik çöktürme ile doku bileşenleri opaklaştırılarak yapılabilmektedir. Geleneksel boyama yöntemlerine ek olarak boyama-olmayan teknikler de kullanılabilir. Histolojide floresans immünolojik yöntemler, otoradyografi, mikroinkrinasyon ve mikroradyografik yöntemler de kullanılmaktadır. Floresans immüno-histolojik yöntemler: Florokromla işaretlenmiş antikorların kullanımına dayanmaktadır. Çok spesifik bir yöntemdir. İmmün kompleksleri ve dokulardaki yapıları göstermek için kullanılır. Floresans mikroskopta incelenen preparatlar az miktardaki florokromu gösterme yeteneğindedir. Otoradyografi: İşaretlenmiş bir radyoaktif element dokuya verilimini takiben dokudaki hücrelerle birleşebilir. Otoradyografi bir fotografik emülsiyondaki gümüş tuzlarını indirgeme yetenekleri ile radyoaktif izotop alanlarını gösterecektir. Fotografik emülsiyon özel plaklardan çıkarılır ve kesitlere uygulanır. Çalışanlar, radyoaktivitenin zararları konusunda uyarılmalıdır. Biyolojik kullanımdaki radyoaktif izotopların yarı-ömrü birkaç saatten yıllara kadar değişebilir. Mikroinkrenasyon (yakıp kül etme ): Lam üzerine alınan kesitler elektrikli fırında ısı yavaş yavaş artırılarak ısıtılır. Organik maddelerin tümü uzaklaştığından geriye dokunun mineral iskeleti kalır. Yansıyan ışık ve karanlık saha mikroskobu ile inkrenasyon yapılmamış kontrol kesitle karşılaştırılarak incelenir. Histospektrografik yöntemle minerallerin kantitatif ölçümü de yapılabilir. Mikroradyografi: X-ışınlarının absorbsiyonu ile dokunun kimyasal yapısı hakkında bilgi edinilir. X-ışınlarını absorbe eden kemik, kıkırdak, enamel ve dentin gibi hidroksi-apatit kristallerini içeren kalsifiye dokular ince taneli fotografik emülsiyon ile yakın temasa tutularak yumuşak bir X-ışını verilir. Elde edilen fotograf mineralin dağılımını gösterir ve kontakt mikroradyograf olarak adlandırılır. Klasik ışık mikroskobu ile incelenebileceği gibi projeksiyon mikrografi için geliştirilen aletlerle de incelenebilir. Kesitin alanlarında mineral miktarları da ölçülebilir. Kemik örnekleri metil metakrilata gömüldükten sonra öğütülür ve parlatılır. 20 kV X-ışını ile ışınlanır. Çok ince taneli özel fotografik emülsiyonundan geçirilir. 5-10 kV’ lik çok yumuşak X-ışınları kullanılırsa yumuşak doku kesitlerinin mikroradyografları dokuların protein içeriği ve hücrelerin kuru kütlesi hakkında bilgi elde edilebilir. Mikroradyografi, bazen radyoopak maddenin injeksiyonu sonunda kan damarlarının düzenini göstermek için kullanılır

http://www.biyologlar.com/histolojide-kullanilan-yontemler-1

Su Ekosistemleri

Denizlerin (tuzlu suların) ve tatlı suların oluşturduğu ekosistemlerdir. Göller, sulak alanlar (bataklık, gölet, sazlık), yeraltı suları ve akarsular tatlı su ekosistemini, denizler ise tuzlu su ekosistemini oluşturur. 1- Tatlı Su Ekosistemleri : • Nehir Ekosistemleri : Suyun akış hızı, su derinliği, bulunduğu yer burada yaşayan canlı çeşitliliğini belirler. • Göl Ekosistemleri : Göl ekosistemlerinde mikroskobik canlılar, kurbağalar, sazlıklar, sinekler, balıklar, çeşitli kuşlar, balıkçıl kuşlar, çeşitli böcekler, ördek, yılan, çekirge gibi canlılar ile nilüfer, eğrelti otu, atkuyruğu ve nergis türü bitkiler bulunur. Göl ekosisteminin büyüklüğü, bulunduğu yer, derinliği, sıcaklık, tuz miktarı, ışık miktarı ve suyun özelliği burada yaşayan canlı çeşitliliğini değiştirebilir. • Sulak Alan Ekosistemleri : Kara ve su ekosistemlerinin birleştiği yerlerdir. 2- Tuzlu Su (Deniz) Ekosistemleri : Yeryüzünün en büyük ekosistemlerinden biri deniz ekosistemleridir. Deniz ekosistemlerinde mikroskobik canlılardan çok büyük memeli hayvanlara kadar çok sayıda canlı çeşidi bulunur. Denizdeki tuz oranı, suyun derinliği, sıcaklık ve ışık miktarı buralarda yaşayan hayvan çeşitliliğini belirler ve denizlerde farklı ekosistemlerin oluşmasını sağlar. Denizlerde fotosentez yapan üretici canlılar ile bu canlıları yiyerek beslenen küçük canlılar (planktonlar ve hayvansal planktonlar), onlarla beslenen küçük balıklarla birlikte besinlerini diğer canlılardan karşılayan daha büyük balıklar (yunus, balina) bulunur. (Büyük balıklar genelde daha derin yerlerde yaşarlar). Hemen hemen bütün deniz canlıları güneş ışığının ulaştığı ilk 100 metrelik derinlikte yaşarlar. Deniz ekosistemlerinden en büyüğü Hazar Denizi ekosistemidir. Canlılarla (hayvanlar,bitkiler,mikroorganizmalar) içinde bulundukları maddi ortamı birleştiren fonksiyonel (işlevsel) bütün Yeryüzünde Canlı yaratıkların tümü, biyosfer denilen ince bir kabukta yaşar. Biyosferin belirgin özelliği onu oluşturan hayvan ve Bitki türlerinin çok çeşitliliği ve yapısındaki düzensizliktir. Bu düzensizlik, canlı yaratıklarla fizik ortam öğelerinin eşitsizlik eşitsiz dağılımında açıkça görülür Ama bu çeşitliliğe karşın, Canlıların biyosferdeki yerleşimi bir kargaşa şeklinde değildir. 1935 yılında ingiliz botanikçisi Arthur C. Tansley’in Ekosistem adına verdiği birimler halindedir. Belirli bir ortamda yaşayan canlıların tümüne biyosenoz, bunların barındıkları ortama da biyotop denir. Ekosistem bu ikisinin ilişkisi ortak tanımlanabilir Biyotop + Biyosentez = Ekosistem  

http://www.biyologlar.com/su-ekosistemleri

Bakterilerde Metabolizma

Üst organizmalardan farklı olarak bakterilerde görülen metabolik tipler büyük bir çeşitlilik sergiler. Metabolik özelliklerin bir bakteri grubu içinde dağılımı geleneksel olarak onların taksonomisini tanımlamak için kullanılmıştır ama bu özellikler çoğu zaman modern genetik sınıflandırmaya karşılık gelmez. Bakteriyel metabolizmayı besinsel gruplara göre ayırırken üç ana kıstas kullanılar: büyüme için kullanılan enerji türü, karbon türü ve elektron vericisi. Solunum yapan mikroorganizmalar için kullanılan bir diğer kıstas, aerobik veya anaerobik solunum için kullanılan elektron alıcılarıdır. Bakterilerde karbon metabolizması ya heterotrofiktir, organik bileşikler karbon kaynağı olarak kullanılır veya ototrofiktir, yani hücresel karbon, karbon dioksitin karbon fiksasyonu elde edilir. Tipik ototrofik bakteriler arasında fototrofik siyanobakteriler, yeşil kükürt bakterileri ve bazı mor bakteriler sayılabilir, ama pekçok kemolitrofik türler de, örneğin azotlayıcı ve kükürt yükseltgeyici bakteriler de bu grupta yer alır. Bakterilerin enerji metabolizması ya fototrofiye, yani ışığın fotosentez yoluyla kullanımına, ya da kemotrofiye, yani enerji için kimyasal bileşiklerin kullanımıdır ki bu bileşiklerin çoğu oksijen veya ona alternatif başka elektron alıcıları yoluyla yükseltgenir (aerobik veya anaerobik solunum). Nihayet, bakteriler ya inorganik ya da organik bileşikler elektron vericileri kullanmalarına göre, sırasıyla, litotrof veya organotrof olarak siniflanirlar. Kemotrofik organizmalar, hem enerji korunumu (solunum veya fermantasyon ile) hem de biosentetik tepkimeler için bu elektron vericilerini kullanır, buna karşın fototrofik organzmalar onları sadece biyosentetik amaçla kullanırlar. Solunum yapan organizmalar enerji kayanğı olarak kimyasal bileşikler kullanırlar, bunun için elektronlar bir yükseltgenme-indirgenme (redoks) tepkimesi ile indirgenmiş bir substrattan bir son elektron alıcısına taşınır. Bu tepkimenin açığa çıkardığı enerji ile ATP sentezlenir ve metabolizma yürütülür. Aerobik organizmalarda oksijen elektron alıcısı olarak kullanılır. Anaerobik organizmalarda nitrat, sülfat veya karbon dioksit gibi başka inorganik bileşikler elektron alıcısı olarak kullanılır. Bunlar sonucunda ekolojide büyük önem taşıyan denitrifikasyon, sülfat indirgenmesi ve asetogenez süreçleri meydana gelir. Kemotroflarda, bir elektron alıcısının yokluğu halinde, bir diğer olası yaşam yolu fermantasyondur, bunda indirgeniş substratlardan elde edilen elektronlar yükseltgenmiş ara ürünlere aktarılarak fermantasyon ürünleri meydana getirir, örneğin laktik asit, etanol, hidrojen, butirik asit gibi. Substratların enerji seviyesi ürünlerinkinden daha yüksek olması sayesinde fermantasyon mümkün olur, böylece organizmalar ATP sentezler ve metabolizmalarını çalıştırırlar. Bu süreçler, çevre kirlenmesine olan biyolojik tepkilerde de önemlidirler: örneğin sülfat indirgeyici bakteriler, cıvanın çok toksik şekillerinin (metil- ve dimetil-cıva) üretiminden büyük ölçüde sorumludur. Solunum yapmayan anaeroblar fermantasyon yoluyla enerji üretip indirgeyici güç elde ederler, bu sırada metabolik yan ürünleri (biracılıkta etanol gibi) atık olarak salgılarlar. Seçmeli anaeroblar (fakültatif anaeroblar), içinde bulundukları çevresel şartlara göre fermantasyon ile farklı elektron alıcıları arasında seçim yaparlar. Litotrofik bakteriler enerji kaynağı olarak inorganik bileşikler kullanırlar. Yaygın kullanılan elektron vericileri hidrojen, karbon monoksit, amonyak (nitrifikasyona yol açar), feröz demir ve diğer indirgenmiş metal iyonları, ve bazı indirgenmiş kükürt bileşikleridir. Metan gazı metanotrofik bakteriler tarafından hem bir elektron kaynağı hem de karbon anabolizmasında bir substrat olarak kullanılması bakımından dikkat çekicidir. Hem aerobik fototrofi hem de kemolitotrofide, oksijen nihai elektron alıcısı olarak kullanılır, anaerobik şarlarda ise inorganik bileşikler kullanılır. Çoğu litotrofik organizma otortorfiktir, buna karşın organotrofik organzmalar heterotrofiktir. Karbon dioksitin fotosentezle fiksasyonuna ek olarak bazı bakteriler, nitrojenaz enzimini kullanarak azot gazını sabitlerler (azot fiksasyonu). Çevresel olarak önemli olan bu özellik, yukarıda sayılmış metabolik tiplerin herbirindeki bazı bakterilerde görülür ama evrensel değildir.

http://www.biyologlar.com/bakterilerde-metabolizma

Bitki Fizyolojisi Bölüm 2

Bilindiği gibi fizyoloji organeller, hücre ve dokular ile organ ve organizmaların canlılığını sağlayan işlevlerini, ilişkilerini ve cansız çevre ile etkileşimlerini inceleyen bilim dalıdır. Bitki fizyolojisi de bu çerçevede mikroalglerden ağaçlara kadar tüm bitkilerde bu konuları araştırır. Günümüzde bilgi birikiminin ve iletiminin çok hızlı artışı nedeniyle bilim dallarının sayılarındaki artış yanında sürekli yeni ara dalların ortaya çıkması sonucu bilim dalları arasındaki sınırları çizmek zorlaşmış ve giderek anlamını yitirmeye başlamıştır. Fizyoloji fizik ve kimya ile moleküler biyoloji, sitoloji, anatomi ve morfoloji ile biyofizik, biyokimya verileri ve bulgularından yararlanarak tıp ve veterinerlik, ekoloji ve çevre, tarım ve ormancılık ile farmasi ve gıda, kimya mühendisliği gibi uygulamalı bilimlerrindeki gelişmeler için altyapı sağlamaktadır. Bitki fizyolojisi de bitkilerle ilgili olan konularda aynı şekilde çalışarak.diğer temel ve uygulamalı bilimlerin gelişmesine katkıda bulunmaktadır. Uzunca bir süre önce fizyoloji ile biyokimyanın konuları arasındaki sınır netliğini kaybetmiştir. Giderek diğer bilim dalları ile aradaki sınırlar da bilgibirikiminin artışı sonucunda zayıflayacaktır. BİTKİ FİZYOLOJİSİNİN KONUSU VE DALLARI Klasik olarak fizyoloji, beslenme fizyolojisi, metabolizma fizyolojisi ve büyüme gelişme fizyolojisi olarak üç ana dala ayrılır. Bu yaklaşımla bitki fizyolojisinde beslenme kara bitkilerinin havadan, su bitkilerinin de sudan sağladığı gazlar ve kara bitkilerinin havadan sağladığı su buharı ile toprak veya sudan sağladıkları mineral iyonları, nasıl alındıkları ile ilgili konular beslenme fizyolojisi başlığı altında toplanır. Metabolizma fizyolojisi de bu çerçevede alınan hammaddelerin, hangi maddelere dönüştürüldüğü ve kullanıldığı, işlevlerinin neler olduğu, hangi durumlarda bu tabloda ne yönde ve nasıl değişimler olduğunu inceler. Biyokimya ile en yakın olan daldır. Metabolizma fizyolojisinin karmaşık ve genişkapsamlı oluşu nedeniyle de primer ( birincil, temel ), sekonder ( ikincil ) ve ara metabolizma, primer metabolitlerin depolanan ve gerektiğinde sindirilen dönüşüm ürünlerini konu alan alt dallara ayırılması gereği ortaya çıkmıştır. Büyüme ve gelişme fizyolojisi ise beslenme ile alınan, metabolize edilen maddelerin kullanılması ile organellerden, bitki hücrelerinin embriyo düzeyinden başlayarak organlar ile bitki organizmalarına kadar büyümelerini, belli bir yönde farklılaşarak özel işlevler kazanmalarını, bütün bu olayları etkileyen etmenleri ve etkileşimlerin mekanizmalarını inceler. Büyüme ve gelişme fizyolojisi hem moleküler biyoloji hem de biyokimya ve ekoloji ile yakından ilişkilidir. Çünkü büyümeyi ve sonra gelişmeyi tetikleyen mekanizma ve özellikle farklılaşmanın şekilleri açısından kapasite genetik yapı ve baskı, biyokimyasal özellikler ile çevre koşulları ile yakından ilişkilidir. Bilgi birikiminin artışı ile bitki gruplarına has özellikleri inceleyen veya yüksek bitkilerin yaşamında ve uygulamalı bilimlerde önemli yer tutan belli olgu ve gelişmeleri konu alan alt dallar ortaya çıkmıştır. Bitki hücre fizyolojisi, alg fizyolojisi, çimlenme fizyolojisi, çiçeklenme fizyolojisi, stres fizyolojisi, bunlardandır. Ayrıca fizyolojik olayların açıklanabilmesi gerekli temel bilgileri sağlayan fizik, enerjetik, kimya, fizikokimya ve biyokimya gibi dalların katkıları oranına göre de biyofizik, fiziksel biyokimya, biyo-organik veya inorganik kimya gibi dallara benzer şekilde biyofiziksel, biyokimyasal fizyoloji gibi alt dallara ayrılır. Günümüzde botaniğin ve diğer temel ve teknolojik bilimler ile dallarının konuları ile ilişkinin yoğunluğuna göre adlandırılan alt dallara da ayrılmıştır. Bitki ökofizyolojisi, ürün fizyolojisi, depolama fizyolojisi, fizyolojik fitopatoloji bu alt dallara örnek olarak verilebilir. Bu tür konu sınıflandırmaları çerçevesinde bitki fizyolojisini, fizyolojinin temel konularının bitkileri diğer canlılardan ayıran temel özelliklerin fizyolojik yönlerinden başlayarak ele almak ve bu temeller üzerinde açılım gösteren özel konulara yönelerek işlemek yararlı olabilir. Bilindiği gibi canlıların en temel özellikleri aldıkları enerjiyi belli sınırlar içinde olmak üzere çevreden alabilmeleri, kullanabilmeleri, depolayabilmeleri ve gerektiğinde açığa çıkarabilmeleri, biyolojik iş yapabilmeleridir. Cansızlardan enerjice etkin olmaları ile ayrılırlar, doğal cansız evren enerji karşısında tümüyle edilgendir. Bu nedenle de bitki fizyolojisini biyolojinin temeli olan biyoenerjetiğin temel konularını anımsayarak incelemeye başlamak gerekir. ENERJETİK VE BİYOENERJETİK Adından anlaşılacağı üzere enerji bilimi olan enerjetiğin temel dalı olan termodinamik ısı, sıcaklık, iş enerji dönüşümleri ve türleri arasındaki ilişkileri, bu arada meydana gelen yan olayları inceler. Fiziğin bir anadalı olan termodinamiğin fiziksel özellikler ile enerji arasındaki ilişkiler de konusudur. Kimyasal termodinamik ise fiziksel özellik değişimleri yanında meydana gelen kimyasal dönüşüm ve değişimleri inceler. Termodinamik olgu ve olayları makro ölçekte inceler, yani olayın gelişme şekli, yolu neolursaolsun başlangıç ve bitiş noktalarındaki durumları ile ilgilenir. Örneğin çekirdek enerjisinin nükleer bombanın patlatılması veya bir santralda kontrollu olarak uzun sürede tüketilerek açığa çıkarılan miktarı aynı olduğundan termodinamik açıdan aynı olaydır. Termodinamiğin birinci yasası da bu örnekte belirtilen şekildeki kütle – enerji arası dönüşüm olaylarının tümüyledönüşümden ibaret olduğunu, kütle ve enerji toplamının sabit kaldığını belirtir. Yani bu dönüşümlerde kütle + enerji toplamında artış veya kayıp söz konusu olamaz. Yasanın tanımladığı kütle + enerji kavramının anlaşılır olması için madde ve enerjinin ölçülebililir büyüklükler olması gerekir. Bunu sağlayan da enerji ve kütlesi tanımlanmış olansistem kavramıdır. Termodinamikte inceleme konusu olarak seçilen, ilk ve son enerji + kütle miktarı bilinen, ölçülen ve değerlendirilen sistem, onun dışında kalan tüm varlıklar ve boşluk ise çevredir. Örneğin güneş sisteminin termodinamiği incelenmek istenirse uzay çevredir. Güneşin termodinamik açıdan incelenmesinde ise gezegenlerle uydular da çevre içinde kalır. Evren sistem olarak ele alındığında ise çevre olarak değerlendirilebilecek bir şey kalmadığından evrende enerji + madde toplamı sabittir, enerji veya madde yoktan var edilemez ancak enerji – madde dönüşümü olabilir. Burdan çıkan sonuç da maddenin yoğunlaşmış olan enerji olduğudur. Enerjiyi ancak maddeye veya işe dönüştüğü zaman algılayabildiğimiz, gözlemleyebildiğimiz için maddedeki gizli enerjiyi ölçemeyiz. İkinci yasa bütün enerjetik olayların kendiliğinden başlaması ve sürmesinin ancak sistemdeki toplam maddenin en az ve enerjinin en üst düzeyde olacağı yönde olabileceğini belirtir. Bu durum sağlandığında sistem dengeye varır, entropisi – düzensizliği – başıboşluğu (S) maksimum olur. Bunun tersi yönünde gelişen olaylar ise reverzibl – tersinirolaylardır. Örneğin canlının bir termodinamik sistem olarak oluşması ve büyüyüp gelişmesi tersinir, ölmesi ise irreverzibl – tersinmez olaylardır. Canlı sistemde ölüm termodinamik denge halidir. Aynı şey kimyasal tepkimeler içinde geçerlidir, dışarıdan enerji alarak başlayan ve yürüyen endotermik tepkimeler kendiliğinden başlayamaz ve süremez, birim sürede çevreden aldığı ve verdiği enerjinin eşitlendiği, enerji alışverişinin net değerinin sıfır olduğu denge durumunda durur, kinetik dengeye ulaşır. Ancak eksotermik, enerji açığaçıkarantepkimelerkendiliğinden yürüyebilir. Canlılığın oluşumu ve sürmesini sağlayan biyokimyasal sentez tepkimeleri de dengeye ulaşan reverzibl tepkimelerdir ve ancek ürünlerinin tepkime ortamından uzaklaşmasını sağlayan zincirleme tepkime sayesinde termodinamik dengenin kurulamaması ile sürebilir. Üçüncü yasa termodinamik bir sistemde entropinin, yani madde halinde yoğuşmamış olan enerjinin sıfır olacağı -273 derece sıcaklığa ulaşılamayacağını belirtir. Bitkilerdeki biyoenerjetik olayların anlaşılması açısından önemli olan diğer enerjetik kavramları ise entalpi, ve serbest enerji ile görelilik kuramının ışık kuantı ile ilgili sonucudur. Termodinamik incelemenin başlangıç ve bitim noktalarında ölçülen entalpi - toplam enerji farkı (DH) olay sonundaki madde kaybı veya kazancının da bir ölçüsü olur. Canlılarda çevreden alınan enerjinin azalmasına neden olan koşullarda bu etkiye karşı iç enerji kaynaklarından yararlanma yolu ile etkinin azaltılmasına çalışan mekanizmalar harekete geçer. Evrimin üst düzeyindeki sıcak kanlılarda vücut sıcaklığını sabit tutan bir enerji dengesinin oluşu çok zorlayıcı koşulların etkili olmasına kadar entalpi farkını önler. Entropinin ölçümü çok zor olduğundan sistemdeki düzensizlik enerjisi yerine entropi artışı ile ters orantılı olarak azalan iş için kullanılabilir, işe çevirilebilir serbest enerji (G)ölçülür. Serbest enerji sistem dengeye varıncaya kadarki entalpi farkının bir bölümünü oluşturur. Entalpi farkının entropi enerjisine dönüşmeyen, yani atom ve moleküllerin termik hareketliliklerinin artışına harcanmayan kısmıdır. Termik hareketlilik doğal olarak sıcaklığa, atom ve moleküllerin çevrelerinden aldıkları enerji düzeyine ve hareketliliklerine,hareket yeteneklerine bağlıdır; atom veya molekül ağırlığı, aralarındaki çekim kuvvetlerinin artışı hareketliliklerini azaltır. Bir sistemde serbest enerji artışı entropi enerjisi azalırsa da çevrenin entropi enerjisi artışı daha fazla olur ve 2. yasada belirtildiği şekilde sistem + doğanın entropisi sürekli artar. Canlı sistem ele alındığında canlının oluşup, büyümesi ile sürekli artan serbest enerji karşılığında çevreye verilen entropi enerjisinin daha fazla olmasını sağlayan canlının çevresine aktardığı gaz moleküllerinin termik hareketlilik enerjisi gibi enerji formlarıdır. Einstein’ın E = m . c 2 fomülü ile açıkladığı enerji – kütle ilişkisi sonucunda astronomların güneşe yakın geçen kozmik ışınların güneşin kütle çekimi etkisiyle bükülmeleri gözlemleriyle dahi desteklenen ışığın tanecikli, kuant şeklinde adlandırılan kesikli dalga yapısı fotosentez olayının mekanizmasının anlaşılmasını sağlamıştır. Kimyasal termodinamikte yararlanılan temel kavramlardan olan kimyasal potansiyel fizyoloji ve biyokimyada da kullanılan ve birçok canlılık olayının anlaşılmasını sağlayan bir kavramdır. Bir sistemdeki kimyasal komponentlerin her bir molünün serbest enerjisini tanımlar. Sistemde bir değişim olabilmesi, iş yapılabilmesi için bir komponentinin kullanacağı enerji düzeyini belirtir. Eğer değişim, dönüşüm sırasında bir komponentin serbest enerjisi artıyorsa bir diğer komponentinki daha yüksek oranda azalıyor demektir. İki sistem arasında kimyasal potansiyel farkı varsa bu fark oranında kendiliğinden yürüyen bir değişme olur ve iletim görülür. Bu suda çözünen katı maddelerin – solutların, pasif – edilgen şekildeki hareketini açıklamakta da kullanılan bir terimdir. Bu terimin su komponenti için kullanılan şekli su potansiyelidir. Kimyasal potansiyel basınç değişimi ile ilgili olayları da içerdiğinden su basıncı – hidrostatik basınç tanımı da kullanılır. Elektriksel potansiyel farkı da kimyasal potansiyelin bir şekli olduğundan sulu iyonik çözeltilerde katyonların katod durumundaki, anyonların da anod durumundaki sabit ve yüklü kutuplara doğru hareketine neden olur. Söz konusu potansiyellerin mutlak değerleri değil aralarındaki fark itici güçtür. İki nokta arasındaki basınç, derişim, elektriksel yük, serbest enerji farkı gibi farklılıkların tümü canlılıkta rol oynar ve karmaşık dengeleri yürümesini sağlar. Bu denge birarada bulunan komponentlerin birbirleri ile etkileşmelerinden etkileneceğinden etkileşim potansiyelinin de değerlendirilmesi gerekir. Bunun için kullanılan terimler ise aktiflik – etkinlik sabiti ve efektiv – etkin derişimdir. Etkin derişim, etkinlik sabiti yüksek maddenin veya maddelerin derişim farkına dayanarak sistemdeki değişim potansiyelini değerlendirir. Sistemin değişim potansiyelini ortaya çıkarır. Bu çerçevede su potansiyeli sistemdeki bir mol suyun sabit basınç altında ve sabit sıcaklıkta yer çekiminin etkisi sıfır kabul edilerek sistemdeki saf su ortamından etkin derişimin daha düşük olduğu yere gitme potansiyelidir. Yani hidrostatik basınç artışına paralel olarak su potansiyeli artar. Daha önceleri Difüzyon basıncı eksikliği ve emme basıncı, emme kuvveti şeklinde tanımlanmış olan su potansiyeli günümüzde en geçerli olarak benimsenen, kuramsal temelleri sağlam olan terimdir. BESLENME FİZYOLOJİSİ Bilindiği gibi canlıların ortamdan sağladığı, olduğu gibi tüketerek kullandıkları besin maddeleri büyük canlı gruplarında farklılıklar gösterir. Bitkiler aleminde de özellikle su bitkilerinin sudan, kara bitkilerinin topraktan sağladığı inorganiklerin çeşitleri ve özellikle oranlarında farklılıklar görülür. Tipik bitki besini olarak kullanılan elementlerin hepsi inorganik formdadır. Ancak bitki köklerinin organik maddelerden de yararlandığı görülmüştür. Saprofit ve parazit bitkiler ise konukçuldan inorganikler yanında doğrudan organik madde de sağlarlar. Canlıların tükettiği maddeleri oluşturan elementler canlılıktaki işlevleri açısından esas olan ve esas olmayan elementler olarak ikiye ayrılır. Günümüzde benimsenmiş olan ayırım bir elementin hücrede canlılık için esas olan bir molekülün yapısına girip, girmemesine göre yapılır. Bu da noksanlığı halinde bitkinin vejetativ gelişmesini tamamlayamaması ve karakteristik, tekrarlanır bazı belirtilerin açık şekilde ortaya çıkması ve element eksikliği giderilince ortadan kaybolması şeklinde kendini gösterir. Suyun hidrojeni yanında karbon canlıların yapısını oluşturan ve canlılığı sağlayan organik moleküllerin tümünde bulunduğundan en önemli elementlerdir, canlılığın temel taşları olan nükleik asit ve proteinlerin yapısına girdiğinden, azot birçok organik maddenin maddenin yapısında önemli bir yere sahip olduğundan temel besin elementidir. Fosfor da tüm canlılarda enerji metabolizmasındaki yeri nedeniyle temel elementtir. Oksijen de solunumdaki rolü ile anaerob mikrobiyolojik canlılar dışındaki bitkiler için önemi ile onları izler. Yeşil bitkilerin yaşamı için şart olan maddeler arasında miktar açısından temel besinleri su ve karbon dioksit ile oksijendir. Kemosentez yapan bakteriler için de farklı formları halinde alınsa da karbon temel elementtir. Bunun yanında inorganik azotlu bileşikler de besin olarak çok önemli yer tutar. Çünkü bazı Cyanophyta grubu ilksel bitkiler yanında Leguminosae ve Mimosoidae familyaları gibi bazı yüksek bitkileri ancak Rhizobium bakterilerinin simbiyont olarak katkısı ile havanın azotundan yararlanabilirler. Bu grupların dışında bitkiler havada yüksek oranda bulunan serbest azotu besin olarak kullanamazlar. Tüm canlılarda mutlaka ve yüksek oranlarda bulunması gereken bu elementler yanında besin olarak alınan elementler alkali ve toprak alkali mineral elementleri grubuna giren ve tüketimleri, gereksinim duyulan miktarları nedeniyle makroelement denen inorganiklerdir. Bu elementlerden çok daha düşük oranlarda gerekli olan ve daha yüksek miktarları ile toksik etki yapan mikroelementler konusunda ise farklı bir tablo görülür. Bitki gruplarında cins ve tür düzeyinde bile seçicilik, tüketim ve yararlanma ile yüksek derişimlerinin varlığına dayanıklılık, zarar görmeden depolayabilme farklılıkları görülebilen elementlerdir. Bitkiler aleminde bulunan elementlerin toplam olarak sayıları 60 kadardır. Bu elementlerin toplam bitki ağırlığına, organ ağırlıklarına, doku ve hücreler ile organellerin ağırlıklarına ve kuru ağırlıklarına oranları yaşam evrelerine, çevre koşullarına ve bunlar gibi birçok etmene göre farklılıklar gösterir. Bitkiler için yaşamsal önem taşıyan esas element sayısı 17dir. Makro elementler tipik olarak 1 kg. kuru maddede 450 mg. cıvarında olan arasındaki oranlarda bulunan C, O, 60 mg. cıvarındaki H, 15 mg. cıvarında olan N, 10 mg. kadar olan K, 5 mg. cıvarındaki Ca, 2 mg. cıvarındaki P, Mg ve 1 mg. kadar olan S elementleridir. Mikroelementler arasında yer alan esas elementlerden Cl ve Fe 0.1, Mn 0.05 ve B ve Zn 0.02, Cu 0.006, Mo 0.0001mg / kuru ağırlık düzeyinde bulunurlar. Makroelementler hücre yapısında yer alan, mikroelementler yapıya girmeyip metabolizmada etkin rol alan elementlerdir. Esas makroelementler olarak bitkilerin canlılığı için şart olanlar arasında P, S, Ca, K, Mg, Fe yer alır. Bunların yanında Na deniz bitkileri ile tuzcul olan yüksek bitkiler için esas makroelementtir. Esas mikroelementlerden Fe ve Mo özellikle yüksek bitkiler için, B birçok yüksek bitkiler ve V bazı algler için esas elementtir. Kükürt dışındaki mikroelementler özellikle canlılık için önemli bazı enzimlerin kofaktörü olarak işlev yaparlar. S ise özellikle kükürtlü amino asitler üzerinden sitoplazmik protein zincirlerinin kuvvetli bağlarla sağlam bir yapı oluşturması nedeniyle önemlidir. Se, Al gibi bazı iz elementleri alarak depolayan fakat metabolizmada kullanmayan, o element için seçici olmayan türler de vardır. BESİN ALIMI Su içinde serbest yaşayan bitkilerin besinlerini doğal olarak suda çözünmüş halde bulunan gaz ve katı maddeler oluşturur ve difüzyon, osmoz yolları ile alınır. Yüksek su bitkileri ise buna ek olarak zemine tutunmalarını sağlayan sualtı gövdeleriyle topraktan da beslenirler. Gaz halinde bulunan besinler tüm bitkiler tarafından yayınım – difüzyonla alınır. Canlılık için sürekli kullanılması gereken temel besinler olduklarından, bu gazlardan yararlanma yeteneği olan canlı hücrenin lümenine girip, protoplazmasına geçtiklerinde hemen kullanılırlar. Bu nedenle de yayımımla alınmaları süreklidir. Su ve suda çözünmüş olan katı besinler ise aşağıda görüleceği üzere difüzyona ek olarak osmoz, ters osmoz ve aktif alım yolları ile alınırlar. Atmosferde doğal şartlarda %0.03 oranında bulunan CO2 güneş ışınlarının ısıya dönüşür kuantlarını içeren kızılötesi, yani 1 – 10 m dalgaboyundaki kesimini soğurarak canlılığın sürmesini sağlar. Suda çözündüğünde karbonik asit oluşturarak pH değerini düşürür ve suyun çözme kuvvetini genel olarak arttırdığı gibi özellikle alkalilerin çözünürlüğünü arttırır. Bu şekilde de beslenmeyi ve mineral madde alımını kolaylaştırır. Mineral madde iyonları sudaki karbonik asit ve diğer organik asitlerle tuz yaparak tuz – asit çiftinin sağladığı pH tamponu etkisiyle canlı özsuyunda pH değerinin canlılığa zarar verecek düzeyde değişmesini, pH 4 – 8.5 aralığı dışına çıkması riskini azaltır. O2 de suda çözünen bir gazdır ve çözündüğünde red – oks tepkimelerine girer. Tatlı suda 20 derece sıcaklıkta hacimce %3 oranında çözünür. Havadan ağır olduğundan atmosferdeki oksijenin suyla teması ve doygunluğa kadar çözünmesi süreklidir. Likenler, kserofitler gibi bazı bitkiler havanın neminden su temininde yararlanır. Ayrıca hücreler arası boşluklardaki hava da bu şekilde gaz besin sağlar. Tüm bu gaz halindeki besin alımları yayınımla olur. Kütle Akışı ve Şişme ile Su alımı Sıvıların yerçekimi etkisiyle akışı ve benzeri olayları hidrostatik basınç farkı gibi potansiyel enerji farklılıkları sağlar. Bu şekilde DH değerinin sıfırdan büyük olduğu yer değiştirme olayına kütle akışı – “mass flow” denir. Bu tür olaylarda çözücü ve çözünen tüm maddelerin atom ve molekülleri aynı şekilde hareket eder. Kütle akışı vaküolde, hücrelerarası boşluklarda ve canlı hücreler arasında da plazmodezmler üzerinden olur. Canlılardaki kütle akışında kapilarite önemli rol oynar, çünkü hücre ve hücrelerarası serbest akış yolları ancak mikron ve askatları düzeyindedir. Kapilerden geçiş ise geçen sıvınınviskozitesi – akışkanlığı ile yakından ilişkilidir. Viskozite, akış hızı değişiminin sabit tutulması için gerekli enerji miktarı şeklinde de tanımlanabilir. Bu değer de her bir sıvı için özgül bir değerdir. Çünkü akışkanlık sıvının bir molekül tabakasının diğerinin üzerinden kaymasına karşı gösterilen dirençtir ve bu direnç sıcaklıkla azalır, çünkü ısıl hareketlilik artar, dirence neden olan fizikokimyasal ve kimyasal bağlar zayıflar. Suyun elektrostatik olarak yüksüz kapilerlerden kütle akışı ile geçiş miktarı ve hızı yüksektir, çünkü dipol su moleküllerinin birbiriyle yaptıkları bağlar suyun yüzey tansiyonuna – basıncına sahip olmasını sağlar. Suda bulunan lipofilik maddeler suyun bu özelliği nedeniyle su yüzeyinde toplanır ve su ile beraber hareket ederler. Suda çözünen maddeler ise yüzey basıncını değişen oranlarda değiştirerek kapiler hareketliliğini ve dolayısı ile de kendi iletimlerini etkilerler. Suda iyonlaşarak çözünen maddelerin kimyasal potansiyeli hidrostatik basınç veya yerçekimi etkisinden çok daha büyük bir enerji farkı yaratacak düzeyde olan elektrokimyasal potansiyelleridir. Kütle akışı kuru olan tohumların ortamdan su alarak hacim artışı göstermeleri gibi pasif, edilgen olaylarda önemli yer tutar. Alınan su yapısal protein ve polisakkarit zincirleri arasındaki boşluklara da girerek, adsorbe olur, yapışır ve hidrasyonlarına ve hacımlerinin artışına, canlı veya canlı artığı dokunun da şişmesine neden olur. Yayınım – Difüzyon ve Geçişme – Osmoz Yayınım olayında ise olayın başladığı ve bittiği veya dengeye vardığında atom ve moleküller arası ilişkileri farklıllık gösterir. Uçucu maddelerin sıvı veya katı formdan gaz faza geçerek yayınması ve suyun buharlaşması buhar basıncı farkı sonucunda başlayıp yürüyen bir yayınım olayıdır ve DH = 0 olduğunda net, gözlenebilir, ölçülebilir yayınım durur. İki kapalı kap arasında yayınımı sağlayacak bir açıklık oluştuğunda gazların bağıl basınç oranları, yani herbirinin özgül toplam enerjileri arasındaki farka göre değişen şekillerde yayınım gösterirler. Kısmi, oransal gaz basıncı ile difüzyon basıncının doğrusal ilişkisi nedeniyle bir karışımda yer alan maddelerin yayınım oranları değişir. Ayrıca her birinin sıcaklık ve karşı basınç değişimlerine tepkileri de farklılık gösterir. Tüm bu farklılıkların temel nedeni atom ve moleküler yapılarının, ağırlıklarının yani özelliklerinin farkından doğan termik hareketlilik ve serbest enerji farklılığıdır. Bu da maddeye has bir özellik olduğundan yayınım - difüzyon sabitesi adını alır. Difüzyon hızı geçişi sağlayan açıklığın veya seçiciliği olmayan membranın alanı, yayınım konusu maddenin iki taraftaki derişim farkı ve yayınım sabitesine bağlıdır. Yayınımın da itici gücü ısıl hareketlilik olduğundan sıcaklık artışı ile hızı artar, daha kısa sürede dengeye ulaşır, fakat denge noktası sıcaklıktan bağımsızdır. Difüzyonu başlatan ve yürüten derişim farkı olduğundan yayınıma konu iki taraf arasındaki uzaklık artışı olayın yürüme hızını global olarak azaltır. Çünkü yayınım moleküler düzeyde derişim farkı dilimleri halinde yürür. Bu nedenle de hücre ve organel düzeyindeki hızı çok yüksektir. Üç gaz formundaki besin olan su buharı, O2 ve CO2 için 20 derece sıcaklıkta ölçülen yayınım sabiteleri saniyede yayınım alanı olarak sırası ile 0.25, 0.20 ve 0.16 cm2 dir, yani katıların sıvı ortamdaki yayınım sabitelerinden ortalama 10(4) kat fazladır. Bunun da nedeni gaz ortamında çok daha seyrek olan moleküllerin ısıl hareketle çarpışma nedeniyle zaman ve enerji kaybının çok daha az oluşudur. Bu tabloya karşın fotosentez hızının ışık ve sıcaklık tarafından sınırlanmadığı durumlarda karbon dioksidin kloroplastlara kadar yayınımı için geçen sürenin sınırlayıcı olduğu belirlenmiştir. Aynı şekilde terleme hızının hücre çeperlerinden su buharı yayınım hızı tarafından sınırlandığı ve bu şekilde de bitkilerin stomalarından gereksiz su kaybını önleyen bir mekanizma olarak yarar sağladığı saptanmıştır. Elektrostatik yüklü maddeler ile kolloidal maddelerin çözeltiler arasında yayınımları gazların ve gazlarla aynı davranışı gösteren yüksüz maddelerinkinden farklıdır. Çünkü hareketlilikleri zıt yüklü tanecikler arasındaki çekim kuvvetlerinin rastlantısal olarak değişen etki düzeyine bağlı olarak değişir. Canlılarda ise çözeltide serbest olarak bulunan ve yapısal, sabit durumda yüklü moleküller söz konusudur. Bu karmaşık ilişkiler de bitkilerde yayınım olayının orta lamel ve hücre çeperlerinin elektrostatik yapılarına bağlı değişimler göstermesine neden olur. Bu ilişkiler hücre veya doku düzeyinde hücre çeperlerinin permeabilitesi – geçirgenliği ölçülebilir terimiyle belirtilir. Yüklü madde yayınımı yük durumları ile sabit ve hareketli olan maddelerin yük durumu arasındaki denge nedeniyle miktar ve hız açısından belli bir seçicilikle karşılaşmış olur. Geçişme - Osmoz difüzyonun özel bir halidir. Yarıgeçirgen, seçici zar yanlızca çözgeni veya çözgenle birlikte çözeltideki bazı çözünmüş maddeleri geçirirken bazılarını geçirmemesinin sonucudur. Osmoza giren her bir madde kendi termodinamik sistemindeki entropiyi en üst düzeye çıkartacak şekilde hareket ettiğinden, membrandan geçemeyen molekülün yoğun olduğu tarafta geçebilen maddelerin derişimi artar. Bu birikme sonucunda toplam madde artışı ve sonucunda da membranın o yanında hacım artışı olur. Hücreler arası madde aktarımında da bu şekilde özsuda çözünmüş ve membrandan geçemeyen madde derişimi artışı çözgen olan suyun oransal derişiminin azalmasına neden olduğundan su alınmasına neden olur. Sonuç olarak kütle akışı ve difüzyonda maddelerin akışı birbirinden bağımsız başlar ve yürürken osmozda maddelerin bağıl oranı etkilidir. Canlı hücre membranı suya karşı geçirgen özellikte ve özsuda çözünmüş madde miktarı yüksek olduğunda su alımı kendiliğinden yürür. Canlılar bu mekanizma sayesinde su alımını ortamda su bulunduğu sürece garanti altına almış olur. Gözlenen hücreler ve organeller gibi canlı yapılarda net su alımının hücrenin çeperi, komşu hücrelerin veya dıştaki sıvı ortamın hücre üzerindeki karşı basıncının etkisi ile dengeye vardığında duruşudur, bu sayede yapının şişerek patlaması engellenmiş olur. Bu basınca da geçişme – osmoz basıncı, osmotik basınç denir. Çünkü büyüklüğü osmotik alımla sağlanan çözünmüş madde miktarı ile doğrudan ilişkilidir. Sonucu olarak da bir hücrenin hacminde değişime neden olan etkin osmotik basınç farkı yarı – geçirgenlik ve seçicilik sayesinde yayınımla sağlanabilecek olan madde hareketi miktarından çok daha yüksek olur. Temeldeki denge ise aynı türden iyonların membranın iki yüzü arasındaki kimyasal potansiyel farkının sıfır olmasıdır ve hidrostatik basınç farkının bu dengeye katkısı ihmal edilebilecek kadar küçüktür. Ana değişken ise membranın iki yüzü arasındaki elektriksel potansiyel farkıdır ve küçük bir orandaki değişimi bile çok daha büyük orandaki kimyasal potansiyel farkını, yani derişim farkını dengeleyebilir. Gene bu mekanizma canlı hücreye membrandaki iyonik madde kompozisyonunu düzenleyerek kolayca iyon alımı olayını denetleme olanağı verir. 20. yüzyılın başlarında Nernst başta olmak üzere araştırıcılar tarafından kuramsal temelleri atılarak asrın ortalarında kesinleşen bu bulgular 1967 yılında Vorobie tarafındanChara tatlısu alginin K iyonu alımı üzerindeki deneylerle kanıtlanmıştır. Hücre çeperi gibi hücrenin denetimi dışında kalan ve kütle akışı ile difüzyonun geçerli olduğu kısım için kullanılan terimlerden biri belirgin serbest alan (BSA) – “apparent free space”dir. Su alımı için iç osmotik basıncın dış ortamdan yüksek, hücre özsuyunun hipertonik olması gerekir. Yani toplam çözünmüş madde derişimi daha yüksek olmalıdır. Bu durumda herbir maddenin difüzyon basıncı farklı olacağından su moleküllerini geçiren zardan su kendi kinetik difüzyon dengesini sağlayıncaya kadar geçiş yapar. Hipertonik hücre turgor halindedir, sitoplazma çepere yapışık durumdadır. Çünkü osmotik basınç artışı çeperin karşı yöndeki basıncı ile dengelenmiştir. Hücre özsuyununizotonik osmotik basınca sahip olması halinde bir kısım suyunu kaybeder ve sitoplazmanın çeperden ayrılmaya başladığı görülür. Bu duruma sınır plazmoliz adı verilir ve izotonik osmotik basıncın ölçümünde kullanılır. Hücrenin iç osmotik basıncının dış basınçtan daha düşük olduğu hipertonisite durumunda sitoplazma çeperden ayrılarak ortaya toplanmaya başlar, hücre plazmolize olur. Hücrede plazmoliz ilerledikçe klasik deyimi ile emme kuvveti artar, daha yeni terminolojideki karşılıkları ile difüzyon basıncı eksikliği -“diffusion pressure deficit” – DPD” (DBE), su potansiyeli artar. Bunun da nedeni serbest haldeki suyun serbest enerjisinin adsorpsiyon veya adezyon, kohezyon ile tutulmuş olan sudan az oluşudur. Hücrenin yeniden turgor haline geçme,deplazmolize olma, yani plazmoliz durumundan kurtulma eğiliminin sonucudur. Tam turgor halindeki hücrede ise iç ve dış basınçlar eşit olduğundan su potansiyeli, yani net su alımı sıfır olur. Burada devreye doğal olarak hücre çeperinin elastiklik derecesi de girer. Bu nedenle ve henüz alöronlar gibi susuz bir hacim oluşturan yapılar olmadığından hacme oranla su miktarı meristematik dokularda yüksektir. Plazmoliz sırasında protoplazmanın tümüyle küçüldüğü, büzüldüğü deplazmolizde ise şiştiği görülür. Hücre özsuyunda serbest çözücü durumundaki suyun kaybından sonra sitoplazmik proteinlerin hidratasyon kaybı - dehidratasyonu sitoplazma hacminin değişmesine neden olur. Difüzyon basıncı eksikliğinin en yüksek olduğu tohumlar, dehidrate likenler gibi yapılarda su alımı ile deplazmoliz sertleşmiş alçıyı parçalayabilecek oranda hidratasyona ve deplazmolize neden olur. Hidratasyon termik hareketliliğin ve entropinin artışına neden olarak yapısal protein, sellüloz gibi moleküllerin zincirlerininin gevşemesine ve daha kolay bozunur hale gelmesine neden olur. Bu yüzden bir süre ıslatılmış olan bakliyat daha kolay pişer. Hücreler arasında su alışverişinin debisi bu çerçevede çeper ve membranların geçirgenliği ile DBE farkına bağlıdır. Fakat izotonik çözeltiler arasında bile plazma membranları madde alışverişini sağlar. Su içinde yaşayan bitkilerde süreklilik gösteren bu durumda madde alışverişini sağlayan kütle akımı ve özellikle de elektroosmozdur. Elektroosmoz bir iyon iletimi mekanizması ise de polarite nedeniyle hidrate olan iyonların yani kinetik taneciklerin çevrelerindeki su moleküllerini sürüklemesi sayesinde suyun da taşınmasını sağlar. Kinetik tanecikler iyonlar ile onları çeviren dipol su moleküllerinden oluşan, yani birarada termik hareketliliği olan tanecikler olup toplam kütlelerinin daha yüksek oluşu ve elektrostatik bağların zayıf oluşu nedeniyle termik hareketlilikleri yüksek taneciklerdir. Membranlardaki porlar boyunca yaratılan elektrik alanları, yani endotermik olarak belli bir yönde kutuplandırılan polar molekül dizilişleri üzerinden kayarak iyonik maddelerin taşınması gerçekleştirilir. Bu konu mineral madde beslenmesi içinde ele alınacaktır. Su moleküllerinin iyonlara kendiliğinden yapışarak kinetik tanecikler halinde iletilmesi iyon kaynağı durumundaki hücrede serbest su derişimini azalttığından DBE artar. Bu tür enerji gerektiren iyon ve su beslenmesine aktif madde alımı adı verilir. Örneğin tuzcul bitkiler, halofitler osmotik basıncı yüksek tuzlu topraklarda dahi beslenmelerini sağlarlar. Kserofitler çok kurak koşullarda kuru topraklardan su alabilirler. Aktif iyon alımı yaygın görülen bir olaydır, buna karşılık aktif su alımı özel durumlarda görülür. Bu nedenle aktif iyon alımı bitki yaşamında daha önemli yer tutar. Mineral Madde Beslenmesi Mekanizmaları Elektroosmozun bir iyon iletimi mekanizması olduğu, hidrate iyonların su moleküllerini sürükleyen ve membranlardaki porlar, kapilerler boyunca yaratılan elektrik alanları, yani potansiyel farklılıkları ile iyonik madde taşınması gerçekleştirdiği belirtilmişti. Elektriksel potansiyel farkı DE, elektriksel yükün bir noktadan diğerine gitmesi ile yapılan işin ölçütüdür. Daha önce değinildiği üzere yukarıda kısaca incelenmiş olan itici güçlerden de çok daha daha etkindir. Biyolojik bir membranın iki yanındaki E farkı ölçümleri hidrostatik veya kimyasal potansiyel farkı ölçümlerinden elde edilen sonuçlarla karşılaştırıldığında binlerce kez daha büyük olduğu görülmüştür. Bu nedenle de organeller ve hücreler arasında elektriksel yüklü madde iletimi çok daha etkin olarak yürür. Elektriksel bir yük ile DE arasında sabit bir ilişki vardır ki buna kapasitans denir, yani bir net yük biriminin yarattığı DE ile arasındaki sabit, özgül oranı belirtir. Yararlanılan sonucu ise bir bölgede yüksek oranlı potansiyel düşmesine neden olmadan serbest yük bulundurma, depolama kapasitesi – sığasının ölçüsü olmasıdır. Biyolojik membranların kapasitans ölçümleri bu değerin koşullardan oldukça bağımsız, sabit kalan bir değer olduğunu göstermiştir. Bitki hücrelerinde de bu değer tipik olarak -100 mV ölçülmüştür. Yükü membranların içindeki anyon derişiminin katyonlarınkinden yüksek olduğunu, değeri ise membranın iki yanındaki potansiyelin pek farklı olmadığını göstermiştir. Aynı şekilde bitki hücrelerindeki toplam iyon derişiminin de tipik olarak 0.1M düzeyinde ve koşullardan oldukça bağımsız sabit bir değer olduğunu belirlenmiştir. Bu derişimde 100mV kapasitans ise anyon / katyon oranının 100 000 olduğunun göstergesidir. Buna karşılık bitkilerde kuru ağırlık bazındaki mineral madde katyon /anyon derişimi oranı ortalama olarak 10 dur. Hücrelerin çevrelerinden önemli oranda katyon almalarına karşın elektrostatik dengenin ters yönde oluşmasının nedeni organik moleküllerdeki anyonik grupların yüksek oluşudur. Bu sayede organik metabolizmayı denetleyerek sürekli şekilde katyon alımına açık bir dengeden yararlanırlar. Güneş ışınları ve hava gibi topraktaki mineral elementlerinden daha kolay sağlayabildikleri kaynaklardan yararlanarak sentezledikleri organik anyonik maddeler sayesinde mineral katyonlarının alımını denetim altında tutabilirler. Yüksüz maddelerden farklı olarak iyonların derişimindeki artış aralarındaki uzaklığın, termik hareketlilikleri ile çarpışma olasılığını üssel olarak artışına yol açacak şekilde azalması demektir. Çünkü elektriksel çekim gücünün etkisi katlanarak büyür. Bağlanmaları ise, iyonik bağın kuvvetli oluşu nedeniyle bağlanma öncesindeki ısıl hareketliliklerinin önemli oranda azalmasına neden olur. Bir sistemdeki hareketlilik komponentlerinin hareketliliklerin toplamı olduğundan sistemi etkiler. Elektriksel yük elektriksel alan yarattığından etkisi çok yönlüdür ve nötrleşmesi ile diğer komponentler üzerinde çok yönlü etkiler yaratır. Bu nedenle de bir iyon türünün aktivite sabitesi çözeltisindeki tüm iyonların özellik ve derişimleri ile ilişkilidir. İyonun değerliliği arttıkça etkinliği de arttığından hücre özsuyu gibi iyonca zengin bir çözeltide iyonik aktivite değişimleri yüksek oranlı olur. Bu sayede de kara ve su bitkileri çok farklı özelliklerdeki topraklara, sulara adapte olarak yaşama olanağı bulabilirler. Gene canlıların denetimini sağlayan bir olgu da iyonların canlı membranın iki yanındaki aktivitelerinin dengeye varmasının iyonların iki yandaki aktiviteleri yanında membranın iki yüzü arasındaki elektriksel potansiyel farkına daha da kuvvetle bağlı oluşudur. Bu sayede de membranın elektriksel potansiyelini membran proteinleri ve lipid / fosfolipidleri ile denetleyebilen hücre dengeyi kurma olanağı bulur. Bu mekanizma hücrenin gereksinimine göre iyonları seçici olarak alması açısından önemli rol oynar. İyonların lameldeki porlardan ve plazmodezmlerden geçişinde iyon yükü / çapı ilişkisine bağlı olan seçici bir mekanizma oluşur. Donnan Dengesi Benzer şekilde örneğin bitki hücre çeperindeki orta lamelde yer alan pektik asitlerin karboksil kökü, membran lipidleri arasındaki fosfolipidler gibi sabit iyonların yerleştiği iyon kanalları kütle akışı ile mineral iyonlarının ile geçişine elektrokimyasal direnç gösterir. Görünür serbest alanda dahi iyonların suyla birlikte hareketine engel olur. Sitoplazmik membranlardaki lipidlerin çok yüksek direncinin fosfolipidlerce dengelenmesinde olduğu gibi direnci amfoterik karakteri nedeniyle değişken olan proteinler seçici bir denetim sağlar. Protein helislerinin iyon kanalı görevi oluşturdukları porun girişinde serin gibi polar amino asitlerin bulunmasına bağlıdır. Bu ( – ) yüklü amino asitler katyon difüzyonunu destekleyerek seçicilik sağlar. Porların işleyişinin anlaşılması sayesinde porları kapayan maddelerin keşfi 1991 tıp nobelini alan ilaç grubunun bulunmasını sağlamıştır. Küçük mineral iyonlarını içeren çözeltiler membrandaki sabit iyonik moleküllerle aralarında Donnan potansiyeli denen elektriksel bir potansiyel farkının doğmasına ve Donnan dengesi adı verilen dengenin oluşmasına neden olur. Bu dengenin de sağlanması için zıt yüklü maddelerin ters yönde geçişi veya suda çözünmeyen formlarının çözünür hale dönüştürülmesi gerekir. Elektrostatik Donnan dengesinin çeşitli ölçeklerde oluşması hücre içi ve hücreler arası iyonik maddelerin taşınımında ve dağılımında önemli rol oynar. Bu terimle belirtilen olayın ayırt edici temel özelliği hareketi sağlayan difüzyon potansiyel farkının membranın bir tarafındaki sulu çözelti ile membranın diğer tarafta kalan yüzü arasında oluşmasıdır. Sitoplazmadaki nükleik asitler, fosfat grupları ile ve proteinler de karboksilleri ile Donnan fazları oluştururlar. Bu anyonik gruplar membranın her iki tarafındaki katyonları kendilerine çekerek yönlendirirler. Bu şekilde de net olarak bir geçişmenin görülmediği elektrostatik bir denge kurulur. Sıvı fazdaki katyonların membrana yönlenmesi anyonların da ters yönde artan bir derişim değişimi oluşturmalarına neden olur. Termik hareketliliğin artışı bu dengenin sarsılmasına ve hareketli iyonların elektriksel potansiyel farklılıkları yaratmasına, bu arada oluşan kimyasal potansiyel farklarını dengeleyecek şekilde de geçişme yapmalarına neden olur. Canlı hücre çözünmüş maddelerin derişimini ilgili maddeleri suda çözünmeyen bileşikleri haline dönüştürerek ortamdan uzaklaştırmak veya tersine tepkimeyle serbest hale geçirerek de denetim altında tutar. Çözünür maddelerin çözünmeyen bileşiklerine dönüştürülmesi entropi azalmasına neden olan kimyasal bağlanma ile sağlanabildiğindenendojen, enerji harcanarak yürütülen aktif bir olaydır. Ancak canlı hücrede gerçekleşebilir. Bu olayın temelinde iyon aktivitesi ve bu değerin özgüllüğünden doğan sabitesi yatar. İyon aktivitesi iyonun derişimine bağlı kimyasal ve yüküne bağlı elektriksel potansiyellerinin açıklayamadığı bazı konuları açıklamakta kullanılan bir terimdir. Yükleri eşit olan iki iyondan kütlesi küçük ve elektron sayısı az olanın yükünün dipol su moleküllerini çekerek çevresine toplama gücü daha fazladır. Çevresinde daha kalın bir su zarfı oluşturur. Sözü edilen denge, seçicilik sonucu bir taraftan diğerine geçişi kısıtlanan veya engellenen iyonik maddelerin birikmesine neden olur. Bu birikimin konusu olan yüklü maddeler serbest halde kalamadığından zıt yüklü iyonlarla birleşerek çözeltinin nötralizasyonununu sağlar. Bu nötralizasyon dengesi için gereken iyonik maddelerin çözünür hale geçmesi veya dışarıdan alınması gerekir. Örneğin Ca++ iyonu, iyonik yük / su zarfı oranı büyük olduğundan porlar üzerinde büzücü etki yaparak su zarfı büyük ve iyonik yükü küçük iyonların geçişini kısıtlar, K + iyonu ise tersine olarak şişirici etki yapar ve bu iyonların geçişini kolaylaştırır. Genelde bitki hücrelerinin yoğun şekilde K, Na ve Cl alış verişi yaptığı görülür. Bu iyonların hareketlilikleri de membranlarda potansiyel farklarının doğmasına neden olur ve Cl net yükün iki taraftaki dağılımının sıfıra eşitlenmesini sağlar. Goldmann denklemi ise K, Na ve Cl iyonu geçirgenliğinin büyük oranda K seçiciliği yönünde olduğunu göstermiştir. Elektroosmoz da membrandaki bir porun iç yüzeyinde sabit halde dizilmiş iyoniklerin yüklerinin tuttuğu su zarfları zıt yüklü iyonik maddelerin su zarflarını çekmesi sonucu yürüyen osmotik alımdır. Bu şekilde oluşan elektriksel alan membranın iki tarafında elektriksel yük farklılığı doğurur. Bu da sabitlenmemiş kinetik taneciklerin kütle akışı ile çekilerek ters yönlü bir alan oluşturmasına neden olur. Bu iki zıt yönlü alanın oluşumu sırasında doğan hareketlilik ile su molekülleri sürüklenir ve iletilir, elektroosmotik su alımı olur. Benzer şekilde membran veya çeperde pektik veya proteinik iyonlara zayıf -H bağları gibi bağlarla tutulmuş, adsorbe olmuş olan zıt yönlü yonlar yerlerini alabilecek başka iyonlarla yer değiştirerek serbest hale geçer ve iletilir. Bu olaya da iyon değişimi adı verilir. İyon değişiminde aynı yüklü iyonlar birbirini ittiğinden dengeye çabuk ulaşılır, yani az miktarda madde bu olaya girebilir. Bağlanmayı sağlayan kuvvet adsorpsiyon kuvvetinden daha yüksek enerjilidir, kopması daha zordur. Ancak iyonlaşmış asidik veya bazik maddelerin hidroksonyum ve hidroksil veya karboksil kökleri bağlanmış olan katyon veya anyonların yerini alabilir. Bu arada açığa çıkan hidroksonyum ve hidroksiller de su oluşturduğundan su iletimi de sağlanmış olur. Bu olayların tümünde hidroksonyum ve hidroksil iyonları önemli rol oynadığından membranların ve özsuyun pH değeri ve değişimleri önemli rol oynar. Hücre organik asit sentezi ile pH ve amfoterlik denetimi, sentez yolu ile özsudaki serbest maddeyi bağlama veya başka maddeye dönüştürme gibi yollarla kimyasal potansiyel artışı yönünde aktif alım yaparken solunum enerjisi kullanır ve solunumun hızlandığı görülür. Ayrıca osmotik basınç ölçümlerinin kriyoskopik yöntemle yapıldığında sınır plazmoliz yöntemiyle elde edilen değerlerlerden farklı değerler vermesi ek bir su potansiyelinin olduğunu göstermiştir. Birçok bitki türünde yerüstü organları kesilerek terlemenin emiş kuvveti ortadan kaldırıldığında da kök ksileminden su salgılanması, kış uykusu kırılan birçok odunlu türünde daha hiç yaprak oluşmamışken sürgünlere su yürümesi kök basıncı denen aktif su alımının ve pompalanmasının kanıtlarıdır. Bu basıncın gün içinde değişim göstermesi, solunum inhibitörleri ve bazı bitki hormonları gibi uygulamalarla durdurulabilmesi de göstergeleridir. Aktif alım ve iletimin önemli bir göstergesi iyonun içine girdiği membranın iç tarafında, yani sitoplazma veya organelin içinde elektrik yükü artışı olmasıdır. Pasif alımda elektriksel nötralliği sağlayacak şekilde zıt yüklü iyon alımı veya aynı yüklü iyonun boşaltımı söz konusudur. Aktif geçişde membranın iki yüzü arasında da membranın kapasitansı ile orantılı olarak belli miktar membran potansiyeli farkı oluşur. Bu fark kısa bir süre sonra boşalarak sıfırlanır ve sonra tekrar artar, bu mekanizmaya da iyon pompası adı verilir. İyon pompası çalışınca membrandaki pasif geçiş olayları da doğal bir şekilde etkilenir ve membrandaki değişimi dengeleyecek yönde farklılaşır, difüzyon potansiyeli artışı ile elektrik potansiyelinin düşmesi sağlanır. Bitki hücresi membranlarının kompozisyonuna göre elektriksel dirençleri 1 – 8 Kohm / cm2 arasında değiştiğinden pompaların etkinliği membran kompozisyonunun denetlenmesi yolu ile hücre tarafından denetlenebilir. Bu sayede de bitkiler tuzlu topraklara dahi adaptasyon sağlayabilir. Membran direncinin yüksek oluşu, pompanın etkili çalışması ile aktif iletimin neden olduğu potansiyel farkı da arttığından saniyede 20 pikomol / cm2 gibi yüksek bir debi ile iyon alınabilmektedir. Aktif iletimin bir özelliği de pasif olarak yürüyen diğer olaylara göre sıcaklık değişimlerinden çok daha büyük oranda etkilenmesidir. Pasif olayların Q10 değeri yaklaşık olarak 1 civarında iken aktif alım ve iletimde bu değer birçok enzimatik olayda olduğu gibi 2 civarındadır. Bunun da nedeni membranın yaptığı enerji bariyeri etkisidir. Tıpkı enzimatik tepkimelerin aktivasyon enerjisi gereksinimindeki gibi aktif alımın olabilmesi için bu enerji düzeyinin aşılması gerekir. Bu nedenle aktif iyon alımı mekanizması bir pompaya benzer şekilde çalışır. Gerekli enerji depolanıncaya kadar alım işlemi kesintiye uğrar. Sıcaklık artışı da bu mekanizma aracılığı ile etkili olur. Aktif iyon alımının enzim kinetiğindeki Michaelis-Menten denklemine uyan değişimleri enzimler aracılığı ile yürüyen bir olay olduğunu göstermiştir. Bu tür olaylara enerji sağlayan madde bekleneceği üzere ATP’dir ve ATPaz enzimi aktivitesi de olayın denetimini sağlar. ATP hidrolizi ile açığa çıkan hidroksonyum iyonları ise ters yönde hareket ederek elektrostatik dengeyi sağlar. En iyi bilinen Na+ / K+ ATPaz’dır. İki peptid çiftinden oluşur ve Mg++ tarafından katalizlenen ATP hidrolizine bağımlıdır. Çeşitli iyon pompaları olup belli iyonlar için seçici oldukları bilinmektedir. Aktif alımın iyon seçici özelliği vardır ve yukarıda anlatılan mekanizma bunu açıklamak için yeterli değildir. Bu nedenle 1930 larda seçiciliği olan aktif taşıyıcı moleküllerin varlığı fikri ortaya atılmıştır. Deneyler benzer K+, Rb+ iyonlarının ve Ca++ ile Sr++ iyonlarının aynı taşıyıcı için rekabet ettiğini, bazı hücrelerde K+ iyonunu alıp, Na+ iyonunu boşaltan ve aynı mekanizma ile Mg++ ve Mn++ için çalışan diğer bir pompanın olduğu, Cl-, B- ve I- taşıyan tek bir sistem olduğunu gösteren deneysel veriler elde edilmiştir. Bu kadar seçici maddelerin ancak proteinler olabileceği belirtilmiş ise de 50 yıl kadar uzun bir süre kesin kanıtlar ortaya konamamıştır. Aktif pompaların varlığının bir kanıtı da dıştaki iyon derişiminin artışı ile artan solunum ve iyon alımının belli bir derişime ulaşıldıktan sonra doygunluğa erişmesidir. Bitkilerde bu değer tipik olarak 1 – 10 mmol/ gr. taze ağırlık – saatdir. Aktif alım mekanizmalarının ortaya çıkarılıp genel çerçevesi ortaya çıkarıldıktan sonra iyon alımının büyük oranda pasif şekilde alındığı ve aktif alımın hücrenin gereksinim tablosuna göre belli iyonların seçici olarak alımında rol aldığı, tamamlayıcı olduğu anlaşılmıştır. Yüksek Bitkilerde Su ve Mineral Madde Beslenmesi Tohumun şişme ile su almasından sonra yeni bir bitki oluşturmak üzere büyüme ve gelişmesi başladığında ilk olarak gelişen ve işlev görmeye başlayan organı kök taslağından oluşan köktür. Tohumun kotiledon kısmında depolanmış olan organik maddelerin sindirimi ve solunumla elde edilen madde ile enerji fotosentetik organların yeni metabolik maddeleri sağlayabilecek hale gelmeleri için gereken büyüme ve gelişme için yeterlidir. Fakat tohumun serbest akış ve hidrasyon ile kazandığı su ile şişmesinin sağladığı su ortalama %80 – 90 oranında su içeren bitkinin oluşması için çok yetersizdir. Bilindiği gibi kökün su ve mineral beslenmesini sağlayan yapılar emici tüylerdir. Kaliptranın arkasındaki meristematik bölgeden sonra gelen genç hücrelerin boyuna büyüme bölgesini izleyen gelişme ve farklılaşma zonunun epidermisinde görülürler. Canlı epidermis hücrelerinin enine eksende uzayarak tübüler çıkıntılar oluşturması ile ortaya çıkarlar. Yüksük hücreleri gibi dış yüzleri kaygan pektik maddelerle kaplıdır. İşlevsel ve fiziksel olarak ömürleri çok kısadır ve sürekli büyüyen kökün ileri doğru büyümesi sırasında yerlerini yenilerine bırakırlar. Bitki türlerinin su için rekabet gücünde kökün büyüme hızı yanında emici tüylerin çevrim hızı da önemli yer tutar. Hidrofitik bitkilerin su ve mineral beslenmesi yukarıda anlatılmış olan genel mekanizmalarla olur. Kara bitkilerinin beslenmesi ise daha geniş bir çerçevede ele alınarak anlaşılıp, değerlendirilebilir. Toprak Yapısı ve Su Verimliliği Toprağın bitkilere su sağlayabilme potansiyelini belirlemek üzere kullanılan Tarla Kapasitesi, Daimi Solma Noktası veya Yüzdesi, Su Basıncı (P), Su Tansiyonu, Nem eşdeğeri, Su Potansiyeli veya Yayınım Basıncı Eksikliği, Toplam Toprak Suyu Stresi, Kılcallık Kapasitesi gibi birçok terimler vardır. Burada konu bunlar arasında en yaygın olarak kullanılan bazı terimlerle ele alınacaktır. Toplam toprak su stresi, (Total soil moisture stress) konuya enerjetik açıdan yaklaştığı için bu konudaki en bilimsel terimdir. Konuya toprakta bulunan suyun serbest enerjisini azaltan iki temel kuvvet grubunun etkinliği çerçevesinde yaklaşır ve toprak suyunun serbest enerjisini azaltan bu iki grubu : Toprak suyu tansiyonunun ögeleri olan hidrostatik kuvvetler, yerçekimi ve adsorpsiyon kuvvetleri, Toprak çözeltisinin osmotik kuvvetleri olarak tanımlar. Hidrostatikler bilindiği gibi su basıncı, yüzey gerilimi gibi kuvvetler, adsorpsiyon kuvvetleri de su ile toprak kolloidlerini oluşturan kil gibi mineraller ve organik maddelerle su arasında etkili olan, suyun yerçekimi etkisini yenebilmesini sağlayan kuvvetlerdir. Osmotik kuvvetler de topraktaki su çözeltisinin içerdiği iyonlarla ilişkilerinin sonucu olan kuvvetlerdir. Toprak çözeltisinde çözünmüş iyon derişimi suyun azalması ve çözünür iyon miktarı artışı ile artar. Yani toprak kurudukça su alımı zorlaşır, kuraklığın zorlayıcı etkisi

http://www.biyologlar.com/bitki-fizyolojisi-bolum-2

Balıklarda Miğde Analizi

Balıklarda mide analiz yapımının amacı belirli bir bölgede yaşayan balık türlerinin sindirim aygıtlarında hangi organizmaların ne şekilde bulunduğunu tespit etmektir. Bu şekilde yapılacak işlem için belli zaman aralıkları içinde belirlenen alanda (göl, deniz, akarsu )yakalanan balıkların sindirim muhteviyatı bulunma frekansı ve sayı yöntemleri kullanılarak incelenir. Sonuçta incelenen balıklardan elde edilen veriler bu konuda çalışmış olan bilim adamları tarafından yapılmış olan sistematik veriler kullanılarak sistematikleri yapılır. Sistematik sonuçlara göre incelenen balıkların sindirim aygıtlarından elde edilen organizmaların bitkisel organizma veya hayvansal organizma oluşlarına göre ayrılır. Elde edilen organizmalar türlerine kadar teşhis anahtarları kullanılarak tür teşhisleri yapılır. İncelenen balık örneklerinin aylara göre dağılımı sindirim aygıtlarında saptanan organizmaların birer aylık ortalaması, üçer aylık ortalaması, bu organizmaların aylık bulunuş frekans yüzdesi, üç aylık bulunuş frekans yüzdesi ve yıllık bulunuş frekans yüzdesi aylık sayısal yüzdesi, üç aylık sayısal yüzdesi ve yıllık sayısal yüzdesi bulunur. Elde edilen bu verilerle çizelgeler ve histogramlar hazırlanır. Çalışılacak olan alanda daha önce hangi bilim adamlarının çalıştığı tespit edilmeli ve bu alanda çalışan bilim adamlarının elde ettikleri veriler çalışma sırasında yardımcı olmak üzere kullanılır. Çalışılacak alanın coğrafik özellikleri tespit edilerek yazılır ve elde edilen veriler alanın diğer özellikleri ile karşılaştırılmalıdır. Bulunduğu bölgedeki iller ile arasındaki mesafeler kaydedilmelidir.İncelenecek alan ile etrafında bulunan iller yön olarak belirtilmelidir. İncelenecek alan göl yada akarsu ise alanın denizden yüksekliği etrafında bulunan dağların yükseklikleri ve yönleri, isimleri kaydedilmelidir.

http://www.biyologlar.com/baliklarda-migde-analizi

Caretta caretta ( Deniz Kaplumbağaları)

Sistematiği Filum: Chordata Altfilum: Vertebrata Üst sınıf: Tetrapoda Sınıf: Reptilia Altsınıf: Anapsida Ordo: Testudines Altardo: Cryptodira Üst familia: Chelonioidae Familia: Cheloniidae Cins: Caretta Tür: Caretta Caretta Coğrafi Yayılışı Caretta Caretta Atlantik, Pasifik ve Hint Okyanusu’nun ılıman ve subtropikal sularındaki estuarin, lagün, koy ve denizlerin kıyıya yakın kesimlerinde dağılım gösterir. C.C.’lar Atlantik Okyanusu’nda Arjantin’den Nova Scotia’ya kadar bulunur. Kuzey Amerika’daki en büyük popülasyonu Kuzey Carolina’dan Florida kıyılarına kadar olan adalarda bulunur. Bu C.C.’ler kışları Bahama Adaları’na göç ederler. Kuzey Amerika’daki diğer küçük popülasyonlar ise Texas kıyılarında bulunur. Caretta Caretta ların en büyük yuvalama alanları Umman’ın Masirah Adası’dır. Akdeniz’deki önemli yuvalama alanları Yunanistan ve Türkiye sahillerindedir. Bunlara oranla çok daha düşük ancak önemli bir popülasyona ise Kıbrıs’ta rastlanmaktadır. Tunus’ta yuvalama çok nadir, İsrail’de ise daha da azdır. Zaman zaman Campedusa (İtalya), Sicilya ve hatta Sardunya’da da yuvalama olmaktadır. Mısır ve Libya için ise veriler yetersizdir. Türkiye’de ki yuvalama alanları; Ekincik, Dalyan, Dalaman, Fethiye, Patara, Kumluca, Belek, Kızılot, Demirtaş, Gazipaşa, Anamur ve Göksu Deltası’dır. Fiziksel Özellikleri Ergin bireylerde karapaks (sırt kabuğu) oval şekilli ve arkaya doğru daralmış 70–75 cm boyunda ve 50–55 cm genişliğindedir (Türkiye için). Boş oldukça büyük ve üçgenimsidir. Ancak bu büyük beyinleri olduğunu göstermez; aksine bu boşluk çeneleri kapsayan kaslar tarafından kullanılır. C.C.’ların iki alt–türü (sub–species) vardır. Bunlardan C.C. gigas Pasifik ve Hint Okyanusu’nda bulunur. Genel renklenme dorsalde kırmızımsı kahverengi, ventralde kremsi sarı şeklindedir. Diğer deniz kaplumbağalarından sağlam bir kabuk, gözleri ile burun delikleri arasında kalmış iki çift prefrontal plak (bazı bireylerde bu plakların ortasında beşinci bir plak olabilir), karapaksta beş çift kotsal plak, plastronda keropakla bağlantılı ve geniş üç çift inframarjinal plak, her bir üyede iki tırnak ve tipik olarak kahverengimsi–kırmızı renklenme gibi özelliklerle farklılaşır. Beslenme Alışkanlıkları Yavru ve genç Caretta caretta bireyleri, yüzeyde akıntı çizgilerinde toplanan makroplanktonik av üzerinde beslenir. Ergin bireyler özellikle yumuşakçalar üzerinden beslenen karnivorlardır. Etoburdurlar ve sünger, deniz anası, at nalı yengeçler ve istiridye yerler. Kurbanlarının sert kabuklarını kolayca parçalayabilmelerini sağlayan çok güçlü çeneleri vardır. Geniş bir kafa, oldukça gelişmiş çene kasları ve kuvvetli gaga, sert kabuklu avlarını parçalayabilmek için meydana gelmiş adaptasyonlardır. Biyo– Ekolojileri Caretta caretta’lar ayrı eşeylidir ve eşeysel dimorfizm erginlerde görülür. Eşeyler arasındaki büyüklük dimorfizmi hakkında çelişkili bilgiler mevcuttur. Ancak ergin erkekler dişilerden daha uzun kuyruğa ve geriye doğru kıvrılmış tırnaklara sahiptir. Yavru, genç ve ergin öncesi bireylerde eşey ayrımı yapılamaz. Caldwel (1962) ve Uchida (1967)’ya göre esaret altında yetiştirilen Caretta caretta ’nın eşeysel olgunluğa ulaşması 6–7 yıl olarak tahmin edilmektedir. Serbest olarak doğada yaşayan bireyler içinse eşeysel olgunluk yaşı; Mendonca (1981)’ya göre 10–15 yıl, Zug (1983)’e göre 14–19 yıl, Frazer (1983)’e göre 22 yıl, Frazer ve Ehrhart (1985)’a göre sırtındaki eğrilerden edinilen bilgilerle 12–30 yıl olarak tahmin edilmektedir. Üreme Caretta caretta’lar kabukları 50 cm’yi geçmeden cinsel olgunluğa erişirler. Diametre cinsinden 40–42 mm olan yumurtalar med zamanı bırakılır. Yumurtalar kirletilmemiş ve iyi süzülmüş kumullardaki ya da otlu bitki örtülerindeki yuvalara bırakılır. Dişi kıyıya gelir ve gelgitin oluşturduğu yükseltiye tırmanıp orada durur, daha sonra sığ bir çukur açmak için burnunu toprağa sürter. Çukur kazılıp yumurtalar çukura bırakılınca, kaplumbağa arka ayağının tırnaklarıyla yuvayı kumla örter. Kuluçkaya yatma 31–65 gün arası sürer. Genellikle yuva başına 120 yumurta vardır ve dişi 13 günlük aralarla kuluçkaya yatar. Dişi kıyıdaki yuvaya sadece bahar ve yazları geceleyin gelir. Dişi genellikle her yıl mevsim başına 3–4 kere yuva yapar. Yuvadaki yavrular genellikle bu zamanlarda yumurtadan çıkar ve yavrular yaşamlarındaki tek karasal yaşamı bırakıp hep birlikte çabucak denize giderler. Günlük Aktiviteleri Caretta caretta’ların olağan bir gününün beslenme ve dinlenme ile geçtiği bilinmektedir. Kuluçka sezonunda güneydoğu ABD’de yapılan araştırmalar Caretta caretta’ların yuva bulunan kumsal, kıyıdaki resifler ve diğer kayalıklarda düzenli davranışlar sergilediğini göstermiştir. Çiftleşme ve /veya beslenmenin bu bölgelerde gerleşleştirildiği tahmin edilmektedir. Kuluçka dönemi dışında, kaplumbağalar yüzlerce, hatta binlerce mil öteye göç edebilmektedir. Caretta caretta’lar derin sularda yüzeydeyken ya da kıyı yakınlarındaki sularda dipte uyuyabilmektedir. Birçok dalgıç kayalıklarda kaya altında uyuyan kaplumbağa görmüştür. Yumurtadan yeni çıkan kaplumbağaların ise tipik olarak yüzeyde süzülerek uyudukları ve bu sırada ön ayaklarının sırtlarının üstüne doğru kıvrıldığı kaydedilmiştir. Kur Yapma ve Çiftleşme Caretta caretta’ların çiftleşmesi yuvalama başlangıcından birkaç hafta önce yuvalama plajı yakınları veya özel toplanma alanlarında meydana gelebilir. Birbirlerine sıkıca sarılmış çiftler çoğunlukla yüzeyde görünmekle birlikte su altında birleşmeler de rapor edilmiştir. Caretta carettalar için kur yapma ve çiftleşme dişinin ilk yumurtlama döneminden önceki kısıtlı bir zamanda gerçekleştiğine inanılmaktadır. Daha sonra yalnızca dişiler kıyıya gelir, erkekler karayı terk edince bir daha asla geri dönmez çiftleşme mevsiminde erkekler bir dişinin kafasına burnunu sürterek ya da boynunun arkasını hafifçe ısırarak ve paletlerini dikerek kur yaparlar. Eğer dişi kaçmazsa, erkek ön paletlerindeki tırnakların yardımıyla dişinin kabuğunun üstüne çıkar. Daha sonra çiftleşmek için kuyruğunu dişinin kabuğunun altına sokar. Genellikle dişilerin çiftleşmesinin gerçekleştiği kumsalda kuluçkaya yattığı ve erkeğin asıldığı kabuğundaki tırnak izlerinin kanayabildiği gözlemlenmiştir. Çiftleşme su yüzeyi ya da altında gerçekleşebilir. Bazen erkeklerin aynı dişi için kavga ettiği gözlemlenebilmektedir. Caretta caretta’ların çiftleşmelerini gözlemleyenler hem erkeklerin, hem de dişilerin agresif bir tutum sergilediğini gözlemlemiştir. Dişi yumurtlama döneminden önce bir çok erkek ile birlikte olup birkaç ay için sperm biriktirebilir. Nihayetinde yumurtalarını bıraktığında bunlar bir çok erkek tarafından döllenmiş olur. Bu davranış popülasyonda genetik çeşitliliğin devamını sağlamaya yardımcı olur. Yuva Yapma, Kuluçkalama ve Dağılım Caretta caretta’ların neden bazı kumsallara yuva yapıp diğerlerine yapmadığı bilinmemektedir. Florida’da binlerce yuva varken, kuzeydeki tıpa tıp kumsallarda çok az kaplumbağa vardır. Bu yuva dağılımı yüzyıllar önce var olan ısı, kumsal görünümü ya da saldırının az olması gibi tercih nedenlerinin durumunu ortaya koyabilir. Bugün, insanlar Caretta carettaların yuva yaptığı yerlere etki etmektedir.sahilde dalma, deniz koyları, suni aydınlatma ve beslenmenin oluşturduğu kumsal erozyonu bir zamanların taze ve temiz kumsallarını etkilemektedir. Bu durumun gelecek yuvaları da etkileyeceği kesindir. Caretta carettaların nasıl, nerede ve ne zaman yuva yaptığını daha iyi anladıkça, yuva habitatları daha iyi korunmuş olacak. Kumsal Seçimi Çoğu dişi genellikle her seferinde daha önce yuva yaptıkları kumsala geri dönmektedir. Sadece aynı kumsalda görünmekle kalmayıp, daha önceki yuvalarının çok yakınlarına yuva yaparlar. Yuva Yapma Davranışları Sadece dişiler yuva yapar ve bunu genellikle geceleri yaparlar. Dişi okyanustan çıkar ve ara sıra duraksayarak yuva yapacağı yere doğru ilerler. Bazen okyanustan çıkacak, ancak bilinmeyen nedenlerle yuva yapmayacaktır. Buna “sahte çıkış” denir ve bu bazen doğal olarak, bazen ise kumsaldaki suni aydınlatma veya insanların varlığından kaynaklanmaktadır. Bazı türlerin bireylerinin sadece bir kere, bazılarının ondan daha fazla yapmasına rağmen çoğu dişi yuva yapma mevsiminde en az iki kere yuva yapar. Yuvayı İnşa Etmek Yuvalama sezonu genellikle Kuzey yarım kürede Mayıs–Ağustos, güney yarım kürede ise Ekim– Mart ayları arasındadır. Yumurtlama genellikle gece meydana gelir. Nadiren günüz yumurtlama da görülür. Yumurtlamak için kıyıya gelen dişi zaman zaman başını kaldırır ve kumsalı gözetler. Dişi bu dönemde dışarıdan gelecek uyarılara karşı çok hassastır ve rahatsız edildiğinde geri döner. Daha sonra kumsala doğru tırmanan dişi yumurtlayabileceği bir alan aramaya başlar. Bazı durumlarda yuvalamadan veya denize dönmeden önce önemli mesafeleri kat edebilir, karapakslarını gizleyebilecekleri sığ ve geri tarafta daha derin olan bir gövde çukuru açabilirler. Ön üyeler yuva açma olayında pek görev yapmazken arka üyeler karşılıklı iş görür. Yumurta Bırakma ve Gömme Yumurta oyuğu açılınca, dişi kaplumbağa yumurtaları bırakmaya başlar. Yumurta bırakma sırasında salgılanan mukusla birlikte aynı anda iki–üç yumurta bırakılır. Bu yuva yaklaşık 80–120 yuva alır. Caretta caretta yumurtaları genellikle küresel, beyaz, mukusla kaplı ve ping–pong topu büyüklüğündedir (yaklaşık 40 mm çapında ve 40 gr ağırlığında). Yumurtalar arasında küçük oval şekilli veya ikili yumurtalara da rastlanabilir. Caretta caretta yumurtaları esnektir ve deliğe düşerken kırılmazlar. Bu esneklik hem dişiye hem de yuvaya daha fazla yumurta sığmasını sağlar. Yuva yapan Caretta caretta’ların ağladıkları görülür, ancak bu sadece vücudun salgıladığı salgının atılmasıdır. Birçok insan yumurta bırakan kaplumbağanın transa geçtiniği ve rahatsız edilmemesi gerektiğini düşünür. Bu tamamen doğru değildir. Bir Caretta caretta’nın yumurta bırakırken yuvayı terk etmesi pek olası değildir, ancak bazıları rahatsız edilir ya da kendilerini tehlikede hissederlerse bunu etkileyebilir. Bu sebeple, bu işlem sırasında C.C.’lar rahatsız edilmemelidir. Yumurtaların hepsi bırakıldıktan sonra, dişi arka üyeleriyle ana çukuru kapatır ve yuvayı düzler. Kumu farklı taraflara da atarak yumurtaların avcılar tarafından bulunmasını engellemeye çalışır. Yuva kapandıktan sonra, kaplumbağa denize yönelir ve bir sonraki yuva yapma ya da göç zamanına kadar dinlenir. Dişi yuvayı bir kez terk etimi tekrar geri dönmez. Kuluçka Caretta caretta’ların kuluçkalama süresi yaklaşık 45–60 gündür. Ancak embriyoların gelişme hızını etkileyen kum sıcaklığı bunu kısaltabilir ya da uzatabilir. Serin kumların erkek, sıcak kumların dişi üretme eğilimi vardır. Yuvayı Terk Etme Yuvadan anneleri tarafından çıkarılan timsahların aksine, Caretta caretta’lar yuvadan kendi başına çıkmak zorundadır. Yumurtayı kırmak için yavrular, “caruncle” adı verilen geçici, sivri yumurta dişlerini kullanırlar. Bu diş yuvadan çıktıktan hemen sonra düşer. Yavrular, yumurta kabuklarını kırdıktan sonra karapakslarının düzelmesi için yuva içinde 26 saate kadar hareketsiz kalırlar, yuvayı terk etme ise yumurtadan çıktıktan 1–7 gün (ortalama 2,5 gün) sonra yavruların birbirlerine yardımıyla yüzeye doğru tırmanma şeklinde gerçekleşir. Yavrular yuvadan havanın serin olduğu geceleri ya da yağmur fırtınaları sırasında çıkmayı tercih ederler. Bunun nedeni bu havalarda kum sıcaklığının düşüklüğüdür. Yuvadaki bütün yavrular aynı zamanda yuvadan çıkmayabilir, bu durumda takip eden gecelerde gruplar halinde yavru çıkışı devam eder. Yuvadan çıkan yavrular ufuk aydınlığını kullanarak denize doğru yönelirler. Bu sırada kumsal gerisinde bulunan herhangi bir ışık kaynağı, yavruların yönlerini şaşırmalarına ve bu nedenle ölümlerine neden olabilir. Eğer hemen denize ulaşmazlarsa, güneşte kalmaktan, su kaybından, ya da yengeçler, tilkiler, köpekler, rakunlar yakın balıkları ve köpek balıkları gibi nedenlerle öleceklerdir. Denize ulaşan yavrular “yüzme çılgınlığı” denen ve yaklaşık 20 saat süren bir dönemde durmaksızın yüzerler. Ancak yavru Caretta caretta için o kadar çok tehlike vardır ki her 1000 yavrudan ancak biri gençliğe kadar hayatta kalabilir. Doğal ortam yaşayan Caretta carettalar için belgelenmiş ömür uzunluğu tahmini yoktur. Ancak ergin dişilerin üretimsel hayat süreleri 32 yıl, eşeysel olgunluğa ulaşma süresi 15–30 yıl olarak tahmin edilmiştir. Bu şartlarda maksimum ömür uzunluğunun 47–62 yıl olabileceği belirtilmiştir. Göç ve Yön Duyguları Göç: Deniz kaplumbağalarının beslenme alanından, yuva yaptıkları alana olan yüzlerce binlerce millik göçü hayvanlar aleminin en dikkate değer özelliklerindendir. Erişkin dişilerin kendi doğdukları bölgeye yuva yapmak için dönmeleri bu özelliği daha da çekici yapar. Deniz kaplumbağalarının nasıl ve nereye göç ettikleri onlarca yıldır bilim adamlarının odaklandığı bir noktadır. Elde edilecek bilgiler türlerin korunma stratejileri için çok büyük önem taşımaktadır. Bugün biliyoruz ki, deniz kaplumbağaları yaşamları boyu sürecek bu göçe yuvadan ilk çıkışlarıyla başlarlar. İlk kritik 48 saat içinde yavru kumsaldan okyanusa yürümek ve orada kendine avcılardan korunup yiyecek bulabileceği bir yer bulmalıdır. Atlantik ve Caribbean’da bir çok yavru körfez akıntılarına kapılır. Burada genç kaplumbağalar yeterli bir besin kaynağı ve az sayıda avcı bulurlar. Yıllarca Atlantik etrafında yüzüp durduktan sonra, bu genç kaplumbağalar kıyı kenarındaki sığ sulara dönecek kadar büyümüşlerdir. “Tüm Floride loggerheadlerinin birkaç yıllarını kıyı yakını habitatlarda beslenip büyüyerek geçirirler. Ergenliğe ve cinsel olgunluğa erişir erişmez, bir iki beslenme alanına göç ettikleri bilinir. Ergen kaplumbağaların üreme mevsimi hariç ömürleri boyunca kalacakları yer bu ilk beslenme alanıdır. Çiftleşme ve yuva yapma dönemine gelindiğinde hem dişi hem de erkek yuva yapılan kumsallara doğru göçe başlar. Bu olağan güç hayatları boyunca sürecektir. Yön: Açık okyanuslarda deniz kaplumbağaları güçü akıntılara maruz kalırlar, kısıtlı bir görüş açıları vardır; kafalarını suyun üstüne yalnızca birkaç santim çıkartabilir. Bu kısıtlamalara rağmen, deniz kaplumbağaları aynı yuva yapılan kumsalı bulmak için uzun mesafelere göç ederler. Bunu nasıl yaptıkları hayvanlar aleminin en gizemli sorularından biridir ve buna cevap bulabilmek bir çok araştırmacının odak noktası olmuştur. Umut verici yeni bir teori kaplumbağaların dünyanın manyetik alanının açı ve yoğunluğunu bulabildiğini iddia eder. Bu iki özelliği kullanarak kaplumbağa istediği yere gitmesini sağlayacak olan bulunduğu yerin enlem ve boylamını bulabilmektedir. Daha önceki araştırmalar da deniz kaplumbağalarının manyetik alanı belirleme yeteneğinin var olduğunu ispatlamıştır. Göç incelemeleri: Deniz kaplumbağalarının göçebe doğaları, onları anlama ve korumayı zorlaştırmaktadır. Özellikle kaplumbağaları kendi habitatları içinde korumak için, bu habitatların nerelerde olduğunu, kaplumbağaların orada nasıl davrandığını ve hangi yönlere doğru göç ettiğini bilmemiz gerekir. Bir çok araştırma yuva yerlerinde yapılmıştır ve bunun çok mantıklı sebepleri vardır. Araştırmacılar için bu bölgeler daha kolayca ulaşılabilirdir, ayrıca yeni deniz kaplumbağalarının üremesi soyun devamı için çok önemlidir. Koruma çalışmaları da en kolay yuva bulunan kumsallarda yönetilmektedir. Ancak, hayat döngüleri içinde deniz kaplumbağalarının gittiği bölgelerden, en az zaman harcananı yuva yapılan kumsallardır. Bir deniz kaplumbağasının hayatının % 90’ından fazlası suda–beslenerek, çiftleşerek, göç ederek ve kimse izlemediğinde deniz kaplumbağaları ne yaparsa onu yaparak geçer. Sonuç olarak, korumacılar için en büyük tehlikenin olduğu bölge en çok sorunla karşılaşılan okyanuslardır. Yaşamları boyunca onları tam olarak koruyabilmemiz için, kaplumbağaların göçebe motiflerinin ve sudaki davranışlarının tam olarak bilinmesi gerekir. Deniz kaplumbağalarının nereye gittiklerini belirlemek için bir çok metot uygulanır. Bunların en basitlerinden biri yuva yapmaya kumsala geldiğinde ayaklarından birine küçük, zararsız bir metal parçası takmaktır. Her parça kodlanmış bir numaraya sahiptir ve insanlara bulunduğu taktirde geri gönderilmesi için gerekli olan bir adres vardır. İnsanlar bu kimliği geri döndüklerinde, küçük bir ödül kazanırlar ve bu şekilde kaplumbağaların bulundukları, uğradıkları yerler bulunmuş olur. Populasyon: C. caretta’nın erkekleri hakkındaki bilgilerine azlığından dolayı populasyonlarının cinsiyet oranı tam olarak bilinmemektedir. Populasyonların yaş ve boyut kompozisyonları hakkında da kapsamlı bir bilgi yoktur. Ayrıca Henwood (1987), populasyonda kompozisyonların her sezonda değiştiğini ve böylece populasyonun büyüklüğü hakkında bilgi edinmenin karmaşık hale geldiğini belirtmiştir. Populasyon yapısı ve cinsiyet oranı hakkındaki eksik bilgiler ve deniz kaplumbağalarının yaşadığı biyolojik populasyonun sınırlarının tam olarak bilinmemesinden dolayı, populasyon bolluğu ve yoğunluğu hakkında tahmin yapabilmek zorlaşmaktadır. Bununla birlikte yuvalama kumsallarına gelen dişilerin direk sayımı veya yuva sayılarıyla ilgili bazı tahminler yapılmaktadır. C. caretta’nın üretkenlik organlarına etki eden faktörler bölgesel olarak değişkenlik göstermektedir ve populasyon içinde önemli oranlarda varyasyonlar söz konusudur. Bu varyasyonlar, belirli sahillerdeki üretkenlik durumunun belirlenmesini engeller. Aşırı yağmurlar, rüzgar erozyonu, dalga erozyonu ve sıcaklık gibi baskın genel çevresel faktörler üretkenliği etkiler. Yumurtlama sahillerindeki insanların varlığı, ziyaretçilerin olması ve çevredeki ışık kaynakları yuvalama yapmak için kumsala çıkmış dişileri rahatsız ederek denize dönmelerine neden olabilir. C. caretta yavruları, kum yengeçleri, köpek balıkları, predatör kemikli balıklar ile tilki, köpek, rukan gibi memelilere yem olmaktadır. Çeşitli kuşlar da gündüz saatlerinde yavruları avlarlar. Hastalık, şiddetli açlık ve soğuk sersemliği de ölümlere sebep olabilmektedir. Ancak belirli populasyonlar üzerindeki etkileri bilinmemektedir. Katran, yağ artığı ve plastik atıklarının yutulmasından ölümler meydana gelebilmektedir. Genç ergin öncesi ve ergin bireyler ise özellikle köpek balıkları tarafından avlanırlar. Ayrıca bu gruplar, katran veya plastik yutarak ölebilir veya yaralanabilirler. Ayrıca bot çarpmaları bilinçli avlanmalar ve çeşitli ağlara takılmalar da ölüme neden olan diğer faktörlerdir. C. caretta Avustralya, Güney Afrika ve ABD’de korunmaktadır. Balıkçılık endüstrisinin öncelikli avı olmasa da görüldükleri yerde avlanırlar. İnsanların çoğu iddia edilen beğenilmemiş tadından dolayı etini yemezler. Ancak Hindistan, Madagaskar ve Mozambik kıyılarında yaşayan insanlar tarafından hala tüketilmektedir. Her ne kadar C. caretta’nın eti, kabuğu ve derisi Cheloma mydas, Eretmochelys imbricata, Lepidchelys kempii ve Lepidochelys olivacea’ya göre değerli olmasa da yumurtaları dünyanın bir çok yerinde tüketilir. Mozambik, Madagaskar ve Umman kıyı şeritlerinde olduğu gibi C. caretta yumurtalarının protein amaçlı kullanılması, populasyonlarının gerilemesine neden olmuştur. Çoğunlukla ılık ve subtropikal bölgelerde yuvaladıklarından, C. caretta’nın üreme habitatları ve kışlama alanları arasında göç ettikleri sanılır, erkek göçleri hakkında ise çok az şey bilinmektedir. C.Caretta’nın grup göçü bilinmemektedir. Yıl boyunca açık deniz sularında kalabilirler. Florida’da bazı bireylerin, dipleri çamurlu kanallara girdikleri belirlenmiştir. Bazı populasyonlar ise yıl boyunca yuvalama kumsallarının yakınında yaşarlar ve yuvalama dönemleri arasında çatlak ve delikleri mesken edinebilirler. C. caretta’nın klasik anlamda “sürüler” oluşturduğuna dair herhangi bir gösterge yoktur. Bununla beraber, denizde ya da yuvalama kumsallarının yakınında lokal yoğunlaşmalar oluşturabilirler (Dodd, 1988). Koruma ve Yönetim C. caretta’nın da içinde bulunduğu deniz kaplumbağaları, bu türlerin durumları ve önemi kavrandıkça yakalanmalarını ve satışlarını yasaklayan, habitatlarının korunmasını da sağlayacak kanunlarla korunmaya çalışılmıştır. C. caretta, Uluslararası Tehlike Altındaki Türler Kongresinde (CITES) Ek 1’de listelenmiştir. Aralarında Türkiye’nin de bulunduğu bir çok ülke bu antlaşmayı imzalamıştır. Bu listede yar alan türlerin herhangi bir şekilde gelir amaçlı satışı yasaklanmıştır. Göç eden türler konferansı hazırlıklarında uluslararası korumanın şart olduğu Ek 2 listesinde yer almışlardır. Her ne kadar bazı düzenleyici kanunlarla koruma altına alınmış olsalar da bazı bölgelerdeki yetersiz veya isteksiz güvenlik güçleri ve ülkelerin ekonomik seviyelerindeki farklılıklar C. caretta ve diğer deniz kaplumbağalarının korunmasında yeterli olmamakta ve tedbirlerin uygulanmasını güçleştirmektedir. C. caretta’nın neslini devam ettirebilmesi için bütün önemli yuvalama, beslenme, göç ve kışlama habitatlarının üzerinde önemle durulması ve biyolojik verilere dayalı korumalarının uygulanması zorunlu olmuştur. Deniz kaplumbağalarının korunması için farklı bölgelerde, farklı koruma ve yönetim alternatifleri uygulanmaktadır. C. caretta’nın derisi ve kabuğu için fazla talep yoktur ve bu nedenle uluslararası ticareti de çok iyi değildir. Yumurta ve eti ise genellikle lokal olarak tüketilmektedir. CITES uygulamaları uluslararası ticareti engellemede başarılı olabilecektir. Uluslararası ticaret, yasalar tarafından değişik derecelerde başarıyla durdurulmuştur. Örneğin, ABD ve Avustralya’da yumurta tüketimi bu sayede durmuştur. Fakat kaçak avlanma devam etmektedir. Koruma kanunlarının olmadığı bölgelerde ise kanunların çıkarılması ve uygulanması türün devamlılığı için zorunlu görünmektedir. Dişilerin üretkenlikteki önemi ve yumurtlama anlarında çok hassas olmaları nedeniyle plaja gelen dişilerin rahatsız edilmemeleri gerekmektedir. Bu, yumurtlama mevsiminde insan aktivitesinin en aza indirilmesi ve yavruların yollarını bulabilmeleri için yapay ışıklandırmaların minimuma çekilmesiyle gerçekleşebilir. Yuvalar ve dişiler sahillere giren araçlardan korunmalıdır. Çünkü bunlar kumu sıkıştırabilir veya yavruların içinden çıkamayacakları izler bırakabilirler. Ayrıca bu araçların gece kullanılması da dişilerin bu sahillere gelmesini engelleyebilir. Plaj temizlemede kullanılan ağır mekanize temizleme araçları, yumurtlama mevsiminde yumurtlama plajlarında kullanılmamalı veya zarar vermeyecek boyutlarda işletilmelidir. Yumurtalar üzerindeki kaçak avcılığın, predosyonun ve erozyonun yüksek oldu bölgelerde yeni yapılanmış yuvalar, korunmuş kuluçkalıklara taşınabilir buralarda acilen yuvalara tekrar gömülür ya da nemli plaj kumu ile doldurulmuş kutularda inkübasyona bırakılabilir. Bu tip uygulamaların yaratacağı durumlarda, yöntemin taşıdığı bazı risklerden dolayı dikkatli planlama yapılması ve yürütülmesi zorunluluğu vardır. Deniz kaplumbağalarının korunmasında kullanılan bir başka metot da yavruları ilk dönemlerinde yüksek olan predasyonlardan korunabilecekleri büyüklüğe kadar ulaştırmaktadır. Konu ile ilgili araştırmacılar tarafından habitat korunmasından sonra bu metodun kullanılması gerektiği savunulmaktadır. Bu yöntem özellikle Chelonie mydas, Eretmochelys imbricata, Lepidochelys kempii populasyonlarını arttırmak için dünyanın değişik yerlerinde kullanılmıştır. Yavru kaplumbağaların korunması için, yavru kaplumbağalar üzerindeki predasyonun azaltılması, plaj ışıklandırmalarından kaynaklanan yanlış yönelmelerin önlenmesi, kirleticilerin ve besin olarak nitelendirebilecekleri plastiklerin denize ulaşmasının engellenmesi gerekmektedir. Balıkçılıkta kullanılan ağlarla rasgele yakalanmaların ve ölümlerin yüksek olduğu bölgelerde “Kaplumbağa Dışlayıcı Aygıt (TED)”ların kullanılması balıkçılıktan kaynaklanan ölümleri azaltacak bir yöndemdir. Bu yöntem özellikle ABD’de balıkçılıktan kaynaklanan ölümlerin yüksek olduğu bölgelerde kullanılmış, ergin ve ergin öncesi kaplumbağaların kurtulmasını sağlamıştır. Kaplumbağa yaşamını tehdit eden faktörler: Deniz kaplumbağaları yaşamlarının büyük bölümünü denizde geçirmekle birlikte, nesillerini devam ettirebilmek için üreme kumsallarına son derece bağımlı olan canlılardır. Bu tip kumsalların insan eliyle farklı amaçlar için işgal edilmesi ( turizm amaçlı faaliyetler, kum alımı, otlatma, tarım için kumsalların toprak ile örtülmesi vs. ) ve artık Türkiye , Yunanistan ve Kıbrıs gibi birkaç ülkede sınırlı kalması bu bölgelere yumurta bırakan kaplumbağaların nasıl yavaş yavaş yok olmaya mahkum edildiklerini ortaya koymaktadır. Ayrıca, deniz ortamında gerek ergin, gerekse yavrularını trol vb. ağlarla balıkçılar tarafından tesadüfi yakalanmaları da kaplumbağa yaşamını tehdit eden önemli bir sorundur. Çözüm ve Öneriler: Yüksek yuva yoğunluğuna sahip üreme kumsallarını olumsuz yönde etkileyecek yatırımlardan kaçınılmalıdır. Gerek turizm amaçlı gerekse bu amaç dışı yapılanmalarda, özellikle deniz kaplumbağası üreme mevsimi olan Mayıs-Ekim aylarında aydınlatma ve gürültü ile ilgili tedbirlere önem verilmelidir. ( Karayolları aydınlatması, çadır ve karavan kampingleri, otel, ev vb. ) Kumsallarda, doğal yapıyı bozucu her türlü kum ve çakıl alımı önlenmelidir. Üreme kumsallarına büfe, restoran vs. sabit tesisler kurulmamalıdır. Gece kumsallar insanlar tarafından kullanılmamalı, araba, motor, bisiklet vs. araçların üreme kumsallarına girmesi engellenmelidir. Plaj şemsiyeleri toprağa gömülmeyen türden olup yumurtlama bandının gerisinde kullanılmalıdır. Deniz Kaplumbağalarının Korunması İçin Gerçekleştirilen Çalışmalar Ülkemizin taraf olduğu Uluslararası Sözleşmeler (Bern, Barselona Sözleşmeleri) çerçevesinde nesli tehlikede olan ve Türkiye sahillerini üreme alanı olarak kullanan deniz kaplumbağalarının korunması yönünde çalışmalar yapılmaktadır. Bu amaçla, Bakanlığımız koordinatörlüğünde ilgili Bakanlıklar, üniversiteler ve gönüllü kuruluşlardan oluşan “ Deniz Kaplumbağaları İzleme-Değerlendirme Komisyonu ” kurulmuştur. İzleme-Değerlendirme Komisyonu Akdeniz’ de önemli deniz kaplumbağası üreme alanı olarak belirlenmiş 17 alanda ( Ekincik, Dalyan, Fethiye-Çalış, Dalaman, Patara, Kale (Demre), Kumluca, Tekirova, Kızılot, Belek, Gazipaşa, Demirtaş, Göksu Deltası, Kazanlı, Anamur, Akyatan, Samandağ ) incelemelerde bulunarak, sorunları tespit etmekte ve bu sorunların giderilmesi yönünde çalışmalar gerçekleştirmektedir. KAYNAKÇA: 1- Sınıflandırma, coğrafi dağılışı, fiziksel özellikleri, beslenme alışkanlıkları, üreme, davranış özellikleri, habitatı: 2- Biyo-Ekolojileri, populasyonu: 3- Kaplumbağa yaşamını tehdit eden faktörler, Çözüm ve Öneriler, Deniz Kaplumbağalarının Korunması İçin Gerçekleştirilen Çalışmalar    

http://www.biyologlar.com/caretta-caretta-deniz-kaplumbagalari

Kontrol Laboratuvarlarının Kuruluş ve Görevleri Hakkında Yönetmelik

23.6.2005 tarih ve 25854 sayılı Yönetmelik Tarım ve Köyişleri Bakanlığından: Kontrol Laboratuvarlarının Kuruluş ve Görevleri Hakkında Yönetmelik BİRİNCİ BÖLÜM Amaç, Kapsam, Dayanak ve Tanımlar Amaç Madde 1 — Bu Yönetmeliğin amacı; gıda, gıda ile temas eden madde ve malzemelerin gıda güvenliği, hijyen ve kalite analizlerini yapmak üzere kurulacak gerçek ve tüzel kişilere ait özel laboratuvarlar ile bu hizmetlerin yanı sıra yem ve yem maddeleri, hayvan hastalıkları teşhis, tohumluk kontrol hizmetlerinin yürütüldüğü kamu laboratuvarlarının kuruluş ve çalışma izni ile denetimlerine dair usul ve esasları düzenlemektir. Kapsam Madde 2 — Bu Yönetmelik, kontrol laboratuvarlarının kuruluş ve çalışma izni ile denetimlerine dair usul ve esasları kapsar. 5179 sayılı Gıdaların Üretimi, Tüketimi ve Denetlenmesine Dair Kanun Hükmünde Kararnamenin Değiştirilerek Kabulü Hakkında Kanunun 5 inci maddesine göre; Sağlık Bakanlığı ile Türk Silahlı Kuvvetleri yetkileri çerçevesinde bulunan laboratuvarlar bu Yönetmelik kapsamı dışındadır. Dayanak Madde 3 — Bu Yönetmelik: 7/8/1991 tarihli ve 441 sayılı Tarım ve Köyişleri Bakanlığının Teşkilat ve Görevlerine Dair Kanun Hükmünde Kararname, 27/5/2004 tarihli ve 5179 sayılı Gıdaların Üretimi, Tüketimi ve Denetlenmesine Dair Kanun Hükmünde Kararnamenin Değiştirilerek Kabulü Hakkında Kanun, 29/5/1973 tarihli ve 1734 sayılı Yem Kanunu, 22/3/1971 tarihli ve 1380 sayılı Su Ürünleri Kanunu, 8/5/1986 tarihli ve 3285 sayılı Hayvan Sağlığı ve Zabıtası Kanunu, 21/8/1963 tarihli ve 308 sayılı Tohumlukların Tescil, Kontrol ve Sertifikasyonu Kanununa dayanılarak hazırlanmıştır. Tanımlar Madde 4 — Bu Yönetmelikte geçen; Bakanlık : Tarım ve Köyişleri Bakanlığını, Genel Müdürlük : Koruma ve Kontrol Genel Müdürlüğünü, Ulusal referans laboratuvar : Kontrol laboratuvarlarında yapılan hizmetlerin teknik yönden koordinasyonunu yapan, kollaboratif çalışma düzenleyen, analiz yöntemlerinin geliştirilmesi ve standardizasyonunun sağlanması için yurtiçi ve yurtdışı bilimsel kuruluşlarla işbirliği ve ortak çalışma yürüten, eğitim ve araştırma yapan, analiz sonuçlarına itiraz durumunda şahit numune çalışan ve AB referans laboratuvarlarının faaliyetlerine ülke adına ulusal düzeyde katılım sağlayan ve Türk Akreditasyon Kurumu veya Avrupa Akreditasyon Kurumlarına üye kuruluşlarca akredite edilmiş laboratuvarı, Referans laboratuvar : Bakanlıkça yetkilendirildiği konularda şahit numunelerde analiz yapan, eğitim veren, araştırma yapan, yeterli bilgi ve donanıma sahip, Türk Akreditasyon Kurumu veya Avrupa Akreditasyon Kurumlarına üye kuruluşlarca akredite edilmiş olan laboratuvarı, Kontrol laboratuvarı : Faaliyet konularına göre Bakanlıkça yetkilendirilmiş özel veya kamu laboratuvarı, Sorumlu yönetici/müdür : Laboratuvarın mevzuata uygun olarak yönetilmesinden sorumlu olan ve gıda bilimi konusunda en az lisans düzeyinde eğitim almış; ziraat mühendisi, gıda mühendisi, kimya mühendisi, su ürünleri mühendisi, kimyager, veteriner hekim, biyolog, veya gıda konusunda lisans üstü eğitim almış olan personeli, Müdür yardımcısı : Kamu kontrol laboratuvarlarının hizmetlerinin yürütülmesinde müdüre teknik ve idari yönden yardımcı olan laboratuvar personeli, Teknik müdür yardımcısı : Kamu kontrol laboratuvarının ana hizmet bölümleri ile kalite yönetim biriminin yönetim ve koordinasyonunda müdüre teknik yönden yardımcı olan laboratuvar personeli, İdari müdür yardımcısı : Kamu kontrol laboratuvarının hizmetlerinin yürütülmesinde idari yönden müdüre yardımcı olan laboratuvar personeli, Bölüm sorumlusu/laboratuvar şefi : Laboratuvar bölümlerinin faaliyet ve görev alanına giren konularda analizlerin yapılmasından sorumlu olan laboratuvar personeli, Laboratuvar personeli: Laboratuvar bölümlerinin faaliyet ve görev alanına giren konularda analizleri yapan, bölüm sorumlusu/laboratuvar şefi ve idareye karşı sorumlu olan en az lisans düzeyinde eğitim almış ziraat mühendisi, gıda mühendisi, kimya mühendisi, su ürünleri mühendisi, kimyager, veteriner hekim, biyolog ve diyetisyeni, Laboratuvar yardımcı personeli: Laboratuvar bölümlerinin faaliyet ve görev alanına giren konularda analizlerin yapılmasında yardımcı olan, bölüm sorumlusu/laboratuvar şefi ve idareye karşı sorumlu ve en az lise düzeyinde eğitim almış, laborant, teknisyen ile ön lisans eğitimi almış teknikeri, Kuruluş izni : Kontrol laboratuvarının bu Yönetmelik esaslarına göre Genel Müdürlükçe ürün/ürün gurupları ve analiz bazında faaliyette bulunmak üzere belirlenmiş adreste uygun bina ve ortamın yeterliliğini belirten izni, Çalışma izni : Kontrol laboratuvarının bu Yönetmelik esaslarına göre Genel Müdürlük tarafından incelenerek onaylanan ürün/ürün gurupları ve analiz bazında belirlenmiş faaliyet konularını kapsayan izni, Metot validasyonu/metodun geçerliliği: Bir metodun veya ölçüm prosedürünün performansını belirlemek için yapılan test ve ölçme işlemlerini, Kalite yönetim birimi : "TS EN ISO/IEC 17025 Deney ve Kalibrasyon Laboratuvarlarının Yeterliliği için Genel Şartlar" standardına göre laboratuvarlarda oluşturulması gereken birimi, ifade eder. İKİNCİ BÖLÜM Görev, Yetki, Kuruluş ve Çalışma Esasları, İstihdam, Hizmet Bölümleri Sorumlu yönetici/müdürün görev ve yetkileri Madde 5 — Sorumlu yönetici/müdür, Laboratuvarın mevzuata uygun olarak yönetiminden sorumludur ve bu Yönetmelikte belirtilen hizmetleri, mevzuata göre yürütmekle yükümlü olup, görev ve yetkileri şunlardır: a) Laboratuvar bölümlerinin işlevine uygun olarak çalışmasını sağlamak ve kontrol etmek. b) Alet ve ekipmanların bakım, onarım ve kalibrasyon ve performans testlerini yaptırmak. c) Laboratuvarda metot validasyonu yapılmasını, standart çalışma prosedürlerinin hazırlanmasını ve bunların dokümante edilmesini sağlamak. d) Numune ve analiz kayıt defterlerinin düzenli tutulmasını ve numunelerin laboratuvarlara dağılımını sağlamak. e) Laboratuvara giren numunenin tüm analizlerinin onaylanmış metotlara uygun yapılmasını sağlamak. f) Analiz raporlarını onaylamak. g) Kontrol laboratuvarlarında denetim tutanağı ile belirtilen hususların yerine getirilmesini sağlamak, denetim tutanaklarının muhafazası için gerekli tedbirleri almak. h) Personelin eğitimi ile ilgili programlar düzenlemek. ı) Laboratuvarın ulusal ve uluslararası yeterlilik testlerine katılımını sağlamak. i) Kayıtların düzenli tutulmasını ve arşivlenmesini sağlamak. j) Aylık faaliyet raporlarının Genel Müdürlüğe bildirimini sağlamak. k) Kayıt ve raporlarda gizlilik esasına uyulmasını sağlamak. Müdür yardımcıları ve görevleri Madde 6 — Kamu kontrol laboratuvarlarında teknik ve idari olmak üzere iki müdür yardımcısı istihdam edilebilir. a) Teknik müdür yardımcısının görevleri: Laboratuvarın ana hizmet bölümleri ile kalite yönetim biriminin yönetim ve koordinasyonunda müdüre teknik konularda yardımcı olmak. b) İdari müdür yardımcısının görevleri: Laboratuvar hizmetlerinin idari yönden yönetimi, yürütülmesi ve denetimi ile ilgili konularda müdüre yardımcı olmak, laboratuvarın tahakkuk memurluğu görevini yürütmek. Kalite yönetim birimi Madde 7 — Kontrol laboratuvarlarında, kalite yönetim birimi "TS EN ISO/IEC 17025 Deney ve Kalibrasyon Laboratuvarlarının Yeterliliği için Genel Şartlar" standardına göre kalite ile ilgili çalışmaların organizasyon ve takibinden sorumludur. Kalite yönetim birimi, kalite sistem politikalarını ve hedeflerini ve "TS EN ISO/IEC 17025 Deney ve Kalibrasyon Laboratuvarlarının Yeterliliği için Genel Şartlar" standardı şartlarını karşılayan kalite el kitabı ile sisteme ait prosedür ve talimatları hazırlar veya hazırlatır ve diğer dokümanların hazırlanmasını koordine ve sisteme uygunluğunu kontrol eder. Kalite yönetim birimi en az bir kişiden oluşur. Bu kişilerin kontrol laboratuvarlarında en az bir yıl çalışmış ve "TS EN ISO/IEC 17025 Deney ve Kalibrasyon Laboratuvarlarının Yeterliliği için Genel Şartlar" standardının gerektirdiği eğitimleri almış olmaları gerekir. Kalite yönetim birimi, "TS EN ISO/IEC 17025 Deney ve Kalibrasyon Laboratuvarlarının Yeterliliği için Genel Şartlar" standardı kapsamında kalite yöneticisi olarak görev yapar. Laboratuvar politikası ve kaynaklar hakkında kararların alındığı en yüksek yönetim kademesine doğrudan ulaşır. İstihdam Madde 8 — Kontrol laboratuvarlarında bir sorumlu yönetici/müdür ve her laboratuvar hizmet bölümünde bir bölüm sorumlusu/laboratuvar şefi, yeterli sayıda personel ve yardımcı personel istihdamı zorunludur. Kontrol laboratuvarlarında faaliyet ve görev alanına giren konulara göre gıda, süt, su ürünleri, zootekni, toprak, bitki koruma, tarla ve bahçe bitkileri bölümü mezunu ziraat mühendisi, gıda mühendisi, kimya mühendisi, kimyager, su ürünleri mühendisi, veteriner hekim, biyolog, polimer mühendisi, diyetisyen, tekniker, teknisyen, laborant, veteriner sağlık teknisyeni teknik ve sağlık hizmetleri sınıfı personeli istihdam edilir. Hayvan hastalıkları teşhis bölümü oluşturulan kamu kontrol laboratuvarlarında bölüm sorumlusu olarak mikrobiyoloji, patoloji ya da viroloji konusunda uzman veya doktor veteriner hekimler istihdam edilir. Tohumluk kontrol bölümü oluşturulan kamu kontrol laboratuvarlarında tarla bitkileri ve bahçe bitkileri bölümü mezunu ziraat mühendisi istihdam edilir. Ayrıca, gerektiğinde elektrik, elektronik, bilgisayar mühendisi veya tekniker, teknisyeni istihdam edilebilir. Kamu kontrol laboratuvarlarına ilk defa atanacak teknik ve sağlık hizmetleri sınıfı personelin hizmet süresi beş yıldan az olmalıdır. Müdür ve müdür yardımcıları ile hizmet süresi beş yıldan fazla olan teknik ve sağlık hizmetleri sınıfı personelin laboratuvarlara atanabilmesi için daha önce laboratuvarda en az bir yıl çalışmış olması gerekir. Laboratuvar hizmet bölümleri Madde 9 — Laboratuvar, faaliyet konularına göre uygun hizmet bölümlerini içerir. Bu bölümler; numune kabul, fiziksel, kimyasal, mikrobiyoloji, katkı, kalıntı, mikotoksin, gıda ile temas eden madde ve malzemeler, mineral, biyogüvenlik analiz laboratuvarı ve benzeri şeklinde planlanabilir. Kamu kontrol laboratuvarlarında ayrıca, yem, tohumluk analizlerinin ve hayvan hastalıkları teşhisinin yapıldığı bölümler kurulabilir. ÜÇÜNCÜ BÖLÜM Laboratuvar Binası, Bölümleri ve Genel Özellikleri Laboratuvar binası ve yeri Madde 10 — Laboratuvarlar insanların ikametgahına mahsus binalarda olmamak üzere, imar mevzuatına uygun yerlerde kurulur. Laboratuvar binasının bölümleri Madde 11 — Kontrol laboratuvarları aşağıdaki bölümlerden oluşur; a) İdari Bölüm: 1) Yönetici ve diğer personel için ayrı oda. 2) Duş, tuvalet, giyinme odası. b) Laboratuvar hizmet bölümleri: 1) Numunelerin teslim alındığı numune kabul bölümü. 2) Tartım işleminin yapıldığı çevre şartlarından olumsuz şekilde etkilenmeyecek ayrı veya tek bir bölüm halinde düzenlenen tartım bölümü. 3) Laboratuvarda kullanılacak olan ve yapısına, risk grupları ile saklama koşullarına göre ayrı muhafaza edilmek üzere kimyasal maddeler ve yedek yardımcı malzemeler için depo veya uygun düzenlenmiş dolaplar. 4) Laboratuvarın çalışma konularına göre hizmet bölümleri bulunur. Bu bölümler; fiziksel, kimyasal, mikrobiyoloji, katkı, kalıntı, biyogüvenlik, gıda ile temas eden ambalaj materyali analiz laboratuvarı ve benzeri şeklinde planlanabilir. Laboratuvarların genel özellikleri Madde 12 — Laboratuvarların genel özellikleri ile ilgili hususlar şunlardır: a) İdari ve analiz yapılan bölümler ayrı olacak şekilde planlanmalıdır. b) Enstrümantal cihazlarla yapılan analizlerde numune hazırlama ile cihazın bulunduğu alan ayrı planlanmalıdır. c) Mikrobiyoloji laboratuvarı kontaminasyonu önlemek amacıyla iş akış sırasına göre besiyeri hazırlama, sterilize etme, ekim, inkübasyon işlemleri, kullanılmış malzemelerin temizliği ve sterilizasyonu için ayrı bölümler içeren alanlardan oluşmalıdır. d) Her hizmet bölümü için en az on beş metrekarelik alan olmalıdır. e) Laboratuvarlar özel ortam gerektiren analizlerde bu şartları sağlayan alet ve ekipmanlarla donatılmalı ve ayrı bölümler halinde planlanmalıdır. f) Laboratuvar çalışmalarında analiz sonuçlarının olumsuz etkilenmemesi için ortamın; toz, nem, buhar, titreşim, elektromanyetik etkenler ve zararlı canlılar gibi olumsuz şartlardan korunması sağlanmalıdır. Laboratuvar çalışmalarında analizlerin gerektirdiği ideal ortam sıcaklığının sağlanması için gerekli önlemler alınmalıdır. g) Çalışan personelin iş güvenliği için uygun giysi ve donanım kullanması sağlanmalıdır. h) Gerekli durumlarda bu maddenin (e) bendinde belirtilen özel ortam veya alet ve ekipmanlarla çalışılmalıdır. i) Laboratuvarların her bölümünde temizlik, sanitasyon ve dezenfeksiyon işlemleri yazılı talimatlara göre düzenli olarak yapılmalıdır. j) Boru sistemleri, radyatörler, aydınlatma sistem ve bağlantıları ile diğer servis noktalarının temizlenmesi kolay olacak şekilde tasarlanmalıdır. Duvar, tavan ve tabanlar kolayca temizlenebilir ve gerektiğinde dezenfekte edilebilir özellikte malzemelerle kaplanmalıdır. k) Aydınlatma, ısıtma ve havalandırma sistemleri yapılacak analizlere uygun olarak planlanmalıdır. l) Laboratuvarın analiz yapılan bölümlerine çalışan personel haricindeki kişilerin girişleri önlenmelidir. m) Yedek yardımcı malzemeler ve kimyasal maddeler yapısına, risk guruplarına ve saklama koşullarına göre havalandırma sistemli kilitlenebilir ayrı oda, dolap veya depolarda bulundurulmalıdır. n) Laboratuvarda ilk yardım için gerekli ilaç ve malzemelerin bulunduğu ilk yardım dolabı ve talimatı yer almalıdır. o) Tuvaletlerin laboratuvarın analiz yapılan bölümleri ile doğrudan bağlantısı önlenmelidir. p) Laboratuvarın boya, badana ve diğer bakımları düzenli olarak hazırlanacak yazılı talimatlara göre yapılmalıdır. r) Laboratuvarın kapasitesine uygun hacimde olmak üzere, numunelerin analize alınıncaya kadar ve analiz sonrasında kalan örneklerin uygun şekilde muhafaza edileceği depo veya soğutucu cihaz bulundurulmalıdır. s) Laboratuvarlarda ortaya çıkan atıklar doğrudan alıcı ortama verilmez, gerekli önlemler alındıktan sonra tekniğine ve mevzuatına uygun bir şekilde laboratuvardan uzaklaştırılmalıdır. t) Laboratuvarda kullanılan patlayıcı, parlayıcı ve boğucu gaz içeren gaz tüpleri bina dışında tekniğine uygun şekilde muhafaza edilmelidir. u) Laboratuvarlarda analizin yapıldığı birimde atık da dahil olmak üzere ilgili tüm prosedürler ve talimatlar bulundurulmalıdır. DÖRDÜNCÜ BÖLÜM Kontrol Laboratuvarlarının Kuruluş ve Çalışma İzni, Yetkilendirme ve Bildirimler Kuruluş izni Madde 13 — Laboratuvar kurmak isteyen kamu, gerçek ve/veya tüzel kişiler aşağıdaki bilgi ve belgeleri içeren başvuru dosyası ile Bakanlığa başvurur: a) Dilekçe. b) Laboratuvarın adı, sahibinin adı soyadı veya kurumun adı, açık adresi, telefon, faks numarası ve elektronik posta adresi. c) Kuruluş ve değişiklikleri içeren Türkiye Ticaret Sicili Gazetesi, vergi levhası fotokopisi ve ticaret odasından alınan faaliyet belgesi. d) Sorumlu yönetici/müdür noter onaylı sözleşmesi, diploma sureti, nüfus cüzdanı fotokopisi ve kayıtlı olduğu meslek odasından alınacak belge. e) Laboratuvarın analiz ve ürün / ürün gurupları bazında belirlenmiş genel faaliyet konularını belirten belge. f) Laboratuvar yerinin tapusu veya kira sözleşmesi ile yapı kullanma izin belgesinin noter onaylı fotokopisi. g) Laboratuvar cihaz yerleşim planı. h) Laboratuvarda yangına karşı gerekli önlemlerin alındığına dair itfaiyeden alınacak belge. Bakanlıkça, gönderilen bilgi ve belgeleri içeren başvuru dosyasına istinaden en az bir kişi Genel Müdürlükten olmak üzere Genel Müdürlüğün belirleyeceği ve konusunda uzman en az üç kişiden oluşan bir komisyon tarafından laboratuvar yerinde incelenir ve bu Yönetmeliğe uygun olması halinde laboratuvara kuruluş izin belgesi verilir. Yerinde yapılan incelemede laboratuvarın bu Yönetmeliğe uygun bulunmaması halinde denetim raporunda belirtilen eksikliklerin giderilmesi için laboratuvara süre verilir. Eksikliklerin giderildiğine dair müracaatla yeniden yerinde inceleme yapılır ve bu Yönetmeliğe uygun olması halinde laboratuvara kuruluş izin belgesi verilir. Kuruluş izni verilen kontrol laboratuvarının yeni bir bölüm açması durumunda yeni açılacak bölüm/bölümlere ait belgeler istenir, yukarıda belirtilen işlemler yapılır ve kuruluş izni yenilenir. Kuruluş izni amacıyla başvuruda bulunan kamu kontrol laboratuvarlarından bu maddenin (c), (d) ve (f) bendlerinde belirtilen belgeler istenmez. Çalışma izni Madde 14 — Bakanlıktan kuruluş izni belgesi alan laboratuvar, çalışma izni almak için, aşağıdaki bilgi ve belgelerle yeniden Bakanlığa başvurur: a) Dilekçe. b) Laboratuvarın analiz ve ürün ve/veya ürün gurupları bazında belirlenmiş faaliyet konularını belirten belge. c) Laboratuvar organizasyon şeması. d) Her bölüm sorumlusu/laboratuvar şefi, laboratuvar personeli ve yardımcı personelinin noter onaylı sözleşmesi, diploma sureti, nüfus cüzdanı fotokopisi varsa meslek odasına kayıt belgesi. e) Bakanlıkça onaylanmış numune kabul ve analiz defteri. f) Laboratuvarın çalışma izin başvurusunda belirtilen analizlerin listesi, orijinal analiz metotları ile bu yöntemlerin standart çalışma planı formatındaki metot talimatları. g) Orijinal metot olarak ulusal/uluslararası kabul görmüş bir metot kullanılmaması durumunda metot validasyon raporu. h) Laboratuvarda kullanılacak cihaz, alet ve ekipmanların marka, model, üretim yılına ait bilgiler ve kullanım talimatları ve kalibrasyon belgeleri. ı) Laboratuvar atıklarının bertaraf edilmesi için ilgili kuruluş ile yapılan sözleşme. Bakanlık, gönderilen başvuru dosyasını teknik yönden inceler ve/veya referans laboratuvara incelettirir. İnceleme sonucu uygun bulunan kontrol laboratuvarı, en az bir kişi Genel Müdürlükten olmak üzere Genel Müdürlüğün belirleyeceği konusunda uzman en az üç kişiden oluşan bir komisyon tarafından yerinde incelenir ve bu Yönetmeliğe uygun olan kontrol laboratuvarına çalışma izin belgesi verilir. Yerinde yapılan incelemede laboratuvarın bu Yönetmeliğe uygun bulunmaması halinde denetim raporunda belirtilen eksikliklerin giderilmesi için laboratuvara süre verilir. Eksikliklerin giderildiğine dair müracaatla yeniden yerinde inceleme yapılır ve bu Yönetmeliğe uygun olması halinde laboratuvara çalışma izin belgesi verilir. Çalışma izni verilen kontrol laboratuvarının faaliyet konularını genişletmek istemeleri halinde faaliyet genişletmeye esas belgeler istenerek yukarıda belirtilen işlemler yapılır ve çalışma izni yenilenir. Yetkilendirme Madde 15 — Bakanlıktan kuruluş ve çalışma izin belgesi alan kontrol laboratuvarı, ürün/ürün gurubu ve analiz bazında belirtilen faaliyet konularında Bakanlık il müdürlüklerince gönderilecek yurt içi denetim, ithalat ve ihracat numuneleri ile özel istek amaçlı numunelerde analiz yapmaya yetkilidir. Laboratuvarlar izin verilen faaliyet konusu dışında analiz raporu düzenleyemezler. Faaliyet konusu dışında analiz raporu düzenleyen laboratuvarlar için bu Yönetmeliğin 18 inci maddesine göre işlem yapılır. Bildirimler Madde 16 — Kuruluş ve çalışma izni alan kontrol laboratuvarının kapatılması, sahibi, sorumlu yönetici, adresi ve adının değişmesi, çalışma izninde belirtilen faaliyet konularının değiştirilmesi, genişletilmesi, laboratuvarda yeni bir bölüm açılması veya laboratuvarın yapısını temelden değiştirecek tadilatların yapılması halinde, on beş gün içinde değişiklikleri içeren bilgi, belgeler, kuruluş ve çalışma izin belgelerinin asılları ile birlikte Bakanlığa başvurulur. Laboratuvarın başvuru dosyası incelendikten sonra gerekli görüldüğünde Bakanlıkça, en az bir kişi Genel Müdürlükten olmak üzere Genel Müdürlüğün belirleyeceği konusunda uzman en az üç kişiden oluşan bir komisyon tarafından laboratuvar yerinde incelenir ve bu Yönetmeliğe uygun olması halinde laboratuvarın kuruluş ve/veya çalışma izin belgesi yenilenir. BEŞİNCİ BÖLÜM Kontrol Laboratuvarlarının Denetlenmesi, Kuruluş ve Çalışma İzni İptali, Cezai Hükümler, Belge ve Kayıtların Tutulması Denetim Madde 17 — Kontrol laboratuvarı, Genel Müdürlüğün belirleyeceği komisyon tarafından bu Yönetmelik esasları dahilinde şikayet dışında yılda en az bir defa denetlenir. Denetimlerde gizlilik esastır. Sorumlu yönetici, denetlemeye gelen görevlilere her türlü bilgi ve belgeyi göstermek zorundadır. Denetim tutanağı iki nüsha halinde düzenlenerek bir nüshası sorumlu yöneticiye verilir. Denetim tutanağı daha sonraki denetimlerde sorumlu yönetici tarafından istenildiğinde denetim görevlilerine gösterilir. Denetimden sonra, kontrol laboratuvarında eksiklik veya uygunsuzluk bulunduğu takdirde, ilgili laboratuvar denetim tutanağında belirtilen süre içerisinde eksikliklerini tamamlayarak Bakanlığa bildirir. Belirlenen eksikliklerin; kontrol laboratuvarının eksikliği görülen konuda analiz yapmasına engel teşkil etmesi durumunda, Genel Müdürlük kontrol laboratuvarının o bölümü ya da analizi konusundaki analiz yapma yetkisini eksiklik veya uygunsuzluğun giderilmesine kadar durdurabilir. Laboratuvar bu süre sonunda yeniden Genel Müdürlüğün belirleyeceği komisyon tarafından gerektiğinde yeniden denetlenir. Genel Müdürlükçe analiz sonuçlarının kabul edilebilir hata sınırları içerisinde olup olmadığının kontrolü amacıyla, gerektiğinde belirlenen bir referans laboratuvar tarafından hazırlanarak gönderilen test numunesi kontrol laboratuvarına analiz ettirilir ve analiz sonuçları referans laboratuvar tarafından değerlendirilir. Referans laboratuvar tarafından değerlendirme ve analiz sonuçları ile ilgili olarak Genel Müdürlüğe bilgi verilir. Analiz sonuçlarının hata sınırları dışında olması halinde, Genel Müdürlük kontrol laboratuvarının hata sınırları dışında olduğu belirlenen analizlerle ilgili analiz yapma yetkisini, ulusal veya uluslar arası yeterlilik testleri düzenleyen kuruluşlarca analiz sonuçlarının yeterliliği onaylanana kadar durdurabilir. Ayrıca, gerektiğinde Genel Müdürlük, laboratuvarda analiz edilen numunelerden birine ait şahit numuneyi analiz sonuçlarının kabul edilebilir hata sınırları içinde olup olmadığının kontrolü amacıyla referans bir laboratuvara analiz ettirir. Kontrol laboratuvarları her yıl Genel Müdürlüğün belirleyeceği konularda ulusal veya uluslar arası yeterlik testlerine katılarak test sonuçlarını Genel Müdürlüğe bildirirler. Yapılan denetimler sırasında belirlenen eksikliklerin bildirilen süre içerisinde tamamlanmaması durumunda bu Yönetmeliğin 18 inci maddesine göre işlem yapılır. Kuruluş ve çalışma izni iptali ile cezai hükümler Madde 18 — Kontrol laboratuvarının, Bakanlıktan kuruluş ve/veya çalışma izni almadan faaliyette bulunduğunun tespitinde; 5179 sayılı Gıdaların Üretimi Tüketimi ve Denetlenmesine Dair Kanun Hükmünde Kararnamenin Değiştirilerek Kabulü Hakkında Kanunun 29 uncu maddesinin (b) fıkrasında belirtilen hükme göre laboratuvar faaliyetten men edilir ve on bin YTL idari para cezası verilir. Kontrol laboratuvarının; a) Çalışma izin belgesinde belirtilen ve Bakanlıkça onaylanan faaliyet konusu dışında çalışması, b) Bu Yönetmeliğin 16 ncı maddesinde yer alan konularla ilgili olarak belirlenen süre içerisinde bildirimlerde bulunmaması, c) Bu Yönetmeliğin 17 nci maddesine göre yapılan denetim sırasında denetim elemanlarınca tespit edilen eksikliklerin belirlenen süre içerisinde tamamlanmaması, Hallerinde laboratuvar faaliyetten men edilir ve on bin YTL idari para cezası verilir. Faaliyetten men edilen laboratuvarın tekrar faaliyete geçebilmesi için yeniden kuruluş ve/veya çalışma izni alması zorunludur. Bu madde hükümleri Kamu kontrol laboratuvarları için uygulanmaz. Belge ve kayıtlar Madde 19 — Laboratuvarın işleyişiyle ilgili olarak aşağıdaki doküman ve kayıtlar tutulur: a) Genel numune kayıt defteri (Ek-1). b) Bölümlere ait numune kayıt defteri (Ek-2). c) Bölümlere ait analiz ile ilgili çalışma detaylarını gösteren analiz defteri (Ek-3). d) Muayene ve analiz defteri (Ek-4). d) Yurtiçi denetim muayene ve analiz raporu (Ek-5). e) Özel istek muayene ve analiz raporu (Ek-6). f) İhracat muayene ve analiz raporu (Ek-7). g) İthalat muayene ve analiz raporu (Ek-8). h) Yem muayene ve analiz raporu (Ek-9). ı) Hayvan hastalıkları teşhis raporu (Ek-10). i) Ulusal ve/veya Uluslar arası yeterlilik test sonuçlarına ait kayıtlar. j) Alet, ekipman bakım, onarım ve kalibrasyon çizelgesi (Ek-11). k) Alet ve ekipman listesi (Ek-12). l) Alet, ekipmanların kullanım talimatları. m) Enstrümental analizlerde elektronik yedekleri veya kromotogram çıktıları. n) Analiz metotlarına ve cihazlara ait validasyon raporları. o) Personel bilgi kayıtları. ö) Eğitim kayıtları. p) Kimyasal madde kayıtları. r) İlk yardım talimatı. s) Aylık faaliyet raporu (Ek-13). ş) Standart çalışma planı (Ek-14). t) Kimyasal madde kayıt defteri (Ek-15). u) Kimyasal madde kullanım kayıt defteri (Ek-16). Yukarıda belirtilen doküman ve kayıtlar en az beş yıl muhafaza edilir. ALTINCI BÖLÜM Analiz Metotları, Analiz Raporları ve Ücretleri Analiz metotları Madde 20 — Kontrol laboratuvarlarında öncelikle Türk Gıda Kodeksi Yönetmeliğinde belirtilen analiz metotları kullanılır. Analiz metotları Türk Gıda Kodeksi Yönetmeliğinde mevcut değilse, Bakanlık tarafından izin verilecek, ulusal/uluslararası kabul edilmiş bir analiz metodu kullanılır. Ulusal/uluslararası kabul edilmiş bir analiz metodu kullanıldığında, laboratuvar tarafından ilgili metodun laboratuvarda uygulanabilirliğinin verifikasyon çalışması ile teyit edilmesi yeterlidir. Ulusal/uluslararası kabul edilmiş bir analiz metodu kullanılmadığında, laboratuvar tarafından ilgili metodun validasyon çalışmaları yapılarak dokümante edilir. Yapılan validasyon metotta tanımlanmış olan ürün/ürünler için geçerlidir. Metotta belirtilenin dışında farklı özelliklere sahip bir matriksteki ürün çalışıldığında metot yeniden valide edilir. Elde edilen validasyon sonuçlarına göre metodun optimum şartlarda ve en yüksek performansta kullanılması için gerekli olan uyarıların, dikkat edilecek noktaların, kritik nokta ve kritik işlemlerin tanımlandığı rutin uygulamalara yönelik metot talimatları standart operasyon prosedürü olarak hazırlanır. Yem ile ilgili analizlerde 1734 sayılı Yem Kanununda belirtilen yöntemler uygulanır. Tohumlukların tescil ve sertifikasyonu ile ilgili muayene ve analizler ise 308 sayılı Tohumlukların Tescil, Kontrol ve Sertifikasyonu Kanunu ile ilgili 1/2/1964 tarihli ve 11622 sayılı Resmî Gazete’de yayımlanan Tohumlukların Tescil, Kontrol ve Sertifikasyonu Hakkındaki Kanunun Uygulanmasına İlişkin Yönetmeliğe göre yapılır. Özel istek numuneleri müşteri talep ettiği metoda göre analiz yapılabilir ve analiz raporunda "Yukarıda belirtilen analizler numune sahibinin talep ettiği analiz metoduna göre yapılmıştır" ifadesi yer alır. Bu rapor adli-idari işlemlerde ve reklam amacıyla kullanılamaz. Analiz raporları Madde 21 — Kontrol laboratuvarlarında düzenlenen analiz raporları; denetim (Ek-5), ihracat (Ek-7), ithalat (Ek-8)’e göre en az üç nüsha halinde ve özel istek numuneleri için ise (Ek-6)’ya göre en az iki nüsha düzenlenir. Laboratuvarların düzenleyecekleri raporlar reklam amacıyla kullanılamaz. Laboratuvar tarafından analiz raporlarının gizliliği esastır. Analiz raporlarının hazırlanmasında aşağıdaki hususlara dikkat edilir: a) Enstrümantal cihazlarla yapılan analizlerde kullanılan cihaz, metot adı ve miktar olarak verilebilen en düşük limit ölçüm limiti olarak analiz raporuna yazılır. b) İthalat, ihracat ve denetim amaçlı numunelerde analiz sonuçları ile ilgili herhangi bir değerlendirme yapılmaz. c) Numunede yapılan bütün analizler aynı raporda belirtilir. d) Analiz raporunda raporun kısmen kullanılamayacağına dair uyarıcı ifade ve "Analiz Sonuçları Yukarıda Belirtilen Numune İçin Geçerlidir" ifadesi yer almalıdır. e) Bakanlığın yetki verdiği hususlarda ilgili mevzuata göre analiz raporlarında değerlendirme yapılır. Analiz ücretleri Madde 22 — Kamu kontrol laboratuvarlarında uygulanacak numune analiz ücretleri, her yıl Genel Müdürlüğün belirleyeceği esaslara göre oluşturulacak bir komisyon tarafından, analiz maliyetleri dikkate alınarak analiz bazında belirlenir. YEDİNCİ BÖLÜM Çeşitli ve Son Hükümler Yürürlükten kaldırılan yönetmelik Madde 23 — 4/9/2000 tarihli ve 24160 Sayılı Resmî Gazete’ de yayımlanan Özel Gıda Kontrol Laboratuvarlarının Kuruluş ve Faaliyetleri Hakkında Yönetmelik yürürlükten kaldırılmıştır. Geçici Madde 1 – Halen faaliyet gösteren kontrol laboratuvarları bu Yönetmeliğin yayımından itibaren bir yıl içinde bu Yönetmelik hükümlerine uymak zorundadır. Yürürlük Madde 24 — Bu Yönetmelik yayımı tarihinde yürürlüğe girer. Yürütme Madde 25 — Bu Yönetmelik hükümlerini Tarım ve Köyişleri Bakanı yürütür.

http://www.biyologlar.com/kontrol-laboratuvarlarinin-kurulus-ve-gorevleri-hakkinda-yonetmelik

Histolojide Kullanılan Yöntemler

1-Preparasyon Yöntemleri Taze hücre ve dokular: Kan ve lenf gibi sıvısal örnek hücreleri, derialtı bağ dokusu hücreler direkt olarak incelenebilir. Doku kalın veya katı bir organ halindeyse tuz çözeltisi içinde diderek veya ayırarak hücrelerin birbirinden ayrılması sağlanır. Taze preparatlarda hücreler gerçek morfolojilerini yitirmeden incelenir. Ancak kontrast azlığından dolayı vital boyama uygulanmalı ya da faz-kontrast mikroskop kullanarak incelenmelidir.Canlı ve taze materyelin çalışılması için lam ve lameller temiz olmalı. Canlı numuneler için kullanılan pipetler, cam eşyalar ve aletler kimyasal maddeler için kullanılanlar ile asla karıştırılmamalıdır. Herbir kültürden alınacak küçük organizmalar için ayrı bir pipet kullanılır. Her kimyasal madde için de ayrı pipet kullanılmalıdır. Saf kültür için çalışmaya başlanmadan önce cam eşyayı ve ortamı sterilize etmek gereklidir. Canlı ve taze materyel için bright-Field illumination- ışıklandırma dikkatli kontrol edilmeli, çünkü canlı hücrenin birçok yapısı refraktif indeks veya renkte çok az fark ile ayırt edilir. Küçük ve şeffaf organizmalar, serbest yaşayan protozoalar, küçük sölenteratlar, rotiferler, ectoproct lar, yassı kurtlar, nematod lar snnelidler, krustaseler ve omurgasızların ve aşağı omurgalıların larvaları, embriyoları ve yumurtaları bir iki damla su içinde incelenebilir. Tatlı su ve toprakta yaşayanlar tatlı suda ve deniz suyu veya tuzlu ve acı suda yaşıyanlar uygun tuzluluktaki suda incelenirler. Ancak su metaller, chlorine veya diğer zehirler ile kirlenmemiş olmamalıdır.Tatlı su organizmaları için havuz veya kültür kabından alınan su yeterlidir. Deniz suyu yalnız cam, porselen, toksik tipte olmayan bazı plastik ile temasta olmalı, metal borular birçok organizma için toksiktir. Vital boyama ile hücrelerin sitoplazmasına renk ve kontrast kazandırılır. Vital boyama 2 şekilde uygulanır. Canlı hücreler boya solusyonunda ayrılarak (supra-vital boyama ) veya canlı organizmaya boyanın injeksiyonu ile (intra-vital) boyanabilirler. Canlı hücre kısımları gösterildiğinden bu yöntemler idealdir. Vital boyama ile sitoplazmik yapılar gösterilir. Çekirdek zarı vital boyalara dirençlidir. Çekirdek zarının boyalara geçirgenleşmesi hücre ölümünün ifadesidir. 2-Sitolojik Yöntemler Hücre içeren sıvılar, aspire kemik iliği gibi ince doku parçaları lam üzerine alınır ve hücrelerin görünüşlerini koruyabilmeleri için tespit edilir. Organlar ve dokular da lama sürülerek ve smearler hücre yapısını göstermek için boyanırlar. Boyanmış smearlerin incelenmesi eksfolyatif sitolojide standart bir yöntemdir. Atipik hücrelerin bulunuşu malignite hakkında fikir verir. Diagnostik sitolojideki gelişmeler Beale (1860) ‘nin karsinoma hücreleri için vücut sıvılarını incelemesi ile başlamış ve Papanicolaou (1943) yöntemi ile ilerlemeler kaydetmiştir. Dalak ve kemik iliği gibi organlarının kesi yüzeyine veya organın bir parçasına lam değdirilerek uygulanan impression yöntemi ile dokunun küçük bir artitektürel düzeni hakkında fikir edinilebilir. Yumuşak tümörlerde malignite bu teknikle hızla çalışılabilir. Smearlerde hücreler yassıldıkları, dokulardan hazırlanan kesitlerdeki hücrelerden daha geniş olduklarından ve dokunun artitektürünü koruduklarından hücresel ayrıntılar daha kolaylıkla izlenir. Kesitsel tekniklere ek olarak smearler kullanılabilir. 3-Kesitsel Yöntemler Doku parçalarından alınan örnekler yaklaşık olarak 1 hücre kalınlığında dilimlere ayrılırlar. Hücresel yapıyı görmek için bu kesitler değişik tekniklerle boyanırlar. Kesitlerin yorumu, kesitler dikey ya da yatay konumda alınmamışsa tecrübe gerektirir. Histolojide doğru sonuç veren birçok kesitsel yöntem vardır. Seri kesitlerin alınması ile küçük bir dokunun rekontriksüyonu yapılabilir. Tüm örneklerden numaralandırılarak kesitler alınır, boyanır ve incelenir. Doku büyük ise belirli aralıklarla alınan kesitler örneğin tüm yapısını kapsamlı olarak açıklayabilir. Bu yöntem basamaklı kesit alma (step-sectioning) olarak bilinir. Taze veya tespit edilmiş dokulardan jilet ile mikrotomsuz kesit alınabilir. Sadece yüzey boyanacağından histolojik yapı iyi gözlenemez. Bu yöntem hala dokuları tanımanın hızlı ve kolay yoludur. Mikrotom kullanarak uygulanan kesitsel yöntemlerin çoğunda doku uygun bir kıvama getirilir, parafin, selloidin veya sentetik resinlere gömülür ya da dondurma (freezing) yapılabilir. Frozen kesitler taze dokulardan alındığı için tespite gerek duyulmaz. Diğerleri için tespit gereklidir. Histolojik kesitler genellikle 4-7 mm kalınlığında alınır. Yağ damlacıkları, sinir fibrilleri ve kan damarları gibi geniş yapılar için 10-25 mm daha uygundur. Sentetik rezinlere gömülen dokulardan 1 mm’luk kesitler alınabilir. Doğal olarak hücresel ayrıntı daha iyi olacaktır. Elektronmikrospobik gözlemler için ultratom ile 50-100 nm’ lik kesitler alınır. Genellikle gösterim ve eğitim için çıplak gözle incelemek üzere 300-400 mm’ luk kesitler alınabilir. Bu amaçla jelatine gömülmüş organlardan geniş bir mikrotom ile kesitler alınarak incelenir. Dokuların çoğu yumuşaktır. Dişler, kemik gibi bazı dokular ise çok serttir. Bu nedenle kesitten önce dekalsifikasyona gereksinim vardır. Matriksin kalsifikasyonun normal olup olmadığı ise dekalsifiye edilmemiş örneklerde araştırılır. Bu amaçla dens gömme ortamları ve ağır mikrotomların kullanılması gereklidir. Mikroskobik inceleme için dokuların renge ve kontrasta gereksinimi olduğundan kesitlerin boyanması yapılır. Preperatların uygun bir kırma indisi olmalıdır. Boyama; renkli olan veya floresansı artıran boyalarla, renkli son ürünler oluşturan kimyasal reaksiyonlarla veya metalik çöktürme ile doku bileşenleri opaklaştırılarak yapılabilmektedir. Geleneksel boyama yöntemlerine ek olarak boyama-olmayan teknikler de kullanılabilir. Histolojide floresans immünolojik yöntemler, otoradyografi, mikroinkrinasyon ve mikroradyografik yöntemler de kullanılmaktadır. Floresans immüno-histolojik yöntemler: Florokromla işaretlenmiş antikorların kullanımına dayanmaktadır. Çok spesifik bir yöntemdir. İmmün kompleksleri ve dokulardaki yapıları göstermek için kullanılır. Floresans mikroskopta incelenen preparatlar az miktardaki florokromu gösterme yeteneğindedir. Otoradyografi: İşaretlenmiş bir radyoaktif element dokuya verilimini takiben dokudaki hücrelerle birleşebilir. Otoradyografi bir fotografik emülsiyondaki gümüş tuzlarını indirgeme yetenekleri ile radyoaktif izotop alanlarını gösterecektir. Fotografik emülsiyon özel plaklardan çıkarılır ve kesitlere uygulanır. Çalışanlar, radyoaktivitenin zararları konusunda uyarılmalıdır. Biyolojik kullanımdaki radyoaktif izotopların yarı-ömrü birkaç saatten yıllara kadar değişebilir. Mikroinkrenasyon (yakıp kül etme ): Lam üzerine alınan kesitler elektrikli fırında ısı yavaş yavaş artırılarak ısıtılır. Organik maddelerin tümü uzaklaştığından geriye dokunun mineral iskeleti kalır. Yansıyan ışık ve karanlık saha mikroskobu ile inkrenasyon yapılmamış kontrol kesitle karşılaştırılarak incelenir. Histospektrografik yöntemle minerallerin kantitatif ölçümü de yapılabilir. Mikroradyografi: X-ışınlarının absorbsiyonu ile dokunun kimyasal yapısı hakkında bilgi edinilir. X-ışınlarını absorbe eden kemik, kıkırdak, enamel ve dentin gibi hidroksi-apatit kristallerini içeren kalsifiye dokular ince taneli fotografik emülsiyon ile yakın temasa tutularak yumuşak bir X-ışını verilir. Elde edilen fotograf mineralin dağılımını gösterir ve kontakt mikroradyograf olarak adlandırılır. Klasik ışık mikroskobu ile incelenebileceği gibi projeksiyon mikrografi için geliştirilen aletlerle de incelenebilir. Kesitin alanlarında mineral miktarları da ölçülebilir. Kemik örnekleri metil metakrilata gömüldükten sonra öğütülür ve parlatılır. 20 kV X-ışını ile ışınlanır. Çok ince taneli özel fotografik emülsiyonundan geçirilir. 5-10 kV’ lik çok yumuşak X-ışınları kullanılırsa yumuşak doku kesitlerinin mikroradyografları dokuların protein içeriği ve hücrelerin kuru kütlesi hakkında bilgi elde edilebilir. Mikroradyografi, bazen radyoopak maddenin injeksiyonu sonunda kan damarlarının düzenini göstermek için kullanılır. Dondurup Kırma (Cryofracture=freeze–fracture–etching): Fiksasyon yapılmaz ya da çok hafif yapılır. Dokular, gliserol ile muamele edilerek likit nitrojende dondurulur. 10-18 mm Hg ile vakumlanır. Isıtılan metalden çıkan buharla kaplanır. Oda ısısında asit ile tahrip edilir. Böylece geriye metal ile kaplı bir kalıp kalır. TEM’de boyamadan incelenir. En az artifakt oluşturan bir yöntemdir.

http://www.biyologlar.com/histolojide-kullanilan-yontemler

Fosil Nedir

Fosilleri inceleyen bilim dalına paleontoloji, fosil toplayıp bunlar üzerinde çalışma yapan kişilere de paleontollog denir. Fosiller bir polen tanesi küçüklüğünde ya da dev bir dinazorun kemiği büyüklüğünde olabilir. Bir hayvan ya da bitkinin fosilleşmesi için milyonlarca yıl devam eden bir süreç gerekmektedir. Genellikle hayvan ya da bitkilerin sert kısımları bu uzun süreç boyunca dayanıklılık gösterebilir. Jeolojik zamanlarda yaşamış olan canlıların tortul kayaçlar içinde taşlaşmış olarak bulunan her çeşit kalıntı ve izine FOSİL adı verilir. Fosiller, bugün yaşayan bir çok grubu temsil ettikleri gibi, soyları tümüyle ortadan kalkmış grupları da tanımamıza yardımcı olurlar. Bilinen en eski fosiller günümüzden 3.6 milyar yıl önce yaşamış olan fotosentetik siyanobakterilerdir (mavi-yeşil algler). Fosiller Nerelerde Bulunur? Fosiller karasal ve denizel ortamlarda yaşamış hayvan ve bitkiler ile onların izlerine aittir. Daha çok kumtaşı, kireçtaşı, çamurtaşı ve şeyl gibi tortul kayaçlarda bulunurlar. Grönland'dan Antartika' ya, okyanus tabanlarından dağların en yüksek zirvelerine kadar dünyanın her tarafında dağılım gösterirler. Fosillerin dünya coğrafyası üzerindeki geniş dağılımı, yerküre yüzeyinin jeolojik zamanlar boyunca sürekli değiştiğini kanıtlar   En genel anlamıyla fosil, uzun zaman önce yaşamış canlıların yapılarının, doğal koşullar altında korunarak günümüze kadar ulaşan izidir. Fosiller, kimi zaman organizmanın bir parçasının kimi zaman da canlının hayattayken bıraktığı izlerin (bunlara iz fosil denir) günümüze kadar gelmesidir. Ölen hayvan ve bitkilerin, çürümeden korunarak, yer kabuğunun bir parçası haline gelmesiyle fosil oluşur. Fosilleşmenin meydana gelebilmesi için, hayvanın veya bitkinin -üzerini çoğunlukla bir çamur katmanının örtmesiyle- ani ve hızlı bir şekilde gömülmesi gerekir. Bu gömülmeyi genellikle kimyasal bir süreç takip eder. Bu süreçte yaşanan mineral değişimleriyle de koruma sağlanmış olur. Fosiller, canlılık tarihinin en önemli delilleridir. Dünyanın çeşitli bölgelerinde elde edilmiş yüz milyonlarca fosil bulunmaktadır. Fosillerin sağladığı temel bilgi, canlılığın tarihi ve yapısı hakkındadır. Milyonlarca fosil, canlılığın aniden, kompleks yapısıyla, eksiksiz olarak ortaya çıktığını ve milyonlarca yıl boyunca hiçbir değişikliğe uğramadığını göstermektedir. Bu da canlılığın yoktan var edildiğinin yani yaratıldığının önemli bir delilidir. Canlıların aşama aşama oluştuğunu, yani evrim geçirdiğini gösteren ise tek bir fosil dahi yoktur. Evrimcilerin ara fosil olduğunu iddia ettikleri fosil örnekleri yalnızca birkaç tanedir ve bunların geçersizliği de bilimsel olarak ispatlanmış durumdadır. Aynı zamanda yine Darwinistlerin ara fosil olarak dünyaya tanıttıkları bazı örneklerin sahte çıkması da, bu konuda sahtekarlık yapacak kadar çaresiz olduklarını gözler önüne sermektedir. 150 yılı aşkın süredir, dünyanın dört bir yanında yapılan kazılarda elde edilen fosil kayıtları, balıkların hep balık, böceklerin hep böcek, kuşların hep kuş, sürüngenlerin hep sürüngen olduğunu ispatlamıştır. Canlı türleri arasında bir geçiş olduğunu -yani balıkların sürüngenlere, sürüngenlerin kuşlara dönüştüğü gibi- gösteren tek bir tane bile fosil görülmemiştir. Kısaca, fosil kayıtları, evrim teorisinin temel iddiası olan, türlerin uzun süreçler içinde değişimlere uğrayarak birbirinden türediği iddiasını kesin olarak çürütmüştür. Fosiller canlılık hakkında verdikleri bilginin yanı sıra, kıta tabakalarının hareketlerinin yeryüzü yüzeyini nasıl değiştirdiği, Dünya tarihinde yaşanan iklimsel değişikliklerin neler olduğu gibi yeryüzünün geçmişiyle ilgili de önemli bilgiler sunarlar. Fosiller, antik Yunan döneminden beri araştırmacıların ilgisini çekmiş, ancak 17. yüzyıl ortalarından itibaren fosillerin incelenmesi bir bilim dalı olarak gelişmeye başlamıştır. Araştırmacı Robert Hooke'un eserlerini (Micrographia (Mikrografi), 1665; Discourse of Earthquakes (Deprem Konuşmaları), 1668), Niels Stensen'in (Nicolai Steno ismiyle bilinir) çalışmaları takip etmiştir. Hooke ve Steno'nun fosiller üzerinde çalışma yaptıkları dönemlerde, düşünürlerin büyük bir kısmı fosillerin gerçekten yaşamış canlıların izleri olduğuna inanmıyorlar, doğanın bir şekilde canlıları taklit ettiğini iddia ediyorlardı. Fosillerin gerçek canlıların izi olup olmadığı yönündeki tartışmanın temelinde, fosillerin bulunduğu yerlerin dönemin jeolojik bilgileriyle açıklanamaması vardı. Fosiller genelde dağlık bölgelerde bulunuyor, ancak örneğin bir balığın nasıl olup da su seviyesinden bu kadar yüksek bir mekanda fosilleşmiş olabileceği teknik olarak açıklanamıyordu. Steno, tıpkı geçmişte Leonardo Da Vinci'nin öne sürdüğü gibi, tarih boyunca su seviyesinde geri çekilmeler olduğunu iddia ediyordu. Hooke ise, dağların okyanus tabanlarındaki depremler ve iç ısınma nedeniyle oluştuğunu söylüyordu. Hooke ve Steno'nun, fosillerin geçmişte yaşamış canlıların izleri olduğunu ortaya koyan açıklamalarının ardından, 18. ve 19. yüzyılda jeolojinin de gelişmesiyle, fosil toplama ve araştırma sistemli bir bilim dalına dönüşmeye başladı. Fosillerin sınıflandırılması ve yorumlanmasında, Steno'nun belirlediği prensipler izlendi. Özellikle 18. yüzyıl itibariyle madenciliğin gelişmesi ve demiryolları inşaatlarının artması, yer altının daha çok ve daha detaylı incelenmesine imkan tanıdı. Modern jeoloji, yeryüzü yüzeyinin "tabaka" adı verilen katmanlardan oluştuğunu, bu tabakaların, kıtaları ve okyanus tabanını taşıyarak Dünya üzerinde hareket ettiğini, tabakalar hareket ettikçe Dünya coğrafyasında değişiklikler olduğunu, dağların da büyük tabakaların hareketleri ve çarpışmaları sonucunda meydana geldiğini ortaya koydu. Dünya coğrafyasında uzun zaman dilimleri içinde meydana gelen değişimler, şimdi dağlık olan bazı bölgelerin bir zamanlar sularla kaplı olduğunu da gösteriyordu. Böylece kaya katmanlarında bulunan fosillerin, yeryüzünün farklı dönemleri hakkında bilgi edinmenin önemli yollarından biri olduğu ortaya çıktı. Jeolojik bilgiler, öldükten sonra çökeltiler içinde korunan canlı izlerinin yani fosillerin, çok uzun dönemler içinde, kayaların oluşumu sırasında yeryüzünün kabuğuna doğru yükseldiklerini gösteriyordu. Fosillerin bulunduğu kayaların bazıları, yüz milyonlarca yıl öncesine aitti. Yapılan araştırmalarda, belli fosil türlerinin yalnızca belli katmanlarda ve belli kaya tiplerinde bulunduğu gözlemlendi. Üst üste gelen kaya katmanlarının her birinde kendisine has, o katmanın bir tür imzası olarak nitelenebilecek fosil grupları olduğu görüldü. Bu "imza fosiller", hem zaman dilimlerine göre hem de mekana göre farklılık gösterebiliyordu. Örneğin, aynı döneme ait bir fosil yatağında, biri eski bir göl yatağı diğeri de mercan kayalığı olan iki farklı çevre koşulu ve tortuyla karşılaşılabiliyordu. Ya da bunun tam tersine, birbirinden kilometrelerce uzakta iki farklı kayalıkta, aynı fosil "imzasıyla" karşılaşmak mümkündü. Bu izlerin sağladığı bilgilerle, günümüzde halen kullanılmakta olan jeolojik zaman çizelgesi tespit edildi.

http://www.biyologlar.com/fosil-nedir

Evrimleşmeyi Sağlayan Düzenekler

Doğal Seçilim Bir populasyon, kalıtsal yapısı farklı olan birçok bireyden oluşur. Ayrıca, meydana gelen mutasyonlarla, populasyondaki gen havuzuna (türün üreme yeteneğine sahip tüm bireylerinin oluşturduğu genler) yeni özellikler verebilecek genler eklenir. Bunun yanısıra mayoz sırasında oluşan Krossing-Over'lar (Mayoz bölünmede gen parça değişimi) ve rekombinasyonlar, yeni özellikler taşıyan bireylerin ortaya çıkmasını sağlar. İşte bu bireylerin taşıdıkları yeni özellikler (yani genler) nedeniyle, çevre koşullarına daha iyi uyum yapabilme yeteneği kazanmaları, onların, doğal seçilimden kurtulma oranlarını verir. Yalnız çevre koşulları her yerde ve her zaman (özellikle jeolojik devirleri düşünürsek) aynı değildir. Bunun anlamı ise şudur: Belirli özellikleri taşıyan bireyler, belirli çevre koşullarına sahip herhangi bir ortamda, en başarılı tipleri oluşturmalarına karşın, birinci ortamdakinden farklı çevre koşulları gösteren başka bir ortamda, ya da zamanla çevre koşullarının değiştiği bulundukları ortamda, uyum yeteneklerini ya tamamen ya da kısmen yitirirler. Bu ise onların yaşamsal işlevlerinde güçlüklere (döllenmelerinde, embriyonik gelişmelerinde, erginliğe kadar ulaşmalarında, üremelerinde, besin bulmalarında, korunmalarında vs.) neden olur. Böylece erginliğe ulaşanlarının, ulaşsalar dahi fazla miktarda yavru verenlerinin, verseler dahi bu yavruların ayakta kalanlarının sayısında büyük düşmeler görülür. Bu çevre koşulları belirli bir süre (genellikle uzun bir süre) etkilerini sürdürürse, belirli özelliklere (gen yapısına) ahip bireyler devamlı ayıklanacak ve taşıdıkları genlerin gen havuzundan eksilmesiyle, gen frekanslarında (bir özelliğin, bireylerde ortaya çıkış sıklığı) değişmeler ortaya çıkacaktır. Bu seçilim, çoğunluk döller boyunca sürer. Bir zaman sonra da bu gen bileşimindeki bireyler topluluğu tamamen ortadan kalkmış olur. (jeolojik devirlerdeki birçok canlının çevre koşulları nedeniyle soyunun tükenmesi) Buna karşın, başlangıçtaki populasyonlarda bu çevre koşullarına uyum yapabilecek özelliklere (gen bileşimlerine) sahip bireyler korunduğu için sayıları ve dolayısıyla taşıdıkları genlerin frekansı gen havuzunda sürekli artar. Böylece, bir zaman sonra, yeni mutasyonların ve rekombinasyonların meydana gelip, uygun olanlarının ayıklanmasıyla da, başlangıçtaki populasyona benzemeyen, tamamen ya da kısmen değişmiş populasyonlar ortaya çıkar. Burada dikkat edilecek husus, bireylerin ayakta kalmalarının yalnız başına evrimsel olarak birşey ifade etmemesidir. Eğer taşıdıkları genler, gelecek döllere başarılı bir şekilde aktarılamıyorsa, diğer tüm özellikleri bakımından başarılı olsalarda, evrimsel olarak bu niteliklere sahip bireyler başarısız sayılırlar. Örneğin, kusursuz fiziksel bir yapıya sahip herhangi bir erkek, kısırsa ya da çiftleşme için yeterli değilse, ölümüyle birlikte taşıdığı genler de ortadan kalkar ve evrimsel gelişmeye herhangi bir katkısı olmaz. Ya da güçlü ve sağlıklı bir dişi, yavrularına bakma içgüdüsünden yoksunsa, ya da yumurta meydana getirme gücü az ise, populasyonda önemli bir gen frekansı değişikliğine neden olamayacağı için, evrimsel olarak başarılı nitelendirilemez. Demek ki doğal seçilimde başarılı olabilmek için, çevre koşullarına diğerlerinden daha iyi uyum yapmanın yanısra, daha fazla sayıda yumurta ya da yavru meydana getirmek gerekir. Doğal Seçilim çevre koşullarına bağımlı olarak farklı şekillerde meydana gelir; 1.Yönlendirilmiş seçilim 2.Dengelenmiş Seçilim 3.Dallanan Seçilim Yönlendirilmiş Seçilim Doğal seçilimin en iyi bilinen ve en yaygın şeklidir. Özel koşulları olan bir çevreye uzun bir süre içerisinde uyum yapan canlılarda görülür. Genellikle çevre koşullarının büyük ölçüde değişmesiyle ya da koşulları farklı olan bir çevreye göçle ortaya çıkar. Populasyondaki özellikler bireylerin o çevrenin koşullarına uyum yapabileceği şekilde seçilir. Örneğin nemli bir çevre gittikçe kuraklaşıyorsa, doğal seçilim, en az su kullanarak yaşamını sürdüren canlıların yararına olacaktır. Populasyondaki bireylerin bir kısmı daha önce mutasyonlarla bu özelliği kazanmışlarsa, bu bireylerin daha fazla yaşamaları, daha çok döl vermeleri, yani genlerini daha büyük ölçüde populasyonun gen havuzuna sokmaları sağlanır. Bu arada ilgili özelliği saptayan genlerde meydana gelebilecek mutasyonlardan, yeni koşullara daha iyi uyum sağlayabilecekler seçileceğinden, canlının belirli bir özelliğe doğru yönlendirildiği görülür. Bu, doğal seçilimin en önemli özelliğinden biridir. Her çeşit özelliği meydana getirebilecek birçok mutasyon oluşmasına karşın, çevre koşullarının etkisi ile, doğal seçilim, başarılı mutasyonları yaşattığı için, sanki mutasyonların belirli bir amaca ve yöne doğru meydana geldiği izlenimi yaratılır. Yukarıda verdiğimiz örnekte, uyum, suyu artırımlı kullanan boşaltım organlarından, suyu en idareli kullanan böbrek şekline doğru gelişmeyi sağlayacak genler yararına bir seçilim olacaktır. Su buharlaşmasını önleyen deri ve post yapısı, kumda kolaylıkla yürümeyi sağlayan genişlemiş ayak tabanı vs. doğal seçilimle bu değişime eşlik eden diğer özelliklerdir. Önemli olan, evrimde bir özelliğin ilkel de olsa başlangıçta bir defa ortaya çıkmasıdır; geliştirilmesi, mutasyon-doğal seçilim düzeneği ile zamanla sağlanır. Bu konudaki en ilginç örnek, bir zamanlar ingiltere'de fabrika dumanlarının yoğun olarak bulunduğu bir bölgede yaşayan kelebeklerde (Biston betularia) meydana gelmesi evrimsel değişmedir. Sanayi devriminden önce hemen hemen beyaz renkli olan bu kelebekler (o devirden kalma kolleksiyonlardan anlaşıldığı kadarıyla), ağaçların gövdelerine yapışmış beyaz likenler üzerinde yaşıyorlardı. Böylece avcıları tarafından görülmekten kurtulmuş oluyorlardı. Sanayi devrimiyle birlikte, fabrika bacalarından çıkan siyah renkli kurum vs. bu likenleri koyulaştırınca, açık renkli kelebekler çok belirgin olarak görülür duruma geçmiştir. Bunların üzerinde beslenen avcılar, özellikle kuşlar, bunları kolayca avlamaya başlamıştır. Buna karşın sanayi devriminden önce de bu türün populasyonunda çok az sayıda bulunan koyu renkli bireyler bu renk uyumundan büyük yarar sağlamıştır. Bir zaman sonra populasyonun büyük bir kısmı koyu renkli kelebeklerden oluşmuştur. ''Sanayi Melanizmi''. Günümüzde alınan önlemler sayesinde, çevre temizlenince, beyaz renkli olanların sayısı tekrar artmaya başlamıştır. Yönlendirilmiş doğal seçilime, diğer bir ismiyle ''Orthogenezis'' e en iyi örneklerden biri de atın evrimidir. birçok yan dal (cins ve tür düzeyinde) ortama daha az uyum yaptığı için ortadan kalkmış, bugünkü Equus'u yapacak kol başarılı uyumu ile günümüze kadar gelmiştir. Birçok durumda, bazı yapıların gelişmesindeki yönlendirme, yararlı noktadan öteye geçebilir. Örneğin İrlanda geyiğinin boynuzları, kama dişli kaplanın üst kesici dişleri o kadar fazla büyümüştür ki, bir zaman sonra bu türlerin ortadan kalkmalarına neden olmuştur. işte, çok defa bir canlının organları arasında belirli bir oranın bulunması, bu seçilimle düzenlenir ve buna ''Allometrik İlişki'' denir. Yani organlar arasındaki oran her türde kendine özgü ölçüler içinde bulunur. Bu özellikler, daha doğrusu oranlar, sistematikte(Canlıların Sınıflandırılması) ölçü olarak alınır. Yapay Seçme ile çok kuvvetli bir yönlendirme sağlanabilir. islah edilmiş birçok hayvan ırkında bunu açıkça görmek mümkündür. İnsanların gereksinmeleri için yararlı özellikleri bakımından sürekli olarak seçilen bu hayvanlar, bir zaman sonra doğada serbest yaşayamayacak duruma gelmiştir. Nitekim sütü ve eti için ıslah edilen birçok inek ve koyun türü, yumurtası için ıslah edilen birçok tavuk türü, süs hayvanı olarak ıslah edilen birçok kuş, köpek, kedi vs. türü, artık bugün doğada serbest olarak yaşayamayacak kadar değişikliğe uğramıştır. Son zamanlarda tıp bilimindeki gelişmeler ile, normal olarak doğada yaşayamayacak eksiklikler ile doğan birçok birey, yaşatılabilmekte ve üremesi sağlanmaktadır. Böylece taşıdıkları kalıtsal yapı, insan gen havuzuna eklenmektedir. Dolayısıyla bozuk özellikler meydana getirecek genlerin frekansı gittikçe artmaktadır. Örneğin, eskiden, kalp kapakçıkları bozuk, gözleri aşırı miyop ya da hipermetrop olan, gece körlüğü olan, D vitaminini sentezlemede ya da hücre içine alma yeteneğini yitirmiş olan, kan şekerini düzenleyemeyen (şeker hastası), mikroplara direnci olmayan, kanama hastalığı olan; yarık damaklı, kapalı anüslü, delik kalpli ve diğer bazı kusurlarla doğan bireylerin yaşama şansı hemen hemen yoktu. Modern tıp bunların yaşamasını ve üremesini sağlamıştır. Dolayısıyla insan gen havuzu doğal seçilimin etkisinden büyük ölçüde kurtulmayı başarmıştır. Bu da gen havuzunun, dolayısıyla bu gen havuzuna ait bireylerin bir zaman sonra doğada serbest yaşayamayacak kadar değişmesi demektir. Nitekim 10-15bin yıldan beri uygulanan koruma önlemleri, bizi, zaten doğanın seçici etkisinden kısmen kurtarmıştır. Son zamanlardaki tıbbi önlemler ise bu etkiyi çok daha büyük ölçüde azaltmaktadır. Böylece doğal seçilimin en önemli görevlerinden bir olan ''Gen havuzunun yeni mutasyonların etkisinden büyük ölçüde korunmasının sağlanması ve mutasyonların gen havuzunda yayılmalarının önlenmesi, dolayısıyla gen havuzunun dengelenmesi ve kararlı hale geçmesi, insan gen havuzu için yitirilmeye başlanmıştır.'' Dengelenmiş Seçilim Eğer bir populasyon çevre koşulları bakımından uzun süre dengeli olan bir ortamda bulunuyorsa, çok etkili, kararlı ve dengeli bir gen havuzu oluşur. Böylece, dengeli seçilim, var olan gen havuzunun yapısını devam ettirir ve meydana gelebilecek sapmalardan korur. Örneğin, keseliayılar (Opossum) 60 milyon, akrepler (Scorpion) 350 milyon yıldan beri gen havuzlarını hemen hemen sabit tutmuşlardır. Çünkü bulundukları çevrelere her zaman başarılı uyum yapmışlardır. Dengeli seçilimde, üstteki ve alttaki değerleri (aşırı özellikleri) taşıyan bireyler sürekli elendiği için, populasyon dengedeymiş gibi gözükür, Örneğin, bebeklerde kafatasının, dolayısıyla beynin ve keza vücudun büyüklüğü dengeli seçilimin etkisi altındadır. Belirli bir kafatası ve vücut büyüklüğünün üstünde olanlar, doğum sırasında ananın çatı kemiğinden geçemedikleri için elenirler; çok küçük olanları da uyum yeteneklerini yitirdikleri için elenirler. Böylece, örneğin bebeklerde beyin ve vücut büyüklüğü belirli sınırların içinde kalır. Keza serçelerde de kanat uzunluğu/ vücut ağırlığı oranı, belirli bir sayının altında ve üstünde olanlar yönünde seçilime uğradığı saptanmıştır. Bu nedenle serçelerin belirli bir büyüklükte kalmaları sağlanır. Birçok hayvan grubu için (özellikle vücutlarının ve organlarının büyüklükleri için) bu işleyiş geçerlidir. Bu nedenle bazı hayvan gruplarının kalıtsal olarak neden büyük, bazılarının neden küçük olduğu kısmen açıklanabilir. Doğal seçilim, etkisini üç farklı şekilde gösterir: Koşullara uyum gösteren fenotipler kararlı kalır (dengelenmiş seçilim), değişik uyuma sahip olanlar arasında sadece başarılı olanlar seçilir (yönlendirilmiş seçilim); değişik uyuma sahip olanlar arasında, iki ya da daha fazla başarılı fenotip seçilir (dallanan seçilim). Dallanan Seçilim Dengeli seçilimin tersi olan bir durumu açıklar. Bir populasyonda farklı özellikli bireylerin ya da grupların her biri, farklı çevre koşulları nedeniyle ayrı ayrı korunabilir. Böylece aynı kökten, bir zaman sonra, iki ya da daha fazla sayıda birbirinden farklılaşmış canlı gurubu oluşur (ırk--alttür--tür--vs.). Özellikle bir populasyon çok geniş bir alana yayılmışsa ve yayıldığı alanda değişik çevre koşullarını içeren bir çok yaşam ortamı (niş) varsa, yaşam ortamlarındaki çevre koşulları, kendi doğal seçilimlerini ayrı ayrı göstereceği için, bir zaman sonra birbirinden belirli ölçülerde farklılaşmış kümeler, daha sonra da türler ortaya çıkacaktır. Bu şekilde bir seçilim ''Uyumsal Açılımı'' meydana getirecektir. Dallanan seçilim, keza benzer özellikli bireylerin, çiftleşmek için birbirini tercih etmesiyle de ortaya çıkar. Bunun tipik örneğini insanlarda verebiliriz. Yapısal olarak farklı birçok insan ırkı biraraya getirildiğinde, bireyler genellikle kendi ırkından olanlarla evlenmeyi tercih ederler (hatta dil, din, kültür benzerliği ve parasal bakımdan zenginlik bu seçimi daha da kuvvetlendirir.) Üreme Yeteneğine Ve Eeşemlerin Özelliğine Göre Seçilim Populasyonlarda, bireyler arasında şansa dayanmayan çiftleşmelerin ve farklı üreme yeteneklerinin oluşması HARDY - WEINBERG Eşitliğine ters düşen bir durumu ifade eder. Bu özellikleri taşıyan bir populasyonda HARDY - WEINBERG Eşitliği uygula¬namaz. Bireylerin çiftleşmek için birbirlerini rastgele seçmelerinden ziyade, özel nite¬liklerine göre seçmeleri, bir zaman sonra, bu özellikler bakımından köken aldıkları ana populasyondan çok daha kuvvetli olan yeni populasyonların ortaya çıkmasına neden olur. Bu özel seçilim, yaşam kavgasında daha yetenekli olan (beslenmede, korunmada, gizlenmede, yavrularına bakmada vs.) populasyonların ortaya çıkmasını sağlayabilir. Eşemlerin Arasındaki Yapısal Farkların Oluşumu: Dişiler genellikle yavrula¬rını meydana getirecek, koruyacak ve belirli bir evreye kadar besleyebilecek şekilde özellik kazanmıştır. Özellikle memelilerde tam olarak belirlenemeyen bir nedenle dişiler başlangıçta çiftleşmeden kaçıyormuş gibi davranırlar. Dişilerin kuvvetli olduğu bir toplumda çitfleşme çok zor olacağından, seçilim, memelilerde, kuvvetli erkekler yönünden olmuştur. Bugün birçok canlı grubunda, özellikle yaşamları boyunca bir¬kaç defa çiftleşenlerde (insan da dahil), erkekler, dişileri çiftleşmeye zorlar; çok defa da bunun için kuvvet kullanır. Bu nedenle erkekler dişilerinden daha büyük vücut yapısına sahip olur. Buna karşın, yaşamları boyunca bir defa çiftleşenlerde ya da çift¬leştikten sonra erkeği besin maddesi olarak dişileri tarafından yenen gruplarda (pey¬gamberdevelerinde ve örümceklerde olduğu gibi), erkek, çok daha küçüktür. Çünkü seçilim vücut yapısı büyük dişiler, vücut yapısı küçük erkekler yönünde olur. İkincil eşeysel özellikler, çoğunluk eşey hormonları tarafından meydana getirilir (bu nedenle ikincil eşeysel özellikler, bireylerde eşey hormonlarının üretilmeye başla¬masından sonra belirgin olarak ortaya çıkar). Eşeysel gücün bir çeşit simgesi olan bu özellikler, eşemler tarafından sürekli olarak seçilince, özellikler gittikçe kuvvetlenir. Bu nedenle özellikle erkeklerde, yaşam savaşında zararlı olabilecek kadar büyük boy¬nuz (birçok geyikte, keçide vs.'de), büyük kuyruk (tavuskuşunda ve cennetkuşların¬da vs.), hemen göze çarpacak parlak renklenmeler (birçok kuşta, memelide); dişiler¬de, süt meydana getirmek için çok büyük olmasına gerek olmadığı halde dişiliğin simgesi olan büyük meme bu şekilde gelişmiştir. Birçok canlı grubunda bu arzu farklı şekilde geliştiği için, farklı yapılar ortaya çıkmıştır. Örneğin birbirine çok yakın adalar¬da yaşayan Japon ırkı ile Ainu ırkı arasında vücut kılı yönünden büyük farklar vardır. Ainu kadınları çiftleşmek için kıllı erkekleri, buna karşın Japon kadınları kılsız erkek¬leri tercih ettikleri için, Ainu ırkı dünyanın en kıllı, Japon ırkı ise en kılsız erkeklerine sahip olmuştur. Çünkü eşeysel seçim zıt özelliklerin tercihi şeklinde olmuştur. Keza siyah ırklar kalın dudağı, beyaz ırklar ince dudağı daha çekici bulduğu için, seçilim bugünkü siyah ırkıarın kalın dudaklı, beyaz ırkıarın ise ince dudaklı olmasını sağlaya¬cak şekilde olmuştur. Bu arada eşemlerin birbirlerini karşılıklı uyarabileceği birtakım davranış şekilleri (kur, dans, gösteri vs.) gelişmiştir. Özellikle bu davranışları en iyi şekilde yapan erkekler, dişileri tarafından tercih edilir. Davranışların değişmesini sağlayacak etkili bir mutasyon, çok defa, meydana geldiği bireyin eş bulamamasına neden olacağı için, populasyondan elenir. Bu davranış şekillerine, yine genellikle ve çoğunluk erkeklerde eşeysel çiftleşmeden belirli bir süre önce, vücuttaki renklerin değişmesi, özellikle parlaklaşması (kuşları ve memelileri anımsayınız!), değişik kokuların ve fero¬menlerin salgılanması (tekelerin zaman zaman çok keskin olarak koktuğunu anımsa¬yınız!) eşlik eder. Parlak renkler ve keskin kokular dişiyi daha etkili bir şekilde uyara¬cağı için seçim bu özelliklerin kuvvetlendirilmesi yönünde olmuştur. Işte, DARWIN, dişinin erkeği, erkeğin dişiyi uyarabildiği bu özelliklerin seçimine Eşeysel Seçilim = Seksüel seleksiyon ismini verdi. Erkeklerin, erkekliklerini simgeleyen özelliklerine göre seçilimleri, onların, bu özellikleri bakımından, yaşam savaşında etkinlik kazandırmasa dahi kuvvetlenme¬sine neden olmuştur. Nitekim erkeklerin çok daha renkli olması bu nedene dayanır. Ayrıca kuşlarda kuluçkaya yatan dişiler üstten belirgin olarak görünmesin diye, çoğunluk yaşadığı ortamın rengine uyum yapmıştır. Yalnız erkekleri kuluçkaya yatan bir kuş türünde, bu durum tersinedir; bunlarda dişiler parlak renkli, erkekler toprak rengindedir. En güçlü erkeğin, dişileri dölleyebilmesini sağlamak için, evrimsel olarak bir yarışma oluşmuştur ''Erkek Kavgaları'', Bu nedenle geyiklerde, dağ keçilerinde vs.'de kuvvetli boynuz oluşumları meydana gelmiştir. Seçilim her zaman saldırgan ve kuvvetli erkekler yönünde olur. Dişiler, kavgaya katılmadığı için, boynuzları küçük kalmıştır. Çünkü büyük boynuz yönünden herhangi bir seçilim baskısı yoktur. Daha önce öğrendiğimiz gibi bir özelliğin gelişebilmesi için seçilim baskısının sürekli etki etmesi gerekir. Bu arada, güçlerine göre, erkeklerin belirli alanları etkinlikleri altına alma eğilimleri; bir territoryum davranış zincirinin oluşmasına neden olmuştur. Tüm bu eşeysel seçilim etkileri, dişiler ve erkekler arasında belirgin bir yapı ve davranış farklılaşmasına neden olmuştur. Bu farklılaşmaya ''Eşeysel Farklılaşma = Seksüel Dimorfizm" denir. Üreme Yeteneğinin Evrimsel Değişimdeki Etkisi: Daha önce de değindiği¬miz gibi bir bireyin yaşamını başarılı olarak sürdürmesi evrimsel olarak fazla birşey ifade etmez. Önemli olan bu süre içerisinde fazla döl meydana getirmek suretiyle, gen bavuzuna, gen sokabilmesidir. Bir birey ne kadar uzun yaşarsa yaşasın, döl Meydana getirmemişse, evrimsel açıdan hiçbir öneme sahip değildir. Bu nedenle bu bireylerin ölümü 'Genetik Ölüm' olarak adlandırlır. Canlıların çok büyük bir kısmında, canlılığın mayasını oluşturan eşeysel hücre¬lerdeki DNA'nın taşınması, bireylere verilmiş bir görevdir. Tek bir üreme dönemi olan canlılarda, döllenmeden hemen sonra erkekler (birgünsineklerini hatırlayınız!), yumurta bıraktıktan ya da yavru doğurduktan sonra da dişiler ölür. Birçok üreme dönemi olan canlılarda, her iki eşemin de ömrü uzamıştır. Bu sonucu grupta, erkek¬ler, çoğunlukla döllenme sonrası yavru bakımında belirli görevler yüklenmiştir (hatta denizatlarında döllenmiş yumurtayı ortamdan özel keselerine alan erkekler hamile olur). Hemen hemen tüm canlı gruplarında ve ilkel insan topluluklarında, bireyin ya¬şı, eşeysel etkinliğinin süresine denktir. Yalnız gelişmiş insan toplumlarında, kazanıl¬mış deneyimlerin genç kuşaklara aktarılması için, yaşlılar özenle korunur; bu nedenle ömür uzunluğu, eşeysel aktiflik dönemini oldukça aşmıştır. Evrimsel gelişmede en önemli değişim, gen havuzundaki gen frekansının değişimidir. Gen frekansı ise birey sayısıyla saptanır. Bu durumda bir populasyonda, üreyebilecek evreye kadar başarıyla gelişebilen yavruları en çok sayıda meydana getiren bireylerin gen bileşimi bir zaman sonra gen havuzuna egemen olur. Buna 'Farklı Üreme Yeteneği' denir. Farklı üreme yeteneği, meydana getirilen gamet (genellikle yumurta) sayısı de¬ğildir; üreyebilecek olgunluğa ulaşan yayruların sayısıdır. Değişik gametlerin birleş¬mesiyle, gen bileşimi bakımından, daha iyi embriyolojik gelişim (embriyo, larva, pup vs.) yapabilen, daha başarılı uyum sağlayabilen yavruların seçimi yapılır. Bu nedenle fazla sayıda yumurta meydana getiren canlılarda, bu seçilim, çok sayıdaki zigot ara¬sından yapılacağı için, başlangıçta başarılı bir seçim olacaktır ve ayrıca fazla sayıda embriyo ya da yavru ile yaşam kavgasına gireceği için, sonuçta büyük sayılardaki yu¬murtadan, belirli bir sayıda erginleşmiş yavru ortaya çıkabilecektir. Örneğin alabalık¬larda meydana getirilen 1.000.000 yumurtadan, en fazla 20'sinin üreyebilecek yaşa ulaştığı bilinmektedir. Çok yumurta oluşturan canlılarda, yumurtanın korunmuş yer¬lere bırakılması ve embriyoya ya da yavrulara bakım gelişmemiştir (birçok balıkta, parazitte, amfibide, sürüngende vs. 'de). Bu nedenle büyük kayıplar verirler. Halbuki yumurtaya, embriyoya ve yavruya bakımın gelişmesi oranında, yumurta sayısında azalma görülür. Bu sayı, gelişmiş memelilerde bire düşmüştür. Çünkü özenli bir ba¬kımla yavruların olgunluğa ulaşma olasılığı çok yükseltilmiştir. Memelilerde ve kuş¬larda, yavru ve yumurta sayısı optimal sayıda tutulur. Fazla yumurtanın kuluçkada embriyonik olarak gelişmesi ve gelişse de yavruların ana tarafından beslenmesi zor olur. Bu nedenle yumurta sayısı sabit sınırlar içerisinde kalacak şekilde evrimsel seçi¬lim olmuştur. Bunun yanısıra bir canlının diğer yırtıcı hayvanlar tarafından sürekli yenmesi (bunlarda fazla yumurta meydana getirilir) ya da düşmanlarının az olması (bunlarda az yumurta meydana getirilir) yumurta sayısını saptayan faktörlerden biri¬dir. Yalıtımın (=İzolosayonun) Evrimsel Gelişimdeki Etkisi Türlerin oluşumunda, yalıtım, kural olarak, zorunludur. Çünkü gen akımı devam eden populasyonlarda, tür düzeyinde farklılaşma oluşamaz. Bir populasyon, belirli bir süre, birbirlerinden coğrafik olarak yalıtılmış alt populasyonlara bölünürse, bir zaman sonra kendi aralarında çiftleşme yeteneklerini yitirerek, yeni tür özelliği ka¬zanmaya başlarlar. Bu süre içerisinde oluşacak çiftleşme davranışlarındaki farklılaş¬malar, yalıtımı çok daha etkili duruma getirecektir. Kalıtsal yapı açısından birleşme ve döl meydana getirme yeteneklerini koruyan birçok populasyon, sadece çiftleşme davranışlarında meydana gelen farklılaşmadan dolayı, yeni tür özelliği kazanmıştır. Üreme yalıtımının kökeninde, çok defa, en azından başlangıç evrelerinde, coğrafik bir yalıtım vardır. Fakat konunun daha iyi anlaşılabilmesi için üreme yalıtımını ayrı bir başlık altında inceleyeceğiz. Populasyonlar arasında çiftleşmeyi ve verimli döller meydana getirmeyi önleyen her etkileşme 'Yalıtım = izolasyon Mekanizması' denir. Coğrafik YaIıtım (= Allopatrik YaIıtım) Eğer bir populasyon coğrafik olarak iki ya da daha fazla bölgeye yayılırsa, ev¬rimsel güçler (her bölgede farklı olacağı için) yavaş yavaş etki ederek, populasyonlar arasındaki farkın gittikçe artmasına (Coğrafik Irklar) neden olacaktır. Bu kalıtsal farklılaşma, populasyonlar arasında gen akışını önleyecek düzeye geldiği zaman, bir zamanların ata türü iki ya da daha fazla türe ayrılmış olur Allopatrik yalıtım ile tür oluşumu. Eğer bir populasyonun bir parçası coğrafik olarak yalıtılırsa, değişik evrimsel güçler yavaş yavaş bu yalıtılmış populasyonu (keza ana populasyonu) değiştirmeye başlar ve bir zaman sonra her iki populasyon aralarında verimli,döl meydana getiremeyecek kadar farklılaşırlar. Karalar, özellikle çöller, tuz bileşimi ve derişimi farklı sular, buz setleri su hay¬vanları için; denizler, nehirler, yüksek dağlar, büyük sıcaklık farkları, buzlar, kara hayvanları için yalıtım nedenleridir. En iyi coğrafik yalıtım adalarda görülür. Çok yakın bölgelerde yaşayan bazı akraba hayvan gruplarında da bu yalıtım görülebilir. Örneğin suda yaşayan bazı türlerin çok yakın akrabaları, su kenarlarındaki yaprakların altlarında bulunan nemli yerlerde; keza iki yakın akraba populasyondan biri toprak diğeri ağaçlar üzerinde yaşayabilir (Ekolojik Yalıtım). Bu populasyonların birbirleriyle teması çok az olacağından ve her birine farklı evrimsel güçler etki edece¬ğinden, bir zaman sonra aralarında daha büyük farklılaşmalar meydana gelir. Anadolu'daki Pamphaginae'lerin Evrimsel Durumu: Coğrafik yalıtıma en iyi örneklerden biri Anadolu'nun yüksek dağlarında yaşayan, kanatsız, hantal yapılı, kışı çoğunluk 3. ve 4. nimf evrelerinde geçiren bir çekirge grubudur. Özünde, bu hay¬vanlar, soğuk iklimlerde yaşayan bir kökenden gelmedir. Buzul devrinde, kuzeydeki buzullardan kaçarak Balkanlar ve Kafkaslar üzerinden Anadolu'ya girmişlerdir. Bu sı¬rada Anadolu'nun iç kısmında Batı Anadoluyla Doğu Anadolu'yu birbirinden ayıran büyük bir tatlısu gölü bulunuyordu. Her iki bölge arasındaki karasal, bağlantı, yalnız, bugünkü Sinop ve Toros kara köprüleriyle sağlanıyordu. Dolayısıyla Kafkaslar'dan gelenler ancak Doğu Anadolu'ya, Balkanlar'dan gelenler ise ancak Batı Anadolu'ya yayıımıştı. Çünkü Anadolu o devirde kısmen soğumuş ve bu hayvanların yaşayabil¬mesi için uygun bir ortam oluşturmuştu. Bir zaman sonra dünya buzul arası devreye girince, buzullar kuzeye doğru çekilmeye ve dolayısıyla Anadolu da ısınmaya başla¬mıştı. Bu arada Anadolu kara parçası, erezyon sonucu yırtılmaya, dağlar yükselmeye ve bu arada soğuğa alışık bu çekirge grubu, daha soğuk olan yüksek dağların başına doğru çekilmeye başlamıştı. Uzun yıllardır bu dağların başında (genellikle 1500 - 2000 metrenin üzerinde) yaşamlarını sürdürmektedirler. Kanatları olmadığı için uçamazlar; dolayısıyla aktif yayılımları yoktur. Hantal ve iri vücutlu olduklarından rüzgar vs. ile pasif olarak da yayılamamaktadırlar. Belirli bir sıcaklığın üstündeki böl¬gelerde (zonlarda) yaşayamadıklarından, yüksek yerlerden vadilere inerek, diğer dağsilsilelerine de geçemezler. Yüksek dağlarda yaşadıklarından, aşağıya göre daha yoğun morötesi ve diğer kısa dalgalı ışınların etkisi altında kalmışlardır; bu nedenle mutasyon oranı (özellikle kromozom değişmeleri) yükselmiştir. Dolayısıyla evrimsel bir gelişim ve doğal seçilim için bol miktarda ham madde oluşmuştur. Çok yakın mesafelerde dahi meydana gelen bu mutlak ya da kısmi yalıtım, bir zamanlar Ana¬dolu'ya bir ya da birkaç türü olarak giren bu hayvanların 50'de fazla türe, bir o kadar alttüre ayrılmasına neden olmuştur. Bir dağdaki populasyon dahi, kendi aralarında oldukça belirgin olarak birbirlerinden ayrılabilen demelere bölünür. Çünkü yukarıda anlattığımız yalıtım koşulları, bir dağ üzerinde dahi farklı olarak etki etmektedir. Coğrafik uzaklık ile farklılaşmanın derecesi arasında doğru orantı vardır. Birbir¬lerinden uzak olan populasyonlar daha fazla farklılaşmalar gösterir. Bu çekirge gru¬bunun Hakkari'den Edirne'ye kadar adım adım değiştiğini izlemek mümkündür. Batı Anadolu'da yaşayanlar çok gelişmiş timpanik zara (işitme zarına) ve sırt kısmında tarağa sahiptir; doğudakilerde bu zar ve tarak görülmez. Toros ve Sinop bölgelerinde bu özellikleri karışık olarak taşıyan bireyler bulunur. Coğrafik yalıtım populasyonlar arasındaki kalıtsal yalıtımı ve üreme davranışla¬rındaki yalıtımı tam sağlayamamışsa (populasyonlar arasında kısırlık tam oluşmamış¬sa) , bir zaman sonra biraraya gelen bu populasyonlarda, aralarındaki gen akımından dolayı, tekrar bir karışma ve bir çeşit homojenleşme oluşabilir. insan ırkıarı sürekli; ama belirli ölçülerde birbirleriyle temasta bulunduğu için, aralarındaki gen akımı tü¬müyle kesilmemiş, dolayısıyla melezlenme kısırlığı oluşmamış ve böylece ayrı tür özellikleri kazanamamıştır. Bununla beraber gen akımının sınırlı olması ırk özellikleri¬nin kısmen korunmasını sağlamıştır. Her türlü yalıtım mekanizmasında, ilk olarak demelerin, daha sonra alttürlerin, sonunda da türlerin meydana geldiğini unutmamak gerekir. Aynı kökten gelen; fakat farklı yaşam bölgelerine yayılan tüm hayvan gruplarında bu kademeleşme görülür. Ayrıca tüm coğrafik yalıtımları kalıtsal bir yalıtımın izlediği akıldan çıkarılmamalıdır... Üreme işlevlerinde Yalıtım (= Simpatrik Yalıtım) Yalıtımın en önemli faktörlerinden biri de, genellikle belirli bir süre coğrafik yalı¬tımın etkisi altında kalan populasyonlardaki bireylerin üreme davranışlarında ortaya çıkan değişikliklerdir. Bu farklılaşmaların oluşumunda da mutasyonlar ve doğal seçi¬lim etkilidir. Yalnız, üreme işlevlerindeki yalıtımın, coğrafik yalıtımdan farkı, ilke ola¬rak, farklılaşmanın sadece üreme işlevlerinde olması, kalıtsal yapıyı tümüyle kapsa¬mamasıdır. Deneysel olarak döllendirildiklerinde yavru meydana getirebilirler. Çünkü kalıtsal yapı tümüyle farklılaşmamıştır. Coğrafik yalıtım ise hem kalıtsal yapının hem davranışların farklılaşmasını hem de üreme işlevlerinin yalıtımını kapsar. Eşeysel çekim azalınca ya da yok olunca, gen akışı da duracağı için, iki populas¬yon birbirinden farklılaşmaya başlar. Böylece ilk olarak hemen hemen birbirine ben¬zeyen; fakat üreme davranışlarıyla birbirinden ayrılan 'İkiz Türler' meydana gelir. Bir zaman sonra mutasyon - seçilim etkileşimiyle, yapısal değişimi de kapsayan kalıtsal farklılıklar ortaya çıkar. Üreme yalıtımı gelişimin çeşitli kademelerinde olabilir. Bun¬lar; Üreme Davranışlarının Farklılaşması: Birbirlerine çok yakın bölgelerde yaşayan populasyonlarda, mutasyonlarla ortaya çıkan davranış farklılaşmalarıdır. Koku ve ses çıkarmada, keza üreme hareketlerinde meydana gelecek çok küçük farklılaşmalar, bireylerin birbirlerini çekmelerini, dolayısıyla döllemeyi önler. Daha sonra, bu popu¬lasyonlar bir araya gelseler de, davranış farklarından dolayı çiftleşemezler. Üreme Dönemlerinin Farklılaşması: iki populasyon arasında üreme dönemlerinin farklılaşması da kesin bir yalıtıma götürür. Örneğin bir populasyon ilkbaharda öbürüsü yazın eşeysel gamet meydana getiriyorsa, bunların birbirlerini döllemeleri olanaksızlaşır. Üreme Organlarının Farklılaşması: Özellikle böceklerde ve ilkel bazı çok hücreIilerde, erkek ve dişi çiftleşme organları, kilit anahtar gibi birbirine uyar. Meydana gelecek küçük bir değişiklik döllenmeyi önler. Gamet Yalıtımı: Bazı türlerin yumurtaları, kendi türünün bazen de yakın akraba türlerin spermalarını çeken, fertilizin denen bir madde salgılar. Bu fertilizinin farkIılaşması gamet yalıtımına götürür. Melez Yalıtım: Eğer tüm bu kademeye kadar farklılaşma olmamışsa, yumurt ve sperma, zigotu meydana getirir. Fakat bu sefer bazı genlerin uyuşmazlığı, embriyonun herhangi bir kademesinde anormalliklere, ya da uygun olmayan organların ortaya çıkmasına neden olur (örneğin küçük kalp gibi). Embriyo gelişip ergin meydana gelirse, bu sefer, kalıtsal yapılarındaki farklılanmalar nedeniyle erginin eşeysel hücrelerinde, yaşayabilir gametler oluşamayabilir (katırı anımsayınız!). Genlerin kromozomlar üzerindeki dizilişleri farklı olduğu için, sinaps (gen alışveriş yapıları) yapamazlar ya da kromozom sayıları farklı olduğu için dengeli bir kromozom dağılımını sağlayamazlar.. Kalıtsal Sürüklenme Küçük populasyonlarda eşlerin seçimi ve çiftleşme, büyük ölçüde şansa daya¬nır. Böylece gen havuzlarındaki denge, doğal seçilimden ziyade, şansla meydana ge¬len olaylarla değişir. İşte küçük populasyonlarda, şansa bağlı olarak meydana gelen üreme olaylarının evrimsel gelişmelerdeki etkisi, SEWALL WRIGHT tarafmdan 'Genetik Drift = Kahtsal Sürüklenme' olarak adlandırılmıştır. Küçük populasyonlarda, ben¬zer bireyler kendi aralarında çiftleştikleri için, allel genlerden birçoğunun, doğal seçi¬limden ziyade, şansla, heterozigot(karma) halden homozigot(saf) hale geçme eğilimleri vardır. Bu arılaşma, belirli zararlı ya da yararlı özelliklerin fenotipte kendilerini göstermeleri¬ne ve bir zaman sonra da doğal seçilimle o populasyondan elenmelerine ya da korun¬malarına neden olabilir. Bu homozigotlaşma, birçok türde, uyumsal değer gösterme¬mesine karşın, birçok anormal ve anlaşılmaz yapıların nasıl kazanıldığını açıklayabilir. Genetik sürüklenme, HARDY -WEINBERG eşitliğine aykırı bir durumu (HARDY ¬WEINBERG eşitliğinde homozigotların oranı sabitti) yani, homozigot birey sayısının de¬ğişimini ifade eder. Evrimleşmede ne ölçüde önemli rol oynadığı, birçok bilim adamı arasında hala tartışmalıdır. Bununla beraber birçok bitki ve hayvan grubunun, doğa¬da, kalıtsal sürüklenme ile, yani şansa bağlı olaylarla çeşitlendiği ve geliştiği bilin¬mektedir. Öyleki, evrimsel çizgi boyunca, özel koşullara uyum yapmak için izlenen birçok yol, şansa bağlı olarak seçilmiştir. Her kademesinde çatallaşan bir yol gibi. In¬san oluşuncaya kadar, sayısız çatallanmış yoldan şansa bağlı olarak geçilmiş ve bu¬güne gelinmiştir. Koşullar tamamen aynı olsa da, başlangıçtan, hatta bir primat evre¬sinden, tekrar bugünkü insana benzer bir canlının gelişmesi, kural olarak olanaksız¬dır. Çünkü her çatallanmış kavşakta, insana götüren yolun, doğrulukla tekrar seçilmesi çok az bir olasılıkla olabilir. Bunun için çok tipik birkaç örnek verelim: a) Birçok bitki, geçmişte, gerekli olmadığı için petallerini yitirmiştir (örneğin böcekler yerine rüzgarla tozlaşmaya başladıkları için). Bir zaman sonra tekrar bö¬ceklerle tozlaşma zorunluluğunu duyunca, petallerini aynı şekilde oluşturamamış, bunun yerine, üreme zamanlarında çiçeklerine yakın yapraklarını renklendirecek özellikleri kazanmıştır (Atatürk Çiçeğinin kırmızı yapraklarımanımsayınız!). b) Birincil su hayvanları (balık gibi) oldukça etkin bir solunumu yürütebilecek solungaç sistemlerini, karmaşık bir yol izleyerek geliştirmiştir. Kara yaşamına uyum yaptıktan sonra, bir kısım canlı, tekrar suya dönmüştür (balinalar, yunuslar vs.); fa¬kat hiçbiri, embriyonik gelişimlerinde kalıntı halinde solungaç yapısını gösterdikleri halde, tekrar solungaç yapısını geliştirememiştir. Hemen hepsi yine akciğeriyle so¬lunuma devam eder. Fakat bunun yanısıra oksijeni uzun süre tutabilecek ya da depo¬layabilecek yapıları geliştirmişlerdir. Keza hiçbiri balıklardaki gibi yanlardan basılmış kuyruk yüzgecini geliştirememiş; bunun yerine üstten basık kuyruk yüzgeçlerini ge¬liştirebilmişlerdir. Evrimde bir yapının tekrar ortaya çıkma olasılığı yok denecek kadar azdır. Örneğin balıkların kuyruk yüzgeci yanlardan basılmıştır. Kara yaşamından tekrar su yaşamına dönmüş hayvanlar (şekilde yunus) ancak üstten basık kuyruk yüzgecini geliştirebilmişlerdir (Kosswig'den) Ön bacakları kürek şekline dönüşmüştür; fakat hiçbir zaman balık yüzgeçlerine benzemez. Çünkü evrimsel olarak bir kere yitirilen bir yapı¬mn tekrar kazanılması hemen hemen olanaksızdır. ya da çok küçük olasılıklarla tekrar¬lanabilir. Burada yönlendirici unsur çevre koşullarının farklılığı değil, şansa bağlı seçi¬limlerin etkisidir. Mutasyonların bir kısmı dönüşlüdür. (Geri Mutasyonlar); bununla beraber ev¬rimsel gelişmeler geriye dönük değildir (Dollo Yasası). Örneğin bir kuşun, tekrar sü¬rüngene; bir balinanın karada yaşayan atasına dönüşmesi; parazitlerin serbest yaşa¬ması; atın tekrar beş parmaklı olması olanaksızdır. Çünkü gerekli tüm geri mutasyon¬ların şansa bağlı olarak elde edilmesi, olasılık açısından hemen hemen sıfırdır. Keza aynı nedenle, körelmiş organların ve yapıların da tekrar işlev görebilecek eski halleri¬ne dönmesi olanaksızdır. Kalıtsal Sürüklenmenin işleyişi Eğer bir populasyon HARDY - WEİNBERG eşitliğini gösteremeyecek kadar küçük¬se, ya da köken aldığı populasyondan küçük gruplar halinde ayrılmışsa, şansa bağlı döllenmeler sonucu bir zaman sonra köken aldığı populasyonun yapısından belirgin olarak farklılaşır. Kalıtsal sürüklenmeyi sağlayan olayları kısaca görelim. Göç ya da Sürüklenme: Oldukça büyük olan bir populasyondan, küçük bir grup koparak ayrılırsa, bu küçük grubun ileride meydana getireceği yeni populasyo¬nun gen havuzu köken aldığı populasyonunkinden farklı olur. Çünkü bu küçük grup ayrılırken bu grubun gen havuzu, ana populasyonun gen havuzundan belirli bir fark¬lılık gösterir. Örneğin Anadolu'da yaşayan insanlarda mavi göz geni frekansının orta¬lama % 10 olduğunu varsayalım. Mavi göz geni frekansı % 30 olan bir ailenin ya da aşiretin Anadolu'dan Mısır'a göç ettiğini ve orada yıllarca kendi içerisinde çoğaldığını düşünelim. Bir zaman sonra oluşacak bu yeni populasyonda mavi göz geninin fre¬kansı % 30 olmakla ana populasyondan farklılık gösterecektir. Çünkü başlangıç gen frekansı farklıdır. Özellikle insan populasyonlarında bu sürüklenmeler çok görülür. Çünkü göç eden toplumlar uzun yıllar kendi içlerinde evlendikleri için, başlangıçta taşıdıkları gen bileşimlerini koruma ve yaygınlaştırma eğilimi gösterirler. Bir zaman sonra içine göç ettikleri toplumlarla karışmaya, başlangıçta taşıdıkları gen bileşimIe¬rini yitirmeye ve belirli bir derecede göç ettikleri toplumun gen bileşimini değiştirme¬ye başlarlar. Anadolu'ya büyük ve küçük birçok göçün olduğu ve bunların uzun yıllar kendi içlerinde evlendikieri bilinmektedir. Bu nedenle insan toplumuna ilişkin kalıtsal sürüklenmenin en iyi örneklerini Anadolu'da görmek mümkündür. Keza adalara göç etmiş insanlarda da bu kalıtsal sürüklenmeler çok belirgin olarak görülür. Kan grup¬ları üzerinde doğal seçilimin çok büyük etkisi olmadığından, göç eden toplulukların kan grupları incelenmekle koptukları populasyonlar tahmin edilebilir. Eğer bir populasyon sürekli olarak genişliyorsa, bir zaman sonra populasyonun kenarındaki gen bileşimleri, merkezdekilerden daha farklı olmaya başlar ve bu fark gittikçe artabilir. Birçok canlı grubu, küçük populasyonlar halinde yeni ortamları işgal ederek, ana populasyona bağımlı olmadan çoğalabilir ve yeni özellikli populasyonlar oluştu¬rabilir. Küçük populasyonların kendi içinde çiftleşmesiyle meydana gelen evrimsel değişiklikler, doğal seçilimden ziyade şansa dayanır.Bir populasyondan bir parça koptuğunda, o parça, populasyonun gen ortala¬masına etki edecek bir miktar geni de beraberinde götürmüşse, ana populasyonun gen bileşimi bir miktar bozulabilir (ana populasyon çok büyük olmamak koşuluyla). Örneğin demin verdiğimiz misalde, % 30'luk mavi gen göçü, ana populasyonun ortalamasının (% 10) bir miktardüşmesine neden olabilir. Bu nedenle, bir populas¬yondan dışa göç de HARDY - WEiNBERG eşitliğini bozabilir. Afetlerin ve Sığınmaların Etkinliği: Herhangi bir zamanda meydana gelecek bir afet, populasyonun büyük bir kısmını ortadan kaldırabilir ve arta kalan pek az bir kısmından sonunda yeniden bir toplum oluşabilir. Fakat arta kalan küçük parça, eğer önceki toplumun tam özelliğini taşımayan bir gen havuzuna sahipse, yeni meydana gelen toplumun yapısı öncekinden çok farklı olur. Özellikle yangın, fırtına, su bas¬kını, deprem, hatta savaş, bu yeni özellikleri ortaya çıkarabilir. Sığınma: Çoğunlukla kışı saklanarak geçiren canlılarda, bir sonraki yazda yine küçük populasyonların etkisi görülür. Örneğin soğuk bir kış, saklanan bireylerin büyük bir kısmını yok ederken, iyi saklanmış küçük bir grup, bu yıkımdan kurtulur ve ger havuzunu, yazın oluşacak tüm populasyona verir. Bazı böceklerde, bazı özelliklerin en azından bazı yıllarda neden yaygın olduğu bu yolla açıklanabilir. Diğer Sürüklenme Şekilleri Doğal seçilimde ve uyumda başarılı olmasa dahi bazı özelliklerin dölden döle aktarılma olasılığı vardır. Bunu sağlayan kalıtsal mekanizmalar şunlardır. Pleiotropik Sürüklenme (= Özellik Sürüklenmesi): Doğal seçilim, genelolarak tek bir genin fenotipi üzerinde değil, tüm genomun fenotipi üzerinde etkisini gösterir.(yani tek bir geni seçmekten çok o geni bulunduran DNA'yı -yani bireyi- seçer) Bu nedenle bazı özellikler uyumsal değer göstermemesine ve yarar sağla¬mamasına karşın yine de varlığını devam ettirir. Çünkü bu özellikler, bireye çok yarar sağlayan özelliklerle birlikte aynı bireyde bulunur. Yararlı özellikler seçilirken, zararı olanlar da beraberce kalıtılır. Bu tip özelliklerin sürüklenmesinde pleiotropi çok önemlidir. Bilindiği gibi bir gen birden fazla özelliği denetliyorsa, pleiotropik etki gösteriyor demektir. Özelliğin biri canlıya yarar sağlıyorsa ve canlının uyum yeteneğini artırıyorsa, sürekli seçilir, buna bağlı olarak yararsız ve uyum yeteneği olmayan özellik de kalıtılır. Örneğin kır¬mızı renkli soğan insanlar tarafından tercih edilmez ve dikilirken ayıklanır. Fakat kırmızı rengi meydana getiren gen, aynı zamanda mantarlara karşı fungusit bir madde de salgıladığı için, bulunduğu bireylere yaşamsal uyum yeteneği verir; bu nedenle, kırmızı renkli soğanlar, beyaz renkli soğanların arasında varlığını sürekli koruyabilir. Gen Sürüklenmesi (= Kalıp İlkesi): Birçok gen yakınlıklarından dolayı bera¬berce kalıtılma eğilimi gösterir. iki gen birbirine çok yakın ise, parça değişimiyle bir¬birlerinden çok zor ayrılırlar. Işte bu genlerden biri yararlı, diğeri zararlı özellik sağlar¬sa ve yararlı genin özelliği, zararlı genin özelliğinden çok daha fazla öneme sahipse, zararlı özellik meydana getiren gen de yararlı özellik meydana getiren genle birlikte sürekli kalıtılır ve korunur. Buna 'Kalıp İlkesi' denir. Prof.Dr.Ali Demirsoy Kaynak: www.istanbul.edu.tr

http://www.biyologlar.com/evrimlesmeyi-saglayan-duzenekler

Canlı Sistemlerde Süreklilik

İlk biyoloji bilginleri, hayvanların ya sperma ya da yumurta içinde önceden oluşmuş biçimde bulunduklarına inanıyorlardı. Kari Ernst von Baer'in mikroskoptan yararlanarak, önceden oluşmuş embriyolar bulunmadığını kanıtlamasıyla, embriyobilim doğdu.Kalıtımın araştırılması olan genetik, ilk bulgularını 1866'da yayınlayan Gregor Johann Mendel'le başladı. Mendel'in bezelyelerle yaptığı ayrıntılı deneyler, her temel özelliğin bir çift fiziksel birim (genler) tarafından denetlendiğini ortaya koydu. Biri anne, biri babadan gelen bu birimler (özelliklerin ayrılığı yasası), sonraki kuşağa, öbür çiftlerin dağılımından bağımsız olarak geçiyordu (özelliklerin bağımsız aktarılması yasası). Gen kavramı, 1900'de, Hollanda'da Hugo De Vries, Almanya'da Kari Erich Correns ve Avusturya' da Gustav Tschermak von Seysenegg'in, Mendel'in çalışmalarını yeniden doğrulamalarıyla genişletildi. De Vries'in değşinim (mütasyon) kuramı, modern genetiğin temeli haline geldi. Pierre Paul Roux'nun 1883'teki, hücre çekirdeğinin, hücrenin bölünmesi sırasında katlanan (tıpkı kopyalar üreten) çizgisel düzende tespih benzeri sıralanmış parçalar içerdiği yolundaki düşüncelerine dayandırılarak, kromozom kuramı geliştirildi. XX. yy. başlarında ABD'de Thomas Hunt Morgan, gen kuramına önemli birçok katkıda bulundu. Geoffrey Hardy ile Wilhelm Weinberg'in bir popülasyon içindeki alellerin (1909'da William Bateson'un bir genin almaşık biçimleri için kullandığı terim) sıklığı arasında var olan denge ilişkisini bulmaları, adlarını taşıyan yasanın ortaya atılmasına yol açtı. Genetiğin evrimdeki rolünü, 1937'deTheodosius Dobzhansky, Genetik ve Türlerin Kökeni adlı yapıtında açıkladı. Biyolojinin en yeni dalı olan molekül biyolojisi XX. yy. başlarında Archibald Garrod'un çeşitli hastalıkların biyokimyasal genetiği üstüne çalışmalarıyla başladı. Bir genin bir enzim ürettiği kavramı, 1941'de George W. Beadle ve Edvvard L. Tatum tarafından temellendirildi. Jacques Monod, François Jacob, vb. araştırmacıların protein bireşimi üstündeki çalışmaları (1961), bir gen bir enzim anlayışını, bir gen bir protein biçiminde değiştirdi. 1940 ve 1950 yıllarında nükleik asitlerin işlev ve yapılarının anlaşılmasında sağlanan ilerlemeler, protein bireşiminin aydınlatılmasına önemli katkılarda bulundu. 1953'te James D. Watson ve F.H.C. Crick'in önerdikleri yapısal model, biyolojide bir kilometre taşı oluşturdu; biyoloji bilginlerine, genetik bilginin depo edilmesini ve bir kuşaktan bir sonraki kuşağa aktarılmasını açıklayacak akla yakın bir yöntem sağladı. Molekül düzeyindeki biyolojik süreçlere ilişkin bilgi, aynı zamanda, genetik bilginin doğrudan işlenmesi için teknikler geliştirilmesi olanağını sağladı ve genetik mühendisliği adı verilen dal doğdu.

http://www.biyologlar.com/canli-sistemlerde-sureklilik

İçsuların biyocoğrafik dağılımı

Irmaklar Yıl boyunca hemen hemen sabit sıcaklıkta çıkan yeraltı suları, üst yüzey sularının da katılmasıyla, su bolluğuna göre sırasıyla dereleri, çayları, ırmakları ve nehirleri oluşturur. Kaynaktan uzaklaştıkça, sıcaklık dış koşulların etkisi altına girer. Eğimden dolayı meydana gelen akıntı ve köpürme, havadaki 02'in alınmasını sağlar. Bu akıntılı bölgelerdeki özel koşullara uyum yapmış "Reofilik" bentozlar, akıntının sürükleme gücüne karşı koymak için bir takım ek önlemler kazanmışlardır. Bunlar arasında, vücudun yassılaşması, yapışma emeçlerinin (vantuzlarının) oluşması, yapıştırıcı salgıların çıkarılması gibi özellikler sayılabilir. En üst bölgelerdeki akıntılarda "Rhithral", yüksek 02 derişimi, oransal olarak kararlı bir sıcaklık yapısı ve çok kuvvetli akıntılar hüküm sürdüğünden, buralarda çok özelleşmiş bentoz kommuniteler (dip canlıları) yaşar. Bu bölgeler, çok kuvvetli akıntı olması nedeniyle, ancak yapısal ve fizyolojik olarak uyum yapmış canlıların yaşamasına izin verir. Örneğin; birgünsineği larvaları, taşsineği larvaları, vantuzlusalyangozlar, sıçrayan dereyengeçleri, bazı sineklerin larvaları ve titreksinek larvaları gibi organizmalar bu bölgelerde yaşayan canlılardan bazılarıdır. Nektonlardan, kışın yumurtlayan balıklar (alabalıklar) yaygındır. Aşağı bölgedeki akıntılarda "Potamal" sıcaklık değişmeleri çok fazladır. Oksijen miktarı da buna bağlı olarak çok değişkendir. Akıntı yavaşlamış ve çoğunlukla zeminde çok azalmıştır. Buralarda oksijen azlığına hoşgörülü (mezo, eury- ve oksibiyont türler), çoğunlukla euryterm (sıcaklık değişmelerine dayanıklı) türler yaşar: Örneğin, Odonata (subakireleri) larvaları, sucul kınkanatlılar (Dytiscidae, Hydrophilidae) sucul sinekler (Limnophilidae, Atriplectidae), su tesbihböcekleri ve çok sayıda su akarı gibi. Burada yaşayan balıklar hemen her zaman yaz aylarında yumurta bırakırlar (sazanlar, turna balıkları, levrek türleri gibi). Rhithral (üst hızlı akıntılar) ve potamaldaki (alt yavaş akıntılar) tipik kommuniteler, enlem ve boylama ve keza yüksekliğe bağlı olmadan yeryüzünün her yerinde genel bir yapı olarak ortaya çıkar. Rhitron kommünitenin genişlemesine, adalar ve dağ sıraları engel olur. Göller Durgun tatlısularla doldurulmuş çukur alanlar, limniyon (göller, göletler, bataklıklar) ekosistemini oluşturur. Suyun yoğunluğu, +4°C'de en yüksek özgül ağırlığa erişir. Özellikle belirli derinlikte olanlarda, sıcaklık bakımından bağımsız bir tabakalaşma oluşur. Kutup bölgelerindeki soğuk göllerin derin kısımlarında oldukça sıcak sular bulunur. Bu bölgenin üzerinde bulunan tabakalar, sadece yaz aylarında biraz ısınır; fakat çoğunluk çok soğuktur ve hatta yaz aylarında bile buz tutarlar. Subtropiklerdeki ve tropiklerdeki sıcak sulu göller hiçbir zaman donmamakta ve derinliklerinde bütün yıl boyunca serin su bulunmaktadır. Ilıman bölgelerdeki ılık göller, bu iki ekstrem göl tipi arasında kalan bir değişiklik gösterir. İlk ve sonbaharda, bu göllerde, sıcak göl yapısından (yaz), soğuk olan göl yapısına (kış) dönüşüm görülür. Arada kalan sürelerde, özellikle yaz günlerinde bir sıcaklık tabakalaşması oluşur. Rüzgarın etkisiyle meydana gelen hızlı değişmeye karşın, üst kısımda oldukça tekdüze (homojen) ısınmış bir tabaka "Epilimniyon", bu ü+4°C üst tabakanın altında sıcaklığın daha düşük ve oransal olarak daha kararsız olduğu bir geçiş tabakası "Termoklin" (metalimniyon), onun altında da, yani derinde ise, sıcaklığın düşük fakat kararlı olduğu "Hipolimniyon" tabakası bulunur. Oksijen derişimi de kural olarak bu sırayı izler. Oksijen bakımından en derişik ve besin bakımından en verimli tabaka epilimniyondur. Hypolimniyonda ise buna karşılık tüketim yüksek, oksijen derişimi düşüktür; bu bölgenin tabanında göl yaşamı için çok önemli olan mineralleşme görülür. Tabandaki çamur tabakaları içinde az miktarda oksijen bulunur ve buralarda sadece çok az sayıda oligo-, eury- ve oksibiyont hayvan türleri (Chironomus larvaları, Tubifex) yaşar. Sabit sıcaktı tabakalaşma gösteren tropik göllerin zemini, hemen hemen oksijen almadığından, buralara hayvanların yerleşmesi zor olmaktadır ya da mümkün olmamaktadır. Epilimniyonda türce zengin limnoplanktonlar baskındır. Zooplankton olarak da Copepoda, Branchiopoda (özellikle Cladocera), Rotifera ve Protozoa, fitoplankton olarak da Diatomea, Cyanophycea ve bazı bakteriler bulunur. Bunlar aynı zamanda nektonların (balıkları vs.) temel besin maddelerini oluştururlar. Balık faunası bölgelere göre önemli farklılıklar göstermesine karşın, limnoplanktonlarda büyük benzerlikler görülür. Bu sonuncuların birçok türü kozmopolittir. Hypolimniyonda renkli fitoplanktonlar, ışık yetersizliğinden dolayı yaşayamazlar. Burada, bakteriler daha yaygın bir şekilde bulunurlar ve madde döngüsünün parçalanma evresini gerçekleştirirler. Göletlerin zeminine ya da göllerin kıyı kesimlerinin tabanına bentozlar yerleşir. Bunlar daha çok böcek larvaları, oligoketler, yengeçler ve tatlısu salyangozlarıdır. Besin maddesi miktarına göre göller ötrofik (zengin) ve oligotrofik (fakir) diye genellikle ikiye ayrılır. Bunlardan birincisinin epilimniyonunda fazla miktarda üretim mevcuttur. Hipolimniyonda oksijen azlığından dolayı mineralleşme; ancak kısmen olabilir. Dolayısıyla ürün atıklarının bir kısmının taban çamuru olarak biriktiği; hatta kokuştuğu görülür. Bu tip göle daha çok ılıman enlemlerdeki sığ göllerde rastlanır. İkincisi oligotrof göllerdir. Ülkemizin yüksek dağlarındaki bütün derin göller bu tiptir. Bunlarda epilimniyonda üretim azdır; hipolimniyonda ise ışıklı bölgeden gelen üst yüzey bölgelerinin ürünleri tamamen mineralize edilir. Oksijen miktarının derinlerde yeterli olması, büyük çapta hayvansal yerleşimin olmasını sağlar. Bataklıklar Bataklıklarda tamamen farklı fiziksel ve kimyasal etmenler egemendir. Bu ekosistemin yapısı yeryüzünün her yerinde bir benzerlik gösterir. Göllerin yükselmesi sürecinde son evre olarak ortaya çıkarlar. Epilimnik ya da limnik ürünün tümü, minerallerine kadar yıkılmaz. Turbalık yosunlarının (Sphagnum) egemen hale geçmesi, bataklığın hem yükselmesini hem besin bakımından yüklenmesini ve çamur depolanmasını sağlar. Bataklıklar gittikçe sığlaşır ve nihayet karaya dönüşür. Humustaki yüksek asitli içerik ile az mineral varlığı "Dystrophe = Bozulmuş Göller" bataklıklar için tipiktir. Bu tip biyotoplara, yüksek bitki örtüsü ve bu kimyasal koşullara uymuş kommüniteler ve az sayıda "Tyrphobiost = Bataklıkta Yaşayan" hayvan türleri (örneğin birkaç özelleşmiş böcek türü) yerleşir.

http://www.biyologlar.com/icsularin-biyocografik-dagilimi

TÜRKİYE'DE YAŞAYAN YILAN TÜRLERİ

1.Familya:Boidae Eryx jaculus: Mahmuzlu Yılan; Genel Özellikler: Boğa Yılanları ailesinden (en büyük yılan türleri ailesi) olan bu türün en büyük özelliği zehirsiz olmaları ve avlarını boğarak öldürmeleri. Benekli olan sırt bölgesinin rengi genel olarak kahverengi ve tonlarında olur. Beneklerinin rengiyse sarımsı beyaz. Karın bölgesi kirli beyaz, bazen küçük koyu benekler olabilir. Besinlerinin büyük bir kısmını fare gibi kemiriciler oluşturur. Bunun yanında küçük sürüngenleri, salyangozları da yiyebilirler. Kemiricilerle beslendikleri için fare sayısının artmasını engellerler. Bundan dolayı oldukça yararlıdırlar. Sabahleyin ve akşamüzeri aktiflik gösterirler. Dişiler bir defada 14 cm boylarında 18-20 kadar canlı yavru doğurur (Ağustos ve Eylül). Su ihtiyacını bitkilerin üzerindeki çiylerden karşılar. Rahatsız edilmedikleri sürece insanlara saldırmazlar. Boyları 1 metre kadar olabilir. Habitat: Kurak yerlerdeki kumlu, taşlı yerlerde yaşarlar. Aktif olmadıkları zaman taş altları ve kemirici yuvalarında saklanırlar. Kuma gömüldükleri de olur. Yüksekliği 1200 metreye kadar olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Trakya, Güney ve Batı Anadolu, Şanlıurfa civarı ve Doğu Anadolu'da habitatın uygun olduğu yerlerde dağılım gösterirler. Not: Türkiye'de iki tane alt türü bulunur; a- Eryx jaculus turcicus (Oliver, 1801) b- Eryx jaculus familiaris Eichwald, 1831 2.Familya:Colubridae Coronella austrica: Avusturya Yılanı; Genel Özellikler: Sırt bölgesinin rengi genel olarak kırmızımsı kahverengiyle sarımsı kahverengi arasında değişir. Belirginliği az olan beneklerinin rengiyse siyah. Karın bölgesiyse grimsi kahverengiden kırmızımsı renge kadar değişir. Ayrıca burun bölgesinden başlayıp, gözün üzerinden geçen ve boyuna doru uzanan bir şerit bulunur (temporal bant). En çok yedikleri besin kertenkeleler. Bunların yanında kemiriciler, avlayabildikleri kuşlar, küçük yılanları da yerler.Tırmanıcı özellikleri var. Sabahları ve öğleden sonraları aktiftir. Öğle uykuları var. Az hareketli ve sakin bir türdür. Kış uykusuna da yatarlar. Bu hayvanlar üreme işlerini doğurarak yaparlar (ovovivipar). Ancak doğurma memelilerdeki gibi olmaz. Yavru anne karnında bir yumurta içinde gelişir (plasenta yok) ve dışarıya öyle bırakılır. Dişiler bir defada 4-13 yavru doğururlar. Ağustos ya da Eylül'de yumurtadan çıkan yavrular 3 (erkekler) ve 4 (dişiler) yılda erginleşir. Boyları 75 cm kadar olabilir. Habitat: Ormanlık yerlerin kenarlarındaki taşlıklarda, kumluklarda, çayırlıklarda, çalılık yerlerde yaşarlar. Ağaçlarda da görülürler. Yüksekliği 2350 metre kadar olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Anadolu'nun kuzeyinde (Trakya dahil) daha çok olmak üzere, Orta ve Batı bölgelerinde habitatın uygun olduğu yerlerde dağılım gösterirler. Dolichopis caspius (Coluber caspius): Hazer Yılanı, Genel Özellikler: Sırt bölgesinin rengi genel olarak kahverengimsi gri ve gri rengin diğer tonlarında olabilir. Sırtta ayrıca koyu renkli benekler bulunur. Ayrıca sırttaki pulların kenarları beyaz renkli olur. Beneksiz olan karın bölgesi sarımsı beyaz renkte. Gündüzleri aktiflik gösterirler. Genel olarak küçük kemiriciler, kuş ve kuş yumurtaları, kertenkelelerle beslenirler. Daha çok sabahleyin avlanırlar. Çok hızlı hareket edebilirler. Kemiricilerle beslendikleri için yararlıdırlar. Dişiler bir defada 5-8 kadar yumurta bırakabilirler. Boyları 180 cm kadar olabilir. Habitat: Dere kenarlarında, ovalarda, tarlalarda, bahçelerde, dağ yamaçlarında, bataklık yerlerde, ağaçlık alanlarda yaşarlar. Ağaçlara tırmanabilirler. Dinlenme zamanlarını taş altlarında ve kemirici yuvalarında geçirirler. Yüksekliği 2000 metre kadar olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Sinop'tan Mersin'e kadar olan hattın batısında kalan yerlerde habitatın uygun olduğu alanlarda yaşarlar. Dolichopis jugularis (Coluber jugularis): Kara Yılan; Genel Özellikler: Gençlerin sırt bölgesinin rengi genel olarak açık kahverenginin tonlarında olur. Sırttaki beneklerin rengi koyu kahverengi ya da siyah. Üzerindeki pulların kenarlarıysa siyah renkli. Karın bölgesi kirli beyaz ve kenarlara doğru küçük benekli. Erginlerin sırt kısmı parlak siyah. Başın üst tarafında kırmızımsı lekeler bulunur. sırttaki pulların ortasında kırmızımsı bir çizgi bulunur. Kırmızımsı olan karın bölgesinde küçük siyah benekler bulunur. Gündüzleri aktiflik gösterirler. Genel olarak küçük kemiriciler, kuş ve kuş yumurtaları, kertenkelelerle beslenirler.Daha çok sabahleyin avlanırlar. Çok hızlı hareket edebilirler. Kemiricilerle beslendikleri için yararlıdırlar. Dişiler bir defada 7-11 kadar yumurta bırakabilirler. Boyları 200 cm kadar olabilir. Habitat: Dere kenarlarında, ovalarda, tarlalarda, bahçelerde, dağ yamaçlarında, bataklık yerlerde, ağaçlık alanlarda yaşarlar. Ağaçlara tırmanabilirler. Dinlenme zamanlarını taş altlarında ve kemirici yuvalarında geçirirler. Yüksekliği 2000 metre kadar olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Akdeniz, Ege (İzmir'e kadar) ve Güneydoğu Anadolu Bölgesi'nde habitatın uygun olduğu yerlerde dağılım gösterirler. Not: Hızlı hareket eden bu hayvan insandan genellikle kaçmaz ve korkutmak için "tıss" diye ses çıkarır. Zehirsiz olan bu tür kendini savunmak için saldırabilir ve insanı ısırdığında kolay kolay bırakmaz. Dolichopis schmidti(Coluber schmidti): Kırmızı Yılan; Genel Özellikler: Sırt bölgesinin rengi genel olarak genç bireylerde grimsi kahverengi ve uzunlamasına koyu kahverengi ya da siyah benekli. Gençler büyüdükçe benekler kaybolmaya başlar. İyice erginleştikten sonra parlak kırmızı ve beneksiz olurlar. Genç bireylerde karın bölgesi sarımsı beyaz, erginlerdeyse sarımsı beyaz ya da kırmızımsı olur. Gündüzleri aktiflik gösterirler. Genel olarak fare gibi küçük kemiriciler, kuş ve kuş yumurtaları, kertenkelelerle beslenirler. Daha çok sabahleyin avlanırlar. Çok hızlı hareket edebilirler. Kemiricilerle beslendikleri için yararlıdırlar. Dişiler bir defada 6-8 kadar yumurta bırakabilirler. Yumurtadan çıkan yavrular iklime bağlı olarak 2-3 yıl içinde erginleşirler. Boyları 160 cm kadar olabilir. Habitat: Dere kenarlarında, ovalarda, tarlalarda, bahçelerde, dağ yamaçlarında, bataklık yerlerde, ağaçlık alanlarda yaşarlar. Ağaçlara tırmanabilirler. Dinlenme zamanlarını taş altlarında ve kemirici yuvalarında geçirirler. Yüksekliği 500-1700 metre arasında olan yerlerde bulunurlar. Türkiye'deki Dağılım: Doğu, Güneydoğu, ve İç Anadolu bölgelerinde habitatın uygun olduğu yerlerde dağılım gösterirler. Hemorrhois nummifer (Coluber nummifer): Sikkeli Yılan; Genel Özellikler: Vücudun genel yapısına bakıldığında, boyun kısmının vücudun diğer bölgelerine oranla oldukça ince olduğu görülür. Sırt bölgesinin rengi genel olarak sütlü kahverengi ve kahverenginin diğer tonlarında olur. Sırtta ayrıca, kenarları siyahımsı olan koyu kahverengi, yuvarlağımsı ve ayrı ayrı iri benekler bulunur. Vücudun yan taraflarında, baştan kuyruğa doğru uzanan, sırttakilerden daha küçük olan benekler bulunur. Bunlar kuyruk bölgesinde birleşerek bir şerit oluşturur. Gözle ağzın arka kısmı arasında siyah bir şerit de var. Karın bölgesi çok az benekli olup kirli beyaz bir renkte olur. Genel olarak fare gibi kemiricilerle, küçük sürüngenlerle, kuş ve kuş yumurtalarıyla, kertenkelelerle (özellikle Gekolar) beslenirler. Kemiricilerle beslendikleri için yararlıdırlar. Oldukça hızlı hareket edebilirler. Gündüzleri aktiflik gösterirler. Temmuz ayında yumurtlamaya başlayan bu hayvanların dişileri, bir defada 5-10 kadar yumurta bırakabilirler. Yumurtadan çıkan yavrular 20 cm kadar olur. Boyları 130 cm kadar olabilir. Habitat: Bitki örtüsünün seyrek olduğu, kurak yerlerdeki taşlık ve çalılık yerlerde, evlerin yakınında yaşarlar. Toprak evlerin çatılarında da görülürler. Yüksekliği 2300 metreye kadar olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Marmara, Ege, Akdeniz bölgeleri, İç Anadolu'nun batısında habitatın uygun olduğu yerlerde dağılım gösterirler. Not: Saldırgan bir yapıları var. Rahatsız edildiklerinde ya da savunma amaçlı saldırırlar. Hemorrhois ravergieri (Coluber ravergieri): Kocabaş Yılan; Genel Özellikler: Vücudun genel yapısına bakıldığında, boyun kısmının vücudun diğer bölgelerine oranla oldukça ince olduğu görülür. Sırt bölgesinin rengi genel olarak sütlü kahverengi ve kahverenginin diğer tonlarında olur. Sırtta ayrıca, kenarları siyahımsı olan koyu kahverengi, yuvarlak olmayan ve zikzak yapmış (şerit gibi) iri benekler bulunur. Vücudun yan taraflarında, baştan kuyruğa doğru uzanan, sırttakilerden daha küçük olan benekler bulunur. Bunlar kuyruk bölgesinde birleşerek bir şerit oluşturur. Gözle ağzın arka kısmı arasında siyah bir şerit de var. Karın bölgesi çok az benekli olup kirli beyaz bir renkte olur.Genel olarak fare gibi kemiricilerle, küçük sürüngenlerle, kuş ve kuş yumurtalarıyla, kertenkelelerle (özellikle Gekolar) beslenirler. Kemiricilerle beslendikleri için yararlıdırlar. Oldukça hızlı hareket edebilirler. Gündüzleri aktiflik gösterirler. Temmuz ayında yumurtlamaya başlayan bu hayvanların dişileri, bir defada 5-10 kadar yumurta bırakabilirler. Yumurtadan çıkan yavrular 20 cm kadar olur. Boyları 130 cm kadar olabilir. Habitat: Bitki örtüsünün seyrek olduğu, kurak yerlerdeki taşlık ve çalılık yerlerde, evlerin yakınında yaşarlar. Toprak evlerin çatılarında da görülürler. Yüksekliği 2300 metreye kadar olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Doğu ve Güneydoğu Anadolu bölgelerinde habitatın uygun olduğu yerlerde dağılım gösterirler. Not: Rahatsız edildiklerinde ya da kendilerini korumak için saldırabilirler. Platyceps collaris (Coluber rubriceps): Toros Yılanı; Genel Özellikler: Sırt bölgesinin rengi arka tarafları sarımsı kahverengi, baş taraflarıysa grimsi kahverengi olur. Başın üst kısmıysa kırmızımsı kahverengi. Vücudun ön yan taraflarında siyah ya da koyu kahverengi benekler bulunur. Bu benekler arkaya doğru gittikçe küçülür ve kaybolur. Boyun tarafındaki ilk iki benek genelde birleşir ve halka oluşturur. Gözün arka ve ön tarafları siyah renkli. Karın bölgesiyse sarımsı beyaz olup beneksizdir. Genel olarak fare gibi kemiricilerle, küçük sürüngenlerle, kertenkelelerle ve böceklerle beslenirler. Kemiricilerle beslendikleri için yararlıdırlar. Çok hızlı hareket edebilirler ve ağaçlara da tırmanabilirler. Gündüzleri aktiflik gösterirler. Ekim'le Nisan ayı arasında kış uykusuna yatarlar. Haziran ve Temmuz aylarında yumurtlamaya başlayan bu hayvanların dişileri, bir defada 3-5 kadar yumurta bırakabilirler. Boyları 100 cm kadar olabilir. Habitat: Kuru yerlerde, çalılık ve taşlık alanlarda yaşarlar. Tarlalarda, bahçelerde ve ev yakınlarında da görülürler. Yüksekliği 1700 metreye kadar olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Marmara, Ege ve Akdeniz Bölgelerinde habitatın uygun olduğu yerlerde dağılım gösterirler. Platyceps najadum (Coluber najadum): İnce Yılan; Genel Özellikler: Vücut yapıları diğer yılanlara göre oldukça ince. Sırt bölgesinin rengi arka tarafta kırmızımsı kahverengi ve kahverenginin diğer tonları, ön taraftaysa grimsi. Vücudun ön tarafının yanlarında kenarları beyaz olan iri siyah benekler bulunur. Bu benekler kuyruğa doğru gittikçe küçülür. Baş taraftaki ilk iki benek bazen birleşik olabilir. Benek bulunmayan karın bölgesi, kirli beyaz ya da sarımsı olabilir. Genel olarak fare gibi kemiricilerle, küçük sürüngenlerle, kertenkelelerle ve böceklerle beslenirler. Kemiricilerle beslendikleri için yararlıdırlar. Çok hızlı hareket edebilirler ve ağaçlara da tırmanabilirler. Gündüzleri aktiflik gösterirler. Ekim'le Nisan ayı arasında kış uykusuna yatarlar. Haziran ve Temmuz aylarında yumurtlamaya başlayan bu hayvanların dişileri, bir defada 3-5 kadar yumurta bırakabilirler. Yavrular 2 ya da 3 yılda erginleşebilirler (sıcaklığa bağlı olarak). Boyları 140 cm kadar olabilir. Habitat: Kuru yerlerde, çalılık ve taşlık alanlarda yaşarlar. Tarlalarda, bahçelerde ve ev yakınlarında da bulunabilirler. Yüksekliği 1700 metreye kadar olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Anadolu'nun İzmir-Ağrı hattının güneyinde kalan kısımlarıyla, Trakya ve Doğu Karadeniz bölgesinde habitatın uygun olduğu alanlarda dağılım gösterirler. Platyceps ventromaculatus (Coluber ventromaculatus): Benekli Yılan; Genel Özellikler: Bu hayvana ilk bakıldığında göze çarpan koyu renkli (siyah ya da kahverengi) benekleri. Bu benekler kuyruğa doğru gittikçe küçülür. Sırtın zemin rengiyse grimsi kahverengi ve tonlarında olur. Karın bölgesi daha açık renkli olur. Gündüzleri aktiflik gösterirler. Genel olarak küçük kemiriciler, kuş ve kuş yumurtaları, kertenkelelerle beslenirler. Daha çok sabahleyin avlanırlar. Çok hızlı hareket edebilirler. Kemiricilerle beslendikleri için yararlıdırlar. Dişiler bir defada 6-8 kadar yumurta bırakabilirler. Yumurtadan çıkan yavrular iklime bağlı olarak 2-3 yıl içinde erginleşirler. Boyları 150 cm kadar olabilir. Habitat: Bitki örtüsünün az olduğu kurak, taşlık ve çalılık yerlerde yaşarlar. Dinlenme zamanlarını taş altlarında ve kemirici yuvalarında geçirirler. Yüksekliği 1000 metre kadar olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Şanlıurfa'da Suriye sınırına yakın olan bölgelerde habitatın uygun olduğu yerlerde dağılım gösterirler. Eirenis aurolineatus: ??? Eirenis barani: Baran Cüce Yılanı; Genel Özellikleri: Dorsali sarımsı kahverengi, ventrali beyaza yakın ve lekesizdir. Bazı fertlerde dorsal taraf lekelidir. Ense kısmında bulunan siyah bant gençlerde daha barizdir. Yaş ilerledikçe kaybolur. Habitat: Az bitkili taşlık bölgelerde taş altlarında yaşar. Böceklerle beslenirler. Türkiye'deki Dağılımı: Anadolu Diyagonali, Niğde, K.Maraş, Bolkarlar, Adana, Hatay ve Suriye’de dağılış gösterir. Eirenis collaris: Yakalı Yılan; Genel Özellikler: Sırt bölgesinin rengi genel olarak kahverengi ve tonlarından zeytini yeşile kadar değişir. Ense kısmında büyük siyah bir benek vardır. Ortası açık renkli, kenarları siyah olan sırt pulları vardır. Beneksiz olan karın bölgesiyse sarımsı beyaz olur. kış uykuları vardır. Genel olarak böceklerle, örümceklerle, küçük kemiricilerle, seyrek olarak da kertenkelelerle beslenirler. Dişiler bir defada 4-8 kadar yumurta bırakabilirler. Yumurtadan çıkan yavrular 10 cm kadar olur ve 2-3 yılda erginliğe ulaşırlar. Boyları 40 cm kadar olur. Habitat: Bitki örtüsün seyrek olduğu taşlık, çalılık gibi açık arazilerde yaşarlar. Dinlenme zamanlarını ve kışı taş altlarında bahçelere yakın yerlerde geçirirler. Yüksekliği 1600 metreye kadar olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Akdeniz bölgesinin doğusunda, Güneydoğu Anadolu'da habitatın uygun olduğu yerlerde dağılım gösterirler. Eirenis coronella: Halkalı Yılan; Genel Özellikler: Oldukça küçük boyludurlar. Sırt bölgesinin rengi genel olarak açık kahverengi ve tonlarında (sarımsı) olur. Boyun kısmında 1-2 tane halka halini almış büyük koyu kahverengi benekler bulunur. Bu benekler arka tarafa doğru, küçülerek ve belirginliği azalarak devam eder. Çok küçük noktalı olan karın bölgesi, sarımsı beyaz renkte olur. Genel olarak böcekler ve çeşitli omurgasız hayvanlarla beslenirler. Boyları 35 cm kadar olabilir. Habitat: Bitki örtüsün seyrek olduğu taşlık, çalılık gibi açık arazilerde yaşarlar. Dinlenme zamanlarını taş altlarında geçirirler. Yüksekliği 1000 metreye kadar olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Güneydoğu Anadolu'da habitatın uygun olduğu yerlerde dağılım gösterirler. Eirenis decemlineatus: Çizgili Yılan; Genel Özellikleri: Boyu yaklaşık 1 m kadar olup, dorsali gri kahverengi ve üzerinde 2 çift ince siyah boyuna çizgi bulunur. Yaşla birlikte bu çizgiler silikleşir. Başın üzeri lekesizdir. Ventral sarımsı renktedir. Habitat: Açık arazilerde, taşlık yerlerde yaşarlar. Türkiye'deki Dağılımı: Yurdumuzun Güneydoğu ve doğu kısımlarında (Adana, Van, Gaziantep ve Van) yaygındır. Eirenis eiselti: ??? Eirenis hakkariensis: Hakkari Cüce Yılanı; ??? Eirenis levantinus: Levant Cüce Yılanı; ??? Eirenis lineomaculatus: Bodur Yılan; Genel Özellikler: "Bodur Yılan" denmesinin nedeni kısa boylu ve kalın vücutlu oluşu. Sırt bölgesinin rengi genel olarak açık kahverengi ve tonlarında olur. Sırta siyah ya da koyu kahverengi küçük benekler bulunur. Bu benekler vücudun yan taraflarında daha küçük olur. Ayrıca boynun sırt tarafında, halka şeklinde koyu bir benek bulunur. Genel olarak böcekler, böcek larvaları ve çeşitli omurgasız hayvanlarla beslenirler. Boyları 35 cm kadar olabilir. Habitat: Bitki örtüsün seyrek olduğu taşlık, çalılık gibi açık arazilerde yaşarlar. Dinlenme zamanlarını ve kışı taş altlarında bahçelere yakın yerlerde geçirirler. Yüksekliği 1000 metreye kadar olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Doğu Akdeniz ve Güneydoğu Anadolu (Adana, Hatay, -Amik Ovası-) bölgelerinde, habitatın uygun olduğu yerlerde dağılım gösterirler. Eirenis modestus: Uysal Yılan; Genel Özellikler: Sırt bölgesinin rengi genel olarak açık kahverengi ve tonlarında (özellikle sarımsı) olur. Genç bireylerde, boynun hemen arka kısmında büyük siyah ya da koyu kahverengi bir benek bulunur. Bu büyüdükçe belirginliğini yitirir ve yaşlılarda görülmez. Sırttaki pulların kenarları ortaya göre daha koyu renkli olur. Karın bölgesi sarımsı beyaz olur. Dişiler bir defada 3-8 kadar yumurta bırakabilir (taşlık yerlerdeki oyuklara). Genel olarak böcekler, örümcekler ve solucan gibi omurgasız hayvanlarla beslenirler. Boyları 70 cm kadar olabilir. Habitat: Bitki örtüsün seyrek olduğu taşlık, çalılık gibi açık arazilerde yaşarlar. Dinlenme zamanlarını ve kışı taş altlarında, bahçelere yakın yerlerde geçirirler. Yüksekliği 2000 metreye kadar olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Tüm yurtta habitatın uygun olduğu yerlerde dağılım gösterirler. Eirenis punctatolineatus: Van Yılanı; Genel Özellikler: Sırt bölgesinin rengi genel olarak kahverengi ve tonlarında olur. Sırtın ön taraflarında küçük siyah benekler bulunur. Bu benekler arka tarafta birleşerek ince bir şerit oluşturur. Beneksiz olan karın bölgesi sarımsı beyaz olur. Dişiler bir defada 6-8 kadar yumurta bırakabilirler (taşlık yerlerdeki oyuklara). Yumurtadan çıkan yavrular iklime bağlı olarak 2-3 yıl içinde erginleşirler. Genel olarak böcekler, böcek larvaları ve çeşitli omurgasız hayvanlarla beslenirler. Boyları 50 cm kadar olabilir. Habitat: Bitki örtüsün seyrek olduğu taşlık, çalılık gibi açık arazilerde yaşarlar. Dinlenme zamanlarını ve kışı taş altlarında bahçelere yakın yerlerde geçirirler. Yüksekliği 2000 metreye kadar olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Doğu Anadolu'da Akdamar Adası (Van Gölü İçinde), Van ve Hakkari civarında habitatın uygun olduğu yerlerde dağılım gösterirler. Eirenis rothi: Kudüs Yılanı; Genel Özellikler: Sırt bölgesinin rengi genel olarak sarımsı kahverengi ya da yeşilimsi kahverengi olur. Baş (ensede) bölgesinde siyah bir benek bulunur. Bu benek ensede bulunan halka şeklindeki benekten ince açık renkli bir halkayla ayrılır. Vücudun diğer kısımlarında başka benek bulunmaz. Karın bölgesiyse sarımsı beyaz olur. Genel olarak böcekler, böcek larvaları ve çeşitli omurgasız hayvanlarla beslenirler. Boyları 40 cm kadar olabilir. Habitat: Bitki örtüsün seyrek olduğu taşlık, çalılık gibi açık arazilerde yaşarlar. Dinlenme zamanlarını ve kışı taş altlarında bahçelere yakın yerlerde geçirirler. Yüksekliği 2000 metreye kadar olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Güneydoğu Anadolu bölgesinde (Şanlıurfa, Mardin, Siirt, Hakkari) habitatın uygun olduğu yerlerde dağılım gösterirler. Eirenis thospitis: ??? Elaphe dione: Step Yılanı; ??? Elaphe sauromates (Elaphe quatuorlineata sauromates): Sarı Yılan; Genel Özellikler: Sırt bölgesinin rengi genel olarak sarımsı gri ve tonlarında olur. Sırttaki bir ya da iki sıralı beneklerin rengi, koyu kahverengi ya da siyah olur. Şakak bölgesinde çizgi (temporal bant) bulunur. Gençken belirgin olan benekler ve temporal bant, yaşlandıkça belirginliğini kaybeder. Benekli olan (koyu kahverengi ya da siyah) karın bölgesi sarımsı beyaz renkte olur. Dişiler bir defada 6-16 kadar yumurta bırakabilirler. Genel olarak fare gibi küçük kemiriciler, kuş ve kuş yumurtaları, çeşitli omurgasız hayvanlar besinlerini oluşturur. Kemiricilerle beslendikleri için yararlıdırlar. Avlarını boğarak öldürürler. Akşam karanlığında ve çok sıcak olmayan günün tüm saatlerinde aktiftirler. Ağaçlara tırmanabilirler. Çok sakin hayvanlar olup ancak kendilerini güvende hissetmezlerse saldırırlar. Boyları 150 cm kadar olabilir. Habitat: Sık ormanlık olmayan yerlerdeki taşlık ve çalılıklarda, tarlalarda, bahçelerde yaşarlar. Yüksekliği 2500 metreye kadar olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Tüm yurtta habitatın uygun olduğu yerlerde dağılım gösterirler. Zamenis hohenackeri (Elaphe hohenackeri): Kafkas Yılanı; Genel Özellikler: Sırt bölgesinin rengi genel olarak kahverenginin tonlarında olur (grimsi, sarımsı). Sırtın ortasında beyazımsı bir şerit ve bu şeridin her iki yanında, koyu kahverengi (sarımsıda olabilir) ya da siyah benekler bulunur. Bu beneklerin rengi kuyruğa doğru gittikçe açılmaya başlar. Ense kısmında U biçiminde büyük bir benek daha bulunur. Başın üst kısmında küçük siyah noktalardan çok bulunur. Şakak bölgesindeki çizgi oldukça belirgin. Kırmızımsı ya da portakal renginde benekler bulunan karın bölgesi grimsi siyah bir renkte olur. Dişiler bir defada 3-7 kadar yumurta bırakabilirler (taşlık yerlerdeki oyuklara). Genel olarak fare gibi küçük kemiricilerle, kertenkelelerle ve çeşitli omurgasız hayvanlarla beslenirler. Kemiricilerle beslendikleri için yararlıdırlar. Boyları 75 cm kadar olabilir. Habitat: Genel olarak açık araziler, ormanlık yerler, tarlalar, bahçeler yaşam alanları içinde. Yüksekliği 2500 metreye kadar olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Türkiye'de iki tane alttürü bulunuyor. a- Elaphe hohenackeri hohenackeri (Anadolu'nun Sinop Hatay hattının doğusunda kalan yerlerde, uygun habitatlarda ) b- Elaphe hohenackeri taurica (İç Anadolu'nun güneyiyle, Orta ve Doğu Akdeniz Bölgelerinde uygun habitatlarda) Zamenis longissimus (Elaphe longissima): Eskülap Yılanı, Küpeli Yılan; Genel Özellikler: Sırt bölgesinin rengi genel olarak siyah ve tonlarında. Gençlerde sarımsı kahverengi ya da grimsi gibi daha açık renkli olur. Sırttaki beneklerin rengiyse beyaz. Başın ense kısmında hilal şeklinde sarımsı büyük bir benek bulunur. Şakak bölgesindeki çizgi (temporal bant) gençlerde oldukça belirgin. Karın bölgesi sarımsı olur. Dişiler bir defada 5-8 kadar yumurta bırakabilirler (kütük altlarına, gazeller içine, vs). Genel olarak fare gibi küçük kemiriciler, kuş ve kuş yumurtaları, kertenkelelerle beslenirler. Kemiricilerle beslendikleri için yararlıdırlar. Avlarını boğarak öldürürler. Ağaçlara tırmanabilirler. Çok hızlı hareket edebilirler. İnsan kolay alışabilirler. Boyları 150 cm kadar olabilir. Habitat: En çok bulundukları yerler ormanlık ve çalılık yerlerdeki taşlık alanlar. Yüksekliği 2000 metreye kadar olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Trakya ve Karadeniz (Giresun'dan batısı) bölgelerinde habitatın uygun olduğu yerlerde dağılım gösterirler. Zamenis situla (Elaphe situla): Ev Yılanı; Genel Özellikler: Sırt bölgesinin rengi genel olarak kahverenginin tonlarında (sarımsı, kırmızımsı, grimsi) olur. Sırt tarafta uzunlamasına çizgiler (baştan kuyruğa kadar) ya da benekler bulunur. Benekler yuvarlağımsı olup kenarları siyah, iç kısmı tuğla kırmızısı olur. bunlar bazen birleşip zikzak oluşturabilir. Vücudun yan taraflarında, küçük siyahımsı benekler bulunur. Şakak bölgesindeki çizgi (temporal bant) oldukça belirgin. Karın bölgesinin ön taraflarında küçük siyahımsı benekler bulunabilir ve karın sarımsı beyaz olur. Karın bölgesi bazen, koyu kahverengi ya da siyah olabilir. Dişiler bir defada 2-5 kadar yumurta bırakabilirler. Genel olarak fare gibi küçük kemiriciler, kuş ve kuş yumurtaları, çeşitli omurgasız hayvanlar besinlerini oluşturur. Kemiricilerle beslendikleri için yararlıdırlar. Akşam karanlığında ve çok sıcak olmayan günün tüm saatlerinde aktiftirler. Tavanlara ve duvarlara tırmanabilirler. Saldırmaları ancak kendilerini güvende hissetmediklerinde olur. Boyları 90 cm kadar olabilir. Habitat: Çalılık yerler, taşlık alanlar, tarlalar, bahçeler başlıca yaşam alanları. Ayrıca evlerde de çok bulunurlar. Yüksekliği 1000 metreye kadar olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Anadolu'nun kuzeyinde ve batısında habitatın uygun olduğu yerlerde dağılım gösterirler. Natrix natrix: Yarı Sucul Yılan, Küpeli Su Yılanı; Genel Özellikler: Sırt kısmının deseni oldukça farklılık gösterir. Genel olarak renk kahverengi, grimsi ve bu iki rengin tonlarında olur. Sırt kısmında iki tane boylamasına uzanan çizgi bulunur. Bu çizgilerin etrafında koyu renkli benekler bulunur. İnce kahverengi benekleri olan başın üst kısmının rengi, grimsi kahverengi. Ense kısmında belirgin bir biçimde bulunan yarım ay şeklinde olan sarı (bazen kırmızı) bir benek bulunur. Vücudun yan taraflarında küçük siyah benekler bulunur. Karın bölgesi genel olarak sarımsı beyaz. Ender olarak siyah üzerine sarımsı beyaz benekli görülebilir. En bilinen özelliği yarı sucul olmaları. Gündüzleri aktiflik gösterirler. Yakalandıklarında ısırmazlar ancak kötü kokan bir gaz salgılarlar. Kendilerini savunma amaçlı olarak ölü taklidi yapabilirler. Genel olarak (yarı sucul olduğundan) küçük balıklar, kurbağalar, semenderler ve çeşitli kemiricilerle beslenirler. Kış uykusuna birçoğu bir araya gelerek yatar (nehir kenarlarında). Dişiler bir defada 6-13 kadar yumurta bırakabilirler. 4-8 haftalık kuluçka döneminden sonra yumurtadan çıkan yavrular, iklim şartlarına göre 1-3 yıl içinde erginleşirler. Ortalama boyları 100 cm (en fazla 150 cm) kadar olur. Habitat: Genel olarak, nehir, akarsu, dere ve göl kenarlarında, bu yerlere yakın çayırlıklarda yaşarlar. Ayrıca suya da çok fazla girerler. Yüksekliği 2000 metreye kadar olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Tüm yurtta habitatın uygun olduğu yerlerde dağılım gösterirler. Natrix tesselata: Su Yılanı; Genel Özellikler: Biyolojik özellikleri N. natrix türüne çok benzer. Sırt kısmının deseni oldukça bu türde de farklılık gösterir. Genel olarak yeşil ve yeşilin tonlarıyla, grimsi ve sarımsı kahverengi renklerinde olur. Sırt kısmında koyu renkli benekler bulunur. Başın üst kısmında benek bulunmaz. Ense kısmında belirgin bir biçimde (ters "V") bulunan olan siyah bir benek bulunur. Başın arkasında N. natrix'te bulunan yarım ay şeklindeki benek bunlarda bulunmaz. Karnın ön tarafı küçük siyah benekli, genel olarak sarımsı ya da pembemsi beyaz. Arka tarafıysa siyahımsı olup benekleri pembemsi beyaz. Besleneme durumlarına baktığımızda N. natrix'le aynı. Küçük balıklar, kurbağalar, semenderler ve çeşitli kemiricilerle beslenirler. Ama ondan daha fazla balık tüketirler. Kış uykusuna birçoğu bir araya gelerek yatar (nehir kenarlarında). Dişiler bir defada 5-25 kadar yumurta bırakabilirler. Yumurtadan çıkan yavrular, iklim şartlarına göre 1-3 yıl içinde erginleşirler. Ortalama boyları 120 cm kadar olur. Habitat: Genel olarak, nehir, akarsu, dere ve göllerde su içinde ve kenarlarında yaşarlar. Yüksekliği 2500 metreye kadar olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Tüm yurtta habitatın uygun olduğu yerlerde dağılım gösterirler. Natrix megalocephala: Hemşin Yılanı; ??? Pseudocyclophis persicus: İran Yılanı; Genel Özellikler: Sırt bölgesinin rengi genel olarak sarımsı kahverengi ya da yeşilimsi kahverengi olur. Baş (ensede) bölgesinde siyah bir benek bulunur. Bu benek ensede bulunan halka şeklindeki benekten ince açık renkli bir halkayla ayrılır. Vücudun diğer kısımlarında başka benek bulunmaz. Karın bölgesiyse sarımsı beyaz olur. Genel olarak böcekler, böcek larvaları ve çeşitli omurgasız hayvanlarla beslenirler. Boyları 40 cm kadar olabilir. Habitat: Bitki örtüsün seyrek olduğu taşlık, çalılık gibi açık arazilerde yaşarlar. Dinlenme zamanlarını ve kışı taş altlarında bahçelere yakın yerlerde geçirirler. Yüksekliği 2000 metreye kadar olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Güneydoğu Anadolu bölgesinde (Şanlıurfa, Mardin, Siirt, Hakkari) habitatın uygun olduğu yerlerde dağılım gösterirler. Rhynchocalamus melanocephalus: Toprak Yılanı; Genel Özellikler: Sırt bölgesinin rengi genel olarak sarımsı kahverengi, sarımsı kırmızı. Bazen de yeşil ve yeşilin tonlarında da görülür. Sırt bölgesinde benekler bulunmaz. Başın üst tarafında iki tane siyah benek bulunur. Ayrıca ensede de bir tane büyük benek bulunur. Bu beneğin baş kısma doğru olan bölümü V şeklinde olur. Karın bölgesinin rengiyse sarımsı beyaz. Bu hayvanın sayısı çok az olduğundan ve oldukça az rastlanıldığından dolayı biyolojileriyle ilgili araştırma yapılamamış. Genel olarak böcekler ve diğer küçük omurgasızlarla beslenirler. Küçük boylu ve kazıcı olan bu yılanların boyu 40 kadar olur. Habitat: Kurak bölgelerde, taşlık alanlarda yaşarlar. Yüksekliği 1200 metreye kadar olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Cizre (Mardin), Adana ve Hatay civarında habitatın uygun olduğu yerlerde yaşarlar. Rhynchocalamus barani: Amanos Yılanı; ??? Spalerosophis diadema: Urfa Yılanı; Genel Özellikler: Sırt bölgesinin rengi genel olarak sarımsı kahverengi ve tonlarında olur. Bunun yanında yeşilimsi ve gri renkler de görülebilir. Sırtta koyu renkli büyük benekler bulunur. bu benekler baş ve ense kısmında da görülür. Karın bölgesi sarımsı beyaz olur. Genel olarak fare gibi küçük kemiriciler, kertenkeleler ve çeşitli omurgasız hayvanlarla beslenirler. Kemiricilerle beslendikleri için yararlıdırlar. Yavruları böceklerle beslenir. Boyları 180 cm kadar olabilir. Habitat: Bitkisi az olan yerlerde, yarı-çöl özelliği gösteren bölgelerde, kumlu topraklarda ve bozkırlarda yaşarlar. Yüksekliği 500-1000 metre arasında olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Güneydoğu Anadolu'da (Birecik -Şanlıurfa- ve Ceylanpınar) habitatın uygun olduğu yerlerde dağılım gösterirler. Not: Oldukça az rastlanırlar ve sayıları da oldukça azalmıştır. Malpolon monspessulanus: Çukurbaşlı Yılan; Genel Özellikler: Renklenme yaşlı bireylerle gençler arasında farklılık gösterir. Genel olarak gençlerde, baş bölgesi sarımsı kahverengi ve küçük siyah benekli. Sırt kısmı, grimsi ya da kahverenginin tonlarında, beneklerse siyahımsı. Beneklerin kenarlarında bazen beyaz çizgiler bulunabilir. Karın bölgesi beyazımsı siyah noktalı olur. Yaşlandıkça beneklerin tümü belirginliğini yitirmeye başlar ve soluklaşır. Zamanla sırt kısmı yeşilimsi gri kahverengi, karın kısmıysa, gri benekli sarımsı beyaz olur. Şakak bölgesindeki çizgi (temporal bant) oldukça belirgin. Dişiler bir defada 4-12 (en büyük bireyler 20) kadar yumurta bırakabilirler. Genel olarak fare gibi küçük kemiriciler, kuş ve kuş yavruları, küçük yılanlar ve çeşitli omurgasız hayvanlar besinlerini oluşturur. Kemiricilerle beslendikleri için yararlıdırlar. Boyları 200 cm kadar olabilir. Habitat: Bitki örtüsünün seyrek olduğu taşlık alanlar, çalılık yerler, tarlalar başlıca yaşam alanları. Ayrıca bahçeler ve sulama kanallarının yanında da bulunurlar. Yüksekliği 1500 metreye kadar olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Karadeniz bölgesi dışında kalan tüm bölgelerde habitatın uygun olduğu yerlerde dağılım gösterirler. Telescopus fallax: Kedi Gözlü Yılan; Genel Özellikler: Sırt bölgesinin rengi genel olarak gri, kahverengi ve bu renklerin tonlarında olur. Sırtta koyu renkli büyük benekler bulunur. Beneklerin rengi kuyruğa doğru gittikçe açılır. Başın üst kısmı da koyu renkli olur. Karın bölgesi sarımsı beyaz noktalı olur. Genel olarak fare gibi küçük kemiriciler, kertenkeleler ve çeşitli omurgasız hayvanlarla beslenirler. Kemiricilerle beslendikleri için yararlıdırlar. Sabahleyin erken ve akşam geç saatlerde avlanmaya çıkarlar. Oldukça dik yerlere rahatlıkla tırmanabilirler. Dişiler bir defada 3-7 kadar yumurta bırakabilirler (taşlık yerlerdeki oyuklara). Boyları en fazla 100 cm kadar olabilir. Habitat: Taşlık bölgeler, yamaçlar, güneş alan yerler, yol kenarları, eski evler ve harabeler başlıca yaşama alanları. Yayılış yüksekliğine baktığımızda 1600 metre yüksekliğe kadar olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Güney, Batı ve Güneydoğu Anadolu habitatın uygun olduğu yerlerde dağılım gösterirler. Not: Zehirli olan bu yılanlar insanlar için tehlikeli değil. Zehir dişleri ağzın arkasında olduğu için ısırsalar bile zehri boşaltamazlar. Zehri sadece avlarını bayıltmada kullanırlar. Telescopus nigriceps: Siyah Bantlı Kedi Gözlü Yılan; ??? 3.Familya: Leptotyphlopidae Leptotyphlops macrorhynchous: İpliksi Yılan; Genel Özellikler: Çok ince bir vücuda sahip olan yılan türü. Gözleri körelmiş olup üzeri deriyle kaplanmıştır. Bir çok özelliği Kör Yılan'a benzer. Sırt bölgesinin rengi genel olarak pembemsi kahverengi ya da sarımsı kahverengi olur. Karın bölgesiyse sarımsı. Birkaç tanesi bir arada bulunarak yaşarlar. Genelde toprak altında yaşayan bu hayvanlar akşam saatlerinde kısa bir süre dışarı çıkarlar. Yumuşak toprağın içinde sert olan başları sayesinde ilerleyebilirler. Kuyruklarının ucunda insan için zararlı olmayan küçük bir diken bulunur. Genel olarak böcek larvaları, solucanlar ve karıncalarla beslenirler. Üremeleri iyi bilinmemekle birlikte, dişilerin bir defada 4 tane yumurta bıraktıkları düşünülüyor. Ortalama boyları 20 cm (en fazla 25 cm) kadar olur. Habitat: Açık olan yerlerde, yumuşak ve nemli toprakların içinde taş altlarında yaşarlar. Yüksekliği 500 - 1000 metre arasında olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Güneydoğu Anadolu Bölgesinde Birecik (Şanlıurfa) ve Kızıltepe (Mardin)'de habitatın uygun olduğu yerlerde yaşarlar. 4.Familya: Typhlopidae Typhlops vermicularis: Kör Yılan; Genel Özellikler: Solucana çok benzerler. Gözleri körelmiş olduğundan "kör yılan" denmekte. Sırt bölgesinin rengi genel olarak, sarımsı kahverengi, pembemsi kahverengi olur. toprak altlarında bulunduklarından saydamsı bir görünüşü var. Karın bölgesiyse sarımsı. Oldukça hızlı hareket edebilirler. Kuyruklarının ucunda insan için zararlı olmayan küçük bir diken bulunur. Genel olarak böcek larvaları, solucanlar ve karıncalarla beslenirler. Üremeleri iyi bilinmemekle birlikte, dişilerin bir defada 4-8 kadar yumurta bıraktıkları düşünülüyor. Ortalama boyları 25 cm (en fazla 35 cm) kadar olur. Habitat: Yumuşak toprakların içinde, taş altlarında bulunurlar. Nemli yerleri daha çok tercih ederler. Yüksekliği 1500 metreye kadar olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Doğu Anadolu bölgesi dışında olan bölgelerin hepsinde habitatın uygun olduğu yerlerde dağılım gösterirler. Rhinotyphlops episcopus: Sivriburun Yılan; ??? 5.Familya: Viperidae Macrovipera lebetina (Vipera lebetina): Koca Engerek; Genel Özellikler: Sırt bölgesinin rengi genel olarak grimsi kahverengi ve bu rengin tonlarında olur. Sırtta bazı yerlerde birleşik koyumsu benekler (bazen belirsiz) bulunur. Bunların yanında (sırtın ortalarında) kenarları koyu renkli, iç kısımları tuğla kırmızısı ya da sarı renkte beneklerde bulunur. Başın üst kısmında bazen küçük siyah benekler bulunabilir. Kuyruk ucu sarımsı. Beyazımsı ya da pembemsi olan karın bölgesinde nokta halinde siyah benekler bulunur. Genel olarak fare gibi küçük kemiriciler, kertenkeleler, kuşlar, yılanlar ve çeşitli omurgasız hayvanlarla beslenirler. Kemiricilerle beslendikleri için yararlıdırlar. Avlarını sabahın erken saatlerinde ya da geceleyin avlarlar. Yemeden önce zehirleyerek öldürürler. Hareketleri oldukça ağır olan bu hayvanlar gündüzlerini daha çok dinlenerek geçirirler. Genel olarak canlı doğururlar (5-7 kadar). Bazı bölgelerde de yumurtlarlar (4-7 kadar). Yumurta 1 ay içinde açılır. Boyları 150 cm kadar olabilir. Habitat: Ovalarda, taşlık yerlerde, terk edilmiş evlerde, harabelerde, bahçelerde ve tarlalarda yaşarlar. Yüksekliği 1500 metreye kadar olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Doğu ve Güneydoğu Anadolu'da, Doğu Akdeniz bölgesinde habitatın uygun olduğu alanlarda dağılım gösterirler. Not: Türkiye'de yaşayan en uzun, kalın ve zehirli olan yılan türü. İnsanlara, sadece kendilerini korumak için saldırabilirler. Zehirleri insanlar için oldukça tehlikeli olabilir. Ayrıca avlandıklarından çok dar bir alanda yayılış gösterdiklerinden için soyları tehlike altındadır. Montivipera albizona (Vipera albizona): ??? Montivipera bulgardaghica(Vipera bulgardaghica): ??? Montivipera raddei (Vipera raddei): Ağrı Engereği; Genel Özellikler: Sırt bölgesi genel olarak kül renginde ya da grimsi kahverengi olur. Sırtta, baştan kuyruğa kadar iç sarımsı ya da tuğla renginde olan büyük benekler bulunur. Bu benekler bazen birleşip baklava desenli, dalgalı ya da zikzaklı bir şerit oluşturur. Vücudun yan taraflarında da bir benek sırası bulunur. Başın üzerinde küçük siyah benekler ve arka kısmından yanlara doğru sarkan iki büyük siyah benek bulunur. Siyah renkli şakak bandı da açıkça görülür. Karın bölgesi sarımsı beyaz ve üzerinde küçük siyah noktalar bulunur. Genel olarak küçük kemiriciler, diğer yılanlar, kertenkeleler ve kuşlarla beslenirler. Kemiricilerle beslendikleri için yararlıdırlar. Gündüzleri oyuklarda ve taş altlarında saklanan bu hayvanlar, avlanma işlerini gece yaparlar. Kendilerini koruma amaçlı saldırabilirler. Oldukça ağır hareket ederler ama saldırırken çok hızlı olabilirler. Boyları ortalama 70-80 cm (en fazla 100 cm) kadar olur. Habitat: Dağlarda, ormansız ve taşlık olan, az bitkili yerlerde yaşarlar. Yüksekliği 1000-3000 metre arasında olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Doğu Anadolu'da Kars, Ağrı, Iğdır, Hakkari ve Van civarında habitatın uygun olduğu alanlarda dağılım gösterirler. Not: Zehirleri etkili olan bu türün, insanı ısırdığında ölümcül yaralar ya da tehlikeli zehirlenmeler yaptığı konusunda, yeterli bilgi henüz yoktur. Ayrıca avlandıklarından çok dar bir alanda yayılış gösterdikleri için soyları tehlike altındadır. Montivipera wagneri (Vipera wagneri): Vagner Engereği; Genel Özellikler: Sırt bölgesi genel olarak kül renginde ya da grimsi kahverengi olur. Sırtta, baştan kuyruğa kadar iç sarımsı ya da tuğla renginde olan büyük benekler bulunur. Bu benekler bazen birleşip baklava desenli, dalgalı ya da zikzaklı bir şerit oluşturur. Vücudun yan taraflarında da bir benek sırası bulunur. Başın üzerinde küçük siyah benekler ve arka kısmından yanlara doğru sarkan iki büyük siyah benek bulunur. Siyah renkli şakak bandı da açıkça görülür. Karın bölgesi sarımsı beyaz ve üzerinde küçük siyah noktalar bulunur. Genel olarak küçük kemiriciler, diğer yılanlar, kertenkeleler ve kuşlarla beslenirler. Kemiricilerle beslendikleri için yararlıdırlar. Boyları ortalama 50-80 cm kadar olur. Habitat: Dağlarda, ormansız ve taşlık olan, az bitkili yerlerde yaşarlar. Yüksekliği 1200-2000 metre arasında olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Kars'ta habitatın uygun olduğu alanlarda dağılım gösterirler. Not: Zehirli olan bu tür çok dar bir alanda yayılış gösterdiği için soyları tehlike altındadır. Montivipera xanthina (Vipera xanthina): Şeritli Engerek; Genel Özellikler: Sırt bölgesi genel olarak kül renginde ya da grimsi kahverengi olur. Sırtta, baştan kuyruğa kadar uzanan siyah ya da koyu kahverengi büyük benekler bulunur. Bu benekler bazen birleşip baklava desenli, dalgalı ya da zikzaklı bir şerit oluşturur. Vücudun yan taraflarında da bir benek sırası bulunur. Başın üzerinde küçük siyah benekler ve arka kısmından yanlara doğru sarkan iki büyük siyah benek bulunur. Siyah renkli şakak bandı da açıkça görülür. Karın bölgesi sarımsı beyaz ve üzerinde küçük siyah noktalar bulunur. Genel olarak küçük kemiriciler, diğer yılanlar, kertenkeleler ve kuşlarla beslenirler. Kemiricilerle beslendikleri için yararlıdırlar. Gündüzleri oyuklarda ve taş altlarında saklanan bu hayvanlar, avlanma işlerini gece yaparlar. Kendilerini koruma amaçlı saldırabilirler. Oldukça ağır hareket ederler ama saldırırken çok hızlı olabilirler. Boyları ortalama 70-80 cm (en fazla 100 cm) kadar olur. Habitat: Dağlarda, ormansız ve taşlık olan yerlerde yaşarlar. Yüksekliği 2000 metreye kadar olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Orta, Güney ve Batı Anadolu'da habitatın uygun olduğu alanlarda dağılım gösterirler. Not: Zehirleri etkili olan bu türün, insanı ısırdığında ölümcül yaralar ya da tehlikeli zehirlenmeler yaptığı konusunda, yeterli bilgi henüz yoktur. Ayrıca avlandıklarından çok dar bir alanda yayılış gösterdikleri için soyları tehlike altındadır. Vipera ammodytes: Boynuzlu Engerek; Genel Özellikler: "Boynuzlu" denemesinin nedeni burun ucunun gergedan boynuzu gibi küçük ve yukarıya doğru olmasından. Sırt bölgesinin rengi genel olarak gri, sarı ve kahverengi renklerinin tonlarında olur. Sırtta ayrıca koyu kahverengi, baklava deseni benzeri zikzak desenler bulunur. beneklerin ortası kenarlara göre daha açık olur. Kuyruğun uç kısımları genç bireylerde sarımsı pembe renkli olur. Başın üst kısmında küçük ve belirgin benekler bulunur. Karın bölgesi sarımsı beyaz ve küçük benekli olur. Genel olarak küçük kemiriciler, avlayabildikleri kuşlar, diğer yılan türleri ve kertenkeleler başlıca besinlerini oluşturur. Kemiricileri ve kuşları zehirleyip öldürerek, diğerlerini canlı olarak yerler. Kemiricilerle beslendikleri için yararlıdırlar. Hareketleri oldukça yavaştır. Eylül-Ekim'den Mart-Nisan'a kadar kış uykusuna yatarlar. İlkbaharda çiftleşen dişiler, Ağustos ayında 5-14 kadar yavru doğururlar. Boyları genel olarak 50-60 cm (erkekler en fazla 90 cm) kadar olur. Habitat: Yunanca'da ammos kum, dytes gömülen anlamında. Bu hayvanın tür adına "ammodytes" denmesinin nedeni, yaşama alanı olarak kumlu bölgeleri tercih etmesi. Ama Türkiye'de kumlu yerlerden daha çok küçük boylu bitkilerin altlarında, orman açıklıklarında, çalılık ve taşlık yerlerde yaşarlar. Yüksekliği 2000 metreye kadar olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Trakya, Batı, Kuzeydoğu, Doğu ve Güneydoğu Anadolu Bölgesi'nde habitatın uygun olduğu alanlarda dağılım gösterirler. Not: Zehirleri insanlar için tehlikeli olabilecek kadar kuvvetli. İlk ısırışta zehrin büyük bir bölümünü aktarır. İnsanla karşılaştığında ilk olarak kaçmaya çalışırlar. Eğer sıkıştırılırlarsa başlarını havaya kaldırarak tıslarlar ve kendilerini çok tehlikede hissederlerse saldırabilirler. Türkiye'de V. a. montandoni Boulenger 1904, V. a. meridionalis Boulenger 1904, V. a. transcacasica Boulenger 1904 olmak üzere üç tane alt türü bulunur. Vipera barani: Baran Engereği; Genel Özellikler: "Baran Engereği" denmesinin nedeni Prof. Dr. İbrahim Baran'dan (herpetolog) dolayı. Şimdiye kadar yapılan çalışmalar bu türün sadece Türkiye'de bulunduğunu gösteriyor. Bu nedenle endemik bir tür. Sırt bölgesinin rengi genel olarak siyah ya da grimsi kahverengi. Kuyruk ucu sarımsı. Bazen sırt biraz açık renkli olur. Bu halde benekler zikzaklı olur. Genel olarak küçük kemiriciler, kertenkeleler ve çeşitli omurgasız hayvanlarla beslenirler. Kemiricilerle beslendikleri için yararlıdırlar. Boyları 55 cm kadar olur. Habitat: Kısa boylu bitkilerin altında, taşlık yerlerde yaşarlar. Yüksekliği 400 metreye (bilinen) kadar olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Sakarya'da, Torosların Silifke civarındaki yerlerde habitatın uygun olduğu alanlarda dağılım gösterirler. Not: Zehirli olan bu tür çok fazla avlandığından ve dar bir alanda yayılış gösterdiklerinden için soyları tehlike altındadır. Vipera kaznakovi: Kafkas Engereği; Genel Özellikler: Sırt bölgesinin rengi genel olarak siyah, gri, sarı ve kırmızı renklerin tonlarında olur. Sırtın büyük bir bölümünü kaplayan ve baştan kuyruğa kadar uzanan zikzaklı bir şerit bulunur. Bu şerit bazen parçalı halde de olabilir. Vücudun yan tarafları küçük benekli ya da noktalı olur. Beyaz benekli olan karın bölgesinin rengi, siyah ve tonlarında olur. Genel olarak küçük kemiriciler, kertenkeleler ve çeşitli omurgasızlarla beslenirler. Kemiricilerle beslendikleri için yararlıdırlar. Boyları genel olarak 50-60 cm kadar olur. Habitat: Ormanlık yerlerin taşlık bölgelerinde yaşarlar. Rutubeti yüksek olan yerleri severler. Yüksekliği 2000 metreye kadar olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Ülkemizde sadece Hopa (Artvin) civarında habitatın uygun olduğu alanlarda yaşarlar. Not: Başlarının arka tarafları oldukça şişkin olduğundan zehir bezleri de büyüktür ve bundan dolayı zehirleri, insanlar için oldukça tehlikeli olabilir. İlk ısırışta zehrin büyük bir bölümünü aktarır. Ayrıca kaçak olarak yapılan ihraçtan dolayı soyları tehlike altında ve korunmaları gerekiyor. Vipera pontica: Çoruh Engereği; ??? Vipera anatolica (Vipera ursinii anatolica): Anadolu Küçük Engereği; Vipera eriwanensis (Vipera ursinii eriwanensis): Küçük Engerek; Genel Özellikler: Sırt bölgesinin rengi genel olarak soluk kahverengi, grimsi, sarımsı ya da açık yeşil. Sırtta baştan başlayıp kuyruğa kadar devam eden, zikzaklı ya da dalgalı koyu renkli bir şerit bulunur. bu şeridin kenarları iç taraflarına göre daha koyu renkli olur. Vücudun yan taraflarında da baştan kuyruğa kadar uzanan koyu benek sıraları bulunur. Baş kısmında iki tane büyük benek bulunur. karın bölgesin sarımsı beyaz ve bunun üzerinde küçük siyah noktalar bulunur. En çok yedikleri besin çekirge. Bunun yanında diğer böcekleri ve az olarak da kertenkeleleri ve küçük kemiricileri de besin olarak alırlar. Kaya ve taş altlarında, kemirici hayvanların yuvalarında kış uykusuna yatarlar. Dişiler yazın sonlarına doğru (bir defada 10 kadar olmak üzere) doğururlar. Yeni doğan yavrular 13-14 cm kadar olur. Boyları 40-50 cm kadar olur. Habitat: Genel olarak açık yerlerin, taşlık ve otluk bölgelerinde yaşarlar. Ormanlık ve ağaçlık yerlerde az da olsa bulunabilirler. Yüksekliği 3000 metreye kadar olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Kuzeydoğu Anadolu'da ve Akdeniz Bölgesinde sadece Elmalı (Antalya) civarında habitatın uygun olduğu alanlarda dağılım gösterirler. Not: Zehirli olan bu türün, insanı ısırdığında ölümcül yaralar ya da tehlikeli zehirlenmeler yaptığı konusunda, yeterli bilgi henüz yoktur. Ayrıca avlandıklarından çok dar bir alanda yayılış gösterdikleri için soyları tehlike altındadır. 6.Familya:Elapidae Walterinnesia aegyptia: Çöl Kobrası; Genel Özellikler: Hayvanın tüm vücudu siyah renk ve tonlarında. Zehirli olan bu hayvanın zehir dişleri çenenin önünde. Zehirleri engerek yılanlardan (hematoksik zehir etkisi) farklı olarak nörotoksik (sinirler üzerine zehirleyici) bir etki yapar. En küçük yavrular bile zehirleyebilir. Genel olarak, küçük kemiriciler, kuşlar, diğer sürüngen türleri ve çeşitli omurgasızlarla beslenirler. Avlarını zehirleyip öldürdükten sonra yerler. Gece aktiflik gösterirler. Boyları en fazla 200 cm kadar olabilir. Habitat: Bitki örtünsün az olduğu yerlerde, çöl ve yarı çöl özelliği gösteren yerlerde, kum içinde yaşarlar. Türkiye'deki Dağılım: Şanlıurfa ve civarında habitatın uygun olduğu alanlarda yaşarlar. Not: Zehirli olan bu türün ülkemizde var olduğuna ilişkin ilk bilimsel kayıt Eylül 2000'de (Dr. İsmail H. Uğurtaş tarafından) verilmiştir.   Bilgiler; www.biltek.tubitak.gov.tr ve reptile.fisek.com.tr/ sitelerinden alıntıdır.

http://www.biyologlar.com/turkiyede-yasayan-yilan-turleri

HANGİ HORMON NEREDEN SALGILANIR

HORMON                               SALGILANDIĞI YER                              FİZYOLOJİK ETKİLERİ Tiroksin Tiroit bezi Bazal metabolizmayı artırır Triiyodotironin Tiroit bezi Bazal metabolizmayı artırır. Parathormon Paratiroit bezi Kalsiyum ve fosfor metabolizmasını düzenler Kalsitonin Tiroit’in C hücrelerinden Kalsiyum ve fosforu düzenler (parathormonun antagonisti) Insülin Pankreasın beta hücreleri Kasta ve diğer hücrelerde glikoz kullanımını artırır, kan sekerini azaltır, glikojen depolanmasını ve glikoz metabolizmasını artırır. Glukagon Pankreasın alfa hücreleri Karaciğer glikojenini kan glikozuna çeviren mekanizmayı uyarır Sekretin Onikiparmak mukozası Pankreas sıvısının salgılanmasını uyarır. Kolessistokinin Onikiparmak mukozası Safra kesesinden safranın bırakılmasını uyarır. Epinefrin (Adrenalin)                            Adrenal medulla Simpatik sistemi destekler, karaciğer ve kas glikojeninin yıkımını uyarır. Norepinefrin (Noradrenalin)                    Adrenal  medulla   Kan damarlarını daraltır. Kortizol Adrenal korteks Proteinlerin karbonhidratlara dönüşümünü uyarır Aldosteron Adrenal korteks Sodyum ve potasyum metabolizmasını düzenler. Dehidroepiandrosteron Adrenal korteks                            Androjen, erkek eşeysel özelliklerinin gelişimini uyarır. Somatotropin (Büyüme hormonu) Ön hipofiz Kemik ve genel vücut büyümesini denetler, yağ protein ve karbonhidrat metabolizmasına etki eder. Tirotropin (Tiroit uyarıcı hormon = TUH = TSH) Ön hipofiz Tiroidin büyümesini ve tiroit hormonlarının salgılanmasını uyarır. Adrenokortikotropin (ACTH Ön hipofiz Adrenal korteksin büyümesini ve kortikal hormonun salgılanmasını uyarır. Luteinize edici hormon (LH) Ön hipofiz Yumurtalıktan östrojen ve progesteronun, testislerden testosteronun üretimini ve salgılanmasını denetler. Folikül uyarıcı hormon (= FSH = FUH) Ön hipofiz Yumurtalıktaki graf foliküllerinin oluşumunu ve testislerde seminifer tüplerin büyümesini sağlar. Prolaktin (=Luteotropik hormon =LTH) Ön hipofiz                                       Yumurtalıktan östrojenin ve progesteronun salgılanmasının sürdürülmesine, süt bezlerinin uyarılmasına ve analık içgüdüsünün oluşmasına neden olur. Oksitosin                                     Hipotalamus (arka hipofizaracılığı ile) Süt salgılanmasını ve rahim kaslarının uyarılmasını sağlar. Vazopressin Hipotalamus (arka hipofiz aracılığı ile) Düz kasların kasılmasını uyarır, böbrek tüpleri üzerinde antidiüretik etki gösterir. Melanosit uyarıcı hormon (= MUH =MSH) Hipofizin ön lobu Kromatofor içindeki pigmentlerin dağılımını sağlar. Testosteron Testisin intersitiyal hücreleri Androjen, erkeklik özelliklerinin gelişmesini uyarır ve devamını sağlar Östradiyol Yumurtalığın folikülünü astarlayan hücreleri Östrojen, dişi özelliklerinin gelişmesini uyarır ve devamını sağlar. Progesteron Yumurtalığın korpus luteumu Östraus ve menstrual sikluslarin düzenlenmesini (östradiyal ile birlikte) sağlar. Prostaglandinler Seminal vezikül Rahim kasılmasını uyarır. Koriyonik gonadotropin Plasenta Diğer hormonlarla beraber gebeliğin sürdürülmesini (korpus luteumun korunmasını) sağlar. Plasental laktojen Plasenta Büyüme ve prolaktin hormonu gibi etki eder. Relaksin Yumurtalık ve plasenta Pelvik ligamentinin gevşemesini sağlar Melatonin                                   Epifiz                                         Yumurtalık işlevlerini durdurur.  

http://www.biyologlar.com/hangi-hormon-nereden-salgilanir

 
3WTURK CMS v6.03WTURK CMS v6.0