Biyolojiye gercekci yaklasimin tek adresi.

Arama Sonuçları..

Toplam 3894 kayıt bulundu.

Sürüngenler (Reptilia) Hakkında bilgi

Reptilialar; beden sıcaklığı değişken, amniyonlu, dörtayaklı omurgalılar sınıfı olarak adlandırılır. Sürüngenler amfibyumlar ile kuşlar ve memeliler arasında bir evrim basamağını oluşturur. Eldeki kanıtlar kuşlar ve memelilerin sürüngen atalarından doğduğunu göstermektedir. Adları yürüyüş biçimlerinden gelir; karınları yerden biraz yukarda dursa bile bacaklarının yatay ve kısa olmasından dolayı sürünerek hareket ederler. Yılanlar dışında hepsi 4 bacaklıdır.Sürüngenlerin çoğunda bulunan çok küçük kancalarla donanmış tırnaklar yada pullar tırmanma sırasında önemli bir işlev görür. Ayrıca kuyruklar dallara sarılarak sıkıca tutunmayı sağlar. Sürüngenlerin iyice keratinleşmiş bir derisi vardır, üzeri dışderi kökenli pullarla kaplıdır ve içinde hemen hemen hiç salgı bezi yoktur; hatta altderi kimisinde kemikleşmiştir. (kaplumbağaların bağası) Kafatası bir tek artkafa lokmasıyla omurgaya eklemlenir. 2 kulakçık ve kısmen iki boşluğa ayrılmış bir karıncıktan oluşan (timsahlarda birbirinden ayrıdır) kalpten 2 aort yayı çıkar. Akciğer karmaşık yapıdadır, ama arka tarafında, peteksiz bölümler bulunur (hava keseleri). Sindirim borusunun başlıca özellikleri şunlardır: genellikle kalın bir dil, beslenme rejimine uyarlanmış dişler (yalnızca timsahlarda diş yuvası vardır ve kaplumbağaların ağzı bonuzsu bir gaga biçimindedir) ve arkada sidik ve üreme yollarının açıldığı dışkılık. Duyu organları sürüngenlerde birtakım özellikler gösterir; örneğin Jacobsob organı(ya da ek koklama organı) yılanlara, çatal dilleriyle yakın çevrelerini hemen yoklama olanağı sağlar. Gündüzcü sürüngenlerin retinasında koni biçimindeki hücreler pek çoktur (renkleri görme). Yılanlardan başka bütün sürüngenlerde tek kemikçikli ve kolumelalı bir ortakulak bulunur ve içkulak bir koklea halinde karın-kuyruk doğrultusunda uzanır. Tuatara adındaki tür dışında tüm sürüngenlerin erkeklerinde çiftleşme organı vardır. Türlerin çoğu yumurtlayarak ürerken bazılarında yumurtalar dişini içinde açılır ve canlı yavrular doğar. Birkaç türde ise dişinin içindeki yavrular memelilerin etenesine benzer bir organ aracılığıyla beslenmektedir. Toplam tür sayısı 6 bin dolayında olan günümüz sürüngenleri sıcak ve ılıman bölgelerde geniş bir coğrafi dağılım göstermekle birlikte en çok tropik kuşakta bulunur. Bir kertenkele türü ile bayağı engereğin kuzeye doğru yayılma sınırı, aynı zamanda tüm sürüngenlerin de kuzeyde ulaşabildiği en uç noktalardır. Bu 2 türün coğrafi dağılımı Avrasya’da Kuzey Kutup Bölgesi’ne değin girer.

http://www.biyologlar.com/surungenler-reptilia-hakkinda-bilgi

Meyve ve Meyve tipleri

Meyve ve Meyve tipleri

Meyve, çiçeğin dişi organının, döllenme sonucunda farklılaşıp, yumurtalığın gelişmesiyle meydana gelen ve tohumları taşıyan organa denir.

http://www.biyologlar.com/meyve-ve-meyve-tipleri

Böceklerde Dolaşım Sistemi

Böceklerin dolasim sistemi vücutlarinin dorsaline yerlesmis ve iki kisma ayrilabilen bir boru sisteminden olusmustur. Abdomende bulunan pompalama organi, kalp adi ile anilir. Her segmentte azçok siskin bir kisim olan bir sira ufak bölmelerden ibarettir. Bu bölmelerin yanlarindaki ostium adini alan yariklar kanin içeri girmesine yarar. Thorax içersinde bulunan kisim kalbin basit bir tüp seklindeki uzantisi Aort'tur. Aort genellikle bas içersinde sonlanir. Bazi böcekler kan dolasimina yardimci olmak üzere kalpten baska yardimci pompalama organlarida bulunur. Kalp kani genellikle kapali olan posterior kisimdan pompalayarak anteriora dogru basin iç bosluguna bosaltir. Kan buradan geriye dogru vücut boslugu içersine akarak çesitli doku ve organlari yikar; sonra kalp içine çekilir ve tekrar ön kisma pompalanir. Kanin dolastigi vücut bosluguna hemocoel denir. Bu tip dolasima bilindigi gibi açik dolasim denir. Vücut boslugunda dolasin kan yani hemolymph sivi olan plasma ve hemocyteleri içerir. Kan besin maddelerinin organlara nakli ve oradan artik maddelerin uzaklastirilmasini saglar. Memelilerdeki lenf sisteminin ödevi görür. Kanin görevlerinden biride hidrolik basinç sistemini çalistirmasidir; böylece vücudun bir yerindeki basinç gerekli yere iletilir. Böceklerde hemolenf hemoglobin içermez bu nedenle Oksijen (O2) ve Karbondioksit (CO2) kimyasal olarak degil fiziksel solüsyon olarak tasir. Dolasim sistemine ait bazi yardimci organlarin varligindan bahsetmistik. Yardimci veya Alary denen kas bantlari kalp ve tergitlerin lateral kenari ile baglantilidir. Bu kaslar kalbin çevresindeki alan ve vücut boslugu arasinda tam bir izole alan olustururki buna Dorsal Diyafram denir. Bu durumda bu kismin kalpteki bölümü Dorsal Sinüs veya Perikardial sinus olarak adlandirilir. Bu diyafram ve sinus yanlizca kalp boyunca uzanir ve aort bölgesinde devam etmez. Esasinda Hemolenfin içinde aktigi, gerçek kapali damar sistemindeki damarlarin ödevini gören bosluklara Sinüs denir. Diyaframlar tam olarak gelistiginde genel vücut boslugu veya hemosöl iki kas fibrili tarafindan üç sinüse ayrilir. Bilindigi gibi Dorsal diyafram abdominal boslugun içinden sindirim kanalinin üstünde uzanir ve kapanan kan alani dorsal veya perikardial sinüs olarak bilinir. Perikardial sinüs abdominal terganin altinda yer alir ve kalp bu kismin içine yerlesmistir. Ventral diyafram (oldugu zaman) ventral sinir seridi ganglionlarinin hemen üstünde abdominal boslugun içinde uzanir. Ventral diyafram ile sinirlanan bu alan ventral yada Perineural sinüs olarak adlandirilir. Dorsal ve ventral sinüs arasinda ise iç organlari da içine alan bosluk Viceral sinüs tür. Hava keselerinin Dolasimdaki Fonksiyonu: Vücut boslugundaki hacimleri büyük sinüslerde kan dolasimi, dar lümenli damarlardakinin aksine çok yavastir. Bu nedenle bu bölgelerin besin almalari güçlesir. Bu durumda bu hacimlerin küçültülmesi için yardimci bazi yapilar gelismistir. Hava keseleri, bu sinüslerin sikistirilarak hacminin küçülmesini ve dolayisiyla kan dolasiminin hizlanmasini saglar. Uzun zaman, hava keselerinin, uçucu böceklerde , sadece oksijen sagladigina inanilmisti. Fakat bu keselerin dolasim sistemini etkileyerek enerji maddelerinin ulasimini hizlandirdigi saptanmistir. Özellikle ari ve sineklerde çok büyük olan hava keseleri, vücut boslugunu etkin bir sekilde daraltarak hemolenfin iletimini hizlandirir. Keza son deri degisiminden hemen sonra, kivrilmis ve burusmus integüment ve kanatlarin düzgünlesmesi için hemolenf basincinin arttirilmasi yasamsal öneme sahiptir. Hava keselerinin sisirilmesinin yanisira, yutulan havanin bagirsaklara doldurulmasiyla da büyük bir iç basinç olusturulur. Bu da hemolenf sinüslerinin sikistirilmasini ve dolayisiyla hemolenf basincinin yükselmesini saglar. Böcek kani 4 önemli görevi yürütür: 1- Sindirilmis besin maddeleri sindirim sisteminden absorbe edilir ve organlara tasinir. Organlarda meydana gelmis, artik maddeler bosaltim organina getirilir. Ayrica hormonlarda kaynaklarindan organlara kanla tasinir. 2- Solunum; böceklerin hepsinde Trakeoller hücrelerin bütününe ulasamamakta ve buralarda direkt solunum yapilmamaktadir. Şüphesiz bu hücreler ihtiyaci olan O2 yi kanda erimis olarak bulunan O2 deposundan almaktadir. 3- Korunma; hemositler belli bakteri ve parazitleri elimine ederler. Yaralarin onarilmasi yine kan veya onun hemositleri ile yapilir. 4- Hydrolik görev: Kan volümünün bütünüyle vücut duvari içinde bir tarafindaki basinci diger bölümüne nakledilebilmektedir. Bu mekanik durum, vücutça birçok yerlerde faydali olmaktadir. Kan basinci thorax ve abdomen veya ikisi birden kontraksiyonu ile düzenlenmektedir. Kan basincinin birbirini takiben artmasi ve azalmasi solunum hareketi ile ortaya çikmakta ve trakelere ait hava ceplerinin bosalmasi ve dolmasini saglamaktadir. Lokalize edilmis bir kan basinci gömlek degistirme sirasinda dis derinin çatlamasina yardimci olur. Kan kalbe ostiumlardan emilir ve peristaltik hareketlerle öne sürülür. Kalb çeperinin birbirini takiben kasilma gevsemeleriyle emilen kan ön tarafa gönderir. Bu, kalbin elastikiyeti ve kas yapisi ile olur. (Aliform kaslar ve bununla baglantili diger kaslar). Basa bosaltilan kan oradan vücut bosluguna akar. Otomatik kalp atislari sinir stimülasyonu ilemi, yoksa sinir stimulasyonu olmadan otomatik olarak kalbin kendisinin kasilip gevseme kabiliyetinden mi oldugu henüz bilinmemektedir.

http://www.biyologlar.com/boceklerde-dolasim-sistemi

Köprülü kanyon flora ve faunası

Antalya - Köprülü Kanyon Milli Parkı Ülkemizdeki Milli Parklar Yeri:Antalya İli Ulaşım: Akdeniz Bölgesinde, Antalya ili,Manavgat ilçesi sınırları dahilinde yer alan Milli Parka Antalya'nın 49. km ayrılan bir yol ile gidilir.Bu yol Akdeniz sahillerinden ayrılıp Taşağıl'dan geçip Beşkonak'a ulaşır. Özelliği: Milli Parkın rekreasyonel dokusunu Köprü ırmağı teşkil eder. Bu ırmağın değişken karakteri rafting sporu için ideal alanı yaratır.Ağaçlarla gölgelenen nehir kenarında günübirlik ve kamp kullanma alanları Milli Parkın en önemli aktivitelerini teşkil eder. Bölgenin kil, kumtaşı, konglemera ve kalker kayaçlarından meydana gelen jeolojik yapısı karstik yer şekillerinin oluşmasına imkan sağlamaktadır. Milli Parkın ana kaynağını oluşturan Köprü Irmağının, Bolasan Köyü ile Beşkonak arasında meydana getirdiği yarma vadi,14 km uzunluğu ve 100 m.yi aşan duvarlarıyla ülkemizin en uzun kanyonudur. Milli Parkta vadi tabanlarından,dağların çıplak doruklarına doğru çam, selvi, sedir ve çok sayıda yapraklı ağaç türlerinden meydana gelen bitki örtüsü zengin maki topluluğu ile desteklenmektedir. 400 hektarlık saf Akdeniz selvisi ormanı, flora özelliklerinin en önemli ve en belirgin alanıdır. Milli Parkın yaban hayatının listesinin oldukça geniş olmasına rağmen usulsüz avlanmalar sonucunda türler azalmıştır. Yaban hayatının belli başlı üyeleri;geyik,dağ keçisi, ayı, tilki, kurt, tavşan, sansar, porsuklardır. Köprü kollarında bol miktarda alabalık bulunmaktadır. Görülebilecek Yerler: Milli Park tabii güzellikleri kadar, zengin kültürel kaynağa da sahiptir. MÖ 5. yüzyılda kurulmuş antik Selge şehrinin tiyatrosu, agorası, Zeus ve Artemis tapınakları, sarnıçlar, su kemeri, Köprü ırmağı ve Kocaçay üzerinde bulunan Oluk ve Büğrüm köprüleri ile Selge'yi Pamphlia sahil şehirlerine bağlayan taş kaplamalı tarihi yolu şehrin kalıntılarının en çarpıcı örnekleridir. Rekreaktif öneminden dolayı Köprü ırmağı da görülebilecek yerlendendir. 1970 yılında Milli Park ilan edilen Köprülü Kanyon'un doğallığının bozulmaması için GEF 2 projesi hazırlandı. 36 bin hektarlık bir alanı kapsayan Köprülü Kanyon Milli Parkı'nın içinde 11 tane köyün bulunduğu belirtildi.Antalya'da rafting merkezi olarak bilinen Köprülü Kanyon Milli Parkı'ndaki doğallığın bozulmasını önlemek için hazırlanan GEF 2 Projesi çerçevesinde şu ana kadar gerçekleştirilen 46 projeye 300 bin dolar para harcandı. Proje çerçevesinde bölgeyi çöplerden arındırmak için alınan konteynerlerden bazılarının ise dereye atıldığı ortaya çıktı. Antalya'da içinde 11 köyün yer aldığı Köprülü Kanyon Milli Parkı'nda Dünya Bankası desteğiyle gerçekleştirilen Global Enviromental Focilty (GEF) Projesi çerçevesi ile ilgili Antalya İl Genel Meclisi'nde bir bilgilendirme toplantısı gerçekleştirildi. Toplantıda; GEF2 Projesi Müdürü Çevre ve Orman İl Müdürlüğü'nden Orman Yüksek Mühendisi Osman Yöntem, 36 bin hektarlık bir alanı kapsayan Köprülü Kanyon Milli Parkı'nın içinde 11 tane köyün bulunduğunu söyledi. Bölgenin 1970 yılında Milli Park ilan edildiğini hatırlatan Yöntem, “Bir bölgenin milli park olabilmesi için bu yerin doğal ve kültürel açıdan uluslararası turistik bir yer olması gerekiyor. Köprülü Kanyon Milli Parkı bu niteliklerin tümüne sahip olan bir bölge. Köprülü Kanyon Milli Parkı’nda dünyanın en büyük doğal servi ormanı bulunuyor. 500 hektar büyüklüğünde olan doğal servi ormanının dünyada başka bir eşi yok. Ayrıca bu bölgede servi ormanlarının dışında yine doğal olarak karaçam, göknar ve sedir ormanları yer alıyor. Çok zengin bir floraya sahip olan Köprülü Kanyon da bine yakın bitki yetişiyor. Bunların 29’u endemik. Ayrıca 164 kuş türü, 32 memeli, 22 sürüngen, 7 balık ve böcek türlerinin yer aldığı bu bölgede yaban keçileri ile Akbabalar yaşıyor. Psidia ile Selge kentini de içine alan Köprülü Kanyon Milli Parkı’nda bu değerlerin korunması için GEF2 Projesi hazırlandı” dedi. Antalya ili ülkemizin bitki zenginliğini barındıran önemli alanlarımızdan birisidir. Türkiye florasının yazarı Davis’in yaptığı karelemede C3 karesi içerisinde yer alan Antalya’nın 2500 civarında bitki türünü barındırdığı bilinmektedir. Bu türlerin 631 tanesinin endemik olduğu ve endemizm oranının %25,5 olduğu kayıtlardan anlaşılmaktadır. Ülkemizin endemizm oranı %30 olduğu düşünülürse Antalya’nın ne denli zengin bitki çeşitliliğine sahip olduğu görülebilir. ***Antalya'nın doğusunda, Köprülü Kanyon Millî parkın Akdenizhavzasındaki yegane servi ormanı (700 hektar) yer almaktadır. Doğu Akdeniz bölgesinde Amanos dağlarında lokal olarak bulunan kayın ormanı bu ağaç türünün güneye yayılan en uç noktasıdır.   Bir biogenetik rezerv kaynağı Köprülü Kanyon •Doç.Dr.Barbaros ÇETİN Günümüzde düzensiz şehirleşme, trafik, gürültü, sanayileşmenin beraberinde meydana getirdiği yoğun ve çeşitli çevre sorunları, insanlarda bir parçası oldukları doğaya dönme özlemi yaratmıştır. Bu özlemi giderecek, insanın dinlenme ve eğlenme ihtiyacını karşılayacak yabani bitki ve hayvan türlerinin gelecek nesillere ekolojik denge içerisinde bırakılabileceği, doğal alanların başında özel statülerle korunan milli parklarımız gelir. Haziran 1992'de yapılan Dünya Çevre Zirvesi'nin sözleşme metninde en önemli konulardan biri de biyoçeşitlilik olmuştur. Bu sözleşme ülkemiz tarafından da imzalanmıştır. Ne yazık ki milli parklarımız üzerinde yaptığımız çalışmalar (1982-92), uluslararası alanda daha önceleri doğal ortamların ve nesli tükenmekte olan türlerin korunması konusunda imzalamış olduğumuz sözleşmelere, tam manasıyla uymadığımızı ortaya koymuştur. Köprülü Kanyon Milli Parkı, yurdumuzda mevcut 22 milli park arasında özel bir öneme sahiptir. Doğal zenginliği bakımından birçok özellikleri arasında en dikkati çeken nokta, doğal bir Servi (Cupressus Sempervirens) ağaç topluluğunun bulunmasıdır. Türkiye Çiçekli Bitkiler Florası'nın 1. cildinde de belirtildiği bu tür, dünya üzerinde sadece Rodos Adası, Antalya civarı ve İran'da doğal olarak yetişmektedir. Dünyadaki en geniş doğal topluluğu ise bu milli parkımızdadır. Ayrıca bu saha Avrupa Parlamentosu'na biyogenetik rezerv olarak bildirilmiştir. Araştırmacı tarafından bu alan hakkında yazılan makale, İsveç Devlet Doğa Bilimleri Müzesi'nin 84 yıllık Fauna och Flora isimli bilimsel dergisine kapak konusu olmuştur. Akdeniz Servi'si olan C. Sempervirens'in ekolojik önemi ilk kez araştırmacılar tarafından belirtilmiş olup, kızılçam birliği seviyesinde bir fasiyes oluşturduğu tanımlanmıştır. Bu bölgenin çiçekli bitkiler florası ve vejetasyonunun yazılması neticesinde, dünya botanik literatürü için 9 yeni bitki türü ilk defa tespit edilmiştir. Karayosunları (Muscu) ve Ciğerotları (Hapaticae) bitki grupları da tarafımızdan ortaya çıkarılmıştır. Tarafımızdan yapılan çalışmaların sonuçları da, alanın bitki örtüsünün önemini bir başka yönden ortaya koymaktadır. Bu türün taraması ülkemizin Akdeniz bölgesinde yapılmış, ancak milli park sınırları dışında rastlanılmamıştır. Bunun yanında, yurdumuzdaki varlığı sadece bu alanda bilinen bazı karayosunu ve ciğerotları türlerine rastlanmıştır. Bu bitkilerin mutlaka özenle korunup, genetik miras olarak değerlendirilmeleri gereklidir. Ülke olarak Bern Sözleşmesi ve son imzalanan Biyoçeşitlilik Sözleşmesi (Rio De Janeiro, 1992) gereği başta milli parklarımız ve diğer doğal alanlarımızı, topluluğumuzla ilgili diğer işleri uygularken, ekolojik gerekleri ile uyumlu olarak, yabani flora ve fauna populasyonlarının devamlılığı için, hep birlikte korumak ve geliştirmek zorundayız. • MUĞLA ŞAH Gazetesi, Sayı: 116

http://www.biyologlar.com/koprulu-kanyon-flora-ve-faunasi

Oksidase Testi

Bu test, mikroorganizmalar tarafından sentezlenen ve intrasellüler olan oksidase enziminin (sitokrom C oksidase) varlığını ortaya koymada kullanılır. Deneyden aynı zamanda cinslerin (Moraxella (+), Neisseria (+), Yersinia (-), Acinetobacter (-), ve türlerin (B. ovis (-), B.neotomae (-) ve B. abortus ( + ) ayırımında yararlanılır. Oksidase reaksiyonu, bakterilerde (aerobik olanlarda) sitokrom oksidase sisteminin bulunduğunu ifade eder. Bu sistem reaksiyonda son hidrojen alıcısı olarak oksijenin kullanımını sağlayarak moleküler oksijeni hidrojen perokside redükte eder. Anaerobik mikroorganizmalarda oksidase sistemi yoktur. Oksidase testi bakterilerde sitokrom C 'nin varlığını ortaya koyarYukarıda da görüldüğü gibi (2. basamak) okside olmuş sitokrom C, ayıraçta bulunan p-amino dimetilanilini okside ederek, renkli bileşik oluşturur (kırmızı - mavi renk).Materyal1) Petri kutusunda veya tüplerde katı besi yeri (sıvı besi yeri de kullanılabilir).2) Mikroorganizmanın saf ve taze kültürleri .3) Kontrol pozitif (P.aeruginosa) ve negatif (E. coli ) suşlarının kültürleri 4)Ayıraç ( %0.5, tetrametil-p-fenilendiamin )MetotMikroorganizmalar katı besi yerine ekildikten sonra 37 °C de 1-5 gün inkubasyona bırakılır. Üremiş koloniler üzerine ayıraç damlatılır.Değerlendirme Üzerine ayıraç damlatılan kolonilerin 1-2 dakika içinde kırmızı mavi renk almaları pozitif oksidase testi olarak kabul edilir. Hiç bir renk değişikliğinin olmaması negatif olarak değerlendirilir. Kolonilerin siyah renk alması öldüklerini ifade eder.Dikkat edilecek noktalar1) Ayıraç sadece kolonilerin üzerine damlatılır. Bütün plate veya tüpe yayılmaz.2) Ayıraçlar taze hazırlanmalıdır. Gerektiğinde buzdolabı sıcaklığında muhafaza edilebilirler.3) Gerektiğinde test filtre kağıt şeritlerinde de yapılabilir. Ayıraca emdirilmiş kağıt şeritler üzerine mikroorganizma kolonileri konur. Kısa bir süre içinde (10-15 saniye ) kırmızı rengin oluşumu pozitif olarak dikkate alınır.4) Besi yerlerinde glikoz ve nitrat bulunmamalıdır. Triptikase soy agar (TSA), nutrient agar (NA) uygundur.5) Koloni alınırken platin öze veya cam çubuk kullanılmalıdır.6) Oksidase ayıracı, serbest oksijen tarafından kolayca okside olur ve duyarlılığını kaybeder. Bunu azaltmak için %0.1 askorbik asit katılabilir.

http://www.biyologlar.com/oksidase-testi-1

TEMELİNDE PİKRİK ASİT BULUNAN TESPİT SOLUSYONLARI

Bu tür solusyonlar iyi birer kuogulanttır. Pikrik asit iyi bir tespit edicidir. Parçalara hızlı nüfuz eder. Nüfuz eden pikrik asiti gidermek için yıkama yavaş ve zor olur. Pikrik asit tek başına asla kullanılmaz. Fakat bir çok karışımın bünyesine bir reaktif olarak iştirak eder. A- Bouin fiksatifiSature (doymuş) pikrik asit …………………………..……………… 75 cc(Doymuş pikrik ait = 1 gr pikrik asitin 86 cc saf suda eritilmesi ile hazırlanır)Ticari formalin  ……………………………………………………… 25 cc Glasiyel asetik asit …………………………….……………………… 5 ccTespit Süresi:  2-8 gündür. 3 gün tercih edilir.Uzun süreli tespitten sakınılmalıdır. Parçaların boyanması güçleşir.Yıkama:  Total preparatlar için (Parafine dökülmeyecek) parçalar su ile yıkanır. Su birkaç kez değiştirilir. Parçalar % 70’lik alkolde 3 gün yıkanır. Bu süre içinde bouin’nin sarı rengi gidinceye kadar alkol değiştirilmelidir. *** Parçalar parafin içine gömülecekse su ile yıkamadan kaçınılmalıdır. Üstünlükleri: Parçaya çok iyi nüfuz eder. Parçalar 5 mm  kadar olabilir. Midokondriler hariç bütün hücresel organeller çok iyi korunabilir. Tüm boyalarla çok iyi boyanır.Sakıncaları: Bağ dokusu şişer. Kan hücreleri iyi tespit edilemez. Bazı Anilin boyalarla dokular iyi boyanmaz. Bouin bilhassa bezler için iyi bir tespit solusyonudur. Böbreklerdeki subrenal bezleri iyi tespit eder. b. Bouin – Allen solusyonu Sature (doymuş) pikrik asit …………………………..75 ccFormaldehit ………………………………………….25 ccAsetik asit (kristal) ………………………………….. 5 ccKullanılacağı zaman 38 dereceye kadar ısıtılması gerekir. Sonra içine kristalize Kromik asit (1,5 gr) ilave edilir ve eriyinceye kadar sallanarak üzerine 2 gr üre konur. Tespit Süresi :  37 derecelik etüvlerde solusyona parçalar konularak 1-3 saat kadar bekletilir. Yıkama     :  % 70 ‘lik alkolle olur. Üstünlükleri ve Sakıncaları : Bouin fiksatifindeki gibidir. Yalnız glikojeni  çok iyi tespit eder. c- Bouin – Hollende fiksatifiBakır asetat (Nötr) ………………………………………………. 2,5 grPikrik asit ………………………………………………………… 4 gr.Asetik asit (kristal) ……………………………………………… 1,5 gr. Formaldehit ………………………………………………….…. 10 ccSaf su …………………………………………………………. 100 cc. Bakır asetat porselen havanda iyice ezildikten sonra 100 cc saf su dökülür ve havan iyice çalkalanır. Bunun içine pikrik asit (4 gr) kristalleri ilave edilir. Şişe çalkalanarak bu kristaller eritilir. Sonra süzülür. Süzüntü içine Formol ile asetik asit konulur. İçinde asetik asit olmasına rağmen uzun süre kullanılabilir.

http://www.biyologlar.com/temelinde-pikrik-asit-bulunan-tespit-solusyonlari

Mantarların beslenmesi, fizyolojisi ve metabolizması

Mantarların kendilerine özgü bir beslenme tarzları bulunmaktadır. Enerji kaynağı için organik bileşiklere ve biyosentez için de karbonlu kaynaklara gereksinim duyarlar. Mantarlar, genel olarak, heterotrofik organizmalar olarak kabul edilirler. Basit organik moleküller (monosakkaridler, amino asitler, organik asitler, vs.) hücre membranlarından kolayca içeri girebilirler. Buna karşın, makromoleküller ise (disakkaridler, polisakkaridler, polipeptid ve proteinler, vs.) dışarıda enzimatik olarak ayrıştırıldıktan ve membrandan geçebilecek bir düzeye indikten sonra içeri girebilirler. Bazı mantarlar da (Myxomycestes) gıdalarını fagositozis veya endositozis ile alabilirler. Mantarlar gıdalarının bir kısmını kendileri sentez edebilirler. Ancak, büyük bir bölümünü de dışardan sağlarlar. Dışarıda bulunan makromoleküllerin veya polimerlerin membrandan girebilmesi ekstrasellüler enzimlerin aktiviteleri ile mümkündür. Bu hidrolitik enzimler, hücre içinde sentezlendikten sonra, bir kısmı (yeteri kadarı) hücre içinde kalır ve diğer bir kısmı da dışarıya bırakılırlar. Bu enzimler polimerleri monomer haline getirirler. Bu monomerler de aktif ve/veya pasif transportla hücre içine girerler. Hücre içine ulaşan bu maddeler burada daha küçük birimlerine ve yapı taşlarına kadar ayrıştırıldıkları gibi bir kısmı da olduğu gibi sentez olaylarında kullanılırlar. Ekstrasellüler enzimlerin dışarı çıkmasında ve hücre duvarına kadar taşınmalarında vesiküllerin büyük rolleri olduğu bildirilmektedir. Vesiküller, sitoplasmik membrana kadar gelerek içindeki enzimleri buraya bırakır ve buradan da enzimler dışarı çıkarlar. Enzimlerin ve hücre içindeki metabolitlerin dışa çıkmasında ve dışardan içeri monomerlerin girişinde suyun rolü büyüktür. Enzimlerin bir kısmı, aynen bakterilerde olduğu gibi, yapısal ve bir bölümü de indüklenebilen bir karaktere sahiptir. Mantarlar karbon ve enerji kaynaklarını bir çok substratlardan temin edebilirler. Doğada serbest olarak yaşayan mantarların bir çoğu enerji için bitkisel orijinli kaynaklardan yararlanırlar. Mantarların büyük bir ekseriyeti de glikoz, sakkaroz, nişasta, maltozu ayrıştırabilir ve bunlardan yararlanabilir. Bazıları da yağ asitlerini, organik asitleri ve gliserolu da enerji kaynağı olarak ve ayrıca, hekzos ve pentoz şekerlerinin derivatlarını da (uronik asit ve şeker alkollerini) kullanabilirler. Bunların hücre membranlarından geçişinde permease enzimlerinin rolü fazladır. Bir polisakkarid (birbirine beta 1 - 4 bağlarıyla birleşmiş glikoz monomerlerinden oluşmuş düz zincirli homopolimer) olan nişasta hücre duvarı yapısında bulunması bakımından önemlidir. Sellüloz da mantar hücrelerin sentezledikleri sellülase enzimleri tarafından ayrıştırılır. İki enzim (endo - beta - glukonase ve beta - glukosidase) tarafından ayrıştırılan selüloz küçük moleküllere kadar indirilir. endo-beta beta-glukosidase Sellüloz ¾———® Sellobiose ¾¾¾—¾——®glikoz glukonase Bu enzimlere topluca sellülase kompleksi adı verilmektedir. Bunlar indüklenebilen enzimlerdendir. Ancak, sellülazın sentezi, ortamda glikoz veya çabuk ayrışabilen diğer şekerler varsa suprese olabilir (katabolik baskılama). Enzimlerden endo glukonazın M.A. 11000 - 65000 ve beta glukosidase de 50000 ile 65000 molekül ağırlığı civarındadır. Bazı mantarlar üremeleri için basit inorganik bileşiklerden de yararlanabilir, eğer bunlar karbon kaynakları bulabilirse. Bir kısmı da tiamin, biotin, vs. gibi vitaminlere gereksinim duyarlar. Mantarların Fizyolojisi Mantarların hücre duvarlarında kitin ve selüloz karakterinde substansların bulunması, bunların devamlı değişen ve çok değişik olan çevre koşullarına uymalarında büyük yardımcı olurlar. Örn. mantarlar, bakterilerin dayanamayacakları kadar yüksek konsantrasyondaki şeker(%50) solüsyonuna direnç gösterirler. Çünkü, yüksek ozmotik basınca karşı, bakteriler kadar duyarlı değillerdir ve bunu hücre duvarının yapısındaki maddeler sağlarlar. Bu nedenle, reçel ve jöleler mantarlar tarafından kolayca kontamine edilebilirler. Ancak, bazı mantar türlerinin de %15 şeker yoğunluğunda üremelerinde sınırlanma oluşmaktadır. Mantarlar genellikle düşük pH derecelerinde bile kolayca üreyebilir ve böyle ortamlara adapte olabilirler. Bu sebeple, mantarların minimal ve maksimal pH-limitleri 2-11 arasında değişebilir. Asit karakterdeki meyveler veya suları (özellikle, domates, portakal, limon, greyfurt, mandalina, vs.) buz dolabı ısısında olsalar bile mantarların üremeleri için iyi bir ortam oluştururlar. Hatta, bazı türler, 1 N asetik asit ve 2 N sülfürik asite dirençlidirler. Bunlara karşın, mantarların türlerine göre değişmek üzere, optimal pH'ları, üreme ve çeşitli metabolit sentezi ile paralellik göstermeyebilir. Buna, diğer çevresel koşulların ve üreme ortamının yapısının da büyük etkisi bulunmaktadır. İnsan ve hayvanlarda hastalık oluşturan mantarlar (patojenik mantarlar), üredikleri bölgelere ait pH limitleri, genellikle, kendileri için optimal bulunmaktadır. Rutubet, mantarların üremelerinde çok önemli faktörlerden birini oluşturmaktadır. Yüksek orandaki rutubet, genellikle, üreme üzerine olumlu etkide bulunur. Rutubet azaldıkça, mantarların çoğalmaları da sınırlanmaya başlar. Mantarların rutubete olan gereksinmeleri, türler arasında değişiklik gösterir. Bazı mantar türleri relatif rutubeti %10-15 arasında bulunan ortamlarda veya suyu çok azalmış olan kuru danelerde üreme yeteneğine sahiptirler. Patojenik mantarların, özellikle, dermatofitlerin insan veya hayvan vücutlarında yerleşebilmesi ve hatta hastalık oluşturabilmesi için rutubet yine önemli bir faktördür.Eğer deri, su ile ıslanmış ise, mantarların yerleşmesi ve üremesi daha kolay olmaktadır. Mantarların üreme ısısı limitleri oldukça geniştir ve türler arasında farklar gösterir. Bu sınırlar, 0° ile 60°C arasında değişebilmektedir. Hifalar maksimal ısı limitinin dışında kolayca ölmelerine karşılık, sporları yüksek ısıya ve değişik çevre koşullarına çok fazla dayanıklılık gösterirler. Buz dolabı ısısında üreyebilen ve gıdaların bozulmasına neden olan mantarlara her zaman rastlamak mümkündür. Termofilik olanlar ise 60°C nin üstünde gelişebilirler. Ancak optimal ısı, üreme için en uygun olanıdır. Patojenik mantarlar için optimal ısı, üzerinde veya içinde üredikleri canlının ısı derecesi olarak kabul edilmektedir. Ancak, deride lokalize olan mantarlar dış ortamla da temasta bulunduklarından optimal ısı, çevrenin ısısı ile bir yakınlık göstermektedir. Bu nedenle, dermatofitler için optimal üreme ısısı 20-25° C'ler arasındadır. Mantarlar, aynı bakterilerde olduğu gibi, üreme ısısı derecelerine göre başlıca 3 kısma ayrılırlar. Soğuk sevenler (psikrofilikler), genellikle 0° ile 15°C'ler; Ilık sevenler (mesofilikler), 15° ile 40°C'ler arasında ve sıcak sevenler (termofilikler) ise 40°C'den yukarıda üreyebilme kabiliyetine sahiptirler. Çok fazla soğuk, mantarların muhafazasında kullanılmaktadır. Sıfırın altında 195°C'de mantarlar uzun süre canlı kalabilirler. Mantarlar, genellikle, aerobik karakter taşırlar ve oksijenin bulunduğu ortamlarda gelişirler ve ürerler. Bu nedenle, havada bulunduğu miktar (veya oran) kadar oksijen, üreme için gereklidir. Patojenik mantarlardan, Actinomyces bazı türleri hariç olmak üzere, diğerleri aerobik koşullarda ürerler. Oksijenin azlığı veya mikroaerofilik koşullar üremeyi ve gelişmeyi sınırlar. Mantarların üremeleri için ışık, gereksinme duyulan önemli bir faktör değildir. Işık olmadan da kolayca gelişebilirler. Patojenik mantarlar da direkt ışık olmadan üreyebilme yeteneğine sahiptirler. Direkt güneş ışınları, üremeyi ve gelişmeyi sınırlar. Ultraviolet ışınları fungistatik bir etkiye sahip olmasına karşın iyonizan ışınlar öldürebilirler (fungisid). Mantarların klorofilleri olmadığı için fotosentez yapamazlar. Bu nedenle gıda gereksinimlerini (beslenme) dışardan karşılamak zorundadırlar. Bazı mantarlar basit yapıdaki ortamlarda (minimal ortam) gelişebildikleri halde, diğerlerinin ise üremeleri ve gelişmeleri için inorganik (C ,H, O, K, P, N, S, Fe, Mn, Mo, Cu, Zn, Ca, vs.) maddelere ve özel üretme faktörlerine (tiamin, biotin, Vit. B6, pantotenik asit, inositol, riboflavin, vs.) ihtiyaçları vardır. Mantarların karbon kaynaklarını, daha ziyade karbonhidratlar, alkol, organik asitler ve proteinler oluşturmaktadır. Nitrogen kaynağı için amonyum tuzları, sitratlar, proteinler, pepton, peptid, amino asit, üre, vs. den yararlanırlar. Bazı türler de amonyak ve nitratı bu amaç için kullanırlar. Mantarların bazıları kendilerine lüzumlu olan vitamin veya diğer gerekli maddeleri sentez edebilme kabiliyetine sahiptirler. Patojenik mantarlardan bir kısmı için tiamin, inositol veya biotin üremeyi artırıcı veya üretme faktörü olarak önemlidir. Örn. T. equinum üremesi için nikotinik asit, T. megnii için de L-histidine gereksinim duyulur. Tiamin, T. tonsurans 'ın üremesini artırır. Patojenik mantarları üretmek ve izole etmek için, laboratuvarlarda, bileşiminde çeşitli inorganik ve organik maddeler bulunan besi yerleri kullanılmaktadır. Bunlar arasında en fazla Sabouraud dekstroz agar, Brain-heart infusion kanlı agar, Czapek agar, Patates dekstroz agar, vs. sayılabilir. Mantarların bazıları kuvvetli enzimler sentezleyerek bunların aracılığı ile çevredeki gıda maddelerini ayrıştırır ve bunlardan yararlanırlar. Bu enzimler, daha ziyade protease, karbonhidrase, nuklease ve lipase karakterindedirler. Bazı mantarlar da birden fazla enzim sentez edebilmektedirler. Örn. Aspergillus niger (amilase, sellobiase, katalase, lipase, protease, maltase, vs.) ve A.oryzae (amidase, amilase, katalase, lipase, protease, maltase, vs.) ve P. camamberti (amidase, laktase, lipase, maltase, protese, nuklease, vs.) gibi. Mantarlar toprak fertilitesinin sağlanmasında, peynirlerin olgunlaşmasında ve bazı önemli endüstri ürünleri elde edilmesinde çok büyük yararlar sağlarlar. Organik asitler (asetik, formik,fumarik, gallik, glukonik, laktik, malonik, sitrik, oksaIik asitIer ve diğerleri), alkoller (alkol, gliserol, eritritol, mannitol, vs.), enzimler (amidase, amilase, invertase, lipase, protease, maltase, vs.), pigmentler (aleoamodin, auratin, beta karoten, aspergillin, vs.), polisakkaridler (glikojen, reguloz, nişasta, vs.), steroller (kolesterol, ergosterol, fungisterol, fitosterol, vs.), antifungal maddeler (griseofulvin, mikostatin, nistatin, vs.), antibiyotikler ( penisilin, eritromisin, sikloserin, sefalosporin, kanamisin, streptomisin, vs.) ve diğer bir çok önemli maddeler ( vitaminler, proteinler, ergot alkaloidleri, lipidler, toksin ve diğer toksik substanslar) bu ürünlerin arasında yer alırlar. Mantarlar insan ve hayvanlarda, gerek kutan ve subkutan ve gerekse sistemik infeksiyonlar oluşturması bakımından da medikal önemleri fazladır. Bu hastalıkların bazıları da zoonotik bir karaktere sahiptir. Mantarlar insan gıdası olarak da kullanıldıklarından, beslenmede özel bir yerleri vardır. Bu amaçla, zehirsiz türde mantarlar üretilmekte ve yemek olarak kullanılmaktadırlar. Mayalardan ekmek yapımına ve içkilerin fermentasyonunda (bira, şarap, viski, vs.) da büyük yararlar elde edildiği gibi bazı peynirlerin (Roquefort, Camemberti, Gorgonzola, Stilton, vs.) olgunlaşmasında da önemli görevler yaparlar. Ayrıca, maya hücrelerinin sentezlediği vitaminler (tiamin, riboflavin nikotinik asit, pentotenik asit, biotin, pridoksin, vs) de insan ve hayvanlarda kullanılan medikal önemleri olan maddeler arasındadır. Mantarların sentezledikleri ve sekonder metabolitlerden olan toksinler (mikotoksinler) insan ve hayvan sağlığı için büyük tehlike göstermektedirler. Bunlar arasında A. flavus 'un ve diğer mantarların sentezledikleri Aflatoksin karaciğerde kanser oluşturacak nitelikte etkiye sahiptir. Ayrıca, Rubratoksin, Okratoksin, Fusariotoksin ve diğer toksik substanslar da çeşitli mantarlar tarafından oluşturulurlar. Mantarlar, meyve, sebze, ağaç gövdeleri, depolardaki çeşitli dane ve diğer gıdalarda da üzerinde veya içinde üreyerek bozulmalarına, değerinin ve kalitesinin düşmesine neden olurlar. Mantarların Metabolizması Mantarların metabolik aktiviteleri alg ve yüksek bitkilerden biraz farklılık gösterir. Fotosentez yetenekleri olmadığından, enerjice zengin karbon kaynaklarına ihtiyaçları vardır. Heterotrofik bir beslenme özelliği gösteren mantarların metabolizmaları oldukça fazladır. Bunu gerçekleştirmek için fazla enerjiye ve dolayısıyla da enerji üretimine gereksinimleri vardır. Mantarlarda da, diğer ökaryotik ve prokaryotiklerde olduğu gibi, adenozin trifosfat ( ATP) merkezi bir role sahiptir. Enerji üretiminde şekerler ve şeker derivatlarının ayrıştırılması (glikolizis) önemli olup başlıca 3 yolla sağlanmaktadır. 1) Embden - Meyerhof - Parnas (EMP), 2) Hekzos monofosfat yolu (HMP) ve 3) Entner - Deudoroff (ED) biyokimyasal yollarıdır. Mantar türlerine göre değişmek üzere, bunlardan birinci veya ikinciler en fazla tercih edilen metabolik yollardandır ve bu sayede enerji üretimi gerçekleştirilir. Her üç metabolik yolla da pürivik asit merkezi role ve basamağa sahiptir. Şekerlerin veya derivatlarının oksidatif ayrışmasında (aerobik) daha fazla enerji açığa çıkar. Çünkü, son ürün olarak karbondioksit ve su meydana gelir. Halbuki, fermentatif ayrışmada (anaerobik) organik asitler daha fazla teşekkül eder ve oluşan enerjinin büyük bir kısmı bu asitlerin atomları arasında saklı kaldığından daha az oranda enerji üretilir (daha az ATP meydana gelir). EMP metabolik yolundan bir molekül glikozdan 2 molekül ATP oluşmasına karşın, HMP yolundan ise 1 M glikozdan ancak 1 molekül ATP üretilir. Fermantasyonda, elektron alıcısı olarak organik moleküller ve respirasyonda ise inorganik moleküller görev yaparlar. Metabolik aktivite sonunda mantar hücreleri içinde birçok depo maddeleri birikebilir. Bunlar arasında lipidler ve karbonhidratlar vardır. Mantar hücre duvarında kitin (N-acetyl glucose amine monomerlerinin birbirlerine beta 1-4 bağları ile birleşmesinden oluşan düz bir zincir halinde polimerdir) de bulunmaktadır. Kitinin sentezinde görev alan chitin synthase enzimi birçok mantarda zymogen (inaktif formda) halinde sentezlenir. Sonradan, proteolitik enzimlerin (kısmi proteolitik) etkileri ile aktif enzim haline dönüştürülür. Son yıllarda, elektron mikroskopla yapılan çalışmalarda chitin synthase enziminin hücre içinde partiküller halinde (chitosome) bulunduğu gösterilmiştir. Bunların yuvarlak (40-70 nm çapında) ve etrafında 7 nm kalınlıkta bir membranla çevrili oldukları ortaya konulmuştur. Eğer, kitosomlar, enzim, aktivatör (proteolitik enzim ve substrat) N-acetyl glucose amine ile birlikte inkube edilirse, bir süre sonra tipik kitin mikrofibrillerinin oluştuğu gözlenebilir. Mantar hücrelerinde, birçok amino asit, organik asitlere amonyağın ilavesiyle (aminasyon) veya transaminasyon ile (amino asit ile organik asit inkorporasyonu) elde edilmektedir. Mantarlarda sekonder metabolizma olarak tanımlanan ve ancak, normal metabolizmanın sınırlandığı durumlarda aktif hale gelen diğer bir metabolizma olayı da bulunmaktadır. Şimdiye dek 1000 den fazla sekonder metabolit bildirilmiştir. Bu metabolitlerin kimyasal yapıları farklı olup türlere özgü bir karakter taşımaktadırlar. Bazı metabolitlerin ticari değerleri çok fazladır (antibiyotikler, hormonlar, vs.) bazıları da insan ve hayvan için oldukça toksiktirler (mikotoksinler gibi). Üremeleri kısıtlanan ve durma dönemine giren mantarlar tarafından sentezlenen bu sekonder metabolitler, bir mantar için hayati önemde olmayıp normal üreme döneminde sentezlenen primer metabolitlerden oldukça farklıdırlar. Primer metabolizma ürünleri arasında bazı hidrolitik enzimler (protease, karbohidrase, lipase, organik asitler, pigmentler, polisakkaridler, steroller, vs. metabolitler) bulunmaktadır. Bunların da ticari önemleri oldukça fazladır. Mantarların hücre yapısında makromoleküller ve mikromoleküller bulunmaktadır. Makromoleküllerden, nukleik asitler, DNA ve RNA ( tRNA, mRNA, rRNA) lar bulunur. Ribosomal RNA 80 S (60 S + 40 S) karakterinde olup, prokaryotiklerden (70 S) farklıdır. Mantar türlerine göre % G + C oranı da değişiklik gösterir. Proteinlerin büyük bir çoğunluğunu enzimler teşkil ederler. Polisakkaridler ise hücre duvarında ve hücre içi depo maddelerinde bulunurlar. Mikromoleküller arasında çeşitli inorganik elementler (minareller, vs.) vardır. Mantar hücrelerinde ayrıca, lipidler, pigment maddeleri, tuzlar, vs. vardır. [1] Kaynak : Temel Mikrobiyoloji Prof. Dr. Mustafa Arda

http://www.biyologlar.com/mantarlarin-beslenmesi-fizyolojisi-ve-metabolizmasi

PERVANE KANATLI TOHUMLAR

Hava yolunu kullanarak üreyen bitkilerden Avrupa akçaağaçlarının tohumları helikopter pervanesine benzer çok ilginç bir tasarıma sahiptir. Bu tohumların sadece tek taraftan çıkan kanatları vardır. Bu kanatları sayesinde uygun şiddette bir rüzgar olduğunda kendi etraflarında dönerek hareket edebilirler. Olgunlaşan her kanat zar gibi bir görüntüye sahiptir ve üzerinde bulunan damarlarla tıpkı bir böcek kanadına benzer. Kendi etraflarında dönecek şekilde hareket etmelerini sağlayan bir dizayna sahip olmaları akçaağaç tohumlarının düşüş hızını yavaşlatır. Eğer rüzgar yoksa tohumlar yavaş yavaş ve helis şeklinde bir hareketle (kendi etraflarında dönerek) yere düşerler. Akçaağaçlar yaşadıkları bölgeye seyrek olarak dağıldıkları için, döllenme işlemlerinde en büyük yardımcıları rüzgarlardır. Ufak bir rüzgar esintisinde dahi kendi etraflarında dönme hareketi yapacak bir tasarıma sahip olan helikopter tohumlar, bu özellikleri sayesinde kimi zaman kilometrelerce süren uzun mesafeleri bile aşabilirler.26 Terminalia calamansanai adlı bitki ise "V" şeklinde kanatlara sahiptir. Bu özellik sayesinde sakin bir hava akımında tıpkı kağıttan bir uçak gibi rahatlıkla havada kayarak uçabilir.27 Akçaağacın tohumları bir çift kanat gibi ağaçta asılı durur. Terminalia bitkisi V şeklinde kanatlara sahiptir.

http://www.biyologlar.com/pervane-kanatli-tohumlar

Biyoteknolojinin Tarımda Kullanılması ( Avantajları ve dezavantajları )

Biyoteknoloji özel bir kullanıma yönelik olarak ürün veya işlemleri dönüştürmek veya meydana getirmek için biyolojik sistem ve canlı organizmaları veya türevlerini kullanan teknolojik uygulamalardır. Geleneksel veya modern olmak üzere 2' ye ayrılır. Geleneksel biyoteknoloji; şarap yada peynir yapımındaki maya kullanımı, bazı deterjanlarda enzim kullanımı ve bazı antibiyotiklerin üretimi gibi canlı organizmaların yapılarının değiştirilmeden kullanıldığı teknolojilerdir Modern biyoteknoloji ise rekombinant DNA, nükleik asitlerin hücre veya organellere doğrudan enfeksiyonu, farklı taksonomik gruplar arasında uygulanan hücre füzyonu gibi doğal fizyolojik üreme, çoğalma ve rekombinasyon engellerini ortadan kaldıran ve klasik ıslah ve seleksiyon yöntemlerince kullanılmayan invitro nükleikasit tekniklerinin tamamı olarak adlandırılır. Modern biyoteknoloji 1970' li yıllardan başlayarak klasik ıslah yöntemleriyle, doğal üreme-çoğalma süreçleriyle elde edilemeyen değişikliklerin yapılmasını sağlamıştır. Modern biyoteknoloji teknikleri kullanılarak elde edilen organizmalara genetik yapısı değiştirilmiş organzimalar, gen transferiyle belirli özellikleri değiştirmiş bitki, hayvan yada mikroorganizmalara transgenik denir. Modern biyoteknoloji tıpta gen tedavilerinden, tarımda daha dayanıklı ve verimli ürünlerce, tekstil ve kozmetik sanayine kadar çok geniş bir yelpazede kullanılmaktadır. Modern biyoteknoloji özellikle bitkisel çalışmalarda rutin olarak kullanılabilir hale gelmiş hatta modern biyoteknolojinin son aşaması olan doğrudan gen transferi tekniğide kullanılmaya başlanmıştır. Gen transferi çalışmalarının basamakları sırasıyla, istenen genlerin bulunması, karakterize edilmesi, izolasyonu ve hedef organizmaya aktarılmasıdır. Yakın zamana kadar gen aktarımında kullanılan en önemli vektörler konakçı hücreye girme yolunu kendisi bulan genetik yapısı değiştirilmiş bakteri ve virüslerdi. Bunların herbiri bazı avantaj ve dezavantajlara sahip. Çünkü virüsler her zaman eklenmiş genin yanında kendi genlerinde bir kısmını etkili hale getirler ve bu durum konak hücrede istenmeyen sonuçlara neden olabilir. Bu yüzden bazı metotlar geliştirilmiştir. Bu metotlardan bazıları ağır metal tuzları kullanarak mikro enjeksiyon, organizmada belli bir hücre tipi tarafından alınacak şekilde yapılmış ince yağ kapsüllerinde taşınma, gun bombardment; bu teknikte ilgili genlerin üzerleri altın partikülleriyle kaplanır. Sonra bu yüklenmiş genler "gene-gun" denilen bir aletle bitki hücresine gönderilir. Burda önemli olan kriter, seçilen hücrenin veya dokunun transformasyona veya sonra tüm bitkide rejenerasyona neden olmalıdır. Diğer bir gen transfer tekniğinde gelişmiş bir bakteri olan Agrobacterium tumafaciens kullanılır. Bu bakterinin doğal bir özelliği tümörlü bazı bitkilere plosmid nakletmesidir (T-DNA). Virulant bakterinin bitki genomuyla birleşmesiyle transformasyon sonuçlanır. Bitki genomunda tümöre neden olan genlerle plosmidler yer değiştirir. Modern biyoteknoloji en geniş kullanım alanını tarımda bulmuştur. Bitkilerde bu metodlardan en çok bakteriler, virüsler ve gunbombardment kullanılır. Tarımsal biyoteknolojide başşlıca 2 amaçtan birincisi daha yüksek kalitede, daha sağlıklı ve besleyici değeri yüksek gıdalar üreterek özellikle tedavide kullanılacak gıdaların üretimiyle ilaç masraflarını minimuma indirmektir. Diğer amaç ise ülkelerin artan nüfusu için satın alabilecekleri temel gıdaların üretimi artırmaktır. (8) TARIMSAL BİYOTEKNOLOJİ UYGULAMALARI ve AMAÇLARI Ticari olarak en çok üretimi yapılan Bacillus thuringiensisden gen aktarılan transgenik, zararlılara dayanıkılı bitkiler; sap ve koçan kurduna dayanıklı mısır, yeşil ve pembe kurda dayanıklı pamuk, patates böceğine dayanıklı patates olup ayçiçeği, buğday ve domateste de bu tarz çalışmalar sürmektedir. Herbisitlere dayanıklılık kazandırılan ve ticari üretime sokulan soya, pamuk, mısır ve çeltiği yanı sıra buğday ve şeker pancarında da yakın gelecekte benzer özellikle kazandırılacaktır. Hastalık ve zararlılara dayanıklılığın aktarılmasıyla hem ilaçlama maliyetleri azaltılır hemde bitki strese girmeyeceği için verimde bir artış sağlanır. Herbisitlere dayanıklılığın kazandırılmasıyla tüm yabancı otlar ölürken bitki canlı kalır. Böylece masraflar düşerken verimde de bir artış sağlanır. Tarımsal biyoteknolojinin uygulamalarıyla yüksek oleik asit düşük linolenik asit içerikli soya, ayçiçeği, yer fıstığı çeşitleriyle, sabun ve detrjan yapımı için daha ucuz ham madde sağlayan kolza çeşidi üretime kazandırılmıştır. Sebze ve meyvelerde etilen sentezinin bloke edilmesiyle olgunlaşmanın geciktirilmesi dolayısıyla raf ömrünün uzatılması domateste başarılmıştır. Çilek, kiraz, muz ve ananasta bu tarz çalışmalar sürmektedir. Kaliteye yönelik bir diğer uygulamada ise aromanın arttırılması için kuru madde içeriği yüksek domates elde edilmiştir. Besin değeri yüksek gıda üretimi amacıyla yapılan biyoteknolojik çalışmalarda ise A vitamini ve demir içeriği yüksek çeltik çeşidi, protein içeriği yüksek tatlı patates, antioksidont içeriği yüksek sebze ve meyveler elde edilecektir. Ayrıca yakın gelecekte bitkilerde immunoglobulinlerin üretimi gerçekleşebilecektir. Biyolojik olarak parçalanabilir sentetik plastik üretimi mısır ve kolzoda çalışılmaktadır. Bioreaktör bitkilerin üretimide bu alandaki son gelişmelerden birisini oluşturmaktadır. Diğer taraftan transgenik ürünler kendi türlerine ait olmayan genleri de taşıdıkları için bazı risklerde söz konusudur. Transgenik ürünlerin üzerinde risk oluşturma ihtimali bulunan başlıca alanlar insan ve hayvan sağlığı, biyolojik çeşitlilik, çevre ve sosyo-ekonomik yapıdır. Uygulanan biyoteknolojik yöntemlerle bitkisel ürünlere aktarılan genler bitki, bakteri ve virüs kaynaklıdır. Gen aktarımı veya değişikliğe uğratılması sırasında işaretliyici olarak antibiyotik, herbisit, dayanıklılık genleri kullanılır. Gen aktarımı ile birlikte diğer organizmalardan hastalık ve alerji yapacak özelliklerin taşınması ihtimali transgenik ürünlerin birincil ve ikincil metabolik ürünleri içinde istenmeyen biyokimyasal ürünler bulunması ihtimalini ortaya çıkarır. Ayrıca antibiyotik dayanıklılık genlerinin insan yada hayvan bünyesine geçmesi nedeniyle dayanıklılık oluşması, transfer edilen genlerin insan bünyesindeki bakterilerle birleşme ihtimali, virüs kaynaklı genlerin dayanıklılık genini diğer virüslere transfer etme ihtimali insan ve hayvan sağlığı açısından önemli risklerdendir. Bitkilere aktarılan yeni özellikler, salıverildikleri çevrede bitki sosyolojisinin bozulmasına, doğal türlerde genetik çeşitliliğin kaybına, ekosistemdeki tür dağılımının ve dengenin bozularak genetik kaynakları oluşturan yabani türlerin doğal evoluasyonlarında sapmalara sebep olabilir. Eğer yabani otlara dayanıklılık geni, transgenik bitkinin yabani türlerine geçerse, bu türlerle yapılacak mücadelenin zorluğu açıktır. Ayrıca herbisitlere dayanıklı hale getirilmiş transgenik çeşitlerin üretildiği bir alanda bir yıl sonra kendi gelen bitkiler, o yıl ki diğer bir ürün için yabancı olacak ve herbisitlerle mücadeleleride güç olacaktır. Aktarılan yeni özelliklerden veya kullanılan teknolojide taşıyıcı olan veya değiştirilerek çevreye bırakılan mikroorganizmaların toprak mikroorganizma yapısına etkiside tereddüt yaratır. Eğer geliştirilen mikroorganizmalar çevreye hakim olursa doğal ortam bozulur. Çevreye ve biyo çeşitliliğe olabilecek bir diğer etkide tek yönlü kimyasal kullanılmasından dolayı tek yönlü evoluasyonun teşvik edilmesidir. Böylece ortamda tek yönlü bir flora meydana gelecek ve yine çevrede bir dengesizlik meydana gelecektir. Ekonomik olarakta transgenik tohumlar normal tohumlardan daha pahallıdır ve bu ürünler çoğunlukla tozlaşan hibrit türlerdir. Yani her yıl tohum yenilemesi gerekir. Yüksek fiyat nedeniyle tohumluk alımını uzun süre devam ettiremeyen küçük çiftler bu durumdan zarar görecektir. Diğer bir husuta transgenik ürünlerin tüketiciler tarafından tercihi ve kabul edilmesidir. Yani tüketicinin ne yediğini bilmesi ve ona göre tercihi yapabilmesi için bu ürünlerin etiketlendirilmeleri gerekir.(8) Sonuç olarak transgenik ürünlerin avantaj ve dezavantajları arasında bir oran kurmalı ve gerçekten tarımsal bir soruna çözüm olup olmadığı araştırılmalı ve ülkenin sosyo-ekonomik yapısı göz önüne alınarak, 21. yüzyılda 6 milyarın üzerine çıkacak dünya nüfusunun beslenmesi için tarımsal biyoteknoloji yegane çözüm olarak görülmektedir. Ancak bu alanda, çevremize ve gelecek nesillere etkileri, olabilecek risklerin minimuma indirilmesi ve bunun için gerekli önlemler alınması gerekir. REFERANSLAR: 1. Prof. Dr. F.V. Sukon Biyomühendisliğe Giriş Ders Notları 2. Doç. V. Eser, S. İbiş, N.Sönmez 4. Tüketici Konseyi Toplantısı Tarım Bakanlığı Araştırması 3. T.M. Klein, R. Arentzen, P. A. Lewis and S. Fitzpatrick-McElligott, Transformation of microbes, plants and animals by particle bombardment.Bio/Technoloy 10 ( 1992 ), pp. 286–291. Abstract-EMBASE Abstract-MEDLİNE Abstract-BIOTECHNOBASE 4. M. D. Chilton, M. H. Drummond, D. J. Merlo, D. Sciaky, A. L. Montoya, M. P. Gordon and E. W. Nester, Stable incorporation of plasmid DNA into higher plant cells: the molecular basis of crown gall tumorigenesis. Cell 11 ( 1977 ), pp. 263–271. Abstract-MEDLİNE Abstract-EMBASE 5. P.Zambryski, H. Joss, C. Gentello, J. Leemans, M. Van Montagu and J. Schell, Ti plasmid vector for the introduction of DNA into plant cells without alterationof their normal regeneration capacity. EMBO J. 2 (1983 ), pp. 2146–2150 6. Bevan, Agrobacterium vectors for plant transformation. Nucl.Acids Res. 12 ( 1984 ), pp. 8711–8721. 7. J. Schell, Transgenic plants as tooks to study the molecular organization of plant genes. Science 237 ( 1987 ), pp. 1176–1183 8. Dr. S. Kefi Tarımsal Araştırmalar Hazırlayan: Berna OLTULU   Danışman: Sacide PEHLİVAN

http://www.biyologlar.com/biyoteknolojinin-tarimda-kullanilmasi-avantajlari-ve-dezavantajlari-

Albertosaurus Dinazor

Yaklaşık 70 milyon yıl önce Kretase dönemin de Kuzey Amerika'da yaşamış tyrannosaurid theropod dinozorun bir cinsidir. Bazı bilim adamları Gorgosaurus libratus cinsi olarak tanımlamakta ama genel olarak tyrannosaurid theropod olarak kabul edilmektedir. Albertosaurus küçük 2 parmaklı elleri ve iri kafasında bulunan keskin dişleri ile iki ayağı üzerinde durabilen ekosistem besin zincirinin en tepesinde yer alan avcılardan biriydi. Albertosaurus muhtemelen az 2 ton ağırlığında, ondan daha ünlü olan Tyrannosaurus daha çok küçüktü. 1884 yılında ilk keşfedildiğinden bu yana, otuzdan fazla bireylerin fosiller çoğu diğer tyrannosaurids için kullanılabilir olandan Albertosaurus anatominin daha ayrıntılı bir bilgiye sahip bilim adamları sağlayan ele geçmiştir. Yapı olarak kuyruktan buruna kadar yaklaşık 10 metre, yerden yüksekliği ise 3.5 metre civarındaydı.

http://www.biyologlar.com/albertosaurus-dinazor

TEMELİNDE DİKROMAT BULUNAN TESPİT SOLUSYONLARI

Kromik asit ve bunun tuzları dokuya az nüfuz eder ve tam olmayan tespit edicilerdir. Potasyum dikromat hücrenin stoplazmik yapısını iyi korur fakat nükleusları bozar. Yağları eritmez. Kullanılacağı zaman tek başına kullanılmaz. Bir takım karışımın terkibine girer. A – Tellyernicki fiksatifi% 3’lük Potastum dikromat …………………………………….95 cc.Asetik asit ……………………………….……………………………5 cc. Kullanılacağı zaman bu 2 solusyon birbiri ile karıştırılmalıdır. Tespit Süresi: Parçanın büyüklüğüne göre 1-2 gündür. Tespit işlemi karanlıkta yapılmalıdır. Yıkama:  24 saat su ile yıkanır sonra % 70’lik alkolde 24 saat yıkanır. Yıkamada karanlıkta yapılmalıdır.   Üstünlükleri:   Asetik asit bulunması nedeniyle dokuya hızlı nüfuz eder. Nükleusu bozmaz. Dikromatın dokuya nüfuzu yavaş olduğundan stoplazmik proteinlerde bozulmaz. Ayrıca yağlarda erimez. Sakıncaları: Asetik asit bulunması nedeniyle mitokondriler tahrip olur. Tespit süresi uzarsa nükleusların boyanması zorlaşır. B – Regaud fiksatifi% 3 ‘lük potasyum dikromat …………………………40 ccFormaldehit  ……………………………………………. 10 ccTespit Süresi:  Parçalar karanlıkta 24 saat veya daha fazla süre bekletilerek tespit edilir. Mitokondri ve stoplazmik granüller için iyi bir fiksatiftir. Yıkama:  24 saat kadar akan çeşme suyunda olur.   Üstünlükleri:   Stoplazmik yapılar iyi korunur. Stoplazmik lipitler bozulmaz ve iyi boyanır. Sakıncaları : Fiksatif dokuya geç nüfuz eder. Dokunun merkezi kısmında meydana gelecek olan bozulmadan (erimeden)  sakınmak için parçaların küçük olmasına dikkat edilir. Parçaların bazı boyalarla boyanmaları güçleşir. Tespit süresi uzadığı takdirde hemotoksilen boyası ile nükleus boyanması zorlaşır.

http://www.biyologlar.com/temelinde-dikromat-bulunan-tespit-solusyonlari

Ortak atadan türeyiş

Geçiş fosilleri ve geçişi kanıtlayan diğer göstergeler Ortak atadan türeme düşüncesi ilk olarak sıralı bir biçimde tabakalaşmış kayalarda bulunana fosillerdeki sistematik değişikliklerin gözlenmesiyle oluştu. Bugün bu gibi tabakaların bazılarının birkaç kilometre kalınlıkta olabildiği ve 2.7 milyar yıllık bir birikime karşılık geldiğini biliyoruz. Zaman içinde geriye doğru gidildikçe fosiller günümüzdeki türlere daha az benziyor ve pek çok farklı tür tek bir türe indirgenebiliyordu. Ancak Darwin zamanında paleontoloji bilimi daha emekleme dönemindeydi ve tabakalaşmış kayaların çoğu ya hiç çalışılmamış, ya da yetersiz çalışılmıştı. Bu yüzden geçiş türü fosilleri eksikti ve bu Darwin’in endişelendiriyordu. Yaratılışçılar daha o zamandan beri evrim teorisindeki bu noktayı yakalayıp , teoriyi buradan vurmaya çalıştılar. Gerçekte bugün fosil belgelerinde aradaki boşlukların çoğu doldurulmuşsa da yine de boşluklar vardır. Gözlenen yaşam biçimlerinin ortaya çıkış sırası ve prokaryotlar (çekirdeksiz hücreler) dışında hepsinin aynı tür hücrelerden oluşmuş olması, bütün ana yaşam biçimi sınıflarının ilk ökaryotik (çekirdekli hücreler) hücreler düzeyinde aynı atayı paylaştıklarını göstermektedir. Ayrıca balıklarla amfibiler, amfibilerle sürüngenler, sürüngenlerle memeliler arasındaki geçişleri belgeleyen çok sayıda fosil bulunmuştur. Yaratılışçıların bahsettiği gibi bir tufan olayına ait hiçbir ize rastlanmamıştır. Ancak zaman zaman olağandışı çok yağışın olduğu dönemlerin olduğuna kuşku yoktur ama bütün dünya üzerinde dağları bile aşan bir su baskınını destekleyen tek bir bilimsel kanıt yoktur. Tüm canlıların geçmişi hakkında her basamaktaki canlının fosiline rastlamak mümkün değildir. Hiçbir fosile rastlanmayabilirdi de. Fosil elde etmenin ne kadar zor, şans eseri olabilecek bir olay olduğunu anlamak için fosillerle ilgili kısma bakınız.Ama eldeki fosillerden edinilen kanıtlar, bilmeceyi birleştirmek için önemli ipuçları sağlamaktadırlar. Şimdi bu geçiş fosillerine biraz değinelim, hani şu yaratılışçıların hiç bulamadığımız söyledikleri geçiş fosilleri. Eustropnepteron isimli balık, Labyrşndthodont adlı bir amfibiana evrimleşmiştir. Amfiabianlardan sürüngenlere evrimleşen canlılar bugün bile mevcuttur. Seymouria bu geçişe bir örnek teşkil eder. Ve her iki sınıfa ait özellikler taşır. Sürüngenlerden kuşlara evrimleşen canlılardan birkaçı ise Archaeptoryx, confuciusornis, Sinornis, Eoaluavis v.b. dir. Bunlardan Archaeptoryx , dincilerin en çok saldırıda bulunduğu bir türdür ve ona kesinlikle bir kuş gözüyle bakarlar. Ancak onun yarı kuş-yarı sürüngen olduğu kesinlikle ispatlanmıştır. Sadece bu canlı üzerine yazılmış bir makale Bilim Ve Ütopya dergisinin Kasım 98 sayısında mevcuttur. Sürüngenlerden memelilere geçişin bir örneği olan Monotreme’lerden Echidna yumurta ile üreyen bir memelidir, ancak memelilerden bir farkı REM uykusunun olmamasıdır. Yine aynı şekilde Cynognatus hem memeli hem sürüngen özelliklerini taşıyan kurt büyüklüğünde bir canlıdır. Burada yazmaya gerek duymadığım daha bir sürü geçiş fosili bulunmaktadır. Embriyolojik kanıtlar Embriyoloji, ortak ata düşüncesine başka bir koldan destek sağlayan bir bilim dalıdır. Bir midye türü ile karides, istakoz gibi deniz kabuklularınnın pek bir benzer tarafı yoktur. Ancak embriyolojik açıdan incelendiğinde bu midyenin gelişimi sırasında bir larva döneminden geçtiği ve bu sırada bu deniz kabuklularından hiçbir farkı olmadığı anlaşılmıştır. Bu da ikinsin ortak atadan geldiğini gösterir. Benzer biçime insan ve diğer memeli embriyonları gelişmeleri sırasında hiçbir yanılgıya olanak bırakmayacak şekilde balıklarda bulunan solungaç oyukları taşıyan ancak bunların kullanılmadığı bir durumdan geçerler ki bu da insanların ve diğer memelilerin solungaçlar yardımıyla solunum yapan uzak ataları paylaştıklarını gösterir. Hatta Bilim Ve Ütopya dergisinin Ekim 98 sayısının 27. sayfasına bakacak olursanız çeşitli hayvanların erken embriyon dönemlerinde birbirlerine ne kadar benzediklerini görürüsünüz. Bu da hepsinin ortak geçmişi yani ortak atayı paylaştıklarını gösterir. Moleküler biyoloji kanıtları Her şeyden önce kalıtımın kimyasal temelinin evrenselliği; yani tüm canlılar için aynı kalıtsal mekanizmanın geçerli olması ortak atadan türeyişin karşı konulmaz derece güçlü bir kanıtıdır. Bakteriler, bitikler, ve insanlar da dahil olmak üzere bütün hayvanlarda kalıtsal bilgi DNA içinde kodlanmıştır. Hücre çekirdeğinde bulunana DNA’da depolanmış bilgiyle protein sentezlenmesini mümkün kılan genetik şifre bütün canlılarda küçük farklılıklar dışında aynıdır. Ayrıca bugün bütün canlılarda protein sentezinde 20 çeşit aa’nın kullanıldığı bilinmektedir. Ancak moleküler biyolojide elde edilen kanıtlar daha da ileri gider. DNA’yı oluşturan nükleotidlerin ve proteinlerdeki aa’ların dizilişindeki benzerlik derecesi artık sayısallaştırılabiliyor. Mesela insanla şempanzenin bir protein çeşidini oluşturan aa’ların 104’ü de aynıdır. Başka bir tür maymunda ise 1 aa fark eder. Atta bu fark 11, bir balık türünde ise 23tür. Görüldüğü gibi aa farkı arttıkça canlının bize benzerliği de azalmaktadır.

http://www.biyologlar.com/ortak-atadan-tureyis

Böceklerde Sinir Sistemi

Böceklerin sinir sistemi bas içersinde özefagus üzerinde yerlesmis bir beyin ve ayni borunun altinda bulunan, beyin ile 2 yankol vasitasi ile temasta olan subözefagal ganglion ve sindirim sisteminin altinda yer alarak vücut boyunca uzanan ventral sinir kordonundan ibarettir. Beyin birlesms sekilde üç kisimdan meydana gelir. l. Protocerebrum: petek ve nokta gözlere sinir gönderir. 2.Deutocerebrum: antenlere sinir gönderir. 3.Tritocerebrum: 2 parça halinde özefagusun altindan geçen komissur ile birbirine bagli durumdadir. Beynin diger kisimlari tek parça olmasina karsin tritocerebrum kesin olarak çifttir. Uzun bir evrimsel gelisme sonucu orjininde agzin önünde olan beyin bugünkü böceklerde agizin üzerindedir. Protocrebrum ve Deutoserebrum özofagus üzerinde olup bu sebepten primitif prostomial beynin bir yapiti oldugu düsünülmektedir. Tritocerebrum deutocerebruma bunu takiben konnektif iplikleri ile baglandigindan ve bu baglantilarin özofagus altindan geçtiginden tritocerebrumun böcek atasina ait l. vücut segmenti yani simdi basla birlesmis olan vücut segmentine ait ganglion oldugu kabul edilmektedir. Suboesophagal gangliona gelince basta özefagus altinda yeralmis olup beyne büyük bir çift konnektifle birlesen büyük bir sinir merkezidir. Köken olarak, mandibular, maxillar ve labial segmentlere ait ganglionlarin birleserek kaynasmasindan meydana gelmistir. Bu kompoze gangliondan agiz parçalarina sinir kollari ayrilir ve bir çift konnektifle toraksa geçer. Toraks ve abdomende her segmentte ventral olarak tipik bir sinir ganglionu vardir. Bir segmentin ganglionu daha sonrakine bir çift konnektifle baglanir. Bunun tümü protoraxtan geriye uzanan bir zincir meydana getirir. Bu zincir ventral sinir kordonudur; subözofagal ganglionla boyundan geçen konnektif araciligi ile birlesir. Torakstaki ganglionlar bacak ve kanatlari kontrol eden sinirleri gönderir. Abdomene ait ganglionlar ise abdomen kaslarina ve abdomen üyelerine kollar gönderir. Stomodeal sinir sistemine gelince böceklerde sindirim sisteminin ön bölümünü, dorsal kan damarinin bir takim motorize hareketlerini kontrol eden simpatik sinir sistemi mevcuttur. (Birçok sinir kollarinin görevleri henüz tam olarak bilinmemektedir. Fakat sindirim sistemine ait tahminler gerçege daha çok uygundur. Çünkü sistemin degisik bölümleri stomodeum yanlarinda veya üzerindedir.) Stomadeal sinir sistemi merkezinin frontal ganglion oldugu kuvvetle muhtemeldir ki bu kisim beynin önünde ve tritocerebruma bir çift kolla baglanir. Frontal gangliondan geriye dogru yönelik çikan sinir özefagus üzerinde bir ganglion ve sinir sistemi ile baglanir. Occipetal ganglion denen bu grup ise stomadeumu, salgi bezlerini, tükrük bezlerini aortu ve agiz parçalarina ait kaslari idare eder. Böceklerde organlarin merkezi sinir sistemi ile olan ilgisi çok siki degildir. Örnegin böcegin beyninden organlara ayrilan sinir kollari kesilirse böcek yine yürür, uçar, yer fakat genel olarak vücut kontrolu kaybolur. Beyin tamamen çikarilirsa yine yasar fakat örnegin agzina besin verilmedikçe yiyemez. Beyin, böcegin genel yasayisi ve hayatsal fonksiyonlarinin düzenli bir sekilde yürütülmesinde rolü büyüktür. Görme, isitme, koklama, tatma, dokunum sinir sistemi araciliyla gerçeklestirilir. Böceklerde, koklama, tatma, dokunum, ile ilgili yapilar organlarin daha çok deri kisminda bulunur. Anten ve palpuslar duyu organlari bakimindan çok zengindir. Vücudu örten killarin dibine gelen sinir kollari nedeniyle killara dokununca vücut hareketsiz kalir. Tad alma organi agizdadir. Sivi haldeki maddeleri tadi alinir. Bu organlar kisa ve küt koniler seklindedir. Bazi böcek gruplarinda örnegin kelebek ve sineklerin bazi türlerinde bu organlar ayakta bulunur. Böceklerin bir çogu koku ve tat ayirmada insanlardan çok ileridir. Insanlarin birbirine karistirdiklari koku ve tadlari böcekler ayirtedilir; örnegin bal arilari üzüm sekeri ile sakkarini daha besini almadan ayirtedebilmektedirler. Koku alma, böcek yasaminda önemli rol oynar. Bu sayede erkek ve disi birbirini bulur. Yumurta koyacaklari ortami bulurlar. Koloni fertleri yabancilari bu yolla ayirtedebilir. Birçok böceklerin isi duygusuda vardir. Çesitli isi derecelerinin oldugu ortama koyulunca en çok tercih ettikleri kisimda toplanirlar. Neme karsi duyarlilikta ayni sekildedir.

http://www.biyologlar.com/boceklerde-sinir-sistemi

Kala - Azar ve Leishmania donovani

Leishmaniasis, bir protozoon olan Leishmania cinslerinin sebep olduğu hastalıklar grubudur. İç organların tutulduğu forma da kala-azar denmektedir. Etken:Leishmania donovani, Leishmania infantum, Leishmania chagasi’ dir. Etken, köpek ve kemiricilerin paraziti olup insanlara vektör olan tatarcıklar aracılığı ile bulaşmaktadır. Vektör:İnfekte kum sinekleri tarafından (Phlebotomus, Tatarcık, Yakarca) kan emme sırasında bulaştırılır Epidemiyoloji:Hastalığın yayılmasında yüksekliğin, bitki örtüsünün, nem, sıcaklık gibi, faktörlerin etkili olduğu bilinmektedir. Nadir de olsa L.donovani’ nin kan transfüzyonuyla ve konjenital olarak da bulaştığı rapor edilmiştir. Rezervuar genel olarak köpekler, tilkiler ve çakallardır. İnsanların da bir rezervuar olabileceği düşünülmektedir. Epidemiler; Hindistan, Doğu Afrika ve Güney Sudan’dan bildirilmiştir. Hastalığın kuluçka süresinin uzunluğu nedeniyle turistler, askerler ve göçmenler etkeni alarak kendi ülkelerine taşıyabilirler. Türkiye’de tatarcıklar Ege ve Akdeniz bölgelerinde endemik, diğer bölgelerde ise sporadik seyretmektedir. Ege, Marmara ve Doğu Karadeniz bölgelerinde; Akdeniz Tipi kala-azar görülür. Etken L. infantum’ dur ve rezervuarı köpeklerdir. Bu nedenle epidemilere yol açmaz. Enfeksiyonun yayılması üç önemli faktöre bağlıdır; 1) Enfeksiyon için uygun rezervuar. 2) Uygun vektör. 3) Duyarlı populasyon. Erkekler arasında hastalığa yakalanma oranının daha yüksek olduğu bildirilmiştir. Etyoloji:Leptomonas (Promastigot): Tatarcıktaki kamçılı form. Leishmania (Amastigot): İnsandaki kamçısız form. Klinik:İnkübasyon periyodu 10 gün -10 yıl arasında olmakla beraber ortalama 4-6 aydır. Klinik bulgular ani veya yavaş olarak ortaya çıkabilir. İlk belirti, tatarcığın sokma yerindeki krut bırakan nodüldür. Çoğu olguda başka belirti yoktur. Subakut ve kronik olgularda ateş, halsizlik, iştahsızlık, öksürük ve kilo kaybı vardır. Çocuklarda ise ek olarak gelişme geriliği ve organomegali görülür. Karaciğer ve lenf bezlerinde büyüme olur. Dalak çok büyük, yumuşak ve ağrısızdır. hastalarda, el, ayak, karın derisi ve yüz gri bir renk alır. Bu diskolorizasyon olayına Hintçe “KALA-AZAR” denilmiştir. Doğru teşhis konmayan ve tedavi altına alınamayan olgularda; persistant ve günde iki kez yükselen intermittant ateş, anemi, gece terlemesi ile uzun süreli bir kilo kaybı ve kaşeksi gelişir. Kemik iliği ve dalak tutulumuna bağlı olarak anemi, lökopeni ve trombositopeni, bunun sonucunda da sekonder infeksiyonlar ve birden çok yerde hemorajiler gelişir. Tedavi:Bütün hastalar yüksek proteinli, yüksek kalorili ve vitaminle destekli diyetle beslenmelidir. Tedavide en çok kullanılan ilaç antimon bileşikleridir. İlaç yeterli doz ve sürede verilmez ise hızla direnç gelişir. Korunma:Kum sineklerine karşı sürekli mücadele etmek, hayvan rezervuarlarını ortadan kaldırmak ve enfekte insanları tedavi etmek, korunmada etkin yollardır. Pencere ve kapılara sineklerin girmesini engelleyecek tel kafesler yapılmalıdır. İnsandan insana bulaş olduğundan kişilerin bu konuda bilgilendirilmesi ve eğitilmesi gerekmektedir. Zoonoz hastalıklar, insanlar ve hayvanların birbirine bulaştırabildikleri rahatsızlıklar olarak tanımlanabilir. Ancak zoonoz denildiğinde genellikle hayvanlardan insanlara geçen hastalıklar anlaşılır. Kala-Azar ülkemizde pek rastlamadığımız bir zoonoz hastalıktır. Konuk Veteriner bölümümüzde Denizatı Veteriner Kliniği'nden Veteriner Hekim Zehra Satıluşağı Kala-Azar hastalığı konusunda bizleri aydınlatıyor. Tatarcık sineklerinin(phlebotomus) insanları ısırması sonucu Leishmania donovani infantum adlı parazit larvasının(amastigot formu) bulaşması ile ortaya çıkan, iç organları etkileyen ve prognozu* ciddi bir ateşli hastalıktır. Bu hastalık subtropik ve tropik iklim kuşağında; Akdeniz ve ekvator bölgesinde bulunan ülkelerde yaygındır. Ülkemizde daha çok güney-güneydoğu ve daha az olarak da Ege, Marmara bölgelerinde, Orta doğu ülkeleri, Yunanistan, İtalya, Afrika ve Güney Amerika’da da yaygındır. Hastalığın rezervuarı karnivorlar (köpek, çakal, tilki vs.) ve kemirgenlerdir. Hastalık tatarcık sineklerinin ısırması ile rezervuar hayvanlardan insanlara bulaştırılır. Tatarcık sineği hastalığı taşıyan konaktan (insan,köpek,tilki,…) kan emme esnasında Leishmania donovani infantum (amastigot formu)‘u alır. Tatarcık sineğinin bağırsaklarına gelen amastigotlar kamçılı forma dönüşürler, ürerler ve 4.gün tatarcık sineğinin ağzına tekrar gelirler ve 5.günden itibaren tatarcık sineğinin başka bir canlıyı ısırmasıyla hastalık etmeni o canlıya bulaştırılır. Hastalık ülkemizde belli yerlerde(endemic) ve seyrek(sporadic) vakalar oluşturur. Büyüklere oranla daha çok çocuklarda görülür. Isırılma sonucu deriden hücre içine giren hastalık etmenleri burada çoğalarak hücre çeperinin yırtılması ile kana geçerler ve buradan dalak, karaciğer,kemik iliği, ince bağırsak, lenfoid dokuları enfekte ederler. Lenfoid dokuların enfekte olması ile retiküloendotelial (R.E.S) hiperplazi (organ hücrelerinin anormal artışı)meydana gelir. Tatarcık sineğinin insanı ısırmasından sonra 1-18 ay’lık bir kuluçka dönemi geçer ve dönemin sonunda ısırık yerinde, genellikle fark edilmeyen bir papül oluşur. Hastalık birden yüksek ateş ile başlayabilir ya da uzun sürede yavaş yavaş ortaya çıkabilir. Ateş gün içinde iniş çıkış gösterebilir, gün içinde ateşin iki defa yükselmesi hastalık için karakteristiktir. Hastalığın başlamasından yaklaşık 5 ay gibi bir sürede karın iyice şişer. Bunun nedeni dalağın giderek büyümesi (hiperplazi)dir. Bu semptomların yanı sıra deride döküntüler, terleme, titreme, ileri derecede anemi, aşırı zayıflama, bağırsaklarında etkilenmesi sonucu ishal, bacaklarda ödem, nadiren deri ve organ kanamaları ortaya çıkar. Bu hastalık eğer akut seyrediyorsa birkaç ayda, kronik seyrediyorsa birkaç yılda ölüm meydana gelir. Bu hastalığın seyri esnasında ikincil enfeksiyonlar meydana gelebilir ve karaciğerde siroz oluşabilir. Tanı: Dalak ve kemik iliğinden aspirasyonuyla alınmış doku örneklerinin test edilmesi ile hastalık teşhis edilebilir. Eğer erken teşhis yapılmışsa tedavi edilebilme şansı %90-95 ‘dir. Geç teşhislerde bu oran %10-20’dir ve ölüm oranı çok yüksektir. İhbarı zorunlu bir hastalıktır. Rezervuar ve vektör kontrolü yapılarak kontrol altına alınabilir. Kaynak:havhav.com  

http://www.biyologlar.com/kala-azar-ve-leishmania-donovani

Memeliler ( Mammalia)

Mammaliaları, sıcakkanlı omurgalılar sınıfı olarak tanımlayabiliriz. Dişiler yavrularını yalnız bu gruba özgü yapılar olan meme bezlerinin salgıladığı sütle besler. Memelilerin öbür önemli ayırt edici özellikleri arasında deri türevi olan kıllar, alt çenenin kafatasına eklenme biçimi, kalp ve akciğerleri karın boşluğundan ayıran kaslı bir diyaframın varlığı, yalnız sola dönen aort yayının bulunması, olgunlaşmış alyuvarların çekirdeksiz oluşu sayılabilir. Memeliler evrim sürecinde boyut, biçim, yapı ve davranış özellikleri bakımından çok büyük bir çeşitlilik kazanmıştır. Memeli hayvanlarda gelişmeye yönelik başlıca üstünlük yavruların, ana babalarının deneyimlerini öğrenme yeteneğidir. Yavru memelilerin beslenmek için annesine bağımlı oluşu bir eğitim süresini gerektirir. Bu ise başka hiçbir canlı grubunda rastlanmayan ölçüde çevre koşullarına uyarlanmayı sağlayan davranış esnekliğine yol açar. Memelilere has özelliklerin başında deri salgı bezlerinin bulunması gelir. 3 tip deri salgıbezi vardır: kılları temizleyen yağ bezleri; ter salgılayan ve hem boşaltımda hem de beden ısısını düzenlemede rol oynayan ter bezleri; yavruların beslenmesini sağlayan süt bezleri. Ayrıca memelilerde çok sayıda boynuzsu oluşuma rastlanır: pullar, tırnaklar, toynaklar, boynuzlar; fanerlerin en niteleyici olanları, yalnızca onlarda bulunan kıllar ve tüylerdir. Kıllar kürkü oluşturur; kürkün bulunması bu hayvanların sıcakkanlı (beden sıcaklığının değişmemesi) olmasını sağlar (tüylerin ve teleklerin bir ısı yalıtkanı görevi yaptığı kuşlarda da aynı özelliğe rastlanır). Beslenme davranışlarında görülen özelleştirme diş oluşumunu da belirler. İlkel memeliler kesmeye ve koparmaya uyarlanmış dişleri uzun ve sivri uçludur. Otçulların özelleşmiş yan (azı) dişlerinde karmaşık değme yüzeyleri ve genişlemiş taç bölümü dikkat çeker. Ayrıca bu dişler aşınmanın etkilerini değişik yollardan en aza indirecek özellikler taşır. Genel olarak memelilerin çoğu heterodonttur ve hepsi de alveollü 3 çeşit dişleri vardır: kesici dişler, köpek dişleri, azı dişleri (küçük ve büyük azılar). Temel diş formülü olarak 44 dişten oluşan domuzun diş formülü kabul edilir. Memelilerin, genellikle, birbiri arkasına çıkan iki tip dişleri vardır; sütdişleri (geçici dişler) ve kalıcı dişler. Memelilerin kalbinde kuşlarda da görüldüğü gibi sağ ve sol karıncık tümüyle birbirinden ayrılmıştır. Bu gelişim iki ayrı kan dolaşımını olanaklı kılar. Oksijen yüklü kan akciğerlerden kalbin sol kulakçığına geldikten sonra sol karıncığa geçer ve dokulara gönderilmek üzere aorta pompalanır. Alyuvarlar en yüksek düzeyde oksijeni taşıyacak biçimde evrimleşmiştir. Olgunlaştıklarında çekirdeklerinin kaybolması da oksijen taşıma kapasitelerini yükseltir. Yalnızca memelilerde görülen bazı başka özellikler de iç organlarda ortaya çıkar: beden iç boşluğu (sölomlu) kaslı bir diyaframla ikiye ayrılır (karın boşluğu ve göğüs boşluğu). Merkez sinir sistemi yeni bir beyin bölgesinin (neokorteks; bu bölgeye nasırlı cisim, Varol köprüsü yada beyincik yarımküreleri gibi yapılarda eklenmektedir) bulunması nedeniyle çok gelişmiştir. Dişilerde üreme organının yapısı memeli gruplarına göre değişiklik gösterir. Eteneli memelilerde üreme organı dölyatağının biçimine bağlı olarak 4 temel tip altında toplanabilir. Kemiriciler ve Lagomorpha takımında tümüyle ayrılmış 2 dölyatağı birbirinden bağımsız olarak dölyoluna açılır. Etçillerde de dölyatağı büyük ölçüde ikiye ayrılmakla birlikte dölyoluna tek bir kanalla bağlanır. Toynaklıların birçoğunda dölyatağının dallanmış dip bölümü iyice kısalmıştır, gövde bölümü ise ortaktır. İnsan da aralarında olmak üzere üstün yapılı primatlarda dölyolu basitleşmiş, öbür gruplarda görülen dallanma tümüyle ortadan kalkmıştır.

http://www.biyologlar.com/memeliler-mammalia

Türkiye'deki Relikt Bitkiler

Türkiye'deki Relikt Bitkiler

Relikt Jeolojik dönemler boyunca geniş bir yayılma alanına sahipken, dünyanın geçirdiği evreler nedeniyle yok olan bitki taksonlarına karşınbulabildiği uygun ekolojik faktörlerin devamına bağlı olarak günümüzde dünyanın bazı köşelerinde yaşamını sürdürebilen bitkiler (Gingleo biloba gibi). Örnek: Gingko biloba / Mamut Ağacı Sequiadendron (Gerçek Mamut Ağacı -Dev Sekoya) Sequiadendron Giganteum Bir çok türünün fosillerine rastlanmıştır. Bugün dünya üzerinde yanlızca bir türü yaşamaktadır. Kuzey Amerika' da Kalifornia / Sierra Nevada dağlarında yetişen görkemli bir ağaçtır. Vatanında 80-90 metre boy, 10-16 metre gövde çapı serbest durumda geniş/dar konik tepe (8-15 metre) Gövde uca doğru daralır; gövde kabuğu kalın, açık kırmızı-kahve renklidir. Yaşlı gövdelerin kabuğu çok kalın (25-30 cm.) boyuna derin çatlaklı, oluklu, yumuşak lifli ve tarçın kırmızısı rengindedir. Ana sürgünler üzerindeki iğne yapraklar 1-2 cm. uzunluğunda, biz gibi sivri ve üç köşeli olup, sürgüne yatık değildir. Yan ve alt dallar üzerindeki yapraklar ise 6 mm. uzunluğunda, üçgenimsi ve sürgünlere yatıktır; üst yüzlerinde iki stoma bandı bulunur. Mavimtrak yeşil renkli yapraklar, ikinci ve üçüncü seneden sonra, kahverengiye dönüşmekte ve fakat uzun yıllar sürgün üzerinde kalabilmektedir. Ovalimsi kozalakları iki yılda olgunlaşır; 2-5 cm. uzunluğunda ve 2-4 cm. genişliğinde, açık sarı/sarımsı kahverenklidir. Oldukça geniş, yayılan bir kök sistemine sahiptir. Üretimi tohumla ve çelikle yapılır. Ilıman deniz ikliminin ağacıdır. Bol güneşli - yarı gölge yerlerde ve normal verimli topraklarda yetişir; nemli, derin ve geçirgen, humuslu, balçıklı toprakları toprakları ister. Rüzgâra ve fırtınaya, kış soğuklarına dayanır. Gençlikte yavaş büyür, bu dönemde korumaya gereksinimi vardır. 10 dan fazla kültür formu elde edilmiştir, ama bu çeşitlerinden az yararlanılmaktadır. TÜRKİYEDEKİ ENDEMİK VE RELİKT BİTKİ TÜRLERİ Türkiye endemik bitkiler açısından dünyanın önemli ülkelerinden birisidir. Yurdumuzun siyasi hudutları içerisinde doğal olarak yetiitiği halde başka hiçbir yerde yetişmeyen, diğer bir deyişle dünyada yalnız ülkemizde yetişen bitkiler Türkiye endemikleri olarak adlandırılır.Yurdumuz endemiklerinin sayısı 3000 dolaylarında olup endemizm oranı %33civarındadır.(Davis, 1965-1988). Ülkemizde endemik tür sayısı diğer Avrupa ülkeleriyle kıyaslandığında ülkemizin bu zenginliği daha iyi anlaşılır.Avrupa ülkeleri arasında en çok türe sahip olan ülke Yunanistan olup 800 civarındadır.Aynı şekilde endemik türlerce zengin İspanya ve Yugoslavya’da ise bu sayı 400-500 arsındadır. Ülkemizdeki endemik türelerin en önemlilerinden birkaçı; Kaz dağında orman meydana getiren Kazdağı göknarı (Abies equi-trojani), Eğridir güneyindeki Kasnak Meşesi (Quercus vulcanica), Köyceğiz-Dalaman arasında yaygın olan Sığla veya Günlük ağacı ve ormanları (Liquidambar orientalis), Beşparmak Dağları (Ege bölümü)ndaki Kral eğreltisi (Osmunda regalis) ile Datça yarımadasında bulunan Datça Hurması (Phoneix theophrasti)dır.Yurdumuzun bilhassa dar derin yarılmış dağlık alanlarında endemiklerin sayısı bir hayli yüksektir.Bunun yanında özellikle Pleistosen’deki iklim şartlarına göre yetişmiş ve yayılma imkanı bulmuş, fakat günümüzde bilhassa dağlık bölgelerimize lokal alanlarda hayatiyetlerini sürdüren çeşitli flora bölgelerine ait bitkiler görülür.Örnek olarak, Karadeniz Fitocoğrafya Bölgesindeki Akdeniz elemanları,Nur, Dedegöl, Ağrı, Nemrut,Mercan(Munzur) dağlarındaki nemli ılıman ve nemli soğuk bitkilere örnek verilebilir. Bunun yanında ülkemizde Konzervatif endemikler yanında, yeni gelişmekte olan progresif endemikler de bulunmaktadır.Bu bakımdan ülkemiz, hem çeşitli familyalara ait hem de endemikler yönündende çok zengindir. Türkiye’de yetişen endemik türler tabiatta, aşırı otlatma, yangın, bilinçsiz kesim, söküm,ıslah çalışmaları, yapılaşma, şehirleşme ve herbisit kullanımı gibi çeşitli tehlikelerle karşı karşıyadır.Bu olumsuz faktörler kimi zaman bitkinin yok olmasına ve bir anlamda yer yüzünde ortadan kalkması anlamına gelmektedir.Ekim ve arkadaşları(1985) yaptıkları çalışmada endemik türlerin 12’sinin neslinin tükendiğini belirlemişlerdir.Bu olumsuz faktörler zamanla bitkilerin durumlarını tespit etme ve gerekli önlemleri alma ihtiyacını doğurmuştur. Bu ihtiyaca yardımcı olmak amacı ile “Uluslar arası Doğa ve Doğal Kaynakları Koruma Birliği(IUCN)” kurulmuştur.Bu kuruluş yapığı çalışmalarla bitkiler için tehlike sınıflarını belirlemiş ve kritik durumdaki bitkileri buna göre değerlendirerek Kırmızı Bülten denilen “ Red Data Book ” isimli eseri ortaya çıkarmışlardır.Bu çalışmalardan sonra aynı kategoriler esas alınarak “ Türkiye’nin Nadir ve Endemik Bitkileri ” adlı bir kırmızı bülten hazırlanmıştır. Ülkemizdeki Endemik Orman Bitki Türleri ve Reliktik Orman Bitki TürleriÜlkemizdeki endemik türelerin en önemlilerinden birkaçı; Kazdağında orman meydana getiren Kazdağı göknarı (Abies equi-trojani), Eğridir güneyindeki Kasnak meşesi (Quercus vulcanica), Köyceğiz-Dalaman arasında yaygın olan Sığla veya Günlük ağacı ve ormanları (Liquidambar orientalis), Beşparmak Dağları (Ege bölümü)ndaki Kral eğreltisi (Osmunda regalis) ile Datça yarımadasında bulunan Datça hurması (Phoneix theophrasti)dır.Ülkemiz, hem çeşitli familyalara ait hem de endemikler yönünden de çok zengindir.Türkiye'de yetişen endemik türler tabiatta, aşırı otlatma, yangın, bilinçsiz kesim, söküm,ıslah çalışmaları, yapılaşma, şehirleşme ve herbisit kullanımı gibi çeşitli tehlikelerle karşı karşıyadır.Bu olumsuz faktörler kimi zaman bitkinin yok olmasına ve bir anlamda yer yüzünde ortadan kalkması anlamına gelmektedir.Kaz dağı göknarı:Türkiye'de yalnızca Kazdağı'nda yetişen endemik bir göknar alt türü. 30 metreye kadar boylanabilir. Tomurcukları bol reçinelidir.İğne yapraklı uzun sürgünler üzerinde tek tek ışığa yönelik olarak tarak biçiminde dizilmişlerdi.Yaprağın üst yüzü hafif olukludur, alt yüzünde ise iki tane belirgini gümüşi renkte beyaz stoma bandı bulunur. İğne yapraklar sürgünler üzerinde uzun süre, 7-10 yıl kalırKasnak meşesi25-30 m boya ulaşabilen geniş ve yaygın tepeli bir meşe türü.Genç sürgünler sarımtrak veya kırmızımtrak olup, önceleri tüylü daha sonraları çıplaktır. Tomurcuklar büyük yumurta biçiminde kahverengi kırmızı, tüysüzdür. Tomurcuk pullarının kenarları kirpiklidir. Yapraklar sürgünler üzerinde oldukça aralıklı dizilmiştir. Yaprak ayası ters yumurta veya eliptik biçimli, dip tarafı çarpıktır. Yaprakların alt yüzü basık ve yıldız tüylüdür. Üst yüzü çıplak ve koyu yeşildir. Kadeh çok belirgin ve yarımküre şeklindedir.Endemik bir türdür.Kütahya, Konya, Afyon, Isparta, Eğirdir yörelerinde bulunur. 1300-1800 m yükseltilere kadar çıkabilir.Datça hurmasıDatça Hurması, Datça Yarımadasında batı-doğu yönünde uzanan sıradağların kuzey ve güney aklanlarında olmak üzere, iki ayrı yörede bulunmaktadır.Datça Hurması bu aklanda küme ve guruplar halinde veya tekil olarak da geniş bir alanda yayılış yapmakta ve yayılış sahilden 300-350 m yükseltiye kadar ulaşabilmektedir.Kuzeyi kapalı, sıcak, deniz etkisi altındaki vadi tabanlarının uygun kısımları ile deniz kenarındaki kum ve çakıl üzerinde yer almaktadır. yaklaşık 10 m boyunda olup Datça'da 10-15 m. boylara ulaşabilmektedir.Sığla ağacıİsim: S%C4%B1%C4%9Fla.jpg Görüntüleme: 7964 Büyüklük: 185,6 KB (Kilobyte)25-40 m'ye kadar boylanan yaprak döken kalın dallı ve geniş tepeli bir ağaçtır. İlk bakışta çınara benzer. Yaşlandıkça, kabuğu koyulaşır ve derin çatlaklı bir görünüm alır. Çiçekler küçüktür. Çiçek kurulu 1-2 cm çapında olup küre şeklinde çok sayıda çiçek kümesini bulundurur. Meyve 2-4 cm çapında çok sayıda kapsülden oluşurIstranca meşesi:25 m'ye kadar boylanabilen düzgün gövdeli dar tepeli bir meşe türüdür. Gövde kabuğu düzenli aralıklarla çataklıdır. Yapraklar ters yumurta biçimindedir. 7-10 civarında yaprak damarı bulunur. Damarlar birbirine paraleldir. Her iki yüzüde çıplaktır. Alt yüzünde basit ya da yıldız tüyler bulunur. Meyve sapı 2-7 cm uzunluğundadır. Bir sapta 3-4 tane meyve bulunur.RELİK (RELİKT) BİTKİ : (Relikt Plant): Kalıntı, eskiden kalma, günümüze gelme…Paleoklimatik koşullarda yetişerek yaygın bir durum alan, fakat iklim koşullarının değişmesi üzerine günümüzde zorlukla yaşamını sürdüren bitki toplulukları ve bunların üyeleriÖrneğin, Karadeniz Bölgesinde yer yer kıyı kuşağında ve ve ardındaki oluklarda bulunan Akdeniz bitki toplulukları, daha önce bu bölgeye Akdeniz iklim koşulları egemen iken yerleşmişler; ancak, günümüz koşulları altında da yetişmelerini sınırlı olarak sürdürme olanağı bulmuşlardır. Güneybatı Anadolu'da Köyceğiz, Marmaris dolaylarında küçük ormanlar oluşturan Sığla (Günlük) ağacı (Liquidambar Orientalis) de relik bitki özelliği göstermektedir.IhlamurBoyları 20-30 m'ye kadar ulaşabilir. Büyüklüğü 5-10 cm arasında değişen yaprakları genellikle yürek şeklinde ve çarpık, kenarları dişli ve uzun saplıdır. Sarkık çiçek demetleri sarımsı bir renge ve karakteristik bir kokuya sahiptir. Çok geç açan bu çiçekler (Haziran-Temmuz) kurutularak çay gibi içilir.KestaneKuzey Anadolu ve Marmara Bölgesi'nde yayılış gösterir. Türkiye'de doğal olarak yetişen tek kestane türü olan "Anadolu kestanesi" 30 m boya erişebilen, geniş tepeli bir ağaçtır. Ülkemizde 25.278 hektar koru, 3.614 hektar baltalık kestane ormanı bulunmaktadır. Gençken düzgün olan gövde kabukları yaşlandıkça çatlaklı bir görünüm alır. Mızraksı yapraklarının kenarları kaba dişlidir. Çiçekleri önemli bir bal kaynağı olan kestanenin meyvesi de ekonomik değere sahiptir.LadinKuzey yarıkürenin ılıman ve soğuk bölgelerinde yayılış gösteren ladinin 40 değişik türü ve bu türlere ait varyete ve formları vardır. Uzaktan bakıldığında göknara benzese de piramide benzer tepesi ve sarkık dalları ile ondan ayırt edilebilir. Boyu 40-50 m'ye kadar ulaşabilir. İğne yaprakları kısa, sivri uçlu ve kesitli dört köşedir. Olgunlaşmış kozalağının pulları dağılmaz.Ülkemizde Doğu Karadeniz dağlarının denize bakan yüksek kesimlerinde saf ya da karışık ormanlar kuran türü Doğu ladinidir (P. Orientalis, Y). Ülkemizde 146.300 hektar saf Ladin ormanı bulunmaktadır. KaraçamBütün kıyı bölgelerimizin dağlık kesimlerinde saf ya da karışık ormanlar kurar, hatta stebe kadar sokulur.Ülkemizde 2.527.685 hektar saf karaçam ormanı bulunmaktadır. Gövdesinin ve dallarının kalınlığı, gri ve derin çatlaklı kabuğu, iğne yapraklarının koyu yeşil rengi ile diğer çam türlerinden ayrılır.30-35 m'ye kadar boylanabilir.KızılağaçTrakya, Marmara çevresi, Batı Karadeniz ve Doğu Karadeniz'de saf ve karışık olarak yayılış gösteren kızılağaç, boyu 20 m'yi aşabilen, esmer kabuklu, seyrek dallı bir ağaçtır. Daha çok serin bölgelerde ve nemli dere yataklarının bulunduğu yerlerde görülür. Ülkemizde 66.357 hektar koru, 297 hektar baltalık kızılağaç ormanı bulunmaktadır. Uzunluğu 4-9 cm genişliği 3-7 cm arasında değişen ters yumurta biçimli ve testere dişli yaprakları vardır. Köklerinde bulunan, havanın serbest azotunu bağlayan yumrular nedeniyle toprakları azotça zenginleştirir.ArdıçSürüngen çalılardan büyük ağaçlara kadar çok çeşitli türleri olan ardıç, hemen hemen bütün bölgelerimiz yüksek dağlık kesimlerinde doğal yayılış gösterir. Bazıları servi gibi pul yapraklara, bazıları da batıcı iğne yapraklara sahiptir.Göknar40m'ye kadar boylanabilen göknarlar, kendine özgü formu, gövde kabuğu iğne yaprakları ve hatta kokusu ile Çamgiller familyasının diğer türlerinden ayırt edilebilir. Yapraklarının alt yüzeyinde beyaz çizgiler vardır.Kozalaklar sonbaharda olgunlaşınca pulları dökülür. Ülkemizde 213.652 hektar saf göknar ormanı bulunmaktadır. Yemeklik Endemik Bitkiler İnsanlığın beslenmesinde kilit rol oynayan tarla bitkilerinin % 30’u Anadolu’dan köken almıştır (Örneğin: kiraz badem kayısı buğday nohut mercimek incir lale kardelen ve çiğdem).Ülkemiz endemik bitkilerinden bazıları kültür bitkilerini içermekte kültür bitkileri olmayan bazı yabani bitkiler de kültür bitkileriyle birlikte yemek malzemesi olarak kullanılabilmektedir. Türk mutfağının zenginleşmesi ve rakipsiz olması açısından bu bitkiler önem arz etmektedir. Orkide : Ülkemizde endemik orkide çeşitleri vardır. Bunlardan sahlep yapılabilmekte K. Maraş ilinde ise dondurmalara katılmaktadır. Maraş Dondurmasının meşhur olmasının kaynağında orkidelerden elde edilen sahlep önemli rol oynamaktadır. Nitekim bu ilimizde endemik olarak Cephalanthera kotschyana Dactylorhiza Osmanica (Osmaniye orkidesi) orkideleri yetişmektedir. Badem: Ülkemizde endemik badem ağaçları bulunmakta olup bunlar Elazığ Hakkari Mersin Maraş ve Van’da yetişmektedirler. Tere: Salatalarda kullanılan terenin ülkemizde birkaç endemik çeşidi olup bu türler ülkemizin Adana Bitlis Hakkari Kastamonu Konya Maraş Niğde ve Van illerinin endemik bitkilerindendir. Kuşkonmaz: Önemli bir besin maddesi olan kuşkonmaz sebzesinin ise 3 ilimizde endemik olarak bulunduğu bilinmektedir. Antalya’da Asparagus Lycicus (Likya kuşkonmazı) Konya ve Mersin’de Asparagus Coodei Yine Konya’da Konya’nın antik dönemdeki ismiyle adlandırılan Asparagus Lycaonicus (Likonya veya Konya Kuşkonmazı) Pancar: Ülkemize endemik olan iki adet pancar bitkisi vardır ve isimleri bulundukları bölgelerle ilgilidir. Adanada Beta Adanensis (Adana pancarı) ve Çanakkalede Beta Trojana (Troya Pancarı). Kiraz: Ülkemiz kiraz çeşitleri açısından da endemik bitkilere sahiptir. Örneğin Amasya Erzurum Kayseri Niğde ve Tokat illerinde Cerasus İncana Erzincanda Cerasus Erzincanica (Erzincan kirazı) Sivas’ta Cerasus hippophaeoides türleri ülkemizin endemik kirazlarını oluşturmaktadırlar. Nohut: Antalya’da Cicer İsauricum Mardinde Cicer reticulatum ülkemizin endemik nohutlarıdır. Keten: Dokumacılık ve yemek sektöründe yararlanılan keten bitkisinin endemik çeşitleri açısından ülkemiz oldukça zengindir. Birçok ilimizde bu bitkinin birkaç tane endemik olanı görülmektedir. Örneğin Adanada Linum Pseudanatolicum Amasyada (4 adet endemik) Linum ..anatolicum (Anadolu keteni) Ankarada (3 tane) Antalya’da (3 tane) Linum Pamphlyicum (Pamfilya keteni) Denizli (3 adet ) örnekleri verilebilir. Kekik: Endemikkekik türleri açısından da ülkemiz çok zengindir. Örnek olarak; Adanada Origanum amanum (Amanos kekiği) Afyonda Origanum Sipyleum (Spil kekiği) Tuncelide Origanum munzurensis (Munzur kekiği) sayılabilir. Madımak: Kırsal kesim insanlarımızda önemli bir yiyecek maddesi olan hatta türkülerde bile adı geçen madımak bitkisinin ülkemizde zengin endemik türleri olduğu görülmektedir. Örneğin Afyonda Polygonum Afyonicum (Afyon madımağı) Antalyada P. salebrosum Kayseride Polygonum cappadocicum (Kapadokya madımağı) Muğlada P. Karacae Samsunda Polygonum Samsunicum (Samsun madımağı) Sivasda Polygonum Sivasicum (Sivas Madımağı) verilebilecek örneklerdir. Armut: Ülkemizin endemik armut çeşitleri açısından da zengin olduğu görülmektedir. Örneğin; Antalyada Pyrus boisseriana… crenulata Bingölde Pyrus yaltirikii Bitlis Diyarbakır Samsun ve Elazığda Pyrus Syriaca Hakkaride Pyrus Hakkairica ve P. Solicifolia (Hakkari 3 adet armut çeşidi ile en zengin ilimiz) Uşak’ta Pyrus Anatolica örnekleri verilebilir. Çavdar: Ülkemizde bir tane endemik çavdar bitkisi vardır (Secale cereale …ancestrale). Bu bitkimiz Ağrı Bingöl Gümüşhane Kars Kayseri Mardin Muş; Nevşehir Tunceli ve Van illerinde doğal olarak yetişmektedir. Çemen: Çemenin zengin endemik türleri Anadoluda bulunmaktadır. Örneğin Ankara Bilecik Muğla ve Urfada trigonella Cretica Antalyada Trigonella Lycica (Likya çemeni) Mersin’de Trigonella cilicica (Kilikya çemeni) Muğla ve Bursada T. Sirjaevii örnek gösterilebilir. Üvez: Türkiyenin tek endemik üvez çeşidi Rize ilinde bulunmaktadır: Sorbus caucasica var. yaltirikii. Ancak bu üvez türünün korunması gerekmekte olup yok olma tehlikesi altındadır. Adaçayı: Ülkemiz endemik adaçayı türleri açısından çok zengindir. Bir çok ilimizde birden fazla endemik adaçayı türleri bulunmaktadır. Örnek vermek gerekirse; Adanada Salvia cilicica (Kilikya adaçayı) Afyonda Salvia Pisidica (Pisidya adaçayı) Aydın ve İzmirde Salvia Smyrnaea (İzmir adaçayı) Malatyada Salvia… euphratica (Fırat adaçayı) Yozgatta Salvia Yosgadensis (Yozgat adaçayı) ilginç isimli adaçaylarıdır. Safran: Literatürdeki ismi Crocus(Çiğdem) olan safran bitkisi Safranbolu’da yetişmektedir. Safran yöresel bir yemek olan Zerde Tatlısı ve pilavlarda kullanılmaktadır. Safranbolu ve çevresi de endemik Çiğdem çeşitleri açısından zengindir (Crocus Ancyrensis Crocus Biflorus Crocus Danfordae Crocus Abantensis Crocus Pastolazzae). Turp: icotia carnosula adlı turpgiller ailesine mensup endemik bir bitki Antalya ve Muğla’da yetişmekte yöre insanı bu bitkiyi taze veya pişirerek yemektedir.

http://www.biyologlar.com/turkiyedeki-relikt-bitkiler

Böceklerde Salgı Organları

Böceklerin salgi organlari Exocrine ve Endocrine olmak üzere iki gruba ayrilir. Exocrine salgi bezleri salgilarini özel kanallar vasitasi ile vücut disina veya vücut içinde gerekli yerlere akitir. Endokrin olanlar ise kanala sahip degildir ve meydana getirdikleri maddeler düffizyon yolu ile kana geçerek bütün vücuda dagilir. Ekzokrin Salgi Bezleri: Mum bezleri Bu bezler Homoptera, Hemiptera ve bazi Coleoptera ve Hymenoptera'larda görülür. Böcek vücudu içersinde çesitli yerlere dagilmis olan bezler vücut disina salgiladiklari maddelerle vücut üzerinde mum tabakasi veya toza benzer bir tabaka meydana getirir. Apis mellifera ve yakin akrabalarinda abdomen segmentelerinin ventralinden ufak levhaciklar halinde mum maddesi salgilarlar. Kafa içi salgi bezi Böceklerin kafalarinin içersine yerlesmis ve agiz parçalari ile iliskili mandibula salgi bezi, maxilla salgi bezi ve labium salgi bezi olmak üzere 3 çift salgi bezi bulunur. Mandibula salgi bezi çifti lepidoptera larvalarinda ipek bezi haline dönüsmüstür. Maxilla salgi bezine nadiren rastlanir. Labium bezi çifti ise thorax içersine yerlesmis olup tükrük bezi olarak taninmaktadir. Bu çift bez ortak bir kanal ile çogunluk hypopharynx'in bazalinden agiz içersine salgida bulunur. Lepidoptera larvalarinda bunlarda ipek bezine dönüsmüstür. Salgi havaya çikinca sertleserek iplik halini alir ve tirtil bununla pupa dönemini içinde geçirecegi kozayi örer. Ipek bezleri Lepidopteralarda madibula ve labium salgi bezleri ipek bezi haline dönüsmüssede diger bazi böceklerde ipek veya iplik maddesi baska bezler tarafindan salgilanir. Bazi Coleoptera ve Neuroptera larvalarinda ipek, malpigi borucuklari tarafindan meydana getirilir. Diger bazi böceklerde ise deri salgi bezleri ve disi cinsiyet organi ek bezleri tarafindan ipek salgilanir. Pis Koku Bezleri Bazi böceklerde birçok deri salgi bezleri pis kokulu salgilarda bulunur. Bu genellikle böcekler için bir korunma durumudur. Hemipterlerde piskoku bezi 3. çift bacaklarin dibinden disari açilir. Coleopter'lerde anüs civarinda bazi Lepidopter'lerde 6-7 abdomen segmentinin dorsalinde bulunur. Çekici Koku Bezleri Sosyal yasayan böceklerde bir es tanima, koloni kurma, düsman tanima yuva yapma, alarm verme ve besin yerine dogru iz olusturma da bu bezler görevlidir. Disa salgilanip o türün diger bireyleri üzerinde etkilere yol açan salgilara feromon adi verilir. Bunlardan koku yolu ile etkili olanlara olfaktör feromon'lar, tad yolu ile etkili olanlara oral feromon'lar denilmektedir. Birçok Lepidopteralarda cinsel bakimdan çekici koku bezleri bulunmaktadir. Bunlarin yer ve yapilari tür ve cinsiyete bagli olarak büyük degisiklikler gösterir. Çok defa kanatlarda veya diger kisimlarda özel pullarin dibinde, bacaklarda abdomende bulunmaktadir. Blattidae familyasina bagli erkeklerin abdomeninde cinsel çekici koku yayan salgi bezleri bulunmaktadir. Karincalarda bunlarin yuvasinda yasiyan bazi Coleoptera türlerinde karincalarla beraber yasama bakimindan önemli olan bir takim koku bezleri tespit edilmistir. Zehir Bezleri Hymenopotera'nin Apocrita alt takiminda çok gelismis olan zehir bezleri sokucu igne ile birlesmis olup vücudun son kisminda bulunur. Endokrin Salgi Bezleri: Çok hücrelilerin tümünde endokrin sistem denen hormon sistemi yeralir. Filogenetik olarak sinir sisteminden kök almistir. Bu nedenle denetim merkezleri sinir merkezleridir. Böceklerde bu merkez nörosekretorik hücrelerdir. Ektoderm kökenli hücrelerin yani nöronlarin meydana getirdigi salgi sivisi veya granülleridir. Hücre gövdesi veya aksonda biriktirilir ve sinirsel uyarim ile aksonlar araciliyla iletilip salgilanir. Uyarilmayi takiben daha sonra tekrar salgilanir. Organizmalarin gelisimi ve aktif devreleri ile bu salgi döngüleri arasinda büyük uyum vardir. Salgilarin bu olaylari baslattigi salgilari hemolenfe verildiginde hormon olarak kabul edilirler. Tabiiki farkli hormonlar farkli islevler olusturur. Yalnizca beyin tek basina çok sayida hormon denetimi yapar. Bu merkez; beyin iç salgi bezlerinin, deri degisimi, kutikulanin sertlesmesi, kalp atisi, bosaltim, vücuttaki su miktarinin ayarlanmasi, fizyolojik renk degisimleri, eseysel bezlerin olgunlasmasi gibi olaylarini denetler. Neurohormonlar hemolenfe verilerek tüm dokulara tasinir. Görüldügü gibi salgi dogrudan veya hücre uzantilariyla bosaltilir. Hücreler arasi bosluklardan miksosöle geçer. Aksonlar ile de bu is gerçeklestirilir, en yakin depolara iletilir ve buradan içerikleri hemolenfe verilir. Endokrin bezleri vücutta çesitli yerlerde bulunur. Vücut fizyolojisini düzenleyen salgilari verirler. Bu salgilara hormon denilmektedir. Beyin içi salgi bezleri: Oldukça iri hücrelerden meydana gelmis ve beynin çesitli yerlerinde bulunabilen bir salgi bezidir. Böcek gelismesi ile ilgili bazi hormonlar salgilar. Bu beyin hormonu, birçok endokrin merkezi uyardigi için hormona aktivasyon hormonu denir. Bu salgilar özellikle deri degisirme ve baskalasimda (metamorfoza) etkilidir. Prothorax Salgi bezi: Birçok böcek takiminin larvalarinda bulunan bir çift salgi bezidir. Ektoderm kökenlidir ve birinci gögüs segmentinde yer alir. Bu bezin hormonuna ecdyson denir. Bu salgi bezi diger endokrin bezlerin salgilari ile isbirligi halinde deri degistirme ve metamorfoz gibi olaylari idare eder. Bu nedenle en belirgin gelisimi metamorfozdan hemen önceki dönemdedir ve sonra dejenere olur. Corpora Cardiaca: Beyinde sentezlenen maddelerin depo organidir. Beyninin gerisinde bir çift olarak yer alir. Ayrica bazi fizyolojik olaylar ve kalp ile barsak kasilmasinin düzenleyen salgilari da içerir. Corpora Allata : Corpora cardiaca ile yakindan ilgilidir. Gelisme sirasinda büyüyen bu bez yasli böceklerde biraz küçülür. Bu bezin gençlik hormonu yani juvenil hormon salgiladigi ispat edilmistir. Bu hormon gelisme sirasinda ergin karakterlerin zamansiz olarak ortaya çikmasini önler. Ergin halden önceki dönemlerde prothorax bezine zit salgida bulunarak, larva ve pupa dönemlerinin sira ile ortaya çikmalarini saglar. Son larva ve pupa döneminde faaliyeti azalarak bu devrelerin geçirilmesine imkan verir. Bazi ergin disi böceklerde bu bezin hormonu, yumurtalarin normal olarak olgunlasmasini idare eder. Keza ergin böcegin genel metabolizmasi üzerine de etkilidir. Hormonlarin Birbiriyle Iliskisi Beyin içi salgi bezlerinin salgiladigi aktivasyon hormonu protorax bezini uyararak ektizonun salinmasini saglarken, diger taraftan Corpora allatayi uyaracak Juvenil h. salinmasina etkili olur. Ektizon ve J. hormon birlikte post embriyonik gelismeyi saglar. Böceklerde gelisme periyodik olmaktadir. Juvenil hormon ve ektizon gerekli titrasyonda oldugu zaman larval pupal gelisme saglanir, sayet juvenil hormonun miktari etkili olacagi konsantrasyondan asagi olursa hayvanda moorfolojik degisiklik yaninda birçok biyokimyasal degismede meydana gelerek metamorfoz gerçeklesir ve hayvan ergin hale gelir. Aktivasyon ve Ektizon hormonunun eksikliginde ise hayvan larval ve pupal diyapoza girmektedir.

http://www.biyologlar.com/boceklerde-salgi-organlari

Biyologlar Odası Kanunu Taslağı

BİRİNCİ BÖLÜM Amaç, Kapsam, Tanımlar Amaç Madde 1- Türkiye sınırları içerisinde meslek ve sanatlarını kullanmaya yetkili olup da sanatını serbest olarak yapan veya meslek diplomasından istifade etmek suretiyle resmi veya özel görev yapan biyologları teşkilatı içinde toplayan tüzel kişiliğe sahip kamu kurumu niteliğinde meslek kuruluşu olan Biyologlar Odası kurulmuştur. Madde 2- Odanın kuruluş amacı; Türkiye sınırları içerisinde meslek ve sanatlarını kullanmaya yetkili serbest olarak yapan veya meslek diplomasından istifade etmek suretiyle resmi veya özel görev yapan biyologlar arasında mesleki dayanışmayı kurmak, biyologluğun kamu ve kişi yararına uygulanıp geliştirilmesini sağlamak ve meslek mensuplarının hak ve yararlarını korumak amacıyla kurulacak olan kamu kurumu niteliğindeki Biyologlar Odası kurulmasına, teşkilat, faaliyet ve denetimlerine, organlarının seçimlerine dair esas ve usulleri düzenlemektir. Kapsam Madde 3- Türkiye hudutları dahilinde meslek ve sanatlarını icraya yasal olarak salahiyeti olup, dört yıllık fakültelerin Biyoloji bölümlerinden lisans diploması alarak mezun olanları kapsar. Tanımlar Madde 4- Bu yönetmelikte geçen; Oda: Biyologlar Odasını, Şube: Biyologlar Odası Şubesini, Temsilcilik: Biyologlar Odası Temsilciliğini, Üye: Biyologlar Odası üyesini, ifade eder. İKİNCİ BÖLÜM Biyolog Odaları görev, yetki, organ ve çalışma esasları Madde 5- Odalar, bu Kanunda yazılı esaslar dahilinde Biyolog mesleği mensuplarının ortak ihtiyaçlarını karşılamak, mesleki faaliyetlerini kolaylaştırmak, bu mesleğin kamu yararına uygun olarak gelişmesini sağlamak, meslek mensuplarının birbirleri ve meslekle ilgili ilişkilerinde dürüstlüğü ve güveni hakim kılmak üzere meslek disiplini ve ahlakını korumak maksadı ile kurulan tüzel kişiliğe sahip kamu kurumu niteliğinde meslek kuruluşlarıdır. Oda temel görev ve yetkileri; Madde 6- Odaların temel görev ve yetkileri, Biyologların mesleki gereksinmelerini karşılamak amacıyla çalışmalar yapmak, Mesleki faaliyetlerini kolaylaştırmak, Mesleğin gelişmesini sağlamak, Meslektaşları birbirleri ile hizmet verdikleri alanlardaki kişi ve gruplarla ilişkilerinde dürüstlüğü ve güveni hakim kılmak, Meslek disiplinini, ahlakını ve onurunu korumaktır. Oda Organları Madde 7- Odaların organları şunlardır: a) Oda Genel Kurulu b) Oda Yönetim Kurulu c) Oda Denetleme Kurulu d) Oda Disiplin Kurulu Oda Genel Kurulu Madde 8- a) Oda Genel Kurulu; Odanın amaç, ilke, işleyiş, görev ve yetkiler açısından en yetkili organdır. b) Oda Genel Kurulu, Odaya kayıtlı üyelerden oluşur. c) Oda Genel Kurulu, iki (3) yılda bir Nisan ayı içerisinde, Oda Yönetim Kurulunun belirleyeceği günlerde ve adreste toplanır. Toplantı tarihinin, görüşmeler Cumartesi akşamına kadar tamamlanacak ve eğer varsa Pazar günü seçimler yapılacak şekilde saptanması zorunludur. ç) Oda Genel Kurulu üye tam sayısının çoğunluğu ile toplanır. Birinci toplantıda çoğunluk sağlanamaması halinde ikinci toplantı için çoğunluk aranmaz. Toplantı yeter sayısının sağlanamaması halinde Oda Genel Kurulu ancak bir kez altmış (60) günü geçmemek üzere ertelenir. Bu durumda, Yönetim Kurulu yeni Oda Genel Kurul tarihini ve yerini, gündemin seçim olması halinde görevli hakimin onayını da alarak belirler ve toplantı tarihinden en az on (10) gün önce, bir gazetenin Türkiye baskısında ilan eder ve üyelere duyurur. d) Oda Yönetim Kurulu, Genel Kurul toplantısından en az onbeş (15) gün önce, Genel Kurula katılacak üyelerin üçer kopya olarak hazırlanmış listelerini, toplantının gündemini, yerini, gününü, saatini ve çoğunluk sağlanamadığı takdirde yapılacak ikinci toplantıya ilişkin hususları belirten bir yazıyla birlikte, görevli İlçe Seçim Kurulu Başkanlığına iletir. Gerekli incelemeden sonra hakim tarafından onaylanan listeler ve toplantıya ilişkin diğer hususlar Odanın ilan yerlerinde asılmak suretiyle ve üç gün süre ile ilan edilir. Yasal sürecin tamamlanması ve listelerin kesinleşip, Genel Kurula ilişkin diğer hususların onaylanmasını izleyen üç (3) gün içinde, Yönetim Kurulu, Genel Kurulu üyelere duyurur ve bir gazetenin Türkiye baskısında ilan eder. Çalışma Yöntemi Madde 9- Oda Genel Kurulu aşağıdaki şekilde toplanır; a) Genel Kurul toplantı yeter sayısının sağlanmasıyla, Yönetim Kurulu Başkanı, İkinci Başkanı ya da Yönetim Kurulunun kendi içinden belirleyeceği bir üye tarafından, açılır ve gündemin birinci maddesi gereğince Başkanlık Divanı seçilir. b) Başkanlık Divanı, bir Başkan ve iki Yazmandan oluşur. Başkanlık Divanı üyeliklerinin tespiti için ayrı ayrı oylama yapılır. c) Genel Kurul görüşmeleri, Yönetim Kurulunca hazırlanıp, duyurulmuş gündem maddelerine göre yapılır. Ancak, toplantıya katılan üyelerin yazılı önerisi ve Genel Kurul kararı ile gündeme madde eklenebilir ya da maddelerin sırası değiştirilebilir. ç) Oda Genel Kurulu gündeminde aşağıdaki maddelerin bulunması zorunludur; 1) Başkanlık Divanı seçimi, 2) Çalışma raporu, mali rapor ve denetleme raporunun okunması, görüşülmesi ve Oda Yönetim Kurulunun aklanması, 3) Oda Yönetim Kurulu, Denetleme Kurulu ve Disiplin Kurulu delege adaylarının ve Birlik Yönetim Kurulu aday adaylarının belirlenmesi ve duyurulması, d) Oda Genel Kurulunda bulunmak, görüşmelere katılmak, oy kullanmak ve organlara aday olmak için, Oda Yönetim Kurulu tarafından hazırlanıp, görevli hakim tarafından kesinleştirilmiş üye listelerinin imzalanması yoluyla alınmış Genel Kurul giriş kartının ve Oda kimlik kartının gösterilmesi zorunludur. Sadece oy verme sırasında, Oda kimlik kartı yerine, resmi kuruluşlarca verilmiş kimlik kartları da kullanılabilir. e) Genel Kurul, kararlarını çoğunlukla alır. Oylarda eşitlik olursa, Divan Başkanının kullandığı oy yönünde çoğunluk sağlanmış sayılır. Ancak, Bu Yönetmelikte değişiklik yapılabilmesi için görüşmelere katılanların üçte ikisinin olumlu oyu gereklidir. f) Genel Kurul görüşmeleri ve kararları bir tutanağa bağlanarak, Divan Başkanı, ve Yazmanlar tarafından imzalanıp, dosyasında saklanmak üzere Oda Yönetim Kuruluna verilir. Olağanüstü Genel Kurul Madde 10- Olağanüstü Genel Kurul, a) Odaya kayıtlı üye sayısının beşte birinin Oda Yönetim Kuruluna yazılı başvurusu ile, b) Oda Denetleme Kurulunun, Oda hesap işleriyle ilgili olarak gerek görmeleri durumunda ve oybirliği ile alacakları karar ile, c) Oda Yönetim Kurulunun üçte iki (2/3) çoğunlukla alacağı karar ile, ç) Boşalan Oda Yönetim Kurulu üyeliğine davet edilecek yedek kalmadığı durumda, yukarıdaki durumlardan herhangi birisinin oluşması üzerine, Oda Yönetim Kurulu tarafından toplantıya çağrılır. Olağanüstü Genel Kurul Toplantısı Madde 11- Bu Yönetmeliğin 10 uncu maddesinin (a), (b) ve (ç) bendinde belirtilen durumlardan herhangi birinin oluşması halinde, Oda Yönetim Kurulu, başvuru tarihinden itibaren bir hafta içinde Olağanüstü Genel Kurul için karar almak ve Genel Kurulun tarihini saptamak zorundadır. Olağanüstü Genel Kurul, karar tarihinden itibaren bir (1) ay içinde toplanır. Olağanüstü Genel Kurul Çalışma Yöntemi Madde 12- Olağanüstü Genel Kurul toplantısı da, Olağan Genel Kurul toplantısı gibi yapılır. Ancak, sadece önceden duyurulan gündemdeki maddeler görüşülüp karara bağlanır. Olağanüstü Genel Kurul toplantılarında gündeme madde eklenemez. Oda Genel Kurulunun Görev ve Yetkileri Madde 13- Oda Genel Kurulunun görev ve yetkileri şunlardır; a) Odanın çalışma alanları ile ilgili konularda ve Oda amaçlarının gerçekleşmesine ilişkin kararlar almak, b) Toplumun, mesleğin ve Odanın gelişmesi için gerekli etkinlik alanlarını ve esaslarını saptamak, c) Oda Yönetim Kurulu raporlarını incelemek, bu raporlar hakkında karar almak ve Oda Kurullarına görev, yetki ve sorumluluklar vermek, ç) Oda ve Şube hesaplarını, bilanço, gelir-gider cetvellerini, Denetleme Kurulu çalışmalarını ve raporlarını incelemek ve hakkında kararlar almak, d) Oda Yönetim Kurulunun önerileri doğrultusunda, yeni dönem gelir ve gider bütçelerini, geçici ya da sürekli ücretleri, ücretli kadroları incelemek, bu inceleme sonucunda değiştirerek ya da olduğu gibi onaylamak, e) Oda Yönetim Kurulu, Oda Disiplin Kurulu, Oda Denetleme Kurulu Üyelerinin oturum ücretlerini tespit etmek, f) Oda işlerinin yürütülmesini ve kanunların Odalara verdiği görev ve yetkilerin kullanılmasını, üyelerin mesleki onur ve çıkarlarının korunması için Oda Yönetim Kurulunca önerilen Yönetmelikleri incelemek, değişiklik teklifi yapmak ve onaylamak; gerektiğinde yönetmelik hazırlama yetkisini Oda Yönetim Kuruluna geçici süreler ile devretmek, g) Oda Yönetim Kurulunun yedi (7) asil ve yedi (7) yedek, Oda Disiplin Kurulunun beş (5) asil ve beş (5) yedek, Oda Denetleme Kurulunun üç (3) asil ve üç (3) yedek üyeliklerini, 3 yıl süre ile belirlemek ve duyurmak, ğ) Odanın sahip olduğu, ya da olacağı taşınmaz mallar hakkında karar almak, ya da bu konularda Oda Yönetim Kurulunu yetkilendirmek, h) Oda amaçlarının gerçekleştirilmesi ve Oda işlevlerinin yerine getirilmesi amacıyla yardımcı organları oluşturmak, ı) Oda Yönetim Kurulunun veya üyelerin gerekçeli önergeleri ile Şube kurmak, kapatmak, bunların yetki ve sorumluluklarını ve etkinlik alanlarını belirlemek, Oda Yönetim Kurulu, Oluşumu ve Çalışma Yöntemi Madde 14- Oda Yönetim Kurulu; a) Oda Genel Kurulu tarafından üç (3) yıllık bir süre için seçilen yedi (7) asil ve yedi (7) yedek üyeden oluşur, b) Oda Genel Kurulundan sonra yapacağı ilk toplantıda üyeler arasından bir (1) Başkan, bir (1) İkinci Başkan, bir (1) Sekreter Üye ve bir (1) Sayman Üye seçerek, Oda Yürütme Kurulunu oluşturur ve diğer Yönetim Kurulu üyeleri için görev bölümü yapar, c) Ayda en az bir (1) kez ve çoğunlukla toplanır. Toplantıyı Başkan, Başkan bulunmadığı zamanlarda İkinci Başkan, Başkan ve İkinci Başkan bulunmadığı zamanlarda Sekreter Üye yönetir. ç) Kararlarını çoğunlukla alır. Oylarda eşitlik olması halinde, toplantı yöneticisinin kullandığı oy yönünde sağlanmış sayılır. Oda Yönetim Kurulu Üyeliğinin Düşmesi Madde 15- Her nedenle olursa olsun, üç (3) ay süreyle toplantılara gelmeyen ya da, herhangi bir altı (6) aylık süre içerisinde yapılan olağan toplantıların üçte birinden (1/3) daha azına katılmış olan Yönetim Kurulu Üyesi çekilmiş sayılır ve yerine Yönetim Kurulu tarafından sıradaki Yedek Yönetim Kurulu Üyesi yazılı olarak davet edilir. Çekilen veya çekilmiş sayılan Yönetim Kurulu Üyesinin yerine Yönetim Kurulu tarafından davet edilen Yedek Yönetim Kurulu Üyesi daveti yazılı olarak kabul veya reddeder. Yedek üyenin görevi kabul etmesi durumunda, ilk Yönetim Kurulu toplantısında göreve başlama kararı alınır. Davet edilen Yedek Üyenin görevi reddetmesi veya çağrıya on beş (15) gün içerisinde yanıt vermemesi durumunda bu üye çekilmiş sayılır ve ilk Yönetim Kurulu toplantısında yerine Yönetim Kurulu tarafından sıradaki Yedek Yönetim Kurulu Üyesi yazılı olarak davet edilir. Yedek Yönetim Kurulu Üyesi Kalmaması Madde 16- İstifa eden ya da çekilmiş sayılan Oda Yönetim Kurulu üyeliğine davet edilecek yedek üye kalmadığı durumda, Oda Yönetim Kurulu, Başkan ve İkinci Başkan, tarafından Olağanüstü Oda Genel Kurulu toplantısı çağrısı yapılır. Olağanüstü Oda Genel Kurul toplantısında yeniden seçim yapılır ve seçilen Oda Yönetim Kurulu ilk Olağan Genel Kurul toplantısına kadar görev yapar. Oda Yönetim Kurulu Görev ve Yetkileri Madde 17- Oda Yönetim Kurulu, Odanın amaçları doğrultusunda aşağıdaki görevleri yerine getirmekle yükümlüdür; a) Oda Genel Kurulu tarafından kendisine verilen görev ve yetkileri kullanır, Oda Genel Kurulunda alınan kararları uygular, Oda işlerini Genel Kurulun kararları çerçevesinde yürütür. b) Oda üyelerinin, Oda Yönetmelikleri içinde hak ettiği yetkilerini iyi bir biçimde kullanmalarını gözetir, üyelerinin mesleki onur ve çıkarlarını korur ve bu konuda önlemler alır, gerekli girişimlerde bulunur. c) Mesleğin ilerlemesi için gerekli incelemeleri ve çalışmaları yapar ya da yaptırır ve bunlara ilişkin raporları Oda Genel Kurulunun değerlendirmesine sunar. ç) Resmi işlerde ve istek üzerine özel işlerde bilirkişilik, hakemlik, jüri üyeliği, danışmanlık gibi görevlere atama yapmak üzere, üyeleri arasından adaylar saptar veya görevlendirme yapar. d) biyoloji biliminin çalışma alanları ile ilgili diğer meslek kuruluşları ile ilişki kurar ve gerekli girişimlerde bulunur. Üyesi bulunduğu ya da üyelik olanağı doğan dış ülkelerdeki uzmanlığını ilgilendiren mesleki kuruluşlarla iletişim kurar ve bu ortamlarda Odanın temsil edilmesini sağlar, kongrelere katılmak için delege gönderir, yurt içi kongreler yapar. Gerekirse Birliğin ve birlik üyelerinin maddi ve manevi yardımını alır. e) Üyelerin gerek kamu kuruluşları ve gerek diğer kurum ve kişilerle olan bütün mesleki ilişkilerinde ortaklaşa uyulacak kanuni esasları hazırlar, bunlara uyulmasını sağlar ve uygulanmasını denetler. f) Üyelerin çalışma koşulları ve her türlü mesleki hizmetleri karşılığında alacağı asgari ücretleri saptar, ilgili yönetmelik, yönerge ve ücret tarifelerini hazırlar ve yayınlar, ilgililere duyurur, bunlara uyulmasını sağlar ve denetler. g) Her türlü mesleki ve teknik kitap, broşür, dergi, bülten ve benzeri yayını yayımlar. Üyelerin ve diğer ilgililerin yararına sunmak üzere, kütüphane ve arşiv kurar ve oda yayınlarının sürekli ve düzenli çıkmasını sağlar. ğ) Üyeler arasında haksız rekabeti önleyecek önlemleri önceden alır, gerekli yaptırımları uygular. h) Yasama ve yürütme organlarında Odanın amaçları ile ilgili olarak yapılacak kanun, tüzük, kararname, yönetmelik, yönerge ve genelge hazırlama veya değişikliği çalışmalarına ve uygulamalarına katılır, görüş verir ve önerilerde bulunur. ı) Mesleki, teknik eğitim ve öğretim konularında incelemelerde bulunur, ilgili kurumlarla işbirliği yapar, Oda görüşlerini oluşturur ve uygulanması için gerekli çalışmalarda bulunur. i) Odanın açacağı ve/veya Odaya karşı açılan davalarda, Odayı temsil eder, sav ve savunmada bulunur ve bu konularda vekil atar. l) Gerekli gördüğü konularda sürekli veya geçici kurul, komite, komisyon, çalışma grubu ve benzeri oluşturur, çalışmalarını yürütür ve yönetir. m) Oda Genel Kurulu hazırlıklarını ve duyurularını yapar. Oda Genel Kuruluna sunulmak üzere çalışma raporunu ve bilançoyu, yeni yıl gelir ve gider bütçelerini hazırlar, geçici ve sürekli ücretliler kadrolarını saptayarak bunları Oda Denetim Kurulu Raporu ile birlikte delege sayısına yetecek kadar çoğaltarak Oda Genel Kurulundan onbeş (15) gün öncesine kadar delegelere gönderir. n) Gerektiğinde Oda Genel Kurulunu olağanüstü toplantıya çağırır. o) Oda Genel Kurulu kararlarını ve yapılan seçim sonuçlarını üyelerine ve ilgili kurum ve kuruluşlara bildirir. ö) Oda Danışma Kurulunun eğilim kararı ile Bölge, İl ve İlçe Temsilcilik Yönetim Kurullarını atar ve bu birimlerin Oda işleyişine uygun faaliyetler yürütmesini sağlar. Gerektiğinde Oda Disiplin Kurulu ve/veya Oda Denetleme Kurulunun görüşlerine başvurarak Bölge, İl ve İlçe temsilciliklerini görevden alır. p) Odanın sahip olduğu taşınmaz malları, demirbaşları ve Oda bütçesini yönetir. Taşınmaz mallar ve demirbaşlar Oda adına satın alınır ve/veya satılır, tescil ettirilir. Taşınmaz malların alım, satım, bağış ve tescil işlemleri için Oda Genel Kurul kararı gerekir. Demirbaş malların alım, satım ve bağışı için Oda Genel Kurulunda kabul edilen bütçe esasları çerçevesinde Oda Yönetim Kurulunca verilecek görev ve yetki kapsamında ilgili birim yönetim kurulu kararı gerekir, ancak tescil işlemleri Oda Yönetim Kurulunca yapılır. Ayrıca Oda Yönetim Kurulu Odanın her türlü hizmet alımı ve diğer iş ve işlemleri ile ilgili ihale açmaya, teklif almaya, ihale vermeye, teklif ihale reddetmeye ve pazarlık yapmaya yetkilidir. r) Oda birimlerinden gelen üye kayıtlarını yapar ve belli bir düzende tutar. Üyelerin vasıf kaybetme işlemlerini yapar. ş) Oda görevlilerinin atama, yer, görev ve yetki, değiştirme, görevden alma, sicil ve benzeri özlük işlerini Yönetmelikler uyarınca düzenler. t) Gerekli gördüğünde veya başvuru üzerine söz konusu Oda üyeleri hakkında soruşturma yapar, gerek gördüğünde Oda Onur Kurulunu toplantıya çağırır. ü) Gerekli gördüğünde veya başvuru üzerine Oda Denetleme Kurulunu toplantıya çağırır. v) Şube Genel Kurulları için yeterli sayıda gözlemci seçer ve görevlendirir, gözlemcinin Şube Genel Kurul toplantısına katılmasını sağlar. y) Oda Yönetim Kurulu gerekli gördüğü hallerde, Şube Genel Kurulunun olağanüstü toplanması için Disiplin ve Denetleme Kurullarını ortak toplantıya çağırır. z) Oda Denetleme Kurulunun raporuna istinaden Şube Genel Kurulunu olağanüstü toplantıya çağırır. Oda Yönetim Kurulu Üyelerinin Görev ve Yetkileri Madde 18- Oda Yönetim Kurulu Üyelerinin görev ve yetkileri şunlardır; a) Biyologlar Odasını Yönetim Kurulu Başkanı temsil eder. Başkanın bulunmadığı zamanlarda İkinci Başkan, Başkan ve İkinci Başkanın bulunmadığı zamanlarda Sekreter Üye, Başkan, İkinci Başkan ve Sekreter Üyenin bulunmadığı zamanlarda Sayman Üye Odayı temsil eder. Gerektiğinde Odayı temsil yetkisi Yönetim Kurulu kararı ile seçilen üye ya da kurullara devredilebilir. b) Oda Başkanı; Odayı temsil etmek, Oda Yönetim Kurulunu, Danışma Kurulunu ve Oda Organlarını yönetmek ve Oda kurullarının Oda amaçları doğrultusunda düzenli olarak çalışmasını sağlamakla yetkili ve sorumludur. Odanın çıkardığı tüm yayınların sahibidir. Oda İkinci Başkanı; Oda Başkanı olmadığı zamanlarda Oda Başkanının görev ve yetkilerini sürdürmekle, Odayı temsil etmekle ve birimler arası koordinasyonu sağlamakla yetkili ve sorumludur. Sekreter Üye; Odanın sözcüsüdür. Oda işlerini Oda amaçlarına ve Oda Yönetim Kurulu kararlarına uygun olarak yürütmekle görevli ve sorumludur. Oda Yönetim Kurulu toplantılarının gündemini hazırlar ve Oda Yönetim Kurulu kararlarının uygulanmasında gerekli tüm önlemleri alır. Odanın yazışma işlemlerini yürütür ve imza eder. Tüm Oda örgütündeki üyelerin özlük işlerini yürütür. Odanın geçici ve sürekli personelinin görev amirliğini yapar. Oda Saymanı; Odanın mali işlerinin yürütülmesini, oda bütçesinin uygulanmasını, aylık olarak gönderilen şube bütçelerinin incelenmesini sağlar, gerekli önlemleri alır ve önerilerde bulunur. c) Oda Başkanı, İkinci Başkanı, Sekreter Üye ve Saymana Yönetim Kurulu kararı ile belirli bir miktara kadar harcama yetkisi verilebilir. Banka işlemlerinde Oda Yönetim Kurulu üyelerinden herhangi ikisinin imzasının bulunması gereklidir. ç) Oda Yönetim Kurulu bu maddenin (c) bendinde belirlenmiş yetkilerinin bir bölümünü, Yönetim Kurulunun diğer üyeleri ile Şube ve Temsilcilik Yönetim Kurullarına ve Temsilcilerine ve Oda çalışanlarına kendi denetim ve sorumluluğunda olmak üzere görev olarak verebilir. d) Oda Sekreter Üye ve Saymanı, yürütme görevlerinden dolayı Oda Yönetim Kuruluna karşı sorumludur. e) Oda evraklarında imza yetkisi Oda Yönetim Kurulu üyelerine aittir. Ancak bu yetki, Oda Yönetim Kurulu kararı ile belirli konularda kullanılmak üzere Oda organları üyelerine devredilebilir. Oda Disiplin Kurulunun Oluşumu MADDE 19- Oda Disiplin Kurulu, Genel Kurulca üç yıllık bir dönem için oda üyeleri arasından seçilen 5 asil ve 5 yedek üyeden oluşur. Disiplin Kuruluna seçilebilmek için bu kanuna göre genel seçilme yeterliği yanında Türkiye'de en az bilfiil 5 yıl Biyologluk yapmış olmak şarttır. Hizmet süresi bakımından yeterli sayıda aday bulunmazsa sırasıyla daha az hizmeti olanlar da aday olabilir. Disiplin Kurulu asil üyeleri ilk toplantıda gizli oyla kendi aralarında bir Başkan ve bir raportör seçerler. Oda Disiplin Kurulunun Görev ve Toplantıları MADDE 20- Oda Disiplin Kurulunun görevi, Oda Yönetim Kurulunun disiplin soruşturması açılmasına dair kararı üzerine inceleme yaparak disiplinle ilgili kararları ve cezaları vermek, Kanunla verilen diğer yetkileri kullanmaktır. Oda Disiplin Kurulu toplantıya, Yönetim Kurulu tarafından, asil üyelere toplantı tarihinden en az 3 hafta önceden taahhütlü mektup gönderilmek suretiyle çağırılır. Geçerli bir mazeret nedeniyle toplantıya katılamayacak üyelerin toplantıdan bir hafta önce durumlarını belirtmeleri üzerine yerleri yedek üyelerle doldurulur. Mazereti olmaksızın üst üste iki toplantıya katılmayan, asil üyelerin üyelikleri düşer, yerlerine sırasıyla en fazla oy alan yedek üye getirilir. Disiplin Kurulu toplantılarında Disiplin Kurulu Başkanı bulunmazsa o toplantıyı yönetmek üzere katılanlar arasından bir başkan seçilir. Seçim gerçekleşmezse kurula, toplantıya katılanların en yaşlısı başkanlık eder. Oda Disiplin Kurulu üye tam sayısının salt çoğunluğu ile toplanır. hazır bulunanların salt çoğunluğu ile karar verir. Oylarda eşitlik halinde Başkanın Bulunduğu taraf üstün sayılır. Oda Denetleme Kurulunun Oluşumu MADDE 21- Oda Denetleme Kurulunca üç yıllık bir dönem için oda üyeleri arasından seçilen üç asil ve yedek üyeden oluşur. Denetleme Kurulu'na seçilebilmek için bu Kanuna göre seçilme yeterliliğine sahip olmak şarttır. Denetleme Kurulu üyeleri ilk toplantılarında kendi aralarından bir başkan seçerler. Oda Denetleme Kurulunun Görevleri MADDE 22- Denetleme Kurulu üyeleri gerek birlikte ve gerekse ayrı ayrı Odanın işlem ve hesaplarını incelemekle görevlidirler; Oy hakları olmaksızın Yönetim Kurulu toplantılarına katılabilirler. Denetleme Kurulu hesap ve işlemlerde gördüğü aksaklıkları en geç on gün içinde Yönetim Kurulu'na ve üç yıllık denetleme sonuçlarını da bir rapor halinde Oda Genel Kurulu'na sunar. Denetleme Kurulu yılda en az bir defa kendi başkanlarının başkanlığında toplanarak, Kurul halinde denetlemede bulunurlar. ÜÇÜNCÜ BÖLÜM Üyelik Üyelik Madde 23- Türkiye Cumhuriyeti uyruğunda olup, biyologluk mühendislik mesleğini yürütmeye yetkili; yurtiçi ya da yurtdışındaki denkliği Yükseköğretim Kurulunca kabul edilmiş Biyoloji Bölümlerinden mezun olarak Biyoloji lisans diplomasına sahip; biyologlar, mesleklerinin gerektirdiği işlerle uğraşabilmek ve mesleki öğretim yapan kuruluşlarda çalışabilmek için Odaya kayıtlı olmak ve üyeliğin gereklerini yerine getirmek, kimlik bilgilerini onaylatarak üyeliklerini korumak zorundadır. Geçici Üyelik Madde 24- Türkiye’de mesleklerini uygulamalarına yasal olarak izin verilen yabancı uyruklu biyologlar ya da denkliği Yükseköğretim Kurulunca kabul edilmiş bölümlerin lisans diplomasına sahip biyologlar Odaya geçici üye olarak kaydolmak zorundadırlar. Geçici üyelik çalışma izni süresi ile sınırlıdır. Geçici üyeler Oda asil üyelerinin bütün haklarına sahiptir ve sorumluluklarını taşır, ancak Oda Genel Kuruluna katılamaz ve Oda organlarında görev alamaz. Öğrenci Üyeliği Madde 25- Biyoloji bölümü öğrencileri Odaya öğrenci üye statüsünde üye olabilirler. Öğrenci üyelerin ödenti zorunlulukları yoktur, ancak Odanın amaçları doğrultusunda faaliyet yürütmekle yükümlüdürler. Üye Yükümlülükleri Madde 26- Odaya kayıt olan üyeler; a) Mesleki örgütlenme amaçlarına uygun olarak bu kanun gereğince, kamu yararı esasına dayanarak ve kanuni mevzuata uygun olarak, mesleki etkinliklerde bulunur, b) Mesleklerini uygularken, ülke ve toplum yararı ile insan onuruna yakışır hareket etmekle yükümlüdür. İnsan ve mühendis topluluğunun onuruna aykırı biçimde mesleki rekabet yapamaz. Odayı, yetkili organlarını ve üyelerini küçük düşürücü, rencide edici davranış, hareket ve açıklamalar yapamaz, c) İlgili mevzuat çerçevesinde tanımlı makamlar ile kendilerine verilen görevleri, hakemlik, tanıklık, bilirkişilik, eksperlik ve benzeri ile bu Yönetmelik kapsamında yer alan görevleri kabul etmek ve gerçekleştirmek ve üyelik sorumluluklarını yerine getirmekle yükümlüdür, ç) Oda amaçlarına uygun olarak, ilgili düzenlemeler kapsamında, Oda Genel Kurulları, organları, kurulları, komisyonları, seçimleri ve benzeri çalışmaları içinde yer alır, d) Oda kurullarınca belirlenen yıllık ödentilerinin zamanında ödenmesiyle ve ödeme belgelerinin üyeye ait kopyalarının saklanması ile yükümlüdür, e) Odaya bildirdikleri üyelik bilgilerinin doğru olmasından sorumludur, f) Üye kimlik kartını, kimlikte yer alan bilgilerden en az birinin değişmesi sonrasında bir (1) ay içerisinde değişikliğin belgesi ile yazılı olarak bağlı bulundukları Oda birimine bildirmek, bilgilerin değişmemesi durumunda ise beş (5) yılda bir, yeni üye kimlik kartı almak zorundadır. Üyelerin bilgileri güncellenmemiş olan ve son kullanma tarihini geçen kimlik belgesi geçersizdir, bu durumun sebep olacağı tüm hukuki ve mali sorumluluk üyeye aittir. g) Adres değişikliklerini bir (1) ay içerisinde Odaya bildirmekle yükümlüdür. Üyelik Vasfının Kaybolması Madde 27- Üyelik vasfının kaybolması aşağıdaki koşullarda gerçekleşir: a) Oda Disiplin Kurulunun kararı ile Odadan ihraç cezası alan üyelerin cezası kesinleşir ve karar ile ilgili işlemlerin Oda Yönetim Kurulu tarafından uygulamaya konulması ile birlikte, üyelik vasfı kaybolur. b) Herhangi bir nedenle mesleki etkinliğini sürdürmek istemeyen, kamu kurum ve kuruluşlarında, kamu iktisadi kuruluşlarında asli ve sürekli görevde çalışırken üyelikten ayrılmak isteyen üyeler, bu durumu Oda Yönetim Kuruluna yazılı olarak bildirmek, gerektiğinde belgelemek, Oda üye kimlik kartını geri vermek ve o tarihe kadar olan üyelik ödentilerinin tümünü ödemek koşuluyla ayrılabilir. Ayrılma isteği kabul edilmeyen üyenin, Oda Genel Kuruluna itiraz hakkı vardır. Üyelikten çıkarılan ya da ayrılan üyeler, Oda süreli yayınları ile duyurulur. Yeniden Üye Olma Madde 28- Üyelikten çıkarılan üyelerin tekrar Odaya kaydolması, Oda Onur Kurulunun olumlu görüşü ve Oda Yönetim Kurulu kararı ile gerçekleşir. Her ne sebeple olursa olsun üyelik vasfı kaybolan üyenin, yeniden üyelik için başvurması durumunda, Odaya kayıt işlemleri yeni bir üye kaydı gibi yapılır. Üyelik Ödentileri Madde 29- a) Üyelik ödentileri ve üyelik ile ilgili tüm ücretler, mevcut olanak ve koşullara göre Oda Genel Kurulu tarafından veya Oda Yönetim Kurulu tarafından belirlenir. Üye yıllık ödentisi üyelerden peşin ya da Oda Yönetim Kurulunca belirlenecek esaslara göre taksitler halinde alınabilir. b) Oda Genel Kurulu ya da Oda Genel Kurulunca yetkilendirilen Oda Yönetim Kurulu, yeni üye kaydı sırasında bir defaya mahsus olmak üzere üye kayıt ücreti alınmasını kararlaştırabilir ve bu ücreti belirleyebilir, bu ücrete Üye Kimlik bedeli dahil olur. Aynı koşullarda kimlik yenileme işlemleri için kimlik bedeli alınmasını kararlaştırabilir ve Oda Yönetim Kurulu bu ücreti belirleyebilir. c) Yurtiçinde yüksek lisans öğrenimlerini gerçekleştiren üyeler için öğrenimleri süresince üye yıllık ödentisinin yarısı alınır. Üyenin bu koşuldan faydalanabilmesi için yazılı başvurusu, okul kimliği fotokopisi ve/veya öğrenci belgesi ile bağlı bulunduğu birime başvurması ve her yıl bu belgeleri yenilemesi gerekir. Başvuru ya da yenileme yapılmamış yıla ait aidat normal bedeli üzerinden alınır. ç) Yurt dışına eğitim ya da çalışma amaçlı çıkan üyelerin üyelikleri önceden yazılı başvuru yapmak ve dönüşlerini belgelendirmek koşuluyla, yurt dışında kalış süreleri boyunca askıya alınır ve yıllık üyelik ödentisinden muaf tutulurlar. Söz konusu üyelerin üyeliklerinin askıya alınabilmesi için üyeliğin askıya alınması tarihi itibariyle varsa borçlarını kapatmaları ve oda kimliklerini teslim etmeleri gerekmektedir. d) Oda üyesi olup da askerlik yükümlülüğünü yerine getirmekte olan yedek subaylar ile er ve erbaşlar önceden haber vermek ve dönüşlerinde belgelendirmeleri kaydıyla askerlik süresince üyelik ödentilerinden muaf tutulurlar. e) Tüm Oda alacaklarının tahsilatında gerekli işlemler yapıldıktan sonra başkaca bir yol kalmaması durumunda 9/6/1932 tarihli ve 2004 sayılı İcra ve İflas Kanunu hükümleri uygulanır. DÖRDÜNCÜ BÖLÜM Şubeler ve Temsilcilikler Şubeler Madde 30- Belirli illerde çalışan üyelerin sayısı, mesleki çalışmaların daha verimli bir şekilde yürütülmesi ve Odanın yükümlü bulunduğu görevleri nedeniyle gerekiyorsa, Oda Genel Kurulunun kararı ile il merkezi ve etkinlik alanına giren iller belirtilerek şube açılabilir. Şubeler, etkinlik alanında bulunan illerdeki üye toplam sayısının üçte ikisi (2/3)nin yazılı başvurusu, Şube Genel Kurulunun iki (2) kez toplanamaması ya da Olağan/Olağanüstü Şube Genel Kurulunda Şube Yönetim Kurulunun oluşamaması durumunda, Oda Yönetim Kurulunun önerisi ve Oda Genel Kurulu kararı ile kapatılabilir. Şube Organları Madde 31- Şubelerin organları şunlardır: a) Şube Genel Kurulu b) Şube Yönetim Kurulu c) Şube Danışma Kurulu Şube Genel Kurulu Madde 32- a) Şube Genel Kurulu üç yılda bir Ocak ayı içinde toplanır. Bu toplantıya katılacak üyelerin listesi Genel Kurul tarihinden otuz beş (35) gün öncesinden belirlenir. Bu tarihten otuz beş (35) gün öncesi itibariyle şubeye kayıtlı üye sayısının çoğunluğu ile toplanır. Belirtilen süre içerisinde işyerlerini ya da evlerini ilgili etkinlik alanına taşıyan üyeler ile yeni kaydolan üyeler Şube Genel Kurul toplantısına katılamaz ve şube organlarına aday olamaz. Oturma ve çalışma yerleri ayrı şubelerin etkinlik alanında bulunan üyeler yalnız ve ancak işyerlerinin bulunduğu birimin genel kurullarına katılır. b) Oda Yönetim Kurulu, Oda Onur Kurulu ve Oda Denetleme Kurulunun şubeye kayıtlı olmayan üyeleri ile diğer şubelerin yönetim kurulu üyeleri de Şube Genel Kurulunun doğal delegeleridir. Söz alır, görüş belirtir ancak oy kullanamaz. c) Şube Genel Kurullarının tarihleri Oda Danışma Kurulunun önerisi ile ilk Şube Genel Kurulu tarihinden en az kırkbeş (45) gün önce Oda Yönetim Kurulunca saptanır ve aynı gün tüm Oda birimlerine bildirilir. Şube Genel Kurulu şube merkezinin bulunduğu kentte toplanır. Şube Genel Kurulunun birinci toplantısında çoğunluk sağlanamaması durumunda ikinci toplantıda çoğunluk aranmaz. Toplantı tarihinin; görüşmeler cumartesi akşamına kadar tamamlanacak, Pazar günü seçimler yapılacak şekilde saptanması zorunludur. ç) Şube Genel Kurulu tarihinden en az otuz (30) gün önce, Şube Genel Kuruluna katılacak üyelerin listesi, Oda sicil numaralarına göre sıralanarak listelenmiş vaziyette Oda Yönetim Kuruluna gönderilir. Oda Yönetim Kurulu birden fazla Oda biriminde kaydı olduğu görülen üyelerin durumunu inceleyerek gönderilen listelerde gerekli düzeltmeler yapar ve on (10) gün içerisinde Şubeye yazılı olarak bildirir. Şube yapılan düzeltmeleri esas alarak işlem yapar. d) Şube Yönetim Kurulu, Genel Kurul toplantısından en az on beş (15) gün önce, Genel Kurula katılacak üyelerin sicil numarası sırasına göre Oda Yönetim Kurulu tarafından düzeltilmiş listelerini, toplantı gündemini, yerini, saatini ve çoğunluk sağlanamadığı takdirde yapılacak ikinci toplantıya ilişkin hususları belirten bir yazı ile birlikte görevli İlçe Seçim Kurulu Başkanlığına iletir. e) Gerekli incelemeden sonra, hakimce onaylanan listeler ile toplantıya ilişkin hususlar söz konusu şubenin ilan yerine asılarak üç (3) gün süre ile duyurulur. f) Genel Kurula katılacak üye listesi hakim tarafından kesinleştirildikten sonra, Şube Genel Kurul gündemi, toplantı yeri, günü ve saati ile, çoğunluk sağlanamazsa ikinci toplantı için aynı bilgiler toplantı gününden en az on (10) gün önce Şube Yönetim Kurulu tarafından, bir gazetenin Türkiye baskısında ilan edilir. Oda Yönetim Kurulu Şube Genel Kurulunun düzenli bir biçimde yapılamayacağının anlaşılması durumunda, toplantı başlamadan önce Şube Genel Kurulunu yalnız bir kez olmak ve on beş (15) günü geçmemek koşuluyla erteleyebilir. Bu durumda Oda Yönetim Kurulu, Şube Genel Kurulunun yeni tarihini ve yerini, görevli hakimin onayını da alarak belirler ve toplantı tarihinden en az on (10) gün önce , bir gazetenin Türkiye baskısında üyelere duyurur. g) Oda Yönetim Kurulu tüm Şubelerin genel kurullarına ilişkin bilgileri Oda süreli yayınlarında duyurur. ğ) Şube Yönetim Kurulu değiştirilmesi için zorunlu bir gerekçe olmadıkça aşağıdaki gündeme uygun olarak Genel Kurulun toplantısını ilan eder. Gündemdeki değişiklik Şube Genel Kurulu Kararı ile olur. 1) Açılış, 2) Başkanlık Divanı seçimi, 3) Oda Yönetim Kurulu ve Şube Yönetim Kurulu adına konuşmalar, 4) Şube Yönetim Kurulu raporunun incelenmesi ve karar alınması, 5) Yeni dönem çalışmaları için ilkelerin saptanması, 6) Yeni dönem bütçesinin görüşülerek Oda Yönetim Kuruluna önerilecek şeklinin sunulması, 7) Yönetim Kurulu seçimi için adayların belirlenmesi ve duyurulması, 8) Seçim. Çalışma Yöntemi Madde 33- Şube Genel Kurulu aşağıdaki şekilde toplanır; a) Şube Genel Kurulu; Şube Yönetim Kurulu Başkanı, İkinci Başkanı ya da Yönetim Kurulunun kendi içerisinden görevlendireceği bir üye tarafından gerekli çoğunluğun oluşması ve Oda Gözlemcisinin salonda hazır bulunması ile ilan edilen gündemle açılır. b) Şube Genel Kurulu Başkanlık Divanı bir (1) Başkan ve iki (2) yazmandan oluşur. c) Toplantıya katılan her üyenin gündemde değişiklik ve ekleme önerme yetkisi vardır. Ancak bu konuda karar verme hakkı Şube Genel Kurulunundur. ç) Şube Genel Kurulunda bulunarak görüşmelere katılmak, oy kullanmak ve organlara aday olmak için ilçe seçim kurulu tarafından askıya çıkartılmış ve onaylanmış listede kayıtlı olmak, Oda kimlik kartını taşımak ve göstermek zorunludur. d) Şube Genel Kurulu görüşmeleri ve kararları tutanakta saptanarak Şube Yönetim Kuruluna teslim edilir. Görev alan Şube Yönetim Kurulu bu belgelerin bir örneğini Oda Yönetim Kuruluna sunar. Olağanüstü Şube Genel Kurulu Madde 34- Şube Genel Kurulu aşağıda belirtilen koşullarda olağanüstü toplantıya çağrılır; a) Şube Yönetim Kurulunun üçte iki (2/3) oy çoğunluğuyla alacağı karar ile, b) Şubeye kayıtlı üyelerin en az beşte birinin (1/5) Şube Yönetim Kuruluna yazılı olarak başvurması durumunda, c) Oda Yönetim Kurulu, Oda Onur Kurulu ve Oda Denetleme Kurulunun ortak toplantısında üye tam sayısının üçte iki (2/3) çoğunlukla alacağı karar ile, ç) Oda Denetleme Kurulunun Şube mali işleriyle ilgili olarak zorunlu görmeleri durumunda oy birliğiyle alacağı karar ile, d) Oda Denetleme Kurulunun Şube mali işleriyle ilgili olarak vereceği denetim raporuna istinaden Oda Yönetim Kurulunun üçte iki (2/3) oy çoğunluğuyla alacağı karar ile, e) Oda Danışma Kurulu Üyelerinden en az yarısının yazılı ve gerekçeli başvurusu üzerine toplantıya katılan üyelerin dörtte üç (3/4) oy çokluğuyla yapacağı öneri doğrultusunda Oda ve/veya Şube Yönetim Kurulunun üçte iki (2/3) çoğunlukla alacağı karar ile, f) İstifa ya da çekilmiş sayılan Şube Yönetim Kurulu üyeliğine davet edilecek yedek üye kalmadığı durumda. Bu maddenin (b), (c), (ç), (d), (e) ve (f) bendinde belirtilen durumlardan herhangi birinin oluşması durumunda, Şube Yönetim Kurulu, başvuru tarihinden itibaren bir hafta içinde Şube Olağanüstü Genel Kurulu için karar almak ve Şube Olağanüstü Genel Kurulunun tarihini saptamak zorundadır. Şube Olağanüstü Genel Kurulu, karar tarihinden itibaren bir (1) ay içinde toplanır. Şube Yönetim Kurulunun herhangi bir nedenle belirtilen sürelerde karar almaması, ya da Şube Olağanüstü Genel Kurulunu toplamaması durumunda, Şube Olağanüstü Genel Kurulu Oda Yönetim Kurulu tarafından toplanır. Olağanüstü Şube Genel Kurulu Toplanma Şekli Madde 35- Şube Olağanüstü Genel Kurulu toplantısı Şube Olağan Genel Kurulu gibi yapılır. Ancak Şube Olağanüstü Genel Kurulunun toplantıya çağrılış nedeni dışında gündem maddesi eklenemez, görüşme yapılamaz ve karar alınamaz. Şube Genel Kurulu Görev ve Yetkileri Madde 36- Şube Genel Kurulunun görev ve yetkileri şunlardır: a) Oda Genel Kuruluna önermek üzere Oda amaçları ile ilgili kararlar almak, b) Şube Yönetim Kurulu raporlarını incelemek, hakkında karar almak, gelecek yıl çalışmaları için Şube Yönetim Kurulunu yönlendirici kararlar almak, c) Şube hesaplarını, bilanço ve gelir-gider cetvellerini, Oda Denetleme Kurulunun Şube ile ilgili raporunu incelemek; Şube Yönetim Kurulunun önerdiği yeni dönem gelir planını ve gider bütçesini; geçici ve/veya sürekli personel kadro çizelgelerini incelemek, olduğu gibi ya da değiştirerek Oda Genel Kurulunun onayına sunmak, ç) Şube Yönetim Kurulunun yedi (7) asil, yedi (7) yedek üyesini seçmek. Şube Yönetim Kurulu, Oluşumu ve Çalışma Yöntemi Madde 37- Şube Yönetim Kurulu; a) Şube Genel Kurulunca seçilen yedi (7) asil ve yedi (7) yedek üyeden oluşur, b) Seçimlerin yapılmasından sonra en geç yedi (7) gün içinde yapacağı ilk toplantıda bir (1) başkan, bir (1) sekreter ile bir (1) sayman üye seçerek Yürütme Kurulunu oluşturur diğer üyeleri arasında görev bölümü yapar, c) En az on beş (15) günde bir çoğunlukla toplanır. Toplantıyı Şube Yönetim Kurulu Başkanı, Başkanın bulunmadığı zamanlarda Şube Sekreter Üyesi yönetir. ç) Şube Yönetim Kurulu salt çoğunlukla toplanır ve kararlarını oy çokluğu ile alır. Oylarda eşitlik olursa başkanın kullandığı oy yönünde çoğunluk sağlanmış sayılır. Şube Yönetim Kurulu Üyeliğinin Düşmesi Madde 38- Herhangi bir nedenle, üç (3) ay süreyle toplantılara gelmeyen ya da, herhangi bir altı (6) aylık süre içerisinde yapılan olağan toplantıların üçte birinden (1/3) daha azına katılmış olan Şube Yönetim Kurulu Üyesi çekilmiş sayılır ve yerine Şube Yönetim Kurulu tarafından sıradaki Yedek Yönetim Kurulu Üyesi yazılı olarak davet edilir. Çekilen veya çekilmiş sayılan Şube Yönetim Kurulu Üyesinin yerine Yönetim Kurulu tarafından davet edilen Yedek Yönetim Kurulu Üyesi daveti yazılı olarak kabul veya reddeder. Yedek üyenin görevi kabul etmesi durumunda, ilk Yönetim Kurulu toplantısında göreve başlama kararı alınır. Davet edilen Yedek Üyenin görevi reddetmesi veya çağrıya onbeş (15) gün içerisinde yanıt vermemesi durumunda bu üye çekilmiş sayılır ve ilk Yönetim Kurulu toplantısında yerine Yönetim Kurulu tarafından sıradaki Yedek Yönetim Kurulu Üyesi yazılı olarak davet edilir. Şube Genel Kurulunun Oda Yönetim Kurulunca Olağanüstü Toplanması Madde 39- İstifa eden ya da çekilmiş sayılan Şube Yönetim Kurulu üyeliğine davet edilecek yedek üye kalmadığı durumda; Şube Genel Kurulu, Şube Yönetim Kurulu Başkanı ve Sekreteri, bunlar yoksa Oda Yönetim Kurulu tarafından olağanüstü toplantıya çağrılır. Şube Olağanüstü Genel Kurul toplantısında yeniden seçim yapılır ve yeni seçilenler ilk Olağan Genel Kurul toplantısına kadar görev yapar. Şube Yönetim Kurulu, Görev ve Yetkileri Madde 40- Şube Yönetim Kurulunun görev ve yetkileri şunlardır: a) Şube etkinlik alanı içinde özel ve kamu kesiminde çalışan üyelerin mesleki sorunlarının çözümü için çalışmak, Üye, Temsilcilik, Şube ve Oda ilişkilerini geliştirmek ve Oda politikaları çerçevesinde gerekli girişimlerde bulunmak, b) Şube etkinlik alanı içinde çevre sorunları ve bunların çözümü yolundaki uygulamalarla ilgili bilgi ve görüşleri Oda Yönetim Kuruluna ileterek bu konularda Oda politikası doğrultusunda ülke ve meslek çıkarlarını gözeten etkinlik ve girişimlerde bulunmak, c) Çevre sorunlarının çözümü için uygulanan projelerin niteliğini geliştirmek, üyelerin hak ve çıkarlarını korumak amacıyla sürdürülen mesleki denetim uygulamasını yürütmek ve Oda Yönetim Kurulunun vereceği yetkiyle mesleki projelere vize uygulamak, ç) Oda Genel Kurulunca alınacak kararları uygulamak, şube işlerini Genel Kurul kararlarına göre yönetmek, d) Şube Genel Kurulunca alınan kararları Oda Yönetim Kuruluna iletmek, e) Oda üyelerinin hak ve yetkilerinin 6235 sayılı Türk Mühendis ve Mimar Odaları Birliği Kanunu ve TMMOB Ana Yönetmeliği ile bu Yönetmelik içinde gereğince kullanılmasını gözetmek; üyelerin mesleki onur, hak ve çıkarlarını koruyacak önlemleri almak ve bu konuda Oda Yönetim Kurulunun onayı ile gerekli girişimlerde bulunmak, f) Mesleğin gelişmesini sağlayacak çalışmaları yapmak, yaptırmak ve buna ait raporları Oda Genel Kurulunun onayına sunmak, g) Şubeye kayıtlı üyelerin kayıtlarını tutmak, ayrıca büro tescil ve diğer mesleki denetim kayıtlarını düzenlemek, ğ) Oda Disiplin Kurulu ile ilgili işleri zamanında Oda Yönetim Kuruluna iletmek, h) Bilirkişilik ve hakemlik yapacak üyeleri belirlemek ve bu listeleri Oda Yönetim Kuruluna sunmak, ı) Şube Yönetim Kurulunun ilk toplantı tarihinden başlayarak en çok on beş (15) gün içerisinde, bütçe uygulamasını da kapsayan Şube yeni dönem çalışma programını hazırlayarak Oda Yönetim Kuruluna sunmak, i) Her yılın Aralık ayının 25 inci gününe kadar o yıla ait mali unsurları da içeren çalışma raporunu ve yeni dönem bütçe önerisini Oda Yönetim Kuruluna sunmak, j) Şube Genel Kuruluna sunulacak çalışma raporunu, geçmiş dönem bütçe uygulamasını da kapsayacak biçimde hazırlayarak, Şube Genel Kurul toplantısından en az bir hafta önce bölgesindeki üyelere duyurmak, k) Şube Genel Kurulu toplantısı için gerekli diğer bütün işlemleri tamamlamak, l) Şube Danışma Kurulunu oluşturmak ve düzenli olarak toplanmasını sağlamak, m) Etkinlik alanları içerisinde bulunan il ve ilçe merkezlerinde temsilcilik açılması için gerekli inceleme ve araştırmaları yapmak, yeni açılacak ve mevcut temsilciliklerin üye eğilimlerini alarak oluşturdukları Yönetim Kurullarının atanması teklifini Oda Yönetim Kuruluna sunmak, n) Etkinlik alanları içerisinde bulunan temsilcilik çalışmalarının, bu kapsamdaki iş ve işlemlerin bu Yönetmelik ve ilgili mevzuat gereğince ve Oda Yönetim Kurulu kararlarına göre yapılmasını sağlamak, denetlemek ve bu konuda Oda Yönetim Kurulunca verilen görevleri yerine getirmek, o) Gerekli gördüğü işyerlerinde, İşyeri Temsilcilikleri açmak, ö) Gerekli gördüğü konularda uzmanlık komisyonları oluşturmak ve bunların düzenli çalışmalarını sağlamak, p) Oda Yönetim Kurulunun vereceği diğer görevleri yürütmek, r) Bülten, faks bülten, bölgesel/yerel sorunlara ya da yerele özgü çevre sorunlarına yönelik araştırma raporları, broşür ve kitapçık gibi çalışmalar yapmak, arşiv ve kütüphane oluşturmak. Şube Yönetim Kurulu, çalışmaları ve hesapları yönünden Oda kamu tüzel kişiliğini temsil eden Oda Yönetim Kuruluna karşı sorumludur. Şube Yönetim Kurulu Üyelerinin Görev ve Yetkileri Madde 41- Şube Yönetim Kurulu Üyelerinin görev ve yetkileri şunlardır; a) Şube Başkanı; Şubeyi temsil etmek ve sözcülüğünü yapmak, Şube Yönetim Kurulunu yönetmek ve Oda amaçları doğrultusunda çalışmasını sağlamakla sorumludur. b) Şube Sekreter Üyesi; Başkanın olmadığı hallerde Yönetim Kurulunun yürütme öğesi ve sözcüsüdür. Şube işlemlerini zamanında ve odanın amaçlarına uygun olarak yürütmekle görevli ve sorumludur. Şube Yönetim Kurulu toplantı gündemini hazırlar. Üyelerin önerisi ile gündeme yeni maddeler eklenebilir. Oda görevlilerine ait sicillerin tutulması ve Yönetim Kurulu kararlarının uygulanması için gerekli tüm önlemleri alır. Şubenin işlemlerini yürütür ve imzalar. c) Şube Sayman Üyesi; Oda ve Şube Yönetim Kurulları kararları çerçevesinde Oda mali işleyişinin zamanında yürütülmesi, gerekli defterlerin tutulması ve demirbaşların en iyi şekilde kullanılmasından görevli ve sorumludur. Yönetim Kurulu Sayman Üyenin sorumluluğuna ortaktır. ç) Şube Başkanı, Sekreteri ve Saymanı, bu Yönetmelik ve ilgili mevzuat çerçevesinde ve bütçe olanakları içinde, Şube Yönetim Kurulunca alınan kararlara göre harcama yaparlar. Şube Mali İşleyişi Madde 42- Şubelerin her türlü gelirleri Odaya aittir. Kendi adlarına makbuz bastıramaz ve para toplayamazlar. Yapacakları bütün tahsilatları Oda hesabına yatırırlar. Şube giderleri Oda Genel Kurulunca kabul edilen Şube bütçesine göre ayrılan ödenekten karşılanır. Şube Yönetim Kurulu, kendi bütçesine göre gerekli harcamalarda bulunur. Bütçe kalemleri arasında yüzde onu (%10) aşmamak üzere aktarım yapabilir. Şube Mali Raporları Madde 43- Şube Yönetim Kurulu, her ayın ilk haftası içerisinde geride kalan aya ait şube mali raporunu Oda Yönetim Kuruluna bildirir. Bölge Temsilcilikleri Madde 44- Oda faaliyetlerinin etkin bir şekilde yürütülmesi ve Oda örgütlenmesinin yaygınlaştırılması amacı ile bölgelerden gelen somut taleplere bağlı olarak kurulur. Bölge temsilciliklerinin kuruluşu ve etkinlik alanı coğrafi yapı ve örgütsel gereksinimler göz önünde tutularak Oda Yönetim Kurulu tarafından belirlenir. Bölge Temsilciliği Yönetim Kurulunun Oluşumu Madde 45- Bölge Temsilciliği, o bölgede bulunan üyelerin eğilim seçimi ve Oda Yönetim Kurulunun ataması ile belirlenen beş (5) veya yedi (7) üyeden oluşan Bölge Temsilciliği Yönetim Kurulu tarafından yönetilir. Oda Yönetim Kurulu atamasını takiben yapılan ilk Bölge Temsilcilik Yönetim Kurulu toplantısında bir (1) başkan, bir (1) sekreter üye ve bir (1) sayman üyeden oluşan yürütme kurulu seçilir. Bölge Temsilciliği Yönetim Kurulunun Görev Süresi Madde 46- Bölge Temsilciliği Yönetim Kurulu görev süresi Oda Yönetim Kurulunun dönem görev süresi ile sınırlıdır. Oda Yönetim Kurulunun atama ve görevlendirmesi ile başlayan görev süresi, görevden alınma ya da istifa gibi nedenlerin dışında bir Oda Genel Kurulundan diğerine kadar olan süredir. Bölge Temsilciliği Yönetim Kurulunun Görevden Alınması Madde 47- Bölge Temsilciliği Yönetim Kurulu Oda işleyişine ve Oda çalışma ilkelerine aykırı bir tutum aldığında ya da Bölge Temsilciliğine kayıtlı üyelerin üçte iki (2/3) sinin Bölge Temsilciliği Yönetim Kurulunun görevden alınması yönündeki Oda Yönetim Kuruluna yaptıkları yazılı başvuru ve bu başvurunun Oda Danışma Kurulu ve sonrasında Oda Yönetim Kurulunda değerlendirilmesi ile Oda Yönetim Kurulunca görevden alınabilir. Bölge Temsilciliklerinin Görev ve Yetkileri Madde 48- Bölge Temsilciliklerinin görev ve yetkileri şunlardır: a) Bölge Temsilciliği çalışma alanı içinde özel ve kamu kesiminde çalışan üyelerin mesleki sorunlarının çözümü için çalışmak Üye, Temsilcilik, Şube ve Oda ilişkilerini geliştirmek ve Oda politikaları çerçevesinde gerekli girişimlerde bulunmak, b) Bölge Temsilciliği çalışma sınırları içinde çevre sorunları ve bunların çözümü yolundaki uygulamalarla ilgili bilgi ve görüşleri Oda Yönetim Kuruluna ileterek, bu konularda Oda politikası doğrultusunda ülke ve meslek çıkarlarını gözeten etkinlik ve girişimlerde bulunmak, c) Çevre sorunlarının çözümü için uygulanan projelerin niteliğini geliştirmek, üyelerin hak ve çıkarlarını korumak amacıyla sürdürülen mesleki denetim uygulamasını yürütmek ve Oda Yönetim Kurulunun vereceği yetkiyle mesleki projelere vize uygulamak, ç) Odaya karşı görevleri ile ilgili konularda üyeleri uyarmak, d) Oda Yönetim Kurulunca verilen görevleri yerine getirmek ve yetki aldığı konularda Odayı temsil etmek, e) Üyelerin mesleki bilgi ve tecrübelerini arttıracak konularda eğitim çalışması yapmak veya girişimde bulunmak, f) Çalışma sınırları içindeki üyelerin Oda Yönetim Kurulunca belirlenen şekilde kayıtlarını tutmak ve Oda Yönetim Kuruluna iletmek, üye aidatlarını toplamak, g) Bölge Temsilciliği çalışma sınırları içinde yapılan faaliyetler ve gelişmelerle ilgili bir faaliyet raporunu her ayın ilk haftası içinde Oda Yönetim Kuruluna sunmak, ğ) Bölge Temsilciliğine ait mali durumu gösteren bilançoyu aylık periyotlar halinde Oda Yönetim Kuruluna sunmak, h) İhtiyaç duyulması halinde bilirkişilik, hakemlik, danışmanlık gibi görevler için üyeler belirlemek ve bu isimleri içeren listeyi Oda Yönetim Kuruluna sunmak, ı) Mesleki sorunların çözümü ve eğitim etkinliklerinin hızlandırılması için komisyonlar kurmak ve bu komisyonların çalışmasını sağlamak, İl ve İlçe Temsilcilikleri Madde 49- İl ve İlçe Temsilcilikleri, Oda faaliyetlerinin etkin bir şekilde yürütülmesi ve Oda örgütlenmesinin yaygınlaştırılması amacı ile il ve ilçelerden gelen somut talepler, coğrafi yapı ve örgütsel gereksinimler göz önünde tutularak ve Şube Yönetim Kurullarının önerileri doğrultusunda kurulur. Oda Yönetim Kurulu İl ve İlçe Temsilciliği kurulmasına ve kurulan temsilciliğin hangi Oda birimine bağlı olarak faaliyet yürüteceğine karar verir ve Temsilcilik Yönetim Kurulunun atamasını yapar. Temsilciliğin kurulduğunu yörenin en büyük mülki amirine, belediye başkanlığına, cumhuriyet savcılığına ilgili kurum ve kuruluşlara bildirir. İl ve İlçe Temsilcilikleri Oluşumu Madde 50- İl ve İlçe Temsilciliğinin oluşum çalışmaları o yöredeki yerel gazetelerde duyurulur. Toplantı/toplantılar düzenlenerek eğilim seçimine gidilir. İl ve İlçe Temsilcilikleri Yönetim Kurulu Oda Yönetim Kurulu kararı ile atanır. İl ve İlçe Temsilcilikleri Yönetim Kurulu Oluşumu Madde 51- İl ve İlçe Temsilciliği Yönetim Kurulu en fazla yedi (7) en az üç (3) tek sayıda üyeden oluşur. Ancak Oda Yönetim Kurulu tarafından gerekli görülmesi halinde bir (1) üye temsilci olarak atanabilir. İl ve ilçe Temsilciliği Yönetim Kurulu atamasını takiben en geç 15 gün içinde toplanarak, kendi aralarından bir (1) Temsilci, bir (1) Sekreter ve bir (1) Sayman seçerek yürütme kurulunu oluşturur, eğer bir Şubeye bağlı ise Şube Yönetim Kuruluna, değilse Oda Yönetim Kuruluna bildirir. İl ve İlçe Temsilcilikleri Yönetim Kurulu Görev Süresi Madde 52- İl ve İlçe Temsilciliklerinin Yönetim Kurullarının görev süresi Oda Yönetim Kurulunun dönem görev süresi ile sınırlıdır. Oda Yönetim Kurulunun atama ve görevlendirmesi ile başlayan görev süresi, görevden alınma ya da istifa gibi nedenlerin dışında bir Oda Genel Kurulundan diğerine kadar olan süredir. İl ve İlçe Temsilcilikleri Yönetim Kurulunun Görevden Alınması Madde 53- İl ve İlçe Temsilciliği Yönetim Kurulu Oda işleyişine ve Oda çalışma ilkelerine aykırı bir tutum aldığında ya da İl ve İlçe Temsilciliğine kayıtlı üyelerin üçte iki (2/3) sinin İl ve İlçe Temsilciliği Yönetim Kurulunun görevden alınması yönündeki Oda Yönetim Kuruluna yaptıkları yazılı başvuru ve bu başvurunun Oda Danışma Kurulu ve sonrasında Oda Yönetim Kurulunda değerlendirilmesi ile Oda Yönetim Kurulunca görevden alınabilir. İl ve İlçe Temsilcilikleri Görev ve Yetkileri Madde 54- İl ve İlçe Temsilciliklerinin görev ve yetkileri şunlardır: a) İl ve İlçe Temsilcilikleri çalışma alanı içinde özel ve kamu kesiminde çalışan üyelerin mesleki sorunlarının çözümü için çalışmak, Üye, Temsilcilik, Şube ve Oda ilişkilerini geliştirmek ve Oda politikaları çerçevesinde gerekli girişimlerde bulunmak, b) İl ve İlçe Temsilcilikleri çalışma sınırları içinde çevre sorunları ve bunların çözümü yolundaki uygulamalarla ilgili bilgi ve görüşleri Oda Yönetim Kuruluna ileterek bu konularda Oda politikası doğrultusunda ülke ve meslek çıkarlarını gözeten etkinlik ve girişimlerde bulunmak, c) Üyelerin hak ve çıkarlarını korumak amacıyla sürdürülen mesleki denetim uygulamasını yürütmek ve Oda Yönetim Kurulunun vereceği yetkiyle mesleki projelere vize uygulamak, ç) Odaya karşı görevleri ile ilgili konularda üyeleri uyarmak, d) Oda Yönetim Kurulunca verilen görevleri yerine getirmek ve yetki aldığı konularda Odayı temsil etmek, e) Üyelerin mesleki bilgi ve tecrübelerini arttıracak konularda eğitim çalışması yapmak veya girişimde bulunmak, f) Çalışma sınırları içindeki üyelerin Oda Yönetim Kurulunca belirlenen şekilde kayıtlarını tutmak ve Oda Yönetim Kuruluna iletmek, üye aidatlarını toplamak, g) İl ve İlçe Temsilcilikleri çalışma sınırları içinde yapılan faaliyetler ve gelişmelerle ilgili bir faaliyet raporunu her ayın ilk haftası içersinde Oda Yönetim Kuruluna sunmak, ğ) İl ve İlçe Temsilciliklerine ait mali durumu gösteren bilançoyu aylık periyotlar halinde Oda Yönetim Kuruluna sunmak, h) İhtiyaç duyulması halinde bilirkişilik, hakemlik, danışmanlık gibi görevler için üyeler belirlemek ve Oda Yönetim Kuruluna sunmak, ı) Mesleki sorunların çözümü ve eğitim etkinliklerinin hızlandırılması için komisyonlar kurmak ve bu komisyonların çalışmasını sağlamak, i) Bülten, faks bülten, bölgesel/yerel sorunlara ya da yerele özgü çevre sorunlarına yönelik araştırma raporları, broşür ve kitapçık gibi çalışmalar yapmak, arşiv ve kütüphane oluşturmak. İl ve İlçe Temsilcilikleri bütün çalışmalarında Oda Yönetim Kurulunca belirtilen konularda, kendilerine verilen yetki sınırları içinde hareket eder. İl ve İlçe Temsilciliklerinin Mali İşleyişi Madde 55- İl ve İlçe Temsilciliklerinin her türlü geliri Odaya aittir. Kendi adlarına makbuz bastıramaz ve para toplayamazlar. İl ve İlçe Temsilcilikleri Oda Yönetim Kurulunun onayı ile kabul edilen yıllık bütçeye uygun olarak hareket etmek durumundadırlar. Bu bakımdan yıllık bütçelerini gösteren raporu Aralık ayının 25 inci gününe kadar Oda Yönetim Kuruluna sunmak zorundadırlar. Odaya Kayıt Zorunluluğu Madde 56- Bir Oda sınırları içinde Mesleğini icra edecek Biyologlar bir ay içinde o il veya bölge Odasına üye olmak ve üyelik görevlerini yerine getirmekle yükümlüdürler. Mesleklerini serbest olarak icra etmeksizin kamu kurum ve kuruluşları ile kamu iktisadi teşebbüslerinde asıl ve sürekli görevlerde çalışan Biyologlar ile herhangi bir sebeple mesleğini icra etmeyenler, istedikleri takdirde Odalara üye olabilirler. Özel Kanunlarında üye olamayacaklarına dair hüküm bulunanlardan mesleklerini serbest olarak icra edenler, mesleki hak, yetki, disiplin ve sorumluluk bakımından bu Kanun hükümlerine tabidirler. İkinci fıkra dışında kalan Biyologlar Odalara kaydolmadıkları takdirde meslek ve sanatlarını serbest olarak icra edemezler. Oda Gelirleri Madde 57- Odanın gelirleri şunlardır; a) Odaya kayıt ücreti, b) Üye aidatı, c) Biyologlara temin edilecek basılı belgelerden elde edilecek gelirler, d) Görevleri içine giren onaylamalardan alınacak ücretler, e) Kültürel ve sosyal faaliyetlerden elde edilecek gelirler, f) Disiplin Kurullarınca verilip kesinleşen para cezaları, g) Bağış veya yardımlar, h) Araştırma, proje çalışmaları ve bilimsel çalışmaların gelirleri, i) Danışma hizmeti gelirleri, j) Kendi içinde yapacakları sürekli eğitim çalışmaları için ilgili kişi,kurum ve kuruluşların ödeyeceği ücretler, k) Türkiye'deki ve diğer ülkelerdeki ulusal ve uluslar arası mesleki ve çalışma alanları ile ilgili kurumların veya diğer kurum ve kuruluşların bu kapsama giren konulardaki işlerinin yürütülmesine yönelik bağış, yardım ve hizmet satın alma gelirleri, l) Yarışma veya ödüllü çalışmalardan elde edilecek gelirler, m) Diğer gelirler Odaya kayıt ücreti ile üye aidatının yıllık miktarı ve ödeneceği tarihler o yıl uygulanan memur maaş katsayısının üç yüz mislinden az beş yüz mislinden fazla olmamak üzere Oda Merkez Yönetim Kurulunun önerisi üzerine Oda Genel Kurulunca kararlaştırılır. Yıllık aidatlar her yılın Mart ve Ekim ayları sonuna kadar iki taksitte ödenir. Zamanında ödenmeyen yıllık aidatlar ve her türlü cezalar ile diğer alacaklar 6183 sayılı Amme alacaklarının Tahsil Usulü Hakkında kanun hükümleri uyarınca işlem görürler. Üyenin bir Odadan başka bir Odaya naklinde kayıt ücreti ve üye aidatı yeniden alınmaz. Oda yönetim kurulu, hastalık, yaşlılık veya yoksulluk gibi nedenlerle aidatlarını ödeyemeyecek durumda olanlardan geçici veya sürekli olarak aidat alınmamasına Oda yönetim kuruluna bilgi vermek koşuluyla karar verebilir. BEŞİNCİ BÖLÜM Çeşitli Hükümler Onur Üyeliği Madde 58- Genel Sağlık, Çevre ve Biyologluk ile ilgili meslek üzerinde yaptığı çalışmalar ve yayınladığı eserler dolayısıyla ülke ve dünya çapında üne kavuşmuş veya Biyolog mesleğine Odalar maddi ve manevi yardımda bulunmuş kimselere; Oda Merkez Yönetim Kurulunun, Oda Yönetim Kurulunun teklifine dayanarak veya doğrudan doğruya isteği uyarınca, ile onur üyeliği payesi verilebilir. Onur üyeliği payesi verilebilmek için Biyolog olmak şart değildir. Onur üyeleri oy hakkı olmaksızın Oda Genel Kurul toplantılarına katılabilirler. Asgari laboratuar Tahlil Ücretlerinin Tespitinin Yöntemi Madde 59- Oda Merkez Yönetim Kurulu her yıl Aralık ayı içinde biyologların uygulayacağı laboratuar tahlil ücretlerinin asgari haddini oluşturacağı ihtisas komisyonları vasıtasıyla tespit ederek hazırlayacağı tarifeyi Oda Merkez Yönetim Kurulunun onayına sunar. Yeni tarife yürürlüğe girinceye kadar eski tarife hükümleri devam eder. Disiplin Cezaları Madde 60- Biyologluk vakar ve onuruna veya meslek düzen ve geleneklerine uymayan fiil ve hareketlerde bulunanlar ile mesleğini gereği gibi uygulamayan veya kusurlu olarak uygulayan veyahut görevin gerektirdiği güveni sarsıcı davranışlarda bulunan meslek mensupları hakkında; fiil ve hareketin niteliği ve ağırlık derecesine göre aşağıdaki disiplin cezaları verilir. Uyarma; Biyologa görevinde ve davranışlarında daha dikkatli davranması gerekliliğinin yazı ile bildirilmesidir. Kınama; Biyologu görevinde ve davranışlarında kusurlu sayıldığının yazı ile bildirilmesidir. Para cezası; bölgesinde o yıl uygulanan memur maaş katsayısının iki yüz katından az beş yüz katından fazla olmamak üzere verilecek para cezalarıdır. Meslekten geçici men; Oda bölgesinde bir aydan altı aya kadar serbest meslek yapmaktan alı konmaktır. Meslekten sürekli men; Oda bölgesinde iki defa serbest meslek yapmasından alıkoyma cezası olanların Oda bölgesi içinde serbest meslek uygulamasından sürekli olarak alı konmasıdır. Cezai takibat ve mahkumiyet kararı disiplin soruşturması yapılmasına ve disiplin cezası uygulanmasına engel değildir. Meslek mensubu hakkında savunma alınmadan disiplin cezası verilemez. Yazılı Bildirime rağmen on beş gün içinde savunmasını yapamayanlar savunma hakkından vazgeçmiş sayılırlar. Disiplin cezaları kesinleşme tarihinden itibaren uygulanır. Disiplin cezalarını gerektiren fiiller ve bu fiillere uygulanacak disiplin cezaları; bir derece ağır veya hafif disiplin cezaların uygulanacağı haller, disiplin soruşturması yapılması konusunda karar verecek merci; disiplin cezalarını vermeye yetkili merciler; disiplin cezalarına karşı yapılacak itirazın usul ve şartları; Disiplin Kurullarının çalışma usulü ve esasları; disiplinle ilgili diğer işlemler odaca düzenlenecek bir yönetmelikle gösterilir. ALTINCI BÖLÜM Ceza Hükümleri Simsar Kullanmak, Simsarlık Yapmak ve Yetkisiz Meslek İcrası Madde 61- Mesleği ile ilgili işlerde herhangi bir menfaat karşılığında aracılık yapanlar veya bu kişileri aracı olarak kullanan Biyologlar üç aydan bir yıla kadar hapis ve yüz bin liradan üçyüzbin liraya kadar ağır para cezası ile cezalandırılırlar. Meslek diplomasını herhangi bir menfaat karşılığı Biyolog mesleğini uygulama yetkisine sahip olmayan kişi veya kişilere kullandıranlar veya kendisine ait olmayan diplomayı kullanarak menfaat sağlayanlar veya yargı mercilerince ya da Oda Disiplin Kurulları tarafından haklarında, serbest meslek uygulamasından geçici veya sürekli alı konma cezası verilenlerden serbest meslek uygulamasına devam edenler, fiilleri daha ağır bir cezayı gerektirmediği taktirde birinci fıkra hükümleri uyarınca cezalandırılır. YEDİNCİ BÖLÜM Yönetmelikler Madde 62- Bu Kanunda çıkartılması öngörülen ve Kanunun uygulanması için gerekli görülecek yönetmelikler kanunun yürürlüğe girmesinden sonra en geç bir yıl içinde Oda tarafından çıkarılacaktır. SEKİZİNCİ BÖLÜM Geçici Hükümler Geçici Madde 1- Bu Kanuna göre seçilmeye yeterliliği biyologlar, Oda kurucusu olmak istedikleri takdirde, Kanunun yürürlük tarihinden itibaren üç ay içinde, mesleklerini icra etmekte oldukları valiliklerine başvurarak birer kuruculuk belgesi alırlar. Kuruculuk belgesi alan Biyologların 2/3ün bilfiil 5 yıl mesleğini icra etmesi şartı aranır. Kuruculuk belgesi alan biyologlar yedi kişiden oluşan birer geçici Yönetim Kurulu seçerler ve Valiliğe bildirirler. Bu Kanunun 4. Maddesinin birinci fıkrası kapsamına giren illerdeki Kurucu Yönetim Kurulları bu yasa hükümleri uyarınca üye kayıt işlemlerini tamamlayarak en geç bir ay içinde ilk genel kurullarını toplantıya çağırırlar ve Oda organlarının seçimini gerçekleştirirler. Bu Madde kapsamındaki Odalar, tüzel kişilik kazanır ve durum Yönetim Kurulunca ilgili Bakanlığa bildirilir. Geçici Madde 2- Bu kanun, tababet ve Şua batı Sanatlarının Tarzı İcrasına Dair 1219 sayılı Kanun ve halen yürürlükte olan yasalara göre meslek icrasına hak kazanmış Biyologlar için de uygulanır. Madde 63- Bu Kanun yayını tarihinde yürürlüğe girer. Madde 64- Bu Kanunun hükümlerini Bakanlar Kurulu yürütür.

http://www.biyologlar.com/biyologlar-odasi-kanunu-taslagi

Bilimin doğuşunu ve fizik kimya biyoloji matematik olarak temel biirmler haline dönüşmesini tarihsel boyutta açıklayınız

Ortaçağ sonlarında özellikle İtalya'da, zamanın siyasal istemleri teknolojiye yeni bir önem kazandırdı. Böylece askeri ve sivil mühendislik mesleği doğdu. Leonardo da Vinci bu mühendislerin en ünlüsüydü. Dahi bir ressam olarak insan anatomisini yakından inceledi ve resimlerine gerçeğe çok benzeyen biçimler aktardı. Bir heykelci olarak, zor metal döküm tekniklerini başardı. Sahne yapıtlarının yapımcı ve yönetmeni olarak, özel efektler sağlamak amacıyla karmaşık makineler geliştirdi. Askeri mühendis olarak bir kentin surlarından aşırılan havan topu mermisinin yörüngesini gözleyerek bu yörüngenin Aristoteles'in öne sürdüğü gibi iki doğrudan (eğimli bir çıkış ve ardından düşey düşüş) oluşmadığını belirledi. Leonardo ve arkadaşları doğayı gerçekten bilmek istiyorlardı. Gerçek deneyimin yerini hiçbir kitap tutamazdı ve hiçbir kitap olgular üzerinde egemenlik kuramazdı. Gerçi antik felsefenin nüfuzu kolayca kırılamayacak kadar sağlamdı, ama sağlıklı bir kuşkuculuk da gelişmeye başlamıştı. Eski otoritelerin gördüğü geleneksel kabule inen ilk önemli darbe, 15. yüzyıl sonunda Yenidünya'nın bulunuşu oldu. Büyük astronom ve coğrafyacı Ptolemaios, Avrupa, Afrika ve Asya olarak yalnızca üç kıtanın var olduğunu öne sürmüştü. Aziz Augusti-nus ve Hıristiyan bilginleri de bu görüşü benimsemişlerdi. Yoksa dünyanın öteki tarafındaki insanların baş aşağı yürümeleri gerekirdi. Yenidünya'nın bulunuşu, matematik çalışmalarını da hızlandırdı. Zenginlik ve ün arayışı denizciliğin gerçek bir bilime dönüşmesine yol açtı. Rönesans'ta canlanan düşünsel etkinlikler, antik bilgilerin tümüyle gözden geçirilmesine olanak sağladı. Ortaçağ düşüncesinin temelini oluşturan Aristoteles'in yapıtlarına Platon'un ve Galenos'un yapıtlarının çevirileri ve daha da önemlisi Arkhimedes'in, kuramsal fiziğin geleneksel felsefenin dışında nasıl oluşturulabileceğini gösteren yapıtları eklendi. Rönesans biliminin yönünü belirleyen antik yapıtların başında, Musa'nın çağdaşı olduğu kabul edilen efsanevi rahip, peygamber ve bilge Hermes Trismegistos'a dayandırılan Hermetika gelir. Hermetika yaratılış konusunda insana geleneksel metinlere göre çok daha önemli bir rol veriyordu. Tann insanı kendi suretinde yaratmıştı. Bir yaratıcı olarak ve yaratma sürecinde insan Tann'yı taklit ediyordu. Bunun için de doğanın gizlerini bilmek zorundaydı. Yakma, damıtma ve öbür simya işlemleriyle doğa işkenceden geçirilerek gizleri elde ediliyordu. Başarının ödülü, sıkıntı ve hastalıklardan kurtuluşun yanı sıra sonsuz yaşam ve gençlik olacaktı. Bu düşünce, insanın bilim ve teknoloji aracılığıyla doğaya boyun eğdirebileceği görüşüne yol açtı. Modern bilime temel oluşturan bu görüşün yalnızca Batı'da egemen olduğunu vurgulamak yerinde olur. Doğadan yararlanma konusunda yüzyıllarca geride bulunan Batı'nın Doğu'yu geçmesinde bu yaklaşımın önemli rolü olsa gerektir. Hermetika, aydınlanma ve ışık kaynağı olan Güneş üzerine coşkulu bölümler içerir. Hem Platon'un, hem de Hermetika'mn çevirmeni Floransalı Marsilio Ficino, 15. yüzyılda Güneş üzerine yazdığı incelemede adeta putperestçe hayranlığa varan bir üslup kullanmıştı. 16. yüzyılın başlarında bir Polonyalı öğrenci, İtalya'daki gezisi sırasında bu düşüncelerden etkilendi. Ülkesine döndükten sonra Ptolemaios'un astronomi sistemi üzerinde çalışmaya başladı. Görevli bulunduğu kilisenin yardımıyla, kilisenin gereksinim duyduğu Paskalya ve öteki yortuların tam günlerinin saptanması gibi önemli hesapların yapılmasında kullanılan astronomi gözlem aygıtlarını geliştirmeye koyuldu. Bu genç öğrencinin adı Mikoiaj Kopernik'tir. Fiziğin doğuşu: Yaklaşık yarım milyon yıl önce ilk insanlar, elde yapılmış yalın araçlar kullanıyor ve ateşi biliyorlardı. Bundan 20 000 yıl önce yaşayan Taş devri insanı, mağara duvarlarına resimler yapabiliyor, ok ve yay kullanabiliyordu (günümüzde bile, hâlâ Taş devri teknolojisiyle yaşamını sürdüren topluluklara Taşlanmaktadır). Günümüzden 10 000 yıl önce insanlar, toprağı işlemeye başlamışlardı. Bilimin ilk temel işaretleri ise, bundan 5 000 yıl Önce Babil'de ortaya çıkmaya başladı. Ancak Ortaçağ teknolojisi. Roma teknolojisinden pek farklı değildi; hattâ Romalıların su sistemleri daha iyiydi. Günümüzdeki anlamıyla bilim, XVII. yüzyılda ortaya çıktı. XVIII. ve XIX. yüzyıllarda endüstri devrimi gerçekleştirildi. XX. yüzyılda ise fizik, günlük yaşamda büyük bir yer tutmaya başladı. Günümüzde, bu bilim dalına dayanmayan bir yaşam düşünülemez. Klasik fiziğin temelleri, XVII. yüzyılda, GALİLEİ, KEPLER, BÖYLE, NEWTON, HOOKE, HUYGENS, GUERİCKE, TORRİCELLİ gibi bilginler tarafından atıldı. Günümüzdeki uygarlık düzeyi varlığını, bu temellere borçludur. XVII. yüzyılda, aynı zamanda, felsefe ile fiziğin birbirinden ayrılması da gerçekleşti. XVIII. yüzyıldan önce fiziğe, «doğal felsefe Bilimsel yöntem: Bilimsel yöntem, gerçeğin ortaya çıkarılmasını sağlayan «yanılmaz Neden-sonuç ilişkisi, çağımızda çok açık görünmesine karşılık, her zaman kabul edilmemiştir. Eskiden doğal olayların açıklanması, tanrıya bağlanmaktaydı. Günümüzde fizik, anlayış düzeyimizi biraz daha derine götürmeye ve olayların altında yatan gerçek nedenleri ortaya çıkarmaya çalışmaktadır. Çevrelerindeki olayları kaydeden ilk insanlar İ.Ö. 3000 yıllarında yaşayan Babillilerdi (Mezopotamya). Yazıyı bilen bu insanlar, gökcisimlerinin hareketlerini kataloglara geçirdiler. Aynı dönemde Kuzeybatı Avrupa'da yaşayanlar ise, yazıyı bilmemelerine karşılık, taşları kullanarak, gökcisimlerinin hareketlerini toprak üstünde belirtmeye çalıştılar. Babillilerin ve eski Mısırlıların tuttuğu kayıtlar, Yunanlıların eline geçti. Yunanlılar bunları yeniden düzenleme çabalarına girişti. Mekanik ve statikte bazı ilkol kavramlar (ARKHİMEDES'in banyo deneyi ve kaldıraç yasaları gibi) ortaya kondu. Yunanlıların en büyük katkısı, fiziğin gelişmesinde önemli payı bulunan bazı MATEMATİK ilkelerini bulmalarıdır. İ.S. III. yüzyılda Diophantos bazı fizik temellerini ortaya koymuştur, ama fiziğin bugünkü dayanağını oluşturan cebir daha sonra geliştirilmiştir. Bilimin geliştirilmesi, Yunanlılardan sonra Araplar tarafından yürütüldü. Bazı yeni buluşlar, sözgelimi İbni Heysem'in OPTİK konusuna ve matematik simgelere ilişkin düşünceleri, önceleri İtalya, daha sonra da Kuzey Avrupa'da ortaya çıkan bilimsel anlayışın ilk kıvılcımı oldu. Matematiğin Tarihi Gelişimi Ortaçağ İslâm Dünyası'nda başta aritmetik olmak üzere, matematiğin geometri, cebir ve trigonometri gibi dallarına önemli katkılarda bulunan matematikçiler yetişmiştir. Ancak bu dönemde gerçekleşen gelişmelerden en önemlisi, geleneksel Ebced Rakamları'nın yerine Hintlilerden öğrenilen Hint Rakamları'nın kullanılmaya başlanmasıdır. Konumsal Hint rakamları, 8. yüzyılda İslâm Dünyası'na girmiş ve hesaplama işlemini kolaylaştırdığı için matematik alanında büyük bir atılımın gerçekleştirilmesine neden olmuştur. Daha önce Arap alfabesinin harflerinden oluşan harf rakam sistemi kullanılıyordu ve bu sistemde sayılar, sabit değerler alan harflerle gösteriliyordu. Örneğin için a harfi, 10 için y harfi ve 100 içinse k harfi kullanılıyordu ve dolayısıyla sistem konumsal değildi. Böyle bir rakam sistemi ile işlem yapmak son derece güçtü. Erken tarihlerden itibaren ticaretle uğraşanların ve aritmetikçilerin kullanmaya başladıkları Hint Rakamları'nın üstünlüğü derhal farkedilmiş ve yaygın biçimde kabul görmüştü. Bu rakamlar daha sonra Batı'ya geçerek Roma Rakamları'nın yerini alacaktır. Cebir bilimi İslâm Dünyası matematikçilerinin elinde bağımsız bir disiplin kimliği kazanmış ve özellikle Hârizmî, Ebu Kâmil, Kerecî ve Ömer el-Hayyâm gibi matematikçilerin yazmış oldukları yapıtlar, Batı'yı büyük ölçüde etkilemiştir. İslâm Dünyası'nda büyük ilgi gören ve geliştirilen bilimlerden birisi olan astronomi alanındaki araştırmalara yardımcı olmak üzere trigonometri alanında da seçkin çalışmalar yapılmıştır. Bu konudaki en önemli katkı, açı hesaplarında kirişler yerine sinüs, kosinüs, tanjant ve kotanjant gibi trigonometrik fonksiyonların kullanılmış olmasıdır. Yeniçağ Bu dönem diğer alanlarda olduğu gibi matematik alanında da yeniden bir uyanışın gerçekleştiği ve özellikle trigonometri ve cebir alanlarında önemli çalışmaların yapıldığı bir dönemdir. Trigonometri, Regiomontanus, daha sonra da Rhaeticus ve Bartholomaeus Pitiscus`un çabalarıyla ve cebir ise Scipione del Ferro, Nicola Tartaglia, Geronimo Cardano ve Lodovice Ferrari tarafından yeniden hayata döndürülmüştür. Yapılan çalışmalar sonucunda geliştirilen işlem simgeleri, şu anda bizim kullandıklarımıza benzer denklemlerin ortaya çıkmasına olanak vermiş ve böylelikle, denklem kuramı biçimlenmeye başlamıştır. Rönesans matematiği özellikle Raffaello Bombelli, François Viète ve Simon Stevin ile doruk noktasına ulaşmıştır. 1585 yılında, Stevin, aşağı yukarı Takîyüddîn ile aynı anda ondalık kesirleri kullanmıştır. Bu dönemde çağdaş matematiğin temelleri atılmış ve Pierre de Fermat sayılar kuramını, Pascal olasılık kuramını, Leibniz ve Newton ise diferansiyel ve integral hesabı kurmuşlardır. Yakınçağ Bu dönemde Euler ve Lagrange, integral ve diferansiyel hesabına ilişkin 17. yüzyılda başlayan çalışmaları sürdürmüş ve bu çalışmaların gök mekaniğine uygulanması sonucunda fizik ve astronomi alanlarında büyük bir atılım gerçekleştirilmiştir. Mesela Lagrange, Üç Cisim Problemi'nin ilk özel çözümlerini vermiştir. Bu dönemde matematiğe daha sağlam bir temel oluşturmaya yönelik felsefi ağırlıklı çalışmalar genişleyerek devam etmiştir. Russell, Poincaré, Hilbert ve Brouwer gibi matematikçiler, bu konudaki görüşleriyle katkıda bulunmuşlardır. Russell, matematik ile mantığın özdeş olduğunu kanıtlamaya çalışmıştır. Matematiğin, sayı gibi kavramlarını, toplama ve çıkarma gibi işlemlerini, küme, değilleme, veya, ise gibi mantık terimleriyle ve matematiği ise "p ise q" biçimindeki önermeler kümesiyle tanımlamıştır. Hilbert'e göre ise, matematik soyut nesneleri konu alan simgesel bir sistemdir; mantığa indirgenerek değil, simgesel aksiyomatik bir yapıya dönüştürülerek temellendirilmelidir. Sezgici olan Brouwer de matematiğin temeline, kavramlara somut içerik sağlayan sezgiyi koyar; çünkü matematik bir teori olmaktan çok zihinsel bir faaliyettir. Poincaré'ye göre de matematiğin temelinde sezgi vardır ve matematik kavramlarının tanımlanmaya elverişli olması gerekir. Yine bu dönemin en orijinal matematikçileri olarak Dedekind ve Cantor sayılabilir. Dedekind, erken tarihlerden itibaren irrasyonel sayılarla ilgilenmeye başlamış, rasyonel sayılar alanının sürekli reel sayılar biçimine genişletilebileceğini görmüştür. Cantor ise, bugünkü kümeler kuramının kurucusudur. Kimya'nın Tarihsel Gelişimi Kimya sözcüğünün ( Eski Mısır dilinde "kara" ya da "Kara Ülke" ) sözcüğünden türediği sanılmaktadır Bir başka sav da khemeia (Eski Yunanca khyma: "¤¤¤¤l dökümü) sözcüğünden türediğidir Kimyanın kökenleri felsefe, simya, ¤¤¤¤lürji ve tıp gibi çok çeşitli alanlara dayanır Ama kimya ancak 17 yüzyılda mekanikçi felsefenin kurulmasıyla ayrı bir bilim olarak ortaya çıkmıştır Mezopotamyalılar, Çinliler, Mısırlılar ve Yunanlılar çok eski çağlardan beri bitkilerden boyarmadde elde etmeyi, dokumaları boyamayı, deri sepilemeyi, üzümden şarap, arpadan bira hazırlamayı, sabun üretimini, cam kaplar yapmayı biliyorlardı Eski çağlarda kimya sanatsal bir üretimdi Daha sonra Antik Çağın deneyciliği, Yunan doğa felsefesi, Rönesans simyası, tıp kimyası gelişti 18 yüzyılda kuramsal ve uygulamalı kimya, 19 yüzyılda organoteknik ve fizikokimya, 20 yüzyılda ise radyokimya, biyokimya ve kuvantum kimyası gibi yeni dallar ortaya çıktı Ünlü kimya tarihçisi Hermann Kopp, İS 300- 1600 arasını, soy (asal) olmayan ¤¤¤¤lleri soy ¤¤¤¤llere dönüştürecek filozof taşının ve insan ömrünü sonsuzlaştıracak yaşam iksirinin arandığı simya çağı; 1600- 1700 arasını ilaçların hazırlandığı iyatrokimya (tıp kimyası) çağı; 1700- 1800 arasını, yanma sürecinin araştırıldığı filojiston kimyası çağı; bundan sonraki dönemi ise nicel kimya çağı olarak adlandırmıştır 16- 18 yüzyıllar arasındaki dönem yeniçağ kimyası olarak da tanımlanır Kimyanın kökeninin, yaklaşık olarak Hıristiyanlık çağının başlarında Mısır'ın İskenderiye kentinde biçimlenmeye başladığı kabul edilir Eski Mısır'ın ¤¤¤¤lürji, boya ve cam yapımı gibi üretim zanaatları ile eski Yunan felsefesi İskenderiye'de bir araya gelerek kaynaşmış ve İS 400'lerde uygulamalı kimya bilgisi gelişmeye başlamıştır Justus von Liebig'e göre simyacılar önemli aygıt ve yöntemler bulmuşlar, sülfürik asit, hidroklorik asit, nitrik asit, amonyak, alkaliler, sayısız ¤¤¤¤l bileşikleri, şarap ruhu (alkol), eter, fosfor ve Berlin mavisi gibi çok çeşitli maddeleri kullanmışlardır Hıristiyanlığın ilk yüzyılında Yahudi Maria olarak bilinen bir kadın simyacı çeşitli türde fırınlar, ısıtma ve damıtma düzenekleri geliştirmiş, simyacı Kleopatra ise altın yapımı konusunda bir kitap yazmıştır Maria'nın buluşu olan su banyosu günümüzde de "benmari" adı altında kullanılmaktadır 350- 420 arasında İskenderiye'de yaşayan Zosimos, simya öğretisinin en önemli temsilcisidir ve 28 ciltlik bir simya ansiklopedisi yazmıştır Roma İmparatorluğu ve Bizans İmparatorluğu'nda, daha sonra da İslam ülkelerinde kimya tekniğinde büyük ilerlemeler olmuş ve Aristoteles'in bütün maddelerin sonuçta dört öğeden (toprak, su, hava, ateş) oluştuğu ve bunların birbirine dönüştüğü biçimindeki kuramı İskenderiyeli ve daha sonra da Cabir, İbn Hayyan, Ebubekir el-Razi ve İbn Sina gibi Arap simyacılar tarafından geliştirilmiştir İbn Sina özellikle dönüşümle ilgilenmiş ve el-Fennü'l-Harmis nün Tabiiyat adlı kitabının mineralojiyle ilgili bölümünde mineralleri taşlar, ateşte eriyen maddeler, kükürtler ve tuzlar olarak dört gruba ayırmıştır İbn Sina madde ve biçimin bir birlik olduğunu, doğa olaylarının açıklanmasında doğaüstü ve maddesel olmayan güçlerin etkisinin olmadığını söylemiş, kuramsal düşünceyi ve kavram üretmeyi öne çıkarmıştır Rönesans döneminde geçmiş yılların getirdiği kimya bilgisinin birikimiyle, tıp ve kimyasal üretim alanlarında uygulamalı kimya ortaya çıktı Bu dönemde eczacılıkta inorganik tedavi maddelerinin kimyasal yöntemlerle elde edilmesine "kemiatri" (kimyasal tedavi) adı verildi Kemiatrinin kimya temeline dayalı ilaç üretimi biçimindeki pratik amacının yanı sıra, hastalıklar ve madde alışverişi olaylarının kimyasal yorumu gibi kuramsal bir amacı da vardı Bu kuramsal amaçla ilgili yönelime iyatrokimya denir Günümüzde kemiatrinin karşılığı farmasötik kimya ve kuramsal biyokimyadır İyatrokimyanın öncüsü olan İsviçreli hekim Paracelsus'a ( 1493- 1541) göre tuz, kükürt ve cıva, var olan bütün cisimlerin temel yapıtaşı olan beden, can ve ruhun karşılığıydı Bu üçlü arasında denge bozulduğunda hastalık başlıyordu Paracelsus midenin bir kimya laboratuvan olduğunu, özsuların yoğunlaşmasıyla hastalıkların ortaya çıktığını ve bu durumun ilaçla giderilebileceğini savundu ve farmakolojide kimyasal maddelerden yararlanılması yolunda çaba harcadı Johann Baptist van Helmontx(1580-1644) ve Johann Rudolph Glauber (1604-68), Rönesans kimyasının temsilcileridir Suyun temel element olduğuna inanan van Helmont'un en önemli çalışmaları çeşitli süreçlerle gaz üretimini ilk kez açıkça gerçekleştirmesi ve deneylerinde teraziyi kullanarak kimyasal çalışmalara nicel özellik kazandırmasıdır Glauber'in en büyük başarısı ise, yemeklik tuzu sülfürik asitle parçalayarak tuz asidi (hidroklorik asit) ve sodyum sülfat elde etmesidir Sodyum sülfat dekahidrat günümüzde de onun adıyla Glauber tuzu olarak bilinir Glauber ayrıca ilk kez ¤¤¤¤llerin tuz asidi içinde çözünmesiyle ¤¤¤¤l klorürlerin oluşacağını gösterdi Simya 16 ve 17 yüzyıllarda Avrupa'da derebeyi saraylarında giderek yayıldı ve bu durum, bilimsel kimya gelişene ve elementlerin birbirine dönüştüğü inancının sarsılmaya başlamasına değin sürdü 17 yüzyılda kimyanın sanat ya da bilim olup olmadığı çok tartışıldı Bu yüzyılda, çağdaş anlatımla, uygulamalı ve kuramsal kimya ayırımı vardı Kemiatri, ¤¤¤¤lürji kimyası, madencilik ve demircilik kimyası uygulamalı kimyanın içinde yer alıyordu Kuramsal kimya ise betimlenebilen "tüm doğa bilimleri" anlamına gelen physica'nın içindeydi Yeniçağdaki oluşum deneyimden (experientia) deneye {experimentum) doğru oldu ve deneyin doğa araştırmasındaki bilimsel önemi kabul edildi Kimya zamanla simyadan ayrıldı ve eski çağların gizemli görüşlerinden uygulamalı kimyaya geçildi Eski kimyada madde ve bileşikler yalnızca beklenen son ürün açısından önemliydi Çeşitli reçeteler ise beklenen sonuca götüren bir araçtı Eski düşünce ve bilgilerin doğruluk ya da yanlışlıklarının denetlenmesi ancak kimyasal tepkimelerin gözlenmesi ve tepkime sürecinin incelenmesiyle olanaklıydı Mekanikçi felsefe ile kimyanın etkileşimine en iyi örnek Robert Boyle'un çalışması oldu İngiliz bilim adamı Robert Boyle 1661'de yayımladığı The Sceptical Chymist (Kuşkucu Kimyacı) adlı yapıtıyla Aristotelesçi görüşleri çürüttü Böyle, kimyasal elementleri maddenin parçalanmayan yapıtaşları olarak açıkça tanımladı, ilk kez kimyasal bileşikler ile basit karışımlar arasında ayrım yaptı, kimyasal birleşmelerde özelliklerin tümüyle değiştiğini, basit karışımlarda ise böyle değişimlerin olmadığını söyledi; gazlar üzerinde yürüttüğü deneylerde gazların basıncı ile hacimleri arasındaki bağıntıyı belirleyen yasayı buldu ve ilk kez elementlerin ve bileşiklerin doğru tanımını yaptı Böyle ayrıca havanın yanma olaylarındaki rolünü keşfetti ve havanın tartılabilir bir madde olduğunu söyledi 18 yüzyılda kimyanın temel sorunu yanma olayının (ateş ruhlarının işlevlerinin) açığa kavuşturulması oldu 17 yüzyıl ortalarına doğru maddedeki elementlerden birinin yanmaya neden olduğu ileri sürülmüş ama bu sav, ateşin maddesel bir cisim olamayacağı gerekçesiyle ünlü simyacı van Helmont tarafından reddedilmişti Alman simyacı Johann Joachim Becher (1635-82) bu öneriyi daha sonra 1669'da yeniden gözden geçirdi ve terra pinguis olarak adlandırılan ateş elementinin yanma sırasında kaçıp giden bir nesne olduğunu varsaydı Becher'in öğrencisi ve Berlinli bir hekim olan Georg Ernst Stahl ( 1660- 1734) bu nesneye "flojiston" adını verdi Yanma olayına yanlış da olsa ilk kez bir bilimsel açıklama getiren flojiston kuramına göre yanıcı maddeler, yanıcı olmayan bir kısım ile flojistondan oluşur Buna göre ¤¤¤¤l oksitler birer element, ¤¤¤¤ller ise kil (¤¤¤¤l oksit) ile flojistondan oluşan birer bileşik maddedir ¤¤¤¤l yandığında eksi kütleli "plan flojiston bir ruh gibi ayrılır ve elementin külü (¤¤¤¤l oksit) açığa çıkar Küle yeniden flojiston verildiğinde de yeniden ¤¤¤¤l oluşur Örneğin çinko oksit flojistonca zengin olan kömürle ya da hidrojen gazıyla ısıtıldığında yeniden çinko oluşur ve hafifler Bir yüzyıl boyunca kimyaya egemen olan bu kuram element kavramına uygun olmamakla birlikte kimyanın bilimsel gelişmesinde çok büyük rol oynadı Cavendish, Priestley ve Scheele ise çalışmalarında karbon dioksit, oksijen, klor, ¤¤¤¤n (bataklık gazı) ve hidrojen gazlarını ayrı gazlar olarak tanımladılar Cavendish ayrıca gazları yoğunluklarına göre ayırdı İlk kez suyun bir element olmayıp oksijen ile hidrojenin bir bileşiği olduğunu kanıtladı Bu çalışmaların da yardımıyla flojiston kuramı yıkıldı Aynı zamanda bir fizikçi olan Antoine-Laurent Lavoisier ( 1743-94) kimyanın babası sayılır Lavoisier ¤¤¤¤l oksitlerinin daha önce Priestley ve Scheele'nin keşfettiği oksijen ile ¤¤¤¤llerin yaptığı bileşikler olduğunu kanıtladı, yanma ve oksitlenme olaylarının günümüzde de geçerli olan açıklamasını yaparak kimyada yeni bir çığır açtı Kapalı kaplarda yaptığı deneylerde, kimyasal tepkimeler sırasında kütlenin değişmediğini saptayarak 1787'de kütlenin korunumu yasasını ortaya koydu Kimya'daki devrim yalnızca kavramlarda değil yöntemlerde de gerçekleşti Ağırlıksal yöntemler duyarlı çözümler yapmayı olanaklı kıldı ve kütlenin korunumu yasasıyla nicel kimya dönemi başladı Lavoisier'den sonra 1798'de Alman kimyacı Richter birleşme ağırlıkları yasasını, 1799'da gene Alman kimyacı Proust sabit oranlar yasasını ve 1803'te ingiltere'den John Dalton katlı oranlar yasasını geliştirdi Gay-Lussac da Alexander von Humboldt'un yardımıyla öbür gazlarla tepkimeye giren bir gazın her zaman belirli hacim oranlarıyla birleştiğini buldu İtalyan fizikçi Amedeo Avogadro 1811'de, gaz halindeki pek çok elementin birer atomlu değil, ikişer atomlu oldukları ve aynı koşullar altında bulunan gazların eşit hacimlerinde eşit sayıda molekül bulunacağı varsayımını geliştirdi Avogadro'nun bu varsayımını 50 yıl sonra, 1860'ta Stanislao Cannizzaro yasa düzeyine çıkardı 19 yüzyılın başlarında ingiliz kimyacı Humphry Davy ve öteki bilim adamları, volta pillerinden sağladıkları güçlü elektrik akımlarını bileşiklerin çözümlenmesi ve yeni elementlerin bulunması çalışmalarına uyguladılar Bunun sonucunda kimyasal kuvvetlerin elektriksel olduğu ve örneğin aynı elektrik yüklü iki hidrojen atomunun birbirini iteceği ve Avogadro varsayımına göre birleşerek çok atomlu molekülü oluşturmayacağı ortaya çıktı 1859'da Alman fizikçi Gustav Kirchhoff ve kimyacı Robert Bunsen'in bulduğu tayf çözümleme tekniğinin yardımıyla da o güne değin bilinen elementlerin sayısı 63'ü buldu Elementlerin atom ağırlıkları ile fiziksel ve kimyasal özellikleri arasındaki bağıntıyı bulan Rus kimyacı Dimitriy İvanoviç Mende-leyev 1871'de ilk kez kimyasal elementlerin periyodik yasasını açıkladı Mendeleyev'e göre hidrojenin dışındaki elementler artan atom ağırlıklarına göre bir sırayla düzenlendiğinde, bunlann fiziksel ve kimyasal özellikleri de bu sıraya göre düzgün bir değişim gösteriyordu Ama bu düzgün gidiş kesintilerle birkaç sıra halindeydi ve bu sıralara periyot adı verildi Mendeleyev'in tablosunda atom ağırlığı daha büyük olan bazı elementlerin ön sıralarda yer alması atom ağırlıklarının ölçüt alınamayacağını gösterdi İngiliz fizikçi HG Moseley 1913'te X ışınımı yardımıyla elementlerin atom numaralarını saptadığında bu sıralamada atom numaralarının temel alınması gerçeği ortaya çıktı Bundan sonra Mendeleyev'in tablosundaki boş olan yerler yeni keşfedilen elementlerle dolmaya başladı Wilhelm Röntgen'in 1895'te X ışınımını bulmasından hemen sonra Henri Becquerel 1896'da, uranyumdaki doğal radyoaktifliği keşfetti ve 1900'de fizikçi Max Planck kuvantum kuramını ortaya attı Rutherford 19J9'da havadaki azotu, radyum preparat-lanndan salınan alfa taneciklerinin yardımıyla oksijene ve hidrojene dönüştürerek ilk yapay element dönüşümünü gerçekleştirdi August Kekule'nin 1865'te kurduğu yapı kuramının genişletilmesi sonucunda, bire-şimleme (sentez) ve ayrıştırma yoluyla pek çok yeni madde elde edilebildi Bu kurama göre atomlar değerliklerine karşılık gelecek biçimde bileşikler halinde birleşirler ve her atomun belirli bir değerliği vardır Kekule' nin bu açıklamalarından sonra kimyasal bileşikler yeni bir biçimde değerlendirilmeye başladı Örneğin su (H2O) H-O-H, karbon dioksit (CO2) O-C-O, biçiminde gösterildi Bu gösterimden bireşimleme kimyası çok yararlandı Kekule ayrıca moleküllerin farklı özelliklerinin atomların birbiriyle yaptığı farklı bağlarla belirlendiğini kanıtladı ve kapalı formülü C6Ü6 olan benzenin halka biçiminde birleşmiş bir yapısı olduğunu çözdü Yapı kuramına dayanarak varlığı düşünülen bileşiklerin bireşimsel olarak üretilebilmesine yönelik özel yöntemler geliştirildi; yapısı bilinmeyen doğal ya da yapay bileşiklerin iç yapılarını çözmek amacıyla da tam tersi bir yol izlenerek bunların yapılan sistemli bir biçimde ve aşamalı olarak parçalanarak bulundu Kekule'nin buluşu aromatik karbon kimyasının hızla gelişmesini olanaklı kıldı F Wöhler, siyanür bileşikleriyle çalışırken üreyle formülü aynı olan amonyum siyanatı bireşimledi Biri mineral, öbürü hayvansal kökenli olan her iki ürün de aynı elementlerin aynı sayıdaki atomlarından oluşuyordu Bu buluşla izomerleşme olgusu ortaya çıktı ve inorganik kimya ile organik kimya arasındaki farklılık ortadan kalktı Kimya alanındaki çalışmalar sonraları maddelerin tepkime biçimleri, ısı etkisi, çözeltiler, kristallenme ve elektrolizle ilgili konulara yöneldi ve galvanizleme konularındaki gelişmelerden fiziksel kimya (fizikokimya) doğdu Bu arada M Berthelot termokimyanın temellerini attı Raoult, W Ostwald, van't Hoff, J W Gibbs, Le Chatelier ve S Arrhenius fiziksel kimyanın gelişmesinde önemli rol oynadılar İtalyan bilim adamı Alessandro Volta'nın 1800'de iki ¤¤¤¤l levha arasına nemli bez ya da tuz çözeltisi koyarak elektrik akımı elde etmesi kimyada önemli gelişmelere neden oldu Humphry Davy 1807'de özel olarak geliştirdiği Volta pilini kullanarak erimiş külden elektrik akımı geçirdi ve bu yolla önce potasyum adını verdiği elementi, sonra da sodadan sodyum elementini ayırmayı başardı Bu da elektrokimya dalında önemli adımlar atılmasını olanaklı kıldı Çağdaş bilimin gelişmesiyle Sanayi Devrimi arasında yakın bir ilgi olduğu düşünülmekle birlikte, Sanayi Devrimi'nin anayurdu olan İngiltere'de bile bilimsel buluşların dokuma ve ¤¤¤¤lürji sanayisini doğrudan etkilediğini göstermek zordur, 18 yüzyılda bilim dikkatli bir gözlem ve deneyciliğin sanayide üretimi önemli ölçüde iyileştirebileceğini gösterdi Ama ancak 19 yüzyılın ikinci yansından başlayarak bilim sanayiye önemli katkıda bulunmaya başladı; kimya bilimi anilin boyalar gibi yeni maddelerin üretilmesini olanaklı kıldı ve boyarmadde ile ilaç sanayisi hızla gelişen ilk kimya sanayisi oldu 20 yüzyılda madencilik, ¤¤¤¤lürji, petrol, dokuma, lastik, inşaat, gübre ve gıda maddeleriyle doğrudan ilişkisi olan kimya sanayisi elektrikten sonra bilimin uygulamaya geçirildiği sanayiler arasında ikinci sırayı aldı Yalnızca kimyanın değil, fiziğin de kimya sanayisine girmesiyle laboratuvarda elde edilen sonuçlann doğrudan uygulamaya sokulduğu kimya fabrikaları kurulmaya başladı Bu süreçlerin denetlenmesinde çeşitli aygıtlara gerek duyulduğundan fiziksel kimyacılar ve fizikçiler kimya sanayisinde etkin olmaya başladı ve böylece kimya mühendisliği mesleği doğdu. Biyolojinin Tarihsel Gelişimi Biyoloji bilimi, insanın kendini ve çevresindeki canlıları tanıma merakından doğmuştur İlk insanlar çevrelerinde yaşayan sığır , geyik ve mamut gibi hayvanların resimlerini mağara duvarlarına çizerek bunları incelemeye başlamışlardır. Antik çağdan günümüze kadar biyoloji bilimindeki gelişmeleri, ilgili bilim adamlarıyla aşağıdaki gibi özetleyebiliriz: Thales (Tales) (M.Ö. VII. yy .) İlk biyolojik yorumları yapmıştır. Aristo (M.Ö. 384-322) Canlılar dünyasını inceleyen ve ‘’bilimsel doğa tarihi’nin kurucusu olan ilk bilim adamıdır. Aristo, bir bilim adamında bulunması gereken iki önemli özelliğe, yani iyi gözlem yapabilme ve bunlardan doğru sonuçlar çıkarabilme yeteneğine sahiptir .Çalışmalarını ‘’Hayvanların Tarihi, Hayvan nesli üzerine'’ ve ‘’Hayvan Vücutlarının Kısımları Üzerine'’ adlı kitaplarında toplamıştır. Aristo, canlıların oluşumlarını ‘’kendiliğinden oluş (abiyogenez)'’ hipotezi ile açıklamış, ayrıca ilk sınıflandırmayı da yapmıştır. Galen (M.Ö. 131-201) Canlı organlarını inceleyerek fizyoloji biliminin doğmasını sağlamıştır . Galileo (Galile) 1610 yılında ilk mikroskobu bulduğu samlmaktadır. Mikroskobun keşfi biyolojik çalışmalara büyük ivme kazandırmıştır . Robert Hooke (Rabırt Huk) 1665 yılında mikroskop ile mantar kesitini inceleyerek ilk hücre ( cellula )yi tanımlamıştır. Leeuwenhoek (Lövenhuk) 1675 yılında geliştirdiği mikroskop ile ilk bir hücrelileri (bakterileri) göstermiştir. Carolus Linnaeus (Karl Linne) 1707-1778 yıllarında ilk sınıflandırmayı yapmıştır. Schleiden (Şlayden) 1838′de bitki hücreleri üzerinde çalışmalar yapmıştır. Schwann (Şivan) 1839′da hayvan hücresini bitki hücresiyle karşılaştırdı.Schleiden ve Schwann’ın hücre teorisinin ortaya konulmasında katkıları olmuştur. Charles Darwin (Çarls Darvin) 1859 yılında ‘’Türlerin Kökeni'’ adlı yayınlayarak ‘’doğal seleksiyon’ yoluyla türlerin evrimini ortaya koymuştur. Pasteur (Pastör) (1882-1895) Biyogenez hipotezini kanıtladı. Mikroskobik canlıların fermantasyona (mayalanma) neden olduğunu tespit etti. Aynca kuduz aşısının bulunmasını sağladı . Gregor Mendel (1822-1884): Kilisesinin bahçesinde yetiştirdiği bezelyelerde yaptığı deneyler sonucunda kalıtsal özelliklerin dölden döle geçişi ile ilgili önemli sonuçlar elde etmiştir. Mendel bu çalışmalarıyla genetik bilimin kurucusu olmuştur . Miescher (Mişer) 1868′de nükleik asitleri bulmuştur. Beijrinck (Bayerink) 1899′da tütün yapraklarında görülen tütün mozaik hastalığını incelemiştir. Virüslerin keşfine katkıda bulunmuştur . Wilhelm Röntgen (Vilhem Röntgen) 1895 yılında tıpta kullanılan röntgen ışınlarını bulmuştur . Sutton (Sattın) 1903 yılında kalıtımın kromozom kuramını yani genlerin kromozomlar üzerinde bulunduğunu açıklamıştır . Wilhelm Roux (Vilhem Ru) (1850-1924) Embriyolojinin kurucusu olmuştur. Otto Mayerhof (Otto Mayerhof) 1922′de kastaki enerji dönüşümlerini inceleyerek Nobel tıp ödülünü almıştır. Sir Alexender Fleming (Sör Aleksendır Fleming) 1927′de penisilini bularak bakteriyal enfeksiyonlara karşı etkin mücadeleyi sağlamıştır . E.A.F Ruska 1931 yı1ında elektron mikroskobunu bulmuştur. James Watson (Ceyms Vatsın), Francis Crick (Fransis Krik) 1953 yı1ında DNA molekül modelini ortaya koymuşlardır .İkili sarmal modeli günümüzde de geçerliliğini korumaktadır. Steven Howel (Stivın Havıl) 1986 yı1ında ateş böceklerinin ışık saçmasını sağlayan geni ayırarak tütün bitkisine aktarmış, tütün bitkisinin de ışık saçmasını sağlamıştır. İşte bu olay gen naklinin başlangıcı olmuştur. Wilmut (Vilmut) 1997 yı1ında bir koyundan alınan vücut hücresinin çekirdeğini, başka bir koyuna ait çekirdeği çıkarılan yumurta hücresine aktararak genetik ikiz elde etmiştir . Tüm bu çalışmalar biyolojiyi 21. yüzyılın en önemli bilim dallarından biri yapmıştır Biyoloji ile ilgili bazı bilgilerin tarih öncesinde ortaya çıkmış olduğunu arkeolojik veriler ortaya koymuştur. Cilalı Taş Devri'nde, çeşitli insan toplulukları tarımı ve bitkilerin tıp alanında kullanımını geliştirmişler, sözgelimi eski Mısırlılar, bazı otları ilaç olarak ve ölülerin mumyalanmasında kullanmışlardır. Bununla birlikte bir bilim dalı olarak biyolojinin gelişimi, eski Yunan döneminde ortaya çıkmıştır. Tıbbın kurucusu sayılan Hipokrates, insan biyolojisinin ayrı bir bölüm olarak gelişmesine büyük katkıda bulunmuştur. Biyolojinin temel gereçleri olan gözlem yapma ve problem belirleyerek çözüme ulaştırmayı kurumlaştıran Aristoteles'tir. Aristoteles'in özellikle üremeye ilişkin gözlemleri ve canlıların sınıflandırılması sistemiyle ilgili görüşleri önemlidir. Biyoloji incelemelerinde öncülük daha sonra Roma'ya ve İskenderiye'ye geçmiş, M.Ö. II. yy. ile M.S. II. yy'a kadar incelemeler özelikle tarım ve tıp çevresinde odaklanmıştır. Ortaçağ'da ise, biyoloji incelemesinde islâm bilginleri öne geçmişler ve eski Yunan metinlerinden öğrendikleri bilgileri geliştirerek, özellikle tıp bilimine büyük katkıda bulunmuşlardır. Rönesans'la birlikte Avrupa'da, özellikle de İtalya, Fransa ve İspanya'da biyoloji araştırmaları hızla gelişmiş, XV. ve XVI. yy'larda Leonardo da Vinci ve Micheangelo, güzel sanatlarda kusursuzluğa erişme çabaları içinde, son derece usta birer anatomi bilgini haline gelmişlerdir. Bu arada Andreas Vesalius, öğretim gereci olarak ölülerin kesilip incelenmesinden yararlanma uygulamasını başlatmış, ölüler üstünde kesip biçmelere dayalı ilk anatomi kitabıyla anatomi ve tıp araştırmalarında bir devrim gerçekleştirmiştir. XVII. yy'da William Harvey insanda dolaşım sistemine ilişkin çalışmaları başlatmıştır. XVIII. ve XIX. yüzyıllarda ise biyoloji bilimi önemli bir ilerleme kaydetmiştir.Bu dönemde yapılan çalışmalar aşağıdaki gibi özetlenebilir: Jean-Baptiste Lamarck omurgasız canlıların sınıflandırılmasının detaylı çalışmasına başladı. 1802 Modern anlamda "Biyoloji" terimi, birbirlerinden bağımsız olarak Gottfried Reinhold Treviranus ve Lamarck tarafından kullanıldı. 1817 Pierre-Joseph Pelletier ile Joseph-Bienaime Caventou klorofili elde ettiler. 1828 Friedrich Woehler, organik bir bileşiğin ilk sentezi olan ürenin sentezini gerçekleştirdi. 1838 Matthias Schleiden tüm bitki dokularının hücrelerden oluştuğunu keşfetti. 1839 Theodor Schwann tüm hayvan dokularının hücrelerden oluştuğunu keşfetti. 1856 Louis Pasteur mikroorganizmaların fermentasyonda etkili olduklarını vurguladı. 1869 Friedrich Miescher hücrelerin çekirdeğinde bulunan nükleik asitleri keşfetti. 1902 Walter S. Sutton ve Theodor Boveri mayoz bölünme sırasında kromozomların hareketlerinin Mendel'in kalıtım birimleriyle paralellik gösterdiğini saptayıp, bu birimlerin kromozomlarda bulunduğunu ileri sürdü. 1906 Mikhail Tsvett organik bileşiklerin ayrıştırılması için kromatografi tekniğini keşfetti. 1907 Ivan Pavlov sindirim fizyolojisi ve eğitim psikolojisi bakımından büyük önem taşıyan salya akıtan köpeklerle klasik koşullanma deneyini tamamladı. 1907 Emil Fischer yapay olarak peptid amino asit zincirlerinin sentezini gerçekleştirdi ve bu şekilde proteinlerde bulunan amino asitlerin birbirleriyle amino grubu - asit grubu bağlarla bağlandıklarını gösterdi. 1909 Wilhelm Ludwig Johannsen kalıtsal birimler için ilk kez "gen" terimini kullandı. 1926 James Sumner üreaz enziminin bir protein olduğunu gösterdi. 1929 Phoebus Levene nükleik asitlerdeki deoksiriboz şekerini keşfetti. 1929 Edward Doisy and Adolf Butenandt birbirlerinden bağımsız olarak östrojen hormonunu keşfettiler. 1930 John Northrop pepsin enziminin bir protein olduğunu gösterdi. 1931 Adolf Butenandt androsteronu keşfetti. 1932 Hans Krebs üre siklusunu keşfetti. 1932 Tadeus Reichstein yapay olarak gerçekleştirilen ilk vitamin sentezi olan Vitamin C'nin sentezini başardı. 1935 Wendell Stanley tütün mozaik virüsünü kristalize etti. 1944 Oswald Avery pnömokok bakterilerde DNA'nın genetik şifreyi taşıdığını gösterdi. 1944 Robert Woodward ve William von Eggers Doering kinini sentezlemeyi başardı 1948 Erwin Chargaff DNA'daki guanin birimlerinin sayısının sitozin birimlerine ve adenin birimlerinin sayısının timin birimlerine eşit olduğunu gösterdi. 1951 Robert Woodward kolesterol ve kortizonun sentezini gerçekleştirdi. 1951 Fred Sanger, Hans Tuppy, ve Ted Thompson insulin amino asit diziliminin kromatografik analizini tamamladı. 1953 James Watson ve Francis Crick DNA'nın çift sarmal yapıda olduğunu ortaya koydu. 1953 Max Perutz ve John Kendrew X-ray kırınım çalışmalarıyla hemoglobinin yapısını belirledi. 1955 Severo Ochoa RNA polimeraz enzimlerini keşfetti. 1955 Arthur Kornberg DNA polimeraz enzimlerini keşfetti. 1960 Robert Woodward klorofil sentezini gerçekleştirmeyi başardı. 1967 John Gurden nükleer transplantasyonu kullanarak bir kurbağayı klonlamayı başarıp, bir omurgalı canlıyı klonlayan ilk bilim adamı olarak tarihe geçti. 1970 Hamilton Smith ve Daniel Nathans DNA restriksiyon enzimlerini keşfetti. 1970 Howard Temin ve David Baltimore birbirinden bağımsız olarak revers transkriptaz enzimlerini keşfetti. 1972 Robert Woodward B-12 vitamininin sentezini gerçekleştirdi. 1977 Fred Sanger ve Alan Coulson dideoksinükleotidleri ve jel elektroforezini kullanımını içeren hızlı bir gen dizisi belirleme tekniğini bilimin hizmetine sundu. 1978 Fred Sanger PhiX174 virüsüne ait 5,386 bazlık dizilimi ortaya koydu ki bu tüm genom dizilimi gerçekleştirilen ilk canlıydı. 1983 Kary Mullis polimeraz zincir reaksiyonunu keşfetti. 1984 Alex Jeffreys bir genetik parmak izi metodu geliştirdi. 1985 Harry Kroto, J.R. Heath, S.C. O'Brien, R.F. Curl ve Richard Smalley Karbon-60 Buckminster-fulleren molekülünün olağanüstü stabilitesini keşfettiler ve yapısını açığa çıkardılar. 1985 Wolfgang Kratschmer, Lowell Lamb, Konstantinos Fostiropoulos ve Donald Huffman Buckminster-fulleren'in benzende çözülebilirliğinden dolayı isten ayrılabildiğini keşfettiler. 1990 ve 2000’li yıllarda yapılan biyolojik çalışmaların çoğu genetik kopyalamalar üzerine oldu.Bu durum da XXI.yüzyılın genetik bilimi üzerine kurulacağı işaretlerini veriyor.

http://www.biyologlar.com/bilimin-dogusunu-ve-fizik-kimya-biyoloji-matematik-olarak-temel-biirmler-haline-donusmesini-tarihsel-boyutta-aciklayiniz

Nitrat Redüksiyon Testi

Bu test, mikroorganizmaların nitratları redükte edebilme yeteneğini belirlemede kullanılır. Bazı bakteriler nitratları (NO3) redükte ederek nitritlere (NO2) ve hatta daha ileri basamaklara (amonyak (NH3) ve gaz nitrojen (N2) kadar ayrıştırabilmektedir (denitrifikasyon). Olay genellikle anaerobik koşullarda ve redüktase enzimlerinin katalitik etkisiyle sürdürülür.Test, mikropların türlerini ayırt etmede büyük yardımcı olur. Enterobacteriaceae familyası genellikle pozitif reaksiyon verir. Nitratların ayrışması sonu oluşan ürünler mikropların karakterine göre değişebilir. Her ne kadar gaz nitrojen meydana gelirse de bunun yanı sıra nitrik oksidi (NO) ve nitrös oksid (N2O) veya hidroksilamin (R.NH.OH) de teşekkül edebilir. Bu maddeler hücre içinde metabolize edilerek protein ve nukleik asit yapımında yapıtaşı olarak kullanılırlar. Materyal 1) İçinde Durham tüpleri bulunan nitratlı (KNO3, % 0.1) sıvı besi yerleri (pH 7.0, 5 ml) gerektiğinde yarı katı besi yeri.2) Mikroorganizmaların saf ve taze kültürleri3) Kontrol pozitif (S. gallinarum) ve negatif (H. vaginalis, veya Acinetobacter anitratus) kültürleri.4) Griess-Ilosvay ayıracı (taze hazırlanmış) (alfa naftilamin % 0.5 (A) + sulfanilik asit %0.8 5) Ekilmemiş sıvı besi yerleri.MetotÜremiş mikroorganizmalarından nitratlı sıvı besi yerlerine ekim yapıldıktan sonra tüpleri 37°C de 1-5 gün inkubasyona bırakılır. Durham tüpleri içinde gazın oluşumuna dikkat edilir. Tüplere Griess-IIlosvay ayıraçlarından (A+:)5'er damla konur.Değerlendirme1) Tüplerde gaz oluşumu (N2) denitrifikasyonu gösterir ve pozitif olarak kabul edilebilir (eğer bakteriler fermenter değilse). Ancak, böyle tüplere Griess-Illosvay ayıracından A ve B solusyonlarından 5'er damla damlatıldıktan sonra hafifçe çalkalanır. Bir iki dakika içinde kırmızı rengin meydana gelmesi de nitratların nitritlere kadar redükte olduğunu ifade eder (pozitif reaksiyon).2) Tüplerde gaz yoksa, yine ayıraç damlatılır. Bir iki dakika içinde kırmızı rengin meydana gelmesi pozitif olarak kabul edilir.3) Eğer, sonuç negatif (hiç reaksiyon oluşmazsa) olarak görülürse, ya nitratlar hiç ayrışmamıştır veya nitratların ayrışması nitrit safhasından da öteye (amonyak veya gaz nitrojene ulaşmış olabilir. Bu durumda, ayıraçlar konmuş olan tüplere çok az miktarda toz çinko (15-20 mg) katılır. Eğer, çinko ilavesi sonu kırmızı renk meydana gelirse (nitrat nitrite redükte olmuştur). Sonuç negatif olarak değerlendirilir. Eğer kırmızı renk oluşmazsa, bu durum, nitratların nitritden de daha öteki safhalara redükte olduğunu ifade eder (pozitif reaksiyon). Amonyak oluşumu de Nessler ayıracı ile ortaya konabilir. Dikkat edilecek noktalar1) Bazı mikroorganizmalar fermentasyon sonu tüpler içinde gaz (hidrojen) meydana getirebilir. Bu durum karşısında bakterinin karakterini iyi bilmek gerekir. Eğer tüpte gaz oluşmuşsa ve mikroorganizma fermentasyon oluşturan türden değilse, gazın nitrojen (N2) olma olasılığı büyüktür ve ayıracı koymaya gerek olmayabilir. Ancak, bakteri fermenter türden ise ayıraçları kullanmak zorunludur.2) Bazı araştırıcılar ayrı katı ortamların daha iyi sonuç verdiğini bildirmektedirler. Gerekirse içinde % 0.02 - 0.04 agar ve % 0.1 KNO3 bulunan yarı katı besiyeri de denenebilir.3) Ayıraçlar taze hazırlanmaları ve iyi çalıştıkları kontrol edilmelidir. A-reagenti buzdolabında ve buna karşın b-reagenti ise oda sıcaklığında muhafaza edilmelidir.4) Alfa naftil amin karsinojenik etkiye sahip olduğundan dikkatlice kullanılmalıdır (pamuklu pipetle ve ağızdan çekilerek kullanılmaz).

http://www.biyologlar.com/nitrat-reduksiyon-testi-1

MANTARLAR HAKKINDA BİLGİ

Mantarlar genellikle belirgin 4 özelliği ile tanımlanır. a- Besinlerini emerek alan heterotrof ökaryotlardır. b- Hücre çeperleri kitinden (azotlu polisakkarit) yapılmıştır. c- Belirgin ipliksi yapıya sahiptirler. d- Sporla üreyen organizmalardır. Mantarlar aynen hayvanlarda olduğu gibi, besinlerini hücre içerisinde glikojen (hayvansal nişasta) olarak depo ederler. Hayvanlar alemine daha yakın olan mantarların milyonlarca türü vardır. Son çalışmalar, mantarların DNA ve hücre özellikleriyle altın sarısı alglere ve kahverengi alglere daha yakın olduklarını göstermiştir. SINIFLANDIRILMALARI Mantarlar iki alt bölüme ayrılır. Birincisi cıvık mantarları içine alan MYXOMYCOTİNA alt bölümü diğeri alçak mantarların bir kısmı yüksek mantarları da içine alan EUMYCOTİNA’dır. EUMYCOTİNA alt bölümü şu sınıfları içerir. Sınıf: CYHTRİDİOMYCETES Ordo: CYHTRİDİALES Genus: OLPİDİUM Genus: SYNCHYTRİUM Ordo: MONOBLEPHARİDALES Genus: MONOBLEPHARİS Sınıf: HYPOCHYTRİDİOMYCETES Ordo: HYPOCHYTRİDİALES Sınıf: OOMYCETES Ordo: SAPROLEGNİALES Genus: SAPROLEGNİA Ordo: PERONOSPORALES Genus: PYTHİUM Genus: PHYTOPHTHORA Genus: PHASMOPORA Genus: ALBUGO Genus: BREMİA Genus: PERONOSPORA Sınıf: ZYGOMYCETECES Ordo: MUCORALES Genus: RHİZOPUS Sınıf: ASCOMYCETES Sınıf: BASİDİOMYCETES Subdivisio: MYXOMYCOTİNA (CIVIK MANTARLAR) 300 kadar türü bulunan cıvık mantarlar hem bitki hem hayvan karakterlerini birlikte taşıdıklarından bilimsel açıdan ilginçtir. Vejetatif yapıları çeperlerle ayrılmamış pek çok çekirdek içeren çıplak protoplazma kütlesi halindedir. Bu vejetatif kısma PLASMODİUM denir ve özel bir şekli yoktur. Cıvık mantarların çoğu saprofittirler. Hücre çeperinin bulunmayışı, amoeboid hareket ve katı besin parçacıklarını alabilmeleri gibi hayvanlarda görülen özelliklere sahiptir, üremelerinde selülöz çeperli sporlar meydana getirirler ki buda bitkilere has üreme karakteridir. Subdivisio: EUMYCOTİNA OOMYCETES ve ZYGOMYCETES olmak üzere iki ilkel sınıf ile iki de yüksek mantarları içeren sınıfı vardır. Her iki ilkel sınıfın önemli özellikleri: A- VEJETATİF MİSEL SAPROLEGNİALES, PERONOSPORALES, MUCORALES: Sönositik (çok çekirdekli) bir misel; saprofit, parazit ve ara tipler, parazit özellikle bitki patojenleri. B- ÜREME a- EŞEYSİZ SAPROLEGNİALES: Zoosporlar uzamış sporangiumlarda oluşur. PERONOSPORALES: Zoosporlar sporangium ve konidiosporangium’larda oluşur; konidiumların çimlenmesi çimlenme tübüyle olur. MUCORALES: Aerial sporangiumlar b- EŞEYLİ SAPROLEGNİALES: Heterogomi her oogoniumda bir ya da çok yumurta mevcut. PERONOSPORALES: Heterogami, her oogonium içinde bir yumurta bulunur. MUCORALES: Sönogametlerin oluştuğu izogami; heterotallik. OOMYCETES ordoları SAPROLEGNİALES PERONOSPORALES ZOOMYCETES ordoları MUCORALES YÜKSEK MANTARLAR Bu grup mantarlar 3 sınıfta toplanır; ASCOMYCETES, BASİDİOMYCETES ve FUNGİ İMPERFECTİ. Buğday, mısır gibi hububatlar ve orman ağaçlarında parazit oldukları için son derece önemlidirler. Bazı türler ekmeklerin kabartılmasında, mayalanmada ve antibiyotik üretiminde kullanılırlar. ASCOMYCETES hifleri bölmelidir ve hücreler tek çekirdeklidir. Bölmeler protoplazmanın hücreden hücreye geçişini sağlayan deliklere sahiptir. BASİDİOMYCETES hifleri, ASCOMYCETES’lerde olduğu gibi porlu bölmelere sahiptir. Sınıf: ASCOMYCETES Bazı peynirlerin özel kokuları ASCOMYCETES’lerden dolayıdır ve bazı yenilebilir mantarlar bu sınıfın üyeleridir. Bazıları da drogların elde edilmesinde kullanılır. Alkol ve maya yapımında önemli olan ve pek çok vitamin içeren bira mayası da bu sınıfın üyesidir. ÜREME A- EŞEYSİZ Eşeysiz üreme çeşitli tipte eşeysiz sporlarla sağlanır. Ilıman iklimlerde eşeysiz sporlar uygun olmayan şartlarda uzun süre yaşayabilirlerse de soğuk veya çok sıcak ve kuru hava ölmelerine neden olur. Birçok ASCOMYCETES’lerde sporlar özelleşmiş hiflerin ucundaki hücrelerden meydana gelir. Böyle oluşan sporlara KONİDİOSPOR denir. Özelleşmiş hiflerde KONİDİOFOR adını alır. Ekseriya konidiosporlar bir süre birbirlerine yapışık kalır ve uzun zincirler oluştururlar. Birçok türde konidioforlarda karakteristik bir şekilde bir arada toplanmış olabilir. Bazıları da tomurcaklanma ile eşeysiz ürer. B- EŞEYLİ Çoğu ASCOMYCETES’te mitozu takiben meydana gelen mayoz uç hücreye 8 adet meiosporun oluşmasını sağlar. Bu sporların görünümleri bir naylon torbadaki fasulye veya misketleri andırır ve dolayısıyla KESE MANTARLARI adı verilir. Sınıfa adını veren ASKUS kelimesi de kese anlamına gelmektedir. Meiosporlarada genellikle ASKOSPOR denir. Askuslar (askospor meydana getiren keseler) daima özelleşmiş hiflerin uç hücreleridir. Askokarp adı verilen bu yapı içine yerleşmişlerdir ve bu sınıfta ASKOGONİUM adını alan dişi gametangium’dan meydana gelirler. Erkek gametangium ANTHERİDİUM adını alır. Hem vejetatif ve hem de askus taşıyan hiflerden oluşan askokarp türler için karakteristiktir. 3 tip askokarp mevcuttur. 1- CLEİSTOTHECİUM: İçi oyuk tamamen kapalı küre şeklinde 2- PERİTHECİUM: İçi oyuk, dar bir açıklığı bulunan matara şeklinde 3- APOTHECİUM: Açık, kadeh şeklinde Askus taşıyan hiflerin ucundaki hücreler (askuslar) birçok formlarda askokarpın iç yüzeyinde sıralanır. Bu yüzey tabakaya HYMENİUM ya da verimli tabaka denir. PARAFİZ denilen kısır hücreler aynı zamanda hymeniumda meydana gelir ve çok sayıda olup genellikle askuslardan uzundur. Birçok ASCOMYCETES’lerde askokarplar doğrudan doğruya hücrelerin kaynaşmasıyla oluşur. Gametangiumlar konak üzerinde büyüyen haploid miselden meydana gelir. Dişi gametangium veya oogonium çok çekirdekli tek bir hücredir. Anteridiumlar diğer ipliklerin kısa yan çıkıntılarında oluşan uzamış hücrelerdir. Her iki gametangiumda özel ek hücrelere sahip olabilir. Bu anteridium oogoniuma temas ettikten sonra çekirdekler çiftleşir fakat birleşmezler. Bu işlem oogonium ve çevredeki haploid misellerdeki liflerin büyümesini uyarır. Oogonyumdan oluşan hücreler biri erkek diğeri dişi olmak üzere iki çekirdeklidir. Bu gerçek bir diploid durum değildir; 2n’den çok n+n şeklinde düşünülmelidir ve bu çift haldeki çekirdeklere ekseriya DİKARYON denir. Askuslar bu hiflerden meydana geldiği için bunlara ASKOJEN HİFLER denir. Haploid ve askojen hiflerin birlikte gelişmeleri sonuçta ASKOSPOR oluşumuna neden olur. Çok dallanmış askojen hiflerin uç hücreleri ve bazı haploid hiflerin uçları birlikte hymenial tabakayı oluştururlar. Bu tabaka dışarıdan PERİDİUM denilen vejetatif haploiid hiflerin oluşturduğu bir tabakayla korunur. Gene askusta dikaryonun çekirdekleri artık gerçek diploit hücre oluşturmak üzere birleşirler. Çekirdeklerin birleşmesini takiben hemen mayoz meydana gelir ve birçok türde bunu 8 askospor meydana getiren mitotik bir bölünme izler. ASCOMYCETES’lerin gametangiumları yapı ve gelişme bakımından farklılık gösterir. Örneğin en basit tip ve gelişme tek hücreli mantar olan bira mayasıdır. Bazı bira mayasında 2 hücre birleşir, ardından hemen mayoz meydana gelir ve askosporlar oluşur. SINIFLANDIRILMALARI Pek çoğu patojen olan 25000 kadar ASCOMYCETES türü pek zor taksonomik problemler göstermektedir. Ekseriya 2 alt sınıf ve 7 ordoya ayrılırlar. Alt sınıf: HEMİASCOMYCETİDAE 1. ordo: ENDOMYCETALES Örnek: SACCHAROMYCES (bira mayası) 2. ordo: TAPHRİNALES Örnek: TAPHRİNA Alt sınıf: EUASCOMYCETİDAE 3. ordo: EUROTİALES Örnek: ASPERGİLLUS, PENİCİLLUM 4. ordo: ERYSİPHALES Örnek: ERYSİPHE 5. ordo: CLAVİCİPİTALES Örnek: CLAVİCEPS 6. ordo: HELOTİALES Örnek: MONOLİNİA 7. ordo: PEZİZALES Örnek: PEZİZA Sınıf: BASİDİOMYCETES Birçoğu özellikle ölü orman ağaçlarının çürümekte olan kısımlarında saprofittirler. Bazıları parazittirler, orman ve meyve ağaçlarına, buğday, mısır, soğan ve diğer bazı bitkilerde önemle hasarlara neden olurlar. ÜREME Özel eşey organları yoktur. Buna rağmen hemen hemen hepsi eşeyli çoğalırlar. Birleşme a) basit hif hücreleri arasında b) iki özel hücre arasında veya c) özel sperm benzeri yapılarla alıcı hifler arasında olur. Bazı türler HETEROTALLİKTİR. Yani dişi ve erkek farklı hifler birleşir. Bazıları HOMOTALLİKTİR. Yani herhangi iki hifin iki hücresi hatta aynı hifin iki hücresi birleşir. Her iki tipte de birleşmeden önce vejetatif misel hücreleri tek çekirdeklidir. Birleşmeden sonra oluşan hücre 2 haploid çekirdeklidir (n+n). Her hücredeki bu 2 çekirdek mayoz’a kadar birleşmez. İki çekirdeğin birleşmesi ve sonuçta mayoz, BASİDUM denilen özel hücrelerde olur. Bu basidiumlarda meydana gelen meiosporlara BASİDİOSPOR denir. Basidiumlar ya çubuk şeklinde tek bir hücre veya kısa ipliksi tek bir hücre ya da kısa bir 4 hücreli iplik şeklindedir. Çubuk şeklindeki basidiumlar şapkalı mantarlarda özel spor taşıyan yapılarda bulunur. Bu tip basidium HOMOBASİDİOMYCETİDAE alt sınıfı oluşur. Her iki tiptede basidiosporlar basidiumlara STERİGMA denilen kısa bir sapla bağlanmıştır. SINIFLANDIRILMALARI Alt sınıf: HOMOBASİDİOMYCETİDAE Agaricus campestris Amanita phalloides (zehirli) Fomes appanatus Alt sınıf: HETEROBASİDİOMYCETİDAE Puccinia graminis Ustilago Tilletia tritici İKİ SINIFIN KARŞILAŞTIRILMASI ASCOMYCETES GENEL KARAKTERLERİ 1- Misel bölmeli, ana vejetatif hifin hücreleri tek haploid çekirdekli, askojen hifler her bir hücresinde 2 haploid çekirdekli (n+n). 2- Birçoğu meyve, ağaç ve tanelerin hastalığına neden olan patojenlerdir. 3- Bira mayası gibi bazı saprofit formların ekonomik önemi vardır. 4- Bira mayası tek hücreden ibaret bir ASCOMYCETES’dir. ÜREME EŞEYSİZ - Ekseriya konidiosorla - Tomurcuklanma ile EŞEYLİ - İlkel formlarda belirgin gametangiumlar gelişmez. Tipik askogonium ve anteridium daha gelişmiş tipte görülür. - Döllenme Çekirdekler birleşmeden iki protoplastın birleşmesiyle Askojen hiflerin (n+n) ve haploid vejetatif hiflerin uyarılması Askustaki 2 haploid çekirdeğin birleşmesi şeklinde olur. - Askokarp askojen ve haploid vejetatif hiflerin büyümesi sonucu gelişir. Askokarpın iç tabakası (himenium) askusları oluşturur. Dış tabaka (peridium) haploid vejetatif ipliklerden oluşmuştur. - Üç tip askospor vardır CLEİSTOTHECİA PERİTHECİA APOTHECİA - Mayoz askusta, askosporların teşekkülünde meydana gelen her bir askusta genellikle 8 askospor meydana gelir. BASİDİOMYCETES GENEL KARAKTERLERİ 1- Hif bölmeleri, yaygın haploid misel, her bir hücrede tek haploid çekirdek; gelişmiş n+n misel, her hücrede iki haploid çekirdek. 2- HOMOBASİDİOMYCETİDAE: çoğu saprofitik formlar, birkaç tür ağaçlarda parazit. 3- HETEROBASİDİOMYCETİDAE: Bitkilerde parazit, bazıları karışık bir hayat devresine sahip, birkaç türde gerçek bazidiosporlar oluşmaz. ÜREME EŞEYSİZ: HOMOBASİDİ’lerde eşeysiz sporlar oluşmaz. HETEROBASİDİ’lerde çeşitli tipte sporlar oluşur. UREDOSPOR, ASCOSPOR EŞEYLİ: Hareketli eşey hücreleri ve gametangiumlar yok. HOMOBASİDİ’lerde; - İki haploid hif hücresi birleşir; - Her bir hücrede iki haploid çekirdekli n+n misel iki haploid hif hücresinin birleşmesiyle gelişir; - Bazidiokarp n+n miselden meydana gelir; - Çubuk şeklinde bazidiumu olan himenium bazidokarpta meydana gelir; - İki haploid çekirdek bazidiumarda birleşir; - Mayoz sonucu dört bazidiospor oluşur. HETEROBASİDİ’lerde; - Basidiumlar dayanıklı teliosporlardan meydana gelir ya da kısa ipliksi hücrelerden veya kısa dört hücreli ipliklerden. Mayoz basidiospor oluşumunda meydana gelir. - İki haploid çekirdeğin birleşmesiyle olan döllenme türden türe son derece değişir. Sınıf: Fungi imperfecti ( Eşeyli üremeleri kesin olarak bilinmeyen mantarlar) Eşeysiz devreleriyle tanınan 1200 cins 24000 türü olan bir sınıftır. Mantarlarda eşeyli devre perfect, eşeysiz devre imperfect olarak adlandırılır. Bu büyük grupta sadece imperfect devre bilindiğinden Fungi imperfecti adı verilmiştir. Genel olarak bölmeli hiflerin ve sporların yapısı ve bu gruba ait birçok üyenin ASCOMYCETES olabileceği fikrini doğurur, diğerleri ise BASİDİOMYCETES. Tabii sınıflandırma eşeyli safhalara dayandığından eşeyli ve eşeysiz safhaların morfolojileri birbirine uygun olmadığından bu büyük grup mantarların sınıflandırılması oldukça güçtür. Örneğin, çok benzer konidial safhaya sahip olan iki form çok farklı eşeyli devrelere sahip olabilir. PENİCİLLUM ve ASPERGİLLUS ekseriya bu grup içinde incelenir, çünkü bu iki cinsin eşeyli safhaları bilinmeyen pek çok türleri vardır.

http://www.biyologlar.com/mantarlar-hakkinda-bilgi

Kist Hidatik Hastalığı ( Ekinokkoz ) ve Echinococcus granulosus

Tanım:Kist hidatik , Echinococcus granulosus (E. granulosus) ve aynı gruptan diğer parazitlerin sebep olduğu, sıklıkla karaciğer ve akciğere yerleşmekle beraber bir çok dokuda kist oluşturabilen ve hayvanlardan insanlara geçen bir hastalıktır. Hayvancılığın yaygın olduğu bölgelerde sık görülür. Ülkemizde de önemli bir sağlık sorunudur. Etken:Ekinokoklar sestod grubu parazitlerdir. Vücutları baş, boyun ve halkalardan oluşur. Ekinokoklar, yaşamlarını devam ettirebilmek için köpek, tilki, kurt, çakal gibi kesin konaklara, sığır ve koyun gibi ara konaklara ihtiyaç duyarlar. Ülkemizde E. granulosus ile oluşan ve tek kistle seyreden şekil, daha sık görülmektedir. İç Anadolu'da ve Doğu Anadolu'da hayvancılıkla ilişkili olarak daha fazladır. Hastalık avcı, çiftçi, çoban gibi hayvan teması olanlar, köpek sahibi olanlar, mezbaha çalışanları ve veteriner hekimlerde sık görülür. İnfekte çiğ sebze ve meyve yenilmesiyle bulaşma olabilir. Etken parazit genelde çocukluk çağında ağızdan alınır. Kaynak hayvanın dışkısıyla dış ortama atılan parazit yumurtaları, kuruluğa ve ısıya duyarlı, kimyasal maddelere ve soğuğa dirençlidir. Bu yumurtalar su ve besin maddelerini kontamine ederek ağızdan alınabilirler. Ara konaklar bu yumurtaları alarak infekte olurken, bu hayvanların sakatatlarını köpek, kurt, çakal gibi hayvanların yemesiyle hastalık yeniden esas kaynaklara bulaşır. Bu durum parazitin yaşamını sürdürmesine neden olur. Ağız yolu ile alınan yumurtalar insanlarda barsaklardan vücuda girer ve karaciğere geçerek veya damarlar yoluyla diğer organlara yayılarak kistler oluşturur. Kistler yılda yaklaşık 1 cm büyüyerek yıllar içinde çevresine baskı yapacak duruma geldiğinde belirti vermeye başlar. İlk kistin duvarında yırtılma olursa ikincil kistler oluşabilir. Kist hidatik % 50 -70 karaciğere, % 10-30 akciğere yerleşmekle beraber diğer organları da tutabilir. Tutulan organa göre belirti veren kist hidatik hastalığı göz ve beyinde yerleşirse çabuk, karaciğerde yerleşirse yıllar sonra bulgu verebilir. Karaciğer tutulumunda karnın sağ üst bölgesinde ağrı, bulantı, kusma ve sarılık olabilir. Karaciğerde büyüme tespit edilebilir. Kist parçalanırsa allerjik reaksiyonlar gelişebilir. Diğer organ tutulmalarında yerleşim yerine ve kist büyüklüğüne göre klinik bulgular değişir. Tanı:Tanı için laboratuvar incelemeleri yapılır. Balgam, idrar incelenebilir. Kandan serolojik tetkikler yapılarak teşhis konabilir. Korunma:Köpekler enfeksiyon açısından kontrol altına alınmalıdır. Evcil hayvanlara antiparaziter tedavi yapılmalı, hayvan teması olanlara eğitim verilmelidir. Çiğ sebze ve meyveler iyi yıkanmalı, mezbahalık hayvan atıkları özel fırınlarda yakılmalı veya köpeklerin ulaşıp yiyemeyeceği şekilde derin çukurlara gömülmelidir. Veteriner hekimlikte, pet klinisyenliğinde en çok karşı karşıya kaldığımız soru insana bulaşması nedeniyle tenyalar içinde ekinokok kistleridir. Ekinokok kistleri insanlar için çok tehlikelidir. Bu parazit özellikle kurban bayramlarında sıhhi olmayan koşullarda yapılan kesimler ve bu kesimler sonrası kistli organların imha edilmeyip zemine yakın şekilde gömülmesi, sokak köpekleri veya tasmasız ve kontrolsüzce gezdirilen sahipli köpeklerce kistli organların yenilmesi, insanlardaki kist hidatid hastalığının Türkiye 'de tükenmesini engellemektedir. Hastalığın köpeklerin tüylerinden geçtiği kanısında olan halkımızın bu konuda bilinçlendirilmesi gereklidir. Kistli organları yiyen köpekler (kistler ekinokok parazitinin larva dönemidir.) yaklaşık 2 ay sonra bu parazitlerin erişkinlerini ve yumurtalarını dışkılarıyla dökmektedirler. Eğer bir parazit tedavisi olamazsa da parazitlerin erişkinleri 2 yıl kadar köpeklerin bağırsaklarında yaşamlarını sürdürmektedirler. Parazitin yumurtaları köpek tarafından atıldıktan sonra ne olur? Köpeklerin tüylerine bulaşan parazit yumurtaları, insanlarına köpekleri sevmeleri esnasında geçebilir. Yerde yetişen bitkilerin üzerine gelen parazit yumurtaları, iyi yıkanmadan tüketildikleri taktirde, sindirim sistemi yoluyla insanlara buluşabilir. Kum havuzlarında bulunan köpek dışkıları oyun oynamakta olan çocuklara da geçebilmektedir. Kuruyan dışkılar tozla karışıp solunum yoluyla da insana geçebilir. Bunlardan anlaşılacağı gibi bu hastalığın insana geçmesi için o insanın köpek besliyor yada seviyor olması gerekmez hiç köpek sevmeyen ve hiç temasta bulunmayan kişilerde bu hastalığa yakalanabilirler. Kist Hidatid'ten nasıl korunulur? * Halkın konu ile ilgili eğitim düzeyi artırılır. Kurban bayramlarında kesim, sıhhi koşullarda gerçekleştirilir. Kesim sonrasında oluşan mezbaha artıkları imha edilir. *Köpeklerimize Kurban Bayramı sonrasında daha özenli olmak. Her zaman kontrolsüz (tasmasız) gezmelerini engellemek. Bu sayede herhangi yabancı bir maddeyi de yemesini engellemiş oluruz. *Özellikle yerde yetişen gıdaları iyi yıkamadan yememeliyiz. Güvenmediğimiz lokantalarda bu tür gıdaları sipariş ederken dikkatli davranmalıyız *Parazitin yaşam çemberinin 2 ay olduğunu ve günümüzde kullanılan parazit tedavi ilaçlarının depo etkisinin olmadığı göz önünde bulundurmalıyız. Bu nedenle, evimizde beslediğimiz köpeklerimizi, 2 ayda bir kez olmak üzere parazit tedavisine veteriner hekimimize götürmeliyiz. Unutmayın yapılan parazit tedavileri sadece size geçen kist için değil aynı zamanda sevimli yaşam arkadaşınızın diğer iç parazitleri içinde tedavi niteliği taşır. Bu parazitlerin yaşam çemberleri, ekinokok'tan daha kısa olanları da vardır. Önemlidir:Bu yazıdan da anlaşılacağı gibi ekinokok kisti, kontrollü parazit tedavileri düzenli yapılan köpeklerden kesinlikle insana bulaşmaz. Diğer bulaşma yolları kesinlikle daha fazla risklidir.

http://www.biyologlar.com/kist-hidatik-hastaligi-ekinokkoz-ve-echinococcus-granulosus

BİYOLOJİK SİLAH ÇEŞİTLERİ NELERDİR ?

ANTHRAX: Hastalık besi hayvanlarını etkiliyor ve uzun zamandır biyolojik silah araştırması yapanların ve bu tür silahları geliştirenlerin gözdeleri arasında yer alıyor. Bunun nedeni diğer mikroplara oranla daha dayanıklı bir yapıda olması ve bu sayede savaş alanına ya da bir şehre havadan spreylenebiliyor olması. Pek çok tekstil kuruluşu, koyun yününden de bulaşan bu mikroba karşı çalışanlarını aşılatıyorlar. Anthrax toz olarak kullanıldığında daha etkili oluyor ve nefes yoluyla vücuda giriyor. Hastalık ilk safhasında nezle semptomları ve yoğun göğüs ağrısıyla kendini belli ediyor. Mikrop daha sonra bir süre kuluçkada kalıyor. İkinci safhaya geçildiğinde, vücutta toksin üreten organizmalar ürüyor. Bu aşama neredeyse her zaman ölümle sonuçlanıyor. Anthrax mikropları bir kez yayıldıktan sonra toprağa gömülen cesetlerin ve leşlerin içerisinde yıllarca yaşayabiliyorlar. RİCİN: Doğal olarak bulunan zehirli maddeler içerisinde en güçlülerinden biri. Bir bitkinin tohumlarından elde edilen ricin, geçmişte demirperde ülkeleri gizli servisleri tarafından kullanılmıştı. Bulgar gizli servisi 1978 yılında Bulgar muhalif Georgi Markow’u Londra’da ricin kullanarak öldürmüştü. Ricin, otobüs bekleyen Markow’a bir şemsiyenin ucuna takılı iğnenin batırılmasıyla verilmişti. Zehirin bir damlası bile öldürücü olmaya yetmişti. BOTULİSM: Anthrax gibi, botulism bakterisi de toprak üzerinde ve altında uzun süre hayatta kalabiliyor. Bakteri günlük hayatta genelde kötü şartlarda yapılmış yiyecek ve balık konservelerinden bulaşıyor. Bakteri aşırı derecede ölümcül toksik botulinum maddesini üretiyor. Bu madde görme bozukluğu, ağız kuruluğu, yutkunmada ve konuşmada zorlanma, halsizlik gibi semptomlarla kendini gösteriyor. Bakterini yaydığı zehirin antikoru bulunuyor ancak ilk semptomlar görüldükten sonra pek bir işe yaramayabiliyor. CLOSTRİDİUM PERFRİNGENS: Yiyecek zehirlenmesinin yagın görünen bir çeşidi. Bakteri oda sıcaklığı ve üzeri sıcaklıkta bırakılmış et üzerinde ortaya çıkar. Anthrax gibi sporlar üreterek toprakta yaşayabilir. Et üzerinde etkisi çok yoğun olmasa da, savaş alanlarında kullanıldığında açık yaralar üzerine yerleşerek hızla kangren oluşumuna yol açar. Meydana gelen kangren müdahale edilmediği takdirde önceleri sancı ve kabarıklıklara daha sonra ise şok, sarılık ve ölüme yol açar. Bakteri, Anthrax kullanılarak iyileştirilebilir. Ancak labarotuvar koşullarında antibiyotiğe dayanıklı versiyonlarını üretmek mümkün. Bunu sağlamak için insanlara yapılan aşı benzeri bir sistem kullanılıyor ve bakteriye, az miktarda antibiyotik enjekte edilerek bağışıklık kazanması sağlanıyor. CAMELPOX: Irak tarafından geliştirme sürecinde olduğu tahmin edilen virüsün insanlara yayılması konusunda az miktarda bilgi bulunuyor. Kullanımı ve ithalatı batı ülkelerinde yasak olan bu hayvani madde, labarotuvar koşullarında ölümcül bir kimyasal silaha dönüşebiliyor.

http://www.biyologlar.com/biyolojik-silah-cesitleri-nelerdir-

Canlılar Aleminin Sınıflandırılması

1. Monera (Bakteriler-Eski bakteriler, Archaea-Gayserlerde yaşayan hipertermofilik canlılar) Zarla çevrilmiş gerçek organelleri bulunmayan hücre yapısına sahip canlılardır. 2. Protista (Chromista ve Protozoa) Zarla çevrilmiş gerçek organellere sahip hücre yapısına canlılardır. 3. Fungi (Şapkalı ve Cıvık mantarları içerirler) İletim dokusu bulunmayan ve bu nedenle heterotrofik, parazitik ya da saprofit (çürükçül) beslenen, fotosentez yapmamaları nedeniyle ışığa bağımlı olmayan ökaryotik canlılardır. Bazı mantarlar, alglerle bir araya gelerek liken adı verilen toplulukları oluştururlar. Bazı türler de, bitkilerin köklerinde simbiyont olarak yaşarlar. 4. Plantae (Bitkiler) Birincil olarak karada yaşamaya uyum sağlamış, hücrelerinde kloroplast bulunan, fotosentez yapabilen, ototrof (kendibeslek) canlılardır. Bu canlıların kloroplastları, ökaryot kökenlidir. Hücre duvarı sellüloz içerir. Organ ve doku sistemlerinde belirgin farklılaşmalar vardır. Bitkiler dünyasının tarihi 4 devire ayrılır: a. Siluriyen'e kadar Thallofitlerin çağı; b. Geç Siluriyen'den Permiyen'e kadar damarlı Kriptogamların ve onlardan daha sonra ortaya çıkan Prephanerogamların çağı; c. Permiyen'den Geç Jura'ya kadar Gymnospermlerin çağı; d. Geç Jura'dan günümüze değin Angiospermlerin çağı. Günümüzde bitkiler 360 bin türe sahiptir. Bunların yaklaşık 2/3'ü tohumlu (600'ü açık tohumlular; 200 bini çift çenekli ve 50 bini de tek çenekli olmak üzere kapalı tohumlular), 1/3'ü tohumsuz bitkilerdir. 4. Animalia (Hayvanlar) Gelişmiş bir sinir sistemine ve hareket yeteneğine sahip olan, hücrelerinde kloroplast taşımamaları nedeniyle kendi besinlerini kendileri üretemeyen, bu sebeple de dışarıdan organik besin almak zorunda olan canlılardır. Besin, sindirildikten sonra hücre içerisinde alınır. Heterotrof (ardıbeslek) olan bu canlılar, beslenme şekillerine göre ayrıca otçul (herbivor), etçil (karnivor), hepçil (omnivor), böcekçil (insektivor), vb. olarak gruplandırılırlar. Hayvanlar alemi; a. Omurgasızlar b. Omurgalılar gruplarından meydana gelirler.

http://www.biyologlar.com/canlilar-aleminin-siniflandirilmasi

Tıbbi Cihazlar Direktifi

93/42/EEC sayılı Tıbbi Cihazlar Direktifi, diğerlerinin yanı sıra normal sargılar, bıçaklar, yüzey elektrotları, karışım pompaları, kalp kateterleri, antibiyotikli kemik alçılar, iç optik lensler, tekerlekli sandalyeler, koltuk değnekleri, harici kalp pilleri ve ameliyathanelerdeki donanım ve araçları kapsamaktadır. Direktifin temel gerekleri; genel emniyet ve verimlilik gerekleri ile kimyasal, fiziksel ve biyolojik özellikler, mikrobik kirlenme ve enfeksiyon riskleri, ölçüm özellikleri, çevresel özellikler, radyasyona karşı korunma, mekanik, elektrik ve termal riskler ile ilgili özel hükümleri içerir. Ürünlerin büyük bir kısmı için zorunlu kullanım kılavuzu, ürünü güvenli kullanma yolları ve ürünün özellikleri ile ilgili olarak tüketicileri bilgilendirmelidir. Direktif, ürünlerin temel gereklere uygunluğunun değerlendirilmesini teminen çeşitli ürün kategorileri için ayrıntılı prosedür planı sunmaktadır. Onaylanmış kuruluşların sıkça bu prosedürlere dahil olması öngörülmektedir. CE işareti ve uygunluk prosedürüne dahil olan onaylanmış kuruluşun kimlik numarasının yanında, aşağıdaki veriler de etikette yer almalıdır: •imalatçının ve gerektiğinde ithalatçının adı veya ticari markası ve adresi, •ürünün tanımı ve tip göstergesi, •ürünün parti kodu veya seri numarası, •ürünün en son kullanma tarihi ve bunun uygun olmadığı durumlarda üretim yılı, •saklama ve kullanımla ilgili muhtemel önemli talimatlar ve uyarılar. Tıbbi Cihazlar Direktifinin 14. maddesi Avrupa’da cihazların veya birleşik cihaz paketlerinin piyasaya sürülmesinden sorumlu kişi ve şirketlerin kendi ülkelerinde bu amaçla atanan bir kuruluşa kayıtlı olma zorunluluğunu getirmektedir. İşyerinin kayıtlı adresi ve ilgili cihazların tanımı bu kuruluşa bildirilmelidir. AB’de 93/42/EEC sayılı Direktif 14 Haziran 1993’te kabul edildi. Direktif, 1 Ocak 1995’ten itibaren uygulamaya konuldu. 14 Haziran 1998’den beri de piyasaya sürülmüş bulunan bütün tıbbi cihazlar CE işareti taşımak zorundadır. 76/764/EEC sayılı Direktife uygun olan civalı klinik termometreler 30 Haziran 2004’ten sonra CE işareti taşımak zorundadırlar. Kapsam Tıbbi Cihazlar Direktifinde “tıbbi cihaz”, üretici tarafından insanlar için aşağıda sayılan amaçlarla kullanılmak üzere planlanan ve tam çalışması için gerekli yazılım da dahil olmak üzere alet, aygıt, materyal ve öteki maddeler ve bunların bileşimlerini içeren cihazdır: 1.hastalığın teşhisi, önlenmesi, izlenmesi, tedavisi ve etkisinin azaltılması, 2.bir yaralanma veya engelin teşhisi, izlenmesi, tedavisi, veya giderilmesi, 3.anatominin veya fizyolojik sürecin incelenmesi, yenilenmesi veya değiştirilmesi, 4.doğum kontrolü. Ürünün işlevini eksiksiz yerine getirebilmesi için gerekli olan aksesuar ve bilgisayar yazılımları da bu direktifte yer alır. Ayrıca, bir ilaç vermek amacıyla kullanılan tıbbi cihazlar da bu direktifin kapsamına girer. Bu durumda Tıbbi Cihazlar Direktifinin temel gerekleri sadece cihazın emniyet ve performansını sağlamak için uygulanabilir. İlaç 65/65/EEC sayılı Direktifin gereklerine ve prosedürlerine uygun olmalıdır. Ancak böyle bir cihaz ve ilaç tek bir ürünü oluşturuyorsa, o ürün tümüyle 65/65/EEC sayılı Direktif kapsamına girer. Direktifin kapsamı dışında kalan ürünler ise şunlardır: 1.in vitro diagnostik cihazlar, 2.90/385/EEC’nin kapsamına giren vücuda yerleştirilebilen aktif tıbbi cihazlar, 3.65/65/EEC’nin kapsamına giren ilaçlar, 4.76/768/EEC’nin kapsamına giren kozmetik ürünleri, 5.insan kanı (içeren cihazlar), 6.insan kaynaklı nakledilen organlar veya dokular veya hücreler (içeren ürünler) (veya bunlardan elde edilen ürünler), 7.hayvan dokularından elde edilmiş, hayat belirtisi göstermeyen ürünleri kullanan bir alet imal edilmedikçe, hayvan menşeli hücre, doku veya organlar, 8.89/686/EEC’nin kapsamına giren kişisel koruyucu donanımlar İn vitro diagnostik ürünleri de bu direktifin kapsamına almak için bir değişiklik önerilmiş bulunmaktadır. Bahse konu değişiklik yürürlüğe girene kadar bu ürünler ulusal hükümlere göre piyasaya sürülecektir. İn vitro diagnostik ürünler şunları kapsamaktadır: kan testi araçları, hamilelik testi araçları, laboratuar ekipmanı, ayıraçlar, kalibrasyon ekipmanı ve insan kaynaklı numunelerin teşhisi ile ilgili herşey. Uygulanabilen diğer direktifler Direktifin birinci maddesinin sekizinci bölümüne göre, Tıbbi Cihazlar Direktifi, elektromanyetik uyumlulukla ilgili üye ülke mevzuatının yakınlaştırılmasına dair 3 Mayıs 1989 tarihli ve 89/336/EEC sayılı Direktifin ikinci maddesinin ikinci bölümü anlamında özel bir direktiftir. EMC direktifinin ikinci maddesinin ikinci bölümü şöyle demektedir: “Bu direktifte açıklanan koruma gerekleri özel direktiflerce belli araçlar bakımından uyumlaştırıldığı zaman bu direktif uygulanmayacak veya diğer özel direktiflerin yürürlüğe girmesi üzerine bu araçlar veya koruma gerekleri bakımından uygulanması durdurulacaktır.” Bu, tıbbi cihazların EMC Direktifinin kapsamına girmediği anlamına gelmektedir. Bu kapsamda doğabilecek riskler tamamen Tıbbi Cihazlar Direktifinin temel gereklerinin kapsamına girmektedir. Aynı durum radyoloji ve elektro-tıbbi materyalleri kapsamının dışında tutan 73/23/EEC sayılı Alçak Gerilim Direktifi bakımından da söz konusu olmaktadır. Tıbbi Cihazlar Direktifinin temel gerekleri aynı zamanda bu ürünlerin emniyeti ile de ilgilidir. Uygunluk değerlendirmesi Tıbbi cihazlar Direktifin IX No.lu Ek’inde görüleceği gibi şu sınıflara ayrılmaktadır: Sınıf I, Sınıf IIa, Sınıf IIb ve Sınıf III. Bu alt sınıflandırma ürün listelerine göre değil, çeşitli tercihlerin mümkün olduğu ve istisnaların bulunduğu risk faktörleri ile ilgili birtakım kriterlere dayanmaktadır. Tıbbi cihazların sınıflandırılması ve belgelendirilmesi oldukça karmaşıktır. Bu yüzden bir ürünün sınıflandırılmasını belirlerken her zaman Direktifin ekinde yer alan tanımlara danışma önerilir. Doğru yoruma ulaşmak için ulusal makamlar ve onaylanmış kuruluşlardan yardım istenebilir. Her sınıf için farklı uygunluk değerlendirme prosedürleri izlenmelidir. Sınıf I’deki daha az risk faktörü taşıyan ürünler diğer şeylerle birlikte cerrahi mikroskopları, tekerlekli sandalyeleri ve hasta yataklarını içermektedir. Genelde, imalatçı bu ürünlerin uygunluk değerlendirmesini direktifin VII No.lu Ek’inde tanımlanan iç üretim kontrolü sistemine (Modül A) göre yapabilir. Bu ekte üretim ve üretimin idaresi, ürünün piyasaya sunulmasından sonra yaşanan tecrübeler ve olaylar, teknik dosya ile ilgili bir dizi özel gerek yer almaktadır. Diğer kategorilerin kapsadığı ürünler için daima bir onaylanmış kuruluşun uygunluk değerlendirmesine dahil olduğu prosedürler uygulanmalıdır. Çoğu durumda imalatçı onaylanmış tipe uygunluğu Modül C, D, E veya F’den seçeceği birine göre sağladıktan sonra AT Tip İncelemesini yürütmek zorundadır. Gereçler bir sistem veya prosedürler paketine dahil edilebilirler. Bu durumda aletleri bir araya getiren gerçek veya tüzel kişi aşağıdaki hususları da içeren bir beyan düzenlemelidir: •imalatçının talimatlarına uygun hareket ettiğini ve cihazların karşılıklı uyumunu doğruladığını, •sistemi veya prosedürler paketini bir araya getirdiğini ve tüketici için ilgili bilgiyi eklediğini, •bu faaliyetlerini uygun bir kalite güvence sistemine göre yürüttüğünü. Eğer bu şartlar yerine getirilmezse bir araya getirilen unsurlar bağımsız bir tıbbi cihaz olarak belgelendirilmelidir. Bu cihazları bir araya getiren kişinin söz konusu sistemleri ve prosedürler paketini tüketiciye arz etmeden önce sterilize etmesi durumunda da aynı husus uygulanır. Sistemlere ve prosedürler paketine fazladan bir CE işareti iliştirilmesine gerek yoktur. Ancak bu sistemler ve prosedürler paketine Direktifin I No.lu Ek’inin 13. maddesinde belirtilen gerekli bilgilerin eşlik etmesi zorunludur. Direktif, sipariş üzerine yapılan cihazlar ve klinik deneylerde kullanılmak amacıyla tasarımlanan cihazlar için özel hükümler de içermektedir. Bunlara CE işareti iliştirilmeyebilir. Bunun yerine üretici, “özel kullanım amaçlı cihazlarla ilgili bir beyanat” düzenlemekle ve bu belgeyi ürünle birlikte bulundurmakla yükümlüdür. İmalatçı sipariş üzerine yapılan hangi cihazların hizmete sokulduğunu yetkili kuruluşlara bildirmekle yükümlü kılınabilir. Son Güncelleme Tarihi: 07/06/2006 İletişim Bilgisi: Dış Ticarette Standardizasyon Genel Müdürlüğü Eposta: dts@dtm.gov.tr

http://www.biyologlar.com/tibbi-cihazlar-direktifi

Biyolojik Silah Nedir ve Nasıl Uygulanır ?

Biyolojik Silah Nedir ve Nasıl Uygulanır ?

Üzerinde sıklıkla durulan biyolojik silahlar, herhangi bir saldırıda kullanıldıklarında benzeri nadir görülen insan yapımı bir salgına neden olmaktadırlar;

http://www.biyologlar.com/biyolojik-silah-nedir-ve-nasil-uygulanir-

Çok bacaklılar, Diplopoda, kırkayaklar , Chilopoda, çıyanlar

Çok bacaklılar, Diplopoda, kırkayaklar , Chilopoda, çıyanlar

Çok bacaklılar, çok ayaklılar olarak da bilinir. Omurgasızların Arhropoda (eklembacaklılar) filumundan Diplopoda (kırkayak) , Chilopoda (çıyan), Psuropoda ve Symphyla sınıfları ile soyu tükenmiş Achipolypoda grubunun üyelerine verilen ortak addır. Bazı uzmanlar bu hayvanları Myriapoda sınıfı altında toplar ve yukarıda sözü edilen sınıfları birer altsınıf olarak kabul eder. Küçük bir grup olan çok bacaklıların günümüze değin 11 bin yaşayan türü sayılmıştır. Çok bacaklılar bir çift duyarga, çiğneyici çeneler ve solunum trakerleri gibi birçok çift bacakla donanan kara eklembacaklıları sınıfıdır. Bir çok bacaklının çoğunlukla birbirinin aynı birçok halkasının her biri bir yada iki çift bacak taşır. Cinsellik deliği ya bir tanedir ve arkada bulunur (Chilopoda sınıfı) yada iki tanedir ve öndedir (üyelerinin her halkasında iki bacak bulunan kırkayaklar ve gelişmemiş sineklere benzeyen Symphyla alt sınıfı). Bütün çok bacaklılar yumurtlayarak ürer. Çok bacaklılar genellikle seyrek görülen hayvanlardır. Bazıları geniş kitlesel göçlerle dikkat çekerken, bazıları da ev ve öbür yapıların kuytu köşelerinde barınır. Yaşayan 4 sınıfı ile tropik ve ılıman bölgelere büyük ölçüde dağılmış olan çok bacaklılar, bazı yerlerde toprağın organik bölümünü (humus) kaplayarak toprak faunasında öne çıkarlar. Çeşit ve sayıca en çok ormanda bulunursalar da, çıyanlar başta olmak üzere kimi kırkayak türleri otlak yada yarı kurak çevrelerde bulunur. Kırkayak Familyası: Kırkayakgiller (Julidae). Yaşadığı Yerler: Sıcak ve ılık iklimlerin nemli bölgelerinde, çürümüş kütük, yaprak ve taşlar altında. Özellikleri: Vücutları yuvarlak ve halkalıdır. Her halkadan ikişer çift bacak çıkar. Bitkisel besinlerle beslenir. Çeşitleri: 7000’den fazla türü vardır. Çok bacaklılar (Myriapoda) sınıfının “Diplopoda” takımının Julidae familyası türlerinin genel adı. Vücutları belirgin bir baş ve çok sayıda benzer halkalardan (bölüt) meydana gelmiş eklem bacaklılardır. Her halkada ikişer çift bacak bulunur “Diplopoda” çift bacaklı demektir. Başlarında bir çift anten ve ikişer gözü vardır. Gözleri az çok böceklerin bileşik gözüne benzerse de, dikkat edildiğinde basit (osel) gözlerin meydana getirdiği bir çift küme olduğu anlaşılır. Bazı türlerinde göz bulunmaz. Yaşayışlarına uygun olarak antenlerinde koku alma tüyleri çok hassastır. İç anatomisi çıyanınkine benzer. Çıyanlar etçil, kırkayaklar otçuldur. Çok ayaklı olmalarına rağmen çok yavaş hareket ederler. Kırkayakların vücut halkalarından ikişer çift bacak çıkmasına karşılık çıyanlarda birer çift çıkar. Bacakların sayısı, türlere göre değişir. Kırkayakların çoğunda 115 çift bacak bulunur. Çıyanlarda 15 çiftten 173 çifte kadar değişir. Çokbacaklılarda her zaman tek sayıda bacak çifti vardır. Kırkayakların embriyon döneminde her halkada bir çift ayak bulunur. Yetişkinlerin her halkası iki embriyon parçası ihtiva ettiğinden iki çift bacaklı olurlar. Trake (özel solunum boruları) sistemiyle solunum yaparlar. Kırkayaklar sıcak ve ılıman bölgelerde yaşayan kara hayvanlarıdır. Genellikle koyu kahverenklidirler. Gündüzleri nemli yerlerde yaprak, ağaç kabukları ve taşlar altında gizlenir, gece beslenmeye çıkarlar. Çoğunlukla çürümüş bitkisel besin yerler. Bazen tarlalarda, sürüler halinde, bitkilerin kök ve filizlerini de yediklerinden büyük zararlar yaparlar. Çileklere çok musallat olurlar. İnsan ve hayvan dışkılarını da yediklerinden, tenya (şerit) yumurtalarının yayılmasına yardım ederler. Yuttukları barsak parazitlerinin yumurtalarını, sindirmeden tekrar dışarı atarlar. Boyları 1-20 cm arasında değişir. Benekli kırkayak (J.gutularus) 10-18 mm boyundadır. Memleketimizde bulunanların boyları 10-46 mm’dir. Tropik memleketlerde 15-20 cm’ye ulaşanları vardır. Yumurta ile ürerler. Yumurtalar, topraktan yapılmış bir yuvaya yumurtlanır ve dişi tarafından korunur. Genellikle yavrular 12-15 gün sonra yumurtalardan çıkarlar. Hayatları boyunca birkaç defa deri değiştirirler. Her deri değiştirmede, vücut halkalarının sayısı artar. Larvalar, bir yıl içinde erginleşirler. Kitinli derileri, antibiyotik etkisi olan pis kokulu, zehirli bir sıvı salgılar. İri olanlarının salgısı, insan elini tahriş eder. Testiden su içerken yutulursa, zehirlenmeye sebeb olabilir. Bazan yapraklar üstünde dolaşırlar. Korkutuldukları zaman kendilerini yere atarak, saat zembereği gibi helezoni kıvrılır, ölü taklidi yaparlar.

http://www.biyologlar.com/cok-bacaklilar-diplopoda-kirkayaklar-chilopoda-ciyanlar

ENDEMİZM

Bir bitkinin yayılış aşanına o bitkinin “areali” denir. Yayılış alanı geniş olan bitkiye “Kozmopolit”, dar olana yani yer yüzünün belirli ve dar bir bölgesinde doğal olarak yetişen bitkiye de “Endemik” bitki denir. Endemik Yunanca Endos-yerlikelimesinden gelir. Buna göre Endemizm: Bir bitki, türünün dar bir bölgede sınırlanmış halde bulunmasıdır. Yani bu deyim, belirli bir bölgeye veya ülkeye özgü bitki taksonu (Subsp. Species, Genus, Familya gibi) için kullanılır. Bir bitkinin ülkemiz için endemik olduğu söylendiğinde, bitki ister dar bir bölgede, ister Türkiye’nin büyük bir kesiminde yayılmış olsun, söz konusu endemik takson ülkemiz sınırları içerisinde düşünülmelidir. Yayılış alanı Türkiye’nin dışına taşmayan bitkiler endemik olarak anılmalıdır. Bir endemik bitkinin yayılış alanının genişliği değişik büyüklüklerde olabilir. Örneğin, Lysimachia minoricensis (Primulaceae) yalnızca Minorka adasında birkaç m2 lik bir alanı kaplar. Buna karşılık yurdumuz için endemik olan bir takson ise km2 lerce yer kaplayabilir. Fakat bir kıta için endemik türler olamaz. Çünkü endemikler bir kıtanın her yerinde yayılış göstermeyip, kıta içerisindeki bir dağ, dağ sırası veya herhangi bir bölgede bulunurlar. Ayrıca bir kıtanın veya bölgenin ancak belli kesimleri endemizm açısından ilginç olabilir. Örneğin Yeryüzünde Afrika’nın güneyi (Kap bölgesi), Hawai Adaları, Madagaskar, yurdumuzda ise Güneybatı Anadolu, Toroslar, Tuz Gölü çevresi, Çankırı ve Sivas yöreleri endemik türler yönünden zengin olan yerlerdir. Endemizm, floristik bölgeleri tanımak ve o yerin floristik özelliklerini tayin etmek açısından oldukça önemli bir kriterdir. Belli bir floristik bölgeye has endemikler bir araya gelerek floristik bölge sınırını oluştururlar. Endemizm Çeşitleri Endemik bitkiler başlıca iki grup altında incelenebilir. 1.Paleoendemikler (Relikt, Konservatif endemikler) 2.Neoendemikler (Mikro, Progresif endemikler) 1. Paleoendemikler: Bu tür bitkiler jeolojik devirlerde geniş yayılma göstermiş ve bir değişime uğramadan günümüze kadar gelmiş ancak bugün yayılış alanları oldukça daralmış ve sınırlanmış olan endemiklerdir. Eskiden tüm Kuzey yarımkürede yayılış gösteren ancak günümüzde sadece Kuzey Amerika’nın batı kesimlerinde yetişen Sequoia (Mamut ağacı) türleri, III. zamanda geniş bir areale sahip olan bugün ise sadece Çin’nin dağlık kesimlerine sıkışıp kalan Ginko biloba bitkisi paleoendemiklere örnek olarak gösterilebilir. Ayrıca ülkemizde Muğla çevresinde bulunan Liquidambar orientalis bitkisi de Tersiyerde Avrupa ve Asya’nın geniş bir bölümünde yayılış göstermiş bu tip bir endemiktir. 2. Neoendemikler: Evrim sonucu meydana gelmiş, yani değişime uğramış kökeni eskilere dayanmayan endemik bitkilerdir. Çoğunlukla tür ve tür altı taksonları içerirler ve birbirlerinden çok az farklarla ayrılırlar. bu nedenle bunlara Mikroendemikler de denir. Centaurea karduchorum, C. hakkariensis, Alyssum filiforme ülkemize has neoendemik bitkilerdir. Bitkiler genetik yada coğrafi bir engel tarafından birbirlerinden ayrıldıklarında yeni formlar meydana gelir. Yeni bitki formlarının oluşumunda başlıca şu faktörler rol oynamaktadır. •Mutasyonlar •Genetik rekombinasyonlar •Doğal seleksiyon •Coğrafi yada genetik izolasyonlar Türkiye’de Endemizm Coğrafi konumu, iklim ve toprak faktörlerinin farklılığı ve üç fitocoğrafik bölgenin birleşme noktasında bulunması gibi nedenlerle zengin bir bitki örtüsüne sahip olan yurdumuz, 9000 civarındaki eğrelti ve tohumlu bitki türü içermesinden dolayı da dünyanın zengin floraya sahip ülkeleri arasındadır. Avrupa kıtası florasının 12000’e yakın tür içerdiği düşünülürse, yurdumuzun flora zenginliği daha iyi anlaşılacaktır. Türkiye florası tür zenginliği yanında çok sayıda endemik taksonu içermesi ile de ilginçtir. Avrupa’nın çeşitli ülkelerinde yetişen endemik türler toplamı 2750 kadar iken bu sayı Türkiye’de 3000 civarındadır. Endemik bitkilerin yurdumuzda dağılışı: Yurdumuz endemik bitkileri tek tek ele alındığında bunlardan 1700 kadarının ülkemiz coğrafik bölgelerinden yalnız birine özgü oldukları saptanmıştır. buna göre: Güney Anadolu’da 631 tür Doğu Anadolu’da 371 tür Orta Anadolu’da 253 tür Karadeniz’de 203 tür Ege’de 147 tür Marmara’da 67 tür Güneydoğu Anadolu’da 33 tür Bunların dışındaki endemik türler birden fazla bölgemizde yayılış göstermektedir. Floramızda endemik türler yönünden zengin başlıca familyalar ve içerdikleri tür sayıları aşağıda belirtilmiştir. Familya Adı Endemik Tür Sayısı Compositae 430 Fabaceae 375 Scrophulariaceae 241 Labiatae 240 Cruciferae 194 Caryophyllaceae 187 Liliaceae 118 Umbelliferae 117 Boraginaceae 108 Rubiaceae 74 Endemik bitkiler ile ilgili veriler daha ayrıntılı incelendiğinde, yurdumuzdaki bazı yöreler ile dağ silsilelerinin endemik türlerce zengin olduğu ortaya çıkmaktadır. Amanos Dağları ile Ilgaz Dağları, dağ silsileleri arasında ön sırayı almaktadırlar. Ege Bölgesinin güney ucu ile Akdeniz’in batısı, Taşeli platosu, özellikle Ermenek-Mut-Gülnar çevreleri, Boklar Dağları ile Aladağlar ve Antitoroslar yurdumuzun güneyindeki önemli endemik merkezleridir. Kuzeyde ise Kaz Dağı, Uludağ, Gümüşhane çevreleri, Artvin-Rize çevreleri, endemizm açısından önemli yörelerimizdir. Sivas-Darende-Gürün ve Çankırı civarındaki jipsli arazilerde de bu yörelere has çok sayıda endemik tür yetişmektedir. Doğu Anadolu’daki önemli yöreler ise Munzur Dağları ile Van-Bitlis-Hakkari çevreleridir. Bitki Coğrafyası Bölgelerindeki Endemizm Durumu 1. Mediterranean (Akdeniz) fitocoğrafik bölge: Bu bölge 3 kısımda incelenir. --Batı Anadolu ve Doğu Ege Adaları .Malope anatolica .Linum aretioides .Eryngium thorifolium --Toroslar .Dorystoechas hastata .Globularia davisiana .Ballotaq cristata --Amanos Dağları .Ajuga postii .Origanum amanum .Helleborus vesicarius 2. Irano-Turanian fitocoğrafik bölge: İç Anadolu platosunun hemen tamamını kaplayan bu bölge, kuzeyde Euro-Siberian, batı ve güneyde ise Akdeniz flora bölgesiyle çevrilidir. Bu bölgedeki önemli endemizm merkezleri ve endemik türeler aşağıdaki gibidir. --Erzincan, Erzurum yöresi yüksek dağları .Delphinium albiflorum --Vangölü çevresi yüksek dağları .Trifolium longidentatum --Mezopotamya ovasının kuzeyi .Papaver clavatum --Vangölü çevresi yüksek dağları .Trifolium longidentatum --Tuz gölü çevresi .Consolida stenocarpa --Çankırı ve Sivas yörelerinin jipsli sahaları .Salvia vermifolia 3. Euro-Siberian fitocoğrafik bölgesi: Bu bölge yaprak döken ve yüksek iğne yapraklı ormanlardan meydana gelir. Ordu ilinin doğusunda yağış ve nem artar. Ordu yakınlarındaki Melet nehrinin doğusunda Kafkasya türleri ve endemik türler aniden artar. Bu bölüme “Colchis bölümü” denir. Endemikler Batı ve Orta Karadeniz’de Doğu Karadeniz’e göre daha az bulunurlar. Bu bölüme de “Öksin bölümü” denir. --Colchis bölümü .Medicaryon orientale --Öksin bölümü .Allium olympica Ülkemizin ana fitocoğrafik bölgeleri dışında kalan ara bölgeleri endemik tür yönünden zengindir. Endemik bitkiler özellikle bu sahalar içinde ortaya çıkmıştır. Bu geçiş alanlarındaki türler, tolerans sınırında bulunurlar. Farklı iklim ve toprak koşulları altında farklı vejetasyonla rekabet ederler. Göçün sebep olduğu bu koşullar altında seleksiyon baskısı yeni çevreye adapte olan ekotipik varyeteler ortaya çıkarır. Farklı floraların karşılaştığı yerlerde hibritleşme ve hibrit dölün stabilizasyonu da vardır. Çoğu, bu saydığımız bölgelerde ve bir kısmı da diğer yörelerde olmak üzere, Türkiye’de toplam 3000 civarında tohumlu bitki türü endemiktir. Türkiye’de bugüne dek bilinen kadarıyla yaklaşık 9000 kadar doğal eğrelti ve tohumlu bitki türü vardır. Bunların yaklaşık % 30’u ülkemiz için endemiktir.

http://www.biyologlar.com/endemizm

Achelousaurus Dinazor

Achelousaurus (Yunanca: Ἀχελῷος Achelous ‘Yunan nehir tanrısı’, sauros ‘kertenkele’) ,Achelousaurus’un Geç Kretase devrinde, Kuzey Amerika’da yaşadığı sanılmaktadır. Papağan benzeri gagası, burnu ile gözlerinin üzerinde kemikli çıkıntılar ve uzun yakasının sonunda iki boynuzu olan, dörtayaklı bir otoburdur. 6 metrelik uzunluğuyla, orta boyda bir ceratops dinozordur. 1995 yılında, Scott Sampson tarafından adlandırılmıştır. Özel isim, Montana’daki dinozor keşifleriyle tanınan önemli bir Amerikalı paleontolog olan, Jack Horner’in onuruna verilmiştir. Bilinen üç kafatasında da, diğer ceratops dinozorlarda boynuzların olduğu yerlerde, kemikli çıkıntılar vardır. İlk bilgiler, Achelousaurus’un, Einosaurus(Achelousaurus gibi yakasının sonunda iki boynuz vardır) gibi değişik boynuzlara sahip ceratopslar ile boynuzsuz Pachyrhinosaurus arasında geçiş formu özelliği gösterdiğini işaret etmişti. Aynı soy çizgisinden olup olmadıkları belirsiz olsa da, bulunan bu üç örnek te, Ceratopsidae familyası ve Centrosaurinae altfamilyası içinde, Pachyrhinosaurini oymağına en azından yakın görünmektedir; çoğunlukla da birleştirilir(Sampson, 1995; Dodson et al., 2004). Achelousaurus, Montana’nın Campanian (Geç Kretase devrinde bir evre) formasyonlarından bilinir (83-74 milyon yıl önce). Achelousaurus, bu formasyonun en üst bölümünde bulundu; bu yüzden, bu devrin sonlarına doğru yaşadığı tahmin ediliyor. Bu formasyonda bulunan diğer dinozorlar; Daspletosaurus, Bambiraptor, Euoplocephalus, Maiasaura ve Einiosaurus’ tur. Achelousaurus’ un bilinen üç kafatası da Bozeman’daki Rockies Müzesi’nde bulunmaktadır. Yetişkin bir Achelousaurus’ un kafası (yakasındaki boynuzlar dahil) 1.6 m kadardır.

http://www.biyologlar.com/achelousaurus-dinazor

HÜCRE KÜLTÜRLERİNİN KORUNMASI SAKLANMASI VE TAŞINMASI

Hücre Kültürü yöntemleri-virüsün hücre kültüründe izole edilmesi İnfeksiyon hastalıklarının etkeni olan mikro-organizmaların, Beslenme ve üremeleri için gerekli temel maddelere Ve çevre faktörlerine gereksinimleri vardır. Zorunlu Parazit şeklinde yaşayan viruslar üreyebilmek için mutlaka Canlı ortama gereksinim duyarlar. Virusların etken olduğu hastalıkların erken ve doğru tanımlanması, Epidemiyoloji, prognoz ve halk sağlığı açısından Çok önemlidir. Bir çok virus hastalığında İnfeksiyon devam ettiği sürece etkenin izolasyonu ve Hastalığın kesin tanısı mümkündür. Fakat bu izolasyon Bakteri infeksiyonlarındaki kadar hızlı ve kolay değildir. Virus identifikasyonu ince bir teknik, yetişmiş personel ve Donanımlı bir laboratuvara gereksinim duyar ve bu zorlukları Nedeniyle bir çok ülkede referans laboratuvarları Tarafından yapılabilmektedir. Bu konuda uzmanlık öğrencilerine Eğitim verilmesi Klinik Mikrobiyoloji uzmanlık Eğitiminin önemli bir parçasıdır. Ege Üniversitesi Tıp Fakültesi Mikrobiyoloji ve Klinik Mikrobiyoloji AD’da uzmanlık Öğrencilerine bir aylık rotasyonlarla aşağıdaki eğitim Programı uygulanmakta ve geri bildirim alınmaktadır. Amaç Hücre kültürü laboratuvarında uygulanan standart yöntemler Konusunda bilgi ve beceri kazandırmak Öğrenim hedefleri 1. Hücre kültürü genel laboratuvar düzenini öğrenmek 2. Hücre üretme ortamı sıvılarını hazırlama, saklama Koşulları ve sterilizasyon yöntemlerini öğrenmek 3. Hücre stok açma/stoklama yöntemlerini öğrenmek 4. Hücre dizisi oluşturma ve bunu sürdürme konusunda Bilgi ve beceri kazandırmak 5. Rutin olarak kullanılan hücre dizilerini tanıma, ayırt Etme, hangi etkenler için hangi hücre dizisinin kullanılması Gerektiğini öğrenmek ve uygulamak 6. Ekim öncesi örneklere uygulanan işlemleri öğrenmek Ve uygulamak 7. Hücre dizilerine örneğin inokülasyonunda kullanılan Yöntemleri öğrenmek 8. Etkenin tanımlanmasına yönelik saptama yöntemleri Konusunda bilgi ve beceri kazanmak Teorik konular 1) Laboratuvar düzeni ve kullanılan araçlar Viroloji ve hücre kültürü laboratuvarı, işlemlerin ayrı oda Ve hava akımına sahip kabinlerde (Klass 2 kabin-pozitif Basınçlı HEPA filitreli) yapıldığı şekilde oluşturulmalıdır. Bakteri ve mantar kontaminasyonundan korunmak için Çalışma alanı, çalışılmadan önce ve sonra dezenfektan Ve UV ile temizlenmeli, diğer durumlarda temiz ve tozsuz Tutulmalıdır. Farklı hücre dizileri aynı anda işlenmemelidir. Hiçbir sıvı ağız ile pipetlenmemelidir. Flasklar kullanılmadan Önce %70’lik alkol ile silinmelidir. Olası bir Kontaminasyon durumunda erken farkına varmak için, Hücre üretme besiyerleri örnek ekilmediği sürece antibiyotiksiz Kullanılmalıdır. Mikroskoplar: Hücre kültürü laboratuvarında iki tip mikroskop Kullanılır. Flasklarda hücrelerin tek tabaka olup Olmadığı, shell-vial yüzeyinde yeterli hücre olup olmadığı Ve ekimlerden sonra sitopatik etkinin izlenmesi için “İnverted” mikroskop ve floresan antikor reaksiyonlarını İzlemek için floresan mikroskopu kullanılır. Su banyosu: Düzenli olarak temizlenmeli ve hücrelerin Kontamine olması önlenmelidir. Azot tankından çıkarılan Hücre stoklarının hızlı eritilmesinde ve FCS’nin inaktive Edilmesinde kullanılır. Santrifüjler: Shell-vial yönteminde, tüplere hasta örnekleri Ekilmesi amacıyla kullanılır. Ayrıca bazı hasta örneklerinin Bakteri ve epitel hücrelerinden arındırılmasında da Kullanılır. İnkübatör: Hücre kültürü ile ilgili tüm işlemlerde %5-10 CO2’li inkübatörler kullanılır. Düzenli olarak temizliğinin Yapılması kültürleri kontaminasyondan korur. 37° C ve %90-95 nemli ortam sağlanır. Güvenlik kabinleri: Kabinlerin biri “temiz” kavramlı işler (Hücre üretme ortamlarının hazırlanması, hücre pasajlanması, Stok açma ve hücre stoklama işlemleri) için diğeri “kirli” kavramlı işler (hasta örneklerinin hazırlanması, hücrelere ekimi ve virus tanımlamasında) için kullanılmalıdır. Buzdolabı ve dondurucular: Hücre üretme sıvıları 2-80C’lik soğutucularda, bazı tanımlama gereçleri, FCS, Lglutamin, antibiyotik solüsyonları vb. –20°C’de, hemen kullanılacak hücre stokları, hasta örnekleri, sulandırılmış monoklonal antikorlar vb –80°C’de, hücre ve virus stokları ise –196°C’de (azot tankı) saklanır. 2) Hücre üretme ortamı sıvılarını hazırlama, saklama koşulları ve sterilizasyon yöntemleri Hücre kültürlerinde, hücrelerin üremesi ve canlılıklarının devamı için çeşitli yöntem ve çözeltiler kullanılır. Bunların ortak özellikleri, vitaminler, amino-asitler, glikoz ve organik madeler eklenmiş tamponlu tuz çözeltileri içermeleridir. Hücreler özel besiyeri sıvısında süspansiyon haline getirildikten sonra çeşitli yöntemlerle tüplerde üretilir. Vücutta hücreler ve dokular devamlı olarak yıkım ürünlerini ortadan kaldırıp beslenmeyi sağlayan, dolaşan vücut sıvıları ile temas halindedirler. Bu sıvılar tüm bölümler için gerekli olan canlılığı, farklılaşmayı ve hücrelerin büyümesini sağlarlar. Buna benzer, canlı hücreler in-vitro olarak üretildiğinde kültür sıvısı, hücrelerin tüm beslenme gereksinimlerini karşılar. Virusların her birini değişik hücre dizileri kullanarak üretmek mümkündür. Virüs izolasyonunda kullanılan hücre dizilerinin idame ve üretilme sıvıları hücrenin özelliğine göre değişiklik gösterir. Genellikle hücre dizisinin alındığı ticari kuruluşlarda, hücre dizisi ile birlikte idame, üretme ve stoklama sıvılarının formülleri de bulunur. Yeni hücre dizisi açıldığında, pozitif kontroller ile viral izolasyon yapıp yapmadığı (endojen virüslerle kontaminasyon), kullanılan sıvıların üremeye engel olup olmadığı (toksisite testi), sterilizasyon kontrolü (bakteri ve mantarlar için) ve Mycoplasma cinsi bakteriler ile kontaminasyonu kontrolü yapılır. Bu kontroller yıl içinde düzenli aralıklarla tekrarlanır. 3) Hücre kültürü kavramı, hücre kökenleri, hücre dizisini stoklama, stok açma ve idame ettirme yöntemleri Hücre kültürü: Bu yöntemin temel ilkesi, canlı dokulardan alınan parçaların invitro koşullarda yaşama ve üremelerini sağlamaktır. Tüp, şişe gibi laboratuvar gereçlerinde uygun besleyici sıvıların içinde üretilerek kullanılan canlı dokulardır. Bu amaçla çeşitli canlıların – insan, maymun, tavşan, kobay, fare- çeşitli organları – böbrek, akciğer, tümör, amniyon zarları vb önce parçalanarak tek tek hücrelere ayrılırlar. Bu hücreler çeşitli tuzlar, tampon maddeleri, amino-asitler, vitaminler, dana veya at serumu içeren besleyici sıvılarda süspanse ederek steril tüp veya şişelere koyulur. Bu hücre süspansüyonu 36° C’de bekletildiğinde hücreler kabın çeperine yapışarak ürerler. Üreme sonucunda oluşan yapıya hücre kültürü denir. Çok çeşitli kaynaklardan sağlanan ve dokulardan elde edilen hücre kültürtürleri üç bölümde incelenir: 1) Primer (birincil) hücre kültürleri 2) Sekonder veya diploid hücre kültürleri 3) Sürekli veya heteroploid hücre kültürleri Primer hücre kültürü: Dokulardan tripsin ile ayrıştırılarak elde edilen hücrelerin in-vitro üretilmeleri ile elde edilen kültürlere denir. İn-vitro koşullarda pasajları kısıtlı olup, bir kaç pasajdan sonra üreyebilme yeteneklerini kaybederler. Örneğin: İnsan embiryonu böbreği (HEK), insan amniyonu (HAM), Rezüs maymun böbreği (RhMK), yeşil maymun böbreği (GMK), tavşan böbreği (RK). Sekonder hücre kültürü: Normal kromozom sayısına sahip diploid hücrelerden elde edilirler. En fazla 50 kez pasajları yapılabilir. Örneğin:WI-38, MRC-5 vb. Sürekli hücre kültürü: Teorik olarak sonsuz pasajları yapılabilir. Genellikle habis tümörlerden elde edilirler. Laboratuvar koşullarında değişime uğrarlar ve kromozom sayıları sabit değildir. Örneğin: İnsan larenks epidermoit karsinomu (Hep-2), insan nazofarenks karsinomu (KB), insan serviks karsinomu (HeLa), yeşil maymun böbreği (Vero). Bizim laboratuvarımızda sürekli hücre dizileri kullanılarak eğitim verilir. Hücre dizisi stok açma/stoklama: Hücre dizisini pasajlama ve stoklama sırasında hücrelerde bazı değişiklikler oluşabilir. Bu değişim; kültür ortamındaki değişikliklerden, hücreler içinde bir grubun aşırı çoğalmasından veya genomik değişikliklerden (spontan mutasyon) kaynaklanabilir. Bu olasılıkları en aza indirmek için; laboratuvar koşulları standardize edilmeli, saf ve klonu tanımlanmış hücreler seçilmeli ve stokta saklanan hücrelerin aralıklı olarak rutine sokulmaları gerekir. Hücre pasajlama işlemi flasklarda tek tabaka halinda bulunan hücre dizilerinin zarar verilmeden yüzeyden ısı ve tripsin yardımıyla kaldırılıp sıvı içinde süspanse ederek başka ortamlara aktarma prensibine dayanır. Aktarılan ortam (tüp, flask, shell vial vb) %5 CO2’li etüvde 37° C’de hücreler tam tabaka olana kadar inkübe edilir. Standardizasyon açısından her pasajlama işleminde hücre sayımı (Hücre süspansiyonunun konsantrasyonu hücreler optikolarak düz bir hazneye konularak mikroskop altında sayılır. Bu lingide incele infeksiyon.dergisi.org/pdf/pdf_INF_97.pdf

http://www.biyologlar.com/hucre-kulturlerinin-korunmasi-saklanmasi-ve-tasinmasi

Toprak solucanları ve önemleri

Toprak solucanları, toprak içinde açtıkları galerilerde yaşıyor ve galerilerinin bulunduğu toprak katmanına göre Epijeik, Endojeik ve Anesik olmak üzere üç gruba ayrılıyorlar. "Epijeik" türler yüzeye yakın yaşıyor ve buradaki organik maddelerle besleniyor. Mineral toprak katmanında (üstten 20 cm.) yaşayan türlere ise "Endojeik" türler deniyor. Bu türler toprağa işlemiş organik madde ile besleniyor ve toprağın havalanmasında çok etkili olmuyorlar. "Anesik" türler ise derin galeri açan türler. Bunlar da gene yüzey organik maddeleriyle besleniyor. Genellikle büyük türler Anesik, küçük türler Endojeik ve Epijeik oluyor. Epijeik türler yaygın olarak, düşen yaprakların örtü oluşturduğu ormanlarda ve ağaçlık bölgelerde bulunuyor. Anesik ve Endojeik türler ise, ormanlık bölgelerden çok, tarımsal alanlarda ve çayırlarda daha yaygınlar. Belirli bir alandaki yoğunlukları iklime, toprak yapısına ve bitki örtüsüne bağlı olarak değişiyor. İlkbahar ve sonbahar aylarında yüzeye yakın yaşadıkları için sıkça görülürken, soğuk ve kurak havalarda derinlere inerek diyapoz’a (uyku hali) giriyorlar. Bu dönemlerde derinlerde kendi etraflarına sarılarak bir yumak haline geliyorlar. Bu derinlik bazı türlerde birkaç metreye kadar ulaşabiliyor. Nemli, yüksek kil ve düşük silt içeren topraklarda daha yüksek yoğunluğa sahipken, asidik, kumlu ya da kurak topraklarda az bulunuyorlar. İnsanların yoğun olduğu bölgelerde ve yoğun otlatma görülen meralarda toprağın ezilerek sıkıştırılması nedeniyle toprak solucanı yoğunluğu azalıyor. Tarım ve toprağın işlenmesi de toprak solucanı yoğunluğunu azaltıcı etki yapıyor. SOLUCANLARIN topraktaki azot çevriminde, erozyonun azaltılmasında da rolleri var. Araştırmalar, açtıkları galeriler nedeniyle eğimli çayırlarda yüzey suyu akışını yarı yarıya azalttıklarını, böylece suyun geçmesini önemli ölçüde engelleyerek erozyonu önlediklerini gösteriyor. Birçok ülkede, arazilere toprak solucanları aşılanmasının, bitki üremesini belirgin şekilde artırdığı gözleniyor. Kuzey Tazmanya’da yapılan böyle bir çalışmada çayır üremesinin yüzde 75 oranında arttığı görülmüş. Gene Yeni Zelanda’da yapılan benzer bir çalışmada, bitki verimi başlangıçta yüzde 72 artmış. Yüzey organik maddelerinde saklı besinlerin serbest kalmasından sonra görülen bu hızlı büyüme artışı daha sonra yüzde 25 oranında sabitlenmiş. Bu oran Hollanda’da deniz seviyesinden aşağıda bulunan ve denizden setlerle ayrılarak kurutulmuş olan alanlarda yüzde 10, İrlanda’da iyileştirilen turbalık üzerindeki çimenli alanda iki yıl sonra yüzde 25, üç yıl sonra da yüzde 49 olmuş. Bunun yanında, yapılan çalışmalar, toprak solucanlarının, tahıl bitkilerinin gelişimini yüzde 39, tohum rekoltesini yüzde 35, tohumun azot içeriğini yüzde 12 oranında artırdığını gösteriyor. Dünyada bugüne kadar 500’ün üzerinde toprak solucanı türü tespit edilmiş. Türkiye’de 65 kadar toprak solucanı türü yer alıyor. Bunlardan 22’si ise, dünya üzerinde sadece Anadolu’da yaşıyor. Günde 60 toprak solucanı yiyebilen köstebekler de toprak solucanının doğal düşmanları arasında yer alıyor. Ayrıca porsuk, su samuru, kirpi gibi memeliler ve ardıçkuşu, baykuş, karatavuk, kızıl gerdan, karga, martı gibi kuşlar ve olta balıkçılığı ile avlanan balıklar için de lezzetli bir besin kaynağı. Toprak solucanı popülasyonlarına en büyük zararı veren etkenlerse ormanların tahrip olması, toprağın işlenmesi, böcek öldürücü ilaçların kullanımı, doğal yaşam ortamlarının bozulması. Özellikle, kirletici maddelerin, kuşlara ve diğer kara omurgalılarına taşınmasındaki potansiyel rolleri nedeniyle dikkat çeken toprak solucanlarının en iyi bilinen örneklerinden olan Lumbricus terrestris türü son yıllarda önemli bir kirlilik göstergesi olarak kabul ediliyor. Kaynak (www.bugday.org) Bazı solucanlar kördür. Bazılarında ise, basit pigmentli bir göz yapısı bulunur. Bu yapı içerisinde de, ışığa duyarlı olan sadece birkaç pigment bulunur. Bu şekilde de, göz sadece önündeki ışığı algılayabilir. Bu tip gözlere "Ocelli = Nokta Göz" adı verilir. Etrafımızda görmeye alışık olduğumuz toprak solucanları, vücutları belirli bir noktadan itibaren ikiye ayrıldığında, yaşamlarını sürdürebilir. Toprak solucanlarının vücutlarına dikkatli bir şekilde bakarsanız, kuyruk kısmına doğru kalınca bir bant görünümündeki bir yapı dikkatinizi çekecektir. Toprak solucanları hermafrodittir (çift cinsiyetli). Yani bir bireyde hem erkek, hem de dişi üreme organları bulunur. Bu kalın bant görünümündeki yapı, üreme mevsiminde oluşan ve çiftleşmenin meydana getirildiği "klitellum" adını alan bölgedir. Çiftleşme sırasında iki toprak solucanı karşı karşıya gelir ve klitellumlarını birbirine yapıştırarak, sperm alışverişi yaparlar. Bu işlem sırasında klitellumlar birleşir ve daha sonra yumurtalar, "kokon" adı verilen bir kapsül üzerine boşaltılır. Solucan dediğimizde, sadece toprak solucanlarını değil, birçok solucanı kastetmiş oluruz. "Solucan" kelimesinin kapladığı aileler arasında halkalı solucanlar ve yassı solucanlar gibi çok farklı omurgasız grupları bulunabilir. Ancak sadece Annelidler (Annelidae) ailesine bakacak olursak, bunlar da toprak solucanlarını, poliketleri, oligoketleri ve sülükleri içermektedir. Bunların hepsinin özellikleri birbirlerinden farklıdır. Yukarıda verilen bilgiler ise, sadece toprak solucanları için geçerlidir. Kaynak (www.biltek.tubitak.gov.tr ) LUMBRICUS TERRESTRIS Lumbricus terrestris isimli bir solucan türü, toprak içinde 70 cm. kadar derinlere inerek çember veya elips kesitli yollar açar. Bir hektarlık alanda 25 ton'luk kütleyi yüzeye getirir; bu suretle toprağı 5 cm.'ye kadar kabartmış olur. Ağırlığı birkaç gram olan solucan, kendisinin "50 ila 60" katı ağırlıktaki kütleyi de harekete geçirebilir. Bu, 100 kg. ağırlığındaki bir sporcunun 5 ton'u hareket ettirebilmesi gibidir. Solucanın bu kadar güç bir işi başarması, vücudunu saran enine ve boyuna kaslar sayesinde gerçekleşir. Hayvan vücudunun ön kısmındaki kasları büzerek incelir ve yoklayarak bulduğu küçük bir deliğe başını sokar. Sonra boylamasına kaslarını çalıştırarak vücudunun ön bölümünü şişirir ve böylece deliği genişletir. Bunları yaparken de sürekli karnını doyurur ve sürekli olarak ilerler. Kaynak (www.hayvanlaralemi.net ) Toprak Solucanlari topragin vefakar çalisanlari.Birçok faydalari var.Ne yazikki yurdumuzda kiymetleri fazla bilinmiyor. Kimileri solucanlarin bitkilerin kokunu yediklerini zannediyor ve bu yuzden onlara zararli muamelesi yapiyor. Ben topragi kazarken bile solucanlara zarar vermemeye çalisyorum.Amerikada topraginiz veya kompostunuz icin solucan satin alabilirsiniz ayrica solucan diskisi (worm casting) ureten ciftlikler var.Solucanin sisteminden gecen bu degerli toprak gubre gibi kullaniliyor. www.localharvest.org) Bazı solucanlar kördür. Bazılarında ise, basit pigmentli bir göz yapısı bulunur. Bu yapı içerisinde de, ışığa duyarlı olan sadece birkaç pigment bulunur. Bu şekilde de, göz sadece önündeki ışığı algılayabilir. Bu tip gözlere "Ocelli = Nokta Göz" adı verilir. Etrafımızda görmeye alışık olduğumuz toprak solucanları, vücutları belirli bir noktadan itibaren ikiye ayrıldığında, yaşamlarını sürdürebilir. Toprak solucanlarının vücutlarına dikkatli bir şekilde bakarsanız, kuyruk kısmına doğru kalınca bir bant görünümündeki bir yapı dikkatinizi çekecektir. Toprak solucanları hermafrodittir (çift cinsiyetli). Yani bir bireyde hem erkek, hem de dişi üreme organları bulunur. Bu kalın bant görünümündeki yapı, üreme mevsiminde oluşan ve çiftleşmenin meydana getirildiği "klitellum" adını alan bölgedir. Çiftleşme sırasında iki toprak solucanı karşı karşıya gelir ve klitellumlarını birbirine yapıştırarak, sperm alışverişi yaparlar. Bu işlem sırasında klitellumlar birleşir ve daha sonra yumurtalar, "kokon" adı verilen bir kapsül üzerine boşaltılır. Solucan dediğimizde, sadece toprak solucanlarını değil, birçok solucanı kastetmiş oluruz. "Solucan" kelimesinin kapladığı aileler arasında halkalı solucanlar ve yassı solucanlar gibi çok farklı omurgasız grupları bulunabilir. Ancak sadece Annelidler (Annelidae) ailesine bakacak olursak, bunlar da toprak solucanlarını, poliketleri, oligoketleri ve sülükleri içermektedir. Bunların hepsinin özellikleri birbirlerinden farklıdır. Yukarıda verilen bilgiler ise, sadece toprak solucanları için geçerlidir. Lumbricus terrestris isimli bir solucan türü, toprak içinde 70 cm. kadar derinlere inerek çember veya elips kesitli yollar açar. Bir hektarlık alanda 25 ton'luk kütleyi yüzeye getirir; bu suretle toprağı 5 cm.'ye kadar kabartmış olur. Ağırlığı birkaç gram olan solucan, kendisinin "50 ila 60" katı ağırlıktaki kütleyi de harekete geçirebilir. Bu, 100 kg. ağırlığındaki bir sporcunun 5 ton'u hareket ettirebilmesi gibidir. Solucanın bu kadar güç bir işi başarması, vücudunu saran enine ve boyuna kaslar sayesinde gerçekleşir. Hayvan vücudunun ön kısmındaki kasları büzerek incelir ve yoklayarak bulduğu küçük bir deliğe başını sokar. Sonra boylamasına kaslarını çalıştırarak vücudunun ön bölümünü şişirir ve böylece deliği genişletir. Bunları yaparken de sürekli karnını doyurur ve sürekli olarak ilerler. Kısacası, solucanlar, toprakta 40 yılda oluşacak humusu 24 saatte çiftçiye kazandırırlar, lütfen daha dikkatli ilaçlama yapalım, solucan ölümlerine neden olmayalım. Kaynak (www.tarimdostu.com )

http://www.biyologlar.com/toprak-solucanlari-ve-onemleri

HIV Virüsü ( Human Immunodeficiency Virus )

HIV Virüsü ( Human Immunodeficiency Virus )

HIV (İngilizce: Human Immunodeficiency Virus / İnsan Bağışıklık Yetmezlik Virüsü), AIDS'e yol açan virüs. HIV virüsü, bağışıklık sistemine zarar vererek hastalığa neden olur. Vücudu mikroplardan koruyan bağışıklık sistemi çalışmadığında, mikroplar daha kolay hastalığa neden olabilir. Kanında HIV virüsü bulunmayan kişiler HIV negatif kişilerdir. Kanında HIV virüsü bulunan kişilere "HIV pozitif" veya "HIV enfeksiyonlu" denir. Bu kişiler aynı zamanda kanında antikor bulunan anlamında sero (anti-HIV, veya bilinen ismiyle ELISA testi) pozitif kişilerdir. Ancak ilk bulaşma döneminde seronegatif kişiler aynı zamanda enfeksiyon taşıyan kişiler olabilirler. AIDS AIDS (Acquired Immune Deficiency Syndrome, Sonradan Edinilen Bağışıklık Sistemi Bozukluğu) anlamına gelir. Sonradan Edinilen ifadesi hastalığın irsi olmadığını anlamına gelmektedir. Bağışıklık Sistemi Yetersizliği ifadesi ise vücudun bağışıklık sisteminin çökmesi anlamına gelmektedir. Sendrom kelimesi ise bir başka hastalıkla bağlantısı olabilecek çeşitli hastalıklar anlamına gelmektedir. Bir HIV taşıyıcısı hastaymış gibi görünmeyebilir veya taşıyıcı kişi kendini hasta hissetmeyebilir, HIV virüsü taşıdığını bile bilmeyebilir. Çünkü, HIV taşıyıcılarında semptomların ortaya çıkmasına ve ölüme yol açan şey HIV virüsünün kendisi değil, vücudun bağışıklık sisteminin çökmesiyle tamamen savunmasız kaldığı diğer enfeksiyonlardır. Virüsün yapısı Virüs tek sarmallı RNA yı çevreleyen p24 proteinlerinden oluşan kapsit, bunun dışında küçük bir matriksi çevreleyen kılıftan oluşur. Kılıfta virüsün antijenik yapısını belirleyen glikoproteinler bulunur. HIV virüsünün üç glikoproteini vardır. Bunlar: gp160: Proteaz enzimi ile alt üniteleri olan gp120 ve gp41'e bölünerek iki ayrı glikoprotein oluşur. Bu proteinler virüsün membranında bulunurlar. gp41: HIV'in yaşamasını sağlar. gp120: HIV'in DNA'ya girmesini sağlar. LEDGF: HIV'in DNA'ya nasıl gireceğini belirler. Kronoloji İlk defa Leopoldville, Belçika Kongo'sunda yaşamış bir kişiden 1959 alınan kanda tespit edildi. O tarihten beri dolapta saklanan kanın, 1998'de geliştirilen HIV testi ile hastalığı taşıdığı onaylandı. Dünyayı dolaşmış, 1961'de Batı Afrika'da uzun yolculuk yapmis Norveçli bir gemici bağışıklık yetersizligi ile 1966 öldü. Karısı ve kızı da ertesi yıl aynı sebeple öldü. Danimarkalı bir cerrah olan Dr. Grethe Rath, Zaire'de bir seri enfeksiyon ve ender görülen Pneumocystis carinii pnömonisi ile öldü. 1979-1981 arası, normalde çok ender görülen, 12 Kaposi Sarkomu'dan vakası tespit edildi. 1981'de Kaliforniya Üniversitesi'nde Pneumocystis carinii tanısı tedavi edilen bir eşcinsel hastada CD4 T hücrelerinin (yardımcı T hücreleri) eksikliği tespit edildi. 1982'de CDC hastalığa AIDS ismini verdi. 1983'te daha sonra HIV ismi verilecek olan retrovirüsten kaynakladığı bulundu. 1984'te HIV için ELISA testi geliştirildi. Bulaşma yolları ve önlemler HIV virüsü bulaşabilmesi için, virüsün dış ortam koşullarında bozulmayacağı kadar kısa bir süre içinde bir kişiden diğerine nakledilmesi gerekir. Bu da virüsün diğer vücut sıvılarının içinde bir kişiden diğerine iletilmesi ile gerçekleşebilir. HIV virüsü cinsel ilişki, direk kan teması, organ nakilleri ve anneden bebeğine olmak üzere dört yolla bulaşır. Cinsel ilişki HIV vücuda HIV virüsü taşıyan birisinin kanı, spermi, vajinal akıntıları veya diğer vücut sıvıları transferi yoluyla bulaşır. Bu durum; vajinal, anal veya oral seks sırasında gerçekleşebildiği transferi ile de bulaşıcılık olacağı anlamına gelir (parenteral yol). Lateksten yapılmış bir prezervatif kullanarak HIV virüsünden korunulabilir. Doğum kontrol hapları ve lateks olmayan prezervatifler, HIV virüsünden koruma sağlayamaz. HIV virüsü hem bir erkekten hem de bir kadından bulaşabilir. Herhangi bir cinsel hastalık, HIV virüsünün bulaşma ihtimalini daha yükseltir. HIV virüsünün iki tipi mevcuttur. Tip II de kadından erkeğe bulaşma ihtimali, Tip I de ise erkekden kadına bulaşma ihtimali daha yüksektir. Afrikada 2 nci tip Avrupa ve Amerika'da ise 1 nci tip daha sık görülür. Damardan uyuşturucu madde kullanımı HIV virüsü taşıyan birisiyle kontamine bir iğne paylaşılırsa, virüs bulaşabilir. (Bu intravenöz (damardan) uyuşturucu bağımlıları arasında HIV'in en önemli bulaşma yoludur.) Dövme ve vücuda piercing yaptırma işlemlerinde kullanılan iğneler, kontamine ise HIV bulaşabilir... Organ, kan ve kan ürünleri nakli Gerekli araştırma testleri yapılmamış organ, kan ve kan ürünleri nakli yoluyla da HIV virüsü bulaşabilir. Bu durumun engellenmesi için her türlü organ, doku, kan ve kan ürünleri nakli öncesi nakle engel hastalıklar yönünden alınan materyaller kabul eden merkezler tarafından dikkatle kontrol edilir. Araştırma testlerinin pencere döneminde bulunan hastalarda yalancı negatif sonuç vermesi halinde, bulaşma gerçekleşebilir. HIV testleri HIV vücuda girdiğinden itibaren, vücutta bununla savaşmak için özel antikorlar oluşur. Kandaki bu antikorların ELISA testi (indirekt tanı methodu) veya direkt virüsün proteinlerini tespit eden PCR testi (Direkt Tanı Metodu) gibi tarama yöntemleriyle saptanma çalışmalarıdır. Anti-HIV antikorların ELISA yöntemiyle ölçülebilecek düzeye ulaşması için en az 3 aylık bir süreye (pencere dönemi) ihtiyaç vardır. Bu nedenle test, bulaşma olduktan 3 ay sonra yapılmalıdır. PCR yönteminde ise bu süre 3 haftaya kadar düşmüştür. Anti-HIV testinin pozitif olması, kanda HIV virüsüne karşı antikorların olduğunu gösterir. Ancak anti-HIV testinin yalancı pozitif çıkma ihtimali de vardır. Bu nedenle, kişinin HIV pozitif olduğunun söylenebilmesi için, Western blot testi denen doğrulama testinin de yapılıp sonucunun pozitif olması gerekmektedir. Anti-HIV testi, üniversite hastanelerinin mikrobiyoloji laboratuvarlarında, sigorta ve devlet hastanelerinin laboratuvarlarında ve özel laboratuvarlarda yaptırabilir. Son zamanlarda HIV virüsünün kandaki varlığının direkt kantlanması PCR (polymerase chain reaction = polimeraz zincir reaksiyonu) yöntemi ile de yapılabilmektedir. Pencere dönemi Pencere dönemi ile ilgili belirsizlikleri gidermek için bazı açıklamalar yapılmalıdır; zira "Üç Ay" ifadesi, HIV virüsüne maruz kalmış her bünyenin 'üçüncü ayda' antikor üreteceği gibi yaygın bir yanılgıya yol açmaktadır. Halbuki pencere döneminin kişiden kişiye değişiklik gösterdiğini vurgulamak gerekir. "Üç Aylık" süre, uluslararası sağlık kuruluşlarının tüm bünyesel farklılıkları da kapsayacak şekilde belirlediği 'maksimum' süredir. Yani bu, HIV ile enfekte olmuş yüz kişiden varsayalım ki %45'inin, 35. günde; %25'inin 50. günde; %15'inin 65. günde; %10'unun 75. günde; %5'inin de 90. günde yeterli antikor seviyesine ulaşacağı anlamına gelir (Oranlar tamamen kurgusaldır). O halde belirlenmiş olan "üç ay" sınırı, 'en geç antikor üreten bünyeyi' de hesaba katarak düşünülmüş 'maksimum' sınırdır. CDC (Center of Disease Control -USA) gibi bazı büyük sağlık örgütleri, testin altıncı ayda tekrarlanması gerektiğini savunmaktadır. Antikor oluşturma (serokonversiyon) süreci üç ayı geçen çok nadir bazı vakalar rapor edilmişse de bunlar o kadar nadirdir ki, tıp makalelerine konu olur. Birçok sağlık örgütü eğer çok kesin bir risk yoksa, 'altıncı ay' testini gereksiz bulmakta ve CDC'yi tutucu olmakla eleştirmektedir. Bazı kuruluşların 'pencere dönemi' ile ilgili olarak verdikleri süreler, "Üçüncü Ay"ın maksimum sınır olarak düşünülmesi gerektiğini kanıtlamaktadır: New York Sağlık Müdürlüğü’nün hazırladığı broşüre göre "New York’ta kullanılan HIV antikor testlerinde, enfekte olmuş insanların neredeyse tümü bir ayda pozitif çıkmaktadır. Hatta bunların çoğunluğu, daha bile kısa surede pozitif sonuc vermektedir." Kaliforniya AIDS Merkezi'nin 1998'de yayınladığı rehber %96'dan daha fazla sayıda insanın, 2 ile 12 hafta arasında pozitif sonucu eline alacağını söylüyor. Çok nadir bazı durumlarda, bunun altı aya uzayabileceği belirtiliyor. AIDS Sağlık Projesi (ABD) danışmanları, ortalama süreyi 25 gün olarak veriyorlar. AIDS Update 98 adlı broşür, "Çoğu örnekte, HIV antikorları 6 ile 8. haftada görünür hale gelirler" demektedir. Bu konuda son derece zengin bir arşivi olan HIVinsite web sitesi, süreyi 6-12 hafta olarak belirliyor. Amerikan Seattle & King County Kamu Sağlığı Sitesi, şöyle diyor: “Çoğu insan, saptanabilir antikor düzeyine 4-6 hafta içinde gelir. Bazı insanların daha uzun sürebilir; ama neredeyse %99'u üç ay içinde antikor üretmiş olur. Üç ayı gecen serokonversiyon olayları çok çok nadirdir.” AIDS servislerinde ve laboratuvarlarında calışan doktor ve virologlarin (Dr. Sindy Paul, Evan M Cadoff, Eugene Martin) yazdığı, "Rapid Diagnostic Testing for HIV – Clinical Implications" (Business Briefing: Clinical Virology & Infectious Disease, 2004) adli makalede, pencere dönemi 30-60 gün olarak veriliyor. San Fransisko AIDS Derneği, şöyle demektedir: "Üç aylık pencere dönemi, insanların tümü için normal süredir. Bu insanların çoğu, üç ile dört hafta içinde saptanabilir düzeyde antikor üretir. çok, çok nadir durumlarda, bir insanin antikor üretmesi altı ayı bulabilir." Kızılay, antikorların tespit edilme suresini 2-6 hafta olarak veriyor. Kızılhac, antikorlarin tespit edilme süresini en geç 70 gün olarak veriyor. Amerikan Kamu Sağlığı Kurumu'nun Test Kılavuzunda, 1985-90 yılları arasında kullanılan antikor testinin pencere döneminin ortalama 45 gün olduğu söyleniyor. Fakat günümüzdeki testlerin, bunu 20 gün daha düşürerek, 25 güne indirdiği belirtiliyor. BERNARD WEBER, EL HADJI MBARGANE FALL; ANNEMARIE BERGER ve HANS WILHELM DOERR'in birlikte yazdıkları makalede, pencere dönemi ortalama 10.2 ile 27.4 güne kadardır şeklinde belirtiliyor. Tedavi HIV/AIDS'in tedavisinde olumlu gelişmeler vardır. Günümüze kadar bulunan ilaçlardan farklı etki mekanizmalarında olanların ikisinin ya da üçünün birlikte kullanımıyla HIV pozitif kişilerin kaliteli ve uzun bir yaşam sürebilmeleri sağlanmaktadır. Tedavi doktor kontrolünde ve kesintisiz olarak yaşam boyu sürdürülmelidir. Bu ilaçlar çok pahalıdır. Ancak, şu anda Türkiye'de saptanmış Aids hasta sayısının az olması da önemli faktör olmalı ki; Bağkur, SSK, Emekli sandığı, Yeşil Kart gibi Sigortalar aylık masrafın 1000-1500 USD olduğu ilaç maliyetlerini karşılamaktadır. Aids şüphesi olanlar derhal ELISA testi yapmalıdırlar ki uzun süreli hayat sürme imkânını yakalayabilsinler, her hastalıkta olduğu gibi bu hastalıkta da erken tanının faydası çok büyüktür. HIV virüsünü kapmak her şeyin sonu değildir, isteyen hastalar Aids Savaş Derneğinden psikolojik destek de alabilirler. Korunma Spermdeki ve vajina salgısındaki HIV, dış ortamda birkaç saatte, kuru ortamda ise yarım saatte ölür. HIV kurumuş kanda da kısa zamanda ölür. Hastanın ya da seropozitif kan, sperm veya vajina salgısının bulaştığı eşyadaki HIV'in öldürülmesi: Eşyayı birkaç dakika kaynatarak ya da 60 C°'de 30 dakika ısıtarak virus öldürülür.Sulandırılmış çamaşır suyu temas ettiği HIV'i 10 dakika içinde öldürür. Sodyumhipoklorid, çamaşır suyunda bulunan etkili maddedir, içinde klor vardır. Çamaşır suyu şişesinin üzerindeki tarifeye göre (genellikle 10 kez) sulandırılarak kullanılır. Sulandırılan çamaşır suyunda klor kokusu bulunmalıdır. Çamaşır suyu kullanılacağı zaman sulandırılmalıdır, durmakla bozulur. Çamaşır suyu madensel eşyaya zarar verir. Ultraviyole ile ışınlama (mavi ışık) HIV'in yok edilmesi için önerilmeyen bir yöntemdir. Ultraviyole ışını doğrudan temas ettiği yüzeydeki mikropları öldürür. Cismin altında kalan mikropları öldürmez. Deri HIV'den nasıl arındırılır? Su ve sabunla iyice yıkama ile (en az 15 saniye) bütün mikroplar gibi HIV de deriden uzaklaştırılabilir. Yıkandıktan sonra derinin alkol ile temizlenmesi uygun olabilir. Yaralanma durumunda yara yeri, önce sabun ve su ile iyice yıkanmalı, ardından tentürdiyot veya betadin gibi bir antiseptik ile temizlenmelidir. Ortaya Çıkışı AIDS hastalığının Afrika’da maymunlardan insanlara geçtiği düşünülüyor. Bu virüsün orta Afrika’da şempanze avlayan insanlara bu esnada aldıkları yaralar vasıtasıyla veya sonrasında şempanze etiyle temas ettiklerinde geçmiş olabileceği iddia edilmekte.

http://www.biyologlar.com/hiv-virusu-human-immunodeficiency-virus-

Solucanlar; Platyhelminthes ( Yassı ), Anelida (halkalı ), Aschelminthes (yuvarlak solucanlar)

Solucan sınıfı Platyhelminthes (yassı solucanlar), Anelida (halkalı solucanlar), Aschelminthes (yuvarlak solucanlar) ve Pogonophora (sakallı solucanlar) filumlarını kapsar. Bazen Aschelminthes grubunu oluşturan Nematoda (iplik solucanlar), Rotifera, Gastrotricha, Kinorhyncha ve Pripalida sınıfları filum düzeyine yükseltilerek sınıflandırılmaktadır. Yer solucanları, Oligochaeta sınıfından halkalı solucanların karada yaşayan en tanınmış üyeleridir. Solucanların gövdesi ince uzun, silindir biçiminde yada yassılaşmış ve genellikle uzantılardan yoksundur. Uzunlukları 1mm ‘nin altından başlayarak 15m’yi aşabilir. Denizlere, tatlı sulara ve karalara yayılmış olan bu hayvanların bir bölümü asalak, öbürleri serbest yaşar. İsmininin de önerdiği gibi, serbest yaşayan solucanlar dorso-ventrally yassılanmış olup birkaç milimetreden daha kalın değildirler Boyutlar bir milimetreden daha azdan balar ve 30 cm nin üzerine kadar uzanır. Çoğu polycladler son derece hassastırlar ve tipik olarak düz bir dorsal yüzey içeren ve/veya oval şekillerine sahiptirler. Bununlar birlikte, dorsal papillae (Acanthozoan, Thysomozoan) sergilerler. Solucanların anteriorlarında uç kısımlarda dokanaç (tentacle) yer aldığından ve çok parlak renklere sahiptirler ve nadiren de olsa bazen yanlışlıkla nudribranc olarak kabul edilirmişlerdir. Fakat nudribranclara karşıt olarak, anterior sınırında dokanaçlar çoğunlukta basit bir yapı halinde tutunmuşlardır. Onlar yol boyunca nudribranclara nazaran daha fazla hareket ederler ve aynı zamanda çok ince yapıya sahiptirler ve elle tutulduklarında kırılmaya çok eğilimlidirler. Bununda ötesinde, onların özel terleme organları (gills) yoktur ve terleme solucanların tüm yüzeylerinde difuzyon yoluyla gerçekleştirilmektedir. Tüm yüzeylerinde difuzyon yoluyla gerçekleştirilir. Polycladler geniş bir renk çeşitliliği ve yapısı sergilerler. Onlar marginal buruşukluklara sahiptirler ve boyutları ile sayıca artmaya eğilimlidirler. Donük türler haricinde (siyah ve esas itibariyle siyah renkli) türler transparenttirler ve iç organları epidermis boyunca görülebilir. Özellikle ovarisleri parlak veya koyu renkli mor renklere sahiptir ve dorsal yüzeyin en dış kısmı binlerde vurucu cilia ile beraber engelleyici epidermistirler (ectodermal orijinli bir tek hücre tabakası). Onun da altında, dairesel kasın dış tabakası ve kasların iç tabakası birbirine parallel uzantı şeklindedir ve aralarında vucut plastisitesi mevcuttur. Dorsal ve ventral epidermis arasındaki boşluk parenchymal doku ile dolmuştur ku bu çok sayıda gizli hücrelere sahiptir ve bununla sümükler dışarı atabilirler ve diğer bileşenler epidermal boşluklarla oluşmuştur. Dorsal ve ventral epidermis arasındaki boşluk parenchymall doku ile dolmuştur ve çok dallanmış bağırsak ve üreme sistemi gibi organları içermektedir. Parenchymal doku mesodermal kökenli olup sümük dışarı ataliben çok yüksek sayıda gizli hücreler ve epidermal boşluklar içermektedir. Polyclad hidrostatik iskelete sahiptir ki bu sulu hayata çok güzel adapte olmasını sağlamaktadır. Mesodermdeki içsel vucut sıvısı kapalı vucut kompartmanında basınç altında tutulmakta ve vucut duvar kaslarının hareketine destek sağlama amacıyla hidrostatik iskelete karşı kuvvet uygulamaktadırlar. İki yönle hareket vardır. Küçük boyutlu türler ince kıla benzeyen ventral cilia ile vuruşlarla taban boyunca kaymasını sağlar. Büyük boyutlu türleri ise (Tysanozoan sp. gibi) aşağıda sol panelde gösterildiği gibi vucut kaslarının ritmik vuruşlarıyla yüzmeye muktedir olabilirler. Solucanlar vucutlarını ileri ve kıyıya atarak bir seri dalgalandırma yaratırlar ve yer üzerinde ileriye doğru sürünürler. Polycladlerin iki yönlü vucut şekilli hali cephalize olmuştur, bu tanımlanabilen baş bölgelerine sahip olduğu anlamındadır ve orada sinir fonksiyonları ve duyu yapıları yer almaktadır. Solucanların sinir sistemi merdiven şekline benzeyen uzun boylu sinir ipi çiftine sahiptir ve bunlar çapraz olarak birleşmişlerdir. Beyinsel anteriordaki ganglion düğümde son bulurlar ve kafanın içinde veya dışında yeralan sinirsel büyük bir top şekline sahiptirler. Son zamanlarda bazı poyclad türlerinde küçük ama iyi tanımlanmış beyin sinirbiyolojisinde model sistem olarak servis yapan beyin cytoarchitecture ve sinirsel tamir mekanizmasını araştırmalar yapılmıştır (Bakınız Bölüm: Polyclads ve Neurobiology). Başın görünen karakteri dokunaçların oluşumudur ki çoğu durumlarda anterior sinirinin belirtilmesi (=pseudotentacle) gereklidir. Bu kör bir basit boru şeklinde veya geniş kapaklı olarak olarak gösterilirler. Çoğunlukla, Thysonozoon sp.‘nın kafa bölgesinde görüldüğü gibi kulağa benzerler (sol panel). Anterior beyinsel ganglion düğüm ve onun büyük iç sinirlerine benzerler ve solucanların “beyin” i çok sayıda foto ve kimyasal hassas hücrelerinden oluşan sinir sinyallerinin analizi esas olarak, kafada ve Pseudotentaclelerde konsantre olmuşlardır. İlave olarak, yüksek sayıda mekaniksel alıcılar epidermiste dağılmış vaziyette yer almışlardır. Fotoya duyarlı hücreler beyinsel göznoktalarında bulunur ki orada yuvarlak salkım olarak çeşitli gözler yeralmışlardır. İleri gözler, ventral ve dorsal yalancı dokanaçlarda yeralmışlardır. Bu gözler gelen görüntünün şekillenmesine kabiliyetli değildirler ama ışık istikameti ve yoğunluğunun değişimine hassatırlar. Yassı kurdun parlak ışığa duyarlı olduğu zaman, özellikle koyu yerlere doğru geri çekilirler. Vertebrateler ile mukayese edildiklerinde, poycladlerin gözlerinin organizasyonu oldukça basittir. Bu tip göz, birçok lens ile kapatılmış olup “pigment cup ocellus” olarak tarif edilirler. Ocelli beyinsel göznoktasının bir parçasıdır ve çeşitli ışığa duyarlı hücrelerden oluşurlar ve konkav kap şekline sahiptirler. Kabın duvarları pigment içermektedir ve bunlar uç taraftan gelen ışığın sızmasını enlellerler. Hücrelerin ışığa duyarlı kısımları (microvilli) opak kabın içersinde düzenlenmişlerdir ve yanlızca bir yönden gelecek ışığa karşı duyarlıdırlar. Gelen ışığın açısına bağlı olarak, loş kısımler ışığa duyarlı yapıların üzerine gölge olarak düşerler. Kap aktif olarak kaslar tarafından döndürüldüğünden çabuk değişen gölge izleri yaratılır. Sinir sinyallerine karşılık olarak, beyinsel ganglion’a gönderilirler ki orada bilgiler analiz edilirler, uç boyutlu oryentasyon ve uygun davranış reaksiyonu gösterirler. Polycladlerin görsel duyularından dolayı çevresel oryentasyonu için yeterli olmayabilir ve polycladler iyi gelişmiş kimyasal dedektörlü batarya vardır ve molekülleri tanımaktadırlar. Kimyasal bileşenlerin besin ve eş bulmada önemli rol oynadıkları düşünülmektedir. Besin ve eş bulmada belirgin moleküller boşalarak akış ile içeri girerler. Bu solucanlar kimyasal alıcıları tarafından algılanarak koku yayarlar. Bunlar özellikle ventral yalancı dokanaçlarda yerleşmişlerdir ve orada yivli ciliate şeklinde salkımlanmışlardır. Aktif solucanlardaki yalancı dokanaçlar hareket halinde meşgul görülürler ve bu kimyasal duyarlı alet solucanların yönünü bulmalarında ve koku çıkarmalarında temel karar veren davranış olarak kabul edilir. Auricle ve göz noktalarına ilave olarak (Bakınız: yukarıdaki sol foto ve alçak panel) yassı solucanlar statocyst adı verilen ilkel denge organları vardır ki basınca duyarlı saç ve küçük taneli materyalli hücreler içerirler ve bu hayvanların yukarıya doğru gitmesinde büyük rol oynarlar. Yassı solucanın dinlenme, tamirat ve cam slaylarda hazırlanmasından sonra (wholemounts) ventral bakış karakterlerinde ölü solucanlar gözlenerek incelenir. Bu karakterlerin coğu türlerin taxonomi belirlenmesinde önemli rol oynarlar ki bu oldukca zor bir görevdir. Basın yanında ağız ve pharynx gözlenebilir. Genel olarak, polycladlar pharynx plicatus’a sahiptirler. Bu tip pharyngeal tüb uzun be dairesel kas tabakası sergiler ki o pharynx’in şeklini çok fazla değiştirir ve sıvıyı bağırsak boşluklarına doğru pompalar. Bununda ötesinde, pharyngeal ceplerini ayıran özelliğine sahiptir ki orada kullanılmadığında dışarı atılırlar. Pharynx boru şeklinden çeşitli şekillere kadar yapı gösterirler (örneğin, yuvarlak veya oval çok sayıda pharyngeal lob içeren çok buruşuk şekiller). Beslenmede, pharynx ağızdan çıkıntı yapar ve Pseudobiceros türünün bazı tiplerinde tüm hayvanları yutacak boyutta açılırlar. Ventral yanın ortasında, alt sınıf Cotylea yapışkan organa sahiptir ve vantuz olarak adlandırılır. Arazi gözlemlerinde bu organ hayvanların alt tabakalara yapışmasında kullanılır. Küçük invertebratelerin yakalanmasında ve yiyeceklerin hazmında işlev görür. Ender olarak, Pseudobiceros örneğinde ve Pseudoceros’da iki eşit olmayan vantuz bulunmuştur. Diğer tür polycladlerin belirgin karakterleri erkek ve dişi üreme sistemlerinin anotomisidir. Polycladler hermaphrodiktir. Onların ikiside erkek ve dişi üreme organları yumurta ve sperm üretirler. Yetişkin solucanlar, ki esas olarak üremeye geçmişlerdir, vucut hacminin yüksek yüzdesi testes ve ovarislerden oluşmuştur. Çoğu türlerde, bu serpistirilmiş haldedir ve ventral ve dorsal parenchyma da yerleşmiştir. Bununla birlikte, dışarıdan yanlızca erkek ve dişi gonophore’lar gözlenmiştir. Genel olarak, erkek boşluk pharynx’de posterior olarak bulunmuştur ve penis papilla ve penial stylet tutarlar, organları eş için uzanırlar. Pseudobiceros türünün çift erkek üreme sistemi, iki erkek boşluk ve erkek organları ile karakterize edilirler. Dişi boşluk daima açıkca erkek boşlukta ayrılmıştır ve posterior’da yerleşmiştir. Çoğu türler (Pseudoceros, Pseudobiceros)’in bir tek dişi boşluğu vardır bununla fakat Nymphozoon’in çok sayıda dişi boşluğu vardır. Dişi üreme sistemi yumurtalık, yumurta sarısı, kabuk beze, bir yarı hazne, ve döl yatağı bulunur ve orada yumurtalar döllenir. Eşleşmeden sonra (Bakınız, Bölüm: Eşleşme ve yeniden üreme) spermler dişi vucuda enjekte edilir (Hypodermal insemination) dişinin üreme aygıtına ve yarı hazneye doğru depolanma amacıyla göçederler. Yumurtalar yumurtalıktan oviduct’a doğru geçerler ve yarı haznede sperm tarafından döllenirler ve yumurta sarısı ile kaplanmış ve kabuk beze ile gizlenirler. Daha sonra üreme organlarına geçerler ve düzensiz yumurta kütlesi şeklinde depolanırlar. Yeniden üreme sisteminin yanında, çok sayıda yanal dallara sahip bağırsak solucanlarının vücut hacminin yüksek yüzdesini teskil eden ikinci organdır. Nutrientlerin vücut hücresine transferinde bağırsak sistemi (intestial), vucudun hemen hemen her tarafına uzanmış olup vurucu cilia ile kaplanmışlardır. Yarı saydam solucanların haricinde (Aquaplana sp.) bağırsak dallarının dağılımı ve onların anotomik detayları gözlenmede çok zordur. Polycladlerin kör sindirme sistemi bulunduğundan sindirilemeyen materyaller pharynx’e doğru yani yiyeceklerin geldiği aynı açıklığa doğru dışlanırlar. Soldaki foto (PHOTO © Bill Rudman) Paraplanocera oligoglena’nin ventral gorünüşünü vermektedir ve hemen hemen transparent olan vucudun çoğu organlarını gosterirler. Beyaz kollu merkezi yapı cok buruşuk pharyngeal tüpdür (pharynx plicatus) ve ağıza doğru ağız vucudun merkezinde yerlemiştir. Donuk beyazımsı network, vucudun çoğu bolgelerine uzanmış çok dallı bagırsak ki bu solucanlara “polyclad” (yunanca = çok dallı) adı verilir. Erkeğin ve dişinin diğer tüm organları yeniden üreme sistemidir. Salgı ve osmoregulation için polycladler özel fonksiyonlu birimlere sahiptirler, bunlara protonephridia (tekil protonephridium) denir. Onlar iki veya daha fazla kapalı uzun tüp dalları halindeki networka benzerler ve vucut boyunca uzanırlar. Osmotik su dengesini kontrol eden özel yapılara sahiptirler ve böbreklerin atık suyu çıkarttığı gibi çalışırlar. Vucut boyunca Protonephridium dallanma yüksek özellikli hücreler tarafından cilia izli kap şeklindeki yapılarla kapatılmıştır. Cilia vurusu, kırpışan aleve benzediği için bu hücreye “alev hücresi” adı verilmiştir. Bu hücrelerden bir kaçı tüplü fonksiyonlar ile hücrelere bağlantılıdır. İç sıvı nitrojen atıkla yüklenmiştir, tübe doğru gitmesinde zorlanır ve alev hücreleri ile akan tüp sistemi yardımıyla bir veya daha fazla boşluktan taşınırak yol alırlar ve son bölümde atıklar gizlenir. Protonephridium ilkel böbreğe bir örnektir ve salgı çıkaran ve osmoregulator bir sistem olarak gözönüne alınırlar. Yassı Solucanlara Genel Giriş Platyhelminthes (Yunanca: platy – flat, helminthes: worm) Kingdom Animalia’ya ait olup bir baş ve uçta bir kuyruk ile bölümlenmeyen yassı solucanlardır. Onlar en ilkel iki bacaklı, iki yanal simetrik hayvan olarak düşünülürler. İki yanlı simetrik anlamı, vucutlarının kıç eksen boyunca, üst ve alt yüzeyler olmak üzere tariflenen anterior ve posterior bitişin bir ayna görüntüsünde olmasıdır. Vucudun iki taraflı şekilli olması önemli bir özelliktir çünkü bu cephalization’a bir örnektir ve kafanın duyu yapılarının konsantrasyonu ve sinir fonksiyonu (kafa ganglion) yeralir. Bu da gelişimde önemli bir eğilimdir. Bunun ötesinde, yassı solucanlar triploblastikdir, bunun anlamı vucut yapısı uç temel hücre yapısından meydana gelmesidir (endoderm, mesoderm ve ectoderm). Üçüncü karaktere göre, onların barsaktan başka vucut boşlukları yoktur (coclom) ve organizasyona acoelomate adı verilmektedir. Anüsleri yoktur, bu nedenle, aynı pharyngeal açıklığından hem yiyecek alımı ve hem de atığın dışarıya atılması sağlanır. Dış hücre tabakası (=epidermis) ile belirgin ic organların arasındaki boşluk bir yumuşak doku ile dolmuştur (parenchyma). Mesodermal orijinli bu doku boşluklar tarafından ayıklanır (=schizocoelium) ve nütrientleri vucudun kısımlarına taşımak için cok dallanmış bağırsak mevcuttur. Terleme sistemi ve kan taşıma sistemi tamamen yoktur ve bu nedenle oksijenin transferinde difüzyon kullanılır. Bu da yassı solucanların düz olmasını sağlamaktadır. Metabolizimin tesisinde, hiç bir hücre dışarıdan uzakta değildir, zorunlu olan vucut şeklinin yassılanmasını sağlarlar. Hemen hemen bütün türler sahip oldukları oldukca kompleks üreme sistemiyle hermaphrodites’lerdir. Çoğu durumlarda, erkek ve dişi üreme yapılarının sayısı ve ayarlanması ile oldukca belirgin özel türlerdir ve çok benzer türlerin morfolojisinin ayırt edilmesinde taksonomik çalışmalarda kullanılabilirler. Yassi solucanların uzunluğu bazı serbest yaşayan türlerde 0.4 mm ve parasitik şekillilerde çeşitli metrelerde (fish tapeworm, Diphyllobothrium latum: 25 m in length) bulunurlar. Yassı solucanlar üç gruba ayrılırlar; 20,000 türü bilinen, 14,000 parasitler Cestoda (tapeworms) veya Trematoda (flukes) sınıfına aittirler. Tapeworm vertebrate’de bağırsak parasitleridir ve anatomik ve parasitims’in hayat tarihi ve modifikasyonlarını gösterirler. Flukes tamamen parasitik olarak bilinirler ve tape wormlara kıyasla kompleks hayat zincirine sahiptirler. Bir kaç genç stepden geçerler; bir, iki veya daha fazla hayvanın üzerinde yetişkin düzeye gelirler ve sonunda bir hayvanın üzerinde parazitik olarak yaşarlar. Bunun karsıtı olarak, Turbellaria serbest olarak yaşamakta olup tatlı suda ve nemli karasal ortamda coğunluktadırlar. Turbellarian yassı solucanların çoğu denizel ortamlarda ve okyanuslarda bentik olarak bulunurlar ve ayrıca sığ sularda da çok bulunurlar. Turbellaria’nin bir taksonomik alt grubu yüksek belirgin serbest yaşayan yassı solucanlar içeren order Polycladida’dir. Bu order’in üyeleri anatomik olarak çok dallanmış ve düzensiz bağırsak pharynx plicatus olarak buruşuklu pharygeal tüb ıle karakterıze edilirler. İlk bakışta, polyclad’ler çarpıcı şekilde goze hoş gelen renkli yassı solucanlardır. Tropikal resiflerde 150 yıldır yasadıkları bilinmektedir. Tropikal sularda yüzlerce türleri olduğuna inanılmasına rağmen şimdiye kadar çok az kısmı tamamen tarif edilebilmiştir. Rejenerasyon Karşıt olarak, yüksek vertebrates, bazı serbest yaşayan yassı solucanlar yeniden oluşmada muhtesem kabiliyetli olduklarını göstermektedir. Kafasının kesilmesi ve bir yenisinin büyümesidir. Kafanın yanal olarak ikiye, üçe veya daha fazlaya bölünmesiyle bir, iki, üç veya çok başlı solucan ile sonuçlanmasıdır. Solucanlar on parçaya bölünebilirler on tamamlanmış küçük solucan meydana gelir (Bakiniz: alt şekil, sol panel-tatlısu triclad Dagesia tigrina). Biyologların yeniden büyümeye büyük ilgi duymaları nedeniyle yeniden oluşumun üzerinde yapılan yoğun çalışmalar çeşitli yassı solucan taxa sistem modeline servis yapmaktadır (Bakınız: Bölüm: Sinirbiyolojisi’nde polycladler). Son zamanlarda, yeniden oluşum ile ilgili detaylı bilgi temelde polycladler üzerindedir (Order: Polycladida) ve tatlı su triclads (Order:Tricladida-üç-dört bağırsaklı anlamına gelir) ve diğeri planarians olarak bilinir (Bakınız: Bölüm: Phytogeny). Biyologların yeniden oluşumun üzerinde yüzyıldır yaptığı çalışmalara rağmen, bazı sorulara cevaplar, özellikle yeniden oluşumun kontrolu ve moleküler mekanism işleminin yakalanması zor görünmektedir. Bilim adamları planaria’nin temelde yeniden oluşumun yeteneğine sahip olduğuna hemfikirdirler ve neoblast adı verilen emriyonik dal hücreleri depolanmasını kullanırlar. Türlere bağlı olarak neoblastlar yetişkin solucanlarda toplam hücre sayısının 30% ‘unu kapsarlar. Bu totiponent hücreler, solucanın vücudunda serpiştirilmiş olup diğer hücre türlerinin büyümesinde yeteneklidirler ve iki rol oynarlar. Onlar, normal fizyolojik koşullarda ölenin yerine yeni hücre alarak yeniden oluşum için ham materyalini ve daha sonra iyileşmeyi sağlarlar. Yeniden oluşum oldukça hızlıdır. Kesilmeden 15 dakika içinde yaranın ucundaki epithelilal hücreler lesion’a yakındır. Birgün içersinde, yüksek sayıda neblast yaralı epithelium altındaki yeni diferansiyel yapılar büyüyen blastema içinde delil haline gelir ve yeniden oluşumun kesilmeden 10 gün içersinde optimal koşullar altında kaybolan kısımları tamamlanır (Baguma vd., 1994). Planaria kuvvetli kafa-kuyruk organlarına sahiptir (anterior-posterior kutuplanma). Kesildiğinde, anterior kesim yüzeyi hemen hemen daima yeniden oluşur ve yeni bir kafayı üretir ve aynı zamanda posterior kesim yüzeyi kuyruk yapıyı yeniden üretir. Solucanların bilgilerinin belirlenmesinin yeniden üretimde bir baş ve bir kuyruktan olup olmadığına dair bir mekanizmasının olması gereklidir. Şu anda, anterior ve posterior kutuplaşmasını açıklayan iki adet hipotez mevcuttur. Biri yeni oluşan epithelium arasında tumevarımsal iç hareket, başlangıç iyileşme işlemini kapsar ve blastema hücrelerinin altından geçer. Diğer hipotez ise anterior-posterior belirlenmesinde faktörlerinin moleküler gradientinin sıralanmasını önerir. Deneysel datanın çokluğuna rağmen her bakış için kesin bir delil yoktur. Çoğu tatlısu planaria sexual olarak yeniden oluşur ve oviparoustur (yumurtanın kuluçkası ile depolanır). Bazı türler parthenogenesis ile asexual yenide oluşum gösterirler. (spermsiz olarak yumurtanın aktivitesi). Bununla birlikte, taxonomik ailenin yassısolucanları Dugesiidae ve Planariidae (Order: Tricladida) nadir olarak ikili bölünme ile yeniden ürerler (Bakınız: üst şekil, sağ panel-tatlısu triclad Planarıa fissipara). Yetişkinler ikili bölünme ile bir küçük kuyruk parçası pharynx diferansiyeli ve iki hafta içinde de beslenen solucan haline gelir. Dugesia trigria’nin tabi olduğu toplulukta yeniden üreme araştırmalarında optimal sıcaklık koşullarının 24 C altında solucanların 20% si bölünme ile olduğu ortaya çıkmıştır. Çift bölünme ile asexual üreme bu dokumanda da belirtildiği gibi deniz polycladlerde de mümkündür (Bakınız: soldaki foto). Prostheceraeus (Familya: Euryleptidae)’nin polyclad’i de bölünme işlemini vermektedir. Kuyruk parçası ok ile belirlenmiş ve bölünmeden sonra yeni bir solucan oluşturarak ve alt hücre yeniden organasyon olacaktır. Bununla birlikte, yeniden üreme işlemi hakkında diğer bir açıklama, diğer hayvanların atağından ve “kuyruk kısmının bölünmesi” nden sonra beslenme amaclı ataklar neticesinde (Bakınız: Bölüm. Predation ve Defence) oluşmasıdır. Yiyecek ve Beslenme Çoğu bilinen, polycladler aktif etobur hayvanlardır ve leşle beslenirler ve aynı zamanda çeşitli sessile invertebrateslerin beslenmesinde kullanılırlar. Bazı türleri herbivorous olup yeşil alg ve bentik diatom’da özelleşmişlerdir. Acoella order’inin bir kaç yassı solucan türlerinde (bir eski taksonomik order, Polycladida’den ayırt edilen) sindirilen mikroalgler derecelenmemiştir ama endosymbionts (Zoochlorella) haline gelmiştir. Bu symbiotik ilişkide bağırsakta alg fotosentezde aktif olarak kalarak pareneyma hücre ve solucanların energy depolanmasında önemli katkılarda bulunur. Convoluta (canvolata reocoffansis - sağdaki foto Arthur Hauck)’nın bazı türleri genç solucanlar yüksek sayıdadırlar (Tetraselmis convolata, her bireyde takriben 25,000 adet). Yetişkin duruma geldiklerinde, canalıcı anotemiksel olarak değişimlerinin yansımasında endosysmbiontlara bağlıdır ve pharynx ve ağız fonksiyonlarının kaybederler. Beslenme için, C. roscoffensis alçak gelgitin parlak ışığında yüzeye gelir ve orada symbiotic alg vücudun epidermis boyunca serpilmişlerdir ve aktif olarak fotosentetiktirler (Holligan vd., 1977). Algler tarafından üretilen yiyecek (şeker) yassı solucanlar tarafından kullanılır. Bu manzara Fransa’nın korunmus kumlu sahillerinde ve İngiltere’nin bazı bölgelerinde gözlenebilir. Optimum cevresel pozisyonlarda bu solucanlar alçak gelgitte kumda mükemmel yeşil yapılar yapar. Pseudocerotidae familyasının birçok türü koloni yaşamayı tercih etttikleri düşünülmektedir ve katı ascidianlar, süngerler, ve bryozoonlar rejimlerinde normal özellik göstermezler. Beslenmede, çok buruşuk pharynx (pharynx plicatus) niçin ve nezaman kullanılmadığında bir cep içinde, çıkıntılarda koloni ascidianlarda bireysel zooidlerde genişlemis olabilirler. Proteolytic nesneleri dışarı atarken dokusal dallı bağırsak oluşmuştur. Gastrovascular boşluk, bütün besin parçalarını vucudun tamamına transfer eder. Pseudobiceros türlerinin gözlemi önerilir, av hayvanı dokusal pharynx tarafından yütülür (Bakınız: aşağıdaki görüntü) ve bütün hayvanlarda aynı ölçüde genişlerler. Bu türler, katı ascidian Corella willmeriana mantosuna sızar ve delme deliğini kullanarak birkaç saatte tamamını emerler. Tunicate’nin içersinde gençler bile bulunmuştur. Bütün şeyleri yedikten sonra, kayalara çapraz olarak sürünürler. Yassı solucanların yığını oluştuğunda insanlık açısından denizel ortamında bir felaket etkisi sözkonusudur. Tropikal polycladler istiridye’nin musibetidir ve dev deniz taraklarıdır (Stylochus matatası). Gastrovasküler boşluğundaki besinler yiyecek parçacıklarının ileri enzimatik derecelenmesinden sonra bağırsak dallarına doğru transfer olurlar ve yüksek bir absorb edebilen yüzeye benzerler. Çoğu yiyecek parçacıkları gastrodermal hücre tabakasının phagocytosis tarafından yutulurlar ve ileri enzimatik düzeyde iç hücresel parçalanma oluşur. Sindirilemeyen materyal pharynx’a doğru, yani yiyeceklerin girdiği deliğe doğru atılırlar, çünkü yassı solucanların kör sindirim sistemi bulunmaktadır. Bazı türlerde bu gözlenmiştir ve sindirimin tamamlanmasından sonra bağırsak fıskırtılan su yardımıyla temizlenir. Tür çeşitliliği ve polyclad yassı solucanların değişimi tropikal suların inanılmaz değişimi ile taxon’a benzer (Newman & Cannon, 1994), Bakınız.Bölüm: Taxonomi). Oldukça uzun zamanda, renk izleri muhteşem renklenmiş olan solucanlar sınıflandırılmada yeterli düşünülmüştür (Hyman, 1954, 1959). Bununla birlikte, birçok türlerin tanımlanmasında yeterli kimliğe sahip değildirler (Faubel, 1983, 1984). Newman & Cannon (1994)’de yaptıkları arazi çalışmalarında farklı genera’da (Pseudoceros - Pseudobiceros; Pseudoceros - Pseudoceros) çok benzer ve hemen hemen tamamen aynı renkli izleri taşıdığı ortaya çıkmıştır ve türler arası farklılığında farklı aileler üzerinde (Pseudocerotidae-Euryleptidae) daha detaylı inceleme gereklidir. Mukayese anatomisi uygun karakterleri kullanılarak göz numarası, göz ayarı, yalancı dokanakların şekli, pharynx ve özellikle üreme sisteminin ince yapısının analizi kanıtlanması için turbellarianlarin tür diagnosisleri için temel araçtır (Newman & Cannon, 1994). Erkek ve dişi üreme yapılarının seri olarak yeniden yapımı zordur ve özel lab aletlerine ihtiyaç vardır ve uzmanlar tarafından arzu edilir. Son zamanlarda, benzer polyclad türlerini ayırt etmede, molekuler data (DNA) sıklığı kullanılmıştır. Böyle araçları kullanmadan, polyclad yassı solucanların sınıflandırılması bazı durumlarda hatalı olabilir. Benzer renk izleri büyük farkla benzemesine rağmen ayni genetiksel olarak belirlenmiş renk ve örnek çeşitliliği ayni tür özellilerine sahiptir. Diğer bir değişle, tamamen aynı renkteki örnek belki farklı türde genera’ya veya hatta familya üyesi olabilir. Bu nedenle, eğer benzer renk örneklerinde olan iki polyclad örneği mukayese edıldiklerinde, çeşitli mümkün senaryolar akla uygundur. 1) Farklı genera ve hatta familyaya sahip solucanlarda, genel seçilmiş basınç ve aynı çevre kosulları altında aynı renk örneklerinin gelişiminde evrimsel gelişim kuvvetlidir. Phylogenetik terim açıklaması; bir benzer renk ilişkili gene seti (=allels) veya bir müşterek gene farklılığı phenotype sonuçlari üzerinde secilmiş basınç tarafından tercih edilir. Bu gibi olayların sıklığı analogous gelişim olarak düşünülür. 2) İkinci senaryoda, iki solucan aynı atayı paylaşırlar. Tahminler ışığında, bu ata daha önce avantajlı renklere ulaşmıştır, her iki örneğin renkli izlerinin mukayesesi hatta anotomiksel ve diğer genetik farklılıklara rağmen çok benzer olabilir. 3) Evrim gelişmekte olan işlemdir ve hiçbir zaman durmaz! Genesin renk örnek ilişkisinde gelişigüzel müşterekliliği, protein kodlama bölgelerinde veya düzenli DNA sıklığında, ışık, sıcaklık, beslenme gibi çevresel faktörlerin etkileri ile beraber polyclad renk izlerini etkilemektedir. Rahatça söylenebilir ki, evrim renkler ile oynamadır. Varsayılan predatörlerin farklılığı daha etkilidir: Mimicry ve Predation ve Defence). Phylogenetik zaman aralığında, bir türün görünümünde veya spectation değişim atlamasında, yeni türlerin tehlikesinde önder olabilir. Takip eden foto paneli açıkca ortaya koymakta ve farklı türler ile bir tek türün üyeleri arasında renk izlerini açıkca göstermektedir. Solucanların morfolojik ve DNA sıklığının kilitlenmesi nedeniyle hangi tariflenmiş senaryoların örnek için uygun olduğu gerçekte belirsizdir. Toxin Aposematic renklenme (Bakiniz.Bölüm: Mimicry) denizel invertebrate hayvanların içersinde bilinen genel defense mekanizmasıdır. Çok sayıda göze çarpan renkli slugları toxic alıkonmuştur. Polyclad yassı solucanlar açısından doğrudur. Polyclad yassı solucanların Pseudoceron concineu ve Planocera tentaculata kimyasal defens araştırması ve staurosporine türevlenmesi gibi yüksek toxic kimyasal bileşen açığa çıkarmıştır (Schupp vd., 1977 ve 1999) ve tetrododoxin (Miyazama vd., 1987). Tetrodotoxin proteinsiz bileşen (aminoperhydroqumazoline) olup günümüzde bilinen en kuvvetli paralytic toxinlerden birisidir. Sodyum (Na+) kanallarında voltaj-kapılı cok belirgin engelleyicidir ve büyük integral protein üyesi sinirsel hücrelerin plazma membranına doğru boşluk oluşturur ve Na+ iyonlarına izin verir. Çeşitli uyarıcı cevaplar, boşluklar (=genes), ve açık ve kapalı mebrane potensiyelinin değişimi gibi hücre dışı ve içi belirli kimyasalların varlığı ve uygun fonksiyonelliği sinirsel hareket potensiyelinde temel teşkil etmektedir. Bunula birlikte, tetrododoxin kanalları bloke eder. Tetrodotoxin ve onun habercisi yüksek konsantrasyonlu mukus, sindirim organlarında, polyclad Planocera multietentacula (Miyazawa vd. 1987, Noguchi vd, 1991) yumurtalarda ve üreme organlarında önerirler. Yassı solucanlar predatorlere karşı defans ve alarm maddesi tetratoxine sahiptir. Tetratoxin geniş farklı hayvan örnekleri tarafından izole edilmiştir bunlar pufferfish (photo: Arothon nigropunctatus, order: Tetraodontiformers), parrotfish, genus Atelopus’un zehirli oklu kurbagalar, mavi-cevreli ahtopot, deniz yıldızı, angelfish ve xanthid crabdir. Japon mutfağında pufferfish hassas olduğundan, tetrodoxoxinden zehirlenme Japonya’da halk sağlığını ilgilendirmektedir. Yumurtalık, çiğer, bağırsak ve pufferfish derisi tetradotoxin miktarını içerir ve bu da hızlı ve zorlu üremeye yeterlidir. Geleneksel olarak çok küçük miktarda ciğer et ile tüketilir. Dudakların oluşum duygusu ve dil gercek akşam yemeği tecrübesidir. Fugu’nun hazırlanması ve satışı özel restaurantlarda olduğundan oradakiler eğitilir ve evde hazırlanmasından ve tüketiminden yanlış tanımlandığı ve yanlış donmuş balık ürünleri nedeniyle bireysel olarak zehirleme olayı (30/100 kışı/yıl) olur. Pufferfish zehirliliği hakkında daha fazla bilgi için Bakınız. FDA/CFSAN web sitesinde Amerikan Besin Emniyeti & Nutrient Aplikasyonu’na başvurunuz. Eşleşme ve Üreme Polycladler oldukça ilkel oldukları için kimyasal bilesenler besin bulmada ve partneri ile arkadaşlık kurmasında anahtar rol oynarlar. Büyük yalancı dokanaclarda anterior sinirinin ayrıntıyla donatılması bir delildir ve bu solucanlar temelde resif çevrenin kavranmasında ve davranışlarıyla kararda kimyasal duyu aleti olarak kullanılır. Genel olarak, polycladler derialtında erkek ve dişi üreme organlarina sahiptirler. Onlar karşılıklı dollenme ile birleşerek çiftleşirler. Bir kere, aynı türe sahip yetişkin solucan oldukca kaba çiftleşme hareketi yaparlar, bu derialtı döllenme olarak tarif edilir (üst görüntü, Pseudoceros bifurcus). Solucanların çiftleşme zamanında birbirlerine doğru hareket ettiği, değdiği ve birbirlerine sarıldıklarında (sol görüntü aşağıda, Pseudoceros graveri) eş zamanlı olarak penis papillae ve stylet dışarı çıkar (İki görüntü aşağı sağda, Pseudobiceros bedfordi). Onlar, daha sonra birbirlerini başka yere çekmeyi denerler, bazen de kendi ortaklarına zarara sebep verirler. Yaralı solucanlar 24 saatte sağlıklarına yeniden kavuşurlar. Ne zamanki biri diğerine penetre ederse, birkaç dakika partnerinin epidermiste içine oturtur. Bu zamanda, erkek dol hücresi partnerine enjekte edilir (Üst görüntü, sağ). Son zamanlarda, Pseudoceros bifus’in eşleşme davranışları gözlenmesinde (Michiels& Newman, Nature, vol.391:647), bireysel polyclad sperm vermeyi arttırır. Erkekler için, spermlerin enjeksiyonu direk yumurtalara gider ki orada dişi yarasının iyileşmesinin maliyeti taşıma kapasitesini ve döllenmede kontrolu kaybeder. Bu nedenle, dişilerdeki çok kuvvetli secme bu maliyetten kaçınmaktadır. Bu arka yukarı ile buna ulaşılır, bir eş davranışı her iki striking ve parrying’de etkilidir. Bireyselde her ikisi de deneme cekingesiyle davranırlar. Gelişme olarakta bu girişim sperm donatısında daha fazla sperm verilmesini sağlar. Daha fazla başarılı döllenme ile daha iyi döllenme sağlar. Derialtı döllenmeden sonra sperm aktif olarak parenchyma yumurta kanalına doğru hareket eder. Onlar muhtemelen oocytes tarafından veya dişi üreme kanalının değer hücrelerde serbest hale getirilen moleküllerin gradienti tarafından cazip olurlar. Döllenmiş yumurtalar daha sonra birkaç yüz yumurtanın düzensiz yumurta yığını halinde depolanir ki daha sonra sıkıca paketlenmiş bir tabaka haline gelirler. Diğerinde, iri çakılların altında ascidian kolonileri halinde bulunurlar ve tercih ettikleri avlanmadan biridir. Serbestce yüzmenin gelişmesinden on gün sonra, transparent larva kuluçkası oluşur (=Muller’s larva). Çizelgeden de anlaşılacağı gibi gelişmelerinde bibirini takip eden üç step vardır. Müller larvası sekiz lob tarafından karakterize edilirler. Loblar vurus yapan cilia taşırlar ki bu ciliate’e benzer yüzmeye izin verir (en soldaki foto: koyu arazi mikroskobu altındaki larva stepi). Larva plaktonik bölüme girerek yerleşmeden ve metamorfize olmadan önce birkaç gün yüzer. Gelişmesi esnasında, larva lobları absorbe olmaya devam eder ki orada sindirimleri gelisir. Minyatür yetişkin solucanlar haline gelindiğinde metamorfoz tamamlanır, yanlızca birkaç mm boyutundadırlar ve hayatın bentik bölümüne girerler. Larvaların nudibranch metamorfisinde yapılan gelişmiş ileri düzeyde çalışmalardan elde edilen bilgilere göre, türlerin tercih ettiği besinler tarafından kimyasal bileşikler üretilmesi hedeflenir. Bu mekanizma, yerleşme alanı genç organizmaların yetişmesinde yeterli yiyecek sağlamasına emin olur ve bu nedenle, bu hayatta kalabilmek için daha büyük bir şanstır. Polycladler lab. koşullari altında larva halinde yerleşmeksizin kuluçka olduktan sonra iki hafta içersinde solucan olabildikleri için, polycladlerin bentik hayat bölümüne girmelerinde dış güçlerin zorunluluğu bilinmemektedir. Polycladlerin Taksonomisi Polycladida (class: Turbellaria)’nin taksonomik order’i bir kaç yüz tanımlanmıs türleri kapsar. Bunların çoğunluğu (7 adet genera’da 200 kadar tür) ve Pseudocerotidal familyasında toplanırlar ki bu bugünün en iyi tropikal polyclad familyası olarak kabul edilir. Pseudocerotis en muhteşem renkli yassı solucanlardır ve daha sonraki en belirgin tropikal polyclad ailesinden Euryleptidae (130 türle birlikte) buruşuk pharynxleri tarafından karaterize edilirler ve ayırt edilirler ve aynı zamanda onlarda tüp halinde pharynx mevcuttur. Pseudocerotidsin diğer genera’si daha az yanıltıcı olmakla birlikte çok az bilinmektedir. Bazıları hatta monospecific’tir. Polyclad yassı solucanlar için Tayler. S & Bush L.F, 1988 web sayfasına giriniz. Turbellarian platyhelminths Taxonomisi Polyclad yassı solucanlar üzerinde taxonomik çalışmalar oldukça zordur. Onların uygun boyut, şekil, renk ve markalamaları, göz ayarlamaları, yalancı dokanaçlar, pharynx, gonopore’ların topoğrafyası ve emme gibi karakteleri gözonüne alınmalıdır. Bazı durumlarda, tanımlamada bu karakterler yetersiz ise, üreme sisteminin karşılaştırmalı morfolojisi özel lab. aletleri kullanılması temel araçtır ve uzmanlar tarafından tercih edilir. Son zamanlarda, moleküler DNA (DNA sıklığı) ayni türdeki benzer polycladlerin farklılığının ayırt edilmesinde kullanılmaktadır (Bakınız.Bölüm:Phylogeny). Takip eden tablo dalan ve UW fotoğrafcılar için polyclad yassı solucanların tanımlanmasında faydalı bir araçtır. Filojeny İlk Metozoa’nın hemen hemen radyal hayvan olduğu için, iki taraflı simetrik (Bilateral) nin radyal atalarından yayılmıştır ve radyalden iki taraflı simetri arasında değişim olmuştur. Bu değişim hala oluşmaktadır ve çeşitli yüksek düzeyde spekulatif bağlantılar yapılmıştır (Brusca & Brusca, 1995). Paleontolojik ve moleküler data gösterir ki çoğu iki taraflı phyla ve Cambrian explosion zamanında bölünmüşlerdir, M.O. 56 ve 520 yıllarında oluşmuştur (Wang, vd., 1999). Phylum platyhelminthes erken Metasoanın farklı grup oluşturduğu ki bu metazoa’nin orijini ve evriminin anlaşılmasında anahtar rol oynamıştır. Coğu zooloji ders kitaplarında, erken ortaya çıkan clade formasyonu, iki taraflı simetri (Bilatera) ile bütün hayvanların kızkardeş grubu olarak tarif edilmiştir. Diğer yazarlar görmüşlerdir ki, çoğu Protostomia’nin kızkardeş grubu veya grup protostome coelomate atalarından türemişlerdir. Filojenik yerleşmenin doğruluğu esas zorluluktur ve bütün Platyhelminthes için synapomorfilerin iknasının kapanmasıdır. Bu belirtir ki onlar polyphyletic’tir. Basitleştirilmiş taxonomik şekilde, phylum Platyhelminthes dört sınıfı tutar. Trematodal (fluxes), monogenea ve Cestoda (tapeworms) ki bunlar vertabratenin endo/ectoparasiteyi sunar. Bazıları kompleks, hayat döngüşü, ve sınıf Turbellaria ana serbest yaşayan yassı solucan türlerini verir. Turbellaria 9 adet order içerir. Coğu açıklanan orderler bu çizelgede gösterilmemiştir. Acoel yassı solucan (Acoela) uzun zamandır, Turbellaria’nin order’i olarak sınıflandırılmıştır. Onlar en ilkel turbellarian order olarak düşünülmüş ve bazal metazoan olarak manzaralanmıştır ki ciliate protozoans (=syncytial veya ciliate=acoel theory) veya diploblast ve triploblast arasında direk link vardır (=planuloid-acoeloid theory)’den evrim geçirerek oluşmuşlardır. Onların basit organizasyonu yorumlanmıştır ve daha kompleks ataları (regressive evrim) ikincil özelliklerinin kaybolması incelenmiştir. Bugün, teorinin destek delillerinin birçok çizgisi, bilinmeyen iki taraflı atalardan Kambrien radyasyondan önce. acoels dallanmasıyla olmuştur. Örneğin, aceoller diğer platyhelminthes iki loblu ve neuropile’li beyinleri var olup sinir hücreleri ile cevrilmiş olduğunu sinir sistemi yapısı işaret eder (Bakınız. Bölüm: Polyclad ve Neurobiology). Karşıt olarak, acoellerin sinir sistemi sinir hücrelerinin salkımı tarafından basit beyin olarak oluşmuştur ve cok sayıda uzun sinir kordları ortagon yapmazlar (Ruitz-Trillo vd., 1999). Son zamanlarda, DNA (desorxy-bonucleic acid) moleküler teknik ve protein sıklığı başarılı kullanılmıştır. Phylogenetic hayat ağacı kurulur ve hayvan taxa’ları arasında filojenetik ilişkisi araştırılır. En yaygını, DNA sıklığı yüksek düzeydeki gene’leri muhafaza etmesidir, mesela, ribozomal RNA (rRNA) genes kodu bu gibi çalışmalarda kullanılmıştır. 18 S ribozomal DNA genesinin sıklık datası mukayesesinde ve diğer Metazoa kanıtları Acoel’in Platyhelminthes’e ait olmadığı belirlenmiştir. Bu buluşlar önerirki basit radyal simetrik organizma (jelyfish gibi) ve daha komplex iki taraflı simetrik organizmalar (arthropods ve vertebrates) boşluk (gap) vardır. Onlar kendi phylum’larına yerleştirilmelidirler (Ruisz Trillo vd., 1999). Bazı çarpıcı özellikleri vermesi polyclad genera’da en yaygın tanımlamada yardımcı olacaktır. DNA sıklılığı dataları aynı zamanda aynı organizmaların morfolojilerinin ayırt edilmesinde de kullanılır. Bu Goggin & Newmann (1996) tarafından pseudoceroid turbellarianlar için teşhir edilmiştir. Ribozomdaki RNA (rRNA) gene salkımındaki spacer-1 (JTS-1)’dan elde edilen Nucleotide sıklığı dataları (Pseudoceros jebborun, Pseudoceros paralaticlavus) ve pseudocerotid polycladların generasında (Ps. jebborum ve paralatic lavus versus Pseudobiceros gratus) türlerin ayırt edilmesinde kullanılmıştır. Ps’in ITS-1’nin nukleotide sıklığı Ps. paralatic lavus’dan 6% farklıdır ve Pseudobiceros gratus’tan 36% farklıdır. Beklenildiği gibi bu sonuçlar aynı genusun türleri farklı genera’dan alınan türlere kıyasla phylogenetiksel olarak yakın ilişkili olduğunu kanıtlamaktadır. Bu nedenle, ITS-1’den elde edilen data sıklığı pseudocerotid yassı solucanlar ayırt edilmesinde faydalı bir taksonomik araçtır. Ribozomal DNA Salkımı Büyümekte olan bir hücre 10 Mio ribozomlar ihtiva eder, protein üretiminde hücresel araçtır (mRNA’nin proteine transferi). Ribozomal RNA her tip ribozomal RNA molekülü (5 S, 5.8 S, 18 S, 28 S rRNA) nin temel yapısal komponenttir ve protein sentezinde hücre ihtiyaçlarında birleşmesi açısından her hücre generasyonunda sentez edilmelidir. Ribozomal RNA’nın yeterli miktarda üretimi için eukaryotic hücreler ribosomal RNA (rRNA genes = rDNA) nın kollanmasında çok sayıda genes kopyası içerirler. İnsan hücreleri her haploid genome’de aşağı yukarı 200 rRNA gene kopyası içerirler ve beş farklı kromozomda (chromosomes 13, 14, 15, 21, 22) küçük salkımlar halinde dağılmışlardır. Kurbağa hücreleri Xenopus leveis bir kromozomda bir tek salkımda 600 rRNA gene kopyası içerir. Bununla birlikte, genel rRNA izleri bir kromozomda bir tek salkımda rRNA gene organizasyonunun genel izinde bütün eukayot hücrelerde tamamen aynıdır. Verilen kromozomda yüksek dereceden rRNA genesinin çok sayıda kopyasının gelişigüzel serileri ayarlanmıştır, her bir gene diğer bolgedekinden ayrılmıştır, DNA boşluk yaratıcı olarak da bilinir ve türler içinde uzunluğu ve sıklığı değişmektedir. Bir tek salkım rRNA genes’i 18 S, 5.8 S, ve 28 S rRNA molekülü içerir ki o (ITS-1 ve ITS-2) tarafından içten ayrılır. Bitişik salkımlar 10,000 nucleotide uzunluğundadır ve herbiri dışsa açıklı bölgeler (ETS) olarak ayrılmıştır. rRNA genes’i RNA polymerase tarafından kopya edilmiştir ve her bir genes seti aynı temel RNA’yi üretir, 45 S öncü rRNA (pre-rRNA) olarak bilinir. Önce kurulmuş ribozomal partiküllerindeki nukleusu terkeder, 45 S pre-rRNA (takriben 5,000 nucleotides, 18 S Rrna (takriben 2,000 nucleotides, ve 5.8 rRNA ( takriben 160 nucleotides). Geri kalan kısımda her temel kopya (ETS, ITS-1 ve ITS-2) olarak derecelenmistir. Takriben 200 farklı hücresel protein ve bir 5 S rRNA diğer kromozom locus’tan türetilir ve ribozomların paketlenmesinde yeni sentezlenmiş rRNA kullanılmıştır. Bu paketleme nucleusta oluşur ve bu büyük geçirgen yapı nucleus olarak adlandırılır. Bozulmamış rRNA molekulleri ribosome üretiminde temel olduğu için, protein sentezi ve hüçre fonksiyonu, kuvvetli basınç seciminde (evrim) fonksiyonel rRNA mevcuttur. Böylece, ecukaryotic hücrelerde çoğu genişler ribosomal genese bağlıdır bu da müthiş bir benzerlik sıklığı gösterir ve hatta phylogenetik taxa dahil olmak üzere. Bununla birlikte, iç alan bölgede (ITS-1 ve ITS-2) daha az homoloji bulunmuştur çünkü bu DNA bölgeleri yapısal RNA’ya katkıda bulunmaz. Bu nedenle, daha az secilmiş basınç uygulanmakta ve DNA sıklığı da farklı olmaktadır (müşterek nokta), aynı genusun türleri arasında bile bu bölgede elde edilmiştir. Bu ilişki rDNA datasındaki molekuler özellikler (Hayat ağaçi) çok faydalıdır ve yakın ilişkili türlerin ayırt edilmesinde kullanılır. Neurobiyolojide Polycladler Serbest yaşayan polyclad yassı solucanlarda Notoplana acticola gibi beyin ve peripheral sinir network araştırma halindeki en ilkelsinir sistemini sunar. Küçük ama iyi tanımlanmış beyin (sağ panel) ve uzun sinir ipleri ve çapraz hatlar tarafından çok sayıda dairesel motoneuronlarla bağlanmıstır. Bu sinir sistemi yassı solucanların cevresel değişimlerinin iç ve dış etkileri mümkündür. Yüzeysel olarak Netoplama articola’nin beyni diğer invertebratedekilere benzemesine rağmen hücreleri cok sayıda vertebrate özelliklerine sahiptir. Hücre tiplerinde tamamlanmış, dallanmış izlerle beraber çok şaşırtıcı farklılık vardır. Çok kutuplu neurone’ler yaygın tipik, iki kutuplu hücreler olarak ayırt edilebilir. Küçük çok kutuplu hücreler glial veya interneurones beyinde serpiştirilmiş olarak bulunmuştur (Keenaneld, 1981). Daha önceki çizimden çıkartıldığı gibi, bazı tabaka tarafından çevrilmiştir. Uzun sinir kordları ve neuronlar dairesel alıcı hücreleri bağlar (ocellinin fotoduyarlı hücreleri) beyinden direk olarak uzanırlar. Ventral sinir kordu dorsal sinir korduna nazaran daha kuvvetli gelişmiştir. Yassı solucanlar Sinirbiyolojisi araştırmaları, beyin araştırmaları açısından en mükemmel model sistemidir cünkü oldukça ince olup beyinleri birkaç mm büyüklüğünde yanlızca birkaç 100 – 1000 hücre içeriler ve deneysel çalışmalarda hazırlanmıştır. Son zamanlarda, çeşitli konular sinirselbiyoloji ve elektrofizyoloji ilgisi adreslenmiştir. Cytoarchitecture’in Analizi ve Sinirsel Bağlantılar Bu sayfadaki bilgilerin Powerpoint Sunumunu (ppt dosyasını) www.sunumbankasi.net adresinde bulabilirsiniz You can find the powerpoint presentation of this web page content at www.sunumbankasi.net Polyclad yassı solucanların beyinlerinin üç boyutlu yapısınin kontrolu için sinir hücreleri özel olarak boyanmıştır. Camillo Golpi (1843-1926) metoduna göre yürütülmüştür (20. yüzyil biyologlar tarafından bilinenlerden en iyisi). Florosan boyaları kullanılarak ic hücrelerdeki iontofarlar ile beyin içindeki sinir konfigürasyonu araştırılmıştır. Bu deneysel yaklaşımda, Koopwitz ve arkadaşları (1966) tarafında belirlendiği gibi, Notoplana articula’nin örneği aneztezi edilmiştir. Sonuç olarak, sinir sistemi dakika cubuğu ve aletleri kullanılarak belirlenmiştir. Beyin örtüsü protesae sindirimi ile ortadan kaldırıldı, beyine ve ganglion hücrelerine direk girebilmek için tek sinir hücrelerinde ultra ince cam mikroelektrot tekniği kullanılmıştır ve lucifer yellow gibi florosan boya ile doldurulmuştur. Enjekte edilen boya hücre içinde sağa doğru axonların ucuna kadar göç etmiş ve florosan mikroskopta izlenmiştir. Laser taramalı florosan mikroskobu kullanarak digital data serili iki-boyutlu resimlerden üç-boyutluya çevrildi ve mümkün olan polyclad beynindeki sinirsel cytoarchhitecture gelişmeler harita haline getirilmiştir. Sinir Tamir ve Sinirsel Plastisite Çalışmaları Şimdiye kadar incelenen bütün invertebrate ve vertebrate türlerideki çalışmalara göre, Notoplana acticola beyin dokusu yeniden üretemez. Bununla birlikte, sinirsel tamir hızlı ve yüksek oranda elverişlidir. Polyclad beyni yassı solucana taşındığında yeni bağlantılar organ nakli edilen beyin ile dairesel network sinir alıcı uçları ameliyattan 24 saat sonra tesis edilmiştir. Bunun gibi organ nakli deneyler Davies ve çalışma arkadaşları (1985) tarafından tarif edilmiştir. Deneylerde dört beyin organ nakli oryentasyonu; normal, ters, ters yüz, ve ters ters yüz olmak üzere kullanılmıştır. Beyin organ naklinin fonksiyonu test edildi ve her iki davranış ve elektrofizyolojik kriterler olçülmüştür. 23 gün içinde, organ naklinin 56% si solucan ve diğerleri organ naklinin iyileştirilmesindeki doğru davranış, kaçınma dönüşü, ditatix hareket, ve beslenme gibi dört davranışta test edilmislerdir. Beyindeki mevcut sinirler kendilerine en yakın dairesel sinirlerle birleşirler. Ameliyattan 36 sonra bazı normal davranışlar gözlenebilir. Kontrol eksikliği olan yassı solucanlar organ nakli olmadan davranışlarını kurtaramazlar. Birkaç beyin davranışında hücre içi kayıtlar da dairesel sinir hücreleri ile uygun bağlantılar yeniden kurulmuştur. Bu sinirlerdeki boyanmış hücreler ters oryentasyonlu beyin ortaya çıkarmıştır, bireysel sinir hücre işlemlerinin beyini terketmesinden sonra uygun olmayan bir şekilde sinir kordu ile ilişki kurmakta olup, bazı işlemlerde 180 0 li sinir kordu , ki onlar normal olarak yerleşen operasyona maruz kalmamış solucanlardır (Davies vd, 1985). Molekuler temeli ve yeniden bağlanan belirgin sinirleri ortaya çıkarmak çok ilginçtir. Konakladığı hayvanın davranışında bazı bilgiler çok önemlidir, paraplegia veya kazadan sonra sinir sisteminin ciddi olarak yaralanması gibi. Dağıtım ve Buluş Polycladler boyutları, renk örnekleri, sıvı içindeki hareketleri nedeniyle SCUBA dalgıçları tarafından tesbit edilebilirler. En yaygını, gün esnasında onlar resif eğimlerin dışında, üzerinde veya uçlarında görülebilirler. Onlar yarıklarda, kaya altlarında, bazende çıplak sedimentlerde veya çamurlu tabakalarda bulunurlar. Bazı türleri resif sırtlarında yüzerken görülmüşlerdir. Polycladler tercih ettikleri yiyeceklerin üstünde veya yanında dinlenirler çok nadiren de olsa süngerlerin veya koloni ascidianlarin üzerinde , çoğu resif sırtında çok iri çakılların altında bulunmuşlardır. Crytic türleri çok ender bulunurlar çünkü kendilerinin normal hayatları zamanında yeraltında karışmışlardır. SCUBA dalgıçlarına ve UW fotoğrafçılarından ilgi duyanlara polyclad türlerini bulmak için çakıl altlarında ve çoral taşlarının etrafında bulabileceklerini tavsiye ederiz. Şans ve sabırla polyclad türleri bulunabilir. Bununla birlikte, bu hassas solucanlara dikkatlice değmek ve ele almak gerekmektedir. Polycladler stress altında kendi-kendini imha etme özellikleri vardır. Onlar otoliz, mukoz parçalarını kirarlar veya buruştururlar ve daha sonra yapılacak incelemeler için fotoğraf çekilmesini imkansız hale getirirler. Bununda ötesinde, kendi belirgin renkli örneklerini kaybederler. Bu nedenle çoğu fotoğraflar mümkün olduğu kadar onlari yaşam yerinden rahatsız edilmemelidir.Yeni türlerin tarifi, örneklerin toplama, koruma, ve detaylı çalışmada, tamirde özel teknikler mümkündür. Polyclad’e ilgi duyan dalgıçlar yeni türlerin tanımlanmasında katkıda bulunacakların Dr.Leslie Newman ile kontak kurmaları (Schooling Resource Science and Management, Southern Cross University, P.O. Box 117, Lismore, NSW, Australi 2480) çünkü kendisi tamir ve koruma konusunda güvenilir metod geliştirmiştir. Leslia şimdi Indo-Pacific polycladlar üzerinde çalışmaktadır. Dünya capında 350 tür içeren database ile onların besin ve üremeleri hakkında bilgi vermektedir. Oya Bezen Çakın Halkalı solucanlar (Annelida) Polymera olarak da bilinir. Segmentleri dıştan belirgin olarak görülen bir omurgasız hayvanlar şubesidir. Deniz, tatlı su ve karalarda yaşarlar. Vücut uzun ve segmentlidir. Vücut segmentler septum adı verilen bölmelerle birbirlerinden ayrılmıştır. Baş bölgesine prostomium, posterior uca ise pigidium adı verilir. Prostomium ile pigidium birer segment değildirler. En yaşlı segment başın hemen arkasındaki segmenttir. Çeşitli organlar her segmentte tekrarlanır. Protostome grubuna dahillerdir. Gerçek sölom bulunur. Sölomları şizosöl (Schizocoelous) tiptir. Boşaltım organları segmental sıralanmış nefridium’lardır. Vücudun ön ve arka uçlarındaki birkaç segment hariç, her segmentte bir çift nefridium bulunur. Vücut yüzeyi ince esnek kutikula ile kaplıdır. Bazılarında kitinden kıllar bulunur. İp merdiven sinir sistemi gelişmiştir. Prostomiumun sırt tarafında iki loplu bir beyin gangliyonu vardır. Duyu organları kimyasal duyu organları ve gözlerden ibarettir. Kapalı dolaşım sistemi bulunur. Annelidler hermafrodit hayvanlardır. Gonadları gayet basit yapılıdır. Rejenerasyon özellikleri çok iyi gelişmiştir. 9 bin türü bulunur. Bir kısmı mikroskobiktir. Yuvarlak solucanlar (İpliksisolucanlar) ya da Nematodlar, yuvarlak yapıda, sayıca Dünya üzerinde en fazla bulunan omurgasız hayvan şubesidir. Hayvan ve bitkilerde önemli zararlara neden olan birçok türü vardır. Yalancısölomları bulunur. Vücutları uzamış, silindirik, bilateral simetrilidir. Dünya üzerinde çok değişik yaşam yerlerine uyum sağlamışlardır. Bazıları serbest, bazıları parazitik yaşar. Marin nematodları, hayvan parazitleri, insan parazitleri, karasal nematodlar olarak gruplandırılırlar. Yuvarlak solucanlar, anatomik ve morfolojik olarak basit yapılı canlılardır. Boyları 0,25 mm – 3 mm, çapları 1-20 µ arasında değişir. Yüksek yapılı hayvansal organizmaların sahip olduğu bazı sistemlere sahip değildirler. Ör. solunum, dolaşım ve iskelet sistemi yoktur. Sinir ve boşaltım sistemleri ise çok basit yapılı hücre gruplarından oluşmuştur. En gelişkin sistemleri sindirim ve üreme sistemidir. Üreme [eşeysiz) olmakla beraber birçok türde besin konukçu varlığı ve çevre şartlarının uygun olduğu zamanlarda üreme partenogenetik (döllemsiz) olarak dişinin dişi birey içeren yumurta bırakması şeklinde olur. Böylece kısa sürede populasyonları artar. Erkekler populasyon içinde çok düşük oranda bulunurlar ve çevre şartlarının iyileşmesiyle dayanıklı yumurtaların oluşmasını sağlarlar. Bitki parazitleri, bitkilerin kılcal köklerinde ve kök-büyüme konisi (uç kısmı)nde styletlerini doku içerisine batırarak buradan bitki öz suyunu emerler. Nematod türüne ve yoğunluğuna bağlı olarak bitkilerde gelişme geriliği, solgunluk ve verimde azalmaya neden olurlar. Endoparazit, yarı-endo parazit ve ektoparazit olarak beslenirler. En zararlı grup, kök sistemine en çok zarar veren endoparazitlerdir Örn. kök-ur nematodları.    

http://www.biyologlar.com/solucanlar-platyhelminthes-yassi-anelida-halkali-aschelminthes-yuvarlak-solucanlar

PREPARAT BOYAMA TEKNİKLERİ VE BOYALAR

Belki de alınmamaktadır. Negatif boyamada yapıların şekilleri boyanın penetre olrnasından değil boya ile çevrelendiğinden gösterilmektedir. Bazen boyalar yenir. Daha kusursuz olarak, boya reaktifleri organizmanın fizyolojik aktivitelerine bağlı olan değişik yollarla canlı hücre içine alınabilir. Bu ise vital boyama ve supra-vital boyama olarak adlandırılır.Daha da genellersek, boya alınımı, boya-doku veya reaktif-doku affiniteleri nedeniyledir. Bazı doku kompenentlerinin bazı boyalar için yüksek bir affiniteye sahip olduğu söylendiğinde, spesifik kullanım şartlarında-kompenent yoğun olarak boyanacaktır. Öte yandan dokuya boyayı bağladığı düşünülen Coulomb, hidrojen bağı ve diğer bağlar gibi çekici kuvvetleri de açıklamak için de kullanılmaktadır. Bu yüzden affinite, bir boya maddesini boya banyosundan bir kesite transfer olma eğiliminin bir ölçümü olarak düşünülebilir ve affinitenin önemi (büyüklüğü), bu prosese eklenen veya engellenen her faktöre bağlıdır. 1-VİTAL BOYAMA Canlı hücreler, boyama sıvılarındaki ayrışma ile (supra-vital boyama) veya canlı organizma içine boyanın enjeksiyonu ile (intra-vital boyama) boyanabilirler. Bu yöntemler, tespit edilmiş dokudan alınan kesitlere uygulanmaz. Fakat boyanmış kesitlerin karşılaştırılmasında değerli bir kontrol olarak kullanılabilirler. Canlı hücrelerin boyanması için ilk uygulama, önce metilen blue'yu (l887), daha sonra nötral red'i (l894) kullanan Paul Ehrlich' ten gelmiştir. Vital boyamada önce sitoplazmik yapılar ortaya konur. Canlı hücrelerin çekirdek zarı boyalara geçirgen değildir ve canlı çekirdeği boyamak mümkün değildir. Trypan mavisi ile makrofaj sistem hücrelerinin vital boya ile gösterimi, sitoplazmik fagositoza bir örnek oluşturur. Bu boya kolloidaldir. Çini mürekkebi gibi ince süspansiyonlar, Makrofaj Sistemi hücreleri ve diğer hücrelerce fagositik kapasiteleri ile alınmaktadır. Hücresel bileşenlerin gerçek vital boyanması, mitokondrilerin Janus green ile gösterilmesidir. 2-SEÇİLEN ÇÖZÜNURLUKLE BOYAMA Su, hücrenin her tarafında geniş olarak dağıldığı için sulu boyalar uygun değildir ve boyama çok gevşek olacaktır. Dokularda çözünen maddeler ''Lysochrom'' lar olarak bilinmektedir. Hemen hemen tüm lysokromlar lipidde çözünür ve doku kesitlerinde lipidlerin gösterimi için histolojide kullanılırlar. Yağ damlacıkları, eğer boya yağda alkolden daha çözünürse, alkolik solusyonlardaki (sıklıkla % 70' lik) boyalarla seçici olarak renklenirler. Solusyonla başarılı histolojik boyama esas olarak yağ boyaları ile sınırlandırılmıştır ve lysokromlar, parlak renkli, lipidlerde yüksek çözünür olmalı ve seçilen tercihli çözünürlükler hariç diğer hücresel yapıların hiçbirine affinitesi olmamalıdır. 3-DOKULARDAKİ RENKLİ MADDELERİN KİMYASAL URUNLERİ İLE BOYAMA Bazı boyama yöntemlerinde, doku kompenentleri ile reaksiyona girip renkli maddeler üretecek soluk veya renksiz solusyonlar kullanılır. Bu reaksiyonların sonunda oluşan renkli ürünler ya gerçek boyalar veya boya olmayan renkli kimyasal ürünlerdir. Birinci gruba örnek olarak PAS reaksiyonunda kullanılan Schiff reaktifi ve Feulgen reaksiyonu verilebilir. Saman renkli veya renksiz solusyon, dokulardaki aldehitlerin varlığı ile mor renge dönüşür. Histokimyasal reaksiyonların ikinci grubu renkli olan fakat bir boya olmayan final ürününe sahiptir. Reaksiyona örnek olarak demirin gösteriminde kullanılan Perls' reaksiyonu verilebilir. Potasyum ferrosiyanid, potasyum ferric ferrosiyanid (prusya mavisi) oluşturmak için demir iyonları ile birleşir (+3 değerlikli Fe). Bu basit bir kimyasal reaksiyondur. Ürün olan Prusya mavisi bir boya değildir ve boya olarak kullanılmaz. Fakat görülebilen, koyu boyanmış çözünmeyen bir birikimdir. Dokuların böylesi renklendirilmesinin bir diğer değişik tipi enzim histokimyasında görülmektedir. Enzimler, renkli son ürünler oluşturmak üzere kimyasal substratlarla birleşmezler ya enzim aktivitesi olan alanlarda substratları renkli maddelere dönüştürerek ya da iki basamaklı bir reaksiyonda renkli bir bileşikle yer değiştirebilecek renksiz bir ürün oluşturarak substratları üzerine etki yaparlar. Renkli bir final reaksiyon bileşiği üretimi ile ilgili tüm bu yöntemlerin sonuçları benzerdir. Reaksiyonun yoğunluğu, dokulardaki aktif reaktifin miktarı ile orantılıdır. Histolojik kesitlerdeki bu kimyasal reaksiyonların başarısı, aktif hücresel yapıların hücre içindeki orijinal yerlerinde ve orijinal konsantrasyonlarında korunmasına bağlıdır; glikojen veya enzimler gibi stabil olmayan maddelerin kaybından kaçınmak için özel önlemler alınmalıdır. Ayrıca son ürünler opak veya koyu boyanmış olmalıdır. 4-METALİK ÇÖKTÜRME Bazı metalik bileşikler dokular tarafından opak, genellikle siyah birikinti oluşturarak metalik duruma indirgenebilirler. Kolayca indirgendiğinden ve depo edilmiş gümüş stabil olduğundan Ag(NH3)20H çözeltileri histoloji için çok uygundur. Melanin gibi tyrosin türevleri ve intestinal bezlerin Kultschitzky hücre granüllerinde bulunan fenolik bileşikler, görülebilen birikinti oluşturmak üzere Ag(NH3)2)OH’ı indirgeme kapasitesine sahiptir. Bu tip hücreler arjentaffin hücreler bilinirler. (Ag(NH3)2)OH’ ı direkt olarak indirgeyemeyen fakat bunu dışarıdan ilave edilen bir indirgeyicinin eklenmesi ile gerçekleştiren hücreler argirofil hücreler olarak bilinir. Metalik çöktürme aynı zamanda fibrillerin gösterilmesinde kullanılan standart bir yöntemdir. Sinir fibrilleri ve retiküler fibriller gibi diğer fibril1er Ag(NH3)2OH ile birleşirler ve bu transparan indirgenmemiş gumüş, bir fotografik developer tarafından veya tekniğin ikinci basamağındaki diğer bazı indirgeyici ajanlar tarafından opak metalik gümüş olarak fibril1er üzerinde birikebilir. Metalik çöktürme ile boyama, dokulardaki indirgeyici ajanlar yeterli güçte ise tek basamaklı bir teknik olabilir. Fakat fibrillerin impregrasyonla gösteriminde, argirofil hücrelere benzer olarak genellikle iki basamaklı indirgenmeye gereksinim olacaktır. Hassaslaştırıcı ajanların ve gümüş yöntemlerinin varyasyonlarını kullanarak, birçok hücresel yapı, pigmentler, spiroketler ve funguslar metalik impregnasyonla gösterilebilir. 5-DOĞAL VE YAPAY BOYALARLA BOYAMA Boyama tekniklerinin büyük bölümü bu gruba girmektedir. Ticari boyalara ait bilgilerin histolojiye aktarımı, dokularla boya kombinasyonları ile ilgili birçok faktörü anlamamıza yardım etmiştir. Histolojide Kullanılan Boyalar Histolojide iki tip boya kullanılmaktadır. Bunlar: a-Doğal boyalar b-Yapay (sentetik) boyalar dır. Doğal Boyalar: Örnek/ Carmin ve Hematoksilendir. Carmin boyası, Orta Amerika sulak ormanlarında yaşayan Dactylopius cacti türü dişi böceğin (kırmız böceği) kurutulmuş gövdelerinden elde edilir. Carminik asit, kırmız böceğinin suda kaynatılması ile ve kimyasal saflaştırmayı takiben ekstre edilmesi ile elde edilmektedir. Kaba form olan Carmin, kırmızın potasyum alimunyum sulfatla çöktürülmesi ile hazırlanır. Hematoksilen ise Meksika'dan orijin almış ve Jamaika'da ıslah edilmiş Haematoxylen campechianum türü küçük bir ağacın tahtalarından ekstrakte edilmektedir. Hematoksilen histolojide en çok kul1anılan boyalardandır. Hematoksilenin doğal formunun boyama yeteneği çok azdır veya yoktur. Bu nedenle ya hava ile temas ederek doğal yoldan ya da sodyum iodat veya mercuric oksit gibi oksitleyici ajan kullanarak kimyasal yoldan hemateine okside olması gerekmektedir. Yapay Boyalar: Kömür-gaz endüstrisinde kömürden elde edilen organik bileşiklerdir. Son yıllarda petrol yağları önemli bir alternatif kaynak haline gelmiştir. Benzen, toluen ve naftalin gibi hidrokarbonlar; fenol ve cresol' ler gibi fenoller primer ürünlerdir. Yapay boyaların büyük bir bölümü üç olası alternatif yapısal formülü bir türevli moleküldür (Şekil ) a-Benzen b-Quinone c-Anilin Resonans, ışığın absorbsiyonu ve renk oluşumu ile ilgilidir. Benzen renksiz bir bileşik olmasına rağmen, ultraviyole bandında bir absorbsiyon bandına sahiptir ve eğer gözlerimiz ultraviyole ışığa duyarlı olsaydı benzen renkli görünecekti. Benzenden renkli bir bileşik yapmak için, bazı kimyasal değişiklikler yapmaya gereksinim vardır ve renk oluşturan kimyasal konfügirasyonlar "kromofor ‘ lar olarak bilinmektedir. Üç esas tip chromofor vardır (Şekil ). Bunlar: l-Quinonoid halka (genellikle paraquinonoid, bazen orto-quinonoid) 2-Azo-eşlenme 3-Nitro-gruplanma, NO2 d-Nitro-gruplanma(nitrobenzen) QİNONE, sarı renkte, önemli bir kromofor içeren bileşiktir. Daha kompleks organik bileşiklerde bir quinonoid halkanın bulunuşu, parlak daha koyu renkler oluşturur. Kromoforları içeren bileşikler ' Kromojen' ler olarak bilinirler. Dokuları ve kumaşları renklendirirler. Oluşan renkler sabit değildir ve basit solusyonlarda yıkama ile kolaylıkla uzaklaşabilirler. Kromojenler solusyonlarda moleküller oluşturarak çözünürler. Halbuki tatmin edici boyalar iyonlar şeklinde çözünürler. Bir kromojeni gerçek bir boyaya çevirmek için iyonize edici bir grubun ortama verilmesine gereksinim vardır.Bu iyonlaştırıcı gruplar ''auxokrom'' lar olarak bilinirler ve rengin yoğunluğunu artırırlar. Auxokromlar ya asidik veya baziktirler ve tüm molekülün boyanma hareketini belirleyen boya parçalarıdır.En önemli bazik auxokrom, amino-qrubu (-NH2) dur. Boya endüstrisinin temelini oluşturan anilin halkayı içeren boyalar (Şekil-c), histolojide birçok boyama tekniğinde hala kullanılmaktadır. Asidik auxochromlar ise şunlardır: sülfür grubu (-SO3)  karboksil grubu (-COOH)  hidroksil grubu (-OH) Bir boya bileşiği içeren asidik veya bazik auxokromların büyük bir bölümü, bazik (katyonik) veya asidik (anyonik) boya karakterlerinin gücünü belirler. Bir bazik ve bir asidik gruba sahip boyalar baziktir ve bazik grup predominanttır fakat asidik grubun varlığı ile boyama özelliği zayıflamıştır. Boyalar modifier ' ler olarak adlandırılan ve boyanın rengini değiştirme etkisine sahip ek kimyasal gruplar içerirler. Bunlar metil (-CH3) veya etil (-C2H5 grupları olabilir ve boyanın rengini daha belirginleştirirler. Rosanilin, pararosanilin' den rengi biraz daha mavi yapan bir metil grubuna sahip olması ile ayrılır. Eğer bazik amino-auxochromların hidrojenleri metil veya aril grupları ile yer değiştirirse, boya daha mavi olur. Kristal viyole birden fazla modifiere sahip boyalara örnek olarak verilebilir. Şöyleki, bir koromofor ile renklenmiş ve bir auxokrom ile iyonize edilmiş organik bileşikten oluşmuş bir boyanın final rengi, bir modifier ile değiştirilir veya kuvvetlendirilir. Örnekler aşağıda verilmiştir. QUİNONOİD BOYALAR: Asit ve bazik fuksin Krista1 viyole Anilin blue Eozin Thionin Metilen blue Nötral red Doğal boyalardan hematein ve karminik asit AZO BOYALAR : Küçük bir boya grubudur . Orange G Congo Red Trypan blue NİTRQ BOYALAR :En küçük boya grubudur. Pikrik asit (trinitrofenol) Aurantia a-Quinoid boya (hematein) b-Azo boya (Orange G) c-Nitro-boya (Pikrik Asit)

http://www.biyologlar.com/preparat-boyama-teknikleri-ve-boyalar

BİTKİ ANATOMİSİ ÇALIŞMA NOTLARI

1-Çimlenmekte olan bitkinin besin gereksinimi kotiledonlarda yada özel dokularda depolanan besinlerden sağlanır. 2-Kök ve gövdenin büyümesi büyüme noktalarındaki meristamatik dokuların yeni hücrelerin oluşması ve büyüme ve farklılaşması ile olur. 3-Yapraksız ve köksüz yapraksı yapıya tallus denir.Bu tür bitkilere detallafita gurubu denir. 4-Tohumlu bir bitki dallanmış eksen içeren bir yapı gösterirse yaprak kök ve gövdeden oluşan yapıya kormus denir.Bu tür bitkiler kormofita gurubuna girer. 5- Kök ve gövdenin oluşturduğu başlangıç büyüme genel olarak pirimer büyüme ,bu tip büyüme ile oluşan bitki yapısınada pirimer bitki yapısı denir. 6-Vaskular kambiyum dışa doğru sekonder fulemi içe doğru sekonder ksilemi oluşturarak kök ve gövdenin çapının artmasına neden olur.Buna ek olarak mantar kambiyumu da fellogen de genişleyerek eksenin çevresel bölgesinde gelişir ve peridermi oluşturur. 7-kök ve gövdeyi oluşturan yapılar dıştan içe doğru epidermis,korteks,iletim demetleri ve öz dür. 8-Sekonder çeperde bulunan lignin,süberin,tanen,organik tuz ve diğer maddelerin yapıya katılması hücreye sertlik verir. 9-çeper maddesi üst üste tabakalar halinde birikir buna aposisyon büyüme denir.Bu büyüme iki şekilde olur biri dıştan hücre lümenine doğru sentripetel diğeri lümenden uzaklaşacak yönde sentrifugal şeklinde olur. 10-Çeperin yüzeysel büyümesinde mikro fibriller birbirinden ayrılır ve oraya yeni maddeler girer bu büyüme ıntususepsıyon denir.Bu tip büyüme sırasında çeperin gevşeyip yeni maddelerin katılaşması oksin,turgor basıncı,proteın sentezi ve solunum işbirliği ile düzenlenmekte ve hücre protoplastının etkinliği ile yakından ilgilidir. 11-Basit geçit parankima,kenarlı geçit trakeit ve yarı kenarlı geçit ise trake ve parankima arasında bulunur. 12-Kenarlı geçitlerde geçit zarının orta kısmında kökeni primer olan kalınlaşma olur buna torus denir.Torusun etrafındaki ince kalan bölgeye margo denir. 13-İkiden fazla hücrenin bağlandığı köşelerde başlayan boşluk diğer çeper kısımlarına kadar yayılır bu hücre arası boşluk tipine şizogen boşluk denir. 14-Kimi hücre arası boşluk sisteminde bir veya daha fazla hücrenin grup halinde erimesi ile oluşur bu tip boşluklara lisigen boşluk denir. 15-Şizogen ve lisigen boşlukların bir arada bulunmasına şizo-lisigen boşluk denir. 16-Bitkileri hayvanlardan ayıran özellik meristemlerinin olmasıdır. 17-Aynı görevi üstlenmek için bir araya gelmiş hücre topluluğuna doku denir. 18-Kök,gövde ve bunların uç kısımlarında bulunan meristem apikal (uç) meristemdir. 19-Monokotillerin internodyumlarının alt kısmında ve yaprak kılıflarında görülen meristem interkalar (ara) meristemdir. 20-Bulunduğu organın ana eksenine paralel seyreden meristem lateral (enine,yanal) meristemdir. 21-Meristemlerin özellikleri:plazmaları yoğun,boyutları ve vakulleri küçük,ergastik madde yok,nükleusları büyük,protein sentezi yoğun,çeperleri incedir. 22-Apikal hücre kuramı Nageli 1878 tarafından ortaya atıldı. Bu kuram ilkel yapılı bitkiler için kullanılır. 23-Histogen kuram Hanstein tarafından ortaya atıldı.Bu kuram tohumlu bitkilerinbüyüme noktalarının açıklanmasında kullanılır. 24-Tunika korpus kuramı Schmldt in tarafından ortaya atıldı.Bu kuram yapraklı sürgünlere uygulanır 25-Histogen kuramdan vazgeçilip tunika-korpus kuramı uygulanmasının sebebi: -periblem ile ploron arasında geçiş zonu belli değil -değişik insiyallerden oluşan olgun dokuların önceden belirlenmemiş olması 26-Vaskular kriptogomlarda çevrelerindeki hücrelerden kolayca ayırt edilebilen bir veya birkaç hücre vardır.Şayet tek hücre varsa tepe hücresi,birden çok hücre varsa tepe insiali denir 27-Gymmosperlerde tepe meristemi hücre guruplarına göre bölünme ihtiva eder.En dışta antiklinal ve periklinal yönde bölünme vardır 28-Gymnosperlerde 3 tür gruba ayrılır:Cycas,Ginko veCrypto,Meria-Abies tipi olmak üzere 29-Cycas tipi gymnosperm 3 tabakadan oluşur.Yüzey meristemi epidermisi oluşturur.Rib meristem öz bölgesini oluşturur,çevresel meristem korteks,kombiyum ve yan tomurcukları oluşturur 30-Ginko tipi meristemin cycas tipi meristemin özelliklerinden başka kombiyum benzeri geçit zonu vardır 31-Cryptomerin-Abres tipinde kambiyum benzeri geçit zonu yoktur 32-Angiospermlerde opuntia ve normal angiosperm tip olmak üzere iki tiptir. 33-Opuntia tipinde yüzey meristemi yerine tunika vardır.Zip çevresel meristem vardır.Kambiyum benzeri geçit zonu vardır 34-Normal angiosperm tipinde kambiyum benzeri geçit zonu yok 35-Gymnosperlerde kök iki tabakadan oluşur.Tunika-korpus Angiospermlerde kök ucu 3 tabakadan oluşur: Dermotojen,periklem ,ploron.Monokotillerde kök ucu 4 tabakadan oluşur:Dermotogen,periklem,ploron ve kaliptra. 36-Bitkinin sürgün ucundan kök ucuna kadar uzanan dokuya parankima dokusu denir. 37-Parankima çeşitleri Asimilasyon,depo ,su deposu,iletken doku ve havalandırma parankimalarıdır. 38-Hücre çeperi mantarlaşmamış örtü dokular Epidermis, stoma ,tüyler ve su savaklarıdır. 39-Epidermisin görevi: -Desteklik sağlar -Terleme yapar -Mekanik koruma sağlar -Su ve kimyasal madde depo eder -hücrede buruşmuş kısımları yeşertir 40-Gölgede ,suda yetişan bitkilerde ve eğrelti otlarında epidermis bulunmaz. 41-Stomalarda üretilen şeker stomanın su emme kuvvetini arttırır ve komşu hücrelerden bekçi hücrelere su girişi olur ve stoma açılır 42-Akşam stomalardaki şeker nişastaya çevrilir ve stomanın emme kuvveti azalır.Bekçi hücrelerinden komşu hücrelere su ve nişasta çıkar stoma kapanır. 43-Stoma orabanche bitkisinde inaktif halde bulunur.Kökte klorofilsiz ,bazı kara bitkilerinde ve parazitik bitkilerde stoma bulşunmaz. 44-Tüy çeşitleri korunma,savunma,tırmanma,emme,salgı ve emergenslerdir. 45-Kök tüyünü oluşturan epidermis hücrelerine trikoblast denir. 46-Sekonder kalınlaşmayla kök ve gövdede epidermisin yerini alan sekonder orjini koruyucu doku peridermdir. 47-periderm fellem,fellogen ve fellodermden oluşur. 48-periderm de gaz alış-verişini sağlayan yapılara lentisel denir. 49-Bitkinin bir yerine dış tesirle bir yaralanma olduğunda yaralanıp ölmekte olanhücreler,saldıkları hormonlarla civarındaki sağlamhücrelere bölünme kabiliyeti kazandırırlar bu olaya yara mantarı veya yara kambiumu denir. 50-Epidermiste bulunan stomanın altına isabet eden bölgede mantar doku teşekkül edecekken yerine seliloz çeperli parankima hücreleri oluşur bu dokuya komplimenter denir. 51-Destek doku sklerankima ve kollenkima hücrelerinden oluşur. 52-Sklerankima lifler ve taş hücrelerine ayrılır. 53-Lifler meristematik hücrelerden taş hücreleri parankimatik hücrelerinin olgunlaşmasıyla oluşur. 54-Sklerankima yaprağın dik durmasını ve kök kıvrılma yaptığında kırılmamasını sağlar. 55-Sklerankima ve kollenkima dokularının ikisine birden sferom denir. 56-İçeriği büyüklüğü ve şekilleri farklı olan hücrelere idioblast hücreler denir. 57-Dikotiledonlarda sklerankima lifleri yumuşaktır monokotiledonlarda serttir. 58-Kollenkima hücreleri köşe,levha,boşluk ve annular kollenkima diye ayrılır. 59-Monokotıledonlarda kollenkima bulunmaz bunlarda sklerankıma vardır. 60-Kollenkima hücreleri büyümekte olan genç bitkilerin gövde ,yaprak,köklerinde ,çiçek organlarında ve meyvalarında bulunur. 61-Köşe kollenkimasında kalınlaşma köşelerde olur Levha kollenkimasında kalınlaşma bir kenardadır (alt-üst) Boşluk kollenkimasında kalınlaşma hücre arasıboşluğa bakan kenardadır Annular kollenkimasında kalınlaşma hücre lümeni bir daire yapısındadır. 62-İletim doku elamanları floem ve ksılemdir. 63-Ksılem elamanları trake,trakeıd,ksılem sklerankıması ve ksılem parankımasıdır. 64-Floem elamanları eleklı boru hücreleri,arkadaş hücreleri,floem sklerankıması ve floem parankımasıdır. 65-Kökte oluşan ksılemlerden ilk oluşan protoksılemdir.Bunun üzerine daha sonra oluşana meta ksılem denir. 66-Ksilemin görevi:köklerden aldığı su ve mineralleri gövde ve yaprağa iletmektir. 67-Floemin görevi:yaprakta oluşan organik maddeleri diğer organlara iletmektir. 68-Ksilem elamanlarından trake,trakeıd ve ksilem ksilem sklerankiması desteklik verir.Ksilem parankiması depo görevi görür. 69-Trake üst üste gelmiş aradaki bölme zarları erimiş bir çok hücrelerden gelişmiş,geniş ve açık borulardır.Bunda perferasyon tablası iletimi sağlar. 70-Trakenin çeper sonlarında bazende yalnız bir tarafta bir yada birkaç delik içerirler.Delik taşıyan hücre çeper kımına perfarasyon tablası denir. 71-Vaskular farklılaşmanın başlangıcında oluşan dokuya protoksılem denir.Bu dokudan oluşan doku ise metaksilemdir. 72-Gymnospermlerde sadece trakeid bulunmasının sebebi ilkel yapıda olmasıdır. 73-Öz kolunu görevi öz bölgesi ile korteks arasında iletimi sağlamaktır. 74-Çeperlerin yırtılması sonucu parankima hücrelerinin içe doğru girmelerine tilosis denir. 75-Primer floem prokambiyumdan oluşur.Sekonder floem kamiyum üretir. 76-Eğrelti otu ve gymnospermlerde arkadaş hücreleri yoktur.Bunun yerine protein yapısında albuminli hücreler bulunur. 77-Salgı maddelerinin dışarı atılmaması sekresyon dışarı atılmasına ekresyon denir. 78-Dış salgı sistemi hidatot,nektaryumlar,enzim bezleri ve ozmoforlardır. 79-Gutasyon suyun sıvı şekilde hidatottan atılması olayıdır. Nektaryum şekerli öz suyu salıp böcekleri kendine çeker tozlaşmayı sağlar Osmofor bitkilerin koku yaymasını sağlar ,bitkiye çekicilik verir, tozlaşmayı sağlar Enzim bezi böcek kapan bitkilerde sindirimi sağlar 80-Lateks denilen beyaz veya sarımsı renkte oldukça viskos bir sıvı içeren hücre veya birleşmiş hücre serilerine latisifer denir. 81-Protoderm ,epidermisi oluşturur. 82-Temel meristem,öz,öz ışını,korteks’i oluşturur. 83-Kütinizasyon,epidermis hücrelerinin üst çeperine kütin katılması olayıdır.(seluloz+kutın=kutinizasyon) 84-Antogenetik,embriyodan itibaren olan değişim. 85-Filogenetik,eski atadan bugüne kadar olan değişim. 86-İdioblast,bulunduğu dukudaki hücrelerden şekil,içerik ve büyüklük bakımından farklı hücrelere denir. 87-Anostomoz,ağız ağıza yada uç uça gelen hücrelerin çeperlerinin erimesiyle oluşan boşluklar. 88-Kallus,callose denen d-glukozdan yapılmışbir polisakkarit olup iletimi düzenler. 89-Fillatabi,yaprakların gövde üzerinde diziliş tarzını inceleyen bilim dalı. 90-Merkezi silindir,korteksin son tabakası olan endodermisin altında merkeze kadar olan kısım. 91-Perisikl,merkezi silindirin en son dış tabakasını oluşturan tek sıralı hücrelerden oluşmuş yapı. 92-Hadrosentrik,içte ksılem ve dışta halka şeklinde floem olan iletim demeti şekli. 93-Leptosentrik,içte floem dışta ksilem bulunan iletim demeti şekli. 94-Özışınlar,merkezi silindirdeki iletim demetleri arasındaki boşlukları dolduran parankimatik kısımlara denir. 95-Radikula,embriyonun kökü oluşturacak kısmı. 96-Plumula,embriyonun gövdeyi oluşturacak kısmı. 97-Fragmoplast,orta lamel gelişimine bölündükten sonra başlar,başlangıçta ipliksi oluşumlar halindedir.Buna “fragmoplast” denir. 98-Plastite,hücrenin şekil ve boyutuyla değişikliğe uğrayarak zamanla biçimsizleşip farklı şekillerde kalarak hacminin sürekli olarak artması. 99-Elastite,biçimsizleşmeden sonra hücrenin özgül şekil ve boyutuna geri dönmesi. 100-Tilosis,çevrelerindeki parankima hücreleri tarafından trakelerin kapatılması olayına denir. 101-Adventif kök,canlı parankima hücrelerinin bölünmesiyle oluşan köke denir. 102-Trikoblast,kök epidermisinde emici tüy yapıcı epidermis hücrelerine denir. 103-Velamen,monokotiledonlarda çok tabakalı epidermise denir. 104-Caspari şeridi,genç köklerde endodermis hücrelerinin yanal ve ışınsal çeperlerinde ince şerit halinde kalınlaşmalar görülür.Buna”caspari şeridi” denir. 105-Diark,kökte görülen 2 kısılem kollu ışınsal iletim demetine denir. 106-Mikoliza,bitki köklerinin özel mantarlarla oluşturduğu simbiyotik birliğe denir. 107-Kotiledonlar(ilk yapraklar) tohumda ilk gelişen yapraklardır.B esin depo ederler. 108-Bifasiyel yaprak,belirgin bir palizat ve sünger parankiması ayırt edilen yapraklara denir. 109-Unifasiyel yaprak, belirgin bir palizat ve sünger parankiması ayırt edilemeyen yapraklara denir. 110-Demet kını,bazı bitkilerde iletim demetinin etrafında özel kloraplastlı nişasta depo eden bir sıralı hücre topluluğuna denir. 111-Hovstoryum,parazit bitkilerin konak canlıya saldıkları köklere verilen isim. 112-Yan köklerin orjini perisikl , tüylerin orjini epidermistir. 113-Kökten gövdeye geçiş bölgesine “chipolotil” denir. 114-Trakelerde yaralanan yerlere trakenin içine girerek kapatan yapıya “flosis” denir. 115-Çöl bitkilerinin yapraklarında nektaryum bulunur. 116-Hücre çeperinde meydana gelen mantarlaşma süberinleşme sonucudur. 117-Dermotojen deri dokularını veren tabaka 118-Sekonder kalınlaşma ve odun oluşumu gymnospermlerde ve dikotillerde görülür.Monokotıllerde normal kalınlaşma görülmez. 119-Trake hücreleri ölüdür ve liglinleşmiş çeperlidir. 120-Kalburlu borular canlı hücrelerdir ve çeperleri hiçbir zaman liglinleşmez. 121-Epidermal hücreler dışa doğru çıkıntılar yaparak tüyleri meydana getirirler. 122-Tüyler 4’e ayrılır a-koruma tüyleri:bitkiyi dış etkenlere karşı korur ayrıca güneşten gelen zararlı ışınları yansıtır. b-emme tüyleri:bunlar kökte bulunur ve topraktaki maddeleri bitkiye alır. c-tutunma tüyleri:bitkiyi yerden yukarlara çıkarmaya yarar. d-salgı tüyleri:bu tüyler eterik yağlar salgılarlar. 123-Periderm hücre çeperi mantarlaşmış örtü dokudur.Su kaybını önler, ısı kaybını önler, patojenleri uzaklaştırır. 124-Fellogen üste doğru fellemi aşağı doğru fellodermi oluşturur. 125-Genç hücrelerde turgor desteklik sağlar. 126-Kollenkima hücreleri canlıdır, Sklerankima hücreleri ölüdür. Kollenkima hücreleri suludur, Sklerankima hücreleri susuzdur. Kollenkima hücrelerinde kloroplast var, Sklerankima hücrelerinde yoktur. 127-Bitki hücrelerinin hayvan hücrelerinden farkı seliloz çeper olmasıdır. 128-Sekonder çeperde meydana gelen odacıklara geçit denir. 129-Basit geçitler taş hücreleri ve parankimada bulunur. 130-Kenarlı geçitler trakeitlerde bulunur. 131-Yarı kenarlı geçitler trake ile parankima arasında bulunur. 132-Plasmodesma ve geçitler hücre arası madde alış-verişini sağlarlar. 133-Süt borularının görevi:su tutma kapastesine sahiptir,minimum seviyede taşımayı sağlar, yaraların onarılması için zemin hazırlar.

http://www.biyologlar.com/bitki-anatomisi-calisma-notlari

Uçan dinozorlar var mıydı?

Dinzorlarla birlikte aynı dönemlerde yaşamış uçan sürüngenler vardı. Ancak bunlara dinozor demek çok doğru olmaz. Eudimorphodon ilk uçan sürüngen olarak bilinir. Diğer uçan sürüngenlere oranla küçüktü. Triyas sonlarında yaşamış olan bu canlının kanat açıklığı 1 metre civarındaydı. Uçan sürüngenler arasında en ünlüsü Pterenedon’dur. Kanat açıklığı 8 metre civarındaydı. Plaentologlar kuşlarla dinozorla arasında bir bağ kurmaya çalışıyorlar. Bu bağın tek halkası ise Archaeopteryx’tir. Jura sonlarında yaşayan bu canlının sürüngenlerle kuşlar arasında bir geçiş türü olduğu düşünülüyor. Archaeopteryx uçamıyor ama tüylü kanatları sayesinde süzülebiliyordu. Ancak son dönemlerde Çin’de bulunan Microraptor ve Sinornithosaurus fosilleri, bu hayvanların da süzülebildiğini gösteriyor.

http://www.biyologlar.com/ucan-dinozorlar-var-miydi

Böceklerde Üreme Sistemi

Böcekler genel olarak ayri eseylidirler. Ancak nadir olarak birkaç örnekte iki eseyin ayni bireyde temsil edilmesi yani hermafroditizim veya (Gynondromorphizim) görülür. Buna en iyi örnek pamuklu bit, Icerya purchasi' dir. Böceklerde çogalma sistemi abdomende yer alan bir organ grubudur. Erkek ve disi çogalma sisteminin kisimlari arasinda siki bir paralellik oldugu gibi her iki sistemin birçok kismi bilateral simetrilidir. Disi çogalma sistemi esas olarak yumurtalarin olustugu bir ovariol grubu, spermalarin depo edildigi bir spermateka ve yumurtalarin vücudun disina çikarilmasina yarayan bir kanal sisteminden ibarettir. Tipik bir disi çogalma sisteminde her biri vücudun bir yaninda olmak üzere 2 ovaryum vardir. Ovaryum çok sayida ovariol tüpünden (yumurta borucuklari) olusur. Her bir ovariol anterior olarak terminal filament denen bir tutunma ipligi ile son bulur. Ovariolün üst kisimlarinda gelismekte olan yumurtalar ve bunun alt kisminda olgun yumurtalar bulunur. Ovariolün kaide kisminda pedicel denen küçük bir kanal vardir. Her grubun pedicelleri birleserek bir calyxi olusturur. Calyx'lerin herbiri lateral ovidukt içersine açilir. Her iki yanda yer alan lateral oviduktlar, median oviduktu meydana getirmek üzere aralarinda birlesirler. Median ovidukt ya dogrudan disi yumurta koyma borusu (ovipositor) ile birlesir veya ovipositor ile birlesen vaginaya (yumurta odacigi) açilir. Ovidukt'un veya vagina'nin dorsal duvarina iki bez baglanmistir. 1. Kanal kismina açilan ampul seklinde bir bez olan reseptaculum seminis ve 2. Bir çift olan yardimci bezdir. Bu bez, yumurtalari zemine yapistirmaya veya yumurta kümesi üzerine bir muhafaza yapilmasina yarar. Degisik böcek gruplarinda ovariol sayisi tipi ve bezlerde degisiklikler görülür. 1, 2, (Kansu, 55 ten). Oocytlerin olgunlasma ve beslenme sekillerine göre ovarioller iki kisma ayrilir. 1. Panoistik ovariol; Trophocyt (besleyici)'ler yoktur. Yumurtalar, etrafindaki follicular epitelyum tarafindan beslenir. 2. Meroistik ovariol; Besleyici Trophocythler bulunur ki bu tipte 2 gruba ayrilir; a. Polytrophic tip. Yumurta ve besin hücresi birbiri ardina dizilmistir. Her oocyt kendi tamamlayicisi olan trophositle (Neuroptera, Hymenoptera, Lepidoptera, Diptera), alternatifli siralanir. b. Telotrophic tip (Acrotrophic Hemiptera Homoptera Coleoptera) Besleyici hücre yumurta borusunun üst ucunda toplanmistir. Bazi hallerde yumurtalar besleyici hücrelere plazma uzantisi ile baglidir (Hemiptera). Erkek çogalma sistemi: Genel organizasyon bakimindan erkek çogalma sistemi disininkine benzerlik gösterir. Bu sistem baslica bir çift testis, buna bagli kanallar ve spermalarin vücut disina çikis yollarindan meydana gelir. Her testis, içinde spermalarin olustugu bir grup sperma borucugundan (folicula seminalis) ibarettir. Sperma borucuklari ortak bir kanalla, vas deferens'e, o da sperma kesesine yani vesicula seminalis açilir. Vesicula seminalislerden itibaren birer kanal çikarak ortak bir dustus ejacolatorius'u olusturur. Ductus ejaculatorius penis içersinde devam eder ve ucunda sperma çikis deligi bulunur. Penisin dis çogalma organlari ile birlikte bulunmasi olagandir; aedeagus denen yapi, membran yapisindaki gerçek penisin etrafinda sert bir örtü meydana getirir. Ductus ejaculatorius'un iç kisimlari ile baglantili olarak tek veya çift halde yardimci bezler bulunur. Özel Dokular Yag dokusu: Özellikle son larval veya nimfal evrede vücudun her tarafinda bulunan gevsek bir sekilde düzenlenmis hücre kümeleridir. Yag dokusu düzenli bir doku izlenimi verecek sekilde de olabilir. Böcekler için çok önemli olan bu dokunun ödevi; besin depo etmek ve bir kisim bosaltima yardim etmektir. Önocyt'ler: Bunlar vücut boslugunun degisik noktalarinda bulunan tek veya küme halindeki hücrelerdir. Ödevleri henüz tatminkar sekilde aydinlatilamamistir. Corpora allata: Sindirim sistemi ile siki sikiya iliskili bir çift ganglion olup metamorfoz ve bazi ergin dokularin gelismesinin düzenlenmesinde önemli olan hormonlari salgilar.

http://www.biyologlar.com/boceklerde-ureme-sistemi

Transplantasyon immünolojisi

TRANSPLANTASYON İMMÜNOLOJİSİ VE TARİHÇESİ İmmünoloji İnsan İmmün (Bağışılık) sistemi zararlı olan organizmaları vücuttan uzaklaştırmaktadır. Bu sistem, vücudumuzun yaklaşık iki trilyon hücresini koruyan, antibadi ve sitokinler üreten hareketli askerleridir. Virüs, bakteri ve tümör hücreleri veya transplante edilmiş hücreler gibi yabancı ya da vücuda ait olmayan hücrelerle koordineli bir biçimde hızlıca çok yönlü bir atağa geçmektedir. Her ne kadar çevre immün cevabı stimüle etse de, immüniteyi kontrol eden genlerdir. Genler antibadi ve sitokinlerin hücre yüzeyini spesifik olarak kodlamaktadır. Genler aynı zamanda sitokinleri tutan hücre yüzey proteinlerini kodlamaktadır (Antijen başka bir bireyde immün cevaba neden olan bir moleküldür. Antijenler genellikle protein veya karbohidratlardır). Yabancı antijen, vücuda ait olmadığından dolayı, bir immün cevaba neden olmaktadır. Genler immüniteyi kontrol ettiğinden, oluşan değişiklikler immünolojik fonksiyonları engelleyebilmektedir. Immünitede oluşan bozukluk, otoimmün hastalıklara, allerjiye ve kansere neden olabilmektedir. Genlerin immünitede büyük rol oynamasından dolayı, teknoloji ile birlikte, hastalıkların tedavisi amacıyla immün sistem güçlendirilmeye çalışılmaktadır. Transplantasyon nedir nasıl yapılır Transplantasyon yöntemi günümüzde oldukça yaygındır. Kalp, böbrek ve başka organların bir kişiden diğerine nakledildiğini sık sık duyarız. Dişlerin transplantasyonunda iki yöntem vardır: Aynı kişiden ve başka kişiden transplantasyon. Aynı kişide bir diş bir çene yarısında dizi dışı bulunur ve normal diş sayısına oranla artıklık gösterirken, diğer tarafta herhangi nedenlerle bir dişin dizide eksik olduğu da görülebilir. Bu durumda iki olasılık vardır: Ya bir diş yuvası önceden hazırdır ya da operatör bu dişi transplante edebilmek için ilkin böyle bir yuva oluşturmalıdır. Bu durumda en uygunu, önceden hazır olduğu için yeni çekilmiş bir dişin boş olan alveolüdür. Ayrıca aynı kişiden transplantasyon dışında, dişin başka kişiden alındığı, kişiden – kişiye transplantasyon da vardır. Kişiden – kişiye transplantasyon çok eskidir de. Örneğin, ortaçağda varlıklı bir bayan bir dişini yitirdiğinde bir kölenin benzer dişini çektirttiği sık sık görülürdü; sonra bu yabancı diş çenesine transplante edilirdi. Oysa her zaman uygun dişli bir köle bulunamazdı. Bayan böyle durumlarda da transplantasyon amacıyla uygun dişini çektirtecek olan bir başka kişiye belirli bir tutar para önerirdi. Kişi artık günümüzde transplantasyonda biraz daha dikkatlidir. Benimsenme olasılığı için en uygunu; plantat-vericisi ve plan-tatralıcısının kardeşler, ana-baba, çocuklar gibi yakın akraba olmalarıdır. Ancak yabancı plantat-vericisi plantat-alıcısıyla aynı kan grubundan ise, bu plantat-vericisinin dişi de kullanılabilir. Kan uyuşmazlığının göz önüne alınmaması eskiden bir çok başarısızlıklara neden olurdu. Tüm plantasyonlarda plantat kökünün vücutta yabancı madde sayılarak atılma tehlikesi vardır. Bu nedenle, transplantat’ın sürekliliği olabildiğince uzatılsın diye gereken her şey yapılmalıdır. Genel diş ve kök tedavisi tıpkı replantasyondaki gibi uygulanır. Çoğu zaman başarı replantasyondaki kadar iyi değildir ve atılmazlığı bütünüyle plantat-alıcısmın kendisine bağlıdır. Tüm transplantasyonlarda ope­rasyondan sonra şineleme son derece önemlidir. Transplantasyon Sonrası Immün Sistemin Yeniden Programlanmasında Monoklonal Antikorların Kullanımı Transplantasyon sonrası immün sistemin yeniden yapılanması sürecinde temel amaç, graftı T lenfositlerinin yıkıcı etkilerinden korumaktır. Monoklonal antikorlar da bu amaca yönelik olarak mevcut immünsüpresif ilaçlara yardımcı olarak kullanılmaktadır. Bazıları indüksiyon tedavisinde, rejeksiyon önlenmesine yönelik olarak, bazıları da dirençli akut rejeksiyon tedavisinde kullanılırlar. Monoklonal antikorların en yaygın kullanılanları basiliksimab ve daklizumabdır. Bu IL-2 reseptör blokerleri, akut rejeksiyon oranlarında önemli azalmalar sağlamaları ve yan etkilerinin olmayışı nedeni ile oldukça benimsenen ilaçlardır. Bunların yanında rituksimab (anti-CD20) ve Campath (anti-CD52) gibi ajanlar da giderek daha çok kullanılmaya başlanan monoklonal antikorlardır. Transplantasyon immünolojisinde, T hücre aktivasyonunda görevli, bazı yeni aracı moleküllerin bulunması monoklonal antikorların da giderek çeşitleneceğini göstermektedir. Transplantasyon Hakkında Sık Sorulan Sorular 1. Canlı veya kadavra vericilerden transplantasyon yapılacak adayların hazırlıkları arasında bir fark var mıdır? Hayır, Kadavra böbreği bekleme listesindeki adaylar da tıpkı canlı vericiden transplantasyon yapılacak adaylar gibi incelenir. Ancak bir kadavra böbreği bulunma olasılığının ne zaman gerçekleşeceği belli olmadığı için. zaman geçtikçe önceden yapılmış muayene le bazı laboratuar incelemelerinde değişiklikler olabilir. Bu nedenle kadavra böbreği bekleme listesindeki hastaların belli aralıklarla, fizik muayene ve laboratuar incelemeleri yineletmeleri ger eklidir. Kısaca; kadavra böbreği bekleyen hastalar ameliyata her an hazır durumda olabilir. 2. Transplantasyon adayı hastaların kendi böbreklerine herhangi bir müdahale yapılır mı? Genellikle hastaların kendi böbreklerine dokunulmaz. Ancak, inatçı hipertansiyon, böbreklerde tedaviye dirençli infeksiyon, idrarın mesaneden böbreğe taşması, çok büyük kistik böbrekler söz konusu ise, hastalıklı böbrekler çıkarılır. Bu ameliyat bazı merkezlerde transplantasyondan önce yapılır ve 3-4 hafta sonra yeni böbrek takılır. Bazı merkezlerde ise böbrek nakli ameliyatı yapılırken aynı anda hastanın kendi böbrekleri de çıkarılır. Yalnız her iki ameliyatın aynı seansta yapılması oldukça uzun sürer ve biraz daha risklidir. 3. Kadavra böbrek listesine kayıtlı hastalar için bekleme süresi ne kadardır? ÜIkemizde bugün için kesin bir süre belirtmek mümkün değildir. Listeye çok yeni giren bir hasta, uygun tipte böbrek çıkması ile kısa zamanda transplantasyon şansına kavuşabileceği gibi bazen de uygun bir böbrek çıkmadığı için uzun süre beklenebilir. Olanaklar elverdiğince, uygun böbrek çıktığında daha uzun süre beklemiş olan hastaya öncelik tanınır. Halkımızın bilinçlenerek daha fazla organ bağışında bulunması bekleme süresini kısaltacaktır. Halkımızın bilinçlenerek daha fazla organ bağışında bulunması bekleme süresini kısaltacaktır. 4. Kadavra böbrek bulunduğunda hastalara nasıl haber verilir? Transplantasyon ünitesinde bilgisayarda kadavra böbreği bekleyen tüm hastaların telefon numaraları kayıtlıdır. Uygun bir kadavra böbreği çıktığında günün herhangi bir saatinde size telefonla haber verilere!,, transplantasyon ünitesine gelmeniz istenecektir. Size daha kolay ve kısa sürede haber verebilmemiz için. varsa, birden fazla telefon numaranızı ve yakınlarınızın da telefon numaralarını bildirmeniz faydalıdır. Telefon numaranızda bir değişiklik olduğunda bunu hemen üniteye bildirmelisiniz. 5. Böbrek bulunduğu haberi ile transplantasyon ünitesine çağrılmanız mutlaka böbreğin size takılacağı anlamına mı gelir? Hayır. Bir kadavradan elde edilen iki böbrek için yaklaşık 10 hasta üniteye çağrılmaktadır. Burada, hemen yapılan fizik muayene ve acil laboratuar incelemeleri sonucunda, ünite hekimlerinden oluşan bir kurul tarafından karar verilmekte ve durumu en uygun olan 2 hastaya böbrek takılmaktadır. Böbrek takılmayanlara ise bunun nedenleri açıklanır ve hastalar evlerine gönderilir. 6. Kadavra böbrek, transplantasyon için haber verildiğinde neler yapılmalıdır? Öncelikle bu saatten itibaren hiçbir şey yenilmemeli ve içilmemelidir. Bekleme listesindeki bu hastanın küçük bir çantada, kişisel eşyaları (pijama, terlik gibi) her an hazır olmalıdır. Özelikle şehir dışından gelecek hastaların telaşa kapılmamaları ve hazırlanmakla vakit kaybetmemeleri için önemlidir. Çağrıldığınızda yanınıza eşyaları da alarak en hızlı ulaşım aracı ile. uzak bir şehirde oturmaktaysanız mümkünse uçakla, üniteye gelmelisiniz. 7.Kadavra böbreğin size takılmasına karar verildiğinde ne tür işlemler yapılacaktır? Bu karardan sonra, artık hastanede kalacaksınız. O gün diyalize girmediyseniz acil olarak hemodiyalize alınacak ve bitiminde transplantasyon ünitesine yatırılacaksınız. Gerekli ameliyat hazırlıkları ve transplantasyon öncesi ilaç uygulamalarından sonra böbrek nakli ameliyatına alınacaksınız. Artık yeni böbreğiniz takılacak ve sizin için yeni bir yaşam dönemi başlayacaktır. TRANSPLANTASYON İMMÜNOLOJİSİ TARİHÇESİ Prof.Tbp.Kd.Alb.Ali ŞENGÜL Tarihçe; MÖ 200: Çin?de Kalp nakilleri denemeleri MÖ 600: otolog deri transplantasyonları (Hindu cerrah Sushruta- yüz plastik cerrahisi) Modern transplantasyon dönemi ise 18. Yüzyılın sonlarında deneysel cerrahinin babası olarak da bilinen Hunter tarafından başlatılmış olarak kabul edilmektedir. Carrel 1912?de vasküler anastomoz tekniği ile nobel ödülü almış ve teknik olarak başarılı nakillerin yolunu açmıştır. Daha sonra biyolojik özelliklerden immün sistem üzerine yoğunlaşılmış ve gerçek başarı ancak immünolojik gelişmelerden sonra mümkün olabilmiştir. İlk kan transfüzyonları 17. yy?da hayvanlar ve insanlar arasında denenmiş ve alınan korkunç sonuçlar nedeniyle bu konu 150 yıl boyunca bir daha gündeme gelememiştir. 1900 yılında Landsteiner ve Miller insanları kanlarındaki aglutininlere göre gruplandırarak transfüzyonları tekrar gündeme getirirken, doku tiplendirmesinin de yolunu açmışlardır. 1923 de Williamson homolog ve otolog graftlemeyi kıyaslayarak doku tiplendirmesi için çalışmaların başlamasına sebep olmuştur. 1930 larda moleküler genetikçi George Snell farelerde histokompatibilite lokusu olan H-2 lokusunu keşfetmiştir. 1937 de Gorer insanlarda ilk histokompatibilite antijenini tanımlamış ve self-nonself ayrımını izah etmiştir. 1943 de Medawar tavşanlarda deri grefti çalışmaları yapmış ve otograft-homograft ayrımında akraba olanlarla olmayanların farklılığını ortaya koymuştur. II. Dünya savaşında yanıklı hasların tedavisinde plastik cerrah Gibson ile işbirliği yaparak immün yanıtın 3 temel özelliğini (tanıma, yıkım ve hafıza) tanımlamıştır. 1952 de Dausset multiple kan transfüzyonu yapılanlarda lökoaglutininler oluştuğunu gözlemleyerek insanlarda HLA lokuslarının keşfine giden yolu açmıştır. 1964 de Terasaki ve arkadaşları sitotoksik antikorları kullanarak mikrolenfositotoksisite yöntemi ile antijenlerin serolojik olarak tanımlanmasını sağlamışlardır immünosupresyon 1950 lerde John Loutit tarafından total vücut radyasyonu (TBI) ile farelerde denenmiş, 1958 de Murray (Boston) ve Hamburger (Paris) tarafından ayrı ayrı insanlara uygulanmıştır. 1960 larda AZT geliştirilmiş ve transplantasyonda kullanılmış. Ardından Starzl AZT ile kortikosteroidi kombine ederek başarının artmasını sağlamıştır. 1960 ve 1970 lerden itibaren poliklonal antikor teknolojisi, siklosporinin keşfi, 1980 lerde monoklonal antikor teknolojisinin keşfi ile bu konudaki gelişmeler hız kazanmış, daha modern immünosupressif ajanların keşfi ile neredeyse doku uyumuna bakılmaksızın transplantasyonlar yapılmaya başlamıştır. TANIMLAR Transplantasyon: Donör / verici : Recipient / alıcı: Ortotopik transplantasyon Heterotopik transplantasyon. Rejeksiyon / red Birincil rejeksiyon ikincil rejeksiyon (Hafıza). TANIMLAR (2) Otolog greft / otogreft Oto transplantasyon / otolog transplantasyon Isogreft / syngeneik greft / syngreft Allogeneik greft / allogreft Xenogeneik greft / xenogreft Alloantijen Xenoantijen alloreaktif antikor xenoreaktif antikor ALLOGENEİK TANIMANIN MOLEKÜLER TEMELİ Haplotip identik, inbred farelerde yapılan hücre ve doku nakillerinde rejeksiyon oluşmamaktadır. Farklı inbred fareler arasında yapılan transplantasyonlarda hemen daima rejeksiyon oluşmaktadır. Farklı iki inbred fareden olan F1 dölünde, anne ve babadan alınan greftlerde rejeksiyon oluşmamaktadır. Farklı iki inbred fareden olan F1 dölünden alınan greft, anne ve babaya transplante edildiğinde rejeksiyon oluşmaktadır. MHC / HLA Minör doku uygunluk antijenleri MHC molekülleri dışındaki polimorfik alloantijenler daha zayıf ve daha yavaş bir rejeksiyon reaksiyonu oluştururlar. Bunlara Minör doku uygunluk antijenleri (minor histocompatibility antigens) adı verilmektedir. Birçok minör doku uygunluk antijeni self veya greft MHC molekülleri tarafından işlenip T hücrelerine sunulabilen protein yapısındaki moleküllerdir. MHC moleküllerinden farklı olarak bu minör antijenlerin tanınabilmesi için işlenip MHC molekülleri tarafından sunulmaları gereklidir. ALLOGENEİK TANIMANIN HÜCRESEL TEMELİ Rejeksiyon reaksiyonu, transplante edilen dokuların hem CD4+ ve hem de CD8+ hücreler tarafından tanınması sonucunda gelişir. Değişik T hücre popülasyonlarının alloantijenleri tanımalarını anlamak için mikst lenfosit reaksiyonu (MLR) güzel bir model olarak kullanılmaktadır. MLR ile şu sonuçlara ulaşılabilir: Eğer hücrelerin MHC-sınıf I antijenleri arasında farklılık yoksa CD8+ CTL oluşmayacaktır. Uyarıcı hücrenin MHC-Sınıf-I antijenlerine karşı antikorlar kullanılırsa, hücre lizis’den korunacaktır. Eğer uyarıcı ve uyarılan hücreler arasında MHC Sınıf-II antijen farklılığı varsa alloreaktif CD4+ T hücreleri uyarılacak ve prolifere olarak sitokin üretecektir. Uyarıcı hücre ile aynı MHC sınıf-II antijenlere sahip üçüncü grup hücre kültüre eklenirse alloreaktif CD4+ T hücreleri tekrar uyarılacaktır (İkincil MLR). Uyarıcı hücrenin MHC sınıf–II antijenlerine karşı antikor kullanılırsa, bu antikorlar ikincil MLR’nu önleyecektir. Rejeksiyon Rejeksiyonun değişik formlarının olduğu ve bunların her biri için farklı bulgu ve belirtilerden oluşan tanımlar olduğu bilinmektedir. Ancak çoğu kez bunları biri birinden kesin olarak ayırt edecek kriterler bulunamaz. Gerçekte aynı greftte akut ve kronik rejeksiyon sıklıkla birliktelik gösterir. Sınıflandırmada, transplantasyonu takibeden sürenin uzunluğundan çok, major sınıflandırma kriteri olarak histolojik değişikliklere dikkat etmek gereklidir. Hiperakut rejeksiyon (HAR) : Greft damarlarında hızlı trombotik oklüzyon ile karakterize bir tablodur. Anastomozu takiben dakikalar içerisinde başlar. Özellikle IgM tipi antikorların endotele bağlanarak komplemanı aktive etmesi söz konusudur. Endotelden Von Willebrand faktör sekrete edilir. Kompleman aktivasyonu da endotel hücre hasarına yol açarak koagülasyonu başlatır. Subendotelyal bazal membran proteinlerinin de trombositleri aktive etmesi sonucunda tromboz ve vasküler oklüzyon oluşarak, organda kalıcı iskemik hasar meydana gelir. Hiperakut rejeksiyon (HAR) : (2) IgM türü allo antikorlar: Bu tür antikorlara en iyi örnek ABO kan grubu antikorlarıdır. Normal barsak florasında bulunan bazı bakterilerin karbonhidrat antijenlerine karşı geliştiği düşünülen doğal antikorlar. Doğal Xenoantikorlar. IgG izotipinde alloantikorlar: Eski transplantasyonlar veya multiple gebelik durumlarında oluşurlar. Bu antikorlar Lenfosit Cross Match (LCM) ile ortaya çıkarılabilir. AKUT REJEKSİYON Transplantasyondan sonra 1 hafta ile 4 ay arasında ortaya çıkar ve ilk yıldan sonra da ataklar görülebilir. a) Akut Sıvısal Rejeksiyon : Akut sıvısal rejeksiyon, greft kan damarlarındaki bazı hücrelerde nekroz ile karakterize bir durumdur. Histolojik olarak hiperakut rejeksiyondaki trombotik oklüzyondan çok bir vaskülit sözkonusudur. Akut sıvısal rejeksiyondan endotelyal hücre antijenlerine karşı gelişmiş IgG izotipinde alloantikorlar sorumludurlar. Bu antikorlar kompleman aktivasyonuna da yol açarak etkili olurlar. Bu olaya lenfositlerin de katılması nedeniyle alternatif bir şekilde “akut, vasküler rejeksiyon” olarak da isimlendirilmektedir. Akut Hücresel Rejeksiyon : Bu tip rejeksiyon parenkimal hücrelerde nekroz ile karakterize ve genellikle lenfosit ve makrofaj infiltrasyonu ile birliktedir. Bu infiltrasyondaki lökositler greft parenkim hücrelerinin lizis’inden sorumludurlar. Akut hücresel rejeksiyondan birçok farklı effektör mekanizma sorumlu tutulabilir: CTL’e bağlı lizis, Aktive makrofajlara bağlı lizis (geç tip aşırı duyarlılık reaksiyonunda olduğu gibi), Doğal öldürücü (NK: Natural killer) hücre lizisi. KRONİK REJEKSİYON : Normal organ yapısının kaybolduğu, fibrozis ile karakterize bir durumdur. Patogenezi akut rejeksiyona oranla daha az anlaşılmıştır. Fibrozis, akut rejeksiyondaki hücre nekrozunun iyileşme sürecinde gelişiyor olabilir. Kronik geç tip aşırı duyarlılık reaksiyonunda olduğu gibi aktive makrofajların, trombosit kaynaklı büyüme faktörü gibi mezanşimal hücre büyüme faktörü salgılaması ile ya da kan damarlarındaki hasarlara bağlı olarak ortaya çıkan kronik iskemiye bir yanıt şeklinde gelişmesi ihtimali de vardır. Kronik rejeksiyonun bir başka formu, musküler arterlerde intimal düz kas proliferasyonu ile karakterize olan formdur. Bu düz kas proliferasyonu da geç tip aşırı duyarlılık reaksiyonunun bir sonucu olarak gelişebilmektedir. Greftteki damar duvarlarında bulunan alloatijenlerle uyarılan lenfositlerin makrofajları uyararak, düz kas hücresi büyüme faktörü salgılanmasına yol açtıkları düşünülmektedir Bu form özellikle renal ve kardiyak transplantasyonlarda görülmüştür. Bu şekilde gelişen bir arterioskleroz geç tip greft kayıplarındaki en önemli sebeplerden biridir. Birçok olguda arteriel hasardan önce herhangi bir histolojik bulgu tespit edilmemiştir. ALLOGRAFT REJEKSİYONDAN KORUNMA VE TEDAVİ: İmmün sistemi tam olarak fonksiyonel bir alıcıya aktarılan bir allograft eninde sonunda mutlaka rejeksiyonun bir şekli ile karşılaşacaktır23,24. Rejeksiyondan korunmak ya da rejeksiyonu geciktirmek için gerek klinik çalışmalarda, gerekse deneysel modellerde iki yöntem geliştirilmeye çalışılmıştır: Greftin immünojenitesini azaltmak Alıcının immün sistemini baskılamak Dokuların immünojenitesi Kemik iliği Deri Gastrointestinal kanal Langerhans adacıkları Kalp Böbrek Karaciğer Greftin immünojenitesini azaltmak: İnsanlardaki transplantasyonlarda graft immünojenitesini azaltmak için takip edilen ana strateji, donör ve alıcı arasındaki alloantijenik farklılıkları minimalize edecek bir seçim uygulamaktır. HAR’dan korunmak için donör ve alıcının ABO kan grubu antijenlerinin daima uyumlu olmasına dikkat edilmektedir. MHC moleküllerinin allelik farklılıklarının hem sınıf-I ve hem de sınıf-II lokusları bakımından mümkün olduğu kadar az olmasına ya da tamamen uygun olmasına dikkat edilmekte, bu amaçla donör ve alıcının HLA antijenlerini belirleyen test yöntemleri, moleküler düzeyde analiz yöntemleri ile geliştirilmektedir. Greftin immünojenitesini azaltmak (2) Kan grubu ve HLA tiplemeleri yanında mevcut bir immünizasyon varsa bunun tespiti de çok önemlidir. Bu amaçla hücresel immünizasyonun araştırılması için mikst lenfosit reaksiyonu (MLR) testi yapılmaktadır. Sıvısal bir immünizasyon için ise dolaşan antikorların varlığının araştırılması önemlidir. Lenfosit Cross Match (LCM) Panel reaktif Ab (PRA) Alıcının immün sistemini baskılamak: Greft dokularına karşı reaktif antikorların varlıklarını belirlemek ve plazmaferez gibi yöntemlerle bu antikorları azaltmak. Transplantasyondan önce alloantijenler vererek allografta tolerans oluşturmak: İmmünosupressif tedavilerle T hücrelerini baskılamak veya lizise uğratmak: İMMÜNOSUPRESYON Kortikosteroidler, Metabolik toksinler (azathioprine, cyclophosphamide v.b.), lenfoid dokuların irradiasyonu, spesifik immünosupressif ilaçlar (Cyclosporine, FK506 v.b.), T hücre yüzey moleküllerine spesifik antikorlar kullanılmaktadır. Graft Versus Host Hastalığı (GVHD) İmmünosupressif alıcıda yerleşme fırsatı bulan donör kaynaklı lenfositlerin alıcı dokularına karşı reaksiyon vermesiyle ortaya çıkar. İmmünosupressif kişilere iatrojenik olarak verilmiş immünopotent hücrelerle de ortaya çıkabilir. (Kan transfüzyonu, solid organ transplantasyonları v.b.) Allogenik kemik iliği transplantasyonunun önündeki en büyük engeldir. GVHD Deri, Gastro-intestinal sistem, karaciğer, akciğer başlıca hedef organlardır. Akut reaksiyonlar post-transplant 7-80 günlerde, Kronik formlar ise 3. Aydan sonra ortaya çıkar. Solid organ transplantasyonları sonrasında oluşan GVHD’da transplante organ self kabul edildiğinden o organa karşı reaksiyon oluşmaz. Ortaya çıkan patolojilerin GVHD’na ait olup olmadığını destekleyecek en önemli bulgu periferik kanda kimerizm araştırarak elde edilebilir. Bunun yanında daha invaziv bir yöntem olan Biyopsi de çok değerli bilgiler verebilir. TRANSPLANTASYON ve İMMÜN YANIT Prof. Dr. Mahmut Nezih Çarin İstanbul Tıp Fak. Tıbbi Biyoloji ABD, Transplantasyon Ünitesi MHC gen bölgesi 6. kromozom (6p21.31) üzerinde yerleşmiş olup, yaklaşık olarak 4 Mbp lik bir yer kaplar. En uzun haplotype (110-160 kb) DR53 grup haplotiplerdir. Jan Klein 1977 yılında Sınıf I, II ve III olmak üzere ilk tanımlamayı yapmıştır. Günümüzde HLA sınıf III’ e ait olan bölgenin telomerik ucundaki 0.3 Mbp kısmın sınıf IV bölgesi olarak isimlendirilmesi önerilmektedir. Klasik HLA antijenleri sınıf I geni icindeki HLA-A, -B, -C bölgesinde ve Sınıf II geni içindeki HLA- DR, -DQ, -DP bölgesinde kodlanır. Tüm sınıf I genler 3-6 kb, sınıf II genler ise 4-11 kb uzunluktadır. Klasik antijenleri kodlayan genler dışındaki sınıf I bölgesindeki diğer genler: HLA-E, -F, -G, -H, -J, -K, -L olup, bunlar arasından sadece HLA-E,- F,-G eksprese olmaktadır. Sınıf III bölgesinin ise gen yoğunluğu oldukça fazla olup bunların bir kısmı immün sistem ile ilişkili değildir. Sınıf II bölgesinde klasik antijenleri kodlayan genlerin yanısıra HLA-DM, -DN, -DO, TAP1, TAP2, LMP2 ve LMP7 gibi gen bölgeleride bulunmaktadır. İmmunolojik ve nonimmunolojik fonksiyonu olan bir dizi genden oluşan MHC bölgesi ilk kez farelerdeki transplantasyon çalışmaları ile Peter Gorer tarafından 1937 yılında ortaya çıkarılmıştır. Bu genlerin ürünleri olan moleküller 1958 yılında Jean Dausset tarafından (HLA-A2) tanımlamış, aynı yıl van Rood ve arkadaşları HLA-BW4 ve BW6 antijenlerini ve kan transfüzyonu yapılmış kişilerin ve çok doğum yapmış kadınların serumlarında lökositlere karşı oluşmuş antikorları göstermişlerdir. İlk doku antijenleri lökositlerde saptandığı için insan lökosit antijenleri (Human Leukocyte Antigens = HLA) olarak tanımlanmışlardır. Daha sonraki yıllarda eritrositlerin dışında bütün vücut hücrelerinde bulundukları ve çok önemli oldukları anlaşılarak bu grup antijen sistemi MHC molekülleri veya MHC antijenleri olarakta isimlendirilmiştir. MHC genel bir isimdir ve her bir türün ayrı bir MHC simgesi vardır . MHC molekülleri graft rejeksiyonun temel belirleyicileridirler. Bu nedenle aynı MHC moleküllerini eksprese eden bireyler birbirlerinin doku graftlerini kabul edebilirler veya farklı MHC gen bölgelerine sahip bireyler arasında graft rejeksiyonu gelişir. Bu lokusun keşfinden ancak 20 yıl sonra immun cevapta MHC’nin önemi ortaya çıkarılmıştır. Hugh McDevitt ve arkadaşları 1960’larda kobay ve fareler üzerine yaptıkları çalışmalarda basit polipeptidler ile yapılan immunizasyona karşı antikor oluşmadığını ve gelişen immun yanıtsızlığın MHC bölgesinin haritalanması ile otozomal dominant bir özellik olduğunu buldular. İmmun yanıtı kontrol eden genlere de İmmun yanıt genleri (Immune response =Ir ) adı verildi. Ir genlerinin protein yapıdaki antijenlere antikor yanıtında gerekli olan Th (T helper = yardımcı T) lenfositlerinin aktivasyonunu kontrol ettiğini gösterdiler. 1970’lerin sonunda MHC genlerinin protein antijenlere karşı olan esas rolü anlaşıldı. Her iki HLA antijen yapısı da iki yan yana alfa heliksi tarafından oluşturulan, hücre membranına distal konumda benzer bir girintiye sahiptir. Bu girintilere hem kendi antijenlerinden hem de yabancı antijenlerden kaynaklanan peptid antijenleri bağlanır. Böylece HLA antijenleri hem kendi hem de yabancı peptidleri T lenfositlerine sunma görevindeki moleküller olarak immün yanıt oluşumunda kilit bir fonksiyona sahiptir. Ayrıca HLA antijenlerinin kendileri de allogeneik transplantasyon, transfüzyon ve hamileliklerde güçlü immün yanıtları tetikleyebilen, fazlasıyla immünojenik moleküllerdir. MHC Sınıf I molekülleri Sınıf I molekülü a zincirinin b2 mikroglobulin ile non kovalen bağlanmasıyla oluşmaktadır. Alfa zinciri a1 (N terminal), a2 ve a3 olmak üzere üç adet ekstrasellüler domain içerir. MHC sınıf I molekülleri arasında a3 domaini oldukça korunmuş bir yapıdadır ve T lenfositlerindeki CD8 molekülü ile etkileşime giren bölgeyi oluşturmaktadır. Beta 2 mikroglobulin yapısındaki bir adet disülfit bağı ile stabilize edilmiştir. b2- mikroglobulin yokluğunda sınıf I molekülleri hücre membranında eksprese edilmez. Alfa-1 ve alfa-2 domainler 8 adet anti-paralel b strandı ve 2 adet anti-paralel a strandı ile platform oluşturmaktadır. Genel olarak çekirdekli hücrelerde eksprese edilmektedir. Ancak ekspresyon düzeyleri hücreler arasında değişmektedir. Lenfositlerde en yüksek düzeyde eksprese edilirken, Fibroblastlar, kas hücreleri, hepatositler, sperm, oosit, plasental ve merkezi sinir sistemi hücrelerinde sınıf I moleküllerinin ekspresyonu çok düşük ya da dikkate alınmayacak düzeydedir. HLA- C moleküllerinin hücre yüzeyinde HLA- A ve –B moleküllerinden 10 kat daha düşük düzeyde ortaya çıkmaktadır. Ancak HLA-C molekülleride işlevseldir ve NK (doğal öldürücüler ) tarafından tanınmak üzere ilk hedef noktalardır. MHC Sınıf II molekülleri Sınıf II molekülleri a ağır zinciri ile b hafif zincirinin non-kovalent bağlanması ile oluşan bir heterodimerdir. Alfa zincirinde a1 ve a2, beta zincirinde ise b1 ve b2 domainleri bulunmaktadır. Alfa-1 ve alfa-2 domainleri arasında kalan çukur peptid fragmanlarının bağlandığı bölgeyi oluşturmaktadır. Sınıf II molekülleri dendritik hücre, makrofaj, B ve aktive T lenfosit olmak üzere daha sınırlı sayıda hücrelerde eksprese edilmektedir. Transplantasyonda İmmun Yanıt İmmün sistemin birincil görevleri herhangi bir potansiyel infekte edici yabancı materyali tanımak ve birden çok efektör mekanizma yoluyla yanıt vererek yabancı materyali inaktif hale getirmektir. HLA antijenlerinin görevi hem kendi hem de yabancı proteinlerden türevlenen peptid fragmentlerini sunmaktır. Antijen sunum hücreleri (APCler) olarak görev yapan hücre tipleri dendritik hücreler, monositler, makrofajlar, B lenfositleri ve immün regülatör süreçlere katılan diğer hücreleri içerir. Protein moleküllerinin peptid parçalarına ayrılması ve antijenin T hücrelerine sunulması, immünitenin önemli bir bölümünü oluşturur. Sınıf I molekülleri endojen kaynaklı peptidlerin CD8 (+) T lenfositlerine, sınıf II molekülleri ise eksojen kaynaklı peptidlerin CD4 (+) T lenfositlerine sunumunda rol almaktadırlar. Peptidler önce degradasyona uğrar ve peptid fragmanları hücre içinde HLA sınıf I ve II moleküllerine bağlanır. Bu moleküller, bağlanan peptid ile birlikte hücre yüzeyine gelir. Hücrelerde proteinlerin yıkımını sağlayan iki büyük yol vardır. Bunlardan birisi lizozomal asidik ortamda gerçekleşen lizozomal proteolizis diğeri ise ubiquitin- proteasom yıkım yoludur. Çok sayıda ubiquitin ile işaretlenmiş olan protein, çok sayıda alt birimden oluşmuş olan proteaz kompleksi olan proteasom tarafından yıkılır. Ubiquitinin bağlanması ve işaretlenmesi için ATP enerjisi kullanılır. Endojen proteinler ubiquitin ile bağlanarak proteasoma yönlenirler. LMP2 ve LMP7, proteozom kompleksinin bileşenlerini oluşturan peptidleri kodlamaktadır. Proteozom, kısa ömürlü sitoplazmik proteinlerin çoğunun sindiriminde yer almaktadır. Burada 8-10 aa uzunluğunda kısa peptidlere yıkılan endojen proteinler TAP heterodimeri aracılığı ile ER aktarılırlar. TAP molekülleri zarlar arasında, oligopeptid ve daha büyük proteinler gibi farklı maddelerin taşınmasını sağlamaktadır. TAP1/TAP2 molekülleri ER zarında, sitoplazmadan lümene peptid taşıyıp yerleştiren bir kompleks oluştururlar. Taşınmış olan peptidler sınıf I molekülüne yüklenirler. Endoplasmik retikulumdan ayrılan bu yapılar golgi kompleksine gelir oradan taşıyıcı veziküller ile hücre membranına taşınarak sitotoksik T lenfositlerine sunulurlar. Eksojen kaynaklı proteinler (bakteriler gibi) ASH tarafından hücre içine endositik olarak alınıp lizozom ile birleşir ve lizozomal enzimlerin etkisi ile küçük peptidler haline dönüştürülürler. ER’da yeni sentezlenen sınıf II molekülleri invariant chain (Ii) molekülü ile bağlanarak taşıyıcı veziküller ile lizozoma gelir ve füzyon yaparlar. Lizozom icerisinde Ii molekülü küçük peptid haline dönüştürülür ve HLA-DM molekülüde peptid bağlama oluğunda bulunan parçalanmış Ii molekülü ile eksojen peptidin yer değişimini gerçekleştirir. Peptid yüklenmiş olan sınıf II molekülleri hücre membranına taşınarak CD4(+) T lenfositlerine sunulurlar. İmmün tanıma : İmmün yanıtın oluşumunda ilk basamak, kendi-HLA moleküllerince sunulan yabancı peptidin yardımcı T hücrelerince (CD4+ T hücreleri) tanınmasıdır. Tanınmanın sağlanabilmesi için T-hücre reseptörü (TCR) HLA-antijen kompleksine özgü olmalıdır. Hücrelerin birbiriyle teması üzerine TCR, yabancı peptid ve APC üzerinde yer alan MHC molekülünden oluşan trimoleküler bir kompleks meydana gelir. T hücreleri ve APC arasındaki etkileşim diğer lenfositler ve B7, CD40 gibi T hücreleri üzerinde yer alan CD4, CD8, CD28 VE CD11a/CD18 gibi APC hücre yüzey molekülleri (lökosit fonksiyonuyla bağlantılı antijen 1 [LFA-1]) ve interselüler adhezyon molekülü (ICAM-1) desteği ile sağlanır. Hücre yüzey reseptörleri ve sitokinler gibi immün modülatör molekülleri kodlayan genler uyarılır, transkribe edilir ve aktif ürünler vermek üzere translasyon geçirirler. Aktivasyonun erken evrelerinde yanıtlayıcı T hücrelerinin klonal genişlemesi ile sonuçlanan, interlökin 2 (IL-2) ve interferon-g (IFN-g) sitokinleri üretilir. Makrofajlar ve B hücreleri de ek sitokinler ve kemokinler katılarak çalıştırılmıştır ve böylelikle uyarılmış B hücrelerinin yanıtı genişletilerek olgun antikor oluşturan plazma hücrelerine dönüşmeleri sağlanır. İmmün yanıtın hem hücresel hem de hümoral kolları, nakledilen bir organın yabancı HLA antijenleri ile ilişki halindedir. Transplant yerleştirilmesinde, spesifik alloreaktif T hücrelerinin klonlarının allotanıma ve aktivasyonuna, akut rejeksiyon nöbetlerine, greft fonksiyonlarında aksamaya ve kronik rejeksiyona ve son olarak greft kaybına sebep olabilir. Direkt ya da indirekt allotanıma yolları olarak bilinen iki farklı yol, greftte yer alan yabancı HLA antijenlerin immünojenitesini oluşturur. Direkt yolda, donör MHC antijenlerinin tanınmasında spesifik TCR taşıyan alıcı T hücreler, greftin HLA antijenlerini tanırlar ve onlar tarafından direkt olarak aktive edilirler. Yabancı HLA antijeni kendi-HLA ve yabancı antijenin kombine halini taklit eder böylelikle TCR’ler ile başarılı bir şekilde bağlanırlar. Bu arada donör dendritik hücreleri, gratft ile birlikte “pessenger” lökositler olarak gelirler, ve greftten yuvalarına yani alıcı lenf nodlarına geçerler. Lenf nodlarında alıcı T hücreleri donör APCleri’nce sunulan yabancı MHC ve peptidlere yanıt verirler ve prolifere olurlar. Bu aktive olmuş alıcı hücreler daha sonra süzülerek grefte geçerler ve bozulmakta olan greftin biyopsisi sonucunda kolaylıkla gözle görülebilen red süreçlerini başlatırlar. İndirekt tanıma yolu ile oluşan yanıt, donör antijenlerinin alıcı APCleri tarafından işlenmesini ve sunulmasını gerektirir. Bu hem lenf “pessenger” lökositlerce işgal edilen alıcı lenf nodlarında gelebilir hem de greft antijeninin alıcı APCleri tarafından çıkarılan, geri alınan ve işlenen greft sitlerinde meydana gelebilir. Direkt yol grefte karsi verilen ilk yanıtlarda baskındır, indirekt yolun ise zaman geçtikçe red sürecinin sürmesinde ve yolcu lökositlerin bir uyarı olarak yok olduğu süreçte önemli olduğu var sayılmaktadır. Alloantikor yanıt: Transplantasyonun bir sonucu olarak, aktive edilmiş yardımcı T hücreleri B hücreleri ile etkileşime geçebilirler ve onları spesifik donör HLA antijenlerine yönelik alloantikor üretmeleri için stimule ederler. Transplantasyon sonrası bu tip alloantikorlar saptanması eşlik eden hücresel red yanıtının bir işaretidir. Transplantasyonun oluşturduğu uyarıya ek olarak HLA antijenlerine karşı immün yanıtlar, lökosit içeren kan transfüzyonu ile gelen HLA alloantijenlerine maruz kalma ve hamilelik gibi durumlarda oluşur. Birden fazla transfüzyon alan hastalar ve bazı multipar kadınlar HLA antijenlerine bağışıklık kazanabilirler, ve antikorlar ile spesifik HLA antjenleriyle etkileşime giren aktif T hücre klonları üretirler. Transplantları başarısızlıkla sonuçlanan hastalarda reddedilen greftin HLA antijenlerine karşı yüksek düzeyde antikor üretilmektedir. Potansiyel bir alıcı tarafından antikorlar oluşturulduğunda sensitizasyon (hassasiyet) meydana gelir ki bu da uygun bir organ donörü bulmada engel oluşturur. Hastanın sensitize olduğu belirli HLA antijen/leri içeren bir organın transplantasyonu hiperakut red ile sonuçlanabilir. Bu süreçte alıcı antikorları ile donör antijenlerinin oluşturduğu kompleksler anında greft damarlarında koagülasyonu tetikler, bu da grefte ve greft içindeki kan dolaşımının blokajı ve kesilmesi ile sonuçlanır ve böylelikle greft hızla yok edilir. Böbrek, kalp ve pankreas transplantasyonu bekleyen sensitize hastalar için önceden oluşmuş alloantikorlara hedef antijenlere sahip olmayan donörlerin seçimi kesin şarttır.Yabancı HLA antijenleri immün reddi tetiklediklerinden, alıcı ve verici arasında HLA antijen uyumunun sağlanması transplant başarısı için etkin bir stratejidir. KAYNAK: lokman.cu.edu.tr/anestezi/v_cag/new_page_2.htm VİDEO İLE İLGİLİ LİNGLER www.zaplat.com/video/saglik_videolari/41349/Organ_Nakli_Nedir www.zaplat.com/video/saglik_videolari/34884/Kalp_Nakli www.zaplat.com/video/saglik_videolari/43...alp_Transplantasyonu www.zaplat.com/video/saglik_videolari/28...migi_Tranplantasyonu

http://www.biyologlar.com/transplantasyon-immunolojisi

Mikroskopta vital inceleme nasıl yapılır?

Genellikle tek hücreli organizmalar canlı incelemeye uygundurlar. Çok hücreli organizmalardan alınan bazı serbest hücreler ise , hala canlılıklarını muhafaza ederken, mikroskop altında direkt olarak incelenebilirler. Çok hücreli organizmalarda canlı incelemeler daha çok , hücreleri normalde bir sıvı içerisinde birbirinden ayrı olarak bulunan kan, lenf, sperma, süt, serebrospinal sıvı, synovial sıvı gibi yapılara uygulanır. Bu sıvılardan herhangi biri temiz bir lam üzerine bir damla damlatılır, üzeri basınç uygulamadan bir lamelle kapatılır ve hemen mikroskop altında incelenir. Serbest hücreler genellikle renksizdirler , içerdikleri yapılar kontrast vermezler. Bu zorluklar bir dereceye kadar faz kontrast mikroskoplarla aşılabilirsede , canlılıklarına zarar vermeden boyanarak incelenmeleri de mümkündür. Bu amaçla vital boyalar kullanılır. Vital boyalar az toksiktirler, hücreyi öldürmezler, özellikle ilgi duydukları hücre yapıları üzerine oturarak onları seçilebilir hale getirirler. Canlı inceleme derialtı bağ dokusu, kas telleri, sinir telleri, mezenteryum, omentum ve epitel kazıntıları gibi yumuşak yapılara da uygulanabilir. Bu amaçla anılan dokulardan alınan biopsi örnekleri bir lam üzerine konur, ucu ince olan özel iğnelerle tiftiklendikten sonra üzeri hemen lamelle kapatılıp mikroskopta incelenir. https://www.biyolojigunlugu.com

http://www.biyologlar.com/mikroskopta-vital-inceleme-nasil-yapilir

Fungusların yararlı ve zararlı faaliyetleri nelerdir?

Hayvansal ve bitkisel atıkların çürütülmesinde, bu yapılarda bulunan azot, fosfor, potasyum, sülfür, demir ve kalsiyum gibi elementlerin serbest bırakılmasında, bazı peynir tiplerinin (Rokufort, Kamembert) eldesinde, antibiyotik (penisilin) eldesinde, thiamin, biyotin, riboflavin gibi bazı vitaminlerin, amilaz, pektolaz gibi enzimlerin ve gibberellin gibi hormonların eldesinde funguslardan yararlanılır. Bir fungus grubu olan mayalar ekmekçilikte ve şarap, bira gibi fermente ürünlerin eldesinde kullanılır. Tüm bu yararlarının yanısıra, fungusların çeşitli zararları da olabilir. Örneğin; insan, hayvan ve bitkilerde çeşitli hastalıklara, yiyecek ve gıdaların bozulmasına ve hatta uçakların benzin depolarında gelişerek uçakların düşmesine dahi neden olabilirler. Funguslarda vejetatif yapı tallus adını alır. Tallus, yaklaşık 5 mm çapındaki iplikçiklerin dallanarak çoğalmasından oluşur ve tüm alana yayılır. Vejetatif yapıyı oluşturan iplikçiklerin her birine hif, bir türe ait hiflerin tümüne ise misel denir. Bazı funguslarda hifi oluşturan uzun, silindirik hücreler genelikle septum denen bölmelerle birbirinden ayrılır. Fungus hücreleri etrafında, iyi gelişmiş bir hücre çeperi yer alır. Hücre çeperi ya sellüloz ya kitin veya her ikisini de içerebilir. Funguslarda da diğer eukaryotiklerde olduğu gibi sitoplazmaya dağılmış olarak ribozomlar, kofullar ve bazılarında golgi aygıtı da bulunur. Yedek besinler glikojen ve lipid olarak depo edilir. Yüksek bitki ve hayvanlardaki kadar çok olmasa da endoplazmik retikulum yer alır. Fungus hücreleri bakteri hücrelerinden farklı olarak sitoplazma içinde çekirdek zarına sahip bir veya birden fazla nükleus içerebilirler. Hareketli hücreler olan zoosporlarda bakteri hücrelerininkine benzer yapıda flagella (kamçı) bulunur. Funguslarda çoğalma eşeyli ve eşeysiz olmak üzere iki çeşittir. Bazı funguslar sadece eşeysiz olarak çoğalırken, bazıları her iki yolla da çoğalabilir.

http://www.biyologlar.com/funguslarin-yararli-ve-zararli-faaliyetleri-nelerdir

ENERJETİK VE BİYOENERJETİK NEDİR

Adından anlaşılacağı üzere enerji bilimi olan enerjetiğin temel dalı olan termodinamik ısı, sıcaklık, iş enerji dönüşümleri ve türleri arasındaki ilişkileri, bu arada meydana gelen yan olayları inceler. Fiziğin bir anadalı olan termodinamiğin fiziksel özellikler ile enerji arasındaki ilişkiler de konusudur. Kimyasal termodinamik ise fiziksel özellik değişimleri yanında meydana gelen kimyasal dönüşüm ve değişimleri inceler. Termodinamik olgu ve olayları makro ölçekte inceler, yani olayın gelişme şekli, yolu neolursaolsun başlangıç ve bitiş noktalarındaki durumları ile ilgilenir. Örneğin çekirdek enerjisinin nükleer bombanın patlatılması veya bir santralda kontrollu olarak uzun sürede tüketilerek açığa çıkarılan miktarı aynı olduğundan termodinamik açıdan aynı olaydır. Termodinamiğin birinci yasası da bu örnekte belirtilen şekildeki kütle - enerji arası dönüşüm olaylarının tümüyledönüşümden ibaret olduğunu, kütle ve enerji toplamının sabit kaldığını belirtir. Yani bu dönüşümlerde kütle + enerji toplamında artış veya kayıp söz konusu olamaz. Yasanın tanımladığı kütle + enerji kavramının anlaşılır olması için madde ve enerjinin ölçülebililir büyüklükler olması gerekir. Bunu sağlayan da enerji ve kütlesi tanımlanmış olan sistem kavramıdır. Termodinamikte inceleme konusu olarak seçilen, ilk ve son enerji + kütle miktarı bilinen, ölçülen ve değerlendirilen sistem, onun dışında kalan tüm varlıklar ve boşluk ise çevredir. Örneğin güneş sisteminin termodinamiği incelenmek istenirse uzay çevredir. Güneşin termodinamik açıdan incelenmesinde ise gezegenlerle uydular da çevre içinde kalır. Evren sistem olarak ele alındığında ise çevre olarak değerlendirilebilecek bir şey kalmadığından evrende enerji + madde toplamı sabittir, enerji veya madde yoktan var edilemez ancak enerji - madde dönüşümü olabilir. Burdan çıkan sonuç da maddenin yoğunlaşmış olan enerji olduğudur. Enerjiyi ancak maddeye veya işe dönüştüğü zaman algılayabildiğimiz, gözlemleyebildiğimiz için maddedeki gizli enerjiyi ölçemeyiz. İkinci yasa bütün enerjetik olayların kendiliğinden başlaması ve sürmesinin ancak sistemdeki toplam maddenin en az ve enerjinin en üst düzeyde olacağı yönde olabileceğini belirtir. Bu durum sağlandığında sistem dengeye varır, entropisi - düzensizliği - başıboşluğu (S) maksimum olur. Bunun tersi yönünde gelişen olaylar ise reverzibl - tersinir olaylardır. Örneğin canlının bir termodinamik sistem olarak oluşması ve büyüyüp gelişmesi tersinir, ölmesi ise irreverzibl - tersinmez olaylardır. Canlı sistemde ölüm termodinamik denge halidir. Aynı şey kimyasal tepkimeler içinde geçerlidir, dışarıdan enerji alarak başlayan ve yürüyen endotermik tepkimeler kendiliğinden başlayamaz ve süremez, birim sürede çevreden aldığı ve verdiği enerjinin eşitlendiği, enerji alışverişinin net değerinin sıfır olduğu denge durumunda durur, kinetik dengeye ulaşır. Ancak eksotermik, enerji açığaçıkarantepkimelerkendiliğinden yürüyebilir. Canlılığın oluşumu ve sürmesini sağlayan biyokimyasal sentez tepkimeleri de dengeye ulaşan reverzibl tepkimelerdir ve ancek ürünlerinin tepkime ortamından uzaklaşmasını sağlayan zincirleme tepkime sayesinde termodinamik dengenin kurulamaması ile sürebilir. Üçüncü yasa termodinamik bir sistemde entropinin, yani madde halinde yoğuşmamış olan enerjinin sıfır olacağı -273 derece sıcaklığa ulaşılamayacağını belirtir. Bitkilerdeki biyoenerjetik olayların anlaşılması açısından önemli olan diğer enerjetik kavramları ise entalpi, ve serbest enerji ile görelilik kuramının ışık kuantı ile ilgili sonucudur. Termodinamik incelemenin başlangıç ve bitim noktalarında ölçülen entalpi - toplam enerji farkı (DH) olay sonundaki madde kaybı veya kazancının da bir ölçüsü olur. Canlılarda çevreden alınan enerjinin azalmasına neden olan koşullarda bu etkiye karşı iç enerji kaynaklarından yararlanma yolu ile etkinin azaltılmasına çalışan mekanizmalar harekete geçer. Evrimin üst düzeyindeki sıcak kanlılarda vücut sıcaklığını sabit tutan bir enerji dengesinin oluşu çok zorlayıcı koşulların etkili olmasına kadar entalpi farkını önler. Entropinin ölçümü çok zor olduğundan sistemdeki düzensizlik enerjisi yerine entropi artışı ile ters orantılı olarak azalan iş için kullanılabilir, işe çevirilebilir serbest enerji (G) ölçülür. Serbest enerji sistem dengeye varıncaya kadarki entalpi farkının bir bölümünü oluşturur. Entalpi farkının entropi enerjisine dönüşmeyen, yani atom ve moleküllerin termik hareketliliklerinin artışına harcanmayan kısmıdır. Termik hareketlilik doğal olarak sıcaklığa, atom ve moleküllerin çevrelerinden aldıkları enerji düzeyine ve hareketliliklerine,hareket yeteneklerine bağlıdır; atom veya molekül ağırlığı, aralarındaki çekim kuvvetlerinin artışı hareketliliklerini azaltır. Bir sistemde serbest enerji artışı entropi enerjisi azalırsa da çevrenin entropi enerjisi artışı daha fazla olur ve 2. yasada belirtildiği şekilde sistem + doğanın entropisi sürekli artar. Canlı sistem ele alındığında canlının oluşup, büyümesi ile sürekli artan serbest enerji karşılığında çevreye verilen entropi enerjisinin daha fazla olmasını sağlayan canlının çevresine aktardığı gaz moleküllerinin termik hareketlilik enerjisi gibi enerji formlarıdır. Einstein’ın E = m . c 2 fomülü ile açıkladığı enerji - kütle ilişkisi sonucunda astronomların güneşe yakın geçen kozmik ışınların güneşin kütle çekimi etkisiyle bükülmeleri gözlemleriyle dahi desteklenen ışığın tanecikli, kuant şeklinde adlandırılan kesikli dalga yapısı fotosentez olayının mekanizmasının anlaşılmasını sağlamıştır. Kimyasal termodinamikte yararlanılan temel kavramlardan olan kimyasal potansiyel fizyoloji ve biyokimyada da kullanılan ve birçok canlılık olayının anlaşılmasını sağlayan bir kavramdır. Bir sistemdeki kimyasal komponentlerin her bir molünün serbest enerjisini tanımlar. Sistemde bir değişim olabilmesi, iş yapılabilmesi için bir komponentinin kullanacağı enerji düzeyini belirtir. Eğer değişim, dönüşüm sırasında bir komponentin serbest enerjisi artıyorsa bir diğer komponentinki daha yüksek oranda azalıyor demektir. İki sistem arasında kimyasal potansiyel farkı varsa bu fark oranında kendiliğinden yürüyen bir değişme olur ve iletim görülür. Bu suda çözünen katı maddelerin - solutların, pasif - edilgen şekildeki hareketini açıklamakta da kullanılan bir terimdir. Bu terimin su komponenti için kullanılan şekli su potansiyelidir. Kimyasal potansiyel basınç değişimi ile ilgili olayları da içerdiğinden su basıncı - hidrostatik basınç tanımı da kullanılır. Elektriksel potansiyel farkı da kimyasal potansiyelin bir şekli olduğundan sulu iyonik çözeltilerde katyonların katod durumundaki, anyonların da anod durumundaki sabit ve yüklü kutuplara doğru hareketine neden olur. Söz konusu potansiyellerin mutlak değerleri değil aralarındaki fark itici güçtür. İki nokta arasındaki basınç, derişim, elektriksel yük, serbest enerji farkı gibi farklılıkların tümü canlılıkta rol oynar ve karmaşık dengeleri yürümesini sağlar. Bu denge birarada bulunan komponentlerin birbirleri ile etkileşmelerinden etkileneceğinden etkileşim potansiyelinin de değerlendirilmesi gerekir. Bunun için kullanılan terimler ise aktiflik - etkinlik sabiti ve efektiv - etkin derişimdir. Etkin derişim, etkinlik sabiti yüksek maddenin veya maddelerin derişim farkına dayanarak sistemdeki değişim potansiyelini değerlendirir. Sistemin değişim potansiyelini ortaya çıkarır. Bu çerçevede su potansiyeli sistemdeki bir mol suyun sabit basınç altında ve sabit sıcaklıkta yer çekiminin etkisi sıfır kabul edilerek sistemdeki saf su ortamından etkin derişimin daha düşük olduğu yere gitme potansiyelidir. Yani hidrostatik basınç artışına paralel olarak su potansiyeli artar. Daha önceleri Difüzyon basıncı eksikliği ve emme basıncı, emme kuvveti şeklinde tanımlanmış olan su potansiyeli günümüzde en geçerli olarak benimsenen, kuramsal temelleri sağlam olan terimdir.

http://www.biyologlar.com/enerjetik-ve-biyoenerjetik-nedir

Küresel ısınma sebepleri

Doğal Nedenler : Güneşin Etkisi: ESA bilim adamlarından Paal Brekke; iklim bilimcilerinin uzun süredir Güneş beneklerinin 11 yıllık döngüsel hareketini ve Güneş'in yüzyıllık süreçler içinde parlaklık değişimini incelediklerini belirtmiştir. Bunun sonucunda Güneş'in manyetik alanı ve protonlar ile elektronlar biçiminde ortaya çıkan güneş rüzgarının, Güneş sisteminde kozmik ışımalara karşı bir kalkan görevinde olduğu açıklanmaktadır. Güneş'in değişken aktivitesiyle zayıflayabilen bu kalkan, kozmik ışımaları geçirmektedir. Kozmik ışımaların fazla olması bulutlanmayı arttırmakta, Güneş'ten gelen radyasyon oranını değiştirerek küresel sıcaklık artışına neden olmaktadır. Güneş'ten gelen ultraviyole ışınım aynı zamanda kimyasal reaksiyonların oluştuğu (ve dolayısıyla atmosferin tamamını etkileyen) ozon tabakası üzerinde değişikliğe yol açacaktır. Dünya'nın Presizyon Hareketi: 1930 yılında Sırp bilim adamı Milutin MİLANKOVİÇ Dünya'nın Güneş çevresindeki yörüngesinin her doksanbeş bin yılda biraz daha basıklaştığını göstermiştir. Bunun dışında her kırkbir bin yılda Dünya'nın ekseninde doğrusal bir kayma ve her yirmi üç bin yılda dairesel bir sapma bulunduğunu belirtmiştir. Günümüz bilim adamlarının bir çoğu Dünya'nın bu hareketlerinden dolayı zaman zaman soğuk dönemler yaşadığını ve bu soğuk dönemler içindeyse yüz bin yıllık periyotlarda on bin yıl süreyle sıcak dönemler geçirdiğini bildirmektedir. Bu da Dünya'nın doğal ısınmasının bir nedenini oluşturmaktadır. El Nino'nun Etkisi: "Güney salınımı sıcak olayı" olararak tanımlanabilecek El Niño hareketi, 1990-1998 yıllarında tropikal doğu Pasifik Okyanusu'nda deniz yüzeyi sıcaklıklarının normalden 2-5º daha yüksek olmasına neden olmuştur. Özellikle 1997 ve 1998 yıllarındaki rekor düzeyde yüzey sıcaklıklarının oluşmasında, 1997-1998 kuvvetli El Niño olaylarının etkisinin önemli olduğu kabul edilmektedir. 1998'deki çok kuvvetli El Niño bu yılın küresel rekor ısınmasına katkıda bulunan ana etmen olarak değerlendirilebilir. Yapay nedenler : Fosil Yakıtlar: Kömür, petrol ve doğalgaz dünyanın bugünkü enerji ihtiyacının yaklaşık u'lik bölümünü sağlamaktadır. Yapılarında karbon ve hidrojen elementlerini bulunduran bu fosil yakıtlar, uzun süreçler içerisinde oluşmakta fakat çok çabuk tüketilmektedir. Dünyanın belirli bölgelerinde toplanmış bu yakıtların günümüz teknolojisiyle ¾'ünün yarısının çıkarılması imkansız; diğer yarısının ise çıkarılması teknik olarak çok pahalıdır. Bu da fosil yakıtları yenilenemeyen ve sınırlı yakıtlar sınıfına sokmaktadır. Sera gazları: Sera Gazları Oluşumu: Güneş'ten gelen ışınların bir bölümü ozon tabakası ve atmosferdeki gazlar tarafından soğurulur. Bir kısmı litosferden, bir kısmı ise bulutlardan geriye yansır. Yeryüzüne ulaşan ışınlar geriye dönerken atmosferdeki su buharı ve diğer gazlar tarafından tutularak Dünya'yı ısıtmakta olduğundan yüzey ve troposfer, olması gerekenden daha sıcak olur. Bu olay, Güneş ışınlarıyla ısınan ama içindeki ısıyı dışarıya bırakmayan seraları andırır; bu nedenle de doğal sera etkisi olarak adlandırılır Sera etkisinin önemi: Sera etkisi doğal olarak oluşmakta ve iklim üzerinde önemli rol oynamaktadır. Endüstri devrimi ile birlikte, özellikle 2. Dünya Savaşı'ndan sonra, insan aktivitesi sera gazlarının miktarını her geçen yıl arttırarak yüksek oranlara ulaştırmıştır. Bu etkinin yokluğunda Dünya'nın ortalama sıcaklığının -18ºC olacağı belirtilmektedir. Ancak yaşamsal etkisi olan sera gazlarının miktarının normalin üzerine çıkması ve bu artışın sürmesi de Dünya'nın iklimsel dengelerinin bozulmasına neden olmaktadır. Bu doğal etkiyi arttıran karbondioksit, metan, su buharı, azotoksit ve kloroflorokarbonlar sera gazları olarak adlandırılmaktadır. Ozon tabakasının incelmesi de başka bir etkendir. Sera Gazları : Karbondioksit (CO2): Dünya'nın ısınmasında önemli bir rolü olan CO2, Güneş ışınlarının yeryüzüne ulaşması sırasında bu ışınlara karşı geçirgendir. Böylece yeryüzüne çarpıp yansıdıklarında onları soğurur. CO2'in atmosferdeki kosantrasyonu 18. ve 19. yüzyıllarda 280-290 ppm arasında iken fosil yakıtların kullanılması sonucunda günümüzde yaklaşık 350 ppm'e kadar çıkmıştır. Yapılan ölçümlere göre atmosferdeki CO2 miktarı 1958'den itibaren %9 artmış ve günümüzdeki artış miktarı yıllık 1 ppm olarak hesaplanmıştır. Dünyada enerji kullanımı sürekli arttığından, kullanılmakta olan teknoloji kısa dönemde değişse bile, karbondioksit artışının durdurulması olası görülmemektedir. Sera Gazları: Metan (CH4): Oranı binlerce yıldan beri değişmemiş olan metan gazı, son birkaç yüzyılda iki katına çıkmış ve 1950'den beri de her yıl %1 artmıştır. Yapılan son ölçümlerde ise metan seviyesinin 1,7 ppm'e vardığı görülmüştür. Bu değişiklik CO2 seviyesindeki artışa göre az olsa da, metanın CO2'den 21 kat daha kalıcı olması nedeniyle en az CO2 kadar dünyamızı etkilemektedir. Amerika ve birçok batı ülkesinde çöplüklerin büyük yer kaplaması sorun yaratmaktadır. Organik çöplerden pek çoğu ayrışarak büyük miktarda metan salgılamakta, bu gaz da özellikle iyi havalandırması olmayan ve kontrol altında tutulmayan eski çöplüklerde patlamalara ve içten yanmalara neden olmaktadır. Daha da önemlisi atmosfere salınan metan oranı artmakta ve bunun sonucu olarak da sera etkisi tehlikeli boyutlara varmaktadır. Sera Gazları: Azotoksit ve Su Buharı: Azot ve oksijen 250ºC sıcaklıkta kimyasal reaksiyona giren azotoksitleri meydana getirir. Azotoksit, tarımsal ve endüstriyel etkinlikler ve katı atıklar ile fosil yakıtların yanması sırasında oluşur. Arabaların egzosundan da çıkmakta olan bu gaz, çevre kirlenmesine neden olmaktadır. Sera etkisine yol açan gazlardan en önemlilerinden biri de su buharıdır. Fakat troposferdeki yoğunluğunda etkili olan insan kaynakları değil iklim sistemidir. Küresel ısınmayla artan su buharı iklim değişimlerine yol açacaktır. Sera Gazları: Kloroflorokarbonlar (CFCs): CFC'ler klorin, flüorin, karbon ve çoğunlukla da hidrojenin karışımından oluşur. Bu gazların çoğunluğu 1950'lerin ürünü olup günümüzde buzdolaplarında, klimalarda, spreylerde, yangın söndürücülerde ve plastik üretiminde kullanılmaktadır. Bilimadamları bu gazların ozonu yok ederek önemli iklim ve hava değişikliklerine neden olduklarını kanıtlamışlardır. Bu gazlar; DDT, Dioksin, Cıva, Kurşun, Vinilklorid, PCB'ler, Kükürtdioksit, Sodyumnitrat ve Polimerler'dir. Sera Gazları: Kloroflorokarbonlar (CFCs): 1- DDT: 1940-1950 yılları arasında dünya çapında tarım alanlarındaki böcekleri zehirlemek için kullanılmıştır. Kimyasal adı 'diklorodifeniltrikloroetan'dır. Klorin içeren bu gazın insan dahil diğer canlılar için de öldürücü olduğu fark edildikten sonra üretimden kaldırılmıştır. 2- Dioksin: 100'ün üstünde çeşidi vardır. Bitkilerin ve böceklerin tahribatı için kullanılır. Çoğu çeşidi çok tehlikelidir; kansere ve daha birçok hastalığa neden olmaktadır. 3- Cıva: Cıvanın en önemli özelliği diğer elementler gibi çözünmemesidir. 1950-1960 yılları arasında etkisini önemli ölçüde göstermiş, Japonya'da birkaç yüz balıkçının ölümüne neden olmuştur. Bir ara kozmetik ürünlerinde kullanılmışsa da daha sonra son derece zehirli olduğu anlaşılıp vazgeçilmiştir. 4- Kurşun: Günümüzde kalemlerin içinde grafit olarak kullanılmaktadır. Vücudun içine girdiği takdirde çok zehirleyicidir; sinir sistemini çökertip beyne hasar verir. 5- Vinilklorid: PVC yani 'polyvinyl chloride' elde etmek için kullanılan bir gaz karışımıdır. Solunduğunda toksik etkilidir. 6- PCB'ler: PCB, İngilizce bir terim olan 'polychlorinated biphenyls' ten gelmektedir. Bu endüstriyel kimyasal toksik ilk olarak 1929'da kullanılmaya başlanmış ve 100'ün üstünde çeşidi olduğu tespit edilmiştir. Bunlar büyük santrallerdeki elektrik transformatörlerinin yalıtımında, birçok elektrikli ev aletlerinde aynı zamanda boya ve yapıştırıcıların esneklik kazanmasında kullanılmaktadır. Bunun yanında kansere yol açtığı bilinmektedir. 7- Sodyumnitrat: Füme edilmiş balık, et ve diğer bazı yiyecekleri korumak için kullanılan bir çeşit tuzdur. Vücuda girdiğinde kansere yol açtığı bilinmektedir. 8- Kükürtdioksit (SO2): Bu gaz sülfürün, yağın, çeşitli doğal gazların ve kömürle petrol gibi fosil yakıtların yanması sonucu açığa çıkar. Kükürtdioksit ve azotoksidin birbiriyle reaksiyonu sonucunda asit yağmurlarını oluşturan sülfürürik asit (H2SO4) oluşur. 9- Polimerler: Doğal ve sentetik çeşitleri bulunmaktadır. Doğal olanları protein ve nişasta içerirler. Sentetik olanlarıysa plastik ürünlerinde ve el yapımı kumaşlarda bulunup naylon, teflon, polyester, spandeks, stirofoam gibi adlar alırlar. Sera Gazları: Ozon: Ozon tabakasının incelmesi "Küresel Isınma"yı dolaylı yoldan arttırmaktadır. USNAS'ın 1979'da yayınladığı raporda, ozon tabakasında %5 - arasında bir azalma olduğu gözlemlendiği öne sürülmüştür. Oysa bundan bir yıl önce Kasım 1978'de uzaya fırlatılan Nimbus-7 uydusundan alınan verilere göre toplam atmosferik ozon seviyesi 1979-1991 yılları arasında orta enlemlerde %3-%5, yukarı enlemlerde %6 ila %8 arasında azalmıştır (Gleason 1993). 1992 yılında Antartika'daki Ozon seviyesi ise 1979'daki seviyenin P'sine inmiştir. 1950 ve 60'lı yıllardaki ozon kalınlığı da 1990'lı yıllardan sonra 1/3'üne kadar inmiştir. "The National Research Council"ın 1982 Mart raporuna göre CFC salınımı bu şekilde devam ederse 21. yy'nin sonunda stratosferdeki ozon miktarı %5 ile arasında bir değerde azalacaktır. Sera Gazlarının Bilinen ve Olası Etkileri: Dünyanın sıcaklığı sanayi devriminden bu yana 0,45ºC artmıştır. Bunun esas nedeni fosil yakıtların yanması sonucu açığa çıkan CO2 ve diğer sera gazlarıdır. Artan nüfus ve büyüyen ekonominin enerji gereksinimleri de fazlalaşmaktadır. Bu gereksinimin karşılanması ise fosil yakıt tüketiminin artmasına ve atmosferdeki CO2 miktarının büyük ölçüde çoğalmasına neden olmaktadır. Sıcaklık artışının olası etkileri teoriler biçiminde incelenmektedir. Şehirlerin Isı Adası Etkisi: Güneşli ve sıcak günlerde, yoğun nüfuslu ve yüksek binaların sıklıkla görüldüğü kentsel bölgelerin çevrelerine göre daha sıcak olmaları, şehirlerin ısı adası etkisini oluşturur. Bu asfaltlanmış alanlar,bitki topluluklarının köreltilmiş olduğu bölgeler ve siyah yüzeyler "ısı adası etkisi"nin başlıca nedenleridir. Kentleşmiş alanlarda hava dolaşımının yapılaşmanın artışıyla engellenmesi ve doğal iklim ortamının bozulması yerel bir ısınmaya yol açar. Bu tür yerel ısınmalar da küresel ısınmayı arttırıcı etkidedir. Şehir planlamasında ve bina yapımında güneş ile yapı arasındaki ilişkinin iyi ayarlanması ısı adası etkisini engelleyecektir. Örnek Şehirler:Detroit (USA), Los Angeles (USA) ,Hong Kong (ÇİN)... Smog: Havaya salınan fazla miktardaki gazlar, atmosferdeki havayı yoğunlaştırır, gaz tabakasını kalınlaştırır. Bu yüzden gelen güneş ışınları daha fazla emilir, daha az yansıtılır ve yapay bir sera etkisi oluşur. Gazlar, özellikle büyük şehirlerde, Hava Yoğunluğu (Smog) oluşturarak etkili olmaktadır. Smog oluşumunun bulunduğu yerleşim yerlerinde yaşayan insanlarda - Akciğer ağrıları - Hırıltı - Öksürük - Baş ağrısı - Akciğer iltihapları görülür. Sera Gazlarının Bilinen ve Olası Etkileri: Kuraklık ve seller: Sera etkisi çeşitli iklim değişikliklerine yol açacaktır. Önlem alınmadığı takdirde bazı doğa olaylarının olumsuz etkileri çok büyük boyutlara ulaşacaktır. Güç üretiminde azalma: Elektrik güç santrallerinin tamamı suya ihtiyaç duymaktadır. Sıcak geçen yıllarda elektrik istemi artacak fakat su miktarının azalmasından dolayı elektrik üretimi düşecektir. Bu da devlet ve halklara ekonomik sıkıntılar yaşatacak, çeşitli sorunlara neden olacaktır. Nehir ulaşımında problemler: Sıcaklık artışına bağlı olarak nehir sularının alçalması, suyolu ticaretine engel oluşturup ulaşım giderlerini arttırmaktadır. kaynak:www.gsl.gsu.edu.tr/gwp/tr/index.html www.kuresel-isinma.org

http://www.biyologlar.com/kuresel-isinma-sebepleri

Embriyogenez

Biyolojinin bütün problemleri arasında en büyüleyici ve en zor olanı embriyogenez yani embriyonun yaratılmasıdır. Embriyogenez; tek hücrenin döllenmiş yumurtanın, hedef aldığı çok hücreli karmaşık organizmaya ulaşırken attığı adımlarla ilgilidir. Bu hedef bütün ince ayrıntılarıyla, gelişme olayının orkestrasyonu üzerine talimatları içeren, DNA'da yazılıdır. Bu harikulade işin nasıl olduğunu henüz anlayamamış olduğumuzu hemen söyleyebilirim, ama en azından çevresinde araştırmalar yapıyoruz. Hücreler Birbirine Yapışır ve Uzmanlaşır Döllenmiş bir yumurta, diğer daha basit tek hücreli yaratıklar gibi yaşamına iki ayrı hücre oluşturmak için bölünerek başlar; bu iki hücre bölünüp dört olur ve bu böyle sürüp gider. Tek hücreli yaratıkları gözlemleyerek, her bölünmeden sonra hücrelerin ayrılacağını umuyoruz. Ama döllenmiş yumurtadan üreyenler ayrılmıyorlar, toplumsal bir girişime katıldıklarını bilirlermiş gibi birbirlerine sıkıca yapışıyorlar. Kısa bir süre sonra başka bir şey açığa çıkıyor. Hücreler birbirlerine benzemeyen ve değişik davranan gruplar oluşturuyorlar. Hücre grupları artık uzmanlaşmaktadırlar. Her grup belirli sayıda özel görevleri yapmakla yükümlüdür. Uzmanlaşma işinin geriye dönüşü yoktur. Erken embriyogenez iki özelliği, hücre yapışması ve hücre uzmanlaşması, bunlar gelişme işleminin temelinde yatıyorlar. Değişkenliğin Kökeni Şimdiye kadar organizmaların nasıl uzun zaman geçtikçe giderek farklılaştığım belirleyen ve bütün canlı yaratıklar için geçerli yasaları öğreniyorduk. Bütün canlı yaratıklar kendilerini oluşturan bilgiyi DNA'da biriktirirler, DNA'yı mesajcı RNA'ya kopya ederler, mesajcı RNA'yı proteine "tercüme ederler". Dahası, DNA'nın mutasyonla veya cinsel karışımla değişmesi proteinlerin kalıcı değişimine neden olur. Böylece organizmalar arasında gittikçe artan farklılıklar ortaya çıkar ve sonunda yeni türler doğar. Bazı bakımlardan embriyogenez, evriminin, kısa bir zaman aralığında ve mikrokosmosta tekrarı gibidir. Hayvan embriyosunun gelişmesini değişik aşamalardan geçerken gözlemleyelim. Embriyo, erişmesi beklenen yetişkin yaratığa benzemeden önce balığa benzer. Balığa benzerlik yalnız görünüşte değildir; erken embriyo oksijen ve besini göbek bağı yoluyla annesinden alır, ama gereksinimi olmadığı halde su altında nefes almaya yarayan solungaçlara da sahiptir. Açıkçası embriyonun evrimsel gelişmenin bir aşamasını yinelemesi için görünürde hiçbir neden yok. Ama embriyogenez süresince farklılık nasıl doğar, hücreler deri hücresi, kas hücresi, sinir hücresi olmaya ne zaman karar verirler diye sorsak, doğa boş bakışlarla cevap verir bize; hücrelerdeki bilgi işleminin evrensel mekanizması üzerine bir sürü şey öğrenmemize izin verdi, ama sıra hücreleri birbirinden farklı yapan nedenlere gelince bilgisizlik içinde oturuyoruz. Bazı bilim adamları embriyogenezin derinliklerine dalabilmek için tümüyle yeni kavramlara ve yöntemlere gereksinimimiz olduğuna inanıyorlar. Bunun böyle olduğundan kuşkuluyum. Yalnızca, hücreleri değişik yapan nedenler şimdiye kadar bulduklarımızdan daha karışığa benziyor. Tıbbın Embriyogenezle İlgisi Tıp bilimi için embriyogenezin anlaşılması önemlidir. Tıp adamlarının ilgilerini başka hiç bir olaya benzemeyen ölçüde bileyen, yalnızca bir tek hücrenin tam bir bireye dönüşebilmesi değil. Tıbbın; hamilelik, doğum kontrolü, çocuk ölümleri, doğuştan itibaren görülen hastalıklar, kalıtım hastalıkları ve kanser gibi problemlerin daha iyi denetlenmesi üzerine araştırmalarıyla da ilişkili. Bilim adamlarının embriyogenezin anlaşılmasının çok sayıdaki tıbbi probleme ışık tutacağı beklentileri var. Hücrelerin Yapışkanlığı Üzerine Birkaç Söz Daha Döllenmiş yumurta bölünmeye başladıktan sonra, hücrelerin birbirinden ayrılmayıp yapıştıklarından söz etmiştim. Yapışmalarını ne sağlıyor? insanın aklına bir yapışkan maddenin varlığı geliyor, ama gerçekte yapışkanlığı sağlayan bir madde değildir. Daha çok hücrelerin yüzeylerinde girintiler, çıkıntılar varmış gibi görünüyor (diğer hücrelerin çengellerine geçebilen ufacık çengeller). Hücrenin DNA'sı, gerçekte protein-yapan makineye, hücrenin dışına doğru göç edip orada girintili çıkıntılı bir yüzeyde çengel gibi davranacak belirli özel proteinler yapması talimatını vermiştir. Hücreler, bedenin değişik kısımlarını oluşturmak için uzmanlaşırken, yüzey protein çengelleri de amaca göre biçimlenirler. Bunlarla hücre tipleri birbirinden ayırt edilir. Embriyogenez İçin Enerji Şimdi bütün yapım işlerinde enerjinin gerekliliğine tümüyle duyarlı hale gelmiş olmalısınız. Hücrelerinin yakılıp ATP üretebilmesi için gelişmekte olan embriyoya şeker verilmelidir. Balıklarda, sürüngenlerde, kuşlarda ve embriyonun bir yumurta içinde büyüdüğü diğer yaratıklarda, yumurtanın sarısı embriyonun besinini sağlar. Annelerinin rahminde büyüyen hayvanlarda başka bir araç kullanılır. Anne iç duvarıyla embriyo arasındaki plasenta denen tabaka embriyo ile aynı hızla büyür. Plasenta, annenin kanıyla gelişen embriyonun kanının karıştığı yerdir. Annenin yediği besini getiren kan burada embriyonun kanına karışır. Yapım projesi için enerji böylece sağlanır. Bütün Hücrelere Aynı Bilgi Dağılmıştır Döllenmiş yumurta, anneden ve babadan aldığı tam büyüklükteki DNA ile yaşama başlar. Bölündükçe, yeni gelen her hücre kuşağı yetişkinliğe ulaşana kadar aynı büyüklükte DNA alır. Sonunda 60 trilyon hücreden oluşan bir insanda 60 trilyon birbirinin aynısı DNA kopyası bulunur! Bedenin her hücresinde, tamamen aynı bilgi bulunur. Yalnız üreme hücreleri diğer hücrelerin yarısı kadar DNA içerirler. Gen İfadesinin Denetlenmesi Embriyogenezin sırrının DNA'nın genlerinin ifadelerinin hücreler tarafından nasıl kontrol edildiğinin bilinmesinde gizli olduğu görülüyor. Bir yetişkini yaratmak için gerekli bütün bilgi hücrededir. Gelişen embriyonun her hücresinin içinin derinliklerini gözlemleyebilseydik, bazı şeylerin oluşumunu izleyebilecektik. Enzimler, döllenmiş yumurtanın DNA'sının genlerinin bazılarını mesajcı RNA'ya kopya etmeye başlayacaklardı. Mesajcı RNA'lar, daha en başta yumurtanın içinde bulunan, embriyoda etkin olan ribosomlara gideceklerdi ve burada gerekli proteinlerin sentezi başlayacaktı. Döllenmiş yumurta, reçetesinde yazılı proteinlerin tümünü biraz daha ribosomla birlikte toparladıktan sonra (ve DNA'sını iki katına çıkardıktan sonra) bölünecekti. Sonuçta oluşan hücre çiftlerinde, şimdi yeni bir tam ölçü DNA, yeni ribosomlar ve yeni her şey bulunacaktı. Kendisinden doğdukları hücrenin tümüyle tıpkısı olacaklardı. Protein sentezi işlemi ve yeni hücre yapımı kendi kendisim, yineleyerek, hücre sayısı dört hücreye ulaştırılacak, sekiz hücreye çıkmak için yeniden... Kısacası bunun böylece sürüp gittiğini görecektik. Buraya kadar işlem, bölünen bakteride sürüp gidenin hemen hemen aynı. Her kuşak hücre kendisinden öncekinin aynen yinelenmesi. Fakat uzmanlaşma başladığı zaman, yeni bir şeyler katılıyor olmalı. Eğer üreyecek hücrelerin bir grubu deri, diğeri kas, bir başkası beyin vb. olacaksa, DNA gerekli yönlendirmeyi sağlamalıdır. Yalnızca hücreler arasındaki sürekli artan farklılığı değil, aynı zamanda farklılığın ne zaman başlayacağını belirlemelidir. Gelişen hücre topluluğu içindeki her bir hücrede tamı tamına aynı ölçüde DNA bulunur. O zaman hücreler nasıl farklı olabilirler? Birincisi şunu hatırlayalım, deri hücresi, kas hücresi, beyin hücresi olsun, belli bir hücrenin karakterini, yaptığı proteinler belirler. Örneğin, deri hücreleri, keratin denilen özel bir protein yönünden zengindirler (deriye bizi koruyan özel yeteneğini veren protein). Kas hücreleri myosin denilen bir proteinle sarılmıştır. Bu proteinin özel yeteneği, bir eş proteinle etkileşip uzunluğunu değiştirebilmesidir. Böylece kas liflerinin kasılmasına yol açarlar. Beyin hücreleri elektrik güçler iletmeye yardımcı proteinler içerirler. Diğer bütün uzmanlaşmış dokuların hücreleri, hücrenin özel karakterini belirleyen kendilerine özgü proteinleri üreteceklerdir. Böylece bazı hücreler deri hücreleri olarak amaçlarını gerçekleştirmek için keratin üretmeye; diğerleri kas hücresi olabilmek için myosin üretmeye başlayacaklardır. Aslında, bütün hücrelerdeki DNA'larda keratin için bir gen myosin için diğer bir gen bulunur. Genler orada hazır bekliyorlar. Öyle görünüyor ki deri hücrelerinde keratin yapılması ifade edilirken, myosin baskı altına alınmak zorunda. Diğer yandan, kas hücrelerinde myosin ifade edilmeli ve keratin geni bastırılmalıdır. Yani deri hücrelerindeki keratin geni, keratin mesajcı RNA'sı olarak okunuyor. Ribosoma gidiyor orada keratin proteinine çevriliyor. Bütün bunlar gerçekleştikten sonra hücre deri hücresi haline geliyor. DNA, embriyo gelişimi sürerken, programlı bir sıralama ile genlerini her birinin sırası geldikçe ifade edip bastırabilmelidir. Belli türden bir hücre oluşumu yüzlerce protein gerektirir, yani bu hücrelerde. bir çok gen ifade edilirken daha çoğu da (başka, hücrelerin proteinlerini kodlayan genler) bastırılır. Gerçekten dikkate değer bir durum! DNA bütün genlerle birlikte, bu genlerin ne zaman işe koşulacağını ne zaman bastırılacağını da biliyor. Klonlar Klon, tek hücreden üremiş hücreler topuluğudur. İlkel kardeşlerimiz bakteriler, sürekli klonlar oluştururlar. Bir bakteri hücresini bir tabak yiyeceğin üzerine koyarsak, hemen bölünüp iki hücre, bu iki hücre bölünüp dört hücre olur ve bu böyle sürüp gider, iki gün içinde bakteri kütlesi çıplak gözle görülebilir hale gelir. Bu kütle bir klondur; bir tek orijinal hücreden üremiş milyonlarca yavru hücreden oluşur. Bu klondan bir tek yeni hücre alıp yine bir tabak yiyeceğin üzerine yerleştirirsek, birincisinde olduğu gibi bir klon oluşana kadar bölünecektir. Klon oluşturmak bakteri için oldukça kolay bir iştir, çünkü bütün hücreler birbirinin aynıdır. Daha gelişmiş bir organizmadan klon yapmak çok daha karmaşıktır. Ama teorik olarak mümkündür. Yaratıkların her hücresinde aynı DNA her şeyiyle tam bir bireyi oluşturmak için gerekli bilgiyi taşıdığına göre, tamamen teorik planda; herhangi bir hayvandan bir hücre alıp onu bir kap besinin üzerine veya beslenebileceği başka bir ortama koysak ve tam bir hayvan organizmasını üretmesini sağlasak, aslının kusursuz bir kopyasını geliştirmek için gerekli bütün bilgi, o tek hücrenin DNA'sında vardır. Bu olasılık, özellikle de insanın klon yoluyla oluşturulabileceği düşüncesi, yani bir tek insan hücresinden geliştirilmiş her şeyi tamam bir insan yaratmak, popüler yazarların hayal gücünü harekete geçirdi. Böyle bir olasılık gerçekleşmekten son derece uzaktır. Diğer yandan bir tek hücrenin aslında tam bir bireyi ortaya çıkarabildiğini biliyoruz; döllenmiş yumurta, tam bir yetişkin varlık olduğu zaman bu gerçekleşiyor. Ama olan biten tek yönlü bir işleme benziyor. Canlı yaratıklar, kolay kolay hücrelerinden herhangi birinin döllenmiş yumurta gibi bölünmeye başlayıp kendi tıpkı kopyalarını oluşturmasını sağlayamazlar, Bizim hücrelerimiz kendi uzmanlaşmış durumları üzerine sıkı bir denetleme uygularlar. Örneğin deri hücreleri deri hücresi olarak kalırlar, tıpkısı tıpkısına ayrı bir birey olmak şöyle dursun, değişip kas hücresi olmaya bile yeltenmezler. Hücrelerimizin, çevrelerinin etkisiyle mi böyle değişmez oldukları tartışılabilir. Bir hücreyi komşularından ayırsak, belki beklenmeyen bir davranışa yönelecektir. Böyle bir deney kurbağa larvası hücreleriyle aşağıda anlattığımız gibi yapılmıştır: Önce, kurbağa yumurtalarındaki hücre çekirdekleri ve dolayısıyla DNA'ları tahrip edilmiş, sonra genç larvaların rasgele bazı hücrelerinden alınmış çekirdekler, DNA'sız kurbağa yumurtası hücrelerine yerleştirilmiştir. Kısa sürede yumurtalardan yeni larvalar, hatta bazen kurbağalar gelişmiştir. Yani larvalar bir tek larva hücresinden üremiş birer klondurlar. Benzer klon yapma deneyleri, fareler ve başka hayvanlar üzerinde de yapılmış, ama başarıya ulaşılamamıştır. Klon başarısızlık, hücre karakterindeki dengeliliğini ortaya çıkartıyor. Her hücrenin DNA'sında bulunan, başka bir hücre olabilme potansiyeline karşın, hücreler bu potansiyel avantajı kullanmazlar. Genlerinin çoğu durdurulmuştur. embriyogenezi derinliğine araştırabilmek için genlerin ifade edilip edilmemesini neyin belirlediğini öğrenmeliyiz. Genlerin Başlatma - Durdurma Mekanizmasının Özelliği Hücreleri farklılaştıran gen çalıştırma mekanizması, insanın aklına keskin bir soru getiren ilginç bir bilinmeyendir. Genler nasıl harekete geçirilip durdurulabilirler? Daha önce de söylediğimiz gibi en açık yanıtlar en basit sistemlerden gelir. Yine, o alelade bakterilerin davranışlarına bakalım. Bazı hücreleri taze bir büyüme solüsyonu içine atıp, şeker olarak örneğin glukoz ekleyelim. Hücreler bölünmeye başlarlar ve sayılan hızla yükselir. Bu, glukoz tüketilene kadar sürer. Sonra büyüme durur. Aynı gözlemi, yine benzer bir hücre grubuyla bu sefer değişik bir şekerle, diyelim galaktozla deneyelim. Hücrelerin sayılan artar, ama glukozla olduğundan daha yavaş artar ve galaktoz bitince büyüme durur. Glukozun, daha hızlı tüketildiği için galaktozdan daha iyi bir besin olduğu sonucuna varırız. Ama her iki şeker de bakteri tarafından kullanılmıştır. Hiçbirini ziyan etmiyor bakteriler. Şimdi deneyi hem glukoz hem galaktoz kullanarak yineleyelim, ilginç birşey olur, glukozun tümü tüketilene kadar nüfus hızla artar. Sonra yirmi dakika kadar artış durur. Ve bu sürenin sonunda yeniden başlayıp galaktoz tüketilene kadar sürer. Hücrelerin glukozu yeğledikleri açıkça görülüyor. Ancak, yirmi dakikalık bir aradan sonra galaktozu kullanabilme yeteneğini kazanıyorlar. Bunun genleri harekete geçirmek ve durdurmakla ne ilgisi var? Bu basit sistemin analizi, 1950'lerin sonuna doğru, Fransız bilim adamları François Jacob ve Jacques Monod'ya gen ifadesinin denetlenmesi üzerine parlak bir ilham verdi. Şimdi bakterilerde mekanizmanın nasıl çalıştırılabildiği kanıtlanmış durumda; bu bizim gibi daha karmaşık organizmalarda da geçerlidir belki ama burası henüz kesinlikle bilinmiyor. Bakteriler, alışık olmadıkları bol şekerle uğraşırken içlerinde ne olup bitiyordu? Bakteri hücrelerinin glukoz kullanacak makineleri olduğu açıkça görülüyor, çünkü bu şeker verilir verilmez yemeye başladılar. Bu makine iki proteinden oluşuyor: Şekerin hücreye girmesini sağlayan bir enzim ve içeri girince onu hazmedecek bir enzim. İki enzim; iki gen. Bu makinenin galaktoz kullanan karşılığı henüz hücrede yok; veya en azından iki şekerin bulunduğu solüsyonda büyüme başladığı zaman yoktu. Glukoz tükenince galaktozu kullanacak makine kuruluyor. Glukozun bulunmaması, galaktoz kullanan makinenin geliştirilmesi için tetiği çekiyor. Glukoz, galaktozu kullanmak için gerekli enzimleri denetleyen genlerin ifadesini önlüyordu ve bastırıyordu. Glukoz bitince baskının etkisi kayboldu ve böylece galaktoz genleri, mesajcı RNA'ları yapmaya başlayıp proteine çevirebildiler. Bütün bunların bakteri için anlamını düşünün. Eli altındaki en iyi besini yiyor ve besin, bakteri içinde enerjinin başka besini kullanmak için enzimler yapılarak ziyan edilmemesini de ayarlıyor, iyi besin tükenince el altında yalnızca daha zayıf besin kalıyor. O zaman bakteri işe girişip bu besini kullanabilmesi için gerekli enzimleri yapıyor. Bakteriler Kendilerine Verilen Şeyleri Üretmezler Bahçenizde kendi kullanımınız için sebze yetiştiriyor olsanız ve birileri size düzenli olarak bu sebzelerden vermeye başlasa, belki de kendiniz yetiştirmekten vazgeçerdiniz. Bakteriler de buna benzer bir şey yaparlar. Kendi gereksindikleri amino asitleri yapabilirler (protein zincirindeki yirmi temel halka). Amino asitler olmadan, doğal olarak protein yapamayacaklardı ve üremeleri duracaktı. Eğer bakterilere hazır yapılmış amino asitler verirsek, içinde yaşadıkları solüsyona amino asitler eklersek, bakteriler kendi amino asitlerini yapmayı durdururlar. Amino asit armağanımız hücrelerin kendilerininkini yaparak enerji harcamalarını gereksizleştirir. Burada bir hayli enerji söz konusudur. Yirmi amino asidin her birini yapmak birkaç enzim gerektirir. Her enzim yapılışında, bir gen harekete geçirilmeli, mesajcı RNA yapılmalı, enzim proteinlerin yapıldığı ribosomlara gönderilmelidir. Genin böylece durdurulması yapı enerjisinde önemli bir tasarruf demektir. Enerji korumak, bütün canlı hücrelerde olduğu gibi, bakterinin de yaşamını sürdürebilmesi için son derece önemlidir. Gen İfadesinin Denetlenmesi İçin Şema İşte bakteriler üzerine çalışmalardan elde edilmiş gen ifadesinin genel resmi; 1. Genler harekete geçirilip durdurulabilirler. Bu, represör denilen protein moleküller tarafından yapılır. 2. Represörler, kendilerini genlerin ucuna bağlarlar. Böylece geni mesajcı RNA'ya geçirecek olan enzimin işini yapmasını engellerler. 3. Bu, genin yapmakla yükümlü olduğu proteinin yapılmasının istenmediği anlamındadır. 4. Represörler iki nedenle DNA'dan serbest bırakılabilirler: a) Glukoz gibi bir şekerin yokluğuyla (demek ki glukoz gene bağlanması için represöre yardım ediyor.) b) Bir amino asidin yokluğuyla. Şimdi daha önce anlattığımız glukoz-galaktoz. deneyinin açıklamasını görebiliriz. Glukoz bakterilerin eli altında bulunduğu sürece, onu yiyecek ve bu da galaktoz genleri represörünün galaktozu kapalı tutmasına yardım edecektir. Glukoz bitince, galaktoz geni represörleri işlevlerini yerine getirmezler, böylece gerekli enzimler yapılabilir ve galaktoz kullanılabilir. Aynı şekilde, bakterilere amino asitler verildiği zaman bu amino asitler, bütün amino asit yapmaya yarayan genlerin represörlerine yardımcı olup, genleri kapattırabilirler. Bakteri içinde işleri düzenleyen bu güzel sistemin insanlar dahil daha yüksek canlı biçimlerinde de işlediği görülüyor. Bu sistem genlerin ifadesini denetlemek için önemli bir yoldur. Ama İnsanlar Bakteri Değildir Bakteri hücreleri ile bizim gibi organizmaları daha karmaşık ve uzmanlaşmış hücrelerin kullandıkları yöntemler arasında, belirgin bir fark vardır. Bakteri hücreleri; çabuk tepki veren, esnek, çevredeki ciddî değişikliklere hızla kendini uydurabilen bir yaşam sürenler. Bu biraz, vahşî ormanlarda savaşarak varlığını sürdürmeye benzer; bir bakteri kendi başının çaresine bakar. Diğer yandan uzmanlaşmış hücrelerin yaşam biçimleri kalıcı olarak belirlenmiştir. Ömür boyu; "deri hücresi" deri hücresi olarak, "kas hücresi" kas hücresi olarak, "beyin hücresi" de beyin hücresi olarak kalır. Her hücre çeşidinde deri mi, kas mı, yoksa beyin mi olduğunu belirleyen bir kaç gen işletilir ve diğer bütün genler (diyelim ciğer, kemik ya da böbrek olmak için) durdurulur ve hücre neyse sonuna kadar da o olarak kalır. Bakteriler, buna göre genleri hızla ve kolayca harekete geçirip durdurabilecek araçlar gereksinirler. Uzmanlaşmış hücrelerde çoğu genler sürekli durdurulmuş, birkaçı da sürekli işletilir durumdadır. Bakterinin bu kolay çalıştırma-durdurma mekanizması, uzmanlaşmış hücrelerde kullanılana benzemeyebilir. Ne var ki şu anda elimizde en iyi anladığımız model, bakteri sistemidir. Hiç olmazsa teorik olarak, temelli durdurmayı veya çalıştırmayı sağlamak için kullanılmasını düşünmek zor değil. Biçimin Oluşumu Embriyogenezde temel problem olarak gen ifadesine bakıyorduk. Oysa ilk göze çarpan yan, biçimin oluşumu; heykel dökme sürecindeki hüner, yumurtadan bebeğe dönüşümün akıl almaz mimarî başarısı. Örneğin, bizi oluşturan tüm özel doku ve organlar, bir iskelete asılmıştır. Kemik, bütün diğer yapının yanı sıra embriyoda gelişir. Sıradan görünüşlü hücrelerden başlayarak, içinde kalsiyumun sert bir yapı oluşturmak için biriktirildiği yeni bir doku belirir. Bu doku sert ve olağanüstü güçlüdür, bir organizmanın ağırlığını ömür boyu taşıyabilecek nitelikte yapılmıştır. Kırıldığı zaman da yeniden kendini onarabilir. Böylesine bir yapısal biçimlendirme süreci nasıl ortaya çıkıyor? Bu anlaşılması zor bir problem ve yine bir model sisteme başvurmamız gerek. Bakteriler, insanlar gibi virüs enfeksiyonuna karşı dirençsizdirler. Her bakteri virüsünün (buna bakteri yiyen anlamında bakteriofaj denir) kutu gibi içinde DNA'nın saklandığı bir kafası ve enjektör iğnesi gibi kullandığı bir kuyruğu bu kuyruğun ucunda da bakterinin yüzeyini yakalayan örümcek gibi bacakları vardır. Sonra virüs kendisi bir enjektörmüşçesine -ki aslında öyledir de- DNA'sını kuyruğundan bakteriye geçirir. Virüsün DNA'sı bakteriye girer girmez idareyi ele alır.Bakterinin protein yapan makinesine, bundan böyle bakteri proteini yapılmayacağını belirten bir sinyal gider. Ribosomlar ve transfer RNA makinesi, virüsün kendi DNA'sından üretilen mesajcı RNA'lar tarafından çabucak kendi yararına işleyecek hale dönüştürülür. Kısa bir süre sonra, bakteri fabrikası virüs proteini parçalan yapmaya başlar. Yeni kafalar, kuyruklar ve bacaklar yapılır. Her şey virüsün DNA'sı tarafından yönetilir. Bundan kısa bir süre sonra, bakterinin içinde virüs kafalarının biriktiği görülür, yeni yapılmış virüs DNA'ları bunların içine yerleştirilir ve tamamlanmış virüsler ortaya çıkar. Her bakteri hücresinin içinde, yüz kadar virüs onu sıkı sıkıya dolduracak biçimde birikir. Zamanı gelince, virüsler bakterinin zarını yarıp, onu. öldüren bir enzim salgılayarak kaçarlar. Bütün bu vahşî yıkım yarım saatten az bir zamanda gerçekleşir. Bu olguda biçimin oluşumunun basit bir modelini görebiliriz. Ele geçirilen fabrikada, virüsün değişik parçaları, kendi DNA'sının verdiği talimatlarla, ufak bir bina yapar gibi bir araya getirilir. Bunun dikkatle programlanmış bir zaman aralığında, ortaklaşa gerçekleştirilen bir işlem olduğu görülebiliyor. Öyle ki genler virüsün değişik parçalarının yapımına bir sırayı izleyerek başlanmasını denetliyorlar. Doğru parçalar doğru sırada yapılıyorsa, belirli biçimin kendiliğinden bir anda oluşması çok güçlü bir olasılık gibi görünüyor. Bu modelin çok daha karmaşık, gerçek embriyogenez olgusuna ne kadar ışık tutacağı belirsiz. Ama modelin yararlılığı, bakteriden çok daha basit bir organizma olan virüsün gen kompozisyonu üzerine oldukça tam bir bilgi sahibi olmamızda yatıyor. Ayrıca, olayların sırasını denetleyip isteğimize göre ayarlayabiliyoruz ve çok karmaşık olmayan üç boyutlu bir biçimin oluşumunu bir elektron mikroskobuyla kolayca izleyebiliyoruz. Hücre Bölünmesini Başlatmak ve Durdurmak Embriyo hızla bölünen bir hücre kütlesidir. Bu korkunç hızlı büyüme işi, doğumdan sonra çocukluk boyunca gittikçe yavaşlayarak yetişkinliğe erişene kadar sürer. Yetişkinlikte hücre bölünmesi durur. Bir organizmanın bütününde; her organın, her dokunun hücreleri, büyümenin tamamlanmasına çok titiz ve dikkatli bir işbirliğiyle katılırlar. Hücreler büyümeyi ne zaman durduracaklarını nereden biliyorlar? Oluşumuna katkıda bulundukları organların tam büyüklüğe eriştiğini onlara söyleyen ne? Bu olgu, normal hücrelerin bedenin dışındaki davranışında da gözlemlenebilir. Birkaç normal hücre, bir cam kabın ortasına bırakıldıklarında, hemen yanlarındaki komşu hücrelerle sürekli ilişkili olarak bölünmeye başlarlar ve en uçtaki hücreler kabın kenarlarına dokununcaya kadar, kabın yüzeyini tek hücre kalınlığında bir tabaka halinde örterler. Kenara ulaşılınca bütün hücreler bölünmeyi durdurur. Bölünmeyi durduran sinyalin özelliği nedir? Bunun cevabını bilmiyoruz, ama araştırmayı sürdürüyoruz. Bilmecenin en azından bir bölümüne cevap getirebilecek, iddialı bir model sistemimiz var. Bu modelin uygulanabilme kolaylığına hayranım, üzerine yıllar harcadığım için ona karşı özel bir düşkünlüğüm var. Regenerasyon: Yenilenme Bir kurbağa yavrusunun kuyruğunu kesip onu yeniden suya bıraksam, yara çabucak iyileşir ve ondan sonraki üç haftada gerçekten ilginç olaylar olur: Tam ve mükemmel bir kuyruk. Bir salamenderin de buna benzer biçimde ayağını koparsam yerine yenisini yapar. Deniz yıldızı ve ıstakoz da öyle. Bu olguya regenerasyon: yenilenme denir. Bunun kendi bedenimizde de örneği vardır. Kopunca kollarımızı, bacaklarımızı yerine getiremeyiz ama karaciğerimiz bir kazada zarar görse, bir parçasının ameliyatla alınması gerekse karaciğer bir iki gün içinde eski büyüklüğüne erişir. Bu özel durumun, laboratuvarda benzerini yapabiliriz. Ameliyatla bir farenin karaciğerinin üçte ikisini alabilirim. Fare anesteziden birkaç dakikada ayılır, bir iki saat içinde yemeye başlar ve üç gün sonra karaciğerinin eksik üçte ikisi, normal ve sağlıklı olarak yerine gelmiştir; bir karaciğerin yapması gereken her şeyi yapmaktadır. Bütün bu olaylarda iki dramatik nokta görülür: Birincisi; hayvanın bir parçasının ayrılması, eskiden her şeyin sakin olduğu bu bölgede çok hızlı bir hücre bölünmesine yol açar. İkincisi; bu parça yerine gelince hücre bölünmesi durur. Şaşırtıcı olan; bu bölgedeki hücrelerin bölünmeye gerek olduğunu iş bitince durmak gerektiğini bilmeleridir! Bu hücrelerin içinde, onlara bölünmeye başlamalarını ve eksik organı tamamlamak için yeterince bölündükleri zaman durmalarım söyleyen nedir? Bir zamanlar bunun cevabım bulmak için, kopan parçanın yerine yeni hücreler üreten bir karaciğerden parçalar alıp, bunları normal, bölünmeyen karaciğer hücrelerine karıştırıyordum. Kopanı yerine getirmek için üreyen hücrelere, daha çok hücre yapmalarını söyleyen bir kimyasal sinyal varsa bunun normal hücreleri de etkileyip, onların daha hızlı protein yapmalarını sağlayacağını düşünüyordum. Diğer yandan, eğer normal hücreler yenileme hücrelerini yavaşlatacak bir kimyasal mesajı içeriyorlarsa, bunu da anlayabilecektim. İyi bir fikir, iyi bir model ama deneyler sonuçsuz kaldı. Sistem henüz çok karmaşık. Olanları bir türlü kavrayamıyoruz. Yaşamın kanunlarını açığa çıkartmakta üst üste sağlanan başarılardan söz eden öykümüzde; bir deneysel başarısızlığın yeri yok gibi gelebilir. Bence tersine; bu öykümüzün gerçekçiliğini arttırır. Aslında, şimdiye kadar bilim adamlarını yaptıkları deneylerin çoğu başarısızlıkla sonuçlanmıştır. Başarısızlıklarımızdan ders alıp, bize sonunda iyi bir ilham sağlayacak daha iyi deneyler tasarlayabiliriz. Meslektaşım Dr. Nancy Bucher, yenilenme olayı üzerine bilgiye belki de diğer bilim adamlarından çok daha fazla katkıda bulunmuştur. Önemli çalışmalarından bazıları, farelerden yapışık ikizler yapmayı içeriyordu İki fareyi iyi bir ortak dolaşımları olacak biçimde birbirine dikiyordu; kan ikisinin arasında kolayca dolaşıyordu. Sonra, farelerden birinin karaciğerinin üçte ikisini alıyor ve bu ciğerin eksik kısmı yerine gelene kadar, diğer farenin karaciğerinin de büyüyüp büyümediğine bakıyordu. Büyüdü! Bu; yenilenme yapan karaciğerin, kan dolaşımına bir şey kattığı ve bunun diğer farenin karaciğerine ulaşınca, onun da büyümesine neden olduğu sonucunu gösterdi. Nancy Bucher ve bir çok başka bilim insanları, bu maddenin ne olabileceğini anlamaya çalıştılar; ama henüz bir başarı elde edilmiş değil. Embriyogenez Üzerine Bilinmeyenler Bilinenlerden Çoktur Yinelersek, embriyogenez konusunda bazı ilginç şeyler üzerinde durduk. Bir arada kalabilecek yapışkanlığı elde etmek için bölünen hücrelerin özel yeteneklerinden; bir organizma oluşturmak için gerekli olan uzmanlaşma konusundan; biçimin oluşumundan ve son olarak uzun embriyogenez, sürecine dur emri veren, çocukluk ve yetişkinliğe ulaşma işleminin bittiğini bildiren sinyalden söz ettik. Bunlar son derece karışık olguların yalnızca bir iki önemli noktası. Cahilliğimiz hâlâ bildiklerimizi kat kat geçiyor. Bu hiç de şaşırtıcı değil. embriyogenez, bütün yeteneklerimizi kullanmamızı gerektiren bir probleme benziyor ve biyoloji biliminin temelinde yatıyor. Biraz heyecanlı, biraz da kışkırtıcı bir konu; çünkü, ilk bakışta çözülemeyecek hiçbir zor yanı yokmuş gibi görünüyor. Kısa bir süre sonra, daha önceki bölümlerde anlattığımız yaşamın evrensel kanunlarını kavradığımız gibi, embriyogenezi de anlayabileceğimize inanıyorum. Embriyogenezin anlamadığımız yanları, kanserin anlamadığımız yanlarına çok benziyor. Gerçekte, bazı araştırmacılar, kanserin açıklamasının, embriyogenezin anlaşılmasını gerektirdiğini düşünüyorlar. Kanser, bazı bakımlardan insanın embriyogenezindeki o çok üstün denetleme yeteneğini yitirdiği zaman ortaya çıkıyor gibi görünüyor. Örneğin, kanser hücrelerinin başıbozuk davranışları, hücre yapışkanlığının yok olmasıyla ilgili olabilir. Şimdi bu konuyu daha yakından incelemeliyiz.

http://www.biyologlar.com/embriyogenez

BİTKİNİN KISIMLARI

1. Kök * Topraktaki su ve minarelerin alınmasında kökte bulunan emici tüyler görevlidir. Emici tüyler kökteki epidermis hücrelerinin farklılaşarak dışa doğru uzamasıyla meydana gelen kısa ömürlü yapılardır. * Emici tüylerdeki organik madde yoğunluğu toprak suyundaki çözünmüş madde yoğunluğundan büyüktür. Böylece toprak emici tüy hücrelerine göre hipotonik kalır. * Su çok yoğun olan topraktan az yoğun olan emici tüylere osmos ile geçer ve kabuk kısmını oluşturan parankima hücrelerinden odun borularına ulaşır. * Emici tüyler kökün toprakla olan emilme yüzeyini arttırır. Kurak bölge ve tuzlu topraklarda yaşayan bitkilerin emici tüylerindeki osmotik basınç diğer bitkilere göre daha fazladır. 2. Gövde Bitkinin gövdesinde odun ve soymuk borularının yerleşimi farklıdır. I. Monokotiledon (Tek Çenekli =Tek Yıllık) Bitkilerde odun ve soymuk boruları: * İletim demetleri dağınıktır * Odun boruları ve soymuk boruları arasında kambiyum yoktur (Kapalı demet) * Bu bitkiler genellikle tek yıllık otsu bitkilerdir. * Kökleri yüzeysel ve yayvandır. * Yapraklarında iletim demetleri paralel damarlanma gösterir. * Tohumlarında tek çenek yaprağı bulunur. II. Dikotiledon (Çift Çenekli= Çok Yıllık) Bitkilerde odun ve soymuk boruları: * İletim demetleri halkasal dizilmiştir * Odun boruları ve soymuk boruları arasında kambiyum bulunur (açık demet) * Dıştan içe doğru; kabuk mantar, soymuk boruları, kambiyum, odun boruları, öz kısmı bulunur. * Kökler kazık ve yerin derinine doğrudur. * Bu bitkiler genellikle çok yıllık odunsu bitkilerdir. * Yapraklarında ağsı damarlanma görülür. * Tohumlarında çift çenek yaprağı bulunur. 3. Yapraklar * Yapraklar gövdenin yan tomurcuklarından gelişir. Çoğunda meristem doku bulunmadığı için büyümeleri sınırlıdır. Yaprakta; yaprak kını, yaprak sapı ve yaprak ayası olmak üzere 3 kısım vardır. Bir yaprakta fotosentez yapan hücreler palizat ve sünger parankiması ile gözenek hücreleridir. * Üst Epidermis: Hücreler tek sıralı, kloroplastsız, kalın çeperli ve yassıdır. Stoma çok az yada hiç yoktur. Yüzeyi su kaybını önleyen mumsu kütüküla tabakasıyla örtülüdür. * Palizat Parankiması: Üst epidermisin altında düzgün sıralanmış bol kloroplastlı hücrelerden oluşur. Fotosentez hızının en fazla olduğu hücrelerdir. * Sünger Parankiması: CO2, O2 ve su buharı difizyonunu kolaylaştıran hücreler arası boşluklar vardır. Hücreleri kloroplastlıdır. * Yaprak Damarları: Odun ve soymuk borularını taşıyan iletim demetlerinin devamıdır. Bunlar yaprağın mezofil tabakasına uzanırlar. Damarların üst ksımında odun, alt kısmındaysa soymuk boruları yer alır. * Alt Epidermis: Stomaların bulunduğu tek sıralı hücrelerden oluşan tabakadır. Hücreleri kloroplastsızdır. İki epidermis arasındaki kısma mezofil denir, bu kısım parankima hücrelerinden meydana gelir. Stoma (Gözenek): Gaz alışverişinde rol oynayan kloroplastlı fasulye tanesi şeklinde iki stoma (kilit) hücresinden meydana gelir. Dış çeperleri ince, iç çeperleri ise kalındır. Stoma Hücrelerinin Çalışma Prensibi Stoma açıklığının açılıp kapanması stoma hücrelerindeki turgor basıncının değişmesiyle olur. * Işık şiddeti arttıkça stoma hücrelerinde fotosentezle glikoz yoğunluğu artar, komşu hücrelerden su geçişi olur. * Su alan stoma hücrelerinde turgor basıncı yükselir. Artan turgor basıncı ince çeperlere daha çok etki eder, kalın çeperler ayrılır ve stoma açılır. * Su hücreden çıkınca turgor basıncı azalır, kalın çeperler birbirine yaklaşır ve stoma kapanır. * Karanlıkta nişasta miktarı artar. Turgor basıncı düşer ve stomalar kapanır. Kurak havalarda terleme hızını azaltmak için stomalar kapanır, bu durum CO2 girişini engellediği için geçici olarak fotosentez ve glikoz sentezini azaltır veya durdurur. (Kurak bölge bitkileri bodurdur) Stomaların açılıp kapanmasında stoma bekçi hücrelerindeki CO2 miktarı ve K iyonlarının yoğunlukları da etkilidir. * Işığın fotosentez hızını arttırmasıyla bekçi hücrelerinde K iyonu birikimi görülür. Bu sırada fotosentez nedeniyle CO2 miktarı azalır. Gerek CO2 azalması gerekse K iyonları ile içeri giren bikarbonat iyonları ortamı bazikleştirir (PH yükselir). * Glikozun kilit hücrelerinde yoğunluğunun artmasıyla birlikte komşu hücrelerden su girişi olur ve stomalar açılır. * Gece bitki fotosentez yapamayıp solunuma devam ettiği için stoma kilit hücrelerinde CO2 miktarı artar. Ortam asitleşir (PH düşer). Glikoz nişastaya dönüşür. Kilit hücrelerinin ozmotik basıncı düştüğü için su kaybederler. Kilit hücrelerinde suyun kaybolması turgor basıncını düşürür. Stomalar kapanır. Hava neme doymuşsa bitki terleme ile su kaybedemez. Bu durumda yaprakların kenarlarında bulunan hidatot (su savağı) adı verilen deliklerden dışarıya sıvı halde damla damla su kaybedilir. Bu olaya damlama (gutasyon) denir. Unutulmamalıdır ki terleme ile kaybedilen su saf sudur. Damlama ile kaybedilen su sıvı halde atıldığı için inorganik tuzlar içerebilir. Hem terleme hem de damlama bitkide birer boşaltım olayıdır. Kurak bölge bitkilerinde su kaybını azaltmak için: * Yaprak üzerinde stoma sayısı azdır * Stomalar yaprağın iç kısmına gömülüdür * Stomalar yaprağın alt kısmında yoğunlaşmıştır * Epidermiste kalın kütiküla tabakası ve tüyler bulunur * Yaprak yüzeyi küçülmüş, kökte dallanma artmıştır * Kökte emici tüylerle osmotik basın

http://www.biyologlar.com/bitkinin-kisimlari

Bitki Örneklerinin İlaçlanması

Bunun amacı böcekler, larvalar ve yumurtalarını öldürerek herbaryum materyalinin uzun ömürlü olmasını sağlamaktır. İlaçlama çeşitli yollarla yapılır. 1. Dezenfeksiyon: Materyal, metil buramit, karbon bisülfit, karbontetraklorit gibi maddeler ile muamele edilir. Bunlar parçalayıcıdır. Ayrıca böcek yumurtaları ve pupalard; dezenfeksiyon, vakum ortamında uygulanmazsa ölmemektedir. 2. Isıtma: Bitkiler, içinde ısıtıcı bulunan metalden yapılmış bir dolap içine yerleştirilir. Otomatik termo¬stat ile 75-80 oC'ta sabit tutulur. 24 saat bekletilir. 3. Zehirleme: Bitkilerin civalı bileşiklerle ilaçlanmasıdır. Zehirlenen bitki örneklerinde kartonun görünür bir yerine zehirlenmiştir diye yazılmalıdır. 4. Soğutma: Derin dondurucu içinde -8 oC'ta 2 gün bekletilir. Oldukça etkilidir. - Bitkilerin Dolaplara Yerleştirilmesi İsimlendirilen bitkiler belli bir sınıflandırma sistemine göre dolaplara yerleştirilir. Ankara Üniversitesi herbaryumunda familyalar, cins ve türler, Engler sistemine uygun bir şekilde filogenetik bir düzen içerisinde yerleştirilmiştir.

http://www.biyologlar.com/bitki-orneklerinin-ilaclanmasi

Böceklerde Duyu Sistemleri

Böcekler genel olarak ayri eseylidirler. Ancak nadir olarak birkaç örnekte iki eseyin ayni bireyde temsil edilmesi yani hermafroditizim veya (Gynondromorphizim) görülür. Buna en iyi örnek pamuklu bit, Icerya purchasi' dir. Böceklerde çogalma sistemi abdomende yer alan bir organ grubudur. Erkek ve disi çogalma sisteminin kisimlari arasinda siki bir paralellik oldugu gibi her iki sistemin birçok kismi bilateral simetrilidir. Disi çogalma sistemi esas olarak yumurtalarin olustugu bir ovariol grubu, spermalarin depo edildigi bir spermateka ve yumurtalarin vücudun disina çikarilmasina yarayan bir kanal sisteminden ibarettir. Tipik bir disi çogalma sisteminde her biri vücudun bir yaninda olmak üzere 2 ovaryum vardir. Ovaryum çok sayida ovariol tüpünden (yumurta borucuklari) olusur. Her bir ovariol anterior olarak terminal filament denen bir tutunma ipligi ile son bulur. Ovariolün üst kisimlarinda gelismekte olan yumurtalar ve bunun alt kisminda olgun yumurtalar bulunur. Ovariolün kaide kisminda pedicel denen küçük bir kanal vardir. Her grubun pedicelleri birleserek bir calyxi olusturur. Calyx'lerin herbiri lateral ovidukt içersine açilir. Her iki yanda yer alan lateral oviduktlar, median oviduktu meydana getirmek üzere aralarinda birlesirler. Median ovidukt ya dogrudan disi yumurta koyma borusu (ovipositor) ile birlesir veya ovipositor ile birlesen vaginaya (yumurta odacigi) açilir. Ovidukt'un veya vagina'nin dorsal duvarina iki bez baglanmistir. 1. Kanal kismina açilan ampul seklinde bir bez olan reseptaculum seminis ve 2. Bir çift olan yardimci bezdir. Bu bez, yumurtalari zemine yapistirmaya veya yumurta kümesi üzerine bir muhafaza yapilmasina yarar. Degisik böcek gruplarinda ovariol sayisi tipi ve bezlerde degisiklikler görülür. 1, 2, (Kansu, 55 ten). Oocytlerin olgunlasma ve beslenme sekillerine göre ovarioller iki kisma ayrilir. 1. Panoistik ovariol; Trophocyt (besleyici)'ler yoktur. Yumurtalar, etrafindaki follicular epitelyum tarafindan beslenir. 2. Meroistik ovariol; Besleyici Trophocythler bulunur ki bu tipte 2 gruba ayrilir; a. Polytrophic tip. Yumurta ve besin hücresi birbiri ardina dizilmistir. Her oocyt kendi tamamlayicisi olan trophositle (Neuroptera, Hymenoptera, Lepidoptera, Diptera), alternatifli siralanir. b. Telotrophic tip (Acrotrophic Hemiptera Homoptera Coleoptera) Besleyici hücre yumurta borusunun üst ucunda toplanmistir. Bazi hallerde yumurtalar besleyici hücrelere plazma uzantisi ile baglidir (Hemiptera). Erkek çogalma sistemi: Genel organizasyon bakimindan erkek çogalma sistemi disininkine benzerlik gösterir. Bu sistem baslica bir çift testis, buna bagli kanallar ve spermalarin vücut disina çikis yollarindan meydana gelir. Her testis, içinde spermalarin olustugu bir grup sperma borucugundan (folicula seminalis) ibarettir. Sperma borucuklari ortak bir kanalla, vas deferens'e, o da sperma kesesine yani vesicula seminalis açilir. Vesicula seminalislerden itibaren birer kanal çikarak ortak bir dustus ejacolatorius'u olusturur. Ductus ejaculatorius penis içersinde devam eder ve ucunda sperma çikis deligi bulunur. Penisin dis çogalma organlari ile birlikte bulunmasi olagandir; aedeagus denen yapi, membran yapisindaki gerçek penisin etrafinda sert bir örtü meydana getirir. Ductus ejaculatorius'un iç kisimlari ile baglantili olarak tek veya çift halde yardimci bezler bulunur. Özel Dokular Yag dokusu: Özellikle son larval veya nimfal evrede vücudun her tarafinda bulunan gevsek bir sekilde düzenlenmis hücre kümeleridir. Yag dokusu düzenli bir doku izlenimi verecek sekilde de olabilir. Böcekler için çok önemli olan bu dokunun ödevi; besin depo etmek ve bir kisim bosaltima yardim etmektir. Önocyt'ler: Bunlar vücut boslugunun degisik noktalarinda bulunan tek veya küme halindeki hücrelerdir. Ödevleri henüz tatminkar sekilde aydinlatilamamistir. Corpora allata: Sindirim sistemi ile siki sikiya iliskili bir çift ganglion olup metamorfoz ve bazi ergin dokularin gelismesinin düzenlenmesinde önemli olan hormonlari salgilar.

http://www.biyologlar.com/boceklerde-duyu-sistemleri

ATİPİK HÜCRE NEDİR?

Atipik hücre normal olmayan hücre, atipi normal olmama durumudur. Patoloji tanısında atipi veya atipik sözcükleri var ise, bu patoloğun gördüğü değişikliklerden rahatsız olduğu ancak kanser tanısı koyacak ölçüde değişikliğin olmadığını vurgular. Atipi veya atipik sözcüğü patoloğun klinisyeni şüpheli durum açısından uyarmak için kullandığı bir sözcüktür. Atipik hücre : Kısaca yapı bakımında normalin dışında özellik gösteren hücre anamına gelmektedir... Yani: Tipik olmayan anlamına gelir. ATİPİK HÜCRE NEDİR ? Bir hücrenin boyutları, boyanma durumu, çekirdek biçimi ve çekirdek-sitoplazma oranı gibi fiziksel özelliklerin değişerek benzer normal hücrelerden farklılaşması. FİBROKİSTİK MEME VE MEME KANSERİ Hormon ve hormon benzeri maddelerin sürekli ve değişen etkileri sonucu süt bezleri ve süt kanallarını döşeyen hücrelerde bazı değişiklikler olabilir. Bu hücreler diğerlerinden farklı bir görünüme sahiptir ve bunlara atipik hücre denir. Bazen bu hücrelerde artış saptanır ve buna da atipik hiperplazi denir. Atipik hiperplazi bulunan memelerde meme kanseri gelişme riski daha yüksektir; çünkü bu hücrelerin genetik yapılarında bozulmalar başlamıştır ve ortaya çıkan genetik bozuklukların tamiri yetersiz kalmaya başlamıştır.

http://www.biyologlar.com/atipik-hucre-nedir

Cansız materyal inceleme için doku örneği alımı

Histolojik amaçlarla insanlardan materyal alınması her zaman mümkün değildir. Genellikle ameliyatlarla dışarı alınan bazı patolojik doku ve organların etrafında bulunan sağlıklı doku kısımları histolojik incelemeler için değerlendirilir. Deney hayvanlarından ise doku parçaları öldükten hemen sonra alınır, iyi preparasyonlar için hayvanlardan doku parçalarının anestezi altında alınması en uygun yoldur. İncelenecek parçanın alınması ya organizma canlı iken ( biopsi ) ya da organizma öldükten sonra ( autopsi ) olur. İkinci halde parçaların ölümden mümkün olduğu kadar kısa bir süre içinde alınıp tesbit edilmesi gerekmektedir. Çünkü hücre öldükten sonra bir seri kimyasal değişimlere uğrar ve görünümü değişir, bu da doku incelenirken yanlış yorumlara neden olur. Hücre öldükten sonra meydana gelen bu değişimler postmortem degeneration’lar adını alır. Özetle dokuların alınmasında şu hususlara önemle uyulmalıdır: 1. Doku parçası anestezi altında alınmalıdır, bu mümkün değilse ölümden hemen sonra alınmalıdır. 2. Keskin bir bıçak kullanılmalıdır. 3. Doku alımında kör bıçak veya makas kesinlikle kullanılmamalıdır. Bu durumda dokunun bazı kısımlarında artefaktlar veya normalde bulunmayan morfolojik şekiller ortaya çıkabilir. 4. Doku veya organ parçasının büyüklüğü 3-4 mm’yi geçmemelidir. Bir organdan genişce bir parça almak zorunluluğunda isek hiç olmazsa bu parçanın kalınlığının 3-4 mm’yi geçmemesine dikkat etmeliyiz. https://www.biyolojigunlugu.com

http://www.biyologlar.com/cansiz-materyal-inceleme-icin-doku-ornegi-alimi

BESLENME FİZYOLOJİSİ

Bilindiği gibi canlıların ortamdan sağladığı, olduğu gibi tüketerek kullandıkları besin maddeleri büyük canlı gruplarında farklılıklar gösterir. Bitkiler aleminde de özellikle su bitkilerinin sudan, kara bitkilerinin topraktan sağladığı inorganiklerin çeşitleri ve özellikle oranlarında farklılıklar görülür. Tipik bitki besini olarak kullanılan elementlerin hepsi inorganik formdadır. Ancak bitki köklerinin organik maddelerden de yararlandığı görülmüştür. Saprofit ve parazit bitkiler ise konukçuldan inorganikler yanında doğrudan organik madde de sağlarlar. Canlıların tükettiği maddeleri oluşturan elementler canlılıktaki işlevleri açısından esas olan ve esas olmayan elementler olarak ikiye ayrılır. Günümüzde benimsenmiş olan ayırım bir elementin hücrede canlılık için esas olan bir molekülün yapısına girip, girmemesine göre yapılır. Bu da noksanlığı halinde bitkinin vejetativ gelişmesini tamamlayamaması ve karakteristik, tekrarlanır bazı belirtilerin açık şekilde ortaya çıkması ve element eksikliği giderilince ortadan kaybolması şeklinde kendini gösterir. Suyun hidrojeni yanında karbon canlıların yapısını oluşturan ve canlılığı sağlayan organik moleküllerin tümünde bulunduğundan en önemli elementlerdir, canlılığın temel taşları olan nükleik asit ve proteinlerin yapısına girdiğinden, azot birçok organik maddenin maddenin yapısında önemli bir yere sahip olduğundan temel besin elementidir. Fosfor da tüm canlılarda enerji metabolizmasındaki yeri nedeniyle temel elementtir. Oksijen de solunumdaki rolü ile anaerob mikrobiyolojik canlılar dışındaki bitkiler için önemi ile onları izler. Yeşil bitkilerin yaşamı için şart olan maddeler arasında miktar açısından temel besinleri su ve karbon dioksit ile oksijendir. Kemosentez yapan bakteriler için de farklı formları halinde alınsa da karbon temel elementtir. Bunun yanında inorganik azotlu bileşikler de besin olarak çok önemli yer tutar. Çünkü bazı Cyanophyta grubu ilksel bitkiler yanında Leguminosae ve Mimosoidae familyaları gibi bazı yüksek bitkileri ancak Rhizobium bakterilerinin simbiyont olarak katkısı ile havanın azotundan yararlanabilirler. Bu grupların dışında bitkiler havada yüksek oranda bulunan serbest azotu besin olarak kullanamazlar. Tüm canlılarda mutlaka ve yüksek oranlarda bulunması gereken bu elementler yanında besin olarak alınan elementler alkali ve toprak alkali mineral elementleri grubuna giren ve tüketimleri, gereksinim duyulan miktarları nedeniyle makroelement denen inorganiklerdir. Bu elementlerden çok daha düşük oranlarda gerekli olan ve daha yüksek miktarları ile toksik etki yapan mikroelementler konusunda ise farklı bir tablo görülür. Bitki gruplarında cins ve tür düzeyinde bile seçicilik, tüketim ve yararlanma ile yüksek derişimlerinin varlığına dayanıklılık, zarar görmeden depolayabilme farklılıkları görülebilen elementlerdir. Bitkiler aleminde bulunan elementlerin toplam olarak sayıları 60 kadardır. Bu elementlerin toplam bitki ağırlığına, organ ağırlıklarına, doku ve hücreler ile organellerin ağırlıklarına ve kuru ağırlıklarına oranları yaşam evrelerine, çevre koşullarına ve bunlar gibi birçok etmene göre farklılıklar gösterir. Bitkiler için yaşamsal önem taşıyan esas element sayısı 17dir. Makro elementler tipik olarak 1 kg. kuru maddede 450 mg. cıvarında olan arasındaki oranlarda bulunan C, O, 60 mg. cıvarındaki H, 15 mg. cıvarında olan N, 10 mg. kadar olan K, 5 mg. cıvarındaki Ca, 2 mg. cıvarındaki P, Mg ve 1 mg. kadar olan S elementleridir. Mikroelementler arasında yer alan esas elementlerden Cl ve Fe 0.1, Mn 0.05 ve B ve Zn 0.02, Cu 0.006, Mo 0.0001mg / kuru ağırlık düzeyinde bulunurlar. Makroelementler hücre yapısında yer alan, mikroelementler yapıya girmeyip metabolizmada etkin rol alan elementlerdir. Esas makroelementler olarak bitkilerin canlılığı için şart olanlar arasında P, S, Ca, K, Mg, Fe yer alır. Bunların yanında Na deniz bitkileri ile tuzcul olan yüksek bitkiler için esas makroelementtir. Esas mikroelementlerden Fe ve Mo özellikle yüksek bitkiler için, B birçok yüksek bitkiler ve V bazı algler için esas elementtir. Kükürt dışındaki mikroelementler özellikle canlılık için önemli bazı enzimlerin kofaktörü olarak işlev yaparlar. S ise özellikle kükürtlü amino asitler üzerinden sitoplazmik protein zincirlerinin kuvvetli bağlarla sağlam bir yapı oluşturması nedeniyle önemlidir. Se, Al gibi bazı iz elementleri alarak depolayan fakat metabolizmada kullanmayan, o element için seçici olmayan türler de vardır.

http://www.biyologlar.com/beslenme-fizyolojisi

Homeostatik Denge ve Canlı

Doğada bulunan canlı ve canlı gruplarına bakıldığı zaman hep aynı döngü içerisinde yaşamlarını sürdürdükleri ve bu döngünün hep devam ettiği görülür.Nedir bu döngü?Bu soru güzel bir sorudur… Canlılar yaşamları içerisinde doğarlar,gençlik ve olgunluk dönemlerini yaşarlar ve sonunda yaşlanıp ölürler.Tarih boyunca canlıları aynı akibet takip etmiştir.Belli başlı elementlerin karışması sonucu canlı organizma meydana gelmekte ve bu metabolik elementlerin çoğalması sonucu canlı büyümekte ve belli bir dönem sonunda canlı zayıflayıp ölmektedir.Yazımda bu metabolik elementlerin ayrıntısına girmek istemiyorum,ancak bu oluşum ve dengeli büyüyüp gelişme belli bir zincirleme reaksiyon sonucunda olmaktadır.İşte,bu zincirleme reaksiyonun kontrolü ve dengelenmesine bilim adamları “homeostatik denge” adını vermektedir. Homeostatik denge,canlının dengeli bir anabolizma ve dengeli bir katabolizma eşliğinde varlığını sürdürdüğünü kabul eder.Kısaca,anabolizma yapım demektir ve katabolizmada yıkım demektir.İkisine beraber ise metabolizma adı verilmektedir. Canlı doğumundan ergenlik dönemine kadar aktif bir anabolizma ile dengelenmektedir.Anabolizmanın yapım olduğunu söylemiştim,bu duruma göre ergenlik ve gençlik çağlarına göre vücuttaki yapım olayı yıkım olayından daha fazladır.Bu nedenle canlı gençlik dönemine kadar primer bir gelişim süreci içerisindedir ve hem boyca hemde yapıca gelişimi devam eder.Gençlik döneminden yaşlılık dönemine kadar ise anabolizma ile katobolizma eşit duruma gelmiştir.Yani vücuttaki yapım ile yıkım olayları eşit bir hale gelmiştir.Bu dönemde boyca ve yapıca gelişim yoktur.Sadece sekonder dediğimiz ve ikincil gelişim olarak adlandırılan bir gelişim sözkonusudur.Yağ tabakaları büyür,karında genişlemeler ve kemiklerde belli oranlarda(çok az) gelişmeler bu dönemde görülür.Homeostatik dengenin son dönemi olan yaşlılık yıllarında ise artık katabolizma anabolizmadan daha fazla olmaktadır.Yani yıkım olayı yapım olayından daha fazla gerçekleşmektedir.Sonunda da ölüm olayı kaçınılmaz olmaktadır. Dengeyi bozmamak için aldığımız gıdaların dengeli ve sağlıklı olmasına özen göstermeliyiz.Unutmamalıyız ki,dengesiz ve sağlıksız beslenme insanın yapısınında dengesiz olmasına yol açar. Bir başka yazımda buluşmak üzere… webmaster@lutfisahin.com

http://www.biyologlar.com/homeostatik-denge-ve-canli

 
3WTURK CMS v6.03WTURK CMS v6.0