Biyolojiye gercekci yaklasimin tek adresi.

Arama Sonuçları..

Toplam 342 kayıt bulundu.

Viral Hepatit

Bütün dünyada oldukça yaygın bir hastalık grubu olan viral hepatitler, halk arasında "sarılık" olarak tanımlanıyor. Ancak sarılık, viral hepatitlerin yalnızca bir bulgusu. Karaciğer iltihabına yol açıyor Hastaların çoğu sarılık olmadan bu hastalığı geçiriyor. Viral Hepatit ;virüslerin yol açtığı karaciğer iltihabı. Virüsler vücuda kan yada ağız yolu ile girerek karaciğere yerleşip çoğalarak karaciğer hücrelerini hasara uğratıyor ve karaciğerin işlevlerini bozuyor. Bugüne kadar hastalık yapan beş tane hepatit virüsü saptandı. Bunlar A, B, C, D ve E tipi hepatit virüsleri. Viral Hepatit hastalığının belirtileri arasında aşırı halsizlik, çabuk yorulma, bulantı, kusma, çay rengi idrar, belirsiz eklem ve kas ağrıları, sarılık yeralıyor. Halk arasında bulaşıcı olarak biliniyor A ve E tipi viral hepatitler halk arasında "Bulaşışıcı Sarılık" olarak bilinen bir hastalık. Bulaşıcı sarılıkta ani başlayan ,belirgin işaretler veren hastalık tablosu oluşuyor ve kendiliğinden iyileşiyor. Koşulların kötülüğü tetikliyor Bulaşıcı sarılığa, koşulları kötü olan toplumlarda sık rastlanıyor. Bulaşıcı sarılığa neden olan A ve E tipi hepatit virüsleri hastaların dışkılarında bulunuyor. Dışkıların bulaştığı su ve yiyeceklerle yada yakın temas yolu ile geçiyor. Kan yolu temas sonucu bulaşma yok denecek kadar az. Bulaşıcı sarılığın en iyi tedavisi istirahat ,dengeli ve yeterli beslenme. Bulaşıcı sarılık, büyük oranda dışkı ve ağız yolu ile bulaşıyor. Bu yol ile bulaşmanın önlenmesi bir alt yapı sorunu. Kişisel korunmada ise,temizlik kurallarına dikkat etmek gerekiyor. En etkili kişisel korunma, hasta kişilerin sağlıklı kişilerle temasının denetlenmesi. Hastaya ait eşyaların kullanılmaması gerekiyor. Hasta kişilerin başkalarına kesinlikle yiyecek hazırlamaması gerekiyor. Kullanılan mutfak eşyası ,elbise ,çarşaf gibi eşyaların sabun ve sıcak suyla yıkanması gerekiyor. `Gizli sarılık` B,C,D tipi viral hepatitler, halk arasında "Gizli Sarılık" ya da "Kara Sarılık" olarak biliniyor. Gizli sarılık mikrobunu alan kişilerin bir kısmı bu mikrobu vücutlarında taşıyor ve başkalarına bulaştırıyor. Bu kişilere "taşıyıcı" deniliyor. Taşıyıcı olmak dahi ilerde siroz ve karaciğer kanseri gelişmesi için yeterli oluyor. Üstelik taşıyıcı kişilerin virüsü başka kişilere de bulaştırması toplumun geleceği açısından büyük bir sorun oluşturuyor. Gizli sarılık mikrobu, kan nakli,ortak enjektör kullanımı yada herhangi bir yolla kan teması, cinsel ilişki ve anneden bebeğe şeklinde yayılıyor. Gizli sarılıkta ani başlayan hastalıkta en iyi tedavi, istirahat, dengeli ve yeterli beslenme. Günümüzde eski yanlış inançların aksine ,bir çok değişik ilaçlarla sarılığın tedavisi yapılıyor. Gizli sarılıkta başlıca bulaşma , kan yoluyla olduğundan; kan yolu ile bulaşmaya yönelik önlemler alınmalı. Bunun için kan bankalarında ,hastane ve Kızılay`da virüs taramaları yapılıyor. Ortak iğne ya da enjektör kullanımından kaçınılmalı. Ayrıca her şüpheli cinsel ilişkide prezervatif kullanılmalı. Ailede sarılık geçiren kimse varsa ya da risk altındaki kişiler hekime başvurarak korunma sağlamalı.

http://www.biyologlar.com/viral-hepatit

Aids

AİDS insan vücudunun immün sistemini yok eden ve bir dizi belirtilerle karakterize olan bır immün (bağışıklık) yetersizlik sendromudur. ""Normal olarak immün sistemi beyaz kan hücreleri ve vücuda mikroplar girdiğinde bunları etkisiz hale getirmek üzere oluşan antikorlar meydana getirir. Bu hücrelere T hücre lenfositleri adı verilir. Aids Belirtileri: Uzun süreli açıklanamayan yorgunluk. Lenf nodüllerinin açıklanamayan şişliği On günden daha uzun süren ateş Gece terlemesi Açıklanamayan kilo kaybı Derideki renk bozulumu ve iyileştirilemeyen mukoz membran iltihapları ilerleyen açıklanamayan öksürük ve boğaz ağrısı. Nefes darlığı ilerleyen üşüme Devamlı ishal. Ağızda mantar enfeksiyonu Kolay yaralanma ve açıklanamayan kanama Zihinde karışıklık ve sonunda koma. AIDS'Iİ kişilerde HIV-I denilen virüs tipi bu T hücrelerinin içine girer ve çoğalmaya başlar. Daha sonra da bu hücreleri öldürür. AİDS'ti kişilerde bt. imha immün sistemi zayıf bir hale getirir. Bu durumda ayrıca değişik enfeksiyonların ve tümörlerin ortaya çıkışı da kolaylaşır. HIV-I virüsüne ayn zamanda HTLV-III LAV ARV virüsleri de denilir Virüs değişik yollarla örneğin damardan kirli iğne-lerle yapılan iğneler cinsel ilişkiler veya anneder çocuğa olmak üzere vücuda girerler. Virüs T hücrelerinin içine girer ve çoğalır. Birkaç ay içinde vücut bu virüse karşı antikor üretir. Kan testleri bu yüzden pozitif bir sonuç verir. Semptomlar 1-2 haftada gelişir. Bunlar virüs vücuda girdikten birkaç ay sonra başlar. Bu sırada kanda antikor oluştuğu için ELİSA ve VVestern Blot gibi tahlillerle teşhis konulabilir. Semptomlar enfeksiyöz mononükleozu andırır ve lenf nodüllerinde şişme ağrılı boğaz ateş sıkıntı ve deri döküntüsü gibi durumları içerir. Semptomlar bir süre sonra azalabilir ve birkaç yıl hiç görülmeyebilir. Bu zaman zarfında vücuttaki virüs miktarı önceleri yavaş sonraları ise hızlı bir şekilde artar. Bu artışa paralel olarak T hücreleri azalır. Kişi bundan sonra AİDS'e sebep olan virüs enfeksiyonuna yakalanmış demektir. Fakat henüz AİDS tam meydana gelmez. Bununla birlikte kişi diğer insanlara bu virüsü bulaştırabilir. T hücreleri ortadan kalktığında immün sistem çöker ve vücutta çok kolay enfeksiyon ve tümörler meydana gelir. Lenf bezleri şişmesi düşük dereceli ateş gibi immün sistemin zayıflamasının işareti ola-rak bilinen semptomlar meydana geldiğinde hastalık AİDS Related Complex (ARC) adını alır. İmmün sistemin büyük çapta zayıflamasından sonra tüm belirtilerin tamamen belirmesi durumu ortaya çıkar ki bu da fırsatçı enfeksiyon durumunu içerir. (Fırsatçı enfeksiyon vücudun immün sistemi şiddetli bir şekilde bozulduğunda vücuda istila edebilen bakteri veya virüsler tarafından oluşturulur.) AİDS'in bütün etkileri virüs enfeksiyonunu takiben 5-10 yıl içinde gelişir. Ölüm ortalama 2-3 yıl içinde bu etkiler nedeniyle meydana gelebilir. Bu hastalık yeni tanımlanabilmiştir ve doğal yapısı konusundaki bilgilerimiz birkaç yıl içinde değişebilir. AİDS şu anda büyük bir salgındır. On yıl önce bu ülkede AİDS bilinmiyordu. Bugün halkın ilgi alanına giren büyük bir olaydır. Ocak 1981'den Ocak 1990'a kadar 140.00 Amerikalıya AİDS teşhisi konmuştur. Bu grubun yarısından fazlası semptomların ortaya çıkmasını takip eden 4 yıl içinde ölmüştür insanların bir çoğu da kanlarında AİDS virüsü taşımakta olup sonunda AİDS gelişecektir. Dünya Sağlık Organizasyonunun tahminlerine göre dünyadaki AlDS'li hasta sayısı 500.000 civarındadır. Diğer taraftan Amerika'da 1-1.5 milyon diğer ülkelerde 5-10 milyon AİDS virüsü taşıyan insan vardır. Muhtemelen bu insanların sayısı da gittikçe artmaktadır. AlDS'li hastalar ikiye ayrılır. Homoseksüel ve biseksüel erkekler ve iğne ile uyuşturucu kullanan erkekler ve kadınlar. Riskli olan diğerleri ise AlDS'liyle cinsel ilişkide bulunanlar AİDS virüsü taşıyan kadınların çocukları ve 1977-1985 Nisan'ı arasında çeşitli nedenlerle kan nakli yapılmış kişilerdir. Bu hastalığın kadından erkeğe erkekten kadına cinsel ilişkiyle geçebildiğini vurgulamak istiyoruz. Prezervatif kullanarak virüs geçişini azaltmak mümkün olabiliyorsa da tam korunma sağlanamaz.

http://www.biyologlar.com/aids

Zika Virüs RNA 'sının Varlığı ve Kalıcılığı

Zika Virüs RNA 'sının Varlığı ve Kalıcılığı

Barry Atkinson, Fiona Thorburn, Christina Petridou, Daniel Bailey, Roger Hewson, Andrew J.H. Simpson, Timothy J.G. Brooks, Emma J. Aarons yapmış oldukları araştırmaya göre:

http://www.biyologlar.com/zika-virus-rna-sinin-varligi-ve-kaliciligi

Kromozom nedir

Her canlı gibi insan da trilyonlarca hücreden meydana gelir. Hücre, bitkisel ya da hayvansal her türlü yaşam biçiminin en küçük birimidir. Her hücre bir sitoplazma ve çekirdekten meydana gelir. Çekirdeğin içinde ise kromozom adı verilen ipliksi parçalar bulunur. Kromozomlar, elektron mikroskobunda İ, V, J harfleri gibi biçimlerde görünür ve boyutları mikronla ölçülür. Kromozomların sayısı canlı türleride değişiklik gösterir. Örneğin sirke sineğinde 8, kurbağada 26, farede 42, köpekte 78 kromozom vardır. İnsanın kromozom sayısı ise 46'dır. 22'si çift otozom kromozomdur. İnsan hücresinde 1 çift de eşeysel kromozom bulunur ve toplam sayı 46 eder. Kromozomlar, molekül yapıları çok iyi bilinen DNA (dezoksiribonükleik asit) zinciri ile ‘‘histon’’ denilen protein zincirinden oluşur. DNA zincirleri de özgül proteinleri sentezlemekle görevli ‘‘gen’’ adı verilen birimlerden oluşur. Döllenme sırasında annenin yumurtasındaki 23 kromozom, babanın spermindeki 23 kromozomla birleşir. İşte bu 46 kromozom insanın yaşamında belirleyici rol oynar. Kromozomlarda yer alan ve sayıları 25 bin ile 100 bin arasında olduğu tahmin edilen genlerin oluşturduğu zincir, kişinin göz renginden boyuna, yaşam süresinden yakalanacağı hastalıklara kadar pekçok şeyi programlar. Bu genetik programlar, DNA altünitesi denen (A, T, C, G) kimyasallarıyla programlanır. Bilim adamları özellikle, 21. kromozomun içindeki 14 geni tam bir saatli bomba olarak niteliyorlar. Bu 14 genden birinde meydana gelen en ufak bir arıza Alzheimer, epilepsi, Parkinson veya lösemi hastalığına neden oluyor. Ayrıca halk arasında ‘‘Mongolluk’’ denilen Down sendromu ortaya çıkabiliyor. Her insan hücresinde yaşamın yapı taşları kabul edilen 24 çift kromozom bulunuyor. Gen bilgilerini taşıyan ip biçimindeki kromozomlar uç uca eklenseydi 1.5 metrelik bir kordon oluştururdu. Kromozomların bozuk oluşumu sonucu, insanın yaşamında değişik dönemlerde, çeşitli hastalıklar ortaya çıkıyor. Bilim adamları, hangi kromozomun bozuk olduğunda hangi hastalığa neden olduğunu biliyorlar. 1.kromozom Alzheimer, ağır işitme 2.kromozom Belleğin oluşumuyla ilgili bilgiler 3.kromozom Akciğer kanseri 4.kromozom Çeşitli kalıtımsal hastalıklar 5.kromozom Akne, saç dökülmesi 6.kromozom Diyabet, epilepsi 7.kromozom Kronik akciğer iltihabı, şişmanlık 8.kromozom Erken yaşlanma 9.kromozom Deri kanseri 10.kromozom Bilinmiyor 11.kromozom Diyabet 12.kromozom Metabolizma hastalıkları 13.kromozom Göğüs kanseri, retina kanseri 14.kromozom Alzheimer 15.kromozom Doğuştan beyin özrü 16.kromozom Crohn hastalığı 17.kromozom Göğüs kanseri 18.kromozom Pankreas kanseri 19.kromozom Bilinmiyor 20.kromozom Bilinmiyor 21.kromozom Down sendromu, Alzheimer, Parkinson, lösemi, depresyonlar 22.kromozom Yeni keşfedildi, kemik iliğinin olumuşumu düzenliyor 23.kromozom (Y) Erkeklik cinsiyetini belirliyor, cinsel organların gelişimini düzenliyor 24.kromozom (X) İki adet X kromozomu taşıyan bebek, kız oluyor. Bu kromozomdaki dejenerasyon kas erimesi, cücelik ve gece körlüğüne yol açıyor.

http://www.biyologlar.com/kromozom-nedir-1

Turner Sendromu Nedir?

Hastalarda normal bir dişide bulunması gereken 46 XX kromozomu yerine, yalnızca 46 X kromozomu vardır. Dolayısıyla, bir X kromozomları eksiktir ve bu anormallik bir yumurtalık oluşum bozukluğuna yol açar. Turner sendromu ya da yumurtalık gelişim bozukluğu, cüceliğe eklenmiş çeşitli oluşum bozuklukları bütünüyle nitelenir. Kötü oluşmuş ve yumurta oluşumuna varacak olgun folikül yapma yeteneğinden yoksun bir yumurtalık varlığına bağlıdır. Bu oluşum bozukluğunun kökeni aydınlatılmıştır. Bir kromozom kusuruna bağlıdır. Hastanın kromozom yapısı (karyotip) incelendiğinde, taşıması gerektiği X kromozomlarından birinin eksik olduğu görülür. Normal bir dişinin kromozom formülünün 44 XX olduğu bilinmektedir. Turner sendromunda formül 46 X O'dır. Çocuk, doğduğunda belirgin olarak kızdır ve aile ancak ergenliğe doğru kaygılanmaya başlar. Gerçekten, yıllar geçmekte ve ergenlik olmamaktadır. 15-16 yaşlarında boy son derece kısadır (ortalama 1,40 m). Çocuksu görünümünü korur. Memeler gelişmemiş, kıllarıma belirmemiştir. Kadın dış üreme organı çocuksu kalır. Dölyolunun yukarısında dölyatağı fındık kadar küçüktür. Dikkatli muayeneyle az ya da çok belirgin bir oluşum bozuklukları bütünü saptanır. Çok belirgin olmaları, bazı hastaların görünümlerini oldukça biçimsizleştirir ve toplumsal yaşama uyumlarını güçleştirir.Bazı hastalardaysa bu oluşum bozuklukları daha gizlidir. En özel belirti, boynun tepesinde omuzlan birleştiren üçgen biçiminde, enine 2 etli kanatçık varlığıyla nitelenen, perdeli kısa boyundur. Göz ve alt-çene oluşum bozuklukları da vardır. Elde 4. tarak kemiğinin kısalığı, kaval kemik düzlüğünün örs biçiminde olması gibi bu sendroma özgü çeşitli kemik oluşum bozukluklarına da rastlanır. Ayrıca kalp, böbrek oluşum bozuklukları gibi çeşitli iç organ bozuklukları görülür. Dolayısıyla, bu gibi anormallikleri sistemli olarak aramak için tam bir bilanço gerekir. Biyolojik bilançoda, adet kanamaları kesilmiş kadınlarınkine benzer bir hipofiz salgılamasıyla birlikte toptan yumurtalık yetmezliği saptanır. Karın içine bakma muayenesinde, üstünde ne bir olgunlaşan folikül, ne de sarı cisim nedbesi bulunan, parlak sedefimsi iki şeride dönüşmüş, gelişmemiş yumurtalıklar gözlenir. Kromozom yapısının incelenmesi. 44 X O formülü biçiminde bir X cinsellik kromozomunun eksik olduğunu gösterir. Tedavi, bu oluşum bozukluklarını önleyebilmekten uzaktır. Ama ergenlik yaşı olan 12-13 yaşından başlanarak verilen östrojenlerin, etkinliği olmayan yumurtalıkların yerini doldurmasına ve belirli bir boy uzamasına, özellikle bir kız ergenliğine, yani memelerin, kadın tipinde kıllanmanın, kadın dış üreme organının, dölyolunun ve dölyatağınm gelişmesine, âdet kanamalarının başlamasına olanak sağlaması açısından, tedavi ilginçtir. Böylece, bu kadınlar evlenebilecekler ve normal bir cinsel yaşamları olabilecektir. Ama çok özel birkaç kuraldışı durum bir yana bırakılırsa, yumurtalıklarının yumurta üretmekten yoksun olması nedeniyle kısır kalacaklardır. 45,X/46,X,i(Xq) Karyotipe Sahip İki Mozaik Turner Sendromu Olgusu PDF sunum içim tıklayın http://tipdizini.turkiyeklinikleri.com/download_pdf.php?id=50369

http://www.biyologlar.com/turner-sendromu-nedir

Farklı Çeşitteki Patojenleri Tanıma Rehberi

Farklı Çeşitteki Patojenleri Tanıma Rehberi

Protozoa olan Giardia, giardiyaz adı verilen ishal hastalığına sebep olur. Giardia türleri serbest yaşayan (flamotin aracılığıyla) trofozitler ve yumurta şeklindeki kistler olarak bulunur.

http://www.biyologlar.com/farkli-cesitteki-patojenleri-tanima-rehberi

Aids Cinsel ilişkiyle nasıl bulaşır ?

AIDS virüsü HIV korunmasız cinsel ilişkiyle kadından erkeğe ya da erkekten kadına bulaşabilir. Erkekler arası eşcinsel ilişkide bulaşma sık kadınlar arası eşcinsel ilişkide ise daha seyrektir. HIV kanda spermde ya da vajina salgısında bulunur. Vajina penis ya da ağızdaki gözle görülemeyecek kadar küçük bile olsa yara ve sıyrıklarda vücuda girebilir. Cinsel eşte görünür hiçbir hastalık belirtisi olmasa bile HIV taşıyıcısı olması bulaşma için yeterlidir. Bu nedenle ne kadar farklı kişiyle cinsel ilişki kurulursa hastalık virüsü kapma olasılığı o kadar fazla olur. Cinsel yolla virüs kapmaktan korunmak için doğru ve sağlam kondom (prezervatif) kullanmak gerekir. Batı ülkelerindeki en yaygın bulaşma yollarından biri enjektör iğnelerinin birden fazla kişi tarafından kullanılmasıdır. Özellikle uyuşturucu bağımlılarının enjektör iğnesine bulaşan virüs aynı enjektörün başkası tarafından kullanılmasıyla ona da bulaşır. Döğme yapımında ya da kulak delmede kullanılan iğneler de bulaşma yolu olabilir. Bunun için kullanılan her türlü iğnenin imha edilmesi gerekiyor. Tek kullanımlık iğnelerle risk ortadan kalkmaktadır. aidsnedir.comdan alıntı

http://www.biyologlar.com/aids-cinsel-iliskiyle-nasil-bulasir-

Ptychopteridae

İnce ve uzun vücutlu (7-15 mm) Ptychopteridae türleri, geniş enli kanatlara sahip olmaları ve çok uzun bacaklı olmalarından dolayı titrek sinekler adıyla da bilinmektedir. Görünüş olarak tipulidlere benzemektedirler. Renkleri çoğunlukla siyah, bazen sarı veya kırmızımsı olabilmektedir. Makrosetaları genellikle kısa veya tüy benzeridir. Sadece antenleri, tarsusları ve cinsel organları sert kıllıdır. Erginler göl, gölcük, hendek ve nehir kenarlarındaki bataklık gibi vejetasyonlarda ve diğer nemli zeminlerde bulunur. Larvalar dere, göl ve gölcüklerin sığ kenarları boyunca detritus ve çamur içinde gelişirler. Larva suyun ıslattığı çamurlu alanlarda yaşar. Pupalar genellikle çamur içerisinde dikey olarak bulunur. Larvalar saprofagdır ve detrituslarla beslenirler. Erginlerin beslenmesiyle ilgili fazla bilgi bulunmamaktadır. Baş küçük, uzunluğundan daha geniş, semiferikal bileşik gözlüdür. Osel gözler yoktur. Anten filiform tipte olup 16 segmentlidir. Ağız parçalarının sadece uzun 5 segmentli maksillar palpi ve büyük labelli kısa labium hariç çoğu indirgenmiştir. Toraks genişliğinden daha uzun fakat uzunluğundan daha yüksektir. Toraks siyah, scutellum ise türlerde sarıdır. Kanatlar çok iyi gelişmiştir, kahverengimsi kanat membranı bazı kısımlarda özellikle daha dış yarısına doğru kısa makrotichia ile microtichia tarafından çevrilmiştir. Bazı türlerde koyu kahverengi ile siyahımsı kanat benekleri vardır, diğer benekler birkaç tanedir veya solgundur. Costa bütün kanatta belirgin olup ayrıca 5 radial damar bulunur. R2 çok kısadır ve R1'de sonlanır. RS uzun veya kısadır. Bacak segmentlerinden koksa, trochenter ve femur çok iyi gelişmiş olup kısa kıllıdır. Metatarsus uzun olup diğer tarsus segmentleri kadar uzundur. Abdomen 7 segmentidir. Her segment çok iyi gelişmiş tergum ve sternuma sahiptir. Tergum ve sternum arasındaki membran stigmalıdır. Sternum 2 iki kitinleşmiş yapı içerisine ayrılmıştır. 1. ve 2. segmentler dar, ikinci segment uzundur. Larva uzun, silindirik, 25-45 mm uzunluğunda ve eucephalic başa sahiptir. Arka tarafında uzun veya kısa bir solunum tüpü veya sifonu vardır. Üçgen şeklindekj baş dorsalinde büyük bir üçgen şeklinde kitinsi bir yapı, alın, anterioründe erimiş clypeusa sahiptir. Vücut 3 kısa torasik segmentten oluşur. 8 abdominal segment daha uzun 9. segment ise kısadır. 1-5 abdominal segmentlerin her biri çıkıntılı bir halka tarafından takip eden segment ile birleştirilmiştir. 6. segment konik şekilli, 7-8 segmentler ise dardır. 9. apikal segmentte bulunan anal 2 parmak benzeri yapıdadır. Geri çekilebilir anal papilla ve trake solungaçları solunum fonksiyonlarını veya boşaltım fonksiyonunu yerine getirir. 7. segmentin posterioründen solunum tüpü çıkar. Pupalar genellikle çamur içerisinde dikey olarak bulunur. Düz toraksik solunum deliği kısadır fakat soldaki solunum deliği su yüzeyine ulaşabilmek için uzun bir sifon içerisine doğru gelişmiştir. Pupasyon dönemi Ptychoptera albimana için su sıcaklığına bağlı olarak 6-31 gün arasında değişir. Kaynaklar •Andersson, H., 1997. Diptera Ptychopteridae, Phantom Crane Flies, pp. 193-207. In: Nilsson, A. (Hrsg.): Aquatic Insects of North Europe. A Taxonomic Handbook. Volume 2. Odonata - Diptera. Apollo Books, Stenstrup. •Peus, F., 1958. 10b. Liriopeidae, pp.10-44. In: Lindner, E. (Hrsg.): Die Fliegen der palaearktischen Region, II 1; Stutgart: E. Schweitzerbartsche Verlagsbuchhandlung. •Rozkosny, R., 1992. Family Ptychopteridae (Liriopeidae), pp 370-373. In: Soós, Á., Papp, L. & Oosterbroek, P. (Eds.). Catalogue of Palaearctic Diptera. 2, Akadémiai Kiadó, Budapest. •Rozkosny, 1997. Family Ptychopteridae. pp. 291-297. In: Papp, László Darvas, Béla. Contributions to a manual of Palaearctic Diptera 2. Science Herald. Budapest. •Wagner, R., 1978. Familie Ptychopteridae, p. 386. In: Illies, J. (Ed). Limnofauna Europea, (2nd ed.). Gustav Fischer Verlag, Amsterdam. •Zwick, P., 1988. Contribution to the Blephariceridae and Ptychopteridae. Mitt. schweiz. ent. Ges., 61: 123-129. •Zwick, P. 2004: Fauna Europaea: Ptychopteridae. In: De Jong, H. (Ed.) Fauna Europaea: Diptera: Nematocera. Fauna Europaea version 1.2, www.faunaeur.org

http://www.biyologlar.com/ptychopteridae

GENETİK KOPYALAMA

İşçilerin tulumları beyazdı; ellerinde soğuk, kadavra rengi kauçuk eldivenler vardı. Işık donuktu, ölüydü: Bir hayalet sanki!.. Yalnız mikroskopların sarı borularından zengin ve canlı bir öz akıyor, bir baştan bir başa uzanan çalışma masalarının üzerinde tatlı çizgiler yaratarak, parlatılmış tüpler boyunca tereyağ gibi yayılıyordu. "Bu da" dedi Müdür kapıyı açarak, "döllenme odası işte..." Doğal olarak, ilkin döllenmenin cerrahlığa dayanan başlangıcından söz etti, derken "Toplum uğruna seve seve katlanılan bir ameliyattır bu" dedi, "altı maaşlık ikramiyesi de caba... Bir yumurta bir oğulcuk, bir ergin; bu normal... Oysa, Bokanovskilenmiş bir yumurta tomurcuk açar, ürer bölünür. Eş ikizler yalnız insanların doğurduğu o eski zamanlardaki gibi yumurtanın bazen rastlantıyla bölünmesinden oluşan ikiz, üçüz parçaları değil, düzinelerle yirmişer, yirmişer." Müdür "yirmişer" diyerek sanki büyük bir bağışta bulunuyormuş gibi kollarını iki yana açtı; "yirmisi birden!.." Ama öğrencilerden biri bunun yararının ne olduğunu sormak gibi bir sersemlikte bulundu. "İlahi yavrucuğum!" Müdür olduğu yerde ona dönüvermişti. "Görmüyor musun? Görmüyor musun, kuzum?" Bir elini kaldırdı; heybetli bir duruşa geçmişti. "Bokanovski süreci toplumsal dengenin en başta gelen araçlarından biridir! Milyonlarca eş ikiz; toptan üretim ilkesinin sonunda biyolojiye uygulanmış olması..." YUKARIDAKİ PARÇA, Aldous Huxley’in 1930’larda yazdığı, geçtiğimiz ay bilim gündemini birdenbire fetheden "koyun kopyalama" deneyine değinen haberlerde sıkça gönderme yapılan, Brave New World (Cesur Yeni Dünya) romanının girişinden kısaltılarak alınmış bir bölüm. Huxley, olumsuz bir ütopya (distopya) niteliği taşıyan romanında, Alfa, Beta, Gama, Delta ve Epsilon adlarıyla, kendi içinde genetik özdeşlerden oluşan beş farklı sınıfa bölünmüş bir toplum tablosu çiziyor. Özdeş vatandaşların üretildiği bu hayali "Bokanovski Süreci", çağdaş anlamıyla klonlama (veya genetik kopyalama) olmasa da, sürecin yolaçtığı etik (ahlaki) ve toplumbilimsel kaygılar, sekiz ay önce İskoçya’da gerçekleştirilen ve geçtiğimiz ay kamuoyuna duyurulan gelişmelerin doğurduklarına denk düşüyor. Şimdi herkesin tartıştığı, son gelişmelerin insanlık için daha insanca bir dönemin mi yoksa, hızla gerçeğe dönüşen korkunç bir distopyanın mı kapısını araladığı. Şubat ayının 22’sinden itibaren, İskoçya’nın Edinburg kentinde, biyoteknoloji alanında tuhaf bir gelişme kaydedildiği, "Dünyanın sonu", "Frankenstein" gibi ifadeleri de içeren dedikodularla birlikte etrafta konu olmaya başladı. Bilim çevreleri de basın da şaşkındı, çünkü, seçkin yazarların ve bazı bilim adamlarının birkaç gündür zaten haberdar oldukları ve konuyu "patlatmayı" bekledikleri bu gelişme, bir biçimde basına sızmış, dilden dile dolaşmaya başlamıştı bile. Normalde pek de ciddiye alınmayacak böyle bir "dedikodunun" bu denli yayılabilmesi, işin içine çeşitli dallarda makalelere yer veren saygın bilimsel dergi Nature’ın adının karışmasıyla olmuştu. Gerçekten de Nature, dedikodu niteliğini fersah fersah aşan bir bilimsel gelişmeyle ilgili bir makaleyi 27 Şubat’ta yayınlayacağını bilim yazarlarına duyurmuş ve bu tarihe kadar "ambargolu" olan bir basın bülteni dağıtmıştı. Batı ülkelerinde yazarlar normal olarak bu ambargolara uyar, hazırladıkları yazıları, ambargonun bittiği tarihte, aynı anda yayına verirler. Ancak, aralarında ünlü The Observer’ın da bulunduğu bazı dergi ve gazeteler ambargoyu çoktan delmiş, konuyu kamuoyuna duyurmuştu bile. Haberin, kaynağı olan Nature ve ambargoya saygı gösteren çoğu nitelikli dergi ve gazetede yer almaması da, dedikodu trafiğini artırmış, ortaya atılan spekülasyonlarla beklenenden fazla ilgi toplanabilmişti. Hatta, Mart ayının başlarında, koyun klonlama haberinin yarattığı ilgi ortamını değerlendirmek isteyen bazı haberciler, aynı yöntemle Oregon Primat Araştırmaları Merkezi’nde maymunların klonlandığını öne sürdüler. Oysa, Oregon’da gerçekleştirilen, embriyo hücrelerinin oldukça sıradan bir yöntemle çoğaltılmasıyla yapılmış bir deneydi. Klonlama, yetişkin bir canlıdan alınan herhangi bir somatik (bedene ait) hücrenin kullanılmasıyla canlının genetik ikizinin yaratılmasını açıklamakta. Kavramsal temelleri çoktandır hazır olan bu işlemin uygulamada gerçekleştirilemeyeceği düşünülüyordu. Edinburg’daki Roslin Enstitüsünden Dr. Wilmut ve ekibi bunu başarmış gibi görünüyor. "Ben bu filmi daha önce seyretmiştim!" diyenleri rahatlatmak için hemen belirtelim ki, aynı ekip 1995 yılında embriyo hücrelerini kullanarak yine ikiz koyunlar üretmiş ve bunu duyuran makaleyi yine Nature dergisinde yayımlatmıştı. Bu deney de basına yansımış, ancak, son gelişmeler kadar yankı uyandırmamıştı. Ne de olsa bu yöntem, döllenmiş yumurtanın kazayla bölünüp tek yumurta ikizlerine yol açtığı bildik süreçlerden farksızdı. Sıklıkla unutulduğu için tekrarlamakta yarar var ki, Wilmut’un son başarısının önemi, işe somatik bir hücrenin çekirdeğiyle başlamasında yatıyor. Bu başarının ortaklarını anarken PPL Tıbbi Araştırmalar şirketini de atlamamak gerek. Borsalarda tırmanışa geçen hisseleriyle gelişmenin meyvelerini şimdiden yemeye başlayan PPL, projenin hem amaçlarını belirleyerek hem de maddi olanakları yaratarak kuzu Dolly’nin varlığının temel sebebi olmuş. Dr. Wilmut’un gerçekleştirdiği başarı şöyle özetlenebilir: Yetişkin bir koyundan alınan somatik bir hücrenin çekirdeğini dahice bir yöntemle, başka bir koyuna ait, çekirdeği alınmış bir yumurtaya yerleştirmek ve bilinen "tüp bebek" yöntemiyle yeni bir koyuna yaşam vermek. Adını, ünlü şarkıcı Dolly Parton’dan alan kuzu Dolly, isim annesinin değilse de, DNA annesinin genetik ikizi. Dolly, sevimli görünüşüyle kamuoyunun sempatisini kazanmış ve tüm bu süreç ilginç bir bilimsel oyun olarak sunulmuşsa da gerçekte deney oldukça iyi belirlenmiş bilimsel ve maddi hedefleri olan, soğukkanlı bir süreç. Zaten Dolly’nin araştırmacılar arasındaki adı da en az varlığı kadar "soğukkanlıca" seçilmiş: 6LL3... PPL’in idari sorumlusu Dr. Ron James, şirket sırlarını kaybetme kaygısıyla maddi hedeflerini pek açığa vurmamakla birlikte, hemofili hastaları için koyunlara insan kanı pıhtılaşma faktörü ürettirmeyi de içeren pek çok önemli ticari hedefin ipuçlarını veriyor. PPL ve Roslin Enstitüsü’nün çalışmaları, geçmişi çok eskilere dayanan ve önemli gelişmelerin kaydedildiği bir alan olan transjenik (gen aktarılmasıyla ilgili) araştırmaların bir üst aşamaya, nükleer transfer (çekirdek aktarılması) evresine doğru ilerletilmesinden başka birşey değil. Yıllardır başarıyla sürdürülen transjenik çalışmalarda tek boynuzlu keçi, üç bacaklı tavuk gibi görünüşte çarpıcı, yararı kısıtlı çalışmaların yanı sıra, insan proteinlerinin hayvanlara ürettirilmesi gibi, modern tıp için çığır açıcı sayılabilecek başarılar kaydedildi. Son gelişmelere imzasını atan ekip, daha önce insan bünyesince üretilen molekülleri gen transferi yöntemiyle bir koyuna ürettirmeyi başarmıştı. Söz konusu deneyde gerek duyulan moleküllerin koyunun tüm hücrelerinde değil, sadece süt bezlerinde sentezlenmesinin sağlanması, koyunun "ilaç fabrikası" olarak değerlendirilmesini beraberinde getiriyordu. Dolly başarısının en önemli potansiyel yararı da bununla ilgili zaten. Gen transferi yöntemiyle, istediğiniz maddeyi sentezleyebilen bir canlıya sahip olduğunuzda, madde verimini artırmak üzere aynı süreci zaman ve para harcayarak yinelemeye çabalamak yerine elinizdeki canlının genetik ikizlerini yaratabilirseniz, ticari değer arz edebilecek miktarda ilaç hammaddesi üretimine geçebilirsiniz. Elinizde birkaç on tane genetik özdeş canlı biriktikten sonra, bu küçük sürüyü doğal yollardan üremeye bırakacak olursanız, hem "yatırımınız" kendi kendine büyüyecek, hem de genetik çeşitlilik yeniden oluşmaya başlayacağından, tek bir virüs tipinin tüm "fabrikayı" yok etmesinin önünü alacaksınız demektir. Biraz Ayrıntı İskoç ekibin gerçekleştirdiği klonlama deneyinin, dünyanın pek çok bölgesine dağılmış sayısız standart biyoteknoloji laboratuvarında "kolayca" gerçekleştirilebileceği söyleniyor. Yine de uygulanan yöntem, günlük gazetelerdeki basit şemalarda anlatıldığı kadar kolay ve hemen tekrarlanabilir türden değil. İskoç ekibin başarısı ve önceki sayısız benzeri çalışmanın başarısızlığı, Wilmut’un, verici koyundan alınan hücre çekirdeğiyle, kullanılan embriyonik hücrenin "frekanslarını" çok hassas biçimde çakıştırabilmesine dayanıyor. Bu yöntemle araştırmacılar, yetişkin çekirdeğin genetik saatini sıfırlamayı, tüm gelişim sürecini başa almayı becerebilmişler. Yöntemin ayrıntılarına girmeden önce bazı temel kavramlara açıklık getirmekte yarar var. Çoğu memeli canlı gibi insan bedeni de milyarlarca hücreden oluşuyor. Bu hücrelerin milyonlarcası her saniye bölünmeyi sürdürerek beden gelişimini devam ettiriyor ve yıpranmış hücreleri yeniliyor. Bu hücrelerin önemli kısmı bedenimizin belli başlı bölümlerini oluşturan "somatik hücreler." Tek istisna, üreme hücreleri. Eşeyli üreme, gametlerin (sperm ve yumurta) ortaya çıktığı "mayoz bölünme"yle başlıyor. Cinsel birleşme sonucunda, spermin yumurtayı döllemesiyle de yeni bir canlının ilk hücresi "zigot" oluşuyor. Bu noktadan sonra gelişmeye dönük hücre bölünmeleri, "mayoz" değil, "mitoz" yoluyla ilerliyor. Koyun ve insan hücrelerinin de dahil olduğu ökaryotik yani, çekirdeği olan hücreler, farklı gelişim evreleri içeren bir yaşam döngüsü geçiriyorlar. Bu döngüyü, hücrenin görece durağan olduğu "interfaz" ve belirgin biçimde bölünmenin gerçekleştiği mitoz evrelerine ayırmak mümkün. Hücre, yaşam döngüsünün yüzde doksan kadarını interfaz evresinde geçiriyor. Aslında, bu duraklama evresi göründüğü kadar sakin değil; hücre, tüm bileşenlerini DNA’yı sona bırakacak biçimde çoğaltarak, bölünmeye hazırlanıyor. Alt evreleri son derece iç içe girmiş olan interfaz evresini işlevsellik açısından G1, S ve G2 alt evrelerine ayırmak yerleşmiş bir gelenek. Yani, hücrenin yaşam döngüsü bu üç evre ve M (mitoz)’dan oluşuyor. G1 evresi, DNA dışındaki bileşenlerin çoğaldığı bir dinlenme dönemi. S, DNA’nın bölünmesiyle sonuçlanan bir geçiş evresi. G2 ise, iç gelişmenin tamamlanıp, hücrenin mitoz yoluyla bölünmeye hazırlandığı süreci içeriyor. Hücrelerin hangi evreyi ne kadar sürede tamamlayacakları bir biçimde programlanmış durumda. Belli bir organizmanın tüm hücreleri bu evreleri aynı sürede tamamlıyorlar. Yine de, ani çevresel koşul değişiklikleri hücreleri G1 evresinde kıstırabiliyor; sözgelimi, besleyici maddelerin miktarı birdenbire minimum düzeye düştüğünde. G1 evresinin belli bir aşamasında, öncesinde bu duraklamaya izin verilen sabit bir kritik noktası var. Bu kritik nokta aşılırsa, çevresel koşullar ne yönde olursa olsun, DNA replikasyonunun önü alınamıyor. İleride göreceğimiz gibi, bu noktanın denetim altında tutulabilmesi, Wilmut ve ekibinin başarılı bir klonlama gerçekleştirebilmelerinin altın anahtarı olmuştur. Bu noktada bir parantez açarak G1, S, G2 ve M evrelerinin denetim altına alınmasının, hücrenin yaşam döngüsünü olduğu kadar, hücrenin özelleşmesini, sözgelimi beyinden veya kas hücrelerinden hangisine dönüşeceğini de kontrol altına alabilmeyi, bir başka deyişle, hücrenin genetik saatini sıfırlamayı sağladığını ekleyelim. Wilmut ve ekibi Dolly’i klonlayıncaya kadar bu sürecin tersinmez olduğu, söz gelimi, bir defa kas hücresi olmaya karar vermiş bir hücrenin yeniden programlanamayacağı zannediliyordu. Peki Wilmut bunu nasıl başardı? Soruyu tersinden cevaplayacak olursak, diğerlerinin bunu başaramamalarının nedeninin, kullandıkları somatik hücrelerin çekirdeklerini S veya G2 evrelerindeki konakçı hücrelere yerleştirmeleri olduğunu söyleyebiliriz. Eski kuramsal bilgilere göre bu yöntemin işe yaraması gerekiyordu, çünkü çekirdeğin mitoza yaklaşmış olması avantaj olarak görülüyordu. Ancak bu denemelerde, işler bir türlü yolunda gitmedi. Kaynaştırmadan sonra, hücre fazladan bir parça daha mitoz geçiriyor ve yararsız, kopuk kromozom parçaları meydana geliyordu. Bu "korsan" genler, gelişimin normal seyrini sürdürmesi için ciddi bir engel oluşturuyordu. Dersini çok iyi çalışmış olan Wilmut, bu olumsuz deneyleri değerlendirerek hücreyi G1 evresinin kritik noktadan önceki duraksama döneminde, "G0 evresinde" kıstırmaya karar verdi. Verici koyundan alınan meme dokusu hücrelerini kültür ortamında gelişmeye bırakan Wilmut, hücrelerin geçirdiği evreleri sıkı gözetim altında tutarak bir hücreyi G0 evresinde kıstırıp bu haliyle durağanlığa bırakmayı başarmıştı. Bunun için, hücrenin besin ortamını neredeyse öldürme sınırına kadar geriletmiş, tüm süreci dondurarak bir anlamda genetik saati de sıfırlayabilmişti. Üstelik bu evre, kaynaştırılacağı yumurta hücresinin mayoz gelişim sırasında girdiği, bu işlem için en uygun olan metafaz-II evresiyle de mükemmel bir uyum içindeydi. İşlemin diğer kısımları yemek tariflerinde olduğu kadar sıradan ve kolay uygulanabilir nitelikte. G0 evresindeki çekirdek metafaz-II evresindeki yumurtayla kaynaştırılıp, normal besin koşulları ve hafif bir elektrik şoku etkisiyle olağan çoğalma sürecine yeniden sokulduğunda, her şey tüp bebek olarak bilinen, in vitro fertilizasyon sürecindeki işleyişe uygun hale geliyor. Zigot, anne koyunun rahmine yerleştiriliyor ve gerekli hormonlarla normal hamilelik süreci başlatılıyor. Wilmut ve ekibinin gerçekleştirdikleri hakkında bilinenler, yukarıda kaba hatlarıyla anlatılanlarla sınırlı. Sürecin duyurulmayan kritik bir evresi varsa, bu ticari bir sır olarak kalacağa benziyor. Ancak, herkesin olup bitenler hakkında aynı bilgilere sahip olması, deneyin başarısı konusunda kimsenin şüphe duymamasını gerektirmiyor. 277 denemeden sadece birinin başarılı olması başta olmak üzere, çoğu uzmanın takıldığı pek çok soru işareti var. Herşeyin ötesinde, herhangi bir olgunun bilimsel gelişme olarak kabul edilmesi için, sürecin yinelenebilirliğinin gösterilmesi gerekiyor. Bir embriyolog, Jonathan Slack, çok daha temel şüpheleri öne sürüyor: "Araştırmacılar, yumurta hücresindeki DNA’ları tümüyle temizleyememiş olabilirler. Dolayısıyla Dolly, sıradan bir koyun olabilir." Slack, alınan meme hücresinin henüz tamamen özelleşmemiş olabileceğini, böyle vakalara meme hücrelerinde, bedenin diğer kısımlarına göre daha sık rastlanılabildiğini de ekliyor. Zaten Wilmut da, bedenin diğer kısımlarından alınan hücrelerin aynı sonucu verebileceğinden bizzat şüpheli. Örneğin, büyük olasılıkla kas veya beyin hücrelerinin asla bu amaçla kullanılamayacaklarını belirtiyor. Üstüne üstlük, koyun bu deneylerde kullanılabilecek canlılar arasında biraz "ayrıcalıklı" bir örnek. Koyun embriyolarında hücresel özelleşme süreci zigot ancak 8-16 hücreye bölündükten sonra başlıyor. Geleneksel laboratuvar canlısı farelerde ise aynı süreç ilk bölünmeden itibaren gözlenebiliyor. İnsanlarda ise ikinci bölünmeden itibaren... Bu durum, aynı deneyin fare ve insanlarda asla başarılı olamaması olasılığını beraberinde getiriyor. Dile getirilen açık noktalardan biri de, hücrelerde DNA barındıran tek organelin çekirdek olmayışı. Kendi DNA’sına sahip organellerden mitokondrinin özellikle önem taşıdığı savlanıyor. Memeli hayvanlarda mitokondriyal DNA, embriyo gelişimi sırasında sadece anneden alınıyor. Her yumurta hücresi, farklı tipte DNA’lara sahip yüzlerce mitokondriyle donatılmış. Bu mitokondriler zigotun bölünmesinin ileri evrelerinde, embriyo hücrelerine dengeli bir biçimde dağılıyor; ancak, canlının daha ileri gelişim evrelerinde, bu denge belli tipteki DNA’lara doğru kayabiliyor. Parkinson, Alzheimer gibi hastalıkların temelinde bu mitokondriyal DNA kayması sürecinin etkileri var. Bu yüzden kimileri, sağlıklı bir kuzu olarak doğan Dolly’nin, zigot gelişimine müdahele edilmiş olması yüzünden sağlıksız bir koyun olarak yaşlanabileceğini öne sürüyorlar. Şimdilik Dolly’nin tek sağlıksız yönü, basına teşhir edilirken sabit tutulması amacıyla fazla beslenmesi yüzünden ortaya çıkan tombulluğu. Klonlamalı mı? Klonlamanın özellikle de insan klonlama konusunun etik boyutu kamuoyunca, günlük yaşamda kültürün, temel bilimsel birikimin, tarih, siyaset ve toplumbilimin en yaygın ve temel kavramlarıyla tartışılabilir nitelik kazanmıştır. Nükleer enerji kullanımı, hormon destekli tarım, ozon tabakasına zarar veren gazların üretimi gibi, farklı toplum kesimlerince kolayca anlaşılabilir ve tartışılabilir kabul edilen klonlama, şimdiden kamuoyunun gündeminde yerini aldı. Kamuoyunun, bilimsel ve teknolojik gelişmelerin uygulanıp uygulanmaması konusunda birtakım ahlaki gerekçelerle ne şekilde ve ne ölçüde yaptırım uygulayabileceği tartışmalı olsa da, şu anda kamuoyunun isteksizliği klonlama çalışmalarının daha ileri aşamalara taşınmasına en güçlü engel olarak gösteriliyor. Oysa, "tüp bebek" diye bilinen in vitro fertilizasyonun, başlangıçtaki şiddetli tepkilerden sonra kolayca kabullenilmesi, işin içine "çocuk sahibi olma isteği ve hakkı" karıştığı durumlarda (aynı argüman klonlama konusunda da sıkça kullanılıyor) toplumun ne kadar kolay ikna olabileceğinin bir göstergesi. Bilimkurgu romanları ve filmlerinde kaba hatlarıyla çokça tartışılmış olan klonlama konusunda halihazırda belli belirsiz bir kamuoyu "oluşturulmuş" durumda. Şu anda sürmekte olan tartışmaların bilinen yanlışlara yeniden düşmemesi için birkaç temel olguya açıklık getirmek gerekiyor. Olası yanılgıların en sık rastlananı, klonlanmış bir canlının, (tartışmalara sıkça insan da dahil ediliyor) genin alındığı canlının fizyolojik özellikleri bir yana, kişilik özellikleri bakımından özdeşi olacağı kanısı. Kazanılmış özelliklerin kalıtsal yolla taşınabileceği yanılgısı, Philosophie Zooloique (Zoolojinin Felsefesi) adlı ünlü yapıtı 1809 yılında yayınlanmış olan, Fransız zoolog Jean Baptiste Lamarck’a dayanıyor. Lamarck’ın görüşlerinin takipçileri, insanların gözlemlenebilir kişilik özelliklerinin önemli ölçüde kalıtsal nitelik taşıdığını savlayarak, çevresel koşulların gelişim üzerindeki etkilerini neredeyse tamamen yadsıyorlardı. Oysa, genetik, evrim, psikoloji gibi alanların ortaya koyduğu çağdaş ölçütler, kazanılmış karakterlerin kalıtsal nitelik gösteremeyeceğini ortaya koyarak, kişilik oluşumunda çevresel etmenlerin güçlü bir paya sahip olduğunu kanıtlamıştır. Bu bağlamda, basında da yankı bulan "koyunlar zaten birbirlerine benzerler" esprisinin aslında ciddi bilimsel doğrulara işaret ettiğinin altını çizmek gerekiyor. Klonlanmış bir koyunun, genetik annesinin genetik ikizi olduğu ölçülerek gösterilebilir bir gerçektir. Oysa, gözlemlenebilir kişilik özellikleri oldukça kısıtlı olan koyunların birbirlerine benzemeleri kaçınılmazdır. Çok daha karmaşık bir organizma olan insanoğlu, sayısız gözlemlenebilir kişilik özelliği sayesinde, genetik ikizinden kolayca ayırt edilebilir. Tüm bunların ötesinde, klonlanmış bir insanın sadece kişilik bakımından değil, fizyolojik ve bedensel özellikleri bakımından da, genetik ikizinden farklı olacağını peşinen kabullenmek gerekiyor. Bir bebeğin biçimsel özelliklerinin ana rahminde geçirdiği gelişim süreci içerisinde tümüyle DNA’sı tarafından belirlendiği görüşü yaygın bir yanılgı. DNA molekülü, insan geometrisine dair tüm bilgileri en sadeleşmiş biçimiyle bile bütünüyle kapsayamayacak kadar küçük. Çoğu biçimsel özellik, akışkan dinamiği, organik kimya gibi alanlardaki temel evrensel yasaların kontrolünde meydana geliyor. Bu süreçte de, her zaman için rastlantı ve farklılaşmalara yeterince yer var. Bir genetik ikiz, kuramsal açıdan, eşine en fazla eş yumurta ikizlerinin birbirlerine benzedikleri kadar benzeyebilir. Uygulamada ise, benzerlik derecesi çok daha düşük olacaktır; aynı rahimde aynı anda gelişmediği, aynı fiziksel ve kültürel ortamda doğup büyüyemediği için... İşin bu boyutunu da göz önünde bulunduran Aldoux Huxley, romanında, Bokanovski Süreci’yle çoğaltılmış bebekleri, yetiştirme çiftliklerinde psikolojik koşullandırmaya tutma gereği duymuştu. Benzer biçimde, 1976’da yazdığı The Boys from Brazil romanında Adolf Hitler’den klonlanan genç Hitler’lerin öyküsünü kurgulayan Ira Levin, klonları, Adolf Hitler’in kişiliğinin geliştiği tüm olaylar zincirinin benzerine tabi tutma gereğini hissetmişti. Tüm bu "hal çarelerine" rağmen, kopya insanın genetik annesinden çoğu yönden farklı olması kaçınılmaz görünüyor. Diğer tüm koşullar denk olsa bile, kopya birey, aynı zamanda ikizi olan bir anneye sahip olmasından psikolojik bakımdan etkilenecektir. Sağduyumuz bize Hitler’i genlerinin değil, Weimar Cumhuriyeti sonrası sosyo-ekonomik koşulların ve genç Adolf’un kıstırıldığı maddi ve manevi bunalımların yarattığını öğretiyor. Tüm bunların ışığında, klonlama konusundaki popüler tartışmaları, tıkanıp kaldıkları, "beklenmedik bir ikize sahip olma" fobisinden kurtarılıp, daha gerçekçi zeminlere çekilmesi gerekiyor. Gen havuzunun (belli bir topluluktaki genetik çeşitlilik) daralması, hayvancılığın geleneksel yapısından koparılıp biyoteknoloji şirketlerinin güdümüne girmesi, yol açılabilecek genetik bozuklukların kontrolden çıkması, bu alanda çalışan bazı şirketlerin (söz gelimi PPL’in) tüm tekel karşıtı yasal önlemleri delerek ciddi ekonomik dengesizliklere yol açması gibi akla gelebilecek sayısız somut etik sorununun tartışılması gerekiyor. Yoksa, akademik organlardan dini cemaatlere kadar sayısız grup gelişmeleri "kitaba uydurma" çabasıyla, kısır tartışmalara girebilir. Örneğin, Budist bir araştırmacı, Dolly’nin eski yaşamında ne gibi bir kabahat işleyip de bu yaşama klonlanmış olarak gelmeyi hak ettiği üzerine kafa yoruyormuş. Aslında biyoteknolojik tekelcilik tehdidine, Cesur Yeni Dünya’da Aldous Huxley de işaret etmişti: "İç ve Dış Salgı Tröstü alanından hormon ve sütleriyle Fernham Royal’daki büyük fabrikaya hammadde sağlayan şu binlerce davarın böğürtüsü duyuluyordu..." İnsanoğlunun temel kaygıları, şimdilik bazı temel koşullarda klonlamayla çelişiyor gibi görülüyor: Bir çiftçi düşünün ki, kendisi için tüm evreni ifade eden kasabasında herkese hayranlıktan parmaklarını ısırtan bir danaya sahip olsun. Bu danayı klonlayıp tüm sürüsünü özdeş yapmayı ister miydi? Büyük olasılıkla biraz düşündükten sonra bundan vazgeçerdi. Danasının biricik oluşu ve genetik çeşitliliği sayesinde bu danaya yaşam veren sürüsünün daha da güzel bir dana doğurması olasılığı çok daha değerli. Ömrü boyunca aynı dananın ikizlerine sahip olmayı kabullenmiş bir çiftçinin komşusu her an elinde daha güzel bir danayı ipinden tutarak getirebilir. Özgür Kurtuluş Kaynaklar: Biospace Huxley A., Cesur Yeni Dünya, Çev: Gürol E., Güneş Yayınları, 1989 Nash M. J., "The Age of Cloning", Time, 10 Mart 1997 Roslin Enstitüsü Basın Bültenleri Star C., Taggart R., Biology: The Unitiy and Diversity of Life, 1989 Underwood A., "Little Lamb Who Made Thee", Newsweek, 10 Mart 1997 Wilmut I., Schnieke A. E., McWhir J., Kind A. J., Campbell K. H. S., "Viable Offspring Derived From Fetal and Adult Mammalian Cells", Nature, 27 Şubat 1997

http://www.biyologlar.com/genetik-kopyalama

SÖLENTERLER

Vücutlarının merkezinde bir sindirim boşluğu bulunur. Vücutları iki tabakadan oluşmuştur. Dış hücre tabakasında yakıcı kapsüller vardır. Bu kapsüller canlıyı düşmanlarına karşı korur. Hayvanlar dünyasının ilk gerçek sinir hücreleri sölenterlerde bulunur. Deniz anası, hidra ve mercanlar sölenterlerdendir. MERCANLAR: Knidlilerin mercanlar üst sınıfına bağlı olan, özellikle tropikal denizlerde her zaman bir yere bağlanarak yaşayan ve iskeleti kireçtaşından oluşan hayvan. Kırmızı mercan üstünde, poliplerin yerlerini belirleyen küçük şişkinliklerin bulunduğu çok dallanmış lal rengi “küçük çalı” görünümündedir. Çiçek gibi açabilen poliplerin beyaz rengi, kırmızı renkli polipöbeği üstünde belirgin bir biçimde ayırt edilir. Bu tür bir ortocorallia olduğu için her polipin küçük çıkıntılarla örtülü sekiz dokunacı vardır. Söz konusu polipler, bir çeşit jelatinsi tabaka olan mezoglea içine kök salarlar. Mezoglea, iğnecik olarak adlandırılan kaynaşmış parçalardan oluşmuş kireçtaşından (kalker) bir eksen iskeletin üstünü kaplar: Bu iskelet kuyumculukta kullanılır. Polipöbeği, polipleri birbirine bağlayan ve besin dğimşimlerinin sağlayan kanallar nedeniyle derin çizgili bir görünüm almıştır. Kırmızı mercan özellikle 45 ve 90 metre derinlikler arasında yaşar; Octocorallia sınıfı, daha birçok önemli tipleri kapsar. Gorgonlarda renk daha az canlıdır ve eksen iskeleti kireçten daha çok boynuzsu yapıdadır. Kolonileri tek bir düzlem üstünde yassılaşmıştır ve dalları aralarında birleşebilen “yelpazeler” oluştururlar. Alkyone’de sert bir iskelet bulunmaz, kireçli olan iğnecikleri yalın bir biçimde mezokleanın içinde dağılmıştır. Kolonileri parmak biçimindedir. Sarı ya da portakal rengi olan bu koloniler özellikle deniz mağaralarının çeperlerini süslerler. Parerythropodium cinsinden bir Alkyone ölü bir gorgonun üstüne tutunarak onun biçimini alır. Hexacorallia dan olan madreporlar sürekli olarak mercan diye adlandırırlar. Bunların çoğu, kireçli bir dış iskeleti olan ve koloni halinde yaşayan hayvanlardır, sıcak ve berrak denizlerde gelişen bu mercanlar, biyoloji ve jeoloji açısından büyük önem taşıyan mercan resiflerini oluştururlar. Mercan Resifleri: Deniz düzeyinde çoğalıp yayılan mercan ve öbür deniz organizmaları yığınları olan mercan resifleri özellikle Büyük Okyanus’ta ve Hint Okyanusu’nda yaşarlar ve değişik görünümlerde olurlar. Bir resif, kıyıya yapışarak oluştuğunda kıyı resifi adını alır; ayrıca kıyıya paralel olarak ve belli bir uzaklıkta gelişen resifler de vardır (set resifi). Bunun en belirgin örneği, Avustralya açıklarındaki Büyük Set’tir. Yaşayan organizmalar tarafından oluşturulmuş en katkısız resiflerini mercan adasıdır (atom); bu, açık denizde yer alan dairesel biçimde ve suyun yüzüne çıkmış bölümünün içinde bir deniz gölcüğü (logon) bulunan çok basık bir adadır. Resiflerin oluşumuna karışan organizmalar çeşitlidir. Bunlar arasında önce fazla kireçleşmiş iskeleti olan madreporlar gelir, ama suyosunları ve yumuşakçalar da vardır. Mercanlar çok hareketli bir suda etkili bir biçimde yaşayamadıkları için bunların dayanaklarını suyosunları oluşturur. Büyük boy yassısolungaçlılar olan Tiridacna’lar resiflerin oluşumuna katılırlar. Knidliler dalının serbest yaşayan türü. Hemen hemen bütün medüzler denizde yaşarlar, ama seyrek olarak tatlı suda yaşayan türleri de vardır. Denizde serbest olarak yüzen ve çevresinden dalayıcı dokunaçlar çıkan çan biçimindeki jelatinsi medüzlere halk dilinde denizanası adı verilir. Bir medüz, şemsiye adı verilen ters dönmüş çanak biçimindeki bir bölümle, bunun alt yüzünün merkezine tutunmuş ağız borusu adı verilen dikey bir eksenden oluşur. Çevresine dokunaçların bağlandığı şemsiyedeki kasların kasılması, hayvanın ileriye doğru fırlayarak hareket etmesini sağlar. Medüzün çevresinde yer alan duyu organları bir sinir ağıyla bağlantılıdır. Ağız borusunun tabanında bulunan ağız, ışınsal kanallara bölünmüş karmaşık bir sindirim boşluğuna açılır. Çoğunlukla 4 tane olan bu ışınsal kanallar cinsellik bezlerini taşırlar. Suyun içindeki küçük hayvansal organizmalarla beslenen medüzlerin bedenlerinin büyük bir bölümü (%99’a kadar ) sudan oluşur. Çok büyük boylara erişenleri vardır: Sözgelimi, Cyanea capinnata’nın çapı 3m, dokunaçlarıysa 4m’dir. Medüzlerin üstderilerindeki yakıcı hücre ya da yakıcı kapsüllerin neden olduğu “dalama” öldürücü olabilir. Dokunaçlar insan bedenine deydikleri yerlerde ağrılı tahrişlere yol açarlar.

http://www.biyologlar.com/solenterler

HAYVANLARI KORUMA KANUNU

Kanun No. 5199 Kabul Tarihi : 24.6.2004 BİRİNCİ KISIM Genel Hükümler BİRİNCİ BÖLÜM Amaç, Kapsam, Tanımlar ve İlkeler Amaç MADDE 1. - Bu Kanunun amacı; hayvanların rahat yaşamlarını ve hayvanlara iyi ve uygun muamele edilmesini temin etmek, hayvanların acı, ıstırap ve eziyet çekmelerine karşı en iyi şekilde korunmalarını, her türlü mağduriyetlerinin önlenmesini sağlamaktır. Kapsam MADDE 2. - Bu Kanun, amaç maddesi doğrultusunda yapılacak düzenlemeleri, alınacak önlemleri, sağlanacak eşgüdümü, denetim, sınırlama ve yükümlülükler ile tâbi olunacak cezaî hükümleri kapsar. Tanımlar MADDE 3. - Bu Kanunda geçen terimlerden; a)Yaşama ortamı: Bir hayvanın veya hayvan topluluğunun doğal olarak yaşadığı yeri, b) Etoloji: Bir hayvan türünün doğuştan gelen, kendine özgü davranışlarını inceleyen bilim dalını, c) Ekosistem: Canlıların kendi aralarında ve cansız çevreleriyle ilişkilerini bir düzen içinde yürüttükleri biyolojik, fiziksel ve kimyasal sistemi, d) Tür: Birbirleriyle çiftleşebilen ve üreme yeteneğine sahip verimli döller verebilen populasyonları, e) Evcil hayvan: İnsan tarafından kültüre alınmış ve eğitilmiş hayvanları, f) Sahipsiz hayvan: Barınacak yeri olmayan veya sahibinin ya da koruyucusunun ev ve arazisinin sınırları dışında bulunan ve herhangi bir sahip veya koruyucunun kontrolü ya da doğrudan denetimi altında bulunmayan evcil hayvanları, g) Güçten düşmüş hayvan: Bulaşıcı ve salgın hayvan hastalıkları haricinde yaşlanma, sakatlanma, yaralanma ve hastalanma gibi çeşitli nedenlerle fizikî olarak iş yapabilme yeteneğini kaybetmiş binek ve yük hayvanlarını, h)Yabani hayvan: Doğada serbest yaşayan evcilleştirilmemiş ve kültüre alınmamış omurgalı ve omurgasız hayvanları, ı) Ev ve süs hayvanı: İnsan tarafından özellikle evde, işyerlerinde ya da arazisinde özel zevk ve refakat amacıyla muhafaza edilen veya edilmesi tasarlanan bakımı ve sorumluluğu sahiplerince üstlenilen her türlü hayvanı, j) Kontrollü hayvan: Bir kişi, kuruluş, kurum ya da tüzel kişilik tarafından sahiplenilen, bakımı, aşıları, periyodik sağlık kontrolleri yapılan işaretlenmiş kayıt altındaki ev ve süs hayvanlarını, k) Hayvan bakımevi: Hayvanların rehabilite edileceği bir tesisi, l) Deney: Herhangi bir hayvanın acı, eziyet, üzüntü veya uzun süreli hasara neden olacak deneysel ya da diğer bilimsel amaçlarla kullanılmasını, m) Deney hayvanı: Deneyde kullanılan ya da kullanılacak olan hayvanı, n) Kesim hayvanı: Gıda amaçlı kesimi yapılan hayvanları, o) Bakanlık: Çevre ve Orman Bakanlığını, İfade eder. İlkeler MADDE 4. - Hayvanların korunmasına ve rahat yaşamalarına ilişkin temel ilkeler şunlardır: a) Bütün hayvanlar eşit doğar ve bu Kanun hükümleri çerçevesinde yaşama hakkına sahiptir. b) Evcil hayvanlar, türüne özgü hayat şartları içinde yaşama özgürlüğüne sahiptir. Sahipsiz hayvanların da, sahipli hayvanlar gibi yaşamları desteklenmelidir. c) Hayvanların korunması, gözetilmesi, bakımı ve kötü muamelelerden uzak tutulması için gerekli önlemler alınmalıdır. d) Hiçbir maddî kazanç ve menfaat amacı gütmeksizin, sadece insanî ve vicdanî sorumluluklarla, sahipsiz ve güçten düşmüş hayvanlara bakan veya bakmak isteyen ve bu Kanunda öngörülen koşulları taşıyan gerçek ve tüzel kişilerin teşviki ve bu kapsamda eşgüdüm sağlanması esastır. e) Nesli yok olma tehlikesi altında bulunan tür ve bunların yaşama ortamlarının korunması esastır. f) Yabani hayvanların yaşama ortamlarından koparılmaması, doğada serbestçe yaşayan bir hayvanın yakalanıp özgürlükten yoksun bırakılmaması esastır. g) Hayvanların korunması ve rahat yaşamalarının sağlanmasında; insanlarla diğer hayvanların hijyen, sağlık ve güvenlikleri de dikkate alınmalıdır. h) Hayvanların türüne özgü şartlarda bakılması, beslenmesi, barındırılma ve taşınması esastır. ı) Hayvanları taşıyan ve taşıtanlar onları türüne ve özelliğine uygun ortam ve şartlarda taşımalı, taşıma sırasında beslemeli ve bakımını yapmalıdırlar. j) Yerel yönetimlerin, gönüllü kuruluşlarla işbirliği içerisinde, sahipsiz ve güçten düşmüş hayvanların korunması için hayvan bakımevleri ve hastaneler kurarak onların bakımlarını ve tedavilerini sağlamaları ve eğitim çalışmaları yapmaları esastır. k) Kontrolsüz üremeyi önlemek amacıyla, toplu yaşanan yerlerde beslenen ve barındırılan kedi ve köpeklerin sahiplerince kısırlaştırılması esastır. Bununla birlikte, söz konusu hayvanlarını yavrulatmak isteyenler, doğacak yavruları belediyece kayıt altına aldırarak bakmakla ve/veya dağıtımını yapmakla yükümlüdür. İKİNCİ KISIM Koruma Tedbirleri BİRİNCİ BÖLÜM Hayvanların Sahiplenilmesi, Bakımı ve Korunması Hayvanların sahiplenilmesi ve bakımı MADDE 5. - Bir hayvanı, bakımının gerektirdiği yaygın eğitim programına katılarak sahiplenen veya ona bakan kişi, hayvanı barındırmak, hayvanın türüne ve üreme yöntemine uygun olan etolojik ihtiyaçlarını temin etmek, sağlığına dikkat etmek, insan, hayvan ve çevre sağlığı açısından gerekli tüm önlemleri almakla yükümlüdür. Hayvan sahipleri, sahip oldukları hayvanlardan kaynaklanan çevre kirliliğini ve insanlara verilebilecek zarar ve rahatsızlıkları önleyici tedbirleri almakla yükümlü olup; zamanında ve yeterli seviyede tedbir alınmamasından kaynaklanan zararları tazmin etmek zorundadırlar. Ev ve süs hayvanı satan kişiler, bu hayvanların bakımı ve korunması ile ilgili olarak yerel yönetimler tarafından düzenlenen eğitim programlarına katılarak sertifika almakla yükümlüdürler. Ev ve süs hayvanı ve kontrollü hayvanları bulundurma ve sahiplenme şartları, hayvan bakımı konularında verilecek eğitim ile ilgili usul ve esaslar ile sahiplenilerek bakılan hayvanların çevreye verecekleri zarar ve rahatsızlıkları önleyici tedbirler, Tarım ve Köyişleri Bakanlığı ile eşgüdüm sağlanmak suretiyle, İçişleri Bakanlığı ve ilgili kuruluşların görüşü alınarak Bakanlıkça çıkarılacak yönetmelikle belirlenir. Ticarî amaç güdülmeden bilhassa ev ve bahçesi içerisinde bakılan ev ve süs hayvanları sahiplerinin borcundan dolayı haczedilemezler. Ev ve süs hayvanlarının üretimini ve ticaretini yapanlar, hayvanları sahiplenen ve onu üretmek için seçenler annenin ve yavrularının sağlığını tehlikeye atmamak için gerekli anatomik, fizyolojik ve davranış karakteristikleri ile ilgili önlemleri almakla yükümlüdür. Ev ve süs hayvanları ile kontrollü hayvanlardan, doğal yaşama ortamlarına tekrar uyum sağlayamayacak durumda olanlar terk edilemez; beslenemeyeceği ve iklimine uyum sağlayamayacağı ortama bırakılamaz. Ancak, yeniden sahiplendirme yapılabilir ya da hayvan bakımevlerine teslim edilebilir. Sahipsiz ve güçten düşmüş hayvanların korunması MADDE 6. - Sahipsiz ya da güçten düşmüş hayvanların, 3285 sayılı Hayvan Sağlığı Zabıtası Kanununda öngörülen durumlar dışında öldürülmeleri yasaktır. Güçten düşmüş hayvanlar ticarî ve gösteri amaçlı veya herhangi bir şekilde binicilik ve taşımacılık amacıyla çalıştırılamaz. Sahipsiz hayvanların korunması, bakılması ve gözetimi için yürürlükteki mevzuat hükümleri çerçevesinde, yerel yönetimler yetki ve sorumluluklarına ilişkin düzenlemeler ile çevreye olabilecek olumsuz etkilerini gidermeye yönelik tedbirler, Tarım ve Köyişleri Bakanlığı ve İçişleri Bakanlığı ile eşgüdüm sağlanarak, diğer ilgili kuruluşların da görüşü alınmak suretiyle Bakanlıkça çıkarılacak yönetmelikle belirlenir. Sahipsiz veya güçten düşmüş hayvanların en hızlı şekilde yerel yönetimlerce kurulan veya izin verilen hayvan bakımevlerine götürülmesi zorunludur. Bu hayvanların öncelikle söz konusu merkezlerde oluşturulacak müşahede yerlerinde tutulması sağlanır. Müşahede yerlerinde kısırlaştırılan, aşılanan ve rehabilite edilen hayvanların kaydedildikten sonra öncelikle alındıkları ortama bırakılmaları esastır. Sahipsiz veya güçten düşmüş hayvanların toplatılması ve hayvan bakımevlerinin çalışma usul ve esasları, ilgili kurum ve kuruluşların görüşleri alınarak Bakanlıkça çıkarılacak yönetmelikle belirlenir. Hayvan bakımevleri ve hastanelerin kurulması amacıyla Hazineye ait araziler öncelikle tahsis edilir. Amacı dışında kullanıldığı tespit edilen arazilerin tahsisi iptal edilir. Hiçbir kazanç ve menfaat sağlamamak kaydıyla sadece insanî ve vicdanî amaçlarla sahipsiz ve güçten düşmüş hayvanlara bakan veya bakmak isteyen ve bu Kanunda öngörülen şartları taşıyan gerçek ve tüzel kişilere; belediyeler, orman idareleri, Maliye Bakanlığı, Özelleştirme İdaresi Başkanlığı tarafından, mülkiyeti idarelerde kalmak koşuluyla arazi ve buna ait binalar ve demirbaşlar tahsis edilebilir. Tahsis edilen arazilerin üzerinde amaca uygun tesisler ilgili Bakanlığın/İdarenin izni ile yapılır. İKİNCİ BÖLÜM Hayvanlara Müdahaleler Cerrahi müdahaleler MADDE 7. - Hayvanlara tıbbî ve cerrahi müdahaleler sadece veteriner hekimler tarafından yapılır. Kontrolsüz üremenin önlenmesi için, hayvanlara acı vermeden kısırlaştırma müdahaleleri yapılır. Yasak müdahaleler MADDE 8. - Bir hayvan neslini yok edecek her türlü müdahale yasaktır. Hayvanların, yaşadıkları sürece, tıbbî amaçlar dışında organ veya dokularının tümü ya da bir bölümü çıkarılıp alınamaz veya tahrip edilemez. Ev ve süs hayvanının dış görünüşünü değiştirmeye yönelik veya diğer tedavi edici olmayan kuyruk ve kulak kesilmesi, ses tellerinin alınması ve tırnak ve dişlerinin sökülmesine yönelik cerrahi müdahale yapılması yasaktır. Ancak bu yasaklamalara; bir veteriner hekimin, veteriner hekimliği uygulamaları ile ilgili tıbbî sebepler veya özel bir hayvanın yararı için gerektiğinde tedavi edici olmayan müdahaleyi gerekli görmesi veya üremenin önlenmesi durumlarında izin verilebilir. Bir hayvana tıbbî amaçlar dışında, onun türüne ve etolojik özelliklerine aykırı hale getirecek şekilde ve dozda hormon ve ilaç vermek, çeşitli maddelerle doping yapmak, hayvanların türlerine has davranış ve fizikî özelliklerini yapay yöntemlerle değiştirmek yasaktır. Hayvan deneyleri MADDE 9. - Hayvanlar, bilimsel olmayan teşhis, tedavi ve deneylerde kullanılamazlar. Tıbbî ve bilimsel deneylerin uygulanması ve deneylerin hayvanları koruyacak şekilde yapılması ve deneylerde kullanılacak hayvanların uygun biçimde bakılması ve barındırılması esastır. Başkaca bir seçenek olmaması halinde, hayvanlar bilimsel çalışmalarda deney hayvanı olarak kullanılabilir. Hayvan deneyi yapan kurum ve kuruluşlarda bu deneylerin yapılmasına kendi bünyelerinde kurulmuş ve kurulacak etik kurullar yoluyla izin verilir. Etik kurulların kuruluşu, çalışma usul ve esasları, Tarım ve Köyişleri Bakanlığı ile Sağlık Bakanlığının ve ilgili kuruluşların görüşleri alınarak Bakanlıkça çıkarılacak yönetmelikle belirlenir. Deney hayvanlarının yetiştirilmesi, beslenmesi, barındırılması, bakılması, deney hayvanı besleyen, tedarik eden ve kullanıcı işletmelerin tescil edilmesi, çalışan personelin nitelikleri, tutulacak kayıtlar, ne tür hayvanların yetiştirileceği ve deney hayvanı besleyen, tedarik eden ve kullanıcı işletmelerin uyacağı esaslar Tarım ve Köyişleri Bakanlığınca çıkarılacak yönetmelikle belirlenir. ÜÇÜNCÜ BÖLÜM Hayvanların Ticareti ve Eğitilmesi Hayvanların ticareti MADDE 10. - Satılırken; hayvanların sağlıklarının iyi, barındırıldıkları yerin temiz ve sağlık şartlarına uygun olması zorunludur. Çiftlik hayvanlarının bakımı, beslenmesi, nakliyesi ve kesimi esnasında hayvanların refahı ve güvenliğinin sağlanması hususundaki düzenlemeler Tarım ve Köyişleri Bakanlığınca çıkarılacak yönetmelikle belirlenir. Yabani hayvanların ticaretine ilişkin düzenlemeler Bakanlıkça çıkarılacak yönetmelikle belirlenir. Ev ve süs hayvanlarının üretimini ve ticaretini yapanlar, annenin ve yavrularının sağlığını tehlikeye atmamak için gerekli anatomik, fizyolojik ve davranış karakteristikleri ile ilgili önlemleri almakla yükümlüdür. Hayvanların ticarî amaçla film çekimi ve reklam için kullanılması ile ilgili hususlar izne tâbidir. Bu izne ait usul ve esaslar ilgili kuruluşların görüşü alınarak Bakanlıkça çıkarılacak yönetmelikle belirlenir. Bir hayvan; acı, ıstırap ya da zarar görecek şekilde, film çekimi, gösteri, reklam ve benzeri işler için kullanılamaz. Deney hayvanlarının ithalat ve ihracatı izne tâbidir. Bu izin, Bakanlığın görüşü alınarak Tarım ve Köyişleri Bakanlığınca verilir. Hasta, sakat ve yaşlı durumda bulunan veya iyileşemeyecek derecede ağrısı veya acısı olan bir hayvanı usulüne uygun kesmek ya da ağrısız öldürme amacından başka bir amaçla birine devretmek, satmak veya almak yasaktır. Eğitim MADDE 11. - Hayvanlar, doğal kapasitesini veya gücünü aşacak şekilde veya yaralanmasına, gereksiz acı çekmesine, kötü alışkanlıklara özendirilmesine neden olacak yöntemlerle eğitilemez. Hayvanları başka bir canlı hayvanla dövüştürmek yasaktır. Folklorik amaca yönelik, şiddet içermeyen geleneksel gösteriler, Bakanlığın uygun görüşü alınarak il hayvanları koruma kurullarından izin alınmak suretiyle düzenlenebilir. DÖRDÜNCÜ BÖLÜM Hayvanların Kesimi, Öldürülmesi ve Yasaklar Hayvanların kesimi MADDE 12. - Hayvanların kesilmesi; dini kuralların gerektirdiği özel koşullar dikkate alınarak hayvanı korkutmadan, ürkütmeden, en az acı verecek şekilde, hijyenik kurallara uyularak ve usulüne uygun olarak bir anda yapılır. Hayvanların kesiminin ehliyetli kişilerce yapılması sağlanır. Dini amaçla kurban kesmek isteyenlerin kurbanlarını dini hükümlere, sağlık şartlarına, çevre temizliğine uygun olarak, hayvana en az acı verecek şekilde bir anda kesimi, kesim yerleri, ehliyetli kesim yapacak kişiler ve ilgili diğer hususlar Bakanlık, kurum ve kuruluşların görüşü alınarak, Diyanet İşleri Başkanlığının bağlı olduğu Bakanlıkça çıkarılacak yönetmelikle belirlenir. Hayvanların öldürülmesi MADDE 13. - Kanunî istisnalar ile tıbbî ve bilimsel gerekçeler ve gıda amaçlı olmayan, insan ve çevre sağlığına yönelen önlenemez tehditler bulunan acil durumlar dışında yavrulama, gebelik ve süt anneliği dönemlerinde hayvanlar öldürülemez. Öldürme işleminden sorumlu kişi ve kuruluşlar, hayvanın kesin olarak öldüğünden emin olunduktan sonra, hayvanın ölüsünü usulüne uygun olarak bertaraf etmek veya ettirmekle yükümlüdürler. Öldürme esas ve usulleri Bakanlıkça çıkarılacak yönetmelikle belirlenir. Yasaklar MADDE 14. - Hayvanlarla ilgili yasaklar şunlardır: a) Hayvanlara kasıtlı olarak kötü davranmak, acımasız ve zalimce işlem yapmak, dövmek, aç ve susuz bırakmak, aşırı soğuğa ve sıcağa maruz bırakmak, bakımlarını ihmal etmek, fiziksel ve psikolojik acı çektirmek. b) Hayvanları, gücünü aştığı açıkça görülen fiillere zorlamak. c) Hayvan bakımı eğitimi almamış kişilerce ev ve süs hayvanı satmak. d) Ev ve süs hayvanlarını onaltı yaşından küçüklere satmak. e) Hayvanların kesin olarak öldüğü anlaşılmadan, vücutlarına müdahalelerde bulunmak. f) Kesim hayvanları ve 4915 sayılı Kanun çerçevesinde avlanmasına ve özel üretim çiftliklerinde kesim hayvanı olarak üretimine izin verilen av hayvanları ile ticarete konu yabani hayvanlar dışındaki hayvanları, et ihtiyacı amacıyla kesip ya da öldürüp piyasaya sürmek. g) Kesim için yetiştirilmiş hayvanlar dışındaki hayvanları ödül, ikramiye ya da prim olarak dağıtmak. h) Tıbbî gerekçeler hariç hayvanlara ya da onların ana karnındaki yavrularına veya havyar üretimi hariç yumurtalarına zarar verebilecek sunî müdahaleler yapmak, yabancı maddeler vermek. ı) Hayvanları hasta, gebelik süresinin 2/3’ünü tamamlamış gebe ve yeni ana iken çalıştırmak, uygun olmayan koşullarda barındırmak. j) Hayvanlarla cinsel ilişkide bulunmak, işkence yapmak. k) Sağlık nedenleri ile gerekli olmadıkça bir hayvana zor kullanarak yem yedirmek, acı, ıstırap ya da zarar veren yiyecekler ile alkollü içki, sigara, uyuşturucu ve bunun gibi bağımlılık yapan yiyecek veya içecekler vermek. l) Pitbull Terrier, Japanese Tosa gibi tehlike arz eden hayvanları üretmek; sahiplendirilmesini, ülkemize girişini, satışını ve reklamını yapmak; takas etmek, sergilemek ve hediye etmek. ÜÇÜNCÜ KISIM Hayvan Koruma Yönetimi BİRİNCİ BÖLÜM Mahallî Hayvan Koruma Kurulları Teşkilât, Görev ve Sorumluluklar İl hayvanları koruma kurulu MADDE 15. - Her ilde il hayvanları koruma kurulu, valinin başkanlığında, sadece hayvanların korunması ve mevcut sorunlar ile çözümlerine yönelik olmak üzere toplanır. Bu toplantılara; a) Büyükşehir belediyesi olan illerde büyükşehir belediye başkanları, büyükşehire bağlı ilçe belediye başkanları, büyükşehir olmayan illerde belediye başkanları, b) İl çevre ve orman müdürü, c) İl tarım müdürü, d) İl sağlık müdürü, e) İl millî eğitim müdürü, f) İl müftüsü, g) Belediyelerin veteriner işleri müdürü, h) Veteriner fakülteleri olan yerlerde fakülte temsilcisi, ı) Münhasıran hayvanları koruma ile ilgili faaliyet gösteren gönüllü kuruluşlardan valilik takdiri ile seçilecek en çok iki temsilci, j) İl veya bölge veteriner hekimler odasından bir temsilci, Katılır. Kurul başkanı gerekli gördüğü durumlarda konuyla ilgili olarak diğer kurum ve kuruluşlardan yetkili isteyebilir. İl hayvan koruma kurulu sekretaryasını, il çevre ve orman müdürlüğü yürütür. Kurul, çalışmalarının sonucunu, önemli politika, strateji, uygulama, inceleme ve görüşleri Bakanlığa bildirir. İllerde temsilciliği bulunmayan kuruluş var ise il hayvan koruma kurulları diğer üyelerden oluşur. Kurul, kurul başkanı tarafından toplantıya çağrılır. İl hayvan koruma kurulunun çalışma esas ve usulleri Bakanlıkça çıkarılacak yönetmelikle belirlenir. İl hayvanları koruma kurulunun görevleri MADDE 16. - Hayvanları koruma kurulu münhasıran hayvanların korunması, sorunların tespiti ve çözümlerini karara bağlamak üzere; av ve yaban hayvanlarının ve yaşama alanlarının korunması ve avcılığın düzenlenmesi hususlarında alınmış olan Merkez Av Komisyonu kararlarını göz önünde bulundurarak; a) Hayvanların korunması ve kullanılmasında onların yasal temsilciliği niteliği ile bu Kanunda belirtilen görevleri yerine getirmek, b) İl sınırları içinde hayvanların korunmasına ilişkin sorunları belirleyip, koruma sorunlarının çözüm tekliflerini içeren yıllık, beş yıllık ve on yıllık plân ve projeler yapmak, yıllık hedef raporları hazırlayıp Bakanlığın uygun görüşüne sunmak, Bakanlığın olumlu görüşünü alarak hayvanların korunması amacıyla her türlü önlemi almak, c) Hazırlanan uygulama programlarının uygulanmasını sağlamak ve sonuçtan Bakanlığa bilgi vermek, d) Hayvanların korunması ile ilgili olarak çeşitli kişi, kurum ve kuruluşların il düzeyindeki faaliyetlerini izlemek, yönlendirmek ve bu konuda gerekli eşgüdümü sağlamak, e) İlde kurulacak olan hayvan bakımevleri ve hayvan hastanelerini desteklemek, geliştirmek ve gerekli önlemleri almak, f) Yerel hayvan koruma gönüllülerinin müracaatlarını değerlendirmek, g) Hayvan sevgisi, korunması ve yaşatılması ile ilgili eğitici faaliyetler düzenlemek, j) Bu Kanuna göre çıkarılacak mevzuatla verilecek görevleri yapmak, İle görevli ve yükümlüdür. İKİNCİ BÖLÜM Denetim ve Hayvan Koruma Gönüllüleri Denetim MADDE 17. - Bu Kanun hükümlerine uyulup uyulmadığını denetleme yetkisi Bakanlığa aittir. Gerektiğinde bu yetki Bakanlıkça mahallin en büyük mülkî amirine yetki devri suretiyle devredilebilir. Denetim elemanlarının nitelikleri ve denetime ilişkin usul ve esaslar ile kayıt ve izleme sistemi kurma, bildirim yükümlülüğü ile bunları verecekler hakkındaki usul ve esaslar Bakanlıkça çıkarılacak yönetmelikle belirlenir. Yerel yönetimler, ev ve süs hayvanları ile sahipsiz hayvanların kayıt altına alınması ile ilgili işlemleri yapmakla yükümlüdürler. Yerel hayvan koruma görevlilerinin sorumlulukları MADDE 18. - Özellikle kedi ve köpekler gibi sahipsiz hayvanların kendi mekânlarında, bulundukları bölge ve mahallerde yaşamaları sorumluluğunu üstlenen gönüllü kişilere yerel hayvan koruma görevlisi adı verilir. Bu görevliler, hayvan koruma dernek ve vakıflarına üye ya da bu konuda faydalı hizmetler yapmış kişiler arasından il hayvan koruma kurulu tarafından her yıl için seçilir. Yerel hayvan koruma görevlileri görev anında belgelerini taşımak zorundadır ve bu belgelerin her yıl yenilenmesi gerekir. Olumsuz faaliyetleri tespit edilen kişilerin belgeleri iptal edilir. Yerel hayvan görevlilerinin görev ve sorumluluklarına, bu kişilere verilecek belgelere, bu belgelerin iptaline ve verilecek eğitime ilişkin usul ve esaslar Bakanlıkça çıkarılacak yönetmelikle belirlenir. Yerel hayvan koruma görevlileri; bölge ve mahallerindeki, öncelikle köpekler ve kediler olmak üzere, sahipsiz hayvanların bakımları, aşılarının yapılması, aşılı hayvanların markalanması ve kayıtlarının tutulmasının sağlanması, kısırlaştırılması, saldırgan olanların eğitilmesi ve sahiplendirilmelerinin yapılması için yerel yönetimler tarafından kurulan hayvan bakımevlerine gönderilmesi gibi yapılan tüm faaliyetleri yerel yönetimler ile eşgüdümlü olarak yaparlar. ÜÇÜNCÜ BÖLÜM Hayvanların Korunmasının Desteklenmesi Mali destek MADDE 19. - Ev ve süs hayvanlarının korunması amacıyla bakımevleri ve hastaneler kurmak; buralarda bakım, rehabilitasyon, aşılama ve kısırlaştırma gibi faaliyetleri yürütmek için, başta yerel yönetimler olmak üzere diğer ilgili kurum ve kuruluşlara Bakanlıkça uygun görülen miktarlarda mali destek sağlanır. Bu amaçla Bakanlık bütçesine gerekli ödenek konulur. Bu ödeneğin kullanımına ilişkin esas ve usuller, Maliye Bakanlığının olumlu görüşü alınmak suretiyle Bakanlıkça çıkarılacak yönetmelikle belirlenir. DÖRDÜNCÜ BÖLÜM Diğer Hükümler Eğitici yayınlar MADDE 20. - Hayvanların korunması ve refahı amacıyla; yaygın ve örgün eğitime yönelik programların yapılması, radyo ve televizyon programlarında bu konuya yer verilmesi esastır. Türkiye Radyo ve Televizyon Kurumu ile özel televizyon kanallarına ait televizyon programlarında ayda en az iki saat, özel radyo kanallarının programlarında ise ayda en az yarım saat eğitici yayınların yapılması zorunludur. Bu yayınların % 20'sinin izlenme ve dinlenme oranı en yüksek saatlerde yapılması esastır. Radyo ve Televizyon Üst Kurulu görev alanına giren hususlarda bu maddenin takibi ile yükümlüdür. Trafik kazaları MADDE 21. - Bir hayvana çarpan ve ona zarar veren sürücü, onu en yakın veteriner hekim ya da tedavi ünitesine götürmek veya götürülmesini sağlamak zorundadır. Hayvanat bahçeleri MADDE 22. - İşletme sahipleri ve belediyeler hayvanat bahçelerini, doğal yaşama ortamına en uygun şekilde tanzim etmekle ve ettirmekle yükümlüdürler. Hayvanat bahçelerinin kuruluşu ile çalışma usul ve esasları Tarım ve Köyişleri Bakanlığının görüşü alınmak suretiyle Bakanlıkça çıkarılacak yönetmelikle belirlenir. Yasak ve izinler MADDE 23. - Bu Kanun kapsamında olan ev ve süs hayvanlarının ticaretinin yapılması, ithalatı ve ihracatı ile her ne şekilde olursa olsun, ülkeden çıkarılması ve sokulması ile ilgili her türlü izin ve işlemlerde Bakanlığın görüşü alınmak kaydıyla Tarım ve Köyişleri Bakanlığı yetkilidir. Tarım ve Köyişleri Bakanlığının ilgili birimlerince, yıl içinde yapılan ithalat ve ihracat ile ilgili bilgiler Bakanlığa bildirilir. Koruma altına alma MADDE 24. - Bu Kanunun hayvanları korumaya yönelik hükümlerine aykırı hareket eden ve bu suretle bulundurduğu hayvanların bakımını ciddi şekilde ihmal eden ya da onlara ağrı, acı veya zarar veren kişilerin denetimle yetkili merci tarafından hayvan bulundurması yasaklanır ve hayvanlarına el konulur. Söz konusu hayvan yeniden sahiplendirilir ya da koruma altına alınır. DÖRDÜNCÜ KISIM Cezai Hükümler BİRİNCİ BÖLÜM İdari Para Cezası Verme Yetkisi, Cezalar, Ödeme Süresi, Tahsil ve İtiraz İdarî para cezası verme yetkisi MADDE 25. - Bu Kanunda öngörülen idarî para cezaları bu Kanunun 17 nci maddesinde belirtilen denetime yetkili merci tarafından verilir. İdari para cezalarına itiraz MADDE 26. - İdarî para cezalarına karşı cezanın tebliği tarihinden itibaren onbeş gün içinde idare mahkemesine dava açılabilir. Davanın açılmış olması idarece verilen cezanın yerine getirilmesini durdurmaz. Bu konuda idare mahkemelerinin verdiği kararlar kesindir. İdarî para cezalarının ödenme süresi ve tahsili MADDE 27. - İdarî para cezalarının ödenme süresi cezanın tebliği tarihinden itibaren otuz gündür. Ceza vermeye yetkili merciler tarafından, Bakanlıkça bastırılan ve dağıtılan makbuz karşılığında verilen para cezaları, ilgilileri tarafından mahallin en büyük mal memurluğuna yatırılır. Yatırılan paranın % 80'i ilgili belediyeye takip eden ay içinde aktarılır. Bu para, tahsisi mahiyette olup amacı dışında kullanılamaz. Bu Kanuna göre verilecek idarî para cezalarında kullanılacak makbuzların şekli, dağıtımı ve kontrolü ile ilgili esas ve usuller yönetmelikle belirlenir. Öngörülen süre içinde ödenmeyen para cezaları, gecikme zammı ile birlikte 6183 sayılı Amme Alacaklarının Tahsil Usulü Hakkında Kanun hükümlerine göre tahsil edilir. Cezalar MADDE 28. - Bu Kanun hükümlerine aykırı davrananlara aşağıdaki cezalar verilir: a) 4 üncü maddenin (k) bendinin ikinci cümlesi hükmüne aykırı davrananlara, hayvan başına ikiyüzellimilyon lira idarî para cezası. b) 5 inci maddenin birinci, ikinci, üçüncü ve altıncı fıkralarında öngörülen hayvanların sahiplenilmesi ve bakımı ile ilgili yasaklara ve yükümlülüklere uymayan ve alınması gereken önlemleri almayanlara hayvan başına ellimilyon lira, yedinci fıkrasında öngörülen yükümlülük ve yasaklara uymayanlara hayvan başına yüzellimilyon lira idarî para cezası. c) 6 ncı maddenin birinci fıkrasına aykırı hareket edenlere hayvan başına beşyüzmilyon lira idarî para cezası. d) 7 nci maddede yazılan cerrahi amaçlı müdahaleler ile ilgili hükümlere aykırı davrananlara hayvan başına yüzellimilyon lira idarî para cezası. e) 8 inci maddenin birinci fıkrasında yazılı, bir hayvan neslini yok edecek müdahalede bulunanlara hayvan başına yedibuçukmilyar lira idarî para cezası; ikinci, üçüncü ve dördüncü fıkralarına uymayanlara hayvan başına birmilyar lira idarî para cezası. f) 9 uncu maddede ve çıkarılacak yönetmeliklerinde belirtilen hususlara uymayanlara hayvan başına ikiyüzellimilyon lira; yetkisi olmadığı halde hayvan deneyi yapanlara hayvan başına birmilyar lira idarî para cezası. g) 10 uncu maddede belirtilen hayvan ticareti izni almayanlara ve bu konudaki yasaklara ve yönetmelik hükümlerine aykırı davrananlara ikimilyarbeşyüzmilyon lira idarî para cezası. h) 11 inci maddenin birinci fıkrasındaki eğitim ile ilgili yasaklara aykırı davrananlara birmilyarikiyüzellimilyon lira, ikinci fıkrasına aykırı davrananlara hayvan başına birmilyarikiyüzellimilyon lira idarî para cezası. ı) 12 nci maddenin birinci fıkrasına aykırı hareket edenlere hayvan başına beşyüzmilyon lira; ikinci fıkrasına aykırı hareket edenlere hayvan başına birmilyarikiyüzellimilyon lira idarî para cezası. j) 13 üncü madde hükümlerine aykırı davrananlara, öldürülen hayvan başına beşyüzmilyon lira idarî para cezası, aykırı davranışların işletmelerce gösterilmesi halinde öldürülen hayvan başına birmilyarikiyüzellimilyon lira idarî para cezası. k) 14 üncü maddenin (a), (b), (c), (d), (e), (g), (h), (ı), (j) ve (k) bentlerine aykırı davrananlara ikiyüzellimilyon lira idarî para cezası; (f) ve (l) bentlerine aykırı davrananlara hayvan başına ikimilyarbeşyüzmilyon lira idarî para cezası verilir, kesilmiş ve canlı hayvanlara el konulur. l) RTÜK’ün takibi sonucunda 20 nci maddeye aykırı hareket ettiği tespit edilen ulusal radyo ve televizyon kurum ve kuruluşlarına maddenin ihlal edildiği her ay için beşmilyar lira idarî para cezası. m) 21 inci maddeye aykırı hareket edenlere hayvan başına ikiyüzellimilyon lira idarî para cezası. n) 22 nci maddeye uymayanlara, hayvanat bahçelerinde kötü şartlarda barındırdıkları hayvan başına altıyüzmilyon lira idarî para cezası. o) 23 üncü maddeye aykırı hareket edenlere hayvan başına ikimilyarbeşyüzmilyon lira idarî para cezası. Bu maddenin (b) bendinde atıfta bulunulan 5 inci maddenin birinci, ikinci ve beşinci fıkraları ile (o) bendi dışında kalan fiillerin, veteriner hekim, veteriner sağlık teknisyeni, hayvan koruma gönüllüsü, hayvan koruma derneği üyeleri, hayvan koruma vakfı üyeleri, hayvan toplama, gözetim altına alma, bakma, koruma ile görevlendirilmiş olan kişilerce işlenmesi halinde verilecek ceza iki kat artırılarak uygulanır. Bu maddede yazılı idarî para cezaları, her takvim yılı başından geçerli olmak üzere, o yıl için 4.1.1961 tarihli ve 213 sayılı Vergi Usul Kanununun mükerrer 298 inci maddesi hükümleri uyarınca tespit ve ilân edilen yeniden değerleme oranında artırılarak uygulanır. BEŞİNCİ KISIM Çeşitli, Son ve Geçici Hükümler BİRİNCİ BÖLÜM Çeşitli Hükümler Birden fazla hükmün ihlâli MADDE 29. - Bu Kanunda suç olarak öngörülen fiiller başka kanunlara göre de suç ise, en ağır cezayı gerektiren kanun hükümleri uygulanır. Fiili ile bu Kanunun birden fazla hükmünü ihlal edenlere daha ağır olan ceza verilir. Fiillerin tekrarı MADDE 30. - Bu Kanunda, ceza hükmü altına alınmış fiillerin tekrarı halinde para cezaları bir kat, daha fazla tekrarı halinde üç kat artırılarak verilir. İKİNCİ BÖLÜM Son ve Geçici Hükümler Saklı hükümler MADDE 31. - 4915 sayılı Kara Avcılığı Kanunu, 3285 sayılı Hayvan Sağlığı ve Zabıtası Kanunu, 4631 sayılı Hayvan Islahı Kanunu ile 1380 sayılı Su Ürünleri Kanunu hükümleri saklıdır. GEÇİCİ MADDE 1. - Bu Kanunun 14 üncü maddesinin (l) bendinde belirtilen hayvanlardan, yurda bu Kanunun yürürlüğe girdiği tarihten önce sokulmuş olanların sahipleri; üç ay içerisinde hayvan koruma kurullarına bildirimde bulunarak bunları kayıt altına aldırmak; altı ay içerisinde kısırlaştırarak kısırlaştırıldıklarına ilişkin belgeleri il hayvan koruma kurullarına teslim etmek zorundadırlar. GEÇİCİ MADDE 2. - Bu Kanun gereğince çıkarılması gerekli bulunan yönetmelikler, Kanunun yürürlüğe girdiği tarihten itibaren bir yıl içinde hazırlanır. Yürürlük MADDE 32. - Bu Kanun yayımı tarihinde yürürlüğe girer. Yürütme MADDE 33. - Bu Kanun hükümlerini Bakanlar Kurulu yürütür.

http://www.biyologlar.com/hayvanlari-koruma-kanunu

Mutasyonlar

Mutasyon, DNA içindeki dört tür nükleotid halkasından bir veya daha fazlasında değişmedir. Bir tek halkada bile değişiklik anımsayacağınız gibi DNA mesajında bir harfin değişmesi demektir.DNA’dan kopya alan mesajcı RNA değişikliği içerecektir ve protein yapmakta olan makine tarafından farklı okunacaktır. Ortaya değişmiş bir protein çıkacak ve amino asit zincirinde bir halka farklı olacak, sonuç olarak da proteinin işlevi değişecektir. Mutasyonların en önemli özelliklerinden biri, DNA kopya edildiği zaman onların da kopya edilmeleridir. Daha önce açıkladığımız gibi hücre bölünmesine hazırlık olarak bir enzim yeni bir dizi gen üreten kadar DNA ‘daki nükleotidleri teker teker aynen kopya eder. DNA’daki bir mutasyon genellikle, değişimi o DNA’yı içeren hücrelerin bütün gelecek kuşaklarına geçinmek amacı ile kopya edilir. Böylece ufak bir mutasyon DNA diline sonsuza kadar yerleşir. Mutasyonun Nedenleri Mutasyonlara doğal tepkimeler (örneğin x-ışınları ve morötesi ışınlar) ve insan yapısı kimyasal maddelerin DNA’nın nükleotidleri(s: 65) halkalarına çarparak bozmaları neden olur. Nükleotidler böylece başka nükleotidlere dönüşebilirler. Kimyasal olarak dört standart nükleotid dışında bir biçim alabilirler veya tümüyle zincirden kopabilirler. Bütün bu değişmeler doğal olarak zincirin anlamını değiştirebilir;dil bundan sonra artık biraz değişmiştir.(s:66) Mutasyonlar tümüyle raslantısal olaylardır. Kesinlikle DNA’nın hangi halkasına çarpacağını bilmenin olanağı yoktur. Biz dahil herhangi bir canlı yaratığın DNA’sının herhangi bir nükleotidinde her an mutasyon görülebilir(buna karşılık bazı ilginç titizlikte dacrana enzimler de DNA’yı sürekli gözler ve bir değişiklik bulurlarsa onarırlar. Ama herşeyi de yakalayamazlar). Mutasyon Beden Hücrelerini ve Cinsel Hücreleri Farklı Şekilde Etkiler Bedenimizdeki tüm hücreler,DNA’yı oluşturan,annemizden ve babamızdan aldığımız birbirini tamalayıcı iki bölüm içerir. Ana babanın çocuk yapabilmeleri için DNA’larını, yalnızca birleşmeye elverişli olan tek hücrelere yerleştirmelyeri gerekir; bu, karşı cinsin bir hücresiyle çiftleşip böylece DNA’larını paylaşmak içindir. Bu özel hücreler erkeğin testislerinde yapılan spermlerle kadının yumurtalıklarında yapılan yumurtalardır. Bedenimizin hücrelerinden birinde DNA’da bir mutasyon oluştugu zaman çogunlukla bunun hiç farkina varmayiz. Bedenimizdeki milyarlarca hücreden birinin bozulmasini hissetmek çok zordur. Bir tek önemli istisna var: Hücrenin kanser olmasina yol açan mutasyon. Bu degişmeyi bundan sonraki bölümde inecelecegiz. Oysa yeni bireyleri yapmak için kullanilan sperm ve yumurtalari üreten testis ve yumurtaliklar içindeki hücrelerde mutasyon oldugu zaman durum oldukça degişiktir. Çünkü eger yumurta veya sperm mutasyon içeriyorsa,bu mutasyon dogal olarak döllenmiş yumurtaya geçecektir. Döllenmiş yumurta bölündügünde de mutasyon bütün yeni hücrelere kopya edilecektir. Böylece sonuçta ortaya çikan yetişkinin bedeninin her (s:67) bir hücresinde mutasyonun bir kopyasi bulunacaktir. Ve bu yetişkinin testis veya yumurtaliklarinda oluşan,sperm veya yumurta,her seks hücresi de bu mutasyonu taşiyacaktir. Buna göre,evrimde önemli olacak mutasyon bir organizmanın cinsel hücrelerinde olup kalıtımla geçirilebilen mutasyon çeşitidir. “İyi” mutasyonlar ve “Kötü “ mutasyonlar Mutasyonlar enderdir ama yine de evrimsel değişmenin temel araçları olmuşlardırb. Bir organizmanın proteinlerinde,çevereye uyum sağlamasında avantajlı değişmelere yol açabilirler. Bu anlamda mutasyonlara yararımızadır. (Mahlon B. Hoaglandı, Hayatın Kökleri,TÜBİTAK Y, 13. Basım s: 19-68...) *** “Evren büyük patlama dedikleri o zamanlardan ( “günlerden” demeye dilim varmıyor) bu yana daha düzenli hale mi geldi, daha düzensiz hale mi geldi? Bunu bir bilen varsa ve bana söylese, gerçekten minnettar olacağım. Belki de termodinamiğin 2. kanununu fazla sorgulamaya lüzum yok. Çünkü neticede çoğu formülasyona göre bu bir olasılık kanunu olduğu için, yanlışlanmaya karşı zaten doğuştan dirençli! Bu kanun, kapali bir sistem daha düzenli hale gelemez, kendi kendine cansızdan canlı oluşamaz demiyor. Sadece bu ihtimali çok zayıf (hemen hemen sıfır, ama sıfır değil) diyor. Ve J. Monod gibi bazı büyük moleküler biyologlar da bu ihtimale sığınıyorlar.” (Şahin Koçak, Anadolu Üniversitesi, Bilim ve Teknik 325. sayi, s:9) DİL SANATI “Bizim bildiğimiz anlamıyla konuşma dilinin ortaya çıkışı hiç kuşkusuz, insanın tarihöncesinin belirleyici noktalarından ve hatta belki de belirleyici tek noktasıdır. Dille donanmış olan insanlar doğada yeni tür dünyalar yaratabildiler: İçebakışsal (introspektif) bilinçler dünyası ve “kültür” adını verdiğimiz, kendi ilemizle yaratıp başkalarıyla paylaştığımız dünya. Dil, mecramız; kültür ise nişimiz oldu. Hawaii Üniversitesinden dilbilimci Derric Bickerton, 1990 tarihli kitabı Language and Species ‘de bunu, ikna edici bir biçimde belirtiyor: “Dil bizi, diğer tüm yaratıkların tutsak oldukları anlık deneyim hapisanesinden kurtarıp sonsuz uzam ve zaman özgürlüklerine salıverebilirdi.” Antropologlar dil hakkında, bir doğrudan ve biride dolaylı olmak üzere, yalnızca iki şeyden emin olabilyorlar. Birincisi konuşma dili, Homo sapiens ’i diğer tümyaratıklardan açık şekilde ayırır. İletişim ve içabakışsal düşünce mecrası olarak karmaşık bir konuşma dili yaratabilen tek canı, insandır. İkincisi, Homo sapiens’in beyni, en yakın evrimsel akrabamız olan büyük Afrika insansımaymunlarının beyninden üç kat büyüktür. Bu iki gözlem arasında bir ilişki olduğu açıktır; ama ilişkinin yapısı hala şiddetle tartışılıyor. Felsefecilerin dil dünyasını uzun zamandır incelemeliren karşın, dil hakkında bilinenlerin çoğu son otuz yılda öğrenilmiştir. Dilin evrimsel kaynağı hakkında iki görüş olduğunu söyleyebiliriz: İlk görüş dili insanın benzersiz bir özelliği, beynimizdeki büyümenin yan sonucu olarak ortaya çıkmış bir yetenek olarak görür. Bu durumda dilin, bilişsel bir eşiğin (s: 129) oluşmasıyla birlikte, hızla ve yakın zamanlarda ortaya çıktığı düşünülmektedir. İkinci görüşte, konuşma dilinin insan olmayan atalardaki-iletişimi de içeren, ama iletişimle sınırlı kalmayan- çeşitli bilişsel yetenekler üzerinde doğal seçimin etki göstermesiyle geliştiği savunulur. Bu süreklilik modeline göre dil, insanın tarihöncesinde, Homo cinsinin ortaya çıkışından itibaren aşamalı olarak gelişmiştir. MIT’ ten dilbilimci Noam Chomsky ilk modelin yanında yer almış ve büyük etki yaratmıştır. Dilbilimcilerin çoğunluğunu oluşturan Chomskicilere göre dil yetenğinin kanıtlarını erken insan kanıtlarında aramak yararsız, maymun kuzenlerimizde aramak ise iyice anlamsızdır. sonuçta, genellikle bir bilgisayar ya da geçici leksigramlar kullanarak maymunlara bir tür simgesel iletişim öğretmeye çalışanlar düşmanlıkla karışlanmışlardır. Bu kitabın temel konularından biri de , insanları özel ve doğanın geri kalan kısmından apayrı görenlerle, yakın bir bağlantı olduğunu kabul edenler arasındaki felsefi bölünmedir. Bu bölünme özellikle, dilin doğası ve kökeni hakkındaki tartışmalarda ortaya çıkıyor. Dilbilimcilerin insansımaymun-dili araştırmacılarına fırlattıkları oklar da hiç kuşkusuz, bu bölünmeyi yansıtıyor. Teksas Üniversitesi’nden psikolog Kathleen Gibson, insan dilinin benzersizliğini savunanlar hakkında, yakın zamanlarda şu yorumu yaptı:" (Bu bakış açısı) önermeleri ve tartışmalarıyla bilimsel olsa da, en azından Yaratılış’ın yazarlarına ve Eflatun’la Aristo’nun yazılarına dek uzanan, insan zihniyetiyle davranaşının nitelik açısından hayvanlardan çok farklı olduğunu savunan köklü bir Batılı felsefe geleneğine dayanmaktadır?” Bu düşünüşün sonucu olarak antropolojik literatür uszun süre, yalnizca insana özgü oldugu düşünülen davranişlarla doldu. Bu davranişlarin arasinda alet yapimi, simge kullanabilme yetenegi, aynada kendini taniyabilme ve lebette dil yer aliyor. 1960'lardan beri bu benzersizlik duvari, insanismaymunlarin da alet yapip kullanabildiklerinin, simggelerden yararlandiklarini ve aynada kendilerini taniyabildiklerinin anlaşilmasiyla birlikte çatirdamaya başladi.Geriye bir tek dil kaliyor ve dolaysiyla dilbilimçciler, insanin benzersizliginin son savunuculari olarak kaldilar. Analişlan, işlerini çok da ciddiye aliyorlar. Dil, tarihöncesinde- bilinmeyen bir araç sayesinde ve bilinmeyen bir geçici grafik izleyerek- ortaya çıktı ve hem birey, hem de tür olarak bizi dönüştürdü.Bickerton, “ Tüm zihinsel yeteneklerimiz arasında dil, bilinç eşiğimizin altında en derin, rasyonelleştiren zihin için de en ulaşılmaz olanıdır” diyor. “Ne dilsiz olduğumuz bir zamanı hatırlayabiliriz, ne de dile nasıl ulaştığımızı.” Birey olarak, dünyada var olmak için dile bağımlıyız ve dilsiz bir dünyayı hayal bile edemeyiz. Tür olarak, dil, kültürün dikkatle işlenmesiyle, birbirimizle etkileşim kurma şekilimizi dönüştürür. Dil ve kültür bizi hem birleştirir, hem de böler. dünyada şu anda var olan beş bin dil, ortak yeteneğimizin ürünüdür; ama yarattıkları beş bin kültür, birbirinden ayrıdır. Bizi yapılandıran kültürün ürünü olduğumuz için, kendi yarattığımız bir şey olduğunu, çok farklı bir kültürle karşılaşana dek anlayamıoruz. Dil gerçekten de, Homo sapiens ’le doğanın geri kalan kısmı arasında bir uçurum yaratır.İnsanın ayrı sesler ya da fonemler çıkarma yeteneği, insansımaymunlara göre ancak mütevazi oranda gelişmiştir: Bizim elli, insansımaymunnunsa bir düzine fonemi var. Ama bizim bu sesleri kullanma kapasitemiz sonsuzdur.Bu sesler, ortalama bir insanı yüz bin sözcüklük bir dağarcıkla donatacak şekilde tekrar tekrar düzenlenebilir ve bu sözcüklerden de sonsuz sayıda tümce oluşturulabilir. Yani, Homo sapiens ’ in hızlı, ayrıntılı iletişim yetisinin ve düyşünce zenginliğinin doğada bir benzeri daha yoktur. Bizim amacımız, dilin ilk olarak nasıl ortaya çıktığını açıklamak. Chomskyci görüşe göre, dilin kaynağı olarak doğal seçime bakmamıza gerek yoktur; çünkü dil, tarihsel bir kaza, bilişsel bir eşiğin aşılmasıyla ortaya çıkmış bir yetenektir. Chomsky şöyle der:" Şu anda, insan evrimi sırasında ortaya çıkan özel (s:131) koşullar altında 10 üzeri 10 adet nöron basketbol topu büyüklüğünde bir nesneye yerleştirildiğinde, fizik kurallarının nasıl işleyeceği konusunda hiçbir fikrimiz yok. ” MIT’ ten dilbilimci Steven Pinker gibi ben de bu görüşe karşıyım. Pinker az ama öz olarak, Chomsky’nin “işe tam tersinden baktığını” söylüyor. Beynin, dilin gelişmesi sonucu büyümüş olması daha yüksek bir olasılıktır.Pinker’e göre “dilin ortaya çıkmasını beynin brüt boyutu, şekli ya da nöron ambalajı değil, mikro devrelerinin doğru şekilde döşenmesi sağlar”. 1994 tarihli The Language Instinct adlı kitabında Pinker, konuşan dil için, doğal seçim sonucu evrimi destekleyen genetik bir temel fikri pekiştirecek kanıtları derliyor. Şu anda incelenemeyecek denli kapsamlı olan kanıtlar gerçekten etkileyici. Burada karşimiza şu soru çikiyor:konuşma dilinin gelişimini saglayan dogal seçim güçleri nelerdi? Bu yetenegin eksiksiz halde ortaya çikmadigi varsayiliyor; öyleyse, az gelişmiş bir dilin atalarimiza ne tür avantajlar sağladığını düşünmeliyiz. En açık yanıt, dilin etkin bir iletişim aracı sunmasıdır. Atalarımız, insansımaymunların beslenme yöntemlerine göre çok daha fazla savaşım gerektiren bir yöntem olan ilkel avcılık ve toplayıcılığı ilk benimsediklerinde, bu yöntem hiç kuşkusuz yararlı olmuştu. Yaşam tarzlarının karmaşıklaşmasıyla birlikte, sosyal ve ekonomik koordinasyon gereksinimi de arttı. Bu şartlar alıtnad, etkili bir iletişim büyük önem kazanıyordu. Dolaysıyla doğal seçim, dil yeteneğini sürekli geliştirecekti. Sonuçta,- modern inasansımaymunların hızlı solumalarına, haykırışlarına ve homurtularına benzediği varsayılan-eski maymun seslerinin temel repertuvarı genişleyecek ve ifade edilme şekli daha gelişmiş bir yapı kazanacaktı. Günümüzde bildiğimiz şekliyle dil, avcılık ve toplayıcılığın getirdiği gereksinimlerin ürünü olarak gelişti. Ya da öyle görünüyor. Dilin gelişimi konusunda başka hipotezler de var. Avcı-toplayıcı yaşam tarzının gelişmesiyle birlikte insanlar teknolojik açıdan daha başarılı hale gelidler, aletleri daha ince (İnsanın Kökeni s:132)likle ve daha karmaşık şekiller vererek yapabilmeye başladılar. 2 milyon yıl öncesinden önce, Homo cinsinin ilk türüyle birlikte başlayan ve son 200.000 yılı kapsayan bir dönemde modern insanın ortaya çıkışıyla doruk noktasına ulaşan bu evrimsel dönüşüme, beyin boyutunda üç kata ulaşan bir büyüme eşlik etti.Beyin, en erken Australopithecus ‘lardaki yaklaşık 440 santimetreküpten, günümüzde ortalama 1350 santimetreküpe ulaştı.Antropolglar uzun süre, teknolojik gelişmişliğin artmasıyla beynin büyümesi arasında neden-sonuç bağlantısı kurdular.:İlki, ikincisini geliştiriyordu. Bunun, 1. Bölüm’de tanımladığım Darwin evrim paketinin bir parçası olduğunu hatırlayacaksınız. Kenneth Oakley’in “Alet Yapan İnsan” başlıklı, 1949 tarihli klasik denemesinde, insanın tarihöncesi hakkındaki bu bakış açısı verilmiştir. Daha öncekti bir bölümde de belirttiğimiz gibi Oakley, dilin günümüzçdeki düzeyde “mükemmelleştirilmesinin” modern insanın ortaya çıkışını sağladığını ilk zavunanlar arasındaydı: Diğer bir deyişle, modern insanı modern dil yaratmıştır. Ama günümüzde, insan zihninin oluşumuna açiklik getiren farkli bir açiklama yayginlik kazandi; alet yapan insandan çok sosyal hayvan olan insana yönelik bir açiklamaydi bu. Dil, bir sosyal etkileşim araci olarak geliştiyse, avci-toplayici baglaminda ilitişimi geliştirmesi evrimin asil nedeni degil, ikincil bir yarari olarak görülebilir. Columbia Ünivrsitesi’nden nörolog Ralph Holloway, tohumu 1960'larda atılan bu yeni bakış açısının en önemli öncülerindendir. On yıl önce şöyle yazmıştı: “ Dilin, temelde saldırgan olmaktan çok işbirlikçi olan ve cinsiyetler arasında tamamlayıcı bir sosyal yapısal davranışsal işbölümüne dayanan, sosyal davranışsal bilişsel bir matristen geliştiğine inanma eğilimini duyuyuroum. Bu, bebeğin bağımlılık süresinin uzaması, üreme olgunluğuna ulaşma sürelerinin uzaması ve olgunlaşma süresinin, beynin daha çok büyümesini ve davranışsal öğrenmeyi mümkün kılacak şekilde uzaması için gerekli bir uyarlanmacı evrim stratejisiydi.” Bunun, insangilerin yaşam tarihinin (Richard Leakey, İnsanın Kökeni, Varlık/Bilim Yay, s: 133) modelleri hakkındaki, 3. Bölüm’de tanıladığım keşiflerle uyumlu olduğunu görebilirsiniz. Hollooway’ in öncü fikirleri pek çok kılığa büründükten sonra, sosyal zeka hipotezi olarak bilinmeye başladı. Londra’daki Unuvirsity College’den primatolog Robin Dunbar, bu fikri yakın zamanlarda şöyle geliştirdi: “ Geleneksel (kurama) göre (primatların) dünyada yollarını bulabilmek için daha büyük bir beyne ihtiyaçları vardır. Alternatif kurama göre ise, primatların kendilerini içinde bulundukları karmayşık sosyal dünya, danhha büyük beyinlerin oluşması için gerekli dürtüyü sağlamıştır.’ Primat gruplarında sosyal etkileşimi dğiştirmenin en önemli parçalarından biri giyinip kuşanmaktır; bu, bireyler arasında yakın bağlantı ve birbirini izleme olanağını sağlar. Dunbar’a göre giyim-kuşam, belli bir boyuttaki gruhplarda etkilidir; ama bu boyut aşıldığında toplumsal ilişkileri kolaylaştıracak başka bir araca gereksinim duyulur. Dunbar, insanın tarihöncesi döneminde grup boyutunun büyüdüğünü ve bunun da, daha etkili bir sosyal dış görünüş için seçme baskısı yarattığını söylüyor. “Dilin, dış görünüşle karşılaştırıldığında iki ilginç özelliği var. Aynı anda pek çok insanla konuşabilirsiniz”. Dunbar’a göre sonuçta, “dil, daha çok sayıda bireyin sosyal gruplarla bütünleştirilmesi için gelişti.” Bu senaryoya göre dil, “sesli giyim-kuşam”dır ve Dunbar dilin ancak, “Homo sapien’le birlikte” ortaya çıktığına inanır. Sosyal zeka hipotezine yakınlık duyuyorum; ama ileride de göstereceğim gibi, dilin insanöncesindeki geç dönemlerde ortaya çıktığına inanıyorum. Dilin hangi tarihte ortaya çıktığı, bu tartışmanın temel konularından biridir. Erken bir dönemde oluşup, ardından aşamalı bir ilerleme mi gösterdi? Yoksa yakın zamanlarda ve aniden (s: 134) mi ortaya çıktı? Bunun, kendimizi ne kadar özel gördüğümüze ilişkin felsefi anlamlar taşıdığı unutulmamalı. Günümüzde pek çok antropolog, dilin yakın zamanlarda ve hızla geliştiğine inanıyor; bunun temel hnedenlerinden biri, Üst Paleolitik Devrimi’nde görülen ani davranış değişikliğidir. New York Üniversitesinden arkeolog Randall White, yaklaşık on yıl önce kışkırtıcı bir bildiride, 100.000 yıldan önceki çeşitli insan faaliyetlyeriyle ilgili kanıtların “modern insanların dil olarak görecekleri bir şeyin kesinlikle olmadığına” işaret tetiğini savundu. Bu dönemde anatomik açıdan modern insanların ortaya çıktığını kabul ediyordu, ama bunlar kültürel bağlamda dili henüz “icat” etmemişlerdi. Bu daha sonra olacaktı: “ 35.000 yıl önce.. bu topluluklar, bizim bildiğimiz şekliyle dil ve kültürü geliştirmişlerdi.” White kendi düşüncesine göre, dilin çarpici oranda gelişmesinin Üst Paleolitik dönemiyle çakiştigini gösteren yeri arkeolojik kanit kümesi siraliyor: Ilk olarak, Neanderthaller döneminde başladigi kesin olarak bilinen, ama mezar eşyalarinin da eklenmesiyle ancak Üst Paleolitik’te gelişen, ölünün bilinçili olarak gömülmesi uygulamasiydi. Ikinci olarak, imge oluşturmayi ve bedenin süslenmesini içeren sanatsal ifade ancak Üst Paleolitik’te başliyordu. Üçüncü olarak,Üst Paleolitik’te, teknolojik yenilik ve kültürel degişim hizinda ani bir ivme görülüyordu. Dördüncü olarak, kültürde ilk kez bölgesel farklilyiklar oluşmaya başlamişti; bu, sosyal sinirlarin ifadesi ve ürünüydü. Beşinci olarak, egzotik nesnelerin degiştokuşu şeklinde uzun mesafeli temaslarin kanitlari bu dönemde güçleniyordu. Altinci olarak, yaşama alanlari önemli oranda büyümüştü ve bu düzeyde bir planlama ve koordinasyon için dile gerek duyulacakti. Yedinci olarak, teknolojide, agirlikli olarak taşin kullanilmasindan kemik, boynuz ve kil gibi yeni hammaddelerin kullanimina geçiliyor ve bu da fiziksel ortamin kullanilmasinda, dil olmaksizin hayal edilemeyecek bir karmaşikliga geçildigini gösteriyordu.(s:135) White ile, aralarında Lewis Binford ve Richard Klein ’ın da bulunduğu bazı antropologlar, insan faaliyetindeki bu “ilkler” öbeğinin altında, karmaşık ve tam anlamıyla modern bir konuşma dilinin ortaya çıkışının yattığına inanıyorlar. Binford, önceki bölümlerden birinde de belirttiğim gibi, modern öncesi insanlarda planlamaya ilişkin bir kanıt göremiyor ve gelecekteki olay ve faaliyetlerin önceden tahmin edilip düzenlenmesinin fazla yarar taşıyacağına inanmıyordu.İleriye doğru atılan adım, dildi; “dil ve özellikle, soyutlamayı mümkün kılan simgeleme. Böylesine hızlı bir değişimin oluşması için biyolojiye dayalı, temelde iyi bir iletişim sisteminden başka bir araç göremiyorum.” Bu savı esas itibarıyla kabul eden Klein, güney Afrika’daki arkeolojik sitlerde, avcılık becerilerinde ani ve görece yakın zamanda gerçekleşmiş bir gelişmenin kanıtlarını görüyor ve bunun, dil olanağını da içeren modern insan zihninin ortaya çıkışının bir sonucu olduğunu söylüyor. Dilin, modern insanların ortaya çıkışıyla çakışan hızlı bir gelişme olduğuna dar görüş geniş destek görse de, antropolojik düşünceye tam anlamıyla hakim olmuş değildir. İnsan beyninin gelişimi hakıkndaki incelemelerinden 3. Bölüm’de söz ettiğimi Dean Falk, dilin daha erken geliştiği düşüncesini savunuyor. Yakın zamanlarda bir yazısında şöyle demişti: “İnsangiller dili kullanmamış ve geliştirmememişlerse, kendi kendine geliyşen beyinleriyle ne yapmış olduklarını bilmek isterdim.”Nörolog Terrence Deacon da benzer bir görüşü savunuyor ama onun düşünceleri fosil beyinler değil, modern beyinler üzerinde yapılan incelemelere dayanıyor: 1989'da Human Evolution dergisinde yayınlanan bir makalesinde “ Dil becerisi (en az 2 milyon yıllık) uzun bir dönem içinde, beyin-dil etkileşiminin belirlediği sürekli bir seçimle gelişti” der. İnsansımaymun beyniyle insan beyne arasındaki nöron bağlantısı farklarını karşılaştıran Deacon, insan beyninin evrimi sırasında en çok değişen beyin yapı(s: 136) ve devrelerinin, sözlü bir dilin alışılmadık hesaplama gereksinimlerini yansıttığını vurguluyor. Sözcükler fosilleşmedigine göre antropologlar bu tartişmayi nasil çözüme kavuşturacaklar? Dolayli kanitlar-atalarimizin yarattigi nesneler ve anatomilerindeki degişimler- evrim tarihimiz hakkinda farkli öyküler anlatiyor. Işe beyin yapisi ve ses organlarinin yapisi da dahil olka üzere, anatomik kanitlari inceleyerek başlayacagiz. Sonra- davranişin arkeolojik kalintilarini oluşturan yönleri olan- teknolojik gelişmişlige ve sanatsal ifadeye bakacagiz. İnsan beynindeki büyümenin 2 milyon yıldan önce, Homo cinsiyle birlikte başladığını ve istikrarlı şekilde sürdüğünü görmüştük. Yaklaşık yarım milyon yıl önce Homo erectus’un ortalama beyin büyüklüğü 1100 santimetreküptü ve bu, modern insan ortalamasına yakın bir rakamdı. Australopithecus ’la Homo arasındaki yüzde elli düzeyindeki sıçramadan sonra, tarihöncesi insan beyninin büyüklüğünde ani artışlar görülmedi.Mutlak beyin boyutunun önemi psikologlar arasında sürekli bir tartışma konusu olsa da, insanın tarihöncesinde görülen üç kat oranındaki büyüme hiç kuşkusuz, bilişsel yeteneklerin geliştiğini gösteriyor. Beyin boyutu dil yetenekleriyle de bağlantılıysa, yaklaşık son 2 milyon yıl içinde beyin boyutunda görülen büyüme, atalarımızın dil becerilerinin kademeli olarak geliştiğini düşündürüyor. Terrence Deacon’ın insansımaymun ve insan beyinleri arasında yaptığı karşılaştırma da bunun mantıklı bir sav olduğunu gösteriyor.Nörobiyolog Harry Jerison, insan beynindeki büyümernin motoru olarak dile işaret ederek, Alet Yapan İnsan hipotezindeki, daha büyük beyinler için evrim baskısını el becerilerinin yarattığı fikrini yadsıyor. 1991'de verdiği bir konferansta (s: 137)şöyle demişti:" Bu bana yeteresiz bir açıklama gibi geliyor; özelilkle de alet yapımının çok az beyin dokusuyla da mümkün olması yüzünden. Basit ama yararlı bir dil üretmek içinse çok büyük oranlarda beyin dokusuna ihtiyaç var.” Dilin altında yatan beyin yapısı bir zamanlar sanıldığından çok daha karmaşıktır. İnsan beyninin çeşitli bölgelerine dağılmış, dille bağlantılı pek çok alan görülüyor. Atalarımızda da bu tür merkezlerin saptanabilmesi durumunda, dil konusunda bir karara varmamız kolaylaşabilirdi. Ama soyu tükenmiş insanların beyinlerine ilişkin anatomik kanıtlar yüzey hatlarıyla sınırlı kalıyor; fosil beyinler, iç yapı hakkında hiçbir ipucu snmuyor. Şansımıza, beynin yüzeyinde, hem dille hem de alet kullanımıyla bağlantılandırılan bir beyin özelliği görülüyor. Bu, (çoğu insanda) sol şakak yakınlarında yer alan yüksek bir yumru olan Broca kıvrımıdır. Fosil insan beyinlerinde Broca kıvrımına dair bir kanıt bulmamız, dil becerisinin geliştiğine ilişkin, belirsiz de olsa bir işaret olacaktır. Olası bir ikinci işaret de, modern insanlarda sol ve sağ yarıları arasındaki büyüklük farkıdır. çoğu insanda sol yarıküre sağ yarıküreden daha büyüktür; ve bu kısmen, dille ilgili mekanizmanın burada yer almasının sonucudur. İnsanlarda el kullanımı da bu asimetriyle bağlantılıdır. İnsan nüfusunun yüzde 90'ı sağ ellidir; dolaysıyla, sağ ellilik ve dil yetisi sol beynin büyük olmasıyla bağlatılandırılabilir. Ralph Holloway, 1972'de Turkana Gölü’nde bulunmuş, çok iyi (?) bir Homo habilis örnegi olan ve yaklaşik 2 milyon yaşinda oldugu saptanan kafatasi 1470'in(Müzeye giriş numarasi) beyin şeklini inceledi. Beyin kutusunun iç yüzeyinde Broca alaninin izini saptamaktan öte, beynin sol-sag şekillenmesinde de hafif bir asimetri buldu. Bu, Homo habilis’in modern şempanzelerin soluma- haykirma-homurtudan çok daha fazla iletişim aracina sahip oldugunu gösteriyordu. Holloway, Human Neurobiology’de yayinlanan bir bildiride, dilin ne zaman ve nasil ortaya çiktigini kanitlamanin olanaksizligina karşin, dilin ortaya çikişşinin “paleontolojik geçmişin derinliklerine “ uzanmasinin (s: 138) mümkün oldugunu belirtti. Holloway, bu evrim çizgisinin Australopithecus’la başlamiş olabilecegini söylüyordu;ama ben onunla ayni fikirde degilim. Bu kitapta şu ana dek yer verilen tüm tartişmalar, Homo cinsinin ortaya çikişiyla birlikte, insangil uyarlamasinda önemli bir degişim yaşandigina işaret ediyor.. Dolaysiyla ben, ancak Homo habilis ’in evrilmesiyle bir tür konuşma dilinin oluşmaya başladigini düşünüyorum. Bickerton gibi ben de bunun bir tür öndil, içedrigi ve yapisi basit, ama insansimaymunlarin ve Australopithecus ’ larin ötesine geçmiş bir iletişim araci oldugunu saniyorum. Nicholas Toth’un, 2. Bölümde sözü edilen, olağanüstü özenli ve yenilikçe alet yapma deheyleri, beyin asitmetrisinin erken inasnlarda da görüldüğü fikirini destekliyor.Toth’un taş alet yapımı çalışmaları,Oldovan kültürü uygulamacılarının genellikle sağ eli olduklarını ve dolaysıyla, sol beyinlerinin biraz daha büyük olacağını gösterdi. Toth’un bu konudaki gözlemleri şöyleydi: “Alet yapma davranışlarının da gösterdiği gibi, erken alet yapımcılarında beyin kanallaşması oluşmuştu. Bu, olasılıkla dil yetisinin de ortaya çıkmaya başladığını gösteren bir işarettir.” Fosil beyinlerinden elde edilen kanıtlar beri, dilin Homo cinsinin ilk ortaya çıkışıyla birlikte gelişmeye başladığına ikna etti. En azından, bu kanıtlarda, dilin erken dönemlerde ortaya çıktığı savına karşıt bir şey göremiyoruz. Ama ya ses organları: Gırtlak, yutak, dil ve dukalar? Bunlar da ikinci önemli anatomik bilgi kaynağını oluşturuyor. İnsanlar, gırtlağın boğazın alt bölümünde yer alması ve dolaysıyla, yutak adı verilen geniş bin se odacığı yaratması sayesinde, pek çok ses çıkarabilirler. New York’taki Mount Sınai Hastanesi tıp Fakültesinden Jeffrey Laitman, Brown Ünversitesinden Philip Lieberman ve Yale’den Edmund Crelin’in yenilikçi çalışmaları,, belirgin, ayrıntılı bir konuşma yaratılmasında geniş bir yutağın anahtar rol oynadığını gösteriyor. Bu araştırmacılar canlı yaratıkların ve insan fosillerinin ses yolu (s: 139) anatomileri üzerinde kapsamlı bir araştırma gerçekleştirdiler ve ikisinin birbirinden çok farklı olduğunu gördüler. İnsan dışında tüm memelilerde, gırtlak boğazın üst kısmında yer alı ve bu da, hayvanın aynı anda hem soluyup hem içebilmesini sağlar.Ama yutak boşluğunun küçüklüğü, yaratılabilecek ses alanını kısıtlar. dolaysıyla, memelilerin çoğunda, gırtlakta yaratılan seslerin değiştirilmesi ağız boşluğunun ve dudukların şekline bağlıdır. Gırtlağın boğazın alt kısmında yer alması insanların daha çok ses çıkarabilmelerin sağlar; ama ayını anda hem soluyup hem de içmemizi engeller. Böyle bir şey yaptığımızda boulabiliriz. İnsan bebekleri, memeliler gibi, boğazın üst kısımnada yer alan bir gırtlakla doğarlar ve dolaysıyla, aynı anda hem (s: 140) soluyup hem içibilirler; zaten, süt emerken ikisini de yapabilmeleri gerekir. Yaklaşık on sekizinci aydan itibaren gırtlak boğazın alt kısımlarına kaymaya başlar ve yetişkin konumuna, çocuk yaklaşık on dört yaşındayken ulaşır.Araştırmacılar,insanın erken dönem atalarının boğazlarında gırtlağın konumunu saptayabilmeleri durumunda,türün seslendirme ve dil yetisi konusunda bazı sonuçlara ulaşabilecemklerini fark ettiler.Ses organlarının fosilleşmeyen yumuşak dokulardan-kıkırdak, kas ve et- oluşması nedeniyle,bu oldukça güç bir işti.Yine de eski kafalarda,kafatasının dibinde, yani basikranyumda yer alan çok önemli bir ipucu görülüyor. Temel memeli modelinde kafatasının alt kısmı düzdür. İnsanlardaysa,belirgin şekilde kavisli. Dolaysıyla, fosil insan türlerinde basikranyum şekli,ses çıkarabilme yeteneğinin düzeyini gösterir. İnsan fosillerini inceleyen Laitman, Australopithecus’taki basikranyumun düz olduğunu gördü. Diğer pek çom biyolojik özellikte olduğu gibi,bu açıdan da insansımaymun gibiydiler ve insansımaymunlar gibi,onların da sesli iletişimi kısıtlı olmalıydı.Australopitecus’lar,insan konuşma modeline özgü evrensel ünlü seslerinin bazılarını çıkaramayacaklardı. Laitman,şu sonuca vardı: “Fosil kalıntılarında tam anlamıyla eğrilmiş bir basikranyum ilk olarak,yaklaşık 300 000 ile 400 000 yıl önce,arkakik Homo sapiens adını verdiğimiz insanlarda görülmektedir.” Yani,anatomik açıdan modern insanların evrilmesinden önce ortaya çıkan arkaik sapiens türlerinin tam anlamıyla modern bir dilleri var mıydı? Bu, pek olası görünmüyor. Basikranyum şeklindeki degişim,biline en eski Homo erectus örnegi olan,kuzey kenya’da bulunan ve yaklaşik 2 milyon yil öncesinden kalma kafatasinin incelemeliren göre bu Homo erectus bireyi,bazi ünlü sesleri çikartma yetenegine sahipti. Laitman, erken homo erectus’ta girtlak konumunun,alti yaşindaki modern bir çocugun girtlak konumuna eşdeger olacagini hesapliyor. Ne yazik ki, şu ana dek eksiksiz bir habilis beyin kutusu bulunamamasi nedeniyle (s:141), homo habilis hakkinda hiçbir şey söylenemiyor. Ben, en erken Homo’ya ait eksiksiz bir beyin kutusu buldugumuzda,tabanda egrilme başlangici görecegimizi tahimin ediyorum.Ilkel bir konuşma dili yetisi, homo’hnun ortaya çikişiyla birlikte başlamiş olmali. Bu evrim dizisi içinde açık bir paradoks görüyoruz. Basikranyumlarına bakılırsa,Neanderthallerin sözel becerileri,kendilerinden yüz binlerce yıl önce yaşamış olan diğer arkakik sapiens’lere göre daha geriydi. Neanderthallerde basikranyum eğrilmesi, Homo erectus’tan bile daha az düzeydeydi. Neanderthaller gerileyerek,atalarına göre konuşma yeteneklerini kaybetmişer miydi?(Gerçekten de kimi antropologlar,Neanderthallerin soylarının tükenmesiyle,dil yeteneklerinin alt düzeyde olması arasında bağlantı kurulabeleceğini söyylüyorlar). Bu tür evrimsel bir gerileme pek olası görülmüyor;bu tipte başka hiçbir örnek göremiyoruz.Yanıtı,Neanderthal yüz ve beyin kutusu anatomisinde bulmamız daha olası. Soğuk iklime bir uyarlanma olarak,Neanderthalin yüzünün orta kısmı aşırı derecede çıkıntılıdır. Bu yapı, burun geçişlerinin genişlemesini ve dolaysıyla,soğuk havanın ıbsıtılmasını ve dıyşşarı verilen soluktaki nemin yoğunlaşmasını sağlar. Bu yapı basikranyum şeklini,türün dil yetisini önemli oranda azaltmadan etkilemiş olabilir.Antropologlar bu noktayı hala tartışıyor. Kısaca anatomik kanıtlar, dilin erken dönemlerde ortaya çıktığını ve ardından, dil yeteneklerinin aşamalı olarak geliştiğini düşündürüyor.Ama alet teknolojisi ve sanatsal ifade konuisundaki arkeolojik kalıntılardan,genellikle farklı bir öykü çıkıyor. Daha önce belirttiğim gibi dil fosilleşmese bile,insan elinin ürünleri ilkesel olarak,dil hakkında bazı içgödrüler sunabilir. Bir önceki bölümdeki gibi,sanatsal ifadeden söz ederken,modern insan zihninin işleyişinin bilincindeyiz; bu da, modern bir dil düzeyine işaret ediyor. Taş aletler de alet yapımcılarının diyl yetileri hakkında bir anlayış sağlayabilir mi? 1976'da New york Bilimler akademisi’nde dilin kökeni ve doğası hakkında bir bildiri sunması istenen Glynn Isaac’ın (s:142) yanıtlaması gereken de buydu. Isaac, yaklaşık 2 milyon yıl önceki başlangıcından 35.000 yıl önceki Üst Paleolitik devrimine dek süren taş alet kültürlerinin karmaşıklığını gözden geçirdi. bu insanların aletlerle yaptıkları işlerden çok,aletlere verdikleri düzenle ilgileniyordu. Düzenleme insani bir saplantıdır;bu, en ince ayrıntılarıyla gelişmiş bir konuşma dili gerektiren bir davranış biçimidir. Dil olmasa, insanların koyduğu keyfi düzen de olamazdı. Arkeolojik kalıntılar,düzen vermenin insanın tarihöncesinde çok yavaş- adeta buzul hızıyla- geliştiğini gösteriyor. 2.Bölümde, 2.5 milyon ile yaklaşık 1.4 milyon yıl öncesi arasındaki Oldovan aletlerinin fırstaçı bir doğaya sahip olduklarını görmüştük. Alet yapımcılarının aletin şekline önem vermedikleri ve daha çok, keskin yongalar üretmeyi amaçladıkları görülüyor. kazıcılar, kesiciler ve diskler gibi “çekirdek “aletler bu sürecin yan ürünleriydi. Oldovan kültürünü izleyen ve yaklaşık 250.000 yıl öncesirne dek süren Acheuleen kültürü aletlerinde de ancak asgari düzeyde bir şekil görülüyor. Damla şeklindeki el baltası büyük olasılıkla,bir tür zihinsel kalıba göre üretilmişti ama gruptaki diğer aletlerin çoğu pek çok açıdan Oldovankültürüne benziyordu;dahası, Acheuleen alet kutusunda ancak bir düzine alet biçimi görülüyordu. Yaklaşık 250,000 yıl öncesinden itibaren,aralarında Neanderthallerin de bulunduğu arkaik sapiens bireyleri önceden hazırlanmış yongalardan alekler yapmaya başladılar. Mousterien’i de içeren bu gruplarda belki altmış alet tipi saptanabilmişti.Ama tipler 200.000 yılı aşkın bir süre değişmedi;tam bir insan zihninin varlığını yadsır gibi görünen bir teknolojik duruğalık dönemiydi bu. Yenilikçilik ve keyfi düzen ancak 35.000 yıl önce,Üst Palelitik kültürlerin sahneye çıkmasıyla birlikte yaygınlaştı. Yeni ve daha incelikli alet türlerinin yapılmasından öte,Üst Paleolitik döneme özgü alet grupları yüzbinlerce yıl değil,binlerce yıllak bir zaman ölçeği içinde değişmişti. Isaac, bu tenolojik çeşitlilik ve değişim modelinin,bir tür konuşma dilinin aşamalı (s:143) olarak ortaya çıkmasına işaret ettiğini düşünüyor ve Üst Paleolitik Devrimi’nin bu evrim çizgisinde önemli bir dönüm noktası oluşturduğunu savunuyordu. Çoğu arkeolog bu yorumu kabul etmektedir;ancak erken alet yapımcılarının konuşma dili düzeyleri konusunda farklı fikirler vardır; tabii,gerçekten bir dilleri varsa. Colorado Üniversitesi’nden Thomas Wynn, Nicholası Toth’un tersine,Oldovan kültürünün genel özellikleriyle insan değil, insansı maymun benzeri olduğuna inanıyor.man dergsinide 1989'da yaymlanan bir makalede, “Bu tabloda dil gibi unsurları varsaymamız gerekmez” diyor. Bu basit aletlerin yapımının çok az bilişsel yeti gerektirdiğini ve dolaysıyla, hiçbir şekilde insana özgü olmadığını savunuyor. Yine de Acheuleen el baltalarının yapımında “insana özgü bir şeyler” olduğunu kabulleniyor: “Bunun gibi insane serleri,yapımcının ürününün nihai şekline önem verdiğini ve onun bu amaçlılığını,homo erectus’un zihnine açılan küçük bir pencere olarak kullanabileceğimizi gösteriyor.”Wynn,homo erectus’un bilişsel yetisini, Acheuleen aletlerinin yapımının gerektirdiği zihinsel kapasiteyi temel alarak,yedi yaşındaki bir modern insana denk görüyor. Yedi yaşındaki çocuklar,gönderme (referans) ve gramer gibi,kayda değer dil becerilerine sahiptirler ve işaretlere ya da hareketlere gerek duymadan konuşma noktasına yakındırlar. bu bağlam içinde, Jeffrey Laitman’ın,basikranyum şeklini temel alarak, homo erectus’un dil yetisini ayltı yanıdaki modern bir inasının dil yetisine eş gördüğünü hatırlamak ilgi çekici olacaktır... Arkeolojik kalıntıların yalnızca teknoloji unsurunu klavuz alırsak,dilin erken dönemlerde ortaya çıktığını,insanın tarihöncesinin büyük bölümü boyunca yavaş yavaş ilerlediğini ve görece yakın zamanlarda büyük bir gelişme geçirdiğini düşünebiliriz. Bu, anatomik kanıtlardan türeetilen hipotezden ödün verilmesi anlamına geliyor. ama arkeolojik kalıntılar böyle bir ödüne yer bırakmıyor. kayalık korunaklara ya da mağaralara (s:144) yapılmış resim ve oymalar, kalıntılarda 35.000 yıl öncesinden itibaren,birderbire görülüyor. Aşıboyası sopa ya da kemik nesnelerin üzerine kazınmış eğriler gibi, daha önceki sanat eserlerine dair kanıtlar,en iyi olasılıkla ender ve en kötü olasılıkla da kuşkuludur. Sanatsal ifadenin-sözgelimi Avusturalyalı arkeolog Iain Davidson’ ın ısrarla savunrduğu gibi- konuşma diline ilişkin tek güvenilir gösterge olarak alınması durumunda dil,ancak yakın zamanlarda tamamen modern hale gelmiş,bunun da ötesinde, başlangıcı yakın zamanlarda olmuştur. New England Üniversitesi’nden çalışma arkadaşı William Noble’la birlikte yazdıkları yakın tarihli bir bildiride şöyle diyorlar:"tarihöncesinde nsnelere benzeyen imgelerin yapılması ancak,ortak anlamlar sistemlerine sahip topluluklarda ortaya çıkmış olabilirdi.” “Ortak anlamlar sistemleri” elbette, dil sayesinde yaratılabilirdi.Davidson ve noble, sanatı dilin olanaklı kıldığını değil, sanatsal ifadenin,göndermeli dilin gelişmesini sağlayan bir ortam olduğunu savunuyorlar. Sanat dilden önce gelmeli ya da en azından,dille koşut olarak ortaya çıkmalyıydı. Dolaysıyla, arkeolojik kalıntılarda sanatın ilk ortaya çıkışı,göndermeli konuşma dilinin de ilk ortaya çıkışına işaret eder İnsan dilindeki evrimin yapısı ve zamanlamasıyla ilgili pek çok hipotez var; bu da kanıtların ya da en azından kanıtların bir ısmınını yanlış yorumlandığını gösteriyor. Bu yanlış yorumlamaların getirdiği karmaşıklık ne olursa olsun,dilin kökeninin karmaşıklığı hakkında yeni bir anlayış gelişiyor. Wenner-Gren Antropolojik Araştırmalar Vakfı’nın düzenlediği ve Mart 1990'da gerçekleştirilen önemli bir konferansın,illeri yıllardaki tartışmaların akışını belirlediği görülecektir. “İnsan Evriminde Aletler, Dil ve Bilişim” başlıklı konferansta,insan tarihöncesinin bu önemli konuları arasında bağlantı kuruldu. konferansın düzenleyicilerinden Kathleen Gibson bu konumu şöyle tanımlıyor: “İnsan sosyal zekasının,alet kullanımının ve dilin, beyin boyutunda nicel gelişmeyle ve bununla ilgili bilgi işleme yetisiyle bağlantılı olması nedeniyle,içlerinden hiçbiri tek başına Minerva’nın Zeus’un başından doğması gibi,eksiksiz halde ve birdenbire ortaya çıkmış olamaz. Beyin boyşutu gibi bu entellektüel yetilerin her biri de kademeli olarak gelişmiş olmalı. Dahası, bu yetilerin birbirlerine bağımlı olmaları nedeniyle,içlerinedn hiçbiri modern karmaşıkylık düzeyine tek başına ulaşmış olamaz.” Bu karşıkıl bağımlılıkları çözümlemek zorlu bir savaşım olacaktır. Daha önce de belirtttiğim gibi burada, tarihöncesinin yeniden oluşturulmasından çok daha gfazlası; kendimize ve doğadaki yerimize dair bakış açımız da söz konusu. İnsanları özel görmek isteyenler,dilde yakın tarihli ve ani bir başlangıca işaret eden dellileri benimseyeceklerdir. İnsanın doğanın geri kalan kısmıyla bağlantısını reddetmeyenlerse, bu temel insan yetisinin erken dönemlerde ve aşamalı olarak gelişmesi fikrinden rahatsızlık duymayacaklardır. Doğanın bir garipliği sonucu Homo habilis ve Homo erectus topluluları hala var olsaydı, herhalde, çeşitli düzeylerde göndermeli dil kullandıklarını görürdük. Bu durumda, bizimle doğanın geri kalan kısmı arasındaki uçurum bizzat kendi atalarımız tarafından kapatılmış olurdu. (Richard Leakey, İnsanın Kökeni, Varlık/Bilim Yay, s:129-147 ,7. Bölümün sonu) İnsanın evrimine yön veren ayıklama baskıları sorununu bu terimler içinde ele almak gerekir. Söz konusu olanan kendimiz oluşu ve varlığımızın köklerinin evrimin içinde daha iyi görünce onu bugünkü doğası iuçinde daha iyi anlama olanağı bulunuşu bir yana bırakılsa bile, bu yine ayırksal ilginçlikte bir sorundur. Çünkü yansız bir gözlem, örneğin bir Mars’lı, kuşkusuz, evrende biricik bir olay ve insanın özgül edimi olan simgesel dilin gelişmesinin, yeni bir alanının, kültür, düşünce ve bilgi alanının yaratıcısı olan başka bir evrime yol açtığını görebilir. Çağdaş dilciler, simgesel dilin, hayvanların kullandığı türlü iletişim yollarına (işitsel, dokunsal, görsel ya da başka) indirgenemeyeceği olgusu üzerinde direniyorlar. Kuşkusuz doğru bir tutum. Fakat bundan, evrimin mutlak bir kesinlik gösterdiği, insan dilinin daha başlangıçtan beri , örneğin büyük maymunların kullandıkları bir çağırma ve haber verme türleri sistemiyle hiçbir ilişiksi olmadığı sonucuna varmak, bana, güç atılır bir adım ve ne olursa olsun, yararsız bir varsayım gibi görünüyor. Hayvanların beyni, kuşkusuz, yalnızca bilgileri kaydetmekle kalmayıp bunları birleştirmeye, dönüştürmeye ve bu işlemlerin sonucunu kişisel bir işlem olarak yeniden kurmaya elverişlidir: Fakat bu- ki konunun özü de buradadır- özgün ve kişisel bir çağrışım ya da dönüştürmeyi başka bir bireye iletmeye elverişli biçime sokulmamıştır. Oysa tam tersine bir bireyde gerçekleşen yaratıcı birleştirmelerin ve yeni çağrışımların, başkalarına aktarıldıklarında o bireyle ölüp gitmediği gün doğmuş sayılan insan dilinin sağladığı olanak budur. Primitif dil diye bir şey bilinmiyor: Çagdaş, biricik türümüzün bütün irklarinda simgesel aygit hemen hemen ayni karmaşikliga ve iletişim gücüne ulaşmiştir. Chomsky’ye göre ise, bütün insan dillerini temel yapisinin, yani “biçim”inin, ayni olmasi gerekir.Dilin hem temsil edip, hem olanak sagladigi olaganüstü edimler, Homo sapiens ’ de merkezi sinir sistemindeki önemli gelişmeyle açikça birlikte gitmiştir ve bu gelişme onun en ayirt edici anatomik özelligini oluşturur. Bugün denebilir ki, insanın bilinen en uzak atalarından başlayan evrimi, herşeyden önce kafatasının, dolyasıyla beyninin, ileri doğru gelişmesinde kendini gösterir. Bunun için, iki milyon yıldan daha uzun süren, yönlendirilmiş, sürekli ve desteklenmiş birr ayıklama baskısı gerekti. Ayıklama baskısı hem çok güçlü olmalı, çünkü bu süre göreli olarak kısadır, hem de özgül olmalı, çünkü başka hiçbir soyda bunun benzeri gözlemlenmemiştir: Çağımızdaki insanımsı maymunların kafatası sığası birkaç milyon yıl öncekilerden daha büyük değildir. İnsanın ayrıcalıklı merkezi sinir sisitmenini evrimiyle, onu özniteleyen biricik edimin evrimi arasında sıkı bir birliktelik olduğunu düşünmemek olanaksız. Öyle ki bu durumda dil, bu evrimin yalnızca bir ürünü değil, ayrıca başlangıç koşullarından da biri oluyor.(Raslantı ve Zorunluluk, s: 118-119) Bana göre doğruya en yakın varsayım, en ilkel simgesi iletişimin bizim soyumuzda çok erken ortaya çıktığı ve yeni bir ayıklama baskısı yaratarak türün geleceğini belirleyen başlangıç “ seçim”lerinden birini oluşturduğudur; bu ayıklama, dilsel edimin kendisinin ve dolaysıyla onu kullanan organın, yani beynin, gelişmesini kolaylaştırmış olmalı. Bu varsayımı destekleyen güçlü kanıtlar bulunduğunu sanıyorum. Bugünkü bilinen en eski gerçek insanımsılarda (Australopitekuslar ya da Leroi-Gourhan’ın haklı deyimiyle “Australantroplar”), İnsanı, en yakınları olan Pongide’lerden (yani insanımsı maymunlardan) ayır eden öznitelikleri bulunuyordu ve onların tanımı da buna dayanır. Australantroplar ayakta dururlardı ve bu, yalnızca ayağın özelleşmesiyle değil; iskeletteki ve başta belkemiği olmak üzere kas yapısındaki ve kafanın belkemiğine göre konumundaki değişikliklerle birlikte gider. İnsanın evriminde, Gibbon dışındaki bütün insanımsıların, dört ayakla yürümenin kısıtlamalırnadan kurtulmuş olmalarının önemi üzerinde de çok duruldu. Kuşkusuz bu çok eski (Australantroplardan daha eski) buluş çok büyük bir önem taşıyordu: Atalarımızın, yürürken ya da koşarken de ellerini kullanabilmelerini sağlayan yalnızca buydu. Buna karşi, bu ilkel insanimsilarin kafatasi sigasi bir şempanzeninkinden biraz büyük ve bir gorilinkinden biraz küçüktü. Beynin agirligi edimleriyle oranli degildir, ancak bu agirligin edimleri sinirladigi da kuşkusuzdur ve Homo sapiens yalnizca kafatasinin gelişmesiyle ortaya çikabilirdi. Ne olursa olsun, Zinjantrop, beyninin bir gorilinkinden daha ağır olmamasına karşın, Pongide’lerin bilmediği edimlere yetenekliydi: Gerçekten, Zinjantrop alet yapabiliyordu; gerçi bu öylesine ilkeldi ki; bu “aletler” ancak çok önemsiz biçimlerin yinelenmesi ve belli taşıl iskeletleri çevresinde brikmiş olmaları nedeniyle yapıntı olarak kabul ediliyorlar. Büyük maymunlar, yeri geldikçe, taştan ya da ağaç dallarından doğal “alet” kullanırlar, fakat tanınabilir bir norma göre biçimlendirilmiş yapıntılara benzeyen şeyler üretmezler. Böylece Zinjantropun çok ilkel bir Homo faber olarak görülmesi gerekiyor. Oysa dilin gelişmesiyle, amaçli ve disiplinli bir etkinligin belirtisi olan bir ustaligin gelgşmesi arasinda çok siki bir karşiliklilik bulunmasi büyük bir olasilik gibi görünüyor. Demek Australantroplarda, yalin ustaliklari ölçüsünde bir simgesel iletişim aygiti bulundugunu düşünmek yerinde olur. Öte yandan eger Dart’in düşündügü gibi, Austalantroplar, özellikle de gergedan, hipopotam ve panter gibi güçlü ve tehlikeli hayvanlari da başariyla avlayabilmişlerse, bunun, bir avcilar takimi arasinda önceden tasarlanmiş bir edim olmasi gerekir. Bu önceden tasarlama bir dilin kullanilmasini gerektirir. Australantropların beyinlerinin oylumundaki gelişmenin azlığı bu varsayıma karşı çıkar gibidir. Fakat genç bir şempanze üzerinde son yapılan deneylerin gösterdiğine göre, maymunlar konuşma dilini öğrenme yeteneğine sahip olmamakla birlikte sağır-dilsizlerin dilinden kimi öğeleri kavrayıp kullanabilmektedirler. Bu durumda artık konuşmalı simgeleme gücünün kazanılmasının, bu aşamada bugünkü şempanzeden daha anlayşışlı olmayan bir hayvandaki çok karmaşık olması gerekemyen nöromotris değişmelerden doğduğunu kabul etmek yerinde olur. Fakat açıktır ki bir kez bu adım atıldıktan sonra, ne denli ilkel olursa olsun bir dilin kullanılması, düşüncenin varkalma değerini arttırmaktan, böylece beynin gelişmesine yardımcı olarak, konuşmadan yoksun hiçbir türün erişemeyeceği, güçlü ve yönlü bir ayıklama baskısı yaratmaktan geri kalmaz. Bir simgesel iletişim sistemi ortaya çıktığı anda, bunu kullanmakta en yetenekli olan bireyler, daha doğrusu topluluklar, başka topluluklar karşısında, aynı zeka düzeyinin, dilden yoksun bir türün bireylerine sağlayabileceğiyle ölçüştürülemeyecek kadar üstünlük kazanırlar. Yine görülüyor ki, bir dilin kullanımından doğan ayıklama baskısı, sinir sisteminin, özellikle bu ayrıcalıklı, özgül ve geniş olanaklarla dolu edimin verimliliğine en uygun yönde gelişmesine yardım edecektir. Bu varsayım, günümüzdeki kimi verilerle de desteklenmiş olmasaydı, çekici ve akla uygun olmaktan öte gidemezdi. Çocuğun dil kazanması üzerindeki araştırmaların karşı çıkılmaz biçimde gösterdiğine göre bu sürecin bize mucize gibi görünmesi onun doğası gereği, herhangi bir biçimsel kuramlar sisteminin düzenli öğrenimindenf farklı oluşundandır.Çocuk hiçbird kural öğrenmez ve büyüklerin konuşmasına öykünmeye çalışmaz. Denebilir ki gelişmenin her aşamasında kendine uygun olanı alır. İlk aşamada (18 aylığa doğru) on kelime kadar bir dağarcığı olur ki, bunları her zaman, hep ayrı ayrı, öykünmeyle bile birbiriyle birleştirmeden kullanır. Daha sonra kelimeleri ikişer ikişer, üçer üçer vb., yine büyüklerin konuşmasınının yalın bir yinelemesi ya da öykünmesi olmayan bir sözdizimine göre birleştirecektir. Bu süreç, öyle görünüyor ki, evrenseldir ve kronolojisi de bütün dillerde aynıdır. İlk yıldan sonraki iki ya da üç yıl içinde, çocuğun dille oynadığı bu oyunda kazanmış oldğu yetkinlik, yetişkin bir gözlemci için inanılır gibi değildir. İşte bu nedenle burada, dilsel edimlerin temelindeki sinirsel yapıların içinde gelliştiği sıralı- oluşsal bir embriyolojik sürecin yansısını görmek zorunda oluyor. Bu varsayım, sarsıntılı kaynaklı konuşma yitimiyşle ilgili gözlemlerle desteklenmiştir. Bu konuşma yitimleri çocuğun gençliği ölçüsünde daha çabuk ve daha tam olarak geriler. Buna karşı bu bozukluklar erinliğe yakın ya da daha sonra ortaya çıktıklarında tersinmezz olurlar. Bunların dışında bütün bir gözlemler birikiminin doğruladığına göre, dilin kendiliğinden kazanılışının kritik bir yaşı vardır. Herkes bilir, yetişkin yaşta ikinci bir dil öğrenmek, sistemli ve sürekli bir iradeli çabayı gerektirir. Bu yoldan öğrenilen bir dilin düzeyi, hemen her zaman, kendiliğinden öğrenilen ana dil düzeyinin altında kalır. Dilin ilk edinilişinin sirali-oluşsal bir gelişme sürecine bagli oldugu görüşü, anatommik verilerle de dogrulanmiştir.Gerçekten, beynin doguştan sonra süren gelişmesinin erinlikle bittigi bilinir. Bu gelişme temelde, beyin kabugu sinir hücrelerinin kendi aralarindaki baglantilarin önemli ölçüde zenginleşmesinden oluşur. Ilk iki yilda çok hizli olan bu süreç, sonra yavaşlar: Erinlikten sonra (göründügü kadariyla) sürmez; demek ki ilksel edinimin olanakli bulundugu “kritik dönemi” kaplar. (Raslantı ve Zorunluluk, s:121) Burada, çocukta dil kazanımının böylesine mucizevi biçimde kendiliğinden görünüşü, onun, işlevlerinden bir dile hazırlamak olan bir sıralı-oluşsal gelişmenin bütünleyici bir bölümü oluşundandır, düşüncesine varabilmek için bir küçük adım kaloyor ki, ben kendi payıma bu adımı atmakta duraksamam. Biraz daha kesin belirtelim: Bilişsel işlevin gelişmesi de, kuşkusuz, beyin kabuğunun bu doğum sonrası büyümesine bağlıdır. Dilin bilişsel işlevle birliğini sağlayan, onun bu sıralı-oluş sürecinde kazanılmış olmasıdır; bu öylesine bir birlikteliktir ki, konuşmayla onun açıkladığı bilginin, içebakış yoluyla birbirinden ayrılmasını çok zorlaştırır. İkinci evrimin, yani kültürün ürünü olan insan dillerinin büyük çeşitliliğine bakarak, genellikle dilin bir “üstyapı”dan başka bir şey olamayacağı kabul edilir. Oysa Homo sapiens ’ deki bilişsel işlevlerin genişliği ve inceliği, açıklamasını ancak dilde ve dil yoluyla bulabilir. Bu aygıt olmadan o işlevler, büyük bölümüyle, kullanılamaz olur, kötürümleşir. Bu anlamda dil yeteneği artık üstyapı olarak görülemez. Kabul etmeli ki çağdaş insanda, bilişsel işlevler ile bunların doğurduğu ve aracılıklarıyla kenndini açıkladığı simgesel dil arasında, ancak uzun bir ortak evrimin ürünü olabilecek sıkı bir ortakyaşarlık (sybiose) vardır. Bilindiği gibi, Chomsky ve okuluna göre, derinliğine bir dilsel çözümleme, insan dillerinin büyük çeşitliliği içinde bütün dillerde ortak olan bir “biçim” bulunduğunu gösteriyor. Chomsky’ye göre, demek bu biçim, türün özniteliği ve doğuştan olarak kabul edilmelidir. Bu görüş, onda Descartesçı metafiziğe bir dönüş gören birçik filozof ya da antropoloğu şaşırttı. Bunun gerektirdiği biyolojik içeriği kabul etmek koşuluyla, bu görüş beni hiç şaşırtmıyor.Tersine çok daha önce, en kaba biçimiyle kazanılmış birdilsel yeteneğin insanın beyin zarı yapısındaki gelişmeyi etkilemekten geri kalmayacağını kabul etmek koşuluyla, bu bana, bu bana çok doğal görünüyor. Bu da demektir ki, konuşulan dil, insan soyunda ortaya çıktıktan sonra, yalnızca kültürün gelişmesini sağlamakla kalmadı, insanın fiziksel evrimine de belirgin biçimde yardım etti. Eğer gerçekten böyle olduysa, beynin sıralı-oluşsal gelişmesi boyunca ortaya çıkan dilsel yetenek, bugün “insan doğası”nın bir bölümüdür ve kendisi de, genom içinde, kalıtsal kuramın kökten değişik diliyle tanımlanmıştır. Mucize mi? Son çözümlede bir rastlantı ürünü söz konusu olduğuna göre öyle. Fakat Zinjantrop ya da arkadaşlarından biri, bir kategoriyi temsil etmek üzere bir konuşma simgesini ilk kullandığında, bir gün Darwinci evrim kuramını kavrama yeteneğinde bir beynin ortaya çııkma olasılığını çok büyük ölçüde artırmış oldu. (J. Monod, Raslantı ve Zorunluluk, s: 116-122) Sınırlar “ Evrimin belki üç milyar yıldan beri geçtiği yolun büyüklüğü, yarattığı yapıların görkemli zenginliği, bakteri’den İnsan’a, canlı varlıkların teleonomik edimlerinin mucizevi etkinliği düşünüldüğünde bütün bunların, gelişigüzel sayılar arasından kazanılan, kör bir ayıklamanın gelişigüzel belirlediği bir piyango ürünü olduğundan şüpheye düşülebilir. Birikmiş çagdaş kanitlarin ayrintili bir incelemesi, bunun olgularla (özellikle eşlenmenin, degişinimin ve aktarimin moleküler mekanizmalariyla) bagdaşan tek görüş oldugunu bildirse de, bir bütün olarak evrimin, dolaysiz, bireşimsel (synthetique) ve sezgisel bir anlatimini vermez görünüyor. Mucize “açiklanmiş” da olsa bizim gözümüzde hala mucizeligini koruyor. Mauriac’in deyişiyle : “Biz zavalli Hiristiyanlar için, bu profesörün dedikleri, bizim inandiklarimizdan daha inanilmaz görünüyor.” Bu da tıpkı modern fizçikteki kimi soyutlamaların doyurucu bir zihinsel imgenin kurulmaması gibi doğrudur. Fakat yine de biliyoruz ki, bu tür güçlükler, deneyin ve mantığın güvencelerini taşıyan bir kurama karşı kanıt olarak kullanılamazlar.Gerek mikroskopik gerek kozmolojik fizikte, sezgisel anlaşmazlığın nedenini görebiliyoruz: Karşılaştığımız olayların ölçüsü, dolyasız deneyimizin kategorilerini aşıyor. Bu sayrılğın yerine, o da sağaltmadan, yalnızca soyutlama geçebilir. Biyoloji için zorluk başka bir düzeydedir. Herşeyin temelinde bulunan ilksel etkileşimleri kavramak, mekanik öznitelikleri nedeniyle, göreli olarak kolaydır. Her tür toptan sezgisel tasarıma karşı çıkan, canlı sistemlerin fenomenolojik karmaşıklığıdır. Fizikte olduğu gibi biyolojide de, bu öznel güçlükler içinde; kuramı çürüten bir kanıt bulunmaz. Bugün artık denebilir ki, evrimin ilksel mekanizmaları, ilke olarak anlaşılmış olmakla kalmıyor, kesinlikle belirlenmiş de oluyor. Bulanan çözümü, türlerin kalıcılığını sağlayan mekanizmalarla, yani DNA’nın eşlenici değişmezliği ve organizmaların teleonomik tutarlılığı ile ilgili olduğu ölçüde doyurucudur. Yine de biyolojide evrim, daha uzun süre, zenginleşip belirlenmesini sürdürecek olan esas kavramdir. Bununla birlikte, temelde sorun çözülmüştür ve evrim artik bilginin sinirlari üzerinde bulunmamaktadir. Bu sınırları, ben kendi payıma, evrimin iki ucunda görüyorum: Bir yandan ilk canlı sistemlerin kaynağı, öte yandan da ortaya çıkmış olan sistemler arasında en yoğun biçimde teleonomeik olanın, yani insanın sinir sisteminin, işleyişi. Bu bölümde, bilinmeyenin bu iki sınırını belirlemeye çalışacağım. Cüanlı varlıkların özsel nitelikleinin temelindeki evrensel mekanizmaların açığa çıkarılmasının, kaynaklar sorununun çözzümünü de aydınlattığı düşünülebilir. Gerçekte bu buluşlar, sorunu hemen tümüyle yenileyerek, çok daha belirli terimler içinde ortaya koymuşlar ve onun eskiden göründüğünden de daha zor olduğunu göstermişlerdir. İlk organizmaların ortaya çıkışına götüren süreçte, önsel (a priori) olarak, üç aşama tanımlanabilir: a. Yeryüzünde canlı varlıkların temeli kimyasal oluşturucularının yani nükleotid ve aminosatlerin oluşmasi b. Bu gereçlerden başlayarak eşlenme yetenegi bulunan ilk makromoleküllerin oluşmasi c. Bu “eşlenici yapilar” çevresinde, sonunda ilk hücreye ulaşmak üzere bir teleonomik aygit yapan evrim. Bu aşamalardan her birinin yorumunun ortaya koydugu sorunlar degişiktir. Çok kere “önbiyotik aşama” denen birinci aşamaya, yalniz kuram degil, deney de yeterince ulaşabiliyor.Önbiyotik evrimin gerçekte izledigi yollar üzerinde belirsizlikler kalmiş ve daha da kalacak olmakla birlikte, bütünün görünüşü yeterli açikliktadir. Dört milyar yil önce atmosferin ve yer kabugunun koşullari kömürün, metan gibi kimi basit bileşiklerinin birikimine elverişliydi. Su ve amonyak da vardi. Oysa bu basit bileşikler, katlizörlerle biraraya geldiginde, aralarinda aminoasitlerin ve nükleotid öncülerinin (azotlu bazlar, şekerler) bulundugu çok sayida daha karmaşik cisimler kolayca elde edilebiliyor. Burada dikkati çeken olgu, bir araya gelmeleri kolay anlaşilan belli koşullar altinda, bu bireşimlerin, günümüz hücresinin oluşturuculariyla özdeş olan ya da benzeşen cisimler bakimindan veriminin çok yüksek oluşuduru. Demek ki, yeryüzünde belli bir anda, kimi su yatakları içinde, biyolojik makromoleküllerin iki öbeği olan malik asitlerle proteinlerin temel oluşturucularının, yüksek yoğunlukta çözeltiler olarak bulunmasının olabilirliği kanıtlanmış sayılabilir. Bu önbiyotik çorbada, önceden bulunan aminoasit ve nükleotidlerin polimerleşmesi yoluyla, çeşitli makromoleküller oluşabilir Gerçekten laboratuvarda, akla yatkın koşullar altında, genel yapılarıyla “çağdaş” makromoleküllere benzeyen polipeptit ve polinükleotidler elde edilmiştir. Demek buraya dek önemli zorluklar yok. Fakat belirleyici aşama aşilmiş degil: Ilk çorba koşullari altinda, hiçbir teleonomik aygitin yardimi olmadan, kendi eşlenimlerini gerçekleştirme yeteneginde olan makromoleküllerin oluşmasi. Bu zorluk aşilmaz gibi görünüyor. Bir polinükleotidik dizinin, kendiliginden bir eşleşmeyle, tamamlayici dizi ögelerinin bireşimine gerçekten öncülük edebildigi gösterilmiştir. Dogal olarak böyle bir mekanizma ancak çok etkisiz ve sayisiz yanlişliklara açik olurdu. Fakat bunun devreye girmesiyle, evrimin üç temel süreci yani eşlenme, degişinim ve ayiklanmanin da işlemeye başlamasi dizisel-çizgisel yapilari nedeniyle kendiliginden eşlenmeye en elverişli makromoleküllere önemli bir üstünlük saglamiş olmaliydi. Üçüncü aşama, varsayima göre, eşlenici yapinin çevresinde bir organizma , yani bir ilkel hücre oluşturacak olan teleonomik sistemlerin adim adim ortaya çikişidir. Işte “ses duvari”na burada ulaşilir, çünkü bir ilkel hücrenin yapisinin ne olabilecegi üzerinde hiçbir bilgimiz yok. Tanidigimiz en yalin sistem olan bakteri hücresi, ki sonsuz karmaşiklik ve etkinlikte bir makine düzenidir, bugünkü yetkinlik düzeyine belki de bundan bir milyar yil önce ulaşmiştir. Bu hücre kimyasinin bütünsel tasarisi, bütün başka canlilarinkiyşla aynidir. Kullandigi kalitsal kuram ve çeviri düszeni, örnegin insanlirinkiyle aynidir. Böylece, araştirmamiza sunulan en yalin hücrelerin “ilkel” bir yani yoktur. Bunlar, beş yüz ya da bin milyar kuşak boyunca, gerçekten ilkel yapilarinin kalintilari seçilemez olacak düzeyde güçlü bir teleonomik araçlar birikimi oluşturabilen bir ayiklanmanin ürünüdür. Taşillar olmadan böyle bir evrimi yeniden kurmak olanaksizdir. Yine de bu evrimin izledigi yol, özellikle başlama noktasi üzerine hiç olmazsa akla yatkin bir varsayim ortaya atmaya çalişilabilir. İlkel çorba yoksullaştığı ölçüde, kimyasal gizil gücü harekete geçirmeyi ve hücresel oluşturucuları birleştirmeyi “öğrenmiş” olması gereken metabolizma sisteminin gelişmesi ortaya Herkül sorunları çıkarır.Canlı hücrenin zorunlu koşulu olan seçmeli geçirimli zarın ortaya çıkışında da durum aynıdır. Fakat en büyük sorun, kalıtsal hücreyle, onun çevirisinin mekanizmasıdır. DOğrusu, “sorun”dan değil de gerçek bir gizden söz etmek gerekiyor.(s:128) Şifrenin çevirisi yapilmadikça anlami yoktur. Çagdaş hücrenin çeviri makinesi, kendileri de DNA’da şifrelenmiş olan yüz elli kadar makromoleküler oluşturucu içerir: şifrenin çevirisini ancak çeviri ürünleri yapabilir. Bu, her canli bir tohumdan çikar’in çagdaş anlatimidir. Bu halkanin iki ucu, kendilginden, ne zaman ve nasil birleşti? bunu tasarlamak son derece zor. Fakat bugün, şifrenin çözülmüş ve evrenselliginin anlaşilmiş olmasi, hiç olmazsa sorunun belirli terimler içine yerleştirilmesini sagliyor; biraz yalinlaştirarak aşagidaki alternatif saptanabilir: a. Şifrenin yapisi kimyasal ya da daha dogrusu stereokimyasal nedenlerle açiklanir. Eger belli bir amino asit temsil etmek üzere belli bir şifre seçilmişse, bunun nedeni, aralarinda belli bir stereokimyasal yakinlik bulunmasidir. b. Şifrenin yapisi kimyasal olarak rastgeledir; şifre, bildigimize göre, yavaş yavaş onu zenginle=ştiren bir dizi raslantisal seçimlerin sonucudur. Birinci varsayım, gerek şifrenin evrenselliğini açıklayabildiği, gerekse içindeki amino asitlerin bir polipeptit oluşturmak üzere dizisel sıralınışının, amino asitlerle eşlenici yapınını kendisi arasındaki dollaysız bir etkileşimden doğduğu ilkel bir çeviri mekanizması tasarlanmasına elverişli olduğu için, çok daha çekicidir. Son olarak da, özellikle bu varsayım doğruysa, ilke olarak doğrulanabilme olanağı vardır. Bu yüzden birçok doğrulama girişimi yapılmışsa da sonucun şimdilik olumsuz olduğunun kabul edilmesi gerekiyor. Belki de bu konuda henüz son söz söylenmemiştir. Olasi görünmeyen bir dogrulama beklenedursun ikinci varsayima yönelinmiştir ki, yöntembilim açisindan sevimsiz ise de bu, onun dogru olmadigi anlamina gelmez. Sevimsizligin birçok nedeni var. Şifrenin evrenselligini açiklamaz. O zaman birçok gelişme egilimlerinden yalniz birinin süregeldigini kabul etmek gerekiyor. Bu, çok olasi görünürse de hiçbir ilksel çeviri modeli vermez. Çok ustalikli kurgular öne sürülmüştür: Alan boş, hem de aşiri boştur. Giz, çözülmediği gibi, son derece ilginç bir sorunun yanıtını da saklıyor. Hayak yeryüzünd başladı: Bu olaydan önce bunun böyle olma olasılığıo neydi? Dirimyuvarının bugünkü yapısı, kesin sonuçlu olayın yalnızca bir kez ortaya çıktığı varsayımını ortadan kaldırmıyor. Bunun da anlamı önsel olasılığın hemen hemen sıfır olduğudur. Bu düşünce birçok bilimadamina itici gelir. Biricik bir olaydan yola çikarak, bilim ne bir şey söyleyebilir; ne bir şey yapabilir. Bilim yalnizca bir öbek oluşturan olaylar üzerine, bu öbegin önsel olabilirligi ne denli zayif da olsa, bir “söylem” geliştirebilir. Oysa, şifreden başlayarak bütün yapilarindaki evrenselligin dogrudan sonucu olarak, dirimyuvari biricik bir olayin ürünü gibi görünür. Dogal olarak, bu tek olma niteliginin, başka birçok girişim ve degişkenlerin ayiklanarak elenmesinden dogmasi olanagi da vardir. Fakat bu yorumu dogrulayacak bir şey yok.(s:129) Evrendeki bütün olabilir olaylar arasın

http://www.biyologlar.com/mutasyonlar

Koca ağız balığı (Aspius aspius)

Koca ağız balığı (Aspius aspius)

Koca ağız balığı (Aspius aspius), sazangiller familyasına ait bir etçil balık türü. Trakya, Marmara, ve Kuzey bölgelerimizin hızlı akarsularında yaşar. Ortalama 60-80 en çok 120 cm boy ve 2 – 4 kg. dan 10 kg.' a kadar büyüyebilirler. Aşağıya yönelik olan ağzı çok büyüktür, ağzının kenarları gözlerinin altına kadar varır. Ağzında dişleri olmamasına rağmen, etçil bir balıktır, su içindeki her türlü hayvanla beslenebilir. Erginleri yalnız dolaşır. Cinsel olgunluğa 4-5 yaşlarında ulaşıp Nisan - Temmuz arasında 80-100.000 yumurta bırakır. Koca ağız balığı yaşamının ilk yıllarında etçil değildir, ancak sonradan yırtıcı bir balık olur. Az lezzetli eti nedeniyle ekonomik değeri bölgeseldir. Buna karşın olta avcılığı için çok zevkli bir balıktır. Koca ağız balığı ile aynı cinse ait olan sis balığı (Apius vorax) türü Fırat ve Dicle nehirlerinde yaygındır. Boyları 40 cm. olur. Koca ağız balığı, Tuna nehri ile Main nehrini birbiriyle birleştiren kanalın yapımından sonra batı Avrupa'da da yayılmaya başlamıştır.   Alem:     Animalia (Hayvanlar)Şube:     Chordata (Kordalılar)Sınıf:     ActinopterygiiTakım:     Cypriniformes (Sazansılar)Familya:Cyprinidae (Sazangiller)Cins:     AspiusTür:     A. aspius

http://www.biyologlar.com/koca-agiz-baligi-aspius-aspius

İnsan papilloma virüsü

İnsan papilloma virüsü, insan papilloma virüs ya da human papilloma virus (HPV veya İPV) papillomavirus ailesine mensup, deri ve mukozal yüzeylerdeki bazal epitelyal tabaka hücrelerini enfekte eden bir DNA virusu. 1970'li yıllarla beraber HPV ve kanser ilişkisi üzerinde çalışmalar başlamış ve pozitif bulgularla beraber günümüzde önemli bir bilgi birikimi elde edilmiştir[1]. Şimdiye dek 100'den fazla HPV tipi saptanmıştır[2]. HPV; serviks, penis, vulva, vajina, anüs, ağız, orafarinks ve diğer mukozal bölgeleri tutarak, bu bölgelerde kansere neden olabilmektedir[3]. Özellikle serviks kanseri olgularının neredeyse tümünde (%99,7) HPV DNA izole edilmektedir[4]. HPV enfeksiyonu her yaşta görülebilmektedir. Bununla beraber genç sağlıklı çocuklarda da görüldüğü çeşitli çalışmalarda kanıtlanmıştır[3]. HPV'nin ortalama görülme yaşı 52 olup 35-39 ve 60-64 yaşlarında olmak üzere iki ayrı dönemde pik yapar[1]. HPV virusu bütün dünyada yaygın olarak bulunmaktadır. Sosyokültürel ve ekonomik düzeyinden bağımsız olarak her kadın risk altındadır. Kadınların %70-80'i yaşamları boyunca en az bir kez HPV ile enfekte olduğu gösterilmiştir[5]. Başta servikal kanser ve öncü lezyonlar olmak üzere, diğer genital kanserler (vulva, vajina, penis, anüs), orofaringeal kanserler, genital siğiller, laringeal papillomatozis ve muhtemelen bazı deri kanserinde de etiyolojide rol oynamaktadır[5]. Virusun erkekte ve kadında kanser oluşumuna (penis, vulva, vajina, serviks, anüs, rektum) yol açan türleri arasında 16 ve 18 numaralı genotipleri serviks, vulva, vajina ve penis derisi kanserleri yönünden en fazla potansiyeli olan türlerdir[6]. Özellikle serviks kanseri olgularının neredeyse tümünde (%99,7) HPV DNA izole edilmektedir[4]. Halk arasında rahim ağzı kanseri olarak bilinen serviks kanseri; dünya üzerinde her 2 dakikada bir kadının ölümüne neden olan ve değişik ülkelerde yapılan çalışmalarda kadınlarda meme kanserinden sonra en sık görülen ikinci kanserdir[5]. Bu da HPV enfeksiyonunun önemini göstermektedir. HPV'ye karşı son yıllarda geliştirilmiş olan HPV aşısı, kadınları hayat boyu bu enfeksiyondan koruyabilmektedir. Toplumda HPV'nin onkojenik türlerinin yaygınlığına bağlı olarak aşının HPV enfeksiyonlarını %65-76 oranında önlediği kanıtlanmıştır[6]. HPV 16 ve 18 suşlarına bağlı oluşan hastalıkları önlemede hem tip 6, tip 11, tip 16 ve tip 18 suşlarını içeren (quadrivalan) hem de tip 16 ve tip 18 suşlarını içeren (bivalan) aşının koruyuculuğu %90’ın üzerindedir. Bununla beraber quadrivalan aşının %100 etkin olduğu çeşitli çalışmalarda gösterilmiştir[7]. Hastalıklardan korunma konusunda birincil korunma yaklaşımlarının daha başarılı ve daha doğru olduğu kabul edilmektedir. Enfeksiyona yakalanmayı önlemeyi amaçlayan birincil korunma yaklaşımlarına aşılama örnek verilebilir. Bu nedenle HPV aşısının geliştirilmesi çok önemlidir. Papillomavirus ailesinden olan HPV ikozhedral yapıda, zarfsız, 55 nm boyunda 72 kapsomerli bir virüstür. 100’den fazla tipi olan HPV’nin yaklaşık 40 tipinin mukozal, 60 tipinin ise kutanöz enfeksiyon yaptığı bilinmektedir. Mukozal enfeksiyon yapanlardan yüksek onkojenik potansiyele sahip olan 16 ve 18 suşlarının genital kansere yol açma oranı %70 iken, düşük onkojenik potansiyele sahip 6 ve 11’in genital siğile yol açma oranı %90 olarak bilinmektedir. Virüs genomunun onkojenik mekanizmadan sorumlu tutulan genleri E6 ve E7 olarak bilinmektedir. E6 geni p53'ü yıkarak, E7 ise Rb genini inaktive ederek servikal karsinogenezin gelişmesine neden olmaktadır. HPV enfeksiyonunun persistan olma riski yaşla beraber artmaktadır. HPV enfeksiyonu son derece yaygın bir enfeksiyondur. Amerika Birleşik Devletleri'nde her yıl yaklaşık 6.2 milyon yeni HPV enfeksiyonu ortaya çıktığı bilinmektedir. Amerika Birleşik Devletleri Hastalık Kontrol Merkezi (CDC) verilerine göre dünyada seksüel aktif kadın ve erkeklerin yaşam boyu HPV ile enfekte olma olasılığı en az %50 olarak bildirilmiştir, bununla beraber 50 yaşına varmış kadınların bu enfeksiyonu geçirmiş olma olasılığı en az %80'dir[7][8][9]. HPV enfeksiyonu her yaşta görülebilmektedir ve çeşitli araştırmalarda genç sağlıklı çocuklarda da görüldüğü kanıtlanmıştır[3]. HPV’nin ortalama görülme yaşı 52 olup 35-39 ve 60-64 yaşlarında olmak üzere iki ayrı dönemde pik yapmaktadır[1]. HPV virusu bütün dünyada yaygın olarak bulunmaktadır. Sosyokültürel ve ekonomik düzeyinden bağımsız olarak her kadın risk altındadır. Kadınların %70-80'i yaşamları boyunca en az bir kez HPV ile enfekte olur. Kondom ve bariyer önlemleri riski azalır, ancak tam olarak koruyucu değildir. Daha çok genç yetişkinlerde görülen bu hastalığın cinsel yaşam tarzında ortaya çıkan değişikliklere bağlı olarak son yıllarda arttığı görülmektedir[5]. HPV enfeksiyonu %14,8 oranında hiç cinsel ilişkiye girmemiş kadınlarda da görülebilir. Çocuklarda gerçekleşebilecek HPV transmisyonunun nedenleri arasında otoinokülasyon, kontamine objeler ve yüzeylerden indirekt olarak bulaşma, seksüel kötüye kullanım, vajinal doğum, süt verme, intrauterin hayatta asendan enfeksiyonlar, transplasental geçiş, semen yer almaktadır. 1970'li yıllarla beraber HPV üzerinde çalışmalar başlamış ve pozitif bulgularla beraber günümüzde önemli bir bilgi birikimi elde edilmiştir[1]. Başta servikal kanser ve öncü lezyonlar olmak üzere, diğer genital kanserler (vulva, vajina, penis, anüs), orofaringeal kanserler, genital siğiller, laringeal papillomatozis ve muhtemelen bazı deri kanserinde de etiyolojide rol oynamaktadır[5]. Virusun erkekte ve kadında kanser oluşumuna (penis, vulva, vajina iç yüzü, serviks, anüs, rektum) yol açan 40 türü vardır ve bunlar arasında 16 ve 18 numaralı genotipleri serviks, vulva, vajina ve penis derisi kanserleri yönünden en fazla potansiyeli olan türleridir[6]. Halk arasında rahim ağzı kanseri olarak bilinen serviks kanseri; dünya üzerinde her 2 dakikada bir kadının ölümüne neden olan ve değişik ülkelerde yapılan çalışmalarda kadınlarda meme kanserinden sonra en sık görülen ikinci kanserdir[5]. Gelişmiş ülkelerde kadın kanserlerinin %3,6'sını, gelişmemiş ülkelerde kadın kanserlerinin %15'ini oluşturur. Ölüm sayılarının yaklaşık olgu sayılarının yarısına eşit olduğu kabul edilmektedir[5]. Tüm bu veriler serviks kanserinin önemini kanıtlamaktadır. Epidemiyolojik çalışmalar serviks kanseri için majör risk faktörünün HPV enfeksiyonu olduğunu göstermektedir. Serviks kanseri-HPV enfeksiyonu ilişkisi, akciğer kanseri-sigara ilişkisinden daha sıkı bir ilişkidir. Diğer taraftan HPV enfeksiyonu son derece yaygın bir enfeksiyondur. Amerika Birleşik Devletleri Hastalık Kontrol Merkezleri (CDC, Centers for Disease Control and Prevention) verilerine göre dünyada seksüel aktif kadın ve erkeklerin yaşam boyu HPV ile enfekte olma olasılığı en az %50 olarak bildirilmiştir. Serviks kanseri olgularının neredeyse tümünde (%99,7) HPV DNA izole edilir[4]. Bununla beraber serviksteki HPV enfeksiyonlarının çoğu asemptomatiktir ve saptanan enfeksiyonlarının %90'dan fazlası 2 yıl içeresinde kendiliğinden yok olabilmektedir[3]. Dolayısıyla serviks kanseri sıklığında azalma HPV enfeksiyonlarının tanınması, önlenmesi ve tedavi edilmesi yoluyla mümkün olabilir[4]. HPV aşısı 2006 yılında onaylanmış ve kullanıma sunulmuştur. HPV aşısının lisansı 9-26 yaşlar arasındaki genç kızlara ve kadınlara yapılmak üzere alınmıştır[6]. Günümüzde quadrivalan ve bivalan olmak üzere 2 çeşit HPV aşısı mevcuttur. Quadrivalan aşı HPV'nin 6, 11, 16, 18 suşlarına karşı; bivalan aşı ise 16 ve 18 suşlarına karşı yapılmıştır. Her iki aşının da adölesan dönemde uygulanması en yüksek immun yanıtı oluşturmaktadır. Özellikle 15 yaşından sonra aşıya verilen immun yanıt azalmaktadır. İleriki dönemdeki yanıtı da azaldığından erken dönemde aşılanmak hayati öneme sahiptir. Ayrıca bivalan aşı genç kızlara ek olarak erkeklere de uygulanabilmektedir[3]. Özellikle quadrivalan HPV aşısının 12-13 yaşlarındaki kız çocuklara yapılması amaçlanmaktadır[10]. HPV aşısı 3 doz olarak ve ikinci ile üçüncü dozlarının ilk dozdan 2 ve 6 ay sonra yapılması önerilir. 11-12 yaşındaki kızlara rutin yapılması önerilir. Aşı en erken 9 yaşında başlanabilir ve 13-26 yaşında aşılanmamış olanların aşılanması öngörülür[2]. Toplumda HPV'nin onkojenik türlerinin yaygınlığına bağlı olarak aşının HPV enfeksiyonlarını %65-76 oranında önlediği kanıtlanmıştır[6]. HPV 16 ve 18 suşlarına bağlı oluşan hastalıkları önlemede hem bivalan hem quadravalan aşının koruyuculuğu %90'ın üzerindedir. Bununla beraber quadrivalan aşının %100 etkin olduğu çeşitli çalışmalarda gösterilmiştir[7]. Bucalovirus rekombinan teknolojisi kullanılarak geliştirilen GSK aşısının (Cervarix'in) faz 3 çalışmaları Kuzey Amerika, Latin Amerika, Avrupa ve Asya'da 18.000'in üstünde kadını kapsamıştır ve bu çalışmaların sonunda aşının yeni enfeksiyona karşı %92 ve persistan enfeksiyona karşı %100 koruyuculuğu olduğu saptanmıştır. Merck firması ise HPV tip 6, 11, 16 ve 18'e karşı aşı geliştirmiş (Gardasil) ve bu aşı ile 25.000 kadın aşılanarak persistan enfeksiyondan %100 korunabildiği gösterilmiştir[2]. Halen Amerikan İlaç Gıda Dairesi (FDA) ve Avrupa Komisyonu tip 6, tip 11, tip 16 ve tip 18 içeren insan papillomavirus aşısını servikal kanserlerin, yüksek dereceli servikal displazinin, prekanseröz servikal lezyonun, prekanseröz vulvar displastik lezyonların ve yaygın genital siğillerin (kondiloma akuminata) önlenmesi için onaylamıştır. Bu aşı 11-12 yaşlarında 3 doz olarak uygulanmaktadır. Günümüzde HPV tip 16 ve tip 18, içeren başka bir aşı onaylanmıştır. Profilaktik HPV aşılarının rutin servikal tarama ile birlikte HPV ile ilişkili morbidite ve mortalite üzerinde çarpıcı etkileri olacağı öngörülmektedir[2]. Virus her kadında enfeksiyon ve buna sekonder kansere neden olabildiğinden, HPV aşısı için bir risk grubu söz konusu değildir. Hedef 9-26 yaş grubundaki her kadının mümkünse ilk cinsel ilişkiden önce, değilse mümkün olan en kısa sürede aşılanmasıdır. Hepatit B aşısında risk grubu aşılaması ile hastalık insidansının azaltılamaması deneyimi de HPV aşısının yaygın kullanılması gereksinimini ortaya çıkarmaktadır.[5]. Öte yandan HPV enfeksiyonu erkeklerde de görüldüğünden, aşının yalnızca kız çocuklara yapılmasının yeterli olup olmayacağı, aynı yaş grubundaki erkeklerin de aşılanmasının gerekliliği tartışma konusudur[6]. Kaynaklar ^ a b c d Güner H, Taşkıran Ç. Epidemiology of cervical cancer and the role of human papilloma virus. Türk Jinekoloji ve Obstetrik Derneği Dergisi 2007; 4(1):11-19. ^ a b c d Salman N. İnsan papilloma virus aşısı. ANKEM Derg 2007;21(Ek 2):99-101. ^ a b c d e Cutts FT, Franceschi S, Goldie S, Castellsague X, de Sanjose S, Garnett G, Edmunds WJ, Claeys P, Goldenthal KL, Harper DM, Markowitz L. Human papillomavirus and HPV vaccines: a review. Bulletin of the world health organization 2007; 85:719-726. ^ a b c d Akhan SE. Ülkemizde servikal kanser epidemiyolojisi ve HPV serotipleri. ankem derg 2007; 21(ek 2):96-98. ^ a b c d e f g h Ceyhan M. İnsan papilloma virusu (HPV) aşısı uygulamasında ülkemizde mevcut problemler. ANKEM Derg 2007; 21(Ek 2):102-104. ^ a b c d e f Bilir N. Serviks kanseri kontrolü çalışmaları ve HPV aşısı. Halk sağlığı uzmanları derneği teknik raporları no: 03 / 2007. ^ a b c Ault KA. Epidemiology and natural history of human papillomavirus infections in the female genital tract. Hindawi publishing corporation İnfections disease in obstetrics and gynecology 2006; article id 40470:1-5. ^ Centers for Disease control and prevention. Genital HPV infection-CDC fact sheet. Centers for disease control and prevention. 2004. ^ Akhan SE. Ülkemizde servikal kanser epidemiyolojisi ve HPV serotipleri. ankem derg 2007; 21(ek 2):96-98. ^ Skinner SR, Garland SN, Stanley MA, Pitts M, Quinn MA. Human papillomavirus vaccination fort he prevention of cervical neoplasia: is it appropriate to vaccinate women older than 26? MJA 2008; 188 (4):238-242.

http://www.biyologlar.com/insan-papilloma-virusu

Insecta (Hexapoda, Entoma, Böcekler) Sınıfı

Insecta (Hexapoda, Entoma, Böcekler) Sınıfı Bu sınıf böcekleri yani haşareleri içerir. Erişkinlerde vücut belirgin olarak 3 bölüme ayrılmıştır. Bunlar baş, göğüs ve abdomendir. Başta bir çift anten vardır ve göğüs 3 segmentden oluşmuştur. Bu halkaların her birinden birer çift ayak çıkar. Bazı türlerde ise thoraxdan bir veya iki çift kanat çıkar. Abdomen ise değişik sayıda segmentlerden oluşmuştur. Baş (Capot) : Oval veya küremsi yapıdadır. Genellikle iki adet küremsi (bileşik, compound) göz bulunur. Ayrıca üçgen şeklinde dizilmiş üç basit göz "ocellus" bulunur. İnsectlerdeki bu petek gözler çok büyük olup, başın sağlı sollu iki geniş alanını kaplarlar. Böceklerde çok iyi gelişmiş olan bu gözler çok iyi bir görme olanağı sağlarlar. Başta bir çift anten bulunur. Antenler duyu organları olup, başın önemli organlarıdırlar. Bu antenlerin üzerlerinde hava akımlarına karşı duyarlı tüyler bulunur. Ayrıca anten üzerinde çeşitli kokuları almaya yarayan bir çift anten vardır. Antenler çeşitli segmentlerden meydana gelir ve değişik türlerde farklıdır. Böceklerde ağız organelleri üç değişik tipte olabilir. Bunlar kesici-parçalayıcı, sokucu-emici ve yalayıcı-emici ağız tipleridir. Ancak nadiren bazı türlerde örneğin myiasis etkenlerinde ağız organelleri redüksiyona uğramıştır. Bu ağız organelleri tiplerinden sokucu-emici tip kan emicilerde iyi gelişmiş olup, ağız yapılışı bir hortum (rostellum) dan ibarettir. Bu hortum anten, palp, üst dudak (labrum), üst çene (mandibula), alt çene (1. maxilla), hypopharynx (tükrük yolu) ve alt dudak (labium, 2. maxilla) dan oluşmuştur. Göğüs (Thorax) :Thorax üç segmentden oluşmuştur. Bunlardan birincisine ve önde bulunana prothorax, ortadakine mesothorax arkadakine ise metathorax adı verilir. Bu halkalar belirgin ise de bazen ilk ikisi bazende üçü birden birbiriyle kaynaşmıştır. Ayak ve kanatlar bu halkalara yapışırlar. Kanat; böcekler için önemli bir organ olup, normal olarak her böcekte iki çift kanat vardır. Eğer kanat varsa bunlar mesothorax ve metathoraxdan çıkarlar. Bazı böcek türlerinde metathoraxdan çıkan kanat redüksiyona uğramış ve bir halter şeklini almıştır. Bu halter şeklindeki kanat denge organı görevi yapar. Bit ve pire gibi insectlerde kanat bulunmaz. Karıncalarda ise kanat bir süre bulunur ve sonra atılırlar. Önemli olan Diptera takımında ise iki çift kanat bulunur. Kanadın üzerindeki tüy ve lekeler ile kanadın şekli, rengi ve üzerindeki damarlar tür ayrımında önemlidir. Boru şeklinde olan damarların içinden sinir iplikleri ve kanadı besleyen sıvı geçer. Coleopteralarda ön kanatlar kitini ve mat olup, zar şeklinde olan arka kanatlan muhafazada kullanılır. Göğüsün her segmentinden bir çift ayak çıkar. Yani insectler üç çift bacaklıdırlar. Ayak sıra ile coxae, trochanter, femur, tibia, tarsus ve pulvillus denen kısımlardan oluşur. Tarsusun uç kısmında tutunmaya yarayan pulvillum denen yastıkçılar ve kancalar bulunabilir. Abdomen (karın) : Abdomendeki halkalar genel olarak belirgin olup, halka sayısı değişmekle beraber genellikle 11 halkadan oluşmuştur. Bu segmentlerin bazıları birbiriyle kaynaşmışlardır, Abdomenin arka tarafında türlere göre değişmek üzere anüs ve cinselorganlar bulunur. Erkeklerde çiftleşmeye yarayan genital organlar hypopygium adını alır ve bazenda kılıfıyla birlikte penis bulunur. Dişilerde ise yumurtlamaya hizmet eden ovipozitor bulunur. İnsectlerde sindirim sistemi ağızIa başlar ve birçok kör keselerden oluşan mide ve bağırsaklarla devam eder ve anüsle sona erer. Bağırsaklar ön, orta (mideye tekabül eder) ve son bağırsaktan ibarettir. Midenin bağırsağa geçtiği yerde birçok kanalcık yani malpighi kanalları vardır. Bu kanallar böceğin ekskresyon aygıtları olup, artık maddeleri toplar ve son bağırsağa dökerler. Böceklerde kaslar çeşitli halkalar içerisinde uzunlamasına ve enlilemesine şeritler meydana getirirler. Bunlar çizgili kaslardandır. Kaslar çeşitli organları özellikle de ayak ve kanatları hareket ettirirler. Örneğin uçan bir sineğin kanadı dakikada 300 kez çırpma yapar. İnsectlerde sinir sistemi merdiven şeklinde olup, vücudun dorsalinde arkaya doğru uzanır. Bu sinir ipcikleri birbirlerine sinir ipleriyle bağlıdır. Merkezi sinir sistemi, başta bulunan cervical ganglion (gelişmemiş ilksel bir beyin) ve bunların oesophagus etrafında birleşmeleri ile oluşur. Karın sinirleri ise başta beyin görevini yapan baş sinir ganglionundan çıkarlar. Böceklerde duyu organları,antenlerde, palplerde, başın çeşitli girinti ve çıkıntı yapan bölgelerinde, coxae ve trochanter üzerinde bulunurlar. Böceklerde solunum sistemleri karın halkalarının yan taraflarında bulunan ve stigma (solunum deliği) adını alan organellerde sonuçlanan, vücut içinde bir yumak halinde bulunan borucuklardan ibarettir. Solunum sistemi genel olarak trachea sistemiyle yapılır. Dallı ve budaklı borucuklar şeklinde olan bu trachealar stigmalarla dışarı açılır. Stigmalar abdomendeki segmentlerin yan taraflarından dışarı açılır. Her segmentde birer çift olabilir. Baş ve thoraxda genelde stigma olmaz. Stigmalar yalnız abdomen halkalarının iki yanında bulunurlar. Stigmaların etrafı kalın bir kitin tabakasıyla çevrilmiş ve kaslarla idare edilen bir kapağa sahitir.Böcek istediği zaman burayı kapatır. Solunum hareketleri kas kontraksiyonları ve vücut duvarının genişlemesiyle olur. Dolaşım sistemi yönünden böceklerde kapalı bir durum görülmemektedir. Böceklerde gerçek bir karın boşluğu yoktur. Bunların iç organlarının üzerini bir yağ tabakası örter ve aralarında boşluklar bulunur. Kalp dorsalde ve arkada yer alır ve genişlemiş bir damardan ibarettir. İnsectlerde kan dolaşımları açıktır ve vücudun dorsalinde üzerinde delikler bulunan, iç kısmında vücudun ön tarafına doğru açılıp arka tarafına doğru kapanan kapakcıkları taşıyan bir damardan ibarettir. Vücut boşluğunda serbest olarak dolaşan kan hemolenftir. Bu hemolenf kalp adı verilen damar içine girer ve bunun sıkışması ile de ön tarafa doğru hareket eder. Bunun sonucunda üzerindeki deliklerden vücut boşluğuna hemolenfi iter. İnsectlerde üreme sistemleri erkek ve dişi bireylerde farklıdır. Böceklerde erkek ve dişi ayrılmışlardır. Erkek üreme organları, genellikle ikiadet testis, ve sırası ile vasa defferens (boşaltı kanalı), vesicula seminalis (tohum kesesi), ductus ejaculatorius (boşaltım borusu) ve eklenti bezlerinden oluşur. Dişilerde ise iki tane yumurtalık vardır. Bu ovaryumların her biri bileşik borucuklardan yani ovarial tüplerden oluşmuştur. Her iki ovaryum oviducta (yumurta yolu) açılır. Oviduct vajinaya bağlıdır. Ayrıca çiftleşme esnasında spermatozoitleri toplayan receptaculum seminis (tohum torbası) yada spermatheca adı verilen bir torba bulunur. Bu torba vajinaya açılır. Dişilerde en son organ olarak da yumurtlamaya yardımcı olan ovipositor adını alan organ vardır. Böceklerin çoğunda yaşamları boyunca bir kez kopulasyon olur. Döllenmeden sonra erkek ölür, spermatozoitler dişinin yaşamı boyunca spermatekada canlı kalırlar ve gelişen yumurtayı döllerler. Dişi ve erkek böcek çiftleştikten sonra türlere göre değişrnek üzere yumurta, larva yada pupa bırakırlar. Bu duruma göre bazı insectler ovipar (Dişileri yumurta bırakır), bazıları vivipar (Dişileri canlı, hareketli larvaları bırakır, buna larvipar da denir.) ve hatta bazılarıda pupipar (Dişilerin doğrudan pupa bırakması) 'dır. İnsectlerin üzerleri kitin tabakasından oluşan bir kılıfla örtülüdür. Böceklerin biyolojik gelişmeleri sırasında erişkin hale yani olgun (matur) hale gelebilmesi için, böceğin büyüyüp gelişebilmesi için üzerindeki bu kılıfı atması olayına gömlek değiştirme adı verilir. Bu gömlek değiştirme olayı böceğin gelişmesi sırasında tüm dönemlerde meydana gelir. Böceklerde sırası ile erişkin -yumurta -larva -pupa ve erişkin dönemleri görülür. Ancak bazı türlerde bu biyolojik gelişme evrelerinde değişiklikler olur. Yani erşkin-yumurta-nymph-erişkin böcek dönemleri görülür. Böceklerin gelişmesi sırasında iki tip larva şekli görülür. Bunlar; Magot Larva: Başları küçük ve ayakları bulunmayan larvalara magot larva adı verilir. Dipteralarda ve pirelerde görülür. Oligopod Larva: Bu tip larvaların başları belirgindir ve thoraxda üç çift bacak bulunur. Coleopteralarda görülür. Pupa: Tam metamorfoz geçiren böceklerin biyolojilerini tamamlarken girmiş oldukları hareketsiz safhaya pupa adı verilir. Pupayı çevreleyen ve onu koruyan yapıya ise kokon adı verilir. İki çeşit pupa vardır. Bunlar, Obtek pupa: Pupa ince bir zarla örtülüdür ve pupa serbestçe hareket eder. Örn : Nematocera ve Brachycera 'larda, Koarktat pupa ise pupa içinde böcek görülmez ve pupa hareketsizdir. Örn : Cyclorrhapha 'larda görülen pupa şeklidir. İnsectlerde Gelişme (Metamorfosis-Metamorphosis-Metamorfoz -Başkalaşım) : İnsectlerin gelişmesinde yumurtadan çıkan genç artropod az çok erginlerine benzeyebileceği gibi bazı türlerde ise yumurtadan çıkan genç artropodlar erginlere hiç benzemezler. Yumurtadan çıkan ve erişkine hiç benzemeyen artropodun erişkine benzeyinceye kadar geçirdiği değişiklikler olayının tümüne metamorfosis adı verilir. Yani metamorfoz gelişme döneminde bir böcekte meydana gelen yapısal ve şekilsel değişikliklerdir. Metamorfoz yönünden insectler üç grupta toplanırlar. a) Metamorfosis göstermeyen yada ilkel bir metamorfosis gösteren insectler : Bu gruptaki insectler direk gelişirler. Yumurtadan çıkan genç formlar büyüklükleri dışında erişkinlere tamamen benzerler. Bu formlar kısa sürede gelişip erişkinlerin büyüklüklerine erişirler. Apterygota alt sınıfındaki insectler bu gruptandır. Bu gruptaki insectlerin bu tip gelişmelerine ametabola adı da verilir. b) Yarım metamorfosis veya basit metamorfosis (Bemimetabola) gösteren insectler : Bu gruptaki insectlerin gelişmesinde yumurta -nymph -erişkin (imago) dönemleri sırası ile görülür. Yani yumurtadan çıkan genç formlar erginlere bazı eksiklikler dışında (kanatlannın olmayışı gibi) tamamen benzerler. Bu döneme nymph dönemi adı verilir. Nymph'ler türlere göre değişrnek üzere birkaç kez gömlek değiştirdikten sonra erişkin yani imago haline geçerler. Bu tip gelişme Pterygota alt sınıfına bağlı Exopterygota bölümündeki insectlerde görülür. Bunlardan bazılan Orthoptera, Mallophaga, Anoplura ve Hemiptera 'lardır. c) Tam veya komplex metamorfosis (Bolometabola) gösteren insectler : Tam başkalaşım geçiren böceklerin biyolojilerinde sırası ile Yumurta -Larva -Pupa -Erişkin böcek dönemleri görülür. Yani yumurtadan çıkan genç formlar erişkinlere hiç benzemezler ve kurtcuk biçimindedirler. Bu döneme larva adı verilir. Larvalar birkaç gömlek değiştirdikten sonra hareketsiz ve sakin bir devreye girerler. Bu esnada artropodun etrafında koruyucu bir kılıf veya kabuk meydana gelir. Bu koruyucu kılıfa kokon ve kokon içerisindeki döneme ise pupa yada bazı insect türlerinde krizalit adı verilir. Daha sonra kokon açılarak erişkin böcekler dışarı çıkarlar.Yani bu tür insectlerin gelişmesinde görülen dönemler arasında hiç bir morfolojik fark yönünden benzerlik yoktur. Bunun içİn de bu gruptaki böceklerde tam metamorfosis görülür. Örneğin Pterygota alt sınıfındaki Endopterygota bölümünde bulunan insectlerde bu tip bir gelişme yani holometabola görülür. Örn: Lepidoptera, Siphonaptera ve Diptera takımlarında tam başkalaşım görülür. İnsecta Sınıfının Sınıflandırılması (Classificationu) İnsecta sınıfında iki alt sınıf vardır. 1- Subclasis (Alt sınıf) : Apterygota Bunlar kanatsız insectlerdir. Gelişmelerinde metamorfoz göstermezler. Bu alt sınıftaki türlerin Veteriner Hekimlik yönünden bir önemleri yoktur. Bu alt sınıfa bağlı; Thysanura Diplura Collembala Protura takımları bulunur. 2- Subclasis : Pterygota Bu alt sınıftakiler erişkin dönemlerinde kanatları olan veya kanatlı formlardan köken almış yada evoluasyon sonucu sonradan kanatsız olmuş insectlerdir. Pteryagota 'lar tam veya yarım metamorfoz geçirirler. Bunlar iki alt bölüme (division) aynlırlar. 2.a- Exopterygota bölümü (Hemimetabola bölümü) : Bu bölümdeki böceklerin kanatları dışa doğru bir sürgün veya tomurcuk gibi gelişir. Biyolojilerinde yarım metamorfosis gösterirler ve bunun içinde hernimetabola bölümü olarakta adlandınlırlar. Bu insectlerin erişkin olmayan yani genç dönemleri (immature) yapıları ve yaşadıkları yerler bakımından erginlerine benzerler. Exopterygota bölümünde bulunan önemli takımlar şunlardır: Takım (Order) : Orthoptera (Blattaria, Hamam böcekleri, Çekirge) Takım: Mallophaga (Isıran bitler) Takım: Anoplura (Siphunculata, Sokucu bitler) Takım: Herniptera (Tahta kurulan) Takım: Odonata (Kız böceği) Takım: Thysanoptera (Ekin -Fidan bitleri) Takım: Dermaptera (Kulağa kaçanlar) Takım: Plecoptera (Taş sinekleri) Takım: Isoptera (Termitler. beyaz kanncalar) Takım: Psocoptera (Kitap bitleri) 2.b- Endopterygota bölümü (Holometabola bölümü) : Bu bölümdeki insectlerin gelişmelerinde tam metamorfoz görülür. Kanatları internal olarak yani bir kokan içinde veya koza içinde gelişir. Bu bölümde bulunan önemli takımlar şunlardır. Takım: Coleoptera (Kın kanatlılar) Takım: Hymenoptera (Zar kanatlılar, bal arıları, normal karıncalar ve eşek arıları) Takım: Lepidoptera (Kelebek ve güveler) Takım: Neuroptera (Sinir kanatlılar) Takım: Siphonaptera (Aphaniptera, Pireler) Takım: Diptera (Gerçek sinekler, çift kanatlılar) Exopterygota Bölümü Bu bölüm içerisinde çok sayıda takım varsa da bunlar içerisinde Veteriner Hekimlik yönünden önemli olanlar üzerinde durulacaktır. Yani insan ve hayvan sağlığı yönünden önemli olan, hastalıklar oluşturan ve vektörlük yapan türlerden bahsedilecektir. OrthopteraTakım; (Syn: Blattaria) Bu takım; hamam böcekleri yanında, ağustos böcekleri ve çekirgeleri kapsar. Bunlar veteriner ve insan hekimliği yönünden parazitlik etkileri olmamalarına karşılık bazı hastalık etkenlerine arakonaklık yapmaları ve taşıyıcılık görevi yapmaları yönünden önemlidir. Bunlardan Melanoplus cinsine bağlı çekirgeler Tetrameres americana ve Cheilospirura amulosa'ya arakonaklık yaparlar. Hamam böcekleri değişik uzunlukta ve büyüklükte olup, vücutları dorso -ventral olarak basıktır. Vücut caput, thorax ve abdomenden meydana gelmiştir. Başlarında bir çift anten, bir çift göz ve parçalamaya ve çiğnemeye elverişli ağız organelleri vardır. Göğüs halkalarının dorsalinden masothorax ve metathoraxdan iki çift kanat çıkar. Bunlardan birincisi sertleşmiş ve kitini yapıda olup, metathoraxdan çıkan ve ince bir zar gibi olanının üzerini örter. Göğüs halkalarının ventral kısmından uzun üç çift bacak çıkar. Hamam böcekleri kanatlı olmalarına rağmen uçamazlar. Sıcak ve rutubetli yerlerde yaşarlar. Mekaniksel olarak bazı protozoon kistlerini taşırlar ve bir kısım nematodlara arakonaklık yaparlar.Hamam böceklerinden üç tür yurdumuzda bulunmuştur. Bunlar; Blatta orientalis (Şark hamam böceği) Blatella germanica (Alman hamam böceği) Periplanata americana'dır. Hamam böcekleri spirurida takımındaki bazı nematodlara, Gongylonema 'ya bazı tavuk cestodlarına (Raillietina sp) ve oxyspirura cinsi nematodlara arakonaklık yaparlar. Bakterilerden salmanella 'lara vektörlük yapabilirler. Yine değişik bakteri, protozoon, mantar gibi değişik hastalık etkenlerini mekanik olarak bir yerden başka bir yere taşırlar ve özellikle yiyeceklere bulaştırırlar. Kolera, tifo ve verem basilleri ile Entamoeba coli, Entamoeba histolytica, Balantidium coli, Giardia intestinalis ve Trichomonas hominis kistlerinin yayılmasında aktif olarak rol oynarlar. Aynca helmintlerden Tetrameres, Acuaria, Hymenolepis ve Moniliformis cinslerine arakonaklık yaparlar. Hamam böcekleri sıcak yerlerde yaşar ve karanlıkta dolaşırlar. Duvarların çatlak ve oyuklarına, tahta kenarlarının arasına yada arkalarına, su ve kalorifer borularının arkasına ve dolaplara gizlenirler. Bu insectler nişastalı ve şekerli besinleri severler. Ancak diğer besinlerle de beslenebilirler. Bu nedenle mutfaklarda yiyecek konulan dolaplarda, kiler ve fırınlarda sıkça rastlanılır. Ayrıca hayvan barınaklarında da bunlara sıkça rastlanılır. Blatella germanica yani alman hamam böceği 15 mm uzunlukta olup, açık kahverengindedir. Thoraxın üst kısmında iki koyu çizgi görülür. Kanatlar her iki cinsiyette de mevcut olup, vücut uzunluğunu biraz geçer. Şark hamam böceği (Blatta orientalis) ise nisbeten daha büyük olup, 25 mm uzunluğunda ve koyu siyah renktedir. Kanatlar erkeklerde abdomenin ucuna kadar ulaşmaz ve dişilerde ise kanatlar daha da küçülmüştür. Hamam böceklerinin dişileri içlerinde yumurtaları bulunan ve yumurta paketleri adını alan silindir şeklindeki yumurta paketlerini uygun yerlere bırakırlar. Bu yumurta paketleri içerisinde çok sayıda yumurta bulunur. Uygun ısı ve besin bulunduğu ortamda çabucak gelişerek nymphler oluşur. Yumurtadan erişkinlerin oluşması normal şartlarda 30 -50 gün kadar sürer. Hamam böcekleri ile mücadelede insectisit yani insect öldürücü ilaçlar kullanılır. Toz şeklinde olanIarı hamam böceklerinin geçecekleri yerlere dökülür yada bir puar yardımı ile toz ilaçlar bunların saklandıkları yerlere serpilirler. Toz ilaçların kullanılması bu tip ilaçların kalıcı etkisinden dolayı daha faydalıdır. Bunun yanısıra solüsyon halindeki ilaçlarda bunların saklandıkları yerlere püskürtülürler. Ancak bu solüsyonların mutlak süratte hamam böceklerinin vücutlarına temas etmesi gerekir. Kontrolde dieldrin ve lindan gibi klorlu hidrokarbonlu insectisitler sprey şeklinde saklandıkları yerlere püskürtülerek uygulanır. Ancak yumurtadan çıkacak yeni nesilleri öldürmek için ilaç tekrarlanmalıdır. Bu amaçla sentetik pyretroidlerde kullanılabilir. Bunlann dışında 25 gr kaynamış patatese 75 gr borik asit karıştırılarak un haline getirilir. Etrafta yiyecek bulundurmamak şartıyla küçük tabaklar içinde hamam böceklerinin yemesine bırakılır. Hamam böcekleri ile mücadelede meskenlerin tümünde mücadele yapılır ve temizliğe dikkat edilir. Kullanılan ilaçlara karşı direnç gelişebileceği için farklı gruplardan insektisitlerin değiştirilerek kullanılmasında yarar vardır. Phthiraptera (Bitler) Gözle görülebilecek büyüklükte olan bitler 1 -2 mm büyüklüktedirler. Vücutları dorso -ventral olarak basıktır. Vücut caput, thorax ve abdomenden oluşur. Erişkin formlarında daima üç çift bacak bulunur. Kanatları yoktur. .Gözleri rudimenterdir yada yoktur. Bitler bütün yaşam dönemlerini (yumurta -nymph -erişkin) konak üzerinde geçiren insectlerdir. Yani daimi ve tek konaklı parazitlerdir. Bitler kan emen hakiki bitler (Anoplura) ile tüy ve yapağı yiyen bitler (Mallophaga) olmak üzere iki takımda incelenirler. Mallophaga ve Anoplura takımındaki türler arasındaki farklar şunlardır: MalloRhaga Takımı AnoRlma Takımı- Baş ve Thorax Baş thoraxdan geniş Baş thoraxdan dar ve ve kalkan seklindedir. sivrilmis sekildedir. Ağız organelleri Kesmeye -parçalamaya Sokmaya -emmeye elverislidir. elverislidir. Gtdası Epidermis artıkları Konakçımn kam ve tüvler Konaklan Türlerin çoğunluğu Hepsi memelilerde bulunur kanatlılarda, çok azı ise memelilerde bulunur. Mallophaga Takımı: Bu takıma bağlı üç alt takım (suborder) vardır. Bunlardan Amblycera ve Ischnocera alt takımları daha önemlidir. Suborder : Amblycera Antenleri başın iki yanındaki çukurlarda olup, kolayca görülemez. Bunların mandibulaları önden ısırır. Çok hareketli, uzun yapılı ve sarı renklidirler. Mesothorax ve metathorax arasında genellikle görülebilen bir çizgi vardır. 1) Familya (Aile): Gyropidae Memeli hayvanlarda ve daha çok kemiricilerde (kobay) bulunurlar. Genus (Cins) : Gyropus Bu cinse bağlı en önemli tür Gyropus ovalis'dir. Kemirici hayvanlarda bulunurlar. Kobayların mallophagose'unu meydana getirir. Erkekleri 1 mm, dişileri ise 1.2 mm uzunluğundadır. 2) Familya: Menoponidae Kanatlılarda görülür. Bu ailedeki türlerin başları çok genişlemiş ve üç köşeli bir görünüm almıştır. Antenleri dört eklemlidir ve tarsuslarında bir çift tırnak bulunur. Bu ailede bulunan önemli türler: Species (Tür) : Menopon gallinae Species : Menopon phaeostomum Species : Holomenopon leucoxanthum Species : Menacanthus stramineus Species : Trinoton anserinum Bunlardan en yaygın olarak görülen cins menapon' dur. Daha ziyade konağının derisi üzerinde yaşadığından vücut biti adını alır. Süratli hareket eder. Özellikle genç hayvanlarda ölüme sebep olabilirler. Suborder : Ischnocera Bu alt takımdakilerin mandibulaları alttan ısırır ve antenleri kolay görülür. Hareketleri nisbeten yavaştır. Geniş yapılıdırlar ancak bazı türleri dar ve uzundurlar. Renkleri kırmızı esmer veya gri siyahtır. Mesothorax ve metathorax kaynaşmıştır. I) Familya: Philopteridae: Kanatlılarda, kuşlarda görülürler. Bu ailedeki önemli türler: Species : Lipeurus heterographus Lipeurus'lann vücutları dar ve uzundur. Vücut kenarları birbirine paraleldir. Species : Lipeurus caponis Species : Goniodes gigas Goniodes'ler tavuk tüylerinin sapı üzerinde bulunurlar ve renkleri kırmızımtrak esmerdir. Species : Goniocotes gallinae Species : Chelopistes meleagridis Species : Columbicola columbae Species: Anaticola crassicornis Philopteridae ailesindeki türlerin antenleri 5 eklemlidir. Ayak tarsuslarının uç kısmında bır çift tırnak bulunur. 2) Familya: Trichodectidae : Antenleri 3 eklemlidir. Tarsusların uç kısmında tek bir çengel bulunur. Bu ailedeki türler memelilerde görülür. Memelilerin tüyleri arasında yaşarlar. Bu ailede üç önemli cins bulunur, Cins: Trichodectes Species: Trichodectes canis: Köpeklerde bulunan mallophaga türüdür. Açık san renktedir. Başı dikdört.gen şeklinde olup, antenleri tüylüdür. Cins: Felicola Species : Felicola subrostrata: Kedilerde bulunur. Başlarının ön kısmı üçgen şeklindedir. Genus: Damalinia (Bovicola) : Ayaklan ve ayak uçlarındaki çengelleri uzundur. Species : Damalinia (Bovicola) bovis : Sığırlarda görülür. Species : Damalinia (Bovicola) ovis : Koyunlarda bulunur. Species : Damalinia (Bovicola) equi : Tektırnaklılar konaklarıdır. Species : Damalinia (Bovicola) caprae : Keçilerde Species : Damalinia (Bovicola) painei : Keçilerde Species : Damalinia (Bovicola) limbala : Keçilerde bulunan mallophaga türleridirler. Suborder : Rhynchophthirina : Bu alt takımda bulunan mallophaga türleri fazla önemli değidirler. Önemli cins ve türü ise; Cins: Haematomyzus Species : Haematomyzus elephantis'dir. Fil bitleri'dir. Anoplura (Siphunculata) Takımı Gerçek bitler olup, yalnız memelilerde bulunurlar ve konaklarından kan emerek beslenirler. Bu takıma bağlı 5 aile vardır. I) Familya: Haematopinidae : Hayvan bitleridir. Aile adından da anlaşıldığı gibi kan emenler anlamına gelir. Gözleri bazen hiç yoktur bazen de çok basittir. Baş ön tarafa doğru çıkıntılar yapmıştır. Bacaklar aynı büyüklüktedir. Bu ailedeki önemli cinsler; Genus: Haematopinus Species : Haematopinus asini : At bitidir. At, katır ve eşeklerin kuyruk ve yelelerindeki kıllarda bulunur. Species : Haematopinus bufali: Mandalarda bulunur. Species : Haematopinus suis: Domuzlarda bulunur. Species : Haematopinus eurysternus : Sığırlarda görülür. Özellikle kaşektik sığırların uzun kıllı kısımlarında bulunur. Species: Haematopinus tuberculatus: Mandalardabulunur. 2) Familya: Linognathidae: Gözleri olmayabilir. Ön bacaklar daha küçüktür, yani birinci çift bacaklar çok zayıftır. Bu ailedeki cins ve bağlı olan türler; Genus: Linognathus : Koyun, sığır, keçi, köpek ve tilkilerde görülür. Bulundukları hayvanlarda linognathose adı verilen belirtilere sebep olurlar. Bu cinse bağlı türler; Species : Linognathus ovillus : Koyunlarda vücut biti türüdür. Species : L. africanus: Koyunlarda bulunur. Species : L. pedalis : Koyunların bacaklarında bulunur ve bacak biti adını alır. Specıes: .stenopsıs: Keçi bitidir Species : L. vituli : Konakları sığırlardır. Species : L. setosus : Köpek ve tilkilerde görülür. Genus: Solenopotes Species : Solenopotes capillatus : Sığırlarda bulunur. Species : Microthoracius cameli: Deve biti. 3) Familya: Pediculidae : İnsan bitleri bu grupta bulunurlar. Maymunlarda ve insanlarda yaşarlar. Gözleri vardır. Tarsuslarının nihayetinde bir tek çengel bulunur. Bu ailedeki türler tarafından insanlarda meydana getirilen belirtilere yada enfestasyon olayına "pediculosis" adı verilir. Bu ailede bulunan türler; Species : Pediculus humanus: İnsanlarda parazitlenir. Bu türün iki varyetesi vardır. Bunlardan Pediculus humanus capitis baş biti adını alır ve kafa saçı, bazan sakal, kaş v,e bıyıkta yerleşir. Diğeri ise Pediculus humanus corporis olup, daha çok gövde kısımlarında ve çamaşırların katlanmış, kıvrım yerlerinde bulunurlar. Bu son türe İnsanlardaki vücut biti adı verilir. Species : Phthirus pubis: Oran olarak diğer türlere göre daha geniş yapılıdırlar. Ancak abdamenleri daha kısadır ve orta bacak ile arka bacakların tırnakları kuvvetlidir. İnsanlarda eşeysel organların ve anüsün civarındaki kılların arasında bulunurlar. Bunun içinde insanların kasık biti veya edep biti adını alırlar. Bu bölgelerden kan emerken tahrişlere ve ekzamalara yol açarlar. Bu belirtilere "Phthiriosis" adı verilir. Aynca pediculidae ailesine bağlı olarak Pedicinus cinsi bulunur. Pedicinus cinsi maymunlarda bulunan bit türüdür. 4) Familya: Hoplopleuridae: Bu ailedeki türler fare ve kemiricilerde parazitlenirler. Bulunan türler; Genus: Polyplax, Hoplopleura, Haemodipsus. Species : Polyplax spinulosa: Farelerde ve sıçanlarda yaşarlar. Bu tür protozoonlardan Haemobartonella türlerini bulaştırır. Ayrıca fare tifusü, bulaşıcı anemia ve fare trypanosomiosis hastalıklarıın insanlara bulaştırırlar. Species : Polyplax serrata' Kemiricilerde bulunur. Eperythrozoon ve Francisella türlerini bulaştırırlar. Bu türlerden başka bu aileye bağlı olarak kemiricilerdede Hoplopleura ve Haemodipsus cinsleri de vardır. 5) Familya: Echinophthiriidae: Foklarda ve deniz fıllerinde yaşarlar. Bu bitlerin kara yırtıcılarından denizde yaşayan memelilere geçtikleri tahmin edilmektedir. Vücutları kılların değişmesinden dolayı pullarla örtülüdür. Familya: Cimicidae (Gerçek tahtakuruları) Bu ailedeki tahtakurularının antenleri dört eklemlidir. Kanatları iyice küçülmüş ve atrofiye olmuştur. Vücutları oval ve dorso -ventral olarak basıktır. Bunlar hoşa gitmeyen bir koku yayarlar ve geceleri beslenirler. İnsan omurgalı hayvanlar ve kanatlılardan kan emerler. Bu aileye bağlı olarak bulunan önemli cins ve türler Familya: Formidae (Karmcalar) : Bu ailede karıncalar bulunur. Kanatlı veya kanatsız olabilirler. Ağız organelleri parçalayıcı ve çiğneyici tiptedir. Toplu halde yaşarlar. Yumurtayla çoğalırlar. Kopulasyondan sonra dişi ve erkekler kanatlarını kaybederler. İşçi karıncalar ise iyi gelişmemiş dişiler olup, kanatsızdır ve bunların zehir bezleri vardır. İnsan ve hayvanları ısırdıklarında şiddetli kaşıntıya sebep olabilirler. Bu aileye bağlı en önemli tür Formica fusca' dır. Bunların hekimlik yönünden önemleri kanatlı cestodlarından Raillietina türlerine ve trematodlardan Dicrocoelium dentriticuma arakonaklık görevi yapmalarıdır. Familya: Vespidae Yaban arıları adını alan, bu ailedeki türler tek tek yada toplu halde yaşarlar. Bunlar etcildirler. Ancak hem hayvansal hemde bitkisel besinlerle beslenirler. Karın bölgesi hareketli olduğundan ağılı iğnelerini her yönde kullanabilirler. Yaban arılan türlerinden özelikle Vespa crabro,Vespa germanica ve Vespa orientalis türlerinin sokması çok acı verir, ağır klinik belirtilere hatta ölümlere yol açabilirler. Çeşitli hastalık etkenlerini besinlere mekanik olarak bulaştırabilirler.Tesadüfen ağıza girdiklerinde insan ve hayvanların dil yada boğaz çevresini sokarak buraların şişmesine sebep olabilirler, ayrıca allerjik reaksiyonlara ve anfılaktik şoka sebep olarak ölümlere yol açabilirler. Familya: Apidae (Bal anları) Bu aile bal anlarını kapsar. Bunlar genellikle toplu halde yada tek tek yaşarlar. Zehirli iğneleri yönünden insan ve hayvanlar için çok zararlı olabilirler. Bu arı ağılaması olayına Hymenopterismus adı verilir. Arı sokmaları sonucu acı, allerjik bozukluklar ve hatta anafılaktik reaksiyonlar oluşur. Boğaz ve dil gibi hayati bölgeleri sokmaları sonucu ölümler görülebilir. Arı sokmalarında eğer arı iğnesi içeride kalmışsa çıkarılır. Bu yerlere gazyağı ve benzin damlatılır. Uzun süre arı sokması sonucu bazı kişilerde bağışıklık gelişir. Bazı fertlerde ise şiddetli bir duyarlılık görülmektedir. Yılan zehirine karşı hazırlanan serum arı zehirine karşı da kullanılmaktadır. An soktuğu zaman deride kaldığı sürece zehir bezesinden salgı yapar. Bunun için arı sokmalarında iğnenin en kısa sürede çıkarılması gerekir. İğnesi kopan arı kısa sürede ölmektedir. Bu ailede bulunan en önemli tür Apis mellifera (Apis mellifica) dır. Bu tür bal arısı olarak adlandırılır. Ekonomik olarak en önemli türdür. Normal bir arı topluluğu 40.000 -70.000 ergin bireyden oluşur. Bundan daha az birey içeren yuvalar zayıf olarak nitelendirilir ve kışı geçirmeleri zayıf ihtimaldir. Bir yuvada yani kovanda üreme yeteneği olan bir kraliçe (ana arı), dişi olan ve üreme yeteneği olmayan işçi arılar ve üreme dönemlerinde ortaya çıkan erkek arılar vardır. Ana arı 20 -25 mm boyunda, anteni 12 segmentli ve nokta gözler alında birbirine değmez. İşçi anlarda ana arı özelliklerini gösterirler. Ancak büyüklükleri 13 –15 mm kadardır. Erkek arılar da 15 -17 mm boyunda olup, işçilere ve ana arıya göre daha tıknaz yapılıdır. Arıların gelişmelerinde yumurta, larva, pupa ve erişkin dönemleri vardır yani tam metamorfoz geçirirler. Ana arının görevi Mart'ın başından Eylül'ün sonuna kadar yumurta bırakma ve salgıladığı feromonla yuvanın düzenini ve böylece bütünlüğünü sağlamaktır. Günde yaklaşık 3.000 yumurta bırakırlar. Yumurtadan ergin oluncaya kadar işçi anlar için 21 gün. Ana arılar için 16 ve erkek arıların gelişmesi içinde 24 gün geçmesi gerekir. İnsan ve hayvanları en çok sokan arı türleri ; Apis mel!ifica (Bal arısı), Vespa crabro, V. silvetris (Sarıca arılar), Polistes gallicus ve Bombus sp.'dir.Arılarda alkalen zehir bezi (küçük olan) ve asit zehir bezi (büyük ve çatal şeklinde olan) olmak üzere iki adet zehir keseleri bulunur. Bunların; alyuvarları eritici, sinir uçlarını ağılayıcı, yangı yapıcı, allerji oluşturucu ve bölgesel nekroz oluşturucu etkileri vardır. Hymenopterismus’un tedavisinde yapılacak işlemler. -Bir pens veya bıçak ucu ile dikkatlice iğne çıkarılır. -Sokulan bölgeye buz tatbik edilir. -Antihistaminikli solüsyon veya pomadlar lokal olarak uygulanır. -Antihistaminikler oral veya parenteral olarak verilebilir. Şayet anafilaktik reaksiyonlar oluşmuş ise; -Özel enjektörlerde bulunan adrenalin 0.3-0.5 ml (1:1000 sulandırılmış) deri altı veya damar içi yolla verilir. -Parenteral olarak antihistaminikler verilir. -Damar içi serum fizyolojik verilir. -Kortizon endikedir. -Solunum yolu açık tutulur. Eğer siyanoz varsa oksijen verilir. An sokmalarına karşı duyarlı kişilere koruyucu olarak arı antitoksini verilebilir. Neuroptera Takımı (planipennia -Sinirkanatlılar) Bu takımdaki böcekler küçük kelebeklere ve odonata takımındaki insectlere morfolojik olarak benzerler. Vücut caput, thorax ve abdomenden meydana gelmiştir. Çiğneyici ağız organelleri ve yarım küre şeklinde büyük bileşik gözlere sahiptirler. İki çift kanatları vardır. Çeşitli türlerde kanatlar renklenmeler ve desenler gösterirler. Cam gibi saydam olan kanatlar, çoğunlukla kahverengi benekler şeklindedir. Kanat üzerindeki damarlar kanat kenarlarına doğru çatallaşır ve birbirlerine birçok enine damarla bağlanırlar. Böceğin dinlenmesi sırasında kanatlar genellikle abdomenin üzerinde çatı şeklinde dururlar. Gelişmelerinde tam başkalaşım görülür ve çoğunlukla akşamları ve geceleri aktiftirler. Lepidoptera Takımı (Kelebek ve Güveler) Lepidoptera takımında kelebek ve güveler bulunur. Kelebeklerin ağız organelleri iyi gelişmemiştir. Besinlerini çiçeklerin nektar ve polenlerinden sağlarlar. Bazı türleri ise kısa süren yaşamlarında hiç besin almazlar. Kelebekler böcekler içerisinde kanadı, gövdesi ve bacakları pullarla tamamen örtülü olan insektlerdir. İki çift kanatlrın vardır. Kanat üzerindeki renkli ve kitini olan bu örtüler kelebeklere güzel bir görünüm verirler. Lepidoptera takımındaki .artropodların gelişmelerinde sırası ile yumurta, larva (tırtıl), krizalit (koza içinde) ve erişkin dönemleri vardır. Yani gelişmelerinde holometabol görülür. Ancak bunların larvalarına tırtıl, pupa dönem karşılıklarına da krizalit adı verilir. Larvaları çok ayaklı olup, polipod larva türüne örnektir. Kelebek tırtıllarının üzerindeki kılların zehir keseleri ile ilişkili olduğu ve bu nedenle tırtılların insanlarda allerjik dermatitislere neden olduğu belirtilmektedir. İşte kelebek türlerinden bazılarının canlı yada ölü tırtıllarının diplerinde zehirli salgı yapan bezeler bulunan vücut kıllarının insaınn derisi üzerine yada gözüne düşerek dokulara saplanması sonucu oluşan allerjik dermatitise tırtıl dermatitisi ya da Lepidopterizm (Lepidopterismus) adı verilir. İnsanlarda deride oluşan lezyonlara analjezik ve anti inflamatuar merhemler sürülür. Bulunan kıllar pensle çıkarılır. Bu tırtılları yiyen hayvanlarda ölümle sonuçlanabilen hastalıklar oluşabilir. Bu yüzden ördek ve tavuklarda zehirlenmeler görülmüştür. Aynca bu takımda bulunan ve arılarda büyük ekonomik kayıplara sebep olan türler vardır. Bunlar; Aile: Galleridae Species : Galleria mellonella (Büyük balmumugüvesi) Species : Achroia grisella (Küçük balmumugüvesi) Bu türlerden başka bu takımda evlerde görülen değişik güvelerde bulunmaktadır. Bunlar içerisinde en önemlisi olan ve arı güvesi olarak bilinen büyük balmumugüvesi hakkında bilgi verilecektir. Galleria mellonella Arıların büyük mum güvesi olarak bilinen bu parazit özellikle havalanması iyi olamayan karanlık ve zayıf kovanlarda etkili olur. Bu parazit küçük mum güvesi olan Achroia grisella'ya göre daha zararlıdır. Büyük mum güvesi karanlık, sıcak ve iyi havalandırılmayan yerlerde depolanmış peteklerde büyük zarar verirler. Genellikle alçak rakımlı yerlerde daha yaygındırlar. Yüksek rakımlı yerlerde yoğunluğu ve zararları daha azdır. Güve larvaları peteklerde tüneller açarak, peteklerdeki bal, polen ve balmumunu yiyerek koloniye büyük zarar verirler. Zararlı etkisi daha çok depolanmış sahipsiz peteklerde ve ağ örerek olmaktadır. Ayrıca güçsüz kolonilerdeki peteklerde de aynı zararı yapabilmektedirler. Güçsüz ve hastalıklı koloniler güve için uygun gelişme ortamıdırlar. Güve larvaları petek gözlerinde açtıkları tüneller sebebiyle, petek gözlerinin bozulmasına ve balın akmasına sebep olurlar. Dişi Galleria mellonella türleri yumurtalarını genellikle kovandaki yarık ve çatlaklara, ışıktan uzak loş yerlere kümeler halinde bırakırlar. Bir küme içinde 80 -100, hatta bazen daha fazla yumurta bırakabilmektedirler. Herbir dişinin bıraktığı yumurta sayısı 500 kadardır. Yumurtadan larvalar 24 -26 derece sıcaklıkta 5 -6 günde, 10 -l5 derece sıcaklıkta 34 günde çıkar. Larvalar hareketlidir, peteklerde yuva yapar ve gelişmesini sürdürürler. Larva dönemi 30 derece sıcaklıkta ortalama bir ay sürer. Ancak bu süre alınan gıdaya ve sıcaklığa göre değişir. Larva gelişmesi için en uygun sıcaklık 30 -35 derece sıcaklıktır. Gelişmesini tamamlayan larvalar sert, tüylü, beyaz renkli ipek bir koza örerler. Koza içerisinde larva pupaya (krizalit) dönüşür. Pupa dönemi 8 -14 gün sürer. Pupadan grimsi kahverengi ergin kelebekler çıkar. Dişi kelebekler kozadan çıktıktan 4 -10 gün sonra yumurtlamaya başlar. Erginler iklim şartlarına bağlı olarak değişmek üzere 2 -5 hafta yaşarlar. Ömürleri düşük sıcaklıkta daha da uzar. Pupadan çıkan ergin kelebekler çiftleşerek yumurtlamak üzere tekrar koloniye girmeye çalışırlar. Galleriosis'li kovanlarda larvalar gelişmesini tamamladıktan sonra kovan içinde sert tüylü ipekten ağ ve koza örerek kovandaki arıların faaliyetlerine engel olurlar. Böylece de büyük ekonomik kayıplara yol açarlar. Ayrıca bu zararlarının yanısıra larvalar peteklerdeki balın sır kısımlarını zedeleyerek, tüneller açarlar ve balın dışarı akmasına neden olurlar. Galleriosis'de kontrol ve korunma: Arıcılıkta Galleria enfestasyonlarının kontrolünde şu tedbirler alınır. l- Balmumu güvesinin en etkili düşmanı arıların kendisidir. Bunun için koloniler güçlü tutulmalıdır. Bu tip güçlü kolonilerde arılar güve larvalarını kovan dışına taşıyarak, zararlı etkilerinden kurtulurlar. 2- Kovanda yarık ve çatlaklar bırakılmamalı, kırıntı ve her türlü artıklar temizlenmelidir. 3- Arılı kovanlara verilecek ilaçlar anlar içinde zararlı olabileceği için, ilaçlı mücadele depolanmış arısız petek ve ancılık malzemelerinde uygulanmalıdır. 4- Boş petekler ve diğer malzemeler yeterli hava akımının bulunduğu bir odada 60 derecede 34 saat, -12 derece sıcaklıkta 3 saat tutulmalıdır. Düşük ısı ve yüksek sıcaklık balarısı zararlılarının bütün dönemlerindeki bireyleri öldürmektedir. 5- Petek güvesine karşı bakteriler, mantarlar ve peradatör böcekler kullanılarak biyolojik mücadele yapılmaktadır. Bunun için de arılara zararlı olmayan ancak kelebek larvalarına (tırtıl) etkili olan Bacillus thuringuensis toxinleri kullanılmaktadır. 6- Kontrolde diğer bir önlemde ilaçlamadır. Bunun için güve görülen kovanlardaki arılar başka temiz bir kovana boşaltılır. Güveli çerçeveler bir kovan yada sandık içinde, paradiklorbenzen (PDB ), ethylene dibromit, metyl bromid, karbondisülfid gibi ilaçlarla ilaçlanır. Çerçeveler tamamen asalaklardan temizlendikten sonra istenilen kovana konulabilir. Ayrıca depolarda da ilaçlamalar yapılır. ilaçlar ergin kelebekleri, larva ve pupaları öldürür. Ayrıca toz kükürt fumigasyon halinde kullanılabilir. Siphonaptera (= Aphaniptera) Takımı (Pireler) Pireler, sıcak kanlı memelilerden yani kanatlı ve memelilerden kan emen ve yalnız ergin devrelerinde geçici parazit olan insectlerdir. insecta sınıfının genel özelliklerini gösterirler. Vücut caput, thorax ve abdomene ayrılmıştır. Vücutları latero -lateral yani iki yanlı olarak (bilateral) basıktır. Vücut parlak sarı kahverenginde sağlam bir kitinle örtülüdür. Pirelerin erginleri 1.5 -5 mm büyüklüğünde olup, 3. çift bacakları çok uzun ve sıçramaya elverişlidir. Yani, pireler zıplayan böceklerdir. Kanatları redüksiyona uğramış olup, görülemez. Ağız organelleri sokmaya -emmeye elverişlidir. Pirelerde baş (capitilum) önden yuvarlağımsı ve ellipsoidal, iki yandan basık ve gövdeye yapışık görünümdedir. Başlarında bir çift antenleri ve bazı türlerinde ise bir çift gözleri vardır. Pire türlerinin bazılarında siyah iri dikenler şeklinde tarak (ctenidia) lar vardır. Bu taraklar başın alt kısmında ise genal tarak (yanak tarağı), boyun kısımlarında ise pronotal tarak (boyun tarağı, omuz tarağı) adını alır. Thorax üç kısımdan oluşmuştur. Thorax üstte notum, altta ise sternum olarak adlandırılır. Thorax pronotum, mesonotum ve metanotumdan meydana gelir. Thoraxın ventralinde uzunlukları önden arkaya doğru artan üç çift bacak çıkar. Bunlardan 3. çift bacaklar çok uzundur ve sıçramaya elverişlidir. Abdomen halkalardan oluşmuştur ve bu karın halkaları birbirine geçmelidir. Onun için pireler çok fazla kan emebilirler. Karın halkaları üstte tergum, altta ise sternum olarak adlandırılır. Sekiz karın halkası vardır. Her halkada spiracle (stigma) bulunur. Ayrıca son halkada pygidium (his organeli), antipygidial bristil (uzun diken) ve anal stylet adını alan değişik dikenler bulunur. Dişilerin arka taraftarında kitinsel bir kese biçiminde olan, türlere göre şekilleri değişen spermatheca (reseptaculum seminis, tohum kesesi) bulunur.Erkeklerde ise kitinsel, ince, uzun ve dinlenme sırasında spiral biçiminde kıvrılmış kopulasyon organı olan clasper bulunur. Pirelerin yumurtaları oval ve beyaz renkte olup, 0.5 mm büyüklüğündedir. Pirelerin gelişmesinde tam metamorfoz görülür. Larvaları kurtcuk biçiminde olup, beyaz renklidir. Olgunlaşan larvaları 6 mm kadar uzunlukta olabilir. Pireler pupa dönemini yaklaşık 4x2 mm ebatlarında olan bir kokon içerisinde geçirir. Kokonun çevresi toz ve toprak ile bulaşıktır. Pireler kozmopolit yani her yerde bulunabilen canlılardır. Her türlü konaktan kan emerler (euroxen parazit). Ancak bazı türleri özellikle kendi konaklarına daha çok gelirler. Dişileri çiftleşmeden sonra toplu iğnenin 1/4'i başı büyüklüğündeki, krem rengindeki yumurtalarını toz, toprak içerisine bırakırlar. Ancak konak üzerine bırakılan yumurtalarda yapışıcı özellikte olmadıklarından kayarak toprağa düşerler. Yumurtadan 1 -2 hafta içerisinde kurtcuk şeklinde ve üzerleri tüylü larvalar çıkar. Larvalar çok aktiftirler. Bunlar topraktaki organik maddelerle, hayvansal artıklarla, kan pıhtılarıyla, kokuşan bitkisel maddelerle yada konağın dışkılarıyla beslenirler. Bunun sonucunda büyüyerek gelişirler ve 11 halkalı kurtçuk şeklini alırlar. Larvalar ışıktan kaçarlar. Larva dönemi 9 -200 gün arasında değişir. Larvalar saldıkları bir salgıyla toz toprak arasında kendilerine bir kokon (koza) örerler. Bu pupa dönemi 10 gün ile bir kaç ay arasında değişir. Bu kokonun içerisinde pire gelişir ve kokonu açarak dışarı çıkar. Ancak Tungidae ailesindeki pirelerin biyolojileri biraz daha farklıdır. Bu ailedeki türlerde dişiler yumurtalarını konak derisinde meydana getirdikleri şişliklerin içerisine ya da yaralara bırakırlar. Larvalar yumurtayı konak üzerindeyken terkeder ve daha sonra yere düşerler. Bu larvalar daha sonra bir kokon içerisinde pupa dönemini geçirerek ergin erkek ve dişiler oluşur. Tungidae ailesindeki pirelerin bu özelliklerinden dolayı pireler geçici parazitizmden daimi parazitizme geçiş halinde olan artropodlar olarak kabul edilirler. Siphonaptera takımında bulunan aile ve türler: Familya: Tungidae Bu ailedeki pirelere oyuk, tünel açan pireler adı verilir. Çünkü dişileri döllendikten sonra konakçısının derisine girer, çok şiddetli olarak irrite eder ve etrafındaki doku şişerek pireyi içine hapseder. Dişi pireler yumurtalarını buralara bıraktıktan sonra dokunun sıkıştırması sonucu ölürler. Tungidae ailesindeki pireler küçük ve ayakları diğer türlere oranla kısa ve zayıftır. Genal ve pronotal taraklar bulunmaz. Bu ailede iki önemli tür vardır. Species : Tunga penetrans Bu türün büyüklüğü 1 mm kadardır. Başın ön kısmı sivrilmiştir. Thorax segmentleri çok dardır. Gözleri geniş ve piğmentlidir. Kırmızı esmer renktedirler. Dişilerde spermatheca konik şekildedir. Başlıca konakları kanatlılardır. Fakat domuz, evcil memeliler ve insanlardan da kan emebilirler. Konaklarına çok şiddetli ağrılar verirler ve hatta deri içerisinde ezilen pirenin dokuları gangrene yol açabilir. Bu tür Güney Amerika' da ve Afrika' da yaygındır. Species : Echidnophaga gallinacea Başlıca konakları tavuklar ve diğer kanatlılardır. Büyüklükleri 1.5 mm' dir. Baştaki alın kısmı köşelidir. Thorax'ın notumları dardır. Genal ve pronotal tarak yoktur. Spermatheca iyi kitinize olmuştur. Bu tür köpek, rat, insan ve diğer hayvanlardan da kan emebilir. Tropik ve subtropik bölgelerde görülmektedir. Familya: Pulicidae Bu ailedeki türlerde genellikle gözler mevcuttur. Bazı türlerinde genal ve pronotal taraklar bulunabilir. Bu ailede bulunan türler; Species : Pulex irritans İnsan piresi olarak bilinen ve insanlardan kan emen bu tür, karnivorlardan ve diğer hayvanlardan da kan emebilir. 1.5 -4 mm uzunluğundadır. Gözünün alt kısmında uzunca bir diken bulunur. Thorax segmentlerinde birer sıra, birinci karın halkasında 2 ve ikinci ile 7. abdominal tergumda ise birer sıra diken bulunur. Erkeklerde clasper geniştir ve biri uzun üç hareketli çıkıntısı vardır. Dişilerde spermathecanın başı yuvarlak ve kitinize olup, kuyruk kısmı kıvrılmış bir parmağa benzer. Genal ve pronotal taraklar yoktur. Pulex irritans doğal şartlarda olmasa bile deneysel koşullarda veba hastalığına vektörlük yapabilmektedir. Türkiyede bu pire türüne rastlanılmıştır. Bu tür ayrıca helmintlerden Hymenolepis nana, Hymenolepis dimunata ve Dipylidium caninum'a arakonaklık yapar. Species : Ctenocephalides canis Köpek piresi olan bu tür, 2 -3.5 mm uzunluktadır. Her kenarda sekiz adet diken ihtiva eden genal ve pronotal tarakları bulunur. Baş yuvarlağımsı şekildedir. Şeritlerden Dipylidium caninum'un arakonaklığını yapar. İnsan ve diğer karnivorlardan da kan emerler. Species : Ctenocephalides felis Kedi piresi olarak tanımlanır. Ancak köpek ve insanlardan da kan emebilir. 2 -3 mm büyüklüğündedir. Alın kısmı daha uzun, dar ve sivridir. Genal ve pronotal tarakları vardır. Genal tarağın ön dikeni hemen hemen 2. nin uzunluğu kadardır. Türkiye'de yaygındır. Species : Spilopsyllus cunuculi Tavşanlarda görülen pire türüdür. Genal tarak 5 -6, pronotal tarak ise 14 -17 koyu renkli büyük dikenden oluşur. Genal tarak subvertikal olarak yerleşmiştir. Dişilerde spermathecanın deliği terminaldir. Tavşanlarda görülmesinin yanında kedi, tilki ve ratlarda da saptanmıştır. Bu tür myxomatosis virusuna vektörlük yapar. Species : Xenopsylla cheopis Xenopsylla genusu içinde bulunan türlerin en yaygınıdır. Asya rat piresi olarak bilinir. Thoraxın mesonotumunda kitini vertikal bir çizgi bulunur. Antenlerinin 3. eklemi asimetriktir. Göz kılı gözün önündedir. Genal ve pronotal taraklar mevcut değildir. Afrika'da ve Güney Amerika'da yaygındır. Ancak dünyanın her kıtasına yayılmıştır. Bu tür veba hastalığı etkeni olan Pasleurella pestis'in vektörlüğünü yapar. Species : Leptopsylla segnis Farelerde görülen pire türüdür. Genal ve pronotal tarak vardır. Ayrıca alında küçük ve az sayıda dikenden ibaret bir alın tarağı bulunur. Familya: Ceratophyllidae Bu ailenin bazı türlerinde frontal çıkıntı vardır. Gözler genellikle mevcuttur. Küçük memelilerle, kuşlarda bulunurlar. Species : Ceratopyllus gallinae Erginleri 2 -3 mm uzunluğunda, vücutları uzunca ve genel olarak renkleri esmerdir. Baş yuvarlak olup, genal tarak yoktur. Pronotal tarak bulunur ve 12 diken taşırlar. Kanatlılarda ve özellikle de tavuklarda bulunurlar. Kuş piresi yada Avrupa kanatlı piresi olarak adlandırılırlar. Kanatlılarda şiddetli yaralanmalara neden olurlar. Species: Ceratopyllus columbae Güvercin piresi olarak adlandırılır. Özellikleri C. galhnae'ye benzer. Species : Nosopsyllus fasciatgs Fare ve sıçanlarda bulunur. Avrupa rat piresi olarak adlandırılır. Ancak diğer hayvanlardan da kan emebilirler. Genal tarak yoktur. Pronotal tarak vardır ve 8 dikenlidir. Gözleri iyi gelişmiştir. Pirelerin Yaptığı Zararlar: Erişkin pireler mutlak süratle kan emerler. Bunun ıçınde buldukları her konak üzerine giderler. Bunların her canlıdan kan emmeleri hastalık etkenlerini bu canlılar arasında nakletmelerine sebep olurlar. Pireler fare ve sıçanlarda bulunan veba etkenlerini kan emmeleri esnasında alırlar. Pire tarafından alınan bu etkenler pirenin midesinde çoğalırlar. Bu pirelerin insanlara gelip kan emmeleri esnasında bu etkenleri onlara aktarırlar. Aynca fare ve rat pireleri fare tifüsu etkeni olan Rickettsiya typhı’yı taşırlar. Tavşan piresi myxomatosis virusunu, köpek piresi Dipyhdium caninum'u, yine köpek ve kedi pireleri Dipetalonema reconditum,Dirofilaria immilis, insan pireleri Hymenolepis nana'yı naklederler. Pireler ayrıca Tularemi'yi mekanik olarak naklederler. Pirelerin zararlı etkilerini sıralayacak olursak; Yukarıda anlatıldığı gibi hastalık etkenlerine vektörlük veya arakonaklık yapmaları, Bazı pire türleri konaklarına traumatik (yaralayıcı) olarak etki yapmaları, Konaklarından kan emmeleri sonucu soyucu -sömürücü etki yapmaları, AIlerjik etkilerinin olması. Özellikle köpeklerde bu tip etkiler sıkça görülmektedir. Konaklarını huzursuz etmeleri, Deride irrtasyon sonucu kaşıntı, dermatitis ve ürtikerlere neden olmaları, Deride tünel açan pire türleri deri altına yerleşerek, kaşıntı, şiddetli ağrı ve bulunduğu yerde irinleşmelere sebep olmaları gibi etkileri vardır. Pirelere karşı mücadelede insektisitler bir hafta ara ile iki kez uygulanmalıdır. Mücadelede insan ve hayvan meskenlerinde pirenin yumurta ve larvaları toprakta bulunduğundan, eğer meskenler toprak zeminli ise buralara insectisitler püskürtülür, toz şeklinde olanlar ise serpilirler. Hayvanlar üzerinde bulunan pireler için insectisitler solüsyon halinde ise püskürtülür veya banyo edilir. Toz halinde ise hayvanların tüyleri arasına serpilirler. BHC'li ve organik fosforlu ilaçlar tercih edilir. Fenol bileşikleri ve BHC'li ilaçlar kedilerde kullanılmaz. Pire allerjisine karşı kortikosteroidler kullanılır. Organik fosforlulardan dichlorvos, sentetik pyretroidlerden permethrin, organik klorlulardan ise lindan kullanılabilir. Ancak lindan kediler için toksiktir. Pirelerde kontrol amacıyla kedi ve köpeklerde dichlorvos ve diazinon ihtiva eden tasmalar kullanılabilir. Fire enfestasyonlarının kontrolündeki başarı barınaklar ve meskenlerde özellikle yataklarda yapılacak ilaçlamaya ve temizlik işlemlerine bağlıdır. Son yıllarda bu amaçla methoprene aerosol kontrol amacıyla kullanılmaktadır. Bu ilaç pire larvalarının bulunabileceği yataklık, halı, kilim gibi yerlere uygulanır. Larvalar tarafından alınan ilaç etkisini pupa döneminde gösterir. İlaç pupalardan erişkin formların çıkışını önleyerek kontrolü sağlar.Kanatlılarda pire mücadelesinde ise malathion ve carbaryl kullanılabilir. Bu ilaçlar toz ve özellikle Echidnophaga enfestasyonlarında solüsyon şeklinde uygulanır. Korunma için kanatlı bannaklarında altlıklar uzaklaştırılır ve yakılır. Barınaklar (kümesIer) % 1 ronnel solüsyonu ile 14 gün aralıklarla iki defa ilaçlanmalıdır. Diptera Takımı (Sinekler = İkikanatlılar) İnsecta sınıfının en önemli takımlarındandır. Bu takımda bulunan artropodlar insecta sınıfının genel özelliklerini gösterir. Yani vücut caput, thorax ve abdomene ayrılmıştır. Diptera (di= iki, ptera= kanat) ların başlarında bir çift anten, bir çift petek göz, sokucu- emici, parçalayıcı veya yalayıcı -emici ağız organellerine sahiptir. Erginlerinin mesothoraxlarından çıkan bir çift fonksiyonel kanatları vardır. Arkadan çıkan kanatlar rudimenter olup, topuz şeklindedir ve denge organı görevini yaparlar. Sinek uçarken dengeyi sağlar. Bazı türlerinde ise ağız organelleri atrofiye olmuştur. Böylece bunların beslenmeleri söz konusu değildir. Topuz şeklinde olan ve dengeyi sağlayan kanatlara halter adı verilir. Dişiler yumurta, larva veya pupa meydana getirerek çoğalırlar. Yani dipteraların gelişmelerinde tam bir metamorfoz vardır. Sokucu -emici olanlarda hortum (probiscic) iyi gelişmiştir ve çoğunlukla insan ve hayvanlardan kan emerler. Kan emmeleri esnasında oluşturdukları anemi ve sokma yerlerindeki toksik etkiden dolayı kızarıklık ve kaşıntının yanısıra, bazı hastalık etkenlerini (bakteri, virus, protozoon, helminth gibi) canlılar arasında nakletmeleri ile önemlidirler. Bu takımdaki bazı sinekler larvalarından dolayı önem taşırlar. Çünkü bu sineklerin larvaları konaklarının iç ve dış paraziti olabilmektedirler yani myiasis oluşturmaktadırlar. Dipteraların bazı türlerinin larva şekillerinin insan ve hayvanlarda hastalık oluşturmaları olayına. myiasis adı verilir. Myiasise neden olan türlerin erişkin şekillerinin hiçbir paraziter etkisi yoktur ve ömürleri çok kısadır. Diptera takımında insan ve hayvan sağlığı yönünden önemli olan üç alt takım bulunur. Bunlar ; Suborder (Alttakım) : Nematocera Genellikle uzun vücutlu ve narin yapılı sivrisineklerdir. Küçük sinekler olup, erişkinlerin antenleri baş ve thoraxdan daha uzundur. Olgun sineklerin antenleri çok sayıda (8'den fazla) eklemden (segmentden) oluşmuştur. Antenlerin üzerinde "arista" adı verilen üzeri tüylü bir kıl yoktur. Kanatları pullu, kıllı yada parlaktır. Kanat venleri birbiri ile kesişmez. Ayakları çok uzun veya biraz uzuncadır. Dişileri kan emerler. Larvalarının baş kısmı iyi gelişmiştir. Larvaların mandibulaları yatay olarak (horizantal) ısırır. Larva ve pupaları obtektir ve suda yaşarlar. Ayın zamanda hareketlidirler. Su border: Brachycera Nematoceralara göre daha tıknaz yapılı ve kuvvetli yapılıdır. İri sineklerdir. Erişkinlerin antenleri thoraxdan kısa olup, 6'dan daha az segmentlidir. Antenleri birbirinden farklı şekilleri olan segmentlerin birleşmesinden meydana gelmiştir. Antenleri üzerinde (3. segment) bir. arista bulunabilir. Arista antenin ucuna doğru yer alır. Karekteristik damarlanma görülen kanatlarda, kanat venlerinde kesişme görülür. Dişileri kan emerler. Larvalarında baş kapsülü kısmen yada tamamen körelmiştir. Larvaları suda yaşar ve pupalarıda obtek olup, suda yaşarlar. Larvaların mandibulaları vertical (dikey olarak) olarak ısırır. Suborder : Cyclorrhapha Bu alttakımdaki türlerin erginleri tüylü ve çeşitli metalik renklere sahiptirler. Kan emen türlerin dişi ve erkekleri kan emer. Olgun sineklerin antenleri 3 segmentlidir ve aristalıdır. Arista 3. segmentin dorsalinde yer alır. Kurt benzeri olan larvalarında baş yoktur. Bu tip larvalar hareketli olup, magot adını alırlar. Pupa koarktat olup, hareketsizdir. Larva ve pupa dönemleri toprakta geçer. Suborder : Nematocera Bu alttakımda bulunan aileler şunlardır. Familya: Culicidae (Sivrisinekler) Familya: Ceratopogonidae (= Heleidae, Acısinekler) Familya: Simuliidae (= Melusinidae, Siyahsinekler, Körsinekler) Familya: Psychodidae (Tatarcıklar) Culicidae Ailesi (Sivrisinekler) Sivrisinekler yaz geceleri düşünülebilecek her yerde bulunan, özellikle ışıklar söndürüldükten sonra insanlardan kan emen ve vızıltısı ile insanları sürekli rahatsız eden insectlerdir. Sivrisinekler 2 -10 mm uzunluğundadır. Bu ailedeki artropodların vücutları; narin, başları küçük ve küreseldir. Bacakları uzundur. Vücutları genellikle silindirik yapıdadır. Antenleri 14 -15 segmentden meydana gelmiştir ve erkeklerde tüylüdür. Ağız organelleri uzun ve silindirik bir biçimde olup, sokmaya -emmeye elverişlidir. Abdomen uzun yapılı ve thorax karekteristik olarak kama şeklindedir. Kanatları uzun ve dar olup, kondukları zaman abdomen üzerinde düz katlanırlar. Culicidae ailesinde bulunan önemli sivrisinek cinsleri; Anopheles, Aedes, Culex, Mansonia ve Theobaldia' dır. Bunlardan özellikle ilk üç tür önemlidir. Sivrisinekler su kenarlarında çoğunlukla bulunurlar. Durgun sularda, durgun deniz sularında larvaları gelişir. Sivrisineklerin sadece dişileri insan ve hayvanlardan kan emerler. Erkek sivrisineklerde alt ve üst çene (maksilla ve mandibula) kısalmış olduklarından konağın derisini delememekte ve kan emememektedirler. Bunlar bitki artıklarından doku özsuyu emerek beslenirler. Sivrisineklerin biyolojisi Dişi sivrisinekler yumurtalarını su yüzeyine veya suda yüzen bitki üzerlerine bırakırlar. Yumurta bırakma şeklinde her türün kendine has özellikleri vardır. Anopheles ve Aedes cinsindekiler yumurtalarını tek tek bıraktıkları halde, Culex cİnsindekiler yumurtalarını paketler halinde bırakırlar. Bazı türler yumurtalarını temiz akarsulara, bir kısmı durgun su birikntilerine yada ağır akan su yollarına, hatta bazıları da deniz suyuna bırakırlar. Culex cinsindekiler yumurtalarını foseptik sularına da bırakmaktadırlar. Yumurtadan çıkan larvalar 10 -11 halkalı olup, kurtçuk şeklindedirler. Larvalar aktif ve hareketli olup, bükülüp açılma şeklinde bulundukları su içinde hareket ederler. Larvalar türlere göre değişmek üzere vücut halkalarında hava borusu taşırlar. Bu hava deliklerini su yüzeyine doğru uzatırlar. Anopheles'lerin larvaları vücutlarının son 3 -4 halkasında hava borusu taşıdıklarından içinde bulundukları suyun yüzeyine parelel dururlar. Culex ve Aedes larvaları ise vücutlarının son halkasında hava borusu taşıdıklarından içinde bulundukları suyun yüzeyine dikey dururlar. Larvalar 4 defa gömlek değiştirdikten sonra pupa safhasına girerler. Pupa evresinde baş ve thorax yuvarlak kokon benzeri bir yapının içinde bulunurken abdomen serbest vaziyettedir. Bu dönemde daha az aktiftirler. Pupalardan çıkan erişkin sinekler, beslenmek amacı ile çoğaldıkları yerden birkaç kilometre ve hatta rüzgar ve değişik vasıtalarla çok daha uzağa gidebilirler. Erişkin sivrisineklerin kondukları yüzeye duruş şekilleride farklıdır. Anopheles'ler kondukları yüzeye eğik durdukları halde, Aedes ve Culex'ler paralel dururlar. Yaşam süreleri sıcak bölgelerde 6 aydır. Türkiye'de ise bu süre 1 -2 ay kadardır. Culicidae'ler bitki özsularıyla ve şekerli suyla beslenebilirler. Fakat dişiler yumurtlayabilmek için mutlaka bir miktar kan emmek zorundadırlar. Dişi bireyler geceleyin ışığa doğru ve konakçısının vücut ısısına doğru yönelirler. Gündüzleri ise karanlık ve kuytu köşelerde saklanırlar. Sivrisineklerin (Culicidae) Önemi Konaklarını huzursuz ederler. Kan emilen yerde çok rahatsız edici kaşıntıların meydana gelmesine neden olurlar. Çok sayıda oldukları zaman kan emerek soyucu -sömürücü etkilerini gösterirler. Sivrisineklerin esas önemleri sıcak ülkelere doğru gittikçe sıklığı artan, birçok hastalığın bulaşmasına aracılık etmeleridir. İnsan, maymun ve kanatlılar arasında sıtma etkeni olan plasmodium'ların biyolojik vektörüdürler. Dişi Anopheles türleri insanlarda sıtmaya neden olan plasmodium türlerine, Anopheles, Culex ve Aedes türleri ise kanatlılarda sıtmaya neden olan plasmodium türlerine vektörlük yaparlar. Ayrıca sivrisineklerden bazı türler nematodlardan Wuchereria bancraıli (insanlarda fil hastalığı etkeni) ve köpeklerde Dirofilaria immitis larvalarını naklederek, bu helmintIere arakonaklık yaparlar. Bakterilerden Borrelia anserina (Kanatlı spiroketası) 'yı Aedes cinsindeki türler bulaştırır. Yine Mansonia türleri Brugia malayi'nin naklini sağlarlar. Sivrisinekler sarı humma virusuna, doğu ve batı at encephalitislerine ve Japon B encephalitisine vektörlük yapar. Ayrıca kanatlı çiçeğine mekanik taşıyıcılık yaparlar. Tavşan myxomatosis'ine de vektörlük yaparlar. Sivrisineklere karşı mücadele Sivrisineklere karşı mücadele larvalara ve erişkinlere karşı olmak üzere iki şekilde yapılır. Larvalara karşı mücadelenin başında bunların yaşadıkları yerlerin ortamını bozmak gelir. Bunun için taşkınları önlemek, kanalizasyon sistemlerini iyi yapmak ve bataklıkları kurutmak gerekir. Bataklıklar ve durgun sular drenajla kurutulmaya çalışılır. Bunun mümkün olmadığı durumlarda ise bu bölgelere insectisitler sürekli olarak yada planlı olarak belirli periyodlarla kullanılır. Bu amaçla en çok kullanılan ilaçlar organik klorlu ve organik fosforlu insectisitlerdir. Taşkınlara bu ilaçlar püskürtülerek uygulanır. Ayrıca larvalara karşı mücadelede biyolojik savaş metodları da kullanılmaktadır. Bunun için Gambusia cinsi balık türleri, yetiştirilmelidir. Bu balıklar sinek larvalarını yiyerek kontrolü sağlarlar. Bu amaçla ayrıca larvalar için patojen olan ve larvalarda salgınlar oluşturan çeşitli bakteri, protozoon ve helmintler de uygulanabilir.Sivrisineklerin erişkinlerine karşı ise insectisitler kullanılmalıdır. Bunun için en uygunları karbamatlı ve organik fosforlu insektisitlerdir. Ayrıca özellikle Anophellere karşı kalıcı etkili ilaçların kullanılması ile iyi bir kontrol sağlanmaktadır. Ancak çevreye etkilerinden dolayi bu tip ilaçlar pek tercih edilmemektedir. Ayrıca mekanik önlemler ve sinekleri uzaklaştırıcı tedbirlerde alınır. Familya: Ceratopogonidae (= Heleidae, Acısinekler) Bu ailedeki türler sivrisineklerden daha küçük olup, 1 -3 mm boyundadırlar. Antenleri 13 -15 segmentlidir. Dişilerde çok seyrek ve kısa kıllıdır. Erkeklerde ise çok kıllı ve uzundurlar. Ağız organelleri sokucu -emici tiptedir. Hortumları kısadır. Thoraxın her üç parçası kaynaşmıştır. Thorax başın üst tarafına doğru bir kamburlaşma yapar. Kanatları geniş, uçları yuvarlak ve üzerlerinde duman renginde benekler vardır. Kanatlarında pulların olmasıyla sivrisineklerden, daha uzun antenlere sahip olmaları ile de Simulium'lardan ayrılırlar. En tipik özellikleri benekli kanatlara sahip olmalarıdır. Ceratopogonidae ailesindeki türler konaklarını soktuklarında büyük acı verirler. Bunun içinde acısinekler adını alırlar. Dişileri kan emer, erkekleri ise bitki özsuyu ile beslenirler. Bu ailede bulunan ve hekimlik açısından önemli olan Cilicoides (acısinek)'dir. Culicoides'lerin kanatları tüylüdür. Bu cinse bağlı önemli tür ise Culicoides robertsi' dir. Bu türe kumsinekleri adı da verilir. Bu sinekler bataklık bölgelerde ürerler. Dişiler döllenmiş yumurtalarını sığ akarsuların kıyılarına, su içindeki bitkilerin ve taşların üzerine bırakırlar. Dişiler yaşamları boyunca birkaç kez yumurta bırakırlar. Yumurtadan çıkan kurtçuk benzeri larvalar hem karada hemde suda yaşayabilirler. Daha sonra pupa dönemini geçirerek erişkin sinekler meydana gelir. Erişkinler yumurtlamadan önce kan emerler. Sabah vakitleri ve ikindi vaktinde daha çok saldırgan olurlar. Ayrıca bulutlu ve kapalı havalarda çok aktiftirler. Erişkinleri yazın Mayıs ayından Eylül ayına kadar görülürler. Yaz aylarında gelişme süresi 1 -2 aydır. Kışı ise larva döneminde çamura gömülü olarak geçirirler. Veteriner Hekimlik yönünden önemli olan Culicoides'ler sivrisineklerden daha küçük yapılı oldukları için sivrisinekler için yapılan tellerden kolaylıkla geçebilirler. Culicoides 'ler toplu halde uçuşurlar. İnsanlardan ve hayvanlardan kan emerler. Çok sayıda olduklarında hayvanları ürkütüp kaçıştırırlar. Konaklarından kan emerek soyucu -sömürücü etki gösterirler ve fazla sayıda olduklarında anemiye yol açarlar. Ayrıca konaklarını sokmaları kuvvetli tepki oluşturur. Sokma yerinde kaşıntı, ödem ve şiddetli acıya neden olabilirler. Bazen 2 cm büyüklüğünde, seröz bir sıvı dolmuş kabarcıklar meydana gelir. Daha çok orman ve açık arazide çalışanlara saldırırlar. Culicoides türlerinin en önemli

http://www.biyologlar.com/insecta-hexapoda-entoma-bocekler-sinifi

Büyük Beyaz Köpekbalığı - Carcharodon carharias

Büyük Beyaz Köpekbalığı Nedir? Büyük beyaz köpekbalığı,(Carcharodon carharias),genellikle soğuk kıyı sularında yaşayan,çok büyük ve hızlı yüzücü,yırtıcı bir balık türüdür.Hakkındaki ilk bilimsel araştırma,1554 yılında çıkardığı bir kitaptaki tanım ve çizimleriyle Rönesans dönemi araştırmacılarından Guillaume Rondelet’e aittir.1785’te Carolus Linnaeus çıkardığı katoloğunda (Systema Naturae),bu türü bilimsel olarak Carolus Linnaeus olarak isimlendirmiştir.Yüzyıllar boyu bu yanlış anlaşılmış balık ta Afrika’da yaşayan diğer yırtıcı kediler gibi,birazda popüler medya ve yanlış bilgilendirilen insanlar yardımıyla,bir korku kaynağı oluşturmuştur.Fakat biz burada bu köpekbalığının dünyasını inceleyip,denizler aleminde hakettiği rolü anlamaya çalışacağız. 2- İsimler ve Sınıflandırma Linnaeus’un sınıflandırma sistemi bütün türleri isim üzerinden adlandırır,genel ve spesifik olarak.Linnaeus’un kitabının onuncu baskısı,bilimsel isimler hakkında en eski yayın olarak seçilmiştir,dolayısıyla Squalus carharias büyük beyaz köpekbalığının kabul edilen en eski ismidir.Büyük beyaz köpekbalığı değişik bir genel isim altında olmalıydı,çünkü Linnaeus’tan sonraki bilim adamları farkattiler ki “Squalus” daha birçok değişik köpekbalığı temsil ediyordu.1833’te Sir Andrew Smith “Carcharodon” isminin genel (cenerik) isim olarak verilmesini önerdi,fakat Linnaeus’un verdiği spesifik ismin Sir Andrew’un verdiği genel isimle birlikte kabul edilmesi ancak 40 yıl sonra olabild Büyük beyaz köpekbalığı Lamnidae uskumru köpekbalıkları familyası grubunda yer alır.Bu familyada iki mako ve iki de porbeagle köpekbalığı türü olmak üzere dört tür daha yer alır.Bunların sadece biri shortfin mako,Güney Afrika açıklarında yaygındır.Büyük beyaz köpekbalığı için kullanılan lokal (yerel) isimler dil gruplarına göre değişiklik gösterir.Fakat ingilizce konuşulan ülkelerde “white shark (beyaz köpekbalığı) ismi yaygın olarak kullanılır.Daha az yaygın olarak ta daha eski bir kelime olan “man-eater”(insan yiyici) kelimesi kullanılır.Avustralya’da “white pointer”(beyaz değnek)kelimesi yaygındır.Daha az yaygın olarak ta “white death”(beyaz ölüm).Güney Afrika’da da bu terimler kullanılır,fakat “blue pointer”(mavi değnek) bazı büyük beyazların arkası mavimsi renkte olduğu için veya Britanya ordusundaki askerlere verilen eski bir takma isim olan “tommy” kelimesi de kullanılır.Afrikalıların kullandığı (witdoodshaai)kelimesi daha az kullanılan ingilizce isimlerin birinden gelmiştir. En çok aşina olduğumuz köpekbalıkları büyük beyaz köpekbalığı gibi,torpido benzeri ve diğer köpekbalıkları ile karşılaştırıldığında oldukça kalın,bir gövdeye sahiptir.Büyük beyaz köpekbalığının burnu kısa ve koniseldir.Gözler yuvarlak ve zifiri siyahtır.Dişler özellikle üst çenedekiler küçük testere dizilimsi keskin kenarlardan oluşan oldukça üçgensel bir yapıya sahiptir.İki metreden küçük olan bazı gençler(yetişkin olmayanlar) düz diş yüzeylerine(kenarlarına) sahip olabilirler.Beş solungaç yarığı(yırtmacı) uzundur ve hepsi göğüs yüzgeçlerinin önünde yer alır.Yetişkinlerdeki anal ve ikinci sırt yüzgeçleri neredeyse dikdörtgensel bir yapıya sahiptir ve çok küçüktür.Kuyruk yüzgeci hilal biçimindedir(üst ve alt uçlar yaklaşık olarak aynı büyüklüktedir).Kabaca göze ve pelvis yüzgecine doğru uzanan bir çizgi üzerinde yer alan vücudun üst kısmı siyahtan açık griye değişir.Bunun altında,gövde beyazdır.Taze yakalanmış olanları genellikle zamanla suyun dışında(havada)solan pirinç kaplama renginde bir parlaklık gösterirler.Göğüs yüzgecinin vücuda bağlandığı yerde genellikle siyah bir nokta mevcuttur. Shortfin mako köpekbalığı görünüş olarak büyük beyaz köpekbalığına benzer.Gövde üzerinde ve yanlardaki parlak mavi renkle diğerlerinden farklılık gösterir.(Gövde üzerinde ve yanlardaki parlak mavi ona ait belirgin bir özelliktir).Daha büyük gözleri vardır.Dişleri daha dar ve düz yüzeylidir.Büyüdüğünde 4 metreye kadar ul Şekil 2:177cm olgunlaşmış dişi(Kwazulu-Natal) WHITE SHARK Sistematik Order:Lamniformes Family:Laminidae Genus:Carcharodon Species:carharias 3-Yetişme Ortamı Büyük beyaz köpekbalığı en çok kıta Avrupası sularında görülen ılıman denizlerin yakın kıyı balığıdır.Tropikal kuşaktan tamamen kaçınmak(özellikle büyük olanları),fakat özellikle Orta Amerika,tropikal Güney Amerika ve merkezi Pasifik adaları gibi bazı bölgelerde çok sık ta görülmez.Issız sulardan gelen birçok rapor,bu türün geniş bir alana yayılabilme ve hatta okyanus havzalarını karşıdan karşıya geçebilme yeteneğinde olduğunu gösterir.Büyük beyaz köpekbalıkları çoğunlukla yakın yüzey(üst) sularda bulunurlar,özellikle avlanırken,fakat istisnai bir olayda bir büyük beyaz 1280 metre derinlikte bir oltaya takılmıştır. Büyük beyaz köpekbalığı açısından zengin olarak bilinen bölgeler, muhtemelen bu bölgelerde insanla8spor balıkçıları,denize girenler,akuba dalgıçları,sörfçüler gibi)daha fazla bir etkileşimi yansıtır.Bu bölgeler Kaliforniya,ABD’nin Orta-Atlantik Federe Devletleri,Güney Afrika ve Doğu Avustralya,Yeni Zelanda ve bazı Pasifik adaları gibi yerlerdir. 4-Beyaz Köpekbalığı Ekolojisi ve Korunması Yetenekli olduğu kadar etkileyici de olan beyaz köpekbalığı(diğer deniz canlılarından ayrı)bir ortamda kalamaz.O, karmaşık kuralları olan karşılıklı bir dayanışmanın hüküm sürdüğü deniz canlılarının gerekli bir üyesidir(parçasıdır). Kıyı şeridindeki bütün ekosistemler,güneşin ışık enerjisini yakalayıp,diğer canlıların kullanabileceği bir formda paketleyen fotosentetik organizmalarla başlar.Bu bitkiler çok geniş bir otçul tarafından yenir(bu bitkiler çok geniş bir otçul hayvan kitlesini besler).Bu otçul hayvanlar etçil hayvanlar tarafından yenir(bu otçul hayvanlar etçil hayvanları besler).Bu etçil hayvanlarda daha büyük etçil hayvanlara yem olur.Bu sayede,enerji,besin zincirinin daha uzak noktalarında yer alan,çok daha büyük hayvanlara iletilir(geçer). Enerji,bir beslenme seviyesinden,bir sonraki beslenme seviyesine geçerken,yaklaşık %90’ını kaybeder.Bu nedenle ,her beslenme seviyesi,bir alttaki beslenme seviyesinin ancak 1/10(onda biri)kadar canlı madde içerir.(Bir seviyedeki bütün canlı varlıkların toplam madde miktarı,bir alttaki seviyeye göre 10 kat daha azdır).En yukarıdaki beslenme seviyesinde büyük beyaz köpekbalığı gibi en zirvedeki yırtıcılar yer alır.sayısal olarak çok nadir olmalarına rağmen,bu en zirvedeki yırtıcılar,bütün ekosistemin üzerinde bulunan bir başlıktır.Nerdeyse okyanusta olup biten her şey büyük beyaz köpekbalığını beslemek içindir.Oldukça yakın geçmişe kadar,büyük beyaz köpekbalığının ne kadar yediği hakkında çok az fikir sahibi olduk.Son zamanlarda Kuzey Atlantik’in batısında yapılmış çok önemli bir deney,büyük beyaz köpekbalığının,keskin ısı farklarındaki ortamlarda yüzüşünden kaslarındaki ısı değişimini inceledi.Bu ölçümler temel alınarak yapılan ılımlı bir tahmine göre,45 kilogram balina yağı yemiş yaklaşık 5 metrelik bir büyük beyaz köpekbalığı,1.5 ay başka hiç bir şey yemeye ihtiyacı olmaksızın yaşayabilir.Ortalama bir kütle ve yağ içeriğine sahip olan bir Kuzey deniz Fili yavrusu temel alındığında,bir yavrunun bir büyük beyaz köpekbalığına 3 ay yeteceği tahmin edilmektedir. Sonuç olarak gözüküyor ki,büyük beyaz köpekbalığı çok az bir sıklıkta bu gibi deniz memelileri ile beslenme ihtiyacındadır ve muhtemelen deniz Fillerinin beyaz köpekbalıklarınca ölümü hastalıklar,boğulmalar ve kendi aralarındaki kavgalar gibi sebeplerdeki ölüm oranı oldukça düşüktür. Zirvede bir yırtıcı olmasına rağmen,beyaz köpekbalığının da korktuğu yırtıcılar mevcuttur.1997 yılında Farallon adası açıklarında,bir öldürülen balinanın(Orcinus orca) 10-12 foot(yaklaşık 3-3.5 metre)uzunluğundaki bir beyaz köpekbalığını öldürüp yemesi gözlenmiş ve filme alınmıştır.Bu saldırıdaki öldürülen balina belki kendi yavrularını koruyordu,belki de bu atak tamamen kendisiyle av konusunda rekabet halinde olan bir rakibi devre dışı bırakma vakası idi.Bu gibi aşırı derecede ilgi çeken bazı olayların olmasına rağmen,büyük beyaz köpekbalığını yiyen doğal yırtıcılar nadirdir.Bu güne kadar büyük beyazların en göze çarpan öldürücüleri insanlar olmuştur.Bu türün eti sıkı(sertçe),beyaz ve lezzetlidir.Belki de bundan daha önemlisi,büyük beyazın çenesi ve dişleri nadir bulunan bir ganimet ve hatıra eşyası olarak dünya çapında aşırı derecede gözdedir(değerlidir).Kaliforniya açıklarında her yıl 10-20 büyük beyaz öldürülür.Yakın geçmişte bu rakama erişmedeki pay,büyük ölçüde spor için balık avlayan Kaliforniyalılara ait olmuş çene ve dişleri tutup geri kalanı atmışlardır.Bu günlerde ise,büyük beyazların büyük çoğunluğu ticari balıkçılar tarafından yanlışlıkla tutulmaktadır.Bunların bir kısmı bilimsel araştırma kurumlarına bağışlanmakta,diğerleri de genellikle internet üzerinden açık arttırmayla satılmaktadır.1993’ün ekiminde,Kaliforniya büyük beyaz köpekbalığını korunması gereken canlı türlerine dahil eden ilk Amerikan federe devleti olmuştur.1994’ün ilk gününden itibaren bütün Amerika Birleşik Devletleri sularında büyük beyaz köpekbalığının ticari ve spor amaçlı avlanması yasaklanmıştır.Büyük beyaz köpekbalığının bir parçasını veya tümünü taşıyan herhangi bir gemi Amerika Birleşik Devletleri suları dışında yakalanmış büyük beyaz köpekbalığının bir parçasını veya tümünü taşıyan herhangi bir geminin,Kaliforniya limanına yanaşmasına izin verilmez.İzin verilen yegane yakalamalar,sınırlı sayıdaki ticari balıkların yanlışlıkla yakaladıkları ile bilimsel araştırma ve eğitim amaçlı yakalamalardır. En azından Kaliforniya suları sınırları içinde,büyük beyaz köpekbalığı kanun tarafından korunmaktadır.Fakat Pasifik kıyı şeridi boyunca uzanan diğer sularda,bu muhteşem köpekbalığı tehlikeleri göze almak zorundadır.Büyük beyaz köpekbalığının aşırı derecede sınırlı olan üreme kabiliyeti göz önüne alındığında,bir yok edilme oranı bile,bu türün soyunun tamamen tükenmesi sonucunu doğurması yüksek derecede olasıdır. Kişi,büyük beyaz köpekbalığını korumak için,çok sağlam delillere dayanan bütün tavrını oluşturabilir.Büyük beyaz köpekbalığının deniz ekosistemindeki rolünü tam olarak anlamamamıza rağmen,onun çevresel önemini örnek olarak verebiliriz.Bu hayvanı ahlaksal yükümlülüklerimizden dolayı korumamız gerektiğinden bahsedebiliriz,fakat daima ahlaksal aciliyetler ve öncelikler konusunda bir tartışma söz konusu olacaktır.Muhtemelen okuyucular,büyük beyaz köpekbalığının korunması için ileri sürülen aşağıdaki sade fikri en doyurucu bulacaklardır.Büyük beyaz köpekbalığı,dünyamıza zenginlik,ilgi çekici bir farklılık,efsaneler ve gizemler katan nadir bir yabani hayvandır. 5- Boyut ve Yaş Köpekbalıklarının yaşlanması basit bir proses değildir.Bunun ana sebepleri,büyümenin beslenmeyle olan ilgisi,coğrafi alanı ve bazı türlerdeki erkek ve dişi büyüme oranının,ki yaşla yavaşlar,değişiklik göstermesidir.Araştırmacılar,ağaç tabakalarında olduğu gibi,omurga kemiğindeki kireçlenme tabakasının büyük beyaz köpekbalığının yaşını yansıttığını gösterdiler.Bu temelde Doğu Pasifik büyük beyaz köpekbalıkları 13-14 yaşında 16 ft (4.75m)’ye ulaşırlarken,Kuzey Atlantik köpekbalıklarının aynı uzunluğa 20 yaşlarında ulaşabildiğini bulmuştur. Yeni doğmuş büyük beyaz köpekbalıklarının boyu 109-129cm civarındadır.Büyüklük ve cinsel olgunluk balıktan balığa değişkenlik gösterir.Erkekler yaklaşık 9 yaşlarında,3.5-4.5m boyutlarında olgunlaşır.Dişilerse 12-14 yaşlarında,4.5-6m civarlarındayken olgunlaşırlar.Görülmüş olan en büyüklerin (5m üzerinde)çoğu dişi olmasına rağmen,bugün hala erkeklerin dişilerden daha büyük bir maksimum boyuta ulaşıp ulaşmadığı bilinmiyor.Geçtiğimiz yıllarda birçok doğru olmayan maksimum boyutlar rapor edilmiştir,bir rapordaki on yıllar boyunca tartışılmış olan 36 feet(11m)’lik bir boyutun,aslında 16 feet olduğu fakat yazım hatasına maruz kaldığı düşünülmektedir.Son yıllarda yakalanan en büyük köpekbalığı ölçülmemiştir,fakat araştırmacıların biri Malta diğeri de South Avustralya’dan olan büyük beyaz köpekbalıklarının 7m’den büyük olduğu hakkında çok az şüpheleri vardır.Bu köpekbalıkları 30 yaşına yaklaşıyorlardı.Yakın zamanlarda Gans Bay’da yakalanmış ve Cape Town’daki shark Research Centre’de incelenmiş 6m’lik bir dişinin,bir omurga bandının bir yıla eşit olduğu varsayımıyla,yaklaşık 22 yaşında olduğu tahmin edilmiştir. 6-Üreme ve gelişim Büyük beyaz köpekbalığında döllenme dahilidir ve dişiler yavruları canlı olarak dünyaya getirirler(onlar ovovovipar’dır).Kur yapma davranışları “tam olarak”bilinmez,fakat bilim adamları yaralı bireylerin,erkek erkeğe olan saldırganlığın veya çiftleşmeden önceki erkeklerin dişileri hafifçe ısırmalarının sonucu olduğuna inanırlar.Embriyolar,kendi yumurtalarının bütün sarısını tükettikten sonra,ana içindeki yumurtadan hatta diğer embriyolarla beslenmeye başlar.Büyük beyaz köpekbalığının akrabalarında da görülen bu olayı “intrauterine cannibalism”(döl yatağı yamyamlığı) olarak adlandırılır.Yavrulu dişiler belgelenmemiştir,fakat diğer köpekbalıklarında olduğu gibi,büyük dişiler küçüklerden daha fazla yavru taşırlar.Bir Avustralya dişisi 11 yavruyla bulunmuştur.Gebelik süresinin kesin olarak bilinmemesine rağmen,büyük boyutta olan dişilerde yaklaşık 1 yıl veya daha fazla olduğu tahmin edilmektedir.Cape Town’daki Shark Research Centre(Köpekbalığı Araştırma Merkezi)’nde çalışan Dr. Leonardo Compago çok sayıda değişken ve bilinmeyeni de göz önünde bulundurarak,ortalama bir dişinin üreme potansiyelini izlemiştir.15 yaş ve 5 metrede olgunlaşan 30-31 yaşlarında 7.2m’lik maksimum boyuta ulaşan doğumdan sonraki bir yıllık dinlenme süresiyle birlikte her 3 yılda ortalama olarak 9 yavru doğuran ortalama bir dişinin,ölümünden önceki seneye kadar 45 yavru dünyaya getireceği tahmin edilmiştir.Bununla beraber,doğal ölümler,nispi sağlık ve çiftleşme mevcudiyeti gibi nedenlerle,dişilerin çoğu,özellikle insan etkisinin çok fazla olduğu bölgelerde,muhtemelen daha az yavru dünyaya getiriler. Bazı araştırmacılar büyük beyaz köpekbalıklarının,ılıman denizlerin kıyı sularında,kendi kendini soyutlamış yavrusunu beslemeyen dişiler tarafından dünyaya getirildiğine ve daha sonra büyüdükçe daha geniş sıcaklık ortamlarına adapte olduklarına inanırlar.Bu da büyük köpekbalıklarının açık okyanus alanlarına doğru açılmayı göze alabilmelerini sağlayan ve tropikal orta-okyanus adalarında görülmelerini açıklayan bir teoridir.Bilim adamları genç büyük beyaz köpekbalıklarının (iki yaş veya daha küçük) bilinen dağılımları ve büyüme tahminleri sonuçlarından yola çıkarak,su sıcaklıklarına karşı toleranslarının gelişimine kadar,coğrafi olarak dar sıcaklık değişimli alanların içine sınırlandırabileceklerine dikkat çekmişlerdir. 7-Yiyecek ve Beslenme Alışkanlıkları Büyükbeyaz köpekbalığının zirvede bir yırtıcı olduğu,denize çıkışı olmayan bölgelerde yaşayan insanlar arasında bile bilinir. Bu yaratığın sırf görünüşü , gücü ve korku veren çeneleri böyle bir gözlemi gerekli kılar. Fakat sürpriz bir şekilde, beyaz köpekbalıkları aynı zamanda leş ve çöp süpürücülerdir (yiyicileridir). Araştırmacılar şu aşağıdaki şeyleri mide içeriklerinde bulmuş ve kayıtlara geçirmişlerdir:Sardalya’dan mersin balığına kadar her çeşit ve büyüklükteki kemikli balıklar, diğer daha büyük köpekbalığı dahil kıkırdaklı balıklar, deniz kaplumbağaları, sümsük kuşu martı ve penguenler dahil çeşitli kuşlar, yunus, domuzbalığı, fok, ölü balina gibi deniz memelileri,abalon, diğer deniz salyangozları, kalamar,supya, denizyıldızı,yengeç dahil çeşitli omurgasızlar. Fok kolonilerinin bulunduğu alanlarda,3 m. ve daha büyük boyutlardaki büyük beyaz köpekbalıkları,çoğunlukla balıktan oluşan diyetlerini gözle görülür bir şekilde foklara doğru kaydırırlar.Jackass penguins zaman zaman ısırılmalarına rağmen çok nadiren büyük beyaz köpekbalığının midesinde görülmüştür.Özellikle önemli beslenme alanları Bird Island(Kuş Adası),Doğu Cape,Pyer ve Robben Adaları,Batı Cape gibi yerlerdir.Bununla beraber,büyük beyaz köpekbalığı,fokların bulunmadığı veya çok nadir olduğu tropikal alanlarda,kemikli balıkları diğer köpekbalıkları ve deniz memelileriyle çok rahat bir şekilde hayatta kalma yeteneğine haizdir.Şu noktaya dikkat etmekte yarar vardır ki,uzmanlaşmış bir yırtıcı,bir alanda bulabildiği bir tercihi başka bir alanda bulamayabilir,dolayısıyla büyük köpekbalıkları deniz içinde yüzen neredeyse her şeyi pusuya düşürme veya yakalama yeteneğine sahiptir. Büyük canlı fokların büyük beyaz köpekbalıklarının en zor avları arasında olduğu düşünülmektedir.Bu foklar,onları tamamen suyun dışına fırlatabilen, “ısır”ve “bırak” taktiğiyle,genellikle yüksek hızla ani bir hamleyle öldürürler.Bu eylem bilim adamlarınca savunarak öldürme olarak nitelendirilir,bir başka deyişle,köpekbalıkları bu sayede kendilerini,korku ve heyecan içindeki yaralı bir hayvanın diş ve pençelerinden korurlar.Güney Afrika açıklarında,penguenlerin bu şekilde defalarca havaya fırlatıldıkları görülmüştür.Bu davranış şekli,gerçek bir beslenme çeşidinin bir parçası olmasından çok,avıyla oynama veya avını test etme amacına yönelik olabilir.Yaralı,ölmek üzere olan av,köpekbalığı tarafından yeterince zayıf hale düşene kadar kuşatma altında tutulur ve en sonunda tüketilir. 8- Yaşayan(hala var olan)Fosil Akrabalar Yaşayan büyük beyaz köpekbalığı Carcharodon cinsi içinde sınıflandırılan beş türden biridir.Diğer dördünün nesli tükenmiştir.Şu andaki araştırmacılar inanırlar ki bugünkü büyük beyaz köpekbalığının en eski atası kabul edilen bir tür,Carcharodon landanensis,Paleocene çağında (65-57 milyon yıl önce) ortaya çıkmış ve yaklaşık aynı çağlarda bu kökten iki değişik grup(sülale,soy,nesil)oluşmuştur.Bugünkü yaşayn büyük beyazın da içinde bulunduğu birinci grup,göreceli olarak daha küçük olan C. landanensis(2-3m uzunluğundadır)ile bağlantısı (akrabalığı)olan orta dereceli fosil türlerine sahiptir.Ayrı bir cins olarak kabul edilen ikinci grup,Carcharocles,bazı araştırmacılara göre,izleri yaklaşık 50 milyon yıl öncelerine kadar gelen devasa akrabaları da kapsar.Bu kocaman köpek balıklarının evrimi vücut büyüklüğünün artmasıyla karakterize edilmiştir ve oldukça yakın zamanlara kadar yaşamış olabilir. Modern büyük beyaz köpekbalığı yaklaşık 20 milyon yıl önce Miyosen çağlarda evrim geçirmiştir(evrimleşerek bugünkü halini almıştır).Aynı zamanlarda,ikinci paralel gruptan (sülaleden) gelen (evrimleşmiş olan)Carcharodon megalodon ve C.angustidens isimlerini verdiğimiz çok daha büyük diğer iki kardeş tür dünya denizlerinde varlığını sürdürüyordu.Peru’da C. megalodon’a ait 17cm uzunluğunda dişler bulunmuştur.Bu bize gösterir ki,bu tür 13m veya daha büyük bir uzunluğa ve yaklaşık 20 ton ağırlığa erişmiştir.Bu dev yırtıcı,en azından büyük boyutta olanları muhtemelen çoğunlukla balinalarla beslenmiştir.Bazı araştırmacılar,balinaların evrimleşip,kutup sularında bol miktarda bulunan planktonlarla beslenmek için bu sulara doğru göç etme eğilimi göstermesinin bu köpekbalığı türünün neslinin tükenmesine neden olduğunu varsayalar.Bu dev köpekbalıklarının değişik sıcaklıklara adapte olamaması ve buzlu sulara göç eden balinaları takip edememesi,ana yiyecek kaynağını yılın büyük bir bölümü için kaybetmesi sonucunu doğurmuştur. Güney Afrika’da Carcharodon’un üç türünün fosilleşmiş dişleri bulunmuştur.Uloa yakınlarındaki KwaZulu-Natal’daki Miyosen tortusundan anlaşılmıştır ki modern büyük beyaz köpekbalığı C.angustidens’e ait olan fosil dişler 15 milyon yıllıktır.Daha büyük C.angustidens’lerin 15cm’yi bulan dişleri,Kwa-Zulu-Natal bölgesinde,Doğu Cape’deki Eocene yatağında ve Namibya’da bulunmuştur.Pürtüksüz dişlere sahip olan(Otodontidae familyası)Paleocene devasa köpekbalıklarına başka bir yakın grup ta Carcharodon türüyle paralel olarak evrime uğramış ve bugün hayatta olan porbeagle köpekbalıklarının (Lamna cinsi)oluşumuna yol açmıştır. 9- İnsana Karşı Saldırılar İnsanın en büyük korkularından biri,yabani bir hayvan tarafından canlı canlı yenmektir.Muhtemelen büyük beyaz köpekbalığı endişelerinin esrarı,büyük ölçüde onun uzun zamanlar boyunca sadece bu amaçla insanlara saldırması olmuştur. Rapor edilen büyük beyaz köpekbalığı saldırıları,öteki köpekbalığı saldırılarından daha fazladır.Bununla beraber rapor edilmiş bütün köpekbalığı saldırılarının %80’i büyük beyaz köpekbalıklarının nadir olduğu tropikal bölgelerde meydana gelmiştir.Bu bölgelerdeki ataklardan genellikle çekiç balıkları (bir tür köpekbalığı) ve requiem köpekbalığı sorumlu tutulmuştur.Gerçekten de Durban’daki Oceanographic Research Institute’un(Okyanus Araştırmaları Enstitusu)eski yöneticisi Dr.Davies daha1964’lerde Güney Afrika’da 7 tehlikeli türden bahsetmektedir.Bugün hala köpekbalığı saldırılarından daha fazla insan boğulmalar,arı sokmaları,şimşek çarpmaları veya yılan sokmaları gibi nedenlerle yaralanır veya ölür.Buna rağmen,büyük beyaz köpekbalıkları su içinde insan için tehlikelidir ve bazı bölgelerden diğer bazı bölgelere göre daha fazla saldırı olayı rapor edilmiştir. Amerikalı araştırmacılar 1926’dan 1991’e kadar bütün dünya çapında vuku bulmuş 115 büyük beyaz köpekbalığı saldırısı belgelemişlerdir.Güney Afrika açıklarında,altısı ölümle sonuçlanan,29 saldırı meydana gelmiştir.Güney Afrika’da 1940’tan bu yana toplam olarak 28’i ölümle sonuçlanan 89 köpekbalığı saldırısı rapor edildiği düşünüldüğünde,bu saldırıların bazılarının diğer türler tarafından yapıldığı sonucuna varılabilir. Niçin Büyük Beyaz Köpekbalıkları Tehlikelidir? Bazı popüler iddiaların tersine,biz karada yaşayanlar,okyanus ortamına doğal olarak uyamadığımız için bu büyük,hızlı,yırtıcılar insanları potansiyel av olarak görürler ve bu yüzden tehlikelidir.Aynı zamanda,sudaki, insanlara,takip edilip dışarıya atılması gereken bölgesel işgalciler olarak kabul ettikleri için de tepki gösterebilirler.Bu teori büyük beyaz köpekbalıklarını atfedilmiş,kurbanların hayatta kaldığı,tek ısırıklı saldırıları da muhtemelen açıklar.Özellikle geçmiş dönemde bir kısım film ve kitapta yapılan bazı sansasyonel köpekbalığı tasvirleri içimize korku salmak için çılgınca bir yok etme ve intikam alma karalılığı içinde olan nefret dolu canavarlar çizmiş ve onun doğal yırtıcı davranışlarını çarpıtmıştır.Hiçbir şey hakikatten öteye gidemez. 10- Denize Girenler,Sörfçüler ve Dalgıçlara Tavsiyeler Bütün önlemlere rağmen,olası bir saldırı durumunda bilinmesi gereken birkaç şey vardır. 1-En önemli şey kanı mümkün olduğunca çabuk durdurmaktır.Kol bacak gibi uzuvlardaki yaralarda çok ta fazla sıkı olmamasına dikkat ederek,sıkıca bir sargı sarılması kanı durdurmaya yardımcı olacaktır.Yumuşak ve esnek herhangi bir şeyi(kumaşı)sıkıştırıp bandaj olarak yara üzerine yerleştirin.Yaralıyı hareketsiz ve mümkün olduğunca sıcak tutun,küçük ve önemsiz bir yara gibi bile gözükse hemen tıbbi acil yardım çağırın. 2-Denize girenlerin veya sörfçülerin büyük ve önemli yaralanmalarında,yaralıyı kum üzerinde denize paralel bir şekilde yatırıp başa doğru kan akışını desteklemek için ayaklarını yukarıya kaldırın.Yaralıyı başı su tarafına gelecek şekilde yatırmayın.Gerekirse yaralının nefes almasına yardımcı olun. 3-Tıbbi yardımın gelmesini beklerken,yaralıyla rahatlatan bir edayla konuşarak onu sakin ve ayık tutun.Yaralıyı hastaneye yetiştirmek amacıyla sahilden uzağa veya bir araca taşımaya teşebbüs etmeyin.Bu yaralıyı şoka sokabilir. 4-Vücut iç sıcaklığını düşürüp yaralıyı şoka sokmasına yardım etme ihtimali olduğundan,hiçbir içecek özellikle alkollü içecek vermeyin.Yaralının dudaklarını ıslatmak amacıyla su kullanılabilir. 11- Kaynaklar: Weidnfield & Nicolson, London, 222pp. Cliff, G., S.F.J. Dudley & B. Davis. 1989. Sharks caught in the protective gill nets off Natal, South Africa. 2. The great white shark, Carcharodon carcharias. S. Afr. J. Mar. Sci., 8:131-144. Compagno, L.J.V. 1981. Legend versus reality: the Jaws image and shark diversity. Oceanus 24 (4); 5-16 -1984. Sharks of the World. FAO Species Catalogue, vol. 4,2 parts, Rome. -D.A. Ebert & M.J. Smale. 1989. Guide to the Sharks and Rays of Southern Africa. Struik Publishers, Cape Town, 160pp. Condon, T. (ed.). 1991. Great white Sharks - a Perspective. Underwater, no.17. Ihlane Publications, Durban: 1-130. Cousteau, J. -Y. & P. Coustea. 1970. The Shark: Splendid Savage of the Sea. Doubleday & Co., Garden City, 277 pp. Davies, D.H. 1964. About Sharks and Shark Attack. Shuter & Shooter, Pietermaritzburg, 237pp Ellis, R. & J.E. McCosker. 1991. Great White Shark. Stanford University Press, Harper Collins, New York, 270pp. Sibley, G. et al (eds.). 1985. Biology of the white shark. Mem. So. Calif. Acad. Sci. 9, 150pp Smith, M.M. & P.C. Heemstra (eds.). 1986. Smiths’s Sea Fishes. Macmillan South Africa, Johannesburg, 1047pp. Springer, V.G.& J.P Gold. 1989. Sharks in Questions. Smithsonian Institution Press, Washington, D.C., 187pp. Van der Elst, R. 1986. Sharks and Stingrays. Struik Publishers, Cape Town, 64 pp. Not:Alıntıdır ayrıca karakter sınırlaması olduğu için parça parça yollayabildim kusura bakmayın arkadaşlar

http://www.biyologlar.com/carcharodon-carhariasbuyuk-beyaz-kopekbaligi

Virüslerin Önemi ve İnsan Sağlığı ile İlişkisi

Virüslerin hemen her canlı çeşidinde yaşayan ve hastalık yapan çeşitleri vardır. Virüslerin yaptıkları hastalıklara virütik ya da viral hastalık denir. Virütik hastalıklar canlının sakatlanmasına ya da ölmesine neden olabilir. Virütik hastalıklar çok bulaşıcıdır. Çünkü virüsler bir canlıdan başka bir canlıya kolaylıkla taşınabilir. Bitki virüsleri yaprak ve köklerin birbirlerine dokunması, tohum, aşı ve böceklerle bir bitkiden diğerine kolaylıkla taşınabilir. Hayvan virüsleri ise öpüşme, konuşma, öksürme, cinsel temas, kan, böcek ve hayvanlarla başka bir canlıya taşınabilir. Virüslerin çok küçük olmaları ve sık sık mutasyona uğrayarak değişmeleri, virütik hastalıklarla mücadeleyi güçleştirir. Örneğin, uzun çabalar sonucunda oluşturulan grip aşısı ertesi yıl etkinliğini kaybeder. Çünkü her aşı belli bir mikroba özgüdür. Mutasyonlarla grip virüsü değiştiğinden daha önceki grip virüsüne karşı oluşturulan aşının etkisi kalmaz. Bu durumda değişen yeni grip virüsüne karşı yeni bir aşının geliştirilmesi gereklidir. Virüsler hücre içi parazit olduklarından antibiyotiklerden etkilenmez. Genellikle antibiyotikler, bakterilerin enzimlerini bloke edip çoğalmalarını engelleyerek etkili olurlar. Virüslerin enzim sistemleri olmadığından antibiyotikler fayda etmez. Bu nedenle grip gibi virütik hastalıklarda antibiyotik kullanılması gereksizdir. Grip hastalarının iyi beslenmeleri, C vitamini içeren besinler almaları ve dinlenmeleri gerekir. Bazı virüsler ise yararlı işlerde kullanılabilir: Örneğin böceklerde hastalık yapan virüsler, bitkilere zarar veren böceklerin ortadan kaldırılmasında kullanılır. Böylece tarımda büyük üretim kayıplarına neden olan böcekleri yok etmek için zehirli ilaçlar yerine bazı virüsler, biyolojik mücadele aracı olarak kullanılırlar.

http://www.biyologlar.com/viruslerin-onemi-ve-insan-sagligi-ile-iliskisi

Aracnida (=Aracbnoidea ) Sınıfı

Bu sınıfta hekimlik açısından önemli olan keneler, uyuz etkenleri, akrepler ve örümcekler bulunur. Arachnida sınıfındaki artropodların erişkinlerinde 4 çift bacak bulunur. Ayrıca antenleri ve kanatlan da bulunmadığı gibi vücutta baş ve thoraxın birleşmesiyle oluşmuş cephalothorax ve abdomen olmak üzere iki kısımdan oluşmuştur. Yine arachnidlerde ağız organellerinin yan taraflarında cheliser adı verilen kesici organel bulunur. Daha önce bahsedilen insecta sınıfındaki artropodların ise erişkinlerinde 3 çift bacak, anten, kanat ( bazılarında yok) bulunur, bunların vücutları üç parçalı olup, caput, tharox ve abdomenden oluşmuştur ve chelicer ( şelişer ) leri yoktur. Arachnida 'larda caput ve thoraxın birleşmesiyle oluşan cephalothoraxa “prosoma”, abdomene ise " opisthosoma" adı verilir. Prosoma' da iki kısma ayrılır. Ağız organellerinin bulunduğu kısma "gnathosoma" ( = capitulum ) ve bacakların çıktığı kısma ise "podosoma" adı verilir. Podosoma ve opisthosoma' dan meydana gelen yani bacakların çıktığı kısma ve abdomene birlikte "idiosoma"adı verılır. Podosomada "propodosoma"( 1 ve 2.çift bacaklar kısmı) ve "metapodosoma" (3 ve 4. çift bacaklar kısmı) olarak ikiye ayrılır. Gnathosoma ve propodosoma'nın ikisine birden "proterosoma" metapodosoma ve opisthosoma'nın ikisine birden ise "hysterosoma"adı verilir. Gnathosoma üzerinde makas şeklinde olan chelicerler, en önde bulanan ve bir çift bacak şeklinde görülen pedipalpler ve hypostom bulunur. Chelicerler konak derisini delmeye ve kesmeye yarayan iki tane hareketli oluşumlardır. Pedipalpler ise artropodun yiyeceğini yakalamasında ve dokunma duyusu olarak görev yaparlar. Hypostom'un üzere dişler gibi oluşumlarla kaplıdır. Bu yapıları ile konak derisine girdiği zaman geriye çekilmesini engeller ve konaktan kan emmeye yarayan bir oluşumdur. Erişkin arachnidlerde ve nymhlerde 4 çift bacak, larvalarında ise 3 çift bacak bulunur. Bu sınıftaki türlerin tümü kanatsız artropodlardır. Göz bazılarında vardır, bazı türlerde ise bulunmaz. Göz eğer varsa basit göz biçimindedir. Solunum genellikte trachealarla olur. Ancak bunlar bir çift stigma ile dışarı açılırlar. Çoğunlukla erkekleri dişilerinden küçüktür ve dorselden bakıldığında bazı türleri direkt olarak ayrılırlar, yani sexuel dimorfismus vardır. Biyolojik gelişmelerinde erişkin -yumurta -larva -nymph -erişkin dönemleri görülür. Yumurtadan çıkan larvalar erişkinlere genellikle benzerler. Daha sonraki nymph dönemi ise sexuel organlarının olmayışı dışında erişkinlere benzemektedir. Bu nedenle bu sınıftaki parazitlerin gelişmelerinde yarım metamorfoz (= hemimetabola ) görülür. Sindirim kanalları birtakım divertiküllere ve kollara ayrılmıştır. Bu özelikleri ilede gıda deposu olarak görev yaptıkları gibi sindirim bezi olarakta fonksiyon yaparlar. Arachnida Sınıfının Sınıflandırılması Bu sınıf altında üç önemli takım bulunur. Bunlar, Order: Scorpionidea (=akrepler ) Order: Araneidea ( = örümcekler ) Order: Acarina (=kene, uyuz etkenleri ve diğer akarlar) Order: Scorpionidea Akreplerde vücut yapıları cephalo- thorax ve abdomen şeklindedir. Vücudun ön tarafında ve ağzın iki yanında bir çift chelicer ve onun gerisinde yine bir çift pedipalpleri bulunur. Pedipalpler makas şeklinde tutucu organellerdir. Bunların gerisinde ise 4 çift bacak vardır. Abdomenleri ise preabdomen ve postabdomen olmak üzere iki kısımdan oluşmuştur. Bunlardan preabdomen geniş yapıda olup, 7 segmentlidir. Postabdomen ise daha ince yapılı olup, 6 segmentden meydana gelmiştir. Kuyruk adıda verilen postabdomenin son halkası yuvarlağımsıdır ve uç kısmında zehir bezesini taşıyan bir iğne ( telson) bulunur. Akreplerin büyüklüğü 3 cm' den 8 cm 'ye kadar değişir. Vücudun en geniş yeri 1 cm, en dar yeri ise kuyruk kısmı olup, 3 -4 mm'dir. Renkleri siyah, solgun sarı, kahverenkli ve bazen yeşil renkli olabilir. Akreplerde vücut segmentasyon gösterir ve bunlarda dimorfismus yoktur. Scorpionidea 'lar sıcak ve kurak bölgelerde bulunurlar. Gececi parazitler olup, gündüzleri duvar ve tahta çatlakları arasında, kuytu yerlerde saklanırlar. Dişileri ovipardır. Ancak genellikle ovovivipardırlar. Yani uterusta şekillenen yumurtalar içinde gelişen yavrular çıkar. Akreplerin son halkasının uç kısmında bulunan iğne zehir bezeleri ile bağlantılıdır. Bu iğne ile bir canlıya soktuğunda zehiri derhal boşaltır. Zehirin felç edici etkisi vardır. Akrepler genellikle evlere girerler. Tropikal bölgelerde yaşayan bazı türleri insan ve hayvanlar için çok zehirli olup, ölümlere yol açabilirler. Akrepler kanivor artropodlardır, gıdalarını pedipalplerindeki kıskaçları ile yakalarlar. Bazı akrep türleri konaklarını soktukları yerlerde sadece lokal olarak şişliklere ve ağrılara neden olduğu halde, çok zehirli olan türleri sinir sistemi bozukluklarına, konvulsiyonlara, solunum güçlüğü ve kalpte bozukluklara neden olurlar. Akrep zehirlemesine scorpionismus ( = skorpionizm ) adı verilir. Zehirlenmelerin tedavisinde en iyi yol özel antitoksin akrep serumu kullanılmasıdır. Order: Araneidea Örümceklerde vücut cephalo-thorax ve abdomenden oluşmuştur. Abdomende segmentasyon gözükmez ve bir boğumla cephalothorax'dan ayrılmıştır. Ağızlarının yan tarafında iki eklemli ve nihayeti bir iğne ile sonlanmış olan chelicerleri vardır. Bunlar zehir bezeleri ile irtibatlıdır. Zehir iğneleri vasıtası ile canlı artropodları ısırır, zehirini akıtarak daha sonrada yerler. Pedipalpleri duyu organı olarak görev yaparlar ve ergin erkeklerde çiftleşmeye hizmet ederler. Bazı türlerinde dimorfismus görülür ve dişileri erkeklerinden biraz daha büyük olup, abdomenleri daha yuvarlaktır. Örümceklerin bazıları toprak altında bazılarıda taşların altında ve ağaç kovuklarında yaşarlar. Çoğalmaları akrepler gibidir. Araneidea takımında bulunan bazı örümcek türleri insan ve hayvanlarda zehirleyici etki gösterir. Bu canlılarda ağır hastalıklar ve ölümlere yol açabilirler. Bunların toxinleri bir neurotoxin olup, özellikle merkezi sinir sitemini etkilerler. Bazı türleri ise lokal nekrozlara neden olurlar. Zehirli olan cinsleri; Latrodectus ve Loxosceles' dir. Bu örümcek cinslerinin chelicerleri ile insan ve hayvanların derilerini delerek dokulara zehir akıtmaları sonucu oluşan yerel nekroz ve genel belirtilerle karekterize olan artropod zehirlenmesine “araneismus" yada örümcek ağılaması (=örümcek zehirlenmesi) adı verilir. Latrodectus cisindeki türlerin sokması sonucu zehiri merkezi sinir sitemini etkiler ve sistemik belirtilere yol açar. Buna "Latrodectismus" yada sistemik araneismus (sistemik arachnidismus) denir. Latrodectus'ların dişisi 10-20 mm, erkeği ise 4-7 mm büyüklüğündedir. Siyah renklidirler. Abdomen üzerinde kırmızı benekler bulunur. Bunlar kuru ve çorak yerlerde, duvar çatlaklarında, ağaç kovuklarında ve kemirgen yuvalarında yaşarlar. Bu türlerin dişileri çiftleştikten sonra erkeğini öldürdüğü için bunlara kara dul adıda verilmektedir. Loxosceles türlerinin sokması sonucu hemoliz oluşur ve ısırılan yerde nekroz meydana gelir, ortaları düşer ve yerlerinde yaralar oluşur. Bu türlerden ileri gelen zehirlenmede lokal reaksiyonlar oluşur. Bu nedenle bu türlerin oluşturduğu zehirlenmeye "Loxoscelismus" ya da nekrotik araknidizm adı verilir. Loxosceles türleri sarı esmer renkte olup, bunlar genellikle evlerde, karanlık ve nemli yerlerde yaşarlar. İnsanları yüzünden, boynundan, omuz yada kolundan sokarlar. Sokulan yerde önce şişlik, içleri kanla dolu kabarcıklar daha sonrada nekrozlar oluşur. Örümcek sokmalarında ilk yardım olarak önce zehir emilir, sokulan yer kanatılır, bölge üstten sıkılır ve kan emilerek tükürülür. Yara amonyak yada potasyum permanganat ile yakılır. Serumlar verilir. Order: Acarina Bu takımda keneler ve uyuz etkenleri başta olmak üzere hekimlik yönünden önemli olan ektoparazitler bulunmaktadır. Acarina takımında bulunan artropodları inceleyen bilim dalına " akaroloji" adı verilir. Acarina takımındaki türlerin vücutları iki kısımdan oluşmuştur. Bunlar capitulum ( gnathosoma ) ve idiosoma' dır. Hatta bazı türlerde vücutları tek parçalı gibidir. Bu artropodların vücutlarında segmentasyon yoktur veya çok belirsizdir. Ağız organelleri besinleri yakalamaya yarayan bir çift pedipalp, kesici bir çift chelicer ve bunlar arasında sokmaya yarayan bir adet hipostom (rostellutrı)' dan ibarettir. Erişkinlerinde ve nymph'lerinde 4 çift, larvalarında ise 3 çift bacak bulunur. Erkek ve dişiler arasında sexuel dimorfismus vardır. Acarina 'larda solunum trachealarla olur yada bütün vücut yüzeyinden olur. Sinir sistemleri basittir ve göz bazılarında vardır. Bu gruptaki parazitler deri hastalıklarına (uyuz) neden olmaları ve birçok enfeksiyon etkenlerine vektörlük yapmaları (keneler) yönünden büyük önem taşırlar. Acarina takımında 6 alttakım bulunur. Bunlar; l-Suborder : Metastigmata 2-Suborder : Mesostigmata 3-Suborder : Prostigmata 6-Suborder : Holothyroidea 4-Suborder : Astigmata 5-Suborder : Nostostigmata 6-Suborder : Holothyroidea Bunlardan son iki alttakımın ekonomik önemleri yoktur. İlk 4 alttakım özellikle Veteriner Hekimlik yönünden önemli olan artropodları içerir. Suborder : Metastigmata Bu alttakımda keneler yer alır. Stigmaları 4. veya 3. coxae'nın hemen yanında yada arkasında bulunur. Acarina takımının genel özelliklerini taşırlar. Hipostomları üzerinde uçları geriye dönük olan dişler bulunur. Vücutları yekpare bir kese şeklinde olup, gnathosoma ve idiosomadan ibarettir. Larvalarında 3 çift, nymph ve erişkinlerinde 4 çift bacak bulunur. Nimfler olgunlarından genital organlarının olmayışı ile ayrılırlar. Erişkin ve doymuş bir dişi kenenin uzunluğu 2 cm'ye kadar ulaşabilir. Bu alt tabında Ixodidae ve Argasidae aileleri vardır. Familya: lxodidae ( Sert keneler veya mera keneleri) Bu ailede bulunan artropodlar mera keneleridir. Bu kenelerde vücut yapısı"capitulum ve idiosomadan oluşmuştur. İlk bakışta erkek ve dişi keneler birbirlerinden kolaylıkla ayrılırlar. Yani sexuel dimorfısmus vardır. Erkekleri dişilerinden daha küçüktür ve bütün vücutları kitin tabakası ile örtülüdür. Kenelerin dorsalinde bulunan bu sert kitini plaka scutum adını alır. Scutum erkeklerde vücudun bütün dorsal kısmını kaplarken, dişilerde, nymph ve larvalarda capitulum'un arkasında ve vücut dorsalinde küçük bir yaka şeklindedir. Ağız organelleri capitulum 'un ön tarafında yer almıştır. Capitulum; basis capituli ve bundan çıkan bir çift chelicer, chelicer kılıfı, hipostom ve bir çift palpden oluşmuştur. Chelicerler hypostomu üstten örterler ve deriyi kesmeye, delmeye yararlar. Chelicerler tarafından açılan deriye chelicerler ve hypostom birlikte girer ve daha sonra hipostom üzerindeki küçük dişcikler geriye doğru açılarak hipostomun deriden çıkması önlenir. Hypostom kenenin konaktan kan emmesini sağlayan organeldir. Chelicer'lerin yan taraftarında his organeli olarak görev yapan bir çift palp bulunur. Başın arkasında ve vücudun kenar kısmında bazı türlerde bir çift göz mevcuttur. Gözler scutumun marginal kenarına bitişik yer alırlar. lxodidlerin bazı türlerinde göz bulunmaz. Vücudun ventralinde ise bacaklar, ön tarafta genital delik, arka tarafta anüs, çeşitli oluklar, stigmalar ve erkeklerde kitinsel plaklar bulunur. Bacaklar sırası ile coxae, trochanter, femur, tibia, pretarsus ve tarsus'dur. Tarsus'un uç kısmında iki adet tırnak bulunur. Tırnakların ventral yüzünde ise disk şeklinde düz yüzeylere tutunmaya yarayan pulvillum vardır. Genital delik median hat üzerinde ve ikinci coxaların ön kenarı hizasında olup, enine bir yarık şeklindedir. Nymph 'lerde genital delik kapalı olduğu halde larvalarda henüz şekillenmemiştir. Anüs vücudun arkasında yer alır ve çeşitli plaklarla kuşatılmıştır. Stigmalar 4. coxanın arkasındadır ve larvalarda bulunmaz. Bunlarda solunum vücut yüzeyi ile olur. Ixodidlerin bazı türlerinde scutumun üzeri adeta nakışla işlenmiş gibi süslüdür. Yine bazı türlerin vücudunun arka kenar kısımlarında festoons (festum) adı verilen oluşumlar vardır. Bu ailedeki keneler vücutlarının dorsalinde kitini sert bir plaka taşımalarından dolayı “sert keneler" veya biyolojilerini merada geçirdiklerinden dolayıda "mera kenelerı" olarak adlandırılırlar. Mera kenelerinin erkekleri en fazla 3-4 mm büyüklüğünde olduğu halde, dişileri kan emdiklerinde 1 cm büyüklüğüne ulaşırlar. Dişilerde scutum önde bir yaka şeklindedir. Vücudun geri kalan kısmı deri ile kaplıdır. Bundan dolayı dişiler fazla miktarda kan emebilirler. Erkeklerde ise bütün vücut kitinle kaplandığı için çok az miktarda kan emerler ve vücut genişleme göstermez. Keneler sexuel olarak çoğalırlar. Genital organlar dişilerde 2 adet ovaryum, uterus ve genital deliğe açılan vajinadan ibarettir. Ovaryum bir çok yerlerde kör keseler halinde olan sindirim kanalı ile ilişki halindedir. Bu durum kan parazitleri ile enfekte kenelerin bu parazitleri sindirim kanalından ovaryuma ve oradanda yumurtalara geçirebilmesi bakımından önem taşır. Erkeklerde genital organlar bir çift testis ve genital deliğe açılan vasa deferensden oluşmuştur. Keneler bütün hayatları boyunca kan emmek zorunda olan artropodlardır. Sindirim sistemleri hipostomdan başlar ve bir çok kör keseler halinde bağırsaklarla devam eder. Ixodidae ailesindeki kenelerin biyolojileri Mera keneleri ilkbahar sonlarından başlar ve sonbahar sonlarına kadar aktivite gösterirler. Hayvanlarda kulak içi, kulak kepçesi, yüz, karın altı, perianal bölge ve bazende vücudun diğer kısımlarında yerleşirler. Erkek ve dişiler genellikle bir arada bulunurlar ve çoğunlukla kopulasyon kan emme esnasında olur. Erişkin. dişi keneler yumurtalarını toprak veya meraya bırakırlar. Daha çok çatlak ve yarıklara, taş altlarına ve ağaç oyuklarına bırakırlar. Yumurtalar kahverenginde ve oval şekildedirler. Türlere ve kan emmelerine göre değişmek üzere 2-18 bin yumurta bırakırlar. Yumurtlama vücudun ventral ön tarafında bulunan genital delikte olur ve bunlar yapışkan bir madde ile birbirlerine yapıştırıldıklarından bir yumurta kitlesi şeklindedirler. Erişkin dişi bir kere yumurtlar ve daha sonra kuru bir hal alır ve ölür. Yumurtadan çıkan larvalar (uygun ısı ve rutubette türlere göre değişmek üzere 3-7 günde larvalar çıkar) çayır ve otların üst kısımlarına tırmanarak, ön ayakları ile o yörede bulunan konaklara tutunurlar. Kenelerde her türün seçtiği konak türleri varsada, aç kaldıklarında başka konaklardanda beslenebilirler. Konağa tutunan larvalar kan emerek doyarlar ve gömlek değiştirerek nymph safhasına geçerler. Nymph 'ler kan emerek gömlek değiştirirler ve bunlardanda erişkinler oluşur. Erişkin keneler kan emdikten sonra çoğunlukla konak üzerindeyken çiftleşme olur. Kopulasyondan hemen sora erkekler yere düşer ve ölür. Döllenmiş dişi kene ise kan emer, doyar ve toprağa düşerek yumurtlar ve ölür Yukarıda anlatılan biyolojik gelişme genel olarak görülen bir gelişme şeklidir. Ancak lxodidae ailesindeki kene türlerinin kullandıkları konak sayılarına göre bu biyolojik gelişme değişmektedir. Sert keneler gelişmelerinde kullandıkları konak sayısına göre 3 grupta toplanırlar. 1- Bir konaklı keneler Eğer kene biyolojik gelişmesini bir konakta tamamlıyorsa bu kenelere bir konaklı keneler denir. Kenenin kan emmiş doymuş dişisi (döllenmiş ) konağı terkeder toprağa düşer, yumurtlar ve sonra ölür. Uygun ısıda yumurtalar içinde embiryo gelişir ve 3 çift bacaklı larva halini alır. Bu larvalar beyaz renkli yumurta kabuğundan dışarı çıkarak etrafta bulunan otlar üzerine tırmanırlar. Bunlar toplu iğne başının ¼’ü büyüklüğündedirler. Larvalar arka iki çift bacaklarını otlara salarlar ve ön bir çift bacaklarını ise havada sallarlar. Bu civardan geçmekte olan konaklara tutunurlar ve doyuncaya kadar konaktan kan emerler. Bu durumda toplu iğne başı büyüklüğünde ve gri bir görünüm kazanırlar. Hypostomlarını deriden çekerler ve konağın üzerinden ayrılmaksızın gömlek değiştirme evresine girerler. Bu safhada larvanın üzerindeki deri beyazlaşır ve onun vücudunun içinde nymph meydana gelir. Nympler larvanın üstderisi olan kabuğu açarak dışarı çıkarlar. Nympler şekil bakımından erişkinlere benzerler ancak genital organlar gelişmemiştir. Bu nymph 'lerde üzerinde bulundukları aynı konaktan tekrar kan emmeye başlarlar. Doyduklarında küçük bir saçma tanesi şeklindedirler. Bunlarda hypostomlarını deriden çekerler ve bulundukları konağı terketmeden bulundukları yerde gömlek değiştirme safhasına geçerler. Nymplerin üzerini örten deri bir kabuk şeklini alır ve onun içinde de erişkin kene şekillenir. Erkek ve dişi olarak şekillenen bu keneler nymphin gömlek şeklini almış üst derisini açarak dışarı çıkarlar. Yine aynı konaktan kan emmeye başlarlar. Kan emme esnasında kopulasyon olur, dişiler doyuncaya kadar kan emdikten soma konağı terkederek toprağa düşer, yumurtlar ve ölürler. Yani bu tip kenelerde kene yumurta hariç bütün yaşam dönemlerini aynı konak üzerinde geçirir. Aç larva olarak tutunduğu konaktan doymuş dişiler olarak ayrılırlar. Tüm gömlek değiştirmeler konak üzerinde olur. Örneğin; Boophilus annulatus ve Boophilus decoloratus türleri bir konaklı kenelerdir. 2-) İki konaklı keneler Bu tür keneler biyolojik evrimini tamamlayabilmesi için iki konak kullanır. Bu konaklar aynı veya ayrı türler olabilir. Konak üzerinde kan emmiş ve doymuş olan dişiler toprağa düşer yumurtlar ve ölürler. Yumurtadan çıkan larvalar oradan geçmekte olan 1. konak bir canlının üzerine tutunurlar. Doyuncaya kadar kan emerler ve hypostomlarını geriye çekerek, aynı konak üzerinde gömlek değiştirirler ve nymph olurlar. Aç olan bu nymphler aynı konaktan kan emerler ve doyduktan sonra toprağa düşerler. Toprakta gömlek değiştiren nymphlerden erişkinler oluşur. Aç olan erişkin keneler bu yörede bulunan 2. bir konağa tutunurlar, kan emerler ve doyduktan sonra kopulasyon olur. Döllenmiş dişiler bu konağı terkeder toprağa düşer ve yumurtladıktan sonra ölürler. Yani aç larva olarak tutunduğu konaktan doymuş nymph olarak ayrılır. İlk gömlek değiştirme 1. konakta, 2. gömlek değiştirme toprakta olur. Örnek: Hyalomma türleri, Rhipicephalus everts;ve Rhicephalus bursa türleri iki konaklı kenelerdir 3-) Üç konaklı keneler Bu tip keneler gelişmelerini tamamlayabiImek için üç konağa ihtiyaç duyarlar. Yumurtadan çıkan larvalar 1. konağa tutunurlar. Bunlar kan emer ve doyduktan sonra toprağa düşerler. Toprakta gömlek deyiştirdikten sonra aç nymphler oluşur. Bu aç nymphler kan emmek üzere 2. bir ayrı veya ayrı konağa tutunurlar. Kan emip doyan nymphler konağı terkeder ve toprağa düşerler. Toprakta gömlek değiştirdikten sonra aç erişkinler oluşur. Aç erişkin keneler kan emmek için 3. bir aynı veya ayrı konağa tutunurlar. Kan emerler, doyarlar ve çiftleştikten sonra dişiler toprağa düşer yumurtlar ve ölürler. Yani her gelişme döneminde ayrı bir konaktan beslenirler ve her gömlek değiştirme olayı toprakta olur. Örneğin; lxodes ricinus, Rhipicephalus appendiculatus, Haemaphysalis ve Dermacentor türleri gelişmeleinde üç konak kullanırlar. Ixodidae ailesine bağlı olarak bulunan kene cinsleri şunlardır. Genus: Ixodes Genus: Haemaphysalis Genus: Boophilus Genus: Dermacentor Genus: Hyalomma Genus: Amblyomma Genus: Rhipicephalus Genus: Ixodes Ixodes 'lerin palpleri ve hypostomları uzundur. Anal oluk belirgin ve anüsü önden kuşatır. Scutum nakışlı değildir. Göz ve feston bulunmaz. Erkeklerin ventral yüzü birbirinden belirgin sınırlarla ayrılmış 7 alandan oluşur. Palpleri uzun raket şeklinde ve üzerinde kıllar bulunur. Bu cinste bulunan türler; lxodes ricinus, lxodes hexagonus, I. pilosus, l persulcatus ve l rubicundus'dur. Bunlardan en önemli olan tür I. ricunus olup, çoğunlukla sığır ve koyunlardan kan emerler. Avrupa'da ve Türkiye'de yaygındır ve üç konaklı kenedir. Özellikle ılıman ve rutubetli iklim bölgelerinde bulunur. Ixodes ricinus türü konağından kan emerek verdiği zararın yanısıra Babesia bovis, Babesia divergens'i sığırlara, Anaplasma ovis'i koyunlara ve Babesia canis'i köpeklere bulaştınrlar. Aynca Louping-ill virusuna, Rusya ilkbahar yaz encephalitisine ve Coxiella burnettii'ye vektörlük yapmaktadırlar. Genus:Boophilus Bunların ağız organelleri kısadır. Palpleri kısa ve çıkıntılı olup, hipostoma eşit yada kısadır. Göz ve çift anal plakları vardır. Festonları bulunmaz. Boophilus cinsinde bulunan türler; Boophilus annulatus, B. decoloratus, B. calcaratus ve B. microplus' dur. Bunlardan ülkemizde en yaygın olarak görülen tür B. annulatus'dur. Tek konaklı kenedir ve genellikle sığırlardan kan emerler. Sığırların önemli kan protzoonlarından olan Babesia bigemia, B. bovis, Anaplasma marginale, A.centrale ve Borrelia theileri (spirochaetosis)'ye vektörlük yaparlar. Genus: Hyalomma Hyalomma'ların ağız organelleri uzundur. Palpleri uzun olup, 2. palp segmenti çok uzundur. Göz, anal ve subanal plaklar vardır. Scutum koyu renklidir ve nakışIı değildir. Festonlar düzensizdir ve bir bölümü birbiriyle kaynaşmıştır. Bu cinste bulunan önemli türler; Hyalomma anatolicum excavatum, H. anatolicum anatolicum, H. marginatum ve H. detritum' dur. Yurdumuzda görülmektedirler ve yaygın kene türleridir. İki konaklı keneler olup, ruminant ve tektırnaklılardan kan emmerler bunlar konaklarına Theileia annulata, Theileria parva, T.dispar, Babesia caballi, B.equi, Coxiella burnetii (Q humması etkeni), Rickettsia bovis ve Rickettsia canari'yi naklederler. Genus: Rhipicephalus Palpleri ve hypostomları kısadır. Göz ve anal plakları vardır. Anal oluk belirgindir. Basis capituli dışa doğru çıkıntılıdır. Bu cinsteki türler feston taşırlar. Bulunan önemli türler; Rhipicephalus bursa, R sanguineus ve R appendiculatus' dur. Bulardan R. bursa çoğunlukla koyunlardan kan emerler. Bu tür Babesia ovis, Theileria ovis, Babesia bovis, Babesia equi, B. caballi, Anaplasma marginale, Rickettsia avina, Coxiella bumetii ve koyunlarda Nairobi hastalığı virusunu konaklarına bulaştırır. R. bursa türü gelişmelerini iki konakta tamamlarlar. R. sanguineus türü ise genellikle köpeklerden kan emer ve üç konaklı kene olup, ülkemizde yaygındır. Babesia canis, B.vogeli, Hepatozoon canis, Pasteurella tularensis, Rickettsia, Coxiella ve Borrelia türlerine vektölük yaparlar. R.appendiculatus ise Afrikanın tropikal bölgelerinde yaygındır ve sığırlardan kan emerek bunlara Theileria parva'yı taşırlar. Ayrıca T.mutans, B. bigemina ve Hepatozoon canis'e vektörlük yaparlar. Bu üç türden ayrı olarak Rhipicephalus capensis ve R. everisi türleri de bulunmaktadır. Genus: Haemophysalis Palpleri kısa ve 2. palp segmenti basis capituliden daha geniştir. İkinci palp segmenti uzunluğuna oranla iki misli daha geniştir. Göz ve anal plakları bulunmaz. Anal oluk belirgin değildir yada bulunmaz. Anal oluk anüsü arkadan kuşatır. Feston taşırlar. Üç konaklı kenelerdir. Bu cinse bağlı olarak Haemaphysalis punctata, H. parva, H. longicornis ve H. leachi türleri vardır. H. punctata ve H. longicornis ruminantlardan kan emerler. Bunlar B. bigemina, B. motasi, Anaplasma marginale, Anaplasma centrale ve Theileria türlerini naklederler. H. leachi türü ise köpeklerden kan emer. Sarı köpek kenesi adını alır. Köpeklere B. canis, Coxiella bumetii ve Rickettsia conori ' yi bulaştırırlar. Genus: Dermacentor Bu cinsteki kene türlerinin palpleri kısa ve basis capitulinin hizasındadır. Palpleri geniştir. Gözleri vardır, anal plakları yoktur. Scutumları renkli ve nakışlıdır. Bu cinse bağlı türlerin çoğunluğu üç konaklıdır. Genellikle tektırnaklılardan ve köpeklerden kan emerler. Bulunan türler; Dermacentor andersoni, D. reticulatus, D, marginatus, D. niveus, D. occidentalis ve D. variabilis'dir. Bunlardan D. marginatus ve D. reticulatus ülkemizde yaygındır. Bu türler Babesia caballi, B. equi ve B. canis'e vektörlük yaparlar. Genus: Amblyomma Palpleri uzun ve hipostomları kalındır. Gözleri vardır ve anal plakları yoktur. Scutumlarının üzeri nakışlıdır. Festonları vardır ve bunlar arasında kaynaşma yoktur. Türkiyede görülen türü Amblyomma variegatum'dur. Üç konaklı kenedir. Sığırlara Theileria mutans'ı bulaştırır. Bu cinse bağlı olarak A. americanum, A. hebraeum ve A. maculatum türleride bulunur. Ixodidae ailesine bağlı olarak bulunan bu cinslerden başka sürüngenlerde bulunan Aponomma ve evcil ve yabani hayvanlarda bulunan Rhipicentor cinsleride bulunmaktadır. Familya: Argasidae Bu ailedeki keneler mesken keneleri olarak bilinirler. Mesken keneleri ahır, ağıl ve kümesIerde bulunur ve buraya giren hayvanlardan kan emerler. Genel morfolojik ve biyolojik özellikleri yönünden mera kenelerine benzerler. Ancak bazı farklılıklarda vardır.Ixodidae ailesi ile aralarındaki bu farklılıklar verilerek mesken kenelerin özellikleri anlatılacaktır. Morfolojik Farklılıklar 1. Ixodidae'lerde capitulum dorsalden bakıldığında vücudun ön tarafında bir çıkıntı yapmış şekilde görüldüğü halde, Argasidae'lerde larva dönemleri hariç capitulum ventralde yer alır ve bu nedenle dorsalden bakılınca görülmez. 2. Ixodidae'lerde scutum vardır. Erkeklerde scutum tüm vücudu örter ve fazla kan ememezler. Bunların dişi, larva ve nymph 'lerinde scutum önde yaka şeklindedir ve fazla kan emerler. Argasidae'lerde ise scutum yoktur. 3. Ixodidae'lerin erkeklerinin ventralinde görülen kitini plaklar, Argasidae'lerde yoktur. 4. Ixodid 'lerin palpleri köşelidir. Argasid 'lerin ise silindiriktir. 5. Ixodidae ailesindeki kenelerin ayak uçlarında pulvillum adı verilen yastıkçıklar bulunur. Bu nedenle bunlar cam ve fayans gibi düz zeminlere tırmanabilirler. Ancak Argasidae'lerde pulvillum yoktur. 6. Ixodidae'lerin dorsalinde bulunan scutum nedeni ile özellikle kan emmiş olan erkek ve dişiler arasında sexuel dimorfismus vardır. Argasidae'lerde ise böyle bir farklılık bulunmaz. 7. Ixodidae'lerin arka taraflarında feston vardır. Argasidae'lerde yoktur. 8. Mera kenelerinin bazı türlerinde göz vardır. Gözler büyüktür ve scutumun ön kenarının iki yanında bulunur. Mesken kenelerinde göz vardır. Bunlarda vücudun ventralinde ve ön kısmının iki yanında bulunur. 9. Ixodidlerde stigmalar büyüktür ve 4. coxanın arkasındadır. .ArgasidIerde ise stigmalar küçüktür ve 4. coxanın önündedir. ıo. Ixodidlerde erkek ve dişi büyüklük ve scutumun konumuna göre ayrılır. Erkekler dişilere göre daha küçüktür. Scutum erkeklerde tüm vücudu örter. ArgasidIerde ise erkek ve dişi genital deliğin morfolojik özelliğine göre ayrılır. Erkeklerde genital delik at yarık şeklinde olduğu halde, dişilerde enlemesine bir yarık şeklindedir. ll. Sert kenelerin dişilerinde basis capituli üzerinde poros area vardır. Yumuşak kenelerin dişilerinde poros area yoktur. Biyolojik Farklılıklar l. Ixodidae aileasindeki keneler doğada, özellikle açık yerlerde ve meralarda gelişmelerine karşılık, Argasidae türleri ahır, ağıl ve kümes gibi kapalı ve örtülü yerlerde gelişirler. Bunun için Ixodidae ailesindeki kenelere mera keneleri, Argasidae ailesindeki kenelere ise mesken keneleri adı verilir. 2. Mera kenelerinin hemen hepsi memelilerin parazitidirler. Ancak 2 ve 3 konaklı olan bazı türleri kanatlılardan da kan emebilir. Bunun aksine Argasidae türlerinin bir kısmı genellikle sadece kanatlılardan bir kısmı ise memelilerden kan emerler. 3. Ixodidae türleri konakçıya tutunduğunda iyice doyuncaya kadar kan emer, gömlek değiştirir. Yumurtlar ve ölür.Ancak argasidae türleri konaklarından azar azar ve kısa süreli olarak kan emerler ve her seferinde nisbeten az sayıda (200-300 adet) yumurtlar. Fakat yumurtlamadan soma ölmezler ve bir kaçkez yumurtlayabilirler. 4. Ixodidae türleri konaklarından doyuncaya kadar sabit olarak kalırlar. Argasidae türleri ise geçici ve gezicidirler. 5. Mera kenelerinde bir nymph safası vardır. Argasidae'lerde ise bir kaç nymph safhası vardır ve bunlarda bütün gömlek değiştirmeler konak dışında meydana gelir. 6. Mera keneleri açlığa mesken kenelerine göre daha dayanıksızdırlar Ixodidler 1-2 yıl, Argasidler ise 9-10 yıl aç kalabilirler. Argasidae ailesindeki keneler vücutlarının üzerinde kitini plakların olmamasıyla "yumuşak keneler" ve biyolojik gelişmelerini barınaklarda geçirdiği içinde "mesken keneleri" olarak adlandırılırlar. Argasidae ailesindeki kenelerin larva. nvmoh ve eriskinlerinin avrımı: Organ Larva Nymph Erişkin Bacak 3 çift 4 çift 4 çift Peritrem Yoktur Vardır Vardır Capitulum Anteroterminal Anteroventral Anteroventral Genital Delik Yoktur Yoktur Vardır * Erkeklerde dar ve yarım ay şeklinde, dişilerde ise kabarık, geniş ve enine bir yarık şeklindedir. Argasidae ailesinde bulunan kene cinsleri: Genus: Argas, Genus: Ornithodoros (= Ornithodorus), Genus: Otobius Genus: Argas Bu genustaki keneler genel olarak kanatlıların parazitidirler. Vücutları ince yapılı, ovalimsi, dorso-ventral yassı, ön uçları daralmış ve arka uçları geniş ve yuvarlağımsıdır. Bu kenelerin dorsal ve ventral yüzünü ayıran bir çizgi bulunur. Bu çizgi Argaslarda oldukça ince olup, kenenin kan emip doymasına rağmem keskin bir şekilde kalır. Gözleri yoktur. Dorsal yüzlerinde çok sayıda ufak ve yassı dairemsi çukurlar bulunur. Argas cinsine bağlı olarak bulunan türler; Argas percicus: Kanatlılardan (tavuk, bindi, kaz gibi) kan emerler. Ördeklerde kene toksikozuna neden olmaktadır. Argas reflexus: Güvercinlerin parazitidir. Argas sanchezi: Kanatlılardan kan emer. Agas radiatus, Argas miniatus ve Argas mianensis türleride kanatlı keneleridirler. Bunlardan en yaygın olanları A. persicus ve A. reflexus' dur. Argas türleri kan emecek kanatlı bulamadıklarında evcil memelilerden ve insanlardan da kan emebilirler. Biyolojik gelişmeleri Argas türlerinin erginleri kanatlı barınaklarının tahta aralıkları, tünek çatlakları ve çatısında güvercin barındıran veya kuş bulunduran evlerin çatı kısımlarında bulunurlar. Buralarda çatlak ve yarıklara saklanırlar. Buralarda çiftleşirler. Döllenen dişi kan emmek için konağına saldırır, kan emer ve doyduktan sonra konağından ayrılarak çatlak ve yarıklara çekilirler ve buralarda yumurtlarlar. Dişiler kan emek için birkaç kez konağına saldırır ve her kan emişten sonra yumurtlar. Yumurtalardan uygun ısıda yaklaşık 3 hafta sonra larvalar çıkar. Larvalar konaklarına tutunarak kan emer ve doyduktan sonra kanağı terkeder ve bir hafta içinde gömlek değiştirir. Bunun sonucu oluşan 1. nymph'ler tekrar kanaklarına saldırır, kan emer doyar ve konaklarından ayrılarak değişik yerlere saklanırlar. Buralarda yaklaşık bir ay içinde 2. nymph olur. Bunlarda konaklarından kan emer, doyar ve konaklarını terkederek gizlenirler. Argas persicus'da 6-8 hafta sonra, A. reflexus'da ise bir yıl sonra erişkin kene haline gelirler. Bu kenelerin kan emme süreleri 2 saat kadardır. Konaklarından sadece geceleri kan emerler. Ayrıca ülkemiz iklim şartlarında kışın aktivite göstermezler. İlkbaharda havalar ısınınca aç döllenmiş dişi kan emerek biyolojik gelişmeyi başlatır. Argasidae ailesindeki kene türleri kümesIerde bulunan kanatlıların üzerine gelerek bütün gelişme dönemlerinde kan emerler. Özellikle geceleri hayvanları rahatsız ederler. Kanatlılarda huzursuzluğa ve dolayısı ile verim düşüklüğüne neden olurlar. Ayrıca ağır enfestasyonlarda anemi şekillenir. Yine A. persicus türü ördeklerde kene felcine neden olabilir. Argas türleri Anaplasma marginale, Aegyptionella pullorum, Borrelia anserina'nın (Spirochaetosis etkeni ) vektörlüğünü yaparlar. Bu cinse bağlı keneler kümesIere giren insanlarada saldırabilir ve kan emerler. Genus:Ornithodorus Bu cinste bulunan kenelerin yan kenarları yuvarlağımsıdır. Lateralde vücudun dorsal ve ventral yüzünü ayıran çizgi bulunmaz. Vücut dorso-ventral olarak yassılaşmıştır. Aç iken vücudu ince ve kenarları yukarı doğru kıvrılmıştır. Kan emmiş olanlarda ise kenarları yuvarlaklaşmıştır. Elipsoidal şeklinde olup, bazı türlerinde vücudun iki yanının ortası hafif içeri doğru çekik (konkav)dir. Erişkinlerin dorsalinde değişik kıvrımlar vardır. Göz çoğu türlerde bulunur. Bu cinse bağlı türler; Omithodorus laharensis, O. Moubata, O. turicata'dır. Bunlardan yaygın olan ve Türkiye'de de görülen tür O. lahorensis'dir. Bunlar ağıllarda saklanırlar. Toprak veya balmumu renginde olup, koyun ve keçilerden kan emerler. Ayrıca diğer hayvanlardan ve insanlardan kan emebilirler. Koyun ve keçiler bütün yaz mevsimini merada geçirip kış geldiğinde ahır veya ağıllara alındığında keneler bunların üzerine gelirler. Bunun için Ornithodorus 'lara kış kenesi adı verilir. Biyolojileri: Erişkinleri ağıllarda bulundukları çatlak ve yarıklarda çiftleştikten sonra erkekler ölür, dişiler kan emmek için konaklarına tutunurlar ve kan emerler. Doyduktan sonra konaklarını terkeder ve saklanırlar. Saklandıkları yarıklarda yumurtlarlar. Mayıs-Ağustos aylarında yumurtalarını bırakırlar. Yumurtadan yaklaşık bir ay sonra larvalar çıkar. Sonbahar başlarında çıkan larvalar, bu mevsimde havaların soğumasıyla ağıla sokulan hayvanlara saldırır ve kan emerler. Doyduktan sonra konağı terketmeksizin gömlek değiştirir ve l.nymph'ler oluşur. Daha sonra sırası ile konak üzerinde 2.ve 3. nymph'ler meydana gelir. Kan emip doymuş olan 3. nymph 'ler konaklarını terkederler ve saklanma yerlerinde gömlek değiştirerek erişkinler oluşur. Larvadan 3 nymph safhasına kadar olan dönem bir ay kadar sürer. Bir dişi kene bir kopulasyondan sonra hiç çiftleşmeden 2 yıl fertil yumurta bırakabilir. Erişkinler kan emmeden 10-l2 yıl yaşayabilirler. Ornithodorus türleri de geceleri konaklarından kan emerler. Bunlar her gelişme formlarında hayvanların boyun, sırt, vücudun yan taraftan ve kuyruk sokumu bölgesimde yapağı yada tiftik arasında bulunarak bu bölgelerin derisinden kan emerler. Bunun için hayvanlara ilk bakıldığında keneler görülmezler. Keneleri görmek için yapağı aralanarak el bu kısımlarda dolaştırılır ve parmak uçları ile kenelerin varlığı anlaşılır. Çok sayıda olduklarında hayvanlarda kondüsyonun düşük olduğu kış aylarında kan emerek anemiye sebep olurlar ve ekonomik kayıplara yol açarlar. Ornithodorus lahorensis Rickettsia, Tularemi ve bazı Trypanosoma türlerini taşırlar. Ayrıca bu cinse bağlı türler Q- humması etkeni olan Coxiella bumetii'yi naklederler. Konakçı bulamadıklarında insanlara saldırarak kan emerler ve onlarda bazen toksikasyon, felç ve ölümlere yol açabilirler. Genus: Otobius Otobius megnini türü Kuzey ve Güney Amerika, Güney Afrika ve Hindistan' da bulunur ve kulak kenesi olarak adlandırılır. Larva ve nymph 'leri çoğunlukla köpeklerin kulaklarında parazitlenir. Ancak diğer evcil hayvanlar, yabani hayvanlar ve insanlarda bulunabilir. Larvaları doyduklarında hemen hemen küreseldirler. Nymphleri orta kısımlarında daha geniştir. Bu cinsin erişkinleri parazit değildir. Erişkinleri beslenmezler ancak dişileri 500-600 kadar yumurtayı yiyecek depolarının altlarına, taş ve duvar çatlaklarına bırakırlar. Bunlar konaklarından kan emerek irritasyona ve yangıya neden olurlar. Sekunder bakterilerin işe karışması ile de daha da komplike olurlar. Verim düşüklüğüne neden olurlar. Ağır enfestasyonlarda kulak içinde paket halindeki larva ve nymphlerin görülmesi ile tanı konulur. O. megnini'den ayrı olarak tavşanlarda bulunan diğer bir türde O. lagophilus' dur. Özellikleri O. megnini 'ye benzer. Kenelerin Zararlı Etkileri 1. Kan emmeleri veya kan emdikten sonra kanamanın uzun bir süre devam etmesi sonucu anemiye neden olmaları. Bu etkileri ağır enfestasyonlarda görülür. Tek bir dişi kene günde 0.5- 2 ml kan emebilir. Böylece kenelerle enfeste hayvanlarda verim düşer ve hatta ölüm olayları görülebilir 2. Kenelerin konakları üzerinde yaralayıcı etkileri vardır. Kene kan emmek için deriyi soktuğunda deriyi delerek yaralanmalara ve dermatozlara neden olurlar. Ağır enfetasyonlarda bu yaralar piyojen bakterilerle sekunder olarak enfekte olurlar ve kene piyemisi şekillenir. Ayrıca bu gibi enfekte yaralar myiasis etkenlerini ortama davet eder. Myiasis etkenleri yumurta ve larvalarını buralara bırakırlar. Böylece sekunder hastalıklara ortam hazırlarlar. Deri kalitesi bozulur ve verim kaybı oluşur. 3. Kenelerin konakları için bir etkileride paralizIere neden olmalarıdır. Ixodes ve Dermacentor gibi kene türlerinin nymph ve özellikle erişkin dişilerinin tükrük salgısında bulunan toksin kene felcine neden olur. Arka ayaklardan başlayan ve öne doğru yayılan ve hatda ölümle sonuçlanan felç olayı oluşur. Bu toksin solunum ve sinir sistemini etkilemektedir. Kene felci ( tick parlysis) insanlarda özellikle çocuklarda ve evcil hayvanlarda görülmektedir. 4. Kene toksikozuna neden olmaları Hyalomma cinsine bağlı türler tarafından oluşturulur. Erişkin kene tarafından oluşturulan toxin ruminat ve dumuzlarda mukoz membranların hiperemisi ve yaş egzama ile karekterize terleme belirtilerine yol açar. Ayrıca Argas persicus türü ördeklerde kene toksikozuna neden olabilmektedir. 5. Kenelerin en önemli etkilerinden biride çeşitli hastalık etkenlerine vektörlük yapmalandır. Keneler protozoonlar, viruslar, bakteriler, riketsiyalar, spiroketler ve helmintlere biyolojik veya mekanik taşıyıcılık yaparlar. Paraziter enfeksiyonlardan Veteriner Hekimlik yönünden önemli olan Babesia ve Theileria etkenlerini nakletmeleri yönünden büyük önemleri vardır. Keneler bu hastalık etkenlerini iki şekilde naklederler.Bunlar; Transstadial nakil: Kenenin bir gelişme döneminde kan emerken aldığı hastalık etkenini bir sonraki gelişme döneminde kan emerken konağına aktarmasıdır. Üç konaklı keneler larva safhasında aldığı etkenleri nymph evresinde kan emdiği konağa aktarır. Nymph döneminde aldığı etkenleri ise erişkin safhada kan emdikleri konağa aktarırlar (iki konaklı kenelerde de bu durum görülür.). Hyalomma türlerinin Theileria annulata'yı nakletmeleri örnek olarak verilebilir. . Transovarial nakil: Tek konaklı kenelerde etkenler kenenin yumurtalarına geçer. Yumurtadan çıkan larvalar enfekte olduğu için bu dönemde kan emerken etkenleri konağa nakleder. Boophilus türlerinin Babesia türlerini nakletmesi transovarial nakildir. Kenelerin hastalık etkenlerini nakletmelerindeki yüksek potansiyeli şu özelliklerinden ileri gelir: 1. Sabit ve yavaş olarak kan emerler. Bu sırada konağı ile birlikte taşınarak geniş bir alana dağılırlar. 2. Çevre şartlarına oldukça dayanıklı olup, kolay kolay etkilenmezler. 3. Doğal düşmanları oldukça azdır. 4. Kene türlerinin çoğunluğu geniş bir konakçı spektrumuna (euroxene)sahiptir. Bu nedenle aç kalma ve ölme sorunları daha azdır. 5. Keneler uzun süre yaşarlar ve açlığa oldukça dayanıklıdırlar. 6. Kenelerin yüksek üreme güçleri vardır. Bazı türler 18.000'ne kadar yumurta bırakabilirler. 7. Birçok kene türü hastalık etkenlerini tansovarial olarak yeni nesillerine aktarırlar. Böylece bir enfekte keneden binlerce yeni enfekte nesiloluşur. Lyme hastalığı: Bu hastalığın etkeni spiroketalardan olan Borrelia burgdorferi'dir. Köpek, at, sığır, koyun, kedi ve insanlarda bildirilmiştir. Hastalığın vektörlüğünden birinci derecede sorumlu olan tür lxodes ricinus' dur. Bu mera kenesi türü etkenle bir defa enfekte olduktan sonra bütün ömürleri boyunca bulaşık kalırlar. Transstadial (%80) ve transovarial (%20) olarak nakledilirler. Lyme enfeksiyonunda ilk klinik belirti deride oluşan Erythema Chronicum Migrans (ECM)'dır. Bu klinik bulgu hastalık için patognomonik lezyon olup, deri döküntüsü şeklindedir. Buna yerel bir lenfbezi büyümesi, ateş ve halsizlik de eşlik edebilir. Ayrıca sinir sistemi, kalp ve kas iskelet sistemi ile ilgili belirtiler görülür. Suborder: Mesostigmata Mesostigmata alt takımındaki akarlar oldukça küçük olup, 1-2 mm büyüklüğündedirler ve kenelere benzerler. Vücutları gnathosoma ve idiosomadan ibarettir. Stigmaları bir çift olup, coxae'ların lateralinde yer alır. Bu alt takımda önemli olan aile; Familya: Dermanyssidae Bu aileye bağlı bulunan cinsler; Genus: Dermanyssus Genus: Pneumonysus Genus: Ornithonyssus Genus: Ophionyssus Genus: Allodermanyssus Genus: Varroa Genus: Dermanyssus Bu cinste bulunan ve yaygın olarak görülen tür Dermanyssus gallinae' dir. Bu türün erişkinleri 0.5-1 mm büyüklüğündedir. Vücudu oval şekilde ve ön tarafında ince uzun yapıda ağız organelleri bulunur. Vücudun dorsal kısmı yaka şeklinde küçük bir kitinle örtülüdür. Erişkinlerinde ve nymphlerinde 4 çift bacak bulunur. Uzun bacaklıdırlar. İdiosoma seyrek ve kısa kıllarla örtülüdür. Bu parazit tüm kanatlılardan kan emer ve fırsat buldukça da insanlara saldırabilir. Bu akarlar beyaz, gri veya siyah renkte olmalarına rağmen kan emince kırmızı renk alırlar. Bu nedenle tavukların kırmızı akan ya da "tavuk kırmızı biti" olarak adlandırılır. Bunlar kümesIerde hayvanların üzerinde ya da meskenlerde çatlak ve aralıklarda kum yığını halinde bulunurlar. Dişileri yumurtalarını buralara bırakır. Yumurtalardan çıkan larvalar gömlek değiştirirler ve I. nymph 'ler oluşur. Bunlar konaklarından kan emerler, gömlek değiştirirler ve 2. nymph'ler meydana gelir. Bunlarda kan emer ve gömlek değiştirerek erişkinler oluşur. Biyolojileri optimal şartlar altında 7 günde tamamlanır. Erişkinler kan emmeksizin 4-5 ay canlılıklarını korurlar. Dermanyssus gallinae'nin erişkin ve nymph'leri konaklarından kan emerler. Larvaları ise beslenmezler. Dermanyssus gallinae'nin erişkinleri ve nymph'leri değişik zamanlarda ve periyodik olarak kanatlılardan kan emerler. Gündüzleri ise kümesIerde saklanırlar. Evlerin çatısındaki güvercinlerde bulunduklarından buradan insanlara geçebilirler. Ayrıca kümese giren insanlara da saldırırlar. Bu parazitler özellikle yazın aktivite gösterirler ve uygun şartlarda çok çabuk ürerler. Konaklannı irrite ederek huzursuzlandınr ve kan emerek anemiye sebep olurlar. Bu durum yumurta verimlerinin düşmesine ve et verim kaybına yol açar. Ağır enfestasyonlarda ölüm olayları görülebilir. Bu ektoparazit türü kanatlıların spirochetosis etkeni olan Borrelia anserina'ya vektörlük yapar. İnsanları sokması sonucu deride kızarıklık, lokal olarak şişlikler, lokal ya da yaygın allerjik bozukluklar ve kaşıntıya neden olurlar. Bu parazit türüne kuş akarcığı adı da verilmektedir. Genus: Ornithonyssus (=Bdellonyssus, Liponyssus) Bunlar şekil ve biyolojileri bakımından Dermanyssus 'lara benzerler. Ancak bunların Vücudunda çok daha fazla uzun tüyler bulunur. Kanatlılardan, fare ve ratlardan kan emerler. Bunlara keme akarcığı adı verilir. Kan emmemişleri kirli sarı renkli olduğu halde, kan emrniş olanlan kırmızı - boz renktedir. Erişkinleri oval ve 1 mm uzunluğundadır. İnsanlara saldırdıklarında özelikle çocuklarda şiddetli yanma ve kaşıntıya neden olurlar. Bu cinste bulunan türler; Ornithonyssus sylviarum, O. bursa ve O. bacoti'dir. Fareler arasında rickettsia etkeni olan Rickettsia acari'yi naklederler. Genus: AlIodermanyssus Önemli tür Allodermanyssus sanguineus' dur. Bunlar fare ve ratlarda bulunurlar. Özellikle evcil rat ve farelerden kan emerler. Bunun için ev fare akarı adını alırlar. Biyolojileri Dermanyssus'lara benzer. Bu tür fare ve ratlar arasında veya bunlardan insanlara riketsiyal çiçek etkeni olan Rickettsia akari'yi vektörlük yaparak bulaştırırlar. Genus: Pneumonyssus Pneumonyssus cinsine bağlı türlerden P. caninum köpeklerin burun yollarında ve nasal sinuslarda, P.simicola ise maymunların bronşlarında parazitlenir. Biyolojileri iyi bilinmemektedir. Bulaşmanın direkt temasla olabileceği kaydedilmiştir. Genus: Ophionyssus Bilinen tür Ophionyssus natricis'diro Yılanların akarıdır. Sarımsı kahverengindedirler. Ancak kan emdiklerinde koyu kırmızı renk alırlar. Biyoloji ve beslenme özellikleri Dermanyssus 'lara benzer. Ağır enfestasyonlarda anemi, zayıflama ve ölüme yol açarlar. Ayrıca yılanların bakteriyel bir patojeni olan Aeromonas hydrophila 'yı mekanik olarak naklederler. Yılanların diğer akarları olan Entonyssus ve Entophionyssus cinsleri trachae ve akciğerlerde parazitlenirler. Genus: Varroa Species: Varroa jacobsoni (Arı akarı) Ergin dişileri 1.2 mm uzunluğunda ve 1.5 mm enindedir. Vücutları dorso-ventral olarak yassıdır. Dişi varroa 'lar enine ovalimsi, erkekler ise yuvarlağımsıdır. Erkek varroa 'lar 0.8 mm uzunlukta ve 0.7 mm enindedir. Dişi akarlar açık veya koyu kahverenklidirler, erkekler ise beyaz gri veya sarımtrak renklidirler. Ergin dişilerde sırt kısmı hafif dış bükeydir. Vücut sert kitini tabaka ile örtülüdür. Dorsalden bakıldığında ağız organelleri ve bacakları iyi görülmez. Vücut gnathosoma ve idiosoma olmak üzere iki kısımdan oluşmuştur. Ağız organelleri delici ve emici tiptedir. Bir çift cheliserleri vardır. ve bu arı derisinin delinmesinde rol oynar. Bunların kenarında bir çift pedipalp bulunur. Erişkin varroalarda 6 eklemli 4 bacak bulunur. Erkek akarların ağız organelleri hemolenf emmeye elverişli değildir. Dişileri ise uygun ağız organelleri ile arı yavrularının ve erişkin arıların hemolenfini emer. Varroa jacobsoni'nin vücudunun sırt kısmında ve yanlarında diken gibi kıllar bulunur. Bu kıllar akarın arı üzerinde durmasını sağlar. Bu tür arıların genellikle baş ve thorax arasına yerleşir. Solunum çok iyi gelişmiş olan trake sistemiyle olur. Biyolojileri: Varroa jacobsoni'nin biyolojisi ilkbaharda arı larvasının yetiştirilmeye başlamasıyla başlar ve sonbaharda son genç işçi arılar çıkıncaya kadar devam eder. Kışı ergin dişi olarak geçirir. Bu akar erkek arılar üzerinde yaşar. Üreme için özellikle erkek arı gözlerini seçer. Varroa 'ların erkek arıları tercih etmelerinin bir çok nedenleri vardır. Bunlar; erkek arı larvalarının kapalı göz içinde kaldıkları sürenin daha uzun olması, kovanda erkek arı gözlerinin daha çok peteklerin alt ve yan kenarlarında bulunması, erkek arı larvalarının dişilerden daha fazla besinle beslenmesi ve hormonal etki gibi faktörlerdir. Kışı ergin arılar üzerinde geçiren döllenmiş dişi parazitler ilkbaharda gelişmekte olan 5-6 günlük larvaların bulunduğu petek gözlerine, gözler kapatılmadan 1-2 gün önce girerler. Dişi akar larvanın hemolenfini emer ve 2-9 adet yumurtasını buralara bırakır. 2-3 defa bulunduğu yere yumurtlayabilir. Yumurtalardan 24 saat sonra 3 çift bacaklı larvalar çıkar. Bunlar 2 gün sonra gömlek değiştirerek 1. nymph (protonymph) olur. Bu 4 çift bacaklı 1. nymphler larvanın hemolenfini emer ve gömlek değiştirerek 3-5 günde 2. nymph (deutonimf) ler oluşur, 2. nymph dönemi 1-2 gün sürer ve bunlar arı pupasının kan sıvısı ile beslenirler. Bunlardan da erişkin akarlar oluşur. Dişi varroa 8-10, erkek erişkin ise 6-7 günde yumurtadan oluşur. Ergin erkek ve dişi akar petek gözlerinde çiftleşir ve erkekler kapalı göz içerisinde ölürler. Bunun için arılar üzerinde erkek varroalara rastlanmaz. Çiftleşmiş genç dişi varroalar ise gözler içerisinde genç arıya tutunarak beslenmelerini sürdürürler ve arıyla birlikte gözden çıkarlar. Döllenmiş olarak gözden çıkan varroalar 5 gün sonra yumurtlamaya başlarlar. Yani bu akarlar bir süre sonra tekrar yavru gözlerine dönerek yumurtlamaya başlarlar. Erişkin dişi akarlar yazın 2-3 ay, kışın ise 5-8 ay yaşamlarını sürdürürler. Varroa'ların üreme potansiyelleri çok yüksektir. Bir nesilden diğer neslin oluşmasına kadar geçen süre yaklaşık 7 gündür. Erkek arılarda ise biyolojik gelişme 24 gün olduğundan, bir nesil arı oluşana kadar varroalarda 3 nesil meydana gelmektedir. Varroaların yaşaması ve çoğalması için mutlaka bal arısının hemolenfini emmesi gerekmektedir. Bulaşması: Bulaşma daha çok arıdan arıya olmakla beraber bunda gezginci ancılığında rolü vardır. Türkiye'ye Bulga.rİstan'dan geçtiği ve Trakya yöresinden de Ege bölgesine yayıldığı ve göçer ancılar vasıtasıyla bütün illerin bulaşık olduğu bildirilmiştir. Bulaşmada arıcılarında rolü vardır. Bulaşık arı kolonilerinden sağlıklı ailelere yavru ve genç işçi arı verilmesiyle, ailelerin kontrolsüz birleştirilrneleri ile ve işçi arıların çiçekten çiçeğe konarken akarı oralara taşımasıyla olmaktadır. Klinik belirtiler: Arı varroasis'ine neden olan Varroa jacobsoni ergin an ve larvaların hemolenfini emdiği için, yavru arı ve ergin anlara zarar verirler. Arılar güçsüz düşerler ve akarlardan kurtulmak için büyük gayret sarfederler ve bunun sonucunda da huzursuz olur ve uzun bir can çekişmesinden sonra ölürler. Ölümler kovan dışında olur. Enfeste arılar iyi uçamazlar. Sıcak havalarda enfeste arılar kovan uçuş deliğinin önünde sürünürken görülürler. Bu akarlar beslenirken yaralar açarlar ve bu yaralardan bakteriyel etkenler arılara girerek septisemiden ölüme neden olurlar. Ayrıca varroasis'de etkenler erkek arılar üzerinde daha yoğun bulunduklarından, kovanda erkek arı sayısı belirgin sayıda azalır ve cinsel güçleri düşer. Yine ana arı ve işçi arıların ömürleri kısalır ve işçi arılar normalden daha küçük olurlar. Arı larvaları rahatsız oldukları için petek gözünden dışarıya çıkarlar ve kovan dip tahtasının üzerine düşerler ve hatta bunlardan oluşacak arılarda da anomaliler oluşur. Bazen ölü larvalar dışarıya atılamazlar ve gözler koyu renkli olup, deliklerin çerçevesi beyazlaşmıştır. Arılarda yüksek kayıplar kışın ortaya çıkar. Ana arının yumurtlama yeteneğinin azalması ve işçi arıların beslenme yeteneklerinin bozulması ile ekonomik kayıplara yol açarlar. Varrosis’ de teşhis: Kovanın dip tahtası üzerine konan kağıt üzerine düşen akarları toplayıp inceleyerek, kapalı erkek yavru gözleri ince uçlu bir pensle açılarak dışarı çıkarılan larvaların üzerinde akarlar aranarak konulur. Erişkin dişi akarları çıplak gözle görebiliriz. Ancak nymphler için büyüteç yada en iyisi stero -mikroskop altında incelenmeyle teşhis edilir. Ergin arılar üzerindeki varroaları görmek için ise 200 kadar arı örneği bir fırça ile toplanır. Kavanoza konan bu örnekler üzerine sıvı deterjanlı sıcak su dökülür. Arılar tel süzgeçle sallanarak ayrılır ve dipteki tortuda parazitler aranır. Ayrıca arılar etilasetat ile öldürülür, alkolde yıkanır ve akarın an üzerinden ayrılması sağlanır. Çöküntü stero- mikroskopta incelenir. Kontrol: Varroasis'e karşı kimyasal mücadele erken ilkbahar ve geç sonbahar aylarında yapılır. Bu zamanlarda kovandaki bal miktarı az olduğu için kullanılan ilacın bala geçmesi gibi bir sorunun da önüne geçmiş olunur. ilaçlama için en uygun zaman arıların kovana döndükleri güneş batımından sonraki akşam üzeri yapılır. Bunun için gaz halinde kullanılan fumigantlar, toz şeklinde kullanılan ilaçlar, kontakt etkili ilaçlar ve şurup, kek gibi oral yolla etkili ilaçlar olarak gruplandırılan insektisit ve akarisitler kullanılır. Bunun için ülkemizde kullanılan ilaçlar; Perizin (Diethyl-thiophosphate), Folbex-VA (Bromopropylate), Varation-TKV (Malathion % 0.1), Varroacide ( Amitraz ), Vamitrat- Va ( Amitraz ) ve Apistan ( trifuoromethyl, sentetik pyretroiddir )'dır. Kontrol'de ayrıca biyolojik mücadele ve fiziksel mücadele metotlarıda kullanılmaktadır. Suborder: Prostigmata Bu alt takımdaki parazitlerin stigmaları gnathosomanın kaidesinde bulunur. Bulunan aileler; Familya: Trombiculidae Familya: Cheyletiellidae Familya: Demodicidae Familya: Myobiidae Familya: Pediculoididae Familya: Psorergatidae Familya: Tarsonemidae Familya: Trombiculidae Bu aileye bağlı Trombicula, Neotrombicula ve Leptotrombicula cinsleri bulunur. Bu cinslere bağlı türler ise T.dicoxale, T.minor, T.sarcina, T.akamushi ve N. autumnalis'dir Bunlardan yurdumuzda koyun ve sığırlarda saptanmış olan tür Trombicula dicoxale'dir. Ayrıca ülkemiz için en önemli türlerden birisi de N autumnalis' dir. Bu ailede bulunan türlerin erişgin ve nymph 'leri mera ve çayırlarda, kırsal, çalılık ve taşlık yerlerde serbest olarak yaşarlar. Bu evreleri parazit değildir. Ancak larvaları insan ve hayvanlardan lenf sıvısı emerek parazitlenirler. Erişkinleri 2 mm büyüklüğünde, gnathosoma üçgen şeklinde ve vücut cephalo-thorax abdomen şeklindedir. Vücut abdomenden sonra bir boğumlanma ile ayrıImıştır. Erişkin ve nymph 'lerinde görülen bu boğumlanma larvalarda görülmez. Erişkinleri beyaz sarımtrak renklidir ve vücutları sık kıllarla örtülüdür. Şeliserleri tırnak biçiminde ve uçları sivridir. Larvaları 0.2 -0.5 mm büyüklüğünde ve vücut toparlağımsıdır. Larvaların üzeri ince tüylerle kaplı olup, sarıdan kırmızı turuncuya kadar değişen renkte ve dorsal kısımda küçük bir kitini plaka taşırlar. Biyolojik gelişmeleri şöyledir. Trombikulid yumurtaları erişkinler tarafından toprağa veya otlar üzerine ilkbahar aylarında bırakılır. Yumurtalardan 6 bacaklı larvalar çıkar. Bu larvalar bulunduğu ortamdaki kuşlara, reptillere ve memelilere saldırırlar. Larvalar fare gibi küçük omurgalı konaklarda kulaklara yerleşebilir. Buralarda şeliser ve hipostomlarını deriye sokarak beslenirler. Bu esnada tükrüğe benzer bir madde salgılarlar. Larvalar daha sonra yere düşer ve dinlenme dönemi olan deutonimfler oluşur. Daha sonra ikinci dinlenme dönemi olan tritonimfler meydana gelir ve bunlarda erişkin akarcıklar haline geçerler. Trombicula larvaları bulundukları yerlerde başta tavşan, kemirgenler ve kuşlar olmak üzere değişik memeli hayvanlara ve insanlara sadırırlar. Bunlar özellikle ayak kısımlarında, şeliserleri ile tutunduğunda dermatitlere neden olurlar. Uyuz benzeri belirtiler ortaya çıkar. Sokulan yerde ortaları solgun, kenarları hiperemik lezyonlar oluşur, bu lezyonlar zamanla nekrozlaşır. Bazen kırmızı papüller meydana gelir ve bunlar kaşıntılıdır. Larvaların yaptığı bu lezyonlara güz uyuzu yada çalılık uyuzu adı verilir. Zamanla lokal direnç nedeniyle 4-8 gün içinde larvalar kendiliğinden deriden yere bırakılır. Bu türlerden T akamushi insanlara akarcık tifusu etkeni olan Rickettsia tsutsugamushi'yi bulaştırırlar. Bu durum özellikle uzak doğuda önemlidir. Oluşan şiddetli kaşıntıya karşı soğuk su banyoları veya kompresleri, antihistaminikli kremler uygulanır. Kaşıntıyı önlemek için %5 benzocaine, %2 metilsalisilat, %0.5 salisilik asit, %72 etanol ve % 19.5 su karışımı kullanılır. Familya: Tarsonemidae Bu ailede bulunan akarlardan Tarsonemus hominis türü insanların ürogenital organlarında bulunmuştur. Bu türden ayrı olarak özellikle hekimlik açısından önemli olan ve arıcılık sektöründe sorun oluşturan ve arılarda görülen akar türü ise Acarapis woodi' dir. Acarapis woodi'ye yaşlı arılarda yani ergin arılarda 1. göğüs stigmasının gerisinde yer alan trachea ( soluk borusu) ve bunun dallarında rastlanır. Bunun için arıların trachea akarı olarak bilinir. Hindistan ve Pakistan'da yaygındır. Erişkin akar 80 -120 mikron büyüklükte olup, trcheada rahatlıkla hareket eder ve kanat köklerine yerleşerek arı hemolenfi ile beslenir. Uzun ve delici olan ağız yapısıyla trachea duvarım delerek hemolenfı emer. Döllenmiş dişi yumurtalarını tracheaya bırakır ve sırası ile larva, nimf ve erişkin safhaları görülür. Bulaşma arıdan arıya contact temasla olmaktadır. Klinik olarak trachea çevresinden hemolenfin akması sonucu kabuklaşma görülür. Oksijen değişimi engellendiği için arılar ölürler. Büyük kayıplar arıların kovanda bulunduğu kış başlangıcında meydana gelir. Enfestasyon ilkbaharda ortaya çıkar ve enfeste arılar uçamaz ve sürünerek yürürler. Teşhis için trachea açılarak üzerine lamel kapatılır ve mikroskopta erişkin yada larva formları aranır. Ayrıca enfeste arıların tracheaları kahverengindedir. Normalde soluk borusu beyaz renklidir. Mücadelede akarları tam anlamıyla eradike edebilmek için birer hafta arayla 7 kez ilaçlama yapılmalıdır. Fumigasyon şeklinde kullanılan ilaçlar tercih edilir. İlaçlama anında kovandaki tüm delik ve çatlaklar kapatılmalı ve ilaçlama sonrası hemen açılmalıdır. ilaç uygulaması 10 gün sonra tekrarlanmalıdır. Familya: Pediculoididae (= Pyometidae) Önemli tür Pediculoides (= Pyometes) ventricosus'dur. Dişileri 220, erkekleri ise 150 mikron uzunluğundadır. Dişilerin arka uçu kesemsi koniktir. Bu türün sadece dişileri insanlarda ve hayvanlarda parazitlenir. Tahıl ambarlarında yaşayan insektIerin yada bunların gelişme dönemlerinin üzerinde bulunurlar. Bu akarlar bitki tohumlarına saldıran böceklerle beslenirler. Özelliklede bu böceklerin larvalarıyla beslendikleri için faydalıdırlar. Ancak bu ambarlara giren insan ve evcil hayvanlara da saldırarak kaşıntılı dermatitlere neden olurlar. Özellikle tahlıların bol olduğu yaz aylarında ve harman zamanında yaygındırlar. Biyolojileri farklılık gösterir. Deriye tutunan dişinin uterusundaki yumurtalardan larvalar gelişir. Her dişide 100-300 kadar larva gelişebilir. Bu larvaların sadece % 3-4'ü erkektir. Bu erkekler de ananın genita! deliğine yakın dururlar ve genç dişileri delikten çıkma esnasında döllerler. Her erkek 30 kadar dişi ile çiftleşir. Daha sonra dişiler yeni konak ararlar. Yaz aylarında tahılların bol olduğu dönemlerde 3-4 ayda bir yeni nesiller gelişir. Biyolojik gelişme için en uygun sıcaklık 26-28oC'dir. 25derecede'de yaklaşık 10 günde yeni nesiller ortaya çıkmaya başlar. Bunların yalnız dişileri insanlara saldırarak uyuz benzeri belirtilere neden olurlar. Bunun için Piyometes ventricosus'un konakların derilerine yapışarak parazitlenmesi sonucu oluşan dermatite "arpa uyuzu" ya da "Acarodermatitis urticarioides" adı verilmektedir. Tahıl uyuzu etkenleri olan bu akarcıklar başlangıçta açıkta olan kol, yüz, el ve bacakları sararlar ve zamanla tüm vücuda yayılırlar. Deride önce kabarcıklar, veziküller ve kaşıma sonucu peteşiyel kanamalar ve kızarıklıklar görülür. Buralarda kaşıntı sonucu yaralar oluşur. Bu yaralardan yapılan preparatlarda akarların görülmesiyle tanı konulur. Familya: Cheyletidae (= Cheyletiellidae ) Bu ailede bulunan akarların kutikulaları yumuşaktır ve şeliserleri uzundu. Palpleri 3-5 eklemden oluşmuş olup, uçlarında iri kanca bulunur. Memelilerde ve kuşlarda ektoparazit olarak yaşarlar. Bazı türler ise doğada serbest olarak yaşarlar. Memelilerde bulunan cins; Genus: Cheyletiella Bu cinsdeki türler köpek, kedi ve tavşanlarda parazitlenirler. Bağlı türler; Cheyletiella parasitivorax: Tavşanlar konaklandır. C. yasguri: Köpeklerde C. blakei: kedilerde C.strandtmanni: Yabani tavşanlarda C. .furmani: Tavşanlarda bulunur. Bu türlerin büyüklüğü 0.4 x 0.25 mm kadardır. Bu konakların kılları arasında yaşarlar ve çok hızlı hareket ederler. Konaklarının lenf sıvısını emerek beslenirler. Dişi parazitler yumurtalarını iplik benzeri bir salgı içerisinde kıllara yapıştırarak bırakırlar. Yumurta içinde önce prelarvalar ve bunlardan larva oluşur ve yumurtayı terkederler. Daha sonra sırası ile I. dönem nymph ve erişkinler oluşur. Cheyletiella cinsindeki bu parazitler konaklarında kılların keçeleşmesine ve karışık bir görünüm kazanmasına ve nisbetende kıl dökülmesine neden olurlar. Tüm dünyada yaygın olarak bulunan bu parazitler hayvan bakıcılarına ve sahiplerine de geçebilmektedir. İnsanlarda kaşıntı ile seyreden bir dermatite neden olmaktadırlar. Kontakt temasla insanlara geçen bu akarlar irrtasyon, eriytem, vesicül ve pustullere yol açarlar. Bu türlerin enfestasyonlarının teşhisi için şüpeli kısımlardan kıllar alınır ve mikroskobik bakıda iplik benzeri maddeyle kıllar üzerinde bulunan yumurtaların görülmesiyle konulur. Yada lezyonlu kısımların bir sıvı yağ veya gliserin ile yumuşatılmasından sonra kazıntı alınır ve mikroskobik olarak incelenerek tanı konulur. Bunlardan başka en iyi tanı metodlarından birisi de, Cheyletiella türleri hareketli olduklanndan kıllar aralanır ve selefobant yapıştırılır. Daha sonra bu bant kaldırılarak bir lam üzerine yapıştırılır ve akarlar incelenir. Familya: Psorergatidae Genus: Psorergates Bu cinse bağlı bulunan ve koyunların derisinde parazitlenen tür Psorergates ovis' dir. Avustralya, Yeni Zellanda ve Güney Afrika'da yaygın bir türdür. Akarlar oldukca küçük ve küreselolup, 0.2 mm' den daha küçüktürler. P. ovis özellikle yapağısı bol merinos koyunlarında parazitlenirler. Koyunlarda kaşıntıya neden olurlar. Yünler matlaşır ve hayvanlar kaşıntıdan dolayı kendilerini yani yapağılarını ısırırlar ve yapağının yolunarak dükülmesine yol açarlar. Teşhisi uyuzun tanısında yapılan işlemler gibi yapılarak konulur. Familya: Myobiidae Bu aileye bağlı olarak Myobia musculi türü bulunur. Farelerde ve ratlarda parazitlenir. Laboratuvar hayvanlarında hafif bir dermatitise neden olur. Farelerde kıl kaybına yol açarlar ve bulaşma temasla olur. Büyüklükleri 350-500 mikron kadardır. Biyolojilerini 12-13 günde tamamlarlar. Konaklarında uyuz benzeri lezyonlar oluştururlar. Myobiidae ailesine bağlı diyer bir cins Syringophilus'dur. Kanatlılarda bulunur. Bu cinse bağlı Syringophilus columbae güvercilerin, S. uncinata türü ise tavus kuşlarının tüylerinin dip kısmında yerleşirler. Familya: Demodicidae Bu ailede bulunan ve tüm evcil hayvanlarda ve insanlarda rastlanan cins Demodex' dir. Demodex cinsindeki türlerin insan ve hayvanlarda meydana getirdiyi hastalığa "Demodicosis" adı verilir. Demodex'ler diğer uyuz etkenlerinden farklı yapıda bir vücut morfolojisine sahiptirler. Demedex türlerinde vücut caput, thorax ve abdomen olarak ayrılmıştır. Vücudun arka ucu geriye doğru kuyruk gibi uzamış ve kurtçuk şeklindedir. Abdomenin üzeri enine çizgilidir. Erişkinleri 0.1-0.4 mm uzunluğundadır. Şeliserleri kısa, kalın ve makas gibidir. Hipostom delik biçimindedir. Palpleri iki segmentlidir. Bacaklar 4 çift olup, thoraxdan çıkarlar ve çok kısa, kalın ve üç boğumludur. Ayrıca tarsuslarının uç kısımlarında birer çift kalın ve sivri tırnak bulunur. Çiftleşme organı 4. çift bacak koksaları arasında bulunur. Larvaları 3 çift bacaklıdır. Demodex cinsine bağlı bulunan türlerden insan ve domuzlarda bulunanlar hariç konak isimlerine göre adlandırılırlar. Bu türler ve konakları Demodex folliculorum: İnsan D. phylloides : Domuz D. ovis: Koyun D. canis: Köpek D. equi: Tektırnaklılar D. cati : Kedi D. caprae: Keçi D. bovis: Sığır D. cuniculi : Tavşan Bu türler konaklarının kıl folliküllerine ve yağ bezlerine yerleşerek folliküler uyuza neden olurlar. Biyolojik gelişmelerinde sırası ile yumurta -larva -1. nymph (protonymph) -2. nymph ı-- (deutonmyph) ve erişkin dönemleri bulunur. Gelişmelerini 9-14 günde tamamlarlar.

http://www.biyologlar.com/aracnida-aracbnoidea-sinifi

İnsanın Biyokültürel Evrimi

İnsanlık gerçektende 30.000 yıl önce çok mu medeniydi? Aslında bu soruyu sormak bile bilime hakaret. Erich von daniken'in bayatlamış hipotezleri halen Bilime zarar vermektedir. Bilimin en çok zara verdiği dallarından biri insan bilimi yani sosyal antropolojidir. Halen bu gün bile Agarta gibi efsanelere inanılması gibi, uzaylıların dünyamıza gelip Cro-Magnon'ların ve Neandertal'lerin kültürünü geliştirdiğini inanılmaktadır. Bununla birlikte Mısır'daki piramitleri ve bazı eski çağlardaki yapıları uzayılıarın yaptığını söyleyenlerde var. İlk olarak söylemek istediğim bir şey var, geçen senelerde İran'daydı her ahlde Deccel diye bir çocuğu naletlemişlerdi. Nedeni ise çocuğun tek gözlü doğmasıydı. İnsanlık gerçektende 30.000 yıl önce çok mu medeniydi? Aslında bu soruyu sormak bile bilime hakaret. Erich von daniken'in bayatlamış hipotezleri halen Bilime zarar vermektedir. Bilimin en çok zara verdiği dallarından biri insan bilimi yani sosyal antropolojidir. Halen bu gün bile Agarta gibi efsanelere inanılması gibi, uzaylıların dünyamıza gelip Cro-Magnon'ların ve Neandertal'lerin kültürünü geliştirdiğini inanılmaktadır. Bununla birlikte Mısır'daki piramitleri ve bazı eski çağlardaki yapıları uzayılıarın yaptığını söyleyenlerde var. Aslında Bilim bu tür safsataları çoktan çökertmişitir. Aslında Daniken'in taraftarlarının en çok takıldığı nıkta şudur. Eski çağlardaki duvarlarda tek gözlü iri insanların çizilmiş olması dev arazilere ise atmosferden görülücek işaretler bırakılması halen bir kanıt olarak görünmektedir. Aslında bunlar abartılmış ve o şekilde görülmek istenenmektedir. İlk olarak söylemek istediğim bir şey var, geçen senelerde İran'daydı her ahlde Deccel diye bir çocuğu naletlemişlerdi. Nedeni ise çocuğun tek gözlü doğmasıydı. Çokcuk sadece fiziksel ve bio şekilde engelliydi. Doktorlar çocuğun sağlık durumunun iyi olduğunu söylemişlerdi, sadece gözü ortada bulunuyordu. Şimdi birde bu olayın binlerce yıl önce gerçekleştiğini düşünün, o zaman ki insaların tepkilerinin düşünün, hepsi o kişiden korkacaktır yada o insanı tanrı olarak göreceklerdir. İşte buda o duvardaki resmi açıklıyor. Çağillik ve bilimin yokluğu, diğer konuya gelecek olursak tarlalarda bu gün güya ufoların yaptığı işaretlere, bunu şöyle açıklamak isterim; maç sırasında taraftarlar kendi takımını desteklemk için büyük bir pankart açarlar, açtıkları bu pankart spor takımını çokşturmak içindir, yada başka şeyler içindir. Bü tür şeyleri görünmyen şeylere yormaya bayılıyoruz sanırım. Asıl konumuza dönelim yani insanın biyokültürel evrimine, halen Homo sapien sapien'in Homo helmi'den mi? yoksa Homo Neandertal'lerden mi? geldi, aslında bu konu halen tartışılmaktadır. Bir çok bilim adamı Neandertallerin bizim ancak kuzenimiz olabileceği yönde fikirleri var, ve modern insanın Homo helmi'den Afrika'daki Homo Helmi popülasyonundan türediğini düşünüyorlar. Ama ne olursa olsun evrimin ilk basamaklarında çıkan bazı türler bir arada yaşamış ve birbirlerine istekli isteksiz sosyol kültür öğretmiştir. Hatta Afrika'da bu gün bulunan eski gıda tüketimlerine bakılınca, tarihin ilk balık lokantasına rastlanıyor. Bu balık lokantası bir mağradır ve buz çağında sığınan neandertaller gibi türlerin tabaklarda sırayla ve düzenle dizmişerler ve o şekilde birbirlerine sunmuşlardır. Eğer Cro-Magnon'ların beyin amileyatına kalkıştı gibi sözlerle bizi avutmaya çalışan kendilerini bilime adamış ama bilimden uzak olan bu insanlar neden tıpbi ihtiyaçları varken, mağralrda yaşadıklarını açıklyabilir mi? Ama bu insanların sadece bu iddaları yoktur, neden tüm maymunlar evrim geçirmedi? ve neden maymunlar şimdi artık insan olmuyor? yani maymunlar cehennemi neden yaşanmıyor? gibi saçma ve bilimin yanıtını verdiği halde halen sordukları bu sorulardan asla vaz geçmiyorlar. İlk olarak evrim tek ve düz bir çizgi diğil yani evrim onların hayl ettiği gibi düz ilerlemez, kördür. Neden maymunlar evrim geçirmiyor sorusunun cevabını size vermekten guru duyarım, insan ve şempanze ayrıldıktan sonra insanın evrimi 1 milyon yıl önce yavaşlamıştır. Bu yavaşlama cinsel yolla evrimede etki etmiştir. Ama tam tersine şempanzelerde evrim çok hızlı ilerlemye devam etmiştir. Bu durum şempanzenin kendi alınında yani pozitif şekilde evrim geçirmesine sebep oldu. Şempanzelerin evrim hızı %3 oranında, peki bu durumda akla gelen soru şudur. Neden şempanzeler akıllı diğil? İnsanlarda mutasyonlar daha az sayıda ortaya çıksa bile, önemli olanlar hızla yayılıyor. İnsanın avantajına olan mutasyonlar, mesela zeka, muhtamelen güçlü bir doğal ayıklanma baskısı altında oluştu. Yani bu beceriyi hızlı kazanan insanlar hayatta kalırken, diğerleri yok oldu. Biz asıl konumuza dönelim yani Cro-magnon'ların ve Neandertal'lerin bzie kazadırdıklarına. Cra-Magnon'lar yaptıkları deniz araçlarıyla, zamanımızdan 30.000 ile 20.000 yıl önce Kore'den Japonya'ya, Bering Boğazı yoluyla Asya'dan Amerika'ya daha sonra da Avustralya'ya ayak basmışlardır. Avustralya'da en son yapılan kazılarda elde edilen bulgular ise bu görüşün aksine, Avustralya'da yaşamın 50.000 yıl önce başladığını göstermektedir. 30 ile 25.000 yıl öncesinden, özellikle magdalenyen evresinden itibaren, cro-magnon lar, doğal mağaraları terk ederek, çadır ve kulübelerde yaşamaya başlamışlardır. Isı kaybını önlemek için yan yana toprağa gömdükleri kulübelerinin duvarlarım mamutların fildişleri ile örüyor, sonra hayvan derisiyle kaplıyorlardı. Böyle tek bir kulübenin yapımında 95 mamutun kemiğinin kullanıldığı tespit edilmiştir. Cro-magnon lar da, H.neanderthalensis ler gibi ölülerini gömmüşler, bazen çoklu gömülere de yönelmişlerdir. Ancak özel mezarlıklar yapmamışlardır. Mağara resim sanatı prehistoryanın altın çağıdır. Din H.neanderthalensis ler ile, sanat ise cro-magnon larla başlamıştır diyebiliriz. Cisimlerin üç boyutlu olarak algılanması ve soyut düşünme kavramı 30.000 yıl önce üst yontma taş çağı insanı ile beraber ortaya çıkmış ve gelişmiştir. Cro-magnon lar, mağaraların en kuytu ve karanlık köşelerine duvar resimleri yapmışlardır. Fransa'da 67, İspanya'da 31 resimli mağara belirlenmiştir. 33-30 bin yıl öncesine ait, duvarlarında renkli olarak yapılmış ağızları açık mağara ayıları, koşan aslanlar ve kavga eden gergedanlar bulunan Fransa'daki Chauver mağarası, daha başlangıçtan itibaren perspektif anlayışının bilindiğini bize göstermektedir. Bu mağaralar arasında en ünlüsü, mavi, kırmızı ve siyah renkler kullanarak yapılmış, bizon, vahşi at, kıllı gergedan ve ren geyiği başta olmak üzere, 150 hayvan resmini ve 850 gravürü içeren birçok dehlizi ile Fransa'daki Lascaux mağarasıdır. Yine Fransa'daki Cosquer, Ebbou ve Niaux ile İspanya'daki Altamira mağaraları, cro-magnon resim sanatının en ilginç örneklerini bizlere sunmaktadır. Cro-magnonlar, boya olarak doğal minerallerden kırmızı için okn, siyah için manganez dioksidi, ayrıca limonid ve hematiti kullanmışlardır. Çevresinde yaşayan av hayvanlarını, doğal boyutlarını, anatomik ayrıntılarını ve canlılığını resmeden üst yontma taş çağı insanı, kendini nedense ya hiç görüntülememiş, ya da yarı insan, yarı hayvan şeklinde çizmiştir. Magdalenyen kültür evresinde tapmak amacıyla kullanıldığı kuvvetle muhtemel olan 150 resimli mağara tespit edilmiştir. Bu mağaralarda genellikle hiç oturulmamıştır. Bazı mağaralarda insanlar hayvan maskesi altında görüntülenmişlerdir. İspanya'daki Altamira mağarasında ise çok sayıda geometrik motifler bulunmuştur.

http://www.biyologlar.com/insanin-biyokulturel-evrimi

Darwinizm'in Tanımı

Darwinizm, Charles Darwin’in evrim ve doğal seçilime ilişkin fikirlerindeki temel kuramın karşılığı olarak kullanılan bir deyimdir. Ancak bu deyimin çok daha geniş bir kapsamı olup, anlamı da kullanana göre değiştiği gibi, zamanla da değişmiştir. Deyim şu sıralarda daha çok Darwin eleştirmenlerince, evrimsel biyolojiyi destekleyenlerin inancını tanımlamak üzere kullanılmaktadır. Nitekim internette yapılacak bir arama deyimin gerek ülkemizde gerek dışarıda daha çok bu yönde kullanıldığını kanıtlayacaktır. Bu kullanış tarzı ateizm ile bir çağrışımı içeriyor. “Yaratılışçı”lar da deyimi ekseriya küçümseyici bir tarzda kullanırlar. Evrimi bir doktrin veya inanç olarak görmek, “yaratılış”ın okullarda öğretilmesi için dinsel güdülü politik tartışmaları kuvvetlendiriyor. Nitekim, dünyada benzeri görülmemiş şekilde, ülkemizde yaratılışçılık eğitim müfredatına alınabilmiştir. Bununla beraber Darwinizm, bilimsel çevrelerde modern evrim kuramlarını, ilk kez Darwin’in ortaya attığı halinden ayırmak için de kullanılmaktadır. Örneğin sonradan geliştirilmiş genetik sürüklenme ve gen akışı kuramlarına kıyasla Darwin'in önerdiği doğal seçilim düzeneğine atıfta bulunmak için Darwinizm kullanılabilir. Ayrıca "Klasik Darwinizm", "Darwin'in Darwinciliği" gibi deyimler de halen yazında geçerli olan deyimlerdir. Başka bir kullanış tarzı da evrim düşüncesi tarihinde Lamarck’çılık ve modern sentez gibi diğerlerine kıyasla Darwin'in rolüne işaret etmek için olmuştur Esasen evrim kavramı tam olarak Charles Robert Darwin tarafından 19. yüzyılın ikinci yarısında geliştirilmiştir. Darwin'in Edinburg ve Cambridge’deki yol göstericileri onun felsefi eğilimlerini ve bilimsel kariyerini kesin bir şekilde yönlendirmişlerdi. Daha sonra Beagle araştırma gemisinde kılı kırk yaran gözlemler, kanıt toplama, deneyler, not alma, okuma ve düşünme ile geçen beş yıl, onu yaşamının geri kalan kısmının yönünü tam olarak kesinlemiştir. Darwin, Malthus’un nüfus için yaptığı gibi, organizmalar geometrik artan bir oranda üremeye yönlenmişken, türlerin aşağı yukarı sabit sayıda kaldığını gözlemlemişti. Bundan da varoluş, yaşamı sürdürmek üzere sürekli bir mücadele olduğu sonucuna varmıştı. Çeşitliliğin – aynı tür içindeki üyeler arasındaki farkların – varlığına işaret etmiş ve var olma çabasındaki bitki veya hayvana yardım edici değişikliklerin onların üreme ve yaşamı sürdürebilmesini daha iyi sağladığını belirtmişti. Bu uygun değişiklikler yaşamını sürdürebilenlerin çocuklarına aktarılır ve ardışık nesillerle bütün türe yayılır. Bu süreci de doğal seçilim ilkesi olarak adlandırmıştı. Aslında akademik çevrelerde ve gündelik yazında “Darwin’in evrim kuramı” ekseriya tekilmiş gibi atıfta bulunuluyor. Gerçekte Darwin'in evrim “kuramı”, bir demet kuramdan meydana gelmiştir ve eğer çeşitli parçalarının farkına varılmazsa Darwin'in evrimsel düşüncesini yapıcı bir şekilde anlamak olanaksızdır. Ernst Mayr, genel olarak Darwin'in kuramına atıfta bulunduklarında başka yazarların da bir şekilde aklında mutlaka aşağıdaki 5 kuramın olduğunu söylüyor (bununla beraber cinsel seçilim, pangenesis, kullanış ve kullanılmazlığın etkisi, karakter uzaklaşması gibi başkaları da var) : 1 – Evrim (kendi başına): Bu, dünyanın sabit olmadığını veya yeni yaratılmadığını veya da sabit bir döngüde olmadığını; ama durmadan değiştiğini ve organizmaların zamanla dönüşüm geçirdiği kuramıdır. 2 – Ortak Şecere : Bu, her organizma grubunun ortak bir atadan indiğini; hayvan, bitki ve mikroorganizmalar da dahil olmak üzere bütün organizmaların sonunda, dünyada yaşamın tek bir kökenine kadar geri gittiği kuramıdır. 3 – Türlerin Çoğalması: Bu kuram çok geniş organik çeşitliliği açıklar. Türlerin, kardeş türlere bölünmeyle veya yeni türlere evrilebilen coğrafi olarak tecrit edilmiş kurucu kütlelerin oluşmasıyla çoğaldığını önerir. 4 - Aşamacılık: Bu kurama göre evrimsel değişiklikler yeni bir tipi temsil eden yeni bireylerin aniden üretilmesi ile değil grupların aşamalı değişmesi ile meydana gelir. 5 - Doğal Seçilim: Bu kurama göre evrimsel değişiklik her soyda genetik değişikliğin bol miktarda üretimi sonucu ortaya çıkar. Yaşamını sürdüren göreceli az miktarda bireyler, kalıtımla akatarılabilen karakterlerin özellikle iyi uyarlanmış birleşimi sayesinde, sonraki nesillere yol açarlar. Darvinizm'i doğru veya yanlış olan basit bir kuram değil, sürekli değiştirilen ve geliştirilen bir araştırma programı olarak ele almak gerekir. Bu, modern evrimsel sentezden önce de böyleydi, şimdide böyledir. Aşağıda Darvinizm'deki değişikliklerin bazı önemli evreleri verilmiştir: 1883 - 1886 - Weismann'ın Yeni Darvinciliği - Yumuşak kalıtımın sonu; çiftli ve genetik yeniden birleşimin tanınması 1900 - Mendelizm - Genetik sabitliğin kabulü ile karışım kalıtımının reddi 1918 - 1933 - Fişerizm (Fisherism) - Evrimin gen frekanslarının ve seçilim baskılarının zorlaması meselesi olarak düşünülmesi 1936 - 1947 - Evrimsel Sentez - Kütle düşüncesinin vurgulanması, çeşitliliğin evrimine ilgi, coğrafi türleşme, değişken evrimsel oranlar 1947 - 1972 - Sentez sonrası - Bireyin artan bir şekilde seçilimin hedefi olarak görülmesi, daha bütünsel yaklaşım, şans ve kısıtların artan tanınması 1945 - 1972 - Sıçramalı Dengeler - Türleşmeci evrimin önemi 1969 - 1980 - Cinsel seçilimin önemi - Seçilim için üretken ardılın önemi Darvinci bir süreç, modern tanımlamasıyla, aşağıdaki şemadan oluşur: A - Öz-kopyalama/Kalıtım: Bazı varlıklar kendilerinin kopyalarını üretmeye muktedir olmalılar, ve bu kopyalar da tekrar üremeye muktedir olmalıdırlar. Yeni kopyalar eskilerin karakterlerinin varisi olmalıdırlar. Bazan farklı değişmeler cinsel üremede yeniden bir araya gelebilir. B - Değişim: Varlık topluluğunda farklı karakterler dizisi olmalıdır ve yeni değişikliklerin topluluğa sokulması için bir düzenek olmalıdır. C - Çeşitlilik: Kalıt özellikler; ya idame ile (doğal seçilim), ya da partner bularak yavru üretme (cinsel seçilim) yetisi ile; varlıkların kendilerini üretme yeteneğini bir şekilde etkilemelidirler. Eğer varlık veya organizma üremek üzere idame ederse, süreç yeniden başlar. Bazan, daha katı belirlemelerde, çeşitleme ve seçilimin farklı varlıklarda etki yapması gerekir. Darvinizmin belirlediği, hangi vasıtayla olursa olsun, bu şartların bulunduğu herhangi sistemde evrimin meydana gelmesinin olasılığıdır. Yani zamanla varlıklar, kendilerinin tekrar meydana gelmesini destekleme eğiliminde olan karmaşık özellikler biriktirirler. Bu, Evrensel Darvinizm (ilk defa Richard Dawkins tarafından "Gen Bencildir" (1976) kitabında kullanıldığı gibi) olarak adlandırılır. Sitemizde evrimle ilgili geniş bilgi ve son gelişmeler ayrıca ele alınmıştır. Kaynakça: en.wikipedia.org/wiki/Darwinism www.bartleby.com/65/da/Darwinis.html www.talkorigins.org/faqs/darwinism.html plato.stanford.edu/entries/darwinism/

http://www.biyologlar.com/darwinizmin-tanimi

Hayvanlarda haberleşme

Hayvanlar, aralarında haberleşmek için çeşitli usuller kullanırlar. Bu bazan sesle, bazan hareketle, bazan da koku, renk veya ışık sinyalleriyle gerçekleşir. Hayvanların bir kısmı bir çeşit mors alfabesi ile konuşur. Birçok balık türü de yaydıkları elektrik sinyalleriyle haberleşirler. Pekçok sayıda tatlı su balığı zayıf elektrik sinyalleri yayar. Bunlarla karanlıkta yollarını bulur ve birbirleriyle haberleşirler. Yaşayan hayvan çeşidi kadar lisan çeşidi mevcuttur. Her hayvan türü, kendine has bir dil ile anlaşılır. Sinyali alan hayvan, bunun hangi anlama geldiğini anlayarak harekete geçer. Haberleşmenin aynı cins hayvanlar arasında olması, kısa ve öz olması önemlidir. Haberleşmede sinyaller; cinsel çağrı, korunma, rakibini tehdit etme, birbirini tanıma, besinin yerini bildirme, tehlikeyi haber verme gibi maksatlarla kullanılır. Böceklerin çoğu, vücudun eğe şeklindeki bir kısmını cisme vurarak, kas yardımı ile bir zarı titreterek ses çıkarırlar. Ateş böceği gibi hayvanlar da ışık sinyalleriyle haberleşirler. Son zamanlara kadar balıklar dilsiz sanılırdı. Fakat yapılan araştırmalar birçok balığın yüzgeçleri, dişleri, kemikleri, yüzme keseleri, solungaç veya kaslarıyla ilginç sesler çıkardığını gösterdi. Amazon Nehrinin sularında kuşlar gibi cıvıldayan, trampet çalan, tabanca ateşi veya köpek hırlamaları gibi sesler çıkaran balıklar vardır. İşitme organları “labiren” denen bir kapsül içinde bulunan iç kulaktan ibarettir. Bununla sudaki ses titreşimlerini işitirler. Kuzusunu kaybeden koyun, meleyerek yavrusunu arar. Geyikler bir tehlikenin varlığını ayaklarını hızla yere vurarak arkadaşlarına duyururlar. Tavşanlar da, kızgınlık veya alarm işareti vermek için arka ayaklarını sertçe yere vururlar. Yunuslar, su altında çeşitli sinyaller çıkararak haberleşirler. Kuşların çoğu öterek, leylek gagasını takırdatarak hemcinsleriyle anlaşır. Miyavlamak, kişnemek, havlamak, böğürmek çeşitli hayvanların lisanıdır. Kunduzlar, geniş ve yassı kuyruklarını tehlike durumunda suya çarparak çıkardığı seslerle arkadaşlarını uyarırlar. Bir geyik, kuyruğunu aniden kaldırıp beyaz kısmını göstererek yavrusuna “Beni takip et!” demek ister. Tropik bölgelerde yaşayan “ağaç karıncaları”, ağaç kabuklarına ve yapraklara vurmak suretiyle ağaçtan ağaca birbirleriyle konuşurlar. Ağaç galerilerde yaşayan böcekler başlarını sert zemine vurarak haberleşirler. Eski mobilya ve ahşap eşyalarda bazan koro halinde başlarını vurmaya başlarlar. Gecenin sessizliğinde hastaları ürkütürler.

http://www.biyologlar.com/hayvanlarda-haberlesme

BİYOKRİMİNAL ENTOMOLOJİ

Böcekler çeşitli özellikleri nedeniyle cinayetlerin çözümüne katkıda bulunabilmektedirler; Cinayetlerin çözümüne nasıl yardım ettiklerinden önce böcekler dünyasına kısaca bir bakalım. Böcekler Dünya üzerinde yaşayan en kalabalık canlı grubunu oluşturmaktadır. Yaklaşık 1.5 milyon böcek türü Dünya’yı bizimle birlikte paylaşmaktadır. Kutuplar ve derin denizler hariç heryerde böcekleri görmek mümkündür. Dünya üzerinde insanlardan sonra en baskın canlı grubu olarak yeralmaktadırlar. Yeryüzündeki en başarılı canlı grubu böceklerdir çünkü: Çok küçük vücuda sahip olmaları Kanatlarının bulunması Larva veya ninfleri ile erginlerinin farklı besin maddeleri üzerinde beslenmeleri Çok sayıda yavru oluşturabilmeleri Kütikülaya sahip olmaları Hacimlerine göre yüzey alanlarının az oluşu Böcekler hemen heryerde yaşayabildiği gibi her türlü besinlede beslenebilmektedirler. Canlı bir bitkinin kök, gövde, dal, yaprak, meyva, tohum, ölü bir bitkinin tüm kısımları, depolanmış besinler, kıl ve ölmüş tüm hayvanlar ve insan üzerinde beslenebilmektedirler. Vücut üç bölümden oluşmaktadır. Baş, toraks ve abdomen. Vücudun her tarafını çok sert yapıda olan kütikula yada diğer ismiyle dış deri örtmektedir. Bu deri yani kutikula böcek erginliğe ulaşırken belirli aralıklarla atılmak zorundadır (Derinin atılması ve konu ile ilgisini anlat). Baş üzerinde göz, ağız ve antenler yeralmaktadır. Toraksta ise yürüme ve uçma görevini üstlenen bacaklar ve kanatlar yeralmaktadır. Abdomende çeşitli sistemler bulunmaktadır. Böceklerin gelişme ve değişme yani metamorfoz tiplerine baktığımızda ise birbirinden farklı metamorfoz tipleri olduğunu görüyoruz. Bunlar Ametabola, Neometabola, Hemimetabola (yarım metamorfoz),Holometabola (tam metamorfoz) Holometabola yani tam metamorfoz cinayetlerin saatinin veya gününün belirlenmesinde kullanılan temel unsurdur. Holometabola bir böceğin gelişmesi yumurta, larva, pupa ve ergin olmak üzere dört bölüme ayrılmaktadır. Böcek canlı üzerine yumurtalarını bırakır, bu yumurtalar türe özgü olarak birkaç saatten birkaçgüne uzanan bir sürede geliştikten sonra açılmaktadır. Açılan yumurtalardan genç larvalar çıkar. Bu larvalar çıkar çıkmaz hızlı bir şekilde beslenmeye başlarlar. Yine türe özgü olarak değişen günde gömlek değiştirerek ikinci larva çıkar. Larvanın beslenmesi ve gömlek değiştirmesi ardı ardına devam eder. Her gömlek değiştirmede larvanın boyu büyürken şeklide nispeten değişiklik göstermektedir. Son deri değiştirildikten sonra larva pupa dönemine girmektedir. Pupa döneminde larvaya ait organlar yıkılarak yerine ergin böceğe özgü yenileri yapılmaktadır. İşte bu döngünün tamamlanması bir jenerasyon veya kuşak veya döl olarak adlandırılmaktadır. Bu döngünün tamamlandığı süre her tür için değişiklik göstermektedir. İşte bu sürelerin bilinmesi cinayetin nezaman işlendiği hakkında ipuçu vermektedir. ENTOMOLOJİYİ KULLANARAK ÖLÜM NEDENİNİN BULUNMASI * Bir suç araştırmasında, kurbanın ne zaman öldüğünü bilmenin yanısıra, nasıl öldüğünü bilmekte çok önemlidir. Bu bilgi katilin bulunmasında kullanılabilir. * Zehire, kanda, idrarda, mide içeriğinde, saçta ve tırnakta rastlanabilir. Başka bir önemli kaynakta ceset üstünde oluşan larvalardır. Bir süre sonra mide içeriğinden, kandan veya idrardan tahlil yapmak olanaksızlaşırken larvalardan, boş pupalardan ve larvasal deri parçalarından örnek almak hala mümkündür. Bu kimyasalların çoğu larvaların hayat döngüsünü de etkiler. Örneğin yüksek dozlarda kokain bazı Sarcophagidlerin gelişimi hızlandırır. • Bir insectisid olan malathion, çoğunlukla intiharlarda kullanılır ve ağız yoluyla alınır. Ağızda malathion olması, olası kolonileşmeyi geciktirir. • Bir antideprezan olan amitriptyline, Sarcophagidae türlerinin en az bir tanesinin oluşumunu 77 saate kadar uzatabilir. • Kurbanın uyuşturucu yada ilaç kullanıp kullanmadığının bilinmesi, sadece ölüm sebebi değil, ölüm zamanı tahmininde de yardımcı olur. * Ceset üzerinde leşsineklerinin sardığı yerlerde ölüm sebenin bilinmesi veya ölümden önceki olayların yeniden göz önünde canlandırılabilmesi için çok önemlidir. Örneğin kurban ölmeden önce bir yaralanma veya bozulma geçirmişse, geçirmemişe göre daha değişik yerlerinde istila olabilir. Bıçak saldırısında, korunma amaçlı olarak olarak kollar, boğazın ön kısmını ve kafayı kapatır. Bu durumda kolun alt kısımları yaralanır ve ölüm sonrasında leş sinekleri buraya yerleşebilir. * Böceklerin insanlar üzerinde genel yerleşme yerleri doğal açıklardır. Bu yerler tercih edilir. Leş sinekleri çoğunlukla yüz bölgelerinde, nadirende genital bölgelere yumurtalarını bırakırlar. Eğer ölüm cinsel saldırı sonrası olduysa, genital bölgelerdeki kanama sonucu, leş sinekleri buralara yerleşmeyi tercih ederler. Bu şekilde, genital bölgelerde sinek oluşumu varsa, cinsel saldırı düşünülür. Tabii ayrıca bu düşünce diğer kanıtlara da uymalıdır. Doğal bozunmanın sonucu olarak, yumurtaların genital bölgelere yerleşmesiyle, bölgeler birkaç gün (4-5) içinde larvalarla dolar. ENTOMOLOG OLAY MAHALLİNDE HANGİ BİLGİLERİ EDİNEBİLİR Entomologlar genelde cinayetlerin üzerinden ne kadar zaman geçtiğinin belirlenmesi için çağrılırlar. Entomologlar toplanmış derecelendirilmiş zaman tekniği olarak bilinen, tür süksesyonu, larval uzunluk ve daha birçok değişik tekniği de içeren yöntemle, gerekli veriler elde olduğunda çok değerli işler yapabilirler. Nitelikli bir adli entomolog olası postmortem zamanı için tahminlerde de bulunabilir. Bazı sinekler değişik habitatları seçerler. Mesela yumurtalarını koymak için kapalı veya açık alan tercih eden böcek türleri vardır. Açık alanlarda gölge veya güneşte duran leşleri tercih edebilirler. Bu durumda üzerinde kapalı alanda büyüyen sinek larvaları bulunan leşin açık alanda bulunması, ölümden hatta böcek yayılmasından sonraki zamanlarda cesedin taşınıp, yerinin değiştiğinin göstergesidir. Benzer olarak cesedin dondurulması veya sarılma, üzerinde oluşması muhtemel böcek süksesyonunun değişmesine neden olur. Böceklerin normal yumurta bırakma sürelerini engelleyen herhangi bir olay, türlerin sırasını ve tipik kolonileşme zamanlarının değişmesine neden olur. Bu normal böcek süksesyonundaki veya faunasındaki değişiklik, eğer normal ortamda veya coğrafik koşullarda ne olması gerektiği biliniyorsa, adli entomologlar için farkedilmemesi imkansız bir olay olur. Böceklerin hiç olmaması ise cesedin postmortem aralıkta, dondurulduğu, sıkıca kapatılmış bir konteynerde olduğu yada çok derine gömüldüğü sonucu ortaya çıkarabilir. Entomolojik kanıtlar, saldırı yada tecavüz gibi durumların da ortaya çıkarılmasında yardımcı olabilir. Kurbanlar eğer kötü kıyafetler içinde yada dışkı ve idrarlı (sidikli) kıyafetler içinde bulunurlarsa bağlandıkları yada uyuşturuldukları yani muhakeme kabiliyetinde olmadıkları anlaşılır. Bu tip maddeler, herhangi başka bir durumda bulunamayacak bazı bazı böcek türlerini çekerler. * Bozunan insan kalıntılarından toplanan böcekler toksik analizler için de değerli kanıtlar olurlar. Böceklerin doymak bilmez iştahı cesedi kısa bir sürede iskelet yığınına çevirebilir. Çok kısa sürede toksik analiz için gereken kan ve sidik gibi vücut akışkanları ve yumuşak doku yok olabilir. Ama böcek larvaları toplamak ve bunları insan dokusuymuş gibi standart toksik analizlere sokmak mümkündür. Böcekler üzerinde toksik analiz yapmak başarılı olabilir çünkü ölümden sonra insan dokuları üzerinde bulunan ilaç ve toksinler böcek larvalarında da benzer sonuçlar doğurur. ÖLÜM ZAMANININ TAHMİNİ * İlk çürümeden sonra, ceset kokmaya başlar, çeşitli böcek türleri cesede gelmeye başlar. Genellikle ilk gelen böcekler Dipterler yani sinekler. Özellikle leş sinekleri blow flies yani Calliphoridae ve et sinekleri Sarcophagidae’ ler. * Dişi böcekler ceset üzerine yumurtalarını özellikle burun, göz, kulak, anüs, penis ve vajina gibi doğal boşluklar civarına bırakırlar. Eğer ceset üzerinde yaralar varsa yumurtalar böyle kısımlara da bırakılır. Et sinekleri (flesh flies) yumurta yumurtlamazlar bunun yerine larva bırakırlar. * Kısa bir süre sonra, türlere bağlı olarak, yumurtalardan küçük larvalar çıkar. Bu larvalar ölmüş doku üzerinde beslenirler ve hızla büyürler. Kısa bir zaman sonra larva deri değiştirir ve ikinci larval döneme ulaşır. * Sonra çok fazla beslenir ve deri değiştirerek üçüncü larval döneme geçer. Larva tam olarak büyüdüğünde hareketsiz kalamamaya başlar ve cesedin içinde dolaşmaya başlar. Bu dönem prepupal safha olarak adlandırılır. Prepupa deri değiştirerek pupal safhaya geçer fakat üçüncü larval dönemdeki deri, daha sonra puparyuma dönüşen, korunur. Tipik olarak yumurtadan pupal safhaya 1-2 hafta arasında bir zaman geçer. Tam zaman türlere ve çevre sıcaklığına bağlıdır. Leş sinekleri (Blow flies) ve et sineklerinin bazı türlerinin yaşam döngüsünün tablosu burada sağlanabilir ve leş sineklerinin yaşam döngüsü buradan sağlanabilir. Böceklerin yardımıyla ölümün zaman tayininin arkasındaki teori yada tercihen ölüm sonrası zaman aralığı (kısaca PMI) işlemi çok basittir: ölümden hemen sonra vücuda böcekler geldiği zaman böceğin yaş tahmini ölümün zamanının tahmini yolaçacaktır. Leş sineğinin yumurta, larva, pupa ve ergininden nasıl yaş tayin edilir. Yumurta: Leş sineği yumurtladığı zaman, yumurtaları embiryonik gelişmesi çok kısa sürede olmaktadır. Yumurtalar yaklaşık 2 mm uzunluğundadır. İlk sekiz saat süresince yada daha fazla gelişmeyle ilgili çok az işaret vardır (dıştan gözlenen herhangi bir gelişme olmaz bununla birlikte ilk 8 saatte segmentasyon vardır. Daha sonra organ taslakları oluşmaya başlar Protrpod- Oligopod, asetat göster). Bu değişikliklerden sonra yumurta safhasının sonunda yumurtanın koriyonu boyunca larvayı görebiliriz. Yumurta safhası tipik olarak bir gün yada biraz daha fazla sürede sonlanır. Larva: Leş sineği üç larval deri değiştirmeye sahiptir. İlk deri değiştirmede 1.8 gün sonra yaklaşık 5 mm. boyundadır, ikinci deri değiştirmede 2.5 gün sonra yaklaşık 10 mm. uzunluğundadır, üçüncü deri değiştirmede 4-5 gün sonra yaklaşık 17 mm. uzunluğundadır. Tam larval dönemi teşhis etme en kolayıdır ve larvanın büyüklüğü, larvanın ağız parçaları ve vücudun posteriöründeki stigmaların yapısı temel alınarak yapılır. Farklı larval dönemler arasındaki farklılığın nedeni mikroklimaya, örneğin sıcaklık ve neme bağlıdır. Biraz sıcaklık nem ilişkisini anlat. Prepupa: Larva üçüncü deri değiştirmenin sonunda hareketlenmeye başlar ve vücuttan uzaklaşmak için harekete geçer (bu leş sinekleri için karakteristik bir davranıştır). Cesedin kanı kademeli biçimde boşaltılacak, ve yağ doku (fat body) kademeli olarak larvanın iç yapısına katılacak. Biz larvanın bir prepupa ya dönüştüğünü söyleriz. Prepupa yaklaşık 12 mm. boyunda ve yumurtlamadan sonra 8-12 gün arasında görünür. Pupa: Prepupa kademeli olarak zamanla koyulaşan pupa ya dönüşür. Yaklaşık 9 mm. boyunda olan pupa yumurtlamadan sonra 18-24 gün arasında görünür. Boş pupariumun bulunmasıyla adli entomolog söz konusu kişinin yaklaşık 20 günden fazla bir süre önce ölmüş olduğunu söylemelidir. Teşhis, üçüncü larval derinin geride kalan ağız parçalarından yapılabilir. Önemli bir biyolojik olayda vücudun değişik kısımlarında başarılı olan (beslenen) organizmaların bir süksesyon yani bir silsile oluşturmalarıdır. Örneğin, Kemik üzerinde özelleşmiş olan Coleopterler kemik ortaya çıkıncaya kadar bekleyeceklerdir. İlk olarak cesede ulaşan leş sinekleridir (Blow flies), kısa süre sonra Coleoptera’dan Staphylinidler izler. Bozulmanın (çürümenin) ilerlemesiyle, bir çok grup olay mahalline ulaşır, birçok grup, vücuttaki sıvıların sızması sebebiyle kurumasından hemen önce olay mahallinde yeralır. Vücut kuruduktan sonra, Dermestidler, Tineidler ve belirli akarlar ceset üzerinde baskın grup olacaklardır ve leş sinekleri kademeli olarak gözden kaybolacaklardır. Topraktaki faunanın nasıl değiştiğinede dikkat et. Bu da ölümden sonraki zamanının tahmininde kullanılabilir. Böceklerin ardı ardına gelme bilgisi (silsile:süksesyon) bir database içine dahil edilebilir ve bir entomolog bir olayı araştırmaya başladığı zaman ceset üzerinde bulunan taksonu bilgi olarak kullanabilir ve ölüm zamanının tahmininde veri olarak kullanılır. Birçok böcek, çürümekte olan ceset üzerinde yaşamada özelleşmişlerdir. Bir örnek, ölümden sonra 3-6 ay arasında larvası oluşan peynir sineği, Piophila casei, dir. Bu tür bütün dünyada peynir ve salam zararlısı olarak iyi bilinir ve bütün dünyaya yayılmıştır. Ergin peynir sineği ölümden sonra ilk (erken) safhalarda bulunabilir fakat larva daha sonra oluşur. İnsan cesedinin kalıtılarında en erken gözlem (tespit) ceset iki aylık olduğu zamandır ve bu durum en iyi yaz koşullarındadır. OLAY YERİNİN ENTOMOLOJİK KANITLAR İÇİN İNCELENMESİ Olay yerinde izlenmesi gereken prosedür habitata göre değişmektedir fakat biyokriminal entomologların görevlerini genel olarak beşe ayırabiliriz. 1- Olay yerinde görsel gözlem ve not alma. 2- İklimsel verilerin olay yerinde toplanmaya başlaması. 3- Ceset yerinden oynatılmadan önce vücut üzerinden örnekler alınması. 4- Ceset yerinden oynatılmadan önce 6 metreye kadar yakın çevresinden örnekler alınması. 5- Ceset alındıktan sonra, tam altından ve 1 metreye kadar yakın çevresinden örnekler alınması. Olay yerindeki böcek aktivitesinin gözlenmesi çok yararlı olabilir çünkü, entomologlar bu konuda olay yerini inceleyen araştırıcılardan daha değişik şekilde eğitim alırlar. Entomolog, araştırıcıların göremeyeceği yada önemsemeyeceği bir şeyi farkedebilir. Yada tam tersi olabilir. Olay Yerinde Nelere Bakılmalıdır? * Olay yeri hangi habitat içindedir: şehir, şehir içi mi, kırsal bir alan mı, yoksa sulu bir bölge mi? Ormanlık mı, yol kenarı mı, kapalı bir bina mı, açık bir bina mı, havuz mu, göl mü, nehir mi yoksa tamamen farklı bir habitat mı? Habitat, cesedin üzerinde hangi tip böcek olması gerektiği belirleyecektir. Ceset üzerinden toplanan entomolojik kanıtlar eğer bulunduğu yerin habitatına uymuyorsa , bu, bedenin başka bir yerden getirilip atıldığına işaret olabilir. * Uçucu ve sürüngen böceklerin çeşitlerinin ve sayılarının değerlendirilmesi. • Ceset üzerinde ve çevresinde gelişen böcek oluşumunun en fazla olduğu yerlerin not edilmesi. Bu istilanın yumurta, larva, pupa veya ergin gibi hangi evrede olduğu. Tek bir tanesi yada herhangi birilerinin beraber olması gibi. • Yetişkin bir tür böceğin yetişkin olmadan önceki evrelerinin incelenmesi. Bu evreler yumurta, larva, pupa(lık), boş pupa(lık), larva derilerinin bırakılması, tortu maddesi, çıkış delikleri ve beslenme izleri gibi olabilir. • Arı, karınca veya yabanarıları ve başka farkılı böceğin verdiği zararların not edilmesi. • Cesedin tam olarak yerinin el ve ayak gibi parçalarının yerinin belirlenmesi. Yüzün ve kafanın durumu. Hangi vücut parçalarının yerle temas ettiğinin belirlenmesi. Gün ışığında, gölge ve ışığın nereye geldiğinin not edilmesi. • Cesedin 3-6 m. yakınındaki böcek aktivitesinin kontrol edilmesi. Cesedin civarındaki, uçan, dinlenen ve sürünen, yetişkin, larva veya pupa dönemi böceklerin not edilmesi. • Yaralanma, yanma, gömülme, parçalanma gibi doğal olmayan, çöpçü ve bunun gibi insanların sonradan verdiği değişikliklerin not alınması. Bu görüntülerin hepsinin fotografı çekilmeli. Böceklerin toplanmadan önce hangi evrelerde oldukları da fotograflanmalı. Olay Yerinde İklimsel Verinin Toplanması PMI nin hesaplanmasında iklimsel verilerin olay yerinde toplanması çok önemlidir. Böceğin hayat çemberinin uzunluğu genelde olay yerindeki sıcaklık, bağıl nem gibi hava olaylarına bağlı olarak belirlenir. Aşağıdaki iklimsel veriler olay yerinde toplanmalıdır: 1- Cesedin 0.3-1.3 m. civarındaki yerel sıcaklık. 2- Yerin ve üstünde varsa eğer herhangi bir örtünün sıcaklığını termometre yerleştirilerek ölçülmesi. 3- Vücudun sıcaklığının da termometro yerleştirilerek ölçülmesi. 4- Vücut altı sıcaklığının yer ile ceset arasına konulan bir termometro ile ölçülmesi 5- Larva yoğunluğunun, merkeze konulan bir termometre ile ölçülmesi. 6- Toprağın vücut kaldırıldıktan sonraki sıcaklığın ölçülmesi. Ayrıca bedenin 1-2 m. uzağındaki sıcaklık ölçülmelidir. Bu üç aşamalıdır: Tam altından (çim ve yapraklar), 4 cm. Derinden ve 20 cm derinden Hava durumu, olay yerine en yakın meteoroloji istasyonundan öğrenilebilir. Minimum gereksinimler, maksimum ve minimum sıcaklık ve kalıntının miktarıdır. Öteki bilgilerin de toplanması güzel olur ve olayların yeniden yaratilmasında yardımcı olur. İklimsel veriler, kurbanın son görüldüğü ana kadar uzatılıp incelenmelidir. Cesedin Kaldırılmasından Önce Örneklerin Toplanması Olay Yerinde Böceklerin Bedenden Toplanması: İlk önce toplanması gereken böcekler yetişkin sinekler ve böceklerdir. Bu böcekler hızla hareket ederler ve suç mahallini hızla terkedebilirler. Yetişkin sinekler biyolojik merkezlerden tedarik edilebilecek böcek ağlarıyla yakalanabilir. Etil asetat yada alelade tırnak cilası ile böcekler hareketsizleştirilir. Daha sonra % 75 lik etil alkol bulunan şişeye aktarılır. Toplanan örneklerin etiketlendirilmesi çok önemlidir. Etiketler siyak kurşun kalemle yapılmalıdır, kesinlikle tükenmez veya dolma kalem kullanılmamalıdır. Etiket örnekle birlikte alkol içine atılmalıdır. Toplama etiketi aşağıdaki bilgileri içerir. 1- Coğrafik konum 2- Toplama saati ve günü 3- Olay numarası 4- Beden üzerinde toplama yapılan bölge 5- Toplayanın ismi Etiket iki adet olarak hazırlanmalı ve biri şişenin dışına diğeri içine konmalıdır. Ergin örnekler toplandıktan sonra, ceset üzerinden larval örneklerin toplanmasına başlanabilir. Önce araştırmacı kolay görülemeyecek yumurtaları araştırmalı. Bu adımdan sonra, larva beden üstünde kolayca görünür Verilerin Analiz Edilmesi Ölümden Sonra Ceset Hareket Ettirildi mi? Ölümden sonra, cesedin üzerinde mantarlar, bakteriler ve hayvanlar kolonileşmeye başlarlar. Cesedin, üzerinde yattığı yerde zamanla değişebilir. Cesetten sıvıların sızıp gitmesiyle bazı böcekler yok olurken, bazılarının da sayısı zamanla artar. Biyokriminal entomolog ceset üzerindeki faunaya bakarak ne kadardır orada olduğunu ve cesedin altındaki topraktaki böcekleri inceleyerek de yaklaşık ölüm zamanını tahmin edebilir. Eğer ikisi arasında bir farklılık varsa, yani toprak analizi kısa PMI’I, vücut faunası da uzun bir PMI’I gösteriyorsa, bu cesedin hareket ettirildiğine bir işaret olabilir. Bazı Calliphoridler güneş severdir, yumurtalarını sıcak yüzeye koymayı tercih ederler, yani güneşli yerlerde bulunan cesetler üzerinde oluşurlar. Diğer leş sinekleri gölgeleri tercih ederler. Örneğin Lucilia güneşi tercih ederken Calliphora gölgeyi tercih eder. Bazı türler sinantropiktir yani şehirsel bölgelerde yaşarlar. Bazıları da sinantropik değildir, onlar kırsal alanlarda görülürler. Calliphora vicina sinantropik bir sinektir, çoğunlukla şehirlerde rastlanır. Calliphora vomitoria ise kırsal alanlarda bulunan bir türdür. Ölüm Yeri İşlemleri (Cinayet mahalindeki İşlemler) Yer incelemeleri ve hava verileri; olay yerinde bedenden böceklerin toplanması; bedenin yerinin değiştirilmesinden sonra böceklerin toplanması; toplanan böceklerin biyokriminal entomologlara gönderilmesi Böceklerin ve diğer arthropodların ölüm yerinden toplanması sırasında cesete verilebilecek zararlara dikkat etmek önemlidir. Bu yüzden entomologlar (yada olay yerinde görevli toplama yapan kimse) öncelikli araştırıcıyla temasa geçilmeli ve entomolojik delilleri toplamak için bir plan yapılmalı. Olay yeri gözlemi ve hava verileri: Ölüm yerinin entomolojik araştırması belli adımları izleyerek analiz edilebilir. 1- Olay yerinin gözleminde bitki örtüsü için habitata ve bedenin yerine ve eğer bir bina içindeyse açık pencere yada kapıya yakınlığına dikkat edilmelidir. Beden üstündeki böcek istilalarının yeri en az böceklerin hangi evrede olduğunun (yumurta, larva, pupa, ergin) belirlenmesindeki kadar dikkat edilerek belirlenmeli. Omurgalı hayvanlar, yumurta ve larvanın ve diğer böceklerden ötürü –ateş karıncaları gibi- işe yarayacak kanıtların belirlenmesi yararlı olur. Ölüm yerinin şekli üzerindeki gözlemlerde de en az bunlarda olduğu kadar dikkat edilmelidir. 2- Olay yerinde klimatolojik verilerin toplanması. Bu veri şunları içermeli: a) Olay yerindeki hava sıcaklığı gölgede, bir termometre ile, göğüs yüksekliğinde, yaklaşık olarak belirlenebilir. TERMOMETREYİ DİREKT GÜNEŞ IŞIĞINA MARUZ BIRAKMAYIN. b) Larva kütlesinin ısı derecesi (larval yığından direkt termometre ile almak) c) Yer yüzeyinin sıcaklığı. d) Bedenle yer arasında kalan yerin sıcaklığı (tamamen iki yüzey arasında kalan kısımda bırakılan termometre ile). e) Toprak sıcaklığı doğrudan vücudun altından alınır (vücut kaldırılınca derhal sıcaklık alınır). f) Hava verileri maksimum ve minumum günlük ısı derecesini ve sağnak yağışı, kurban kaybolmadan 1-2 hafta öncesinden bedenin bulunmasından 3-5 gün sonrasına kadar ki periyodu içerir. Bu bilgiler ulusal hava durumu ofislerinden yada devlete bağlı klimatoloji ofislerinden elde edilebilir. Biyolog Yalçın DEDEOĞLU

http://www.biyologlar.com/biyokriminal-entomoloji

Caretta caretta ( Deniz Kaplumbağaları)

Caretta caretta ( Deniz Kaplumbağaları)

Sistematiği Filum: Chordata Altfilum: Vertebrata Üst sınıf: Tetrapoda Sınıf: Reptilia Altsınıf: Anapsida Ordo: Testudines Altardo: Cryptodira Üst familia: Chelonioidae Familia: Cheloniidae Cins: Caretta Tür: Caretta Caretta Coğrafi Yayılışı Caretta Caretta Atlantik, Pasifik ve Hint Okyanusu’nun ılıman ve subtropikal sularındaki estuarin, lagün, koy ve denizlerin kıyıya yakın kesimlerinde dağılım gösterir. C.C.’lar Atlantik Okyanusu’nda Arjantin’den Nova Scotia’ya kadar bulunur. Kuzey Amerika’daki en büyük popülasyonu Kuzey Carolina’dan Florida kıyılarına kadar olan adalarda bulunur. Bu C.C.’ler kışları Bahama Adaları’na göç ederler. Kuzey Amerika’daki diğer küçük popülasyonlar ise Texas kıyılarında bulunur. Caretta Caretta ların en büyük yuvalama alanları Umman’ın Masirah Adası’dır. Akdeniz’deki önemli yuvalama alanları Yunanistan ve Türkiye sahillerindedir. Bunlara oranla çok daha düşük ancak önemli bir popülasyona ise Kıbrıs’ta rastlanmaktadır. Tunus’ta yuvalama çok nadir, İsrail’de ise daha da azdır. Zaman zaman Campedusa (İtalya), Sicilya ve hatta Sardunya’da da yuvalama olmaktadır. Mısır ve Libya için ise veriler yetersizdir. Türkiye’de ki yuvalama alanları; Ekincik, Dalyan, Dalaman, Fethiye, Patara, Kumluca, Belek, Kızılot, Demirtaş, Gazipaşa, Anamur ve Göksu Deltası’dır. Fiziksel Özellikleri Ergin bireylerde karapaks (sırt kabuğu) oval şekilli ve arkaya doğru daralmış 70–75 cm boyunda ve 50–55 cm genişliğindedir (Türkiye için). Boş oldukça büyük ve üçgenimsidir. Ancak bu büyük beyinleri olduğunu göstermez; aksine bu boşluk çeneleri kapsayan kaslar tarafından kullanılır. C.C.’ların iki alt–türü (sub–species) vardır. Bunlardan C.C. gigas Pasifik ve Hint Okyanusu’nda bulunur. Genel renklenme dorsalde kırmızımsı kahverengi, ventralde kremsi sarı şeklindedir. Diğer deniz kaplumbağalarından sağlam bir kabuk, gözleri ile burun delikleri arasında kalmış iki çift prefrontal plak (bazı bireylerde bu plakların ortasında beşinci bir plak olabilir), karapaksta beş çift kotsal plak, plastronda keropakla bağlantılı ve geniş üç çift inframarjinal plak, her bir üyede iki tırnak ve tipik olarak kahverengimsi–kırmızı renklenme gibi özelliklerle farklılaşır. Beslenme Alışkanlıkları Yavru ve genç Caretta caretta bireyleri, yüzeyde akıntı çizgilerinde toplanan makroplanktonik av üzerinde beslenir. Ergin bireyler özellikle yumuşakçalar üzerinden beslenen karnivorlardır. Etoburdurlar ve sünger, deniz anası, at nalı yengeçler ve istiridye yerler. Kurbanlarının sert kabuklarını kolayca parçalayabilmelerini sağlayan çok güçlü çeneleri vardır. Geniş bir kafa, oldukça gelişmiş çene kasları ve kuvvetli gaga, sert kabuklu avlarını parçalayabilmek için meydana gelmiş adaptasyonlardır. Biyo– Ekolojileri Caretta caretta’lar ayrı eşeylidir ve eşeysel dimorfizm erginlerde görülür. Eşeyler arasındaki büyüklük dimorfizmi hakkında çelişkili bilgiler mevcuttur. Ancak ergin erkekler dişilerden daha uzun kuyruğa ve geriye doğru kıvrılmış tırnaklara sahiptir. Yavru, genç ve ergin öncesi bireylerde eşey ayrımı yapılamaz. Caldwel (1962) ve Uchida (1967)’ya göre esaret altında yetiştirilen Caretta caretta ’nın eşeysel olgunluğa ulaşması 6–7 yıl olarak tahmin edilmektedir. Serbest olarak doğada yaşayan bireyler içinse eşeysel olgunluk yaşı; Mendonca (1981)’ya göre 10–15 yıl, Zug (1983)’e göre 14–19 yıl, Frazer (1983)’e göre 22 yıl, Frazer ve Ehrhart (1985)’a göre sırtındaki eğrilerden edinilen bilgilerle 12–30 yıl olarak tahmin edilmektedir. Üreme Caretta caretta’lar kabukları 50 cm’yi geçmeden cinsel olgunluğa erişirler. Diametre cinsinden 40–42 mm olan yumurtalar med zamanı bırakılır. Yumurtalar kirletilmemiş ve iyi süzülmüş kumullardaki ya da otlu bitki örtülerindeki yuvalara bırakılır. Dişi kıyıya gelir ve gelgitin oluşturduğu yükseltiye tırmanıp orada durur, daha sonra sığ bir çukur açmak için burnunu toprağa sürter. Çukur kazılıp yumurtalar çukura bırakılınca, kaplumbağa arka ayağının tırnaklarıyla yuvayı kumla örter. Kuluçkaya yatma 31–65 gün arası sürer. Genellikle yuva başına 120 yumurta vardır ve dişi 13 günlük aralarla kuluçkaya yatar. Dişi kıyıdaki yuvaya sadece bahar ve yazları geceleyin gelir. Dişi genellikle her yıl mevsim başına 3–4 kere yuva yapar. Yuvadaki yavrular genellikle bu zamanlarda yumurtadan çıkar ve yavrular yaşamlarındaki tek karasal yaşamı bırakıp hep birlikte çabucak denize giderler. Günlük Aktiviteleri Caretta caretta’ların olağan bir gününün beslenme ve dinlenme ile geçtiği bilinmektedir. Kuluçka sezonunda güneydoğu ABD’de yapılan araştırmalar Caretta caretta’ların yuva bulunan kumsal, kıyıdaki resifler ve diğer kayalıklarda düzenli davranışlar sergilediğini göstermiştir. Çiftleşme ve /veya beslenmenin bu bölgelerde gerleşleştirildiği tahmin edilmektedir. Kuluçka dönemi dışında, kaplumbağalar yüzlerce, hatta binlerce mil öteye göç edebilmektedir. Caretta caretta’lar derin sularda yüzeydeyken ya da kıyı yakınlarındaki sularda dipte uyuyabilmektedir. Birçok dalgıç kayalıklarda kaya altında uyuyan kaplumbağa görmüştür. Yumurtadan yeni çıkan kaplumbağaların ise tipik olarak yüzeyde süzülerek uyudukları ve bu sırada ön ayaklarının sırtlarının üstüne doğru kıvrıldığı kaydedilmiştir. Kur Yapma ve Çiftleşme Caretta caretta’ların çiftleşmesi yuvalama başlangıcından birkaç hafta önce yuvalama plajı yakınları veya özel toplanma alanlarında meydana gelebilir. Birbirlerine sıkıca sarılmış çiftler çoğunlukla yüzeyde görünmekle birlikte su altında birleşmeler de rapor edilmiştir. Caretta carettalar için kur yapma ve çiftleşme dişinin ilk yumurtlama döneminden önceki kısıtlı bir zamanda gerçekleştiğine inanılmaktadır. Daha sonra yalnızca dişiler kıyıya gelir, erkekler karayı terk edince bir daha asla geri dönmez çiftleşme mevsiminde erkekler bir dişinin kafasına burnunu sürterek ya da boynunun arkasını hafifçe ısırarak ve paletlerini dikerek kur yaparlar. Eğer dişi kaçmazsa, erkek ön paletlerindeki tırnakların yardımıyla dişinin kabuğunun üstüne çıkar. Daha sonra çiftleşmek için kuyruğunu dişinin kabuğunun altına sokar. Genellikle dişilerin çiftleşmesinin gerçekleştiği kumsalda kuluçkaya yattığı ve erkeğin asıldığı kabuğundaki tırnak izlerinin kanayabildiği gözlemlenmiştir. Çiftleşme su yüzeyi ya da altında gerçekleşebilir. Bazen erkeklerin aynı dişi için kavga ettiği gözlemlenebilmektedir. Caretta caretta’ların çiftleşmelerini gözlemleyenler hem erkeklerin, hem de dişilerin agresif bir tutum sergilediğini gözlemlemiştir. Dişi yumurtlama döneminden önce bir çok erkek ile birlikte olup birkaç ay için sperm biriktirebilir. Nihayetinde yumurtalarını bıraktığında bunlar bir çok erkek tarafından döllenmiş olur. Bu davranış popülasyonda genetik çeşitliliğin devamını sağlamaya yardımcı olur. Yuva Yapma, Kuluçkalama ve Dağılım Caretta caretta’ların neden bazı kumsallara yuva yapıp diğerlerine yapmadığı bilinmemektedir. Florida’da binlerce yuva varken, kuzeydeki tıpa tıp kumsallarda çok az kaplumbağa vardır. Bu yuva dağılımı yüzyıllar önce var olan ısı, kumsal görünümü ya da saldırının az olması gibi tercih nedenlerinin durumunu ortaya koyabilir. Bugün, insanlar Caretta carettaların yuva yaptığı yerlere etki etmektedir.sahilde dalma, deniz koyları, suni aydınlatma ve beslenmenin oluşturduğu kumsal erozyonu bir zamanların taze ve temiz kumsallarını etkilemektedir. Bu durumun gelecek yuvaları da etkileyeceği kesindir. Caretta carettaların nasıl, nerede ve ne zaman yuva yaptığını daha iyi anladıkça, yuva habitatları daha iyi korunmuş olacak. Kumsal Seçimi Çoğu dişi genellikle her seferinde daha önce yuva yaptıkları kumsala geri dönmektedir. Sadece aynı kumsalda görünmekle kalmayıp, daha önceki yuvalarının çok yakınlarına yuva yaparlar. Yuva Yapma Davranışları Sadece dişiler yuva yapar ve bunu genellikle geceleri yaparlar. Dişi okyanustan çıkar ve ara sıra duraksayarak yuva yapacağı yere doğru ilerler. Bazen okyanustan çıkacak, ancak bilinmeyen nedenlerle yuva yapmayacaktır. Buna “sahte çıkış” denir ve bu bazen doğal olarak, bazen ise kumsaldaki suni aydınlatma veya insanların varlığından kaynaklanmaktadır. Bazı türlerin bireylerinin sadece bir kere, bazılarının ondan daha fazla yapmasına rağmen çoğu dişi yuva yapma mevsiminde en az iki kere yuva yapar. Yuvayı İnşa Etmek Yuvalama sezonu genellikle Kuzey yarım kürede Mayıs–Ağustos, güney yarım kürede ise Ekim– Mart ayları arasındadır. Yumurtlama genellikle gece meydana gelir. Nadiren günüz yumurtlama da görülür. Yumurtlamak için kıyıya gelen dişi zaman zaman başını kaldırır ve kumsalı gözetler. Dişi bu dönemde dışarıdan gelecek uyarılara karşı çok hassastır ve rahatsız edildiğinde geri döner. Daha sonra kumsala doğru tırmanan dişi yumurtlayabileceği bir alan aramaya başlar. Bazı durumlarda yuvalamadan veya denize dönmeden önce önemli mesafeleri kat edebilir, karapakslarını gizleyebilecekleri sığ ve geri tarafta daha derin olan bir gövde çukuru açabilirler. Ön üyeler yuva açma olayında pek görev yapmazken arka üyeler karşılıklı iş görür. Yumurta Bırakma ve Gömme Yumurta oyuğu açılınca, dişi kaplumbağa yumurtaları bırakmaya başlar. Yumurta bırakma sırasında salgılanan mukusla birlikte aynı anda iki–üç yumurta bırakılır. Bu yuva yaklaşık 80–120 yuva alır. Caretta caretta yumurtaları genellikle küresel, beyaz, mukusla kaplı ve ping–pong topu büyüklüğündedir (yaklaşık 40 mm çapında ve 40 gr ağırlığında). Yumurtalar arasında küçük oval şekilli veya ikili yumurtalara da rastlanabilir. Caretta caretta yumurtaları esnektir ve deliğe düşerken kırılmazlar. Bu esneklik hem dişiye hem de yuvaya daha fazla yumurta sığmasını sağlar. Yuva yapan Caretta caretta’ların ağladıkları görülür, ancak bu sadece vücudun salgıladığı salgının atılmasıdır. Birçok insan yumurta bırakan kaplumbağanın transa geçtiniği ve rahatsız edilmemesi gerektiğini düşünür. Bu tamamen doğru değildir. Bir Caretta caretta’nın yumurta bırakırken yuvayı terk etmesi pek olası değildir, ancak bazıları rahatsız edilir ya da kendilerini tehlikede hissederlerse bunu etkileyebilir. Bu sebeple, bu işlem sırasında C.C.’lar rahatsız edilmemelidir. Yumurtaların hepsi bırakıldıktan sonra, dişi arka üyeleriyle ana çukuru kapatır ve yuvayı düzler. Kumu farklı taraflara da atarak yumurtaların avcılar tarafından bulunmasını engellemeye çalışır. Yuva kapandıktan sonra, kaplumbağa denize yönelir ve bir sonraki yuva yapma ya da göç zamanına kadar dinlenir. Dişi yuvayı bir kez terk etimi tekrar geri dönmez. Kuluçka Caretta caretta’ların kuluçkalama süresi yaklaşık 45–60 gündür. Ancak embriyoların gelişme hızını etkileyen kum sıcaklığı bunu kısaltabilir ya da uzatabilir. Serin kumların erkek, sıcak kumların dişi üretme eğilimi vardır. Yuvayı Terk Etme Yuvadan anneleri tarafından çıkarılan timsahların aksine, Caretta caretta’lar yuvadan kendi başına çıkmak zorundadır. Yumurtayı kırmak için yavrular, “caruncle” adı verilen geçici, sivri yumurta dişlerini kullanırlar. Bu diş yuvadan çıktıktan hemen sonra düşer. Yavrular, yumurta kabuklarını kırdıktan sonra karapakslarının düzelmesi için yuva içinde 26 saate kadar hareketsiz kalırlar, yuvayı terk etme ise yumurtadan çıktıktan 1–7 gün (ortalama 2,5 gün) sonra yavruların birbirlerine yardımıyla yüzeye doğru tırmanma şeklinde gerçekleşir. Yavrular yuvadan havanın serin olduğu geceleri ya da yağmur fırtınaları sırasında çıkmayı tercih ederler. Bunun nedeni bu havalarda kum sıcaklığının düşüklüğüdür. Yuvadaki bütün yavrular aynı zamanda yuvadan çıkmayabilir, bu durumda takip eden gecelerde gruplar halinde yavru çıkışı devam eder. Yuvadan çıkan yavrular ufuk aydınlığını kullanarak denize doğru yönelirler. Bu sırada kumsal gerisinde bulunan herhangi bir ışık kaynağı, yavruların yönlerini şaşırmalarına ve bu nedenle ölümlerine neden olabilir. Eğer hemen denize ulaşmazlarsa, güneşte kalmaktan, su kaybından, ya da yengeçler, tilkiler, köpekler, rakunlar yakın balıkları ve köpek balıkları gibi nedenlerle öleceklerdir. Denize ulaşan yavrular “yüzme çılgınlığı” denen ve yaklaşık 20 saat süren bir dönemde durmaksızın yüzerler. Ancak yavru Caretta caretta için o kadar çok tehlike vardır ki her 1000 yavrudan ancak biri gençliğe kadar hayatta kalabilir. Doğal ortam yaşayan Caretta carettalar için belgelenmiş ömür uzunluğu tahmini yoktur. Ancak ergin dişilerin üretimsel hayat süreleri 32 yıl, eşeysel olgunluğa ulaşma süresi 15–30 yıl olarak tahmin edilmiştir. Bu şartlarda maksimum ömür uzunluğunun 47–62 yıl olabileceği belirtilmiştir. Göç ve Yön Duyguları Göç: Deniz kaplumbağalarının beslenme alanından, yuva yaptıkları alana olan yüzlerce binlerce millik göçü hayvanlar aleminin en dikkate değer özelliklerindendir. Erişkin dişilerin kendi doğdukları bölgeye yuva yapmak için dönmeleri bu özelliği daha da çekici yapar. Deniz kaplumbağalarının nasıl ve nereye göç ettikleri onlarca yıldır bilim adamlarının odaklandığı bir noktadır. Elde edilecek bilgiler türlerin korunma stratejileri için çok büyük önem taşımaktadır. Bugün biliyoruz ki, deniz kaplumbağaları yaşamları boyu sürecek bu göçe yuvadan ilk çıkışlarıyla başlarlar. İlk kritik 48 saat içinde yavru kumsaldan okyanusa yürümek ve orada kendine avcılardan korunup yiyecek bulabileceği bir yer bulmalıdır. Atlantik ve Caribbean’da bir çok yavru körfez akıntılarına kapılır. Burada genç kaplumbağalar yeterli bir besin kaynağı ve az sayıda avcı bulurlar. Yıllarca Atlantik etrafında yüzüp durduktan sonra, bu genç kaplumbağalar kıyı kenarındaki sığ sulara dönecek kadar büyümüşlerdir. “Tüm Floride loggerheadlerinin birkaç yıllarını kıyı yakını habitatlarda beslenip büyüyerek geçirirler. Ergenliğe ve cinsel olgunluğa erişir erişmez, bir iki beslenme alanına göç ettikleri bilinir. Ergen kaplumbağaların üreme mevsimi hariç ömürleri boyunca kalacakları yer bu ilk beslenme alanıdır. Çiftleşme ve yuva yapma dönemine gelindiğinde hem dişi hem de erkek yuva yapılan kumsallara doğru göçe başlar. Bu olağan güç hayatları boyunca sürecektir. Yön: Açık okyanuslarda deniz kaplumbağaları güçü akıntılara maruz kalırlar, kısıtlı bir görüş açıları vardır; kafalarını suyun üstüne yalnızca birkaç santim çıkartabilir. Bu kısıtlamalara rağmen, deniz kaplumbağaları aynı yuva yapılan kumsalı bulmak için uzun mesafelere göç ederler. Bunu nasıl yaptıkları hayvanlar aleminin en gizemli sorularından biridir ve buna cevap bulabilmek bir çok araştırmacının odak noktası olmuştur. Umut verici yeni bir teori kaplumbağaların dünyanın manyetik alanının açı ve yoğunluğunu bulabildiğini iddia eder. Bu iki özelliği kullanarak kaplumbağa istediği yere gitmesini sağlayacak olan bulunduğu yerin enlem ve boylamını bulabilmektedir. Daha önceki araştırmalar da deniz kaplumbağalarının manyetik alanı belirleme yeteneğinin var olduğunu ispatlamıştır. Göç incelemeleri: Deniz kaplumbağalarının göçebe doğaları, onları anlama ve korumayı zorlaştırmaktadır. Özellikle kaplumbağaları kendi habitatları içinde korumak için, bu habitatların nerelerde olduğunu, kaplumbağaların orada nasıl davrandığını ve hangi yönlere doğru göç ettiğini bilmemiz gerekir. Bir çok araştırma yuva yerlerinde yapılmıştır ve bunun çok mantıklı sebepleri vardır. Araştırmacılar için bu bölgeler daha kolayca ulaşılabilirdir, ayrıca yeni deniz kaplumbağalarının üremesi soyun devamı için çok önemlidir. Koruma çalışmaları da en kolay yuva bulunan kumsallarda yönetilmektedir. Ancak, hayat döngüleri içinde deniz kaplumbağalarının gittiği bölgelerden, en az zaman harcananı yuva yapılan kumsallardır. Bir deniz kaplumbağasının hayatının % 90’ından fazlası suda–beslenerek, çiftleşerek, göç ederek ve kimse izlemediğinde deniz kaplumbağaları ne yaparsa onu yaparak geçer. Sonuç olarak, korumacılar için en büyük tehlikenin olduğu bölge en çok sorunla karşılaşılan okyanuslardır. Yaşamları boyunca onları tam olarak koruyabilmemiz için, kaplumbağaların göçebe motiflerinin ve sudaki davranışlarının tam olarak bilinmesi gerekir. Deniz kaplumbağalarının nereye gittiklerini belirlemek için bir çok metot uygulanır. Bunların en basitlerinden biri yuva yapmaya kumsala geldiğinde ayaklarından birine küçük, zararsız bir metal parçası takmaktır. Her parça kodlanmış bir numaraya sahiptir ve insanlara bulunduğu taktirde geri gönderilmesi için gerekli olan bir adres vardır. İnsanlar bu kimliği geri döndüklerinde, küçük bir ödül kazanırlar ve bu şekilde kaplumbağaların bulundukları, uğradıkları yerler bulunmuş olur. Populasyon: C. caretta’nın erkekleri hakkındaki bilgilerine azlığından dolayı populasyonlarının cinsiyet oranı tam olarak bilinmemektedir. Populasyonların yaş ve boyut kompozisyonları hakkında da kapsamlı bir bilgi yoktur. Ayrıca Henwood (1987), populasyonda kompozisyonların her sezonda değiştiğini ve böylece populasyonun büyüklüğü hakkında bilgi edinmenin karmaşık hale geldiğini belirtmiştir. Populasyon yapısı ve cinsiyet oranı hakkındaki eksik bilgiler ve deniz kaplumbağalarının yaşadığı biyolojik populasyonun sınırlarının tam olarak bilinmemesinden dolayı, populasyon bolluğu ve yoğunluğu hakkında tahmin yapabilmek zorlaşmaktadır. Bununla birlikte yuvalama kumsallarına gelen dişilerin direk sayımı veya yuva sayılarıyla ilgili bazı tahminler yapılmaktadır. C. caretta’nın üretkenlik organlarına etki eden faktörler bölgesel olarak değişkenlik göstermektedir ve populasyon içinde önemli oranlarda varyasyonlar söz konusudur. Bu varyasyonlar, belirli sahillerdeki üretkenlik durumunun belirlenmesini engeller. Aşırı yağmurlar, rüzgar erozyonu, dalga erozyonu ve sıcaklık gibi baskın genel çevresel faktörler üretkenliği etkiler. Yumurtlama sahillerindeki insanların varlığı, ziyaretçilerin olması ve çevredeki ışık kaynakları yuvalama yapmak için kumsala çıkmış dişileri rahatsız ederek denize dönmelerine neden olabilir. C. caretta yavruları, kum yengeçleri, köpek balıkları, predatör kemikli balıklar ile tilki, köpek, rukan gibi memelilere yem olmaktadır. Çeşitli kuşlar da gündüz saatlerinde yavruları avlarlar. Hastalık, şiddetli açlık ve soğuk sersemliği de ölümlere sebep olabilmektedir. Ancak belirli populasyonlar üzerindeki etkileri bilinmemektedir. Katran, yağ artığı ve plastik atıklarının yutulmasından ölümler meydana gelebilmektedir. Genç ergin öncesi ve ergin bireyler ise özellikle köpek balıkları tarafından avlanırlar. Ayrıca bu gruplar, katran veya plastik yutarak ölebilir veya yaralanabilirler. Ayrıca bot çarpmaları bilinçli avlanmalar ve çeşitli ağlara takılmalar da ölüme neden olan diğer faktörlerdir. C. caretta Avustralya, Güney Afrika ve ABD’de korunmaktadır. Balıkçılık endüstrisinin öncelikli avı olmasa da görüldükleri yerde avlanırlar. İnsanların çoğu iddia edilen beğenilmemiş tadından dolayı etini yemezler. Ancak Hindistan, Madagaskar ve Mozambik kıyılarında yaşayan insanlar tarafından hala tüketilmektedir. Her ne kadar C. caretta’nın eti, kabuğu ve derisi Cheloma mydas, Eretmochelys imbricata, Lepidchelys kempii ve Lepidochelys olivacea’ya göre değerli olmasa da yumurtaları dünyanın bir çok yerinde tüketilir. Mozambik, Madagaskar ve Umman kıyı şeritlerinde olduğu gibi C. caretta yumurtalarının protein amaçlı kullanılması, populasyonlarının gerilemesine neden olmuştur. Çoğunlukla ılık ve subtropikal bölgelerde yuvaladıklarından, C. caretta’nın üreme habitatları ve kışlama alanları arasında göç ettikleri sanılır, erkek göçleri hakkında ise çok az şey bilinmektedir. C.Caretta’nın grup göçü bilinmemektedir. Yıl boyunca açık deniz sularında kalabilirler. Florida’da bazı bireylerin, dipleri çamurlu kanallara girdikleri belirlenmiştir. Bazı populasyonlar ise yıl boyunca yuvalama kumsallarının yakınında yaşarlar ve yuvalama dönemleri arasında çatlak ve delikleri mesken edinebilirler. C. caretta’nın klasik anlamda “sürüler” oluşturduğuna dair herhangi bir gösterge yoktur. Bununla beraber, denizde ya da yuvalama kumsallarının yakınında lokal yoğunlaşmalar oluşturabilirler (Dodd, 1988). Koruma ve Yönetim C. caretta’nın da içinde bulunduğu deniz kaplumbağaları, bu türlerin durumları ve önemi kavrandıkça yakalanmalarını ve satışlarını yasaklayan, habitatlarının korunmasını da sağlayacak kanunlarla korunmaya çalışılmıştır. C. caretta, Uluslararası Tehlike Altındaki Türler Kongresinde (CITES) Ek 1’de listelenmiştir. Aralarında Türkiye’nin de bulunduğu bir çok ülke bu antlaşmayı imzalamıştır. Bu listede yar alan türlerin herhangi bir şekilde gelir amaçlı satışı yasaklanmıştır. Göç eden türler konferansı hazırlıklarında uluslararası korumanın şart olduğu Ek 2 listesinde yer almışlardır. Her ne kadar bazı düzenleyici kanunlarla koruma altına alınmış olsalar da bazı bölgelerdeki yetersiz veya isteksiz güvenlik güçleri ve ülkelerin ekonomik seviyelerindeki farklılıklar C. caretta ve diğer deniz kaplumbağalarının korunmasında yeterli olmamakta ve tedbirlerin uygulanmasını güçleştirmektedir. C. caretta’nın neslini devam ettirebilmesi için bütün önemli yuvalama, beslenme, göç ve kışlama habitatlarının üzerinde önemle durulması ve biyolojik verilere dayalı korumalarının uygulanması zorunlu olmuştur. Deniz kaplumbağalarının korunması için farklı bölgelerde, farklı koruma ve yönetim alternatifleri uygulanmaktadır. C. caretta’nın derisi ve kabuğu için fazla talep yoktur ve bu nedenle uluslararası ticareti de çok iyi değildir. Yumurta ve eti ise genellikle lokal olarak tüketilmektedir. CITES uygulamaları uluslararası ticareti engellemede başarılı olabilecektir. Uluslararası ticaret, yasalar tarafından değişik derecelerde başarıyla durdurulmuştur. Örneğin, ABD ve Avustralya’da yumurta tüketimi bu sayede durmuştur. Fakat kaçak avlanma devam etmektedir. Koruma kanunlarının olmadığı bölgelerde ise kanunların çıkarılması ve uygulanması türün devamlılığı için zorunlu görünmektedir. Dişilerin üretkenlikteki önemi ve yumurtlama anlarında çok hassas olmaları nedeniyle plaja gelen dişilerin rahatsız edilmemeleri gerekmektedir. Bu, yumurtlama mevsiminde insan aktivitesinin en aza indirilmesi ve yavruların yollarını bulabilmeleri için yapay ışıklandırmaların minimuma çekilmesiyle gerçekleşebilir. Yuvalar ve dişiler sahillere giren araçlardan korunmalıdır. Çünkü bunlar kumu sıkıştırabilir veya yavruların içinden çıkamayacakları izler bırakabilirler. Ayrıca bu araçların gece kullanılması da dişilerin bu sahillere gelmesini engelleyebilir. Plaj temizlemede kullanılan ağır mekanize temizleme araçları, yumurtlama mevsiminde yumurtlama plajlarında kullanılmamalı veya zarar vermeyecek boyutlarda işletilmelidir. Yumurtalar üzerindeki kaçak avcılığın, predosyonun ve erozyonun yüksek oldu bölgelerde yeni yapılanmış yuvalar, korunmuş kuluçkalıklara taşınabilir buralarda acilen yuvalara tekrar gömülür ya da nemli plaj kumu ile doldurulmuş kutularda inkübasyona bırakılabilir. Bu tip uygulamaların yaratacağı durumlarda, yöntemin taşıdığı bazı risklerden dolayı dikkatli planlama yapılması ve yürütülmesi zorunluluğu vardır. Deniz kaplumbağalarının korunmasında kullanılan bir başka metot da yavruları ilk dönemlerinde yüksek olan predasyonlardan korunabilecekleri büyüklüğe kadar ulaştırmaktadır. Konu ile ilgili araştırmacılar tarafından habitat korunmasından sonra bu metodun kullanılması gerektiği savunulmaktadır. Bu yöntem özellikle Chelonie mydas, Eretmochelys imbricata, Lepidochelys kempii populasyonlarını arttırmak için dünyanın değişik yerlerinde kullanılmıştır. Yavru kaplumbağaların korunması için, yavru kaplumbağalar üzerindeki predasyonun azaltılması, plaj ışıklandırmalarından kaynaklanan yanlış yönelmelerin önlenmesi, kirleticilerin ve besin olarak nitelendirebilecekleri plastiklerin denize ulaşmasının engellenmesi gerekmektedir. Balıkçılıkta kullanılan ağlarla rasgele yakalanmaların ve ölümlerin yüksek olduğu bölgelerde “Kaplumbağa Dışlayıcı Aygıt (TED)”ların kullanılması balıkçılıktan kaynaklanan ölümleri azaltacak bir yöndemdir. Bu yöntem özellikle ABD’de balıkçılıktan kaynaklanan ölümlerin yüksek olduğu bölgelerde kullanılmış, ergin ve ergin öncesi kaplumbağaların kurtulmasını sağlamıştır. Kaplumbağa yaşamını tehdit eden faktörler: Deniz kaplumbağaları yaşamlarının büyük bölümünü denizde geçirmekle birlikte, nesillerini devam ettirebilmek için üreme kumsallarına son derece bağımlı olan canlılardır. Bu tip kumsalların insan eliyle farklı amaçlar için işgal edilmesi ( turizm amaçlı faaliyetler, kum alımı, otlatma, tarım için kumsalların toprak ile örtülmesi vs. ) ve artık Türkiye , Yunanistan ve Kıbrıs gibi birkaç ülkede sınırlı kalması bu bölgelere yumurta bırakan kaplumbağaların nasıl yavaş yavaş yok olmaya mahkum edildiklerini ortaya koymaktadır. Ayrıca, deniz ortamında gerek ergin, gerekse yavrularını trol vb. ağlarla balıkçılar tarafından tesadüfi yakalanmaları da kaplumbağa yaşamını tehdit eden önemli bir sorundur. Çözüm ve Öneriler: Yüksek yuva yoğunluğuna sahip üreme kumsallarını olumsuz yönde etkileyecek yatırımlardan kaçınılmalıdır. Gerek turizm amaçlı gerekse bu amaç dışı yapılanmalarda, özellikle deniz kaplumbağası üreme mevsimi olan Mayıs-Ekim aylarında aydınlatma ve gürültü ile ilgili tedbirlere önem verilmelidir. ( Karayolları aydınlatması, çadır ve karavan kampingleri, otel, ev vb. ) Kumsallarda, doğal yapıyı bozucu her türlü kum ve çakıl alımı önlenmelidir. Üreme kumsallarına büfe, restoran vs. sabit tesisler kurulmamalıdır. Gece kumsallar insanlar tarafından kullanılmamalı, araba, motor, bisiklet vs. araçların üreme kumsallarına girmesi engellenmelidir. Plaj şemsiyeleri toprağa gömülmeyen türden olup yumurtlama bandının gerisinde kullanılmalıdır. Deniz Kaplumbağalarının Korunması İçin Gerçekleştirilen Çalışmalar Ülkemizin taraf olduğu Uluslararası Sözleşmeler (Bern, Barselona Sözleşmeleri) çerçevesinde nesli tehlikede olan ve Türkiye sahillerini üreme alanı olarak kullanan deniz kaplumbağalarının korunması yönünde çalışmalar yapılmaktadır. Bu amaçla, Bakanlığımız koordinatörlüğünde ilgili Bakanlıklar, üniversiteler ve gönüllü kuruluşlardan oluşan “ Deniz Kaplumbağaları İzleme-Değerlendirme Komisyonu ” kurulmuştur. İzleme-Değerlendirme Komisyonu Akdeniz’ de önemli deniz kaplumbağası üreme alanı olarak belirlenmiş 17 alanda ( Ekincik, Dalyan, Fethiye-Çalış, Dalaman, Patara, Kale (Demre), Kumluca, Tekirova, Kızılot, Belek, Gazipaşa, Demirtaş, Göksu Deltası, Kazanlı, Anamur, Akyatan, Samandağ ) incelemelerde bulunarak, sorunları tespit etmekte ve bu sorunların giderilmesi yönünde çalışmalar gerçekleştirmektedir. KAYNAKÇA: 1- Sınıflandırma, coğrafi dağılışı, fiziksel özellikleri, beslenme alışkanlıkları, üreme, davranış özellikleri, habitatı: 2- Biyo-Ekolojileri, populasyonu: 3- Kaplumbağa yaşamını tehdit eden faktörler, Çözüm ve Öneriler, Deniz Kaplumbağalarının Korunması İçin Gerçekleştirilen Çalışmalar    

http://www.biyologlar.com/caretta-caretta-deniz-kaplumbagalari

Böceklerde Salgı Organları

Böceklerin salgi organlari Exocrine ve Endocrine olmak üzere iki gruba ayrilir. Exocrine salgi bezleri salgilarini özel kanallar vasitasi ile vücut disina veya vücut içinde gerekli yerlere akitir. Endokrin olanlar ise kanala sahip degildir ve meydana getirdikleri maddeler düffizyon yolu ile kana geçerek bütün vücuda dagilir. Ekzokrin Salgi Bezleri: Mum bezleri Bu bezler Homoptera, Hemiptera ve bazi Coleoptera ve Hymenoptera'larda görülür. Böcek vücudu içersinde çesitli yerlere dagilmis olan bezler vücut disina salgiladiklari maddelerle vücut üzerinde mum tabakasi veya toza benzer bir tabaka meydana getirir. Apis mellifera ve yakin akrabalarinda abdomen segmentelerinin ventralinden ufak levhaciklar halinde mum maddesi salgilarlar. Kafa içi salgi bezi Böceklerin kafalarinin içersine yerlesmis ve agiz parçalari ile iliskili mandibula salgi bezi, maxilla salgi bezi ve labium salgi bezi olmak üzere 3 çift salgi bezi bulunur. Mandibula salgi bezi çifti lepidoptera larvalarinda ipek bezi haline dönüsmüstür. Maxilla salgi bezine nadiren rastlanir. Labium bezi çifti ise thorax içersine yerlesmis olup tükrük bezi olarak taninmaktadir. Bu çift bez ortak bir kanal ile çogunluk hypopharynx'in bazalinden agiz içersine salgida bulunur. Lepidoptera larvalarinda bunlarda ipek bezine dönüsmüstür. Salgi havaya çikinca sertleserek iplik halini alir ve tirtil bununla pupa dönemini içinde geçirecegi kozayi örer. Ipek bezleri Lepidopteralarda madibula ve labium salgi bezleri ipek bezi haline dönüsmüssede diger bazi böceklerde ipek veya iplik maddesi baska bezler tarafindan salgilanir. Bazi Coleoptera ve Neuroptera larvalarinda ipek, malpigi borucuklari tarafindan meydana getirilir. Diger bazi böceklerde ise deri salgi bezleri ve disi cinsiyet organi ek bezleri tarafindan ipek salgilanir. Pis Koku Bezleri Bazi böceklerde birçok deri salgi bezleri pis kokulu salgilarda bulunur. Bu genellikle böcekler için bir korunma durumudur. Hemipterlerde piskoku bezi 3. çift bacaklarin dibinden disari açilir. Coleopter'lerde anüs civarinda bazi Lepidopter'lerde 6-7 abdomen segmentinin dorsalinde bulunur. Çekici Koku Bezleri Sosyal yasayan böceklerde bir es tanima, koloni kurma, düsman tanima yuva yapma, alarm verme ve besin yerine dogru iz olusturma da bu bezler görevlidir. Disa salgilanip o türün diger bireyleri üzerinde etkilere yol açan salgilara feromon adi verilir. Bunlardan koku yolu ile etkili olanlara olfaktör feromon'lar, tad yolu ile etkili olanlara oral feromon'lar denilmektedir. Birçok Lepidopteralarda cinsel bakimdan çekici koku bezleri bulunmaktadir. Bunlarin yer ve yapilari tür ve cinsiyete bagli olarak büyük degisiklikler gösterir. Çok defa kanatlarda veya diger kisimlarda özel pullarin dibinde, bacaklarda abdomende bulunmaktadir. Blattidae familyasina bagli erkeklerin abdomeninde cinsel çekici koku yayan salgi bezleri bulunmaktadir. Karincalarda bunlarin yuvasinda yasiyan bazi Coleoptera türlerinde karincalarla beraber yasama bakimindan önemli olan bir takim koku bezleri tespit edilmistir. Zehir Bezleri Hymenopotera'nin Apocrita alt takiminda çok gelismis olan zehir bezleri sokucu igne ile birlesmis olup vücudun son kisminda bulunur. Endokrin Salgi Bezleri: Çok hücrelilerin tümünde endokrin sistem denen hormon sistemi yeralir. Filogenetik olarak sinir sisteminden kök almistir. Bu nedenle denetim merkezleri sinir merkezleridir. Böceklerde bu merkez nörosekretorik hücrelerdir. Ektoderm kökenli hücrelerin yani nöronlarin meydana getirdigi salgi sivisi veya granülleridir. Hücre gövdesi veya aksonda biriktirilir ve sinirsel uyarim ile aksonlar araciliyla iletilip salgilanir. Uyarilmayi takiben daha sonra tekrar salgilanir. Organizmalarin gelisimi ve aktif devreleri ile bu salgi döngüleri arasinda büyük uyum vardir. Salgilarin bu olaylari baslattigi salgilari hemolenfe verildiginde hormon olarak kabul edilirler. Tabiiki farkli hormonlar farkli islevler olusturur. Yalnizca beyin tek basina çok sayida hormon denetimi yapar. Bu merkez; beyin iç salgi bezlerinin, deri degisimi, kutikulanin sertlesmesi, kalp atisi, bosaltim, vücuttaki su miktarinin ayarlanmasi, fizyolojik renk degisimleri, eseysel bezlerin olgunlasmasi gibi olaylarini denetler. Neurohormonlar hemolenfe verilerek tüm dokulara tasinir. Görüldügü gibi salgi dogrudan veya hücre uzantilariyla bosaltilir. Hücreler arasi bosluklardan miksosöle geçer. Aksonlar ile de bu is gerçeklestirilir, en yakin depolara iletilir ve buradan içerikleri hemolenfe verilir. Endokrin bezleri vücutta çesitli yerlerde bulunur. Vücut fizyolojisini düzenleyen salgilari verirler. Bu salgilara hormon denilmektedir. Beyin içi salgi bezleri: Oldukça iri hücrelerden meydana gelmis ve beynin çesitli yerlerinde bulunabilen bir salgi bezidir. Böcek gelismesi ile ilgili bazi hormonlar salgilar. Bu beyin hormonu, birçok endokrin merkezi uyardigi için hormona aktivasyon hormonu denir. Bu salgilar özellikle deri degisirme ve baskalasimda (metamorfoza) etkilidir. Prothorax Salgi bezi: Birçok böcek takiminin larvalarinda bulunan bir çift salgi bezidir. Ektoderm kökenlidir ve birinci gögüs segmentinde yer alir. Bu bezin hormonuna ecdyson denir. Bu salgi bezi diger endokrin bezlerin salgilari ile isbirligi halinde deri degistirme ve metamorfoz gibi olaylari idare eder. Bu nedenle en belirgin gelisimi metamorfozdan hemen önceki dönemdedir ve sonra dejenere olur. Corpora Cardiaca: Beyinde sentezlenen maddelerin depo organidir. Beyninin gerisinde bir çift olarak yer alir. Ayrica bazi fizyolojik olaylar ve kalp ile barsak kasilmasinin düzenleyen salgilari da içerir. Corpora Allata : Corpora cardiaca ile yakindan ilgilidir. Gelisme sirasinda büyüyen bu bez yasli böceklerde biraz küçülür. Bu bezin gençlik hormonu yani juvenil hormon salgiladigi ispat edilmistir. Bu hormon gelisme sirasinda ergin karakterlerin zamansiz olarak ortaya çikmasini önler. Ergin halden önceki dönemlerde prothorax bezine zit salgida bulunarak, larva ve pupa dönemlerinin sira ile ortaya çikmalarini saglar. Son larva ve pupa döneminde faaliyeti azalarak bu devrelerin geçirilmesine imkan verir. Bazi ergin disi böceklerde bu bezin hormonu, yumurtalarin normal olarak olgunlasmasini idare eder. Keza ergin böcegin genel metabolizmasi üzerine de etkilidir. Hormonlarin Birbiriyle Iliskisi Beyin içi salgi bezlerinin salgiladigi aktivasyon hormonu protorax bezini uyararak ektizonun salinmasini saglarken, diger taraftan Corpora allatayi uyaracak Juvenil h. salinmasina etkili olur. Ektizon ve J. hormon birlikte post embriyonik gelismeyi saglar. Böceklerde gelisme periyodik olmaktadir. Juvenil hormon ve ektizon gerekli titrasyonda oldugu zaman larval pupal gelisme saglanir, sayet juvenil hormonun miktari etkili olacagi konsantrasyondan asagi olursa hayvanda moorfolojik degisiklik yaninda birçok biyokimyasal degismede meydana gelerek metamorfoz gerçeklesir ve hayvan ergin hale gelir. Aktivasyon ve Ektizon hormonunun eksikliginde ise hayvan larval ve pupal diyapoza girmektedir.

http://www.biyologlar.com/boceklerde-salgi-organlari


Herpes simpleks

Herpes simpleks, Herpesviridae familyasına ait, uçuk nedeni olan virüs. Sinir hücrelerine yerleşen bu virüs, birçok insanda görülen uçuk sebebidir. Bağışıklık sisteminin zayıfladığı durumlarda etkin hale geçer. Uçuk virüsü, bulaşıcıdır. Gelişimini baskılamak üzere uçuğun ilaçla tedavisi mümkündür. Uçuk virüsü, 180-250 nm. boyundadır. Genetik materyali DNA'dan oluşur. İnsanların %80 inin hayatlarında en az bir kez uçuk geçirdiği araştırmalarla görülmüştür. Türkiye'de de her yıl 8 milyon kişinin uçuk geçirdiği tahmin edilmektedir. Belirtileri ve Evreleri Yaklaşık 0-24 saat önceden uçuk çıkacak bölgede gıdıklanma, karıncalanma, kaşınma, yanma hissi Bölgede kızarıklık, şişme, içi sıvı dolu kabarcıklar oluşumu Kabarcıkların patlaması ve ağrılar Kabarcıklarda kuruma, çatlama ve sızıntı oluşumu Kabuklanma Kabukların düşmesi, kuru ve gergin deri oluşumu Uçuk Oluşumunu Tetikleyen Faktörler Stres Heyecan Soğukalgınlığı, grip, ateş Ultraviyole ışınlar ve aşırı güneş ışınları Yorgunluk ve uykusuzluk Aşırı alkol Diğer enfeksiyonlar RİSK Sık sık veya uzun süreli olarak uçuk çıkıyorsa (Örneğin tedaviye rağmen 10 günden daha uzun süre devam ediyorsa) Uçuk, bir bebekte ya da 6 yaşından küçük bir çocukta çıkmışsa Dudak, ağız ve burun çevrenizin dışındaki vücut bölgelerinde, özellikle de gözlerinizde, parmaklarınızda ya da cinsel organınızda uçuk çıkmışsa Uçuk ile birlikte baş ağrısı, ateş ve kas ağrısı gibi başka şikayetleriniz varsa Uçuk sarı renkte cerahatli ise Bağışıklık sisteminizi baskı altına alan ilaçlar, örneğin kortizonlu ilaç kullanıyorsanız Bağışıklık sisteminizin zayıflığı (yani bulaşıcı hastalıklarla mücadele etme gücünüzün azalmış olması) nedeniyle tıbbi kontrol altındaysanız.

http://www.biyologlar.com/herpes-simpleks

Çok bacaklılar, Diplopoda, kırkayaklar , Chilopoda, çıyanlar

Çok bacaklılar, Diplopoda, kırkayaklar , Chilopoda, çıyanlar

Çok bacaklılar, çok ayaklılar olarak da bilinir. Omurgasızların Arhropoda (eklembacaklılar) filumundan Diplopoda (kırkayak) , Chilopoda (çıyan), Psuropoda ve Symphyla sınıfları ile soyu tükenmiş Achipolypoda grubunun üyelerine verilen ortak addır. Bazı uzmanlar bu hayvanları Myriapoda sınıfı altında toplar ve yukarıda sözü edilen sınıfları birer altsınıf olarak kabul eder. Küçük bir grup olan çok bacaklıların günümüze değin 11 bin yaşayan türü sayılmıştır. Çok bacaklılar bir çift duyarga, çiğneyici çeneler ve solunum trakerleri gibi birçok çift bacakla donanan kara eklembacaklıları sınıfıdır. Bir çok bacaklının çoğunlukla birbirinin aynı birçok halkasının her biri bir yada iki çift bacak taşır. Cinsellik deliği ya bir tanedir ve arkada bulunur (Chilopoda sınıfı) yada iki tanedir ve öndedir (üyelerinin her halkasında iki bacak bulunan kırkayaklar ve gelişmemiş sineklere benzeyen Symphyla alt sınıfı). Bütün çok bacaklılar yumurtlayarak ürer. Çok bacaklılar genellikle seyrek görülen hayvanlardır. Bazıları geniş kitlesel göçlerle dikkat çekerken, bazıları da ev ve öbür yapıların kuytu köşelerinde barınır. Yaşayan 4 sınıfı ile tropik ve ılıman bölgelere büyük ölçüde dağılmış olan çok bacaklılar, bazı yerlerde toprağın organik bölümünü (humus) kaplayarak toprak faunasında öne çıkarlar. Çeşit ve sayıca en çok ormanda bulunursalar da, çıyanlar başta olmak üzere kimi kırkayak türleri otlak yada yarı kurak çevrelerde bulunur. Kırkayak Familyası: Kırkayakgiller (Julidae). Yaşadığı Yerler: Sıcak ve ılık iklimlerin nemli bölgelerinde, çürümüş kütük, yaprak ve taşlar altında. Özellikleri: Vücutları yuvarlak ve halkalıdır. Her halkadan ikişer çift bacak çıkar. Bitkisel besinlerle beslenir. Çeşitleri: 7000’den fazla türü vardır. Çok bacaklılar (Myriapoda) sınıfının “Diplopoda” takımının Julidae familyası türlerinin genel adı. Vücutları belirgin bir baş ve çok sayıda benzer halkalardan (bölüt) meydana gelmiş eklem bacaklılardır. Her halkada ikişer çift bacak bulunur “Diplopoda” çift bacaklı demektir. Başlarında bir çift anten ve ikişer gözü vardır. Gözleri az çok böceklerin bileşik gözüne benzerse de, dikkat edildiğinde basit (osel) gözlerin meydana getirdiği bir çift küme olduğu anlaşılır. Bazı türlerinde göz bulunmaz. Yaşayışlarına uygun olarak antenlerinde koku alma tüyleri çok hassastır. İç anatomisi çıyanınkine benzer. Çıyanlar etçil, kırkayaklar otçuldur. Çok ayaklı olmalarına rağmen çok yavaş hareket ederler. Kırkayakların vücut halkalarından ikişer çift bacak çıkmasına karşılık çıyanlarda birer çift çıkar. Bacakların sayısı, türlere göre değişir. Kırkayakların çoğunda 115 çift bacak bulunur. Çıyanlarda 15 çiftten 173 çifte kadar değişir. Çokbacaklılarda her zaman tek sayıda bacak çifti vardır. Kırkayakların embriyon döneminde her halkada bir çift ayak bulunur. Yetişkinlerin her halkası iki embriyon parçası ihtiva ettiğinden iki çift bacaklı olurlar. Trake (özel solunum boruları) sistemiyle solunum yaparlar. Kırkayaklar sıcak ve ılıman bölgelerde yaşayan kara hayvanlarıdır. Genellikle koyu kahverenklidirler. Gündüzleri nemli yerlerde yaprak, ağaç kabukları ve taşlar altında gizlenir, gece beslenmeye çıkarlar. Çoğunlukla çürümüş bitkisel besin yerler. Bazen tarlalarda, sürüler halinde, bitkilerin kök ve filizlerini de yediklerinden büyük zararlar yaparlar. Çileklere çok musallat olurlar. İnsan ve hayvan dışkılarını da yediklerinden, tenya (şerit) yumurtalarının yayılmasına yardım ederler. Yuttukları barsak parazitlerinin yumurtalarını, sindirmeden tekrar dışarı atarlar. Boyları 1-20 cm arasında değişir. Benekli kırkayak (J.gutularus) 10-18 mm boyundadır. Memleketimizde bulunanların boyları 10-46 mm’dir. Tropik memleketlerde 15-20 cm’ye ulaşanları vardır. Yumurta ile ürerler. Yumurtalar, topraktan yapılmış bir yuvaya yumurtlanır ve dişi tarafından korunur. Genellikle yavrular 12-15 gün sonra yumurtalardan çıkarlar. Hayatları boyunca birkaç defa deri değiştirirler. Her deri değiştirmede, vücut halkalarının sayısı artar. Larvalar, bir yıl içinde erginleşirler. Kitinli derileri, antibiyotik etkisi olan pis kokulu, zehirli bir sıvı salgılar. İri olanlarının salgısı, insan elini tahriş eder. Testiden su içerken yutulursa, zehirlenmeye sebeb olabilir. Bazan yapraklar üstünde dolaşırlar. Korkutuldukları zaman kendilerini yere atarak, saat zembereği gibi helezoni kıvrılır, ölü taklidi yaparlar.

http://www.biyologlar.com/cok-bacaklilar-diplopoda-kirkayaklar-chilopoda-ciyanlar

HIV Virüsü ( Human Immunodeficiency Virus )

HIV Virüsü ( Human Immunodeficiency Virus )

HIV (İngilizce: Human Immunodeficiency Virus / İnsan Bağışıklık Yetmezlik Virüsü), AIDS'e yol açan virüs. HIV virüsü, bağışıklık sistemine zarar vererek hastalığa neden olur. Vücudu mikroplardan koruyan bağışıklık sistemi çalışmadığında, mikroplar daha kolay hastalığa neden olabilir. Kanında HIV virüsü bulunmayan kişiler HIV negatif kişilerdir. Kanında HIV virüsü bulunan kişilere "HIV pozitif" veya "HIV enfeksiyonlu" denir. Bu kişiler aynı zamanda kanında antikor bulunan anlamında sero (anti-HIV, veya bilinen ismiyle ELISA testi) pozitif kişilerdir. Ancak ilk bulaşma döneminde seronegatif kişiler aynı zamanda enfeksiyon taşıyan kişiler olabilirler. AIDS AIDS (Acquired Immune Deficiency Syndrome, Sonradan Edinilen Bağışıklık Sistemi Bozukluğu) anlamına gelir. Sonradan Edinilen ifadesi hastalığın irsi olmadığını anlamına gelmektedir. Bağışıklık Sistemi Yetersizliği ifadesi ise vücudun bağışıklık sisteminin çökmesi anlamına gelmektedir. Sendrom kelimesi ise bir başka hastalıkla bağlantısı olabilecek çeşitli hastalıklar anlamına gelmektedir. Bir HIV taşıyıcısı hastaymış gibi görünmeyebilir veya taşıyıcı kişi kendini hasta hissetmeyebilir, HIV virüsü taşıdığını bile bilmeyebilir. Çünkü, HIV taşıyıcılarında semptomların ortaya çıkmasına ve ölüme yol açan şey HIV virüsünün kendisi değil, vücudun bağışıklık sisteminin çökmesiyle tamamen savunmasız kaldığı diğer enfeksiyonlardır. Virüsün yapısı Virüs tek sarmallı RNA yı çevreleyen p24 proteinlerinden oluşan kapsit, bunun dışında küçük bir matriksi çevreleyen kılıftan oluşur. Kılıfta virüsün antijenik yapısını belirleyen glikoproteinler bulunur. HIV virüsünün üç glikoproteini vardır. Bunlar: gp160: Proteaz enzimi ile alt üniteleri olan gp120 ve gp41'e bölünerek iki ayrı glikoprotein oluşur. Bu proteinler virüsün membranında bulunurlar. gp41: HIV'in yaşamasını sağlar. gp120: HIV'in DNA'ya girmesini sağlar. LEDGF: HIV'in DNA'ya nasıl gireceğini belirler. Kronoloji İlk defa Leopoldville, Belçika Kongo'sunda yaşamış bir kişiden 1959 alınan kanda tespit edildi. O tarihten beri dolapta saklanan kanın, 1998'de geliştirilen HIV testi ile hastalığı taşıdığı onaylandı. Dünyayı dolaşmış, 1961'de Batı Afrika'da uzun yolculuk yapmis Norveçli bir gemici bağışıklık yetersizligi ile 1966 öldü. Karısı ve kızı da ertesi yıl aynı sebeple öldü. Danimarkalı bir cerrah olan Dr. Grethe Rath, Zaire'de bir seri enfeksiyon ve ender görülen Pneumocystis carinii pnömonisi ile öldü. 1979-1981 arası, normalde çok ender görülen, 12 Kaposi Sarkomu'dan vakası tespit edildi. 1981'de Kaliforniya Üniversitesi'nde Pneumocystis carinii tanısı tedavi edilen bir eşcinsel hastada CD4 T hücrelerinin (yardımcı T hücreleri) eksikliği tespit edildi. 1982'de CDC hastalığa AIDS ismini verdi. 1983'te daha sonra HIV ismi verilecek olan retrovirüsten kaynakladığı bulundu. 1984'te HIV için ELISA testi geliştirildi. Bulaşma yolları ve önlemler HIV virüsü bulaşabilmesi için, virüsün dış ortam koşullarında bozulmayacağı kadar kısa bir süre içinde bir kişiden diğerine nakledilmesi gerekir. Bu da virüsün diğer vücut sıvılarının içinde bir kişiden diğerine iletilmesi ile gerçekleşebilir. HIV virüsü cinsel ilişki, direk kan teması, organ nakilleri ve anneden bebeğine olmak üzere dört yolla bulaşır. Cinsel ilişki HIV vücuda HIV virüsü taşıyan birisinin kanı, spermi, vajinal akıntıları veya diğer vücut sıvıları transferi yoluyla bulaşır. Bu durum; vajinal, anal veya oral seks sırasında gerçekleşebildiği transferi ile de bulaşıcılık olacağı anlamına gelir (parenteral yol). Lateksten yapılmış bir prezervatif kullanarak HIV virüsünden korunulabilir. Doğum kontrol hapları ve lateks olmayan prezervatifler, HIV virüsünden koruma sağlayamaz. HIV virüsü hem bir erkekten hem de bir kadından bulaşabilir. Herhangi bir cinsel hastalık, HIV virüsünün bulaşma ihtimalini daha yükseltir. HIV virüsünün iki tipi mevcuttur. Tip II de kadından erkeğe bulaşma ihtimali, Tip I de ise erkekden kadına bulaşma ihtimali daha yüksektir. Afrikada 2 nci tip Avrupa ve Amerika'da ise 1 nci tip daha sık görülür. Damardan uyuşturucu madde kullanımı HIV virüsü taşıyan birisiyle kontamine bir iğne paylaşılırsa, virüs bulaşabilir. (Bu intravenöz (damardan) uyuşturucu bağımlıları arasında HIV'in en önemli bulaşma yoludur.) Dövme ve vücuda piercing yaptırma işlemlerinde kullanılan iğneler, kontamine ise HIV bulaşabilir... Organ, kan ve kan ürünleri nakli Gerekli araştırma testleri yapılmamış organ, kan ve kan ürünleri nakli yoluyla da HIV virüsü bulaşabilir. Bu durumun engellenmesi için her türlü organ, doku, kan ve kan ürünleri nakli öncesi nakle engel hastalıklar yönünden alınan materyaller kabul eden merkezler tarafından dikkatle kontrol edilir. Araştırma testlerinin pencere döneminde bulunan hastalarda yalancı negatif sonuç vermesi halinde, bulaşma gerçekleşebilir. HIV testleri HIV vücuda girdiğinden itibaren, vücutta bununla savaşmak için özel antikorlar oluşur. Kandaki bu antikorların ELISA testi (indirekt tanı methodu) veya direkt virüsün proteinlerini tespit eden PCR testi (Direkt Tanı Metodu) gibi tarama yöntemleriyle saptanma çalışmalarıdır. Anti-HIV antikorların ELISA yöntemiyle ölçülebilecek düzeye ulaşması için en az 3 aylık bir süreye (pencere dönemi) ihtiyaç vardır. Bu nedenle test, bulaşma olduktan 3 ay sonra yapılmalıdır. PCR yönteminde ise bu süre 3 haftaya kadar düşmüştür. Anti-HIV testinin pozitif olması, kanda HIV virüsüne karşı antikorların olduğunu gösterir. Ancak anti-HIV testinin yalancı pozitif çıkma ihtimali de vardır. Bu nedenle, kişinin HIV pozitif olduğunun söylenebilmesi için, Western blot testi denen doğrulama testinin de yapılıp sonucunun pozitif olması gerekmektedir. Anti-HIV testi, üniversite hastanelerinin mikrobiyoloji laboratuvarlarında, sigorta ve devlet hastanelerinin laboratuvarlarında ve özel laboratuvarlarda yaptırabilir. Son zamanlarda HIV virüsünün kandaki varlığının direkt kantlanması PCR (polymerase chain reaction = polimeraz zincir reaksiyonu) yöntemi ile de yapılabilmektedir. Pencere dönemi Pencere dönemi ile ilgili belirsizlikleri gidermek için bazı açıklamalar yapılmalıdır; zira "Üç Ay" ifadesi, HIV virüsüne maruz kalmış her bünyenin 'üçüncü ayda' antikor üreteceği gibi yaygın bir yanılgıya yol açmaktadır. Halbuki pencere döneminin kişiden kişiye değişiklik gösterdiğini vurgulamak gerekir. "Üç Aylık" süre, uluslararası sağlık kuruluşlarının tüm bünyesel farklılıkları da kapsayacak şekilde belirlediği 'maksimum' süredir. Yani bu, HIV ile enfekte olmuş yüz kişiden varsayalım ki %45'inin, 35. günde; %25'inin 50. günde; %15'inin 65. günde; %10'unun 75. günde; %5'inin de 90. günde yeterli antikor seviyesine ulaşacağı anlamına gelir (Oranlar tamamen kurgusaldır). O halde belirlenmiş olan "üç ay" sınırı, 'en geç antikor üreten bünyeyi' de hesaba katarak düşünülmüş 'maksimum' sınırdır. CDC (Center of Disease Control -USA) gibi bazı büyük sağlık örgütleri, testin altıncı ayda tekrarlanması gerektiğini savunmaktadır. Antikor oluşturma (serokonversiyon) süreci üç ayı geçen çok nadir bazı vakalar rapor edilmişse de bunlar o kadar nadirdir ki, tıp makalelerine konu olur. Birçok sağlık örgütü eğer çok kesin bir risk yoksa, 'altıncı ay' testini gereksiz bulmakta ve CDC'yi tutucu olmakla eleştirmektedir. Bazı kuruluşların 'pencere dönemi' ile ilgili olarak verdikleri süreler, "Üçüncü Ay"ın maksimum sınır olarak düşünülmesi gerektiğini kanıtlamaktadır: New York Sağlık Müdürlüğü’nün hazırladığı broşüre göre "New York’ta kullanılan HIV antikor testlerinde, enfekte olmuş insanların neredeyse tümü bir ayda pozitif çıkmaktadır. Hatta bunların çoğunluğu, daha bile kısa surede pozitif sonuc vermektedir." Kaliforniya AIDS Merkezi'nin 1998'de yayınladığı rehber %96'dan daha fazla sayıda insanın, 2 ile 12 hafta arasında pozitif sonucu eline alacağını söylüyor. Çok nadir bazı durumlarda, bunun altı aya uzayabileceği belirtiliyor. AIDS Sağlık Projesi (ABD) danışmanları, ortalama süreyi 25 gün olarak veriyorlar. AIDS Update 98 adlı broşür, "Çoğu örnekte, HIV antikorları 6 ile 8. haftada görünür hale gelirler" demektedir. Bu konuda son derece zengin bir arşivi olan HIVinsite web sitesi, süreyi 6-12 hafta olarak belirliyor. Amerikan Seattle & King County Kamu Sağlığı Sitesi, şöyle diyor: “Çoğu insan, saptanabilir antikor düzeyine 4-6 hafta içinde gelir. Bazı insanların daha uzun sürebilir; ama neredeyse %99'u üç ay içinde antikor üretmiş olur. Üç ayı gecen serokonversiyon olayları çok çok nadirdir.” AIDS servislerinde ve laboratuvarlarında calışan doktor ve virologlarin (Dr. Sindy Paul, Evan M Cadoff, Eugene Martin) yazdığı, "Rapid Diagnostic Testing for HIV – Clinical Implications" (Business Briefing: Clinical Virology & Infectious Disease, 2004) adli makalede, pencere dönemi 30-60 gün olarak veriliyor. San Fransisko AIDS Derneği, şöyle demektedir: "Üç aylık pencere dönemi, insanların tümü için normal süredir. Bu insanların çoğu, üç ile dört hafta içinde saptanabilir düzeyde antikor üretir. çok, çok nadir durumlarda, bir insanin antikor üretmesi altı ayı bulabilir." Kızılay, antikorların tespit edilme suresini 2-6 hafta olarak veriyor. Kızılhac, antikorlarin tespit edilme süresini en geç 70 gün olarak veriyor. Amerikan Kamu Sağlığı Kurumu'nun Test Kılavuzunda, 1985-90 yılları arasında kullanılan antikor testinin pencere döneminin ortalama 45 gün olduğu söyleniyor. Fakat günümüzdeki testlerin, bunu 20 gün daha düşürerek, 25 güne indirdiği belirtiliyor. BERNARD WEBER, EL HADJI MBARGANE FALL; ANNEMARIE BERGER ve HANS WILHELM DOERR'in birlikte yazdıkları makalede, pencere dönemi ortalama 10.2 ile 27.4 güne kadardır şeklinde belirtiliyor. Tedavi HIV/AIDS'in tedavisinde olumlu gelişmeler vardır. Günümüze kadar bulunan ilaçlardan farklı etki mekanizmalarında olanların ikisinin ya da üçünün birlikte kullanımıyla HIV pozitif kişilerin kaliteli ve uzun bir yaşam sürebilmeleri sağlanmaktadır. Tedavi doktor kontrolünde ve kesintisiz olarak yaşam boyu sürdürülmelidir. Bu ilaçlar çok pahalıdır. Ancak, şu anda Türkiye'de saptanmış Aids hasta sayısının az olması da önemli faktör olmalı ki; Bağkur, SSK, Emekli sandığı, Yeşil Kart gibi Sigortalar aylık masrafın 1000-1500 USD olduğu ilaç maliyetlerini karşılamaktadır. Aids şüphesi olanlar derhal ELISA testi yapmalıdırlar ki uzun süreli hayat sürme imkânını yakalayabilsinler, her hastalıkta olduğu gibi bu hastalıkta da erken tanının faydası çok büyüktür. HIV virüsünü kapmak her şeyin sonu değildir, isteyen hastalar Aids Savaş Derneğinden psikolojik destek de alabilirler. Korunma Spermdeki ve vajina salgısındaki HIV, dış ortamda birkaç saatte, kuru ortamda ise yarım saatte ölür. HIV kurumuş kanda da kısa zamanda ölür. Hastanın ya da seropozitif kan, sperm veya vajina salgısının bulaştığı eşyadaki HIV'in öldürülmesi: Eşyayı birkaç dakika kaynatarak ya da 60 C°'de 30 dakika ısıtarak virus öldürülür.Sulandırılmış çamaşır suyu temas ettiği HIV'i 10 dakika içinde öldürür. Sodyumhipoklorid, çamaşır suyunda bulunan etkili maddedir, içinde klor vardır. Çamaşır suyu şişesinin üzerindeki tarifeye göre (genellikle 10 kez) sulandırılarak kullanılır. Sulandırılan çamaşır suyunda klor kokusu bulunmalıdır. Çamaşır suyu kullanılacağı zaman sulandırılmalıdır, durmakla bozulur. Çamaşır suyu madensel eşyaya zarar verir. Ultraviyole ile ışınlama (mavi ışık) HIV'in yok edilmesi için önerilmeyen bir yöntemdir. Ultraviyole ışını doğrudan temas ettiği yüzeydeki mikropları öldürür. Cismin altında kalan mikropları öldürmez. Deri HIV'den nasıl arındırılır? Su ve sabunla iyice yıkama ile (en az 15 saniye) bütün mikroplar gibi HIV de deriden uzaklaştırılabilir. Yıkandıktan sonra derinin alkol ile temizlenmesi uygun olabilir. Yaralanma durumunda yara yeri, önce sabun ve su ile iyice yıkanmalı, ardından tentürdiyot veya betadin gibi bir antiseptik ile temizlenmelidir. Ortaya Çıkışı AIDS hastalığının Afrika’da maymunlardan insanlara geçtiği düşünülüyor. Bu virüsün orta Afrika’da şempanze avlayan insanlara bu esnada aldıkları yaralar vasıtasıyla veya sonrasında şempanze etiyle temas ettiklerinde geçmiş olabileceği iddia edilmekte.

http://www.biyologlar.com/hiv-virusu-human-immunodeficiency-virus-

Embriyogenez

Biyolojinin bütün problemleri arasında en büyüleyici ve en zor olanı embriyogenez yani embriyonun yaratılmasıdır. Embriyogenez; tek hücrenin döllenmiş yumurtanın, hedef aldığı çok hücreli karmaşık organizmaya ulaşırken attığı adımlarla ilgilidir. Bu hedef bütün ince ayrıntılarıyla, gelişme olayının orkestrasyonu üzerine talimatları içeren, DNA'da yazılıdır. Bu harikulade işin nasıl olduğunu henüz anlayamamış olduğumuzu hemen söyleyebilirim, ama en azından çevresinde araştırmalar yapıyoruz. Hücreler Birbirine Yapışır ve Uzmanlaşır Döllenmiş bir yumurta, diğer daha basit tek hücreli yaratıklar gibi yaşamına iki ayrı hücre oluşturmak için bölünerek başlar; bu iki hücre bölünüp dört olur ve bu böyle sürüp gider. Tek hücreli yaratıkları gözlemleyerek, her bölünmeden sonra hücrelerin ayrılacağını umuyoruz. Ama döllenmiş yumurtadan üreyenler ayrılmıyorlar, toplumsal bir girişime katıldıklarını bilirlermiş gibi birbirlerine sıkıca yapışıyorlar. Kısa bir süre sonra başka bir şey açığa çıkıyor. Hücreler birbirlerine benzemeyen ve değişik davranan gruplar oluşturuyorlar. Hücre grupları artık uzmanlaşmaktadırlar. Her grup belirli sayıda özel görevleri yapmakla yükümlüdür. Uzmanlaşma işinin geriye dönüşü yoktur. Erken embriyogenez iki özelliği, hücre yapışması ve hücre uzmanlaşması, bunlar gelişme işleminin temelinde yatıyorlar. Değişkenliğin Kökeni Şimdiye kadar organizmaların nasıl uzun zaman geçtikçe giderek farklılaştığım belirleyen ve bütün canlı yaratıklar için geçerli yasaları öğreniyorduk. Bütün canlı yaratıklar kendilerini oluşturan bilgiyi DNA'da biriktirirler, DNA'yı mesajcı RNA'ya kopya ederler, mesajcı RNA'yı proteine "tercüme ederler". Dahası, DNA'nın mutasyonla veya cinsel karışımla değişmesi proteinlerin kalıcı değişimine neden olur. Böylece organizmalar arasında gittikçe artan farklılıklar ortaya çıkar ve sonunda yeni türler doğar. Bazı bakımlardan embriyogenez, evriminin, kısa bir zaman aralığında ve mikrokosmosta tekrarı gibidir. Hayvan embriyosunun gelişmesini değişik aşamalardan geçerken gözlemleyelim. Embriyo, erişmesi beklenen yetişkin yaratığa benzemeden önce balığa benzer. Balığa benzerlik yalnız görünüşte değildir; erken embriyo oksijen ve besini göbek bağı yoluyla annesinden alır, ama gereksinimi olmadığı halde su altında nefes almaya yarayan solungaçlara da sahiptir. Açıkçası embriyonun evrimsel gelişmenin bir aşamasını yinelemesi için görünürde hiçbir neden yok. Ama embriyogenez süresince farklılık nasıl doğar, hücreler deri hücresi, kas hücresi, sinir hücresi olmaya ne zaman karar verirler diye sorsak, doğa boş bakışlarla cevap verir bize; hücrelerdeki bilgi işleminin evrensel mekanizması üzerine bir sürü şey öğrenmemize izin verdi, ama sıra hücreleri birbirinden farklı yapan nedenlere gelince bilgisizlik içinde oturuyoruz. Bazı bilim adamları embriyogenezin derinliklerine dalabilmek için tümüyle yeni kavramlara ve yöntemlere gereksinimimiz olduğuna inanıyorlar. Bunun böyle olduğundan kuşkuluyum. Yalnızca, hücreleri değişik yapan nedenler şimdiye kadar bulduklarımızdan daha karışığa benziyor. Tıbbın Embriyogenezle İlgisi Tıp bilimi için embriyogenezin anlaşılması önemlidir. Tıp adamlarının ilgilerini başka hiç bir olaya benzemeyen ölçüde bileyen, yalnızca bir tek hücrenin tam bir bireye dönüşebilmesi değil. Tıbbın; hamilelik, doğum kontrolü, çocuk ölümleri, doğuştan itibaren görülen hastalıklar, kalıtım hastalıkları ve kanser gibi problemlerin daha iyi denetlenmesi üzerine araştırmalarıyla da ilişkili. Bilim adamlarının embriyogenezin anlaşılmasının çok sayıdaki tıbbi probleme ışık tutacağı beklentileri var. Hücrelerin Yapışkanlığı Üzerine Birkaç Söz Daha Döllenmiş yumurta bölünmeye başladıktan sonra, hücrelerin birbirinden ayrılmayıp yapıştıklarından söz etmiştim. Yapışmalarını ne sağlıyor? insanın aklına bir yapışkan maddenin varlığı geliyor, ama gerçekte yapışkanlığı sağlayan bir madde değildir. Daha çok hücrelerin yüzeylerinde girintiler, çıkıntılar varmış gibi görünüyor (diğer hücrelerin çengellerine geçebilen ufacık çengeller). Hücrenin DNA'sı, gerçekte protein-yapan makineye, hücrenin dışına doğru göç edip orada girintili çıkıntılı bir yüzeyde çengel gibi davranacak belirli özel proteinler yapması talimatını vermiştir. Hücreler, bedenin değişik kısımlarını oluşturmak için uzmanlaşırken, yüzey protein çengelleri de amaca göre biçimlenirler. Bunlarla hücre tipleri birbirinden ayırt edilir. Embriyogenez İçin Enerji Şimdi bütün yapım işlerinde enerjinin gerekliliğine tümüyle duyarlı hale gelmiş olmalısınız. Hücrelerinin yakılıp ATP üretebilmesi için gelişmekte olan embriyoya şeker verilmelidir. Balıklarda, sürüngenlerde, kuşlarda ve embriyonun bir yumurta içinde büyüdüğü diğer yaratıklarda, yumurtanın sarısı embriyonun besinini sağlar. Annelerinin rahminde büyüyen hayvanlarda başka bir araç kullanılır. Anne iç duvarıyla embriyo arasındaki plasenta denen tabaka embriyo ile aynı hızla büyür. Plasenta, annenin kanıyla gelişen embriyonun kanının karıştığı yerdir. Annenin yediği besini getiren kan burada embriyonun kanına karışır. Yapım projesi için enerji böylece sağlanır. Bütün Hücrelere Aynı Bilgi Dağılmıştır Döllenmiş yumurta, anneden ve babadan aldığı tam büyüklükteki DNA ile yaşama başlar. Bölündükçe, yeni gelen her hücre kuşağı yetişkinliğe ulaşana kadar aynı büyüklükte DNA alır. Sonunda 60 trilyon hücreden oluşan bir insanda 60 trilyon birbirinin aynısı DNA kopyası bulunur! Bedenin her hücresinde, tamamen aynı bilgi bulunur. Yalnız üreme hücreleri diğer hücrelerin yarısı kadar DNA içerirler. Gen İfadesinin Denetlenmesi Embriyogenezin sırrının DNA'nın genlerinin ifadelerinin hücreler tarafından nasıl kontrol edildiğinin bilinmesinde gizli olduğu görülüyor. Bir yetişkini yaratmak için gerekli bütün bilgi hücrededir. Gelişen embriyonun her hücresinin içinin derinliklerini gözlemleyebilseydik, bazı şeylerin oluşumunu izleyebilecektik. Enzimler, döllenmiş yumurtanın DNA'sının genlerinin bazılarını mesajcı RNA'ya kopya etmeye başlayacaklardı. Mesajcı RNA'lar, daha en başta yumurtanın içinde bulunan, embriyoda etkin olan ribosomlara gideceklerdi ve burada gerekli proteinlerin sentezi başlayacaktı. Döllenmiş yumurta, reçetesinde yazılı proteinlerin tümünü biraz daha ribosomla birlikte toparladıktan sonra (ve DNA'sını iki katına çıkardıktan sonra) bölünecekti. Sonuçta oluşan hücre çiftlerinde, şimdi yeni bir tam ölçü DNA, yeni ribosomlar ve yeni her şey bulunacaktı. Kendisinden doğdukları hücrenin tümüyle tıpkısı olacaklardı. Protein sentezi işlemi ve yeni hücre yapımı kendi kendisim, yineleyerek, hücre sayısı dört hücreye ulaştırılacak, sekiz hücreye çıkmak için yeniden... Kısacası bunun böylece sürüp gittiğini görecektik. Buraya kadar işlem, bölünen bakteride sürüp gidenin hemen hemen aynı. Her kuşak hücre kendisinden öncekinin aynen yinelenmesi. Fakat uzmanlaşma başladığı zaman, yeni bir şeyler katılıyor olmalı. Eğer üreyecek hücrelerin bir grubu deri, diğeri kas, bir başkası beyin vb. olacaksa, DNA gerekli yönlendirmeyi sağlamalıdır. Yalnızca hücreler arasındaki sürekli artan farklılığı değil, aynı zamanda farklılığın ne zaman başlayacağını belirlemelidir. Gelişen hücre topluluğu içindeki her bir hücrede tamı tamına aynı ölçüde DNA bulunur. O zaman hücreler nasıl farklı olabilirler? Birincisi şunu hatırlayalım, deri hücresi, kas hücresi, beyin hücresi olsun, belli bir hücrenin karakterini, yaptığı proteinler belirler. Örneğin, deri hücreleri, keratin denilen özel bir protein yönünden zengindirler (deriye bizi koruyan özel yeteneğini veren protein). Kas hücreleri myosin denilen bir proteinle sarılmıştır. Bu proteinin özel yeteneği, bir eş proteinle etkileşip uzunluğunu değiştirebilmesidir. Böylece kas liflerinin kasılmasına yol açarlar. Beyin hücreleri elektrik güçler iletmeye yardımcı proteinler içerirler. Diğer bütün uzmanlaşmış dokuların hücreleri, hücrenin özel karakterini belirleyen kendilerine özgü proteinleri üreteceklerdir. Böylece bazı hücreler deri hücreleri olarak amaçlarını gerçekleştirmek için keratin üretmeye; diğerleri kas hücresi olabilmek için myosin üretmeye başlayacaklardır. Aslında, bütün hücrelerdeki DNA'larda keratin için bir gen myosin için diğer bir gen bulunur. Genler orada hazır bekliyorlar. Öyle görünüyor ki deri hücrelerinde keratin yapılması ifade edilirken, myosin baskı altına alınmak zorunda. Diğer yandan, kas hücrelerinde myosin ifade edilmeli ve keratin geni bastırılmalıdır. Yani deri hücrelerindeki keratin geni, keratin mesajcı RNA'sı olarak okunuyor. Ribosoma gidiyor orada keratin proteinine çevriliyor. Bütün bunlar gerçekleştikten sonra hücre deri hücresi haline geliyor. DNA, embriyo gelişimi sürerken, programlı bir sıralama ile genlerini her birinin sırası geldikçe ifade edip bastırabilmelidir. Belli türden bir hücre oluşumu yüzlerce protein gerektirir, yani bu hücrelerde. bir çok gen ifade edilirken daha çoğu da (başka, hücrelerin proteinlerini kodlayan genler) bastırılır. Gerçekten dikkate değer bir durum! DNA bütün genlerle birlikte, bu genlerin ne zaman işe koşulacağını ne zaman bastırılacağını da biliyor. Klonlar Klon, tek hücreden üremiş hücreler topuluğudur. İlkel kardeşlerimiz bakteriler, sürekli klonlar oluştururlar. Bir bakteri hücresini bir tabak yiyeceğin üzerine koyarsak, hemen bölünüp iki hücre, bu iki hücre bölünüp dört hücre olur ve bu böyle sürüp gider, iki gün içinde bakteri kütlesi çıplak gözle görülebilir hale gelir. Bu kütle bir klondur; bir tek orijinal hücreden üremiş milyonlarca yavru hücreden oluşur. Bu klondan bir tek yeni hücre alıp yine bir tabak yiyeceğin üzerine yerleştirirsek, birincisinde olduğu gibi bir klon oluşana kadar bölünecektir. Klon oluşturmak bakteri için oldukça kolay bir iştir, çünkü bütün hücreler birbirinin aynıdır. Daha gelişmiş bir organizmadan klon yapmak çok daha karmaşıktır. Ama teorik olarak mümkündür. Yaratıkların her hücresinde aynı DNA her şeyiyle tam bir bireyi oluşturmak için gerekli bilgiyi taşıdığına göre, tamamen teorik planda; herhangi bir hayvandan bir hücre alıp onu bir kap besinin üzerine veya beslenebileceği başka bir ortama koysak ve tam bir hayvan organizmasını üretmesini sağlasak, aslının kusursuz bir kopyasını geliştirmek için gerekli bütün bilgi, o tek hücrenin DNA'sında vardır. Bu olasılık, özellikle de insanın klon yoluyla oluşturulabileceği düşüncesi, yani bir tek insan hücresinden geliştirilmiş her şeyi tamam bir insan yaratmak, popüler yazarların hayal gücünü harekete geçirdi. Böyle bir olasılık gerçekleşmekten son derece uzaktır. Diğer yandan bir tek hücrenin aslında tam bir bireyi ortaya çıkarabildiğini biliyoruz; döllenmiş yumurta, tam bir yetişkin varlık olduğu zaman bu gerçekleşiyor. Ama olan biten tek yönlü bir işleme benziyor. Canlı yaratıklar, kolay kolay hücrelerinden herhangi birinin döllenmiş yumurta gibi bölünmeye başlayıp kendi tıpkı kopyalarını oluşturmasını sağlayamazlar, Bizim hücrelerimiz kendi uzmanlaşmış durumları üzerine sıkı bir denetleme uygularlar. Örneğin deri hücreleri deri hücresi olarak kalırlar, tıpkısı tıpkısına ayrı bir birey olmak şöyle dursun, değişip kas hücresi olmaya bile yeltenmezler. Hücrelerimizin, çevrelerinin etkisiyle mi böyle değişmez oldukları tartışılabilir. Bir hücreyi komşularından ayırsak, belki beklenmeyen bir davranışa yönelecektir. Böyle bir deney kurbağa larvası hücreleriyle aşağıda anlattığımız gibi yapılmıştır: Önce, kurbağa yumurtalarındaki hücre çekirdekleri ve dolayısıyla DNA'ları tahrip edilmiş, sonra genç larvaların rasgele bazı hücrelerinden alınmış çekirdekler, DNA'sız kurbağa yumurtası hücrelerine yerleştirilmiştir. Kısa sürede yumurtalardan yeni larvalar, hatta bazen kurbağalar gelişmiştir. Yani larvalar bir tek larva hücresinden üremiş birer klondurlar. Benzer klon yapma deneyleri, fareler ve başka hayvanlar üzerinde de yapılmış, ama başarıya ulaşılamamıştır. Klon başarısızlık, hücre karakterindeki dengeliliğini ortaya çıkartıyor. Her hücrenin DNA'sında bulunan, başka bir hücre olabilme potansiyeline karşın, hücreler bu potansiyel avantajı kullanmazlar. Genlerinin çoğu durdurulmuştur. embriyogenezi derinliğine araştırabilmek için genlerin ifade edilip edilmemesini neyin belirlediğini öğrenmeliyiz. Genlerin Başlatma - Durdurma Mekanizmasının Özelliği Hücreleri farklılaştıran gen çalıştırma mekanizması, insanın aklına keskin bir soru getiren ilginç bir bilinmeyendir. Genler nasıl harekete geçirilip durdurulabilirler? Daha önce de söylediğimiz gibi en açık yanıtlar en basit sistemlerden gelir. Yine, o alelade bakterilerin davranışlarına bakalım. Bazı hücreleri taze bir büyüme solüsyonu içine atıp, şeker olarak örneğin glukoz ekleyelim. Hücreler bölünmeye başlarlar ve sayılan hızla yükselir. Bu, glukoz tüketilene kadar sürer. Sonra büyüme durur. Aynı gözlemi, yine benzer bir hücre grubuyla bu sefer değişik bir şekerle, diyelim galaktozla deneyelim. Hücrelerin sayılan artar, ama glukozla olduğundan daha yavaş artar ve galaktoz bitince büyüme durur. Glukozun, daha hızlı tüketildiği için galaktozdan daha iyi bir besin olduğu sonucuna varırız. Ama her iki şeker de bakteri tarafından kullanılmıştır. Hiçbirini ziyan etmiyor bakteriler. Şimdi deneyi hem glukoz hem galaktoz kullanarak yineleyelim, ilginç birşey olur, glukozun tümü tüketilene kadar nüfus hızla artar. Sonra yirmi dakika kadar artış durur. Ve bu sürenin sonunda yeniden başlayıp galaktoz tüketilene kadar sürer. Hücrelerin glukozu yeğledikleri açıkça görülüyor. Ancak, yirmi dakikalık bir aradan sonra galaktozu kullanabilme yeteneğini kazanıyorlar. Bunun genleri harekete geçirmek ve durdurmakla ne ilgisi var? Bu basit sistemin analizi, 1950'lerin sonuna doğru, Fransız bilim adamları François Jacob ve Jacques Monod'ya gen ifadesinin denetlenmesi üzerine parlak bir ilham verdi. Şimdi bakterilerde mekanizmanın nasıl çalıştırılabildiği kanıtlanmış durumda; bu bizim gibi daha karmaşık organizmalarda da geçerlidir belki ama burası henüz kesinlikle bilinmiyor. Bakteriler, alışık olmadıkları bol şekerle uğraşırken içlerinde ne olup bitiyordu? Bakteri hücrelerinin glukoz kullanacak makineleri olduğu açıkça görülüyor, çünkü bu şeker verilir verilmez yemeye başladılar. Bu makine iki proteinden oluşuyor: Şekerin hücreye girmesini sağlayan bir enzim ve içeri girince onu hazmedecek bir enzim. İki enzim; iki gen. Bu makinenin galaktoz kullanan karşılığı henüz hücrede yok; veya en azından iki şekerin bulunduğu solüsyonda büyüme başladığı zaman yoktu. Glukoz tükenince galaktozu kullanacak makine kuruluyor. Glukozun bulunmaması, galaktoz kullanan makinenin geliştirilmesi için tetiği çekiyor. Glukoz, galaktozu kullanmak için gerekli enzimleri denetleyen genlerin ifadesini önlüyordu ve bastırıyordu. Glukoz bitince baskının etkisi kayboldu ve böylece galaktoz genleri, mesajcı RNA'ları yapmaya başlayıp proteine çevirebildiler. Bütün bunların bakteri için anlamını düşünün. Eli altındaki en iyi besini yiyor ve besin, bakteri içinde enerjinin başka besini kullanmak için enzimler yapılarak ziyan edilmemesini de ayarlıyor, iyi besin tükenince el altında yalnızca daha zayıf besin kalıyor. O zaman bakteri işe girişip bu besini kullanabilmesi için gerekli enzimleri yapıyor. Bakteriler Kendilerine Verilen Şeyleri Üretmezler Bahçenizde kendi kullanımınız için sebze yetiştiriyor olsanız ve birileri size düzenli olarak bu sebzelerden vermeye başlasa, belki de kendiniz yetiştirmekten vazgeçerdiniz. Bakteriler de buna benzer bir şey yaparlar. Kendi gereksindikleri amino asitleri yapabilirler (protein zincirindeki yirmi temel halka). Amino asitler olmadan, doğal olarak protein yapamayacaklardı ve üremeleri duracaktı. Eğer bakterilere hazır yapılmış amino asitler verirsek, içinde yaşadıkları solüsyona amino asitler eklersek, bakteriler kendi amino asitlerini yapmayı durdururlar. Amino asit armağanımız hücrelerin kendilerininkini yaparak enerji harcamalarını gereksizleştirir. Burada bir hayli enerji söz konusudur. Yirmi amino asidin her birini yapmak birkaç enzim gerektirir. Her enzim yapılışında, bir gen harekete geçirilmeli, mesajcı RNA yapılmalı, enzim proteinlerin yapıldığı ribosomlara gönderilmelidir. Genin böylece durdurulması yapı enerjisinde önemli bir tasarruf demektir. Enerji korumak, bütün canlı hücrelerde olduğu gibi, bakterinin de yaşamını sürdürebilmesi için son derece önemlidir. Gen İfadesinin Denetlenmesi İçin Şema İşte bakteriler üzerine çalışmalardan elde edilmiş gen ifadesinin genel resmi; 1. Genler harekete geçirilip durdurulabilirler. Bu, represör denilen protein moleküller tarafından yapılır. 2. Represörler, kendilerini genlerin ucuna bağlarlar. Böylece geni mesajcı RNA'ya geçirecek olan enzimin işini yapmasını engellerler. 3. Bu, genin yapmakla yükümlü olduğu proteinin yapılmasının istenmediği anlamındadır. 4. Represörler iki nedenle DNA'dan serbest bırakılabilirler: a) Glukoz gibi bir şekerin yokluğuyla (demek ki glukoz gene bağlanması için represöre yardım ediyor.) b) Bir amino asidin yokluğuyla. Şimdi daha önce anlattığımız glukoz-galaktoz. deneyinin açıklamasını görebiliriz. Glukoz bakterilerin eli altında bulunduğu sürece, onu yiyecek ve bu da galaktoz genleri represörünün galaktozu kapalı tutmasına yardım edecektir. Glukoz bitince, galaktoz geni represörleri işlevlerini yerine getirmezler, böylece gerekli enzimler yapılabilir ve galaktoz kullanılabilir. Aynı şekilde, bakterilere amino asitler verildiği zaman bu amino asitler, bütün amino asit yapmaya yarayan genlerin represörlerine yardımcı olup, genleri kapattırabilirler. Bakteri içinde işleri düzenleyen bu güzel sistemin insanlar dahil daha yüksek canlı biçimlerinde de işlediği görülüyor. Bu sistem genlerin ifadesini denetlemek için önemli bir yoldur. Ama İnsanlar Bakteri Değildir Bakteri hücreleri ile bizim gibi organizmaları daha karmaşık ve uzmanlaşmış hücrelerin kullandıkları yöntemler arasında, belirgin bir fark vardır. Bakteri hücreleri; çabuk tepki veren, esnek, çevredeki ciddî değişikliklere hızla kendini uydurabilen bir yaşam sürenler. Bu biraz, vahşî ormanlarda savaşarak varlığını sürdürmeye benzer; bir bakteri kendi başının çaresine bakar. Diğer yandan uzmanlaşmış hücrelerin yaşam biçimleri kalıcı olarak belirlenmiştir. Ömür boyu; "deri hücresi" deri hücresi olarak, "kas hücresi" kas hücresi olarak, "beyin hücresi" de beyin hücresi olarak kalır. Her hücre çeşidinde deri mi, kas mı, yoksa beyin mi olduğunu belirleyen bir kaç gen işletilir ve diğer bütün genler (diyelim ciğer, kemik ya da böbrek olmak için) durdurulur ve hücre neyse sonuna kadar da o olarak kalır. Bakteriler, buna göre genleri hızla ve kolayca harekete geçirip durdurabilecek araçlar gereksinirler. Uzmanlaşmış hücrelerde çoğu genler sürekli durdurulmuş, birkaçı da sürekli işletilir durumdadır. Bakterinin bu kolay çalıştırma-durdurma mekanizması, uzmanlaşmış hücrelerde kullanılana benzemeyebilir. Ne var ki şu anda elimizde en iyi anladığımız model, bakteri sistemidir. Hiç olmazsa teorik olarak, temelli durdurmayı veya çalıştırmayı sağlamak için kullanılmasını düşünmek zor değil. Biçimin Oluşumu Embriyogenezde temel problem olarak gen ifadesine bakıyorduk. Oysa ilk göze çarpan yan, biçimin oluşumu; heykel dökme sürecindeki hüner, yumurtadan bebeğe dönüşümün akıl almaz mimarî başarısı. Örneğin, bizi oluşturan tüm özel doku ve organlar, bir iskelete asılmıştır. Kemik, bütün diğer yapının yanı sıra embriyoda gelişir. Sıradan görünüşlü hücrelerden başlayarak, içinde kalsiyumun sert bir yapı oluşturmak için biriktirildiği yeni bir doku belirir. Bu doku sert ve olağanüstü güçlüdür, bir organizmanın ağırlığını ömür boyu taşıyabilecek nitelikte yapılmıştır. Kırıldığı zaman da yeniden kendini onarabilir. Böylesine bir yapısal biçimlendirme süreci nasıl ortaya çıkıyor? Bu anlaşılması zor bir problem ve yine bir model sisteme başvurmamız gerek. Bakteriler, insanlar gibi virüs enfeksiyonuna karşı dirençsizdirler. Her bakteri virüsünün (buna bakteri yiyen anlamında bakteriofaj denir) kutu gibi içinde DNA'nın saklandığı bir kafası ve enjektör iğnesi gibi kullandığı bir kuyruğu bu kuyruğun ucunda da bakterinin yüzeyini yakalayan örümcek gibi bacakları vardır. Sonra virüs kendisi bir enjektörmüşçesine -ki aslında öyledir de- DNA'sını kuyruğundan bakteriye geçirir. Virüsün DNA'sı bakteriye girer girmez idareyi ele alır.Bakterinin protein yapan makinesine, bundan böyle bakteri proteini yapılmayacağını belirten bir sinyal gider. Ribosomlar ve transfer RNA makinesi, virüsün kendi DNA'sından üretilen mesajcı RNA'lar tarafından çabucak kendi yararına işleyecek hale dönüştürülür. Kısa bir süre sonra, bakteri fabrikası virüs proteini parçalan yapmaya başlar. Yeni kafalar, kuyruklar ve bacaklar yapılır. Her şey virüsün DNA'sı tarafından yönetilir. Bundan kısa bir süre sonra, bakterinin içinde virüs kafalarının biriktiği görülür, yeni yapılmış virüs DNA'ları bunların içine yerleştirilir ve tamamlanmış virüsler ortaya çıkar. Her bakteri hücresinin içinde, yüz kadar virüs onu sıkı sıkıya dolduracak biçimde birikir. Zamanı gelince, virüsler bakterinin zarını yarıp, onu. öldüren bir enzim salgılayarak kaçarlar. Bütün bu vahşî yıkım yarım saatten az bir zamanda gerçekleşir. Bu olguda biçimin oluşumunun basit bir modelini görebiliriz. Ele geçirilen fabrikada, virüsün değişik parçaları, kendi DNA'sının verdiği talimatlarla, ufak bir bina yapar gibi bir araya getirilir. Bunun dikkatle programlanmış bir zaman aralığında, ortaklaşa gerçekleştirilen bir işlem olduğu görülebiliyor. Öyle ki genler virüsün değişik parçalarının yapımına bir sırayı izleyerek başlanmasını denetliyorlar. Doğru parçalar doğru sırada yapılıyorsa, belirli biçimin kendiliğinden bir anda oluşması çok güçlü bir olasılık gibi görünüyor. Bu modelin çok daha karmaşık, gerçek embriyogenez olgusuna ne kadar ışık tutacağı belirsiz. Ama modelin yararlılığı, bakteriden çok daha basit bir organizma olan virüsün gen kompozisyonu üzerine oldukça tam bir bilgi sahibi olmamızda yatıyor. Ayrıca, olayların sırasını denetleyip isteğimize göre ayarlayabiliyoruz ve çok karmaşık olmayan üç boyutlu bir biçimin oluşumunu bir elektron mikroskobuyla kolayca izleyebiliyoruz. Hücre Bölünmesini Başlatmak ve Durdurmak Embriyo hızla bölünen bir hücre kütlesidir. Bu korkunç hızlı büyüme işi, doğumdan sonra çocukluk boyunca gittikçe yavaşlayarak yetişkinliğe erişene kadar sürer. Yetişkinlikte hücre bölünmesi durur. Bir organizmanın bütününde; her organın, her dokunun hücreleri, büyümenin tamamlanmasına çok titiz ve dikkatli bir işbirliğiyle katılırlar. Hücreler büyümeyi ne zaman durduracaklarını nereden biliyorlar? Oluşumuna katkıda bulundukları organların tam büyüklüğe eriştiğini onlara söyleyen ne? Bu olgu, normal hücrelerin bedenin dışındaki davranışında da gözlemlenebilir. Birkaç normal hücre, bir cam kabın ortasına bırakıldıklarında, hemen yanlarındaki komşu hücrelerle sürekli ilişkili olarak bölünmeye başlarlar ve en uçtaki hücreler kabın kenarlarına dokununcaya kadar, kabın yüzeyini tek hücre kalınlığında bir tabaka halinde örterler. Kenara ulaşılınca bütün hücreler bölünmeyi durdurur. Bölünmeyi durduran sinyalin özelliği nedir? Bunun cevabını bilmiyoruz, ama araştırmayı sürdürüyoruz. Bilmecenin en azından bir bölümüne cevap getirebilecek, iddialı bir model sistemimiz var. Bu modelin uygulanabilme kolaylığına hayranım, üzerine yıllar harcadığım için ona karşı özel bir düşkünlüğüm var. Regenerasyon: Yenilenme Bir kurbağa yavrusunun kuyruğunu kesip onu yeniden suya bıraksam, yara çabucak iyileşir ve ondan sonraki üç haftada gerçekten ilginç olaylar olur: Tam ve mükemmel bir kuyruk. Bir salamenderin de buna benzer biçimde ayağını koparsam yerine yenisini yapar. Deniz yıldızı ve ıstakoz da öyle. Bu olguya regenerasyon: yenilenme denir. Bunun kendi bedenimizde de örneği vardır. Kopunca kollarımızı, bacaklarımızı yerine getiremeyiz ama karaciğerimiz bir kazada zarar görse, bir parçasının ameliyatla alınması gerekse karaciğer bir iki gün içinde eski büyüklüğüne erişir. Bu özel durumun, laboratuvarda benzerini yapabiliriz. Ameliyatla bir farenin karaciğerinin üçte ikisini alabilirim. Fare anesteziden birkaç dakikada ayılır, bir iki saat içinde yemeye başlar ve üç gün sonra karaciğerinin eksik üçte ikisi, normal ve sağlıklı olarak yerine gelmiştir; bir karaciğerin yapması gereken her şeyi yapmaktadır. Bütün bu olaylarda iki dramatik nokta görülür: Birincisi; hayvanın bir parçasının ayrılması, eskiden her şeyin sakin olduğu bu bölgede çok hızlı bir hücre bölünmesine yol açar. İkincisi; bu parça yerine gelince hücre bölünmesi durur. Şaşırtıcı olan; bu bölgedeki hücrelerin bölünmeye gerek olduğunu iş bitince durmak gerektiğini bilmeleridir! Bu hücrelerin içinde, onlara bölünmeye başlamalarını ve eksik organı tamamlamak için yeterince bölündükleri zaman durmalarım söyleyen nedir? Bir zamanlar bunun cevabım bulmak için, kopan parçanın yerine yeni hücreler üreten bir karaciğerden parçalar alıp, bunları normal, bölünmeyen karaciğer hücrelerine karıştırıyordum. Kopanı yerine getirmek için üreyen hücrelere, daha çok hücre yapmalarını söyleyen bir kimyasal sinyal varsa bunun normal hücreleri de etkileyip, onların daha hızlı protein yapmalarını sağlayacağını düşünüyordum. Diğer yandan, eğer normal hücreler yenileme hücrelerini yavaşlatacak bir kimyasal mesajı içeriyorlarsa, bunu da anlayabilecektim. İyi bir fikir, iyi bir model ama deneyler sonuçsuz kaldı. Sistem henüz çok karmaşık. Olanları bir türlü kavrayamıyoruz. Yaşamın kanunlarını açığa çıkartmakta üst üste sağlanan başarılardan söz eden öykümüzde; bir deneysel başarısızlığın yeri yok gibi gelebilir. Bence tersine; bu öykümüzün gerçekçiliğini arttırır. Aslında, şimdiye kadar bilim adamlarını yaptıkları deneylerin çoğu başarısızlıkla sonuçlanmıştır. Başarısızlıklarımızdan ders alıp, bize sonunda iyi bir ilham sağlayacak daha iyi deneyler tasarlayabiliriz. Meslektaşım Dr. Nancy Bucher, yenilenme olayı üzerine bilgiye belki de diğer bilim adamlarından çok daha fazla katkıda bulunmuştur. Önemli çalışmalarından bazıları, farelerden yapışık ikizler yapmayı içeriyordu İki fareyi iyi bir ortak dolaşımları olacak biçimde birbirine dikiyordu; kan ikisinin arasında kolayca dolaşıyordu. Sonra, farelerden birinin karaciğerinin üçte ikisini alıyor ve bu ciğerin eksik kısmı yerine gelene kadar, diğer farenin karaciğerinin de büyüyüp büyümediğine bakıyordu. Büyüdü! Bu; yenilenme yapan karaciğerin, kan dolaşımına bir şey kattığı ve bunun diğer farenin karaciğerine ulaşınca, onun da büyümesine neden olduğu sonucunu gösterdi. Nancy Bucher ve bir çok başka bilim insanları, bu maddenin ne olabileceğini anlamaya çalıştılar; ama henüz bir başarı elde edilmiş değil. Embriyogenez Üzerine Bilinmeyenler Bilinenlerden Çoktur Yinelersek, embriyogenez konusunda bazı ilginç şeyler üzerinde durduk. Bir arada kalabilecek yapışkanlığı elde etmek için bölünen hücrelerin özel yeteneklerinden; bir organizma oluşturmak için gerekli olan uzmanlaşma konusundan; biçimin oluşumundan ve son olarak uzun embriyogenez, sürecine dur emri veren, çocukluk ve yetişkinliğe ulaşma işleminin bittiğini bildiren sinyalden söz ettik. Bunlar son derece karışık olguların yalnızca bir iki önemli noktası. Cahilliğimiz hâlâ bildiklerimizi kat kat geçiyor. Bu hiç de şaşırtıcı değil. embriyogenez, bütün yeteneklerimizi kullanmamızı gerektiren bir probleme benziyor ve biyoloji biliminin temelinde yatıyor. Biraz heyecanlı, biraz da kışkırtıcı bir konu; çünkü, ilk bakışta çözülemeyecek hiçbir zor yanı yokmuş gibi görünüyor. Kısa bir süre sonra, daha önceki bölümlerde anlattığımız yaşamın evrensel kanunlarını kavradığımız gibi, embriyogenezi de anlayabileceğimize inanıyorum. Embriyogenezin anlamadığımız yanları, kanserin anlamadığımız yanlarına çok benziyor. Gerçekte, bazı araştırmacılar, kanserin açıklamasının, embriyogenezin anlaşılmasını gerektirdiğini düşünüyorlar. Kanser, bazı bakımlardan insanın embriyogenezindeki o çok üstün denetleme yeteneğini yitirdiği zaman ortaya çıkıyor gibi görünüyor. Örneğin, kanser hücrelerinin başıbozuk davranışları, hücre yapışkanlığının yok olmasıyla ilgili olabilir. Şimdi bu konuyu daha yakından incelemeliyiz.

http://www.biyologlar.com/embriyogenez

Yuvarlak Solucanlar

Karada tatlı sularda denizlerde serbest olarak yaşayanların yanında bitki parazitleri de vardır. Genellikle silindirik ve segmentsizdirler. Vücutları sil taşımayan kutikula ile örtülüdür. Epidermis içinde 4 veya daha fazla sinir şeridi vardır. Sadece boyuna kas tabakaları vardır. Boşaltım sistemleri 1 veya 2 bez hücresi veya kanallar halindedir. Vücut sabit sayıda hücreden oluşur. Uzun bir yutakları vardır. Üreme kanalları erkeklerde "Rectum" denen bir bölgeye açılır. Dişilerde ayrı bir cinsiyet açıklığı vardır. Boyları birkaç mm'den 2 metreye kadar değişebilir. Adenophorea (Aphasmidia) ve Secernenta (Phasmidia) olmak üzere 2 sınıfı vardır. Bilinen 15000 türü vardır. Larva şekli ve başkalaşım : Larvası yoktur. Yumurtadan çıkan genç fertler 4 kez deri değiştirdikten sonra cinsel olgunluğa erişir. Erginlerde vücut şekli : Vücut uzun silindirik iğ veya iplik şeklindedir. Vücudun ön ve arka kısmı çoğunlukla çıkıntılar taşır. Ağız ön uçtadır. Çevresinde 6 dudak papilla şeklinde çıkıntılar ve duyu organları yer alır. Vücut duvarı dıştan içe; kutikula epidermis ve boyuna kas tabakasından oluşur. Beslenme : Kornivor herbivor saprofit olabilir. Bir kısmı da hayvan ve bitkilerde parazit yaşar. Su düzenlenmesi ve boşaltım : Boşaltımın bağırsak çeperi veya vücut duvarıyla yapıldığı sanılmaktadır. Protonefridiumları yoktur. Denizde yaşayan bazı türlerde büyük salgı hücreleri görülür. 1 veya 2 tane olan bu hücreler yana doğru bir kanal oluşturarak boşaltım açıklığına bağlanır. Sölomda ventral kısımda ve yutağın yakınında yer alan salgı hücreleri sistemine "Renette bezi" denir. Azotlu artık maddeleri amonyak üre ve ürik asittir. Hareket : Sadece boyuna kas tabakaları vardır. Bütün hareketler kutikula ile boyuna kas tabakasının vücut sıvısı ile etkileşimi sonucu oluşur. Sinir sistemi ve duyu organları : Ascaris'te yutağı çevreleyen sinir halkası ve gangliyonlar beyni temsil ederler. Buradan çıkan sinirlerin bir kısmı 4 ana sinir şeridi olarak vücudun sonuna uzanır. Şeritlerin 2si yanlarda 1i dorsalde ve 1i de ventraldedir. Ayrıca zayıf yapılı 2 alt yanal şerit daha vardır. Ventral şerit en büyük olanıdır ve motor ve duyu sinirlerinden oluşur. Dorsal sinir şeridi sadece motor sinirlerinden oluşur. Diğer hayvan gruplarından farklı olarak kas hücreleri sinirlere uzanır. Yuvarlak solucanlarda duyu alma sistemi kol ve papillalardan oluşur. Ön tarafta kutikula üzerinde küçük çukurluklar halinde "Amfid" denen özel duyu organları vardır. Arka kısmında ise bezli yapılar halinde "Fazmid" denen duyu organları vardır. Ayrıca beyni temsil eden gangliyon içinde deri değiştirme organlarını salgılayan "Nörosekresyon hücreleri" bulunur. Solunum : Vücut yüzeyinden difüzyonla sağlanır. Hayvanlarda parazit yaşayanlar anaerobik solunum yapabilir. Dolaşım ve sölom : Dolaşım sistemleri yoktur. Yalancı sölom bulunur. Üreme : Genellikle ayrı eşeylidirler. Dişilerde 2 ovaryum 2 ovidukt (uyumurta kanalı) ve 2 uterus bulunur. Uteruslar arada birleşerek ortak bir vagina ile cinsiyet açıklığına bağlanır. Cinsiyet açıklığı vücudun ön yarısındadır. Erkekleri daha küçük ve arka kısımları kıvrıktır. Bir testisleri vardır. Testis bir sperm kanalı ile anüsün yanındaki fışkırtma kanalına açılır. Bazı türlerinde ovoviviparlık (yumurtlayan - doğuran) ve partenogenetik üreme görülür.

http://www.biyologlar.com/yuvarlak-solucanlar

Primatların Biyolojik Özellikleri

14 aile, 55 cins ve 170'e varan tür sayısı ile primat dünyası bize son derece zengin ve çeşitli örnekler sunar. Primatları tanımlarken kullanacağımız biyolojik özelliklerin hepsi kuşkusuz her primatta bulunmaz; varolan özellikler de farklı gelişme dereceleriyle karşımıza çıkar (Schultz, 1972). Primat türleri bedensel irilik açısından geniş bir yelpaze oluşturur. Madagaskar'da yaşayan microcebus'larda (prosimiyen ailesinden) boy 13 cm ve ağırlık 60 gr kadar olabilir. Benzer şekilde, pigme marmoset olarak bilinen Yeni Dünya primatı o denli ufaktır ki bir avuç içine sığabilir. Buna karşın goril ise primat dünyasının en iri cüsselisi olarak bilinir. Erkek erişkin goril 250 kg, dişi goril ise 100-120 kg'a kadar çıkabilir. Çoğunlukla boyları 170-180 cm olsa da 2 metreye varan gorillere de rastlanmıştır. Erkek goril iki elini yanlara doğru açtığında bir elinin ucundan diğerine uzaklık 3 metreyi bulabilir. Şempanze gorile oranla daha ufaktır. Erişkin erkek şempanze 50 kg ağırlığında olabilir. Boy ise 1,50 m'yi geçmez. Yalnız pigme şempanze türünde boy çok küçüktür. Şempanzede dişi ve erkek arasındaki irilik farkı gorildeki kadar değildir. Oysa, cinsler arası irilik farkı orangutanda oldukça belirgindir. Erkek hemen hemen dişinin iki katıdır. Hayvanat bahçelerinde hareketsiz halde kalan ve aşırı beslenen erkek orangutan 150-160 kg'a kadar çıkabilir. Yeni Dünya primatları ortalama bir kedi kadar, Eski Dünya primatları ise iri bir köpek boyunda olabilir. Ağaç yaşamı primatlarda görme organını yaşamsal hale getirmiştir. Öyle ki, sağır olan ya da koku alma duyusundan yoksun bir primat ağaçta yaşamını sürdürebilir, ama kör ise bu onun sonu olur. însan da dahil tüm primatlarda beyin korteksindeki koku alma bölgesi, çoğu memelilerdekinin aksine, zaman içinde önemli bir küçülme göstermiştir. İşte bu eksiklik, görme duyusundaki belirgin gelişme ile giderilmiştir. Gerçekten de insan olarak bizim de burnumuz fazla koku almaz, ama gözümüz çok iyi görür. Gözler, primat dışındaki memelilerde genellikle başın her iki yanında yer alır ve gözlerin optik eksenleri ayrışıktır. Her göz ayrı bir görüntü algılar. Görme alanlarının örtüştüğü bölge çok ufaktır. Oysa primatlarda, ağaç yaşamına uyum sağlamanın bir sonucu olarak, gözler, birkaç örnek dışında, yanlarda değil, bizde olduğu gibi yüzün ön kısmındadır. Aynı anda aynı yere odaklaşırlar. Gözlerin optik eksenleri birbirlerine paraleldir. Stereoskopik görüş (üç boyutlu algılama) olarak adlandırılan bu görme özelliği insan da dahil tüm primatlarda ortaktır. Bu da gözlerimize derinlik kavramı vermiştir. Böylece ağaçlarda daldan dala atlayan primatlar mesafeleri doğru ayarlayabilirler. Bu görsel algılayış biçimi biz insanlar için de son derece önemlidir; zira, beynimizle çok sıkı bir koordinasyon içinde bulunan elimizin becerisine gözümüzün bu yeteneği de bir başka etkinlik katar. Gözler, ağaçlarda gece aktif olan prosimiyen primatlarında aşırı derecede iridir. Nitekim prosimiyen gruba giren tarsius'larda (Şekil: 2.2.) göz çukurlarının her biri beyinden daha hacimlidir. Gece yaşamına uyum sağlayan birçok memelide olduğu gibi, prosimiyenlerde de retina gerisinde tapetum cellulosum denilen özel bir doku bulunur; bu sayede primatlar gece daha etkin biçimde görürler (Schultz, 1972). Primatlarda etkin görmenin yanı sıra koyu ve açık tonların dışında renkleri ayırt etme yeteneği de vardır. Diğer memeliler gibi çevrelerindeki nesneleri koklayarak tanımaya çalışmazlar; onlara elleriyle dokunur, gözleriyle incelerler. Çevrelerindeki her şeyi daha çok bu iki organlarıyla algılarlar. Hemen hemen tüm primatlarda el ve ayaklarda tutucu beş parmak bulunur (Rosen, 1974). Pentadactylos, dediğimiz bu özellik insanda da vardır. Bu atasal özellik ikinci zaman sürüngenlerinden arkaik memelilere, onlardan da primatlara aktarılmış olup, günümüzde çoğu memelide kaybolmuştur. Primatların prosimiyen adı verilen ufak türlerinde parmakların ucunda genellikle sivri tırnaklar yer alır (Şekil: 2.3). İnsan da dahil tüm iri primatlarda ise el ve ayak parmakları istisnasız yassı tırnaklarla son bulur. Madagaskar adasında yaşayan ve gece aktif olan aye-aye prosimiyenlerinde orta parmak tıpkı bir tel gibi ince ve uzundur. Bu sivri parmağı ile primat, ağaç dallarına hızlı biçimde vurur, kabuk altında gizlenmiş olan böceklerin dışarı çıkmasını sağlar ve onları yer. Prosimiyen denilen ufak primatların çoğunda parmak uçlarında yastıkçık diye adlandırılan kabartılar bulunur. Bu anatomik oluşumlar primatların dallara kolayca tutunmalarını sağlar, düz yüzeylerde tıpkı bir vantuz gibi iş görürler. Primatların hemen hepsinde el ve ayak parmakları tutucu özelliğe sahiptir. İnsanda el başparmağı tutucu yapısını korumuş, ayak başparmağı ise bu işlevini tümüyle kaybetmiş, sonuçta ayak sadece yürümeye adapte olmuştur. İnsan dışındaki primatların hiçbirinde elde duyarlı ve rafine tutuş söz konusu değildir. Böyle bir hassas tutmanın gerçekleşmesinde başparmak ve işaret parmağının rolü büyüktür. Bu işlev sırasında iki parmak diğerlerinden bağımsız hareket eder. Diğer primatlarda ise bir nesneyi kavrarken tüm parmaklar devreye girer, başparmak ise bizdekinin aksine pek etkili olmaz. Primat dünyasında sadece insanda sıklıkla işaret parmağı, zaman zaman da başparmak duygu ve düşüncelerin dile getirilmesinde önemli rol üstlenir. İnsan dışında hiçbir primat bu yeteneklere sahip değildir (Napier, 1971). Üst primatlar kuyruklu ve kuyruksuz diye iki gruba ayrılır. Kuyruklu primatlardan sadece Güney Amerika (Yeni Dünya)'da yaşayanların kuyrukları tutucudur. Kuyruksuz primatlar ise insanla beraber goril, şempanze, orangutan ve jibonlardır. Minik primat grubunu oluşturan prosimiyenlerin kuyrukları olmasına rağmen, tutucu değildir. Ağaç yaşamına çok sıkı uyum sağlamış olan Güney Amerika primatları kuyruklarını adeta üçüncü bir el gibi kullanırlar; kuyruklarıyla dallara tutunur, bu arada kendilerini boşluğa bırakır, boş kalan elleriyle de ağaçtan yiyeceklerini toplarlar. Primatlar dışındaki tüm memelilerde kol ve bacaklardaki kemikler aralarında kaynaşıp bir blok oluştururlar. Oysa, insan da dahil tüm primatlarda kol ve bacakları meydana getiren uzun kemikler kendi aralarında sadece eklemleşme yolu ile bir bağlantı oluşturmuşlardır. İşte bu anatomik oluşum sayesinde primatlar ağaçlarda kol ve bacaklarıyla her hareketi kolayca yapabilirler; kollarını yanlara ve yukarıya doğru kaldırabilirler. Uzuvlarında bu esneklik olmasa primatlar ağaçlarda böyle rahatça hareket edemezlerdi. İnsan ise tümüyle yer yaşamına uyum sağlamış olmakla beraber, bu anatomik oluşumu çok uzak geçmişten miras olarak devralmış ve hâlâ sürdürmektedir. İnsanda, diğer primatlardakinin aksine hareket sistemindeki işlevinden tümüyle kurtulan el, göreli olarak daha narin bir yapı kazanmıştır. Ağaç yaşamını sürdüren primatlarda tutma işlevinde ağırlıklı rolü bulunan elin dört parmağı insanda kısalmış, buna mukabil başparmak görece önem kazanmıştır. İri primatlardan şempanze ve gorilde önkol ile bilek arasındaki kas ve tendonlar bizdekilerden farklı oldukları için bunlar, bileklerini düz tutamaz, el parmaklarını da insandaki gibi geremezler, bu yüzden elleri adeta kepçeye benzer. Yerde sık sık oturarak dinlenen ve beslenme sırasında bu pozisyonu koruyan, ağaçlarda da aynı pozisyonda uyuyan Eski Dünya primatları ve iri primatların çoğunda makat bölgesi nasırlaşmış çıplak bir görünüme sahiptir. Tüylerden arınmış olan bu kısım, bebek anne karnında iken oluşur. Dolayısıyla, oturma yastıkçığı doğanın bu primatlara sunduğu konforlu bir minder gibidir. Köprücük kemiği tüm primatlarda var olup işlevsel durumdadır. Bu kemik, kol ve kürek kemiğiyle eklemleşmek suretiyle hareketli ve esnek bir omuz kemeri meydana getirir. Bu anatomik yapıyı biz diğer primatlarla paylaşırız. Ağaçlarda daldan dala hareket eden, bunu tüm hayatı boyunca sürdüren primatlar için hareketli bir omuz kemeri yaşamsal bir kazançtır. Oysa, diğer memelilerde bu köprücük kemiği önemli derecede ufalmış, ya da kaybolmuştur. Omuz denilen tipik oluşum insan ve diğer primatlar için geçerlidir. Ağaçlarda dallara tutunarak hareket eden primatlarda kollar bacaklara oranla oldukça uzundur. Kol uzunluğu bazen abartılı ölçüde karşımıza çıkar. Örneğin hava akrobatı olarak bilinen jibonlarda, kolların toplam uzunluğu gövde uzunluğunun %243'üne eşittir (Schultz, 1972). Tüm primatlar, bizler gibi, başlarını 90 derece döndürebilirler. Yalnız, tarsius adlı prosimiyen, boyun bölgesinde omurlararası eklemleşmenin özel durumu gereği başını 180 derece döndürebilen tek primattır. Bu özellik gece yaşamına uyum sağlamış bu minik primata, her yönden gelebilecek tehlikeyi her an görebilme olanağı sağlar. Primat dünyası, gerek davranış gerekse anatomik açılardan oldukça çeşitlidir. Primat örüntüsünü meydana getiren tüm özellikleri eksiksiz her primat üyesi paylaşmaz. Biz insanlar, birçok anatomik özelliklerimizle diğer primatlardan ayrılırız. Nitekim, dik durma ve yürümeye uyum sağlamış insanda, iki kalça kemiği arasında yer alan sağrı kemiği dik duruş konumunda arkaya doğru belirgin bir bükülme oluşturur ve omurga ile 60-65 derecelik bir açı yapar. Oysa, bu açı şempanze gibi dik yürüme durumuna anatomik yönden uygun olmayan iri primatlarda 30-35 derecedir (Schultz 1972). İnsan omurgasına yandan bakıldığında, bel bölgesinde içe doğru bir kavis vardır. Bu kavis diğer primatlarda bulunmaz. İnsan kalça kemikleri, dik durma ve yürüme esnasında vücudun tüm yükünü üzerinde taşımanın bir gereği olarak yanlara doğru adeta bir yelpaze gibi açılmıştır. Böylece, kalça kemeri hizasında oluşan bu geniş alan insanın dik durma ve yürüme konumunda hareketini ve dengesini sağlayan tüm kaslara tutunma olanağı verir. İnsanda kalçanın bu göreli genişliği bel adı verilen oluşumun da kendiliğinden ortaya çıkmasını sağlamıştır. Dikkat edilirse, insan dışında hiçbir primatta bizdekine benzeyen anlamda bel yoktur. İnsanda bu anatomik özellik, vücud estetiğinin değerlendirilmesinde önemli bir ölçüt haline gelmiş; kadınların ince bele sahip olma tutkusu, güzelliği bütünleyen bir unsur olmuştur. Deri altı yağ tabakası primatlarda çok az gelişme gösterir. Buna karşın yoğun ve uzun tüyler adeta bir manto gibi tüm vücudu sarar. Bu tüylerin yoğunluğu da bir türden diğerine değişebilir. Aslında primat merdiveninde prosimiyenlerden iri primatlara doğru çıktıkça vücuttaki kıl sistemi yoğunluğunda azalma gözlenir; insanda ise en aza iner. Hatta bu yüzden insana çıplak primat diyen araştırıcılar bile vardır. Ne var ki sanıldığı kadar da öyle çırılçıplak sayılmayız. Nitekim baş (saç, kaş), yüz (bıyık, sakal), koltuk altı, göğüs ve cinsel organlar bölgesinde hâlâ yoğun miktarda kıl örtüsüne sahibiz. Başımızdaki saç kılı sayısı açısından iri primatlardan daha kıllı sayılırız. Öyle ki bizde 1 cm²'ye düşen kıl sayısı 300 iken, şempanzede 180'dir. Buna karşın, vücut kıl yoğunluğu söz konusu olduğunda durum tam tersidir. Örneğin sırt bölgesinde şempanzede 1 cm²'ye 100 gorilde 140 kıl girerken, insanda sırt bölgesindeki kıl örtüsü yok denecek kadar azalmıştır. Dişi şempanzede yaş ilerledikçe beden kılları dökülmeye başlar. Saçlar ise daha hızla dökülerek baş adeta kelleşir. Primatlarda kıllar siyahtan kırmızıya doğru giden değişik tonlardadır. Şempanze ve gorilin kürkleri genelde siyahtır. Orangutanınki ise kızıla çalar. Erkek gorillerde sırt kılları yaşa bağlı olarak ağarır ve gümüş rengini alır. Bazen genetiksel olarak renk pigmentleri doğuştan oluşmadığında, tıpkı insandakine benzer biçimde albino iri primatlar ortaya çıkmaktadır. Örneğin Londra ve Barcelona hayvanat bahçelerinde böyle bir genetik kusurla dünyaya gelmiş beyaz tüylü goriller ziyaretçilerin yoğun ilgisini çekmektedir Primatlarda göğüs düzeyinde bir çift meme bulunur. Bazı prosimiyenlerde iki yerine üç meme vardır. İri primatlarda memeler tıpkı insandaki gibi göğüste kolayca fark edilecek kadar belirgindir. Primatlar, beslenme açısından ne otobur (herbivor), ne de etobur (karnivor) gruba girerler. Bu durumda her şeyi yiyebilen bir beslenme tipiyle karşımıza çıkmaktadırlar; bu şekilde beslenen insan da dahil tüm primatlara omnivor adını veriyoruz. Primatlarda beyin, diğer memelilerinkinden göreli olarak daha iridir. Bilindiği gibi beyin, genel vücut iriliğiyle orantılı olarak dikkate alınmaktadır. Primatlar arasında da oransal olarak en iri beyne sahip olan insandır. İnsanın beyin korteksi diğer primatlarınkiyle karşılaştırılamayacak kadar gelişmiştir ve karmaşık bir örüntü gösterir. Beyin hacmi, insan söz konusu olduğunda, kadında ortalama 1330 cm³, erkekte 1446 cm³ iken, dişi şempanzede 350 cm³, erkeğinde ise 381 cm³ 'tür. Çok iri gövdeli bir primat olan gorilde erkek 535 cm³, dişi de 443 cm³ beyin hacmine sahiptir (Schultz, 1972). Yüz ve beyin arasındaki irilik ilişkisi de insan ve diğer primatlar arasında farklılık gösterir. Örneğin iri primatlardaki göreli olarak küçük bir beyin ve iri bir yüze karşın insan, küçük bir yüz ve iri bir beyinle tanımlanır. İnsan beyni 6 yaşlarına doğru erişkinlikte alacağı hacmin %90'ına ulaşmış sayılır. İnsan beyni tüm vücud ağırlığının 1/49'una eşittir. Günümüz insanında beyin, vücudun ürettiği enerjinin %2'sini tüketir. Oysa örneğin Eski Dünya primatlarında beynin kullandığı enerji oranı %9'dur (Schultz, 1972). Omnivor tipi beslenme, primatların diş sistemine de yansımıştır. Öğütücü dişlerin çiğneme yüzeylerindeki kabartılar salt et ya da otla beslenen diğer memelilerinkinden daha farklı bir yapıya sahiptir. Dişler, bir primat takımının kendi içinde de farklılıklar gösterir. İnsanda, kadın ve erkekte dişler biçim ve hacim yönünden büyük benzerlik göstermesine rağmen, bazı primatlarda özellikle köpek dişi açısından bu farklılık çarpıcı boyuttadır. Örneğin erkek babunda (Eski Dünya primatı) köpek dişi bir yırtıcı hayvanınki kadar iri ve parçalayıcıdır. Aslında bu özellik erkek babuna ayrı bir güç katar. İri köpek dişi özellikle yer yaşamına uyum sağlamış kalabalık sürüler halinde dolaşan Eski Dünya primatlarında beslenmenin ötesinde, sosyal statünün korunmasında önemli bir rol oynar. Babun, goril ve şempanze gibi primatlarda iri köpek dişlerinden yoksun bulunan dişi, daima korunan ve gözetilen konumdadır. İnsanda ön dişler büyük ölçüde sindirim faaliyetleriyle sınırlı kaldığı halde, diğer primatlarda besinlerin elde edilmesinde ellerin yanısıra ön dişler de devreye girer. Aye-aye adı verilen Madagaskar primatlarında ise kesici dişler tıpkı kemirici hayvanlardaki (fare, tavşan vb.) gibi aşındıkça uzamaya devam eder. Ağızdaki diş sayısı üçüncü zamanın arkaik memelilerinde 44 idi. Memelilerin değişik kolları farklı evrim çizgileri izleyerek farklı uyumsal özellikler ve anatomik örüntüler edinirken, başlangıçta varolan diş sayısında da giderek önemli azalmalar oldu. Primat takımı içinde kaldığımızda, örneğin Yeni Dünya primatlarında 36 olan diş sayısı, Eski Dünya primatlarında, iri primatlarda ve insanda 32 olarak karşımıza çıkmaktadır. Bu durumda her yarım çenedeki diş formülü 2:1:2:3/2:1:2:3 şeklinde gösterilebilir. Bir başka şekilde ifade etmek gerekirse, iki kesici, bir köpek dişi, iki küçük azı ve üç büyük azıdan oluşan temel diş sayısı insan ailesinin tarihinde hep aynı kalmıştır. Primatlar arasında yüz kasları en gelişmiş olan insandır; dolayısıyla yüz mimikleri de oldukça zengindir. Bize bu açıdan en yakın olanlar goril, şempanze ve orangutandır. Özellikle orangutanlar ağız ve burun çevresindeki kasları mükemmel biçimde kontrol ederler. Hareket sistemi Primat dünyasında bellibaşlı dört hareket sistemi vardır. Bunlar sırasıyla tırmanma ve sıçrama, daldan dala kollar yardımıyla tutunarak (brakiyasyon) hareket etme, dört ayak üzerinde yerde yürüme (kuadrüpedal) ve iki ayak üzerinde dik durma ve yürüme (bipedal)'dir (Rosen, 1974). Prosimiyen denilen ufak primatlar ağaçlarda tıpkı kurbağa gibi sıçrayarak ya da sincap gibi tırmanarak hareket eder. Orta ve Güney Amerika'da yaşayan Yeni Dünya primatları zamanlarını tümüyle ağaçlarda geçirirler. Uzun kolları ve tutucu olan kuyrukları sayesinde ağaçlarda büyük bir ustalıkla daldan dala dolaşırlar. Bir el gibi tutucu olan kuyruğun son 1/3 kısmı çıplaktır ve bu bölgede tıpkı el ayasındakine benzeyen çizgiler vardır. Primatlarda elin işlevi çok yönlüdür; beslenirken, ağaçlarda hareket ederken veya etrafındaki nesneleri tanımaya çalışırken primatlar hep ellerini kullanırlar. Orangutan ve jibon ağaç yaşamında, goril ve şempanze ise yerde kendilerini daha rahat hisseder. Orangutan yerde yürürken pek becerikli değildir. Küçükken çok hareketli olan orangutan yavruları erişkin hale gelince eski canlılıklarını kaybeder, hantallaşırlar. Bacağı kalçadaki oyuğa (acetabulum) bağlayan ligamentum teres olmadığı, ayrıca bacak ve kalça arasındaki kassal ilişki yeterince gelişmediği için orangutan, bacağını tıpkı kolu gibi yukarı kaldırıp ağaç dalına tutunabilir. Bu özelliği diğer iri primatlarda göremeyiz (Schultz, 1972; Kottak, 1997). Ağaç yaşamına uyum sağlayan primatların kolları bacaklarına oranla uzundur (Şekil: 2.7). Bu anatomik özellik bazılarında son derece abartılı olarak görülür. Örneğin jibonlarda kol uzunluğu gövde uzunluğunun 2,5 katıdır. Bu primatlar uzun kepçe gibi parmaklarıyla da ağaç dallarını çok iyi kavrarlar. Jibon bir sıçrayışta 10 metre kadar yükselebilir. Bir daldan diğerine adeta uçarcasına hareket eder. Bu nedenle Borneo adası yerlileri jibonlara hava akrobatları adını takmışlardır. Yere indiklerinde, tam aksine, jibonlar son derece zorlanarak yürürler. Uzun kollarını yere sürünmesin diye havaya kaldırırken, bu sayede dengelerini de sağlamış olurlar. Goril ve şempanzenin el parmaklarının iç yüzeyindeki kaslar görece kısa olduklarından, bu iri primatlar hiçbir zaman bizler gibi parmaklarını gergin hale getiremezler. Sürekli bükülmüş halde tutarlar. Yerde yürürken de el ayalarıyla değil, parmaklarının dış tarafıyla basarlar. Şempanzeler ara sıra doğrulup iki ayak üzerinde durabilir. Hatta bu şekilde birkaç adım da atabilirler. Dokuzuncu aya doğru şempanze yavrusu hiçbir yere dayanmaksızın ayakta durabilir. Oysa aynı pozisyonu, insan yavrusu ancak on ikinci aya doğru gerçekleştirebilir. Şempanzeler her ne kadar doğal ortamlarında iki elleriyle besinlerini taşırken ya da kendilerini savunurken iki ayakları üzerinde olsalar da, bu pozisyonu uzun süre koruyamazlar. Bizler gibi adım atarak yürüyemezler. Her şeyden önce, bizden farklı olan denge eksenlerini koruyabilmek için devamlı koşarak girmek zorundadırlar. Dik durma, adım atarak yürüme ve bacakları diz hizasında gergin halde tutma özellikleri insan dışında hiçbir primatta yoktur. Tüm bunlar insana özgü hareket ve duruş biçimleridir. Dik duran insanda vücudun ağırlığı sadece kalçalar üzerine biner. İnsan omurgası dik duruşa ve bu konumda dengenin sağlanmasına yardımcı olacak tarzda birtakım kavisler kazanmıştır. Biz insanlarda omurlar boyun bölgesinden itibaren aşağıya indikçe irileşir, vücud ağırlığını büyük ölçüde yüklenen bel bölgesinde ise güçlü bir yapı kazanır, görece en büyük iriliğe ulaşır. Tüm bu örneklerden de kolayca anlaşılacağı gibi, insanlaşma süreci içinde belirli bir aşamadan itibaren kazanılan bu değişik hareket örüntüsü zamanla, insanın tüm anatomisine yansımış, önemli değişmelere yol açmıştır. Hareket sistemiyle bağlantılı olarak, ayağımız da giderek bir yandan uzunlamasına, diğer yandan enlemesine iki temel kavis kazanmıştır. İnsanlaşma sürecinde ayağımız, dik yürüme sırasında dikey anlamda oluşan şokları en iyi bertaraf edecek ve bacakları uzun yürüşlerde fazla yormayacak şekle dönüştü. Doğal olarak bu anatomik oluşum, günlerinin büyük bir bölümünü av peşinde ya da yabani bitkisel besinleri toplamakta geçiren tarihöncesi atalarımız için hayati bir uyumsal özellikti. Goril, şempanze ve orangutan gibi iri primatlar yüzmeyi pek sevmezler. Suya düştüklerinde hiç çaba sarfetmezler ve boğulurlar. Buna karşın Eski Dünya primatları doğuştan usta yüzücüdürler. Özellikle makaklar tıpkı tramplenden atlayan usta yüzücüler gibi yüksek bir yerden suya dalmayı çok severler. İnsanın ise, su ile ne kadar içli dışlı olduğunu burada belirtmeye gerek bile yoktur. Fiziksel Büyüme ve Gelişme Anne karnında başlangıçta insan ve iri primat ceninleri birbirlerine çok benzerler. Hepsinde de baş oransal olarak iridir; gövde hacimli, kol ve bacaklar kısa, el ve ayaklar geniş, kulaklar ise kısadır. Doğum sonrasında da bu benzerlik bir ölçüde devam eder; örneğin büyüme ve gelişmelerinin göreli uzunlukları dikkate alınırsa şempanze ve insanın birbirlerine çok benzeyen tablolar ortaya koydukları görülür. Gerçekten de şempanzede çocukluk evresi toplam ömrün %7,5'ini insanda ise %8'ini oluşturur. Primatlar arasında insan bir kenara bırakılırsa, çocukluk süresi en uzun süren şempanzedir (Schultz, 1972). Bu uzun evre haliyle anne ve yavrunun daha fazla birarada bulunmalarını olanaklı kılar. Şempanze yavrusu 8 yaşına kadar annesiyle beraber olur, onunla her şeyi paylaşır. İri primatlarda (goril, şempanze, orangutan, jibon) aşağı yukarı 11 yaşlarına doğru büyüme durur. Oysa insanda fiziksel büyüme ve gelişme 17-18 yaşlarına kadar devam eder. İnsan 11 yaşından sonra da büyümeye devam ettiği için bedeni de irileşir. Oysa, şempanze bu yaşlarda artık erişkindir; dolayısıyla büyüme söz konusu değildir. İri primatların dünyaya getirdikleri bebekler iri cüsseleriyle hiç de orantılı değildir. Örneğin 70 kg ağırlığındaki bir dişi gorilin yavrusu doğduğunda 1,8 kg'dır. Dişi bir orangutan 1,4-1,6 kg ağırlığında bir yavru dünyaya getirir. Oysa insanın ancak prematüre olan bebeği bu ağırlıktadır; yeni doğmuş insan yavrusu ortalama 3,2 kg gelir. İnsan yavrusu deri altında önemli miktarda yağ dokusu ile doğar. Diğer primatlarda bu yağ dokusu bizdeki kadar gelişmiş olmadığı için, bu önemli kilo farkı meydana gelmektedir. Primatlar doğal ortamda ne kadar yaşarlar? Şunu hemen belirtmek gerekir ki, primat takımı içinde prosimiyenlerden iri primatlara doğru çıktıkça ortalama ömür de artar. Örneğin bir şempanze aşağı yukarı 40 yaşlarına kadar, bir jibon 30 yaşına kadar yaşayabilir. Bir şempanze çok özel koşullarda 50 yaşına kadar ömrünü sürdürebilir. İnsanda ortalama ömrün günümüzde (özellikle gelişmiş ülkelerde) 80'lere ulaştığı düşünülürse, insanla diğer primatlar arasında bu açıdan derin bir uçurumun olduğu görülür. Çevreye uyum Primatlar, aşırı ısı değişikliklerine çok duyarlıdırlar. Örneğin güneşin yakıcı sıcaklığı altında daima gölge bir yer ararlar. Isının +40 dereceye ulaşması durumunda makaklar bilinçlerini yitirir, hatta ölürler. Primatların soğuğa karşı da dirençleri fazla değildir. Primatlarda deri altı yağ dokusu yok denecek kadar az gelişmiştir. Halbuki insanda, deri altı yağ dokusu anne karnında oluşmaya başlar. Primatların ilk görüldükleri paleosen (Üçüncü Zamanın ilk dilimi) döneminden başlayarak yaşadıkları evrimsel sürecin genelde tropik iklim kuşağında cereyan ettiğini düşünecek olursak, deri altındaki yağ tabakasının çok fakir oluşu bu tür ekolojik ortama bir ölçüde fizyolojik uyum olarak düşünülebilir (Schultz, 1972). Aslında bu ekocoğrafya kuralı insan için de geçerlidir. Nitekim, Afrika'da aynı iklim koşullarında yaşayan siyah derililerin, kutuplardaki Eskimolara oranla derilerinin altında daha az yağ dokusu bulunur. Beslenme alışkanlıkları Primatlar bütünüyle vejetaryen (bitkisel besinler yiyen) sayılmazlar. Bazı primat türlerinin, bitkisel gıdalar yanısıra böcek, kuş, kertenkele, tırtıl ve hatta küçük memelileri bile yedikleri söylenebilir. Hem bitkisel, hem de hayvansal besinleri yiyen bu tür canlılara omnivor adı verilir. Karma beslenme alışkanlığı, primatların diş morfolojilerine de yansımıştır. Primatlar, diğer tüm memeliler gibi, büyüme ve gelişmeleri, dokularının yenilenmesi için proteine; enerji ihtiyacını karşılamak için yağ ve karbonhidrata, ayrıca çeşitli eser elementlere ve vitaminlere gereksinme duyarlar. Primat dünyasındaki biyolojik çeşitlilik onların beslenme alışkanlıklarında da gözlenebilir. Her primatın kendine göre bir beslenme stratejisi bulunur, örneğin Yeni Dünya primatları nadiren ağaçlardan inerler; susadıklarında meyve yerler ya da ağaç yapraklarının üzerinde biriken yağmur damlalarını yalarlar. Hindistan'da yaşayan Eski Dünya primatları ise su gereksinmelerini yaprakları yiyerek karşılarlar. Aynı şekilde gorillerin de hiç su içmedikleri söylenir. Suyu meyve ve yapraklardan sağlarlar. Colobus adlı Eski Dünya primatlarının mideleri adeta bir labirente benzer; çok bölmelidir. Bu anatomik oluşum sayesinde söz konusu primatlar çok miktarda yaprağı bir defada rahatlıkla yiyip sindirebilirler. Mide tıka basa dolduğunda, vücut ağırlığının 1 /4'üne eşdeğer duruma gelir. Primatlar uyandıkları andan yatıncaya kadar sürekli beslenirler. Onlarda, insanlardaki gibi belirli öğünler söz konusu değildir, örneğin goriller, iri cüsselerini doyurabilmek için çok miktarda yiyeceğe gereksinim duyarlar; günde 6-8 saat durmadan, yorulmadan yiyecek peşinde koşarlar. Şempanzelerin beslenme alışkanlıkları Goodall tarafından doğal ortamda ayrıntılı biçimde izlenmiştir. Genellikle şempanzelerin meyve ağırlıklı bir diyete sahip oldukları bilinir. Oysa, bu iri primatların hiç de azımsanamayacak ölçüde her gün et yedikleri, üstelik bu gereksinmelerini de avlayarak karşıladıkları ortaya konmuştur. Şempanzelerin 2 ile 5 bireyden oluşan gruplar halinde avlandığı görülmüştür. Yalnız erkek şempanzeler ava katılır. Gerçekten de et, tıpkı insanlarda olduğu gibi şempanze diyetinin bir parçasını oluşturur. Primat dünyasında sadece insanın ve şempanzenin düzenli biçimde avlandığı ve et yediği bilinir. Ancak, şempanzelerin bu tür avlanma alışkanlığını hiçbir zaman insanınki ile karıştırmamalıyız. Zira şempanzelerin bu amaçla geliştirdikleri av aletleri yoktur. Üstelik çevrelerindeki hemcinslerine öğretecekleri av teknikleri de söz konusu değildir. Avlanmaları, öğretme ve bilgilendirme şeklinde değil de taklit yoluyla gerçekleşir. Ortalama 30-35 bireyden oluşan bir şempanze sürüsü yılda toplam 150 irili ufaklı hayvan avlayabilir. Şempanzelerin avladıkları hayvanların %80 gibi önemli bir bölümünü colobus adlı maymunlar oluşturur. Son yıllarda sürdürülen araştırmalar, şempanzelerin bu avlanma davranışının temelinde gerçekten beslenme gereksinmesinin mi yattığı, sorusunu tartışır hale getirmiştir. Bazı araştıncılar avlanma olayını salt beslenmeye değil de, sosyal bir temele dayandırmaktadır. Primatologların yaptıkları gözlemlere bakılırsa, erkek şempanze öldürdüğü bir hayvanın etini sadece yakınlarıyla paylaşır. Erkek şempanze et için çevresini saran her dişiye pay vermez. Bir dişi şempanzenin bu ayrıcalıktan yararlanabilmesi için öncelikle fizyolojik açıdan çiftleşme döneminde bulunması ve av eti dağıtan erkekle beraber olması gerekir. Bunun karşılığında da ödül olarak avdan nasibini almış olur. Netice itibariyle, şempanzeler dünyasında avlanma, erkeğin yalnızca beslenme gereksinmesini karşılaması için değil, aynı zamanda çiftleşme evresinde olan bir dişiye ulaşabilmesinin de aracıdır.

http://www.biyologlar.com/primatlarin-biyolojik-ozellikleri

BÖCEKLERDE EMBRİYO GELIŞİMİ

Yumurta döllendikten kisa bir süre sonra bölünmeye baslar. Yumurtanin bölünmesine segmentasyon denir. Segmentasyon sekli yumurta tipine göre degisir. Şöyle ki; böcek yumurtasi sentrolesital olup segmentasyonu da superficialdir. Bu segmentasyonda yumurtanin merkezinde bulunan nukleusun birbirini izleyen bölünmeleri sonunda çok sayida nukleus meydana gelir. Bu yavru nukleuslar yumurtanin çevresinde bulunan sitoplazmaya göç ederler. Çevredeki sitoplazma nukleus sayisi kadar bölünerek blastoderm adini alan tabaka meydana gelir. Bundan sonra blastodermin belirli yerinde kalinlasma olur ve yumurta boyunca uzun bir serit olusur. Bu kalinlasmayi bir çökme izler ve 2 tabaka (Ektoderm, endoderm) olusur. Gastrulasyon adini alan bu dönemden sonra meydana gelen tabakalar arasinda özel hücrelerin çogalmasi sonucu orta tabaka mezoderm meydana gelir. Bu sirada embriyo amnion ve serosa adli 2 zar tarafindan çevrelenmistir (Disda seroza içte amnion). Embriyonun segmentlere ayrilmasi gelismenin ilk devrelerinde baslar, segmentlerin olusumu degisik safhalarda olur. Bas protopod döneminde, thorax ve abdomen segmentleri polypod döneminde ve bacaklar oligopod döneminde meydana gelir. Böcek vücudunu olusturan çesitli organlar yapi itibari ile degisik embriyo tabakalarindan meydana gelir; Ektodermden: Deri, iskelet, ön ve art barsak, salgi bezleri, duygu organlari, solunum ve sinir sistemleri ve cinsel organlari, Mezodermden: Kan ve dolasim sistemleri, yag hücreleri, isik organlari, ovaryum ve testisleri, Endodermden: Orta barsak. Embriyo gelisiminden sonra meydana gelmis olan yavru yumurtayi kemirerek açtigi kisimdan veya özel yapili kapagi kaldirarak disariya çikar. Yumurta dönemi süresi degisiktir. Birkaç saat kadar kisa veya aylarca sürecek kadar uzun olabilir.

http://www.biyologlar.com/boceklerde-embriyo-gelisimi

Evrim Kuramı ve Maymun Sorunu

"Evet,insanlar gerçekten de bir evrim geçirdi;ancak yalnızca maymunlardan hatta diğer memeli hayvanlardan türemedi. Bizler, en uzağı ilk bakteriler olan uzun bir atalar soyundan evrildik" Lynn Margulis (Ortak yaşam Gezegeni, Türkçesi:Ela Uluhan,Varlık/Bilim s:10) İnsan kanı ile maymun kanı arasında büyük bir benzerlik vardır. Örneğin 287 aminoasitten oluşan hemoglobin A molekülü insan ve şempanzede tıpatıp aynıdır. Aynı molekül bakımından insan ve goril kanı arasındaki fark ise 287 aminoasitten sadece birindedir. Hemoglobin A molekülü farede 19,koyunda 26,tavukta 45,sazan balığında 95 aminoasit ve insan hemoglobin A molekülünden ayrılmaktadır. Görüldüğü gibi kanın bir öğesi olan hemoglobin A molekülü bakımından insana en yakın canlı olan şempanzede hiç fark yok iken insandan uzaklaştıkça farklılıklar artmaktadır. Daha bir çok protein üzerinde yapılan çalışmalarda aynı yönde sonuçlar elde edilmiştir. Prof.Dr.Aykut Kence (ODTÜ,Fen-Edebiyat Fak) TÜBA Bilimsel Toplantı Serileri 2 Şimdi size bir başka büyük kuramı sunmaya çalışacağım: Evrim Kuramı. Bugün bilime karşı büyük bir düşünsel saldırı var. Şu güzel ülkemiz ve insanlarımız,bilim ve teknolojinin olanaklarından daha tam olarak yararlanamazken bilimin en genel geçer kuramlarını tartışarak zaman öldürmek ne acı. Bilim belki her zaman onu "savunmayı" gerektirdi. Ama gerek 20. yüzyılın büyük savaşları,sosyalist sistemin çatırdayarak çökmesi,teknolojinin yanlış ya da yıkım için kullanılması,gerekse ülkemizdeki,siyasi,ekonomik ve ahlaki bunalım,bilim düşmanlarının saldırılarını kolaylaştırıcı bir zemin hazırlıyor. Bu konuda evrim kuramının da çok iyi anlaşılması ve anlatılması gerekiyor.2000 Mayıs ayında Sabancı Üniversitesi'ne konuk öğretim üyesi olarak gelen Harvard Ünversitesi'nden Andrew Berry, doğal seçimle rastlantı için güzel bir örnek verdi: "Bütün sarışın insanlar cilt kanserinden ölürse burada doğal seçim sürecinin işlediğini söyleyebiliriz;ama tüm sarışınların bir gemiye binip boğulması bir rastlantıdır." Ben iyi bir derleme yaptığıma inanıyorum,ustalara söz vererek bunu da sizinle paylaşmak istiyorum. Ayrıca Erzurumlu İbrahim Hakkı'nın Marifetname adlı eserinden uzun alıntılar veriyorum. Hayvan Deyip Geçmeyelim! Evrim Kuramına itiraz edenlerin en büyük kaygısı, atalarının herhangi bir hayvana bağlanamayacağı noktasındadır. Niye Hayvan? Çünkü, iddiaya göre evrim kuramının en temel noktalarından biri, insanın maymundan türediğidir. Darwin, aslında insanın maymundan geldiğini söylemedi. Darwin, bütün canlıların, birbiriyle akraba olduğunu söyledi. En yakın komşumuz, en yakın yeğenimiz maymunlardır; ama biz, maymunlardan gelmiyoruz; bize söyleyebildikleri kadarıyla maymunlar da bizim atamız olduğunu inkar ediyorlar ve bize bir yakınlık duymuyorlar! Onlar, kendi dünyalarını tercih ediyorlar! Hayvanoğlu Hayvan! Maymun sorununa döneceğim,ama önce genel olarak hayvanlarla ilgili birkaç eğlencelik yazacağım. Belediye otobüsünde mi, yoksa lüks bir baloda mı olmuş bilmiyorum; ama şu olay olmuş: Adamın biri, otobüsteki bir hanımefendinin ya da başka bir adamla dans eden hanımefendinin ayağına basmış... Hanımefendi, önce ses çıkarmamış. Ama adamın paldır küldür, hiç de dans etmeden sallandığını ve yeniden ayağına bastığını gördükten sonra: " Beyefendi, ayağıma basıyorsunuz. Biraz dikkat etsenize!" diye çıkışmış. Bizim maganda yine pek oralı olmamış. Bunun üzerine hanımefendi,sessizce, ama onun duyacağı şekilde "Hayvan!" demiş. Bizimki hayvanlığı da hiç üzerine almamış. Bunun üzerine hanımefendi öfkelenmiş. "Bakınız bey, bakınız! " Hayvan! dediysek, herıld(herhalde’nin kısaltılmışı ve İngilizcesi!) kuş, bülbül, serçe demek istemedik; ayı, öküz, domuz gibi bir şey demek istedik !" demiş. Ama söylentiye göre adam, bu nazik hanımefendiyi yine anlamamış! Bu öykü bana anlatılınca pek sıkılmıştım. Çünkü, pistlerdeki durumum, anlatılan “Anadolu Evladından” hiç de farklı değildi. Kadın, sanki bana konuşuyormuş gibi kıpkırmızı olmuştum. Bunun için , dansetmek mecburiyetinde bırakıldığım zamanlarda(!)pist alanın seyrelmesini dört gözle bekler(!) ve dans ederken de eşime ilk kez sarılıyormuşçasına sarılırım! Böylece hem dans eden çiftlerden, hem de komşuların rahatsız edici konuşmalarından uzak dururum! İnsanlar,genellikle hayvanları bir bütün olarak kendisinden aşağı yaratıklar olarak görür. Bazı insanlar,bazı insanları da aşağı yaratıklar olarak görür de konumuz şimdilik birincisi üzerine. Kızdığımız birine sık sık "hayvan oğlu hayvan " demez miyiz?Bu hayvanlıktan en çok nasibini alan hayvanlar eşek ile öküzdür. Oysa ikisi de insanların öyle çok kahırlarını çeker ki anlatamam. Bir de bunu ayıları ekleyebiliriz. Bu arada savaşçı bir kabile annesi oğlu için "benim kartal pençeli oğlum" der. Kızını pazarlayan(afedersiniz) gösterişçi anne şöyle demez mi: “Ay kardeş, kendi kızım diye söylemiyorum. Görüyorsun işte boy onda bos onda. Ceylan gibi kız. O görgüsüzler, benim ahu (ceylan) gözlü kızımdan daha güzelini nerede bulabilir?” Oğlunu pazarlayan (yine afedersiniz) bir anne ya da babanın “benim oğlum Aslan gibidir” derken, oğlunun Aslandan daha güçsüzlüğünün altını çizmez mi? Şimdi konumuza dönelim. Hayvanlarla bir ilgimiz ve ilişkimiz var mı? Anlattığım gibi var. Kartal var, köpek var, tazı var, kedi var, tavuk var... Şimdi ilginç bir soru: karalara önce bitkiler mi, yoksa hayvanlar mı çıktı? Umarım insanlık onurunuz incinmez, çünkü karalara bizden önce bitkiler çıkmış. Bitki dediysek, güller, sümbüller, kaynana dili değil belki; ama bitki işte... 400 milyon yıl önce karalara ilk olarak "bitkiler " çıktı. 350 milyon yıl önce ilk çift yaşamlı hayvanlar (amfibiler) göründü. 320 milyon yıl önce ilk sürüngenler arşınlamaya başladı karaları. Evrim Kuramının İlk Soruları Bu kuram, her çocuğun, her ergenin, her düşünen insanın yaşamı boyunca zaman zaman kendine sorduğu soruların yanıtını araştırır. Bu sorular ,hepimizin aklını kurcalayan sorulardır: Nereden geldik, nereye doğru gidiyoruz? İnsanoğlunun yaşamında yanıtını bilmek istediği soru böyle özetlenebilir. Ama biz yine de basit sorularla olayı deşmeye çalışalım: Bundan diyelim ki bin yıl, milyon yıl, milyar yıl önce de insan, insan mıydı, tavuk tavuk muydu, kedi kedi miydi? Çam ağacı çam ağacı mıydı?Yani canlılığın tarihinin “filmini” bugünden geriye doğru sarsak neler görebiliriz? Bu film, nereye kadar ve hangi bilgilerle geriye sarılabiliyor? Evrim Kuramı, çok basit olarak “hayvanlar ve bitkiler, bugünlere gelirken değişikliklere uğrayarak mı geldi; yoksa her şey, bir dahi vuruşuyla başladı ve hiç değişmeden sürüp gidiyor mu?” sorularına bilimin verdiği yanıtları kapsıyor. Doğal olarak bilimin verdiği yanıtlar deyince akan sular durmuyor ve bu konuda insan aklının çağdaş düşmanları da boş durmuyor; oldukça inceltilmiş biçimiyle bilime saldırılarını sürdürüyorlar. Bunun yalnız geri kalmış ülkelerde sürdürüldüğünü sanmayınız. En başta ABD olmak üzere,hemen tüm gelişmiş ülkelerde de bilimin düşmanları boş durmuyor. Evrim kuramına karşı yürütülen kampanya, ülkemizde özellikle 20. yy biterken doruk noktasına çıktı. Bunu basit bir inanç kayması olarak görmeyelim. Bu, yalnızca özgür düşünceye değil, başta tıp olmak üzere doğal bilimlere ve daha da geniş anlamıyla bilimsel felsefeye saldırıdır. Evrim kuramına saldıranların ilk ve ilkel saldırılarıyla konuya girmek istiyorum. Bu, maymun sorunudur. Maymun Sorunu: Ünlü Tartışma! İnsanın, “en uyumlunun yaşaması” ilkesiyle, daha ilkel canlılardan evrimleştiği hakkındaki Darwin kuramı, Türlerin Kökeni ’nin yayımlandığı 1859 yılından beri müthiş tepkiler almıştır. Özellikle 1860 Haziran’ında Darwin’i savunan biyolog T.H. Huxley ile Tanrı’yı savunan Oxford başpiskoposu Wilberforce arasında halka açık bir tartışma yapılıyor. Bu tartışmada Piskopos, Darwin’in tezinin çok saçma olduğunu savunuyor ve konuşmasını alaylı bir biçimde Huxley’in büyükanne tarafından mı yoksa büyükbaba tarafından mı maymundan geldiğini sorarak bitiriyordu. Huxley ise evrimin kanıtlarını ustaca ortaya koymuş ve atasının bir maymun olmasının, piskoposunki gibi entellektüel bir fahişe olmasından daha iyi olduğunu söyleyerek bitirmiştir. Bu sırada Lady Brewester baygınlık geçirmiş, dışarı taşınırken hakkın rahmetine kavuşmuştur.”(John Taylor, Kara Delik, e yayınları s: 39) Kaptan Fitzroy’un Kutsal Kitap’la uyumlu düşünceleri yolculuk süresince gittikçe daha da katılaştı. O, anlamaya çalışmamız gereken kimi şeler olduğuna inanıyordu;evrenin ilk kaynağı, bütün bilimsel araştırmaların erişimi dışında bulunması gereken bir giz olarak kalmalıydı. Fakat Darwin çoktandır bunu kabul etmekten çok uzaktı; Kutsal Kitap’a takılıp kalamazdı,onun ötesine geçmek zorundaydı. Uygar insan bütün soruların en can alıcısını-"biz nereden geldik?” sorusunu- sormaya, soruşturmalarını kendisini götürdüğü yere kadar götürmeye devam etmekle yükümlüydü. Bu tartışmaya bir son vermek mümkün olmayacaktı. Tartışma, biri bilimsel ve araştırmalara açık, öteki dinsel ve tutucu, karşıt iki görüşün 25 yıl sonra Oxford’da yapılan o sert toplantıdaki çatışmasının bir ön hazırlığıydı.” Ne var ki bir grup insan, yani Kilise, Darwin’in kuramına şiddetle karşı çıktı. Darwin’in Türlerin Kökeni adlı kitabının yayımlanması(1859) bilim ile din arasında sert bir tartışmaya yol açtı. Darwin’in çekingenliği kendisinin bu tartışmada yer almasını engelledi;ama evrimle ilgili kavgacı savunmalarıyla “Darwin’in Buldoğu” lakabını alan dostu Thomas Huxley’in sözünü sakınmak gibi bir özelliği yoktu. Huxley ile Piskopos Wilberforce arasındaki kavga, Ronald Clark’in Darwin biyografisinde şöyle anlatılır: “Britanya İleri Araştırmalar Kurumu’nun 1860 yazında Oxford’da yaptığı yıllık toplantıda[ Darwin’in kuramı konusundaki] kuşkular boşlukta kaldı. Kurum üyeleri 19. yy bilim tarihinin en parlak sahnelerinden birine tanık olacaklardı. Bu, Oxford Piskoposu Samuel Wilberforce ile Thomas Huxley’in bir tartışma sırasında karşılıklı atışmalarından oluşan bir sahneydi. Çağının öteki kilise adamları gibi Wilberforce da bilimsel bakımdan tam bir karacahildi.(s: 144). Tartışma beklendiği için salon tıka basa doluydu. Wilberforce’un, Huxley’in de daha sonra yazacağı gibi “birinci sınıf bir tartışmacı” olmak gibi bir ünü vardı: “kartlarını uygun oynasaydı evrim kuramını yeterince savunma şansımız pek olmazdı.” Wilberforce, akıcı ve süslü bir konuşmayla, kendisini yenilgiye uğratmak üzere olduğunu belirttiği Huxley’e övgüler düzdü. Ardından ona döndü ve “soyunun büyük annesi mi yoksa büyük babası tarafından mı maymundan geldiğini” öğrenmek istedi. Huxley rakibine döndü ve haykırdı: “Tanrı onu ellerime teslim etti.” “Eğer” dedi [kürsüden], “bana bir büyük baba olarak zavallı bir maymunu mu yoksa doğanın büyük bir yetenek ve güç bahşedip bunlarla donattığı;ama bu yetenekleriyle gücünü yalnızca birtakım eğlenceli sözleri ağırbaşlı bilimsel bir tartışma gibi sunmak amacıyla kullanan bir insanı mı yeğlersin? diye soracak olsalar, hiç duraksamadan tercihimin maymundan yana olduğunu söylerdim.” Huxley bildiği en güçlü darbeyle karşılık vermişti. Bir piskoposu küçük düşürmek,bundan bir ya da birkaç yüzyıl önce pek rastlanır bir şey değildi;hele halkın önünde, kendi piskoposluk bölgesinde küçük düşürmek neredeyse hiç görülmemişti. Dinleyiciler arasında oranın ileri gelenlerinden bir hanım şok geçirip bayıldı Dinleyicilerin çoğu alkışladı. Fakat Robert Fitzroy oturduğu yerden kalktı ve otuz yıl önce Darwin’le gemide yaptığı bir tartışmayı hatırlattı. Kutsal Kitap’ı Huxley’e salladı ve süslü sözlerle bütün doğruların kaynağının bu kitap olduğunu söyledi. Bu öykünün birinci elden bir anlatımı yoktur. Harvardlı biyolog Stephen Jay Gould diyaloğun çoğu bölümünü yaklaşık 20 yıl sonra Huxley’in kendisinin uydurduğu kanısındadır. Fakat bu konuşmalardan kimsenin bir kuşkusu olmadığı yollu bir dip notu da vardır. Huxley Wilberforce’a duyduğu nefreti 1873'e, Piskopos atından düşüp kafasını bir taşa çarparak öldüğü yıla dek sürdü. “Kafası” dedi Huxley bunun öğrenince kıs kıs gülerek “gerçeğe bir kez daha tosladı;ama bu kez sonuç ölümcül oldu." (Adrian Berry, Bilimin Arka Yüzü, TÜBİTAK yay, s: 137-146) Bozkurt Güvenç, olayı değişik sözlerle şöyle anıyor: Huxley soruyu ciddiye alıyor (oysa Darwin aldırmıyor) diyor ki: “Gerçeklere saygısız bir insan soyundan gelmektense, gerçeklere saygılı bir maymun soyundan geldiğimi kabul ederim.” Gazeteciler- o zaman telefon yok- hemen koşuyor, gazete yönetim merkezlerine “ Evrimciler, maymundan geldiklerini kabul ettiler” haberini yetiştiriyorlar. Tabi biz, 120 yıldır değerli dinleyenlerim, gazete haberleriyle Darwin’i ve bilimi yargılıyoruz. Fen fakültelerimizin biyoloji bölümleri dahil. Çünkü kimse, Darwin’in, Türlerin Kökenini, İnsanın Yücelişini okumuyor. Mesele, Darwin konusu, maymun meselesi değil. Dünyayı algılama meselesi. İşte bu konuda, yalnız biz değil, bütün dünyada büyük sorunlar var.” (Prof. Dr. Bozkurt Güvenç,TÜBA, Bilimsel Toplantı Serileri: 2, Bilim ve Eğitim s: 68) Maymun sorunu,maymunları bile rahatsız edecek kalitesizlikle reddediliyor. Neden mi? Size birileri “Efendim size dedenizin dedesi ve onun da dedesi hüdavendigar Murat han hazretlerinden selam ve muhabbetler getirdik. Sizin durumunuzu sorarlar. Sülalem aynı geleneklerle devam etmede midir? Yoksa bazı boylar birliğimizi bozmuş mudur?..” diye soruyor diyelim. Şimdi siz de bu soruyu yanıtlayın. Sanırım şöyle olabilir: “ Benim dedemin dedesinin dedesi Rumeli Beylerbeyi falanca beymiş. Ya da “benim bugünkü durumuma bakmayın. Bendeniz Fatih Sultan Mehmet Han hazretlerinin onüçüncü göbekten torunu olurum” diyebilirsiniz. Ve de torunluğa uygun görev isterim!...” Bu da sizin ne kadar köklü, ne kadar akıllı, ne kadar sabırlı, ne kadar alçakgönüllü(!) olduğunuzu gösterir. İLK İNSANLAR İnsan nasıl insan oldu? “Homo sapiens ’in dil, gelişmiş teknolojik beceriler ve ahlaki yargılara varabilmek gibi özel nitelikleri antropologları uzun zamandır hayranlığa sürüklüyor. Ama yakın zamanlarda antropolojide yaşanan en önemli değişikliklerden biri, bütün bu niteliklere karşın, Afrikalı insansımaymunlarla çok yakın bir bağlantımız olduğunu anlaşılmasıdır. Bu önemli görüş değişikliği nasıl gerçekleşti? Bu bölümde, Charles Darwin’in en eski insan türlerinin özel doğası hakkındaki fikirlerinin antropologları nasıl etkilediğini, yeni araştırmaların Afrikalı insansımaymunlarla evrimsel yakınlığımızı nasıl ortaya çıkardığını ve doğadaki yerimiz hakkında farklı bir bakış açısı geliştirmemizi gerektirdiğini tartışacağım. 1859'da Türlerin Kökeni adlı yapıtında Darwin, evrimin insanlar açısından ne anlama geldiği konusuna girmekten kaçınmıştı. Sonraki baskılara ise çekinceli bir cümle eklendi: “İnsanın kökeni ve tarihi aydınlatılacaktır.” Darwin bu kısa cümleyi, 1871'de yayınlanan İnsanın Türeyişi adlı kitabında ayrıntılandırdı. Hala çok hassas olan bir konuyu ele alarak, antropolojinin kuramsal yapısına iki sütun dikti. Bunlardan ilki, insanların ilk nerede evrildikleriyle (ona zamanında çok az kişi inanmıştı, oysa haklıydı), ikincisi ise, bu evrimin şekli ya da biçimiyle ilgiliydi... Darwin’in evrimimizin şekli hakkındaki görüşleri antropoloji bilimini birkaç yıl öncesine dek etkiledi ve sonra, yanlış olduğu anlaşıldı. Darwin, insanlığın beşiğinin Afrika olduğunu söylüyordu. Bu sonuca basit bir mantıkla varmıştı: Dünyanın her büyük bölgesinde hayatta olan memeliler, aynı bölgede evrilmiş türlerle yakın bağlantı içindedirler. Dolaysıyla, Afrikada bir zamanlar, goril ve şempanzelerle yakından bağlantılı ve günümüzde nesli tükenmiş olan insansımaymunlar yaşamış olabilir: bu iki tür insanın en yakın akrabaları olduğuna göre, ilk atalarımızın Afrika kıtasında yaşamış olma olasılığı, başka bir yerde yaşamış olmaları olasılığından daha yüksektir. Darwin’in bu satırları yazdığı sıralarda hiçbir yerde erken insan fosillerinin bulunmadığını unutmamalıyız; vardığı sonuç tamamen kurama dayandırılmıştı. Darwin’in zamanında bilinen tek insan fosilleri Avrupalı Neandertal insanına aitti ve bunlar, insan gelişiminin görece yeni bir aşamasını temsil ediyorlardı. Afrika'nın Sihiri Antropologlar, Darwin’in yorumundan hiç hoşlanmadılar; bunun en önemli nedenlerinden biri, tropik Afrika’ya sömürgeci gözüyle, küçümseyerek bakılmasıydı: Kara Kıta, Homo sapiens gibi soylu bir yaratığın kökeni için hiç de uygun bir yer olarak görülmüyordu. Yüzyıl başında Avrupa ve Afrika’da yeni insan fosillerinin bulunmasıyla birlikte, Afrika kökenli olma fikrine duyulan küçümseme arttı ve bu tutum onyıllarca sürdü.” Yazar(R.Leakey) 1931'de Camridge’deki hocalarına insanın kökenini Doğu Afrika’da aramayı planladığında kendisine Asya’ya yönelmesi istendi. “Bu olay, bilimcilerin mantık kadar duygularından da etkilenebildiklerini gösteriyor.”(s:16) Darwin’in İnsanın Türeyişi ’nde ulaştığı ikinci önemli sonuç, insanların önemli ayırıcı özelliklerinin-iki ayaklılık, teknoloji ve büyük bir beyin- birbirleriyle uyum içinde gelişmiş olmasıydı: Kollarının ve ellerinin serbest kalması ve ayakları üstünde sağlamca durabilmesi insan için bir avantaj olmuşsa... insanın ataları için daha dik ya da iki ayaklı hale gelmenin daha avantajlı olmaması için bir neden göremiyorum. Eller ve kollar bedenin tüm yükünü taşımak için kullanılıdıkça... ya da ağaçlara tırmanmaya uygun oldukça, silah yapmak ya da taş ve mızrakları hedefe atmak için gerekli şekilde gelişemezdi. Burada Darwin, alışılmadık hareket tarzımızdaki gelişimin, taştan silah yapımıyla doğrudan bağlantılı olduğunu savunmaktadır. Daha da ileri giderek bu evrim değişimlerini, insanlardaki, insansımaymunların hançere benzeyen köpekdişleriyle karşılaştırıldığında son derece küçük olan köpekdişlerinin kökeniyle ilişkilendirmiştir. İnsanın Türeyişi’nde şöyle demekteydi: “İnsanın ataları büyük olasılıkla, büyük köpekdişlerine sahiptiler; ama düşmanları ya da rakipleriyle savaşırken taş, sopa ya da diğer silahları kullanma alışkanlığını geliştirmeleriyle birlikte, çenelerini ve dişlerini daha az kullanmaya başladılar. Bu durumda çene ve dişler küçülecekti.” Silah yapabilen bu iki ayaklı yaratıklar Darwin’e göre, daha çok zeka gerektiren yoğun bir sosyal etkileşim geliştirdiler. Atalarımızın zekalarının gelişmesiyle birlikte, teknolojik ve sosyal gelişmişlik düzeyleri de yükseldi ve bu da, daha gelişmiş bir zeka gerektirdi. Böylece her yeni özellik, diğer özelliklerin gelişmesini sağladı. Bu bağlantılı evrimi hipotezi insanın kökeni konusunda açık seçik bir senaryo sunuyordu ve antropoloji biliminin gelişimine merkez oluşturdu. Bu senaryoya göre ilk insan türü, iki ayaklı bir insansımaymundan öte bir şeydi: Homo sapiens ’te takdir ettiğimiz özelliklerden bazılarına daha o zamandan sahipti. Bu öylesine güçlü ve akla yakın bir imgeydi ki, antropologlar uzun bir süre, bu imgenin etrafında inandırıcı hipotezler dokuyabildiler. Ama senaryo, bilimin ötesine geçti: İnsanların insansımaymunlardan evrimsel farklılaşmaları aniden ve çok eski bir dönemde gerçekleşmişse, bizimle doğanın geri kalan kısmı arasına büyük bir uzaklık girmiş demekti. Homo sapiens’in tamamen farklı bir yaratık olduğuna inananlar için bu bakış açısı son derece rahatlatıcıydı. Bu inanç hem Darwin’in döneminde hem de yüzyılımızda bilim adamları arasında oldukça yaygındı. Söz gelimi, 19.yy İngiliz doğa bilimcisi-ve Darwin’den bağımsız olarak doğal seçim kuramını yaratmış olan- Russel Wallace bu kuramı, insanlığın en çok değer verdiğimiz yönlerine uygulamak istemedi. İnsanları, yalnızca doğal seçimin ürünü olarak görülemeyecek denli akıllı, incelmiş ve gelişmiş buluyordu. İlkel avcı-toplayıcıların biyolojik açıdan bu özelliklere gereksinim duymayacaklarını ve dolaysıyla, doğal seçim sonucu gelişmiş olamayacaklarının düşünüyordu. İnsanların bu denli özel yaratıklar olmalarını doğaüstü bir müdahale sağlamış olmalıydı. Wallace’ın doğal seçim gücüne inanmaması, Darwin’i son derece rahatsız ediyordu. 1930'lar ve 1940'larda Güney Afrika’da gerçekleştirdiği öncü çalışmalarla Afrika’nın insanlığın beşiği olarak kabul edilmesine katkıda bulunan İskoç paleontolog Robert Broom da insanın ayrıcalıklı olduğuna inanıyordu. Homo sapiens ’in evrimin nihai sonucu olduğunu ve doğanın geri kalan kısmının insanın rahat etmesi için şekillendirilmiş olduğunu düşünüyordu. Wallace gibi Broom da türümüzün kökeninde doğaüstü güçler arıyordu. Wallace ve Broom gibi bilimciler, biri entellektüel ve diğeri de duygusal olmak üzere iki çatışan güçle savaşıyorlardı. Homo sapiens’in evrim süreci sayesinde doğadan geliştiği gerçeğini kabul etseler de, insanın tinselliğine ya da aşkın özüne dair inançları, onları evrim konusunda insanın ayrıcalığını kanıtlayan açıklamalar oluşturmaya yönlendiriyordu.(s:18) Darwin’in 1871'deki evrim “paketinde” böyle bir rasyonelleştirme vardı. Darwin doğaüstü müdahale aramıyordu gerçi, ama evrim senaryosu, insanları daha başlangıçtan itibaren insansımaymunlardan ayırıyordu. Darwin’in tezi yaklaşık on yıl öncesine dek(kitabın yazılış tarihi 1996) etkisini sürdürdü ve insanın ne zaman ortaya çıktığı konusunda önemli bir çatışma yaşanmasına neden oldu.Darwin’in bağlantılı evrim hipotezinin çekiciliğini göstermesi nedeniyle, bu çatışmayı kısaca anlatacağım. Çatışma aynı zamanda, hipotezin antropolojik düşünüşteki etkisinin sona ermesine de işaret eder. 1961'de, o dönemde Yale Üniversitesinde olan Elwyn Simons çığır açıcı bir bilimsel bildiri yayınlayarak, bilinen ilk insangil türünün Ramapithecus adı verilen küçük bir insansımaymun benzeri yaratık olduğunu savundu. O dönemde bilinen tek Ramapithecus fosil kalıntıları, Yale’den G. Edward Lewis adlı genç bir araştırmacının 1931'de Hindistan’da bulduğu üst çene parçalarıydı. Simons, yanak dişlerinin (azı dişleri ve küçük azı dişleri), insansımaymunların dişleri gibi sivri değil, düz olmaları açısından insanlardakilere benzediğini görmüştü. Köpek dişleri de insansımaymunlara göre daha kısa ve düzdü. Simons, eksik haldeki üst çenenin yeniden oluşturulması durumunda, şeklinin insanlardakine benzeyeceğini de iddia ediyordu; yani modern insansımaymunlardaki gibi “U” şeklinde değil, arkaya doğru hafifçe genişleyen bir kemer biçiminde. Cambridge Üniversitesi’nden İngiliz antropolog David Pilbeam bu dönemde Yale’de Simons’a katıldı ve birlikte, Ramapithecus çenesinin insansı olduğu iddia edilen anatomik özelliklerini tanımladılar. Ama anatomiden de öteye geçtiler ve yalnızca çene parçalarının güçlülüğüne dayanarak, Ramapithecus’un iki ayağı üstünde dik yürüdüğünü, avcılık yaptığını ve karmaşık bir sosyal ortamda yaşadığını öne sürdüler. Onalrın usavurumları Darwin’inki gibiydi: İnsansı olduğu varsayılan bir tek özelliğin (diş yapısı) varlığı, diğer özelliklerin de varolduğunu gösteriyordu. Sonuçta, ilk insangil türü olduğu varsayılan şey, kültürel bir hayvan- yani kültürsüz bir insanmaymundan çok, modern insanların ilkel bir değişkeni-olarak görülmeye başlandı. İlk Ramapithecus fosillerinin bulunduğu ve ardından, Asya ve Afrika’daki benzer keşiflerin yapılddığı tortular eskiydi. Dolaysıyla Simons ve Pilbeam, ilk insanın en az 15 milyon ve belki de 30 milyon önce ortaya çıktığı sonucuna vardılar ve antropologların büyük çoğunluğu bu görüşü kabul etti. Dahası, kökenin bu kadar eski olduğu inancı insanlarla doğanın geri kalan kısmı arasına büyük bir uzaklık koyarak, pek çok kişiyi rahatlatıyordu. 1960'larda Berkeley’deki California Üniversitesinden iki kimyacı Allan Wilson ve Vincent Sarich, ilk insan türlerinin ne zaman ortaya çıktığı konusunda çok farklı bir sonuca ulaştılar. Fosiller üstünde çalışmak yerine, yaşayan canlılarla Afrikalı insansımaymunlardaki bazı kan proteinlerinin yapısını karışlaştırdılar. Amaçları, insan ve insansımaymun proteinleri arasındaki yapısal fark düzeyini saptamaktı; mutasyon nedeniyle bu fark zaman içinde hesaplanabilir bir hızla artmış olmalıydı. İnsanlar ve insansımaymunrlar ne kadar uzun süre önce iki ayrı tür haline gelmişlerse, biriken mutasyon sayısı da o kadar fazla olacaktı. Wilson ve Sarich mutasyon hızını hesapladılar ve böylece , kan proteini verilerini bir moleküler saat olarak kullanabildiler. Bu saate göre ilk insanlar, yalnızca yaklaşık 5 milyon yıl önce ortaya çıkmış olmalıydılar; bu, egemen antropoloji kuramındaki 15 ile 30 milyon yıllık tahminle çarpıcı oranda çelişen bir bulguydu. Wilson ve Saricn’in verileri ayrıca, insanların şempanzelerin ve gorillerin kan proteinlerinin birbirlerinden aynı derecede farklı olduğunu gösteriyordu. Yani 5 milyon yıl önce gerçekleşen bir evrim olayı ortak bir atanın aynı anda üç ayrı yöne gitmesine neden olmuştu; bu bölünme, modern insanların yanısıra, modern şempanze ve modern gorillerin de gelişmelerini sağlamıştı.(s:20). Bu da çoğu antropolgun inançlarına aykırıydı. Geleneksel düşünceye göre şempanzelerle goriller birbirlerinin en yakın akrabalarıdır ve insanlarla aralarında büyük bir uzaklık vardır. Molekül verileri hakkındaki yorumların geçerli olması durumunda antropologlar, insanlarla insansımaymunlar arasında çoğunun inandığından daha yakın bir biyolojik ilişki olduğunu kabul etmek durumunda kalacaklardı. Çok büyük bir tartışmma doğdu ve antropologlarla biyokimyacılar birbirlerinin mesleki tekniklerini şiddetle eleştirmeye başladılar.Wilson ve Sarich’in vardıkları sonuç, molekül saatlerinin hatalı olduğu ve dolaysıyla, geçmişteki evrim olayları hakkında bir zaman saptamasının güvenilir olmayacağı iddiasıyla eleştiriliyordu. Wilson ve Sarich ise antropologların küçük ve parçalanmış anatomik özelliklere çok fazla önem verdiklerini ve dolaysıyla, geçersiz sonuçlara ulaştıklarını savunuyorlardı. Ben (R.Leakey) o dönemde Wilson ve Sarich’in hatalı olduklarını düşünerek, antropolog topluluğunun yanında yer almıştım. Bu tartışma on yılı aşkın bir süre boyunca devam etti ve bu dönem içinde Wilson’la Sarich ve birbirlerinden bağımsız başka araştırmacılar giderek daha çok sayıda yeni moleküler kanıta ulaştılar. Bu yeni verilerin büyük çoğunluğu, Wilson ve Sarich’in ilk tezlerin destekliyordu. Kanıtlar antropologların fikirlerini değiştirmeye başladı, ama bu yavaş bir değişimdi. Sonunda 1980'lerin başlarında Pilbeam ile ekibinin Pakistan’da ve Londra Doğa Tarihi Müzesinden Peter Andrews ’un Türkiye’de daha eksiksiz durumda Ramapithecus benzeri fosiller bulmaları, sorunun çözüme kavuşmasını sağladı. İlk Ramapithecus fosilleri gerçekten de bazı yönlerden insana benziyorlardı; ama bu tür, insan değildi. Aşırı derecede parçalanmış kanıtları temel alarak bir evrim bağlantısı oluşturma işi çoğu kişinin sandığından çok daha zordur ve dikkatsiz davrananların düşebileceği pek çok tuzak vardır. Simons ve Pilbeam bu tuzaklardan birine düşmüşlerdi: Anatomik benzerlik, mutlaka evrimsel bağlantı olduğu anlamına gelmez.(s:21) Pakistan ve Türkiye’de bulunan daha eksiksiz durumdaki örnekler, insansı olduğu varsayılan özelliklerin yapay olduğunu gösterdi. Ramapithecus’ un çenesi kemerli değil, V şeklindeydi; bu ve diğer özellikler, ilkel bir insansımaymunların türü olduğunu gösteriyordu (modern insansımaymunların çenesiU şeklindedir). Daha sonraki akrabası orangutan gibi, Ramapithecus da ağaçlarda yaşıyordu ve ne iki ayaklı bir insansımaymun ne de ilkel bir avcı-toplayıcıydı. Yeni kanıtlar, Ramapithecus’un insangillerden olduğuna inanan en inatçı antropologları bile yanıldıklarına ve Wilson’la Sarich’in haklı olduklarına ikna etmişti(s:22): İnsan ailesinin kurucu üyesi olan ilk iki ayaklı insansımaymun, sanıldığı kadar eski bir dönemde değil, görece yakın bir zamanda ortaya çıkmıştı. Wilson ve Sarich ilk yayınlarında, 5 milyon yıl öncesini bu olayın tarihi olarak göstermişlerdi; ama günümüzde moleküler kanıtlar, tarihi yaklaşık 7 milyon yıl öncesine atıyor.Ancak insanlarla Afrikalı insansımaymunlar arasında olduğu öne sürülen biyolojik yakınlık fikrinden vazgeçilmedi. Hatta bu ilişki, öne sürüldüğünden de yakın olabilir. Kimi genetikçilerin, molekül verilerinin, insanlarla şempanzeler ve goriller arasında birbirine eşit üç yollu bir ayırma işaret ettiğini düşünmelerine karşın, başka şekilde düşünenler de var. Onlara göre insanlar ve şempanzeler birbirlerinin en yakın akrabalarıdır ve gorillerle aralarındaki evrimsel uzaklık danha fazladır. Ramapithecus olayı antropolojiyi iki şemkilde değiştirmişti. İlk olarak, ortak bir anatomik özellikten ortak bir evrimsel bağlantı çıkarmanın tehlikelerini gösterdi. İkinci olarak, Darwinci “paket”e körü körüne bağlı kalmanın budalalık olduğunu kanıtladı. Simons ve Pilbeam köpek dişinin şeklini temel alarak, Ramapithecus’a eksiksiz bir yaşam tarzı atfetmişlerdi: bir insangil özelliği bulunduğunda, bu türden tüm özelliklerin de bulunduğu varsayılıyordu. Ramapithecus’un insangil statüsünü yitirmesinin sonucunda, antropologlar Darwin paketinden kuşku duymaya başladılar. Bu antropolojik devrimin gelişimini izlemeden önce, ilk insangil türünün nasıl ortaya çıktığını açıkmlamak için çeşitli dönemlerde öne sürülmüş bazı hipotezlere de kısaca göz atmalıyız. Popülerlik kazanan her yeni hipotezin, döneminin sosyal iklimini yansıtması çok ilginç bir nokta. Sözgelimi Darwin, taş silahların geliştirilmesinin, teknoloji, iki ayaklılılık ve beyin boyutunun büyümesini içeren evrim paketinin başlangıcında önemli olduğunu düşünmüştü(s:23) Hipotez hiç kuşkusuz, yaşamın bir savaş olduğuna ve ilerlemenin girişimcilik ve çabayla sağlandığına dair yaygın fikri yansıtıyordu. Victoria çağının bu etosu, bilime işlemiş ve insan evrimi de dahil olmak üzere evrim sürecine bakış açısını belirlemişti. Yüzyılımızın ilk on yıllarında, Edward dönemine özgü iyimserliğin en enerjik günlerinde, bizi biz yapan şeyin beyin ve düşünce olduğu söylendi. Bu yaygın sosyal dünya görüşü antropolojide, insan evrimine başlangıçta iki ayaklılığın değil, beynin büyümesinin ivme kazanrdırdığı fikrinde ifade buldu. 1940'larda dünya, teknolojinin büyüsüne ve gücüne kapıylmışı; dolaysıyla ,”Alet Yapan Adam” hipotezi popülerlik kazandı. Londra Doğa Tarihi Müzesi’nden Kenneth Oakley’in öne sürdüğü bu hipotezde-silah değil- taş alet yapımı ve kullanımının evrimimiz için gerekli dürtüyü sağladığı savunuluyordu. Ve dünyanın İkinci Dünya Savaşının gölgesine girdiği dönemlerde, insanlarla insansımaymunlar arasındaki daha karanlık bir fark vurgulanmaya başlandı: bireyin kendi türüne karşı şiddet uygulaması. İlk kez Avusturalyalı anatomi bilimci Raymond Dart’ın öne sürdüğü “Katil Maymunadam” fikri, belki de savaşta yaşanan korkunç olayları açıklıyor (ya da hatta, mazur gösteriyor) olması nedeniyle, yaygın kabul gördü. 1960'larda antropologlar, insan kökeninin anahtarı olarak avcı-toplayıcı yaşam tarzına yöneldiler. Pek çok araştırma ekibi, özellikle Afrika’da olamak üzere, teknolojik açıdan ilkel modern insan nüfularını inceliyorlardı. Bunların arasından en kayda değerlerden biri (hatalı olarak Bushmen de denen! Kung San halkıydı. Burada doğayla uyum içinde, doğayı karmaşık yöntemlerle kullanan ve doğaya saygı gösteren bir halk imgesi ortaya çıktı. Bu insanlık görüşü dönemin çevreciliğiyle uyum içindeydi; ama antropologlar, karma avvcıllık ve toplayıcılık etkonomisinin karmaşıklığından ve ekonomik güvenliğinden de etkilenmişlerdi. Yine de asıl üstünde durulan avcılıktı. 1966'da Chicago Üniversitesinde, “Avcı Adam” başlıklı önemli bir antropoloji konferansı gerçekleştirildi.(s:24) Toplantıya egemen olan akım oldukça yalındı: İnsanı insan yapan, avcılıktır. Teknolojik açıdan ilkel toplumlarda avcılık genellikle, erkek sorumluluğudur. Dolaysıyla, 1970'lerde kadın sorunu konusundaki bilincin gelişmesiyle birlikte, insanın kökenine dair bu erkek merkezli açıklamanın sorgulanmaya başlanması son derece normaldi. “Toplayıcı Kadın” olarak bilinen alternatif bir hipotezde, tüm primat türlerindeolduğu gibi, toplumun merkezinin dişiyle çocukları arasındaki bağ olduğu savunuluyordu. Karmaşık bir insan toplumunun oluşturulmasını, teknoloji yaratan ve herkes tarafından paylaşılmak üzere (en başta gece) yiyecek toplayan insan dişilerinin insayatifi sağlamıştı. Ya da öyle olduğu savunuluyordu. Bu hipotezler insan evrimini asıl başlatan şey konusunda farklı fikirler getirmekle birlikte, hepsi de Darwin’in değer verilen belli insan özellikleri paketinin daha ilk baştan oluşmuş olduğunu söylüyorlardı: Hala, ilk insangil türünün belli bir düzeyde iki ayaklılık, teknoloji ve büyük beyin özelliklerine sahip olduğu düşünülüyordu. Dolaysıyla insangiller, daha başlangıçtan itibaren kültürel yaratıklardı; bu nedenle de, doğanın geri kalan kısmından farklıydılar. Oysa son yıllarda bunun doğru olmadığını anlamaya başladık. Arkeolojik kalıntılarda, Darwinci hipotezin doğru olmadığını gösteren sağlam kanıtlar görülüyor. Darwin paketi doğru olsaydı, arkeolojik lkalıntılarda ve fosil kalıntılarında iki ayaklılığa, teknolojiye ve büyük beyine dair kanıtları aynı anda görürdük. Ama görmüyoruz. tarihöncesi kalıntılarının tek bir yönü bile, hipotezin yanlış olduğunu göstermeye yetiyor: Taş alet kalıntıları. Çok enders olarak fosilleşen kemiklerin tersine, taş aletlerin yok olması neredeyse olanaksızdır. Dolaysıyla, tarihöncesi kalıntılarının büyük bölümünü taş aletler oluşturur ve en başından itibaren teknolojinin gelişimi bu aletlere dayanılarak yeniden oluşturulur (s:25) Bu tür aletlerin ilk örnekleri-çakıl taşlarından birkaç yonga çıkarılarak yapılan kaba yongalar, kazıma araçları ve baltalar- yaklaşık 2.5 milyon yıl önce ortaya çıkar. Molekül kanıtları doğruysa ve ilk insan türü yaklaşık 7 milyon yıl önce ortaya çıktıysa, atalarımızın iki ayaklı olmalarıyla taş alet yapmaları arasında yaklaşık 5 milyon yıl geçmiş olmalı. İki ayaklı bir insansımaymun yaratan evrim gücü her neyse, alet yapma ve kullanma becerisiyle bağlantılı değildi. Ama pek çok antropolog, 2.5 milyon yıl önce teknolojinin gelişmesinin, beyindeki büyümeyle aynı döneme denk geldiğine inanıyor. Beyindeki büyümeyle teknolojinin, insanın kökeniyle aynı zamanda oluşmadığının anlaşılması, antropologları yaklaşımlarını yeniden düşünmeye zorladı. Sonuçta yeni hipotezler, kültürden çok biyoloji terimleriyle oluşturuldu. Ben bunu, mesleğimizdeki sağlıklı bir gelişme olarak görüyorum; özellikle de fikirlerin, diğer hayvanların ekolojisi ve davranışı hakkında bildiklerimizle karşılaştırılarak sınanmasını sağladığı için. Bu yaklaşımda, Homo sapiens ’in pek çok özel niteliğe sahip olduğunu yadsımamız gerekmiyor. Bu niteliklerin gelişimini, tamamen biyolojik bir bağlamda inceliyoruz. Bu anlayış oluştuktan sonra, antropolgun insanın kökenlerini saptama işi yeniden iki ayaklılığın kökeni üzerinde yoğunlaştı. Evrimsel dönüşüm, bu tek olaydan soyktlandığında bile (ABD’deki) Kent Eyalet Üniversitesi’ nden anatomi bilimci Owen Lovejoy’un da belirttiği gibi, önemsiz değildir: Lovejoy, 1988'de yazdığı popüler bir makalede, “İki ayaklılığa geçiş, evrim biyolojisinde görebileceğiniz en çarpıcı değişimlerden biridir” demişti. “Kemiklerde, kemiklere güç sağlayan kasların düzeninde ve kollarla baca değişimler görülmektedir.” İnsanlarla şempanzelerin leğen kemiklerine bakmak bu gözlemi doğrulamaya yetiyor: Leğen insanlarda kısa ve kutu gibi, şempanzelerdeyse uzundur. Kol ve bacaklarla gövdede de önemli farklılıklar vardır. İki ayaklılığın gelişimi önemli bir biyolojik dönüşüm olmaktan öte, aynı zamanda önemli bir uyarlanma dönüşümüdür. Önsözde de savunduğum gibi, iki ayaklı hareket öylesine önemli bir uyarlanmadır ki, tüm iki ayaklı insansımaymunlara “insan” demekte haklıyız. Bu, ilk iki ayaklı insansımaymun türünün belli bir düzeyde teknolojiye, gelişmiş bir zekaya ya da insanlığın kültürel niteliklerine sahip olduğu anlamına gelmiyor.Bu niteliklere sahip değildi. Ben-kolların günün birinde ellerin kullanılabileceği şekilde serbest kalmasını sağlayan- iki ayaklılık uyarlanmasının son derece önemli bir evrim potansiyeli taşıdığını ve bu nedenle öneminin terminolojimizde yer alması gerektiğini söylüyorum. Bu insanlar bizim gibi değillerdi; ama iki ayaklılık uyarlanması olmasa bizim gibi olamazlardı. Bir Afrikalı insansımaymunda bu yeni hareket şeklinin gelişmesini sağlayan evrim faktörleri nelerdir? İnsanın kökenine dair popüler imgelerde çoğunlukla, ormanı terk edip açık savanlara yönelen insansımaymun benzeri bir yaratık görürüz. Bu, kuşkusuz çarpıcı bir imge olsa da, Harvard ve Yale üniversitelerinden Doğu Afrika’nın pek çok bölgesinde toprak kimyasını inceleyen araştırmacıların da yakın zamanlarda kanıtladıkları gibi, kesinlikle yanlıştır. Büyük göçebe sürülerin dolaştığı Afrika savanları, oldukça gençtir; 3 milyon yıldan daha az bir süre önce, ilk insan türünün ortaya çıkmasından uzun süre sonra gelişmişlerdir. 15 milyon yıl öncesinin Afrikasına bakarsak, batıdan doğuya uzanan ve aralarında çeşitli maymun ve insansımaymun türlerinin de bulunduğu pek çok primata barınaklık eden bir orman örtüsü görürüz. Günümüzün tersine o dönemde insansımaymun türlerinin sayısı, maymun türlerinin sayısından çok daha fazlaydı. Ama sonraki birkaç milyon yıl içinde bölgede ve sakinlerinde çarpıcı değişiklikler yaratacak olan jeolojik güçler gelişmekteydi(s:27). Kıtanın doğu kısmında yerkabuğu, Kızıl Deniz’den günümüzün Etiyopya, Kenya ve Tanzanya’sından Mozambik’e doğru bir hat halinde yarılmaktaydı. Sonuçta Etiyopya ve Kenya’da toprak kabardı ve 3000 metreyi aşkın yükseklikte geniş dağlık alanlar oluştu. Bu büyük kubeler kıtanın topografyasından öte, iklimini de değiştirdi. Eski tekdüze batıdan-doğuya hava akışını bozan kubbeler, doğuda kalan toprakları yağış alanının dışında bırakarak ormanları beslenme kaynaklarından yoksun bıraktılar. Aralıksız ağaç örtüsünün bölünmeye başlamasıyla birlikte orman parçacıklarından, ağaçlık alanlardan ve çalılıklardan oluşan mozaik benzeri bir çevre oluştu. Ama açık otluk alanlar hâlâ enderdi. 12 milyon yıl önce süregiden tektonik güçler çevreyi daha da değiştirdi ve kuzeyden güneye doğru uzanan uzun, dolambaçlı bir vadi oluştu: Büyük Yarık Vadisi. Bu vadinin ortaya çıkışı iki biyolojik etki yaratmıştır: hayvan topluluklarına doğudan batıya uzanan zorlu bir engel yaratmakta ve zengin bir ekolojik koşullar mozayiğinin gelişmesini teşvik etmektedir. Fransız antropolog Yves Coppens, doğu-batı bariyerinin, insanlarla insansımaymunların birbirlerinden ayrı olarak evrilmesinde büyük önem taşıdığına inanıyor. “Aynı atadan gelen (insan) ve (insansımaymun) toplulukları koşulların etkisiyle... ayrıldılar. Bu ortak ataların batıdaki torunları, yaşama uyarlanmalarını nemli, ağaçlık ortamlarda sürdürdüler; bunlar (insansımaymular)dır. Aynı ortak ataların doğudaki torunlarıysa açık bir çevredeki yeni yaşamlarına uyarlanmak için yepyeni bir repertuar yarattılar: Bunlar(insanlar)dır.” Coppens bu senaryoya “Doğu Yakasının Hikayesi” adını veriyor. Vadinin serin, ormanlık platolar içeren çarpıcı dağlık alanları ve sıcak, kurak alanlara 1000 metre irtifadan birden iniveren dik bayırları vardır. Biyologlar bu tür, çok sayıda farklı habitat sunan mozaik çevrelerin evrimsel yeniliği teşvik ettiğini fark ettiler. Bir zamanlar yaygın ve birbirine benzer olan bir (s: 29) türün toplulukları birbirlerinden ayrılabilir ve doğal seçim sürecinin yeni etkilerine maruz kalabilirler. Bu, evrimsel değişim reçetesidir. Böylesine bir değişim kimi zaman, yaşama uygun çevrelerin yok olmasıyla, yok oluşa uzanır.Afrikalı insansımaymunların çoğ u bu kader yaşadı; günümüze yalnızca üç tür kalabildi: goril, bayağı şempanze ve cüce şempanze. Ama çoğu insansımaymun türünün çevre değişiminden olumsuz etkilenmesine karşın, içlerinden biri, hayatta kalmasını ve gelişmesini sağlayacak yeni bir uyarlanma şansını yaşadı. Bu, ilk iki ayaklı insansımaymundu. İki ayaklılık hiç kuşkusuz, değişen koşullarda hayatta kalması için önemli avantajlar sağlamıştı. Antropologların görevi, bu avantajların neler olduğunu bulmaktır. Antropologlar iki ayaklılığın insan evrimindeki önemini genellikle iki şeklide değerlendirirler:Bir düşünce, ön ayakların serbest kalarak taşıma özelliği kazanmasını vurgular; diğer düşünceyse, iki ayaklılığın enerji açısından daha etkin ir hareket şekli olması üzerinde durur ve taşıma yeteneğini yalnızca dik duruşun raslantısal yan ürünlerinden biri olarak görür. Bu iki hipotezden ilkini, Owen Lovejoy öne sürdü ve 1981'de Science ’taki önemli bildiride yayımlanmıştır. Lovejoy’a göre iki ayaklılık etkin olmayan bir hareket şeklidir ve dolaysıyla taşıma amacıyla geliştirilmiş olmalıdır. Taşıma yeteneği iki ayaklı insansımaymunlara, diğer insansımaymunlara göre nasıl bir rekabet avantajı sunmuş olabilir? Evrimsel başarı, sonuçta, hayatta kalacak nesiller üretmeye bağlıdır ve Lovejoy’a göre yanıt, bu yeni yeteneğin erkek insansımaymunlara, dişi için yiyecek toplayarak üreme oranını artırma fırsatını sağlamasıdır. Lovejoy, insansımaymunların yavaş ürediklerini ve dört yılda bir tek yavru yaptıklarını vurgular. İnsan dişileri de daha çok enerjiye-yani daha çok yiyeceğe- ulaşabilmeleri durumunda daha çok nesiller üretebilirler. Erkeğin dişi ve yavruları için yiyecek toplayarak dişiye daha çok enerji sağlaması durumunda dişi, üreme çıktısını artırabilecektir.(s:30) Erkeğin bu eyleminin, bu kez sosyal alanda olmak üzere, bir diğer biyolojik sonucu daha olacaktır. Erkeğin kendi çocuklarını ürettiğine emin olmadıkça dişiyi beslemesinin Darwinci açıdan erkeğe yararlı olmaması nedeniyle Lovejoy, ilk insan türünün tekeşli olduğunu ve üreme başarısını artırıp diğer insansımaymınlara baskın gelme yöntemi olarak çekirdek ailenin ortaya çıktığını öne sürdü. Bu tezini başka biyolojik benzetmelerle destekledi. Sözgelimi, primat türlerinin çoğunda erkekler, mümkün olduğunca çok dişi üzerinde cinsel denetim kazanmak için birbirleriyle rekabet eder. Bu süreç sırasında genellikle birbirleriyle dövüşürler ve silah olarak kullanabilecekleri büyük köpek dişleri vardır. Gibonlar erkek-dişi çiftleri oluşturmak gibi ender rastlanan bir özellik gösterirler ve - her halde birbirleriyle kavga etmeleri için bir neden olmamasından dolayı- erkeklerin köpek dişleri küçüktür. Erken insanlarda köpekdişlerinin küçük olması Lovejoy’a göre, gibonlar gibi erkek-dişi çiftleri oluşturduklarının kanıtı olabilir. Yiyecek sağlama düzenlemesinin sosyal ve ekonomik bağları da beynin büyümesini sağlayacaktır. Lovejoy’un büyük ilgi ve destek gören hipotezi, kültürel değil temel biyolojik konulara hitap etmesi nedeniyle güçlürün. Ama zayıf noktaları da vardır; öncelikle, teknolojik açıdan ilkel halklarda tekeşlilik yaygın bir sosyal düzenleme değildir.(Bu tür toplumların yalnızca yüzde 20'si tekeşlidir). Hipotez bu nedenle, avcı toplayıcıların değil, Batı toplumunun bir özelliğine dayandığı iddiasıyla eleştirilmektedir.belki de bundan daha önemli bir eleşiri ise, bilinen en erken insan türlerinde erkeklerin, dişilerden yaklaşık iki kat büyük olmalarıdır. Beden boyutundaki iki biçimlilik (dimorfizm) olarak bilinen bu büyük farklılık, incelenen tüm primat türlerinde çokkarılılıkla ya da erkeklerin dişilere ulaşmak için aralarında rekabet etmeleriyle çakışır; tekeşil türlerde iki biçimliliğe rastlanmaz. Bence bu gerçek bile, umut verici bir kuramsal yaklaşımı çökertmeye yetmektedir ve köpeksdişlerinin küçük olbsanıa tekeşlilikten (s: 31) başka bir açıklama aranmalıdır. Belki de yiyecekleri çiğneme mekanizması, kesmeden çok öğütme hareketini gerektiriyordu; köpek dişlerinin büyük olması bu hareketi zorlaştıracaktı. Lovejoy’un hipotezi günümüzde, on yıl öncesine göre daha az destek görmektedir. İkinci önemli iki ayaklılık kuramı, kısmen basitliği sayesinde çok daha imna edicidir. Davis, California Üniversitesinden antropolog Peter Rodman ve Henry McHenry’nin öne sürdükleri hipotezde, iki ayaklılığın daha etkin bir hareket şekli sunması nedeniyle, değişen çerre koşullarında daha avantajlı olduğu savunulur. Ormanların küçülmesiyle birlikte ağaçlık habitatlardaki meyve ağaçalrı gibi yiyecek kaynakları, klasik insansımaymunların etkin şekilde yararalanamayacakaları kadara dağınıktır. Bu hipoteze göre, ilk iki ayaklı insansımaymunlar yalnızca hareket şekilleriyle insandırlar.Diyetlerinin değil, yalnızca yiyecek toplama şekillerinin değişmiş olması nedeniyle elleri, çeneleri ve dişleri insansımaymunlardaki gibi kalmıştır. Pek çok biyolog bu düşünceyi başlangıçta olanaksız görmüştür; Harvard Ünivresitesi'nden araştırmacılar yıllar önce, iki ayak üstünde yürümenin dört ayak ütünde yürümekten daha az etkin olacağını göstermişlerdi. (kedisi ya da köpeği olanlar için bu hiç de şaşırtıcı bir durum değil; her iki hayvan da sahiplerini utandıracak derecede daha hızlı koşar.) Ama Harvard araştırmacıları insanlardaki iki ayaklılığın etkinliğini at ve köpeklerdeki dört ayaklılığın etkinliğiyle karşılaştırmışlardı. Rodman ve McHenry, karşılaştırmanın insanlarla şempanzeler arasında yapılması gerektiğini vurguladılar. Bu karşılaştırma yapıldığında, insanlardaki iki ayaklılığın şempanzelerdeki dört ayaklılıktan çok daha etkin olduğu görülüyor. Dolaysıyla, iki ayaklılık yararına bir doğal seçim gücü olarak enerji etkinliği tezinin akla yatkın olduğu sonucuna vardılar. İki ayaklılık evrimin teşvik eden, bir yandan avcıları izlerken bir yandan da yüksek otların üstünden bakabilme ve gündüz saatlerinde yiyecek toplarken serinleyebilmek için daha (s: 32) etkin bir duruşa geçme zorunlulukları gibi başka etkenler de olduğu öne sürüldü. Ben tüm bu düşüncelerin arasında en inandırıcısının, sağlam bir biyolojik temeli olması ve ilk insan türlerinin evrildiği dönemde gelişen ekolojik değişimlere uyması nedeniyle, Rodman ve McHenry’ninki olduğunu düşünüyorum. Bu hipotez doğruysa, ilk insan türünün fosillerini bulduğumuzda, hangi kemikleri bulduğumuza bağlı olarak, bu fosillerin ilk insana ait olduğunu fark edemeyebiliriz. Leğen ya da bacak kemiklerini bulmamız durumunda iki ayaklı hareket şekli görülür ve “insan “ diyebiliriz. Ama kafatasının ve çenenin bazı parçalarını ya da bazı dişleri bulmamız durumunda bunların bir insansımaymuna ait olduğunu düşününebilirz. Bunların iki ayaklı bir insansımaymuna mı, yoksa klasik bir insansımaymunna mı ait olduğunu nasıl anlayacağız? Bu, son derece heyecan verici bir savaşım. İlk insanların davranışlarını gözlemek için 7 milyon yıl öncesinin Afrika’sına gidebilseydik, insanların davranışlarını inceleyen antropologlardan çok, maymun ve insansımaymunların davranışlarını inceleyen primatologlara tanıdık gelecek bir modelle karışlaşırdık. İlk insanlar modern avcı-toplayıcılar gibi göçmen gruplarda aile toplulukları olarak yaşamaktan çok, büyük olasılıkla, savan babunları( habeş maymunları) gibi yaşıyorlardı. Yaklaşık otuz bireyden oluşan gruplar geniş bir arazide koordinasyon içinde yiyecek avına çıkıyor ve geceleri tepeler ya da ağaç kümeleri gibi uygun uyku yerlerine dönüyorlardı. Grubunu büyük bölümünü yetişkin dişilerle çocukları oluşturuyordu ve aralarında yalnızca birkaç yetişkin erkek bulunuyordu. Erkekler sürekli çiftleşme olanakları arıyor ve egemen bireyler daha başarılı oluyordu. Yetişkinliğe erişmemiş ya da düşük seviyelerdeki erkekler, grubun ancak çevresinde er alıyor ve kendi başlarına yiyecek avına çıkıyorlardı. Grubun bireyleri iki ayaklı yürümeleriyle insani bir özellik taşıyor, ama (s: 33) savan primatları gibi davranıyorlardı. Önlerinde, 7 milyon yıl sürecek ve ileride de göreceğimiz gibi son derece karmaşık ve kesin olmayan bir evrim modeli vardı. Çünkü doğal seçim uzun vadeli bir hedefe doğru değil, anlık şartlara göre işler. Homo sapiens sonuçta, ilk insanların torunu olarak ortaya çıktı; ama bunun kaçınılmaz bir gelişme olduğu da söylenemezdi. (Richard Leakey, İnsanın Kökeni, Varlık/Bilim s:15-34 ) Yaşamın Gizi Kökleri 19. yy’a dayanan Evrim Kuramı, gerçekte 20. yy’ın geliştirilen büyük kuramlarından biridir. İnsanın kendi yapısını araştırmaya yönelmesinin bilimsel bir niteliğe bürünmesi oldukça yenidir. Biyoloji, genç bir bilimdir. Biyoloji, özellikle Evrim Kuramı ile genç bir bilimin büyük kuramlar üretebileceğini kanıtladı. Nobel Ödüllü(1965) bilim adamı Jacques Monod Rastlantı ve Zorunluluk adlı eserinde şöyle diyor: “ Biyolojinin bilimler arasındaki yeri, bir bakıma merkezi, bir bakıma da ikincil önemdedir. İkincildir, çünkü canlılar dünyası bilinen evrenin pek önemsiz ve “özel” bir bölümü olduğuna göre, canlıların irdelenmesiyle, canlılar dünyasının dışına da uygulanabilecek genel yasalara varılamaz gibi görünür. Fakat bütün bilimlerin son amacı, eğer benim sandığım gibi, insanla evren arasındaki bağıntıyı aydınlatmaksa, o zaman biyolojiye merkezi bir yer tanımak gerekir; çünkü biyoloji, bütün bilim kolları arasında, henüz “insanın doğası” sorunun metafizik terimler kullanılmadan ortaya konması olanaksızken, çözülmesi gereken sorunların yüreğine en dolaysız yoldan girmeye çalışanıdır. Bu nedenle biyoloji, insan için bilimlerin en anlamlısıdır; felsefe, din, ve politika gibi bütün alanlarda temelden sarsılmış ve açıkça yaralı olan modern düşüncenin biçim kazanmasında, özellikle Evrim Kurramı’nın ortaya çıkışıyla, kuşkusuz bütün öteki bilimleri aşan katkıları olmuştur. Ancak, 19. yy’ın sonlarından bu yana biyolojinin bütününe egemen olmakla birlikte ve fenomeolojik açıdan geçerliliğine ne denli inanılmış olursa olsun, Evrim Kuramı, kalıtımın fiziksel bir kuramı geliştirilmedikçe yine askıda kalıyordu. Bu sonuca ulaşılması ise, klasik genetiğin bütün başarılarına karşın, otuz yıl öncesine dek boş bir kuruntu gibi görünüyordu. Oysa bugün, kalıtım yasası molekül kuramının getirdiği şey budur. Burada “kalıtım yasası kuramı”nı yalnızca kalıtımsal gereçlerle onların taşıdığı bilginin kimyasal yapısına ilişkin kavramlar olarak değil, ayrıca bu bilginin fizyolojik ve morfogenetik anlatımının moleküler düzeneğini de içerecek biçimde, geniş anlamıyla kullanıyorum. Böyle tanımlandığında kalıtım yasası kuramı biyolojinin temel kuralını oluşturur Doğal olarak bu, organizmaların karmaşık yapı ve işlevlerinin bu kuramdan çıkarılabileceği ya da bunların her zaman doğrudan moleküler düzeyde çözümlenebileceği anlamına gelmez.(Kimyanın evrensel temelini kuşkusuz kuantum kuramının oluşturmasına karşın, kimyadaki her şey bu kurama göre ne bilinebilir, ne çözülebilir). Fakat yasanın moleküler kuramı günümüzde (kuşkusuz ileride de) biyoloji alanındaki her şeyi önceden bilip çözemese de daha şimdiden canlı sistemlerin genel bir kuramını oluşturuyor. Moleküler biyolojinin ortaya çıkışından önce, bilimi alanında böyle bir şey yoktu. O zamanlar “yaşam gizi”, ilkesi gereği ulaşılamaz görünürdü. Günümüzde bu giz büyük ölçüde açıklanmıştır. Öyle görünüyor ki bu önemli olay, kuramın genel anlamı ve kapsamı uzmanlar dışında da anlaşılıp değerlendirilebildiği zaman, modern düşüncede ağırlığını büyük ölçüde duyuracaktır. Bu denemin buna yardımcı olacağını umuyorum. Gerçekten ben, modern biyolojinin kavramlarının, kendilerinden çok “biçim”lerini açığa çıkarmaya, düşüncenin başka alanlarıyla mantıksal bağlantılarını göstermeye çalıştım. Günümüzde bir yapıtın adında bilim adamının, “doğal” nitemiyle birlikte de olsa, “felsefe” sözcüğünü kullanması tehlikelidir. O yapıtı, bilim adamlarının güvensizlikle, filozofların ise olsa olsa bir gönül indirmeyle karşılayacakları önceden görülebilir, Tek, fakat haklı olduğuna inandığım bir mazaretim var: Bilim adamlarına düşen ve bugün her zamankinden daha çok kendini duyuran ödev, kendi bilim kollarını çağdaş kültürün bütünü içinde değerlendirmek, onu yalnız teknik bilgilerle değil, aynı zamanda bilimin kazandırdığı, insansal açıdan önemli gördükleri düşüncelerle de zenginleştirmektedir. Yeni bir bakışın (biliminki hep böyledir) arılığı, kimi kez sorunlar üzerine yeni bir ışık serpebilir. Doğal olarak geriye, bilimin esinlediği düşüncelerle, bilimin kendi arasındaki her türlü karışıklıktan kaçınmak kalıyor. ama işte bu nedenle de, bilimin ortaya koyduğu sonuçların tüm anlamını açıklayabilmek için, bunların son sınırına dek götürmek gerekiyor. Zor bir uygulama. Bunu eksiksiz yaptığımı öne sürmüyorum. Önce bu denemenin salt biyolojik bölümünün hiçbir özgün yanı bulunmadığını belirteyim. Modern bilimce saptandığı kabul edilen düşünceleri özetlemekten başka bir şey yapmadım. Örnek seçiminde olduğu gibi, değişik gelişmeleri verilen önemin de kişisel eğilimleri yansıttığı doğrudur. Biyolojinin kimi önemli bölümlerinin burada sözü bile edilmedi. Fakat bu deneme, biyolojinin tümünü açıkladığını kesinlikle savunmuyor. Yalnızca sistemin moleküler kuramının özünü elde etmek yolunda bir girişimdir. Bundan çıkarabildiğim ideolojik genellemelerden sorumlu olduğum açıktır. Fakat bilgi kuramı alanı içinde kaldıkları sürece bu yorumları çağdaş biyolojistlerin büyük bölümünün kabul edeceğini söylerken yanılmış olacağımı sanmıyorum. Ben burada, siyasal değilse bile etik(ahlaksal) düzeyde, gelişmelerin bütün sorumluluğunu yüklendiğimi belirtmeden geçmek istemem; bunlar ne denli tehlikeli olursa olsunlar, ne denli naif ya da benim isteğim dışında, ne denli aşırı görünürse görünsünler bilim adamı alçak gönüllü olmalı, fakat taşıdığı ve savunmak zorunda olduğu düşünceler pahasına değil. Ancak burada da kendimi, yapıtları büyük saygınlık kazanmış kimi çağdaş biyolojistlerle tam bir uyum içinde bulmanın yüreklendirici güvenini duyuyorum....Nisan, 1970"(Kitabın Önsözü’nden) (Jacques Monod, Rastlantı ve Zorunluluk(1970), s:11-13) Evrim Kuramı ve Değişim Evrim Kuramı,canlıların değişimini içerir. Tutucu insanların bu kuramı anlamak istemeyişi ya da reddedişi bu değişimi kabul etmemelerinin bir sonucudur. Evrim kuramına karşı çıkmayı küçümsemeyin. Evrim Kuramına karşı çıkanlar, arkalarında “dine inanan” aydınları ve kitleleri bulur. Değişimi savunmak kadar değişime karşı çıkmak, insan aklının çok önceden bulduğu en tehlikeli silahlardandır. Onu, felsefe temelinde en iyi ve en eski savunan da Platon’dur. Platon, biz erkeklerin kadınlardan nasıl da fersah fesah üstün olduğunun altını pek güzel çiziyor! Bayanların pek sevmeyeceği bir öykü olsa da anlatacağım. Platon’da değişim “kötü”, durağanlık ise “iyi”dir. Karl Popper bunu şöyle belirtir: “Çünkü bütün değişimin çıkış noktası yetkin iyi ise değişiklik ancak yetkin ve iyiden uzaklaşan bir hareket olmak gerekir;bu hareket yetkin olmayana ve kötüye doğru yönelmelidir.” Platon, Kanunlar ’da değişim doktrinini şöyle özetler:" Kötü bir şeyin değişmesi bir yana bırakılırsa, her nasıl olursa olsun değişiklik, bir şeyin uğrayabileceği bütün kötü tehlikelerin en başında gelir,- değişiklik şimdi ister mevsimin ya da rüzgârın olsun, ister beden dişyetinin yahut ruh karakterinin.” Israrını belirtmek için de eklemektedir: “Bu söz her şeye uygundur,tek ayrık, demin söylediğim gibi, kötü bir şeyin değişmesidir.” Kısacası Platon, değişimin kötü ve durulmanın tanrılık olduğunu öğretmiştir... Platon’un Timaios ’taki türlerin kökeni üzerine öyküsü bu genel teoriyle bir uyuşma içindedir. Bu öyküye göre hayvanların en yükseği erkek-insandır,tanrılar tarafından türetilmiştir;öteki türler,bir bozulma ve soysuzlaşma süreciyle ondan -aşağıya- inerler. Önce bazı erkekler-korkak ve rezil olanları-soysuzlaşıp kadın olmuştur. Bilgeliği olmayanlar, adım adım daha aşağı hayvanlara doğru soysuzlaşmıştır. Kuşlar, zararsız deniyor oysa duyumlarına çok güvenen fazla yumşak insanların dönüşümüyle varolmuşlardır; "kara hayvaları,felsefeyle hiç ilgilenmeyen insanlardan gelmiştir”; balıklar, -midye ve sitiridye gibi kabuklu deniz hayvanları da dahil olmak üzere- bütün insanların “en aptal, salak... ve değersiz olanlarından soysuzlaşmayla çıkmıştır” Bu teorinin insan toplumuna ve tarihine de uygulanabeleceği açıktır. (Karl Popper, Açık Toplum Ve Düşmanları s: 49-50) İNSAN NASIL İNSAN OLDU? İnsan nedir? Biz neyiz? Nereden geldik? Sokrates ' e yakıştırılan bir öykü vardır. Sokrates, Atina Agorası' ndaki gönüllü öğrencilerine verdiği ders sırasında "İnsan nedir?" diye sormuş. Onlar da soruyu küçümseyerek " bunu bilmeyecek ne var, iki ayaklı ve tüysüz bir canlıdır" yanıtını vermişler. Ertesi gün Sokrates, elinde tüyleri yolunmuş bir tavukla öğrencilerinin karşısına çıkmış. Tüysüz tavuğu havaya kaldırarak " yani böyle bir şey mi insan dediğiniz?" demiş. Öğrenciler nasıl bir şaşkınlık geçirdi bilmiyoruz; ama insan tanımının öyle basit bir iş olmadığını anlamış olmalılar. İnsan "düşünen varlık", " gülen canlı", "üretim yapan canlı", "alet kullanan canlı" gibi değişik sıfatlarıyla tanımlanmaya çalışılmıştır. Sorunun yanıtı basit değil. Gelin biraz gerilere gidelim. Önce "insan her şeyin ölçüsüdür" diyen eski Yunan filozofunu anımsayalım. Protagoras'ı yani. Onun ne demek istediğini size anlatmaya çalışmıştım. 19. yüzyılın ikinci yarısından itibaren insan konusunda bilimsel düşünceler ortaya konmaya başlandı. İnsanın doğaüstü güçlerce yaratılmadığı ve tüm canlılar gibi evrimsel bir sürecin bugünkü aşaması olduğu düşünülmeye başlandı. Evrim, değişikliği ifade eder. " Evrim, biyolojik bir gerçektir; en geniş anlamı ile organizmaların zaman süreci içinde değişen ortama gösterdikleri fiziksel tepki olarak da tanımlanabilir... "Her canlı bir canlıdan gelir " gerçeği, evrimin temel özelliklerinden biridir." Bununla birlikte konuyla ilgili saptırmalar da başladı." Bu saptırmaların en ünlüsü de insanın maymundan türemiş olduğu, başka bir deyişle bu iki canlı türü arasında bir ata- torun ilişkisi bulunduğu, yani maymunların insanın atası olduğu saptırmasıdır. C. Darwin' in Türlerin Kökeni adlı yapıtının doğurduğu yankılara karşı, özellikle o dönem Anglo- Sakson Kilisesi' nce başlatılan, geliştirilen, desteklenen ve savunulan bu saptırma, üzülerek belirtmek gerekir ki bugün bile kamuoyunda evrensel anlamda belirli bir ağırlığa sahiptir. Olaya bilimsel bir yaklaşımla ve tarafsız olarak bakıldığı zaman, kuşkusuz, insan ile yakın soydaşları olan primatlar arasında bir evrimsel ilişki olduğu görülür. Zaten, evrim bakımından eskiye gidildikçe tüm canlıların oluşumları itibariyle ortak evrim ağacının farklı dalları oldukları ve bu nedenle de tüm canlılar arasında (uzak veya yakın) bir ilişki bulunduğu da bilinmektedir. Ancak bu ilişki, "maymun ile insan arasında bir ata-torun ilişkisi vardı ve insanlar da zaman içinde maymunlardan türemiştir" anlamına tabii ki gelmez. Maymun ve insan türlerinin birlikte oluşturdukları zoolojik takım olan primatlar arasında evrimsel bir ilişi olması demek, bu iki farklı türün ortak bir kökten türemiş olmaları ve / fakat zamanla bunların her ikisinin de değişerek bugünkü hallerini almış olması demektir. Başka bir deyişle, bu iki canlı türünden her biri kendi yönünde evrimleşmiş, zaman içinde insan daha "insanlaşmış" ve buna karşılık maymun daha da "maymunlaşmıştır". Gelecekte, evrim sürecinin bir gereği olarak aynı olayın devam edeceği, insan ile maymun arasında var olan makasın daha da açılacağı kuşkusuz. " Sahi, insanla maymun arasında ne gibi farklar vardır? İnsanı insan yapan nedir? " Yüzyılımızın başlarında insanın çevresine uyum yeteneği, daha sonraları düşünce, İkinci Dünya Savaşı' nı izleyen dönemde araç-gereç yapımı, 1960' lı yıllarda ilkönce lisan ve hemen sonra da avcılık insanı " insan " yapan "insansı" özellikler olarak görülüyordu. Bugün ise durum hayli farklı." "İnsan denen canlıyı ele aldığımız zaman onun bir Homo erectüs (dik yürüyen), bir Homo faber (alet yapan), bir Homo lingua (konuşan/ dili olan), bir Homo symbolicus (soyutlayabilen), bir Homo curiosus (araştıran) ve bir Homo sapiens (akıl sahibi, zeki) olduğunu görüyoruz. Bunların tümü insana özgü. İlginç olan ve özellikle vurgulanması gereken husus, insan dışı

http://www.biyologlar.com/evrim-kurami-ve-maymun-sorunu

İnfertilite (kısırlık) Nedir?

Çocuk sahibi olmak isteyen çiftlerin en az 1 yıl süre ile düzenli cinsel ilişkide bulunmalarına rağmen gebelik elde edememesi durumuna infertilite yani kısırlık denir.Ortalama her altı aileden biri infertiliteden etkilenmektedir. Normal şartlar altında korunmadan ilişkiye giren çiftlerin %85'inde ilk yıl, %93'ünde ise iki yıl içerisinde gebelik oluşması beklenir.Eğer bu süreler sonunda gebelik oluşmuyorsa mutlaka bir infertilite merkezine başvurulmalıdır. Evli çiftlerin %10-15'inde infertilite görülür. İnfertiliteyi primer ve sekonder infertilite diye ikiye ayırabiliriz. Hiç çocuk sahibi olmayanlara primer infertil, daha önce hanile kalabilmiş fakat şu an hamile kalamayanlara sekonder infertil denir.

http://www.biyologlar.com/infertilite-kisirlik-nedir


Kansere Kalkan Tarama Yöntemler

Kansere Kalkan Tarama Yöntemler

Kimler, hangi yaşta, hangi taramaları yaptırmalı?Tıp dünyası, düzenli kontrol ve taramaların kansere karşı sağ kalımı artıran ön koşul olduğunun altını çiziyor. Zamanında ve uygun tarama programları ile erken teşhis kolaylaşıyor. Kanserle doğru mücadelenin ilk adımında sağlıklı bir yaşam sürmek, ikinci adımda ise uygun tarama programları ile erken teşhis yer alıyor.Kanser hastalığının kontrol altına alınmasında erken teşhisin önemini vurgulayan Neolife Tıp Merkezi Medikal Onkoloji Uzmanı Doç. Dr. Duygu Derin; kalp hastalıklarından sonra ikinci ölüm nedeni olan kansere karşı düzenli taramaların hayat kurtardığına dikkat çekiyor. Derin, özellikle üç kanser türüne ilişkin yapılacak taramaları şöyle özetliyor: Meme: Tüm dünyada standart olan, eğer bir kadının ailevi risk faktörü bulunmuyorsa 40 yaşından sonra yılda bir kez mamografi ve meme ultrasonografisi yaptırması Kalın bağırsak: Kadın ve erkeklerin 50 yaşından itibaren üç yılda bir kolonoskopi ya da üç kere ard arda verilecek gaitada gizli kan taraması yaptırması gerekiyor. Rahim ağzı: Viral kökenli olan rahim ağzıkanserine karşı ilk cinsel ilişkinin ardından kadınların senede bir rahim ağzından PAP Smear testi yaptırması tavsiye ediliyor. Akciğer: Kesin bir tarama yöntemi olmasa da, henüz çok yeni olan bazı çalışmalar, ağır sigara içicilerinde senede üç defa düşük dozlu bilgisayarlı tomografi ile taramanın akciğer tümörlerini erken yakalamakta ve hastayı kurtarmakta işe yaradığını ortaya koyuyor. Kansere neden olan çevresel faktörler arasında ilk sırada tütün kullanımı geliyor. Ayrıca alkol tüketimi, kötü beslenme, modern hayatın getirdiği kimyasallara çok fazla muhatap olmak, hava kirliliği, gıdalarda katkı maddelerinin artışı, henüz bilimsel olarak kanıtlanmış olmasa da GDO ’lu besinlerin tüketimi kanser vakalarını artırıyor. Hangi kanserler daha sık görülüyor? Neolife Tıp Merkezi Radyasyon Onkoloğu Prof. Dr. Ufuk Abacıoğlu, kanser türleri hakkında şu bilgileri veriyor: ● Kadınlarda meme, erkeklerde ise akciğer kanseri açık ara birinci sırada bulunuyor. ● Erkeklerde prostat kanseri, daha kolay tespit edilebildiği için 1980’lerden sonra artışgösterdi. ● Beslenme türü ve hijyen ile doğrudan ilişkili olan mide kanserinin oluşumunda, mangal keyfi büyük risk oluşturuyor. ● Fast food tarzı beslenme düzeni, kolon kanseri vakalarının her geçen gün artmasına neden oluyor ve her iki cinste de ilk beş kanser arasında yer alıyor. ● Kadınlarda tiroid kanseri daha sık görülüyor. ● Kadınlarda mesane ve mide kanseri daha az görülse de kadınlara özgü rahim, rahim ağzı ve yumurtalık kanserlerine rastlanıyor. ● Rahim ağzıkanseri üretken dönemde, rahim kanseri ise menopoz sonrası ortaya çıkıyor. ● Rahim kanserlerinin yüzde 80’ine erken evre tanı konulurken, genç kadınlarda görülen yumurtalık kanseri daha agresif seyrediyor. ● HPV virüsü nedeniyle ortaya çıkan rahim ağzı kanserinde, kız çocuklarının cinsel ilişkiye başlamadan önceki dönemde virüse karşı aşılanması öneriliyor. http://tahlil.com

http://www.biyologlar.com/kansere-kalkan-tarama-yontemler

ADLİ TIP VE ADLİ BİLİMLERİN TARİHÇESİ

İnsanlığın var oluşu ve toplumsal yaşayışa geçişle birlikte, toplulukların yönetimine ilişkin ilk kurallar konulmuş ve böylece hukukun yazılı olmayan temel öğeleri ilk insanlar zamanında meydana getirilmiştir. İlk insanlar, kuralları oluştururken, doğanın gerçekleri karşısında etkilenmişler, yaşam ve ölümü tanrıların kızgınlık, cezalandırma ve affedicilik özellikleri olarak tanımlamışlardır. İlkel toplumlarda büyücü ve rahipler tanrının elçileri olarak kabul görülmüşlerdir. Toplumlar, onların koydukları kuralları uygulamışlar, onlara karşı geldiklerinde cezalandırılmışlar, onların eli ile şifa ve ölümü yaşamışlardır. Böylece bu topluluklardaki büyücü ve rahipler din adamı olmalarının yanı sıra hukuk, tıp ve sosyal kuralların uygulayıcıları olarak kabul görmüşlerdir. Bunun sonucu olarak din- hukuk- tıp ve sosyal alan iç içe uygulanmaya başlanmış ve bu ilişki yüzyıllarca devam etmiştir. Hatta Afrika kıtasındaki bazı kabilelerde halen rahip ve büyücüler bu rolü oynamaya devam etmektedir. MÖ 3000 yıllarında Çin’ de çeşitli zehirlerle ilgili bilgiler tanımlanmıştı. MÖ 2980-2900 yılları arasında eski Mısır’ da yaşayan asıl mesleği mimarlık olmasına tıp ve hukuk eğitimi olmamasına karşın Pharaoh Zoser’ in özel hekimliğini yürüten ve Başyargıçlık yapan Imhotep, “Tıbbın Tanrısı” ve “Adli Tıbbın Babası” olarak kabul edilmiştir. Bu yıllarda Mısır’ da insan vücudunda oluşan hasarlarda, veraset ve evlilik gibi konularda hekimlere danışılmaktaydı. Eski Mısır’ da hukuk ve tıp uygulamalarının örnekleri çok erken çağlarda başlamıştı. Hekimlerin hastalarını tedavi prensipleri belirlenmiş; yapay mumyalaşma uygulanmaya başlanmış; gebelik, düşük, cinsel ilişkiler ile ilgili kuramlar tanımlanmış ve MÖ 1700 yıllarında bıçak yaraları ayırt edilmiş ve dışta travma bulgusu olmayan başka bir kişide kafatası kırığı tarif edilmişti. Bilinen en eski hukuk kuralları Babil Kralı Hammurabi (MÖ 1700) zamanında oluşturulmuş olup, Hammurabi Kanunları adı ile anılmaktadır. Hammurabi Kanunları aynı zamanda hekimlerin hakları ve yükümlülüklerini belirleyerek, hastasını öldüren veya yaralayan hekimin sorumluluklarını ortaya koymuştur. 219. paragrafta “hekimin bir kölenin yarasını tunç bıçak ile tedavi ederken öldürmesi durumunda yerine başka bir köle bulacağı” ifadesi yer almış, yanlışlık yapan hekimin elinin kesilmesi yada hastanın sosyal statüsüne göre para cezası ödemesi hükümleri getirilmişti. Ayrıca hekimlere ödenecek ücretler, zina, boşanma ve ırza geçme ile hükümlerde tanımlanmaktaydı. Yine MÖ 1400 yıllarında uygulamaya konulan Hitit Kanunları’ nda ise bilirkişilik müessesesi tanımlanmış, kişilerin uğradıkları zararların karşılanmasına yönelik tazminat miktarları belirtilmişti. Günümüzde dünya hukukunda yer alan tanıklık ile ilgili prensiplerin temelleri ise aynı dönemlerde Hindistan’ da uygulanmış olan Manu Kanunları’ nda atılmıştı. Roma’ da MÖ 600 yıllarında yaşamış olan Numa Pompilius zamanında, adli tıp uygulamalarında önemli bir yeri bulunan kanunda, doğum sırasında ölen kadınların hemen karnının açılması şartı konulmuştu. Yine bu yıllarda zihinsel özürlülerin ceza sorumlulukları düzenlenmiş, hastasının ölümüne neden olan hekimin cezalandırılması prensibi kabul edilmişti. MÖ 572 yılında ise, Lex Aquillia Kanunu’ nda yaraların ağırlık dereceleri ile ilgili hüküm yer almıştı. MÖ 460-355 yıllarında Yunanistan’ da Hippocrates yaraların öldürücülük durumlarını incelemişti. MÖ 449 yılında yürürlüğe konulan Roma Kanunları’ nda ise, gebelik süresinin 300 günü aşamayacağı, uterustaki bebeğin medeni haklara sahip olduğu, puberte öncesi çocuklarda ceza indirimi uygulanması gerekeceği belirtilmiş; ölülerin defninde uygulanacak kurallar tanımlanmıştı. Yunanistan’ da MÖ 384-322 yıllarında Aristoteles üreme ile ilgili bilgileri tarif etmiş, MÖ 287-212 yıllarında Archimedes’ in altının hileli olup, olmadığı konusunda yapmış olduğu danışmanlık Adli Bilimler’ in ilk uygulaması olarak tarihte yer almıştı. MÖ 44 yılında Julie Cesar suikast sonucu öldürüldüğünde, o sıralarda Roma’ da uzman hekim olarak görev yapmakta olan Antistius cesedi muayene ederek, 23 bıçak yarası olup, bunlardan birinin göğüs duvarında birinci ve ikinci kaburga arasından girerek ölümü meydana getirdiğini ortaya koymuştu. MS. 200 yılında tıpla ilgili yasal yönleri bulunan ilk kitap Claudius Galen tarafından yazılmış; daha sonraki yıllarda, Roma’ da uygulamaya giren Justinyen Yasaları (MS 483-565)’nda tıp ve hukuk’ u birlikte ilgilendiren kanunlar yer almış ve bu kanunlarda, günümüzdeki adli tıp uygulamalarının da konusu olan pek çok tanım hayata geçirilmişti. Adli tıp tarihçesinde geçiş dönemi olarak kabul edilen ve 5. yüzyıl sonlarından 16. yüzyıl sonlarına kadar devam eden dönemde yasalar geliştirilmiş ve bu yasalarda adli tıbbın yaşam içersindeki önemi ön plana çıkmaya başlamıştı. Lex Alamennarum’ da yaraların ağırlık derecelerine göre tazminat ödenmesi, Salic Yasası’ nda yaralıların yetkili kişilerce muayene edilerek rapor düzenlenmesi, Charlemange Yasalarında dövme, yaralanma, infantisid, intihar, ırza geçme, bestialite, impotans olgularında hekim görüşüne başvurulması, Kudüs Kararlarında cinayetlerde, ölüm nedeni, yaraların lokalizasyonu ve aletlerin belirlenmesi gibi hükümler, adli tıp uzmanlığının ilk uygulama alanları olarak belirlenmişti. MS 768- 814 yıllarında yaşamış olan Alman İmparatoru Şarlman, insan sağlığı konusunda “gün gibi aşikar kanıtlar aranacağını” bildirerek; yaralanma, tecavüz, çocuk öldürme ve evlenmenin iptali gibi konularda tıbbi bilirkişi görüşüne başvurulması gerektiğini belirtmişti. 9. yüzyılda İngiltere’ de yasal soruşturma yetkileri ile donatılmış bir kişi olan “coroner” in görev yaptığı “coroner system” kurulmuştu. İlk yıllarda asli görevi ölen kişinin Norman veya Sakson olup olmadığını araştırmak olan coronar system’ in, görev alanına ileriki yıllarda ölüm nedenlerini araştırma görevi de eklenmişti. 11. yüzyılda Fransa’da ve İtalya’ da Adli Tıp Uzmanlığı uygulanmaya başlanmış; meşhur bir cerrah olan Hugo de Lucca 1249 yılında Bologna’ da adli tıp uzmanı olarak yemin etmişti. 1302 yılında ayrıntılı olarak belgelenmiş ilk adli otopsi Bartolomea de Variagiana tarafından Bologna’ da uygulanmış ve ölümün zehirlenme sonucu meydana gelmiş olduğu belirlenmişti. Aynı yıllarda, Çinli Sung Tu tarafından şüpheli ölümlerin araştırılmasına yönelik bir kitap yayınlanmış; Fransa’ da 1374’ de otopsi yapma yetkisi Papa tarafından Montpellier Fakültesi’ ne verilmişti. İlerleyen yıllarda adli tıbbın önemi gerek yasaların içersinde, gerekse uygulamada artmış, adli tıbbın alanları bir bir ortaya çıkmaya başlamıştı. 1650’ de Almanya’ da Leipzig Üniversitesi’ nde Johann Michaleis tarafından adli tıp ile ilgili ilk konferans düzenlenmiş, 1663’ de bebeğin canlı doğup- doğmadığına yönelik olarak Bartholin hidrostatik deneyleri tanımlanmıştı. 17. yüzyılın sonları ve 18. yüzyılın başlarında üniversitelerde adli tıp kürsüleri kurulmaya başlanılmış ve adli tıpta eser sayısı artmış, Amerika’ da coroner system benimsenmiş ve bazı eyaletlerde “medical examiner” tanımı ortaya çıkmaya başlamıştı. 18. yüzyıl sonları ve 19. yüzyılın başlarında adli bilimler alanında hızlı gelişmeler olmuş; mikroskobi, fotografi ve radyolojiden yararlanılmaya başlanılmıştı. 18. yüzyıl ortalarında adli psikiyatri alanında gelişmeler başlamış, akıl hastalıklarında tedavi ve bilirkişilik konuları ön plana çıkmıştı. Yine 16. yüzyıl ile 18. yüzyıl arasında yer alan adli tıp kitaplarında zehirlerle ilgili bilgiler yer almış, 18. yüzyıl sonrasında adli toksikoloji alanı gelişimine devam etmişti. 19. yüzyıl başlarında kimlik tespiti ve kriminalistik alanında ilk uygulamalar gerçekleştirilmiş, 1923’ de Locard tarafından olay yeri incelemesinin temel prensiplerini ortaya konulmuştur. Günümüzde adli tıp ve adli bilimler alanı, suçlu ve suç tiplerinin artış ve gelişimine paralel olarak daha fazla bilgi ve teknoloji kullanımına gerek duymakta, her geçen gün genişleyen bir çalışma alanına yayılmakta ve hızla kendisini geliştirmektedir.

http://www.biyologlar.com/adli-tip-ve-adli-bilimlerin-tarihcesi

BİYOLOJİK MÜCADELE:

Zararlı bir organizmayla,bunun düşmanı olan başka bir canlıdan faydalanmak suretiyle yapılan savaşa denir..Su birikintilerine larva yiyen balık, sineklerin üreme yeteneğini bozan formülasyonlar atma gibi tedbirlerdir.Yani zarar veren canlıyı ortamdan yok etmek için ,mevcut canlıyı yiyerek beslenen başka bir canlıyı ortama yerleştirmektir. Biyolojik mücadele,tabii dengenin tesisine yardımcı olur.ileriye dönük kalıcı sonuçlar verir.Dezavantajı ise uzun zaman almasıdır.Kimyasal mücadele,Hem çevre ve insan sağlığına zarar verdiği hemde zararlıların bunlara karşı dayanıklılığı kazandığı görülmüştür.Kimyasal savaşın Biyolojik mücadele programı ile birlikte yürütülmesi çoğu zaman oldukça risklidir.Bu sebeple biyolojik mücadele programının tavsiye edilmesi veya başarısız kaldığı dönem ve alanlarda tamamlanması için Biyoteknik yöntemler kullanılır.Biyoteknik yöntemlerden biri olan FEROMON' da amaç,hedef türü,çevreye ve diğer canlılara zarar vermeden kontrol altına almaktır. BİYOLOJİK MÜCADELE UYGULAMASI: 1-KISIRLAŞTIRMA 2-FEROMON 3-ATRAKTAN BİYOLOJİK KONTROL YÖNTEMLERİ 1~ PATOJEN AJANLARIN KULLANILMASI; -Bacil menşeyli ilaç uygulamaları, -Bazı bakteri,virüs ve mantarların kullanılması(Henüz araştırma aşamasındadır) 2~ PREDATÖRLER; -Kuş,kurbağa,kertenkele ve bazı balıklar 3~ YAPAY GENETİK DEĞİŞİKLİKLER -Gelişmeyi düzenleyen hormon esaslı ilaç uygulamaları -Bacil esaslı biyolojik kontrol ilaçları: 1)Bacillus sphericus 2)Bacillus thurigiensis:Şu özelliklerden dolayı B.thurigiensis dünyada en çok tercih edilen biyolojik ilaçtır. ---Hedef seçici özelliği vardır(yalnız sivrisinek larvalarına etkilidir)diğer canlılara toksik etkisi yoktur, ---Hedef canlılar B.thurigiensis’e direnç göstermezler, ---Doğal besin zincirini olumsuz etkilemez, ---Çok kısa zamanda etkisini gösterir ve parçalanarak birikime neden olmaz. -Predatörler: Doğal denge içerisinde bazı sucul kuşlar, Gambusia gibi etçil balıklar,kurbağalar larvalarla beslendiklerinden zaralıların üreyip çoğalmasını dengelerler. ~ Gelişmeyi düzenleyici hormonlar: Başkalaşım dönemine sahip zararlının; -Herhangi bir döneminden bir üst dönemine geçmesini engelleyen Gençlik hormonları, -Başkalaşım döneminde gömlek değiştirmesini engelleyen Kitin hormonları. BİYOLOJİK MÜCADELENİN ÖZELLİKLERİ: AVANTAJLARI: YAN VE ART ETKİLERİNİN OLMAYIŞI:İnsan,Hayvan,Bitki ve faydalı organizmalarda herhangi bir zarar meydana gelmez. EN AZ MASRAFLA EN İYİ SONUCUN ALINABİLMESİ:Biyolojik mücadelede,nakil için başlangıçta önemli bir masraf olur,ilerki yıllarda bu masraf azalır. DEVAMLI/ETKİ (ETKİNİN İDAME OLMASI):İlk tesisten sonra yok denecek bir masrafla kendi kendisini devam ettirebilme özelliği vardır.Mekanik ve Kimyevi mücadelede etki,ancak bilfiil yürütüldüğü zaman olur. ZARARLILARDA DAYANIKLILIK VE BAĞIŞIKLIĞA YOL AÇMAMASI:Biyolojik mücadelede bu önemli bir avantajdır. DOLAYLI FAYDALAR SAĞLAMASI: a)Konuk zararlıyı direk öldürür, b)Üreme gücünü azaltır, c)Gelişiminde dengesizlikler yaratır. d)Zararlının direncini kırma,ve hassasiyet oluşmasını sağlar. DEZAVANTAJLARI: BAŞLANGIÇTA RİSK TAŞIMASI: NETİCENİN GEÇ ALINMASI: BİYOLOJİK MÜCADELEDE BAŞLANGIÇ: İlk olarak faydalı türün korunması ve sonrada güçlendirilmesi esas alınmalıdır.Bu süreyi beklerken zararlı alyhine dönüşen durumlarda,zararlının yoğunluğu artar.Mücadele Başlangıç süresi ,3 yıl tesbit edilir(3 generasyonluk süre) Bu süreler zarfında düşman çoğalıp istenen seviyeye çıkar.tek risk "Başlangıç Riski"dir.Buda ekonomik kayıptır.Son 5 yılın istatistik verilerine göre mücadele faaliyet oranları şu şekildedir. A)MEKANİK MÜCADELE(%65), B)KİMYASAL MÜCADELE (%21), C)BİYOLOJİK MÜCADELE (%12). D)BİYOTEKNİK(FEROMON)MÜCADELESİ (%2) dir. BİYOTEKNİK(FEROMON)MÜCADELESİ: UYARMA KAYNAĞI: A)FİZİKSEL : Ses titreşimi ve elektromanyetik radyasyon uygulamaları. B)KİMYASAL:Tat alma,Koku alma,Gaz ile zararl duyu organları ile uyarılır.Koku bırakılarak doğrudan uyarılması sağlanır. BİR ARAYA GETİRİCİ FEROMONLAR: A)CİNSİYET FEROMONLARI:Türün yalnız bir cinsiyeti tarafından salgılanıp öteki cinsi cezbeder. (Erkek > Dişi) ,veya (Dişi >Erkek) şeklinde uygulanır. B)TOPLANMA FEROMONLARI:Türün her iki cinsiyeti üzerinde de etkili olan (Yine bir cinsiyet tarafından salgılanan (Erkek >Dişi ve Erkek), veya (Dişi >Dişi ve Erkek) şeklinde uygulanır. FEROMON'un Kaynağı ,Yeni erginleşmiş dişi böcekten veya sentetik olarak laboratuar ortamında üretilir. TARIMDA FEROMON: Direk etki,Yaprak biti türlerinde alarm feromonu bulunmuş Corniclerinden salgı yaparlar.Feromon ile alarma geçiren yaprak biti Kolonilerinin kendisini yere atması veya bulunduğu bitkiyi terk etmesini sağlar. İndirek Etki,Zararlı böcek populasyonunu tayin etmede uygulanır,sex feromonları indirek uygulanır. FEROMON NEDİR? : Feromon bir böcek türünün,kendi bireyleri arasında haberleşmelerinde kullandıkları Kokudur.Feromon böcekler arası kimyasal konuşma dilidir.Çiftleşmeye hazır bir dişi böceğin salgılamış olduğu kokuyu duyan erkek böcek,kokunun izini takip ederek dişiye ulaşır.işte bu koku seks Feromonudur. Bilim adamları Feromonların kimyasal yapılarını çözebilmek için ilk etapta çeşitli böcek türlerinden çok sayıda toplayıp Laboratuvar ortamında böceklerin salgıladıkları kokuların kimyasal yapılarını öğrenmişlerdir.Bilim adamları Feromonların kimyasal yapılarını elde ettikten sonra bu kokuların türe bağlı olarak farklılıklar gösterdiğini görmüşlerdir. BUNA BAĞLI OLARAK HER BÖCEĞİN FEROMONU BİRBİRİNDEN FARKLIDIR.: Yıllar süren araştırmalar sonunda Bilim adamları türden türe farklı olan feromonları tanımlamalarının yanısıra,Feromonları Laboratuvarda "SENTEZ ETME" Başarısına ulaşmışlardır.Sentaz edilen Feromonlar,çeşitli maddelere emdirilerek tuzaklarla birlikte mücadele edilecek ortama asılarak denemeler yıllar sürmüştür.Son olarak gelinen noktada,mevcut bilgiler ışığında bir çok böceğin Feromonu bulunmuştur.Bu bizlere zararlı böceklerin haberleşme dünyalarına girmeyi ve onları tuzaklara çekerek zararlarını en aza indirme şansını vermiştir.Entegre zararlı mücadelesi,zararlı davranışları ve Popülasyonları konularında fazla bilgi gerektirmektedir.Zararlının ne zaman ve nerede ortaya çıktığını bilmek,hangi yaşam evresinde olduğunu görebilmek zararlılarla mücadelede ve sonraki tehditlerde çözümlere kolay ve ucuz bir şekilde ulaşmamızı sağlar.Her geçen yıl dünyada çeşitli zararlılar hakkında çeşitli kimyasal zehirler karşı reziztans (Yani,Bağışıklık)geliştirdikleri veya,çok bilinen bazı kimyasal zehirlerin mücadelede daha az etkili olmaya başladığı görülmektedir.Orman,Tarım,Depolanmış ürünler,Ev ve Bahçe zararlılarına karşı mücadelede Alternatif,Çevreye,İnsana zararlı olmayan,Ucuz ve Başarılı Altarnatif yöntemlerin kullanılması kaçınılmaz bir hal almaya başlamıştır.Bu avantajlara haiz bir metot olan Feromonlarla Zararlı Böcek Mücadelesi dünyada ve ülkemizde hızla gelişmektedir. YÖNTEMLER VE UYGULAMA METOTLARI ? : Laboratuar ortamında sentez edilen ve böceklerin salgıladığı kokunun kopyası olan Feromon'lar "DİSPENSER" denilen ve kokuyu atmosfere yayan maddelere emdirilirler.Elde edilen Feromon Dispenserleri ile mücadelede amaca ve ihtiyaca göre dört ana yöntem kullanılır. 1-ERKEN UYARI (MONITORING) : Erken uyarı böceklerin pupa evrelerinden sonra hangi zamanda ergin olup uçmaya başladıklarını tesbit için kullanılır.Böceklerin uçma zamanlarını tesbit etmek mücadele yapan için büyük faydalar sağlar.Zararlının gerçekten var olup olmadığını görür.Eğer varsa ilaçlama yapılacak zamanın tam ve kesin tarihi ortaya çıkar.ve böylece çok sayıda ilaçlama tekrarı gerektirmez. 2-KARIŞTIRMA (CONFUSION) : Zararlılar ergin olduktan sonra çiftleşmek için dişinin salgılamış olduğu kokuyu ararlar,ancak ortamda çok kaynaklı bir koku varsa dişiyi bulmaları güçleşir.Mücadele yapılacak ortama asılan çok sayıdaki Feromon Dispenserinden yayılan kokular nedeniyle zararlı dişiyi bulamayarak çiftleşme gerçekleşmez ve böcek zararı ortadan kalkmış olur. 3-ÇEK-ÖLDÜR (ATTRACT-KILL) : Tuzağa çekilen böceklerin tuzak içine konulmuş Pestisit'lerle(Kimyasal İlaç) öldürülmesine dayanan bu metotta,tuzağa çekilerek hapsolan erkek bireyler temas etkili pestisitlerle yok edilirler. 4-TOPLU TUZAKLAMA (MASS TARPPING) Hangi alanda kullanılacak olursa olsun toplu tuzaklama yönteminde Feromon Dispenseri ve tuzaklar mücadele alanına tavsiye edilen miktarlarda asılarak gerçekleştirilen metottur.en çok kullanılan ve bilinen bu metotta böcekler toplu olarak tuzaklara hapsedilerek zarar vermeleri önlenir. FEROMON'LA MÜCADELENİN AVANTAJLARI NELERDİR ? : 1-FEROMONLAR TAMAMİYLE ZEHİRSİZ-NON TOXİC MADDELERDİR.ÇEVREYE,İNSANA,BAŞKA CANLILARA VE ATMOSFERE ZARAR VERMEZLER. 2-FEROMON'LAR TÜRE ÖZGÜ CEZBEDİCİ VE ÇEKİCİ KOKULAR OLDUKLARINDAN DOĞADAKİ DİĞER CANLILARI ZARAR VERMEZLER.KİMYASAL MADDELERİN SEÇİCİ OLMAMASI KADAR FEROMON'LAR SEÇİCİ BİR MÜCADELE METOTUDUR.HEDEF CANLI DIŞINDA HİÇ BİR ORGANİK YADA İNORGANİK MADDEYE ZARAR VERMEZLER. 3-FEROMON'LAR MÜCADELE EDİLECEK ZARARLININ VARLIĞININ YADA YOKLUĞUNUN ORTAYA ÇIKMASINDA ROL OYNAR.BUDA BOŞUNA YAPILACAK İLAÇLAMA İŞİNDEN MÜCADELE YAPANI KURTARMIŞ OLUR. 4-UYGULAMASI OLDUKÇA BASİTTİR.İLAÇLAMAYA GÖRE OLDUKÇA KISA VE GÜVENLİ BİR İŞLEMDİR. 5-UÇAKLA İLAÇLAMANIN DAHİ MÜMKÜN OLMADIĞI,ARAZİ ŞARTLARININ ÇETİN OLDUĞU YERLERDE KULLANIMI MÜMKÜNDÜR. 6-BİR ÇOK MÜCADELE YÖNTEMİNE GÖRE UCUZ BİR YÖNTEMDİR. 7-İLAÇ KULLANILMADAN ÜRETİLEN TARIM ÜRÜNLERİNİN DEĞERİ DIŞ VE İÇ PAZARDA ARTACAĞINDAN,FEROMON YÖNTEMİ İLE ZARARLI BÖCEK MÜCADELESİ ,KATAGORİSİNDE TEK VE VAZGEÇİLMEZ BİR UYGULAMA YÖNTEMİDİR. FEROMONLARIN ZARARLI BÖCEKLERLE MÜCADELEDE KULLANILMASI 1. GİRİŞ Feromonlar böceklerde bir türün bireyleri tarafından dışarıya salınan ve o türün diğer bireyleri tarafından hissedilerek reaksiyon göstermelerine sebep olan kimyasal maddelerdir. Bu maddeler; cinsel cezbedici, buluşma, dağılma, alarm verme, yol veya sınır belirleme, tat uyarması, dişilerin üreme faaliyetlerinin engellenmesi gibi etkilerine göre sınıflandırılabilir. Bunların arasında cinsel cezbedici hormonlar bitki koruma alanında büyük ölçüde kullanılmaktadır. Dişi böcekler bu feromonu çiftleşmeye hazır olduklarını belli etmek ve erkeklerin kendilerini bulabilmesi için salgılarlar. Bu maddeler hava hareketleri ile taşınırlar ve erkeklerin antenleri aracılığıyla algılanırlar. Feromonlar Entegre Zararlı Düzenlemesi Programı’nın elemanlarından biridir. Etkileri çok eskiden beri bilinmekle beraber ilk olarak BUTENANDT (1954) tarafından ipek böceklerinin koku salgı bezlerinden elde edilip, tanımlanmış ve erkekleri çektiği belirlenmiştir (SEREZ 1983). Daha sonraki yıllarda birçok böceğe ait feromonlar izole edilip tanımlanmıştır. Günümüzde feromonlar sentetik olarak üretilmekte ve bu iş için geliştirilmiş tuzaklarda çekici olarak kullanılmaktadır. Zararlı böceklerle mücadelede feromonlardan yararlanmak üzere üç metot geliştirilmiştir. Bunlar; gözlem ve erken uyarı, kitle tuzaklama ile çiftleşmeyi engellemedir. 2. GÖZLEM VE ERKEN UYARI (MONITORING) Feromonlar zararlı böcek türlerinin varlığının, biyolojilerinin belirlenmesinde ve uygun mücadele zamanının tespitinde yaygın şekilde kullanılmaktadır. Bunun için tuzağın şekli de önemlidir. Hedef böcek türüne uygun olacak tuzak tipleri (yapışkan yüzeyli, su yüzeyli, delta tipi, kelebek tipi, funnel tipi vs.) geliştirilmiştir. Tuzağın büyüklük ve çeşidi hedef böceğin davranışına da bağlıdır. Bu tuzakların en önemli kısmı çekici maddeyi kontrollü şekilde salan dispenserlerdir. Arazide 1 mg veya daha az feromon ihtiva eden dispenser bir ay veya daha uzun süre hedef böceği çekmeye devam edebilir. Belli dönem boyunca yakalanan böcekler sayılarak zararlının varlığı, uçuş ve populasyon yoğunluğu bilgileri elde edilebilir. Bu bilgiler önceki yılların verileriyle karşılaştırılıp değerlendirilerek ilaçlamaya karar vermede kriter olarak kullanılır. Bu bilgilerin yorumlanmasında dikkatli gözlem ve tecrübe başarı için çok önemlidir. Tahıl ve otsu bitkilerde zararlı olan Spodoptera exempta’ya karşı seks feromonu ihtiva eden tuzak ağı kullanımıyla Doğu Afrika’da başarılı sonuçlar alınmaktadır. Diğer taraftan Avrupa ve ABD’de, depolanmış ürünlerin böcekten (Ephestia, Plodia, Sitotroga ve Trigoderma türleri) korunması için feromon tuzaklarıyla gözlem ve erken uyarı hizmeti verilmektedir. Feromonların kullanımıyla İngiltere’de önemli bir zararlı olan Cydia nigricana’nın populasyon artışına ilişkin tahminlerde oldukça başarı sağlanmıştır. Önceleri ürün üzerinde yumurta araştırarak gözlem yapılırken, 1977’den beri bu amaçla feromon tuzakları kullanılmaktadır. Buna benzer bir uygulama dünyanın çeşitli yerlerindeki meyve bahçelerinde Laspeyresia pomonella’ya (Elma iç kurdu) karşı yapılmaktadır. Ülkemizde zararlı böceklere karşı feromonlu tuzaklar ile erken uyarı denemeleri 1980’li yıllarda Bornova Zirai Mücadele Araştırma Enstitüsü tarafından başlatılmıştır. Günümüzde değişik yörelerde önemli zararlılar olarak kabul edilen (Laspeyresia pomonella, Lobesia botrana, Dacus oleae, Prays oleae, Rhagolatis cerasi, Heliotis helicoverpa, Quadraspidotus pernicious, Ostrinia nubilalis, Agrotis ipsilon Heliotis zea vs.) türlere karşı erken uyarı amacıyla feromonlu, cezbediciler ve renkli görsel çekici tuzaklar yaygın şekilde kullanılmaktadır (SEREZ 2001). 3. KİTLE TUZAKLAMA Populasyon yoğunluğu düşük olduğunda, hedef böceğe özgü feromonlu tuzaklarla zararlının yoğunluğu çok daha azaltılabilir. Başarı için böcek populasyonunundan yakalanması gerekli miktarı ve gerekli tuzak sayısının iyi belirlenmesi gereklidir. Yüksek bir yakalama oranı, Lepidoptera türlerinde özellikle erkekler yakalandığı için önemlidir. Mücadelenin başarılı olması için erkeklerin %80-95’inin yakalanmasının gerektiği hesaplanmıştır. Pratikte farklı türler için tuzak yoğunluğu hektarda 1 ila 700 arasında olabilir. Tuzak sayısındaki üst limit maliyet ve tuzak ağının devamlılığına göre belirlenir. Kitle tuzaklaması orman, meyve bahçeleri ve tarım arazilerinde çok çeşitli böcek türleri için yapılmaktadır. Çankırı Orman Fidanlığında bir Lepidopter olan Sciapteron tabaniformis zararlısına karşı funnel tipi tuzaklarda (30 adet/ha ), türe özgü eşeysel çekici feromon kullanarak kitle tuzaklama denemesi uygulamış, %63,9’luk bir etkinlik sağlanabilmiştir. Bu çalışmaya göre; izole olmayan kavaklıklarda feromonlu tuzakların gözlem ve erken uyarı için amacıyla kullanılmasının daha faydalı olacağı sonucuna varılmıştır (ŞİMŞEK 1998). Her iki cinsi de çektiğinden Coleoptera türlerine karşı kitle tuzaklama programları daha başarılı şekilde uygulanmaktadır. Buna en iyi örnek kabuk böceklerine karşı alınan sonuçlardır; 1979 yılında İsveç ve Norveç’te Ips typograhus’a karşı kitle tuzaklama projesi yürütülmüş, toplam 320 bin tuzak kullanılarak 1,6 milyar böcek yakalanmış, ölen ağaç sayısında önceki yıllara göre büyük azalma olmuştur (SEREZ 1983). Türkiye’de ilk feromon denemeleri Doğu Karadeniz Bölgesi’nde Picea abies ormanlarında Ips sexdentatus kabuk böceğine karşı başlatılmış olup, araştırma ve uygulama faaliyetleri genişleyerek devam etmektedir. Artvin ormanlarında ladinlerde zarar yapan Ips typographus’a karşı 2001 yılında feromon tuzak denemeleri yapılmış, sonuçta Kanada tipi hunili tuzakların ve “Almanya –Trifolia M” menşeli preperatların kullanımı önerilmiştir. Ayrıca aynı ormanlarda 1998 -2001 yılları arasında toplam 20 bin adet tuzak kullanılarak 50 milyon civarında böcek (Tuzak başına ortalama 2500 adet) toplanmıştır (ALKAN 2001). Hedef böceğe göre farklı tuzaklar geliştirilmiştir. Örneğin kabuk böcekleri için; boru, körüklü boru tipi, hunili, radyötör tip gibi çok çeşitli tuzaklar kullanılmaktadır. Etkili bir tuzak ağı kurmanın maliyeti ve zorluğu kitle tuzaklamada genel bir sorundur. Ayrıca, tuzak materyalinin, çalınarak kaybolma riskini azaltacak malzemeler seçilmesine dikkat edilmelidir. 4. ÇİFTLEŞMEYİ ENGELLEME Çiftleşmeyi engelleme; böceğin bulunduğu sahada çiftlerin buluşmasını, engelleyecek sentetik feromonların kullanılmasıyla yapılır. Korunacak alanda hedef böcek için feromon salgılayan çok sayıda dispenser yerleştirilir. Bu dispenserlerden yeterli yoğunlukta feromon konsantrasyonu sağlanarak doğal feromon maskelenir ve erkeklerle, dişilerin buluşması, böylece doğurganlıkları engellenir. Mücadele için sahadaki feromon konsatrasyonu birkaç hafta yeterli düzeyde tutulmalıdır. Teorik olarak çiftleşmeyi engelleme, sahte ize yönlendirme veya şaşırtmayla yapılabilir. Denemelerde üç tip dispenser, feromon salınma oranında tatmin edici sonuçlar vermiştir. Bunlar, içi boş plastik lifler, küçük ince plastik yaprak ve mikro kapsüllerdir. Plastik lifler 10 mm boyunda, 0,2 mm çapındadır, feromon lifin içindeki boşluğa konur ve lifin uçlarından birisi açık bırakılarak kontrollü salınması sağlanır. Plastik yaprak formülasyonunda, plastikten imal edilmiş koruyucu özelliği olan iki tabakanın ortasına feromon yerleştirilmiştir. Plastik dış tabaka güneş, oksidasyon ve hidrolizden koruma özelliği yanında, içindeki feromonun kontrollü şekilde salınmasını sağlamaktadır. Bu çeşit preperatlar kare, şerit, bant, pul, konfeti gibi değişik şekillerde üretilerek kullanılmaktadır. Bu preperatlar uçakla veya yerden deposunda özel yapıştırıcı ilave edilmiş püskürtme sistemi ile serpilerek, arazide bitkilerin yapraklarına yapışmaları sağlanır (FLINT ve DOANE 1996). Üçüncü formülasyon tipi feromonun jelatin, poliüretan veya poliamid gibi maddelerden oluşan mikro kapsülün içine konulmasıyla elde edilir. Bunda feromonun salınma oranı, çeperin yapısı, kalınlığı ve içindeki maddenin bileşimine göre değişir. Bu formülasyon tipi çok miktarda ve kolaylıkla imal edilip, ilave yapıştırıcıya ihtiyaç duyulmadan uygulanabilir. Her üç formülasyon ABD, Latin Amerika ve Mısır’da Pectinophora gossypiella (Pembe pamuk kurdu)’ya karşı 3-10 g/ha oranlarında kullanılmış ve başarılı sonuçlar alınmıştır (CAMPION ve VEIGH 1984). 5. SONUÇLAR Feremonların, zararlı böceklerle mücadelede etkili oldukları durumlarda, özellikle faydalı böceklere zarar vermeyişleriyle klasik insektisitlerle mücadeleye nazaran avantajları bulunmaktadır. Ancak, seçici olmaları nedeniyle tek bir böcek türüne karşı kullanılabilmektedir. Aynı sahada birkaç tür zararlı olması durumunda geniş spektrumlu insektisit kullanımı tercih edilmektedir. Feromonla doğrudan mücadelede başarı, ergin böcekler arasındaki çiftleşmenin azaltılmasına ve mücadele sahasının dışından gelerek yumurta bırakacak döllenmiş dişilerin sayısının azaltılmasına bağlıdır. Feromonla mücadelede faydalı böcekler işlevlerini zarar görmeden sürdürebildiklerinden, feromonlar Entegre Zararlı Düzenlemesi programlarının en önemli unsurlarındandır. Diğer taraftan feromon tuzaklarının da yer aldığı, erken uyarı istasyonlarıyla zararlıların populasyon yoğunluğu ile muhtemel zarar düzeyleri önceden tahmin edilebildiğinden, insektisit uygulaması daha az sayıda ve en uygun zamanda yapılabilmektedir. Kaynak: www.osman.com.tr

http://www.biyologlar.com/biyolojik-mucadele

Kaplan Güveleri

Kaplan Güveleri

Arctiidae güveler içerisinde en ışıl ışıl ve gösterişli olanlardan bazılarını barındırır. Bazı türleri diğer böcekleri taklit eder ve Lepidoptera’ya ait olmalarına rağmen ona benzemezler.Yaygın Adı:Kaplan GüveleriFamilya: ArctiidaeTakım: LepıdopteraTür Sayısı: 10.000 civarında (264′ü A.B.D.’de)Kanat Açıklığı: 13 mm-8 cm arasında Fiziksel Özellikleri: Yetişkinleri genelde güvelerin en parlak renklileri arasındadır; beyaz, donuk kahverengi veya gri olabilir, kanat şekilleri değişkenlik gösterir, bazen uzun ve dar ya da nispeten geniş, hortum boyu çoğunlukla kısa, duyma organları göğüs kısmında olup bazı türleri diğer böcekleri taklit eder. Tırtıllar genelde çok tüylüdür, bazıları yünlü ayılar olarak bilinirler. Alışkanlıkları: Yetişkinler gece veya gündüz aktif olabilirler; gündüzleri aktif olan türler, çok aktiftir. Beslenme ve çiftleşmeyi gündüz yaparlar; yerleşik bazı kolonilerde çok belirgin olabilir.Yaşam Çizgisi: Kur yapma çok karmaşıktır; çeşitli türler gündüz veya gece çiftleşmek geniş gruplar (lekler) oluştururlar; erkekler coremata denilen geniş kesecikleri şişirebilirler; yumurtaları gruplar halinde veya bitkilerin üzerine rastgele saçarak bırakırlar; tırtıllar pupa devresini kendi tüyleriyle ipeği karıştırarak yaptığı gevşek kozanın içinde geçirir.Beslenme Tarzı: Birçok türün yetişkinleri beslenmezler; diğerleriyse gece veya gündüz çiçeklerle beslenirler; tırtıllar liken veya çok çeşitli bitkilerle beslenir.Yaşam Alanı: Kumsallar ve tuz bataklığından çöllere, çimenlik, orman ve dağlık alanlara kadar her tür alanda bulunur; bazı türleriyse yaygın olarak bahçelerde bulunur.Yeryüzünde Dağılımı: Tüm dünyada bulunur ancak en bol tropikal bölgelerdedir.Tipik “kaplanlar” ılımlı bölgelerde yetişen en renkli güvelerden bazılarına sahip olan Arctiinae alt familyasına aittir. Büyük kaplan güvesi, Arctia caja, buna bir örnektir. Kuzey Amerika nispeten nadir olsa da, Avrupa’da yerleşim bölgelerinde bile kaplanların en bilinenlerindendir. Diğer çeşitli kaplanlarda olduğu gibi, yetişkin güveler gün boyu saklandıklarından, rengârenk süsleri nadiren görülür. Sadece geceleri uçtuğu için fiyakalı renkleri görülemez. Diğer benzer çarpıcı türler gündüzleri uçarlar ve bu mantıklı bir davranıştır çünkü amaçlarına uygun şekilde “uyarı” işlevi görmektedir. Bazen birlikten kuvvet doğar: Bir Akdeniz adası olan Rodos’ta binlerce yetişkin Euplagia quadrlpunctaria her yıl küçük ve aynı ormanlık alana kış uykusuna yatmak için göçer, o bölgede turist çekmeye bile başlamıştır.Kimyasal KokteylTüm çok parlak renkli türün tırtılları yenilmez ve toksik bileşenleri (histamin ve alkaloidler) ya beslendikleri bitkiden emer ya da kendi vücutlarında üreterek depolarlar. Bazı yetişkinlerin çok aktif bir savunma biçimi vardır. Toraks bölgesindeki bezlerinden zehirli damlalar olan köpüklü bir sıvı salgılar. Sıvının tadı ve kokusu çirkindir ve avcı bir daha asla geri gelmez. Fakat güveler kendi zehirlerine karşı bağışıklı gözükmektedir. Hortumlarını başları üstünde yukarı doğru kıvırarak kötü sıvıyı boşa harcamamak adına tekrar emebilirler.Diğer arctiidlerle birlikte yetişkinler de hodon familyasından kurumuş bitkileri, savunma ihtiyacını karşılayan bitkilerin ürettiği pirolizidin alkaloidleri depolamak için ziyaret eder. Güve, bitkideki bu kimyasalı üzerine sıvı fışkırtarak çözündürür. Bazı arctiidlerin salgıları insan cildi üzerinde arı sokmasına benzer ani ve acılı bir etki yaratır.Diğer çeşitli alt familyalara da genelde familya konumu verilmektedir. En ayırt edici olan Ctenuchinae (sıklıkla Ctenuchidae olarak yazılır). 3,000 civarı nispeten dar kanatlı, küçüklü büyüklü güveleri barındıran esasen bir tropikal alt familyadır. Uyarı renkleri içeren yetişkinler sadece gündüz aktiftirler ve onları çoğu avcıya karşı yenilemez kılan savunma kimyasallarına güvenerek oldukça yavaş ve tembelce hareket ederler. Birçok tür de kimyasal savunma yapan diğer böcekleri, özellikle arıları taklit eder. Bazıları da Lycidae familyasından tatsız olan ağ kanatlı böcekleri taklit eder.Taklit -bir böceğin, daha zehirli veya savunma sistemi daha güçlü olan bir kopyalaması olayıdır- Hypsinae alt familyasında çok yaygındır. Güveler iyi gelişmiş hortumu ve nispeten büyük gözleriyle Ctenuchinae’den daha büyük olmaya çalışır. Taklitçi türlerin çoğu iç ve Güney Amerika’nın tropikal bölgelerinde bulunur. Dysschema irene gibi bazıları, Castniidae familyasının güvelerinin olduğu kadar birçok farklı kelebek familyalarının da benzer görünüşlü üyelerini barındıran “kaplan çizgili” taklit halkasının üyeleridir. Hypsinae’nın diğer cinsleri, Ithomiidae ve Danaidae’nin şeffaf kanatlı üyelerini barındıran taklit halkalarına aittir.Yumurtalar ve Tırtıllar Arctiid yumurtaları beslenilen bitki üstüne çoğunlukla büyük kütleler halinde bırakılsa da yemekleri konusunda fazla titiz davranmayan bazı türler yumurtaları rastgele saçarlar ve tırtıllar da ne bulurlarsa onu yerler. Birçok türde tırtıllar yalnızdır, fakat bazıları sonbahar ipek kurdu güvesi, Hypantria cunea, gibi açgözlü bir biçimde beslenen büyük bir izdiham yaratır. Kökeni Kuzey Amerika olsa da bu orman zararlısı kazayla Avrupa’ya sokulmuştur. f Şimdilerde bu canlı aynı zararı buradaki ağaçlara vermektedir. Bazı arctiidler ise tersine yararlı olabilmektedir. Avrupa sülüğen güvesi, Tyria jacobaeae, Siyah ve turuncu çizgili tırtıllar, kanarya otu (Senecio jacobaea) besleyici bitkisini kökleri çıplak kalana kadar soyar. Kanarya otu çiftlik hayvanları -özellikle atlar- için zehirli olduğundan tırtıllar bu konuda işe yaramaktadırlar. Kanarya otu yanlışlıkla sokulduğu Yeni Zelanda’da ciddi bir zararlıdır. Arctiid tırtılları genelde tüylü, hatta bazen uç noktada, olduğundan onlara yünlü ayılar denmektedir. Tüyler tahriş edicidir ve çocuklar böyle cazip şekilde kürklü bir canlıyı tutmaya bayılsalar da kısa sürede pişman olur. Birçok ılımlı arctiidlerde tırtıl sadece yarım beslendiğinde kış uykusuna yatar.Bitkinin ucuna doğru yükselerek, çiftleşme uçuşları..Güvelerde görülen en karmaşık cinsel rutinlerden bazıları arctiidlerde kendini gösterir; çeşitli türlerin çiftleşme “lekler”i oluşturmak için bir araya geldikleri bilinmektedir. Dişiler erkekleri çağırarak (feromon salgısıyla) cezbedebilirler. Kuzey Amerika şatafat güvesi, Utetheisa ornatrix, dişi kokusunu sabit borudan çıkar gibi dışarı salmaz. Onun yerine karnının ucundaki çarpıntı sayesinde atımlar halinde salar. Kuzey Amerika’nın Doğu Yakasındaki tuzlu bataklıklar boyunca, alacakaranlığın çökmesi tuzlu bataklık güveleri, Estigmene acraea, için küçük gruplar halinde cinsel faaliyet gecesi için bir araya gelme işaretidir. Çimenler gibi tünedikleri her erkek karınlarının ucundaki coremata’larını -uzun, kıvrık, sosis gibi tüylü borular- şişirir. Tuzlu bataklık güvelerinde feromonlar dişileri çok uzaklardan bile etkileyerek bir araya gelmiş olan erkekler arasından kendisine eş seçmesini sağlıyor. Sabahın erken saatlerine kadar bir eş bulamamış olan dişiler son çare olarak “çağırmaya” başlar.Ses Üretimi Diğer güve familyalarında olduğu gibi arctiidlerin de avlanan bir yarasanın çıkarttığı radar benzeri sesleri algılayacak “kulakları” (kulak zarı) vardır. Sonrasında bir güve kaçmak için”dalıp çıkma” tarzı bir uçuşu ya da kendini güvenli bir yere atma eylemine karar verebilir. Bazı tatsız ve uyarıcı renklere sahip arctiidler ise başka bir savunma yöntemi seçer: Onlar kendi ürettikleri ultrasonik “yanıt”ları yarasanın radarına gönderirler. Deneyimli yarasalar bu sesle o çirkin tadı ilişkilendirmeyi öğrenirler ve bu sesi duyar duymaz oradan uzaklaşırlar. Çok güzel yenebilen Kuzey Amerika Isabella kaplanı, Pyrrhartica isabella, gerçekten çirkin olan arctiidlerin ultrason yanıtlarını kopyalayarak yarasaları kandırır, buna da “akustik taklit” denilmektedir. Arctiidler torakslarındaki çok sayıdaki küçük mikro kulak zarlarını titreştirerek ürettiği ultrasonu kur yaparken de kullanmaktadır. Büyük kaplan güvesi Borneo yağmur ormanında bir eğrelti otu üstünde oturan bir Rhodogastria türü, dokunulmasına cevap olarak toraks bölgesinden köpüklü bir damla tatsız sıvısından sızdırıyor.Yanlarda çıkarı uzun ve dar kanatlarıyla, Eurota sericaria, Ctenuchinae alt familyasının Brezilya’dan tipik bir üyesidir. Vücudu uyarıcı şekilde renklidir.Büyük kaplan güvesinin larvası, Arctia caja, bir İngiliz bahçesinde yaprak üzerinde savunma amaçlı kıvrılmıştır.Uyarı renkleri olan kanarya otu güvesi tırtılı, Tyria jacobaeae, yaygın bir kanarya otu bitkisi üzerinde. Senecio jacobaea, çiftlik hayvanları için zehirli olan zararlı bir bitkidir.Kaynakça: BBC Ken Preston-MafhamYazar: Tuncay Bayraktarhttp://www.bilgiustam.com

http://www.biyologlar.com/kaplan-guveleri

Doğurganlık - Fertilite Nedir

Kadında Doğurganlık Kadınlarda doğurganlık, gebe kalabilme ve bebek sahibi olabilmektir. Bir kadında doğurganlık13 yaş civarında adetlerin başlamasıyla başlar ve genellikle bu 45 yaş civarında sonlanır. Fakat potansiyel olarak doğurganlık yaklaşık 51 yaş civarına dek yani menapoza kadar sürer. Kız çocuğunun anne karnında 5 aylıkken sahip olduğu yumurta sayısı yaklaşık 6-7 milyondur, bu sayı doğumda 1-2 milyona düşer, çocukluk çağında yavaş yavaş azalarak ergenlik döneminden itibaren ayda bir yumurta yumurtlamak suretiyle bu azalma menopoza kadar aylık ortalama 350-400 yumurta harcayarak devam eder. Bu yumurtalar yumurtalıklar içerisinde follikül denen içi sıvı ile dolu boşluklarda saklanırlar. Küçük kız doğurganlık çağına girdiğinde aylık menstrual sikluslar (adet) başlar. Her siklus sırasında yumurtalık bir yumurta geliştirir. Nadiren birden çokta olabilir. Bu yumurta erkekten gelen sperm hücresi ile birleşirse gebelik oluşur. Yumurta hücresinin gelişimi beyinde hipotalamus ve hipofiz denen bölgelerden ve yumurtalıklardan salgılanan bazı hormonların ve kimyasalların ince dengesine bağlıdır. Erkekte Doğurganlık Erkekte doğurganlık. Kadını hamile bırakabilme yetisi anlamına gelir. Bunu sağlayabilmek için. Erkeğin üreme sisteminin sperm üretebilme ve depolayabilmesi ayrıca depolanan bu spermlerin vucut dışına taşınabilmesi gereklidir. Kadının hayatı boyunca üreteceği yumurta hücreleriyle doğmasına karşın erkek hayatı boyunca sürekli yeni sperm üretebilme yeteneğine sahiptir. Erkek. Puberteye eriştikten sonra . sperm depoları yaklaşık her 72 günde bir yenilenmektedir. Doğurganlık (fertilite) Terimleri: Fertilizasyon: Sperm ve ovumun birleşmek üzere biraraya gelmesi Konsepsiyon: Gebeliğin oluşması (döllenme) Gebelik: Ovum ve spermin birleşmesinden sonra. Kadın üreme sisteminde embriyo veya fetusun gelişmesi. Hayatın Temeli İnsanlar hayata tek bir hücre, döllenmiş yumurta ya da zigot olarak başlarlar. Bu hücrelerin herbirinin çekirdekciklerinde DNA denilen (deoxyribonucleic acid) ve biraraya gelerek genleri oluşturan bilgi kodları vardır. Bu genler'de kromozomlar olarak adlandırılan yapıları oluştururlar. Bir insan zigotu 23 çiftten oluşan 46 adet kromozom içerir. Bunların yarısı babadan diğer yarısı ise anneden gelir. DNA bilgi ile depolu olması yanında kendini kopyalama yeteneğine de sahiptir. Bu kopyalama yeteneği olmaksızın hücreler çoğalamazlar ve bilgileri kuşaklar boyunca iletemezler. Gebelik Şansını (Doğurganlığı) Artırmak İçin Neler Yapılabilir? Sigara Sigara kadınlarda fertiliteyi düşürebilir. Pasif içicilik de aynı şekilde etki eder. Sigara içimi ile alınan nikotin, yumurtalıklardaki hücreleri etkileyerek, kadının yumurtasının genetik anomalilere daha fazla eğilimli olmasına neden oluyor. Nikotin, yumurta hücrelerini bozmasının yanında menopozun beklenenden erken gelmesine de yol açabiliyor. Menopoz öncesinde de sigara içen kadınların yumurtalıkları sağlıklı yumurtalar üretmeye direnç gösterir hale gelir. Sigara kullanımı doğal gebe kalmayı zorlaştırırken, düşükleri hızlandırır. Gebelikte sigara ve alkol kullanan kadınlarda düşük oranının yüksek olduğu bildiriliyor. Erkeklerde de sigara içmekle sperm kalitesinin düşüşü arasindaki bağ gösterilmiş olup bunun fertilite üzerindeki etkisi henüz çok açık değildir. Sigaranin bırakılmasının genel olarak sağlık kalitesini yükselteceği açıktır. Eğer sigara kullanıyorsanız, tüm yaşantınız ve üreme sağlığınız için bırakmanızı öneririz. Stres Stresin infertilite üzerine etkisi belirgindir. Örneğin stres nedeniyle kadında anovulasyon (yumurtlamanın oluşmaması) olabilir. Çok açıktır ki Kısırlık tedavisi, ister klasik ister tüp bebek yöntemleri ile olsun, çiftler üzerinde büyük stres, kaygı, gerginlik, korku, uykusuzluk, iç sıkıntısı, depresyon gibi değişik derecelerde psikolojik baskılara neden olabilmektedir. Bazı kısırlık vakalarında çok kısa tedavi süresi veya ilk denemede gebe kalma gerçekleştiğinde bu tür psikolojik sıkıntılar daha hafif atlatılabiliyor. Diğer taraftan, uzun süredir tedavi görmelerine rağmen gebe kalamayan çiftlerde sorunlar daha ağır hale gelebiliyor. Tedavi süresince merkezimizde psikoloğumuzdan bu konuda destek almanız bu stresi yenmekte önemli katkı sağlayacaktır. Yapılan çalışmalar, stresi azaltmanın başarı şansınızı artırabileceğini göstermiştir. Kafein Yapılan çalışmalar günlük kafein alımının günde 50mg’ın altında tutulması gerektiğini göstermiştir. Böylece kafeinin gebelik şansını düşürücü etkisinden kaçınılabilir. Kafein, kahve, kola. çay ve çikolatada değişik miktarlarda bulunmaktadır. Kilo Kadının kilosunun boyu ile uyumlu olup olmadığını belirlemek için ‘vücut kitle indeksi (BMI)’ kullanılır. Bir kadının BMI’sı 20-24 arasındaysa normal, 25-29 arasındaysa kilolu, 30-39 arasındaysa yüksek kilolu, 40 ve üzerindeyse aşırı kilolu olarak değerlendirilir. Vücut-kütle indeksi (BMI) 30’un üzerinde olan bayanlara kilo vermeleri gebelik şansını artıracağı gibi gebe kalınması durumunda oluşacak aşırı kiloların sebep olduğu kilolu bebek doğurma, zor doğum ve sezeryanla doğuma gerek duyulma eğilimi gibi olumsuzluklar da önlenmektedir. Bunun yanısıra kilonun aşırı düşük oluşu da doğurganlığı olumsuz etkileyen faktörlerdendir. BMI’I 20nin altında olan bayanlarda menstrual siklus bozulabilmekte hatta bazı beslenme bozuklukları ve aşırı egzersiz ile oluşan ileri derecede kilo kayıplarında adetler tamamıyla kaybolmaktadır. Yapılan çalışmalar, düşük kilolu kadınların, ortalama 2.700 ila 3.600 kg aldıktan sonra yarısından fazlasınınkendiliğinden gebe kaldıklarını göstermiştir. Vitamin Desteği Yapılan çalışmalar, gebelik oluşmadan önce folik asit kullanımının, bebeklerde nöral tüp defekti görülme olasılığını neredeyse %50 azalttığını göstermiştir. Bu nedenle Gebe kalmayı planlayan kadınların Gebelikten 1-2 ay önce her gün en az 0.4 mg folik asit almalarını tavsiye ediyoruz. Marul, avocado. dere otu, ceviz, badem, brokoli, bezelye, ıspanak, kavun, , muz, portakal, lahana, yeşil biber, unlu mamuller ve ekmek çok iyi birer folik asit kaynağıdır. Yeterli folik asit alındığından emin olamıyorsanız, folik asit içeren multivitamin preparatlarını kullanabilirsiniz. Cinsel İlişki Planı Yirmisekiz günde adet gören bir hasta için ortalama yumurtlama günü 14. gün, 30 günde bir adet gören hasta için 16. gündür. Yani yumurtlama sonrası dönem sabit olup, genellikle 14 gündür. Bu nedenle yumurtlama dönemi düzenli adet gören hastalarda iki adet arası dönemden 14 çıkarılarak bulunabilir. Ancak yumurtlama günü +/- 3 gün değişiklik gösterebilir. Bu nedenle gebelik şansını artırmak için aktif cinsel ilişki dönemi uzatılmalıdır. Düzenli ve 28 günde bir adet gören hastalarda adetin 10-17 günlerinde (kanamanın 1.gününden saymak gerekir) iki günde bir ilişkide bulunulduğu takdirde sorun yoksa 6 ayın sonuunda çiftlerin %75’i gebe kalır.

http://www.biyologlar.com/dogurganlik-fertilite-nedir

Endometriosis yaygın belirtileri nelerdir

Ağrılı adet Ağrılı cinsel ilişki Adet öncesinde karın ağrısı Sırt ağrısı Büyük tuvalette ağrı olması Bu belirtilerin tümünün başka nedenleri olabilir. Hastalığın başka belirtileri görülmemesine karşın, hamile kalmakta güçlük çeken bazı kadınlarda endometriosis sıkça rastlanmaktadır.

http://www.biyologlar.com/endometriosis-yaygin-belirtileri-nelerdir

Ginseng Nedir? Faydaları Nelerdir?

Ginseng Nedir? Faydaları Nelerdir?

Ginseng, ginseng bitkisinin köklerinden elde edilen oldukça popüler bir bitkisel ilaçtır. Tarihçilere göre ginseng bitkisi ilk olarak 5000 yıl önce, Kuzey Çin’in dağlık bölgelerinde keşfedildi.Başlangıçta bu bitki yemek pişirme amaçlı kullanılırken, daha sonra tedavi edici özellikleri tespit edilmiştir. Ginsengin en az 3000 yıldır popüler olarak kullanıldığı düşünülmektedir. Bir çok hastalığın tedavisinde kullanılan ginseng, geleneksel Çin tıbbında çok önemli bir yere sahiptir. Ginseng bitkisinin köklerinin insan vücuduna olan benzerliği, bu bitkinin tedavi edici özelliklerine olan inancı güçlendirdi. Tıbbi özellikleri için esas kullanılan parçası etli kökleri de olsa, yaprakları da kullanılır. Ginseng yapraklarının kökleri kadar etkili olmadığı gözlemlenmiştir bu kökler aynı zamanda oldukça pahalıdır.Yabani ginseng Asyanın dağlık bölgelerinde, özellikle de Çin’de bulunur. “Panax” cins ve “Araliaceae” ailesine ait 11 ginseng türü vardır. Etli köklere sahip bu yavaş büyüyen bitkiler soğuk iklime sahip bölgelerde yetişmektedir. Çok çeşitli ginseng bitkileri arasında en değerlileri Amerikan ginsengi olarak da bilinen Panax quinquefolius ve Asya ginsengi olarak da bilinen Panax ginseng’dir. Kore ginsengi, tüm ginseng türleri arasında en etkili olarak kabul edilir. Panax kelimesi Yunanca’da her derde deva anlamındaki “panakos” kelimesinden, ginseng ise Çince insan suretinde anlamına gelen “jen-shen” kelimesinden köken almaktadır.Fiziksel Özellikleri:Bir çok ginseng türü olmasına rağmen, Amerikan ve Asya ginsengi en değerli olanlardır ve yaygın olarak kullanılmaktadırlar. Asya ve Amerikan ginsengi görünüm olarak hemen hemen aynıdır. Bu yavaş büyüyen bitkiler genellikle dağ geçitlerinin yamaçlarında ve iyi drene olan dağlık ormanlarda yetişir.Kullanımı:Tıbbi özellikleri nedeniyle çok popüler olan ginseng, ticari olarak dünyanın birçok yerinde yetiştirilmektedir. Ginseng için gittikçe artan talep dolayısıyla yabani ginseng oldukça azalmıştır hatta tehlikeli denebilecek bir hal almıştır. Ginseng bitkisi ağırlıklı olarak tedavi edici özellikleri nedeniyle kullanılır. Yaygın bir bitkisel ilaç olarak kabul edilir ve geleneksel Çin tıbbında önemli bir bileşendir. Diyabet tedavisinde, erkeklerde cinsel fonksiyon bozukluklarında, kan şekerini düşürmede ve kan kolestrolünü azaltmada kullanılır. Aynı zamanda afrodizyak ve uyarıcı olarak etkili olduğu ve oldukça popüler bir anti-aging maddesi olduğu bilinmektedir. Ginsengin faydaları kozmetiği ve enerji içeceklerini de kapsar. Çorbalara da eklenebilir.Ginseng kökleri genellikle kurutulmuş olarak satılır. Bunları bütün ya da dilimler halinde satın alabilirsiniz. Sayısız kozmetiğin ve bitkisel takviyenin içinde bulunan bir aktif maddedir aynı zamanda ginseng çayı olarak da çay poşetleri satılmaktadır. Ginsengi medikal amaçlar için kullanmaya başlayan antik Çinlilerdir. Gözlere parlaklık vermek, güç kazanmak ve pek çok hastalık için kullanmışlar ve bu durum bir ticarete dönüşmüştür. Çinliler bu bitkiyi Kore’den ve bazı Kuzey Amerikan ülkelerinden satın almaya başlamışlardır.Ginsengin Faydaları:- Ginseng kökleri stres, anksiyete, bulantı, kusma, baş ağrısı, hazımsızlık, ishal, akciğer sorunları, artrit, astım, Crohn hastalığı, tümörler, yorgunluk, şeker hastalığı, depresyon, diş ve diş eti hastalıkları gibi hastalıklara faydalıdır.-Mide sorunlarına faydalıdır. Bir yumuşatıcı ve bir uyarıcı olarak çalışır ve sindirim sisteminin sorunsuz ve verimli çalışmasını sağlar.-Ginseng kökleri afrodizyaktır. Cinsiyet ve doğurganlıkla ilgili problemlerin düzeltilmesi için çalışır. Üreme hormonlarının üretimini düzenler ve bu hormonları arttırır.-Kökler yorgunluk, sinirlilik ve travma gibi çeşitli stres faktörlerine karşı vücudun direncini artırır. -Menstruasyonu düzenlemek, doğum ağrılarını azaltmak için kullanılabilir.-Bağışıklık sistemini güçlendirir ve enfeksiyonlara karşı vücudu güçlendirir.-Ginseng hafızayı arttırarak öğrenme yeteneklerini geliştirebilir.-Ginseng kökleri karaciğer ve kalbin sorunsuz çalışmasını sağlayarak kan şekeri ve kolestrol seviyelerini düzenler.-Düzenli olarak tüketildiğinde kanser riskini azaltır.-Solunum sisteminin verimli çalışmasına yardımcı olur.-Ginseng kökleri tüm vücudu güçlendirir, canlandırır bu nedenle bir anti-aging maddesi olarak çalışır.Uzun süreli kullanımları, fazla miktarda kullanımları, diğer ilaçlarla etkileşimleri ve alerjik insanlarda kullanımları yan etkilere neden olabilir. Ancak doğru şekilde kullanıldığında ginsengin sayısız faydaları vardır.Ginsengin Yan Etkileri:Konsantrasyon azalması, sinirlilik, çarpıntı, bulantı, kusma, şişkinlik, karın ağrısı, uykusuzluk, göğüste ağırlık, deri döküntüleri, ödem, sindirim bozuklukları ve astım ginseng köklerinin en sık görülen yan etkilerinden bazılarıdır. Yan etkiler kullanan kişinin genel sağlık durumuna göre değişebilir. Bazı kişilerde düşük kan şekerine neden olabilirken, bazılarında hipertansiyona neden olabilir. Aşırı kullanımları baş ağrısı, ishal, burun kanaması, göğüs ağrısı ve vajinal kanamaya neden olabilir. Hızlı kalp atışları ve kas krampları ile birlikte yüksek tansiyon gibi bazı nadir yan etkiler Sibirya ginsenginin bir yan etkisi olarak görülebilmektedir.İleride yapılacak olan çalışmalar ginsengin faydaları ve yan etkileri konusunda daha net bilgiler verecektir. Ginsengin yararlarıyla ilgili yapılan çalışmalar genellikle kemirgenler üzerinde yapıldığından insanlar üzerindeki etkileri çok net bilinmemektedir. Buna rağmen düzenli olarak ginseng kullananlar, bu bitkinin sağlıkları üzerine olumlu etkiler yaptığından oldukça eminler.Kaynakça:http://www.buzzle.com/articles/ginseng-plant.htmlhttp://www.buzzle.com/articles/ginseng-root.htmlYazar: Tülay Arsoyhttp://www.bilgiustam.com

http://www.biyologlar.com/ginseng-nedir-faydalari-nelerdir

Sivrisinek türleri ( Culicidae )

Sivrisinek türleri ( Culicidae )

Bilimsel sınıflandırma Alem: Animalia Şube: Arthropoda Sınıf: Insecta Takım: Diptera Alt takım: Eudiptera Familya: Culicidae Sivrisinek, (Culicidae) familyasından dişileri kan emerek yavrularını besleyen böcek türlerine verilen ad. Bir sivrisinek basitçe, baş, gögüs, ve karın kısmından oluşur. Başının iki yanında antenleri vardır. Erkek sivrisinekler, dişileri kanat çırpma seslerinden tanıyabilirler. Göğüs kısmında kanatları ve 3 çift ayakları bulunur. Karınları ise onlara kendi ağırlıklarından fazla kan emme şansı tanıyacak biçimde esnek bir deriye sahiptir. Böylece şişerler ama patlamazlar. Kan emerek beslenen "sivrisinek" çok mükemmel bir pompalama mekanizması kullanır: Başının içi, tümüyle kaslarla kaplı boşluklar şeklinde dizayn edilmiştir. Buradaki kaslar kasılıp gevşediklerinde sineğin borusunun iki ucu arasında 1-2 atmosferlik basınç farkı oluşur ve kan saniyede 5 metrelik bir hızla yükselmeye başlar. Bu yüksek akış hızına rağmen sivrisineğin ne borusunda ne de başka herhangi bir dokusunda tahribat ve çatlama olmaz. Çünkü kanın geçiş yaptığı tüm dokular kanın bu hızı ve basıncına dayanabilecek yapıdadır. "sivrisinekler" vücutlarının altı katı kan emerler; bu 15 dakikada 300 mikrolitre kan demektir. Bu bir insanın aynı süre içinde 200 kilo su içmesine denktir. Tüm kan emiciler gibi, ne zaman kan emmeyi durduracaklarını söyleyen, sinir sistemine bağlı gerginlik algılayıcılarına sahiptirler. Sivrisineklerin yaşamak için şekere, protein'e ihtiyaçları vardır. Bunu da bitki ve meyve sularından elde ederler. Kana ise yalnız dişi sivrisinekler muhtaçdırlar, çünkü dişiler yumurta üretirler ve bunun için kana ihtiyaç duyarlar. Sivrisinek cilde en yakın olan damarı tespit ettikten sonra alt ve üst çene yardımıyla altı bıçaktan oluşan kesme sistemiyle deriyi derinlemesine keserler. Bu bıçaklardan birinden akıtılan sıvı dokuları uyuştururken aynı zamanda kanın pıhtılaşmasını engelleyerek kanın dişi sivrisineğin karnına doluşunu devam ettirir. Sivrisinekler kan taşıdıkları için hastalık bulaştırma riskleri vardır. Örneğin sarı humma, fil hastalığı ya da sıtma gibi parazit hastalıklarını taşıyabilirler. AIDS'e sebep olan HIV virüsü ise bu canlılarda gelişme ortamı bulamaz. Virüsler sivrisinekler tarafından taşınmaz. Sivrisinekler yaşamlarını dört evrede tamamlarlar. Yumurta, larva, pupa ve ergin dönem. Bunlardan ilk 3 dönem suda tamamlanır. Sivrisinekler doğru bilinenin aksine kışın da hangi evrede olursa olsun yaşayabilir. Yumurtadan çıkan sivrisinek yavrularının (pulpa), büyüme evrelerini tamamlayabilmeleri için küçük bir su birikintisine ihtiyaç duyar. Bu, çamurlu bir yağmur suyu, bataklık, çeltik, havuz suyu ya da teneke kapta birikmiş bir su olabilir. Ancak durgun sular sivrisineklerin tercih sebebidir. Çünkü bu sular, içerdikleri fotosentez yapabilen bitki öbekleri sayesinde, oksijence zengindirler. Sivrisinek yumurtaları su bulunan her ortamda gelişebilirler, ancak bazı şartların sağlanması gerekir: Yumurtadan çıkacak olan larva, yetişkin bir sinek oluncaya kadar farklı evreler geçirecektir. Her evrede de yavru sineğin farklı ihtiyaçları olacaktır. Kuraklık ve aşırı sıcak da yumurtaların gelişimini engelleyebilir. Bu yüzden anne sivrisinek doğacak yavruların tüm gelişme evrelerini rahatça tamamlayabilecekleri bir ortam bulmak zorundadır. Dişi sivrisinek, karnının altında bulunan alıcı bir anten sayesinde, toprağın nem ve sıcaklık bakımından yumurtalarını bırakmaya uygun olup olmadığını tespit edebilir. Sivrisineklerin çiftleşmesi havada uçarken gerçekleşir. Erkeğin dişisini havada tutmak için kullandığı kıskaçları vardır. Fakat erkekler erişkin bir sivrisinek olana kadar, yani kısa yaşamlarının ilk 24 saati boyunca çiftleşemezler. Çünkü bu süre içinde antenleri henüz kurumadığından sağırdırlar. Bu yüzden dişilerin kanat seslerini -yani çiftleşme çağrılarını duyamazlar. Sivrisineklerde işitme yeteneği çok gelişmiştir. Erkeğin kafasından çıkan 2 tane küçük ve tüylü antende bulunan çok sayıda duyu hücresinden meydana gelmiş "Johnston organı", ses dalgalarının titreşimlerini alır ve ayırt eder. Bu tüylü duyargalar yalnızca dik durumdayken ses titreşimlerine karşı duyarlıdırlar. Dişi sivrisineğin kanatlarından çıkan ses erkek sivrisineği etkileyen en önemli faktördür. Dişinin kanat sesleri, erkeğin antenindeki reseptör hücreleri titreştirir ve sivrisineğin beynine elektrik sinyallerini gönderir. Dişiler kanatlarını erkeklerden daha hızlı çırparlar ve dişinin kanatlarından çıkan titreşimler erkeklerde çiftleşme isteğini artırır. Sivrisinek sürüsünün içine düşen bir dişi, erkeklerden biri tarafından farkedildiğinde, erkek sivrisineğin cinsel organının yanında bulunan özel kıskaçlarla tutulur ve çiftleşme genellikle havada bazen de yerde gerçekleşir. Çiftleşmeden sonra erkek, sürüsüne geri döner ve bir süre sonra da ölür. Çiftleşme gerçekleştikten sonra dişi sivrisinek, erkeğin spermlerini özel bir kesede muhafaza ederek, haftalar boyu döllenmiş yumurta yumurtlayabilir. Bir dişi bir defada 200-400 arası yumurta yumurtlar. Dişi sivrisinek çiftleşme anından itibaren kan emmeye başlar, çünkü yumurtalarının gelişebilmesi için kana ihtiyacı vardır. Larva döneminde bir kurtçuk şeklindeki canlı,pupa döneminde koza şeklini alır. Ilık, durgun ve 60 cm'den sığ sularda gelişebilir. Ergin hale geldikten sonra 2-3 km.uçarak ortalama 2 ay kadar hayatta kalabilir. İçinde su olan lastik, kova,boru,inşaatlar, havuzlar ve lağımlar gelişmek için uygun ortamlardır. Akşam üstü görülern sivrisinek sürüleri erkeklerden oluşmaktadır. Sivrisinekler genelde alacakaranlık zamanlarında uçarlar. Pek çok doğal düşmanları vardır. Kurbağalar, balıklar, kertenkeleler, bukalemunlar, kuşlar, yarasalar ve böcek larvaları sivrisinek ve larvalarıyla beslenirler. Günümüzde sivrisineklerle mücadele için kimyasal ve fiziksel pek çok metod kullanılmaktadır. Ancak çok basit ve hızlı üremeleri nedeniyle etkin bir mücadele ile lokal temizliği mümkündür. Sınıflandırma Alt familya: *Anophelinae Cins Anopheles Cins Bironella Cins Chagasia Alt familya: *Culicinae Oymak: Aedeomyiini Cins: Aedeomyia Oymak: Aedini Cins: Aedes Cins: Armigeres Cins: Ayurakitia Cins: Eretmapodites Cins: Haemagogus Cins: Heizmannia Cins: Opifex Cins: Psorophora Cins: Tanakaius Cins: Udaya Cins: Verrallina Cins: Zeugnomyia Oymak: Culicini Cins: Culex Cins: Deinocerites Cins: Galindomyia Cins: Lutzia Oymak: Culisetini Cins: Culiseta Oymak: Ficalbiini Cins: Ficalbia Cins: Mimomyia Oymak: Hodgesiini Cins: Hodgesia Oymak: Mansoniini Cins: Coquillettidia Cins: Mansonia Oymak: Orthopodomyiini Cins: Orthopodomyia Oymak: Sabethini Cins: Isostomyia Cins: Johnbelkinia Cins: Limatus Cins: Malaya Cins: Maorigoeldia Cins: Onirion Cins: Runchomyia Cins: Sabethes Cins: Shannoniana Cins: Topomyia Cins: Trichoprosopon Cins: Tripteroides Cins: Wyeomyia Oymak: Toxorhynchitini Cins: Toxorhynchites Oymak: Uranotaeniini Cins: Uranotaenia

http://www.biyologlar.com/sivrisinek-turleri-culicidae-

Kuşlar Davranış Biçimleri ve Anatomik Özellikleri

Akciğerli, sıcak kanlı, bedeni tüylerle örtülü, gagalı, iki ayaklı ve iki kanatlı, yumurtlayan omurgalı havanlardır. Çeneler,gagayı oluşturan boynuzsu bir kılıfla kaplanmıştır. Kuşun, yalnızca arka üyeleri yürümesine yarar; ön üyeleriyse kanatlara dönüşmüştür. İşte bu yüzden kuş iki ayaklıdır. Bazı türlerin kanatları uçmaya elverişli değildir. Kuşlar iskeletleri ve yumurtlayarak (ovipar) üremeleri bakımından sürüngenlere yakındırlar. Kuşların, Sauropsidae üst sınıfından olan sürüngenlerin bir bölümüyle birleştirilecek biçimde, sürüngen kökenli olduklarını gösteren çok sayıda paleontoloji kanıtları vardır. Ağırlıkları boylarına ve özellikle kanatları arasındaki açıklığa oranla en aza inmiştir. ANATOMİ Kuşların iskeleti, sürüngenlerinkine benzer, ama ön üyelerinin kanatlara dönüşmesi, ayrıca iskeleti çok hafifleten oyuk ve içleri hava dolu kemiklerin bulunması nedeniyle köklü bir değişikliğe uğramıştır. Hava keseleri yardımıyla akciğerlerle bağlantılı olan bu kemikler, bir çeşit hava deposu oluştururlar. Göğüs kemiği çok uzamış ve gelişmiştir,özellikle uçucu kuşlarda, kanatları beden eksenine yaklaştırıcı kasların sıkıca bağlandıkları bir çıkıntı biçimindeki karina ile donanmıştır. Bazı kemikler (kürek kemiği, karga burun çıkıntısı, köprücük kemiği) önemli değişikliklere uğramıştır.Omurga, bazenkuğudaki gibi iyice gelişmiş olan boyun bölgesi dışında, çok az eklemli, son derece bükülgen ve hareketlidir. İki ön üye, uçucu kuşlarda iyi gelişmiştir, ayrıca arka üyelere oranla çok kaslıdır. Deve kuşu gibi karinasızlardaysa (koşucu kuşlar) bunun tersi görülür. Uzamış tüyler (uçma telekleri), ön üyeleri öylesine örter ve uzatırlar ki, kanatlar, kuşun havayı dövebileceği ve paraşüt görevi görebilecek geniş ve esnek birer palet biçimini alırlar. Uzamış olan öbür tüyler (kuyruk telekleri) de bedenin arka bölümünü donatırlar. Daha küçük tüyler (örtü tüyleri) ve hav tüyleri bedenin bütününü örterler. Uçma, kanatların havada çırpılmasıyla sağlanır. Süzülücü (süzülerek uçan) kuşlar, hava akımlarından yararlanarakhavada kalırlar. Arka üyeler, bedenin bütün ağırlığını taşıyacak kadar sağlamdır. Uyluk kemiği, genellikle kısa, kavalkemiğiyse uzundur. Kalça kemikleri kaynaşmıştır.Dörtgen kemiğin çeneyi asıcı, yani kafatasına bağlayıcı görevivardır. Dil kemiği çok gelişmiştir. Kuşların genellikle dört parmağı vardır: Bunlar ya aralarında bir zarla birleşmiştir (perdeayaklılar takımına giren kuşlarda olduğu gibi) ya da serbesttirler. Parmaklar kısa ya da kıvrık, sivri ve güçlü (yırtıcı kuşlar takımındaki kuşlarda olduğu gibi) tırnaklarla donanmıştır. Boynuzsu gaga konik biçimli, yassılaşmış, kıvrık ya da dik, büyük ya da çok ince ve çok uzun olabilirler. FİZYOLOJİ Kuşların kalbi, yüksek, 41 santigrat derecelik bir beden sıcaklığı sağlayan yoğun bir dolaşım etkinliği sayesinde, öbür omurgalılarınkine oranla çok daha güçlüdür. İki kulakçık ve iki karıncıktan oluşur. Akciğerler küçüktür; hava keseleri de bunların uzantıları sayılır. Solunum sırasında, hava sırt bölümündeki bronşlara, ardından yan taraftakilere ve karın kesimindekilere, daha sonra da hava keselerine geçer. Hava kılcalları içinde dolaşım yayınmayla yapılır. Soluk borusu önemli derecede gelişmiştir. Gırtlağın yerini ses çıkarmada rol oynayan göğüs gırtlağı almıştır. Sindirim sistemi, ağız boşluğuyla başlar. Ağız boşluğuna, tane yiyenlerde (taneci) çok gelişmişmukoza bezleri, kırlangıçlar ve sağanlar gibi kimi kuşların, yuvalarını yapmada yararlandıkları mukozayı oluşturan altçene bezleri açılır. Bazı tükürük bezleri avların yakalanmasında etkili olurlar. Yemek borusu, nispeten farklılaşmış bir gelişme gösterir ve kursak olarak adlandırılır. Mide, bir bezsi bölüm, bir de yutulan besinleri öğütücü küçük taşlar içeren kas yapısında bir bölümden (katı ya da taşlık) oluşur. Sindirilemeyen öğeler, yırtıcı kuşlarda topaklar biçiminde dışarı atılır. Bağırsakta körbağırsak uzantıları vardır ve çok sayıda bakteri içerir. Bağırsak, üreme ve boşaltım kanallarının da açıldığı bir dışkılığa açılır. Karaciğer, lipitler veglikojenler gibi yedek besinler içerir. Kuşların beyni, üst yapılı memelilerinkine oranla indirgenmiştir; üstelik kıvrımsız ve düzdür. Buna karşılık beyincikleri çok gelişmiştir; beyincik denge ve uçmayla ilgili kasların eşgüdüm merkezidir. Kuşlarda üçüncü bir göz kapağı (niktitant zar) ve iris görevi yapan bir oluşum (tarak) vardır. Optik bölge, görmeyle ilgili uyarılara (avların yakalanması) çabuk tepki gösterme olanağı verir. Görme duyarlığı, gözde iki odak noktası bulunması ve görme alanının çok geniş(güvercinlerde 300 derece) olması sayesinde en yüksek derecededir. Dışkulak, işitme deliğine indirgenmiştir. Denge-işitme işlevi de iyigelişmiştir. Cinsel olgunluğa, küçük boy kuşlar dokuz aya doğru, büyük martı ya da gümüşmartı iki yaşında, leylek dört yaşında,kartal altı yaşında erişir. Cinse mevsimliktir. Kuşlar genellikle tek eşlidir ve çiftler sürekli (kargalar) ya da geçicidir (kırlang ormantavukları ve tavus kuşları, evcil türler gibi çok eşlidir. YUVA Kuşlarda yuvayı erkek hazırlar. Yumurtaların sayısı değişkendir. Fırtına kuşlarında (Procellariiformes) 1, kivilerde ve ırmak dalgıçlarında 2, büyük martılarda 3, yaban ördeklerinde 8-12, kekliklerde 22'dir. Yuvada yumurtalar alınacak olursa, güvercinler ve sinek kuşlarında (ya da kolibriler) eksilen yumurtaların yerine yenileri yumurtlanır. Kuluçkaya ya erkek, ya dişi ya da bazen bengalilerde olduğu gibi ikisi birden yatar. Amerika devekuşunda erkek, saksağanda gece erkek, gündüz dişi kuluçkaya yatar. Kuluçka süresi, ötücü kuşlarda ortalama 15 gün, devekuşlarında 42 gün, kivilerde 80 gündür. Yumurtadan çıkan yavrular bazı türlerde hemen etkin bir yaşama başlarlar, bazılarındaysa gözler kapalı ve beden çıplaktır. Dişide yalnız bir yumurtalık ve bir yumurta kanalı işlev yapar. Sol yumurtalığın çıkarılması, ibik büyümesi ve ötmeye başlama gibi morfolojik değişikliklere neden olur. Tavuksular (Galliformes) üstünde bu türden çok sayıda deney yapılmıştır. Kuşların beslenme düzenleri çok değişiktir. Her ne kadar birçok hepçil, yani hem etçil hem otçul türe rastlansa da, genellikle tanecil, yemişçil, böcekçil ve otçuldurlar. Birkaç tür etçildir ve küçük memeliler, kuşlar, balıklar, hatta çürümekte olan etlerle beslenirler. Kuşlar bütün dünyaya yayılmışlardır, her yükseklikte, sıcak bölgelerde olduğu kadar kutup bölgelerinde de, ovalarda olduğu kadar yüksek dağlarda da yaşarlar ve besinlerini buldukları her koşula uyum sağlarlar. Genellikle, çok hareketli olanlar çok yer ve çabuk sindirirler. Bir günde sindirdikleri besinin ağırlığı, beden ağırlığının yarısına erişebilir. Yuvalar, ağaçların üstüne, çalılıkların arasına, kaya kovuklarına ya da yere yapılır. Bazen yumurtalar rasgele toprağa ya da kuma gömülür. Kuşlar toplu halde ya da tek tek toprağın üstünde, deniz ya da tatlı suların kıyılarında, sık ormanlarda, sazlıklarda ya da kırlarda yaşarlar.Uçuş biçimi türlere göre çok değişiklik gösterir: Sıçrayarak uçma; hızlı ya da yavaş, sürekli ya da aralıklı kanat çırparak Uçma; kanatları hareket ettirmeden ya da az hareket ettirerek sağlanan süzülerek uçma; ayrıca gürültülü ya da sessiz, ağır ya da hafif uçmalar da vardır. Aynı biçimde uçuş yüksekliği de oldukça değişiktir; tepeli akbaba ve kartallar çok yüksekten uçarlar; orta boy yırtıcı kuşlar, tarla kuşu yüksekten, çoğu kuşlarsa orta yükseklikten ya da alçaktan uçarlar. Kanat açıklığına oranla ağırlığı fazla olan kuşlar da çok alçaktan uçarlar. Son olarak, karinasızlar (koşucu kuşlar) uçamazlar. Bunlar kanatlarını çırparak hız kazanırlar. Ötücü kuşların melodili sesler çıkarma yeteneği vardır. Öbürleri az çok ritimli ve az çok hoşa giden, değişik ya da tekdüze sesler çıkarırlar. PSİKOLOJİ ve ETOLOJİ Kuşların yaradılıştan varolan davranışları (yani içgüdüsel hareketleri), belki de yalnızca topluluk halinde yaşayanböceklerin dışında, herhangi bir hayvan grubunda gözlenenden çok daha karmaşıktır. Bir çok kuş türünde, açıkça bir yararı olmayan otomatik davranışlar gözlenir. Her iki cinsiyetten olan eşlerin yaptığı çeşitli "danslar" ve diğer "çiftleşme gösterileri" ya da çiftleşmeden önce, dişinin önünde, erkekler arasında yalancıktan yapılan dövüşmeler bu türdendir. Klasik yuva yapma (kimi kez yuva, kuşlarda çok titizlikle yapılır) hareketi dışında, özellikle çeşitli renkli nesnelerle, çiçeklerle bezenmiş, bazen tümü yabani bitkilerin etli bölümleriyle yapılmış "resimlerle" süslü karmaşık yapılar da gene bu tür davranışlar sonucu oluşmuştur. Kuşların bir çok türünde, bireyler kökeni bilinmeyen özgül bir çekimle ya da anlaşılmayan itkilerle gruplar halinde havada yaşarlar ve bu sayede toplumsal yaşam ortaya çıkar. Kuşlarda, bilgi alışverişinin zenginliği, ses çıkarmaları, ister doğuştan bir yetenek, ister sonradan edinilmiş (ama hep içgüdüsel hareketler yönetimi altında), isterse bireysel uğra çıkarılan seslerin çeşitliliğine bağlıdır. Bunlar, şaşırtıcı taklit yeteneğinde olan "konuşucu kuş Konuşucu kuşlarda bazı bireyler, öğrendiklerini uygulamalı bir biçimde kullanmaya yatkın (pCk orvus monedula]) olabilirler. Her ne kadar, kuşların ruhsal durumu, genellikle, üst yapılı memelilerin, özellikle de etçiller, yunus balığıgiller, primatlar ve insanların eriştikleri düzeye oranla çok gelişmiş gibi(özellikle her zaman papağangillerde ve kargagillerde) bireylerin şaşırtıcı ruhsal edimleri var. Koehler'in deneyleri, Lorenz'in gözlemleri birçok uzmanı şaşırtmıştır. GÖÇLER Özellikle, soğuk ve ılıman bölge kuşları arasında bir çok tür göçmendir; bunlar kışı çoğunlukla tropikal bölgelerde geçirirler. İlkbaharda, çiftleşme öncesinde kışlama yerlerinden yuva yapacakları yerlere göç ederler. Deniz kuşlarının göçleri çoğu kez daha düzensizdir. Göçmen kuşların yönlerini saptamaları çeşitli etkenlere bağlıdır. Karalardaki işaretler (kıyılar, adalar, vadiler) olduğu kadar, yıldızlar ve güneş de göçmen kuşların yollarını bulmalarında etkili olur. Kızılgerdan gibi bazı türler, yerin manyetik alanına karşı duyarlıdır.

http://www.biyologlar.com/kuslar-davranis-bicimleri-ve-anatomik-ozellikleri

Deri yoluyla bulaşan hastalıklar

ŞARBON (ANTRAKS) Hayvandan Hayvana Nasıl Bulaşır? Bulaşma nerdeyse her türlü olabilmektedir.Özellikle bulaşma ağız, solunum ve deri yolu (özellikle derideki yaralardan) ile olmaktadır. Bulaşmanın diğer bir yolu da bulaşık su ve yiyecekler ile olur.Ülkemizde özellikle ölü hayvanların dere kenarlarına sorumsuzca atılması büyük risk oluşturmaktadır. Hastalıktan ölen hayvanların açıkta bırakılmaları ile yırtıcı hayvan ve kuşların parçalaması sonucu hastalığa yakalanır yada hastalığı bir yerden diğer bir yere taşırlar. Bir bölgede hastalık çıktığında hasta hayvanlar, dışkı salya ve akıntıları ile uzun süre hastalık kaynağı olabilirler, o bölgede yaşayan diğer hayvanlar ve insanlar her an hastalığa yakalanabilirler. Bu yüzden ölü hayvanlar mümkünse yakılmalı değilse yetkililerin kontrolünde kireçle gömülmelidir. Dengesiz beslenen hayvanlar (pika) merada ölmüş hayvanların kemiklerini yiyerek de hastalığın bulaşmasına neden olabilir. Hayvandan İnsana Nasıl Bulaşır? Hasta hayvanlarla temas en başta gelen bulaşma yoludur.Bu konuda da yetiştiriciler büyük risk altındadır. Etkenlerle bulaşık su ( ölenler ve akıntılarının gömülmemesi vs.) ve gıdaların alınması Hastalıktan şüpheli hayvanların açılması (otopsi) Sporların solunması, Deri yolu ile yaralardan hastalık etkeninin girerek deri formunu oluşturması, Hasta hayvanların etlerinin çiğ yada pişirilerek tüketilmesi. Özellikle de sağım sırasında hayvanı sağan kişiye ve veterinere bulaşma riski oldukça yüksektir. İnsandan İnsana Nasıl Bulaşır? Kan yoluyla özelliklede test yapılmadan yapılan kan nakillerinde yaraların direk teması ile solunum yolu ile bulaşır.Diğer vücut sıvılarıyla da bulaşma mümkündür.Ancak günümüzde hastalık teşhisi konulduktan sonra uygulanan çok sıkı tedbirlerle bu riskler oldukça düşürülmüştür. Zoonoz Hastalığı Zoonoz Hastalığı Nedir Zoonoz Nedir Zoonozun Tanımı Anlamı Zoonoz hastalıklar insanlar ve hayvanların birbirine bulaştırabildikleri ve her iki gruba dahil bireylerde ortak olarak şekillenen hastalıklar diye tanımlanabilir. Dünya sağlık örgütü; zoonoz hastalıkları, doğal koşullarda insanların ve hayvanların birbirine bulaşan hastalığı olarak tanımlamaktadır. Ancak bu tanımlamadaki doğal koşullar kavramının aksine bazı hastalıkların bulaşabilmesi için bir takım özel şartların oluşması gerekmektedir ki bu da önemli bir konudur. Örneğin kuduzun bulaşabilmesi için mutlaka ısırık, tırmalama vb. nedenlerle oluşan açık bir yara olmalıdır. Aynı durum Brucella enfeksiyonlarında da söz konusudur. Bulaşma yollarından biri olan deri yolu ile bulaşma ancak deri üzerinde çizik, çatlak gibi açık bir yaranın varlığında mümkündür. Zoonoz hastalığın tanımından da anlaşıldığı gibi tek taraflı bir bulaşma değil, her iki grubunda birbirine hastalık bulaştırması söz konusudur. Bulaşmanın kaynağına göre zoonoz hastalıklar iki gruba ayrılır. Zooantroponozlar hayvanlar ve hayvansal ürünler aracılığı ile insanlara bulaşan hastalıklar. Antropozoonozlar insanlardan hayvanlara bulaşabilen hastalıklar. Bu pratikte kullanılmayan bir gruplandırmadır ve beşeri veya veteriner hekimlikte genel olarak zoonoz hastalıklar olarak değerlendirilir. İnsanlardan hayvanlara geçen hastalıklara sistiserkozları (cysticercosis) örnek olarak gösterebiliriz. Ülkemizde de sık görülen ve konakçılar aracılığı ile dolaylı yolla kedi ve köpeklerde görülebilen bu parazitin, ergin şekli olan tenialar (T.Solium) insanların ince bağırsağında yaşar ve enfekte gıdaların yenmesi ile sığırlara (T.Saginata) geçer. Kedi ve köpeklere bulaşma, çiğ etlerin veya enfekte iç organların yedirilmesi sonucu olabildiği gibi doğrudan insan atıkları ile enfekte olmuş gıdaların yenmesiyle de oluşabilir. Tüm pet sahiplerinin ortak endişesi olan konu zooantroponoz karekterli hastalıklardır. Birlikte yaşadığı petlerin kendileri için oluşturabileceği riskleri bilmek her zaman insanların ilgisini çeken önemli bir konu olmuştur. Ayrıca zoonoz karakterli hastalıklardan bazıları petlerde tedavisi olmayan, sadece koruyucu aşılamalar ile önlenebilen hastalıklardır ve insanlar içinde ciddi tehlike yaratabilmektedir. Bu gün tüm dünyada hem insan hemde hayvan sağlığı için büyük önem taşıyan kuduz buna en iyi örnektir. MANTAR ENFEKSİYONLARI Vücut yüzeyinde dermatofitler denilen, cildin üst tabakası, tırnak ve saç gibi yerlerde üreyen, küf benzeri mantarlarla infeksiyon olmasıdır. Geçiş genelde insandan insana veya hayvandan insana olabilir. Nedeni Mantar infeksiyonu her yaşta olabilir. Tinea capitis ( saç mantarı ), tinea cruris ( kasık mantarı ) ve tinea pedis ( ayak mantarı ), tinea barba ( sakal ), tinea unguim ( tırnak ) özel mantar infeksiyonlarıdır. Şikayetler Etkilenen bölgede kaşıntı, cilt lezyonları ve kızarıklık, halkasal şekilli lezyonlar, koyu veya açık renkli değişik alanlar gibi belirti ve şikayetlere neden olabilirler. Tanı ve tedavi Tanı esas olarak cildin görünümüne göre konur. Bazı mantarlar özel bir mavi ışıkla karanlık odada incelenirse floresan verirler. Kesin tanı mikroskopla alınan parçaların incelenmesi ile konur. Ciltten alınan kazıntı ayrıca laboratuara gönderilerek kültürde üremesi değerlendirilebilir. Tedavide kişisel bakım çok önemlidir. Deri temiz ve kuru tutulmalıdır. Ciddi ve uzun süreli infeksiyonlarda hekime başvurulmalıdır. Hekim sizin için ağızdan kullanılan veya cilde sürülen ilaçlar önerebilecektir. Tedavi edilmediği zaman üzerinde bakterilerin üremesi ile ikincil bakteriyel infeksiyonlar olabilir. Önlem Genel olarak iyi temizlik şartları infeksiyonu önlemeye yardımcıdır. Mantarlar bulaşıcı olduğu için elbise, saç fırçası veya kişisel kullanılan gereçler risk grubunda olan veya mantar geçiren insanlarla paylaşılmamalıdır. 2 . AYAKTA MANTAR ENFEKSİYONU Dermatofitler denilen mantarlar tarafından yapılan infeksiyondur. Vücudumuzda normalde bakteriler ve mantarlar hastalık yapmadan yaşarlar. Uygun ortam bulduklarında hızla çoğalıp, infeksiyona neden olabilirler. Ayak mantarı oldukça sık rastlanan bir cilt hastalığıdır. Genellikle ergenlikten sonra görülür. En sık görülen ve en çok tekrar eden mantar infeksiyonudur . Diğer mantar infeksiyonlarıyla birlikte görülebilir. Ayak mantarı ve benzer hastalıklara tinea infeksiyonları denir ve saç, tırnak ve dış deri gibi dokularda yaşayabilirler. Nemli ve ılık bölgelerde ürerler. Sıkı ayakkabılar giyilmesi, cildin uzun süre nemli kalması, küçük tırnak ve cilt sıyrıkları duyarlılığı arttırabilir. Tinea infeksiyonları bulaşıcıdır , direkt temasla veya aynı ayakkabı ya da duş zemininin kullanılması ile geçebilir. Önlem * Ayak temiz, serin ve kuru tutulmalıdır. * Pamuklu, yün veya bunlar gibi emici maddelerden yapılmış çoraplar giyilmelidir. * Ayakkabılar ayağa tam olmalı ve böylece ayağa ya da tırnaklara travma azaltılmalıdır. Dar burunlu, yüksek topuklu, eski, yıpranmış ayakkabılar, çorapsız giyilen ayakkabılar veya başkasının ayakkabısı giyilmemelidir * Eski yıpranmış ayakkabılar, çorapsız giyilen ayakkabılar veya başkasının ayakkabısı. * Yüksek yoğunlukta mantar sporları içerebilecek yüzeylerde yalın ayak yürümekten kaçının : halı döşeli zeminler, banyo yerleri, duşlar, jimnastik salonları, soyunma odaları, yüzme salonları, hamamlar gibi. * Tırnaklar kısa ve düz kesilmelidir. Kenarlarını yuvarlak kesmeyin. * Vücudun diğer kısımlarında olan tinea pedis ve yüzeysel mantar infeksiyonlarına bakın ve tedavi ettirin. Normal ve anormal tırnakları kesmek için farklı tırnak makasları kullanın. * Aile üyeleri veya yakın arkadaşlar, temas eden kişiler tinea pedis ve tırnak mantarı için tedavi edilmelidir. Kaşıntı, kızarıklık, sulanma, su dolu kabarcıklar, normal görünen tırnağın renginde değişme gibi durumlarda tinea pedis veya tırnak mantarından şüphelenin. Şikayetler Kaşınma, yanma, etkilenen bölgenin sızlaması görülebilir. Ayakta kızarıklık olabilir. Ayak tabanı, parmakları veya tırnakta kızarıklık ve inflamasyon oluşabilir. İçi su toplamış yaralar gözlenebilir. Kabuklanıp, dökülmeler olabilir. Tırnakta renk değişikliği, kalınlaşma, kabalaşma gelişebilir. Tanı ve tedavi Cilt kültürü ve kimyasal maddelerle inceleme yapılabilir. Tedavide kişisel bakım çok önemlidir. Cildi kuru ve temiz tutmak gerekir. Ayak sürekli kuru tutulmalıdır. Temiz çoraplar giyilmelidir. Hekim size mantara yönelik uygun ilaçları verecektir. Bunlar deriye sürülen ilaçlar ve ağız yoluyla alınan ilaçlar olabilir. Eğer mantar infeksiyonunun olduğu bölgede bakteriler de infeksiyon yapmışsa antibiyotik tedavisi de gerekir. Ayak mantarı zor iyileşebilir ve tekrarlayabilir. Uzun süreli tedavi ve önleyici tedavi gerekebilir. 3 . KASIK MANTARI Kasıkta kaşınma sıklıkla ekzema veya başka nedenlerle olur. Kaşıntı ile birlikte sıklıkla erişkin erkeklerde olan bir hastalıktır. Nemli ve ılık alanlarda olabilir. Kötü hijyen, sıkı çamaşırın sürtünmesi, bölgenin uzun süre nemli kalması ile infeksiyona duyarlılık artar. Kasık mantarı genellikle cinsel organlarda oluşmaz. Diğer tinea infeksiyonlarına göre daha az ciddidir. Ancak anal bölgede kaşıntı veya rahatsızlığa neden olabilir. Şikayetler Kasıkta, anal bölgede kaşıntı, kızarıklık olur. Sınırları keskindir. Kuru ve kabuklu gibi olabilir. İçi sıvı dolu lezyonlar da olabilir. Ciltte koyu veya açık alanlar olabilir. Tanı ve tedavi Tanı esas olarak cildin görüntüsüne göre konur. Biyopsinin mikroskopik incelemesi veya kültür yapılabilir. Tedavide kişisel hijyen ve bakım önemlidir. Hekim sizin için uygun ağızdan veya cilde sürülen ilaçları verecektir. Tedaviye cevap verir, ancak bazı durumlarda dirençli olabilir. Lezyon bölgesinde kalıcı renk değişikliği yapabilir. Önlem Genel olarak iyi hijyen önemlidir. Banyodan sonra kurulanmak gerekir. Sürtünmeyi önlemeye çalışmak önemlidir. İç çamaşırlar sıkı ve havasız olmamalıdır. 4 . TIRNAK MANTARI Hem el hem de ayak tırnaklarında görülebilir. Tırnaklar kalınlaşır, tabakalara ayrılır ve renk değiştirir. Uzun süreli tedavi gerektirir. Bazen tedaviye direnç ve nüks gelişebilir. 5 . SAÇ MANTARI Genellikle çocukları etkiler. Bulaşıcıdır ve salgın olabilir. Genellikle hafiftir. Lezyonlar halkasal veya keskin kenarlı değildir. Kırılan saçların sonucu olarak tipik siyah noktalar olabilir. Bazı tiplerinde soluk, kırılgan saçlar vardır. Tedavi hekim tarafından yapılmalıdır. İlaçların yanı sıra uygun şampuanlarla da yıkanmalıdır. 6 . VAJİNAL KANDİDİYAZİS Candida albicans özellikle kadınların genital florasında sıklıkla bulunan bir mantardır. Bu etkenin şikayete neden olacak şekilde vajinada aşırı çoğalmasına kandidiyazis denir. Bu hastalık kadınların 3/4‘ünde hayatlarında bir kez, yarısında da birden fazla kez olur. Normalde bulunan bu mantarın aşırı çoğalmasının altında pek çok faktör yer almaktadır. Geniş spektrumlu antibiyotiklerin kullanımı ve ağız yoluyla alınan doğum kontrol hapları alımı bu risk faktörlerinden ikisidir. Hamilelik, menstruasyon, şeker hastalığı, sıkı iç çamaşırları, HIV virüsü veya bazı ilaçlarla bağışıklığın baskılanması da diğer nedenlerdir. Şikayetler ve belirtiler Kadınlarda genellikle cinsel organda tahriş ve akıntı vardır. Kaşıntı ve yanma da önemli şikayetlerdir. Kaşımak nedeniyle vulva şişebilir ve çatlaklar oluşabilir. Cinsel ilişki sırasında ağrı hissedilebilir. Akıntı beyaz, peynirimsidir. Erkekler genellikle şikayetsiz taşıyıcılar şeklindedirler. Nadiren idrar yapılan yerden hafif bir kaşıntı olabilir. Özellikle cinsel ilişkiden sonra erkekler yanma ve tahriş hissedebilirler. Ciddi olgularda penis başında aşınmalar, çatlaklar olabilir. Önlemek için neler yapılabilir? Sıkı ve sentetik giysiler giymekten kaçının. ·Pamuklu çamaşırlar giyin. ·Genital bölgenizi yıkadıktan sonra kuru tutun. Çünkü nemli ortamlar mantarların üremesi için daha uygundur. ·Genital temizliği önden arkaya doğru yapın, böylece rektumdaki mikroorganizmaları vajinanıza taşımamış olursunuz. ·Mayo veya diğer ıslak giysilerinizi hemen değiştirin. ·Kadın hijyenik spreyleri veya deodarantlarını, parfümlü pedleri kullanmayın. Parfümlü, kremli tuvalet kağıtları kullanmayın. Bu gibi malzemeler vajinanın asitliğini değiştirerek infeksiyona yatkın hale getirebilir. Yılancık (Erizipel) Streptokok cinsi mikropların meydana getirdiği bir çeşit deri hastalığına yılancık denilir. Bakımlıyız.Com - Yılancık (Erizipel),korunmak ve hastalığın tedavisi HastalıkYılancık (Erizipel),korunmak ve hastalığın tedavisi deride belirli çevresi olan kızartılar ve şişmeler meydana getirir. Yüksek ateş meydana gelirYılancık (Erizipel),korunmak ve hastalığın tedavisi vücudun organlarında ve sistemlerinde çeşitli belirtiler ortaya çıkar. Yılancığa ılık iklim bölgelerinde daha çok rastlanır. Hastalık kış ve ilkbahar aylarında daha çok artar. Hastalığa genellikle 20 yaşlarının üstün tün deki kişilerde rastlanır. Az da olsa daha küçük yaşlarda da görülür. Yılancığı meydana getiren streptokoklarYılancık (Erizipel),korunmak ve hastalığın tedavisi değişik hastalık durumlarının ortaya çıkmasına da yol açarlar. Bu mikroplar bazı kişilerde bademcik iltihabıYılancık (Erizipel),korunmak ve hastalığın tedavisi bazılarında kızıl ya da yılancık meydana getirir. Mikrop deriyeYılancık (Erizipel),korunmak ve hastalığın tedavisi üzerindeki çatlaklardan ya da yaralardan girebilir. Hastalığın belirtileri YılancıkYılancık (Erizipel),korunmak ve hastalığın tedavisi keyifsizlikYılancık (Erizipel),korunmak ve hastalığın tedavisi titremeYılancık (Erizipel),korunmak ve hastalığın tedavisi ateşYılancık (Erizipel),korunmak ve hastalığın tedavisi bulantı ve kusma gibi genel belirtilerle ortaya çıkar. Yılancığın deride başladığı yerde keskin çevreliYılancık (Erizipel),korunmak ve hastalığın tedavisi kırmızı ve parlak bir şişlik vardır. Hastalık yüzde meydana gelirseYılancık (Erizipel),korunmak ve hastalığın tedavisi yüzün bir yanında kalabildiği gibiYılancık (Erizipel),korunmak ve hastalığın tedavisi daha çok her iki yanakYılancık (Erizipel),korunmak ve hastalığın tedavisi göz kapağıYılancık (Erizipel),korunmak ve hastalığın tedavisi burun ve kulaklarda da görülebilir. Ağır durumlarda başın derisi hastalanır. AteşYılancık (Erizipel),korunmak ve hastalığın tedavisi hastalığın başlangıcından itibaren yüksektir. 40 – 41 derece arasında gittikten sonra normale döner. Hastalığın 4 —5′inci günlerinde deri mora yakın kırmızı bir renk alır. Bir hafta sonra da belirtinin görüldüğü yerde soyulma başlar. 7 -10 gün içinde hastalığın belirtileri kaybolur ve hasta zayıflamış bir halde nekahat devresine girer. Yılancık gövdeYılancık (Erizipel),korunmak ve hastalığın tedavisi kol ve bacaklar gibi geniş bölgeleri kaplarsa genel belirtileri daha şiddetli olur ve hastalık daha ağır bir gidiş gösterir. Yılancıktan korunmak ve hastalığın tedavisi YılancıkYılancık (Erizipel),korunmak ve hastalığın tedavisi tedavi edilmediği takdirde tehlikeli durumlar oluşturabilecek bir hastalıktır. Kan zehirlenmesi (septisemi)Yılancık (Erizipel),korunmak ve hastalığın tedavisi zatürreeYılancık (Erizipel),korunmak ve hastalığın tedavisi gözlerde körlüğe kadar varabilecek iltihaplarYılancık (Erizipel),korunmak ve hastalığın tedavisi nefrit ve bazen de çocuklarda romatizma yapabilir. Hastalığın belirtilerinin geçmesinden sonra yılancığın bir veya birkaç defa tekrarladığı görülebilir. Yılancıktan korunmak için özel bir ilaç yoktur. Ancak genel sağlık şartlarına uyulması birçok hastalıktan olduğu gibi yılancıktan da korunmayı sağlayacaktır. ElYılancık (Erizipel),korunmak ve hastalığın tedavisi yüz temizliğine dikkat etmekYılancık (Erizipel),korunmak ve hastalığın tedavisi deriyi kirlenmekten korumakYılancık (Erizipel),korunmak ve hastalığın tedavisi derideki sıyrıkları ve çatlakları mikroplardan koruyacak tedbirleri almakYılancık (Erizipel),korunmak ve hastalığın tedavisi yara pansumanlarını gerektiği gibi yapmak hastalık ihtimalini büyük ölçüde azaltır. Hastalık sülfamit antibiyotiklerle tedavi edilir. Antibiyotiklerin streptokoklar üzerinde etkisi kesindir. AğrıYılancık (Erizipel),korunmak ve hastalığın tedavisi ateş ve bulantı gibi belirtiler için ayrıca ilaçlar kullanılır. Derideki yılancıklı yere sulandırılmış tentürdiyotla ( sulandırma oranı 20gr tentürdiyot ve 60 gr alkol şeklinde olmalıdır ) kompres yapılmalıdır. Yılancık hastalığının ihmali kesinlikle affetmeyen bir hastalık olduğu unutulmamalı ve hastalık görüldüğünde bir doktora başvurulmalıdır. UYUZ :GALE Küçücük bir canlı 2.500 yıldır insan cildine zarar vermektedir.Fark edilmesi oldukça zordur ve deride şiddetli bir kaşıntıya sebep olur.Her yıl dünyada 300 milyondan fazla uyuz vakasının meydana geldiği bilinmektedir. Hastalık herhangi bir nesilde veya çağda kişisel hijyene rağmen ortaya çıkabilir. UYUZ NASIL İLERLER? Uyuz insan gözüyle görülemeyen mikroskobik bir canlının sebep olduğu bir hastalıktır.Küçük, yuvarlak vücutlu ve 8 bacaklı olup deride yuva yapar ve alerjik bir reaksiyona sebep olur.Bunun sonucunda çok acı veren, şiddetli bir kaşıntı olur ve hasta bütün gece uyuyamaz.Uyuz herhangi bir kişiden başkasına( bir çocuk, bir arkadaş, bir aile ferdi olabilir) yakın temastan dolayı geçebilir.Uyuz, daha çok gelir seviyesi düşük ailelerde, ihmal edilen çocuklarda veya bağışıklığı zayıf olan kişilerde rastlanır. Isı ve kokunun cezbettiği canlı;yuva yapmak, yumurtalarını bırakmak ve dışkısını atmak için üst deri içerisinde tüneller açar.Kurtçuk yumurtadan çıkar ve derinin yüzeyine doğru hareket eder.Yetişkin canlılara dönüşmek için deri yüzeyindeki epidermis tabakası içinde yaşar.Vücuda yayılmadan bir ay geçebilir, kişi bu süre içinde sadece kaşıntı hissedebilir. UYUZU NASIL TANIRIZ? Uyuzun en erken ve en yaygın belirtisi özellikle geceleri ortaya çıkan kaşıntıdır.Erken ortaya çıkan uyuzda küçük kırmızı kabarcıklar ve sivilceler görülür.Daha ilerlemiş vakalarda deri kabuklu ve pullu olabilir.Uyuz çoğunlukla vücudun kıvrım ve çatlaklarında başlar,özellikle parmaklar arasında, dirsek ve bileklerde, kalça ve kemer hizasında, kadınlarda meme başında, erkeklerde cinsel organda görülebilir.Bileziklerin, yüzüklerin altındaki deride saklanırlar veya tırnakların altında görülebilirler.Çocuklarda daha çok genel bir kaşıntı vardır.Avuç içi,taban ve saç derisini tutmaksızın bütün vücuda yayılabilir.Kişi bütün gece kaşıntıdan dolayı uykusunu kaybettiği için yorgun ve sinirli olabilir.Uyuzla birlikte bakteriyel enfeksiyon da görülebilir.Çocuklarda, uyuz çoğu zaman özellikle enfeksiyonlarla beraber olabilir.Bakteriyel enfeksiyonlar öncelikle tedavi edilmelidir.Uyuz tedavisi bilahare yapılır.Eğer uyuz tamamen tedavi edilmezse belirli bir süre sonra tekrar ortaya çıkar. KABUKLANMA VE NORVEÇ UYUZU Kabuklanmış uyuz; yakınmaların daha yoğun ve döküntülerin yaygın olduğu bir klinik tablodur.Eller ve ayaklar da dahil vücudun geniş bölgelerinde görülebilir.Bu kabuklarda binlerce uyuz paraziti ve onların yumurtaları saklanır, bu da yapılan tedaviyi zorlaştırır.Çünkü direkt deriye uygulanan medikasyonlar kalınlaşan deriye etkimeyebilir.Uyuzun bu çeşidi AİDS ve kanser gibi bağışıklık sistemi zayıf hastalarda en çok meydana gelen tipidir.Bu durum oldukça bulaşıcıdır. KESİN TANI Uyuz çoğu zaman dermatologlar tarafından teşhis edilir.Tüm vücudun sıkı bir incelenmesi gerekir.Eğer dermatolog teşhis koyamıyorsa, basit ve ağrısız bir test yapabilir.Test; şüphe duyulan yer üzerine steril mineral yağdan bir damla damlatılması suretiyle yapılır.Gerilmiş üst deriden bistüri ile küçük bir parça alınır.Bu parça mikroskobla incelenir.Teşhis;uyuz mikroplarının ve yumurtalarının bulunması ile konulmuş olur.Lüzümu halinde deri biopsisi ile de tanı konulabilir. EN ÇOK TEHLİKEDE OLANLAR KİMLERDİR? Uyuz etkeni zengin veya fakir, genç veya yaşlı herkese bulaşabilir.Uyuz, en çok birbiriyle yakın fiziksel temasta bulunanlarda, özellikle çocuklarda, emziren annelerde ve yaşlı insanlarda görülür. Çalışan ailelerin 2 yaşın altındaki çocuklarında risk fazladır.Onları anneler ve daha büyük kardeşler ve sonrada yakın temasta bulundukları diğer aile fertleri izler.Bununla birlikte askerler ve erkek mahkumlar, yaşam şartlarından dolayı hastalıktan çabuk etkilenirler.Huzur ve bakım evinde kalan yaşlı kişiler de uyuza kolayca yakalanabilirler.Çünkü; 1-Bağışıklık sistemleri zayıftır., 2-Elbise değiştirmeleri , banyo yapmaları , giysilerini ve kendilerini temizlemeleri zordur. 3-Yaşlılarda farklı hastalıkların da bulunmasından dolayı ayırıcı tanı güç olabilir. TEDAVİ Uyuzdan;reçeteyle yazılan %5’lik permethrin kremiyle uygulanan tedavi sonucu kolay ve çabuk bir şekilde kurtulunabilir.Bu krem yatarken tüm vücut derisine sürülür ve ertesi günün sabahı yıkanır.Kremin serin yerde muhafaza edilmesi, kuru cilde sürülmesi ve ciltte 8-14 saat kalması tavsiye edilir.Tedaviden sonra yeni belirtiler ortaya çıkarsa bir hafta aradan sonra ikinci bir tedavi daha önerilebilir. Bir başka tedavi ise %1’lik lindane'dir.Lindane; bebeklerde, küçük çocuklarda, hamile ve emziren kadınlarda, felçli kişilerde ve diğer nörolojik hastalıkları olan kişilerde kullanılmamalıdır. Grup veya aile içindeki her birey kaşıntı olsun veya olmasın tedavi edilmelidir.Risk altında bulunan toplumun hepsi, bir uyuz salgınını engellemek açısından tedavi edilebilir. Bir ailede bulunan bütün bireyler eş zamanlı olarak tedavi edilmelidir.Toplu olarak ortaya çıkan uyuz vakaları sık denetlemelerle kontrol altına alınabilir.En etkili yol ise bütün hastaları ve personeli aynı anda tedavi etmektir. UYUZ OLDUĞUNUZDA NE YAPABİLİRSİNİZ? Tedaviye başlamak için en kısa sürede bir dermatoloğa görünün. Unutmayın;parazitlerden ne kadar rahatsız olursanız olun, uyuz sizin kişisel temizliğinizin bir yansıması değildir. * Elbiselerinizi, yatak örtülerini ve havluları sıcak suda yıkayın ve makineyle kurutup kızgın ütüden geçirin. * Bütün evi elektrikli süpürgeyle temizleyin ve torbasını güvenli bir yere atın. NE YAPMAMALIYIZ? * Kesinlikle evde yapılan ilaçları denemeyin.Çamaşır deterjanı kullanmayın. * Kortizonlu merhemler ve dermatologlar tarafından önerilmeyen kremleri asla kullanmayın. SITMA Sıtma, anofel ya da sıtma sivrisineği olarak bilinen Anopheles cinsi sivrisi­neklerinin taşıdığı bulaşıcı bir hastalıktır. Hastalıkta yinelenen nöbetler görülür. Düzenli aralıklarla başlayan ve genellik­le titreme-ateş-terleme evrelerinden ge­çen nöbetler hastalığın tipik özelliğidir. Sıtma ulusal ve uluslararası sağlık örgüt­leri için hâlâ önemli bir sorundur. NEDENLERİ Sıtmanın etkeni protozoonlar olarak bili­nen tekhücreliler grubundan Plasmodi­um cinsi asalaklardır. Asalağın üreme çevrimi iki ayrı konakta tamamlanır, in­san ya da başka bir omurgalı konakta eşeysiz olarak çoğalan sıtma etkeni, da­ha sonra Anopheles cinsi sivrisineklerin içinde eşeyli olarak üreyip omurgalı bir konakta yeniden hastalık yaratabilecek duruma gelir. İnsanda hastalığa yol” açan dört Plas-modium türü vardır: Bunlardan Pîasmo-dıum vivax, nöbetleri genellikle 48 saatte bir gelen tersiyana sıtmasının; Plasmodi­um malariae, nöbetleri 72 saatte bir ge­len kuartana sıtmasının; Plasmodium falciparum, nöbetleri 36-48 saatte bir ge­len, beyin sıtması ve karasu humması denen ölümcül biçimleriyle çok ağır bir gelişme gösterebilen, kötü huylu tersiya­na sıtması ya da öbür adıyla falciparum sıtmasının; Plasmodium ovale ise nöbet­leri 48-50 satte bir gelen iyi huylu tersi­yana sıtmasının etkenidir. Sivrisinek sokmasıyla vücuda giren asalak, karaciğere yerleşerek çoğalmaya başlar. Bu asalaklar daha sonra dolaşıma katılıp alyuvarlara girer ve çoğalmayı sürdürür. Alyuvar asalakla dolduğunda parçalanır. Kana yayılan asalaklar başka alyuvarlara girer. İnsan vücudunda ger­çekleşen bu çoğalma süreci asalağın eşeysiz üreme evresini oluşturur. Birkaç kuşak sonra bazı asalaklar eşey hücresi (gamet) üretecek biçimde değişikliğe uğrar. Bölünerek çoğalama-yan ve alyuvarlar içinde uzun süre varlı­ğını sürdürebilen bu hücrelere gametosit denir. Sivrisinek kan emerken bu hasta­lık etkenini içeren alyuvarları da sindi­rim sistemine alır. Sivrisineğin midesin­de etkinleşen erkek ve dişi gametositler arasında döllenme sonucu zigot oluşur. Bu eşeysel üreme evresinde zigot ooki-nete dönüşür. Anofelin mide duvarını geçen ookiııetler epitel ve kas katmanla­rı arasında kapsülle sarılarak ookist adıyla tanınan birer kist biçimini ahr. Bu kistlerden daha sonra sporozoit denen binlerce asalak çıkar. Sporozoiüer sivri­sineğin tükürük bezlerine ulaşır ve ısırık yoluyla yeni bir kişiye aktarılır. Böylece asalağın eşeysiz üreme evresi başlar. Alyuvarlarda gerçekleşen eşeysiz üreme evresinin süresi Plasmodium türüne göre değişir. Ateş nöbetleri bu üre­me çevrimiyle ilgilidir. Asalakların kana dağılmasıyla sıtma nöbeti görülür. ENFEKSİYON KAYNAKLARI Kanında asalağın gametosit biçimini ta­şıyan hastalar sıtmanın enfeksiyon kay­nağım,oluşturur. İnsanlarda akut, kronik ya da belirti vermeden gizli biçimlerde görülebilen enfeksiyon, anofeller aracılı­ğıyla bulaşır. YAYILIMI Sıtma daha çok tropik ve ılıman bölge­lerde yaygındır. Günümüzde başarılı bir mücadele sonucu birçok ülke sıtmadan arınmıştır. Ama Orta ve Güney Ameri­ka’da, Afrika ülkelerinde, Akdeniz ülke­leri ve Ortadoğu’da, Afganistan, Pakis­tan ve Hindistan’da, Japonya dışındaki Uzakdoğu ülkelerinde sıtmaya yaygın biçimde rastlanmaktadır. Türkiye’de son yıllarda, hemen yalnız P. vivax türünün etken olduğu tersiyana sıtması görülmek­tedir. Bu, aynı zamanda bütün dünyada en çok görülen sıtma türüdür. Falcipa­rum sıtması genellikle tropik bölgelerle sınırlıdır ve en tehlikeli sıtma türünü oluşturur. Yakmdoğuda ve Balkanlar’da,bu arada Türkiye’de de görülmüştür. Ku­artana sıtması ılıman ve astropik bölge­lerde yaygındır. Ender rastlanan iyi huy­lu tersiyana sıtması ise Afrika’nın doğu­sunda ve Güney Amerika’da dar bir yayı-hm gösterir. BELİRTİLERİ Sıtma sivrisineğinin sokması ve ilk belir­tilerin ortaya çıkması arasında geçen ku­luçka süresi, kuartana sıtması dışında 10-14 gün dolayındadır. Kuartana sıtmasın­da ise 18 günden başlayarak çok daha uzun bir süreye yayılabilir. Sıtmanın en tipik belirtisi yol açtığı nöbetler sırasında üşüme ve ateş basma duyumunun birbiri­ni izlemesidir. Bu nöbetler ilk birkaç günden sonra, asalakların alyuvarlardan kana yayılmasıyla eşzamanlı olarak ger­çekleştiğinden düzerdi aralıklarla ortaya çıkar. Nöbetler sırasında bir-iki saat sü­ren üşüme ve titreme evresinin ardından ateş hızla 40°C-41°C’ye kadar yükselir; 3-4 saat sonra yaygın terlemeyle birlikte hızla düşer. Tersiyana sıtmasında nöbet­ler günaşırı gelir. Ama yeni asalak ku­şaklarının dönüşümlü olarak 24 saat arayla kana yayılması durumunda her gün ateş nöbeti görülür (çift tersiyana). Kuartana sıtmasında nöbetler iki gün arayla gelir. Kanda iki asalak kuşağının bulunduğu durumlarda iki gün süren ateş nöbetini ateşsiz bir gün izler (çift kuarta­na). Üreme evresini ayrı zamanlarda ta­mamlayan üç kuşağın bulunduğu durum­larda ise her gün nöbet görülür. Tedavi edilmezse kısa sürede ölüme yol açan falciparum sıtmasında ise nöbet süreleri ve araları daha düzensizdir. Hastanın ge­nel durumu hızla bozulur. Aralarında yinelemeyen ve kompli-kasyonlara yol açmayan falciparum sıt­masının da bulunduğu bütün sıtma olgu­ları tedavi edilmeseler bile, asalağın türü­ne bağh olarak değişen bir süreden sonra geriler. Bunun başta gelen nedeni enfek­siyona karşı bağışıklığın gelişmesidir. Sıtma bölgelerinde yaşayan kişilerde yeni enfeksiyonlar görülebilir. Bu kişi­lerde kansızlık, dalak ve karaciğer büyü­mesi, aşırı kilo kaybı ortaya çıkar (sıtma kaşeksisi). Belirli coğrafi bölgelerde sıt­ma enfeksiyonunun sürmesi yalnızca sivrisineklerin varlığıyla açıklanamaz. Hastalığın doğal kaynağı olan insanların bir bölgede yaygın biçimde bulunması, sıtmanın yerleşik hastalık biçiminde or­taya çıkmasında en az anofeller kadar belirleyicidir. * HASTALIĞIN ÖZEL KLİNİK BİÇİMLERİ Hastalık asalak türüne ve bulaşma, biçi­mine göre değişen klinik belirtiler verir. Zehirli sıtma. Çok ağır seyreden ve ikincil hastalıklara yol açan sıtma tipleri için kullanılan ortak bir addır. Ama bu tür ağır sonuçlan doğuran sıt­ma etkeni hemen her zaman Plasmodi­um falciparum ‘dur. Nöbetler birbirine eklenerek süreklilik kazanır. Alkolizm, beslenme eksikliği, aşın yorgunluk, güneş çarpması gibi etkenler hastalığın zehirli sıtmaya dönüşmesini kolaylaştı­rır. Bu durum beyin sıtması, tifomsu sıtma ve karasu humması gibi, belirti­lere göre adlandırılan, çeşitli tiplere ay­rılır. Beyin sıtması sürekli baş ağrısıyla kendini belli eder. Tedavi edilmezse bilinç kaybı, kasılma nöbetleri gibi merkez sinir sistemi hastalıklarını dü­şündüren çeşitli belirtiler ortaya çıkar. Çok geçmeden ölümle sonuçlanan de­rin koma durumu görülür. Tifomsu sıt­mada tifoyu taklit eden belirtilere rast­lanır. Karasu hummasında böbrek yet­mezliği sonucu Önce kırmızı olan idrar, daha sonra siyaha döner. İdrann bütü­nüyle kesilmesi hastalığın kötüleştiğini gösteren bir belirtidir.

http://www.biyologlar.com/deri-yoluyla-bulasan-hastaliklar

Anguilla anguilla Yılan Balığı ve Özellikleri

Yılan Balıklarının Sistematikteki Yeri Yılan balıkları modern sınıflandırmada balıklar sınıfının Apodes takımından kemikli balıklar alt sınıfı Anguillidae familyasına dahildirler. Günümüzde Anguilla cinsi içinde 19 tür bulunmaktadır. Bunlar arasında en önemli yılan balığı türleri : Avrupa yılan balığı Anguilla anguilla Amerikan yılan balığı Anguilla rostrata Japon yılan balığı Anguilla japonica Yılan balıkları gerçek bir balık türüdür. Diğer balıklar gibi galsamaları vardır. İskeletleri balıklara özeldir. Omur sayılarından tür ayırımı yapılmaktadır. Omur sayıları Avrupa yılan balığında ortalama olarak 115, amerikan yılan balığında 107 , japon yılan balığında ise 116 adet olarak tespit edilmiştir. Sadece karın yüzgeçleri yoktur. Göğüs ve sırt yüzgeçlerine sahiptirler. Pulları gelişmemiş ve pulsuz olarak kabul edilebilmekle birlikte vücutları üzerinde tek tük dağılmış pullara sahiptirler. Deri kalındır ve üzerinde fazla miktarda mukus bulunur. Çenelerde ve vomer kemiğinde gayet ince tarak gibi dişler bulunur. Ayrıca karın yüzgeçlerinin yokluğu da yılan balıklarına özel bir durumdur. Yılan balıklarında diğer balıklarda olduğu gibi pektoral yüzgeçleri ve göğüs kemikleri de vardır. Alt çene, üst çeneden biraz daha uzundur. Baş solungaçların bulunduğu yarık ile son bulur. Solungaç kapağı oldukça küçüktür. Kuyruk bölgesi ise anüs ile başlar ve kuyruk sonuna kadar devam eder. Aynı tür içinde olmakla beraber bölgelere göre renk ve baş şekli bakımından birbirinden biraz farklı olan yılan balıklarına sık sık rastlanır. Sonbaharda yakalanan büyük boylu yılan balıkları genel olarak parlak renklidirler. Sırtları koyudur, yanlar bakırımsı alt kısımları ise beyazımsı parlaktır. Bu balıklar cinsel olgunlaşma döneminde olan ve tatlı sulardan çıkarak Sargossa körfezine doğru üreme için göçe çıkmış olan gümüşi yılan balıklarıdır. Bu yılan balıklarından ayrı olarak pek parlak olmayan normal yılan balıkları yakalanır ki bunlar da sarı yılan balıkları olarak tanımlanır. Bu balıklar cinsel bakımdan olgunlaşmamışlardır. Devamlı yem almakta ve gelişme döneminde bulunmaktadırlar. Göç döneminde bulunan gümüşi yılan balıklarının sindirim organları boştur. Bu üreme göçleri sırasında vücutlarında biriktirmiş oldukları yağı, besin ve enerji kaynağı olarak kullanmaktadırlar. Avrupa yılan balıklarında baş yapılarına göre de bazı farklılıklar bulunmaktadır. Renk ve baş yapısı gibi farklılıkların yem, yaşadıkları ortam, cinsiyet, cinsel olgunluğa ulaşma dönemi gibi birçok faktör tarafından etkilendiği saptanmıştır. Sınıf : Pisces (Balıklar) Alt Sınıf : Osteichthys (Kemikli Balıklar) Takım : Anguilliformes (Yılanbalığımsılar) Familya : Anguillidae (Yılanbalıkları) Tür : Anguilla anguilla (Anguilla vulgaris, Muraena anguilla) (Avrupa Yılanbalığı) Tarihçesi: M.Ö. 3. Yüzyılda yaşayan Aristo, "Toprağın bağırsakları" dediği solucanlara benzeyen bu canlılarla ciddi ciddi ilgilenmişti. M.Ö. 1. yüzyılda bir Romalı düşünür ise, "Yılanbalıklarının kaya parçalarına çarpan diğer balıkların derilerinden meydana geldiğini" ileri sürmüş. 17. yüzyılda Francesco Redi adlı doğabilimci, yılanbalığının bir balık olması nedeniyle ancak yumurta yoluyla üreyebileceğini belirtmiş. Sigmund FREUD'ta 19. yüzyılın sonlarına doğru çalışmalarında biyolojiye ağırlık verdiği dönemde, çağrıştırdığı cinsellik açısından yılan balığını tanımaya çalışmış ancak sonuçsuz kalmış. 1920 yılında Danimarkalı biyolog Johannes Schmidt, Atlantik Okyanusunda avlanırken, ağına takılan 77 mm boyunda yılanbalığı larvalarına rastladı.Bunları takip etti ve sonunda yılanbalığı larvalarının Atlas Okyanusunda, Amerikanın biraz açıklarında "Sargasso Denizi" denilen bölgede doğuyorlardı. Daha sonra uzun bir yolculuğa çıkıp Avrupa'ya kadar geliyorlar ve burada ulaştıkları tatlı sularda gelişip büyüdükten sonra yeniden denize dönüyorlardı. Avrupa kıyılarından Meksika'ya gidildikçe larvaların boyları küçülmekte, buna göre yılanbalıkları Meksika yakınlarında üremekte. Yılanbalıklarının yumurta ile üremelerine ilişkin ilk bilgi yumurtalıkların keşfi ile olmuş, ancak birçok bilim adamı yumurtaları bulmak için çok uzun bir süre uğraşmıştır. İtalyan bilim adamı Lazzaro Spallanzani, yılanbalıklarını 40 yıl boyunca incelemesine karşın yumurtalı bir bireye hiç rastlamadığını belirtmiş. 1974 yılında Japon bilim adamları yakaladıkları bir dişi yılanbalığını suni yolla döllemeyi denediler.Laboratuarda gerçekleşen deneyde,dişi yılanbalığı yumurtlar yumurtlamaz öldü.Karnı yarıldığında dönüş yolculuğunda hiç yiyeceği kalmadığı anlaşıldı. 1981 yılında Alman okyanus bilimci Friedrich Wilheim Tesch ilginç bir deney yaptı.Yakaladığı dört dişi yılanbalığını Sargasso Denizi'ne alıcılar bağlayarak bıraktı.Son sinyaller 700 metre derinlikten geldi ve daha sonra yılanbalıklarının izini kaybetti. Yılanbalığı gizemini ve efsane kimliğini hala koruyor. Genel Özellikleri Yılanbalıkları,her ne kadar sürüngene benzese de gerçek bir balık türüdür.Solungaçları vardır. Karın yüzgeçleri yoktur,ancak sırt ve göğüs yüzgeçleri vardır. Karın yüzgecinin olmaması bu balık türüne özgüdür. Üzerinde yoğun bir mukus tabakası olan, kaygan bir derileri var. Bundan dolayı çıplak elle tutulamaz.Yılanbalıkları geceleri hareketlidir,gündüzleri çamurun içine saklanırlar.Çayıra bırakıldıklarında suyun yönünü hemen bulabilirler. Susuz ortama karşı çok dayanıklıdırlar ve uzun süre su dışında kalabilirler. Çünkü bu hayvanlar,yağmurlardan sonra ıslak yerlerde, nemli çimenlerde kolaylıkla hareket edebilirler. Bundan dolayı bir nehirden başka bir nehre (yakın mesafede) bile geçebilirler. Turna balıkları,mersin balıkları ve su kuşları en büyük düşmanlarıdır.Kanları çok tehlikeli bir sinir zehiri içerir, kanı yara ve çatlaklara değmemesine özen gösterilmelidir.Isıtıldığında zehir parçalanır.Toplam 19 yılanbalığı türü vardır Vücut uzun yılan şeklinde, yanlarda hafif yassı olup küçük pullarla kaplıdır. Renk üreme zamanına kadar kahverengimsi sarı, üreme zamanı gelince gümüşidir. Ömürlerinin büyük kısmını (6-20 yaşa kadar) tatlı sularda geçirirler. Yumurtlamak üzere tatlı suları terk ederek denize açılırlar. Üremelerini Meksika Körfezinde gerçekleştirirler. Hayatlarında bir defa yumurta kaparlar. Yumurtlayan yılan balıkları ölür. Çıkan yavrular 3 yaşında, 65-70 mm boyuna geldiklerinde karasularımıza ulaşırlar. 20-60 yıl yaşarlar. Göçün ortaya çıkmasında en önemli nedenlerin başında; üremedir, yavruların yetiştirilmesi, kış gelmeden önce bulunulan bölgeden uzaklaşmaları gerekmektedir. Yaşam ortamındaki besin miktarında azalma, populasyonun artmasıyla birlikte yaşam alanının küçülmesi gelmekte.Yılanbalıklarını göçteki amacı; iç güdüsel olarak doğdukları yere ulaşıp üremek istemeleridir. Coğrafik Dağılımları: Avrupa yılan balıkları yayıldıkları bölgeler, Kuzeyde 71. Güneyde ise 23. enlemler arasında bulunmaktadır. Kuzeye doğru çıkıldıkça da yılan balıklarına daha az rastlanır. Pratik olarak yapılan yılan balığı avcılığı da 63. Enlem dairesine uzamaktadır. Kuzey Rusya ve Kuzey Sibirya’da yılan balıklarına rastlanmaz. Afrika sahillerine bakıldığında ise , Cezayir kıyılarında bulunmasına rağmen aynı sahilde bulunan Senegal’de görülmez. Bazı göllerde çok az ve bazılarında ise hiç bulunmadıkları görülmektedir. Bu durum yılan balıklarının bu göllere ulaşma imkanları ile ilgilidir. Yılan balığının yayıldığı bölgeler incelenirse pek çok yayılma alanı görülür ve ulaşabildikleri yüksek sularda bile yaşadıkları saptanmıştır. En tuzlu suda, tatlı kaynak sularında, bataklık az tuzlu sularda yaşama imkanı bulurlar. Amerikan yılan balıklarının, Avrupa yılan balıklarının çoğaldığı bölgelerde çoğaldıkları kabul edilmektedir. Kanada ve ABD kıyılarında yaygındırlar. Bu ülkelerde avcılık ve üretim az ve benzer düzeydedir. Japon yılan balığı doğu Asya kıyılarında bulunan bir türdür. Üredikleri alan kesin olarak bilinmemekle birlikte Tayvan’ın güney kısımlarında çoğaldıkları tahmin edilmektedir. Tayvan’da Taipei, İlan, Kan, Changua, ve Pingtung şehirlerine yakın nehirlerde fazla miktarda elver yakalanmaktadır. Japonya’da ise Shizuoka bölgesi nehirlerinde elver avcılığı yapılır. Japonya’da yılda 50 ton dolayında elver yakalandığı tahmin edilmektedir. Larva Dönemleri Şubat ile nisan ayları arasında dünyaya geliyorlar. Larvalarına "Leptocephal" adı verilen larvalar küçük bir dil balığı biçiminde ve vücutlarına oranla iri siyah gözleri bulunur. Şeffaf görünümde olur,kasları iç organları görülür. Uzunlukları yaklaşık 5-6 milimetre arasındadır. Sargasso Denizi'nden Avrupa'ya kadar gelişi sırasında zooplanktonlarla ve küçük kabuklularla beslenirler. Bu hayvanları 14 dişiyle parçalayarak yer. Yolculuğunu, ya kendisini akıntılara bırakarak ya da küçük sürüngenler gibi hareket ederek tamamlıyor. Dokuz ayda tam 6000 km yol katettikten sonra Avrupa Kıyılarına ve 7000 km'den sonra da Akdeniz havzasına ulaşırlar. Yavru Dönemleri Larva Avrupa kıyılarına vardığında,tatlı su ortamına uyum sağlamak ve kıyıdaki haliçleri daha kolay aşmak için metamorfoz geçirip, saydam ve minyatür yılanbalığı haline dönüşür . Bu ortamda yaşayabilmek için iç basıncını ayarlar. Larva dönemindeki dişlerini kaybeder ve bundan dolayı beslenemez. Beslenmeme döneminin uzamaması gerekir . Nehirlerde ilerlerken büyümeye başlarlar. Yılda boyları yaklaşık 10 cm, kiloları da 20 gram artar. Tatlı suya ve nehirlerin içlerine ulaşmak için çok hızlı ve gruplar halinde hareket eder. Nehirleri tırmanmaya başlayıp bazen kıyıdan 200 km içerlere kadar sokulurlar. Ancak daha fazla ilerleyemezler. Çünkü akarsular üzerinde barajlar ve setlere takılırlar. Grup halindeki dolaşmaları, kıyıdaki haliçlerde beyaz lekeler oluşturur. Belli bir süre sonra bir yere yerleşirler. Burada ikinci metamorfoz olur. Küçüklük Dönemleri Halk arasında "sarı yılanbalığı" denilen 3. aşamaya ulaşırlar. Bu metamorfoz aşamasında cinsiyeti belirlenir ve bu dönemde çok saldırgan olurlar. Derisinde beliren pigmentler nedeniyle rengi yavaş yavaş koyulaşır. Yemek borusu açıldığından yeniden beslenmeye başlıyor. Geceleri avlanmaya çıkarlar; Kız böceği, sinek, çamca balığı yiyerek beslenirler. Kış aylarında sularında soğumasıyla da kendini çamura gömerek kış uykusuna yatar. Nehir boyunca günde birkaç kilometre mesafe katederek sonunda bir süre sabit kalacağı noktaya ulaşır. Bugün yeryüzündeki yılanbalığı sayısının azalmasının temel nedenlerinden biri de onun yol aldığı bu nehirlere insanoğlunun inşa ettiği baraj ve setler. Bu dönemde uzunluğu cinse göre farklılık gösterir. Erkeklerde 5-8 yıl sürerken, dişilerde 7-12 yıl devam eder. Bu süre sonunda geldikleri yere dönmek için yola çıkarlar. Amaçları, tamamen içgüdüsel biçimde Sargasso Denizi'ne ulaşmak ve orada çiftleşmek. Yolculuğa çıkmadan son metamorfozlarını da geçirirler. Yetişkinlik Dönemleri Açık ve tuzlu su için gerekli metamorfozları geçirir. Derisi kalınlaşır,derinliklerin karanlığında yolunu daha iyi görmesi için gözlerinin hacmi artar ve bilye büyüklüğüne ulaşır. Daha önce vücudunun üçte birini oluşturan yağ tabakasını eritmeye başlar. Başını ön tarafı daha sivrileşir;böylelikle daha ince,aerodinamik bir yapı kazanır. 6 ile 13 yıl arasında bir süre bu yeni mekanında yaşıyor ve irileşiyor. Derisinin rengi ;karın kısmı gümüşümsü,sırt kısmıysa daha koyu bir görüntü kazandıktan sonra,12 gün içinde açık denizdeki yeni yolculuğuna hazırlanıyor. Boyu 1.2 metreye ulaşıyor ve vücudunun iç basıncını yeniden tuzlu suya göre ayarlıyor. Dönüş yolunda,akıntılardan mümkün olduğunca kaçınır ve bunu tamamen içgüdüsel olarak yapar. Geri dönüş yapan bir yılanbalığı bugüne kadar ,Avrupa kıyısından başlayarak tüm Atlas Okyanusu boyunca izlenememiştir. Sargasso Denizine ulaştıktan sonradaki yaşamları konusunda da bilgiler tam değildir. Dönüşü 120-200 gün süren yılanbalığı çok derin sularda yüzdükleri ve çok ağır basınç altında kaldıkları belirtiliyor. Basınç sayesinde üreme organları gelişmektedir ve hormon salgılamaya başlarlar.Sargassso Denizi'nin 600 metreye varan derinliklerinde çiftleşmeye uygun konuma gelirler. Dişilerde yumurtalar toplam kilosunun yüzde 80'ine ulaşır,yani 800 gram yumurta taşır. Renkleri: Yılanbalıklarında çeşitli renklenmeler görülür. Doğduğunda saydamdır.Nehirlere girinceye kadar bu formunu korur, nehirlere girdikten sonra renk pigmentleri oluşur. Rengi kahverengi sarımsıya döner,cinsel olgunluğa tam erişmemiştir.Bu hayvanlara sarı yılanbalıkları denir. 10-15 yaşlarında ise sırtları siyah, karın kısımları gümüşi renk alır.Cinsel olgunluğa erişmiştirler.Bu hayvanlara parlak veya gümüşi yılanbalıkları denir. Habitat ve Coğrafik Dağılımları Dipte, çamura bağlı olarak,tatlı suda ve denizde yaşarlar.Atlantik Okyanusu, Akdeniz, Batlık Denizi, Karadeniz ve bunlara akan akarsularda bulunurlar. Kuzey Afrika'da Cezayir'de görülebilirler.70 ile 25 kuzey enlemleri arasında dağılım gösterirler.Göçleri bütün Akdeniz, Baltık Denizi, Kuzey Denizi, Atlas Okyanusu ve Adriyatik Denizine dökülen nehir ve göllerden yola çıkan Avrupa yılanbalıklarının göçü Meksika Körfezi'nin 800 ile 1000 metre derinliklerinde son bulur.Sadece Avrupa yılanbalığı (Anguilla anguilla) ülkemiz iç sularında yaşar.Akdeniz ve Ege 'ye dökülen bütün göl ve nehirlerimizde bol miktarda bulunan yılanbalığı Batı Karadeniz'den Sakarya Nehri'ne kadar yayılan bir yaşam alanına sahip. Ekonomik Önemi: Bir çok ülkede beğenilen ve oldukça fazla tüketilen bir besin.Balık yetiştiriciliğinde genelde suni olarak balıkları üretmek mümkünken, yılanbalıkları suni olarak henüz üretilebilmiş değil.Yetiştiriciliği göç sonucu nehir ağızlarına gelen yılanbalığı larvalarının yakalanarak büyük havuzlarda beslenmeye alınmasıyla yapılmakta.Yakalanan yavruların bir kısmı doğrudan besin olarak tüketilir.1 kg yılanbalığı yavrusu 2800 ile 3500 arasında birey içerir.Avrupa kıyılarında yakalanan yavru balık miktarının yıllık 300 ton civarında olduğu söylenmekte.Bu miktar 900 milyar ile 1 trilyon arasında yavru balık anlamına geliyor. Türkiye kıyılarına ulaşan milyonlarca yavru balık büyük sürüler oluşturarak iç sulara girer.Nehir üzerindeki barajlara,yakındaki nehirlere,geceleri karaya çıkarak çamur ve nemli çayırlar üzerinden ilerleyerek ulaşabilir.Ülkemizde Akdeniz ve Ege kıyılarına dökülen nehirler üzerine yapılan barajlarda,balıkların yukarı çıkabilmesi için şelaleler yaparak yükselen balık merdivenleri bulunmadığından özellikle Gediz Nehri üzerindeki barajlarda, yavru balıkların türbinlere girmeleri,karaya çıkarak yukarı çıkmak istemeleri sonucu büyük kısmı telef olmakta. Nehirlere girişi,denizlerdeki akıntıları yardımıyla güney kıyılarından itibaren başlıyor. Aralık ve mart ayları arasında nehirlere giren yılanbalıkları,6-9 sene için denizlere kitlesel göç yapıyor.Yılan formunda olduğu için yerli halk tarafından tüketilmiyor ancak ;yurtdışında oldukça yüksek düzeyde alıcı buluyor. FAO'nun (Dünya Tarım Örgütü) ülkemizde yetiştiriciliğini tavsiye ettiği üç su ürünü karides,yılanbalığı ve süs balıkları arasında,ekonomik olarak en hesaplısı olan yılanbalıkları için hiçbir girişim yapılmıyor. Türkiye su ısısının Avrupa'ya göre yüksek olması,bu balığın göç dönemlerinde farklılık oluşturuyor.Avrupa'da yılanbalığı avcılığı mayıs-ekim dönemlerinde,ülkemizde ise eylül-ekim dönemlerinde gerçekleştiriliyor.Meriç Nehri 9.kilometrede Yunanistan sınırları içine kıvrılmış durumda.Bu noktadan itibaren sularının büyük bir kısmı Yunanistan sınırları içinden denize dökülmekteyken yatağındaki bu değişim, beraberinde bir çok sorunu da getirmiş. Yılanbalıkları içgüdüsel olarak akıntıya karşı yolculuk etme eğiliminde olduklarından, debisi giderek artan Yunanistan sınırlarındaki Meriç ağzında giriş yapmaya başladılar.Balıklar,geri dönüşte de aynı yol izlediklerinden, epeydir Yunanlı balıkçılar tarafından 9. kilometrede ve Meriç ağzında kurulan ağlarla avlıyorlar.Bugün Enez'de yılda sadece 1.5 tonluk bir üretimimiz var.Meriç'in 9. kilometreden ayrılan Türkiye kolunun debisinin azalmasıyla artık nehir yatağı giderek mıcır, taş yığınlarıyla dolmuş bulunuyor. Ekonomik olarak önem kazandığı yörelerimizin başlıcaları: Enez, Çandarlı (İzmir), Söke (Dalyan), Güllük (Muğla), Köyceğiz dalyanı ,Oragon çayı... Göç Sırasında Yön Bulma Yetenekleri Göç eden hayvanların yön bulma yetenekleri bilim dünyasında pek çok araştırmaya konu olmuş. Bu görüşlerden bazıları şöyledir; 1-) Göç sırasında dünyanın manyetik alanını kullandıkları görüşü: Dünyamızın bir manyetik alanı vardır. Bazı deniz memelileri, kuşlar, bazı balıklar, bazı böcekler, bazı mikro organizmalarda bu manyetik alanı saptayabilen algılayıcılar bulunur. Manyetoreseptör denen bu algılayıcıları sayesinde hayvanlar, uzun mesafeli göçte veya gezintilerinde yönlerini kolayca bulabiliyorlar. Ama bunun dışında kullandıkları referanslarda vardır. Yılanbalıklarının doğdukları yere geri dönüşleri, manyetoreseptörler ve suyun kimyasal yapısını tanımalarıyla açıklanmakta, denizlerde dahil olmak üzere her suyun, hatta her bölgenin kendine özgü bir kimyasal yapısı olur. Rota bu kimyasal bileşime göre saptanır. 2-) Sargasso Denizi'nde doğan canlılar, gelişme bölgelerine doğru göçerken suyun kimyasal yapısını belleklerine kaydederler. Gelişme dönemini tamamlayıp geri dönerken de, belleklerinde kayıtlı olan üreme alanlarına geri dönerler. Bu göçün tam anlamıyla bir yanıtı olmamakla birlikte kabul edilen bir görüşe göre dünyamızdaki kıtalar henüz birbirlerinden ayrılmamışken, yılanbalıkları bugün üredikleri yerde ürüyorlardı. Kıtaların ayrılmaya başlamasıyla, kıtalar arasındaki mesafeler uzadı. Milyonlarca yıl sonra bugün ki durumuna geldi. Göç başta kısa mesafelerde yapılırken, kıtalar birbirinden ayrılıp uzaklaşınca göç mesafesi de arttı. Sargasso Denizi belki de onların yumurtlamak için en uygun koşulları ( suyun sıcaklığı, kimyasal yapısı, bölgenin jeomanyetik alanı vb) sağlayan bir bölge olduğu için binlerce yıldır aynı bölgeye gelip yumurtlamakta. Yılanbalıkları iç güdüsel olarak göç ederler,yani ilk doğdukları yere giderek orada doğurur ve ölürler.Bu olay tamamen kalıtsal bir davranıştır. Zaten bununla ilgili görüşler ileri atılmıştır. Yılanbalıkları belirli periyotlarda bu göç olayını gerçekleştirirler ,yani; belirli bir büyüme sonunda göç etmeye başlarlar ritimleri bellidir.Göç olayı çiftleşme ,solunum gibi düşünülebilir.Sadece yılanbalıkları göç etmezler ;kuşlar,balıklar..vb İkinci Göç Bu göç, yılan balıklarının doğduğu yere üremek için yaptıkları göçtür. Gümüşi yılan balıkları sonbaharda, tatlı suları terkettiklerinde cinsi olgunlukları tamamlanmamıştır. Gümüşi yılan balığının denizdeki yaşamı çok az bilinmektedir. Sargossa"daki yumurtlama alanına ulaşıncaya ve gonatlarının tam olgunlaşacağı zamana kadar, denizde beslenmeden hayatta kalabilmektedir. 5000 km"lik uzun ve tehlikeli göçün tek hedefi, doğdukları yere ulaşıp üremektir. Üreme alanında deniz derinliği 4-5 bin metredir. Yılan balıkları yavruları ise 400-500 metrede güneş ışınlarının son ulaştığı derinliklerde yakalanırlar. Yılanbalıklarının yumurtladıktan sonra öldüğü tahmin edilmektedir. Avrupa Yılan Balığının Ürediği Yer: Sargossa Denizi Yılan balıklarının üreme alanları Peurto Rico ve Bermuda Adalarından eşit uzaklıklarda bulunmaktadır. Sargossa denizi bir kuyu şeklinde ve 1000 m derinliğe kadar bir bölgede tuzluluk oranı % 0,35 ve su sıcaklığı 17 dereceyle, yılan balıklarının üreme sahaları olarak diğer bölgelerden ayrılır. Yılan balıkları tam olarak nerede toplanıyorlar? Yumurtlamaları nerede oluyor? Erkekler nerede bu yumurtaları döllüyorlar? Bu yerler ve olaylar hiçbir kimse tarafından gözlenememiştir. Sadece bu olayların anılan bölgede olduğuna dair bir çok bilgiye sahibiz... Yılan balıkları derin su balıklarıdır. Tatlı sulara geçici olarak, büyümek için gelmektedirler. Sargossa denizinde 400 metre derinlikte yumurtadan çıkmış yılan balıkları, 15 yıl sonra tekrar üremek için aynı sulara geri dönmektedir. Üreme zamanına ulaşan yılan balıklarını, tatlı sulardan denizlere göç ettiği dönemde “gümişi yılan balığı” adı verilir. Bu dönemde yılan balıkları yumurtaları incelendiğinde üreme organı içinde yağ damlaları gözlenmektedir. Bu durum yumurtaların deniz dibinde değil orta sularda olabileceğini kanıtlamaktadır. Sargossa denizinde derinlik 4500 metre dolaylarındadır. 400-500 metre derinlik bu denizde güneş ışınlarının ulaşabildiği son derinlik olmakta, 500-600 metreden sonra ise hayat güçleşmektedir. Üremenin bu derinlikte olmasından sonra, yumurtadan çıkan larvaların büyüyerek yükselmeye başladıkları saptanmıştır. Örneğin 5-15 mm boyundaki yılan balığı larvaları 100-300 metre derinliklerde rastlanırken, biraz daha büyükleri ve bu denizden uzaklaşmış olanları 50 m civarındaki derinliklerde bulunmaktadır. Bütün bu bilgiler yılan balıklarının döllenmiş yumurtalarının bu bölgede izlenememiş olmasına rağmen, üremenin bu bölgede olduğunu kanıtlayan veriler olmaktadır. Aynı bölgede Mart ve temmuz ayında milyarlarca leptosefalus larvasının gözlenmiş olması, üremenin ilkbahar ve yaz başlangıcında olabileceğine işaret etmektedir. Yumurtlayan Yılan Balıklarına Ne Oluyor? Yumurtladıktan sonra yılan balıklarının akibetlerinin ne olduğu günümüzde hala bir bilinmezdir. Çünkü yumurtladıktan sonra Avrupa kıyılarına geri dönmüş tek bir yılan balığına raslanamamıştır. Bu durumda iki hipotez ileri sürülmektedir: Bunlardan ilki yılan balıkları yumurtladıktan sonra derin dip balığı olarak yaşamını sürdürür. Diğeri ise, yılan balıkları yumurtladıktan sonra kitle halinde ölürler. Bu iki görüşten ikincisini destekleyecek bir çok delil bulunmaktadır. Gümüşi yılan balığı olarak adlandırılan üremek için denizlere açılmaya yönelmiş bir yılan balığında anüs yapısının bozulduğu, sindirim sisteminin deforme olduğu ve kaslarda değişim başladığı gözlenmiştir. Bazı balık türlerinde de üremeden sonra ölüm olduğu bilinmektedir. Örneğin som balıkları yumurtlamak için denizlerden nehirlere göç ederler. Ve hepsinin yumurtladıktan sonra öldükleri gözlenir. Öyleyse yılan balıklarının da üredikten sonra öldüklerini kabul etmek yanlış olmayacak ve bunların 4500 m’ye varan derinliklere çöküp çürüdüklerini kabul etmekten başka yorum kalmayacaktır. Yumurtadan Çıkan Larvaların İlk Yolculuğu Yumurtadan çıktıktan sonra larvalar için önemli, uzun ve güç bir yolculuk başlar. Üreme alanının hemen çevresine üreme mevsiminde milyarlarca larva dağılarak yol almaya başlarlar. Larvalar kuzeyden Labrodor"dan gelen soğuk su akıntısı ve güneyden Ekvatordan gelen sıcak su akıntısının zararlı etkisi nedeniyle bu yönlere gitmezler. Amerika kıtasına gitmeyi tercih etseler, Amerika kıyılarına kısa sürede ulaşacaklar ve metamorfoz denilen normal vücut değişimlerini (3 yıl gerekir) sağlayamadan kıyılara ulaştıkları için ölmekten kurtulamayacaklardır. Aynı bölgede Amerikan yılan balıkları da üremesine karşın, onların yavruları tatlı suya girebilecek morfolojik değişime 1 yılda ulaşırlar, bu yüzden Avrupa kıyılarına doğru değil, Amerika kıyılarına doğru göçe başlar. Çünkü morfolojik değişimden hemen sonra beslenemez ise onlar da ölecektir. Böylece bu balıklarda, beslenme sahaları olan tatlı sulara ulaşma süreleri ile morfolojik değişimleri tamamlama süreleri birbirini takip etmektedir. Ilkbahar başında yumurtadan çıkan larvalar defne yaprağına benzer ve bunlara leptosefalus denir. Bu larvalar Meksika körfezinden başlayıp Batı Avrupa kıyılarına kadar gelen sıcak su akıntılarıyla Avrupa kıyılarına kadar göç ederler. Şimdiye kadar yakalanan en küçük larva 7 mm olup, 75- 300 metre derinliklerde rastlanmıştır. Avrupa kıyılarına yaklaştıklarında boyları 75 mm"ye ulaşmaktadır. Avrupa yılan balığı larvalarının kat ettikleri mesafe 5000 km, Amerikan yılan balıklarının 1000 km kadardır. Larvalar kıyılara ulaştıklarında, defne yaprağı şeklinden yılan balığına benzeyen silindirik bir şekle dönüşmeye başlar. Vücut büyüklüğü ve ağırlığı artar. Larva dönemine ait dişler kaybolur. Larva döneminde mikroskobik canlılarla beslenirler. Avrupa yılan balıkları su akıntılarıyla nehir ağızlarına geldiklerinde 2.5 yılı geçmiştir. Türkiye kıyılarına gelmeleri ise 3 yılı bulmaktadır. Nehirlere giren yılan balıklarının zeytin yeşili kahverengimsi, karın kısmı sarımsı beyaz rengi alır. Bu balıklara "Sarı Yılan Balığı" denir. 14-15 yıl kadar sarı yılan balığı az-çok yerleşik olarak beslenir ve barınır. Beslenme, etçil olarak dip canlılarıyla ve diğer balıklarla olmaktadır. Büyümesi yaşadığı ortama bağlıdır. Dişi balıklar (45-150 cm), erkeklerden (50 cm) daha büyüktür. Büyümedeki farklılık ve yaşadığı ortam cinsiyetin ayırt edilmesini sağlar. Erkek balıklar nehir ağzında kalırken, dişi bireyler kaynağa yakın yerlerde bulunur. Su dışında uzun süre yaşayabilen, susuz ortamda dayanıklı olan yılan balıkları, ıslak zeminlerde, nemli çimler üzerinde kolayca hareket edebilir. Hatta deniz-tatlı su bağlantılı bataklık alanlarda çamur içinde çok rahat hareket edebilen, bu balıkları, bu alanlarda 1-1,5 metre çamur içinde bulmak hiç de şaşırtıcı olmaz. 15 yaşına kadar tatlı sularda büyüyen sarı yılan balıkları ikinci bir değişim geçirir. Karın kısmı, gümüşi, sırt kısmında koyu bir renklenme görülür. Vücutlarındaki yağ oranı artar (vücut ağırlığının %30"unu geçebilir) Bu aşırı yağlanma onun Sargossa denizine yapacağı zorlu göçte dayanmasını sağlar. Zira yılan balıkları yaklaşık 18 ay sürecek bu göçte hiçbir besin almazlar. KAYNAKÇA: Alpbaz A., Hoşsucu, H., 1988. Iç Su Balıkları Yetiştiriciliği, Ege Üniversitesi Su Ürünleri Y.O. Yayınları No:12, 1-98 s. Izmir. Güner, Y., Kırtık, A. 2000, Yılan Balığı Biyolojisi ve Yetiştiriciliği. Tarım Bakanlığı Hizmet içi Seminer Notları. 32 sayfa. Bilim ve Teknik Dergisi ; Kasım 2002 Atlas Dergisi ; Mayıs 2000 Focus Dergisi ; Eylül 1998 Omurgalı Hayvanlar, Prof.Dr.Mustafa KURU   Yılan Balığı Yetiştiriciliği Yılan balıkları modern sınıflandırmada balıklar sınıfından Apodes takımından kemikli balıklar alt sınıfı Anguillidae familyasına dahildirler. Avrupa yılan balığı dışında K.Amerika ve Grönland!a ait Anguilla rostrata; Çin ve Japonya'da Anguilla japonica; Avustralya ve Y.Zelanda'da A.dieffenbachi ve A.australis türleri bulunur. Yılan balıkları kesinlikle karasal bir hayvan değildir. Bir balık türüdür. Sadece karın yüzgeçleri yoktur. Hayatları boyunca yumurtadan çıktıktan sonra 5 dönem geçirirler. İlk dönem larvaların yumurtadan çıktıktan sonraki keseli dönemidir. İkinci dönem 1-3 yıl arasında değişen larva dönemidir. Üçüncü dönem larvanın leptocephalus safhasındaki elver tabir ettiğimiz safhaya geçiş dönemidir. Dördüncü dönem elver haline gelen balıkların nehirlere veya göllere girerek yaşamalarıdır. Beşinci dönem de yılan balıklarının üremek için denize seyahat ettikleri dönemdir. Yılan balıklarının yumurtlamak için Sargossa Körfezine gittiği ve yumurtladıktan sonra öldükleri sanılmaktadır. Avrupa'da uygulandığı gibi yılan balığı yavrularının stoklanması şekliyle yetiştiriciliği yapılabilir (extansive). Bu yöntemlerde acı su (%010-20 tuzluluk) tabir edilen dalyanlarda veya göllerde yavru yılan balıkları kontrollu bir alan bırakılır. Gelişme tamamen doğal koşullara bırakılır. Yapay yem kullanılarak gelişme desteklenebilir. Üretim oranının 5-20 kg/dekar arasında değiştiği bildirilmektedir. Japonya'da uygulandığı gibi kontrollü yetiştiricilik yapılabilmektedir (Intensive). Avrupa yılan balığı yetiştiriciliği Yılan balığı yetiştiriciliğini etkileyen üç önemli zorluk bulunmaktadır. • Damızlıktan itibaren üretimi gerçekleştirilememektedir. Bu yüzden yetiştiriciler doğal ortamdan yakalanacak yavruları kullanmak zorundadırlar. Doğadan yakalanan yavru miktarı da bir yıldan diğer yıla büyük oranda değişiklik gösterir. Yavruların yakalanması şeffaf elver aşamasından itibaren başlamakta, daha sonraki aşamalarda da devam etmektedir. Örneğin, Fransa’da Languedoc kıyılarında yaklaşık 25 g ağırlığında yılan balığı yavruları yakalanmaktadır ( 9-13 Frank/kg ). Bu aşamada farklı yaş ve sağlık durumunda bireylerin bulunması, balıkların aynı kökenden gelmemesi, yem dönüşüm katsayısını yükseltir. Bu da besleme maliyetini artırmaktadır. • Tür içi rekabet fazladır. Büyük bireyler özellikle yem alımı sırasında populasyon üzerine baskınlık kurarak küçük bireylerin yeme ulaşmalarını güçleştirirler. Bu da stres olayının ortaya çıkmasına sebep olur. Yetiştirici bu durumda boy dağılımının homojen olmasını sağlamak için yavru aşamasında 3-5 haftada bir sınıflama yapmak zorundadır. Zira bu tür içi rekabet kanibalizme kadar gidebilmektedir. Bunu ortadan kaldırmak için yapılan tüm müdahaleler populasyonda belli bir strese yol açmaktadır. • Yoğun yetiştiricilikte karma yemi en iyi şekilde ete dönüştürerek eşit büyüyen bireylerin elde edilmesi gerekmektedir. Ancak bu pahalı bir besleme gerektirir. Yılan balığının çok kaygan olması, avlanmasını ve el ile tutulmasını güçleştirir. Halbuki yılan balığı yetiştiriciliği oldukça fazla el işçiliği gerektirir. Yılan balığı yetiştiriciliği özellikle Uzakdoğu’da önemli bir yer tutmaktadır. 1. Ekstansif Yılan Balığı Yetiştiriciliği Yılan balığı yetiştiriciliğini iki kısımda incelemek mümkündür. Bunlardan birincisi Avrupa’da yapıldığı gibi yılan balığı yavrularının stoklanması ile üretim sağlanmasıdır. Bu yol ekstansif üretim olarak adlandırılır. Satın alınan elverler çeşitli göl veya akarsulara bırakılır. Bu yöntemle Hollanda ve Almanya’da yetiştiricilik yapılmaktadır. Kuzey İtalya’da Venedik yakınlarında Comacchio gölü yetiştirme merkezidir. Burada etrafı çevrili 32 000 hektar “valli”lerden 1 000 ton/yıl balık elde edilmektedir. Vallilere tatlı ve tuzlu su girişi kontrollü olarak verilmektedir. Elverler buraya ya kendileri gelirler veya sahilden yakalanarak getirilirler. Verimliliğin artırılması için yapay yemle beslemeye de başlanmış, üretim veriminin 5-20 kg/dekar arasında olduğu bildirilmiştir. Kuzey İrlanda’da nehirlerde tuzaklarla yakalanan elverler 38 000 hektarlık çeşitli göl ve göletlere bırakılarak yılda 800 ton üretim sağlanmıştır. Macaristan’da İrlanda ve Fransa’dan satın alınan elverler, Balata, Valence ve Ferta göllerine bırakılır. Stoklamanın hektara 400 elver olduğu 6 yıllık bir gelişmeden sonra balıkların ortalama 650 grama ulaştığı bildirilmiştir. Fransa’da ise Marsilya yakınlarındaki 8 000 hektarlık alanda 70 ton/yıl yılan balığı elde edilmiştir. Ülkemizde çeşitli yerlerde avcılığı yapıldığı gibi bu yerlerde gelişen balıklar hasat edilerek üretim sağlanır. İzmir körfezindeki bazı dalyan işleticileri güney bölgelerinden temin ettikleri yılan balığı yavrularını dalyanlara bırakarak üretimi artırma girişiminde bulunmuşlardır. Ülkemizde avcılığı yapılan yılan balıkları genel olarak bazı göl ve nehirlerden sağlanmaktadır. Yılan balığı üretiminde önde gelen göl ve nehir dalyanları : Bafa gölü ve buna bağlı Menderes nehri, Gölmarmara, az miktarda diğer sulardır. Yıllık yılan balığı istihsalimiz DİE verilerine göre 1991 yılında 603 ton, 1995 yılında 780 ton, 1997 yılında ise 400 tondur. Yılan balığı yetiştiriciliği Japonya’da 1970 li yıllarda başlamış olup karma yemlerin kullanıldığı yoğun yetiştiriciliğe dönüşmüştür. 1990-91 yılı verilerine göre Japonya’da Anguilla anguilla 1500 ton, A. japonica üretimi 40 500 ton olarak elde edilmiştir. Tayvan’da da son yıllardaki üretim çalışmaları ile 52 500 ton A. japonica elde edilmiştir. Almanya, Fransa ve İtalya’da yılan balığı yetiştiriciliği konusunda bazı girişimler yapılmışsa da Uzakdoğu’da olduğu gibi yaygın bir gelişme ortamı sağlanamamıştır. Avrupa Yılan balığı elverleri Avrupa yılan balığına hemen hemen sıcak su akıntılarının ulaştığı tüm kuzey Avrupa nehirlerinde rastlanılmaktadır. Ayrıca Akdeniz’de pek çok nehirde de görülür. Ülkemizde Büyük Menderes nehri ve bu nehirle bağlantılı olan Bafa gölünde, Küçük menderes ve Gediz, Bakırçay nehirlerinde, Adıyaman Gölbaşı, Silifke’de Göksu nehrinde, bu nehirle irtibatlı Akgöl ve Kuğu göllerinde, Marmarada Kocabaş, Gönen ve Susurluk çaylarında yılan balığı mevcuttur. Akdeniz ile irtibatlı nehirlerde görülen, yılan balığı tüm Cebelitarık boğazını geçerek bu nehirlere ulaşmaktadır. İtalya’da özellikle Kuzey Adriyatik’te ve Venedik yakınlarındaki dalyanlarda fazla miktarda yılan balığı bulunmaktadır. Elverlerin en çok yakalandığı ülkelerden biride Fransa’dır. Özellikle Biskay körfezinde Loire ve Girondo nehirlerine büyük miktarlarda girdikleri gözlenir. Fransa’nın yılda, bu bölgesinde 800 ton dolayında elveri yakalayarak pazarladığı tahmin edilmektedir. İrlanda da Eire ve Shonnon nehirlerinde yakalanan elverler, iç göllere stoklanmasında kullanılmaktadır. İngiltere’de Severn nehri ve daha az olmak üzere Poraft nehirlerinde de elver avcılığı yapılır. Avrupa kıtalarında elverlerin periyodik olarak görülmesi yıllık olmakla beraber Bertin isimli araştırıcıya göre 6 yılda bir tekrarlanan durum arz etmektedir. Bir yıl az miktarda elver avlanırsa gelecek yıl bir azalma olduğu belirtildiği gibi, 3 yıl bir yükselme izlenip bunu takip eden 3 yılda ise bir azalma görülebildiği kaydedilmektedir. Elverlerin leptosefalus safhasından yılan balığı şeklini almaları döneminde izlenen en önemli değişiklikler şeffaflığın kaybolması ile uzunluk ve ağırlığın azalmasıdır. Kıyılara ulaşan larvaların kıyılara ulaşma periyodunda ilk gelenlerin sonra gelenlerden daha iri cüssede oldukları bilinen bir durumdur. Hatta ilk gelenlerin en son gelenlerden 6 mm daha kısa oldukları saptanmıştır. İlk yakalandığında şeffaf olan elverlerin bir süre ışıklı ortamda tutulduklarında vücutlarında hemen pigmentleşme başladığı ve renginin koyulaştığı görülmektedir. Elverlerin Göçüne etkili olan faktörler Su Sıcaklığı Elverlerin göç etmesine etkili olan faktörlerden biri su sıcaklığıdır. Ilık sularda elverlerin nehirlere göçünün daha erken ve hızlı olduğu bilinmektedir. Sıcak denizlerde elver görülmesinin, soğuk denizlere nazaran daha erken olduğu bilinmektedir. Fakat bazı yerlerde bunun tersi durumlarda zaman zaman izlenebilmektedir. Avrupa kıyılarında elverlerin ilk görüldüğü dönemlerde su sıcaklığının 4 °C dolayında olduğu ve su sıcaklığı 1 °C düştüğünde hareketlerinin azaldığı gözlenmiştir. Havanın ılıklaşması elverlerin su yüzüne yaklaşmalarına dolayısıyla avcılığının daha kolay olmasını sağlamaktadır. Işık Yılan balığı yavrularının nehirlere ilk ulaşmalarında ışığın dağıtıcı bir etkisi olduğu görülmektedir. Sadece geçiş dönemlerinde ışığa doğru hareket ettikleri görülmektedir. Hatta bazı balıkçılar, bu dönemde av yerinde elverleri su yüzeyine çekmek için ışık kullanırlar. Açık bir ay ışığı gecesinde elverler zemine yakın derinlikte hareket ederler. Pratik avcılıkta avrupa yılan balığı elverleri, genel olarak karanlık gecelerde yakalanır. Özellikle nehirlere girişlerin en yoğun olduğu periyotta, gece elver avcılığı çok daha verimli olur. Fakat med-cezir olaylarında su yükselmesinin en fazla olduğu günlerde, gündüzleri de elver göçü olur. Fakat elver miktarı geceye oranla daha azdır. Elverler genel olarak gündüzleri kum içine girerek yada kayarak, taşlar altında saklanarak günlerini geçirirler. Med-cezir Avrupa ve Japonya’da elverlerin en çok yakalandığı zaman genel olarak su yükselmesinin en fazla olduğu dönemlerde, su yüzeyine yakın olan kısımlardır. Severn nehrinde su yükselmesi ile elver girişi arasında ilişki olduğu bilinmektedir. Bunun yanında Akdeniz’de bir çok nehirde med-cezir olayları az olmakla birlikte elver girişini sağlamaktadır. Tatlı su Elverlerin nehirlere girişi daima suyun tuzluluğunun azalması ile ortaya çıkar. Denizlerden gelen elverler için nehirlerden gelen tatlı sular cezbedici bir rol oynar. Nehirlerin döküldükleri noktada tuzluluğun düşmesi ve ani yağan yağmurlar ile nehir sularının artması, nehirlere olan yönelişi daha da çabuklaştırır. Rüzgar Japonya’da, nehirlere elverlerin girişinde güney rüzgarlarının esmesi, su sıcaklığının 8-10 °C olması ve bir gün önce yağmur yağmış olmasının etkili olduğu bildirilmektedir. Elver Yakalama Yöntemleri Elver yakalamada uygulanan yöntemler bakımından ülkeler bölgeler ve nehirler arasında farklılıklar vardır. Bazı yerlerde kepçeler, bazı yerlerde tuzaklar, bazı yerlerde ise ekosaundrlardan yararlanarak avcılık yapılır. İngiltere’de elverler 1 metre uzunluk 60 cm genişlik ve 60-70 cm derinliği olan 1.5 mm göz açıklığında kepçelerle avlanırlar. Avcı kepçeyi akıntı yönünde ve mümkün olduğu kadar kıyıya yakın tutarak yüzeye yakın su sathında geceleri elver yakalamaya çalışır. Kepçe suda 5 dakika kadar tutulur ve sonra kaldırılır. Daha sonra yakalanan elverler stok yerine alınarak pazara sevk edilirler. Kuzey İrlanda da nehir yatağında yavrular belli bir alana yönlendirilir ve buradaki tuzaklarla avlanır. Bu yöntemin en iyi tarafı bölgeden geçen elverlerin tümünü yakalayabilmesidir. Bonn nehrinde bu yöntemle bir mevsimde 5-6 ton elver yakalanabildiği bildirilmektedir. Fransa’da elver yakalama işleri büyük nehir ağızlarında bir motor ile hafifçe çekilen ağlar ile yapıldığı gibi kıyılardan da yürütülmektedir. Bazı tekneler balık bulucu elektronik aletlerden yararlanırlar. Fransa’da yakalanan elverlerin çoğunluğu Japonya’ya ve bir kısmı da Avrupa ülkelerine ihraç edilmektedir. Fransa genelindeki nehirlerde 1970 yılında toplam 1 345 ton yavru yakalanırken, bu rakam 1982 de 500 ton dolaylarına düşmüştür. 1 kg da yaklaşık 3 000 adet elver bulunmaktadır. Elverlerin nehirlere giriş zamanı tüm bölgelerde aynı değildir. örneğin Avrupa’da batı İspanya sahillerine aralık-ocak, Severn nehrine ise nisan-mayıs aylarında, Fransa Biscay ve Britany de ocak-mart aylarında girmektedirler. Yılan balığı yavrularının belirli bölgelere farklı zamanlarda gelmelerinin iki esas nedeni vardır. Birincisi üreme bölgelerine yakın olan bölgelere daha erken ulaşmasıdır. İkincisi ise yılan balığı yavrularının sıcaklığı 8-10 °C den daha az olan nehirlere girmek istememeleridir. Örneğin Avrupa yılan balıkları Atlantik kıyılarına aralık aylarında ulaştıkları halde suyun soğuk olması nedeniyle nehirlere girmezler, suların ısınması için mart ayına kadar kıyılarda beklerler. Tropikal bölgeler ele alındığında, genellikle yılan balığı yavrularının nehirlere girişi ilkbahar başında olur. Nehirlere giren yavruların büyüklüğü bölgelere göre farklılık arz eder. Leptosefalus safhasından metamorfoza uğrayarak normal yılan balığı şekline giren yavrular, tatlı sulara girinceye kadar yem almazlar. Bu nedenle nehirlerin ısınmasını beklerken ağırlık kaybederler. Bunun sonucu nehirlere geç giren yavrularda canlı ağırlık daha azdır. Akdeniz’de İtalya nehirlerine giren elverlerin canlı ağırlığı, yaşıtları olan İspanya nehirlerine girenlerden daha azdır. Elverlerin nehirlere girişi özellikle suların yükselmesi sırasında en fazla olur. Elverler sadece geceleri yüzerler ve kıyılara yakın hareket ederler. Severn nehrindeki bir balıkçının sadece bir kepçe ile bir seferde 25 kg yılan balığı yavrusu tuttuğu ve bu miktar yavrunun 87 500 bireyden oluştuğu bildirilmiştir. İrlanda’da ise Bonn nehrinde kurulan özel avlanma yerinde yılda 23 milyon adet elver yakalandığı kaydedilmişti. Elverler oldukça nazik canlılardır. El ile tutulmamaları gereklidir. Kepçe ile yakalanan yavruların hemen bir ağ kafese veya bir tanka alınarak temiz suda bekletilmeleri ve süratle yetiştirilecekleri yerlere ulaştırılmaları gereklidir. Aralık-şubat aylarının soğuk günlerinde yakalanacak yavruların taşınmasında dikkatli olmak gereklidir. Elverlerin Bekletilmesi ve Taşınması Elverler yakalandıktan sonra pazara veya yetiştirme yerlerine nakledilmeden önce özel tanklarda bir süre tutulurlar. Bu hem yeterli miktarda yavrunun toplanabilmesi için yeterli zamanın sağlaması, hem de yeni ortama konulmadan önce gerekli uyum ortamını oluşturmayı sağlar. Ayrıca bu sırada dayanıksız balıklar ölür sağlıklı ve kuvvetli balılar kalır. Yavrular elver tanklarında en az iki en çok beş gün kalırlar. Daha erken nakillerde ölüm oranı artar. Elverleri bu tanklarda uygun ortamda tutabilmek için devamlı akan tatlı suya ve havalandırmaya ihtiyaç vardır. Tankların üzeri örtülü olmalıdır. Bu amaçla yavruların duvarlara tırmanarak kaçmasını önlemek için, fiberglas tanklar kullanılmalıdır. 2x2x0.6 m boyutlarındaki böyle bir tanka 100-125 kg elver konulabilir. Günlük veya saat başına bakım, beyaz denen ölü balıkların tanklardan alınmasıdır. Ölüm oranı % 5 veya daha fazla olabilir. Ölümün çok olması elverlerin tanklara konulmadan ve soğuk bir gecede kova ve leğenlerde uzun süre tutulmasından ileri gelebilir. 2-5 gün içinde ölüm nedeniyle toplam ağırlığın % 15 i kaybedilebilir. Nakilden bir gün önce yemleme kesilir. Yılan balığı yavrularının taşınmasında bir kaç yöntem uygulanır. Birincisi özel havalandırılabilen tankerlerle yapılan taşımacılıkta ortalama 17 tonluk bir su kütlesi ile 1 ton elver taşınabilir. Taşıma suyunun yarı tuzlu olması faydalıdır. İkincisi, dip kısmı bezli kutular veya içinde oksijen ve su konulmuş naylon torbalarla taşıma yapılabilir. Üçüncüsü ise hava yolu ile yapılan taşımacılıkta genel olarak strafordan yapılmış malzemeler kullanılır. Bu malzemeler hafif olduğu gibi yavruları ani sıcaklık değişimlerinden korur. Her biri 0.5 kg bir tavada 1 kg elver taşınabilir. Bu taşımacılıkta buz kullanılmaz. Nakilde önce elverler 6 °C ye kadar soğutulurlar ve ıslak kalmaları için çok az su ilave edilir. 5.2. Yılan Balığı yetiştirme Yöntemleri Yılan balığı kültüründe beş ayrı metot kullanılmaktadır. Bunlardan bazıları deneme çalışmaları olup büyük ölçüde yetiştiricilikte kullanılmamaktadır. Beş farklı yöntemi vardır: Durgun Su Yöntemi: En eski ve yaygın yöntemdir. Balıkların oksijen ihtiyacının fitoplanktonlar vasıtası ile karşılanması esasına dayalıdır. Yılan balıklarına 12 ºC'nin altında yem verilmez zaten gelişme de olmaz. Bu yetiştirme yönteminde 3-4 dekarlık havuzlar kullanılır. Metrekarede 2-4 kg. balık yetiştirilebilir. Başarılı bir yetiştirme için sıcaklığın 23-30ºC arasında olması gerekir. Başarılı bir üretimde balıkların 2 yıl veya daha az sürede 150-200 gr.a ulaşması beklenir. Akarsu Yöntemi: Bu yöntemde havuzlar küçük tutulur. Alanları 150-300 m² arasında olur. Bu yöntemin uygulanacağı yerde fazla miktarda tatlı su veya deniz suyu bulunması gerekir. Yöntemin başarılı olması için su sıcaklığının 23ºC den yüksek olması gerekir. Bu yöntemde üretime alınacak balıkların başlangıç olarak 30 gr. Civarında tutulması gerekir. Ağ Kafes Yöntemi: 2 x 3 x 1,5 m ölçülerinde 18 x 7 mm. Ağ gözlü metal veya tahta kafesler kullanılabilir. Kafes başına 20-30 kg. arası yılan balığı konulabilir. Yöntem yenidir ve hala geliştirme çalışmaları devam etmektedir. Tünel Yöntemi: Bu yöntemde ticari bir işletme kurulmamış olup, bilimsel denemeler başarılı yetiştiricilik çalışmalarının yapılabileceğini göstermiştir. Yılan balıklarının karanlıkta yem alma eğilimlerine dayanarak yapılmıştır. Bu çalışmada amaç balıkların gündüz saklanması mümkün olabilecek karanlık tünellerin hazırlanmasıyla doğal ortama yakın bir ortamın yaratılmasıdır. Sirkülasyon Yöntemi: Devamlı olarak sirkle edilen suyun kullanılması yolu ile yetiştirme yapılmasına dayana yöntemdir. Bu tür çalışmada 2 tür havuz kullanılır. Bunlardan biri yetiştirme havuzu diğeri filtre havuzudur. Yetiştirme havuzunda kullanılan sı devamlı olarak bir motopomp vasıtasıyla filtre havuzuna gönderilir. Filtre havuzunda suyun fiziksel ve biyolojik temizlenmesi yapılır. Yılan Balığının Durgun Su Yöntemi ile Üretimi İçin Alan Seçimi Yılan balığı yetiştiriciliği yapılacak bir alanda aşağıdaki koşullar aranır: • Öncelikle yeterli su bulunmalıdır. Bu su bir nehirden veya yeraltından sağlanabilir. Basit bir ifade ile 10 ton balık üretimi için günde 250 ton su gerektiği söylenebilir. • Su berrak veya az bulanık olmalı, ancak herhangi bir kirlenme söz konusu olmamalıdır. Az alkali veya nötr sular tercih edilir. Asitli sular yılan balığı için uygun değildir. içerisinde doğal olarak yılan balığı bulunan nehir veya göl suyunun ideal olduğu söylenebilir. • Arazini konumu havuzlardaki suyun tam olarak boşaltılabilmesini mümkün kılmalıdır. • Toprak az geçirgen olmalıdır. Bu nedenle tabanın killi olması istenir. • Üretim havuzlarının iyi güneş alması oksijen üretici fitoplanktonların üremesi bakımından yararlı olur. • Üretim alanının rüzgarlara açık olması suyun yüzeyi ile oksijen alışverişini kolaylaştırır. • Enerji sağlamada ve ulaşım şartlarında zorluk olmamalıdır. • Herhangi bir sel tehlikesi olmamalıdır. Japonya’da yılan balığı üretimine uygun olan su kaynağı ve nehir yakınlarında çok geniş yılan balığı yetiştirme alanları oluşmuştur. Bir çok işletmenin yan yana olması ekonomik ve diğer konularda faydalar sağlamıştır. Özellikle kurulmuş olan kooperatifler, işletmelerin pek çok ihtiyacını karşılamakta ve ürünün kar getirecek fiyatta satılmasını sağlamaktadır. Ayrıca bölgelerde devletin açtığı deneme istasyonları üreticinin sorunları yönünde çalışmalar yaparak devlet desteği sağlamaktadır. Yılan Balığı İşletmelerinin Kurulması Yılan balığı üretiminde çok başarılı olan uzak doğuda genel olarak durgun su yöntemi kullanıldığından bu yetiştirme yöntemi hakkında bilgi sunarak konu açıklanmaya çalışılacaktır. Yılan balığı üretiminde kullanılan havuzları dört grupta toplayabiliriz. Bunlar : 1. Birinci elver havuzları ( genellikle sera içerisinde ) 2. İkinci elver havuzları ( genellikle sera içerisinde ) 3. Yavru balık havuzları 4. Üretim havuzları Birinci ve İkinci Elver Havuzları Bu havuzlar genellikle sera içinde inşa edilir. Su sıcaklığı 25 °C de sabit tutulur. Böylece ilkbaharda yakalanan yavruların ilk gelişme dönemlerinin hızlı olmasına çalışılır. Yeni yakalanan elverler bu havuzlarda bir ay süre ile yetiştirilebilirler. Havuzlar 60 cm derinlikte ve 5 m çapında yapılır. Havuza verilen su kenardan ve hızlı olarak verilerek havuz içinde dairesel bir hareket elde edilmeye çalışılır. Havuzun orta kısmındaki bir boru ile fazla su tahliye edilir. Bir aylık dönemini burada tamamlayan elverler ikinci elver yetiştirme havuzuna alınırlar. İkinci elver havuzuna alınan yavrular 8-12 cm boyundadırlar. Havuzların ölçüsü 30-100 m. civarında olabilir. Derinlikleri ise 1 m dir. Her iki elver yetiştirme havuzuna da bol miktarda hava verilir. Elver havuzlarına verilen suların çok temiz olması gerekir. çünkü elverler çok hassastır. Yılan balığı yaşlandıkça dayanıklılığı artar. Yavru Balık Havuzları Yavru balık havuzları genellikle yuvarlak yapılır. Genişlikleri 200-300 m derinlikleri ise 1 m tutulur. Dip yapısının çamur olması gerekir. Yağmurlu gecelerde yılan balığı yavrularının kaçmaması için havuz kenarlarının beton olması arzu edilir. Özellikle küçük yavrularda kaçma eğilimi fazladır. Bu nedenle küçük yavruların bulunduğu havuzun kenarları içe doğru meyilli yapılarak kaçmaları engellenmeye çalışılır. 20 cm yi geçen yılan balığı yavruları pek fazla kaçma eğilimi göstermezler. Üretim Havuzları Bu havuzlar Japonya’da eskiden 6-10 dekar veya daha geniş şekilde yapılırlardı. Fakat son yıllarda daha küçük 2-3 dekarlık havuzlar tercih edilmektedir. Buna neden olarak yemleme ve hastalıklarla mücadelenin küçük havuzlarda daha kolay olması gösterilmektedir. Hatta son yılarda havuz alanı 500-1 000 m2 ye kadar küçük tutma eğiliminin arttığı gözlenmektedir. Özellikle Tayland’da bu eğilim daha fazladır. Doğal olarak akarsu yönteminin uygulandığı üretimlerde havuzlar durgun su yöntemine oranla daha küçük tutulur. Üretim havuzlarının derinliği 80-100 cm dolayında olmalıdır. Bu derinlik suyun girdiği bölgede 80-100 cm, suyun boşaltılacağı yerde 120 cm dolayında olabilir. Kenarları balıkların toprağı oyarak kaçmalarını engelleyecek şekilde taş, beton veya briketten yapılmalıdır. Havuz tabanının balıkların oyup girebileceği şekilde çamurlu olması uygun olur. Daha önceki bölümlerde belirtildiği gibi havuzun bir köşesinde su giriş ve çıkışının yapıldığı bir kısım bulunur. Suyun boşaltılmasında özel sistemler uygulanması lazımdır. Çünkü yılan balıkları kaçma eğilimi çok fazla olan ve fırsat bulduğu her yerden geçebilen balıklardır. Bu nedenle dikkatli olmak gereklidir. Aşağıda bu amaçla kullanılan bir su tahliye sistemi sunulmuştur. Durgun su yönteminin uygulandığı yılan balığı işletmelerinde verilen su miktarı çok az olduğundan su tahliyesinin kontrolü kolaylıkla yapılabilir. Bazı işletmelerde su boşaltımı havuzun sonundaki bir boru ile yapılır. Bu boru sayesinde hasat zamanında balıkların kolayca toplanmasında da yararlanılabilir. Bazı işletmelerde ise su boşaltım yeri yapılmaz. Bu tip işletmelerde her gün motopomp ile fazla su boşaltılır. Yılan balığı üretim havuzu kıyısında bir adet yemleme yeri yapılması gereklidir. Bu kısım 3x3 m ebadında ve üzeri kapalı olarak yapılır. Bu yemleme yerinin alt kısmı su yüzeyine doğru açıktır. Buradan bir kap içine konulan balık yemi suya sarkıtılır. Balıklar gündüzleri dahi loş olan bu yere gelerek rahatça yem alırlar. Bu yemleme yerleri genellikle su çalkalanmasının fazla olduğu aeratörlerin yanına kurulur. Böylece yemleme zamanında bu kısımda fazla miktarda toplanan balıkların artan oksijen ihtiyaçları karşılanmaya çalışılır. Elverlerin beslenmesi Yılan balığı üretiminin gerçekleştirilememesi nedeniyle, yetiştirilecek yavrular doğadan yakalanmak zorundadır. Ön büyütmede elverlerin mümkün olan en kısa sürede doğal yemden karma yeme geçişi gerekmektedir. Yetiştiricilik şartlarına en iyi uyum sağlayanlar seçilmelidir. Ergin yılan balıkları ile yavru yılan balıklarının beslenmeleri arasında önemli farklılıklar vardır. Özellikle ergin yılan balığı yeminde yağ oranı yüksek tutulması gerekirken, yavru balık yeminde bunun tersi bir uygulama vardır. Özellikle yeni yakalanan ve 6 000-7 000 tanesi 1 kg gelen elverlerin ağızları küçük olduğu için her yemi almak istemezler ve karma yem almaları ilk günlerde zor olmaktadır. Doğal ortamdan havuzlara alınan yılan balıkları doğrudan bu rasyonlarla beslemeye alınmaz. Şeffaf elverden, elver konumuna geçinceye kadar, yılan balıklarının yapay yeme adaptasyonu için taze sardalye kullanılması sık görülen bir uygulamadır. Başlangıçta sardalyeler bütün olarak, daha sonra balık unu ile karıştırılarak verilmektedir. Karışımdaki taze sardalye oranı tedrici olarak azaltılır ver birkaç hafta sonunda karışımdan tamamen çıkarılır. Diğer bir yöntem de ise başlangıçta küçük toprak solucanları küçük karidesler, tubifeks ve dafnia gibi canlı yem kaynaklarından yararlanır. Bu yemler tercihen geceleri bir sepet üzerine konularak verilir. Yemlemenin sabah 8:00 ile öğleden sonra 14:00 arası yapılması en uygundur. Elverlere tubifeks verilmeden bir saat süre ile %0 2 oranındaki sulfamonomethoksine solüsyonunda tutulur ve yıkandıktan sonra kullanılır. Bir kaç günlük veya tercihen haftalık bu tür beslemeden sonra diğer yemlere geçilmeye çalışılır. Elver yemlemesinde önemli bir konu da elverlerin aynı boylarda olmasıdır. Eğer küçük ve büyük balıklar aynı yerde kalırsa kanibalizm başlar. Aynı zamanda büyük balıklar küçük balıkların yem almasına da engel olur. Suyun Fiziko-kimyasal özellikleri Sıcaklık Su sıcaklığı büyüme oranını etkileyen en önemli faktördür. Yılan balığının 12 °C nin altında yem almadığı havuz tabanında hareketsiz kaldığı bilinmektedir. Bu sıcaklığın üzerinde balıkta yem alma arzusu artar ve gelişme hızlanır. Yem dönüştürme oranının en iyi olduğu sıcaklı 23 °C dir. Elverlerin gelişmesi 15 ile 25 °C arasında gerçekleşmektedir. Avrupa yılan balığı için optimum sıcaklık 23 °C , Japon yılan balığı için 26-27 °C dir (Querellou, 1974). Avrupa yılan balıkları yaşları ilerledikçe daha düşük sıcaklıkları tercih ederler. Descampes ve diğ. (1980), atom enerjisi santrali soğutma suyunda yaptıkları bir çalışmada, 15-27 °C arasında tutulan havuzlarla başlangıç ağırlıkları 13 g olan yılan balıkları 25 ay sonunda 210 g, ısıtma uygulanmayan kontrol grubunda ise (7-19 °C arası) 64 g canlı ağırlığa ulaşmışlardır. Isıtılan havuzlardaki biyomas 4 k/m3 den 34 m3 e ulaşmıştır. Başka bir önemli sonuç da ısıtılan havuzlardaki balıkların boy dağılımının homojenliğini kaybetmesidir. Uygulamada yetiştiriciler tesis yeri seçerken su sıcaklığının 20 °C nin üzerinde olduğu ay sayısını hesaplarlar. Uzak doğuda bu süre beş ay olup mayıs-eylül ayları arasına denk gelmektedir. Bazı üreticiler bu süreyi uzatmak için özel düzenekler yaparlar. Japonya ve Tayvan’da elverler için kapalı binalar özel ısıtma düzenleri kullanılır. Isıtma işlemi, elverlerin geldiği ilk ay olan kasımdan başlar nisana kadar devam eder. Dışarıda su sıcaklığı 5 °C iken içeride 20-25 °C dolayında tutulmaya çalışılır. Dışarıda su sıcaklığı 20 °C ye ulaşınca bütün ısıtma cihazları kapatılır. Yavrular dış havuzlara aktarılır. Son zamanlarda Avrupa ve Avustralya’da aynı uygulamalara başlanmıştır. Oksijen Yılan balıkları özellikle oksijen konsantrasyonu düşük olan kötü ortam şartlarına dayanıklıdırlar. Bazı araştırmacılar yılan balıklarının farklı oksijen ihtiyaçları olduğunu belirtmişlerdir. • Querellou, 1974 : 100 g ortalama ağırlıktan fazla olan bireyler için, oksijen tüketimi 100mg/saat/kg; • Fish culture, 1972: 100 g ortalama ağırlıktan fazla olan bireyler için, oksijen tüketimi 4mg/saat/kg olduğunu bildirmişlerdir. Havuz suyundaki oksijen kaynağı fitoplanktonlar ve su girişidir. Özellikle gece solunumla su içindeki oksijen miktarı 1-2 mg/l seviyesine düşerse yılan balığı başını sudan çıkarmaya başlar. Bunu ölüm takip eder. Uygulamada yetiştiriciler, oksijen konsantrasyonunun 3 mg/l nin üzerinde olmasını isterler. Su içindeki oksijen seviyesini artırmak için suyu karıştırma ve havalandırma düzenekleri yerleştirilir. Özellikle gece su akışının, havuzun bir köşesinden fazla miktarda verilerek tüm havuzu karıştırmadan diğer bir köşeden tahliyesi yapılır. Böylece yılan balıklarının bu ortama gelerek oksijen ihtiyaçlarını karşılamaları sağlanır. Elverlerin oksijen ihtiyacı büyük balıklardan daha fazladır. Bu nedenle havuzlara devamlı akan su ve basınçlı hava verilmesi gereklidir. pH Ph değeri fotosentez sonucu oksijen miktarını, balık ve plankton solunumu sonucu sudaki karbonik asit miktarındaki azalma ve çoğalmaya bağlı olarak değişir. Gündüzün pH optimum değeri 8-9 arasıdır. Gece fotosentez olmadığından pH 7 ye düşer. PH değeri 4,5-6,5 olan asitli sularda yılan balığı yetiştiriciliği iyi sonuç vermez. Ayrıca PH ın amonyak indirgenmesi üzerine etkisi olup bu kirleticinin toksisite düzeyini belirler. Tuzluluk Yılan balıkları çok farklı tuzluluk şartlarına adapte olabilirler. Bu olayda iki organ önemli rol oynar. Deniz ortamında ( hipertonik) solungaçlar, aşırı miktardaki tuzların atılımını sağlar. Tatlı suda ( hipotonik), böbrekler üriner boşaltımla organizmada su girişlerini dengeler. Euryhalin özellik yetiştiricilik açısından bir sorun oluşturmaz. Bir günlük periyot içinde çoğu kez ara tuzluluktaki suları tercih ederler. Genç ve yetişkin yılan balıklarında bu euryhalin özellik hastalıklara karşı yapılacak olan uygulamalarda deniz suyu kullanılmasına izin verir (Querellou, 1974). Uygulamada yetiştiriciler, yetiştiricilik başarısının tatlı suda acı sudan daha fazla olduğunu belirtmişlerdir. Bu durum yılan balıklarının gelişmesi ve fizyolojik olgunlaşması için kendiliğinden nehirleri aramaları ile açıklanabilir. Fitoplankton Normal sağlıklı yılan balığı havuzu fitoplankton nedeniyle yeşil görünür. Durgun su havuzlarında fitoplanktonların, suyun oksijenini kontrol etmek, fotosentez yoluyla pH seviyesini etkilemek ve büyüme sırasında balık artıklarını absorbe etmek gibi önemli görevleri vardır. Ancak havuzda çok fazla miktarda fitoplankton birikmesine izin vermemek gereklidir. Uygun bir seviyedeki fitoplankton ile havuzdaki organik sedimantasyonun, dipteki bakteri faaliyetleri ile çözünmüş maddelerin absorbsiyon oranını kontrol etmek mümkündür. Kapalı günlerde ve gecelerde fotosentez yapamadıklarından balığın büyümesine olumsuz etki yaparlar. Fitoplanktonlar havuz zemininde organik maddelerin bozulması düzenli bir şekilde olmuyorsa gerekli büyümeyi yapamaz veya bol miktarda besin tuzları bulunmasına karşın, suda yeterli karbonik asit bulunmazsa büyüme durur ve bunu ölüm takip eder. Çok miktarda zooplankton üremesi de havuzdaki fitoplanktonları bitirebilir. Normal bir havuzda fitoplankton/zooplankton oranı 97:3 tür. Havuzda çok çeşitli fitoplankton bulunmaktadır. Her biri iklim,sıcaklık,diğer mevsimsel değişikliklere göre havuzun kimyasal dengesine etkide bulunur. Scenedesmus,Pediastrum ve Chlorella yeşil algleri ilkbahar ve sonbaharda ortaya çıkarlar. Microcystis ve Chlorococcus ilkbahar ve yazın, Anabaena ve Oscillatoria sonbaharda havuzlarda görülen mavi-yeşil alglerdir. Havuz suyunda daha çok Scenedesmus bulunursa yılan balıkları yemlerini daha iştahla yemektedirler. Pediastrum , Chlorella veya Oscillatoria, Anabaena çoğunlukta olduğu zaman iştah azalır. Havuzda bulunan zooplanktonların çoğunluğunu rotifer ve su pireleri teşkil eder. Fitoplankton ölümü,dışarıdan havuza bakıldığında rengin yeşilden koyu kahverengine veya açık renge dönüşmesiyle kolayca fark edilir. Renk değişimi aynı zamanda su kalitesinin değişimi demektir. Su yüzünde oksijen arayan balıklar daha sonra iştahlarını kaybederler. Çoğu zaman bunu toplu ölümler takip eder. Su kalitesindeki değişimler yağışlı havalarda da olmaktadır. Ph değeri sabah 9.5 üzerinde,öğleden sonra 7’ nin altında seyretmesi suda amonyak formunda 3ppm azot bulunması su kalitesinin bozulduğunu göstermektedir. Su kalitesindeki değişimleri önleyebilmek için sezon başında ve sonunda havuzlara su doldurmadan önce 60-100gr/m2 sönmemiş kireç serpilir. Kireç zemin toprağını ve zemine yakın suyun kalitesini arttırır. Havuz suyunda zooplankton artışı olmaya başladığında organo fosforik asit esterleri (Dipterex) 0.2-0.3 ppm kullanılarak ortamdaki zooplankton gelişimi önlenmiş olur. Çok ileri safhalardaki su kalitesi bozukluklarında,havuz boşaltılır,balıklar başka havuza alınır. Boşaltılan havuzun dibi kurutulur. Boşaltma mümkün değilse, uygun fitoplankton gelişimi sağlanıncaya kadar havuzda karıştırıcı pedallar kullanılır. Havuz atığı Havuzda çürüyen plankton, yem ve balık artıkları kontrol edilmelidir. Çürüme ve bozulmanın ürünü olan amonyak balığı rahatsız eder, iştahını olumsuz yönde etkiler. Amonyak oksijen olmaması halinde ortaya çıkar. Her yıl havuz boşaltılarak zeminde toplanan artıklar havuzdan alınır. Bunun takiben toprak kurutulur ve kireçlenir. Sülfür Sülfat indirgeyici bakteriler suda bol bulunan sülfatları hidrojen sülfite dönüştürürler. Bu durumda balılar yetersiz oksijen nedeniyle başlarının su yüzeyine çıkarırlar. Bu şartların devam etmesi durumunda büyük kayıplar olabilir. Su demir ihtiva ederse zararsız olan demirsülfit ortaya çıkar. Bu nedenle hidrojensülfitin etkisini azaltmak için bir kaç haftada bir havuz suyuna demir oksit serpiştirilir. Azot,Fosfat, Potasyum Bu elementler fitoplanktonların gelişmesi için gereklidir. Başlangıçta yeni havuzlar gübrelenir. Bu elementlerin optimum miktarları azot için 12,7 ppm fosfat için 1,3 ppm, potasyum için 0,1 ppm dir. 5.5. Yılan balığı yavrularının beslenmesi Yılan balkıları diğer pek çok balığa nazaran farklı özellik gösterirler. Genelde geceleri yem alma alışkanlığı olan türlerdir. Uzakdoğu’da yılan balığı yetiştiriciliğinin başlaması ile birlikte pek çok besleme yöntemleri denenmiştir. Bunlar ipek böceği pupu ile besleme, taze balık eti ile besleme ve karma yem ile beslemedir. Bu yemleme yöntemleri ayrı ayrı uygulanabildiği gibi karışık olarak da ele alınabilir. İpek böceği pupları Tayvan ve Japonya’da uzun süre yılan balığı yetiştiriciliğinde başarı ile kullanılmış ise de daha sonra ekonomik nedenlerle diğer maddelerle besleme ipek böceği pupları ile yemlemenin yerini almış bulunmaktadır. Yapılan hesaplara göre 1 kg canlı ağırlık artışı için 10 kg dolayında ipek böceği pupu harcanmıştır. Uzakdoğu’da günümüzde tek başına ipek böceği pupu ile yılan balığı besiciliği hemen hemen kalmamıştır. Özellikle Japonya’da insan gıdası olarak değerlendirilmesi mümkün olmayan balık etleri ile yılan balığı besisi yaygın olarak uygulanmaktadır. Bu balıkların başında okyanus uskumrusu gelmektedir. Ayrıca orkinos gibi iri balıkların temizlenmesi sırasında elde edilen kafa ve iç organlar gibi artıklar da yemlemede yararlanılmaktadır. Yılan balıklarına diğer balık etleri kıyılarak veya bütün halinde verilir. İri balıklar gözlerinden veya solungaçlarından bir tel üzerine dizilir ve havuza yem olarak asılır. Bu yemler verilmeden önce derilerine yumuşaması için bir kaç dakika kaynar suya batırılır. Bu yapılamazsa yılan balıkları, balıkların derisini parçalayamadığından deriye yapışmış şekilde olan et değerlendirilemez. Bu da havuzda kirlenme sorunları ortaya çıkarır. Bazı işletmelerde her türlü balık ve balık artığı mikserlerle parçalanarak hamur haline getirilir ve tel sepetlerle havuza sarkıtılarak yem olarak kullanılır. Hamur yapma işleminden önce balıkların pişirilmesi ve kılçıklarından temizlenmesi ile havuz dibine çöküp kokuşması önlenir. Japonya’da balık etleri ile besleme ipek böceği pupuna göre daha başarılı olmuştur. Ancak balık etinin temini, depolanması, hazırlanması ve beslemedeki kirlilik problemleri yetiştiricileri karma yemle beslemeye yöneltmiştir. Japonya’da yılan balığı yetiştiriciliğinde günümüzde karma yem kullanım oranı % 80’ e ulaşmış bulunmaktadır. Karma yemler diğer hayvansal yemler gibi balık unu, diğer yem maddeleri vitamin ve yem karışımından oluşur. Un şeklinde pazarlanır. Yılan balığının yoğun yetiştiriciliğinde kullanılan yemlerin protein oranları çok yüksektir. Elver ve büyük balıklarda en üst düzeyde gelişmeyi sağlayabilmek için karma yemdeki protein oranı değişmekte olup % 45 ile % 59 arasında bulunmaktadır. Tayvan’da yapılan bir araştırmaya göre karma yeme katılacak balık ununun beyaz renkli olmasının daha iyi sonuçlar verdiği saptanmıştır. Balık unları % 4 oranında morina karaciğer yağı ve %30-50 su ile ıslatıldıktan sonra yoğrularak elde edilir, ve canlı ağırlığın % 2-8 oranında verilir. Japonya’da karma yeme yağ katma oranı %10’a kadar çıkabilmektedir. Yapılan hamur bir tel sepet içerisinde havuzun yüzeyine yakın daldırılır ve 10-15 dakika süre ile balıkların yemesi için bırakılır. Bu süre sonunda tüketilmeyen yemlerin havuz suyunu kirletmemesi için ortamdan uzaklaştırılır. Yılan balıkları geceleri yemlenen tür olduklarından aydınlık yerlerde yem almaktan hoşlanmazlar. Bu nedenle havuz kenarlarına üstü kapalı yemleme yerleri yapılır. Yapılan çalışmalar göstermiştir ki sudaki oksijenin yükselmesi ile birlikte balıkların iştahları da artmaya başlar. Bu nedenle yemlemenin havuz içindeki fitoplankton varlığı nedeniyle sabah güneşin doğması ile birlikte başlaması gerekmektedir. Bazı işletmelerde suda oksijen çözünmesini sağlayan aeratörler yemleme zamanında devamlı olarak çalıştırılır. Yılan balıkları yemleme yeri ve zamanını öğrenebilen verilen yemi çok iştahla tüketen canlılardır. Yem almaları suyun sıcaklılığına, havanın bulutlu olmasına bağlı olarak değişir. Su sıcaklığı 23-28 °C arasında yem alımı en üst düzeydedir. Son yıllarda 1,5 kg karma yem ile 1 kg canlı ağırlık artışı sağlanabilmektedir. Küçük yavrularda yem oranı büyüklere nazaran daha fazla olur. Yaşlı yılan balıkları gençlere nazaran yağlı yemleri daha iştahla tüketirler. Genel A, D3, E, vitaminleri içeren ve bitkisel yağlar pahalı balık yağlarına tercih edilir. Sıcaklık ve balıkların gelişme dönemine göre verilecek olan yem ve yağ miktarları tablo-2,3 de verilmiştir. Yeme katılan mineral madde miktarı da büyümeyi etkileyen önemli bir faktördür. Karma yemde mineral madde oranı % 5 den daha az olmamalıdır. Mineral medde ihtiva etmeyen veya çok az içeren yemlerle yapılan beslemede yılan balıklarının iki hafta içinde zayıflamaya başladıkları ve daha sonra kitle halinde öldükleri saptanmıştır. Bu nedenle karma yemlerde yapılan çalışmalar sonucu % 8 mineral madde katkısı en iyi sonucu vermiştir. Yusuf GÜNER Ali KIRTIK E.Ü. Su Ürünleri Fakültesi Yetiştiricilik Ana Bilim Dalı 35100 Bornova/İZMİR   Yılan Balığı Yetiştirme ve İdaresi Stoklama yoğunluğu, ağırlık veya sayı olarak birim alana birim alana konulan balık miktarı olarak tanımlanır. Uygulanan kültür metoduna göre, yoğunluk bir tesisten diğerine göre değişir. Japonya’da 1 kg ağırlıkta her biri 0,17 g gelen 6 000 adet elver bulunur. Her elver tankına 3,5 x 6 000 elver konur (m² ye 2 000 adet yada 400 g elver ). Bu oldukça fazla bir miktardır. Bu nedenle elver tanklarına daha fazla oksijen verilir. Çalışmalar büyümeye izin veren belli bir alt sınırı olduğunu göstermiştir. Bir başka deyişle stoklama çok seyrek olursa gerekli büyüme sağlanamaz. Isıtılan havuzlarda elver ağırlığı başlangıç ağırlığının üç katına çıkar. Bu noktada yoğunluk çok fazladır. Balıkların seyreltilmesi gerekir. 1 kg ağırlıkta 1 500 elver olan balıklardan 400 m² alana 150 000 adet konulur. Buna göre m² ye 400 adet yada 100 g yavru düşer. Büyüme oranı Japon yılan balıklarının ilk yıl içindeki büyüme oranları tablo x de verilmiştir. Balıkların büyütüldüğü havuz suyunda ısıtma işlemi uygulanmadığından büyüme oranı düşük çıkmıştır. Havuz suyunu ısıtarak yetiştiricilik yapan bazı işletmelerde, 7-9 ay sonunda 150-200 g canlı ağırlık elde edilebilmektedir. Geleneksel yöntemin uygulandığı daha basit şartlarda yetiştiricilik yapan işletmelerde yetiştiricilik süresi 2 yıla kadar uzar. İlk yılda 30-40 g gelen elverler hedeflenir. Boylama yapılamazsa boylar arasında büyük farklar ortaya çıkar. Bunun sonucu bazı balıklar 120 g ağırlığa ulaştığında bazıları hala 2 g ağırlıkta kalabilir. İyi bir yönetim uygulanmazsa ilk 3-4 ay içinde çok yüksek bir ölüm oranı görülür. Ölüm sebebi iyi yem alamamak ve hastalıktır. Verim Japonya’da yılan balığı Pazar ağırlığı 150-200 g dır. Durgun su kültüründe yetiştirme havuzu verimi 4 kg/m²/yıl dır. Bu verim 20 x 200 g/m²/yıl veya 40 ton/hektar/yıl şeklinde ifade edilebilir. Verim takip edilen uygulamalara, üreticinin işletmesini idare etmedeki bilgi ve becerisine göre değişir. Bazı işletmelerde 8 kg /m²/yıl verim sağlanırken bazı işetmelerde bu verim 1 kg / m²/yıl gibi düşük kalmaktadır. Bazı çiftlikler yavru yetiştirme konusunda ihtisaslaşırlar. “Futo” adı verilen bu çiftçiler balıklarını diğer yetiştiricilere satarlar. Yavru yetiştiriciliğinde amaç en kısa zamanda 10-40 g a gelen balık elde etmektir. Teorik olarak 1 kg elverden 1 ton balık elde etmek mümkündür. Teori, 1 kg balıkta 6000 elver, yaşama oranının % 80 ve yaşayan her balığın ortalama 200 g olduğu varsayımına dayanır. Fakat uygulamalardan elde edilen sonuçlar teorinin oldukça gerisine düşüldüğünü göstermiştir. Günlük bakım Su ürünleri yetiştiriciliğinde koruyucu tedbirler almak, tedaviden hem daha kolay hem de çok daha ucuza mal olur. Bu durumda kayıplar da en aza indirilmiş olur. Çok küçük kalan yada fungi taşıyan balıklar bu amaçla havuzdan ivedilikle uzaklaştırılır. Her gün suyun pH ve sıcaklığı (en düşük ve en yüksek değerleri) fitoplanktonların seviyesi ( secchi disk ile ), suyun oksijen miktarı ölçülmelidir. Tesis günde bir kaç kez dolaşılarak kontrol edilmelidir. Her havuzdaki balık sayısı dikkatle takip edilir. Her iki haftada bir örnek alınarak balık ağırlığı hesap edilir. Verilen ve artan yem miktarı hakkında kayıt tutulur. Balık hasadı ve ayrımı Havuz durumuna göre balıklar galsama ağları, kepçe ağlar ve havuzun boşaltılması ile yakalanır. Boşaltma sıcak rüzgarsız bir günde yapılır. Şayet havuz suyu tuzlu ise, hidrojen sülfitin toksik etkisini gidermek için bir gün önceden demir oksit serpiştirilir. Boşaltma günün erken saatlerinde başlar. Ve havuz yarıya indiğinde bütün boşaltma sistemleri açılarak su akıtılır. Boşaltma yapılırken balıkların bir kısmı yakalanır. Boşaltmanın erken yapılmasının nedeni gece su içinde dolaşan balıkların bazılarının gün başladıktan sonra zemin çamuruna gömülmesine müsaade etmeden su içinde yakalamaktır. Yakalanan ballıklar boylama kasalarından geçirilerek ayrılırlar. Büyük balıklar pazara gönderilir, küçükler havuza geri atılır. Japonya’da iç tüketimin % 50 si Tokyo’da, % 30 u Osaka’da geri kalanı ise diğer bölgelerde olur. 1960 yılından beri her yıl % 15 oranında artmaktadır. Japon yılan balığı Avrupa türlerine tercih edilir. Nakil öncesi aç bırakma Nakilden 3-4 gün önce yemleme tamamen kesilir. Bu sırada balıklar küçük bir yerde tutulur. Bunu yapmaktaki amaç yağ miktarını azaltmak, balık sindirim sisteminde bulunan ve ileride ortaya çıkabilecek artıklardan kurtulmaktır. Bu işlem verimliliği artırır, balığı nakil koşullarına hazırlar. Aç bırakmada üç metot kullanılır. 1 Balıklar elver tanklarında tutulur. Bol hava ve su verilir 2 Sepete konulan 20 kg balık tatlı su tankına konur. Bu amaçla kuyu suyu kullanılabilir. 3 Her biri 3 kg balık taşıyan sepetler üst üste konur. En yıkardan balıklar duşa tutulur. Bu işlem sonunda balık ağırlığı % 8 fire verir. Yusuf GÜNER Ali KIRTIK E.Ü. Su Ürünleri Fakültesi Yetiştiricilik Ana Bilim Dalı 35100 Bornova/İZMİR PDF DÖKÜMAN İNCELE : documents/ck37.pdf    

http://www.biyologlar.com/anguilla-anguilla-yilan-baligi-ve-ozellikleri

Balıklarda Göçlerle İlgili Davranışı Kontrol Eden Faktörler

Balıkçılık biyolojisi alanında, balık fizyolojisi üzerinde çalışan bilim adamlarından birçoklarının yaklaşık yüzyıldan beri, bu konu üzerine dikkat ve önemle eğildikleri bir gerçektir. Bazı balıklarda gözlenen üreme ile ilgili göçler (migrasyon), tıpkı bazı kuşlar gibi, belirli zamanlarda, hayati önemi büyük ve neslin devamı için, bir zorunluluk olarak yapılan göçlerdir. Bu göçler hangi amaçla olursa olsun iki yönde yapılır. Denizlerden tatlısulara Tatlısulardan denizlere Normal olarak, denizlerde yaşayan, fakat yumurta bırakmak üzere tatlısulara geçen balıklara Potamotok veya Anadrom balıklar denir. Örneğin, Tirsi balığı (Clupeid' lerden Alosa türleri) ; Som balığı (Salmonidler' den Salma salar] Anadrom balıklardır. Buna karşın, tatlısulardan denizlere geçen balıklara'da Katadrom balıklar denir. Avrupa Yılan balığı (Anguilla anguilla] ; Kefal balıkları (Mugilidae) Katadrom balıklardandır. Özellikle, Atlantik ve Pasifik okyanusları gibi, büyük denizlerde, göçlerin balık avcılığı yönünden önemi fazladır. Bu konuda, son 50-60 yıldan beri, gerek kırsal alanlarda (doğada) ve gerekse, laboratuvar koşullarında göçlerle ilgili pekçok araştırma projeleri üzerine gözlem ve deneyler sürdürülmektedir. Bununla beraber, zaman zaman alınan sonuçlarla, ulaşılan mesafe göç olayının mekanizmasını açıklamaya ve sırlarını çözmeye halen yeterli değildir. Gerçek şudur ki, kalıtsal özelliklerinden veya içgüdüsel davranışlarından başlayarak, hormonal etkilere ve bu temel faktörleri etkileyen fizikokimyasal çevre koşullarına kadar, göç olayı ile doğrudan veya dolaylı olarak ilişkili ve araştırılması güç olan pekçok faktör söz konusudur. Hal böyle iken, göç olayını, şimdilik belli bir amacı gerçekleştirmek üzere veya diğer bir deyimle, neslin devamlılığını sağlamak üzere, içgüdüsel bir davranış çerçevesi içinde programlanmış bir seri fizyolojik uyum sağlama dizisi içinde aramak lazım geldiği söylenebilir. Oldukça karmaşık bir uyum dizisi içinde cereyan ettiği sanılan göçle, amaca ulaşmak için, neden bu kadar dolanbaçlı yollar seçilmiş olduğunun cevabı halen bir sır olmakla beraber, yapılan gözlemlerle pekçok ipuçları da gözden kaçmamaktadır. Örneğin, üreyebilmeleri için, iyi beslenebilecek ve risklerden uzak bir ortama göç gereksinimi duyma ve orada beslendikten ve gonadların gelişimini sağladıktan sonra da bunları en uygun bir ortamda bırakarak, yumurtaların döllenmesini sağlama ve sonra da çıkan larvaların metamorfozu ile minyatür bir yılan balığına (elver) dönüştürme olanağına kavuşturmak için hormonal gelişme gereksinimlerini gerçekleştirme v.b. gibi istekleri oluşturabilmek üzere yapılan düzenlemenin, bu hayvanlarda görülen içgüdüsel bir göçü sergilediği düşünülebilir. Zira böyle bir göçün keyfi bir davranış olmayıp, mecburiyet kespeden bir davranışla içgüdüye bağlandığı bir gerçektir. Bu periyodik göç şayet keyfi olsaydı, koşulların değişmesiyle zaman zaman değişebilirdi, oysa ki belli bir program çerçevesi içinde aynı aksiyonun tekrarı ile nesillerin devamı sağlanmaktadır. Bütün bu sorulara, muhtemelen daha da akla yakın bir cevap bulabilmek için olsa gerek ki, göç eden bu balıklar üzerinde giderek artan araştırmalar sürdürülmektedir. Balıklarda, belirtilen amaçla gerçekleştirilen başlıca iki tip göçten söz etmiştik. Sırası gelmişken yukarıda sözü edilen Som bahklarındaki (Sa/mo salar] göçünü ele alalım. Suları oldukça soğuk (5°-6°C) nehirlerde bölgeye göre Kasım - Şubat arası yumurtadan çıkan ve belli bir süre (2 yıl kadar) sonunda okyanusa göç eden ve burada beslenip, belli bir cinsi olgunluğa ulaşarak, yumurta bırakmak üzere tekrar doğdukları yere (nehirlere) dönen balıklarda (Salmonidae familyasından Atlantik Salmonu Salma salar'da. ve Pasifik Salmonu Onchorynchus nerko'da.} gözlenen bu tip göç olayı, yukarıda belirtilen Anadromus göç olarak adlandırılır. Yılan balıklarında (Anguilla anguilla} ise, okyanusların belirli ortamlarında, bu balıkların bıraktıkları yumurtalardan çıkan larvalar (Leptocephalus), belli bir süre (3 yıl kadar) sonunda metamorfoz geçirip, genç bir yılan balığı yavrusu (elver) haline dönüştükten sonra, beslenip cinsel olgunluğa erişmek üzere tatlısulara geçerler. Cinsi olgunluğa erişinceye kadar yaşamlarını burada sürdürdükten sonra, olgunlaşarak yumurta bırakmak ve nesillerinin devamını sağlamak üzere, tekrar doğdukları yerlere (denize) dönerler. Bu tip göçe de Katadromus göç adı verilir. Kuzey Avrupa'da (İsveç, Norveç, Danimarka, Finlandiya ve ingiltere) veya Kuzey-Doğu Amerika kesiminde herhangi küçük bir nehirde doğup ta, yaşamına başlayan Salmo salar türüne mensup bir Som balığı yavrusu ile aynı şekilde Pasifiğe akan nehirlerde yaşayan Onchorynchus türlerinin yavruları, henüz genç sayılabilecek bir yaşta iken (2 yaşında) nehirlerin aşağı kısımlarına doğru göçe başlarlar ve sonunda nehrin onları götürdüğü okyanusa (Salmo salar Atlantiğe; Onchorynchus Pasifiğe) ulaşırlar. Orada 4-5 yıl yaşadıktan sonra, tekrar doğdukları yere, tatlısulara dönmek üzere, uzun bir yolculuğa çıkarlar. Bu sırada nehirlerin akış yönünün tersine yüzerek irili ufaklı pekçok çağlayanlardan geçerek bu yolculukları sonunda, hedeflerine ulaşabilmek için doğdukları yerleri acaba nasıl hatırlayabileceklerdir, hatta bazen binlerce km. ye ulaşan bu dönüş yolunu nasıl bulupta katedebileceklerdir. Göç olayı boyunca ortam koşullarının ne denli değişken çevre koşullarına uyabilmeleri için, balığın metabolizmasında ne gibi değişiklikler oluşacaktır. Alabalıkların, genellikle Atlantik ve Pasifik Salmonu türlerinde gençler (jüvenil) her ilkbaharda, günlerin uzamasıyla beraber yolculuğa çıkar ve nehirlerin alt kesimlerine doğru inmeye başlarlar. Bu arada eğer varsa yollan üzerindeki, göllere de uğrarlar ve orada yine denize doğru yollarına devam ederler. Uzun yıllardan beri, gümüşimsi renkte görülen bu genç bireylerin, adeta kabına sığamazcasına hareketleriyle ilkbaharda nehirlerde 2-3 ay süre ile görülebilmelerinin nedeni de, denize doğru olan bu göçlerden dolayıdır. Yılan balıkları (Anguilla anguilla} için durum, daha da ilginçtir. Yıllar önce, bu balıkların yumurtalarından yeni çıkan larvaları, başka bir balık türü sanılarak, morfolojik görünümüne uygun düşen Leptocephalus adı ile isimlendirilmiş ve sınıflandırmada da bu şekilde yer almıştır. Avrupa yılan balığı (Anguilla anguilla} tülünün bu larvaları, doğdukları yer olan Sargassa denizinden Avrupa'ya doğru yola çıkarak 3 yılda Atlantiği aştıktan sonra, Avrupa kıyılarına ulaştıklarında, geçirdikleri bir metamorfozla tipik bir yılan balığı yavrusuna dönüşürler. Daha önce Leptocephalus diye adlandırılan bu yavruların, larval safhasının, aslında Avurpa yılan balığının yavru safhasından önceki, larval safha olduğu hakikati anlaşılmış ve bu safhaya sehven verilen Leptocephalus tarihi adı da bir hatıra olarak muhafaza edilegelmiştir. Avrupa yılan balıkları (Anguilla anguilla) türü Kuzey Atlantiğin Doğu kıyılarında, Batı Avrupa'da, Akdeniz ve Batı Afrika kıyılarında ve hatta dağılım alanları içine İzlanda, Kanarya adaları, Azor adaları, Madeire adalarını da alırken; Amerikan yılan balığı (Anguilla rostrata) türü ise, Labrador yarımadasından, Meksika körfezinin güneyine, Panama'ya, Antiller'e ve Bermuda'ya kadar uzanan bir dağılım gösterir. Bizi burada doğrudan ilgilendiren husus ise, Avurapa yılan balıklarının ve özellikle ülkemiz karasularına giren Akdeniz yılan balıklarının Sargossa denizinde üreyebilmeleri için, uzun bir yolculuğa çıkmaları ve sadece orada yumurta bırakmalarıdır. Bu bölge; 22° 35° Kuzey, 48°-65° Batı enlem ve boylamları içine girer. Bu alanda yumurta bırakma derinliğinin 300 m. olduğu ve su sıcaklığının da 18°C de sabit kaldığı görülür. Yılan balıkları gibi, çok özel olan tek bir yerde (bölgede) yumurtlama alanları olmasa bile, Alabalıklar da onlardaki gibi, metamorfoz deyimini akla getiren bazı morfolojik ve fizyolojik değişiklikler geçirirler. Her iki tür balık için de, yaşamlarının değişik evrelerinde, farklı ortamlarda bulunabilme yeteneğinin metamorfoz olayı ile yakından ilişkili olabileceği düşünülebilir. Alabalıklara örnek olarak Atlantik türü Som balığı (Salmo salar) türünü alabiliriz. Bu türe ait yumurtalar bırakıldıkları nehir veya derelerde, suyun sıcaklığına bağlı olarak 5 haftadan 21 haftaya kadar sürebilen bir kuluçka (înkübasyon) periyodu geçirirler. Bu sürenin sonunda süratli akan sığ suların tabanında çakıllar arasında Alevin adı verilen sarı torbalı (Vitellüs keseli) larvalar belirir. Bu larvalar ancak, vitellüs kesesi absorbe edildikten sonra postlarval safhaya geçerler. Yavrular, yuvayı terkettikleri zaman, boyları aşağı yukarı 3-5 cm.ye ulaşır. Bundan sonra da sığ sularda yaşamaya devam ederler. Bunlara Fry veya parmak boyu balık anlamına gelen Fingerling adı verilir. Bu yaştaki yavrular, bir süre aquatik küçük organizmalarla (bazı küçük su böcekleri ve diğer omurgasızlarla) beslenirler. Ancak, bunların boyları bir yıl sonra 7.5-10 cm. ye, iki yıl sonra da 12.5-15 cm.ye erişir. Bu yaştaki Salmonlara Parr adı verilir. Bunlar, bu çağda halen vücutlarında larva özelliklerini taşırlar. Çünkü Parr çağındaki bir balığın vücudunda onu karakterize eden 10-11 enine (sırt-karın istikametinde) koyu renkli bandlar bulunur. Bu bandlar arasında da yer yer kırmızı benekler görülür. Ayrıca, solungaç kapağı üzerinde iki adet yuvarlak siyah leke dikkati çeker ve bunlardan birisi, gözün hemen arkasında yer alır. Pullar, ilk yaz süresince, şekil almaya ve pulun ortasındaki çekirdek bölgesi etrafında büyüme halkaları belirmeye başlar, ilk kış geçtikten sonra, pul üzerinde koyu bir halka ayırd edilir. Bu halka, balığın kışın çok yavaş veya hiç büyümediğini gösterir. Bugün, yaş tayininde pul çalışmaları başlı başına bir araştırma konusu olmuştur. Pullardan yararlanarak bir balığın yaşı, büyümesi, biyolojik özellikleri, tatllsularda ne kadar kaldıkları ve denize ne zaman döndükleri gibi bir çok faydalı bilgileri öğrenebiliriz. DAHL'a göre Güney Norveç'te Parr'ların çoğu, 2 veya 3 yaşında iken denize göç ederler. Bununla beraber, daha Kuzeyde bu göç içgüdüsü, bu kadar genç yaşta iken hissedilmez ve Arktik çevreye yakın bölgelerde, bu balıkların bazıları göç etmeden önce, 4 veya 5 yaşına kadar tatlısularda kalabilirler. Hutton'un Wye nehri (ingiltere) için verdiği rakamlara göre; bölgede mevcut balıklardan bir yaşında olanların % 7.5'u iki yaşında olanların ise % 88,5'u göç etmiştir. Ancak % 4'ü üç yaşına kadar nehirlerde kalmışlardır. Bununla bearber 4 yaşındaki Parr'lara ise, Wye nehrinde hiç rastlanmamıştır. Mallock'a göre, Parr'lar kış aylarında sığ sulara geçerler ve taşlar altında istirahat ederler. Hatta erkeklerin bazıları denize göç etmeden önce erginleşerek dölleme olayına dahi katılırlar. Denize göç, 8-17 cm. boya ulaşınca başlar. Bu esnada portakal sarısı renkleri de kaybolur, gümüşi bir renge bürünürler. Parr yaşında iken balığın renk alması, deri içindeki pigment hücrelerinin etkisi ile olur ve bu renk saydam olan pulların altında görülebilir. Böyle bir balığa, denize doğru göç içgüdüsü geldiği zaman, pulların örttüğü ince derinin görünümü, gümüşi bir renkle yer değiştirir. Parr çağında bir balığın ilk defa renk değiştirmesi, bu ilk göç sırasında gözlenebilir. Yeni kazandığı bu gümüşi renk, daha yoğunlaşmaya başladığı zaman Parr'ların renkleri çok koyulaşır. Bununla beraber, eğer gümüşi renkte görülen pullar kaldırılarak bakılacak olursa, zemindeki derinin de gümüşi renkte olduğu kolaylıkla anlaşılabilir, işte bu çağa ulaşmış bir Parr'a Smolt adı verilir. Smolt çağında olan bu balıklar, nehirlerin ağızlarına geldikleri zaman, açık denize doğru süratle açılırlar. Smolt çağında iken, bu balıklar, genç bir Salma trutta'nın deniz formuna çok benzerler. Bununla beraber, Salmo trutta'nın kuyruğu çatallı olup, vücut yüksekliği de boyuna oranla çok fazla değildir. Aynı yaştaki bir S. truttada. vücutta portakal sarısı renk hakim ve devamlıdır. Açık renkli bir hale ile çevrilen kırmızı benekler yanal çizgi boyunca devam ederler. Bu bakımdan Salmo salar'ın smolt çağı ile Salmo trutta'da lateral çizginin altına kadar uzanan pekçok siyah benekler görülür. Açık denizlerde, Smolt çağındaki balıklar Yılan balığı yavrularını ve Ringa balıklarını yiyerek çok çabuk büyürler. Bu nedenle, bu balıkların bir yıl denizde kaldıktan sonra tekrar nehire döndükleri zaman boyları 40 cm.'den aşağı, ağırlıkları da 800 gramdan az değildir. Bu arada bazıları da istisnai olarak çok büyümüş olabilirler. Hatta bunlar arasında, aynı yaşta oldukları halde, 5-6 kg. olanlarına dahi rastlanabilir. Salmonların, denizden tekrar nehirlere döndükleri çağa Grilse adı verilir. Bu yaştaki balıklar, ergin bir Salmon'un bütün özelliklerini içerirler Bundan böyle, bu balıklarda Parr işaretine rastlanmaz. Hutton ve diğer yazarlara göre, bir kış denizde kalan Grilse'e Salmon nazari ile bakılabilir. Grilse'nin ortalama boyu aşağı yukarı 60 cm'yi bulur. Grilse çağındaki birçok Som balığı nehirlere geçmezler. Kış ve ilkbahar süresince denizlerde kalırlar. Aşağı yukarı 4 yaşına geldikleri zaman küçük bir ilkbahar salmonu olarak nehirlere geçerler. Grilse'nin yumurta bırakma çağına da Kelt adı verilir. Salmonların çok zaman, geldikleri nehre döndükleri gözlenmiştir. Johnston (1905), Tay (ingiltere) nehrinde Smolt çağında 5500 Salmon'u markalamıştır. Markalanan bu balıkların büyük bir kısmı, bir yıl sonra, bazıları iki yıl ve diğer bazıları da 3 veya 4 yıl sonra, tekrar aynı nehirde yakalanmışlardır. Yakalanan bu balıkların herbiri, kendi hayat tarihlerini pullarının üzerinde açıkça göstermişlerdir. Şu halde, pulların okunmasıyla, markalama deneyleri sonucunda uzun bir süre denizlerde kalarak geri dönen balıkların, bu süre zarfında gösterdikleri büyüme farklarını ve ne zaman nehirleri terkedip, ne zaman geri döndüklerini öğrenebiliyoruz. Anguilla anguilla (Avrupa yılan balığı) Kuşkusuz 50 yıl öncesine kadar herhangi bir kimse, yılan balığı hayatının esrarengizliği hakkında konuşabilirdi fakat bugün bu esrarı çözmek için yaptığı araştırmalarla bütün dünyada şöhret yapan Danimarkalı büyük biyolog Johansen SCHMIDT'e ve onun büyük deniz ekspedisyonuna katılanlara ne kadar teşekkür edilse azdır. Bununla beraber, Yılan balığının hayat devri, hala ilgi çekiciliğini sürdürmekte olup, daha fazla aydınlatılması gereken bir konu olarak ortada durmaktadır. Anguilla anguilla nın hayat devri kısaca 8 safhada özetlenebilir. Bu safhaları şöylece sıralayabiliriz Şeffaf olan larvanın (Leptocephalus) Sargasso denizinde doğuşu ve kısa bir süre sonra yüzey sularına çıkışı. Buradan, okyanus sularının akıntısına kapılarak Batı Avrupa sularına doğru göç yoluna girmesi. Bu sırada Leptocephalus'un. küçük ve şeffaf bir yılan balığı veya Elver şekline değişmesi (metamorfozu). Yavru diyebileceğimiz bu genç bireyler (Elver) tarafından Batı Avrupa ve Akdeniz sularının istilâsı. Elverlerin sarı yılan balığına değişmesi (metamorfozu). Bunların içsulara geçerek (nehir ve göllere) büyüme safhasına geçişi. Tatlısudan denize dönerken eşeysel organlarının (ovaryum ve testislerinin) olgunlaşmaya başlamasıyla gümüş renkli yılan balığına dönüşmesi (metamorfozu). Üreme göçü için denizlere dönüşü ile gümüş renkli yılan balığının okyanuslara geçişi ve buradan yumurta bırakarak çoğalma (üreme) ve ölüm safhası olan Sargasso denizine gidişi şeklinde özetlenebilir. Yumurta bırakma göçüne iştirak eden bu balıklara balıkçılar Sivri-burunlu yılan balığı adını verirler. Bu balıklar üreme sahasına göç ederlerken ya çok az gıda alırlar veya hiç almazlar. Denizlere göç, Akdeniz ve civarı ülkelerde ve Adriyatik sahillerinde Eylül ayında başlar. Daha kuzeyde (İsveç, Danimarka ve İngiltere’ nin doğu sahillerinde) göl ve dereleri Ağustos ve Eylülde terkederler. İskandinavyadan genellikle Eylül ve Ekimde ayrılırlar. Bütün Akdeniz ve Avrupa sularından göç eden yılan balıklarının hedefi, yumurta bırakmak için yer yer 1000 m. derinliği aşan Meksika körfezine doğru yol almaktır. Yılan balıklarının yumurta bırakma sırları, ancak 20. yüzyılda açıklanabilmiştir. Daha önce, Elvers denen genç bireylerin ilkbaharda Batı Avrupa nehirlerine geçtikleri ve büyük yılan balıklarının da Sonbaharda nehirlerden aşağı göç ettikleri biliniyordu. Bununla beraber, gümüş renkli yılan balıklarının denizlere geçer geçmez kaybolmaları ve bunu takip eden ilkbaharda genç yılan balıklarının (elvers) ortaya çıkması dikkati çekiyordu. Bu iki safha arasındaki boşluk hakkında hiçbir şey bilinmiyordu. O zamanlar Baltık denizinde Sonbaharda gümüş renkli yılan balığı üzerine düzenli bir balık avcılığı yapılıyordu. Bu balıklar o zaman bir takım özel sepetlerle tutulmaktaydı. Bu sepetlerin ağızları Baltık körfezine dönük olarak yerleştirildiklerinde, oldukça çok denecek miktarda balık yakalanmakta, aksi istikamette kondukları zaman (Atlantiğe doğru dönük olunca) hiç balık tutulmamakta idi. İşte ilk defa bu deneyimlerden yılan balıklarının Kuzey denizine doğru göç ettikleri ortaya çıktı. Bundan sonra, Uluslararası Deniz Araştırmaları Sosyetesinin himayesi altında Danimarkalı bazı araştırıcılar bu balıkların denize doğru yaptıkları göç yollarını saptamak amacı ile bunları madeni plakalarla markalayarak yollarını takip etmeye başladılar. Bu esnada, açık denizde yaptıkları birçok sondalamalarla, markalanan bu balıkları, oralarda göç esnasında çeşitli derinliklerde tekrar yakalamayı başardılar. Doğada yapılan bu müteaddit sondalamalarla yılan balıklarının denize doğru muntazam ve düzenli göçler yaptıkları kanıtlanmış oldu. Yapılan araştırmaların sürdürülmeliyle göç süratinin ortalama olarak günde 15 km. yi bulduğu öğrenilmiş oldu. Markalama deneylerinden elde edilen sonuçlara göre 29 günde 367 km. ve 93 günde ise, 1200 km. yol katettikleri anlaşıldı. Bundan sonra birçok yılan balıkları markalanarak, 15 Ağustos 1905 tarihinde Finlandiya'da Tvarminne sahillerinde suya bırakılmışlar ve aynı yıl 16 Aralık ta, bu balıklar Jutland’ın (Danimarka) Doğu sahilinde Helgenes yakınında tekrar yakalanmışlardır. Ergin yılan balıklarının denizlerden nehirlere geçtiği asla gözlenmemiştir. Bu nedenle şu kanaate varılmıştır ki, yılan balıkları herhalde, hayatlarında bir defa yumurta bırakmakta ve sonra denizde ölmektedirler. Bugün yılan balıkları hakkında noksan olan bilgimiz kısmen de olsa tamamlanmış sayılmakta ve bu iki nokta arasındaki boşlukta (doğum yeri ve ölüm yeri gibi) bu suretle doldurulmuş bulunmaktadır.Bu problemin açıklığa kavuşturulmasını Danimarkalı araştırmacı E. J. SCHMIDT e borçluyuz. Leptocephalus (yumurtadan çıkan ilk şeffaf ve zakkum yaprağına benzeyen yılan balığı larvası) ilk defa 1763 te Villiam MORRIS tarafından tavsif edilmiştir. Bundan sonra, bu formdan birçok numuneler Messina boğazından yakalanmışlar ve bütün bu numuneler Leptocephalidae familyası içinde mütalea edilmişlerdir. Leptocephalus bireyleri şeffaf olup, aşağı yukarı, bir zakkum yaprağı şeklinde yassılaşmış görünümdedir. Onun larva safhasında bir balık olduğunu ilk defa CARUS söylemişse de, bunun Kordeia balığı (Trachypteridae) familyasından bir forma ait olduğunu düşünmekle hata etmiştir. Ancak, 1869 da GILL bunun bir yılan balığı larvası olabileceğini açıklamış ve Leptocephalus morrisii'nin bununla ilgisi bulunmadığını, hatta Conger (Migri) yılan balığının larvası olduğunu da söylemiştir. GUNTHER, bu görüşü kabul etmiş, fakat bu larvaları anormal bir şekilde gelişmiş formlar olarak düşünmüştür. 1886 da Fransız Doğa bilgini DELAGE, Leptocephalus morrisii'yi Roscoff laboratuvarında akvaryumda 7 ay canlı olarak beslemeye muvaffak olmuş ve bunun sonunda genç bir Conger yılan balığına dönüşme safhasını yakından gözleme fırsatını bulmuştur. 1904 yılında SCHMIDT in Faroe adalarının batısında bir örnek yakalamasına kadar, yılan balıklarının larval safhası olan Leptocephalus Akdenizin dışında yakalanmamıştı. İkinci örnek, Farran tarafından irlanda'nın Batı açıklarında ele geçirilmiş ve bundan sonra, Kuzey-Doğu Atlantik'te birçok örnekler elde edilmiştir. Daha sonra Schmidt, bu larvaların sistematik bir araştırmasını yapmayı düşünmüş ve bunun içinde Güney Atlantik'te yaptığı araştırmalardan bir sonuç elde edememesine karşın İngiliz adalarının Batısın da 500 kulaç derinlikte oldukça büyük yılan balığı larvaları sürülerine rastlamıştır. Neden bu larvalar daha önce bulunmamışlardı. Çünkü yılan balıkları yumurta bırakmak için okyanusta büyük derinlikler aramaktadır (1000 m. veya daha fazla). Bu derinlikler Baltık ve Kuzey denizlerinde yoktur. 800-1000 m. derinliklerde ısı, hiç değilse, 5-7 °C derecededir. Bu temparatüre, Kuzey denizinde rastlanmaz, ingiltere adaları, su altında kalmış büyük plato veya bir kıta parçası üzerinde bulunduğundan burada deniz, ani olarak derinleşmekte olup, 100, 500 ve 1000 kulaçlık yerler genelde birbirlerine çok yakındır. Larvalar buralardan göz açıklığı küçük olan orta derinlik ağları ile yakalanmışlar ve ilk büyük avlama İrlanda'nın Güney-Batısında (56 ve 45 Kuzey enlemleri arasında) yapılmıştır. Burada 500 kulaç, derinlikte ısı, bütün yıl süresince 9°C dir, larvalar 500 kulaç derinlik boyunca, Faroes'tan İspanyanın kuzeyine kadar olan sahalarda yakalanabilmişlerdir. Böyle bir larva, yılan balığına değişeceği sırada Leptocephalus'un vücut şeklinde bir değişme olmakta, yani vücut genişliği azalmakta, gözler küçülmekte, larva safhasındaki dişler kaybolmakta ve bağırsak kısalmaktadır. Schmidt 1922 de kendisinin hemen hemen son yayınlarında yılan balıklarının çoğalma özelliklerini özetlemektedir. Buna göre, yumurta bırakma, ilkbaharın başlangıcında başlar ve Yaz içinde sona erer. Çıkan küçük larvalar 7-15 mm. civarındadır, larvalar yumurtadan çıktıktan sonra ilk ay çok çabuk bir büyüme gösterirler ve ilk Yaz süresince ortalama boyları 25 mm. ye ulaşmaktadır. Bundan sonra, larvalar su yüzeyine doğru çıkmaya başlarlar. 25 mm. civarında olan bu larvalardan 13-27 kulaç arasındaki derinliklerde pekçok toplanabilmiştir. Hatta bazen bu boyda olan larvalara yüzey sularında da rastlanabilmiştir. İlk yaz süresince bunlara Batı Atlantik'te (50° Batı boylamının batısında) rastlanmıştır, ikinci Yaz, bunlar 50-55 mm.ye ulaşmışlar ve bu çağda iken orta Atlantik'te görülmüşlerdir. Üçüncü Yaz Avrupa sahili açıklarına gelmişler ve bu esnada tam büyümüş larvalar haline ulaşmışlardır. Bu durumda aşağı yukarı 7.5 cm. boya erişmiş olmalarına rağmen, halen, yaprak şeklindeki yassı larva görünümünü muhafaza ettikleri görülmüştür. Sonbahar ve Kış müddetince, geriye doğru bir gelişme geçirerek asıl yılan balığı şeklini alırlar. Bu safha Elver safhasıdır. Bu safhada sahillere Elver'ler (henüz metamorfozu bitirmiş olan yavrular) bundan sonra, yönlerini nehirlere ve içsu membalarına doğru çevirirler. Şimdiye kadar sözünü ettiğimiz Avrupa yılan balığı yani Anguilla anguilla'dır. Amerikan yılan balığının türü ayrıdır. Bu tür Anguilla rostrata adı ile anılır. Bu türün yumurta bırakma sahası ise, Avrupalı yılan balığının yumurta bıraktığı yerin merkezinin Batı ve Güneyinde yer alır, bu saha Batı İndiana'nın Kuzey hattı boyunca uzanan sahadır. Dolayısıyla iki çoğalma mıntıkası birbirinin üzerine isabet eder. Bu nedenle, bu iki türün yumurtalarından çıkan larvalar da orta Atlantik'te birbirleriyle karışırlar. Bu larvalar sonra, nasıl oluyorda birbirlerinden ayrılarak Amerikan yılan balığı lavvaları yönünü Amerika sahillerine, Avrupa yılan balığı larvaları da yönünü Avrupa sahillerine yöneltebiliyor. Amerikan yılan balığının pelâjik larva safhası aşağı yukarı bir yıl içinde sona erer. Bu nedenle, böyle bir larvanın Avrupa'ya uzun bir seyahat yapmasına esasen zaman da yoktur, çünkü katedilecek mesafe onların ergin hale erişme süresinden daha fazladır. Oysaki, Avrupa yılan balığı larvasının gelişme süresi üç yıl sürer. Bu nedenle bu larvaların Amerika sahillerinden çok uzaklara gitmek için zamanları da vardır. Bunlar Atlantik'in Doğu kısmına varınca, Elver safhasına ancak ulaşmış olurlar. Kısa bir süre sonra da sahillere ve içsulara geçmek için ise nehirleri aramaya başlarlar.

http://www.biyologlar.com/baliklarda-goclerle-ilgili-davranisi-kontrol-eden-faktorler

Bulaşıcı Hastalıkların Tarihçesi

Bulaşıcı hastalıklar tıp alanında insan vücudu dışındaki canlılarla uğraşılan tek alandır. Hastalıklara neden olan başka bir canlının varlığıdır ve bu canlı bazen tek hücreli bir canlı olmasına ve insan vücudu dışında yaşayamayacak kadar zayıf olmasına rağmen dağ gibi insanları deyim yerinde ise devirebilmektedir (HIV/AIDS). Bazen bugünkü tanımlaması "gerçek anlamda canlı olmayan, sadece bir protein parçacığı olan" etkenler de hastalığa ve ölüme neden olabilmektedir(vCreutzfeldt-Jakop Hastalığı). Tarih boyunca enfeksiyon hastalıkları sahnede olmuştur ve dikkatleri üzerinde toplamayı bilmiştir. Salgınlar çıkararak çağlar açıp kapatmış (veba) ya da savaşlarda taraflara üstünlük sağlamıştır (daha önceden çiçek hastalığı virüsü ile hiç karşılaşmamış topluluklara bu hastalığın bulaştırıldığı battaniyeleri dağıtarak tüm askerlerin hastalandırılması gibi). Bugün de biyolojik savaş silahı olarak son derece gündemi meşgul edebilen mikroorganizmalar vardır (şarbon). Enfeksiyon hastalıklarının kilometre taşları hastalıkları felsefeden ayıran, milattan 460 yıl önce doğan İstanköy’lü Hipokrat, mikroskobu bulan Leeuwenhoek, sterilizasyonu farkeden Lister, immunolojinin ilk aşısını yapan Jenner, Pasteur ve antibiyotiklerin babası Fleming’ dır. Leevwmicrosm Leeuwenhoek Eski Mısırlılar leprayı, trahomu, dizanteriyi, 3000 yıl önce Filistinliler vebayı ve bunun farelerle olan ilişkisini biliyorlardı. Enfeksiyon hastalıklarına ait belirti ve bulgular ortaya konup klinik tablolar pek çokları tarafından tanımlansa da hastalıkların nedenlerini anlamaya yönelik gelişmeler için aradan bin yılların geçmesi gerekmiştir. Kötü ruhlara bağlanan bu “sari hastalıklar” daha sonra kötü hava nedeniyle oluyor denmiştir. Din adamları aynı zamanda hekimlik görevi de üstlenmişlerdir. Orta çağda bile Avrupa’da hastalıkların tanrının cezalandırma aracı olduğuna inanışlar süregelmiştir( cüzzam). Fleming İslam alemini ve dünyayı etkileyen tıp önderi İbni Sina, tıp araştırmaları yaparken bazı hastalıkların bulaşmasında göze görünmeyen birtakım yaratıkların etkisi olduğunu, yani mikropların varlığını sezmiş ve bu bilinmeyen mahluklardan eserlerinde sık sık bahsetmiştir. Mikroskobun henüz bilinmediği bir devirde böyle bir yargıya varmak çok ilginçtir. İbni SİNA Ülkemizde de ,buluşu sayesinde adını dünyaca tanınan bir hastalığa verebilen türk doktorlarından en ünlüsü Dr. Hulusi Behçet’tir. Hulusi Behçet; 21, 7 ve 3 yıl takip ettiği üç hastada ağız ve cinsel organlar çevresinde yaralar ile gözde de çeşitli bulgular olduğunu gözler ve bunun yeni bir hastalık olduğuna inanır. 1937'de bu görüşlerini "Dermatologische Wochenschrift" de yazar ve aynı yıl Paris'te Dermatoloji (Cilt Hastalıkları) toplantısında sunar. Bu toplantıda hastalığın kökeninde bir diş iltihabının olabileceğini bildirir. 1938'de bu konuyla ilgili daha detaylı bir yazıyı yine aynı dergide yayınlar. Aynı yıl Dr. Niyazi Gözcü ve Prof.Dr. Frank benzer semptomları içeren iki olgu daha yayınlarlar. Arkasından Avrupa'dan yeni bildiriler de gelir. Böylece Avrupalı doktorlar yeni bir hastalığın varlığına karar verirler. Önceleri göz doktorları Behçet Hastalığını kabul etmeye başlarlar, ancak cildiyeciler bu yeni hastalığı ısrarla inkar ederler. Bu olaylar sürerken, dünyanın diğer yörelerinden bazı yeni olgular daha bildirilir. Bu yayınların sonucunda bütün dünya yeni bir hastalıkla yüzleştiğini en sonunda kabul etmek zorunda kalır. 1947'de Zürih Tıp Fakültesinden Prof. Mischner'in Uluslararası Cenevre Tıp Kongresinde yaptığı bir öneriyle, Dr. Behçet'in bu buluşu "Morbus Behçet" olarak adlandırılır. Böylece daha başlangıçta Behçet Sendromu, Trisymptom Behçet, Morbus Behçet adlandırmaları ortaya çıkar. Hulusi BEHÇET Modern çağda enfeksiyon hastalıkları, bağlantılı olarak halk sağlığı, immünoloji, mikrobiyoloji birlikte değerlendirilmelidir. Bakterilerle oluşan hastalıklara karşı onlarca gruptan antibiyotiğe sahibiz ancak savaşılan şeyin başka bir canlı varlık olması nedeniyle bazı sorunlar mevcuttur ki bunların başında antibiyotiklere direnç gelmektedir. Her yeni bulunan antibiyotiğe bir süre sonra bu bakteriler tarafından direnç geliştirilmekte ve tedavide zorluklar ortaya çıkmaktadır. Bu direnç antibiyotiklerin lüzumsuz ve kötü kullanımları ile de artmaktadır. Mısır mumyalarında bile rastlanan bir hastalık olan tüberküloz (verem) binlerce yıl içinde pek çok şekilde tedavi edilmeye çalışılsa da başarılı olunamamış ve en çok hastanın öldüğü hastalıklardan biri olarak tarihe geçmiştir. Bugün dünyada hala ilk pandemisi süren tüberküloza karşı kazanılan ilk zafer R. Koch tarafından hastalık etkeni olan bakterinin gösterilmesidir (Nobel ödülü- 1905). Koch Bunu izleyen başarı ise Calmette ve Guerin adlı iki araştırmacı tarafından 20 yıl boyunca bakterinin 229 pasajı yapılarak zayıflatılmış bir suş elde ederek oluşturulan aşı-BCG aşısıdır Waksman Üçüncü başarı ise bu hastalığa karşı ilk ilaç olan streptomisinin 1952’de Waksman tarafından bulunmasıdır (Nobel ödülü- 1952 ). 1952 yılı bu buluş nedeniyle “annulus mirabilis- harikalar yılı” olarak olarak adlandırılmıştır. Tüm bu başarılar hastalığı ortadan kaldırmak için yeterli olmamıştır. Bu tarihleri izleyerek çok güçlü ilaçlar bulunmuştur. Ama bakteriler de bu ilaçlara karşı direnç geliştirerek hastalık tablosunda yeni bir şekle neden olmuştur ki “Çok İlaca Dirençli Tüberküloz” olarak adlandırılan bu klinik tablo bugün hem hasta hem de toplum sağlığı açısından en korkulan hastalıklardan biridir. Pek çok hastalığa karşı elimizde aşılar vardır ve çok başarılı uygulamalarla bazı hastalıklar dünyadan tamamen eradike edilmiş ya da edilmektedir. Çiçek eradike edilmiş, çocuk felci için çalışmalar sürmekte ve bir sonraki hedef te kızamıktır. Ancak hastalıkların sayısı ile karşılaştırıldığında bu başarılar cılız kalmaktadır. Halk sağlığını korumaya yönelik hastalıkları oluşmadan önce yoketmeye yönelik çalışmalar sürerken bulaşıcı hastalıklara karşı elimizdeki tek silah olan antibiyotiklerin çok iyi ve doğru kullanımı da giderek daha fazla önem taşımaktadır. Hijyen şartlarındaki ve kişisel hijyene yönelik eğilimlerdeki iyileşmeler de bulaşıcı hastalıklardan korunmada son derece önemlidir. Bu nedenle eğitimin hayatın her aşamasında sürmesi ve kişinin de kendini mevsime, coğrafyaya, bulunduğu ortamın örneğin böceklerine göre nasıl koruyacağı konusunda eğitilmesi son derece önemli hale gelmektedir. Kaynak: www.istanbulsaglik.gov.tr

http://www.biyologlar.com/bulasici-hastaliklarin-tarihcesi

Kadınlarda Göğüslerin Küçük Olmasının Nedenleri Nelerdir?

Kadınlarda Göğüslerin Küçük Olmasının Nedenleri Nelerdir?

Bir çok kadın göğüslerinin küçük olduğundan yakınır ve kendilerince estetik bir sorun olduğunu düşündükleri bu durumun nasıl giderileceği veya nedenleri konusunda bilgi sahibi olmak ister.Ergenlik döneminde göğüsler öströjen ve progesteron hormonların kontrolüyle büyümeye başlar.Göğüsler aslında cinsel organ değildir ve ana görevi bebeğin beslenmesi ve emzirmesidir. Ama cinsel ilişkilerde  çok önemli bir organ haline gelmiştir. Bazı kadınların göğüsleri diğer kadınlara göre çok küçüktür.Bilimsel olarak bu durumun çeşitli nedenleri vardır:1.Hormonal nedenler: folikülin ve lütein hormonlarının azlığı veya tiroid ve hipofiz bezlerinin az çalışması2.Aşırı zayıflık3.Yetersiz beslenme4.Genetik nedenler: Genetik olarak göğüslerin küçüklüğünün en yaygın nedenidir.http://tahlil.com

http://www.biyologlar.com/kadinlarda-goguslerin-kucuk-olmasinin-nedenleri-nelerdir

HPV’nin Diğer Tehlikeleri

HPV’nin Diğer Tehlikeleri

Cinsel yolla bulaşan enfeksiyonlar Serviks kanserinden (rahim ağzı kanseri ) daha fazlasına yol açabilir. Bu enfeksiyonlardan biri de HPV dediğimiz, genital bölgede kondilom denilen siğillerin meydana gelmesine neden olan virüstür. HPV’nin serviks kanserine yol açtığını bilinen bir gerçektir. Fakat HPV sadece serviks kanserine yol açmaz. Başka tehlikeleri de vardır. Bir araştırmaya göre HPV’nin, yemek borusu kanserinin en sık görülen formu, özofagus skuamöz hücreli karsinom riskini artırdığı gözlenmiştir.Özofagus Skuamöz Hücreli Karsinom (OSCC) Nedir? OSCC, mideyi boğaza bağlayan yemek borusunu etkileyen bir kanser çeşididir. 2013 yılında ABD’de yaklaşık 17.990 kişi bu kanser yüzünden hayatını kaybetmiştir. OSCC’nin sigara, diyet, alkol gibi birçok farklı nedeni vardır. Yeni araştırmalar HPV virüsünün OSCC’ye neden olan büyük bir faktör olduğunu göstermektedir.HPV, OSCC kanserinde Nasıl Bir Rol Oynamaktadır?Oral seks, birçok kansere yol açan HPV virüsü kapmanıza neden olabilir. HPV kaptığınızda baş ve boyun kanserlerine yakalanma riskiniz artıyor.Korunma YollarıSadece cinsel beraberlik ile bulaşan bu virüs, tek partnerli kişilerde daha az görülmekle birlikte sürekli partner değiştiren kişiler daha fazla risk altındadır. Kondom kullanarak bir nebze önlem alınabilir. Fakat sadece kondom kullanmak yeterli değildir. Kişilerin 6 ay arayla doktor kontrolüne gitmeleri ve teşhis konduğu takdirde tedavi olmaları gerekiyor.Aşı İle Tedavisi Mümkün Mü?HPV aşısı serviks kanserine yol açan iki virüs tipine karşı koruma sağlayabiliyor. Aşı ile tamamen koruma olduğuna dair henüz net birşey olmamakla birlikte, bu konuda araştırmalar devam ediyor. HPV’nin yüzlerce çeşidi bulunmaktadır. HPV aşısı OSCC dahil olmak üzere diğer HPV ile ilişkili kanserlerin görülme riskini genel olarak azaltmaktadır. Yazar: Betül ŞahinKaynakça:http://blog.womenshealthmag.com/scoop/hpv-esophageal-cancer/http://www.bilgiustam.com

http://www.biyologlar.com/hpvnin-diger-tehlikeleri

 
3WTURK CMS v6.03WTURK CMS v6.0