Biyolojiye gercekci yaklasimin tek adresi.

Arama Sonuçları..

Toplam 79 kayıt bulundu.

Jeomorfoloji Nedir

Güneş Sistemi’nin Oluşumu Güneş Sistemi’nin oluşumu ile ilgili farklı teoriler ortaya atılmıştır. En geçerli teori sayılan Kant-Laplace teorisine Nebula teorisi de denir. Bu teoriye göre, Nebula adı verilen kızgın gaz kütlesi ekseni çevresinde sarmal bir hareketle dönerken, zamanla soğuyarak küçülmüştür. Bu dönüş etkisiyle oluşan çekim merkezinde Güneş oluşmuştur. Gazlardan hafif olanları Güneş tarafından çekilmiş, çekim etkisi dışındakiler uzay boşluğuna dağılmış ağır olanlar da Güneş’ten farklı uzaklıklarda soğuyarak gezegenleri oluşturmuşlardır. Dünya’nın Oluşumu Dünya, Güneş Sistemi oluştuğunda kızgın bir gaz kütlesi halindeydi. Zamanla ekseni çevresindeki dönüşünün etkisiyle, dıştan içe doğru soğumuş, böylece iç içe geçmiş farklı sıcaklıktaki katmanlar oluşmuştur. Günümüzde iç kısımlarda yüksek sıcaklık korunmaktadır. Dünya’nın oluşumundan bugüne kadar geçen zaman ve Dünya’nın yapısı jeolojik zamanlar yardımıyla belirlenir. Jeolojik Zamanlar Yaklaşık 4,5 milyar yaşında olan Dünya, günümüze kadar çeşitli evrelerden geçmiştir. Jeolojik zamanlar adı verilen bu evrelerin her birinde , değişik canlı türleri ve iklim koşulları görülmüştür. Dünya’nın yapısını inceleyen jeoloji bilimi, jeolojik zamanlar belirlenirken fosillerden ve tortul tabakaların özelliklerinden yararlanılır. Jeolojik zamanlar günümüze en yakın zaman en üstte olacak şekilde sıralanır. • Dördüncü Zaman • Üçüncü Zaman • İkinci Zaman • Birinci Zaman • İlkel Zaman İlkel Zaman Günümüzden yaklaşık 600 milyon yıl önce sona erdiği varsayılan jeolojik zamandır. İlkel zamanın yaklaşık 4 milyar yıl sürdüğü tahmin edilmektedir. Zamanın önemli olayları :  Sularda tek hücreli canlıların ortaya çıkışı  En eski kıta çekirdeklerinin oluşumu İlkel zamanı karakterize eden canlılar alg ve radiolariadır. Birinci Zaman (Paleozoik) Günümüzden yaklaşık 225 milyon yıl önce sona erdiği varsayılan jeolojik zamandır. Birinci zamanın yaklaşık 375 milyon yıl sürdüğü tahmin edilmektedir. Zamanın önemli olayları :  Kaledonya ve Hersinya kıvrımlarının oluşumu  Özellikle karbon devrinde kömür yataklarının oluşumu  İlk kara bitkilerinin ortaya çıkışı  Balığa benzer ilk organizmaların ortaya çıkışı Birinci zamanı karakterize eden canlılar graptolith ve trilobittir. İkinci Zaman (Mezozoik) Günümüzden yaklaşık 65 milyon yıl önce sona erdiği varsayılan jeolojik zamandır. İkinci zamanın yaklaşık 160 milyon yıl sürdüğü tahmin edilmektedir. İkinci zamanı karakterize eden dinazor ve ammonitler bu zamanın sonunda yok olmuşlardır. Zamanın önemli olayları :  Ekvatoral ve soğuk iklimlerin belirmesi  Kimmeridge ve Avustrien kıvrımlarının oluşumu İkinci zamanı karakterize eden canlılar ammonit ve dinazordur. Üçüncü Zaman (Neozoik) Günümüzden yaklaşık 2 milyon yıl önce sona erdiği varsayılan jeolojik zamandır. Üçüncü zamanın yaklaşık 63 milyon yıl sürdüğü tahmin edilmektedir. Zamanın önemli olayları :  Kıtaların bugünkü görünümünü kazanmaya başlaması  Linyit havzalarının oluşumu  Bugünkü iklim bölgelerinin ve bitki topluluklarının belirmeye başlaması  Alp kıvrım sisteminin gelişmesi  Nümmilitler ve memelilerin ortaya çıkışı Üçüncü zamanı karakterize eden canlılar nummilit, hipparion, elephas ve mastadondur. Dördüncü Zaman (Kuaterner) Günümüzden 2 milyon yıl önce başladığı ve hala sürdüğü varsayılan jeolojik zamandır. Zamanın önemli olayları :  İklimde büyük değişikliklerin ve dört buzul döneminin (Günz, Mindel, Riss, Würm) yaşanması  İnsanın ortaya çıkışı Dördüncü zamanı karakterize eden canlılar mamut ve insandır. Dünya’nın İç Yapısı Dünya, kalınlık, yoğunluk ve sıcaklıkları farklı, iç içe geçmiş çeşitli katmanlardan oluşmuştur. Bu katmanların özellikleri hakkında bilgi edinilirken deprem dalgalarından yararlanılır.  Çekirdek  Manto  Taşküre (Litosfer) Deprem Dalgaları Deprem dalgaları farklı dalga boylarını göstermektedir. Deprem dalgaları yoğun tabakalardan geçerken dalga boyları küçülür, titreşim sayısı artar. Yoğunluğu az olan tabakalarda ise dalga boyu uzar, titreşim sayısı azalır. Çekirdek : Yoğunluk ve ağırlık bakımından en ağır elementlerin bulunduğu bölümdür. Dünya’nın en iç bölümünü oluşturan çekirdeğin, 5120-2890 km’ler arasındaki kısmına dış çekirdek, 6371-5150 km’ler arasındaki kısmına iç çekirdek denir. İç çekirdekte bulunan demir-nikel karışımı çok yüksek basınç ve sıcaklık etkisiyle kristal haldedir. Dış çekirdekte ise bu karışım ergimiş haldedir. Manto Litosfer ile çekirdek arasındaki katmandır. 100-2890 km’ler arasında bulunan mantonun yoğunluğu 3,3-5,5 g/cm3 sıcaklığı 1900-3700 °C arasında değişir. Manto, yer hacminin en büyük bölümünü oluşturur. Yapısında silisyum, magnezyum , nikel ve demir bulunmaktadır. Mantonun üst kesimi yüksek sıcaklık ve basınçtan dolayı plastiki özellik gösterir. Alt kesimleri ise sıvı halde bulunur. Bu nedenle mantoda sürekli olarak alçalıcı-yükselici hareketler görülür. Mantodaki Alçalıcı-Yükselici Hareketler Mantonun alt ve üst kısımlarındaki yoğunluk farkı nedeniyle magma adı verilen kızgın akıcı madde yerkabuğuna doğru yükselir. Yoğunluğun arttığı bölümlerde ise magma yerin içine doğru sokulur. Taşküre (Litosfer) Mantonun üstünde yer alan ve yeryüzüne kadar uzanan katmandır. Kalınlığı ortalama 100 km’dir. Taşküre’nin ortalama 35 km’lik üst bölümüne yerkabuğu denir. Daha çok silisyum ve alüminyum bileşimindeki taşlardan oluşması nedeniyle sial de denir. Yerkabuğunun altındaki bölüme ise silisyum ve magnezyumdan oluştuğu için sima denir. Sial, okyanus tabanlarında incelir yer yer kaybolur. Örneğin Büyük Okyanus tabanının bazı bölümlerinde sial görülmez. Yeryüzünden yerin derinliklerine inildikçe 33 m’de bir sıcaklık 1 °C artar. Buna jeoterm basamağı denir. Kıtalar ve Okyanuslar Yeryüzünün üst bölümü kara parçalarından ve su kütlelerinden oluşmuştur. Denizlerin ortasında çok büyük birer ada gibi duran kara kütlelerine kıta denir. Kuzey Yarım Küre’de karalar, Güney Yarım Küre’den daha geniş yer kaplar. Asya, Avrupa, Kuzey Amerika’nın tamamı ve Afrika’nın büyük bir bölümü Kuzey Yarım Küre’de yer alır. Güney Amerika’nın ve Afrika’nın büyük bir bölümü, Avustralya ve çevresindeki adalarla Antartika kıtası Güney Yarım Küre’de bulunur. Yeryüzünün yaklaşık ¾’ü sularla kaplıdır. Kıtaların birbirinden ayıran büyük su kütlelerine okyanus denir. Kara ve Denizlerin Farklı Dağılışının Sonuçları Karaların Kuzey Yarım Küre’de daha fazla yer kaplaması nedeniyle, Kuzey Yarım Küre’de; • Yıllık sıcaklık ortalaması daha yüksektir. • Sıcaklık farkları daha belirgindir. • Eş sıcaklık eğrileri enlemlerden daha fazla sapma gösterir. • Kıtalar arası ulaşım daha kolaydır. • Nüfus daha kalabalıktır. • Kültürlerin gelişmesi ve yayılması daha kolaydır. • Ekonomi daha hızlı ve daha çok gelişmiştir. Hipsografik Eğri Yeryüzünün yükseklik ve derinlik basamaklarını gösteren eğridir. Kıta Platformu : Derin deniz platformundan sonra yüksek dağlar ile kıyı ovaları arasındaki en geniş bölümdür. Karaların Ortalama Yüksekliği : Karaların ortalama yüksekliği 1000 m dir. Dünya’nın en yüksek yeri deniz seviyesinden 8840 m yükseklikteki Everest Tepesi’dir. Kıta Sahanlığı : Deniz seviyesinin altında, kıyı çizgisinden -200 m derine kadar inen bölüme kıta sahanlığı (şelf) denir. Şelf kıtaların su altında kalmış bölümleri sayılır. Kıta Yamacı : Şelf ile derin deniz platformunu birbirine bağlayan bölümdür. Denizlerin Ortalama Derinliği : Denizlerin ortalama derinliği 4000 m dir. Dünya’nın en derin yeri olan Mariana Çukuru denzi seviyesinden 11.035 m derinliktedir. Derin Deniz Platformu : Kıta yamaçları ile çevrelenmiş, ortalama derinliği 6000 m olan yeryüzünün en geniş bölümüdür. Derin Deniz Çukurları : Sima üzerinde hareket eden kıtaların, birbirine çarptıkları yerlerde bulunur. Yeryüzünün en dar bölümüdür. Yerkabuğunu Oluşturan Taşlar Yerkabuğunun ana malzemesi taşlardır. Çeşitli minerallerden ve organik maddelerden oluşan katı, doğal maddelere taş ya da kayaç denir. Yer üstünde ve içinde bulunan tüm taşların kökeni magmadır. Ancak bu taşların bir kısmı bazı olaylar sonucu değişik özellikler kazanarak çeşitli adlar almıştır. Oluşumlarına göre taşlar üç grupta toplanır. • Püskürük (Volkanik) Taşlar • Tortul Taşlar • Başkalaşmış (Metamorfik) Taşlar UYARI : Tortul taşları, püskürük ve başkalaşmış taşlardan ayıran en önemli özellik fosil içermeleridir. Püskürük (Volkanik) Taşlar Magmanın yeryüzünde ya da yeryüzüne yakın yerlerde soğumasıyla oluşan taşlardır. Katılaşım taşları adı da verilen püskürük taşlar magmanın soğuduğu yere göre iki gruba ayrılır.  Dış Püskürük Taşlar  İç Püskürük Taşlar Dış Püskürük Taşlar Magmanın yeryüzüne çıkıp, yeryüzünde soğumasıyla oluşan taşlardır. Soğumaları kısa sürede gerçekleştiği için Küçük kristalli olurlar. Dış püskürük taşların en tanınmış örnekleri bazalt, andezit, obsidyen ve volkanik tüftür. Bazalt : Koyu gri ve siyah renklerde olan dış püskürük bir taştır. Mineralleri ince taneli olduğu için ancak mikroskopla görülebilir. Bazalt demir içerir. Bu nedenle ağır bir taştır. Andezit : Eflatun, mor, pembemsi renkli dış püskürük bir taştır. Ankara taşı da denir. Dağıldığında killi topraklar oluşur. Obsidyen (Volkan Camı) : Siyah, kahverengi, yeşil renkli ve parlak dış püskürük bir taştır. Magmanın yer yüzüne çıktığında aniden soğuması ile oluşur. Bu nedenle camsı görünüme sahiptir. Volkanik Tüf : Volkanlardan çıkan kül ve irili ufaklı parçaların üst üste yığılarak yapışması ile oluşan taşlara volkan tüfü denir. İç Püskürük Taşlar Magmanın yeryüzünün derinliklerinde soğuyup, katılaşmasıyla oluşan taşlardır. Soğuma yavaş olduğundan iç püskürükler iri kristalli olurlar. İç püskürük taşların en tanınmış örnekleri granit, siyenit ve diyorittir. Granit : İç püskürük bir taştır. Kuvars, mika ve feldspat mineralleri içerir. Taneli olması nedeniyle mineralleri kolayca görülür. Çatlağı çok olan granit kolayca dağılır, oluşan kuma arena denir. Siyenit : Yeşilimsi, pembemsi renkli iç püskürük bir taştır. Adını Mısır’daki Syene (Asuvan) kentinden almıştır. Siyenit dağılınca kil oluşur. Diyorit : Birbirinden gözle kolayca ayrılabilen açık ve koyu renkli minerallerden oluşan iç püskürük bir taştır. İri taneli olanları, ince tanelilere göre daha kolay dağılır. Tortul Taşlar Denizlerde, göllerde ve çukur yerlerde meydana gelen tortulanma ve çökelmelerle oluşan taşlardır. Tortul taşların yaşı içerdikleri fosillerle belirlenir. Tortul taşlar, tortullanmanın çeşidine göre 3 gruba ayrılır. • Kimyasal Tortul Taşlar • Organik Tortul Taşlar • Fiziksel Tortul Taşlar Fosil : Jeolojik devirler boyunca yaşamış canlıların taşlamış kalıntılarına fosil denir. Kimyasal Tortul Taşlar Suda erime özelliğine sahip taşların suda eriyerek başka alanlara taşınıp tortulanması ile oluşur. Kimyasal tortul taşların en tanınmış örnekleri jips, traverten, kireç taşı (kalker), çakmaktaşı (silex)’dır. Jips (Alçıtaşı) : Beyaz renkli, tırnakla çizilebilen kimyasal tortul bir taştır. Alçıtaşı olarak da isimlendirilir. Traverten : Kalsiyum biokarbonatlı yer altı sularının mağara boşluklarında veya yeryüzüne çıktıkları yerlerde içlerindeki kalsiyum karbonatın çökelmesi sonucu oluşan kimyasal tortul bir taştır. Kalker (Kireçtaşı) : Deniz ve okyanus havzalarında, erimiş halde bulunan kirecin çökelmesi ve taşlaşması sonucu oluşan taştır. Çakmaktaşı (Silex) : Denizlerde eriyik halde bulunan silisyum dioksitin (SİO2) çökelmesi ile oluşan taştır. Kahverengi, gri, beyaz, siyah renkleri bulunur. Çok sert olması ve düzgün yüzeyler halinde kırılması nedeniyle ilkel insanlar tarafından alet yapımında kullanılmıştır. Organik Tortul Taşlar Bitki ya da hayvan kalıntılarının belli ortamlarda birikmesi ve zamanla taşlaşması sonucu oluşur. Organik tortul taşların en tanınmış örnekleri mercan kalkeri, tebeşir ve kömürdür. Mercan Kalkeri : Mercan iskeletlerinden oluşan organik bir taştır. Temiz, sıcak ve derinliğin az olduğu denizlerde bulunur. Ada kenarlarında topluluk oluşturanlara atol denir. Kıyı yakınlarında olanlar ise, mercan resifleridir. Tebeşir : Derin deniz canlıları olan tek hücreli Globugerina (Globijerina)’ların birikimi sonucu oluşur. Saf, yumuşak, kolay dağılabilen bir kalkerdir. Gözenekli olduğu için suyu kolay geçirir. Kömür : Bitkiler öldükten sonra bakteriler etkisiyle değişime uğrar. Eğer su altında kalarak değişime uğrarsa, C (karbon) miktarı artarak kömürleşme başlar. C miktarı % 60 ise turba, C miktarı % 70 ise linyit, C miktarı % 80 – 90 ise taş kömürü, C miktarı % 94 ise antrasit adını alır. Fiziksel (Mekanik) Tortul Taşlar Akarsuların, rüzgarların ve buzulların, taşlardan kopardıkları parçacıkların çökelip, birikmesi ile oluşur. Fiziksel (mekanik) tortul taşların en tanınmış örnekleri kiltaşı (şist), kumtaşı (gre) ve çakıltaşı (konglomera)’dır. Kiltaşı (Şist) : Çapı 2 mikrondan daha küçük olan ve kil adı verilen tanelerin yapışması sonucu oluşan fiziksel tortul bir taştır. Kumtaşı (Gre) : Kum tanelerinin doğal bir çimento maddesi yardımıyla yapışması sonucu oluşan fiziksel tortul bir taştır. Çakıltaşı (Konglomera) : Genelde yuvarlak akarsu çakıllarının doğal bir çimento maddesi yardımıyla yapışması sonucu oluşur. Başkalaşmış (Metamorfik) Taşlar : Tortul ve püskürük taşların, yüksek sıcaklık ve basınç altında başkalaşıma uğraması sonucu oluşan taşlardır. Başkalaşmış taşların en tanınmış örnekleri mermer, gnays ve filattır. Mermer : Kalkerin yüksek sıcaklık ve basınç altında değişime uğraması, yani metamorfize olması sonucu oluşur. Gnays : Granitin yüksek sıcaklık ve basınç altında değişime uğraması yani metamorfize olması sonucu oluşur. Filat : Kiltaşının (şist) yüksek sıcaklık ve basınç altında değişime uğraması yani metamorfize olması sonucu oluşur. Yeraltı Zenginliklerinin Oluşumu Yerkabuğunun yapısı ve geçirmiş olduğu evrelerle yer altı zenginlikleri arasında sıkı bir ilişki vardır. Yer altı zenginliklerinin oluşumu 3 grupta toplanır: • Volkanik olaylara bağlı olanlar; Krom, kurşun, demir, nikel, pirit ve manganez gibi madenler magmada erimiş haldedir. • Organik tortulanmaya bağlı olanlar; Taş kömürü, linyit ve petrol oluşumu. • Kimyasal tortulanmaya bağlı olanlar; Kayatuzu, jips, kalker, borasit ve potas yataklarının oluşumu. İç Güçler ve Etkileri Faaliyetleri için gerekli enerjiyi yerin içinden alan güçlerdir. İç güçlerin oluşturduğu yerşekilleri dış güçler tarafından aşındırılır. İç güçlerin oluşturduğu hareketlerin bütününe tektonik hareket denir. Bunlar; 1. Orojenez 2. Epirojenez 3. Volkanizma 4. Depremler’dir. UYARI : İç kuvvetler gerekli olan enerjiyi mantodan alır. Deniz tabanı yayılmaları, kıta kaymaları, kıta yaylanmaları, dağ oluşumu ve tektonik depremler mantodaki hareketlerden kaynaklanır. Orojenez (Dağ Oluşumu) Jeosenklinallerde biriken tortul tabakaların kıvrılma ve kırılma hareketleriyle yükselmesi olayına dağ oluşumu ya da orojenez denir. Kıvrım hareketleri sırasında yükselen bölümlere antiklinal, çöken bölümlere ise senklinal adı verilir. Antiklinaller kıvrım dağlarını, senklinaller ise çöküntü alanlarını oluşturur. Jeosenklinal : Akarsular, rüzgarlar ve buzullar, aşındırıp, taşıdıkları maddeleri deniz ya da okyanus tabanlarında biriktirirler. Tortullanmanın görüldüğü bu geniş alanlara jeosenklinal denir. Fay Yerkabuğu hareketleri sırasında şiddetli yan basınç ve gerilme kuvvetleriyle blokların birbirine göre yer değiştirmesine fay denir. Fay elemanları şunlardır: Yükselen Blok : Kırık boyunca birbirine göre yer değiştiren bloklardan yükselen kısma denir. Alçalan Blok : Kırık boyunca birbirine göre yer değiştiren bloklardan alçalan kısma denir. Fay atımı : Yükselen ve alçalan blok arasında beliren yükseklik farkına fay atımı denir. Fay açısı : Dikey düzlem ile fay düzlemin yaptığı açıya fay açısı denir. Fay aynası : Fay oluşumu sırasında yükselen ve alçalan blok arasındaki yüzey kayma ve sürtünme nedeniyle çizilir., cilalanır. Parlak görünen bu yüzeye fay aynası denir. Faylar boyunca yüksekte kalan yerkabuğu parçalarına horst adı verilir. Buna karşılık faylar boyunca çöken kısımlara graben denir. Horstlar kırık dağlarını, grabenler ise çöküntü hendeklerini oluşturur. Türkiye’de Orojenez Türkiye’deki dağlar Avrupa ile Afrika kıtaları arasındaki Tetis jeosenklinalinde bulunan tortul tabakaların orojenik hareketi sonucunda oluşmuştur. Kuzey Anadolu ve Toros Dağları Alp Orojenezi’nin Türkiye’deki kuzey ve güney kanadını oluşturmaktadır. Ege bölgesi’ndeki horst ve grabenler de aynı sistemin içinde yer almaktadır. Epirojenez Karaların toptan alçalması ya da yükselmesi olayına epirojenez denir. Bu hareketler sırasında yeryüzünde geniş kubbeleşmeler ile yayvan büyük çukurlaşmalar olur. Orojenik hareketlerin tersine epirojenik hareketlerde tabakaların duruşunda bozulma söz konusu değildir. Dikey yönlü hareketler sırasındaki yükselmelerle jeoantiklinaller, çukurlaşmalar sırasında ise okyanus çanakları, yani jeosenklinaller oluşur. UYARI : III. Zaman sonları, IV. Zamanın başlarında Anadolu’nun epirojenik olarak yükselmesi ortalama yükseltiyi artırmıştır. Bu nedenle Anadolu’da yüksek düzlükler geniş yer kaplar. Transgresyon – Regrasyon Epirojenik hareketlere bağlı olarak her devirde kara ve deniz seviyeleri değişmiştir. İklim değişiklikleri ya da tektonik hareketler nedeniyle denizin karalara doğru ilerlemesine transgresyon (deniz ilerlemesi) , denizin çekilmesine regresyon (deniz gerilemesi) denir. Volkanizma Yerin derinliklerinde bulunan magmanın patlama ve püskürme biçiminde yeryüzüne çıkmasına volkanizma denir. Volkanik hareketler sırasında çıkan maddeler bir baca etrafında yığılarak yükselir ve volkanlar (yanardağlar) oluşur. Volkan Bacası : Mağmanın yeryüzüne ulaşıncaya kadar geçtiği yola volkan bacası denir. Volkan Konisi : Lav, kül, volkan bombası gibi volkanik maddelerin üst üste yığılması ile oluşan koni biçimli yükseltiye volkan konisi, koni üzerinde oluşan çukurluğa krater denir. Volkanlardan Çıkan Maddeler Volkanlardan çıkan maddeler değişik isimler alır : • Lav • Volkan Bombası • Volkan Külü • Volkanik Gazlar Lav Volkanlardan çıkarak yeryüzüne kadar ulaşan eriyik haldeki malzemeye lav denir. Lavın içerisindeki SİO2 (Silisyum dioksit) oranı lavın tipini ve volkanizmanın karakterini belirler. Asit Lav : SİO2 % 66 ise asit lavlar oluşur. Fazla akıcı değillerdir. Orta Tip Lav : SİO2 oranı % 33 - % 66 ise lav orta tiptir. Bu tip lavların çıktığı volkanlarda volkanik kül miktarı azdır. Bazik Lav : SİO2 oranı < % 33 ise lav bazik karakterli ve akıcıdır. Patlamasız, sakin bir püskürme oluşur. Volkan Bombası : Volkan bacasından atılan lav parçalarının havada dönerek soğuması ile oluşur. Volkan Külü : Gaz püskürmeleri sırasında oluşan, basınçlı volkan bacasından çıkan küçük taneli malzemeye kül denir. Volkanik küllerin bir alanda birikmesiyle volkanik tüfler oluşur. Volkanik Gazlar : Volkanizma sırasında subuharı, karbon dioksit, kükürt gibi gazlar magmadan hızla ayrışarak yeryüzüne çıkar. Büyük volkanik bulutların oluşmasını sağlar. Püskürme Şekilleri Volkanik hareketlerin en yoğun olduğu yerler, yerkabuğunun zayıf olduğu noktalar, çatlaklar ve yarıklardır. Magmanın yeryüzüne ulaştığı yere göre adlandırılan, merkezi çizgisel ve alansal olarak üç değişik püskürme şekli vardır : Merkezi Püskürme : Magma yeryüzüne bir noktadan çıkıyorsa, buna merkezi püskürme denir. Çizgisel Püskürme : Magma yeryüzüne bir yarık boyunca çıkıyorsa, buna çizgisel püskürme denir. Alansal Püskürme : Magma yeryüzüne yaygın bir alandan çıkıyorsa, buna alansal püskürme denir. Volkan (Yanardağ) Biçimleri Volkanların yapısı ve biçimleri yeryüzüne çıkan magmanın bileşimine, miktarına ve çıktığı yere göre değişir. Tabla Biçimindeki Volkanlar : Akıcı lavların geniş alanlara yayılmaları sonucunda oluşur. Örneğin Hindistan’daki Dekkan Platosu Kalkan Biçimindeki Volkanlar : Akıcı lavların bir bacadan çıkarak birikmesi sonucunda oluşan, geniş alanlı ve kubbemsi bir görünüşe sahip volkanlardır. Örneğin : Güneydoğu Anadolu’daki Karacadağ Volkanı Koni Biçimindeki Volkanlar : Magmadan değişik dönemlerde yükselen, farklı karakterdeki malzemenin birikmesi ile oluşur. Bu volkanların kesitinde, farklı karakterdeki malzeme katmanları ardarda görüldüğü için tabakalı volkanlar da denir. Örneğin ülkemizdeki Erciyes, Nemrut, Hasan ve Ağrı volkanları koni biçimli volkanlardır. Tüf Konileri : Volkanlardan çıkan küllerin ve diğer kırıntılı maddelerin birikmesi ile oluşan konilere denir. Örneğin ülkemizde Kula ve Karapınar çevresindeki koniler kül konileridir. Volkanik Kuşaklar Yeryüzünde bilinen volkanların sayısı binlere ulaşmasına karşın ancak 516 kadarı tarihi çağlarda faaliyet göstermiş, bu nedenle aktif volkanlar olarak kabul edilmişlerdir. Yerkabuğunu bloklar halinde bölen kırıklar üzerinde bulunan volkanlar, bir çizgi doğrultusunda sıralanmakta adeta kuşak oluşturmaktadır. Dünya’daki Volkanlar Dünya üzerindeki aktif volkanlar üç ana bölgede toplanmıştır. Volkanların en yoğun olduğu bölge Pasifik Okyanusu’nun kenarlarıdır. Volkanların aktif olduğu ikinci bölge Alp-Himalaya kıvrım kuşağı, üçüncü bölge ise okyanus ortalarıdır. Okyanus Ortaları Yerkabuğunun üst bölümünü oluşturan sial okyanus tabanlarında daha incedir. Bu ince kabuk mantodaki yükselici hareketler nedeniyle yırtılarak ayrılır. Ayrılma bölgesi adı verilen bu bölümden magma yükselir ve okyanus tabanına yayılır. Bu durum okyanus ortalarında aktif volkanların bulunmasının nedenidir. Türkiye’deki Volkanlar Alp-Himalaya kıvrım kuşağında yer alan Türkiye’de volkanlar, tektonik hatlara uygun olarak beş bölgede yoğunlaşmıştır. Ancak günümüzde Türkiye’de aktif volkan bulunmamaktadır. Depremler Yerkabuğunun derinliklerinde doğal nedenlerle oluşan salınım ve titreşim hareketleridir. Yerkabuğunun titreşimi sırasında değişik özellikteki dalgalar oluşmakta ve bunlar depremin merkezinden çevreye doğru farklı hız ve özellikle yayılmaktadır. Deprem dalgaları P, S, L dalgaları olarak 3 çeşittir. Depremlere neden olan olayların kaynaklandığı yerden uzaklaşıldıkça depremin etkisi azalır. Oluşum nedenlerine göre depremler, 3 gruba ayrılır : • Volkanik Depremler • Çökme Depremleri • Tektonik Depremler P, S, L Dalgaları P dalgaları (Primer dalgalar), titreşim hareketi ile yayılma doğrultusunun aynı yönde olduğu ve yayılma hızının en fazla olduğu dalgalardır. S dalgaları (Sekonder dalgalar), titreşim hareketlerinin yayılma doğrultusuna dik ve bir düzlem üzerinde aşağı yukarı olduğu dalgalardır. L dalgaları (Longitidunal dalgalar), yüzey dalgaları veya uzun dalgalar olarak da tanımlanır. Bu dalgaların hızları diğer dalgalara göre daha azdır. Volkanik Depremler Aktif volkanların bulunduğu yerlerde, patlama ve püskürmelere bağlı oluşan yer sarsıntılarıdır. Etki alanları dardır. Çökme Depremleri Bu tür depremler, eriyebilen taşların bulunduğu yerlerdeki yer altı mağaralarının tavanlarının çökmesiyle oluşur. Ayrıca kömür ocaklarının ve galerilerinin çökmesi de bu tür depremlere neden olur. Çok küçük ölçülü sarsıntılardır. Etki alanları dar ve zararları azdır. Tektonik Depremler Yerkabuğunun üst katlarındaki kırılmalar sırasında oluşan yer sarsıntılarıdır. Bu sarsıntılar çevreye deprem dalgaları olarak yayılır. Yeryüzünde oluşan depremlerin büyük bölümü tektonik depremlerdir. Etki alanları geniş, şiddetleri fazladır. En çok can ve mal kaybına neden olan depremlerdir. Örneğin ülkemizde 1995’te Afyon’un Dinar ilçesinde, 1998’de Adana’da oluşan depremler tektonik kökenlidir. UYARI : Tektonik depremlerin en etkili olduğu alanlar dış merkez ve yakın çevresidir. Depremin İç ve Dış Merkezi Depreme neden olan olayın kaynaklandığı noktaya odak, iç merkez ya da hiposantr denir. Yeryüzünde depremin iç merkezine en yakın olan noktaya ise, dış merkez ya da episantr denir. Depremin en şiddetli olduğu episantrdan uzaklaşıldıkça depremin etkisi azalır. Yer sarsıntıları sismograf ile kaydedilir. Deprem’in şiddeti günümüzde Richter ölçeğine göre değerlendirilir. Depremin Etkileri ve Korunma Yolları Depremler önceden tahmin edilmesi mümkün olmayan yer hareketleridir. Ancak alınacak bazı önlemlerle depremlerin zarar derecesi azaltılabilir. Depremin Etkileri : Depremin yıkıcı etkisi deprem şiddetine, dış merkeze (episantr) olan uzaklığa, zeminin yapısına, binaların özelliğine ve kütlenin eski ya da yeni oluşuna bağlı olarak değişir. Depremden Korunma Yolları Depremin yıkıcı etkisi birtakım önlemlerle azaltılabilir. Bunun için, • Yerleşim yerlerini deprem kuşakları dışında seçmek • Yerleşim birimlerini sağlam araziler üzerinde kurmak • İnşaatlarda depreme dayanıklı malzemeler kullanmak • Çok katlı yapılardan kaçınmak gerekir. Deprem Kuşakları Genç kıvrım – kırık kuşakları yerkabuğunun en zayıf yerleridir. Bu nedenle bu bölgeler volkanik hareketlerin sebep olduğu depremlerin sık görüldüğü yerlerdir. • Dünya’daki Deprem Kuşakları Depremlerin görüldüğü alanlar volkanik kuşaklarla ve fay hatlarıyla uyum içindedir. Aktif volkanların en etkili olduğu Pasifik okyanusu kenarları birinci derece deprem kuşağıdır. Anadolu’nun da içinde bulunduğu Alp-Himalaya kıvrım kuşağı ikinci derece, okyanus ortaları ise üçüncü derece deprem kuşağıdır. • Türkiye’de Deprem Kuşakları Alp-Himalaya kıvrım kuşağında bulunan Anadolu’nun büyük bir bölümü ikinci derece deprem kuşağında yer alır. Bu durum Anadolu’nun jeolojik gelişimini henüz tamamlamadığını gösterir. Türkiye’deki deprem kuşakları 5 grupta toplanır : I. Dereceden Deprem Kuşağı : Tektonik çukurluklar ve aktif kırık hatları yakınındaki alanlardır. Burada meydana gelen depremler büyük ölçüde can ve mal kaybına neden olur. II. Dereceden Deprem Kuşağı : Depremlerin birinci derece deprem kuşağındakine oranla daha az zarar verdiği alanlardır. III. Dereceden Deprem Kuşağı : Sarsıntıların az zararla geçtiği alanlardır. IV. Dereceden Deprem Kuşağı : Sarsıntıların çok az zararla ya da zararsız geçtiği alanlardır. V. Dereceden Deprem Kuşağı : Sarsıntıların çok az olduğu ya da hiç hissedilmediği alanlardır. Dış Güçler ve Etkileri Faaliyetleri için gerekli olan enerjiyi Güneş’ten alan güçlerdir. Dış güçler çeşitli yollarla yerkabuğunu şekillendirirler. Dış güçler, akarsular, rüzgarlar, buzullar ve deniz suyunun hareketleridir. Dış güçlerin etkisiyle yeryüzünde bir takım olaylar gerçekleşir. Bu olaylar aşağıda sırlanmıştır. • Taşların çözülmesi • Toprak oluşumu • Toprak kayması ve göçme (heyelan) • Erozyon Taşların Çözülmesi Yerkabuğunu oluşturan taşlar, iklimin ve canlıların etkisiyle parçalanıp, ufalanırlar. Taşların çözülmesinde taşın cinsi de etkili olmaktadır. Taşların çözülmesi fiziksel ve kimyasal yolla iki şekilde gerçekleşir: • Fiziksel (Mekanik) Çözülme • Kimyasal Çözülme UYARI : Kaya çatlaklarındaki bitkilerin, köklerini daha derinlere salması sonucunda kayalar parçalanır ve ufalanır. Bu tür çözülme, fiziksel çözülmeyi artırıcı etki yapar. Ayrıca bitki köklerinden salgılanan özsular taşlarda kimyasal çözülmeye neden olur. Fiziksel (Mekanik) Çözülme Taşların fiziksel etkiler sonucunda küçük parçalara ayrılmasına denir. Fiziksel çözülme, taşları oluşturan minerallerin kimyasal yapısında herhangi bir değişikliğe neden olmaz. UYARI : Fiziksel (mekanik) çözülme, kurak, yarı kurak ve soğuk bölgelerde belirgindir. Fiziksel (Mekanik) çözülme üç şekilde olur : • Güneşlenme yolu ile fiziksel çözülme : Gece ile gündüz, yaz ile kış arasındaki sıcaklık farklarının fazla olduğu yarı kurak ve kurak bölgelerde görülür. Gündüz, güneşlenme ve ısınmanın etkisiyle taşları oluşturan minerallerin etkisiyle taşları oluşturan minerallerin hacimleri genişler. Gece, sıcaklık farklarının fazla olduğu yarı kurak ve kurak bölgelerde görülür. Gündüz, güneşlenme ve ısınmanın etkisiyle taşları oluşturan minerallerin hacimleri genişler. Gece, sıcaklık düşünce minerallerin hacimleri yeniden küçülür. Bu hacim değişikliği taşların parçalanmasına neden olur. • Buz çatlaması yolu ile fiziksel çözülme : Sıcaklığın çok zaman donma noktasına yakın olduğu ve yağışın yeter derecede olduğu yüksek dağlar ve yüksek enlemlerde görülen çözülme şeklidir. Yağışlardan sonra taşların delik, çatlak ve ince yarıklarına sular dolar. Sıcaklık donma noktasına kadar düşünce, taşın içine sızmış olan sular donar. Donan suyun hacmi genişlediği için basınç etkisiyle taşlar parçalanır ve çözülür. • Tuz çatlaması yolu ile fiziksel çözülme : Taşların tuzlu suları emmiş bulunduğu ve buharlaşmanın çok fazla olduğu çöl bölgelerinde görülür. Kurak bölgelerde buharlaşma ile kılcal taş çatlaklarından yeryüzüne yükselen tuzlu sular, yüzeye yaklaştıkça suyunu yitirir. Çatlakların kenarında tuz billurlaşması olur. Gece nemli geçerse, suyunu yitiren tuz billurları yeniden su alır ve hacmi genişler. Basınç etkisiyle taşlar parçalanır ve çözülür. Kimyasal Çözülme Kimyasal reaksiyonlar suya ihtiyaç duyduğunda ve sıcaklık reaksiyonu hızlandırdığından, sıcak ve nemli bölgelerde yaygın olan çözülme şeklidir. Kaya tuzu, kalker gibi taşlar suda kolayca erirler. Taşlar, kimyasal yolla parçalanıp ufalanırken kimyasal bileşimleri de değişir. UYARI : Kimyasal çözülme, ekvatoral, okyanus ve muson iklim bölgelerinde belirgindir. Toprak Oluşumu Toprak, taşların ve organik maddelerin ayrışması ile oluşan, içinde belli oranda hava ve su bulunan, yerkabuğunun üstünü ince bir tabaka halinde saran örtüdür . Toprağın içinde bulunan çeşitli organizmalar toprağın oluşumuna yardım eder. Toprağın üstündeki organik maddece zengin bölüme humus adı verilir. Toprak oluşumunu etkileyen etmenler : • İklim koşulları • Ana kayanın özellikleri • Bitki örtüsü • Eğim koşulları • Oluşum Süresi’dir UYARI : Mekanik çözülmeyle toprak oluşumu zordur. Kimyasal çözülmede ise toprak oluşumu daha kolaydır. Örneğin çöllerde toprak oluşumunun yavaş olması kimyasal çözülmenin yetersiz olmasına bağlıdır. Toprak Horizonları Yerkabuğu üstünde ince bir örtü halinde bulunan toprak, çeşitli katmanlardan oluşur. Bu katmanlara horizon adı verilir. Toprağın dört temel horizonu vardır. A Horizonu : Dış etkilerle iyice ayrışmış, organik maddeler bakımından zengin, en üstteki katmandır. Tarımsal etkinlikler, bu katman üzerinde yapılmaktadır. B Horizonu : Suyun etkisiyle üst katmanda yıkanan minerallerin biriktirdiği katmandır. C Horizonu : İri parçalardan oluşan ve ana kayanın üzerinde bulunan katmandır. D Horizonu : Fiziksel ve kimyasal çözülmenin görülmediği, ana kayadan oluşan, en alt katmandır. Toprak Tipleri Topraklar yeryüzünün çeşitli bölgelerinde farklı özellikler gösterir. Bazıları mineraller bakımından, bazıları da humus bakımından zengindir. Topraklar oluştukları yerlere ve oluşumlarına göre iki ana bölümde toplanır : • Taşınmış Topraklar • Yerli Topraklar Taşınmış Topraklar Akarsuların, rüzgarların, buzulların etkisiyle yüksek yerlerden, kopartılıp, taşınan ve çukur alanlarda biriktirilen malzeme üzerinde oluşan topraklardır. Akarsuların taşıyıp biriktirdiği maddeler, alüvyon, rüzgarların biriktirdiği maddeler lös, buzulların biriktirdikleri moren (buzultaş) adını alır. Taşınmış topraklar çeşitli yerlerden getirilip, farklı özellikteki taşların ufalanmasından oluştukları için mineral bakımından zengindir. Bu nedenle çeşitli bitkilerin yetiştirilmesi için uygun, verimli topraklardır. Yerli Topraklar Dış güçlerin etkisiyle yerli kaya üzerinde sonucunda oluşan topraklardır. Özelliklerini belirleyen temel etkenler ana kayanın cinsi ve iklim koşullarıdır. Yerli topraklar iki ana bölümde toplanır: • Nemli Bölge Toprakları • Kurak Bölge Toprakları Nemli Bölge Toprakları Yağışın yeterli olduğu bölgelerde oluştukları için, mineral maddeler, tuz ve kireç toprağın alt katmanlarına taşınmıştır. Tundra Toprakları : Tundra ikliminin görüldüğü bölge topraklarıdır. Yılın büyük bir bölümünde donmuş haldedir. Yaz aylarında sadece yüzeyde ince bir tabaka halinde çözülme görülür. Geniş bataklıklar oluşur. Bitki örtüsü çok cılız olduğundan humus tabakası yoktur. Verimsiz topraklardır. Buralardaki kısa boylu ot, çalı ve yosunlara tundra adı verilir. Podzol Topraklar : Tayga adı verilen iğne yapraklı orman örtüsü altında oluşan, soğuk ve nemli bölge topraklarıdır. Toprağın aşırı yıkanması nedeniyle organik maddelerin çoğu taşınmıştır. Bu nedenle renkleri açıktır. Bu tip topraklar Sibirya, Kuzey Avrupa ve Kanada’da yaygındır. Kahverengi Orman Toprakları : Yayvan yapraklı orman örtüsü altında oluşan, ılık ve nemli bölge topraklarıdır. Kalın bir humus tabakası bulunur. Kırmızı Topraklar : Akdeniz ikliminin egemen olduğu bölgelerde kızılçam ve maki örtüsü altında gelişen topraklardır. Demir oksitler bakımından zengin olduğu için, renkleri kırmızımsıdır. Kalkerler üzerinde oluşanlara terra rossa adı verilir. Lateritler : Sıcak ve nemli bölge topraklarıdır. Yağış ve sıcaklığın fazla olması nedeniyle çözülme ileri derecededir. Buna bağlı olarak toprak kalınlığı fazladır. Demiroksit ve alüminyum bakımından zengin olduğundan renkleri kızıla yakındır. Topraktaki organik maddeler, mikroorganizmalar tarafından parçalandığı için toprak yüzeyinde humus yoktur. Kurak Bölge Toprakları Yağışların az buna bağlı olarak bitki örtüsünün cılız olması nedeniyle bu topraklarda humus çok azdır. Ayrıca yağışların azlığı nedeniyle toprak katmanları tam oluşmamıştır. Kireç ve tuzlar bakımından zengin topraklardır. Kurak bölge toprakları oluşturdukları iklim bölgesinin kuraklık derecesine göre farklılaşırlar. Çernozyemler : Nemli iklimden kurak iklime geçişte ilk görülen topraklardır. Orta kuşağın yarı nemli alanlarında, uzun boylu çayır örtüsü altında oluşan bu topraklara kara topraklar da denir. Organik madde yönünden zengin olan bu topraklar üzerinde, yoğun olarak tarım yapılır. Kestane ve Kahverenkli Step Toprakları : Orta kuşak karaların iç kısımlarındaki step alanlarının topraklarıdır. Organik maddeler ince bir tabaka oluşturmaktadır. Tahıl tarımına elverişli topraklardır. Çöl Toprakları : Çöllerde görülen, organik madde yönünden son derece fakir topraklardır. Kireç ve tuzlar bakımından zengin topraklardır. Renkleri açıktır. Tarımsal değerleri bulunmaz. Türkiye’de Görülen Toprak Tipleri Ilıman kuşakta yer alan Türkiye’de, iklim tiplerine ve zeminin yapısına bağlı olarak toprak tipleri çeşitlilik gösterir. Podzollar : İğne yapraklı orman örtüsü altında oluşan topraklardır. Toprağın aşırı yıkanması nedeniyle organik maddelerin çoğu taşınmıştır. Açık renkli topraklardır. Çay tarımına uygun topraklardır. Kahverengi Orman Toprakları : Orman örtüsü altında oluşan topraklardır. Humus yönünden zengindirler. Kırmızı Topraklar : Kızılçam ve maki örtüsü altında oluşan topraklardır. Demir oksitler bakımından zengin olduğu için, renkleri kırmızımsıdır. Kalkerler üzerinde oluşanlara terra rossa adı verilir. Bu topraklar turunçgil tarımına en uygun topraklardır. Kestane ve Kahverenkli Step Toprakları : Yarı kurak iklim koşulları ve step bitki örtüsü altında oluşan topraklardır. Yüksek sıcaklık nedeniyle kızılımsı renktedirler. Zayıf bitki örtüsü nedeniyle organik maddeler ince bir örtü oluşturur. Tahıl tarımına uygun topraklardır. Vertisoller : Genellikle kireç bakımından zengin, killi, marnlı tortullar üzerinde oluşan, toprak horizonlarının henüz gelişimini tamamlamadığı topraklardır. Aşırı miktarda kil içeren vertisoller yağışlı dönemde çok su çeker, kurak dönemde aşırı su kabedip, çatlar. Litosoller : Dağlık alanlarda, eğimli yamaçlarda veya volkanik (genç bazalt platolarının bulunduğu) düzlüklerde görülen ana kayanın ufalanmış örtüsüdür. Genelde derinliği 10 cm kadardır ve toprak horizonları gelişmemiştir. Alüvyal Topraklar : Akarsuların denize ulaştığı yerlerde görülür. Çeşitli yerlerden taşınan, farklı özellikteki taşların ufalanması ile oluşan bu topraklar mineral yönünden zengin ve çok verimlidir. Toprak Kayması ve Göçme (Heyelan) Toprağın, taşların ve tabakaların bulundukları yerlerden aşağılara doğru kayması ya da düşmesine toprak kayması ve göçmesi denir. Ülkemizde bu olayların tümüne birden heyelan adı verilir. Yerçekimi, yamaç zemin yapısı, eğim ve yağış koşulları heyelana neden olan etmenlerdir. UYARI : Heyelanın oluşumu yağışların fazla olduğu dönemlerde daha çok görülür. Yerçekimi : Heyelanı oluşturan en önemli etkendir. Yerçekimi gücü sürtünme gücünden fazla olduğu zaman yamaçtaki cisimler aşağıya doğru kayar. Yamaç Zeminin Yapısı: Suyu emerek içerisinde tutan taş ve topraklar kayganlaşır. Özellikle killi yapının yaygın olduğu yamaçlarda kil suyu içinde tuttuğu için heyelan daha sık görülür. Kalker gibi suyu alt tabakalara geçiren taşların oluşturduğu yamaçlarda ise heyelan ender görülür. Eğim : Yamaç eğimi yerçekiminin etkisini artırıcı bir rol oynar. Bu nedenle dik yamaçlarda heyelan olasılığı daha fazladır. Ayrıca tabakalar yamaç eğimine uyum sağlamışsa, yani paralelse yer kayması kolaylaşır. Yol, kanal, tünel ve baraj yapımları sırasında yamaç dengesinin bozulması, volkanizma, deprem gibi etkenler de heyelana neden olur. Yağış Koşulları : Yağmur, kar suları tabakalar arasına sızarak toprağı kayganlaştırır, toprağı doygun hale getirir. Böylece su ile doygun kütlelerin yamaç aşağı kayması kolaylaşır. Heyelan genellikle yağışlardan sonra oluşur. Heyelanın Etkileri ve Korunma Yolları Heyelan hemen her yıl can ve mal kaybına yol açmaktadır. Ancak alınacak bir takım önlemlerle heyelanın etkileri azaltılabilir. Heyelanın Etkileri İnsan ve hayvan ölümleri Tarımsal hasar ve toprak kaybı Bina hasarları Ulaşım ve taşımacılığın aksaması Heyelandan Korunma Öncelikle heyelan tehlikesi olan yerlerde setler yapılmalı, yamaçlar ağaçlandırılmalıdır. Ayrıca yol, kanal, tünel ve baraj yapımlarında yamacın bozulmamasına özen gösterilmelidir. Türkiye’de Heyalan Türkiye’de heyelan sık görülen, doğal bir felakettir. Türkiye’de arazinin çok engebeli olması toprak kaymalarını kolaylaştırmaktadır. Bölgeden bölgeye farklılık gösteren heyelanların en sık görüldüğü bölgemiz Karadeniz’dir. Bölgede arazi eğiminin fazla, yağışların bol ve killi yapının yaygın olması heyelanın sık görülmesine neden olur. Ülkemizde ilkbahar aylarında görülen kar erimeleri ve yağışlar heyelan olaylarını artırır. Erozyon Toprak örtüsünün, akarsuların, rüzgarların ve buzulların etkisiyle süpürülmesine erozyon denir. Yeryüzünde eğim, toprak, su ve bitki örtüsü arasında doğal bir denge bulunmaktadır. Bu dengenin bozulması erozyonu hızlandırıcı bir etki yapmaktadır. Dış etkenler ya da arazinin yanlış kullanılması erozyona neden olmaktadır. UYARI : Eğim fazlalığı ve cılız bitki örtüsü erozyonu artıran en önemli etkenlerdir. Bu nedenle kurak ve yarı kurak enlemlerde erozyon önemli bir sorundur. Dış Etkenler Akarsu, rüzgar gibi dış güçlerin yapmış olduğu aşındırma sonucunda toprak örtüsü süpürülür ve başka yerlere taşınır. Dış güçlerin etkisi bitki örtüsünün bulunmadığı ya da çok cılız olduğu yerlerde daha belirgindir. Ayrıca eğimin fazla olduğu yerlerde sular daha kolay akışa geçerek toprak örtüsünün süpürülmesini hızlandırır. Arazinin Yanlış Kullanılması Özellikle yamaçlardaki tarlaların yamaç eğimi yönünde sürülmesi, eğimli yerlerde tarla tarımının yaygın olması, arazinin teraslanmaması erozyon hızını artırmaktadır. Su Erozyonu Bitki örtüsünün cılız ya da hiç olmadığı yerlerde toprağın ve ana kayanın sularla yerinden kopartılarak taşınmasına su erozyonu denir. Kırgıbayır ve peribacası su erozyonu ile oluşan özel şekillerdir. Kırgıbayır : Yarı kurak iklim bölgelerinde sel yarıntılarıyla dolu yamaçlara kırgıbayır (badlans) denir. Peribacası : Özellikle volkan tüflerinin yaygın olarak bulunduğu vadi ve platoların yamaçlarında sel sularının aşındırması ile oluşan özel yeryüzü şekillerine peribacası denir. Bazı peribacalarının üzerinde şapkaya benzer, aşınmadan arta kalan sert volkanik taşlar bulunur. Bunlar volkanik faaliyet sırasında bölgeye yayılmış andezit ya da bazalt kütleridir. Peribacalarının en güzel örnekleri ülkemizde Nevşehir, Ürgüp ve Göreme çevresinde görülür. Rüzgar Erozyonu Bitki örtüsünün olmadığı ya da cılız olduğu yerlerde toprağın rüzgarlarla yerinden kopartılarak taşınmasına rüzgar erozyonu denir. Erozyonun Etkileri ve Erozyondan Korunma Yolları Oluşumu için milyonlarca yıl geçmesi gereken toprak örtüsünü yok eden ve her geçen gün etkilerini arttıran erozyon doğal bir felakettir. Alınacak bir takım önlemlerle etkileri azaltılabilir. Erozyonun Etkileri Tarım topraklarının azalması, sellerin artması, tarımsal üretimin ve verimin azalması, otlakların azalması, hayvancılığın gerilemesi, çölleşmenin başlaması. Erozyondan Korunma Yolları Var olan ormanlar ve meralar korunmalı, çıplak yerler ağaçlandırılmalı, ormanlık alanlarda keçi beslenmesi engellenmeli, yamaçlardaki tarlalar, yamaç eğimine dik sürülmeli, meyve tarımı ve nöbetleşe ekim yaygınlaştırılmalı, orman içi köylülerine yeni geçim kaynakları sağlanmalı. Türkiye’de Erozyon Türkiye’de arazi engebeli ve çok eğimli olduğu için toprak erozyonu önemli bir sorundur. Bazı bölgelerimiz dışında bitki örtüsünün cılız olması da erozyonu artırmaktadır. Ayrıca nüfusun hızla artması, tarım alanlarına olan gereksinimin artması, ormanların tahrip edilmesine yol açmaktadır. Bunlara bağlı olarak hemen hemen tüm bölgelerimizde toprak erozyon hızı yüksektir. Akarsular Yeryüzünün şekillenmesinde en büyük paya sahip dış güç akarsulardır. Yüzey sularının eğimli bir yatak içinde toplanıp akmasıyla akarsu oluşur. Akarsular küçükten büyüğe doğru dere, çay, öz, ırmak ve nehir şeklinde sıralanır. Bir akarsuyun doğduğu yere akarsu kaynağı, döküldüğü yere akarsu ağzı denir. Bir akarsu, birbirine bağlanan küçük, büyük, dar veya geniş birçok koldan oluşan bir sistemdir. Bu sistemin en uzun ve su bakımından en zengin olan kolu ana akarsudur. Akarsu Havzası (Su Toplama Alanı) Akarsuyun tüm kollarıyla birlikte sularını topladığı bölgeye akarsu havzası denir. Bir akarsu havzasının genişliği iklim koşullarına ve yüzey şekillerine bağlıdır. Akarsu havzaları iki bölümde incelenir : • Açık Havza : Sularını denize ulaştırabilen havzalara açık havza denir. Örnek : Yeşilırmak, Kızılırmak, Yenice, Sakarya, Susurluk, Gediz, Küçük Menderes, Büyük Menderes, Aksu, Göksu, Seyhan, Ceyhan, Fırat, Dicle Çoruh • Kapalı Havza : Sularını denize ulaştıramayan havzalara kapalı havza denir. Kapalı havzaların oluşmasındaki temel etken yer şekilleridir. Sıcaklık ve nem koşulları da kapalı havzaların oluşmasında etkilidir. Örnek : Van Gölü Kapalı Havzası, Tuz Gölü Kapalı Havzası, Konya Kapalı Havzası, Göller Yöresi Kapalı Havzası, Aras, Kura UYARI : Sularını Hazar Denizi’ne boşaltan Aras ve Kura ırmakları kapalı havza oluşturur. Su Bölümü Çizgisi Birbirine komşu iki akarsu havzasını birbirinden ayıran sınıra su bölümü çizgisi denir. Su bölümü çizgisi genellikle dağların doruklarından geçer. Su bölümü çizgisi; • Kurak bölgelerde, • Bataklık alanlarda, • Karistik alanlarda çoğunlukla belirsizdir. Akarsu Akış Hızı Akarsuyun akış hızı yatağın her iki kesitinde farklıdır. Suyun hızı yanlarda, dipte ve su yüzeyinde sürtünme nedeniyle azdır. Suyun en hızlı aktığı yer akarsuyun en derin yerinin üzerinde ve yüzeyin biraz altındadır. Akarsu yatağında suyun en hızlı aktığı noktaları birleştiren çizgiye hız çizgisi (talveg) denir. Akış hızı, yatağın eğimi ve genişliği ile taşınan su miktarına bağlı olarak değişir. Akarsu Akımı (Debisi) Akarsuyun herhangi bir kesitinden birim zamanda geçen su miktarına (m3) akım veya debi denir. Akarsuyun akımı yıl içerisinde değişir. Akım, akarsuyun çekik döneminde az, kabarık döneminde fazladır. Akarsu akımını; • Yağış miktarı rejimi • Yağış tipi • Zeminin özelliği • Kaynak suları • Sıcaklık ve buharlaşma koşulları etkiler. Akarsu Rejimi Akarsuyun akımının yıl içerisinde gösterdiği değişmelere rejim ya da akım düzeni denir. Akarsu rejimini belirleyen temel etken havzanın yağış rejimidir. Yağışların az, sıcaklık ve buharlaşmanın fazla olduğu dönemlerde akarsu akımı düşer. Yağışların fazla olduğu ve kar erimelerinin görüldüğü dönemlerde akım yükselir. Akarsu rejimleri 4 tiptir. Düzenli Rejim : Akımı yıl içerisinde fazla değişmeyen akarsuların rejim tipidir. Düzensiz Rejim : Akımı yıl içerisinde büyük değişmeler gösteren akarsuların rejim tipidir. Karma Rejim : Farklı iklim bölgelerinden geçen akarsuların rejim tipidir. Örneğin : Nil Nehri Sel Tipi Rejim : İlkbahar yağışları ve kar erimeleri ile bol su taşıyan, yaz aylarında ise suları yok denecek kadar azlan akarsuların rejim tipidir. Örneğin ülkemizdeki İç Anadolu Bölgesi akarsuları. İklim Bölgelerine Göre Akarsu Rejimleri Sıcaklık ve yağış koşulları ile akarsuların taşıdıkları su miktarı ve akım düzeni arasında sıkı bir ilişki vardır. Farklı iklim bölgelerindeki akarsuların rejimleri birbirinden farklı olabilir. Ancak iklim bölgelerinin yüksek ve karlı bölümlerindeki akarsuların rejimleri benzerdir. Kar erimelerinin olduğu dönemlerden akım yükselir. Kış aylarında kar yağışının fazla olması akımın düşük olmasına neden olur. Yağmurlu Ekvatoral İklimde Akarsu Rejimi : Bu iklim tipinde yağışlar bol ve yağış rejimi düzenli olduğu için Ekvatoral bölge akarsuları yıl boyunca bol su taşır. Örneğin Amazon ve Kongo nehirleri. Yağmurlu Okyanusal İklimde Akarsu Rejimi : Bu iklim tipinde yağışların bol ve düzenli olması nedeniyle akarsular yıl boyunca bol su taşır. Örneğin İngiltere’deki Thames Nehri Muson İkliminde Akarsu Rejimi : Bu iklim tipinde yaz yağışları nedeniyle akım yükselir. Kış kuraklığı akım düşer. Örneğin Ganj ve İndus nehirleri. Akdeniz İkliminde Akarsu Rejimi : Yaz kuraklığına, sıcaklık ve buharlaşmanın fazlalığına bağlı olarak yaz aylarında akım düşüktür. Kışın yağışlar, ilkbaharda kar erimeleri ile yükselir. Türkiye Akarsularının Özellikleri 1. Türkiye’nin dağlık ve engebeli bir ülke olması nedeniyle, akarsularımızın boyu genellikle kısadır. 2. Yağışlı ve kar erimelerinin olduğu dönemlerde taşan, kurak dönemlerde ise kuruyacak derecede suları azalan akarsularımızın rejimleri düzensizdir. 3. Karadeniz Bölgesi’ndeki akarsularımızın dışındakiler genellikle bol su taşımazlar. 4. Akarsularımız rejimlerinin düzensiz ve yatak eğimlerinin fazla olması nedeniyle ulaşıma uygun değildir. 5. Türkiye bugünkü görünümünü 3. ve 4. zamandaki orojenik ve epirojenik hareketlerle kazanmıştır. Bu nedenle akarsularımız henüz denge profiline ulaşamamıştır. UYARI : Türkiye’deki akarsuların yatak eğimleri ve akış hızları fazla olduğundan hidro-elektrik potansiyelleri yüksektir. Taban Seviyesi, Denge Profili Akarsuların döküldükleri deniz ya da göl yüzeyine taban seviyesi denir. Deniz yüzeyi ana taban seviyesini oluşturur. Göl yüzeyi ya da kapalı havza yüzeyi yerel taban seviyesi diye adlandırılır. Akarsular aşındırma ve biriktirmesini taban seviyesine göre yapar. Yatağını taban seviyesine indirmiş olan akarsular aşındırma ve biriktirme faaliyetini dengelemiştir. Aşınım ve birikimin eşitlendiği bu profile denge profili denir. Plato, Peneplen Akarsuların amacı bulundukları bölgeyi aşındırarak deniz seviyesine yaklaştırmak diğer bir deyişle denge profiline ulaşmaktır. Akarsuyun aşınım sürecinde görülen şekiller; plato ve peneplendir. Plato : Akarsu vadileriyle derince yarılmış düz ve geniş düzlüklerdir. Peneplen : Geniş arazi bölümlerinin, akarsu aşınım faaliyetlerinin son döneminde deniz seviyesine yakın hale indirilmesiyle oluşmuş, az engebeli şekle peneplen (yontukdüz) denir. UYARI : Bir akarsuyun denge profiline ulaşabilmesi ve arazinin peneplen haline gelebilmesi için tektonik hareketlerin görülmediği milyonlarca yıllık bir süre gerekmektedir. Denge Profilinin Bozulması İklim değişikliklerinde ve tektonik hareketlere bağlı olarak deniz seviyesinin alçalması ya da yükselmesi taban seviyesinin değişmesine neden olur. Taban seviyesinin alçalması ya da yükselmesi de akarsuyun denge profilinin bozulmasına neden olur. Taban Seviyesinin Alçalması Taban seviyesinin alçalması, akarsuyun denge profilini bozarak akarsuyun aşındırma ve taşıma gücünün artmasına neden olur. Bu nedenle akarsu yatağına gömülür. Taban Seviyesinin Yükselmesi Taban seviyesinin yükselmesi, akarsuyun denge profilini bozarak akarsuyun taşıma gücünün azalmasına neden olur. Bu nedenle akarsu menderesler çizerek birikim yapar. Menderes : Akarsuyun geni vadi tabanı içinde, eğimin azalması nedeniyle yaptığı bükümlere denir. Akarsuların Aşındırma Şekilleri : Dış güçler içerisinde en geniş alana yayılmış, nemli bölgelerde ve orta enlemlerde etkili olan en önemli dış güç akarsulardır. Akarsular aşındırma ve biriktirme yaparak yeryüzünü şekillendirir. Akarsu, hızının ve kütlesinin yaptığı etki le yatağı derine doğru kazar, yatağı boyunca kopardığı veya erittiği maddeleri taşır. Akarsu aşındırması ile oluşan şekiller vadi ve dev kazanıdır. UYARI : Akarsuların aşındırmasında yatak eğimi temel etkendir. Çünkü yatak eğimi akarsuyun akış hızını belirler. Yatak eğiminin fazla olduğu yukarı bölümlerinde derinlemesine aşındırma daha belirgindir. Vadi Akarsuyun içinde aktığı, kaynaktan ağıza doğru sürekli inişi bulunan, uzun çukurluklardır. Akarsuların aşındırma gücüne, zeminin yapısına ve aşınım süresine bağlı olarak çeşitli vadiler oluşur. UYARI : Vadi tabanları tarım, bahçecilik, ulaşım ve yerleşme bakımından elverişli alanlardır. Çentik (Kertik) Vadi : Akarsuların derine aşındırmasıyla oluşan V şekilli, tabansız, genç vadilere çentik vadi ya da kertik denir. Türkiye’nin bugünkü görünümünü 3. ve 4. zamanda kazanmış olması nedeniyle, Türkiye akarsuları henüz denge profiline ulaşmamış, geç akarsulardır. Bu nedenle ülkemizde çok sayıda çentik (kertik) vadi bulunmaktadır. Yarma Vadi (Boğaz) : Akarsuyun, iki düzlük arasında bulunan sert kütleyi derinlemesine aşındırması sonucunda oluşur. Vadi yamaçları dik, tabanı dardır. Akarsuyun yukarı bölümlerinde görülür. Türkiye’de çok sayıda yarma vadi (boğaz) bulunur. Karadeniz Bölgesi’nde, Yeşilırmak üzerinde, Şahinkaya yarma vadisi, Marmara Bölgesi’nde, Sakarya üzerinde Geyve Boğazı, Akdeniz Bölgesi’nde Atabey deresi üzerinde Atabey Boğazı başlıca örnekleridir. Kanyon Vadi : Klaker gibi dirençli ve çatlaklı taşlar içinde, akarsuyun derinlemesine aşındırmasıyla oluşur. Vadinin yamaç eğimleri çok dik olup, 90 dereceyi bulur. Kanyon vadiler Türkiye’de Toroslar’da yaygın olarak görülür. Antalya’daki Köprülü Kanyon, ülkemizdeki güzel bir örnektir. Tabanlı Vadi : Akarsu, yatağını taban seviyesine yaklaştırınca derine aşınım yavaşlar. Yatak eğiminin azalması akarsuyun menderesler çizerek yanal aşındırma yapmasına neden olur. Yanal aşındırmanın artması ile tabanlı vadiler oluşur. Menderes Akarsu yatak eğiminin azalması, akarsuyun akış hızının ve aşındırma gücünün azalmasına neden olur. Akarsu büklümler yaparak akar. Akarsuyun geniş vadi tabanı içinde, eğimin azalması nedeniyle yaptığı büklümlere menderes denir. Menderesler yapan akarsuyun, uzunluğu artar ancak akımı azalır. Taban seviyesinin alçalması nedeniyle menderesler yapan bir akarsuyun, yatağına gömülmesiyle oluşan şekle gömük menderes denir. Dev Kazanı Akarsuların şelale yaparak döküldükleri yerlerde, hızla düşen suların ve içindeki taş, çakıl gibi maddelerin çarptığı yeri aşındırmasıyla oluşan yeryüzü şeklidir. Akdeniz Bölgesi’ndeki Manavgat ve Düden şelalelerinin düküldükleri yerlerde güzel dev kazanı örnekleri bulunur. Akarsu Biriktirme Şekilleri Akarsular aşındırdıkları maddeleri beraberinde taşır. Yatak eğimleri azaldığında akarsuların aşındırma ve taşıma gücü de azalır. Bu nedenle taşıma güçlerinin azaldığı yerde taşıdıkları maddeleri biriktirirler. UYARI : Akarsuların yatak eğimi azaldığında hızları, aşındırma ve taşıma güçleri azalır. Biriktirmedeki, temel etken yatak eğimin azalmasıdır. Birikinti Konisi : Yamaçlardan inen akarsular, aşındırdıkları maddeleri eğimin azaldığı eteklerde biriktirir. Yarım koni şeklindeki bu birikimlere birikinti konisi adı verilir. Birikinti konileri zamanla gelişerek verimli tarım alanı durumuna gelebilir. Dağ Eteği Ovası : Bir dağın yamaçlarından inen akarsular taşıdıkları maddeleri eğimin azaldığı yerde birikinti konileri şeklinde biriktirirler. Zamanla birikinti konilerinin birleşmesiyle oluşan hafif dalgalı düzlüklere dağ eteği ovası adı verilir. Dağ İçi Ovası : Dağlık alanların iç kısımlarında, çevreden gelen akarsuların taşıdıkları maddeleri eğimin azaldığı yerlerde biriktirmesi ile oluşan ovalardır. Türkiye gibi engebeli ülkelerde dağ içi ovaları çok görülür. Taban Seviyesi Ovası : Akarsuların taban seviyesine ulaştığı yerlerde, eğimin azalması nedeniyle taşıdığı maddeleri biriktirmesi ile oluşturduğu ovalardır. Bu tür ovalarda akarsular menderesler yaparak akar. Gediz ve Menderes akarsularının aşağı bölümlerindeki ovalar bu türdendir. Seki (Taraça) : Yatağına alüvyonlarını yaymış olan akarsuyun yeniden canlanarak yatağını kazması ve derinleştirmesi sonucunda oluşan basamaklardır. Taban seviyesinin alçalması nedeniyle, tabanlı bir vadide akan akarsuyun aşındırma gücü artar. Yatağını derine doğru kazan akarsu vadi tabanına gömülür. Eski vadi tabanlarının yüksekte kalması ile oluşan basamaklara seki ya da taraça denir. Kum Adası (Irmak Adası) : Akarsuların yatak eğimlerinin azaldığı geniş vadi tabanlarından taşıdıkları maddeleri biriktirmesi ile oluşan şekillerdir. Kum adaları akarsuyun taşıdığı su miktarı ve akış hızına bağlı olarak yer değiştirirler. Kum adaları üzerinde yoğun bir bitki örtüsünün bulunması kum adalarının yer değiştirmediğini gösterir. Delta : Akarsuların denize ulaştıkları yerlerde taşıdıkları maddeleri biriktirmesiyle oluşan üçgen biçimli alüvyal ovalardır. Deltalar, taban seviyesi ovalarının bir çeşididir. Onlardan ayrılan yönü biriktirmenin deniz içinde olmasıdır. Bu nedenle deltanın oluşabilmesi için; • Gel-git olayının belirgin olmaması • Kıyının sığ olması • Kıyıda güçlü bir akıntının bulunmaması • Akarsu ağzında eğimin azalması gerekir. Yeraltı Suları ve Kaynaklar Yer altı Suyu (Taban Suyu) Yağış olarak yeryüzüne düşen ya da yeryüzünde bulunan suların, yerçekimi etkisiyle yerin altına sızıp, orada birikmesiyle oluşan sulardır. Yer altı suyunun oluşabilmesi için beslenme ve depolanma koşullarının uygun olması gerekir. Yer altı suyunun beslenmesini etkileyen en önemli etmen yağışlardır. Depolama koşulları ise yüzeyin eğimine, bitki örtüsüne ve yüzeyin geçirimlik özelliğine bağlıdır. Yer altı Sularının Bulunuş Biçimleri Bol yağışlı ve zemini geçirimli taşlardan oluşan alanlarda yer altı suyu fazladır. Az yağış alan, eğimi fazla ve geçirimsiz zeminlerde ise, yer altı suyunun oluşumu zordur. Kum, çakıl, kumtaşı konglomera, kalker, volkanik tüfler, alüvyonlar, geçirimli zeminleri oluşturur. Bu nedenle alüvyal ovalar ve karstik yöreler yer altı suyu bakımından zengin alanlardır. Kil, marn, şist, granit gibi taşlar ise geçirimsizdir. Yer altı suyu oluşumunu engeller. Yeraltında biriken sular Taban suyu Artezyen Karstik Yeraltı Suyu olarak bulunur. Taban Suyu Altta geçirimsiz bir tabaka ile sınırlandırılan, geçirimli tabaka içindeki sulardır. Bu sular genellikle yüzeye yakındır. Marmara Bölgesi’ndeki ovalar, Ege Bölgesi’ndeki çöküntü ovaları, Muş, Erzurum ve Pasinler ovalarındaki yer altı suları bu gruba girer. Artezyen Bu tür sular basınçlı yeraltı sularıdır. İki geçirimsiz tabaka arasındaki geçirimli tabaka içinde bulunan sulardır. Tekne biçimli ovalar ve vadi tabanlarında bu tür sular bulunmaktadır. İç Anadolu Bölgesi artezyen suları bakımından zengindir. Karstik Yer altı Suyu Karstik yörelerdeki kalın kalker tabakalar arasındaki çatlak ve boşluklarda biriken yer altı sularıdır. En önemli özelliği birbirinden bağımsız taban suları oluşturmasıdır. Karstik alanların geniş yer kapladığı Akdeniz Bölgesi karstik yeraltı suları bakımından zengindir. Kaynak Yeraltı sularının kendiliğinden yeryüzüne çıktığı yere kaynak denir. Türkiye’de kaynaklara pınar, eşme, bulak ve göze gibi adlar da verilir. Kaynaklar, yer altı suyunun bulunuş biçimine, yüzeye çıktığı yere ve suların sıcaklığına göre gruplandırılabilir. Sularının sıcaklığına göre kaynaklar, soğuk ve sıcak su kaynakları olarak iki gruba ayrılır : Soğuk Su Kaynakları Yağış sularının yeraltında birikerek yüzeye çıkması sonucunda oluşurlar. Genellikle yüzeye yakın oldukları için dış koşullardan daha çok etkilenirler. Bu nedenle suları soğuktur. Soğuk su kaynakları yeraltında bulunuş biçimine ve yüzeye çıktığı yere göre üç gruba ayrılır : Tabaka Kaynağı : Geçirimli tabakaların topoğrafya yüzeyi ile kesiştikleri yerden suların yüzeye çıkmasıyla oluşan kaynaklara tabaka kaynağı denir. Vadi Kaynağı : Yeraltına sızan suların bulunduğu tabakanın bir vadi tarafından kesilmesi ile oluşan kaynaktır. Genellikle vadi yamaçlarında görülür. Karstik Kaynak (Voklüz) : Kalın kalker tabakaları arasındaki boşlukları doldurmuş olan yer altı sularının yüzeye çıktığı kaynaktır. Bol miktarda kireç içeren bu kaynakların suları genellikle sürekli değildir. Yağışlarla beslendikleri için karstik kaynakların suları soğuktur. Toroslar üzerindeki Şekerpınarı en tanınmış karstik kaynak örneklerinden biridir. Sıcak Su Kaynakları Yerkabuğundaki fay hatları üzerinde bulunan kaynaklardır. Fay kaynakları da denir. Suları yerin derinliklerinden geldiği için sıcaktır ve dış koşullardan etkilenmez. Sular geçtikleri taş ve tabakalardaki çeşitli mineralleri eriterek bünyelerine aldıkları için mineral bakımından zengindir. Bu tür kaynaklara; kaplıca, ılıca, içme gibi adlar verilir. Sıcak su kaynaklarının özel bir türüne gayzer denir. Gayzer : Volkanik yörelerde yeraltındaki sıcak suyun belirli aralıklarla fışkırması ile oluşan kaynaklardır. UYARI : Yerin derinliklerinde bulunan suların sıcaklığı yıl içinde fazla bir değişme göstermez. Fay kaynakları volkanik ve kırıklı bölgelerde görülür. Türkiye’de Sıcak Su Kaynaklarının Dağılışı Türkiye kaplıca ve ılıca bakımından zengin bir ülkedir. Bursa, İnegöl, Yalova, Bolu, Haymana, Kızılcahamam, Sarıkaya, Erzurum, Sivas Balıklı Çermik, Afyon, Kütahya, Denizli çevresindeki kaplıca ve ılıcalar en ünlüleridir. Karstik Şekiller Yağışlar ve yer altı suları, kalker, jips, kayatuzu, dolomit gibi eriyebilen, kırık ve çatlakların çok olduğu taşların bulunduğu yerlerde, kimyasal aşınıma neden olurlar. Kimyasal aşınım sonunda oluşan şekillere karstik şekiller denir. Karstik Aşınım Şekilleri Yağışların ve yeraltı sularının oluşturduğu karstik aşınım şekillerinin aşınım şekillerinin büyüklükleri değişkendir. Karstik aşınım şekilleri şunlardır : Lapya : Kalkerli yamaçlarda yağmur ve kar sularının yüzeyi eriterek açtıkları küçük oluklardır. Oluşan çukurluklar keskin sırtlarda yan yana sıralandığından yüzey pür      

http://www.biyologlar.com/jeomorfoloji-nedir

Hayvan Coğrafyası

Hayvan coğrafyası, hayvanların yeryüzündeki dağılımını inceler. Diğer bir deyişle, Hayvan coğrafyasının görevi, Dünyadaki hayvan türlerinin bugün bulundukları alanları ve geçmişteki yayılışlarını saptamaktır. Bu saptamaları yaparken, canlılarım çevreleri ile ilişkilerini de (özellikle yayılışlarını kolaylaştıran ya da zorlaştıran nedenleri) ortaya çıkarmaya çalışır. Evrim kuramının düzenlenişi sırasında ilk ve kesin kanıtlar hayvan coğrafyasından elde edilmiştir. Hayvan coğrafyası, Zoolojinin bir koludur. Ancak konuları ne tam Zoolojiye ve ne de tam Coğrafyaya göre düzenlenmiştir. Bu alan daha çok zoologlar tarafından benimsenmiş ve üzerinde çalışılmış, ancak Coğrafyacılar için aynı ölçüde ilginç bulunmamıştır. Bitkilerin yeryüzündeki dağılışını Bitki Coğrafyası inceler. Hayvan Coğrafyası ile Bitki Coğrafyası birlikte Biyocoğrafyayı oluşturur. Buna Canlı Coğrafyası da denir. Hayvan coğrafyasının oluşmasında Aristo (M.Ö. 350), Buffon (1750), Linne (1758) Lamarck (1820), Darwin (1852), Huxley (1868), Wallace(1878), Wegener (1912) gibi bilim adamları göze çarpmaktadır. Çoğu konuda olduğu gibi, hayvan coğrafyası konusunda da en eski çalışmalardan biri Aristo’nun Anadolu ve Ege Adaları’nda bulunan canlıları isimlendirerek yaptığı çalışmadır. Bu çalışma ilk yazılı zoocoğrafik gözlem olarak kabul edilmektedir. Buffon yaptığı çalışmayla Yenidünya’daki canlıların, Eskidünya canlılarından oldukça farklı olduğunu saptamıştır. Diğer bilim adamlarının yaptıkları çalışmalarla Eskidünya’da da bir çok bölgenin birbirinden çok farklı canlı türlerine sahip olduğu anlaşılmıştır. “Binomial Adlandırma” ilkelerinin kurucusu Carl Von Linne, “Habitat” kavramını canlıların sınırlı alanda dağılımını açıklamak için kullanmış ve bir çok hayvan ve bitki türünün tanımını yapmıştır. Lamarck, Darwin ve Wallace gibi bilim adamlarının öncülüğünde geliştirilen Evrim Kuramı canlıların sadece bir merkezden yayılma ile değil, her yayılan hattın gittiği yerde evrimleşmesiyle çeşitlenmenin sağlanabileceğini ortaya koymuşlardır. Bu yaklaşım hayvan coğrafyasına bazı kolaylıklar sağladı. Özellikle Darwin’in Galapagos adalarında yaşayan ispinoz kuşlarındaki çeşitliği anlaşılır bir şekilde açıklaması hayvan coğrafyasına önemli katkılar sağlamıştır. Çok sayıda fosilin bulunması, jeolojik bilgi birikiminin artması, fauna ve flora ile ilgili bilgilerin derlenmesi ve “Kıtaların Kayma Kuramı”’nın uzay çalışmaları sonucu kanıtlanması gibi olgulardan dolayı hayvan coğrafyası konusunda çok daha sağlam yaklaşımlar ve açıklamalar ortaya çıkmıştır. Hayvan coğrafyası, öncelikle dünyanın geçmişteki jeolojisiyle yakından ilgilenir. Geçmişte ortaya çıkan topografik değişikliklerin bilinmesi gerekir. Örneğin, iki kara parçası arasındaki karasal bir köprü ya da iki su ortamı arasındaki karasal bariyer fauna tarihini büyük ölçüde etkiler. Bu nedenle bir zoocoğrafyacı geçmişteki çoğrafik yapıyı (topografik yapı, geçitlerin fiziksel, kimyasal ve biyolojik nitelikleri gibi) iyi bilmesi gerekir. Jeolojik zaman içinde çok kısa sürelerle olan su seviyelerindeki değişmeler (yükselme ve alçalmalar) hayvan coğrafyası açısından oldukça önemlidir. İki fauna bileşiminin arasındaki tür ve cinslerin benzerliği, o iki faunanın geçmişten şimdiye kadar olan bağlantı oranını verir. Bu olayın tersi de (yani cins ve tür farklılığı) yalıtımın etkinliğini gösterir. Eğer iki fauna ana hatlarıyla benzer; fakat ayrıntılarda farklı ise, bu iki fauna arasındaki bariyerlerin yakın zamanda ortaya çıktığını veya bariyerlerin yalıtım düzeylerinin düşük olduğunu gösterir. Bugün saptanan hayvanlar, yaşadıkları bölgenin durumu hakkında da önemli bilgiler verir. Örneğin Avustralya’da yaşayan keseli memelilerin varlığı, bu bölgenin Tersiyer ( yaklaşık 65 milyon yıl önce)’in başından beri dünyanın diğer bölgelerinden yalıtıldığını gösterir. Tersiyer için en önemli zoocoğrafik bilgiler yaşayan memelilerden elde edilmiştir. Memeliler bu devirde hem dallanmış, hem yaygınlaşmış, hem de iyi fosiller bırakmışlardır.

http://www.biyologlar.com/hayvan-cografyasi

GENETİK KOPYALAMA

İşçilerin tulumları beyazdı; ellerinde soğuk, kadavra rengi kauçuk eldivenler vardı. Işık donuktu, ölüydü: Bir hayalet sanki!.. Yalnız mikroskopların sarı borularından zengin ve canlı bir öz akıyor, bir baştan bir başa uzanan çalışma masalarının üzerinde tatlı çizgiler yaratarak, parlatılmış tüpler boyunca tereyağ gibi yayılıyordu. "Bu da" dedi Müdür kapıyı açarak, "döllenme odası işte..." Doğal olarak, ilkin döllenmenin cerrahlığa dayanan başlangıcından söz etti, derken "Toplum uğruna seve seve katlanılan bir ameliyattır bu" dedi, "altı maaşlık ikramiyesi de caba... Bir yumurta bir oğulcuk, bir ergin; bu normal... Oysa, Bokanovskilenmiş bir yumurta tomurcuk açar, ürer bölünür. Eş ikizler yalnız insanların doğurduğu o eski zamanlardaki gibi yumurtanın bazen rastlantıyla bölünmesinden oluşan ikiz, üçüz parçaları değil, düzinelerle yirmişer, yirmişer." Müdür "yirmişer" diyerek sanki büyük bir bağışta bulunuyormuş gibi kollarını iki yana açtı; "yirmisi birden!.." Ama öğrencilerden biri bunun yararının ne olduğunu sormak gibi bir sersemlikte bulundu. "İlahi yavrucuğum!" Müdür olduğu yerde ona dönüvermişti. "Görmüyor musun? Görmüyor musun, kuzum?" Bir elini kaldırdı; heybetli bir duruşa geçmişti. "Bokanovski süreci toplumsal dengenin en başta gelen araçlarından biridir! Milyonlarca eş ikiz; toptan üretim ilkesinin sonunda biyolojiye uygulanmış olması..." YUKARIDAKİ PARÇA, Aldous Huxley’in 1930’larda yazdığı, geçtiğimiz ay bilim gündemini birdenbire fetheden "koyun kopyalama" deneyine değinen haberlerde sıkça gönderme yapılan, Brave New World (Cesur Yeni Dünya) romanının girişinden kısaltılarak alınmış bir bölüm. Huxley, olumsuz bir ütopya (distopya) niteliği taşıyan romanında, Alfa, Beta, Gama, Delta ve Epsilon adlarıyla, kendi içinde genetik özdeşlerden oluşan beş farklı sınıfa bölünmüş bir toplum tablosu çiziyor. Özdeş vatandaşların üretildiği bu hayali "Bokanovski Süreci", çağdaş anlamıyla klonlama (veya genetik kopyalama) olmasa da, sürecin yolaçtığı etik (ahlaki) ve toplumbilimsel kaygılar, sekiz ay önce İskoçya’da gerçekleştirilen ve geçtiğimiz ay kamuoyuna duyurulan gelişmelerin doğurduklarına denk düşüyor. Şimdi herkesin tartıştığı, son gelişmelerin insanlık için daha insanca bir dönemin mi yoksa, hızla gerçeğe dönüşen korkunç bir distopyanın mı kapısını araladığı. Şubat ayının 22’sinden itibaren, İskoçya’nın Edinburg kentinde, biyoteknoloji alanında tuhaf bir gelişme kaydedildiği, "Dünyanın sonu", "Frankenstein" gibi ifadeleri de içeren dedikodularla birlikte etrafta konu olmaya başladı. Bilim çevreleri de basın da şaşkındı, çünkü, seçkin yazarların ve bazı bilim adamlarının birkaç gündür zaten haberdar oldukları ve konuyu "patlatmayı" bekledikleri bu gelişme, bir biçimde basına sızmış, dilden dile dolaşmaya başlamıştı bile. Normalde pek de ciddiye alınmayacak böyle bir "dedikodunun" bu denli yayılabilmesi, işin içine çeşitli dallarda makalelere yer veren saygın bilimsel dergi Nature’ın adının karışmasıyla olmuştu. Gerçekten de Nature, dedikodu niteliğini fersah fersah aşan bir bilimsel gelişmeyle ilgili bir makaleyi 27 Şubat’ta yayınlayacağını bilim yazarlarına duyurmuş ve bu tarihe kadar "ambargolu" olan bir basın bülteni dağıtmıştı. Batı ülkelerinde yazarlar normal olarak bu ambargolara uyar, hazırladıkları yazıları, ambargonun bittiği tarihte, aynı anda yayına verirler. Ancak, aralarında ünlü The Observer’ın da bulunduğu bazı dergi ve gazeteler ambargoyu çoktan delmiş, konuyu kamuoyuna duyurmuştu bile. Haberin, kaynağı olan Nature ve ambargoya saygı gösteren çoğu nitelikli dergi ve gazetede yer almaması da, dedikodu trafiğini artırmış, ortaya atılan spekülasyonlarla beklenenden fazla ilgi toplanabilmişti. Hatta, Mart ayının başlarında, koyun klonlama haberinin yarattığı ilgi ortamını değerlendirmek isteyen bazı haberciler, aynı yöntemle Oregon Primat Araştırmaları Merkezi’nde maymunların klonlandığını öne sürdüler. Oysa, Oregon’da gerçekleştirilen, embriyo hücrelerinin oldukça sıradan bir yöntemle çoğaltılmasıyla yapılmış bir deneydi. Klonlama, yetişkin bir canlıdan alınan herhangi bir somatik (bedene ait) hücrenin kullanılmasıyla canlının genetik ikizinin yaratılmasını açıklamakta. Kavramsal temelleri çoktandır hazır olan bu işlemin uygulamada gerçekleştirilemeyeceği düşünülüyordu. Edinburg’daki Roslin Enstitüsünden Dr. Wilmut ve ekibi bunu başarmış gibi görünüyor. "Ben bu filmi daha önce seyretmiştim!" diyenleri rahatlatmak için hemen belirtelim ki, aynı ekip 1995 yılında embriyo hücrelerini kullanarak yine ikiz koyunlar üretmiş ve bunu duyuran makaleyi yine Nature dergisinde yayımlatmıştı. Bu deney de basına yansımış, ancak, son gelişmeler kadar yankı uyandırmamıştı. Ne de olsa bu yöntem, döllenmiş yumurtanın kazayla bölünüp tek yumurta ikizlerine yol açtığı bildik süreçlerden farksızdı. Sıklıkla unutulduğu için tekrarlamakta yarar var ki, Wilmut’un son başarısının önemi, işe somatik bir hücrenin çekirdeğiyle başlamasında yatıyor. Bu başarının ortaklarını anarken PPL Tıbbi Araştırmalar şirketini de atlamamak gerek. Borsalarda tırmanışa geçen hisseleriyle gelişmenin meyvelerini şimdiden yemeye başlayan PPL, projenin hem amaçlarını belirleyerek hem de maddi olanakları yaratarak kuzu Dolly’nin varlığının temel sebebi olmuş. Dr. Wilmut’un gerçekleştirdiği başarı şöyle özetlenebilir: Yetişkin bir koyundan alınan somatik bir hücrenin çekirdeğini dahice bir yöntemle, başka bir koyuna ait, çekirdeği alınmış bir yumurtaya yerleştirmek ve bilinen "tüp bebek" yöntemiyle yeni bir koyuna yaşam vermek. Adını, ünlü şarkıcı Dolly Parton’dan alan kuzu Dolly, isim annesinin değilse de, DNA annesinin genetik ikizi. Dolly, sevimli görünüşüyle kamuoyunun sempatisini kazanmış ve tüm bu süreç ilginç bir bilimsel oyun olarak sunulmuşsa da gerçekte deney oldukça iyi belirlenmiş bilimsel ve maddi hedefleri olan, soğukkanlı bir süreç. Zaten Dolly’nin araştırmacılar arasındaki adı da en az varlığı kadar "soğukkanlıca" seçilmiş: 6LL3... PPL’in idari sorumlusu Dr. Ron James, şirket sırlarını kaybetme kaygısıyla maddi hedeflerini pek açığa vurmamakla birlikte, hemofili hastaları için koyunlara insan kanı pıhtılaşma faktörü ürettirmeyi de içeren pek çok önemli ticari hedefin ipuçlarını veriyor. PPL ve Roslin Enstitüsü’nün çalışmaları, geçmişi çok eskilere dayanan ve önemli gelişmelerin kaydedildiği bir alan olan transjenik (gen aktarılmasıyla ilgili) araştırmaların bir üst aşamaya, nükleer transfer (çekirdek aktarılması) evresine doğru ilerletilmesinden başka birşey değil. Yıllardır başarıyla sürdürülen transjenik çalışmalarda tek boynuzlu keçi, üç bacaklı tavuk gibi görünüşte çarpıcı, yararı kısıtlı çalışmaların yanı sıra, insan proteinlerinin hayvanlara ürettirilmesi gibi, modern tıp için çığır açıcı sayılabilecek başarılar kaydedildi. Son gelişmelere imzasını atan ekip, daha önce insan bünyesince üretilen molekülleri gen transferi yöntemiyle bir koyuna ürettirmeyi başarmıştı. Söz konusu deneyde gerek duyulan moleküllerin koyunun tüm hücrelerinde değil, sadece süt bezlerinde sentezlenmesinin sağlanması, koyunun "ilaç fabrikası" olarak değerlendirilmesini beraberinde getiriyordu. Dolly başarısının en önemli potansiyel yararı da bununla ilgili zaten. Gen transferi yöntemiyle, istediğiniz maddeyi sentezleyebilen bir canlıya sahip olduğunuzda, madde verimini artırmak üzere aynı süreci zaman ve para harcayarak yinelemeye çabalamak yerine elinizdeki canlının genetik ikizlerini yaratabilirseniz, ticari değer arz edebilecek miktarda ilaç hammaddesi üretimine geçebilirsiniz. Elinizde birkaç on tane genetik özdeş canlı biriktikten sonra, bu küçük sürüyü doğal yollardan üremeye bırakacak olursanız, hem "yatırımınız" kendi kendine büyüyecek, hem de genetik çeşitlilik yeniden oluşmaya başlayacağından, tek bir virüs tipinin tüm "fabrikayı" yok etmesinin önünü alacaksınız demektir. Biraz Ayrıntı İskoç ekibin gerçekleştirdiği klonlama deneyinin, dünyanın pek çok bölgesine dağılmış sayısız standart biyoteknoloji laboratuvarında "kolayca" gerçekleştirilebileceği söyleniyor. Yine de uygulanan yöntem, günlük gazetelerdeki basit şemalarda anlatıldığı kadar kolay ve hemen tekrarlanabilir türden değil. İskoç ekibin başarısı ve önceki sayısız benzeri çalışmanın başarısızlığı, Wilmut’un, verici koyundan alınan hücre çekirdeğiyle, kullanılan embriyonik hücrenin "frekanslarını" çok hassas biçimde çakıştırabilmesine dayanıyor. Bu yöntemle araştırmacılar, yetişkin çekirdeğin genetik saatini sıfırlamayı, tüm gelişim sürecini başa almayı becerebilmişler. Yöntemin ayrıntılarına girmeden önce bazı temel kavramlara açıklık getirmekte yarar var. Çoğu memeli canlı gibi insan bedeni de milyarlarca hücreden oluşuyor. Bu hücrelerin milyonlarcası her saniye bölünmeyi sürdürerek beden gelişimini devam ettiriyor ve yıpranmış hücreleri yeniliyor. Bu hücrelerin önemli kısmı bedenimizin belli başlı bölümlerini oluşturan "somatik hücreler." Tek istisna, üreme hücreleri. Eşeyli üreme, gametlerin (sperm ve yumurta) ortaya çıktığı "mayoz bölünme"yle başlıyor. Cinsel birleşme sonucunda, spermin yumurtayı döllemesiyle de yeni bir canlının ilk hücresi "zigot" oluşuyor. Bu noktadan sonra gelişmeye dönük hücre bölünmeleri, "mayoz" değil, "mitoz" yoluyla ilerliyor. Koyun ve insan hücrelerinin de dahil olduğu ökaryotik yani, çekirdeği olan hücreler, farklı gelişim evreleri içeren bir yaşam döngüsü geçiriyorlar. Bu döngüyü, hücrenin görece durağan olduğu "interfaz" ve belirgin biçimde bölünmenin gerçekleştiği mitoz evrelerine ayırmak mümkün. Hücre, yaşam döngüsünün yüzde doksan kadarını interfaz evresinde geçiriyor. Aslında, bu duraklama evresi göründüğü kadar sakin değil; hücre, tüm bileşenlerini DNA’yı sona bırakacak biçimde çoğaltarak, bölünmeye hazırlanıyor. Alt evreleri son derece iç içe girmiş olan interfaz evresini işlevsellik açısından G1, S ve G2 alt evrelerine ayırmak yerleşmiş bir gelenek. Yani, hücrenin yaşam döngüsü bu üç evre ve M (mitoz)’dan oluşuyor. G1 evresi, DNA dışındaki bileşenlerin çoğaldığı bir dinlenme dönemi. S, DNA’nın bölünmesiyle sonuçlanan bir geçiş evresi. G2 ise, iç gelişmenin tamamlanıp, hücrenin mitoz yoluyla bölünmeye hazırlandığı süreci içeriyor. Hücrelerin hangi evreyi ne kadar sürede tamamlayacakları bir biçimde programlanmış durumda. Belli bir organizmanın tüm hücreleri bu evreleri aynı sürede tamamlıyorlar. Yine de, ani çevresel koşul değişiklikleri hücreleri G1 evresinde kıstırabiliyor; sözgelimi, besleyici maddelerin miktarı birdenbire minimum düzeye düştüğünde. G1 evresinin belli bir aşamasında, öncesinde bu duraklamaya izin verilen sabit bir kritik noktası var. Bu kritik nokta aşılırsa, çevresel koşullar ne yönde olursa olsun, DNA replikasyonunun önü alınamıyor. İleride göreceğimiz gibi, bu noktanın denetim altında tutulabilmesi, Wilmut ve ekibinin başarılı bir klonlama gerçekleştirebilmelerinin altın anahtarı olmuştur. Bu noktada bir parantez açarak G1, S, G2 ve M evrelerinin denetim altına alınmasının, hücrenin yaşam döngüsünü olduğu kadar, hücrenin özelleşmesini, sözgelimi beyinden veya kas hücrelerinden hangisine dönüşeceğini de kontrol altına alabilmeyi, bir başka deyişle, hücrenin genetik saatini sıfırlamayı sağladığını ekleyelim. Wilmut ve ekibi Dolly’i klonlayıncaya kadar bu sürecin tersinmez olduğu, söz gelimi, bir defa kas hücresi olmaya karar vermiş bir hücrenin yeniden programlanamayacağı zannediliyordu. Peki Wilmut bunu nasıl başardı? Soruyu tersinden cevaplayacak olursak, diğerlerinin bunu başaramamalarının nedeninin, kullandıkları somatik hücrelerin çekirdeklerini S veya G2 evrelerindeki konakçı hücrelere yerleştirmeleri olduğunu söyleyebiliriz. Eski kuramsal bilgilere göre bu yöntemin işe yaraması gerekiyordu, çünkü çekirdeğin mitoza yaklaşmış olması avantaj olarak görülüyordu. Ancak bu denemelerde, işler bir türlü yolunda gitmedi. Kaynaştırmadan sonra, hücre fazladan bir parça daha mitoz geçiriyor ve yararsız, kopuk kromozom parçaları meydana geliyordu. Bu "korsan" genler, gelişimin normal seyrini sürdürmesi için ciddi bir engel oluşturuyordu. Dersini çok iyi çalışmış olan Wilmut, bu olumsuz deneyleri değerlendirerek hücreyi G1 evresinin kritik noktadan önceki duraksama döneminde, "G0 evresinde" kıstırmaya karar verdi. Verici koyundan alınan meme dokusu hücrelerini kültür ortamında gelişmeye bırakan Wilmut, hücrelerin geçirdiği evreleri sıkı gözetim altında tutarak bir hücreyi G0 evresinde kıstırıp bu haliyle durağanlığa bırakmayı başarmıştı. Bunun için, hücrenin besin ortamını neredeyse öldürme sınırına kadar geriletmiş, tüm süreci dondurarak bir anlamda genetik saati de sıfırlayabilmişti. Üstelik bu evre, kaynaştırılacağı yumurta hücresinin mayoz gelişim sırasında girdiği, bu işlem için en uygun olan metafaz-II evresiyle de mükemmel bir uyum içindeydi. İşlemin diğer kısımları yemek tariflerinde olduğu kadar sıradan ve kolay uygulanabilir nitelikte. G0 evresindeki çekirdek metafaz-II evresindeki yumurtayla kaynaştırılıp, normal besin koşulları ve hafif bir elektrik şoku etkisiyle olağan çoğalma sürecine yeniden sokulduğunda, her şey tüp bebek olarak bilinen, in vitro fertilizasyon sürecindeki işleyişe uygun hale geliyor. Zigot, anne koyunun rahmine yerleştiriliyor ve gerekli hormonlarla normal hamilelik süreci başlatılıyor. Wilmut ve ekibinin gerçekleştirdikleri hakkında bilinenler, yukarıda kaba hatlarıyla anlatılanlarla sınırlı. Sürecin duyurulmayan kritik bir evresi varsa, bu ticari bir sır olarak kalacağa benziyor. Ancak, herkesin olup bitenler hakkında aynı bilgilere sahip olması, deneyin başarısı konusunda kimsenin şüphe duymamasını gerektirmiyor. 277 denemeden sadece birinin başarılı olması başta olmak üzere, çoğu uzmanın takıldığı pek çok soru işareti var. Herşeyin ötesinde, herhangi bir olgunun bilimsel gelişme olarak kabul edilmesi için, sürecin yinelenebilirliğinin gösterilmesi gerekiyor. Bir embriyolog, Jonathan Slack, çok daha temel şüpheleri öne sürüyor: "Araştırmacılar, yumurta hücresindeki DNA’ları tümüyle temizleyememiş olabilirler. Dolayısıyla Dolly, sıradan bir koyun olabilir." Slack, alınan meme hücresinin henüz tamamen özelleşmemiş olabileceğini, böyle vakalara meme hücrelerinde, bedenin diğer kısımlarına göre daha sık rastlanılabildiğini de ekliyor. Zaten Wilmut da, bedenin diğer kısımlarından alınan hücrelerin aynı sonucu verebileceğinden bizzat şüpheli. Örneğin, büyük olasılıkla kas veya beyin hücrelerinin asla bu amaçla kullanılamayacaklarını belirtiyor. Üstüne üstlük, koyun bu deneylerde kullanılabilecek canlılar arasında biraz "ayrıcalıklı" bir örnek. Koyun embriyolarında hücresel özelleşme süreci zigot ancak 8-16 hücreye bölündükten sonra başlıyor. Geleneksel laboratuvar canlısı farelerde ise aynı süreç ilk bölünmeden itibaren gözlenebiliyor. İnsanlarda ise ikinci bölünmeden itibaren... Bu durum, aynı deneyin fare ve insanlarda asla başarılı olamaması olasılığını beraberinde getiriyor. Dile getirilen açık noktalardan biri de, hücrelerde DNA barındıran tek organelin çekirdek olmayışı. Kendi DNA’sına sahip organellerden mitokondrinin özellikle önem taşıdığı savlanıyor. Memeli hayvanlarda mitokondriyal DNA, embriyo gelişimi sırasında sadece anneden alınıyor. Her yumurta hücresi, farklı tipte DNA’lara sahip yüzlerce mitokondriyle donatılmış. Bu mitokondriler zigotun bölünmesinin ileri evrelerinde, embriyo hücrelerine dengeli bir biçimde dağılıyor; ancak, canlının daha ileri gelişim evrelerinde, bu denge belli tipteki DNA’lara doğru kayabiliyor. Parkinson, Alzheimer gibi hastalıkların temelinde bu mitokondriyal DNA kayması sürecinin etkileri var. Bu yüzden kimileri, sağlıklı bir kuzu olarak doğan Dolly’nin, zigot gelişimine müdahele edilmiş olması yüzünden sağlıksız bir koyun olarak yaşlanabileceğini öne sürüyorlar. Şimdilik Dolly’nin tek sağlıksız yönü, basına teşhir edilirken sabit tutulması amacıyla fazla beslenmesi yüzünden ortaya çıkan tombulluğu. Klonlamalı mı? Klonlamanın özellikle de insan klonlama konusunun etik boyutu kamuoyunca, günlük yaşamda kültürün, temel bilimsel birikimin, tarih, siyaset ve toplumbilimin en yaygın ve temel kavramlarıyla tartışılabilir nitelik kazanmıştır. Nükleer enerji kullanımı, hormon destekli tarım, ozon tabakasına zarar veren gazların üretimi gibi, farklı toplum kesimlerince kolayca anlaşılabilir ve tartışılabilir kabul edilen klonlama, şimdiden kamuoyunun gündeminde yerini aldı. Kamuoyunun, bilimsel ve teknolojik gelişmelerin uygulanıp uygulanmaması konusunda birtakım ahlaki gerekçelerle ne şekilde ve ne ölçüde yaptırım uygulayabileceği tartışmalı olsa da, şu anda kamuoyunun isteksizliği klonlama çalışmalarının daha ileri aşamalara taşınmasına en güçlü engel olarak gösteriliyor. Oysa, "tüp bebek" diye bilinen in vitro fertilizasyonun, başlangıçtaki şiddetli tepkilerden sonra kolayca kabullenilmesi, işin içine "çocuk sahibi olma isteği ve hakkı" karıştığı durumlarda (aynı argüman klonlama konusunda da sıkça kullanılıyor) toplumun ne kadar kolay ikna olabileceğinin bir göstergesi. Bilimkurgu romanları ve filmlerinde kaba hatlarıyla çokça tartışılmış olan klonlama konusunda halihazırda belli belirsiz bir kamuoyu "oluşturulmuş" durumda. Şu anda sürmekte olan tartışmaların bilinen yanlışlara yeniden düşmemesi için birkaç temel olguya açıklık getirmek gerekiyor. Olası yanılgıların en sık rastlananı, klonlanmış bir canlının, (tartışmalara sıkça insan da dahil ediliyor) genin alındığı canlının fizyolojik özellikleri bir yana, kişilik özellikleri bakımından özdeşi olacağı kanısı. Kazanılmış özelliklerin kalıtsal yolla taşınabileceği yanılgısı, Philosophie Zooloique (Zoolojinin Felsefesi) adlı ünlü yapıtı 1809 yılında yayınlanmış olan, Fransız zoolog Jean Baptiste Lamarck’a dayanıyor. Lamarck’ın görüşlerinin takipçileri, insanların gözlemlenebilir kişilik özelliklerinin önemli ölçüde kalıtsal nitelik taşıdığını savlayarak, çevresel koşulların gelişim üzerindeki etkilerini neredeyse tamamen yadsıyorlardı. Oysa, genetik, evrim, psikoloji gibi alanların ortaya koyduğu çağdaş ölçütler, kazanılmış karakterlerin kalıtsal nitelik gösteremeyeceğini ortaya koyarak, kişilik oluşumunda çevresel etmenlerin güçlü bir paya sahip olduğunu kanıtlamıştır. Bu bağlamda, basında da yankı bulan "koyunlar zaten birbirlerine benzerler" esprisinin aslında ciddi bilimsel doğrulara işaret ettiğinin altını çizmek gerekiyor. Klonlanmış bir koyunun, genetik annesinin genetik ikizi olduğu ölçülerek gösterilebilir bir gerçektir. Oysa, gözlemlenebilir kişilik özellikleri oldukça kısıtlı olan koyunların birbirlerine benzemeleri kaçınılmazdır. Çok daha karmaşık bir organizma olan insanoğlu, sayısız gözlemlenebilir kişilik özelliği sayesinde, genetik ikizinden kolayca ayırt edilebilir. Tüm bunların ötesinde, klonlanmış bir insanın sadece kişilik bakımından değil, fizyolojik ve bedensel özellikleri bakımından da, genetik ikizinden farklı olacağını peşinen kabullenmek gerekiyor. Bir bebeğin biçimsel özelliklerinin ana rahminde geçirdiği gelişim süreci içerisinde tümüyle DNA’sı tarafından belirlendiği görüşü yaygın bir yanılgı. DNA molekülü, insan geometrisine dair tüm bilgileri en sadeleşmiş biçimiyle bile bütünüyle kapsayamayacak kadar küçük. Çoğu biçimsel özellik, akışkan dinamiği, organik kimya gibi alanlardaki temel evrensel yasaların kontrolünde meydana geliyor. Bu süreçte de, her zaman için rastlantı ve farklılaşmalara yeterince yer var. Bir genetik ikiz, kuramsal açıdan, eşine en fazla eş yumurta ikizlerinin birbirlerine benzedikleri kadar benzeyebilir. Uygulamada ise, benzerlik derecesi çok daha düşük olacaktır; aynı rahimde aynı anda gelişmediği, aynı fiziksel ve kültürel ortamda doğup büyüyemediği için... İşin bu boyutunu da göz önünde bulunduran Aldoux Huxley, romanında, Bokanovski Süreci’yle çoğaltılmış bebekleri, yetiştirme çiftliklerinde psikolojik koşullandırmaya tutma gereği duymuştu. Benzer biçimde, 1976’da yazdığı The Boys from Brazil romanında Adolf Hitler’den klonlanan genç Hitler’lerin öyküsünü kurgulayan Ira Levin, klonları, Adolf Hitler’in kişiliğinin geliştiği tüm olaylar zincirinin benzerine tabi tutma gereğini hissetmişti. Tüm bu "hal çarelerine" rağmen, kopya insanın genetik annesinden çoğu yönden farklı olması kaçınılmaz görünüyor. Diğer tüm koşullar denk olsa bile, kopya birey, aynı zamanda ikizi olan bir anneye sahip olmasından psikolojik bakımdan etkilenecektir. Sağduyumuz bize Hitler’i genlerinin değil, Weimar Cumhuriyeti sonrası sosyo-ekonomik koşulların ve genç Adolf’un kıstırıldığı maddi ve manevi bunalımların yarattığını öğretiyor. Tüm bunların ışığında, klonlama konusundaki popüler tartışmaları, tıkanıp kaldıkları, "beklenmedik bir ikize sahip olma" fobisinden kurtarılıp, daha gerçekçi zeminlere çekilmesi gerekiyor. Gen havuzunun (belli bir topluluktaki genetik çeşitlilik) daralması, hayvancılığın geleneksel yapısından koparılıp biyoteknoloji şirketlerinin güdümüne girmesi, yol açılabilecek genetik bozuklukların kontrolden çıkması, bu alanda çalışan bazı şirketlerin (söz gelimi PPL’in) tüm tekel karşıtı yasal önlemleri delerek ciddi ekonomik dengesizliklere yol açması gibi akla gelebilecek sayısız somut etik sorununun tartışılması gerekiyor. Yoksa, akademik organlardan dini cemaatlere kadar sayısız grup gelişmeleri "kitaba uydurma" çabasıyla, kısır tartışmalara girebilir. Örneğin, Budist bir araştırmacı, Dolly’nin eski yaşamında ne gibi bir kabahat işleyip de bu yaşama klonlanmış olarak gelmeyi hak ettiği üzerine kafa yoruyormuş. Aslında biyoteknolojik tekelcilik tehdidine, Cesur Yeni Dünya’da Aldous Huxley de işaret etmişti: "İç ve Dış Salgı Tröstü alanından hormon ve sütleriyle Fernham Royal’daki büyük fabrikaya hammadde sağlayan şu binlerce davarın böğürtüsü duyuluyordu..." İnsanoğlunun temel kaygıları, şimdilik bazı temel koşullarda klonlamayla çelişiyor gibi görülüyor: Bir çiftçi düşünün ki, kendisi için tüm evreni ifade eden kasabasında herkese hayranlıktan parmaklarını ısırtan bir danaya sahip olsun. Bu danayı klonlayıp tüm sürüsünü özdeş yapmayı ister miydi? Büyük olasılıkla biraz düşündükten sonra bundan vazgeçerdi. Danasının biricik oluşu ve genetik çeşitliliği sayesinde bu danaya yaşam veren sürüsünün daha da güzel bir dana doğurması olasılığı çok daha değerli. Ömrü boyunca aynı dananın ikizlerine sahip olmayı kabullenmiş bir çiftçinin komşusu her an elinde daha güzel bir danayı ipinden tutarak getirebilir. Özgür Kurtuluş Kaynaklar: Biospace Huxley A., Cesur Yeni Dünya, Çev: Gürol E., Güneş Yayınları, 1989 Nash M. J., "The Age of Cloning", Time, 10 Mart 1997 Roslin Enstitüsü Basın Bültenleri Star C., Taggart R., Biology: The Unitiy and Diversity of Life, 1989 Underwood A., "Little Lamb Who Made Thee", Newsweek, 10 Mart 1997 Wilmut I., Schnieke A. E., McWhir J., Kind A. J., Campbell K. H. S., "Viable Offspring Derived From Fetal and Adult Mammalian Cells", Nature, 27 Şubat 1997

http://www.biyologlar.com/genetik-kopyalama

HONAZ DAĞI MİLLİ PARKI

HONAZ DAĞI MİLLİ PARKI

İli : DENİZLİ Adı : HONAZ DAĞI MİLLİ PARKI Kuruluşu : 1995 Alanı : 9.616 ha. Konumu : Denizli ili, Honaz ilçesi sınırları içerisinde yer almaktadır. Ulaşım : Afyon-Denizli ve Afyon-İzmir devlet karayolu ile ulaşılmaktadır. Kaynak Değerleri :           Milli parkın ana kaynak değerlerini, Ege Bölgesi’nin en yüksek dağı olan (2528 m) Honaz Dağı bünyesindeki kaynaklar oluşturmaktadır.           Ege Bölgesi’nde Pleistosen döneminde Periglasiyal ortam şartlarının hüküm sürdüğü az sayıdaki yerlerden birisi de Honaz Dağı’dır. Dağ üzerinde birçok Periglasiyal koşulları karakterize eden jeomorfolojik şekil bulunmaktadır. Ana şekil grubu olarak ise; yöre horst biçiminde uzanmaktadır. Düşey yönleri tektonik ve faylanmalar sonucu Honaz Dağı oldukça dik bir görünüm kazanmıştır. Yörenin genel litolojik yapısı gnays ve mikaşistlerden meydana gelir. Ayrıca yer yer kristalize kireçtaşlarına da rastlanılmaktadır.           Yoğun bitki örtüsüne sahip Honaz Dağı üzerinde alt floraya ait endemik türler bulunmaktadır. Alpin floraya ait türler ise dağın üst zonlarında yer almaktadır. Orman formasyonu içerisinde kızılçam (Pinus brutia), karaçam (Pinus nigra) ve ardıç hakim türlerdir.           Yaban hayatı açısından da zenginlik içeren sahada özellikle dağ keçisi yoğun olarak bulunmaktadır. Ayrıca yaban domuzu, tavşan, tilki, porsuk, sansar vb. türler de görülmektedir.         Honaz Dağı, gerek topoğrafik özellikleri ve uygun eğim koşulları, gerekse kar yağışının yeterli düzeyde olması nedeniyle ülkemizin kayak potansiyeli yüksek alanlarından birisidir.           Yöre; arkeolojik kaynak değerleri açısından da zenginliğe sahiptir. Özellikle Colossea antik kentinde birçok kaya mezarı bulunmaktadır. Sahada yapılacak arkeolojik araştırmalarla bu zenginliğin daha da artacağı beklenmektedir.  Görünecek Yerler : Honaz Dağı, bitki zenginliği ve peyzaj güzelliklerini ziyaretçileri ile paylaşır. Colossea antik kent sahası da arkeolojik zenginliğini ziyaretçilere sunmaktadır. Mevcut Hizmetler : Honaz ilçesi yakınlarında İzmir yolundaki Cankurtaran günübirlik kullanım alanı ziyaretçilere hizmet vermektedir. Konaklama : Honaz ile Denizli konaklama için uygun yerleşimlerdir. FLORA Milli Park civarında 964 bitki türü saptanmış olup bunların 122 adedi Türkiye için endemiktir. Endemiklerden ikisi, Mercan Köşk ve Çan Çiçeği, hem Honaz Dağı hem de Babadağı’nda bulunmaktadır. Dünya’da sadece Honaz Dağı’nda yetişen üç adet bitki türü, Ballıbaba, Sığırkuyruğu ve Safran tespit edilmiştir. Milli Park sınırları içinde en yaygın ağaç türü Karaçam ve Kızılçam koru ormanı olarak dağılmakta yer yer Meşe ve yüksek yerlerde Ardıç ağacına rastlanmaktadır. FAUNA Yaban Hayatı açısından zengin olan Milli Parkta özellikle dağ keçisi yoğun olarak bulunmaktadır. Yaban domuzu, tavşan, tilki, sansar ve porsuk önemli yaban hayatı üyeleridir. Ayrıca Milli Parkta yerel adı Dağ Anası olarak bilinen çok zehirli bir yılan türüne de rastlamak mümkündür. http://www.milliparklar.gov.tr TANITIM VİDEOSU   

http://www.biyologlar.com/honaz-dagi-milli-parki

Biyoteknoloji ve Tarım Güvencesi

Hızla artmakta olan dünya nüfusunun 2025 yılı itibariyle 8 milyarı geçmesi ve bu artışın % 95’inin gelişmekte olan ülkelerde oluşması beklenmektedir. Gelişmiş ülkelerde önemli bir tarımsal üretim fazlası bulunmakla beraber, halen 830 milyon insanın yeterli ve dengeli beslenemediği gelişmekte olan bazı ülkeler yeni tarım teknolojilerini kullanarak tarımsal üretimlerini artırmada yeterli olamamaktadırlar. Özet Hızla artmakta olan dünya nüfusunun 2025 yılı itibariyle 8 milyarı geçmesi ve bu artışın % 95’inin gelişmekte olan ülkelerde oluşması beklenmektedir. Gelişmiş ülkelerde önemli bir tarımsal üretim fazlası bulunmakla beraber, halen 830 milyon insanın yeterli ve dengeli beslenemediği gelişmekte olan bazı ülkeler yeni tarım teknolojilerini kullanarak tarımsal üretimlerini artırmada yeterli olamamaktadırlar. Yeşil devrim olarak da isimlendirilen dönemde hastalık ve zararlılara dayanıklı, yüksek verimli çeşitlerin geliştirilmesi, kimyasal gübre ve tarımsal mücadele ilacı kullanımının artması, mekanizasyon ve sulama teknikleri son 5 yıl içerisinde önemli verim artışları sağlamış olmakla beraber bu denli yoğun tarımsal faaliyetler çevre üzerinde de önemli baskılar yaratmıştır. Halen mevcut tarım alanları üzerinde ve kullanılan mevcut tarımsal tekniklerle önümüzdeki 20 yıl içerisinde artacak dünya nüfusuna yetecek gıda maddeleri üretimi mümkün görülmemektedir. Bu itibarla tahıllarda birim alana verimin % 80 oranında artırılması gerekmektedir. Bunun için de modern biyoteknolojik yöntemlerin önemli avantajlar sunduğu görülmektedir.Modern biyoteknolojik yöntemler arasında genetik mühendisliği en fazla umut bağlanan ve aynı ölçüde de tartışılan bir yöntemdir. Ancak, diğer moleküler ıslah yöntemleriyle birlikte kullanıldığında genetik mühendisliği teknikleri hastalık ve zararlılara; kuraklık ve tuzluluk gibi çevre koşullarına dayanıklı, bitki besin maddeleri içeriği iyileştirilmiş yüksek kaliteli ve verimli yeni çeşitlerin geliştirilmesi için bitki ıslahçılarına büyük kolaylıklar sağlayacaktır. Halen A.B.D., Arjantin, Kanada, Brezilya ve Çin gibi 18 gelişmiş ve gelişmekte olan ülkede yetiştirilen transgenik soya, mısır, pamuk ve kolza bitkileri böceklere ve bazı herbisitlere dayanım özelliği taşımaktadırlar. Bu ürünler, insan sağlığı ve çevre üzerindeki olası olumsuz etkileri bilimsel esaslara göre değerlendirildikten sonra yetiştirilmelerine ve tüketilmelerine izin verilmektedir. Türkiye gibi gelişmekte olan ülkelerin modern biyoteknolojik yöntemlerden yararlanarak tarımsal üretimlerini artıracak çeşitleri geliştirmeleri, belirlenecek sorunların çözümüne yönelik güdümlü projelere yeterli araştırma desteği ve altyapı sağlayarak mümkün olabilir. Ancak, bunun için gerek fikri mülkiyet hakları gerekse biyogüvenlik ile ilgili mevzuatın bir an önce hazırlanarak yürürlüğe girmesi de gerekmektedir. Giriş Avcı-toplayıcı kültürden tarımcı kültüre geçen insanlık, binlerce yıldır seçmiş olduğu bitkileri yetiştirip, geliştirerek ve evcilleştirdiği hayvanları daha da iyileştirerek tarımsal üretimi artırma yönündeki çabalarını sürdürmektedir. Dünya üzerindeki nüfusun artmasıyla birlikte bu çabalar daha da hızlanmış, zamanla yeni teknikler geliştirilmiş ve tarımla uğraşan yeni bilim dalları ortaya çıkmıştır. Malthus’un insanların yeterli gıda maddesi bulamayarak büyük bir felakete uğrayacakları öngörüsü (Malthus, 1798) de tarımsal tekniklerin gelişmesi ve üretimdeki artış nedeniyle gerçekleşmemiştir. Geçtiğimiz yüzyıl içerisinde hızla artan dünya nüfusunu beslemeye yetecek kadar tarımsal üretimin sağlanmasında şüphesiz “Yeşil Devrim” olarak da adlandırılan gelişmelerin önemli etkisi olmuştur. Yirminci yüzyıl başlarından itibaren, genetik biliminde meydana gelen gelişmelerin bitki ve hayvan ıslahında yaygın olarak kullanılması yüksek verimli bitki çeşit ve hayvan ırklarının geliştirilmesine olanak sağlamıştır. Bunun yanında tarımda mekanizasyonun gelişmesi, kimyasal gübre kullanımının yaygınlaşması, hastalık ve zararlıların neden olduğu kayıpların kimyasal mücadele ilaçları ile önlenmesi ya da en az düzeye indirilmesi, bitkisel üretimde sulama sistemlerinin yaygınlaştırılması ikinci dünya savaşından sonra bitkisel ve hayvansal üretimde % 100’ü aşan artışlara yol açmış, bunun sonucu özellikle gelişmiş ülkelerde üretim fazlası oluşmuştur. “Yeşil Devrim” sayesinde 1960’lı yıllardan itibaren, bu yeni çeşitler ile yeni tarım teknolojileri Türkiye’ye ve diğer çoğu gelişmekte olan ülkelere de kısa sürede girmiş ve genelde yerel nüfusun ihtiyacı olan gıda maddeleri üretiminde yeterlilik sağlanmıştır. Ülkemizdeki tarımsal üretim özellikle ikinci dünya savaşından sonra önemli ölçüde artmış olmakla beraber, verimlilik artışı oranı ekilebilir alanların artışı oranıyla karşılaştırıldığında bu artışın pek de sağlıklı olmadığı söylenebilir. Tarımsal üretim artışındaki temel öğeler incelendiğinde: 1950’lerden itibaren mekanizasyonun artmasıyla mera alanlarının bozularak tarlaya dönüştürüldüğü, aynı şekilde ormanların tahribiyle tarıma müsait olmayan dik eğimli alanlarda ekim yapıldığı, özellikle 1960’lardan itibaren göllerin ve sulak alanların kurutularak yeni tarım arazilerinin yaratıldığı, sulama ve/veya elektrik üretimi amaçlı göl ve göletler oluşturularak vadi içi habitatların tahrip edildiği ve geniş alanlarda sulu tarıma geçildiği ve böylece doğal dengenin olabildiğince bozulduğu ve biyolojik çeşitliliğimizin olumsuz etkilendiği görülmektedir. Bunların yanında, kimyasal gübrelerin ve tarımsal mücadele ilaçlarının gittikçe artan düzeylerde ve bilinçsizce kullanımı, üretimi artırmış olmakla beraber doğal çevre ve insan sağlığını da olumsuz yönde etkiler hale gelmiştir. Yine bu bağlamda, “Yeşil Devrim” ile birlikte kimyasal gübre kullanımına ve sulamaya iyi tepki veren yeni çeşitlerin kullanılmaya başlamasıyla verim artışı sağlanmış, ancak tarımsal biyoçeşitliliğin belkemiğini oluşturan yerel genotipler verimsiz bulunarak, bunların kullanımı azalmıştır. Dünya genelinde tarımsal üretimin gelişmesine bakıldığında, yine Türkiye’dekine benzer gelişmelerin olduğu ve tarımsal üretimin artırılmasında ekolojik dengenin aleyhine bir gelişme olduğu görülmektedir. Son yıllarda, tarımsal üretim fazlasının olduğu özellikle Avrupa Birliği ve diğer gelişmiş ülkelerde aşırı kimyasal gübre kullanımı ve hastalıklarla mücadele ilaçlarının çevre üzerindeki olumsuz etkileri tartışılmaya ve bu tip tarımsal üretimin kısıtlanmasına yönelik tedbirler alınmaya başlanmıştır. Nüfusun hızla arttığı gelişmekte olan ülkelerde ise durum pek de iç açıcı değildir. Nüfus baskısı nedeniyle tarım alanı açmak için tropik yağmur ormanlarının yakıldığı, suların kirlendiği, toprakların çoraklaşıp çölleşmenin hızla arttığı görülmektedir. Ancak, tarımsal alanların böylesi sağlıksız biçimde artması tarımsal üretimin sürdürülebilir şekilde artırılmasına ve bu yörelerdeki insanların gıda ihtiyacını karşılamaya yetmemiştir (SOFA, 2004). Bu nedenle, 2025 yılında 8 milyarı aşması beklenen dünya nüfusunun beslenmesi gerçekten önemli bir sorun olarak karşımıza çıkmaktadır. Ekilebilir alanları artırmak pek mümkün olmadığı gibi, tarımsal üretimde kullanılabilecek su kaynakları da hızla azalmaktadır. Dolayısı ile artan nüfusu besleyecek miktarda üretim için ekilebilir alanların genişlemesi değil, birim alandan alınan ürün miktarının artırılması gerekmektedir. Bu da, Nobel ödüllü bitki ıslahçısı Norman Borlaug’a göre buğday ve mısır gibi tahıllarda verimin % 80 artırılması demektir (Borlaug, 2003). Klasik ıslah yöntemleriyle elde edilebilecek biyolojik verim artışının da artık sınırlarına gelindiği düşünüldüğünde, bitki ıslah çalışmalarında yeni teknolojilerin kullanılması kaçınılmaz görünmektedir. Son yıllarda önemli gelişmeler gösteren biyoteknolojik yöntemlerin özellikle de moleküler tekniklerin tarımsal üretimi artırmada önemli avantajlar sağladığı bir gerçektir. Genelde biyoteknoloji olarak adlandırılan ve klasik biyoteknolojiden modern biyoteknolojik yöntemlere kadar uzanan ve gittikçe karmaşıklık düzeyi artan bu teknolojilerin (Şekil 1) ülkelerin bilim ve teknolojideki gelişmişlik durumlarına göre tarımda farklı düzeylerde kullanıldığı görülmektedir. Biyolojik azot fiksasyonu gelişmekte olan ülkelerde kolayca kullanılabilmekte, bitki doku kültürü teknikleri ise birçok ülkede hastalıklardan arındırılmış bitki materyali üretiminde yaygın olarak uygulanmaktadır. Genomik çalışmalar, biyoinformatik, transformasyon, moleküler ıslah, moleküler tanı yöntemleri ve aşı teknolojisi olarak gruplandırılabilen modern biyoteknolojiler ya da gen teknolojileri ise Çin ve Hindistan gibi birkaç gelişmekte olan ülke dışında genelde gelişmiş olan ülkelerde etkin olarak kullanılmaktadır (Persley ve Doyle, 1999). Moleküler teknikler halen hayvan, bitki ve mikrobial gen kaynaklarının karakterize edilmesinde yaygın olarak kullanılmaktadır. Aynı teknikler kullanılarak hastalık etmenlerinin tanısının yanında veterinerlikte aşı üretimi de yaygınlaşmış bulunmaktadır. Son yıllarda, genom araştırmaları da önemli bir evrim geçirmektedir. Yeni teknolojilerin kullanımı ile artık tek tek genlerin izole edilip tanımlanması yerine, tüm genlerin ya da gen grupların belirli bir organizma içerisindeki işlevlerini belirlemeye yönelik araştırmalar öne çıkmaya başlamıştır. Bu konularda, büyük ölçekli DNA dizinleme yöntemlerinin geliştirilmesi, bilgisayar ve yazılım programlarının oluşturulması bu ölçekteki verilerin değerlendirilmesini mümkün kılmaktadır. Burada, biyoinformatik ile “DNA yongaları” gibi teknolojiler biyolojik sistemlerin genetik yapılarına ayrıntılı olarak incelemeye olanak sağlamaktadır. Moleküler tekniklerin tarımsal üretimin artırılmasında önemli olanaklar sunduğu yadsınamaz bir gerçektir. Ancak, geçtiğimiz 20 yıl içerisinde yenidenbileşen [rekombinant] DNA ya da genetik mühendisliği teknikleri olarak da adlandırılan modern biyoteknolojik yöntemlerle geliştirilmiş hastalık ve zararlılara dayanıklı bitki çeşitlerinin insan sağlığı ve çevre üzerindeki olası olumsuz etkileri yoğun şekilde tartışılmakta, bu yeni teknolojinin sunduğu olanaklar farklı açılardan sorgulanmaktadır. Bu makalede modern biyoteknolojik yöntemlerle elde edilmiş ve genelde Genetiği Değiştirilmiş Organizmalar (GDO) olarak tanımlanan bu transgenik ürünlerin tarımsal üretimin artırılmasında sunduğu olanaklar, bu ürünlerin insan sağlığı ve çevre üzerindeki olası olumsuz etkilerin yanında GDO’larla ilgili sosyo-ekonomik kaygılar ele alınmaya çalışılacaktır. Transgenik Ürünlerde Dünya’da Mevcut Durum Bitki biyoteknolojisi ve özellikle gen teknolojisi alanındaki gelişmeler 1980’li yıllardan itibaren hız kazanmış, ilk transgenik ürün bitkisi olan uzun raf ömürlü domates FlavrSavr adı ile 1996 yılında pazara sürülmüştür. Bunu gen aktarılmış mısır, pamuk, kolza ve patates bitkileri izlemiştir. 1996 yılından itibaren transgenik ürünlerin ekim alanları hızla artmış ve 2005 yılında 90.0 milyon hektara ulaşmıştır (Çizelge 1). Halen yetiştirilmekte olan transgenik ürünlerin ekim alanları incelendiğinde, bu ekim alanlarının % 99’unun A. B. D., Arjantin, Kanada, Brezilya ve Çin’de olduğu, genetiği değiştirilmiş ürün ekimi yapan ülkelerin sayısı 18’e ulaşmış olmakla beraber (Güney Afrika, Avustralya, Hindistan, Romanya, Uruguay, İspanya, Meksika, Filipinler, Kolombiya, Bulgaristan, Honduras, Almanya ve Endonezya) bu ülkelerde geniş ekim alanları bulunmadığı görülmektedir (James, 2005). Çin’deki ekim alanları ise özellikle Bt içeren pamuk ile hızla artmaktadır. Yine, Hindistan’da Bt içeren pamuk ekimine izin verilmesiyle bu ülkede de transgenik pamuk ekim alanlarının hızla artması beklenmektedir. Transgenik ürünlerin ekim alanları 2005 yılı itibariyle 90.0 milyon hektara ulaşmış olmakla beraber, bu ekim alanlarının artmasındaki şüphesiz en önemli engel özellikle Avrupa Birliği kamu oyunda bu ürünlere karşı oluşan olumsuz tepkiler, dolayısı ile bunun üreticiler üzerinde oluşturduğu olumsuz beklentilerdir. Aynı şekilde, gelişmekte olan ülkelerde aşağıda daha detaylı olarak değerlendirilecek olan biyogüvenlikle ilgili yasal mevzuatın henüz oluşturulmamasının getirdiği belirsizlik de ekim alanlarının genişlemesine engel olmaktadır. OECD BioTrack On-line verilerine göre 2000 yılı itibariyle transgenik ürünlere ait 15 000 üzerinde tarla denemesi yapılmıştır. Bu ürünler arasında tarla bitkileri, sebzeler, meyve ağaçları, orman ağaçları ve süs bitkileri bulunmaktadır. Burada dikkate değer bir husus ise 100’e yakın transgenik ürün çeşidi için ticari üretim izni alınmış olmasına rağmen bunlardan ancak birkaç tanesi pazara sürülmüştür. Buna paralel olarak, geniş ölçekte yetiştiriciliği yapılan türlerin oldukça sınırlı sayıda olduğu, ancak soya, mısır, pamuk ve kolza gibi önemli ürün türleri olduğu görülmektedir (Çizelge 2). Pazara sürülen ilk transgenik ürün olan uzun raf ömürlü FlavrSavr domatesi pazarlama stratejilerindeki yanlışlıklar ve tüketiciler tarafından fazla tutulmaması nedeniyle üretimden kalkmıştır. Bt patates ise çevrecilerin tepkisinden çekinen büyük “Fast Food” gıda zincirlerinin talep etmemeleri nedeniyle pek geniş ekim alanları bulamamıştır. Herbisitlere dayanıklı transgenik buğday çeşidi de gerek çevrecilerin tepkisi gerekse bu ürünü geliştiren çokuluslu şirketin pazarlama kaygıları nedeniyle henüz ticarileştirilmemiştir. Virüse dayanıklı papaya Hawaii adalarındaki papaya endüstrisini kurtarmış olmakla beraber sadece burada yetiştirilmektedir. Geniş ölçekte yetiştirilen tür ve çeşitlerin yine çok uluslu şirketlere ait tohumculuk şirketleri tarafından pazarlanıyor olması ayrıca dikkat çekmekte olup, bunun nedenleri ileriki bölümlerde incelenmeye çalışılacaktır. Halen ticari olarak üretimi yapılmakta olan transgenik ürünlere aktarılmış özellikler incelendiğinde, bunların daha çok girdiye yönelik, yani doğrudan çiftçiyi ilgilendiren herbisitlere dayanıklılık, böceklere dayanıklılık, virüslere dayanıklılık gibi özellikler olduğu görülmektedir (Çizelge 3). En yaygın olarak aktarılan özellik herbisitlere dayanıklılık olup, bu çiftçilerin üretim maliyetlerini önemli ölçüde azaltmaktadır. Yine Lepidopter’lere dayanıklılık sağlayan Bacillus thuringiensis endotoksin geni (Bt), özellikle mısır ve pamuk yetiştiriciliğinde zararlı olan tırtıllara karşı etkili olmakta; dolayısı ile tarımsal mücadele ilaçları kullanımını azaltmakta böylece hem üretim maliyetini düşürmekte hem de kimyasal ilaçların çevre ve insan sağlığı üzerindeki olumsuz etkilerini ortadan kaldırmaktadır. Bundan sonra piyasaya sunulması beklenen transgenik ürünlerin ise üretim maliyetlerini düşürücü özelliklerin yanında tüketicileri doğrudan ilgilendiren özellikler üzerinde de yoğunlaşması beklenmektedir. Bunlara en güncel örnek “altın pirinç” olarak adlandırılan beta karoten/A vitamini içeriği yükseltilmiş çeltiktir. Gelişmiş ülkelerde özellikle Güneydoğu Asya’da A vitamini eksikliği çeken 170 milyon kadar kadın ve çocuğun bu şekilde yeterli A vitamini alması ümit edilmektedir. Greenpeace örgütü ise, Altın Pirinç’in sadece çokuluslu şirketlerin bir pazarlama stratejisi olduğunu, bölgede günlük yaklaşık 300 gram pirinç tüketildiğini, ancak bir insanın önerilen günlük dozda provitamin A alabilmesi için bu miktarın yaklaşık 12 katını yemesi gerektiğini iddia etmektedir. Altın pirinci geliştiren araştırmacılar, Dr. Peter Beyer ve Prof. Ingo Potrykus ise bu hesaplamanın gerçekleri yansıtmadığını söylemektedirler. Onlara göre, çocuklar için günlük tavsiye edilen A vitamini dozajı 0,3 mg/gün’dür. Ancak hastalıklar ve körlükten korunmak için gereken A vitamini miktarı bu dozajın %30-40’ı civarındadır. Altın Pirinç’te bulunan provitamin A miktarı 1,6 – 2,0 mg/kg’dır. Provitamin A’nın A vitaminine dönüşme faktörü Amerikan Ulusal Bilim Akademisi (NAS) Sağlık Enstitüsü’nce (IOH) '12', Dünya Sağlık Örgütü (WHO) ve Gıda ve Tarım Örgütü’nce (FAO) '6', Hindistan Sağlık Araştırma Kurulu’nca '4' olarak alınmaktadır. Bu veriler ışığında ve Altın Pirinç’in biyoyararlılık değerleri %100 veya %50 olarak kabul edildiğinde yapılan hesaplamalarda Çizelge 4'teki rakamlar ortaya çıkmaktadır. Hesaplama için bir örnek verelim: IOH'in dönüşüm faktörü olan '12' esas alınırsa: körlükten korunmak için gereken 0,1 mg A vitamini için gerekli provitamin A miktarı 0,1 X 12 = 1,2 mg'dir. Altın Pirincin 1 kilogramında 2 mg provitamin olması hâlinde ve biyoyararlılık oranı %100 ise, bir günde yenmesi gereken Altın Pirinç miktarı 1,2 / 2 = 0,6 kg çıkar. Ancak, Çizelge 4'ten görülebileceği gibi, dönüşüm faktörü ve biyoyararlılık oranına göre bu miktar çok daha küçük olabilmektedir. Hatta Hindistan Sağlık Araştırma Kurumu’nun hesaplamaları kullanılırsa bu miktarda provitamin A alınabilmesi için gereken Altın Pirinç tüketimi 180 gramdır. Kaldı ki, Altın Pirinç İnsani Yardımlaşma Ağı’na (Humanitarian Golden Rice Network) da üye olan Syngenta firmasının yatırımı ile 2005 yılında “Altın Pirinç 2” adı verilen ve öncekine göre yaklaşık yirmi kat daha fazla provitamin A içeren yeni bir pirinç çeşidi geliştirilmiştir. Firma yıllık 10.000 dolardan düşük gelirli çiftçilere tohumları ücretsiz vermeyi planlamaktadır. Ayrıca bu tohumlara sahip olan çiftçiler ileriki senelerde kendi tohumlarını firmaya bedel ödemeden çoğaltabileceklerdir(*). “Altın Pirinç” örneğinin dışında doymuş yağ asit oranı değiştirilmiş yağlı tohumların, gerekli amino asit içeriği yükseltilmiş tahıl ve patateslerin, mikroelementlerce zenginleştirilmiş tahılların, aroma maddeleri yüksek ancak düşük kalorili ürünlerin yakın gelecekte piyasaya çıkması beklenmektedir. Hepatit B aşısı içeren patates ve muz bitkilerinin yanında, transgenik bitkilerin önemli bir kullanım alanı da ilaç hammaddesi ve monoklonal antikor üretimi için büyük potansiyel sunmalarıdır. Gen aktarılmış bu bitkilerin sera ve tarla denemeleri halen devam etmektedir. Bunlara paralel olarak, üzerinde en fazla araştırma yapılan konular arasında biyotik ve abiyotik stres koşullarına dayanıklı bitki çeşitleri gelmektedir. Yukarıda da değinildiği üzere, şimdiye kadar sağlanan üretim artışı tarım alanlarının genişlemesi, yaygın kimyasal gübreleme ve sulama ile sağlanmış ve bunlar ekolojik dengeyi olumsuz yönde etkilemiştir. Artık herkes tarafından kabul edilen bu sorunlar nedeniyle, bundan böyle tarımsal üretimin artırılmasındaki temel iki hedef sürdürülebilir tarım teknikleri ve birim alandan alınan verimliliğin artırılması yönünde olacaktır. Bunun için de bitkilerin yüksek verimli genotipe sahip olmalarının yanında biyotik ve abiyotik stres koşullarına dayanıklı olmaları da istenmektedir (SOFA, 2004). Bunlar arasında hastalık ve zararlılara dayanıklılık özelliği başta gelmektedir. Zira özellikle gelişmekte olan ülkelerde, bitkisel üretimin yarıya yakın kısmı hatta bazen fazlası üretim sırasında veya hasat sonrası hastalık ve zararlılar nedeniyle kaybolmaktadır. Bunlara karşı tarımsal mücadele ilaçlarının kullanıldığı durumlarda ise bu hem üretim maliyetini artırmakta, hem de insan sağlığını ve çevreyi olumsuz yönde etkileyebilmektedir. Dolayısı ile hastalık ve zararlılara karşı dayanıklılık genleri aktarılmış bitkilerin geliştirilmesi verimliliği artırdığı gibi tarımsal üretimin çevre üzerindeki baskısını da azaltacaktır. Bu alanda şimdiye kadar elde edilmiş en başarılı uygulama Lepidopter’lere dayanıklılık sağlayan Bacillus thuringiensis endotoksin genleri aktarılmış bitkilerden elde edilmiştir. Ancak, bitkisel üretimde zararlı olan çok sayıdaki diğer zararlı böceklere karşı aynı başarı henüz elde edilememiştir. Aynı şekilde, bazı virüs hastalıklarına karşı dayanıklı bitki çeşitleri geliştirilmişse de bunların sayısı pek fazla değildir. Bitkilerde önemli kayıplara neden olan fungal ve bakteriyel hastalıklara karşı direnç kazandırmaya yönelik araştırmalar da yoğun biçimde devam etmektedir. Ancak, bu hastalıklara dayanıklılık mekanizmalarının karmaşıklığı, dayanıklılık mekanizmalarının bitkiler ve patojenler arasında farklılık göstermesi, patojenlerin özellikle fungusların kendi dayanıklılık mekanizmalarını sürekli geliştirme yetenekleri nedeniyle henüz bakteriyel ya da fungal hastalıklara dayanıklı transgenik bitki çeşitleri üretim zincirine girecek aşamaya gelmemiştir. Bilindiği üzere küresel ısınma ve yanlış arazi kullanımı gibi nedenlerle 21. yüzyılda kuraklığın ve çölleşmenin gittikçe artması beklenmektedir. Bu durumdaki arazilerin çoğu ise Afrika gibi nüfus artış hızının en fazla olduğu ülkelerde bulunmaktadır. Bu nedenle, kurağa dayanıklı ya da az suyla yetişebilen bitki çeşitlerinin geliştirilmesi büyük önem taşımaktadır. Aynı şekilde tuzlu veya mikroelement eksikliği ve alüminyum gibi metal fazlalığı sorunu bulunan topraklarda yetişebilen bitkilerin geliştirilmesi de bu gibi ülkelerdeki marjinal tarım alanlarında üretim yapılabilmesine olanak sağlayacaktır. Eldeki bilgiler, dünyada mineral eksikliği ve metal (özellikle alüminyum) toksisitesi nedeniyle bitkisel üretimin sınırlandığı toprakların tüm topraklar içerisindeki payının % 60 dolayında olduğunu göstermektedir (Çakmak, 2002). Hem bu tür toprak sorunlarına hem de olumsuz çevre/iklim koşullarına karşı dayanıklılık kazandırmaya yönelik çalışmalar da yoğun bir şekilde devam etmekle beraber, bu özelliklerin birden fazla gen veya gen grupları tarafından belirleniyor olması, bunların gerek belirlenip klonlanmaları gerekse bitkilere aktarma teknolojilerinin yetersizliği sebebiyle henüz beklenen başarı düzeyine ulaşılamamıştır. Moleküler Bitki Islahı Gen teknolojileri denildiği zaman ilk akla gelen transgenik bitkiler ise de yukarıda belirtilen teknik kısıtların yanında transgenik bitkiler konusunda oluşan olumsuz kamu oyu baskıları da göz önünde bulundurularak, bu teknolojilerin klasik ıslah yöntemlerini geliştirerek daha etkin kılacağı alanlara yönelmek belki de daha akılcı bir yaklaşım olacaktır. Çoğu biyotik ve abiyotik stres koşullarına dayanım birden fazla gen tarafından kontrol edildiğinden bunların klasik ıslah yöntemleriyle belirlenmesi mümkün olmamaktadır. Ancak bu alanda gerek ulusal gerekse uluslararası ıslah kuruluşlarında, önemli miktarda bitki gen bankaları oluşturulmuş ve klasik ıslah konusunda önemli deneyimler kazanılmıştır. İşlevsel genomik çalışmalarının yaygınlaşmasıyla oluşan bilgi birikimini klasik ıslah yöntemleriyle birleştirmek mümkün olduğunda, stres koşullarına dayanıklı bitki ıslahı da yeni bir boyut kazanacaktır. Arabidopsis genetik haritasının yanında, çeltik, domates ve Prunus gibi türlerin genetik haritalarından kaydedilen gelişme, çoğu metabolik tepkimeyle ilgili gen dizinlerinin evrim boyunca korunmuş olması, elde edilen bu bilgi birikiminin diğer türlerde kullanım olanağını artırmaktadır. Yine moleküler işaret genleri konusunda oluşan bilgi birikimi moleküler bitki ıslahında yaygın olarak kullanılmaya başlanmıştır. Bu moleküler teknikler özellikle buğday gibi genomu karmaşık bitki türlerinde hastalıklara dayanım mekanizmaları ve kalite özellikleri açısından ıslahta çok önemli avantajlar sunmaktadır. Benzer şekilde meyve ya da orman ağaçları gibi generatif yaşam evreleri uzun dolayısı ile melezleme ıslah süreçlerinin çok uzun olduğu bitki türlerinde de moleküler işaret genleri çok önemli olmaktadır. Öte yandan, dünyada, özellikle gelişmekte olan ülkelerde insanlarda başta demir ve çinko olmak üzere mikroelement eksiklikleri ve buna bağlı ciddi sağlık sorunları çok yaygın biçimde ortaya çıkmaktadır. Yapılan tahminler problemin dünya nüfusunun yarısını etkilediğini göstermektedir. Sorunun başlıca nedeni olarak, mikroelementlerce çok fakir olan tahıl kökenli gıdaların yoğun biçimde tüketilmesi gösterilmektedir. Tahıllar hem mikroelementlerce fakir hem de mikroelementlerin vücutta kullanımını sınırlayan maddelerce zengindir (Cakmak ve Ark., 2002). Günümüzde birçok araştırma grubu ve konsorsiyumu buğday, çeltik ve mısır gibi bitkilerin mikroelementlerce zenginleştirilmesi için ıslah programları başlatmış ve bu programlarda moleküler markör destekli moleküler teknikler vazgeçilmez bir araç olarak kullanılmaktadır (www.harvestplus.org). Tüketici Tepkileri ve Biyogüvenlik Düzenlemeleri Transgenik bitkilerin insan sağlığı ve çevre üzerindeki olası olumsuz etkileri uzunca süredir tartışılmaktadır. Yukarıda değinildiği üzere, ilk transgenik ürünler A.B.D.’de yetiştirilmeye başlanmış olup, yine en geniş ekim alanları bu ülkede bulunmaktadır. Bu ürünlerin tamamı Amerikan Gıda ve İlaç İdaresi (FDA), Amerikan Tarım Bakanlığı (USDA/APHIS) ve Çevre Koruma Dairesi (EPA) tarafından çok kapsamlı bilimsel incelemeler yapıldıktan sonra ticari üretimleri yapılmakta ve yine bu ülkede insan gıdası ve/veya hayvan yemi olarak tüketilmektedir. Üretim fazlası olan mısır ve soya gibi ürünler ise Avrupa Birliği dahil diğer ülkelere satılmaktadır. Özellikle Avrupa Birliği ve diğer bazı ülkelerde transgenik bitkilerin insan sağlığı ve çevre üzerine olası olumsuz etkileri çok yoğun bir şekilde tartışma konusu olmaktadır. Bunların bilimsel bazlı tartışmalardan ziyade duygusal, kişisel ve ekonomik tercihler ağırlıklı olduğu yadsınamaz. Örneğin, endişe konusu gerekçelerden bir tanesi transgenik ürün geliştirme çalışmaları sırasında kullanılan antibiyotik işaret genleridir. Avrupa Konseyi’nin 1999 yılında uzman bilim adamlarından oluşan bir panele hazırlatmış olduğu rapor, bu endişenin bilimsel nedenlerle açıklanamayacağını bildirmiş, ancak bundan sonra geliştirilecek transgenik bitkilerde antibiyotik işaret genlerinin kullanılmamasını tavsiye etmiştir. Avrupa Gıda Güvenliği Otoritesi (EFSA) GDO Paneli ise 2 Nisan 2004 tarihide yayınlamış olduğu Bilim Paneli Görüş Dokümanı’nda antibiyotik işaret genlerini 3 grupta toplamış ve halen üretilip tüketilmesine izin verilen GD ürünlerde bulunan npt II işaret geninin insan ve çevre sağlığı açısından her hangi bir sorun oluşturmayacağını, klinik tedavide kullanılan diğer antibiyotik işaret genlerinin ise araştırmalarda kullanılmaması gerektiğini bildirmiştir (EFSA, 2004). İnsan sağlığı açısından öne sürülen diğer bir olumsuzluk ise transgenik ürünlere aktarılan genlerin insanlarda alerji yapacağı ve toksik etkileri olabileceğidir. Ancak, bu ürünlerin ticari ekimlerine izin verilmeden önce yoğun ve kapsamlı laboratuar ve klinik testlerin yapılması ve bulguların bağımsız bilim kurulları tarafından inceleniyor olması, bu tip yan etkilerin en az düzeyde olmasını sağlamaktadır. Burada hatırlanması gereken husus, transgenik ürünlerin alerji oluşturma olasılığının klasik ıslah yöntemleri ile elde edilen ürünlerden daha fazla olmamasıdır (König ve ark., 2004) Nitekim, Avrupa Birliği ülkelerindeki yoğun kamuoyu endişelerini giderebilmek amacıyla, 13 AB üyesi ülke’den 65 bilim insanının katılımıyla, 3.5 yıl süren ve 11.5 milyon euro harcanarak yürütülen ENTRANSFOOD projesi, halen üretilip tüketilmekte olan genetiği değiştirilmiş ürünlerin insan sağlığı açısından klasik yöntemlerle elde edilen ürünlerden daha tehlikeli olmadığını ortaya koymuştur (Kuiper ve ark., 2004). Transgenik ürünlerin çevresel etkilerini değerlendirmek ise insan sağlığı üzerindeki etkilerini değerlendirmekten çok daha zor ve karmaşık görünmektedir. Burada şüphesiz tarımsal üretim yapılan ekosistemlerin birbirlerinden çok farklı olması en büyük etkendir. Çevre üzerindeki olası olumsuz etkilerin başında, transgenik bitkilerin ekosistemdeki diğer canlılarla etkileşimi gelmektedir. Örneğin Bt aktarılmış mısır bitkilerini yiyen tırtılların yanında diğer hedef olmayan canlıların örneğin Kral kelebeğinin de olumsuz etkilenebileceği endişesi (Losey, 1999) son birkaç yıldır yoğun tartışma konusu olmuş hatta GDO karşıtı örgütler tarafından hala yaygın olarak kullanılmaktadır. Ancak, Bt mısır polenlerinin Kral kelebeği ve diğer hedef dışı organizmalar üzerindeki olumsuz etkilerini tarla koşullarında incelemek üzere yapılan kapsamlı araştırmalar bu riskin çok düşük bir düzeyde olduğunu ve Kral kelebeklerinin yaşam döngüsünü olumsuz etkilemediğini göstermiştir (Oberhauser ve ark., 2001; Pleasants ve ark., 2001; Sears ve ark., 2001; Zangerl ve ark., 2001). Burada genetiği değiştirilmiş organizmaların çevre üzerindeki etkileri tartışılırken, Bt geni aktarılmış bitkiler yerine normal mısır yetiştiriciliğinde kullanılan kimyasal mücadele ilaçlarının hedef olmayan organizmalar üzerinde çok daha fazla olumsuz etkilerinin bulunduğunu göz önünde bulundurmakta yarar vardır (Gianessi ve ark., 2002). Burada asıl endişe konusu, sürekli Bt aktarılmış mısır ile beslenen tırtılların belirli bir süre içerisinde dayanıklılık mekanizması geliştirmesinin kaçınılmaz olmasıdır. Onun için bu tırtılların dayanıklılık geliştirmelerini geciktiren tedbirler alınmaya çalışılmaktadır. Ancak, bu yine de güncel ve geçerli bir sorun olarak çözüm beklemektedir. Diğer bir husus ise transgenik bitkilerden gen kaçışı yoluyla biyoçeşitliliğin bozulmasıdır. Burada, transgenik bitkilerle akraba türlerin bulunduğu ekosistemlerde transgeniklerin kesinlikle yetiştirilmemesi öngörülmektedir. Ancak, çiftçi eğitim düzeyinin oldukça sınırlı olduğu gelişmekte olan ülkelerde bunun ne şekilde sağlanabileceği hala bilinmemektedir. Nitekim, mısır bitkisinin gen kaynağı olarak bilinen Meksika’da A. B. D.’den kaçak olarak getirilen transgenik mısırların ekilmesi ve bunlardan Meksika’daki yerel mısır çeşitlerine gen kaçışı biyoçeşitlilik üzerinde önemli etkiler yaratacaktır. Transgenik bitkilerin insan sağlığı ve çevre üzerindeki olası olumsuz etkileri yoğun olarak incelenip tartışılmakta olup, buna yönelik çeşitli ulusal, bölgesel ve uluslar arası mevzuat oluşturma çabaları bulunmaktadır. Ancak ülkeler arasında henüz tam bir uyum sağlandığı söylenemez. Örneğin A.B.D.‘deki biyogüvenlik mevzuatı Avrupa Birliği mevzuatından çok farklı olup mevzuatın uygulanmasında bile ülkeler arasında hala uyum sağlanamamıştır. Ancak, yeni oluşturulan European Food Safety Authority ve 2004 yılında yürürlüğe giren genetiği değiştirilmiş ürünlerin etiketlenmesi ve izlenebilirliğini amaçlayan yönetmelikler bu uyumu sağlamada önemli bir adım sayılabilir. Son olarak, Uluslararası Biyolojik Çeşitlilik Anlaşması bağlamında hazırlanan ve uzun görüşme ve tartışmalardan sonra 2000 yılında üzerinde anlaşmaya varılan Uluslararası Biyogüvenlik Protokolü, transgenik ürünlerin sınır ötesi taşınmaları ve kullanımı yönünde olumlu bir gelişmedir. Türkiye’nin de imzalamış olduğu bu Protokol 11 Eylül 2003’te yürürlüğe girmiş olmasına rağmen, Protokol’ün uygulanabilir hale gelmesi daha bir süre alacaktır. Bunun için özellikle gelişmekte olan ülkelerin, kendi biyogüvenlik mevzuatlarını hazırlamalarının yanında, bu mevzuatı uygulayacak laboratuar altyapısını oluşturmaları, bu laboratuarlarda çalışacak teknik elemanları yetiştirmeleri ve en önemlisi karar verici konumdaki bürokratları eğitmeleri gerekmektedir. Aksi takdirde, bu mevzuat transgenik ürünlerin ticaretini engelleme dışında, gelişmekte olan ülkelerin kendi biyolojik kaynaklarını verimli şekilde değerlendirecek bilimsel ortamı yaratmaları açısından olumlu bir etki oluşturmayacaktır. Fikri Mülkiyet Hakları Giriş kısmında bahsedilen ve tarımsal üretimin artırılmasında oldukça başarılı sayılan “Yeşil Devrim”, büyük ölçüde kamu kuruluşları veya kamu yararına çalışan uluslararası araştırma enstitüleri tarafından gerçekleştirilmiştir. Bu nedenle, gerek yüksek verimli çeşitlerin geliştirilmesi gerekse bu tohumlukların çoğaltılarak gelişmekte olan ülke çiftçilerine ulaştırılması normal ticari kurallar içerisinde süregelmiştir. Benzer şekilde, mekanizasyon, kimyasal gübre ve tarımsal mücadele ilaçları kullanımı, sulu tarım teknikleri gibi yeni teknolojilerin transferi hatta sulama projelerinin kurulması gibi konularda uluslararası finans kuruluşları veya yardım kuruluşları önemli katkılarda bulunmuşlardır. Bugünkü “Biyoteknoloji Devrimi” ise büyük ölçüde özel sektör tarafından yapılmaktadır. Halen bu alandaki Ar-Ge çalışmalarının % 80 oranında özel sektör yatırımlarıyla gerçekleştiği tahmin edilmektedir. Hal böyle olunca, özel sektör yatırımcıları tarafından geliştirilen her teknik veya ürünün hemen patent veya benzeri yöntemlerle korunmaya alınması ve bunlardan kısa sürede ticari gelir sağlanması istenmektedir. Aksi halde, özel sektörün gelir getirmeyecek Ar-Ge faaliyetlerine girmesini beklemek pek gerçekçi olmayacaktır. Örneğin, halen ticarete intikal etmiş transgenik ürünlerin mısır, soya ve pamuk gibi büyük ürün gruplarında olması, gelişmekte olan ülkelerdeki tatlı patates ve sorgum gibi ürünlere özel sektör tarafından pek yatırım yapılmaması şaşırtıcı değildir (SOFA, 2004). Son yıllarda, yine uluslararası yardım kuruluşlarının desteği ile veya biyoteknoloji alanında yoğun Ar-Ge faaliyeti olan çokuluslu şirketlerin işbirliği ile kamu araştırma kuruluşlarında yeni transgenik çeşitlerin geliştirilmesine yönelik araştırma faaliyetlerinin arttığı gözlenmektedir. Ancak, burada da fikri mülkiyet haklarına ilişkin sorunların yoğun olarak tartışıldığı görülmektedir. Bunun en güncel örneklerinden birisi de yukarıda sözü edilen “Altın Pirinç”tir. Rockefeller Vakfı tarafından finanse edilen ve Prof. Ingo Potrykus ve Prof. Peter Beyer önderliğindeki araştırmacılar tarafından geliştirilen “Altın Pirinç”te 30 civarında farklı şirket ve üniversiteye ait 70 adet patent bulunması, bu ürünün ticari olarak değerlendirilmesinde ve hatta gelişmekte olan ülkelere transferinde önemli bir sorun olarak ortaya çıkmıştır. Bu konuda, Latin Amerika ülkelerinde yapılan bir çalışma (Cohen ve ark., 1998), bu ülkelerde yürütülen biyoteknolojik araştırmaların ve ürün geliştirme çalışmalarının hepsinde çok sayıda patentli teknik veya materyalin kullanıldığını göstermiştir (Şekil 2). Tüm bunlar, biyoteknolojik araştırmalardan gelişmekte olan ülkelerdeki fakir çiftçilerin ve halkın nasıl yararlanabileceği sorusunu akla getirmektedir. Dünya Ticaret Örgütü’ne (WTO) üye ülkelerin imzalamış oldukları TRIPS (Trade Related Intellectual Property Rights) antlaşması, bazı istisnai hükümlerine rağmen, gelişmiş ülkelerdeki çok uluslu şirketleri korur niteliktedir. Bu nedenle, gelişmekte olan ülkelerdeki araştırma kuruluşlarının, biyoteknolojik araştırmalarını planlarken ve yürütürken fikri mülkiyet haklarıyla ilgili konuları yakından izlemeleri ve ona göre tedbir almaları yararlı olacaktır. Bu bağlamda yine transgenik bitkilerden ziyade moleküler bitki ıslahı yöntemlerinin Türkiye gibi gelişmekte olan ülkeler açısından daha avantajlı olduğu söylenebilir. Yine burada, Türkiye gibi zengin gen kaynaklarına sahip ülkelerin, bu gen kaynaklarını tespit edip karakterize ederek, hatta bunlardaki ticari öneme sahip genleri saptayıp patentleyerek önemli bir konum yakalamaları mümkün olabilir. Bu konuda, FAO örgütü tarafından 2001 yılında kabul edilen Uluslararası Bitki Genetik Kaynakları Antlaşması işlerlik kazandığında, zengin gen kaynağı olan ülkelerin bu kaynaklardan daha etkin yaralanmalarına yardımcı olacaktır. Bu alandaki gerek yasal ve gerekse araştırma altyapısının şimdiden oluşturulması yararlı olacaktır. Şekil 2. Latin Amerika Ülkelerinde Kullanılan Patentli Teknikler ve Materyaller (Cohen ve ark., 1998). Türkiye’de Tarımsal Biyoteknoloji ve Transgenik Ürünlerin Durumu Türkiye zengin gen kaynaklarına sahip olması nedeniyle, tarımsal biyoteknoloji alanında çok önemli bir avantaja sahiptir. Ancak, Türkiye’nin modern biyoteknolojik yöntemlerin sunduğu nimetlerden yararlanabilmesi için dünyadaki gelişmeler ve Türkiye’deki mevcut durum çerçevesinde önceliklerini çok iyi saptaması gerekmektedir. Türkiye’de biyoteknolojinin gelişmesi için mutlak gerekli olan biyoloji, biyokimya, moleküler biyoloji gibi temel bilim alanlarına gerekli önemin verilmemesi, bu alanda yetişmiş eleman sayısının düşük kalmasına ve dolayısı ile kapsamlı araştırmaları yürütebilecek kritik kitleye sahip araştırma birimlerinin oluşturulmasına engel olmuştur. Bu sorun, 1980 yılından beri hazırlanan tüm 5 yıllık kalkınma planlarında vurgulanmış olmasına karşın, bu konuda henüz belirgin bir gelişme sağlandığı ne yazık ki söylenemez. Burada en önemli sorun, belirli düzeyde bilgi birikimine ve tecrübeye sahip araştırmacıları bir araya getirerek “uzmanlık merkezleri” oluşturmak yerine tek tek laboratuvarların oluşturulmasından kaynaklanmaktadır. Son yıllarda, yurt dışında moleküler biyoteknoloji alanında eğitim görmüş ya da moleküler bitki ıslahı konusunda eğitim almış genç araştırmacıların sayısı artıyor olmasına rağmen, bunları bir araya getirerek güdümlü projeler üzerinde çalışacak “uzmanlık merkezleri” ya da laboratuvarları oluşturacak bir çaba görülmemektedir. Gerekli tedbirler alınmadığı taktirde, geçtiğimiz 30 yıldır yapılan girişimlere ve harcanan çok önemli miktarda kaynaklara rağmen Türkiye’nin tarımsal biyoteknoloji alanında, bugün bulunduğu noktadan daha farklı bir konuma gelmesi mümkün olamayacaktır. Burada, Türkiye’de bitki doku kültürü yatırımlarının 1974 yılında başlamış olmasına ve halen hemen hemen tüm Ziraat Fakültelerinde ve Tarım Bakanlığı araştırma enstitülerinde birer doku kültürü laboratuvarı kurulmuş olmasına rağmen Türkiye’nin, son derece basit bir teknoloji gerektiren patates tohumluğu ihtiyacını bile, hemen tamamını her yıl milyonlarca dolar ödeyerek yurt dışından karşılaması en çarpıcı örneklerden birisidir. Türkiye’nin biyoteknolojiye ve tarımsal araştırmalara yaklaşımını ortaya koymak amacıyla, 2001-2005 yıllarını kapsayan VIII. Beş Yıllık Kalkınma Planının ilgili bölümleri incelendiğinde, bilgi toplumu olma amacı doğrultusunda bilimsel ve teknolojik gelişmeler sağlayarak uluslararası düzeyde rekabet gücü kazanmanın esas olduğu ilkesi dikkati çekmektedir. Bu ilke çerçevesinde biyoteknolojinin de içinde bulunduğu bazı yüksek teknolojiler öncelikli konu olarak belirlenmiştir. Ayrıca, ekonomik, sosyal, çevresel boyutunu bütün olarak ele alan rekabet gücü yüksek, sürdürülebilir bir tarım sektörünün oluşturulması temel amaç olarak tespit edilmiştir. Tarımsal araştırmalarda koordinasyonun sağlanmasının ve araştırma konularının belirlenmesinde üretici ve sanayicinin taleplerinin dikkate alınmasının gerekliliği de vurgulanmaktadır. Hedefler bu şekilde belirlenmekle birlikte, Türkiye’nin Ar-Ge konusunda diğer ülkelere oranla oldukça geride olduğu bilinen bir gerçektir. Halen Ar-Ge harcamalarının GSMH içindeki payı % 0,64 düzeyindedir. Üniversiteler toplam Ar-Ge çalışmalarında ve tarımsal araştırmalarda en fazla payı alan kurumdur. Dolayısıyla, diğer gelişmekte olan ülkelere paralel olarak Türkiye’de de özel sektör araştırmaları kısıtlı olup, üniversiteler % 70’lere varan payla en fazla araştırmanın yapıldığı kurum olmaktadır. TÜBA (2003) tarafından gerçekleştirilen “Moleküler Yaşam Bilimleri ve Teknolojileri Öngörü Projesi” kapsamında Türkiye’nin biyoteknoloji ile ilgili altyapısı ortaya konmaktadır. Çalışma, yaklaşık 150 araştırma biriminin ve 2000 araştırıcının biyoteknoloji konusunda çalıştığını göstermektedir. Bu sayının önemli bir insan altyapısını işaret ettiğini vurgulayan çalışma, araştırıcıların verimliliklerinin bir göstergesi olan araştırıcı başına bilimsel yayın verilerine bakıldığında mevcut altyapının etkin bir şekilde kullanılmadığını, kurumsallaşmanın ve teknoloji üretme kaygısının bulunmadığını .belirtmektedir. Türkiye’de biyoteknoloji alanında yapılan bilimsel yayınların yaklaşık % 42’si endüstriyel biyoteknoloji alanında olup tarımsal biyoteknoloji % 11,5 ile en az yayın çıkarılan biyoteknoloji dalı olmuştur. Stres toleransı, rejenerasyon ve propagasyon, farmasötik ve moleküler markörler en fazla çalışılan tarımsal biyoteknoloji konularıdır (Özcengiz, 2003). Biyoteknoloji araştırmaları için devlet TÜBİTAK, kamu kurumları ve üniversitelere destek verdiği gibi özel sektöre de belli oranlarda destekler sağlamaktadır. Kamu yatırım bütçesinden üniversitelere araştırma projelerinin desteklenmesi amacıyla ödenekler tahsis edilmekte olup, desteklenen projeler arasında genetik kaynakların korunması projeleri, transgenik bitki geliştirilmesine ve üniversitelerin altyapılarını geliştirmeye yönelik projeler önde gelmektedir. Öte yandan, firmaların biyoteknoloji araştırma geliştirme faaliyetlerine de TÜBİTAK bünyesindeki Teknoloji İzleme Değerlendirme Birimi (TİDEB) ve Türkiye Teknoloji Geliştirme Vakfı (TTGV) kanalıyla destek sağlanmaktadır. TİDEB firmaların Ar-Ge proje maliyetlerinin en fazla % 60’ı oranında ve hibe şeklinde destek vermektedir. Bu program dahilinde, gen mühendisliği-biyoteknoloji 6 öncelikli konudan biri olarak tespit edilmiş olup biyoteknoloji projelerinin toplam desteklenen projeler içindeki payı % 3,1’dir. TTGV ise proje maliyetinin en fazla % 50’sini karşılamakta ve geri ödemeli bir sistem içinde destek vermektedir. Biyoteknolojinin bu kapsamda desteklenen projeler içerisindeki payı ise % 7’dir. Tarımsal biyoteknolojide gelişme kaydetmiş ülkelerdeki kurumsal yapılanma üniversiteler, kamu Ar-Ge kuruluşları ve özel sektör olmak üzere 3 farklı ayaktan meydana gelmekte ve her bir kurumun kendi kapasiteleri ve görev tanımları içinde belirlenmiş rolleri bulunmaktadır. Örneğin üniversiteler ve kamu Ar-Ge kuruluşları temel araştırma konusunda uzmanlaşırken, özel sektörün uygulamalı araştırma ve ürün geliştirmeye yönelik çalıştığı görülmektedir. Birbirinin tamamlayıcısı olan bu roller içinde bir kurumun eksikliği sistemin iyi çalışmamasına neden olmaktadır. Bu noktadan hareketle Türkiye’deki yapıya baktığımızda, araştırma sistemi içerisinde üniversitelerin temel kuruluş olduğu ve en önemli ayaklardan biri olan özel sektörün sistem içinde yer almadığı dikkati çekmektedir. Dolayısıyla, özel sektörün ve kamu Ar-Ge kuruluşlarının rolünü üstlenecek bir kurumsallaşma olmadığı için hedefe yönelik ve verimli çalışan bir sistem mevcut değildir. Bununla beraber, yukarıda da belirtildiği gibi araştırmaların önemli bir kısmını yürüten üniversitelerin de verim ve etkinlik sorunları bulunmaktadır. Son yıllarda, çok önemli kaynaklar sağlanarak, moleküler biyoloji altyapısına sahip laboratuarların kurulduğu ve yine yeterli yetkin kadroların bulunup bulunmadığı aranmaksızın önemli miktarda proje destekleri sağlandığı görülmektedir. Ancak, bu projeler incelendiği zaman bunların çoğunun gerçekçi hedeflere odaklanmadığı ve ürün geliştirme niteliği taşımadığı da bir gerçektir. Transgenik ürün geliştirmeye yönelik bir kısım araştırma projelerinin başarılı olmaları için gerekli özel sektör katılımı ya da desteğinin olmaması da ayrıca düşünülmesi gereken bir husustur. Yine bu bağlamda, geliştirilmesi muhtemel transgenik ürünlerin risk analizleri ve pazara sunumları için gerekli yasal çerçevenin çizilmemiş olması da bunların uygulamaya geçirilme şansını ortadan kaldırmaktadır. İlk defa 1998 yılında yabancı firmalara ait transgenik çeşitlere ait tarla denemelerinin yapılabilmesi için Tarım ve Köyişleri Bakanlığı tarafından hazırlanarak yürürlüğe sokulan “Transgenik Kültür Bitkilerinin Alan Denemeleri Hakkında Talimat” ise bu amaca hizmet etmekten çok uzaktır. Hal böyle iken, söz konusu çeşitlerin tarla denemelerinin 1998 yılından bu yana bizzat Tarım ve Köyişleri Bakanlığı’na ait Araştırma Enstitü’leri tarafından yürütülüyor olmasına rağmen elde edilen sonuçların resmen açıklanmamış olması da üzerinde durulması gereken önemli bir konudur. Türkiye Cartagena Biyogüvenlik Protokolünü imzalayan ilk ülkelerden biri olmuşsa da buna yönelik yasal mevzuat çalışmalarını aynı hızda yürütememiştir. Aynı şekilde, Avrupa Birliği mevzuatına uyum için gerekli yönetmelikler de henüz hazırlanarak yürürlüğe sokulamamıştır. Biyogüvenlikle ilgili bu mevzuat boşluğunun yanında, fikri mülkiyet hakları kapsamında Bitki Islahçı Haklarıyla ilgili mevzuat yıllar sonra oluşturulmuşsa da UPOV üyeliği henüz gerçekleştirilememiştir. Türkiye’de transgenik ürünlerin ticari olarak ekimlerine izin verilmezken, yurtdışından gıda hammaddesi olarak ithal edilen mısır ve soya ürünlerinin transgenik olma ihtimali oldukça yüksek görünmektedir. Sonuç ve Öneriler Kısaca biyoteknoloji olarak da isimlendirilen modern gen teknolojileri, hızla artan dünya nüfusunun yeterli ve dengeli beslenmesini sağlamak amacıyla tarımsal üretimin artırılmasında önemli olanaklar sunmaktadır. Burada, sürdürülebilir tarım tekniklerinin uygulanmasının yanında biyotik ve abiyotik stres koşullarına dayanıklı, yüksek verimli ve kaliteli bitki çeşitlerinin geliştirilmesi önemli bir önceliktir. Bu bitkilerin geliştirilmesinde sadece transformasyon yoluyla elde edilen transgenik bitkiler değil, ağırlıklı olarak moleküler bitki ıslahı teknikleri üzerinde yoğunlaşmak kısa ve orta vadede daha doğru olacaktır. Türkiye gibi zengin gen kaynaklarına sahip gelişmekte olan ülkelerin, öncelikli alanlarını saptayarak moleküler biyoloji çalışmaları için yeterli altyapıyı oluşturmaları ve kritik kitleyi oluşturacak sayıda yetkin araştırmacı yetiştirmeleri, ellerindeki genetik potansiyeli en iyi şekilde değerlendirmelerine yardımcı olacaktır. Ancak, teknolojik gelişmelere paralel olarak, gerek bu tekniklerin ve ürünlerin geliştirilmesi sırasında gerekse bunların doğaya salımlarında biyogüvenlikle ilgili yasal düzenlemelerin yapılması ve bu mevzuatı uygulayacak yetkin kişilerin eğitilmesi gerekmektedir. Burada, hazırlanacak mevzuatın bilimsel esaslara dayalı olması, yurt içinde yapılacak çalışmaları engelleyici değil kolaylaştırıcı tedbirleri içermesi önem taşımaktadır. Aynı şekilde, biyoteknolojik uygulamalar ve ürünlerle ilgili fikri mülkiyet haklarına yönelik Bitki Islahçı Hakları, Patent Kanunu gibi mevzuatın bir an önce uygulanabilir hale getirilmesi, bu alanlarda araştırmacıları bilgilendirecek ve destekleyecek düzenlemelerin yapılması küreselleşen dünya ticaretinde rekabet edebilecek bir konuma gelebilmemiz için önem taşımaktadır. Prof. Dr. Selim ÇETİNER Sabancı Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi Tuzla, İstanbul

http://www.biyologlar.com/biyoteknoloji-ve-tarim-guvencesi

Türkiye Zootekni Bölümlerinde Hayvan Davranışları Bilimi

Hayvan davranışları bilimi bakımından Türkiye’de son yıllarda sevindirici gelişmeler yaşanmaktadır. Lisans ve lisansüstü ders olarak hayvan davranışları, zootekni bölümü olan neredeyse tüm üniversitelerde okutulmaya başlanmıştır. Genellikle lisansta zorunlu ders olarak genel hayvan davranışları verilmekte, lisansüstünde ise seçmeli ders olarak türlere özgü davranış dersleri yer almaktadır. Ülkemizde davranış derslerinin türlere özgünleşmesi ilginçtir. Zira ülkemize kıyasla hayvan davranışları biliminin çok daha eski bir geçmişi olmasına rağmen batı ülkelerinde türlere ilişkin ayrı derslere neredeyse rastlanmamaktadır. Zootekni öğretiminin yapılanması ve bu konudaki ulusal alışkanlıklarımız ile ilişkilendirilebilecek bu oluşum aynı zamanda ülkemizde temel davranış çalışmalarına olan ilginin yetersizliğini de açıklamaktadır. Ülkemiz zootekni bölümlerinde hayvan davranışları konusunda yapılan ve Science Citation Index tarafından değerlendirmeye alınan dergilerde yayınlanan çalışmalara bakıldığında ilk yayının 1999 tarihli olduğu görülmektedir (Çam ve ark., 1999). Aynı yazarların daha sonraları davranış konularında yayınlarına rastlanmamaktadır. Bu çalışmayı, güncel değerlendirme makalesinin yazar(lar)ının da içerisinde bulunduğu 2001, 2002 ve 2003 tarihli üç araştırma makalesi izlemektedir (Savaş ve ark, 2001; Yurtman ve ark., 2002; Karaağaç ve ark., 2003). Kasım 2007 tarihi itibarıyla SCI tarafından taranan dergilerde hayvan davranışları konusunda yayınlanan Türkiye adresli toplam makale sayısı 21’dir. Makale sayıları bakımdan, Çanakkale Onsekiz Mart Üniversitesi Ziraat Fakültesi Zootekni Bölümü (Savaş ve ark., 2001; Yurtman ve ark., 2002; Uğur ve ark., 2004; Savaş ve ark., 2007; Tölü ve Savaş, 2007; Atasoglu ve ark., 2007), Mustafa Kemal Üniversitesi Ziraat Fakültesi Zootekni Bölümü (Keskin ve ark., 2004; Keskin ve ark., 2005; Tapkı ve Şahin, 2006, Tapkı ve ark., 2006) ve Atatürk Üniversitesi Ziraat Fakültesi Zootekni Bölümü’nden (Yanar ve ark., 2006; Metin ve ark., 2006; Güler ve ark., 2006) araştırma gruplarının çalışmaları dikkat çekmektedir. Anılan çalışmaların yarıya yakın bir bölümü pür uygulamalı etolojik çalışmalar olarak değerlendirilebilirler. Diğer çalışmalarda ise davranış özellikleri daha ziyade ikincil, yada destekleyici biyolojik göstergeler olarak kullanılmışlardır. Söz konusu çalışmalar türler bazında incelendiğinde küçükbaş hayvanların ağırlıklı olduğu, bunları sığırların izlediği gözlenmektedir. Türkiye adresli ve SCI indeksli yayınlar içerisinde kanatlı türlerde, biri yumurtacı tavuk diğeri güvercin özdekli olan yalnızca iki çalışmaya rastlanmıştır (Karaağaç ve ark., 2003; Savaş ve ark., 2007). Bununla birlikte, ulusal dergilerde yayınlanmış olan bazı araştırma makaleleri ile (Savaş ve Şamlı, 2000) yine bu konuda yürütülen tez çalışmalarına (Köse, 2004) da ulaşmanın mümkün olabileceği düşünülmektedir. Her ne kadar TÜBİTAK ULAKBİM bu konuda önemli adımlar atmış olsa da, ne yazık ki, ulusal paylaşım ağımızın yetersizliği nedeni ile çalışmalara ulaşmak son derece güç olabilmektedir. Bu nedenlerle değerlendirmede sadece uluslararası paylaşım kolaylığına sahip süreli yayınlar dikkate alınmıştır. Bilim insanlarının çalışma alanlarının belirlenmesinde ulusal nitelikli bilimsel toplantılar iyi birer araçtır. Zira bilimsel projeler, proje başladıktan çok kısa sonrasında bu tip toplantılarda sunulurlar. Halbuki bu çalışmaların makaleye dönüşmesi çok daha uzun bir süre alabilir. Bu bağlamda hayvan davranışları bilim alanındaki çalışmaların gelişimini takip etmek açısından Ulusal Zootekni Bilim Kongrelerinde sunulan bildiriler iyi birer araç olabileceği düşünülmüş ve 2000 yılından sonra yapılan üç Ulusal Zootekni Bilim Kongresi (2002 Ankara, 2004 Isparta ve 2007 Van) incelenmiştir. Ankara Üniversitesi Ziraat Fakültesi Zootekni Bölümü’nce organize edilen III. Ulusal Zootekni Kongresi’ne toplam 167 bildiri sunulmuş olup, Hayvansal Üretim bunlardan biri küçükbaş diğeri balarısı özdeğinde olmak üzere, yalnızca iki tanesinin hayvan davranışları konusunu içerdiği gözlenmiştir. Süleyman Demirel Üniversitesi Ziraat Fakültesi Zootekni Bölümü’nün gerçekleştirdiği IV. Ulusal Zootekni Kongresi’nde ise toplam bildiri sayısı 174, hayvan davranışları konulu bildiri sayısı 13 e ulaşmıştır. Son yapılan Van Kongre’si değerlendirildiğinde, bir önceki kongreye göre %13,2’lik bir artışla (Ankara ile Isparta arasındaki toplam bildiri sayısı artışı %4,2) toplam bildiri sayısının 197, hayvan davranışlarını konu alan bildiri sayısının ise 17 olduğu görülmektedir. Kongrelere göre hayvan davranışlarını konu edinen bildiri sayısının toplam bildiri sayısına oranı sırasıyla %1,2, %7,5 ve %8,6’dır. Bu gelişme hayvan davranışları bilim dalı bakımından sevindiricidir. Zootekni, veteriner hekimlik ve biyoloji öğrencileri için önemli bir Türkçe kaynak durumunda olan ve Ege Üniversitesi Ziraat Fakültesi Zootekni Bölümü öğretim üyesi Prof. Dr. Erdinç Demirören tarafından kaleme alınan “Hayvan Davranışları” kitabı da, bu konuda bir ilk olması nedeniyle anılmadan geçilemez (Demirören, 2007). Ancak bir tek kitabın bilim dalı için yeterli olmadığı, hayvan davranışları alanında Türkçe kaynak sıkıntısı çekildiği de bir gerçektir. Sonuç Hayvan davranışları bilimi, hayvanların çevresel düzenlemelerinde yararlı bir araç olarak görülmektedir. Bu yararlanma, çevrenin hayvanın davranışlarına göre şekillendirilmesi yanında davranış bakımından mevcut çevre koşullarına uyum sağlayabilecek hayvanların ıslah edilmesi şeklinde iki yönlüdür. Sözkonusu bilim dalından yararlanmanın anılan her iki yönünün de birlikte ele alınması ön koşuldur. Zira hayvan bilimi içerisinde bu güne değin yapılan çalışmalar göstermiştir ki, ne tek başına çevreyi ne de tek başına hayvanın genetik yapısını “yetiştiricinin arzuları doğrultusunda” optimize etmek mümkün olmuştur. Dolayısıyla optimizasyon bütüncül bir yaklaşımı gerektirir. Bu bilim dalından üretilecek bilgi hayvanların yaşamlarını daha sağlıklı sürdürmelerini, üremelerini ve üretmelerini sağlayacaktır. Bunların ötesinde hayvanlarla ilgili hukuki düzenlemelerde de bu bilim dalının vazgeçilmez katkısı bulunmaktadır. Hayvan refahının gözetilmesi anlamında Hayvanları Koruma Kanunu’nda hayvan davranışları bilim dalına doğrudan atıfta bulunulmaktadır (Kanun No: 5199; Madde 3, 5, 8 ve10). Ancak çevresel düzenlemeleri insan kontrolünde olan hayvanların davranışlarının yalnızca uygulamaya dönük olarak ele alınması, hayvan davranışları bilim dalının gelişmesini olumsuz olarak etkiler. Bilim dalının sağlıklı olarak gelişmesi için, yetiştirme olgusu altında hayvanların davranışlarına yönelik temel çalışmalara da gereksinim vardır. İlgili davranışların ortaya çıkışında etkili mekanizmaların aydınlatılabilmesi için fizyolojiden genetiğe, gelişme biyolojisinden patolojiye kadar davranışa temel oluşturan alanların kapsamı içerisinde çalışmak kaçınılmaz gözükmektedir. Söz konusu yaklaşım tarzı aynı zamanda bu konuda yetişecek genç bilim insanlarının temel etolojiyi ve ilgili alt dallarını iyi öğrenmelerini de sağlayacak niteliktedir. Zootekni açısından hayvan davranışları bilim dalının Türkiye’de son yıllarda sergilediği gelişimin niteliği sevindirici ve umut vericidir. Ancak ve ne yazık ki, zootekni bilim camiası içerisinde yapılan sohbetlerden takip edilen bir şekilde, özellikle davranışın sayısallaştırılması ve akabinde istatistiksel değerlendirilmesi konusunda bilimcilerimizin sorunlar yaşadıkları, kimi zaman bu güçlüklerin araştırmacıları söz konusu alandan vazgeçmenin eşiğine getirdiği izlenimi, çalışmaların sürekliliği açısından endişe yaratmaktadır. Öncelikle belirtmek gerekir ki tüm Dünya’da bu konuda çalışmalar yetersizdir. Bu durum söz konusu alanda bilimsel çalışma yapmaktan vazgeçmeyi değil ilgili sorunların üzerine gitmeyi ve araştırma yapmayı gerektirir. Nitekim hayvan davranışları bilimi alanında yöntem konusunda da çalışmalara gereksinim vardır. Kaynaklar Ataşoğlu, C., Yurtman, İ. Y., Savaş, T., Gültepe, M., Özcan, O. 2008. Effect of weaning on behavior and serum parameters in dairy goat kids. Animal Science Journal 79(4): 435-442. Bessei, W. 1983. Die Bedeutung der Lorenzschen Instinktlehre in der Diskussion um eine verhaltensgerechte Unterbringung von Legehennen. Züchtungskunde 55: 222-232. Çam, M., Kuran, M., Selçuk, E. 1999. Effects of time spent near mothers postpartum on the behaviour of ewes and lambs and on the growth performance of lambs in Karayaka sheep. Turk. J. Vet. Anim. Sci. 23: 335-342. Darwin, C. 1990. Türlerin kökeni. (Çev. Öner Ünalan) Onur Yayınları, Şahin Matbaası, Ankara, ss 392. Dietl, G., Nürnberg, G., Reinsch, N. 2006. A note on a quantitative genetic approach for modeling of differentiation tasks. Appl. Anim. Behav. Sci. 100: 319–326. Demirören, E. 2007. Hayvan davranışları. II. Baskı. Ege Üniversitesi Ziraat Fakül. yayınları No:547, İzmir. Hayvansal Üretim 49(2), 2008 Hayvan Davranış Bilimi ve Zootekni: Tanım ve İzlem 41 Güler, O., Yanar, M., Bayram, B., Metin, J. 2006. Performance and health of dairy calves fed limited amounts of acidified milk replacer. S. African J. Anim. Sci. 36: 149-154 Immelmann, K., Ekkehard, P., Sossinka, R. 1996. Einführung in die Verhaltensforschung. Blackwell Wissenschafts-Verlag Berlin, Wien, pp 287. Karaağaç, F., Özcan, M., Savaş, T. 2003. Verlauf von aggressivem Picken und einigen Verhaltensmerkmalen in rangordnungsinstabilen Käfiggruppen bei Legehennen. Arch. Tierz. 46: 391-396 Keskin, M., Şahin, A., Biçer, O., Gül, S. 2004. Comparison of the behaviour of Awassi lambs in cafetaria feeding system with single diet feeding system. Appl. Anim. Behav. Sci. 85: 57-64. Keskin, M., Şahin, A., Biçer, O., Gül, S., Kaya, S., Sarı, A., Duru, M. 2005. Feeding behaviour of Awassi sheep and Shami (Damascus) goats. Tr. J. Vet. Anim. Sci. 29: 435-439. Köse, K.,2004. Devriye köpeği amaçlı kullanılan alman çoban köpeği ile Belçika çoban köpeği (Malinois) ırkı köpeklerin eğitim sürelerini etkileyen faktörler. Yüksek Lisans Tezi. Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü, Çanakkale, 56 s. Lorenz K. 1982 Vergleichende Verhaltensforschung. Grundlagen der Ethologie DTV Wissenschaft: München, pp 399. Lund, V., Coleman, G., Gunnarsson, S., Appleby, M. C., Karkinen, K. 2006. Animal welfare science—Working at the interface between the natural and social sciences. Appl. Anim. Behav. Sci. 97: 37-49. Metin, J., Yanar, M., Güler, O., Bayram, B., Tüzemen, N. 2006. Growth, health and behavioural traits of dairy calves fed acidified whole milk. Indian Vet. J. 83: 976-979 Millman, S.T., Duncan, I.J.H., Stauffacher, M., Stookey, J. M. 2004. The impact of applied ethologists and the international society for applied ethology in improving animal welfare. Appl. Anim. Behav. Sci. 86: 299-311. Mormede, P. 2005. Molecular genetics of behaviour: research strategies and perspectives for animal production. Livestock Production Science 93: 15–21 Sambraus, H.H. 1998. Applied ethology-it’s task and limits in veterinary practice. Appl. Anim. Behav. Sci. 59: 39-48. Sambraus, H.H. 2002. Aufgaben der Angewandten Ethologie bei Landwirtschaftlichen Nutztieren früher und heute. Gumpensteiner Tagung “Nutztierhaltung im Wandel der Zeit”, Bundesanstalt für alpenländische Landwirtschaft, Gumpenstein, A-8952 Irdning: 17-20. Sandilands, V. 2004. David Wood-Gush, the biography of an ethology mentor. Appl. Anim. Behav. Sci. 87: 173-176. Savaş, T., Şamlı, E. 2000. Tavuklarda agresyon ile sosyal hiyerarşinin yumurta verimi ve bazı davranış özelliklerine etkisi. Tarım Bilimleri Dergisi 6: 11-15. Savaş, T., Yurtman, I.Y., Karaağaç, F., Köycü, E. 2001. Einfluss der intensiven Gruppenhaltung und Geschlecht auf Oral-Stereotypien und einige Verhaltensmerkmale bei Mastlämmern. Arch. Tierz. 44: 313-322 Savaş, T., Konyalı, C., Daş, G., Yurtman, İ.Y. 2007. Effect of beak length on feed intake in pigeons (Columba livia f. domestica). Animal Welfare 16: 79-86. Smidt, D., Schlichting, M.C., Ladewig, J., Steinhardt, M. 1995. Ethologische und verhaltensphysiologische Forschung für tiergerechte Nutztierhaltung. Arch. Tierz. 38: 7-19. Steiger, A. 1993. Schlussbetrachtung zur 25. Freiburger Tagung und kritische Gedanken zur Stellung der angewandten Ethologie. Aktuelle Arbeiten zur artgemäßen Tierhaltung, Vorträge anlässlich der 25. Internationalen Arbeitstagung Angewandte Ethologie bei Nutztieren der Deutschen Veterinärmedizinischen Gesellschaft e.V. KTBL-Schriften-Vertrieb im Landwirtschaftsverlag GmbH, Münster-Hiltrup: 274-284 Tapkı, İ, Şahin, A. 2006. Comparison of the thermoregulatory behaviours of low and high producing dairy cows in hot environment. Appl. Anim. Behav. Sci. 99: 1-11. Tapkı, İ., Şahin, A., Önal, A.G. 2006. Effect of space allowance on behaviour of newborn milk-fed dairy calves. Appl. Anim. Behav. Sci. 99: 12-20. Tembrock, G. 1992. Verhaltensbiologie. 2. Auflage. Gustav Fischer Verlag, Jena, pp 386. Tinbergen, N. 1979. Tiere und ihr Verhalten. (Überstz. Hans-Heinrich Wellmann und Wolfgang Vilwock) Rowohlt Taschenbuch Verlag GmbH, Reinbek bei Hamburg, pp 191. Todes, D. 2003. İvan Pavlov: Hayvan makinesini araştırırken. (Çev. Ebru Kılıç), TÜBİTAK Popüler Bilim Kitapları, Ankara, ss. 118. Tölü, C., Savaş, T. 2007. A brief report on intra-species aggressive biting in a goat herd. Appl. Anim. Behav. Sci. 102: 124-129. Uğur, F., Savas, T., Dosay, M., Karabayır, A., Atasoglu, C. 2004. Growth and behavioral traits of Turkish Saanen kids weaned at 45 and 60 days. Small Ruminant Research 52: 179-184. Hayvansal Üretim

http://www.biyologlar.com/turkiye-zootekni-bolumlerinde-hayvan-davranislari-bilimi

EVRİM KURAMI ve TEORİLERİ 1

Evrim kuramının özü maymun sorunu mudur? Darwin,maymundan geldiğimizi mi söyledi? Maymundan geliyor olmakla kurttan geliyor olmak neyi fark ettirir? Darwin,Evrim kuramını hangi araştırmalar sonucu ortaya koydu? Doğal seçilim nedir? Yaşamın ortaya çıkışında rastlantının rolü var mıdır? Bugün yaşamın nasıl oluştuğu konusunda sağlam bir kurama sahip miyiz? Yaratılış kuramları ile Evrim kuramının farkı nedir?Erzurumlu İbrahim Hakkı,Darvin’den yüz yıl önce maymundan geldiğimizi nasıl söyledi? İslam toplumlarındaki bilimin parlak yüzyılları olan 8. ve 12. yy'larda evrim kuramının pırıltılarını savunan İslam bilgeleri var mıdır? Evrim kuramını reddetmek,bizlere Türkiye'mize neler kaybettirir? Zümrütten Akisler : Charles Darvin’den bilimsel düşünme dersleri... A. M. C. Şen gör 27 Aralık 1831'de Majestelerinin Gemisi Beagle, dünyanın etrafını dolaşmak üzere İngiltere'nin Plymouth limanından demir aldığı zaman yolcuları arasında bulunan "geminin doğa bilimcisi" Charles Darwin henüz 22 yaşında, teşebbüs ettiği tıp ve ilâhiyat eğitimlerinin her ikisinde de pek bir varlık gösterememiş, yaşamında tutacağı yol pek de belli olmayan gencecik bir adamdı. Gitmesine baştan razı olmayan babasına gemide harçlığından fazlasını harcayabilirse iki misli akıllı sayılacağını söylediğinde, yetenekli ve deneyimli taşra doktoru Robert Darwin oğluna gülümseyerek "ama herkes bana senin çok akıllı olduğunu söylüyor!" cevabını vermişti. "Herkes" haklı çıktı. Bu gencecik adam, 1837'de İngiltere'ye geri geldiğinde birinci sınıf bir doğa bilimci olup çıkmıştı. Evrim kuramı onun bilimin kalıcı hazinelerine kattığı tek mücevher değildir. Pasifik Okyanusunda yol alırken karşılaşılan sayısız atoller (dairemsi mercan adaları) genç adamın dikkatini çekmişti. Bu garip yapılar nasıl oluşuyordu? Mercanların küçük hayvancıklar oldukları, yaşayabilmek için mutlaka güneş ışığına ihtiyaçları olduğu, bu nedenle de yaklaşık 200 metrenin altında yaşayamayacakları biliniyordu. Atollerin dairesel şekilleri, bunların deniz altı yanardağlarının kraterlerinin kenarlarında büyümüş mercan kolonileri olduğu fikrini doğurmuştu. Geminin küpeştesinden yanindan geçtikleri atollerin ve içlerindeki turkuvaz la günlerin doyulmaz güzelliklerinin büyüsü içinde Darwin, bu teoriyi düşünüyordu: Her bir atol, bir krater! Iyi de niçin tüm kraterler "tesadüfen hep deniz seviyesinden yalnizca iki yüz metre derinlikteki alan içinde bulunsunlar?" Haydi diyelim ki deniz dibinin engebelerinden ötürü bu böyle olsun. Peki, ya set resifleri denilen ortada bir kara parçasini çevreleyen atol benzeri mercanlar? Ya saçak resifleri adi verilen ortadaki bir karaya dogrudan bagli gelişenler? Hele set resiflerinin açiklanmasi için herkesin kabul ettigi kurama göre ortadaki karanin etrafinda bir de krater bulunmasi geregi? Ya Avustralya'nin tüm kuzeydogu sahili boyunca uzanan o binlerce kilometrelik dev set resifi? Onun da mi krateri var? Bazilari mercanlarin sualti dag zirvelerinde oluştugunu savunuyor bu tür dümdüz mercan setlerini veya atol siralarini görünce: O dag siralarinin tepeleri hep ayni seviyede miydi? Nerede böyle bir dag silsilesi görülmüş ki? Kafasında bu sorular uçuşan genç, diyor ki, atollerin hepsinin deniz seviyesinde bulundukları açık, daha yukarı tırmanmıyorlar. Bazı yerlerde yükselmiş resifler var: Onlardaki mercanlar ölmüş. Bugünkü dairesel mercan adalarında deniz dış kısımda hızla derinleşiyor, atol lagünleri ise hep sığ. Diyelim ki bunlar tepe yükseklikleri çeşitli olabilen bir dağ silsilesinin yavaş yavaş deniz dibine çökmesiyle oluşmuş olsunlar. O zaman ne olacak? Denizin içine dalan tepenin çevresine önce saçak resifleri oluşacak; tepenin çökmesi devam ettikçe bunlar sırayla önce set sonra da tepe tamamen sular altında kalınca atol resiflerine dönüşecekler. Çökme ne kadar devam ederse etsin, resif yalnız 200 metre derinlikte yaşayabildiğine göre her mercan nesli bu derinliğin altına çöken ve ölenlerin kalıntıları üzerinde yaşamağa ve kireçtaşından iskeletlerini yapmağa devam edeceklerdir. Bu yeni teoriyi geliştiren genç, hemen önüne haritalari aliyor. Bir de bakiyor ki atollerin oldugu yani kendi kuramina göre çökme olan yerlerde faal volkanlar yok denecek kadar az, halbuki daha önce gördügü, Güney Amerika Andlari gibi yükselen yerlerde yanardagdan geçilmiyor. Hemen bir yükselen ve alçalan alanlar haritasi hazirliyor ve yanardaglarin dagilimiyla birlikte bunlarin yer kabugunun dinamizmine işaret ettigini vurguluyor. Darvin’in mercan adalarinin köken ve gelişimleri hakkindaki kurami 1960'li yillarda gelişen levha tektonigi kuramiyla yepyeni ve büyük bir destek daha kazandi. Birkaç gözlem ve bunlarin çok siki bir mantiksal analizinden türeyen bu kuram Darvin’e "bütün imkânsiz şiklari temizlersen, geriye kalan ne derece olanaksiz gibi görünse de dogrudur" diye ifade edilebilecek olan "dişlama kurali"ni ilham etmişti. Ama yillar sonra kendisinin deniz taraçalari diye yorumladigi Glen Roy 'un "paralel yollari" denen taraçalarinin aslinda buzul gölleri tarafindan oluşturuldugunu Agassiz kanitlayinca, Darwin bilimde "dişlama ilkesine" de güvenmenin dogru olmadigini anladi ve bunu açik kalplilikle itiraf etti: "Insan dogada hiç kimsenin o ana kadar görmedigi süreçlerin olabilecegini asla unutmamali." İşte biyolojik evrim kuramı, böyle deneyimli bir düşünce ustasının, gelmiş geçmiş en büyük doğa bilimcilerden biri olmakla kalmayıp, aynı zamanda büyük de bir bilim felsefecisi olan bir kişinin ürünüdür. Darvin’in düşünce berraklığını ben geçmişte düşüncesini yakından tanıdığımı sandığım yalnız iki insanda bulabildim: Al bert Einstein ve Mustafa Kemâl. (Cumhuriyet Bilim Teknik, 9 Aralık 2000) İnsanlar ve Hayvanlar: Konuşma ve Düşünce “ Platon, diyaloglarından birinde, Protagoras' ın ağzına, insanın kökeni üzerine bir masal verir: İnsanlar, canlı yaratıklar, tanrılarca ateşten ve topraktan yapılmışlardı. Yaratıldıktan sonra, Prometheus ve erkek kardeşi Epimetheus, her tür, kendini savunacak araca sahip olabilsin diye, tırnak, kanat ya da yer altında barınaklar vererek kendi yeteneklerini bağışladı onlara. Soğuğa karşı korunmak için hayvan kürklerine, derilerine sardı onları; bazılarına, diğerlerinin doğal avı olma yazgısını verdi, ama aynı zamanda onları son derece doğurgan yaparak yaşamı sürdürmelerini sağladı. Bütün bunlar, kardeşinin yönetimi altında Epimetheus tarafından yapıldı, ama görevinin sonunda farkına vardı ki, eldeki bütün yetenekleri istemeyerek (hayvanlara) bağışlamış, insanlara hiçbir şey kalmamıştı. Prometheus da insanı yok olup gitmekten korumak için ateşi verdi ona… Bu örnekte,insan ateşi Prometheus’tan ya da başka bir tanrıdan hediye olarak almamıştır kendi us gücüyle kendi içi bulmuştur onu. Yunanlıların kendi de biliyordu bunu çünkü Prometheus figürünü insan zekasının bir simgesi olarak yorumluyorlardı. Ayrıca zekanın bir başka yetenekten,aynı zamanda özellikle insanın konuşma yeteneğinden ayrılmaz olduğunu da biliyorlardı. İnsan,logosa sahip olmakla hayvanlardan ayrılır;ustur bu, anlayıştır ve konuşmadır. Onu yaratıkların efendisi,doğanın sahibi,kartaldan daha hızlı,aslandan daha güçlü yapan da budur. Nasıl elde etti bunu? Mitin verdiği yanıta göre,öteki hayvanların sahip olduğu saldırı ya da savunmaya yarayan bedensel gelişmelerde yetersiz olduğu için elde etti onu. Bunlar olmayınca,yok olup gitme tehlikesiyle yüz yüze geldi ve böylece,görüldüğü gibi onları geliştirmeye zorlandı. Bu mitin özü bilimsel bir hakikat tır. Genel olarak hayvansal yaşamin çeşitli biçimleri dogal ayiklanmayla çok uzun bir süre içinde evrimleşmiştir; bu yolla, kendilerini az ya da çok başariyla farkli ortamlara ve birbiri ardindan gelen ortam degişikliklerine uydurarak farklilaşmişlardir. Iklim koşullari yeryüzünün farkli yerlerinde farkli olmakla kalmayip,her yerde, bir takim daha küçük ya da daha büyük degişikliklere de ugramiştir. Çevre degiştigi için hiçbir hayvan türü hiçbir zaman çevresine tam olarak uyamaz;kendisini belli bir dönemin koşullarina kusursuz bir biçimde uydurmuş olan bir tür, daha az özelleşmiş diger türler artar ve çogalirken,ayni nedenle bir süre sonra güçsüz duruma gelebilir. İnsan, hayvanların en yüksek sınıfı olan kendisinden başka insansıları ve maymunları da içine alan primatlardan biridir. Diğer memeli sınıfları,kedi ve köpeği içine alan etoburlarla,at ve sığırı içine alan toynaklılardır. (G. Thomson, İlk Filozoflar s: 25-27) Atalarımız İnsanın, hatta bütün yaşamın köklerini nasıl biliyoruz? Alan Moorehead, Charles Darvin’in 1835'te HMS Beagle ile yaptığı uzun yolculuk sırasında evrimle ilgili kuramının ın ilk tohumlarının kafasında belirlediği yer olan Galapagos Adaları'nı ziyaretini sürükleyici bir dille anlatır: Pasifik’teki bütün tropik adalar arasında Tahiti’den sonra en ünlüsü Galápagos adalarıydı Ancak bu adalarda insanı beğenebileceği pek bir şey yoktu. Tahiti takımadası gibi bereketli ve güzel olmadıkları gibi,denizde izlenen alışılmış yolların da çok dışındaydı. Adaların ünü tek bir şeyden kaynaklanıyordu; dünyadaki öteki adalardan farklı olarak son derece ilginçtirler. Beagle için çok uzun bir yolculukta sığınılacak limanlardan biriydi yalnızca, ama Darwin için bundan daha fazlaydı;çünkü burası,onun yaşamın evrimiyle ilgili taşladığ ğı yerlerdi. Kendi sözleriyle “Burada,gizemler gizemi o büyük olgunun,bu dünyada yeni varlıkların ortaya çıkışının gizine zamanda ve uzamda daha yaklaştığımızı hissediyoruz.” Fakat Beagle’ın mürettebatı için adalar daha çok bir cehennemi andırıyordu. Gemi, takımadanın en doğusunda yer olan Chatham Adası’na yaklaşırken,kıvrılıp bükülerek çevreyi kaplayan korkunç lavlardan oluşmuş,taşlaşıp kalan fırtınalı bir denizi andıran bir kıyı gördüler. Hemen hemen yeşil tek bir şey bile yoktu;iskelete benzeyen zayıf çalılar adeta yıldırımla kavrulmuş gibiydiler ve ufalanmış kayalar üzerinde tembel tembel iğrenç kertenkeleler yürüyordu.Kaararan sıkıntılı gök havada asılı duruyor,baca şapkaları gibi dikilmiş küçük volkanik koni ormanı Darvin’e doğup büyüdüğü Staffordshire’daki dökümhaneleri anımsatıyordu. Havada bir yanık kokucusu bile vardı. Beagle’ın kaptanı Robert Fitzroy’un yorumu “Cehenneme yaraşır bir kıyı” biçiminde oldu. Beagle, bir aydan uzun bir sare Galapagos’ta dolaşip ilginç bir noktaya her ulaştiginda bir kayik dolusu adami keşif yapmalari için birakti. Bizi ilgilendiren grup James Adasi’nda karaya birakilan gruptur. Darwin burada iki subay ve iki gemiciyle birlikte,yanlarinda bir çadir ve erzak,karaşa ayak basti, Fitzroy da bir haftadan sonra geri gelip onlari aylaşa söz verdi. Deniz kertenkeleleri açık kocaman ağızları,boyunlarında keseleri ve uzun düz kuyruklarıyla yaklaşık bir metrelik minik birer ejder olup çıkmışlardı; Darwin onlara “karanlığın minik şeytanları” diyordu. binlercesi bira araya toplanmıştı ve gittiği her yerde önünden kaçışıyorlardı. Üzerinde yaşadıkları ürkütücü kaya kayalardan bile daha karaydılar. Sahildeki öteki yaratıkların da farklı tuhaflıkları vardı: Uçamayan karabataklar,ikisi de soğuk deniz yaratığı olan ve hiç tahmin edilemeyeceği halde burada tropik sularda yaşayan penguenler ve ayı balıkları,bir de kertenkelededir üzerinde kene avlayan bir kızıl yengeç. Adanın iç kısımlarında yürüyen Darwin, dağınık bir öbek kaktüsün arasına vardı; burada da iki koca kaplumbağa karınını doyurmaktaydı. küp gibi sağırdılar,ancak burunlarının dibine kadar yaklaşınca onu 1farkettiler. sonra da yüksek sesle tıslayıp boyunlarını içeri çektiler. Bu hayvanlar o denli büyük ve ağırdılar ki yerlerinden kaldırmak ya da yana çevirmek olanaksızdı-bir insan ağırlığını da hiç zorlanmadan taşıyabiliyorlardı.(s: 138) Kaplumbağalar daha yukarıdaki bir tatlı su kaynağına yöneldiler; birçok yönden gelene geniş patikalar tam orada kesişiyordu. Darwin, çok geçmemişti ki kendini iki sıralı garip bir geçit töreninin ortasında buldu. Bütün hayvanlar ağır ağır ilerliyor,arada bir yol boyunca rastladıkları kaktüsleri yemek için yürüyüşlerine ara veriyorlardı. Bu geçit töreni bütün gün ve gece devam etti durdu. sanki çok uzun çağlardır sürüp gidiyordu. Bu dev hayvanlar çok savunmasızdılar. Balina avcıları gemilerine erzak sağlamak içir bir kerede yüze yakınını alıp götürüyordu. Darvin’in kendisi de bunların yavru olanlarından üçünü yakalıd, sonrada da Beagle’a yükleyip canlı canlı İngiltere’ye kadar götürdü. Doğal tehlikeler de onları bekliyordu. Yavru kaplumbağalar daha yumurtadan çıkar çıkmaz leş yiyici bir tür şahinin saldırısan uğruyorlardı. Buradaki başka garip yaratik da kara iguanalariydi. Bunlar hemen hemen deniz iguanalari kadar-bunlarin 1.5 metre olanlari hiç de az degildi- iri, onlardan biraz daha çirkindi. Bütün sirtlarin kaplayan dikenleri,sanki üzerlerine yapişmiş gibi görünen portakal rengi ve tugla kirmizisi ibikleri vardi. karinlarini,daha etli parçalara ulaşmak için çok yükseklere tirmanarak,yaklaşik 9 metre boyundaki kaktüs agaçlari üzerinde doyuruyorlardi;çogu zaman da kurt gibi aç görünüyorlardi. Darwin bir gün onlarin bir öbegin üzerine bir dal firlattiginda bir kemik çevresinde dalaşan köpekler gibi dala saldirmişlardi. Yuvalari o kadar çoktu ki yürürken Darvin’in ayagi sürekli birine giriyordu. Topragi bir ön bir art pençelerini kullanarak şaşirtici bir hizla kazabiliyorlardi. Keskin dişleri ve tehdit kar bir havalari vardi;ama hiç de isiracakmiş gibi görünmüyorlardi. “aslinda yumuşak ve uyuşuk canavarlardi” kuyruklariyla karinlarini yerde sürükleyerek yavaş yavaş yürüyorlardi ve sik sik kisa bir tavşan uykusu için duruyorlardi. Bir keresinde Darwin onlardan birini topragi kazip tamamen altina girene kadar bekledi, sonra da kuyrugundan tutup çekti. kizmaktan çok şaşiran hayvan birden döndü ve “Kuyrugumu neden çektin?” der gibi öfkeyle Darvin’e bakti. Ama saldirmadi. Darwin,James Adası’nda,hepsi de eşsiz,26 kara-kuşu türü saydı. “Çok nadir olduklarını tahmin ettiğim kuşları da dikkatle inceledim” diye yazdı[eski hocası] John Henslow’a.İnanılmaz ölçüde uysaldılar. Darvin’i büyük ve zararsız başka bir hayvan olarak gördüler ve yanlarından her geçtiğinde çalıların içerisinde kımıldamadan oturdular. Darwin,Charles adasında bir pınarın başına elinde bir değnek oturmuş, su içmeye gelen güvercinlerle ispinozları avlayan bir çocuk gördü; çocuk öğle yemeklerini bu basit yöntemle çıkarma alışkanlığındaydı. Kuşlar hiç de yaşadıkları tehlikenin farkında görünmüyorlardı. “Yerli sakinler çevreye yeni gelen bir yabancının beceri ya da gücüne alışana kadar, yeni gelen bu yırtıcı hayvanın çevrede çok büyük bir tahribat yaratacağı sonucuna varabiliriz” diye yazdı Darwin. Büyülü bir hafta böyle geçti; Darvin’in kavanozları bitkilerle, deniz kabuklarıyla, böceklerle, kertenkelelerle ve yılanlarla doldu. Herhalde cennet bahçesi böyle olamazdı;yine de adada “bir zamandışılık ve bir masumluk” vardı. Doğa büyük bir denge içindeydi;orada bulunan tek davetsiz misafir insandı. Bir gün tam bir daire oluşturan bir krater gölünün etrafında yürüyüşe çıktılar. Göl yaklaşık bir metre derinliğindeydi ve parlak beyaz bir tuz tabanın üzerinde kımıltısız uzanıyordu. kenarlarında pırıl pırıl yeşil bir perçem oluşmuştu. Bu doğa harikası yerde alina avına çıkmış bir geminin isyancı tayfaları kısa bir süre önce kaptanlarını öldürmüştü. Ölen adamın kafatası hala toprağın üzerinde duruyordu. Beagle orada Darvin’in arzuladığı kadar çok kalmadı. “Bir bölgede en ilgi çekici şeyin n olduğunu bulur bulmaz oradan aceleyle ayrılmak çoğu yolcunun yazgısıdır.” Geminin arka tarafında topladığı örnekleri seçip ayırmaya başladığında,birden, çok önemli bir şey dikkatini çekti: Çoğu yalnız bu adalarda bulunan,başka hiçbir yerde bulunmayan eşsiz türlerdi bunlar ve bu, bitkiler için olduğu kadar sürüngenler,kuşlar,balıklar kabuklular ve böcekler için de doğruydu. Güney Amerika’da karşılaşılan türlere benzedikleri doğruydu;ama aynı zamanda çok da farklılardı. “En çarpıcı olanı” diye yazdı (s:140) dana sonra Darwin, “bir yandan yeni kuşlarla,yeni sürüngenlerle,yeni kabuklularla,yeni böceklerle,yeni bitkilerle, bir yandan da kuşların ses tonları,tüy renklerinin tonları gibi ufak tefek sayısız yapı özelliğiyle kuşatılmış olmak;hem patagonya’nın ılıman ovalarını hem de Kuzey Şile’nin kavurucu çöllerini çok hatırlatan yerlere sahip olmak.” Başka bir keşfi daha oldu: Birçok ada birbirinden yalnizca 50-60 mil uzakliktaydi;ama türler adadan adaya bile farklilik gösteriyordu. Bu, ilk kez çeşitli adalarda vurulmuş alayci-ardiçkuşlarini karşilaştirirken dikkatini çekti,daha sonra da takimadanin vali yardimciligini yapan Bay lawson bir kaplumbaganin kabuguna bakinca onun hangi adadan geldigini bilebilecegini söyledi .. Küçük ispinozlarda bu çok daha belirgindi. İspinozlar sönük görünüşlü,kulağa hoş gelmeyen kötü ötüşleri olan kuşlardı; hepsi kısa kuyrukluydu;çatılı yuvalar yapıyorlar, bir kerede pembe benekli dört yumurtanın üstüne kuluçkaya yatıyorlardı. tüylerini rengi belli ölçülerde değişiklik gösteriyordu.: Yaşadıkları adaya göre lav karası ile yeşil arasında değişiyordu (Bu denli donuk görünümlü olan yalnız ispinozlar değildi;sarı göğüslü çıt kuşu ile kızıl sorguçlu sinekçil dışında kuşların hiçbirinde tropik bölgelerin o bilinen parlak renkleri yoktu.). Ama Darvin’i en çok şaşırtan şey ispinozların farklı türlerinin sayısı ve gagalardaki çeşitlilikti. İspinozlar bir adada fındıkları ve tohumları kırmak için güçlü ve kalın gagalar geliştirmişlerdi;bir başkasında gaga böcek yakalamasını sağlamak için küçüktü;yine bir başkasında meyve ve çiçeklerle beslenmeye uygun bir hale gelmişti. Hatta bir kaktüs iğnesiyle deliğindeki kurdu çıkarmayı öğrenmiş bir kuş bile vardı. Belli ki ispinozlar farkı adalarda farklı yiyecekler buldular ve birbirini izleyen kuşaklar boyunca kendilerini buna uyarladılar. kendi aralarında başka kuşlarla karşılaştırıldığında bu kadar çok farklılaşmaları,bu kuşların ilkin Galapagos adalarında ortaya çıktıklarını düşündürdü., Bir dönem, büyük bir olasılıkla oldukça uzun bir dönem, belki yiyecek ve yurt konusunda hiç rakipleri olmadı, bu da onların(s:141) başka türlü olsaydı onlara kapalı olacak yönlerde evrimleşmelerine izin verdi. Örneğin ispinozlar olağan koşullarda,ortalıkta zaten etkili ağaçkakanlar dolaştığı için türler gibi ağaçkakan yönünde evrime uğramazlar; sonra küçük bir ağaçkakanı Galapagos’a yerleşmiş olsaydı büyük bir olasılıkla ağaçkakan ispinozu hiç evrimleşmezdi. Aynı şekilde,fındık yiyen ispinozlar,böcek yiyen ispinozlar ve meyve ve çiçekle beslenen ispinozlar kendi tarzlarını geliştirmeleri için kendi hallerinde bırakılmışlardı. Yalıtım yeni türlerin kaynağı olmuştu. Burada büyük bir ilke gizliydi. Doğal olarak Darwin onun bütün sonuçlarını birden kavramadı. Günlükçünü yayımlanan ilk basıksında ispinozlardan çok az söz etti;ama çeşitliklileri ve uğradıkları değişiklikler daha sonra doğal seçme ile ilgili kuramının büyük kanıtları oldu. Fakat o zamana kadar olağanüstü ve tedirgin edici bir buluşun kıyısında olduğunu anlamadı. Bu noktaya gelene kadar,değişikliğe uğramayan türlerin yaratıldığı yollu geçerli inanca asla açık açık karşı çıkmadı,ama bu konuda gizli bir takım kuşkularının olması da pek ala olasıdır. Fakat burada,Galapagos’ta,farklı adalarda farklı alaycı kuş,kaplumbağa ve ispinoz biçimleriyle,aynı türün farklı biçimleriyle karşı karşıya gelince,çağının en temel kuramlarını sorgulamak zorunda kaldı. Aslında iş bu kadarla da kalmıyordu;şimdi kafasını kurcalayan fikirlerin doğru olduğu kanıtlanırsa,Yeryüzü’nde yaşamın kaynağı ile ilgili olarak kabul edilen bütün kuramlar yeniden gözden geçirilmek zorunda kalınacak,Tekvinin -Adem ile Havva ve Tufanla ilgili öykülerin-kendisinin de bir boş inançtan başka bir şey olamadigi gösterilmiş olacakti. Bir şeyler kanitlamak için yapilacak araştirmalar ile soruşturmalar yillarca sürebilirdi;ama en azindan kuramsal olarak yap-bozun bütün parçalardi yerli yerine konmuş görünüyordu. Düşüncelerini geçici ve varsiyyimsal olarak bile Fitzoy’a kabul ettiremedi. Iki adamin daha sonraki yazişmalarina bakarak aralarindaki tartişmayi yeniden canlandirmak,Galapagos’tan uzaklaşirken kah dar kamaralarinda ,kah (s: 142) gecenin ayazinda kiç güvertesinde, büyük bir anatla birbirlerini ikna etmeye çalişan genç insanlara özgü bir güçle savlarini ileri sürüşlerini gözümüzün önüne getirmek olanakli. Darvin’in savı ana hatlarıyla şuydu: Bildiğimiz dünya tek bir anda birden yaratılmadı;son derece ilkel bir şeyden yola çıkarak evrimleşti ve hala değişmekte. Bu adalar olup bitenlerle ilgili harika bir örnekti. Çok yakın zamanlarda volkanik bir patlama sonucunda denizin üzerinde belirdiler. İlk zamanlarda üzerinde hiçbir yaşam yoktu. Bir süre sonra kuşlar geldi. Gübrelerinde bulunan, hatta büyük bir olasılıkla da ayaklarındaki çamura yapışmış tohumlara toprağa bıraktılar. Deniz suyuna dayanıklı başka tohumlar da Güney Amerika anakarasından yüzerek geldi. Yüzen kütklerin ilk kertenkeleleri buralara kadar taşımış olması olasıdır. Kaplumbağalar denizin kendisinden gelip kara kaplumbağalarını geliştirmiş olabilirler. her tür geldikten sonra kendisini adada bulunan yiyeceğe-bitkilere ve hayvansal yaşama- uyarladı. Bunu yapamayanlar ile kendilerini öteki türlere karşı koruyamayanların ise soyları tükendi. kemikleri daha önce Patagonya’da bulunan dev yaratıklara olan da buydu;düşmanlarının saldırısına uğradılar ve ortadan kalktılar. Her yaşayan şey bu süreçten geçmiştir. İnsan,çok ilkel, hatta maymundan bile çok daha ilkel bir yaratık olduğu zamanlarda bile rakiplerinden daha hünerli ve daha saldırgan olduğu için, yaşamını devam ettirip büyük bir başarı kazandı. Aslında Yeryüzündeki bütün yaşam biçimlerinin tek bir ortak atadan çıkmış olması da olasıdır. Fitzroy, bütün bunların, Kutsal Kitapla tam bir çelişki içinde oldukları için,kafir saçmalıkları olduğunu düşünmüş olmalı. İnasan. orada kesin bir biçimde belirtildiği gibi, Tanrının kendi suretinde, mükemmel olarak yaratıldı; her tür, hayvanlar kadar bitkiler de ayır ayrı yaratıldı ve hiç değişmedi. Bazılar ı yok olup gitti, hepsi o kadar. Hatta Fitzroy,ispinozların gagaları sorununu kendi kuramlarının destekçisi yapacak kadar ileri gitti: “Bu, her yaratılmış şeyin amaçlandığı yere uyum sağlamasını sağlayan Sonsuz Bilgelik’in o hayranlık uyandırıcı işlerinden biriymiş gibi görünüyor.” Fitzroy’un Kutsal Kitapla uyumlu düşünceleri yolculuk süresince gittikçe daha da katilaşti. O, anlamaya çalişmamiz gereken kimi şeler olduguna inaniyordu;evrenin ilk kaynagi, bütün bilimsel araştirmalarin erişimi dişinda bulunmasi gereken bir giz olarak kalmaliydi. Fakat Darwin çoktandir bunu kabul etmekten çok uzakti; Kutsal Kitap’a takilip kalamazdi,onun ötesine geçmek zorundaydi. Uygar insan bütün sorularin en can alicisini-"biz nereden geldik?” sorusunu- sormaya, soruşturmalarini kendisini götürdügü yere kadar götürmeye devam etmekle yükümlüydü. Bu tartışmaya bir son vermek mümkün olmayacaktı. Tartışma, biri bilimsel ve araştırmalara açık, öteki dinsel ve tutucu, karşıt iki görüşün 25 yıl sonra Oxford’da yapılan o sert toplantıdaki çatışmasının bir ön hazırlığıydı.” Ne var ki bir grup insan, yani Kilise, Darvin’in kuramına şiddetle karşı çıktı. Darvin’in Türlerin Kökeni adlı kitabının yayımlanması bilim ile din arasında sert bir tartışmaya yol açtı. Darvin’in çekingenliği kendisinin bu tartışmada yer almasını engelledi;ama evrimle ilgili kavgacı savunmalarıyla “Darwin’in Buldoğu” lakabını alan dostu Thomas Huxley’in sözünü sakınmak gibi bir özelliği yoktu. Huxley ile Piskopos Wilberforce arasındaki kavga, Ronald Clark’in Darwin biyografisinde şöyle anlatılır: “Britanya İleri Araştırmalar Kurumu’nun 1860 yazında Oxford’da yaptığı yıllık toplantıda[ Darwin’in kuramı konusundaki] kuşkular boşlukta kaldı. Kurum üyeleri 19. yy bilim tarihinin en parlak sahnelerinden birine tanık olacaklardı. Bu, Oxford Piskoposu Samuel Wilberforce ile Thomas Huxley’in bir tartışma sırasında karşılıklı atışmalarından oluşan bir sahneydi. Çağının öteki kilise adamları gibi Wilberforce da bilimsel bakımdan tam bir karacahildi.(s: 144). Tartışma beklendiği için salon tıka basa doluydu. Wilberforce’un, Huxley’in de daha sonra yazacağı gibi “birinci sınıf bir tartışmacı” olmak gibi bir ünü vardı: “kartlarını uygun oynasaydı evrim kuramını yeterince savunma şansımız pek olmazdı.” Wilberforce, akıcı ve süslü bir konuşmayla, kendisini yenilgiye uğratmak üzere olduğunu belirttiği Huxley’e övgüler düzdü. Ardından ona döndü ve “soyunun büyük annesi mi yoksa büyük babası tarafından mı maymundan geldiğini” öğrenmek istedi. Huxley rakibine döndü ve haykırdı: “Tanrı onu ellerime teslim etti.” “Eğer” dedi [kürsüden], “bana bir büyük baba olarak zavallı bir maymunu mu yoksa doğanın büyük bir yetenek ve güç bahşedip bunlarla donattığı;ama bu yetenekleriyle gücünü yalnızca birtakım eğelnceli sözleri ağırbaşlı bilimsel bir tartışma gibi sunmak amacıyla kullanan bir insanı mı yeğlersin? diye soracak olsalar, hiç duraksamadan tercihimin maymundan yana olduğunu söylerdim.” Huxley bildiği en güçlü darbeyle karşılık vermişti.Bir piskoposu küçük düşürmek,bundan bir ya da birkaç yüzyıl önce pek rastlanır bir şey değildi;hele halkın önünde, kendi piskoposluk bölgesinde küçük düşürmek neredeyse hiç görülmemişti. Dinleyiciler arasında oranın ileri gelenlerinden bir hanım şok geçirip bayıldı Dinleyicilerin çoğu alkışladı. Fakat Robert Fitzroy oturduğu yerden kalktı ve otuz yıl önce Darwin’le gemide yaptığı bir tartışmayı hatırlattı. Kutsal Kitap’ı Huxley’e salladı ve süslü sözlerle bütün doğruların kaynağının bu kitap olduğunu söyledi.” Bu öykünün birinci elden bir anlatımı yoktur. Harvardlı biyolog Stephen Jay Gould diyaloğun çoğu bölümünü yaklaşık 20 yıl sonra Huxley’in kendisinin uydurduğu inancındadır. Fakat bu konuşmalardan kimsenin bir kuşkusu olmadığı yollu bir dip notu da vardır. Huxley Wilberforce’a duyduğu nefreti 1873'e, Piskopos atından düşüp kafasını bir taşa çarparak öldüğü yıla dek sürdü. “Kafası” dedi Huxley bunun öğrenince kıs kıs gülerek “gerçeğe bir kez daha tosladı;ama bu kez sonuç ölümcül oldu." (Adrian Berry, Bilimin Arka Yüzü, TÜBİTAK yay, s: 137-146) İnsan:Bir Geçiş Hayvanı Bir geçiş “hayvani” olmak! Degil bir hayvan, bir geçiş hayvani olak bile anilmak incitici duygular uyandiriyor! Yeniden hayvan sinifina sokulmak beni de rahatsiz ediyor; ama inanin bizimde herhangi bir hayvandan çok fazla farkimiz hem var, hem yok. Sinirlenmeyin. Açıklayacağım.“Beş milyar yıl önce Güneş, ilk kez dönmeye başladığında, mürekkep karası bir siyaha gömülü Güneş Sistemi bir ışık seline boğuldu. Güneş sisteminin iç kısımlarındaki ilk gezgenler,Güneş’in patlarcasına tutuşmasından sonra bile fırlayıp gitmeyen maddelerden kaya ve metal karışımı ilk bulutunu küçük birimlerinden oluştu. Bu gezgenler oluşurken isi yaydilar.Iç kisimlarindaki hapsedilmiş gazlar kurtuldu ve sertleşip atmosferi oluşturdu. Gezgenlerin yüzeyleri erimişti ve volkanlar oldukça çoktu. İlk dönemlerin atmosferi, bol bulunan atomlardan oluşmuştu ve hidrojen bakımından zengindi. Erken dönem atmosferine düşen Güneş ışığı, molekülleri uyararak bunların hızlanıp; çarpışmalarına yol açtı,sonuçta daha büyümk moleküller ortaya çıktı. Kimya ve fiziğin değişez kanunları uyarınca bu moleküller birbirleriyle etkileşti,okyanuslara düştü ve gelişerek daha büyük moleküllere dönüştü. kendilerini oluşturan ilk atomlardan çok daha karmaşık moleküller oluşmuştu;ancak hala bir insanın algılayabileceğinden çok küçük,mikroskopik boyutlardaydılar.(s:15) Bu moleküller, bizim de yapıtaşlarımızdır: Kalıtımsal biliyi taşıyan nükleik isatlerin ve hücrenin görevini sürdürmesini sağlayan proteinlerin birimleri, dünya’nın erken devirlerindeki atmosfer ve okyanuslardan üretildi. Günümüzde o ilkel koşulları yeniden yaratarak, bu molekülleri denesel olarak ortaya çıkarabiliyoruz. Sonunda, milyarlarca yıl önce,belirgin bir yeteneği olan molekül oluştu. çevredeki sularda bulunan molekülleri kullanarak kendisinin bir kopyasını üretebilecek yetenekteydi. Bu moleküler sistemin sahip olduğu yönergeler dizisi,moleküler kod sayesinde, büyük bir mkolekülü oluşturan yapı taşlarının dizilişi bilinebilir. Kazayla dilişte bir hata oluşursa,kopya da aynı olmayacaktır. Böyle, replikasyon, mutasyon ve mutasyonlarının replikasyonu( yeniden üretemi) yeteneğine sahip moleküler sistemlere “canlı” diyebiliriz. Bu moleküller topluluğu, doğal seleksiyona açıktır. Daha hızlı türeyen ya da çevresindeki yapıtaşlarını daha uygun bir şekilde kullanabilen moleküller rakiplerinden daha etkin türediler ve sonunda baskın nitelik kazandılar. Ancak koşullar degişmeye başladi. Hidrojen çok hafif oldugu için uzaya kaçti Yapitşalarinin oluşumu yavaşladi. Daha önce rahatça temin edilen gida maddeleri bulunmaz oldu. Moleküler Cennet Bahçesi’nde hayat tükeniyordu. Sadece çevresindekileri degiştirebilen,basitten karmaşik moleküllere geçişi saglayan moleküler mekanizmayı yeterli kullanabilen molekül toplulukları yaşama devam etti. çevresi zarlarla çevrili,ortamdan kendini soyutlayabilmiş,ilk dönemlerin saflığını sürdürebilen moleküller avantajlıydı. Böylece ilk hücreler oluştu. Yapıtaşları artık kolay bulunamadından organizmalar bunları üretmek zorunda kaldı. Bunun sonucu bitkiler oluştu. bitkelir hava, su Güneş ışığı ve minerallere alarak karmaşık moleküler yapıtaşları (s: 16) oluşturur. İnsanlar gibi hayavanlar da bitkiler üzerinde parazit yaşam sürdüler. İklim koşullarının değişmesi ve rekabet nedeniyle çeşitli organizmalar daha da uzmanlaşmaya,işylevlerini geliştirmeye ve biçim değiştiremeye zonrlandı. Zeingin bitki ve hayvan türleri Dünya’yı kaplamaya başladı. Yaşam, okyanusta başlamıştı. Oysa şimdi toprak ve havayı da içeriyordu. Günümüzde,Everest’in tepebsinden denizlerin derinliklerine kadar her yerde yaşayan organizmalar var. sıcak,yoğun sülfürik asit çözeltilerinde ve Antartika’nın kuru vadilerinde organizmalar yaşıyor. tek bir tuz kristaline emdirilmiş suda organizmelar yaşam sürdürebiliyor. =Özgün çevresine hassasiyetle bağlı ve uyarlanmış yaşam biçimyleri gelişti. Ancak çevre koşulları değişmişti.Organizmalar aşırı özelleşmişti,bunlar öldüler. Daha az uyarlanmış ancak daha genele özelliklere sahip olanlar da vardı. değişen koşullara,iklim farklarına rağmen bu organizmalar hayatta kalabildi. Dünya tarihinde, yok olan organizma cinslerinin sayısı bugün canıl olanlarndan çok daha fazladır. Evrimin sırrı, zaman ve ölümdür. Adaptasyonların içinde faydalı olanlardan birisi de zekadır. çevreyi kontrol etme eğilimi şeklinde,zeka, en basit organizmada bile görülebilir. kontrol eğilimi yeni nesillere kalıtım ile aktarıldı: Yuva yapma, düşmekten,yılanlardan veya karanlıktan korkma,kışın güneye uçma gibi bilgiler nesilden nesile nükleik asitlerle taşındı. Anca zeka tek bireyin ömrü içerisinde uyarlanmış bilgileri öğrenmesini gerektirir. dünyadaki organizmalarınbir kısmı zekaya sahiptir, yunuslar ve maymunlar gibi. Fakat zeka en fazla İnsan adlı organizmada belirgindir. İnsan, adaptasyon için gerekli olan bilgileri kitaplar ve eğitim yoluyla da öğrenir. İnsanı bugünkü durumuna Dünya’da kontrolü elinde tutan organizma haline getiren en önemli etken öğrenme yeteneğidir.(s:17) Biz, 4.5 milyar yıl süren rastlantısal, yavaş bir biyolojik evrimin ürünüyüz. Evrimin artık durmuş olduğunu düşünmek için hiç bir neden yoktur. İnsan, bir geçiş hayvanıdır. Yaratılışın doruğu değildir. Dünya ve Güneş’i daha milyarlanca yil yaşayacagi tahmin ediliyor. Insanin gelecekteki gelişimi kontrol altinda biyolojik çevre,genetik mühendislik ve organizmalar ile zeki makeneler arasinda yakin ilişkinin ortak ürünü olabilir. Ancak bu gelecekteki evrimi kimse şimdiden kesinlikle bilemez. Her şeye karşin duragan kalamayacagimiz açiktir. Bildiğimiz kadarıyla, tarihimizin ilk dönemlerinde, on ya da otuz kişiyi geçmeyen ve grup bireylerinin hepsinin arasında kan bağı olan kabileler halinde yaşıyorduk. Zaman ilerledikçe, daha büyük hayvanları ve daha geniş sürülüre avlayabilmek, tarım yapabilmek, şehirler kurabilmek için gittikçe büyüyen gruhplar içinde yaşamaya başladık. Dünyanın yaratıylışından 4.5 milyar yıl ve insanın ortaya çıkışından milyonlarca yıl sonra, bugün, millet dediğimiz grupların içinde yaşayoruz (ancak en tehlikeli politik sorunlardan birçoğu hala etnek çatışmalardan kaynaklanıyor). İnsanların bağlılığının sadece milletine ,dinine,ırkına ya da ekonomik grubuna değil ama tüm insanlığa olacağı devrin yakın olduğunu söyleyenler var. Yani on bin kilometre uzakta farklı cinsiyet, ırk,din ya da politik eğilimde olan birinin çıkarı,bizi komşumuza ya da kardeşimize bir iyilik yapılmış gibi sevindirecek. Eğilim bu yöndedir fakat tehlikeli şekilde yavaştır. Yukarıda sözeü edilen tutuma ulaşmadan zekamızın ürünü teknolojik güçler türümüzü yok etmemeli. İnsanı, daha fazla nükleik asit türetmek için nükleik asitlerden kurulmuş bir makinaya benzetebiliriz. En güçlü dürtülerimiz,en asil girişimlerimiz, en zorlayıcı (s: 18) gereksinmelerimiz ve sınırsız arzularımız aslında genetik materyalimizde kodlanmış bilgilerin sonucudur. Bir yerde nükleik astlerimizin geçici ve hareketli deposuyuz. Bu neden yüzünden insancıllığımızı-iyiyi, doğruyu ve güzeli aramayı- inkar edemeyiz. Ancak nereye gittiğimizi bilmek için nereden geldiğimizi anlamamız gerekir. kuşku yoktur ki yüzbinlerce yil önce avci-toplayiciyken taşidigimiz içgüdü mekanizmamiz biraz degişmiştir. Toplumumuz, o günlerden bu yana dev adimlarla gelişmiştir. Içgüdülerimiz bazi şeyleri kalitim-dişi ögrenmeyle edindigimiz bilgiler, başka şeyleri yapmamizi söylüyor,sonuçta çatişma doguyor. Bir dönem sonra tüm insanlara karşi ayni özeleştirici duygulari besliyor duruma gelebilmemiz bile ideal olmayacak. Eger tüm insanlari dünyanin 4.5 milyar yillik tarih ortak ürünü olarak görebileceksek, neden ayni tarihi paylaşan diger organizmalara da ayni özeleştirici duygulari beslemeyelim. Yeryüzünde bulunan organizmalardan çok azini gözetiriz-köpekler,kediler,sigirlar gibi- çünkü bu canlilar bize faydalidir ya da dalkavukluk yaparlar. Ancak örümcekler, kertenkeleler, baliklar, ayçiçekleri de eşit derecede kardeşlerimizdir. Bence tümünün yaşadigi özeleştirici duygu yoksunlugunun nedeni kalitimdir. Bir karinca sürüsü diger bir karinca grubu ile öldüresiye savaşabilir. Insanlik tarihi deri rengi farki, inanç degişiklikleri,giyim ya sac modeli ayircaliklari gibi ufak degişiklikler nedeniyle çikmiş savaşlar,baskinlar ve cinayetlerle doludur. Bize oldukça benzeyen ama ufak farkları-örneğin üç gözü ya da burnunda ve alnında mavi tüyleri-bulunan bir yaratık yakınlık duygularımızı hemen frenler. bu tür duygular bir zamanlar küçük kabilemizi düşmanlar ve komşular arasinda koruyabilmek için gerekli uyarlanmiş degerler olabilirdi. Ancak şimdi az gelişmişlik örnegidir ve tehlikelidir.(s:19) Artık yalnızca tüm insanlara değil bütün canlılara saygı duyma devri gelmiştir. Nasıl bir başyapıt heykele ya da zarif bir şekilde donatılmış makinalara hayranlık ve saygı duyuyorsak.. Ancak elbette, bizim yaşamımızı tehdit eden şeyleri görmezlikten gelemeyiz. Tetanoz basiline saygı göstermek için gövdemizi ona kültür yeri olarak sunamayız. Ancak, bu organizmanını biyokimyasının gezegenimizin tarihinin derinlerine uzandığını hatırlayabiliriz. Bizim serbestçe solduğumuz oksijen,tetanoz basilini zehirler. Dünyanın ilk dönemindeki oksijensiz ve hidrojence zengin atmosferin altında bizler yokken tetanoz basili yaşıyordu. Yaşamin tüm örneklerine saygi Dünyadaki dinlerin birkaçinda örnegin Hindu dininin bir kolunda ("Jain’ler) vardir. Vejeteryanlar da buna benzer br duygu taşirlar. Ama bitkileri öldürmek hayvanlari öldürmekten niye daha iyidir? İnsan, yaşayabilmek için diğer canlıları öldürmek zorundadır. Fakat buna karşılık, başka organizmaları yaşatarak doğada bir denge sağlayibiliriz .Örneğin, ormanları zenginleştirebiliriz;endüstireylm ya da ticari değeri olduğu sanılan fokların ve balinaların katledilmesini önleyebiliriz;yararlı olmayan hayvanların avlanmasını yasaklayabilir;doğayı tüm canlılar için daha yaşanabilir duruma getirebiliriz. (Carl Sagan, Kozmik Bağlantı(1975), e yay: s: 15 -20, 1986) En Az İki Bin Yıllık Yanlış Eskiden insanlar, evrenin merkezi olarak Dünyayı düşünüyordu. Sağduyu Ay ve Güneş’in Dünya çevresinde döndüğün gösteriyordu. Peki canlı varlıkların yapısı neydi? 1828 yılında Alman kimyacı F. Wöhler’in idrarda bulunan üreyi, anorganik bir madedler yoluyla elde etmesi, insanoğlunun düşüncesinde yeni aydınlıkların ilk habercisiydi. Çünkü Tanrı’nın emrindeki doğa laboratuvarının ürettiği şeyi insanolğlunu emrindeki laboratuvarın da üretebileciği anlaşılmıştı! Bu sezgi, insanoğlunun dine karşı duyduğu bilimsel şüphenin en büyük kanıtı oldu aslında. Canlılar dünyasına bakarsanız, benzer olanlarla birlikte birbiriyle hiç ilgisi olmayan görüntülerdeki canlıları görürsünüz. Tilkiyle yılanın ne gibi ortak bir geçmişi olabilir? Dinlerin yaratılış kuramları, birkaç bin yıldan öteye gitmez. Darwin ise tüm canlı organizmaların, çok geniş bir zaman sürecinde ortak bir kökenden ortaya çıkarak geliştiğini önesürdü.

http://www.biyologlar.com/evrim-kurami-ve-teorileri-1

24 milyar dolar 3 gram tuzun elinde

24 milyar dolar 3 gram tuzun elinde

Dünya’da Kronik Böbrek Hastalığı oranı; %10-13 ‘dür. Bu demektir ki; her 10 yetişkinin biri değişik derecelerde kronik böbrek hastalığı çekmektedir…Dünya’da 2 milyonun üzerinde diyaliz gören veya böbrek transplantasyonu yapılmış insan yaşamaktadır …Bu sayının gelecek 10 yılda ikiye katlanması tahmin edilmektedir.ERA-EDTA (Avrupa Böbrek Birliği ve Avrupa Diyaliz Transplantasyon Birliği) Kongresi nefroloji ve böbrek replasman terapisi üzerine Avrupa’da yapılan en büyük kongredir. Bu yılki kongre, ERA-EDTA’nın 50. yıldönümü kongresidir ve 18-21 Mayıs 2013 tarihleri arasında İstanbul Kongre Merkezi’nde düzenlenecektir. Bu uluslararası platformda tanınmış kongrenin başkanı; Prof. Gultekin Suleymanlar, kongre sekreteri Prof. Cengiz Utaş’tır. Bilgilerini ve güncel araştırma bulgularını paylaşmak üzere, İstanbul’da 10.000’in üzerinde katılımcı olması öngörülmektedir. Nefroloji konusundaki yeni ve öncü çalışmalar kamu oyuna açıklanacaktır.Siz değerli basın mensuplarımızı; İstanbul Kongre Merkezi Maçka salonu’nda 17 Mayıs Cuma günü saat 11.30-12.30 arasında düzenlenecek olan Açılış Basın Toplantısı’na davet ediyoruz. Hoş geldiniz konuşması, ERA-EDTA Başkanı Prof. Raymond Vanholder (Belçika) tarafından yapılacak olan basın toplantısında; Türkiye Kongre Başkanı; Prof. Gültekin Süleymanlar, Türkiye Kongre Sekreteri; Prof. Cengiz Utaş, Bilimsel Kurul Başkanı; Prof. Rosanna Coppo (İtalya) ve Prof. Oğuz Söylemezoğlu konuşmacı olarak katılacaklar ve sektördeki son yöntem, gelişme ve istatistikler paylaşılacaktır.Basın toplantısında, Avrupa ve Türkiye’deki böbrek sağlığı en önemli açıları ile ele alınacaktır. Nefroloji disiplininin önemi halen daha göz ardı edilmektedir. Fakat Kronik Böbrek Hastalığı (KBH) tanısı konan insanların sayısı giderek artmaktadır ve KBH’nın artan insidansı ve prevelansı, sağlık hizmetleri ekonomileri açısından Avrupa ülkeleri için büyük bir sorun teşkil etmektedir. Türkiye’de, 2010 yılında 15.509 hasta böbrek replasman terapisine (diyaliz ya da transplantasyon) kabul edilmiştir. Bu rakam son derece yüksektir ve Türkiye’de son evre böbrek yetmezliğinin insidansı, örneğin Fransa ve İtalya’daki oranların neredeyse iki katıdır. Öne çıkan başlıklardan örneklerTürkiye’de Böbrek işlevini yerine koyma tedavisi (Renal Replasman Terapileri) için 1.15 milyar Euro harcanmaktadır.Ne kadar tuz alıyoruz? Ne kadar almalıyız ? Türkler günlük ortalama ne kadar tuz tüketiyorlar?Ülkemizde 2010 yılında diyalize giren SDBH hastaları için sağlık bütçesinden yaklaşık 1.5 milyar USD harcandığı hesaplanmıştır.Günlük tuz tüketiminin günde 5-6 grama indirilmesi ile her yıl dünyada kalp krizi ve inmeye bağlı 2.5 milyon ölüm önlenebilir. Tuz alımının günde 3 gram azaltılması dünyadaki yıllık sağlık harcamasını 10-24 milyar dolar azaltabilir.Önleme stratejileri büyük önem taşımaktadır: böbrek hastalıklarındaki artış, yalnızca demografik eğilimlerin (insanlar yaşlanmaktadır) bir sonucu değildir, aynı zamanda kronik böbrek yetmezliğine yol açabilen diabetes mellitus ve yüksek tansiyonun artan insidansının da bir sonucudur. Önleme, sağlık giderleri ile yakından ilişkili olmasının yanı sıra hastaların diyalize olan ihtiyaçlarının giderilmesini de sağlayacağı için oldukça büyük önem arz etmektedir.Yüksek risk grubundaki bireyler; Diayabetik hastalar, Hipertansif hastalar, Obezler, Kalp damar hastalığı olanlar, Sigara içenler, Yaşlılar, DM, HT ve böbrek hastalığına ilişkin aile öyküsü olanlar,Diğer böbrek hastalığı bulunan bireyler….Böbrek hastalıkları çocuklarda da göz ardı edilemez seviyededir…Her ne kadar 28 Avrupa ülkesinde yapılan araştırmaya göre çocuklar yetişkinlere göre 20 kez daha az sıklıkta böbrek hastalığına maruz kalsalar da Tekrarlayan İdrar Yolu Enfeksiyonları kız çocuklarının % 3-5 inde, erkek çocukların % 1inde kendini göstermekte ve tekrarlayan üriner enfeksiyonların (TÜE) kalıcı renal hasar riskini arttırması nedeni ile altta yatan risk faktörlerinin tesbit edilerek enfeksiyonların önlenmesi ve tedavisi çok önemlidir. İlk enfeksiyondan sonra kızların %60-80 ’ında, erkeklerin %30’unda bir yıl içinde Üriner Enfeksiyonnun tekrarlama riski vardır .Açılış Basın Toplantısı ağırlıklı olarak KBH’nı önleme stratejilerine odaklanmaktadır.17 Mayıs 11:30 Basın Toplantı Programı • Hoşgeldiniz KonuşmasıProf. Raymond Vanholder, Belçika, ERA-EDTA Başkanı• Hipertansiyon, Diyabet ve KBH – sıkça görülen bir ittifak Prof. Gültekin Süleymanlar, Türkiye, Kongre Başkanı• Tuza odaklanmak: “Böbrek-dostu şekilde nasıl yemek yeriz? Prof. Cengiz Utas, Türkiye, Kongre Sekreteri• Pediatrik Nefroloji: Erken tanı çocukları diyalizden nasıl koruyabilir? Prof. Rosanna Coppo, İtalya, Bilimsel Kurul Başkanı• Reflü Nefropatisi: Çocuklarda son evre böbrek hastalığının ana sebeplerinden biri Prof. Oğuz Söylemezoğlu, TürkiyeBasın toplantısına katılımlarınızı ve akreditasyon için zeynotuzkan@figur.net adresine mail yoluyla ulaşmanızı arz ederiz.Her türlü sorularınız ve röportaj talepleriniz için Figür Kongre iletişim müdürü; Zeyno Tüzkan ile iletişime geçebilirsiniz:Tel : + 90 212 381 46 00 Direkt hat : + 90 212 381 46 53 Faks : + 90 212 258 60 78 Gsm : + 90 533 957 80 44 Saygılarımızla,Zeyno Tüzkanİletişim Müdürü Kurumsal Hizmetler19 Mayıs Cad.19 Mayıs Mah.Nova Baran Plaza No:4 Kat:6, 34360 Şişli-İstanbul Tel:+ 90 212 381 46 00 Direct :+ 90 212 381 46 53 Fax:+ 90 212 258 60 78 Gsm :+ 90 533 957 80 44 Email :zeynotuzkan@figur.nethttp://www.medical-tribune.com.tr

http://www.biyologlar.com/24-milyar-dolar-3-gram-tuzun-elinde

Toprak Mantarları

Toprak Mantarları

Bunlar filamentli (miselli) grup mantarlarıdır. Örneğin; Phycomycetes’ler bunların en yaygın olanlarıdır.

http://www.biyologlar.com/toprak-mantarlari

Lodos Entomoloji Müzesi (LEMT)

Prof. Dr. Niyazi Lodos Böcek Müzesi, uluslararası merkezlerce LEMT kısaltmasıyla kabul edilen yaklaşık 50 yıllık geçmişi olan bir böcek müzesidir. Ege Üniversitesi Ziraat Fakültesi’nin kuruluşunu izleyen yıllarda Bitki Sağlığı Bölümünü kuran Prof. Dr. Niyazi Lodos tarafından müze konusunda ilk adımlar atılmış ve daha sonra Prof. Dr. Feyzi Önder, Prof. Dr. Hasan Giray ile Bölümdeentomoloji konusunda çalışan akademisyenler tarafından geliştirilmiştir. Projelerin parasal desteği TÜBİTAK ve DPT kaynaklarından sağlanmış; ayrıca E. Ü. Bilimsel Araştırmalar Birimi, Tarım ve Köyişleri Bakanlığı ile yurtdışı kaynakların da katkıları olmuştur. Müze E. Ü. Kampüsü’nde olup, Ziraat Fakültesi Bitki Koruma Bölümü’nün yer aldığı A Blok ikinci kattadır. Yaklaşık 50 m²’lik bir alana sahiptir. Önceleri Bölüm Müzesi olarak anılan birime, Prof. Dr. Niyazi Lodos’un adının yaşatılması için, ilk ölüm yıldönümü olan 10 Ekim 1998’de düzenlenen törenle adı verilmiştir. Daha sonra, dünyadaki böcek koleksiyonlarına verilen kısaltılmış isimleri resmileştiren bir merkez olanBishop Museum, ABD ile ilişkiye geçilerek LEMT (Lodos Entomoloji Müzesi, Türkiye / Lodos Entomological Museum, Turkey) kısaltması tescil ettirilmiş ve yapılan yayınlarda müze bu kısaltmayla anılmaya başlamıştır. Müzede bulunan materyal ağırlıklı olarak Türkiye Coleoptera, Heteroptera ve Homoptera faunasına ilişkin türlerin önemli bir kısmını içermektedir. Ayrıca Odonata, Orthoptera, Dermaptera, Dictyoptera, Isoptera, Thysanoptera, Neuroptera, Lepidoptera, Diptera ve Hymenoptera takımlarına bağlı zengin bir materyal bulunmaktadır. Müzede bulunan böcek tür ve alttürlerinin familyalara göre sayıları incelendiğinde en zengin takımın 2297 tür ve % 42,56 oranla Coleoptera olduğu görülür. Bu takımı 1245 tür ve % 23,06 oranla Heteroptera, 725 tür ve % 13,43 oranla Homoptera, 372 tür ve % 6,89 oranla Diptera, 315 tür ve % 5,84 oranla Hymenoptera takımları izlemiştir. Daha sonra azalan tür sayısı içinde Lepidoptera (262), Orthoptera (125), Odonata (17), Dictyoptera (16), Neuroptera (12), Dermaptera (7), Thysanoptera (4) ve Isoptera (1) takımları yer almıştır. Müzede ayrıca henüz tanılaması yapılmamış olan zengin bir materyal bulunmaktadır. Bu materyal ayrımı ve tanılamayı beklemektedir. Gelecekte yürütülecek çalışmalarla bu konuda yol alınması ve bulguların bilim dünyasıyla paylaşılması planlanmaktadır. Müzedeki materyal arasında 244 türe ait, o türlerin bilim dünyasına tanıtımının yapıldığı, orijinal örnek yani tip (holotip, paratip ve allotip) bulunmaktadır. Müzede yer alan tip türlerin 116’sı Homoptera (% 47,54), 83’ü Coleoptera (% 34,02), 34’ü Heteroptera (% 13,93) takımlarına bağlıdır. Toplam 7 tip tür Hymenoptera, 3 tip tür Orthoptera ve 1 tip tür Diptera takımı içinde yer almaktadır. Familyalar düzeyinde yapılan değerlendirmede ise Issidae familyasına bağlı 55, Curculionidae familyasına bağlı 47, Cicadellidae familyasına bağlı 31, Miridae familyasına bağlı 20, Melolonthidae familyasına bağlı 12 ve Cixiidae familyasına bağlı 10 türe ait tip materyalin müzede bulunduğu anlaşılmaktadır. Müzede yer alan Rhynchites lodosi Voss, 1973 türü, Eylül 2006’da Türkiye’de gerçekleştirilen 8. Avrupa Entomoloji Kongresi’nin logosu olarak seçilmiş ve kongreye katılanların beğenisini kazanmıştır. Müzede korunmakta olan materyalin bazıları ise pullara konu olmuştur. PTT Genel Müdürlüğü, Filateli Şubesi tarafından Prof. Dr. Feyzi Önder danışmanlığında toplam 26 pul hazırlanarak basılmış ve bu pullar koleksiyonerlere satıldığı gibi, posta hizmetlerinde de kullanılmıştır. Üniversiteler, araştırma kurumları ve özel sektörden gelen pek çok tanılama sorununda, LEMT önemli bir başvuru merkezi olmaktadır. Sorun olduğu belirlenen bazı türlerin tanıları LEMT’de olabildiğince yapılabilmekte; o türlerin, önceki araştırmalarda elde edilerek müzede korunan materyaline dayanarak Türkiye’deki yayılış alanları, doğada bulunuş dönemleri, üzerinden toplandıkları bitki veya konukçuları gibi bilgiler çok kısa sürede ortaya konularak, yardımcı olunabilmektedir. Özellikle her geçen gün Dünya’da ve Türkiye’de daha çok önem kazanan doğal zenginliklerin ve biyolojik çeşitliliğin korunması ve yabancı toplayıcılar tarafından gerçekleşen talanın önlenmesinde bu bilgilerin toplum ile paylaşımının büyük rolünün olduğu düşünülmektedir. LEMT bu konuda önemli bir merkez özelliği taşımakta ve zaman zaman öğrenciler, amatörler ve doğa severler tarafından da ziyaret edilmektedir. Toplumla bütünleşme yönünde son yıllarda gerçekleştirilen etkinlikler arasında Bilim Fuarı ve Eğitim Şenliğinde birer stantla yer alan LEMT, başta öğrenciler olmak üzere değişik yaşlardan çok sayıda katılımcının ilgisini çekmiş ve en beğenilen stant seçilmiştir. Kaynak: Tezcan, S., Pehlivan, E. ve Karsavuran, Y. 2006. Lodos Entomoloji Müzesi (LEMT)’nin Türkiye Doğa Tarihi Çalışmalarındaki Yeri ve Önemi. 2. Doğa Tarihi Kongresi. Ankara.

http://www.biyologlar.com/lodos-entomoloji-muzesi-lemt

Dünya’da Organik Yaşamın Başlangıcı

Unlu bilim dergisi SCIENCE, 25 Haziran 1999 tarihli sayisini, “Evrim Kuramina ve Evrim Kuraminin Gercekligine” ayirdi (1). Bu sayi icin giris yazisi yazan unlu evrimci Stephen Jay Gould soyle demekte: “Evrim bir gercektir ve ancak gercek bizi bagimsizliga kavusturabilir!” ve Gould eklemekte, “Darwin’in ilk teorileri aciklandigi zaman, aristokrat bir soylu ‘Darwin’in soylediklerinin dogru olmadigini umalim; ama tutun ki dogru, o zaman tum dunyaya yayilmamasi icin dua edelim!’ demisti; ne yazik ki, 21. Yuzyila girerken, bu sahisin soyledikleri cikti: Evrim Kurami dogru, ama dunyanin cogunlugu, en azindan ABD ulusunun buyuk kismi tarafindan bilinmiyor ” (2). Gercekten de, 21. Yuzyila girerken, Evrim Kuraminin gercekligi hakkinda onca yayin yapilmasina, onca kanit bulunmasina karsin, bilim insanlari ile halk arasinda Evrim Kuramini degerlendiris acisindan ucurumlar mevcut. Bu konudaki en buyuk zorluk, oncelikle, Evrim Kurami ile ilgili bazi biyolojik, kimyasal, fizyolojik, paleontolojik bilgilerin anlasilabilmesi icin yogun bir bilim egitimine, detayli anlasilmis bazi kavramlara gereksinim duyulmasi. Ikinci onemli zorluk ise, Evrim Kuramini aciklarken ifade edilen bazi kavramlarin (ornegin milyon yillarda gelisen evrim, dogal seleksiyon, biyokimyasal protobiogenesis vb) gunluk hayatin mantigi ve yasantisi acisindan pek de kolay anlasilamamasi. Bu konuda Amerikan Ulusal Bilimler Akademisinin (National Academy of Sciences) son yayinladigi halk kitabi “Science and Creationism” (Bilim ve Yaratiliscilik), bu konudaki en yetkili agiz tarafindan son noktayi koyuyor ve Evrim Kuraminin bir gercek oldugunu savunuyor (3, 4). Turkiye’de de “Islamci Bilimsel Yaratiliscilarin aktivitelerine ” karsi TUBA ve bir grup bilim insani da bazi aciklamalar yapmisti (5, 6, 7). ABD’de ve diger Hristiyan ulkelerde oldugu gibi, Turkiye’de de ortaya cikan “Bilimsel Yaratiliscilik” akimlari, bilim ile yaratilisciligi birbirine bagdastirmaya calisiyordu (8); ustelik Evrim Kuramini savunan bilim insanlarina karsi dev bir karalama kampanyasina giriserek, bilim insanlarini sindirmeyi amacliyordu. Bu konuda yazdigim yazilar nedeniyle ben de, diger bilim insanlari gibi buyuk saldirilara maruz kaldim (4, 9, 10). Turk bilim insanlari olarak, gerek halki gerekse diger bilim insanlarini ve aydinlari bu konuda bilgilendirmek konusunda cok ciddi sorumluluklar tasidigimiza inaniyorum. Bu sorumluluklardan birisi, “kendini bilimsel elit zumreolarak gorup, bilimsel yaratiliscilari yanit verilmeyecek kadar kucumsemek yerine”, onlari iddia ettikleri her hipotezde curutmek ve yapmakta olduklari carpitmalari ve bilimsel sahtekarliklari, halkin onunde anlasilir bir dille ve bilimsel kaynaklarla yuzlerine vurmak! Dunya’da yasamin baslamasi ile ilgili en onemli sorulardan ve problemlerden birisi, primordial (ilk) kosullarda canlilarin ana yapi taslari olan organik molekullerin nasil meydana gelebilecekleri konusuydu. Bilimsel yaratiliscilarin hipotezlerine gore, tum organik madde ve biyolojik yasam bir anda, dogaustu bir gucun “OL!” demesiyle belirli bir hedefe ve cok akilli bir dizayna gore yaratildi. Bilim ise bu konuda farkli bir goruse sahip, ozellikle son yillarda yapilan calismalar dunya’da ilk organik maddenin olusumu konusunda yeni bir bakis acisi getirdi (11, 12, 13, 14, 15). STANLEY MILLER DENEYINDEN GUNUMUZE Dunya’da yasamin baslamasi icin, yasamin temel taslari olan organik maddelerin, amino asitlerin ve DNA ile RNA’nin yapisinda var olan nukleik asitlerin bir sekilde dunya ortaminda (okyanuslarda, gollerde, sicak su kaynaklarinin aktigi yerlerde) bol miktarda var olmasi gerekmekteydi. Bu konuda dogru fikir yurutebilmek icin, 4.5 milyar yil once soguyarak, var olan dunya gezegeninin atmosferi ve icerdigi elementler konusunda dogru tahmin yapmak gerekliydi. Bu konudaki ilk tahminleri Oparin (16 ), Haldane (17), Urey (18) yapmislardi. Onlara gore ilk dunya atmosferi metan (CH4 ), amonyak (NH3), su buhari (H2O) ve molekuler hidrojenden (H2) olusmaktaydi. Ilk atmosferde oksijen (O2) bulunmadigi pek cok arastirici tarafindan fikir birligi ile kabul edilmistir. Ama en onemli sorun dunyanin genclik gunlerine ait bilgi alinamamasidir. Bilinen en yasli kayalar olan Gronland’daki Isua kayalari bile 3.8 milyar yil yasindadir. Yaklasik 700 milyon yil- 1 milyar yillik doneme ait hic bir iz, kanit ve bilgi yoktur; bu da ilk atmosfer veya ortam konusunda tahmin yapmayi cok guclestirmektedir. Tahminler, olasi modellere gore yapilmaktadirlar ve spekulasyonlardan ibarettirler. William Rubey (19 ), Holland (20 ), Walker (24) ve Kasting’e (25) gore ise, baslangicta cok az miktarda amonyak mevcuttu; atmosferde baslica karbon dioksit (CO2), nitrojen (N2), su buhari (H2O), biraz da karbon monoksit (CO) ve hidrojen gazi (H2) vardi. Son yillarda bu gorusun bilim ortamlarina hakim olmasina ragmen, kimse 4 milyar yil oncesine gidip, ortamda amonyak olup, olmadigini gozlemlememistir. Ayrica, uzaydan her yil 40 000 ton toz yeryuzune dusmektedir, gerek bu tozda, gerekse uzaydan gelen meteoritlerde HCN (hidrojen siyanit), CO2, Formaldehid, CO (karbon monoksit), amino asitler ve organik maddeler bulunmustur; gunde uzaydan dunyaya 1999 verilerine gore dokulen tozla birlikte 30 ton organik madde dusmektedir (13, 21, 22, 23). Dunya kosullarinda amonyakin ve organik madde sentezinin cok az olmasi durumunda bile organik maddeleri olusturan bilesenlerin ve bizzat organik maddelerin uzaydan yeterli miktarda gelme olasiliklari her zaman vardir. Ilk atmosfer kosullarinda hemen hemen hic oksijen olmadigi hesaba katilirsa, organik maddenin”yaratilmadan” dunya ortaminda ilk gazlar ve cozunmus iyonlardan sentezlenmesi de mumkundur. Oksijensiz donem 2-2.5 milyar yil kadar surmus, siyanobakterilerin atmosfere verdikleri oksijen sayesinde atmosferde ilk dunya canlilari icin bir zehir olan oksijen miktari mavi gezegende artmistir (9). Chicago Universitesinde, Harold Urey’in ogrencisi Stanley Miller 1953′te dunyayi yerinden sarsan unlu deneyini gerceklestirdi 26. Urey’in varsayimina uyan (metan, amonyak, hidrojen ve su) gaz kosullarinda, 150-200 bin voltluk akimi gazlarin bulundugu ozel aparattaki karisimdan gecirdi, sonuc cok sasirticiydi pek cok temel organik madde bu enerjinin verdigi etki sonucunda gazlari bir reaksiyonla birlestirmis, Glisin, Alanin, Aspartik asit, Glutamik asit (bu dordu temel amino asitler), Formik asit, Asetik asit, Propionik asit, Ure, laktik asit, ve diger yag asitlerini olusturmustu (26, 27). Deney Pavlovskaia ve Peynskii tarafindan Rusya’da; Heyns, Walter, Meyer tarafindan Almanya’da; Abelson tarafindan ABD’de, cok farkli bilesikler ve gaz ortamlarinda tekrarlandi; oksidasyonun engellendigi ve metan, amonyak ve su buharinin oldugu kosullarda hep amino asitler ve organik maddeler olustu (28); Gabel ve Ponnamperuma, cok farkli enerji ortamlarinda (isi, radyasyon, lineer akseleratorden cikan parcaciklar, mikrodalgalar vb) benzer sonuclar buldular, ayrica bazi seker molekullerini de primordial ortamda sentezlemeyi basardilar (28). Genetik materyeli tasiyan DNA ve RNA’nin temel taslari olan nukleik asitlerin bazilari da ilk atmosfer sartlarinin farkli bicimlerde ele alindigi kosullarda kimyasal olarak sentezlendi ve nukleik asitlerin temel yapi taslarinin primordial ortamda yeterli temel madde ve enerji sonucunda kendiliginden olusabilecegi gosterildi (9, 11, 12, 13, 14, 28, 29, 30). Yaratiliscilar, ilk dunya kosullarinda amonyak olmadigini, Miller’in ise soguk tuzak denilen bir yontemle amino asitleri elde ettigini, Miller’in kosullarinin bilincli olarak cok yapay hazirlandigini ve sonuclarin bilimsel bir sahtekarlik oldugunu soylemektedirler. Oncelikle Miller’in duzenegi tabii ki yapaydir; ama biyokimya’da yapay olmayan kosullarda kontrollu deney yapilamaz ki; soguk tuzak denilen ve reaksiyon urunlerini sogutan bir duzenek kullanilmis olabilir; ama doga’da bunun bir benzerinin var olmadigini soylemek, ustelik de 3.5-4.5 milyar yil oncesinde gelisen olaylardan cok emin ifadelerle bahsetmek ancak, Yaratiliscilar gibi bilimi ayaklar altina alan, cikaracaklari sonuclara onceden fikse olmus insanlarda gorulebilen bir dusunce hatasidir. Ornegin okyanuslarin tabanlarindaki sicak su kaynaklarinin birden soguyarak okyanusa karismasi bahsedilen “soguk tuzagi” dogal kosullarda olusturabilir; dogadaki bugun tahmin edilemeyen pek cok yapi bunu meydana getirebilir. Nitekim, sadece sicak su kaynaklarinda mevcut bu isinin bile sig okyanus sahillerinde suda cozunmus amonyum (NH4), metan (CH4), karbon dioksiti (CO2) (veya su yuzeyindeki atmosferdeki gazlari da katarak) reaksiyona sokabilecegini gosterir. Organik maddelerin ve ilk yasamin denizlerdeki, gollerdeki, volkanik ortamlardaki sicak su kaynaklarinin bulundugu yerde olustugu konusunda pek cok fikir de ortaya surulmustur (12, 21, 30 ). Ortamda amonyakin cok az olmasi kosullarini Miller tekrar irdelemistir (21). Primordial kosullarda, atmosferin redukleyici (elektron kazandirma) ozellikte oldugu dusunulmektedir, ama kesinlesmis bir bulgu yoktur. Atmosferde varolan amonyak’in bir kisminin amonyum (NH4 ) iyonu olarak okyanuslarda cozunecegi bilinmektedir (29); atmosferde cok az miktarda amonyak olmasi kosullarinda bile, su ortamlarinda ya da sicak su kaynaklarinin oldugu, okyanusun sig ve atmosferle bulustugu sahillerde amonyum iyonu, atmosferde cok az miktarda bulunan amonyak, metan gazi ve karbon dioksitle reaksiyona girecek ve organik bilesikleri olusturacaktir (21) . Miller, eser miktarda amonyakin bulundugu ortamlarda yaptigi deneylerde bile organik maddelerin ve amino asitlerin sentezlenebildigini gormustur (21). Yaratiliscilarin baska bir iddiasi, Miller deneyinde sag elli (D-dextro izomeri) ve sol elli (L-levo izomeri) amino asitlerin esit miktarlarda sentezlendigi, halbuki yasamda gorulen 20 cesit amino asitin tumunun sol elli oldugu, oyleyse organik maddenin ve canli yasamin belli bir amacla ve dizaynla yaratilmis olmasi gerektigidir. Oncelikle, 1993′te Arizona State Universitesinden John R. Cronin uzaydan gelen meteoritlerde ve donmus tozda daha fazla L-aminoasitlerine rastlandigini ispatlamistir 13; bu, dunyada varolan ve amino asitlerle reaksiyona giren maddelerin zamanla sol elli amino asitleri tercih etmesini saglayabilir (13). Ikincisi, molekuler yapilardaki zayif kuvvet(weak force) birbirinin ayna goruntusu olan molekullerde (yani izomerlerde) farklidir. Bu bir molekul icin cok ufak bir farktir, ama molekuller bir araya gelince etki buyur. Yani bir molekulun reaksiyona girerken veya suda cozunmus bulunurken icinde bulunan molekuler bag yapma yetenekleri ve belli bir konfigurasyonda dururken gereksimleri olan enerji onlarin doga tarafindan secilmelerini saglamaktadir. Doga tasarruf etmekten yanadir ve genelde en az enerji formunu tercih eder; L ve D formlari arasindaki enerji farki cok az da olsa, yapilan hesaplara gore en az enerji ile durabilen izomer, yaklasik 100 bin yilda dogada % 98 olasilikla baskin bulunan izomer formunu olusturacaktir (31). Ucuncu ve guclu bir olasilik, primordial kosullarda, su anda bilmedigimiz ve ilk dunya kosullarinda var olan ve sol elli amino asitlere baglanamayan bir X maddesinin ozellikle D-(sag elli) amino asitlerle birleserek kelat (cozunmeyen bilesik) olusturmasi ve onlari gol veya okyanus dibine cokertmesidir. Bu ise sol elli amino asitlerin bir anda dogal seleksiyonla artmasini ve dogada daha fazla kullanilabilir hale gelmesini cok kolay saglayabilir. Fakat kimse 4 milyar yil onceye gitmemistir; o gunden bu gune de tek iz kalmamistir; bilimsel yaratiliscilar ne soylerlerse soylesinler, 4 milyar yil onceye ait kesin kanitlarla Evrimcilerin karsisina gelmeden Evrimcilerin hic bir soyledigini curutmus sayilamazlar; ustelik, bilimsel yaratiliscilarin buyuk bir cogunlugu, binlerce kanita ragmen, dunyanin 4.5 milyar yasinda degil, cok daha genc olduguna inanmaktadir (10 bin yil gibi)… Son bulgular, pek cok organik maddenin uzaydan gelen tozda, meteorlarda bulundugunu ispatlamistir. Dunya’da okyanuslarda ve atmosferde amonyum, metan, karbon dioksit, amonyak’tan sentezlenebilen organik maddenin, uzaydan da gelebilecegi NASA’nin arastirmalarinin kesin bir sonucudur (13). Eger gunde 30 ton organik madde uzaydan dusen tozla dunyaya karismaktaysa (kuyruklu yildizlarla, meteorlarla gelenleri saymiyoruz) yilda, (10 4) ton (10000 ton) cesitli organik madde dunyada okyanuslara karisir. Bu ilk bir milyar yil icin 10 9 x 10 4= 1013 ton (10′un yaninda 13 sifir) ya da 10 000 000 000 000 ton organik madde eder. Bu miktarda organik madde, dunyada girdikleri reaksiyonlar da isin icine katilirsa, kesinlikle ilk yasamin tohumlarini atabilir. Halley, Hale-Bopp, Hyakutake isimli kuyruklu yildizlarda pek cok organik madde oldugu kanitlanmistir (13). Bir kuyruklu yildiz, gunes sisteminin sicak bolgelerinden gecerken, bir kismi erir, gaz ve toz olarak dunyanin (veya basak gezegenlerin) cekimine kapilip, zamanla dunyaya duser. NASA’daki bilim adamlari, ER2 tipi ucakla, yaklasik 62 000 feet yukseklikte bu tozlari toplayabilmektedirler. Scott Sandford, bu partikulleri analiz ettiginde % 50′den fazla organik kokenli karbona rastlamistir (13). Meteoritlerde ise, ketonlara, nukleobazlara, quinonlara (klorofil benzeri yapilarda yer alir), karboksilik asitlere, ve 70 farkli cesit amino asite rastlanmistir. Dunya’daki yasantida kullanilan amino asit sayisi ise sadece 20′dir, yani uzay bize ihtiyacimiz olandan cok daha fazlasini hediye etmektedir ! (13) DUNYADA ORGANIK YASAMIN BASLAMASI / UZAYDAN GELEN ORGANIK MADDE Son bulgular, pek cok organik maddenin uzaydan gelen tozda, meteorlarda bulundugunu ispatlamistir. Dunya’da okyanuslarda ve atmosferde amonyum, metan, karbon dioksit, amonyak’tan sentezlenebilen organik maddenin, uzaydan da gelebilecegi NASA’nin arastirmalarinin kesin bir sonucudur (13). Eger gunde 30 ton organik madde uzaydan dusen tozla dunyaya karismaktaysa (kuyruklu yildizlarla, meteorlarla gelenleri saymiyoruz) yilda, (10 4) ton (10000 ton) cesitli organik madde dunyada okyanuslara karisir. Bu ilk bir milyar yil icin 10 9 x 10 4= 10 13 ton (10′un yaninda 13 sifir) ya da 10 000 000 000 000 ton organik madde eder. Bu miktarda organik madde, dunyada girdikleri reaksiyonlar da isin icine katilirsa, kesinlikle ilk yasamin tohumlarini atabilir. Halley, Hale-Bopp, Hyakutake isimli kuyruklu yildizlarda pek cok organik madde oldugu kanitlanmistir 13. Bir kuyruklu yildiz, gunes sisteminin sicak bolgelerinden gecerken, bir kismi erir, gaz ve toz olarak dunyanin (veya basak gezegenlerin) cekimine kapilip, zamanla dunyaya duser. NASA’daki bilim adamlari, ER2 tipi ucakla, yaklasik 62 000 feet yukseklikte bu tozlari toplayabilmektedirler. Scott Sandford, bu partikulleri analiz ettiginde % 50′den fazla organik kokenli karbona rastlamistir (13). Meteoritlerde ise, ketonlara, nukleobazlara, quinonlara (klorofil benzeri yapilarda yer alir), karboksilik asitlere, ve 70 farkli cesit amino asite rastlanmistir. Dunya’daki yasantida kullanilan amino asit sayisi ise sadece 20′dir, yani uzay bize ihtiyacimiz olandan cok daha fazlasini hediye etmektedir ! (13) Daha ilginc bir bulgu ise Louis Allomandola’nin uzay kosullarinin simulasyonunu yaptigi deneylerden gelmistir (13, Bununla ilgili Scientific American’daki Temmuz 1999, resimleri kullanabilirsiniz). Bu deneyler cok dusuk isilarda ve sicakliklarda, ultraviyole radyasyonunun kimyasal baglari yikabilecegini; hatta icinde donmus metanol ve amonyak (uzayda bulundugu oranda) bulunan buzlasmis toz kitlelerinde, ultraviyole isinlarinin ketonlari, nitrilleri, eterleri, alkolleri, hatta heksametilentetramini (HMT) olusturabilecegini gostermistir. HMT asidik ve ilik ortamda amino asitleri olusturur. Bu deneyler son yillarda gerek NASA, gerekse universitelerdeki bilim insanlari tarafindan tekrarlanmis benzer sonuclar bulunmustur (13). Bu su demektir: uzayda donmus buz kitleleri olarak seyahat eden molekuller statik degillerdir; uzaydaki farkli isinlarin ve ultraviyole enerjisinin etkisiyle surekli iclerindeki kimyasal yapi degisime ugramaktadir, bu degisim, ozellikle daha yuksek isili, isinli ve enerjili gunes sistemi bolgelerine girince artmaktadir. Yani gerek uzaya dagilan tozlar, gerek meteorlar, iclerinde dunya gibi uygun kosullara sahip gezegene ulasinca yasamin temel taslarini olusturacak tum bilesenleri, organik maddeleri fazlasiyla tasimaktadirlar. Ustelik 4.5 milyar yillik dunya tarihini, kolay anlayabilmek icin, 1 saatlik bir zaman dilimi olarak alirsaniz, doga ilk 55 dakikayi, bu temel yapi taslarini ve tek hucreli yasami olusturmak icin harcamis, geri kalan bes dakikada da diger tum bitkileri, cok hucreli organizmalari meydana getirmistir. SONUC: Dunya’da organik yasamin baslamasi icin, buyuk olasilikla temel yapi taslari hem uzaydan gelmis hem de milyarlarca yilda, uzaydan gelenlerin de etkisiyle dunyada okyanuslarda, sicak su kaynaklarinin okyanusa karistigi yerlerde, batakliklarda, volkanik yapilarin okyanusla birlestigi yerlerde vb. ortamdaki serbest enerji sayesinde sentezlenmislerdir. Amino asitler, nukleik asitlerin yogunlastigi ortamlarda thermal proteinler ve RNA, oto-katalitik RNA buyuk olasilikla ilk genetik bilginin sekillenmesinde rol oynamislardir (11, 12, 14, 30) . Burada su temel unsurlar unutulmamalidir: 1. Bahsedilen sureler insan zekasinin kavrayabilecegi surelerin cok otesindedir. Bahsedilen sureler, milyon degil, milyar yillardir. Dort milyar yil, 50 yillik bir insan jenerasyonu goz onune alinirsa yaklasik 80-100 milyon jenerasyon demektir. Homo sapiensinortaya cikisindan beri ise sadece yaklasik 500 jenerasyon gecmisti. 2. Dogada kararli yapilarin olusmasi cok zordur. Belki bir tek kararli yapinin olusmasina karsi, binlerce katrilyon kararsiz yapi bozunup gitmektedir; biz bilgiyi bu gune kadar gelebilen kararli yapidan alabilmekteyiz; kararli yapilarin gelismesini saglayan reaksiyon ve biyolojik olay sayisi ise neredeyse sonsuzdur . Dr. Umit Sayın Cumhuriyet Bilim ve Teknik Dergisi Kaynakça: 1) Science, 25 Haziran, 1999, 284 (5423):2045-2220. 2) Ibid., pp: 2087. 3) NAS, “Science and Creationism: A view from the National Academy of Sciences”, 1999, National Academy Press. 4) Umit Sayin, “ABD’de Bilimsel Yaratiliscilibgin Coküsü”, Bilim ve Ütopya, Aralik 1998. 5) TUBA bülteni, 10:2, 1998. Ayrica TUBA’nin web sayfasina (www.tuba.org.tr) bakabilirsiniz. 6) “Kamoyuna Duyuru” (Birinci Bildiri), Cumhuriyet Bilim ve Teknik, 7 Kasim 1998. 7) “Bilime Gerici Saldiri” (Ikinci Bildiri), Cumhuriyet Bilim ve Teknik, 30 Ocak 1999. 8 ) Harun Yahya, “Evrim Aldatmacasi”, Vural Yayincilik, 1997. 9) Ümit Sayin, “Yaratilmayis: Yasam Nasil Basladi”, Bilim ve Ütopya, Ekim 1998. 10) Ümit Sayin, “Uctu Uctu Dinozor Uctu”, Bilim ve Utopya Kasim 1998. 11) Albert Eschenmoser, “Chemical Ethiology of Nucleic Acid Structure”, Science, 25 Haziran, 1999, 284 (5423):2118-2123. 12) Andre Brack, editor, “The Molecular Origins of Life”, Cambridge University Press, 1998. 13) Max P. Berstein, Scott A. Sandford, Louis J. Allamandola, ” Life’s Far-Flung Raw Materials”Scientific American, Temmuz 1999, 281:42-49. 14) Leslie E. Orgel, “The Origin of Life on Earth”, Scientific American, Ekim 1994, 271:76-83. 15) Gerald F. Joyce, “Directed Molecular Evolution” Scientific American, Aralik 1992, 267:90-97. 16) A.I. Oparin, “Origin of Life”, Mc Millen, New York.1938 17) J.B.S. Haldane. “Origin of life”, Rationalist Annual, 1929 18) H.C. Urey. “On the early chemical history of the earth and the origin of life”, Proc. Natl. Acad. Sci., 1952. 19) W.W. Rubey, “Development of the hydrosphere and atmosphere, with specail reference to probable composition of the early atmosphere”. In Crust of the Earth, ed. A. Poldervaart HDpp:631-650,1955. 20) H.D. Holland, “The chemical evolution of the atmosphere and oceans”. Princeton University Press, 1984. 21) Stanley Miller, ” The Endogenous Synthesis of Organic Compounds”, [ Andre Brack, editor, "The Molecular Origins of Life", Cambridge University Press, 1998.] isimli kitapta. sayfa: 59-85 22) C.F. Cyba, C. Sagan, ” Endogenous production , exogenous delivery and impact-shock synthesis of organic molecules: an inventry for the origins of life”, Nature, 355:125-132, 1992. 23) C.F. Cyba, P.J. Thomas, L., L. Brookshaw, and C. Sagan. ” Cometary delivery of organic molecules to the early Earth”, Science, 249:366-373, 1990 24) J.C.G. Walker , “Evolution of atmosphere”, Macmillen: New york, 1977 25) J.F. Kasting. ” Earth early atmosphere” Science, 259:920-926, 1993.. 26) S.L. Miller, “Production of amino acids under possible primitive Earth conditions” Science, 117:528-529, 1953. 27) S.L. Miller, and H. C. Urey, “Organic compound synthesis on the primitive Earth”, Science, 130:245-251, 1959. 28) Cyril Ponnamperuma, “The Origins of Life”, Thames and Hudson, 1972. 29) J.L. Bada and S.L. Miller, “Ammonium ion concentration in the primitive ocean” Science, 159:423-425, 1968. 30) Richard Montanesky, “The Rise of Life on Earth”, National Geographic, Mart 1998. S: 54-81. 31) Ian Stewart, “Nature’s Numbers”, Basic Books, New York, 1995. www.uzelgi.com

http://www.biyologlar.com/dunyada-organik-yasamin-baslangici

Özel görelilik kuramı konusunda çok sık sorulan bazı soruları

Soru 1. : Camda ışık hızı düşüktür. Görelilik kuramı camda değişir mi? Bu türden sorular genel olarak ışığın görelilik kuramındaki rolünün abartılmasından kaynaklanıyor. Görelilik kuramında “ışıktan” ziyade “ışığın boşluktaki hızı” önemli. Kuram aslında uzay ve zaman hakkında. Fakat, uzunluk ve zamanı “metre” ve “saniye” olarak, farklı birimlerle ifade ediyoruz. Bu nedenle, bunların bir arada kullanabilmesi için hız birimine sahip bir sabit sayının kuramda belirmesi gayet doğal. Kısaca “ışık hızı” dediğimiz nicelik bu sabit sayı. Kuram ayrıca kütlesiz olarak nitelendirilen parçacıkların boşlukta sadece bu hızla yol alabileceği sonucunu içeriyor. Işık fotonları da kütlesiz olduğundan, ışığın boşlukta bu hızla yayıldığını söylüyoruz. Bunun dışında, ışığın bir ortam içinde yayılırken neler yaptığının kuram açısından hiçbir önemi yok. Dahası, böyle ortamlarda görelilik kuramındaki tipik sonuçlara benzemeyen durumlar oluşabiliyor. Örneğin çok hızlı parçacıklar su gibi bir ortama girdiğinde, ışığın o ortamdaki hızını geçebilir. Bu görelilik kuramına aykırı değil. Eğer parçacık yüklüyse, bu defa sesten hızlı giden uçakların yarattığı ses patlamasına benzer bir etki oluşur. Yani, parçacığı takip eden bir koni üzerinde yayılan güçlü bir ışıma meydana gelir. Çerenkov ışıması adı verilen bu ışıma, nükleer reaktörlerdeki tipik mavi ışığın temel nedeni. Üstelik bir ortamda yayılan ışığın hızı gözlemciden gözlemciye değişir. Yani, görelilik kuramının dayandığı temel varsayımlardan birincisi bu tip durumlarda sağlanmıyor. Hatta gözlemcinin bu ışıkla aynı hızda veya daha hızlı gitmesi de olası. İlk durumda gözlemci ışığın kendisine göre durduğunu, ikincisinde de geriye gittiğini görür. Bunlar da görelilik kuramı açısından sorun değil. Aslında bu sonuçlar, yani ışığın bize göre hareket eden ortamlardaki hızının değişiyor olması, 19. yüzyılın ortalarından beri biliniyordu. Soru 2. : Hızı 0,9c olan bir rokette yolculuk etmekteyken ileriye doğru 0,9c hızıyla bir taş fırlatıyorum. Taş ışıktan hızlı gitmez mi? Özetle, roketin yere göre hızı 0,9c; taşın rokete göre hızı da 0,9c. Öyleyse taşın yere göre hızı nedir? Cevap, beklendiği gibi 1,8c değil. Burada göz ardı edilen şey, roketteki ve yerdeki gözlemcilerin uzay ve zamanı algılayışlarındaki farklılık. Bu farklılıktan dolayı, taşın yere göre hızını 0,995c buluruz. Yani taş rokete göre çok hızlı gidiyor; ama buna karşın yerdeki gözlemci taşın roketten sadece biraz daha hızlı olduğunu görüyor. Hızların toplanması kuralı artık burada işlemiyor. Roketteki gözlemci taşı 0,9c hızıyla fırlatırken hiçbir zorluk hissetmez. Yani, bu gözlemci aynı taşı yerde fırlatırken ne kadar zorlanıyorsa, rokette de fırlatırken aynı derecede zorlanır. Görelilik ilkesi de zaten bunu gerektiriyor. Kısacası, roket ne kadar hızlı olursa olsun, rokete göre çok büyük hızlarla giden taşlar var. Ama bu taşlar hiçbir gözlemciye göre hız sınırını aşamaz. Soru 3. : Işık hızında gitsek dünya nasıl görünür? Işık hızına çok ama çok yaklaşabiliriz, fakat hiçbir zaman bu hıza tam olarak erişemeyiz. Dolayısıyla gerçekleşmeyecek bir durum hakkında yorum yapmak da anlamsız. Aslında, ışık hızında yol alan bir gözlemci fikri bir çok sorun içeriyor. Bunlardan birincisi, böyle bir gözlemciyi bu derece hızlandırmak için vermemiz gereken enerjiyle ilgili. Tam ışık hızına erişmek için sonsuz enerji gerekiyor. Buradaki “sonsuz” ifadesi “çok büyük” anlamında değil, tam olarak sonsuz anlamında. İçinde yaşadığımız enerji darboğazını biliyoruz. Buna ek olarak, Dünya’da, Samanayolu’nda hatta evrenin görünen kısımlarında bile sadece sonlu miktarda enerji var. Elimizde bulunan kaynaklarla, böyle bir işi başarmak için ihtiyacımız olan sonsuz enerjiyi hiçbir zaman denkleştiremeyiz. Buna ek olarak, uzunluk büzülmesi ve zaman genleşmesi etkileri de böyle bir gözlemci için sorun yaratıyor. Bu gözlemcinin hareket doğrultusundaki boyu tam olarak sıfır olmalı. Benzer şekilde gözlemcideki saat durarak hiç ilerlememeli. Bir bakıma, bu tip sorunlar, kuramı öngöremediği bir duruma uyarlamaya çalışmaktan kaynaklanıyor. Soru 4.: Işık hızıyla gitsem camdan geçebilir miyim? Işığın camdan geçebilmesi, ışığın bu malzemenin atomlarıyla etkileşmesi sonucunda meydana gelen özel bir durum. Bu özel etkileşme nedeniyle camdaki atomlar görünen ışığı soğurmuyor. Bu sonuç, malzemeye bağlı olduğu kadar, ışığın dalgaboyuna da bağlı. Örneğin, bazı kızılötesi ışıklar cam tarafından soğurulur. Bizse, atomlardan yapılmış olduğumuz için maddeyle daha farklı bir şekilde etkileşiriz. Yani camın bize verdiği tepki, ışığa verdiği tepkiden çok farklı. Bu etkileşim doğal olarak bizim hızımıza bağlı. Ama bu madde-madde ve madde-ışık etkileşmeleri arasındaki farklılığı ortadan kaldırmaz. “Çok hızlı gidersek, ışığa daha çok benzeriz” gibi yorumlar bu açıdan anlamsız. Sonuç olarak, ışık hızında zaten gidemeyiz. Bunun dışında, ne kadar hızlı gidersek gidelim, cama çarptığımızda camı deleriz. Çok hızlı giden parçacıklar cama girdiğinde, cam parçalanmaz; çünkü bunun için yeterli enerjileri yok. Ama, parçacığın hangi türden olduğuna bağlı olarak, bunlar camla özel bir etkileşime girer. Örneğin nötronlar çoğunlukla camdan geçip gider. Ama proton gibi yüklü parçacıklar, camdaki elektronlarla olan etkileşmeleri nedeniyle kısa sürede yavaşlar ve cama hapsolur. Soru 5. : Hızlandıkça kütle artıyorsa, fazladan eklenen madde nereden geliyor? Bir cisim hızlandırıldığında dışarıdan madde eklenmesi gibi bir şey söz konusu değil. Yani, cisimde en başta kaç tane proton, nötron ve elektron varsa, ne kadar hızlanmış olursa olsun bu parçacıkların sayısı yine aynı olur. Bu yanılgı, “hıza bağımlı kütle” kavramının yarattığı sorunlardan bir tanesi. Bilim insanları kütleyi değişmez bir nicelik olarak kullanmayı tercih ediyor. Yani, durağan haldeki kütlesi 1 kg olan bir cismin, ışık hızına çok yakın hızlarda hareket etse bile hala 1 kg kütlesi olduğunu söylüyoruz. Bu anlamda, kütle hıza bağımlı olarak değişmez. Fakat hız arttıkça, kütleyle ilişkili bir takım fiziksel niceliklerin değişmesi söz konusu. Örneğin ağırlık, kısaca Dünya’nın cisme uyguladığı çekim kuvveti. Veya (eylemsizlikle bağlantılı olarak) bir kuvvetin etkisi altında cismin ivmesi. Bu fiziksel nicelikler, cismin hızına bağlı olarak değişir. Ama bu etkileri sadece değişen bir kütle düşüncesiyle açıklamaya çalışmak pek mümkün değil. Çünkü bahsedilen etkiler yönlere bağlı olarak değişir. Örneğin cisim yere paralel hareket ediyorsa ağırlığı farklı, dik hareket ediyorsa farklıdır. Bu tip etkileri görelilik kuramını tam anlamıyla uygulayarak incelemek daha doğru. Kaynak: vergidunyasi.blogcu.com

http://www.biyologlar.com/ozel-gorelilik-kurami-konusunda-cok-sik-sorulan-bazi-sorulari

1. ULUSAL BİYOLOGLAR KONGRESİ

1. ULUSAL BİYOLOGLAR KONGRESİ

KATILIM ÜCRETSİZDİR.... Değerli Meslektaşlar; Daha önce 1 Mart olarak duyurusunu yaptığımız “1. Ulusal Biyologlar Kongresi”ni teknik nedenlerle 8 Mart 2014 Cumartesi tarihine erteledik. “Adım Adım Odaya” teması ile duyurduğumuz kongrenin teme hedefleri; 1. Yıllardır özlemini duyduğumuz meslek odası kanun taslağının TBMM’ye sunulmadan önce tanıtımını yapmak ve meslektaşların desteklerini almak,... 2. Kamu, özel sektör, üniversite, işsiz, öğrenci vs.. her alandan meslektaşlarımızı bir araya getirerek tüm farklılıklarımızın meslektaş bilinci içerisinde eritilmesini sağlamak, biyolog kimliğini vurgulamak ve mesleki dayanışma bilincini artırmak, 3. İlk kez yapılacak olan Ulusal Biyologlar Kongresi’nin gelenekselleşmesini sağlamak ve biyologların örgütlü gücünü ortaya koymakşeklinde sıralanabilir. Basın ve siyasetçilerin de davetli olduğu bu kongre’de siz meslektaşlarımıza düşen maksimum düzeyde katılım sağlamak ve gücümüzü gösterebilmemize yardımcı olmaktır. Bu nedenle tüm meslektaşlarımızı 8 Mart Cumartesi günü Ankara’ya, örgütlenmeye, sesimizi yükseltmeye ve dayanışmaya çağırıyoruz. Not 1: Kongre’de bildiri veya sunum yapmak isteyenler bildiri özetlerini en geç 21 Şubat Cuma akşamına kadar info@biyologlardayanismadernegi.org.tr adresine gönderebilirler. Not 2: Yazılı yada görsel basından ve siyaset çevresinden tanıdığı olan meslektaşlarımız lütfen yukarıdaki mail adresinden bizimle temasa geçsinler. Zira bu kongre’de ne kadar sesimizi duyurabilirsek başarılı olma şansımız o kadar artacaktır. Kongre Tarihi: 08.03.2014 Yer: ATO (Ankara Ticaret Odası) Meclis Salonu – Söğütözü / ANKARA Program daha sonra duyurulacaktır. Uzm.Biyolog Tarık PATIHAN Biyologlar Dayanışma Derneği Bşk.   1. ULUSAL BİYOLOGLAR KONGRESİ (KONGRE AKIŞ PROGRAMI) Konuşmacı /Program Kurum /Kuruluş Konu Faaliyet Yaklaşık Süre Program Başlangıcı / Kayıt     Kayıt İşlemleri 09:45-10:15 (30 dk) İstiklal Marşı / Saygı Duruşu       10:15-10:20 (5 dk) Biyolog Özlem AKSOY BDD Yönetim Kurulu Üyesi Ankara Çevre ve Şehircilik İl Müdürlüğü Açılış Konuşması / Tanıtım ve Kongre İçeriği Sunum 10:20-10:35 (15 dk) Uzm. Biyolog Tarık PATIHAN BDD Başkanı Dünya’da ve Türkiye’de Biyologların Durumu Sunum 10:35-11:05 (30 dk) Biyolog Azize Nil TOKER İSG Uzmanı TBMM-Emekli Gıda Güvenliği Kalite Birim Sorumlusu Biyologların Mesleki ve Örgütlenme Sorunları Sunum 11:05-11:20 (15 dk) Prof.Dr. Abdullah HASBENLİ Gazi Üniversitesi Fen Fak. Biyoloji Bölüm Başkanı Biyologların Mesleki Yeterlilik Anket Çalışması ve Sonuçları Sunum 11:20-11:50 (30 dk) Moleküler Biyoloji Uzmanı Alihan AKIN Orman ve Su İşleri Bakanlığı Orman Genel Müdürlüğü Biyologların Neden Meslek Odası Olmalı? Konuşma 11:50-12:05 (15 dk) Doç. Dr. Alev Haliki UZTAN TBD Genel Başkanı Ege Üniversitesi Biyoloji Eğitiminde Temel Sorunlar Sunum 12:05-12:30 (25 dk) ÖĞLE YEMEĞİ 12:30-13:30 (1 saat) Aylin RAMANLI Mesleki Yeterlilikler Kurumu Meslek Standartlarında Temel Kriterler ve Biyologların Meslek Standardı Süreci Sunum 13:30-13:50 (20 dk) Biyolog Aynur HATİPOĞLU Çevre ve Şehircilik Bakanlığı Tabiat Varlıkları Koruma Genel Müdürlüğü Doğa Koruma Uygulamalarında Biyologların Önemi Sunum 13:50-14:10 (20 dk) Biyolog Dr. Arzu ÜNAL Gıda Tarım ve Hayvancılık Bakanlığı Tarımsal Araştırmalar ve Politikalar Genel Müdürlüğü Gıda Güvenliği ve Biyogüvenlik Bakımından Biyologlar Sunum 14:10-14:30 (20 dk)  

http://www.biyologlar.com/1-ulusal-biyologlar-kongresi

EVREN, EVRİM VE İNSAN

Dünya Toprağın anası olan sıcak, kıvamlı çorba: Kimyasal evrimin son aşamaya ulaşması ve biyolojik evrimin başlaması için uygun ortam... Viroyitler ile virüsler: Organik maddeyle canlı yaşam arasındaki geçiş ürünleri mi? Canlılar, ilyarlarca yıl süren bir gelişmenin ardından 600 bin yıl önce Kambriyen Patlaması’yla çeşitlenmişler. İnsanla maymunun ortak atası olan primatlar ise epi topu 70 milyon yıl önce ortaya çıkmışlar. Ve 5 milyon yıl önce başdöndürü bir gelişme: Önce insansılar, sonra Homo Habilis, Homo Erectus, Homo Neanderthalis ya da Homo Sapiens ve 50 bin, yalnızca 50 bin yıl önce de Homo Sapiens Sapiens: İşte insan!.. İnsanın çamurdan yaratıldığını anlatan dinsel efsanelerle, dünyanın başlangıcındaki kıvamlı, sıcak bulamaçtan yaratıldığını söyleyen evrime ilişkin bilimsel bulgular arasındaki tek ayrım, evrenin boyutları temelinde fazlaca önemi olmayan bir zaman farkı... Bugün üstünde yaşadığımız gezegen, hiçliğin içindeki bir noktada meydana gelerek evreni oluşturmaya başlayan Büyük Patlama’dan 15 milyar dünya yılını aşkın bir süre sonra, bağrından koptuğu yıldızın etrafında yörüngeye ilk girdiğinde, herhalde, alev alev yanan bir top gibiydi. Bu alev topunun son kalıntıları, Dünya’nın çekirdeğinde, dışarı akacak mecra bulmak için hala ayaklarımızın altındaki zemini yoklayıp duruyor. Varoluşundan tam 4 milyar 570 milyon yıl sonra bile Dünya’da yanardağlar, arasıra da olsa hala lav püskürtüyorlar. İlk başlarda dünyanın hidrojen, su buharı, amonyak, metan ve hidrojen sülfitten oluştuğu düşünülüyor. Laboratuvarda böyle bir gaz karışımına dışardan enerji verildiğinde bir süre sonra kahverengi bir bulamaç elde ediliyor. Dünya’nın da böyle bir süreçten geçerek en dış kabuğundan itibaren önce sıcak, kıvamlı bir çorba halini aldığı, sonra ağır ağır katılaştığı varsayılıyor. Toprağın anası olan bu sıcak, kıvamlı çorba, Güneş’in aşırı sıcağında gelişen kimyasal evrimin son aşamaya ulaşması için uygun bir ortam oluşturmuşa benziyor. Ve kimyasal evrim tamamlandığında; yani evrenin veri olan koşullarında varolabilecek bütün gelişme basamaklarında, giderek artan farklı sayılarda elektron ve protondan oluşan atomlar ile izotopları kararlılık kazandıklarında, niteliksel bir sıçramayla biyolojik evrim aşamasına geçilmiş olması gerekiyor. İnorganik maddeden organik maddeye... Aminoasitler ile nükleik asitlere... Ve cansız maddeden canlı maddeye... Bilinen en basit canlılara viroyit adı veriliyor. Bunlar yaklaşık 10 bin atomdan oluşuyorlar. Viroyit, 250 m. uzunlukta bir RNA dizisinden başka birşey değil... Ve kendi kendisini üretebiliyor. Bazı virüsler de yine bir RNA dizisiyle bunu çevreleyen bir protein tabakasından oluşuyorlar; ama bazılarında da hem RNA hem DNA bulunuyor. Elbette virüsler de kendi kendilerini üretebiliyorlar. Ama viroyitlerle virüslerin canlı sayılıp sayılamayacağı hala tartışmalı... Zira en ilkelinden en gelişmişi olan insana kadar bütün canlı türlerinin hücrelerinde RNA’nın yanısıra bir de, viroyitlerle bazı virüslerde bulunmayan ve çok önemli olan DNA molekülü mutlaka var... Ve her canlı türünün DNA molekülü farklı... DNA moleküllerindeki farklılık, basitten karmaşığa doğru tırmanan bir farklılık... En basiti virüsler, sonra tek hücrelilerde, en karmaşığı insanda... DNA molekülü bir şifre... Sözkonusu canlının bütün özelliklerini belirleyen şifre... Hücreler, bu şifrenin RNA vasıtasıyla taşınan talimatları doğrultusunda örgütleniyorlar ve birbirlerinden farklılaşıyorlar. DNA molekülü kendi etrafında dolanan uzun bir ip merdivene benziyor ve hücre bölünmesiyle gerçekleşen üreme sürecinde düşey olarak ikiye ayrılarak ilk hücreden üreyen iki yeni hücrede kendi yarımından kendisini yeniden üretebiliyor. Döllenmeyle gerçekleşen üreme sürecinde de, eşlerden her birinin DNA molekülleri yine düşey olarak ikiye ayrılıyor ya da çözülüyorlar. Döllenme gerçekleştiğinde, erkeğin yarım DNA’sıyla dişinin yarım DNA’sı birleşerek yeni bir DNA molekülü oluşturuyorlar. Ve biyolojik evrim hep DNA bazında gerçekleşiyor. Gerek kendi yarısından kendini üretmesi esnasında, gerekse iki yarımın birleşmesi esnasında çoğu zaman hiçbir mesele çıkmıyor ama, arasıra da DNA’yı oluşturan bazı moleküller tam yerine oturmuyorlar. Ya da ortamda bulunan başka bazı moleküller tam birleşme sırasında gelip DNA’ya katılıyorlar. Böylece şifre, bir ayrıntıda değişmiş oluyor. Ve ayrıntıda değişen bu şifre, doğan yeni canlının, anababasından bir ya da birkaç ayrıntıda farklı olmasına yol açıyor. Bu olaya mutasyon/değşinim, bu değişik canlıya da mutant/değşinik deniyor. Her döllenmede bir değşinim olması olasılığı yok değil... Ama işin içine olasılıklar girince, yani döllenme sayısı olasılık kurallarının işleyeceği kadar büyük olunca, muhtemelen çan eğrisi biçiminde bir dağılım sözkonusu oluyor. Yani, döllenmeler sırasında çoğu DNA kendisini tıpatıp ya da tıpatıpa çok yakın bir durumda üretmeyi başarıyor. Böylece çoğu döllenme, anababasından farksız yavrular üremesiyle son buluyor. Ama yine her döllenme kuşağında, bir kısmı olumlu, bir kısmı da olumsuz değşinikler de mutlaka ortaya çıkıyor. Bunlar, çan eğrisinin iki ucuna doğru yayılıyorlar. Eğrinin iki en uç kısmında aşırı olumlu değşinikler ile aşırı olumsuz değşinikler bulunuyorlar. Kalıcı olması için bir değşinimin resesif/çekinik değil, dominant/başat özellikte olması; yani değşinik bir başkasıyla ilişkiye girip döl verdiğinde yavrusuna aktarılacak ölçüde güçlü olması gerekiyor. Tabii döl verecek hale gelmesi için sözkonusu değşiniğin öncelikle çevre koşullarına uyum sağlaması, açıkçası hayatta kalmayı başarmış olması koşulu da var... Taşıdıkları farklı özellikler ister olumlu ister olumsuz olsun değşiniklerden çoğu yaşama ayak uyduramayıp ölüyorlar. Buna doğal ayıklama süreci deniyor. Dolayısıyla her değşinim, evrim sürecinde önemli bir yer tutuyor değil... Ancak çevre koşullarıyla uyum sağlayıp doğal ayıklamaya karşı koyan ve kalıcı olabilen ve olumlu değşinimler evrim sürecinde bir gelişmeye neden olabiliyorlar. Ve böyle bir değşinik, ancak uzun, çok uzun bir zaman geçince yeni bir türün ortaya çıkmasına neden olabiliyor. Ayrıntısal değişiklikler üstüste gelip de ilk değşiniğe döl vermiş olan türden çok farklı bir türün çoğalıp kendine Dünya’da yer edinebileceği kadar uzun bir zaman... Bazen milyarlarca, milyonlarca, hiç değilse yüzbinlerce yıl uzunluğunda bir zaman... Carl Sagan ya da Isaac Asimov gibi bazı bilim yazarları, Dünya üstündeki biyolojik evrimi şöyle özetliyorlar: 4 milyar yıl önce dünyada yalnızca moleküller varmış. Zamanla özel işlevli bir takım moleküller biraraya gelerek bir molekül ortaklığı kurmuşlar. Bu, ilk hücreymiş. 3 milyar yıl kadar önce bir değşinim, tek başına varlığını sürdürmekte olan bir hücrenin, bölündükten sonra ikiye ayrılmasını engellemiş. Bunun sonucunda tek hücreli bitkilerden bazıları biraraya gelmişler. Bunlar ilk çok hücreli organizmaları oluşturmuşlar. 2 milyar yıl kadar önce cinsler ortaya çıkmış. Böylelikle aynı cinsten iki organizma DNA’ların ikiye ayrılmasıyla döl vermeye başlamışlar. 1 milyar yıldır bitkiler öyle çeşitlenmişler ve öyle yayılmışlar ki dünyanın çevre koşullarını inanılmayacak kadar değiştirmişler. Çünkü yeşil bitkiler oksijen üretiyorlar. Ve oksijen üreten bitkiler dünyanın okyanuslarını kapladıkça hidrojen ağırlıklı ilk yapı ortadan kalkmış. Hidrojen yerini oksijene bırakmış. 600 milyon yıl önce Kambriyan Patlaması adı verilen bir olgu gerçekleşmiş ve yeşil bitkilerin yanısıra birdenbire bir dizi yeni canlı türü ortaya çıkmış. Önce ilk balıklar ve omurgalılar... Bu arada önceleri yalnızca okyanuslarda yaşayan bitkiler kara parçalarını işgal etmeye başlamışlar. İlk böcekler gelişmiş. Bunlardan üreyen yavrular karalara çıkmışlar. Kanatlı böceklerle hem karada hem suda yaşayabilen böcekler üremiş. Yine hem karada hem suda yaşayabilen balıklar görülmeye başlamış. Bunun ardından, 300 milyon yıl önce, ilk ağaçlar ve ilk sürüngenler ortaya çıkmış. Bunları dinozorlar izlemiş. Sonra sıra memelilere gelmiş. Tam o sırada ilk kuşlar da uçmaya, ilk çiçekler de açmaya başlamışlar. 70 milyon yıl kadar önce, yunus balıklarıyla balinaların ataları olan ilk balıklar... Ve aynı dönemde, maymunun, orangutanın ve insanın atası olan primatlar... İlk maymunlar 40 milyon yıl önce görünmüş. Ve 5 milyon yıldan beri de başdöndürücü bir gelişme yaşanmaya başlanmış. Önce hominidler/insansılar çıkmış ortaya: Australopithecus Afarensis; sonra, 3 milyon yıl kadar önce Australopithecus Africanus ve türevleri; 2 milyon yıl önce çeşitli hünerleri olan, ellerini tam anlamıyla kullanan ve artık maymundan çok insana benzemeye başlayan Homo Habilis, 1 milyon 6 yüz bin yıl önce ayakta duran ve beyni de büyümüş olan Homo Erectus; 3 yüz bin yıl önce bize iyice benzemeye başlayan ve geride bıraktıklarıyla akıllı olduğunu belli eden Homo Nearderthalensis ya da Homo Sapiens ve yalnızca elli bin yıl kadar önce de akıllının akıllısı ilk gerçek atalarımız: Homo Sapiens Sapiens... İşte insan!.. Bilim henüz, biyolojik evrimin dünya üstündeki gelişmesini de, bilime yakıştırılan türden bir kesinlikle ispatlayabilmiş değil... Bunun birkaç gerekçesi var... Bunlardan bir tanesi, bilimsel kesinliğe ulaşmak için toplanması gereken veri ya da birim bilgi miktarının, Aydınlanma Çağı’da umulandan çok fazla olması... Toplanması gereken birim bilgi miktarının yoğunluğu anlaşıldığı için biz, günümüzde, bilimin giderek daha küçük alanları kapsayacak biçimde bölünmesine, parçalanmasına ve yabancılaşmasına tanık oluyoruz. Bugün 2 bin 5 yüz farklı bilimsel disiplinin varlığından sözediliyor. Bu disiplinler yanyana açılan bir takım kuyular gibi kendi içlerinde giderek derinleşiyorlar, ama hiç değilse şimdilik birbirleriyle pek ilişki kurmuyorlar. Dolayısıyla bir disiplin tarafından elde edilen bilgilerin ve geliştirilen yorumların diğer disiplinler tarafından kullanılması şimdilik pek mümkün olamıyor. İkinci gerekçe, bazı bilgilere ulaşılamaması ve hiç ulaşılamayacak olması... Mesela Kambriyen Patlaması’ndan önceki dönemde yaşamış olduğu varsayılan canlı türlerinin bir kısmının hiçbir iz bırakmadan ortadan kaybolacak bir yapıya sahip olmaları... Bir başka önemli gerekçe ise, bilimle uğraşanların da sonuç itibariyle birer insan olması... Özellikle evrim konusunda, dinsel ve siyasal inançların etkisinden sıyrılamayan bilim insanları, kısıtlı da olsa ellerindeki bilgiyi yorumlarken bazen, eldeki verileri dinsel efsanelere uydurmak için fazlasıyla zorlanmış yorumlar yapabiliyorlar. Halbuki insanın çamurdan yaratıldığını anlatan dinsel efsanelerle bilimin evrime ilişkin bulguları arasında çok da büyük ayırımlar yok... Sonuç olarak bilimsel veriler de, insanın, dünyanın başlangıcındaki kıvamlı, sıcak bulamaçtan yaratıldığına işaret ediyorlar. Yani bilim, çamurdan yoğrulmuş iki bedene can üflendiğini anlatan efsaneleri bir anlamda doğruluyor. Arada yalnızca, insana önemli görünse de, evrenin boyutları temelinde fazlaca önemi olmayan bir zaman farkı var... Hepsi o!.. Bilimsel açıklamalar kesinlik taşımıyor olsalar da, mantık, eldeki verilerin, evrim sürecinin gerçekliğine inanmaya yeterli olduğunu söylüyor. Ve tam bu noktada insan, kendi soyunun biyolojik evrim sürecinin, hatta fiziksel ve kimyasal aşamalarıyla birlikte bütün evrim sürecinin en son aşaması olup olmadığını merak ediyor.

http://www.biyologlar.com/evren-evrim-ve-insan

Makroskobik Dünya’nın Mikroskobik Canlıları

Bakterilerle ilgilenmeye yeni başlayan biri için onların dünyasını keşfetmek, yeni bir gezegen keşfetmeye benzer. Dünya’nın en küçük canlılarından olan bakteriler, gezegendeki doğal ekolojik sistemlerin işleyişinde çok önemli bir yere sahiptir. Besin, mineral ve enerji döngülerinde “kimyacı” gibi işlev gören bakteriler, canlılar arasındaki ilişkilerde etkin bir rol oynar. Bu yüzden, bakteriler canlılıkla ilgili süreçlerin anlaşılmasına yardım ederler. Yaklaşık 3,5 milyar yıl önce, yaşayan ilk hücreler olarak ortaya çıktıkları belirlenen bakteriler en basit yapılı canlılar olmalarının yanında, dünya yüzeyinde belirli bir canlı grubuna ait en büyük kütleyi oluştururlar. Bakteriler, canlılar aleminde “Prokaryotlar” olarak adlandırılıyorlar. Bitkilerin ve hayvanların yaşamsal işlevlerinin birçoğu, bu prokaryotik hücrelerin etkinliklerine bağlı olarak gerçekleşir. Atmosferdeki oksijenin yarısından fazlasını fotosentez yapan Cyanobacteria adı verilen gruba ait bakteriler üretir. Bu bakteriler önemli bir miktarda karbon dioksit ve azot gazlarının organik bileşik olarak bağlanmasına da yardım ederler. Atmosferle yer ve canlılar arasındaki azot döngüsünde, havadaki serbest azotun canlılar tarafından bağlanmasına yönelik tek mekanizma, baklagillerin köklerinde özel yumrucuklar içinde yaşayan, yumrucuk bakterileri ya da cins adı Rhizobium olan bakteriler tarafından sağlanıyor. Bakterilerin, baklagillerle olduğu gibi başka canlılarla da simbiyotik (ortak yaşam biçiminde) ilişkileri var. Bu ilişkilerde karşılıklı yararlanmalar söz konusu. Örneğin, bazı böceklerde yavruların cinsiyetini, simbiyotik ilişki içinde olduğu bakteriler belirliyor. Geviş getiren hayvanlarda ise, sindirimi oldukça zor olan selüloz, bağırsaklarda yaşayan bakteriler tarafından parçalanıyor. Hastalık yapan bakterilerin konaklarıyla olan ilişkisi ise asalaklık biçiminde (parazitik) bir yaşam olarak değerlendirilebilir. Toprakta yaşayan bakteriler de toprakların verimliliğine katkıda bulunur. Çürükçüller (saprofitler) adı verilen bu bakteriler ölmüş canlıları parçalayarak, onların proteinlerinde bağlı olarak bulunan azotun ve diğer minerallerin toprağa geçmesini ve yeniden azot döngüsüne katılmasını sağlar. Bakteriler azot ve oksijen döngülerine katıldıkları gibi, karbon ve kükürt döngülerine de etkin olarak katılırlar. Bakteriler, yaklaşık 1 mikrometre çapında olup, hücre zarından ve DNA ipliğinden başka farklılaşmış yapı içermezler, hücrenin içi ise metabolik tepkimeleri sürdüren enzimler, küçük organik bileşikler ve inorganik iyonlarla doludur. Boyutlarının ancak mikroskopla görülebilecek kadar küçük olmasına bağlı olarak, onların Dünya’daki en yaygın yaşam formları olduklarını ve en büyük canlı grubu kütlesini oluşturduklarını görsel olarak hissetmek pek zordur. 4,5 milyar yaşındaki Dünya’da yaklaşık 2 milyar yıl kadar tek canlı grubu olarak yaşadıkları düşünülen bakterilerin en eski örnekleri olduğu kabul edilen fosiller Batı Avustralya’da bulunmuştu ve yaklaşık 3,5 milyar yıl önce yaşamışlardı. Bu fosil örneklerinin yapısından ve içinde bulundukları kayaların özelliklerinden fotosentez yapan bakterilerin en az 3 milyar yıl önce var oldukları belirlendi. Evrim sırasında oksijen üreten fotosentetik bakteriler gibi canlı formlarından sonra, oksijen kullanan yaşam formlarının ortaya çıktığı ve diğer canlı türlerinin de böylece oluştuğu düşünülüyor. Bu açıdan, bakteriler, canlılığın başlangıcında da etkin bir role sahip görünüyor. Bakteriler, yapı bakımından birbirine çok benzer gruplar altında ele alınırlar. Bu yüzden bakteriyologlar, bakterileri görünüşlerine göre değil, biyokimyasal özelliklerine göre değerlendirirler. Asit ya da metan üretenleri, oksijeni ve kükürtü indirgeyenleri olabilir. Enerjisini çok çeşitli kimyasal kaynaklardan elde edenleri bulunabilir; ancak, çoğu bakteri çevredeki fiziksel ve kimyasal koşullar uygun olmadıkça büyüyüp gelişemez. Son yüzyıl içinde Robert Koch’un öncü çalışmalarıyla varlıkları belirlenen bakterilerin, bugüne kadar 5 000 türü tanımlanmış ve bunun daha buzdağının tepesi olduğu düşünülüyor. Buzdağının alt kısımlarında ise birçok hayvanın sindirim organlarında, derin deniz ve yer katmanlarında yaşayan türler var. Türlerin, özellikle de görünüş olarak birbirine çok benzeyenlerin nasıl ayırt edildiğine gelince, bunda da genler kullanılıyor. Türleri birbirinden ayırmak için 16S ribozomRNA’sını kodlayan gen incelenir. Bu gen her organizmada var; ancak, evrimsel anlamda öyle yavaş değişim geçiriyor ki, nükleotid dizilişi bir türün tüm bireylerinde tamamen aynı olabiliyor. Bu da türler arası farklılıkları ortaya koymaya yarıyor. Yine de araştırmacılar 16SRNA geni üzerindeki çalışmaların, gerçek çeşitliliğin daha azına ışık tutacağını düşünüyorlar. Çeşitlilik üzerine yapılan çalışmalarda, ribozom RNA’sı yönünden bakınca, köpek ve insanın aynı organizmaymış gibi görülebileceği de araştırmacıları düşündüren konular arasında. Tür çeşitliliğinin diğer canlılarda olduğu gibi bir de biyokimyasal yönü var. Bakterilerin biyokimyasal işleyişleri ise, ancak laboratuvarlarda saf kültürler üzerinde izlenebiliyor. Biyokimyasal ve ekolojik bilgileri yalnızca gen dizilişlerini inceleyerek elde etmek pek olası değil. Bir türün tüm tipik özelliklerinin belirlenmesi laboratuvar çalışmalarını da gerekli kılıyor. Bakterilerin bu tür çeşitliliğinin nereden geldiği düşünülebilir. Hızlı çoğalmaları, hareketli olmaları, yaygınlıkları ve kalıtsal yapılarının mutasyonlar (DNA yapısında oluşan ani ve kalıtsal değişiklikler) nedeniyle kolaylıkla değişebilir olması onların dış koşullarda oluşan değişikliklere kolaylıkla uyum sağlayabilmelerine olanak sağlıyor. Haploid yapıda olmaları, yani DNA’larının tek zincirli olması nedeniyle, mutasyonların oluşturduğu değişiklikler diğer nesillere kolaylıkla aktarılabiliyor. Çoğalmaları da çok kısa sürede gerçekleştiğinden, yeni türlerin ortaya çıkması da büyük bir zaman almıyor olsa gerek. Bakterilerde çoğalma ikiye bölünme ile gerçekleşiyor. İnsanda bağırsaklarda doğal olarak yaşayan bir bakteri türü olan Escherichia coli üzerinde yapılan çalışmalarda E. coli’nin 20 dakikada bir ikiye bölündüğü belirlenmiş. Neyse ki birçok bakteri hemen ölüyor. Böyle olmasaydı, E. coli hücrelerinin 20 dakikada bir durmadan bölündüklerinde tüm dünyayı kaplayacak hacime 43 saatte ulaşacakları hesaplanmış. Hatta iki saat daha geçtiğinde 6,6 x 1020 tona ulaşarak Dünya’yla yaklaşık olarak aynı ağırlığa geleceği de düşünülmüş. Çoğu bakteri hücresi öldüğünden bu duruma gelinmiyor; çünkü, besin için aralarında büyük bir yarış var ve diğer bazı organizmaların (küf mantarı ve bazı bakteriler gibi) ürettiği doğal antibiyotikler de onları öldürüyor. Evet, bakteriler aynı zamanda diğer bakterileri öldüren antibiyotikler üretiyorlar. Hatta vitamin sentezi yapanlar da var. İlaç endüstrisinde, bu bakterilerin saf kültürlerinin antibiyotik üretmesi sağlanıyor ve sentetik olmayan antibiyotikler çoğunlukla bu yolla elde ediliyor. Antibiyotiklerden başka, aşılar ve tıbbi açıdan yararlı bazı enzimler de bakteriler tarafından üretiliyor. Antibiyotiklerin çoğunu toprakta yaşayan bakteriler üretiyor. Streptomyces’ler gibi, Actinomycetes grubuna ait olan bakteriler, tetrasiklin, eritromisin, streptomisin, rifamisin ve ivermektin gibi antibiyotikleri üretiyorlar. Bacillus türleri basitrasin ve polimiksin üretiyor. Difteri, boğmaca, tetanoz, tifo ve kolera gibi hastalıkların aşıları da bakterilerden elde ediliyor.

http://www.biyologlar.com/makroskobik-dunyanin-mikroskobik-canlilari

EVREN, EVRİM, İNSAN ve DÜŞÜNCE

Evrenin bütün geçmişi, bütün tarih, bütün evrim, evrime yolaçan değişimin mekanizması, evrenle ilgili herşey, canlı ve cansız maddenin ve enerjinin ve hareketin yapısında gizli... Bilinmeyen bir gerekçeyle hiçliğin içindeki tek bir noktadan koskoca bir evren yaratan mucizesel bir sürecin, gide gide canlı yaşamı ve insanı ve düşünceyi de yaratmış olmasında, hiçbir tuhaflık ya da aykırılık yok... Düşünsel olasılıkların, yani düşüncede çeşitlenmenin ortaya çıkması, düşüncenin daha da evrimleşeceğinin bir göstergesi... Bu evren bir çeşitlilikler ve dolayısıyla bir olasılıklar evreni... Ve bu olasılıkların varlığı, artık kendisi de evrimsel bir birim oluşturmaya başlayan insanlığın ortak iradesine, belli sınırlar içinde kalmak kaydıyla önemli bir şans veriyor. Bugün, biraz uzaktan bakıldığında, bilimin ilgi alanlarını kabaca ama net olarak sınıflandırmak mümkün: Fizik, enerjiyi ve ilk halinden başlayarak maddeyi alıyor atom sınırına kadar getirip bırakıyor; kimya, atomdan başlıyor inorganik ve organik madde sınırına kadar gidiyor; biyoloji ise yalnız canlılarla ilgileniyor. Biyolojinin alanı terkettiği noktada da devreye yalnızca insanla ve insan topluluklarıyla ilgilenen sosyal bilimler; felsefe, tarih, sosyoloji, ekonomi, psikoloji vb. giriyor. Pozitif bilimlerde, hiç olmazsa, sınır bölgelerinde disiplinlerarası bir kaynaşmadan sözedilebileceği görülüyor. Sözgelimi atom, hem fiziğin hem kimyanın; canlılar aleminin temel taşı olan organik madde de hem kimyanın hem biyolojinin ilgi alanı içine giriyor. Öte yandan, pozitif bilimlerle sosyal bilimler arasındaysa, kaynaşma bir yana, bir uçurumun varlığı hissediliyor. Sosyal bilimler alanında, psikolojinin çok kısıtlı ilgisi dışında hiçbir disiplin, hiç değilse biyoloji ile ilgilenme gereğini bile duymuyor. Üstelik bu disiplinlerin hemen hemen hiçbiri, tarihi, yazının keşfedildiği altı bin yıl öncesinden daha geriye götürmeye de yanaşmıyor. Bizzat tarih bilimi bile, evrimin şimdilik son aşaması sayılan modern insanın ilk ortaya çıktığı 50 bin yıllık sürece egemen olmayı dahi reddediyor ve yazının keşfedilmesinden bu yana geçen 6 bin yılla iktifa ediyor. Gerekçe, kuşkusuz, bilimsel bir disiplin olarak tarihin tahmine değil belgeye dayandırılması zorunluluğu... Bu gerekçenin elbette haklı bir yanı da var. Ama bir gerçek daha var: Bütün o atomaltı tanecikler, atomlar, moleküller ve madde; elementler, inorganik ve organik madde; hücreler; bunların oluşturduğu bileşikler ve tek hücrelisinden çok hücrelisine kadar bütün canlılar; bunların hepsi, hepsi bizatihi birer belge... Hatta yorumsuz oldukları ve bir bütünlük taşıdıkları için, evrendeki yegane ‘gerçek belgeler’ oldukları da söylenebilir. Evrenin bütün geçmişi, bütün tarih, bütün evrim, evrime yolaçan değişimin mekanizması, evrenle ilgili herşey, canlı ve cansız maddenin ve enerjinin ve hareketin yapısında gizli... Ve eğer böyleyse, bu belgelerin hepsi birden gözden geçirilmeden, şu son altı bin yılın da sağlıklı bir biçimde çözümlenmesi mümkün olabilir mi? Ve eğer evrenin tarihi, dünü olduğu kadar bugünü ve yarını da kapsayan ve hiç değilse başına, bugüne kadarki gelişmesine ve sonuna dair bir kısım olasılıkların belli olduğu bir bütünlük arzediyorsa ve eğer evrim, 20 milyar yıl öncesinden bugüne uzanan ve bugünden de belki 20, belki 80 milyar yıl ötesine uzanacak olan kesintisiz bir süreçse; henüz birleşik bir kuram haline getirilmemiş olsalar bile, pozitif bilimler alanında saptanmış olan temel yasaların, tıpkı Marki de Laplace’ın bir zamanlar düşünmüş olduğu gibi, evrimin son halkası olan insanı ve insan topluluklarını konu alan sosyal bilimler alanında da geçerli olması gerekmez mi? Ve insan da atomlardan ve hücrelerden oluştuğuna, yani nevzuhur bir yaratık değil de büyük bir evrim sürecinin son halkası olduğuna göre, fizik, kimya ve biyoloji bilmeden (ve kuşkusuz fizik, kimya ve biyoloji kadar ekonominin ve hatta müziğin de ortak dili olan matematik bilmeden); enerji ile maddenin tarihini ve enerji ile maddenin yapısını bilmeden ve bu yeni bilgilerin felsefesini yapmadan; evrenin, kozmosu ve kaosu aynı anda kucakladığını, dolayısıyla bir olasılıklar evreni olduğunu ve bu durum gözönüne alınmadığı takdirde evrendeki ister psikolojik ister sosyal, ister siyasi ister ekonomik hiçbir oluşumun doğru değerlendirilemeyeceğini anlamak sözkonusu olabilir mi? Dahası, insan kendi kendisini böyle bir gerçekliğin içinde değerlendirerek, evreni tanımlayacak birleşik bir kuram oluşturmak için çırpınıp duran astrofizikçilere de yardım etmiş olmaz mı? Hayır, hiç de zor değil!.. Artık bu ve benzeri bilgilere ulaşmak hiç de zor değil!.. Yepyeni bilgilerle zenginleşmiş olan bilime ilişkin yepyeni yorumları aktaran popüler bilim kitapları artık, Türkiye’de dahil birçok ülkede neredeyse her köşebaşında satılıyor. Bilimkurgu kitapları ise daha da yaygın... Ve bilim yazarlarına oranla daha özgür davranan bilimkurgu yazarları, 20. yüzyılda felsefenin boş bıraktığı yeri dolduruyorlar. En son bilimsel gerçekleri özgürce, cesaretle yorumlayarak geleceğe ilişkin ve olup bitenin nedenlerine ilişkin kuramlar oluşturuyorlar. Üstelik yine Türkiye dahil Dünya’nın her tarafında çok da ilgi çekiyorlar. Ama şunu da unutmamak gerekiyor: Oluşturulan kuramların hepsi de yalnızca bir takım olasılıklardan ibaret... Mesela Mars konusunda, yıllardan beri insanoğlunu oyalayan ve sonunda göz yanılgısından başka birşey olmadığı anlaşılan çizgisel Mars kanallarının etkisi altında kaldıkları için olacak ki, ilk kuşak bilimkurgu yazarlarının çok yanlış düşüncelere kapıldıkları görülüyor. O ilk kuşak bilimkurgu yazarlarının hemen hepsi Mars’ta canlıların yaşadığını, hiç değilse bir zamanlar yaşamış olduğunu düşünüyorlar. Bu varsayımsal canlıların bir kısmı çok sevimli, çok gelişmiş; Mars’ı sömürgeleştiren saldırgan insanlarla başa çıkmaya çalışıyorlar; bir kısmı ise, dünyayı istila etmeye kalkışan birer canavar ve insanlara acımasızca saldırıyorlar. Tabii Mars’a ilişkin yanlış kanılardan yalnız bilimkurgu yazarları sorumlu değil... Sir Fred Hoyle gibi çok ciddi bir bilim adamı da, muhtemelen dinsel inançları yüzünden geliştirdiği evrende durağan hal kuramına aşırı bağlılığından ötürü, dünyaya düşen göktaşlarından bazılarının Mars’tan geldiği inancının yayılmasında rol oynuyor. Sir Hoyle, büyük evrim sürecinin cansız maddeden canlı yaşama geçişi de sağlamış olabileceğini kabul edemediği için olsa gerek ki, dünyada canlıların varlığını, Mars’tan gelen göktaşları üstünde bulunan canlı hücrelere bağlamak istiyor. Ama bu arada, o canlı hücrelerin Mars’ta nasıl varolmuş olabileceği sorusu da yine açıkta kalıyor. Açıkta kalan bir başka soru da, milyarlarca yıl önce dünyaya düşmüş oldukları söylenen göktaşlarının üstünde, bu taşların Mars’tan geldiklerine dair ne gibi bir kanıt bulunduğu... Yani eğer taşların üstünde “made in Mars” yazısı yoksa, bu taşların Mars’tan geldiğinin nasıl kanıtlanabileceği (aslına bakılırsa bu konu biraz tuhaf; dünyaya milyarlarca yıl önce düşmüş ve yıllarca önce de bulunmuş olan taşlar, geçen yaz, neden birdenbire, hem de inanılmaz yoğunlukta bir ilgi konusu oluverdiler, hiç anlaşılamadı) ... Carl Sagan ile Sojourner adı verilen araçların, bugünlerde Mars yüzeyinde yaptıkları çalışmalar bile tuhaf sonuçlara varılmasına neden olabiliyor. Kimi insanlar, Mars’ı bir zamanlar sellerin götürmüş olduğunu duyduklarında, bu sellerle Nuh Tufanı arasında ya da bu sellerle kayıp Atlantis ve Mü kıtaları arasında bir bağ kurulabileceğini düşünüyorlar. Amaç yine aynı: Yeter ki canlı yaşam dünya üstünde kendiliğinden başlamamış olsun!.. Başlamamış olsun da varsın atalarımız Marslı olsun!.. Aslına bakılırsa bu da bir olasılık elbette... Ama gerçekleşmiş olması zor bir olasılık... Çünkü evrensel yasalar gereği Mars’ın Dünya ile yaklaşık aynı zamanlarda ve benzer koşullarda gelişmiş olması gerekiyor. Yani bundan yaklaşık 4,5 milyar yıl kadar önce ve adım adım... Eğer Mars’taki seller, bundan 4 milyar yıl kadar önce değil de 3-5 yüz milyon yıl önce olmuş olsaydı, o takdirde evrimin Mars’ta da aynı biçimde, ama biraz daha hızlı geliştiği düşünülebilirdi. Ve karşı koyamadıkları bir sel felaketiyle yüzyüze gelen Marslılar’ın bir uzay aracına doldurdukları değişik türden çift çift hayvanlarla birlikte gelip Dünya’ya yerleştikleri... Halbuki 4 milyar önce oluştuğu anlaşılan seller, Dünya’da evrim süreci gelişip dururken Mars’ta evrim sürecinin hiç başlamamış olduğunun kanıtı gibi görünüyor. Zaten aynı yıldız sisteminde, yanyana iki gezegende birden aynı sürecin yaşanması da pek olası görünmüyor. Öte yandan 100 milyar galakside 100 milyar yıldız da, evrendeki tek canlı türünün insan olamayacağını gösteriyor. Böyle bir iddia da olasılık kurallarına hiç uymuyor. Dolayısıyla mitolojik ya da dinsel efsanelerin bir bölümünün, dünyaya gelip giden uzaylılarla ilgisi olması olasılığı hala var... Ama bu olasılık, ağır basan diğer olasılığı, insanı evrimin yaratmış olabileceği yönündeki olasılığı hiçbir şekilde bertaraf etmiyor. Zaten bilinmeyen bir gerekçeyle hiçliğin içindeki tek bir noktadan koskoca bir evren yaratan mucizesel bir sürecin, gide gide canlı yaşamı ve insanı ve düşünceyi de yaratmış olmasında, hiçbir tuhaflık ya da aykırılık da bulunmuyor. İşin güzel yanı şu: Böyle düşünsel olasılıkların, yani çeşitlenmenin ortaya çıkması, düşüncenin daha da evrimleşeceğinin bir göstergesi... Büyük evrim sürecinin son halkası olan düşünsel evrimin sürebilmesi için, çeşitlenmenin, yani çok sayıda değişiklik olasılığının ortaya çıkması lazım... Evrim, şimdilik hala, bu olasılıklardan, evrensel yasalarla en iyi uyum sağlayabilen yönünde ilerliyor. Ve adım adım ilerliyor. Ama günün birinde düşüncenin evriminde ileri aşamalara ulaşılabilirse, evrensel yasalara egemen olacak olasılıkların çoğaltılması da mümkün olabilir. Ve tek bir adım yerine birkaç adım birden atılabilir. Bu da bir olasılık... Hatta evrendeki kaçınılmaz yaşlanmanın, düşüncenin de sonu olmasının önüne geçmesi bile sözkonusu olan bir olasılık... Bu evren bir çeşitlilik ve dolayısıyla bir olasılıklar evreni... Ama bu olasılıkların varlığı, artık kendisi de evrimsel bir birim oluşturmaya başlayan insanlığın ortak iradesine, belli sınırlar içinde kalmak kaydıyla önemli bir şans veriyor. Belli sınırlar içinde kalmak kaydıyla... Çünkü öyle görünüyor ki insan, kendi doğumunu nasıl belirleyemiyorsa, evrenin doğumuna ilişkin bir irade kullanma hakkına da sahip değil... Bu zamandan sonra böyle birşey olması, zaten mantık açısından da mümkün değil... Ve insan, kendi ölümünün önüne nasıl geçemiyorsa, muhtemelen evrenin ölümünün önüne geçme konusunda da herhangi bir şansı yok... Ama eğer işler böyle gittiği taktirde, insan, belli bir yaştan sonra kendi hayatına ilişkin kararlar alma ve uygulama şansına nasıl sahip oluyorsa, insanlık da, belli bir aşamadan sonra, kendi yaşamına ilişkin ortak kararlar alma ve uygulama şansına sahip olacak gibi görünüyor. Tabii bu, yine yalnızca bir şans olacak... Bu şansı kullanıp kullanmamak, bu olasılığı değerlendirip değerlendirmemek ise insanlığa kalacak. Bu durumda, karamsarlık üretip eylemsizliği artırmak yerine, düşünsel evrimin sürmesini sağlayacak çeşitlenmelerin önünü açmak, evrimi daha da ileriye taşıyacak olasılıkların ortaya çıkmasına şans tanımak daha doğru değil mi? Ve düşünce özgürlüğü asıl bu demek ve bu nedenle de çok önemli demek değil mi? KAYNAK: www.historicalsense.com      

http://www.biyologlar.com/evren-evrim-insan-ve-dusunce

Dünya Çevre Gününde Sosyal Çevre Kirliliği

Prof. Dr. İbrahim Ortaş Çukurova Üniversitesi Özet: Her yıl 5 Haziranda Çevre günü kutlanmaktadır. Ne yazık ki bütün güzel söylenen sözlere rağmen çevre sorunları hızla artmaktadır. Bunun altında ciddi bir bilgi ve bilinç yetersizliği olduğu kanısındayım. İnsanın doğayı egemenliğine alma duygusu, yer yüzeyinin her tarafını rant olarak görmesi anlayışını doğurmuştur. İnsanın bencilliği ve çıkar ilişkileri ne yazık ki doğayı olumsuz etkilemektedir. Doğal ve sosyal çevre kirlilikleri iç içe bir bütün olarak bütün insanlığın geleceğini etkilemektedir. Bugün bölgemizde akan kan, gözyaşı ve şiddetin altında çıkar ve bencillikler berberinde yaratığı dolaylı çevre kirliliği ne yazık ki çoğu gözler tarafından görülmemektedir. Irak ve Afganistan’da yaşanan anlamsız savaş sonucu milyonlarca bombanın patlatılması, petrol kuyularının ateşe verilmesi başlı başına birer çevre sorunudur. Son günlerde Meksika körfezinde meydan gelen BP’nin petrol platformunun çökmesi ile denize yayılan petrolün yarattığı çevre kirliliğinin doğal hayatı tehdit etmesi de insanın doğayı nasıl acımasızca sömürdüğünün açık işaretidir. Bölge insanlarının bu savaşların etkisi ile yaşam zorlukları yaşarken, Gazzae’da ablukaya alınmış 1.5 milyon insanın açlığa mahkûm edilmesi de bir sosyal ve onun yaratığı doğal çevre sorunu olarak karşımıza çıkmaktadır. Çoğumuzun anlamakta zorlandığı bu sosyal çevre sorunları dünyayı adım adım şiddete ve düşmanlıklara götürmektedir. Günümüzde çevre sorunu insan doğa ekseninde yeniden ele alınmasını zorunlu kılmaktadır. Ne yazık ki bugün bu anlamda yaşadığımı sorunların büyük çoğunluğu insan faaliyetlerinden kaynaklanmaktadır. Yaşananlar insanın kendi geleceğini yok etmemsi için belirli bir bilgi ve bilence erişmesi ve aç gözlülükten uzak yaşamsı gerekiyor. İnsanın kendi bilincine erişmesi sınırlar sorumluk bilinci içinde hareket edecek şekilde eğitilmesi artık kaçınılmaz olmuştur. Ekoloji bilincinin yaşamın her alanında aranır olması gerekir. En azından sorumlu yetkililerin ekoloji bilgisi ve danışmanlarının olması zorunluluk arz etmektedir. İlgileneler için Çevre günün önemi ve zorunluluğu aşağıda geniş olarak değerlenebilmiştir. Çevre Sorunu İnsanın Doğaya Etki Etmesi İle Başlamıştır İnsanın insan olma süreci ile başlayan ve birisinin diğerinden daha fazla pay almasını sağlayan ve bu uğurda binlerce yıllık yaşamda müşterek oranda yaşama savaşının geldiği nokta olarak görüyorum. Sanayi devrimi ile hızlanan ve XIX yüzyılın ikinci yarısında hızlanan ve insanın ilerlemesi adına başlayan olgu yalnızca insanın insan üzerindeki ağır baskısını değil aynı zamanda sistematik olarak doğanın tahribatını da beraberinde getirmiştir. Küreselleşmenin yarattığı olgu son yüzyılda her türden yağma ve yakıp yıkma ile birbirini izledi: Evet bugün hep birlikte şikâyet ettiğimiz artan çevre kirliliği, tatsız tuzsuz yiyecekler hepsi bir bütünün parçası olarak artan doğa dışı kullanımlarının bir sonucudur. Bu anlamda çevre sorunu insanın doğaya müdahalesi ile başlamıştır. İnsanın yaşam yolculuğunda kat ettiği aşamalar özetlendiğinde; Mağara yaşamından 104 katlı gökdelenlere, Mahrem yerlerini bitki yaprağı ile kapatan yaşamdan günde birkaç defa değişen suit takım elbiselere, Avcılık ve toplayıcılıktan lüks restoranlara, Ok fırlatmaktan kıtalar arası balistik füzelere, Uçurtmadan uzay gemilerine, Öküz ile çekilen kanılardan, saate 500 km hızla giden süper iletken trenlere, Saldan modern uçak gemilerine, Uçurtma ile haberleşmeden web ve e-posta ortamınakadar insanın bilim teknoloji yaratısı tabii olarak bir bedel ödemek zorunda kalmıştır. Bütün bunların sonucu bugün ki dünyanın durumu şöyle özetlenebilir; Dünyaya her 20 dakikada 3500 yeni doğan bebek katılırken bir veya birden fazla hayvan/bitki türü yok olmaktadır. Bu da yılda yaklaşık 27000 türün kaybedilmesi anlamındadır. Tüm dünyada tatlı su tüketimi her 20 yılda 2 kat artmaktadır. Bu oran nüfus artışının 2 katından daha fazladır. Halen 31 ülke su kıtlığı tehlikesinde olup 1.4 milyar insan temiz içme suyu kaynağından yoksundur. Tüm dünyanın üçte ikisi yetersiz ve dengesiz beslenmektedir (başta A, E vitamini, Fe ve Zn noksanlığı) örneğin dünyanın en zengin ilk üç kişisinin serveti dünya en yoksul 48 ülkesinin ulusal gelirinden fazla. En zengin 225 kişinin toplam serveti dünya nüfusunun yarısının yıllık gelirine eşit. Bu bireylerin oluşturduğu uluslar da böyle. Dünyanın en büyük şirketinin 222’si, ilk 50 şirketin 34’ü ABD’li. Dünyanın en büyük şirketi Amerikan General Elektrik’in sermayesi Türkiye’nin 1998 bütçesinin yaklaşık 4 katı. Dünya nüfusunun % 5’ine sahip ABD dünya kaynaklarının % 40’ını tek başına kullanıyor.Bu ve benzeri verilere bütünsel bakıldığında dünyanın bu nüfus artışı ve dengesiz üretim ve dağıtımının sonucu artık kendi kendini götüremediği görülmektedir. İnsanlığın bu kısa tarihinin doğa üzerindeki olumsuz etkileri: Sanayi devrimi ve buhar makinesinin keşfedilmesinden bu yana 200, Wright Kardeşlerin ilk uçak deneyi ile başlayan insanın uzaya açılma sevdası ancak 66 yıl sonra gerçekleşmiştir. Ve insanoğlu ateşin icadından bu yana bilim ve teknolojide yaptığı gelişme ve yıkımı, son altmış yılda ikiye katlamış ve teknik deyimle dünya artık bu yükü taşıyamaz duruma gelmiştir. İnsanın son 100 yıllık küçük bir noktasal zaman dilimi içersinde yaşamı için 10 milyar yıllık ömrünün yarısına gelmiş dünya yaşamını alt üst etmesi ve hâlâ da bundan vazgeçmemesinin büyük bir bencillik, aç gözlülük ve haksızlık ile karşı karşıyadır. İnsanlar ve tüm diğer canlılar daha uzun süre yaşamak, ölümlerini geciktirmek için çabalarlar. Bu çabadan insan aklının ve düşüncesinin günümüze getirdiği insan hakları ve sürdürülebilir yaşam kavramları doğmuştur. Yine batıda artan çevresel tehditlere karşı gerek bilim insanları ve gerekse sivil toplum kuruluşları ve gençlik örgütleri hızla harekete geçerek bilimsel ve sosyal tedbirlerin alınmasına önayak olmuşlardır. İnsanlığın ortak malı olan ve hepimizin geleceği olan sınırlı alandaki tarım toprakları başta olmak üzere doğal çeşitliliği mutlaka korunmak zorundadır. Doğal çeşitlilik artık yerini tek çeşitliliğe yani mono kültüre bırakmıştır. Toprak daha yoğun işlenmeye ve daha fazla gübre kullanılmaya başlandı; nihayet bu yoğun girdi sonucu sular ve atmosfer kirlendi ve nihayet topraklar da kirlendi. Hızla büyüyen kentler, tropikal ormanların tahribatı, denizlerin ve ırmakların kirlenmesi, ozon tabakasının incelmesi, küresel ısınma ve asit yağmurları artık dünyanın giderek yaşanamaz bir duruma geldiğinin göstergesi olarak kabul edilmektedir. Fakat küreselleşme olgusu bu anlamda doğal ve etkinsel çeşitliliği tehdit ederken tekdüze, donuk bir sistem önermektedir. En tipik örneği son yıllarda dünyayı kasıp kavuran kısırlaştırılmış tohumların bütün dünyada aynı markada satılmasıdır. Bütün bu olumsuzluklar insan tarafından yapılmaktadır. İnsanın insanla savaşımında birbirine üstünlük sağlayamadığı durumlarda ise insan hakları ve sürdürülebilirlik ilkeleri ön plana geçmiştir. İnsan hakları ve sürdürülebilirlik her şeyden önce doğuştan sağlıklı yaşam, eğitim eşitliği, kadın erkek eşitliği, kadınların, çocukların korunması ile başlanmalıdır. Bu nasıl sağlanabilir? Buna yanıt maalesef bugüne kadar başta Birleşmiş Milletler olmak üzere birçok ulusal ve uluslar arası örgütlerin söylemlerinin ötesine geçemedi. Sürdürülebilir kalkınma: ‘Herkesin temel gereksinimlerini ve daha iyi bir hayatla ilgili beklentilerini; gelecek kuşakların da kendi gereksinimlerini karşılayabilme olanaklarını yok etmeden karşılamak olarak’ tanımlanıyor. Temel gereksinimlerimizin karşılanması yaşamı uzattığı ve yaşamın niteliğini arttırdığı doğru. Ancak bu temel gereksinimler nelerdir: İş, barınma, giyim, su ve besin elementleri nasıl sağlanacak herkese nasıl ulaştırılacaktır. Dünyanın kuzeyi hem nüfusu kontrolü, üretim kapasitesi yüksek ve ulaşım hızlı bunun tersine güney yarım kürede nüfus fazla, üretim yetersiz ulaşım ise çağın gerisinde hantal. Bu gün dünyada sürdürülebilir bir yaşam için gerek ulusal ölçekte gerekse ve özellikle küresel ölçekte kalkınmaya sınırı başını ABD ve müttefiklerinin çektiği gelişmiş G-8’ler ve ulusal ölçekte hakim sınıflar ve iktidarların yürüttükleri politikalardır. Bütün bunların yaptıkları etki küresel ekolojideki yansıması ise son fatura olmaktadır. Dünyayı Anlama ve Duygusal Zekâmız Sınırlar koymanın ekolojik sınırlara uygun olması gerektiğini gösteren kanıtlar giderek artıyor. Hava, su, toprak kirleniyor; küresel ısınma son on yılda en fazla düzeyine gelmiş durumda. Dünya giderek ısınıyor, ozon tabakası deliği, asit yağmurları bütün dünyanın tümden artık yaşanılamaz duruma geldiğini göstermektedir. Yer yüzeyini elinde tutan, yaşam bilinci ve felsefesiyle akıllı bir biçimde değerlendirmeye çalışan ve zekâsı yani IQ (Intelligence Quotient)’sü yüksek olan akıllı insanların yaşanılabilir bir dünya için çabaları bundan böyle duygusal zekânın (EQ-emotional Quotient) ekolojik konulardaki uygulamalarına ekolojik zekâları (EcoQ-Ecological Quotient) belirleyecektir. Ya toptan küresel ekolojinin yasalarına uyulacak ya da toptan yok olmaya doğru gidecek. Bakalım hangi zekâmız daha üstün gelecektir. Bu anlamda ekolojik akıl salt her şeye karşı gelmeyi değil ekolojik akıl ile ekonomik aklı ekoloji sınırlarına çekmek ve sürdürülebilir bir kalkınma önermektedir. Salt her şeyi kar güdüsüne ve benmerkezciliğe karşı yönetmemektedir. Bunun için gelişmiş ülkeler kendilerinin kalkınmasını durdurmaları hatta geriletmeleri, örneğin karbondioksit salınımlarını % 5 azaltmaları gerekiyor. Başını ABD, İngiltere, Kanada, Japonya ve Avustralya’nın çektiği kalkınmış ülkeler bunu yani kendi kalkınmalarının azalmasını reddediyorlar ve beraberinde az gelişmiş ülkelerin kalkınmasını pek istemiyorlar. Çünkü az gelişmişler de gelişmişler kadar kalkınırsa dünyanın sonu erken gelebilir de ondan. Albert Schiweitzer’in dediği gibi “Aya ulaşma umutları içerisinde ayaklarının dibinde açan çiçekleri göremeyen insanlardır”. Homo sapiens düşünen insan demektir. Düşünen insan, homo insapiens (düşünmeyen insan) yerine de düşünmelidir. Bizim hedefimiz sadece onlara değil bugünün ve geleceğin kuşaklarına duygusal ekolojik akıllarını kullanmayı öğretmektir. Bu da ancak eğitilmiş toplumlarda mümkün olmaktadır. Çevre Bilinci oluşmadan Toprak Koruma ve Sevgisi Gelişmez Dünya’da sınırlı miktarda olan tarım topraklarının kent çevrelerinde sürekli arsa olarak görülmesi ve betonlaştırılması uzun zamanda daha büyük çevre sorunları yaratacaktır. Ne yazık ki çoğumuz yediğimiz ekmeği ve diğer gıdalarımızı hazır soframızda buluyoruz ve gıdaların üretildiği toprağın önemini ihmal ediyoruz. Ancak unutmayalım ki insanlığın ortak malı olan toprağın gıda üretim amacından çıkarılıp amaç dışı kullanıldığı zaman insanın yaşayacağı en ciddi çevre sorunu oluşacaktır. Bu anlamda çevre bilincinin önemi yeniden düşünülmek zorundadır. Çevre bilinci ise bir felsefi dünya görüşüdür. Çevre Goethe’nin belirttiği gibi yaşama bütünsel bakabilmekte geçmektedir. Goethe ‘Doğada hiçbir şey tek başına ve yalnız değildir. Doğada her şey; önündeki, ardındaki, üstündeki, altındaki, sağındaki, solundaki şeylerle bağlantılıdır’ diyor. Benzer bir ifade de Kızılderili reisi Seattle’n, 1854'te, kendisinden toprak satın almak isteyen ABD Cumhurbaşkanına yazdığı mektupta görülmektedir. ‘Şu gerçeği iyi biliyorum. Toprak insana değil, insan toprağa aittir. Ve bu dünyadaki her şey: bir ailenin bireylerini birbirine bağlayan kan gibi ortaktır ve birbirine bağlıdır. Bu nedenle de: dünyanın başına gelen her felaket, insanoğlunun da başına gelmiş demektir. Sınırlı doğal kaynaklara sahip dünyamızda artan çevre kirliliği faktörleri artık çevreyi temizlemesini bilen yeni teknolojiler ve politikaları geliştirmek zorundayız. Plansız programsız, basit kar güdüsü ile hareket etmek yerine doğayı ve insanı ön plana alan yaklaşımları sürdürülebilir bir yaklaşımla kullanmak daha akılcı ve zorunludur. Şu ana kadar yok olan ormanların, kirlenen suların ve katledilen toprakların geri gelemeyeceği gerçeğinden hareketle en azından bundan sonrası için, geriye kalanların da yerinde korunması geliştirilmesi sürdürülebilirlik ilkesi içerisinde yaşatılması için gerekli önlemler alınmalıdır. Koruma bilinci ile çevre sorunların ortaya çıkmadan önlenmesi, ekosistemlerin sahip olduğu biotik ve biotik olmayan unsurlarının nitelik ve niceliklerinin korunarak, sürdürülebilir şekilde yaşatılması bütün dünyada çevre faaliyetlerinin temel amacı haline gelmiştir. Çevre Bilinci Felsefi Bilinçten Geçer Felsefe, yaşamın anlamı ve nedenini sorgulayan tüm bilimlerin anasıdır. Felsefenin bir ikinci anlamı da ‘Yaşam Felsefesi’nde yatar. Yaşam felsefelerinde ölüm gerçeğini bulundurmayan insanlar kendilerini tanımıyor oldukları gibi dünya üzerindeki diğer yaşamları ve ölümleri de tanımıyor ve onların haklarına saygısızlık ediyorlardır. İnsanlar diğer canlılardan daha uzun süre yaşamak için ölümlerini geciktirme çabalarını sürdürmektedir. Bu çabadan insan aklının ve düşüncesinin günümüze getirdiği insan hakları ve sürdürülebilir yaşam kavramları çevre bilincini doğmuştur. İnsanoğlu bunca çatışmalar sonucu anlamıştır ki dünya üzerindeki yaşamının uzaması ve yaşanılan sürenin huzurlu ve nitelikli geçmesi, bir takım hakları doğuştan tüm insanlara eşit olarak tanımakla sağlanabilir. Ve bunu insanlık anayasası olan insan hakları evrensel bildirgesiyle tüm uluslara kabul ettirmiştir. Maalesef bugün bu haklar kâğıt üzerinde tamam gibi gözüküyor, ama sorun bu hakların bireyin yaşamına nasıl uygulanabildiğinde düğümleniyor? Bir tarafta dünyanın tek efendisi diğer tarafta dünyanın kaç bucak olduğunu bilmeyen Irak halkı. İnsan ve Doğadan Yana Anlayış Çevre Bilinci Yaratabilir Dünyaya gelen her bireyin bireysel ve toplumsal sorumlulukları vardır. Toplumsal sorumluluklar, aileden başlayarak yaşamın bütün alanlarından ulusal ve küresel sorumluluklara kadar gider; gitmelidir. Birinci ve en temel sorumluluklar, bireysel ve toplumsal yarar ve haklar tarafından belirlenmelidir. Her yurttaşın kendisi ile birlikte diğer canlıların yaşam haklarına da saygı göstermesi beklenir. Her canlı için yaşamın anlamı kendine verilen biyolojik yaşam süresince yaşamaktır. Bireysel sorumluluklarımızı iyi anlayabilmek için insanın kendini tanıması gerekir. İnsan kendini ancak kendini saran gerçekleri bilerek ve öğrenerek tanıyabilir. Yaşamın anlamı ve amacı sadece yaşamak olmamalıdır. Yaşamın anlamını bilmek içinde ölüm bilincine erişmek gerekir. Seneca “ Ey yaşam, senin bunca değerli oluşun ölüm sayesindedir”. Montaigne ise “Sizin bu tadını çıkardığınız varlıkta yaşam kadar ölümün de yeri vardır. Ölüm gerçeğinin bilen insanlarda mülk edinme, para kazanma isteği ve bunun için doğal kaynakları ve kendinden başka canları sömürmek isteği yavaşlar ve kaybolur sanıyorum. Horatius, ev, mal mülk, yığınla tunç ve altın, vücudunda ya da ruhunda dert olan adamın yarasına hiç ilaç olmaz. Henry Fielding ise Felsefenin büyük amacı insana ölmeyi öğretmektir”. Burada ki mesaj net ve açık, yeryüzünün ortak malın bir hissedarı olarak birbirimizi motive ederek, biz bilinci ile karşılıklı saygı çerçevesinde bulunduğumuz coğrafyada yaşama şansı bulmak mümkün. İnsanın insan olma sürecinden bugüne kadar getirdiği birikimi içerisinde paylaşımsız, benmerkezciliğin faturası maalesef olağan üstü güzellikleri bazen bir anda yok edebilmektedir. Bugün dünyanın başına gelen bütün bu olumsuzluklar insanın bencilliğinin bir sonucudur. Artan seller, doğanın tahribi, ozon tabakasın delinmesi sonucu oluşan çevresel etkilerin hepsinin altında ben merkezli yönetimlerin büyük etkisi ön plana çıkmaktadır. Çevre Bilinci Beylik Sözler İle Değil Gerçek Uygulamada Gösterilmelidir Bu tür günlerde genelde beylik laflar sık kullanılır. Geniş çevresi olanlar çevreyi daha iyi bildiklerini, çevrenin havasını iyi kokladıklarını, çevrelerini korudukları söylerler. Gerçekten haklılar ve kendi çevrelerini çok iyi korudukları için bugün çevre sorununu konuşuyoruz ve yazıyoruz. Çevre bilinci salt yere atılan çöplerin, izmaritin toplatılması değil. Veya yetkili kişilerin herkesin gözünün önünde sigarasının izmaritin ayağının ucu ile söndürmesi ile çevre bilinci sağlanmıyor. Binalara asılan süslü yazılar ile sorun çözülmüyor. Sorun kişilerin kafasında yatmaktadır. Çevre anlayışı tamamen bir eğitim sorunu olup, her şeyden önce insana ve topluma saygı duymaktan geçmektedir. Yere izmarit atmak, tükürmek, her türlü atıkları kimse yokken ortalığa bırakmak bir çevre anlayışı sorundur. Bu bilince erişmiş yetişkin kişiler yaşamın her alanında kendileri kadar toplumun diğer bireylerinin de yaşama hakkı oluğunu kabul eder. Salt benciliği için her şey bana bana deyip çevresini kollayarak gerçek çevre kirliliğini yaratılmaktadır. İnsanın Çevreye Karşı Sorumlulukları Maalesef bütün dünyada ben merkezli bencil kişiler küçük çıkarları için her türlü ahlaki değer yargılarını ayaklar altına alabilmesi sonucu bugün artık ahlaksal çevre kirliliği yaşamaktadır. İktidarlarını korumak uğruna nelere peşkeş çekilmedi ki. Devletin ormanını ranta çevirmek için orman yakanından tutunda, fabrika, gemileri, sitelerdeki atıkların denizler ve tatlı sulara bırakılması tamamen bir bencil bilinç meselesidir. Küresel anlamda en yakınımızda Irak savaşı bir çevre felaketi idi. İktidarda kalmak için bütün dünyayı kitle imha silahları var deyip yanıltıp savaş çıkartan güçler savaş sonrası “böyle bir şey olmayabilir” diyebilmişlerdir. Ancak bu arada bütün Orta Doğu'daki bitki, hayvan ve doğal varlıklar bu savaşta bir çevre felaketi yaşamıştır. Bütün bunların sonucu güzelim insan ruhu da kirlenmiştir. İnsanlar yarına güvensiz ve umutsuz olmuşlardır. Bu insanların çevreyi koruması bu durumda beklenilemez. Kişilerin bencilliği kabul edilir ancak arkasında bıraktığı tahribat daha yıkıcı olmaktadır. Bunu yakın çevremizde birçok örnekle gösterebiliriz. Bu sorunların bir daha yaşanmaması biz bilinci ile işe sarılan lider vasıflı kişilerle mümkün olacaktır. Bazı dönemlerde bazı ulusların barış ve huzur içerisinde yaşadıkları bilinir. Tabii buradaki güç liderin kişiliğinde ve olaylara bakış açısından gelmektedir. Fakat tam tersi hareket eden korku salan, ben ne dediysem doğrudur, ben yaptım biti, ben padişahım diğerleri kul mantığının hakim olduğu durumlarda ise iç çatışmaların olduğu ve verimsizliğin artığı belirlenmiştir. İşte sosyal çevre kirliliği o zaman daha tehlikeli duruma gelmektedir. Bencillik Çevre Kirliliğinin Önemli Nedenlerindendir Bugün için çevre sorunu fiziki kirlilikten çok insanın halen anlayamadığı ve tüketim alışkanlığının hızla arttığı kirlilik olarak algılamak gerekir. Ciddi bir açgözlülük, üretmeden tüketmek, az çalışıp çok harcamak, doğal kaynakları bir araç olarak görüp ranta dönüştürmek günümüzün en ciddi çevre sorunu olarak karşımıza çıkmaktadır. Çevre bilinci ancak gelişmiş kendisi ile barışık, sorumluluk ve sınırla bilinci gelişmiş, öz güveni olan eleştiri ve öz eleştiri yapan yetişmiş insanlar tarafından sağlanır. Eğer eğitim sistemi yetişkin birey oluşturamıyorsa çevre bilinci gelişmez. Olsa olsa, ekipler oluşur, iktidarların etrafında pervane olan kim güçlü ise onun yanında nemalanmak isteyen sosyal çevreler oluşur. O zaman da sürekli kaldırımları değişen, yoları kazılan, asfalt dökülen yollar, dağ gibi çöplüklerden geçinen manzaralar ortaya çıkar. Yarın daha büyük acılar yaşamamak için şimdiden doğa ile barışık yaşanabilir bir çevre hepimizin birlikte karar vereceği bir olgudur. Bunu gerçekleştirmek bir yönüyle bizlerin elinde bulunmaktadır. Biraz kendi çıkarımız kadar doğanın ve toplumun çıkarını da dikkate alırsak sanırım şimdikinden kat kat daha az çevre sorunu yaşarız. Gazze ve dünyanın her köşesinde ablukaya alınmış insanların yaşadığı sorunların kalkması ve insanca yaşam dileği ile herkese bizim penceremizden biz bilinci ile selamlar. www.ttkder.org.tr

http://www.biyologlar.com/dunya-cevre-gununde-sosyal-cevre-kirliligi

Eşeyli Üreme (Seks), Evrimi Nasıl Yönlendiriyor?

Aşırı süslü özellikler ve sadece bir cinsiyette görülen ilginç davranışlar evrim kuramına aykırı mı? Mücadeleyi kazanan veya en güzel görünüşü sergileyen erkeklerin daha fazla eşi olacağı doğru mu? Erkekler arası rekabet ve dişilerin eş tercihi nasıl evrimleşti? Eşeyli üreme de nereden çıktı? Erkek ve dişinin farklı çiftleşme stratejileri. Neden hep dişi seçiyor? Dişi aslında neyi seçiyor ve nasıl seçiyor? Ne olacak bu erkeğin hali?! Okuyacağınız makale, Jerry A. Coyne’ın “Why evolution is true?” (Evrim neden doğru?) adlı kitabının (Oxford University Press, 2009) “How sex drives evolution?” adlı bölümünün çevirisidir. Arabaşlıkları biz koyduk. Bütün görüntüsüyle, vücudunun arkasında tam bir zaferle yelpaze gibi açılan üzerinde bir sürü gözbebeği bulunan parlak mavi-yeşil kuyruğuyla erkek bir tavus kuşundan daha göz kamaştırıcı çok az hayvan vardır doğada. Darwinizmi her yönden çiğniyormuş gibi görünür, onu güzel yapan bütün özellikleri aynı zamanda hayatta kalması açısından uyumsuzdur. O uzun kuyruk uçuş sırasında aerodinamik sorunlar yaratır, tavus kuşunun uçabilmek uğruna verdiği mücadeleye tanık olanlar bunu bilir. Bu, kuşların geceleri ağaçlardaki tüneklerine çıkmalarını ve yırtıcılardan kaçmalarını zorlaştırır; özellikle de nemli bir kuyruğun sürüklenmek zorunda kaldığı muson yağmurları sırasında. Parıldayan renkler de, özellikle kısa kuyruklu ve ölü yeşilimsi bir kahverengi ile kendilerini kamufle eden dişilerle karşılaştırıldığında yırtıcıları kendisine daha fazla çeker. Ve çok fazla metabolik enerji her yıl yeniden büyümesi gereken bu kuyruğa harcanır. Darwin’i şaşırtan görüntü ve davranışlar Tavus kuşunun tüyleri sadece amaçsız görünmekle kalmaz, aynı zamanda bir engeldir. Bu nasıl bir adaptasyon olabilir? Ve bu tüylere sahip bireyler daha fazla gen aktarabiliyorsa, tahmin edileceği gibi giysi doğal seçilimle evriliyorsa, neden dişiler de aynı şekilde göz kamaştırıcı olmuyor? Darwin, 1860’da Amerikalı bir biyolog olan Asa Gray’e yazdığı bir mektubunda bu sorulardan yakınıyordu: “Gözle ilgili düşüncenin beni dondurduğu anı hatırlarım, fakat bu şikâyet halinin üstesinden geldim ve şimdi yapıya dair önemsiz şeyler beni rahatsız hissettiriyor. Tavus kuşunun kuyruğundaki bir tüyün manzarası ise her ona baktığımda beni hasta ediyor!” Tavus kuşunun kuyruğu gibi muammalar çoktur. Soyu tükenmiş İrlanda elkini ele alalım (aslında ne İrlandalı ne de elk olduğu için bir isim hatası. Bu zamana kadar tanımlanmış en büyük geyiktir ve Avrasya civarında yaşamıştır). Bu türün erkekleri sadece on bin yıl kadar önce yok olmuş ve bir uçtan diğer uca 12 fitten (1 fit yaklaşık 0,3 m, 12 fit = 3,6 m) geniş olan büyük bir çift boynuzun sahibidir! Birlikte 90 pound (1 pound yaklaşık 453,6 gram, 90 pound = 40,8 kg) ağırlığında olan bu boynuzlar önemsiz 5 pound ağırlığındaki bir kafatasının üzerinde durur. Neden olacağı gerilimi bir düşünün. Bütün gün kafanızın üstünde genç bir insanı taşıyarak yürümek gibidir. Ve tavus kuşunun kuyruğu gibi bu boynuzlar da her yıl oyuklarından yeniden doğmak zorundadır. Aşırı süslü özelliklerin yanında, sadece bir cinsiyette görülen ilginç davranışlar da vardır. Orta Amerika’nın erkek tungara kurbağaları şişirebildikleri ses keselerini her gece uzun bir serenat yapmak için kullanır. Bu şarkılar dişilerin dikkatini çeker; fakat şarkı söylemeyen dişilerdense söyleyen erkeklerle beslenen yarasa ve kan emici sineklerin de dikkatini çeker. Avustralya’da erkek çardak kuşları çubuklardan, türüne göre tüneller, mantarlar veya tentelere benzeyen büyük ve biçimsiz “çardaklar” inşa eder. Bunlar dekoratif şeylerle süslenmiştir: çiçekler, yılan kabukları, kabuksuz meyveler, tohum zarfları ve eğer insanlara yakınsa teneke kutular, cam parçaları ve folyo ile. Bu çardakların yapılması saatler hatta bazen günler alır (bazıları enine 10 fit, uzunluğuna 5 fit boyutlarında olabilir), fakat yine de yuva olarak kullanılmazlar. Neden erkekler bütün bu zorluklara katlanır? Eşeysel dimorfizm Biz Darwin gibi, bu özelliklerin hayatta kalma olasılığını azalttığını sadece tahmin etmek zorunda değiliz. Dönemimizdeki bilim insanları bunların nelere mal olabileceğini göstermiştir. Kırmızı gerdanlı çardak kuşu erkeği parlak siyahtır, derin bir boyun ve kafa yaması ile gösteriş yapar ve gayet uzun kuyruk tüyleriyle yüklüdür, bu tüyler neredeyse boyunun iki katı uzunluğundadır. Erkek çardak kuşunu arkasında çırpınan kuyruğuyla havada mücadele ederek uçarken gören biri bu kuyruğun ne işe yaradığını anlamakta zorlanır. İsveç Göteborg Üniversitesi’nden Sarah Pryke ve Steffan Andersson Güney Afrika’da bir grup erkek yakaladılar ve birinci grubun kuyruklarını bir inç kadar ikinci grubun ise dört inç kadar kısalttılar. Üreme mevsiminden sonra yeniden yakaladıklarında, kısa kuyruklu olanlara oranla uzun kuyruklu erkeklerin daha fazla kilo kaybetmiş olduğunu gördüler. Açıkçası, bu uzamış kuyruklar büyük handikaptır. Canlı renkler de öyledir ve bu da gerdanlıklı kertenkelelerde yapılan daha zekice bir deneyle gösterilmiştir. Amerika’nın batısında yaşayan bir fit uzunluğundaki bu kertenkelenin erkek ve dişileri birbirinden çok farklı görünür. Erkek turkuaz renkli vücudu, sarı kafası, siyah boyun halkası ve siyah-beyaz benekleri ile gösteriş yapar; dişilerin rengi ise gri-kahverengi arasıdır ve az beneklidirler. Oklahoma Devlet Üniversitesi’nden Jerry Husak ve arkadaşları, erkeklerin parlak renginin yırtıcıları daha çok çektiği hipotezini sınamak için çöle erkek ve dişi kertenkelelere benzeyen boyanmış kilden modeller yerleştirdiler. Yumuşak kil bu modelleri gerçek hayvanlarla karıştıran herhangi bir yırtıcının bıraktığı ısırık izlerini saklıyordu. Sadece bir hafta sonra kırk parlak erkek modelden otuz beşinde çoğunlukla yılan ve kuş ısırıkları görüldü; kırk ölü renkli dişi modelden ise hiçbiri ısırılmamıştı. Bir türün erkek ve dişileri arasında görülen bu farklı özellikler, örneğin kuyruk, renk ve şarkı, “eşeysel dimorfizm” olarak adlandırılır, bu terim Yunanca “iki form” anlamına gelir. Biyologlar, erkeklerin eşeysel dimorfik özelliklerinin, zamanı ve enerjiyi boşa harcadığı ve hayatta kalma oranını düşürdüğü için evrim teorisini ihlal ettiğini gösterdiler. Renkli erkek lepistesler, daha sade olan dişilerden daha sıklıkla yem olmaktadır. Bir Akdeniz kuşu olan siyah kuyrukkakan erkeği, iki haftadan fazla bir süre çakılların arasında kendi ağırlığının elli kat fazlasını biriktirerek farklı bölgelerde büyük taş yığınları kurar. Çalı tavuğu erkeği, çayırda kabarıp sönerek ve iki büyük ses kesesinden yüksek sesler çıkartarak süslü görüntüler sergiler. (1) Bu muziplikler bir kuş için büyük enerji tüketimi anlamına gelir: bir günlük görüntü, kalori açısından bir muz dilimine denk enerji yakar. Eğer bu özellikler için seçilim söz konusuysa -karmaşıklıkları göz önünde bulundurulduğunda olmalıdır da- bunun nasıl gerçekleştiğini açıklamamız gerekir. Darwin’in anahtarı: eşeysel seçilim Darwin’den önce eşeysel dimorfizm bir sırdı. Bugün de olduğu gibi yaratılışçılar, doğaüstü bir tasarımcının, hayatta kalmayı tehlikeye sokan bu vasıfları neden sadece bir cinsiyette yarattığını açıklayamıyorlardı. Doğanın çeşitliliğini en güzel şekilde açıklayan Darwin de bu yararsız özelliklerin nasıl evrildiğini anlayamamaktan dolayı kaygılıydı. Sonunda bunun açıklanması için gerekli anahtarı keşfetti: Eğer bir türün erkekleri ile dişileri arasında özellik farkları varsa, ayrıntılı davranışlar, yapılar ve süsler neredeyse sadece erkeklerle sınırlıdır. Artık bu masraflı özelliklerin nasıl evrildiğini tahmin edebilirsiniz. Seçilimin değerinin gerçek anlamda hayatta kalma olmadığını, başarılı üreme olduğunu hatırlayın. Süslü bir kuyruk ve baştan çıkarıcı bir şarkı hayatta kalmanıza yardım etmez, fakat döl bırakabilme şansınızı artırır, bu da söz konusu göz alıcı özelliklerin ve davranışların ortaya çıkmasına neden olan şeydir. Darwin bu takasın ilk farkına varan kişidir ve eşeysel dimorfik vasıflardan sorumlu seçilim türüne eşeysel seçilim adını vermiştir. Eşeysel seçilim, basitçe, bir bireyin eş bulması olasılığını artıran seçilimdir. Yani doğal seçilimin bir alt kümesidir, fakat çalıştığı biricik yol açısından ve ürettiği uyumlu olmayan adaptasyonlardan dolayı kendine has bir bölümde anlatılması gerekir. Eşeysel olarak seçilmiş özellikler, erkeğin azalan yaşama şansını üremesinde bir artış ile dengelemekten fazlasını yapıyorsa evrim geçirir. Whydah ispinozları uzun kuyruklarıyla yırtıcılardan çok iyi kaçamazlar, fakat dişileri eş olarak uzun kuyruklu olanları tercih eder. Daha uzun boynuzlu geyikler hayatta kalmak için metabolik bir sorumlulukla savaşırlar, fakat belki de karşılaşmaları sıklıkla kazanmaları daha fazla döl bırakabilmelerini sağlar. Eşeyli seçilim iki şekilde olur. Birincisi, dev boynuzlu İrlanda elkleri örneğinde görüldüğü gibi, dişilere giden yolda erkekler arasında doğrudan rekabettir. Whydah ispinozlarının uzun kuyruğunun türemesine neden olan diğeri ise, olası erkekler arasında seçim yaparken görülen dişi titizliğidir. Erkek erkeğe rekabet (veya Darwin’in hırçın terminolojisinde “Mücadele Yasası”) anlaması en kolay olanıdır. Darwin’in söylediği gibi “neredeyse bütün hayvanların erkekleri arasında dişinin mülkiyeti için bir mücadele vardır.” Bir türün erkekleri doğrudan savaştığında, geyiğin boynuz çarpıştırması, geyik böceğinin boynuzunu saplaması, sap gözlü sineğin kafasını toslaması veya iri fil ayıbalığının kanlı savaşlarında olduğu gibi, rakiplerini defederek dişilerine kavuşurlar. Seçilim, hayatta kalma oranını düşürmeyi dengelemekten daha büyük oranda eş bulma şansını artıran bu gibi zaferleri sağlayan özellikleri destekler. Canlı renkler, süsler, çardaklar ve çiftleşme görüntüleri ise ikinci eşeysel seçilim türüyle yani eş tercihiyle şekillenir. Öyle görünüyor ki, dişilerin gözünde bütün erkekler aynı değildir. Bazı erkek özelliklerini ve davranışlarını diğerlerinden daha etkileyici bulurlar, bu sayede popülasyonda bu özellikleri üreten genler birikir. Bu senaryoda erkekler arası bir rekabet elemanı da vardır, fakat bu dolaylıdır: kazanan erkekler en yüksek sese, en parlak renklere, en cazip feromonlara, en seksi görünüşlere ve daha birçok şeye sahiptir. Erkek-erkeğe rekabetin tersine burada kazanan, dişi tarafından belirlenir. Erkekler arasında doğrudan rekabet Mücadeleyi kazanan, çok süslü olan veya en güzel görünüşü sergileyen erkeklerin daha fazla eşi olacağı doğru mudur? Eğer öyle değilse eşeysel seçilim teorisi hepten çöker. Aslında kanıtlar hem güçlü hem tutarlı bir şekilde teoriyi destekler. Mücadelelerle başlayalım. Kuzey Amerika’nın Pasifik kıyısındaki kuzeyli fil ayıbalığı, boyutları açısından sıra dışı bir eşeysel dimorfizm gösterir. Dişiler yaklaşık 10 fit uzunluğunda ve 1500 pound ağırlığındayken erkeklerin uzunluğu neredeyse iki katıdır ve ağırlıkları da 6000 pounda kadar varabilir ki bu bir Volkswagen’den büyük ve iki katından daha ağır demektir. Bunlar poligamiktir de, yani çiftleşme dönemi boyunca erkekler birden fazla dişi ile eşleşir. Erkeklerin yaklaşık üçte biri eşleştikleri dişilerden oluşan haremlerini savunurlar (bir erkeğin 100 kadar eşi olabilir!), geri kalan erkekler ise bekârlıktan yana kara talihlerini yaşar. Çiftleşme piyangosunun kime vuracağı dişiler daha sahile çıkmadan önce erkekler arasındaki vahşi savaşla belirlenir. Bu savaşlar kocaman vücutlarını birbirine vuran büyük boğalarınki gibi kanlı olur, dişleriyle derin boyun yaraları açarlar ve en büyük erkeklerin en üste yerleştiği bir baskınlık hiyerarşisi ortaya çıkar. Dişiler vardığında baskın erkekler onları haremlerine doğru sürükler ve yaklaşan rakiplerini kovar. Verili bir yıl içerisinde çoğu bebek sadece birkaç büyük erkek tarafından yapılmış olur. Bu, erkeklerin rekabetidir; saf ve basit, ödül de üremedir. Bu çiftleşme sistemi ele alındığında eşeysel seçilimin büyük ve cani erkeklerin evrimini teşvik ettiğini görmek kolaydır: büyük erkekler genlerini yeni jenerasyona aktarabilir, küçükler yapamaz (dövüşmek zorunda olmayan dişiler, tahminen optimum üreme ağırlıklarına yakındır). Vücut büyüklüğündeki eşeysel dimorfizm, biz de dahil birçok türde erkeklerin dişilere ulaşmak için giriştiği rekabetten kaynaklanıyor olabilir. Erkek kuşlar çoğunlukla, sahip oldukları arazi üzerinde şiddetle rekabet ederler. Birçok türde, erkekler dişilerini sadece, yuva yapmak için uygun, güzel yeşillikleri olan bir toprak parçasını kontrol altında tutarak etkiler. Erkekler bu parçaya sahip olduklarında, görsel ve ses öğeleriyle veya alanlarına tecavüz eden erkeklere doğrudan saldırarak onu savunurlar. Bize zevk veren kuş şarkılarının pek çoğu aslında diğer erkeklere uzak durmalarını söyleyen tehditlerdir. Kuzey Amerika’nın kırmızı kanatlı karatavuğu genellikle açık habitatlardaki tatlı su bataklığı gibi bölgeleri savunur. Fil ayıbalıkları gibi bunlar da poligamiktir, bazı erkekler kendi bölgelerinde barınan neredeyse elli kadar dişiyle eşleşebilir. Diğer pek çok erkek ise “oltacı” diye adlandırılır ve eşleşmeden yaşarlar. Oltacılar ele geçirilmiş bölgelerdeki erkekleri oyalayıp uzak tutarak dişilerle sinsice eşleşmek için sürekli buraları işgal etmeye çalışırlar. Erkekler zamanlarının dörtte birini tetikte durup kendi bölgelerini korumaya çalışmakla geçirirler. Kırmızı kanat erkekleri doğrudan devriye gezmenin yanı sıra karmaşık şarkılar söyleyerek ve omuzlarında parlak kırmızı bir apoletle soylarına has süslerini tehdit gösterisine çevirerek savunma yaparlar (Dişiler kahverengidir, bazen küçük iz gibi bir apoletleri olur). Apoletler dişileri etkilemek için değildir, gerçekte bölgeyi ele geçirmek için düelloya gelen diğer erkekleri tehdit etmek için kullanılır. Araştırmacılar, siyaha boyayarak apoletlerini yok ettikleri erkeklerin yüzde 70 oranında bölgelerini kaybettiğini gördüler; fakat apoletleri şeffaf bir çözücü ile boyanan erkeklerin sadece yüzde 10’u kaybetmişti. Apoletler belki de zorla girenleri uzak tutmak için, o bölgede yaşandığını gösteren bir işarettir. Şarkı da önemlidir. Şarkı söyleme yeteneğini geçici olarak kaybetmiş, susturulmuş erkekler de bölgelerini kaybediyordu. Kısacası karatavuklarda şarkı ve tüyler bir erkeğin daha fazla eş edinmesine yardımcı olur. Yukarıda anlatılan çalışmalarda ve diğer başka birçok çalışmada araştırmacılar, daha ayrıntılı özelliklere sahip erkeklerin dölde daha büyük bir netice elde etmesinde, eşeyli seçilimin rol oynadığını gösterdiler. Bu sonuç basit görünmektedir, fakat meraklı biyologların yüzlerce saatlik sabırlı saha çalışmaları sonucunda ortaya çıkmıştır. Parıltılı bir laboratuarda DNA’nın dizi analizini yapmak daha ihtişamlı görünebilir ama bir bilim insanının seçilimin doğada nasıl işlediğini göstermesinin tek yolu sahada kirlenmekten geçer. Çiftleşme sonrası rekabet örnekleri Eşeysel seçilim sadece eşeye etkimekle bitmez: erkekler çiftleşmeden sonra da rekabete devam eder. Birçok türde dişiler kısa bir süre içerisinde birden fazla erkekle çiftleşebilir. Bir erkek bir dişiyi dölledikten sonra, aynı dişiyi diğer erkeklerin döllemesini ve babalık hakkını elinden almasını nasıl engelleyebilir? Bu çiftleşme sonrası rekabet eşeysel seçilim tarafından inşa edilmiş en merak uyandırıcı özelliklerden bazılarını ortaya çıkarmıştır. Bazen erkek çiftleşmeden sonra etrafta başıboş gezer, dişisini bu şekilde diğer taliplerden korur. Birbirine yapışmış bir çift yusufçuk görürseniz bilin ki erkek dişiyi dölledikten sonra fiziksel olarak diğer erkeklere kapatarak korumaya alıyordur. Bir Orta Amerika kırkayağı en olağanüstü şekilde eşini korumaya geçer: bir dişiyi dölledikten sonra, onu birkaç gün boyunca taşır ve bu şekilde yumurtalarına herhangi bir rakibin sahip çıkmasını engeller. Bazen bu engelleme kimyasallar yoluyla yapılır. Bazı yılanların ve kemirgenlerin menisi çiftleşmeden sonra dişinin üreme yolunu geçici olarak tıkayan kimyasallar içerir, yani diğer erkeklere karşı barikat kurar. Benim de çalıştığım sirke sineği grubunda ise erkek dişiye bir anti-afrodizyak enjekte eder, semenindeki bu kimyasal birkaç gün boyunca dişiyi yeniden çiftleşmeye isteksiz hale getirir. Erkekler babalıklarını korumak için çok çeşitli savunma silahları kullanırlar. Fakat çok daha sinsi de olabilirler, birçoğu ilk çiftleşen erkeğin spermlerinden kurtulabilecek ve yerine kendilerininkini koyabilecek hücum silahı taşır. Bunlar arasında en zekice araçlardan biri bazı kızböceklerinin “penis kepçesi”dir. Erkek önceden çiftleşmiş bir dişiyle çiftleştiğinde, penisi üzerinde arka tarafa bakan iğnelerini kullanarak daha önceden çiftleşen erkeğin spermlerini dışarı atar. Ancak dişi spermlerden arındırıldıktan sonra kendi spermlerinin transferine başlar. Drosophila’da (Drosophila melanogaster sirke sineğinin tür ismidir), kendi laboratuarımda erkek menisinin daha önceden çiftleşen erkeğin spermlerini pasifleştiren bir madde bulduk. Dişilerin eş tercihi Eşeysel seçilimin ikinci formu olan eş tercihine gelelim. Erkek-erkeğe rekabetle karşılaştırıldığında bu sürecin nasıl işlediğine dair çok daha az bilgimiz var. Çünkü boynuzların ve diğer silahların önemi, renkler, tüyler ve görünüşün öneminden çok daha açıktır. Eş tercihinin nasıl evrimleştiğini ortaya çıkarmak için Darwin’i bu kadar sinirlendiren belalı tavus kuşu kuyruğuyla başlayalım. Tavus kuşundaki eş tercihi üzerine çalışmaların çoğu, İngiltere Bedfordshire’daki Whipsnade Parkı’nda serbest-değişen bir popülasyonu çalışan Marion Petrie ve arkadaşları tarafından gerçekleştirildi. Bu türün erkekleri toplu halde görünebilecekleri ve bu sayede dişiye karşılaştırma olanağı sağlayan bölgelerde, leklerde (Lek, erkek hayvanların kur yapmak ve kendisini göstermek için toplanması hali) toplanır. Bütün erkekler leklere katılmaz, ancak bir dişi kazanabilecek olanlar katılır. On tane kur yapan erkek üzerinde yapılan gözlemsel bir çalışmada erkeklerin kuyruk tüylerindeki göz beneği sayıları ve başarılı oldukları çiftleşme sayıları arasında bir bağıntı bulundu: 160 göz beneği olan en ayrıntılı erkek, bütün eşleşmelerin yüzde 36’sını topladı. Bu, dişilerin daha ayrıntılı kuyrukları tercih ettiğini tahmin ettirir, fakat kanıtlamaz. Erkeğin kur yapmasında bazı diğer yönlerinin de –örneğin görünüşündeki zindelik- dişi tarafından seçiliyor olması muhtemeldir ve bu, tüylerle bağıntılı görünmektedir. Bunu hariç tutmak gerekirse, bazı deneysel düzenlemeler yapılabilir: tavus kuşunun kuyruğundaki benek sayısını değiştirin ve bunun eş bulma yeteneğini etkileyip etkilemediğine bakın. Dikkate değer bu tip bir deney Darwin’in rakibi Alfred Russel Wallace tarafından 1869’da düzenlendi. Bu iki bilim adamı birçok konuda, özellikle de doğal seçilimde birbirini onaylamış olsa da konu eşeysel seçilime geldiğinde ayrıştılar. Erkek-erkeğe rekabet iki adam için de sorun değildi, fakat Wallace dişi tercihi olasılığını uygun görmüyordu. Yine de bu konuda açık ufuklu davrandı ve bunun nasıl deneneceğini önerirken kendi zamanının ötesine geçti: “Süslü olanın kendisi tarafından oynanması gereken bölüm çok küçüktür, hatta süslünün az da olsa üstünlüğünün genellikle eşin tercihini belirleyeceği kanıtlansa bile. Nitekim kanıtlanmadı. Yine de bu, deneye imkân veren bir sorundur ve ben de bazı Zooloji Toplulukları veya araca sahip herhangi bir insanın bu çalışmaları denemesini öneririm. Her biri dişi kuşlara erişebildiği bilinen, aynı yaşta bir düzine erkek kuş seçilmelidir, örneğin evcil kümes hayvanları, yaygın sülünler veya altın sülünler. Bunların yarısının bir veya iki kuyruk tüyü kesilmeli veya boyun tüyleri doğadaki çeşitliliği taklit eden bir fark oluşturmaya yetecek fakat kuşu biçimsizleştirmeyecek şekilde biraz kısaltılmalıdır ve sonra dişi kuşların bu eksikliği fark edip etmediği ve daha az süslü erkekleri eşit bir şekilde reddedip etmedikleri gözlemlenmeli. Bu deneyler, dikkatlice planlanır ve birkaç sezon için mantıklı bir şekilde çeşitlendirilirse, bu ilgi çekici soruya dair en değerli açıklamaları sağlayacaktır.” Aslında bir yüzyıl sonrasına kadar bu tip deneyler yapılmadı. Fakat şimdi sonuçları elimizde ve buna göre dişi tercihi yaygın. Bir deneylerinde Marion Petrie ve Tim Halliday, bir grup tavus kuşundaki her erkeğin kuyruğundan yirmi göz bebeğini kestiler ve yakalanan fakat tüyleri kesilmeyen bir kontrol grubuyla çiftleşme başarılarını karşılaştırdılar. Tabii sonraki üreme mevsiminde süsleri alınmış erkeklerin her biri kontrol erkeklerinden ortalama 2,5 daha az çiftleşme gerçekleştirebildi. Bu deney, dişilerin süsleri azaltılmamış erkekleri tercih ettiğini gösterir. Fakat ideal olan, deneyin bir de tersinden tekrarlanmasıdır: kuyrukları daha ayrıntılı hale getirin ve bunun çiftleşme başarısını artırıp artırmadığına bakın. Böyle bir deneyi tavus kuşlarında yapmak zor olsa da, İsveçli biyolog Malte Andersson tarafından Afrika’da yerel uzun kuyruklu Whydah ispinozları üzerinde denendi. Bu eşeysel dimorfik türlerde erkeklerin kuyruğu yaklaşık 20 inç (1 inç yaklaşık 2,5 cm, 20 inç = 50 cm), dişilerin ise 3 inç uzunluğundadır. Andersson uzun erkek kuyruklarının bir parçasını alıp bunları normal kuyruklara yapıştırarak aşırı derecede kısa kuyruklu (6 inç), normal “kontrol” kuyruklu (bir parça kesilmiş ve sonra geri yapıştırılmıştır) ve uzun kuyruklu (30 inç) erkekler üretti. Tahmin edileceği gibi, kısa kuyruklu erkekler normallerle karşılaştırıldığında bölgesinde barınan daha az dişiyi elde edebilmiştir. Fakat suni bir şekilde kuyrukları uzatılmış olan erkekler çiftleşmede çok büyük bir artış elde etmiş, neredeyse normal erkeklerin iki katı kadar dişiyi etkilemişlerdir. Buradan bir soru ortaya çıkar. Eğer 30 inç uzunluğunda kuyruğu olan erkekler daha fazla dişi tarafından tercih ediliyorsa, neden Whydah ispinozları ilk başta bu uzunlukta bir kuyruğa evrilmedi. Cevabı bilmiyoruz, fakat bu uzunlukta kuyruğun eş bulma yeteneğini artırmasından daha büyük oranda ömrü kısaltıyor olması muhtemeldir. Yirmi inç belki de ömrü boyunca verebileceği ortalama üreme sayısının en yüksek olduğu uzunluktur. Peki, erkek çalı tavukları yeşilliklerdeki çetin maskaralıklarından ne kazanıyor? Burada da yanıt: eş. Tavus kuşları gibi, erkek çalı tavuğu da denetlemeye çıkmış dişilere toplu halde göründükleri lekler yapar. Sadece günde 800 kere “kasılarak yürüyen” en kuvvetli erkeğin dişileri kazanabildiği gösterilmiştir; geri kalan çoğunluk ise çiftleşemeden yürümeye devam eder. Eşeysel seçilim diğer yandan çardak kuşlarının mimari başarılarını da açıklar. Türden türe değişen çardak dekorasyonlarının pek çok çeşidinin çiftleşme başarısıyla bağlantılı olduğu birçok çalışmada gösterilmiştir. Örneğin saten çardak kuşları çardaklarına daha fazla mavi tüy koyduklarında daha fazla çiftleşebilir. Benekli çardak kuşlarında en büyük başarı yeşil solanum meyveleri (yabani domatesle akraba bir tür) gösterildiğinde elde edilmektedir. Cambridge Üniversitesi’nden Joah Madden benekli çardak kuşlarının çardaklarından dekorasyonları çaldı ve erkeklere altmış objelik bir seçenek sundu. Tabii bunlar çardaklarını yine en çok solanum meyveleri ile dekore ettiler, bu meyveleri çardağın göze çarpan yerlerine koydular. Kuşlar üzerine eğiliyorum çünkü biyologlar eşey tercihinin en kolay bu grupta çalışılabildiğini görmüşler. Kuşlar gün içerisinde aktiftir ve gözlemlenmesi kolaydır, fakat diğer hayvanlarda eşey tercihinin çalışıldığı pek çok örnek de vardır. Dişi tungara kurbağaları en karmaşık sesleri çıkaran erkeklerle çiftleşmeyi tercih eder. Dişi lepistesler daha uzun kuyruğu ve daha renkli benekleri olan erkekleri sever. Dişi örümcekler ve balıklar genellikle daha büyük olan erkeği seçer. Malte Andersson Eşeysel Seçilim adlı kapsamlı kitabında, 186 türde 232 deneyin erkek özelliklerinin büyük bir kısmının çiftleşme başarısıyla bağlantılı olduğunu ve bu deneylerin büyük çoğunluğunun dişi tercihi gösterdiğini anlatmaktadır. Kısacası dişi tercihinin birçok eşeysel dimorfizmin evrimini yönlendirdiğinden şüphemiz yok. Yani Darwin haklıydı. Fakat biz iki önemli soruyu atladık: erkekler kur yapmak veya onlar için savaşmak zorundayken neden dişiler seçme işlemini yapmak zorunda kalıyor? Ve neden her zaman dişiler seçiyor? Bu sorulara yanıt verebilmek için organizmaların neden eşeyli olmayı benimsediklerini anlamamız gerekir. Neden eşeyli üreme? Eşeyin neden evrimleştiği evrimde hâlâ en muammalı sorudur. Genlerinin sadece yarısına sahip yumurta veya spermler oluşturarak eşeyli üreyen herhangi bir birey eşeysiz üreyen diğer bir bireye göre yeni jenerasyona yüzde 50 oranında genetik harcama yapar. Şu şekilde düşünelim. İnsanlarda, normal formu eşeyli üremeye yarayan, mutant formu ise dişilerin döllenme gerekmeden yumurta üretmesini sağlayan partenogenez ile üremesine yardımcı olan bir gen hayal edin (Bazı hayvanlar gerçekten bu şekilde ürer: yaprak bitleri, balık ve kertenkelelerde görülmektedir). İlk mutant kadının sadece kızları olacaktır ve bu kızlar da kendi kendilerine başka kızlar doğurabilecektir. Mutant olmayanlarda ise eşeyli üreyen kadınlar erkeklerle çiftleşecektir ve yarısı erkek yarısı dişi olan döller verecektir. Dişi havuzu sadece kız çocuğu üreten mutantlarla dolacağı için popülasyondaki kadın oranı çabucak yüzde 50’nin üzerine çıkacaktır. Sonunda bütün dişiler eşeysiz üreyen annelerden doğmuş olacaktır. Erkekler gereksiz hale gelecek ve ortadan kaybolacaktır: hiçbir mutant kadın onlarla çiftleşme ihtiyacı duymaz ve bütün dişiler sadece daha fazla dişi doğuracaklar. Partenogenez için gereken gen eşeyli üreme için gereken geni yenmiş olur. “Eşeysiz” genin kendisini, her jenerasyonda, “eşeyli” genin yaptığının iki katı kadar üreteceği teorik olarak gösterilebilir. Biyologlar bu duruma “eşeyin iki katı masrafı” derler. Sonuçta, doğal seçilim etkisinde partenogenez için olan genler çok hızlı bir şekilde yayılır ve eşeyli üremeyi eler. Fakat bu gerçekleşmedi. Dünya’daki türlerin büyük çoğunluğu eşeyli ürer ve üremenin bu türü bir milyar yıldır sürüyor. (2) Peki eşeyin masraflı olması neden partenogenezle yer değiştirmesine neden olmadı? Eşeyin, masrafından daha ağır evrimsel bir avantajı olmalı. Henüz o avantajın ne olduğunu ortaya çıkaramamış olsak da, teorilerde bir noksanlık hissedilmemektedir. Asıl anahtar, eşeyli üreme sırasında genlerin rasgele karışması ve bu sayede dölde yeni gen kombinasyonları ortaya çıkarmasıdır. Bir bireyde birçok elverişli geni bir araya getirirsek eşey, çevrenin sürekli değişen manzarasıyla baş edebilmek için evrimi hızlanmaya zorlar, parazitlerin evrimleşen savunma mekanizmalarımıza karşı durabilmek için acımasız bir şekilde evrim geçirmesi buna örnektir. Veya belki de eşey, tamamen avantajsız bir bireyde, bir araya getirmek suretiyle türdeki bütün kötü genleri yok edebilir. Bilim insanları hâlâ, eşeyi, iki kat masraflı olmasına karşın daha önemli hale getiren bir avantajı olup olmadığını sorguluyor. Eşey evrildiğinde ister istemez bunu eşeyli üreme de takip edecektir, bunun için iki şeyi daha açıklamamız gerekir. İlki; döl oluşturmak için çiftleşmek ve genlerini bir araya getirmek zorunda olan neden sadece iki cinsiyet var (neden üç veya daha fazla değil)? Ve ikincisi; neden iki eşeyin farklı sayı ve büyüklükte gametleri (erkekler pek çok küçük sperm oluşturur, dişiler ise daha az ama daha büyük yumurtalar) var? Eşey sayısına dair soru bizi oyalamaması gereken karmaşık teorik bir sorundur; fakat teorinin, iki eşeyin, üç veya daha fazla eşeyli çiftleşme sistemlerinin evrimsel olarak yerini alacağını gösterdiğini aklımızdan çıkarmayalım. İki eşey en sağlam ve kararlı stratejidir. İki eşeyin gametlerinin neden farklı sayı ve boyutlarda olduğu teorisi de aynı şekilde karmaşıktır. Bu durum muhtemelen iki eşeyin de aynı büyüklükte gametler ürettiği daha önceki eşeyli üreyen türlerden evrilmiştir. Teorisyenler doğal seçilimin, bu atasal durumun bir eşeyin (“erkek” diye adlandırdığımız) çok sayıda küçük gametler (sperm veya polen) oluşturması ve diğerinin (“dişi”) ise daha az ama büyük gametler (yumurta) oluşturması durumuna geçişini elverişli kıldığını inandırıcı bir şekilde gösterdiler. Erkek ve dişinin farklı çiftleşme stratejileri Eşeysel seçilimin aşamasını belirleyen gamet boyutundaki asimetri, aynı zamanda iki eşeyin farklı çiftleşme stratejileri evrimleştirmesine de neden olmuştur. Erkekleri ele alalım. Bir erkek çok miktarda sperm üretebilir ve büyük olasılıkla çok miktarda dölün babası olur; bu etkileyebileceği dişi sayısıyla ve spermlerinin rekabet yeteneği ile sınırlıdır. Dişiler için ise durum farklıdır. Yumurtalar masraflıdır, sayıca sınırlıdır ve eğer bir dişi kısa bir süre içerisinde pek çok kez çiftleşirse bu onun döl sayısını artırmada çok az etkili olur. Bu fark çok açık bir şekilde, bir insan dişisi ile erkeğinin ebeveyni olduğu kayıtlı çocuk sayısına bakarak görülebilir. Bir kadının hayatı boyunca üretebileceği maksimum çocuk sayısını tahmin etmeye kalkarsanız muhtemelen 15 civarında dersiniz. Bir daha düşünün. Guinness Rekorlar Kitabı’ndaki resmi rakam 69’dur, on sekizinci yüzyılda yaşayan bir Rus köylüsünün rekorudur. 1725 ile 1745 arasındaki 27 hamilelikten 16 ikiz, 7 üçüz ve 4 adet dördüz doğmuştur (Muhtemelen fizyolojik veya genetik olarak çoklu doğuma yatkınlığı vardı). Birileri bu çalışan kadın için ağlar, fakat bu rekor bir erkek tarafından, Marokko İmparatoru Mulai İsmail (1646-1727) tarafından, kırılmıştır. İsmail Guinness’te “en az 342 kız ve 525 erkeğin babası” olarak ve “1721’de 700 erkek toruna sahip” olarak kaydedilmiştir. Bu uç örneklerde bile erkekler dişileri 10 katından fazla geçmektedir. Erkekler ve dişiler arasındaki evrimsel fark, farklı yatırımdan gelir. Erkekler için çiftleşmek ucuzdur; dişiler için masraflıdır. Erkekler için bir çiftleşme sadece az miktarda sperme mal olur, dişiler için çok daha fazlasını ifade eder: büyük, besin dolu yumurtaların üretimi ve çoğunlukla çok miktarda enerji ve zaman kaybı. Memeli türlerinin yüzde 90’dan fazlasında, bir erkeğin döle yaptığı tek yatırım spermidir, dişi ise bütün bakımı üstlenir. Dişi ve erkeklerin olası eş ve döl sayıları arasındaki bu asimetri eş seçme zamanı geldiğinde çelişen ilgilere neden olur. Erkeklerin, standardın altında bir dişi (diyelim ki zayıf veya hasta biri) seçtiklerinde kaybedecekleri şey azdır, çünkü kolaylıkla tekrar ve defalarca eşleşebilirler. Bu durumda seçilim bir erkeği gelişigüzel yapan, neredeyse her dişiyle durmaksızın eşleşmeye çalışan genlerini öne çıkarır. Dişiler farklıdır. Yumurtalarına ve döllerine çok yatırım yaptıkları için en iyi taktikleri gelişigüzel olmak değil titiz olmaktır. Dişiler sınırlı sayıda yumurtalarını dölleyecek en iyi baba olanağını seçmek için her fırsatı hesaba katmalıdır. Bu nedenle potansiyel erkekleri çok yakından incelerler. Genellikle bunun anlamı, erkeklerin dişiler için rekabet etmesi gerektiğidir. Erkekler gelişigüzel, dişiler nazlıdır. Bir erkeğin hayatı, sürekli eş için hemcinsleriyle yarışan yıkıcı bir anlaşmazlık ile geçer. Standart erkekler eşleşemezken, iyi erkekler, hem daha etkileyici hem de daha vahşi olanlar, çoğunlukla çok sayıda eşi güvenceye alacaktır (tahminen daha fazla dişi tarafından da tercih edilecektir). Diğer yandan, neredeyse her dişi sonunda bir eş bulacaktır. Her erkek onlar için rekabet ettiğinden, dişilerin eşleşme başarısının dağılımı daha dengeli olacaktır. Biyologlar bu farkı, eşleşme başarısındaki varyansın erkekler için dişiler için olduğundan daha yüksek olması gerektiğini söyleyerek açıklarlar. Peki, öyle midir? Evet, genellikle böyle bir fark görürüz. Örneğin kırmızı geyik erkekleri arasında, hayatları boyunca kaç döl bıraktıklarına dair çeşitlilik dişilerinkinin 3 kat fazlasıdır. Uyumsuzluk fil ayıbalıkları için çok daha büyüktür, çünkü bunlardaki dişilerin yarısından fazlasıyla karşılaştırılırsa, bütün erkeklerin yüzde 10’u üreme sezonları boyunca hiç döl bırakamaz. (3) Erkek ve dişilerin olası döl sayıları arasındaki fark erkek-erkeğe rekabetin ve dişi tercihinin evrimleşmesine neden olmuştur. Erkekler sınırlı sayıdaki yumurtaları döllemek için rekabet etmek zorundadır. Buna “muharebe yasası” diyoruz: erkekler arasında genlerini gelecek jenerasyonlara aktarmak için doğrudan rekabet. Bu nedenledir ki erkekler renklidir veya “beni seç, beni seç!” demenin bir yolu olan görüntüleri, çiftleşme şarkıları, çardakları vardır. Ve sonunda yine de erkeklerde uzun kuyrukların, daha vahşi görüntülerin ve daha yüksek sesli şarkıların evrimini sürükleyen dişinin tercihleridir. Anlattığım senaryo bir genellemedir ve bazı istisnalar vardır. Bazı türler monogamiktir, erkek de dişi de yavruların bakımını üstlenir. Erkekler, daha fazla eş aramak için döllerini bıraktıklarından daha fazla döle çocukların bakımına yardım ederek sahip oluyorsa, evrim monogamiyi elverişli kılar. Örneğin birçok kuşta, iki tam-zamanlı ebeveyne ihtiyaç duyulur: biri yem aramaya gittiğinde diğeri yumurtaları sıcak tutar. Fakat monogamik türler vahşi doğada tahmin edildiği kadar da çok değildir. Örneğin bütün memeli türlerinin sadece yüzde 2’si bu tür eşleşme sistemine sahiptir. ‘Yalancı’ monogami örnekleri Eşeysel dimorfizmi birçok “sosyal monogamik” türde de görürüz. Bunlarda erkekler ve dişiler çift oluşturur ve yavruları birlikte yetiştirirler. Erkekler dişiler için rekabet etmiyorsa neden parlak renkler ve süsler evrimleştirmiş olabilir? Aslında bu çelişki de eşeysel seçilim teorisini destekler. Bu durumlarda, öyle görünüyor ki, dış görünüş aldatıcıdır. Türler sosyal yönden monogamiktir, fakat gerçek monogamik değildir. Chicago’daki okul arkadaşım Stephen Pruett-Jones’un çalıştığı Avustralyalı görkemli çalıkuşu bu türlerden biridir. Bu tür ilk bakışta monogaminin kusursuz örneği zannedilir. Erkek ve dişiler bütün erişkin yaşamlarını genellikle sosyal olarak birbirine bağlı geçirirler, arazilerini birlikte korur ve yavrularına birlikte bakarlar. Yine de tüylerinde eşeysel dimorfizm gösterirler: erkekler muhteşem yanardöner mavi ve siyahlıdır, dişiler ise ölü grimsi kahve renklidir. Neden? Çünkü “zina” yaygındır. Çiftleşme zamanı geldiğinde, dişiler kendi “sosyal eşleri”nden çok diğer erkeklerle eşleşir (Bu DNA babalık testi ile kanıtlanmıştır). Erkekler de aktif bir şekilde “ekstra çift” eşleşmeler arayarak ve dişilere asılarak aynı oyunu oynarlar, fakat üreme kapasitesi açısından dişilerden çok daha farklıdırlar. Bu zina dolu eşleşmelerle birlikte eşeysel seçilim cinsiyetler arasındaki renk farklılıklarının evrimleşmesini sağlamıştır. Söz konusu çalıkuşu bu davranışı gösteren tek tür değildir. Bütün kuş türlerinin yüzde 90’ı sosyal monogamik olsa da bu türlerin dörtte üçündeki erkekler ve dişiler kendi sosyal partnerleri haricinde bireylerle de eşleşir. Eşeysel seçilim teorisi test edilebilir tahminlerde bulunur. Eğer sadece bir eşeyin parlak tüyleri, boynuzları varsa, güçlü çiftleşme görüntüleri sergiliyorsa veya dişileri cezbetmek için göz kamaştırıcı yapılar inşa ediyorsa bahse girebilirsiniz ki bunlar çiftleşmek için diğer üyelerle rekabet eden eşeylerdendir. Gösteriş veya davranışta daha az eşeysel dimorfizm gösteren türler daha monogamik olmalıdır: eğer erkekler ve dişiler çift oluşturur ve eşlerinden ayrılmazsa eşeysel bir rekabet yoktur ve tabii ki eşeysel seçilim de yoktur. Aslında biyologlar eşleşme sistemi ile eşeysel dimorfizm arasında güçlü bir bağıntı görür. Boyutta, renk veya davranıştaki olağandışı dimorfizmler cennet kuşları veya fil ayıbalıkları gibi erkeklerin dişiler için rekabet ettiği ve sadece birkaç erkeğin eşlerin çoğuna sahip olduğu türlerde görülür. Erkeklerle dişilerin benzer görüldüğü türler, örneğin kazlar, penguenler, güvercin ve papağanlar, gerçek monogamik olma eğilimindedir, yani hayvanlardaki sadakatin örneğini teşkil ederler. Sadece eşeysel seçilim düşüncesi tarafından öngörüldüğü fakat herhangi bir yaratılışçı alternatif tarafından öngörülemediği için bu bağıntı evrim teorisinin bir başka zaferidir. Evrim yoksa neden renk ile çiftleşme sistemleri arasında bir bağıntı olsun ki? Aslında bir tavus kuşu tüyü gördüğünde hasta olması gerekenler yaratılışçılardır, evrimciler değil. (4) Az da olsa bazen roller değişir Şimdiye kadar eşeysel seçilimde önüne gelenle çiftleşen eşeyi erkek, titiz olanı ise dişi olarak tanımladık. Fakat bazen, ender de olsa, tersi doğrudur. Ve bu davranışlar eşeyler arasında değiş tokuş edildiğinde dimorfizmin yönü de değişir. Bu dönüşü en cazip balıklarda, denizatında ve yakın akrabası olan yılaniğnesinde görürüz. Bazı türlerde dişilerdense erkekler hamile kalır. Bu nasıl olabilir? Dişi yumurtayı üretse bile, bir erkek onları dölledikten sonra karnında veya kuyruğundaki özelleşmiş bir kuluçka kesesine yerleştirir ve çatlayana kadar taşır. Erkekler bir seferde sadece bir kuluçka taşır ve “gebelik” dönemleri bir dişinin taze bir parti yumurta üretmesinden uzun sürer. Dolayısıyla erkekler çocuk yetiştirmeye dişilerden daha fazla yatırım yapar. Döllenmemiş yumurta taşıyan dişi sayısı erkeklerin onları kabul edebileceğinden fazla olduğu için de dişiler nadir bulunan “hamile olmayan” erkekler için rekabet etmek zorundadır. Burada, üreme stratejisindeki erkek-dişi farkı tersine dönmüştür. Ve eşeysel seçilim teorisine göre tahmin edebileceğiniz gibi, parlak renkler ve süslerle dekore edilmiş olanlar bu kez dişilerdir, erkekler ise daha sönüktür. Avrupa ve Kuzey Amerika’da yaşayan zarif üç sahil kuşu türü olan deniz çulluklarında bu durum geçerlidir. Bunlar birkaç poliandri (bir dişi ve çok erkek) çiftleşme sistemi örneğinden biridir. Erkek deniz çullukları çocuk bakımından tamamen sorumludur, yuvayı kurar ve dişi diğer erkeklerle çiftleşmek için gittiğinde kuluçkayı besler. Yani erkeğin döle yaptığı yatırım dişininkinden daha büyüktür ve dişiler çocuklarına bakacak erkekler için rekabet eder. Ve tabii ki her üç türde de dişilerin renkleri erkeklerden çok daha parlaktır. Denizatları, yılaniğneleri ve deniz çullukları genel yasaya uymayan istisnalardır. Eşeysel dimorfizmin evrimsel açıklaması doğruysa, “ters” dekorasyonlar da beklediğimiz gibidir; fakat türler özel olarak yaratılmışsa aynı sonucu bekleyemeyiz. Dişi neyi seçiyor, nasıl seçiyor? Dişilerin seçici taraf olduğu “normal” eş seçimine dönelim. Bir erkeği seçerken gerçekten ne arıyorlar? Bu soru evrim biyolojisinde ünlü bir tartışmayı canlandırmıştır. Daha önce de gördüğümüz gibi Alfred Russel Wallace bile dişilerin seçici olduğu konusunda şüpheliydi (ve sonuçta hatalıydı). Teorisi dişilerin yırtıcılardan saklanmaya ihtiyacı olduğu için erkeklerden daha az renkli olduğu, erkeklerin parlak renklerinin ve süslerinin ise fizyolojilerinin yan ürünü olduğuydu. Fakat erkeklerin neden saklanmak zorunda olmadığına dair hiçbir açıklama yapmadı. Darwin’in teorisi ise biraz daha iyiydi. Erkek seslerinin, renklerinin ve süslerinin dişi tercihi ile evrildiğini güçlü bir şekilde hissetmişti. Dişiler neye dayanarak seçim yapıyordu? Yanıtı şaşırtıcıydı: saf estetik. Darwin dişilerin, aslen cazip görmüyorlarsa bu özenli şarkılar veya uzun kuyruklar gibi şeyleri seçmeleri için bir neden bulamıyordu. Eşeysel seçilim konusunda çığır açan çalışması İnsanın Türeyişi ve Eşeye Bağlı Seçilim (1871), dişi hayvanların erkeklerin türlü özellikleri karşısında nasıl “büyülendiklerini” ve nasıl “kur yapıldığını” anlatan ilginç antropomorfik açıklamalarla doludur. Wallace’ın da not ettiği gibi, hâlâ bir sorun vardı. Hayvanlar, özellikle de arı ve sinekler gibi basit olanlar, bizim gibi bir estetik duygusuna sahip miydi? Darwin bunun üzerine bahse girdi: “Avustralya’nın çardak kuşlarında olduğu gibi, kuşların parlak ve güzel objeleri takdir ettiğine dair bazı pozitif kanıtlarımız olsa da, şarkının gücünü kesinlikle takdir ediyor da olsalar, yine de birçok dişi kuşun ve memelinin, eşeysel seçilime dayandığını söylediğimiz süsleri takdir etmek gibi başarılı bir tat alma duyusuna sahip olmasının hayrete şayan olduğunu kabul ediyorum. Ve bu özellikle de sürüngenler, balık ve böcekler için çok daha hayret vericidir. Fakat aşağı canlıların aklına dair çok az şey biliyoruz.” Bütün yanıtları bilmese de bu Darwin’in doğruya Wallace’tan daha yakın olduğunu gösterir. Evet, dişiler seçim yapar ve bu seçimler eşeysel dimorfizmi açıklıyor gibi görünmektedir. Fakat dişi tercihinin basitçe estetiğe dayandırılması bir anlam ifade etmiyor. Yeni Gine cennet kuşları gibi yakın akraba türlerin erkekleri çok çeşitli tüylere ve eşleşme davranışına sahiptir. Bir türe güzel gelen şey onun en yakın akrabalarına güzel gelen şeyden çok mu farklıdır? Aslında, artık dişi tercihlerinin kendi başlarına uyumsal olduğuna dair çok kanıtımız var. Bazı erkeklerin seçilmesi dişilerin genlerini yaymasına yardım eder. Tercihler Darwin’in öne sürdüğü gibi her zaman rasgele ve doğuştan gelen tat almayla ilgili değildir, birçok durumda muhtemelen seçilimle evrimleşmiştir. Bir dişi belirli bir erkeği seçerek ne kazanır? Bunun iki yanıtı vardır. Dişi, yavru bakımı boyunca daha fazla ve sağlıklı yavrular üretmesine yardım edecek erkeği seçerek doğrudan yarar sağlayabilir. Veya diğer erkeklerden daha iyi genlere (sonraki jenerasyonda döllerine avantaj sağlayacak olan genler) sahip olan erkeği seçerek dolaylı yoldan yarar sağlayabilir. Her iki yoldan da dişi tercihlerinin evrimi doğal seçilim tarafından elverişli kılınacaktır. Doğrudan yararları ele alalım. Bir dişiye daha iyi bölgeleri sahiplenen bir erkekle çiftleşmesini söyleyen bir gen, döllerinin daha iyi beslenmesine veya daha güzel yuvalar edinmesine yardımcı olur. İyi bölgelerde yetiştirilmemiş gençlere oranla daha iyi yaşayacak ve üreyeceklerdir. Bu şu anlama gelir; genç popülasyonu kendinden önceki jenerasyonun sahip olduğundan daha yüksek oranda “tercih geni”ne sahip dişiler içerecektir. Jenerasyonlar geçtikçe ve evrim devam ettikçe her dişi sonunda tercih genine sahip olacaktır. Hatta daha iyi bölgelerin tercihini artıran başka mutasyonlar varsa bunların da frekansı artacaktır. Zamanla daha iyi bölgelere sahip erkeklerin tercih edilmesi çok daha güçlü olmaya doğru evrilecektir. Ve bu bölgeler için daha güçlü rekabet eden erkeklerin seçilmesiyle sonuçlanacaktır. Dişi tercihi arazi için erkekler arası rekabetle birlikte evrimleşir. Seçici dişilere dolaylı yarar sağlayan genler de yayılacaktır. Kendisini bir hastalığa karşı diğerlerinden daha dirençli yapan gene sahip bir erkek hayal edin. Bu tür bir erkekle çiftleşen dişi hastalığa karşı daha dirençli döller üretecektir. Bu erkeği seçmek ona evrimsel bir yarar sağlar. Şimdi de bu daha sağlıklı erkekleri dişinin eş olarak belirlemesine yardımcı olan bir gen hayal edin. Eğer dişi böyle bir erkekle çiftleşirse, bu çiftleşme iki geni de (hem hastalığa karşı direnç geni hem de hastalığa karşı dayanıklıları tercih etme geni) içeren kız ve erkek çocukları meydana getirecektir. Her jenerasyonda, daha iyi üreyen ve hastalığa karşı en dirençli bireyler, aynı zamanda dişilere en dirençli erkekleri seçmesini söyleyen geni de taşıyacaktır. Bu direnç genlerinin doğal seçilimle yayılması gibi, dişi tercihi için olan genler de bunların sırtında ilerleyecektir. Bu yolla hem dişi tercihi hem de hastalığa karşı direnç bir tür içerisinde artacaktır. Bu iki senaryo da dişilerin neden bazı erkekleri tercih ettiğini açıklar, fakat parlak renkler veya özenli tüyler gibi erkeklerin belirli özelliklerini neden tercih ettiğini açıklamaz. Bu muhtemelen, belirli özellikler dişiye o erkeğin daha büyük doğrudan veya dolaylı yararlar saplayacağını söylediği için gerçekleşmektedir. Dişi tercihine dair bazı örneklere bakalım. Kuzey Amerika’nın ev ispinozu renkleri açısından eşeysel dimorfiktir: dişiler kahverengiyken erkeklerin kafasında ve göğsünde parlak renkler vardır. Erkekler bölgelerini savunmaz ama yavru bakımını üstlenir. Michigan Üniversitesi’nden Geoff Hill yerel bir tür içinde erkeklerin renklerinin açık sarıdan portakala veya parlak kırmızıya kadar değişkenlik gösterdiğini buldu. Rengin üreme başarısını etkileyip etkilemediğini görmek amacıyla saç boyası kullanarak erkekleri daha parlak veya soluk yaptı. Ve tabii ki parlak olanlar soluk renklilerden daha başarılı bir şekilde eş buldu. Ve üzerinde oynanmamış erkekler açısından, dişiler solgun renkli erkeklerin yuvasını parlak olanlarınkine oranla daha fazla terk etti. Dişi ispinozlar neden daha parlak erkekleri tercih ediyor? Hill, aynı popülasyonda parlak erkeklerin yavrularını solgunlardan daha fazla beslediğini gösterdi. Yani dişiler daha parlak erkekleri seçmekle, döllerinin daha iyi beslenmesi şeklinde doğrudan bir yarar sağlıyordu (Daha solgun erkeklerle eşleşen dişiler yavruları yeteri kadar beslenmediği için yuvalarını terk etmiş olabilir). Peki, neden daha parlak erkekler daha fazla besin getirir? Muhtemelen parlaklık genel bir sağlık belirtisi olduğu için. Erkek ispinozların kırmızı rengi, yedikleri tohumlardaki karoten maddesinden gelir – bu maddeleri kendileri üretemezler. Yani daha parlak renkliler daha iyi beslenmiştir ve muhtemelen genel anlamda daha sağlıklıdır. Dişiler parlak renkli erkekleri, renk onlara “aile ambarını en iyi stoklayacak erkek benim” dediği için bunları seçiyor gibiler. Dişilere daha parlak erkekleri seçmesinde yardımcı olan herhangi bir gen o dişilere doğrudan yarar sağlar ve böylece seçilim bu tercihi artıracaktır. Ve buradaki tercihle, tohumları parlak tüylere çevirebilen her erkek aynı zamanda avantajlı olacaktır çünkü daha fazla eşi güvenceye alacaktır. Zamanla eşeysel seçilim bir erkeğin kırmızı rengini abartacaktır. Dişiler ise solgun kalacaktır çünkü parlak olmaktan kazanacakları hiçbir şey yok; hatta yırtıcılara daha çekici gelmekten yakınabilirler. Sağlıklı ve güçlü bir erkek seçmenin başka doğrudan yararları da vardır. Erkekler, dişiye, çocuğuna veya her ikisine de aktarabilecekleri parazit veya hastalıklara sahip olabilir ve bu tip erkeklerden kaçınmak bir dişinin yararınadır. Bir erkeğin rengi, tüyleri ve davranışı hastalıklı veya zararlı olup olmadığına dair ipucu sağlayabilir: sadece sağlıklı erkekler yüksek sesle şarkı söyleyebilir, güçlü bir duruş sergileyebilir veya parlak, yakışıklı tüyler çıkartabilir. Mesela eğer bir türün erkekleri normalde parlak maviyse, soluk mavi bir erkekle çiftleşmekten kaçınmak en iyisidir. Evrim teorisi dişilerin, erkeğin iyi baba olacağını gösteren herhangi bir özelliği seçeceğini gösterir. Tek gereken bu özellik için tercihi artıran bazı genlerin olması ve o özelliğin anlatımındaki çeşitliliğin erkeğin durumu hakkında ipucu vermesidir. Gerisi kendiliğinden gelir. Çalı tavuğunda, parazit bitler erkeğin ses kesesinde kan benekleri oluşturur, bu özellik leklerde kasılarak yürürken kabarık, yarı saydam bir kese gibi durur. Ses keselerine suni yolla kan benekleri boyanmış erkekler kayda değer şekilde az eş edinebilir: bu benekler dişiye erkeğin hastalıklı ve muhtemelen kötü baba olduğuna dair tüyo verir. Seçilim sadece dişinin beneksiz keseleri tercih etmesini sağlayan genleri elverişli kılmayacaktır, aynı zamanda bu durumu belli eden erkek özelliğini sağlayanları da elverişli kılacaktır. Erkeğin ses kesesi daha da büyüyecektir ve dişinin pürüzsüz ses kesesi tercihi artacaktır. Bu, erkeklerde abartılı özelliklerin evrimine neden olabilir, örneğin saçma bir şekilde uzun olan Whydah ispinozu kuyruğu gibi. Bütün bu süreç, erkek özelliğinin daha fazla arttığında yaşamını tehlikeye düşürecek kadar abartılı hale geldiği an, yani döl üretiminin net sayısı kötü etkilendiği an sona erer. Peki, dolaylı yarar sağlayan dişi tercihlerinde durum nasıldır? Bu yararlardan en aleni olanı bir erkeğin döllerine sürekli verdiği şey, yani genleridir. Ve bir erkeğin sağlıklı olduğunu gösteren özellikler aynı zamanda genetik yönden iyi özellikler taşıdığını da gösterebilir. Daha parlak renkli, daha uzun kuyruklu veya daha yüksek sesli erkekler, rakiplerinden daha iyi yaşamalarına ve üremelerine olanak sağlayan genlere sahip olduğu için bu özellikleri gösteriyor olabilir. Bu, aynı şekilde, özenli çardaklar üretme yeteneğine sahip olan veya büyük taş yığınları oluşturabilen erkekler için de geçerli olabilir. Bir erkeğin daha iyi yaşama yeteneği veya daha fazla üreme yeteneği sağlayan genleri olduğunu gösteren pek çok özellik hayal edebilirsiniz. Evrim teorisi bu durumlarda üç tür genin frekansının birlikte artacağını söyler: bir erkeğin iyi genlere sahip olduğunu yansıtan “gösterge” özellik genleri, bir dişinin bu gösterge özellikleri tercih etmesini sağlayan genler ve son olarak varlığı gösterge sayesinde yansıtılan “iyi” genler. Bu karmaşık bir senaryodur, fakat çoğu evrim biyoloğu bunu, ayrıntılı erkek özellikleri ve davranışları için en iyi açıklama olarak görür. Fakat “iyi genler” modelinin gerçekten doğru olup olmadığını nasıl test edebiliriz? Dişiler doğrudan mı yoksa dolaylı yararları mı arar? Bir dişi daha az güçlü veya daha az gösterişli bir erkeği geri çevirebilir, fakat bu o erkeğin zayıf genetik yapısını değil de enfeksiyon veya yetersiz beslenme gibi sadece çevresel etkilerle oluşmuş bir halsizliği gösteriyor olabilir. Bu karmaşıklıklar herhangi verili bir koşulda eşeysel seçilimin nedenlerini ortaya çıkarmayı zorlaştırır. Belki de iyi genler modelinin en başarılı sınaması Missouri Üniversitesi’nden Allison Welch ve arkadaşları tarafından gri ağaç kurbağası üzerinde yapılmıştır. Erkek kurbağalar, ABD’nin güneyinde yaz gecelerinin simgesi olan yüksek sesler çıkararak dişileri etkiler. Yakalanan kurbağalarla yapılan çalışmalar dişilerin daha uzun naralar atan erkekleri tercih ettiğini göstermiştir. Bu erkeklerin daha iyi genlere sahip olup olmadığını test etmek için araştırmacılar farklı dişilerden yumurtaları bölüp her dişinin yumurtasının bir yarısını in vitro uzun naralı erkeklerden aldıkları spermlerle, diğer yarısını ise kısa naralı erkeklerden aldıkları spermlerle döllediler. Bu çaprazlamalardan çıkan iri başlar olgunlaşıncaya kadar beklendi. Uzun naralıların dölleri iribaş halindeyken daha hızlı büyüdü ve daha iyi yaşadı, metamorfozda (iri başların kurbağaya dönüştüğü süreç) daha büyüktü ve metamorfozdan sonra da daha hızlı büyüdü… Jerry A. Coyne

http://www.biyologlar.com/eseyli-ureme-seks-evrimi-nasil-yonlendiriyor

Evrim Teorisi ile İlgili 5 Soru 5 Yanıt

Charles Darwin’in meşhur “Türlerin Kökeni” isimli yapıtının yayınlanmasının üzerinden bir buçuk yüzyıl geçti. Bu süre içinde evrim kuramı sürekli sorgulandı. Darwin genetik ve moleküler biyoloji konusunda hiçbir şey bilmemesine rağmen modern biyoloji bu büyük bilim adamının şaşırtıcı fikirlerini hep doğruladı. Ne var ki bugün evrim biyolojisinin hâlâ yanıtlayamadığı sorular var. Saygın bilim dergisi New Scientist bunların içinden önemli bulduğu 5 tanesini seçerek, en son bulguların ışığı altında uzmanlardan bunları yanıtlamasını istedi. Aşağıda bu sorulara 5 bilim adamının verdiği yanıtları kısaltılmış şekliyle bulacaksınız. 1.Soru Yaşam nasıl başladı? Bu soruyu Glaskow’daki Scottish Üniversities Çevre Araştırmaları Merkezi’nden Michael Russell yanıtladı. 4 milyar sene önce, nükleer ve yerçekimsel enerji Dünya’nın içini kavururken, dışı asteroid darbeleri altında delik deşik olmuştu. Doğal olarak bu ortamda canlıların yaşaması olası değildi. Her şeye rağmen hayat başladı. Pek çok bilim adamı ”vivosentrik” bir yaklaşımla bu olağanüstü olaya açıklık getirmek istediler. Bu yaklaşımın amacı, bugünün hayat şekillerinden başlayıp, aşama aşama geriye doğru giderek organik yapı malzemelerinin kökenini bulmaktı. Bana kalırsa bu yaklaşım başarısızla sonuçlanmaya mahkumdu, çünkü bu bakış açısı ilk Dünya’nın jeokimyasını dikkate almaz ve yaşamın ortaya çıkış nedenini gözardı eder. Şikago Üniversitesi’nden Stanley Miller ‘ın proteinlerin yapı taşı olarak bilinen amino asitleri yaratmasının üzerinden 50 sene geçti. Metan, hidrojen ve amonyağı, kapalı bir cam gereç içinde ısıtan Miller, daha sonra karışımı elektrik kıvılcımı ile hareketlendirdi. Bu deneysel çalışma, kavurucu bir Dünya’da yaşamın bir yıldırım düşmesi ve morötesi radyasyonla başlamış olabileceğiiddiasını doğrulayan bir kanıt olarak ele alındı. Ancak bugün insanlar proteinlerin ilk başta varolduğuna inanmıyor. Bugün geçerli olan düşünceye göre hayat bir RNA dünyasında başladı. Ve bu dünyada RNA’ların sadece bilgi taşıyıcı olarak değil, ilk denizlerdeki organik bileşimlerden yararlanarak, yaşamın reaksiyonlarını katalize eden ilkel enzimler olarak davrandığı düşünülüyor. Ne var ki okyanusların, hayat için gerekli olan organik molekül konsantrasyonunu sağlamış olma olasılığı çok düşük. Kuramcılar bu soruna çözüm oluşturabilecek değişik düşünceler ortaya atıyor. Bazıları yaşamın kuru bir kara parçasında, -dönemsel olarak buharlaşan bir gölette- başlamış olabileceğini ileri sürerken, başkaları okyanusların donup, gerekli molekül konsantrasyonunun artakalan sıvıda birikmiş olabileceğini ileri sürüyor. Diğer bilim adamları, metabolizmanın bir kil ya da pirit yüzeyinde iki boyutlu başlama olasılığından söz ediyor ve bu iki boyutluluğun lipidlerin hücre zarı olarak kendilerini örgütleyinceye kadar sürdüğüne inanılıyor. İddialar bunlarla sınırlı değil. Uzayın dört bir yanında yaşayan organik moleküller hayatı başlatmış olabilir. Bunlar göktaşlarının üzerinde Dünya’ya inmiş, okyanus yüzeylerinde birikerek, organik reaksiyonların meydana geldiği küçük kesecikler oluşturmuş olabilir. İnandırıcı değil Ben bu kuramların hiçbirini inandırıcı bulmuyorum. Benim görüşüme göre yaşamın kökeni biyolojik değil, jeolojik. Evrim ağacını köklerine doğru irdelemek yerine, kökten başlayarak yukarı doğru çıkmakta fayda var. Bu arada ilk Dünya’nın jeolojik yapısını hesaba katmak gerekiyor. Evrenimizde, yapılar eldeki malzeme ile inşa edilir. Bu süreçte enerji bir düzeyden diğerine geçiş sırasında azalırken, entropi (herhangi bir sistemin evrenle beraber düzensizlik ve etkisizliğe doğru olan eğilimi) çoğalır. Dolayısıyla yaşamın kökenlerini ortaya çıkartma çabalarımızda, ilk Dünya’yı oluşturan malzemenin ve enerjinin yaşam-benzeri bir yapıyı oluşturmak için nasıl biraraya geldiğini sormamız gerekir; hangi termodinamik ve kimyasal reaksiyonların söz konusu olduğunu, atık ve aşırı ısıdan nasıl kurtulduğumuzu öğrenmemiz gerekir. Özetle, yanıt bulmamız gereken soru şu: Kendi kendini düzenleyen elektrokimyasal bir aracın, birkaç milivoltluk bir enerjiyle, redoks reaksiyonlarından yararlanarak, aynı anda çoğalarak ve dışkı atarak nasıl varolduğunu çözmemiz gerekir. Başlangıç noktası İlk Dünya yaşamın başlangıç noktası olarak iki adet saha adayı sunuyor. Biri okyanus sırtlarındaki asidik pınarların içindeki mineral tortul birikimleri; diğeri deniz tabanındaki alkalin sızıntıları. Bu iki tip pınar daha soğuk, karbonik okyanus tabanına sürekli olarak malzeme ve enerji taşır. Ayrıca bu iki ortam da bugün bile canlı organizmaların yaşamasına uygun alanlardır. Ama bana göre pek çok nedene bağlı olarak okyanus sızıntıları yaşamın başlangıç noktası olmaya daha yatkın. Bir kere bu okyanus sızıntıları dayanılabilir bir sıcaklık olan 75 derecedir. Oysa asidik pınarlarda sıcaklık 350 dereceye kadar çıkar ve burada organik moleküller yaşayamaz. Ayrıca alkalin sızıntılar organik moleküllerin eriyebilirliklerine uygundur. Ve alkalin sızıntıların asidik okyanus sularıyla birleştiği noktada daha çok enerji bulunur. Çünkü denizden gelen protonlar, sızıntıdaki elektronları güçlendirir. Sonuçta toplamda ortaya yarım voltluk akım çıkar. Bu da metabolizma için yeterlidir. Yaşam eski alkalin sızıntılarda başladıysa neye benziyor olabilir? Bana kalırsa bu ilk şekil hareketsiz demir sülfid bölmeleri şeklindeydi. Bunlar yarı geçirgen, yarı iletken olmakla birlikte, reaksiyonları katalize edebilecek özellikteydi. Ayrıca demir sülfid zarlar organik zarların öncüsü, atası olabilir. Daha da önemlisi bunlar moleküler yapı bloklarını biraya getirmiş olabilir. Dolayısıyla yaşamın kimyasal reaksiyonlarının olması için ideal bir ortam oluşturuyordu. Bu demir sülfid bölmelerinin içinde hidrojen, amonyak ve siyanür kaynayıp durur. Bunların birarada reaksiyona girmesi için gerekli olan enerji, derece derece değişen elektronlardan sağlanır. Sonuçta şeker, ribonükleik asitler ve amino asitler oluşur. Eğer demir sülfid bölmeler Dünya’da hayatı başlatacak yapı taşlarının biraya gelmesi için yeterli ortamı sağladıysa, evrendeki herhangi bir gezegende nemli, kayalık ve güneşin aydınlattığı ortamlarda aynı rolü oynamıştır. Dolayısıyla sıvı suyun bulunduğu her yerde hayat oluşabilir. 2. Soru Mutasyonlar evrimi nasıl gerçekleştirdi? Bu soruyu University College London’dan Andrew Pomiankowski yanıtladı. Genetik mutasyonlar evrimin hammaddesidir. Ama hangi tip mutasyonların önemli olduğunu belirtmek gerekir. Eskiden beri biyologlar genlerdeki değişiklikler üzerinde durmayı seçim eder. Bu da protein kodlarının DNA dizilimidir. Son yıllarda kabul gören görüş şudur: Mutasyon sonucunda, amino asit dizilimi biraz değişik proteinler oluşur. Proteinler organizmaya hayatta kalma avantajı sağlar. Ne var ki pek çok gen diziliminin değişimi milyonlarca senede ama gerçekleşir. Bu yavaşlıkta seyreden bir değişim, morfolojik ve davranışsal evrimi yaratmış olabilir mi? Ben ve benim gibi gelişim biyologları en son yıllarda buna alternatif oluşturan bir görüş ortaya attı. Bu görüşe göre evrim konusunda en önemli rolü oynayan unsur, DNA’nın gen ifadesini düzenleyen bölgesindeki mutasyonlardır. Aykırı yollar var Son 10 senede bu konuda gerçekleştirilen en önemli keşif, değişik hayvan grupları arasındaki ortak gelişim genetik yollarıdır. Klasik örnek ”Hox” genleridir. Hox genleri sorumludur. Bunlar ilkin meyve sineklerinde keşfedildi. Ama balıklarda, kurbağalarda ve insanlarda da aynı gen bulundu. Bu organizmalarda vücut şekli değişik olmakla birlikte, Hox geninin dizilimi birbirinin aynısıdır. Daha da önemlisi, Hox genlerinin uzak türler arasında değiş tokuş edilmesidir. Bundan da şu sonuç çıkıyor: Evrim, aslında genleri korumaya alıyor. Ama aralarındaki etkileşimle oynayarak meyve sineklerinden insanlara dek çok değişik türlerin oluşumunu hazırlıyor. Gen ifadesini denetim eden sistemlerin biri ”cis-regülasyonudur”. Cis-regülasyonu, transkripsiyon faktörleri olarak bilinen proteinlerin, DNA’nın “promoter bölgeleri”ndeki genlerine bağlanmasıdır. Her promoter’ın çoklu bağlanma siteleri vardır. Transkripsiyon faktör bağlama, genleri açık ya da kapalı konuma getirir. Bunun sonucunda gen ifadesi gelişim sırasında denetim edilir. Ayrıca transkripsiyon faktör bağlama, organizmanın aynı genlere sahip olmakla beraber değişik şekillere dönüşmesine izin verir. Sonuçta ortaya az değişik proteinler çıkar. Sözgelimi embriyo evresinden yetişkine dönüşmek ya da dişi/erkek form değişikliği gibi. Şimdi artık, cis-regülasyon’un gelişim için çok önemli olduğu biliyoruz. Son yıllara kadar genlerin birbiriyle nasıl iletişim kurduğunu bilmiyorduk. Ama en son araştırmalar genler arasındaki iletişim ağını yavaş yavaş aydınlatıyor. Bu bilgilerin ışığı altında mutasyonların şekil ve işlev açısından ne biçimde uyum sağladını anlayabiliyoruz. Ama bu konuda temkinli davranmakta yarar var. Tüm bilim dallarında yeni bulguları abartma eğilimi vardır. Gen ağlarındaki evrimsel değişikliklerin, morfolojik evrimi tetikleyen en önemli güç olduğu iddialarını değerlendirirken kuşku payı bırakmakta yarar var. Kuşkusuz, genlerin iç mutasyonlarının ve yeni gen mutasyonlarının evrim konusunda çok önemli rol oynadığını biliyoruz. Ayrıca bundan böyle gen dizilimi konusundaki fonksiyonel değişiklikleri izleyebiliyoruz. 3. Soru Yeni türler nasıl oluştu? Bu soruyu İngiltere’deki Hull Üniversitesi’nden George Turner yanıtladı: Son günlere kadar türlerin nasıl oluştuğunu bildiğimizi sanıyorduk. Bu sürecin popülasyonların tecrit edilmesiyle oluştuğu inancı yaygındı. Popülasyonlar ciddi bir ”gen darboğazı”ndan geçerse çeşitlenme başlıyordu. Sözgelimi hamile bir dişi, uzak ve izole bir adaya gider ve doğan çocuklar birbirleriyle çiftleşirse yeni bir tür doğabilir. “Kurucu etkisi” adı verilen bu modelin güzelliği laboratuvarda test edilebilme olasılığıydı. Ne var ki gerçek yaşamda bunu kimse başaramadı. Evrim biyologlarının çabalarına rağmen, kimse kurucu popülasyondan yeni bir tür yaratmayı başaramadı. Dahası, bildiğim kadarıyla, küçük organizmaların yabancı ortamlara bırakılması sonucu yeni türler oluşmadı. Son günlerde çabalar başka bir yöne yoğunlaştı. Biyologlar çeşitliliğin coğrafi tecritten kaynaklandığına inansa da bu bağlamda “şans” ve küçük popülasyon kavramları geçerliliğini yitirdi. Artık biyologlar, türleri hızlı bir biçimde değiştiren aykırı yolları incelemeyi seçim ediyor. Etkili olan belli başlı güçler ekolojik seleksiyon (Değişen çevre koşullarına uyum çabaları sonucunda ortaya yeni türler çıkar) ve seksüel seleksiyondur (Değişen cinsel tercihler popülasyonda değişiklik yaratır). İşte en kritik soru bu iki gücün önemi üzerine yoğunlaşıyor. Ekolojik seleksiyona en güzel örnek ”paralel çeşitlenme” olgusudur. Burada aynı türler, birbirinden bağımsız şekilde, benzer çevresel koşullara tepki olarak, değişik mekânlarda ortaya çıkar. Buna en iyi örnek Kanada göllerinde yaşayan dikenli balıktır (gasterostus). Kanada’daki göllerde iki çeşit dikenli balık bulunur. Biri dipteki yiyeceklerle beslenirken, diğeri planktonlarla beslenir. Mitokondriyal DNA’larının (mtDNA) incelenmesi sonucu bu iki türün paralel çeşitlenme sonucu ortaya çıktığı anlaşıldı. Bu bulgular, “simpatrik çeşitlenme” denilen yeni bir oluşumu da ortaya çıkarttı. Burada çeşitlenme coğrafi tecride bağlı değildir; melezleşme söz konusudur. Tecrit çeşitlenmesini savunanlar bu görüşe karşı çıksalar da mtDNA çalışmaları simpatrik çeşitlenmeyi destekliyor. Bazı biyologlar melezleştirme sürecinin yeni türlerin oluşumunda önemli bir rol oynadığını düşünüyor. Kuram olarak, bir türün paralel evrim sonucu mu, seksüel seleksiyon sonucu mu yoksa melezleştirme sonucu mu ortaya çıktığını ”çeşitlenme genleri” ne bakarak test edebiliriz. Çeşitlenme genleri, değişik organizmaları birbiriyle karıştırarak üretme olasılığını ortadan kaldırır. Her gün yeni bir genom diziliminin çözümlendiği en son dönemlerde, biyologlar bir gün bu tür genleri keşfedeceklerini umuyor. Ayrıca genlerin ifade farklılıklarının daha çok incelenmesi sonucu çeşitlenmeyi daha iyi anlayabileceğiz. Bana kalırsa çeşitlenme nedenlerini araştırırken en uygun yöntem Mendel tipi çapraz eşleştirmedir. Dolayısıyla çeşitlenmenin tek bir genden mi yoksa bir çift genden mi -erkeğin kur yapması ve dişinin bu sinyale yanıt vermesi gibi- kaynaklandığı netlik kazanabilir. Pek çok bilim adamı bu yöntemin genel tabloyu açıklamakta yetersiz kalacağını iddia etse de, çeşitlenmesini yeni tamamlayan türleri incelemenin en doğru yöntem olduğunu düşünüyorum. 4. Soru Evrim tahmin edilebilir mi? Bu soruyu Oxford Üniversitesi’nde ve Yeni Zelanda’daki Auckland Üniversitesi’nde çalışan Paul Rainey yanıtladı: Son yıllarda yitirdiğimiz Stephen Jay Gould ‘a göre evrim, gelişigüzel ve seçici güçlerin sürekli olarak birbirleriyle etkileşimi sonucu ortaya çıkar. Gelişigüzel unsurların (mutasyon, rekombinasyon ve göç) ve stokastik unsurların (hedefe ulaşmak için uygun olasılıkları seçme işlemi-eş bulma olasılığı gibi) varlığı, evrimin tekrarlanamadığını, tahmin edilemediğini, hatta hiçbir kuralın geçerli olmadığını ortaya koyar. Ancak, Darwin’in net bir biçimde belirttiği gibi, beklenmedik bir olay ile doğal seleksiyon yan yana, beraber etkili olabilirler. Aslında Darwin’in doğal seleksiyon kuramının öngörüsü şudur: Organizmalar çevrelerine uyum sağlar. Olasılık çerçevesi En önemlisi, Darwin’in kuramına dayanarak yapılan bütün tahminler olasılık çerçevesi içinde ele alınır. Bu bağlamda spesifik bir olaya karşı bütün olasılıkları öngörmek gerekir. Burada en önemli sıkıntı, bütün olasılıkların hiçbir zaman hesaba katılamamasıdır. Bugünün evrim biyologları “yasaları” fizik bilimindeki yasalar gibi ele almasalar da -Darwin ve başka 19.Yüzyıl biyologlarının yaptığı gibi- evrimle ilgili kimi temel kuralların varolduğuna dair somut kanıtlar elde ediyor. Evrimsel değişikliklerin mekanizması daha iyi anlaşıldıkça, kimi sonuçların olası başka sonuçlardan daha olası olduğu görülüyor. Tarihsel olasılıklara bir göz attığımızda, Gould’un iddiasına kesin bir yanıt getirmek olası değil. Ama işe başlarken, biyolojik sistemlerin temel yapıları hakkında elde ettiğimiz bilgilerin ışığı altında, evrimin nereye varacağına dair tahminlerde bulunabiliriz. Şimdiden organizmaların çevrelerine nasıl uyum sağlayacağına dair öngörülerde bulunabiliyoruz. Dolayısıyla gelecekte olası değişikliklere dair kantitatif (nicel) tahminlerde bulunmak da olası olabilir. 5. Soru Tanrı’nın evrimle ilgisi ne? Bu soruyu İngiltere’deki Liverpool Üniversitesi’nden Robin Dunbar yanıtılyor: Pek çok insan, bu konuda meşhur bilim felsefecisi Karl Popper ile aynı fikirdedir. Popper’a göre din metafiziğin dünyasına aittir; bilimsel sorgulamaya tabi tutulamaz. Biyologların çoğu bu görüşe katılarak Tanrı konusunu tartışmaların dışında tutar. Ancak din ve tanrıların kişi davranışı üzerinde çok büyük etkisinin olduğunu yadsımak da doğru değildir. İşte bu sebeple ben ve benim gibi düşünen biyologlar, dinlerin niçin varolduğunu ve kişi evriminin hangi noktasında devreye girdiğini araştırmaya başladık. İnsanlar hayvan standartlarına göre çok tuhaf bir özellik sergiler. Bu özellik içinde bulunduğumuz topluluğun isteklerini kabullenme konusunda gösterdiğimiz olağaüstü arzu, hatta bu yolda canımızı bile vermeye hazır durumda olmamızdır. Bu düzeyde bir özveri başarının anahtarıdır. İnsanlar, kollektif çözümlerden yola çıkarak kendi küçük dünyalarıyla sınırlı kişisel sorularına yanıt getirmeye çabalarlar. Bu çözümün yararlı olabilmesi için kişiler kısa vadeli kişisel çıkarlarını uzun vadeli kazançlarıyla değiş tokuş etmeyi öğrenmek zorundadır. Ve gruba uyum sağlama özelliği bizi başka bir tehlikeyle karşı karşıya bırakır. Bu tehlike, topluma ait olma özelliğinden yararlanıp, bunun bedelini ödemek istemeyen parazitlerdir. Tabi ki bu asalakları durdurmanın yolları vardır. Biri, yasalar yardımıyla denetleme, ikincisi toplumsal terbiye kurallarıdır. Ama bu iki yöntem de bir yere kadar yararlıdır: “Benim yaptıklarımı senin onaylayıp onaylamaman beni ilgilendirmez. Ben kazancıma bakarım” şeklinde düşünenlere bu iki yöntem etkili olmaz. İşte bu noktada din devreye girer; kontrolumuzun dışında kimi güçlerin müdahale etme olasılığı insanlarda tedirginlik yaratır. Dinin yarattığı ceza sistemi herhangi bir sivil kuruluşun uygulayacağı cezadan daha ağırdır. Ama bu sistemin çalışması, insanların doğaüstü bir dünyanın varlığına inanmasına bağlıdır. İşte bu aşamada türümüze özgü olan bir özellik önem kazanır. Bu, kişi beynini okuma yeteneğidir. Buna “Aklın teorisi” diyebiliriz. Bu kuramı şu cümleyle açıklayabiliriz: “Senin ve benim ahlaklı davranma arzusu duyduğumu bilen doğaüstü bir varlığın varolduğunu sandığına inanıyorum.” Bu düşünca tarzı, dini doğaüstü kişisel inançların ötesine geçirerek, herkesin paylaştığı toplumsal bir fenomen haline getirdi. Beynimiz tanrıları ve dinleri yaratmamıza izin veriyor. Ama bu, büyük beyinlerin tesadüfen ortaya çıkarttığı bir yetenek midir? Yoksa uyum kaygısı sonucu mu ortaya çıkmıştır? Benim çalışmalarımdan çıkarttığım sonuçlara göre insanların da dahil olduğu primatlarda neokorteksin hacmi -özellikle frontal lob- doğrudan grubun büyüklüğne ve sosyal yeteneklere bağlı olarak değişir. Başka bir deyişle, beynin boyutlarının evrimi, geniş grupların içinde istikrarı sürdürebilecek sosyal yeteneğe bağlı olarak gelişir. Söz konusu insanlar olduğu zaman, bu toplumsal uyum çabalarına din de dahildir. Dinin büyük ölçüde zihinsel güce gereksinim duyduğu gerçeğinden hareketle, dinin ne zaman evrimleştiğini sorabiliriz. Dinsel inançları destekleyecek zihinsel gelişime, evrimsel tarihimizin en son dönemlerinde eriştiğimizi söyleyebiliriz. Dinin, yarım milyon sene ilkin Homo sapiens’in ortaya çıkışından ilkin başlaması olanaksız görünüyor. Bu tarih büyük bir olasılıkla modern insanın 200.000 sene ilkin ortaya çıkışına denk gelebilir. Aynı dönem lisanın da ortaya çıkışına rastlıyor. Kaldı ki dinin varlığı büyük ölçüde lisana bağlıdır. Tabi ki din ödül kavramını da beraberinde getirir. Dini yasaklar toplum krallarına uyumu sağlamakla birlikte, dinsel faaliyetler grubun bir parçası olma duygusunu da yaratır. Son yıllarda sinirbilim beyindeki “Tanrı-noktası”nın yerini buldu. Bu bölge varlığımızın uzamdaki yeri ile ilgili duyulardan ve “evrenle tek vücut olma” duygusundan da sorumlu. Fakat gruba bağlılığı pekiştiren ön önemli araç endorfinler. Bu beyin salgısı, vücut stres altında olduğu zaman salgılanır. Pek çok dinsel törende dövünme, dans ve ilahilerden oluşan uzun ayinler sonucunda endorfinin salgılanması tesadüf değildir. Endorfinlerin uyuşturucu etkisi insanlarda rahatlama ve aynı deneyimi paylaşan grup bireyleriyle yakınlaşma duygusu uyandırır. Dolayısıyla dinler, asalakların toplumsal yaşamın bütün avantajlarından hiçbir bedel ödemeden yararlanmasını önlemek için büyük beyinler tarafından yaratılmıştır. Ama dinsel faaliyetler, doğal dünyanın acımasızlığına karşı toplumsal dayanışmayı artıran yararlı etkinliklerdir. Kaynak: “EVRİM ile ilgili 5 soru 5 yanıt”, Cumhuriyet Bilim Teknik, 5.7.2003, New Scientist’ten Reyhan Oksay çevirisi, 14 Haziran 2003 Bilim Bilmek

http://www.biyologlar.com/evrim-teorisi-ile-ilgili-5-soru-5-yanit

Klonlama

Klonlamanın özellikle de insan klonlama konusunun etik boyutu kamuoyunca, günlük yaşamda kültürün, temel bilimsel birikimin, tarih, siyaset ve toplumbilimin en yaygın ve temel kavramlarıyla tartışılabilir nitelik kazanmıştır. Nükleer enerji kullanımı, hormon destekli tarım, ozon tabakasına zarar veren gazların üretimi gibi, farklı toplum kesimlerince kolayca anlaşılabilir ve tartışılabilir kabul edilen klonlama, şimdiden kamuoyunun gündeminde yerini aldı. Kamuoyunun, bilimsel ve teknolojik gelişmelerin uygulanıp uygulanmaması konusunda birtakım ahlaki gerekçelerle ne şekilde ve ne ölçüde yaptırım uygulayabileceği tartışmalı olsa da, şu anda kamuoyunun isteksizliği klonlama çalışmalarının daha ileri aşamalara taşınmasına en güçlü engel olarak gösteriliyor. Oysa, "tüp bebek" diye bilinen in vitro fertilizasyonun, başlangıçtaki şiddetli tepkilerden sonra kolayca kabullenilmesi, işin içine "çocuk sahibi olma isteği ve hakkı" karıştığı durumlarda (aynı argüman klonlama konusunda da sıkça kullanılıyor) toplumun ne kadar kolay ikna olabileceğinin bir göstergesi. Bilimkurgu romanları ve filmlerinde kaba hatlarıyla çokça tartışılmış olan klonlama konusunda halihazırda belli belirsiz bir kamuoyu "oluşturulmuş" durumda. Şu anda sürmekte olan tartışmaların bilinen yanlışlara yeniden düşmemesi için birkaç temel olguya açıklık getirmek gerekiyor. Olası yanılgıların en sık rastlananı, klonlanmış bir canlının, (tartışmalara sıkça insan da dahil ediliyor) genin alındığı canlının fizyolojik özellikleri bir yana, kişilik özellikleri bakımından özdeşi olacağı kanısı. Kazanılmış özelliklerin kalıtsal yolla taşınabileceği yanılgısı, Philosophie Zooloique (Zoolojinin Felsefesi) adlı ünlü yapıtı 1809 yılında yayınlanmış olan, Fransız zoolog Jean Baptiste Lamarck’a dayanıyor. Lamarck’ın görüşlerinin takipçileri, insanların gözlemlenebilir kişilik özelliklerinin önemli ölçüde kalıtsal nitelik taşıdığını savlayarak, çevresel koşulların gelişim üzerindeki etkilerini neredeyse tamamen yadsıyorlardı. Oysa, genetik, evrim, psikoloji gibi alanların ortaya koyduğu çağdaş ölçütler, kazanılmış karakterlerin kalıtsal nitelik gösteremeyeceğini ortaya koyarak, kişilik oluşumunda çevresel etmenlerin güçlü bir paya sahip olduğunu kanıtlamıştır. Bu bağlamda, basında da yankı bulan "koyunlar zaten birbirlerine benzerler" esprisinin aslında ciddi bilimsel doğrulara işaret ettiğinin altını çizmek gerekiyor. Klonlanmış bir koyunun, genetik annesinin genetik ikizi olduğu ölçülerek gösterilebilir bir gerçektir. Oysa, gözlemlenebilir kişilik özellikleri oldukça kısıtlı olan koyunların birbirlerine benzemeleri kaçınılmazdır. Çok daha karmaşık bir organizma olan insanoğlu, sayısız gözlemlenebilir kişilik özelliği sayesinde, genetik ikizinden kolayca ayırt edilebilir. Tüm bunların ötesinde, klonlanmış bir insanın sadece kişilik bakımından değil, fizyolojik ve bedensel özellikleri bakımından da, genetik ikizinden farklı olacağını peşinen kabullenmek gerekiyor. Bir bebeğin biçimsel özelliklerinin ana rahminde geçirdiği gelişim süreci içerisinde tümüyle DNA’sı tarafından belirlendiği görüşü yaygın bir yanılgı. DNA molekülü, insan geometrisine dair tüm bilgileri en sadeleşmiş biçimiyle bile bütünüyle kapsayamayacak kadar küçük. Çoğu biçimsel özellik, akışkan dinamiği, organik kimya gibi alanlardaki temel evrensel yasaların kontrolünde meydana geliyor. Bu süreçte de, her zaman için rastlantı ve farklılaşmalara yeterince yer var. Bir genetik ikiz, kuramsal açıdan, eşine en fazla eş yumurta ikizlerinin birbirlerine benzedikleri kadar benzeyebilir. Uygulamada ise, benzerlik derecesi çok daha düşük olacaktır; aynı rahimde aynı anda gelişmediği, aynı fiziksel ve kültürel ortamda doğup büyüyemediği için... İşin bu boyutunu da göz önünde bulunduran Aldoux Huxley, romanında, Bokanovski Süreci’yle çoğaltılmış bebekleri, yetiştirme çiftliklerinde psikolojik koşullandırmaya tutma gereği duymuştu. Benzer biçimde, 1976’da yazdığı The Boys from Brazil romanında Adolf Hitler’den klonlanan genç Hitler’lerin öyküsünü kurgulayan Ira Levin, klonları, Adolf Hitler’in kişiliğinin geliştiği tüm olaylar zincirinin benzerine tabi tutma gereğini hissetmişti. Tüm bu "hal çarelerine" rağmen, kopya insanın genetik annesinden çoğu yönden farklı olması kaçınılmaz görünüyor. Diğer tüm koşullar denk olsa bile, kopya birey, aynı zamanda ikizi olan bir anneye sahip olmasından psikolojik bakımdan etkilenecektir. Sağduyumuz bize Hitler’i genlerinin değil, Weimar Cumhuriyeti sonrası sosyo-ekonomik koşulların ve genç Adolf’un kıstırıldığı maddi ve manevi bunalımların yarattığını öğretiyor. Tüm bunların ışığında, klonlama konusundaki popüler tartışmaları, tıkanıp kaldıkları, "beklenmedik bir ikize sahip olma" fobisinden kurtarılıp, daha gerçekçi zeminlere çekilmesi gerekiyor. Gen havuzunun (belli bir topluluktaki genetik çeşitlilik) daralması, hayvancılığın geleneksel yapısından koparılıp biyoteknoloji şirketlerinin güdümüne girmesi, yol açılabilecek genetik bozuklukların kontrolden çıkması, bu alanda çalışan bazı şirketlerin (söz gelimi PPL’in) tüm tekel karşıtı yasal önlemleri delerek ciddi ekonomik dengesizliklere yol açması gibi akla gelebilecek sayısız somut etik sorununun tartışılması gerekiyor. Yoksa, akademik organlardan dini cemaatlere kadar sayısız grup gelişmeleri "kitaba uydurma" çabasıyla, kısır tartışmalara girebilir. Örneğin, Budist bir araştirmaci, Dolly’nin eski yaşaminda ne gibi bir kabahat işleyip de bu yaşama klonlanmiş olarak gelmeyi hak ettigi üzerine kafa yoruyormuş. Aslında biyoteknolojik tekelcilik tehdidine, Cesur Yeni Dünya’da Aldous Huxley de işaret etmişti: "İç ve Dış Salgı Tröstü alanından hormon ve sütleriyle Fernham Royal’daki büyük fabrikaya hammadde sağlayan şu binlerce davarın böğürtüsü duyuluyordu..." İnsanoğlunun temel kaygıları, şimdilik bazı temel koşullarda klonlamayla çelişiyor gibi görülüyor: Bir çiftçi düşünün ki, kendisi için tüm evreni ifade eden kasabasında herkese hayranlıktan parmaklarını ısırtan bir danaya sahip olsun. Bu danayı klonlayıp tüm sürüsünü özdeş yapmayı ister miydi? Büyük olasılıkla biraz düşündükten sonra bundan vazgeçerdi. Danasının biricik oluşu ve genetik çeşitliliği sayesinde bu danaya yaşam veren sürüsünün daha da güzel bir dana doğurması olasılığı çok daha değerli. Ömrü boyunca aynı dananın ikizlerine sahip olmayı kabullenmiş bir çiftçinin komşusu her an elinde daha güzel bir danayı ipinden tutarak getirebilir.

http://www.biyologlar.com/klonlama

Kaktüslerin Evrimi

Kaktüslerin nasıl evrimleşmiş olabileceği üzerine düşünürken, akla ilk gelecek veri, çoğunlukla olduğu gibi fosil kayıt verisi olacaktır. Ancak söz konusu canlı grubu kaktüsler olunca, bu noktada bir sorunla karşı karşıya kalırız. Fosilleşme süreci floral materyalin üzerine mineral materyalin sedimentasyonunu, yani ortamda bolca su bulunmasını gerektirir. Kaktüslerin atalarının böyle sulak ortamlarda yaşamış olmalarını bekleyemeyiz. Kuvvetle muhtemel bu nedenle de elimizde kaktüslere dair fosil kayıt bulunmamaktadır. 1944’te, ABD’nin Utah Eyaleti’nde, Eosen yaşlı çökellerde Eopuntia ouglasii türüne ait olduğu düşünülen bir fosil bulunmuştur ama bu fosilin gerçekten bir kaktüse ait oldup olmadığı çok tartışılmışsa da herhangi bir fikir birliği sağlanamamıştır (ancak bunun bir kaktüs fosili olmadığını söyleyenlerin sayısının daha fazla olduğunu da belirtmeden geçmeyelim). Iowa Eyalet Üniversitesi’nden Prof. Robert S. Wallace bu tartışma ile iligli referanslar için Benson (1982)’deki 76-79. sayfaları önermektedir (bkz. Kaynakça). Günümüzde kaktüslerin geçmişi ile ilgili araştırmalar yapan bilimadamları daha ziyade morfoloji üzerinde çalışmakta ya da biyokimyasal, kromozomal veya DNA’ya ait verileri kullanmaktadırlar. Bu bilgiler kullanılarak kaktüs evrimi ile ilgili genel sonuçlara ulaşılabilmektedir.   İşte bu genel sonuçlardan biri şudur: Muhtemelen 50 milyon yıl önce, Senozik soğuması bölgesel kuraklaşmalara neden olduğunda kserofitler (kurakçıllar) ortaya çıktı. Bunların arasında, bütün kaktüslerde bulunan bir takım özellikleri taşıyan bir tip dikenli orman çalısı da vardı. İşte bu çalının kaktüslerin atası olduğu düşünülmektedir. Bu atanın torunları yavaş yavaş çeşitlenmiş, herbiri kendi habitatındaki koşullara uyum sağlayarak hayatta kalmıştır (uyum sağlayamamışların akibetinden bahsetmeye lüzum olmasa gerek). Yakınlarda yapılan DNA varyasyonu ve damar anatomisi çalışmaları kaktüslere en yakın angiosperm ailesinin Portulacaceae (semizotugiller) olduğunu göstermiştir. Bu ailenin Portulaca, Talinum ve Anacampseros cinsleri de kaktüslerin en yakın kuzenleri olarak belirlenmiştir. Yine bu çalışmalarla kaktüslerin daha önceden zannedildiğinin tersine Aizoaceae ailesi ile akraba olmadığı bulunmuştur. Portulaca Talinum Anacampseros   Aizoaceae Portulacaceae ile ilkel kaktüslerin muhtemel ortak atası olan canlı grubunun bir soyunun Yeni Dünya’da (Amerika’da), özellikle Gondwana parçalandıktan sonra yayılıp türleşen kurakçıl bir soy olduğu varsayılmaktadır. Kaktüslerin tam olarak nerede köken aldığı uzun yıllar tartışılmıştır. Günümüzde en çok iki bölge üzerinde durulmaktadır: Karayip Adaları (Orta Amerika’nın doğusu) ve Güney Amerika’nın kuzey batısı. Evrimleşme merkezleri neresi olursa olsun kaktüsler Yeni Dünya’da sıkışmış en büyük angiosperm gruplarından biridir. Bu grup Orta Kanada’dan Patagonya’ya kadar her yerde yayılış göstermektedir. Üç büyük alt ailesi mevcuttur: Pereskioideae, Opuntioideae (Akdeniz çevresinde son 500 yıldır kültürde yetiştiriliyor) ve Cactoideae. Pereskioideae Opuntioideae evrimcalismagrubu.org/images/stories/mak.../kaktus/image016.jpg Cactoideae Pereskioideae ailesinin türleri, odunlu gövde, gelişmiş yapraklar ve C3 fotosentez metabolizması (bkz. Say-fa 3) gibi atasal morfolojik ve anatomik karakterlerin çoğunu göstermektedir. Gövdenin etlenmesi, yaprakların indirgenmesi ya da kaybedilmesi ve fotosentezde CAM yolunun kullanılmaya başlanması kaktüslerin yeni alanlara yerleşmelerini sağlayan evrimsel yeniliklerdir. O zamandan bu yana kaktüslerde, odunlu pereskioid ağaçlardan yapraksız ve etli türlere kadar dikkat çekici bir şekil çeşitliliği meydana gelmiştir. Altesor ve Ezcurra (2003 ve referansları) yaptıkları bir çalışmada kaktüs türlerinde gelişimin erken evrelerinde C3 metabolizmasının kullanıldığını, daha sonra tipik CAM (bkz. Sayfa 3) metabolizmasına geçtiklerini bulmuşlardır. Aynı araştırıcılar kaktüs evriminde gelişimin yavaşlaması (allometrik neoteni) ve jüvenil karakterlerin korunması (pedomorfizm) mekanizmalarının önemli olduğunu göstermişlerdir. Calrquist (1962) de odunlu ergin kaktüslerde anatomik olarak atasal jüvenil özelliklerin varlığına işaret etmiştir. Kaynakça: · Altesor, A. ve Ezcurra, E., 2003. Functional morphology and evolution of stem succulence in cacti. J. of Arid Environ. 53: 557-567. · Benson, L. 1982. The cacti of the United States and Canada. Stanford University Press. Stanford, California. · biology.missouristate.edu · cactus.biology.dal.ca · ecology.botany.ufl.edu · en.wikipedia.org · flora.huh.harvard.edu · www.aprilmariemai.com · www.casasarroyo.org · www.guzel-resimler.com · www.labs.agilent.com · www.menthanurseries.com · www.nybg.org · www.palaeos.com Gondwana 500 ile 200 milyon yıl önce var olmuş bir süper kıtadır. Bugünün Güney Yarımküre'sindeki kara parçalarının büyük bir kısmını (Antarktika, Güney Amerika, Afrika, Madagaskar, Avustralya-Yeni Gine ve Yeni Zelanda) ve Kuzey Yarımküre'nin bir kısmını (Arabistan ve Hindistan altkıtası) oluşturmuştur. İsmini Hindistan'ın kuzeyindeki "Gondwana Bölgesi"nden alır (gondavana Sanskritçe'de Gond ormanı anlamına gelir). Kaynak: evrimcalismagrubu.org

http://www.biyologlar.com/kaktuslerin-evrimi

Biyoteknolojinin sürdürülebilir tarım üzerine olası olumsuz etkileri ve türler arası gen alışverişi

Biyoteknoloji alanında yapılan çalışmalar sonucu farklı kaynaklardan organizmalar arasında gen alışverişi mümkün hale gelmiştir. Bu gelişme sonucu hızla artan dünya nüfusunun gıda gereksinimini karşılamak amacıyla geliştirildiği ifade edilen genetik yapısı değiştirilmiş organizmaların (GDO), uzun dönemde biyolojik çeşitliliği olumsuz yönde etkilemek gibi tehlikeleri de vardır. Burada en büyük tehdit doğal evrimleşme sürecinin doğal olmayan yollardan kazanılan genler ile istenmeyen şekilde değişmesi olasılığıdır. Canlıların evrimleşmeleri milyonlarca yıldır devam doğal bir süreçtir. Evrimleşme süreci boyunca canlı türlerinde mikro mutasyonlar ve seyrek de olsa daha büyük doğal mutasyonlar ortaya çıkmaktadır. Bunların sonucu oluşan genotiplerden değişen çevre ve stres koşullarına adapte olabilenleri neslini devam ettirmektedir. Nesiller boyunca ortaya çıkan bu değişimler sonucu, çevre ve stres koşullarına daha iyi uyum sağlayacak fenotipik değişiklikler de oluşmaktadır. Örneğin aynı cinse ait farklı türlerin soğuk bölgelerde yetişenleri nispeten daha kısa boylu ve daha yatık olmaktadır. Benzer şekilde herhangi bir zararlının yoğun olduğu yöreler içinde meydana gelen doğal evrimleşme süreci boyunca bitkiler, hücre duvarını kalınlaştırmak, tüylenmek, sap kısmında mumsu tabaka oluşturmak gibi doğal savunma mekanizmaları geliştirmektedir. Bu arada hastalıklara karşı dayanıklı genotipler de ortaya çıkmaktadır. Buna karşılık zararlılar da doğal evrimleşme süreçleri içinde kendilerini yenilemekte ve bitkilerin geliştirdikleri doğal dayanıklılık mekanizmalarının üstesinden gelecek yönde gelişimlerini sürdürmektedir. Hastalık etmenleri de oluşan dayanıklılık genlerini aşacak yönde yeni ırklar geliştirmektedir. Bu nedenle belirli bir hastalığa karşı dayanıklılığı için tescil edilen bazı kültür çeşitleri, bazen birkaç yıl gibi kısa süre içinde, aynı hastalığın yeni gelişen ırkları tarafından kırılmaktadır. Genetik yapısı değiştirilmiş organizmalardan kültür çeşitlerine kazandırılan dayanıklılık genleri, alışılmış dayanıklılık mekanizmaları dışında bazı özelliklere sahiptir. Bunlardan özellikle toksin üreten bakteriyel kökenli dayanıklılık genlerinin aktarıldığı çeşitlerin kullanılması durumunda ekolojik dengeye, dolayısıyla da bitki genetik kaynaklarına olabilecek olumsuz etkileri dikkatle izlenmeli, bu tip çalışmalarda bitkisel kökenli genlere öncelik verilmelidir. Doğada türler arasında gen alışverişi olmaktadır. Gen alıp vermenin ötesinde bazı türlerin ortaya çıkması, türler arası genom alışverişi sonucu olmuştur. Canlıların evrim süreci bu gibi örneklerle doludur. Genetik yapısı değiştirilmiş kültür çeşitlerinden yabani akrabalarına gen akışı olanaklıdır. Milyonlarca yıldır süren evrimleşme işlemi, GDO’lardan doğal bitkilere istenmeyen genlerin bulaşması sonucu 40-50 yıl gibi biyoçeşitliliğin ayak uyduramayacağı ölçüde kısa bir zaman dilimi içinde yön değiştirebilir. Evrim süreci mutasyon, melezleme, adaptasyon, seleksiyon vb bir dizi işlemleri içermektedir. Evrimleşme olmadan hiçbir canlı türü değişen çevre koşullarına uyum sağlayamaz. Bunu başaramayanlar geçmiş dönemlerde yok olmuşlardır. GDO’lar evrimleşme sürecini istenmeyen yönde değiştirme riskini taşıdıklarından, biyolojik çeşitlilik ve sürdürülebilir tarım için potansiyel bir tehdit durumundadır. Özellikle gen ve çeşitlilik merkezi durumunda olduğumuz türler için bu durum daha da önemlidir. Doğa, türler arasında meydana gelen gen alışverişi sonucu oluşan melez bitkiler ve hatta yeni türler ile doludur. Evrimleşme sürecine doğal dayanıklılık mekanizmaları dışında kazanılmış dayanıklılık genlerinin, katılması aşamasında bu konu büyük bir önem kazanmaktadır. Doğal flora (ve fauna) elemanlarının dışarıdan alacakları transgenler ile sürdürecekleri evrimin nereye varacağı büyük bir soru işaretidir. Sonuçta doğada baş edilmesi şimdikinden daha güç sorunların ve organizmaların ortaya çıkması olasıdır. Türler arası melezleme bakımından ülkemiz açısından bazı familya ve bitki grupları öne çıkmaktadır. Bunlardan buğdaygiller (Gramineae) familyasına dahil olan buğdayın evrim süreci türler arası gen alışverişine örnekler ile doludur. Bilindiği gibi günümüzde kültürü yapılan tetraploid buğday grubunun; yabani akrabalarından Aegilops speltoides ile Triticum boeoticum türlerinin melezlenmesi sonucu ortaya çıkan Triticum dicoccoides türünün doğal mutasyona uğraması ile önce Triticum dicoccum türüne, daha sonra da kültürü yapılan Triticum durum türüne dönüşmesiyle oluşmuştur. Benzer şekilde hekzaploid olan ekmeklik buğday (Triticum aestivum) da, Triticum dicoccoides türü ile Aegliops tauschii türlerinin doğal melezidir. Buğdayın evriminde diploid yabani akrabaları dışında kalan tüm tetraploid ve hekzaploid kültür çeşitleri ve yabani akrabaları, türler arası doğal melezlemeler sonucu ortaya çıkmış yapay türlerdir. Türler arası melezlemeler sonucu oluşan yeni türler, gen alışverişinden daha fazlası olan genom alışverişine örnektir. Doğanın dikkatlice incelenmesi sonucu buğdayın ana vatanı olduğunu söyleyebileceğimiz Anadolu’nun muhtelif yörelerinde Aegilops columnaris, Ae. biuncialis, Ae. triuncialis ve Ae. cylindrica türlerinin steril melezlerine sıkça rastlanmaktadır. Burada sıralanan buğday yabani akrabalarından Ae. columnaris türü Ae. umbellulata X Ae. comosa türlerinin; Ae. biuncialis türü Ae. umbellulata X Ae. comosa türlerinin; Ae. triuncialis türü Ae. umbellulata X Ae. caudata türlerinin; Ae. cylindrica türü de Ae. caudata X Ae. tauschii türlerinin doğal melezidir. Geçmişte türler arası genom alışverişinin sonucu ortaya çıkan bu türlerin, başka türlerden toz alarak oluşturdukları melezlerin varlığı, doğal evrimleşme sürecinin bir parçası olarak kabul edilebilir. Bu da sözü edilen türlerin, transgenik bitkilerden gen almalarının mümkün olduğunun göstergesidir. Ekmeklik buğday ile yabani akrabası Aegilops cylindrica arasında gen akışı olduğuna ilişkin birçok bildirişler vardır (Morrison, 2002; Wang, 2002; Zemetra ve ark., 2002; Stewart ve ark., 2003). Buğdaygiller familyası içinde türler arası melezlemeye başka cinslere ait örnekler de verilebilir. Türkiye’de doğal olarak bulunan Agropyron, Elymus, Festuca, Lolium, Hordeum, Triticum ve birçok buğdaygil cinslerinin genomlarında 7 kromozom olduğu bilinmektedir. Ayrıca bu türlerin kendi aralarında doğal ve yapay melezlerinin olduğunu ortaya koyan çok sayıda literatür vardır. Bunlardan Fedak (1984) arpa (Hordeum vulgare) ile mavi ayrık (Agropyron intermedium) arasında % 3.9’a varan oranlarda melez bitkiler oluşturulabildiğini; Belanger ve ark. (2003) tavuz kuyruğu (Agrostis) türleri arasında melezlenmenin olduğunu; Ellstrand (2003) Kuşyemi (Seteria) türleri arasında % 0.50 oranında, gökdarı (Pennisetum) türleri arasında % 39’a varan oranlarda melezlemenin olduğunu; bu oranın Sorghum bicolor ve Sorghum halepense türleri arasında % 100’e kadar ulaştığını bildirmektedir. Quist ve Chapela (2001) mısır bitkisinin ana vatanı olduğu bilinen Meksika’da transgenik kültür çeşitlerinden geleneksel çiftçi çeşitlerine transgenik DNA geçtiği bildirilmiştir. Bu bilgi üzerine Meksika Hükümeti konunun araştırılması için bir ekip görevlendirmiş ve yapılan çalışma sonucu “cry1A” transgenin Oaxaca Eyaletinde yetiştirilmekte olan mısır çiftçi çeşitlerinde yaygın olarak bulunduğu, ancak incelenen örneklerde “cry9C” transgenine henüz rastlanmadığı rapor edilmiştir (Morales, 2002). Buğdaygil familyası dışında ülkemiz açısında risk oluşturan bir başka familya da lahanagiller (Brassicaceae) olmaktadır. Bilindiği gibi bu familyaya ait birçok türün yumrusu, sapı, yaprakları, çiçekleri ve tohumları insan gıdası olarak veya başka amaçlarla kullanılmaktadır. Ayrıca doğal bitki örtüsünde bulunan birçok Brassicaceae türleri süs ve örtü bitkisi olarak (Alyssum saxatile, Brassica oleracea, Cardaria draba, Crambe orientalis, Iberis saxatilis, Isatis glauca, Lobularia maritima, Matthiola incana) (Yücel, 2002), tıbbi amaçlarla (Capsella bursa-pastoris) veya boya bitkisi olarak boya bitkisi olarak (Isatis tinctoria) da kullanılmaktadır. Brassicaceae türleri arasında gen alışverişinin çok yaygın olduğuna ilişkin çok sayıda literatür bildirişleri vardır. Burada üzerinde durulması gereken konu, 2004 yılı itibarıyla dünyada 4.3 milyon hektar ekim alanı ile soya, mısır ve pamuk ardından dördüncü sırayı alan transgenik kanoladan, yabani akrabalarına olası bir gen akışıdır. Elsstrand (2003), Raphanus sativus bitkisinden aynı adı taşıyan yabani akrabasına % 100 oranında gen akışı olabileceğini bildirmektedir. Dünya’da son zamanlarda “biyoyakıt” olarak adlandırılan enerji kaynaklarına yöneliş olmaktadır. Biyoyakıtlar bitki orijinli yağlar, kızartma yağları, ürün artıkları veya odun gibi maddelerden üretilebilmektedir. Avrupa Birliği (AB) ülkelerinde geleceğe dönük biyoyakıt kullanım hedefleri şimdiden belirlenmeye başlamıştır. AB, kullandığı akaryakıtın 2005 yılı sonuna kadar % 2’sinin, 2010 yılı sonuna kadar % 6’sının ve 2020 yılı sonuna kadar da % 20’sinin biyoyakıt olmasını hedeflemiştir. Bu arada çiftçilerine biyoyakıt üretim amacıyla yaptıkları ekimlerde 45 €/ha destek vermektedir. Konuyu İngiltere açısından ele alan Monbiot (2004), % 20 hedefine ulaşabilmek için İngiltere’de ekilebilir alanların tamamının kanola ekimine ayrılması gerektiğini bildirmektedir. Konu diğer AB ülkeleri açısından da düşünüldüğünde, ileride AB ülkeleri ve buna bağlı olarak kanola ekiminin yaygın olduğu ülkelerde, biyoyakıt üretimini amaçlayan kanola ekim alanlarının artması nedeniyle gıda üretim amaçlı ekilişlerin daralması, hem de genişleyen kanola ekim alanlarından dolayı muhtemelen artacak olan transgenik çeşit ekim alanları dolayısıyla doğal bitki örtüsündeki yabani akrabalarına ve kültürü yapılan diğer Brassicaceae türlerine gen akışı gibi olası tehditleri de göz önünde bulundurmak gerekir. İki durumda da tarımsal sürdürülebilirliğin zarar göreceği açıktır. Türkiye açısından önemli olan bir başka familya da sirkengiller (Chenopodiaceae) olmaktadır. Bilindiği gibi ülkemizin temel tarımsal ürünlerinden olan şekerpancarı yanında ıspanak, hayvan pancarı, pazı gibi kültür bitkileri ile yabani florada çok sayıda türleri yanı sıra şeker pancarının yabani akrabaları (Beta spp.) da vardır. Sirkengiller de gen akışının yoğun olarak yaşandığı familyalardan biri olarak bilinmektedir. Desplanque ve ark. (2002) şeker pancarından yabani sirkengil türlerine gen akışının muhtemel ve mümkün olduğunu, bu nedenle herbisite dayanıklı şekerpancarından doğaya kaçacak transgenlerin ortaya çıkarabileceği olumsuzluklara işaret etmektedir. Stewart ve ark. (2003) kültürü yapılan pancardan yabani akrabalarına gen akışının olduğunu bildirmekte; Ellstrand (2003) gen akış oranının türlere bağlı olarak % 1 düzeyine kadar çıkabileceğini ifade etmektedir. Genetik yapısı değiştirilmiş organizmaların günümüzde en fazla tepkiye yol açan şekli Genetik Kullanımı Sınırlayıcı Teknolojileridir (Genetic Use Restriction Technologies = GURTs). Genetik materyalin izinsiz kullanımını engellemek amacıyla geliştirilen çeşitler henüz dünya üzerinde kullanım alanı bulmamakla beraber, tarımsal sürdürülebilirliği tehdit eder nitelikte olmaları bakımından önemlidirleri. GDO olmayan bir materyale uygulanmış olsa bile, GURT kullanımı sonucu ortaya çıkan ürün, bir GDO kabul edilmektedir. İki tür GURT vardır. 1. VGURT (Variety Use Restriction Technology); bir sonraki generasyonu steril hale getiren teknolojidir. “Terminatör Teknolojisi” olarak da bilinir 2. TGURT (Trait Use Restriction Technology); bir sonraki generasyonun herhangi bir karakterinin ortaya çıkmasını engeller, bu karakterin çıkması için özel tetikleyiciye gerek duyulur. Yukarıda sıralananlardan VGURT’lerin geliştirilmesinde üç farklı strateji uygulanmaktadır. Birinci stratejide bitkiye embriyo oluşumunu engellemeye şifrelenmiş bir gen verilerek materyalin canlı tohumlar üretmemesi sağlanır. Bu gen de, normal embriyo oluşumunu sağlayabilmek üzere başka gen tarafından engellemektedir. Tohumlar üretici firma tarafından satılırken genleri harekete geçiren bir kimyasalla muamele edilerek ikinci nesil tohumlarda embriyo oluşumunu engelleyen genler harekete geçirilir ve ikinci nesil ürünün cansız (canlanamayan) olması sağlanır. İkinci VGURT oluşturma stratejisi birincisine benzemekle beraber işlemi satış aşaması hariç her aşamasında kimyasal madde uygulanır. Materyal tüm nesiller boyunca kendiliğinden steril tohum verecek şekilde geliştirilmiştir. Kısırlığı ifade eden gen, canlılığı sağlayacak restorer protein veren bir kimyasalla engellenerek üretim sağlanır. VGURT uygulamalarındaki üçüncü strateji de süs bitkilerinin birçoğunda olduğu gibi vegetatif yolla çoğalan, yumrulu bitkilerin depolama veya raf ömrünü uzatmak amacıyla gelişmelerinin bir süre durdurulmasıdır. Burada gelişmeyi engelleyici gen, kimyasal bir madde yardımıyla etkisiz hale getirilir. Her üç stratejide de istenmeyen genlerin doğaya salınması sonucu kısır bitkilerin üretilmesinden, gelişmenin durmasına kadar birçok olumsuzlukların yaşanması olasıdır. Hibrit bitki ıslahında da fertil bitkiler elde edilse bile meydana gelen açılma sonucu, istenen bazı özellikler TGURT’lerde olduğu gibi döllere taşınmaz. Klasik veya moleküler genetik yöntemlerle geliştirilmiş olmalarına bakılmaksızın çiftçiler her iki durumda da her yeni ürün için üretici firmalardan hibrit – TGURT materyal almak zorundadır. Klasik genetik kuralları kapsamı içinde de VGURT’lere benzeyen ürünler elde etmek mümkündür. Örneğin triploid balık, çekirdeksiz karpuz, partenokarp meyveler de kısırdır. Ancak klasik genetik kuralları içinde geliştirilen ürünler getirdikleri katma değer ile üretici ve tüketici tarafından neredeyse hiçbir uyuşmazlığa meydan vermeyecek şekilde geniş kabul görmekle beraber, GURT ürünleri özellikle de VGURT’lar tarımsal üretimi sınırlayıcı materyal olarak algılanmakta; bunların biyoçeşitlilik, tarımsal uygulamalar, tohum güvenliği ve kırsal ekonomi üzerindeki olası olumsuz etkileri nedeniyle de her geçen gün küresel boyutta artan bir reaksiyon görmektedirler. Genetik kullanımı sınırlayıcı teknolojiler konusunda dünya çapında oluşan duyarlılık sonucu Birleşmiş Milletler Çevre Programı (UNEP) tarafından bir rapor hazırlanarak 2002 yılında düzenlenen Biyolojik Çeşitlilik Sözleşmesi’nin 6. Taraflar Konferansına sunulmuştur (UNEP/CBD/COP/6/INF/1, 2002). Bu belgede GURT uygulamalarının detayları yanı sıra bunların (a) tarımsal biyolojik çeşitlilik üzerine etkileri, (b) biyogüvenlik üzerindeki etkileri, (c) çiftlik sistemleri içinde yaratacağı sosyo-ekonomik etkileri, (d) çevresel etkileri ve (e) ekonomik etkileri olacağı ifade edilmiştir. Genetik kullanımı sınırlayıcı teknolojilerin, konunun etik yanı dışında tarımsal sürdürülebilirlik üzerinde olumsuzluklar yaratacağı kesindir. GURT konusu Biyolojik Çeşitlilik Sözleşmesi’nin 7. Taraflar Konferansında da tartışılmaya devam edecektir. Biyoteknoloji tarihsel gelişimi içinde tarımsal sürdürülebilirliğin temeli olan biyolojik çeşitliliğin korunmasında ve artmasında önemli roller oynamıştır. Klasik yöntemlerle muhafazası zor veya olanaksız olan bitkilere ait genetik kaynakların korunmasında biyoteknolojiden yararlanılmış ve yararlanılmaya devam edilmektedir. Bu şekliyle biyoteknoloji, sürdürülebilir tarımın sigortası durumunda olan bitki genetik çeşitliliğinin devamlılığının sağlanması ve yeni çeşitlilik kaynakları oluşturması bakımından vazgeçilmez bir araçdır. Biyoteknolojinin, bitkilere dayanıklılık genlerinin aktarılmasında kullanılan bakteriyel kökenli toksin üreten çeşitlerin geliştirilmesi amacıyla kullanılması durumunda, istenmeyen genlerin doğaya bulaşması sonucu ekolojik dengenin bozulması olasıdır. Doğada türler arası gen alışverişinin olduğuna dair birçok örnekler vardır. Doğa dikkatli bir şekilde gözlendiğinde türler arası gen akışının devam eden bir süreç olduğu, dolayısıyla da GDO’dan da yabani akrabalarına gen akışının mümkün olduğunu söyleyebiliriz. Gen alış verişinin sonuçlarının görülmesi kısa zaman içinde gerçekleşmemektedir. İnsan ömrü bu sonuçları görecek ölçüde uzun değildir. Unutulmamalıdır ki insan ömrü evrim süreci içinde önemsenmeyecek kadar kısadır. Sonuç olarak biyoteknoloji, bazı uygulamalarıyla tarımsal sürdürülebilirlik için vazgeçilmez bir araç, bazı uygulamalarıyla da ciddi bir potansiyel bir tehlike durumundadır. Alptekin KARAGÖZ

http://www.biyologlar.com/biyoteknolojinin-surdurulebilir-tarim-uzerine-olasi-olumsuz-etkileri-ve-turler-arasi-gen-alisverisi

Biyocoğrafya Nedir

Coğrafya: Herhangi bir yerde mevcut olan elemanların nasıl meydana geldiğini, başka varlıklardan ayrılıp ayrılmadığı, bu varlıkların birbirine benzeyip benzemediğini bütün bu kuralları inceleyen bilim dalıdır. Söz konusu elemanların ve bu varlıkların nerelerde bulunup bulunmadığı Bu elemanların oluşum şekillerini Bu varlıların özelliklerini ortaya koymaya çalışır. Bu varlıkların birbirlerine benzer yakınlıklarını araştırır,ortaya koyar. Tüm bu maddelerin kurallarını açıklar. Bu Varlıkların Özelliklerinin Sınırları Bitki, ve hayvanları ele alıyoruz bunlardan da yalnız makro olan bitki ve hayvanları ele alıyoruz. Ancak dolaylı olarak ta insanları ele alıyoruz. Hayvanların çoğu bitkilere göre tercih yapar. Çünkü bitkiler hayvanlar için durak ve besi yeridir. Bunun için bitkiler Biyocoğrafya’nın başlıca önemli elemanıdır. İnsanlar doğayı koruması için doğanın özelliklerini bilmemiz işleyişini ekolojisini bilmemiz gerekir. İnsanlar doğada kurulmuş olan sistemi ele geçirip işleyişini yok ediyor. A)Biyocoğrafya Canlıların yeryüzünde ilk var oldukları yerleri bu yerlerin özelliklerini var oluşlarının nedenlerini yeryüzünden başka nerelerde bulunduklarını ve bu yerlerin oluşum nedenlerini birbirlerine benzer olup olmamaları durumlarını ve bu yerlerin sınırlarının boyutlarını ve bütün bunların olası kurallarını ortaya koyan bütün canlıların meydana gelmesinin etmenlerini şu şekilde sıralayabiliriz. A.1) Jeolojik oluşum: Yeryüzünün oluşumundan beri geçirdiği değişik evreler. A.2) Bu yerlerin oluşmasında canlılar(bitkiler ve hayvanlar) bu canlıların kendine özgü olan özellikleri: A.3) İklim: Bunların üçünü birden ekolojik birleşme denir. Birbirine benzer özellikleri sahip olan alanlara benzer yerleşim alanları benzer özelliklere sahip olmayan alanlara farklı yerleşim alanları denir. Soru: Bu benzerlik ve farklılıkların kriterleri nelerdir ? A.1) Jeolojik oluşum Dünya’da canlıların geçirdiği jeolojik devirleri açıklamak için 4 teori vardır. Bunlar; A.1.1)Çökmüş Kıtalar Teorisi: Bu görüşe göre bugün birbirinden ayrı olan kıtalar eski jeolojik devirlerde ayrı değil tamamen bitişik olduğu bir bütün olan bu kütlenin hem jeolojik hem canlı olarak hem de iklim etkisi olarak ayrılmaya başlar. Eğer bu görüş varsayılırsa bir bütün iken orada bulunan canlılar bir bütünün ayrılmasıyla onlarda ayrılmaya başlamıştır ve böylelikle canlılar arasında benzerlik ve farklılıklar oluşmuştur. Böylece canlı çeşitliliği artmıştır. (Biyoçeşitlilik). Bu teorinin doğruluğunun iki tane olasılığı vardır. Yani yeni ortama adaptasyon gösterebilirler yada gösteremezler. A.1.2)Köprü Görüşü: Yine çok eski zamanlarda kara bitkilerinin dar ve geniş olduğu kabul ediliyor ve bu kara bitkilerinin birbirlerine köprülerle bağlı olduğu iddia ediliyor ve jeolojik olaylar sonucu bu köprüler su altında kalıyor. Bu köprüler arasında kalan kara kütlelerinde canlı geçişi olmuyor. A.1.3)Wegner Görüşü: Bu gün için birbirinden ayrı ufak veya büyük kara kütlelerinin bugünkü gibi irili ufaklı parçalar olmadığı tamamen tersine bir bütün olduğu söyleniyor ve jeolojik olaylarla ayrılarak bugünkü canlılar oluşuyor. A.1.4)Yer Kabuğunu Açılıp Parçalanması Görüşü: Yer kabuğu bir hareket içerisinde olduğu ileri sürülüyor. Bu hareket içerinden alçalmalar hem de yükselmeler var. Bu yer kabuğunun hareketinde iklimin de etkisi var tüm bu olaylar sonucunda karaların ve denizlerin meydana geldiği buzulların oluştuğu bu kütlede değişimlerin çok hızlı bir şekilde olduğu ve bu değişimlerin yer kabuğunu etkilediği ve bu etkiden de hayvanların ve bitkilerin etkilendiği söylenir. Bu etkilenme sonucunda canlı çeşitliliği(biyoçeşitlilik) meydana geldiği ortaya atılmıştır. En çok kabul edilen teoridir. Buna göre bitki ve hayvanların bugünkü yayılış şeklinin dünyanın 2 milyar yıl süren devamlı evrimi bu süre içinde ki tüm değişimler(kıtaların ayrılması, alçalıp-yükselme, bazı alanların su altında ve üstünde kalması) ve günümüze kadar bitki ve hayvan gruplarının hem değişik yaşlarda hem de farklı ortamda olmaları çok farklı görünümleri ortaya koymaktadır. Bu farklılık jeofizikçiler tarafından şu şekilde açıklanmaktadır. 2 milyar yıl önce 1.zamanda tek bir kütlenin ve tek bir kütle olan karaya ise PANGEA adı veriliyor ve tek bir kütle olan bu yapı permiyenin 1.zaman sonuna doğru çatlamaya başlıyor ve bu çatlama devresi 45 yıl sürüyor sonuç olarak ikiye ayrılıyor. Kuzeyde ki karaya LAVRASİA güneydekine GONDUWANA adı veriliyor. Bu ikiye ayrılan kütlenin arasına ise TETHYİS denizi adı veriliyor. (yok olmuş). Bu olaylar bugüne kadar ve sonuçta kıtalarda yaşayan canlı fosillerinin başka kıtalarda bulunmasına karşılık güncel formlarının bulunmaması da bu durumu gösteren önemli bir kanıt olarak gösteriliyor. Özellikle hayvanlar için ortaya atılan görüşe göre hayvanların bir kısmının önce LAVRASİA’ya daha sonra GONDUWANA’ya göç ettiği bugün bazı fosiller bu görüşü destekler. Köprü görüşünde bu köprülerin 6 tane olduğu söylenmekte bunların özellikle hayvanların göçünde dünyada bir sıcak devre ve sonra soğuk devre geçirdiği ileri sürülmekte ve 4 defa tekrarlanan bir süreç olduğu, bugün için bu buzul devrenin bittiği ve sıcak bir devrenin başladığı ileri sürülmekte ve bütün bu olaylar bitki ve hayvanların dağılmalarını ve yayılmalarını ve göçlerini etkilemekte ve canlıların yaşadığı bölgeleri oluşturmaktadır. A.2) Bu yerlerin oluşmasında canlılar(bitkiler ve hayvanlar) bu canlıların kendine özgü olan özellikleri Bu canlıların yaşadıkları alanların diğer canlılardan ayrı olması lazım. Bitki ve hayvan için ayırt edici özellik endemiklik (nadir,özgü)’ dür. A.2.1)Endemik Canlılar: Eğer bir canlı bir yerde bulunuyor başka bir yerde bulunmuyorsa buna endemik canlılar denir. Türkiye’de bir bitkinin bulunup ta diğer hiçbir Dünya ülkesinde bulunmaması gibi. Bu canlıların endemiklik özelliği kazanması için bunların kategorisi nedir.(tür cins familya…). Bir canlının bir bölgede bulunup bulunmaması yani endemik özelliğini kendi içinde taşır. Bu canlı ana kaya,toprak iklim vb. yönlerden seçicilik gösterebilirler. (Ayrıca bu canlı anatomik, sitolojik yönden öz.).Bir canlının yaşam alanını belirlemek için bu canlının tüm özellikleri ile yaşadığı alan arasında ilişki kurarız. A.2.2)Nadir Olan Canlılar: (Bunlar endemik olarak algılanmaz.) Örn:Amerika’da yaşayan bir bitki Türkiye’de nadir olarak bulunabiliyorsa bu bitki endemik değildir. Endemiklik alana göre kategorize edilir. Alan büyüklük sıralamasına göre tür cins familya takım vb. gibi kategorize edilir. Bitkilerin ve hayvanların yaşama alanların benzeyip benzemediğini ortaya koymak için bitki ve hayvan sistemlerini iyi bilmek gerekir. Bitkinin endemik olup olmadığını söylemek için iyi bir araştırıcı olmak gerekir. Yaşam alanı araştırılacak canlıların, yaşam alanının orda yaşayan canlıların %50 si oraya ait olmalıdır. Bitki orjinine(köken) bakılması önemlidir. Mesela İlk çıktığı bölgede ortam şartlarına adaptasyonun nedenini araştırıp o direnci sağlayan geni dirençsiz olmayan başka bir canlıya aktarabiliriz. Böylece ortama adaptasyon yeteneği yüksek olan yeni yeni türler oluşturulabilir. Soru: Yaşama alanları nasıl meydana gelmiş? A.3) İklim Bugün İçin Canlıların Oluşum Yönünden Kutuplarda buzulların eriyeceği Dünyanın bazı canlıların yerleşim alanlarının su altında kalacağı Dünyada su yüzeylerinin oluştuğu alanların artacağı İklimsel yönden dünya ölçeğinde bir değişim yaşayacağı Tüm bunlara bağlı olarak canlılar aleminde de bir değişim olacağı B)Biyocoğrafya’nın Sınıflandırılması B.1)Konularına Göre B.2)Canlılarına Göre B.3)Yaşama Ortamlarına Göre B.1) Konularına Göre: B.1.1) Dünya ile canlılar arasında ki ilişkiler araştırılıyorsa buna DESKRİPTİF BİYOCOĞRAFYA adı verilir. B.1.2) Eğer canlıların çevreleriyle ilişkisinin nedenleri araştırılıyorsa buna da EKOLOJİK BİYOCOĞRAFYA adı verilir. B.1.3) Eğer dünyada canlıların yaşadığı olaylar ve bu olayların tarihleri jeomorfolojik, zoogenetik ve filogenetik çalışmalarla yapılıyorsa buna da HİSTORİK BİYOCOĞRAFYA adı verilir. B.1.4) Canlıların dünyada ki yayılışları ve yayılışlarının nedenleri hem ekolojik hemde historik açıdan ele alınıp yapılıyorsa buna da NEDENSEL BİYOCOĞRAFYA adı verilir. B.2) Canlı Grubuna Göre: B.2.1) Eğer dünyada bitkilerin dünyada bitkilerin dağıldığı yerler, bulunduğu yerler ele alınıyorsa buna BİTKİ COĞRAFYASI adı verilir.(FİTOCOĞRAFYA) B.2.2) Eğer dünyada hayvanların yayılışları bu yayılışlarda bulunup bulunmadığı yerleri araştırıyorsa buna HAYVAN COĞRAFYASI denir. B.2.3) Dünyada insanların bulunup bulunmadığı yerler araştırılıyorsa buna İNSAN COĞRAFYASI denir. Örn: Tarihsel araştırılıyorsa buna Historik, nedenleri araştırılıyorsa Nedensel Biyocoğrafya. B.3)Yaşama Ortamlarına Göre: B.3.1) Karasal Biyocoğrafya: B.3.2) Denizsel Biyocoğrafya: B.3.1) Karasal Biyocoğrafya: canlıların yaşama istekleri yerleri çok daha uygun ortam olarak karaları seçerler. Karalar büyükten küçüğe doğru kıtalara ayrılır. Karalar bugünkü durumunda 3. zaman olan tersiyer başlangıcında bu günkü durumunu almıştır. Bu bulgular paleontolojik bilgilerden elde edilir. Bu bilgilere göre de bu süre içerisinden çiçekli, bitkilerin, plasentalı ve keseli memelilerin, kuşların ve yılanların, kemikli balıkların böceklerin ilk bu dönemde görüldüğü bu dönemden sonra diğer alanlara yayılmaya başladığı ileri sürülmektedir. Üçüncü zaman olan tersiyer başlangıcı son derece önemlidir. Bitkiler ve hayvanlar arzu ettiği özelliklere göre kıtalar içerisinde birbirleriyle aynı olan bazen de farklı olan alanlara yayıldıkları ve yaşamını sürdürdüğü ileri sürülmüştür. İsteklerine göre canlılar aynı ve farklı yayılma alanlarına ayrılır. Buna göre bu canlılar aynı özellikteki alanlarda yaşayabilir yada farklı özellikleri gösteren yerlerde de olabilir.ve buna göre bu canlı herhangi bir coğrafik bir alana dahil olması için 1. O coğrafik alanın içerisine giren bir yerde bulunması ve o alan içerisindeki canlıların %50 sinin yalnız o alanda bulunması lazım. Yapılan araştırmalar da biyosferde bitkiler için 6-7civarında birbirinden farklı alanın olduğu ileri sürülmektedir. Hayvanlarda ise birbirinden farklı 4 tane alanın olduğu ileri sürülmektedir. Bitki ve hayvanları birlikte ele aldığımızda bunların yaşam alanları 5 tanedir. Afrika’nın güneybatısında olan (lapensis bölgesi) özellikle bitkiler bakımından diğer bölgelere oranla çok büyük ayrıcalıklar gösterir ve böylece Afrika dışında ki hayvanlar (Etiopis) içerisinde yer alır. Bitki ve hayvanların yaşadığı 5 farklı bölge Holoarktis Bölgesi Paleotropis Bölgesi Neotropis Bölgesi Australis Bölgesi Antartis Bölgesi Bunlar biyosferin oluşturduğu yaşam alanlarıdır. 1.Holoarktis Bölgesi: Kuzey yarım küre de tropik bölge dışında ki tüm alanları kapsayan bölgedir. Biz bu bölgeye özellikle tersiyer döneme baktığımız da Kuzey ve Güney Amerika’nın birbirinden ayrı olduğu ancak bunun yanında Kuzey Amerika Avrasya bağlantısının mevcut olduğunu görüyoruz. Bu bölgeyi temsil eden en önemli familyalar Betulaceae, Fagaceae, Ranunculaceae, Brassicaceae, Saxifragaceae, Apiaceae, Primulaceae. Bunların % 50’ si en az burada bulunur. Bu familyalar bu bölgeler için endemiktir.Hayvanlarda ise Turna balıkları, Köstebek, Kunduz ,Dalgıç Kuşları, Penguen, Ren Geyikleri, Kutup Ayılırı. Holoarktis Bölgesi 2’ye ayrılır. Bu iki bölge biyoçeşitlilik bakımından çok zengin bölgelerdir. 1.1)Neoarktik: Keseli fareler bu bölgede endemiktir 1.2)Palearktik: Genellikle bu bölgede geyikler ve saygalar yaşar. Bu bölge İndo-Malaya ve Polinezya alt bölgeleri ile birlikte Afrika’dan Pasifik adalarına kadar uzanır. Bu bölgeyi karakterize eden en önemli bitki familyaları Cycdaceae, Pandonaceae, zingiberaceae, Maraceae, Aloe cinsi’dir. 2.Paleotropis Bölgesi: Bu bölge 2 alt bölgeye ayrılır. Bunlar ; 2.1.) Etiyopya 2.2) Oriental 2.1.) Etiyopya: Etiyopya Afrika’nın Paleotropis bölgesinin arasında ki alanları içine alır ve aynı zamanda bitkiler açısından Kapensis hayvanları açısından Madagaskar gibi 2 alt bölgeye ayrılır. Bunlar içinde Kapensis, Etiyopya içinde çok büyük yer işgal etmez. Bu bölgede özellikle bitki çeşitliliği fazladır. Bu bölgede yaşayan bitkiler içerisin de 5 endemik familya bulunmaktadır.Madagaskar’da, Kapensis’te bulunan hayvanların bir çoğu burada bulunmaz buna karşılık bu bölge canlılar açısından izolasyon özelliğine sahiptir.Örn: Afrika’da bulunan insansı maymun, gerçek maymun ve orangutan burada bulunmaz fakat oklu kirpiler, yarı maymunlar ve misk kedileri yalnız burada bulunur. 2.2) Oriental: Hindistan, Güney Çin, Sunda Adaları ve Filipinleri içine alır. Bu bölgenin en önemli özelliği bazı hayvanların buraya has olmasıdır. Bunların başında Tavuz kuşları, Kaplan, Leopar, Hint Fili, Gergedan, Goril, Çakal, Antilop, Boynuzlu Gergedan, Zebra, Afrika Kurdu gelir. Bunlar Oriental alt bölgeyi Etiyopya’dan ayıran en önemli özelliktir. Ayrıca Oriental alt bölge içerisinde de Wallas dediğimiz bir alan bulunmaktadır ki burası da yine Avusturalya ve de Oriental bölge elementlerine sahiptir ve Avusturalya elementleri bu bölgenin batısında ki Wallas çizgisine kadar yayılış göstermektedir. Buna karşılık Oriental bölgelerde bu bölgenin doğusundan geçen Lyddeck bölgesine kadar yayılış gösterir. Paleotropis bölgesi Etiyopya ve Oriental alt bölgeleriyle beraber dünyada ki en fazla bitki türüne sahip bölgeyi oluştururlar. Hatta burada ki bitki türüne Tropikal Flora adı verilmektedir. Örn: Tropikal yağmur ormanları bu bölgede yer alır. Bunun da en büyük nedeni ortalama sıcaklığın 25-30 C arasında olmasıdır. (Bitkiler için ideal sıcaklık aralığı). 3.Neotropis Bölgesi: Orta ve Güney Amerika’yı içine alır. Familyaları Cactaceae, Borameliaceae, Melatomaceae, Kannoceae, Moronthaceae’dir. Burayı karakterize eden en önemli cinste Agave’dir.Hayvanlarda ise özellikle kuşlar kuşlara ait 6-7 familya burası için endemik bunlar da 6 tane yarasa türü burada endemiktir. Burunlu maymunlar, Elektrikli yılan balıkları, Akciğerli Balıklar, Kertenkele ve Boğa Yılanı. Bu bölgede Kuzey Amerika ile arasında Sonera denilen bir bölge bulunur. Bu bölge Kuzeyle, Güney arasında geçişi sağlar. Sonera bölgesinde Kuzey ve Güney Amerika’ya ait türler bulunur. Bununda nedeni tersiyer dönemde izole olmasıdır. Bu nedenle özellikle pek çok hayvan burada evrimleşmiştir. Bu gruplardan çoğu bu bölgeye özellik vermektedir. Sonera bölgesi ile ilgili bazı tartışmalar vardır. 4.Australis Bölgesi: Avustralya, Tazmanya ve Yeni Gine’yi içine almaktadır. Ne var ki hayvanları ele aldığımızda bu bölgede saydıklarımızın yanı sıra Polinezya’yı, Yeni Ginenin tamamını Yeni Zelanda, ve Malezya’yı da kapsadığını görüyoruz. Hayvanlar alemini de ele aldığımızda bu bölgeye Avustralo-Papua bölgesi adı verilir. Bu bölge uzun yıllar izolasyon yaşamıştır. On binden fazla bitki türü bulunur. %86 civarında endemiktir. İçerisinde 2 cins çok önemlidir. Eucalyptus, bunun 500’den fazla türü vardır. Diğer cins ise Acacia 400 tane türü vardır.Hayvanlar da ise Emu ve Tepeli Kuşla, Cennet Kuşları, Kanguru, Lif Kuşlarının ve Yeni Gine Kaplumbağası adı verilen (buraya özgü), bazı kuşların, baykuşların buraya has olduğu görülür. Burada çok fazla sayıda kuşların olması nedeniyle bu bölgeye Ornithogea (kuş bölgesi) adı verilir. Avustralya kaplumbağası ve yılan, keseli hayvanlar yalnız Avustralya da bulunur. 5.Antartis Bölgesi: Bu bölge Güney Amerika’nın Güney ucu ve Yeni Zelanda’nın kısmen bazı alanları ve de Sub-Antartik Adalarını kapsar ve burada 2 cins son derece önemlidir. Netofagus, Fusksiave bunun yanında hayvanlar da ise tamamen diğer bölgelerden çok farklılıklar görülür. B.3.2) Denizsel Biyocoğrafya: Denizler de tür çeşitliliği azdır ancak populasyon fazlalığı vardır. Nedeni ise tuzluluktan ileri gelmektedir. Deniz Biyocoğrafyasın da olan olumsu bir durum tuzluluk oranını fazlalığıdır. Ancak buna rağmen burada yasayan canlılar da vardır. Denizel ekosistem adaptasyonunun zor olmasıdan dolayı çok fazla çeşitlilik yoktur. Fakat rekabet eden canlı çeşitliliğinin az olması populasyonda ki birey sayısının fazla olmasına neden olur. Dünyanın 2/3 denizlerle kaplıdır. Ve buda 361 milyon km2 alana karşılık gelir. Karalar içerisinde ki kısım vardır ki buda 149 milyon km2 karşılık gelir. Yani su yüzeylerinin dünyada kapsadığı toplam alan 510 milyon km2’dir. Buna göre bitkilerin su yüzeyinden 200 m derinliklere kadar yaşadığı görülür. Ayrıca 47 çiçekli bitki türü bu derinliklerde yaşar. Bütün bu su yüzeyleri içinde yalnız medcezir alanlarını kapsayan 2 tane önemli alan vardır. Bunlardan 1.si Mangrove(sakız ağaçları) özellikle tropikal ve sub-tropikal bölgelerin kıyı kısımlarında korunmuş koylar deltalar lagünler ve ırmak yatakları gibi yerlerde oldukça sık çok özel ve aynı zamanda ilginç bataklık vejetasyonu olan Mangrove Ormanları gelişir. Mangroveler büyük boylu ağaçlardan oluşur. Kıyı düzlükleri üzerinde su ile taşınımı olan diaspor(herhangi bir bitkinin kopan bir parçasından yavru oluşturması) kısa bir zamanda gelişerek alçak ve sı bir orman haline dönüşür. 2.si özel bir deniz yosunu olan sargassum ile kaplı sargassum denizidir. Hayvanlara baktığımızda ise dünyada ortalama 85.000 tür olduğu tahmin edilmektedir. Denizel ekosistemler gerek hayvan gerekse bitki türleri bakımından oldukça fazladır. Bunun diğer bir nedeni ise denizlerde karalarda ki kadar bir izolasyonun olmamasıdır. Bu neden ele alındığında Pasifik ve Atlantik olarak iki okyanus bir bütün teşkil eder. İşte bu bütünlük izolasyonu engeller ve sonuçta bu bölge Biyocoğrafya yönünden bir özellik taşımaz. Biyocoğrafya’nın sınıflandırmasını oluşturan başlıca neden bitki ve hayvan ilk var olduğu yerden (gen merkezi) yayılma ve göç etmesidir. Canlıların yaşayabilmesi ve göç edebilmesi için 2 önemli sebep vardır.1- Populasyonun artması 2- Yaşadıkları ortamın ekolojik özelliğinin değişmesiBütün bunların sebebini ve bu sebepler sonucunda canlıların köken ve dağılışını inceleyen Biyocoğrafya’nın yan dalı Koroloji’dir ve bu dalda Ernest HACKEL tarafından ortaya çıkarılmıştır. Canlıların yayılmasının neden ilk olarak alan kazanma isteğidir. Bu dalda en önemli faktör nesillerin devam etme isteğidir. Populasyonlar artsa bile yada ortamda ki ekolojik koşullar değişse bile eğer canlının çoğalma miktarı ve dağılıma özelliği yoksa bu gerçekleşmez. Canlıların Yaşama Alanları Biyocoğrafya canlı ve canlının yaşadığı yerlerin, bu yerlerin oluşumu ve bu yerlerin nasıl seçildiği ve oluşum etkenlerini inceler. Canlının yaşadığı yer anlamına gelen 2 temel sözcük vardır. 1-Lokalite 2-Habitat 1-Lokalite(coğrafik yer): Canlının yaşadığı yerin adresidir. Biyocoğrafik incelemelerde söz konusu olan bitki veya hayvanın nerede yaşıyor olduğudur. Adresi belli olmayan bir bitki ve hayvandan bhasedilmesinin bilimsel olarak hiçbir anlamı yoktur. Bitki yaşadığı yerin adresi ülkesel bazda, kıtasal bazda, il, ilçe, köy veya mezra bazında olabilir. Burada söz konusu olan tamamen coğrafik niteliklerin taşınıyor olmasıdır. Örneğin Türkiye’de Doğu Akdeniz Bölgesinde Adana İli Çukurova Üniversitesi Kampüsü Fen-Edebiyat Fakültesinin Seyhan Baraj Gölüne bakan yamaçları. Habitata ulaşabilmek için lokaliteden sonra adrese devam edilir. Örneğin Altimetre(bulunan yerin deniz seviyesinden yüksekliğini ölçer) veya Gps(bulunan yerin koordinatlarını gösterir) ile daha açıklayıcı bilgiler verilebilir. 2-Habitat: Kelime karşılığı yerdir. Canlının yaşadığı yere Habitat denir. Bu yer büyük alanları kapsadığı için İstasyonda denilir. Yayılış sırasında canlının durduğu yer onun yaşayabileceği türüne uygun öz sahip yerlerdir. Her canlının yaşadığı yerin kendine göre bir takım istekleri ve kendine özgü bir yaşama tarzı vardır. Canlı doğada tek başına yaşayamaz. Bazı özel yaşam şekilleri de vardır. Habitat incelemelerinde önce incelenen canlı grubu belirlenir. Toprak özelliği ele alınır. Bunun amacı yer yüzünde nerelerde hangi canlıların bulunduğunu tespit etmektir. Veri elde etmede ideal yöntem tek tek gezerek araştırma yapılmasıdır. Elde edilen veriler daha sonra coğrafik haritalar da karşılaştırılarak yer belirlenir. Benzerlikler veya farklılıklara göre daha küçük alanlar gibi sorunlar yüzünden bugün coğrafik alanları tespit edilemeyen birçok canlı vardır. Habitat verilirken floristik ve ekolojik olarak adreste verilebilir. Örneğin floristik olarak maki, Qercus coccifera topluluğu için ekolojik olarak hareketli taşların bulunduğu yerler toprağın olmadığı yerler yada açıklık alanlar. Biyosfer: Canlıların yeryüzünde yaşadığı yere biyosfer denir. Biyosferden itibaren yukarılara çıkıldıkça yada aşağılara inildikçe canlıların gittikçe azaldığı yaşamını devam ettiremediği görülür. Canlıların yaşamadığı alana Parabiysfer denir. Parabiyosfer sonrası canlı bulunmaz. Canlılar parabiyosfer ile biyosfer arasında sürekli olarak hareket halindedir. Bunun sonucunda canlılar ve yeryüzünde bulunduğu alanlar incelediğimizde, bu alanların bazılarının küçük-büyük olduğunu bazılarının hem büyük hem de devamlılık gösterdiğini, bazılarının ise büyük ama devamlılık göstermediği görülür. İşte bu yeryüzüde ki alanları 5 grupta inceleyebiliriz. Kesintisiz Kıtalar Arası Alanlar: Kesintili Kıtalar Arası Alanlar: Rölik Alanlar: Vikaryont Alanlar: Endemik alanlar 1-Kesintisiz Kıtalar Arası Alanlar: Canlıların bulunduğu en büyük alanı aluşturur. Bu büyük alan içerisindeki alanların hiç bir alan aynı özellikte değildir. Yanlız birbirine benzerddir. Canlı grupların arasındaki mesafe yok denecek kadar az olduğu için kesintisiz alanlar diyoruz. Bu kesintisiz alanlar kendi içerisinde Kozmopolit Kutup çevresi alanlar Kuzey kutup çevresi alanlar Pan-Tropik alanlar olmak üzere kendi içerisinde 4'e ayrılır

http://www.biyologlar.com/biyocografya-nedir-1

Fonotip Nasıl Ortaya Çıkar

Fenotip, bir canlının sahip olduğu özelliklerin (karakterlerinin) tamamını ifade eder. Ancak fenotip deyince, bir canlının belirli bir veya birkaç karakterinin görünümü anlaşılır. Bu durumda, çalışma amacına bağlı olarak, karakter gruplarına giren özelliklerin tamamı ya da herhangi birisi, fenotipi açıklamada kullanılır. Taksonomistler, çalıştıkları bireyler ya da birey toplulukları hakkındaki ilk bilgileri, onların fenotiplerine bakarak elde ederler. Fenotip, çıplak gözle de görülebilir, moleküler düzeyde de araştırılıp incelenebilir. Örneğin, bir çiçekli bitkinin gözle görülebilen morfolojik özelliklerin bütünü, ya da hergangi biri, o bitkinin fenotipi olabildiği gibi, aynı bitkinin DNA molekülünün dizilim sırası da o bitkinin fenotipini, adı geçen karakteler bakımından tanımlamada kullanılabilir. Her fenotip, ya da bir bireyin her karakteri, o bireyin genotipi ile çevresinin birbirleriyle değişik derecelerde etkileşimi sonucu ortaya çıkmaktadır. Bunu bir model şeklinde özetlersek; Model 1. Basit genel bir modeldir. Bu modele göre bir canlının fenotipi [ölçülüp, gözlenebilen karakter(ler)i], potansiyel olarak canlının genotipi (genleri) tarafından ortaya çıkarılmaktadır. Başka bir deyişle, genotip, fenotipi ortaya çıkaran potansiyel bir etkendir. Bu potansiyel etken, çevre faktörlerinin de devreye girmesiyle, canlının fenotipinin ortaya çıkmasını sağlar. Örneğin, karaçam (Pinus nigra) oluşumunda, tohumun anne-babasından aldığı kalıtsal özeliklere bağlı olarak 20-30 metre boy kadar varan bir karaçam ağacını ortaya çıkarma potansiyeli vardır. Eğer bu oluşum, zigot oluşumundan itibaren, çok uygun çevre koşullarında gelişip büyümüşse genotipinde yazılı olan en yüksek potansiyele olaşacak görünüş bakımından boylu poslu bir ağaç olacaktır. Öte yandan, eğer aynı tohum gelişiminden itibaren fidan ve/veya genç ağaç safhalarında, uygun olamayan çevre koşullarında gelişmişse, bozuk yapılı, zayıf, kısa boylu bir ağaç olarak ortaya çıkacaktır. Ama, yetiştiği çevre koşulları ne olursa olsun, ağaç yine karaçam olacaktır. Çevre farklığı ağacın boyunu, tepe çatısını, kalınlığını, genel görünüşünü, erkek çiçek, dişi çiçek, kozalak ve tohum büyüklüğünü, tohum verimini vb. etkilemekte, fakat “karaçama” özgü olan ve kalıtsal olan özelliklerini değiştirememekte, ya da çok dar sınırlar içinde değiştirebilmektedir. Model 2. Model 1’deki verilen modeli biraz daha ayrıntılarıyla, gen düzeyinden başlayıp ara kademeleri de belirterek, model 2 şeklinde de gösterebiliriz. Burada, bir DNA molekülü veya onun bir parçası olan gen, fenotipi ortaya çıkarmadan önce, bir çok başka ara işlevlerin yerine getirilmesini sağlamaktadır. DNA molekülü, hücre içinde mevcut bir çok başka kimyasalların da katkısıyla, önce RNA molekülünü üretmekte, RNA molekülü, enzim ve proteinlerin üretilmesinde görev almakta, bu enzim ve proteinler, çok çeşitli metabolik, fizyolojik, biyokimyasal işlemlerden ve olaylardan geçtikten sonra, en sonunda ilgili fenotipin ortaya çıkmasını sağlamaktadır. Tabii ki, bu işlemlerin yürütülmesi sırasında, canlının içinde bulunduğu çevrenin de önemli bir etkisi olmaktadır. Örneğin, değişik metabolik ve fizyolojik etkinliklerin yerine getirilmesi sırasında, canlının bünyesinde bazı mineral besin elementlerinin bulunmaması, ya da yetersiz olması; yetişme ortamının sıcaklığının veya pH derecesinin optimal değerden aşırı yüksek ya da düşük olması vb. çevre faktörleri canlı vücudunda olması gereken söz konusu etkinliklerin ve kimyasal reaksiyonların aksamasına ya da yerine getirilmesine yol açacaktır. Bu ve benzeri çevre faktörlerinin, canlının değişik gelişim aşamalarında, değişik derecelerde ve farklı yönlerde etki yapmasıyla, genetik potansiyel, kendisini fenotipte tam olarak gösterememektedir. Sonuç olarak aynı genotipe sahip olsalar bile, gelişim süreçlerinin ve/veya yaşamlarının şu ya da bu evresinde, zaman ya da mekan içinde, farklı çevre faktörlerine maruz kaldıkları için, daha farklı fenotiplere sahip olabilmektedir. Model 3. Yukarıda verilen Model 1 ve Model 2, tek bir lokus (bir kromozomda belirli bir noktada varolan gen) tarafından kontrol edilen fenotipler için geçerli olabilir. Oysa, canlıların karakterlerinin büyük bir bölümü, bir değil, çok sayıda gen tarafından kontrol edilir. Başka bir deyişle, belirli bir fenotipin ortaya çıkmasında birden fazla gen, değişik ölçülerde ve değişik yönlerde katkılar yapmaktadır. Bu etkileşimler daha ziyade, sıra ile birbirini izleyen biyosentetik reaksiyonların yerine getirilmesi sırasında katalizör olarak görev alan enzimlerin (ve bu enzimleri üreten genlerin) etkisinden ileri gelmektedir. Model 3, sadece tek bir genin değil, bir çok genin etkisiyle ortaya çıkan bir fenotipin modelini göstermektedir. Bu modelde, birden fazla sayıda genin, hem birbiriyle hem çevre faktörleriyle etkileşimler yaparak, bir fenotipin ortaya çıkışı izlenebilir SİSTEMATİK HİYERARŞİ 1. Tüm Dünya’da gerçek ve etkili bir iletişimin sağlanabilmesi için standart bir hiyerarşi gereklidir. 2. Belirli bir kategorik tür, organik çeşitliliği kavrayabilmemiz için esastır. Bundan dolayı hiyerarşideki bütün diğer kategoriler doğrudan ya da dolaylı olarak bu düzeyle ilişkilidir. 3. Bütün canlıların, aynı genel yolla türedikleri kabul edilir (doğal seçim yoluyla evrimsel olarak). MANTIKSAL YAPI Linné’nin sisteminde, hiyerarşik yapı sınıf sınıf içinde (veya kutu kutu içinde) bir sistem olarak gözlenir. Linné tarafından geliştirilen hiyerarşinin başarısı tesadüfi değildir. Başarılı kurgusunun ve kullanımının nedenlerinden birisi, o zamanlar kullanılan daha basit hiyerarşilere dayanmasıdır, yani birdenbire keşfedilip ortaya konmamış olmasıdır. Bu ilk hiyerarşiler, başta Aristo olmak üzere eski Yunanlılar tarafından geliştirilen kavramlara dayanır. Linné hiyerarşisinin başarısının ikinci nedeni, Linné’nin ansiklopedik dehasıdır. Linné bizzat kendisinin bildiği bütün bitki ve hayvanları sınıflandırarak göstermiştir. Fakat Linné hiyerarşisinin etkenliğini sağlayan üçüncü ve temel bir neden vardır. İster ilkel, isterse gelişmiş olsun, tüm toplumlar çevrelerindeki nesneleri sınıflandırırlar. İnsan beyni, nesne veya fikirleri koordine veya subordine etmeden aralarındaki bağlantı veya ilişkileri takdir edemez. İnsanın bütün ürünleri, bilgisi, aletleri, gelenekleri, hatta bilimsel teorileri ve ilişkileri bile hiyerarşik olarak kurgulanmıştır. Böyle birkaç nedenden dolayı, Linné hiyerarşisi öğeleri arasında belirli bir kurguya ve ilişkiye sahiptir. Bu hiyerarşinin öğeleri, bir birey, takson ve kategori mantıki olarak analiz edilebilir. Hiyerarşide iki türlü ilişki söz konusudur: Dikey ve yatay İki türlü dikey ilişki vardır. a. Bireyle dahil olduğu takson ve taksonla bulunduğu kategori, b. Yüksek bir taksonla alçak bir takson arasındaki. Birinci tip dikey ilişki bir üyelik ilişkisidir. Örneğin bir insan, Hasan Taş, yüksek düzeydeki Memeliler ile alçak düzeydeki Homo sapiens arasındaki çeşitli taksonların üyesidir (tablo), Buna karşılık, her biri birer kategorinin üyesidir; Memeliler sınıf kategorisinin; Homo sapiens tür kategorisinin üyesidir. İkinci tip dikey ilişki, içerme veya dahil olmadır ki, yüksek ve alçak taksonlar arasındaki bağlantıdır. Örneğin Homo sapiens Homo’ya aynı biçimde Homo’da Hominidae’ye dahildir. (tablo). Yatay ilişki, bireylerde kategoriler arasında olanıdır. Kuşkusuz, hiyerarşinin amaçları bakımından, tüm bireyler denk kabul edilir. Benzer şekilde kategoriler de denktir ve basitçe hiyerarşideki basamakları işaretler. Kategorilerin dikey olarak birbirini içermesi, esasen hiyerarşinin merdivensi yapısı ve faydasını bozar. Linné hiyerarşisinin, yukarıdaki mantıksal analizinden kaynaklanan zorluklardan birisi “Gregg paradoksu” denilen çelişkili durumdur. Bu monotipik taksonların (yani bir tane alt birimi olan takson) mantıki kabulünden kaynaklanır. Problem mantıksal açıdan şöyle bir ilişki vardır. Ginkgo = cins, Ginkgo biloba = tür, Ginkgo = Ginkgo biloba ve bundan ötürü cins = tür. Eğer bu iki kategori aynı ise, o zaman hiyerarşinin merdivensi yapısı, bozulur. Böyle sorunların bir çözümü olarak, monotipik taksonların en az bir tane bilinmeyen veya fosil takson daha içerdiğini kabul etmek görekmektedir. Böylece “çelişki”den kaçınılabilir. KAYNAK: www.sistematiginesaslari.8m.com/5.htm

http://www.biyologlar.com/fonotip-nasil-ortaya-cikar

Ülkemiz İçsularına Sonradan Giren İstilacı Türlerin Mevcut Durumu

Ülkemiz İçsularına Sonradan Giren İstilacı Türlerin Mevcut Durumu, İçsu Balıkçılığına ve Biyolojik Çeşitliliğe Etkilerinin Değerlendirilmesi Giriş İçsu balıklarının aşılanması ve taşınmasının özellikle ılıman iklime sahip ülkelerde oldukça eski ve uzun bir hikayesi vardır ve halen günümüzde de devam eden yaygın bir uygulamadır. Çeşitli amaçlar doğrultusunda gerçekleştirilen bu işlemin başlıca sebepleri arasında, sportif balık stoklaması, vejetasyonun ve istenmeyen türlerin kontrolü, değerli türlerin dağılım alanlarının genişletilmesi, sucul ekosistemlerin balıkçılık üretimlerinin artırılması, yetiştiricilik ve süs balığı taşınması gelir. İstemli olarak yapılan bu aşılamalar, balast suları ile taşınma, çiftliklerden kaçan balıklar veya yem balıklarının salınması gibi aktivilerle, istemsiz olarak da meydana gelebilir. Ancak istemli ya da istemsiz yapılan bu aşılamalar her zaman beklenilen faydaları getirmez; aksine, çoğu zaman istenmeyen sonuçlar doğurabilir. Aşılama ile yeni ortamlara giren istilacı tatlı su balıklarının olumsuz etkileri özellikle son zamanlarda fark edilmeye başlanmış ve bütün Dünya’da ilgi çeken bir konu haline gelmiştir. Bu olumsuz etkiler, yerel türler, topluluklar ve ekosistemler gibi, biyoçeşitliliği etkileyecek şekillerde olduğu gibi yerel ve ulusal ekonomiler üzerinde de çok ciddi sorunlar yaratmaktadır. Örneğin, bazı ülkelerde istilacı türlerin meydana getirdiği ekonomik kayıplar milyon dolardan milyar dolarlara kadar değişmektedir. Bu zararlı etkilerden dolayı, herhangi bir istemli aşılamanın artık sorgusuzca yapılması oldukça zor bir hal almıştır. Yabancı bir türün yeni bir ortama bırakılması, ekonomik değeri az olan bazı balık türlerinin, değerli türlerin yerini almasına neden olabildiği gibi; avcı karaktere sahip kimi aşılanmış türler, üzerinden beslendikleri diğer türlerin popülasyonlarının azalmasına, hatta yok olmasına yol açabilir. Yabancı türler, bu sayede girdikleri yeni ortamın bütün dengesini bozarak , tür çeşitliliğini azaltmak suretiyle, balık topluluklarının kompozisyonunu ve yapısını değiştirebilirler. Son derece dikkatlice planlanmış ve kontrol edilmiş aşılanmalarda bile büyük bir ekolojik ve ekonomik tehlike söz konusu olabilir. Çünkü doğal ekosistemlere yapılan bu tip müdahaleler, besin zincirinde ve bütün ekosistemde şiddetli değişimlere yol açar. Günümüzde hızla artan nüfus ve bunun sonucunda ortaya çıkan beslenme sorunlarına bir çözüm olması yönünden iç su balıkçılığının desteklenmesi ve geliştirilmesi teşvik edilmektedir. Özellikle az gelişmiş veya gelişmekte olan ülkelerde, kırsal kesimde yaşayan insanların yetersiz ve dengesiz beslenme sorununa çözüm olarak iç su balıkçılığının geliştirilmesi gündeme gelmiştir. Bu sayede, hem besin ihtiyacının ucuz yoldan karşılanabilmesi hemde balıkçılığın bir ticaret sektörü olarak geliştirilmesi amacıyla, doğal ve yapay göllere ticari değere sahip balık türlerinin aşılanarak mümkün olduğunca çok üretilmesi hedeflenmiştir. Fakat , bu uygulamalar yapılırken dikkat edilmesi gereken en önemli husus olan risk yönetimi önlemleri (örneğin, karantina kontrolleri), genellikle uygulanmamakta veya görmezden gelinmekte; bu konudaki öncelikler karasal bitkilere, bitki zararlılarına veya diğer hayvanlara verilmektedir. Ancak, iç su balıklarının aşılanması esnasında, diğer bazı yabancı türlerin istemli olmayan (kazara) taşınmaları, büyük problemlere yol açabilmektedir. Ayrıca, istilacı türler hakkında oldukça bilgisiz olan bölgesel halk veya amatör balıkçılar, bu tip balıkları bir yerden başka bir yere getirerek , dağılım alanların genişlemesine ve başka yerlere bulaşmalarına neden olmaktadırlar. Ülkemizde de, maalesef, bu bahsedilen olguların çoğu ile karşılaşılmaktadır. Bütün Dünya’da olduğu gibi iç sularımızda da baş belası haline gelen bazı balıklar hakkında, en azından, temel bilgilere sahip olmanın önemi büyüktür. Aşılanan İstilacı Türler Türkiye iç sularına aşılanan yabancı tatlı su balıkları arasında en dikkat çeken ve en çok problem yaratma potansiyeline sahip olan türler; Carassius gibelio (gümüşi havuz balığı), Pseudorasbora parva (çakıl balığı) ve Lepomis gibbosus’tur (güneş balığı). Bu üç tür de, yırtıcı özelliğe sahip olmayan, yani doğrudan diğer balık türleri üzerinden beslenmeyenn, ancak, daha çok ortamdaki, diğer türlerle besin ve alan rekabetine giren, diğer yerel türlerin üreme faaliyetlerini olumsuz yönde etkileyen balıklardandır. Dağılım alanları Kore, Çin, Rusya ve Asya ülkeleri olan gümüşi havuz balığı, Avrupa’ya 16-17. yüzyıllarda geçmiştir. Bu transferin doğal nehir sistemleri veya insan tarafından taşınıp sucul ekosistemlere bırakılması suretiyle gerçekleştiği düşünülmektedir. Bu balık, ülkemizde ilk olarak Trakya Bölgesi’nde, 1986 yılında fark edilmiş ve türün tanınması ile ilgili bilgiler yaygınlaştıkça, Türkiye’nin hemen her bölgesinden kayıtlar verilmeye başlanmıştır. Kısa sürede hızlı bir yayılım göstermiş; ilk başlarda bütün Trakya Bölgesi’ni istila etmiş; daha sonra Türkiye’nin en doğusundaki yerleri de içine alacak şekilde dağılmıştır; sürekli olarak yeni yerlerde görüldüğüne dair bilgiler gelmeye devam etmektedir. Çok geniş bir üreme sezonuna sahip olan tür, fazla sayıda yumurta oluşturmasıyla göze çarpmaktadır. Büyümesi genellikle aynı ortamı paylaştığı diğer akrabalarına (sazangil) göre oldukça hızlı olup hayatlarının ilk yıllarında üreyebilecek olgunluğa erişirler. Bu balıkların besinlerini, yeni çok büyük çoğunlukla diğer yerel balıkların da besinlerini oluşturan küçük omurgasızlar, zooplanktonlar ve bitkisel organizmalar oluşturur. Bu balıkla ilgili en ilginç, belki de geniş alanlara yayılma ve hayatta kalabilme şansını arttıran özelliklerden biri cinsiyet oranlarındaki farklılıktır. Balığın yayılım gösterdiği çoğu bölgede dişilerin baskın olduğu, erkeklerin çok az sayıda görüldüğü rapor edilmektedir. Bu balıklarda ender olarak görülen erdişilik (ginogenez) denilen üreme tipinin bir göstergesi olabilir ve dişi bireylere, kendi cinsinden başka aynı aileden yakın türlerin erkeklerin spermlerini kullarak üreme imkanı tanır. Yani, erkek bireyin spermi sadece uyarıcı olarak rol oynar; döllenmeye herhangi bir katkı yapmaz. Yapılan araştırmalar, balığın değişken çevresel koşullara oldukça dayanıklı olduğunu ve farklı özelliğe sahip birçok habitatta yaşamını rahatlıkla sürdürebildiğini göstermiştir. Yüksek uyum yeteneği ve gelişmiş üreme özellikleri, bu balıkların, özellikle Avrupa’da ve Türkiye’de, kısa bir süre içinde neden hızla yayıldığını açıklamaktadır. Balık sayısının kısa zamanda çok artış göstermesi, özellikle yerel türlerin sayılarını yıllar içinde önemli düzeylerde azalmıştır. Bunlar, omnivor beslenme rejimine sahip olduklarından, hem bitkiler üzerinden beslenip onları köklerden söker, hem de omurgasızlarla beslenirken dibi karıştırırlar. Beslenme faaliyetleri sudaki bulanıklığı artırarak, bitkilerin fotosentez etkinliklerinin azalmasına neden olur. Sonuçta bu bitkilere bağımlı organizmaların miktar ve çeşitliliklerini azaltarak, su kalitesinin bozulmasına yol açar ve diğer türlerin hayatta kalma şansını azalatır. Diğer bir dolaylı etki ise, yerli türlerin üreme faaliyetlerini sperm parazitliği yapma yoluyla kısıtlayarak, engellemesidir. Son olarak, diğer türlerle üreme faaliyeti gerçekleştirerek hibrit türler oluşturması diğer türlerin popülasyonlarında ciddi azalmalara yol açmaktadır. Doğudan batıya taşınarak, iç suları istila eden balıklar arasında en etkileyici olanlardan biri de çakıl balığı (Pseudorasbora parva)’dır. Bu balığın doğal yayılış alanı, Kore, Orta ve Güney Japonya ve Kuzey ve Merkez Çin ve Tayvan gibi Uzak Doğu ülkelerinin bulunduğu oldukça geniş bir coğrafyayı kapsamaktadır. Bu balık, ortamdaki diğer balıklar için ölümcül bir patojen olan ökaryotik bir parazitin taşıyıcısıdır. İngiltere’de yapılan çalışmalar, bu patojenden etkilenen ve nesli tehlike altında olan yerel balık türlerinin populasyonlarında ciddi azalmaların meydana geldiğini ispatlamıştır. Bu balık Türkiye’nin birçok bölgesinde iç sulara bir şekilde girmiş ve dağılım alanlarını genişletmiş olmakla beraber, hakkındaki bilgilerimiz şu an için kısıtlıdır. Güneş balıkları (Lepomis gibbossus) 19. yüzyılın sonlarında ve 20. Yüzyılın başlarında olta balıkçılığı için Fransa’ya, süs balığı olarak da İngilere, Slovenya ve İspanya’ya getirilmiştir. Aşılanan güneş balıkları morfolojilerinde ve hayat süreçlerinde büyük esneklikler gösteren dirençli bir balıktır. Bu özellikleri, onların, Türkiye’yi de içine alan en az 28 Avrupa ülkesinde sürekli (kalıcı) popülasyonlar oluşturmalarını sağlamıştır. Sivrisinek balığı, Gambusia holbrooki, ülkemize, 20. yüzyılın başlarında sivrisinekle mücadele amacıyla getirilen bir tür olup bugün bütün Türkiye’yi kapsayan oldukça geniş bir yayılım alanına sahiptir. Bu tür Avrupa’da, yayıldığı yerlerde çok başarılı olmuştur ve şu anda çoğu ılıman bölgedeki sucul ekosistemlerde bol ve yaygın vaziyette bulunmaktadır. Sivrisinek balığı, Sıtma hastalığına karşı etkili bir silah olmuş; ancak, özellikle Cyprinodontidae familyasına ait balıklara, Hemigrammocapoeta nana (gümüş sazanı), Garra rufa ve Garra ghorensis gibi türlere zarar vermiştir. Buna karşın Türkiye’de sivrisinekler ve yerli balılar üzerine yaptığı etkiler henüz yeteri kadar aydınlatılamamıştır. Önlem ve Öneriler Bu balıkların hızla yayılmasındaki önemli etkenlerden biri, bazı devlet kurumlarının, balık üretimini artırmak ve halka geçim kaynağı yaratmak amacıyla uyguladıkları sazan balığı (Cyprinus carpio) aşılamalarıdır. Çünkü, şu anda halen aşılama çalışmaları yapılan sazan balığı, gümüşi havuz balığı ile ciddi biçimde benzerlik göstermekte olup bu benzerlikten dolayı halen, seyyar balıkçılar tarafından sazan olarak satılmaktadır. Yumurta alımından itibaren devlet kurumlarına ait çeşitli tesislerde büyütülen sazan balıklarının, belli bir boya gelene kadar gümüşi havuz balığından ayrılması oldukça zordur. Bu yüzden, potansiyel olarak, hala bazı göllere sazan ile birlikte girme olasılığı oldukça yüksektir. Ayrıca, özellikle yetiştirme çiftliklerinin bulunduğu bölgelerde meydana gelen taşkınlarda, doğal sular bir şekilde bu yetiştirme çiftliklerine girmekte, bu durumda yabancı türlerin yetiştiriciliği yapılan ve aşılanması düşünülen yerel balıkların arasına karışmasına neden olmaktadır. Daha sonrasında, Türkiye’nin her yerine bu balıkların aşılanması, istenmeyen yabancı türlerin de dağılmasına yol açmaktadır. Diğer yandan, yerel halkın bu balıkların ekosistemler açısından yararlı olduğuna dair yanlış inançlarından dolayı, bu balıkları istemli olarak bir yerden başka bir yere taşınmalarına yol açmaktadır. Yerli olmayan ve özellikle yetiştiricilik endüstrisi ile ilgili olan sucul türler, günümüzde sadece Avrupa Birliği’nin taslak kanunlarında yer bulmaktadır. Avrupa ve Amerika’daki çabaların aksine, Türkiye’de balık aşılamaları ve stoklamalar konusunda henüz yazılı bir metin veya mevzuat mevcut değildir ve bu konuda herhangi bir girişimin yapıldığına ilişkin işaret de bulunmamaktadır. Yalnızca doğal sulara yumurta ve larva bırakılması ile ithal ve ihraç yoluyla su ürünlerinin hareketi gibi girişimler, Tarım ve Köyişleri Bakanlığı’nın kontrolündedir. Ancak bakanlık teşkilatının elinde yabancı türler konusunda geçerli kurallar ve uygulama esaslarına yönelik bir metin mevcut değildir. Bu nedenle, yapılan stoklamalar oldukça dikkatsiz biçimde, kişilerin ve kurumların alışılagelmiş uygulamalarına göre yapılmaktadır. Bugün ülkemizde yabancı türlerin dağılımını tetikleyen en önemli faktörlerden biri, yeni kurulan baraj göllerinin ve benzeri sulak alanların balıklandırılması sırasında, dikkatsizlik sonucu, yabancı türlerin, yetiştirilmesi hedeflenen türlere karışıp beraber taşınmasıdır. Bunun yanında çoğu zaman, yerel halk ve balıkçılar son derece bilinçsiz şekilde, keyfi davranışlar sergileyerek yabancı türlerin dağılımına katkıda bulunmaktadırlar. Bugün ülkemize en az 25 farklı egzotik tatlı su balığının girdiğini ve bunlardan 12 tanesinin de üreyebilen popülasyonlar oluşturarak, kalıcı hale geldiklerini biliyoruz. Ekonomik duruma katkı yapmak ve halkın refahını artırmak için yetiştirilip sularımıza bırakılan tatlı su balıkları, maalesef, aynı zamanda tehlikeli istilacılar olan tatlı su balıkları için de paha biçilemez bir yayılım imkanı sağlamaktadır. Uzun ölçekte baktığımız zaman, bu istilacı türler girdikleri ortamlarda diğer yerel türleri ortadan kaldırdıkları gibi, ekonomik katkı yapması ve balık üretimini artırması beklenen yerel türleri de ciddi miktarlarda azaltarak, hedeflenen amaçların hepsinin boşa çıkmasına neden olmaktadır. Bugün, özellikle baraj göllerine ve göletlere atılan sazan gibi türlerle başlatılan balıkçılık kooperatifleri veya amatör balıkçılık faaliyetleri, kısa bir zaman zarfında yararlılığını kaybederek, terk edilmektedir. Yerel halkın geçimini sağlamak bir kenara, eskiden bulunan yerel türlerin bile avlanılması artık mümkün olmamaktadır. Buna Türkiye’de en güzel örnek olarak Göller Bölgesi’nde iki farklı göle atılan sudak balığı (Sander lucioperca) gösterilebilir. Yerel ekonominin ve balıkçılığın hareketlenmesi amacıyla 1955 yılında Eğirdir Gölü’ne ve 1978-1980 yılları arasında da Beyşehir Gölü’ne aşılanan sudak balığı, her iki göldeki yerli türleri zaman içinde azaltmış ve çoğunu ortadan kaldırarak, hem balıkçılık ekonomisine hem de göl ekosistemlerine geri dönüşü olmayan büyük zararlar vermiştir. Bu konuda gerekli mevzuat oluşturulup uygulamaların düzenli bir şekilde işlemesine kadar geçecek zamanda, yabancı ve yerli türlerin aşılanması veya bir yerden bir yere taşınması kesinlikle düşünülmemelidir. En kısa zamanda balıkçılar ve halk bu konuda bilinçlendirilmeli ve gerekli önlemler alınmalıdır. Aksi halde, çok kısa bir süre içinde, doğal biyoçeşitliliğimizin kaybedilmesine ve yerini çok uzaklardan gelen yararsız ve istilacı türlere bırakmasına şahit olunacaktır. Source: Doç.Dr. Ali Serhan Tarkan, Muğla Üniversitesi, Su Ürünleri Fakültesi Tarımın Sesi, Haziran 2010, Sayı 26, s. 21-24

http://www.biyologlar.com/ulkemiz-icsularina-sonradan-giren-istilaci-turlerin-mevcut-durumu

Pestisitlerin İnsan Ve Çevre Üzerine Etkileri

Pestisit deyimi, insektisit (böcek öldürücü), herbisit (yabani ot öldürücü), fungusit (küf öldürücü), rodentisit (kemirgen öldürücü) vb. şeklinde sınıflandırılan kimyasal maddelerin tümünü kapsamaktadır. Pestisitler, etkili maddelerinin kökenlerine göre de gruplara ayrılabilir: 1. İnorganik maddeler 2. Doğal organik maddeler a) Bitkisel maddeler b) Petrol yağları vb. 3. Sentetik organik maddeler a) Klorlu hidrokarbonlar b) Organik fosforlular c) Diğer sentetik organik maddeler ( azotlu bileşikler, piretroidler) Pestisitlerin kullanımı çok eski tarihlere dayanmaktadır. M.Ö. 1500’lere ait bir papirüs üzerinde bit, pire ve eşek arılarına karşı insektisitlerin hazırlanışına dair kayıtlar bulunmuştur. 19.yy’da zararlılara karşı inorganik pestisitler kullanılmış, 1940’lardan sonra pestisit üretiminde organik kimyadan faydalanılmış, DDT ve diğer iyi bilinen insektisit ve herbisitler keşfedilmiştir. Bugüne kadar 6000 kadar sentetik bileşik patent almasına karşın, bunlardan 600 kadarı ticari kullanım olanağı bulmuştur. Ülkemizde tarımı yapılan kültür bitkileri, sayıları 200’ü aşan hastalık ve zararlının tehdidi altında olup yeterli savaşım yapılmadığı için toplam ürünün yaklaşık 1/3’i kayba uğramaktadır. Bu kayıpların önlenmesi bakımından pestisitlerin daha uzun yıllar büyük bir kullanım potansiyeline sahip olacağı kuşkusuzdur. Formülasyon olarak 30 000 ton civarında olan pestisit kullanımımızda en yoğun kullanılan gruplar sırasıyla herbisitler, insektisitler, fungusitler ve yağlardır. Bununla beraber, yoğun ve bilinçsiz pestisit kullanımının sonucunda gıdalarda, toprak, su ve havada kullanılan pestisitin kendisi ya da dönüşüm ürünleri kalabilmektedir. Hedef olmayan diğer organizmalar ve insanlar üzerinde olumsuz etkileri görülmektedir. Pestisit kalıntılarının önemi ilk kez 1948 ve 1951 yıllarında insan vücudunda organik klorlu pestisitlerin kalıntılarının bulunmasıyla anlaşılmıştır. Pestisitlerin bazıları toksikolojik açıdan bir zarar oluşturmazken, bazılarının kanserojen, sinir sistemini etkileyici ve hatta mutasyon oluşturucu etkiler saptanmıştır. Pestisit kalıntılarının en önemli kaynağı gıdalardır. Bu nedenle 1960 yılında FAO ve WHO “Pestisit Kalıntıları Kodeks Komitesi”ni kurmuşlar ve bu komitenin çalışmaları sonucu konu ile ilgili tanımlamalar yapılmış, bilimsel araştırma verilerine dayanılarak gıdalarda bulunmasına izin verilen maksimum kalıntı değerleri saptanmıştır. Ülkemizde de tarımsal ürünlerde kullanılan pestisitlerin gıdalarda bulunması müsaade edilebilir maksimum miktarları ürün ve ilaç bazında belirlenmiştir. Bu bilgilere Tarım Bakanlığının Web sayfasından kolaylıkla ulaşmak mümkündür. Pestisitlere Karşı Dayanıklılık Oluşumu Savaşımda kullanılan pestisitlere karşı zararlı ve hastalıkların dayanıklılık kazandıkları bilinmektedir. Dayanıklılığın pratikteki anlamı hastalık ve zararlıların daha önce kendilerine karşı başarıyla uygulanan toksik maddelerden artık etkilenmedikleridir. 1970’de dayanıklı olarak saptanan tür sayısı 244 iken, 1980’de bu sayı 428’e yükselmiştir. Tarımsal ürün zararlılarında meydana gelen çeşitli tipteki dayanıklılıklar sonucunda pestisitin etkinliğindeki azalmayı aşmak için daha yüksek dozlarda uygulama gerekmekte, bu da hem maliyetin artmasına ve ürün veriminde azalmalara yol açmakta, hem de üründe ve çevrede kalıntı miktarının ve kirliliğin artmasına neden olmaktadır. İnsanlar Üzerine Etkileri Pestisitlerin insanlarda belirli miktarlarda toksik olmaları nedeniyle savaşımda çalışan herkesin bunların kullanımı sırasında meydana gelebilecek potansiyel zarardan sakınmaları gerekir. İnsanların pestisitlere maruz kalması mesleki zehirlenmeler veya kaza ile meydana gelebilmektedir. Her iki tür zehirlenmenin ana nedenleri: 1. Halkın bu konuda yetersiz eğitime sahip olması ve pestisitlerin toksisite potansiyellerinin bilinmemesi, 2. Uygun olmayan koşullarda depolama, 3. Kaza ile saçılma sonucu gıdaların kontamine olması, 4. Dikkatsiz yükleme ve taşıma, 5. Yıkanmamış pestisit kaplarının kullanımı, 6. Genel bakım ve atık değerlendirme işlemleri Çevre Üzerine Etkileri Tarımsal alanlara, orman veya bahçelere uygulanan pestisitler havaya, su ve toprağa, oradan da bu ortamlarda yaşayan diğer canlılara geçmekte ve dönüşüme uğramaktadır. Bir pestisitin çevredeki hareketlerini onun kimyasal yapısı, fiziksel özellikleri, formülasyon tipi, uygulama şekli, iklim ve tarımsal koşullar gibi faktörler etkilemektedir. Pestisitlerin püskürtülerek uygulanması sırasında bir kısmı evaporasyon ve dağılma nedeniyle kaybolurken, diğer kısmı bitki üzerinde ve toprak yüzeyinde kalmaktadır. Havaya karışan pestisit rüzgarlarla taşınabilir; yağmur, sis veya kar yağışıyla tekrar yeryüzüne dönebilir. Bu yolla hedef olmayan diğer organizma ve bitkilere ulaşan pestisit, bunlarda kalıntı ve toksisiteye neden olabilir. Toprak ve bitki uygulamalarından sonra toprak yüzeyinde kalan pestisitler, yağmur suları ile yüzey akışı şeklinde veya toprak içerisinde aşağıya doğru yıkanmak suretiyle taban suyu ve diğer su kaynaklarına ulaşabilirler. Eğim, bitki örtüsü, formülasyon, toprak tipi ve yağış miktarına bağlı olarak taşınan pestisitler, bu sularda balık ve diğer omurgasız su organizmalarının ölmesine; bu organizmalardaki pestisit kalıntısının insanların gıda zincirine girmesi ve kontamine olmuş suların içilmesiyle kronik toksisitenin oluşmasına neden olurlar. Toprağa geçen pestisitler güneş ışınlarının etkisiyle fotokimyasal degradasyona, bitki, toprak mikroorganizmaları ve diğer organizmaların etkisiyle biyolojik degradasyona uğramakta; toprak katı maddeleri (kil ve organik madde) tarafından adsorlanıp desorplanmakta veya kimyasal degradasyona uğramaktadırlar. Toprak içine geçmiş pestisitler kapiller su vasıtasıyla toprak yüzeyine taşınmakta ve buradan havaya karışabilmektedir. Toprağın yapısı, kil tipi ve miktarı, organik madde içeriği, demir ve alüminyum oksit içeriği, pH’sı ve toprakta var olan baskın mikroorganizma türleri tüm bu olayları etkileyen faktörlerdir. Toprakta pestisitin tutulmasıyla hareketi ve biyolojik alımı engellenmekte ve çeşitli şekillerde degradasyonu ile ya toksik özelliğini kaybetmekte ya da daha toksik metabolitlerine dönüşebilmektedir. Pestisitin kendisinin ya da toksik dönüşüm ürünlerinin hedef olmayan yerleri veya organizmaları kontamine etmesi istenmediğinden tüm bu olayların bilinmesi ve incelenmesi önem taşımaktadır. Kaynak: Dr. Ülkü Yücel - Ankara Nükleer Araştırma ve Eğitim Merkezi, Nükleer Kimya Bölümü Türkiye' de Tarım İlaçları Endüstrisi ve Geleceği Günümüz dünyasının en önemli sorunlardan biri de hızla artan dünya nüfusudur. FAO'nun raporlarına göre her yıl insanlara 15-20 milyon ton gıda maddesi gerekmektedir. Dünyanın yüzölçümü sınırlı olduğundan bu ihtiyacı karşılayacak üretim için yeni alanların tarıma açılması mümkün değildir.Mevcut alanlardan daha fazla üretim yapılabilmesi için tarım ilaçları bugün bütün dünyada kullanılmasından vazgeçilemeyecek maddeler olarak kabul edilmektedir. Dünyada tarım ilacı üretimi 3 milyon ton civarında, yıllık satış tutarı ise 25-30 milyar dolar arasında değişmektedir. Dünya pestisit pazarı 1998 de 1993'e göre % 2.5 luk yıllık büyüme ile 31 milyar dolara ulaşmıştır. Türkiyede ise 1999 sonu itibariyle 2000 e yakın ruhsatlı ilaç olup bunlar içerisinde yer alan teknik madde sayısı 300 civarındadır. Bunların 16 tanesi ülkemizde üretilmekte olup, diğerleri ithal edilmekte veya hazır ilaç olarak ülkemize girmektedir. Yıllık pestisit satışının 250 M $ civarında olduğu ülkemizde birim alana kullanılan ilaç miktarı gelişmiş ülkelere göre çok düşük düzeyde kalmaktadır. Türkiye'ye kıyasla Fransa ve Almanya'da 9, İtalya'da 15, Hollanda'da 35, Yunanistan'da 12, Belçika'da 21, ABD de 15, İsviçre ve Japonyada 17kat daha fazla ilaç tüketilmektedir. Türkiye'de ilaç kullanımı daha çok polikültür tarımın yapıldığı Akdeniz ve Ege bölgelerinde yoğunlaşmaktadır. Entegre tarımın başlatılmasına yönelik güçlü girişimler, sürdürülebilir tarıma ulaşılması bakımından acilen gereklidir. Dünya’da Entegre Ürün Yönetimi(ICM-Integrated Crop Management) hareketleri, çevreyi ve insanı tek bir sistem olarak gören (holistik) çiftçilik yaklaşımını vurgulamaktadır. Tüm kıtalarda kültürel uygulamalar (örn. bitki rotasyonu, zararlı izleme) ile biyolojik, biyoteknolojik ve kimyasal Bitki Koruma ilaçlarını bir arada içeren Entegre Mücadele(IPM-Integrated Pest Management) girişimleri Bitki Koruma ürünlerinin kullanımını, güvenli ve çevreye saygılı hale getirmek için takip edilmesi gereken yoldur. Sektörün global derneği GCPF(Global Crop Protection Federation) tarafından başlatılıp desteklenen özel “Güvenli Kullanma Projeleri”nin hedefi budur. Bu amaçla GCPF, dünya çapında yeni ve sürdürülebilir çözümlerin uygulamasını güçlendirmek üzere kamu-özel ortaklığını kurmaya ve uluslararası kurumlar, hükümetler ve resmi olmayan kurumlar ve diğer taraflar ile diyalogda bulunmak için çaba göstermektedir. Günümüz dünyasının en önemli sorunlarından biri de hızla artan dünya nüfusudur. Çünkü, dünya nüfusu gittikçe artmasına karşın dünyanın yüzölçümü değişmemektedir. Hatta erozyon, yeni yerleşim yerlerinin açılması, yeni fabrikalar kurulması gibi nedenlerle tarıma elverişli alanlar giderek azalmaktadır. Diğer taraftan, FAO'nun raporlarına göre, halihazırdaki dünya nüfusunun % 40'ı yeterli derecede beslenememekte, hatta açlığa bağlı nedenlerle her yıl 20 milyon insan ölmektedir. Yine FAO'nun raporlarına göre her yıl, başta tahıl olmak üzere bu insanlara 15-20 milyon ton gıda maddesi gerekmektedir. Dünyanın yüzölçümü sınırlı olduğundan bu ihtiyacı karşılayacak üretim için yeni alanların tarıma açılması mümkün değildir. O halde yapılacak iş, birim alandan elde edilecek ürün miktarını arttırmaktır. Bunun için de modern tekniklerin ve girdilerin kullanılması bir zorunluluktur. Tarım ilacı da bu girdilerin başında gelmektedir. Bugün tarım ilacı kullanılmadan üretim yapılması halinde, ürün miktarında ortalama % 65 oranında kayıp olmaktadır.Bazı hastalık ve zararlılara karşı son yıllarda bulunan dayanıklı çeşitler yine de gerekli sonucu sağlayamamıştır. Ayrıca gübreleme, sulama, toprak işlemesi vb. verimi arttırıcı kültürel yöntemler bazı bitkilerde hastalık ve zararlıların daha da artmasına neden olmuştur. Bu sebeplerden dolayı, tarım ilaçları bugün bütün dünyada kullanılmasından vazgeçilemeyecek maddeler olarak kabul edilmektedir. Dünyada Tarım İlacı Kullanımı Dünyada tarım ilacı üretimi 3 milyon ton civarındadır. Pestisitlerin yıllık atış tutarı ise 25-30 milyar dolar arasında değişmektedir. Dünya pestisit pazarı 1998 de 1993'e göre % 2.5 luk yıllık büyüme ile 31 milyar dolara ulaşmıştır. 1999 da ise 1998 e göre % 1 lik bir büyüme tahmin edilmektedir. Tonaj olarak ise yılda % 1 den daha az bir büyüme beklenmektedir. Şekil 1 de görüldüğü gibi Herbisitler tarım ilaçları içinde % 47'lik bir payla birinci sırayı almaktadır. Bunu % 29 ile insektisitler izlemekte, fungisitlerin ise % 19'luk bir payı bulunmaktadır. Herbisitler ve insektisitler kullanımın % 70'in üstündeki bir bölümünü kapsamaktadır. Diğer pestisit grupları ise % 5'lik bir paya sahiptir. Türkiye'de birim alana kullanılan ilaç miktarı gelişmiş ülkelere göre çok düşük düzeyde kalmaktadır. Ülkemizde hektara kullanılan ilaç miktarı 0.5 kg. iken bu miktar Fransa ve Almanya'da 4.4 kg., İtalya'da 7.6 kg., Hollanda'da 17.5 kg., Yunanistan'da 6.0 kg., Belçika'da 10.7 kg.'dır. Diğer bir deyişle Türkiye'ye kıyasla Fransa ve Almanya'da 9, İtalya'da 15, Hollanda'da 35, Yunanistan'da 12, Belçika'da 21, ABD de 15, İsviçre ve Japonyada 17kat daha fazla ilaç tüketilmektedir. 1992 yılında Rio de Janeiro'da düzenlenen “BM Çevre ve Kalkınma Konferansı (UNCED)”nda sürdürülebilir kalkınma için taslak olarak 21 no.lu Gündem benimsendi. 21 no.lu Gündemin 14.Kısmı, yani “Sürdürülebilir Tarım ve Kırsal Kalkınma”, 2025 yılında tahmin edilen nüfusun %83’ünün kalkınmakta olan ülkelerde yaşayacağını belirtmektedir. Gündeme göre, "gıda ve lif üretimi taleplerini karşılayacak mevcut kaynaklar ve teknolojiler belirsizliğini korumaktadır. Tarım bu sorunu, halen kullanımda olan alandan alınan ürünü artırarak ve böylece daha fazla araziye yayılma gerekliliğini önleyerek karşılamalıdır." Bu bağlamda "sürdürülebilir yoğunlaşma" gidilmesi gereken yol olarak önerilmiş olup, Global Crop Protection Federation (GCPF) bu hedefin gerçekleştirilmesine katkıda bulunmaya çalışmaktadır Dünya’da Entegre Ürün Yönetimi(ICM-Integrated Crop Management) hareketleri, çevreyi ve insanı tek bir sistem olarak gören (holistik) çiftçilik yaklaşımını vurgulamaktadır.Tüm kıtalarda kültürel uygulamalar (örn. bitki rotasyonu, haşere izleme) ile biyolojik, biyoteknolojik ve kimyasal Bitki Koruma ilaçlarını bir arada içeren Entegre Mücadele(IPM-Integrated Pest Management) girişimleri ürünlerinin kullanımı, güvenli ve çevreye saygılı olmalıdır. Sektörün global derneği GCPF(Global Crop Protection Federation) tarafından başlatılıp desteklenen özel “Güvenli Kullanma Projeleri”nin hedefi budur. Bu projeler Guatemala, Kenya ve Tayland gibi özellikle gelişen ülkelerdeki durumu ele almaktadır. GCPF, 73 ülkede dünyanın araştırmaya dayalı mahsul koruma sektörünün yaklaşık %90’ını temsil etmektedir. Tarımsal Araştırma-Geliştirmeye yaptığı önemli yatırım - 3 milyar ABD dolarından fazla veya 1998 cirosunun yaklaşık % 10’u -, Entegre Ürün Yönetimi kapsamında yeni bilimsel çözümler geliştirerek sürdürülebilir tarıma yönelik uzun vadeli katkılarda bulunmaktadır. Entegre Mücadele(IPM) 21 no.lu Gündemin sürdürülebilir tarima yönelik yaklaşiminin kilit unsurudur: • Bölgesel çok branşlı projelerin güçlendirilmesi ve EntegreMücadelenin tarımda gıda ve değerli mahsuller açısından sosyal, ekonomik ve çevresel yararını sergileyen Entegre Mücadele agları kurmak. • Biyolojik, fiziksel ve kültürel kontrollerin, ayrıca kimyasal kontrollerin türünün bölgelerin şartlarının dikkate alınarak seçilmesini kapsayan uygun Entegre Mücadele geliştirmek Çeşitli projeler Bitki Koruma sektörü, resmi ve gayriresmi kurumlar arasındaki işbirliğinin ne kadar başarılı olabileceğini göstermiştir: Modern bilimin kapsamlı kullanılması sayesinde, GCPF üyeleri tüm yeni Bitki Koruma ilaçlarının neredeyse tamamını geliştirmektedir. Halen dünya piyasasının %85’ine sahiptirler. Tüm GCPF üyesi şirketler Pestisitlerin Dağıtılması ve kullanılmasında Uluslararası FAO Tüzüğü’ne imza atmıştır. Bu şirketler Zirve’nin belirlediği hedefe ulaşılmasına yardımcı tarım tekniklerinin varolduğu inancındadırlar ve bu şirketlere göre sözkonusu yöntemler tüm dünyada başlatılabilir. Modern Bitki Koruma ürünleri, tarımsal üretimin dünyada artan gıda gereksinimini karşılamaya devam etmesini sağlamaya yardımcı olacaktır. Hem bu ürünler hem de çiftçilik aynı zamanda ekonomik ve çevreye ve insan sağlığına uyumlu kalacaktır. Habitatın Korunması ve Biyolojik Çeşitlilik Bakımından Bitki Koruma Sektörü Ürünlerinin Kullanılmasının Yararları Tarih bize insanın ürünlerini koruyamadığı, dolayısıyla sağlıklı gıdada yetersizliklerle karşılaştığı zamanların fazla geçmişte kalmış olmadığını göstermektedir. İrlanda’da 1846 ile 1851 arasında yaşanan ve 1,5 milyon insanın patates mildiyösü sonucu öldüğü büyük kıtlık buna en iyi örnektir. O zamandan günümüze dek tarım bilimi ve uygulaması ile ilgili araştırmalar, gıda üretiminde olağanüstü bir ilerlemeye yol açmıştır. Aynı zamanda dünyadaki nüfus artışı; yüksek verimli çiftçilikle doğal kaynakların korunması arasındaki karşılıklı ilişkilerin anlaşılmasını zorunlu kılmıştır. Modern Dünya toplumuna bol, kolayca temin edilebilen, yüksek kaliteli ve makul fiyatlı gıda sunulmaktadır. Ancak, çok az kişi çiftlik düzeyinde temel gıda üretiminin gerçek sorunlarının farkındadır ve bunları dikkate almaktadır. Bitki Koruma ürünleri genellikle risk faktörü olarak görülmekte ve yararları gözardı edilmekte ya da unutulmaktadır. Ancak, bir risk değerlendirmesinde, riskin kabul edilebilir olup olmadığına karar verebilmek için yararlardan da sözedilmelidir. Gıda Temini Son yıllarda yapay Bitki Koruma İlaçları kullanan modern yoğun tarımın insanlığa sağladıkları: • 1960 yılından bu yana dünya kalori üretimini iki katına çıkarmıştır. • Yemeklik yağ, et, meyve ve sebze gibi kaynak-yoğun gıda üretimini üç katına çıkarmıştır. • Üçüncü Dünyada kişi başına gıda üretimini %25 artırmıştır. • Bu dönemde dünya nüfusu 2,5 milyardan 5,5 milyara çıkmış olmasına rağmen tarıma ayrılan alanı 1950 ile günümüz arasında 1,4 milyar hektarda sabit tutmuştur. • İlave 26 milyon km2 alanın, gelecek yüzyılın sonunda iki katına çıkacak olan mevcut nüfusun beslenmesine ayrılmasını önlemiştir. Yüksek verimli tarım talebinin artmasının tek nedeni nüfus artışı değildir.Çoğu Asya’daki hızla gelişen ülkelerde bulunan ve beslenme alışkanlıklarını geliştirmeye başlayacak düzeyde gelir elde etmekte olan 2 milyar civarında insanın yüksek proteinli gıda isteği de bu talebin artmasına neden olacaktır. Bu amansız gıda taleplerinin karşılanmasında ancak yoğun ve bilime dayalı tarıma güvenilebilir. Bitki Koruma ürünleri gıdanın üretiminin yanısıra aynı zamanda depolanmış pirinç ve diğer taneli hububat gibi ana gıdaların korunması bakımından da zorunludurlar. Modern koruma yöntemleri kullanılarak gıda stokları asgari masrafla fire vermeden yıllarca korunabilir. Bu stoklar, sabit fiyatlardan sürekli gıda arzı için de ön koşuldur. Amerika’da 1980’li yılların sonuna doğru hububat bölgesinde bir yıllık kuraklık, dünya gıda stoğu düzeyini FAO’nun öngördüğü asgari düzeyin altına indirmeye yetmişti. Ayrıca, şehirleşmiş modern toplum çok gelişmiş bir lojistik sistem olmadan beslenememektedir. Bu sisteme mahsulün son derece hassas tarımsal üretimi, hasadı, depolanması ve nakliyesi dahildir. Bitki Korıma İlaçları kullanılmazsa, bu sistem hızla çökecektir. Tüketiciye doğrudan pazarlama yapılan küçük ölçekli çiftçilik çok sınırlı bir pazar kesimini temsil etmekte olup, şehirli nüfusların ihtiyacı olan muazzam gıda miktarlarının sürekli temini garantisini veremez. Sağlığa Katkıları Düşük maliyetli taze meyve ve sebzenin yeterli düzeyde sağlanmasıyla kanser ve kalp hastalığı gibi “modern” canilere karşı da insanın en iyi şekilde savunulur. Yeterli düzeyde yüksek kaliteli gıda temini, tıbbi bakımda istikrarlı ilerleme ile birlikte insanın yaşam süresinin ve refahının istikrarlı olarak iyileştirilmesinde başlıca faktördür. Geçmişte Avrupa’da yüz binlerce ızdıraplı ölüme yol açmış olan çavdar mahmuzu gibi yaşamı tehdit eden fungal hastalıklar ve aflatoksin gibi fungal toksinlerin neden olduğu kanserler, hububat ve fıstık üretimi ve depolanmasında fungisitler kullanılarak önlenmektedir. Son çalışmalar, son derece kanserojen mikotoksinlere, organik yetiştirilmiş hububatlarda Bitki Koruma ürünleri kullanılarak yetiştirilmiş hububatlara göre çok daha sık rastlandığını kesinlikle ortaya koymuştur. Bitki Koruma ürünleri aynı zamanda sıtma, şistosomiasis, filiarsis, tripanazoma ve onkoseriasis gibi taşıyıcıyla bulaşan hastalıkları kontrol ederek milyonlarca hayatı kurtarmaktadır. Bu durum tropik veya subtropik iklimler ile de sınırlı değildir. Evlerde, restoranlarda ve hastanelerde hamamböceği gibi hastalık taşıyıcı haşerelerin kontrolü, Avrupa’da kanatlı karınca ve diğer ahşap oyan haşerelerin yol açtığı maddi tahribatın önlenmesinde de olduğu gibi Bitki Koruma ürünlerine bağlıdır. Herbisitlerin kullanılması sadece mahsulden daha yüksek verim alınmasını sağlamakla kalmayıp, aynı zamanda çiftlikte yaşayanların çalışma koşullarında iyileşme sağlamıştır. Bunun sonucunda çalışanların kas ve iskelet sorunlarının insidansı azalmış, genel sağlıkları ve üretkenlikleri iyileşmiştir. Arka bahçede veya yerleşim yerinin yeşil alanlarında çapalama uygun hatta tatminkar olabilir, ancak büyük ölçekli çifçilikte kullanışlı değildir. Bitkisel Üretim Hannover Üniversitesi'nden Dr. E.C. Oerke tarafından yakın bir geçmişte yapılan bir çalışma, Bitki Koruma İlaçları kullanılarak ve kullanılmadan bütün dünyadaki mevcut besin ve fiber verimliliğini ayrıntılarıyla ortaya koymuştur. Bu çok önemli çalışma, aşağıda bazı örnekleri verilen mahsuller üzerinden Bitki Koruma ürünlerin çekilmesinin küresel etkisini incelemektedir. Buğdayda, hastalıkların, böceklerin ve yabani otların neden olduğu kayıplar %27 oranındadır, ancak Bitki Koruma İlaçları olmasaydı bu oran %53'e çıkardı. Arpa kayıpları iki kat daha fazla artarak %40, mısır kayıpları ise %52'ye ulaşırdı. Tahıl dışı ürünler arasında yer alan patates Dünya gıda rejiminde ve ekonomisinde önemli bir yere sahiptir ve insanın beslenme rejiminde ana tahılların ardından beşinci önemli enerji kaynağını oluşturur. Küresel olarak, bitkisel üretimin %50'si insanlar tarafından tüketilir, yaklaşık %30'u da hayvan yemi olarak kullanılır. İlaç kullanılmaması durumunda Avrupa'daki patates ürünü kaybı %76 oranına ya da hektarda 30 tona ulaşacaktı. Bunlara benzer kayıpların sonuçları hemen kullanıma hazır ürün miktarındaki bir düşme ve buna bağlı olarak tüketici için daha yüksek fiyatlar ve devletler için daha düşük ihracat gelirleri şeklinde kendini göstermektedir. Çiftçiler de bundan zarar görecektir. Örneğin Almanya'da çiftçiler, brüt gelirlerinde %57 oranında bir düşme ile karşılaşacaktır. Tarımsal ürünlerin serbestçe dolaşımı da modern Bitki Koruma İlaçlarının kullanılmaması yüzünden tehdit altında kalacaktı. Örneğin limon bir çok ülke için önemli bir ihraç ürünüdür. Bitki karantinası yönetmelikleri, Akdeniz meyva sineği bulaşmış limonun ihracatını engellemektedir. Buna benzer bir durum birkaç yıl önce hükümet makamları limon ağaçlarının malathion ile ilaçlanmasını yasaklamaya kalkıştıklarında Kaliforniya'lı üreticilerin de başına gelmişti. Çevresel Etki Bitki Koruma İlaçları birçoğumuzun zannettiği gibi sorunun değil çevresel çözümün bir parçasıdır. Görünürde, bu yazıda belirtilen gıda üretimindeki kazançların tamamı çevresel açıdan desteklenebilir türdedir. Bitki Koruma İlaçları kullanılmadan düşük verimli tarım sürdürülemez, çünkü dünya nüfusunu besleme çabası ile, bu yetersiz üretim senaryosu yabani hayat alanlarının büyük bir bölümünün ekime ayrılmasını gerektirecektir. Bazı kişilerin algılama şekli ve Bitki Koruma İlaçlarının yabani flora ve faunayı öldürdüğü şeklindeki ortak iddia, bilimsel ve mantıksal açıdan dayanaktan yoksundur. Eski geniş spektrumlu ve kalıcı Bitki Koruma İlaçlarının yerini büyük oranda daha dar hedeflere yönelik ve daha az kalıcı kimyasallar almıştır. Bunlar, hedeflenenin haricinde etkilere sahip olup olmadıkları konusunda laboratuvarlarda kapsamlı testlere tabi tutulmuşlardır. Hektar başına kilogram yerine gram düzeyinde dozajlar ile yıllar yerine haftalar ile ölçülen kalıcılık süreleri artık birer istisna değil kural haline gelmiştir. Yüzmilyonlarca dolar ve uzun yıllar süren araştırma ve testler, pazarlama ve kullanımdan önce yeni bir Bitki Koruma İlacı için harcanmaktadır. Bitki Koruma İlaçları, bitkisel ürünlere zarar veren funguslar ile, bu bitkileri tüketilmeden önce imha edecek olan yabancı ot ve böcekleri kontrol altına almak için tasarlanmıştır. Bunların hedef alanının dışında kalan canlı türleri ile yabani hayat üzerindeki tahmini olmaktan çok ölçülmüş olan etkileri asgari düzeydedir. Kimyasal temele dayalı tarımın yoğunlukla uygulandığı bölgelerde ortadan kalkan yabani canlı türlerinin yok olma sebebi bu sektörde kullanılan kimyasallar değil bunların yaşama alanlarının yerini bizzat tarım alanlarının almış olmasıdır. Yabani hayatı korumanın tek yolu yabani canlıların yaşama alanlarını korumaktır. Her türlü insan faaliyetinin canlı türlerinin çeşitliliği üzerinde genel bir etkisi olduğuna dair ve sağlam bir temele sahip çok az sayıda kanıt vardır. En iyi verilerin bir bölümü, insan faaliyetlerinin yoğun tarım ve ormancılık da dahil olmak üzere, her konuda en yüksek düzeyde olduğu ABD'den gelmektedir. Bu ülkede, bitki, hayvan, fungus ve mikro organizma türlerinin sayısının 250.000 civarında olduğu tahmin edilmektedir. Tahmini olarak 87 omurgalı türü 1492 yılından beri ortadan kalkmıştır. Bu arada, Balık ve Vahşi Yaşam Servisi halen tehdit veya tehlike altında olan 822 canlı türünün sıralamasını vermekte ve 300 adet canlı türünü de bu duruma aday olarak göstermektedir. Toplam olarak, yukarıda belirtilen kategorilerde yaklaşık olarak 1200 canlı türü veya başka bir ifade ile tahmini toplam canlı türlerinin yaklaşık olarak yüzde 0,5'i bulunmaktadır. Diğer yandan, ABD Teknoloji Değerlendirmesi Bürosu, insanların bilerek veya diğer yollardan ABD kökenli olmayan yaklaşık 4500 canlı türünü Amerika ortamına getirdiğini tahmin etmektedir. Bunların bazıları yararlıdır (görünüşte ABD'deki bütün gıda bitkileri dışarıdan getirilen türlerdir), bazıları da değildir. Ancak bunların tümü ortam içindeki biyolojik çeşitliliği arttırmaktadır. Dolayısıyla, tarımın hem kimyasal hem de enerji yoğun olduğu bir ülke örneği ile karşı karşıya bulunuyoruz ve ülkenin biyolojik çeşitliliğinin önemli bir biçimde olumsuz yönde etkilendiğine dair elimizde hiçbir kanıt yoktur. Kimyasal olmayan organik tarım, Bitki Koruma İlaçları ve kimyasal gübreler kullanılarak yoğun ekim yapılmış alanlardaki mahsulün en fazla %50’sini üretebilir ki organik tarımda bu düzey bile geniş araziler üzerinde tutarlı biçimde kanıtlanmalıdır. 1965 ve 1990 arasında Hindistan’da buğday üretimi 12 milyon tondan 55 milyon tona çıkmıştır. Bu artışta, tarım arazilerindeki 9 milyon hektarlık artışın da (14-23 milyon arasında) rolü bulunmaktaydı. Eğer Yeşil Devrim’in bitki türlerini ıslah etme, bitkinin korunması, sulama, mekanizasyon ve çiftçilerin eğitimi gibi yararları sözkonusu olmasaydı, bunun yerine 40 milyon hektarlık yerleşim alanının tarla halinedönüştürülmesi gerekecekti. Günümüzden 2100 yılına kadar insan nüfusunun iki katına çıkmasını engelleyebilecek geçerli ya da etik açıdan uygun bir yol yoktur. Gelişmiş ülkelerde her zaman görüldüğü gibi, ekonomide istikrar arttıkça nüfus artışı da durma düzeyine yaklaşır. Yine de, önümüzdeki yüzyılın sonunda nüfus artışındaki moment nedeniyle dünya nüfusu şu andaki 5,5 milyardan 10 milyar civarına çıkmış olacaktır. Bu nedenle sorulması gereken soru, refahın artmasıyla birlikte pek çoğu düşük kalorili karbonhidrat diyetlerinden yüksek kalorili protein diyetlerine terfi edecek olan kişilerin çoğunlukta olacağı bu kadar yüksek sayıda insana nasıl yeterli gıda sağlanabileceğidir. Yanıt düşük girdili “destekleyici/sürdürülebilir” tarım değildir. Büyük olasılıkla Amerika Birleşik Devletleri, 2050 yılında organik tarım teknikleriyle nüfusunu doyurabilecek az sayıda ülkeden biri olacaktır, ancak bu durum da ABD’nin ürün fazlasını, gıda üretiminde kendine yetemeyen ülkelerdeki insanlara vermesine engel olacaktır. Daha önce belirtildiği gibi, yüksek girdili tarım 1950 yılında, 14 milyar hektarlık tarım alanında ( yaklaşık olarak Güney Amerika’nın yüzölçümü), gittikçe artan bir nüfusu doyurabilmeyi başarmıştır. Aradaki dönemde nüfus iki katına çıkmıştır. Yeniden iki katına çıkacaktır. Kabul etmemiz gereken gerçek şudur: ‘Gerekli gıdanın sağlanabilmesi için milyarlarca hektar habitatı daha tarım alanına çevirmek istemiyorsak, yoğun tarımı daha da yoğun hale getirmemiz gerekir.’ Kimyasal bazlı yoğun tarımın doğal biyolojik çeşitlilik üzerindeki etkilerinden savunulması güç biçimde şikayet etmek yerine, eğer yabani hayata zarar vermek yerine onu korumayı amaçlıyorsak, düşük girdili tarım nedeniyle ne kadar arazinin kaybolacağını kendimize sormamız gerekir. Yukarıda sonuç olarak belirtilmiş olduğu gibi, yoğun modern tarımda Bitki Koruma İlaçlarının kullanımı yabani hayat alanlarını aslında korumaktadır. Çevreyi korumak için verilen savaş, sadece dünyanın ıssız alanlarındaki seçilmiş bölgelerde değerlendirilmemelidir. Etkin modern tarımda mahsulün azalması, Hint alt-kıtasında olduğu gibi yoğun nüfuslu yarı-ari ülkelerdeki kırılgan ekosistemlerde aşırı gerilimle sonuçlanacaktır. Hudson Enstitüsü’nden Dr. D. T. Avery’ye göre “Dünyadaki yabani hayat alanlarını ve böylece yabani hayatıkorumak için tek yol, yüksek verimli tarımı daha yüksek verimli tarıma dönüştürmektir.” Ayrıca, Bitki Koruma İlaçlarının uygun ve doğru kullanımını baz alan modern ekim sistemleri, en destekleyici nitelikteki üretim metodunu oluşturmaktadır. Örnek vermek gerekirse, dünyadaki en önemli çevre sorunlarından biri erozyondur. Koruyucu tarımla kombine kullanılan ve bitkileri öldüren ilaçlar, bu sorunu %50-98 azaltmıştır. Diğer bilimsel gelişmeler de, girdi kayıplarının (enerji, gübre ve Bitki Koruma İlaçları) en aza indirilebileceğini ve Bitki Koruma İlaçlarının kullanıldığı entegre tarımın toprağın verimini artırdığını açıkça göstermektedir. Yoğun tarım kesinlikle çevrenin korunmasıyla çelişki içinde değildir; tam tersine çevrenin korunmasında destekleyici rol oynamaktadır.

http://www.biyologlar.com/pestisitlerin-insan-ve-cevre-uzerine-etkileri-1

Biyolojik Çeşitlilik, Çevre sorunları ve Etkileri

1- Biyolojik Çeşitlilik : Bir bölgedeki bitki ve hayvan türlerinin ve çeşitlerinin sayıca zenginliğine biyolojik çeşitlilik denir. Her ekosistemin kendine özgü bir biyolojik çeşitliliği vardır ve biyolojik çeşitlilik bir doğal zenginliktir. Bir ülkedeki bitki ve hayvan türleri, hem o ülkenin, hem de dünyanın biyolojik zenginliği olarak kabul edilir. Bir ekosistemdeki biyolojik çeşitliliğin fazla olması o ekosistemin diğer ekosistemlere göre üstün olması anlamına gelmez. Biyolojik çeşitlilik sürdürülebilir kalkınmanın sağlanmasına yardımcı olur ve üç farklı kavramdan oluşur. Bunlar genetik çeşitlilik, tür çeşitliliği ve ekosistem çeşitliliğidir. Bir tür içindeki bireylerin sahip olduğu kalıtsal özelliklerin yani bireylerin genetik yapılarının farklı genetik çeşitliliği oluşturur. Bir ekosistemde yaşayan ve genetik olarak birbirlerine benzerlik gösteren türlerin sayısı tür çeşitliliğini oluşturur. Belli bir bölgede yaşayan bitkiler ve hayvanlar gibi canlı varlıklarla toprak, su, hava ve mineraller gibi cansız varlıkların çeşitliliği, ekosistem çeşitliliğini oluşturur. Ekosistemlerin görevi, canlıların yaşamlarını ve nesillerini sürdürebilmek için uygun ortamın hazırlanmasını sağlamaktır. Ekosistemler, canlı ve cansız varlıklardan oluşur ve bir ekosistemin özelliğini, o ekosistemi oluşturan su, sıcaklık, ışık, nem, toprak, hava, rüzgâr, iklim gibi cansız varlıklar belirler. Bu cansız varlıkların canlılarla olan etkileşimi, ekosistemlerin çeşitliliğini belirler. Ekosistemlerin orman, göl, çöl, dağ, sazlık, akarsu, okyanus gibi çeşitleri vardır. Bu çeşitlilik arttıkça, ekosistemde yer alan habitat ve tür çeşitliliği de artar. NOT : 1- Orman ve okyanus ekosistemlerinde canlı türü sayısı, çöl ve kent ekosistemlerindeki canlı türü sayısından daha fazladır. 2- Canlı türlerinin sayısı 5 – 30 milyon arasında tahmin edilmektedir. Dünyada toplam 1.742.000 canlı türünün tanımlandığı ve 4.926.000 canlı türünün bulunabileceği belirtilmektedir. 2- Biyolojik Çeşitliliğin Faydaları : İnsanlar, tarım ve teknolojide sahip olduğu bugünkü seviyeye, biyolojik çeşitlilik ve zenginlik sonucu ulaşmıştır. Biyolojik çeşitliliğin ve ekosistemlerin sağladığı faydalar insan hayatının devamı için gereklidir. Biyolojik çeşitliliği oluşturan bitki ve hayvan türleri tarım, eczacılık, tıp, hayvancılık, ormancılık, balıkçılık ve sanayi alanlarında, temiz su ve hava sağlanmasında kullanılırlar. Biyolojik çeşitliliği oluşturan bitki ve hayvan türlerinin sayısının ve çeşitliliğinin fazla olması, o ülkeye ekonomik kazanç sağlar. Biyolojik çeşitlilik, ekosistemleri dengede tutar, gezegeni yaşanabilir hale getirir, insanların sağlığını, çevreyi ve ekosistemleri destekler. a) Bitki Çeşitliliğinin Faydaları : Bitkiler havayı temizler, erozyonu önler, toprağa organik madde kazandırır, toprak yorgunluğunu giderir. Diğer canlılara barınma ve beslenme ortamı sağlayarak ekosisteme devamlılık kazandırırlar. Ülkemize özgü olarak yetiştirilen çam, meşe, palamut, kavak, ardıç türü ağaçlar ormancılıkla ilgili fayda sağlar. Acur, taflan, çitlenbik, iğde, göleviz, ahlat (yaban armudu), alıç, delice, idris, melengiç, hünnap, üvez, yonca, mürdümük gibi sebze ve meyveler tıp alanında fayda sağlar. b) Hayvan Çeşitliliğinin Faydaları : İnsanlar, ilk çağlardan günümüze kadar hayvanları avlayarak, evcilleştirerek gıda kaynağı olarak, taşımacılıkta, giyimde ve tıpta kobay amaçlı kullanmışlardır. Bazı böcekler, bitkilerin tozlaşmasını sağlayarak bitki yaşamının ve çeşitliliğinin sürmesini ve bu sayede ekosistemin sürekliliğini sağlar. Böceklerin önemli bir kısmı, organik maddelerin ayrışmasını ve tekrar toprağa kazandırılmasını sağlar. Bazı böcek türleri de kuşlar, balıklar, sürüngenler gibi hayvanların besin kaynağı durumundadır. Ülkemizin çeşitli yerlerindeki doğal çevreye uyum sağlamış koyun, keçi, inek, sığır gibi türler hayvancılıkla ilgili fayda sağlar. Ülkemize özgü olarak bulunan alabalık, kefal ve levrek türü balıklar balıkçılıkla ilgili fayda sağlar. c) Ekosistem Çeşitliliğinin Faydaları : Doğaya dayalı turizme eko turizm denir. Eko turizm son yıllarda artan bir öneme sahiptir. Teknolojik ilerlemeler ve yaşam biçimine bağlı olarak stres altındaki insanlar, doğada kendini dinlendirmektedir. Milli parklara ve doğaya gidilerek stres atılmaktadır. NOT : 1- Her bölgenin kendine özgü biyolojik çeşitliliği yani bitki ve hayvan türleri vardır ve bir bölgenin biyolojik çeşitliliğini o bölgedeki ekosistemleri oluşturan cansız varlıklar belirler. 2- Bitki Çeşitliliğinin Faydaları : İnsanoğlu, eski çağlarda tarım toplumuna geçmesinden günümüze kadar çok sayıda bitki türünü kültüre almıştır. Tarih boyunca 3000 kadar bitki türünün beslenmede kullanıldığı ve bunların % 30’unun gıda üretiminin çoğunu karşıladığı belirtilmektedir. Geri kalan türlerin de tarım için önemi büyüktür. Bugün Genetik Mühendisliği ve Biyoteknolojideki ilerlemeler sonucu, günümüzde kullanılan çeşitlere yabani akrabalarından gen aktarımı yapılarak zararlı böcek, hastalık, yabancı otlar ve kuraklığa dayanıklı yeni çeşitler elde edilmektedir. Bugün, tarımda kullanılmayan doğada bulunan birçok bitkinin gelecekte tarımda kullanılma potansiyeli vardır. Bugün kültürü yapılan birçok meyve ve sebzenin ilk defa kültüre alındığı yer Türkiye’dir. Bu türlerin ülkemizde bulunan yabani akrabalarının paha biçilmez değeri vardır. Birçok bitki türü, tıp ve eczacılıkta eski çağlardan beri kullanılmaktadır. Son yüzyılda, biyokimya bilimindeki gelişmeler sonucu birçok bitkiden çeşitli bileşikler elde edilmiştir. Günümüzde 250.000 bitki türünden, ancak 5.000 ‘inin eczacılık değeri yönünden incelendiği kaydedilmektedir. Gelecek yıllarda bilimdeki ilerlemelere bağlı olarak birçok bitkiden, değişik hastalıklar için bileşiklerin elde edilmesi mümkündür. Ülkemiz tıp ve eczacılıkta kullanılan ve aromatik bitkiler yönünden zengin bir çeşitliliğe sahiptir. Ayrıca süs bitkisi olarak ve peyzaj düzenlemelerinde kullanılan soğanlı bitkilerce de zengindir. Önümüzde ki yıllarda, bu yönüyle değerlendirilebilecek çok sayıda bitki türü bulunmaktadır. Yine tarımsal zararlıların mücadelesinde bazı bitkilerden elde edilen bitkisel kökenli ilaçlar kullanılmaktadır. Doğadaki birçok bitki, bu yönüyle de önem arz etmektedir. 3- Hayvan Çeşitliliğinin Faydaları : İnsanlar, ilk çağlardan günümüze kadar hayvanları avlayarak, evcilleştirerek gıda kaynağı olarak, taşımacılıkta, giyimde ve tıpta kobay amaçlı kullanmışlardır. Yine kültüre alınan hayvanların yabani akrabaları, hayvan ıslahında kullanılmaktadır. Böceklere bakıldığında 1.200.000 böcek türünden, ancak 750 tür kültür bitkilerinde zararlı olmaktadır. Geri kalan türler bizim için faydalı türlerdir. Bunlardan bazıları tarımda zararlı türlerin üzerinde beslenerek bu türlerin savaşımında kullanılmaktadır. Bitkilerin büyük çoğunluğu tozlaşma için böceklere gereksinim duymaktadır. Böcekler, bitkilerin tozlaşmasını sağlayarak bitki yaşamının devamlılığı ve çeşitliliğine olanak vermekte ve ekosistemin devamlılığını sağlamaktadır. Yine böceklerin önemli bir kısmı, organik maddelerin ayrışmasını ve tekrar toprağa kazandırılmasını sağlamakta adeta doğada birer gönüllü temizlik işçisi gibi çalışmaktadır. Bazı türler de kuşlar, balıklar, sürüngenler gibi hayvanların gıda kaynağı durumundadır. Tüm bu yönleriyle, yeryüzündeki yaşamın böceklere bağlı olduğunu söylemek fazla abartılı olmaz. 4- Ekosistemin Ekoturizm Olarak Sağladığı Faydalar : Doğaya dayalı turizm, ekoturizm olarak adlandırılmaktadır. Ekoturizm son yıllarda artan bir önem arz etmektedir. Teknolojik ilerlemeler ve yaşam biçimine bağlı olarak stres altındaki insanlar, doğada kendini dinlendirmektedir. Milli parklara ve doğaya gidilerek stres atılmaktadır. A.B.D.’de Milli Parklar Servisi’nin 1998 yılı ölçümlerine göre, yaklaşık 300.000 turistin milli parkları ziyareti ile, direk ve dolaylı gelir olarak 14 milyar dolar gelir elde edilmiştir. Benzer durum dünyanın diğer ülkelerinde de vardır. Dünya Turizm organizasyonu, ekoturizmin uluslar arası turizmin % 7’sine karşılık geldiğini bildirmektedir. Ülkemizde de Fethiye’de bulunan Kelebekler Vadisindeki kelebekleri görmek amacıyla, tatil sezonu boyunca günübirlik olarak 15.000 turistin ziyaret ettiği bildirilmektedir. Biyolojik çeşitlilik ve doğal güzellikler bakımından, dünyada eşsiz bir yere sahip ülkemiz, ekoturizmde büyük potansiyel arz etmektedir. Ülkemizin sahip olduğu doğal güzellikler ve biyolojik zenginlikler yurt içi ve dışında yeterince tanıtılmalı ve ekoturizm geliştirilmelidir. SORU : 1- Yaşanılan bölgede en çok yetiştirilen sebzeler hangileridir? 2- Yaşanılan bölgeye özgü bitki ve hayvan türleri nelerdir? 3- Yaşanılan bölgedeki bitki ve hayvanların sayısı ve çeşitliliği diğer bölgelerde de aynı mıdır? 4- Bitki ve hayvan türlerinin sayıca fazla olması, bölgenin doğal zenginliklerinin bir göstergesi midir? 5- Kaç değişik kuş türü biliyoruz? 6- Kaç değişik balık türü biliyoruz? 7- Kaç değişik çiçek çeşidi biliyoruz? 8- Çeşitlilik nedir? 9- Bir bölgedeki bitki ve hayvan türlerinin çeşitliliği, o yerin hangi özelliğini ortaya koyar? 10- Ders kitabında verilen resimlerdeki canlılardan hangileri ülkemizde yaşamaktadır? 11- Ders kitabında verilen resimlerdeki canlılardan hangilerinin nesli tükenmek üzeredir? 12- Ülkemizde farklı ekosistemlerin biyolojik çeşitliliğini oluşturan bitki ve hayvan türleri nelerdir? 3- Biyolojik Çeşitliliğin Azalması ve Yok Olması : Bir ekosistemde, bölgede, ülkede veya dünyada yaşan herhangi bir canlı türünün yok olması o canlının neslinin tükenmesi yani biyolojik çeşitliliğin azalması, canlı türlerinin yok olması da biyolojik çeşitliliğin yok olması anlamına gelir. İklim değişikliliği, kirlenme, doğal kaynakların aşırı kullanımı, sürdürülebilir olmayan kaynakların kullanımı ve hızlı nüfus artışı biyolojik çeşitliliğin azalmasına ve türlerin yok olmasına neden olur. Habitatların yok olması veya zarar görmesi, birçok bitki ve hayvan türünün neslinin yok olmasına neden olur. Biyolojik çeşitliliğin korunması için 1992’de 172 ülkenin katıldığı Rio Zirvesi olarak bilinen Birleşmiş Milletler (BM) Çevre ve Kalkınma Konferansı yapılmış ve İklim Değişikliği ve Biyolojik Çeşitlilik sözleşmeleri imzaya açılmıştır. Rio Zirvesi’ne katılan, aralarında Türkiye’nin de bulunduğu 156 ülke Biyolojik Çeşitlilik Sözleşmesi’ni (BÇS) imzalayarak, kendi sınırları içerisindeki bitkilerin ve hayvanların çeşitliliğinin tam olarak korunması sorumluluğunu üstleneceklerine, ayrıca gelecek nesillerin doğal kaynaklara olan ihtiyaçlarından ödün vermeden günümüz ihtiyaçlarının karşılanması için çeşitli yollar aranması konusunda anlaşmaya varmıştır. • Önceki yıllarda yaşayan mamut, bizon, moa, dinozor gibi canlılar günümüzde yaşamamaktadır yani nesilleri tükenmiştir. • Önceki yıllarda ülkemizde yaşayan Anadolu leoparı, Asya fili, kunduz, aslan gibi canlılar şuan ülkemizde yaşamamaktadır ve ülkemizde nesli tükenmiştir. • Şu an ülkemizde yaşayan Akdeniz foku, kelaynaklar, deniz kaplumbağaları, alageyik, boz ayı, kardelen çiçeği ve salep yapımında kullanılan orkideler nesli tükenmek üzere olan canlılardır. NOT : 1- Türkiye'de 500'den fazla habitat çeşidinde 10.000'den fazla çiçekli bitki ve eğrelti; 400'den fazla kuş; 500'den fazla balık; 100.000'den fazla sürüngen ve 160.000'den fazla omurgasız hayvan türü kayıtlıdır. SORU : 1- Biyolojik çeşitlilik yok olabilir mi? 2- Biyolojik çeşitliliğin yok olması nasıl gerçekleşir ve ne gibi sonuçlar getirir? 3- Canlıların neslinin tükenmesi, biyolojik çeşitliliğin azalması anlamına gelir mi? 4- Ülkemizin Biyolojik Zenginlikleri : Ülkemizin Asya ve Avrupa kıtaları arasında bir köprü görevi görmesi, ayrıca çok değişik iklim ve coğrafi yapıya sahip olması nedeniyle, bitki ve hayvan türleri bakımından oldukça zengin bir çeşitliliğe sahiptir. Türkiye’de 120 memeli, 413 kuş, 93 sürüngen 18 kurbağagil, 276 deniz balığı, 192 tatlı su balığı ve 60–80.000 böcek türünün bulunduğunu bilinmektedir. Yine ülkemiz bitki türleri bakımından da oldukça zengindir. Bütün Avrupa kıtasında 12.000 bitki türü bulunmasına karşın ülkemizde 9.000 bitki türü bulunmakta ve bu türlerin % 30’u dünyada sadece Türkiye’ de bulunmaktadır. Oldukça fazla sayıda bitki ve hayvan türünün tanımlandığı yer ve anavatanı ülkemizdir. Tüm bu yönleriyle Türkiye, biyolojik çeşitlilik bakımından bir kıta özelliği göstermekte olup dünyada eşsiz bir yere sahiptir. 5- Biyolojik Çeşitliliğin Korunması : Biyolojik çeşitlilik, bir bölgedeki bitki ve hayvan türlerinin ve çeşitlerinin sayıca zenginliğidir. Ülkemizde ve dünyada nesli tükenme tehlikesiyle karşı karşıya olan bitkiler kardelen ve salep yapımında kullanılan orkidelerdir. Deniz kaplumbağaları, Akdeniz fokları, bozayı, Ankara keçisi, Tuj koyunları, alageyik, sülün ise nesli tükenme tehlikesiyle karşı karşıya olan hayvanlardandır. İster bitki ister hayvan olsun bu canlıların nesillerinin konuna altına alınması için tabiat parklarının, doğal yaşam alanlarının oluşturulması, organik tarımın tercih edilmesi ve insanların bu konularda eğitilmesi gerekmektedir. Çiftçiler aşırı otlatmanın, bitkilerin aşırı toplanmasının, ormanların arazi kazanmak amacıyla tahrip edilmesinin biyolojik çeşitlilik açısından olumsuz etkileri konusunda bilinçlendirilmelidir. Kıyı habitatlarının tahrip edilmesi, balıkçılığın ve avlanmanın aşırı ve kontrolsüz yapımı engellenmelidir. Ayrıca bu türlerin korunması ve denetimi için mekanizmalar geliştirilmelidir. Biyolojik çeşitlilik tüm dünyanın ortak zenginliğidir. Bugünün ihtiyaçlarını karşılayarak gelecek kuşaklara da bu çeşitliliği aktarabilmek amacıyla biyolojik çeşitliliğin korunması gereklidir. C- ÇEVRE SORUNLARI VE ETKİLERİ : 1- Ekosistemlerin Bozulma Nedenleri (Çevre Sorunları) : Çevre sorunları, insanların yaşadığı problemlerden biridir çevre sorunlarının yani ekosistemlerdeki bozulmaların bir kısmı doğal yolla, bir kısmı da insan etkisiyle oluşur. İnsanlara ve ekosistemlere zarar veren doğal kaynaklı bozulmalar, su, toprak ve hava hareketleriyle oluşur. Su taşkınları, depremler, erozyon, volkanik hareketler (yanardağ patlamaları), fırtına, kasırga, uzun siren kuraklık ekosistemlerin bozulmasına yol açan doğal afetlerdir. İnsanlar, bulundukları ekosistemlerdeki (çevrelerindeki) canlı ve cansız varlıkları etkileyerek ekosistemlerin bozulmasına yol açarlar. İnsanlar, ekosistemlerdeki doğal varlıklarla iç içe yaşarken zamanla teknolojinin gelişmesi ve doğal kaynakların bilinçsiz kullanılması sonucu doğanın dengesi bozulmuş ve birçok çevre sorunu ortaya çıkmıştır. Hızlı nüfus artışı, bilinçsiz sanayileşme, düzensiz şehirleşme, doğal kaynakların bilinçsiz kullanılması, nükleer silahlar ve nükleer santral patlamaları, biriktirilmiş suların (barajlardaki suların) taşkınlara neden olması, orman tahribatı ve çığ gibi olaylar doğal denge üzerinde olumsuz etkiler yaparak çevre kirliliğine yani ekosistemlerin bozulmasına yol açan insan kaynaklı faktörlerdir. Hava kirliliği, su kirliliği ve toprak kirliliği ve nükleer kirlilik çevre kirliliği sonucu oluşan kirlenmelerdir. SORU : 1- Ülkemizi ve Dünya’mızı tehdit eden önemli çevre sorunları nelerdir? 2- Ülkemizi ve Dünya’mızı tehdit eden önemli çevre sorunlarının sebepleri ve sonuçları nelerdir? 3- Ülkemizi ve dünyayı tehdit eden çevre sorunları dünyayı nasıl etkiler? 4- Ekosistemler zamanla neden değişip bozulmaktadır? 5- Ekosistemlerdeki bozulmalar beraberinde hangi sonuçları getirin? 6- Çok küçük bir ekosistemin zarar görmesi tüm dünyayı nasıl etkiler? 2- Çevre Kirliliğine Neden Olan (İnsan Kaynaklı) Faktörler : a) Orman Tahribatı : Orman yangınları, ihmal, dikkatsizlik, kaçak yapılaşma ve arazi açmak için ağaçların bilinçsizce kesilmesi gibi sebepler yüzünden ormanlar tahrip olmaktadır. Bunun sonucunda ekosistemlerin doğal dengesi bozulmakta, ormanda yaşayan canlı türleri ve bu türlerin habitatları yok olmakta, toprak zenginliği kaybolmaktadır. (Ülkemizde orman yangınlarının kayıtları 1937 yılında tutulmaya başlanmıştır. Bu kayıtlara göre yaklaşık 1,5 milyon hektar ormanlık alan yok olmuştur). SORU : 1- Ülkemizdeki orman tahribi sadece ülkemizi mi etkiler? 2- Orman tahribi nasıl engellenebilir? 3- Ormanların kaybı hayatımızı nasıl etkiler? b) Çığ : Yüksek yerlerdeki karların şiddetli ses etkisiyle dağın yamaçlarına yuvarlanmasına çığ denir. Eğimli arazi üzerinde birikmiş büyük kar örtüsü, yer çekimi etkisiyle kaydığında çığ oluşur. Çığ genellikle bitki örtüsü olmayan, dağlık eğimli arazilerde görülür. Çığlar beraberinde toprak, taş ve ağaçları da sökerek götürür. Bu şekilde meydana gelen aşınma ve taşınma, toprağı verimsizleştirerek canlıların yaşamını tehlikeye sokar. Çığlar, tarım alanlarının veriminin düşmesine ve su kaynaklarının kirlenmesine neden olur. SORU : 1- Çığdan korunma yolları nelerdir? c) Nükleer Silahlar ve Nükleer Santral Patlamaları : Nükleer silahlar, nükleer kazalar ve bu kazalar sonunda ortaya çıkan nükleer atıklar kirlenmeye sebep olur. (1986 yılında yaşanan Çernobil Nükleer Enerji Santrali Kazası’nın yarattığı olumsuz etkiler, bu kirliliğin en canlı örneğidir. Bu olaydan ülkemizin en çok Karadeniz Bölgesi’nin etkilendiği tespit edilmiştir). SORU : 1- Nükleer kirlilik sadece belli bir bölgeyi mi etkiler? 2- Nükleer kirliliğin canlılar ve onların çevreleri üzerindeki olumsuz etkileri nelerdir? d) Biriktirilmiş Suların Taşkınlara Yol Açması : Barajların yıkılması sonucu oluşan taşkınlar, bitki örtüsüne, ekili alanlara toprağın verimli tabakasının taşınmasına neden olur. e) Aşırı Nüfus Artışı : Bir bölgedeki ya da ekosistemdeki nüfus artışını ya da azalışını o ekosistemdeki göçler, doğum ve ölüm olayları belirler. Nüfus artışının az olduğu dönemde insan tarafından çevreye verilen zarar doğal yollarla kendiliğinden düzeltilebiliyordu. Nüfus artışı fazla olduğu için; • Doğal kaynaklar aşırı kullanıldı. • Barınma amacıyla yeşil alanlar yok edildi. • Büyük kentler çevre kirliliğine yol açtı. • Araçların egzoz gazları hava kirliliğine yol açtı. • Soğutucularda kullanılan karbon maddesi ozon tabakasını inceltti. • Tarımsal alanlarda yapılan ilaçlamalar yararlı böcekleri de yok etti. • Evsel atıklar, lağım suları ve sanayi atıkları çevreyi kirletti. • Tarımda üretimi arttırmak için aşırı kullanılan gübreler çökerek toprağın ve yeraltı sularının kirlenmesine yol açtı. f) Plansız Sanayileşme : Nüfusun hızla artması sonucu sanayi gelişmiş ve bunun sonucu çevre (hava, toprak, su) zarar görmüş, kirlenmiştir. • Tarla ekmek için orman arazilerinin kesilmesi. • Artan kereste ihtiyacı nedeniyle ormanların kesilmesi. • Fabrika bacalarına filtre takılmaması. • Fazla ürün elde etmek için tarımda aşırı gübreleme ve ilaçlama yapılması. • Fabrika atıklarının arıtılmadan suya ya da toprağa verilerek su ve toprağı kirletmesi. g) Doğal Kaynakların Bilinçsiz Kullanılması : Bir ekosistemdeki hava, toprak, su, hayvanlar, bitkiler, yeraltı zenginlikleri ve doğal güzellikler o ekosistemdeki doğal kaynakları oluştururlar. Doğal kaynakların bilinçsiz kullanılması çevre kirliliğine yol açar. • Kimyasal ve biyolojik silahların kullanılması. • Gereksiz tarım ilaçları ve böcek öldürücülerin kullanılması. • Soğutucuların ve spreylerin fazla kullanılması. • Ev ve sanayi atıklarının çevreye dağılması. • Nükleer silahların ve radyasyona yol açan maddelerin kullanılması. • Kalitesiz fosil yakıtların (kömür, petrol, doğal gaz) kullanılması. 3- Çevre Kirliliğinin Sonuçları : Hava kirliliği, su kirliliği ve toprak kirliliği ve nükleer kirlilik çevre kirliliği sonucu oluşan kirlenmelerdir. a) Hava Kirliliği : Atmosferde bulunan zararlı gazların (karbon oksitleri, kükürt oksitleri ve azot oksitleri) miktarının artmasına hava kirliliği denir. Hava kirliliğinin canlı ve cansız varlıklar üzerinde olumsuz etkileri vardır. Havayı katı ve gaz halindeki maddeler kirletir. Sanayi tesislerinden filtre edilmeden bırakılan gazlar, araç egzozlarından çıkan gazlar, fosil yakıtların (petrol, kömür ve doğal gaz) yanmasından oluşan gazlar (evlerin ısıtılmasında, taşıtlarda ve sanayi tesislerinde fosil yakıtların aşırı kullanılması sonucu) hava kirliliği oluşur. Hava kirliliği sonucu asit yağmurları oluşur, sera etkisi artar ve ozon tabakası delinir. Sera etkisi ve ozon tabakasındaki incelme, iklim üzerinde tüm Dünya’da (küresel boyutta) değişikliklere yol açar. Kullanılan fosil yakıtların oluşturduğu katı ve gaz halindeki atıkların (fosil yakıtların yanması ile havaya karışan karbon oksitleri, kükürt oksitleri ve azot oksitleri), suya ve su döngüsüne karışması sonucu bu atıkların yağış olarak yeryüzüne inmesine asit yağmuru denir. Güneş’ten gelen ışınların bir kısmı yeryüzü tarafından soğurulurken bir kısmı da uzaya geri yansır. Yeryüzünden yansıyan bu ışınların bir kısmı, atmosferde soğurularak havanın ısınmasına sebep olur. Güneş ışınlarının bir kısmının uzaya gönderilmesinin engellenmesine sera etkisi denir. Sera etkisine neden olan gazların (başta karbondioksit olmak üzere) miktarının artması, soğurulan güneş ışınlarının miktarının artmasına sebep olur. Bunun sonucunda atmosferin ve Dünya’nın sıcaklığı aşırı yükselir. Atmosferdeki sera etkisinin artmasına küresel ısınma denir. Küresel ısınma sonucunda buzullar erimeye ve okyanuslardaki su seviyeleri yükselmeye başlar ve küresel çölleşme gerçekleşir. Hava kirliliğine sebep olan (flora klora karbon gibi itici ve soğutucu olarak kullanılan) gazlar ozon tabakasının incelmesine sebep olur. Ozon tabakasının incelmesi sonucu Güneşin zararlı ultraviyole ışınları yeryüzüne ulaşır ve bu ışınlar biyolojik çeşitliliği olumsuz etkiler ve canlıların bağışıklık sistemini bozar. (Flora klora karbon gibi itici ve soğutucu olarak kullanılan gazların kullanılmaması konusu Brezilya'da ulusların imzasına açılmış ve iki ülke bu antlaşmayı imzalamıştır. Bu ülkeler Türkiye ve A.B.D.dir). 1- Havanın Canlılar İçin Önemi (*) : 1- Canlılar havasız yaşayamaz. 2- Solunum için bazı canlılar (insanlar ve oksijenli solunum yapan canlılar) oksijene ihtiyaç duyarlar. Havadaki oksijen, suya ve toprağa geçer, buradaki canlılarda oksijen kullanır. 3- Yeşil bitkiler, fotosentez yaparken havadaki karbondioksiti kullanır ve oksijen üretir. 4- Havanın azotu bazı bitkiler tarafından, (azot bağlayıcı) bakteriler yardımıyla alınarak protein yapımında kullanılır. (Canlıların temel yapısını proteinler oluşturduğu için önemlidir). 5- Havadaki su buharı canlılar için gereklidir. 2- Hava Kirliliğinin Etkileri (*) : 1- Solunum sistemi hastalıklarına neden olur. (Astım, bronşit, akciğer kanseri). 2- Yeşil alanlar yok olur, tarım ve hayvancılık olumsuz etkilenir. 3- Dolaşım sistemi hastalıklarına neden olur. (Kalp yetmezliği, damar tıkanıklığı). 4- Kağıt, kumaş, sanat eserleri, tarihi kalıntılar, araçlar ve evlerin yıpranmasına neden olur. 5- Kirli havada biriken kurşun oranı saçların dökülmesine neden olur. 3- Hava Kirliliğinin Önlenmesi (*) : 1- Sanayi tesisleri katı, sıvı ve gaz atıklarını arıtarak doğaya bırakmalıdır. (Yönetim bu gereçler için sanayi kuruluşlarına uzun vadeli ve düşük faizli krediler vererek kontrolü çevre örgütlerine devir etmelidir). 2- Havayı kirletmeyen doğal gaz, rüzgar, güneş enerjisi ve nükleer enerji gibi enerji kaynakları desteklenmelidir. 3- Bacalardan ve egzozlardan çıkan gazlar, yenilenebilir enerji kaynakları kullanılarak zararsız hale getirilmelidir. 4- İnsanların yeşil bitkileri ve ormanları kullanmaları sağlanarak, yeşil alanlar çoğaltılmalıdır. (Evlerin çevrelerinin beton duvarlarla çevrilmesi yasaklanarak, belediyeler aracılığı ile mülklerin yeşil bitkilerle sınırlandırılması sağlanmalıdır). SORU : 1- Asit yağmurlarının çevremiz üzerindeki olumsuz etkileri nelerdir? 2- Sera etkisi hayatımızı nasıl etkiler? 3- Asit yağmurları, sera etkisi ve ozon tabakasının delinmesi gibi Dünya’yı etkileyen bu çevre problemleri ülkemizi nasıl etkilemektedir? b) Su Kirliliği : Sanayi kuruluşlarının ve enerji üretim santrallerinin atıkları, nüfus artışı, şehirleşme, deniz taşımacılığı ve kazalar, asit yağmurları, foseptikler, çöplükler, tarımda kullanılan ilaçlar, doğal ve yapay gübreler su kirliliğine neden olur. Su kirliliği, tüm canlıların hayatını tehlikeye sokar. İçme ve kullanma suları daima temiz olmalıdır. Su kirliliğinden dolayı deniz, göl ve akarsularda her türlü üretim düşer, içme ve kullanma suyu bulmakta güçlük çekilir, suya bağlı ekosistemlerde doğal denge bozulur. Ülkemizin üç tarafı denizlerle çevrili olduğundan deniz kirliliği de önem taşımaktadır. Sakarya ve Gediz Nehirleri, Akşehir Gölü ve Tuz Gölü, İzmit ve İzmir Körfezleri ile Marmara Denizi ülkemizde su kirliliğinin görüldüğü yerlerdendir. SORU : 1- Ülkemizdeki su kirliliği Dünya’yı nasıl etkilemektedir? 2- Su kirliliğine nasıl çözüm bulunabilir? c) Toprak Kirliliği : Yerleşim alanlarından çıkan atıklar ve çöpler, sanayi atıkları, egzoz gazları, kimyasal (organik ve mineral) gübreler, tarımla mücadele ilaçlarının kullanımı, yanlış arazi kullanımı, su ve rüzgar erozyonu, ile ulaşım ağı toprak kirliliğine neden olur. Bir yerde belirli kalınlıktaki toprağın oluşabilmesi için milyonlarca yıl geçmesi gerekmektedir Bunun için doğal kaynaklardan biri olan toprağın çok iyi korunması gerekir. Son yıllarda (yirminci yüzyılın başından itibaren) modern tarıma geçilmesi ve sanayileşmenin hızlanması ile birlikte, toprak kirliliği de bir çevre sorunu olarak ortaya çıkmıştır. Toprak kirliliği ürün kalitesinin düşmesine, topraktaki organik ve inorganik maddelerin azalmasına ve dolayısıyla ekosistem dengesinin bozulmasına yol açabilmektedir. SORU : 1- Toprak kirliliği hangi çevre sorunlarını beraberinde getirir? 4- Çevre Kirliliğinin Sonuçları : Çevre kirliliği sonucu; 1- Dünya’nın coğrafyası değişir. 2- Dünya’nın iklimi değişir. 3- Erozyonlar oluşur ve toprağın verimini düşürür. 4- Su kaynakları azalır ve kurur. 5- Enerji kıtlığı başlar. 6- Biyolojik çeşitlilik (canlı çeşitliliği) azalır. 7- Beslenme sorunu doğar. 5- Çevreyi Korumak İçin Alınacak Önlemler : 1- Sanayileşmede çevreye zarar vermemek için gerekli tedbirlerin alınması gerekir. 2- Canlı türlerinin ve nesillerinin devamının sağlanması gerekir. 3- Bilinçli tarım yapılması gerekir. 4- Ormanların yok edilmemesi gerekir. 5- Su kaynaklarının kirletilmemesi gerekir. 6- Geri dönüşümlü ürünlerin kullanılması gerekir. 7- Tüketim maddelerinin geri dönüştürülebilecek şekilde kullanılması gerekir. 8- Yenilenebilir enerji kaynaklarının kullanılması gerekir. 9- Yenilenemez enerji kaynaklarının kullanılmaması gerekir. 10- Eğitime önem verilmesi ve tutumlu olunması gerekir. 11- Sürdürülebilir kalkınma yapılması gerekir. SORU : 1- Çok sayıda kurum ve kuruluşun çevre konusunda faaliyet göstermesi çevre sorunlarının çözülmesi için yeterli midir? Neden? 2- Ülkemizde bu konuda çalışan kuruluşlardan hangilerinin isimlerini ve nasıl öğrendiniz? 3- Çevre sorunlarıyla ilgili, gönüllü kuruluşlardan birine üye olarak çalışmak isteseydiniz hangisini tercih ederdiniz? Neden? NOT : 1- Çevre sorunlarının sınır tanımaz özelliğinden dolayı uluslararası iş birliği zorunlu bir hale gelmiştir. Bu konudaki ilk uluslararası düzeyde toplantı 1972 yılında, Birleşmiş Milletler Teşkilatı tarafından düzenlenen Stokholm 1. Çevre Konferansı’dır. Bu toplantı sonunda, çevreye verilen önemi vurgulamak için 5 Haziran günü “Dünya Çevre Günü” olarak kabul edilmiştir. 2- Uluslararası düzeyde çevreyle ilgili faaliyet gösteren önemli kuruluşlardan bazıları; • Birleşmiş Milletler Kalkınma Programı (UNDP) • Dünya Meteoroloji Teşkilatı (WMO) • Dünya Sağlık Teşkilatı (WHO) 3- Ülkemizde çevreyle ilgili faaliyet gösteren önemli kuruluşlardan bazıları; • Çevre Bakanlığı • Tübitak • Türkiye Ormancılık Derneği • Türkiye Bitki Koruma Derneği • Türkiye Erozyonla Mücadele • Ağaçlandırma ve Doğal Varlıkları Koruma Vakfı (TEMA) • Türkiye Çevre Eğitim Vakfı 4- Zoolog : Hayvanların anatomik ve fizyolojik özelliklerini inceleyen, onları özelliklerine göre sınıflandıran ve çeşitli etmenlerin hayvanlar üzerindeki etkilerini araştıran kişilere zoolog denir. Zoologlar araştırmacı veya uygulayıcı olarak görev yaparlar. Araştırmacı olarak çalışan zoolog; yeryüzündeki hayvanların yaşayışlarım, doğal ortamları içinde gözlem yolu ile inceler. Hayvanların anatomik ve fizyolojik özelliklerini laboratuarlarda inceler ve elde edilen verilere göre hayvanları sınıflandırır. Hayvanların evrimini, fosilleri inceleyerek araştırır. Uygulama alanında çalışan zoolog; çeşitli ilaçların hayvanlar üzerindeki etkisini deneysel olarak inceler, tarımda böcekler ve diğer zararlı hayvanlarla mücadele yöntemleri geliştirir, milli parklardaki hayvanlar için uygun ortamlar oluşturulmasına çalışır, ülke dışına çıkarılmaya ya da yurt dışından getirilmeye çalışılan hayvan türleri konusunda görüş bildirir, hastanelerde doku ve hücre incelemeleri yapar. Zoolog olmak isteyenlerin üst düzeyde genel yeteneğe sahip, doğayı seven, canlılarla uğraşmaktan hoşlanan, meraklı ve iyi bir gözlemci, fen bilimlerine özellikle biyolojiye ilgili ve bu alanda başarılı, sabırlı, araştırmacı ve bilimsel meraka sahip ve estetik anlayışı yüksek kimseler olmaları gerekir. Zoologlar çalışmalarını laboratuarda ve açık havada yürütürler. Çalışırken biyologlarla, ziraat mühendisleriyle, veteriner hekimlerle, kimyagerlerle ve kimya mühendisleri ile iletişim halindedirler. 1- Biyolojik Çeşitlilik : Bir bölgedeki bitki ve hayvan türlerinin ve çeşitlerinin sayıca zenginliğine biyolojik çeşitlilik denir. Her ekosistemin kendine özgü bir biyolojik çeşitliliği vardır ve biyolojik çeşitlilik bir doğal zenginliktir. Bir ülkedeki bitki ve hayvan türleri, hem o ülkenin, hem de dünyanın biyolojik zenginliği olarak kabul edilir. Bir ekosistemdeki biyolojik çeşitliliğin fazla olması o ekosistemin diğer ekosistemlere göre üstün olması anlamına gelmez. Biyolojik çeşitlilik sürdürülebilir kalkınmanın sağlanmasına yardımcı olur ve üç farklı kavramdan oluşur. Bunlar genetik çeşitlilik, tür çeşitliliği ve ekosistem çeşitliliğidir. Bir tür içindeki bireylerin sahip olduğu kalıtsal özelliklerin yani bireylerin genetik yapılarının farklı genetik çeşitliliği oluşturur. Bir ekosistemde yaşayan ve genetik olarak birbirlerine benzerlik gösteren türlerin sayısı tür çeşitliliğini oluşturur. Belli bir bölgede yaşayan bitkiler ve hayvanlar gibi canlı varlıklarla toprak, su, hava ve mineraller gibi cansız varlıkların çeşitliliği, ekosistem çeşitliliğini oluşturur. Ekosistemlerin görevi, canlıların yaşamlarını ve nesillerini sürdürebilmek için uygun ortamın hazırlanmasını sağlamaktır. Ekosistemler, canlı ve cansız varlıklardan oluşur ve bir ekosistemin özelliğini, o ekosistemi oluşturan su, sıcaklık, ışık, nem, toprak, hava, rüzgâr, iklim gibi cansız varlıklar belirler. Bu cansız varlıkların canlılarla olan etkileşimi, ekosistemlerin çeşitliliğini belirler. Ekosistemlerin orman, göl, çöl, dağ, sazlık, akarsu, okyanus gibi çeşitleri vardır. Bu çeşitlilik arttıkça, ekosistemde yer alan habitat ve tür çeşitliliği de artar. NOT : 1- Orman ve okyanus ekosistemlerinde canlı türü sayısı, çöl ve kent ekosistemlerindeki canlı türü sayısından daha fazladır. 2- Canlı türlerinin sayısı 5 – 30 milyon arasında tahmin edilmektedir. Dünyada toplam 1.742.000 canlı türünün tanımlandığı ve 4.926.000 canlı türünün bulunabileceği belirtilmektedir. 2- Biyolojik Çeşitliliğin Faydaları : İnsanlar, tarım ve teknolojide sahip olduğu bugünkü seviyeye, biyolojik çeşitlilik ve zenginlik sonucu ulaşmıştır. Biyolojik çeşitliliğin ve ekosistemlerin sağladığı faydalar insan hayatının devamı için gereklidir. Biyolojik çeşitliliği oluşturan bitki ve hayvan türleri tarım, eczacılık, tıp, hayvancılık, ormancılık, balıkçılık ve sanayi alanlarında, temiz su ve hava sağlanmasında kullanılırlar. Biyolojik çeşitliliği oluşturan bitki ve hayvan türlerinin sayısının ve çeşitliliğinin fazla olması, o ülkeye ekonomik kazanç sağlar. Biyolojik çeşitlilik, ekosistemleri dengede tutar, gezegeni yaşanabilir hale getirir, insanların sağlığını, çevreyi ve ekosistemleri destekler. a) Bitki Çeşitliliğinin Faydaları : Bitkiler havayı temizler, erozyonu önler, toprağa organik madde kazandırır, toprak yorgunluğunu giderir. Diğer canlılara barınma ve beslenme ortamı sağlayarak ekosisteme devamlılık kazandırırlar. Ülkemize özgü olarak yetiştirilen çam, meşe, palamut, kavak, ardıç türü ağaçlar ormancılıkla ilgili fayda sağlar. Acur, taflan, çitlenbik, iğde, göleviz, ahlat (yaban armudu), alıç, delice, idris, melengiç, hünnap, üvez, yonca, mürdümük gibi sebze ve meyveler tıp alanında fayda sağlar. b) Hayvan Çeşitliliğinin Faydaları : İnsanlar, ilk çağlardan günümüze kadar hayvanları avlayarak, evcilleştirerek gıda kaynağı olarak, taşımacılıkta, giyimde ve tıpta kobay amaçlı kullanmışlardır. Bazı böcekler, bitkilerin tozlaşmasını sağlayarak bitki yaşamının ve çeşitliliğinin sürmesini ve bu sayede ekosistemin sürekliliğini sağlar. Böceklerin önemli bir kısmı, organik maddelerin ayrışmasını ve tekrar toprağa kazandırılmasını sağlar. Bazı böcek türleri de kuşlar, balıklar, sürüngenler gibi hayvanların besin kaynağı durumundadır. Ülkemizin çeşitli yerlerindeki doğal çevreye uyum sağlamış koyun, keçi, inek, sığır gibi türler hayvancılıkla ilgili fayda sağlar. Ülkemize özgü olarak bulunan alabalık, kefal ve levrek türü balıklar balıkçılıkla ilgili fayda sağlar. c) Ekosistem Çeşitliliğinin Faydaları : Doğaya dayalı turizme eko turizm denir. Eko turizm son yıllarda artan bir öneme sahiptir. Teknolojik ilerlemeler ve yaşam biçimine bağlı olarak stres altındaki insanlar, doğada kendini dinlendirmektedir. Milli parklara ve doğaya gidilerek stres atılmaktadır. NOT : 1- Her bölgenin kendine özgü biyolojik çeşitliliği yani bitki ve hayvan türleri vardır ve bir bölgenin biyolojik çeşitliliğini o bölgedeki ekosistemleri oluşturan cansız varlıklar belirler. 2- Bitki Çeşitliliğinin Faydaları : İnsanoğlu, eski çağlarda tarım toplumuna geçmesinden günümüze kadar çok sayıda bitki türünü kültüre almıştır. Tarih boyunca 3000 kadar bitki türünün beslenmede kullanıldığı ve bunların % 30’unun gıda üretiminin çoğunu karşıladığı belirtilmektedir. Geri kalan türlerin de tarım için önemi büyüktür. Bugün Genetik Mühendisliği ve Biyoteknolojideki ilerlemeler sonucu, günümüzde kullanılan çeşitlere yabani akrabalarından gen aktarımı yapılarak zararlı böcek, hastalık, yabancı otlar ve kuraklığa dayanıklı yeni çeşitler elde edilmektedir. Bugün, tarımda kullanılmayan doğada bulunan birçok bitkinin gelecekte tarımda kullanılma potansiyeli vardır. Bugün kültürü yapılan birçok meyve ve sebzenin ilk defa kültüre alındığı yer Türkiye’dir. Bu türlerin ülkemizde bulunan yabani akrabalarının paha biçilmez değeri vardır. Birçok bitki türü, tıp ve eczacılıkta eski çağlardan beri kullanılmaktadır. Son yüzyılda, biyokimya bilimindeki gelişmeler sonucu birçok bitkiden çeşitli bileşikler elde edilmiştir. Günümüzde 250.000 bitki türünden, ancak 5.000 ‘inin eczacılık değeri yönünden incelendiği kaydedilmektedir. Gelecek yıllarda bilimdeki ilerlemelere bağlı olarak birçok bitkiden, değişik hastalıklar için bileşiklerin elde edilmesi mümkündür. Ülkemiz tıp ve eczacılıkta kullanılan ve aromatik bitkiler yönünden zengin bir çeşitliliğe sahiptir. Ayrıca süs bitkisi olarak ve peyzaj düzenlemelerinde kullanılan soğanlı bitkilerce de zengindir. Önümüzde ki yıllarda, bu yönüyle değerlendirilebilecek çok sayıda bitki türü bulunmaktadır. Yine tarımsal zararlıların mücadelesinde bazı bitkilerden elde edilen bitkisel kökenli ilaçlar kullanılmaktadır. Doğadaki birçok bitki, bu yönüyle de önem arz etmektedir. 3- Hayvan Çeşitliliğinin Faydaları : İnsanlar, ilk çağlardan günümüze kadar hayvanları avlayarak, evcilleştirerek gıda kaynağı olarak, taşımacılıkta, giyimde ve tıpta kobay amaçlı kullanmışlardır. Yine kültüre alınan hayvanların yabani akrabaları, hayvan ıslahında kullanılmaktadır. Böceklere bakıldığında 1.200.000 böcek türünden, ancak 750 tür kültür bitkilerinde zararlı olmaktadır. Geri kalan türler bizim için faydalı türlerdir. Bunlardan bazıları tarımda zararlı türlerin üzerinde beslenerek bu türlerin savaşımında kullanılmaktadır. Bitkilerin büyük çoğunluğu tozlaşma için böceklere gereksinim duymaktadır. Böcekler, bitkilerin tozlaşmasını sağlayarak bitki yaşamının devamlılığı ve çeşitliliğine olanak vermekte ve ekosistemin devamlılığını sağlamaktadır. Yine böceklerin önemli bir kısmı, organik maddelerin ayrışmasını ve tekrar toprağa kazandırılmasını sağlamakta adeta doğada birer gönüllü temizlik işçisi gibi çalışmaktadır. Bazı türler de kuşlar, balıklar, sürüngenler gibi hayvanların gıda kaynağı durumundadır. Tüm bu yönleriyle, yeryüzündeki yaşamın böceklere bağlı olduğunu söylemek fazla abartılı olmaz. 4- Ekosistemin Ekoturizm Olarak Sağladığı Faydalar : Doğaya dayalı turizm, ekoturizm olarak adlandırılmaktadır. Ekoturizm son yıllarda artan bir önem arz etmektedir. Teknolojik ilerlemeler ve yaşam biçimine bağlı olarak stres altındaki insanlar, doğada kendini dinlendirmektedir. Milli parklara ve doğaya gidilerek stres atılmaktadır. A.B.D.’de Milli Parklar Servisi’nin 1998 yılı ölçümlerine göre, yaklaşık 300.000 turistin milli parkları ziyareti ile, direk ve dolaylı gelir olarak 14 milyar dolar gelir elde edilmiştir. Benzer durum dünyanın diğer ülkelerinde de vardır. Dünya Turizm organizasyonu, ekoturizmin uluslar arası turizmin % 7’sine karşılık geldiğini bildirmektedir. Ülkemizde de Fethiye’de bulunan Kelebekler Vadisindeki kelebekleri görmek amacıyla, tatil sezonu boyunca günübirlik olarak 15.000 turistin ziyaret ettiği bildirilmektedir. Biyolojik çeşitlilik ve doğal güzellikler bakımından, dünyada eşsiz bir yere sahip ülkemiz, ekoturizmde büyük potansiyel arz etmektedir. Ülkemizin sahip olduğu doğal güzellikler ve biyolojik zenginlikler yurt içi ve dışında yeterince tanıtılmalı ve ekoturizm geliştirilmelidir. SORU : 1- Yaşanılan bölgede en çok yetiştirilen sebzeler hangileridir? 2- Yaşanılan bölgeye özgü bitki ve hayvan türleri nelerdir? 3- Yaşanılan bölgedeki bitki ve hayvanların sayısı ve çeşitliliği diğer bölgelerde de aynı mıdır? 4- Bitki ve hayvan türlerinin sayıca fazla olması, bölgenin doğal zenginliklerinin bir göstergesi midir? 5- Kaç değişik kuş türü biliyoruz? 6- Kaç değişik balık türü biliyoruz? 7- Kaç değişik çiçek çeşidi biliyoruz? 8- Çeşitlilik nedir? 9- Bir bölgedeki bitki ve hayvan türlerinin çeşitliliği, o yerin hangi özelliğini ortaya koyar? 10- Ders kitabında verilen resimlerdeki canlılardan hangileri ülkemizde yaşamaktadır? 11- Ders kitabında verilen resimlerdeki canlılardan hangilerinin nesli tükenmek üzeredir? 12- Ülkemizde farklı ekosistemlerin biyolojik çeşitliliğini oluşturan bitki ve hayvan türleri nelerdir? 3- Biyolojik Çeşitliliğin Azalması ve Yok Olması : Bir ekosistemde, bölgede, ülkede veya dünyada yaşan herhangi bir canlı türünün yok olması o canlının neslinin tükenmesi yani biyolojik çeşitliliğin azalması, canlı türlerinin yok olması da biyolojik çeşitliliğin yok olması anlamına gelir. İklim değişikliliği, kirlenme, doğal kaynakların aşırı kullanımı, sürdürülebilir olmayan kaynakların kullanımı ve hızlı nüfus artışı biyolojik çeşitliliğin azalmasına ve türlerin yok olmasına neden olur. Habitatların yok olması veya zarar görmesi, birçok bitki ve hayvan türünün neslinin yok olmasına neden olur. Biyolojik çeşitliliğin korunması için 1992’de 172 ülkenin katıldığı Rio Zirvesi olarak bilinen Birleşmiş Milletler (BM) Çevre ve Kalkınma Konferansı yapılmış ve İklim Değişikliği ve Biyolojik Çeşitlilik sözleşmeleri imzaya açılmıştır. Rio Zirvesi’ne katılan, aralarında Türkiye’nin de bulunduğu 156 ülke Biyolojik Çeşitlilik Sözleşmesi’ni (BÇS) imzalayarak, kendi sınırları içerisindeki bitkilerin ve hayvanların çeşitliliğinin tam olarak korunması sorumluluğunu üstleneceklerine, ayrıca gelecek nesillerin doğal kaynaklara olan ihtiyaçlarından ödün vermeden günümüz ihtiyaçlarının karşılanması için çeşitli yollar aranması konusunda anlaşmaya varmıştır. • Önceki yıllarda yaşayan mamut, bizon, moa, dinozor gibi canlılar günümüzde yaşamamaktadır yani nesilleri tükenmiştir. • Önceki yıllarda ülkemizde yaşayan Anadolu leoparı, Asya fili, kunduz, aslan gibi canlılar şuan ülkemizde yaşamamaktadır ve ülkemizde nesli tükenmiştir. • Şu an ülkemizde yaşayan Akdeniz foku, kelaynaklar, deniz kaplumbağaları, alageyik, boz ayı, kardelen çiçeği ve salep yapımında kullanılan orkideler nesli tükenmek üzere olan canlılardır. NOT : 1- Türkiye'de 500'den fazla habitat çeşidinde 10.000'den fazla çiçekli bitki ve eğrelti; 400'den fazla kuş; 500'den fazla balık; 100.000'den fazla sürüngen ve 160.000'den fazla omurgasız hayvan türü kayıtlıdır. SORU : 1- Biyolojik çeşitlilik yok olabilir mi? 2- Biyolojik çeşitliliğin yok olması nasıl gerçekleşir ve ne gibi sonuçlar getirir? 3- Canlıların neslinin tükenmesi, biyolojik çeşitliliğin azalması anlamına gelir mi? 4- Ülkemizin Biyolojik Zenginlikleri : Ülkemizin Asya ve Avrupa kıtaları arasında bir köprü görevi görmesi, ayrıca çok değişik iklim ve coğrafi yapıya sahip olması nedeniyle, bitki ve hayvan türleri bakımından oldukça zengin bir çeşitliliğe sahiptir. Türkiye’de 120 memeli, 413 kuş, 93 sürüngen 18 kurbağagil, 276 deniz balığı, 192 tatlı su balığı ve 60–80.000 böcek türünün bulunduğunu bilinmektedir. Yine ülkemiz bitki türleri bakımından da oldukça zengindir. Bütün Avrupa kıtasında 12.000 bitki türü bulunmasına karşın ülkemizde 9.000 bitki türü bulunmakta ve bu türlerin % 30’u dünyada sadece Türkiye’ de bulunmaktadır. Oldukça fazla sayıda bitki ve hayvan türünün tanımlandığı yer ve anavatanı ülkemizdir. Tüm bu yönleriyle Türkiye, biyolojik çeşitlilik bakımından bir kıta özelliği göstermekte olup dünyada eşsiz bir yere sahiptir. 5- Biyolojik Çeşitliliğin Korunması : Biyolojik çeşitlilik, bir bölgedeki bitki ve hayvan türlerinin ve çeşitlerinin sayıca zenginliğidir. Ülkemizde ve dünyada nesli tükenme tehlikesiyle karşı karşıya olan bitkiler kardelen ve salep yapımında kullanılan orkidelerdir. Deniz kaplumbağaları, Akdeniz fokları, bozayı, Ankara keçisi, Tuj koyunları, alageyik, sülün ise nesli tükenme tehlikesiyle karşı karşıya olan hayvanlardandır. İster bitki ister hayvan olsun bu canlıların nesillerinin konuna altına alınması için tabiat parklarının, doğal yaşam alanlarının oluşturulması, organik tarımın tercih edilmesi ve insanların bu konularda eğitilmesi gerekmektedir. Çiftçiler aşırı otlatmanın, bitkilerin aşırı toplanmasının, ormanların arazi kazanmak amacıyla tahrip edilmesinin biyolojik çeşitlilik açısından olumsuz etkileri konusunda bilinçlendirilmelidir. Kıyı habitatlarının tahrip edilmesi, balıkçılığın ve avlanmanın aşırı ve kontrolsüz yapımı engellenmelidir. Ayrıca bu türlerin korunması ve denetimi için mekanizmalar geliştirilmelidir. Biyolojik çeşitlilik tüm dünyanın ortak zenginliğidir. Bugünün ihtiyaçlarını karşılayarak gelecek kuşaklara da bu çeşitliliği aktarabilmek amacıyla biyolojik çeşitliliğin korunması gereklidir. C- ÇEVRE SORUNLARI VE ETKİLERİ : 1- Ekosistemlerin Bozulma Nedenleri (Çevre Sorunları) : Çevre sorunları, insanların yaşadığı problemlerden biridir çevre sorunlarının yani ekosistemlerdeki bozulmaların bir kısmı doğal yolla, bir kısmı da insan etkisiyle oluşur. İnsanlara ve ekosistemlere zarar veren doğal kaynaklı bozulmalar, su, toprak ve hava hareketleriyle oluşur. Su taşkınları, depremler, erozyon, volkanik hareketler (yanardağ patlamaları), fırtına, kasırga, uzun siren kuraklık ekosistemlerin bozulmasına yol açan doğal afetlerdir. İnsanlar, bulundukları ekosistemlerdeki (çevrelerindeki) canlı ve cansız varlıkları etkileyerek ekosistemlerin bozulmasına yol açarlar. İnsanlar, ekosistemlerdeki doğal varlıklarla iç içe yaşarken zamanla teknolojinin gelişmesi ve doğal kaynakların bilinçsiz kullanılması sonucu doğanın dengesi bozulmuş ve birçok çevre sorunu ortaya çıkmıştır. Hızlı nüfus artışı, bilinçsiz sanayileşme, düzensiz şehirleşme, doğal kaynakların bilinçsiz kullanılması, nükleer silahlar ve nükleer santral patlamaları, biriktirilmiş suların (barajlardaki suların) taşkınlara neden olması, orman tahribatı ve çığ gibi olaylar doğal denge üzerinde olumsuz etkiler yaparak çevre kirliliğine yani ekosistemlerin bozulmasına yol açan insan kaynaklı faktörlerdir. Hava kirliliği, su kirliliği ve toprak kirliliği ve nükleer kirlilik çevre kirliliği sonucu oluşan kirlenmelerdir. SORU : 1- Ülkemizi ve Dünya’mızı tehdit eden önemli çevre sorunları nelerdir? 2- Ülkemizi ve Dünya’mızı tehdit eden önemli çevre sorunlarının sebepleri ve sonuçları nelerdir? 3- Ülkemizi ve dünyayı tehdit eden çevre sorunları dünyayı nasıl etkiler? 4- Ekosistemler zamanla neden değişip bozulmaktadır? 5- Ekosistemlerdeki bozulmalar beraberinde hangi sonuçları getirin? 6- Çok küçük bir ekosistemin zarar görmesi tüm dünyayı nasıl etkiler? 2- Çevre Kirliliğine Neden Olan (İnsan Kaynaklı) Faktörler : a) Orman Tahribatı : Orman yangınları, ihmal, dikkatsizlik, kaçak yapılaşma ve arazi açmak için ağaçların bilinçsizce kesilmesi gibi sebepler yüzünden ormanlar tahrip olmaktadır. Bunun sonucunda ekosistemlerin doğal dengesi bozulmakta, ormanda yaşayan canlı türleri ve bu türlerin habitatları yok olmakta, toprak zenginliği kaybolmaktadır. (Ülkemizde orman yangınlarının kayıtları 1937 yılında tutulmaya başlanmıştır. Bu kayıtlara göre yaklaşık 1,5 milyon hektar ormanlık alan yok olmuştur). SORU : 1- Ülkemizdeki orman tahribi sadece ülkemizi mi etkiler? 2- Orman tahribi nasıl engellenebilir? 3- Ormanların kaybı hayatımızı nasıl etkiler? b) Çığ : Yüksek yerlerdeki karların şiddetli ses etkisiyle dağın yamaçlarına yuvarlanmasına çığ denir. Eğimli arazi üzerinde birikmiş büyük kar örtüsü, yer çekimi etkisiyle kaydığında çığ oluşur. Çığ genellikle bitki örtüsü olmayan, dağlık eğimli arazilerde görülür. Çığlar beraberinde toprak, taş ve ağaçları da sökerek götürür. Bu şekilde meydana gelen aşınma ve taşınma, toprağı verimsizleştirerek canlıların yaşamını tehlikeye sokar. Çığlar, tarım alanlarının veriminin düşmesine ve su kaynaklarının kirlenmesine neden olur. SORU : 1- Çığdan korunma yolları nelerdir? c) Nükleer Silahlar ve Nükleer Santral Patlamaları : Nükleer silahlar, nükleer kazalar ve bu kazalar sonunda ortaya çıkan nükleer atıklar kirlenmeye sebep olur. (1986 yılında yaşanan Çernobil Nükleer Enerji Santrali Kazası’nın yarattığı olumsuz etkiler, bu kirliliğin en canlı örneğidir. Bu olaydan ülkemizin en çok Karadeniz Bölgesi’nin etkilendiği tespit edilmiştir). SORU : 1- Nükleer kirlilik sadece belli bir bölgeyi mi etkiler? 2- Nükleer kirliliğin canlılar ve onların çevreleri üzerindeki olumsuz etkileri nelerdir? d) Biriktirilmiş Suların Taşkınlara Yol Açması : Barajların yıkılması sonucu oluşan taşkınlar, bitki örtüsüne, ekili alanlara toprağın verimli tabakasının taşınmasına neden olur. e) Aşırı Nüfus Artışı : Bir bölgedeki ya da ekosistemdeki nüfus artışını ya da azalışını o ekosistemdeki göçler, doğum ve ölüm olayları belirler. Nüfus artışının az olduğu dönemde insan tarafından çevreye verilen zarar doğal yollarla kendiliğinden düzeltilebiliyordu. Nüfus artışı fazla olduğu için; • Doğal kaynaklar aşırı kullanıldı. • Barınma amacıyla yeşil alanlar yok edildi. • Büyük kentler çevre kirliliğine yol açtı. • Araçların egzoz gazları hava kirliliğine yol açtı. • Soğutucularda kullanılan karbon maddesi ozon tabakasını inceltti. • Tarımsal alanlarda yapılan ilaçlamalar yararlı böcekleri de yok etti. • Evsel atıklar, lağım suları ve sanayi atıkları çevreyi kirletti. • Tarımda üretimi arttırmak için aşırı kullanılan gübreler çökerek toprağın ve yeraltı sularının kirlenmesine yol açtı. f) Plansız Sanayileşme : Nüfusun hızla artması sonucu sanayi gelişmiş ve bunun sonucu çevre (hava, toprak, su) zarar görmüş, kirlenmiştir. • Tarla ekmek için orman arazilerinin kesilmesi. • Artan kereste ihtiyacı nedeniyle ormanların kesilmesi. • Fabrika bacalarına filtre takılmaması. • Fazla ürün elde etmek için tarımda aşırı gübreleme ve ilaçlama yapılması. • Fabrika atıklarının arıtılmadan suya ya da toprağa verilerek su ve toprağı kirletmesi. g) Doğal Kaynakların Bilinçsiz Kullanılması : Bir ekosistemdeki hava, toprak, su, hayvanlar, bitkiler, yeraltı zenginlikleri ve doğal güzellikler o ekosistemdeki doğal kaynakları oluştururlar. Doğal kaynakların bilinçsiz kullanılması çevre kirliliğine yol açar. • Kimyasal ve biyolojik silahların kullanılması. • Gereksiz tarım ilaçları ve böcek öldürücülerin kullanılması. • Soğutucuların ve spreylerin fazla kullanılması. • Ev ve sanayi atıklarının çevreye dağılması. • Nükleer silahların ve radyasyona yol açan maddelerin kullanılması. • Kalitesiz fosil yakıtların (kömür, petrol, doğal gaz) kullanılması. 3- Çevre Kirliliğinin Sonuçları : Hava kirliliği, su kirliliği ve toprak kirliliği ve nükleer kirlilik çevre kirliliği sonucu oluşan kirlenmelerdir. a) Hava Kirliliği : Atmosferde bulunan zararlı gazların (karbon oksitleri, kükürt oksitleri ve azot oksitleri) miktarının artmasına hava kirliliği denir. Hava kirliliğinin canlı ve cansız varlıklar üzerinde olumsuz etkileri vardır. Havayı katı ve gaz halindeki maddeler kirletir. Sanayi tesislerinden filtre edilmeden bırakılan gazlar, araç egzozlarından çıkan gazlar, fosil yakıtların (petrol, kömür ve doğal gaz) yanmasından oluşan gazlar (evlerin ısıtılmasında, taşıtlarda ve sanayi tesislerinde fosil yakıtların aşırı kullanılması sonucu) hava kirliliği oluşur. Hava kirliliği sonucu asit yağmurları oluşur, sera etkisi artar ve ozon tabakası delinir. Sera etkisi ve ozon tabakasındaki incelme, iklim üzerinde tüm Dünya’da (küresel boyutta) değişikliklere yol açar. Kullanılan fosil yakıtların oluşturduğu katı ve gaz halindeki atıkların (fosil yakıtların yanması ile havaya karışan karbon oksitleri, kükürt oksitleri ve azot oksitleri), suya ve su döngüsüne karışması sonucu bu atıkların yağış olarak yeryüzüne inmesine asit yağmuru denir. Güneş’ten gelen ışınların bir kısmı yeryüzü tarafından soğurulurken bir kısmı da uzaya geri yansır. Yeryüzünden yansıyan bu ışınların bir kısmı, atmosferde soğurularak havanın ısınmasına sebep olur. Güneş ışınlarının bir kısmının uzaya gönderilmesinin engellenmesine sera etkisi denir. Sera etkisine neden olan gazların (başta karbondioksit olmak üzere) miktarının artması, soğurulan güneş ışınlarının miktarının artmasına sebep olur. Bunun sonucunda atmosferin ve Dünya’nın sıcaklığı aşırı yükselir. Atmosferdeki sera etkisinin artmasına küresel ısınma denir. Küresel ısınma sonucunda buzullar erimeye ve okyanuslardaki su seviyeleri yükselmeye başlar ve küresel çölleşme gerçekleşir. Hava kirliliğine sebep olan (flora klora karbon gibi itici ve soğutucu olarak kullanılan) gazlar ozon tabakasının incelmesine sebep olur. Ozon tabakasının incelmesi sonucu Güneşin zararlı ultraviyole ışınları yeryüzüne ulaşır ve bu ışınlar biyolojik çeşitliliği olumsuz etkiler ve canlıların bağışıklık sistemini bozar. (Flora klora karbon gibi itici ve soğutucu olarak kullanılan gazların kullanılmaması konusu Brezilya'da ulusların imzasına açılmış ve iki ülke bu antlaşmayı imzalamıştır. Bu ülkeler Türkiye ve A.B.D.dir). 1- Havanın Canlılar İçin Önemi (*) : 1- Canlılar havasız yaşayamaz. 2- Solunum için bazı canlılar (insanlar ve oksijenli solunum yapan canlılar) oksijene ihtiyaç duyarlar. Havadaki oksijen, suya ve toprağa geçer, buradaki canlılarda oksijen kullanır. 3- Yeşil bitkiler, fotosentez yaparken havadaki karbondioksiti kullanır ve oksijen üretir. 4- Havanın azotu bazı bitkiler tarafından, (azot bağlayıcı) bakteriler yardımıyla alınarak protein yapımında kullanılır. (Canlıların temel yapısını proteinler oluşturduğu için önemlidir). 5- Havadaki su buharı canlılar için gereklidir. 2- Hava Kirliliğinin Etkileri (*) : 1- Solunum sistemi hastalıklarına neden olur. (Astım, bronşit, akciğer kanseri). 2- Yeşil alanlar yok olur, tarım ve hayvancılık olumsuz etkilenir. 3- Dolaşım sistemi hastalıklarına neden olur. (Kalp yetmezliği, damar tıkanıklığı). 4- Kağıt, kumaş, sanat eserleri, tarihi kalıntılar, araçlar ve evlerin yıpranmasına neden olur. 5- Kirli havada biriken kurşun oranı saçların dökülmesine neden olur. 3- Hava Kirliliğinin Önlenmesi (*) : 1- Sanayi tesisleri katı, sıvı ve gaz atıklarını arıtarak doğaya bırakmalıdır. (Yönetim bu gereçler için sanayi kuruluşlarına uzun vadeli ve düşük faizli krediler vererek kontrolü çevre örgütlerine devir etmelidir). 2- Havayı kirletmeyen doğal gaz, rüzgar, güneş enerjisi ve nükleer enerji gibi enerji kaynakları desteklenmelidir. 3- Bacalardan ve egzozlardan çıkan gazlar, yenilenebilir enerji kaynakları kullanılarak zararsız hale getirilmelidir. 4- İnsanların yeşil bitkileri ve ormanları kullanmaları sağlanarak, yeşil alanlar çoğaltılmalıdır. (Evlerin çevrelerinin beton duvarlarla çevrilmesi yasaklanarak, belediyeler aracılığı ile mülklerin yeşil bitkilerle sınırlandırılması sağlanmalıdır). SORU : 1- Asit yağmurlarının çevremiz üzerindeki olumsuz etkileri nelerdir? 2- Sera etkisi hayatımızı nasıl etkiler? 3- Asit yağmurları, sera etkisi ve ozon tabakasının delinmesi gibi Dünya’yı etkileyen bu çevre problemleri ülkemizi nasıl etkilemektedir? b) Su Kirliliği : Sanayi kuruluşlarının ve enerji üretim santrallerinin atıkları, nüfus artışı, şehirleşme, deniz taşımacılığı ve kazalar, asit yağmurları, foseptikler, çöplükler, tarımda kullanılan ilaçlar, doğal ve yapay gübreler su kirliliğine neden olur. Su kirliliği, tüm canlıların hayatını tehlikeye sokar. İçme ve kullanma suları daima temiz olmalıdır. Su kirliliğinden dolayı deniz, göl ve akarsularda her türlü üretim düşer, içme ve kullanma suyu bulmakta güçlük çekilir, suya bağlı ekosistemlerde doğal denge bozulur. Ülkemizin üç tarafı denizlerle çevrili olduğundan deniz kirliliği de önem taşımaktadır. Sakarya ve Gediz Nehirleri, Akşehir Gölü ve Tuz Gölü, İzmit ve İzmir Körfezleri ile Marmara Denizi ülkemizde su kirliliğinin görüldüğü yerlerdendir. SORU : 1- Ülkemizdeki su kirliliği Dünya’yı nasıl etkilemektedir? 2- Su kirliliğine nasıl çözüm bulunabilir? c) Toprak Kirliliği : Yerleşim alanlarından çıkan atıklar ve çöpler, sanayi atıkları, egzoz gazları, kimyasal (organik ve mineral) gübreler, tarımla mücadele ilaçlarının kullanımı, yanlış arazi kullanımı, su ve rüzgar erozyonu, ile ulaşım ağı toprak kirliliğine neden olur. Bir yerde belirli kalınlıktaki toprağın oluşabilmesi için milyonlarca yıl geçmesi gerekmektedir Bunun için doğal kaynaklardan biri olan toprağın çok iyi korunması gerekir. Son yıllarda (yirminci yüzyılın başından itibaren) modern tarıma geçilmesi ve sanayileşmenin hızlanması ile birlikte, toprak kirliliği de bir çevre sorunu olarak ortaya çıkmıştır. Toprak kirliliği ürün kalitesinin düşmesine, topraktaki organik ve inorganik maddelerin azalmasına ve dolayısıyla ekosistem dengesinin bozulmasına yol açabilmektedir. SORU : 1- Toprak kirliliği hangi çevre sorunlarını beraberinde getirir? 4- Çevre Kirliliğinin Sonuçları : Çevre kirliliği sonucu; 1- Dünya’nın coğrafyası değişir. 2- Dünya’nın iklimi değişir. 3- Erozyonlar oluşur ve toprağın verimini düşürür. 4- Su kaynakları azalır ve kurur. 5- Enerji kıtlığı başlar. 6- Biyolojik çeşitlilik (canlı çeşitliliği) azalır. 7- Beslenme sorunu doğar. 5- Çevreyi Korumak İçin Alınacak Önlemler : 1- Sanayileşmede çevreye zarar vermemek için gerekli tedbirlerin alınması gerekir. 2- Canlı türlerinin ve nesillerinin devamının sağlanması gerekir. 3- Bilinçli tarım yapılması gerekir. 4- Ormanların yok edilmemesi gerekir. 5- Su kaynaklarının kirletilmemesi gerekir. 6- Geri dönüşümlü ürünlerin kullanılması gerekir. 7- Tüketim maddelerinin geri dönüştürülebilecek şekilde kullanılması gerekir. 8- Yenilenebilir enerji kaynaklarının kullanılması gerekir. 9- Yenilenemez enerji kaynaklarının kullanılmaması gerekir. 10- Eğitime önem verilmesi ve tutumlu olunması gerekir. 11- Sürdürülebilir kalkınma yapılması gerekir. SORU : 1- Çok sayıda kurum ve kuruluşun çevre konusunda faaliyet göstermesi çevre sorunlarının çözülmesi için yeterli midir? Neden? 2- Ülkemizde bu konuda çalışan kuruluşlardan hangilerinin isimlerini ve nasıl öğrendiniz? 3- Çevre sorunlarıyla ilgili, gönüllü kuruluşlardan birine üye olarak çalışmak isteseydiniz hangisini tercih ederdiniz? Neden? NOT : 1- Çevre sorunlarının sınır tanımaz özelliğinden dolayı uluslararası iş birliği zorunlu bir hale gelmiştir. Bu konudaki ilk uluslararası düzeyde toplantı 1972 yılında, Birleşmiş Milletler Teşkilatı tarafından düzenlenen Stokholm 1. Çevre Konferansı’dır. Bu toplantı sonunda, çevreye verilen önemi vurgulamak için 5 Haziran günü “Dünya Çevre Günü” olarak kabul edilmiştir. 2- Uluslararası düzeyde çevreyle ilgili faaliyet gösteren önemli kuruluşlardan bazıları; • Birleşmiş Milletler Kalkınma Programı (UNDP) • Dünya Meteoroloji Teşkilatı (WMO) • Dünya Sağlık Teşkilatı (WHO) 3- Ülkemizde çevreyle ilgili faaliyet gösteren önemli kuruluşlardan bazıları; • Çevre Bakanlığı • Tübitak • Türkiye Ormancılık Derneği • Türkiye Bitki Koruma Derneği • Türkiye Erozyonla Mücadele • Ağaçlandırma ve Doğal Varlıkları Koruma Vakfı (TEMA) • Türkiye Çevre Eğitim Vakfı 4- Zoolog : Hayvanların anatomik ve fizyolojik özelliklerini inceleyen, onları özelliklerine göre sınıflandıran ve çeşitli etmenlerin hayvanlar üzerindeki etkilerini araştıran kişilere zoolog denir. Zoologlar araştırmacı veya uygulayıcı olarak görev yaparlar. Araştırmacı olarak çalışan zoolog; yeryüzündeki hayvanların yaşayışlarım, doğal ortamları içinde gözlem yolu ile inceler. Hayvanların anatomik ve fizyolojik özelliklerini laboratuarlarda inceler ve elde edilen verilere göre hayvanları sınıflandırır. Hayvanların evrimini, fosilleri inceleyerek araştırır. Uygulama alanında çalışan zoolog; çeşitli ilaçların hayvanlar üzerindeki etkisini deneysel olarak inceler, tarımda böcekler ve diğer zararlı hayvanlarla mücadele yöntemleri geliştirir, milli parklardaki hayvanlar için uygun ortamlar oluşturulmasına çalışır, ülke dışına çıkarılmaya ya da yurt dışından getirilmeye çalışılan hayvan türleri konusunda görüş bildirir, hastanelerde doku ve hücre incelemeleri yapar. Zoolog olmak isteyenlerin üst düzeyde genel yeteneğe sahip, doğayı seven, canlılarla uğraşmaktan hoşlanan, meraklı ve iyi bir gözlemci, fen bilimlerine özellikle biyolojiye ilgili ve bu alanda başarılı, sabırlı, araştırmacı ve bilimsel meraka sahip ve estetik anlayışı yüksek kimseler olmaları gerekir. Zoologlar çalışmalarını laboratuarda ve açık havada yürütürler. Çalışırken biyologlarla, ziraat mühendisleriyle, veteriner hekimlerle, kimyagerlerle ve kimya mühendisleri ile iletişim halindedirler. Hazırlayan:MURAT ÜSTÜNDAĞ Kayseri Mithatpaşa İlköğretim Okulu Fen ve Teknoloji Öğretmeni

http://www.biyologlar.com/biyolojik-cesitlilik-cevre-sorunlari-ve-etkileri

Biyolojik Çeşitlilik ve Ormancılık

Ormanlar yeryüzündeki biyolojik çeşitliliğin %65’e yakınını barındırırlar. Türkiye, sahip olduğu doğal orman yapısı ve tür çeşitliliğiyle, Dünya’nın 34 sıcak noktasından[1] üçüne sahiptir. Dünya’da ve Türkiye’de orman ekosistemlerini korumanın en yaygın yöntemi yasal bir korunma statüsü altında doğa koruma alanları oluşturmaktır. Ancak bu yolla korunabilen orman alanları var olan alanların %5’ine ancak ulaşmaktadır. Orman biyolojik çeşitliliğin uzun vadede gerçekçi bir şekilde korunabilmesi için, işletilmekte olan orman alanlarının da koruma ve sürdürülebilirliği öne çıkaran bir bakışla planlanması ve işletmeciliğin de buna uygun olarak yapılması gereklidir. Biyolojik Çeşitliliğin Ormancılığa Entegrasyonu Projesi, Türkiye ormanlarının %95’ini oluşturan işletme ormanlarının planlanmasına biyolojik çeşitliliğin de etkin bir şekilde dahil edilmesi için ekonomik, yaygınlaştırılabilir ve uygulanabilir bir çözüme yönelik araçlar geliştirmektedir. OGM’nin 2004 yılından bu yana uygulamaya koyduğu fonksiyonel planlama anlayışına uygun olarak, biyolojik çeşitlilik açısından önemli alanların tespiti ve buradaki orman işletmeciliğinin korumayı gözetir şekilde yapılmasını sağlamak amaçlanmaktadır. Bu amaca yönelik olarak, proje kapsamında planlamacılara ve uygulamacılara yönelik olarak birer rehber üretilmektedir. Planlamacılara yönelik olarak OGM ile işbirliği içerisinde “Biyolojik Çeşitliliğin Amenajman Planlarına Entegrasyonu Rehberi” hazırlanmaktadır. Bu rehberde, OGM’nin planlama birimleri olan İşletme Müdürlükleri ölçeğinde öncelikli hedef biyoçeşitlilik unsurlarının hangileri olduğu ve bunlara yönelik yapılacak arazi envanter çalışmalarının nasıl yapılacağı açıklanmaktadır. Envanter sonuçları kullanılarak hedef biyoçeşitlilik unsurlarının dağılımının haritalanması ve koruma öncelikli uygulama zonlarının belirlenmesi anlatılmaktadır. Bu çıktıların orman amenajman ekipleri tarafından nasıl plan kararlarına dönüştürüleceği ve amenajman planlarının hangi bölümlerinde ne şekilde yer alacağı konuları da rehberde yer almaktadır. Proje kapsamında üretilen ikinci rehber olan “Biyolojik Çeşitliliğin Ormancılık Uygulamalarına Entegrasyonu Rehberi”nde ise, hedef biyoçeşitlilik unsurlarına yönelik tanıtıcı teknik sayfalar, unsurlara yönelik ormancılık uygulamaları ve ilkeleri yer almaktadır. Türkiye’de bulunan 210’un üzerindeki Orman İşletme Müdürlükleri’nin, 10-20 yıllık periyotları kapsayan amenajman planlarının yenilenmesi sırasında planlamacılar, işletmeciler ve uygulamacılar tarafından kullanılacak olan bu rehberler, orman biyolojik çeşitliliğimizin öncelikli unsurlarının yaygın bir şekilde korunması için önemli bir başlangıç olacaklardır.

http://www.biyologlar.com/biyolojik-cesitlilik-ve-ormancilik

TRANSGENİK BİTKİLERDEKİ RİSKLER VE ENDİŞELER

Dünya’da en yaygın olarak ticari üretime geçmiş olan bazı transgenik bitkilere ( mısır, pamuk soya ve kanola) Bacillus thuringiensis bakterisinden izole edilen Bt endotoksin geni ve Streptomyceses hygroscopicus bakterisinden izole edilen bar geni transfer edilmiştir. Bt geni bitkilere aktarıldığında bazı böceklere toksik olan bir protein üreterek bitkileri böceklere dayanıklı hale getirmektedir. Bar geni ise aktarıldığı bitkiyi bazı herbisitlere (ot öldürücülere) karşı dayanıklılık sağlamaktadır. Transgenik bitkilerden ileri gelebileceği düşünülen endişeler ; insan sağlığına, çevre sağlığına ve mevcut tarım sistemine etkiler olarak belirtilebilir. Şu ana kadar yapılan çalışmalarda, transgenik bitkilerden ileri gelebilecek zarar risklerinin transgenik olmayanlardan ortaya çıkabilecek risklerden daha yüksek oranda bulunmadığını göstermektedir. Giriş Transgenik bitkilerden ileri gelebilecek riskleri üç ana grup altında toplamak mümkündür. Bunlar ; 1. İnsan sağlığına etkileri, 2. Çevreye etkileri, 3. Mevcut tarım sistemine etkileri olup, sırasıyla olası etkilerin neler olabileceklerini daha yakından inceleyebiliriz. 1.İnsan sağlığına etkileri 1.1.Transgenik Bitkilerin Allerji Etkileri. Belirli gıdalara karşı allerjisi bulunan bireyler, herhangi bir ürünü satın aldıklarında bunun içeriğini inceleyerek allerjik reaksiyona sebep olan maddelerin bulunup bulunmadığını kontrol etmektedirler. Belirgin bir allerjisi bulunmayan kişilerin bile transgenik bitkilerdeki yeni proteinler nedeniyle allerji olma riskleri bulunmaktadır. Dünya’da en yaygın olarak ticari üretime geçmiş olan transgenik bitkilere ( mısır, pamuk soya ve kanola) Bacillus thuringiensis bakterisinden izole edilen Bt endotoksin geni ve Streptomyceses hygroscopicus bakterisinden izole edilen bar geni transfer edilmiştir. Bt geni bitkilere aktarıldığında bazı böceklere toksik olan bir protein üreterek bitkileri böceklere dayanıklı hale getirmektedir. Bar geni ise aktarıldığı bitkiyi bazı herbisitlere (ot öldürücülere) karşı dayanıklılık sağlamaktadır. Ancak şu ana kadar ticari üretimine izin verilen transgenik bitkilerin, transgenik olmayan bitkilerden ileri gelebilecek allerji risklerinden daha fazla risk taşıdığına dair kanıtlar elde edilememiştir. Şu ana kadar yapılan çalışmalardan sadece iki potansiyel problem tam açıklanamamış ve bu iki transgenik bitki de insan gıdası olarak kullanımı yasaklanmıştır. Bunlar soya fasulyesi ve Starlink Mısır’dır. Pioneer firması tarafından soya bitkisine Brezilya Nut’ından alınan bir gen aktarılmıştır. Buradaki amaç, Brezilya Nut’ında bol olan ve soya fasulyesinde az bulunan methionin amino asidinin oranını fazlalaştırarak, soya fasulyesinin besinsel kalitesinin arttırılmasıdır. Ancak Breziya Nut’ına allerjenlik oldukça yaygın olduğundan, bu allerjenlik etkisi transgenik soyada da gözlenmiştir(Nordlee ve ark.,1996). Soya fasulyesine aktarılan genin aynı zamanda allerjenik reaksiyonları da tetiklediği anlaşılmaktadır. Firma bu soya fasulyesini hayvan yemi olarak pazarlamayı düşündü ise de daha sonra bunun hasat, taşıma ve depolama esnasında denetlenmesinin zor olduğu anlaşıldığından, bu transgenik soya fasulyesi ticari üretim için onay almayarak, piyasaya sürülmemiştir. Aventis firması tarafından geliştirilen Starlink transgenik mısır çeşidinin insan gıdası olarak ta tüketimi hedeflenmiştir. Ancak bu mısır çeşidinin insanlar için allerjik olabileceği endişesi ile sadece hayvan yemi olarak kullanılmak üzere onaylanmıştır. 2001 yılındaki araştırma sonuçlarından elde edilen bulgular, muhtemelen bu transgenik mısırın da allerjen olmadığını göstermesine karşın, uzmanlar arasında tam bir görüş birliğinin oluşmaması nedeniyle bu konudaki tartışmalar halen devam etmektedir. Tartışmaların bazı önemli noktaları şunlardır; a)Aventis şirketi tarafından yapılan denemelerde, mısır tanesindeki aktarılan proteinin ısıtma ve ıslatılma işlemleri ile parçalandığı belirtilmektedir. Böylece ticari olarak pazarlanan gıdaların pişirilmesi veya nemlendirme proseslerinden geçirilmesi sonucunda yabancı protein parçalanmış olacaktır. Ancak uzmanlar kurulu bu işlemlerden sonra bile transgenik proteinin mevcut olabileceğini ve allerjik reaksiyon yapabileceğini düşünmektedirler. Ayrıca, ıslatılma ve ısıtılma işlemleri sonucunda transgenik protein molekülünün biçiminin değişmesi durumunda, mevcut test yöntemleri ile bunun belirlenmesinin mümkün olamayabileceği vurgulanmaktadır. b)A:B:D:’lerindeki Hastalık Kontrol ve Koruma Merkezi, Starlink mısır çeşidinin ürünlerini yiyen kişilerde allerjik reaksiyonların meydana geldiğine dair kanıt bulamamıştır. Ancak bu kuruldaki bilim adamları Hastalık Kontrol ve Koruma Merkezi’nin yaptığı testlerin yeterli hassasiyette olmadığını da belirtmişlerdir. c)A.B.D.’de Starlink mısır ürünlerinin olası allerjik etkilerinin görüldüğünü gösteren doktorlar tarafından verilen sağlık raporları bulunmamaktadır. Allerji testleri, gerek test tüpü reaksiyonları ve gerekse canlılar üzerindeki tepkileri ölçen komplike bir işlemdir. Araştırıcılar değişik deney hayvanlarını (fare, domuz) allerji testleri için kullanmaktadırlar. Ancak bu sonuçlar her zaman doğru çıkmamaktadır. Örneğin Brezilya Nut’ına allerjenliğin saptanması öncelikle fareler üzerinde incelenmiş ve bunun allerjen olmadığı belirlenmiştir. Ancak daha sonra bazı kişilerde bunun allerjen etkileri bulunduğu saptanmıştır(Melo ve ark.,1994, Nordlee ve ark.,1999). Günümüzde bazı kişilerde buğday, yumurta ve kivi gibi yaygın yiyeceklere karşı allerjiler oluştuğu dikkate alındığında, bu kişilerde transgenik ürünlere karşı allerjilerin oluşması olasıdır. Ancak günümüzde yapılan araştırmalarda transgenik bitkilerden yapılan gıdaların transgenik olmayan bitkilerden yapılan gıdalarınkinden daha fazla allerjik risk taşıdığına dair kanıtlar da mevcut değildir. 1.2.Yatay gen geçişi ve antibiyotik dayanıklılık Transgenik bitkilerin geliştirilmesinde bazı antibiyotik dayanıklılık markırlarının kullanılması nedeniyle, transgenik gıdaların antibiyotik tedavisi gören kişilerde herhangi bir etkisinin olması endişesini doğurmuştur. Çünkü doktorların önerdiği antibiyotiklerin yanlış kullanılması sonucunda etkinliklerinin kaybolduğuna dair raporlar bulunmasından dolayı, kamuoyu bu tehlikenin transgenik gıdalarla ortaya çıkabileceği endişesini taşımaktadır. Transgenik bitkilerin geliştirilmesi sırasında belirli antibiyotiklere dayanıklılığı kodlayan DNA parçaları seleksiyon amacıyla kullanılmaktadır. Bu DNA parçalarının laboratuvar aşaması dışında başka bir amacı olmamasına karşın, transgenik bitkilerde sürekli olarak bulunmaktadır. Bu durumda transgenik gıdalar kullanıldığında, varolan antibiyotik problemlerine bir etkisi olacak mıdır? Sorusu akla gelmektedir. Endişelerden biri de, bir organizmadan diğerine ebeveyn-döl ilişkisine bağlı gen geçişi dışında bir DNA geçişidir. Buna yatay gen geçmesi denmektedir. Ağız, mide ve bağırsaklarda bulunan mikroorganizmalara transgenik gıdalardan bir antibiyotik dayanıklılık geninin geçmesi olasılığı, tedavi amacıyla kullanılan antibiyotiklerin mikroorganizmalara karşı etkisiz kalmasını sonuçlandırabilecektir. DNA’nın yatay geçişi bazen doğal koşullarda da meydana gelebilmektedir. Agrobacterium tumafaciens’in plazmidleri bitkilerde taç uru olarak bilinen hastalığı oluşturarak DNA’nın yatay geçişini gerçekleştirmektedir. DNA’nın yatay transferi laboratuvar koşullarında düşük frekanslarda meydana gelmektedir. Ancak böyle bir yatay geçişin insan bağırsaklarındaki bakterilere geçip geçmeyeceği akla gelmektedir. Bazı koşulların varlığı böyle bir geçişin pek mümkün olamayacağını düşündürmektedir. Çünkü midedeki asidik ortam DNA’yı parçalamaktadır. İnsan midesinin kimyasal içeriğinin benzeri olan hidrofonik asit ve ağız salyası karışımında DNA otuz saniyede parçalanmıştır(Mercer ve ark.,1999). Ayrıca, bazı organizmalar ancak özel koşullarda DNA’yı içerisine alırken, birçok canlıda organizmaya giren yabancı DNA’yı parçalayan mekanizmalar da bulunmaktadır. New Castle Üniversitesinde yapılan bir araştırmada, transgenik soya yiyen kişilerin bağırsaklarında, antibiyotik dayanıklılık geninin bağırsaklardaki mikroorganizmalara geçtiği rapor edilmiştir. Ancak bu çalışma diğer bilim adamları tarafından incelenmiş ve bağırsak sisteminde herhangi bir hasar bulunmayan kişilerin dışkılarında transgenik DNA saptanmamıştır. Fakat bağırsak operasyonu geçiren ve bağırsakları kısaltılmış olan kişilerde transgenk DNA’ya rastlanmış ve mikroorganizmaların çok az bir kısmında transgenik DNA ‘ya da rastlanmıştır. Bu durum transgenik DNA’nın yatay geçişinin bazı özel koşullarda insan bağırsaklarında da mümkün olabileceğini göstermektedir. Antibiyotik dayanıklılık genlerinin bazıları antibiyotiği inaktif hale getiren veya parçalayan bir enzim oluşturarak işlevini yerine getirmektedir. Böyle bir dayanıklılık geninin fonksiyonu devam edecek olursa, yenen transgenik bitkilerde bu dayanıklılık enziminin çok az bir miktarı da bulunabilecektir Ancak ısıl işlemler sonucunda enzimler inaktif hale gelmektedir. Fakat taze olarak yenen veya ısıl işlem geçirmeden tüketilen transgenik gıdalarla az miktardaki enzim de alınmış olabilecektir. İnsanlarda enfeksiyonlara karşı kullanılan antibiyotiklerden Gentamisin A ve B, Neomisin ve Kanamisin’e dayanıklılık genlerini içeren Calgen firmasının transgenik olarak geliştirdiği Flavr Savr domatesinin onaylanma aşamasında, Amerikan Gıda ve İlaç Dairesi (FDA) 1993 yılında bu durumla karşı karşıya kalmıştır. İnsan midesinin simulasyonlarını kullanan FDA testlerinde transgenik gıdalardaki enzimlerin mide asitleri tarafından parçalandığı rapor edilmiştir. Ciba-Geigy firmasının geliştirdiği transgenik Bt-176 mısır çeşidi de insanlarda kullanılan antibiyotiklere dayanıklılık sağlayan bir geni içermektedir. Penisilin grubundan olan Ampisilin insanlarda yaygın olarak kullanılmaktadır. Ancak Bt-176’daki antibiyotik dayanıklılık geni sadece prokaryotik (bakteriler) canlılarda aktif olacak şekilde dizayn edilmiştir. Yani antibiyotik dayanıklılık geni ökaryotik canlılarda yani insan ve mısır gibi bitkilerde aktif olamamaktadır. Ampisilin antibiyotiğini inaktif hale getiren enzim mısır bitkisinde üretilmediğinden dolayı, Bt-176 transgenik mısır çeşidi Kanada ve U.S.A.’de 1995 yılında üretime alınması onaylanmıştır. FDA transgenik bitki geliştirilme sürecinde laboratuvar aşamasında seleksiyon amacıyla, insanlarda kullanılmayan antibiyotik türlerinin kullanımını önermektedir. Böylece yatay gen transferi gerçekleşse bile antibiyotik tedavisinde olumsuz bir etkisi gözlenmeyecektir. Araştırıcılar, yeşil floresans protein ve mannoz gibi maddeleri antibiyotik dayanıklılık genleri yerine kullanmaya başlamışlardır(Joersbo ve ark.,1988). Ayrıca, transgenik bitkilerin ticari kullanıma çıkmadan önce antibiyotik dayanıklılık genlerini kaldıran yöntemler üzerinde çalışılmaktadır(Zuo ve ark.,2001). Pof.Dr.Muzaffer TOSUN E.Ü.Ziraat Fakültesi Tarla Bitkileri Bölümü, Bornova-İzmir KAYNAK: ibreliler.com

http://www.biyologlar.com/transgenik-bitkilerdeki-riskler-ve-endiseler

Biyoçeşitlilik Üzerine

Biyoçeşitlilik bir ekosistem, biyom veya biyosferin tamamında bulunan tüm yaşam formlarının çeşitliliğidir.Biyoçeşitliliğin tüm öğeleri birbirleriyle etkileşim halindedirler. Ekosistemin bir halkasında gözlenen değişimin etkileri birçok türe yansıyabilmektedir. Bu etkileşimlerde meydana gelebilecek olumsuz değişimler elbette insan (Homo sapiens) türünü de etkileyecektir. Dünyayı küresel olarak değiştirme yeteneğine sahip olan insan türünün tüm dengeleri gözetmesi zorunludur. İnsan türü varlığını sürdürebilmek için biyoçeşitlilik içerisindeki etkileşimleri tanımlayıp, anlayıp, korumakla yükümlüdür. Biyoçeşitliliğin ülkemizdeki durumunu incelediğimizde ise önümüze çok geniş bir biyolojik zenginlik çıkmaktadır. Türkiye, birçok iklim özelliğine sahip olması ve kara köprüsü özelliği göstermesiyle yüksek biyoçeşitliliğe sahip bir coğrafya konumundadır. Endemik bitki türü sayısı ve bu türlerin kaybettikleri yaşam alanının kriter olarak alınmasıyla belirlenen sıcak noktalar (hotspots) olarak tanımlanan havzalar belirlenmiştir (Myers et al., 2000). Ülkemiz sıcak nokta olarak belirlenen İran-Anadolu, Kafkas, ve Akdeniz havzalarının üzerinde konumlanmaktadır ve sınırları içerisinde 3 sıcak nokta havzası bulunduran tek Avrupa ülkesidir (Conservation International). Akdeniz ve Karadeniz arasında karasal bir geçiş yolu oluşturması nedeniyle ülkemiz göçmen canlılar için de vazgeçilmez bir rota oluşturur. Özellikle sulak alanlar göçmen su kuşları için hayati duraklar niteliğindedir, birçok göçmen ötücü kuşun ise üreme, beslenme ve Akdeniz ile Sahra Çölü’nü geçmeden önceki son dinlenme alanlarındandır (S.E.E.N., 2006). Dünya genelinde ise türlerin yok olma hızı yüksek bir ivme kazanmıştır. Kuşlar için yapılan bir çalışmaya göre normaldeyüz yılda bir tür yok olurken; son otuz yıl içerisinde yirmi bir kuş türünün soyu tamamen tükenmiştir (BirdLife International). Canlıların yok oluşunda yaşam alanlarının daraltılması, atık ve kirleticilerin artışı ve küresel ısınma büyük etkenlerdendir. Birleşmiş Milletler bu yok oluşu vurgulamak, biyoçeşitliliğe dikkat çekmek amacıyla bu 2010 yılının ‘Uluslararası Biyoçeşitlilik Yılı’ olarak tüm Dünya’da kutlanması kararını almıştır. Bu karar gereğince birçok ülkede etkinlikler düzenlenmiştir ve kitlelerin farkındalığı arttırılmaktadır. B.E. (Evrim Ağacı) www.unep.org/iyb/ www.biodiversityhotspots.org www.kad.org.tr www.birdlife.org/action/campaigns/species_champions/index.html Keşaplı Can Ö., (2004) A Study of passerine migration at METU (ANKARA, CENTRAL TURKEY) based on the mist-netting method. Myers, N., Mittermeier, R.A., Mittermeier, C.G., da Fonseca, G.A.B., Kent, J., (2000) Biodiversity hotspots for conservation priorities, Nature 403 (2000), pp. 853–858. S.E.E.N. (2006) SE European Bird Migration Network www.evrimagaci.org

http://www.biyologlar.com/biyocesitlilik-uzerine

GDO’NUN DÜNYA’DAKİ ve TÜRKİYE’DEKİ YERİ

GDO’nun Dünya’daki Yeri AB’de GDO’nun üretiminin adım adım yasaklanmıştır. Avusturya, Yunanistan, Macaristan ve Polonya GDO konusunda açık ve net olup ekimi yasakladı. Fransa 2007’de aldığı bir kararla 2008 yılında GD mısır ekimine izin vermedi. Almanya Tarım Bakanı, 2009’da yaptığı açıklamayla Almanya’da 2009’da GD mısır ekimi yaptırmayacaklarını açıkladı. Böylelikle AB’nin lokomotifi konumundaki 2 ülke Fransa ve Almanya GDO tarımından vazgeçti. İspanya’da ise binlerce kişi bu üretimin durması için yürüyüş yapıyor. Son 4 yıl değerlendirildiğinde ise ekim alanının %35 azaldığı görülmektedir (As, 2009, s.17). Dünya’da GDO Ekimi GDO ekimi 1996 yılında 6 ülkede 1,7 milyon hektarlık (mha) bir alanda başlarken, günümüzde 25 ülkede 125 mha alanda yapılıyor. GDO’ların ticari amaçla ekimi 1996 yılından itibaren yaygınlaşmıştır. Biyoteknoloji şirketleri tarım ilacı kullanımı azalacak, üretim maliyeti düşecek, yüksek verim küçük çiftçiyi zengin edecek söylemleri ile genleriyle oynadıkları tohumlarını ülkelere soktular. GDO ekimi 1996 yılında 6 ülkede 1,7 milyon hektarlık (mha) bir alanda başlarken, günümüzde 25 ülkede 125 mha alanda yapılıyor. GD ekin alanlarının %50 sine ABD tek başına sahiptir. Buna Kanada, Arjantin, Brezilya ve Paraguay’ı eklersek ekim alanlarının %88’i Kuzey ve Güney Amerika’da yer almaktadır (As, 2009, s.18). Günümüzde ticari amaçla tarımı yapılan balıca GD tarım ürünleri; soya, mısır, pamuk ve kanoladır. Dev biyoteknoloji şirketlerinin verilerine göre bugün soya tarım alanlarının %70, pamuk alanlarının %46, mısır alanlarının %24 ve kanola alanlarının %20’sinde GD tohumla üretim yapılmaktadır (As, 2009, s.18). Toplam transgenik ürün satışı 1998 yılında altı kat büyüdü. Başlangıçta pazarı 3 milyar dolardır. 2000 yılı için artış 6 milyar dolar, 2005’te ise 20 milyar dolar olmuştur. 1996 yılından bu yana 25'den fazla büyük satın almalar ve işbirlikleri 15 milyar dolar değerinde tohum, agrobiotech arasında ve tarım kimyasal firmada yer almıştır (Serageldin, 1999). GDO Üreticisi Firmaların Niyeti Ne? Patent alınması halinde de genetik olarak değiştirilmiş pamuk, mısır ya da tütün tohumunu eken çiftçi, hasattan sonra elinde kalan tohumları ekinde yeniden kullanırsa, patent sahibine bir bedel ödemek zorunda kalıyor. Dünyada genetiği değiştirilmiş tarım ve yem ürünlerinin tohum piyasası 8-10 firmanın elinde. Bu firmaların ana hedefi; dünyadaki tüm ülkelerin tarım ve hayvancılığını, tohum alımında kendilerine bağlanacak şekilde biçimlendirmek. GDO Üzerindeki Patent Uygulamaları Tarım ve Köy İşleri Bakanlığı, 26 Ekim 2009’da Türkiye'nin biyolojik çeşitliliğinin zarar görmesini engellemek için 'Genetik Yapısı Değiştirilmiş Organizmalar ve Ürünlerin' (GDO), tohum ve buna bağlı ürünlerin üretiminin yasaklandığını bildirdi. GDO’lar bir hâkim olma tekniğidir. Patent hakkı da bu hâkimiyeti sağlayan en önemli araçtır. Günümüzde GDO’lar, özellikle tekniği ön plana çıkarılarak, hem teknik, hem de ürün olarak patent kapsamında korunabiliyor. Genetik yapısı değiştirilen ürünler patentleniyor. Çünkü bu çalışmaları yapan şirketlerin temel kazanç modeli, patent bedeli tahsil etme üstüne kurulu. Örneğin sadece mikroorganizmayı bile patent kapsamında koruyabiliyorsunuz, bunlarla ilgili büyük saklama kuruluşları var. Hâlbuki doğada o mikroorganizma milyonlarca yıldır yaşıyor, fakat siz onu doğal ortamından yalıttığınız ve belirli özelliklerini gösterdiğiniz, ispatlayabildiğiniz için bir tekel hakkı, korunma hakkını almak istiyorsunuz ve bu istisna size tanınıyor. Gen bulunması ve tanımlanması çok zor olduğu ve büyük yatırımlar gerektiği için (Avrupa Patent Sözleşmesi’ne göre); bunun işlevini göstermek şartıyla, örneğin hangi proteini kodladığı, ne gibi işlevlerinin bulunduğunu ispat etmek şartıyla bir başvuru yapılıp, bu konuyla ilgili patent alınabiliyor. Oysa patent sadece yenilik özelliği taşıyan ve sanayide uygulanabilirliği olan buluşları korumak içindir. Genetik değişikliklerde, ancak değişikliğin gerçekleştirildiği tekniğin patenti alınmalıdır. Doğada bulunan genler için verilen diğer tüm patentler meşru değildir. Bunun adı biyolojik korsanlıktır (Anonim, 2009). Türkiye’deki Durum Türkiye’de biyoteknoloji çalışmaları Tarım ve Köy İşleri Bakanlığı ve Orta Doğu Teknik Üniversitesi bünyesinde devam etmektedir. Çalışmalar henüz GDO’ların seri üretimine geçilecek kadar ileri düzeyde değildir. Ayrıca Türkiye GDO’larla ilgili bir yasaya sahip olmadığından sadece Cartagena Protokolü’ nü imzaladığından onun gerekliliklerini uygulamaktadır (Kulaç, Ağırdil ve Yakın, 2006, s. 154 ).

http://www.biyologlar.com/gdonun-dunyadaki-ve-turkiyedeki-yeri

Dünyanın kömür tehditleri arasında Türkiye 4üncü oldu

Dünyanın kömür tehditleri arasında Türkiye 4üncü oldu

Dünya Kaynakları Enstitüsü’nün yeni raporu, Dünya’da planlanan yeni kömür santrallerinin. iklim felaketlerinin habercisi olduğunu ortaya koydu. 1200 yeni kömür santrali projesi var ve bu projeler gerçekleşirse iklim için yıkıcı etkiler açığa çıkacak.

http://www.biyologlar.com/dunyanin-komur-tehditleri-arasinda-turkiye-4uncu-oldu

Peygamberdeveleri nasıl canlılardır

Peygamberdeveleri nasıl canlılardır

Peygamberdevesi, Mantodea alttakımında yer alan ve hamam böcekleriyle birlikte Dictoptera takımını oluşturan yaklaşık 1.800 böcek türünün ortak adıdır. Tropik ve sıcak bölgelerde yaşayan, başka böcekler üzerinden beslenen böcek türlerinden oluşan bir familyadır. Bazı uzmanlar Dictyoptera’nın bu iki alttakımını takım düzeyinde sınıflandırırlar. Bu türlerin çoğu tropikal ve subtropikal bölgelerde yaşar.Peygamber develeri yavaş hareket eden ve öngöğüs bölütleri çok uzamış olan böceklerdir. Ön bacaklarının birbirini eklemlenen biri dikenli iki uzun parçası (uyluk ve kaval kemikleri) kıvrıldığında avlarını yakalayıp parçalayan bir kıskaca dönüştürür. Peygamber devesi genellikle canlı böceklerle beslenir fakat protein ihtiyaçlarını tam olarak karşılayamadıkları zamanlarda memeli sınıfından olan cüce fare ve sinek kuşu yediklerine de rastlanmıştır. Vücutları uzun ve incedir. Üçgen kafa yapıları vardır. Ergin mantid, genelde 5 ile 13 cm arasındadır. Erkekler dişilerden daha küçüktür. Erkeklerin göğüsü 8 segmente dişilerinki ise 6 segmente ayrılır. Tenodera sinensisKamufle olmak için üzerinde yaşadıkları bitkinin, yerin rengini alırlar. Yerde dolaşmaktan çok bitkiler arasında bulunmayı yeğlerler. Bir peygamber devesi yeşil ya da kurumuş bir yaprağa, ince bir dala, bir likene, parlak renkli bir çiçeğe ya da karıncaya benzer bir görünümde olabilir. Bu kamuflaj peygamber devesini düşmanlarından gizlemenin yanı sıra avına sezdirmeden yaklaşmaya ya da kurbanını hareketsiz bir biçimde bekleyerek tuzağa düşürmeye yarar. Karınca taklit eden türleri de bulunur.Hareketsiz bir şekilde avlarını beklerler. Ön ayaklarında avını tutmak için kancalar ve dikenler vardır. Tehlike karşısında dikleşerek, kanatlı türleri ise kanatlarını hışırdatıp parlak uyarı renklerini gösterir.Bunun sebebi kendisini daha büyük göstermektir.Peygamberdevesi kendinden küçük böceklerle (karınca, hamam böceği, sinek ...) beslenir. Ayrıca, yamyamlık vardır ve özellikle çiftleşme sırasında dişiler erkekleri yiyebilir (seksüel yamyamlık). Eğer protein ihtiyaclarını tam karşılayamazlar ise kertenkele, yılan, fare gibi hayvanlara saldırırlar.Dişi böcek çiftleşme sırasında, genelde erkek böceği yer ama erkek böcek kafası ve ayakları yense bile dişiyle çiftleşme yeteneğini kaybetmezler ve dişiler kozaya benzer büyükçe bir kapsül içinde yaklaşık 100-200 yumurta bırakırlar. Kapsül yumurtaları düşmanlardan ve kötü hava şartlarından korur. Dişi mantidlerin yumurtaları ağaç kabuklarında, çalılarda, kayaların üzerinde bulunur. Yumurtaları koyu kahverengi ve çizgilidir. Yumurtadan çıkan nimfin kanatları yoktur. Ama vücudunun öbür bölümleri erişkinlere çok benzer. Nimfler erişkinler kadar oburdur ve birbirlerini bile yerler.Peygamber develerinin büyük bölümü tropik ve astropik bölgelerde yaşar. En iyi bilinen türlerinden olan 7-12 cm uzunluğundaki Mantis religiosa Afrika’nın kuzeyinden Avrupa’nın içlerine kadar yayılmıştır. Yenidünya’daki peygamber develerinden Hymenopus Kanada’da yaşayan tek peygamber devesi türüdür ve bilinen en güzel peygamber devesi türüdür.Alem:     Animalia (Hayvanlar)Şube:     Arthropoda(Eklem bacaklılar)Alt şube:     HexapodaSınıf:     InsectaAlt sınıf:     Pterygotaİnfra sınıf:     NeopteraÜst takım:     DictyopteraTakım:     MantodeaFamilyaları : ChaeteessidaeMetallyticidaeMantoididaeAmorphoscelididaeEremiaphilidaeHymenopodidaeLiturgusidaeMantidaeEmpusidae

http://www.biyologlar.com/peygamberdeveleri-nasil-canlilardir

Bağırtlak Familyası Kuşları Nasıl Canlılardır?

Bağırtlak Familyası Kuşları Nasıl Canlılardır?

Bağırtlaklar, olağanüstü kuşlar familyasıdır. Her bağırtlak, net olarak tanınabilen özellikleri paylaşmasına rağmen, familyanın sınıflama planı, uzun süren bir tartışma konusu olmuştur. Sorun,  kuşlarının morfolojik bakımdan muhtelif diğer kuşların Özelliklerini ödünç almalarından kaynaklanmaktadır: tüylü ayaklarını keklik familyasından (dolayısıyla ismini); kısa gagalarını, boyun ve bacaklarını güvercin familyasından; sivri uçlu kanatlarını ise çamurda yürüyen dalıcı kuşlar familyasından. Fakat bağırtlaklar, hangileriyle ilişkilidir? Son zamanlarda elde edilen biyokimyasal kanıtlar, dalıcı kuşları işaret etmektedir fakat bu konudaki anlaşmazlık süreceğe benzer. 16 tür bağırtlak vardır. Hepsi, güvercinlerin ki gibi baş ve gövdeleri olan bodur, tıknaz kuşlardır. Bacakları kısa olmasına rağmen, uzun, zarif kanatları, ve kuyrukları vardır. Bu olağandışı birleşim onları ayırt edilir yapar, iyi uçarlar ve toprakta koşarlar fakat pençeleri, (Pterocles türlerindeki gibi) ya çok küçüktür ya da (Syrrhaptes türlerindeki gibi) hiç yoktur. İşte bu yüzden dolayı üstünde tüneyemezler. Ayaklarındaki tüyler, onları çöllerde aşırı sıcaktan korurken, kalın ayakaltı derileri, sert ve kaba yerlerde yürürken aşınma ve yırtılmalardan korur. Sessiz Yaşamlar En büyük çeşitliliği Afrika’da olmak üzere bütün bağırtlaklar Eski Dünya’da yaşar. İşlenmiş arazilerden gerçek çöllere kadar bir dizi doğal yaşam alanında yaşayan verimsiz, kıraç ve çorak bölgelerin kuştarıdır. Sessizce yerlerde beslenerek tohum, yaprak ve yeşil filiz arayarak günlerinin 6048_bagirtkançoğunu kendi hallerinde mütevazı bir hayat sürerek geçirirler. Bu kuşlar gizemli yaşam şekillerini sadece su içmeye gereksinimleri olduğu vakit terkeder. Bu, tamamen zamanlaması çok iyi ayarlanan ve günde bir defa, sabah yapılan bir etkinliktir. Küçük sürüler, daha büyük sürüler oluşturmak üzere büyük sürülere karışarak bazen üç-beş bine varan sayılarda bütün yönlerden su kaynağına doğru uçar. Kuşlar, suyun etrafında bir tur atar ve sonunda sahilden biraz uzağa iner. Sonra Ölçülü ve zarif adımlarla, sessizce su kıyısına tırmanırlar. Her bir kuş, birkaç yudum su içer ve hemen gider. Nadir olarak havalanmadan önce suyun başında 10 saniyeden fazla kalırlar. Havalandıktan sonra yiyecek aramaya giderler.Basit YuvalarYuva, genellikle sığ bir çukura, yere yerleştirilir. Bu çukur, deve gibi büyük memeliler tarafından yapılmıştır ve bunlar kuşların en sevdiği yuva yerleridir. Çoğu tür, herhangi bir malzeme koymadan doğrudan toprağın üstüne yumurtlar. Yuvaya mümkün olduğu kadar az dikkat çekmek için, ebeveynler yumurtaların üstünde saatler süren, uzun vardiyalar halinde kuluçkaya yatar. Erkek geceleri, daha çok kamuflaj tüyü olan dişi ise gündüzleri kuluçkaya yatar. 1896 yılında, su tutma özelliği yüksek olan karın tüyleriyle, erkek bağırtlakların yavrularına su taşıdığı keşfedildi. Erkek bağırtlaklann karınlarındaki tüyler, bir süngerin tutabileceği su miktarından üç kat daha fazla su emer. Üreme mevsimi esnasında, su kaynaklarını ziyaret ederken erkek bağırtlaklar gövdelerini suya daldırarak göbek tüyleri suya doymuş vaziyette yuvalarına geri uçar. Erkek bağırtlak yuvasına vardığında, yavrular kendilerini erkek kuşun tüylerine iliştirirler ve sıcak çöl güneşi altında babalarının tüyleri arasındaki nemi emerek susuzluklarını giderir. Bu özellik; uçsuz bucaksız çöl arazisinin ortasında, su kaynaklanndan uzaklarda güvenli yuva yeri seçen bir kuş için mükemmel bir uyumdur.Kaynakça:Reader’s DigestYazar: Tuncay Bayraktar http://www.bilgiustam.com

http://www.biyologlar.com/bagirtlak-familyasi-kuslari-nasil-canlilardir

Kambriyen Patlaması’nın Ardındaki Nedenler

Kambriyen Patlaması’nın Ardındaki Nedenler

Namibya’nın çim düzlüklerinin üzerinde 80 metreye kadar yükselen bir dizi sarp tepecik görülüyor. Bu tepeler, çok eski tarih öncesine ait olayların izlerini bugün de taşıyormuş gibi görünür – eski uygarlıkların gömüldüğü höyükler veya çağlar boyunca toprağın altına gömülmüş dev piramitlerin uçları gibi.

http://www.biyologlar.com/kambriyen-patlamasinin-ardindaki-nedenler

Kobra Familyası Nasıl Canlılardan Oluşur?

Kobra Familyası Nasıl Canlılardan Oluşur?

Kobragiller familyasındaki kobralar çoğunlukla Güney Yarımküre’de Güney Amerika, Afrika, Güneydoğu Asya ve Avustralya’da görülür. Kobragiller, kırbaç yılanlarının soyundan gelmektedir. Yüzeysel olarak; dar kafalarının üzerini kaplayan büyük pulları ve az çok silindirik vücutlarıyla birbirlerine benzerler. İçsel olarak fonksiyonel bir sağ akciğerden yoksundurlar, ancak sağ ve sol yumurta kanalına sahiptirler. Yalnızca sucul türlerde nefes borusunda akciğer vardır (daha verimli oksijen emilimi için).Çoğu kobragilin yuvarlak göz bebekli, büyük gözleri vardır. Bazı Avustralya türlerinin vücutları tıknaz, gözbebekleri de dikey çizgi şeklindedir. Kobraları kırbaç yılanlarından ayıran en temel özellik, ağzın ön kısmındaki zehir dişleridir. SınıflandırmaKobragiller familyası kobralar, Mambalar, mercan yılanları ve ölüm engerekleri gibi çok iyi bilinen ve kötü şöhrete sahip yılanları içermektedir. Ayrıca deniz yılanları ve Doğu Asya deniz yılanları da bu familyanın içinde yer alır, buna rağmen bu türler bazen ayrı bir familya olan Hydrophiidae’ye dahil edilir. Bu mantıklı bir sınıflandırma gibi gözükse de, taksonomik olarak bunun sağlam bir gerekçesi yoktur. Kobragiller iki ayrı alt familyaya ayrılmıştır. Kobragiller yalnızca karasal (bir başka deyişle denizsel olmayan) olan ve Amerika, Afrika ve Asya’da yaşayan kobralar, Mambalar, bungarlar ve mercan yılanlarını kapsamaktadır. Hydrophiinae ise Avustralya’daki karasal türler de dahil olmak üzere, deniz yılanları ve Doğu Asya deniz yılanlarını da kapsayan tüm deniz yılanı türlerini içerir. Soy ağaçları hakkında hala yanıtlanamamış cevaplar vardır, bununla beraber sınıflandırma sisteminin bir noktada değişmesi de olasıdır.Alt familya Elapinae Kuzey, Orta ve Güney Amerika’da Elapinae, mercan yılanları tarafından temsil edilir. Bu grup arasında Micruroides yalnızca Arizona, New Mexico ve Kuzey-Orta Meksika’da yaşayan M. Euryxanthus türü ile temsil edilir. Daha geniş bir alana yayılan Micrurus cinsinin ise 65 türü vardır. Bunların hepsi parlak renkli yılanlardır ve çoğunun vücudunda beyaz, kırmızı ve siyah halkalar bulunur. Birçoğu yağmur ormanlarında yaşasa da, bazıları Güneybatı Amerika ve Kuzey Meksika çöllerinde de görülür. Bir türü yarı sucudur ve yılan balıklarıyla beslenir, ayrıca tüm türleri insanlar için tehlikelidir. Mercan yılanları yarı-kendini gömen türlerdir ve çoğunlukla kendini gömen diğer sürüngenlerle beslenirler. Bunlar Kuzey ve Güney Amerika’nın tek karasal kobra türleridir.Karasal kobragiller en çok Afrika’da bulunmakta ve çok iyi bilinen bazı türleri içermektedir. Dendroaspis cinsinden olan Mamba’lar, genellikle ağaçta yaşayan türlerdir, ancak kara Mamba (D. Polylepsis), yerde avlanır. Mamba’lar Afrika’da en çok korkulan yılanlardır, ancak verdikleri zarar, şişen engerek (Bitiş arietans) ve halı engerekleri (Echis sp.) ile karşılaştırıldığında önemsizdir. Afrika’daki en kalabalık kobragil cinsi; sekiz kobra türünü içeren Naja’dır.Kobra BaşlığıKobralar pürüzsüz pulları ve parlak kafalarıyla çok güçlü yılanlardır. Tehdit edildiğinde vücudunun ön kısmını yerden yukarı kaldırır ve bir başlık (kaburga kemiklerinin çıkıntıları boyunca gerilmiş deri parçası) açar. Normalde, kaburgalarını vücutlarının üst kısmı boyunca katlanmış durumda tutar, ancak tepeliği açmak için bunları dışarı doğru hareket ettirir. Tüküren kobra (Hemachatus haemachatus) gibi bazı Afrika türleri tükürücüdür, zehir dişlerinin on kısmındaki açıklıklardan ince bir zehir püskürtürler Kobragiller arasında pürüzlü pullara ve yavruların canlı doğrulmasına pek sık rastlanmaz. Kurbağaları yeme konusunda uzmanlaşmışlardır ve saldırıya uğradığında ölü taklidi yapan birkaç yılandan türünden biridir. Aspidelaps cinsi; Afrika mercan yılanı (A. lubricus) ve zırh burunlu yılan (A.scutatus) türlerinden oluşmaktadır. Küçüktürler ve burunlarının ucunda büyükçe bir pul vardır, tehdit edildiklerinde başlıklarını açarlar. Afrika jartiyer yılanları -Amerika’daki jartiyer yılanlarıyla karıştırmamak gerekir- küçüktürler ve özellikle gençken şerit şeklinde desenleri vardır. Elle tutulduklarında bile ısırmaktan kaçındıklarından dolayı, oldukça zararsız olarak anılırlar. Afrika’da yaşayan dört tür elapid, karasal yaşam tarzını geride bırakmıştır: Afrika su kobraları (Boufengenna cinsi) büyük göllerin kıyı şeritlerinde yaşayıp balıkla beslenirken; ağaç kobraları (Pseudohaje cinsi) ağaççıldır ve kurbağalarla beslenir. Her iki cinsin de ikişer türü bulunur. Asya’da tüküren türleri de kapsayan birkaç Naja (kobra) türü vardır. Aynı zamanda Bungarlar (Bungarus) ve mercan yılanları (Maticora) gibi diğer yılanlarla beslenen başka cinsler de bulunmaktadır. Kesitleri üçgen biçimindedir ve üzerleri büyük pullarla kaplı, belirgin bir belkemiğine sahiptirler. Bungarlar ölümcül yılan ısırmalarının büyük kısmından sorumlu, ancak bunun sebebi agresif olmaları değil; üstlerine kolayca basılabilmesi ve gececi olmalarıdır.Alt familya Hydrophiinae, Avustralya’daki tüm yılan türleri bu alt familyaya aittir.Aralarında çok farklı şekil, boyut, huy ve yaşam alanına sahip yılanlar yer alır. Deniz yılanları ve Doğu Asya deniz yılanları denizdi yılanlar olarak uzmanlaşmıştır. Avustralya’da az sayıda kırbaç yılanı bulunması ve hiç engerek bulunmaması, kobragilleri bu türlerin nişine de taşımıştır. Kahverengi yılanlar (Pseudonaja) ve Avustralya kırbaç yılanları (Demansia) gibi cinsler; kayda değer bir biçimde Eski ve Yeni Dünya’daki kum yılanları, kırbaç yılanları ve karayılanlara benzer davranırlar ve görünüme sahip olsalar da bunlardan farklı olarak zehirlidirler. Diğerlerinin benzer yapıları vardır, ancak daha küçük ve gizemlidirler. Bunlar arasındaki taçlı yılanlar (Cathopis cinsi): Kuzey Amerika’daki karabaşlı yılanlar (Tantilfa ferden), halka boyunlu yılanlar (Diadophis punctatus) ve Avrupa’daki tepeli yılanlar (Macroprotodon cucullatus) gibi türlere karşılık gelirler. Avustralya bakır kafasının (Austrelaps superbus). Natrix (su yılanları) ve Nerodia (Amerika su yılanları)’ları andıran kısa ve kalın bir şekli vardır. Aynı onlar gibi bataklık ve batak zeminli yerin yakınında bulunurlar. Taypan’ların kral kobra ve kara Mamba’ya benzer bir yaşam tarzı vardır. On iki kadar türe sahip küçük mercan yılanları, Sımoselaps; kendilerini gömen türlerdir ve yalnızca geceleri yüzeyde bulunurlar. Kertenkelelerle beslenirler ve kuru, kumlu bölgeleri severler. Bantlı yılan (Vermicella annulata) ve onun yakın akrabası kuzey bantlı yılanı (V. Multifasdata) türlerinin ikisi de siyah ve beyaz renkte, koyu bantlara sahiptirler ki yaygın isimleri buradan gelmektedir. Küçüktürler ve esas olarak diğer yılanları yerler. Yeraltı tünellerinde yakaladıkları Tylophidae familyasına ait kör yılanlarla beslenirler. Alarm durumuna geçtiklerinde; vücutlarının büyük bir kısmını yerden kaldırarak rakiplerine karşı tokmak gibi kullanabilecekleri bir ilmik oluştururlar. Son olarak, ağır cüsseli ölüm engerekleri (Acanthopis) vardır. Yaygın isimleri, bu cinsi Eski Dünya’da yaşayan ve davranışları ile görünüşleri birbirine yakın olan engereklerle ilişkilendirmektedir.Kaynakça: BBCYazar: Tuncay Bayraktarhttp://www.bilgiustam.com

http://www.biyologlar.com/kobra-familyasi-nasil-canlilardan-olusur

Nanoteknoloji ve Nano Tıp

Nanoteknoloji Nedir : Atomları ve molekülleri tek tek işleme ve yeniden düzenleme yoluyla kullanışlı,materyal,araç ve sitem yaratma sanatı ve bilimi. (Örn:elmas-kömür) Hassas nokta maddenin moleküler yapısını değiştirmek ve atomunu işlemeyi başarabilmektir.Her endüstri gibi SAĞLIK ta bu furyadan nasibini alacaktır. 2015-2020 yıllarında nanoteknoloji pazarının ABD’de 1 trilyon USD’ye ulaşılacağı söyleniyor. Şu an ABD’de yatırım 710 milyon USD, tüm dünya’da ise 2 milyar USD dır. 2001’de nanotek. 180 patent alınmış. Leke tutmayan kumaşlar, kırılmayan çizilmeyen camlar, çok etkili kozmetik ürünler,eskimeyen boyalar, dayanıklı arabalar ve çok kapasiteli hızlı bilgisayarlar vs vs...... NANOMANİA NEDİR ? Maddenin atomik katmanda işlenebilmesi olasılığını ilk kez Richard Feynman söylemiştir. 09.11.1989 da D.Eigler ve E.Schweizer 35 xenon atomu ile IBM logosunu yapmışlardır. Buradaki nokta işaretine 350 milyon tane sığdırılabilmektedir. Eric Drexler, ilk nanoteknoloji terimini kullanan kişidir. Nobel ödüllü R.Smalley nanoüretimin babası sayılmaktadır. Nano:Yunanca cüce,bodur. 1 nm=1 m’nin milyarda biri (10 üssü-9) 1 nm 10 hidrojen atomuna eşit.Harfleri 10 nm boyutunda basarsak Britanica ( 30 bin sayfa) ansiklopedisini toplu iğne başına sığdırabiliriz. Toplu iğne başı milyonlarca nanometre. Nanotek 0.1(hidrojen atomu) -100 (virüs) nm arası ile uğraşıyor. Nano ölçümleme ve nano işleme 100 nm altında kuantum mekanik güçlere bağlı benzersiz özellikler kazanılıyor. MEMS(mikro elektrik mekanik sistemler) Nanoişleme de atomik olarak ürünlerin işlenmesi belirtilmektir. 100-1000 atomlukbir çalışma alanında çalışılıyor.Boyut küçüldükçe hız artar. Bilinmeyen özellikleri çıkar,iletkenliği değişir, dayanıklılık, esneklik vs kazanır. Arama tarama mikroskobu (STM) IBM 1981 Atomik güç mikroskobu Yüksek performanslı nükleer manyetikrezonans Nano işleyici (3rd Tech Firması) Fiziki Buhar sentezi Scanning tunelling Microscopy (STM): Atomu 2000 kat büyütebilen bir alet SORUNLAR 1)Atomları bir araya çekmek veya uzaklaştırmak için yüksek enerjiye ihtiyaç vardır. 2)Atomları manipüle eden aletlerde atomdan yapıldığı için reaksiyon verebiliyorlar ve oynadığınız atom yerinde kalamıyor (yapışıyor). 3)Kullanılan araçların manipüle edilen atomlardan daha büyük olması ve birden fazla atomu bir arada tutmanın zorlukları. NANOTIP NEDİR? Jr.R.A.Freitas nanotıbbın babasıdır. -Artık ‘Nanomedicine’ diye dergi var. (A sınıfı) Nanomedicine by Robert Freitas -Tanı-tedavi-koruyucu tıp amaçlı olabilir -Kolesterol moleküllerini saptayan ve parçalayan cihazlar vardır. -Respirosit denilen artifisiyal mekanik eritrositler olup,CO2 ve O2 taşırlar. -Mikrobivorlar artifisiyal mekanik lökositlerdir.Makrofajlardan fagositoz yetenekleri daha fazla uzun ömürlü ve çabuk etkililerdir. -Mikrokapsüller en basit elemanlardır ve porları ile glikoz,oksijen,ilaç geçişine izin verirken virüs ve immün hücreleri engeller. -Nanofiltreler 1.6 nm lik porları olan elektriksel olarak yüklenebilen filtreler olup ilaç ayrımına seçilmiş biokatalize izin verir. -Nanopor temelli dizileme DNA dizilemesinde hızlanmayı sağlamıştır. -C-sixty firmasının geliştirdiği 60 C atomlu futbol topuna benzeyen bir yapı ilaç salınımında önemli avantajlar sağlamaktadır (İçerdikleri ilaç antiviral, anti tümöral vs fotodinamik uyarılabilir). -Nanoshell ler tümör hedefli hidrojel polimerleri içeren ilaç yüklü yapılardır ve tümörlü dokuda birikip infrared laser ile ısıtılınca nanoshell eğilir ve ilaç salınımı yaparlar. -Tek virüs dedektörleri Lieber firması tarafından geliştirilen nanowire transistörler ile virüslerin elektriksel tanınması esasına dayanır. -Tektodendrimerler ise Baker ve arkadaşları tarafından kanserde denenmektedir. -Radyokontrollü biomoleküller sayesinde elektromanyetik etki ile DNA zinciri açılabilmiştir.Proteinler ve enzimleri etkilemek mümkün olacaktır(Jacobson ve ark) -Biyolojik robotlar;Sentetik mikroplar vitamin,hormon,enzim,sitokin üretiminde kullanılıp,toksin,hücresel artıkları sindirebileceklerdir.Egea bioscience firması ilk patenti almıştır ve gen yazılımı ile uğraşmaktadır. Biological Energy Alternatives Institute mikoplazmalar üzerinden alternatif biolojik enerji üretimine 3 milyon dolar ayırmıştır. Nano Tıbbın Alanları: Nanomateryaller Artifisial bağlanma alanları Yüzeylerin kontrolü Hücre içi aletler BioMEMS Artifisal enzimler ve enzim kontrolü Nanorobotlar Nanoporlar Hücre uyarımı ve tanısı DNA dizimi,manipülasyonu ve tanısı Tanısal aletler çipler,sensörler İlaç salınımı Nanoterapötikler Sentetik biyoloji ve nanoaletler Biyoteknoloji ve biyorobotikler -Lilly , Merck ,GSK, Abbott ,Roche ilaç firmalarına göre 2010 yılında üretilen ilaçların yarısı nanoteknoloji ile üretilecektir. -Elan Pharmaceutical ağrı kesicilerin dağılım hızını nanokristal yapı sayesinde 3 saatten 20 dk ya indirebilmiştir. -Advectus Life Sciences nanoparçacıklarla beyin tümörü tedavisinde yol aldığını bildirmiştir. -L’Oreal ve Lancome nanoteknolojiyi kozmetikte kullanmaya başlamışlardır.Daha derine nüfuz edebilen kremler vs. -Gleevec adlı ilacı AIDS virüsüne,Actinium 225’i kanserli dokuya verecek taşıyıcı nanoyapılar üzerinde çalışılmaktadır. Lösemi,lenfoma,göğüs,over ve prostat Ca’ da farelerde denenmektedir. Crititech adlı firma paklitakseli nano ölçekli olarak over kanserinde uygulamış ve daha iyi sonuçlar almıştır. -DM’da Boston Üniversitesi pankreatik hücre içeren silikon nano yapılar inşa etmiştir. -Angstrom Medica firması kemik yapıyı güçlendiren nanokristaller geliştirmiştir. -Astımda AC’e çabuk etkili nano ilaçlar üzerinde çalışılmaktadır. -Nanoetiketleme ile ilaçların etki mekanizmaları daha kolay anlaşılacaktır. -Novavax firması menapozda cillten emilebilen nanoparçacıklı bir östrojen krem üretmiştir. -Kremler ile Şarbonun,cildin kimyasallarla temasının önlenmesi , akne tedavisi etkin olarak yapılabilecektir. -Alzheimer,ALS,Kistik fibrozis gibi hastalıkların tedavilerinde çalışılmaktadır. -Nanosensörler sayesinde protein ve DNA işaretleyicileri ile kanser dahil birçok hastalığın erken tanısı mümkün olabilecek ve adli tıp uygulamalarında hata payı düşecektir. -Parkinson,Huntington,Şizofreni üzerine çalışmalar sürmektedir. -Kromozom değiştirme ve onarma tedavileri ile genetik hastalıklar durdurulacaktır. -Nöronlar nörotransmitter salacak şekilde beyine implante edilip Alzheimer gibi hastalıklar önlenebilecektir. -Retina konisi ve roduna ,iç kulaktaki stereosilialara yönelik çalışmalar, deri yetiştirme (2002 ‘de FDA onayı aldı),organ yetiştirme çalışmaları devam etmektedir.Telomerlerin yaşlanma ile kısalmasının telomeraz enzimi ile önüne geçilebilecek ve yaşlanma durdurulabilecektir.

http://www.biyologlar.com/nanoteknoloji-ve-nano-tip

BİYOLOGLAR MESLEK ODALARINI İSTİYOR

Üniversitelerin biyoloji bölümlerinden her yıl yaklaşık 5000 civarında biyolog, zorlu bir eğitimi tamamlayarak mezun olmakta, fakat meslek odalarının olmayışının çeşitli sıkıntılarını yaşamaktalar. Dünya’nın bütün gelişmiş ülkelerinde geleceğin bilimi olarak tanımlanan biyoloji bilimi ve geleceğin mesleği olarak gösterilen “biyolog”luk, maalesef ülkemizde yasal tanımı dahi olmayan bir meslek grubu durumundadır. ABD ve AB ülkelerinde her yıl yapılan en gözde meslekler araştırmasında ilk 5 meslek grubu arasında gösterilen biyologluk, ülkemizde işsizlikle ve haksızlıkla boğuşmaktadır. Dünya çapında ses getiren araştırmalara ve buluşlara imza atan, Dünya’nın en önemli kanser araştırma merkezlerinde çığır açan araştırmaları yapan ve neredeyse hemen her yıl “Nobel Tıp veya Fizyoloji” dalında ödül alan biyologlar, ülkemizde TUS hakları dahi ellerinden alınarak adeta yok sayılmışlardır. Üstelik de mikrobiyoloji ve biyokimya gibi biyoloji’nin alt disiplinleri olan temel bilimlerde. Sağlık sektöründe çalışan diğer biyologlara ise teknisyen ya da laborant muamelesi yapılarak adeta almış oldukları eğitim hiçe sayılmaktadır. Öte yandan; küresel iklim değişikliği, gıda güvenliği, biyogüvenlik, çevre kirliliği, biyolojik çeşitliliğin ve doğal kaynakların korunması, biyolojik kaynaklardan enerji üretimi, biyoteknoloji ve genetik araştırmalar gibi, çağa yön veren çalışmalar bütün gelişmiş ülkelerde biyologlar öncülüğünde yürütülmektedir. Biyoloji bilimi bugün, ülkelerin gelişmişlik düzeyini doğrudan ortaya koyan bir gösterge durumundadır. Tüm Dünya’da durum böyle olmasına rağmen, ülkemizde henüz bir meslek odası dahi olmayan biyologlar, hem kamu’da hem de özel sektörde çok büyük problemlerle karşılaşmakta ve ciddi boyutlarda hak ve yetki kaybına maruz kalmaktadırlar. GDO krizi yaşadığımız şu günlerde, hiçbir mantıklı ve bilimsel dayanağı olmadığı halde biyologların gıda üretim tesislerindeki “sorumlu müdürlük” yetkileri büyük ölçüde kısıtlanmıştır. Yine akıl almayacak bir uygulamada İş Sağlı ve Güvenliği mevzuatında yaşanmış ve biyologların “iş güvenliği uzmanı” olabilmeleri engellenmiştir. Sayısız örnekle çoğaltılabilecek bu haksız uygulamalara karşı, artık biyologlar olarak meslek odamızı istiyoruz. Bunun için Biyologlar Dayanışma Derneği öncülüğünde ve Türkiye Biyologlar Derneği işbirliği ile hazırlamış olduğumuz Türkiye Biyologlar Birliği Kanun Taslağı’nı önümüzdeki günlerde TBMM’ne bir heyet halinde sunacağız. Tüm vatandaşlarımıza sesleniyorum, yukarıda belirttiğimiz sorunlar yalnızca biyologların değil tüm ülkenin sorunlarıdır. Temiz su içmek, güvenilir gıda tüketmek, temiz hava solumak ve sağlıklı bir çevrede yaşamak istiyorsak bu ülkenin biyologlarına sahip çıkmak zorundayız. Bu vesile ile tüm meslektaşlarımızın 16 Nisan Biyologlar Günü’nü kutlar, oda kanun taslağımızın yasalaşması için tüm gücümüzle mücadele edeceğimizin bilinmesini isteriz. Uzm.Biyolog Tarık PATIHAN Biyologlar Dayanışma Derneği Başkanı

http://www.biyologlar.com/biyologlar-meslek-odalarini-istiyor

Deniz Biyolojisi Soruları

1- Denizlerde doğal sınırlar var mıdır? bu doğal sınırlar nelerdir ve faktörleri nelerdir? Doğal sınır,denizlerde veya okyanuslarda sıcaklık,ışık geçirgenliği,tuzluluk gibi fiziksel etkiler sonucunda meydana gelir.ışığın belli bir derinliğe kadar gelmesi fotosentetik canlıların bu ışığa göre kendi sınırlarını oluşturmasına neden olur aynı durum sıcaklık tuzluluk içinde geçerlidir.doğal sınırlar sonucu sucul ortamlarda tabakalaşmalar olmuştur. 2- Turbititenin olumlu ve olumsuz etkileri nelerdir? Organizmalar üzerindeki etkisi; 1.berraklığn azalmasıyla ışığın sudaki girişi azalır 2.fotosentez yapan bitkilerin ve diğer orgiyaşantısını sınırlandırır 3.solungaçların tıkanmasına neden olur.suyu süzerek aldıklarını alır 4.org.yatay ve dikey dağılışınd etkilidir Yüksek sularda asılı parçacık içeren balıkların gözlerinin çok küçüldüğü ve ya tamamen kaybolduğu,solungaç yapılarında bazı değişiklikler olduğu gözlenmiştir. 3- Işığın canlıların dağılımı üzerine etkileri nelerdir? Işığın şiddeti,süresi,ve yapısı sularda oluşan fotosentez olayında doğrudan etkilidir.özellikle şiddeti ile birincil üretim yakından ilgilidir.ve denizlerdeki optimum fotosentez ışık şiddetinin 1/3 düştüğü 25 metre civarındaki derinlikte oluşur.ancak fotosentez olayında ve dolayısıyla birincil üretimin oluşumunda çevresel faktörlerden sıcaklığında etkisinin olduğu saptanmış olup belli dereye kadar olan sıcaklık artışına paralel fotosentezin hızlandığı ve belli sıcaklıktan sonra da yavaşladığı izlenmiştir. Ayrıca bentik alglerin boylarının büyümesinde ve morfolojisinde rol oynar, hayvanların solunumunu hızlandırır,bentik ve planktonik alglerin dikey ve yatay yönlerdeki dağılışları gelişir. 4- med-cezir ve upwilling olaylarının canlılardaki bolluk ve dağılıma etkileri nelerdir? Med cezir Ay'ın ve Güneş'in yeryüzündeki çekim farkından doğan alçalma ve kabarma olayıdır. olmasaydı Ay ışığında etkinliğini sürdüren canlılar gelişmezdi. Bilindiği gibi, bazı canlı türleri üreme için Ay’ın evrelerini izlemektedirler. Dünya’da yaşam oluşmazdı. Dünya sadece Güneş’in varlığı ile oluşan mevsimler, rüzgarlar ve yağmurların var olduğu boş bir gezegen olurdu. Deniz suyunda hareketlere yol açar. Gelgit alanındaki hayvanlar ve bitkiler, hayatta kalabilmek için bazı özel nitelikler taşımak zorundadır. Günde iki kere su dışında ve güneşte kaldıkları için bu canlılar kurumaya karşı dirençli olmalı ve büyük sıcaklık farklarına dayanabilmelidir. Tatlı sudan (çünkü sular çekildiğinde yağmur yağabilir) etkilenmemeleri ve nihayet dalgaların yıkıcı gücüne karşı da dirençli olmaları gerekir. Upweling olayı akarsular yoluyla denizlere veya okyanuslara dökülen dipte bulunan organik maddelerin(minerallerin) su yüzeyine çıkmasını buda su yüzeyinde pasif olarak yer değiştirebilen plantonik organizmalar için besin kaynağı olmakta aynı zamanda da balıklarda organik madde ihtiyaçlarını böyle karşılıyor ve bu organik maddelere göre dağılış gösteriyorlar. 5- Euroaerobiont , stenohalin canlılar denizel ekosistemin neresinde yaşar? Euroaerobiont formlar çeşitli O2 değişimlerinde yaşantılarını rahatlıkla sürdürebilirler Stenohalin formlar belli tuzluluk derecelerinde yaşayabilirler. (düşük,orta ve yüksek tuzlulukta yaşayabilirler)örneğin: tropikal ve ılıman bölgelerde 800_1000 m derinliğe doğru tuzluluk minimumdur.(kutup ılıman ve tropikal bölgelerde) 6- Tuzluluğun hayvan ve bitkilere etkileri nelerdir? Bir türün düşük tuzlulukta yaşayan bireylerinin boyu,genellikle yüksek tuzlulukta yaşayan bireylerin boyundan iri olduğu gibi morfolojik yapılarıda değişik olmaktadır.morfolojik yapılarından; deri türevlerinde,kalkerleşme oranında,pigmentasyonda,vücut şekli ve üyeleri üzerinde de değişimlere sebep olmaktadır.ortamda oluşacak tuzluluk değişimleri bitkilerle deniz suyu arasında oluşan osmatik dengeyi bozar. Bazı bitkiler bu dengeyi hemen sağlayabildikleri halde,bazıları hemen sağlayamayarak ortadan kalkarlar.omurgasız hayvanlar yada balıklar ortamlarında oluşan tuzluluk değişimleriyle ilgili olarak ortaya çıkan konsantrasyon değişimlerine metabolik regülasyon sayesinde karşı koymaları alglerde olduğu gibi iyon regülasyonu, hacim regülasyonu ve osmoregülasyon ile sağlanır İyon regülasyonu org.vücut boşlukları ile hc.lerinde bulunan sıvıyla dış ortamdaki özel iyon alışverişiyle sağlanır. Hacim regülasyonu bazı hay.ortam sıvısının kons.göre vücut hacimlerini ayarlama sayesinde gerçekleştirilir. Osmoregülasyon org.vücut sıvısı,hc.sıvısı ve ortamları arasındaki osmatik basıncı dengede tutmasıyla sağlanmakta. 7- Euroterm , stenobat canlılar denizel ekosistemin neresinde yaşar? Euroterm çok geniş sıcaklık değişimlerinde yaşarlar(yüzeysel tabakada,termoklin tabakada,ve derin su tabakalarında) Stenobat ancak belli basınçlarda yaşantılarını sürdürebilirler.(örnek: mikroalgler öfotik zonun altındaki derinliklerde gösterdikleri bilinmektedir.ayrıca bentik türler yönünden 200m civarının;planktonik türler yönünden ise 3000m civarının en zengin olduğu görülür.derin deniz diplerinde azalır.) 8- Epibiont , Holoplankton , Abissol , Nanizm , stenooksibiont , Gigantizm , Meroplankton , Eurobat , Endolit , Sublitoral terimlerini tanımlayınız? Epibiont substratum üst yüzeyinde yaşantısını sürdüren form Holoplankton tüm yaşamını pelajikte geçiren zooplanktondurlar.diple İlişkisi yoktur. Abissol 4000_7000m derinlikteki pelajik zon Nanizm ekvatordan kutuplara doğru yada yüzeyden dibe doğru giderken sıcaklık artışına paralel olarak hayvanlarda gözlenen boy küçülmesine denir. Gigantizm ekvatordan kutuplara doğru yada yüzeyden dibe doğru giderken sıcaklık azalışına paralel olarak hayvanlarda gözlenen boy artışına denir. Stenooksibiont belli O2 değişimi aralığında yaşayabilenler. Meroplankton yaşamının bir ve ya birkaç evresinde pelajikte yaşarlr. Eurobat çeşitli basınç değişimlerinde yaşantılarını sürdürebilirler Endolit substratumda kendileri tarafından açılmış boşluklarda yaşantısını sürdüren organizmalardan kayalar içinde yaşayanlara denir. Sublitoral sahilde,su dışında ve ya bazen suyun örttüğü sahil şeridi üzerinde yaşayabilen ya da böyle bir ortama gereksinme gösteren organizmaların bulunduğu sahalardır. Sıcaklık ,ışık, fotosentez Artar Prodaktivite Artar Oksijen Azalır Karbondioksit Artar Ph Azalır

http://www.biyologlar.com/deniz-biyolojisi-sorulari

Midye, kalp midyesi, deniz salyangozunun özellikleri

Deniz salyangozu ( Rapana venosa ) Asya sularından Japon Denizi, Sarı Seniz ve Çin Denizinin yerli türüdür. Karadeniz’de ilk kez 1947’de Novorosisk körfezinde rapor edilmiştir. Sonradan tüm Karadeniz ve Azak Denizine, Ege ve Akdeniz’e yayılmıştır. Doğu Akdeniz’den veya Karadeniz’den larva evresinde iken ticari gemilerin balast suları ile taşındığı tahmin edilen bu tür, Kuzey ve Güney Atlantik sularında, son olarak ise Kuzey denizinde rapor edilmiştir (ICES, 2004). Deniz salyangozunun en önemli özelliği karnivor beslenme alışkanlığına sahip oluşu ve midye, istiridye gibi su ürünlerini tüketmesidir. Karadeniz’de zoobentik faunanın önemli bir kısmını midyeler oluşturmaktadır. Midyeler ekonomik önemi olan demersal balıkların besin kaynağını oluşturmaktadır. Midye yataklarındaki azalma demersal balıkların beslenme ortamını etkileyecektir. Türkiye’de tüketimi olmayan bu canlının başlıca pazaryeri Asya ve Avrupa ülkeleri, az miktarda da ABD’dir. Salyangoz canlı, taze et, taze dondurulmuş, pişmiş dondurulmuş, konserve ve turşu gibi formlarda pazarlanabilmektedir. Deniz salyangozu eti Kuzey Amerika’da daha çok salata ve çorbalarda, Japonya’da suşi barlarda çiğ et olarak, Kore’de ise konserve olarak tüketilmektedir (DFA, 2002). Deniz salyangozu ülkemizde tüketilmemesine karşın, önemli bir ihraç kalemini oluşturmaktadır (Şekil 1). Deniz salyangozu üretimi 2001’de 2600 ton iken 2006 yılında 11613 tona çıkmıştır (TÜİK, 2006). Aynı yıllarda ise dondurulmuş et olarak ihracat miktarları ise sırasıyla 519 ve 3763 tondur. Türkiye İhracatçılar Birliği kayıtlarına göre 2007 yılında toplam 3396 ton dondurulmuş deniz salyangozu etinin yaklaşık % 70’i İtalya ve Kore’ye ihraç edilmektedir. Yıllık ihracat miktarı 500–3700 ton arasında olup, yıllara göre 1.5 – 18 milyon US$ döviz girdisi sağlanmaktadır. Türkiye’de deniz salyangozunun toplam üretimi 2005’de 12600 ton olup bunun yaklaşık % 90’ı da Doğu Karadeniz’den karşılanmaktadır (TÜİK, 2005). Karadeniz ülkeleri arasında en fazla deniz salyangozu üretimi sırasıyla Bulgaristan, Türkiye, Gürcistan, Ukrayna ve Rusya’dadır. 2006–2008 Av Sirkülerinde av yasağının 1 Mayıs–31 Ağustos tarihleri arasında direç (algarna) ile avcılığı yasaklanmıştır. Fakat bu dönem boyunca dalarak veya sepetle avcılık serbest bırakılmıştır. Deniz salyangozu avcılığı çoğunlukla direçle yapılmakta bu durum hem ağ göz açıklığının belli bir süre sonra kapanmasından dolayı daha küçük bireylerin avlanmasına neden olmakta hem de deniz zemininde yaşayan diğer canlılara zarar vermektedir. Deniz salyangozu avcılığı pasif av aracı olan tuzaklarla yapılarak direcin salyangozla aynı ortamı paylaşan diğer canlılar üzerine olan etkisi azaltılabilir. Bu çalışmada salyangoz avcılığında direce alternatif olarak 3 farklı tuzak modelinde aylık olarak, derinliğin, bekleme süresinin, yem tiplerinin ve mevsimin birim av gücü (CPUE) üzerine etkisi ve her iki av aracının ekonomikliliği ve ekosisteme olan etkileri karşılaştırıldı. Ayrıca Karadeniz ve Marmara bölgesindeki salyangoz balıkçılarının sosyo-ekonomik yapısını belirlemek amacıyla anket çalışmaları yapıldı. Salyangozun midye üzerindeki predasyon baskısını belirlemek amacıyla saha ve laboratuar ortamında prey-predatör ilişkisi çalışıldı. Taksonomisi ve biyolojisi Rapana venosa Valenciennes 1846 ayrıca junior sinonimi Rapana thomasiana Crosse 1861 olarak ta tanımlanmaktadır. Koll (1993) Rapana genusunun taksonomideki yeri düzenlenmiştir. Oldukça büyük ve ağır bir kabuğu olan predatör deniz salyangozu R. venosa Muricidae familyasının bir üyesidir. Kabuk içi derin ve portakal rengindedir. Dış rengi ise bulunduğu ortama göre soluk gri ile kırmızımsı kahverengi arasında değişkendir. Class ; Gastropoda Subclass : Neogastropoda Superfamily: Muricoidea Family : Muricidae Subfamily : Rapaninae Genus : Rapana Species : Rapana venosa Deniz salyangozunun vücudu ayak, baş ve dorsalde iç organlar olmak üzere 3 kısımdan oluşur. Kaslı ve ventral bir sürünme organı olan ayak salgı salgılamaktadır. Ayağın arka kısmı olan metapodyumun en önemli görevi ise operkulumu salgılamaktır. Ventralde yer alan baş kısmında bir hortum ucundan dışarıya uzatılabilen ağız, bir çift tentakül ve tentaküllerin diplerinde bir çift göz bulunur. İç organlar; genital organlar ve hepatopankreasın fazla gelişmesi yüzünden çok büyüktür. Manto iç organların kütlesini sarar ve üzerindeki bezler kabuğu meydana getirir. Manto boşluğunda solunum organı ktenidyum vardır. Ktenidyumun dorsalinde kalp, dibinde ise solunum suyunu kontrol eden osfradyum bulunur. Manto boşluğu ayrıca hava ile dolarak akciğer görevi görür. Mide U şeklinde olup koyu kahverenkli ve hepatopankreas içine gömülmüş haldedir. Bağırsak dar bir boru şeklinde olup meta-nefridyumdan geçer (Çağlar, 1957; Bozkurt, 1968; Bilecik, 1990). Dağılımı 20.yy ortasından beri, deniz salyangozu Rapana venosa dünya çapında başarılı ve hızlı bir şekilde çok sayıda bölgeye girmiştir. İşgalci tür olarak kabul edilen deniz salyangozu 1947’de Karadeniz (Drapkin, 1953), 1973’te Adriyatik (Ghisotti, 1974), 1990’da Ege (Koutsoubas ve Vouldsiadou-Koukoura, 1991), 1997’de Fransa’nın Britanya sahili, Quiberon körfezi (Camus, 2001), 1998’de Kuzey Atlantik, Chesapeake Körfezi (ABD) (Harding ve Mann, 1999), 1999’da Güney Atlantik, Bahia Samborombon, Uruguay, Arjantin (Pastorina vd. 2000), 2005’de ise Kuzey Denizi (Nieweg vd., 2005) sularında rapor edilmiştir, 1940’larda Karadeniz’e giren R. venosa 10 yıl içerisinde Kafkas, Kırım sahillerine ve Azak Denizine yayılmıştır. 1959 – 1972 yılları arasında ise Romanya, Bulgaristan ve Türkiye sahillerini de işgal etmiştir. Büyüme Karadeniz’de Rapana venosa kumlu ve sert substratumlarda 40 m derinliğe kadar bulunmaktadır. En bol olarak Kerch strait, Azak Denizi, Sevastopal ve Yalta (Ukrayna), Bulgaristan ve Türkiye sahillerinde bulunmaktadır. Ciuhcin (1984) Sevastopal körfezinde ilk bir yılda 20mm’den 40 mm’ye kadar büyüdüğünü tespit etmiştir. Sonraki 2. ve 6. yıllarda ise ortalama değerleri sırasıyla 64.6, 79.4, 87.5 ve 92.1 mm’dir (ICES, 2004). Deniz salyangozu Rapana venosa anavatanı olan Asya sularında 18 cm’ye kadar büyürken, işgal ettiği Akdeniz ve Karadeniz sularında ise 12 cm’nin altına düşmektedir (CIESM, 2000). Üreme Deniz salyangozu ayrı eşeyli olup iç organlarının dorsalinde ilk spiral halkada sindirim bezi üzerinde tek bir gonad (ovaryum veya testis) ve gonad kanalı bulunur. Bu kanal anüsün sağından manto boşluğuna açılır. Kapsüller yumurta kanalında şekillenir. Albümin maddesi ile çevrelenen yumurtalar ise kapsül bezi içine girer. Yumurta kanalından ayrıldıktan sonra, deniz suyu ile birleşince hemen sertleşen yumurta kapsülü depolanması için ayağa transfer edilir. Ayak, kapsülü son şekline biçimlendirir. Ayak ile tamamen örtülmüş olan döllenmiş yumurta kapsülleri, dişi salyangoz tarafından sert zeminlere (taş, kaya, yumuşakça kabukları) yapıştırılır (Şekil 9) (Meglitsch, 1972; Webber, 1977). Dişi bir deniz salyangozu üreme sezonu boyunca ortalama 575 adet kapsül bırakmaktadırlar. Her bir kapsüldeki yumurta sayısı 555 adet, yumurta verimi ise 392,931 adet/birey’dir. Larvalar albüminli besi maddesini kullanarak kapsül içinde 20–25 günlük bir süre geçirdikten sonra kapsülü terk ederler. Kapsül içinde larvalar embriyo, pre-veliger, veliger, intermediate veliger ve terminal veliger olmak üzere 5 evrede gelişirler. Bu gelişim süresince larvaların rengi açık sarıdan koyu kahverengine kadar değişmektedir. Kapsüldeki larvalar ortalama 22 günde 182 μm’den 406 μm’ye kadar büyümektedir (Şekil 9) (Sağlam veDüzgüneş, 2007). Prey – predatörleri ve beslenme özellikleri Deniz salyangozu karnivor bir canlı olup, ağız kısmında bulunan radula sayesinde preyini ısırır, parçalar ve toplar (Black vd., 1988; Owen, 1964). Salyangoz su akıntısıyla taşınan kokulara karşı çok hassastır. Kokuya karşı hassaslığı, sifon tabanı ve solungaçlar arasındaki manto boşluğunda bulunan osfradyumla olur. Solungaçlardan manto boşluğuna gelen su, her zaman bu organdan geçer. Salyangoz avın kokusunu aldığı zaman, dakikada 13 cm kadar hızla preye doğru hareket eder. Farklı kokular arasındaki farkı ayırt etme yeteneğine sahiptir. Kokunun prey veya predatörden olup olmadığını anlar. Nassarius reticulatus ve Buccinum undatum gibi salyangozlar kırılmış midyelerin kokusuna hemen tepki verir ve yeme doğru hareket eder. Fakat Neptunea benzer duruma çok az veya hiç tepki vermez(Pearce ve Thorson, 1967). Bivalve türleri (midye, istiridye, tarak), poliket, balanus, yengeç, gammaridae, böcek, yassı kurtlar, detritus, balanus gibi organizmalar (Pearce ve Thorson, 1967; Nielsen, 1975; Himmelman ve Hamel, 1993), deniz salyangozunun preyini oluşturmaktadırlar. Çoğu salyangozlar preylerine bir delik açarak beslenirler, fakat Rapana’lar avının kabuğunu açmak için önce içinde mukus olan toksik bir madde salgılayarak preyini etkisiz hale getirir. Bu durumda midyeler hala canlı ve vücutları deforme olmamıştır. Fakat kabuk valfleri yaklaşık 2–3 mm açılmıştır. Daha sonra ayak ve kabuk kenarlarını kullanarak preyini sarar ve açılmış kabuk valfleri arasından hortumunu uzatarak beslenir. Tüm preylerin kabuklarında mukus bulunduğu için, R. venosa’nın biyotoksin ürettiği hipotezi ortaya atılmıştır. Bu biyotoksinler coline ester, mureksin, diidromureksina ve senecioilcolina’dır (Cesari ve Mizzan, 1993). Deniz salyangozu morina, köpek balığı, yengeç ve hermit crab (küçük Rapanalar için), istakoz, denizyıldızı, ahtapot, deniz kaplumbağası (<10 cm Rapanalar için) ve vatoz tarafından tüketilmektedir (Thomas ve Himmelman,1988; Harding ve Mann, 1999). Avcılığı Avcılığında esas olarak direçlerden yararlanılmaktadır. Ayrıca dalarak avcılık yöntemi su altında şnorkel, tüp ve kompresör (nargile) sistemlerinin kullanılması şeklinde uygulanmaktadır. Bazı ülkelerde ise benzer türlerin avcılığında tuzaklar kullanılmaktadır. Deniz salyangozunun avcılığı, Tarım ve Köyişleri Bakanlığı (TKB) tarafından her yıl yayınlanan Su Ürünleri avcılığını düzenleyen sirküler ile 1986 yılından itibaren yönlendirilmektedir. Son 20 yılda deniz salyangozu avcılığına yönelik alınan kararlarda birçok değişiklikler yapılmıştır. 2000 yılından itibaren teknede birden fazla direç bulundurulması yasaklanmıştır. Dalma veya direç ile avcılık yapacak balıkçı tekneleri için tekne ruhsat tezkeresinin verildiği il müdürlüğünden “Deniz salyangozu avlanma izni” alınması 1 Eylül 2001 yılından itibaren zorunlu hale getirilmiştir. Dalma, sepet ve her türlü tuzak yöntemleri ile deniz salyangozu avcılığı 2005 yılından itibaren serbest bırakılmıştır. “Denizlerde ve İçsularda Ticari Amaçlı Su Ürünleri Avcılığını Düzenleyen 2006–2008 Av Dönemine Ait 37/1 Numaralı Sirkülerde 1 Mayıs–31 Ağustos tarihleri arasında direç ile salyangoz avcılığı yasaklanmıştır. Karadeniz’de; İstanbul Boğazı girişindeki Rumeli Karaburun ile Anadolu Karaburun arasında kalan karasularda deniz salyangoz avcılığı yasak olup bu yer dışında kalan karasularda dalma ve her türlü tuzak yöntemleriyle avlanma serbest bırakılmıştır. Ekolojik etkileri Rapana venosa istiridye, midye ve diğer yumuşakçaların doğal populasyonlarını etkileyebilen predatör bir deniz salyangozudur. Girdiği bölgelerde ekosistemde önemli değişikliklere sebep olmaktadır. Yüksek verimliliği, hızlı büyüme oranı, düşük tuzluluk, yüksek ve düşük sıcaklıklara, su kirliliğine ve oksijen eksikliğine toleransı nedeniyle ekolojik açıdan uyumluluğu yüksektir. Plankton evresindeki veliger larvaları gemilerin balast suları ile salyangozun uzun mesafelere dağılımını kolaylaştırmaktadır (ICES, 2004). Predatör etkisinden dolayı R. venosa dünya çapında en hoş karşılanmayan istilacı tür olarak kabul edilmektedir. Rapana epifaunal bivalvlerin aktif bir predatörüdür ve yerli midye ve istiridye populasyonlarının çoğalmalarına ciddi bir şekilde sınırlamaktadır (CIESM, 2000). Karadeniz’de bu tür üzerine direk predatörünün bulunmaması, yerli bivalve faunanın (Ostrea edulis, Pecten ponticus, Mytilus galloprovincialis, Venus gallina, Gouldia minima, ve Pitar rudis) hızlı bir şekilde azalmasına sebep olmaktadır (Zolotarev, 1996). Ayrıca Karadeniz’de bulunan Gudaut istiridyesinin tamamen neslinin tükenmesinde de rol oynayarak bivalve populasyonlarının sert bir düşüşüne sebep olmuştur (Chukchin, 1984, Harding 2003’te). Salyangoz tarafından hızlandırılan diğer bir ekolojik değişiklik ise bölgedeki boş salyangoz kabuklarının varlığı, yerli hermit crab populasyonun artışını ortaya çıkarmıştır (Harding ve Mann, 1999). Bu türün Avrupa ve ABD’de sebep olduğu ekolojik etkileri ise; Kuzey Adriyatik Denizi (Avrupa) Fiziksel rahatsızlık: Mürekkepbalığı balıkçıları özellikle yumurta bırakmak amacıyla ağlara giren gastropodların varlığı ile rahatsız edilmektedir. Karadeniz(Avrupa) Predasyon: Rapana venosa’nın yapmış olduğu predasyon Bulgaristan sularında, Kerch boğazı ve Kafkas’ta midyenin (Mytilus galloprovincialis) azalmasının başlıca sebebi olarak gösterilmektedir (Rubinshtein and Hiznjak, 1988 ICES, 2004’de). ICES (2004)’de Ciuhcin (1984) R. venosa ‘nın Gudaut’taki predasyonu yerli bivalvelerin, Ostrea edulis, Pecten ponticus, ve M. galloprovincialis, soyunun tükenmeye yakın olmasıyla sonuçlanmıştır. ICES (2004)’de Zolotarev (1996), çift kabuklu yumuşakçaları için geniş beslenmeyle ilgili tercihi Venüs gallina, Gouldia minima ve Pitar rudis olan yumuşak-substratum infaunal yumuşakça türleri içermektedir. Kuzey Denizi (Avrupa) Predatasyon: Predasyon etkisinden dolayı R. venosa, dünya çapında en hoş karşılanmayan istilacılardan biri olarak düşünülmektedir. Bu nedenle Kuzey Denizinde bu predatör gastropod büyük bir sorundur. Bu türün istila tarihi tüm bir ekosistemi rahatsız edebildiğini göstermektedir. Kuzey Denizde Rapana'nın olası etkileri, belirsizdir, fakat tahmini olarak Rapana, yerli salyangoz Buccinum undatum için sert bir rekabetçi olabilir. Bu tür aynı zamanda su kirliliği ve yoğun av baskısı altındadır. Midye Mytilus edulis, Pasifik istiridye Crassostrea gigas ve midye Cerastoderma edule gibi yenebilir çift kabuklular için bölgesel sanayiler, risk altındadır. Chesapeake Körfezi (ABD) Rekabet: Yerli istiridye, Urosalpinx cinerea, R. venosa’yla direk rekabet içindedir. U. cinerea populasyonu 1972’deki Agnes kasırgasında olan bir olayla büyük bir kısmı yok oldu. Urosalpinx pelajik larval evreye sahip olmayıp substratuma yapışmış olan yumurta kütlelerinden juvenil olarak çıkmaktadırlar. Salyangozun istilasıyla, şimdi emekleyen yerli ve işgalci pelajik larvalar arasında aynı ve uygun substratum için rekabet vardır. (ICES, 2004). Predasyon: Rapana predatasyonu lokal bivalve türlerinden istiridye (Crassostrea virginica), midye (Mytilus edulis), ve tarak (Mya arenaria) rapor edilmiştir (ICES, 2004). Diğer: Harding and Mann (1999) " Chesapeake körfezinde büyük (>100mm) ve boş R. venosa kabuklarının varlığı lokal hermit crab (Clibanarius vittatus)’ın büyümesini ve çoğalmasına neden olduğunu belirtmektedir. Hampton Roads bölgesinde toplanan C. vittatus boş R. venosa kabuklarını sığınak olarak kullanmaktadır. Hermit crab, ithal boyuta ulaştığında önemli miktarda istiridye yumurtası tükettiği kanıtlanmıştır (ICES, 2004). Imposeks, dişi gastropodlarda erkek seks karakterlerinin oluşmasıdır. Dişilerde bir penis ve sperm kanalı gelişmeye başlar ve ileri aşamalarda sperm kanalının yumurta kanalı üzerine yerleşmesi ile kısırlık oluşur. İmposeks olayı, salyangoz populasyonu gelişimini ciddi bir tehlikeye sokmaktadır. TBT’nin kullanımından oluşan sucul kirlenme, hedef olmayan deniz organizmalarını da etkilediği için dünyadaki tüm ülkeleri ilgilendiren bir sorun haline gelmiştir. 1989’da Avrupa Birliği 25 m’den küçük deniz araçlarında TBT’i yasaklayan bir kararname çıkarmıştır (89/677/CEE). 1 Ocak 2003 tarihinden sonra TBT bazlı antifouling katkılı boyaların gemilerde kullanımını bütün dünyada yasaklanmıştır. Ortamdaki TBT miktarı ~1 ng/L olduğu zaman hormonal etkiler gözlenmektedir. Imposeks 1970’li yıllarda ilk defa Blaber tarafından Nucella lapillus’ta tanımlanmış, sonuçları özellikle TBT ile ilişkilendirilmiştir. Imposeks daha sonra bütün dünyada 63 cinsten 118 gastropod türü üzerinde araştırılmış ve türlerin çoğunda geriye dönüşümsüz olduğu görülmüştür. Duyarlı cevaplarından dolayı çeşitli deniz salyangozu türleri TBT kirlenmesinin biyo-indikatörü olarak kullanılmaktadır (Kırlı, 2005). Midyelerin Genel Özellikleri ve Sınıflandırılması  Alem: Animalia (Hayvanlar) Şube: Mollusca (Yumuşakçalar) Sınıf: Bivalvia (Midyeler) Alt familyalar Pteriomorpha (Tuzlusu midyeleri) Palaeoheterodonta (Tatlısu midyeleri) Heterodonta (Zebra midyeleri) Midye birbirine eklemlenmiş iki parçalı kabukları olan yumuşakçalar. Bivalvia sınıfından omurgasızların çoğu «midye» olarak, bir kısmı da «istiridye» olarak adlandırılır. «tarak» ya da «deniz tarağı» adıyla bilinen türler de bazen «midye» olarak adlandırılır. Bütün Bivalvia sınıfından omurgasızlar ile deniz salyangozu olarak bilinen karından bacaklılar «denizkabuğu» ortak adıyla anılırlar. Denizlerin kıyıya çok yakın kesimlerinde kayalara ve birbirlerine sıkıca tutunmuş binlerce midye görülebilir. Çenet denen bu kabuk parçaları gerçek midyelerde düz yüzeyli, siyaha yakın koyulukta, oval, birbirine benzer biçim ve iriliktedir. Bünyelerinde bulundurdukları sedef sayesinde zararlı maddelerden kendilerini korumak için onu inciye dönüştürürler. Midyeler sindirim yapmazlar. Türleri Denizkulağı (Haliotis): adını kabuk şeklinden alır. Suyosunları ile beslenir. Zebra midyesi (Dreissena polymopha): boyu 2-5 cm'dir. Doğal yaşam alanı Hazar Denizi ve Karadeniz'dir. Bakteriler ve su yosunlarıyla beslenir. Kabuğundaki desen nedeniyle zebra midyesi olarak adlandırılır. Dev midye (Tridacna gigas): en büyük midyedir. Boyu 150 cm, ağırlığı 250 kg kadar olabilir. Suyosunlarıyla Türkiye denizlerinde yoktur. Mavi midye (Mytilus edulis): iki parçalı mavimsi siyah bir kabuğu vardır. Boyları 5-20 cm'dir. Yaşam süreleri 15'yıla yakın olabilir. 40 m'yi bulan derinliklerde yaşarlar. Besinlerini suyu süzelerek alırlar ve bir saatte 1,5 litre suyu süzebilirler. Tarak midyesi (Pecten maximus): iki parçalı, yelpaze şeklinde, üzerinde oluklar bulunan bir kabuğu vardır. Mikroorganizmalarla beslenir. Boyu 2,5-15 cm'dir. Kıyıdan başlayarak 250 m derinliğe kadar yaşayabilirler. Türkiye denizlerinde yoktur. Kelebek midyesi (Donax variabilis): boyu 1,5-2,5 cm'dir. İki parçalı bir kabuğu vardır. Deniz kıyısında, dalgalı yerlerde yaşar. Bunun nedeni bu bölgelerin oksijen ve besin açısından zengin olmasıdır. Sürüklenmemek için kendini kuma gömer. Mikroorganizmalarla beslenir. Türkiye denizlerinde yoktur. Pina: kürek şeklinde, açık kahverengi bir kabuğu vardır. Kabuğunun sivri ucundan deniz tabanına gömülür. Mikroorganizmalarla beslenir. Ayrıca pinalardan inci çıkabilir. Alem (regnum) : Animalia Dal (phylum) : Mollusca Sınıf (classis) : Bivalvia Takım (ordo) : Cardiida Ferussac,1822 Üst Familya : Dreissenaceae Familya (familia): Dreissenidae (Andrusov,1897) Cins (genus) : Dreissena Van Beneden Türler (species) : 1. Tür: Dreissena polymorpha (Pallas,1771) 2. Tür: Dreissena bugensis (Müller,1774 Dreissena cinsinde bulunan türler acı ve tatlı sularda yaşayanlar olmak üzere 2 gruba ayrılmaktadır. Dreissena polymorpha (Pallas) ve Dreissena bugensis (Müller) çoğunlukla tatlı sularda yaşayan türlerdir. 2001 yılında yapılan yabancı kaynak taramalarında, daha önce Türkiye ve Suriye’de saptandığı bildirilen Dreissena bourguignati (Geldiay ve Bilgin, 1973; Şeşen, 2001) (4) ve Türkiye’de saptandığı bildirilen Dreissena bouldrourensis (Yıldırım ve Şeşen, 1994) ile ilgili kayda rastlanmamıştır. Türkiye’de tatlı sularda yaşayan iki kabuklu (bivalve) midyeler: Dreissenaceae, Unionaceae ve Corbiculaceae üst familyalarında bulunmaktadır. Kirlenmeye (biofouling) neden olan türlerden (Claudi and Mackie, 1994; ZMIS,2001): D. polymorpha ve D.bugensis Dreissenaceae üst familyasının Dreissenidae; Corbicula fluminea ise Corbiculaceae üst familyasının Corbiculidae familyasında bulunmaktadır. Corbiculaceae üst familyasında bulunan diğer familya ise Sphaeriidae’ dir. “Zebra midyenin var olan bulaşmaları ile gelecekteki bulaşmalarının belirlenmesi ve yönetilebilmesi, midyenin ergin olmayan ve ergin dönemlerinin diğer benzeri midye türlerinden ayırt edilmesi ile ilişkilidir. Zebra midye erginlerinin diğer midye türlerinin erginlerinden ayırt edilmesi kolay olmakla birlikte, ergin olmayan dönemlerin tanısı güçtür” (Claudi and Mackie, 1994; ZMIS,2001). Dreissenidae Türlerinin Tanısı Dreissenidae familyası türlerinin birbirinden ve diğer midye türlerinden ayırt edilmesi konusunda aşağıda verilen bilgiler ZMIS (Zebra Mussel Information Service) ve Claudi and Mackie (1994)’den özetlenmiştir. Ergin Midyelerin Tanısı “Unionidae ve Sphaeriidae familyaları türlerinin Dreissenidae türleri ile Corbicula cinsinden ayırt edilmesi kolaydır. Tatlı sularda yaşayan 2 Dreissenidae türünün ilk bakışta, birbirinden ayırt edilmesi ise güçtür. Bunların yaşamı, yaşam dönemleri ve genel yapısal özellikleri birbirinin benzeridir. Bununla birlikte midyelerin dış yapısal nitelikleri incelenerek, ergin D. polymorpha ve D.bugensis’in ayırt edilmesi mümkündür. Ergin Dreissenidae türlerinin birbirinden ve diğer familyalardaki türlerden ayrılmasında aşağıdaki niteliklerden yararlanılabilir” Midyelerin kabuklarının karınsal bölümleri (ventral shell edge) ile karınsal kenarları (ventral shell margin) incelendiğinde, farklılıklar belirgindir. Zebra midyede karınsal bölüm çukurdur (concave) ya da yassılaşmıştır (flattened) ve kabuğun keskin açılı kenarlarında, omurga (keel) oluşmuştur. . D.bugensis’te ise karınsal bölümler tümsek (convex), karınsal kenarlar ise yuvarlaktır · Kesin bir tanı niteliği olmamakla birlikte, D.polymorpha kabuklarının üzerinde değişik düzenleniş biçimli, renkli kuşaklar bulunur (Resim 2.1.2). Atatürk Baraj Gölünden toplanan midyelerde bu kuşaklar daha belirgin olmakla birlikte, Kesikköprü Baraj Gölünde yüzeyden toplananlar genellikle kahverengi, dipten toplananlar ise siyah renklidir · Dreissenidae türlerinin kabukları 3 köşelidir. Diğer familyalara ait türlerin kabukları ise yuvarlak ya da yumurtamsıdır (oblong) · Dreissenidae familyası türleri, ergin dönemlerinde tutunma iplikçikleri (byssal threads) aracılığıyla uygun bir tabana tutunmuş ve epifaunal olarak yaşar · Dreissenidae familyası türlerinde, diğer familyalardan farklı olarak, menteşede kabukların birbirine bağlanmasını sağlayan belirgin dişler yoktur (Resim 2.1.8). İki kabuğu birbirine bağlayan elastik menteşe bağı (elastic hinge ligament), protein bileşimli (proteinaceous)'dir. Zebra midye öldüğünde kabukları açılır. · Dreissenidae familyası türlerinde myophore plate üzerinde çıkıntı (apophysis) bulunmaz · Dreissena türlerinin kabukları üzerinde belirgin ve düzgün aralıklı sırtlar (ridges) bulunmaz. Corbicula fluminea’da ise bu çıkıntılar belirgindir · Sphaeriidae familyası türleri dışında, tatlı sularda yaşayan midyelerin boyutları 1 cm’den büyüktür · Corbicula dışında tatlı su midyelerinin kabukları parlak değil donuk görünümlüdür. · Dreissenidae’lerde gaga (umbone) düz ve ileriye çıkık olduğu halde, diğer familyalarda sırtsal olarak bulunur ve yuvarlaktır. Larvaların (veligers) Tanısı “Yakın akraba olan D.polymorpha ve D.bugensis’in larva ya da özgürce yüzen larvalarının (veligers) tanılarının doğru olarak yapılması güçtür. Burada bir su kaynağından alınan suda, iki kabuklu (bivalve) midye larvalarının bulunduğu varsayılmıştır. Aşağıdaki olasılıklar göz önüne alınarak diğer iki kabuklu türleri, Dreissenidae familyası türlerinden ayrılabilir: · Özgürce yüzen larvalar Sphaeriidae familyasına ait değildir. Çünkü bu familyaya ait döller, çok küçük istiridye (clams) biçimine gelmeden önce suya salınmamaktadır. · Özgürce yüzen larvalar Unionidae familyasına ait değildir. Çünkü bu familyanın kirpikli larvaları (glochidiae)asalaktır ve suda özgürce yüzen durumda bulunmazlar. Bu durumda sadece 3 olasılık kalmaktadır: Bu larvalar her 3' ünde de özgür larvalar bulunan; C. fluminea (Asya istiridyesi), D. polymorpha ya da D. bugensis'e ait olabilir. Dreissena'nın 2 türünün larvalarının birbirinden ayırt edilmesi, kabuklarının karınsal bölümü ve kenarları gelişinceye kadar mümkün değildir. Tanı, her 2 türün de düz menteşeli biçimlerinin (straight hinge forms) bulunması durumunda bir ölçüde, gagalı (umbonal) formların bulunması durumunda ise daha da kolaylaşmaktadır. Dreissena ile Corbicula'nın özgürce yüzen larvalarının ayrımı ise mümkündür. · Corbicula fluminea’nın larvaları genç dönemlerini (D-biçimli larva ve gagalı larva), ergin dişilerin solungaçları üzerinde bulunan ve genç canlıları taşıyan keselerde (marsupial sacs) geçirir. Dreissena türleri ise yumurtadan başlayarak tüm larva dönemlerini suda özgürce yüzerek (planktonic) geçirir. · Corbicula fluminea’nın ayaklı larvaları (pediveligers) su verme sifonu aracılığıyla, suya salınır ve ancak bu dönemde su örneklerinde görülebilir (Resim 2.2). Corbicula’nın ayaklı larvalarının kabukları üzerinde çizgiler bulunmaktadır. Dreissena’nın düz menteşeli larvalarında ise çizgiler bulunmaz. · Corbicula fluminea’da ayaklı larva döneminde kabuk donuk renklidir ve iç organlar görünmez. D.polymorpa ve D.bugensis’in larva dönemlerinde kabukları saydamdır ve iç organlar görünür. · D. polymorpa ve D. bugensis’in larva döneminde ayırt edilebilmesi için omuz (shoulder) biçimlerinden yararlanılır: · D. polymorpha’da omuzlar kabuğun kenarına belirgin bir açı yaparak birleşir. · D. bugensis’te omuzlar yuvarlaktır ve menteşe çizgisi (hinge line) daha kısa görünür. Yayılış Alanları Dünya’daki Yayılış Alanları Taşıl Bilimsel (paleontological) verilere göre, D. polymorpha’nın bulunuşu ile ilgili ilk kayıtlar 10-11 milyon yıl öncesine tarihlenmektedir. Türün o zamanlar bugünkü Afrika’yı Avrupa ve Asya’dan ayıran, Tethys Denizinin (5) haliçlerinde (estuaries) bulunduğu kaydedilmektedir. Türün doğal yayılış alanları: Kuzey Yarıkürede Karadeniz ve Hazar Denizi ile Aral Gölü havzaları ve bunlarla ilişkili haliçler, kıyısal sular, tatlı su gölleri, baraj gölleri ve ırmaklardır. Türkiye de doğal yayılış alanları içinde yer almaktadır. D . polymorpha’nın 1700 yılının sonlarına kadar denizlerde yaşadığı, daha sonra tatlı sulara geçtiği ve Avrupa’ya yayılışının 18. yüzyıldan bu yana sürdüğü kaydedilmektedir. D. polymorpha, İngiltere’de 1824’te saptanmış daha sonra Danimarka, İsveç, Finlandiya, İrlanda, İtalya ve Avrupa’nın diğer ülkelerine yayılmıştır. Midye Kuzey Amerika’da Great Lakes Bölgesindeki St. Clair Gölünde 1988’de bulunmuş, havzadaki tüm göller ve Misisippi ırmağına bulaşarak, güneyde Misisippi Deltasına ulaşmıştır. Dreissena türlerinin yayılış alanlarının genişlemesinde en önemli etkenin, deniz ulaşımı ve teknelerin sintine sularını bulaşık olmayan alanlara boşaltmaları olduğu, kabul edilmektedir” (Orlova and Nalepa, 2001). “Yayılışı sağlayan doğal ya da insan kaynaklı diğer etkenler: Teknelerle taşınan su bitkileri, su akıntıları, göçmen su kuşları ve kerevitler olarak” kaydedilmektedir (ZMIS,2001). İngiltere’de 1824 yılında saptanan midyenin, Avrupa ve Amerika arasındaki yoğun ticari tekne ulaşımına rağmen Kuzey Amerika’ya 164 yıl sonra, 1988 yılında bulaşması ilginç bir durum olarak algılanmaktadır. "D. bugensis’in, doğal olarak bulunduğu Karadeniz ve Azak Denizindeki haliçlerden, Ukrayna’daki yapay kanal ve baraj göllerine ilk kez 1960’larda yayıldığı kabul edilmektedir. Tür, bugün Karadeniz havzasındaki ırmaklar ve yapay göllerde yaygındır. Volga Irmağı ve deltası ile Hazar Denizinin kuzey kıyılarında da D. polymorpha ile birlikte bulunmaktadır. 1989 yılında Kuzey Amerika’da da D. polymorpha ile birlikte bulunduğu saptanmıştır"(Orlova and Nalepa, 2001). Türkiye’deki Yayılış Alanları Dreissena türlerinin Türkiye’de bulunuşu ile ilgili kayıtlar çok eski yıllara dayanmaktadır. Geldiay ve Bilgin (1973) : Blanckenhern (1897)'e atfen Dreissena chanteri Loc.’nin Hatay ili Asi Irmağı’nda; Germain (1936)’ya atfen Dreissena lacunosa Bourg., D.gallandi Bourg., D.hermosa Bourg. ve D. anatolica Bourg türlerinin Bursa çevresinde; D.bourguignati Locard’ın Suriye’de, D.bourguignati Locard, D.siouffi Bourg. ve D. elongata Bourg.’un Mezopotamya’da bulunduğunu, ancak farklı türler olarak kaydedilen tüm bu türlerin, D.polymorpha’nın çeşit ya da coğrafi ırkları olabileceğini, türün D.polymorpha olduğu kanısının yaygın olduğunu kaydetmektedirler. Şeşen (2001)(6), 1986-1988 döneminde Antakya ve Adana yörelerinde yapılan çalışmalarda Asi Irmağı, Antakya ve Samandağ ilçesinde daha önceki yıllarda Suriye’den de toplanmış olan Dreissena bourguignati Locard türünün bulunduğunu, bölgedeki diğer bivalve türlerinin Unio sp., Potamida littoralis, Leguminaia wheatleyi, Pisidium sp., Corbicula fluminalis (Seyhan ve Ceyhan Irmakları, Reyhanlı, Kırıkhan ve Samandağ ilçeleri) olduğunu; 1989-1992 döneminde Şanlıurfa, Diyarbakır ve Mardin yörelerinde yapılan çalışmalarda Dreissena türlerine rastlanmadığını, Dicle Irmağında Unio sp., Anadonta piscinalis, Leguminaia wheatleyi; Ceylanpınar Habur Çayı, Nusaybin Çağ Çağ suyu ve Siverek’te Corbicula fluminalis bulunduğunu, yöredeki diğer türlerin Sphaerium corneum ve Pisidium olduğunu bildirmiştir. Geldiay ve Bilgin (1973)’e göre, D.polymorpha’nın Türkiye’de bulunduğu yerler: Eğirdir, Kovada, Beyşehir ve Sapanca Gölleridir. Burdur Gölünde ise gölün kuzey kıyılarından sadece aşınmış kabukları toplanabilmiştir. Baykal (1960)’a göre ise Burdur Gölünde D.bouldrourensis d’Arch türünün fosilleri bulunmaktadır. Yıldırım ve Şeşen (1994), Burdur ve Isparta çevresindeki 58 tatlı su habitatında yapılan araştırmalarda 4 adet bivalve türü (D. polymorpha, D.bouldrourensis, Pisidium ve Anadonta cygnaea) saptandığını; D.polymorpha’nın Burdur, Yarışlı, Eğirdir ve Kovada Göllerinde; D. bouldrourensis Fischer’in Burdur ve Yarışlı Göllerinde bulunduğunu kaydetmektedirler. 1997 yılından bu yana Atatürk Barajı ve HES’te sorun yaratan midye türü de, D. polymorpha olarak tanılanmıştır. Aynı tür, Fırat Irmağı ile Fırat Havzasındaki tüm baraj göllerinde de (Keban, Karakaya, Atatürk, Birecik ve Karkamış) bulunmaktadır. Türün Terkos Gölü (7) ve Bolu Gölköy Baraj Gölü (8) ve DSİ Su Ürünleri Üretim İstasyonuhavuzları ile Sakarya havzasındaki Poyrazlar, Taşkısığı, Akgöl ve Acarlar Göllerinde de yaygın olduğu(9) bildirilmiştir. 2001 yılında yapılan çalışmalarda Zebra midyenin Kızılırmak üzerindeki Kesikköprü , Hirfanlı (Ankara) ve Derbent Baraj Gölleri (Samsun) ile Kızılırmak’ın kollarından Osügülüç Çayı üzerindeki Gazibey Baraj Gölünde (Sivas) bulunduğu saptanmıştır. Midyenin Kesikköprü Barajının menbaındaki Kapulukaya Baraj Gölünde de bulunduğu bildirilmiştir. Anonymous (2001 a), tuzluluğun binde 4 olduğu 1980’li yıllarda Bafa Gölünde bulunan Zebra midyenin, son yıllarda tuzluluğun binde 14’e yükselmesi sonucunda yok olduğunu kaydetmektedir. Bafa Gölünden 2001 yılında toplanan örneklerin, tuzlu sularda yaşayan midye türlerinden Mytilaster minimus olduğu saptanmıştır (10). Güneydoğu Anadolu’da daha önce saptanmış olan Corbicula fluminea (Müller, 1774) (Eş adı: Corbicula fluminalis) (Bivalvia: Corbiculidae)’nın da, Fırat havzasında bulunması olasıdır. 2002 yılında Akdeniz Bölgesinde yapılan çalışmalarda: D. polymorpha’nın Seyhan Havzasında Seyhan, Çatalan ve Ceyhan Havzasında Aslantaj Baraj Göllerinde bulunduğu saptanmıştır (11). D. polymorpha ve Corbicula fluminea'nın Türkiye’de saptandığı yerler Resim 2.7‘de gösterilmiştir. Atatürk ve Birecik Baraj ve HES’lerinde midye sorunları oluşması üzerine, midyelerin Atatürk Baraj Gölüne su sporları amacıyla getirilen tekneler aracılığıyla bulaşmış olabileceği düşünülmüştür (Zapletal and Hengirmen, 2001). Ancak Türkiye’nin Tethys Denizi’nin yayıldığı alan ile midyenin doğal olarak bulunduğu alanlarda yer alması (Resim 2.4), Çanakkale’de Yapıldak mevkiinde neojen tabakaları içinde fosil olarak bulunması, ülkemizde ilk kez 1897’ler de saptanmış olması (Geldiay ve Bilgin, 1973), 1964’te Kovada I ve daha sonra Kovada II Santrallarında sorun yaratması, 2001’de Kızılırmak’ın kollarından Osügülüç Çayı üzerindeki Gazibey Baraj Gölünde de (Sivas) yoğun olarak görülmesi, yerli tür (native species) olduğunu kanıtlamaktadır. Şeşen (2001)(12) tarafından yapılan araştırmalarda DicleHavzasında bulunmadığının belirtilmesi, türün Türkiye’deki yayılış alanlarının da genişleme eğilimindeolduğu biçiminde algılanmaktadır. Bobat, Hengirmen and Zapletal (2001 a,b)’de de belirtildiği üzere, D. polymorpha’nın sorun yaratacak yoğunluklara ulaşması, doğal göllerde yapılan tesisler ile akarsularda yapılan barajlar sonucunda akar su düzeninden durgun su düzenine geçilmesi ve uygun tutunma yerlerinin oluşmasından kaynaklanmaktadır. Türkiyede’de bulunan Dreissena türünün: D. polymorpha (Pallas) olduğu anlaşılmaktadır. Ancak Dreissena türlerinin Türkiye’de bulunduğu yerler ile ilgili kayıtların yetersiz olduğu ve öncelikliolarak inşa edilmiş olan baraj ve HES’lerde incelemeler yapılarak, yayılış ve sorun oluşturduğu alanlarınbelirlenmesi, proje aşamasında bulunan baraj ve HES’lerin inşa edilecekleri akarsu havzalarında bulunupbulunmadığının araştırılması, ayrıca daha önce saptandığı bildirilen türlerin revizyonunun yapılmasıgerektiği düşünülmektedir. A.B.D.’nde kirlenme sorunları oluşturan Corbicula fluminea’nın, Türkiye’de daha önce Seyhan ve Ceyhan Irmakları ile Habur Çayı ve Çağ Çağ suyunda saptandığı bildirilmektedir (Şeşen, 2001)( 12) Corbicula fluminea’nın doğal yayılış alanları Güneydoğu Asya olarak kaydedilmekte, midyenin palearctic, nearctic, oriental ve neotropical bölgelere yayıldığı, kuzey yarıkürede 40 derece enlemin güneyindeki alanlarda bulunduğu, A.B.D.’ine 1900’lerde bulaştığı, güç santrallerinde sorun yarattığı ve neden olduğu zararların 1 milyar dolar/yıl olarak hesaplandığı kaydedilmektedir [Naumann, 2001; ZMIS,2001; Anonymous,2001 h) Corbicula fluminea’nın, Türkiye’de saptandığı Seyhan ve Ceyhan Havzası baraj ve HES’ lerinde sorun yarattığı konusunda kayıt bulunmamaktadır. Sorun yaratan midye türlerinin saptandığı yerlerin belirlenmesi, midye bulaşmalarına karşı koruyucu önlemler alınması açısından büyük önem taşımaktadır. Devamı İçin www.dsi.gov.tr/docs/yayinlarimiz/hidroel...r%C4%B1.pdf?sfvrsn=4

http://www.biyologlar.com/midye-kalp-midyesi-deniz-salyangozunun-ozellikleri

Deniz biyolojisi soru ve cevapları

1- Denizlerde doğal sınırlar var mıdır? bu doğal sınırlar nelerdir ve faktörleri nelerdir? doğal sınır,denizlerde veya okyanuslarda sıcaklık,ışık geçirgenliği,tuzluluk gibi fiziksel etkiler sonucunda meydana gelir.ışığın belli bir derinliğe kadar gelmesi fotosentetik canlıların bu ışığa göre kendi sınırlarını oluşturmasına neden olur aynı durum sıcaklık tuzluluk içinde geçerlidir.doğal sınırlar sonucu sucul ortamlarda tabakalaşmalar olmuştur. 2- Turbititenin olumlu ve olumsuz etkileri nelerdir? Organizmalar üzerindeki etkisi; 1.berraklığn azalmasıyla ışığın sudaki girişi azalır 2.fotosentez yapan bitkilerin ve diğer orgiyaşantısını sınırlandırır 3.solungaçların tıkanmasına neden olur.suyu süzerek aldıklarını alır 4.org.yatay ve dikey dağılışınd etkilidir Yüksek sularda asılı parçacık içeren balıkların gözlerinin çok küçüldüğü ve ya tamamen kaybolduğu,solungaç yapılarında bazı değişiklikler olduğu gözlenmiştir. 3- Işığın canlıların dağılımı üzerine etkileri nelerdir? Işığın şiddeti,süresi,ve yapısı sularda oluşan fotosentez olayında doğrudan etkilidir.özellikle şiddeti ile birincil üretim yakından ilgilidir.ve denizlerdeki optimum fotosentez ışık şiddetinin 1/3 düştüğü 25 metre civarındaki derinlikte oluşur.ancak fotosentez olayında ve dolayısıyla birincil üretimin oluşumunda çevresel faktörlerden sıcaklığında etkisinin olduğu saptanmış olup belli dereye kadar olan sıcaklık artışına paralel fotosentezin hızlandığı ve belli sıcaklıktan sonra da yavaşladığı izlenmiştir. Ayrıca bentik alglerin boylarının büyümesinde ve morfolojisinde rol oynar, hayvanların solunumunu hızlandırır,bentik ve planktonik alglerin dikey ve yatay yönlerdeki dağılışları gelişir. 4- med-cezir ve upwilling olaylarının canlılardaki bolluk ve dağılıma etkileri nelerdir? Med cezir Ay'ın ve Güneş'in yeryüzündeki çekim farkından doğan alçalma ve kabarma olayıdır. olmasaydı Ay ışığında etkinliğini sürdüren canlılar gelişmezdi. Bilindiği gibi, bazı canlı türleri üreme için Ay’ın evrelerini izlemektedirler. Dünya’da yaşam oluşmazdı. Dünya sadece Güneş’in varlığı ile oluşan mevsimler, rüzgarlar ve yağmurların var olduğu boş bir gezegen olurdu. deniz suyunda hareketlere yol açar. Gelgit alanındaki hayvanlar ve bitkiler, hayatta kalabilmek için bazı özel nitelikler taşımak zorundadır. Günde iki kere su dışında ve güneşte kaldıkları için bu canlılar kurumaya karşı dirençli olmalı ve büyük sıcaklık farklarına dayanabilmelidir. Tatlı sudan (çünkü sular çekildiğinde yağmur yağabilir) etkilenmemeleri ve nihayet dalgaların yıkıcı gücüne karşı da dirençli olmaları gerekir. upweling olayı akarsular yoluyla denizlere veya okyanuslara dökülen dipte bulunan organik maddelerin(minerallerin) su yüzeyine çıkmasını buda su yüzeyinde pasif olarak yer değiştirebilen plantonik organizmalar için besin kaynağı olmakta aynı zamanda da balıklarda organik madde ihtiyaçlarını böyle karşılıyor ve bu organik maddelere göre dağılış gösteriyorlar. 5- Euroaerobiont , stenohalin canlılar denizel ekosistemin neresinde yaşar? Euroaerobiont formlar çeşitli O2 değişimlerinde yaşantılarını rahatlıkla sürdürebilirler Stenohalin formlar belli tuzluluk derecelerinde yaşayabilirler. (düşük,orta ve yüksek tuzlulukta yaşayabilirler)örneğin: tropikal ve ılıman bölgelerde 800_1000 m derinliğe doğru tuzluluk minimumdur.(kutup ılıman ve tropikal bölgelerde) 6- Tuzluluğun hayvan ve bitkilere etkileri nelerdir? bir türün düşük tuzlulukta yaşayan bireylerinin boyu,genellikle yüksek tuzlulukta yaşayan bireylerin boyundan iri olduğu gibi morfolojik yapılarıda değişik olmaktadır.morfolojik yapılarından; deri türevlerinde,kalkerleşme oranında,pigmentasyonda,vücut şekli ve üyeleri üzerinde de değişimlere sebep olmaktadır.ortamda oluşacak tuzluluk değişimleri bitkilerle deniz suyu arasında oluşan osmatik dengeyi bozar. Bazı bitkiler bu dengeyi hemen sağlayabildikleri halde,bazıları hemen sağlayamayarak ortadan kalkarlar.omurgasız hayvanlar yada balıklar ortamlarında oluşan tuzluluk değişimleriyle ilgili olarak ortaya çıkan konsantrasyon değişimlerine metabolik regülasyon sayesinde karşı koymaları alglerde olduğu gibi iyon regülasyonu, hacim regülasyonu ve osmoregülasyon ile sağlanır İyon regülasyonu org.vücut boşlukları ile hc.lerinde bulunan sıvıyla dış ortamdaki özel iyon alışverişiyle sağlanır. Hacim regülasyonu bazı hay.ortam sıvısının kons.göre vücut hacimlerini ayarlama sayesinde gerçekleştirilir. Osmoregülasyon org.vücut sıvısı,hc.sıvısı ve ortamları arasındaki osmatik basıncı dengede tutmasıyla sağlanmakta. 7- Euroterm , stenobat canlılar denizel ekosistemin neresinde yaşar? Euroterm çok geniş sıcaklık değişimlerinde yaşarlar(yüzeysel tabakada,termoklin tabakada,ve derin su tabakalarında) Stenobat ancak belli basınçlarda yaşantılarını sürdürebilirler.(örnek: mikroalgler öfotik zonun altındaki derinliklerde gösterdikleri bilinmektedir.ayrıca bentik türler yönünden 200m civarının;planktonik türler yönünden ise 3000m civarının en zengin olduğu görülür.derin deniz diplerinde azalır.) 8- Epibiont , Holoplankton , Abissol , Nanizm , stenooksibiont , Gigantizm , Meroplankton , Eurobat , Endolit , Sublitoral terimlerini tanımlayınız? Epibiont substratum üst yüzeyinde yaşantısını sürdüren form Holoplankton tüm yaşamını pelajikte geçiren zooplanktondurlar.diple İlişkisi yoktur. Abissol 4000_7000m derinlikteki pelajik zon Nanizm ekvatordan kutuplara doğru yada yüzeyden dibe doğru giderken sıcaklık artışına paralel olarak hayvanlarda gözlenen boy küçülmesine denir. Gigantizm ekvatordan kutuplara doğru yada yüzeyden dibe doğru giderken sıcaklık azalışına paralel olarak hayvanlarda gözlenen boy artışına denir. Stenooksibiont belli O2 değişimi aralığında yaşayabilenler. Meroplankton yaşamının bir ve ya birkaç evresinde pelajikte yaşarlr. Eurobat çeşitli basınç değişimlerinde yaşantılarını sürdürebilirler Endolit substratumda kendileri tarafından açılmış boşluklarda yaşantısını sürdüren organizmalardan kayalar içinde yaşayanlara denir. Sublitoral sahilde,su dışında ve ya bazen suyun örttüğü sahil şeridi üzerinde yaşayabilen ya da böyle bir ortama gereksinme gösteren organizmaların bulunduğu sahalardır. yaz Sıcaklık ,ışık, fotosentez Artar Prodaktivite Artar Oksijen Azalır Karbondioksit Artar Ph Azalır 1.Okyanus suları bugünkü durumunu nasıl kazandı? İlk varsayıma göre okyanusları oluşturan su kütlesi ilk atmosferden gelmiştir.ancak eğer bu varsayım doğru ise atmosferdeki element sayısının okyanus sularında bulunan element sayısının okyanus sularında bulunanlardan daha fazla olması gerekirdi. İkinci varyasıma göre yeryüzü sertleştiğinde orijinal suyun çoğu kimyasal olarak volkanik kayaçlara bağlıydı ve bu kayaçların ayrışmasıyla sular oluşur.deneysel kanıtlar ve doğa kanıtları volkanik kayaçların %5 civarında su taşıdığını göstermiştir. Üçüncü varsayım ise jeolojik zamanlar boyunca okyanus çukurlarında devamlı su ilave olduğunu kabul eder.okyanus çukurlarında biriken bu suyun kökenini mantodaki volkanik aktivite sonucu oluşan sıcak su buharı kaynakları ile volkanik kayaçlardan gelen su oluşturur. Bu teoriye göre soğumuş yer yuvarlağı üzerinde oluşan ilk okyanus çukurlarında biriken sular tuzsuzdu.ancak yağmur sularının nehirlerle buraya taşınmaları sonucunda tuzluluklarını kazandılar.zira yağmur suları önlerine çıkan çözünebilir tuzları da beraberinde okyanuslara taşır.deniz sularında bol bulunan uçucu maddelerin mantodan gelen volkanik aktiviteler sonucu suya karıştığı ve daha sonradan metal iyonlarıyla birleşerek tuzları oluşturdukları da düşünülmektedir. 2.150 yıl önce neden deniz biyoloji ile ilgili çalışmalara başlanmıştır İnsanların denizle iç içe yaşam sürmeleri denize merakı arttırmış ve denizle ilgili çalışmalar başlamıştır.deniz bilimlerinde mevcut boşluğu doldurmak için maksata uygun çalışmalar yapmak zorunlu hale gelmiştir.gerek coğrafi gerekse ekonomik ihtiyaçlar nedeniyle enstititü ve laboratuvarlar kurulmuştur.ayrıca 1920 yılından itibaren denizlerdeki araştırmalarda ses ve ultrases yöntemlerinden yararlanılmaya başlanmasıyla önceden yeknesak olarak düşünülen okyanus ve deniz diplerinin de çok değişik morfolojik özelliklere sahip olduğu kanıtlanmıştır. 3-sıcaklık ve yoğunluk arasında nasıl bir ilişki vardır somut bir örnekle açıklayın. Bir cismin hacminin kütlesine oranına yoğunluk denir.okyanus ve deniz sularının yoğunluğu yöresel ve derinliğe bağlı olarak değişir.yapılan araştırmalarda kutup bölegeleri ile tuzluluk değişimleri çok fazla olan bazı kıyısal bölgeler dışındaki tüm suların yüzey yoğunluk değişimlerinin sıcaklık değişimine paralel olarak geliştiği gözlenmiştir. Örn;sıcak bölge sularının yoğunluğu 1.022 gr/cm3 olduğu halde kutup bölgelerinde 1.027 gr/cm3 tür. 4.okyanus yüzeyi akıntılarının nedeni sonucu etkileri Yüzeysel akıntılar genellikle rüzgarların etkisi sonucu denizlerin yüzeysel tabakalarında oluşan akıntılardır.rüzgar orjinli olan bu akıntıların üzerinde sekonder kuvvetlerden olan koriolis kuvvetinin sürtünmemin ve deniz dibi şeklinin önemli etkisi olabilir.akıntının yönü sadece ekvatoriyal bölgede rüzgarın esme yönüne paralel halbuki koriolis nedeniyle kuzey yarım kürede sağa güney yarım kürede ise sola doğru rüzgarın dik yönüne saptırır.yüzey sularında 45 dereceye kadar olan bu sapma derinliğe paralel olarak genişler ancak akıntın hızı da sürtünme nedeniyle giderek azalır.işte rüzgar akıntılarının derinlikle değişimleri ekman spirali denilen bir şekille açıklanır.dalga ve çalkantılar özellikle sığ sularda önemli etkilere sahiptir.dalgalar rüzgarların etkileri yoğunluk değişleri ve atmosferdeki ani basınç değişimlerinden etkilenir 5.subtropikal bir bölgede yazın,100 metrede sıcaklık,tuzluluk ve sucul canlı aktivitesi nasıldır Subtropikal bölge ekvatorun üzerinde yer alır.dolayısıyla termik ekvatordan dolayı en sıcak sular bu bölgede rastalanır.yaz mevsimi olduğundan dolayı su sıcaklığı daha artar.denizlerde 100 metreye kadar olan kısım ışığın geçebildiği öfotik zondur. 100 metreden sonra ise oligofotik zon başlar ve bu kısım ışığı tam olarak alamaz.bu bölgede su sıcaklığı yüzeye göre düşsede gene de yaz mevsimi ve bulunduğu konum nedeniyle yüksektir.suyun sıcaklığının yüksek olması ce ışığın az olması nedeniyle bu kısımda o2 az co2 miktarı fazladır.co2 miktarı nedeniyle ph düşer.tuzluluk ise bu zonda minimuma düşer. besleyici elementlerin düşmesi ile birlikte canlılık faaliyetleri minimuma iner. 6.termik ekvator,sechidisk,albedo,öfotik zon,piknoklin nedir Termik ekvator Teorik olarak en sıcak sulara ekvatorda rastlanıcağı düşünülsede aslında bu suların ekvatorda değil bu bölgenin biraz güneyinde yada kuzeyinde bulunduğu saptanmıştır.buna göre mevsimsel olarak yer değiştiren ve okyanusların çoğu zama kuzey bölgesinde kalan bir termik ekvator mevcuttur. Sechi disk Işık geçirgenlik tayininde kullanılan en basit metottur.ip ile suya salınan bir diskin gözden kaybolduğu ve görüldüğü yerdeki uzaklık ortalamalarına göre ışık geçirgenliği belirlenir. Albedo Deniz yüzeyine gelen ışık miktarıyla yansıyan ışık miktarı arasındaki orana albedo denir.beyaz cisim ışığı tamamen yansıttığından albedosu 1,siyah renkli bir cisim ışığı tamamen absorbladığından albedosu 0 dır. Öfotik zon Denizler ışık mevcudiyetine göre dikey yönde tabakaya ayrılırlar.bunlardan öfotik zon yüzeyden itibaren 100 m derinliğe kadar olan su tabakasını içerir.fotosentez için yeterli ışığa sahip zondur. Piknoklin Okyanus ve deniz sularında yoğunluk derinliğe paralel olarak artar.bu artış düzenli olmayıp sıcaklığın paralel azalışında olduğunda olduğu gibi önce yavaş belli bir derinlikten sonra ani olarak fazlalaşır.termokline analog olan bu tabakaya piknoklin denir.      

http://www.biyologlar.com/deniz-biyolojisi-soru-ve-cevaplari

DENİZ BİYOLOJİSİ VİZE SORULARI

1- Denizlerde doğal sınırlar var mıdır? bu doğal sınırlar nelerdir ve faktörleri nelerdir? Doğal sınır,denizlerde veya okyanuslarda sıcaklık,ışık geçirgenliği,tuzluluk gibi fiziksel etkiler sonucunda meydana gelir.ışığın belli bir derinliğe kadar gelmesi fotosentetik canlıların bu ışığa göre kendi sınırlarını oluşturmasına neden olur aynı durum sıcaklık tuzluluk içinde geçerlidir.doğal sınırlar sonucu sucul ortamlarda tabakalaşmalar olmuştur. 2- Turbititenin olumlu ve olumsuz etkileri nelerdir? Organizmalar üzerindeki etkisi; 1.berraklığn azalmasıyla ışığın sudaki girişi azalır 2.fotosentez yapan bitkilerin ve diğer orgiyaşantısını sınırlandırır 3.solungaçların tıkanmasına neden olur.suyu süzerek aldıklarını alır 4.org.yatay ve dikey dağılışınd etkilidir Yüksek sularda asılı parçacık içeren balıkların gözlerinin çok küçüldüğü ve ya tamamen kaybolduğu,solungaç yapılarında bazı değişiklikler olduğu gözlenmiştir. 3- Işığın canlıların dağılımı üzerine etkileri nelerdir? Işığın şiddeti,süresi,ve yapısı sularda oluşan fotosentez olayında doğrudan etkilidir.özellikle şiddeti ile birincil üretim yakından ilgilidir.ve denizlerdeki optimum fotosentez ışık şiddetinin 1/3 düştüğü 25 metre civarındaki derinlikte oluşur.ancak fotosentez olayında ve dolayısıyla birincil üretimin oluşumunda çevresel faktörlerden sıcaklığında etkisinin olduğu saptanmış olup belli dereye kadar olan sıcaklık artışına paralel fotosentezin hızlandığı ve belli sıcaklıktan sonra da yavaşladığı izlenmiştir. Ayrıca bentik alglerin boylarının büyümesinde ve morfolojisinde rol oynar, hayvanların solunumunu hızlandırır,bentik ve planktonik alglerin dikey ve yatay yönlerdeki dağılışları gelişir. 4- med-cezir ve upwilling olaylarının canlılardaki bolluk ve dağılıma etkileri nelerdir? Med cezir Ay'ın ve Güneş'in yeryüzündeki çekim farkından doğan alçalma ve kabarma olayıdır. olmasaydı Ay ışığında etkinliğini sürdüren canlılar gelişmezdi. Bilindiği gibi, bazı canlı türleri üreme için Ay’ın evrelerini izlemektedirler. Dünya’da yaşam oluşmazdı. Dünya sadece Güneş’in varlığı ile oluşan mevsimler, rüzgarlar ve yağmurların var olduğu boş bir gezegen olurdu. Deniz suyunda hareketlere yol açar. Gelgit alanındaki hayvanlar ve bitkiler, hayatta kalabilmek için bazı özel nitelikler taşımak zorundadır. Günde iki kere su dışında ve güneşte kaldıkları için bu canlılar kurumaya karşı dirençli olmalı ve büyük sıcaklık farklarına dayanabilmelidir. Tatlı sudan (çünkü sular çekildiğinde yağmur yağabilir) etkilenmemeleri ve nihayet dalgaların yıkıcı gücüne karşı da dirençli olmaları gerekir. Upweling olayı akarsular yoluyla denizlere veya okyanuslara dökülen dipte bulunan organik maddelerin(minerallerin) su yüzeyine çıkmasını buda su yüzeyinde pasif olarak yer değiştirebilen plantonik organizmalar için besin kaynağı olmakta aynı zamanda da balıklarda organik madde ihtiyaçlarını böyle karşılıyor ve bu organik maddelere göre dağılış gösteriyorlar. 5- Euroaerobiont , stenohalin canlılar denizel ekosistemin neresinde yaşar? Euroaerobiont formlar çeşitli O2 değişimlerinde yaşantılarını rahatlıkla sürdürebilirler Stenohalin formlar belli tuzluluk derecelerinde yaşayabilirler. (düşük,orta ve yüksek tuzlulukta yaşayabilirler)örneğin: tropikal ve ılıman bölgelerde 800_1000 m derinliğe doğru tuzluluk minimumdur.(kutup ılıman ve tropikal bölgelerde) 6- Tuzluluğun hayvan ve bitkilere etkileri nelerdir? Bir türün düşük tuzlulukta yaşayan bireylerinin boyu,genellikle yüksek tuzlulukta yaşayan bireylerin boyundan iri olduğu gibi morfolojik yapılarıda değişik olmaktadır.morfolojik yapılarından; deri türevlerinde,kalkerleşme oranında,pigmentasyonda,vücut şekli ve üyeleri üzerinde de değişimlere sebep olmaktadır.ortamda oluşacak tuzluluk değişimleri bitkilerle deniz suyu arasında oluşan osmatik dengeyi bozar. Bazı bitkiler bu dengeyi hemen sağlayabildikleri halde,bazıları hemen sağlayamayarak ortadan kalkarlar.omurgasız hayvanlar yada balıklar ortamlarında oluşan tuzluluk değişimleriyle ilgili olarak ortaya çıkan konsantrasyon değişimlerine metabolik regülasyon sayesinde karşı koymaları alglerde olduğu gibi iyon regülasyonu, hacim regülasyonu ve osmoregülasyon ile sağlanırİyon regülasyonu org.vücut boşlukları ile hc.lerinde bulunan sıvıyla dış ortamdaki özel iyon alışverişiyle sağlanır. Hacim regülasyonu bazı hay.ortam sıvısının kons.göre vücut hacimlerini ayarlama sayesinde gerçekleştirilir. Osmoregülasyon org.vücut sıvısı,hc.sıvısı ve ortamları arasındaki osmatik basıncı dengede tutmasıyla sağlanmakta. 7- Euroterm , stenobat canlılar denizel ekosistemin neresinde yaşar? Euroterm çok geniş sıcaklık değişimlerinde yaşarlar(yüzeysel tabakada,termoklin tabakada,ve derin su tabakalarında) Stenobat ancak belli basınçlarda yaşantılarını sürdürebilirler.(örnek: mikroalgler öfotik zonun altındaki derinliklerde gösterdikleri bilinmektedir.ayrıca bentik türler yönünden 200m civarının;planktonik türler yönünden ise 3000m civarının en zengin olduğu görülür.derin deniz diplerinde azalır.) 8- Epibiont , Holoplankton , Abissol , Nanizm , stenooksibiont , Gigantizm , Meroplankton , Eurobat , Endolit , Sublitoral terimlerini tanımlayınız? Epibiont substratum üst yüzeyinde yaşantısını sürdüren form Holoplankton tüm yaşamını pelajikte geçiren zooplanktondurlar.diple İlişkisi yoktur. Abissol 4000_7000m derinlikteki pelajik zon Nanizm ekvatordan kutuplara doğru yada yüzeyden dibe doğru giderken sıcaklık artışına paralel olarak hayvanlarda gözlenen boy küçülmesine denir. Gigantizm ekvatordan kutuplara doğru yada yüzeyden dibe doğru giderken sıcaklık azalışına paralel olarak hayvanlarda gözlenen boy artışına denir. Stenooksibiont belli O2 değişimi aralığında yaşayabilenler. Meroplankton yaşamının bir ve ya birkaç evresinde pelajikte yaşarlr. Eurobat çeşitli basınç değişimlerinde yaşantılarını sürdürebilirler Endolit substratumda kendileri tarafından açılmış boşluklarda yaşantısını sürdüren organizmalardan kayalar içinde yaşayanlara denir. Sublitoral sahilde,su dışında ve ya bazen suyun örttüğü sahil şeridi üzerinde yaşayabilen ya da böyle bir ortama gereksinme gösteren organizmaların bulunduğu sahalardır. Sıcaklık ,ışık, fotosentez Artar Prodaktivite Artar Oksijen Azalır Karbondioksit Artar Ph Azalır

http://www.biyologlar.com/deniz-biyolojisi-vize-sorulari

Yapay genler kullanılarak ilk kez yapay enzimler üretildi!

Yapay genler kullanılarak ilk kez yapay enzimler üretildi!

Bilim insanları, ilk defa, doğada bulunmayan yapay/sentetik genetik materyalleri kullanarak enzimler üretmeyi başararak bilim tarihinde çığır açtılar. Bu heyecan verici çalışma sadece Dünya’da yaşamın başlangıcıyla ilgili yeni bilgiler vermiyor; aynı zamanda Dünya dışı yaşamla ilgili de önemli çıkarımlar yapabilmemize izin verecek. Araştırma sonuçları Nature dergisinde yayımlandı.Araştırmanın temelleri daha önceden İngiltere’de yapılan bir çalışma sonucunda üretilen sentetik DNA’lara dayanıyor. Bilindiği üzere DNA ve onun yakın kuzeni RNA, Dünya üzerindeki bütün canlıların içerisinde, onların genetik bilgilerini taşıyan moleküllerdir. Sentetik genetik malzemeler ise DNA ve RNA’da bulunan yapıtaşlarını kullanarak üretilir; ancak normalde bu moleküllerde olanın aksine, bilim insanları bu genetik malzemenin içerisine başka molekülleri de katabilirler. Bu işlem sonucunda oluşan moleküllere XNA adı veriliyor: yani xeno (yabancı) nükleik asit. Bu yapay genetik malzemenin de, doğal versiyonu gibi genetik bilgiyi taşıyıp aktarabildiği tespit edildi.Her ne kadar DNA, RNA ve proteinlerin, enzimleri üretebilecek yegane unsurlar olduklarına yaygın biçimde inanılıyorsa da, aynı araştırmacılar sentetik enzimlerin XNA’lar kullanılarak üretilebileceklerini gösterdiler. “XNAzimler” olarak isimlendirilen bu moleküller, tıpkı doğal enzimler gibi, RNA’yı parçalarına ayırıp o parçaları tekrar birleştirmeyi başarıyorlar. Hatta bu sentetik enzimlerden bir tanesinin, XNA’yı bile parçalayıp birleştirebildiği tespit edildi!Enzimler, doğanın hızlandırıcılarıdırlar (katalizör). Dünya’daki yaşam için temel yapılardır, çünkü neredeyse tüm biyokimyasal tepkimeler, doğal ortamların sıcaklıklarında son derece verimsiz ve yavaş çalışırlar. Bu nedenle enzimler, DNA’nın sentezlenmesi ya da besinlerin parçalanması gibi biyokimyasal tepkimelere hız verirler ve yaşamın sürdürülebilmesi için gerekli olan hızlara ulaşabilmelerini sağlarlar.Her ne kadar enzimlerin önemli bir kısmı proteinlerden oluşsa da, bazı RNA moleküllerinin de katalitik (hızlandırıcı) faaliyet gösterdiği tespit edilmiştir. Günümüzde yaygın bilimsel kanıya göre, genetik bilginin en erken formları, muhtemelen RNA-benzeri moleküllerdi ve kendi kendilerini kopyalayabilme yetenekleri olduğu için Dünya’da yaşamın başlangıcına izin verdiler. Bu nedenle bu çalışma, yaşamın başlangıçtaki ilk adımlarına ait bazı kesitleri yeniden yaratabilmemiz açısından önem taşıyor. Dahası bu araştırma, yaşamın DNA veya RNA olmaksızın da başlayabileceğini bize gösteriyor. Bu önemli, çünkü bu iki molekülün yaşamın başlayabilmesi için gerekli olduğu düşünülüyordu. Baş araştırmacı Philip Holliger şöyle söylüyor:“Bizim çalışmamız, prensipte, doğanın moleküllerine birden fazla alternatif olabileceğini gösteriyor. Yani yaşamın DNA ve RNA’yı başlangıçta katalizör olarak ‘seçmesi’, tarih öncesi kimyanın basit bir hatasından ibaret olabilir. Bu da, diğer gezegenlerde yaşamın farklı moleküler omurgalar üzerine inşa edilebileceği fikrini doğuruyor. Bu durum, üzerinde yaşam barındırabileceğini düşündüğümüz dış gezegenlerin sayısını arttırmamızı sağlıyor.”Araştırmacıların söylediğine göre bu çalışma aynı zamanda birçok hastalığa yeni tedavi yöntemleri geliştirebilecek bir akımın başlangıcı demek olabilir. Dr. Holliger’ın anlattığına göre, kanserli hücrelerdeki veya virüslerdeki genler tarafından üretilen RNA’yı parçalayabilen XNA’lar üretilebilir. Ayrıca XNA’lar doğada bulunmadıkları için, vücuttaki diğer enzimler tarafından tespit edilip parçalanmaları da pek mümkün gözükmüyor.Kaynaklar ve daha fazla detay için;1.Nature2.University of Cambridge3.IFLS4.EAhttp://www.medikalakademi.com.tr

http://www.biyologlar.com/yapay-genler-kullanilarak-ilk-kez-yapay-enzimler-uretildi

İnfluenza B virüsü önem kazandı

İnfluenza B virüsü önem kazandı

Gribal enfeksiyonların arttığı devreye girmeden önce, İ.Ü. İstanbul Tıp Fakültesi Ulusal İnfluenza Referans LaboratuvarıSorumlusu Prof. Dr. Selim Badur ile gripten korunma ve yeni aşılar hakkında konuştuk.MT:Gripte aşılama için doğru zamanlamada değişiklik oldu mu? S. Badur Grip görülme sıklığı kış aylarında artıyor ancak, ülkemizde Ocak ayında aşılamanın hatta geri ödemenin sona erdiğini görüyoruz. Grip yalnızca Kasım, Aralık aylarında görülmüyor, önemli bölümü Ocak’ta başlıyor. Avrupa ülkeleri grip sezonu devam ettiği sürece aşılamanın yapılmasını önermekte, bizde de öyle olması gerekiyor ancak bu süreci uzatmayı henüz başaramadık. MT:Aşılama önerilerinde enriskli gruplar hangileri? S. Badur DSÖ, 2005 yılında en riskli grupları sırayla; yaşlılar, kronik hastalığı olanlar, sağlık çalışanları,bakım evlerinde görev yapanlar, yüksek risklilerle temas halinde olanlar ve 623 aylık çocuklar olarak belirlemişti. 2012 yılında önemli bir değişiklik yaparak gebeleri ilk sıraya aldı,diğer grupları da; sağlık çalışanları, 659 aylık çocuklar,yaşlılar ve yüksek riskli bireyler olarak değiştirdi. Pek çok ülkede sağlık çalışanlarının aşılanması için değişik yaptırımlar uygulanıyor. Aşı etkinliği de en çok gebeler ve sağlık çalışanları üzerinde görülüyor. Bağışıklama Uygulamaları Danışma Komitesi (ACIP), 2013-2014 sezonundan itibaren, inaktif kuadrivalan aşının kullanılabilir olduğunu ve trivalan aşı yerine tercih edilebileceğini tavsiye ediyor. Ayrıca,intranazal formu canlı influenza aşısı gebelerde kulanılmamalı.MT: İnfluenza virüsleri arasındaki farklar neler?S. Badur Günümüze kadarkullanılan trivalan aşılar; influenza A/H1, İnfluenza A H3 ve influenza B suşlarından oluşuyor. İnfluenza B’nin, Yamagatave Victoria olarak iki tipi var ve bu iki tip arasında influenza A’da olan çapraz koruma yok. Bu güne kadar hep influenza A üzerinde duruldu ve influenza B çok fazla önemsenmedi. Bu iki tip arasındaki farklılık dolaşımdaki suşların çeşitliliği konusunda ortaya çıkıyor.1990’lı yıllarda aşıların her iki farklı influenza B’yi içermeleri üzerinde çalışılmaya başlandı.İnfluenza B’deki iki tipin uyumsuzluğu anlaşıldıktan sonra dörtlü aşı gündeme geldi. Önce ABD’de intranazal sprey şeklinde dörtlü canlı aşı çıktı. İnaktif aşıda da GSK ve Sanofi tarafından araştırmalara başlandı. Bu yıl GSK’nın dörtlü aşısı hem Dünya’da hem de Türkiye’de kullanılmaya başlanacak.MT:Trivalan ve kuadrivalanaşının özellikleri neler?S. Badur Trivalan aşıdatek bir influenza B tipi vardır. Kuadrivalan aşı ise influenza B’nin her iki tipini de içerir.Üçlü aşıda tek bir influenza B soyunun olmasından ve hangi B soyunun dolaşıma gireceğinin tahmin edilememesinden dolayı her iki influenza B soyunun aşıya eklenmesi fikri ile dörtlü aşı çalışmaları gerçekleşti. Her iki B virüsü soyu (Victoria ve Yamagata)ile bağışıklama yapma olanağı doğdu. Böylece trivalan aşı kullanımı sırasında karşımıza çıkabilen ve aşı içeriğinin dolaşımdaki influenza B soyununun örtüşmemesinden kaynaklanan etkinlik sorununun üstesinden gelinmiş olunacak.http://www.medical-tribune.com.tr

http://www.biyologlar.com/influenza-b-virusu-onem-kazandi

‘Çanta Laboratuvar’ ile erken kanser teşhisinde devrim gibi gelişme

‘Çanta Laboratuvar’ ile erken kanser teşhisinde devrim gibi gelişme

Kanserin erken teşhisi tedavi başarısı için hayati önemi sahip ama yeterli teknolojiye sahip olmayan ülkeler için durum çok zor. Erken teşhis için gereken teknolojilere sahip olmayan gelişmekte olan ülkeler için yeni bir çözüm geliyor. İngiltere merkezli bilim insanları bu tür bölgeler için erken teşhisi kolaylaştıracak bir alet çantası hazırladılar. “Çanta içinde laboratuvar” olarak adlandırılan düşük maliyetli taşınabilir bu cihaz tıpkı gebelik testi gibi; kanserin biyo-göstergelerini 15 dakika gibi kısa bir sürede teşhis edebilecek.DSÖ’ye göre, Dünya’daki kanser ölümlerinin %70’i Afrika’da, Asya’da, Orta ve Güney Amerika’da gerçekleşmektedir. Bu fakir bölgelerde bu pahalı laboratuvar teknolojilerine ulaşmak oldukça zor olabiliyor. İşte bunun için, Birleşik Krallık Loughborough Üniversitesi’nden bilim insanları kullanımı kolay ucuz ve bir teknoloji geliştirdi. Bu sistem 4 ana parçası ile küçük bir alet çantasına sığdırılmıştır;– USB tarafından çalıştırılan ve test şeritlerini resme aktaran bir film tarayıcı,– Gerçek zamanlı bilgi analizlerini taşıyabilen bir bilgisayar,– Reaktiflerle dolu analiz plakaları– Aynı anda 80 test yapma olanağı sunan çoklu enjektörler.Değişik bir şekilde; insan saçının kalınlığında mikro-akışkan test şeritleri ve mikroskobik tüplerin görüntülemesi vasıtasıyla, sistem kanseri çeşitli biyo-göstergelerinden ve bir kan numunesinden yola çıkarak 15 dakika içerisinde teşhis edebilmekte, hamilelik testleri de benzer şekilde çalışmaktadır. Bu şeritler; Loughborough Üniversitesi tarafından test edilmiş, prostat kanserinin teşhisinde ayrı bir değere sahip olduğu açıklanmış, potansiyelini farklı alanlarda test etme konusunda da kendi takımlarını motive etmiştir.Bunların hepsini küçük ve elverişli bir çantaya sığdırmaktan başka; araştırmacılar bu sistemin en değerli özelliklerinden birinin tüm kanı, numune hazırlama ihtiyacı duymadan test edebilmesi olarak yorumlamış: bunca işlemin laboratuvar dışına çıkması düşüncesini gerçekleştirmenin zorluğunu da dile getirmiştir. Dr. Nuno Reis, bu durumu: “Bu taşınabilir laboratuvar gerçekten bir fark yaratabilir. Genellikle gelişmekte olan ülkelerde kanserin erken teşhisi oldukça zor olduğundan, bu test sayesinde kanserin erken teşhisi kolaylaşacaktır. Bu test bulaşıcı hastalıklar ve alerjenlerin erken teşhisi için de geliştirilmiştir, ” şeklinde yorumlamıştır.Bu araştırma “Lab on a Chip” dergisinde yayınlandı. http://www.medikalakademi.com.tr

http://www.biyologlar.com/canta-laboratuvar-ile-erken-kanser-teshisinde-devrim-gibi-gelisme

Anadolu Dağ Turnalarına Uydudan Takip

Anadolu Dağ Turnalarına Uydudan Takip

Doğa Koruma ve Milli Parklar Genel Müdürlüğü (DKMP); “Ulusal Turna Eylem Planı” kapsamında Sivas ve Erzincan’da bulunan Anadolu Dağ Turnalarını uydu vericilerle takip altına alıyor.Türkiye,turnanın kuluçkaya yattığı kışladığı ve göç sırasında konaklama alanı olarak kullandığı yeryüzündeki nadir ülkelerden biridir. Sayıları giderek azalan turnaların Türkiye’deki nüfusunun ve yaşam alanlarının korunması için yönetim araçları ve koşullarının geliştirilmesi hedeflenerek geçtiğimiz yıl DKMP Genel Müdürlüğü’nce “Ulusal Turna Eylem Planı” hazırlandı.Dünya’da 15 türü bulunan turnalardan Anadolu dağ turnası, Telli turna ve Allı turnaya Türkiye’de de rastlanıyor. Bunlardan Anadolu dağ turnasının yaklaşık 20 çiftinin ülkemizde ürediği biliniyor. Sivas, Erzurum, Erzincan, Muş, Van, Samsun, Adıyaman ve Bolu illerinde ürediği bilinen ve nesli tehlike altında olan bu türün korunması ve izlenmesi amacıyla takılan uydu vericileri ile turnaların kışlama ve üreme alanlarının tespit edilmesi planlanıyor. “Ulusal Turna Eylem Planı” kapsamında Uluslararası Turna Vakfı (ICF) ve Almanya Turna Koruma Vakfı (CCG) ile işbirliği yapılarak yabancı uzmanlar ve DKMP Genel Müdürlüğü merkez ve taşra personelinin katılımıyla 2014 yılı içerisinde başlayan Ulusal Turna Eylem Planı kapsamında belirlenen alanlarda turnaların sayım çalışmaları 2015 yılında da devam ediyor. 2014 yılında Sivas’ta bulunan Anadolu Dağ Turnaları’nın uydu vericilerle takip altına alınması maksadıyla 3 bireye uydu,1 bireye radyo vericisi takılarak toplam 8 birey halkalanmıştı.2015 yılı turna sayım çalışmaları ise 1 Temmuz’da başladı. 9 Temmuz’a kadar devam edecek olan arazi çalışmalarında geçtiğimiz yıl olduğu gibi turnalara uydu verici ve halka takılacak.Çalışmanın ilk gününde 6 yavrunun 4’üne uydu verici takıldı ve 6’sı da halkalandı. Arazi çalışmaları tamamlandığında toplam 6 bireye uydu vericisi takılması planlanıyor.http://www.milliparklar.gov.tr

http://www.biyologlar.com/anadolu-dag-turnalarina-uydudan-takip

Çamlarda Süpernova İzlerimi Var ?

Çamlarda Süpernova İzlerimi Var ?

Japon ekibin izini ağaç halkalarında bulduğu kozmik bir olayın niteliğini, ABD’den astronomi meraklısı öğrenci mi buldu? Daha ilkokulda öğretildiği üzere, ağaçların yatay kesitlerine baktığımızda, her biri bir yılda oluşmuş iç içe halkalar görürüz. Uzmanlar bir yöredeki ağaçların halkalarının sırasını ve genişliklerini dikkatle inceleyerek her bir halkanın tam olarak hangi yılda oluştuğunu bulabilir (Şekil 1). Şekil 1. Dendrokronoloji yöntemiyle bir yöredeki birçok ağaç (ve ahşap) örneği karşılaştırılarak her bir halkanın yaşı bulunur. Büyütmek için üzerine tıklayınız. (Kaynak: ABD Ulusal Okyanus ve Atmosfer Bilimi Dairesi) Japonya’nın Nagoya Üniversitesi’nden Profesör Toşio Nakamura ve ekibi bu yöntemi, M.S. 750-820 yılındaki atmosferde ne kadar radyoaktif karbon atomu bulunduğunu belirlemek için kullandı. Bu tarihlerin özelliği şuydu: Daha önce yapılmış bir araştırmada, binlerce yılın her bir 10 yıllık diliminde Dünya atmosferindeki karbon-14 oranı belirlenmişti. Bahsi geçen yıllarda önemli bir artış görülmüş ama bunun sebebi henüz araştırılmamıştı.   Şekil 2. Japon çamlarının bilinen en yaşlı örneği Comon-Sugi. Bu ağacın yaşına dair tahminler 2000 ile 7200 yıl arasında. (Kaynak: Flickr, JoshBerglund19) Ağacın içlerinden, buzun diplerinden gelen veriler Japon ekip öncelikle bu artışın tam olarak hangi yılda meydana geldiğini bulmak için Japon çamlarının (Şekil 2) halkalarınındaki karbon-14 oranını inceledi. Bu yöntem, her bir halkanın oluşum yılında Dünya atmosferindeki göreli karbon-14 oranını verir. Oluşum yılından sonra halkanın atmosferle alışverişi kalmadığından karbon-14 miktarı yalnızca bu radyoaktif izotopun bozunmasıyla değişir. Bu bozunmanın hızı bilindiğinden oluşum zamanındaki karbon-14 oranı hesaplanabilir. Nakamura ve ekibi iki Japon çamı ağacının her bir halkasındaki karbon-14 oranının değişimini hesapladı ve özellikle 774-775 yıllarındaki halkada bu değerin sıçradığını gördü (Şekil 3). Bu değişimi 10 yıla ortaladıklarında da kendilerinden önceki verilerle uyum sağladığını gördüler. Yani bu değerler muhtemelen aynı olayın etkilerini gösteriyordu. Ekip ayrıca bu değeri Japonya’nın Antarktika’daki araştırma merkezinde buzdan elde edilen bulgularla kıyasladı. Bu kıtaya yağan kar, her sene önceki buz tabakasının üzerinde yeni bir buz tabakası meydana getirir. Dolayısıyla daha derindeki buz daha önceki yıllara aittir ve bu buzlar geçmiş çağların atmosferine ve önemli atmosfer olaylarına dair izler barındırır (Şekil 4). Meselâ, bilinen yanardağ püskürtmelerinin de izleri bu buzlarda bulunur. Bu izler her bir buz tabakasının hangi yıllarda oluştuğunun, ağaçlardaki çemberler kadar kesin olmasa da, tayin edilmesini sağlar. Şekil 3. Tek bir ağacın değişik yıllara ait halkalarının karbon-14 oranlarındaki değişimdeki ani artıl 775 yılına denk geliyor. (Miyake vd., 2012′deki değerlere göre yeniden çizildi.) Bu şekilde 775 yılları civarında oluşmuş buz tabakasını inceleyenler bu tabakada berilyum-10 artışı gözlemişlerdi. Bu da kozmik olaylar sırasında artan bir berilyum izotopu olduğundan Nakamura’nın ve ekibinin sonuçlarını destekledi.   Güneş’ten mi yoksa bir süpernovadan mı? Nakamura ekibinin ölçümleri Japonya’dan, onlardan önceki 10 yıllık değerler Kuzey Amerika ve Avrupa’dan, buz ölçümleri ise Antarktika’dan geliyor ve birbirini destekliyordu. Bu da bunlara sebep olan olayın yerel değil, tüm gezegeni etkileyen, muhtemelen uzaydan gelen, kozmik bir hadise olduğunu düşündürüyordu. Akla önce Güneş’in her 11 yılda bir tekrar eden alevlenmeleri geldi. Bu alevlenmelerin ağaç halkalarında karbon-14 artışına sebep olduğu biliniyor. Hattâ önceki ölçümlerden bu artışın oranı da biliniyor, ve bu oran araştırmacıların şimdiki bulgusunun yirmide biri. Dolayısıyla sebep buymuş gibi görünmüyor. Şekil 4. Japon bilimcilerin Antarktika’da 1850 metre derinden çıkardıkları, 140.000 yıllık buz kütlesi. (Kaynak: Dome Fuji İstasyonu sitesi) Diğer bir ihtimal ise Güneş’ten âniden gelecek yüksek sayıda proton. Ne var ki bu protonların çoğu Dünya’nın manyetik alanınca saptırılacağından Güneş’te bildiklerimizden çok daha büyük bir tepkimenin olması lâzım. Dolasıyla bu da mümkün görünmüyor. Son olarak araştırmacılar “acaba bu bir süpernova patlaması olabilir mi?” diye düşünüyor. Biliniyor ki süpernovalardan gelen gama ışınları, protonların aksine, manyetik alanından etkilenmeden Dünya’ya ulaşabiliyor. Bu ışınlar nötron oluşumunu tetikleyebilir; oluşan serbest nötronlar da bir azot atomunun protonunun yerine geçerek onu karbon-14 atomuna çevirebilir (Şekil 5). Miktarı böylece atmosferde artan karbon-14 atomları, ağaç çemberlerinde iz bırakabilir. Bu iyi bir fikir; ama bilinen süpernova patlamalarından sonra böyle bir etki görülmemiş. Dahası, süpernova patlamaları astronomların gözleyebildikleri hadiseler olmakla birlikte araştırmacılar 774-775 yıllarına ait bir süpernova patlaması gözlemi bulamamışlar. Üstelik, o zaman gözden kaçmış olsa bile hiç değilse bugün kalıntıları hâlâ gözlenebiliyor olmalıydı, ama yok. Nihayet Japon ekip olayı yılına kadar tespit edip kaynağını bulamadan araştırmalarını yayınlamak zorunda kalmış. Şekil 5. Atmosferdeki azot atomunun, gama ışınlarının yarattığı nötron ile tepkimeye girerek karbon-14 atomu vermesi. (Wikipedia’dan değiştirilerek alındı.) Derken, ABD’li öğrenci Jonathon Allen, internette bir kopyası yayınlanan Anglo-Sakson Kronolojisi adlı 9. asır eserinde bunun muhtemel bir izini bulmuş. İngiltere tarihini yıl yıl ele alan bu eserde 774 yılında ‘gökte, günbatımından sonra görülen kırmızı bir haç’tan bahsediliyor. Astronomi meraklısı biyokimyacı Allen’a göre bu görüntü, uzaydaki bir toz bulutunun ardında saklı bir süpernovaya ait olabilir. Çünkü toz bulutu bu süpernovadan gelen ışığı emebilir ve saçabilir. Böylece patlamanın Dünya’daki görüntüsünü kırmızı bir sızıntıdan ibaret olacaktır, neredeyse ‘kırmızı bir haç’ gibi. Üstelik aynı toz bulutu, süpernova kalıntılarının günümüzde gözlenememesini de açıklayabilir. Allen’ın iddiasını sınamak nasıl mümkün olabilir bilmiyorum. Ama diğer bulgularla şimdilik uyumluk görünüyor. Allen bence Japonlardan bir de rövanş almış gibi: 2008 yılında Cascadia bölgesinin 1700 yıllarındaki depremi ve yarattığı dalgaları inceleyen bilim adamları, bu depremin tam gününü Japon kaynaklarından öğrenmişti. Çok iyi kayıt tutan Japon tarih yazarları (vak’anüvisleri), 1700 yılında kıyılarına vuran ‘depremsiz tsunami’den bahsediyorlardı. Belki de bu sefer Japon bilim insanlarının buluşlarını Amerikalı biri tamamlamış olacak..   Kaynaklar F. Miyake vd., 2012. A signature of cosmic-ray increase in ad 774–775 from tree rings in Japan.Nature 486:240-242. (Nakamura ve ekibinin özgün makalesi) Nature Podcast, 3 Haziran 2012 (08.29′dan itibaren Nakamura araştırmalarını anlatıyor.) J. Allen, 2012. Clue to an ancient cosmic-ray event? Nature 486:473. (Allen’in Nature dergisine mektubu) Nature Podcast, 28 Haziran 2012 (18.20′den itibaren Allen bulgusunu anlatıyor.) Ağaç Çemberleri Laboratuvarı sayfası, Arizona Eyalet Üniversitesi (Ağaç halkalarının yaşının belirlenmesi) The Anglo-Saxon Chronicle : Eighth Century. Avalon Project, Lillian Goldman Hukuk Kütüphanesi, Yale Üniversitesi. Şekil 1: ABD Ulusal Okyanus ve Atmosfer Bilimleri Dairesi sitesi Şekil 2: Flickr, JoshBerglund19 Şekil 4: Dome Fuji İstasyonu sitesi Şekil 5: Wikipedia‘dan değiştirilerek alındı. Yazar hakkında: Çağrı Yalgın Bornova Anadolu Lisesi ve Marmara Üniversitesi Tıp Fakültesi ve Saitama Üniversitesi mezunu. Japonya'daki RIKEN Beyin Bilimleri Enstitüsü'ndeki çalışmalarıyla doktora aldı. Sinirsel devrelerin kurulması için sinir hücrelerinin aldıkları şekillerin altyapısını kalıtımsal yöntemlerle araştırıyor. http://www.acikbilim.com

http://www.biyologlar.com/camlarda-supernova-izlerimi-var-

Toprağa Adanmış Nice 20 Yıllara!

Toprağa Adanmış Nice 20 Yıllara!

20’nci yaşımızda “Toprak Yaşamdır” sloganıyla herkesi sürdürülebilir yaşama sahip çıkmaya çağırıyoruz. Sivil toplum örgütlerinin harekete geçirme ve birleştirici güçleriyle toplumları ayakta tutan güvenlik sigortaları olduğunu belirten TEMA Yönetim Kurulu Başkanı A. Doğan Arıkan, TEMA Vakfı’nın 20. Yılı nedeniyle yaptığı açıklamada şunları söyledi: “TEMA Vakfı’nın erozyon ve çölleşme ile mücadelede bilinç oluşturulmasına önemli katkı sağladığına inanıyoruz. Bunun en önemli göstergesi 20. yaşımızda BM Çölleşmeyle Mücadele Sekreteryası tarafından Dünya’da ilk kez verilen Land for Life - Yaşam İçin Toprak ödülünü ülkemiz adına almamızdır. Hiçbir karşılık beklemeden 20 yıldır yaşam üreten toprağa ve doğal varlıklarımıza sahip çıkan gönüllülerimize, destekçilerimize, çalışanlarımıza ve medyaya teşekkür ederiz”. 1992: Türkiye Çöl Olmasın İki toprak sevdalısı, Toprak Dede Hayrettin Karaca ve Yaprak Dede A. Nihat Gökyiğit, bundan 20 yıl önce TEMA Vakfı’nı kurdular. Amaçları Anadolu’da yaşanmakta olan erozyon ve çölleşme tehlikesine kamuoyunun dikkatini çekmekti. Hedefleri bu mücadelenin devlet politikası haline gelmesine katkı sağlamaktı. TEMA’nın “Türkiye Çöl Olmasın” sloganı toplumda büyük yankı uyandırdı. İlk kez önlem alınmazsa ülkemizin çöl olma tehlikesi ile karşı karşıya olduğu bu kadar yüksek sesle dile getirilmişti. TEMA Vakfı’nın kuruluş döneminde, doğa koruma konusu ülke gündeminde bugünkü kadar öne çıkmamıştı. Kamuoyu doğadaki bozulmaların farkına yeni yeni varmaya başlamıştı. Sosyal sorumluluk kavramı henüz gelişmemişti, iş adamları hayırseverlik adı altında çalışmalar yürütüyordu. 1992 Haziran’ında Brezilya’nın Rio de Janerio kentinde yapılan dünyanın ilk “Yeryüzü” Zirvesi, devletlerin insanın ekosistemler üzerinde yarattığı tahribatı kabul etmesi ve buna karşı verilen mücadeleleri küreselleştirerek ön plana çıkarması açısından önemli bir dönüm noktası oldu. Zirve, aynı zamanda sivil toplumun güçlü bir aktör olarak sahneye çıkmasında önemli rol oynadı. “Toprak Yaşamdır” sloganıyla bugün 20. yaşını kutlayan TEMA Vakfı, Rio Zirvesi’nden sadece birkaç ay sonra, 11 Eylül 1992 tarihinde kuruldu. 2012: Toprak Yaşamdır Bugün TEMA Vakfı, 450.000’i aşkın gönüllüsüyle, doğal varlıklara sahip çıkan, tehditlere karşı doğayı savunan önemli bir sivil toplum kuruluşu olarak, herkesi sürdürülebilir yaşama sahip çıkmaya davet ediyor. Gücünü gönüllülerinden alan TEMA Vakfı, kuruluşundan bu yana Mera ve Toprak Kanunlarının yasalaşmasını sağlamış, doğa koruma adına açtığı, müdahil olduğu 79 davayı kazanmış, yaklaşık 10 milyon fidanı ve 700 milyon meşe tohumunu toprakla buluşturmuş, 152 kırsal kalkınma, koruma ve ağaçlandırma projesini hayata geçirmiştir. TEMA, 20’nci yaşını “Toprak Yaşamdır” mesajıyla 2013 yılı süresince ülke genelinde yapacağı bir dizi etkinlikle kutlamaya devam edecek. Gönüllülerimiz, destekçilerimiz ve basınımızla birlikte nice yeni başarılara imza atacağımıza inanıyoruz. Sizleri de yaşama sahip çıkan TEMA Gönüllüleri arasına katılmaya çağırıyoruz. TEMA Vakfı 1992-2012

http://www.biyologlar.com/topraga-adanmis-nice-20-yillara

Kâğıt tüketimi hakkında: “Bir Bilinçlenme Çağrısı”

Kâğıt tüketimi hakkında: “Bir Bilinçlenme Çağrısı”

Dünya’daki kâğıt tüketiminin yarısı geri kazanılsa, her yıl 8 milyon hektar orman alanının korunabileceğini, yani Türkiye’nin onda biri yahut Ege Bölgesi (85.000 km2) büyüklüğünde bir ormanlık alanın yok olmaktan kurtarılacağını biliyor muydunuz?Peki, Dünya üzerindeki ofis çalışanlarının tamamı dikkate alındığında, toplam tüketilen kâğıtların %45’inin (Yani yaklaşık yarısının!!!) çöpe atıldığını veya geri dönüştürülmemek suretiyle yabana gittiğini?Peki ya, her yıl Türkiye’de ortalama olarak hesaplandığında kişi başına 42 kilogram kâğıt tüketildiğini, tek bir insanın kâğıt, karton, broşür ve sair yaşamsal tüketimleri ile her yıl yaklaşık 7 adet ağacı tükettiğini biliyor muydunuz? Dünya’da her geçen bir dakikada 200 m2 ormanlık alanın tüketildiğini?Türkiye’de ve Dünya’da, yukarıda da belirtildiği üzere yoğun bir şekilde kâğıt tüketilmekte olmasına rağmen, bu yazıda vurgulanmak istenilen asıl sorun kâğıtların tüketilmesi değil YANLIŞ VE BİLİNÇSİZ bir şekilde tüketilmesidir. Bu yanlış tüketim, sonuçları düşünülmeksizin ve her geçen dakika devam ederek süregelmekte, nihayetinde de sonuçlarını yine insanoğlu üzerinde doğurmaktadır. Bu tüketim, yıldan yıla ve hatta günden güne artmakta ve tam bir katliama dönüşmektedir, bu katliamı ise üzerinde yaşadığımız dünyanın bir parçası olarak bizler elbirliği ile gerçekleştirmekteyiz.Farkına varamadığımız en acı gerçek şudur ki; dünyamızın kaynakları sınırlıdır ve günden güne azalmaktadır.O halde, bu gerçek birçok kişi tarafından biliniyor olmasına rağmen, nasıl yanlış kâğıt tüketiyoruz?Bilindiği üzere, kâğıt tüketiminin en çok gerçekleştiği alan “iş” alanıdır. İş alanında kâğıt tüketiminin kişi bazında hesaplanması durumunda, bir kişinin günlük olarak ortalama 0,7 kg. İle 0,9 kg. arasında, yani yaklaşık 140-180 adet kâğıt tükettiği gibi üzücü bir gerçekle karşılaşmaktayız. Kâğıtları tek taraflı olarak kullanmak, hatalı olarak basılan, işi biten ya da işe yaramayan kâğıtları doğrudan yırtmak suretiyle çöpe atmak, üzerinde düşünmeden birçok belgeyi yazdırmak ve en önemlisi de, kâğıt tüketimi esnasında aynı zamanda nelerin tüketildiğinin ve doğaya nasıl bir zarar verildiğinin bilincinde olmaksızın yapılan tüm kâğıt tüketimleri yanlış kullanım için birer örnek teşkil etmektedir.Bir başka ve en büyük yanlışı ise, atık kâğıtların yeniden değerlendirilmemesi, geri dönüşüm sürecine dâhil edilmemesi oluşturmaktadır. Her gün, evlerimize gelen broşürler, yerlere rastgele atılan veya sokaklarda dağıtılan katalog ve ilanlar, geri dönüştürülmeksizin harcanmakta, hepimiz tarafından kullanılan kâğıtlar geri dönüşüm kutuları yerine çöpe atılmakta veya başka şekilde imha / deforme edilmektedir. Yasal olarak basılmayan (korsan) kitaplar, başka amaçlarla kullanılan gazeteler ve düşüncesizce tüketilen naylon poşetler de geri dönüşüm sürecinden çıkmakta, doğaya büyük zararlar vermektedir.Hâlbuki yeniden değerlendirilmiş 1 ton atık kâğıt sayesinde, 2,3 m² ormandan 17 ağacın kesilmesine gerek kalmamaktadır. Ayrıca sudan 31.787 litre, elektrikten de 4.100 kilowatt tasarruf yapılabilmektedir.Önemle ve üstüne basa basa vurgulamak gerekir ki; gelişen teknik ve teknolojik imkânlar sayesinde, günümüzde kullanılmış kâğıttan %80 ile %100 oranında yeni kâğıt üretmek mümkündür. Bu nedenle kâğıt ve her türlü benzer ürünlerin geri dönüştürülmek üzere biriktirilmesi ve bireyler üzerinde bu bilincin yerleştirilmesi, sandığımızdan çok daha büyük yararlar sağlayabilecektir.Kâğıt tüketiminin en fazla olduğu bir başka alan ise okullardır. Özellikle üniversitelerde ve yüksek okullarda tüketilen kâğıtların miktarı ve kalitesi oldukça yüksektir. Okullarda tüketilen kâğıtlar ofis kâğıdı kalitesinde olmakla birlikte, ders notu, fotokopi gibi işlerde kullanılan kâğıtlar da tonlarla ifade edilmektedir.Okullarda kullanılmış (atık) kâğıtların toplanması ve mevcut kâğıtların verimli kullanılması kadar öğrencilerde, bilhassa da çocuklarda bu konularda bir alışkanlık sağlanması da çok önemlidir. Dolayısıyla kâğıtların geri kazanılmasında bir adım atılması halinde, geleceğe dönük hedefler için bunu okullardan başlatmak ve yarının yetişkinleri ve ebeveynleri olacak olan çocuk ve gençlerin bilinç kazanmasını sağlamak son derece yararlı olacaktır.“Yılda yaklaşık 700 milyon dolar harcanarak yurt dışından kâğıt satın alınan bir ülkede kâğıtlar verimli kullanılmazsa ormanların tahrip olacağı, ormanların insanların yegâne yaşam kaynağı olduğu ve sera gazını azalttığı çocuklarımıza öğretilmelidir.”*Her yıl dünyada ormanların %1,3’ü kâğıt üretiminde kullanılıyor. Bu miktar, 40 milyon hektara, yaklaşık olarak İsviçre'nin yüzölçümü büyüklüğünde bir alana tekabül ediyor. Ayrıca, bir de kâğıt üretilirken kullanılan enerji kaynaklarından bahsetmek gerek, keza kâğıt üretimi süreci ciddi anlamda enerji sarfiyatına sebep olmaktadır.Bir ton kâğıt üretimi esnasında; 2,4 ton odun, 440 ton su, 7600 kWh elektrik enerjisi gerekir. 1 ton kullanılmış kâğıt çöpe atılmayıp geri kazanıldığı ve kâğıt üretiminde tekrar kullanıldığı zaman ise, 17 adet yetişmiş çam ağacının kesilmesi, 36 ton sera gazı CO2 atmosfere atılması, 4100 kWh elektrik enerjisinin israf edilmesi, 267 kg kirletici gazın atmosfere atılması, 1750 litre fuel-oilin israf edilmesi, 3-4 m3 depolama alanı tasarruf edilmesi, 85 m2 ormanlık alanın tahrip edilmesi, 38,8 ton suyun israf edilmesi önlenir! Ve bu sayede (geri) kazanılan yalnızca tek bir ağaç, 6437 kilometre yol alan bir otomobilin havaya saldığı karbondioksiti emip yok edebilir!Özetle, kâğıtların tüketilmesinde israftan kaçınmak ne kadar önemliyse, kullanılmış kâğıtların geri dönüşümü için çaba göstermek ve bu sürece dâhil olmak da bir o kadar önemlidir. Eğer ki, kendimiz için olmasa dahi, bizden sonraki kuşaklar için üzerinde yaşadığımız Dünya'da yeşil rengi muhafaza etmek, bizlere kucak açan doğaya bir el uzatmak istiyorsak, kâğıt ve türevlerini kullanırken aşağıda da kısaca değineceğim davranış biçimlerini uygulamaya dikkat etmeliyiz:    •Yazışma, not, genelge, rapor ve fotokopi kâğıtlarının koşulların elverdiği ölçüde her iki yüzünü de kullanalım,•Yazıları CD, USB flash bellek veya diskette muhafaza edelim,•Büyük boyutlu fatura ve irsaliye belgeleri yerine küçük boyutlu olanları kullanalım,•Kâğıt torbaları ve dosyalarını tekrar tekrar ve hatta gerekirse tamir ederek kullanalım,•Mektuplaşmalarda zarfın üzerindeki etiketin üzerine gönderenin etiketini yapıştırıp tekrar tekrar kullanalım,•Fax yerine e-mail ile haberleşelim,•Bayram kartları ve davetiyeleri mümkün olduğunca zarfsız gönderelim,•Gerekli olmayan reklam ve broşürleri almayalım,•Kurum içi notları kâğıt yerine elektronik ortamda dağıtalım.•Kurum içinde evrakları basılı olarak değil, dijital olarak paylaşalım.•İnternet sitelerinden baskı almak yerine kısa yollarımıza ekleyerek arşivleyelim.•Matbu formlar yerine elektronik formlar kullanalım.•Arşivimizi fiziksel olarak dosyalamak yerine dijital olarak dosyalayalım.•Yazıcı ayarlarımızda kenar boşluklarını mümkün olan en aza indirelim.•Antetli kağıt kullanmak yerine, anteti mümkün ise yazıcıdan bastırmayı tercih edelim.•Benzer formları birleştirelim.•Faks gönderimlerimizde mümkün olduğunca basılı kapak sayfası kullanmayalım.•Dijital bir dokümanı faks göndermek için, baskı alıp fakslamak yerine dijital olarak faks çekebilen bir sistem kullanalım.•Faks almak için basılı olarak çıktı veren cihazlar yerine dijital olarak faks alabilen ve dijital çıktı verebilen bir cihaz ya da sistem kullanalım.•Eğer yazıcımız destekliyorsa ve kurum yazışma usullerinin imkân verdiği ölçüde varsayılan olarak çift yüzlü baskıyı seçelim.•Çıktılarda bir yüze iki sayfa basılacak şekilde çıktı alalım.•Gizliliği olmayan çıktı kâğıtlarının arkalarını da yine baskıda ya da müsvedde olarak kullanalım.•Dosyalamalarda mümkün olduğu kadar az kâğıt kapak ya da ayırıcı kullanalım.•Çıktılar için yazıcımızın desteklediği en düşük kâğıt gramajına sahip kâğıtlar kullanalım.•Kâğıt atıklarımızı çöp yerine MUTLAKA (mavi renkteki) geri dönüşüm kutularına atalım.•Kâğıt post-it yerine bilgisayarlarımız vasıtası ile hatırlatıcılar gibi yazılımları kullanalım.•Bir belgeden çıktı almadan önce en az iki kere kontrol edip bir hata olup olmadığını gözden geçirelim ve muhakkak çıktı alınması gerekiyorsa çıktı alalım.•Bürolarımızda, odalarımızda kâğıt kutuları kullanarak hatalı kullandığımız ve arkası boş olan kâğıtları biriktirelim, kullanılmamış kâğıda çıktı alınması gerekmeyen tüm yazdırma işlemlerimizi bu kâğıtlarla yürütelim.•Çok yüksek bir gizliliğe sahip değilse belgeleri işi bittiğinde atmak ya da yırtmak yerine geri dönüşüm kutularında biriktirelim. Keza bu belgeler mürekkebi silinmek suretiyle temizlenerek yeniden boş kâğıda dönüştürülmekte ve kullanılmaktadır. Evlerde kâğıtları verimli kullanarak ve kâğıt tüketimini azaltmak amacıyla ise;•Davet ve toplantılarda kâğıt tabak ve bardak yerine tekrar kullanılabilir porselen tabak ve cam bardaklar kullanırsak,•Paket yaparken yeni bir kağıt kullanmak yerine, bir takvim yaprağı veya gazete kağıdı kullanırsak,•Gerekli olmayan reklam ve ilan broşürlerini almazsak,•Hijyenik amaçlar için geri kazanılmış kağıtlardan yapılmış ürünler kullanırsak,•Gazete, dergi ve mecmuaları ortaklaşa kullanırsak,•Çocuklarımıza defter ve not kâğıtlarının her iki yüzünü de kullanmaları gerektiğini öğretirsek,•Alışverişlerde kâğıt torbaları yerine (yanımızda götüreceğimiz) bez torbaları kullanırsak, kağıt tüketimini azaltabilir ve son olarak,•BÜTÜN KÂĞIT ATIKLARIMIZI GERİ DÖNÜŞÜM KUTULARINA ATMAK ÜZERE BİRİKTİRİR VE DÜZENLİ OLARAK GERİ DÖNÜŞMELERİNİ SAĞLARSAK, HER YIL KURTARABİLECEĞİMİZ 8 MİLYON HEKTAR ORMANLIK ALANIN YİNE BİZLERE VE ÇOCUKLARIMIZA YEŞİL ALAN OLARAK KALACAĞINI UNUTMAZ VE BELKİ ÜZERİNDE YAŞADIĞIMIZ DOĞAYA KARŞI BORCUMUZUN BİRAZINI ÖDEMİŞ OLURUZ.Av. Arda İNAL21.03.2013 KAYNAKÇA* Kullanılmış Kâğıtların Geri Kazanılması - Kullanılmış Kâğıttan Kâğıt Üretimi, Prof. Dr. Mustafa ÖZTÜRK, Ankara, 2005* Orman ve Su İşleri Bakanlığı ile Orman Genel Müdürlüğü verileri* Wikipedia* Muhtelif İnternet Sitelerihttp://www.cekud.org.tr

http://www.biyologlar.com/kgit-tuketimi-hakkinda-bir-bilinclenme-cagrisi

Kuzeyin zirvesinde milyonlarca isim

Kuzeyin zirvesinde milyonlarca isim

İki haftadır Kuzey Kutbu’nda kayak ve kızaklarıyla ilerleyen 16 kişilik “Kuzey Işıkları” takımı, Kuzey Kutbu’nun zirvesine ulaştı. Greenpeace gönüllülerinden oluşan bu takım, “Kuzey Kutbu’nu Kurtar” kampanyasına katılan 2.7 milyon kişinin ismini dünyanın tepesine bıraktı. Kuzeyin zirvesinde milyonlarca isimCam bir kapsül içine konan isimler, Kuzey Kutbu’nda 4 kilometre derinlikte deniz tabanına yerleştirildi. Malezyalı bir çocuk tarafından yapılan bayraksa, bu kapsülün tam üzerinde duruyordu. Gönüllülerimiz, Kuzey Kutbu’nun koruma alanı ilan edilmesini talep etti.Kuzey Işıkları takımı dünyaya liderlerine ne mesaj verdi?Keşif gezisine katılan aktivistlerden Josephina Skerk bu uzun yolculuğa katılan tüm takım arkadaşları adına konuştu: “Dünyanın tepe noktasına gelip bu bayrağı dikerek, bu özel ve el değmemiş bölgenin herhangi bir ulusa ait olmadığını, Dünya’da yaşayan herkesin ortak mirası olduğunu vurgulamak istiyoruz. İsmi deniz tabanına yerleştirilen milyonlarca insanla birlikte bu bölgenin bir koruma alanı ilan edilmesini, petrol şirketlerinin Kuzey Kutbu’ndan uzak durmasını talep ediyoruz.”Burada bitmediGreenpeace’in Kuzey Kutbu’na gerçekleştirdiği bir haftalık keşif seferi sırasında Kuzey Buz Denizi Konseyi de ilk toplantısını yapıyordu. Keşif ekibinin Konsey’le toplantı talebi reddedildi. Bir hafta süren keşif seferi, Greenpeace’in 2012 Haziran ayından beri sürdürdüğü uluslararası ‘Kuzey Kutbu’nu Kurtar’ kampanyasının bir parçası. Greenpeace bu kampanyayla iklim değişikliği sonucu Kuzey Kutbu’nun hızla erimesine dikkat çekiyor ve bölgenin petrol şirketlerine ve endüstriyel balıkçılığa kapatılmasını talep ediyor. İklim değişikliği sonucu Kutup’taki buzlar eridikçe, Shell, Gazprom ve Statoil gibi petrol şirketleri, daha önce buzla kaplı olan alanlarda petrol aramak için hak iddia ediyor. Greenpeace’in kampanyasına bugüne dek 3 milyona yakın insan katıldı. İmzalar, Kuzey Buz Denizi’nde bir koruma alanı ilan edilmesini talep etmek için Birleşmiş Milletler’e ulaştırılacak.Kuzeyin zirvesinde milyonlarca isimÜnlü isimler de varKuzey Kutbu’nun derinliklerine yerleştirilen imzalar arasında dünya çapında ünlü müzisyen, oyuncu ve sanatçıların da isimleri bulunuyor. Türkiye’den kampanyaya destek veren Murat Boz’un ismi de bu kapsülün içindeydi. http://www.greenpeace.org/turkey

http://www.biyologlar.com/kuzeyin-zirvesinde-milyonlarca-isim

 
3WTURK CMS v6.03WTURK CMS v6.0