Biyolojiye gercekci yaklasimin tek adresi.

Arama Sonuçları..

Toplam 63 kayıt bulundu.

Sitoloji (hücre biyolojisi)

Sitoloji (hücre biyolojisi), hücreleri inceleyen bir bilimGrekçe'deki kytos, barındırıcı, kelimesinden türemiştir. Sitoloji, hücrelerin fizyolojik yanlarını, barındırdığı yapıları, organelleri, ortamlarıyla ilişkilerini, hayat döngülerini, bölünmelerini ve ölümlerini inceler. Bu işlem hem moleküler hem de makroskobik ölçüde gerçekleştirilir. Sitoloji araştırmaları, bakteriler gibi tek hücreli organizmalardan, insan gibi çok hücreli organizmalara kadar büyük bir alana yayılır. Hücrelerin oluşumu ve görevleri hakkında bilgi edinmek, bütün biyolojik bilimlerin temelini oluşturur. Değişik hücre türleri arasındaki farklılık ve benzerlikleri ortaya çıkarmak, özellikle de moleküler biyolojiye çok büyük katkıda bulunur. Bir araştırmadan öğrenilen bilgiler, evrensel bazı teorileri ortaya çıkardığından, bir türün hücresinden edinilen bilgiler diğer türlere de uygulanılabilir hale gelir. Sitolojideki araştırmalar, özellikle de genetik, biyokimya, moleküler biyoloji ve gelişim biyolojisine katkıda bulunur.

http://www.biyologlar.com/sitoloji-hucre-biyolojisi

GENETİK KOPYALAMA

İşçilerin tulumları beyazdı; ellerinde soğuk, kadavra rengi kauçuk eldivenler vardı. Işık donuktu, ölüydü: Bir hayalet sanki!.. Yalnız mikroskopların sarı borularından zengin ve canlı bir öz akıyor, bir baştan bir başa uzanan çalışma masalarının üzerinde tatlı çizgiler yaratarak, parlatılmış tüpler boyunca tereyağ gibi yayılıyordu. "Bu da" dedi Müdür kapıyı açarak, "döllenme odası işte..." Doğal olarak, ilkin döllenmenin cerrahlığa dayanan başlangıcından söz etti, derken "Toplum uğruna seve seve katlanılan bir ameliyattır bu" dedi, "altı maaşlık ikramiyesi de caba... Bir yumurta bir oğulcuk, bir ergin; bu normal... Oysa, Bokanovskilenmiş bir yumurta tomurcuk açar, ürer bölünür. Eş ikizler yalnız insanların doğurduğu o eski zamanlardaki gibi yumurtanın bazen rastlantıyla bölünmesinden oluşan ikiz, üçüz parçaları değil, düzinelerle yirmişer, yirmişer." Müdür "yirmişer" diyerek sanki büyük bir bağışta bulunuyormuş gibi kollarını iki yana açtı; "yirmisi birden!.." Ama öğrencilerden biri bunun yararının ne olduğunu sormak gibi bir sersemlikte bulundu. "İlahi yavrucuğum!" Müdür olduğu yerde ona dönüvermişti. "Görmüyor musun? Görmüyor musun, kuzum?" Bir elini kaldırdı; heybetli bir duruşa geçmişti. "Bokanovski süreci toplumsal dengenin en başta gelen araçlarından biridir! Milyonlarca eş ikiz; toptan üretim ilkesinin sonunda biyolojiye uygulanmış olması..." YUKARIDAKİ PARÇA, Aldous Huxley’in 1930’larda yazdığı, geçtiğimiz ay bilim gündemini birdenbire fetheden "koyun kopyalama" deneyine değinen haberlerde sıkça gönderme yapılan, Brave New World (Cesur Yeni Dünya) romanının girişinden kısaltılarak alınmış bir bölüm. Huxley, olumsuz bir ütopya (distopya) niteliği taşıyan romanında, Alfa, Beta, Gama, Delta ve Epsilon adlarıyla, kendi içinde genetik özdeşlerden oluşan beş farklı sınıfa bölünmüş bir toplum tablosu çiziyor. Özdeş vatandaşların üretildiği bu hayali "Bokanovski Süreci", çağdaş anlamıyla klonlama (veya genetik kopyalama) olmasa da, sürecin yolaçtığı etik (ahlaki) ve toplumbilimsel kaygılar, sekiz ay önce İskoçya’da gerçekleştirilen ve geçtiğimiz ay kamuoyuna duyurulan gelişmelerin doğurduklarına denk düşüyor. Şimdi herkesin tartıştığı, son gelişmelerin insanlık için daha insanca bir dönemin mi yoksa, hızla gerçeğe dönüşen korkunç bir distopyanın mı kapısını araladığı. Şubat ayının 22’sinden itibaren, İskoçya’nın Edinburg kentinde, biyoteknoloji alanında tuhaf bir gelişme kaydedildiği, "Dünyanın sonu", "Frankenstein" gibi ifadeleri de içeren dedikodularla birlikte etrafta konu olmaya başladı. Bilim çevreleri de basın da şaşkındı, çünkü, seçkin yazarların ve bazı bilim adamlarının birkaç gündür zaten haberdar oldukları ve konuyu "patlatmayı" bekledikleri bu gelişme, bir biçimde basına sızmış, dilden dile dolaşmaya başlamıştı bile. Normalde pek de ciddiye alınmayacak böyle bir "dedikodunun" bu denli yayılabilmesi, işin içine çeşitli dallarda makalelere yer veren saygın bilimsel dergi Nature’ın adının karışmasıyla olmuştu. Gerçekten de Nature, dedikodu niteliğini fersah fersah aşan bir bilimsel gelişmeyle ilgili bir makaleyi 27 Şubat’ta yayınlayacağını bilim yazarlarına duyurmuş ve bu tarihe kadar "ambargolu" olan bir basın bülteni dağıtmıştı. Batı ülkelerinde yazarlar normal olarak bu ambargolara uyar, hazırladıkları yazıları, ambargonun bittiği tarihte, aynı anda yayına verirler. Ancak, aralarında ünlü The Observer’ın da bulunduğu bazı dergi ve gazeteler ambargoyu çoktan delmiş, konuyu kamuoyuna duyurmuştu bile. Haberin, kaynağı olan Nature ve ambargoya saygı gösteren çoğu nitelikli dergi ve gazetede yer almaması da, dedikodu trafiğini artırmış, ortaya atılan spekülasyonlarla beklenenden fazla ilgi toplanabilmişti. Hatta, Mart ayının başlarında, koyun klonlama haberinin yarattığı ilgi ortamını değerlendirmek isteyen bazı haberciler, aynı yöntemle Oregon Primat Araştırmaları Merkezi’nde maymunların klonlandığını öne sürdüler. Oysa, Oregon’da gerçekleştirilen, embriyo hücrelerinin oldukça sıradan bir yöntemle çoğaltılmasıyla yapılmış bir deneydi. Klonlama, yetişkin bir canlıdan alınan herhangi bir somatik (bedene ait) hücrenin kullanılmasıyla canlının genetik ikizinin yaratılmasını açıklamakta. Kavramsal temelleri çoktandır hazır olan bu işlemin uygulamada gerçekleştirilemeyeceği düşünülüyordu. Edinburg’daki Roslin Enstitüsünden Dr. Wilmut ve ekibi bunu başarmış gibi görünüyor. "Ben bu filmi daha önce seyretmiştim!" diyenleri rahatlatmak için hemen belirtelim ki, aynı ekip 1995 yılında embriyo hücrelerini kullanarak yine ikiz koyunlar üretmiş ve bunu duyuran makaleyi yine Nature dergisinde yayımlatmıştı. Bu deney de basına yansımış, ancak, son gelişmeler kadar yankı uyandırmamıştı. Ne de olsa bu yöntem, döllenmiş yumurtanın kazayla bölünüp tek yumurta ikizlerine yol açtığı bildik süreçlerden farksızdı. Sıklıkla unutulduğu için tekrarlamakta yarar var ki, Wilmut’un son başarısının önemi, işe somatik bir hücrenin çekirdeğiyle başlamasında yatıyor. Bu başarının ortaklarını anarken PPL Tıbbi Araştırmalar şirketini de atlamamak gerek. Borsalarda tırmanışa geçen hisseleriyle gelişmenin meyvelerini şimdiden yemeye başlayan PPL, projenin hem amaçlarını belirleyerek hem de maddi olanakları yaratarak kuzu Dolly’nin varlığının temel sebebi olmuş. Dr. Wilmut’un gerçekleştirdiği başarı şöyle özetlenebilir: Yetişkin bir koyundan alınan somatik bir hücrenin çekirdeğini dahice bir yöntemle, başka bir koyuna ait, çekirdeği alınmış bir yumurtaya yerleştirmek ve bilinen "tüp bebek" yöntemiyle yeni bir koyuna yaşam vermek. Adını, ünlü şarkıcı Dolly Parton’dan alan kuzu Dolly, isim annesinin değilse de, DNA annesinin genetik ikizi. Dolly, sevimli görünüşüyle kamuoyunun sempatisini kazanmış ve tüm bu süreç ilginç bir bilimsel oyun olarak sunulmuşsa da gerçekte deney oldukça iyi belirlenmiş bilimsel ve maddi hedefleri olan, soğukkanlı bir süreç. Zaten Dolly’nin araştırmacılar arasındaki adı da en az varlığı kadar "soğukkanlıca" seçilmiş: 6LL3... PPL’in idari sorumlusu Dr. Ron James, şirket sırlarını kaybetme kaygısıyla maddi hedeflerini pek açığa vurmamakla birlikte, hemofili hastaları için koyunlara insan kanı pıhtılaşma faktörü ürettirmeyi de içeren pek çok önemli ticari hedefin ipuçlarını veriyor. PPL ve Roslin Enstitüsü’nün çalışmaları, geçmişi çok eskilere dayanan ve önemli gelişmelerin kaydedildiği bir alan olan transjenik (gen aktarılmasıyla ilgili) araştırmaların bir üst aşamaya, nükleer transfer (çekirdek aktarılması) evresine doğru ilerletilmesinden başka birşey değil. Yıllardır başarıyla sürdürülen transjenik çalışmalarda tek boynuzlu keçi, üç bacaklı tavuk gibi görünüşte çarpıcı, yararı kısıtlı çalışmaların yanı sıra, insan proteinlerinin hayvanlara ürettirilmesi gibi, modern tıp için çığır açıcı sayılabilecek başarılar kaydedildi. Son gelişmelere imzasını atan ekip, daha önce insan bünyesince üretilen molekülleri gen transferi yöntemiyle bir koyuna ürettirmeyi başarmıştı. Söz konusu deneyde gerek duyulan moleküllerin koyunun tüm hücrelerinde değil, sadece süt bezlerinde sentezlenmesinin sağlanması, koyunun "ilaç fabrikası" olarak değerlendirilmesini beraberinde getiriyordu. Dolly başarısının en önemli potansiyel yararı da bununla ilgili zaten. Gen transferi yöntemiyle, istediğiniz maddeyi sentezleyebilen bir canlıya sahip olduğunuzda, madde verimini artırmak üzere aynı süreci zaman ve para harcayarak yinelemeye çabalamak yerine elinizdeki canlının genetik ikizlerini yaratabilirseniz, ticari değer arz edebilecek miktarda ilaç hammaddesi üretimine geçebilirsiniz. Elinizde birkaç on tane genetik özdeş canlı biriktikten sonra, bu küçük sürüyü doğal yollardan üremeye bırakacak olursanız, hem "yatırımınız" kendi kendine büyüyecek, hem de genetik çeşitlilik yeniden oluşmaya başlayacağından, tek bir virüs tipinin tüm "fabrikayı" yok etmesinin önünü alacaksınız demektir. Biraz Ayrıntı İskoç ekibin gerçekleştirdiği klonlama deneyinin, dünyanın pek çok bölgesine dağılmış sayısız standart biyoteknoloji laboratuvarında "kolayca" gerçekleştirilebileceği söyleniyor. Yine de uygulanan yöntem, günlük gazetelerdeki basit şemalarda anlatıldığı kadar kolay ve hemen tekrarlanabilir türden değil. İskoç ekibin başarısı ve önceki sayısız benzeri çalışmanın başarısızlığı, Wilmut’un, verici koyundan alınan hücre çekirdeğiyle, kullanılan embriyonik hücrenin "frekanslarını" çok hassas biçimde çakıştırabilmesine dayanıyor. Bu yöntemle araştırmacılar, yetişkin çekirdeğin genetik saatini sıfırlamayı, tüm gelişim sürecini başa almayı becerebilmişler. Yöntemin ayrıntılarına girmeden önce bazı temel kavramlara açıklık getirmekte yarar var. Çoğu memeli canlı gibi insan bedeni de milyarlarca hücreden oluşuyor. Bu hücrelerin milyonlarcası her saniye bölünmeyi sürdürerek beden gelişimini devam ettiriyor ve yıpranmış hücreleri yeniliyor. Bu hücrelerin önemli kısmı bedenimizin belli başlı bölümlerini oluşturan "somatik hücreler." Tek istisna, üreme hücreleri. Eşeyli üreme, gametlerin (sperm ve yumurta) ortaya çıktığı "mayoz bölünme"yle başlıyor. Cinsel birleşme sonucunda, spermin yumurtayı döllemesiyle de yeni bir canlının ilk hücresi "zigot" oluşuyor. Bu noktadan sonra gelişmeye dönük hücre bölünmeleri, "mayoz" değil, "mitoz" yoluyla ilerliyor. Koyun ve insan hücrelerinin de dahil olduğu ökaryotik yani, çekirdeği olan hücreler, farklı gelişim evreleri içeren bir yaşam döngüsü geçiriyorlar. Bu döngüyü, hücrenin görece durağan olduğu "interfaz" ve belirgin biçimde bölünmenin gerçekleştiği mitoz evrelerine ayırmak mümkün. Hücre, yaşam döngüsünün yüzde doksan kadarını interfaz evresinde geçiriyor. Aslında, bu duraklama evresi göründüğü kadar sakin değil; hücre, tüm bileşenlerini DNA’yı sona bırakacak biçimde çoğaltarak, bölünmeye hazırlanıyor. Alt evreleri son derece iç içe girmiş olan interfaz evresini işlevsellik açısından G1, S ve G2 alt evrelerine ayırmak yerleşmiş bir gelenek. Yani, hücrenin yaşam döngüsü bu üç evre ve M (mitoz)’dan oluşuyor. G1 evresi, DNA dışındaki bileşenlerin çoğaldığı bir dinlenme dönemi. S, DNA’nın bölünmesiyle sonuçlanan bir geçiş evresi. G2 ise, iç gelişmenin tamamlanıp, hücrenin mitoz yoluyla bölünmeye hazırlandığı süreci içeriyor. Hücrelerin hangi evreyi ne kadar sürede tamamlayacakları bir biçimde programlanmış durumda. Belli bir organizmanın tüm hücreleri bu evreleri aynı sürede tamamlıyorlar. Yine de, ani çevresel koşul değişiklikleri hücreleri G1 evresinde kıstırabiliyor; sözgelimi, besleyici maddelerin miktarı birdenbire minimum düzeye düştüğünde. G1 evresinin belli bir aşamasında, öncesinde bu duraklamaya izin verilen sabit bir kritik noktası var. Bu kritik nokta aşılırsa, çevresel koşullar ne yönde olursa olsun, DNA replikasyonunun önü alınamıyor. İleride göreceğimiz gibi, bu noktanın denetim altında tutulabilmesi, Wilmut ve ekibinin başarılı bir klonlama gerçekleştirebilmelerinin altın anahtarı olmuştur. Bu noktada bir parantez açarak G1, S, G2 ve M evrelerinin denetim altına alınmasının, hücrenin yaşam döngüsünü olduğu kadar, hücrenin özelleşmesini, sözgelimi beyinden veya kas hücrelerinden hangisine dönüşeceğini de kontrol altına alabilmeyi, bir başka deyişle, hücrenin genetik saatini sıfırlamayı sağladığını ekleyelim. Wilmut ve ekibi Dolly’i klonlayıncaya kadar bu sürecin tersinmez olduğu, söz gelimi, bir defa kas hücresi olmaya karar vermiş bir hücrenin yeniden programlanamayacağı zannediliyordu. Peki Wilmut bunu nasıl başardı? Soruyu tersinden cevaplayacak olursak, diğerlerinin bunu başaramamalarının nedeninin, kullandıkları somatik hücrelerin çekirdeklerini S veya G2 evrelerindeki konakçı hücrelere yerleştirmeleri olduğunu söyleyebiliriz. Eski kuramsal bilgilere göre bu yöntemin işe yaraması gerekiyordu, çünkü çekirdeğin mitoza yaklaşmış olması avantaj olarak görülüyordu. Ancak bu denemelerde, işler bir türlü yolunda gitmedi. Kaynaştırmadan sonra, hücre fazladan bir parça daha mitoz geçiriyor ve yararsız, kopuk kromozom parçaları meydana geliyordu. Bu "korsan" genler, gelişimin normal seyrini sürdürmesi için ciddi bir engel oluşturuyordu. Dersini çok iyi çalışmış olan Wilmut, bu olumsuz deneyleri değerlendirerek hücreyi G1 evresinin kritik noktadan önceki duraksama döneminde, "G0 evresinde" kıstırmaya karar verdi. Verici koyundan alınan meme dokusu hücrelerini kültür ortamında gelişmeye bırakan Wilmut, hücrelerin geçirdiği evreleri sıkı gözetim altında tutarak bir hücreyi G0 evresinde kıstırıp bu haliyle durağanlığa bırakmayı başarmıştı. Bunun için, hücrenin besin ortamını neredeyse öldürme sınırına kadar geriletmiş, tüm süreci dondurarak bir anlamda genetik saati de sıfırlayabilmişti. Üstelik bu evre, kaynaştırılacağı yumurta hücresinin mayoz gelişim sırasında girdiği, bu işlem için en uygun olan metafaz-II evresiyle de mükemmel bir uyum içindeydi. İşlemin diğer kısımları yemek tariflerinde olduğu kadar sıradan ve kolay uygulanabilir nitelikte. G0 evresindeki çekirdek metafaz-II evresindeki yumurtayla kaynaştırılıp, normal besin koşulları ve hafif bir elektrik şoku etkisiyle olağan çoğalma sürecine yeniden sokulduğunda, her şey tüp bebek olarak bilinen, in vitro fertilizasyon sürecindeki işleyişe uygun hale geliyor. Zigot, anne koyunun rahmine yerleştiriliyor ve gerekli hormonlarla normal hamilelik süreci başlatılıyor. Wilmut ve ekibinin gerçekleştirdikleri hakkında bilinenler, yukarıda kaba hatlarıyla anlatılanlarla sınırlı. Sürecin duyurulmayan kritik bir evresi varsa, bu ticari bir sır olarak kalacağa benziyor. Ancak, herkesin olup bitenler hakkında aynı bilgilere sahip olması, deneyin başarısı konusunda kimsenin şüphe duymamasını gerektirmiyor. 277 denemeden sadece birinin başarılı olması başta olmak üzere, çoğu uzmanın takıldığı pek çok soru işareti var. Herşeyin ötesinde, herhangi bir olgunun bilimsel gelişme olarak kabul edilmesi için, sürecin yinelenebilirliğinin gösterilmesi gerekiyor. Bir embriyolog, Jonathan Slack, çok daha temel şüpheleri öne sürüyor: "Araştırmacılar, yumurta hücresindeki DNA’ları tümüyle temizleyememiş olabilirler. Dolayısıyla Dolly, sıradan bir koyun olabilir." Slack, alınan meme hücresinin henüz tamamen özelleşmemiş olabileceğini, böyle vakalara meme hücrelerinde, bedenin diğer kısımlarına göre daha sık rastlanılabildiğini de ekliyor. Zaten Wilmut da, bedenin diğer kısımlarından alınan hücrelerin aynı sonucu verebileceğinden bizzat şüpheli. Örneğin, büyük olasılıkla kas veya beyin hücrelerinin asla bu amaçla kullanılamayacaklarını belirtiyor. Üstüne üstlük, koyun bu deneylerde kullanılabilecek canlılar arasında biraz "ayrıcalıklı" bir örnek. Koyun embriyolarında hücresel özelleşme süreci zigot ancak 8-16 hücreye bölündükten sonra başlıyor. Geleneksel laboratuvar canlısı farelerde ise aynı süreç ilk bölünmeden itibaren gözlenebiliyor. İnsanlarda ise ikinci bölünmeden itibaren... Bu durum, aynı deneyin fare ve insanlarda asla başarılı olamaması olasılığını beraberinde getiriyor. Dile getirilen açık noktalardan biri de, hücrelerde DNA barındıran tek organelin çekirdek olmayışı. Kendi DNA’sına sahip organellerden mitokondrinin özellikle önem taşıdığı savlanıyor. Memeli hayvanlarda mitokondriyal DNA, embriyo gelişimi sırasında sadece anneden alınıyor. Her yumurta hücresi, farklı tipte DNA’lara sahip yüzlerce mitokondriyle donatılmış. Bu mitokondriler zigotun bölünmesinin ileri evrelerinde, embriyo hücrelerine dengeli bir biçimde dağılıyor; ancak, canlının daha ileri gelişim evrelerinde, bu denge belli tipteki DNA’lara doğru kayabiliyor. Parkinson, Alzheimer gibi hastalıkların temelinde bu mitokondriyal DNA kayması sürecinin etkileri var. Bu yüzden kimileri, sağlıklı bir kuzu olarak doğan Dolly’nin, zigot gelişimine müdahele edilmiş olması yüzünden sağlıksız bir koyun olarak yaşlanabileceğini öne sürüyorlar. Şimdilik Dolly’nin tek sağlıksız yönü, basına teşhir edilirken sabit tutulması amacıyla fazla beslenmesi yüzünden ortaya çıkan tombulluğu. Klonlamalı mı? Klonlamanın özellikle de insan klonlama konusunun etik boyutu kamuoyunca, günlük yaşamda kültürün, temel bilimsel birikimin, tarih, siyaset ve toplumbilimin en yaygın ve temel kavramlarıyla tartışılabilir nitelik kazanmıştır. Nükleer enerji kullanımı, hormon destekli tarım, ozon tabakasına zarar veren gazların üretimi gibi, farklı toplum kesimlerince kolayca anlaşılabilir ve tartışılabilir kabul edilen klonlama, şimdiden kamuoyunun gündeminde yerini aldı. Kamuoyunun, bilimsel ve teknolojik gelişmelerin uygulanıp uygulanmaması konusunda birtakım ahlaki gerekçelerle ne şekilde ve ne ölçüde yaptırım uygulayabileceği tartışmalı olsa da, şu anda kamuoyunun isteksizliği klonlama çalışmalarının daha ileri aşamalara taşınmasına en güçlü engel olarak gösteriliyor. Oysa, "tüp bebek" diye bilinen in vitro fertilizasyonun, başlangıçtaki şiddetli tepkilerden sonra kolayca kabullenilmesi, işin içine "çocuk sahibi olma isteği ve hakkı" karıştığı durumlarda (aynı argüman klonlama konusunda da sıkça kullanılıyor) toplumun ne kadar kolay ikna olabileceğinin bir göstergesi. Bilimkurgu romanları ve filmlerinde kaba hatlarıyla çokça tartışılmış olan klonlama konusunda halihazırda belli belirsiz bir kamuoyu "oluşturulmuş" durumda. Şu anda sürmekte olan tartışmaların bilinen yanlışlara yeniden düşmemesi için birkaç temel olguya açıklık getirmek gerekiyor. Olası yanılgıların en sık rastlananı, klonlanmış bir canlının, (tartışmalara sıkça insan da dahil ediliyor) genin alındığı canlının fizyolojik özellikleri bir yana, kişilik özellikleri bakımından özdeşi olacağı kanısı. Kazanılmış özelliklerin kalıtsal yolla taşınabileceği yanılgısı, Philosophie Zooloique (Zoolojinin Felsefesi) adlı ünlü yapıtı 1809 yılında yayınlanmış olan, Fransız zoolog Jean Baptiste Lamarck’a dayanıyor. Lamarck’ın görüşlerinin takipçileri, insanların gözlemlenebilir kişilik özelliklerinin önemli ölçüde kalıtsal nitelik taşıdığını savlayarak, çevresel koşulların gelişim üzerindeki etkilerini neredeyse tamamen yadsıyorlardı. Oysa, genetik, evrim, psikoloji gibi alanların ortaya koyduğu çağdaş ölçütler, kazanılmış karakterlerin kalıtsal nitelik gösteremeyeceğini ortaya koyarak, kişilik oluşumunda çevresel etmenlerin güçlü bir paya sahip olduğunu kanıtlamıştır. Bu bağlamda, basında da yankı bulan "koyunlar zaten birbirlerine benzerler" esprisinin aslında ciddi bilimsel doğrulara işaret ettiğinin altını çizmek gerekiyor. Klonlanmış bir koyunun, genetik annesinin genetik ikizi olduğu ölçülerek gösterilebilir bir gerçektir. Oysa, gözlemlenebilir kişilik özellikleri oldukça kısıtlı olan koyunların birbirlerine benzemeleri kaçınılmazdır. Çok daha karmaşık bir organizma olan insanoğlu, sayısız gözlemlenebilir kişilik özelliği sayesinde, genetik ikizinden kolayca ayırt edilebilir. Tüm bunların ötesinde, klonlanmış bir insanın sadece kişilik bakımından değil, fizyolojik ve bedensel özellikleri bakımından da, genetik ikizinden farklı olacağını peşinen kabullenmek gerekiyor. Bir bebeğin biçimsel özelliklerinin ana rahminde geçirdiği gelişim süreci içerisinde tümüyle DNA’sı tarafından belirlendiği görüşü yaygın bir yanılgı. DNA molekülü, insan geometrisine dair tüm bilgileri en sadeleşmiş biçimiyle bile bütünüyle kapsayamayacak kadar küçük. Çoğu biçimsel özellik, akışkan dinamiği, organik kimya gibi alanlardaki temel evrensel yasaların kontrolünde meydana geliyor. Bu süreçte de, her zaman için rastlantı ve farklılaşmalara yeterince yer var. Bir genetik ikiz, kuramsal açıdan, eşine en fazla eş yumurta ikizlerinin birbirlerine benzedikleri kadar benzeyebilir. Uygulamada ise, benzerlik derecesi çok daha düşük olacaktır; aynı rahimde aynı anda gelişmediği, aynı fiziksel ve kültürel ortamda doğup büyüyemediği için... İşin bu boyutunu da göz önünde bulunduran Aldoux Huxley, romanında, Bokanovski Süreci’yle çoğaltılmış bebekleri, yetiştirme çiftliklerinde psikolojik koşullandırmaya tutma gereği duymuştu. Benzer biçimde, 1976’da yazdığı The Boys from Brazil romanında Adolf Hitler’den klonlanan genç Hitler’lerin öyküsünü kurgulayan Ira Levin, klonları, Adolf Hitler’in kişiliğinin geliştiği tüm olaylar zincirinin benzerine tabi tutma gereğini hissetmişti. Tüm bu "hal çarelerine" rağmen, kopya insanın genetik annesinden çoğu yönden farklı olması kaçınılmaz görünüyor. Diğer tüm koşullar denk olsa bile, kopya birey, aynı zamanda ikizi olan bir anneye sahip olmasından psikolojik bakımdan etkilenecektir. Sağduyumuz bize Hitler’i genlerinin değil, Weimar Cumhuriyeti sonrası sosyo-ekonomik koşulların ve genç Adolf’un kıstırıldığı maddi ve manevi bunalımların yarattığını öğretiyor. Tüm bunların ışığında, klonlama konusundaki popüler tartışmaları, tıkanıp kaldıkları, "beklenmedik bir ikize sahip olma" fobisinden kurtarılıp, daha gerçekçi zeminlere çekilmesi gerekiyor. Gen havuzunun (belli bir topluluktaki genetik çeşitlilik) daralması, hayvancılığın geleneksel yapısından koparılıp biyoteknoloji şirketlerinin güdümüne girmesi, yol açılabilecek genetik bozuklukların kontrolden çıkması, bu alanda çalışan bazı şirketlerin (söz gelimi PPL’in) tüm tekel karşıtı yasal önlemleri delerek ciddi ekonomik dengesizliklere yol açması gibi akla gelebilecek sayısız somut etik sorununun tartışılması gerekiyor. Yoksa, akademik organlardan dini cemaatlere kadar sayısız grup gelişmeleri "kitaba uydurma" çabasıyla, kısır tartışmalara girebilir. Örneğin, Budist bir araştırmacı, Dolly’nin eski yaşamında ne gibi bir kabahat işleyip de bu yaşama klonlanmış olarak gelmeyi hak ettiği üzerine kafa yoruyormuş. Aslında biyoteknolojik tekelcilik tehdidine, Cesur Yeni Dünya’da Aldous Huxley de işaret etmişti: "İç ve Dış Salgı Tröstü alanından hormon ve sütleriyle Fernham Royal’daki büyük fabrikaya hammadde sağlayan şu binlerce davarın böğürtüsü duyuluyordu..." İnsanoğlunun temel kaygıları, şimdilik bazı temel koşullarda klonlamayla çelişiyor gibi görülüyor: Bir çiftçi düşünün ki, kendisi için tüm evreni ifade eden kasabasında herkese hayranlıktan parmaklarını ısırtan bir danaya sahip olsun. Bu danayı klonlayıp tüm sürüsünü özdeş yapmayı ister miydi? Büyük olasılıkla biraz düşündükten sonra bundan vazgeçerdi. Danasının biricik oluşu ve genetik çeşitliliği sayesinde bu danaya yaşam veren sürüsünün daha da güzel bir dana doğurması olasılığı çok daha değerli. Ömrü boyunca aynı dananın ikizlerine sahip olmayı kabullenmiş bir çiftçinin komşusu her an elinde daha güzel bir danayı ipinden tutarak getirebilir. Özgür Kurtuluş Kaynaklar: Biospace Huxley A., Cesur Yeni Dünya, Çev: Gürol E., Güneş Yayınları, 1989 Nash M. J., "The Age of Cloning", Time, 10 Mart 1997 Roslin Enstitüsü Basın Bültenleri Star C., Taggart R., Biology: The Unitiy and Diversity of Life, 1989 Underwood A., "Little Lamb Who Made Thee", Newsweek, 10 Mart 1997 Wilmut I., Schnieke A. E., McWhir J., Kind A. J., Campbell K. H. S., "Viable Offspring Derived From Fetal and Adult Mammalian Cells", Nature, 27 Şubat 1997

http://www.biyologlar.com/genetik-kopyalama

Mutasyonlar

Mutasyon, DNA içindeki dört tür nükleotid halkasından bir veya daha fazlasında değişmedir. Bir tek halkada bile değişiklik anımsayacağınız gibi DNA mesajında bir harfin değişmesi demektir.DNA’dan kopya alan mesajcı RNA değişikliği içerecektir ve protein yapmakta olan makine tarafından farklı okunacaktır. Ortaya değişmiş bir protein çıkacak ve amino asit zincirinde bir halka farklı olacak, sonuç olarak da proteinin işlevi değişecektir. Mutasyonların en önemli özelliklerinden biri, DNA kopya edildiği zaman onların da kopya edilmeleridir. Daha önce açıkladığımız gibi hücre bölünmesine hazırlık olarak bir enzim yeni bir dizi gen üreten kadar DNA ‘daki nükleotidleri teker teker aynen kopya eder. DNA’daki bir mutasyon genellikle, değişimi o DNA’yı içeren hücrelerin bütün gelecek kuşaklarına geçinmek amacı ile kopya edilir. Böylece ufak bir mutasyon DNA diline sonsuza kadar yerleşir. Mutasyonun Nedenleri Mutasyonlara doğal tepkimeler (örneğin x-ışınları ve morötesi ışınlar) ve insan yapısı kimyasal maddelerin DNA’nın nükleotidleri(s: 65) halkalarına çarparak bozmaları neden olur. Nükleotidler böylece başka nükleotidlere dönüşebilirler. Kimyasal olarak dört standart nükleotid dışında bir biçim alabilirler veya tümüyle zincirden kopabilirler. Bütün bu değişmeler doğal olarak zincirin anlamını değiştirebilir;dil bundan sonra artık biraz değişmiştir.(s:66) Mutasyonlar tümüyle raslantısal olaylardır. Kesinlikle DNA’nın hangi halkasına çarpacağını bilmenin olanağı yoktur. Biz dahil herhangi bir canlı yaratığın DNA’sının herhangi bir nükleotidinde her an mutasyon görülebilir(buna karşılık bazı ilginç titizlikte dacrana enzimler de DNA’yı sürekli gözler ve bir değişiklik bulurlarsa onarırlar. Ama herşeyi de yakalayamazlar). Mutasyon Beden Hücrelerini ve Cinsel Hücreleri Farklı Şekilde Etkiler Bedenimizdeki tüm hücreler,DNA’yı oluşturan,annemizden ve babamızdan aldığımız birbirini tamalayıcı iki bölüm içerir. Ana babanın çocuk yapabilmeleri için DNA’larını, yalnızca birleşmeye elverişli olan tek hücrelere yerleştirmelyeri gerekir; bu, karşı cinsin bir hücresiyle çiftleşip böylece DNA’larını paylaşmak içindir. Bu özel hücreler erkeğin testislerinde yapılan spermlerle kadının yumurtalıklarında yapılan yumurtalardır. Bedenimizin hücrelerinden birinde DNA’da bir mutasyon oluştugu zaman çogunlukla bunun hiç farkina varmayiz. Bedenimizdeki milyarlarca hücreden birinin bozulmasini hissetmek çok zordur. Bir tek önemli istisna var: Hücrenin kanser olmasina yol açan mutasyon. Bu degişmeyi bundan sonraki bölümde inecelecegiz. Oysa yeni bireyleri yapmak için kullanilan sperm ve yumurtalari üreten testis ve yumurtaliklar içindeki hücrelerde mutasyon oldugu zaman durum oldukça degişiktir. Çünkü eger yumurta veya sperm mutasyon içeriyorsa,bu mutasyon dogal olarak döllenmiş yumurtaya geçecektir. Döllenmiş yumurta bölündügünde de mutasyon bütün yeni hücrelere kopya edilecektir. Böylece sonuçta ortaya çikan yetişkinin bedeninin her (s:67) bir hücresinde mutasyonun bir kopyasi bulunacaktir. Ve bu yetişkinin testis veya yumurtaliklarinda oluşan,sperm veya yumurta,her seks hücresi de bu mutasyonu taşiyacaktir. Buna göre,evrimde önemli olacak mutasyon bir organizmanın cinsel hücrelerinde olup kalıtımla geçirilebilen mutasyon çeşitidir. “İyi” mutasyonlar ve “Kötü “ mutasyonlar Mutasyonlar enderdir ama yine de evrimsel değişmenin temel araçları olmuşlardırb. Bir organizmanın proteinlerinde,çevereye uyum sağlamasında avantajlı değişmelere yol açabilirler. Bu anlamda mutasyonlara yararımızadır. (Mahlon B. Hoaglandı, Hayatın Kökleri,TÜBİTAK Y, 13. Basım s: 19-68...) *** “Evren büyük patlama dedikleri o zamanlardan ( “günlerden” demeye dilim varmıyor) bu yana daha düzenli hale mi geldi, daha düzensiz hale mi geldi? Bunu bir bilen varsa ve bana söylese, gerçekten minnettar olacağım. Belki de termodinamiğin 2. kanununu fazla sorgulamaya lüzum yok. Çünkü neticede çoğu formülasyona göre bu bir olasılık kanunu olduğu için, yanlışlanmaya karşı zaten doğuştan dirençli! Bu kanun, kapali bir sistem daha düzenli hale gelemez, kendi kendine cansızdan canlı oluşamaz demiyor. Sadece bu ihtimali çok zayıf (hemen hemen sıfır, ama sıfır değil) diyor. Ve J. Monod gibi bazı büyük moleküler biyologlar da bu ihtimale sığınıyorlar.” (Şahin Koçak, Anadolu Üniversitesi, Bilim ve Teknik 325. sayi, s:9) DİL SANATI “Bizim bildiğimiz anlamıyla konuşma dilinin ortaya çıkışı hiç kuşkusuz, insanın tarihöncesinin belirleyici noktalarından ve hatta belki de belirleyici tek noktasıdır. Dille donanmış olan insanlar doğada yeni tür dünyalar yaratabildiler: İçebakışsal (introspektif) bilinçler dünyası ve “kültür” adını verdiğimiz, kendi ilemizle yaratıp başkalarıyla paylaştığımız dünya. Dil, mecramız; kültür ise nişimiz oldu. Hawaii Üniversitesinden dilbilimci Derric Bickerton, 1990 tarihli kitabı Language and Species ‘de bunu, ikna edici bir biçimde belirtiyor: “Dil bizi, diğer tüm yaratıkların tutsak oldukları anlık deneyim hapisanesinden kurtarıp sonsuz uzam ve zaman özgürlüklerine salıverebilirdi.” Antropologlar dil hakkında, bir doğrudan ve biride dolaylı olmak üzere, yalnızca iki şeyden emin olabilyorlar. Birincisi konuşma dili, Homo sapiens ’i diğer tümyaratıklardan açık şekilde ayırır. İletişim ve içabakışsal düşünce mecrası olarak karmaşık bir konuşma dili yaratabilen tek canı, insandır. İkincisi, Homo sapiens’in beyni, en yakın evrimsel akrabamız olan büyük Afrika insansımaymunlarının beyninden üç kat büyüktür. Bu iki gözlem arasında bir ilişki olduğu açıktır; ama ilişkinin yapısı hala şiddetle tartışılıyor. Felsefecilerin dil dünyasını uzun zamandır incelemeliren karşın, dil hakkında bilinenlerin çoğu son otuz yılda öğrenilmiştir. Dilin evrimsel kaynağı hakkında iki görüş olduğunu söyleyebiliriz: İlk görüş dili insanın benzersiz bir özelliği, beynimizdeki büyümenin yan sonucu olarak ortaya çıkmış bir yetenek olarak görür. Bu durumda dilin, bilişsel bir eşiğin (s: 129) oluşmasıyla birlikte, hızla ve yakın zamanlarda ortaya çıktığı düşünülmektedir. İkinci görüşte, konuşma dilinin insan olmayan atalardaki-iletişimi de içeren, ama iletişimle sınırlı kalmayan- çeşitli bilişsel yetenekler üzerinde doğal seçimin etki göstermesiyle geliştiği savunulur. Bu süreklilik modeline göre dil, insanın tarihöncesinde, Homo cinsinin ortaya çıkışından itibaren aşamalı olarak gelişmiştir. MIT’ ten dilbilimci Noam Chomsky ilk modelin yanında yer almış ve büyük etki yaratmıştır. Dilbilimcilerin çoğunluğunu oluşturan Chomskicilere göre dil yetenğinin kanıtlarını erken insan kanıtlarında aramak yararsız, maymun kuzenlerimizde aramak ise iyice anlamsızdır. sonuçta, genellikle bir bilgisayar ya da geçici leksigramlar kullanarak maymunlara bir tür simgesel iletişim öğretmeye çalışanlar düşmanlıkla karışlanmışlardır. Bu kitabın temel konularından biri de , insanları özel ve doğanın geri kalan kısmından apayrı görenlerle, yakın bir bağlantı olduğunu kabul edenler arasındaki felsefi bölünmedir. Bu bölünme özellikle, dilin doğası ve kökeni hakkındaki tartışmalarda ortaya çıkıyor. Dilbilimcilerin insansımaymun-dili araştırmacılarına fırlattıkları oklar da hiç kuşkusuz, bu bölünmeyi yansıtıyor. Teksas Üniversitesi’nden psikolog Kathleen Gibson, insan dilinin benzersizliğini savunanlar hakkında, yakın zamanlarda şu yorumu yaptı:" (Bu bakış açısı) önermeleri ve tartışmalarıyla bilimsel olsa da, en azından Yaratılış’ın yazarlarına ve Eflatun’la Aristo’nun yazılarına dek uzanan, insan zihniyetiyle davranaşının nitelik açısından hayvanlardan çok farklı olduğunu savunan köklü bir Batılı felsefe geleneğine dayanmaktadır?” Bu düşünüşün sonucu olarak antropolojik literatür uszun süre, yalnizca insana özgü oldugu düşünülen davranişlarla doldu. Bu davranişlarin arasinda alet yapimi, simge kullanabilme yetenegi, aynada kendini taniyabilme ve lebette dil yer aliyor. 1960'lardan beri bu benzersizlik duvari, insanismaymunlarin da alet yapip kullanabildiklerinin, simggelerden yararlandiklarini ve aynada kendilerini taniyabildiklerinin anlaşilmasiyla birlikte çatirdamaya başladi.Geriye bir tek dil kaliyor ve dolaysiyla dilbilimçciler, insanin benzersizliginin son savunuculari olarak kaldilar. Analişlan, işlerini çok da ciddiye aliyorlar. Dil, tarihöncesinde- bilinmeyen bir araç sayesinde ve bilinmeyen bir geçici grafik izleyerek- ortaya çıktı ve hem birey, hem de tür olarak bizi dönüştürdü.Bickerton, “ Tüm zihinsel yeteneklerimiz arasında dil, bilinç eşiğimizin altında en derin, rasyonelleştiren zihin için de en ulaşılmaz olanıdır” diyor. “Ne dilsiz olduğumuz bir zamanı hatırlayabiliriz, ne de dile nasıl ulaştığımızı.” Birey olarak, dünyada var olmak için dile bağımlıyız ve dilsiz bir dünyayı hayal bile edemeyiz. Tür olarak, dil, kültürün dikkatle işlenmesiyle, birbirimizle etkileşim kurma şekilimizi dönüştürür. Dil ve kültür bizi hem birleştirir, hem de böler. dünyada şu anda var olan beş bin dil, ortak yeteneğimizin ürünüdür; ama yarattıkları beş bin kültür, birbirinden ayrıdır. Bizi yapılandıran kültürün ürünü olduğumuz için, kendi yarattığımız bir şey olduğunu, çok farklı bir kültürle karşılaşana dek anlayamıoruz. Dil gerçekten de, Homo sapiens ’le doğanın geri kalan kısmı arasında bir uçurum yaratır.İnsanın ayrı sesler ya da fonemler çıkarma yeteneği, insansımaymunlara göre ancak mütevazi oranda gelişmiştir: Bizim elli, insansımaymunnunsa bir düzine fonemi var. Ama bizim bu sesleri kullanma kapasitemiz sonsuzdur.Bu sesler, ortalama bir insanı yüz bin sözcüklük bir dağarcıkla donatacak şekilde tekrar tekrar düzenlenebilir ve bu sözcüklerden de sonsuz sayıda tümce oluşturulabilir. Yani, Homo sapiens ’ in hızlı, ayrıntılı iletişim yetisinin ve düyşünce zenginliğinin doğada bir benzeri daha yoktur. Bizim amacımız, dilin ilk olarak nasıl ortaya çıktığını açıklamak. Chomskyci görüşe göre, dilin kaynağı olarak doğal seçime bakmamıza gerek yoktur; çünkü dil, tarihsel bir kaza, bilişsel bir eşiğin aşılmasıyla ortaya çıkmış bir yetenektir. Chomsky şöyle der:" Şu anda, insan evrimi sırasında ortaya çıkan özel (s:131) koşullar altında 10 üzeri 10 adet nöron basketbol topu büyüklüğünde bir nesneye yerleştirildiğinde, fizik kurallarının nasıl işleyeceği konusunda hiçbir fikrimiz yok. ” MIT’ ten dilbilimci Steven Pinker gibi ben de bu görüşe karşıyım. Pinker az ama öz olarak, Chomsky’nin “işe tam tersinden baktığını” söylüyor. Beynin, dilin gelişmesi sonucu büyümüş olması daha yüksek bir olasılıktır.Pinker’e göre “dilin ortaya çıkmasını beynin brüt boyutu, şekli ya da nöron ambalajı değil, mikro devrelerinin doğru şekilde döşenmesi sağlar”. 1994 tarihli The Language Instinct adlı kitabında Pinker, konuşan dil için, doğal seçim sonucu evrimi destekleyen genetik bir temel fikri pekiştirecek kanıtları derliyor. Şu anda incelenemeyecek denli kapsamlı olan kanıtlar gerçekten etkileyici. Burada karşimiza şu soru çikiyor:konuşma dilinin gelişimini saglayan dogal seçim güçleri nelerdi? Bu yetenegin eksiksiz halde ortaya çikmadigi varsayiliyor; öyleyse, az gelişmiş bir dilin atalarimiza ne tür avantajlar sağladığını düşünmeliyiz. En açık yanıt, dilin etkin bir iletişim aracı sunmasıdır. Atalarımız, insansımaymunların beslenme yöntemlerine göre çok daha fazla savaşım gerektiren bir yöntem olan ilkel avcılık ve toplayıcılığı ilk benimsediklerinde, bu yöntem hiç kuşkusuz yararlı olmuştu. Yaşam tarzlarının karmaşıklaşmasıyla birlikte, sosyal ve ekonomik koordinasyon gereksinimi de arttı. Bu şartlar alıtnad, etkili bir iletişim büyük önem kazanıyordu. Dolaysıyla doğal seçim, dil yeteneğini sürekli geliştirecekti. Sonuçta,- modern inasansımaymunların hızlı solumalarına, haykırışlarına ve homurtularına benzediği varsayılan-eski maymun seslerinin temel repertuvarı genişleyecek ve ifade edilme şekli daha gelişmiş bir yapı kazanacaktı. Günümüzde bildiğimiz şekliyle dil, avcılık ve toplayıcılığın getirdiği gereksinimlerin ürünü olarak gelişti. Ya da öyle görünüyor. Dilin gelişimi konusunda başka hipotezler de var. Avcı-toplayıcı yaşam tarzının gelişmesiyle birlikte insanlar teknolojik açıdan daha başarılı hale gelidler, aletleri daha ince (İnsanın Kökeni s:132)likle ve daha karmaşık şekiller vererek yapabilmeye başladılar. 2 milyon yıl öncesinden önce, Homo cinsinin ilk türüyle birlikte başlayan ve son 200.000 yılı kapsayan bir dönemde modern insanın ortaya çıkışıyla doruk noktasına ulaşan bu evrimsel dönüşüme, beyin boyutunda üç kata ulaşan bir büyüme eşlik etti.Beyin, en erken Australopithecus ‘lardaki yaklaşık 440 santimetreküpten, günümüzde ortalama 1350 santimetreküpe ulaştı.Antropolglar uzun süre, teknolojik gelişmişliğin artmasıyla beynin büyümesi arasında neden-sonuç bağlantısı kurdular.:İlki, ikincisini geliştiriyordu. Bunun, 1. Bölüm’de tanımladığım Darwin evrim paketinin bir parçası olduğunu hatırlayacaksınız. Kenneth Oakley’in “Alet Yapan İnsan” başlıklı, 1949 tarihli klasik denemesinde, insanın tarihöncesi hakkındaki bu bakış açısı verilmiştir. Daha öncekti bir bölümde de belirttiğimiz gibi Oakley, dilin günümüzçdeki düzeyde “mükemmelleştirilmesinin” modern insanın ortaya çıkışını sağladığını ilk zavunanlar arasındaydı: Diğer bir deyişle, modern insanı modern dil yaratmıştır. Ama günümüzde, insan zihninin oluşumuna açiklik getiren farkli bir açiklama yayginlik kazandi; alet yapan insandan çok sosyal hayvan olan insana yönelik bir açiklamaydi bu. Dil, bir sosyal etkileşim araci olarak geliştiyse, avci-toplayici baglaminda ilitişimi geliştirmesi evrimin asil nedeni degil, ikincil bir yarari olarak görülebilir. Columbia Ünivrsitesi’nden nörolog Ralph Holloway, tohumu 1960'larda atılan bu yeni bakış açısının en önemli öncülerindendir. On yıl önce şöyle yazmıştı: “ Dilin, temelde saldırgan olmaktan çok işbirlikçi olan ve cinsiyetler arasında tamamlayıcı bir sosyal yapısal davranışsal işbölümüne dayanan, sosyal davranışsal bilişsel bir matristen geliştiğine inanma eğilimini duyuyuroum. Bu, bebeğin bağımlılık süresinin uzaması, üreme olgunluğuna ulaşma sürelerinin uzaması ve olgunlaşma süresinin, beynin daha çok büyümesini ve davranışsal öğrenmeyi mümkün kılacak şekilde uzaması için gerekli bir uyarlanmacı evrim stratejisiydi.” Bunun, insangilerin yaşam tarihinin (Richard Leakey, İnsanın Kökeni, Varlık/Bilim Yay, s: 133) modelleri hakkındaki, 3. Bölüm’de tanıladığım keşiflerle uyumlu olduğunu görebilirsiniz. Hollooway’ in öncü fikirleri pek çok kılığa büründükten sonra, sosyal zeka hipotezi olarak bilinmeye başladı. Londra’daki Unuvirsity College’den primatolog Robin Dunbar, bu fikri yakın zamanlarda şöyle geliştirdi: “ Geleneksel (kurama) göre (primatların) dünyada yollarını bulabilmek için daha büyük bir beyne ihtiyaçları vardır. Alternatif kurama göre ise, primatların kendilerini içinde bulundukları karmayşık sosyal dünya, danhha büyük beyinlerin oluşması için gerekli dürtüyü sağlamıştır.’ Primat gruplarında sosyal etkileşimi dğiştirmenin en önemli parçalarından biri giyinip kuşanmaktır; bu, bireyler arasında yakın bağlantı ve birbirini izleme olanağını sağlar. Dunbar’a göre giyim-kuşam, belli bir boyuttaki gruhplarda etkilidir; ama bu boyut aşıldığında toplumsal ilişkileri kolaylaştıracak başka bir araca gereksinim duyulur. Dunbar, insanın tarihöncesi döneminde grup boyutunun büyüdüğünü ve bunun da, daha etkili bir sosyal dış görünüş için seçme baskısı yarattığını söylüyor. “Dilin, dış görünüşle karşılaştırıldığında iki ilginç özelliği var. Aynı anda pek çok insanla konuşabilirsiniz”. Dunbar’a göre sonuçta, “dil, daha çok sayıda bireyin sosyal gruplarla bütünleştirilmesi için gelişti.” Bu senaryoya göre dil, “sesli giyim-kuşam”dır ve Dunbar dilin ancak, “Homo sapien’le birlikte” ortaya çıktığına inanır. Sosyal zeka hipotezine yakınlık duyuyorum; ama ileride de göstereceğim gibi, dilin insanöncesindeki geç dönemlerde ortaya çıktığına inanıyorum. Dilin hangi tarihte ortaya çıktığı, bu tartışmanın temel konularından biridir. Erken bir dönemde oluşup, ardından aşamalı bir ilerleme mi gösterdi? Yoksa yakın zamanlarda ve aniden (s: 134) mi ortaya çıktı? Bunun, kendimizi ne kadar özel gördüğümüze ilişkin felsefi anlamlar taşıdığı unutulmamalı. Günümüzde pek çok antropolog, dilin yakın zamanlarda ve hızla geliştiğine inanıyor; bunun temel hnedenlerinden biri, Üst Paleolitik Devrimi’nde görülen ani davranış değişikliğidir. New York Üniversitesinden arkeolog Randall White, yaklaşık on yıl önce kışkırtıcı bir bildiride, 100.000 yıldan önceki çeşitli insan faaliyetlyeriyle ilgili kanıtların “modern insanların dil olarak görecekleri bir şeyin kesinlikle olmadığına” işaret tetiğini savundu. Bu dönemde anatomik açıdan modern insanların ortaya çıktığını kabul ediyordu, ama bunlar kültürel bağlamda dili henüz “icat” etmemişlerdi. Bu daha sonra olacaktı: “ 35.000 yıl önce.. bu topluluklar, bizim bildiğimiz şekliyle dil ve kültürü geliştirmişlerdi.” White kendi düşüncesine göre, dilin çarpici oranda gelişmesinin Üst Paleolitik dönemiyle çakiştigini gösteren yeri arkeolojik kanit kümesi siraliyor: Ilk olarak, Neanderthaller döneminde başladigi kesin olarak bilinen, ama mezar eşyalarinin da eklenmesiyle ancak Üst Paleolitik’te gelişen, ölünün bilinçili olarak gömülmesi uygulamasiydi. Ikinci olarak, imge oluşturmayi ve bedenin süslenmesini içeren sanatsal ifade ancak Üst Paleolitik’te başliyordu. Üçüncü olarak,Üst Paleolitik’te, teknolojik yenilik ve kültürel degişim hizinda ani bir ivme görülüyordu. Dördüncü olarak, kültürde ilk kez bölgesel farklilyiklar oluşmaya başlamişti; bu, sosyal sinirlarin ifadesi ve ürünüydü. Beşinci olarak, egzotik nesnelerin degiştokuşu şeklinde uzun mesafeli temaslarin kanitlari bu dönemde güçleniyordu. Altinci olarak, yaşama alanlari önemli oranda büyümüştü ve bu düzeyde bir planlama ve koordinasyon için dile gerek duyulacakti. Yedinci olarak, teknolojide, agirlikli olarak taşin kullanilmasindan kemik, boynuz ve kil gibi yeni hammaddelerin kullanimina geçiliyor ve bu da fiziksel ortamin kullanilmasinda, dil olmaksizin hayal edilemeyecek bir karmaşikliga geçildigini gösteriyordu.(s:135) White ile, aralarında Lewis Binford ve Richard Klein ’ın da bulunduğu bazı antropologlar, insan faaliyetindeki bu “ilkler” öbeğinin altında, karmaşık ve tam anlamıyla modern bir konuşma dilinin ortaya çıkışının yattığına inanıyorlar. Binford, önceki bölümlerden birinde de belirttiğim gibi, modern öncesi insanlarda planlamaya ilişkin bir kanıt göremiyor ve gelecekteki olay ve faaliyetlerin önceden tahmin edilip düzenlenmesinin fazla yarar taşıyacağına inanmıyordu.İleriye doğru atılan adım, dildi; “dil ve özellikle, soyutlamayı mümkün kılan simgeleme. Böylesine hızlı bir değişimin oluşması için biyolojiye dayalı, temelde iyi bir iletişim sisteminden başka bir araç göremiyorum.” Bu savı esas itibarıyla kabul eden Klein, güney Afrika’daki arkeolojik sitlerde, avcılık becerilerinde ani ve görece yakın zamanda gerçekleşmiş bir gelişmenin kanıtlarını görüyor ve bunun, dil olanağını da içeren modern insan zihninin ortaya çıkışının bir sonucu olduğunu söylüyor. Dilin, modern insanların ortaya çıkışıyla çakışan hızlı bir gelişme olduğuna dar görüş geniş destek görse de, antropolojik düşünceye tam anlamıyla hakim olmuş değildir. İnsan beyninin gelişimi hakıkndaki incelemelerinden 3. Bölüm’de söz ettiğimi Dean Falk, dilin daha erken geliştiği düşüncesini savunuyor. Yakın zamanlarda bir yazısında şöyle demişti: “İnsangiller dili kullanmamış ve geliştirmememişlerse, kendi kendine geliyşen beyinleriyle ne yapmış olduklarını bilmek isterdim.”Nörolog Terrence Deacon da benzer bir görüşü savunuyor ama onun düşünceleri fosil beyinler değil, modern beyinler üzerinde yapılan incelemelere dayanıyor: 1989'da Human Evolution dergisinde yayınlanan bir makalesinde “ Dil becerisi (en az 2 milyon yıllık) uzun bir dönem içinde, beyin-dil etkileşiminin belirlediği sürekli bir seçimle gelişti” der. İnsansımaymun beyniyle insan beyne arasındaki nöron bağlantısı farklarını karşılaştıran Deacon, insan beyninin evrimi sırasında en çok değişen beyin yapı(s: 136) ve devrelerinin, sözlü bir dilin alışılmadık hesaplama gereksinimlerini yansıttığını vurguluyor. Sözcükler fosilleşmedigine göre antropologlar bu tartişmayi nasil çözüme kavuşturacaklar? Dolayli kanitlar-atalarimizin yarattigi nesneler ve anatomilerindeki degişimler- evrim tarihimiz hakkinda farkli öyküler anlatiyor. Işe beyin yapisi ve ses organlarinin yapisi da dahil olka üzere, anatomik kanitlari inceleyerek başlayacagiz. Sonra- davranişin arkeolojik kalintilarini oluşturan yönleri olan- teknolojik gelişmişlige ve sanatsal ifadeye bakacagiz. İnsan beynindeki büyümenin 2 milyon yıldan önce, Homo cinsiyle birlikte başladığını ve istikrarlı şekilde sürdüğünü görmüştük. Yaklaşık yarım milyon yıl önce Homo erectus’un ortalama beyin büyüklüğü 1100 santimetreküptü ve bu, modern insan ortalamasına yakın bir rakamdı. Australopithecus ’la Homo arasındaki yüzde elli düzeyindeki sıçramadan sonra, tarihöncesi insan beyninin büyüklüğünde ani artışlar görülmedi.Mutlak beyin boyutunun önemi psikologlar arasında sürekli bir tartışma konusu olsa da, insanın tarihöncesinde görülen üç kat oranındaki büyüme hiç kuşkusuz, bilişsel yeteneklerin geliştiğini gösteriyor. Beyin boyutu dil yetenekleriyle de bağlantılıysa, yaklaşık son 2 milyon yıl içinde beyin boyutunda görülen büyüme, atalarımızın dil becerilerinin kademeli olarak geliştiğini düşündürüyor. Terrence Deacon’ın insansımaymun ve insan beyinleri arasında yaptığı karşılaştırma da bunun mantıklı bir sav olduğunu gösteriyor.Nörobiyolog Harry Jerison, insan beynindeki büyümernin motoru olarak dile işaret ederek, Alet Yapan İnsan hipotezindeki, daha büyük beyinler için evrim baskısını el becerilerinin yarattığı fikrini yadsıyor. 1991'de verdiği bir konferansta (s: 137)şöyle demişti:" Bu bana yeteresiz bir açıklama gibi geliyor; özelilkle de alet yapımının çok az beyin dokusuyla da mümkün olması yüzünden. Basit ama yararlı bir dil üretmek içinse çok büyük oranlarda beyin dokusuna ihtiyaç var.” Dilin altında yatan beyin yapısı bir zamanlar sanıldığından çok daha karmaşıktır. İnsan beyninin çeşitli bölgelerine dağılmış, dille bağlantılı pek çok alan görülüyor. Atalarımızda da bu tür merkezlerin saptanabilmesi durumunda, dil konusunda bir karara varmamız kolaylaşabilirdi. Ama soyu tükenmiş insanların beyinlerine ilişkin anatomik kanıtlar yüzey hatlarıyla sınırlı kalıyor; fosil beyinler, iç yapı hakkında hiçbir ipucu snmuyor. Şansımıza, beynin yüzeyinde, hem dille hem de alet kullanımıyla bağlantılandırılan bir beyin özelliği görülüyor. Bu, (çoğu insanda) sol şakak yakınlarında yer alan yüksek bir yumru olan Broca kıvrımıdır. Fosil insan beyinlerinde Broca kıvrımına dair bir kanıt bulmamız, dil becerisinin geliştiğine ilişkin, belirsiz de olsa bir işaret olacaktır. Olası bir ikinci işaret de, modern insanlarda sol ve sağ yarıları arasındaki büyüklük farkıdır. çoğu insanda sol yarıküre sağ yarıküreden daha büyüktür; ve bu kısmen, dille ilgili mekanizmanın burada yer almasının sonucudur. İnsanlarda el kullanımı da bu asimetriyle bağlantılıdır. İnsan nüfusunun yüzde 90'ı sağ ellidir; dolaysıyla, sağ ellilik ve dil yetisi sol beynin büyük olmasıyla bağlatılandırılabilir. Ralph Holloway, 1972'de Turkana Gölü’nde bulunmuş, çok iyi (?) bir Homo habilis örnegi olan ve yaklaşik 2 milyon yaşinda oldugu saptanan kafatasi 1470'in(Müzeye giriş numarasi) beyin şeklini inceledi. Beyin kutusunun iç yüzeyinde Broca alaninin izini saptamaktan öte, beynin sol-sag şekillenmesinde de hafif bir asimetri buldu. Bu, Homo habilis’in modern şempanzelerin soluma- haykirma-homurtudan çok daha fazla iletişim aracina sahip oldugunu gösteriyordu. Holloway, Human Neurobiology’de yayinlanan bir bildiride, dilin ne zaman ve nasil ortaya çiktigini kanitlamanin olanaksizligina karşin, dilin ortaya çikişşinin “paleontolojik geçmişin derinliklerine “ uzanmasinin (s: 138) mümkün oldugunu belirtti. Holloway, bu evrim çizgisinin Australopithecus’la başlamiş olabilecegini söylüyordu;ama ben onunla ayni fikirde degilim. Bu kitapta şu ana dek yer verilen tüm tartişmalar, Homo cinsinin ortaya çikişiyla birlikte, insangil uyarlamasinda önemli bir degişim yaşandigina işaret ediyor.. Dolaysiyla ben, ancak Homo habilis ’in evrilmesiyle bir tür konuşma dilinin oluşmaya başladigini düşünüyorum. Bickerton gibi ben de bunun bir tür öndil, içedrigi ve yapisi basit, ama insansimaymunlarin ve Australopithecus ’ larin ötesine geçmiş bir iletişim araci oldugunu saniyorum. Nicholas Toth’un, 2. Bölümde sözü edilen, olağanüstü özenli ve yenilikçe alet yapma deheyleri, beyin asitmetrisinin erken inasnlarda da görüldüğü fikirini destekliyor.Toth’un taş alet yapımı çalışmaları,Oldovan kültürü uygulamacılarının genellikle sağ eli olduklarını ve dolaysıyla, sol beyinlerinin biraz daha büyük olacağını gösterdi. Toth’un bu konudaki gözlemleri şöyleydi: “Alet yapma davranışlarının da gösterdiği gibi, erken alet yapımcılarında beyin kanallaşması oluşmuştu. Bu, olasılıkla dil yetisinin de ortaya çıkmaya başladığını gösteren bir işarettir.” Fosil beyinlerinden elde edilen kanıtlar beri, dilin Homo cinsinin ilk ortaya çıkışıyla birlikte gelişmeye başladığına ikna etti. En azından, bu kanıtlarda, dilin erken dönemlerde ortaya çıktığı savına karşıt bir şey göremiyoruz. Ama ya ses organları: Gırtlak, yutak, dil ve dukalar? Bunlar da ikinci önemli anatomik bilgi kaynağını oluşturuyor. İnsanlar, gırtlağın boğazın alt bölümünde yer alması ve dolaysıyla, yutak adı verilen geniş bin se odacığı yaratması sayesinde, pek çok ses çıkarabilirler. New York’taki Mount Sınai Hastanesi tıp Fakültesinden Jeffrey Laitman, Brown Ünversitesinden Philip Lieberman ve Yale’den Edmund Crelin’in yenilikçi çalışmaları,, belirgin, ayrıntılı bir konuşma yaratılmasında geniş bir yutağın anahtar rol oynadığını gösteriyor. Bu araştırmacılar canlı yaratıkların ve insan fosillerinin ses yolu (s: 139) anatomileri üzerinde kapsamlı bir araştırma gerçekleştirdiler ve ikisinin birbirinden çok farklı olduğunu gördüler. İnsan dışında tüm memelilerde, gırtlak boğazın üst kısmında yer alı ve bu da, hayvanın aynı anda hem soluyup hem içebilmesini sağlar.Ama yutak boşluğunun küçüklüğü, yaratılabilecek ses alanını kısıtlar. dolaysıyla, memelilerin çoğunda, gırtlakta yaratılan seslerin değiştirilmesi ağız boşluğunun ve dudukların şekline bağlıdır. Gırtlağın boğazın alt kısmında yer alması insanların daha çok ses çıkarabilmelerin sağlar; ama ayını anda hem soluyup hem de içmemizi engeller. Böyle bir şey yaptığımızda boulabiliriz. İnsan bebekleri, memeliler gibi, boğazın üst kısımnada yer alan bir gırtlakla doğarlar ve dolaysıyla, aynı anda hem (s: 140) soluyup hem içibilirler; zaten, süt emerken ikisini de yapabilmeleri gerekir. Yaklaşık on sekizinci aydan itibaren gırtlak boğazın alt kısımlarına kaymaya başlar ve yetişkin konumuna, çocuk yaklaşık on dört yaşındayken ulaşır.Araştırmacılar,insanın erken dönem atalarının boğazlarında gırtlağın konumunu saptayabilmeleri durumunda,türün seslendirme ve dil yetisi konusunda bazı sonuçlara ulaşabilecemklerini fark ettiler.Ses organlarının fosilleşmeyen yumuşak dokulardan-kıkırdak, kas ve et- oluşması nedeniyle,bu oldukça güç bir işti.Yine de eski kafalarda,kafatasının dibinde, yani basikranyumda yer alan çok önemli bir ipucu görülüyor. Temel memeli modelinde kafatasının alt kısmı düzdür. İnsanlardaysa,belirgin şekilde kavisli. Dolaysıyla, fosil insan türlerinde basikranyum şekli,ses çıkarabilme yeteneğinin düzeyini gösterir. İnsan fosillerini inceleyen Laitman, Australopithecus’taki basikranyumun düz olduğunu gördü. Diğer pek çom biyolojik özellikte olduğu gibi,bu açıdan da insansımaymun gibiydiler ve insansımaymunlar gibi,onların da sesli iletişimi kısıtlı olmalıydı.Australopitecus’lar,insan konuşma modeline özgü evrensel ünlü seslerinin bazılarını çıkaramayacaklardı. Laitman,şu sonuca vardı: “Fosil kalıntılarında tam anlamıyla eğrilmiş bir basikranyum ilk olarak,yaklaşık 300 000 ile 400 000 yıl önce,arkakik Homo sapiens adını verdiğimiz insanlarda görülmektedir.” Yani,anatomik açıdan modern insanların evrilmesinden önce ortaya çıkan arkaik sapiens türlerinin tam anlamıyla modern bir dilleri var mıydı? Bu, pek olası görünmüyor. Basikranyum şeklindeki degişim,biline en eski Homo erectus örnegi olan,kuzey kenya’da bulunan ve yaklaşik 2 milyon yil öncesinden kalma kafatasinin incelemeliren göre bu Homo erectus bireyi,bazi ünlü sesleri çikartma yetenegine sahipti. Laitman, erken homo erectus’ta girtlak konumunun,alti yaşindaki modern bir çocugun girtlak konumuna eşdeger olacagini hesapliyor. Ne yazik ki, şu ana dek eksiksiz bir habilis beyin kutusu bulunamamasi nedeniyle (s:141), homo habilis hakkinda hiçbir şey söylenemiyor. Ben, en erken Homo’ya ait eksiksiz bir beyin kutusu buldugumuzda,tabanda egrilme başlangici görecegimizi tahimin ediyorum.Ilkel bir konuşma dili yetisi, homo’hnun ortaya çikişiyla birlikte başlamiş olmali. Bu evrim dizisi içinde açık bir paradoks görüyoruz. Basikranyumlarına bakılırsa,Neanderthallerin sözel becerileri,kendilerinden yüz binlerce yıl önce yaşamış olan diğer arkakik sapiens’lere göre daha geriydi. Neanderthallerde basikranyum eğrilmesi, Homo erectus’tan bile daha az düzeydeydi. Neanderthaller gerileyerek,atalarına göre konuşma yeteneklerini kaybetmişer miydi?(Gerçekten de kimi antropologlar,Neanderthallerin soylarının tükenmesiyle,dil yeteneklerinin alt düzeyde olması arasında bağlantı kurulabeleceğini söyylüyorlar). Bu tür evrimsel bir gerileme pek olası görülmüyor;bu tipte başka hiçbir örnek göremiyoruz.Yanıtı,Neanderthal yüz ve beyin kutusu anatomisinde bulmamız daha olası. Soğuk iklime bir uyarlanma olarak,Neanderthalin yüzünün orta kısmı aşırı derecede çıkıntılıdır. Bu yapı, burun geçişlerinin genişlemesini ve dolaysıyla,soğuk havanın ıbsıtılmasını ve dıyşşarı verilen soluktaki nemin yoğunlaşmasını sağlar. Bu yapı basikranyum şeklini,türün dil yetisini önemli oranda azaltmadan etkilemiş olabilir.Antropologlar bu noktayı hala tartışıyor. Kısaca anatomik kanıtlar, dilin erken dönemlerde ortaya çıktığını ve ardından, dil yeteneklerinin aşamalı olarak geliştiğini düşündürüyor.Ama alet teknolojisi ve sanatsal ifade konuisundaki arkeolojik kalıntılardan,genellikle farklı bir öykü çıkıyor. Daha önce belirttiğim gibi dil fosilleşmese bile,insan elinin ürünleri ilkesel olarak,dil hakkında bazı içgödrüler sunabilir. Bir önceki bölümdeki gibi,sanatsal ifadeden söz ederken,modern insan zihninin işleyişinin bilincindeyiz; bu da, modern bir dil düzeyine işaret ediyor. Taş aletler de alet yapımcılarının diyl yetileri hakkında bir anlayış sağlayabilir mi? 1976'da New york Bilimler akademisi’nde dilin kökeni ve doğası hakkında bir bildiri sunması istenen Glynn Isaac’ın (s:142) yanıtlaması gereken de buydu. Isaac, yaklaşık 2 milyon yıl önceki başlangıcından 35.000 yıl önceki Üst Paleolitik devrimine dek süren taş alet kültürlerinin karmaşıklığını gözden geçirdi. bu insanların aletlerle yaptıkları işlerden çok,aletlere verdikleri düzenle ilgileniyordu. Düzenleme insani bir saplantıdır;bu, en ince ayrıntılarıyla gelişmiş bir konuşma dili gerektiren bir davranış biçimidir. Dil olmasa, insanların koyduğu keyfi düzen de olamazdı. Arkeolojik kalıntılar,düzen vermenin insanın tarihöncesinde çok yavaş- adeta buzul hızıyla- geliştiğini gösteriyor. 2.Bölümde, 2.5 milyon ile yaklaşık 1.4 milyon yıl öncesi arasındaki Oldovan aletlerinin fırstaçı bir doğaya sahip olduklarını görmüştük. Alet yapımcılarının aletin şekline önem vermedikleri ve daha çok, keskin yongalar üretmeyi amaçladıkları görülüyor. kazıcılar, kesiciler ve diskler gibi “çekirdek “aletler bu sürecin yan ürünleriydi. Oldovan kültürünü izleyen ve yaklaşık 250.000 yıl öncesirne dek süren Acheuleen kültürü aletlerinde de ancak asgari düzeyde bir şekil görülüyor. Damla şeklindeki el baltası büyük olasılıkla,bir tür zihinsel kalıba göre üretilmişti ama gruptaki diğer aletlerin çoğu pek çok açıdan Oldovankültürüne benziyordu;dahası, Acheuleen alet kutusunda ancak bir düzine alet biçimi görülüyordu. Yaklaşık 250,000 yıl öncesinden itibaren,aralarında Neanderthallerin de bulunduğu arkaik sapiens bireyleri önceden hazırlanmış yongalardan alekler yapmaya başladılar. Mousterien’i de içeren bu gruplarda belki altmış alet tipi saptanabilmişti.Ama tipler 200.000 yılı aşkın bir süre değişmedi;tam bir insan zihninin varlığını yadsır gibi görünen bir teknolojik duruğalık dönemiydi bu. Yenilikçilik ve keyfi düzen ancak 35.000 yıl önce,Üst Palelitik kültürlerin sahneye çıkmasıyla birlikte yaygınlaştı. Yeni ve daha incelikli alet türlerinin yapılmasından öte,Üst Paleolitik döneme özgü alet grupları yüzbinlerce yıl değil,binlerce yıllak bir zaman ölçeği içinde değişmişti. Isaac, bu tenolojik çeşitlilik ve değişim modelinin,bir tür konuşma dilinin aşamalı (s:143) olarak ortaya çıkmasına işaret ettiğini düşünüyor ve Üst Paleolitik Devrimi’nin bu evrim çizgisinde önemli bir dönüm noktası oluşturduğunu savunuyordu. Çoğu arkeolog bu yorumu kabul etmektedir;ancak erken alet yapımcılarının konuşma dili düzeyleri konusunda farklı fikirler vardır; tabii,gerçekten bir dilleri varsa. Colorado Üniversitesi’nden Thomas Wynn, Nicholası Toth’un tersine,Oldovan kültürünün genel özellikleriyle insan değil, insansı maymun benzeri olduğuna inanıyor.man dergsinide 1989'da yaymlanan bir makalede, “Bu tabloda dil gibi unsurları varsaymamız gerekmez” diyor. Bu basit aletlerin yapımının çok az bilişsel yeti gerektirdiğini ve dolaysıyla, hiçbir şekilde insana özgü olmadığını savunuyor. Yine de Acheuleen el baltalarının yapımında “insana özgü bir şeyler” olduğunu kabulleniyor: “Bunun gibi insane serleri,yapımcının ürününün nihai şekline önem verdiğini ve onun bu amaçlılığını,homo erectus’un zihnine açılan küçük bir pencere olarak kullanabileceğimizi gösteriyor.”Wynn,homo erectus’un bilişsel yetisini, Acheuleen aletlerinin yapımının gerektirdiği zihinsel kapasiteyi temel alarak,yedi yaşındaki bir modern insana denk görüyor. Yedi yaşındaki çocuklar,gönderme (referans) ve gramer gibi,kayda değer dil becerilerine sahiptirler ve işaretlere ya da hareketlere gerek duymadan konuşma noktasına yakındırlar. bu bağlam içinde, Jeffrey Laitman’ın,basikranyum şeklini temel alarak, homo erectus’un dil yetisini ayltı yanıdaki modern bir inasının dil yetisine eş gördüğünü hatırlamak ilgi çekici olacaktır... Arkeolojik kalıntıların yalnızca teknoloji unsurunu klavuz alırsak,dilin erken dönemlerde ortaya çıktığını,insanın tarihöncesinin büyük bölümü boyunca yavaş yavaş ilerlediğini ve görece yakın zamanlarda büyük bir gelişme geçirdiğini düşünebiliriz. Bu, anatomik kanıtlardan türeetilen hipotezden ödün verilmesi anlamına geliyor. ama arkeolojik kalıntılar böyle bir ödüne yer bırakmıyor. kayalık korunaklara ya da mağaralara (s:144) yapılmış resim ve oymalar, kalıntılarda 35.000 yıl öncesinden itibaren,birderbire görülüyor. Aşıboyası sopa ya da kemik nesnelerin üzerine kazınmış eğriler gibi, daha önceki sanat eserlerine dair kanıtlar,en iyi olasılıkla ender ve en kötü olasılıkla da kuşkuludur. Sanatsal ifadenin-sözgelimi Avusturalyalı arkeolog Iain Davidson’ ın ısrarla savunrduğu gibi- konuşma diline ilişkin tek güvenilir gösterge olarak alınması durumunda dil,ancak yakın zamanlarda tamamen modern hale gelmiş,bunun da ötesinde, başlangıcı yakın zamanlarda olmuştur. New England Üniversitesi’nden çalışma arkadaşı William Noble’la birlikte yazdıkları yakın tarihli bir bildiride şöyle diyorlar:"tarihöncesinde nsnelere benzeyen imgelerin yapılması ancak,ortak anlamlar sistemlerine sahip topluluklarda ortaya çıkmış olabilirdi.” “Ortak anlamlar sistemleri” elbette, dil sayesinde yaratılabilirdi.Davidson ve noble, sanatı dilin olanaklı kıldığını değil, sanatsal ifadenin,göndermeli dilin gelişmesini sağlayan bir ortam olduğunu savunuyorlar. Sanat dilden önce gelmeli ya da en azından,dille koşut olarak ortaya çıkmalyıydı. Dolaysıyla, arkeolojik kalıntılarda sanatın ilk ortaya çıkışı,göndermeli konuşma dilinin de ilk ortaya çıkışına işaret eder İnsan dilindeki evrimin yapısı ve zamanlamasıyla ilgili pek çok hipotez var; bu da kanıtların ya da en azından kanıtların bir ısmınını yanlış yorumlandığını gösteriyor. Bu yanlış yorumlamaların getirdiği karmaşıklık ne olursa olsun,dilin kökeninin karmaşıklığı hakkında yeni bir anlayış gelişiyor. Wenner-Gren Antropolojik Araştırmalar Vakfı’nın düzenlediği ve Mart 1990'da gerçekleştirilen önemli bir konferansın,illeri yıllardaki tartışmaların akışını belirlediği görülecektir. “İnsan Evriminde Aletler, Dil ve Bilişim” başlıklı konferansta,insan tarihöncesinin bu önemli konuları arasında bağlantı kuruldu. konferansın düzenleyicilerinden Kathleen Gibson bu konumu şöyle tanımlıyor: “İnsan sosyal zekasının,alet kullanımının ve dilin, beyin boyutunda nicel gelişmeyle ve bununla ilgili bilgi işleme yetisiyle bağlantılı olması nedeniyle,içlerinden hiçbiri tek başına Minerva’nın Zeus’un başından doğması gibi,eksiksiz halde ve birdenbire ortaya çıkmış olamaz. Beyin boyşutu gibi bu entellektüel yetilerin her biri de kademeli olarak gelişmiş olmalı. Dahası, bu yetilerin birbirlerine bağımlı olmaları nedeniyle,içlerinedn hiçbiri modern karmaşıkylık düzeyine tek başına ulaşmış olamaz.” Bu karşıkıl bağımlılıkları çözümlemek zorlu bir savaşım olacaktır. Daha önce de belirtttiğim gibi burada, tarihöncesinin yeniden oluşturulmasından çok daha gfazlası; kendimize ve doğadaki yerimize dair bakış açımız da söz konusu. İnsanları özel görmek isteyenler,dilde yakın tarihli ve ani bir başlangıca işaret eden dellileri benimseyeceklerdir. İnsanın doğanın geri kalan kısmıyla bağlantısını reddetmeyenlerse, bu temel insan yetisinin erken dönemlerde ve aşamalı olarak gelişmesi fikrinden rahatsızlık duymayacaklardır. Doğanın bir garipliği sonucu Homo habilis ve Homo erectus topluluları hala var olsaydı, herhalde, çeşitli düzeylerde göndermeli dil kullandıklarını görürdük. Bu durumda, bizimle doğanın geri kalan kısmı arasındaki uçurum bizzat kendi atalarımız tarafından kapatılmış olurdu. (Richard Leakey, İnsanın Kökeni, Varlık/Bilim Yay, s:129-147 ,7. Bölümün sonu) İnsanın evrimine yön veren ayıklama baskıları sorununu bu terimler içinde ele almak gerekir. Söz konusu olanan kendimiz oluşu ve varlığımızın köklerinin evrimin içinde daha iyi görünce onu bugünkü doğası iuçinde daha iyi anlama olanağı bulunuşu bir yana bırakılsa bile, bu yine ayırksal ilginçlikte bir sorundur. Çünkü yansız bir gözlem, örneğin bir Mars’lı, kuşkusuz, evrende biricik bir olay ve insanın özgül edimi olan simgesel dilin gelişmesinin, yeni bir alanının, kültür, düşünce ve bilgi alanının yaratıcısı olan başka bir evrime yol açtığını görebilir. Çağdaş dilciler, simgesel dilin, hayvanların kullandığı türlü iletişim yollarına (işitsel, dokunsal, görsel ya da başka) indirgenemeyeceği olgusu üzerinde direniyorlar. Kuşkusuz doğru bir tutum. Fakat bundan, evrimin mutlak bir kesinlik gösterdiği, insan dilinin daha başlangıçtan beri , örneğin büyük maymunların kullandıkları bir çağırma ve haber verme türleri sistemiyle hiçbir ilişiksi olmadığı sonucuna varmak, bana, güç atılır bir adım ve ne olursa olsun, yararsız bir varsayım gibi görünüyor. Hayvanların beyni, kuşkusuz, yalnızca bilgileri kaydetmekle kalmayıp bunları birleştirmeye, dönüştürmeye ve bu işlemlerin sonucunu kişisel bir işlem olarak yeniden kurmaya elverişlidir: Fakat bu- ki konunun özü de buradadır- özgün ve kişisel bir çağrışım ya da dönüştürmeyi başka bir bireye iletmeye elverişli biçime sokulmamıştır. Oysa tam tersine bir bireyde gerçekleşen yaratıcı birleştirmelerin ve yeni çağrışımların, başkalarına aktarıldıklarında o bireyle ölüp gitmediği gün doğmuş sayılan insan dilinin sağladığı olanak budur. Primitif dil diye bir şey bilinmiyor: Çagdaş, biricik türümüzün bütün irklarinda simgesel aygit hemen hemen ayni karmaşikliga ve iletişim gücüne ulaşmiştir. Chomsky’ye göre ise, bütün insan dillerini temel yapisinin, yani “biçim”inin, ayni olmasi gerekir.Dilin hem temsil edip, hem olanak sagladigi olaganüstü edimler, Homo sapiens ’ de merkezi sinir sistemindeki önemli gelişmeyle açikça birlikte gitmiştir ve bu gelişme onun en ayirt edici anatomik özelligini oluşturur. Bugün denebilir ki, insanın bilinen en uzak atalarından başlayan evrimi, herşeyden önce kafatasının, dolyasıyla beyninin, ileri doğru gelişmesinde kendini gösterir. Bunun için, iki milyon yıldan daha uzun süren, yönlendirilmiş, sürekli ve desteklenmiş birr ayıklama baskısı gerekti. Ayıklama baskısı hem çok güçlü olmalı, çünkü bu süre göreli olarak kısadır, hem de özgül olmalı, çünkü başka hiçbir soyda bunun benzeri gözlemlenmemiştir: Çağımızdaki insanımsı maymunların kafatası sığası birkaç milyon yıl öncekilerden daha büyük değildir. İnsanın ayrıcalıklı merkezi sinir sisitmenini evrimiyle, onu özniteleyen biricik edimin evrimi arasında sıkı bir birliktelik olduğunu düşünmemek olanaksız. Öyle ki bu durumda dil, bu evrimin yalnızca bir ürünü değil, ayrıca başlangıç koşullarından da biri oluyor.(Raslantı ve Zorunluluk, s: 118-119) Bana göre doğruya en yakın varsayım, en ilkel simgesi iletişimin bizim soyumuzda çok erken ortaya çıktığı ve yeni bir ayıklama baskısı yaratarak türün geleceğini belirleyen başlangıç “ seçim”lerinden birini oluşturduğudur; bu ayıklama, dilsel edimin kendisinin ve dolaysıyla onu kullanan organın, yani beynin, gelişmesini kolaylaştırmış olmalı. Bu varsayımı destekleyen güçlü kanıtlar bulunduğunu sanıyorum. Bugünkü bilinen en eski gerçek insanımsılarda (Australopitekuslar ya da Leroi-Gourhan’ın haklı deyimiyle “Australantroplar”), İnsanı, en yakınları olan Pongide’lerden (yani insanımsı maymunlardan) ayır eden öznitelikleri bulunuyordu ve onların tanımı da buna dayanır. Australantroplar ayakta dururlardı ve bu, yalnızca ayağın özelleşmesiyle değil; iskeletteki ve başta belkemiği olmak üzere kas yapısındaki ve kafanın belkemiğine göre konumundaki değişikliklerle birlikte gider. İnsanın evriminde, Gibbon dışındaki bütün insanımsıların, dört ayakla yürümenin kısıtlamalırnadan kurtulmuş olmalarının önemi üzerinde de çok duruldu. Kuşkusuz bu çok eski (Australantroplardan daha eski) buluş çok büyük bir önem taşıyordu: Atalarımızın, yürürken ya da koşarken de ellerini kullanabilmelerini sağlayan yalnızca buydu. Buna karşi, bu ilkel insanimsilarin kafatasi sigasi bir şempanzeninkinden biraz büyük ve bir gorilinkinden biraz küçüktü. Beynin agirligi edimleriyle oranli degildir, ancak bu agirligin edimleri sinirladigi da kuşkusuzdur ve Homo sapiens yalnizca kafatasinin gelişmesiyle ortaya çikabilirdi. Ne olursa olsun, Zinjantrop, beyninin bir gorilinkinden daha ağır olmamasına karşın, Pongide’lerin bilmediği edimlere yetenekliydi: Gerçekten, Zinjantrop alet yapabiliyordu; gerçi bu öylesine ilkeldi ki; bu “aletler” ancak çok önemsiz biçimlerin yinelenmesi ve belli taşıl iskeletleri çevresinde brikmiş olmaları nedeniyle yapıntı olarak kabul ediliyorlar. Büyük maymunlar, yeri geldikçe, taştan ya da ağaç dallarından doğal “alet” kullanırlar, fakat tanınabilir bir norma göre biçimlendirilmiş yapıntılara benzeyen şeyler üretmezler. Böylece Zinjantropun çok ilkel bir Homo faber olarak görülmesi gerekiyor. Oysa dilin gelişmesiyle, amaçli ve disiplinli bir etkinligin belirtisi olan bir ustaligin gelgşmesi arasinda çok siki bir karşiliklilik bulunmasi büyük bir olasilik gibi görünüyor. Demek Australantroplarda, yalin ustaliklari ölçüsünde bir simgesel iletişim aygiti bulundugunu düşünmek yerinde olur. Öte yandan eger Dart’in düşündügü gibi, Austalantroplar, özellikle de gergedan, hipopotam ve panter gibi güçlü ve tehlikeli hayvanlari da başariyla avlayabilmişlerse, bunun, bir avcilar takimi arasinda önceden tasarlanmiş bir edim olmasi gerekir. Bu önceden tasarlama bir dilin kullanilmasini gerektirir. Australantropların beyinlerinin oylumundaki gelişmenin azlığı bu varsayıma karşı çıkar gibidir. Fakat genç bir şempanze üzerinde son yapılan deneylerin gösterdiğine göre, maymunlar konuşma dilini öğrenme yeteneğine sahip olmamakla birlikte sağır-dilsizlerin dilinden kimi öğeleri kavrayıp kullanabilmektedirler. Bu durumda artık konuşmalı simgeleme gücünün kazanılmasının, bu aşamada bugünkü şempanzeden daha anlayşışlı olmayan bir hayvandaki çok karmaşık olması gerekemyen nöromotris değişmelerden doğduğunu kabul etmek yerinde olur. Fakat açıktır ki bir kez bu adım atıldıktan sonra, ne denli ilkel olursa olsun bir dilin kullanılması, düşüncenin varkalma değerini arttırmaktan, böylece beynin gelişmesine yardımcı olarak, konuşmadan yoksun hiçbir türün erişemeyeceği, güçlü ve yönlü bir ayıklama baskısı yaratmaktan geri kalmaz. Bir simgesel iletişim sistemi ortaya çıktığı anda, bunu kullanmakta en yetenekli olan bireyler, daha doğrusu topluluklar, başka topluluklar karşısında, aynı zeka düzeyinin, dilden yoksun bir türün bireylerine sağlayabileceğiyle ölçüştürülemeyecek kadar üstünlük kazanırlar. Yine görülüyor ki, bir dilin kullanımından doğan ayıklama baskısı, sinir sisteminin, özellikle bu ayrıcalıklı, özgül ve geniş olanaklarla dolu edimin verimliliğine en uygun yönde gelişmesine yardım edecektir. Bu varsayım, günümüzdeki kimi verilerle de desteklenmiş olmasaydı, çekici ve akla uygun olmaktan öte gidemezdi. Çocuğun dil kazanması üzerindeki araştırmaların karşı çıkılmaz biçimde gösterdiğine göre bu sürecin bize mucize gibi görünmesi onun doğası gereği, herhangi bir biçimsel kuramlar sisteminin düzenli öğrenimindenf farklı oluşundandır.Çocuk hiçbird kural öğrenmez ve büyüklerin konuşmasına öykünmeye çalışmaz. Denebilir ki gelişmenin her aşamasında kendine uygun olanı alır. İlk aşamada (18 aylığa doğru) on kelime kadar bir dağarcığı olur ki, bunları her zaman, hep ayrı ayrı, öykünmeyle bile birbiriyle birleştirmeden kullanır. Daha sonra kelimeleri ikişer ikişer, üçer üçer vb., yine büyüklerin konuşmasınının yalın bir yinelemesi ya da öykünmesi olmayan bir sözdizimine göre birleştirecektir. Bu süreç, öyle görünüyor ki, evrenseldir ve kronolojisi de bütün dillerde aynıdır. İlk yıldan sonraki iki ya da üç yıl içinde, çocuğun dille oynadığı bu oyunda kazanmış oldğu yetkinlik, yetişkin bir gözlemci için inanılır gibi değildir. İşte bu nedenle burada, dilsel edimlerin temelindeki sinirsel yapıların içinde gelliştiği sıralı- oluşsal bir embriyolojik sürecin yansısını görmek zorunda oluyor. Bu varsayım, sarsıntılı kaynaklı konuşma yitimiyşle ilgili gözlemlerle desteklenmiştir. Bu konuşma yitimleri çocuğun gençliği ölçüsünde daha çabuk ve daha tam olarak geriler. Buna karşı bu bozukluklar erinliğe yakın ya da daha sonra ortaya çıktıklarında tersinmezz olurlar. Bunların dışında bütün bir gözlemler birikiminin doğruladığına göre, dilin kendiliğinden kazanılışının kritik bir yaşı vardır. Herkes bilir, yetişkin yaşta ikinci bir dil öğrenmek, sistemli ve sürekli bir iradeli çabayı gerektirir. Bu yoldan öğrenilen bir dilin düzeyi, hemen her zaman, kendiliğinden öğrenilen ana dil düzeyinin altında kalır. Dilin ilk edinilişinin sirali-oluşsal bir gelişme sürecine bagli oldugu görüşü, anatommik verilerle de dogrulanmiştir.Gerçekten, beynin doguştan sonra süren gelişmesinin erinlikle bittigi bilinir. Bu gelişme temelde, beyin kabugu sinir hücrelerinin kendi aralarindaki baglantilarin önemli ölçüde zenginleşmesinden oluşur. Ilk iki yilda çok hizli olan bu süreç, sonra yavaşlar: Erinlikten sonra (göründügü kadariyla) sürmez; demek ki ilksel edinimin olanakli bulundugu “kritik dönemi” kaplar. (Raslantı ve Zorunluluk, s:121) Burada, çocukta dil kazanımının böylesine mucizevi biçimde kendiliğinden görünüşü, onun, işlevlerinden bir dile hazırlamak olan bir sıralı-oluşsal gelişmenin bütünleyici bir bölümü oluşundandır, düşüncesine varabilmek için bir küçük adım kaloyor ki, ben kendi payıma bu adımı atmakta duraksamam. Biraz daha kesin belirtelim: Bilişsel işlevin gelişmesi de, kuşkusuz, beyin kabuğunun bu doğum sonrası büyümesine bağlıdır. Dilin bilişsel işlevle birliğini sağlayan, onun bu sıralı-oluş sürecinde kazanılmış olmasıdır; bu öylesine bir birlikteliktir ki, konuşmayla onun açıkladığı bilginin, içebakış yoluyla birbirinden ayrılmasını çok zorlaştırır. İkinci evrimin, yani kültürün ürünü olan insan dillerinin büyük çeşitliliğine bakarak, genellikle dilin bir “üstyapı”dan başka bir şey olamayacağı kabul edilir. Oysa Homo sapiens ’ deki bilişsel işlevlerin genişliği ve inceliği, açıklamasını ancak dilde ve dil yoluyla bulabilir. Bu aygıt olmadan o işlevler, büyük bölümüyle, kullanılamaz olur, kötürümleşir. Bu anlamda dil yeteneği artık üstyapı olarak görülemez. Kabul etmeli ki çağdaş insanda, bilişsel işlevler ile bunların doğurduğu ve aracılıklarıyla kenndini açıkladığı simgesel dil arasında, ancak uzun bir ortak evrimin ürünü olabilecek sıkı bir ortakyaşarlık (sybiose) vardır. Bilindiği gibi, Chomsky ve okuluna göre, derinliğine bir dilsel çözümleme, insan dillerinin büyük çeşitliliği içinde bütün dillerde ortak olan bir “biçim” bulunduğunu gösteriyor. Chomsky’ye göre, demek bu biçim, türün özniteliği ve doğuştan olarak kabul edilmelidir. Bu görüş, onda Descartesçı metafiziğe bir dönüş gören birçik filozof ya da antropoloğu şaşırttı. Bunun gerektirdiği biyolojik içeriği kabul etmek koşuluyla, bu görüş beni hiç şaşırtmıyor.Tersine çok daha önce, en kaba biçimiyle kazanılmış birdilsel yeteneğin insanın beyin zarı yapısındaki gelişmeyi etkilemekten geri kalmayacağını kabul etmek koşuluyla, bu bana, bu bana çok doğal görünüyor. Bu da demektir ki, konuşulan dil, insan soyunda ortaya çıktıktan sonra, yalnızca kültürün gelişmesini sağlamakla kalmadı, insanın fiziksel evrimine de belirgin biçimde yardım etti. Eğer gerçekten böyle olduysa, beynin sıralı-oluşsal gelişmesi boyunca ortaya çıkan dilsel yetenek, bugün “insan doğası”nın bir bölümüdür ve kendisi de, genom içinde, kalıtsal kuramın kökten değişik diliyle tanımlanmıştır. Mucize mi? Son çözümlede bir rastlantı ürünü söz konusu olduğuna göre öyle. Fakat Zinjantrop ya da arkadaşlarından biri, bir kategoriyi temsil etmek üzere bir konuşma simgesini ilk kullandığında, bir gün Darwinci evrim kuramını kavrama yeteneğinde bir beynin ortaya çııkma olasılığını çok büyük ölçüde artırmış oldu. (J. Monod, Raslantı ve Zorunluluk, s: 116-122) Sınırlar “ Evrimin belki üç milyar yıldan beri geçtiği yolun büyüklüğü, yarattığı yapıların görkemli zenginliği, bakteri’den İnsan’a, canlı varlıkların teleonomik edimlerinin mucizevi etkinliği düşünüldüğünde bütün bunların, gelişigüzel sayılar arasından kazanılan, kör bir ayıklamanın gelişigüzel belirlediği bir piyango ürünü olduğundan şüpheye düşülebilir. Birikmiş çagdaş kanitlarin ayrintili bir incelemesi, bunun olgularla (özellikle eşlenmenin, degişinimin ve aktarimin moleküler mekanizmalariyla) bagdaşan tek görüş oldugunu bildirse de, bir bütün olarak evrimin, dolaysiz, bireşimsel (synthetique) ve sezgisel bir anlatimini vermez görünüyor. Mucize “açiklanmiş” da olsa bizim gözümüzde hala mucizeligini koruyor. Mauriac’in deyişiyle : “Biz zavalli Hiristiyanlar için, bu profesörün dedikleri, bizim inandiklarimizdan daha inanilmaz görünüyor.” Bu da tıpkı modern fizçikteki kimi soyutlamaların doyurucu bir zihinsel imgenin kurulmaması gibi doğrudur. Fakat yine de biliyoruz ki, bu tür güçlükler, deneyin ve mantığın güvencelerini taşıyan bir kurama karşı kanıt olarak kullanılamazlar.Gerek mikroskopik gerek kozmolojik fizikte, sezgisel anlaşmazlığın nedenini görebiliyoruz: Karşılaştığımız olayların ölçüsü, dolyasız deneyimizin kategorilerini aşıyor. Bu sayrılğın yerine, o da sağaltmadan, yalnızca soyutlama geçebilir. Biyoloji için zorluk başka bir düzeydedir. Herşeyin temelinde bulunan ilksel etkileşimleri kavramak, mekanik öznitelikleri nedeniyle, göreli olarak kolaydır. Her tür toptan sezgisel tasarıma karşı çıkan, canlı sistemlerin fenomenolojik karmaşıklığıdır. Fizikte olduğu gibi biyolojide de, bu öznel güçlükler içinde; kuramı çürüten bir kanıt bulunmaz. Bugün artık denebilir ki, evrimin ilksel mekanizmaları, ilke olarak anlaşılmış olmakla kalmıyor, kesinlikle belirlenmiş de oluyor. Bulanan çözümü, türlerin kalıcılığını sağlayan mekanizmalarla, yani DNA’nın eşlenici değişmezliği ve organizmaların teleonomik tutarlılığı ile ilgili olduğu ölçüde doyurucudur. Yine de biyolojide evrim, daha uzun süre, zenginleşip belirlenmesini sürdürecek olan esas kavramdir. Bununla birlikte, temelde sorun çözülmüştür ve evrim artik bilginin sinirlari üzerinde bulunmamaktadir. Bu sınırları, ben kendi payıma, evrimin iki ucunda görüyorum: Bir yandan ilk canlı sistemlerin kaynağı, öte yandan da ortaya çıkmış olan sistemler arasında en yoğun biçimde teleonomeik olanın, yani insanın sinir sisteminin, işleyişi. Bu bölümde, bilinmeyenin bu iki sınırını belirlemeye çalışacağım. Cüanlı varlıkların özsel nitelikleinin temelindeki evrensel mekanizmaların açığa çıkarılmasının, kaynaklar sorununun çözzümünü de aydınlattığı düşünülebilir. Gerçekte bu buluşlar, sorunu hemen tümüyle yenileyerek, çok daha belirli terimler içinde ortaya koymuşlar ve onun eskiden göründüğünden de daha zor olduğunu göstermişlerdir. İlk organizmaların ortaya çıkışına götüren süreçte, önsel (a priori) olarak, üç aşama tanımlanabilir: a. Yeryüzünde canlı varlıkların temeli kimyasal oluşturucularının yani nükleotid ve aminosatlerin oluşmasi b. Bu gereçlerden başlayarak eşlenme yetenegi bulunan ilk makromoleküllerin oluşmasi c. Bu “eşlenici yapilar” çevresinde, sonunda ilk hücreye ulaşmak üzere bir teleonomik aygit yapan evrim. Bu aşamalardan her birinin yorumunun ortaya koydugu sorunlar degişiktir. Çok kere “önbiyotik aşama” denen birinci aşamaya, yalniz kuram degil, deney de yeterince ulaşabiliyor.Önbiyotik evrimin gerçekte izledigi yollar üzerinde belirsizlikler kalmiş ve daha da kalacak olmakla birlikte, bütünün görünüşü yeterli açikliktadir. Dört milyar yil önce atmosferin ve yer kabugunun koşullari kömürün, metan gibi kimi basit bileşiklerinin birikimine elverişliydi. Su ve amonyak da vardi. Oysa bu basit bileşikler, katlizörlerle biraraya geldiginde, aralarinda aminoasitlerin ve nükleotid öncülerinin (azotlu bazlar, şekerler) bulundugu çok sayida daha karmaşik cisimler kolayca elde edilebiliyor. Burada dikkati çeken olgu, bir araya gelmeleri kolay anlaşilan belli koşullar altinda, bu bireşimlerin, günümüz hücresinin oluşturuculariyla özdeş olan ya da benzeşen cisimler bakimindan veriminin çok yüksek oluşuduru. Demek ki, yeryüzünde belli bir anda, kimi su yatakları içinde, biyolojik makromoleküllerin iki öbeği olan malik asitlerle proteinlerin temel oluşturucularının, yüksek yoğunlukta çözeltiler olarak bulunmasının olabilirliği kanıtlanmış sayılabilir. Bu önbiyotik çorbada, önceden bulunan aminoasit ve nükleotidlerin polimerleşmesi yoluyla, çeşitli makromoleküller oluşabilir Gerçekten laboratuvarda, akla yatkın koşullar altında, genel yapılarıyla “çağdaş” makromoleküllere benzeyen polipeptit ve polinükleotidler elde edilmiştir. Demek buraya dek önemli zorluklar yok. Fakat belirleyici aşama aşilmiş degil: Ilk çorba koşullari altinda, hiçbir teleonomik aygitin yardimi olmadan, kendi eşlenimlerini gerçekleştirme yeteneginde olan makromoleküllerin oluşmasi. Bu zorluk aşilmaz gibi görünüyor. Bir polinükleotidik dizinin, kendiliginden bir eşleşmeyle, tamamlayici dizi ögelerinin bireşimine gerçekten öncülük edebildigi gösterilmiştir. Dogal olarak böyle bir mekanizma ancak çok etkisiz ve sayisiz yanlişliklara açik olurdu. Fakat bunun devreye girmesiyle, evrimin üç temel süreci yani eşlenme, degişinim ve ayiklanmanin da işlemeye başlamasi dizisel-çizgisel yapilari nedeniyle kendiliginden eşlenmeye en elverişli makromoleküllere önemli bir üstünlük saglamiş olmaliydi. Üçüncü aşama, varsayima göre, eşlenici yapinin çevresinde bir organizma , yani bir ilkel hücre oluşturacak olan teleonomik sistemlerin adim adim ortaya çikişidir. Işte “ses duvari”na burada ulaşilir, çünkü bir ilkel hücrenin yapisinin ne olabilecegi üzerinde hiçbir bilgimiz yok. Tanidigimiz en yalin sistem olan bakteri hücresi, ki sonsuz karmaşiklik ve etkinlikte bir makine düzenidir, bugünkü yetkinlik düzeyine belki de bundan bir milyar yil önce ulaşmiştir. Bu hücre kimyasinin bütünsel tasarisi, bütün başka canlilarinkiyşla aynidir. Kullandigi kalitsal kuram ve çeviri düszeni, örnegin insanlirinkiyle aynidir. Böylece, araştirmamiza sunulan en yalin hücrelerin “ilkel” bir yani yoktur. Bunlar, beş yüz ya da bin milyar kuşak boyunca, gerçekten ilkel yapilarinin kalintilari seçilemez olacak düzeyde güçlü bir teleonomik araçlar birikimi oluşturabilen bir ayiklanmanin ürünüdür. Taşillar olmadan böyle bir evrimi yeniden kurmak olanaksizdir. Yine de bu evrimin izledigi yol, özellikle başlama noktasi üzerine hiç olmazsa akla yatkin bir varsayim ortaya atmaya çalişilabilir. İlkel çorba yoksullaştığı ölçüde, kimyasal gizil gücü harekete geçirmeyi ve hücresel oluşturucuları birleştirmeyi “öğrenmiş” olması gereken metabolizma sisteminin gelişmesi ortaya Herkül sorunları çıkarır.Canlı hücrenin zorunlu koşulu olan seçmeli geçirimli zarın ortaya çıkışında da durum aynıdır. Fakat en büyük sorun, kalıtsal hücreyle, onun çevirisinin mekanizmasıdır. DOğrusu, “sorun”dan değil de gerçek bir gizden söz etmek gerekiyor.(s:128) Şifrenin çevirisi yapilmadikça anlami yoktur. Çagdaş hücrenin çeviri makinesi, kendileri de DNA’da şifrelenmiş olan yüz elli kadar makromoleküler oluşturucu içerir: şifrenin çevirisini ancak çeviri ürünleri yapabilir. Bu, her canli bir tohumdan çikar’in çagdaş anlatimidir. Bu halkanin iki ucu, kendilginden, ne zaman ve nasil birleşti? bunu tasarlamak son derece zor. Fakat bugün, şifrenin çözülmüş ve evrenselliginin anlaşilmiş olmasi, hiç olmazsa sorunun belirli terimler içine yerleştirilmesini sagliyor; biraz yalinlaştirarak aşagidaki alternatif saptanabilir: a. Şifrenin yapisi kimyasal ya da daha dogrusu stereokimyasal nedenlerle açiklanir. Eger belli bir amino asit temsil etmek üzere belli bir şifre seçilmişse, bunun nedeni, aralarinda belli bir stereokimyasal yakinlik bulunmasidir. b. Şifrenin yapisi kimyasal olarak rastgeledir; şifre, bildigimize göre, yavaş yavaş onu zenginle=ştiren bir dizi raslantisal seçimlerin sonucudur. Birinci varsayım, gerek şifrenin evrenselliğini açıklayabildiği, gerekse içindeki amino asitlerin bir polipeptit oluşturmak üzere dizisel sıralınışının, amino asitlerle eşlenici yapınını kendisi arasındaki dollaysız bir etkileşimden doğduğu ilkel bir çeviri mekanizması tasarlanmasına elverişli olduğu için, çok daha çekicidir. Son olarak da, özellikle bu varsayım doğruysa, ilke olarak doğrulanabilme olanağı vardır. Bu yüzden birçok doğrulama girişimi yapılmışsa da sonucun şimdilik olumsuz olduğunun kabul edilmesi gerekiyor. Belki de bu konuda henüz son söz söylenmemiştir. Olasi görünmeyen bir dogrulama beklenedursun ikinci varsayima yönelinmiştir ki, yöntembilim açisindan sevimsiz ise de bu, onun dogru olmadigi anlamina gelmez. Sevimsizligin birçok nedeni var. Şifrenin evrenselligini açiklamaz. O zaman birçok gelişme egilimlerinden yalniz birinin süregeldigini kabul etmek gerekiyor. Bu, çok olasi görünürse de hiçbir ilksel çeviri modeli vermez. Çok ustalikli kurgular öne sürülmüştür: Alan boş, hem de aşiri boştur. Giz, çözülmediği gibi, son derece ilginç bir sorunun yanıtını da saklıyor. Hayak yeryüzünd başladı: Bu olaydan önce bunun böyle olma olasılığıo neydi? Dirimyuvarının bugünkü yapısı, kesin sonuçlu olayın yalnızca bir kez ortaya çıktığı varsayımını ortadan kaldırmıyor. Bunun da anlamı önsel olasılığın hemen hemen sıfır olduğudur. Bu düşünce birçok bilimadamina itici gelir. Biricik bir olaydan yola çikarak, bilim ne bir şey söyleyebilir; ne bir şey yapabilir. Bilim yalnizca bir öbek oluşturan olaylar üzerine, bu öbegin önsel olabilirligi ne denli zayif da olsa, bir “söylem” geliştirebilir. Oysa, şifreden başlayarak bütün yapilarindaki evrenselligin dogrudan sonucu olarak, dirimyuvari biricik bir olayin ürünü gibi görünür. Dogal olarak, bu tek olma niteliginin, başka birçok girişim ve degişkenlerin ayiklanarak elenmesinden dogmasi olanagi da vardir. Fakat bu yorumu dogrulayacak bir şey yok.(s:129) Evrendeki bütün olabilir olaylar arasın

http://www.biyologlar.com/mutasyonlar

Canlı Biliminin Önemli Dalları

Canlıların dünya üzerinde çok çeşitli olması nedeniyle değişik bilim dallan gelişmiştir. Bu bilim dalları şu şekilde sıralanabilir. Botanik: Bitkiler alemini inceleyen bilim demektir. Bitkilerin yapısı, yayılışları ve çeşitlerini inceler. Botaniğin ilgilendiği konu alanına göre alt bilim dalları gelişmiştir. Örneğin; Kriptogamlar: Çiçeksiz Bitkiler, Tohumsuz Bitkiler Fanerogamlar: Tohumlu Bitkiler Gymnospermler: Açık Tohumlu Bitkiler Angiospermler: Kapalı Tohumlu Bitkiler Algoloji: Yosun Bilimi Mikoloji: Mantarları inceleyen bilim vb. gibi. Zooloji: Hayvanlar alemini inceleyen bilim dalıdır. Hayvanların yayı­lışı, yaşam şekli ve yapıiannı inceler. Büyük hayvan gruplarına göre zooloji­nin alt bilim dallan gelişmiştir. Örneğin; İhtiyoloji: Balıkları inceleyen bilim dalı Ornitoloji: Kuşları inceleyen bilim dalı Herpetoloji: Kurbağa ve sürüngenleri inceleyen bilim dalı Antropoloji: İnsan ve ırklarını inceleyen bilim dalı Mikrobiyoloji: Bakteri, virüs ve tek hücreliler gibi mikroorganiz­maların yapılarını, görevlerini, yaşam şekillerini, yarar ve zararları ile sınıflandırılmasını inceleyen bilim dalıdır. Paleontoloji: Dünyanın bu güne kadar jeolojik çağlarda yaşamış tüm canlı fosillerini inceler. Bu bilim dalında canlı objeye göre değişen alt dallan vardır. Örnek olarak; Paleobotanik; bitki fosillerini inceleyen bilim dalıdır. Taksonomi: Canlıların sınıflandırılmasıyla ilgili bilim dalıdır. Canlı­lar benzerlik ve farklılıklarına göre gruplandınlır. Benzer olanlar aynı gruba dahil edilirler. Taksonomi doğadaki canlı çeşitliliğini tanımamızı sağlar. Anotomi: Canlıların organ ve yapılarını, organların birbiriyle olan i-lişkilerini inceleyen bilim dalıdır. Morfoloji: Canlı vücudunun dış yapısını ve görünüşlerini inceler. Sitoloji: Hücre ve organellerin yapı ve işlevini inceler. Hücrenin yapı­sını, enerji üretimi ve tüketimini, protein sentezi ile hücre bölünmesini ince­ler. Histoloji: Dokuların yapı ve işlevlerini inceleyen bilim dalıdır. Canlı dokularının neler olduğunu, canlıda nerelerde bulunduğunu, hangi organların yapısına katıldığı ve ne tür görevleri olduğunu inceler. Fizyoloji: Organizmaların doku, organ ve organ sistemlerinin işlevle­rini ve işleyişlerini inceler. Genetik: Canlıların kalıtsal özelliklerinin dölden döle aktarımını, ge­netik yapılarını inceler. Ayrıca genlerin işlevini ve genlerde oluşan değişik­likleri araştırır. Evrim (Evolüsyon): Günümüz canlılarının oluşumunu inceler. Canlı­ların milyonlarca yılda geçirdikleri değişimi inceleyerek yeni türlerin oluşu­munu açıklar. Canlıların uzun bir gelişimden sonra bugünkü şeklini aldığını gösterir. Biyokimya: Canlıların kimyasal yapısı ile canlı yapısındaki maddeleri ve canlıda meydana gelen biyokimyasal reaksiyonları inceler. Bunun yanı sıra biyoloji ile ilgili olarak Ekoloji, Biyomatematik, Biyocoğrafya, Uzay biyolojisi gibi biyolojiye bağlı bilim dallan vardır. Bu­rada bahsedilenler sadece bu kadar değildir. Biyolojinin bundan başka daha birçok alt bilim dalları da vardır. Ayrıca her bilim dalı kendi içerisinde daha küçük alt bilim dallarına ayrılmaktadır. Örneğin; morfoloji bilim dalı hücre morfolojisi, bitki morfolojisi, böcek morfolojisi ve insan morfolojisi gibi alt ihtisas alanlarına ayrılır.

http://www.biyologlar.com/canli-biliminin-onemli-dallari

Evrim Nedir

“Bilimler, düşündügümüzün tam tersi bir düzen içinde geliştiler. Bize en uzak olan şeylerin yasalari en önce bulundu, sonra yavaş yavaş daha yakinlara sira geldi: Ilkin gökler, arkadan yer, sonra hayvanlarla bitmkilerin yaşami, sonra insan gövedesi en sonra da (Yine de en yarim yamala) insan zihni. Bu durumun anlaşilamayaca bir yani yoktur... Yalniz teme doga yasalarinin bulunmasi degil, dünyanin uzun süreli gelişmesiyle ilgil ögretinin kurulmasi da gökbilimle başladi; ama bu ikinci öncekinden ayri bir konuya gezegenimizde yaşamin başlayip gelişmesi konusunua uygulaniyordu daha çok. Şimdi gözden geçirecegimiz evrim ögretisi gökbilimle başlamişsa da yerbilim ile biyoloji açilarindan daha büyük bir önem kazanmiş, ayrica Copernicus sisteminin zaferinden sonra gökbilimin karşisina dikilen daha rinegen tanribilimsel önyargilarla savaşmak zorunda kalmiştir. Modern kafanın, uzun süreli bir gelişme kavramının ne denli yeni olduğunu görmes güçtür; gerçekte de bütünüyle Newton’dan sonraki bir düyşüncedir bu. Kutsal Kitap ’a dayanan inanca göre evren altı günde yaratılmış, o zamandan beri, şimdi içinde bulanan bütün göklü yaratıklara, bütün phayvanlarla bitkilere, Büyük Sel’in yokettiği daha başka birçok canlııya yurtluk etmişti.Birçok tanrıbilimcinin söylediklerine, bütün Hıristiyanların inandıklarına göre Düşüşş zamanında evrene yasa olabilecek bir gelişme şöyle dursun, her türlü kötülüğün korkunç bir kaynaşması görülüyordu. Tanrı, Adem ile Havva’ya belli bir ağacın meyvesini yememesini söyledi; ama onlar dinlemeyip yediler.Bunun üzerine Tanrı , onların, kendi soylarından gelecekelerin bütünüyle birlikte ölümlü olmalarını, küçük bir azınlık bir yana, en uzak torunlarının bile cehennemde sonsuz ceza çekmelerini emretti; bu küçük azınlığın da neye göre seçileceği tartışmalıydı. Adem, günahı işler işlemez, hayvanlar birbirlerini avlamaya, dikenler göğermeye başlamış, birbirinden ayrı mevsimler ortaya çıkmış, toprak da lanetlenmiş, ağır bir emek karşılığı olmadıkça insanoğluna hiçbir şey vermemesi emredilmişti. İnsanlar öyelesine azalmışlardı ki, Tanrı, Nuh ile üç oğlu ve karılarından başka hepsini Büyük Sel’de boğmuştu. Bu cezadan sonra da uslandıkları sanılmıyordu; ama Tanrı, artık başka bir evrensel felaket göndermeyeceğine söz vermişti ancak arasıra yaptığı su basıknlarıyla, depremlerle yetiniyordu. Bilmeliyiz ki bütün bunlar ya doğrudan doğruya Kutsal Kitap ’ta yer alan, ya da Kutsal Kitap ’takilerden, tümdengelimden çıkarılan kesin gerçekler olarak benimseniyorlardı. Dünya’nın yaratılış yılı, Oluş (Genesis ) da adı anılan her atanın, en büyük oğlu doğduğunda kaç yaşında olduğunu söyleyen soy dizilerinden çıkarılabilir. Bu konularda,İ brani yazması ile Septuagint yazması (Tevrat’ın İÖ 270 yılında 70 kişi tarafından başlanılan Yunanca çevirisi) arasındaki ayrılıklardan ya da anlaşılma güçlüklerinden doğan karıştıtlıklar da ortaya çıkabilyordu; sonunda Protestanlar genel olarak başpiskopos Usher’in ileri sürdüğü İÖ 4004 yılını dünanın yaratılış yılı kabul ettiler. Cambridge Üniversitesi’nin Yardımcı Başkanı Dr. Lightfood yaratıtılış yılı konusunda bu bilgiyi benimsemiş, Oluş’un yakından incelenmesiyle daha başka bir çok konunun da büyük bir seçiklik kazanacağını düyşünmüştü; onun söylediğine göre insan 23 Ekim sabahı saat 9'da yaratılmıştır; ama bu da bir inanç sorunuydu;Oluş’tan çıkaracağınız birtakım kanıtlara dayanarak, Adem ile Havva’nın, 16 Ekim’de ya da 30 Ekim’de varedildiklerine inanmanızda, dinsiz sayılma sakıncası yoktur. Yaratılış gününün Cuma olduğu da biliniyordu tabi, çünkü Tanrı, Cumartesi günü dinlenmişti. Bilimin de bu dar sınırlar içinde kalması istenmiş, gördüğümüz evrenin 6000 yıllık değil çok daha yaşlı olduğunu düşünenler alay konusu olmuşlardır. Gerçi böyle kimseler artık yakılmıyor, hapsedilmiyorlardı; ama tanrıbilimciler bunlarını yaşamalaranı zehir etmek, öğretilerinin yayılmasına engel olmak için ellerinden geleni geri koymuyorlardı. Newton, Copernicus sistemi kabul edildikten sonra, dinsel inançları sarsacak bir şey yapmış olmuyordu. Kendisi de koyu bir Hıristiyan, Kutsal Kitap ’a inanan bir kimseydi. Onun evreni, içinde gelişmeler bulunmayan bir evren değildi, söylediklerinde bu konuya hiç rastlamıyoruz; ama herhalde bütün evrenin tek parçadan yaratıldığına inanıyordu. Gezegenlerin Güneşin çekiminden kurtulmalarını sağlayan teğetsel hızlarını açıklarken, hepsinin başlangıçta Tanrı eliyle boşluğa fırlatılmış olduklarının tasarlıyordu; bundan sonra olup bitenler de genel çekim yasasıyla açıklanıyordu. Newton’un, Bentley’e yazmış olduğu özel bir mektupta bütün evrenin Güneş sisteminin ilkel bir parçalanmasından doğmuş olabileceğini ileri sürdüğü doğrudur; ama topluluk karşısında ya da resmi olarak söylediklerine bakılırsa, Güneş ile gezegenlerin birdenbire yaratılmış olduklarını benimseyen, evrensel evrime hiçbir şey tanımayan bir düşünceden yana olduğu görülür. 18. yüzyılın özel inanç biçim Newton’dan alınmadır; buna göre evrenin ilk yaratıcısı olan Tanrı, temel yasalar da koymuş, yaptığı kurallarla da gelecekteki bütün olayları kendisinin bir daha araya girmesini gerektirmeyecek biçimde belirlemiştir. Koyu dinciler göre yasalarla açıklanamayacak durumlar da vardı: dinle ilgili mucizeler. Ama yaratancılara göre herşey doğal yasalarla yönetiliyordu. Pope’ un İnsan Üstüne Deneme iki görüşle de karşılaşırız. Bir parçada: Her şeye yeterli ilk güç, ayri ayri degil, genel yasalarla hareket eder, pek azdir bunun dişinda kalan. Ama dinsel bağın unutulduğu anlarda, hiçbir duruma ayrıcalık tanımaz: Doğa’nğın zincirinden hangi halkayı koparsanız, onuncu olsun, on birinci olsun fark etmez, kırılıverir zincir. Aşamalı sistemler, şaşkınlık veren o bütüne uyarak, hep birbirleri gibi yuvarlanıp giderlerken en küzük bir karışıklık koca bir sistemi yıkmakla kalmaz, bütünü de yıkar. Yer dengesini yitirir, fırlar yörengesinden; gezgenler, güneşler, yasasız koşarlar gökyüzünde; yönetici melekler göklerinden uğrarlar, varlık varlık üstüne dünya dünya üstüne yığılır; bütün temelleri göklerin eğilir merrkeze doğru. Doğa titrer tahtı önünde Tanrının! Yasaların Yetkisi sözünden, Kraliçe Anne zamanında olduğu gibi, politik durulma anlaşılıyor, devrimler çağının geçtiğine inanılıyordu. İnsanlar yeniden değişiklik istemeye başlayınca, doğal yasaların işlyeşi ikonusundaki görüşleri de kural olmaktan çıktı. Güneşin gelişimi konusunda ciddi bir bilimsel kuram koymaya girişen ilk kimse 1755 yilinda Göklerin Genel Doga Tarihi ile Kurami ya da Newton Ilkelerini Uygulayarak Evrenin Bütün Yapisinin Kuruluşu ve Mekaki Kynagi Üzerinde Araştirma adli kitabiyla Kant olmuştur. Bu kitap, kimi yönleriyle modern gökbilimin sonuçlarini önceden gören çok önemli bir yapittir. Çiplak gözle görülebilen bütün yildizlarin tek sisteme, Samanyolu’na bagli olduklarini söyleyerek başlar. Bütürn bu yildizlar hemen hemen bir düzlemde yer alirlar. Kant’a göre bunlar arasinda da tipki Güneşş sistemindekine benzer bir birlik göze çarpar. Olagaüstü bir düşsel karayişla Nebula’nin da sonsuz uzaklikta yildiz kümelerinden başka bir şey olmadigini söylemiştir; bugün de genellikle tutulan görüş budur. Nebula’nin, Samanyolu’nun, yildizlarin, gezegenlerin takimyildizlarinin gerçekte dağınık olan bir maddenin küme küme yoğunlaşmasından ortaya çıktıklarını ileri süren-yer yer, matematik kanıtlara dayanmamakla birlikte, daha sonraki buluşların eşiğine dayanmış- bir kuramı vardır. maddesel evrenin sınırsızlığına inanır, bunun Yaratıcı’nın sınırsızlığına yaraşacak tek görüş olduğunu söyler. Kant’ın düşüncesine göre karışıklıktan örgütlenmeye doğru aşamalı bir geçiş evrenin çekim merkezinden başlar, yavaş yavaş bu noktadan en uzak kesimlere değin yayılır; sonsuz bir uzayda olup biten sonsuz zaman isteyen bir işledir bu. Kant’ın yapıtının önemli yönlerinden birincisi maddesel evreni bir bütün, Samanayoluyla Nebula’nın da bu bütünün birimleri olarak düşünen görüş; ikincisi de uzaydaki hemen hemen anlaşılmaz bir madde dağılmasından doğan aşamalaı gelişim fikridir. Bu, birden yaratılma düşüncesi yerine evrimi koyan ilk adaımdır, böyle bir görüşün Dünya’yla değil de göklerle ilgili bir kuramla ortaya çıkmış olması da ilgi çekicidir. Türlü nedenlerden dolayı Kant’ın yapıtına ilgi azdı. (B.Russel, Din ile Bilim s: 35-39) Kitap yayımlandığı zaman Kant otuz bir yaşındaydı., büyük bir üne ulaşmış değildi daha. Bir matematikçi ya da fizikçi değil, filozoftu; kendi başına olan bir sistemin, durup dururken bir dönme kazanacağını tasarlaması, dinamik konusundaki yetersizliğini gösterir. Ayrıca, kuramı yer yer katıksız bir düştü; örneğin bir gezegen Güneşten ne denli uzaksa içinde yaşayanlar da o denli daha üstündür diye düşünüyordu; bu görüş insan soyu konusunda gösterdiği alçakgönülüllükle birlikte, bilimsel dayanaklardan yoksundur. Bu nedenlerden dolayı Laplace aynı konuda daha yetkili bir kuram ortaya koyuncaya dek Kant’ın yapıtı hemen hemen göze çarpmamıştır bile. Laplace’ın ünlü varsayımı ilk olarak, 1796'da Dünya Sisteminin Açıklaması adlı kitabın yayımlanmasıyla ortaya çıktı; Laplace, söylediklerinin çoğunun daha önce Kant tarafından söylenmiş oluduğunu bilmiyordu bile. Söylediğinin bir varsayımdan başka hiçbir şey olmadığına inanıyor; bunu “gözlem ya da hesap sonucu olmayan herşeydeki güvensizlik” diyen bir notla belirtiyordu; ama şimdi değişmiş olan bu varsalyım o zaman bütün bir yüzyıl boyunca düşünce alanına egemen oldu. Laplace’a göre Güneş sistemi ile gezeneler sistemi bu zamanlar çok geniş bir nebulaydı; bu nebula yavaş yavaş büzüldü. Büzülünce de daha hızlı dönmeye başladı; merkeçkaç gücü ile koparak uçan topraklar gezegen oldular; aynı işlemin tekrarlanmasıyla gezegenlerin uyduları ortaya çıktı. Laplace, Fransız Devrimi çağında yaşadığı için tam bir özgür düşünürdü. Yaratılışı bütünüyle yadsıyordu. Göklü bir hükümdara beslenen inancın yeryüzü hükümdarlarına da saygı uyandıracağına inanan Napoleon, Laplace’ın büyük yapıtı Celestial Mechanics ’de Tanrı adının neden hiç anılmadığını sorunca, büyük gökbilimci, “Efendimiz, o varsayımla işim yok benim ” diye karşılık vermişti. Tanrıbilimciler diş biliyorlardı tabii; ama Laplace’a olan öfkeleri, tanrıtanımazlık akımı ile devrim Fransa’sının türlü azgınlıkları karşısında duydukları korku yanında hiç kalıyordu. Hem o güne dek gökbilimcilere açtıkları her savaş boşuna çaba olmuştu. Yerbilimsel görüşün gelişmesi, bir bakima gökbilimdekinin tam tersi oldu. Gökbilimde göksel cizsimlerin degişmezi oldugu kanisi, yerini göksel cisimlerin aşamali bir gelişim geçirdiklerini söyleyen kurama birakti; ama yerbilimde, hizli, karmakarişik degişikliklerin geçirilmiş oldugu eski bir dönemin varligina inanilirken, bilim ilerledikçe, degişikliklerin her zaman için, uzun bir süreyi gerektirdikleri inanci yerleşti. Oysa daha önce, bütün dünya tarihini alti bin yila sigdirmak gerekiyordu. Tortul kayalardan, lav birikintilerinden elde edilen kanitlar incelenirken, bunlarin ilgili bulundugu felaketlerin eskiden çok yaygin olduklari tasarlaniyordu, çünkü sinirli bir zaman içinde olup bitmişti hepsi. Bilimsel gelişme yönünden yerbilimin gökbilimden ne denli geri kaldigi,Newton zamanindaki durumundan anlaşilabilir. 1695'te Woodward “yer kabugundaki bütün kalinti katmanlari birkaç ay içinde birikmiştir” diyordu. On dört yil önce (1681'de) sonralari Charterhouse’a başkanlik etmiş olan Thomas Burnet, Yer’in Aslini Şimdiye Dek Geçirmiş Oldugu ya da Her şey Bütünleniceye Dek Geçirecegi Degişiklikleri Açiklayan Kutsal Yer Kurami adili kitabini yayimlamişti. Büyük Sel’den önce Güneş yörengesi düzleminde bulunan Ekvator’un, selden sonra şimdiki egik duruma geldigine inaniyordu (Bu degişikligin Düşüş sirasinda oldugunu düşünen Milton’un görüşü tanribilimsel yönden daha dogrudur) Burnet’in düşüncesine göre, güneşin isisiyla yerkabugu çatlamiş, yeraltindaki sularin bu yariklardan fişkirmasiyla sel olmuştur. Ikinci bir felaketin, büyük selden bin yil sonra görüldügüne inaniyordu. Görüşlerini incelerken yine de dikkatli olmak gerekir, örnegin tanrisal cezaya inanmiyordu. Daha da kötsü, Düşüşü’ün ders alinacak bir öyküden başka bir şey olmadigin söylüyordu. Encylpaedia Britannicca’dan ögrendigimize göre, bu ininçlarindan dolayi “kral onu saray rahipliginden uzaklaştirmak zorunda kalmiştir”. Whiston 1696'da yayimladigi kitabinda Burnet’in Ekvator’la ilgili yanliş görüşüyle öbür yanlişlarindan kaçinmaya çalişmiştir. Bu kitabin yazilmasinda bir bakima 1680 kuyrukluyildizinin payi olmuştur; bu belki de Whiston’a, Büyük Sel’in de bir kuyruklu yildizdan ileri gelmiş olabilecegini düşündürmüştür. Bir noktada, Kutsal Kitap ’a bagliligin derecesi tartişma götürür; yaratiliştaki alti günün bildigimiz günlerden daha uzun olduklarini düşünüyordu. Woodward, Burnet ve Whiston’un, çağlarının öbür yerbilimcilerinden daha aşağı oldukları sanılmamalıdır. Tam tersine zamanlarını en iyi yerbilimcileriydiler; Whiston, Locke’un çok büyük övgülerine konu oluşturmuştur. 18. yy’da, hemen hemen her şeyin sudan geldigini söyleyen Neptün’cü okulla, her şeyi yanardaglarla depremlere baglayan Volakanci okul arasinda uzun bir çatişma görülür. Birinciler durmadan Büyük Sel’in kanitlarini topluyorlar, daglarin yüksek kesimlerinde bulunan taşil (fosil) kalintilara büyük bir önem yüklüyorlardi. Dinsel görüşe daha çok bagliydilar, bundan dolayi bu görüşün düşmanlari, bulununa taşillarin gerçek hayvan kalinilari olamayacagini söylemeye kalkiştilar. Voltaire aşiri şüpheyle davrandi bu konuda; bu taşillarin gerçekten yaşamiş hayvanlardan kalma olduklarını yadsımayacak duruma gelince, bunların dağlardan yolu geçen hacılarca atılmış, düşürülmüş olduklarını ileri sürdü. Bu örenkte, dogmatik özgür düşünce, bilime aykırılıkla dinsel düşünceden daha baskın çıkmıştır. Büyük doğacı Buffon, 1749'da yayımladığı Doğal Tarih adıl kitabında, Paris’teki Sorbonne Tanrıbilim Fakültesinin “Kilise öğretisine aykırı” olmakla suçlandırdığoı on dört önerme ileri sürdü. Bu önermelerden biri, yerbilimle ilgili olarak: “ Şimdi yeryüzünde bulunan dağlar, vadiler ikincil nedenlerden doğmuştur, aynı nedenler zamanla bütün kıtaları, tepeleri, vadileri yok ederek yerlerine yenilerini getireceklerdir” diyordu. Burada “ikincil nedenler” Tanrı’ın yaratıcı emirleri dışında kalan büün öbür nedenler anlamındadır; oysa 1749'da dinsel görüş, dağlarıyla, vadileriyle, denizlerinin, karalarının, dağılışıyla bütün dünyanın, şimdi gördüğümüz biçimde yaratılmış olduğuna inanmayı gerektiriyordu; yalnız bir mucize ile değişikliğe uğramış olan Lut Gölü bunun dışında sayılıyordu. Buffon, Sorbonne ile bir çatışmaya girişmenin iyi olmayacağını düşündü. Sözlerini geri alarak şu itirafı yayımlamak zorunda kaldı: “Kutsal Kitap ’a aykırı şeyler söylemek amacında olmadığımı; Kutsal Kutap’ta yaratışı konusunda söylenenlerin gerçekliğine, belirtilen sürelerin doğruluğuna bütün gücümle inandığımı; kitabımda, yerin oluşumu konusunda bütün söyledilerimden, genel olarak Musa’nın söyledikleriyle çelişebilecek bir şeyden vazgeçtiğimi açıklarım.” Burada açıkça görüldüğü gibi, tanrıbilimcilerin Galilei ile olan çatışmadan aldıkları ders gökbilim sınırları içinde kalmıştı. Yerbilim konusunda modern bir bilimsel görüş ortaya koyan ilk yazar, ilkin 1788'de, sonra daha genişleterek 1795'te yayimladigi Yer Kurami adli kitabi ile Hutton olmuştur.Söyledigine göre, geçmiş çaglarda yer yüzeyinin geçirmiş oldugu degişiklikler bugün de sürüp gitmekte olan nedenlerden ileri gelmişti, bu nedenlerin eski çaglarda şimdikinden daha etkili olduklarini düşünmek yersizdi.Bu, temel bakimdan saglam bir görüşse de, Hutton bu görüşün kimi yönlerini çok geliştirmiş, kimi yönleri üzerinde de geregi ölçüsünde durmamiştir. Deniz dibinde biriken tortulara bakarak, kitalarin ortadan kalkişini aşinmaya bagliyordu; ama yeni kitalarin ortaya çikişini,birden gelmiş büyük degişikliklerle açikliyordu. karalarin birden bire batmasini ya da yavaş bir süreyle yükselmesini, gerektigi ölçüde anlayamamiştir. Ama onun gününden beri bütün yerbilimciler, geçmişteki degişiklikleri yapan etkenlerin bugün kiyilarin yavaş yavaş degişmelerinde, dag yüksekliklerinin artip eksilmesinde, deniz dibinin yükselip alçalmasinda payi olan etkenlerden ayri olmadiklarini söyleyen yöntemi benimsemişlerdir. (B. Russel, Din ile Bilim s:40-43 ) İnsanların bu görüşü daha önce benimsememiş olmaları, yalnızca Musa’cı zaman bilgisi yüzündendir. Oluş’a bağlı kimseler, Hutton ile öğrencisi Playfair’e çok ağır saldırılarda bulunmuşlardır.Lyell “Din tutkusu Hutton öğretilerine karşı coşmuştu, bu çatışmada başvurulan hileler, aşırılıklar inanılacak gibi değildir, İngilliz halkının düşüncelerinin o zamanlar nasıl ateşli bir heyecanla kamçılandığını anımsayamayan okur bütün bunları anlayamaz.” diyor. “Fransa’da birtakım yazarlar yıllardır bütün güçleriyle Hıristiyan inancının temellerini çökertmeye çalışıyorlardı; bir yandan bu yazarların başarıları, bir yandan da Devrim’in sonuçları, en gözüpek kafaları uyandırmıştı; ama daha yüreksiz olanların kafalarında yenilik korkusu, korkunç bir düş gibi sürüp gidiyordu.” 1795 İngiltere’sinde hemen hemen bütün zenginler Kutsal Kutap’a karşıt her öğretiyi mallarına yönelmiş bir saldırı, bir giyotin tehditi olarak görüyorlardı. İngiliz düşüncesi yıllarca, Devrim’den önceki özgürlüğünden bile yoksun kaldı. Taşillarin soyu tükenmiş canlilara, yaşam biçimlerine birer kanit olduklari düşünülerek yerbilimin daha sonraki gelişimi biyolojininki ile karişti.Dünyanin ilkçaglari söz konusu olunca, yerbilim il e tanribilim alti “gün”ün alti “çag” sayilmasi gerektigini söyleyerek uzlaşiyorlardi. Ama canlilar konusunda tanribilimin ileri sürdügü bir sürü kesinlemeyi, bilimle uzlaştirmak gitgide daha güç bir iş oldu. Düşüş zamanina dek hayvanlardan hiçbiri öbürünü yememişti; şimdi varolan hayvanlar Nuh’un gemisine alinan hayvanlarin soyundandirlar(Dip not: Bu düşüncenin de güçlükleri yok degildi. St Augustine tanri’nin sinekleri yaratmasindaki nedeni bilmedigini söylmek zorunda kalmişti. Luther daha da ileri giderek, sineklerin, iyi kitaplar yazarken kendisini rahatsiz etsinler diye Şeytan tarafindan yaratildiklarini söylemiştir. Bu ikinci düşünce daha degerlidir kuşkusuz), şimdi soyu tükenmiş olanlar ise selde bogulmuşlardir. Yaratilan türler hiçbir degişiklige ugrayamazlardi; herbiri ayri bir yaratma eyleminin sonucuydu. Bu önermelerin herhangibiriyle ilgili bir soru sormak, tanribilimcileri öfkelendirmek demekti. Güçlükler Yeni Dünya’nın bulunmasıylla başlamıştı. Amerika, Ağrı Dağından çok uzakta bir ülkeydi; ama yine de aradaki ülkelerin hiçbirinde görülmeyen birçok hayvan yaşıyordu orada. Bu hayvanlar bunca uzak yoldan nasıl gelmişlerdi, üstelik, türlerinden bir tekini bile yolda bırakmamışlardı. Kimileri onları denizcilerin getirmiş olduklarını düşündüler ama kendisini Kızılderilileri dine sokmaya adayan, sonra kendi inancını da güç kurtarabilen sofu Jesuit Joseph Acosta böyle bir varsayımı şaşkınlıkla karşılamıştı. Kızılderililerin Doğal ve Töresel Tarihi (1590) adlı yapıtında bu sorunu çok olumlu bir biçimde tartışır der ki: “ İnsanların bunca uzak bir yolculukta, Peru’ya tilkiler götürmek için başlarını derde sokmuş olduklarını kim düşünüebilir, hele şimdiye dek gördüklerimin en pisi olan o ‘Acias’ türünü? Kaplanlar ya da aslanlar götürmüş olduklarını kim söyleyebilir? Böyle düşünenlere gülünse yeridir doğrusu. Bir fırtınayla ellerinde olmaksızın, bunca uzun, bilinmez bir yolculuğa sürüklenmiş olan insanlar kendi canlarının derdine düşmüşlerdir herhalde, yoksa başlarına gelenler yetmiyormuş gibi kurtlar, tilkiler götürmeye kalkışıp iki taşın arasında, bir de onları beslemekle uğraşmamışlardır. Bunun üzerine tanrıbilimciler pis Acias’la benzeri hayvanların Güneş etkisiyle kendiliklerinden, bataklıklardan türemiş olduklarına inandılar; ne yazık ki Nuh’un gemisinde bununla ilgili hiçbir ipucu yoktu. Ama başka çıkar yol da yoktu. Örneğin, adlarının da belirtildiği gibi, yerlerinden zor kımıldayan Sloth’lar (Sloth, Amerika’da yaşayan, ağır ağır yürür, ağaçlara tırmanır hayvanlar, Bu sözcük ayrıca tembellik anlamına da gelir.) nasıl Ağrı Dağı’ndan yola çıkıp hep birlikte Amerika’ya ulaşmış olabilirler? Başka bir güçlük de hayvanbilimin gelişmesiyle elde edilen, hayvan türlerinin sayisindan dogdu. Şimdi bu sayi iki imilyonu bulmuştu, her türden iki hayvanin gemiye alindigi göz önünde tutulunca, geminin biraz fazlaca kalabalik olabilecegi düşünüldü. Hem, Adem hepsine ayri ayri ad takmişti; bunca çok sayida hayvani adlandirmak yaşamin tam başlangicinda biraz agir bir iş olurdu. Avusturalya’nin bulunmasi yeni güçlükler çikardi. Neden bütün kangurular Torres Bozagi’ndan atlamişlar, geride bir çift bile kalmamişti? Biyoloji alanindaki gelişmeler yüzünden, Güneş’in etkisiyle batakliklardan bir çift kangurunun türemiş oldugunu düşünmek de pek güçtü artik; ama böyle bir kuram her zamankinden daha gerekliydi. Bu türden güçlükler, bütün 19. yy boyunca din adamlarının kafalarını oyaladı durdu. Örneğin, Tanrı’nın Zorunlu Varlığı ’nın yazarı William Gillespie’nin Hugh Miller ve Başkalarından Verilmiş Örneklerle Yerbilimcilerin Tanrıbilimi adlı kitapçığı okuyunuz Bir İskoç tanrıbilimcisinin yazdığı bu kitap 1859'da Darwin’in Türlerin Kökeni ile aynı yılda çıktı. Yerbilimcilerin korkunç önermeleri üzerinde durur, onyların “düşünülmesi bile korkunç günahların öncüleri” olduklarını söyler. Yazarın üzerinde durduğu ana sorun, Hugh Miller’in Kayaların Tanıklığı adlı kitabında ileri sürdüğü “insan ilk günahı işleyip acı çekmeye başlamadan önce de hayvanlar arasında şimdiki savaş vardı” düşüncesidir. Hugh Miller, insanın yaratılışından önce yaşayıp soyları tükenmiş hayvan türlerini birbirlerine karşı başvurdukları ölüm, işkence yollarını bütün korkulu yanlarıyla, canlı bir biçimde anlatır. Dine bağlı bir kimse olduğu için tanrı’nın günahsız yaratıklara neden böyle acı çektirdiğini bir türlü anlayamıyordu. Mr. Gillespie, kanıtlara gözlerini kapayarak, küçük hayvanların insanın ilk günahından dolayı acı çektiklerini, yine bundan dolayı öldüklerini söyleyen dinsel görüşü körükörüne savunuyor; Kutsal Kitap’tan aldığı “insanla geldi ölüm” sözleriyle, Adem’in elmayı yediği zamana değin hiçbir hayvanın ölmemiş olduğunu tanıtlamaya kalkışıyordu(Dip not: Bütün eski öğretilerin ortak görüşüydü bu. tıpkı bunun gibi Wesley, Düşüş’ten önce “Örümcek de sinek gibi dokuncasızdı, kan için pusuda beklemiyordu” der). Hugh Miller’in, soyu tükenmiş hayvanların boğuşmaları konusunda söylediklerini göstererek, İyiliksever bir Yaratıcı böyle canavarlar yaratmış olamaz diyordu. Bütün bunlara peki diyelim Ama daha aşırı düşünceleri pek gariptir. Herhalde yerbilimin kanıtlarını yadsımaya yeltenmiş, ama yiğitliği daha baskın çıkmıştır. Belki de vardı böyle canavarlar, ama onlar doğrudan doğruya Tanrı eliyle yaratılmamışlardır, diyordu. Başlangıçta iyi yaratıklardı, sonradan şeytan ayarttı onları; ya da belki Gadarene domuzu gibi, cinleri barındıran hayvan gövdeleriydi bunlar. Tevrat’ın, birçokları için sürçme-taşı olan Gadarene domuzu öyküsüne neden yer verdiği anlaşılır burda. Biyoloji alanında, dinsel görüşü kurtarmak için, Edmund Gosse’un babası, doğa bilgini Gosse garip bir yelteni gösterdi.Dünyanın eskiliği konusunda yerbilimcilerin ileri sürmüş oldukları bütün kanıtları kabul etti; ama Yaratılış sırasında herşeyin eskiymiş gibi yapılmış olduğunu ileri sürdü. Kuramının gerçek olmadığını tanıtlayacak, mantığa uygun bir yol yoktur. Tanrıbilimciler, Adem’le Havva’nın tıpkı doğumla dünyaya gelen insanlar gibi göbekleri olduğunu söylüyorlardı.(Belki de Gosse kitabına Omphalos adını bunun için vermiştir) Bunun gibi, öbür yaratılanla da eski bir biçimde yaratılmışlardı belki.Kayalar taşıl kanıtlarla doldurulmuş volkanların ya da tortul birikmelerin etkisine uğramış gibi yapılmış olabilirlerdi. Ama böyle olanaklar bir kez benimsendi mi, dünya şu zaman ya da bu zaman yaratılmıştır diye tartışmanın hiçbir anlamı kalmaz. Hepimiz anılarla, çoraplarımızda delikler, saçımız sakalımız uzamış bir halde bir halde beş dakika önce dünyaya gelmiş olabiliriz. Mantıkça olağan bu duruma, kimse inanamazdı; Gosse umduğunun tam tersine , din ile bilim arasında yaptığı, mantık yönünden eşsiz uzlaştırmaya, hiçmkmisenin inanmadığını gördü. Onun oüşüncelerini tanımayan tanrıbilimciler, daha önceki öfkelerinin çoğunu bırakıp azıyla durumlarını kurtarmaya çalıştılar. Bitkilerle hayvanların üreme, değişme yoluyla uzun süreli bir evrim geçirdiklerini söyleyen öğreti biyolojiye yerbilimden geldi daha çok; bu kuram üçe ayrılabilir..İlk gerçek,-ancak, uzak çağlarla ilgili bir gerçekten umulabilecek kesinlikte bir gerçek bu- küçük canlıların daha eski oldukları, daha karmaşık bir bir yapı taşıyan canlıların ise gelişmenin sonlarına doğru ortaya çıktıklarıdır. İkincisi, daha sonraki, çok daha üstün yapılı canlılar kendiliklerinden ortaya çıkmamışlar, bir değişmeler dizisinden geçerek daha önceki canlılardan türemişlerdir; biyolojide “evrim” ile söylenmek istenen budur. Üçüncüsü, bütünlükten uzak olkala birlikte, evrimin işleyişini, örneğin değişmenin belli canlıların yaşayıp öbürlerinin silinip gitmlerinin nedenlerini araştıran bir çalışma vardır. İşleyşişkonusunda daha birçok karanlık noktalar bulunmakla birlikte, evrim öğretisi bugün bütün evrence benimsenmiştir. Darwin’in başlıca tarihsel evrimi daha olağan gösteren bir işleyiş- doğal seçim- ileri sürmüş olmasıdır; ama ileri sürdüğü, kendisinden hemen sonra gelenlerce kolay benimsenmişse de, yirminci yüzyılın bilim adamlarına göre pek yetersizdir. Evrim öğrtisine önem veren ilk biyoloji bilgini Lamarck (1744-1829) oldu. Öğretileri kabul edilmedi, çünkü türlerin değişmezliği konusundaki önyargı geçerlikteydi daha, üstelik ileri sürdüğü değişim süreci de bilimsel kafaların benimseyebileceği gibi değildi. Bir hayvanın gövdesinde beliren yeni bir organın, duyulan yeni bir istekten ileri geldiğine inanıyor, tek örnekte görülen bu yeniliğin, sonra bütün soya geçtiğini düşünüyordu. İkinci varsayım olmadan, birincisi evrim için pek yetersiz bir açıklamaydı Birinci varsayımın, yeni türlerin gelişiminde önemli bir öğe olmayacağını söyleyen Darwin, kendi issteminde pek geniş bir yer tutmamasına karşın, ikinciyi benimsiyordu. Tek örneklerde ortaya çıkan değişikliklerin bütün bir soya geçktiğini söyleyen ikinci varsayıma Weissmann bütün gücüyle karşı koydu, bu çekişme bugün bile sürüp gitmektedir, ama elde edilen kanıtlar bir kaç ayırıcı durum dışında, soya geçen bütün yeni özeliklerin yumurta hücdresiyle ilgili değişiklikler olduğunu göstermektedir. Bu bakımdan Lamarck’ın evrimi işleyişi konusunda söyledikleri kabul edilemez. Lyell’in yeryuvarlağı ile yaşamın eskiliğini sağlam kanıtlarla savunan Yerbilimin (Jeolojinin) İlkeleri adlı kitabı 1839'da ilk baıldığı zaman dine bağlı kimseler arasında büyük bir yaygarayla karşılandı, oysa kitabın ilk basıkıılarında canlıların evrimi varbsayımını savunan çok şey yoktu. Lamarck’ın kuramlarını titizlikle eleştiriyor, bilimsel kanıtlara dayanarak çürütyordu. Darwin’in Türlerin Kökeni (1859) çıkışından sonra yaptığı yeni baskılarda ise evrim kuramını savunuyordu. Darwin’in kuramı, laisser-faire ekonomi düzeniyle işleyen bitki hayvan dünyasını da kavramaktaydı, Malthus nüfus kuramı da Darwin kuramına dayanıyordu. Bütün canlıların büyük bir hızla yayılmalarından dolayı, her kuşağın büyük çoğunluğunun daha çoğalma çağına varmadan ölmesi gerekmektedir. Dişi bir morina balığı yılda 9 milyon yumurta yumurtlar. Bu yumurtaların hepsinden yeni morina balıkları çıksa, birkaç yıla varmaz bütün deniz silme morinayla dolar, karalar yeni bir sele uğrardı. Fillerden başka, öbür hayvanların hepsinden daha yavaş artan insan topluluklarının da her yirmi beş yıl içinde iki kat olduklarıbilinmektedir. Bütün dünyadaki insanlar bu hızla çoğalsalar, önümüzdeki iki yüz yıl içinde insan sayısı beşyüzbin milyonu bulur. Oysa, hayvan-bitki topluluklarının gerçekte, bir kural gereği sayıca hep aynı düzeyde kaldıklarını görüyoruz; birçok dönemlerde insan toplulukları için de durum aynı olmuştur. Buradan çıkan sonuca göre bir türün, kendilerine üstünlük sağlayan bir yanlarıyla öbürlerinden ayrılan kimi üyelerinin, süreklilikleri daha olağandır. Ayrılan özellik sonradan kazanılma ise arkadan gelen kuşaklara geçmez ama doğuştansa yeni kuşaklarda, küçük bir oran da olsa bile izler bırakabilir.Lamarck zürafanın boyunun yüksek dallara ulaşabilme çabasından dolayı uzadığını, bu çabanın sonucunun da soydan soya geçtiğini düşünüyordu; Weismann’ın yaptığı değişikliklerle Darwinci görüş, zürafaların, uzun boyunluluğa doğuştan bir eğilim taşıdıklarını, böylece açlıktan ölebilme sakıncasından kurtulduklarını, bundan dolayı kendilerinden sonraya da yine uzun boyunlu, daha çok sayıda zürafa bıraktıklarını, kimilerini anne babalarından da daha uszun boyunlu olduklarını söylüyordu. Böylece zürafanın bu özelliği, daha çok uzamanın hiçbir yarar sağlamayacağı zamanına dek gitgide gelişecekti. Darwinin kuramı, nedenelri bilinmeyen tek tük değişikliklerin görülmesine dayanıyordu.Ele alınan herhangi bir çiftin bütün çocuklarının aynı olmadıkları bir gerçekti. Evcil hayvanlar yapay seçmeler sonucunda büyük bir değişikliğe uğruyorlardı: İnsanın aracılığı ile inekler daha çok süt vermeye başlıyor, yarış atları daha hızlı koşuyorlar, koyunlar daha çok yün veriyorlardı. Böyle olgular, seçmenin ne sonuçlar doğurabileceği konusunda Darwin’e en açık kanıtları sağlıyorlardı. Yetiştiricilerin bir balığı keseli bir hayvana, keseli bir hayvanı bir maymuna dönüştüremeyecekleri açıktır; ama bu gibi büyük değişikliklerin, yerbilimcilerin söylediği sayısız çağlar sonucunda ortaya çıkmaları olağan bir şeydir. Hem birçok durumlarda ataların ortaklığına kanıtlar da vardır.Taşıllar, geçmiş çağlarda şimdi çok yaygın olan türlerin karışımı hayvanların yaşadıklarını gösteriyorlar; Pterodaktil, örneğin, yarı kuş yarı sürüngendi. Döllenme konusunda çalışan bilginler, gelişme evreleri sırasında, kimi olgunlaşmamış hayvanlarda daha önceki biçimlerin yeniden ortaya çıktıklarını göstermişlerdir; belli bir dönemde bir memelide, iyice gelişmemiş balık solungaçları göze çarpar; bunlar bütünüyle yarasızdırlar, ancak soyla ilgili tarihsel değişikliklerin başlıca etkenlerinin evrim ile doğal seçme olduğunu göstermek için, türlü yollardan kanıtlar ileri sürüldü. Darwincilik, tanrıbilime Copernicus’culuktan geri kalmayan bir tokat oldu. Yalnızca Oluş’ta ileri sürülen ayrı ayrı yaratma eylemlerini, türlerin değişmezliklerini çürütmekle; yaşamın başlangıcından beri, dinsel görüşe taban tabana karşıt, usa sığmaz bir sürenin geçmiş olduğunu söylemekle; Tanrı’nın iyilikseverliği ile açıklanan, canlıların çevreye uyumunu, doğal seçmeye bağlamakla kalmıyor; hepsinden kötüsü, evrimciler insanın daha aşağı hayvan soylarından türediğini savunuyorlardı. Tanrıbilimcilerle öğrenimsiz kimseler, gerçekte kuramın bu noktasına takılıyorlardı. “Darwin insanın maymun soyundan geldiğini söylüyor!” diye bir yaygara koptu dünyada. Bir ara, kendisinin maymuna benzerliğinden dolayı böyle bir şeye inandığı söylendi( oysa benzemiyordu). Çocukken, öğretmenlerimden biri büyük bir ciddiyetle şu sözleri söylemişti bana: “Darwinci olursan acırım sana, bir kimse hem Darwinci hem Hıristiyan olamaz ” Bugün bile Tennessee’de evrim öğretisini yaymak yasalara aykırıdır, çünkü bu öğreti Tanrı Sözü’ne karşıt sayılmaktadır. Her zaman olduğu gibi tanrıbilimciler, yeni öğretinin doğuracağı sonuçları, bu öğretiyi savunanlardan daha çabuk kavradılar, ileri sürülen kanıtlara inanmakla birlikte dine bağlılıkla dirediler, önceki inançlarını ellerinden geldiğince korumaya çabaladılar.Özellikle 19. yy’da yeni öğreti, savunucularının düşüncesizliğinden dolayı büyük bir hız gösterdi, bu yüzden, daha ağır bir değişikliğe alışılmadan arkadan öbürü bastırdı.Bir yeniliğin bütün sonuçları bir arada ileri sürülürse, alışkanlıkların tepkisi öyle büyük olur ki bu tepkiyle yeniliğin bütünü birden terslenir; oysa her on ya da yirmi yılda bir atılacak yeni adımlarla, gelişme yolu boyunca büyük bir direnmeyle karşılaştırılmadan, alışkanlıklar yavaş yavaş uyutabilirdi. 19. yy’ın büyük adamları gerekliği sugötürmez bir devrimi başarıya ulaştırmak istiyorlardı ama kafaları ya da politikaları yönünden devrimci görünmüyorlardı Yenilikçilerin bu yolda davranışları 19. yy’ın önemli bir gelişme çağı olmasına yardım etti. Tanrıbilimciler yine de neyin olup bittiğini halktan daha iyi biliyorlardı. İnsanların ruhlarının ölümsüz olduğunu, maymunlarda ise böyle bir özelliğin bulunmadığını;İsa’nın maymunları değil insanları kurtarmak için öldüğünü; insanlarda tanrıca bir iyiyi kötüyü ayırt etme duygusu varken, maymunların yalnızca içgüdülerle hareket ettiklerini söylemeye başladılar.İnsanlar kavranamayacak ölçüde uzun süreli bir değişme sonunda maymundan türedilerse, tanrıbilimce önemli olan bu özellikleri ne zaman kazandılar ansızın? 1860'ta, Türlerin Kökeni ’nin yayımlanmasından bir yıl sonra, Bishop Wilberforce Darwinciliğe karşı gürleyerek bayrak açtı: “Bu doğal seçme ilkesi bütünüyle Tanrı Sözü’ne aykırıdır” Ama bütün parlak sözler bir işe yaramadı, Darwin’i başarıyla savunan Huxley bu sözleri herkesin anlayabileceği biçimde çürüttü. Artık kilisenin kızgınlığına kimse aldırmıyşordu., Chichester başpapazı bir ünversite vaazında: “İlk anne-babamızın yaratılış tarihini, anlamındaki bütün açıklığa karşın kabul etmeyip, yerine şu modern evrim düşünü koymak isteyenler isnoğlunun kurtuluşu konusundaki bütün düşünceleri çökertmlektedirler diyerek Oxford’u uyarmaya çalıştı; öte yandan Kutsal Kitap’ın öğretisine bağlı olmamakla birlikte dinsel görüşü destekleyen Carlyle, Darwin için “kirli bir dinin peygamberi” dedi, ama bunların hepsi etkisiz kaldı, hayvan-bitki türlerinin evrimi kısa zamanda biyoloji bilginlerinin de benimsedikleri bir öğreti oldu. Bilim çevreleri dışındaki laik Hıristiyanların tutumuna, Gladstone’un davranışı iyi bir örnektir. Bu özgür önder bütün çabalarına karşın, çağının özgür bir çağ olmasını önleyemedi.1864'te tanrısal adalete inanmadıklarından dolayı cezalandırılmaları istenen iki din adamıyla ilgili karar, Kral’ın Danışma Kurulu’nun yargıçları tarafından bozulunca, Gladstone öfkelenerek, böyle olursa “Hıristiyanlığa inanmak ya da inanmamak konusunda büyük bir umursamazlık”çıkar ortaya demişti. Darwin’in kuramı ilk basıldığında, yöneticiliğe alışmış bir kimsenin halden anlarlığıyla: “ ... evrim diye adlandırılan gerçek ile, Tanrı’nın yaratma işine son verilmiş; dünyayı değişmez yasalar uyarınca yönetmekten uzaklaştırılmıştır” demişti. Ama Darwin’e özel bir kızgınlığı yoktu. Yavaş yavaş tutumunu değiştirdi, 1877'de Darwin’le görüşmeye bile gitti, bütün görüşme sırasında da durmadan Bulgar zulmünden söz etti Ayrıldığında Darwin büyük bir saflıkla : “ Böyle büyük bir adamın beni görmeye gelmesi ne onur!” diyordu. Gladstone’da Darwin’le ilgili izlenim kalıp kalmadığı konusunda ise tarih bir şey söylemiyor. Günümüzde din, evrim öğretisine göre kendisine çekidüzen vermiş, yeni yeni düşünceler bile sürmüştür ortaya. “Çağlar içinden akıp gelen, büyüyen bir amaç vardır.” Evrim de Tanrı’nın kafasındaki bir düşüncenin çağlar boyunca açılmasıdır. Bütün bunlardan, Hugh Miller’i uzun uzun uğraştıran, hayvanların, birbirlerine korkunç boynuzlarla, can alıcı iğnelerle işkence ettikleri o çağlarda her şeye yeterli tanrının elini kolunu bağlayıp daha da çetin işkence yollarıyla gitgide daha artan zorbalığıyla, eninde sonunda insanoğlunun ortaya çıkmasını beklediği anlaşılıyordu. Büyük Yaratıcı, neden böyle birtakım işlemlere başvurdu da doğrudan doğruya gerçekleştirmedi isteğini, bunu söylemiyorlar modern tanrıbilimciler. Bu konudaki şüphelerimizi giderecek çok şey de söylemiyorlar. Alfabeyi öğrendikten sonra, elde ettiği şeyin bunca emeğe değmediğini düşünen bir çocuk gibi duyuyoruz kendimizi ister istemez. Ama bu bir beeni sorunudur ne de olsa. Evrim üzerine kurulmuş herhangi bir tanribilim ögretisine yöneltilebilecek daha agir bir itiraz vardir. Bin sekiz yüz altmiş, yetmiş siralarinda, evrimin geçen moda oldugu siralarda, gelişim, dünyanin bir yasasi sayiliyordu. Her yil daha zengin olmuyor muyduk, azalan vergilere karşin bütçemiz gitgide kabarmiyor muydu? Bizim kurdugumuz düzen dünyaya parmak isirtan bir düzen, parlamentomuz bütün yabanci aydinlarin öykündügü bir örnek degil miydi? Gelişimin hep böyle sürüp gideceginden şüphe den var miydi? Böyle bir dünyada evrim, günlük yaşamin bir genellemesinden başka bir şey degildi sanki. Ama zaman bile daha düşünceli olanlar, öbür yani görebiliyordu. Gelişim saglayan yasalar çöküşü de hazirlar. Bir gün Güneş soguyacak, yeryüzünde yaşam sona erecektir. Bütün bu hayvanlar, bitkiler tarihi, çok sicak çaglarla çok soguk çaglar arasinda bir geçiş dönemi olacaktir. Evrensel gelişim yasasi olmayacak, yalniz enerji dagilimi yüzünden dünyada hafifçe aşagiya egimli, yukari aşagi bir salinma görüleceketir. Bugünkü bilimin çok olagan saydigi, bizim umutlari kirilmiş kuşagimizin da kolayca inanacagi bir sondur bu. Şimdiki bilgimizle kavrayabildigimiz ölçüde evrimden, iyimser sonuçlara baglayabilecegimiz bir felsefe çikarilamaz. (B. Russel, Din ile Bilim s: 44-53) “1953'te, AmerikalıJ ames Watson ve İngiliz Francis Crick tarafından DNA’nın ikili sarmal yapısına, ardından, 60'lı yıllarda, genetik kodlama mekanizmasına ilişkin olağanüstü keşiflerden sonra, moleküler biyoloji yerinde saymıştı. Vaatlerini tutar gibi görünmüyordu. Öyle ki bakterilerin genomu (genetik programın bütünü) üzerindeki çalışmalardan hayvana ve a fortiori insana gidecek olan yol, geçit vermez görünüyordu. Bakteri genomonon işlevi hakkında çok şey bilinyordu; ama gelişmiş hayvanların DNA’sı ile çalışılmaya geçildiğinde bir bilmece silsilesiyle karşılaşıylıyordu. Genetiğin pratik uygulamalarının belirsiz bir geleceğe itelenmiş olmasından kaygı duyulabilirdi. Derken 70'lı yıllarda, Amerikalı araştırmacılardan oluşan küçük bir ekipten, hayvan ya da insan geninin bir bakteri aracılığıyla yeniden üretimine olanak sağlayan bir bilim kurgu tekniği çıkageldi. Bir geni ya da insan genomunun bir kısmını parçalara ayırıp sonra da bunu bir bakterini içine yerleştirmek mümkün oluyordu. Bakteri, birkaç saatte, içine yerleştirilmiş genin kopyasıyla birlikte, milyarlarca örnek halinde çoğalıyordu (bu işlem, genlerin klonajı diye adlandırılır). Ve bu milyarlarca bakteriden yola çıkarak, bir okadar sayıdaki gen saf halre eldeediliyordu. Araştirmacilar daha da iyisini başardilar: bir insan genini bir bakteri içinde klonlamayi başardiklari andan itibaren, o genin bakterinin içinde faaileyt göstermesini sagladilar, yani sonuçta, bakteriye, genin kodladigi proteini büyük miktarlarda üretebildiler. Aslinda, bakterideki bir genin açiga çikarilmasi çok özel koşullar gerektirir ve genellikle işlem çok hassastir. Böylece, istenen genlerin ve iyi belirlenmiş genom parçalarinin tükenmez mitarlarina ulaşilmasi, genetik araştirmasinda yepyeni ufuklar açiyordu. Ve tip alaninda dogrudan DNA üzerinde çalişilabilecegi düşüncesi dogmaya başliyordu. Bugün moleküler biyoloji diye kutsanana terim, sözü uzatmaktan başka bir terim degildir. Eger biyoloji moleküler degilse, o zaman başkaca nasil bir biyoloji olabilecegini sormak gerekir. Ama bu her zaman böyle degildi. 1940'li yillarda DNA molekülü keşfedildiginde, bazilari , başlangiçta, hiçbir işe yaramayan kimyasal bir maddenin söz konusu oldugunu düşündü! 1978'de Jean Dausset’in laboratuvari, DNA konusundaki çalişmaya henüz bütünüyle yabanciydi... Genetik etkenler (DNA’nın taşıdığı bilgiler), tıpkı otuz yıl önce Jean Dausset’nin yaptığı gibi hücreler, daha doğrusu hücre yüzeyleri incelenerek, hep dolaylı bir biçimde çözümlenirdi. Çok uzun bir süre bir antite olarak kalan genin kendisi üzerinde hiç çalışılmazdı. Yalnız şu da var: hiçbir şey, bir proteini çözümlemektendaha zor değildir. Gen, ince ve uzun bir iplikçikten başka bir şey değilken protein en sık olarak küresel bir biçimle karşımıza çıkar. Aslında, proteinin kendisi de bir iplikçiktir; ama az çok düzensiz bir küre biçimini alacak şekilde kıvrılmış ve yumaklaşmış bir iplikçik. Birbirine çok benzer yapıdaki iki alel (bir bakıma iki kardeş gen) ile kodlanmış iki proteni birbirinden ayırmak, özellikle nankör bir iş demektir. Buna karşilik, genetik dehanin en yeni araçlari yakindan bilindigi anda DNA molekülünü oluşturan kimyasal elementler zincirini okumanin da çok daha kolay oldugu ortaya çikiyordu. Çünkü DNA tipki manyetik bir bant gibi, çizgisel tarzda okunur... Proteinler üzerndeki araştirma, kazanilmiş bir alandi. Üstelik çok önemli bir alan. Birilerinin, bu alana incelemeyi sürdürmesi zorunluydu. Zaten bugün arayştirma teknikleri de daha etkin bir hale gelmişti. Proteinlerin yapi ve işlevlerini çözümlemeye olanak saglayan biyolojik araçlar, hele bir tümüyle yetkinleşsinler, yakin bir gelecekte, genetik işlemlerdeki patlamadan sonra proteinleri kullanma çalişmasindan da benzer bir patlamayla pekala karşilaşilabilirdi. Araştirmanin yollari da tipki yaşaminkiler gibi, çogu zaman gereginden fazla uzundur. DNA’ya duyulan hayranlık, onun olağanüstü bir kolaylıkla çözümlenebilmesinden kaynaklanır. Bir kez tekniklerde ustalaştınız mı, kolayca başarılı olursunuz.Her şeyin kökeni olarak görülen bu tanrısal moleküle dokununca, kendinizi sihirbaz sanırsınız. Gerçekte bu, ölü, haretesiz bir molekül, bir kayıt kütüğüdür. Protein ise tersine, olağanüstü duyarlı ve tepki veren canlı bir maddedir. Toprak ve taş için bitkiler ne ise DNA için de proteinler odur. toprağa temel atıp tuğlaları döşemek, yaşamın bahçesini ekip, bakımını yapmaktan daha kolaydır. (Daniel Cohen, Umudun Genleri, s: 25-29 )

http://www.biyologlar.com/evrim-nedir

Biyoloji Eğitiminde Evrim ve Yaratılışcılık

Biyolojik bilimlerin temeli olan evrim kurami çagimizin belki de en önemli bilimsel devrimlerinden biridir. Yeryüzündeki canli türlerinin ortak bir atadan evrimleserek ortaya çiktigini, yeryüzündeki yasamin ortak bir geçmisi paylastigini öne süren evrim kurami, insanin kendine ve dogaya bakis açisini degistirmistir. Sayet insan bugünkü konumuna evrim sonucu geldiyse evrimin yasalarini ögrenebilir ve kendinin ve diger canli türlerinin evrimini yönlendirebilir (1). Canli türlerinin bir evrim sonucunda olustugu ortaya atilincaya kadar dogadaki tüm canli türlerinin insanligin yarari için varoldugu, insanin da dogadan yararlanmak, dogaya egemen olmak üzere yaratildigi düsüncesi geçerli idi. Evrim kurami ise insani bu özel konumundan indirmis ve insanin diger canli türleri gibi biyolojinin yasalarina tabi oldugunu, doganin bir parçasi oldugunu, diger canli türleri ile ortak bir biyolojik bir geçmisi paylastigini öne sürmüstür. Diger bir deyisle biyologlarin, ekologlarin kuslar, böcekler, baliklar, yosunlar üzerinde çalisarak ortaya koydugu ilkeler insan için de geçerlidir. Evrim kuraminin ortaya attigi görüsler insanin ve diger canli türlerinin ortak bir atadan evrimlestikleri görüsü, yaratilisin kutsal kitaplardaki öyküsü ile çelisir görünümdedir. Bu nedenledir ki canli türlerinin olusumunu bilimsel olarak açiklayan evrim kuramina kutsal kitaplari harfi harfine yorumsuz olarak kabul eden bazi kökten dinci çevrelerce sürekli olarak karsi çikilmistir. Dünyanin evrenin merkezi olmadigi sadece günesin çevresinde dolanan küçük bir gezegen oldugu görüsü de ilk kez ortaya atildigi zaman kutsal kitaplarin anlatimi ile çelistigi için büyük bir direnisle karsilasmisti. Günümüzde Copernicus, Kepler, Galileo'nun günes sistemi konusundaki buluslari artik tartisma konusu degildir. Ancak incili harfi harfine tartisilmaz bir tanri kelami olarak kabul eden kökten dinci hiristiyan gruplar evrime karsi bagnazca savaslarini halen sürdürmektedirler. Evrim karsiti kampanyada merkezleri ABD'de bulunan Yaratilisi Arastirma Enstitüsü (Institution for Creation Research) ve Yaratilisi Arastirma Dernegi (Creation Research Society) adli iki örgüt basi çekmektedir (2, 9). Kökten dinciler daha 1920'lerde ABD'nin bazi eyaletlerinde evrim kuraminin ögretilmesini yasaklayan yasalar çikmasini saglayabilmislerdir. Biyoloji ögretmeni John Scopes 1925 yilinda biyoloji dersinde evrim anlattigi için yargilanmis ve mahkum edilmisti. Bunun sonucu olarak 1960'lara kadar Amerika'nin bazi eyaletlerinde evrim kurami pek deginilmeyen bir konu olarak kalmistir. 1957 yilinda gerçeklesen bir olay Amerikalilarin biyoloji egitiminde evrimi yasaklayan tutumunu degistirmelerine neden olmustur. Sovyetler Birligi ilk kez uzaya bir yapay uydu olan Sputnik'i firlatmistir. Bunun üzerine Amerikalilar teknoloji yarisinda Sovyetler Birliginin gerisinde kaldiklarini farkederek fen egitimini yeniden gözden geçirip fen dersleri müfredatinda köklü degisikliklere gitmeye karar vermislerdir. Fen dersleri müfredati çagdas bilimin gerektirdigi sekilde yeniden düzenlenmis ve biyoloji ders kitaplarinda Darwin'in evrim kuramina da yer verilmistir. Bundan sonra evrim karsiti tüm yasalar Amerika Birlesik Devletleri anayasasinin laiklik ilkesine aykiri bulunarak iptal edilmistir. Bunun üzerine kökten dinciler dinsel inançlari Yaratilis bilimi olarak öne sürmüsler ve okullarda bu sözde bilimin de evrimle birlikte okutulmasi için çalismaya baslamislardir. Bunun sonucu olarak 1981 yilinda Arkansas eyaletinde evrim kuramina karsi görüsleri içeren yaratilis biliminin de evrim kurami ile birlikte ögretilmesi yasalasmistir. Daha sonra bu yasa da Amerika Birlesik Devletleri anayasasinin laiklik ilkesine aykiri bulunarak iptal edilmistir. Mahkeme kararina göre evrim kuramina karsi görüsleri savunan ve dinsel bir inanci temsil eden yaratilisçilik ögretisi bir bilim degildi ve fen bilimleri egitiminde evrim kuramina karsi bilimsel bir alternatif sayilamazdi. Amerika Birlesik Devletleri Ulusal Bilimler Akademisi de yaratilis görüsünün evrim ile birlikte ögretilmesine karsi çikmis ve yayinladigi bir kitapçikta su görüse yer vermistir (3) : " Din ile bilim insan düsüncesinin iki ayri ve birbirini dislayan alanidir; bu yüzden ayni yerde ikisinin birlikte verilmeye çalisilmasi hem bilimsel teorinin hemde dinsel inancin yanlis anlasilmasina yol açacaktir." Amerika Birlesik Devletleri Ulusal Bilimler Akademisi yayinladigi Bilim ve Yaratilisçilik (3) adli kitapçikda bu görüslere de yer vermistir : "Ulusal egitim sistemimize ve bilimin zorluklarla kazanilan, somut kanitlar üzerine kurulu yapisinin bütünlügüne ve etkinligine karsi girisilen böyle bir saldiri karsisinda Ulusal Bilimler Akademisi sessiz kalamazdi, çünkü sessiz kalmak, akademik ve düsünsel özgürlüge ve bilimsel düsüncenin temel ilkelerine olan sorumlulugumuzu ihmal etmek olurdu. Bilimsel ugrasinin tarihsel temsilcisi ve Federal hükümet'in bilimsel sorunlardaki danismani olarak Akademimiz bilinmesini ister ki; Yaratilis bilimi ilkeleri bilimsel bir kanitla desteklenmemektedir ve yaratilisçiligin ögretim programinda hiçbir düzeyde yeri yoktur. Günümüzün bilgili ve bilinçli fen dersi ögretmenlerinin de önerilen ögretimi yapmalari mümkün degildir. Ayrica böyle bir ögretim, ülkenin gereksinim duydugu bilimsel gelismeleri izleyebilen bir vatandas ve bilinçli bir bilimsel-teknik personel kitlesinin olusmasini engelleyecektir." Bugün insanin en temel sorunlarindan biri, nüfusunun artmasi ve çevre sorunlari karsisinda yer yüzündeki varligini sürdürebilmesi sorunudur. Bunun için ise insanin diger canlilar gibi biyolojik bir varlik oldugunun, diger canlilar ile ortak bir geçmisi paylastiginin, doganin bir parçasi oldugunun, diger canlilar gibi biyoloji yasalarina, ekoloji yasalarina tabi oldugunu bilinmesi gerekir. Bu da ancak kapsamli bir biyoloji egitimi ile gerçeklesebilir. Liselerimizdeki fen egitimi ise ne yazik ki gençleri önümüzdeki yüzyilin bilimine, biyolojiye hazirlamaktan uzaktir. Biyoloji ders kitaplarinda evrim kuramina karsi bir görüs olarak yaratilis görüsü konulmustur. Böylece ögrenciler dünyanin hiç bir çasdas ülkesinde görülmeyen bir uygulama ile karsi karsiya kalmislardir. Bir fen dersi olan biyolojide yeryüzündeki canli türlerinin çesitliligini açiklamak için kaynagini dinden alan yaratilis öyküsüne de yer verilmistir. Buna göre Biyoloji kitaplarinda (4) "Islama göre kainat ve kainattaki bütün varlıklar ALLAH tarafindan yaratilmistir. Dünyanin ilk yaratilisi insanlar tarafindan gözlenemeyen ve tekrarlanamayan bir olaydir. Yaratilis görüsünde bir de dünyayi saran tufandan söz edilmektedir... Dinozorlarin yeryüzünden bir anda silinmis olmasi buna güzel bir örnektir" seklinde bilimsel olmayan ifadeler yer almaktadir. Ayrica din derslerinde bir biyoloji konusu olan evrim kurami islenmektedir. Lise I Din Kültürü ve Ahlak Kitabinda (5) biyoloji ile hiç bir ilgisi olmayan yazarlar Darwin'in evrim kuramini alabildigince elestirmektedirler. Evrim kuraminda canli türlerinin ortak bir atadan türediklerini, bu nedenle birbirine yakin türlerin genetik açidan da benzer oldugu görüsünü yalanlamak amaci ile su savi ileri sürmektedirler. "Yapilan kan muayenelerinde kurbaga, fare ve yilan kanlarinin evrimcilerin iddialarinin aksine maymununkinden insana daha yakin oldugu tespit edilmistir". Bu sav bilimsel temelden tamamen yoksun ve gerçek disidir (6). Yazarlar hangi bilimsel kaynaga dayanarak bu savi ileri sürmektedirler ? Kan ile neyi kastetmektedirler ? Yapildigi öne sürülen kan muayenelerinde kanin hangi ögesi veya ögeleri incelenmistir ? Kaldi ki insan kani ile maymun kani arasinda büyük bir benzerlik vardir. Örnegin 287 aminoasitten olusan hemoglobin A molekülü insan ve sempanzede tipatip aynidir. Ayni molekül bakimindan insan ve goril kani arasindaki fark ise 287 aminoasitten sadece birindedir. Hemoglobin A molekülü farede 19, koyunda 26, tavukta 45, sazan baliginda 95 aminoasit ile insan hemoglobin A molekülünden ayrilmaktadir. Görüldügü gibi kanin bir ögesi olan hemoglobin A molekülü bakimindan insana en yakin canli olan sempanzede hiç fark yok iken insandan uzaklastikça farkliliklar artmaktadir. Daha bir çok protein üzerinde yapilan çalismalarda ayni yönde sonuçlar elde edilmistir. Bu yakinlik uzaklik iliskileri daha önce bilim adamlarinin morfoloji, anatomi, gelisme biyolojisi, paleontoloji, sistematik gibi dallarda elde edilen kanitlara dayanarak yaptigi siniflandirmalardaki yakinlik uzaklik iliskileri ile paraleldir. Bunun disinnda kalitimin kimyasal temelinin evrenselligi yani tüm canlilar için ayni kalitsal mekanizmanin geçerli olmasi canlilarin ortak bir geçmiii paylaitiklarinin yadsinamaz bir kanitidir (7). Amerika Birlesik Devletlerinde ögretilmesi mahkemece anayasanin laiklik ilkesine aykiri bulunan yaratilis görüsü (8) 1985 yilinda Türkiye Cumhuriyeti Milli Egitim Bakanliginin onayi ile Lise Biyoloji ve Din Kültürü ve Ahlak kitaplarına girebilmistir. Böylece laiklige aykiri oldugu bilinen ve dünyanin hiçbir çagdas ülkesinde görülmeyen bir uygulama 20. yüzyilin son çeyreginde devletin egitim politikasi haline gelmistir. Bilim adamlari günümüzde evrimin olup olmadigini degil evrimin nasil oldugunu tartismaktadirlar. Yaratilis bilimcileri evrimciler arasindaki evrimin mekanizmalari üzerindeki bilimsel tartismalari çarpitarak evrim kuraminin yanlis oldugunu kanitlamak için kullanmaktadir. Bilim kendi kendini düzeltici bir nitelige sahiptir ve bilim adamlari arasinda bazen çok siddetli olabilen tartismalar özelestiriler bilimin saglikli yanini gösterir. Bize de Amerika Birlesik Devletleri'nden ithal edilen yaratilis görüsü biyoloji kitaplarinda "Islama göre kainat ve kainattaki bütün varliklar Allah tarafindan yaratilmistir" seklinde yer almaktadir. Bu görüsün tartisilmasi olanaksizdir. Dahasi bu görüsün deney ve gözlem ile dogrulanmasi ya da yanlislanmasi söz konusu degildir. Din derslerinde ögrencilere Darwin'in evrim kuramini çürütmeleri için ödev vermek olagan bir uygulama haline gelmistir. Bilimsel bir kuram öngörüleri deney ve gözlem sonuçlari ile çelistigi zaman çürütülebilir. Deney ve gözlem sonuçlari kuramin öngörüleri ile uyum içinde ise kuramin desteklendigi söylenir. Bilimsel bir kuramin ispat edilmesi söz konusu degildir. Bilimin yöntemleri ile biyologlarin sayisiz deney ve gözlem yaparak 130 yildir çürütemedikleri, yanlislayamadiklari evrim kuramini din dersinde ögrencilere ödev vererek çürütmeye çalismak bilimsellikten tamamen uzak bir yaklasimdir. Bu çabalarin arkasinda gençlerimizin beyinlerini dinsel görüslerin dar kalibina uydurmaya, bu kalip içerisinde hapis etmeye, ögrencilerin bilimsel düsünebilme, sorgulayabilme, elestirebilme yeteneklerini körletmeye çalismak gibi bir amaç yatmaktadir. Evrimi arastiran bilim adamlarinin çabalari dogayi anlama ve açiklama amacina yöneliktir. Bunun disinda tanrinin varligini reddetmek veya kanitlamak gibi bir amaçlari yoktur, olamaz da. Dinsel konular pozitif bilimlerin yöntemleri ile arastirilamazlar. Çagimizda dünya ülkelerinin bilim ve teknoloji alanindaki yarisi hizla sürerken ülkemizin ayakta kalabilmesi gençlerimizin bilimi bir anlayis sistemi olarak benimsemelerine, kavrayabilmelerine baglidir. Sayet gençlerimiz bilimi bir anlayis sistemi olarak benimsemezler ise dinsel inaçlarina bagli fakat tutsak bir ulus olmamiz kaçinilmazdir. Dünyada çesoitli kültürlerde, çesitli dinlerde çok çesitli yaratilis görüsleri vardir. Fakat bu görüslerin hangisinin dogru oldugunu sinama da ise bilim yetkili degildir. Zira bu yaratilis görüsleri bilimsel degildir. Evrim kurami ise evrenseldir, yani dünyanin her yerinde ayni kuram geçerlidir, dinden dine, kültürden kültüre, bölgeden bölgeye degismez. Bir yanda binlerce kez sinamadan geçmis deney ve gözlemler ile defalarca dogrulanmis bilimsel bir kuram diger yanda ise elestirilemeyen, sorgulanamayan, tartisilamayan, kaynagini kutsal kitaplardan alan yaratilis öyküsü. Yaratilisçilar evrim kuraminin da bilimsel olmadigini iddia etmektedirler. Bir kuramin bilimsel olabilmesi için deney ve gözlemler ile yanlislanma olanaginin bulunmasi gerekir. Evrim kurami deney ve gözlemler ile yanlislanabilir. Örnegin, kambriyan katmanlarinda bir insan, bir çiçekli bitki, bir memeli, bir kus fosili bulunabilirse bu bulgulardan bir tanesi bile evrim kuramini geçersiz kilabilir. Bu yaklasim, biyoloji derslerinde fen derslerinde dinsel bir ögreti ile bilimsel bir kuramin birbirinin karsito iki kuram gibi ele alinarak ögretilmesi ögrencileri büyük bir ikilem içine itmektedir. Ögrenci ya bilimi ya da dini tercih etmeye zorlanmaktadır. Ögrenci ya evrim kurami sadece bir kuramdir kutsal kitaplarda yazilanlar dogrudur diyerek bilimi reddedecek ve yaratilis ögretisini kabul edecek, ya da yaratilis öyküsünü de bilimsel bir kuram gibi sorguya çekerek, irdeleyerek bilimsel bir yaklasimi tercih edecektir. Örnegin yaratilis öyküsündeki Nuh tufani olayini bilimsel bir irdelemeden geçirerek Su anda yeryüzünde bulunan 2 milyon canli türünün her birinden birer çift alarak, Nuh peygamberin bu hayvanlari 40 gün boyunca gemisinde nasil yasatabildigini, dinazorlarin bu gemiye sigmadigi için mi yok oldugunu, tüm dünyayi saran bir tufanda Agri daginin zirvesine kadar sularin nasil yükseldigini, ya da bu hacimde su kütlesinin nereden çiktigini sorabilecektir. Simdi de fen derslerinde evrim kuramini tümden kaldirmak egilimi vardir. Evrim kurami biyolojinin tek birlestirici kuramidir. Bugün evrim kurami olmadan biyolojideki bir çok olay birbiri ile ilgisi olmayan, ilginç fakat pek fazla anlam tasimayan bilgiler yigini olacaktir. Bu bakimdan evrim kurami olmayan bir biyolojiyi düsünmek mümkün degildir. Fen derslerinden, biyoloji derslerinden evrim kurami çikarildigi takdirde fen egitimimiz Amerika Birlesik Devletlerinin bazi eyaletlerinde 1950' lerdeki fen egitimine benzeyecektir. Fen egitiminde bazi konular dinsel inanislarimiz ile bagdasmiyor diyerek o konulari fen egitimi müfredati disinda tutamayız. Bilim bir bütündür. Evrimi müfredat disi birakirsak, biyoloji egitimi, fen egitimi anlamin tamamen yitirir. Bilimin verileri isiginda dinsel görüslerin yorumunu yapmak din adamlarinin görevidir. Fakat bu görüslerin bir fen dersinde bilimsel bir kuram ile birlikte, bilimsel kuramin seçenegi gibi islenmesi fen egitiminde istenilen amaçlara ulasilmasini engelleyecektir. Türkiye'nin gelecegi yetistirdigimiz bilim adamlarinin niteligi ve niceligi ile dogrudan iliskilidir. Bilim adami adaylarinin özgür, elestirel, ve bagimsiz düsünebilme diger bir deyisle bilimsel düsünebilme aliskanligini kazanmis olmalari gerekir. Bilim adami arastiracagi konuya hiç bir önyarginin tutsagi olmadan özgürce yaklasabilmeli, konuyu özgürce sorgulayabilmeli, ve deney ve gözlemlerinin sagladigi kanitlari sonuna kadar, kanitlar nereye götürürse götürsün izleyebilmelidir. Türkiye'nin kalkinmasi, bilimde, teknolojide çagdas ülkeler arasinda yerini alabilmesi için özgür, kosullandirilmamis, elestirel düsünebilen beyinlere ihtiyaci vardir. Bunun için de fen egitiminde bilimin dogasina aykiri olan din konularina yer vermemek gerekir. Türkiye'de bilimin gelisebilmesi için egitimde anayasamizin laiklik ilkesine uyulmasi son derece gereklidir. KAYNAKLAR : 1) Dobzhansky, T., Ayala, F.J., Stebbins, G.L., Valentine, J.W. 1977. Evolution. W.H.Freeman and Company. 2) Kence, A. 1985. Evrim kurami ve yaratilisçilik. Cumhuriyet 24 Nisan 1985. 3) Akkaya, E.U.(Çev.).1985. Bilim ve Yaratilisçilik ABD Ulusal Bilimlar Akademisi'nin görüsü. Gözlem Matbaacilik, 80 s, Istanbul. 4) Güven, T., Köksal, F., Öncü, C., Erdogan, I., Acar, Ö., Demirci, C., Togral, A., Simsek, S. 1994. Liseler için Biyoloji I. Milli Egitim Bakanligi Yayinlari 602, Ders Kitaplari Dizisi 223. 5) Ayas, M.R., Tümer, G. 1994. Liseler için Din Kültürü ve Ahlak Bilgisi I. Milli Egitim Bakanligi Yayinlari 118, Ders Kitaplari Dizisi 100. 6) Kence, A. 1994. Biyoloji egitimi ve laiklik. Cumhuriyet Bilim ve Teknik, 367: . 7) Futuyma, D.J. 1983. Science on Trial. Panteon Books, New York. 8) Creationism in Schools: The decision in McLean versus the Arkansas Board of Education. 1982. Science, 215: 934-943. 9) Morris, H.M. 1985. Yaratilis Modeli. Milli Egitim Bakanligi, Bilim ve Kültür Eserleri Dizisi. (TUBA KONUSMASI) Aykut KENCE ODTU Biyoloji Bölümü, Ankara

http://www.biyologlar.com/biyoloji-egitiminde-evrim-ve-yaratiliscilik

1.ULUSAL BİYOLOGLAR KONGRESİ ( PARTİ 1)

1.ULUSAL BİYOLOGLAR KONGRESİ ( PARTİ 1)

  www.biyologlar.com biyolojiye gerçekçi yaklaşımın tek adresi...

http://www.biyologlar.com/1-ulusal-biyologlar-kongresi-parti-1

Cestoda (YASSI SOLUCANLAR) Özellikleri

CESTODA (YASSI SOLUCANLAR) - Sestodlar; vücutları yassı, halkalara ayrılmış şerit şeklindeki PLATHYHELMINTH'lerdir. - Boyları 2-4 mmden 20-25 mye kadar varan değişik ölçülerde olabilir.(Diphylobotrium latum 20-25 m. , Taenia saginata 5-10m. ) - Halka sayısı ise 3'ten 8-10bine kadar çok farklı sayılarda olabilir. (D.latum 8-10 bin halka, E.granulosus 3 halka) Cestodlarda vücut, şekil ve fonksiyon yönünden 3'e ayrılır: SCOLEX:Ön uçta bulunur. Yuvarlak / badem biçimlidir. Yapışma görevi vardır. 3 Yapışma organeli vardır: Bothria: Pseudophyllidea'da görülür. 2- 4 adettir. Yanda bulunur. Acetabula: Cyclophyllidea'da görülen çekmenlerdir. Kadeh ya da kase biçiminde, kassal yapılı, 2-4 adet, karşılıklı yer almış oluşumlardır. Bazısında çekmenler bulunabilir Rostellum: Yine Cyclophylladea'da anteriorda bulunur. Uzayıp kısalabilen, üzerinde 1 ya da 2 sıralı çengel taşıyan bir yapıdır. PROLİFERASYON BÖLGESİ: Scolex'ten hemen sonra, halkalara ayrılmamış ve halkaların oluşturulduğu kısımdır. Bazı sestodlarda yoktur (Moniezia). STROBILA: Boyundan sonra gelir. Halkalar: genç (üreme organı henüz yok) olgun (üreme organı gelişmiş) gebe (yumurtalarla dolu) Psedophylleidea'da halkaların sadece genç ve olgun formları varken, Cyclophylleidea'da 3 form da görülür. Vücut tabakaları: En dışta kutikula, onun altında kas tabakası vardır. Bunun altında da Ca granüllerinden zengin paranşim bulunur. Sindirim sistemi: Yoktur. Tüm vücut yüzeyince osmotik absorbsiyonla besinlerini alırlar. Solunum sistemi: Yoktur. Dolaşım sistemi: Yoktur. Boşaltım sistemi: Osmo-regulator sistem de denir. Tüm halkalarda ortaktır. Halkaların yanlarınd aseyreden 2şer (dorsal, ventral) toplama kanalı ve bunların halka posterirorlarındaki bağlantılarında ibarettir. Boşaltım kesesi yoktur. Paranşime dağılmış kirpikli hücreler vasıtasıyla atık maddeler toplanır, bunlar ana boşaltım kanallarına bağlanırlar. Tıklar dışarıya boşaltım deliğinden atılırlar. Sinir sistemi: İyi gelişmemiştir. Tüm halkalar için ortak bir sistem vardır. 1) Merkezi sinir sistemi (scolex'teki ganglionlar topluluğudur) 2) Sinir lifleri (MSS'ten 2 büyük, çok sayıda küçük sinir çıkar) Dölerme sistemi: Her halka için müstakildir. (1/2 adet). Hermafroditizm görülür. Protandri vardır ( önce erkek genital organları gelişr daha sonra dişi genital organları gelişir; körelmede de aynı sıra izlenir). Bu sistem en gelişmiş ve de en önemli sistemdir. Bunun nedeni ise sestodların komplike olan biyolojileri sırasında hiç olmazsa milyonlarcası üretilen yumurtadan sadece birkaçının olgun şerit haline gelebilmesidir. Döllenme halka içi, halkalar arası ya da parazitler arası olabilir. Erkek dölerme organları 1. testis (çok sayıda, halkanın dorsalinde, sperm üretir) 2. vasa efferentis (ince kanallardır) 3. vas deferens (spiral şeklindedir) 4. vesicula seminalis (sperm depolanır) 5. prostat bezleri 6. canalis ejaculatorius 7. cirrus (penis) 8. genital atrium Dişi dölerme organları 1. ovarium (tek loblu, ventrale doğru, yumurta üretir) 2. oviduct 3. ootype (genişlemiş kısım, yumurta döllenir ve gelişir) 4. Mehlis bezleri (kabuk oluşmu için gerekli) 5. vitellojen bezler (yumurta sarısı için gerekli) 6. receptulum seminis (sperm depolanır) 7. uterus (ootype'den köken alır, yumurta kapsülü ve paruterin organ) 8. vagina 9. genital atrium Pseudophylleidea'da uterus deliği varken, Cyclophyllidea'da yoktur. Yumurtalar: Çeşitli tiplerde olabilir. Pseudophyllidea yumurtaları tramatod yumurtalarına benzer. Yumurta sarısı ile doludur. Cyclophyllidea yumurtalarının içinde 3 çift çengele sahip onkosfer bulunur. Gelişim: İndirektir. Cyclophylidea tek ara konak (mesocestoides hariç), Pseudophylidea iki ara konak kullanır. Larva şekilleri: Cyclophyllidea 1) Cysticercus 2) Coenurus 3) Hidatik kist 4) Strobilocercus 5) Cysticercoid 6) Tetrathyridum Pseudophyllidea 1) Coracidium 2) Procercoid 3) Plerocercoid Cyclophyllidea Cysticercus: İnce çeperli, suyla dolu küçük bir kese ve içinde invagine tek scolex'ten ibaret larva formudur (0,5-1 cm). Taenia cinsina bağlı türlerde görülür. Ör: Taenia saginata (insan-barsak) / Cysticercus bovis (sığır-kas) Coenurus: İnce çeperli, içi su ile dolu, büyücek kese (ceviz/tavuk yumurtası büyüklüğünde). İçinde çok sayıda invagine scolex vardır. Ör: Multiceps multiceps (köpek barsak) / coenurus cerebralis (sığır-beyin) Strobilocercus: İnvagine olmamış bir scolex ve henüz dölerme organları gelişmemiş halkalar (strobila) taşıyan larva formudur. Ör: Hydatigera taeniaformis (kedi-barsak) / Strobilocercus fasciolaris (kemirgen-karaciğer) Hidatik kist: (Echinococcus)En kompleks yapılı cestod larva formudur. Su ile dolu ve çapı 20-25 cm'ye ulaşabilen bir kesedir. Çeperi biri lamelli tabaka, diğeri ise çimlenme yeteneğinde doğurgan tabakalardan yapılmıştır. Bu tabakadan yüzbinlerce invagine scolex (protoscolex) meydana gelir. Ör: Echinococcus granulosus (köpek-barsak) / Hidatik kist (memeli- karaciğer, akciğer) Cysticercoid: Omurgasız arakonaklarda gelişir. Büyük, invagine scolex ve kuyruk taşıyan larva formudur. Cercocystis (kuyruklu) ve cryptocystis (kuyruksuz) formları vardır. Ör: Dipylidium caninum (köpek-barsak) / larvası pire ve bitlerde gelişir. Tetrathyridium (Dithyridium): Ön kısmı daha geniş, arkaya doğru incelmiş, basık, kırışık yapıda, tek parça ve ön tarafta invagine tek scolex taşıyan larva formudur. Ör: Mesocestoides lineatus (köpek-barsak) / larvası çeşitli canlılarda gelişir. Pseudophyllidea Coracidium: Trematodlardaki miracidium'a benzeyen, suda serbest yüzebilen , kirpikli, 3 çift çengelli larva formudur. Procercoid: Coracidium'dan sonraki larva formudur. Coracidium'un girdiği kabukluda aldığı formdur. Tek parça, uzunca bir larva formu olup, posteriorunda boğumla ayrılmış, 3 çift çengel taşıyan yuvarlak bir kısım taşır. Önde cephalic invaginasyon vardır. Plerocercoid: Uzun, tek parça, ön uzunda olgunlarınkine benzer 2 bothria taşır. Artık embriyonik çengellerin kaybolduğu larva formudur. Ör: Diphyllobothrium latum (köpek-barsak) Procercoid_kabuklunun vücut boşluğunda Plerocercoid_tatlı su balıklarının kan ve diğer organlarında SINIF: CESTOIDEA ALT SINIF: CESTODA (EUCESTODA) TAKIM: PSEUDOPHYLLIDEA Yumurta: kapaklı , 3 çift çengelli onkosfer sonradan gelişir Morfoloji: - Scolex badem biçiminde - Yapışma organeli; bothria - Halkalar genç, olgun - Genital delik halka ventralinde - Uterus deliği var Gelişme: 2 ara konak, 3 larva şekli var TAKIM: CYCLOPHYLLIDEA Yumurta: Kapaksız, üç çift çengelli onkosfer var. Morfoloji: - Scolex yuvarlak, oval - Yapışma organeli; rostellum, çekmen(acetabula), - Halkalar genç, olgun, gebe - Genital delik halka lateralinde - Uterus deliği yoktur. Gelişme: 1 ara konak, 6 larva şekli var. PSEUDOPHYLLIDEA AILE: DIPHYLLOBOTHRIAE Tür: Diphyllobothrium latum Son konak: İnsan ve balık iyen carnivora Yerleşim: İnce barsaklar Morfoloji: 20-25 m boya ulaşabilir. 2 tane bothria vardır, scolex badem biçimlidir, genital delik halkanın ventralinde, yumurtalar 52-70x32-45m boyutunda, sarımısı kahverenginde, kapalı. Biyoloji: Yumurta dışkı ile dışarı çıkarılır. Suda coracidium gelişir ve serbest kalır. 1.ara konak çeşitli Crustacae (Cyclops, Diaptomus gibi su pireleri)'de gelişen procercoid 2.ara konak olan tatlı su balıklarınca alınır ve bunlarda plerocercoid gelişir (kas ve diğer organlarda). Balıkların çiğ ya da az pişmiş olarak yenmesi sonucu etken son konaklarca alınır. Önemi: Etken, yaşam süresi olan 10 yıl boyunca 7 km'lik halka oluşturabilir. D.latum vit B12'yi absorbe eder ve bu durum sonucunda enfeste canlılarda pernisiyöz anemi şekillenir. Etkene bağlı vakalar Türkiye'de bildirilmiştir ama ülkemizde çiğ ya da az pişmiş balık tüketilmediğinden bu vakalar da kesin değildir. Diphylobotrium latum Tür: Ligula intestinalis Son konak: Olgunları su kuşlarının barsağında, larvaları (plerocercoidler) tatlı su balıklarında ligulose'a neden olur. Biyoloji: D.latum ile aynı biyolojiye sahiptir. Önemi: Balıklarda paraziter kastrasyon nedenidir. Bunu, organlara basınç yaparak, antigonadotropik hormonlar salgılayarak yapar. Hasta balıklarda karın şişer, hantallaşırlar, yüzemezler, karınları patlar ve ölürler. Hastalığa ülkemizde baraj göllerindeki balıklarda rastlanır. İnsan sağlığı açısından tehlikesi yoktur. Ayıklandıktan sonra balıklar yenebilir. İtalya'da plerocercoidler tüketilmektedir. Mücadele: 1.ara konakla mücadele olanaksızdır. 2.ara konak olan balıklarla mücadele edilir. Hasta olanlar, ölenler ve karınları patlayan balılardan serbest kalan plerocercoidler su yüzeyinden toplanır. Diagramma ve Schistocephalus gibi cinsler de vardır. Spirometra erinacei, köpek, kedi gibi hayvanların incebarsaklarında parazitlenirken, Spirometra mansoni 1.ara konak olarak Crustacae'yi, 2.ara konak olarak balık, kurbağa ve yılanları, bazen de 3.ara konak olarak herhangi bir omurgalıyı kullanır. Sparganose: Plerocercois=spargonum Bazen D.latum, Spirometra gibi parazitlerin plerocercoidleri 1) sudaki kabukludayken insanlarca kabuklunun yenmesi ile alınır, 2) kurbağa, fare, yılan, balık gibi canlıların etleri ampirik tedavi yöntemleriyle yara,göz vs. üzerine tatbik edilerek primitif olarak insanların yaralarına ya da gözlerine bulaşır. Plerocercoidlerin bulunduğu kısımda irritasyona bağlı olarak kızartı, kaşıntı, şişkinlik, iltihaplanma görülür. CYCLOPHYLLIDEA AILE: ANOPLOCEPHALIDAE Tür: Anoplocephala perfoliata Son konak: Tek tırnaklılar Yerleşim: İnce barsakların alt kısımları, colon ve caecum Morfoloji: 8x1-1,5 cm. Scolex küçük, rostellum yok. Çekmenler arkasında küpe benzeri yapılar var. Yumurtalar 80m boyutunda ve Moniezia yumurtasına benzer. Onkosferi çevreleyen embriyoforun ucundaki kollar uzun ve kavuşur. Tür: Anoplocephala magna Son konak: Tek tırnaklılar Yerleşim: İnce barsak, jejenum Morfoloji: Atların en büyük şerididir. 70-80x1,5-2 cm. Yumurtaların boyutu 50 m. Scolexte küpe benzeri çıkıntı yoktur. Tür: Paranoplocephala mamillana Son konak: Equide Morfoloji: 1-4x5 cm. yumurtalar 50m boyutunda. Küpe benzeri çıkıntılar yok. Çekmenler yarık biçiminde. Embriyoforun uçları kısa ve ayrık.Atların en küçük şerididir. Ara konak: Oribatidae fam. bağlı akarlardır. Biyoloji: Yumurtayı yiyen akarlarda 4 ayda cysticercoid gelişir. Cysticercoidleri alan atlarda 6-10 haftada şeritler gelişir. Patojenite: Meradan yazın alınan hastalık Eylül Ekim ayında ortaya çıkar. Taylar 100%, erginler 60% hastalığa duyarlı. Genellikle az sayıda parazit bulunur. En patojeni A.magna'dır. Kataral -hemorajik enterite sebep olurlar. A.perfoliata ve P.mamillana az patojendir. İliocecal lokalizasyon önemlidir. Sağaltım: Niclosamide Tür: Moniezia expansa Son konak: Ruminantlar. Yerleşim: İnce barsaklar. Morfoloji: 6m x 1,5-2 cm. her halkada 2 tane genital atrium vardır. Testisler halka ortasında dağılmış ya da iki yanda toplu halde bulunabilir. Interproglottidal bezler halka posterior boyunca seyreder. Yumurtalar 50-60 m boyutundadır. Tür: Moniezia benedeni Son konak: Özellikle büyük ruminantlar. Yerleşim: İnce barsaklar. Morfoloji: 0,5-4m x 2 cm. Interproglottidal bezler sadece ortada. Tür: Thysaniezia ovilla Son konak: Ruminantlar Yerleşim: İnce barsaklar Morfoloji: 1,5-4,5m x 8-9 mm. Halkalarda 1 tane genital delik var. Testisler boşaltım kanallarının lateralinde. Yumurtaların 5-15'i birarada paruterin organ içinde bulunur. Tür: Stilesia globipunctata Son konak: Ruminantlar (koyun, keçi) Yerleşim: İnce barsaklar Morfoloji: Her halkada 1 tane genitel atrium vardır. 40-60cm x 2-2,5 mm. Testisler boşaltım kanallarının medialinde seyreder. Her halkada 2 tane paruterin organ bulunur. Tür: Avitellina contripunctata Son konak: Ruminantlar Yerleşim: İnce barsaklar Morfoloji: 1-3m x 2-2,5 mm. Her halkada 1 tane genital delik vardır. Testisler boşaltım kanallarının her iki yanında gruplar halinde bulunur. Her halkada 1 tane paruterin organ vardır. Tür: Thysanosoma actinoides Son konak: Ruminantlar Ara konak: Oribatida ailesine bağlı akarlar. Yerleşim: İnce barsaklar, seyrek olarak safra ve pankreas kanalları Morfoloji: 35-40 cm x 8 mm. Her halkada 2 tane genital atrium vardır. Testisler halka posterioru ve ortasında bulunur. Halka posteriorlarında saçaklı yapılar vardır. Yumurtalar paruterin organ içinde bulunur. Biyoloji: Akarlar 0,5-1 mm boyutundadır. Sert kabuklu, gözsüz, serbest olarak toprakta yaşayan, organik kalıntı ve dışkı ile beslenen, bitki kök ve sap kısımlarında yoğun olarak bulunan akarlardır. Akarlarda 3 ayda vücut boşluğunda cysticercoid gelişir. Akarların otlarla birlikte alınımı ile 1,5-2 ayda şeritler gelişir. * Thysaniezia, Stilezia, Avitellina ve Thysanosoma cinslerinde yumurtada onkosferi çevreleyen armut biçimli bir embriyofor yoktur. * Anoplocephalidae ailesindeki parazitlerin olgunları tedavi edilmezse 3-4 ay yaşarlar. Cysticercoidleri akarlarda 1-1,5 yıl boyunca yaşarlar. Akar ölünce onlar da ölürler. Bu akarlar için nemli, uzun, kaba otlu meralar uygundur. Anoplocephalose: 1) mera kontaminasyonu 2) kontaminasyonun devamı ile meydana gelir. Kronik form: En çok görülen formdur. Anemi, zafiyet, yapağı bozulması, ölüm, dehidrasyon, diyare, konstipasyon ve barsaklarda atoni görülür. Akut form: Seyrek görülür. Sinirsel belirtiler (dönme, çırpınma, titreme ve diş gıcırdatma) ile seyreder. Subklinik form: Bakımlı sürülerde görülür. Semptomsuz seyreder. Sindirim sistemi belirtileri (kötü kokulu ishal) görülebilir. Yayılış: 60%'a varabilir. Teşhis: Dışkıda şerit ya da halkaya rastlanabilir. Dışkı muayenesinde yumurta/yumurta kapsülü görülebilir. Otopside olgun şeritlere rastlanır. Sağaltım: Niclosamide, Praziquantel, Albendazol, Nebendazol AILE: DAVAINEIDAE Tür: Davainea proglottina Son konak: Tavuklarda (en yaygın şerit) Ara konak: Sümüklüböcekler (cysticercoid gelişir) Yerleşim: İnce barsaklar (duodenum) Morfoloji: 1,5-5 mm uzunlukta. Halka sayısı 4-9. Rostellumda 2 sıra çengel var. Çekmenlerinde de çengel vardır. Yumurtalar ince çeperli, 30-40 m çapında Tür: Railettina tetragona Son konak: Tavuk, hindi ve diğer kanatlılar Ara konak: Kara sinek ve karıncalar Yerleşim: İnce barsaklar (duodenum) Morfoloji: 6-25 cm x 1-4 mm. Rostellumda tek sıralı çengeller vardır. Çekmenlerinde de çengeller vardır. Yumurtaların 6-12 tanesi bir kapsül içinde bulunur. Tür: Railettina echinobothrida Son konak: Kanatlılar Ara konak: Karıncalar Yerleşim: İnce barsaklar Morfoloji: 9-25 cm x 1-4 mm. Çekmenlerinde çengeller vardır. Yumurtaların 6-12 tanesi bir kapsül içinde bulunur. Tür: Railettina cesticillus Ara konak: Kaprofaj böcekler Morfoloji: 4-13 cm x 1-3 mm. Kokon içinde tek bir yumurta bulunur. Çekmenler çengelsizdir. AILE: HYMENOLEPIDIDAE Tür: Hymenolepis lanceolata Son konak: Ördek ve kazlar Ara konak: Tatlı sudaki crustacea Yerleşim: İnce barsak Tür: Hymenolepis cariocea Son konak: Tavuklar (sıklıkla görülür) Ara konak: Kaprofaj böcekler Tür: Hymenolepis contaniana Son konak: Tavuk ve hindiler Ara konak: Kaprofaj böcekler Morfoloji: 2-5 mm'den 7-8 cm'ye kadar değişen boylardadırlar rostellumda çengel olabilir ya da olmayabilir. Yumurta 3 katlı koruyucu içindedir. Tür: Hymenolepis diminuta Son konak: Fare, sıçan ve insanlar Ara konak: Çeşitli arthropoda (cysticercoid gelişir) Yerleşim: İnce barsaklar Morfoloji: 20-60 cm uzunluktadırlar. Scolexte 4 çekmen vardır. Rostellum çengelsizdir. Yumurtalar ovalimsi, gri-açık kahverengi, 2 kabuklu (dış ve iç) ve 3 çift çengelli onkosfere sahiptir. Tür: Hymenolepis nana Son konak: İnsan, fare ve sıçanlar Yerleşim: İnce barsaklar Morfoloji: "Cüce şerit" de denir. 2.5-4 cm uzunluktadır. Yumurtaları ovaldir. Açık renkli, grimsidir. 2 kabukludur ve içinde 3 çift çengelli onkosfer vardır. İç kabuğun kutuplarında filamentler vardır. Biyoloji: 1) Direkt 2) İndirekt (ara konak olarak arthropodları kullanır) AILE: DILEPIDIDAE Tür: Ametobotaenia cuneata Son konak: Tavuk, ördek Ara konak: Yer solucanları Yerleşim: İnce barsaklar Morfoloji: 2,2-4 mm x 1-1,5 mm. 12-24 adet halka vardır. Scolexte tek sırlaı çengel taşıyan rostellum vardır. Çekmenler çengelsizdir. Tür: Choanotaenia infundibulum Son konak: Tavuk, hindi vb. Ara konak: Karasinek, çekirge, kaprofaj böcekler Yerleşim: İnce barsaklar Morfoloji: 5-23 cm uzunluktadır. Tek sıra çengel taşıyan rostellum vardır. Çekmenleri silahsızdır. Yumurtaları 60-65 x 40-45 m boyutunda, filamentlidir. KANATLILARDA ŞERİT ENFEKSİYONLARI: En önemlisi Davaniea proglottina'dır. küçük olmasına rağmen 50%lere varan ölümler meydana getirir. Patojen kısmı scolextir. Çünkü hem çekmenlerde hem de rostellumda çengeller vardır. Davainea yumurtaları dirençsizdir. Rutubetli, sıcak ve gölgeli yerlerde 5 gün yaşayabilir. Cysticercoidleri sümüklüde en az 1 yıl canlı kalabilir. Ara konak olan sümüklüde 1000'den fazla cysticercoid bulunabilir. Ağır enfestasyonlarda duodenum mukozasında yangı, hemoraji ve ödem görülür. Klinik semptomlar ise zafiyet, anemi, ishal ve mukusta artıştır. Railettina türleri içinde en patojeni Railettina echinobothria'dır. Barsaktaki yangı şekli NODÜLER ENTERİTtir. Barsak içine gömülü scolex etrafında kazeöz nodüller şekillenmiştir. Sağaltım: Niclosamide (Mansonil, Şeridif, Tenyavet)...............................................50-200mg/kg 2-6 gün boyunca..................................................................................................................20 mg/kg Fenbendazol (Panacur) 5 gün boyunca...............................................................................20 mg/kg Mebendazol (Mebanvet)....................................................................................................10 mg/kg Praziquantel (Droncit)....................................................................................................................... Bithional (Actomer)...............................................................................................................0,2 g/kg AILE: TAENIADAE Tür: Echinococcus granulosus Son konak: Olgunları........................köpek, kurt, çakal vb.'nin incebarsakları (kedilerde seksüel olgunluğa erişemez) Larvaları.........................bütün evcil memelilerde (ruminant, sus, eq.,insan...) başta karaciğer ve akciğer olmak üzere, dalak, böbrek, pankreas, kalp, beyin, kemik iliği, bağlayıcı doku aralıkları ve dokularda. Morfoloji: Olgunlar..........................2-6 mm uzunlukta, vücut genellikle 3 halkadan oluşur. Son halkanın uzunluğu vücudun diğer bölümlerinin uzunluğundan daha fazladır. Genital atrium halka posteriorundadır. Ovarium böbrek biçimindedir. Yumurtalar......................Taenia yumurtası formundadır (yuvarlak/oval). Küçük ve kalın kabukludur. Kabuk enlemesine çizgilidir. 3 çift çengelli onkosfer taşır. KİST HYDATİK (EKİNOKOK KİSTİ): 2 tip kist vardır. 1. Uniloculer kist (kistler tek tektir,daha çok koyun ve insanda görülür) 2. Multicystic/Multivesicular kist (birbirine komşu kistlerdir. Her birni ayrı boşluğu ve sıvısı vardır. Özellikle sığırlarda görülür) Biçimleri yuvarlağımsı (yumuşak, hacimli dokularda) yada mevcut boşluk ya da aralıkları dolduran (ör:kemik iliği) gibidir. Büyüklükleri dokularda konakçı reaksiyonları ile sınırlandırılır (çocu başı ya da portakal büyüklüğünde olabilirler). Göğüs ya da karın boşluğunda iseler büyüklükleri sınırlandırılamaz (20 cm çapına varan kistler görülmüştür). Lokalizasyon; ruminantlarda 70% karaciğerde, 25% akciğerde, 5% de diğer dokularda olmaktadır. Gelişme hızları yavaştır. 6 ayda ancak birkaç mm çapında içi sıvı ile dolu kistik yapı şekillenebilir. Protoscolexler 12 ayda şekillenir. Protoscolex taşıyanlar fertil kist, taşımayanlar ise infertil kist adını alır. Sığırda 90%, domuzda 20%, koyunda ise 8% kistler infertildir. 2 şekilde gelişim tamamlanır: 1- PASTORAL SİKLUS: Evcil karnivorlarla evcil ruminantlar konaktır. Köpek, koyun, deve, Ren geyiği. 2- SILVATIC SİKLUS: Son konak yabani karnivor, ara konaklar ise yabani ruminantlardır. Avusturalya'da dingo-kanguru. Hindistan, Pakistan, Seylan'da çakal-geyik. Bu iki epidemiyolojik siklus bağımsıuz seyreder. Ancak avcılık yolu ile kırılabilir. Kanada'da Kariba(geyik)-köpek. Kırsaldan ormansala geçiş şu şekillerde olur: - Kistli evcil ruminantlar köpeklerce yenir § Enfekte av ve çoban köpeklerinin ormanda dolaşması ve buralara dışkısını bırakması ile yabani rum. enfeste olabilir. Ormandan kırsala geçiş ise şöyle olur: § Evcil ruminantlar ormanlık yörede otlarken yabani köpekgillerin bıraktıları dışkılardan yumurta alırlar. § Av veya çoban köpekleri enfekte yabani ruminantların kistlerini yer. Önemi: Hayvanlarda; - Kistler pek klinik belirtiye yol açmaz (normal doku kalmamasına rağmen) - Enfekte havanlarda karkas ağırlığı azalmaktadır - Enfekte organlar(karaciğer, akciğer, dalak) kısmen ya da tamamen imha edilir (ekonomik kayıp). İnsanlarda; Çoğunlukla klinik belirti göstermese de lokaliza olduğu organ ya da dokuya göre normal fonksiyonları bozar, ağrı yapabilir. Kistler kendiliğinden ya da ameliyat sırasında patlayabilir. Bu da anafaktik şok ya da sekonder hidatidose (echinococcose)'a neden olur. Teşhis: Hayvanlarda serolojik testler yetersizken, ancak kesim sırasında teşhis mümkündür. İnsanlarda klinik belirtiler (organların çalışmalarında aksamalar, şişlik, ağrı), röntgen, serolojik testler(KFT, FAT, ELISA, HA, presipitasyon) ve alerji testi (Casoni) ile teşhise gidilir. Sağaltım: Operasyon ile yapılır. Öncesinde Mebendazol-Albendazol kullanılır. Hastalığın prepatent süresi 4-5 haftadır.

http://www.biyologlar.com/cestoda-yassi-solucanlar-ozellikleri

Darwinin Canlılar Teorisi nedir ?

Darwin'in canlılar hakkındaki görüşü ile ilgili teori nedir ? Canlılarla ilgili bu evrimsel görüşü geçersiz kılmak için geliştirilen bu taktiğin iki kusuru vardır.Birincisi Darwin'in iki iddaasını birbirinden ayırmayı başaramaktadır. Günümüzde yaşayan türler,atasal formlardan gelişmiştir ve doğal seçme,bu evrimleşme için ana mekanizmadır.Canlıların evrim geçirmiş olduğuna ilişkin karar,tarihsel kanıtlar üzerine dayandırlımıştır. O zaman,evrim hakkındaki teori nedir?Teoriler gerçekler, açıklamak ve onları bir araya getirerek bir görüş olarak taçlandırmak üzere yaptığımız girişimlerdir.Biyologlar için Darwin'in evrim teorisi,doğal seçmedir-doğal seçme,Darwin'in fosillerle,biyocoğrafya ile diğer kanıtlarla belgelediği,evrimin tarihsel olaylarını açıklamak için önerdiği bir mekanizmadır. Onun için "sadece bir teori" tartışması Darwin'in ikinci noktası ile,yani onun doğal seçme teorisiyle ilgilidir.Bu bizi "sadece bir teori" olayındaki ikinci kusura sevk eder. TeOrİ terimi,bilimde,günlük kullanımınkinden çok farklı anlama sahiptir.Teori kelimesinin kullanışı,bilim adamlarının hipotez olarak kastettiklerine yakın gelir.Bilimde teori hipotezden daha kapsamlıdır.Newton'un yer çekimi teorisi ya da Darwin'in doğal seçme teorisi gibi,bir teori,bir çok durumun sebebini açıklar ve çok büyük çeşitlilik gösteren doğa olayları açıklamaya girirşir.Böyle birleştirici bir teori,eğer teorilerin öngörüleri,yapılan gözlemlerle ve sürdürülen denemelerle ayakta kalmıyor ise bilimde geniş bir şekilde kabul edilmez.Hatta,iyi bilim adamları teorilerin dogma haline gelmesine izin vermez.Örneğin şimdi çok sayıda evrimle uğraşan biyolog,doğal seçmenin,fosil kayıtlarda gözlemlenen evrimsel tarihi,yalnız başına açıklayıp açıklamayacağı konusunda kuşku duymaktadır. Evrimi çalışmak,her zamankine göre şimdi daha canlıdır... Canlıların çeşitlenmesinidoğa üstü yaradılıştan ziyade,doğal nedenlere bağlamak suretiyle Darwin,biyolojiye(YAŞAMBİLİM) bir ses verdi.Bir bilimsel temel oluşturdu.Bununla birlikte,evrimin çok çeşitli ürünleri mükemmeldir ve ilham vermektedir.TüRLeRiN kÖkEnİ isimli eserinin kapanış paragrafında Darwin'in dediği gibi canlılığın bu görünümünde ihtişam vardır. Kaynak: CAMPBELL & REECE BİYOLOJİ 6. BASKI ÜNİTE 4. BÖLÜM 22. SAYFA 441-442 PALME YAYINCILIK www.genbilim.com

http://www.biyologlar.com/darwinin-canlilar-teorisi-nedir-

Darwinizm`in düşünce tarihine etkisi

İngiliz filozof Grayling`in Darwin üzerine pek çok çalışması var Bilim tarihinin en önemli ve `tehlikeli` fikirlerinden birini, tüm yaşamın geçirdiği evrimin mekanizmasını, `Türlerin Kökeni`adlı kitapla bilim dünyasına ve kamuoyuna açıkladı. Canlıların evrim sürecine ve insanın doğadaki yerine ilişkin pek çok soruya yanıt arayabileceğimiz çerçeveyi sunan Darwin,başta Biyoloji olmak üzere genetik ve tıp gibi alanlarda temel bir öneme sahip. Devrim etkisi yapan evrim fikri Ancak bu teorinin bazılarınca tehlikeli bulunduğu alanlar doğa bilimlerinin çok ötesine siyaset, kültür ve dine ilişkin görüşlerimize uzanıyor. Darwin evrimden bahsediyordu, ama fikirleri bilim ve düşünce tarihi üzerinde devrim etkisi yaptı.Darwin`in düşünce dünyamız üzerindeki etkisini, Darwin üzerine pek çok makale yazan İngiliz filozof Anthony Grayling`le konuştuk. Anthony C. Grayling: Bence Darwin`in düşünce tarihi üzerinde çok derin bir etkisi var. Bu etki, yalnızca, biyoloji bilimine etrafında organize olabileceği bir çerçeve sunduğu için önemli olmakla kalmıyor. Biyolojiye sunduğu imkânlar üzerinden, insanlık için çok önemli olan pek çok başka etkinliğe, örneğin tıbba da katkıda bulunan bir teori. Doğa ve doğanın bir parçası olarak insanın Darwinci bir yolla düşünülmesi, anlayışımıza olağanüstü bir derinlik kazandırdı. BBC: Darwin`in düşüncelerinin hem Marx, hem bazı liberal ve neo-liberal yazarlar hem de bazı aşırı sağcı figürler tarafından övgüyle karşılandığını biliyoruz? Sizce tüm bu kesimlerin Darwin`den övgüyle bahsetmesi nasıl mümkün olabildi. `Darwin`den sonra eskisi gibi düşünmek mümkün değil` A. C. Grayling:Bence bunun nedeni, Darwin`in biyoloji alanında ortaya koyduğu düşüncelerin doğru olduğunun tüm bu farklı kesimler tarafından tanınmış olması. Uzun vadede insan ve toplum arasındaki ve bunların doğayla olan ilişkileriyle ilgili algılarımızda çok derin bir etki meydana geldiği çok farklı kesimlerce kabul edildi. Darwin titiz bir araştırmacı, arşivci ve deney insanıydı Darwin`in fikirleri toplumu öylesine sarstı ki, dini görüşleri nedeniyle Darwin`e eleştirel bakan insanlar için bile, kendilerini Darwin öncesi düşünce biçime geri döndürmelerinin bir imkânı kalmadı. Darwin`den önceki dönemde, insanlar, insanoğlunun çok özel olduğunu ve doğanın geri kalanının dışında bir varlık olduğunu düşünebiliyordu. Ancak, Darwin düşüncesinin etkisi, bize bizim doğadan kopuk değil, onun bir parçası olduğumuzu görmezden gelemeyeceğimiz bir şekilde gösterdi. BBC: İnsanlık tarihi açısından çok önemli roller oynayan iktisat ve siyaset teorilerinin pek çoğu, en temel önermelerini, insan doğasına ilişkin varsayımlar üzerinden kanıtlıyor. İnsan doğasına ilişkin farklı varsayımlardan, farklı anlayışlar çıkabiliyor. Bu noktada, Darwin`in evrim teorisi, çoğu zaman değişmez olduğu varsayılan insan doğasının da, insanla birlikte bir evrim içinde olduğunu ortaya koydu. Siz Darwin`in bu tartışmalara katkısını nasıl yorumluyorsunuz? Darwin`in teorisi ırkçılar tarafından kötüye kullanıldı A. C. Grayling: Evet, Darwin`in insan doğası, doğa, toplum ve insanlar arasındaki ilişkilere dair düşüncelerimiz üzerindeki etkisi, özellikle bu konulardaki bilgilerimizin ekonomi ve siyaset üzerindeki etkilerini göz önüne aldığımızda çok önemlidir. İzleyeceğimiz siyaseti belirleme ve eyleme geçirme noktasında insan doğasına ilişkin bilgi ve anlayışımızı temel alıyoruz. Darwin`inki tabi ki her şeyi açıklayan bir teori değil. Ve tabi ki, bu teori, temellerini Darwin`den aldıklarını söyleyen bazı ırkçılar tarafından kötüye kullanıldı. Naziler Darwin`in fikirlerini kendi çıkarları için çarpıttı BBC: Neyin iyi neyin doğru olduğuna, nasıl yaşamak gerektiğine ilişkin düşünceler insan dışında doğanın geri kalanı için söz konusu değil. Örneğin, bir aslanın, bir başka hayvanın yavrusunu yemesini iyi veya kötü olarak değerlendirmiyoruz. Peki, Darwin`in insanı, etik ve ahlakın alanı dışındaki doğanın bir parçası olarak göstermesi, insanlığın yeni bir etik fikriyle çıkmasını gerekli kılmıyor mu? A. C. Grayling: Hayır bunun gerekli olduğunu düşünmüyorum. Çünkü en azından Batı geleneğinde etik zaten doğayı temel alır. Örneğin, Antik Yunan`da, Helenik ya da Roma düşünce dünyasında eğitimli insanların etiğinin, bin yıl kadar bir süre boyunca dinsel, Tanrısal bir temeli yoktu. İnsanları oldukları gibi anlamaya çalışıyorlardı. Örneğin Aristoteles`in ya da Stoacıların etiğe yaklaşımlarına baktığınızda, bunun büyük oranda, insanlığı anlama çabasının bir parçası olduğunu görürsünüz. Dolayısıyla, doğal varlıklar olarak insanlığa ilişkin daha derin bir anlayış, Batı geleneğinin karşısında olmayıp, bu etik anlayışının daha da gelişmesini sağlayacaktır. Bu tabi ki, insanların doğal durumuyla ilgili tüm gerçekleri kabullenmemiz anlamına da gelmez. Saldırganlık ve hırs gibi birçok özellik başka hayvanların özelliği olduğu kadar insanların da özellikleri… Ancak, bunlar toplum açısından kabul edilebilir şeyler değil çünkü sosyal bağları zedeliyor. Bizler de doğanın, bu gibi durumlar üzerine düşünebilen ve hangi yönleri öne çıkarıp hangi yönleri disipline almamız gerektiğine karar verebilecek bir parçasıyız. Kopernik ve Darwin`den sonra Freud`un darbesi BBC:Darwin`in teorisini ortaya attığı 1850`li yıllar, başka önemli düşünürlerin de, ortaya çıktığı dönem. Darwin`in Londra`daki mezarınının birkaç kilometre ötesinde bir başka önemli düşünürün Karl Marx`ın mezarı var, yine birkaç kilometre daha gidersek psikanalizin kurucusu Sigmund Freud`un mezarına ulaşabiliyorsunuz. Çok farklı alanda teoriler olsa da Darwincilikle psikoanaliz arasında bazı paralellikler kuranlar var. Kopernik`in dünyayı güneş sisteminin ve evrenin merkezi olmaktan çıkarması gibi, Darwin de insanı doğanın merkezi olmaktan çıkarıyor. Freud ise insanın kendisini dahi tümüyle kontrol edemediğini ortaya koyduğu teorisiyle, insanın kendisini merkez olarak gören anlayışına bir darbe daha vurdu. Grayling bu paralelliği şöyle değerlendiriyor. A. C. Grayling:Doğada, özellikle insanda olduğu türden ileri bir tür zekayı bulamadığımız çok durum olduğu açıktır. Dolayısıyla, bir aslan bir geyiği yediğinde onun kötü olduğunu düşünmediğimiz gibi, doğada gerçekleşen davranışları da iyi ve kötü olarak değil nötr olarak kabul ederiz. Freud`un ortaya koyduğu fikirlerden birinin de insanın birçok rasyonel olmayan parçasının olduğu kesinlikle doğrudur. Darwin türlerin yaşam ağacının dallarına yerleştirilebileceğine inanıyordu Davranışlarımızın bazıları bilinçaltınca yönlendirilir ve bilincimizin doğrudan kontrolünde değildir. Ancak, insan doğanın geri kalanında var olan canlılara kıyasla, kendi davranışları üzerine düşünebilme yeteneğine sahiptir. Bizler bilinçaltı isteklerimizi,psikanaliz yoluyla da bilince çıkarabilecek durumdayız. Bir kez bilince getirdikten sonra da, bazı seçimler yapabilir ve kendimizi disipline edebiliriz. BBC: Darwin evrimin mekanizmasının nasıl işlediğini açıklayan bir teori ortaya koydu ve bu teoriye göre, evrimin mekanizması zorunlu olarak önceden belirlenmiş adımların gerçekleştiği determinist bir yapı değil, tesadüflerle de ilerleyebiliyor. Sizce Darwincilik`ten de çıkan bu düşünce, günlük yaşamımızı nasıl etkiliyor? A. C. Grayling: Bence Darwinci doğal seçme teorisi, türlerin hangi süreçler sonunda adapte olacağı anlamında determinist olarak görülebilir. Türlerin nasıl evrim göstereceği de, türün bireylerinin bilinç dışı dürtülerle kurduğu ilişkiler sonucunda belirlenebilir. Ancak, insanlar söz konusu olduğunda, belirli farklılıklar söz konusu çünkü örneğin bir insan zihni hakkında yalnızca kafatasının içini düşünerek tam bir sonuca ulaşamazsınız. Çünkü bir birey ve o bireyin benliği yalnızca, kafatasının için de olup bitenlerle açıklanamaz. Bu bireyin, çevresiyle ilişkileri de önemlidir. Bireylerin çevreleriyle kurduğu ilişkiler de oldukça karmaşık ve çeşitli olduğu için bir bireyin ya da insan türünün determinist bir şekilde ilerlediğini söylemezsiniz. Çünkü burada etkili olan hesaba katılamayacak kadar çok faktör var. `Uyumlu olanını yaşamını sürdürdüğü bir toplum uçları törpülüyor` BBC:Temelini Darwin`in düşüncesinden alan `en uyumlu olanın yaşamını sürdürmesi` fikri, evrim sürecinin aşırı olanları ödüllendirmediğine işaret ediyor. Bu aşırılar arasında da en güçsüz ve zayıf sayılanlar olduğu gibi, en güçlü ve ileri sayılanlar da bulunuyor ve evrim süreci içinde her iki uç da elenerek ortalama olanın, uyum sağlayanın hayatta kaldığı bir süreç tarif ediliyor. Peki, sizce bu düşünce siyasete ve sosyal yaşamın düzenlenmesine ilişkin fikirlerimizde nasıl sonuçlar doğuruyor. A. C. Grayling: Bu tabi ilginç bir nokta ve önemli bir soruna işaret ediyor. Öncelikle `en uyumlu olanın yaşamını sürdürmesi` fikrini Darwin`den etkilenerek ilk ortaya atan Herbert Spencer`dır. Darwin`de bu kavramı Spencer`ın ardından kullanmaya başlamıştır. Ancak, Darwin için `en uyumlu olanın yaşamını sürdürmesi` ilkesi, çevresine en iyi uyum sağlayan türlerin hayatta kaldığını ve türlerin çevre baskısı altında değişmek durumunda kaldıklarını anlatıyor. Darwin Türlerin Kökeni kitabı `insan`a pek değinmedi Spencer ise bunu bir bakıma Nietzsche`nin `üst insan` kavramı gibi en zeki, en hızlı gibi özelliklere sahip üstün bireylerin yaşamlarını sürdürmesi olarak ortaya koyuyor. İnsanlık tarihi, bu tür bir anlayışın yanlış olduğunu defalarca ortaya koydu. İnsanlar etik bir yaklaşımla, toplumun zayıf üyelerini korumak için kurumlar ve yaklaşımlar geliştirip, toplumda en baskın olanları sınırlama yoluna gitti. İnsanlar zaten, doğal çevrelerine uyum sağlamış değil, inşa ettikleriyle doğayı kendilerine uyumlu hale getirmiş durumdalar. BBC:Darwinci evrim anlayışının bazı dini çevrelerce `tehlikeli` bulunmasının en önemli nedeni Darwin teorisinin Tanrı inanışını imkansız kıldığı düşüncesi. Anthony Grayling, Darwin`in Tanrı inancını yıkma gibi bir iddiası olmamasına rağmen, fikirlerinin bu yönde bir etkisi olduğunu belirtiyor. A. C. Grayling: Tabi, Darwin hiçbir zaman teorisinin, yaşamın kökenini açıkladığını iddia etmemişti. Darwin`in açıkladığı canlıların zaman içinde geçirdikleri değişimlerin mekanizmasıdır. Fakat, karmaşık yapılara sahip canlıların daha basit yaşam formlarından evirilebildiğini göstermesi, canlıların da canlı olmayan moleküllerden ortaya çıkabileceğine işaret eder. Dolayısıyla, yaşamın kökenini açıklamak için bir yaratıcının gerekli olduğu türünden bir hipotez Darwin için gerekli değildi. Tabi bu tartışma, Darwin`den önce de olan bir tartışmadır. Ancak Darwin, yaşamı açıklamada dini varsayımların gerekli olduğu düşüncesini ciddi bir şekilde sarsmıştır. Bu nedenle farklı dinler, varoluşa ilişkin çok eski zamanlardan bu yana benimsedikleri inanışları savunmak için karşı bir baskı oluşturuyorlar. Yaradılış inanışının asıl olarak Amerika`da olsa da, Türkiye gibi ülkelerde de yeniden gündeme gelmesinin nedeni de bu çabalardır. Kaynak: www.bbc.co.uk

http://www.biyologlar.com/darwinizmin-dusunce-tarihine-etkisi

Mikroorganizmaların Tarihçesi

Mikroorganizmaların Tarihçesi

Tek hücreli mikroorganizmalar, yeryüzünde yaklaşık olarak 3-4 milyar yıl önce oluşmuş ilk canlı biçimleridir. Daha sonraki evrim süreci yavaştı ve yaklaşık olarak 3 milyar yıl boyunca Kambriyen öncesi devirde tüm canlılar mikroskobikti.

http://www.biyologlar.com/mikroorganizmalarin-tarihcesi

Biyologun Tanımı

Üniversitelerin Biyoloji, veya Biyoloji’nin alt dalları ile ilgili bölümlerinden farklı ünvanlara (Biyoteknolog, Botanikçi, Deniz Biyoloğu, Ekolog, Entomolog, Hidrobiyolog, Genetikçi, Limnolog, Moleküler Biyolog, Moleküler Genetikçi, Tıbbi Biyolog, Yaban Hayatı Biyologu, Zoolog) sahip olarak mezun olmuş, Canlılar, Ekosistemler, Çevre Yönetimi, Atık Yönetimi, Doğa Koruma, Çevre Sağlığı, Doğal Kaynakların Yönetimi ve Gıda Sağlığı, üzerine laboratuar veya doğal ortamında; araştırma, inceleme, analiz, denetim, üretim ve kontrol yapmaya, rapor düzenlemeye yetkili kişidir. TANIM Canlı türlerinin tanımlanması, sınıflandırılması, yaşamı ve evrimini etkileyen koşullar üzerinde araştırma yapan kişiye biyolog denir. GÖREVLER Biyologların görevleri araştırma ve uygulama alanındaki çalışmalara göre değişir. Araştırma alanında çalışan biyolog: - Canlıların yapılarını inceler ve bunları belli sınıflara yerleştirir, - Çeşitli canlı türlerinin evrimine etki eden etmenleri inceler, - Canlıların en iyi şekilde yaşayabileceği ortamları belirler. Uygulama alanında çalışan biyolog: - Biyolojik arıtmada ve kirletilmiş ortamlarda gerekli iyileştirici uygulamaları yapar, - Tahlil edilecek kan, idrar vb. maddeleri çeşitli kimyasal işlemlere tabi tutar, - İçme sularının ve tarım alanlarında kullanılan suların analizlerini yapar, - Biyolojik zenginliklerimizin araştırılması, doğa tarihi ve müzeleri oluşturulması için etkili kurumlarla işbirliği yapar. KULLANILAN ALET VE MALZEMELER - Laboratuar araç-gereçleri, - Mikroskop, - Kimyasal maddeler, - Bilgisayar MESLEĞİN GEREKTİRDİĞİ ÖZELLİKLER Biyolog olmak isteyenlerin; - Akademik yeteneği yüksek, - Fen bilimlerine, özellikle biyolojiye ilgili ve bu alanda başarılı, - Bilimsel meraka sahip, bir konuyu derinliğine araştırmak isteyen, - Görme duyusu ve belleği güçlü, - Renkleri ayırt edebilen, - Sabırlı ve dikkatli, kimseler olmaları gerekir. ÇALIŞMA ORTAMI VE KOŞULLARI Biyologların çalışma ortamı görevlerine göre değişir. Bitki ve hayvan türlerinin yaşayışını incelemek için açık havada, hücre ve dokuları incelemek için laboratuarda , inceleme sonuçlarını değerlendirmek için ise büro ortamında çalışmaları gerekir. Biyologların çalışma süresi genelde düzenli, çalışma ortamı temiz ve güvenlidir. Ancak arazi çalışmalarında incelenen canlı türlerine göre değişmek üzere gece gündüz, bazen günlerce çalışmak gerekebilir. ÇALIŞMA ALANLARI VE İŞ BULMA OLANAKLARI Biyologlar, kamu kuruluşlarında, üniversitelerin tıp, eczacılık, ziraat, orman, fen fakültelerinde, araştırma merkezlerinde, Tarım ve Köy İşleri, Orman, Çevre ve Sağlık Bakanlıklarına bağlı kuruluşlarda; özel sektörde ise ilaç ve besin endüstrisi kuruluşlarında çalışmaktadırlar. Biyoloji bölümü mezunları, “Ortaöğretim Alan Öğretmenliği Tezsiz Yüksek Lisans Programı” veya “Pedagojik Formasyon Programı” nı tamamlamaları durumunda “Biyoloji Öğretmenliği” yapabilirler. MESLEK EĞİTİMİNİN VERİLDİĞİ YERLER Meslek eğitimi çeşitli üniversitelere bağlı Fen-Edebiyat ve Fen Fakültelerinin “Biyoloji” bölümlerinde verilmektedir. MESLEK EĞİTİMİNE GİRİŞ KOŞULLARI Bölüme girebilmek için Öğrenci Seçme ve Yerleştirme Sınavı’nda (ÖSS) yeterli “Sayısal (SAY)" puanı almak gerekmektedir. EĞİTİMİN SÜRESİ VE İÇERİĞİ Mesleğin eğitim süresi 4 yıldır. Fen dersleri ağırlıklı bir eğitim yapılmaktadır. Teorik eğitimin yanında laboratuar çalışmaları da vardır. Eğitim sırasında isteğe bağlı olarak staj yapılır. Eğitim süresince; Genel Biyoloji, Moleküler Biyoloji, Kimya, İstatistik, Sistematik Botanik, Hayvan Histolojisi, Biyokimya, Genetik, Fizyoloji, Bitki Fizyolojisi, Türkiye'nin Bitki Örtüsü, Evrim, Parazitoloji, Bitki Ekolojisi ve Coğrafya, Ekoloji gibi dersleri alırlar. MESLEKTE İLERLEME Meslekte ilerleme genellikle lisansüstü eğitim veya doktora eğitimi ile olur. Biyologlar, botanik, zooloji, mikrobiyoloji, hidrobiyoloji ve uygulamalı biyoloji gibi alanların birinde uzmanlaşabilirler. Biyologların genellikle genetik ve biyokimya alanlarında uzmanlaşmaya yöneldikleri görülmektedir. BENZER MESLEKLER: Gentik Mühendisliği, Moloküler Biyoloji, Botanik, BURS, KREDİ VE ÜCRET DURUMU Meslek eğitimi süresince koşulları uyan öğrenciler Yüksek Öğrenim Kredi ve Yurtlar Kurumu ile diğer kamu kurum ve kuruluşlarının verdiği kredi ve burslardan yararlanabilirler. Eğitim sonrası; kamu kuruluşlarında çalışanlar çalıştıkları kurumun statüsüne göre sağlık hizmetleri sınıfından ücret alırlar. Özel işyerlerinde çalışanlar ise çalışma sürelerine, başarılarına ve deneyimlerine göre değişen ücretler alırlar.

http://www.biyologlar.com/biyologun-tanimi

Nesli Tükenen Hayvanlar İçin Neler Yapılabilir

Yabani Hayvanların biz insanlarla kontrollü ortak yasam alanlarını paylaşım geleneği çok eskilere dayanmaktadır. Yaklaşık 3 bin yıllık tarihi bir geçmişi olan bu ilişkiyi gerek yabani hayvan barınakları ve gerekse hayvanat bahçelerinin (ZOO) yaptıkları birçok araştırmadan biliyoruz. Bunlar arasında Cin`deki "intelligentia park i" en tarihi olanı unvanına sahiptir ve bunun dışında eski mısırdaki hayvan barınakları ve Romalılar döneminde "Campagna"lardaki fil yetistiriciligi de bu mana da önemlidir. Ve daha sonralari yeni cagla birlikte bugünkü hayvanat bahcelerinin de temellerini olusturan bir çok yabani hayvan bahcesi ve zoo kuruldu. Yani yabani hayvan bakimi günümce ait bir oluşum değildir Hatta "homo sapiens" dönemine kadar uzanan bir geçmişten söz etmek bile mümkündür; kal diki evcilleştirilme tarihini de başka türlü izah edemeyiz. Bugünkü ev hayvanlarının atalarının da yabani hayatta ait oldukları gerçeği kendi basına bizi böyle bir yoruma götürür. Eğer biz hayvanat bahcelerini insan - yabani hayvan ilişkileri ikileminde ele alırsak yabani hayvan bakımının 10.000 yıllık bir tarihi geçmişinin olduğunu söyleyebiliriz. Ancak günümüz hayvanat bahcelerinin amacı ile "homo sapiens" dönemindeki yabani hayvan bakımının amacı arasında tamamen tersi bir durum vardır. Modern Zoo`larda "homo sapiens" dönemden günüce kadar süregelen insan menseli bu anlamdaki olumsuzlukları tersine çevirme amaçlanmaktadır diyebiliriz. Yani yetiştirme alanında yapılan çalışmalar, genetik variabilitenin azami seviyeye çıkarılmasına yönelik çalışmalar ve de her türlüsünden evcilleştirmenin yol açtığı olumsuzlukların giderilmesine yönelik çalışmalar bugünkü modern Zoo`laf için en önemli öncelliktir. Hayvanat bahceleri (Zoo) dün olduğu gibi bugünde önemlerini korumaktadırlar. Onların yabani hayati anlama/anlatma fonksiyonları ve yabani hayvanları tanıma ve onlarla ilgili insanda oluşmuş önyargıları yok etme eylemliliği çok önemli bir değerdedir. 19 yüzyılda daha çok hayvanlar alemini merak temelinde perspektiflere sahip olan Zoo`lar gecen yüzyıllık süre içerisinde özellikle Hedigerin 1942 yılında biyolojiye kazandırdığı "Hayvanat bahceleri biyolojisi; (Tiergartenbiologie)" kavramı bu konuda radikal görüşler ortaya çıkardı. Özellikle ikinci dünya savasından sonra nesli tükenmekte olan hayvanlar ve hayvanat bahcelerinin görevleri gibi kritik belirlemeler masaya yatırıldı. 1970`in ortalarından itibaren bu konudaki tartışmalar legislativ tarzda ele alınmaya başlandı Ve bunların neticesinde Washington çeşitliliği (hayvan ve bitki türleri) koruma anlaşması (WA) ratikative (vücut bulmak vs.) edildi. Ve daha sonralari CITES (Convention on International Trade in Endangered Species of Wild Fauna and Flora) olarak değiştirildi ve birçok uluslararası hayvanat bahceleri yöneticisi ve dernekler, ve de uzman kurum ve organizasyonların aktif çalışmalarıyla karara bağlanan birçok kararname ve yönetmelikler devletleri bağlayıcı tarzda kanunlaştırıldı ve nihayetinde AB normları bünyesinde birlik üyesi ülkeleri de bağlayıcı kanunlar ve yönetmelikler (EU-Zoorichtlinie). Olarak yasalarda yer aldı. Tabiî ki bütün bunlara paralel olarak hayvanat bahcelerime amaç ve tüzüklerine anlamına uygun olarak değiştirip kendi birlik ve organizasyonlarını güçlendirdiler. Ve birçok resmi kurum ve kuruluşlarla olan organik bağlarını güçlendirip NGO`larla (Non- Governmental Organization) çok sıkı işbirliklerine girdiler. Hayvanat bahceleri maceramız yolculuğuna devam ederken doğadaki tür ceşitlliğindeki erimede hızından bir şey kaybetmiyor ve adeta tehlike canlarını çalmaya devam ediyor. Ve sırf emational (duygusal) anlamdaki önlemlerde türlerin çeşitliliğini korumaya yetmiyor. Yapılan birçok tartışmalar daha çok emationel bir muhtevaya sahip ve faktiv (reel) önlemlerden uzak ve antropomorph bir karekter tasimakta. Ve bundan dolayda uygulanabilirlikleri reel olmaktan çok uzak kalıyor. Burada asil ihtiyaç duyulan daha çok bilimsel araç ve gereç ve de bilgi alışverişini koordine eden daha aktif organizasyonlar ve de kamuoyunu bilgilendiren geniş kapsamlı enformasyon ağları temel ihtiyaç olarak bu günden yarına pratiğe geçmelidir Ebetteki şimdiye kadar sergilenmiş birçok değerli çabayı görmezlikten gelemeyiz bilakis onların pratik uygula marina kendi penceremizden her türlü desteği vermeye devam edeceğiz. Tabiî ki burada AB hayvanat bahceleri yasalarını (EU- Zoorichtlinie) görmezlikten gelemeyiz bilakis bunlar yabani hayatin en önemli kazanımlarıdır. Burada sorun bunların pratikte işlevsel kılınmasıdır. Ve biliyoruz ki böyle bir durumda vitrin vazifesi gören hiçbir hayvanat bahcesi isletme izni alamayacak sadece yabani hayati kurtarmayı kendilerine amaç edinen Zoo`lar mevcudiyetini koruyacak. Yani tür çeşitliliğinin mazi olduğu gün geldiğinde sadece aşağıdaki 4 temel prensimi kendilerine amaç edinmiş hayvanat bahceleri hayatımızdaki varlıklarını sürdürüyor olacaklar 1. Eğitim: İnsanlar yabani hayvan, yabani hayat ve biotope gibi konularda süreklilik arz eden bicimde bilgilendirilmelidir. 2. Dinlenme 3. Tür çeşitliliğini koruma: Nesli tükenmekte olan ya da olma tehlikesi ile karsı olan yabani hayvanları bünyesine almayı temel ilke edinmeli buna uygun bakim sistemlerini oluşturup geliştirmelidir. 4. Araştırma. İn-site anlamdaki projeler araştırılmalı ve de böylesi bilimsel çalışmalar desteklenmelidir. Hayvan bakim koşullarının maksimum seviyede tutulması için aktuel araştırmaların ışığındaki bir sürekliliği içleştirmelidir. Tabii olarak bu amaçların gerçekleşmesinde küçük hayvanat bahceleri yetmezlikler yasayacaklar ve de yasıyorlar. Bu anlamda tam da bu noktada kendilerini tür çeşitliliğinin korunmasında yetkin, sorumlu gören her organizasyon (Mesela: EAZA "European Association of Zoos and Aquaria", EEP "European Endangered Species Programmes" gibi...) bu anlamdaki çalışmalara aktif destek sunmalıdırlar. Kaldı ki bu tür organizasyonların sorumlulukları RIO Konventionunda ayni yönde acık seçik tanımlanmış ve bağlayıcılığı vurgulanmıştır. Ebetteki bunlarda yeterli değil. Öyleci hayvanat bahceleri adeta cehre ve çevrelerini radikal anlam da değiştirme sorumluluğu ve de zorunluluğu ile karsı karşıyalar. Yani "sırf koleksiyoncu zihniyet" artik "state of the art" olmaktan çıkmıştır. Belki ziyaretçi çekme amaçlı (ekonomik amaçlı) böyle bir şeyi kendisini halen dayatıyor olabilir, fakat bu Zoo`lari canlılar müzesine dönüştürmeyi hakli kılmaz. Yani hayvanat bahcelerine alınacak hayvanlar herşeyden önce Zoolarin ihtiyacından değil yabani hayatin korunmasına yönelik bir amacı önüne koymalıdır. Böylesi bir durumda hangi hayvan türü? Ve neden? alınacak tür nasıl ve nerede bakılacak? Gibi sorular olmaksa olmazından bilimsel olarak cevaplandırılması gereken temel kritikler olmalıdır Ben burada "statü of THA art" kavramını öneminden dolayı biraz açmak istiyorum. Yani hayvanların konulacağı acık ve kapalı alanların etnolojik, çevreyle ilgili, genetik, fizyolojik vb. bilimsel değeri olan verilere uygunluğu tartışmaya yer vermeyecek açıklıkta uygun olmalıdır. Günümüzdeki bilimsel değerlerin yol göstericiliğinde yaban hayvanlarının hayvanat bahcelerinde de olsa onların doğal ortamlarına gerek botanik ve gerekse de büyüklük (hacim) anlamında uyumluluk içerisinde olması gerekir. Günümüzde bazı Zoo`larin bu tespitlere uygunluk arz eden mevcudiyetice bu planlama ve tespitlerin uygulanabilirlik derecesini artırmaktadır. Fakat bu; yabani hayvan bakimi şartlarının sadece "Disney Touch" olacağı anlamına gelmez bilakis yabani yasam ortamının bazı Sünni yapıilanmalarla da giderilebileceği imkânlarda göz ardi edilmeyecektir. Burada temel amaç hayvanların repertoirel davranışlarını yasayabilecekleri doğal yasam ortamlarının maksimum dereceye getirilebilme perspektifinin olmasıdır. "State of the art" kavramı ayni zamanda klasik anlamdaki Zoo anlayışını da mahkûm etmektedir. Yani Zoo`lar artik bireysel agiere olma durumlarını terk etmeliler. Zoologlar, Biyolog lar artik kendilerini enternasyonal işbirliği ve bilgi alışverişi kollektivismusuna entegre etmeliler ve bu anlamda dünya çapında bir perspektifin sahibi olarak hayvan biyolojisi merkezli işbirliklerine hazır olmalılar ve de botanik bahceleri, üniversiteler, yabani hayati araştıran birimler vs. birçok kurum ve kuruluşla kooparativ çalışmaları önlerine koymalıdırlar. Ve hatta bu anlamda Zoo`lar neden kendi projelerini "in - situ" olarak ele almasınlar Elbette şimdiden birçok -botanik bahceleri ve hayvanat bahceleri kombinasyonlu- Zoo`lar umut veren basarîli çalışmalar yürütmektedirler. Mesela: Wilhelma in Stuttgart, Paignton in England, Zoo Singapur bunlardan sadece bir kaçıdır. Zoo Zürich deki Masoala evi, ya da Tiergarten Schönbrunn deki Regenwald evi Botanik - Zoologie Kombinationunun en verimli yenilikleri olarak görülebile Çünkü bu projelerde arka plandaki en temel amaç hayvan ve bitki ortak yaşamının yabani hayati tanıma ve realize etme yönündedir. Kaldı ki hayvan bitki koevolutiv kombinasyonunun evolutiv yasamın motoru olduğu gerçekliği de göz önüne alındığında ve de insanların da ziyaretçi statüsünde bu kombinationda yerini aldığıca eklendiğinde bu tür projelerin önem ve ehemmiyetleri kesin kez ortaya çıkacaktır. Zoo`lar amaçlarına uygun gelişim ve değişimi yasamak zorundalar. Burada New York, Cincinatti, Vancouver, Emmen gibi yerlerde doğa-tarihi müzesi - Zoo kooperasyonları amacına uygun basarîli çalışmalar yürüten hayvanat bahceleri olarak gösterebiliriz. Bunlardan New York takı Bronx Zoo daki Kongobölümü görülmeye değer çok basarîli bir synthese hayat vermiş. Bu kombination`un yarattığı efekt büyük bir çeşitlilik göstermektedir: Mesela: Bilgi, canlı hayvanlar, bitkiler ve de exponativ müze kooperatif ahengi insani adeta başka bir âleme götürüyor ve insana biotop anlamda dün ve yarınlarda nelerin kaybedildiğini bir film şeridi gibi gözler önüne seriyor. Adeta interaktivitet bir sanat yaratılmış. Ziyaretçiler gördükleri karsısında geleceği kurtarma amaçlı ekonomik destek olma duygusu bile yasıyorlar. Yabani hayati teşvik anlamında ki gerekliliği tüm çıplaklığı ile ziyaretçilere göstermektedir Tabii ki yukarıda anlatmaya çalıştığım bazı doğruya evirilme basarîsi göstermiş projelerin, küçük hayvanat bahcelerinin vasıflarını yitirdiği ya da yitireceği seklindeki bir sonuca yorumlanması yerinde bir belirleme olmayacaktır. Çünkü yabani hayati yasama, yaşatma ve koruma anlamında her türden irili ufaklı yabani hayvan birimleri kendi kaynakları ölçüsünde büyük isler başarabilirler. Benim burada izahatını yapmaya çalıştığım şey amaç ve amaçlara uygunluk prensipleridir. Bizler hepimiz bu çerçevede sorumluluklar ve zorunluluklar sahibi olma durumundayız. Mesela nesli tükenmekte olan hayvanları korumaya almak yabani hayvanlar ile ilgili bilgilendirme çalışmaları yapmak ve de onların yasam koşullarını insanlara (ziyaretçi) hissettirmek yapabileceklerimizin en asgarisi olmalıdır. Yani ister küçük olsun ister büyük olsun her hayvanat bahcesi yukarıda bahsini ettiğim 4 temel sorumluluğu benimsemeli ve gereklerini yerine getirmenin çabasını sergilemelidir. Burada kendisine ekolojik-sistem temelinde stratejiler oluşturmuş olan WAZA - (World Association of Zoos and Aquariums - Conservation) yabani hayvanlarla uğrasan her birimin kendine rehber edineceği bilimsel bir organisation olduğunu özellikle vurgulamak istiyorum. Bu birimle olan organik ilişkilerin yabani hayat anlamında teşvik edici motifler yaratacağı faktiv bir olgudur. Bu temelde gerek in-situ ve gerekse ex- situ bicicilerinde yaban Hayvanlarını koruma projeleri mevcut bilimsel veriler ışığında optimal ize edilmelidir. Ayni şekilde yabani yasama hazırlama ve katkı amaçlı yaban hayvani yetiştirme programları WAZA felsefesi merkezli yürütülmesi çok önemlidir. 2.) Yabani Hayat ve Yasam Alanları 2.1.) Yasam Alanları Yabani hayvanlar daha çok vahşi ormanlarda yasamaktalar. Yani insanların dokunamadığı, giremediği alanlar güvenlikli yasam alanları olarak tercih edilmektedir. Ne yazık ki insanlar tarafından islenmiş, kendi ihtiyaçları temelinde sekil verilmiş arazilerin Ergün çoğalarak büyümesi beraberinde yabani hayvanların yasam alanlarını küçültmekte ve bunun sonucu olacakta yabani hayvanların gerek tür gerekse sayısal anlamdaki popülasyonları azalmakta ya da yok olmaktadır.. Bundan dolayıdır ki yabani hayvanların yasam alanları ile ilgili ihtiyaçları temelindeki proje ve araştırmalar yoğunluk kazandırılmalıdır. Her şeyden önce onları düşmanlarından koruyacak, gıda ihtiyaçlarına yanıt olabilecek, üremelerine olanak sağlıyacak yasam alanları yaratılmalıdır. 2.2) Yabani Hayat Etimolojisi ve Tanımı 2.2.1.) Genel Bilgiler İlk olarak 15 yüzyılda değişik tanımlamalarla izahatı yapılmaya başlanan yabani hayat kavramına 17 yüzyıl ile birlikte cofrayadan cografyaya ve hatta kültürden kültüre farklılık gösteren tanımlamalar geliştirilmeye çalışıldı. Mesela; „terk edilmiş alanlar“, "issizlik, çöl“, "insansız yerler“, „vahşi ormanlar“ gibi kavramlarla izah edilmeye çalışıldı. Günümüzde daha çok „bozkır“, „çöl, sahra“, balta girmemiş orman“, „fundalık“, „bataklık“ gibi kavramlarla tanımlanmaya çalışılmaktadır. Ancak bazı negatif tanımlamalar da yapılmıyor değil mesela; „verimsizlik“, issizlik“, „faydasızlık“, „sürgün“, „kültürsüzlük“ vb gibi… 1872 yılındaki bilimsel tanımlama ihtiyacı ortaya çıkıncaya kadarki sürede çok değişik tanımlamalar yapıldı. Günümüzde bu anlamdaki mevcut önyargılara yanıt olma temelinde bazı etimolojik tanımlamaları burada zikretme gereği duymaktayım. Acımasız, karışık, yabanileşmiş, yolunu sasırmış hayat (Luther); Orman kanunlarının ve kargaşanın hâkim olduğu hayat (Schambach); Huşu ve dehşet arasındaki gerilim, şaşkınlık ve ürperme, tutku ve telaş, özlem ve korku, esenlik ve çaresizlik. (Wolfgang Scherzinger) ya da aldatıcı, yanıltıcı maddelestirme (Roderik Nash) Yaban hayati ile ilgili tarihsel negatif / pozitif tanımlamalardan anlıyoruz ki biz insanların yabani hayata karşıtlık temelindeki duruşumuz çok derin tarihi köklere sahip. Öncüllerimiz yabani hayati kültürlü olmanın zıt anlamlısı tehlikeli ve kontrol edilemeyen yasam sahaları olarak görmek ve tanımlamak istemişler. Günümüzde bir çok insan yaban hayati görsel yazılı basından tanıdığı için böylesi manupulasyonlara oldukca yatkin bir yapi icerisinde. Kaldı ki yabani hayata çıkarlar temelinde karşıt pozisyondaki insan kaynaklı birimlerin hakim mevcudiyetleri de hesaba katıldığında bu konudaki çalışmaların pozitif evirilme anlamındaki basari şanslarıda o anlamda zor olacaktır. 2.2.2.) Yabani hayatla ilgili bazı bilimsel tanımlamalar - Convertion International`a göre Yabani Hayat: Başlangıçtaki vejetasyonunun %70 den fazlasını koruyabilmiş, yüzölçümü 1000.000 ha dan fazla olan, bir km² sinde 5 insandan az yasayan yasam alanları yabani hayat yasam alanları olarak tanımlanır. Bu tanıma göre dünyada toplam 37 yabani yasam alanı mevcuttur. - International Union of Conservation Natüre göre Yabani Hayat: Asli karakterini koruyabilmiş, biyolojik çeşitliliği mevcut, bozulmamış yasam alanları dinamiğine sahip, sürekli yerleşkelerle morfolojik yapisi değiştirilmemiş olan ve koruma ve menecment programlarla karakteri korunabilen geniş, aslına uygun ya da çok az değişim göstermiş alanlar yabani yasam alanları olarak tanımlanır. 2.2.3.)Yabani Hayat ile ilgili çalışmalar Yabani hayatin mevcut yapisi ve kategorisine göre primler ve sekunder olarak iki bölüm altında inceleme yapmanın anlaşılır olmayı kolaylaştıracağını düşünüyorum. 1.) Primler yabani hayat: Burada amacı asmama anlamında sadece bazı genel konu baslıklarını vermekle yetineceğim - Kalite kontrol çalışmaları: Yerleşkelerin durumu, vejetasyon, faydalılık değerleri… - Indigene nüfus tespit ve araştırmaları - Kullanım alanları ve değerleri - Tehlike altında oluşlarına göre verilendirme çalışmaları - Koruma alanları: Antarktika (Southern Ocean Whale Sanctuary), Asya (Great Arctic Zapovednik), Avrupa (Laponia, Nationalpark Sarek und Naturreservat Sjaunja) - ... 2.) Sekunder Yabani Hayat: - Doğayı koruma konseptleri - gelişim süreçlerini kontrol programları - gerçekleştirilebilen projelerin tespiti: doğal orman rezervleri, toplam rezervler… - yabani hayat geliştirme alanları - … 2.2.4.) Yabani Hayat ve Ekoloji Burada amacı asmama adına kısaca ekoloji kavramına açıklık getirmenin doğru olacağına inanıyorum. 2.2.4.1.) Genel bilgiler Ekoloji (yunanca: mikos) 1866 yılında Ernest Haeckel tarafından organizmaların kendi aralarinda ve abiotik çevreleriyle ilişkilerini inceleyen ve de biyoloji biliminin bir dalı ve matematik biliminin de çok güçlü bir kolu olarak tanımlanmıştır. Ve daha sonralari Haeckel`in bu tanımlamasındaki anlamına uygun olarak geoekoloji ve bioekoloji tanımlamaları geliştirilmiştir. 20 yüzyılın ikinci yarısından sonra gelişen cevre bilinciyle birlikte cevre korumaya hizmet anlamında daha çok doğa bilimleri (biyoloji...) kategorisinde yerini almıştır. 2.2.4.2.) Biyolojide Ekoloji kavramı Ekoloji biliminin kurucuları olarak; darvinizm sempatizanlığı ile tanınan Haeckel den başka; Justus von Liebig, Charles Darvin, Karl August Möbius, Aldo Leopold, Ellen Swallow Richards, Arthur George Tansley ve August Thienemann sayılabilir. Ancak günümüzdeki ekoloji tartışmalarına damgasını vuran Danimarka asilli ünlü botanikçi Johannes Eugenius Bulow Warming`tir. Değişik dönemlerde ihtiyaçlar temelinde değişik kategorilerde ele alınan ekoloji kavramı günümüz ders kitaplarında ki tanımı itibariyle (Schroedel, 2005): "Ekoloji abiotik ve biotik faktörlerin birbirleriyle ve ekolojik-sistem içerisindeki karstiklikli etkileşimlerini inceleyen bilim koludur" Yani canlıların varılma sıklıkları ve yasam kalitelerinin değişim-ilişki bilimsel normları cercisinde ele alan bir kavram olarak genel bir tanımlamayla genel kabul görmektedir. 2.2.4.3.) Populüst anlam itibariyle ekoloji kavramı UNESCO` nun bu anlamdaki çalışmaları (Man and Biosphere-Programm ve Uluslararasi Biyoloji yılı gibi) ve ekolojik araştırmaların yaygınlaşması bu konudaki populüreteyi artirmistir. Mesela 1960 li yillarda amerikali biyolog Rachel Carson` nun cevreyi koruma temelinde öncülügünü ettigi hareketin DDT gibi cevre zehiri etkisindeki ilaclarin kullaniminin yasaklanmasinin global etkileri zamanla ekoloji kavraminin iceriginin de genislemesini beraberinde getirmistir. Böylece günümüz ekolojik hareketlerin temeli olusmustur. Ve karsimiza Öko-Ciftlikler, Öko-Sehirler, Öko-Enerji, Eko-Elektrik. Gibi birçok kavramlar seklinde çıkmıştır. Ebetteki bu hızlı gelişim paralelinde politik ve ekonomik çıkarlara dayalı suistimaleri de ortaya çıkardı. Ki bunlar günümüzde doğrulara ulaşmada çok büyük sorunlar olarak önümüzde durmaktalar. 2.2.4.4.) Araştırma malzemesi olarak ekoloji kavramı Biotik ve abiotik faktörlerin sistematik fonksiyonel ilişkileri çerçevesinde eko-sistem kavramı temelinde ekotop (Biotop + Biozönos), tür popülasyonları ve interdisipliner araştırmalar gibi kavramlarla içi doldurulmaya çalışıldı Ve böylece Evolutionbiolojisi, Genetik, Coğrafya, Klimatoloji, Ekonomi, Jeoloji, Etnoloji, Psycholoji, Cevre ve Tür farklılıklarını koruma gibi bilim dalları eko-sistemi korumanın olmazsa olmazları olarak kendisini dayattı 2.2.4.5.) Ekolojinin sınıflandırılması Klasik anlamda ekoloji: 1.) Autökoloji 2.) Populationekoloji 3.) Synekoloji İlgi alanlarına göre ekoloji: 1.) Hayvan, Bitki ve Mikroplar Ekolojisi 2.) Marine, Limnoloji ve Terrestik Ekoloji 3.) Geoekoloji 4.) Toprak Ekolojisi 5.) Moleküler Ekoloji 6.) Human Ekoloji 7.) Sivilisation Ekolojisi 8.) Arazi Ekolojisi 9.) Agrar ve Urban Ekolojisi 10.) Davranış Ekolojisi 11.) Kimyasal Ekoloji 12.) Eko-Toksikoloji 13.) vb. gibi Gelişim aşamalarına göre ekoloji: 1.) Neoekoloji 2.) Paleoekoloji 2.3.) Yasam Alanları Menecment- Yabani Hayvanlar - Uluslararası Sorumluluklar Doğanın bir bütün olarak düşünülmesi ve korunması, - globalizm pratik realitesinin (gerçekliğinin) kabulü ve yeryüzü topluluklarının ortak hareket etmesi temelinde - globus (yerküre) eksenli bir ihtiyaç olarak ortaya çıkmaktadır. Dünyadaki hiçbir birim tek başına biyolojik çeşitliliği ve doğal yasam alanlarını koruyacak yetkinlikte ve güçte değil. İnsanların doğa ve yabani hayvanlar üzerindeki olumsuz etkilerinin national (ulusal) ve kültürel boyutları ile sınırları zorlayan bir tarzda artış eğilimi göstermesi; günümüzde tepkisel anlamdaki bir çok uluslararası cevre konventionu (sözleşmesi) çerçevesinde, - çerçevesi doğru çizilmiş çözümlemelerle -, özellikle göçebe hayvan türlerinin (su kuşları, memeli hayvanlar…) korunmasını prioritet (öncelikli…) sorumluluklar anlamında bir çok farklı organizasyonlar sahsında aktif pozisyon alma anlamında zorunluluk haline getirmektedir. Ancak devletler hukuku ve tek tek ülke sınırları; mevzuatlar ve pratik uygulamalar temelinde bazı düzenleme ve çalışmaları zaman zaman zorlaştırmaktadır. Mesela Lynx lynx adli yırtıcı kedilerin bu gün bir çok Avrupa ülkesindeki sinir hatlarında revirlerini oluşturmuş olmaları ve bunların yasam sahalarının ihtiyaçlar temelinde düzenlenmesi (yiyecek ihtiyacı, tehlikesiz hareket alanları vb) mutlak bir international işbirliğini zorunlu kılmaktadır. Yabani hayvan popülâsyonlarının etkin ve yararlı bir formda enternasyonal sözleşmeler (CBD ve IUCN gibi) çerçevesinde korunması ve ressourclerin (doğal kaynakların) symbiose bir anlayışla ele alınması; en önemli mantıklı regülâsyon (düzenleme…) metotları olarak kabul edilmelidir. Örneğin avcılığın böylesi bir çerçevede düzenlenmesi sadece popülasyonların korunmasında değil, ayni zamanda ekonomik getiriler temelinde de faydaya dönüşecektir. Böylesi çerçeve çalışmalarının incelenmesi, islenmesi ve Realsize edilebilirliliği yaklaşık 80 dünya ülkesinde etkinliği olan CIC (International Council for Game and Wildlife Conservation) adlı organizasyonun en önemli asli görevi olarak tanımlanmış ve böylece çalışmaların / projelerin yönetimi, araştırma birimleri ve avcılık örgütlerinin düzenlemesi ve de tek tek bireylerin bu anlamda eğitilmesi asli görevler olarak karsımıza çıkmaktadır. Yani ekosistemin korunmasında ve düzenlenmesinde ya da başka bir deyişle hayvan ve bitkilerin çeşitlilik anlamındaki negatif etkileşimleri; insanların özel ihtiyaçları temelindeki yönelimler eksenli olduğu gerçeğinin kabulü; böylesi çerçeve programları hazırlanırken ilk etapta dikkate alınması gereken nokta olmalıdır. Bu anlamda tasları yerli yerse oturtmak nasıl olacak gibi can âlici sorular çözümlemeler temelinde çok önemsenmelidir. Yani bir yandan kültür arazilerinin insanların ihtiyaçları temelinde düzenlenmesi gerekirken öbür yandan bilinçli ve aktif çalışmalarla yabani hayvanların bu birimlere integrationunu (bütünleşme…) kolaylaştırıcı önlemler geliştirilmelidir. Başka bir deyişle; insanların ve hayvanların birbirleri ile tek taraflı çıkarlara dayalı konfliktlerini (çelişki…) en asgariye indirmeye yönelik girişimler etkin ve aktif hale getirilmelidir. Böylesi projelerde; doğal interaktionlarin (ortak noktaların…) daha iyi görülüp değerlendirilmesi etkin düzenlemelere ulaşmayı kolaylaştıracaktır. Uluslararası kabul gören bazı Integration stratejileri: Değişik alanlardaki arazi kullanım amaçlarının kesin ve acık tanımı yapılmalıdır. Habitat – Yabani Hayvan Menecment koordinasyonu sağlanmalıdır. Arazi kullanım planları oluşturulurken yabani hayvanlar etkin bir yan faktör olarak hesaba katılmalıdır (ormancılık, tarım, turizm, yol yapımı…) Popülâsyon kontrollerini amaçlayan avcılık anlayışının oluşturulmasını hedefleyen düzenlemelerde yerel birimlerdeki zarar ve toleranslar hesaba katılmalıdır (vejetasyon, hayvancılık…) Yaptığım bir takim statiksel yerel çalışmalarda; böylesi projelerde geleneksel bazı kalıplarında gözerdi edilmemesi gerekliliği ortaya cıktı. Mesela: avcı – ormancı çelişkisinin gerçekte traditional (geleneksel) karakterli olduğunun tespiti gibi. Yani kompetenz (yeterlilik, yetkinlik…) anlamadaki ayrışmalar geleneksel karakterli ve avcı -ormancı çelişkisini yaratmaktadır. Bu nedenle amaca yönelik yasal düzenlemeler ve eğitim çalışmaları çok önemsenmelidir. Ve hatta modern ulusal parklar menecmenti çalışmalarında böylesi çelişkilerin kendisini sorun olarak dayatmaması Gerçekliğini bu temelde yorumlamak bazı şeyleri anlaşılır kılacaktır. Yani böylesi projelerde asli aktörlerin çıkarsal işbirliğini gözeten bir duruş sahibi olmak gerekir. Yabani hayvan menecmenti projelerindeki realisation ve buna uygun yasal düzenlemeler yabani hayat bölgesel verilendirmelerinde (WÖRP) çok önemli instrumentler (faktörler…)olarak görülebilmelidir. Özellikle doğru temelde ele alınan yerel - politik planlamalar; bu anlamda çok olumlu sosyal sorumluluklar ortaya koyabilmekte ve yabani hayvanlarının yasadıkları yerlerde uygun yasam alanları sahibi olmaları gerektiği perspektifinin ortaya konulmasında çok etkili olabilmektedir. Yani doğa koruma ve politik duruşların ayni amaca hizmet temelinde kombinasyonu ile birçok sivil çalışma gruplarının çıkarlarının, kamusal çıkarlarla yasal zemindeki uyumu oluşturulabilir. Ayrıca böylesi uzun soluklu yönelimler ulusal sınırların da dışına tasan (EU Natura 2000 ) bir takim önlem ve infra strüktürel planlamalarla etkinlik ve yetkinlik anlamında pozitif sonuçlar vermek suretiyle değişik birimler (ormancı, avcı, çiftçi, turizm, doğa korumacılar, resmi birimler…) arasındaki çelişkileri azamiye indirme temelinde uyumlu bir durusu ortaya koyabilmektedir. Yabani hayvanlar için yasam alanları planlanırken onların ayni zamanda aktif faktör olarak görülmesi ve hesaba katılması çok önemli. Mesela olası göç yolları anlamındaki passiv yerleşke konumları göz önüne alınmalıdır. Yine insan kaynaklı olası müdahaleler önceden tespit edilmeli ve bunlara yönelik önlemsel projeler ve çalışmalar (özellikle Yabani Hayvan-Habitat) önceden sonuç verici bir program ve hedefe sahip olmalıdır ve karşılıklı sınırlara saygıyı esas alan prensipler nihayet olmalıdır. Yabani hayvan – insan çelişkilerindeki tarihsel nedenleri gözeten programlar flexibel (esnek…) olmalı ve integrativ sorunların çözümüne amaç edinmeli ve de her türlü relevant arazi kullanıcılarını göz önüne alan bir anlayış sergilemelidir. Yani bir bütün olarak var olmanın gerekçeleri önceden anlatılabilmeli yoksa bekle gör temelinde bir planlama kesinlikle yapılmamalıdır. Kesinlikle tüm etkili ve yetkili birimlerden oluşan yapılanmaların ortak konsensüsleri temelinde hareket edilmelidir. (Avcı-Belediye gibi). Ancak böylesi bir yönelimle ortak çıkarlar eksenli bir içice geçiş sağlanmış olur ki bu da basarîyi daim ve mantıklı kılacaktır. Söz konusu alanlar arasındaki harmonim denge (Balance) sosyo-ekonomik, politik – administrativ ve ekolojik dengesel ihtiyaçlar gibi önemli kriterleri gözeten önlemlerle mümkündür. Zaten CIC program ve ilkesel yaklaşımlarında da çözüm anlamındaki bütünlüksel yaklaşımların gerekliliğine işaret edilmekte ve insan – yabani hayvan – cevre balansının sosyo-ekonomik ve ekolojik sistem eksenli dinamikle sağlanacağı TESİD edilmektedir. Yani sonuç olarak yaşanabilir bir cevre ideali; büyük ölçekli yabani hayat – çevrebilim – arazi planlamaları ve bunların bütünün bir parçası olarak tüm gelişim safhalarında yerel, bölgesel, ulusal ve international katılımlı projelerle desteklenmesi ve ortaya konulması ile oluşturulabilir…

http://www.biyologlar.com/nesli-tukenen-hayvanlar-icin-neler-yapilabilir

Medikal Biyolojiye Giriş

HÜCRE BİLİMİ En ilkel yapılı hücre prokaryotik hücredir.Nukleus zarı bulunmaz. DNA hücre sitoplazmasında bulunur.Organellere sahip değildir. Örnek bakteri hücresi verilebilir. İleri yapı göstaeren hücreler eukaryotik hücrelerdir.DNA materyali nukleus zarı ile çevrelenmiştir.Çok değişik organelleri mevcuttur. Örnek insan hücresi verilebilir. HÜCREYİ İNCELEME YÖNTEMLERİ DOKU KÜLTÜRLERİ VİTAL BOYAMA HÜCRE ORGANELLERİNİN AYRILMASI YÖNTEMİ TESPİT YÖNTEMİ HÜCRENİN GENEL ÖZELLİKLERİ Hücrenin Şekli: Yaptığı işe ve bulunduğu yere göre değişir. Hücrenin Büyüklüğü: Ortalama olarak 10 – 15 mikron arasında değişirler. Hücrenin mikroskobik yapısı: Hücre zarı ve protoplazma olarak iki ana bölümde incelenir. HÜCRE ZARI Hücre zarı hücreyi dış ortamdan ayırır ve hücreye belli bir şekil verir. Ayrıca besin maddelerinin hücre içine girmesini, metabolizma artıkları ve salgı maddelerinin hücre dışına çıkmasını sağlayarak hücre içeriğini düzenler. Biyolojik bütün zarlar ortak temel bir yapıya sahip olup çift katlı lipid yapısındadır. Bu çift katlı lipid tabakasında daima özel zar proteinleri bulunur. Hücre zarının iç yüzeyinde bulunan proteinler daha çok enzim görevi yaparken dış yüzeydekiler reseptör görevi yaparlar.Zarın protein bileşeni hücreye ıslanabilme ve esneme özelliği verir. Yanyana iki hücrenin zarları arasında bir aralık vardır.(100-200 Angstrom ) Hücre zarı permeabl İmpermeabl Semipermeabl olabilir. Hücre zarının rejenerasyon yeteneği vardır. HÜCRE ZARINDA SERBEST YÜZEY FARKLILAŞMALARI MİKROVİLLUSLAR TİTREK TÜYLER (CİLİA ) KAMÇI (FLAGELLUM ) HÜCRE ZARINDA YAN YÜZEY FARKLILAŞMALARI Terminal Tıkaç: Serbest yüzeyin hemen altında bulunur.Zarlar kaynaşır, aralık kalmaz. Desmosom: Zar kalınlaşmaz, sitoplazma yoğunlaşır, bölge disk şeklinde görülür. Sıvı rahat dolaşır. Gap Junction aralır. Fakat kapanmaz, sıvı geçer. PROTOPLAZMA Protoplazma, sitoplazma ve nukleus bölümlerini içeren bir kavramdır. Sitoplazma ve nukleus dış taraflarında bir zar sistemiyle sarılarak çevrelerinden ve birbirlerinden ayrılırlar. Protoplazma ,su, elektrolitler, karbonhidratlar, lipidler ve proteinlerden oluşur. SİTOPLAZMA Hücre zarı ile nukleus arasında yer alan akışkan kısımdır. Membrana yakın kısmına ektoplazma, iç kısmına endoplazma denir. Her hücrenin sitoplazması içinde ondan bir zar birimi ile ayrılmış ve çeşitli görevler yapmak üzere gelişmiş farklılaşmalar (ORGANEL ) vardır. Sitoplazma içindeki yağ damlacıkları, pigment granülleri, vitellus ve salgı damlaları gibi erimiş maddelere paraplazma veya inkluzyon denir. Eukaryotik hücrelerde membranın dış kısmında karbonhidratça zengin olan asimetrik kısma GLİKOKALİKS denir. Glikokaliks, hücreye antijen özelliği verir.Hücrelerin moleküler düzeyde birbirini tanımasını ve etkileşimini sağlar.Doku organ trasplantasyonunda hücreler bu sayede birbirlerini tanıyarak doku reddi olur. SİTOPLAZMADA BULUNAN BAŞLICA ORGANELLER ENDOPLAZMİK RETİCULUM E.R. üzerinde taşıdığı enzim ve ribozomlardan dolayı kimyasal olayların cereyan ettiği, oluşan maddelerin taşındığı ve sentezlenen maddelerin depo edilmesini sağlayan bir sitoplazma iskeletidir. E.R. İki tiptir. Granülsüz E.R.: Karaciğer paranşim hücrelerinde, yağlı maddelerin sentezini yapan yağ bezi hücrelerinde veya steroid hormon sentezleyen bazı endokrin bezlerde fazla bulunur. Granüllü E.R. E.R. Un başlıca görevi protein sentezi yapmak, sentezlenen proteinleri kanalcıkları ile hücrenin gerekli yerlerine veya hücre dışına taşımak veya sentezlenen maddeleri keseciklerinde depo etmektir. RİBOZOMLAR Ribozomlar hemen hemen eşit miktarda RNA ve proteinden oluşmuş, oval granüllerdir. Bakteriden yüksek organizasyonlu hayvan ve bitkilere kadar her tür hücrede bulunur. Görevleri protein sentezi yapmaktır. Memelilerde eritrosit ve trombositler , bitkilerden de bakteriler hariç bütün hayvan ve bitki hücrelerinde hücre membranının sitoplazma içinde devamı olan hücre zarı ile nukleus zarı arasında uzanan ince kanalcık ve keseciklerden yapılmış zar sistemine E.R. denir. GOLGİ CİSİMCİĞİ Işık mikroskobunda ancak özel boyama ile sitoplazma içinde; ağ, granül, iplik veya belirli şekilleri olmayan yapılar halinde görülürler Elektron mikroskobunda sitoplazma içinde, düz veya hafif konveks demetler halinde birbirine paralel sıralanmış, yassı kanal ve kesecikler halindedirler. Golgi elemanları E.R.a benzemekle beraber ribozomların olmayışı, küçük olmaları ve devamlı olmamaları nedeni ile E.R. dan ayrılır. İşlevlerine göre yeri ve morfolojisi değişir. Ör : Pankreasta salgı granülleri oluşmadan ağ şeklinde salgı granülleri oluşunca vakuol şeklinde görülür. KOH, protein ve lipid için geçici depodur İntersellüler salgı teşekkülüne yardım eder.(farede süt bezlerinde süt proteini oluşturur.) Golgide lipoprotein, bağ ve kıkırdak doku yapılır. Yağların sindirilmesinde rol oynar. Spermatidlerin spermatozoa haline geçmesinde rol oynar. Lizozomların teşekkülünde rol oynar. Glucosyl ve galactosyl transferaz enzimlerine sahiptir. Bu enzimler sayesinde kompleks KOH lar sentezlenir, proteinle birleşir ve glikoproteinler oluşur. LİZOZOM Küçük, yuvarlak organellerdir. Yapısı hücre zarı gibidir. Büyüklük bakımından mitokondriuma benzerlerse de sayıca onlardan azdır. Eritrositlerin dışında tüm hayvan hücrelerinde mevcuttur. En çok makrofaj, lökosit, karaciğer hücresi ve böbrek tubulus hücrelerinde bulunur. Bitki hücrelerinde bulunmazlar. Lizozomlar golgi elemanlarından veya E.R. dan meydana gelirler. İçlerinde sindirim enzimleri bulunur. Besin maddelerini, zararlı yabancı maddeleri, bakterileri sindirir. Hücredeki lizozom zarları herhangi bir nedenle parçalanırsa (şok, bakteriyel ve viral enfeksiyonlar, diğer bazı patolojik haller) İçlerindeki hidroliz enzimleri sitoplazmayı sindirerek hücrenin ölümüne sebep olur.Ör. Kronik romatoid artritis’de eklem aralığına boşalan lizozom enzimleri kıkırdağı harap eder. Hücre organellerinin yenilenmesinde rol oynar. Eskiyen organeller otoliz ile sindirilip yenileri yapılır. Lizozomlar fazla miktarda ortaya çıkan salgı granüllerini fagosite ederek salgı bezlerinin salgı çıkarmasında düzenleyici rol oynarlar. PEROKSİZOM Son yıllarda keşfedilen yuvarlak görünüşlü, tek bir zarla çevrili, yoğun matrix ihtiva eden küçücük cisimlerdir. Microbodies de denilen bu cisimcikler lizozomlara benzer enzimleri ve hidrojen peroksit metabolizmasıyla ilgili enzimleri taşırlar. Sayıları lizozomlardan azdır. Karaciğer, böbrek ve kalp hücrelerinde bol bulunurlar. Bazı protozoa ve bitki hücrelerinde de bulunurlar. Ömürleri kısa olup 3 – 4 gün kadardır. VAKUOL (KOFUL) Daha çok bitki hücrelerinde ve tekhücreli hayvanlarda rastlanır. Bazı çok hücreli hayvanlarda da rastlanır. Vakuoller hücre zarından, E.R. dan , golgi elemanlarından veya nukleus zarından meydana gelmiş içi sıvı dolu bir organeldir. Bazı tekhücreli hayvanlarda kofullar, hücrenin daimi organelidir (Paramecium’daki kontraktil kofullar.) Bazı canlılarda ise kofullar gerektiği zaman oluşur ve işi bitince kaybolurlar. (Besin kofulu yada pinositik koful ) Pinositoz ve fagositoz olayları amipten başka lökositlerde, böbrek hücrelerinde, kapiller çeper hücrelerinde, karaciğer hücrelerinde görülür. Besin kofulu sitostom ile alınan besinin etrafında da oluşur. İşi biten koful parçalanır. Kofullar sabit değildir. MİTOKONDRİUM Özel boyalarla boyandıktan sonra ışık mikroskobunda incelenen hücrelerde küreden, çubuğa kadar değişen şekillerde görülen yapılara mitokondrium adı verilir. Genellikle mitokondriumlar, hücrelerin metabolik faaliyetlerinin aktif olduğu kısımlarda toplanır. Elektron mikroskobu ile incelendiğinde mitokondriumların, iç içe iki zarla çevrili olduğu görülür. Mitokondriumun içi matrix adı verilen, küçük granüllü veya homojen bir sıvı ile doludur.Bu maddenin yoğunluğu zarlar arasında ve mitokondriumun içinde birbirinden farklıdır. Mitokondriumun dış zarı esnektir. Bu nedenle gerektiğinde genişleyip büzülerek mitokondriumun içine veya dışarıya bazı maddelerin geçmesine olanak sağlar. Mitokondriumun iç zarı , içeriye doğru krista denilen uzantılar yaparak iç yüzeyin genişlemesini sağlar. Mitokondriumların yapısında protein, yağ, DNA, RNA, solunum enzimleri ve vitaminler (A ,C ) bulunur. İçinde solunum enzimlerinin bulunuşu, bunların hücre solunumu yaptıkları kanısını vermektedir. Solunumda rol oynayan oksidasyon enzimleri mitokondriumun matrixi içinde ve fosfatlaştırıcı enzimler de zarları üzerinde bulunurlar. Mitokondriumları hücrenin solunum merkezi olarak düşünürsek, burada kullanılan yakıt maddeleri , besin olarak dışardan alınan protein, KOH ve yağlardır. Proteinler amino asitlere, KOH lar piruvik asite ve yağlar da yağ asitlerine parçalanarak mitokondrium zarlarından geçerek matrixe girerler. Matrixte , oksidasyon enzimleri bu asitlerin karbon atomlarını parçalayarak daha küçük moleküllere ayırırlar. ( oksidasyon ) Daha sonra bu ürünler, mitokondrinin zarlarına geçerek oradaki fosfatlaştırıcı enzimlerin etkisi ile, son ürün olan karbondioksit, su ve 38 ATP’ lik bir enerji meydana getirirler. Bu enerji , ısı enerjisi halinde olmayıp, kimyasal bağ enerjisi halinde ( ATP ) birikerek, gerektiğinde hücrenin ihtiyacı olan yere taşınır. SENTROZOM Bütün hayvan hücrelerinde ve bazı mantarlarda görülen sentrioller yüksek bitki hücrelerinde yoktur. Işık mikroskobunda çekirdek zarının dış tarafında açık renkli ve yuvarlak olarak görülen sitoplazma alanına sentrozom adı verilir. Sentrozomda iki kısım ayırt edilir.Bunlardan biri, sentrozomun merkezinde bulunan ve bir çift olan sentriol, diğeri sentriolleri çeviren, homojen bir tabaka halindeki sentrosferdir.Daima çift halde bulunan sentriollerden her biri, küçük bir silindir şeklindedir. Sentrioller uzun eksenlerinde birbirleriyle dik açı oluşturacak şekilde bulunurlar. Enine kesitte bir daire üzerinde dizilmiş 9 adet iplikten yapılmış görülür.Bu ipliklerin her biri üçer protein iplikçikten yapılmıştır. Bu iplikçiklerin birer tarafı kapalı olup, içleri sitoplazmik matrix ile doludur. Sentriollerin hücre bölünmesinde rolü vardır. Sperma kuyruklarında, cilium ve kamçıların enine kesitinde, sentriolun yapısına benzer bir yapı görülür, bu benzerlik cilium ve kamçıların sentriolden oluştukları kanısını vermektedir. Yüksek bitki hücresi, çizgili kas hücresi, protozoonların bazılarında, nöron gövdesinde ve olgun yumurta hücresinde bulunmaz. Mikrotübüller Hücrelerin çoğunda yaklaşık 250 Angstrom çapında, birkaç mikron uzunluğunda borucuklar bulunur ki bunlara mikrotübülü denir. İncecik tüp şeklindeki mikrotübüller genellikle demetler halinde bulunurlar. Yapıları sert olduğundan eğildikleri zaman kırılabilirler. Gerçek bir zar taşımazlar. Mikrotübüller spermium kuyruğunda ve ciliumların yapısında aksial filament halinde bulunurlar. Mikrotübüller hücrede sitoplazma iskeleti oluşturma görevi yaparlar.Hücreye veya bulunduğu organa sağlamlık kazandırırlar. Gerçek bir zar taşımazlar. Mikrotübüller spermium kuyruğunda ve ciliumların yapısında aksial filament halinde bulunurlar. Mikrotübüller hücrede sitoplazma iskeleti oluşturma görevi yaparlar.Hücreye veya bulunduğu organa sağlamlık kazandırırlar. Her kromozom bölünme sırasında son gideceği yere mikrotübül kümesine bağlanarak ulaşır. Mikrotübüller sentriollerin, bazal cisimlerin, cilium ve flagellerin yapımlarında kullanılırlar. Sinir hücresi aksonları içinde boylu boyunca uzanırlar ve hücre içi madde iletimini sağlarlar. NUCLEUS Bakteri ve viruslar hariç hemen hemen bütün hayvan ve bitki hücrelerinin birer nukleusu vardır. Memeli karaciğer hücreleri, böceklerin orta bağırsak hücreleri, testisdeki Leydig hücreleri ve bazı tek hücreliler iki nukleuslu, çizgili kas hücreleri ise çok nukleusludur. Çok nukleuslu hücrelere POLİKARYOTİK hücre adı verilir. Nukleus hücrenin morfolojik ve biyolojik yönden kontrol merkezidir.Bütün canlılık olaylarını yönettiği gibi canlının kalıtsal karakterlerinin dölden döle geçmesini de sağlar. Nukleus zarı ( Karyotheca ) Nukleus zarı çift katlıdır ve bu zar büyük bir olasılıkla E. R. dan oluşur. Dış zarın üzerinde ribozomlar vardır. İç zar ise düzdür. İç ve dış zarlar yer yer birleşerek bir açıklık meydana getirir. Bunlara por denir.Sentez olayları çok olan hücrelerin nukleus zarlarında por sayısı fazladır. Porlar nukleus ile sitoplazma arasında gerekli maddelerin geçişine olanak sağlar. Hücre bölünmesinde, patolojik hallerde, X ışınlarına maruz kalınca, uzun süren otoliz sonucu nukleus zarı ortadan kalkar. NUKLEOPLAZMA Nukleus zarı tarafından çevrilmiş olup kromatin ağı ve nukleolus dışında kalan sahayı doldurur. Nukleoplazma; RNA, büyük moleküllü proteinler, lipid ve inorganik tuzlar içerir. Nukleusun morfolojik görünümünde olan değişmeler klinikte önemlidir. Nukleolus Hücre nukleusu içinde belirli bir kromozomun belirli bir bölgesine bağlı olarak bulunan nukleolus yuvarlak ve oval bir yapı gösterir. Nukleolus bir zarla çevrilmiş olmadığından kolayca gözden kaybolabilir ve ayrı bir organel olarak kabul edilmez. Sayısı hücreden hücreye değişir, Nukleolus granüllü ve fibrilli bölgelerden oluşur. Her iki bölge de proteince zengin olup ayrıca nukleotid ve koenzim sentezi yapan enzimlerle RNA bulunur. Fakat DNA bulunmaz. Nukleustaki proteinler ya histon, protamin gibi bazik veya kromozamin gibi asit proteinlerdir. Hücre bölünmesinde önemli bir rolü vardır. Kromatin ağı ve kromozom İnterfazda hücrenin, nukleusu boyandığı zaman, nukleoplazma içinde iyi boyanmış uzun ağ veya yumak halinde iplikler görülür. Bunlara kromatin iplikleri veya kromonema denir. Bu iplikler üzerinde, daha kuvvetle boyanmış tanecikler dizilmiştir. Bunlara da kromatin taneleri veya kromomer denir. İnterfazdaki nukleusun içinde görülen bu iplikçikler, helezonları açılmış, uzamış ve dağınık durumda bulunan kromozomlardır. Hücre bölüneceği zaman bu iplikçikler, helezon yaparak kısalır ve kalınlaşırlar, böylece de kromozomları meydana getirirler. Bölünmekte olan bir hücrenin nukleusu boyandıktan sonra mikroskopta incelenirse belirli şekillerde ve koyu boyanmış yapılar görülür, bunlara kromozom adı verilir. Bir kromozomun şekli, kromozomun kollarını birleştiren boğumun yerine göre isimlendirilir. Bu boğuma sentromer (kinetokor ) veya primer boğum denir. Bu boğum küçük bir granül veya sentromeri kapsayan açık renkli bir alandır. Kromozomlar üzerinde sentromerden başka boğumlarda bulunabilir, bunlara sekonder boğum ve ayrılan kısma uydu veya satellit denir. Kromozom tipleri METASENTRİK KROMOZOM SUBMETASENTRİK KROMOZOM AKROSENTRİK KROMOZOM TELOSENTRİK KROMOZOM Bölünme anında kromozomlar kutuplara doğru çekilirken, sentromerlerinden iğ ipliklerine tutunurlar, Bu nedenle sentromeri herhangi bir nedenle tahrip olan veya bulunmayan bir kromozom bölünme olayına katılamadığından parçalanır. Her kromozomun kendine öz bir şekli vardır. Bu şekil canlının bütün hücrelerinde aynıdır. Bir türün kromozomunun şekli gibi sayısı da sabittir. Bir canlının bütün hücreleri aynı, yani biri anadan, diğeri babadan gelen aynı şekil ve büyüklükte ikişer takım kromozoma sahiptir. Buna diploit kromozom sayısı denir. Anadan ve babadan gelen eş kromozomların her birine de homolog kromozom adı verilir. Olgun üreme hücrelerinde ise kromozom sayısı vücut hücrelerinkinin yarısı kadardır.Burada homolog kromozomlardan her biri, başka hücreye geçtiğinden sayı yarıya inmiştir. Buna da haploit kromozom denir. Kromozomun şekli ve sayısı gibi büyüklüğü de değişmez. Aynı kromozom bir türün farklı bireylerinin vücut hücrelerinde daima aynı büyüklüktedir. Bir kromozomda her biri iki kromonema taşıyan iki kromatid bulunur. Kromonemanın üst üste katlanmasıyla veya nukleoproteinin o bölgede yogunlaşmasıyla kromomerler oluşur. Kromonema üzerinde kromomerlerin bulunduğu yerler genlerin yerleştiği bölgeler olarak kabul edilir. Bazik boyalarla boyanan bir kromozomun her yerinin aynı derecede boyanmadığı görülür. Kuvvetli boyanan bölgelere heterokromatik bölgeler denir.Bu bölgeler interfazda sıkı bir şekilde helezonlaşmış olup, içinde fazla miktarda DNA ve RNA bulunur. Daha az boyanan bölgelere ise ökromatik bölgeler denir. Bu bölgenin yapısında da histonlar ve DNA vardır. Hücrenin kimyasal yapısı İNORGANİK MADDELER 1- SU: Hayatsal faaliyetlerin sürdürülmesinde önemli rolü vardır Canlı türüne, hücrenin görevine, yaşlı ve genç olmasına göre hücrelerde değişik oranlarda bulunmaktadır.Genel olarak sitoplazmanın % 85-95 kadarı sudur. Embriyonal hücrelerde, genç ve aktif hücrelerde su oranı fazla, yaşlı hücrelerde azdır. Hücre protoplazmasında su serbest ve bağlı su olarak bulunur.Serbest su kan ve lenf sıvılarındaki sudur.Bağlı su ise ikiye ayrılır.Anyon ve katyonlara bağlı olarak bulunan su (Hidratasyon Suyu ) ve anyon ve katyonlara bağlı bulunan suyun dışındaki sudur (Moleküller Arası Su ). 2-ELEKTROLİTLER: C,H,O,N,K,Ca, Mg, Fe,S,P sitoplazmanın temel elementleridir. İlk dördü protoplazmada bulunan organik maddeler yönünden daha önemlidir.Mg ve Fe ise klorofil ve hemoglobin gibi yapıları oluşturma yönünden de temel element sayılırlar. Bu elementler hücredeki bileşikleri teşkil ederler.Özellikle temel elementlerin eksikliği halinde hücre fonksiyonlarını tam olarak sürdüremez. Bu elementler ayrıca protoplazmik aktiviteyi artırır, osmotik basıncı sağlar, asit-baz dengesini ayarlar, birçok enzimleri aktifleştirir ve bazı vitaminlerin terkibine girer. Canlı hücredeki inorganik maddeler asit baz ve tuzlardır.Fakat bunlar hücre suyu içinde erimiş yani iyonlaşmış olup elektrolitleri teşkil ederler. Bir solusyonda iyonların bulunuşu, solusyonun elektrik akımını geçirmesini sağlar. Böylece iyonlarına ayrılan ve dolayısıyla elektrik akımını ileten maddelere elektrolit (iletken) denir. ORGANİK MADDELER Hücre yapısında çeşitli organik maddeler mevcuttur. Karbonhidratlar: Enerji kaynağıdır. Bu enerji hücre çoğalması, büyümesi ve hareket yeteneği için gereklidir. Karbonhidratlar üç grupta toplanır. Monosakkaritler: Hidroliz sonucu daha küçük moleküllere ayrılamazlar. Triozlar Pentozlar Heksozlar ( Glukoz,Fruktoz, Galaktoz) Oligosakkaritler: 2,3,4,5,6 monosakkaritin aralarından birer mol su çıkmasıyla diğer bir deyişle glikozit bağları ile birbirine bağlanarak meydana getirdikleri bileşiklere oligosakkaritler denir. Disakkaritler( Sakkaroz, Maltoz, Laktoz) Trisakkaritler Polisakkaritler: Canlıda en önemli polisakkaritler heksozlardan yapılmış olanlar olup bitki hücresi çeperinde sellüloz, bitkide depo edilen nişasta ve hayvan hücrelerinde depo edilen glikojendir. Lipidler: Enerji kaynağı olarak ve hücre membranında yapı taşı olarak önemlidir. Lipidleri şöyle gruplandırabiliriz. Basit lipidler Bileşik lipidler( Fosfolipid, glikolipid) Diğer lipidler ( Steroid, kolesterol) Kolesterol Hayvansal hücre zarlarının yapısında, sinir dokusu ve diğer dokularda yapı maddesi olarak iş görür. Bitkisel dokularda bulunmaz. Kolesterol deri hücrelerinin zarlarında yağlarla birlikte birikerek derinin asitlere ve eritici maddelere karşı direncini arttırır, aynı zamanda derinin su kaybını önler. Omurgalılarda, besinlerle alınan veya organizmada sentez edilen kolesterol diğer steroid gruplarına çevrilmektedir. Bunlardan biri de safra tuzlarıdır. Safra tuzları karaciğerde yapılır ve safra kanalları yoluyla bagırsaklara iletilir, orada yağların sindirim ve absorbsiyonunda rol oynar. Bunun yanında kanda kolesterol oranının yükselmesi, arteriosclerozis denen damar sertliği meydana getirir.Bunda damarların iç yüzünde plaklar oluşarak damar çeperi daralır ve esnekliği kaybolur. PROTEİNLER: Basit proteinler:Bunlar sadece amino asitlerden ibarettir. Albuminler Globulinler Gluteninler Histonlar Protaminler Bileşik proteinler: Fosfoproteinler: (vitellin) Metalloproteinler:Bunlar proteine bağlı olarak Fe,Cu vb. ağır metalleri kapsayan bileşik proteinlerdir. (Hemoglobin , Hemosiyanin) Nukleoproteinler: Hücrede RNA ve DNA proteinle birleşmiş halde bulunur ki bunlara nukleoproteinler adı verilir. NUKLEİK ASİTLER: Nukleotid denen birimlerden oluşur. Baz + Şeker + Fosforik asit = Nukleotid Nukleotidler dehidrasyon senteziyle nukleik asitleri meydana getirirler. Böylece DNA ve RNA molekülleri oluşur. ENZİMLER: Hücrede meydana gelen sayısız biyokimyasal reaksiyonu katalizleyen ve canlı hücrede sentezlenen protein yapısındaki organik moleküllere enzim denir.Enzimler kimyasal katalizörler gibi görev yaparak reaksiyonu başlatır ve sonlandırır. Bazı enzimler sadece saf protein moleküllerinden yapılmıştır.Bunlara basit enzimler denir. (Pepsin, tripsin, kimotripsin) Diğer bazı enzimler ise protein yapılarına ilaveten aktivite gösterebilmek için kofaktör denen inorganik metal iyonları ve koenzim denen kompleks organik moleküllerle birlikte çalışırlar.Bu tip enzimlere de bileşik enzim denir. Enzim koenzim veya faktörü ile birlikte katalitik bakımdan tamamen aktif durumda ise bu haline holoenzim adı verilir.Bir holoenzimin koenzim veya kofaktöre ayrılıp inaktif hale gelen protein kısmına Apoenzim denir. VİTAMİNLER: Hücre metabolizması için gerekli olan, çok az miktarları ile büyüme, gelişme ve sıhhatli yaşama için gerekli organik maddelerdir.Vitaminler aynı zamanda hücrede geçen biyokimyasal olayları katalizleyen çoğu enzimlerin koenzim grubunu teşkil ederler. Bu nedenle avitaminozda reaksiyonlar gerçekleşmez ve canlı bunun eksikliğini duyar. Suda eriyen vitaminler: B ,C Yağda eriyen vitaminler: A,D,E,K HORMONLAR HÜCREDE PROTEİN SENTEZLENMESİ Protein sentezlenmesinde molekül ağırlıkları ve diğer bazı özellikleri farklı üç çeşit RNA görev yapar.Bunlardan biri elçi RNA dır. eRNA nukleusta DNA molekülünden aldığı genetik bilgiyi sitoplazmaya iletir.İkincisi ribozomal RNA dır.Protein sentezi ribozomun büyük bir kısmını oluşturan rRNA üzerinde gerçekleşir. Üçüncüsü taşıyıcı RNA dır. tRNA nın görevi bir polipeptid zinciri oluşurken sitoplazmadaki uygun amino asitleri alarak zincirdeki uygun yerlere yerleştirmektir. Her üç RNA da DNA tarafından sentezlenir. DNA çift dizi olmakla beraber bunlardan sadece biri genetik bilgiyi aktarır ve eRNA yı oluşturur, buna anlamlı dizi denir. Protein sentezi özetlenirse; Önce nukleusta çift diziden oluşan DNA molekülünün dizilerinden biri, sentezlenmesini istediği protein için gerekli nukleotitleri kapsayan kısmının kopyasını çıkararak, özel bir eRNA hazırlar.Hazırlanan bu eRNA nukleus zarının porundan çıkarak sitoplazmaya geçer ve ribozomla birleşir. Böylece ribozomlarda, DNA nın emrettiği proteini sentezlemek üzere özel bir eRNA kalıbı yerleşmiş olur.Daha sonra bu kalıp üzerindeki her kodona uygun antikodonlu tRNA lar sitoplazmadan uygun amino asitleri alarak ribozomdaki eRNA kalıbında yerine koyar. Böylece her ribozomda , DNA dan gelen şifreye uygun amino asitler yan yana peptid bağları ile bağlanarak istenen protein sentezlenmiş olur. Sentezlenen bu protein ribozomlardan ayrılarak gerekli yerlere taşınır, işi biten eRNA lar daha sonra parçalanır. HÜCRE BİLİMİ En ilkel yapılı hücre prokaryotik hücredir.Nukleus zarı bulunmaz. DNA hücre sitoplazmasında bulunur.Organellere sahip değildir. Örnek bakteri hücresi verilebilir. NUCLEUS Bakteri ve viruslar hariç hemen hemen bütün hayvan ve bitki hücrelerinin birer nukleusu vardır. Memeli karaciğer hücreleri, böceklerin orta bağırsak hücreleri, testisdeki Leydig hücreleri ve bazı tek hücreliler iki nukleuslu, çizgili kas hücreleri ise çok nukleusludur. Çok nukleuslu hücrelere POLİKARYOTİK hücre adı verilir. Nukleus hücrenin morfolojik ve biyolojik yönden kontrol merkezidir.Bütün canlılık olaylarını yönettiği gibi canlının kalıtsal karakterlerinin dölden döle geçmesini de sağlar. Nukleus zarı ( Karyotheca ) Nukleus zarı çift katlıdır ve bu zar büyük bir olasılıkla E. R. dan oluşur. Dış zarın üzerinde ribozomlar vardır. İç zar ise düzdür. İç ve dış zarlar yer yer birleşerek bir açıklık meydana getirir. Bunlara por denir.Sentez olayları çok olan hücrelerin nukleus zarlarında por sayısı fazladır. Porlar nukleus ile sitoplazma arasında gerekli maddelerin geçişine olanak sağlar. Hücre bölünmesinde, patolojik hallerde, X ışınlarına maruz kalınca, uzun süren otoliz sonucu nukleus zarı ortadan kalkar. NUKLEOPLAZMA Nukleus zarı tarafından çevrilmiş olup kromatin ağı ve nukleolus dışında kalan sahayı doldurur. Nukleoplazma; RNA, büyük moleküllü proteinler, lipid ve inorganik tuzlar içerir. Nukleusun morfolojik görünümünde olan değişmeler klinikte önemlidir. Nukleolus Hücre nukleusu içinde belirli bir kromozomun belirli bir bölgesine bağlı olarak bulunan nukleolus yuvarlak ve oval bir yapı gösterir. Nukleolus bir zarla çevrilmiş olmadığından kolayca gözden kaybolabilir ve ayrı bir organel olarak kabul edilmez. Sayısı hücreden hücreye değişir, Nukleolus granüllü ve fibrilli bölgelerden oluşur. Her iki bölge de proteince zengin olup ayrıca nukleotid ve koenzim sentezi yapan enzimlerle RNA bulunur. Fakat DNA bulunmaz. Nukleustaki proteinler ya histon, protamin gibi bazik veya kromozamin gibi asit proteinlerdir. Hücre bölünmesinde önemli bir rolü vardır. Kromatin ağı ve kromozom İnterfazda hücrenin, nukleusu boyandığı zaman, nukleoplazma içinde iyi boyanmış uzun ağ veya yumak halinde iplikler görülür. Bunlara kromatin iplikleri veya kromonema denir. Bu iplikler üzerinde, daha kuvvetle boyanmış tanecikler dizilmiştir. Bunlara da kromatin taneleri veya kromomer denir. İnterfazdaki nukleusun içinde görülen bu iplikçikler, helezonları açılmış, uzamış ve dağınık durumda bulunan kromozomlardır. Hücre bölüneceği zaman bu iplikçikler, helezon yaparak kısalır ve kalınlaşırlar, böylece de kromozomları meydana getirirler. Bölünmekte olan bir hücrenin nukleusu boyandıktan sonra mikroskopta incelenirse belirli şekillerde ve koyu boyanmış yapılar görülür, bunlara kromozom adı verilir. Bir kromozomun şekli, kromozomun kollarını birleştiren boğumun yerine göre isimlendirilir. Bu boğuma sentromer (kinetokor ) veya primer boğum denir. Bu boğum küçük bir granül veya sentromeri kapsayan açık renkli bir alandır. Kromozomlar üzerinde sentromerden başka boğumlarda bulunabilir, bunlara sekonder boğum ve ayrılan kısma uydu veya satellit denir. Kromozom tipleri METASENTRİK KROMOZOM SUBMETASENTRİK KROMOZOM AKROSENTRİK KROMOZOM TELOSENTRİK KROMOZOM Bölünme anında kromozomlar kutuplara doğru çekilirken, sentromerlerinden iğ ipliklerine tutunurlar, Bu nedenle sentromeri herhangi bir nedenle tahrip olan veya bulunmayan bir kromozom bölünme olayına katılamadığından parçalanır. Her kromozomun kendine öz bir şekli vardır. Bu şekil canlının bütün hücrelerinde aynıdır. Bir türün kromozomunun şekli gibi sayısı da sabittir. Bir canlının bütün hücreleri aynı, yani biri anadan, diğeri babadan gelen aynı şekil ve büyüklükte ikişer takım kromozoma sahiptir. Buna diploit kromozom sayısı denir. Anadan ve babadan gelen eş kromozomların her birine de homolog kromozom adı verilir. Olgun üreme hücrelerinde ise kromozom sayısı vücut hücrelerinkinin yarısı kadardır.Burada homolog kromozomlardan her biri, başka hücreye geçtiğinden sayı yarıya inmiştir. Buna da haploit kromozom denir. Kromozomun şekli ve sayısı gibi büyüklüğü de değişmez. Aynı kromozom bir türün farklı bireylerinin vücut hücrelerinde daima aynı büyüklüktedir. Bir kromozomda her biri iki kromonema taşıyan iki kromatid bulunur. Kromonemanın üst üste katlanmasıyla veya nukleoproteinin o bölgede yogunlaşmasıyla kromomerler oluşur. Kromonema üzerinde kromomerlerin bulunduğu yerler genlerin yerleştiği bölgeler olarak kabul edilir. Bazik boyalarla boyanan bir kromozomun her yerinin aynı derecede boyanmadığı görülür. Kuvvetli boyanan bölgelere heterokromatik bölgeler denir.Bu bölgeler interfazda sıkı bir şekilde helezonlaşmış olup, içinde fazla miktarda DNA ve RNA bulunur. Daha az boyanan bölgelere ise ökromatik bölgeler denir. Bu bölgenin yapısında da histonlar ve DNA vardır. Hücrenin kimyasal yapısı İNORGANİK MADDELER 1- SU: Hayatsal faaliyetlerin sürdürülmesinde önemli rolü vardır Canlı türüne, hücrenin görevine, yaşlı ve genç olmasına göre hücrelerde değişik oranlarda bulunmaktadır.Genel olarak sitoplazmanın % 85-95 kadarı sudur. Embriyonal hücrelerde, genç ve aktif hücrelerde su oranı fazla, yaşlı hücrelerde azdır. Hücre protoplazmasında su serbest ve bağlı su olarak bulunur.Serbest su kan ve lenf sıvılarındaki sudur.Bağlı su ise ikiye ayrılır.Anyon ve katyonlara bağlı olarak bulunan su (Hidratasyon Suyu ) ve anyon ve katyonlara bağlı bulunan suyun dışındaki sudur (Moleküller Arası Su ). 2-ELEKTROLİTLER: C,H,O,N,K,Ca, Mg, Fe,S,P sitoplazmanın temel elementleridir. İlk dördü protoplazmada bulunan organik maddeler yönünden daha önemlidir.Mg ve Fe ise klorofil ve hemoglobin gibi yapıları oluşturma yönünden de temel element sayılırlar. Bu elementler hücredeki bileşikleri teşkil ederler.Özellikle temel elementlerin eksikliği halinde hücre fonksiyonlarını tam olarak sürdüremez. Bu elementler ayrıca protoplazmik aktiviteyi artırır, osmotik basıncı sağlar, asit-baz dengesini ayarlar, birçok enzimleri aktifleştirir ve bazı vitaminlerin terkibine girer. Canlı hücredeki inorganik maddeler asit baz ve tuzlardır.Fakat bunlar hücre suyu içinde erimiş yani iyonlaşmış olup elektrolitleri teşkil ederler. Bir solusyonda iyonların bulunuşu, solusyonun elektrik akımını geçirmesini sağlar. Böylece iyonlarına ayrılan ve dolayısıyla elektrik akımını ileten maddelere elektrolit (iletken) denir. ORGANİK MADDELER Hücre yapısında çeşitli organik maddeler mevcuttur. Karbonhidratlar: Enerji kaynağıdır. Bu enerji hücre çoğalması, büyümesi ve hareket yeteneği için gereklidir. Karbonhidratlar üç grupta toplanır. Monosakkaritler: Hidroliz sonucu daha küçük moleküllere ayrılamazlar. Triozlar Pentozlar Heksozlar ( Glukoz,Fruktoz, Galaktoz) Oligosakkaritler: 2,3,4,5,6 monosakkaritin aralarından birer mol su çıkmasıyla diğer bir deyişle glikozit bağları ile birbirine bağlanarak meydana getirdikleri bileşiklere oligosakkaritler denir. Disakkaritler( Sakkaroz, Maltoz, Laktoz) Trisakkaritler Polisakkaritler: Canlıda en önemli polisakkaritler heksozlardan yapılmış olanlar olup bitki hücresi çeperinde sellüloz, bitkide depo edilen nişasta ve hayvan hücrelerinde depo edilen glikojendir. Lipidler: Enerji kaynağı olarak ve hücre membranında yapı taşı olarak önemlidir. Lipidleri şöyle gruplandırabiliriz. Basit lipidler Bileşik lipidler( Fosfolipid, glikolipid) Diğer lipidler ( Steroid, kolesterol) Kolesterol Hayvansal hücre zarlarının yapısında, sinir dokusu ve diğer dokularda yapı maddesi olarak iş görür. Bitkisel dokularda bulunmaz. Kolesterol deri hücrelerinin zarlarında yağlarla birlikte birikerek derinin asitlere ve eritici maddelere karşı direncini arttırır, aynı zamanda derinin su kaybını önler. Omurgalılarda, besinlerle alınan veya organizmada sentez edilen kolesterol diğer steroid gruplarına çevrilmektedir. Bunlardan biri de safra tuzlarıdır. Safra tuzları karaciğerde yapılır ve safra kanalları yoluyla bagırsaklara iletilir, orada yağların sindirim ve absorbsiyonunda rol oynar. Bunun yanında kanda kolesterol oranının yükselmesi, arteriosclerozis denen damar sertliği meydana getirir.Bunda damarların iç yüzünde plaklar oluşarak damar çeperi daralır ve esnekliği kaybolur. PROTEİNLER: Basit proteinler:Bunlar sadece amino asitlerden ibarettir. Albuminler Globulinler Gluteninler Histonlar Protaminler Bileşik proteinler: Fosfoproteinler: (vitellin) Metalloproteinler:Bunlar proteine bağlı olarak Fe,Cu vb. ağır metalleri kapsayan bileşik proteinlerdir. (Hemoglobin , Hemosiyanin) Nukleoproteinler: Hücrede RNA ve DNA proteinle birleşmiş halde bulunur ki bunlara nukleoproteinler adı verilir. NUKLEİK ASİTLER: Nukleotid denen birimlerden oluşur. Baz + Şeker + Fosforik asit = Nukleotid Nukleotidler dehidrasyon senteziyle nukleik asitleri meydana getirirler. Böylece DNA ve RNA molekülleri oluşur. ENZİMLER: Hücrede meydana gelen sayısız biyokimyasal reaksiyonu katalizleyen ve canlı hücrede sentezlenen protein yapısındaki organik moleküllere enzim denir.Enzimler kimyasal katalizörler gibi görev yaparak reaksiyonu başlatır ve sonlandırır. Bazı enzimler sadece saf protein moleküllerinden yapılmıştır.Bunlara basit enzimler denir. (Pepsin, tripsin, kimotripsin) Diğer bazı enzimler ise protein yapılarına ilaveten aktivite gösterebilmek için kofaktör denen inorganik metal iyonları ve koenzim denen kompleks organik moleküllerle birlikte çalışırlar.Bu tip enzimlere de bileşik enzim denir. Enzim koenzim veya faktörü ile birlikte katalitik bakımdan tamamen aktif durumda ise bu haline holoenzim adı verilir.Bir holoenzimin koenzim veya kofaktöre ayrılıp inaktif hale gelen protein kısmına Apoenzim denir. VİTAMİNLER: Hücre metabolizması için gerekli olan, çok az miktarları ile büyüme, gelişme ve sıhhatli yaşama için gerekli organik maddelerdir.Vitaminler aynı zamanda hücrede geçen biyokimyasal olayları katalizleyen çoğu enzimlerin koenzim grubunu teşkil ederler. Bu nedenle avitaminozda reaksiyonlar gerçekleşmez ve canlı bunun eksikliğini duyar. Suda eriyen vitaminler: B ,C Yağda eriyen vitaminler: A,D,E,K HORMONLAR HÜCREDE PROTEİN SENTEZLENMESİ Protein sentezlenmesinde molekül ağırlıkları ve diğer bazı özellikleri farklı üç çeşit RNA görev yapar.Bunlardan biri elçi RNA dır. eRNA nukleusta DNA molekülünden aldığı genetik bilgiyi sitoplazmaya iletir.İkincisi ribozomal RNA dır.Protein sentezi ribozomun büyük bir kısmını oluşturan rRNA üzerinde gerçekleşir. Üçüncüsü taşıyıcı RNA dır. tRNA nın görevi bir polipeptid zinciri oluşurken sitoplazmadaki uygun amino asitleri alarak zincirdeki uygun yerlere yerleştirmektir. Her üç RNA da DNA tarafından sentezlenir. DNA çift dizi olmakla beraber bunlardan sadece biri genetik bilgiyi aktarır ve eRNA yı oluşturur, buna anlamlı dizi denir. Protein sentezi özetlenirse; Önce nukleusta çift diziden oluşan DNA molekülünün dizilerinden biri, sentezlenmesini istediği protein için gerekli nukleotitleri kapsayan kısmının kopyasını çıkararak, özel bir eRNA hazırlar.Hazırlanan bu eRNA nukleus zarının porundan çıkarak sitoplazmaya geçer ve ribozomla birleşir. Böylece ribozomlarda, DNA nın emrettiği proteini sentezlemek üzere özel bir eRNA kalıbı yerleşmiş olur.Daha sonra bu kalıp üzerindeki her kodona uygun antikodonlu tRNA lar sitoplazmadan uygun amino asitleri alarak ribozomdaki eRNA kalıbında yerine koyar. Böylece her ribozomda , DNA dan gelen şifreye uygun amino asitler yan yana peptid bağları ile bağlanarak istenen protein sentezlenmiş olur. Sentezlenen bu protein ribozomlardan ayrılarak gerekli yerlere taşınır, işi biten eRNA lar daha sonra parçalanır. HÜCRENİN FİZİKSEL YAPISI DİFFUSİON: Sıvı veya gaz molekülleri taşıdıkları kinetik enerjiden dolayı, moleküllerinin yoğunluğuyla ilgili olarak çok yoğun bir ortamdan az yoğun ortama hareket ederler ki bu olaya diffüzyon denir. Her yöne doğru olan bu hareket iki ortam arasında yoğunluk farkı kalmayıncaya kadar devam eder. SOLUSYON: İki ayrı yapının birbiri içinde eriyerek oluşturdukları karışımlara denir.Solusyonlar birkaç tipte olur. 1- Hakiki veya gerçek solusyon: Suda dağılan partiküller 1 milimikrondan daha küçüktür ve su molekülleri tarafından taşınır. Saydam olan bu solusyonların suyu uçurulursa geride partiküller kristal halde kalır, o nedenle bunlara kristalloid de denir.Tuz gölünde tuzun oluşması gibi. Canlı sistemde çözücü moleküller sudur.Protoplazmada bulunan çözünmüş tuzlar, şekerler ve diğer maddeler hücreye belli bir yoğunluk ve osmotik basınç kazandırır. Bu sayede hücre bulunduğu ortamın yoğunluğuna göre çevresiyle alışveriş yapabilir.Hücre içinde bulunduğu üç solusyon tipine göre durumunu değiştirir. İzotonik solusyon: Hücre içi yoğunluğu ile hücrenin konulduğu ortamın yoğunluğu aynıdır. Bu yüzden hücrede bir değişiklik olmaz.İki tarafa eşit miktarda su molekülü geçer, vücut veya kan hücrelerinde büzülme veya gerginlik olmaz. Normalde vücuttaki hücrelerin hücre sıvısı ile kan plazması ve diğer vücut sıvıları izotoniktir.% 0.9 NaCl çözeltisi insan hücreleri ile izotoniktir. Buna fizyolojik eriyik denir. Hipotonik solusyon: Ortam sıvısı yoğunluğu, hücre sıvısınınkinden daha az olan solusyonlardır. Bu durumda hücre dışarıdan su alır.Eritrositler % 0.6 lık tuz solusyonuna konursa su alır ve sonunda giren suyun basıncına dayanamayan zar patlar(hemoliz). Hemoliz yolu ile içindeki maddeleri atılabilen yegane zar eritrositlerdir. Hipertonik solusyon: Bunda ortam sıvısı yoğunluğu, hücre sıvısından fazladır.Eritrositler böyle bir ortama konursa su kaybedip büzülürler. Aynı şekilde ellerimizi tuzlu suda bir müddet bekletirsek ellerimizin derisi buruşur. 2- Kolloid çözelti: Bunlarda partiküllerin büyüklükleri gerçek çözelti ile süspansiyon partikülleri arasındadır. (1-100 milimikron çaptadır.)Bunlar tabana çökmek için küçük, gerçek çözelti yapmak için büyüktür. Filtre edilemezler . Hakiki çözeltilerdeki gibi kristal teşkil etmezler. 3- Suspension: Eğer su içinde çözünen partiküller 100 milimikrondan büyük olursa bunlara süspansiyon denir.Süspansiyon birçok molekülün yanyana gelmesinden meydana gelir. CANLI SİSTEMDE VE HÜCREDE SIVILAR Semipermeabl olan hücre membranı bulunduğu ortamla veya komşu hücrelerle madde alışverişi yapar.İki komşu hücrenin membranları arasında 80 Angstrom kadar bir aralık bulunur.Bu aralığa hücreler arası alan (intersellüler alan), buradaki sıvıya da hücreler arası sıvı (intersellüler sıvı) ve doku sıvısı anlamında (interstisiel sıvı) denir. Damar içi sıvısına (plazma) intravasküler sıvı denir. İntravasküler sıvı ve intersellüler sıvının ortak adı da hücre dışı sıvıdır(extrasellüler sıvı). Böylece her ribozomda , DNA dan gelen şifreye uygun amino asitler yan yana peptid bağları ile bağlanarak istenen protein sentezlenmiş olur. Sentezlenen bu protein ribozomlardan ayrılarak gerekli yerlere taşınır, işi biten eRNA lar daha sonra parçalanır. HÜCRE BİLİMİ En ilkel yapılı hücre prokaryotik hücredir.Nukleus zarı bulunmaz. DNA hücre sitoplazmasında bulunur.Organellere sahip değildir. Örnek bakteri hücresi verilebilir. NUCLEUS Bakteri ve viruslar hariç hemen hemen bütün hayvan ve bitki hücrelerinin birer nukleusu vardır. Memeli karaciğer hücreleri, böceklerin orta bağırsak hücreleri, testisdeki Leydig hücreleri ve bazı tek hücreliler iki nukleuslu, çizgili kas hücreleri ise çok nukleusludur. Çok nukleuslu hücrelere POLİKARYOTİK hücre adı verilir. Nukleus hücrenin morfolojik ve biyolojik yönden kontrol merkezidir.Bütün canlılık olaylarını yönettiği gibi canlının kalıtsal karakterlerinin dölden döle geçmesini de sağlar. Nukleus zarı ( Karyotheca ) Nukleus zarı çift katlıdır ve bu zar büyük bir olasılıkla E. R. dan oluşur. Dış zarın üzerinde ribozomlar vardır. İç zar ise düzdür. İç ve dış zarlar yer yer birleşerek bir açıklık meydana getirir. Bunlara por denir.Sentez olayları çok olan hücrelerin nukleus zarlarında por sayısı fazladır. Porlar nukleus ile sitoplazma arasında gerekli maddelerin geçişine olanak sağlar. Hücre bölünmesinde, patolojik hallerde, X ışınlarına maruz kalınca, uzun süren otoliz sonucu nukleus zarı ortadan kalkar. NUKLEOPLAZMA Nukleus zarı tarafından çevrilmiş olup kromatin ağı ve nukleolus dışında kalan sahayı doldurur. Nukleoplazma; RNA, büyük moleküllü proteinler, lipid ve inorganik tuzlar içerir. Nukleusun morfolojik görünümünde olan değişmeler klinikte önemlidir. Nukleolus Hücre nukleusu içinde belirli bir kromozomun belirli bir bölgesine bağlı olarak bulunan nukleolus yuvarlak ve oval bir yapı gösterir. Nukleolus bir zarla çevrilmiş olmadığından kolayca gözden kaybolabilir ve ayrı bir organel olarak kabul edilmez. Sayısı hücreden hücreye değişir, Nukleolus granüllü ve fibrilli bölgelerden oluşur. Her iki bölge de proteince zengin olup ayrıca nukleotid ve koenzim sentezi yapan enzimlerle RNA bulunur. Fakat DNA bulunmaz. Nukleustaki proteinler ya histon, protamin gibi bazik veya kromozamin gibi asit proteinlerdir. Hücre bölünmesinde önemli bir rolü vardır. Kromatin ağı ve kromozom İnterfazda hücrenin, nukleusu boyandığı zaman, nukleoplazma içinde iyi boyanmış uzun ağ veya yumak halinde iplikler görülür. Bunlara kromatin iplikleri veya kromonema denir. Bu iplikler üzerinde, daha kuvvetle boyanmış tanecikler dizilmiştir. Bunlara da kromatin taneleri veya kromomer denir. İnterfazdaki nukleusun içinde görülen bu iplikçikler, helezonları açılmış, uzamış ve dağınık durumda bulunan kromozomlardır. Hücre bölüneceği zaman bu iplikçikler, helezon yaparak kısalır ve kalınlaşırlar, böylece de kromozomları meydana getirirler. Bölünmekte olan bir hücrenin nukleusu boyandıktan sonra mikroskopta incelenirse belirli şekillerde ve koyu boyanmış yapılar görülür, bunlara kromozom adı verilir. Bir kromozomun şekli, kromozomun kollarını birleştiren boğumun yerine göre isimlendirilir. Bu boğuma sentromer (kinetokor ) veya primer boğum denir. Bu boğum küçük bir granül veya sentromeri kapsayan açık renkli bir alandır. Kromozomlar üzerinde sentromerden başka boğumlarda bulunabilir, bunlara sekonder boğum ve ayrılan kısma uydu veya satellit denir. Kromozom tipleri METASENTRİK KROMOZOM SUBMETASENTRİK KROMOZOM AKROSENTRİK KROMOZOM TELOSENTRİK KROMOZOM Bölünme anında kromozomlar kutuplara doğru çekilirken, sentromerlerinden iğ ipliklerine tutunurlar, Bu nedenle sentromeri herhangi bir nedenle tahrip olan veya bulunmayan bir kromozom bölünme olayına katılamadığından parçalanır. Her kromozomun kendine öz bir şekli vardır. Bu şekil canlının bütün hücrelerinde aynıdır. Bir türün kromozomunun şekli gibi sayısı da sabittir. Bir canlının bütün hücreleri aynı, yani biri anadan, diğeri babadan gelen aynı şekil ve büyüklükte ikişer takım kromozoma sahiptir. Buna diploit kromozom sayısı denir. Anadan ve babadan gelen eş kromozomların her birine de homolog kromozom adı verilir. Olgun üreme hücrelerinde ise kromozom sayısı vücut hücrelerinkinin yarısı kadardır.Burada homolog kromozomlardan her biri, başka hücreye geçtiğinden sayı yarıya inmiştir. Buna da haploit kromozom denir. Kromozomun şekli ve sayısı gibi büyüklüğü de değişmez. Aynı kromozom bir türün farklı bireylerinin vücut hücrelerinde daima aynı büyüklüktedir. Bir kromozomda her biri iki kromonema taşıyan iki kromatid bulunur. Kromonemanın üst üste katlanmasıyla veya nukleoproteinin o bölgede yogunlaşmasıyla kromomerler oluşur. Kromonema üzerinde kromomerlerin bulunduğu yerler genlerin yerleştiği bölgeler olarak kabul edilir. Bazik boyalarla boyanan bir kromozomun her yerinin aynı derecede boyanmadığı görülür. Kuvvetli boyanan bölgelere heterokromatik bölgeler denir.Bu bölgeler interfazda sıkı bir şekilde helezonlaşmış olup, içinde fazla miktarda DNA ve RNA bulunur. Daha az boyanan bölgelere ise ökromatik bölgeler denir. Bu bölgenin yapısında da histonlar ve DNA vardır. Hücrenin kimyasal yapısı İNORGANİK MADDELER 1- SU: Hayatsal faaliyetlerin sürdürülmesinde önemli rolü vardır Canlı türüne, hücrenin görevine, yaşlı ve genç olmasına göre hücrelerde değişik oranlarda bulunmaktadır.Genel olarak sitoplazmanın % 85-95 kadarı sudur. Embriyonal hücrelerde, genç ve aktif hücrelerde su oranı fazla, yaşlı hücrelerde azdır. Hücre protoplazmasında su serbest ve bağlı su olarak bulunur.Serbest su kan ve lenf sıvılarındaki sudur.Bağlı su ise ikiye ayrılır.Anyon ve katyonlara bağlı olarak bulunan su (Hidratasyon Suyu ) ve anyon ve katyonlara bağlı bulunan suyun dışındaki sudur (Moleküller Arası Su ). 2-ELEKTROLİTLER: C,H,O,N,K,Ca, Mg, Fe,S,P sitoplazmanın temel elementleridir. İlk dördü protoplazmada bulunan organik maddeler yönünden daha önemlidir.Mg ve Fe ise klorofil ve hemoglobin gibi yapıları oluşturma yönünden de temel element sayılırlar. Bu elementler hücredeki bileşikleri teşkil ederler.Özellikle temel elementlerin eksikliği halinde hücre fonksiyonlarını tam olarak sürdüremez. Bu elementler ayrıca protoplazmik aktiviteyi artırır, osmotik basıncı sağlar, asit-baz dengesini ayarlar, birçok enzimleri aktifleştirir ve bazı vitaminlerin terkibine girer. Canlı hücredeki inorganik maddeler asit baz ve tuzlardır.Fakat bunlar hücre suyu içinde erimiş yani iyonlaşmış olup elektrolitleri teşkil ederler. Bir solusyonda iyonların bulunuşu, solusyonun elektrik akımını geçirmesini sağlar. Böylece iyonlarına ayrılan ve dolayısıyla elektrik akımını ileten maddelere elektrolit (iletken) denir. ORGANİK MADDELER Hücre yapısında çeşitli organik maddeler mevcuttur. Karbonhidratlar: Enerji kaynağıdır. Bu enerji hücre çoğalması, büyümesi ve hareket yeteneği için gereklidir. Karbonhidratlar üç grupta toplanır. Monosakkaritler: Hidroliz sonucu daha küçük moleküllere ayrılamazlar. Triozlar Pentozlar Heksozlar ( Glukoz,Fruktoz, Galaktoz) Oligosakkaritler: 2,3,4,5,6 monosakkaritin aralarından birer mol su çıkmasıyla diğer bir deyişle glikozit bağları ile birbirine bağlanarak meydana getirdikleri bileşiklere oligosakkaritler denir. Disakkaritler( Sakkaroz, Maltoz, Laktoz) Trisakkaritler Polisakkaritler: Canlıda en önemli polisakkaritler heksozlardan yapılmış olanlar olup bitki hücresi çeperinde sellüloz, bitkide depo edilen nişasta ve hayvan hücrelerinde depo edilen glikojendir. Lipidler: Enerji kaynağı olarak ve hücre membranında yapı taşı olarak önemlidir. Lipidleri şöyle gruplandırabiliriz. Basit lipidler Bileşik lipidler( Fosfolipid, glikolipid) Diğer lipidler ( Steroid, kolesterol) Kolesterol Hayvansal hücre zarlarının yapısında, sinir dokusu ve diğer dokularda yapı maddesi olarak iş görür. Bitkisel dokularda bulunmaz. Kolesterol deri hücrelerinin zarlarında yağlarla birlikte birikerek derinin asitlere ve eritici maddelere karşı direncini arttırır, aynı zamanda derinin su kaybını önler. Omurgalılarda, besinlerle alınan veya organizmada sentez edilen kolesterol diğer steroid gruplarına çevrilmektedir. Bunlardan biri de safra tuzlarıdır. Safra tuzları karaciğerde yapılır ve safra kanalları yoluyla bagırsaklara iletilir, orada yağların sindirim ve absorbsiyonunda rol oynar. Bunun yanında kanda kolesterol oranının yükselmesi, arteriosclerozis denen damar sertliği meydana getirir.Bunda damarların iç yüzünde plaklar oluşarak damar çeperi daralır ve esnekliği kaybolur. PROTEİNLER: Basit proteinler:Bunlar sadece amino asitlerden ibarettir. Albuminler Globulinler Gluteninler Histonlar Protaminler Bileşik proteinler: Fosfoproteinler: (vitellin) Metalloproteinler:Bunlar proteine bağlı olarak Fe,Cu vb. ağır metalleri kapsayan bileşik proteinlerdir. (Hemoglobin , Hemosiyanin) Nukleoproteinler: Hücrede RNA ve DNA proteinle birleşmiş halde bulunur ki bunlara nukleoproteinler adı verilir. NUKLEİK ASİTLER: Nukleotid denen birimlerden oluşur. Baz + Şeker + Fosforik asit = Nukleotid Nukleotidler dehidrasyon senteziyle nukleik asitleri meydana getirirler. Böylece DNA ve RNA molekülleri oluşur. ENZİMLER: Hücrede meydana gelen sayısız biyokimyasal reaksiyonu katalizleyen ve canlı hücrede sentezlenen protein yapısındaki organik moleküllere enzim denir.Enzimler kimyasal katalizörler gibi görev yaparak reaksiyonu başlatır ve sonlandırır. Bazı enzimler sadece saf protein moleküllerinden yapılmıştır.Bunlara basit enzimler denir. (Pepsin, tripsin, kimotripsin) Diğer bazı enzimler ise protein yapılarına ilaveten aktivite gösterebilmek için kofaktör denen inorganik metal iyonları ve koenzim denen kompleks organik moleküllerle birlikte çalışırlar.Bu tip enzimlere de bileşik enzim denir. Enzim koenzim veya faktörü ile birlikte katalitik bakımdan tamamen aktif durumda ise bu haline holoenzim adı verilir.Bir holoenzimin koenzim veya kofaktöre ayrılıp inaktif hale gelen protein kısmına Apoenzim denir. VİTAMİNLER: Hücre metabolizması için gerekli olan, çok az miktarları ile büyüme, gelişme ve sıhhatli yaşama için gerekli organik maddelerdir.Vitaminler aynı zamanda hücrede geçen biyokimyasal olayları katalizleyen çoğu enzimlerin koenzim grubunu teşkil ederler. Bu nedenle avitaminozda reaksiyonlar gerçekleşmez ve canlı bunun eksikliğini duyar. Suda eriyen vitaminler: B ,C Yağda eriyen vitaminler: A,D,E,K HORMONLAR HÜCREDE PROTEİN SENTEZLENMESİ Protein sentezlenmesinde molekül ağırlıkları ve diğer bazı özellikleri farklı üç çeşit RNA görev yapar.Bunlardan biri elçi RNA dır. eRNA nukleusta DNA molekülünden aldığı genetik bilgiyi sitoplazmaya iletir.İkincisi ribozomal RNA dır.Protein sentezi ribozomun büyük bir kısmını oluşturan rRNA üzerinde gerçekleşir. Üçüncüsü taşıyıcı RNA dır. tRNA nın görevi bir polipeptid zinciri oluşurken sitoplazmadaki uygun amino asitleri alarak zincirdeki uygun yerlere yerleştirmektir. Her üç RNA da DNA tarafından sentezlenir. DNA çift dizi olmakla beraber bunlardan sadece biri genetik bilgiyi aktarır ve eRNA yı oluşturur, buna anlamlı dizi denir. Protein sentezi özetlenirse; Önce nukleusta çift diziden oluşan DNA molekülünün dizilerinden biri, sentezlenmesini istediği protein için gerekli nukleotitleri kapsayan kısmının kopyasını çıkararak, özel bir eRNA hazırlar.Hazırlanan bu eRNA nukleus zarının porundan çıkarak sitoplazmaya geçer ve ribozomla birleşir. Böylece ribozomlarda, DNA nın emrettiği proteini sentezlemek üzere özel bir eRNA kalıbı yerleşmiş olur.Daha sonra bu kalıp üzerindeki her kodona uygun antikodonlu tRNA lar sitoplazmadan uygun amino asitleri alarak ribozomdaki eRNA kalıbında yerine koyar. Böylece her ribozomda , DNA dan gelen şifreye uygun amino asitler yan yana peptid bağları ile bağlanarak istenen protein sentezlenmiş olur. Sentezlenen bu protein ribozomlardan ayrılarak gerekli yerlere taşınır, işi biten eRNA lar daha sonra parçalanır. HÜCRENİN FİZİKSEL YAPISI DİFFUSİON: Sıvı veya gaz molekülleri taşıdıkları kinetik enerjiden dolayı, moleküllerinin yoğunluğuyla ilgili olarak çok yoğun bir ortamdan az yoğun ortama hareket ederler ki bu olaya diffüzyon denir. Her yöne doğru olan bu hareket iki ortam arasında yoğunluk farkı kalmayıncaya kadar devam eder. SOLUSYON: İki ayrı yapının birbiri içinde eriyerek oluşturdukları karışımlara denir.Solusyonlar birkaç tipte olur. 1- Hakiki veya gerçek solusyon: Suda dağılan partiküller 1 milimikrondan daha küçüktür ve su molekülleri tarafından taşınır. Saydam olan bu solusyonların suyu uçurulursa geride partiküller kristal halde kalır, o nedenle bunlara kristalloid de denir.Tuz gölünde tuzun oluşması gibi. Canlı sistemde çözücü moleküller sudur.Protoplazmada bulunan çözünmüş tuzlar, şekerler ve diğer maddeler hücreye belli bir yoğunluk ve osmotik basınç kazandırır. Bu sayede hücre bulunduğu ortamın yoğunluğuna göre çevresiyle alışveriş yapabilir.Hücre içinde bulunduğu üç solusyon tipine göre durumunu değiştirir. İzotonik solusyon: Hücre içi yoğunluğu ile hücrenin konulduğu ortamın yoğunluğu aynıdır. Bu yüzden hücrede bir değişiklik olmaz.İki tarafa eşit miktarda su molekülü geçer, vücut veya kan hücrelerinde büzülme veya gerginlik olmaz. Normalde vücuttaki hücrelerin hücre sıvısı ile kan plazması ve diğer vücut sıvıları izotoniktir.% 0.9 NaCl çözeltisi insan hücreleri ile izotoniktir. Buna fizyolojik eriyik denir. Hipotonik solusyon: Ortam sıvısı yoğunluğu, hücre sıvısınınkinden daha az olan solusyonlardır. Bu durumda hücre dışarıdan su alır.Eritrositler % 0.6 lık tuz solusyonuna konursa su alır ve sonunda giren suyun basıncına dayanamayan zar patlar(hemoliz). Hemoliz yolu ile içindeki maddeleri atılabilen yegane zar eritrositlerdir. Hipertonik solusyon: Bunda ortam sıvısı yoğunluğu, hücre sıvısından fazladır.Eritrositler böyle bir ortama konursa su kaybedip büzülürler. Aynı şekilde ellerimizi tuzlu suda bir müddet bekletirsek ellerimizin derisi buruşur. 2- Kolloid çözelti: Bunlarda partiküllerin büyüklükleri gerçek çözelti ile süspansiyon partikülleri arasındadır. (1-100 milimikron çaptadır.)Bunlar tabana çökmek için küçük, gerçek çözelti yapmak için büyüktür. Filtre edilemezler . Hakiki çözeltilerdeki gibi kristal teşkil etmezler. 3- Suspension: Eğer su içinde çözünen partiküller 100 milimikrondan büyük olursa bunlara süspansiyon denir.Süspansiyon birçok molekülün yanyana gelmesinden meydana gelir. CANLI SİSTEMDE VE HÜCREDE SIVILAR Semipermeabl olan hücre membranı bulunduğu ortamla veya komşu hücrelerle madde alışverişi yapar.İki komşu hücrenin membranları arasında 80 Angstrom kadar bir aralık bulunur.Bu aralığa hücreler arası alan (intersellüler alan), buradaki sıvıya da hücreler arası sıvı (intersellüler sıvı) ve doku sıvısı anlamında (interstisiel sıvı) denir. Damar içi sıvısına (plazma) intravasküler sıvı denir. İntravasküler sıvı ve intersellüler sıvının ortak adı da hücre dışı sıvıdır(extrasellüler sıvı). Hücre içi ve dışı sıvı bileşimlerinin organizma tarafından sabit tutulmasına HOMEOSTASİS denir.Homeostasisin aşırı değişimi hücreyi ölüme kadar götürebilir.Ör: kolerada barsaklardan çok aşırı su kaybı, suyla birlikte birçok elektrolitin de atılmasına neden olur.Eğer bunlar kısa sürede yerine konamazsa hasta ölür. HÜCRE BÖLÜNMESİ Amitosis Mitosis Meiosis AMİTOSİS BÖLÜNME Bu tip bölünme; açlık esnasında dejenere olan hücrelerde, yaşlı hücrelerde, süratle büyüyen hücrelerde ve memelilerin döl yatağı (uterus) epitel hücrelerinde görülür. Eşey hücrelerinde amitoza hiçbir zaman rastlanmaz. MİTOSİS BÖLÜNME HAZIRLIK EVRESİ (Metabolik faz) Kromozomların kendini eşlemesi Sentriollerin kendini eşlemesi İğ ve aster iplikleri için gerekli proteinlerin sentezlenmesi Enerji sağlanması DAĞILMA EVRESİ Profaz: Dağınık ve kromatit halindeki kromozomlar helezon yaparak kısalır ve kalınlaşır. Tomurcuklu sentrioller kutuplara itilirken iğ ve aster iplikleri oluşur. Nukleolus küçülerek kaybolur. Nukleus zarı erir. Kısalıp kalınlaşan kromozomlar hücrenin merkezinde toplanır. SOLUSYON: İki ayrı yapının birbiri içinde eriyerek oluşturdukları karışımlara denir.Solusyonlar birkaç tipte olur. 1- Hakiki veya gerçek solusyon: Suda dağılan partiküller 1 milimikrondan daha küçüktür ve su molekülleri tarafından taşınır. Saydam olan bu solusyonların suyu uçurulursa geride partiküller kristal halde kalır, o nedenle bunlara kristalloid de denir.Tuz gölünde tuzun oluşması gibi. Canlı sistemde çözücü moleküller sudur.Protoplazmada bulunan çözünmüş tuzlar, şekerler ve diğer maddeler hücreye belli bir yoğunluk ve osmotik basınç kazandırır. Bu sayede hücre bulunduğu ortamın yoğunluğuna göre çevresiyle alışveriş yapabilir.Hücre içinde bulunduğu üç solusyon tipine göre durumunu değiştirir. İzotonik solusyon: Hücre içi yoğunluğu ile hücrenin konulduğu ortamın yoğunluğu aynıdır. Bu yüzden hücrede bir değişiklik olmaz.İki tarafa eşit miktarda su molekülü geçer, vücut veya kan hücrelerinde büzülme veya gerginlik olmaz. Normalde vücuttaki hücrelerin hücre sıvısı ile kan plazması ve diğer vücut sıvıları izotoniktir.% 0.9 NaCl çözeltisi insan hücreleri ile izotoniktir. Buna fizyolojik eriyik denir. Hipotonik solusyon: Ortam sıvısı yoğunluğu, hücre sıvısınınkinden daha az olan solusyonlardır. Bu durumda hücre dışarıdan su alır.Eritrositler % 0.6 lık tuz solusyonuna konursa su alır ve sonunda giren suyun basıncına dayanamayan zar patlar(hemoliz). Hemoliz yolu ile içindeki maddeleri atılabilen yegane zar eritrositlerdir. Hipertonik solusyon: Bunda ortam sıvısı yoğunluğu, hücre sıvısından fazladır.Eritrositler böyle bir ortama konursa su kaybedip büzülürler. Aynı şekilde ellerimizi tuzlu suda bir müddet bekletirsek ellerimizin derisi buruşur. 2- Kolloid çözelti: Bunlarda partiküllerin büyüklükleri gerçek çözelti ile süspansiyon partikülleri arasındadır. (1-100 milimikron çaptadır.)Bunlar tabana çökmek için küçük, gerçek çözelti yapmak için büyüktür. Filtre edilemezler . Hakiki çözeltilerdeki gibi kristal teşkil etmezler. 3- Suspension: Eğer su içinde çözünen partiküller 100 milimikrondan büyük olursa bunlara süspansiyon denir.Süspansiyon birçok molekülün yanyana gelmesinden meydana gelir. CANLI SİSTEMDE VE HÜCREDE SIVILAR Semipermeabl olan hücre membranı bulunduğu ortamla veya komşu hücrelerle madde alışverişi yapar.İki komşu hücrenin membranları arasında 80 Angstrom kadar bir aralık bulunur.Bu aralığa hücreler arası alan (intersellüler alan), buradaki sıvıya da hücreler arası sıvı (intersellüler sıvı) ve doku sıvısı anlamında (interstisiel sıvı) denir. Damar içi sıvısına (plazma) intravasküler sıvı denir. İntravasküler sıvı ve intersellüler sıvının ortak adı da hücre dışı sıvıdır(extrasellüler sıvı). Hücre içi ve dışı sıvı bileşimlerinin organizma tarafından sabit tutulmasına HOMEOSTASİS denir.Homeostasisin aşırı değişimi hücreyi ölüme kadar götürebilir.Ör: kolerada barsaklardan çok aşırı su kaybı, suyla birlikte birçok elektrolitin de atılmasına neden olur.Eğer bunlar kısa sürede yerine konamazsa hasta ölür. MİTOSİS BÖLÜNME HAZIRLIK EVRESİ (Metabolik faz) Kromozomların kendini eşlemesi Sentriollerin kendini eşlemesi İğ ve aster iplikleri için gerekli proteinlerin sentezlenmesi Enerji sağlanması DAĞILMA EVRESİ Profaz: Dağınık ve kromatit halindeki kromozomlar helezon yaparak kısalır ve kalınlaşır. Tomurcuklu sentrioller kutuplara itilirken iğ ve aster iplikleri oluşur. Nukleolus küçülerek kaybolur. Nukleus zarı erir. Kısalıp kalınlaşan kromozomlar hücrenin merkezinde toplanır. Metafaz: Kromozomlar iğ ipliklerine dik olan metafaz düzleminde toplanırlar.Sentromerlerinden bükülürler. İki eş kromatitden oluşan her kromozomun sentromeri birbirinden ayrılır. İğ iplikleri sentromerlere bağlanır.Profazın 30-60 dakika sürmesine karşılık metafaz ancak 2-6 dakikadır. Anafaz: İğ ipliklerinin kasılması sonucu eş kromatitler bir sıçrama hareketiyle birbirlerinden uzaklaşmaya başlar. Ve artık kardeş kromozomlar olarak adlandırılırlar. 3-15 dakika süren anafaz kardeş kromozomlar kutuplara ulaşınca son bulur. Telofaz: Bu fazda profazın tamamen aksi yönde olaylar gelişir. Ayrı kutuplardaki kromatitler, sentriollerin etrafında toplanır. Helezonları çözülür. Sitoplazma tarafından kromozomların etrafında nukleus zarı oluşturulur. Nukleolus oluşur. Ve meydana gelen iki yavru nukleusta metabolik evre başlar. SİTOKİNEZ Sitoplazma hücre zarından içeriye doğru ve iğ ipliklerine dik bir yönde girinti yapmaya başlar.Karşılıklı gelişen bu girintiler, gittikçe derinleşerek sonuçta sitoplazmanın iki ayrı parçaya bölünmesini sağlar. Böylece tamamlanmış olan mitoz bölünme ile bir hücreden, ana hücre ile aynı sayıda kromozoma sahip iki yavru hücre meydana gelir. Bazen nukleus bölündüğü halde sitoplazma bölünmez ve iki nukleuslu bir hücre oluşur. (Sinsisyum) Çizgili kas dokusunda bu durum görülür. MEİOSİS BÖLÜNME Mayoza hazırlık evresi: Dağılma evresi: Birinci meiosis (Redüksiyon bölünme): - Birinci profaz : - Leptoten: Kromonema ipleri kısalıp kalınlaşmaya başlar. Nukleus zarı henüz mevcuttur. Kromozomlar belirir. -Zigoten: Homolog kromozomlar birbirlerini bularak birleşirler bu birleşme noktalarına sinapsis , görüntüye de bivalent denir. - Pakiten: 4 kromatitli görünen homolog kromozom çiftine tetrad adı verilir. - Diploten: Sinapsis yapan homolog kromozomlar birbirlerinden ayrılırken birkaç noktada birbirlerine dokunurlar ve bu değme noktaları yüzünden X haline benzer bir durum alırlar (Kiazma) . Bağlandıkları yerden kopan homolog kromozomların parçalarının yer değiştirmesine Crossing-over denir. - Diakinez: Parça değişen fakat materyali azalmayan kromozomlar birbirinden ayrılır, spiralleşip kalınlaşır,boyları kısalır ve koyu olarak boyanır.Çekirdekçik kaybolur, çekirdek zarı dağılır ve profaz sona erer. Birinci metafaz: Nukleus zarı erimiştir. Sentriol çiftleri kutuplara gider, iğ iplikleri meydana gelir. Tetratlar ekvatorial düzlemde sıralanır. Birinci anafaz: Homolog kromozomlar bölünmeden sentromerlerinden yakalanarak kutuplara çekilmeye başlarlar. Bu kromozom sayısını haploid duruma düşürür. Birinci telofaz:Kromozomlar interfazdaki durumlarına geçmeye başlar, çekirdek zarı belirginleşir fakat çekirdekçik oluşmaz. Hücre ikiye bölünerek erkekte secunder spermatosit, dişide secunder oosit ve primer kutup hücresi meydana gelir.Böylece haploid kromozomlu olarak birinci mayoz sona erer. İkinci meiosis: Arada bir interfaz evresi yoktur. Mitozun bütün safhaları yeniden tekrarlanır. İkinci profaz:Birinci bölünme sonucunda kendini eşlemiş olan sentrioller, kutuplara doğru giderken aralarında iğ ve hücre zarına doğru aster iplikleri

http://www.biyologlar.com/medikal-biyolojiye-giris

Evrim Kuramı ve Maymun Sorunu

"Evet,insanlar gerçekten de bir evrim geçirdi;ancak yalnızca maymunlardan hatta diğer memeli hayvanlardan türemedi. Bizler, en uzağı ilk bakteriler olan uzun bir atalar soyundan evrildik" Lynn Margulis (Ortak yaşam Gezegeni, Türkçesi:Ela Uluhan,Varlık/Bilim s:10) İnsan kanı ile maymun kanı arasında büyük bir benzerlik vardır. Örneğin 287 aminoasitten oluşan hemoglobin A molekülü insan ve şempanzede tıpatıp aynıdır. Aynı molekül bakımından insan ve goril kanı arasındaki fark ise 287 aminoasitten sadece birindedir. Hemoglobin A molekülü farede 19,koyunda 26,tavukta 45,sazan balığında 95 aminoasit ve insan hemoglobin A molekülünden ayrılmaktadır. Görüldüğü gibi kanın bir öğesi olan hemoglobin A molekülü bakımından insana en yakın canlı olan şempanzede hiç fark yok iken insandan uzaklaştıkça farklılıklar artmaktadır. Daha bir çok protein üzerinde yapılan çalışmalarda aynı yönde sonuçlar elde edilmiştir. Prof.Dr.Aykut Kence (ODTÜ,Fen-Edebiyat Fak) TÜBA Bilimsel Toplantı Serileri 2 Şimdi size bir başka büyük kuramı sunmaya çalışacağım: Evrim Kuramı. Bugün bilime karşı büyük bir düşünsel saldırı var. Şu güzel ülkemiz ve insanlarımız,bilim ve teknolojinin olanaklarından daha tam olarak yararlanamazken bilimin en genel geçer kuramlarını tartışarak zaman öldürmek ne acı. Bilim belki her zaman onu "savunmayı" gerektirdi. Ama gerek 20. yüzyılın büyük savaşları,sosyalist sistemin çatırdayarak çökmesi,teknolojinin yanlış ya da yıkım için kullanılması,gerekse ülkemizdeki,siyasi,ekonomik ve ahlaki bunalım,bilim düşmanlarının saldırılarını kolaylaştırıcı bir zemin hazırlıyor. Bu konuda evrim kuramının da çok iyi anlaşılması ve anlatılması gerekiyor.2000 Mayıs ayında Sabancı Üniversitesi'ne konuk öğretim üyesi olarak gelen Harvard Ünversitesi'nden Andrew Berry, doğal seçimle rastlantı için güzel bir örnek verdi: "Bütün sarışın insanlar cilt kanserinden ölürse burada doğal seçim sürecinin işlediğini söyleyebiliriz;ama tüm sarışınların bir gemiye binip boğulması bir rastlantıdır." Ben iyi bir derleme yaptığıma inanıyorum,ustalara söz vererek bunu da sizinle paylaşmak istiyorum. Ayrıca Erzurumlu İbrahim Hakkı'nın Marifetname adlı eserinden uzun alıntılar veriyorum. Hayvan Deyip Geçmeyelim! Evrim Kuramına itiraz edenlerin en büyük kaygısı, atalarının herhangi bir hayvana bağlanamayacağı noktasındadır. Niye Hayvan? Çünkü, iddiaya göre evrim kuramının en temel noktalarından biri, insanın maymundan türediğidir. Darwin, aslında insanın maymundan geldiğini söylemedi. Darwin, bütün canlıların, birbiriyle akraba olduğunu söyledi. En yakın komşumuz, en yakın yeğenimiz maymunlardır; ama biz, maymunlardan gelmiyoruz; bize söyleyebildikleri kadarıyla maymunlar da bizim atamız olduğunu inkar ediyorlar ve bize bir yakınlık duymuyorlar! Onlar, kendi dünyalarını tercih ediyorlar! Hayvanoğlu Hayvan! Maymun sorununa döneceğim,ama önce genel olarak hayvanlarla ilgili birkaç eğlencelik yazacağım. Belediye otobüsünde mi, yoksa lüks bir baloda mı olmuş bilmiyorum; ama şu olay olmuş: Adamın biri, otobüsteki bir hanımefendinin ya da başka bir adamla dans eden hanımefendinin ayağına basmış... Hanımefendi, önce ses çıkarmamış. Ama adamın paldır küldür, hiç de dans etmeden sallandığını ve yeniden ayağına bastığını gördükten sonra: " Beyefendi, ayağıma basıyorsunuz. Biraz dikkat etsenize!" diye çıkışmış. Bizim maganda yine pek oralı olmamış. Bunun üzerine hanımefendi,sessizce, ama onun duyacağı şekilde "Hayvan!" demiş. Bizimki hayvanlığı da hiç üzerine almamış. Bunun üzerine hanımefendi öfkelenmiş. "Bakınız bey, bakınız! " Hayvan! dediysek, herıld(herhalde’nin kısaltılmışı ve İngilizcesi!) kuş, bülbül, serçe demek istemedik; ayı, öküz, domuz gibi bir şey demek istedik !" demiş. Ama söylentiye göre adam, bu nazik hanımefendiyi yine anlamamış! Bu öykü bana anlatılınca pek sıkılmıştım. Çünkü, pistlerdeki durumum, anlatılan “Anadolu Evladından” hiç de farklı değildi. Kadın, sanki bana konuşuyormuş gibi kıpkırmızı olmuştum. Bunun için , dansetmek mecburiyetinde bırakıldığım zamanlarda(!)pist alanın seyrelmesini dört gözle bekler(!) ve dans ederken de eşime ilk kez sarılıyormuşçasına sarılırım! Böylece hem dans eden çiftlerden, hem de komşuların rahatsız edici konuşmalarından uzak dururum! İnsanlar,genellikle hayvanları bir bütün olarak kendisinden aşağı yaratıklar olarak görür. Bazı insanlar,bazı insanları da aşağı yaratıklar olarak görür de konumuz şimdilik birincisi üzerine. Kızdığımız birine sık sık "hayvan oğlu hayvan " demez miyiz?Bu hayvanlıktan en çok nasibini alan hayvanlar eşek ile öküzdür. Oysa ikisi de insanların öyle çok kahırlarını çeker ki anlatamam. Bir de bunu ayıları ekleyebiliriz. Bu arada savaşçı bir kabile annesi oğlu için "benim kartal pençeli oğlum" der. Kızını pazarlayan(afedersiniz) gösterişçi anne şöyle demez mi: “Ay kardeş, kendi kızım diye söylemiyorum. Görüyorsun işte boy onda bos onda. Ceylan gibi kız. O görgüsüzler, benim ahu (ceylan) gözlü kızımdan daha güzelini nerede bulabilir?” Oğlunu pazarlayan (yine afedersiniz) bir anne ya da babanın “benim oğlum Aslan gibidir” derken, oğlunun Aslandan daha güçsüzlüğünün altını çizmez mi? Şimdi konumuza dönelim. Hayvanlarla bir ilgimiz ve ilişkimiz var mı? Anlattığım gibi var. Kartal var, köpek var, tazı var, kedi var, tavuk var... Şimdi ilginç bir soru: karalara önce bitkiler mi, yoksa hayvanlar mı çıktı? Umarım insanlık onurunuz incinmez, çünkü karalara bizden önce bitkiler çıkmış. Bitki dediysek, güller, sümbüller, kaynana dili değil belki; ama bitki işte... 400 milyon yıl önce karalara ilk olarak "bitkiler " çıktı. 350 milyon yıl önce ilk çift yaşamlı hayvanlar (amfibiler) göründü. 320 milyon yıl önce ilk sürüngenler arşınlamaya başladı karaları. Evrim Kuramının İlk Soruları Bu kuram, her çocuğun, her ergenin, her düşünen insanın yaşamı boyunca zaman zaman kendine sorduğu soruların yanıtını araştırır. Bu sorular ,hepimizin aklını kurcalayan sorulardır: Nereden geldik, nereye doğru gidiyoruz? İnsanoğlunun yaşamında yanıtını bilmek istediği soru böyle özetlenebilir. Ama biz yine de basit sorularla olayı deşmeye çalışalım: Bundan diyelim ki bin yıl, milyon yıl, milyar yıl önce de insan, insan mıydı, tavuk tavuk muydu, kedi kedi miydi? Çam ağacı çam ağacı mıydı?Yani canlılığın tarihinin “filmini” bugünden geriye doğru sarsak neler görebiliriz? Bu film, nereye kadar ve hangi bilgilerle geriye sarılabiliyor? Evrim Kuramı, çok basit olarak “hayvanlar ve bitkiler, bugünlere gelirken değişikliklere uğrayarak mı geldi; yoksa her şey, bir dahi vuruşuyla başladı ve hiç değişmeden sürüp gidiyor mu?” sorularına bilimin verdiği yanıtları kapsıyor. Doğal olarak bilimin verdiği yanıtlar deyince akan sular durmuyor ve bu konuda insan aklının çağdaş düşmanları da boş durmuyor; oldukça inceltilmiş biçimiyle bilime saldırılarını sürdürüyorlar. Bunun yalnız geri kalmış ülkelerde sürdürüldüğünü sanmayınız. En başta ABD olmak üzere,hemen tüm gelişmiş ülkelerde de bilimin düşmanları boş durmuyor. Evrim kuramına karşı yürütülen kampanya, ülkemizde özellikle 20. yy biterken doruk noktasına çıktı. Bunu basit bir inanç kayması olarak görmeyelim. Bu, yalnızca özgür düşünceye değil, başta tıp olmak üzere doğal bilimlere ve daha da geniş anlamıyla bilimsel felsefeye saldırıdır. Evrim kuramına saldıranların ilk ve ilkel saldırılarıyla konuya girmek istiyorum. Bu, maymun sorunudur. Maymun Sorunu: Ünlü Tartışma! İnsanın, “en uyumlunun yaşaması” ilkesiyle, daha ilkel canlılardan evrimleştiği hakkındaki Darwin kuramı, Türlerin Kökeni ’nin yayımlandığı 1859 yılından beri müthiş tepkiler almıştır. Özellikle 1860 Haziran’ında Darwin’i savunan biyolog T.H. Huxley ile Tanrı’yı savunan Oxford başpiskoposu Wilberforce arasında halka açık bir tartışma yapılıyor. Bu tartışmada Piskopos, Darwin’in tezinin çok saçma olduğunu savunuyor ve konuşmasını alaylı bir biçimde Huxley’in büyükanne tarafından mı yoksa büyükbaba tarafından mı maymundan geldiğini sorarak bitiriyordu. Huxley ise evrimin kanıtlarını ustaca ortaya koymuş ve atasının bir maymun olmasının, piskoposunki gibi entellektüel bir fahişe olmasından daha iyi olduğunu söyleyerek bitirmiştir. Bu sırada Lady Brewester baygınlık geçirmiş, dışarı taşınırken hakkın rahmetine kavuşmuştur.”(John Taylor, Kara Delik, e yayınları s: 39) Kaptan Fitzroy’un Kutsal Kitap’la uyumlu düşünceleri yolculuk süresince gittikçe daha da katılaştı. O, anlamaya çalışmamız gereken kimi şeler olduğuna inanıyordu;evrenin ilk kaynağı, bütün bilimsel araştırmaların erişimi dışında bulunması gereken bir giz olarak kalmalıydı. Fakat Darwin çoktandır bunu kabul etmekten çok uzaktı; Kutsal Kitap’a takılıp kalamazdı,onun ötesine geçmek zorundaydı. Uygar insan bütün soruların en can alıcısını-"biz nereden geldik?” sorusunu- sormaya, soruşturmalarını kendisini götürdüğü yere kadar götürmeye devam etmekle yükümlüydü. Bu tartışmaya bir son vermek mümkün olmayacaktı. Tartışma, biri bilimsel ve araştırmalara açık, öteki dinsel ve tutucu, karşıt iki görüşün 25 yıl sonra Oxford’da yapılan o sert toplantıdaki çatışmasının bir ön hazırlığıydı.” Ne var ki bir grup insan, yani Kilise, Darwin’in kuramına şiddetle karşı çıktı. Darwin’in Türlerin Kökeni adlı kitabının yayımlanması(1859) bilim ile din arasında sert bir tartışmaya yol açtı. Darwin’in çekingenliği kendisinin bu tartışmada yer almasını engelledi;ama evrimle ilgili kavgacı savunmalarıyla “Darwin’in Buldoğu” lakabını alan dostu Thomas Huxley’in sözünü sakınmak gibi bir özelliği yoktu. Huxley ile Piskopos Wilberforce arasındaki kavga, Ronald Clark’in Darwin biyografisinde şöyle anlatılır: “Britanya İleri Araştırmalar Kurumu’nun 1860 yazında Oxford’da yaptığı yıllık toplantıda[ Darwin’in kuramı konusundaki] kuşkular boşlukta kaldı. Kurum üyeleri 19. yy bilim tarihinin en parlak sahnelerinden birine tanık olacaklardı. Bu, Oxford Piskoposu Samuel Wilberforce ile Thomas Huxley’in bir tartışma sırasında karşılıklı atışmalarından oluşan bir sahneydi. Çağının öteki kilise adamları gibi Wilberforce da bilimsel bakımdan tam bir karacahildi.(s: 144). Tartışma beklendiği için salon tıka basa doluydu. Wilberforce’un, Huxley’in de daha sonra yazacağı gibi “birinci sınıf bir tartışmacı” olmak gibi bir ünü vardı: “kartlarını uygun oynasaydı evrim kuramını yeterince savunma şansımız pek olmazdı.” Wilberforce, akıcı ve süslü bir konuşmayla, kendisini yenilgiye uğratmak üzere olduğunu belirttiği Huxley’e övgüler düzdü. Ardından ona döndü ve “soyunun büyük annesi mi yoksa büyük babası tarafından mı maymundan geldiğini” öğrenmek istedi. Huxley rakibine döndü ve haykırdı: “Tanrı onu ellerime teslim etti.” “Eğer” dedi [kürsüden], “bana bir büyük baba olarak zavallı bir maymunu mu yoksa doğanın büyük bir yetenek ve güç bahşedip bunlarla donattığı;ama bu yetenekleriyle gücünü yalnızca birtakım eğlenceli sözleri ağırbaşlı bilimsel bir tartışma gibi sunmak amacıyla kullanan bir insanı mı yeğlersin? diye soracak olsalar, hiç duraksamadan tercihimin maymundan yana olduğunu söylerdim.” Huxley bildiği en güçlü darbeyle karşılık vermişti. Bir piskoposu küçük düşürmek,bundan bir ya da birkaç yüzyıl önce pek rastlanır bir şey değildi;hele halkın önünde, kendi piskoposluk bölgesinde küçük düşürmek neredeyse hiç görülmemişti. Dinleyiciler arasında oranın ileri gelenlerinden bir hanım şok geçirip bayıldı Dinleyicilerin çoğu alkışladı. Fakat Robert Fitzroy oturduğu yerden kalktı ve otuz yıl önce Darwin’le gemide yaptığı bir tartışmayı hatırlattı. Kutsal Kitap’ı Huxley’e salladı ve süslü sözlerle bütün doğruların kaynağının bu kitap olduğunu söyledi. Bu öykünün birinci elden bir anlatımı yoktur. Harvardlı biyolog Stephen Jay Gould diyaloğun çoğu bölümünü yaklaşık 20 yıl sonra Huxley’in kendisinin uydurduğu kanısındadır. Fakat bu konuşmalardan kimsenin bir kuşkusu olmadığı yollu bir dip notu da vardır. Huxley Wilberforce’a duyduğu nefreti 1873'e, Piskopos atından düşüp kafasını bir taşa çarparak öldüğü yıla dek sürdü. “Kafası” dedi Huxley bunun öğrenince kıs kıs gülerek “gerçeğe bir kez daha tosladı;ama bu kez sonuç ölümcül oldu." (Adrian Berry, Bilimin Arka Yüzü, TÜBİTAK yay, s: 137-146) Bozkurt Güvenç, olayı değişik sözlerle şöyle anıyor: Huxley soruyu ciddiye alıyor (oysa Darwin aldırmıyor) diyor ki: “Gerçeklere saygısız bir insan soyundan gelmektense, gerçeklere saygılı bir maymun soyundan geldiğimi kabul ederim.” Gazeteciler- o zaman telefon yok- hemen koşuyor, gazete yönetim merkezlerine “ Evrimciler, maymundan geldiklerini kabul ettiler” haberini yetiştiriyorlar. Tabi biz, 120 yıldır değerli dinleyenlerim, gazete haberleriyle Darwin’i ve bilimi yargılıyoruz. Fen fakültelerimizin biyoloji bölümleri dahil. Çünkü kimse, Darwin’in, Türlerin Kökenini, İnsanın Yücelişini okumuyor. Mesele, Darwin konusu, maymun meselesi değil. Dünyayı algılama meselesi. İşte bu konuda, yalnız biz değil, bütün dünyada büyük sorunlar var.” (Prof. Dr. Bozkurt Güvenç,TÜBA, Bilimsel Toplantı Serileri: 2, Bilim ve Eğitim s: 68) Maymun sorunu,maymunları bile rahatsız edecek kalitesizlikle reddediliyor. Neden mi? Size birileri “Efendim size dedenizin dedesi ve onun da dedesi hüdavendigar Murat han hazretlerinden selam ve muhabbetler getirdik. Sizin durumunuzu sorarlar. Sülalem aynı geleneklerle devam etmede midir? Yoksa bazı boylar birliğimizi bozmuş mudur?..” diye soruyor diyelim. Şimdi siz de bu soruyu yanıtlayın. Sanırım şöyle olabilir: “ Benim dedemin dedesinin dedesi Rumeli Beylerbeyi falanca beymiş. Ya da “benim bugünkü durumuma bakmayın. Bendeniz Fatih Sultan Mehmet Han hazretlerinin onüçüncü göbekten torunu olurum” diyebilirsiniz. Ve de torunluğa uygun görev isterim!...” Bu da sizin ne kadar köklü, ne kadar akıllı, ne kadar sabırlı, ne kadar alçakgönüllü(!) olduğunuzu gösterir. İLK İNSANLAR İnsan nasıl insan oldu? “Homo sapiens ’in dil, gelişmiş teknolojik beceriler ve ahlaki yargılara varabilmek gibi özel nitelikleri antropologları uzun zamandır hayranlığa sürüklüyor. Ama yakın zamanlarda antropolojide yaşanan en önemli değişikliklerden biri, bütün bu niteliklere karşın, Afrikalı insansımaymunlarla çok yakın bir bağlantımız olduğunu anlaşılmasıdır. Bu önemli görüş değişikliği nasıl gerçekleşti? Bu bölümde, Charles Darwin’in en eski insan türlerinin özel doğası hakkındaki fikirlerinin antropologları nasıl etkilediğini, yeni araştırmaların Afrikalı insansımaymunlarla evrimsel yakınlığımızı nasıl ortaya çıkardığını ve doğadaki yerimiz hakkında farklı bir bakış açısı geliştirmemizi gerektirdiğini tartışacağım. 1859'da Türlerin Kökeni adlı yapıtında Darwin, evrimin insanlar açısından ne anlama geldiği konusuna girmekten kaçınmıştı. Sonraki baskılara ise çekinceli bir cümle eklendi: “İnsanın kökeni ve tarihi aydınlatılacaktır.” Darwin bu kısa cümleyi, 1871'de yayınlanan İnsanın Türeyişi adlı kitabında ayrıntılandırdı. Hala çok hassas olan bir konuyu ele alarak, antropolojinin kuramsal yapısına iki sütun dikti. Bunlardan ilki, insanların ilk nerede evrildikleriyle (ona zamanında çok az kişi inanmıştı, oysa haklıydı), ikincisi ise, bu evrimin şekli ya da biçimiyle ilgiliydi... Darwin’in evrimimizin şekli hakkındaki görüşleri antropoloji bilimini birkaç yıl öncesine dek etkiledi ve sonra, yanlış olduğu anlaşıldı. Darwin, insanlığın beşiğinin Afrika olduğunu söylüyordu. Bu sonuca basit bir mantıkla varmıştı: Dünyanın her büyük bölgesinde hayatta olan memeliler, aynı bölgede evrilmiş türlerle yakın bağlantı içindedirler. Dolaysıyla, Afrikada bir zamanlar, goril ve şempanzelerle yakından bağlantılı ve günümüzde nesli tükenmiş olan insansımaymunlar yaşamış olabilir: bu iki tür insanın en yakın akrabaları olduğuna göre, ilk atalarımızın Afrika kıtasında yaşamış olma olasılığı, başka bir yerde yaşamış olmaları olasılığından daha yüksektir. Darwin’in bu satırları yazdığı sıralarda hiçbir yerde erken insan fosillerinin bulunmadığını unutmamalıyız; vardığı sonuç tamamen kurama dayandırılmıştı. Darwin’in zamanında bilinen tek insan fosilleri Avrupalı Neandertal insanına aitti ve bunlar, insan gelişiminin görece yeni bir aşamasını temsil ediyorlardı. Afrika'nın Sihiri Antropologlar, Darwin’in yorumundan hiç hoşlanmadılar; bunun en önemli nedenlerinden biri, tropik Afrika’ya sömürgeci gözüyle, küçümseyerek bakılmasıydı: Kara Kıta, Homo sapiens gibi soylu bir yaratığın kökeni için hiç de uygun bir yer olarak görülmüyordu. Yüzyıl başında Avrupa ve Afrika’da yeni insan fosillerinin bulunmasıyla birlikte, Afrika kökenli olma fikrine duyulan küçümseme arttı ve bu tutum onyıllarca sürdü.” Yazar(R.Leakey) 1931'de Camridge’deki hocalarına insanın kökenini Doğu Afrika’da aramayı planladığında kendisine Asya’ya yönelmesi istendi. “Bu olay, bilimcilerin mantık kadar duygularından da etkilenebildiklerini gösteriyor.”(s:16) Darwin’in İnsanın Türeyişi ’nde ulaştığı ikinci önemli sonuç, insanların önemli ayırıcı özelliklerinin-iki ayaklılık, teknoloji ve büyük bir beyin- birbirleriyle uyum içinde gelişmiş olmasıydı: Kollarının ve ellerinin serbest kalması ve ayakları üstünde sağlamca durabilmesi insan için bir avantaj olmuşsa... insanın ataları için daha dik ya da iki ayaklı hale gelmenin daha avantajlı olmaması için bir neden göremiyorum. Eller ve kollar bedenin tüm yükünü taşımak için kullanılıdıkça... ya da ağaçlara tırmanmaya uygun oldukça, silah yapmak ya da taş ve mızrakları hedefe atmak için gerekli şekilde gelişemezdi. Burada Darwin, alışılmadık hareket tarzımızdaki gelişimin, taştan silah yapımıyla doğrudan bağlantılı olduğunu savunmaktadır. Daha da ileri giderek bu evrim değişimlerini, insanlardaki, insansımaymunların hançere benzeyen köpekdişleriyle karşılaştırıldığında son derece küçük olan köpekdişlerinin kökeniyle ilişkilendirmiştir. İnsanın Türeyişi’nde şöyle demekteydi: “İnsanın ataları büyük olasılıkla, büyük köpekdişlerine sahiptiler; ama düşmanları ya da rakipleriyle savaşırken taş, sopa ya da diğer silahları kullanma alışkanlığını geliştirmeleriyle birlikte, çenelerini ve dişlerini daha az kullanmaya başladılar. Bu durumda çene ve dişler küçülecekti.” Silah yapabilen bu iki ayaklı yaratıklar Darwin’e göre, daha çok zeka gerektiren yoğun bir sosyal etkileşim geliştirdiler. Atalarımızın zekalarının gelişmesiyle birlikte, teknolojik ve sosyal gelişmişlik düzeyleri de yükseldi ve bu da, daha gelişmiş bir zeka gerektirdi. Böylece her yeni özellik, diğer özelliklerin gelişmesini sağladı. Bu bağlantılı evrimi hipotezi insanın kökeni konusunda açık seçik bir senaryo sunuyordu ve antropoloji biliminin gelişimine merkez oluşturdu. Bu senaryoya göre ilk insan türü, iki ayaklı bir insansımaymundan öte bir şeydi: Homo sapiens ’te takdir ettiğimiz özelliklerden bazılarına daha o zamandan sahipti. Bu öylesine güçlü ve akla yakın bir imgeydi ki, antropologlar uzun bir süre, bu imgenin etrafında inandırıcı hipotezler dokuyabildiler. Ama senaryo, bilimin ötesine geçti: İnsanların insansımaymunlardan evrimsel farklılaşmaları aniden ve çok eski bir dönemde gerçekleşmişse, bizimle doğanın geri kalan kısmı arasına büyük bir uzaklık girmiş demekti. Homo sapiens’in tamamen farklı bir yaratık olduğuna inananlar için bu bakış açısı son derece rahatlatıcıydı. Bu inanç hem Darwin’in döneminde hem de yüzyılımızda bilim adamları arasında oldukça yaygındı. Söz gelimi, 19.yy İngiliz doğa bilimcisi-ve Darwin’den bağımsız olarak doğal seçim kuramını yaratmış olan- Russel Wallace bu kuramı, insanlığın en çok değer verdiğimiz yönlerine uygulamak istemedi. İnsanları, yalnızca doğal seçimin ürünü olarak görülemeyecek denli akıllı, incelmiş ve gelişmiş buluyordu. İlkel avcı-toplayıcıların biyolojik açıdan bu özelliklere gereksinim duymayacaklarını ve dolaysıyla, doğal seçim sonucu gelişmiş olamayacaklarının düşünüyordu. İnsanların bu denli özel yaratıklar olmalarını doğaüstü bir müdahale sağlamış olmalıydı. Wallace’ın doğal seçim gücüne inanmaması, Darwin’i son derece rahatsız ediyordu. 1930'lar ve 1940'larda Güney Afrika’da gerçekleştirdiği öncü çalışmalarla Afrika’nın insanlığın beşiği olarak kabul edilmesine katkıda bulunan İskoç paleontolog Robert Broom da insanın ayrıcalıklı olduğuna inanıyordu. Homo sapiens ’in evrimin nihai sonucu olduğunu ve doğanın geri kalan kısmının insanın rahat etmesi için şekillendirilmiş olduğunu düşünüyordu. Wallace gibi Broom da türümüzün kökeninde doğaüstü güçler arıyordu. Wallace ve Broom gibi bilimciler, biri entellektüel ve diğeri de duygusal olmak üzere iki çatışan güçle savaşıyorlardı. Homo sapiens’in evrim süreci sayesinde doğadan geliştiği gerçeğini kabul etseler de, insanın tinselliğine ya da aşkın özüne dair inançları, onları evrim konusunda insanın ayrıcalığını kanıtlayan açıklamalar oluşturmaya yönlendiriyordu.(s:18) Darwin’in 1871'deki evrim “paketinde” böyle bir rasyonelleştirme vardı. Darwin doğaüstü müdahale aramıyordu gerçi, ama evrim senaryosu, insanları daha başlangıçtan itibaren insansımaymunlardan ayırıyordu. Darwin’in tezi yaklaşık on yıl öncesine dek(kitabın yazılış tarihi 1996) etkisini sürdürdü ve insanın ne zaman ortaya çıktığı konusunda önemli bir çatışma yaşanmasına neden oldu.Darwin’in bağlantılı evrim hipotezinin çekiciliğini göstermesi nedeniyle, bu çatışmayı kısaca anlatacağım. Çatışma aynı zamanda, hipotezin antropolojik düşünüşteki etkisinin sona ermesine de işaret eder. 1961'de, o dönemde Yale Üniversitesinde olan Elwyn Simons çığır açıcı bir bilimsel bildiri yayınlayarak, bilinen ilk insangil türünün Ramapithecus adı verilen küçük bir insansımaymun benzeri yaratık olduğunu savundu. O dönemde bilinen tek Ramapithecus fosil kalıntıları, Yale’den G. Edward Lewis adlı genç bir araştırmacının 1931'de Hindistan’da bulduğu üst çene parçalarıydı. Simons, yanak dişlerinin (azı dişleri ve küçük azı dişleri), insansımaymunların dişleri gibi sivri değil, düz olmaları açısından insanlardakilere benzediğini görmüştü. Köpek dişleri de insansımaymunlara göre daha kısa ve düzdü. Simons, eksik haldeki üst çenenin yeniden oluşturulması durumunda, şeklinin insanlardakine benzeyeceğini de iddia ediyordu; yani modern insansımaymunlardaki gibi “U” şeklinde değil, arkaya doğru hafifçe genişleyen bir kemer biçiminde. Cambridge Üniversitesi’nden İngiliz antropolog David Pilbeam bu dönemde Yale’de Simons’a katıldı ve birlikte, Ramapithecus çenesinin insansı olduğu iddia edilen anatomik özelliklerini tanımladılar. Ama anatomiden de öteye geçtiler ve yalnızca çene parçalarının güçlülüğüne dayanarak, Ramapithecus’un iki ayağı üstünde dik yürüdüğünü, avcılık yaptığını ve karmaşık bir sosyal ortamda yaşadığını öne sürdüler. Onalrın usavurumları Darwin’inki gibiydi: İnsansı olduğu varsayılan bir tek özelliğin (diş yapısı) varlığı, diğer özelliklerin de varolduğunu gösteriyordu. Sonuçta, ilk insangil türü olduğu varsayılan şey, kültürel bir hayvan- yani kültürsüz bir insanmaymundan çok, modern insanların ilkel bir değişkeni-olarak görülmeye başlandı. İlk Ramapithecus fosillerinin bulunduğu ve ardından, Asya ve Afrika’daki benzer keşiflerin yapılddığı tortular eskiydi. Dolaysıyla Simons ve Pilbeam, ilk insanın en az 15 milyon ve belki de 30 milyon önce ortaya çıktığı sonucuna vardılar ve antropologların büyük çoğunluğu bu görüşü kabul etti. Dahası, kökenin bu kadar eski olduğu inancı insanlarla doğanın geri kalan kısmı arasına büyük bir uzaklık koyarak, pek çok kişiyi rahatlatıyordu. 1960'larda Berkeley’deki California Üniversitesinden iki kimyacı Allan Wilson ve Vincent Sarich, ilk insan türlerinin ne zaman ortaya çıktığı konusunda çok farklı bir sonuca ulaştılar. Fosiller üstünde çalışmak yerine, yaşayan canlılarla Afrikalı insansımaymunlardaki bazı kan proteinlerinin yapısını karışlaştırdılar. Amaçları, insan ve insansımaymun proteinleri arasındaki yapısal fark düzeyini saptamaktı; mutasyon nedeniyle bu fark zaman içinde hesaplanabilir bir hızla artmış olmalıydı. İnsanlar ve insansımaymunrlar ne kadar uzun süre önce iki ayrı tür haline gelmişlerse, biriken mutasyon sayısı da o kadar fazla olacaktı. Wilson ve Sarich mutasyon hızını hesapladılar ve böylece , kan proteini verilerini bir moleküler saat olarak kullanabildiler. Bu saate göre ilk insanlar, yalnızca yaklaşık 5 milyon yıl önce ortaya çıkmış olmalıydılar; bu, egemen antropoloji kuramındaki 15 ile 30 milyon yıllık tahminle çarpıcı oranda çelişen bir bulguydu. Wilson ve Saricn’in verileri ayrıca, insanların şempanzelerin ve gorillerin kan proteinlerinin birbirlerinden aynı derecede farklı olduğunu gösteriyordu. Yani 5 milyon yıl önce gerçekleşen bir evrim olayı ortak bir atanın aynı anda üç ayrı yöne gitmesine neden olmuştu; bu bölünme, modern insanların yanısıra, modern şempanze ve modern gorillerin de gelişmelerini sağlamıştı.(s:20). Bu da çoğu antropolgun inançlarına aykırıydı. Geleneksel düşünceye göre şempanzelerle goriller birbirlerinin en yakın akrabalarıdır ve insanlarla aralarında büyük bir uzaklık vardır. Molekül verileri hakkındaki yorumların geçerli olması durumunda antropologlar, insanlarla insansımaymunlar arasında çoğunun inandığından daha yakın bir biyolojik ilişki olduğunu kabul etmek durumunda kalacaklardı. Çok büyük bir tartışmma doğdu ve antropologlarla biyokimyacılar birbirlerinin mesleki tekniklerini şiddetle eleştirmeye başladılar.Wilson ve Sarich’in vardıkları sonuç, molekül saatlerinin hatalı olduğu ve dolaysıyla, geçmişteki evrim olayları hakkında bir zaman saptamasının güvenilir olmayacağı iddiasıyla eleştiriliyordu. Wilson ve Sarich ise antropologların küçük ve parçalanmış anatomik özelliklere çok fazla önem verdiklerini ve dolaysıyla, geçersiz sonuçlara ulaştıklarını savunuyorlardı. Ben (R.Leakey) o dönemde Wilson ve Sarich’in hatalı olduklarını düşünerek, antropolog topluluğunun yanında yer almıştım. Bu tartışma on yılı aşkın bir süre boyunca devam etti ve bu dönem içinde Wilson’la Sarich ve birbirlerinden bağımsız başka araştırmacılar giderek daha çok sayıda yeni moleküler kanıta ulaştılar. Bu yeni verilerin büyük çoğunluğu, Wilson ve Sarich’in ilk tezlerin destekliyordu. Kanıtlar antropologların fikirlerini değiştirmeye başladı, ama bu yavaş bir değişimdi. Sonunda 1980'lerin başlarında Pilbeam ile ekibinin Pakistan’da ve Londra Doğa Tarihi Müzesinden Peter Andrews ’un Türkiye’de daha eksiksiz durumda Ramapithecus benzeri fosiller bulmaları, sorunun çözüme kavuşmasını sağladı. İlk Ramapithecus fosilleri gerçekten de bazı yönlerden insana benziyorlardı; ama bu tür, insan değildi. Aşırı derecede parçalanmış kanıtları temel alarak bir evrim bağlantısı oluşturma işi çoğu kişinin sandığından çok daha zordur ve dikkatsiz davrananların düşebileceği pek çok tuzak vardır. Simons ve Pilbeam bu tuzaklardan birine düşmüşlerdi: Anatomik benzerlik, mutlaka evrimsel bağlantı olduğu anlamına gelmez.(s:21) Pakistan ve Türkiye’de bulunan daha eksiksiz durumdaki örnekler, insansı olduğu varsayılan özelliklerin yapay olduğunu gösterdi. Ramapithecus’ un çenesi kemerli değil, V şeklindeydi; bu ve diğer özellikler, ilkel bir insansımaymunların türü olduğunu gösteriyordu (modern insansımaymunların çenesiU şeklindedir). Daha sonraki akrabası orangutan gibi, Ramapithecus da ağaçlarda yaşıyordu ve ne iki ayaklı bir insansımaymun ne de ilkel bir avcı-toplayıcıydı. Yeni kanıtlar, Ramapithecus’un insangillerden olduğuna inanan en inatçı antropologları bile yanıldıklarına ve Wilson’la Sarich’in haklı olduklarına ikna etmişti(s:22): İnsan ailesinin kurucu üyesi olan ilk iki ayaklı insansımaymun, sanıldığı kadar eski bir dönemde değil, görece yakın bir zamanda ortaya çıkmıştı. Wilson ve Sarich ilk yayınlarında, 5 milyon yıl öncesini bu olayın tarihi olarak göstermişlerdi; ama günümüzde moleküler kanıtlar, tarihi yaklaşık 7 milyon yıl öncesine atıyor.Ancak insanlarla Afrikalı insansımaymunlar arasında olduğu öne sürülen biyolojik yakınlık fikrinden vazgeçilmedi. Hatta bu ilişki, öne sürüldüğünden de yakın olabilir. Kimi genetikçilerin, molekül verilerinin, insanlarla şempanzeler ve goriller arasında birbirine eşit üç yollu bir ayırma işaret ettiğini düşünmelerine karşın, başka şekilde düşünenler de var. Onlara göre insanlar ve şempanzeler birbirlerinin en yakın akrabalarıdır ve gorillerle aralarındaki evrimsel uzaklık danha fazladır. Ramapithecus olayı antropolojiyi iki şemkilde değiştirmişti. İlk olarak, ortak bir anatomik özellikten ortak bir evrimsel bağlantı çıkarmanın tehlikelerini gösterdi. İkinci olarak, Darwinci “paket”e körü körüne bağlı kalmanın budalalık olduğunu kanıtladı. Simons ve Pilbeam köpek dişinin şeklini temel alarak, Ramapithecus’a eksiksiz bir yaşam tarzı atfetmişlerdi: bir insangil özelliği bulunduğunda, bu türden tüm özelliklerin de bulunduğu varsayılıyordu. Ramapithecus’un insangil statüsünü yitirmesinin sonucunda, antropologlar Darwin paketinden kuşku duymaya başladılar. Bu antropolojik devrimin gelişimini izlemeden önce, ilk insangil türünün nasıl ortaya çıktığını açıkmlamak için çeşitli dönemlerde öne sürülmüş bazı hipotezlere de kısaca göz atmalıyız. Popülerlik kazanan her yeni hipotezin, döneminin sosyal iklimini yansıtması çok ilginç bir nokta. Sözgelimi Darwin, taş silahların geliştirilmesinin, teknoloji, iki ayaklılılık ve beyin boyutunun büyümesini içeren evrim paketinin başlangıcında önemli olduğunu düşünmüştü(s:23) Hipotez hiç kuşkusuz, yaşamın bir savaş olduğuna ve ilerlemenin girişimcilik ve çabayla sağlandığına dair yaygın fikri yansıtıyordu. Victoria çağının bu etosu, bilime işlemiş ve insan evrimi de dahil olmak üzere evrim sürecine bakış açısını belirlemişti. Yüzyılımızın ilk on yıllarında, Edward dönemine özgü iyimserliğin en enerjik günlerinde, bizi biz yapan şeyin beyin ve düşünce olduğu söylendi. Bu yaygın sosyal dünya görüşü antropolojide, insan evrimine başlangıçta iki ayaklılığın değil, beynin büyümesinin ivme kazanrdırdığı fikrinde ifade buldu. 1940'larda dünya, teknolojinin büyüsüne ve gücüne kapıylmışı; dolaysıyla ,”Alet Yapan Adam” hipotezi popülerlik kazandı. Londra Doğa Tarihi Müzesi’nden Kenneth Oakley’in öne sürdüğü bu hipotezde-silah değil- taş alet yapımı ve kullanımının evrimimiz için gerekli dürtüyü sağladığı savunuluyordu. Ve dünyanın İkinci Dünya Savaşının gölgesine girdiği dönemlerde, insanlarla insansımaymunlar arasındaki daha karanlık bir fark vurgulanmaya başlandı: bireyin kendi türüne karşı şiddet uygulaması. İlk kez Avusturalyalı anatomi bilimci Raymond Dart’ın öne sürdüğü “Katil Maymunadam” fikri, belki de savaşta yaşanan korkunç olayları açıklıyor (ya da hatta, mazur gösteriyor) olması nedeniyle, yaygın kabul gördü. 1960'larda antropologlar, insan kökeninin anahtarı olarak avcı-toplayıcı yaşam tarzına yöneldiler. Pek çok araştırma ekibi, özellikle Afrika’da olamak üzere, teknolojik açıdan ilkel modern insan nüfularını inceliyorlardı. Bunların arasından en kayda değerlerden biri (hatalı olarak Bushmen de denen! Kung San halkıydı. Burada doğayla uyum içinde, doğayı karmaşık yöntemlerle kullanan ve doğaya saygı gösteren bir halk imgesi ortaya çıktı. Bu insanlık görüşü dönemin çevreciliğiyle uyum içindeydi; ama antropologlar, karma avvcıllık ve toplayıcılık etkonomisinin karmaşıklığından ve ekonomik güvenliğinden de etkilenmişlerdi. Yine de asıl üstünde durulan avcılıktı. 1966'da Chicago Üniversitesinde, “Avcı Adam” başlıklı önemli bir antropoloji konferansı gerçekleştirildi.(s:24) Toplantıya egemen olan akım oldukça yalındı: İnsanı insan yapan, avcılıktır. Teknolojik açıdan ilkel toplumlarda avcılık genellikle, erkek sorumluluğudur. Dolaysıyla, 1970'lerde kadın sorunu konusundaki bilincin gelişmesiyle birlikte, insanın kökenine dair bu erkek merkezli açıklamanın sorgulanmaya başlanması son derece normaldi. “Toplayıcı Kadın” olarak bilinen alternatif bir hipotezde, tüm primat türlerindeolduğu gibi, toplumun merkezinin dişiyle çocukları arasındaki bağ olduğu savunuluyordu. Karmaşık bir insan toplumunun oluşturulmasını, teknoloji yaratan ve herkes tarafından paylaşılmak üzere (en başta gece) yiyecek toplayan insan dişilerinin insayatifi sağlamıştı. Ya da öyle olduğu savunuluyordu. Bu hipotezler insan evrimini asıl başlatan şey konusunda farklı fikirler getirmekle birlikte, hepsi de Darwin’in değer verilen belli insan özellikleri paketinin daha ilk baştan oluşmuş olduğunu söylüyorlardı: Hala, ilk insangil türünün belli bir düzeyde iki ayaklılık, teknoloji ve büyük beyin özelliklerine sahip olduğu düşünülüyordu. Dolaysıyla insangiller, daha başlangıçtan itibaren kültürel yaratıklardı; bu nedenle de, doğanın geri kalan kısmından farklıydılar. Oysa son yıllarda bunun doğru olmadığını anlamaya başladık. Arkeolojik kalıntılarda, Darwinci hipotezin doğru olmadığını gösteren sağlam kanıtlar görülüyor. Darwin paketi doğru olsaydı, arkeolojik lkalıntılarda ve fosil kalıntılarında iki ayaklılığa, teknolojiye ve büyük beyine dair kanıtları aynı anda görürdük. Ama görmüyoruz. tarihöncesi kalıntılarının tek bir yönü bile, hipotezin yanlış olduğunu göstermeye yetiyor: Taş alet kalıntıları. Çok enders olarak fosilleşen kemiklerin tersine, taş aletlerin yok olması neredeyse olanaksızdır. Dolaysıyla, tarihöncesi kalıntılarının büyük bölümünü taş aletler oluşturur ve en başından itibaren teknolojinin gelişimi bu aletlere dayanılarak yeniden oluşturulur (s:25) Bu tür aletlerin ilk örnekleri-çakıl taşlarından birkaç yonga çıkarılarak yapılan kaba yongalar, kazıma araçları ve baltalar- yaklaşık 2.5 milyon yıl önce ortaya çıkar. Molekül kanıtları doğruysa ve ilk insan türü yaklaşık 7 milyon yıl önce ortaya çıktıysa, atalarımızın iki ayaklı olmalarıyla taş alet yapmaları arasında yaklaşık 5 milyon yıl geçmiş olmalı. İki ayaklı bir insansımaymun yaratan evrim gücü her neyse, alet yapma ve kullanma becerisiyle bağlantılı değildi. Ama pek çok antropolog, 2.5 milyon yıl önce teknolojinin gelişmesinin, beyindeki büyümeyle aynı döneme denk geldiğine inanıyor. Beyindeki büyümeyle teknolojinin, insanın kökeniyle aynı zamanda oluşmadığının anlaşılması, antropologları yaklaşımlarını yeniden düşünmeye zorladı. Sonuçta yeni hipotezler, kültürden çok biyoloji terimleriyle oluşturuldu. Ben bunu, mesleğimizdeki sağlıklı bir gelişme olarak görüyorum; özellikle de fikirlerin, diğer hayvanların ekolojisi ve davranışı hakkında bildiklerimizle karşılaştırılarak sınanmasını sağladığı için. Bu yaklaşımda, Homo sapiens ’in pek çok özel niteliğe sahip olduğunu yadsımamız gerekmiyor. Bu niteliklerin gelişimini, tamamen biyolojik bir bağlamda inceliyoruz. Bu anlayış oluştuktan sonra, antropolgun insanın kökenlerini saptama işi yeniden iki ayaklılığın kökeni üzerinde yoğunlaştı. Evrimsel dönüşüm, bu tek olaydan soyktlandığında bile (ABD’deki) Kent Eyalet Üniversitesi’ nden anatomi bilimci Owen Lovejoy’un da belirttiği gibi, önemsiz değildir: Lovejoy, 1988'de yazdığı popüler bir makalede, “İki ayaklılığa geçiş, evrim biyolojisinde görebileceğiniz en çarpıcı değişimlerden biridir” demişti. “Kemiklerde, kemiklere güç sağlayan kasların düzeninde ve kollarla baca değişimler görülmektedir.” İnsanlarla şempanzelerin leğen kemiklerine bakmak bu gözlemi doğrulamaya yetiyor: Leğen insanlarda kısa ve kutu gibi, şempanzelerdeyse uzundur. Kol ve bacaklarla gövdede de önemli farklılıklar vardır. İki ayaklılığın gelişimi önemli bir biyolojik dönüşüm olmaktan öte, aynı zamanda önemli bir uyarlanma dönüşümüdür. Önsözde de savunduğum gibi, iki ayaklı hareket öylesine önemli bir uyarlanmadır ki, tüm iki ayaklı insansımaymunlara “insan” demekte haklıyız. Bu, ilk iki ayaklı insansımaymun türünün belli bir düzeyde teknolojiye, gelişmiş bir zekaya ya da insanlığın kültürel niteliklerine sahip olduğu anlamına gelmiyor.Bu niteliklere sahip değildi. Ben-kolların günün birinde ellerin kullanılabileceği şekilde serbest kalmasını sağlayan- iki ayaklılık uyarlanmasının son derece önemli bir evrim potansiyeli taşıdığını ve bu nedenle öneminin terminolojimizde yer alması gerektiğini söylüyorum. Bu insanlar bizim gibi değillerdi; ama iki ayaklılık uyarlanması olmasa bizim gibi olamazlardı. Bir Afrikalı insansımaymunda bu yeni hareket şeklinin gelişmesini sağlayan evrim faktörleri nelerdir? İnsanın kökenine dair popüler imgelerde çoğunlukla, ormanı terk edip açık savanlara yönelen insansımaymun benzeri bir yaratık görürüz. Bu, kuşkusuz çarpıcı bir imge olsa da, Harvard ve Yale üniversitelerinden Doğu Afrika’nın pek çok bölgesinde toprak kimyasını inceleyen araştırmacıların da yakın zamanlarda kanıtladıkları gibi, kesinlikle yanlıştır. Büyük göçebe sürülerin dolaştığı Afrika savanları, oldukça gençtir; 3 milyon yıldan daha az bir süre önce, ilk insan türünün ortaya çıkmasından uzun süre sonra gelişmişlerdir. 15 milyon yıl öncesinin Afrikasına bakarsak, batıdan doğuya uzanan ve aralarında çeşitli maymun ve insansımaymun türlerinin de bulunduğu pek çok primata barınaklık eden bir orman örtüsü görürüz. Günümüzün tersine o dönemde insansımaymun türlerinin sayısı, maymun türlerinin sayısından çok daha fazlaydı. Ama sonraki birkaç milyon yıl içinde bölgede ve sakinlerinde çarpıcı değişiklikler yaratacak olan jeolojik güçler gelişmekteydi(s:27). Kıtanın doğu kısmında yerkabuğu, Kızıl Deniz’den günümüzün Etiyopya, Kenya ve Tanzanya’sından Mozambik’e doğru bir hat halinde yarılmaktaydı. Sonuçta Etiyopya ve Kenya’da toprak kabardı ve 3000 metreyi aşkın yükseklikte geniş dağlık alanlar oluştu. Bu büyük kubeler kıtanın topografyasından öte, iklimini de değiştirdi. Eski tekdüze batıdan-doğuya hava akışını bozan kubbeler, doğuda kalan toprakları yağış alanının dışında bırakarak ormanları beslenme kaynaklarından yoksun bıraktılar. Aralıksız ağaç örtüsünün bölünmeye başlamasıyla birlikte orman parçacıklarından, ağaçlık alanlardan ve çalılıklardan oluşan mozaik benzeri bir çevre oluştu. Ama açık otluk alanlar hâlâ enderdi. 12 milyon yıl önce süregiden tektonik güçler çevreyi daha da değiştirdi ve kuzeyden güneye doğru uzanan uzun, dolambaçlı bir vadi oluştu: Büyük Yarık Vadisi. Bu vadinin ortaya çıkışı iki biyolojik etki yaratmıştır: hayvan topluluklarına doğudan batıya uzanan zorlu bir engel yaratmakta ve zengin bir ekolojik koşullar mozayiğinin gelişmesini teşvik etmektedir. Fransız antropolog Yves Coppens, doğu-batı bariyerinin, insanlarla insansımaymunların birbirlerinden ayrı olarak evrilmesinde büyük önem taşıdığına inanıyor. “Aynı atadan gelen (insan) ve (insansımaymun) toplulukları koşulların etkisiyle... ayrıldılar. Bu ortak ataların batıdaki torunları, yaşama uyarlanmalarını nemli, ağaçlık ortamlarda sürdürdüler; bunlar (insansımaymular)dır. Aynı ortak ataların doğudaki torunlarıysa açık bir çevredeki yeni yaşamlarına uyarlanmak için yepyeni bir repertuar yarattılar: Bunlar(insanlar)dır.” Coppens bu senaryoya “Doğu Yakasının Hikayesi” adını veriyor. Vadinin serin, ormanlık platolar içeren çarpıcı dağlık alanları ve sıcak, kurak alanlara 1000 metre irtifadan birden iniveren dik bayırları vardır. Biyologlar bu tür, çok sayıda farklı habitat sunan mozaik çevrelerin evrimsel yeniliği teşvik ettiğini fark ettiler. Bir zamanlar yaygın ve birbirine benzer olan bir (s: 29) türün toplulukları birbirlerinden ayrılabilir ve doğal seçim sürecinin yeni etkilerine maruz kalabilirler. Bu, evrimsel değişim reçetesidir. Böylesine bir değişim kimi zaman, yaşama uygun çevrelerin yok olmasıyla, yok oluşa uzanır.Afrikalı insansımaymunların çoğ u bu kader yaşadı; günümüze yalnızca üç tür kalabildi: goril, bayağı şempanze ve cüce şempanze. Ama çoğu insansımaymun türünün çevre değişiminden olumsuz etkilenmesine karşın, içlerinden biri, hayatta kalmasını ve gelişmesini sağlayacak yeni bir uyarlanma şansını yaşadı. Bu, ilk iki ayaklı insansımaymundu. İki ayaklılık hiç kuşkusuz, değişen koşullarda hayatta kalması için önemli avantajlar sağlamıştı. Antropologların görevi, bu avantajların neler olduğunu bulmaktır. Antropologlar iki ayaklılığın insan evrimindeki önemini genellikle iki şeklide değerlendirirler:Bir düşünce, ön ayakların serbest kalarak taşıma özelliği kazanmasını vurgular; diğer düşünceyse, iki ayaklılığın enerji açısından daha etkin ir hareket şekli olması üzerinde durur ve taşıma yeteneğini yalnızca dik duruşun raslantısal yan ürünlerinden biri olarak görür. Bu iki hipotezden ilkini, Owen Lovejoy öne sürdü ve 1981'de Science ’taki önemli bildiride yayımlanmıştır. Lovejoy’a göre iki ayaklılık etkin olmayan bir hareket şeklidir ve dolaysıyla taşıma amacıyla geliştirilmiş olmalıdır. Taşıma yeteneği iki ayaklı insansımaymunlara, diğer insansımaymunlara göre nasıl bir rekabet avantajı sunmuş olabilir? Evrimsel başarı, sonuçta, hayatta kalacak nesiller üretmeye bağlıdır ve Lovejoy’a göre yanıt, bu yeni yeteneğin erkek insansımaymunlara, dişi için yiyecek toplayarak üreme oranını artırma fırsatını sağlamasıdır. Lovejoy, insansımaymunların yavaş ürediklerini ve dört yılda bir tek yavru yaptıklarını vurgular. İnsan dişileri de daha çok enerjiye-yani daha çok yiyeceğe- ulaşabilmeleri durumunda daha çok nesiller üretebilirler. Erkeğin dişi ve yavruları için yiyecek toplayarak dişiye daha çok enerji sağlaması durumunda dişi, üreme çıktısını artırabilecektir.(s:30) Erkeğin bu eyleminin, bu kez sosyal alanda olmak üzere, bir diğer biyolojik sonucu daha olacaktır. Erkeğin kendi çocuklarını ürettiğine emin olmadıkça dişiyi beslemesinin Darwinci açıdan erkeğe yararlı olmaması nedeniyle Lovejoy, ilk insan türünün tekeşli olduğunu ve üreme başarısını artırıp diğer insansımaymınlara baskın gelme yöntemi olarak çekirdek ailenin ortaya çıktığını öne sürdü. Bu tezini başka biyolojik benzetmelerle destekledi. Sözgelimi, primat türlerinin çoğunda erkekler, mümkün olduğunca çok dişi üzerinde cinsel denetim kazanmak için birbirleriyle rekabet eder. Bu süreç sırasında genellikle birbirleriyle dövüşürler ve silah olarak kullanabilecekleri büyük köpek dişleri vardır. Gibonlar erkek-dişi çiftleri oluşturmak gibi ender rastlanan bir özellik gösterirler ve - her halde birbirleriyle kavga etmeleri için bir neden olmamasından dolayı- erkeklerin köpek dişleri küçüktür. Erken insanlarda köpekdişlerinin küçük olması Lovejoy’a göre, gibonlar gibi erkek-dişi çiftleri oluşturduklarının kanıtı olabilir. Yiyecek sağlama düzenlemesinin sosyal ve ekonomik bağları da beynin büyümesini sağlayacaktır. Lovejoy’un büyük ilgi ve destek gören hipotezi, kültürel değil temel biyolojik konulara hitap etmesi nedeniyle güçlürün. Ama zayıf noktaları da vardır; öncelikle, teknolojik açıdan ilkel halklarda tekeşlilik yaygın bir sosyal düzenleme değildir.(Bu tür toplumların yalnızca yüzde 20'si tekeşlidir). Hipotez bu nedenle, avcı toplayıcıların değil, Batı toplumunun bir özelliğine dayandığı iddiasıyla eleştirilmektedir.belki de bundan daha önemli bir eleşiri ise, bilinen en erken insan türlerinde erkeklerin, dişilerden yaklaşık iki kat büyük olmalarıdır. Beden boyutundaki iki biçimlilik (dimorfizm) olarak bilinen bu büyük farklılık, incelenen tüm primat türlerinde çokkarılılıkla ya da erkeklerin dişilere ulaşmak için aralarında rekabet etmeleriyle çakışır; tekeşil türlerde iki biçimliliğe rastlanmaz. Bence bu gerçek bile, umut verici bir kuramsal yaklaşımı çökertmeye yetmektedir ve köpeksdişlerinin küçük olbsanıa tekeşlilikten (s: 31) başka bir açıklama aranmalıdır. Belki de yiyecekleri çiğneme mekanizması, kesmeden çok öğütme hareketini gerektiriyordu; köpek dişlerinin büyük olması bu hareketi zorlaştıracaktı. Lovejoy’un hipotezi günümüzde, on yıl öncesine göre daha az destek görmektedir. İkinci önemli iki ayaklılık kuramı, kısmen basitliği sayesinde çok daha imna edicidir. Davis, California Üniversitesinden antropolog Peter Rodman ve Henry McHenry’nin öne sürdükleri hipotezde, iki ayaklılığın daha etkin bir hareket şekli sunması nedeniyle, değişen çerre koşullarında daha avantajlı olduğu savunulur. Ormanların küçülmesiyle birlikte ağaçlık habitatlardaki meyve ağaçalrı gibi yiyecek kaynakları, klasik insansımaymunların etkin şekilde yararalanamayacakaları kadara dağınıktır. Bu hipoteze göre, ilk iki ayaklı insansımaymunlar yalnızca hareket şekilleriyle insandırlar.Diyetlerinin değil, yalnızca yiyecek toplama şekillerinin değişmiş olması nedeniyle elleri, çeneleri ve dişleri insansımaymunlardaki gibi kalmıştır. Pek çok biyolog bu düşünceyi başlangıçta olanaksız görmüştür; Harvard Ünivresitesi'nden araştırmacılar yıllar önce, iki ayak üstünde yürümenin dört ayak ütünde yürümekten daha az etkin olacağını göstermişlerdi. (kedisi ya da köpeği olanlar için bu hiç de şaşırtıcı bir durum değil; her iki hayvan da sahiplerini utandıracak derecede daha hızlı koşar.) Ama Harvard araştırmacıları insanlardaki iki ayaklılığın etkinliğini at ve köpeklerdeki dört ayaklılığın etkinliğiyle karşılaştırmışlardı. Rodman ve McHenry, karşılaştırmanın insanlarla şempanzeler arasında yapılması gerektiğini vurguladılar. Bu karşılaştırma yapıldığında, insanlardaki iki ayaklılığın şempanzelerdeki dört ayaklılıktan çok daha etkin olduğu görülüyor. Dolaysıyla, iki ayaklılık yararına bir doğal seçim gücü olarak enerji etkinliği tezinin akla yatkın olduğu sonucuna vardılar. İki ayaklılık evrimin teşvik eden, bir yandan avcıları izlerken bir yandan da yüksek otların üstünden bakabilme ve gündüz saatlerinde yiyecek toplarken serinleyebilmek için daha (s: 32) etkin bir duruşa geçme zorunlulukları gibi başka etkenler de olduğu öne sürüldü. Ben tüm bu düşüncelerin arasında en inandırıcısının, sağlam bir biyolojik temeli olması ve ilk insan türlerinin evrildiği dönemde gelişen ekolojik değişimlere uyması nedeniyle, Rodman ve McHenry’ninki olduğunu düşünüyorum. Bu hipotez doğruysa, ilk insan türünün fosillerini bulduğumuzda, hangi kemikleri bulduğumuza bağlı olarak, bu fosillerin ilk insana ait olduğunu fark edemeyebiliriz. Leğen ya da bacak kemiklerini bulmamız durumunda iki ayaklı hareket şekli görülür ve “insan “ diyebiliriz. Ama kafatasının ve çenenin bazı parçalarını ya da bazı dişleri bulmamız durumunda bunların bir insansımaymuna ait olduğunu düşününebilirz. Bunların iki ayaklı bir insansımaymuna mı, yoksa klasik bir insansımaymunna mı ait olduğunu nasıl anlayacağız? Bu, son derece heyecan verici bir savaşım. İlk insanların davranışlarını gözlemek için 7 milyon yıl öncesinin Afrika’sına gidebilseydik, insanların davranışlarını inceleyen antropologlardan çok, maymun ve insansımaymunların davranışlarını inceleyen primatologlara tanıdık gelecek bir modelle karışlaşırdık. İlk insanlar modern avcı-toplayıcılar gibi göçmen gruplarda aile toplulukları olarak yaşamaktan çok, büyük olasılıkla, savan babunları( habeş maymunları) gibi yaşıyorlardı. Yaklaşık otuz bireyden oluşan gruplar geniş bir arazide koordinasyon içinde yiyecek avına çıkıyor ve geceleri tepeler ya da ağaç kümeleri gibi uygun uyku yerlerine dönüyorlardı. Grubunu büyük bölümünü yetişkin dişilerle çocukları oluşturuyordu ve aralarında yalnızca birkaç yetişkin erkek bulunuyordu. Erkekler sürekli çiftleşme olanakları arıyor ve egemen bireyler daha başarılı oluyordu. Yetişkinliğe erişmemiş ya da düşük seviyelerdeki erkekler, grubun ancak çevresinde er alıyor ve kendi başlarına yiyecek avına çıkıyorlardı. Grubun bireyleri iki ayaklı yürümeleriyle insani bir özellik taşıyor, ama (s: 33) savan primatları gibi davranıyorlardı. Önlerinde, 7 milyon yıl sürecek ve ileride de göreceğimiz gibi son derece karmaşık ve kesin olmayan bir evrim modeli vardı. Çünkü doğal seçim uzun vadeli bir hedefe doğru değil, anlık şartlara göre işler. Homo sapiens sonuçta, ilk insanların torunu olarak ortaya çıktı; ama bunun kaçınılmaz bir gelişme olduğu da söylenemezdi. (Richard Leakey, İnsanın Kökeni, Varlık/Bilim s:15-34 ) Yaşamın Gizi Kökleri 19. yy’a dayanan Evrim Kuramı, gerçekte 20. yy’ın geliştirilen büyük kuramlarından biridir. İnsanın kendi yapısını araştırmaya yönelmesinin bilimsel bir niteliğe bürünmesi oldukça yenidir. Biyoloji, genç bir bilimdir. Biyoloji, özellikle Evrim Kuramı ile genç bir bilimin büyük kuramlar üretebileceğini kanıtladı. Nobel Ödüllü(1965) bilim adamı Jacques Monod Rastlantı ve Zorunluluk adlı eserinde şöyle diyor: “ Biyolojinin bilimler arasındaki yeri, bir bakıma merkezi, bir bakıma da ikincil önemdedir. İkincildir, çünkü canlılar dünyası bilinen evrenin pek önemsiz ve “özel” bir bölümü olduğuna göre, canlıların irdelenmesiyle, canlılar dünyasının dışına da uygulanabilecek genel yasalara varılamaz gibi görünür. Fakat bütün bilimlerin son amacı, eğer benim sandığım gibi, insanla evren arasındaki bağıntıyı aydınlatmaksa, o zaman biyolojiye merkezi bir yer tanımak gerekir; çünkü biyoloji, bütün bilim kolları arasında, henüz “insanın doğası” sorunun metafizik terimler kullanılmadan ortaya konması olanaksızken, çözülmesi gereken sorunların yüreğine en dolaysız yoldan girmeye çalışanıdır. Bu nedenle biyoloji, insan için bilimlerin en anlamlısıdır; felsefe, din, ve politika gibi bütün alanlarda temelden sarsılmış ve açıkça yaralı olan modern düşüncenin biçim kazanmasında, özellikle Evrim Kurramı’nın ortaya çıkışıyla, kuşkusuz bütün öteki bilimleri aşan katkıları olmuştur. Ancak, 19. yy’ın sonlarından bu yana biyolojinin bütününe egemen olmakla birlikte ve fenomeolojik açıdan geçerliliğine ne denli inanılmış olursa olsun, Evrim Kuramı, kalıtımın fiziksel bir kuramı geliştirilmedikçe yine askıda kalıyordu. Bu sonuca ulaşılması ise, klasik genetiğin bütün başarılarına karşın, otuz yıl öncesine dek boş bir kuruntu gibi görünüyordu. Oysa bugün, kalıtım yasası molekül kuramının getirdiği şey budur. Burada “kalıtım yasası kuramı”nı yalnızca kalıtımsal gereçlerle onların taşıdığı bilginin kimyasal yapısına ilişkin kavramlar olarak değil, ayrıca bu bilginin fizyolojik ve morfogenetik anlatımının moleküler düzeneğini de içerecek biçimde, geniş anlamıyla kullanıyorum. Böyle tanımlandığında kalıtım yasası kuramı biyolojinin temel kuralını oluşturur Doğal olarak bu, organizmaların karmaşık yapı ve işlevlerinin bu kuramdan çıkarılabileceği ya da bunların her zaman doğrudan moleküler düzeyde çözümlenebileceği anlamına gelmez.(Kimyanın evrensel temelini kuşkusuz kuantum kuramının oluşturmasına karşın, kimyadaki her şey bu kurama göre ne bilinebilir, ne çözülebilir). Fakat yasanın moleküler kuramı günümüzde (kuşkusuz ileride de) biyoloji alanındaki her şeyi önceden bilip çözemese de daha şimdiden canlı sistemlerin genel bir kuramını oluşturuyor. Moleküler biyolojinin ortaya çıkışından önce, bilimi alanında böyle bir şey yoktu. O zamanlar “yaşam gizi”, ilkesi gereği ulaşılamaz görünürdü. Günümüzde bu giz büyük ölçüde açıklanmıştır. Öyle görünüyor ki bu önemli olay, kuramın genel anlamı ve kapsamı uzmanlar dışında da anlaşılıp değerlendirilebildiği zaman, modern düşüncede ağırlığını büyük ölçüde duyuracaktır. Bu denemin buna yardımcı olacağını umuyorum. Gerçekten ben, modern biyolojinin kavramlarının, kendilerinden çok “biçim”lerini açığa çıkarmaya, düşüncenin başka alanlarıyla mantıksal bağlantılarını göstermeye çalıştım. Günümüzde bir yapıtın adında bilim adamının, “doğal” nitemiyle birlikte de olsa, “felsefe” sözcüğünü kullanması tehlikelidir. O yapıtı, bilim adamlarının güvensizlikle, filozofların ise olsa olsa bir gönül indirmeyle karşılayacakları önceden görülebilir, Tek, fakat haklı olduğuna inandığım bir mazaretim var: Bilim adamlarına düşen ve bugün her zamankinden daha çok kendini duyuran ödev, kendi bilim kollarını çağdaş kültürün bütünü içinde değerlendirmek, onu yalnız teknik bilgilerle değil, aynı zamanda bilimin kazandırdığı, insansal açıdan önemli gördükleri düşüncelerle de zenginleştirmektedir. Yeni bir bakışın (biliminki hep böyledir) arılığı, kimi kez sorunlar üzerine yeni bir ışık serpebilir. Doğal olarak geriye, bilimin esinlediği düşüncelerle, bilimin kendi arasındaki her türlü karışıklıktan kaçınmak kalıyor. ama işte bu nedenle de, bilimin ortaya koyduğu sonuçların tüm anlamını açıklayabilmek için, bunların son sınırına dek götürmek gerekiyor. Zor bir uygulama. Bunu eksiksiz yaptığımı öne sürmüyorum. Önce bu denemenin salt biyolojik bölümünün hiçbir özgün yanı bulunmadığını belirteyim. Modern bilimce saptandığı kabul edilen düşünceleri özetlemekten başka bir şey yapmadım. Örnek seçiminde olduğu gibi, değişik gelişmeleri verilen önemin de kişisel eğilimleri yansıttığı doğrudur. Biyolojinin kimi önemli bölümlerinin burada sözü bile edilmedi. Fakat bu deneme, biyolojinin tümünü açıkladığını kesinlikle savunmuyor. Yalnızca sistemin moleküler kuramının özünü elde etmek yolunda bir girişimdir. Bundan çıkarabildiğim ideolojik genellemelerden sorumlu olduğum açıktır. Fakat bilgi kuramı alanı içinde kaldıkları sürece bu yorumları çağdaş biyolojistlerin büyük bölümünün kabul edeceğini söylerken yanılmış olacağımı sanmıyorum. Ben burada, siyasal değilse bile etik(ahlaksal) düzeyde, gelişmelerin bütün sorumluluğunu yüklendiğimi belirtmeden geçmek istemem; bunlar ne denli tehlikeli olursa olsunlar, ne denli naif ya da benim isteğim dışında, ne denli aşırı görünürse görünsünler bilim adamı alçak gönüllü olmalı, fakat taşıdığı ve savunmak zorunda olduğu düşünceler pahasına değil. Ancak burada da kendimi, yapıtları büyük saygınlık kazanmış kimi çağdaş biyolojistlerle tam bir uyum içinde bulmanın yüreklendirici güvenini duyuyorum....Nisan, 1970"(Kitabın Önsözü’nden) (Jacques Monod, Rastlantı ve Zorunluluk(1970), s:11-13) Evrim Kuramı ve Değişim Evrim Kuramı,canlıların değişimini içerir. Tutucu insanların bu kuramı anlamak istemeyişi ya da reddedişi bu değişimi kabul etmemelerinin bir sonucudur. Evrim kuramına karşı çıkmayı küçümsemeyin. Evrim Kuramına karşı çıkanlar, arkalarında “dine inanan” aydınları ve kitleleri bulur. Değişimi savunmak kadar değişime karşı çıkmak, insan aklının çok önceden bulduğu en tehlikeli silahlardandır. Onu, felsefe temelinde en iyi ve en eski savunan da Platon’dur. Platon, biz erkeklerin kadınlardan nasıl da fersah fesah üstün olduğunun altını pek güzel çiziyor! Bayanların pek sevmeyeceği bir öykü olsa da anlatacağım. Platon’da değişim “kötü”, durağanlık ise “iyi”dir. Karl Popper bunu şöyle belirtir: “Çünkü bütün değişimin çıkış noktası yetkin iyi ise değişiklik ancak yetkin ve iyiden uzaklaşan bir hareket olmak gerekir;bu hareket yetkin olmayana ve kötüye doğru yönelmelidir.” Platon, Kanunlar ’da değişim doktrinini şöyle özetler:" Kötü bir şeyin değişmesi bir yana bırakılırsa, her nasıl olursa olsun değişiklik, bir şeyin uğrayabileceği bütün kötü tehlikelerin en başında gelir,- değişiklik şimdi ister mevsimin ya da rüzgârın olsun, ister beden dişyetinin yahut ruh karakterinin.” Israrını belirtmek için de eklemektedir: “Bu söz her şeye uygundur,tek ayrık, demin söylediğim gibi, kötü bir şeyin değişmesidir.” Kısacası Platon, değişimin kötü ve durulmanın tanrılık olduğunu öğretmiştir... Platon’un Timaios ’taki türlerin kökeni üzerine öyküsü bu genel teoriyle bir uyuşma içindedir. Bu öyküye göre hayvanların en yükseği erkek-insandır,tanrılar tarafından türetilmiştir;öteki türler,bir bozulma ve soysuzlaşma süreciyle ondan -aşağıya- inerler. Önce bazı erkekler-korkak ve rezil olanları-soysuzlaşıp kadın olmuştur. Bilgeliği olmayanlar, adım adım daha aşağı hayvanlara doğru soysuzlaşmıştır. Kuşlar, zararsız deniyor oysa duyumlarına çok güvenen fazla yumşak insanların dönüşümüyle varolmuşlardır; "kara hayvaları,felsefeyle hiç ilgilenmeyen insanlardan gelmiştir”; balıklar, -midye ve sitiridye gibi kabuklu deniz hayvanları da dahil olmak üzere- bütün insanların “en aptal, salak... ve değersiz olanlarından soysuzlaşmayla çıkmıştır” Bu teorinin insan toplumuna ve tarihine de uygulanabeleceği açıktır. (Karl Popper, Açık Toplum Ve Düşmanları s: 49-50) İNSAN NASIL İNSAN OLDU? İnsan nedir? Biz neyiz? Nereden geldik? Sokrates ' e yakıştırılan bir öykü vardır. Sokrates, Atina Agorası' ndaki gönüllü öğrencilerine verdiği ders sırasında "İnsan nedir?" diye sormuş. Onlar da soruyu küçümseyerek " bunu bilmeyecek ne var, iki ayaklı ve tüysüz bir canlıdır" yanıtını vermişler. Ertesi gün Sokrates, elinde tüyleri yolunmuş bir tavukla öğrencilerinin karşısına çıkmış. Tüysüz tavuğu havaya kaldırarak " yani böyle bir şey mi insan dediğiniz?" demiş. Öğrenciler nasıl bir şaşkınlık geçirdi bilmiyoruz; ama insan tanımının öyle basit bir iş olmadığını anlamış olmalılar. İnsan "düşünen varlık", " gülen canlı", "üretim yapan canlı", "alet kullanan canlı" gibi değişik sıfatlarıyla tanımlanmaya çalışılmıştır. Sorunun yanıtı basit değil. Gelin biraz gerilere gidelim. Önce "insan her şeyin ölçüsüdür" diyen eski Yunan filozofunu anımsayalım. Protagoras'ı yani. Onun ne demek istediğini size anlatmaya çalışmıştım. 19. yüzyılın ikinci yarısından itibaren insan konusunda bilimsel düşünceler ortaya konmaya başlandı. İnsanın doğaüstü güçlerce yaratılmadığı ve tüm canlılar gibi evrimsel bir sürecin bugünkü aşaması olduğu düşünülmeye başlandı. Evrim, değişikliği ifade eder. " Evrim, biyolojik bir gerçektir; en geniş anlamı ile organizmaların zaman süreci içinde değişen ortama gösterdikleri fiziksel tepki olarak da tanımlanabilir... "Her canlı bir canlıdan gelir " gerçeği, evrimin temel özelliklerinden biridir." Bununla birlikte konuyla ilgili saptırmalar da başladı." Bu saptırmaların en ünlüsü de insanın maymundan türemiş olduğu, başka bir deyişle bu iki canlı türü arasında bir ata- torun ilişkisi bulunduğu, yani maymunların insanın atası olduğu saptırmasıdır. C. Darwin' in Türlerin Kökeni adlı yapıtının doğurduğu yankılara karşı, özellikle o dönem Anglo- Sakson Kilisesi' nce başlatılan, geliştirilen, desteklenen ve savunulan bu saptırma, üzülerek belirtmek gerekir ki bugün bile kamuoyunda evrensel anlamda belirli bir ağırlığa sahiptir. Olaya bilimsel bir yaklaşımla ve tarafsız olarak bakıldığı zaman, kuşkusuz, insan ile yakın soydaşları olan primatlar arasında bir evrimsel ilişki olduğu görülür. Zaten, evrim bakımından eskiye gidildikçe tüm canlıların oluşumları itibariyle ortak evrim ağacının farklı dalları oldukları ve bu nedenle de tüm canlılar arasında (uzak veya yakın) bir ilişki bulunduğu da bilinmektedir. Ancak bu ilişki, "maymun ile insan arasında bir ata-torun ilişkisi vardı ve insanlar da zaman içinde maymunlardan türemiştir" anlamına tabii ki gelmez. Maymun ve insan türlerinin birlikte oluşturdukları zoolojik takım olan primatlar arasında evrimsel bir ilişi olması demek, bu iki farklı türün ortak bir kökten türemiş olmaları ve / fakat zamanla bunların her ikisinin de değişerek bugünkü hallerini almış olması demektir. Başka bir deyişle, bu iki canlı türünden her biri kendi yönünde evrimleşmiş, zaman içinde insan daha "insanlaşmış" ve buna karşılık maymun daha da "maymunlaşmıştır". Gelecekte, evrim sürecinin bir gereği olarak aynı olayın devam edeceği, insan ile maymun arasında var olan makasın daha da açılacağı kuşkusuz. " Sahi, insanla maymun arasında ne gibi farklar vardır? İnsanı insan yapan nedir? " Yüzyılımızın başlarında insanın çevresine uyum yeteneği, daha sonraları düşünce, İkinci Dünya Savaşı' nı izleyen dönemde araç-gereç yapımı, 1960' lı yıllarda ilkönce lisan ve hemen sonra da avcılık insanı " insan " yapan "insansı" özellikler olarak görülüyordu. Bugün ise durum hayli farklı." "İnsan denen canlıyı ele aldığımız zaman onun bir Homo erectüs (dik yürüyen), bir Homo faber (alet yapan), bir Homo lingua (konuşan/ dili olan), bir Homo symbolicus (soyutlayabilen), bir Homo curiosus (araştıran) ve bir Homo sapiens (akıl sahibi, zeki) olduğunu görüyoruz. Bunların tümü insana özgü. İlginç olan ve özellikle vurgulanması gereken husus, insan dışı

http://www.biyologlar.com/evrim-kurami-ve-maymun-sorunu

EVRiME SORU CEVAPLARLA BAKIŞ

Evrim Teorisi ve Yaratılış inancı arasında kan davasına dönüşen ve bilimsel rotadan sapan ideolojik kavganın kritik 110 sorusuna Yaratılış cephesinden bilimsel cevaplar 'klavyenin tuşlarına saniyede bir defa rast gele basan birinin, yalnızca bir defa 'evrim hipotezi' yazabilmesi için yaklaşık 317 milyar yıl uğraşması gerekir... ' diyor Prof. Dr. Arif Sarsılmaz ve bugüne dek bilimselliği tartışılan evrim karşıtı eserlerin tersine, evrim dayatmasını bilimsel verilerle sorgulayarak bilime rağmen evrim teroisinin doğruluğunu savunmanın yobazca bir inanç dayatması olduğunu işaret ediyor. Prof. Dr. Arif Sarsılmaz'ın meslekten ve bu konuyu ders olarak okutMuş bir bilim adamı olduğu için eseri özellikle kayda değer. Evrimci görüşün en sağlam kalesi olarak gördüğü ve sık sık başvurup sığınmak istediği mutasyonlar konusunun biyolojik ve genetik bilmin gelişmesi ile büsbütün sarsıldığını belirten Prof. Dr. Arif Sarsılmaz , Altın Burç Yayınlarından neşredilen 110 Soruda Yaratılış ve Evrim Tartışması adlı eserindeher canıl türünün ve o türe ait özelliklerin, kromozonlardaki DNA'lara kaydedilmiş olduğunun altını çiziyor. Mutasyonlarda DNA'larda bazı farklılaşmalar görüldüğünü ama değişikliklerin hemen hepsinin o türün özelliklerinin sınırları içinde kaldığına dikkat çeken Sarsılmaz, son yıllarda değişik yerlerde bulunan insan isketlerinin hep insanın müstesna yaratılmış olduğunu gösterdiğini savunuyor. Sarsılmaz, 'Varlık, tarih boyu gelen olarak yaratılışla izah edilmiştir. Varlıktaki sistem, denge, gayelilik, işbirliği, onun mutlak bir ilim, irade ve kudrete dayandığını gösterir ve tesadüfü reddeder.. Ancak evrim, tabiata, sebeplere, tesadüflere ve atomlara gizli bira irade ve şuur izafe ederek; eserden müessire, fiilden faile giden bütün yolları tıkamaktadır. klavyenin tuşlarına saniyede bir defa rast gele basan birinin, yalnızca bir defa' evrim hipotezi' yazabilmesi için yaklaşık 317 milyar yıl uğraşması gerekir. Bir evrimci, iki cam ve bir çerçeveden oluşan basit bir gözlüğün kendi kendine olduğu fikrini reddederken , mükemmel organizmların kendiliğinden oluştuğunu iddia etmektedir. Dinî inançlarla çakışan evrim teorisinin Yaratıcıyı reddedip kâinattaki bütün işleyişi ve özellikle canlılardaki hassas yapıyı tesadüfle izahı bilimle dini karşı karşıya getirdiği gibi ilim dünyasında da tartışmalara yol açıyor. Eserde: Evrimin temel iddiaları nelerdir? Mutasyon nedir? Evrimci düşüncenin kullandığı fosiller için paleontoloji ne diyor? Evrimi ispat için yapılan paleontolojik çalışmalar bilimin ölçülerine uyuyor mu? Proteinlerin tesadüfen oluştuğunu farz etsek, buradan ilk canlıya nasıl geçilebilir? Dünyanın yaşı evrim süreçleriyle insan gibi bir türün meydana gelmesine imkân verecek kadar uzun mudur? Gibi sorular cevaplanırken felsefeden fiziğe matematikten moleküler biyolojiye ve genetiğe onlarla bilimin verileriyle konuya geniş bir bakış açısıyla bakılıyor' diyerek kitabının bu konuda ne ilk ne de son eser olmadığını belirtiyor ama bu tartışmaya bilimsel veriler ışığında önemli katkılar sağlayacak bir eser kaleme almak için yoğun çaba sarf ettiğini söylüyor... Takdim yazısı M. Fethullah Gülen tarafından kaleme alınan eserin ilmî hakikatleri çarpıtmadan, yaratılanlardaki değişimi reddetmeden fakat bunu Pozitivizme de Materyalizme de âlet etmeden, biyolojik hâdiselerin temelindeki ilim, irade ve kudret tecellilerine ışık tutmakta olduğu belirtiliyor. kitapta yer alan soru ve cevapları birlikte okura sunulan CD'den video görüntüler eşliğinde izlemek ve dinlemek de mümkün. İşte bu eserin girişinde yer alan soru ve cevapların, kitapla birlikte okura sunulan CD'deki video görüntülerinden kısa bir seçki:

http://www.biyologlar.com/evrime-soru-cevaplarla-bakis

Anguilla anguilla Yılan Balığı ve Özellikleri

Yılan Balıklarının Sistematikteki Yeri Yılan balıkları modern sınıflandırmada balıklar sınıfının Apodes takımından kemikli balıklar alt sınıfı Anguillidae familyasına dahildirler. Günümüzde Anguilla cinsi içinde 19 tür bulunmaktadır. Bunlar arasında en önemli yılan balığı türleri : Avrupa yılan balığı Anguilla anguilla Amerikan yılan balığı Anguilla rostrata Japon yılan balığı Anguilla japonica Yılan balıkları gerçek bir balık türüdür. Diğer balıklar gibi galsamaları vardır. İskeletleri balıklara özeldir. Omur sayılarından tür ayırımı yapılmaktadır. Omur sayıları Avrupa yılan balığında ortalama olarak 115, amerikan yılan balığında 107 , japon yılan balığında ise 116 adet olarak tespit edilmiştir. Sadece karın yüzgeçleri yoktur. Göğüs ve sırt yüzgeçlerine sahiptirler. Pulları gelişmemiş ve pulsuz olarak kabul edilebilmekle birlikte vücutları üzerinde tek tük dağılmış pullara sahiptirler. Deri kalındır ve üzerinde fazla miktarda mukus bulunur. Çenelerde ve vomer kemiğinde gayet ince tarak gibi dişler bulunur. Ayrıca karın yüzgeçlerinin yokluğu da yılan balıklarına özel bir durumdur. Yılan balıklarında diğer balıklarda olduğu gibi pektoral yüzgeçleri ve göğüs kemikleri de vardır. Alt çene, üst çeneden biraz daha uzundur. Baş solungaçların bulunduğu yarık ile son bulur. Solungaç kapağı oldukça küçüktür. Kuyruk bölgesi ise anüs ile başlar ve kuyruk sonuna kadar devam eder. Aynı tür içinde olmakla beraber bölgelere göre renk ve baş şekli bakımından birbirinden biraz farklı olan yılan balıklarına sık sık rastlanır. Sonbaharda yakalanan büyük boylu yılan balıkları genel olarak parlak renklidirler. Sırtları koyudur, yanlar bakırımsı alt kısımları ise beyazımsı parlaktır. Bu balıklar cinsel olgunlaşma döneminde olan ve tatlı sulardan çıkarak Sargossa körfezine doğru üreme için göçe çıkmış olan gümüşi yılan balıklarıdır. Bu yılan balıklarından ayrı olarak pek parlak olmayan normal yılan balıkları yakalanır ki bunlar da sarı yılan balıkları olarak tanımlanır. Bu balıklar cinsel bakımdan olgunlaşmamışlardır. Devamlı yem almakta ve gelişme döneminde bulunmaktadırlar. Göç döneminde bulunan gümüşi yılan balıklarının sindirim organları boştur. Bu üreme göçleri sırasında vücutlarında biriktirmiş oldukları yağı, besin ve enerji kaynağı olarak kullanmaktadırlar. Avrupa yılan balıklarında baş yapılarına göre de bazı farklılıklar bulunmaktadır. Renk ve baş yapısı gibi farklılıkların yem, yaşadıkları ortam, cinsiyet, cinsel olgunluğa ulaşma dönemi gibi birçok faktör tarafından etkilendiği saptanmıştır. Sınıf : Pisces (Balıklar) Alt Sınıf : Osteichthys (Kemikli Balıklar) Takım : Anguilliformes (Yılanbalığımsılar) Familya : Anguillidae (Yılanbalıkları) Tür : Anguilla anguilla (Anguilla vulgaris, Muraena anguilla) (Avrupa Yılanbalığı) Tarihçesi: M.Ö. 3. Yüzyılda yaşayan Aristo, "Toprağın bağırsakları" dediği solucanlara benzeyen bu canlılarla ciddi ciddi ilgilenmişti. M.Ö. 1. yüzyılda bir Romalı düşünür ise, "Yılanbalıklarının kaya parçalarına çarpan diğer balıkların derilerinden meydana geldiğini" ileri sürmüş. 17. yüzyılda Francesco Redi adlı doğabilimci, yılanbalığının bir balık olması nedeniyle ancak yumurta yoluyla üreyebileceğini belirtmiş. Sigmund FREUD'ta 19. yüzyılın sonlarına doğru çalışmalarında biyolojiye ağırlık verdiği dönemde, çağrıştırdığı cinsellik açısından yılan balığını tanımaya çalışmış ancak sonuçsuz kalmış. 1920 yılında Danimarkalı biyolog Johannes Schmidt, Atlantik Okyanusunda avlanırken, ağına takılan 77 mm boyunda yılanbalığı larvalarına rastladı.Bunları takip etti ve sonunda yılanbalığı larvalarının Atlas Okyanusunda, Amerikanın biraz açıklarında "Sargasso Denizi" denilen bölgede doğuyorlardı. Daha sonra uzun bir yolculuğa çıkıp Avrupa'ya kadar geliyorlar ve burada ulaştıkları tatlı sularda gelişip büyüdükten sonra yeniden denize dönüyorlardı. Avrupa kıyılarından Meksika'ya gidildikçe larvaların boyları küçülmekte, buna göre yılanbalıkları Meksika yakınlarında üremekte. Yılanbalıklarının yumurta ile üremelerine ilişkin ilk bilgi yumurtalıkların keşfi ile olmuş, ancak birçok bilim adamı yumurtaları bulmak için çok uzun bir süre uğraşmıştır. İtalyan bilim adamı Lazzaro Spallanzani, yılanbalıklarını 40 yıl boyunca incelemesine karşın yumurtalı bir bireye hiç rastlamadığını belirtmiş. 1974 yılında Japon bilim adamları yakaladıkları bir dişi yılanbalığını suni yolla döllemeyi denediler.Laboratuarda gerçekleşen deneyde,dişi yılanbalığı yumurtlar yumurtlamaz öldü.Karnı yarıldığında dönüş yolculuğunda hiç yiyeceği kalmadığı anlaşıldı. 1981 yılında Alman okyanus bilimci Friedrich Wilheim Tesch ilginç bir deney yaptı.Yakaladığı dört dişi yılanbalığını Sargasso Denizi'ne alıcılar bağlayarak bıraktı.Son sinyaller 700 metre derinlikten geldi ve daha sonra yılanbalıklarının izini kaybetti. Yılanbalığı gizemini ve efsane kimliğini hala koruyor. Genel Özellikleri Yılanbalıkları,her ne kadar sürüngene benzese de gerçek bir balık türüdür.Solungaçları vardır. Karın yüzgeçleri yoktur,ancak sırt ve göğüs yüzgeçleri vardır. Karın yüzgecinin olmaması bu balık türüne özgüdür. Üzerinde yoğun bir mukus tabakası olan, kaygan bir derileri var. Bundan dolayı çıplak elle tutulamaz.Yılanbalıkları geceleri hareketlidir,gündüzleri çamurun içine saklanırlar.Çayıra bırakıldıklarında suyun yönünü hemen bulabilirler. Susuz ortama karşı çok dayanıklıdırlar ve uzun süre su dışında kalabilirler. Çünkü bu hayvanlar,yağmurlardan sonra ıslak yerlerde, nemli çimenlerde kolaylıkla hareket edebilirler. Bundan dolayı bir nehirden başka bir nehre (yakın mesafede) bile geçebilirler. Turna balıkları,mersin balıkları ve su kuşları en büyük düşmanlarıdır.Kanları çok tehlikeli bir sinir zehiri içerir, kanı yara ve çatlaklara değmemesine özen gösterilmelidir.Isıtıldığında zehir parçalanır.Toplam 19 yılanbalığı türü vardır Vücut uzun yılan şeklinde, yanlarda hafif yassı olup küçük pullarla kaplıdır. Renk üreme zamanına kadar kahverengimsi sarı, üreme zamanı gelince gümüşidir. Ömürlerinin büyük kısmını (6-20 yaşa kadar) tatlı sularda geçirirler. Yumurtlamak üzere tatlı suları terk ederek denize açılırlar. Üremelerini Meksika Körfezinde gerçekleştirirler. Hayatlarında bir defa yumurta kaparlar. Yumurtlayan yılan balıkları ölür. Çıkan yavrular 3 yaşında, 65-70 mm boyuna geldiklerinde karasularımıza ulaşırlar. 20-60 yıl yaşarlar. Göçün ortaya çıkmasında en önemli nedenlerin başında; üremedir, yavruların yetiştirilmesi, kış gelmeden önce bulunulan bölgeden uzaklaşmaları gerekmektedir. Yaşam ortamındaki besin miktarında azalma, populasyonun artmasıyla birlikte yaşam alanının küçülmesi gelmekte.Yılanbalıklarını göçteki amacı; iç güdüsel olarak doğdukları yere ulaşıp üremek istemeleridir. Coğrafik Dağılımları: Avrupa yılan balıkları yayıldıkları bölgeler, Kuzeyde 71. Güneyde ise 23. enlemler arasında bulunmaktadır. Kuzeye doğru çıkıldıkça da yılan balıklarına daha az rastlanır. Pratik olarak yapılan yılan balığı avcılığı da 63. Enlem dairesine uzamaktadır. Kuzey Rusya ve Kuzey Sibirya’da yılan balıklarına rastlanmaz. Afrika sahillerine bakıldığında ise , Cezayir kıyılarında bulunmasına rağmen aynı sahilde bulunan Senegal’de görülmez. Bazı göllerde çok az ve bazılarında ise hiç bulunmadıkları görülmektedir. Bu durum yılan balıklarının bu göllere ulaşma imkanları ile ilgilidir. Yılan balığının yayıldığı bölgeler incelenirse pek çok yayılma alanı görülür ve ulaşabildikleri yüksek sularda bile yaşadıkları saptanmıştır. En tuzlu suda, tatlı kaynak sularında, bataklık az tuzlu sularda yaşama imkanı bulurlar. Amerikan yılan balıklarının, Avrupa yılan balıklarının çoğaldığı bölgelerde çoğaldıkları kabul edilmektedir. Kanada ve ABD kıyılarında yaygındırlar. Bu ülkelerde avcılık ve üretim az ve benzer düzeydedir. Japon yılan balığı doğu Asya kıyılarında bulunan bir türdür. Üredikleri alan kesin olarak bilinmemekle birlikte Tayvan’ın güney kısımlarında çoğaldıkları tahmin edilmektedir. Tayvan’da Taipei, İlan, Kan, Changua, ve Pingtung şehirlerine yakın nehirlerde fazla miktarda elver yakalanmaktadır. Japonya’da ise Shizuoka bölgesi nehirlerinde elver avcılığı yapılır. Japonya’da yılda 50 ton dolayında elver yakalandığı tahmin edilmektedir. Larva Dönemleri Şubat ile nisan ayları arasında dünyaya geliyorlar. Larvalarına "Leptocephal" adı verilen larvalar küçük bir dil balığı biçiminde ve vücutlarına oranla iri siyah gözleri bulunur. Şeffaf görünümde olur,kasları iç organları görülür. Uzunlukları yaklaşık 5-6 milimetre arasındadır. Sargasso Denizi'nden Avrupa'ya kadar gelişi sırasında zooplanktonlarla ve küçük kabuklularla beslenirler. Bu hayvanları 14 dişiyle parçalayarak yer. Yolculuğunu, ya kendisini akıntılara bırakarak ya da küçük sürüngenler gibi hareket ederek tamamlıyor. Dokuz ayda tam 6000 km yol katettikten sonra Avrupa Kıyılarına ve 7000 km'den sonra da Akdeniz havzasına ulaşırlar. Yavru Dönemleri Larva Avrupa kıyılarına vardığında,tatlı su ortamına uyum sağlamak ve kıyıdaki haliçleri daha kolay aşmak için metamorfoz geçirip, saydam ve minyatür yılanbalığı haline dönüşür . Bu ortamda yaşayabilmek için iç basıncını ayarlar. Larva dönemindeki dişlerini kaybeder ve bundan dolayı beslenemez. Beslenmeme döneminin uzamaması gerekir . Nehirlerde ilerlerken büyümeye başlarlar. Yılda boyları yaklaşık 10 cm, kiloları da 20 gram artar. Tatlı suya ve nehirlerin içlerine ulaşmak için çok hızlı ve gruplar halinde hareket eder. Nehirleri tırmanmaya başlayıp bazen kıyıdan 200 km içerlere kadar sokulurlar. Ancak daha fazla ilerleyemezler. Çünkü akarsular üzerinde barajlar ve setlere takılırlar. Grup halindeki dolaşmaları, kıyıdaki haliçlerde beyaz lekeler oluşturur. Belli bir süre sonra bir yere yerleşirler. Burada ikinci metamorfoz olur. Küçüklük Dönemleri Halk arasında "sarı yılanbalığı" denilen 3. aşamaya ulaşırlar. Bu metamorfoz aşamasında cinsiyeti belirlenir ve bu dönemde çok saldırgan olurlar. Derisinde beliren pigmentler nedeniyle rengi yavaş yavaş koyulaşır. Yemek borusu açıldığından yeniden beslenmeye başlıyor. Geceleri avlanmaya çıkarlar; Kız böceği, sinek, çamca balığı yiyerek beslenirler. Kış aylarında sularında soğumasıyla da kendini çamura gömerek kış uykusuna yatar. Nehir boyunca günde birkaç kilometre mesafe katederek sonunda bir süre sabit kalacağı noktaya ulaşır. Bugün yeryüzündeki yılanbalığı sayısının azalmasının temel nedenlerinden biri de onun yol aldığı bu nehirlere insanoğlunun inşa ettiği baraj ve setler. Bu dönemde uzunluğu cinse göre farklılık gösterir. Erkeklerde 5-8 yıl sürerken, dişilerde 7-12 yıl devam eder. Bu süre sonunda geldikleri yere dönmek için yola çıkarlar. Amaçları, tamamen içgüdüsel biçimde Sargasso Denizi'ne ulaşmak ve orada çiftleşmek. Yolculuğa çıkmadan son metamorfozlarını da geçirirler. Yetişkinlik Dönemleri Açık ve tuzlu su için gerekli metamorfozları geçirir. Derisi kalınlaşır,derinliklerin karanlığında yolunu daha iyi görmesi için gözlerinin hacmi artar ve bilye büyüklüğüne ulaşır. Daha önce vücudunun üçte birini oluşturan yağ tabakasını eritmeye başlar. Başını ön tarafı daha sivrileşir;böylelikle daha ince,aerodinamik bir yapı kazanır. 6 ile 13 yıl arasında bir süre bu yeni mekanında yaşıyor ve irileşiyor. Derisinin rengi ;karın kısmı gümüşümsü,sırt kısmıysa daha koyu bir görüntü kazandıktan sonra,12 gün içinde açık denizdeki yeni yolculuğuna hazırlanıyor. Boyu 1.2 metreye ulaşıyor ve vücudunun iç basıncını yeniden tuzlu suya göre ayarlıyor. Dönüş yolunda,akıntılardan mümkün olduğunca kaçınır ve bunu tamamen içgüdüsel olarak yapar. Geri dönüş yapan bir yılanbalığı bugüne kadar ,Avrupa kıyısından başlayarak tüm Atlas Okyanusu boyunca izlenememiştir. Sargasso Denizine ulaştıktan sonradaki yaşamları konusunda da bilgiler tam değildir. Dönüşü 120-200 gün süren yılanbalığı çok derin sularda yüzdükleri ve çok ağır basınç altında kaldıkları belirtiliyor. Basınç sayesinde üreme organları gelişmektedir ve hormon salgılamaya başlarlar.Sargassso Denizi'nin 600 metreye varan derinliklerinde çiftleşmeye uygun konuma gelirler. Dişilerde yumurtalar toplam kilosunun yüzde 80'ine ulaşır,yani 800 gram yumurta taşır. Renkleri: Yılanbalıklarında çeşitli renklenmeler görülür. Doğduğunda saydamdır.Nehirlere girinceye kadar bu formunu korur, nehirlere girdikten sonra renk pigmentleri oluşur. Rengi kahverengi sarımsıya döner,cinsel olgunluğa tam erişmemiştir.Bu hayvanlara sarı yılanbalıkları denir. 10-15 yaşlarında ise sırtları siyah, karın kısımları gümüşi renk alır.Cinsel olgunluğa erişmiştirler.Bu hayvanlara parlak veya gümüşi yılanbalıkları denir. Habitat ve Coğrafik Dağılımları Dipte, çamura bağlı olarak,tatlı suda ve denizde yaşarlar.Atlantik Okyanusu, Akdeniz, Batlık Denizi, Karadeniz ve bunlara akan akarsularda bulunurlar. Kuzey Afrika'da Cezayir'de görülebilirler.70 ile 25 kuzey enlemleri arasında dağılım gösterirler.Göçleri bütün Akdeniz, Baltık Denizi, Kuzey Denizi, Atlas Okyanusu ve Adriyatik Denizine dökülen nehir ve göllerden yola çıkan Avrupa yılanbalıklarının göçü Meksika Körfezi'nin 800 ile 1000 metre derinliklerinde son bulur.Sadece Avrupa yılanbalığı (Anguilla anguilla) ülkemiz iç sularında yaşar.Akdeniz ve Ege 'ye dökülen bütün göl ve nehirlerimizde bol miktarda bulunan yılanbalığı Batı Karadeniz'den Sakarya Nehri'ne kadar yayılan bir yaşam alanına sahip. Ekonomik Önemi: Bir çok ülkede beğenilen ve oldukça fazla tüketilen bir besin.Balık yetiştiriciliğinde genelde suni olarak balıkları üretmek mümkünken, yılanbalıkları suni olarak henüz üretilebilmiş değil.Yetiştiriciliği göç sonucu nehir ağızlarına gelen yılanbalığı larvalarının yakalanarak büyük havuzlarda beslenmeye alınmasıyla yapılmakta.Yakalanan yavruların bir kısmı doğrudan besin olarak tüketilir.1 kg yılanbalığı yavrusu 2800 ile 3500 arasında birey içerir.Avrupa kıyılarında yakalanan yavru balık miktarının yıllık 300 ton civarında olduğu söylenmekte.Bu miktar 900 milyar ile 1 trilyon arasında yavru balık anlamına geliyor. Türkiye kıyılarına ulaşan milyonlarca yavru balık büyük sürüler oluşturarak iç sulara girer.Nehir üzerindeki barajlara,yakındaki nehirlere,geceleri karaya çıkarak çamur ve nemli çayırlar üzerinden ilerleyerek ulaşabilir.Ülkemizde Akdeniz ve Ege kıyılarına dökülen nehirler üzerine yapılan barajlarda,balıkların yukarı çıkabilmesi için şelaleler yaparak yükselen balık merdivenleri bulunmadığından özellikle Gediz Nehri üzerindeki barajlarda, yavru balıkların türbinlere girmeleri,karaya çıkarak yukarı çıkmak istemeleri sonucu büyük kısmı telef olmakta. Nehirlere girişi,denizlerdeki akıntıları yardımıyla güney kıyılarından itibaren başlıyor. Aralık ve mart ayları arasında nehirlere giren yılanbalıkları,6-9 sene için denizlere kitlesel göç yapıyor.Yılan formunda olduğu için yerli halk tarafından tüketilmiyor ancak ;yurtdışında oldukça yüksek düzeyde alıcı buluyor. FAO'nun (Dünya Tarım Örgütü) ülkemizde yetiştiriciliğini tavsiye ettiği üç su ürünü karides,yılanbalığı ve süs balıkları arasında,ekonomik olarak en hesaplısı olan yılanbalıkları için hiçbir girişim yapılmıyor. Türkiye su ısısının Avrupa'ya göre yüksek olması,bu balığın göç dönemlerinde farklılık oluşturuyor.Avrupa'da yılanbalığı avcılığı mayıs-ekim dönemlerinde,ülkemizde ise eylül-ekim dönemlerinde gerçekleştiriliyor.Meriç Nehri 9.kilometrede Yunanistan sınırları içine kıvrılmış durumda.Bu noktadan itibaren sularının büyük bir kısmı Yunanistan sınırları içinden denize dökülmekteyken yatağındaki bu değişim, beraberinde bir çok sorunu da getirmiş. Yılanbalıkları içgüdüsel olarak akıntıya karşı yolculuk etme eğiliminde olduklarından, debisi giderek artan Yunanistan sınırlarındaki Meriç ağzında giriş yapmaya başladılar.Balıklar,geri dönüşte de aynı yol izlediklerinden, epeydir Yunanlı balıkçılar tarafından 9. kilometrede ve Meriç ağzında kurulan ağlarla avlıyorlar.Bugün Enez'de yılda sadece 1.5 tonluk bir üretimimiz var.Meriç'in 9. kilometreden ayrılan Türkiye kolunun debisinin azalmasıyla artık nehir yatağı giderek mıcır, taş yığınlarıyla dolmuş bulunuyor. Ekonomik olarak önem kazandığı yörelerimizin başlıcaları: Enez, Çandarlı (İzmir), Söke (Dalyan), Güllük (Muğla), Köyceğiz dalyanı ,Oragon çayı... Göç Sırasında Yön Bulma Yetenekleri Göç eden hayvanların yön bulma yetenekleri bilim dünyasında pek çok araştırmaya konu olmuş. Bu görüşlerden bazıları şöyledir; 1-) Göç sırasında dünyanın manyetik alanını kullandıkları görüşü: Dünyamızın bir manyetik alanı vardır. Bazı deniz memelileri, kuşlar, bazı balıklar, bazı böcekler, bazı mikro organizmalarda bu manyetik alanı saptayabilen algılayıcılar bulunur. Manyetoreseptör denen bu algılayıcıları sayesinde hayvanlar, uzun mesafeli göçte veya gezintilerinde yönlerini kolayca bulabiliyorlar. Ama bunun dışında kullandıkları referanslarda vardır. Yılanbalıklarının doğdukları yere geri dönüşleri, manyetoreseptörler ve suyun kimyasal yapısını tanımalarıyla açıklanmakta, denizlerde dahil olmak üzere her suyun, hatta her bölgenin kendine özgü bir kimyasal yapısı olur. Rota bu kimyasal bileşime göre saptanır. 2-) Sargasso Denizi'nde doğan canlılar, gelişme bölgelerine doğru göçerken suyun kimyasal yapısını belleklerine kaydederler. Gelişme dönemini tamamlayıp geri dönerken de, belleklerinde kayıtlı olan üreme alanlarına geri dönerler. Bu göçün tam anlamıyla bir yanıtı olmamakla birlikte kabul edilen bir görüşe göre dünyamızdaki kıtalar henüz birbirlerinden ayrılmamışken, yılanbalıkları bugün üredikleri yerde ürüyorlardı. Kıtaların ayrılmaya başlamasıyla, kıtalar arasındaki mesafeler uzadı. Milyonlarca yıl sonra bugün ki durumuna geldi. Göç başta kısa mesafelerde yapılırken, kıtalar birbirinden ayrılıp uzaklaşınca göç mesafesi de arttı. Sargasso Denizi belki de onların yumurtlamak için en uygun koşulları ( suyun sıcaklığı, kimyasal yapısı, bölgenin jeomanyetik alanı vb) sağlayan bir bölge olduğu için binlerce yıldır aynı bölgeye gelip yumurtlamakta. Yılanbalıkları iç güdüsel olarak göç ederler,yani ilk doğdukları yere giderek orada doğurur ve ölürler.Bu olay tamamen kalıtsal bir davranıştır. Zaten bununla ilgili görüşler ileri atılmıştır. Yılanbalıkları belirli periyotlarda bu göç olayını gerçekleştirirler ,yani; belirli bir büyüme sonunda göç etmeye başlarlar ritimleri bellidir.Göç olayı çiftleşme ,solunum gibi düşünülebilir.Sadece yılanbalıkları göç etmezler ;kuşlar,balıklar..vb İkinci Göç Bu göç, yılan balıklarının doğduğu yere üremek için yaptıkları göçtür. Gümüşi yılan balıkları sonbaharda, tatlı suları terkettiklerinde cinsi olgunlukları tamamlanmamıştır. Gümüşi yılan balığının denizdeki yaşamı çok az bilinmektedir. Sargossa"daki yumurtlama alanına ulaşıncaya ve gonatlarının tam olgunlaşacağı zamana kadar, denizde beslenmeden hayatta kalabilmektedir. 5000 km"lik uzun ve tehlikeli göçün tek hedefi, doğdukları yere ulaşıp üremektir. Üreme alanında deniz derinliği 4-5 bin metredir. Yılan balıkları yavruları ise 400-500 metrede güneş ışınlarının son ulaştığı derinliklerde yakalanırlar. Yılanbalıklarının yumurtladıktan sonra öldüğü tahmin edilmektedir. Avrupa Yılan Balığının Ürediği Yer: Sargossa Denizi Yılan balıklarının üreme alanları Peurto Rico ve Bermuda Adalarından eşit uzaklıklarda bulunmaktadır. Sargossa denizi bir kuyu şeklinde ve 1000 m derinliğe kadar bir bölgede tuzluluk oranı % 0,35 ve su sıcaklığı 17 dereceyle, yılan balıklarının üreme sahaları olarak diğer bölgelerden ayrılır. Yılan balıkları tam olarak nerede toplanıyorlar? Yumurtlamaları nerede oluyor? Erkekler nerede bu yumurtaları döllüyorlar? Bu yerler ve olaylar hiçbir kimse tarafından gözlenememiştir. Sadece bu olayların anılan bölgede olduğuna dair bir çok bilgiye sahibiz... Yılan balıkları derin su balıklarıdır. Tatlı sulara geçici olarak, büyümek için gelmektedirler. Sargossa denizinde 400 metre derinlikte yumurtadan çıkmış yılan balıkları, 15 yıl sonra tekrar üremek için aynı sulara geri dönmektedir. Üreme zamanına ulaşan yılan balıklarını, tatlı sulardan denizlere göç ettiği dönemde “gümişi yılan balığı” adı verilir. Bu dönemde yılan balıkları yumurtaları incelendiğinde üreme organı içinde yağ damlaları gözlenmektedir. Bu durum yumurtaların deniz dibinde değil orta sularda olabileceğini kanıtlamaktadır. Sargossa denizinde derinlik 4500 metre dolaylarındadır. 400-500 metre derinlik bu denizde güneş ışınlarının ulaşabildiği son derinlik olmakta, 500-600 metreden sonra ise hayat güçleşmektedir. Üremenin bu derinlikte olmasından sonra, yumurtadan çıkan larvaların büyüyerek yükselmeye başladıkları saptanmıştır. Örneğin 5-15 mm boyundaki yılan balığı larvaları 100-300 metre derinliklerde rastlanırken, biraz daha büyükleri ve bu denizden uzaklaşmış olanları 50 m civarındaki derinliklerde bulunmaktadır. Bütün bu bilgiler yılan balıklarının döllenmiş yumurtalarının bu bölgede izlenememiş olmasına rağmen, üremenin bu bölgede olduğunu kanıtlayan veriler olmaktadır. Aynı bölgede Mart ve temmuz ayında milyarlarca leptosefalus larvasının gözlenmiş olması, üremenin ilkbahar ve yaz başlangıcında olabileceğine işaret etmektedir. Yumurtlayan Yılan Balıklarına Ne Oluyor? Yumurtladıktan sonra yılan balıklarının akibetlerinin ne olduğu günümüzde hala bir bilinmezdir. Çünkü yumurtladıktan sonra Avrupa kıyılarına geri dönmüş tek bir yılan balığına raslanamamıştır. Bu durumda iki hipotez ileri sürülmektedir: Bunlardan ilki yılan balıkları yumurtladıktan sonra derin dip balığı olarak yaşamını sürdürür. Diğeri ise, yılan balıkları yumurtladıktan sonra kitle halinde ölürler. Bu iki görüşten ikincisini destekleyecek bir çok delil bulunmaktadır. Gümüşi yılan balığı olarak adlandırılan üremek için denizlere açılmaya yönelmiş bir yılan balığında anüs yapısının bozulduğu, sindirim sisteminin deforme olduğu ve kaslarda değişim başladığı gözlenmiştir. Bazı balık türlerinde de üremeden sonra ölüm olduğu bilinmektedir. Örneğin som balıkları yumurtlamak için denizlerden nehirlere göç ederler. Ve hepsinin yumurtladıktan sonra öldükleri gözlenir. Öyleyse yılan balıklarının da üredikten sonra öldüklerini kabul etmek yanlış olmayacak ve bunların 4500 m’ye varan derinliklere çöküp çürüdüklerini kabul etmekten başka yorum kalmayacaktır. Yumurtadan Çıkan Larvaların İlk Yolculuğu Yumurtadan çıktıktan sonra larvalar için önemli, uzun ve güç bir yolculuk başlar. Üreme alanının hemen çevresine üreme mevsiminde milyarlarca larva dağılarak yol almaya başlarlar. Larvalar kuzeyden Labrodor"dan gelen soğuk su akıntısı ve güneyden Ekvatordan gelen sıcak su akıntısının zararlı etkisi nedeniyle bu yönlere gitmezler. Amerika kıtasına gitmeyi tercih etseler, Amerika kıyılarına kısa sürede ulaşacaklar ve metamorfoz denilen normal vücut değişimlerini (3 yıl gerekir) sağlayamadan kıyılara ulaştıkları için ölmekten kurtulamayacaklardır. Aynı bölgede Amerikan yılan balıkları da üremesine karşın, onların yavruları tatlı suya girebilecek morfolojik değişime 1 yılda ulaşırlar, bu yüzden Avrupa kıyılarına doğru değil, Amerika kıyılarına doğru göçe başlar. Çünkü morfolojik değişimden hemen sonra beslenemez ise onlar da ölecektir. Böylece bu balıklarda, beslenme sahaları olan tatlı sulara ulaşma süreleri ile morfolojik değişimleri tamamlama süreleri birbirini takip etmektedir. Ilkbahar başında yumurtadan çıkan larvalar defne yaprağına benzer ve bunlara leptosefalus denir. Bu larvalar Meksika körfezinden başlayıp Batı Avrupa kıyılarına kadar gelen sıcak su akıntılarıyla Avrupa kıyılarına kadar göç ederler. Şimdiye kadar yakalanan en küçük larva 7 mm olup, 75- 300 metre derinliklerde rastlanmıştır. Avrupa kıyılarına yaklaştıklarında boyları 75 mm"ye ulaşmaktadır. Avrupa yılan balığı larvalarının kat ettikleri mesafe 5000 km, Amerikan yılan balıklarının 1000 km kadardır. Larvalar kıyılara ulaştıklarında, defne yaprağı şeklinden yılan balığına benzeyen silindirik bir şekle dönüşmeye başlar. Vücut büyüklüğü ve ağırlığı artar. Larva dönemine ait dişler kaybolur. Larva döneminde mikroskobik canlılarla beslenirler. Avrupa yılan balıkları su akıntılarıyla nehir ağızlarına geldiklerinde 2.5 yılı geçmiştir. Türkiye kıyılarına gelmeleri ise 3 yılı bulmaktadır. Nehirlere giren yılan balıklarının zeytin yeşili kahverengimsi, karın kısmı sarımsı beyaz rengi alır. Bu balıklara "Sarı Yılan Balığı" denir. 14-15 yıl kadar sarı yılan balığı az-çok yerleşik olarak beslenir ve barınır. Beslenme, etçil olarak dip canlılarıyla ve diğer balıklarla olmaktadır. Büyümesi yaşadığı ortama bağlıdır. Dişi balıklar (45-150 cm), erkeklerden (50 cm) daha büyüktür. Büyümedeki farklılık ve yaşadığı ortam cinsiyetin ayırt edilmesini sağlar. Erkek balıklar nehir ağzında kalırken, dişi bireyler kaynağa yakın yerlerde bulunur. Su dışında uzun süre yaşayabilen, susuz ortamda dayanıklı olan yılan balıkları, ıslak zeminlerde, nemli çimler üzerinde kolayca hareket edebilir. Hatta deniz-tatlı su bağlantılı bataklık alanlarda çamur içinde çok rahat hareket edebilen, bu balıkları, bu alanlarda 1-1,5 metre çamur içinde bulmak hiç de şaşırtıcı olmaz. 15 yaşına kadar tatlı sularda büyüyen sarı yılan balıkları ikinci bir değişim geçirir. Karın kısmı, gümüşi, sırt kısmında koyu bir renklenme görülür. Vücutlarındaki yağ oranı artar (vücut ağırlığının %30"unu geçebilir) Bu aşırı yağlanma onun Sargossa denizine yapacağı zorlu göçte dayanmasını sağlar. Zira yılan balıkları yaklaşık 18 ay sürecek bu göçte hiçbir besin almazlar. KAYNAKÇA: Alpbaz A., Hoşsucu, H., 1988. Iç Su Balıkları Yetiştiriciliği, Ege Üniversitesi Su Ürünleri Y.O. Yayınları No:12, 1-98 s. Izmir. Güner, Y., Kırtık, A. 2000, Yılan Balığı Biyolojisi ve Yetiştiriciliği. Tarım Bakanlığı Hizmet içi Seminer Notları. 32 sayfa. Bilim ve Teknik Dergisi ; Kasım 2002 Atlas Dergisi ; Mayıs 2000 Focus Dergisi ; Eylül 1998 Omurgalı Hayvanlar, Prof.Dr.Mustafa KURU   Yılan Balığı Yetiştiriciliği Yılan balıkları modern sınıflandırmada balıklar sınıfından Apodes takımından kemikli balıklar alt sınıfı Anguillidae familyasına dahildirler. Avrupa yılan balığı dışında K.Amerika ve Grönland!a ait Anguilla rostrata; Çin ve Japonya'da Anguilla japonica; Avustralya ve Y.Zelanda'da A.dieffenbachi ve A.australis türleri bulunur. Yılan balıkları kesinlikle karasal bir hayvan değildir. Bir balık türüdür. Sadece karın yüzgeçleri yoktur. Hayatları boyunca yumurtadan çıktıktan sonra 5 dönem geçirirler. İlk dönem larvaların yumurtadan çıktıktan sonraki keseli dönemidir. İkinci dönem 1-3 yıl arasında değişen larva dönemidir. Üçüncü dönem larvanın leptocephalus safhasındaki elver tabir ettiğimiz safhaya geçiş dönemidir. Dördüncü dönem elver haline gelen balıkların nehirlere veya göllere girerek yaşamalarıdır. Beşinci dönem de yılan balıklarının üremek için denize seyahat ettikleri dönemdir. Yılan balıklarının yumurtlamak için Sargossa Körfezine gittiği ve yumurtladıktan sonra öldükleri sanılmaktadır. Avrupa'da uygulandığı gibi yılan balığı yavrularının stoklanması şekliyle yetiştiriciliği yapılabilir (extansive). Bu yöntemlerde acı su (%010-20 tuzluluk) tabir edilen dalyanlarda veya göllerde yavru yılan balıkları kontrollu bir alan bırakılır. Gelişme tamamen doğal koşullara bırakılır. Yapay yem kullanılarak gelişme desteklenebilir. Üretim oranının 5-20 kg/dekar arasında değiştiği bildirilmektedir. Japonya'da uygulandığı gibi kontrollü yetiştiricilik yapılabilmektedir (Intensive). Avrupa yılan balığı yetiştiriciliği Yılan balığı yetiştiriciliğini etkileyen üç önemli zorluk bulunmaktadır. • Damızlıktan itibaren üretimi gerçekleştirilememektedir. Bu yüzden yetiştiriciler doğal ortamdan yakalanacak yavruları kullanmak zorundadırlar. Doğadan yakalanan yavru miktarı da bir yıldan diğer yıla büyük oranda değişiklik gösterir. Yavruların yakalanması şeffaf elver aşamasından itibaren başlamakta, daha sonraki aşamalarda da devam etmektedir. Örneğin, Fransa’da Languedoc kıyılarında yaklaşık 25 g ağırlığında yılan balığı yavruları yakalanmaktadır ( 9-13 Frank/kg ). Bu aşamada farklı yaş ve sağlık durumunda bireylerin bulunması, balıkların aynı kökenden gelmemesi, yem dönüşüm katsayısını yükseltir. Bu da besleme maliyetini artırmaktadır. • Tür içi rekabet fazladır. Büyük bireyler özellikle yem alımı sırasında populasyon üzerine baskınlık kurarak küçük bireylerin yeme ulaşmalarını güçleştirirler. Bu da stres olayının ortaya çıkmasına sebep olur. Yetiştirici bu durumda boy dağılımının homojen olmasını sağlamak için yavru aşamasında 3-5 haftada bir sınıflama yapmak zorundadır. Zira bu tür içi rekabet kanibalizme kadar gidebilmektedir. Bunu ortadan kaldırmak için yapılan tüm müdahaleler populasyonda belli bir strese yol açmaktadır. • Yoğun yetiştiricilikte karma yemi en iyi şekilde ete dönüştürerek eşit büyüyen bireylerin elde edilmesi gerekmektedir. Ancak bu pahalı bir besleme gerektirir. Yılan balığının çok kaygan olması, avlanmasını ve el ile tutulmasını güçleştirir. Halbuki yılan balığı yetiştiriciliği oldukça fazla el işçiliği gerektirir. Yılan balığı yetiştiriciliği özellikle Uzakdoğu’da önemli bir yer tutmaktadır. 1. Ekstansif Yılan Balığı Yetiştiriciliği Yılan balığı yetiştiriciliğini iki kısımda incelemek mümkündür. Bunlardan birincisi Avrupa’da yapıldığı gibi yılan balığı yavrularının stoklanması ile üretim sağlanmasıdır. Bu yol ekstansif üretim olarak adlandırılır. Satın alınan elverler çeşitli göl veya akarsulara bırakılır. Bu yöntemle Hollanda ve Almanya’da yetiştiricilik yapılmaktadır. Kuzey İtalya’da Venedik yakınlarında Comacchio gölü yetiştirme merkezidir. Burada etrafı çevrili 32 000 hektar “valli”lerden 1 000 ton/yıl balık elde edilmektedir. Vallilere tatlı ve tuzlu su girişi kontrollü olarak verilmektedir. Elverler buraya ya kendileri gelirler veya sahilden yakalanarak getirilirler. Verimliliğin artırılması için yapay yemle beslemeye de başlanmış, üretim veriminin 5-20 kg/dekar arasında olduğu bildirilmiştir. Kuzey İrlanda’da nehirlerde tuzaklarla yakalanan elverler 38 000 hektarlık çeşitli göl ve göletlere bırakılarak yılda 800 ton üretim sağlanmıştır. Macaristan’da İrlanda ve Fransa’dan satın alınan elverler, Balata, Valence ve Ferta göllerine bırakılır. Stoklamanın hektara 400 elver olduğu 6 yıllık bir gelişmeden sonra balıkların ortalama 650 grama ulaştığı bildirilmiştir. Fransa’da ise Marsilya yakınlarındaki 8 000 hektarlık alanda 70 ton/yıl yılan balığı elde edilmiştir. Ülkemizde çeşitli yerlerde avcılığı yapıldığı gibi bu yerlerde gelişen balıklar hasat edilerek üretim sağlanır. İzmir körfezindeki bazı dalyan işleticileri güney bölgelerinden temin ettikleri yılan balığı yavrularını dalyanlara bırakarak üretimi artırma girişiminde bulunmuşlardır. Ülkemizde avcılığı yapılan yılan balıkları genel olarak bazı göl ve nehirlerden sağlanmaktadır. Yılan balığı üretiminde önde gelen göl ve nehir dalyanları : Bafa gölü ve buna bağlı Menderes nehri, Gölmarmara, az miktarda diğer sulardır. Yıllık yılan balığı istihsalimiz DİE verilerine göre 1991 yılında 603 ton, 1995 yılında 780 ton, 1997 yılında ise 400 tondur. Yılan balığı yetiştiriciliği Japonya’da 1970 li yıllarda başlamış olup karma yemlerin kullanıldığı yoğun yetiştiriciliğe dönüşmüştür. 1990-91 yılı verilerine göre Japonya’da Anguilla anguilla 1500 ton, A. japonica üretimi 40 500 ton olarak elde edilmiştir. Tayvan’da da son yıllardaki üretim çalışmaları ile 52 500 ton A. japonica elde edilmiştir. Almanya, Fransa ve İtalya’da yılan balığı yetiştiriciliği konusunda bazı girişimler yapılmışsa da Uzakdoğu’da olduğu gibi yaygın bir gelişme ortamı sağlanamamıştır. Avrupa Yılan balığı elverleri Avrupa yılan balığına hemen hemen sıcak su akıntılarının ulaştığı tüm kuzey Avrupa nehirlerinde rastlanılmaktadır. Ayrıca Akdeniz’de pek çok nehirde de görülür. Ülkemizde Büyük Menderes nehri ve bu nehirle bağlantılı olan Bafa gölünde, Küçük menderes ve Gediz, Bakırçay nehirlerinde, Adıyaman Gölbaşı, Silifke’de Göksu nehrinde, bu nehirle irtibatlı Akgöl ve Kuğu göllerinde, Marmarada Kocabaş, Gönen ve Susurluk çaylarında yılan balığı mevcuttur. Akdeniz ile irtibatlı nehirlerde görülen, yılan balığı tüm Cebelitarık boğazını geçerek bu nehirlere ulaşmaktadır. İtalya’da özellikle Kuzey Adriyatik’te ve Venedik yakınlarındaki dalyanlarda fazla miktarda yılan balığı bulunmaktadır. Elverlerin en çok yakalandığı ülkelerden biride Fransa’dır. Özellikle Biskay körfezinde Loire ve Girondo nehirlerine büyük miktarlarda girdikleri gözlenir. Fransa’nın yılda, bu bölgesinde 800 ton dolayında elveri yakalayarak pazarladığı tahmin edilmektedir. İrlanda da Eire ve Shonnon nehirlerinde yakalanan elverler, iç göllere stoklanmasında kullanılmaktadır. İngiltere’de Severn nehri ve daha az olmak üzere Poraft nehirlerinde de elver avcılığı yapılır. Avrupa kıtalarında elverlerin periyodik olarak görülmesi yıllık olmakla beraber Bertin isimli araştırıcıya göre 6 yılda bir tekrarlanan durum arz etmektedir. Bir yıl az miktarda elver avlanırsa gelecek yıl bir azalma olduğu belirtildiği gibi, 3 yıl bir yükselme izlenip bunu takip eden 3 yılda ise bir azalma görülebildiği kaydedilmektedir. Elverlerin leptosefalus safhasından yılan balığı şeklini almaları döneminde izlenen en önemli değişiklikler şeffaflığın kaybolması ile uzunluk ve ağırlığın azalmasıdır. Kıyılara ulaşan larvaların kıyılara ulaşma periyodunda ilk gelenlerin sonra gelenlerden daha iri cüssede oldukları bilinen bir durumdur. Hatta ilk gelenlerin en son gelenlerden 6 mm daha kısa oldukları saptanmıştır. İlk yakalandığında şeffaf olan elverlerin bir süre ışıklı ortamda tutulduklarında vücutlarında hemen pigmentleşme başladığı ve renginin koyulaştığı görülmektedir. Elverlerin Göçüne etkili olan faktörler Su Sıcaklığı Elverlerin göç etmesine etkili olan faktörlerden biri su sıcaklığıdır. Ilık sularda elverlerin nehirlere göçünün daha erken ve hızlı olduğu bilinmektedir. Sıcak denizlerde elver görülmesinin, soğuk denizlere nazaran daha erken olduğu bilinmektedir. Fakat bazı yerlerde bunun tersi durumlarda zaman zaman izlenebilmektedir. Avrupa kıyılarında elverlerin ilk görüldüğü dönemlerde su sıcaklığının 4 °C dolayında olduğu ve su sıcaklığı 1 °C düştüğünde hareketlerinin azaldığı gözlenmiştir. Havanın ılıklaşması elverlerin su yüzüne yaklaşmalarına dolayısıyla avcılığının daha kolay olmasını sağlamaktadır. Işık Yılan balığı yavrularının nehirlere ilk ulaşmalarında ışığın dağıtıcı bir etkisi olduğu görülmektedir. Sadece geçiş dönemlerinde ışığa doğru hareket ettikleri görülmektedir. Hatta bazı balıkçılar, bu dönemde av yerinde elverleri su yüzeyine çekmek için ışık kullanırlar. Açık bir ay ışığı gecesinde elverler zemine yakın derinlikte hareket ederler. Pratik avcılıkta avrupa yılan balığı elverleri, genel olarak karanlık gecelerde yakalanır. Özellikle nehirlere girişlerin en yoğun olduğu periyotta, gece elver avcılığı çok daha verimli olur. Fakat med-cezir olaylarında su yükselmesinin en fazla olduğu günlerde, gündüzleri de elver göçü olur. Fakat elver miktarı geceye oranla daha azdır. Elverler genel olarak gündüzleri kum içine girerek yada kayarak, taşlar altında saklanarak günlerini geçirirler. Med-cezir Avrupa ve Japonya’da elverlerin en çok yakalandığı zaman genel olarak su yükselmesinin en fazla olduğu dönemlerde, su yüzeyine yakın olan kısımlardır. Severn nehrinde su yükselmesi ile elver girişi arasında ilişki olduğu bilinmektedir. Bunun yanında Akdeniz’de bir çok nehirde med-cezir olayları az olmakla birlikte elver girişini sağlamaktadır. Tatlı su Elverlerin nehirlere girişi daima suyun tuzluluğunun azalması ile ortaya çıkar. Denizlerden gelen elverler için nehirlerden gelen tatlı sular cezbedici bir rol oynar. Nehirlerin döküldükleri noktada tuzluluğun düşmesi ve ani yağan yağmurlar ile nehir sularının artması, nehirlere olan yönelişi daha da çabuklaştırır. Rüzgar Japonya’da, nehirlere elverlerin girişinde güney rüzgarlarının esmesi, su sıcaklığının 8-10 °C olması ve bir gün önce yağmur yağmış olmasının etkili olduğu bildirilmektedir. Elver Yakalama Yöntemleri Elver yakalamada uygulanan yöntemler bakımından ülkeler bölgeler ve nehirler arasında farklılıklar vardır. Bazı yerlerde kepçeler, bazı yerlerde tuzaklar, bazı yerlerde ise ekosaundrlardan yararlanarak avcılık yapılır. İngiltere’de elverler 1 metre uzunluk 60 cm genişlik ve 60-70 cm derinliği olan 1.5 mm göz açıklığında kepçelerle avlanırlar. Avcı kepçeyi akıntı yönünde ve mümkün olduğu kadar kıyıya yakın tutarak yüzeye yakın su sathında geceleri elver yakalamaya çalışır. Kepçe suda 5 dakika kadar tutulur ve sonra kaldırılır. Daha sonra yakalanan elverler stok yerine alınarak pazara sevk edilirler. Kuzey İrlanda da nehir yatağında yavrular belli bir alana yönlendirilir ve buradaki tuzaklarla avlanır. Bu yöntemin en iyi tarafı bölgeden geçen elverlerin tümünü yakalayabilmesidir. Bonn nehrinde bu yöntemle bir mevsimde 5-6 ton elver yakalanabildiği bildirilmektedir. Fransa’da elver yakalama işleri büyük nehir ağızlarında bir motor ile hafifçe çekilen ağlar ile yapıldığı gibi kıyılardan da yürütülmektedir. Bazı tekneler balık bulucu elektronik aletlerden yararlanırlar. Fransa’da yakalanan elverlerin çoğunluğu Japonya’ya ve bir kısmı da Avrupa ülkelerine ihraç edilmektedir. Fransa genelindeki nehirlerde 1970 yılında toplam 1 345 ton yavru yakalanırken, bu rakam 1982 de 500 ton dolaylarına düşmüştür. 1 kg da yaklaşık 3 000 adet elver bulunmaktadır. Elverlerin nehirlere giriş zamanı tüm bölgelerde aynı değildir. örneğin Avrupa’da batı İspanya sahillerine aralık-ocak, Severn nehrine ise nisan-mayıs aylarında, Fransa Biscay ve Britany de ocak-mart aylarında girmektedirler. Yılan balığı yavrularının belirli bölgelere farklı zamanlarda gelmelerinin iki esas nedeni vardır. Birincisi üreme bölgelerine yakın olan bölgelere daha erken ulaşmasıdır. İkincisi ise yılan balığı yavrularının sıcaklığı 8-10 °C den daha az olan nehirlere girmek istememeleridir. Örneğin Avrupa yılan balıkları Atlantik kıyılarına aralık aylarında ulaştıkları halde suyun soğuk olması nedeniyle nehirlere girmezler, suların ısınması için mart ayına kadar kıyılarda beklerler. Tropikal bölgeler ele alındığında, genellikle yılan balığı yavrularının nehirlere girişi ilkbahar başında olur. Nehirlere giren yavruların büyüklüğü bölgelere göre farklılık arz eder. Leptosefalus safhasından metamorfoza uğrayarak normal yılan balığı şekline giren yavrular, tatlı sulara girinceye kadar yem almazlar. Bu nedenle nehirlerin ısınmasını beklerken ağırlık kaybederler. Bunun sonucu nehirlere geç giren yavrularda canlı ağırlık daha azdır. Akdeniz’de İtalya nehirlerine giren elverlerin canlı ağırlığı, yaşıtları olan İspanya nehirlerine girenlerden daha azdır. Elverlerin nehirlere girişi özellikle suların yükselmesi sırasında en fazla olur. Elverler sadece geceleri yüzerler ve kıyılara yakın hareket ederler. Severn nehrindeki bir balıkçının sadece bir kepçe ile bir seferde 25 kg yılan balığı yavrusu tuttuğu ve bu miktar yavrunun 87 500 bireyden oluştuğu bildirilmiştir. İrlanda’da ise Bonn nehrinde kurulan özel avlanma yerinde yılda 23 milyon adet elver yakalandığı kaydedilmişti. Elverler oldukça nazik canlılardır. El ile tutulmamaları gereklidir. Kepçe ile yakalanan yavruların hemen bir ağ kafese veya bir tanka alınarak temiz suda bekletilmeleri ve süratle yetiştirilecekleri yerlere ulaştırılmaları gereklidir. Aralık-şubat aylarının soğuk günlerinde yakalanacak yavruların taşınmasında dikkatli olmak gereklidir. Elverlerin Bekletilmesi ve Taşınması Elverler yakalandıktan sonra pazara veya yetiştirme yerlerine nakledilmeden önce özel tanklarda bir süre tutulurlar. Bu hem yeterli miktarda yavrunun toplanabilmesi için yeterli zamanın sağlaması, hem de yeni ortama konulmadan önce gerekli uyum ortamını oluşturmayı sağlar. Ayrıca bu sırada dayanıksız balıklar ölür sağlıklı ve kuvvetli balılar kalır. Yavrular elver tanklarında en az iki en çok beş gün kalırlar. Daha erken nakillerde ölüm oranı artar. Elverleri bu tanklarda uygun ortamda tutabilmek için devamlı akan tatlı suya ve havalandırmaya ihtiyaç vardır. Tankların üzeri örtülü olmalıdır. Bu amaçla yavruların duvarlara tırmanarak kaçmasını önlemek için, fiberglas tanklar kullanılmalıdır. 2x2x0.6 m boyutlarındaki böyle bir tanka 100-125 kg elver konulabilir. Günlük veya saat başına bakım, beyaz denen ölü balıkların tanklardan alınmasıdır. Ölüm oranı % 5 veya daha fazla olabilir. Ölümün çok olması elverlerin tanklara konulmadan ve soğuk bir gecede kova ve leğenlerde uzun süre tutulmasından ileri gelebilir. 2-5 gün içinde ölüm nedeniyle toplam ağırlığın % 15 i kaybedilebilir. Nakilden bir gün önce yemleme kesilir. Yılan balığı yavrularının taşınmasında bir kaç yöntem uygulanır. Birincisi özel havalandırılabilen tankerlerle yapılan taşımacılıkta ortalama 17 tonluk bir su kütlesi ile 1 ton elver taşınabilir. Taşıma suyunun yarı tuzlu olması faydalıdır. İkincisi, dip kısmı bezli kutular veya içinde oksijen ve su konulmuş naylon torbalarla taşıma yapılabilir. Üçüncüsü ise hava yolu ile yapılan taşımacılıkta genel olarak strafordan yapılmış malzemeler kullanılır. Bu malzemeler hafif olduğu gibi yavruları ani sıcaklık değişimlerinden korur. Her biri 0.5 kg bir tavada 1 kg elver taşınabilir. Bu taşımacılıkta buz kullanılmaz. Nakilde önce elverler 6 °C ye kadar soğutulurlar ve ıslak kalmaları için çok az su ilave edilir. 5.2. Yılan Balığı yetiştirme Yöntemleri Yılan balığı kültüründe beş ayrı metot kullanılmaktadır. Bunlardan bazıları deneme çalışmaları olup büyük ölçüde yetiştiricilikte kullanılmamaktadır. Beş farklı yöntemi vardır: Durgun Su Yöntemi: En eski ve yaygın yöntemdir. Balıkların oksijen ihtiyacının fitoplanktonlar vasıtası ile karşılanması esasına dayalıdır. Yılan balıklarına 12 ºC'nin altında yem verilmez zaten gelişme de olmaz. Bu yetiştirme yönteminde 3-4 dekarlık havuzlar kullanılır. Metrekarede 2-4 kg. balık yetiştirilebilir. Başarılı bir yetiştirme için sıcaklığın 23-30ºC arasında olması gerekir. Başarılı bir üretimde balıkların 2 yıl veya daha az sürede 150-200 gr.a ulaşması beklenir. Akarsu Yöntemi: Bu yöntemde havuzlar küçük tutulur. Alanları 150-300 m² arasında olur. Bu yöntemin uygulanacağı yerde fazla miktarda tatlı su veya deniz suyu bulunması gerekir. Yöntemin başarılı olması için su sıcaklığının 23ºC den yüksek olması gerekir. Bu yöntemde üretime alınacak balıkların başlangıç olarak 30 gr. Civarında tutulması gerekir. Ağ Kafes Yöntemi: 2 x 3 x 1,5 m ölçülerinde 18 x 7 mm. Ağ gözlü metal veya tahta kafesler kullanılabilir. Kafes başına 20-30 kg. arası yılan balığı konulabilir. Yöntem yenidir ve hala geliştirme çalışmaları devam etmektedir. Tünel Yöntemi: Bu yöntemde ticari bir işletme kurulmamış olup, bilimsel denemeler başarılı yetiştiricilik çalışmalarının yapılabileceğini göstermiştir. Yılan balıklarının karanlıkta yem alma eğilimlerine dayanarak yapılmıştır. Bu çalışmada amaç balıkların gündüz saklanması mümkün olabilecek karanlık tünellerin hazırlanmasıyla doğal ortama yakın bir ortamın yaratılmasıdır. Sirkülasyon Yöntemi: Devamlı olarak sirkle edilen suyun kullanılması yolu ile yetiştirme yapılmasına dayana yöntemdir. Bu tür çalışmada 2 tür havuz kullanılır. Bunlardan biri yetiştirme havuzu diğeri filtre havuzudur. Yetiştirme havuzunda kullanılan sı devamlı olarak bir motopomp vasıtasıyla filtre havuzuna gönderilir. Filtre havuzunda suyun fiziksel ve biyolojik temizlenmesi yapılır. Yılan Balığının Durgun Su Yöntemi ile Üretimi İçin Alan Seçimi Yılan balığı yetiştiriciliği yapılacak bir alanda aşağıdaki koşullar aranır: • Öncelikle yeterli su bulunmalıdır. Bu su bir nehirden veya yeraltından sağlanabilir. Basit bir ifade ile 10 ton balık üretimi için günde 250 ton su gerektiği söylenebilir. • Su berrak veya az bulanık olmalı, ancak herhangi bir kirlenme söz konusu olmamalıdır. Az alkali veya nötr sular tercih edilir. Asitli sular yılan balığı için uygun değildir. içerisinde doğal olarak yılan balığı bulunan nehir veya göl suyunun ideal olduğu söylenebilir. • Arazini konumu havuzlardaki suyun tam olarak boşaltılabilmesini mümkün kılmalıdır. • Toprak az geçirgen olmalıdır. Bu nedenle tabanın killi olması istenir. • Üretim havuzlarının iyi güneş alması oksijen üretici fitoplanktonların üremesi bakımından yararlı olur. • Üretim alanının rüzgarlara açık olması suyun yüzeyi ile oksijen alışverişini kolaylaştırır. • Enerji sağlamada ve ulaşım şartlarında zorluk olmamalıdır. • Herhangi bir sel tehlikesi olmamalıdır. Japonya’da yılan balığı üretimine uygun olan su kaynağı ve nehir yakınlarında çok geniş yılan balığı yetiştirme alanları oluşmuştur. Bir çok işletmenin yan yana olması ekonomik ve diğer konularda faydalar sağlamıştır. Özellikle kurulmuş olan kooperatifler, işletmelerin pek çok ihtiyacını karşılamakta ve ürünün kar getirecek fiyatta satılmasını sağlamaktadır. Ayrıca bölgelerde devletin açtığı deneme istasyonları üreticinin sorunları yönünde çalışmalar yaparak devlet desteği sağlamaktadır. Yılan Balığı İşletmelerinin Kurulması Yılan balığı üretiminde çok başarılı olan uzak doğuda genel olarak durgun su yöntemi kullanıldığından bu yetiştirme yöntemi hakkında bilgi sunarak konu açıklanmaya çalışılacaktır. Yılan balığı üretiminde kullanılan havuzları dört grupta toplayabiliriz. Bunlar : 1. Birinci elver havuzları ( genellikle sera içerisinde ) 2. İkinci elver havuzları ( genellikle sera içerisinde ) 3. Yavru balık havuzları 4. Üretim havuzları Birinci ve İkinci Elver Havuzları Bu havuzlar genellikle sera içinde inşa edilir. Su sıcaklığı 25 °C de sabit tutulur. Böylece ilkbaharda yakalanan yavruların ilk gelişme dönemlerinin hızlı olmasına çalışılır. Yeni yakalanan elverler bu havuzlarda bir ay süre ile yetiştirilebilirler. Havuzlar 60 cm derinlikte ve 5 m çapında yapılır. Havuza verilen su kenardan ve hızlı olarak verilerek havuz içinde dairesel bir hareket elde edilmeye çalışılır. Havuzun orta kısmındaki bir boru ile fazla su tahliye edilir. Bir aylık dönemini burada tamamlayan elverler ikinci elver yetiştirme havuzuna alınırlar. İkinci elver havuzuna alınan yavrular 8-12 cm boyundadırlar. Havuzların ölçüsü 30-100 m. civarında olabilir. Derinlikleri ise 1 m dir. Her iki elver yetiştirme havuzuna da bol miktarda hava verilir. Elver havuzlarına verilen suların çok temiz olması gerekir. çünkü elverler çok hassastır. Yılan balığı yaşlandıkça dayanıklılığı artar. Yavru Balık Havuzları Yavru balık havuzları genellikle yuvarlak yapılır. Genişlikleri 200-300 m derinlikleri ise 1 m tutulur. Dip yapısının çamur olması gerekir. Yağmurlu gecelerde yılan balığı yavrularının kaçmaması için havuz kenarlarının beton olması arzu edilir. Özellikle küçük yavrularda kaçma eğilimi fazladır. Bu nedenle küçük yavruların bulunduğu havuzun kenarları içe doğru meyilli yapılarak kaçmaları engellenmeye çalışılır. 20 cm yi geçen yılan balığı yavruları pek fazla kaçma eğilimi göstermezler. Üretim Havuzları Bu havuzlar Japonya’da eskiden 6-10 dekar veya daha geniş şekilde yapılırlardı. Fakat son yıllarda daha küçük 2-3 dekarlık havuzlar tercih edilmektedir. Buna neden olarak yemleme ve hastalıklarla mücadelenin küçük havuzlarda daha kolay olması gösterilmektedir. Hatta son yılarda havuz alanı 500-1 000 m2 ye kadar küçük tutma eğiliminin arttığı gözlenmektedir. Özellikle Tayland’da bu eğilim daha fazladır. Doğal olarak akarsu yönteminin uygulandığı üretimlerde havuzlar durgun su yöntemine oranla daha küçük tutulur. Üretim havuzlarının derinliği 80-100 cm dolayında olmalıdır. Bu derinlik suyun girdiği bölgede 80-100 cm, suyun boşaltılacağı yerde 120 cm dolayında olabilir. Kenarları balıkların toprağı oyarak kaçmalarını engelleyecek şekilde taş, beton veya briketten yapılmalıdır. Havuz tabanının balıkların oyup girebileceği şekilde çamurlu olması uygun olur. Daha önceki bölümlerde belirtildiği gibi havuzun bir köşesinde su giriş ve çıkışının yapıldığı bir kısım bulunur. Suyun boşaltılmasında özel sistemler uygulanması lazımdır. Çünkü yılan balıkları kaçma eğilimi çok fazla olan ve fırsat bulduğu her yerden geçebilen balıklardır. Bu nedenle dikkatli olmak gereklidir. Aşağıda bu amaçla kullanılan bir su tahliye sistemi sunulmuştur. Durgun su yönteminin uygulandığı yılan balığı işletmelerinde verilen su miktarı çok az olduğundan su tahliyesinin kontrolü kolaylıkla yapılabilir. Bazı işletmelerde su boşaltımı havuzun sonundaki bir boru ile yapılır. Bu boru sayesinde hasat zamanında balıkların kolayca toplanmasında da yararlanılabilir. Bazı işletmelerde ise su boşaltım yeri yapılmaz. Bu tip işletmelerde her gün motopomp ile fazla su boşaltılır. Yılan balığı üretim havuzu kıyısında bir adet yemleme yeri yapılması gereklidir. Bu kısım 3x3 m ebadında ve üzeri kapalı olarak yapılır. Bu yemleme yerinin alt kısmı su yüzeyine doğru açıktır. Buradan bir kap içine konulan balık yemi suya sarkıtılır. Balıklar gündüzleri dahi loş olan bu yere gelerek rahatça yem alırlar. Bu yemleme yerleri genellikle su çalkalanmasının fazla olduğu aeratörlerin yanına kurulur. Böylece yemleme zamanında bu kısımda fazla miktarda toplanan balıkların artan oksijen ihtiyaçları karşılanmaya çalışılır. Elverlerin beslenmesi Yılan balığı üretiminin gerçekleştirilememesi nedeniyle, yetiştirilecek yavrular doğadan yakalanmak zorundadır. Ön büyütmede elverlerin mümkün olan en kısa sürede doğal yemden karma yeme geçişi gerekmektedir. Yetiştiricilik şartlarına en iyi uyum sağlayanlar seçilmelidir. Ergin yılan balıkları ile yavru yılan balıklarının beslenmeleri arasında önemli farklılıklar vardır. Özellikle ergin yılan balığı yeminde yağ oranı yüksek tutulması gerekirken, yavru balık yeminde bunun tersi bir uygulama vardır. Özellikle yeni yakalanan ve 6 000-7 000 tanesi 1 kg gelen elverlerin ağızları küçük olduğu için her yemi almak istemezler ve karma yem almaları ilk günlerde zor olmaktadır. Doğal ortamdan havuzlara alınan yılan balıkları doğrudan bu rasyonlarla beslemeye alınmaz. Şeffaf elverden, elver konumuna geçinceye kadar, yılan balıklarının yapay yeme adaptasyonu için taze sardalye kullanılması sık görülen bir uygulamadır. Başlangıçta sardalyeler bütün olarak, daha sonra balık unu ile karıştırılarak verilmektedir. Karışımdaki taze sardalye oranı tedrici olarak azaltılır ver birkaç hafta sonunda karışımdan tamamen çıkarılır. Diğer bir yöntem de ise başlangıçta küçük toprak solucanları küçük karidesler, tubifeks ve dafnia gibi canlı yem kaynaklarından yararlanır. Bu yemler tercihen geceleri bir sepet üzerine konularak verilir. Yemlemenin sabah 8:00 ile öğleden sonra 14:00 arası yapılması en uygundur. Elverlere tubifeks verilmeden bir saat süre ile %0 2 oranındaki sulfamonomethoksine solüsyonunda tutulur ve yıkandıktan sonra kullanılır. Bir kaç günlük veya tercihen haftalık bu tür beslemeden sonra diğer yemlere geçilmeye çalışılır. Elver yemlemesinde önemli bir konu da elverlerin aynı boylarda olmasıdır. Eğer küçük ve büyük balıklar aynı yerde kalırsa kanibalizm başlar. Aynı zamanda büyük balıklar küçük balıkların yem almasına da engel olur. Suyun Fiziko-kimyasal özellikleri Sıcaklık Su sıcaklığı büyüme oranını etkileyen en önemli faktördür. Yılan balığının 12 °C nin altında yem almadığı havuz tabanında hareketsiz kaldığı bilinmektedir. Bu sıcaklığın üzerinde balıkta yem alma arzusu artar ve gelişme hızlanır. Yem dönüştürme oranının en iyi olduğu sıcaklı 23 °C dir. Elverlerin gelişmesi 15 ile 25 °C arasında gerçekleşmektedir. Avrupa yılan balığı için optimum sıcaklık 23 °C , Japon yılan balığı için 26-27 °C dir (Querellou, 1974). Avrupa yılan balıkları yaşları ilerledikçe daha düşük sıcaklıkları tercih ederler. Descampes ve diğ. (1980), atom enerjisi santrali soğutma suyunda yaptıkları bir çalışmada, 15-27 °C arasında tutulan havuzlarla başlangıç ağırlıkları 13 g olan yılan balıkları 25 ay sonunda 210 g, ısıtma uygulanmayan kontrol grubunda ise (7-19 °C arası) 64 g canlı ağırlığa ulaşmışlardır. Isıtılan havuzlardaki biyomas 4 k/m3 den 34 m3 e ulaşmıştır. Başka bir önemli sonuç da ısıtılan havuzlardaki balıkların boy dağılımının homojenliğini kaybetmesidir. Uygulamada yetiştiriciler tesis yeri seçerken su sıcaklığının 20 °C nin üzerinde olduğu ay sayısını hesaplarlar. Uzak doğuda bu süre beş ay olup mayıs-eylül ayları arasına denk gelmektedir. Bazı üreticiler bu süreyi uzatmak için özel düzenekler yaparlar. Japonya ve Tayvan’da elverler için kapalı binalar özel ısıtma düzenleri kullanılır. Isıtma işlemi, elverlerin geldiği ilk ay olan kasımdan başlar nisana kadar devam eder. Dışarıda su sıcaklığı 5 °C iken içeride 20-25 °C dolayında tutulmaya çalışılır. Dışarıda su sıcaklığı 20 °C ye ulaşınca bütün ısıtma cihazları kapatılır. Yavrular dış havuzlara aktarılır. Son zamanlarda Avrupa ve Avustralya’da aynı uygulamalara başlanmıştır. Oksijen Yılan balıkları özellikle oksijen konsantrasyonu düşük olan kötü ortam şartlarına dayanıklıdırlar. Bazı araştırmacılar yılan balıklarının farklı oksijen ihtiyaçları olduğunu belirtmişlerdir. • Querellou, 1974 : 100 g ortalama ağırlıktan fazla olan bireyler için, oksijen tüketimi 100mg/saat/kg; • Fish culture, 1972: 100 g ortalama ağırlıktan fazla olan bireyler için, oksijen tüketimi 4mg/saat/kg olduğunu bildirmişlerdir. Havuz suyundaki oksijen kaynağı fitoplanktonlar ve su girişidir. Özellikle gece solunumla su içindeki oksijen miktarı 1-2 mg/l seviyesine düşerse yılan balığı başını sudan çıkarmaya başlar. Bunu ölüm takip eder. Uygulamada yetiştiriciler, oksijen konsantrasyonunun 3 mg/l nin üzerinde olmasını isterler. Su içindeki oksijen seviyesini artırmak için suyu karıştırma ve havalandırma düzenekleri yerleştirilir. Özellikle gece su akışının, havuzun bir köşesinden fazla miktarda verilerek tüm havuzu karıştırmadan diğer bir köşeden tahliyesi yapılır. Böylece yılan balıklarının bu ortama gelerek oksijen ihtiyaçlarını karşılamaları sağlanır. Elverlerin oksijen ihtiyacı büyük balıklardan daha fazladır. Bu nedenle havuzlara devamlı akan su ve basınçlı hava verilmesi gereklidir. pH Ph değeri fotosentez sonucu oksijen miktarını, balık ve plankton solunumu sonucu sudaki karbonik asit miktarındaki azalma ve çoğalmaya bağlı olarak değişir. Gündüzün pH optimum değeri 8-9 arasıdır. Gece fotosentez olmadığından pH 7 ye düşer. PH değeri 4,5-6,5 olan asitli sularda yılan balığı yetiştiriciliği iyi sonuç vermez. Ayrıca PH ın amonyak indirgenmesi üzerine etkisi olup bu kirleticinin toksisite düzeyini belirler. Tuzluluk Yılan balıkları çok farklı tuzluluk şartlarına adapte olabilirler. Bu olayda iki organ önemli rol oynar. Deniz ortamında ( hipertonik) solungaçlar, aşırı miktardaki tuzların atılımını sağlar. Tatlı suda ( hipotonik), böbrekler üriner boşaltımla organizmada su girişlerini dengeler. Euryhalin özellik yetiştiricilik açısından bir sorun oluşturmaz. Bir günlük periyot içinde çoğu kez ara tuzluluktaki suları tercih ederler. Genç ve yetişkin yılan balıklarında bu euryhalin özellik hastalıklara karşı yapılacak olan uygulamalarda deniz suyu kullanılmasına izin verir (Querellou, 1974). Uygulamada yetiştiriciler, yetiştiricilik başarısının tatlı suda acı sudan daha fazla olduğunu belirtmişlerdir. Bu durum yılan balıklarının gelişmesi ve fizyolojik olgunlaşması için kendiliğinden nehirleri aramaları ile açıklanabilir. Fitoplankton Normal sağlıklı yılan balığı havuzu fitoplankton nedeniyle yeşil görünür. Durgun su havuzlarında fitoplanktonların, suyun oksijenini kontrol etmek, fotosentez yoluyla pH seviyesini etkilemek ve büyüme sırasında balık artıklarını absorbe etmek gibi önemli görevleri vardır. Ancak havuzda çok fazla miktarda fitoplankton birikmesine izin vermemek gereklidir. Uygun bir seviyedeki fitoplankton ile havuzdaki organik sedimantasyonun, dipteki bakteri faaliyetleri ile çözünmüş maddelerin absorbsiyon oranını kontrol etmek mümkündür. Kapalı günlerde ve gecelerde fotosentez yapamadıklarından balığın büyümesine olumsuz etki yaparlar. Fitoplanktonlar havuz zemininde organik maddelerin bozulması düzenli bir şekilde olmuyorsa gerekli büyümeyi yapamaz veya bol miktarda besin tuzları bulunmasına karşın, suda yeterli karbonik asit bulunmazsa büyüme durur ve bunu ölüm takip eder. Çok miktarda zooplankton üremesi de havuzdaki fitoplanktonları bitirebilir. Normal bir havuzda fitoplankton/zooplankton oranı 97:3 tür. Havuzda çok çeşitli fitoplankton bulunmaktadır. Her biri iklim,sıcaklık,diğer mevsimsel değişikliklere göre havuzun kimyasal dengesine etkide bulunur. Scenedesmus,Pediastrum ve Chlorella yeşil algleri ilkbahar ve sonbaharda ortaya çıkarlar. Microcystis ve Chlorococcus ilkbahar ve yazın, Anabaena ve Oscillatoria sonbaharda havuzlarda görülen mavi-yeşil alglerdir. Havuz suyunda daha çok Scenedesmus bulunursa yılan balıkları yemlerini daha iştahla yemektedirler. Pediastrum , Chlorella veya Oscillatoria, Anabaena çoğunlukta olduğu zaman iştah azalır. Havuzda bulunan zooplanktonların çoğunluğunu rotifer ve su pireleri teşkil eder. Fitoplankton ölümü,dışarıdan havuza bakıldığında rengin yeşilden koyu kahverengine veya açık renge dönüşmesiyle kolayca fark edilir. Renk değişimi aynı zamanda su kalitesinin değişimi demektir. Su yüzünde oksijen arayan balıklar daha sonra iştahlarını kaybederler. Çoğu zaman bunu toplu ölümler takip eder. Su kalitesindeki değişimler yağışlı havalarda da olmaktadır. Ph değeri sabah 9.5 üzerinde,öğleden sonra 7’ nin altında seyretmesi suda amonyak formunda 3ppm azot bulunması su kalitesinin bozulduğunu göstermektedir. Su kalitesindeki değişimleri önleyebilmek için sezon başında ve sonunda havuzlara su doldurmadan önce 60-100gr/m2 sönmemiş kireç serpilir. Kireç zemin toprağını ve zemine yakın suyun kalitesini arttırır. Havuz suyunda zooplankton artışı olmaya başladığında organo fosforik asit esterleri (Dipterex) 0.2-0.3 ppm kullanılarak ortamdaki zooplankton gelişimi önlenmiş olur. Çok ileri safhalardaki su kalitesi bozukluklarında,havuz boşaltılır,balıklar başka havuza alınır. Boşaltılan havuzun dibi kurutulur. Boşaltma mümkün değilse, uygun fitoplankton gelişimi sağlanıncaya kadar havuzda karıştırıcı pedallar kullanılır. Havuz atığı Havuzda çürüyen plankton, yem ve balık artıkları kontrol edilmelidir. Çürüme ve bozulmanın ürünü olan amonyak balığı rahatsız eder, iştahını olumsuz yönde etkiler. Amonyak oksijen olmaması halinde ortaya çıkar. Her yıl havuz boşaltılarak zeminde toplanan artıklar havuzdan alınır. Bunun takiben toprak kurutulur ve kireçlenir. Sülfür Sülfat indirgeyici bakteriler suda bol bulunan sülfatları hidrojen sülfite dönüştürürler. Bu durumda balılar yetersiz oksijen nedeniyle başlarının su yüzeyine çıkarırlar. Bu şartların devam etmesi durumunda büyük kayıplar olabilir. Su demir ihtiva ederse zararsız olan demirsülfit ortaya çıkar. Bu nedenle hidrojensülfitin etkisini azaltmak için bir kaç haftada bir havuz suyuna demir oksit serpiştirilir. Azot,Fosfat, Potasyum Bu elementler fitoplanktonların gelişmesi için gereklidir. Başlangıçta yeni havuzlar gübrelenir. Bu elementlerin optimum miktarları azot için 12,7 ppm fosfat için 1,3 ppm, potasyum için 0,1 ppm dir. 5.5. Yılan balığı yavrularının beslenmesi Yılan balkıları diğer pek çok balığa nazaran farklı özellik gösterirler. Genelde geceleri yem alma alışkanlığı olan türlerdir. Uzakdoğu’da yılan balığı yetiştiriciliğinin başlaması ile birlikte pek çok besleme yöntemleri denenmiştir. Bunlar ipek böceği pupu ile besleme, taze balık eti ile besleme ve karma yem ile beslemedir. Bu yemleme yöntemleri ayrı ayrı uygulanabildiği gibi karışık olarak da ele alınabilir. İpek böceği pupları Tayvan ve Japonya’da uzun süre yılan balığı yetiştiriciliğinde başarı ile kullanılmış ise de daha sonra ekonomik nedenlerle diğer maddelerle besleme ipek böceği pupları ile yemlemenin yerini almış bulunmaktadır. Yapılan hesaplara göre 1 kg canlı ağırlık artışı için 10 kg dolayında ipek böceği pupu harcanmıştır. Uzakdoğu’da günümüzde tek başına ipek böceği pupu ile yılan balığı besiciliği hemen hemen kalmamıştır. Özellikle Japonya’da insan gıdası olarak değerlendirilmesi mümkün olmayan balık etleri ile yılan balığı besisi yaygın olarak uygulanmaktadır. Bu balıkların başında okyanus uskumrusu gelmektedir. Ayrıca orkinos gibi iri balıkların temizlenmesi sırasında elde edilen kafa ve iç organlar gibi artıklar da yemlemede yararlanılmaktadır. Yılan balıklarına diğer balık etleri kıyılarak veya bütün halinde verilir. İri balıklar gözlerinden veya solungaçlarından bir tel üzerine dizilir ve havuza yem olarak asılır. Bu yemler verilmeden önce derilerine yumuşaması için bir kaç dakika kaynar suya batırılır. Bu yapılamazsa yılan balıkları, balıkların derisini parçalayamadığından deriye yapışmış şekilde olan et değerlendirilemez. Bu da havuzda kirlenme sorunları ortaya çıkarır. Bazı işletmelerde her türlü balık ve balık artığı mikserlerle parçalanarak hamur haline getirilir ve tel sepetlerle havuza sarkıtılarak yem olarak kullanılır. Hamur yapma işleminden önce balıkların pişirilmesi ve kılçıklarından temizlenmesi ile havuz dibine çöküp kokuşması önlenir. Japonya’da balık etleri ile besleme ipek böceği pupuna göre daha başarılı olmuştur. Ancak balık etinin temini, depolanması, hazırlanması ve beslemedeki kirlilik problemleri yetiştiricileri karma yemle beslemeye yöneltmiştir. Japonya’da yılan balığı yetiştiriciliğinde günümüzde karma yem kullanım oranı % 80’ e ulaşmış bulunmaktadır. Karma yemler diğer hayvansal yemler gibi balık unu, diğer yem maddeleri vitamin ve yem karışımından oluşur. Un şeklinde pazarlanır. Yılan balığının yoğun yetiştiriciliğinde kullanılan yemlerin protein oranları çok yüksektir. Elver ve büyük balıklarda en üst düzeyde gelişmeyi sağlayabilmek için karma yemdeki protein oranı değişmekte olup % 45 ile % 59 arasında bulunmaktadır. Tayvan’da yapılan bir araştırmaya göre karma yeme katılacak balık ununun beyaz renkli olmasının daha iyi sonuçlar verdiği saptanmıştır. Balık unları % 4 oranında morina karaciğer yağı ve %30-50 su ile ıslatıldıktan sonra yoğrularak elde edilir, ve canlı ağırlığın % 2-8 oranında verilir. Japonya’da karma yeme yağ katma oranı %10’a kadar çıkabilmektedir. Yapılan hamur bir tel sepet içerisinde havuzun yüzeyine yakın daldırılır ve 10-15 dakika süre ile balıkların yemesi için bırakılır. Bu süre sonunda tüketilmeyen yemlerin havuz suyunu kirletmemesi için ortamdan uzaklaştırılır. Yılan balıkları geceleri yemlenen tür olduklarından aydınlık yerlerde yem almaktan hoşlanmazlar. Bu nedenle havuz kenarlarına üstü kapalı yemleme yerleri yapılır. Yapılan çalışmalar göstermiştir ki sudaki oksijenin yükselmesi ile birlikte balıkların iştahları da artmaya başlar. Bu nedenle yemlemenin havuz içindeki fitoplankton varlığı nedeniyle sabah güneşin doğması ile birlikte başlaması gerekmektedir. Bazı işletmelerde suda oksijen çözünmesini sağlayan aeratörler yemleme zamanında devamlı olarak çalıştırılır. Yılan balıkları yemleme yeri ve zamanını öğrenebilen verilen yemi çok iştahla tüketen canlılardır. Yem almaları suyun sıcaklılığına, havanın bulutlu olmasına bağlı olarak değişir. Su sıcaklığı 23-28 °C arasında yem alımı en üst düzeydedir. Son yıllarda 1,5 kg karma yem ile 1 kg canlı ağırlık artışı sağlanabilmektedir. Küçük yavrularda yem oranı büyüklere nazaran daha fazla olur. Yaşlı yılan balıkları gençlere nazaran yağlı yemleri daha iştahla tüketirler. Genel A, D3, E, vitaminleri içeren ve bitkisel yağlar pahalı balık yağlarına tercih edilir. Sıcaklık ve balıkların gelişme dönemine göre verilecek olan yem ve yağ miktarları tablo-2,3 de verilmiştir. Yeme katılan mineral madde miktarı da büyümeyi etkileyen önemli bir faktördür. Karma yemde mineral madde oranı % 5 den daha az olmamalıdır. Mineral medde ihtiva etmeyen veya çok az içeren yemlerle yapılan beslemede yılan balıklarının iki hafta içinde zayıflamaya başladıkları ve daha sonra kitle halinde öldükleri saptanmıştır. Bu nedenle karma yemlerde yapılan çalışmalar sonucu % 8 mineral madde katkısı en iyi sonucu vermiştir. Yusuf GÜNER Ali KIRTIK E.Ü. Su Ürünleri Fakültesi Yetiştiricilik Ana Bilim Dalı 35100 Bornova/İZMİR   Yılan Balığı Yetiştirme ve İdaresi Stoklama yoğunluğu, ağırlık veya sayı olarak birim alana birim alana konulan balık miktarı olarak tanımlanır. Uygulanan kültür metoduna göre, yoğunluk bir tesisten diğerine göre değişir. Japonya’da 1 kg ağırlıkta her biri 0,17 g gelen 6 000 adet elver bulunur. Her elver tankına 3,5 x 6 000 elver konur (m² ye 2 000 adet yada 400 g elver ). Bu oldukça fazla bir miktardır. Bu nedenle elver tanklarına daha fazla oksijen verilir. Çalışmalar büyümeye izin veren belli bir alt sınırı olduğunu göstermiştir. Bir başka deyişle stoklama çok seyrek olursa gerekli büyüme sağlanamaz. Isıtılan havuzlarda elver ağırlığı başlangıç ağırlığının üç katına çıkar. Bu noktada yoğunluk çok fazladır. Balıkların seyreltilmesi gerekir. 1 kg ağırlıkta 1 500 elver olan balıklardan 400 m² alana 150 000 adet konulur. Buna göre m² ye 400 adet yada 100 g yavru düşer. Büyüme oranı Japon yılan balıklarının ilk yıl içindeki büyüme oranları tablo x de verilmiştir. Balıkların büyütüldüğü havuz suyunda ısıtma işlemi uygulanmadığından büyüme oranı düşük çıkmıştır. Havuz suyunu ısıtarak yetiştiricilik yapan bazı işletmelerde, 7-9 ay sonunda 150-200 g canlı ağırlık elde edilebilmektedir. Geleneksel yöntemin uygulandığı daha basit şartlarda yetiştiricilik yapan işletmelerde yetiştiricilik süresi 2 yıla kadar uzar. İlk yılda 30-40 g gelen elverler hedeflenir. Boylama yapılamazsa boylar arasında büyük farklar ortaya çıkar. Bunun sonucu bazı balıklar 120 g ağırlığa ulaştığında bazıları hala 2 g ağırlıkta kalabilir. İyi bir yönetim uygulanmazsa ilk 3-4 ay içinde çok yüksek bir ölüm oranı görülür. Ölüm sebebi iyi yem alamamak ve hastalıktır. Verim Japonya’da yılan balığı Pazar ağırlığı 150-200 g dır. Durgun su kültüründe yetiştirme havuzu verimi 4 kg/m²/yıl dır. Bu verim 20 x 200 g/m²/yıl veya 40 ton/hektar/yıl şeklinde ifade edilebilir. Verim takip edilen uygulamalara, üreticinin işletmesini idare etmedeki bilgi ve becerisine göre değişir. Bazı işletmelerde 8 kg /m²/yıl verim sağlanırken bazı işetmelerde bu verim 1 kg / m²/yıl gibi düşük kalmaktadır. Bazı çiftlikler yavru yetiştirme konusunda ihtisaslaşırlar. “Futo” adı verilen bu çiftçiler balıklarını diğer yetiştiricilere satarlar. Yavru yetiştiriciliğinde amaç en kısa zamanda 10-40 g a gelen balık elde etmektir. Teorik olarak 1 kg elverden 1 ton balık elde etmek mümkündür. Teori, 1 kg balıkta 6000 elver, yaşama oranının % 80 ve yaşayan her balığın ortalama 200 g olduğu varsayımına dayanır. Fakat uygulamalardan elde edilen sonuçlar teorinin oldukça gerisine düşüldüğünü göstermiştir. Günlük bakım Su ürünleri yetiştiriciliğinde koruyucu tedbirler almak, tedaviden hem daha kolay hem de çok daha ucuza mal olur. Bu durumda kayıplar da en aza indirilmiş olur. Çok küçük kalan yada fungi taşıyan balıklar bu amaçla havuzdan ivedilikle uzaklaştırılır. Her gün suyun pH ve sıcaklığı (en düşük ve en yüksek değerleri) fitoplanktonların seviyesi ( secchi disk ile ), suyun oksijen miktarı ölçülmelidir. Tesis günde bir kaç kez dolaşılarak kontrol edilmelidir. Her havuzdaki balık sayısı dikkatle takip edilir. Her iki haftada bir örnek alınarak balık ağırlığı hesap edilir. Verilen ve artan yem miktarı hakkında kayıt tutulur. Balık hasadı ve ayrımı Havuz durumuna göre balıklar galsama ağları, kepçe ağlar ve havuzun boşaltılması ile yakalanır. Boşaltma sıcak rüzgarsız bir günde yapılır. Şayet havuz suyu tuzlu ise, hidrojen sülfitin toksik etkisini gidermek için bir gün önceden demir oksit serpiştirilir. Boşaltma günün erken saatlerinde başlar. Ve havuz yarıya indiğinde bütün boşaltma sistemleri açılarak su akıtılır. Boşaltma yapılırken balıkların bir kısmı yakalanır. Boşaltmanın erken yapılmasının nedeni gece su içinde dolaşan balıkların bazılarının gün başladıktan sonra zemin çamuruna gömülmesine müsaade etmeden su içinde yakalamaktır. Yakalanan ballıklar boylama kasalarından geçirilerek ayrılırlar. Büyük balıklar pazara gönderilir, küçükler havuza geri atılır. Japonya’da iç tüketimin % 50 si Tokyo’da, % 30 u Osaka’da geri kalanı ise diğer bölgelerde olur. 1960 yılından beri her yıl % 15 oranında artmaktadır. Japon yılan balığı Avrupa türlerine tercih edilir. Nakil öncesi aç bırakma Nakilden 3-4 gün önce yemleme tamamen kesilir. Bu sırada balıklar küçük bir yerde tutulur. Bunu yapmaktaki amaç yağ miktarını azaltmak, balık sindirim sisteminde bulunan ve ileride ortaya çıkabilecek artıklardan kurtulmaktır. Bu işlem verimliliği artırır, balığı nakil koşullarına hazırlar. Aç bırakmada üç metot kullanılır. 1 Balıklar elver tanklarında tutulur. Bol hava ve su verilir 2 Sepete konulan 20 kg balık tatlı su tankına konur. Bu amaçla kuyu suyu kullanılabilir. 3 Her biri 3 kg balık taşıyan sepetler üst üste konur. En yıkardan balıklar duşa tutulur. Bu işlem sonunda balık ağırlığı % 8 fire verir. Yusuf GÜNER Ali KIRTIK E.Ü. Su Ürünleri Fakültesi Yetiştiricilik Ana Bilim Dalı 35100 Bornova/İZMİR PDF DÖKÜMAN İNCELE : documents/ck37.pdf    

http://www.biyologlar.com/anguilla-anguilla-yilan-baligi-ve-ozellikleri

3. Ulusal Klinik Mikrobiyoloji Kongresi-2015

3. Ulusal Klinik Mikrobiyoloji Kongresi-2015

Sizlere “3. Ulusal Klinik Mikrobiyoloji Kongresi-2015” kongremizi duyurmanın onuru içindeyiz. Bu güne kadar yaptığımız iki kongrede olduğu gibi bu kongremizde de bize özgü yeniliklerle karşınızda olmak için hazırlanıyoruz. Düzenleme kurulu olarak yaptığımız, yer seçimi ile ilgili ankette sizlerden gelen önerilerde büyük şehir ve tatil yöresi tercihlerinin eşit olması ve bir önceki kongre geri bildirimlerinin de olumlu olması nedeniyle yine Titanic Kongre Merkezi / Belek - Antalya ’yı tercih ettik. Desteksiz kongremize katılmak isteyen meslektaşlarımız için dernek olarak, başta burs çeşitliliği ve sayısı ile daha fazla meslektaşımızın kongremizde derneğimize, camiamıza ve bilim alanımıza katkı sağlamasını hedefledik. Bu nedenle, 150’yi aşkın meslektaşımıza konaklama burs ve desteği vereceğimizi duyurmaktan mutluyuz.“Kongremize Gelemeyen Meslektaşımız Kalmasın” sloganı ile düzenlemelerimize devam ediyoruz.Bu kongremizde aynı anda bir başka ilki gerçekleştirmek için yola çıkmış olmanın heyecanını yaşıyoruz; laboratuvar çalışanlarımıza (Analist/teknisyen) yönelik 3 günlük atölye-temel kurs benzeri bir eğitimi planlamaktayız. Öncelikle sizlerin bu fikri desteklemenizi ve en az bir çalışanınızı bu eğitime yöneltmenizi istiyoruz. Bu eğitim içeriğinde birlikte çalışmanın sorumlulukları dahil olmak üzere bir çok temel konuyu işleyeceğiz, her kongrede birbirinin devamı olacak bu eğitimlerin sürdürülmesi en büyük arzumuzdur.Bilimsel programı oluştururken öncelikle uzmanlık alanımızın uygulamalarına yönelik konuların seçilmesi ana prensibimizdir. Ayrıca bu kongrede klasik kongre anlayışından farklı, yeni ve yaratıcı uygulamalar için şimdiden kolları sıvadık. Kongre öncesinde yapılması gelenekselleşen kurslarımızı farklı temalarla gerçekleştireceğiz. Bütün bunların ortak amacı uzmanlık uygulamalarında kongre dönüşü davranış değişikliği yaratma arzumuzdur. Kurslarımızı, yıl boyu yapılması planlanan bahar-güz okulları ile entegre edilerek her konumdaki meslektaşımıza bire bir ulaşabildiğimiz aktiviteler olarak değerlendiriyor ve özellikle genç meslektaşlarımızın katılımını çok önemsiyoruz.Bu ve bunun gibi kazanımları sağlayabilmek için her türlü görüşünüzü kongre sekretaryasına ve/veya dernek iletişim adreslerine iletmenizi önemsiyoruz. Bir başka deyişle hepinizin bu kongrede katkısı olsun istiyoruz.Kongre ile ilgili tüm aşamaları kongre web sayfası olan www.klimud2015.org ve dernek web sayfamız www.klimud.org vasıtasıyla sizlere duyuracağız ve geri dönüşlerinizi değerlendireceğiz.Ülkemizde çok köklü olan bir mesleğin üyeleriyiz. Ancak insan gücü planlamamızın doğru yapılmaması nedeniyle her birimize düşen iş yükü oldukça yoğunlaşmış durumdadır. Az sayıdaki uzman ile yüksek düzeyde hasta ve eğitim hizmeti sunabilmemiz, daha fazla bilgi paylaşımında bulunarak doğru uygulamaları yaygınlaştırabilmemiz ile mümkündür.Bu açıdan her bir meslektaşımızın katkısı çok değerlidir ve gelecek yıllara daha doğru gelenekler bırakmaya olanak sağlayacaktır. Son söz olarak, sizlerin kongre sürecinin tamamında bizimle aynı sorumlulukla hareket etmenizi bekliyoruz.Bu kongre hepimizin olacaktır. Kongre hazırlığı sırasındaki yorgunluklarımızın, kongre sonunda yerini, meslektaşlar olarak dayanışmaya olan özlemin karşılanmış ve bilgilerin paylaşılmış olması keyfine dönüşmesini diliyoruz.Klinik Mikrobiyoloji Uzmanlık Derneği ve Türk Mikrobiyoloji Cemiyeti Derneği’nin birlikte düzenleyeceği “3. Ulusal Klinik Mikrobiyoloji Kongresi-2015” de birlikte olmayı diliyor, saygılarımızı sunuyoruz http://www.tmc-online.org ANA KONULAR• Klinik Mikrobiyoloji Laboratuvarlarında yapılanma: otomasyon, hizmet alımları, yalın laboratuvar uygulamaları• Klinik mikrobiyoloji laboratuvarının karar verme süreçlerine etkisi• Klinik mikrobiyolojide hasta başı testler• Mikrobiyolojik tanıda flow-sitometri uygulamaları• Moleküler mikrobiyolojik tanıda pre-analitik, analitik ve post-analitik süreçler• Enfeksiyon hastalıklarının tanısında hızlı moleküler tanı çözümleri• Yeni jenerasyon sekanslama yöntemleri tanısal mikrobiyolojiye neler getiriyor?• Nanoteknoloji ve klinik mikroloji uygulamaları• Mikrobiyal genomik, proteomik ve metogenomik• Her yönüyle sepsis• Antibiyotik yönetimi ve klinik mikrobiyoloji uzmanı• EUCAST standartlarına geçişin ilk yılında deneyimler, yenilikler, sorunlar• Uzman gözüyle güncel direnç mekanizmalarına yaklaşım• Dirençli bakteri sürveyansının enfeksiyon kontrolüne etkisi• Mikrobiyolojik sürveyans ve aşılama• Ülkemizde enfeksiyon etkenleri değişiyor mu?• Kistik fibrozis mikrobiyolojisi• Cinsel yolla bulaşan enfeksiyonların tanısında güncel gelişmeler• Halk sağlığı ve klinik mikrobiyoloji uzmanlığı• İmmünoloji tanı laboratuvarında neler yapılıyor?

http://www.biyologlar.com/3-ulusal-klinik-mikrobiyoloji-kongresi-2015-1

Mikroskobik canlılar özellikleri ve hayatımızdaki rolleri

Bakteri dünyası, canlı çeşitliliğine, neredeyse sonsuz denilebilecek bir oranda katkıda bulunuyor. Her gün yeni türler keşfediliyor ve birbirinin aynı olduğu düşünülen bakterilerin bile metabolizmaları incelendiğinde, aslında farklı türler oldukları ortaya çıkıyor. Bakteriler, yeryüzünde yaşamın sürekliliği için çok önemli birçok biyokimyasal olayın gerçekleşmesini sağlıyor. Kısacası, yaşamın temelindeki kimyasal olayların gerçekleşmesini bakterilere borçluyuz. Tek olumsuz yönleri bazılarının hastalıklara yol açmaları; ancak, doğanın dengesinin korunması açısından düşünürsek hastalık yapıcı bakterilerin bile yararlı olduğu öne sürülebilir. Dünya atmosferi için oksijen kaynağı olan fotosentez olayını bitkilerin yanında fotosentetik bakterilerin de gerçekleştirdiğini bilmek çok etkileyici. Büyük bir üretim zenginliği ve tür çeşitliliği olan bu görünmeyen kimyacılar, yani bakteriler bu yönleriyle bilime ve teknolojiye önemli olanaklar sunuyor. İyi yapılmış bir turşuyu yemenin keyfine doyulmaz, ama turşuyu tutturması zordur. Su, tuz, sirke, şeker, limon gerekir ve bunların birbirine oranları da turşunun kalitesini belirler. Turşu yapmanın amacı, asitli bir ortam sağlayarak meyve ve sebzeleri korumaktır. Tuz ve sirke, ortamda çürükçül bakterilerin ve küflerin çoğalmasına engel olur. Tuzu az konulursa meyve ve sebzeler çürümeye neden olan bakterilerin ortamda çoğalması nedeniyle bozulur; turşu amacına ulaşamaz. Sebze ve meyvelerin zevkle yenilen turşulara dönüşmesini ise sirkede doğal olarak bulunan bakteriler sağlar. Turşu yapımı, besin saklanması ve üretiminde bakteri kullanımının yalnızca bir örneği. Turşu yaparken fermantasyon ürünü asetik asit olan Acetobacter bakterilerine oksijensiz bir yaşama ortamı sağlamak için, kavanozun kapağını hava almayacak şekilde kapatmak gerekir. Kavanozun içinde oksijen kalması, turşunun niteliğini bozduğu için istenmeyen bakteri ve küf mantarlarının çoğalmasına yardım eder. Turşunun sonbaharda yapılmasının da bir anlamı var. Sonbaharda sebze-meyve bolluğunun olması ve bunların kışın da yenebilecek bir şekilde saklanmasının amaçlanması bir yana, hava sıcaklığının ne çok sıcak ne de çok soğuk olması da önemli. Çünkü bakterilerin yaşayabildiği ve çoğalabildiği belirli sıcaklık sınırları var. Aynı durum yoğurt ve peynir gibi diğer besinlerin yapımı sırasında da önemli. Bu besinlerin yapımını da bakteriler sağlıyor. Laktik asit bakterileri adı verilen bu bakteri grubu, oksijensiz solunum yani fermentasyon yoluyla şekeri kullanarak laktik asit açığa çıkarıyor. Bakterilerin belirli sıcaklık aralıklarında yaşayabilmesinin nedeni ise enzimleri. Enzimler protein yapısında olduğundan, işlevlerini ancak belirli sıcaklıklarda gerçekleştirebiliyorlar. Bakterilerin yaşayabildikleri ve çoğalmalarını gerçekleştirebildikleri sıcaklık sınırları türden türe farklılık gösteriyor ve bakterilerin inanılmaz çeşitliliği bu noktada birçok yönünü ortaya koyuyor. Buzullarda çok düşük sıcaklıkta da sıcak su kaynaklarının dayanılmaz sıcaklığında da yaşayabilenler var. Bunun dışında, tuz ya da asit oranı çok yüksek ortamlarda yaşayabilen binlerce tür bulunuyor. Mikrobiyolojiye giriş niteliğinde bir derse yeni başlamış olan öğrencilere ilk öğretilen şeylerden biri bakterilerin doğada her yerde bulunduğudur. Örneğin, evinizin bahçesindeki toprakta milyonlarca tür ve milyarlarca birey bulunabilir. İlk laboratuvar uygulamasında çeşitli ortamlardan alınan örneklerden hazırlanan kültürlerdeki mikroorganizma üremeleri gözlenir ve öğrencileri şaşkına çevirir. Bunların birçoğu zararsızdır ve ekolojik dengenin sürmesinde önemli işlevleri vardır. Bazıları ise insan ve hayvanlar için hastalık etmenidir. Vücudun çeşitli bölümlerinde enfeksiyona neden olabilirler. Hastalık etmeni bakterilerin bazıları besinlerin hazırlanması ya da saklanması sırasında temizlik koşullarına uyulmadığında, besinlere bulaşır, bunların içinde çoğalır ve toksin (zehir niteliğindeki bileşikler) üretirler bu besinler insanlar tarafından tüketildiğinde, sonucunda "besin zehirlenmesi" denilen duruma neden olabilirler. Hastalık etmeni olan bakterilerden korunmanın yolları aşılamalara ve temizlik kurallarına özen göstermekten geçer. Makroskobik Dünyanın Mikroskobik Canlıları Yaklaşık 3,5 milyar yıl önce, yaşayan ilk hücreler olarak ortaya çıktıkları belirlenen bakteriler en basit yapılı canlılar olmalarının yanında, dünya yüzeyinde belirli bir canlı grubuna ait en büyük kütleyi oluştururlar. Bakteriler, canlılar aleminde "Prokaryotlar" olarak adlandırılıyorlar. Bitkilerin ve hayvanların yaşamsal işlevlerinin birçoğu, bu prokaryotik hücrelerin etkinliklerine bağlı olarak gerçekleşir. Atmosferdeki oksijenin yarısından fazlasını fotosentez yapan Cyanobacteria adı verilen gruba ait bakteriler üretir. Bu bakteriler önemli bir miktarda karbon dioksit ve azot gazlarının organik bileşik olarak bağlanmasına da yardım ederler. Atmosferle yer ve canlılar arasındaki azot döngüsünde, havadaki serbest azotun canlılar tarafından bağlanmasına yönelik tek mekanizma, baklagillerin köklerinde özel yumrucuklar içinde yaşayan, yumrucuk bakterileri ya da cins adı Rhizobium olan bakteriler tarafından sağlanıyor. Bakterilerin, baklagillerle olduğu gibi başka canlılarla da simbiyotik (ortak yaşam biçiminde) ilişkileri var. Bu ilişkilerde karşılıklı yararlanmalar söz konusu. Örneğin, bazı böceklerde yavruların cinsiyetini, simbiyotik ilişki içinde olduğu bakteriler belirliyor. Geviş getiren hayvanlarda ise, sindirimi oldukça zor olan selüloz, bağırsaklarda yaşayan bakteriler tarafından parçalanıyor. Hastalık yapan bakterilerin konaklarıyla olan ilişkisi ise asalaklık biçiminde (parazitik) bir yaşam olarak değerlendirilebilir. Toprakta yaşayan bakteriler de toprakların verimliliğine katkıda bulunur. Çürükçüller (saprofitler) adı verilen bu bakteriler ölmüş canlıları parçalayarak, onların proteinlerinde bağlı olarak bulunan azotun ve diğer minerallerin toprağa geçmesini ve yeniden azot döngüsüne katılmasını sağlar. Bakteriler azot ve oksijen döngülerine katıldıkları gibi, karbon ve kükürt döngülerine de etkin olarak katılırlar. Bakteriler, yaklaşık 1 mikrometre çapında olup, hücre zarından ve DNA ipliğinden başka farklılaşmış yapı içermezler, hücrenin içi ise metabolik tepkimeleri sürdüren enzimler, küçük organik bileşikler ve inorganik iyonlarla doludur. Boyutlarının ancak mikroskopla görülebilecek kadar küçük olmasına bağlı olarak, onların Dünya'daki en yaygın yaşam formları olduklarını ve en büyük canlı grubu kütlesini oluşturduklarını görsel olarak hissetmek pek zordur. 4,5 milyar yaşındaki Dünya'da yaklaşık 2 milyar yıl kadar tek canlı grubu olarak yaşadıkları düşünülen bakterilerin en eski örnekleri olduğu kabul edilen fosiller Batı Avustralya'da bulunmuştu ve yaklaşık 3,5 milyar yıl önce yaşamışlardı. Bu fosil örneklerinin yapısından ve içinde bulundukları kayaların özelliklerinden fotosentez yapan bakterilerin en az 3 milyar yıl önce var oldukları belirlendi. Evrim sırasında oksijen üreten fotosentetik bakteriler gibi canlı formlarından sonra, oksijen kullanan yaşam formlarının ortaya çıktığı ve diğer canlı türlerinin de böylece oluştuğu düşünülüyor. Bu açıdan, bakteriler, canlılığın başlangıcında da etkin bir role sahip görünüyor. Bakteriler, yapı bakımından birbirine çok benzer gruplar altında ele alınırlar. Bu yüzden bakteriyologlar, bakterileri görünüşlerine göre değil, biyokimyasal özelliklerine göre değerlendirirler. Asit ya da metan üretenleri, oksijeni ve kükürtü indirgeyenleri olabilir. Enerjisini çok çeşitli kimyasal kaynaklardan elde edenleri bulunabilir; ancak, çoğu bakteri çevredeki fiziksel ve kimyasal koşullar uygun olmadıkça büyüyüp gelişemez. Son yüzyıl içinde Robert Koch'un öncü çalışmalarıyla varlıkları belirlenen bakterilerin, bugüne kadar 5 000 türü tanımlanmış ve bunun daha buzdağının tepesi olduğu düşünülüyor. Buzdağının alt kısımlarında ise birçok hayvanın sindirim organlarında, derin deniz ve yer katmanlarında yaşayan türler var. Türlerin, özellikle de görünüş olarak birbirine çok benzeyenlerin nasıl ayırt edildiğine gelince, bunda da genler kullanılıyor. Türleri birbirinden ayırmak için 16S ribozomRNA'sını kodlayan gen incelenir. Bu gen her organizmada var; ancak, evrimsel anlamda öyle yavaş değişim geçiriyor ki, nükleotid dizilişi bir türün tüm bireylerinde tamamen aynı olabiliyor. Bu da türler arası farklılıkları ortaya koymaya yarıyor. Yine de araştırmacılar 16SRNA geni üzerindeki çalışmaların, gerçek çeşitliliğin daha azına ışık tutacağını düşünüyorlar. Çeşitlilik üzerine yapılan çalışmalarda, ribozom RNA'sı yönünden bakınca, köpek ve insanın aynı organizmaymış gibi görülebileceği de araştırmacıları düşündüren konular arasında. Tür çeşitliliğinin diğer canlılarda olduğu gibi bir de biyokimyasal yönü var. Bakterilerin biyokimyasal işleyişleri ise, ancak laboratuvarlarda saf kültürler üzerinde izlenebiliyor. Biyokimyasal ve ekolojik bilgileri yalnızca gen dizilişlerini inceleyerek elde etmek pek olası değil. Bir türün tüm tipik özelliklerinin belirlenmesi laboratuvar çalışmalarını da gerekli kılıyor. Bakterilerin bu tür çeşitliliğinin nereden geldiği düşünülebilir. Hızlı çoğalmaları, hareketli olmaları, yaygınlıkları ve kalıtsal yapılarının mutasyonlar (DNA yapısında oluşan ani ve kalıtsal değişiklikler) nedeniyle kolaylıkla değişebilir olması onların dış koşullarda oluşan değişikliklere kolaylıkla uyum sağlayabilmelerine olanak sağlıyor. Haploid yapıda olmaları, yani DNA'larının tek zincirli olması nedeniyle, mutasyonların oluşturduğu değişiklikler diğer nesillere kolaylıkla aktarılabiliyor. Çoğalmaları da çok kısa sürede gerçekleştiğinden, yeni türlerin ortaya çıkması da büyük bir zaman almıyor olsa gerek. Bakterilerde çoğalma ikiye bölünme ile gerçekleşiyor. İnsanda bağırsaklarda doğal olarak yaşayan bir bakteri türü olan Escherichia coli üzerinde yapılan çalışmalarda E. coli'nin 20 dakikada bir ikiye bölündüğü belirlenmiş. Neyse ki bir çok bakteri hemen ölüyor. Böyle olmasaydı, E. coli hücrelerinin 20 dakikada bir durmadan bölündüklerinde tüm dünyayı kaplayacak hacime 43 saatte ulaşacakları hesaplanmış. Hatta iki saat daha geçtiğinde 6,6 x 1020 tona ulaşarak Dünya'yla yaklaşık olarak aynı ağırlığa geleceği de düşünülmüş. Çoğu bakteri hücresi öldüğünden bu duruma gelinmiyor; çünkü, besin için aralarında büyük bir yarış var ve diğer bazı organizmaların (küf mantarı ve bazı bakteriler gibi) ürettiği doğal antibiyotikler de onları öldürüyor. Evet, bakteriler aynı zamanda diğer bakterileri öldüren antibiyotikler üretiyorlar. Hatta vitamin sentezi yapanlar da var. İlaç endüstrisinde, bu bakterilerin saf kültürlerinin antibiyotik üretmesi sağlanıyor ve sentetik olmayan antibiyotikler çoğunlukla bu yolla elde ediliyor. Antibiyotiklerden başka, aşılar ve tıbbi açıdan yararlı bazı enzimler de bakteriler tarafından üretiliyor. Antibiyotiklerin çoğunu toprakta yaşayan bakteriler üretiyor. Streptomyces'ler gibi, Actinomycetes grubuna ait olan bakteriler, tetrasiklin, eritromisin, streptomisin, rifamisin ve ivermektin gibi antibiyotikleri üretiyorlar. Bacillus türleri basitrasin ve polimiksin üretiyor. Difteri, boğmaca, tetanoz, tifo ve kolera gibi hastalıkların aşıları da bakterilerden elde ediliyor.

http://www.biyologlar.com/mikroskobik-canlilar-ozellikleri-ve-hayatimizdaki-rolleri

HAYVAN VE İNSAN KOPYALAMA

Organ nakli, doğum kontrolü, büyük ameliyatlar derken genetikçiler, hayvan kopyamayı da başardı. İskoçya’da Ian Wilmut, Dolly adını verdiği kuzuyu kopyaladı. Sonra Hawai’de fare, Kore’de inek, İskoçya’da domuz kopyalandı.Güney Kore de türü azalan bir kaplan türünü kopyalamaya hazırlanıyor (Hürriyet, 24 Mayıs 1999) “... Bizim (biyologların), hapsedilme tehditini de içeren sayısız ve kesin kuralla dizginlenmesi gereken büyük işadamları olduğumuz söylenir. Tüm bunlar genlerimizi oluşturan DNA’nın olası en kötü şeyleri kışkırtabileceğinin düşünülmesi nedeniyledir. Bu tamamen aptalca; çevremizde beni, DNA’dan daha az ürküten başka bir öğe düşünemiyorum.” James Watson, 1977 “Uyarı profesyonellerinin genetekçilerin uğursuz güçlerini lanetlemeleri için, 1970'li yılların başında, biyologların, DNA rekombinasyon tekniklerini oluşturarak laboratuvarlarında doğayı taklit edebileceklerini keşfetmeleri ve böylece moleküler biyolojiyi kuramsal gettosondan çıkarmaları yetti. Bilimi, özellikle de insanın bilinmesiyle ilgili olduğunda, şeytanlaştırmaya çalışan insanlara daima rastlanır. On beş yildir, genetikçilerin uluslarasi küçük toplulugu, bilimsel perhiz, sakinimlilik, otosansür, kendini sinirlama, erteleme, yani kisacasi, Watson’in bu bölümün epigrafi olan sözlerini kendisinden aldigim, rasyonalizmin canlandiricisi Fransiz filozof Pierre- Andre Taguieff’in güzel bir biçimde söyledigi gibi, araştirmalarin gönüllü olarak kesilmesini buyuran bir entellektüel baskiyla karşi karşiyadir.Taguieff’in dedigi gibi: Fransiz usulü bilim karşiti vahiycilik, birçok açidan, 60'li yillarin sonunda ABD’de başlatilan büyük “acemi büyücü” avinin küçük ve gecikmiş bir yansimasindan başka bir şey degildir. Belki gecikmiş yansima; ama şu son yillarda Avrupa’da, şimdi de bizi yüzyil sonu korkularimizdan kurtarmaya yazgili, ahlaki uzmanligini tuhaf bir biçimde biyoloji ve tisbba bakmiş tüm bu “etik komiteler”i-de Gaulle’ün deyimiyle bu yeni tür “ivir zivir”i- yaratan, bu gecikmiş yansimadir.Sirasi gelmişken, tüm sanayileşmiş ülklerin bilimsel bütçelerinin çok büyük bölümünü yutan nükleer ve askeri araştirmalar gibi diger gerçek tehlike ve sapmalar konusunda bu komiteleree danişmayi düşünen var mi? Oysa bana, insanligin gen sagaltimindan çok askeri elektronikten kaygi duymasi gerekirmiş gibi geliyor. Hiç şüphesiz, bilimin şeytanlaştirilmasindaki bu yeni akim amacina ulaşamiyor; perhize çagri, dogum kontrolünde oldugu gibi bilimsel kontrol için de zavalli bir yöntemdir.Ama gelinb de, Taguieff’in terimleriyle, yalnizca kuşkunun mantigina boyun egen, kaygan zeminden başka kanit tanimayan ve sapmalari önleme adina, mutlak tutuculugun biyoloji sapagina, hatta bilimin totaliter denetimine dogru bizzat sapan yeni lanetçilere laf anlatin. Biyolojideki ilerlemeler ve insanın kendi üzerinde edindiği yeni olanaklar, ahlakçıların hayal güçlerini her zaman çalıştırmıştır. Bazıları bizi, geleceğin doktor Frankenştayn’larının korkunç bir “biyokrasi”si olarak betimlemekten çekinmiyorlar. Sanki gerçek bir saygısızlık olanağı varmış gibi, bizi “insan genomuna ve bütünlüğüne saygı”nın kutsal ilkesiyle tehdit ediyorlar. Böyşle bir yaklaşım, bu alandaki ilk sorumsuzun bir takım kopyalama hataları yapmadığı, onlarsız biyolojik evrimin asla olamayacağı “mutasyonlar”a başvurmadığı zamanlar, her döllenmede her zaman farklı yerni bir varlık oluşturan ve “ufak tefek düzeltmeler”le yetinen doğa olduğunu unutmak demektir. Ayrıca, aynı zamanda hekim de olan bir başka filozofun, François Dagognet’nin söylediği gibi, bizim genetik konusundaki kaygımız, temmodel olarak, türün üreme engeline takıldığı hayvanlara gönderimde bulunmak gibi bir dar görüşlülüğü yansıtmaktadır. Ama bakış tarzı, karışma ve melezleşmenin sıkça görülen fenomenler haline geldiği bitkisel alan da dahil, canlıların bütününe doğru genişletildiğinde söz konusu tabu ortadan kalkmaktadır. Ve nedeni bellidir: çok eski zamanlardan beri insanlar, bitki türleri üzerinde kasıtlı değiştirmeler uyguladılar. İnsanın canlıya ilişkin mantığı bu yolla sarsıldı. Ve sonra, canlının doğal düzenini kutsallaştırmak niye? Biyolojik yönden, programlanmış olmamaya programlanmış insan, niçin başarısızlıkları da dahil olmak üzere, genetik lotarya karşısında diz çökmek ve ona saygı göstermek zorunda olacaktır kı? Genetik kalıtımıza egemen olmak hiç şüphe yok ki, insanın evriminde yeni bir evreyi işaretleyecektir; buna döneceğim. Bu evrimi bir kabusmuşçasına tasarlamak zorunda değiliz. İnsan genomunun bilinmesiyle ortaya çıkan kaygılar şu soruyla özetlenelir: -Şimdilik bize yalnizca hastalarin iyimleştirilmesinin söz konusu oldugunu söylüyorsunuz. Çok iyi. Buna karşi çikmak zor. Ama, siz genetikçilerin az ya da çok yakin bir gelecekte, insani kendi karariniza göre dönüştürme erkine, cüce ya da devlerden, güçlü ya da zayiflardan, üstün zekali ya da ilkel kölelerden oluşacak “irklar” yaratma erkine sahip olmayacaginizi bize kim garanti ediyor? Megalomaniniz ya da ittakarliginiz sonucu, davraniş genlerimizle, hatta zeka genlerimizle “oynama” egilimi duymayacaginizi bize kim söylüyor? Şimdiden “gen nakledilmiş” fareler yapiyorsunuz, “gen nakledilmiş insan” cehennemi ne zaman? Bu kaygılar, insanın genetik kalıtına ilişkin olarak geri, kolaycı ve biyolojik bilgiye dayanmayan bir bakışı yansıtır. Son yirlmi beş yıldır moleküler biyolojinin gelişimi, bize genetik rekombinasyon mekanizmalarının ve genlerin dışavurumunun iki şeyi güvence altına aldığını öğretti: insanın sonsuz çeşitliliği ve insan fenotipinin(Dip not:Fenotip, bireyin gelişimi sırasında ve çevresel etkenlerin denetimi altında genotipinin-gen kalıtının- gerçekleşmesine uyan belirgin vasıflarının bütünüdür) bozulamayacak karmaşıklığı.Bu iki biyolojik gerçekten bir parçacık haberdarn olan herkes, Jim Watson gibi, hiçbir şeyin üzerinde çalıştığımız o molekülden, yani DNA’dan daha az ürkütücü olmadığı ve bunda yeni bir Pandora kutusu(Dip not: Yunan mitolojsinin güzel Pandora’sı. Prometheus’un tanrı katından çaldığı ateşi getirdiği insanları cezalandırmak için dünyaya gönderilmişti. tanrılar Pandora’ya içinde bütün kötülüklerin bulunduğu bir kutu emanet etmişti. Merakını yenemeyen Pandora kutuyu açtı ve böylece tüm kötülükler dünyaya yayıldı. Biraz da acıyarak, bilimin bu yeni engizisyoncularının kafalarının da evrensel ilk günah mitosu tarafından kurcalandığını düşünüyorum!) görmenin gülünç olacağı sonucuna varacaktır.(236-238) Karmaşik tahrip edilebilir; ama onu kolaylaştirmak, onunla “oynamak “, onu azaltmak istemek hiç de gerçekçi degildir. Insanligin genetik olarak tekbiçimlileştirilmesi fantezisi bir tür biyolojik anlamsizliktir.Bunu istesek bile yapamazdik. İnsanlık, genetik yasaları kendi yararına kullanabilir, kullanabilecektir; ama onları değiştiremeyecektir. Anımsatmak gerekir mi; dönemin yaygın yinelemesine uygun biçimde, “bir üstün ırk”ın ayıklanması yoluyla türün iyileşktirilmesi anlamındaki Nazi tipi öjenizm, tam bir fiyasko olmuştur.Psikopat diktatörün sanrıları, genetiğin bilgisine hiçbir şey borçlu değildi. Bu sanrılar, toplama kampları ve gaz odaları aracılığıyla girişilen bir soykurumun sözümona bilimsel doğrulanışından başka bir şey değildi. Ekonomik bunalım ve milliytçiliklerle her türlü karanlıkçıların tırmanış dönemlerinde, ırkçı ve totaliter tüm ideolojik hortlamaları bıkıp usanmadan ifşa etmek, entellektüellerin ve bilimcilerin görevidir. Ama geçmişin vahşeti geleceğin açılımları karşısında bizi dehşetten donakalmış bir halde bırakmamalı, tabu haline gelmiş sözcükler aracılığıyla hedefimizi şaşırtmamalıdır... En son tıbbi tekniklere başvurarak ağır hastalıkları olmayan bir çocuğa sahip olmak, gebeliği önleyebilmek, çocuk düşürme hakkı, yani iyi anlaşılmıyş öjenizm, kuşkusuz bireyin tümüyle özgür seçimiyle uygulandığında iyi bir şeydir. Biz zengin ülke topluluklarının bu tartışmaları, bizim kendi ülkelerimizde yararlandığımız doğum kontrol sisteminin olanaklarına ulaşmaya çamlışan yoksul ülkelerin kadın ve erkeklerine oldukça şaşırtıcı gelebilecektir... Gerçekte, totaliter rejimlerin normalleştirici fantezilerin çok ötesinde, yüzyilin bu son çeyreginde biyoloji, insan düşüncesini çeşitlilik ve karmaşikligin mantigina aliştirmak için hiç şüphesiz en fazla ugraşmiş olan bilimdir. Kendimi geleceğin ahlaki sorunlarını çözmek için hiçbir şekilde yetkin görmüyorum. Ben daha çok, gelecek kuşakların neyi kabul edilebilir ya da edilemez sayacaklarını bulmek için o kuşakların kendilerine güvenme eğilimindeyim. Ahlakın kendi değişmezleri vardır; ama bunlar, bilim ve bilgiyle birlikte evrimleşirler. Bugün bilgisizlikle kendimize yasakladığılmız şeylere, belki de yarın, daha iyi bir bilmenin ışığında izin vereceğiz. Okuru rahatlatır mı bilmem; ama genetiğin yasalarına egemen olmanın kaygılanacak fazla bir yanı bulunmadığını, buna karşılık umut verecek çok yanı olduğunu bana düşündüren nedenleri, burada gözden geçirmek isterim. Çeşitliligin Genetigi Buraya kadar patolojilere yol açan mutasyonları, genomun oyunbozanlık rolünü üstlenenleri gördük. Gerçekten de genom programının en acil hedefi, bizi genetik hastalıklara karşı silahlandırmaktıdr. Ama uzun dönemli hedefi daha temellidir ve biyolojik düzenlenişimizin bütününü daha iyi anlamayı amaçlıyor. kuşaklar boyu biriken mutasyonlarin hepsi (bu ortalama olarak her 300 bazda bir degişiklik noktasi, yani genomun bütününde yaklaşik on milyon polimorf nokta eder) hastaliklara yol açmaz. Çok şükür. Kalitimla aktarilan bu mutasyonlarin büyük çogunlugunun hiçbir kötü sonucu yoktur.(Ek Not:Genomun 3 milyar bazi arasindan, ortalama olarak 300 bazdan biri insandan insana degişir. Bunlar mutasyon noktalaridir.Bu noktalirn herbirinde baz “degişir”; ama yine de, genetik alfabenin yalnizca dört harfi oldugundan, seçim yalnizca dört olasilik arasinda yapilir: A,T,C,G. Örnegin A harfi yerinde bir T, bir C, ya da bir G olacaktir. Her bir degişiklik bölgesi için, topluluk içinde en fazla yalnizca dört allel vardir..s:291) Öncelikle, mutasyohlardan çoğu basit bir istatistik olgu sonucu genomun kodlayıcı olmayan bölgelerini (DNA’nın yüzde 90'nından fazlası) etkiledikleri ve uslu uslu sessiz kaldıkları için: gözlemlenbildiği üzere fenotipte kendilerini dışa vurmazlar. Sonra da bu kez asıl genlere (protein kodlayan, DNA dizilerinden yaklaşık yüzde 10'una) düşkün mutasyonların çoğu “nötr” oldukları için... Ya ana babanın alleliyle kodlanan proteinlerle aynı işleve sahip “eş anlamlı” bir protein kodlayan geni değişime uğratırlar. Ya da organizmanın düzgün işleyişinde bir değişiklik yapmaksızın, yalnızca insanların çeşitliliğine yol açan farklı proteinleri kodlarlar. En sonunda, geriye genomu bozan mutasyonlar kalır. Yüz bin genimizi etkileyen yaklaşık bir milyon mutasyon noktası olduğu varsayılabilirken, tek ya da çok etkenli, yaklaşık üç bin genetik hazstalık saptanmıştır. Mutasyonların çeşitlendirici rollerinin, bozucu rollerinden daha ağır bastığı görülüyor. Bozuk kabul edilen genlerin sayısı hesaplanmak istenirse, kafanızda genlerimizin bir milyon ya da yalnızca 997 000 polimorf noktasını gönlünüzce birleştirmeye çalışın [Dip not: Bu sayıları yalnızca büyüklüğü göstermek için veriyorum. Gerçekte her genetik hastalık ille de bir nokta mutasyonuna denk gelmez;ama bir mutasyonlar biyeşiminin ya da kromozomların rekombinasyonu sırasında ortaya çıkan kazalırın sonucu da olabilir.)Genetik rulet düşleyemeyeceğimiz kadar çok fazla sayıda bireysel bileşim sağlar. Biz, şu ya da bu deri rengi ya da başka bir yapısal özelliği sağlayan on kadar özel allele ayrıcalık tanımak isteseydik bile geriye kalan milyonlarca allel sonsuz çeşitliliği güvenceye almaya yetecekti. İnsan türünü tekbiçimlileştirmek hiç de kolay değildir. En fazlası ve biraz kötü bir şansla, bazı çekinik hastalıkları kolaylaştırmayı başaracaktık ki, bu da esasen, çok sınırla bir topluluk içinde kuşaklar boyu uygulanan her endogamide ortaya çıkan bir şeydir ve değişkenliğin, potansiyel mozayikliği de diyebileceğimiz genel kaynağına gerçek bir zarar vermez. Bireysel değişiklikle her türlü genetik akıl yürütmenin başlangıç noktasıdır.Bu temel gözlem verisi Darwin’in ilk esin kaynağ oldu; bu veri olmaksızın onun doğal ayıklanma kuramının hiçbir anlamının olmayacağı çoğu kez unutulur.”En uygun olanın ayıklanmasıW”na gelince, türün ortamın sonsuz çeşitliliğine uyum sağlamasına izin vermesi nedeniyle, Darwin’den sonra ileri sürüldüğünün tersine, çok daha az tekbiçimlileştiricidir. Evet, biz farklı olmaya mecburuz! Birkaç saniye için (daha fazlasına dayanılmaz) tamamen özdeş varlıklarla dolu bir dünya düşlemeye çalışalım! Rahatlayalım. Böyle bir olasılık, bir biyolojik olanaksızlıktır. Sonuçta kendimizi paylamaya, farklılık “hakkı”mızı ileri sürmeye, bizi sağduyuya zorlaması için tüm etik kaynakları harekete geçirmeye hiç gerek yok. Hoşumuza gitsin ya da gitmesin, her birimiz insan türünü ayni büyük izlegi üzerindeki farkli birer degişikligiz. Şu son yirmi otuz yillik biyolojik araştirmanin en şaşirtici keşiflerinden biri (60'li yillarda Jean Dausset’nin öncülügünü yaptigi HLA sisteminin aydinlatilmasiyla), yalnizca protein düzeyinde degil, genlerimiz düzeyinde de söz konusu oldugu anlaşilan bu olaganüstü insani polimorfizmdir. Mutasyonlar ve DNA rekombinasyonlari bizim en iyi korumalarimiz, normalleşitici heveslerimizin karşisindaki en etkili engellerdir. Farkliliga ve dolaysiyla bireye saygi içinde özgürlük, bundan böyle bir hümanist talepten daha fazla bir şeydir: hakliligini genlerimizde bulmuştur. Genetik kalıtımızın olağanüstü değişkenliğinin keşfi, yalnızca ırk kavramını değil, türe özgü temel özellikler dışındaki biyolojik “norm” kavramını da sonsuza kadar yıktı. Leonardo da Vinci güzelliğin ölçütü olacak bir altın sayı bulunduğuna inanıyordu. Çabalarına rağmen onu asla bulamadı.Çok mükemmel bir nedenden dolayı: ideal norm, bizim basitlmeştirici zihnimizce yaratılmış bir soyutlamadan başka bir şey değildir. Mükemmellik gibi güzelliğe atfettiğimiz kurallar da bir kültürden diğerine, bir dönemden diğerine, hatta bir bireyden diğerine göre değişir. İnsanın özdeş baskısı yoktur! Kuşkusuz, evrim her yeni türe ait yeni işlevlerin ortaya çıkmasına katkıda bulunur. Ama her türün ne bir ana öbeği ne de modeli vardır. Büyük evrim kuramcılarından biri olan Theeodosius Dobzansky’nin yazdığı gibi, genetik koşullanma yalnızca, tek bir insan doğası değil, ama insan doğaları olduğu anlamına gelir . Norm, norm olmamasıdır. Bu biyolojik gerçek, evrimin mantığını dile getirmekten başka bir şey yapmaz.(S:243) Farklılık, türün devamı için zorunludur. Öğrencilerimle beraberken daima şu düşüncenin üzerinde dururum: hepimiz farklı olduğu için hala buradayız. Aksi halde, ne iz ne de ben olacaktık. Burada olmamı, benim gibi olmamış (bugün de benim gibi olmayan ), ama belki de benim bizzat dayanamayacak olduğum bir saldırıdan sağ kalabilmiş olan ötekine borçluyum. Doğada saf soy yoktur. Olsaydı, hayatta kalamazdı. Laboratuvarda üretilenler, iste hücreler, ister drosofiller (sirke sineği) ya da beyaz fareler söz konusu olsun, özgürlüğün bedelini hemen yaşamlarıyla öderler. Eğer sivri sinekler farklı böcekölrüncülerine karşı şeytansı bir direnç gösteriyorlarsa, bu onların genetik polimorfizmlerinin her defasında bazılarının kendilerini kurtarmalarını, sonra da gelecek yok edici bombardımana kadar büyüyüp çoğalmalarını sağlaması nedeniyledir.Gelecek, dirençli azınlıklarda, marjinallerde ve uyum göstermeyenlerdedir! Buna göre, insan sivri sinakten daha az polimorf değildir. Yoksa, dünyanın bizzat yaratmış olduğu çetrefil karmaşıklıklarına nasıl uyum sağlardı? Bu polimorfizm, elli bin ya da yüz bin yıl önce homo sapiens ’in ilk marifetleri döneminde olduğu gibi, bugün için de doğrudur. küçük avcı-toplayıcı gruplar neden yaşamlarını sürdürebildiler? Tüm erkeklerav için uygun bacaklara ve gözlere, tüm kadınlar yenebilecek ot ve taneleri kesin olarak tanıma yeteneğine ve hep birlikte ateşi ya da barutu yeniden icat etme becerisine sahip olmaları nedeniyle mi? Tam olarak böyle değil. Bunu iyi biliyoruz. Her insan grubu, tıpkı bugünkü gibi, miyoplarına, artiritlilerine, keskin gözlülerine ya da koşu şampiyonlarına; yavaş düşünenlerine, hızlı düşünenlerine, liderlerine ve diplomatlarına, melankoliklerine ve neşelilerine, sanatçılarına ve eylem adamlarına, serserilerine ve ahlak hocalarına vb.. sahipti. kısacası her türden ve özellikle de her konumdan insanlar bulunuyordu. Dönemin küçük sürüleri, en azından benim gibi Roy Lewis’in olağanüstü romanı Babamı Niçin Yedim’ e inanırsanız, muhtemelen kendi “tutucular”ına ve “ilerlemeciler”ine bile sahipti. Onların da, vanya dayı gibi, toplanma çığlığı(s:244) “Ağaçlara Dönüş!” olan kendi tepkicileri ve baba Edouard gibi ateşi icat edip çayırları yaktıktan sonra, “Olanaklar olağanüstü !” diye haykırmaktarn geri durmayan dirençli icatçıları vardı. Tarihöncesine dair çalakalem yazılmış bu gülünç yapıtta bilerek başvurulmuş anakronik öğelerin ardında, yazarın derin bir antropolojik gerçekliğe parak bastığına inanıyorum.Hiç şüphe yok ki, yazarın kendilerine atfettiği bilgece dilin ötesinde, ilkel (ve yine de biyolojik olarak bizim kadar ya da az farkla evrimleşmiş) insanlar, Roy Lewis’in yeniden keşfettiği gibi, bugün bizi bölen davranışlarımızı aratmayan farklılık ve incelikteki davranışlarıyla insani entrika ve gülünçlüklere sahip bir çeşitlilik içindeydiler. Musee de l’Homme’ un son sergilerinden birinin, Hepimiz akrabayız, hepimliz farklıyız şeklindeki güzel başlığını açıklamak gerekirse, biz birbirimize benzeriz ve hepimiz farklıyız. Evt. Bunan yakınmak için ve bunun gizlenmesi için hiçbir neden yok. Mavi gözlü mü kara gözlü mü, ince-uzun mu kısa mı, beyaz tenli mi siyah ya da esmer mi.. olmak daha iyidir? Herkesin, en azından bir parça uygar olduğunu ileri süren herkesin hemfikir olacağı gibi, bunlar saçma sapan sorulardır. Ama zihinsel yeteneklerle, zekayla ve davranışlarla ilgili sorunlara gelince, karışıklık genel bir hal alır. Bazıları, yetenek ve zeka farklılıklarında genetik bir kökeni kabul etmekle insanlığa karşı bir suç işlediklerini düşüneceklerdir. Diğerleri, genlerimizin bazı sorumlulukları olduğunu bahane ederek tüm güçleriyle herkesin zekasını kendi ölçütlerine göre ölçmek ve davranışlarımızın tüm gizini hayvanlarda keşfetmek isteyeceklerdir. Gerçekte bunlar nedir? Örneğin zeka diye adlandırılan şey, doğal ya da insanın yarattığı çevrenin kavranmasını hedefleyen bir yetenekler mozayiğidir. Bu yeteneklerin bireşim mekanizması hiç şüphesiz tükenmez olanaklara sahiptir. Bir zeka geni değil, ama daha çok her insanın zekasının tek, karmaşık ve dinamık düzenlenişini oluşturan onbinlerce özellik temelindeki bir gen yığınının olması, gerçeği daha uygundur. Akla uygun tek çıkarsama bir zeka bulunmadığı, zekanın sayısız biçimlerinin olduğudur. Ortam burada fazlasıyla rol oynar. Bazı halklar, diğerleri tarafından ayırıcalıklı kılınandan farklı zeka biçimleri geliştirmek zorunda kalabilirler. Bir grup insana yaşamını Kalahari çölünde ya da Ekvator ormanlarında sürdürmesi için gereken zeka, elbette New York ya da Paris’teki bir büroda çalışmak için gereken zkanın eşi değildir. Aynı zeka değildir; ama kesinlikle eşdeğeridir. Boşimanların ya da Pigmelerin gözünde bizler cahil kişileriz. Boşimanların birbirinden ince farkları olan ve sabah ya da akşam çiğinin damıtılabileçcceği bsayısız bitkileri ayrıştırdıkları yerde, biz yalnızca çöl görürüz. Pigmeler ise, Joseph Conrad’ın Karanlığın Yüreği ’nden (Çev: Sinan Fişek, İletişim Yay: 1994) başka bir şey görmediği yerde, ormanı kolayca okurlar. Ama genetik çeşitlilik ayni kültür içindeki bireyler arasinda da rol oynar. Zeka burada da,genetikçilerin polimorf diyecekleri gibi çok biçimlidir. Müzisyenin zekasi matematikçinin zekasiyla belli bir benzerlige sahip görünür;ama matematikçlerin ve müzisyenlerin kendileri çok çeşitli mizaçlara sahiptiler. Ressamin zekasi yöneticinin, organizatörün, diplomatin, düzenbazin,filozofun, deneycinin,çalgi yapimcisinin,icatçiin, hatibin, eğitimcinin vb zekalarından başka ve şairinkiyle biraz benzerliği olabilen romancınınkiyle aynı değildir. Diğerlerinin zekasından yararlanabilme zekasına da sahip olmak ve bu durumda, anlaşılacağı üzere, en büyük çoğulculuğu savunmak mümkündür! (Daniel Cohen, Umudun Genleri s:236-246...) Bilim ve Çevre Bilimin gelişmesi ve onun teknolojik uygulamalari, doganin kirlenmesinde ve kirletilmesinde rol oynuyor. Bu doğru. " Diğer taraftan bilim adamları da bilmeceleri yanıtlayarak işe başlarlar, ondan sonra da ya küçük parmaklarını ya da tüm dünyayı havaya uçurabilecek deneylere girişirler. Bilim daha sorumlu bir biçimde davranmak zorunda değil midir? Bu sorunun yanıtı açıktır: bilim tümüyle ahlak dışı ve tümüyle sorumsuzdur. Bilim adamları, gerçi davranışlarında kendi ahlak kuralları ve sorumluluk duyguları (ya da bunların yokluğu ) tarafından yönlendirilirler ama sonuçta kendilerini bilimin temsilcileri değil, insan olarak görür ve buna uygun bir davranış biçimi gösterirler. Örneğin bir zamanlar D o ğ a adını verdiğimiz şeyi bugün Çevre' ye indirgemiş bulunuyoruz ve yakında belki de Çöplük olarak adlandırmamız gerekecektir. Peki bu bilimin suçu mu? Doğru, bilim doğanın ölümüne yolacan koşulların ortaya çıkmasında rol oynayabilir, ama unutmayalım ki doğayı yaşatacak çözümler de yine bilimin elindedir. Bilim, bize ancak çevrenin korunması ya da kirliliğin önlenmesi için gereken önlemleri sağlayabilir- karar insanlarındır. Bilim, soruları ( en azından bazı soruları) yanıtlar, ama karar alamaz. Kararları (ya da en azından bazı kararları ) ancak insanlar alabilir." (Raslantı ve Kaos s: 162-163) D. Ruelle, bilimin bu savunmasını son derece belirsiz ve karamsar bir yorumla bitiriyor: " Ama fiziksel ve kültürel çevremize vermekte olduğumuz zararlara karşın varlığımızı sürdürmeyi başarabilecek miyiz? İşte bunu bilmiyoruz. Geçmişte olduğu gibi bugün de insanlığın geleceğini kestirebilme olanağına sahip değiliz ve daha güzel bir geleceğe mi yoksa önüne geçilemez bir sona mı yaklaşmakta olduğumuzu bilmiyoruz" (s:163) Bu görüşler eleştirilmeye değer. İşçilerin tulumları beyazdı; ellerinde soğuk, kadavra rengi kauçuk eldivenler vardı. Işık donuktu, ölüydü: Bir hayalet sanki!.. Yalnız mikroskopların sarı borularından zengin ve canlı bir öz akıyor, bir baştan bir başa uzanan çalışma masalarının üzerinde tatlı çizgiler yaratarak, parlatılmış tüpler boyunca tereyağ gibi yayılıyordu. "Bu da" dedi Müdür kapıyı açarak, "döllenme odası işte..." Doğal olarak, ilkin döllenmenin cerrahlığa dayanan başlangıcından söz etti, derken "Toplum uğruna seve seve katlanılan bir ameliyattır bu" dedi, "altı maaşlık ikramiyesi de caba... Bir yumurta bir oğulcuk, bir ergin; bu normal... Oysa, Bokanovskilenmiş bir yumurta tomurcuk açar, ürer bölünür. Eş ikizler yalnız insanların doğurduğu o eski zamanlardaki gibi yumurtanın bazen rastlantıyla bölünmesinden oluşan ikiz, üçüz parçaları değil, düzinelerle yirmişer, yirmişer." Müdür "yirmişer" diyerek sanki büyük bir bağışta bulunuyormuş gibi kollarını iki yana açtı; "yirmisi birden!.." Ama öğrencilerden biri bunun yararının ne olduğunu sormak gibi bir sersemlikte bulundu. "İlahi yavrucuğum!" Müdür olduğu yerde ona dönüvermişti. "Görmüyor musun? Görmüyor musun, kuzum?" Bir elini kaldırdı; heybetli bir duruşa geçmişti. "Bokanovski süreci toplumsal dengenin en başta gelen araçlarından biridir! Milyonlarca eş ikiz; toptan üretim ilkesinin sonunda biyolojiye uygulanmış olması..." YUKARIDAKİ PARÇA, Aldous Huxley’in 1930’larda yazdığı, geçtiğimiz ay bilim gündemini birdenbire fetheden "koyun kopyalama" deneyine değinen haberlerde sıkça gönderme yapılan, Brave New World (Cesur Yeni Dünya) romanının girişinden kısaltılarak alınmış bir bölüm. Huxley, olumsuz bir ütopya (distopya) niteliği taşıyan romanında, Alfa, Beta, Gama, Delta ve Epsilon adlarıyla, kendi içinde genetik özdeşlerden oluşan beş farklı sınıfa bölünmüş bir toplum tablosu çiziyor. Özdeş vatandaşların üretildiği bu hayali "Bokanovski Süreci", çağdaş anlamıyla klonlama (veya genetik kopyalama) olmasa da, sürecin yolaçtığı etik (ahlaki) ve toplumbilimsel kaygılar, sekiz ay önce İskoçya’da gerçekleştirilen ve geçtiğimiz ay kamuoyuna duyurulan gelişmelerin doğurduklarına denk düşüyor. Şimdi herkesin tartıştığı, son gelişmelerin insanlık için daha insanca bir dönemin mi yoksa, hızla gerçeğe dönüşen korkunç bir distopyanın mı kapısını araladığı. Şubat ayinin 22’sinden itibaren, Iskoçya’nin Edinburg kentinde, biyoteknoloji alaninda tuhaf bir gelişme kaydedildigi, "Dünyanin sonu", "Frankenstein" gibi ifadeleri de içeren dedikodularla birlikte etrafta konu olmaya başladi. Bilim çevreleri de basin da şaşkindi, çünkü, seçkin yazarlarin ve bazi bilim adamlarinin birkaç gündür zaten haberdar olduklari ve konuyu "patlatmayi" bekledikleri bu gelişme, bir biçimde basina sizmiş, dilden dile dolaşmaya başlamişti bile. Normalde pek de ciddiye alinmayacak böyle bir "dedikodunun" bu denli yayilabilmesi, işin içine çeşitli dallarda makalelere yer veren saygin bilimsel dergi Nature’in adinin karişmasiyla olmuştu. Gerçekten de Nature, dedikodu niteligini fersah fersah aşan bir bilimsel gelişmeyle ilgili bir makaleyi 27 Şubat’ta yayinlayacagini bilim yazarlarina duyurmuş ve bu tarihe kadar "ambargolu" olan bir basin bülteni dagitmişti. Bati ülkelerinde yazarlar normal olarak bu ambargolara uyar, hazirladiklari yazilari, ambargonun bittigi tarihte, ayni anda yayina verirler. Ancak, aralarinda ünlü The Observer’in da bulundugu bazi dergi ve gazeteler ambargoyu çoktan delmiş, konuyu kamuoyuna duyurmuştu bile. Haberin, kaynagi olan Nature ve ambargoya saygi gösteren çogu nitelikli dergi ve gazetede yer almamasi da, dedikodu trafigini artirmiş, ortaya atilan spekülasyonlarla beklenenden fazla ilgi toplanabilmişti. Hatta, Mart ayının başlarında, koyun klonlama haberinin yarattığı ilgi ortamını değerlendirmek isteyen bazı haberciler, aynı yöntemle Oregon Primat Araştırmaları Merkezi’nde maymunların klonlandığını öne sürdüler. Oysa, Oregon’da gerçekleştirilen, embriyo hücrelerinin oldukça sıradan bir yöntemle çoğaltılmasıyla yapılmış bir deneydi. Klonlama, yetişkin bir canlıdan alınan herhangi bir somatik (bedene ait) hücrenin kullanılmasıyla canlının genetik ikizinin yaratılmasını açıklamakta. Kavramsal temelleri çoktandır hazır olan bu işlemin uygulamada gerçekleştirilemeyeceği düşünülüyordu. Edinburg’daki Roslin Enstitüsünden Dr. Wilmut ve ekibi bunu başarmiş gibi görünüyor. "Ben bu filmi daha önce seyretmiştim!" diyenleri rahatlatmak için hemen belirtelim ki, ayni ekip 1995 yilinda embriyo hücrelerini kullanarak yine ikiz koyunlar üretmiş ve bunu duyuran makaleyi yine Nature dergisinde yayimlatmişti. Bu deney de basina yansimiş, ancak, son gelişmeler kadar yanki uyandirmamişti. Ne de olsa bu yöntem, döllenmiş yumurtanin kazayla bölünüp tek yumurta ikizlerine yol açtigi bildik süreçlerden farksizdi. Siklikla unutuldugu için tekrarlamakta yarar var ki, Wilmut’un son başarisinin önemi, işe somatik bir hücrenin çekirdegiyle başlamasinda yatiyor. Bu başarinin ortaklarini anarken PPL Tibbi Araştirmalar şirketini de atlamamak gerek. Borsalarda tirmanişa geçen hisseleriyle gelişmenin meyvelerini şimdiden yemeye başlayan PPL, projenin hem amaçlarini belirleyerek hem de maddi olanaklari yaratarak kuzu Dolly’nin varliginin temel sebebi olmuş. Dr. Wilmut’un gerçekleştirdigi başari şöyle özetlenebilir: Yetişkin bir koyundan alinan somatik bir hücrenin çekirdegini dahice bir yöntemle, başka bir koyuna ait, çekirdegi alinmiş bir yumurtaya yerleştirmek ve bilinen "tüp bebek" yöntemiyle yeni bir koyuna yaşam vermek. Adini, ünlü şarkici Dolly Parton’dan alan kuzu Dolly, isim annesinin degilse de, DNA annesinin genetik ikizi. Dolly, sevimli görünüşüyle kamuoyunun sempatisini kazanmiş ve tüm bu süreç ilginç bir bilimsel oyun olarak sunulmuşsa da gerçekte deney oldukça iyi belirlenmiş bilimsel ve maddi hedefleri olan, sogukkanli bir süreç. Zaten Dolly’nin araştirmacilar arasindaki adi da en az varligi kadar "sogukkanlica" seçilmiş: 6LL3... PPL’in idari sorumlusu Dr. Ron James, şirket sirlarini kaybetme kaygisiyla maddi hedeflerini pek açiga vurmamakla birlikte, hemofili hastalari için koyunlara insan kani pihtilaşma faktörü ürettirmeyi de içeren pek çok önemli ticari hedefin ipuçlarini veriyor. PPL ve Roslin Enstitüsü’nün çalışmaları, geçmişi çok eskilere dayanan ve önemli gelişmelerin kaydedildiği bir alan olan transjenik (gen aktarılmasıyla ilgili) araştırmaların bir üst aşamaya, nükleer transfer (çekirdek aktarılması) evresine doğru ilerletilmesinden başka birşey değil. Yıllardır başarıyla sürdürülen transjenik çalışmalarda tek boynuzlu keçi, üç bacaklı tavuk gibi görünüşte çarpıcı, yararı kısıtlı çalışmaların yanı sıra, insan proteinlerinin hayvanlara ürettirilmesi gibi, modern tıp için çığır açıcı sayılabilecek başarılar kaydedildi. Son gelişmelere imzasını atan ekip, daha önce insan bünyesince üretilen molekülleri gen transferi yöntemiyle bir koyuna ürettirmeyi başarmıştı. Söz konusu deneyde gerek duyulan moleküllerin koyunun tüm hücrelerinde değil, sadece süt bezlerinde sentezlenmesinin sağlanması, koyunun "ilaç fabrikası" olarak değerlendirilmesini beraberinde getiriyordu. Dolly başarısının en önemli potansiyel yararı da bununla ilgili zaten. Gen transferi yöntemiyle, istediğiniz maddeyi sentezleyebilen bir canlıya sahip olduğunuzda, madde verimini artırmak üzere aynı süreci zaman ve para harcayarak yinelemeye çabalamak yerine elinizdeki canlının genetik ikizlerini yaratabilirseniz, ticari değer arz edebilecek miktarda ilaç hammaddesi üretimine geçebilirsiniz. Elinizde birkaç on tane genetik özdeş canlı biriktikten sonra, bu küçük sürüyü doğal yollardan üremeye bırakacak olursanız, hem "yatırımınız" kendi kendine büyüyecek, hem de genetik çeşitlilik yeniden oluşmaya başlayacağından, tek bir virüs tipinin tüm "fabrikayı" yok etmesinin önünü alacaksınız demektir. Biraz Ayrıntı İskoç ekibin gerçekleştirdiği klonlama deneyinin, dünyanın pek çok bölgesine dağılmış sayısız standart biyoteknoloji laboratuvarında "kolayca" gerçekleştirilebileceği söyleniyor. Yine de uygulanan yöntem, günlük gazetelerdeki basit şemalarda anlatıldığı kadar kolay ve hemen tekrarlanabilir türden değil. İskoç ekibin başarısı ve önceki sayısız benzeri çalışmanın başarısızlığı, Wilmut’un, verici koyundan alınan hücre çekirdeğiyle, kullanılan embriyonik hücrenin "frekanslarını" çok hassas biçimde çakıştırabilmesine dayanıyor. Bu yöntemle araştırmacılar, yetişkin çekirdeğin genetik saatini sıfırlamayı, tüm gelişim sürecini başa almayı becerebilmişler. Yöntemin ayrıntılarına girmeden önce bazı temel kavramlara açıklık getirmekte yarar var. Çoğu memeli canlı gibi insan bedeni de milyarlarca hücreden oluşuyor. Bu hücrelerin milyonlarcası her saniye bölünmeyi sürdürerek beden gelişimini devam ettiriyor ve yıpranmış hücreleri yeniliyor. Bu hücrelerin önemli kısmı bedenimizin belli başlı bölümlerini oluşturan "somatik hücreler." Tek istisna, üreme hücreleri. Eşeyli üreme, gametlerin (sperm ve yumurta) ortaya çıktığı "mayoz bölünme"yle başlıyor. Cinsel birleşme sonucunda, spermin yumurtayı döllemesiyle de yeni bir canlının ilk hücresi "zigot" oluşuyor. Bu noktadan sonra gelişmeye dönük hücre bölünmeleri, "mayoz" değil, "mitoz" yoluyla ilerliyor. Koyun ve insan hücrelerinin de dahil olduğu ökaryotik yani, çekirdeği olan hücreler, farklı gelişim evreleri içeren bir yaşam döngüsü geçiriyorlar. Bu döngüyü, hücrenin görece durağan olduğu "interfaz" ve belirgin biçimde bölünmenin gerçekleştiği mitoz evrelerine ayırmak mümkün. Hücre, yaşam döngüsünün yüzde doksan kadarını interfaz evresinde geçiriyor. Aslında, bu duraklama evresi göründüğü kadar sakin değil; hücre, tüm bileşenlerini DNA’yı sona bırakacak biçimde çoğaltarak, bölünmeye hazırlanıyor. Alt evreleri son derece iç içe girmiş olan interfaz evresini işlevsellik açisindan G1, S ve G2 alt evrelerine ayirmak yerleşmiş bir gelenek. Yani, hücrenin yaşam döngüsü bu üç evre ve M (mitoz)’dan oluşuyor. G1 evresi, DNA dişindaki bileşenlerin çogaldigi bir dinlenme dönemi. S, DNA’nin bölünmesiyle sonuçlanan bir geçiş evresi. G2 ise, iç gelişmenin tamamlanip, hücrenin mitoz yoluyla bölünmeye hazirlandigi süreci içeriyor. Hücrelerin hangi evreyi ne kadar sürede tamamlayacakları bir biçimde programlanmış durumda. Belli bir organizmanın tüm hücreleri bu evreleri aynı sürede tamamlıyorlar. Yine de, ani çevresel koşul değişiklikleri hücreleri G1 evresinde kıstırabiliyor; sözgelimi, besleyici maddelerin miktarı birdenbire minimum düzeye düştüğünde. G1 evresinin belli bir aşamasında, öncesinde bu duraklamaya izin verilen sabit bir kritik noktası var. Bu kritik nokta aşılırsa, çevresel koşullar ne yönde olursa olsun, DNA replikasyonunun önü alınamıyor. İleride göreceğimiz gibi, bu noktanın denetim altında tutulabilmesi, Wilmut ve ekibinin başarılı bir klonlama gerçekleştirebilmelerinin altın anahtarı olmuştur. Bu noktada bir parantez açarak G1, S, G2 ve M evrelerinin denetim altına alınmasının, hücrenin yaşam döngüsünü olduğu kadar, hücrenin özelleşmesini, sözgelimi beyinden veya kas hücrelerinden hangisine dönüşeceğini de kontrol altına alabilmeyi, bir başka deyişle, hücrenin genetik saatini sıfırlamayı sağladığını ekleyelim. Wilmut ve ekibi Dolly’i klonlayıncaya kadar bu sürecin tersinmez olduğu, söz gelimi, bir defa kas hücresi olmaya karar vermiş bir hücrenin yeniden programlanamayacağı zannediliyordu. Peki Wilmut bunu nasıl başardı? Soruyu tersinden cevaplayacak olursak, diğerlerinin bunu başaramamalarının nedeninin, kullandıkları somatik hücrelerin çekirdeklerini S veya G2 evrelerindeki konakçı hücrelere yerleştirmeleri olduğunu söyleyebiliriz. Eski kuramsal bilgilere göre bu yöntemin işe yaraması gerekiyordu, çünkü çekirdeğin mitoza yaklaşmış olması avantaj olarak görülüyordu. Ancak bu denemelerde, işler bir türlü yolunda gitmedi. Kaynaştırmadan sonra, hücre fazladan bir parça daha mitoz geçiriyor ve yararsız, kopuk kromozom parçaları meydana geliyordu. Bu "korsan" genler, gelişimin normal seyrini sürdürmesi için ciddi bir engel oluşturuyordu. Dersini çok iyi çalışmış olan Wilmut, bu olumsuz deneyleri değerlendirerek hücreyi G1 evresinin kritik noktadan önceki duraksama döneminde, "G0 evresinde" kıstırmaya karar verdi. Verici koyundan alınan meme dokusu hücrelerini kültür ortamında gelişmeye bırakan Wilmut, hücrelerin geçirdiği evreleri sıkı gözetim altında tutarak bir hücreyi G0 evresinde kıstırıp bu haliyle durağanlığa bırakmayı başarmıştı. Bunun için, hücrenin besin ortamını neredeyse öldürme sınırına kadar geriletmiş, tüm süreci dondurarak bir anlamda genetik saati de sıfırlayabilmişti. Üstelik bu evre, kaynaştırılacağı yumurta hücresinin mayoz gelişim sırasında girdiği, bu işlem için en uygun olan metafaz-II evresiyle de mükemmel bir uyum içindeydi. İşlemin diğer kısımları yemek tariflerinde olduğu kadar sıradan ve kolay uygulanabilir nitelikte. G0 evresindeki çekirdek metafaz-II evresindeki yumurtayla kaynaştırılıp, normal besin koşulları ve hafif bir elektrik şoku etkisiyle olağan çoğalma sürecine yeniden sokulduğunda, her şey tüp bebek olarak bilinen, in vitro fertilizasyon sürecindeki işleyişe uygun hale geliyor. Zigot, anne koyunun rahmine yerleştiriliyor ve gerekli hormonlarla normal hamilelik süreci başlatılıyor. Wilmut ve ekibinin gerçekleştirdikleri hakkinda bilinenler, yukarida kaba hatlariyla anlatilanlarla sinirli. Sürecin duyurulmayan kritik bir evresi varsa, bu ticari bir sir olarak kalacaga benziyor. Ancak, herkesin olup bitenler hakkinda ayni bilgilere sahip olmasi, deneyin başarisi konusunda kimsenin şüphe duymamasini gerektirmiyor. 277 denemeden sadece birinin başarili olmasi başta olmak üzere, çogu uzmanin takildigi pek çok soru işareti var. Herşeyin ötesinde, herhangi bir olgunun bilimsel gelişme olarak kabul edilmesi için, sürecin yinelenebilirliginin gösterilmesi gerekiyor. Bir embriyolog, Jonathan Slack, çok daha temel şüpheleri öne sürüyor: "Araştirmacilar, yumurta hücresindeki DNA’lari tümüyle temizleyememiş olabilirler. Dolayisiyla Dolly, siradan bir koyun olabilir." Slack, alinan meme hücresinin henüz tamamen özelleşmemiş olabilecegini, böyle vakalara meme hücrelerinde, bedenin diger kisimlarina göre daha sik rastlanilabildigini de ekliyor. Zaten Wilmut da, bedenin diger kisimlarindan alinan hücrelerin ayni sonucu verebileceginden bizzat şüpheli. Örnegin, büyük olasilikla kas veya beyin hücrelerinin asla bu amaçla kullanilamayacaklarini belirtiyor. Üstüne üstlük, koyun bu deneylerde kullanilabilecek canlilar arasinda biraz "ayricalikli" bir örnek. Koyun embriyolarinda hücresel özelleşme süreci zigot ancak 8-16 hücreye bölündükten sonra başliyor. Geleneksel laboratuvar canlisi farelerde ise ayni süreç ilk bölünmeden itibaren gözlenebiliyor. Insanlarda ise ikinci bölünmeden itibaren... Bu durum, ayni deneyin fare ve insanlarda asla başarili olamamasi olasiligini beraberinde getiriyor. Dile getirilen açık noktalardan biri de, hücrelerde DNA barındıran tek organelin çekirdek olmayışı. Kendi DNA’sına sahip organellerden mitokondrinin özellikle önem taşıdığı savlanıyor. Memeli hayvanlarda mitokondriyal DNA, embriyo gelişimi sırasında sadece anneden alınıyor. Her yumurta hücresi, farklı tipte DNA’lara sahip yüzlerce mitokondriyle donatılmış. Bu mitokondriler zigotun bölünmesinin ileri evrelerinde, embriyo hücrelerine dengeli bir biçimde dağılıyor; ancak, canlının daha ileri gelişim evrelerinde, bu denge belli tipteki DNA’lara doğru kayabiliyor. Parkinson, Alzheimer gibi hastalıkların temelinde bu mitokondriyal DNA kayması sürecinin etkileri var. Bu yüzden kimileri, sağlıklı bir kuzu olarak doğan Dolly’nin, zigot gelişimine müdahele edilmiş olması yüzünden sağlıksız bir koyun olarak yaşlanabileceğini öne sürüyorlar. Şimdilik Dolly’nin tek sağlıksız yönü, basına teşhir edilirken sabit tutulması amacıyla fazla beslenmesi yüzünden ortaya çıkan tombulluğu.

http://www.biyologlar.com/hayvan-ve-insan-kopyalama

Mikroorganizma hakkında bilgi

Mikroorganizma hakkında bilgi

Bir mikroorganizma (Yunanca mikrós; "küçük" ve ὀργανισμός, organismós; canlı "organizma"'dan gelmektedir.) veya mikrop (genellikle çıplak gözle görülemeyecek kadar küçük anlamında) mikroskobik bir organizmadır.

http://www.biyologlar.com/mikroorganizma-hakkinda-bilgi

Biyolojik Çeşitlilik, Çevre sorunları ve Etkileri

1- Biyolojik Çeşitlilik : Bir bölgedeki bitki ve hayvan türlerinin ve çeşitlerinin sayıca zenginliğine biyolojik çeşitlilik denir. Her ekosistemin kendine özgü bir biyolojik çeşitliliği vardır ve biyolojik çeşitlilik bir doğal zenginliktir. Bir ülkedeki bitki ve hayvan türleri, hem o ülkenin, hem de dünyanın biyolojik zenginliği olarak kabul edilir. Bir ekosistemdeki biyolojik çeşitliliğin fazla olması o ekosistemin diğer ekosistemlere göre üstün olması anlamına gelmez. Biyolojik çeşitlilik sürdürülebilir kalkınmanın sağlanmasına yardımcı olur ve üç farklı kavramdan oluşur. Bunlar genetik çeşitlilik, tür çeşitliliği ve ekosistem çeşitliliğidir. Bir tür içindeki bireylerin sahip olduğu kalıtsal özelliklerin yani bireylerin genetik yapılarının farklı genetik çeşitliliği oluşturur. Bir ekosistemde yaşayan ve genetik olarak birbirlerine benzerlik gösteren türlerin sayısı tür çeşitliliğini oluşturur. Belli bir bölgede yaşayan bitkiler ve hayvanlar gibi canlı varlıklarla toprak, su, hava ve mineraller gibi cansız varlıkların çeşitliliği, ekosistem çeşitliliğini oluşturur. Ekosistemlerin görevi, canlıların yaşamlarını ve nesillerini sürdürebilmek için uygun ortamın hazırlanmasını sağlamaktır. Ekosistemler, canlı ve cansız varlıklardan oluşur ve bir ekosistemin özelliğini, o ekosistemi oluşturan su, sıcaklık, ışık, nem, toprak, hava, rüzgâr, iklim gibi cansız varlıklar belirler. Bu cansız varlıkların canlılarla olan etkileşimi, ekosistemlerin çeşitliliğini belirler. Ekosistemlerin orman, göl, çöl, dağ, sazlık, akarsu, okyanus gibi çeşitleri vardır. Bu çeşitlilik arttıkça, ekosistemde yer alan habitat ve tür çeşitliliği de artar. NOT : 1- Orman ve okyanus ekosistemlerinde canlı türü sayısı, çöl ve kent ekosistemlerindeki canlı türü sayısından daha fazladır. 2- Canlı türlerinin sayısı 5 – 30 milyon arasında tahmin edilmektedir. Dünyada toplam 1.742.000 canlı türünün tanımlandığı ve 4.926.000 canlı türünün bulunabileceği belirtilmektedir. 2- Biyolojik Çeşitliliğin Faydaları : İnsanlar, tarım ve teknolojide sahip olduğu bugünkü seviyeye, biyolojik çeşitlilik ve zenginlik sonucu ulaşmıştır. Biyolojik çeşitliliğin ve ekosistemlerin sağladığı faydalar insan hayatının devamı için gereklidir. Biyolojik çeşitliliği oluşturan bitki ve hayvan türleri tarım, eczacılık, tıp, hayvancılık, ormancılık, balıkçılık ve sanayi alanlarında, temiz su ve hava sağlanmasında kullanılırlar. Biyolojik çeşitliliği oluşturan bitki ve hayvan türlerinin sayısının ve çeşitliliğinin fazla olması, o ülkeye ekonomik kazanç sağlar. Biyolojik çeşitlilik, ekosistemleri dengede tutar, gezegeni yaşanabilir hale getirir, insanların sağlığını, çevreyi ve ekosistemleri destekler. a) Bitki Çeşitliliğinin Faydaları : Bitkiler havayı temizler, erozyonu önler, toprağa organik madde kazandırır, toprak yorgunluğunu giderir. Diğer canlılara barınma ve beslenme ortamı sağlayarak ekosisteme devamlılık kazandırırlar. Ülkemize özgü olarak yetiştirilen çam, meşe, palamut, kavak, ardıç türü ağaçlar ormancılıkla ilgili fayda sağlar. Acur, taflan, çitlenbik, iğde, göleviz, ahlat (yaban armudu), alıç, delice, idris, melengiç, hünnap, üvez, yonca, mürdümük gibi sebze ve meyveler tıp alanında fayda sağlar. b) Hayvan Çeşitliliğinin Faydaları : İnsanlar, ilk çağlardan günümüze kadar hayvanları avlayarak, evcilleştirerek gıda kaynağı olarak, taşımacılıkta, giyimde ve tıpta kobay amaçlı kullanmışlardır. Bazı böcekler, bitkilerin tozlaşmasını sağlayarak bitki yaşamının ve çeşitliliğinin sürmesini ve bu sayede ekosistemin sürekliliğini sağlar. Böceklerin önemli bir kısmı, organik maddelerin ayrışmasını ve tekrar toprağa kazandırılmasını sağlar. Bazı böcek türleri de kuşlar, balıklar, sürüngenler gibi hayvanların besin kaynağı durumundadır. Ülkemizin çeşitli yerlerindeki doğal çevreye uyum sağlamış koyun, keçi, inek, sığır gibi türler hayvancılıkla ilgili fayda sağlar. Ülkemize özgü olarak bulunan alabalık, kefal ve levrek türü balıklar balıkçılıkla ilgili fayda sağlar. c) Ekosistem Çeşitliliğinin Faydaları : Doğaya dayalı turizme eko turizm denir. Eko turizm son yıllarda artan bir öneme sahiptir. Teknolojik ilerlemeler ve yaşam biçimine bağlı olarak stres altındaki insanlar, doğada kendini dinlendirmektedir. Milli parklara ve doğaya gidilerek stres atılmaktadır. NOT : 1- Her bölgenin kendine özgü biyolojik çeşitliliği yani bitki ve hayvan türleri vardır ve bir bölgenin biyolojik çeşitliliğini o bölgedeki ekosistemleri oluşturan cansız varlıklar belirler. 2- Bitki Çeşitliliğinin Faydaları : İnsanoğlu, eski çağlarda tarım toplumuna geçmesinden günümüze kadar çok sayıda bitki türünü kültüre almıştır. Tarih boyunca 3000 kadar bitki türünün beslenmede kullanıldığı ve bunların % 30’unun gıda üretiminin çoğunu karşıladığı belirtilmektedir. Geri kalan türlerin de tarım için önemi büyüktür. Bugün Genetik Mühendisliği ve Biyoteknolojideki ilerlemeler sonucu, günümüzde kullanılan çeşitlere yabani akrabalarından gen aktarımı yapılarak zararlı böcek, hastalık, yabancı otlar ve kuraklığa dayanıklı yeni çeşitler elde edilmektedir. Bugün, tarımda kullanılmayan doğada bulunan birçok bitkinin gelecekte tarımda kullanılma potansiyeli vardır. Bugün kültürü yapılan birçok meyve ve sebzenin ilk defa kültüre alındığı yer Türkiye’dir. Bu türlerin ülkemizde bulunan yabani akrabalarının paha biçilmez değeri vardır. Birçok bitki türü, tıp ve eczacılıkta eski çağlardan beri kullanılmaktadır. Son yüzyılda, biyokimya bilimindeki gelişmeler sonucu birçok bitkiden çeşitli bileşikler elde edilmiştir. Günümüzde 250.000 bitki türünden, ancak 5.000 ‘inin eczacılık değeri yönünden incelendiği kaydedilmektedir. Gelecek yıllarda bilimdeki ilerlemelere bağlı olarak birçok bitkiden, değişik hastalıklar için bileşiklerin elde edilmesi mümkündür. Ülkemiz tıp ve eczacılıkta kullanılan ve aromatik bitkiler yönünden zengin bir çeşitliliğe sahiptir. Ayrıca süs bitkisi olarak ve peyzaj düzenlemelerinde kullanılan soğanlı bitkilerce de zengindir. Önümüzde ki yıllarda, bu yönüyle değerlendirilebilecek çok sayıda bitki türü bulunmaktadır. Yine tarımsal zararlıların mücadelesinde bazı bitkilerden elde edilen bitkisel kökenli ilaçlar kullanılmaktadır. Doğadaki birçok bitki, bu yönüyle de önem arz etmektedir. 3- Hayvan Çeşitliliğinin Faydaları : İnsanlar, ilk çağlardan günümüze kadar hayvanları avlayarak, evcilleştirerek gıda kaynağı olarak, taşımacılıkta, giyimde ve tıpta kobay amaçlı kullanmışlardır. Yine kültüre alınan hayvanların yabani akrabaları, hayvan ıslahında kullanılmaktadır. Böceklere bakıldığında 1.200.000 böcek türünden, ancak 750 tür kültür bitkilerinde zararlı olmaktadır. Geri kalan türler bizim için faydalı türlerdir. Bunlardan bazıları tarımda zararlı türlerin üzerinde beslenerek bu türlerin savaşımında kullanılmaktadır. Bitkilerin büyük çoğunluğu tozlaşma için böceklere gereksinim duymaktadır. Böcekler, bitkilerin tozlaşmasını sağlayarak bitki yaşamının devamlılığı ve çeşitliliğine olanak vermekte ve ekosistemin devamlılığını sağlamaktadır. Yine böceklerin önemli bir kısmı, organik maddelerin ayrışmasını ve tekrar toprağa kazandırılmasını sağlamakta adeta doğada birer gönüllü temizlik işçisi gibi çalışmaktadır. Bazı türler de kuşlar, balıklar, sürüngenler gibi hayvanların gıda kaynağı durumundadır. Tüm bu yönleriyle, yeryüzündeki yaşamın böceklere bağlı olduğunu söylemek fazla abartılı olmaz. 4- Ekosistemin Ekoturizm Olarak Sağladığı Faydalar : Doğaya dayalı turizm, ekoturizm olarak adlandırılmaktadır. Ekoturizm son yıllarda artan bir önem arz etmektedir. Teknolojik ilerlemeler ve yaşam biçimine bağlı olarak stres altındaki insanlar, doğada kendini dinlendirmektedir. Milli parklara ve doğaya gidilerek stres atılmaktadır. A.B.D.’de Milli Parklar Servisi’nin 1998 yılı ölçümlerine göre, yaklaşık 300.000 turistin milli parkları ziyareti ile, direk ve dolaylı gelir olarak 14 milyar dolar gelir elde edilmiştir. Benzer durum dünyanın diğer ülkelerinde de vardır. Dünya Turizm organizasyonu, ekoturizmin uluslar arası turizmin % 7’sine karşılık geldiğini bildirmektedir. Ülkemizde de Fethiye’de bulunan Kelebekler Vadisindeki kelebekleri görmek amacıyla, tatil sezonu boyunca günübirlik olarak 15.000 turistin ziyaret ettiği bildirilmektedir. Biyolojik çeşitlilik ve doğal güzellikler bakımından, dünyada eşsiz bir yere sahip ülkemiz, ekoturizmde büyük potansiyel arz etmektedir. Ülkemizin sahip olduğu doğal güzellikler ve biyolojik zenginlikler yurt içi ve dışında yeterince tanıtılmalı ve ekoturizm geliştirilmelidir. SORU : 1- Yaşanılan bölgede en çok yetiştirilen sebzeler hangileridir? 2- Yaşanılan bölgeye özgü bitki ve hayvan türleri nelerdir? 3- Yaşanılan bölgedeki bitki ve hayvanların sayısı ve çeşitliliği diğer bölgelerde de aynı mıdır? 4- Bitki ve hayvan türlerinin sayıca fazla olması, bölgenin doğal zenginliklerinin bir göstergesi midir? 5- Kaç değişik kuş türü biliyoruz? 6- Kaç değişik balık türü biliyoruz? 7- Kaç değişik çiçek çeşidi biliyoruz? 8- Çeşitlilik nedir? 9- Bir bölgedeki bitki ve hayvan türlerinin çeşitliliği, o yerin hangi özelliğini ortaya koyar? 10- Ders kitabında verilen resimlerdeki canlılardan hangileri ülkemizde yaşamaktadır? 11- Ders kitabında verilen resimlerdeki canlılardan hangilerinin nesli tükenmek üzeredir? 12- Ülkemizde farklı ekosistemlerin biyolojik çeşitliliğini oluşturan bitki ve hayvan türleri nelerdir? 3- Biyolojik Çeşitliliğin Azalması ve Yok Olması : Bir ekosistemde, bölgede, ülkede veya dünyada yaşan herhangi bir canlı türünün yok olması o canlının neslinin tükenmesi yani biyolojik çeşitliliğin azalması, canlı türlerinin yok olması da biyolojik çeşitliliğin yok olması anlamına gelir. İklim değişikliliği, kirlenme, doğal kaynakların aşırı kullanımı, sürdürülebilir olmayan kaynakların kullanımı ve hızlı nüfus artışı biyolojik çeşitliliğin azalmasına ve türlerin yok olmasına neden olur. Habitatların yok olması veya zarar görmesi, birçok bitki ve hayvan türünün neslinin yok olmasına neden olur. Biyolojik çeşitliliğin korunması için 1992’de 172 ülkenin katıldığı Rio Zirvesi olarak bilinen Birleşmiş Milletler (BM) Çevre ve Kalkınma Konferansı yapılmış ve İklim Değişikliği ve Biyolojik Çeşitlilik sözleşmeleri imzaya açılmıştır. Rio Zirvesi’ne katılan, aralarında Türkiye’nin de bulunduğu 156 ülke Biyolojik Çeşitlilik Sözleşmesi’ni (BÇS) imzalayarak, kendi sınırları içerisindeki bitkilerin ve hayvanların çeşitliliğinin tam olarak korunması sorumluluğunu üstleneceklerine, ayrıca gelecek nesillerin doğal kaynaklara olan ihtiyaçlarından ödün vermeden günümüz ihtiyaçlarının karşılanması için çeşitli yollar aranması konusunda anlaşmaya varmıştır. • Önceki yıllarda yaşayan mamut, bizon, moa, dinozor gibi canlılar günümüzde yaşamamaktadır yani nesilleri tükenmiştir. • Önceki yıllarda ülkemizde yaşayan Anadolu leoparı, Asya fili, kunduz, aslan gibi canlılar şuan ülkemizde yaşamamaktadır ve ülkemizde nesli tükenmiştir. • Şu an ülkemizde yaşayan Akdeniz foku, kelaynaklar, deniz kaplumbağaları, alageyik, boz ayı, kardelen çiçeği ve salep yapımında kullanılan orkideler nesli tükenmek üzere olan canlılardır. NOT : 1- Türkiye'de 500'den fazla habitat çeşidinde 10.000'den fazla çiçekli bitki ve eğrelti; 400'den fazla kuş; 500'den fazla balık; 100.000'den fazla sürüngen ve 160.000'den fazla omurgasız hayvan türü kayıtlıdır. SORU : 1- Biyolojik çeşitlilik yok olabilir mi? 2- Biyolojik çeşitliliğin yok olması nasıl gerçekleşir ve ne gibi sonuçlar getirir? 3- Canlıların neslinin tükenmesi, biyolojik çeşitliliğin azalması anlamına gelir mi? 4- Ülkemizin Biyolojik Zenginlikleri : Ülkemizin Asya ve Avrupa kıtaları arasında bir köprü görevi görmesi, ayrıca çok değişik iklim ve coğrafi yapıya sahip olması nedeniyle, bitki ve hayvan türleri bakımından oldukça zengin bir çeşitliliğe sahiptir. Türkiye’de 120 memeli, 413 kuş, 93 sürüngen 18 kurbağagil, 276 deniz balığı, 192 tatlı su balığı ve 60–80.000 böcek türünün bulunduğunu bilinmektedir. Yine ülkemiz bitki türleri bakımından da oldukça zengindir. Bütün Avrupa kıtasında 12.000 bitki türü bulunmasına karşın ülkemizde 9.000 bitki türü bulunmakta ve bu türlerin % 30’u dünyada sadece Türkiye’ de bulunmaktadır. Oldukça fazla sayıda bitki ve hayvan türünün tanımlandığı yer ve anavatanı ülkemizdir. Tüm bu yönleriyle Türkiye, biyolojik çeşitlilik bakımından bir kıta özelliği göstermekte olup dünyada eşsiz bir yere sahiptir. 5- Biyolojik Çeşitliliğin Korunması : Biyolojik çeşitlilik, bir bölgedeki bitki ve hayvan türlerinin ve çeşitlerinin sayıca zenginliğidir. Ülkemizde ve dünyada nesli tükenme tehlikesiyle karşı karşıya olan bitkiler kardelen ve salep yapımında kullanılan orkidelerdir. Deniz kaplumbağaları, Akdeniz fokları, bozayı, Ankara keçisi, Tuj koyunları, alageyik, sülün ise nesli tükenme tehlikesiyle karşı karşıya olan hayvanlardandır. İster bitki ister hayvan olsun bu canlıların nesillerinin konuna altına alınması için tabiat parklarının, doğal yaşam alanlarının oluşturulması, organik tarımın tercih edilmesi ve insanların bu konularda eğitilmesi gerekmektedir. Çiftçiler aşırı otlatmanın, bitkilerin aşırı toplanmasının, ormanların arazi kazanmak amacıyla tahrip edilmesinin biyolojik çeşitlilik açısından olumsuz etkileri konusunda bilinçlendirilmelidir. Kıyı habitatlarının tahrip edilmesi, balıkçılığın ve avlanmanın aşırı ve kontrolsüz yapımı engellenmelidir. Ayrıca bu türlerin korunması ve denetimi için mekanizmalar geliştirilmelidir. Biyolojik çeşitlilik tüm dünyanın ortak zenginliğidir. Bugünün ihtiyaçlarını karşılayarak gelecek kuşaklara da bu çeşitliliği aktarabilmek amacıyla biyolojik çeşitliliğin korunması gereklidir. C- ÇEVRE SORUNLARI VE ETKİLERİ : 1- Ekosistemlerin Bozulma Nedenleri (Çevre Sorunları) : Çevre sorunları, insanların yaşadığı problemlerden biridir çevre sorunlarının yani ekosistemlerdeki bozulmaların bir kısmı doğal yolla, bir kısmı da insan etkisiyle oluşur. İnsanlara ve ekosistemlere zarar veren doğal kaynaklı bozulmalar, su, toprak ve hava hareketleriyle oluşur. Su taşkınları, depremler, erozyon, volkanik hareketler (yanardağ patlamaları), fırtına, kasırga, uzun siren kuraklık ekosistemlerin bozulmasına yol açan doğal afetlerdir. İnsanlar, bulundukları ekosistemlerdeki (çevrelerindeki) canlı ve cansız varlıkları etkileyerek ekosistemlerin bozulmasına yol açarlar. İnsanlar, ekosistemlerdeki doğal varlıklarla iç içe yaşarken zamanla teknolojinin gelişmesi ve doğal kaynakların bilinçsiz kullanılması sonucu doğanın dengesi bozulmuş ve birçok çevre sorunu ortaya çıkmıştır. Hızlı nüfus artışı, bilinçsiz sanayileşme, düzensiz şehirleşme, doğal kaynakların bilinçsiz kullanılması, nükleer silahlar ve nükleer santral patlamaları, biriktirilmiş suların (barajlardaki suların) taşkınlara neden olması, orman tahribatı ve çığ gibi olaylar doğal denge üzerinde olumsuz etkiler yaparak çevre kirliliğine yani ekosistemlerin bozulmasına yol açan insan kaynaklı faktörlerdir. Hava kirliliği, su kirliliği ve toprak kirliliği ve nükleer kirlilik çevre kirliliği sonucu oluşan kirlenmelerdir. SORU : 1- Ülkemizi ve Dünya’mızı tehdit eden önemli çevre sorunları nelerdir? 2- Ülkemizi ve Dünya’mızı tehdit eden önemli çevre sorunlarının sebepleri ve sonuçları nelerdir? 3- Ülkemizi ve dünyayı tehdit eden çevre sorunları dünyayı nasıl etkiler? 4- Ekosistemler zamanla neden değişip bozulmaktadır? 5- Ekosistemlerdeki bozulmalar beraberinde hangi sonuçları getirin? 6- Çok küçük bir ekosistemin zarar görmesi tüm dünyayı nasıl etkiler? 2- Çevre Kirliliğine Neden Olan (İnsan Kaynaklı) Faktörler : a) Orman Tahribatı : Orman yangınları, ihmal, dikkatsizlik, kaçak yapılaşma ve arazi açmak için ağaçların bilinçsizce kesilmesi gibi sebepler yüzünden ormanlar tahrip olmaktadır. Bunun sonucunda ekosistemlerin doğal dengesi bozulmakta, ormanda yaşayan canlı türleri ve bu türlerin habitatları yok olmakta, toprak zenginliği kaybolmaktadır. (Ülkemizde orman yangınlarının kayıtları 1937 yılında tutulmaya başlanmıştır. Bu kayıtlara göre yaklaşık 1,5 milyon hektar ormanlık alan yok olmuştur). SORU : 1- Ülkemizdeki orman tahribi sadece ülkemizi mi etkiler? 2- Orman tahribi nasıl engellenebilir? 3- Ormanların kaybı hayatımızı nasıl etkiler? b) Çığ : Yüksek yerlerdeki karların şiddetli ses etkisiyle dağın yamaçlarına yuvarlanmasına çığ denir. Eğimli arazi üzerinde birikmiş büyük kar örtüsü, yer çekimi etkisiyle kaydığında çığ oluşur. Çığ genellikle bitki örtüsü olmayan, dağlık eğimli arazilerde görülür. Çığlar beraberinde toprak, taş ve ağaçları da sökerek götürür. Bu şekilde meydana gelen aşınma ve taşınma, toprağı verimsizleştirerek canlıların yaşamını tehlikeye sokar. Çığlar, tarım alanlarının veriminin düşmesine ve su kaynaklarının kirlenmesine neden olur. SORU : 1- Çığdan korunma yolları nelerdir? c) Nükleer Silahlar ve Nükleer Santral Patlamaları : Nükleer silahlar, nükleer kazalar ve bu kazalar sonunda ortaya çıkan nükleer atıklar kirlenmeye sebep olur. (1986 yılında yaşanan Çernobil Nükleer Enerji Santrali Kazası’nın yarattığı olumsuz etkiler, bu kirliliğin en canlı örneğidir. Bu olaydan ülkemizin en çok Karadeniz Bölgesi’nin etkilendiği tespit edilmiştir). SORU : 1- Nükleer kirlilik sadece belli bir bölgeyi mi etkiler? 2- Nükleer kirliliğin canlılar ve onların çevreleri üzerindeki olumsuz etkileri nelerdir? d) Biriktirilmiş Suların Taşkınlara Yol Açması : Barajların yıkılması sonucu oluşan taşkınlar, bitki örtüsüne, ekili alanlara toprağın verimli tabakasının taşınmasına neden olur. e) Aşırı Nüfus Artışı : Bir bölgedeki ya da ekosistemdeki nüfus artışını ya da azalışını o ekosistemdeki göçler, doğum ve ölüm olayları belirler. Nüfus artışının az olduğu dönemde insan tarafından çevreye verilen zarar doğal yollarla kendiliğinden düzeltilebiliyordu. Nüfus artışı fazla olduğu için; • Doğal kaynaklar aşırı kullanıldı. • Barınma amacıyla yeşil alanlar yok edildi. • Büyük kentler çevre kirliliğine yol açtı. • Araçların egzoz gazları hava kirliliğine yol açtı. • Soğutucularda kullanılan karbon maddesi ozon tabakasını inceltti. • Tarımsal alanlarda yapılan ilaçlamalar yararlı böcekleri de yok etti. • Evsel atıklar, lağım suları ve sanayi atıkları çevreyi kirletti. • Tarımda üretimi arttırmak için aşırı kullanılan gübreler çökerek toprağın ve yeraltı sularının kirlenmesine yol açtı. f) Plansız Sanayileşme : Nüfusun hızla artması sonucu sanayi gelişmiş ve bunun sonucu çevre (hava, toprak, su) zarar görmüş, kirlenmiştir. • Tarla ekmek için orman arazilerinin kesilmesi. • Artan kereste ihtiyacı nedeniyle ormanların kesilmesi. • Fabrika bacalarına filtre takılmaması. • Fazla ürün elde etmek için tarımda aşırı gübreleme ve ilaçlama yapılması. • Fabrika atıklarının arıtılmadan suya ya da toprağa verilerek su ve toprağı kirletmesi. g) Doğal Kaynakların Bilinçsiz Kullanılması : Bir ekosistemdeki hava, toprak, su, hayvanlar, bitkiler, yeraltı zenginlikleri ve doğal güzellikler o ekosistemdeki doğal kaynakları oluştururlar. Doğal kaynakların bilinçsiz kullanılması çevre kirliliğine yol açar. • Kimyasal ve biyolojik silahların kullanılması. • Gereksiz tarım ilaçları ve böcek öldürücülerin kullanılması. • Soğutucuların ve spreylerin fazla kullanılması. • Ev ve sanayi atıklarının çevreye dağılması. • Nükleer silahların ve radyasyona yol açan maddelerin kullanılması. • Kalitesiz fosil yakıtların (kömür, petrol, doğal gaz) kullanılması. 3- Çevre Kirliliğinin Sonuçları : Hava kirliliği, su kirliliği ve toprak kirliliği ve nükleer kirlilik çevre kirliliği sonucu oluşan kirlenmelerdir. a) Hava Kirliliği : Atmosferde bulunan zararlı gazların (karbon oksitleri, kükürt oksitleri ve azot oksitleri) miktarının artmasına hava kirliliği denir. Hava kirliliğinin canlı ve cansız varlıklar üzerinde olumsuz etkileri vardır. Havayı katı ve gaz halindeki maddeler kirletir. Sanayi tesislerinden filtre edilmeden bırakılan gazlar, araç egzozlarından çıkan gazlar, fosil yakıtların (petrol, kömür ve doğal gaz) yanmasından oluşan gazlar (evlerin ısıtılmasında, taşıtlarda ve sanayi tesislerinde fosil yakıtların aşırı kullanılması sonucu) hava kirliliği oluşur. Hava kirliliği sonucu asit yağmurları oluşur, sera etkisi artar ve ozon tabakası delinir. Sera etkisi ve ozon tabakasındaki incelme, iklim üzerinde tüm Dünya’da (küresel boyutta) değişikliklere yol açar. Kullanılan fosil yakıtların oluşturduğu katı ve gaz halindeki atıkların (fosil yakıtların yanması ile havaya karışan karbon oksitleri, kükürt oksitleri ve azot oksitleri), suya ve su döngüsüne karışması sonucu bu atıkların yağış olarak yeryüzüne inmesine asit yağmuru denir. Güneş’ten gelen ışınların bir kısmı yeryüzü tarafından soğurulurken bir kısmı da uzaya geri yansır. Yeryüzünden yansıyan bu ışınların bir kısmı, atmosferde soğurularak havanın ısınmasına sebep olur. Güneş ışınlarının bir kısmının uzaya gönderilmesinin engellenmesine sera etkisi denir. Sera etkisine neden olan gazların (başta karbondioksit olmak üzere) miktarının artması, soğurulan güneş ışınlarının miktarının artmasına sebep olur. Bunun sonucunda atmosferin ve Dünya’nın sıcaklığı aşırı yükselir. Atmosferdeki sera etkisinin artmasına küresel ısınma denir. Küresel ısınma sonucunda buzullar erimeye ve okyanuslardaki su seviyeleri yükselmeye başlar ve küresel çölleşme gerçekleşir. Hava kirliliğine sebep olan (flora klora karbon gibi itici ve soğutucu olarak kullanılan) gazlar ozon tabakasının incelmesine sebep olur. Ozon tabakasının incelmesi sonucu Güneşin zararlı ultraviyole ışınları yeryüzüne ulaşır ve bu ışınlar biyolojik çeşitliliği olumsuz etkiler ve canlıların bağışıklık sistemini bozar. (Flora klora karbon gibi itici ve soğutucu olarak kullanılan gazların kullanılmaması konusu Brezilya'da ulusların imzasına açılmış ve iki ülke bu antlaşmayı imzalamıştır. Bu ülkeler Türkiye ve A.B.D.dir). 1- Havanın Canlılar İçin Önemi (*) : 1- Canlılar havasız yaşayamaz. 2- Solunum için bazı canlılar (insanlar ve oksijenli solunum yapan canlılar) oksijene ihtiyaç duyarlar. Havadaki oksijen, suya ve toprağa geçer, buradaki canlılarda oksijen kullanır. 3- Yeşil bitkiler, fotosentez yaparken havadaki karbondioksiti kullanır ve oksijen üretir. 4- Havanın azotu bazı bitkiler tarafından, (azot bağlayıcı) bakteriler yardımıyla alınarak protein yapımında kullanılır. (Canlıların temel yapısını proteinler oluşturduğu için önemlidir). 5- Havadaki su buharı canlılar için gereklidir. 2- Hava Kirliliğinin Etkileri (*) : 1- Solunum sistemi hastalıklarına neden olur. (Astım, bronşit, akciğer kanseri). 2- Yeşil alanlar yok olur, tarım ve hayvancılık olumsuz etkilenir. 3- Dolaşım sistemi hastalıklarına neden olur. (Kalp yetmezliği, damar tıkanıklığı). 4- Kağıt, kumaş, sanat eserleri, tarihi kalıntılar, araçlar ve evlerin yıpranmasına neden olur. 5- Kirli havada biriken kurşun oranı saçların dökülmesine neden olur. 3- Hava Kirliliğinin Önlenmesi (*) : 1- Sanayi tesisleri katı, sıvı ve gaz atıklarını arıtarak doğaya bırakmalıdır. (Yönetim bu gereçler için sanayi kuruluşlarına uzun vadeli ve düşük faizli krediler vererek kontrolü çevre örgütlerine devir etmelidir). 2- Havayı kirletmeyen doğal gaz, rüzgar, güneş enerjisi ve nükleer enerji gibi enerji kaynakları desteklenmelidir. 3- Bacalardan ve egzozlardan çıkan gazlar, yenilenebilir enerji kaynakları kullanılarak zararsız hale getirilmelidir. 4- İnsanların yeşil bitkileri ve ormanları kullanmaları sağlanarak, yeşil alanlar çoğaltılmalıdır. (Evlerin çevrelerinin beton duvarlarla çevrilmesi yasaklanarak, belediyeler aracılığı ile mülklerin yeşil bitkilerle sınırlandırılması sağlanmalıdır). SORU : 1- Asit yağmurlarının çevremiz üzerindeki olumsuz etkileri nelerdir? 2- Sera etkisi hayatımızı nasıl etkiler? 3- Asit yağmurları, sera etkisi ve ozon tabakasının delinmesi gibi Dünya’yı etkileyen bu çevre problemleri ülkemizi nasıl etkilemektedir? b) Su Kirliliği : Sanayi kuruluşlarının ve enerji üretim santrallerinin atıkları, nüfus artışı, şehirleşme, deniz taşımacılığı ve kazalar, asit yağmurları, foseptikler, çöplükler, tarımda kullanılan ilaçlar, doğal ve yapay gübreler su kirliliğine neden olur. Su kirliliği, tüm canlıların hayatını tehlikeye sokar. İçme ve kullanma suları daima temiz olmalıdır. Su kirliliğinden dolayı deniz, göl ve akarsularda her türlü üretim düşer, içme ve kullanma suyu bulmakta güçlük çekilir, suya bağlı ekosistemlerde doğal denge bozulur. Ülkemizin üç tarafı denizlerle çevrili olduğundan deniz kirliliği de önem taşımaktadır. Sakarya ve Gediz Nehirleri, Akşehir Gölü ve Tuz Gölü, İzmit ve İzmir Körfezleri ile Marmara Denizi ülkemizde su kirliliğinin görüldüğü yerlerdendir. SORU : 1- Ülkemizdeki su kirliliği Dünya’yı nasıl etkilemektedir? 2- Su kirliliğine nasıl çözüm bulunabilir? c) Toprak Kirliliği : Yerleşim alanlarından çıkan atıklar ve çöpler, sanayi atıkları, egzoz gazları, kimyasal (organik ve mineral) gübreler, tarımla mücadele ilaçlarının kullanımı, yanlış arazi kullanımı, su ve rüzgar erozyonu, ile ulaşım ağı toprak kirliliğine neden olur. Bir yerde belirli kalınlıktaki toprağın oluşabilmesi için milyonlarca yıl geçmesi gerekmektedir Bunun için doğal kaynaklardan biri olan toprağın çok iyi korunması gerekir. Son yıllarda (yirminci yüzyılın başından itibaren) modern tarıma geçilmesi ve sanayileşmenin hızlanması ile birlikte, toprak kirliliği de bir çevre sorunu olarak ortaya çıkmıştır. Toprak kirliliği ürün kalitesinin düşmesine, topraktaki organik ve inorganik maddelerin azalmasına ve dolayısıyla ekosistem dengesinin bozulmasına yol açabilmektedir. SORU : 1- Toprak kirliliği hangi çevre sorunlarını beraberinde getirir? 4- Çevre Kirliliğinin Sonuçları : Çevre kirliliği sonucu; 1- Dünya’nın coğrafyası değişir. 2- Dünya’nın iklimi değişir. 3- Erozyonlar oluşur ve toprağın verimini düşürür. 4- Su kaynakları azalır ve kurur. 5- Enerji kıtlığı başlar. 6- Biyolojik çeşitlilik (canlı çeşitliliği) azalır. 7- Beslenme sorunu doğar. 5- Çevreyi Korumak İçin Alınacak Önlemler : 1- Sanayileşmede çevreye zarar vermemek için gerekli tedbirlerin alınması gerekir. 2- Canlı türlerinin ve nesillerinin devamının sağlanması gerekir. 3- Bilinçli tarım yapılması gerekir. 4- Ormanların yok edilmemesi gerekir. 5- Su kaynaklarının kirletilmemesi gerekir. 6- Geri dönüşümlü ürünlerin kullanılması gerekir. 7- Tüketim maddelerinin geri dönüştürülebilecek şekilde kullanılması gerekir. 8- Yenilenebilir enerji kaynaklarının kullanılması gerekir. 9- Yenilenemez enerji kaynaklarının kullanılmaması gerekir. 10- Eğitime önem verilmesi ve tutumlu olunması gerekir. 11- Sürdürülebilir kalkınma yapılması gerekir. SORU : 1- Çok sayıda kurum ve kuruluşun çevre konusunda faaliyet göstermesi çevre sorunlarının çözülmesi için yeterli midir? Neden? 2- Ülkemizde bu konuda çalışan kuruluşlardan hangilerinin isimlerini ve nasıl öğrendiniz? 3- Çevre sorunlarıyla ilgili, gönüllü kuruluşlardan birine üye olarak çalışmak isteseydiniz hangisini tercih ederdiniz? Neden? NOT : 1- Çevre sorunlarının sınır tanımaz özelliğinden dolayı uluslararası iş birliği zorunlu bir hale gelmiştir. Bu konudaki ilk uluslararası düzeyde toplantı 1972 yılında, Birleşmiş Milletler Teşkilatı tarafından düzenlenen Stokholm 1. Çevre Konferansı’dır. Bu toplantı sonunda, çevreye verilen önemi vurgulamak için 5 Haziran günü “Dünya Çevre Günü” olarak kabul edilmiştir. 2- Uluslararası düzeyde çevreyle ilgili faaliyet gösteren önemli kuruluşlardan bazıları; • Birleşmiş Milletler Kalkınma Programı (UNDP) • Dünya Meteoroloji Teşkilatı (WMO) • Dünya Sağlık Teşkilatı (WHO) 3- Ülkemizde çevreyle ilgili faaliyet gösteren önemli kuruluşlardan bazıları; • Çevre Bakanlığı • Tübitak • Türkiye Ormancılık Derneği • Türkiye Bitki Koruma Derneği • Türkiye Erozyonla Mücadele • Ağaçlandırma ve Doğal Varlıkları Koruma Vakfı (TEMA) • Türkiye Çevre Eğitim Vakfı 4- Zoolog : Hayvanların anatomik ve fizyolojik özelliklerini inceleyen, onları özelliklerine göre sınıflandıran ve çeşitli etmenlerin hayvanlar üzerindeki etkilerini araştıran kişilere zoolog denir. Zoologlar araştırmacı veya uygulayıcı olarak görev yaparlar. Araştırmacı olarak çalışan zoolog; yeryüzündeki hayvanların yaşayışlarım, doğal ortamları içinde gözlem yolu ile inceler. Hayvanların anatomik ve fizyolojik özelliklerini laboratuarlarda inceler ve elde edilen verilere göre hayvanları sınıflandırır. Hayvanların evrimini, fosilleri inceleyerek araştırır. Uygulama alanında çalışan zoolog; çeşitli ilaçların hayvanlar üzerindeki etkisini deneysel olarak inceler, tarımda böcekler ve diğer zararlı hayvanlarla mücadele yöntemleri geliştirir, milli parklardaki hayvanlar için uygun ortamlar oluşturulmasına çalışır, ülke dışına çıkarılmaya ya da yurt dışından getirilmeye çalışılan hayvan türleri konusunda görüş bildirir, hastanelerde doku ve hücre incelemeleri yapar. Zoolog olmak isteyenlerin üst düzeyde genel yeteneğe sahip, doğayı seven, canlılarla uğraşmaktan hoşlanan, meraklı ve iyi bir gözlemci, fen bilimlerine özellikle biyolojiye ilgili ve bu alanda başarılı, sabırlı, araştırmacı ve bilimsel meraka sahip ve estetik anlayışı yüksek kimseler olmaları gerekir. Zoologlar çalışmalarını laboratuarda ve açık havada yürütürler. Çalışırken biyologlarla, ziraat mühendisleriyle, veteriner hekimlerle, kimyagerlerle ve kimya mühendisleri ile iletişim halindedirler. 1- Biyolojik Çeşitlilik : Bir bölgedeki bitki ve hayvan türlerinin ve çeşitlerinin sayıca zenginliğine biyolojik çeşitlilik denir. Her ekosistemin kendine özgü bir biyolojik çeşitliliği vardır ve biyolojik çeşitlilik bir doğal zenginliktir. Bir ülkedeki bitki ve hayvan türleri, hem o ülkenin, hem de dünyanın biyolojik zenginliği olarak kabul edilir. Bir ekosistemdeki biyolojik çeşitliliğin fazla olması o ekosistemin diğer ekosistemlere göre üstün olması anlamına gelmez. Biyolojik çeşitlilik sürdürülebilir kalkınmanın sağlanmasına yardımcı olur ve üç farklı kavramdan oluşur. Bunlar genetik çeşitlilik, tür çeşitliliği ve ekosistem çeşitliliğidir. Bir tür içindeki bireylerin sahip olduğu kalıtsal özelliklerin yani bireylerin genetik yapılarının farklı genetik çeşitliliği oluşturur. Bir ekosistemde yaşayan ve genetik olarak birbirlerine benzerlik gösteren türlerin sayısı tür çeşitliliğini oluşturur. Belli bir bölgede yaşayan bitkiler ve hayvanlar gibi canlı varlıklarla toprak, su, hava ve mineraller gibi cansız varlıkların çeşitliliği, ekosistem çeşitliliğini oluşturur. Ekosistemlerin görevi, canlıların yaşamlarını ve nesillerini sürdürebilmek için uygun ortamın hazırlanmasını sağlamaktır. Ekosistemler, canlı ve cansız varlıklardan oluşur ve bir ekosistemin özelliğini, o ekosistemi oluşturan su, sıcaklık, ışık, nem, toprak, hava, rüzgâr, iklim gibi cansız varlıklar belirler. Bu cansız varlıkların canlılarla olan etkileşimi, ekosistemlerin çeşitliliğini belirler. Ekosistemlerin orman, göl, çöl, dağ, sazlık, akarsu, okyanus gibi çeşitleri vardır. Bu çeşitlilik arttıkça, ekosistemde yer alan habitat ve tür çeşitliliği de artar. NOT : 1- Orman ve okyanus ekosistemlerinde canlı türü sayısı, çöl ve kent ekosistemlerindeki canlı türü sayısından daha fazladır. 2- Canlı türlerinin sayısı 5 – 30 milyon arasında tahmin edilmektedir. Dünyada toplam 1.742.000 canlı türünün tanımlandığı ve 4.926.000 canlı türünün bulunabileceği belirtilmektedir. 2- Biyolojik Çeşitliliğin Faydaları : İnsanlar, tarım ve teknolojide sahip olduğu bugünkü seviyeye, biyolojik çeşitlilik ve zenginlik sonucu ulaşmıştır. Biyolojik çeşitliliğin ve ekosistemlerin sağladığı faydalar insan hayatının devamı için gereklidir. Biyolojik çeşitliliği oluşturan bitki ve hayvan türleri tarım, eczacılık, tıp, hayvancılık, ormancılık, balıkçılık ve sanayi alanlarında, temiz su ve hava sağlanmasında kullanılırlar. Biyolojik çeşitliliği oluşturan bitki ve hayvan türlerinin sayısının ve çeşitliliğinin fazla olması, o ülkeye ekonomik kazanç sağlar. Biyolojik çeşitlilik, ekosistemleri dengede tutar, gezegeni yaşanabilir hale getirir, insanların sağlığını, çevreyi ve ekosistemleri destekler. a) Bitki Çeşitliliğinin Faydaları : Bitkiler havayı temizler, erozyonu önler, toprağa organik madde kazandırır, toprak yorgunluğunu giderir. Diğer canlılara barınma ve beslenme ortamı sağlayarak ekosisteme devamlılık kazandırırlar. Ülkemize özgü olarak yetiştirilen çam, meşe, palamut, kavak, ardıç türü ağaçlar ormancılıkla ilgili fayda sağlar. Acur, taflan, çitlenbik, iğde, göleviz, ahlat (yaban armudu), alıç, delice, idris, melengiç, hünnap, üvez, yonca, mürdümük gibi sebze ve meyveler tıp alanında fayda sağlar. b) Hayvan Çeşitliliğinin Faydaları : İnsanlar, ilk çağlardan günümüze kadar hayvanları avlayarak, evcilleştirerek gıda kaynağı olarak, taşımacılıkta, giyimde ve tıpta kobay amaçlı kullanmışlardır. Bazı böcekler, bitkilerin tozlaşmasını sağlayarak bitki yaşamının ve çeşitliliğinin sürmesini ve bu sayede ekosistemin sürekliliğini sağlar. Böceklerin önemli bir kısmı, organik maddelerin ayrışmasını ve tekrar toprağa kazandırılmasını sağlar. Bazı böcek türleri de kuşlar, balıklar, sürüngenler gibi hayvanların besin kaynağı durumundadır. Ülkemizin çeşitli yerlerindeki doğal çevreye uyum sağlamış koyun, keçi, inek, sığır gibi türler hayvancılıkla ilgili fayda sağlar. Ülkemize özgü olarak bulunan alabalık, kefal ve levrek türü balıklar balıkçılıkla ilgili fayda sağlar. c) Ekosistem Çeşitliliğinin Faydaları : Doğaya dayalı turizme eko turizm denir. Eko turizm son yıllarda artan bir öneme sahiptir. Teknolojik ilerlemeler ve yaşam biçimine bağlı olarak stres altındaki insanlar, doğada kendini dinlendirmektedir. Milli parklara ve doğaya gidilerek stres atılmaktadır. NOT : 1- Her bölgenin kendine özgü biyolojik çeşitliliği yani bitki ve hayvan türleri vardır ve bir bölgenin biyolojik çeşitliliğini o bölgedeki ekosistemleri oluşturan cansız varlıklar belirler. 2- Bitki Çeşitliliğinin Faydaları : İnsanoğlu, eski çağlarda tarım toplumuna geçmesinden günümüze kadar çok sayıda bitki türünü kültüre almıştır. Tarih boyunca 3000 kadar bitki türünün beslenmede kullanıldığı ve bunların % 30’unun gıda üretiminin çoğunu karşıladığı belirtilmektedir. Geri kalan türlerin de tarım için önemi büyüktür. Bugün Genetik Mühendisliği ve Biyoteknolojideki ilerlemeler sonucu, günümüzde kullanılan çeşitlere yabani akrabalarından gen aktarımı yapılarak zararlı böcek, hastalık, yabancı otlar ve kuraklığa dayanıklı yeni çeşitler elde edilmektedir. Bugün, tarımda kullanılmayan doğada bulunan birçok bitkinin gelecekte tarımda kullanılma potansiyeli vardır. Bugün kültürü yapılan birçok meyve ve sebzenin ilk defa kültüre alındığı yer Türkiye’dir. Bu türlerin ülkemizde bulunan yabani akrabalarının paha biçilmez değeri vardır. Birçok bitki türü, tıp ve eczacılıkta eski çağlardan beri kullanılmaktadır. Son yüzyılda, biyokimya bilimindeki gelişmeler sonucu birçok bitkiden çeşitli bileşikler elde edilmiştir. Günümüzde 250.000 bitki türünden, ancak 5.000 ‘inin eczacılık değeri yönünden incelendiği kaydedilmektedir. Gelecek yıllarda bilimdeki ilerlemelere bağlı olarak birçok bitkiden, değişik hastalıklar için bileşiklerin elde edilmesi mümkündür. Ülkemiz tıp ve eczacılıkta kullanılan ve aromatik bitkiler yönünden zengin bir çeşitliliğe sahiptir. Ayrıca süs bitkisi olarak ve peyzaj düzenlemelerinde kullanılan soğanlı bitkilerce de zengindir. Önümüzde ki yıllarda, bu yönüyle değerlendirilebilecek çok sayıda bitki türü bulunmaktadır. Yine tarımsal zararlıların mücadelesinde bazı bitkilerden elde edilen bitkisel kökenli ilaçlar kullanılmaktadır. Doğadaki birçok bitki, bu yönüyle de önem arz etmektedir. 3- Hayvan Çeşitliliğinin Faydaları : İnsanlar, ilk çağlardan günümüze kadar hayvanları avlayarak, evcilleştirerek gıda kaynağı olarak, taşımacılıkta, giyimde ve tıpta kobay amaçlı kullanmışlardır. Yine kültüre alınan hayvanların yabani akrabaları, hayvan ıslahında kullanılmaktadır. Böceklere bakıldığında 1.200.000 böcek türünden, ancak 750 tür kültür bitkilerinde zararlı olmaktadır. Geri kalan türler bizim için faydalı türlerdir. Bunlardan bazıları tarımda zararlı türlerin üzerinde beslenerek bu türlerin savaşımında kullanılmaktadır. Bitkilerin büyük çoğunluğu tozlaşma için böceklere gereksinim duymaktadır. Böcekler, bitkilerin tozlaşmasını sağlayarak bitki yaşamının devamlılığı ve çeşitliliğine olanak vermekte ve ekosistemin devamlılığını sağlamaktadır. Yine böceklerin önemli bir kısmı, organik maddelerin ayrışmasını ve tekrar toprağa kazandırılmasını sağlamakta adeta doğada birer gönüllü temizlik işçisi gibi çalışmaktadır. Bazı türler de kuşlar, balıklar, sürüngenler gibi hayvanların gıda kaynağı durumundadır. Tüm bu yönleriyle, yeryüzündeki yaşamın böceklere bağlı olduğunu söylemek fazla abartılı olmaz. 4- Ekosistemin Ekoturizm Olarak Sağladığı Faydalar : Doğaya dayalı turizm, ekoturizm olarak adlandırılmaktadır. Ekoturizm son yıllarda artan bir önem arz etmektedir. Teknolojik ilerlemeler ve yaşam biçimine bağlı olarak stres altındaki insanlar, doğada kendini dinlendirmektedir. Milli parklara ve doğaya gidilerek stres atılmaktadır. A.B.D.’de Milli Parklar Servisi’nin 1998 yılı ölçümlerine göre, yaklaşık 300.000 turistin milli parkları ziyareti ile, direk ve dolaylı gelir olarak 14 milyar dolar gelir elde edilmiştir. Benzer durum dünyanın diğer ülkelerinde de vardır. Dünya Turizm organizasyonu, ekoturizmin uluslar arası turizmin % 7’sine karşılık geldiğini bildirmektedir. Ülkemizde de Fethiye’de bulunan Kelebekler Vadisindeki kelebekleri görmek amacıyla, tatil sezonu boyunca günübirlik olarak 15.000 turistin ziyaret ettiği bildirilmektedir. Biyolojik çeşitlilik ve doğal güzellikler bakımından, dünyada eşsiz bir yere sahip ülkemiz, ekoturizmde büyük potansiyel arz etmektedir. Ülkemizin sahip olduğu doğal güzellikler ve biyolojik zenginlikler yurt içi ve dışında yeterince tanıtılmalı ve ekoturizm geliştirilmelidir. SORU : 1- Yaşanılan bölgede en çok yetiştirilen sebzeler hangileridir? 2- Yaşanılan bölgeye özgü bitki ve hayvan türleri nelerdir? 3- Yaşanılan bölgedeki bitki ve hayvanların sayısı ve çeşitliliği diğer bölgelerde de aynı mıdır? 4- Bitki ve hayvan türlerinin sayıca fazla olması, bölgenin doğal zenginliklerinin bir göstergesi midir? 5- Kaç değişik kuş türü biliyoruz? 6- Kaç değişik balık türü biliyoruz? 7- Kaç değişik çiçek çeşidi biliyoruz? 8- Çeşitlilik nedir? 9- Bir bölgedeki bitki ve hayvan türlerinin çeşitliliği, o yerin hangi özelliğini ortaya koyar? 10- Ders kitabında verilen resimlerdeki canlılardan hangileri ülkemizde yaşamaktadır? 11- Ders kitabında verilen resimlerdeki canlılardan hangilerinin nesli tükenmek üzeredir? 12- Ülkemizde farklı ekosistemlerin biyolojik çeşitliliğini oluşturan bitki ve hayvan türleri nelerdir? 3- Biyolojik Çeşitliliğin Azalması ve Yok Olması : Bir ekosistemde, bölgede, ülkede veya dünyada yaşan herhangi bir canlı türünün yok olması o canlının neslinin tükenmesi yani biyolojik çeşitliliğin azalması, canlı türlerinin yok olması da biyolojik çeşitliliğin yok olması anlamına gelir. İklim değişikliliği, kirlenme, doğal kaynakların aşırı kullanımı, sürdürülebilir olmayan kaynakların kullanımı ve hızlı nüfus artışı biyolojik çeşitliliğin azalmasına ve türlerin yok olmasına neden olur. Habitatların yok olması veya zarar görmesi, birçok bitki ve hayvan türünün neslinin yok olmasına neden olur. Biyolojik çeşitliliğin korunması için 1992’de 172 ülkenin katıldığı Rio Zirvesi olarak bilinen Birleşmiş Milletler (BM) Çevre ve Kalkınma Konferansı yapılmış ve İklim Değişikliği ve Biyolojik Çeşitlilik sözleşmeleri imzaya açılmıştır. Rio Zirvesi’ne katılan, aralarında Türkiye’nin de bulunduğu 156 ülke Biyolojik Çeşitlilik Sözleşmesi’ni (BÇS) imzalayarak, kendi sınırları içerisindeki bitkilerin ve hayvanların çeşitliliğinin tam olarak korunması sorumluluğunu üstleneceklerine, ayrıca gelecek nesillerin doğal kaynaklara olan ihtiyaçlarından ödün vermeden günümüz ihtiyaçlarının karşılanması için çeşitli yollar aranması konusunda anlaşmaya varmıştır. • Önceki yıllarda yaşayan mamut, bizon, moa, dinozor gibi canlılar günümüzde yaşamamaktadır yani nesilleri tükenmiştir. • Önceki yıllarda ülkemizde yaşayan Anadolu leoparı, Asya fili, kunduz, aslan gibi canlılar şuan ülkemizde yaşamamaktadır ve ülkemizde nesli tükenmiştir. • Şu an ülkemizde yaşayan Akdeniz foku, kelaynaklar, deniz kaplumbağaları, alageyik, boz ayı, kardelen çiçeği ve salep yapımında kullanılan orkideler nesli tükenmek üzere olan canlılardır. NOT : 1- Türkiye'de 500'den fazla habitat çeşidinde 10.000'den fazla çiçekli bitki ve eğrelti; 400'den fazla kuş; 500'den fazla balık; 100.000'den fazla sürüngen ve 160.000'den fazla omurgasız hayvan türü kayıtlıdır. SORU : 1- Biyolojik çeşitlilik yok olabilir mi? 2- Biyolojik çeşitliliğin yok olması nasıl gerçekleşir ve ne gibi sonuçlar getirir? 3- Canlıların neslinin tükenmesi, biyolojik çeşitliliğin azalması anlamına gelir mi? 4- Ülkemizin Biyolojik Zenginlikleri : Ülkemizin Asya ve Avrupa kıtaları arasında bir köprü görevi görmesi, ayrıca çok değişik iklim ve coğrafi yapıya sahip olması nedeniyle, bitki ve hayvan türleri bakımından oldukça zengin bir çeşitliliğe sahiptir. Türkiye’de 120 memeli, 413 kuş, 93 sürüngen 18 kurbağagil, 276 deniz balığı, 192 tatlı su balığı ve 60–80.000 böcek türünün bulunduğunu bilinmektedir. Yine ülkemiz bitki türleri bakımından da oldukça zengindir. Bütün Avrupa kıtasında 12.000 bitki türü bulunmasına karşın ülkemizde 9.000 bitki türü bulunmakta ve bu türlerin % 30’u dünyada sadece Türkiye’ de bulunmaktadır. Oldukça fazla sayıda bitki ve hayvan türünün tanımlandığı yer ve anavatanı ülkemizdir. Tüm bu yönleriyle Türkiye, biyolojik çeşitlilik bakımından bir kıta özelliği göstermekte olup dünyada eşsiz bir yere sahiptir. 5- Biyolojik Çeşitliliğin Korunması : Biyolojik çeşitlilik, bir bölgedeki bitki ve hayvan türlerinin ve çeşitlerinin sayıca zenginliğidir. Ülkemizde ve dünyada nesli tükenme tehlikesiyle karşı karşıya olan bitkiler kardelen ve salep yapımında kullanılan orkidelerdir. Deniz kaplumbağaları, Akdeniz fokları, bozayı, Ankara keçisi, Tuj koyunları, alageyik, sülün ise nesli tükenme tehlikesiyle karşı karşıya olan hayvanlardandır. İster bitki ister hayvan olsun bu canlıların nesillerinin konuna altına alınması için tabiat parklarının, doğal yaşam alanlarının oluşturulması, organik tarımın tercih edilmesi ve insanların bu konularda eğitilmesi gerekmektedir. Çiftçiler aşırı otlatmanın, bitkilerin aşırı toplanmasının, ormanların arazi kazanmak amacıyla tahrip edilmesinin biyolojik çeşitlilik açısından olumsuz etkileri konusunda bilinçlendirilmelidir. Kıyı habitatlarının tahrip edilmesi, balıkçılığın ve avlanmanın aşırı ve kontrolsüz yapımı engellenmelidir. Ayrıca bu türlerin korunması ve denetimi için mekanizmalar geliştirilmelidir. Biyolojik çeşitlilik tüm dünyanın ortak zenginliğidir. Bugünün ihtiyaçlarını karşılayarak gelecek kuşaklara da bu çeşitliliği aktarabilmek amacıyla biyolojik çeşitliliğin korunması gereklidir. C- ÇEVRE SORUNLARI VE ETKİLERİ : 1- Ekosistemlerin Bozulma Nedenleri (Çevre Sorunları) : Çevre sorunları, insanların yaşadığı problemlerden biridir çevre sorunlarının yani ekosistemlerdeki bozulmaların bir kısmı doğal yolla, bir kısmı da insan etkisiyle oluşur. İnsanlara ve ekosistemlere zarar veren doğal kaynaklı bozulmalar, su, toprak ve hava hareketleriyle oluşur. Su taşkınları, depremler, erozyon, volkanik hareketler (yanardağ patlamaları), fırtına, kasırga, uzun siren kuraklık ekosistemlerin bozulmasına yol açan doğal afetlerdir. İnsanlar, bulundukları ekosistemlerdeki (çevrelerindeki) canlı ve cansız varlıkları etkileyerek ekosistemlerin bozulmasına yol açarlar. İnsanlar, ekosistemlerdeki doğal varlıklarla iç içe yaşarken zamanla teknolojinin gelişmesi ve doğal kaynakların bilinçsiz kullanılması sonucu doğanın dengesi bozulmuş ve birçok çevre sorunu ortaya çıkmıştır. Hızlı nüfus artışı, bilinçsiz sanayileşme, düzensiz şehirleşme, doğal kaynakların bilinçsiz kullanılması, nükleer silahlar ve nükleer santral patlamaları, biriktirilmiş suların (barajlardaki suların) taşkınlara neden olması, orman tahribatı ve çığ gibi olaylar doğal denge üzerinde olumsuz etkiler yaparak çevre kirliliğine yani ekosistemlerin bozulmasına yol açan insan kaynaklı faktörlerdir. Hava kirliliği, su kirliliği ve toprak kirliliği ve nükleer kirlilik çevre kirliliği sonucu oluşan kirlenmelerdir. SORU : 1- Ülkemizi ve Dünya’mızı tehdit eden önemli çevre sorunları nelerdir? 2- Ülkemizi ve Dünya’mızı tehdit eden önemli çevre sorunlarının sebepleri ve sonuçları nelerdir? 3- Ülkemizi ve dünyayı tehdit eden çevre sorunları dünyayı nasıl etkiler? 4- Ekosistemler zamanla neden değişip bozulmaktadır? 5- Ekosistemlerdeki bozulmalar beraberinde hangi sonuçları getirin? 6- Çok küçük bir ekosistemin zarar görmesi tüm dünyayı nasıl etkiler? 2- Çevre Kirliliğine Neden Olan (İnsan Kaynaklı) Faktörler : a) Orman Tahribatı : Orman yangınları, ihmal, dikkatsizlik, kaçak yapılaşma ve arazi açmak için ağaçların bilinçsizce kesilmesi gibi sebepler yüzünden ormanlar tahrip olmaktadır. Bunun sonucunda ekosistemlerin doğal dengesi bozulmakta, ormanda yaşayan canlı türleri ve bu türlerin habitatları yok olmakta, toprak zenginliği kaybolmaktadır. (Ülkemizde orman yangınlarının kayıtları 1937 yılında tutulmaya başlanmıştır. Bu kayıtlara göre yaklaşık 1,5 milyon hektar ormanlık alan yok olmuştur). SORU : 1- Ülkemizdeki orman tahribi sadece ülkemizi mi etkiler? 2- Orman tahribi nasıl engellenebilir? 3- Ormanların kaybı hayatımızı nasıl etkiler? b) Çığ : Yüksek yerlerdeki karların şiddetli ses etkisiyle dağın yamaçlarına yuvarlanmasına çığ denir. Eğimli arazi üzerinde birikmiş büyük kar örtüsü, yer çekimi etkisiyle kaydığında çığ oluşur. Çığ genellikle bitki örtüsü olmayan, dağlık eğimli arazilerde görülür. Çığlar beraberinde toprak, taş ve ağaçları da sökerek götürür. Bu şekilde meydana gelen aşınma ve taşınma, toprağı verimsizleştirerek canlıların yaşamını tehlikeye sokar. Çığlar, tarım alanlarının veriminin düşmesine ve su kaynaklarının kirlenmesine neden olur. SORU : 1- Çığdan korunma yolları nelerdir? c) Nükleer Silahlar ve Nükleer Santral Patlamaları : Nükleer silahlar, nükleer kazalar ve bu kazalar sonunda ortaya çıkan nükleer atıklar kirlenmeye sebep olur. (1986 yılında yaşanan Çernobil Nükleer Enerji Santrali Kazası’nın yarattığı olumsuz etkiler, bu kirliliğin en canlı örneğidir. Bu olaydan ülkemizin en çok Karadeniz Bölgesi’nin etkilendiği tespit edilmiştir). SORU : 1- Nükleer kirlilik sadece belli bir bölgeyi mi etkiler? 2- Nükleer kirliliğin canlılar ve onların çevreleri üzerindeki olumsuz etkileri nelerdir? d) Biriktirilmiş Suların Taşkınlara Yol Açması : Barajların yıkılması sonucu oluşan taşkınlar, bitki örtüsüne, ekili alanlara toprağın verimli tabakasının taşınmasına neden olur. e) Aşırı Nüfus Artışı : Bir bölgedeki ya da ekosistemdeki nüfus artışını ya da azalışını o ekosistemdeki göçler, doğum ve ölüm olayları belirler. Nüfus artışının az olduğu dönemde insan tarafından çevreye verilen zarar doğal yollarla kendiliğinden düzeltilebiliyordu. Nüfus artışı fazla olduğu için; • Doğal kaynaklar aşırı kullanıldı. • Barınma amacıyla yeşil alanlar yok edildi. • Büyük kentler çevre kirliliğine yol açtı. • Araçların egzoz gazları hava kirliliğine yol açtı. • Soğutucularda kullanılan karbon maddesi ozon tabakasını inceltti. • Tarımsal alanlarda yapılan ilaçlamalar yararlı böcekleri de yok etti. • Evsel atıklar, lağım suları ve sanayi atıkları çevreyi kirletti. • Tarımda üretimi arttırmak için aşırı kullanılan gübreler çökerek toprağın ve yeraltı sularının kirlenmesine yol açtı. f) Plansız Sanayileşme : Nüfusun hızla artması sonucu sanayi gelişmiş ve bunun sonucu çevre (hava, toprak, su) zarar görmüş, kirlenmiştir. • Tarla ekmek için orman arazilerinin kesilmesi. • Artan kereste ihtiyacı nedeniyle ormanların kesilmesi. • Fabrika bacalarına filtre takılmaması. • Fazla ürün elde etmek için tarımda aşırı gübreleme ve ilaçlama yapılması. • Fabrika atıklarının arıtılmadan suya ya da toprağa verilerek su ve toprağı kirletmesi. g) Doğal Kaynakların Bilinçsiz Kullanılması : Bir ekosistemdeki hava, toprak, su, hayvanlar, bitkiler, yeraltı zenginlikleri ve doğal güzellikler o ekosistemdeki doğal kaynakları oluştururlar. Doğal kaynakların bilinçsiz kullanılması çevre kirliliğine yol açar. • Kimyasal ve biyolojik silahların kullanılması. • Gereksiz tarım ilaçları ve böcek öldürücülerin kullanılması. • Soğutucuların ve spreylerin fazla kullanılması. • Ev ve sanayi atıklarının çevreye dağılması. • Nükleer silahların ve radyasyona yol açan maddelerin kullanılması. • Kalitesiz fosil yakıtların (kömür, petrol, doğal gaz) kullanılması. 3- Çevre Kirliliğinin Sonuçları : Hava kirliliği, su kirliliği ve toprak kirliliği ve nükleer kirlilik çevre kirliliği sonucu oluşan kirlenmelerdir. a) Hava Kirliliği : Atmosferde bulunan zararlı gazların (karbon oksitleri, kükürt oksitleri ve azot oksitleri) miktarının artmasına hava kirliliği denir. Hava kirliliğinin canlı ve cansız varlıklar üzerinde olumsuz etkileri vardır. Havayı katı ve gaz halindeki maddeler kirletir. Sanayi tesislerinden filtre edilmeden bırakılan gazlar, araç egzozlarından çıkan gazlar, fosil yakıtların (petrol, kömür ve doğal gaz) yanmasından oluşan gazlar (evlerin ısıtılmasında, taşıtlarda ve sanayi tesislerinde fosil yakıtların aşırı kullanılması sonucu) hava kirliliği oluşur. Hava kirliliği sonucu asit yağmurları oluşur, sera etkisi artar ve ozon tabakası delinir. Sera etkisi ve ozon tabakasındaki incelme, iklim üzerinde tüm Dünya’da (küresel boyutta) değişikliklere yol açar. Kullanılan fosil yakıtların oluşturduğu katı ve gaz halindeki atıkların (fosil yakıtların yanması ile havaya karışan karbon oksitleri, kükürt oksitleri ve azot oksitleri), suya ve su döngüsüne karışması sonucu bu atıkların yağış olarak yeryüzüne inmesine asit yağmuru denir. Güneş’ten gelen ışınların bir kısmı yeryüzü tarafından soğurulurken bir kısmı da uzaya geri yansır. Yeryüzünden yansıyan bu ışınların bir kısmı, atmosferde soğurularak havanın ısınmasına sebep olur. Güneş ışınlarının bir kısmının uzaya gönderilmesinin engellenmesine sera etkisi denir. Sera etkisine neden olan gazların (başta karbondioksit olmak üzere) miktarının artması, soğurulan güneş ışınlarının miktarının artmasına sebep olur. Bunun sonucunda atmosferin ve Dünya’nın sıcaklığı aşırı yükselir. Atmosferdeki sera etkisinin artmasına küresel ısınma denir. Küresel ısınma sonucunda buzullar erimeye ve okyanuslardaki su seviyeleri yükselmeye başlar ve küresel çölleşme gerçekleşir. Hava kirliliğine sebep olan (flora klora karbon gibi itici ve soğutucu olarak kullanılan) gazlar ozon tabakasının incelmesine sebep olur. Ozon tabakasının incelmesi sonucu Güneşin zararlı ultraviyole ışınları yeryüzüne ulaşır ve bu ışınlar biyolojik çeşitliliği olumsuz etkiler ve canlıların bağışıklık sistemini bozar. (Flora klora karbon gibi itici ve soğutucu olarak kullanılan gazların kullanılmaması konusu Brezilya'da ulusların imzasına açılmış ve iki ülke bu antlaşmayı imzalamıştır. Bu ülkeler Türkiye ve A.B.D.dir). 1- Havanın Canlılar İçin Önemi (*) : 1- Canlılar havasız yaşayamaz. 2- Solunum için bazı canlılar (insanlar ve oksijenli solunum yapan canlılar) oksijene ihtiyaç duyarlar. Havadaki oksijen, suya ve toprağa geçer, buradaki canlılarda oksijen kullanır. 3- Yeşil bitkiler, fotosentez yaparken havadaki karbondioksiti kullanır ve oksijen üretir. 4- Havanın azotu bazı bitkiler tarafından, (azot bağlayıcı) bakteriler yardımıyla alınarak protein yapımında kullanılır. (Canlıların temel yapısını proteinler oluşturduğu için önemlidir). 5- Havadaki su buharı canlılar için gereklidir. 2- Hava Kirliliğinin Etkileri (*) : 1- Solunum sistemi hastalıklarına neden olur. (Astım, bronşit, akciğer kanseri). 2- Yeşil alanlar yok olur, tarım ve hayvancılık olumsuz etkilenir. 3- Dolaşım sistemi hastalıklarına neden olur. (Kalp yetmezliği, damar tıkanıklığı). 4- Kağıt, kumaş, sanat eserleri, tarihi kalıntılar, araçlar ve evlerin yıpranmasına neden olur. 5- Kirli havada biriken kurşun oranı saçların dökülmesine neden olur. 3- Hava Kirliliğinin Önlenmesi (*) : 1- Sanayi tesisleri katı, sıvı ve gaz atıklarını arıtarak doğaya bırakmalıdır. (Yönetim bu gereçler için sanayi kuruluşlarına uzun vadeli ve düşük faizli krediler vererek kontrolü çevre örgütlerine devir etmelidir). 2- Havayı kirletmeyen doğal gaz, rüzgar, güneş enerjisi ve nükleer enerji gibi enerji kaynakları desteklenmelidir. 3- Bacalardan ve egzozlardan çıkan gazlar, yenilenebilir enerji kaynakları kullanılarak zararsız hale getirilmelidir. 4- İnsanların yeşil bitkileri ve ormanları kullanmaları sağlanarak, yeşil alanlar çoğaltılmalıdır. (Evlerin çevrelerinin beton duvarlarla çevrilmesi yasaklanarak, belediyeler aracılığı ile mülklerin yeşil bitkilerle sınırlandırılması sağlanmalıdır). SORU : 1- Asit yağmurlarının çevremiz üzerindeki olumsuz etkileri nelerdir? 2- Sera etkisi hayatımızı nasıl etkiler? 3- Asit yağmurları, sera etkisi ve ozon tabakasının delinmesi gibi Dünya’yı etkileyen bu çevre problemleri ülkemizi nasıl etkilemektedir? b) Su Kirliliği : Sanayi kuruluşlarının ve enerji üretim santrallerinin atıkları, nüfus artışı, şehirleşme, deniz taşımacılığı ve kazalar, asit yağmurları, foseptikler, çöplükler, tarımda kullanılan ilaçlar, doğal ve yapay gübreler su kirliliğine neden olur. Su kirliliği, tüm canlıların hayatını tehlikeye sokar. İçme ve kullanma suları daima temiz olmalıdır. Su kirliliğinden dolayı deniz, göl ve akarsularda her türlü üretim düşer, içme ve kullanma suyu bulmakta güçlük çekilir, suya bağlı ekosistemlerde doğal denge bozulur. Ülkemizin üç tarafı denizlerle çevrili olduğundan deniz kirliliği de önem taşımaktadır. Sakarya ve Gediz Nehirleri, Akşehir Gölü ve Tuz Gölü, İzmit ve İzmir Körfezleri ile Marmara Denizi ülkemizde su kirliliğinin görüldüğü yerlerdendir. SORU : 1- Ülkemizdeki su kirliliği Dünya’yı nasıl etkilemektedir? 2- Su kirliliğine nasıl çözüm bulunabilir? c) Toprak Kirliliği : Yerleşim alanlarından çıkan atıklar ve çöpler, sanayi atıkları, egzoz gazları, kimyasal (organik ve mineral) gübreler, tarımla mücadele ilaçlarının kullanımı, yanlış arazi kullanımı, su ve rüzgar erozyonu, ile ulaşım ağı toprak kirliliğine neden olur. Bir yerde belirli kalınlıktaki toprağın oluşabilmesi için milyonlarca yıl geçmesi gerekmektedir Bunun için doğal kaynaklardan biri olan toprağın çok iyi korunması gerekir. Son yıllarda (yirminci yüzyılın başından itibaren) modern tarıma geçilmesi ve sanayileşmenin hızlanması ile birlikte, toprak kirliliği de bir çevre sorunu olarak ortaya çıkmıştır. Toprak kirliliği ürün kalitesinin düşmesine, topraktaki organik ve inorganik maddelerin azalmasına ve dolayısıyla ekosistem dengesinin bozulmasına yol açabilmektedir. SORU : 1- Toprak kirliliği hangi çevre sorunlarını beraberinde getirir? 4- Çevre Kirliliğinin Sonuçları : Çevre kirliliği sonucu; 1- Dünya’nın coğrafyası değişir. 2- Dünya’nın iklimi değişir. 3- Erozyonlar oluşur ve toprağın verimini düşürür. 4- Su kaynakları azalır ve kurur. 5- Enerji kıtlığı başlar. 6- Biyolojik çeşitlilik (canlı çeşitliliği) azalır. 7- Beslenme sorunu doğar. 5- Çevreyi Korumak İçin Alınacak Önlemler : 1- Sanayileşmede çevreye zarar vermemek için gerekli tedbirlerin alınması gerekir. 2- Canlı türlerinin ve nesillerinin devamının sağlanması gerekir. 3- Bilinçli tarım yapılması gerekir. 4- Ormanların yok edilmemesi gerekir. 5- Su kaynaklarının kirletilmemesi gerekir. 6- Geri dönüşümlü ürünlerin kullanılması gerekir. 7- Tüketim maddelerinin geri dönüştürülebilecek şekilde kullanılması gerekir. 8- Yenilenebilir enerji kaynaklarının kullanılması gerekir. 9- Yenilenemez enerji kaynaklarının kullanılmaması gerekir. 10- Eğitime önem verilmesi ve tutumlu olunması gerekir. 11- Sürdürülebilir kalkınma yapılması gerekir. SORU : 1- Çok sayıda kurum ve kuruluşun çevre konusunda faaliyet göstermesi çevre sorunlarının çözülmesi için yeterli midir? Neden? 2- Ülkemizde bu konuda çalışan kuruluşlardan hangilerinin isimlerini ve nasıl öğrendiniz? 3- Çevre sorunlarıyla ilgili, gönüllü kuruluşlardan birine üye olarak çalışmak isteseydiniz hangisini tercih ederdiniz? Neden? NOT : 1- Çevre sorunlarının sınır tanımaz özelliğinden dolayı uluslararası iş birliği zorunlu bir hale gelmiştir. Bu konudaki ilk uluslararası düzeyde toplantı 1972 yılında, Birleşmiş Milletler Teşkilatı tarafından düzenlenen Stokholm 1. Çevre Konferansı’dır. Bu toplantı sonunda, çevreye verilen önemi vurgulamak için 5 Haziran günü “Dünya Çevre Günü” olarak kabul edilmiştir. 2- Uluslararası düzeyde çevreyle ilgili faaliyet gösteren önemli kuruluşlardan bazıları; • Birleşmiş Milletler Kalkınma Programı (UNDP) • Dünya Meteoroloji Teşkilatı (WMO) • Dünya Sağlık Teşkilatı (WHO) 3- Ülkemizde çevreyle ilgili faaliyet gösteren önemli kuruluşlardan bazıları; • Çevre Bakanlığı • Tübitak • Türkiye Ormancılık Derneği • Türkiye Bitki Koruma Derneği • Türkiye Erozyonla Mücadele • Ağaçlandırma ve Doğal Varlıkları Koruma Vakfı (TEMA) • Türkiye Çevre Eğitim Vakfı 4- Zoolog : Hayvanların anatomik ve fizyolojik özelliklerini inceleyen, onları özelliklerine göre sınıflandıran ve çeşitli etmenlerin hayvanlar üzerindeki etkilerini araştıran kişilere zoolog denir. Zoologlar araştırmacı veya uygulayıcı olarak görev yaparlar. Araştırmacı olarak çalışan zoolog; yeryüzündeki hayvanların yaşayışlarım, doğal ortamları içinde gözlem yolu ile inceler. Hayvanların anatomik ve fizyolojik özelliklerini laboratuarlarda inceler ve elde edilen verilere göre hayvanları sınıflandırır. Hayvanların evrimini, fosilleri inceleyerek araştırır. Uygulama alanında çalışan zoolog; çeşitli ilaçların hayvanlar üzerindeki etkisini deneysel olarak inceler, tarımda böcekler ve diğer zararlı hayvanlarla mücadele yöntemleri geliştirir, milli parklardaki hayvanlar için uygun ortamlar oluşturulmasına çalışır, ülke dışına çıkarılmaya ya da yurt dışından getirilmeye çalışılan hayvan türleri konusunda görüş bildirir, hastanelerde doku ve hücre incelemeleri yapar. Zoolog olmak isteyenlerin üst düzeyde genel yeteneğe sahip, doğayı seven, canlılarla uğraşmaktan hoşlanan, meraklı ve iyi bir gözlemci, fen bilimlerine özellikle biyolojiye ilgili ve bu alanda başarılı, sabırlı, araştırmacı ve bilimsel meraka sahip ve estetik anlayışı yüksek kimseler olmaları gerekir. Zoologlar çalışmalarını laboratuarda ve açık havada yürütürler. Çalışırken biyologlarla, ziraat mühendisleriyle, veteriner hekimlerle, kimyagerlerle ve kimya mühendisleri ile iletişim halindedirler. Hazırlayan:MURAT ÜSTÜNDAĞ Kayseri Mithatpaşa İlköğretim Okulu Fen ve Teknoloji Öğretmeni

http://www.biyologlar.com/biyolojik-cesitlilik-cevre-sorunlari-ve-etkileri

Biyolojinin İlkeleri

Biyoloji, bilgiye ulaşmak için bilimsel metodu kullanır. Bilimsel teoriler, bilimsel gözlemlere dayanır ve bu teoriler, yeni araştırmalarla bazen geliştirilirler. Bilimsel teoriler aynı zamanda, daha gözlenmemiş bir fenomenin tahmin edilebilmesi için de kullanılabilirler. Biyolojik sistemler, bazen sistematik olarak modellenirler; ancak yine de - diğer bilim dallarında da olduğu gibi - teoriler sadece matematik kullanarak açıklanmazlar. Biyolojik bilimler, birkaç temel ilkenin altında toplanılabilirler: evrensellik, evrim, çeşitlilik, devamlılık, genetik, homeostasis, ve etkileşimler. Evrensellik Karbon, bütün canlıların temel yapı taşıdır. Organizmalar; görüntüde, doğal ortamında ve davranışlarında fazlaca farklılık göstermelerine rağmen, aslında tüm canlılar bazı evrensel temelleri paylaşırlar. Bütün canlı yaşamının karbon bazlı bir biyokimyası vardır: Karbon, tüm canlıları oluşturan temel yapı taşıdır. Aynı şekilde, su da, temel çözendir. Dünya'daki tüm organizmalar, genetik bilgiyi depolamak için DNA ve RNA-bazlı mekanizmalar kullanırlar. Bir diğer evrensel ilke ise, virüslerin dışındaki tüm canlıların hücrelerden oluştuğudur. Aynı şekilde, tüm organizmalar, benzer büyüme süreçleri geçirirler. Tüm bu sayılanlar, Dünya'daki tüm organizmalar için geçerli olsa da, teoride alternatif bir yaşam türü de varolabileceğinden, bilimadamları, alternatif bir biyokimyayı araştırmaktadırlar. Evrim Evrimsel süreçte insanlara en yakın canlılar, primatlardır. Biyolojideki temel düzenleyici içerik, tüm canlıların aynı kökten gelip, değişik süreçler sonrasında değişip geliştiğini savunan evrimdir. Burada, yukarda da anlatılan, canlılar arasındaki etkileyici benzerliklere yol açar. Charles Darwin, evrimin sürmesine sebebiyet veren doğal seleksiyonu açıklayarak, evrimi, geçerli bir teori olarak kılmıştır (Alfred Russel Wallace'ın bu içeriğin keşfedilmesinde büyük rol oynadığı da belirtilmelidir). Modern sentez teorisinde, genetik çeşitlilik de bu mekanizmada önemli rol oynar. Bir türün, ürediği tür hakkındaki bilgileri, onların özelliklerini ve türün son halinin diğer türlerle ilişkisini inceleyen bilim dalına filogeni denir. Biyolojiye birbirinden farklı birçok yaklaşım türü, filogeniyi ilerletir: Moleküler biyoloji, DNA zincirlerinin karşılaştırılmalarını yaparken fosillerin karşılaştırmalarını da paleontoloji yapar. Bilim adamları, evrim ilişkilerini, birkaç metotla inceleyip düzenlerler. Bu metodular; filogenetik, fenetik ve kladistik olarak üç dalda toplanılabilir. Evrim teorisi, Darwin ve Wallace tarafından açıklanmasından beri, bu fikir, sonuçlara ya da açıklamalara karşı olanlar tarafından sürekli kötülenmiştir. Genellikle, bu açıklamaların karşısında dini açıklamalar kullanılmıştır. Ancak, profesyonel biyologların nerdeyse hepsi, evrim teorisinin kullanılabilir ve geçerli bir teori olduğunu kabul etmişlerdir. Çeşitlilik Ağaçlar, Plantea şubesinde sınıflandırılan canlılardır. Sistematik ve taksonominin ilgi alanı olan sınıflandırma, birbirinden farklı yöntemler izler. Taksonomi, organizmaları, taxa adı verilen gruplarda sınıflandırırken, sistematik, organizmaların birbirleriyle ilişkilerini inceler. Bu bilim dalları, kladistik ve genetik dallarında da geliştirmişlerdir. Geleneksel olarak, canlılar beş büyük aleme bölünürler: Monera -- Protista -- Fungi -- Plantae -- Animalia Ancak, çoğu bilim adamı, bu sistemi demode bulmakta ve de modern alternatifler getirmektedirler. Modern sistemler, üç-âlemli bir sistem kullanırlar: Archaea -- Bacteria -- Eukaryota Bu âlemler, hücrelerin çekirdeklerinin olup olmamasına ve hücrelerin iç yapılarının farklılıklarına göre bölünmüştür. Aynı zamanda, metabolik anlamda, daha az canlı olan bazı hücreiçi parazitler de biyolojide ayrı bir alem olarak incelenirler: Virüsler -- Viroidler -- Prionlar. Daha da ileri gidildiğinde, bütün âlemler, tüm türler ayrı ayrı sınıflandırılıncaya kadar bölünürler. Bu sıralama, şu sırayla gider: Âlem, Filum, Sınıf, Takım, Cins, Tür ve Alt türdür. Bir organizmanın bilimsel adı, onun cinsi ve türüne göre belirlenir. Mesela, insanlar Homo sapiens olarak adlandırılırlar. Homo cinsi, sapiens ise türüdür. Bilimsel tür isimlerini yazarken, organizmanın cinsinin ilk harfini büyük yazıp türünü küçük harflerle yazmak gerekir. Ayrıca tüm adın da yana yatık yazılması bir kuraldır. Sınıflandırma için kullanılan terim, taksonomidir. Devamlılık Her canlı kalıtsal bilgisini değişmeden gelecek nesile aktarmaya çalışır; bitkiler çiçek, çiçekler tohum üretir. 19. yüzyıla kadar, yaşamsal formların bazı şartlarda aniden ortaya çıkabileceği düşünülüyordu. William Harvey, bu yanlış kavramı, "tüm yaşam bir yumurtadan gelir" (Latince'de Omne vivum ex ovo) sözüyle düzeltmiş ve modern biyolojinin temellerini atmıştır. Kısaca anlatmak gerekirse, bu söz, hayatın bir kaynaktan kırılmayan bir devamlılıkla geldiğini söyler. Aynı ataya sahip birkaç organizma benzer özellikler gösterirler. Dünya'daki tüm organizmalar, ortak bir atadan ya da ortak bir gen havuzundan gelirler. Tüm dünyanın en son ortak atasının 3.5 milyar yıl önce ortaya çıktığı düşünülmektedir. Biyologlar, genetik kodun evrenselliğini; bacteria, archaea ve eukaryotun hepsinin aynı atadan geldiğinin önemli bir kanıtı olarak düşünmektedirler. Homeostazi (Homeostasis) İnsan kan hücreleri, insan "homeostasis"ini sağlamaya yardımcı olurlar. Homeostazi (denge), açık bir sistemin, bağlantılı kontrol mekanizmaları tarafından kontrol edilen dinamik eşitlikler aracılığıyla, kendi iç ortamının sabit bir hal sağlayabilmesidir. Tek hücreli ya da çok hücreli tüm organizmalar, homeostasis gösterir: Hücresel düzeyde pH değerinin ayarlanması, organizma düzeyinde vücut sıcaklığının sabit tutulması ve ekosistem düzeyinde bitkilerin karbondioksit fazlalığında daha hızlı büyümesi buna örnek olarak gösterilebilir. Doku ve organlar da homeostasis sergilerler. Etkileşimler Her şey diğer organizmalar ve çevreyle etkileşim içersindedir. Biyolojik sistemleri incelemenin bir zor kısmı da, incelenen organizmanın diğer faktörlerle çok sayıda etkileşim içersinde olmasıdır. Mikroskobik bir bakterinin lokal şeker eğimine tepkide bulunması, aslında, bir aslanın Afrika savanasında yemek aramasından farklı değildir. Herhangi bir tür için, davranışlar; agresif, yardımcı, parazitsel ya da simbiyotik olabilir. İşler, herhangi bir ekosistemde, birden fazla tür etkileşime girdiğinde karışır. Bu türdeki çalışmalar, ekolojinin çalışma alanındadır. Kaynak: tr.wikipedia.org

http://www.biyologlar.com/biyolojinin-ilkeleri

Zooloji (Zoology)

Zoo hayvanlar topluluğu logos bilim anlamında kullanılan bir kelime olduğundan Zooloji biyolojinin hayvanları çeşitli yönleriyle inceleyen bir dalıdır demek yanlış olmaz. Eski çağlarda yaşamış ve bugün soyu tükenmiş birçok tür ve günümüzde yaşayan bütün hayvanlar zoolojinin inceleme alanına girmektedir. İnsanların merak ve araştırma eğilimiyle ortaya çıkan zoolojinin insanlık tarihi kadar eski olma olasılığı vardır. İlk olarak Mısır İran ve Yunan kültürlerinde hayvanları incelemelere ait fikirler yazılı belgeler görülmektedir. Geçmişte hayvanların basit tanımı ve işlevi embriyonik gelişimi beslenmeleri sağlığı davranışları kalıtım ve evrimleriyle çevreleri ve diğer canlılarla olan etkileşim ve iletişimlerini incelemeye başlamış olup daha sonraları altdallara ayrılacak kadar gelişmiştir. Günümüzde her bilimadamı bu bilimin altdallarından biriyle ilgilenmekte ve ilgilendiği dala göre adlandırılmaktadır. Zooloji tıptan toplum sağlığından ziraatten ve toplum bilimlerinden uzay bilimlerine kadar tüm alanları ilgilendirmekte bu alanlarda yapılacak herhangi bir araştırma biyoloji ve dolayısıyla zooloji kapsamına girmektedir. Tüm düşünceler tüm araştırmalar kökünü doğadan almakta olduğu gerçeği zoolojinin neden bu kadar önemli bir bilim dalı olduğunu anlatmaktadır. Zooloji Taksonomik ve Taksonomik olmayan alt dallara ayrılır. Taksonomik kısım Protozooloji (Tek hücreliler) Helmintoloji (Solucanlar) Malakoloji (Kabuklular Entomoloji (Böcekler) gibi bazı omurgasızları Ihtiyoloji (Balıklar) Herpotoloji (Kurbağa ve Sürüngenler) Ornitoloji (Kuşlar) Memeliler gibi bazı omurgalıları taksonomik yönden inceler. Taksonomik yönden olmayan kısım ise tüm hayvansal organizmaların morfolojisi ve fizyolojisidir Hayvanların anatomik ve fizyolojik özelliklerini inceleyen, onları özelliklerine göre sınıflandıran ve çeşitli etmenlerin hayvanlar üzerindeki etkilerini araştıran kişileri yetiştiren eğitim dalıdır. Bir Zoolog ne Yapar? Zoologlar araştırmacı veya uygulayıcı olarak görev yaparlar. Araştırıcı zoologlar belli bir hayvan türü üzerinde uzmanlaşırlar. Araştırmacı olarak çalışan zoolog; - Yeryüzündeki hayvanların yaşayışlarını, doğal ortamları içinde gözlem yolu ile inceler, - Hayvanların anatomik ve fizyolojik özelliklerini laboratuarlarda inceler ve elde edilen verilere göre hayvanları sınıflandırır, - Hayvanların evrimini, fosilleri inceleyerek araştırır. Uygulama alanında çalışan zoolog; - Çeşitli ilaçların hayvanlar üzerindeki etkisini deneysel olarak inceler, - Tarımda böcekler ve diğer zararlı hayvanlarla mücadele yöntemleri geliştirir, - Milli parklardaki hayvanlar için uygun ortamlar yaratılmasına çalışır, - Gümrüklerde ülkeden dışarıya çıkarılmaya ya da yurt dışından getirilmeye çalışılan hayvan türleri konusunda görüş bildirir, - Hastanelerde doku ve hücre incelemeleri yapar. Bir Zoolog ne gibi özellikler taşımalı? - Üst düzeyde genel yeteneğe sahip, - Doğayı seven, canlılarla uğraşmaktan hoşlanan, - Meraklı ve iyi bir gözlemci, - Fen bilimlerine özellikle biyolojiye ilgili ve bu alanda başarılı, - Sabırlı, araştırmacı ve bilimsel meraka sahip - Estetik anlayışı yüksek kimseler olmaları gerekir. Bu bölümle ilgilenenler aşağıdaki bölümlere de ilgi duyduklarını belirttiler: Animal Science Biology Biopsychology Cell Biology Chemistry Ecology Forestry Genetics Microbiology Molecular Genetics Neurobiology Wildlife Management Zoology Örnek Dersler: Biology Inorganic Chemistry Calculus Organic Chemistry Zoology I-III Physics Molecular Genetics

http://www.biyologlar.com/zooloji-zoology

MOLEKÜLER BİYOLOJİ VE GENETİK (MOLEKÜLER BİYOLOG)

Canlı hücre içindeki malzemeleri (DNA Protein Enzim vb.) hücre yapısının işlevini ve hücreler arasındaki etkileşimi laboratuar ortamında inceleyerek ortaya çıkaran kişidir.

http://www.biyologlar.com/molekuler-biyoloji-ve-genetik-molekuler-biyolog

Biyolojinin ilkeleri nelerdir

Biyoloji, bilgiye ulaşmak için bilimsel metodu kullanır. Bilimsel teoriler, bilimsel gözlemlere dayanır ve bu teoriler, yeni araştırmalarla bazen geliştirilirler. Bilimsel teoriler aynı zamanda, daha gözlenmemiş bir fenomenin tahmin edilebilmesi için de kullanılabilirler. Biyolojik sistemler, bazen sistematik olarak modellenirler; ancak yine de - diğer bilim dallarında da olduğu gibi - teoriler sadece matematik kullanarak açıklanmazlar. Biyolojik bilimler, birkaç temel ilkenin altında toplanılabilirler: evrensellik, evrim, çeşitlilik, devamlılık, genetik, homeostasis, ve etkileşimler. Evrensellik Organizmalar; görüntüde, doğal ortamında ve davranışlarında fazlaca farklılık göstermelerine rağmen, aslında tüm canlılar bazı evrensel temelleri paylaşırlar. Bütün canlı yaşamının karbon bazlı bir biyokimyası vardır: Karbon, tüm canlıları oluşturan temel yapı taşıdır. Aynı şekilde, su da, temel çözendir. Dünya'daki tüm organizmalar, genetik bilgiyi depolamak için DNA ve RNA bazlı mekanizmalar kullanırlar. Bir diğer evrensel ilke ise, virüslerin dışındaki tüm canlıların hücrelerden oluştuğudur. Aynı şekilde, tüm organizmalar, benzer büyüme süreçleri geçirirler. Tüm bu sayılanlar, Dünya'daki tüm organizmalar için geçerli olsa da, teoride alternatif bir yaşam türü de varolabileceğinden, bilimadamları, alternatif bir biyokimyayı araştırmaktadırlar. Evrim Biyolojideki temel düzenleyici içerik, tüm canlıların aynı kökten gelip, değişik süreçler sonrasında değişip geliştiğini savunan evrimdir. Burada, yukarda da anlatılan, canlılar arasındaki etkileyici benzerliklere yol açar. Charles Darwin, evrimin sürmesine sebebiyet veren doğal seleksiyonu açıklayarak, evrimi, geçerli bir teori olarak kılmıştır (Alfred Russel Wallace'ın bu içeriğin keşfedilmesinde büyük rol oynadığı da belirtilmelidir). Modern sentez teorisinde, genetik çeşitlilik de bu mekanizmada önemli rol oynar. Bir türün, ürediği tür hakkındaki bilgileri, onların özelliklerini ve türün son halinin diğer türlerle ilişkisini inceleyen bilim dalına filogeni denir. Biyolojiye birbirinden farklı birçok yaklaşım türü, filogeniyi ilerletir: Moleküler biyoloji, DNA zincirlerinin karşılaştırılmalarını yaparken fosillerin karşılaştırmalarını da paleontoloji yapar. Bilimadamları, evrim ilişkilerini, birkaç metodla inceleyip düzenlerler. Bu metodlar; filogenetik, fenetik ve kladistik olarak üç dalda toplanılabilir. Evrim teorisi, Darwin ve Wallace tarafından açıklanmasından beri, bu fikir, sonuçlara ya da açıklamalara karşı olanlar tarafından sürekli kötülenmiştir. Genellikle, bu açıklamaların karşısında dini açıklamalar kullanılmıştır. Ancak, profesyonel biyologların nerdeyse hepsi, evrim teorisinin kullanılabilir ve geçerli bir teori olduğunu kabul etmişlerdir. Çeşitlilik Sistematik ve taksonominin ilgi alanı olan sınıflandırma, birbirinden farklı yöntemler izler. Taksonomi, organizmaları, taxa adı verilen gruplarda sınıflandırırken, sistematik, organizmaların birbirleriyle ilişkilerini inceler. Bu bilim dalları, kladistik ve genetik dallarında da geliştirmişlerdir. Geleneksel olarak, canlılar beş büyük aleme bölünürler: Monera -- Protista -- Fungi -- Plantae -- Animalia Ancak, çoğu bilimadamı, bu sistemi demode bulmakta ve de modern alternatifler getirmektedirler. Modern sistemler, üç-alemli bir sistem kullanırlar: Archaea -- Bacteria -- Eukaryota Bu alemler, hücrelerin çekirdeklerinin olup olmamasına ve hücrelerin iç yapılarının farklılıklarına göre bölünmüştür. Aynı zamanda, metabolik anlamda, daha az canlı olan bazı hücreiçi parazitler de biyolojide ayrı bir alem olarak incelenirler: Virüsler -- Viroidler -- Prionlar Daha da ileri gidildiğinde, bütün alemler, tüm türler ayrı ayrı sınıflandırılıncaya kadar bölünürler. Bu sıralama, şu sırayla gider: alem, Filum, Sınıf, Takım, Cins, Tür ve Alt türdür. Bir organizmanın bilimsel adı, onun cinsi ve türüne göre belirlenir. Mesela, insanlar homo sapiens olarak adlandırılırlar. Homo cinsi, sapiens ise türüdür. Bilimsel tür isimlerini yazarken, organizmanın cinsinin ilk harfini büyük yazıp türünü küçük harflerle yazmak gerekir. Ayrıca tüm adın da yana yatık yazılması bir kuraldır. Sınıflandırma için kullanılan terim, taksonomidir. Devamlılık 19. yüzyıla kadar, yaşamsal formların bazı şartlarda aniden ortaya çıkabileceği düşünülüyordu. William Harvey, bu yanlış kavramı, "tüm yaşam bir yumurtadan gelir" (Latince'de Omne vivum ex ovo) sözüyle düzeltmiş ve modern biyolojinin temellerini atmıştır. Kısaca anlatmak gerekirse, bu söz, hayatın bir kaynaktan kırılmayan bir devamlılıkla geldiğini söyler. Aynı ataya sahip birkaç organizma benzer özellikler gösterirler. Dünya'daki tüm organizmalar, ortak bir atadan ya da ortak bir gen havuzundan gelirler. Tüm dünyanın en son ortak atasının 3.5 milyar yıl önce ortaya çıktığı düşünülmektedir. Biyologlar, genetik kodun evrenselliğini; bacteria, archaea ve eukaryotun hepsinin aynı atadan geldiğinin önemli bir kanıtı olarak düşünmektedirler. Homeostazi (Homeostasis) Homeostazi (denge), açık bir sistemin, bağlantılı kontrol mekanizmaları tarafından kontrol edilen dinamik eşitlikler aracılığıyla, kendi iç ortamının sabit bir hal sağlayabilmesidir. Tek hücreli ya da çok hücreli tüm organizmalar, homeostasis gösterir: Hücresel düzeyde pH değerinin ayarlanması, organizma düzeyinde vücut sıcaklığının sabit tutulması ve ekosistem düzeyinde bitkilerin karbondioksit fazlalığında daha hızlı büyümesi buna örnek olarak gösterilebilir. Doku ve organlar da homeostasis sergilerler. Etkileşimler Her şey diğer organizmalar ve çevreyle etkileşim içersindedir. Biyolojik sistemleri incelemenin bir zor kısmı da, incelenen organizmanın diğer faktörlerle çok sayıda etkileşim içersinde olmasıdır. Mikroskobik bir bakterinin lokal şeker eğimine tepkide bulunması, aslında, bir aslanın Afrika savanasında yemek aramasından farklı değildir. Herhangi bir tür için, davranışlar; agresif, yardımcı, parazitsel ya da simbiyotik olabilir. İşler, herhangi bir ekosistemde, birden fazla tür etkileşime girdiğinde karışır. Bu türdeki çalışmalar, ekolojinin çalışma alanındadır. Kaynak: biyoloji.nedir.com/#ixzz2ln65qSv9

http://www.biyologlar.com/biyolojinin-ilkeleri-nelerdir

Mikroskop Seçimi - Yardım

Yeni üyenizim ve bu ilk başlığım... Bilgisayar mühendisiyim fakat alanım dışında pek çok hobilerim var. Şu sıralar biyolojiye merak sardım diyebilirim. Kaliteli bir ışık mikroskobuna ihtiyacım var, belki gelecekte fotoğraf da çekebilirim. Bir süredir araştırıyorum. Yurt dışında (amazon.com'da) AmScope ve Motic markalarını buldum. Uygun fiyatlı modeller var fakat ülkeye girişte sorun çıkar mı bilmiyorum. Bunun dışında Zeiss, Nikon, Olympus markaları oldukca kaliteli görünüyor. Türkiye'de bunların fiyatları nedir bilmiyorum... Kendi kullandığınız modeller varsa bunlarla ilgili de bilgi paylaşırsanız sevinirim. Şu anda mikroskop seçimi ile ilgili aklınıza gelen ne varsa her türlü yardıma açığım... Yorum yazan arkadaşlara şimdiden teşekkürlerimi sunuyorum.

http://www.biyologlar.com/mikroskop-secimi-yardim

Biyolog Çalışma Alanları Nedir? Biyoloji Egitimi Nasıldır? Biyologun Görevleri nelerdir?

TANIM Canlı türlerinin tanımlanması, sınıflandırılması, yaşamı ve evrimini etkileyen koşullar üzerinde araştırma yapan kişidir. GÖREVLER Biyologların görevleri araştırma ve uygulama alanındaki çalışmalara göre değişir. Araştırma alanında çalışan biyolog: – Canlıların yapılarını inceler ve bunları belli sınıflara yerleştirir, – Çeşitli canlı türlerinin evrimine etki eden etmenleri inceler, – Canlıların en iyi şekilde yaşayabileceği ortamları belirler. Uygulama alanında çalışan biyolog: – Biyolojik arıtmada ve kirletilmiş ortamlarda gerekli iyileştirici uygulamaları yapar, – Tahlil edilecek kan, idrar vb. maddeleri çeşitli kimyasal işlemlere tabi tutar, – İçme sularının ve tarım alanlarında kullanılan suların analizlerini yapar, – Biyolojik zenginliklerimizin araştırılması, doğa tarihi ve müzeleri oluşturulması için etkili kurumlarla işbirliği yapar. KULLANILAN ALET VE MALZEMELER - Laboratuar araç-gereçleri, – Mikroskop, – Kimyasal maddeler, – Bilgisayar. MESLEĞİN GEREKTİRDİĞİ ÖZELLİKLER Biyolog olmak isteyenlerin; – Akademik yeteneği yüksek, – Fen bilimlerine, özellikle biyolojiye ilgili ve bu alanda başarılı, – Bilimsel meraka sahip, bir konuyu derinliğine araştırmak isteyen, – Görme duyusu ve belleği güçlü, – Renkleri ayırt edebilen, – Sabırlı ve dikkatli, kimseler olmaları gerekir. ÇALIŞMA ORTAMI VE KOŞULLARI Biyologların çalışma ortamı görevlerine göre değişir. Bitki ve hayvan türlerinin yaşayışını incelemek için açık havada, hücre ve dokuları incelemek için laboratuarda , inceleme sonuçlarını değerlendirmek için ise büro ortamında çalışmaları gerekir. Biyologların çalışma süresi genelde düzenli, çalışma ortamı temiz ve güvenlidir. Ancak arazi çalışmalarında incelenen canlı türlerine göre değişmek üzere gece gündüz, bazen günlerce çalışmak gerekebilir. ÇALIŞMA ALANLARI VE İŞ BULMA OLANAKLARI Biyologlar, kamu kuruluşlarında, üniversitelerin tıp, eczacılık, ziraat, orman, fen fakültelerinde, araştırma merkezlerinde, Tarım ve Köy İşleri, Orman, Çevre ve Sağlık Bakanlıklarına bağlı kuruluşlarda; özel sektörde ise ilaç ve besin endüstrisi kuruluşlarında çalışmaktadırlar. Biyoloji bölümü mezunları, “Ortaöğretim Alan Öğretmenliği Tezsiz Yüksek Lisans Programı” veya “Pedagojik Formasyon Programı” nı tamamlamaları durumunda “Biyoloji Öğretmenliği” yapabilirler. MESLEK EĞİTİMİNİN VERİLDİĞİ YERLER Meslek eğitimi çeşitli üniversitelere bağlı Fen-Edebiyat ve Fen Fakültelerinin “Biyoloji” bölümlerinde verilmektedir. MESLEK EĞİTİMİNE GİRİŞ KOŞULLARI Bölüme girebilmek için Öğrenci Seçme ve Yerleştirme Sınavı’nda (ÖSS) yeterli “Sayısal (SAY)” puanı almak gerekmektedir. EĞİTİMİN SÜRESİ VE İÇERİĞİ Mesleğin eğitim süresi 4 yıldır. Fen dersleri ağırlıklı bir eğitim yapılmaktadır. Teorik eğitimin yanında laboratuar çalışmaları da vardır. Eğitim sırasında isteğe bağlı olarak staj yapılır. Eğitim süresince; Genel Biyoloji, Moleküler Biyoloji, Kimya, İstatistik, Sistematik Botanik, Hayvan Histolojisi, Biyokimya, Genetik, Fizyoloji, Bitki Fizyolojisi, Türkiye’nin Bitki Örtüsü, Evrim, Parazitoloji, Bitki Ekolojisi ve Coğrafya, Ekoloji gibi dersleri alırlar. MESLEKTE İLERLEME Meslekte ilerleme genellikle lisansüstü eğitim veya doktora eğitimi ile olur. Biyologlar, ekolji, botanik, zooloji, mikrobiyoloji, hidrobiyoloji, biyokimya, parazitoloji, Genetik, Tıbbi biyoloji... vb. uygulamalı biyoloji gibi alanların birinde uzmanlaşabilirler. Biyologların genellikle genetik ve biyokimya alanlarında uzmanlaşmaya yöneldikleri görülmektedir. BURS, KREDİ VE ÜCRET DURUMU Meslek eğitimi süresince koşulları uyan öğrenciler Yüksek Öğrenim Kredi ve Yurtlar Kurumu ile diğer kamu kurum ve kuruluşlarının verdiği kredi ve burslardan yararlanabilirler. Eğitim sonrası; kamu kuruluşlarında çalışanlar çalıştıkları kurumun statüsüne göre sağlık hizmetleri sınıfından ücret alırlar. Özel işyerlerinde çalışanlar ise çalışma sürelerine, başarılarına ve deneyimlerine göre değişen ücretler alırlar.

http://www.biyologlar.com/biyolog-calisma-alanlari-nedir-biyoloji-egitimi-nasildir-biyologun-gorevleri-nelerdir

Evrimsel biyoloji nedir

Evrimsel biyoloji, biyoloji konularını, canlıların evrimini göz önüne alarak inceleyen bilim dalıdır. Taksonomi biliminin temelinde evrimsel biyoloji yer almaktadır. Canlıları sistematik bir şekilde ayırmada, canlıların evrimsel akrabalıkları ve farklılıkları göz önüne alınır. Ayrıca birçok ekolojik ilişkinin açıklanmasında evrimsel biyoloji kullanılır. Moleküler biyolojide DNA ve RNA dizilerinin baz dizilişleri göz önüne alınarak canlıların hatta organellerin mikroorganizmalarla olan akrabalıkları incelenmekte ve bu incelemede evrimsel biyoloji temel alınmaktadır. Evrimsel biyolojiyi araştıran kişiye evrimsel biyolog denir. Filozof Kim Sterelny'e göre “1858 yılından beri gelişen evrimsel biyoloji bilim alanındaki en büyük entellektüel başarılardan biridir” Evrimsel biyoloji, her iki geniş alan çalışmasından ve laboratuvar odaklı disiplinlerden gelen bilim insanlarını içeren disiplinler arası bir alandır. Örneğin, genellikle mammaloji, ornitoloji veya herpetoloji gibi belirli canlı türleri hakkında özel uzmanlık eğitimi alan ama evrim hakkındaki genel sorulara cevap bulmak için bu canlıları vaka analizi veya örnek olay incelemesi için kullanan bilim insanlarını içerir. Evrimsel biyoloji, aynı zamanda genellikle evrimleşme hızı ile evrim modelleri hakkında sorulara cevap bulmak için fosilleri kullanan paleontologlar ve jeologlar gibi popülasyon genetiği ve evrimsel psikoloji gibi alanlardan gelen teorisyenleri de içerir. Deneyciler, yaşlanmanın evrimi hakkında bir açıklama geliştirebilmek için meyve sineği Drosophila’daki seçilimleri kullandılar ve deneysel evrim, bu anlamda evrimsel biyolojinin oldukça aktif bir alt disiplinidir. Gelişim biyolojisi, başlangıçta modern evrimsel sentezden ayrı tutulduktan sonra evrimsel gelişim biyolojisi çalışmaları sayesinde 1990′larda evrimsel biyolojiye tekrar giriş yapmıştır. Evrimsel biyolojideki bulgular, insanoğlunun sosyokültürel evrimini ve evrimsel davranışını inceleyen yeni disiplinleri oldukça güçlendirdi. Şu an evrimsel biyolojinin fikirsel çerçevesi ve kavramsal araçları, bilgisayar hesaplamalarından nanoteknolojiye kadar geniş bir alanda uygulama bulmuştur. Ayrıca evrimsel tıp alanında da katkıda bulunur. Yapay yaşam, evrimsel biyolojinin açıkladığı üzere, canlıların evrimleşmesini modelleyen hatta onları yeniden yaratmaya çalışan biyoenformatiğin bir alt dalıdır. Bu da genellikle matematik ve bilgisayar modelleri aracılığıyla yapılır. Tarih Evrimsel biyoloji, 1930’lar ve 1940’larda ki modern evrimsel sentezlerin bir sonucu olarak, başlı başına bir akademik dal olarak ortaya çıkmıştır. Ancak, 1970’ler ve 1980’lere kadar önemli sayıda üniversitelerin “evrimsel biyoloji” adı altında departmanları bulunmamaktaydı. Amerika Birleşik Devletleri’nde moleküler ve hücre biyolojisinin hızlı gelişiminin bir sonucu olarak, birçok üniversite biyoloji departmanlarını moleküler ve hücresel biyoloji-tipi ve ekoloji ve evrimsel biyoloji-tipi departmanlar olarak ayırmış ya da bir araya getirmiştir. (Bu departmanlar paleontoloji, zooloji ve benzeri eski departmanları da içlerinde barındırmaktadırlar.) Mikrobiyoloji yakın zamanda geliştirilmiş bir evrimsel bilim dalıdır. Aslında ilk başta morfolojik özelliklerin kıtlığı ve mikrobiyolojideki tür kavramı eksikliği sebebiyle göz ardı edilmişti. Şimdilerde, evrimsel araştırmalar mikrobik fizyolojideki geniş algı düzeyi, mikrobiyal genomikdeki kolaylıklar ve bazı mikropların hızlı üretilebilir olması evrimsel soruları cevaplamakta. Benzer özellikler viral evrim, özellikle de bakteriyofajlar konusunda gelişmelere yardımcı olmaktadır. Güncel araştırmalar Evrimsel biyolojideki güncel araştırmalar, biyolojiyi anlamada evrimin merkez olduğu gerçeği düşünüldüğünde beklenileceği gibi, çeşitli konu başlıklarını kapsar. Modern evrimsel biyoloji, moleküler genetik ve hatta bilgisayar bilimi gibi bilimin çeşitli alanlarındaki fikirleri birleştirir. İlk olarak bazı evrimsel araştırma sahaları modern evrimsel sentez tarafından yetersizce açıklanan fenomenleri izah etmeye çalışır. Bu fenomenler spekülasyonları, eşeyli üremenin evrimi, yardımlaşmanın evrimi, yaşlanmanın evrimi ve evrimleşebilirliği. içerir. İkinci olarak, biyologlar en açıkyürekli evrimsel soruyu sorarlar: “Ne oldu ve ne zaman oldu?” Bu, bilimsel sınıflandırma ve filogenetik gibi alanların yanı sıra paleobiyolojiyi de kapsar. Üçüncü olarak, modern evrimsel sentez hiçkimsenin genlerin moleküler prensiplerini bilmediği bir dönemde icad edilmişti. Günümüzde, evrimsel biyologlar adaptasyon ve türleşme gibi ilginç evrimsel olayların genetik yapılarını belirlemeye çalışmaktadırlar. İlişkili ne kadar gen var, her genin ne kadar büyük bir etkisi var, bu etkiler farklı genlerin etkilerinin birbirine bağlılığı ne ölçüde, etki eden genlerin ne gibi işlevlere meyilli ve ne gibi değişikliklere mağruz kalma eğilimindeler gibi sorulara cevaplar aramaktadırlar. (Örn. Nokta mutasyonlar vs. Gen duplikasyonu ve hatta genom duplikasyonu) Evrimsel biyologlar, ikiz araştırmalarında görülen genetik aktarılabilmedeki yüksekliği bu duruma hangi genlerin sebep olduğunu bulmadaki zorlukları GWA(genome-wide association study) araştırmaları ilebirbirine bağdaştırmaya çalışmaktalar. Genetik yapıyı araştırma konusunda bir zorluk, modern evrimsel sentezi kolaylaştıran klasik popülasyon genetiğinin modern moleküler bilgiyi de dikkate alacak şekilde güncellenmesi gerekliliğidir. DNA dizim bilgisini evrim teorisine moleküler evrim teorisinin bir parçası olarak bağlayabilmek, büyük ölçüde bir matematiksel gelişmeyi gerektirir. Örnek olarak, biyologlar hangi genlerin güçlü olarak seçilmekte olduğuna seçici erim’i(Selective sweep) belirleyerek bulmaya çalışırlar. Dördüncü olarak, modern evrimsel sentez evrime hangi güçlerin katkıda bulunduğu hakkında mutabakata varmak ile ilgili, fakat bunların önemlilik sırası ile alakalı değildir.[10] Güncel araştırma bunu belirlemeye çalışır. Evrimsel güçler Doğal seçilim, cinsel seçilim, genetik kayma, genetik sürüklenme, gelişimsel kısıtlamalar, mutasyon ve biyojeografiyi kapsamaktadır. Evrimsel yaklaşım ayrıca başlıca evrimi araştırmayan özellikle organizmal biyoloji ve ekoloji olmak üzere birçok güncel araştırmanın anahtarıdır. Örnek olarak, evrimsel düşünce yaşam tarihi teorisinin vazgeçilmezidir.

http://www.biyologlar.com/evrimsel-biyoloji-nedir-1

Biyoloji Nedir ?

Biyoloji veya Canlı bilimi, canlıları inceleyen bir bilim dalıdır. Biyologlar,tüm canlıları - tüm gezegeni kaplayan küresel boyuttan, hücre ve molekülleri kapsayan mikroskobik boyuta kadar - onları etkileyen önemli dinamik olaylarla birlikte incelerler.Birçok süreci bünyesinde barındıran hayati süreçlerden bazıları; enerji ve maddenin işlenmesi, vücudu oluşturan maddelerin sentezlenmesi, yaraların iyileşmesi ve tüm organizmanın çoğalmasıdır. Hayatın gizemleri, tarihteki tüm insanları etkilediğinden; insanın fiziksel yapısı, bitkiler ve hayvanlar hakkındaki araştırmalar tüm toplumların tarihlerinde yer bulur. Bu kadar ilginin bir kısmı, insanların hayata hükmetme ve doğal kaynakları kullanma isteğinden gelmektedir. Soruların peşinden koşmak, insanlara, organizmaların yapıları hakkında bilgi kazandırdı ve de yaşam standartları, zamanla yükseldi. İlginin bir diğer kısmı ise, doğayı kontrol etme isteğinden çok, onu anlama isteğinden gelmektedir. Bu araştırmaların ilerletilmesi, bizim dünya hakkındaki düşüncelerimizi değiştirmiştir. Biyolojinin; botanik, zooloji ve tıp gibi birçok dalı eskidir. Ancak, bunları tek bir kategori altında toplayan "biyoloji", ancak 19. yüzyılda ortaya çıkmıştır. Bu bilmin gelişmesiyle, bilimadamları, bütün yaşayan varlıkların, ortak bazı özellikler taşıdıklarını anlamışlardır. Bu nedenle de varlıkların bir bütün içersinde incelenmesinin yararlarını kavramışlardır. Biyoloji, günümüzde, en önemli bilim dallarından biridir: Tüm dünyadaki biyoloji ve tıp dergilerde, yıllık bir milyon makaleden fazla yayımlanmaktadır. Aynı zamanda, biyoloji, tüm dünyadaki okullarda öğretilen ana derslerden biridir. Biyoloji, bu kadar fazla konuyu kendi kapsamı altında topladığı için birçok dallara bölünmüştür. Organizma türüne göre bu bilimdalını bölen yöntem; bitkileri inceleyen botanik, hayvanları inceleyen zooloji ve son olarak da mikroorganizmaları inceleyen mikrobiyolojiyi ana dallar olarak alır. Bazı bölme yöntemleri ise, incelenen organizmaların derecesine göre bu ayrımı yapmaktadır: Bu sistem; hayatın temel kimyasını inceleyen moleküler biyolojiyi, hayatın temel yapı taşları olan hücreleri inceleyen hücre biyolojisini, organizmaların iç organlarını inceleyen fizyolojiyi ve organizmaların ilişkilerini inceleyen ekolojiyi, biyolojinin ana dalları olarak kabul eder. Etimoloji Biyoloji kelimesi, Yunanca hayat anl***** gelen βίος (bios)'la, 'incelemesi' anl***** gelen λόγος (logos)'un, birleşmesiyle oluşmuştur. Göründüğü kadarıyla kelime, günümüzde kullanılan anlamıyla ilk defa, Gottfried Reinhold Treviranus'un Biologie oder Philosophie der lebenden Natur'unda (Biyoloji yada yaşayan Doğanın Felsefesi) (1802) ve Jean-Baptiste Lamarck'ın Hydrogéologie'sinde (Hidroloji) (1802) kullanılmıştır. Kelimenin kendisi ise 1800'de Karl Friedrich Burdach'a atfedilse de, kelime Michael Christoph Hanov'un 1766'da basılan Üçüncü Cilt'inde, Philosophiae naturalis sive physicae dogmaticae: Geologia, biologia, phytologia generalis et dendrologia başlığıyla yer bulmuştur. Tarihi Biyolojinin tek bir bilimdalı olarak ortaya çıkması 19. yüzyılda olmuşsa da, biyolojik bilimlerinden, tıp gelenekleri ve doğa tarihiyle ilgili olanlarının izi Greklere kadar sürülebilir. Rönesans ve Keşif Çağı'nda, deneyciliğin tekrar revaçta olması, bilinen organizmaların sayısının da hızla artmasıyla, biyolojik düşünceyi geliştirdi; Vesalius, fizyolojideki dikkatli gözlemin artmasını başlattı ve Carolus Linnaeus, Georges-Louis Leclerc, Comte de Buffon gibi adamlar hayatın çeşitliliğini anlamak, fosil kayıtlarında bulunmak ve organizma davranışlarını incelemek adına kavramsal çalışmalar başlattı. Mekanik felsefenin güçlenmesiyle doğa teolojisinin önem kazanması da doğa tarihinin gelişmesi açısından bir etkide bulunmuş olabilir. 18. yüzyılda, biyolojinin çoğu dalı - botanik, zooloji ve jeoloji - profesyonelleşmeye başladı ve bu bilimsel anlamda bir dal olmaları yolundaki adımları hızlandırdı. Ancak yine de 1800'lerin sonuna kadar bu işlem tamamlanmadı. Antoine Lavoisier ve diğer fizikçiler, fiziksel ve kimyasal teorilerle hayvansal ve hayvansal olmayan âlemleri birleştirmeye başladı. 19. yüzyıla doğru gidildikçe, Alexander von Humboldt gibi kâşif-doğacılar, organizmaların aralarındaki ilişkileri ve bu ilişkilerin bulundukları ortama göre nasıl farklılık gösterdiklerini inceleyerek biyocoğrafya, ekoloji ve etoloji gibi bilimdallarını başlattı. Çoğu doğacılar, organizmaların değişmediği fikrini reddetmeye başlayıp soy tükenmesi ve türlerin değişebilmesi gibi fikirlere sıcak bakmaya başladı. Embriyoloji ve paleontoloji gibi yeni alanlarla bu tarz tutumlar birleşince Charles Darwin'in doğal seleksiyon yoluyla meydana gelen evrim teorisi ortaya çıktı. 19. yüzyılın sonu; hayatın kaynağı ve hastalıklara mikroorganizmaların neden olması konularında tartışmalar, sitoloji, bakterioloji ve fizyolojik kimya gibi alanlara şahitlik yaptı. Ancak yine de kalıtım konusu tamamiyle bir gizemdi. 20. yüzyılın başında, Gregor Mendel'in çalışmaları, Thomas Hunt Morgan ve öğrencileri tarafından genetiğin hızla gelişmesini sağladı. 1930'lara gelindiğinde nüfus genetiği ve doğal seleksiyonun birleşimi, modern evrim sentezinin ve evrim biyolojisinin ortaya çıkmasını sağladı. Özellikle de James D. Watson'la Francis Crick'in DNA'yı 1953'te keşfetmesinin ardından birçok dal gelişti. Genetik kodun kırılmasının ve merkezi dogmanın (central dogma) kurulmasının ardından, biyoloji; ekoloji, etoloji, [[sistematik] paleontoloji, evrimsel biyoloji, gelişim biyolojisi ve diğer organizmalarla ilgili dalları kapsayan organizma biyolojisi ile hücre biyolojisi, biyofizik, biyokimya, nörobiyoloji, immünoloji ve birçok benzer dalı kapsayan moleküler biyoloji olarak ikiye ayrıldı. 21. yüzyılın başına gelindiğinde bu kadar ayrı parçanın oluşturduğu karışıklık ve anlaşmazlık geçmeye başladı. Organizmal biyologlar moleküler teknik ve fikirlere, moleküler biyologlar da genler ve doğal çevre arasındaki fikirlerle genetik kalıtımla ilgili fikirlere önem vermeye başladı. Biyolojinin İlkeleri Biyoloji, bilgiye ulaşmak için bilimsel methodu kullanır. Bilimsel teoriler, bilimsel gözlemlere dayanır ve bu teoriler, yeni araştırmalarla bazen geliştirilirler. Bilimsel teoriler aynı zamanda, daha gözlenmemiş bir fenomenin tahmin edilebilmesi için de kullanılabilirler. Biyolojik sistemler, bazen sistematik olarak modellenirler; ancak yine de - diğer bilim dallarında da olduğu gibi - teoriler sadece matematik kullanarak açıklanmazlar. Biyolojik bilimler, birkaç temel ilkenin altında toplanılabilirler: evrensellik, evrim, çeşitlilik, devamlılık, genetik, homeostasis, ve etkileşimler. Evrensellik Organizmalar; görüntüde, doğal ortamında ve davranışlarında fazlaca farklılık göstermelerine rağmen, aslında tüm canlılar bazı evrensel temelleri paylaşırlar. Bütün canlı yaşamının karbon bazlı bir biyokimyası vardır: Karbon, tüm canlıları oluşturan temel yapı taşıdır. Aynı şekilde, su da, temel çözendir. Dünya'daki tüm organizmalar, genetik bilgiyi depolamak için DNA ve RNA-bazlı mekanizmalar kullanırlar. Bir diğer evrensel ilke ise, virüslerin dışındaki tüm canlıların hücrelerden oluştuğudur. Aynı şekilde, tüm organizmalar, benzer büyüme süreçleri geçirirler. Tüm bu sayılanlar, Dünya'daki tüm organizmalar için geçerli olsa da, teoride alternatif bir yaşam türü de varolabileceğinden, bilimadamları, alternatif bir biyokimyayı araştırmaktadırlar. Evrim Biyolojideki temel düzenleyici içerik, tüm canlıların aynı kökten gelip, değişik süreçler sonrasında değişip geliştiğini savunan evrimdir. Burada, yukarda da anlatılan, canlılar arasındaki etkileyici benzerliklere yol açar. Charles Darwin, evrimin sürmesine sebebiyet veren doğal seleksiyonu açıklayarak, evrimi, geçerli bir teori olarak kılmıştır (Alfred Russel Wallace'ın bu içeriğin keşfedilmesinde büyük rol oynadığı da belirtilmelidir). Modern sentez teorisinde, genetik çeşitlilik de bu mekanizmada önemli rol oynar. Bir türün, ürediği tür hakkındaki bilgileri, onların özelliklerini ve türün son halinin diğer türlerle ilişkisini inceleyen bilim dalına filogeni denir. Biyolojiye birbirinden farklı birçok yaklaşım türü, filogeniyi ilerletir: Moleküler biyoloji, DNA zincirlerinin karşılaştırılmalarını yaparken fosillerin karşılaştırmalarını da paleontoloji yapar. Bilimadamları, evrim ilişkilerini, birkaç metodla inceleyip düzenlerler. Bu metodlar; filogenetik, fenetik ve kladistik olarak üç dalda toplanılabilir. Evrim teorisi, Darwin ve Wallace tarafından açıklanmasından beri, bu fikir, sonuçlara yada açıklamalara karşı olanlar tarafından sürekli kötülenmiştir. Genellikle, bu açıklamaların karşısında dini açıklamalar kullanılmıştır. Ancak, profesyonel biyologların nerdeyse hepsi, evrim teorisinin kullanılabilir ve geçerli bir teori olduğunu kabul etmişlerdir. Çeşitlilik Sistematik ve taksonominin ilgi alanı olan sınıflandırma, birbirinden farklı yöntemler izler. Taksonomi, organizmaları, taxa adı verilen gruplarda sınıflandırırken, sistematik, organizmaların birbirleriyle ilişkilerini inceler. Bu bilim dalları, kladistik ve genetik dallarında da geliştirmişlerdir. Geleneksel olarak, canlılar beş büyük aleme bölünürler: Monera -- Protista -- Fungi -- Plantae -- Animalia Ancak, çoğu bilimadamı, bu sistemi demode bulmakta ve de modern alternatifler getirmektedirler. Modern sistemler, üç-âlemli bir sistem kullanırlar: Archaea -- Bacteria -- Eukaryota Bu âlemler, hücrelerin çekirdeklerinin olup olmamasına ve hücrelerin iç yapılarının farklılıklarına göre bölünmüştür. Aynı zamanda, metabolik anlamda, daha az canlı olan bazı hücreiçi parazitler de biyolojide ayrı bir alem olarak incelenirler: Virüsler -- Viroidler -- Prionlar. Daha da ileri gidildiğinde, bütün âlemler, tüm türler ayrı ayrı sınıflandırılıncaya kadar bölünürler. Bu sıralama, şu sırayla gider: Âlem, Filum, Sınıf, Takım, Cins, Tür ve Alt türdür. Bir organizmanın bilimsel adı, onun cinsi ve türüne göre belirlenir. Mesela, insanlar Homo sapiens olarak adlandırılırlar. Homo cinsi, sapiens ise türüdür. Bilimsel isimleri yazarken, organizmanın cinsinin ilk harfini büyük yazıp türünü küçük harflerle yazmak gerekir. Ayrıca tüm adın da yana yatık yazılması bir kuraldır. Sınıflandırma için kullanılan terim, taksonomidir. Devamlılık 19. yüzyıla kadar, yaşamsal formların bazı şartlarda aniden ortaya çıkabileceği düşünülüyordu. William Harvey, bu yanlış kavramı, "tüm yaşam bir yumurtadan gelir" (Latince'de Omne vivum ex ovo) sözüyle düzeltmiş ve modern biyolojinin temellerini atmıştır. Kısaca anlatmak gerekirse, bu söz, hayatın bir kaynaktan kırılmayan bir devamlılıkla geldiğini söyler. Aynı ataya sahip birkaç organizma benzer özellikler gösterirler. Dünya'daki tüm organizmalar, ortak bir atadan yada ortak bir gen havuzundan gelirler. Tüm dünyanın en son ortak atasının 3.5 milyar yıl önce ortaya çıktığı düşünülmektedir. Biyologlar, genetik kodun evrenselliğini; bacteria, archaea ve eukaryotun hepsinin aynı atadan geldiğinin önemli bir kanıtı olarak düşünmektedirler. Homeostasis Homeostasis (denge), açık bir sistemin, bağlantılı kontrol mekanizmaları tarafından kontrol edilen dinamik eşitlikler aracılığıyla, kendi iç ortamının sabit bir hal sağlayabilmesidir. Tek hücreli yada çok hücreli tüm organizmalar, homeostasis gösterir: Hücresel düzeyde pH değerinin ayarlanması, organizma düzeyinde vücut sıcaklığının sabit tutulması ve ekosistem düzeyinde bitkilerin karbondioksit fazlalığında daha hızlı büyümesi buna örnek olarak gösterilebilir. Doku ve organlar da homeostasis sergilerler. Etkileşimler Herşey diğer organizmalar ve çevreyle etkileşim içersindedir. Biyolojik sistemleri incelemenin bir zor kısmı da, incelenen organizmanın diğer faktörlerle çok sayıda etkileşim içersinde olmasıdır. Mikroskobik bir bakterinin lokal şeker eğimine tepkide bulunması, aslında, bir aslanın Afrika savanasında yemek aramasından farklı değildir. Herhangi bir tür için, davranışlar; agresif, yardımcı, parazitsel yada simbiyotik olabilir. İşler, herhangi bir ekosistemde, birden fazla tür etkileşime girdiğinde karışır. Bu türdeki çalışmalar, ekolojinin çalışma alanındadır. Çalışma alanları Biyoloji o kadar büyük bir araştırma sahası haline gelmiştir ki, genellikle bir dal olarak değil de, birbirine geçmiş birçok alt dal olarak görülür. Bu madde, dört ana grubu incelemektedir. İlk grup; hücre, gen, vb. temel yapı taşlarını inceleyen dallardan oluşmaktadır. İkincisi; doku, organ ve vücut düzeyindeki yapıları inceleyen dallardan oluşmaktadır. Üçüncüsü, organizmalar ve onların geçmişlerini incelerken, sonuncusu da onların etkileşimlerini inceler. Bu sınırların, gruplamaların ve açıklamaların sadece biyolojik araştırmanın basitleştirilmiş bir betimlemesi olduğu unutulmamalıdır. Gerçekte, bu dallar arasındaki sınırlar belirli değildir ve birçok dal, birbirinin yöntemlerini kullanırlar. Mesela, evrimsel biyoloji, DNA zincirlerini belirlemede moleküler biyolojiden fazlaca etkilenir. Başka bir örnek vermek gerekirse, fizyoloji, organ sistemlerinin görevlerini açıklarken hücre biyolojisinden oldukça yararlanır. Bunun dışında, etiyoloji ve karşılaştırmalı psikoloji, hayvan davranışlarının incelenmesi ve düşünsel özelliklerini incelemesiyle biyolojinin sınırlarını genişletirler. Nitekim, evrimsel psikoloji, psikolojinin de bir bioloji dalını savunmaktadır. Hayatın yapısı Moleküler biyoloji, biyolojinin moleküler düzeyde yapılanıdır. Genetik ve biyokimya başta gelmek üzere, bu dal, birçok dalla iç içe geçmiştir. Moleküler biyolojinin ilgi alanı hücrenin değişik sistemleri - DNA, RNA ve protein sentezini de kapsayarak - ve bu etkileşimlerin nasıl kontrol edildiğidir. Hücre biyolojisi ise hücrenin fizyolojik, davranışsal - etkileşimleri ve hareketleri de dahil - özelliklerini inceler. Bu işlem, hem mikroskobik hem de moleküler düzeyde yapılır. Hücre biyolojisi, hem bacteria gibi tek hücreli hem de insan gibi çok hücreli organizmaları inceler. Hücre oluşumu ve görevinin anlaşılması, tüm biyolojik bilimler için hayati değer taşır. Hücre türleri arasındaki benzerlik ve farklılıkların ortaya çıkarılması ise özellikle hücresel ve moleküler biyolojinin konusudur. Bu farklar ve benzerlikler, birleştirici bir fikir oluşturmada kullanılırlar. Genetik, genlerin, kalıtımın ve organizmaların değişkenliğinin bilimidir. Modern araştırmalarda, belirli bir genin ne işe yaradığı konusunda önemli bilgiler verir. Genetik bilgi, genellikle, DNA moleküllerinin kimyasal yapılarının ifade edildiğikromozomlarda taşınır. Genler, protein sentezi için gerekli bilgiyi kodlarlar. Dolayısıyla da bir bireyin fenotipinin belirlenmesinde büyük görev alırlar. Gelişim biyolojisi, organizmaların büyüyüp gelişmesini inceler. Embriyolojiden ortaya çıkan bu dal, hücre büyümesinin genetik kontrolünü, hücresel farklılaşmayı ve değişimi inceler. Gelişim biyolojisinde kullanılan model organizmalardan bazıları Caenorhabditis elegans, Drosophila melanogaster, Brachydanio rerio, Mus musculus ve Arabidopsis thaliana'dır. Organizmaların fizyolojisi Fizyoloji, tüm yapıların birlikte nasıl çalıştığını anlamaya çalışarak, organizmaların mekanik, fiziksel ve biyokimyasal süreçlerini inceler. "Yapıdan göreve" anlayışı, biyoloji için çok önemlidir. Fizyolojik çalışmalar genellikle, bitki fizyolojisi ve hayvan fizyolojisi olarak ikiye ayrılırlar; ancak fizyolojinin ilkeleri evrenseldir ve her tür organizma üzerinde incelenilebilir. Mesela, maya hücresi hakkında öğrenilen bir özellik, insan hücresi üzerinde de incelenilebilir. Hayvan fizyolojisi, insan fizyolojisinin method ve araçlarını insan olmayan türlere taşır. Bitki fizyolojisi bile, bu türlerden bazı fikirleri ödünç alır.. Anatomi, fizyolojinin önemli bir dalıdır ve sinir, bağışıklık, hormon, dolaşım ve solunum gibi organ sistemlerini inceler. Bu daldan öğrenilenler, tıbbın nöroloji ve immünoloji gibi dallarına büyük yarar sağlar. Organizmaların çeşitliliği ve evrimi Evrimsel biyoloji, organizmaların zamanla değişmeleri de dahil, onların kökleriyle ilgilenir ve birçok taksonomiyle ilintili bilimadamını bünyesinde bulundurur. Mesela, genellikle belirli bir organizma hakkında eğitim almış - mammaloji, ornitoloji yada herpetoloji gibi - birçok bilimadamını içine alıp, evrim hakkındaki daha genel sorulara cevap arar. Evrimsel biyoloji, fosil kalıntılarını inceleyerek evrimin hızı ve türünü inceleyen paleontoloji üzerine kurulmuştur. 1990larda, daha önceden modern sentezden dışlanmış olan gelişim biyolojisi, evrim biyolojisinin sahasına, evrimsel-gelişimsel biyolojinin çalışmalarıyla tekrar girdi. Evrimsel biyolojiyle alakalı dalların bazıları; filojenetik, sistematik ve taksonomidir. Taksonomik açıdan ilintili iki büyük geleneksel bölüm, botanik ve zoolojidir. Botanik, bitkilerin bilimidir. Bu bilimdalı, bitkilerin gelişim, üreme, metabolizma, gelişim, hastalık ve evrimlerini inceleyen birçok daldan oluşmaktadır. Zooloji ise hayvanlarla ilgilidir. Bu bilim dalı, anatomi ve embriyolojinin dalları olan fizyolojiyi de kapsar. Hayvanların ve bitkilerin genel genetik ve gelişimsel mekanizmaları; moleküler biyoloji, moleküler genetik ve gelişim biyolojisi altında yapılır. Hayvanların ekolojisi ise davranışsal ekoloji ve diğer dallarla incelenilir. Hayatın sınıflandırılması Çoğunlukla kullanılan sınıflandırma sisteminin adı, rütbe ve iki isim içeren "Linnaean taksonomi"dir. Organizmaların isimlendirilmesi ise "International Code of Botanical Nomenclature (ICBN)", "International Code of Zoological Nomenclature (ICZN)", "International Code of Nomenclature of Bacteria (ICNB)" gibi uluslararası anlaşmalarla yapılır. Bu üç alandaki isimlendirmeyi standart haline getirmeye çalışan Draft BioCode 1997'de yayımlansa da resmi olarak kabul görmeyi beklemektedir. "International Code of Virus Classification and Nomenclature (ICVCN)" ise BioCode'un dışında kalmaktadır. Organizmaların etkileşimleri Ekoloji, yaşayan organizmaların dağılım ve sıklığıyla birlikte organizmaların aralarındaki ve çevreleriyle ilişkilerini de inceler. Bir organizmanın çevresi, hem onun doğal ortamını hem de iklim ve jeoloji gibi abiotik faktörlerin toplamını kapsar. Ekolojik sistemler, birçok düzeyde incelenirler: birey (individual), nüfus (population), topluluk (community), ekosistem (ecosystem) ve biyosfer (the biosphere). Tahmin edilebileceği gibi ekolojinin de birçok alt bilimdalı vardır. Etiyoloji, hayvan davranışını (özellikle de primatlar ve canidae familyaları gibi sosyal hayvanları) incelemekle beraber, bazen zoolojinin bir alt bilimdalı olarak görülür. Etyologlar, özellikle, davranışın evrimi ve doğal seleksiyon gözüyle davranışı anlamakla ilgilidirler. Bir anlamda, Charles Darwin ilk etyologtur ki kitabı The expression of the emotions in animals and men'le (Hayvan ve insanlarda duyguların gösterilmesi) birçok etyologu etkilemiştir. Biyocoğrafya, plaka tektoniği, iklim değişimleri, göç ve yer değiştirme gibi konulara özel bir yer vererek organizmaların Dünya'ya yayılışını inceler.

http://www.biyologlar.com/biyoloji-nedir-

BİYOLOJİNİN GELECEĞİ VE İNSANLIĞA KATKILARI NELERDİR

Bütün yaşam bilimleri için de tıbbın veya tarımın ayrılmaz bir parçası olarak düşünülüyordu. Çünkü insan olgunun doğaya donuk ilgisi her şeyden önce yaşamını sürdürmesi sağlayacak şeyler yönetilmişti (yaşam) anlamındaki yunanca bios ve (bilim) anlamındaki logas kelimelerinden üretilen biyoloji terimine ancak 14. yüzyılında bilim dünyasına armağan edildiyse de bu bilim ilgilendiği konular antik çağdan beri gündemdedir. Aristileos in benimsenmiş olduğu bireşimsel düşünce, canlı varlıklarla ilgili genel bir kuram hazırlamaya yönelikti ama kurumda kesin çözümler bazı yanlışlıklarla bir birine kaynamıştı. Aristileos görüşleri öylesine olumlu bir yankı uyandırdı ki orta çağda da büyük bir saygıyla karşılandı:ama bu aşırı saygı tutum, söz konusu düşünceleri tartışmayacak gerçekleri saydığı için sonuçta biyolojinin gelişmesi engellemiş oldu. İlk çağda dikkati çeken Galenos’un düşüncelerinde, 15. yüzyıl boyunca tartışmadan benimsendi. Batı dünyasında eski yunan uygarlığının yerine Hıristiyanlık aldığından bireyler hiç eleştirmeden resmi makamların öğretilerini benim sayen ve bütün yeni düşüncelere karşı çıkan bir tutum benimsediler. Böylece roma imparatorluğunun çöküşünden Rönesans ’a kadar bilimsel anlayışta hiçbir önemli gelişme olmadı.ilk büyük bilinçlenme, Rönesans‘daki düşünce devrimiyle ortaya çıktı:ana çizgileriyle (anatomiciler dönemi) diye tanımlıya bilecek bu dönemde 1542 yılında Galenos’un düşüncelerini altüst eden Belçikalı hekim Andre Vesale büyük ün yaptı.insan bedenine bir bakış açısıyla yaklaşan (o döneme kadar kilisenin cesetlerin kesilip incelenmesini yasakladığını belirtmek gerekir) de humini carporis fafabrica adlı atlası büyük tebriklere yol açtı ve çalışmalarını bırakıp, askeri hekim olarak orduya girmesine neden oldu coyüz yapıtındaki,tiziano‘nun öğrencisi olan arkadaşı calcan tarafından yapılmış çizimlerdeki kesinlik, doğa bilimciler günümüzde hala şaşırtmaktadır. Andre Vesalein ardından eski öğretilerin başarısızlığını gözler önüne serer w.harvey 1615yılında kan dolaşımını ortaya koydu.(aynı alanda çalışan öbür bilim adamları, bu buluşa inanmayarak harvey2e bir deli gözüyle baktılar) bu arada bir başka konusundaki alt üst etti: 1580 yılında doğru bulunan mikroskop başlangıçta çok ilkel olmasına karşı ilk kullanıcıları olan Malpighi, Vanleuwen, Haçk gibi bilim adamları çok sayıda buluşlar yapmasına karşın özellikle kan dolaşımı konusunda çeşitli kanıtlar ortaya konulmasına olanak verdi. Hücreleri varlığının bulunması dokulardaki düzenleri çıplak gözle görmediğimiz için o zamana kadar bilinmeyen canlılar dünyasının ortaya konması,dönemin aydınlanması arasından coşkudan çok kaygı uyandır masada bilimde yeni bir cağ başlatacak ilk adım atılması araştırmacılar, sayıları hızla artan buluşları düzenlemeye ve sınıflandırmaya koyulmuşlardır. İS 2. yüzyılda yaşayan Bergamalı Galenos, insan vücudunun yapısını daha iyi inceleyebilmek için maymunlar ve domuzlar üzerinde çalışmak zorunda kaldı. Çünkü onun yaşadığı çağda kadavraları, yani ölü insan vücudunu kesip parçalamak yasaktı. Gene de bu gözlemlerden vardığı sonuçlar 1000 yıldan daha uzun bir süre biyoloji bilimlerine egemen oldu. Galenos’tan sonra çok uzun bir süre biyoloji konusunda hemen hiçbir gelişme olmadı ve eski bilginlerin görüşleri hiç tartışmasız doğru kabul edildi. Ancak 16. yüzyılda Belçikalı anatomi bilgini Andreas Vesalius’un kadavralar üzerindeki çalışmaları biyolojide yeni bir dönemin başlangıcı oldu. Vesalius, 1543’te yayımlanan ve insan vücudunu çizimlerle anlatan ünlü yapıtında, Galenos’un verdiği bilgilerden çoğunun yanlış olduğunu kanıtlamıştı. Eski bilginlerin bütün görüşlerine körü körüne inanmayıp, doğru bilgiye deneyle ulaşmak gerektiğini ortaya koyan bu çalışma çağının bilim anlayışını da derinden etkiledi. 16. yüzyılın sonlarında mikroskobun bulunması biyolojide gerçek bir dönüm noktası sayılır. İtalya’nın kuzeyindeki üniversitelerde botanik, zooloji, anatomi ve fizyolojinin bağımsız birer bilim dalı olarak okutulmaya başladığı o dönem mikroskop sayesinde çok önemli buluşlara tanık oldu. Bitki ve hayvan dokuları böceklerin yapısı mikroskopla incelendi; bakterilerin varlığı keşfedildi. Canlıların en küçük yapısal ve işlevsel birimini tanımlamak için öneriler hücre terimi biyolojinin odak noktası oldu ve 20. yüzyılda moleküler biyolojinin doğuşuna kadar yaşamın bütün sırları hücre biyolojisiyle açıklandı. Bakterilerin bulunmasından yüzlerce yıl sonra bile, bilim adamları bu çok küçük canlıların çürüyen maddelerin içinde kendiliğinden türediğini düşünüyorlardı. 19. yüzyılın ortalarında Louis Pasteur, bakterilerin yalnız çürüyen maddelerde değil her yerde bulunduğunu, üstelik çürümenin sonucu değil nedeni olduğunu kanıtladı. Ayrıca bazı bakterilerin çeşitli hastalıklara yol açtığını açıklaması biyoloji araştırmalarına yeni bir yön verdi. Böylece biyologlar insan, hayvan ve bitkilerin yalnız sağlıklı yapılarını değil, hastalıklı bölümlerini de mikroskopla incelemeye başladılar. Aynı dönemde kimya ve fizik bilimlerinin gelişmesi de canlıların vücudundaki kimyasal ve fiziksel değişikliklerin incelenmesine yardımcı oldu. Hayvan ve bitki fosillerinin incelenmesi bir yandan paleontoloji gibi yeni bir biyoloji dalının doğuşuna, bir yandan da başlangıcı Eski Yunan düşünürlerine kadar uzanan evrim düşüncesinin pekişmesine yol açtı. Bulunan fosiller, hayvan ve bitkilerin milyonlarca yıldır çeşitli değişiklikler geçirerek bugüne kadar ulaştığını ve aralarında önemli yapısal farklar olan birçok hayvanın aynı atadan türediğini gösteriyordu. 19. yüzyılın başlarında Fransız bilgin Jean-Baptiste de Lamarck, bu olguyu açıklamak için, çevre koşullarına uyum sağlamak üzere kazanılan yeni özelliklerin kuşaktan kuşağa aktarıldığını öne sürdü. Lamarck’tan 50 yıl kadar sonra da İngiliz doğa bilgini Charles Darwin, evrimin bir “doğal seçme” sürecinin sonucu olduğunu, ancak doğaya en iyi ayak uydurabilen canlıların soyunu sürdürdüğünü açıklayarak evrim kuramını oluşturdu. Eski Mısır, Mezopotamya ve Çinliler birçok bitki türünü ilaç olarak kullandılar. Bu da onların o dönemlerde biyolojiyle uğraştıklarını göstermektedir. Ayrıca mağara insanları çeşitli canlıların resimlerini mağara duvarlarına çizerek dünyadaki ilk biyoloji eserlerini bırakmış oldular. Deneysel biyolojinin ilk öncüleri yine eski Yunanlılardır. Pliny (İS 23-79) canlılar üzerine gerçek ve düş’ün karışımından oluşan tuhaf ansiklopediler yazmıştır. Lamarck ve Darwin’in çalışmaları, bilim adamlarının kalıtım ve çevre etkenlerini incelemeye yöneltti. Bir türün bütün ayırt edici özelliklerinin kuşaktan kuşağa nasıl aktarıldığını ilk kez 1866’da Avusturyalı keşiş Gregor Mendel bezelyeler üzerinde yaptığı çalışmalarla açıklandı. O zamanlar pek ilgi çekmeyen bu çalışma, kalıtımdan sorumlu olduğu sanılan kromozomların mikroskopla görülmesinden sonra büyük önem kazandı. 20. yüzyılın başlarında, kalıtsal bilgiyi yeni döllere aktaran hücre bileşenlerinin kromozomlar değil genler olduğu kanıtlandı. Daha sonra, hücreye bu kalıtsal bilgiyi nasıl değerlendireceğini ve ne zaman, hangi proteini bireşimleşmesi gerektiğini bildiren DNA’nın (deoksiribo nükleik asit) yapısı açıklandı. Biyoloji asıl büyük gelişmesini 19. yüzyılda yaptı. Morfoloji, fizyoloji, genetik ve evrim gibi alanlarda yeni araştırmalar düşünce akımları birbirini izledi. Bu çağda Jean Babtiste de Monet Lamarck (1744-1829) ile Charles Darwin (1809-1822) arasında genetik alanında yapılan tartışma biyoloji bilimine büyük katkılar getirdi. Ayrıca biyolojik enzimlerin, vitaminlerin ve hormonların tanımlanmasıyla biyokimyanın ve endokrinolojinin doğması gerçekleşti. 1865’te Mendel’in bezelyeyle yaptığı deneyler Mendel Yasaları’nın doğmasına ve kalıtım (gen faktörlerin yapısı kuşaktan kuşağa geçişi ve kimyası) hakkında bilgileri bilim alanına kattı. Kimya, matematik, fizik dalında eğitim gören 19. yüzyıl bilim adamlarının araştırmaları özellikle Liebig, Berzelius von bayer ve Pasteur gibiler canlı varlıkların işleyişlerindeki mekanizmaları molekül düzeyine indirerek molekül biyoloji için ilk adımları attılar. 1903’e kadar Mendel’in bulgularından yeteri kadar haberdar olunmaması Cornes, de Vires, Eric von Seysenegh Tschermach’ın (1871-1962) da birbirlerinden habersizce bu alanda çalışma yapmaları sonucunu doğurdu. Daha sonraları Sutton ve Thomas Hunt Morgan’ın (1866-1945) kromozomları keşfi biyolojiye büyük atılımlar yaptırdı. 20. yüzyılda canlının molekülleri insanın bilgi alanına girdi ve moleküler biyoloji denen bir bilim dalının domasına yol açtı. Moleküler biyolojiden yararlanarak özellikle Watson ve Crick’in 1953’te DNA’nın sırlarını çözmesi yüzyılımızın en büyük olaylarından biri oldu. Bu buluşla tüm biyoloji olaylarının temel noktalarını açıklayabilme olanağı doğdu. 1970’lerde genlerin kimyasal yapıları hakkında ayrıntılı bilgiler elde edilmesi giderek bir Gen Mühendisliği alanının doğmasına yol açtı. Günümüzde elektron mikroskoplarının bulunarak geliştirilebilmesi molekül düzeyinde maddenin oluşum ve değişimlerinin duyarlı yöntemlerle saptanabilmesi biyolojiye büyük katkılar sağlamıştır. 1980’lerde başlayan çalışmalarda artık bir canlının genini alıp bir başka canlıya aktarmak olası hale geldi. Biyoloji bilimlerindeki gelişmeler tıp, eczacılık, veterinerlik ve tarım alanında yeni olanaklar getirdi. Ve ilerlemesini sağladı. Ancak binlerce canlının yapısı, işlevi, evrimi, gelişmesi ve çevresiyle ilişkilerini inceleyen biyoloji bir tek bilim dalı olarak ele alınamayacağı için biyoloji bilimleri bir çok bölüm ve bilim dallarına ayrılmıştır. Kısaca insanlar doğada var oluşlarından başlayarak yaşamlarını sürdürebilmek için canlılarla ilgilenmişlerdir ve bu da biyolojinin ve alt bilim dallarının geleceğini oluşturmuştur.

http://www.biyologlar.com/biyolojinin-gelecegi-ve-insanliga-katkilari-nelerdir

BİYOLOJİ BÖLÜMLERİNE TAVSİYELER

- Biyoloji bölümleri kurbağa diseksiyonunu bırakıp gelişen teknolejiye ayak uydurmalımı ? - Staj zorunlu hale getirilerek birazda olsa tecrübe eğitimi verilmelimi ? - Mezuniyetten sonra öğrencilere mesleki eğitimle ilgili 1 yıllık sınavsız, mecburuyetsiz iş alanlarında eğitim verilebilirmi ? - Taşralardaki tercih edilmeyen biyoloji bölümleri kapatılmalımı yoksa kendi hallerine bırakılıp kapanmaları beklenmelimi ? - Doktorasını yapan akademisyenler iş sizmi kalmalı ? Yoksa kadro verilebilecek kadar doktora öğrencisimi alınmalı ? - Fakülte laboratuvarları AR-GE laboratuvarları gibi çalıştırılsa gelişme sağlanırmı? - Belli başlı biyoloji konuları sahiplenip sadece mezunların iş bulabilecekleri alanlardamı eğitim verilmeli ? - Ders proğramlarına mesleki eğitim ( meslek bilinci ) dersleri eklenmelimi ? - Benim dersim en önemli biyoloji dersidir anlayışından vaz geçilip seçmeli derslerde öğrencilere baskı yapmadan öğrencinin ders seçimine saygı duyulmalımı ? - Yeni terent Biyoloji bölümleri kapatılıyor yerine moloküler biyoloji bölümleri açılıyor. Bölümün adı değişince acaba ders proğramları ve hocalar değişiyomu ? Eğitim anlayışı değişiyormu ? YANLIŞLARI SİZLERDE BU YAZININ ALTINA EKLEYİN   Aslında önemli bir noktaya değinmişsiniz. Ülkemizde Biyoloji bölümlerinin eğitim sistemine "radikal" değişiklikler gerekiyor. Tüm biyoloji bölümlerinde en az 2 tane zorunlu staj uygulaması getirilmelidir. Bunun yanında akademisyenlerimizin de kendini yenilemesi, daha geniş açıdan düşünmeye başlaması gerekmektedir.Onlar değişmedikçe, öğrencilerin ilerlemesi mümkün değildir. Üniversitelerimizin enstitülerinde çalışmalar yapılmalıdır fakat ülkemiz şartları buna çok fazla el vermemektedir ama yaparsak çok iyi olur. Artık akademisyenlikle bilim insanlığının ayrı şeyler olduğunun farkına vardık. Üniversitelerde belki AR-GE yapacak olanlar çalışmalarla uğraşabilir, derslere girecekeler sadece dersi anlatabilir. Okul çok para alsın diye 50-60... kişilik kontenjanlar yerine kaliteli bilim insanları yetiştirebileceğimiz şekilde kapasitemize uygun sayıda öğrenci almalıyız.Bir de tam ekipmanını, laboratuarlarını tamamlamayan okullar bölümü açmamalıdır. Tarih tekerrürden ibaret olabilir fakat bilim tekerrürden ibaret değildir, bilim değişmektir, yeni şeyler üretmektir.Öncelikle bunu idrak etmeliyiz.   Tüm biyologların uyanıp biyolojiye sahip çıkmaları severek çalışmaları.biyoloji ailesinin büyük bir aile olduğunu farkedip birlik ve beraberlikleri sağlamalarını.... bu yapılacak ortak çalışma ve yayınlar tv proğramları ile göstermelerini ,,,bölüm lisans eğitimini 6 yıla çıksın son yıl staj ile geçsin.lütfen kızmayın ama üniversite dekanlıklar bu bölümü ayrıca önem verip gelişmelerin gerisinde bırakmasın öğrencilerini...bu bölüm pek sahipsiz kaldı ülkemizde. birde siyasetçileri uyandırmak..bütün biyoloji severlerin yapacağı iş çok   Biyoloji mezunları nasıl işyeri açabilir ne tür işyerleri bu konular da araştırabilir mi.kadın girişimcilere destek veren kredi projeleri var mı. bilgilendirme amaclı araştırmalar yapılabilir veya tasarılar...mesul müdürlük sertfk. dan sonraki aşamaları neler ... gerçi küçük girişimcilerin önüne çıkabilecek ne gibi engeller var.araştırıp paylaşılabiliriz.

http://www.biyologlar.com/biyoloji-bolumlerine-tavsiyeler

ÖYP ve Biyoloji'e Kadro Verilmemesi..

Bunu Hangi başlığa açacağımı bilemediğim için buraya açtım, kusura bakmayın lütfen, yönetim gerekli gördüğü gere taşır diye umuyorum Ben şimdi buraya yazacağım yazıyı daha önce kendi mezun olduğun okul olan Pamukkale Üniversitesi dilek kutusuna da yazdım ve oradaki arkadaşlardan güzel ilgi gördük, yardımcı olmak istiyorlar. "Şimdi bilen biliyordur 2015'ten itibaren hastanelerde biyolog çalıştırılmayacak, bir çoğunuzun mezuniyet tarihi ! 2012 yılında ÖYP ile biyologlar tıp fakültelerinde bir çok bölüme yerleşebiliyorken yeni uygulama ile sadece tıbbi biyolojiye yerleşebiliyoruz ve tıpçılara +%10 puan ilavesi yapılıyor. Dikkatinizi çekerim, aynı şartlarda aynı sınava giriyoruz ve onlara %10 puan ilavesi yapılıyor, bi kere bu anayasanın eşitlik ilkesine aykırı. Her neyse kimyagerlerin, kimya teknikerlerinin, veterinerlerin, eczacıların girebildiği Tus'a sadece biyologlar giremiyor onun nedini de biyologların Tus'da gayet yüksek puan almaları. Yani arkadaşlar mezun olmadan önce gerçeklerle yüzleşmeniz için söylüyorum, YÖK'te tıpçılar biyologlara ayan beyan ambargo uyguluyor ve biz birlik olup sesimizi çıkarmadığımız için sürünüyoruz. Serdar hoca bizim meslekte birlik yok burdan kaybediyoruz demişti ve 2 yıldır bunu gayet açık görüyorum. Şimdi 4 yıllık gece gündüz çalışmalarınızın, paranızın boşa gitmesini istemiyorsanız Ege Üniversitesi'nden hocamız var Alev Halki, ona mail atmanızı rica ediyorum. ÖYP'de biyologlara kadro verilmesi ve Tus hakkımız için. bakın arkadaşlar danıştay tusa girme hakkımızın elimizden alınmasını iptal ediyor ve bi anda ambargolar yüzünden bunu da iptal ediyor. Eğer biz hakkımızı aramazsak kimsenin arayacağı yok, sonra kimse çıkıp ben ücretli öğretmenlik yapıyorum, vay efendim dersanede 300 liraya çalışıyorum diye ağlamasın. Hakkını aramazsan bi dilim ekmek bulamazsınız. Şimdi Yök'e öyp kadroları için baskı yapmamız lazım, aynı şekilde Sağlık Bakanlığına'da öyle. Lütfen bunu aman bana ne be diye geçiştirmeyin, biyolog tanıdıklarınızı organize edin ve bu işi halledelim, yoksa pazarda limon filanda satamayız benden söylemesi. Siyasi bi durum değil içiniz rahat olsun, eğer bende varım yardımcı olurum diyen varsa bana ulaşsın. bu sayfayı takip eden hocalarım sizin elleriniz bizden uzun, lütfen yardım edin, sizin üzerimizde emeğiniz çok, bütün o bilgileri kullanmayalım diye öğretmediniz biliyorum." Yazdıklarım buydu ve ben elimden geldikçe herkese ulaşmaya çalışıyorum, buna Alev Hoca, siyasi partiler, tv kanalları da dahil ve takdir edersiniz ki bunu tek başıma yapmam imkansız. Nereye gitsem biyologlara bir dokun bin ah işit, ben mezun olalı 1,5 yıl oldu ve işsizim, bu iş böyle gitmez, biz sustuğumuz için bu haldeyiz, bir şekilde birlik olup sesimizi duyurmalıyız. Lütfen desteklerinizi esirgemeyin ve bu işin peşini bırakmayalım.

http://www.biyologlar.com/oyp-ve-biyolojie-kadro-verilmemesi-

BİYOLOJİ SORULARI

A.Aşağıdaki sorulardaki boşlukları uygun şekilde tamamlayınız. ( her soru 2 puandır) 1.Kan şekerini düzenleyen hormona…………….…... denir. 2.Vitamin eksikliği biyolojiye yeterli önem verilmedi.inde ortaya çıkan ……….. sorunlarındandır. 3.Su ……………0C sıcaklıkta en yüksek özgül ağırlığa sahiptir. 4. ……………. Ğyonu, kemik erimesini ( osteoporozu ) engeller. 5. Biyoteknolojinin temel amacı canlı türleri arasında belirli bir amaca yönelik ……… ………….dir. 6.Alg, bakteri, maya ve küflerin büyük miktarlarda üretilmesi ve bu canlı hücrelerin kurutulması sonucu oluİan biyolojik kütleye ……… …………. …………. denir. 7……………vitamini eksikli.inde , vücutta kalsiyum eksikli.i görülür 8.Karbon……….. adet ba. yapar. 9.Bir çözelti içerisinde hidrojen iyonlarının yo.unlu.u arttıkça PH derecesi…………... 10.Demir eksikli.inde ………….. (………….) hastalı.ı görülür. B.Aşağıdaki soruları altında verilen bolluklara cevaplandırınız. ( Her soru 10 puandır) 1.Suyun temel özelliklerinden 5 tanesini yazınız? 2.Mikroskobik bir inceleme nasıl yapılır? Maddeler halinde yazınız? 3.Genetik ıslah nedir? Önemini açıklayınız? 4.PH nedir? Canlılar için önemini açıklayınız. 5. Osteomalazi, tetani, addison,anemi, kretinizm, guatr,raİitizm, mikzoderm hastalıkları hangi vitaminlerin eksikliklerinde ortaya çıkarlar? her boş 1 puandır.) 1. I. Osmotik basıncın ayarlanması II. Vücut sıvılarının pH’sının ayarlanması III.Bazı enzimatik reaksiyonlarında aktivatör olarak görev yapmaları IV. Bazı enzimlerin kofaktör kısmını oluİturmaları Yukarıda verilen bilgilerden hangileri minerallerin vücudumuzdaki görevlerindendir? A.I,III ve IV B. II ve IV C. I ve III D. II,III ve IV E. I,II,III ve IV 2.Aİa.ıda hücrelerle ilgili bazı özellikler verilmiİtir: I. De.iİik hücre tiplerine dönüİebilme, II. Sınırsız bölünebilme, III.Laboratuvar ortamında yaİama, IV.Genetik bilgiyi taİıma Verilen özelliklerden hangileri kök hücrelerinin en önemli özelli.idir? A.I ve II B. I ve III C. II ve III D. I ve IV E.II ve IV 3. Aşağıdakilerden hangilerinde tek hücre proteini kullanılmaktadır? I. taze sebze ve meyvelerde II.çorbalarda III.hazır yemeklerde IV.diyet yiyeceklerinde A. I ve II B.III ve IV C. I,II ve III D. II,III ve IV E. I,II,III ve IV 4.Günümüzde görülen aşağıdaki gelişmelerden hangisinde biyoloji biliminin katkısı diğerlerine göre daha azdır? A.Doku ve organ nakilleri B.Güneş enerjisiyle ısınma C. Adli tıpta DNA testinin yapılması D. Aynı genetik yapıda canlıların üretilmesi E. Tarımda verimliliğin artırılması 5.Su canlılar için vaz geçilmez ihtiyaçlardan birisidir. Buna gör e su ve özellikleriyle ilgili olarak; (Her do.ru 3, her yanlıİ -1 ve I. Ğnsan vücudunda suyun en az bulundu.u yapı diiİ minesidir II.+4 ‘C’nin altında su donarken molekülleri arasındaki mesafeler büyür III.Ğnsan vücudunun oldu.u gibi hücresinin de yaklaİık ¾’ü sudur. verilerinden hangileri do.rudur? A. Yalnız I B. Yalnız II C. Yalnız III D. I ve III E. I.II ve III 6.Aşağıda verilen Ph derecelerinin hangisinde + yo.unlu.u en fazladır? A. 1 B. 3 C. 6 D. 7 E. 9 7.Aşağıdakilerden hangileri vücutta mineral eksikliğine bağlı olarak oluşan hastalıklardan birisi değildir? A. insülin B. Addison C. Raşitizm D. Tetani E. Osteomalazi 8. Yetişİkinlerde kalsiyum ve iyot eksikli.inde hangi hastalıklar görülür? Kasiyum eksikliğinde iyot eksikliğinde A. Osteoporoz B. Osteoporoz C. Miksoderm D. Raİitizm E. Osteomalazi Anemi Raİitzim Kretinizm Guatr Miksoderm 9.ATP ve nükleik asitlerin yapısına katılan mineral çeİidi aİa.ıdakilerden hangisidir? A. Potasyum B. Kalsiyum C.Fosfat D.Ğyot E. Çinko 10.I. insan vücudunda en fazla bulunan mineral çeİididir. II. kemik ve diİlerin yapısına katılarak sertlik verir. III. kandaki miktarı paratiroid bezinin parathormon salgısı ile artırılır. Yukarıda bazı özellikleri verilen mineral çeİidi aİa.ıdakilerden hangisidir? A. Potasyum B. Kalsiyum C.Fosfat A.Aİa.ıdaki sorulardaki boİlukları uygun İekilde tamalayınız. ( her soru 4 puandır) 1.Vücudumuzda bulunan ve her türlü hücreye dönüİebilme özelli.ine sahip hücrelere …………… ………….. denir. 2. Atomların …………. sayıları de.iİtirilerek izotopları elde edilir. 3.Bitkilerde suyun yükseklere kadar çıkarılabilmesi, suyun ………….. …………. özelli.i ile mümkün olur. 4.Yeterli ………… minerali alınmadı.ında tiroid bezinin metabolizması bozulur. 5. Asit , baz ve tuzlara genel olarak …………… denir. 6.Kalıtsal nedenlerle kanın pıhtılaİmaması hastalı.ına……………. denir. 7.Zirai mücadelede, tarım zararlılarına karİı onlarla beslenen veya bu canlılarda parazit yaİayan canlıların kullanılmasına…………….. ……………. denir. 8.Biyoteknolojide en etkin olarak kullanılan canlılar ………………..dır. 9.Bir çözeltide hidroksil iyon yo.unlu.u arttıkça PH derecesi …………………. 10.Vücumuzda en fazla bulunan mineral ……………..dur. B.Aİa.ıdaki soruları altında verilen boİluklara cevaplandırınız. ( Her soru 10 puandır) 1. Minerallerin genel olarak vücuttaki görevleri nelerdir? 2.Mikroskopun kısımlarını maddeler halinde yazınız? 3.Biyoloji bilimine gereken önem verilmedi.inde ortaya çıkabilecek sorunları genel olarak maddeler halinde yazınız? 4.Suyun adhezyon ve kohezyon özelli.ini tanımlayarak canlılar için bu özelli.in önemini açıklayınız. 5. Ğnsülin hormonunun görevini ve biyoteknolojik yöntemlerle nasıl üretildi.ini açıklayınız? C. Aİa.ıda verilen test sorularının do.ru cevaplarını üzerine iİaretleyiniz. (Her do.ru 3, her yanlıİ -1 ve her boİ 1 puandır.) 1.Aİa.ıda verilen minerallerden hangisi canlılarda metabolizma hızının düzenlenmesinde etkilidir? A. Demir ( Fe) B. Ğyot(I) C. Bakır (Cu) D. Manganez ( Mn) E.Potasyum ( K) 2.Aİa.ıda bir mineralin özellikleri verilmiİtir: -Kasların çalıİmasını sa.lar. -Kanın pıhtılaİmasında etkilidir. -Kemiklerin yapısına katılır. -Sinirlerin düzenli çalıİmasını sa.lar. Buna göre özellikleri verilen mineral aİa.ıdakilerden hangisidir? A. Demir B. Magnezyum C. Sodyum D. Kalsiyum E. Potasyum 3.Kök hücreleri aİa.ıda isimleri verilen hastalıklardan ; I. Parkinson II.Omurilik tahribi III. Kalp krizi IV. Ülser hangilerinin tedavisi için umut olmaktadır? A. I ve II B. I ve III C. II ve III D. I ve IV E. I,II ve III 4.Günümüzde biyoloji biliminin giderek öneminin artmasının nedeni olarak; I. çevre sorunları, II. kaynakların yetersiz hale gelmesi, III. bazı hastalıkların tedavisinin yapılamaması verilenlerden hangileri etkili olmuİtur? A. Yalnız II B. I ve II C. I ve III D. II ve III E. I,II ve III 5.Aİa.ıdakilerden hangisi biyoloji ilimine yeterli önem verilmedi.inde ortaya çıkan sorunlardan de.ildir? A. Sa.lı.ın bozulması, B.Ekonominin bozulması C.Çevrenin bozulması D.Canlı çeİitlili.inin artması E.Sosyal yapının bozulması 6.Biyoloji bilimindeki son geliİmeler, moleküler biyoloji ve gen mühendisli.i gibi yeni bilim dallarının do.masına neden olmuİtur. Ğnsanlı.ın ihtiyacını karİılamak amacıyla yapılan bu çalıİmalarda insan sa.lı.ını tehdit eden kalıtsal bozuklukların önceden tespiti yapılabilecek ve her insanın genetik İifresini gösteren bir kimlik kartı dahi hazırlanabilecektir. Yukarıda anlatılan çalıİmalar aİa.ıdaki hangi projenin tamamlanmasıyla çözülebilir hale gelecektir? A.Canlıdan canlıya gen transferiyle B.Bakterilerin gen haritalİarının çıkarılmasıyla C.DNA’nın izolasyonuyla D.Genetik kopyalama olayıyla E.Ğnsan genomunun belirlenmesiyle 7.Mineraller , canlı vücudunda düzenleyici olarak görev yapan besinlerdendir. Buna göre besinlerle ilgili olarak; I. Kalsiyum kanın pıhtılaİmasından, kasların kasılmasına kadar vücutta bir çok yerde görev yapar II.Na ve Cl iyonları sinir sisteminin çalıİması için gereklidir III.Fe hemoglobinin yapısına katılan bir lememnttir verilerinden hangileri do.rudur? A. Yalnız I B. Yalnız II C. Yalnız III D. I ve III E. I,II ve III 8.Su canlıların temel maddelerinden biridir. Bu nedenle canlı vücudunun büyük bir kısmını su oluİturur. Farklı canlılarda ve aynı canlıların farklı dokularında dahi su miktarı farklıdır. Suyu canlılar için bu kadar önemli yapan özellikleriyle ilgili olarak; I.Ğyi bir çözücü olması II.Buharlaİma ısısının fazla olması III.Kohezyon özelli.i IV.Donma sırasında hacminin küçülmesi İeklinde verilen bilgilerden hangileri do.rudur? A. Yalnız I B.II ve IV C. I,II ve III D. II,III ve IV E. I,II,III ve IV 9.Aİa.ıdakilerden hangileri hem vitamin hem de hormonal eksiklikler sonucu oluİan hastalıklardan birisi de.ildir? A. Raİitizm B. Guatr C. Addison D. Skorbüt ( diİ etlerinin kanaması) E. Kretinizm 10.I. Vücut sıvılarının osmotik basıncının ayarlanması II.DNA’nın yapısına katılma III.Solunumda ETS elemanlarının yapısına katılma IV.PH ayarlama Yukarıdakilerden hangileri minerallerin vücuttaki genel rollerinden de.ildir? A. I ve II B. II ve III C. I ve IV D. II ve III E. II ve IV A.Aİa.ıdaki sorulardaki boİlukları uygun İekilde tamalayınız. ( her soru 4 puandır) 1. Vücudumuzda bulunan ve her türlü hücreye dönüİebilme özelli.ine sahip hücrelere …………… ………….. denir. ( kök hücreleri ) 2.Atomların …………. sayıları de.iİtirilerek izotopları elde edilir. ( nötron) 3. Bitkilerde suyun yükseklere kadar çıkarılabilmesi, suyun ………….. …………. Özelli.i ile mümkün olur. ( yüzey gerilimi) 4.Yeterli …………………..minerali alınmadı.ında tiroid bezinin metabolizması bozulur. ( iyot) 5.Asit , baz ve tuzlara genel olarak …………… denir.( elektrolitler) 6.Kalıtsal nedenlerle kanın pıhtılaİmaması hastalı.ına……………. denir. ( Hemofili ) 7.Zirai mücadelede, tarım zararlılarına karİı onlarla beslenen veya bu canlılarda parazit yaİayan canlıların kullanılmasına…………….. ……………. denir. ( Genetik ıslah ) 8.Biyoteknolojide en etkin olarak kullanılan canlılar ………………..dır. ( Mikroorganizmalar ) 9.Bir çözeltide hidroksil iyon yo.unlu.u arttıkça PH derecesi …………………. ( Büyür) 10.Vücumuzda en fazla bulunan mineral ……………..dur. (Kalsiyum) B.Aİa.ıdaki soruları altında verilen boİluklara cevaplandırınız. ( Her soru 10 puandır) 1. Minerallerin genel olarak vücuttaki görevleri nelerdir? -Vücut sıvılarının pH’sının ayarlanması -Kas ve sinirlerin çalıİa bimesi için gereklidirler. -Büyüme ve geliİmenin d.zenli olabilmesi için gereklidir. -Enzimlerin kofakktör kısmını oluİturma veya aktivatör olarak görev yaparlar. -Kemik ve diİlerin yapısına katılma. -Vücut sıvılarının osmotik basıncını ayarlama 2.Mikroskopun kısımlarını maddeler halinde yazınız? A.Mekanik kısım: -Ayak -Gövde -Tabla -Ğnce ayar vidası -Kaba ayar vidası B.Optik ksım -Lamba -Kondansör -Objektif -Oküler 3.Biyoloji bilimine gereken önem verilmedi.inde ortaya çıkabilecek sorunları maddeler halinde yazınız? 1.Çevrenin bozulması: Erezyon, ormanların tahrip edilmesi…… 2.Sa.lık problemleri: Yanlıİ beslenme, kalıtsal bozukluklar…. 3.Okonomik problemler: Islah çalıİmalarının yapılmaması,Üretimin artırılamaması 4.Sosyal problemler: Göç, psikolojik problemler 4.Suyun adhezyon ve kohezyon özelli.ini tanımlayarak canlılar için bu özelli.in önemini açıklayınız. Adhezyon: Çeper moleküllerinin suya uyguladı.ı çekim kuvveti Kohezyon: Su moleküllerinin birbirini çekmesi Bitkilerde suyun yükseklere çıkarılabilmesi bu kuvvetler sayesinde mümkün olur. 5. Ğnsülin hormonunun görevini ve biyoteknolojik yöntemlerle nasıl üretildi.ini açıklayınız? -Ğnsülin sentez geni insandan alınarak bakterilere transfer edilir. -Bakterilerde bu gen aktifleİtirilerek insülin hormonu elde edilir. C. Aİa.ıda verilen test sorularının do.ru cevaplarını üzerine iİaretleyiniz. (Her do.ru 3, her yanlıİ -1 ve her boİ 1 puandır.) 1.Aİa.ıda verilen minerallerden hangisi canlılarda metabolizma hızının düzenlenmesinde etkilidir? A. Demir ( Fe) B. Ğyot(I) C. Bakır (Cu) D. Manganez ( Mn) E.Potasyum ( K) 2.Aİa.ıda bir mineralin özellikleri verilmiİtir: -Kasların çalıİmasını sa.lar. -Kanın pıhtılaİmasında etkilidir. -Kemiklerin yapısına katılır. -Sinirlerin düzenli çalıİmasını sa.lar. Buna göre özellikleri verilen mineral aİa.ıdakilerden hangisidir? A. Demir B. Magnezyum C. Sodyum D. Kalsiyum E. Potasyum 3.Kök hücreleri aİa.ıda isimleri verilen hastalıklardan ; I. Parkinson II.Omurilik tahribi III. Kalp krizi IV. Ülser Hangilerinin tedavisi için umut olmaktadır? A. I ve II B. I ve III C. II ve III D. I ve IV E. I,II ve III 4.Günümüzde biyoloji biliminin giderek öneminin artmasının nedeni olarak; I. çevre sorunları, II. kaynakların yetersiz hale gelmesi, III. bazı hastalıkların tedavisinin yapılamaması verilenlerden hangileri etkili olmuİtur? A. Yalnız II B. I ve II C. I ve III D. II ve III E. I,II ve III 5.Aİa.ıdakilerden hangisi biyoloji ilimine yeterli önem verilmedi.inde ortaya çıkan sorunlardan de.ildir? A. Sa.lı.ın bozulması, B.Ekonominin bozulması C.Çevrenin bozulması D.Canlı çeİitlili.inin artması E.Sosyal yapının bozulması 6.Biyoloji bilimindeki son geliİmeler, moleküler biyoloji ve gen mühendisli.i gibi yeni bilim dallarının do.masına neden olmuİtur. Ğnsanlı.ın ihtiyacını karİılamak amacıyla yapılan bu çalıİmalarda insan sa.lı.ını tehdit eden kalıtsal bozuklukların önceden tespiti yapılabilecek ve her insanın genetik İifresini gösteren bir kimlik kartı dahi hazırlanabilecektir. Yukarıda anlatılan çalıİmalar aİa.ıdaki hangi projenin tamamlanmasıyla çözülebilir hale gelecektir? ;F. Canlıdan canlıya gen transferiyle G. Bakterilerin gen haritalİarının çıkarılmasıyla H. DNA’nın izolasyonuyla Ğ. Genetik kopyalama olayıyla J. Ğnsan genomunun belirlenmesiyle 7.Mineraller , canlı vücudunda düzenleyici olarak görev yapan besinlerdendir. Buna göre besinlerle ilgili olarak; I. Kalsiyum kanın pıhtılaİmasından, kasların kasılmasına kadar vücutta bir çok yerde görev yapar II.Na ve Cl iyonları sinir sisteminin çalıİması için gereklidir III.Fe hemoglobinin yapısına katılan bir lememnttir verilerinden hangileri do.rudur? A. Yalnız I B. Yalnız II C. Yalnız III D. I ve III E. I,II ve III 8. su canlıların temel maddelerinden biridir. Bu nedenle canlı vücudunun büyük bir kısmını su oluİturur. Farklı canlılarda ve aynı canlıların farklı dokularında dahi su miktarı farklıdır. Suyu canlılar için bu kadar öenmeli yapan özellikleriyle ilgili olarak; I.Ğyi bir çözücü olması II.Buharlaİma ısısının fazla olması III.Kohezyon özelli.i IV.Donma sırasında hacminin küçülmesi İeklinde verilen bilgilerden hangileri do.rudur? A. Yalnız I B.II ve IV C. I,II ve III D. II,III ve IV E. I,II,III ve IV 9.Aİa.ıdakilerden hangileri hem vitamin hem de hormonal eksiklikler sonucu oluİan hastalıklardan birisi de.ildir? A. Raİitizm B. Guatr C. Addison D. Skorbüt ( diİ etlerinin kanaması) E. Kretinizm 10.I. Vücut sıvılarının osmotik basıncının ayarlanması II.DNA’nın yapısına katılma III.Solunumda ETS elemanlarının yapısına katılma IV.PH ayarlama Yukarıdakilerden hangileri minerallerin vücuttaki genel rollerinden de.ildir? A. I ve II B. II ve III C. I ve IV D. II ve III E. II ve IV A.Aİa.ıdaki sorulardaki boİlukları uygun İekilde tamalayınız. ( her soru 4 puandır) 1. Vücudumuzda bulunan ve her türlü hücreye dönüİebilme özelli.ine sahip hücrelere …………… ………….. denir. ( kök hücreleri ) 2.Atomların …………. sayıları de.iİtirilerek izotopları elde edilir. ( nötron) 3. Bitkilerde suyun yükseklere kadar çıkarılabilmesi, suyun ………….. …………. Özelli.i ile mümkün olur. ( yüzey gerilimi) 4.Yeterli …………………..minerali alınmadı.ında tiroid bezinin metabolizması bozulur. ( iyot) 5.Asit , baz ve tuzlara genel olarak …………… denir.( elektrolitler) 6.Kalıtsal nedenlerle kanın pıhtılaİmaması hastalı.ına……………. denir. ( Hemofili ) 7.Zirai mücadelede, tarım zararlılarına karİı onlarla beslenen veya bu canlılarda parazit yaİayan canlıların kullanılmasına…………….. ……………. denir. ( Genetik ıslah ) 8.Biyoteknolojide en etkin olarak kullanılan canlılar ………………..dır. ( Mikroorganizmalar ) 9.Bir çözeltide hidroksil iyon yo.unlu.u arttıkça PH derecesi …………………. ( Büyür) 10.Vücumuzda en fazla bulunan mineral ……………..dur. (Kalsiyum) B.Aİa.ıdaki soruları altında verilen boİluklara cevaplandırınız. ( Her soru 10 puandır) 1. Minerallerin genel olarak vücuttaki görevleri nelerdir? -Vücut sıvılarının pH’sının ayarlanması -Kas ve sinirlerin çalıİa bimesi için gereklidirler. -Büyüme ve geliİmenin d.zenli olabilmesi için gereklidir. -Enzimlerin kofakktör kısmını oluİturma veya aktivatör olarak görev yaparlar. -Kemik ve diİlerin yapısına katılma. -Vücut sıvılarının osmotik basıncını ayarlama 2.Mikroskopun kısımlarını maddeler halinde yazınız? A.Mekanik kısım: -Ayak -Gövde -Tabla -Ğnce ayar vidası -Kaba ayar vidası B.Optik ksım -Lamba -Kondansör -Objektif -Oküler 3.Biyoloji bilimine gereken önem verilmedi.inde ortaya çıkabilecek sorunları maddeler halinde yazınız? 1.Çevrenin bozulması: Erezyon, ormanların tahrip edilmesi…… 2.Sa.lık problemleri: Yanlıİ beslenme, kalıtsal bozukluklar…. 3.Okonomik problemler: Islah çalıİmalarının yapılmaması,Üretimin artırılamaması 4.Sosyal problemler: Göç, psikolojik problemler 4.Suyun adhezyon ve kohezyon özelli.ini tanımlayarak canlılar için bu özelli.in önemini açıklayınız. Adhezyon: Çeper moleküllerinin suya uyguladı.ı çekim kuvveti Kohezyon: Su moleküllerinin birbirini çekmesi Bitkilerde suyun yükseklere çıkarılabilmesi bu kuvvetler sayesinde mümkün olur. 5. Ğnsülin hormonunun görevini ve biyoteknolojik yöntemlerle nasıl üretildi.ini açıklayınız? -Ğnsülin sentez geni insandan alınarak bakterilere transfer edilir. -Bakterilerde bu gen aktifleİtirilerek insülin hormonu elde edilir. C. Aİa.ıda verilen test sorularının do.ru cevaplarını üzerine iİaretleyiniz. (Her do.ru 3, her yanlıİ -1 ve her boİ 1 puandır.) 1.Aİa.ıda verilen minerallerden hangisi canlılarda metabolizma hızının düzenlenmesinde etkilidir? A. Demir ( Fe) B. Ğyot(I) C. Bakır (Cu) D. Manganez ( Mn) E.Potasyum ( K) 2.Aİa.ıda bir mineralin özellikleri verilmiİtir: -Kasların çalıİmasını sa.lar. -Kanın pıhtılaİmasında etkilidir. -Kemiklerin yapısına katılır. -Sinirlerin düzenli çalıİmasını sa.lar. Buna göre özellikleri verilen mineral aİa.ıdakilerden hangisidir? A. Demir B. Magnezyum C. Sodyum D. Kalsiyum E. Potasyum 3.Kök hücreleri aİa.ıda isimleri verilen hastalıklardan ; I. Parkinson II.Omurilik tahribi III. Kalp krizi IV. Ülser Hangilerinin tedavisi için umut olmaktadır? A. I ve II B. I ve III C. II ve III D. I ve IV E. I,II ve III 4.Günümüzde biyoloji biliminin giderek öneminin artmasının nedeni olarak; I. çevre sorunları, II. kaynakların yetersiz hale gelmesi, III. bazı hastalıkların tedavisinin yapılamaması verilenlerden hangileri etkili olmuİtur? A. Yalnız II B. I ve II C. I ve III D. II ve III E. I,II ve III 5.Aİa.ıdakilerden hangisi biyoloji ilimine yeterli önem verilmedi.inde ortaya çıkan sorunlardan de.ildir? A. Sa.lı.ın bozulması, B.Ekonominin bozulması C.Çevrenin bozulması D.Canlı çeİitlili.inin artması E.Sosyal yapının bozulması 6.Biyoloji bilimindeki son geliİmeler, moleküler biyoloji ve gen mühendisli.i gibi yeni bilim dallarının do.masına neden olmuİtur. Ğnsanlı.ın ihtiyacını karİılamak amacıyla yapılan bu çalıİmalarda insan sa.lı.ını tehdit eden kalıtsal bozuklukların önceden tespiti yapılabilecek ve her insanın genetik İifresini gösteren bir kimlik kartı dahi hazırlanabilecektir. Yukarıda anlatılan çalıİmalar aİa.ıdaki hangi projenin tamamlanmasıyla çözülebilir hale gelecektir? ;F. Canlıdan canlıya gen transferiyle G. Bakterilerin gen haritalİarının çıkarılmasıyla H. DNA’nın izolasyonuyla Ğ. Genetik kopyalama olayıyla J. Ğnsan genomunun belirlenmesiyle 7.Mineraller , canlı vücudunda düzenleyici olarak görev yapan besinlerdendir. Buna göre besinlerle ilgili olarak; I. Kalsiyum kanın pıhtılaİmasından, kasların kasılmasına kadar vücutta bir çok yerde görev yapar II.Na ve Cl iyonları sinir sisteminin çalıİması için gereklidir III.Fe hemoglobinin yapısına katılan bir lememnttir verilerinden hangileri do.rudur? A. Yalnız I B. Yalnız II C. Yalnız III D. I ve III E. I,II ve III 8. su canlıların temel maddelerinden biridir. Bu nedenle canlı vücudunun büyük bir kısmını su oluİturur. Farklı canlılarda ve aynı canlıların farklı dokularında dahi su miktarı farklıdır. Suyu canlılar için bu kadar öenmeli yapan özellikleriyle ilgili olarak; I.Ğyi bir çözücü olması II.Buharlaİma ısısının fazla olması III.Kohezyon özelli.i IV.Donma sırasında hacminin küçülmesi İeklinde verilen bilgilerden hangileri do.rudur? A. Yalnız I B.II ve IV C. I,II ve III D. II,III ve IV E. I,II,III ve IV 9.Aİa.ıdakilerden hangileri hem vitamin hem de hormonal eksiklikler sonucu oluİan hastalıklardan birisi de.ildir? A. Raİitizm B. Guatr C. Addison D. Skorbüt ( diİ etlerinin kanaması) E. Kretinizm 10.I. Vücut sıvılarının osmotik basıncının ayarlanması II.DNA’nın yapısına katılma III.Solunumda ETS elemanlarının yapısına katılma IV.PH ayarlama Yukarıdakilerden hangileri minerallerin vücuttaki genel rollerinden de.ildir? A. I ve II B. II ve III C. I ve IV D. II ve III E. II ve IV

http://www.biyologlar.com/biyoloji-sorulari

9 SINIF BİYOLOJİ DERSİ SORULARI

1. Biyolojinin önemini arttıran çevre sorunları nelerdir? 2. Biyoloji bilmenin faydaları nelerdir? 3. Kök hücre nedir?Gelecekte ne gibi faydası olacaktır? 4. Tek hücre proteini hangi canlılardan elde edilir? 5. Tek hücre proteini nerelerde kullanılır? 6. Biyolojik ıslah nedir? 7. Biyolojik ıslah yönteminin önemini açıklayınız. 8. Biyolojik savaş nedir? 9. Biyolojiye yeterli önem verilmemesi sonucunda ortaya çıkabilecek sorunlar nelerdir? 10. Biyoteknoloji nedir? 11. Günümüzde biyoteknolojik yöntemler kullanılarak üretilen ürünler nelerdir? 12. İnorganik bileşik nedir?Çeşitleri nelerdir? 13. Organik bileşik nedir?Çeşitleri nelerdir? 14. Canlıların temel bileşenlerini sınıflandırınız. 15. Suyun canlı vücudundaki görevleri nelerdir? 16. Asit nedir?Örnek veriniz. 17. Baz nedir?Örnek veriniz. 18. Tuz nasıl oluşur? 19. Minerallerin insan vücudu için önemi nedir? 20. Minerallerin vücuda neden düzenli alınması gerekir? 21. Organizmada enerji verici olarak kullanılan organik bileşikler nelerdir? 22. Organizmada yapı maddesi olarak kullanılan organik bileşikler nelerdir? 23. Organizmada düzenleyici olarak kullanılan inorganik bileşikler nelerdir? 24. Karbonhidrat çeşitleri nelerdir? 25. Bitkisel polisakkaritler nelerdir? 26. Hayvansal polisakkaritler nelerdir? 27. İnsan vücudu için yağların önemi nedir? 28. Protein eksikliğinde oluşacak aksaklıklar nelerdir? 29. Enzimlerin görevi nedir? 30. Sıcaklık enzimlerin çalışmasını nasıl etkiler? 31. Bitkisel ve hayvansal kaynaklı proteinlere örnek veriniz. 32. Karbonhidrat bakımından zengin yiyecekler nelerdir? 33. ATP nin organizma yaşamındaki önemi nedir? 34. DNA nın görevi nedir? 35. RNA nın görevi nedir?Çeşitleri nelerdir? 36. Hücre zarının görevi nedir? 37. Çekirdeğin görevi nedir? 38. Hayvan hücresinde bulunan organeller nelerdir? 39. Hücre neden bölünmeye ihtiyaç duyar? 40. Prokaryot ve ökaryot hücrenin farklılıkları nelerdir? 41. Pasif taşımanın özellikleri nelerdir? 42. Büyük moleküllü katı maddelerin hücreye nasıl alındığını açıklayınız. 43. Omurgasız hayvanları sınıflandırınız. 44. Omurgalı hayvanları sınıflandırınız? 45. Canlıların sınıflandırılmasında kullanılan basamaklar nelerdir? 46. Türkiye’nin biyolojik zenginliğinin sebepleri nelerdir? 47. Saprofit(çürükçül) bakterilerin önemini belirtiniz. 48. Monera aleminde hangi canlılar yer alır? 49. Bitki ve hayvan hücresinin farklılıkları nelerdir? 50. Bitki hücresini saf suda beklettiğimizde ne gibi değişiklikler gözlenir? -Canlıların ortak özellikleri nelerdir? -Bir hücreli ve çok hücreli canlılara dörder tane örnek veriniz. -Hayvanlarda boşaltım organları hangileridir? -Bitkilerde boşaltım olayı nasıl gerçekleştirilir? -Canlılar neden beslenmek zorundadır? Açıklayınız. -Bitkiler ve hayvanlar arasında beslenme yönünden benzer olan özellik nedir? -Bitkiler ve hayvanların beslenme yönünden temel farkı nedir? -Bitkilerde çevresel uyarılara tepki nasıl gerçekleşmektedir? -Canlıların ortak özelliklerinden olan metabolizmayı açıklayınız. -Çok hücreli canlılarda büyüme ve gelişme olayı nasıl gerçekleşir? -Eşeyli ve eşeysiz üreme kavramlarını açıklayınız. -Özümleme nedir? Özümleme olayına üç örnek veriniz. -Bitkiler fotosentezle karbondioksiti organik besine dönüştürür. Bu olayın diğer canlılar için önemi nedir? -Canlıları meydana getiren organik bileşiklerin isimlerini yazınız. -Organik moleküllerin canlılarda enerji üretiminde kullanılış sırası nasıldır? -Organik moleküllerin canlılarda yapı maddesi olarak kullanılış sırası nasıldır? -Nişasta, glikoz, protein ve yağ moleküllerinin ayıraçları nelerdir? Bu moleküller ayıraçlarla reaksiyona girdiğinde hangi renkler meydana gelir? -Aşağıdaki organik moleküllerin yapıtaşlarını birleştiren bağların isimlerini karşılarına yazınız. Glikojen --> Selüloz --> Maltoz --> Laktoz --> Sakkaroz --> Nişasta --> Yağ --> Protein --> Enzim --> -Su katılımı ile gerçekleşen yıkım olaylarına ne denir? -Hidroliz nedir? Tanımlayınız. -Dehidrasyon sentezi nedir? Tanımlayınız. -Monomer ve polimer terimlerini açıklayınız. -Latincede “de”; çıkartılmış, eksilmiş anlamındadır. Buna göre, Deoksiriboz bir oksijeni eksik Riboz anlamına gelir. Buna göre, monosakkaritlerin genel formülü esas alındığında, Riboz ve deoksiribozun kapalı formülleri nasıl yazılır? -Heksozlardan glukoz, fruktoz ve galaktozun kapalı formülleri C6H12O6’dır. Formülleri aynı olan bu moleküllerin adları neden farklıdır? -Disakkaritlerin genel formülü nasıl yazılabilir? -Bir hücrede hangi organik moleküller yalnız bitki hücrelerinde sentezlenir? -Aşağıda verilen reaksiyonlardan hangileri hidroliz, hangileri dehidrasyon sentezidir? Peptit bağlarının oluşması --> Proteinlerin yapı taşlarına ayrılması --> Glikozit bağlarının birleşmesi --> Sakkarozun monosakkaritlere ayrışması --> Glikozun maltoza dönüşmesi --> Nişastanın yıkımı ile glikozun oluşması --> Maltozun ortamdan su alması --> Yağ asitlerinin yağa dönüşmesi --> Selülozun yıkımı ile glikozun oluşması --> Peptit bağlarının kopması --> -Canlıları meydana getiren molekülleri (temel bileşenleri) gruplandırınız. -Su ve mineraller hangi tür besin molekülleri grubuna girerler? -Suyun canlılar için önemini yazınız. -Suyun canlılardaki düzenleyici rolünü açıklayınız. -Bilim insanları günde ortalama 2 litre su içmemizi önerir? Bu neden gereklidir? -Çaydanlıkların çeperinde zamanla katı maddelerin biriktiği görülür. Buna göre, su ile ilgili ne söylenebilir? -Asitlerin genel özellikleri nelerdir? -Bazların genel özellikleri nelerdir? -Bir çözeltinin asit ya da baz olduğunu nasıl anlarız? Açıklayınız. -Tuz nasıl oluşur? Kısaca açıklayınız. -Koyun, keçi vb. hayvanlara zaman zaman tuz verilir. Neden? -Canlı vücudunda bulunan mineraller hangileridir? Adlarını yazınız. -Minerallerin canlılar için önemini belirtiniz. -Toksik etkiye sahip olan minerallerin vücuda alınma yollarını belirterek, alınması gereken tedbirleri açıklayınız. -Fe, P, Na, Ca, P ve I minerallerinin vücuttaki işlevlerini kısaca açıklayınız. -Basit guatr hastalığı vücutta hangi mineralin eksikliğinde görülür? -Aşağıda isimleri verilen hastalıklar vücutta hangi minerallerin eksikliğinde ortaya çıkmaktadır? Anemi --> ..................... Raşitizm --> .................. Guatr --> ...................... Dişlerde çürüme --> ........................ -Kemik gelişimi normal olmayan bir insanda hangi inorganik maddenin eksikliği vardır? -Vücutta en bol bulunan mineral hangisidir? -Kalsiyumun vücuttaki görevleri nelerdir? -İskelet kaslarına sık sık kramp giren bir insanın mineral eksiğini gidermesi için hangi besinleri çok tüketmesi gerekir? -Esterleşme tepkimesi ne demektir? Bu sırada kurulan bağın adı nedir? -Karbonhidratlar ile yağların ortak özellikleri nelerdir? -Bir yağ molekülünün oluşum denklemini yazınız. -Doymamış yağ asidi nedir? Tanımlayınız. -Yağlar, neden kış uykusuna yatan hayvanlar tarafından fazlaca depo edilir? -Yağların insan vücudu için önemi nedir? -Doymuş ve doymamış yağ asitleri arasındaki farklardan beş tanesini yazınız. -Yağların hayvan ve insan vücudundaki görevleri nelerdir? -Doymuş yağ asidi nedir? Tanımlayınız. -Canlılar enerji kaynağı olarak ilk önce karbonhidratları, sonra yağ ve en sonrada proteinleri parçalarlar. Canlıların en son olarak proteini parçalamalarının nedeni nedir? -Proteinlerin insan vücudu için önemi nedir? -Bir amino asitin açık formülünü yazarak, üzerinde gruplarını belirtiniz. -Proteinlerin insan vücudundaki görevleri nelerdir? -İnsan vücudunda protein eksikliği sonucu ne gibi anormallikler görülür? -X + Y --> Z + Su Yukarıdaki reaksiyonda Z maddesi bir dipeptit ise, a)X ve Y molekülleri hangileridir? b)X ve Y molekülleri arasında hangi bağ oluşur? -Esansiyel aminoasit ne demektir? -Aminoasitlerdeki çeşitliliğin sebebini açıklayınız. -Proteinleri karbonhidrat ve yağlardan ayıran özellikler nelerdir? -Enzimlerin genel özelliklerinden 5 tanesini yazınız. -İnhibitör ve Aktivatör madde ne demektir? Bu maddelerin enzim reaksiyonlarına etkilerini açıklayınız. -Canlılarda enzimlerin görev yapmadığı olaylara örnekler veriniz. -Kıyma aynı miktar parça etten daha hızlı hidroliz olur. Neden? -”Kalaysız bakır kaptan yemek yedi zehirlendi” denir. Bu durum enzimlerin özellikleri ile nasıl açıklanır? -Enzim etkinliğini azaltan veya tamamen durduran maddelere ne denir? -Ortamın sıcaklığı enzim çalışmasını nasıl etkiler? Açıklayınız. -Enzimin substrata bağlandığı yere ne ad verilir? -Aşağıdaki terimleri açıklayınız. Katalizör: Ko-enzim: Kofaktör: Substrat: Aktif merkez (Aktif bölge): Aktivasyon enerjisi: Aktivatör maddeler: İnhibitör madde: -Enzimlerin çalışmasına etki eden faktörler nelerdir? -İnhibitör madde nedir? Tanımlayarak iki örnek veriniz. -Enzim substrat ilişkisini açıklayınız. -”Hiçbir şeyi yoktu. Ateşi yükseldi, öldü” derler. Bu durum, enzimlerin özellikleri ile nasıl açıklanır? -A,D,E ve K vitaminlerinin özelliklerini yazınız. Bu vitaminlerin eksikliğinde görülen rahatsızlıklar nelerdir? -B grubu ve C vitaminlerinin özelliklerini yazınız. Bu vitaminlerin eksikliğinde görülen rahatsızlıklar nelerdir? -Aşağıda isimleri verilen hastalıklar hangi vitaminlerin eksikliğinde görülür? Skorbüt --> Raşitizm --> Gece körlüğü --> Beriberi --> Pellegra --> -D vitamini eksikliği çocuklarda ve yetişkinlerde vücutta hangi hastalıklara sebep olur? Çocuklarda --> Yetişkinlerde --> -B grubu ve C vitaminlerinin neden günlük olarak alınması gerekir? -Kemiklerin gelişmemesi hangi vitaminin eksikliği ile ilgilidir? -Enerji kaynağı olarak kullanılmayan, düzenleyici, direnç arttırıcı organik madde nedir? -Vitaminlerin genel özellikleri nelerdir? -Vitaminlerin insan vücudu için önemi nedir? -Vitaminleri sınıflandırınız. -Yağda çözünen vitaminler hangileridir? -Vitaminlerin; karbonhidrat, yağ ve proteinlerden farklı yönlerini belirtiniz. -Suda çözünen vitaminler hangileridir? -Nükleotid nedir? -Replikasyon, transkripsiyon ve translasyon terimlerini açıklayınız. -DNA’nın görevleri nelerdir? -DNA ökaryotik hücrelerin hangi kısımlarında bulunur? -DNA’nın bir parçasında bulunan nükleotitlerin diziliş sırası şöyledir: ATTGSSSAATAGGSAT Bu zincirin eş zincirini yazınız. Pürinlerle pirimidinlerin oranlarını bulunuz. Hidrojen bağ sayısını hesaplayınız. -Timin nükleotidin yapısını oluşturan molekülleri yazınız. -Bir DNA molekülünün yapısında hangi bağlara rastlanabilir? -RNA molekülünün genel özellikleri nelerdir? -Hücredeki görevlerine göre kaç çeşit RNA vardır? İsimlerini yazarak görevlerini açıklayınız. -Urasil nükleotidin yapısını oluşturan molekülleri yazınız. -Fosforilasyon nedir? -Canlılardaki Fosforilasyon çeşitlerini kısaca açıklayınız. -5600 nükleotitten oluşan bir DNA molekülünde 1000 adenin nükleotit vardır. Bu DNA’da bulunan Timin, Guanin, Sitozin nükleotitlerin sayılarını bulunuz. -6400 nükleotitten oluşan bir DNA molekülünde 1300 adenin nükleotit vardır. Bu DNA’da bulunan Timin, Guanin, Sitozin nükleotitlerin sayılarını bulunuz. -2400 nükleotitten oluşan bir DNA molekülünde 400 adenin nükleotit vardır. Bu DNA’da bulunan Timin, Guanin, Sitozin nükleotitlerin sayılarını bulunuz. -Bir DNA molekülü parçasında toplam 4500 nükleotit sayılmıştır. Bunun 900 tanesi sitozin diğerleri adenin, timin, guanin nükleotit ise bu DNA’daki toplam hidrojen bağı sayısı nedir? -Yapısında 240 timinli, 140 guaninli nükleotit bulunan bir DNA molekülündeki pürin bazı sayısı kaçtır?

http://www.biyologlar.com/9-sinif-biyoloji-dersi-sorulari

GELİŞMİŞ ÜLKELERDE BİYOLOJİ VE TÜRKİYE

Bugün bütün dünyada genlerin tam yerlerini saptamak, kimliğini belirlemek ve biyolojik çeşitliliği oluşturan canlı sistemlerdeki işlevleri üzerinde araştırmalarda bulunmak için büyük miktarlarda kaynak harcanmaktadır. Gelişmiş ülkelerde modern biyolojinin ağırlık noktası moleküler biyoloji alanında öğretim ve temel araştırma olmuş, bundan sonra biyoteknoloji ve biyolojinin diğer uygulamaları düzenli ve verimli olarak çalışmaya başlamıştır. Dolayısıyla moleküler biyoloji eğitimi ve öğretimi biyolojinin farklı dallarında uzmanlaşmak için de gerekli ve zorunlu bir hale gelmiştir. Bu durum dikkate alınarak dünyada birçok ülkede moleküler biyoloji eğitim, öğretim ve araştırma stratejileri geliştirilip uygulamaya konulmuştur. Türkiye'nin yukarıda sözü edilen temel alt yapı ve moleküler biyoloji bilgileri ile donatılmış şekilde yetişmiş moleküler biyologlar hususunda çok büyük bir açığı olduğu gerçektir. Bu nedenle özellikle biyoteknolojik araştırma programları oluşturulurken gereksinim duyulan yetişmiş insan gücünün sağlanmasında güçlüklerle karşılaşılmaktadır. Türkiye bu alanda çağın gerisinde kalmamak için biyolojiye devrimci bir anlayışla bakan, eğitim-öğretim-temel araştırma ve teknoloji kavramlarını entegre bir şekilde hayata geçirecek moleküler biyoloji bölümlerini üniversitelerinde oluşturmak zorundadır. Fakat ülkemizdeki biyoloji bölümlerinin çalışmalarına bakacak olursak bir evrim teorisi üzerine kurulmuş kurullar görevini üstlenmektedir. Adı üstünde teori olan birşeyi ispatlamaya arzulu tek ülke sanırım Türkiye. Bu konuda harcana çabalar daha realist teoriler ve projeler üzerine harcansaydı şu anda uluslararası arenada gelişmiş bir biyoloji sistemine sahip olabilirdik. Bugün ülkemizde bulunan biyoloji bölümlerinin kaç tanesinde moleküler ve genetik alanda tam manasıyla teorik olmadan çalışma yapılmaktadır acaba ? Sadece teorik bilgiler öğrenilmekte ve bu konuda yetişen bilimadamlarımızda birkaç küçük pratik çalışmanın dışında sadece bunu ders olarak anlatmakla yetinmektedirler. Burda tabiki tek suçlu olanda Bilim insanlarımız değildir. Onlarda sistemin getirdiği bu kısır döngüde mecburen böyle davranmaktadır. Çünkü ellerine verilen teknoloji bukadarına yetmektedir. Temennim odurki en kısa zamanda Biyoloji alanında farklı bir perspektifte çalışmalara başlanır ve dünya çapında çok değerli olan Biyoloji bölümü artık bizim ülkemizdede gözbebeği bir bölüm olma ve insanlarımıza faydası dokunan bir çalışma alanı olma konumuna gelir... Facebook Grubumuzdan alıntıdır.

http://www.biyologlar.com/gelismis-ulkelerde-biyoloji-ve-turkiye

Robert Hooke

Robert Hooke

Robert Hooke, (d. 18 Temmuz 1635 – ö. 3 Mart 1703). Hem teorik hem de pratik açıdan yaptığı çalışmalarla bilimsel rönesansta büyük rol oynamış bir İngiliz bilim adamıdır. Robert Hooke, bilim dallarından özellikle biyolojiye daha küçükken ilgi duymuştur. Daha sonra kilisede çalışan üç abisi gibi onun da iyi bir eğitim alıp kiliseye katılacağı düşünülüyordu. Ancak, ailesi, Hooke'un çalışırken kronik baş ağırılarından dolayı çok yaşamayacağından korkup okuldan almışlardır.. Wight Adası'ndaki Freshwater'da doğan Hooke, ilköğretim eğitimini Isle of Wight'ta aldıktan sonra, 13 yaşında, Dr. Busby'nin altında Westminster Okulu'nda almıştır. 1653'te, Hooke, Oxford'daki İsa Kilisesi'nde koroculuk yerini aldı. Burada, Robert Boyle'la tanışıp onun asistanlığını yaptı. Boyle, bir matematikçi olmadığından, ideal gaz yasasının bir parçası olan Boyle yasasını, formülize edenin Hooke olma ihtimali yüksektir. Hücre ilk defa 1665 yılında bir ingiliz bilim adamı olan Robert Hooke tarafından ölü mantar dokusunda boş odacıklar şeklinde keşfedildi. Robert Hooke incelemeleri sırasında gördüğü bu odacıklara hücre (cellula) adını verdi. İleriki yıllarda bu odacıkların boş olmadığı içinde canlıların yaşamsal olaylarını gerçekleştiren en küçük organizmalar olduğu anlaşıldı. 1665 yılında mikroskobu icat edip.İlk araştırmasında hücre adını verdiği ölü mantar hücresinin hucre duvarını görmüştür. Hooke yasası olarak bilinen ( σ = E.Ԑ Gerilme = ELastisite Modülü*Birim uzama ) in mucididir. Hooke Yasası elastik deformasyon durumunda mühendislerin kullandığı başlıca kanunlardan biridir.

http://www.biyologlar.com/robert-hooke

Biyolojinin İlkeleri Nelerdir

Biyoloji, bilgiye ulaşmak için bilimsel metodu kullanır. Bilimsel teoriler, bilimsel gözlemlere dayanır ve bu teoriler, yeni araştırmalarla bazen geliştirilirler. Bilimsel teoriler aynı zamanda, daha gözlenmemiş bir fenomenin tahmin edilebilmesi için de kullanılabilirler. Biyolojik sistemler, bazen sistematik olarak modellenirler; ancak yine de - diğer bilim dallarında da olduğu gibi - teoriler sadece matematik kullanarak açıklanmazlar. Biyolojik bilimler, birkaç temel ilkenin altında toplanılabilirler: evrensellik, evrim, çeşitlilik, devamlılık, genetik, homeostasis, ve etkileşimler. Evrensellik Karbon, bütün canlıların temel yapı taşıdır. Organizmalar; görüntüde, doğal ortamında ve davranışlarında fazlaca farklılık göstermelerine rağmen, aslında tüm canlılar bazı evrensel temelleri paylaşırlar. Bütün canlı yaşamının karbon bazlı bir biyokimyası vardır: Karbon, tüm canlıları oluşturan temel yapı taşıdır. Aynı şekilde, su da, temel çözendir. Dünya'daki tüm organizmalar, genetik bilgiyi depolamak için DNA ve RNA-bazlı mekanizmalar kullanırlar. Bir diğer evrensel ilke ise, virüslerin dışındaki tüm canlıların hücrelerden oluştuğudur. Aynı şekilde, tüm organizmalar, benzer büyüme süreçleri geçirirler. Tüm bu sayılanlar, Dünya'daki tüm organizmalar için geçerli olsa da, teoride alternatif bir yaşam türü de varolabileceğinden, bilimadamları, alternatif bir biyokimyayı araştırmaktadırlar. Evrim Evrimsel süreçte insanlara en yakın canlılar, primatlardır. Biyolojideki temel düzenleyici içerik, tüm canlıların aynı kökten gelip, değişik süreçler sonrasında değişip geliştiğini savunan evrimdir. Burada, yukarda da anlatılan, canlılar arasındaki etkileyici benzerliklere yol açar. Charles Darwin, evrimin sürmesine sebebiyet veren doğal seleksiyonu açıklayarak, evrimi, geçerli bir teori olarak kılmıştır (Alfred Russel Wallace'ın bu içeriğin keşfedilmesinde büyük rol oynadığı da belirtilmelidir). Modern sentez teorisinde, genetik çeşitlilik de bu mekanizmada önemli rol oynar. Bir türün, ürediği tür hakkındaki bilgileri, onların özelliklerini ve türün son halinin diğer türlerle ilişkisini inceleyen bilim dalına filogeni denir. Biyolojiye birbirinden farklı birçok yaklaşım türü, filogeniyi ilerletir: Moleküler biyoloji, DNA zincirlerinin karşılaştırılmalarını yaparken fosillerin karşılaştırmalarını da paleontoloji yapar. Bilim adamları, evrim ilişkilerini, birkaç metotla inceleyip düzenlerler. Bu metodular; filogenetik, fenetik ve kladistik olarak üç dalda toplanılabilir. Evrim teorisi, Darwin ve Wallace tarafından açıklanmasından beri, bu fikir, sonuçlara ya da açıklamalara karşı olanlar tarafından sürekli kötülenmiştir. Genellikle, bu açıklamaların karşısında dini açıklamalar kullanılmıştır. Ancak, profesyonel biyologların nerdeyse hepsi, evrim teorisinin kullanılabilir ve geçerli bir teori olduğunu kabul etmişlerdir. Çeşitlilik Ağaçlar, Plantea şubesinde sınıflandırılan canlılardır. Sistematik ve taksonominin ilgi alanı olan sınıflandırma, birbirinden farklı yöntemler izler. Taksonomi, organizmaları, taxa adı verilen gruplarda sınıflandırırken, sistematik, organizmaların birbirleriyle ilişkilerini inceler. Bu bilim dalları, kladistik ve genetik dallarında da geliştirmişlerdir. Geleneksel olarak, canlılar beş büyük aleme bölünürler: Monera -- Protista -- Fungi -- Plantae -- Animalia Ancak, çoğu bilim adamı, bu sistemi demode bulmakta ve de modern alternatifler getirmektedirler. Modern sistemler, üç-âlemli bir sistem kullanırlar: Archaea -- Bacteria -- Eukaryota Bu âlemler, hücrelerin çekirdeklerinin olup olmamasına ve hücrelerin iç yapılarının farklılıklarına göre bölünmüştür. Aynı zamanda, metabolik anlamda, daha az canlı olan bazı hücreiçi parazitler de biyolojide ayrı bir alem olarak incelenirler: Virüsler -- Viroidler -- Prionlar. Daha da ileri gidildiğinde, bütün âlemler, tüm türler ayrı ayrı sınıflandırılıncaya kadar bölünürler. Bu sıralama, şu sırayla gider: Âlem, Filum, Sınıf, Takım, Cins, Tür ve Alt türdür. Bir organizmanın bilimsel adı, onun cinsi ve türüne göre belirlenir. Mesela, insanlar Homo sapiens olarak adlandırılırlar. Homo cinsi, sapiens ise türüdür. Bilimsel tür isimlerini yazarken, organizmanın cinsinin ilk harfini büyük yazıp türünü küçük harflerle yazmak gerekir. Ayrıca tüm adın da yana yatık yazılması bir kuraldır. Sınıflandırma için kullanılan terim, taksonomidir. Devamlılık Her canlı kalıtsal bilgisini değişmeden gelecek nesile aktarmaya çalışır; bitkiler çiçek, çiçekler tohum üretir. 19. yüzyıla kadar, yaşamsal formların bazı şartlarda aniden ortaya çıkabileceği düşünülüyordu. William Harvey, bu yanlış kavramı, "tüm yaşam bir yumurtadan gelir" (Latince'de Omne vivum ex ovo) sözüyle düzeltmiş ve modern biyolojinin temellerini atmıştır. Kısaca anlatmak gerekirse, bu söz, hayatın bir kaynaktan kırılmayan bir devamlılıkla geldiğini söyler. Aynı ataya sahip birkaç organizma benzer özellikler gösterirler. Dünya'daki tüm organizmalar, ortak bir atadan ya da ortak bir gen havuzundan gelirler. Tüm dünyanın en son ortak atasının 3.5 milyar yıl önce ortaya çıktığı düşünülmektedir. Biyologlar, genetik kodun evrenselliğini; bacteria, archaea ve eukaryotun hepsinin aynı atadan geldiğinin önemli bir kanıtı olarak düşünmektedirler. Homeostazi (Homeostasis) İnsan kan hücreleri, insan "homeostasis"ini sağlamaya yardımcı olurlar. Homeostazi (denge), açık bir sistemin, bağlantılı kontrol mekanizmaları tarafından kontrol edilen dinamik eşitlikler aracılığıyla, kendi iç ortamının sabit bir hal sağlayabilmesidir. Tek hücreli ya da çok hücreli tüm organizmalar, homeostasis gösterir: Hücresel düzeyde pH değerinin ayarlanması, organizma düzeyinde vücut sıcaklığının sabit tutulması ve ekosistem düzeyinde bitkilerin karbondioksit fazlalığında daha hızlı büyümesi buna örnek olarak gösterilebilir. Doku ve organlar da homeostasis sergilerler. Etkileşimler Her şey diğer organizmalar ve çevreyle etkileşim içersindedir. Biyolojik sistemleri incelemenin bir zor kısmı da, incelenen organizmanın diğer faktörlerle çok sayıda etkileşim içersinde olmasıdır. Mikroskobik bir bakterinin lokal şeker eğimine tepkide bulunması, aslında, bir aslanın Afrika savanasında yemek aramasından farklı değildir. Herhangi bir tür için, davranışlar; agresif, yardımcı, parazitsel ya da simbiyotik olabilir. İşler, herhangi bir ekosistemde, birden fazla tür etkileşime girdiğinde karışır. Bu türdeki çalışmalar, ekolojinin çalışma alanındadır.

http://www.biyologlar.com/biyolojinin-ilkeleri-nelerdir-1

Biyolojiye emek veren bilim adamları ve yaptığı işler nelerdir

Biyolojinin Tarihi Gelişimi Yaklaşık 2300 yıl önce Yunan bilim adamı Polibus, “İnsanın Doğası Üzerine” adlı bir kitap yazmıştır. Aristo, çalışmalarını “Hayvanların Tarihi, Hayvan Nesli Üzerine” ve “Hayvan Vücutlarının Kısımları Üzerine” adlı kitaplarında toplamıştır. Aristo, canlıların oluşumlarını ve hayvanların davranışlarını incelerken onların sınıflandırma yoluna da gitmiştir. Galen, canlıların organlarıyla bu organların görevini inceleyen fizyoloji biliminin doğmasını sağlamıştır. Galileo, 1610’da ilk mikroskobun yapımını başarmıştır. Robert Hook, 1665’de bir mantar kesitinin mikroskopta nasıl göründüğünü açıklamış ve gördüğü yapılara “Cellula” (hücre) adını vermiştir. Leeuwenhoek, 1675’de mikroskop kullanarak tek hücrelileri göstermeyi başarmıştır. Carolus Linnaeus, 1707-1778 yıllarında ilk bilimsel sınıflandırmayı yapmıştır. Charles Darwin, 1859’da “Türlerin Kökeni” adlı kitabını yayınlayarak evrimle ilgili görüşlerini ortaya koymuştur. Pasteur, mikroskobik canlıların fermantasyona neden olduğunu tespit etmiş, tavuk kolerasına neden olan mikrobu bulmuş ve kuduz aşısını bulmuştur. Gregor Mendel, bezelyelerle yaptığı deneyler sonucunda, kalıtsal özelliklerin dölden döle geçişi ile ilgili önemli sonuçlar elde etmiştir. Genetik bilimi 19. yüzyılın ortasında, biyolojide bir alt bilim dalı olan moleküler biyolojinin gelişimine olanak sağlamıştır. Beijrinck, 1899’da tütün bitkilerinin yapraklarında görülen tütün mozaik hastalığını incelemiştir. Wilhelm Röntgen, 1895’de tıpta teşhis ve tedavi amacıyla kullanılan Röntgen ışınlarını bulmuştur. Otto Mayerhof, 1992’de kastaki enerji dönüşümlerinin solunumu ve ısı akışını incelemiş. Bu çalışma ile Nobel tıp ödülünü almıştır. Alexander Fleming, 1927’de penisilini, E.A.F Ruska’da 1931’de elektron mikroskobunu bulmuştur. James Watson ile Francis Crick 1953’te günümüzde kabul edilen DNA’nın yapısına ait bir model ortaya koymuşlardır. Steven Howell, 1986’da ateş böceklerinin ışık saçmasını sağlayan maddenin yapımını kodlayan geni ayırarak tütün bitkisine aktarmış ve bu bitkilerin ışık saçtığını görmüştür. Bu olay gen naklinin başlangıcı olmuştur. Dr. Wilmut, yetişkin bir koyundan alınan vücut hücresinin çekirdeğini, başka bir koyuna ait çekirdeği alınmış bir yumurta hücresine yerleştirerek genetik ikiz elde etmiştir. Biyolojinin Alt Bilim Dalları: 1)Botanik: Bitkiler alemini inceleyen bilim dalıdır. 2)Zooloji: Hayvanlar alemini inceleyen bilim dalıdır. Biyolojinin bu bölümlerinden her biri, canlının değişik özelliklerini incelemeleri bakımından kendi içinde alt bölümlere ayrılır. Bu bölümlerin başlıcaları şunlardır; Morfoloji: Canlıların dış görünüşünü, şeklini inceleyen bilim dalıdır. Anatomi: Canlıyı oluşturan organları, bu organların birbirleri ile ilişkilerini inceleyen bilim dalıdır. Fizyoloji: Organizmadaki organ ve dokuların görevlerini, işleyişlerini inceleyen bilim dalıdır. Embriyoloji: Organizmanın gelişme devrelerini inceler. Özellikle döllenmiş yumurtadan (zigot) itibaren meydana gelen gelişme ve farklılaşmaları inceleyen bilim dalıdır. Sitoloji: Hücrenin yapısını ve çalışmasını inceleyen bilim dalıdır. Histoloji: Çok hücreli canlılardaki dokuların yapısını ve bu dokuların vücudun nerelerinde bulunduğunu, hangi organların yapısına katıldığını inceleyen bilim dalıdır. Genetik: Canlılardaki kalıtsal özelliklerin dölden döle nasıl geçtiğini inceler. Ayrıca genin yapısını, görevini ve genlerde meydana gelen değişiklikleri inceleyen bilim dalıdır. Moleküler biyoloji: Canlıların yapısını, moleküler düzeyde inceleyen bilim dalıdır. ekoloji: Canlıların birbirleriyle ve çevreleriyle olan ilişkilerini inceleyen bilim dalıdır. Ekoloji, çevre biyolojisi ile eş anlamda kullanılabilmektedir. Taksonomi (sistematik): Canlıları benzerliklerine göre sınıflandıran bilim dalıdır. Doğadaki çeşitliliği ve çevremizdeki canlıları görmemizi sağlar. Mikrobiyoloji: Gözümüzle göremediğimiz mikroorganizmaların beslenme, üreme gibi yaşam şekillerini inceleyen bilim dalıdır. Uzay biyolojisi: Uzay şartlarında canlıların karşılaştıkları yeni durumları, bunların canlı üzerindeki olumlu ve olumsuz etkilerini, canlıların uzaya uyum şartlarını araştıran bilim dalıdır. Parazitoloji: A***** olarak yaşayan canlıların yapı ve özelliklerini inceleyen bilim dalıdır. Biyokimya: Canlıların yapısındaki kimyasal maddeleri ve yaşamın temeli olan biyokimyasal tepkimeleri inceleyen bilim dalıdır. Ayrıca entomoloji böcekleri, mikoloji mantarları, bakteriyoloji bakterileri, viroloji virüsleri, ihtiyoloji balıkları, ornitoloji kuşları, mammaloji memeli hayvanları inceler. Biyolojik Uygulama Alanları: Tıp, biyoteknoloji, tarım, veterinerlik, su ürünleri, biyomekanik, genetik mühendisliği, ekoloji, fizyoloji, mikrobiyoloji, moleküler biyoloji, eczacılık, diş hekimliği biyolojinin bazı uygulama alanlarıdır. Kentleşme ve sanayileşme ise dolaylı olarak biyolojiden gelen verilere göre yönlendirilir. Alexander Fleming (1881 - 1955) antibiyotik işlevli cisim lizozomu keşfetti; ayrıca bir antibiyotik olan ve Penicillium notatum isimli mantardan üretilen penisilini buldu, bu icadıyla Nobel ödülü kazandı Fleming Lochfield, İskoçya doğumludur. Kilmarnock’taki akademide iki yıl bulundu ve ardından Birinci Dünya Savaşı çıkana dek Londra’daki St. Mary’s Hospital’da hizmet verdi. Savaş esnasında cephelerde bulundu. Cephelerdeki hizmeti sırasında askerlerin enfeksiyonlar sonucu korkunç ölümlerine şahit olmuştu, savaşın bitiminden sonra St. Mary’s Hospital’a geri döndü ve çalışmalarını antiseptikler üzerinde yoğunlaştırdı. Fleming her iki keşfini de 1920li yıllarda rastlantılar sonucu yapmıştır. İlki olan lizozom, Fleming’in içinde bir bakteri ağı olan kapların içine hapşırması sonucu bulundu. Birkaç gün sonra fark etti ki mukusla temas eden bölgedeki bakteriler ölmüştü. Fleming’in laboratuarı her zaman dağınık olurdu, fakat 1928 yılının Eylül’ünde bu durum bir avantaja dönüştü, labotatuarın dört bir yanına dağılmış türlü deneyleri bir düzene sokmaya çalışıyordu. Sıraya koyarken her birini dikkatle inceliyordu ki ilginç bir mantar kolonisi keşfetti, mantarlar Staphylococcus aureus bakterisi tarafından sarılmış kaplarda yetişmişlerdi. Fakat dikkatle incelendiğinde görünecekti ki bu mantarlar, zararlı olmaya potansiyeli olan bakterileri yıkıyordu, bunun anlamı mantarın zararlı hücreleri yok ettiğiydi. Bunun önemini hemen kavradı ve bir yıl sonra (1929da) Penisilin adını verdiği keşfi hakkında bir makale yayınladı. Fleming genellikle bahçe toprağı ile çalışırdı, bu da bir kimyager için zor bir işti, çünkü bahçe toprağını analiz etmek, elemek ve içinde doğru mantarları yetiştirmek uzun ve zahmetli bir süreçti. Fleming buluşunu buradan daha ileriye taşımadı. Buluşun bu günkü haline gelmesi iki farklı bilim ad***** kalmıştı, Howard Florey ve Ernst Boris Chain, penisilininin geliştirilip etkili bir hale getirilmesini sağladılar. Bu çalışmaları sayesinde İkinci Dünya Savaşı ve sonrasında pek çok insanın yaşamı kurtuldu. Fleming gerçekleştirdikleri sebebiyle 1944 yılında şövalyelik unvanını aldı.. Fleming, Florey, ve Chain, 1945Nobel Fizyoloji ve Tıp Ödülünü paylaştılar. Fakat İkinci Dünya Savaşında milyonların hayatını kurtarmış olmak Fleming için çok daha büyük bir onur olacaktı. Fleming, Michael H. Hart'ın kaleme aldığı “List of the Most Influential Figures in History” (En Etkin 100 - Sabah Kitapları, 1994) isimli eserde 43üncü sırada yer aldı Fleming, ressam James McNeil Whistler’ın daveti sonucu 1891de kurulmuş ve her daldan sanatkarı bünyesinde kabul eden Chelsea Sanat Kulübünün de üyelerindendir. Fleming ****** boyamalarıyla kulübe kabul edilmiştir, çünkü bakteriler görünmezdir ama Fleming onları parlak renklere boyayarak görünür kıldı ve bu yöntem bugün bile laboratuarlarda kullanılmaktadır. Fleming, 11 Mart1955 yılında 73 yaşındayken kalp krizi sonucu yaşamını yitirdi. Londra’daki St.Paul Katedralindeki anıtmezarına bir milli kahramancasına gömülmüştür. Buluşuyla modern tıbbın antibiyotiklere bakışını değiştirmiş, milyonların yaşamını kurtarmıştır James Dewey Watson James Dewey Watson (doğumu 6 Nisan 1928), 1954 yılında yaptığı çalışma ile DNA'nın ikili sarmal yapısını, araştırmacı Crick ile bularak Nobel Ödülü almış bilim adamıdır.Prof. James D. Watson, 6 Nisan 1928'de Chicago'da dünyaya geldi. Chicago Üniversitesinde zooloji öğrenimi gördükten sonra 1950 yılında Indiana Üniversitesinde Doktora yaptı. Ancak bu süreç Avrupa da geçmiştir. 1950 ve 1953 yılları arası önce Kopenhag sonrada Cambridge de DNA'nın yapı çözümü konusunda çalışmalarda bulundu. Cambridge Üniversitesinden Francis Crick ile giriştiği çalışmalar sonuç verdi ve 1953 yılında Nature dergisinde 900 kelimeden oluşan makalelerinin yayınlanmasıyla bilim adına önemli bir karanlık bölüm aydınlanmış oldu. Makale şöyle başlıyordu: Deoksiribo Nükleik Asit tuzu için bir yapı önermek isteriz. Ancak bu keşif içinde İngiltere King's Kolejinde Kristalograf olarak çalışan Rosalinda Franklin'in de katkısı büyüktür. Eğer 38 yaşında kanserden ölmeseydi o da verilecek Nobel ödülünü paylaşabilirdi. DNA'nın çift sarmal olduğunun bulunmasında Rosalinda Franklin'in X ışını resimleri kilit rol oynamıştır. Ancak kendisi X Işını resimlerini doğru yorumlayamamaktaydı. James Watson 1956'da Harvard Üniversitesinde Moleküler Biyoloji ve Biyokimya Profesörlüğüne getirildi. Bugün halen hayattadır. (27.10.2006) 1962 yılında Dr.Crick'le DNA'nın 3 boyutlu yapısını keşfetmelerinden dolayı Nobel ödülüne layık bulundular. 1967 Yılında ise orijinal adı: The Double Helix: A Personal Account of the Discovery of the Structure of DNA olan ve DNA'nın ayrıntılı çözüm öyküsünü içeren kitabını yazdı. Bu kitabı ülkemizde, Tubitak Popüler Bilim Kitapları Yayınları arasında bulabilirsiniz. Hakkında Ulaşabildiğim son haber: DNA'nın keşfinin 50'inci Yıldönümü(Şubat 2003) ABD'nin California Eyaleti'nde düzenlenen konferansta, Nobel ödüllü 5 bilim adamı da yer aldı. Nobel ödüllü bilim adamları arasında bulunan James Watson, konferansa Cumartesi günü sunduğu raporda, DNA sarmalındaki yaklaşık 30.000 genetik kodun bütünüyle çözülmesini amaçlayan Human Genome Project (HGP) çalışmasının, kanser gibi tehlikeli hastalıklar için çok yakında tedavi umudu getirmediğini savundu. Watson, bu görüşünün, çok sayıda bilim adamınca da paylaşıldığını belirtti. Watson, buna karşın HGP çalışmasından tam verim alındığında, bunun, DNA'nın keşfi kadar önemli bir açılım yaratacağını da kaydetti.

http://www.biyologlar.com/biyolojiye-emek-veren-bilim-adamlari-ve-yaptigi-isler-nelerdir

R.hook ve A.van leeuwenhoek'un mikroskop ve hücre ile ilgili yaptığı araştırmalar. acilen yardım

R.hook ve A.van leeuwenhoek'un mikroskop ve hücre ile ilgili yaptığı araştırmalar. acilen yardım

Robert Hooke, (d. 18 Temmuz 1635 – ö. 3 Mart 1703). Hem teorik hem de pratik açıdan yaptığı çalışmalarla bilimsel rönesansta büyük rol oynamış bir İngiliz bilim adamıdır.

http://www.biyologlar.com/r-hook-ve-a-van-leeuwenhoekun-mikroskop-ve-hucre-ile-ilgili-yaptigi-arastirmalar-acilen-yardim

Biyolog

Biyolog

Canlı türlerinin tanımlanması, sınıflandırılması, yaşamı ve evrimini etkileyen koşullar üzerinde araştırma yapan kişidir. Biyolog

http://www.biyologlar.com/biyolog-1

Moleküler Biyoloji Nedir?

Moleküler Biyoloji Nedir?

Moleküler biyoloji, moleküler seviyedeki biyolojinin çalışma alanıdır. Biyokimya ve özellikle genetik gibi kimyanın ve biyolojinin diğer dallarıyla etkileşim halindedir. Moleküler biyoloji başlıca DNA, RNA ve protein biyosentezinin arasındaki etkileşimleri içeren hücrenin çeşitli sistemlerini anlamaya çalışır ve bunların nasıl etkileşim halinde olduklarını ve nasıl regüle olduklarını en iyi şekilde öğrenmeyi amaç edinir. Diğer Biyoloji Bilimleriyle İlişkisi Moleküler biyoloji araştırmacıları, moleküler biyolojiye tabii olan bazı özel teknikler kullanırlar, ama teknikler ve fikirler gittikçe artan bir şekilde genetik ve biyokimyadan toplanıyor. Aşağıda pozitif bilim dallarının arasındaki ilişki sistematiksel olarak bahsediliyor. ‘’Biyokimya’’ kimyasal maddelerin ve yaşayan organizmalarda meydana gelen hayati proseslerin çalışma alanıdır. Biyokimyagerler ağırlıklı olarak biyomoleküllerin görev, yapı ve fonksiyonlarına odaklanırlar. Biyolojik proseslerin ve biyolojik olarak aktif moleküllerin sentezinin arkasındaki kimyanın çalışma sahası biyokimyaya örnek olarak gösterilebilir. ‘’Genetik’’  organizmalardaki genetik farklılıkların etkilerini araştıran çalışma alanıdır. Genellikle normal bileşenin (ör. bir gen) eksikliğinden sonuca varılabilir. ‘’Mutant’’ların (normale nazaran fonksiyonel bileşenlerden eksik ya da fazla bileşen bulunduran organizma) )çalışma alanı ‘’vahşi tür’’ ya da normal fenotip olarak adlandırılır. Genetik etkileşimler (epistazi, baskılama) sıklıkla birbirine katılabilen ‘’knock-out’’olarak adlandırdığımız çalışmalardır. ‘’Moleküler Biyoloji’’ genetik materyalin replikasyon, transkripsiyon ve translasyonunun proseslerinin moleküler temelli çalışmalarıdır. Moleküler biyolojinin santral dogması olan genetik materyal RNA nın kopyalanması (transkripsiyon) ve daha sonra proteinde okunması(translasyon) moleküler biyolojinin basitleştirilmiş resmi olasına rağmen, yine de bu alanın anlaşılması için bazı noktalar geliştirilmeye çalışılıyor. Halbuki, bu resim, RNAnın süregelen ilginç görevinin ışığında yeni geliştirilen süregelen revizyondur. Moleküler biyolojide çalışma daha çok kantitatiftir(sayısal, nicelik) ve son zamanlardaki moleküler biyoloji çalışmaları ağırlık olarak biyoinformatikteki bilgisayar bilimiyle ve kompütasyonel (bilgisayımsal, hesaba dayalı) biyoloji şeklinde gerçekleşiyor. 2000’li yılların başları itibariyle, gen yapısı ve fonksiyonu çalışmaları, moleküler genetik, moleküler biyolojinin alt-bilim dalları arasında en fazla göze çarpan çalışmalardır. Kaynak: http://www.news-medical.net/health/What-is-Molecular-Biology.aspx http://www.bilim.org

http://www.biyologlar.com/molekuler-biyoloji-nedir-1


9. Sınıf Biyoloji Proje Ödevi Konuları

9. Sınıf Biyoloji Proje Ödevi Konuları

Vitaminlerin sağlığımıza olumlu  ve olumsuz etkilerinin araştırılması. Enzimlerin günlük hayatımızdaki kullanım alanlarının araştırılması. Farmakolojik değeri olan bitkileri ve özelliklerinin araştırılıp sunulması. Atıkların geri dönüşümü ve geri dönüşümün biyolojik-ekonomik boyutunun araştırılması. Kültür mantarı yetiştiriciliğinin araştırılması ve sunulması. Bitkilerin teknolojide kullanım alanlarının araştırılması. Tarımda biyolojik,kimyasal veya fiziksel mücadele yöntemlerinden herhangi birinin ve bunun çevre üzerindeki etkilerinin araştırılması. Dünyada hızla artan obezitenin nedenlerinin ve olası sonuçlarının araştırılması ve sunulması. Okul kantinlerinde sık tüketilen besin maddelerinin kalori-besin değeri vb.gibi ölçütler açısından analizi,dengeli beslenme ve obezitedeki rollerinin araştırılması. Kimyasal gübrelerin osmoz ve turgora etkilerinin araştırılması. Pestisitlerin zirai mücadelede nasıl ve neden kullanıldığının araştırılması. DNA testinin kullanım alanlarının araştırılması ve sunulması. DNA modeli tasarlanıp yapılması. Lizozom faaliyetlerinin canlı metabolizmasına etkilerinin araştırılması. Vücut ısısının aşırı yükselmesi veya düşmesinin vücut faaliyetlerine etkisinin araştırılması. Marketlerde satılan gıdalarda koruyucu,renk ve kıvam artırıcı maddelerin tespiti,bu maddelerden en az birinin kullanım sıklığı ve insan sağlığına etkilerinin araştırılması. Bakterilerin biyoteknolojide kullanım alanlarının araştırılması. Günümüzde kanser hastalığına yakalanan insan sayısı artışının olası sebeplerinin araştırılması. Sağlık alanında büyük önemi olan biyolojik bir buluşun hikayesinin araştırılması. Omurgalı hayvan koleksiyon tekniği ve uygulaması Biyolojinin tarihsel gelişim tablosu ve yapılan çalışmalar Canlılar alemi tablosu ve sınıflandırmanın önemi ve sınıflandırmanın kriteri Biyolojiye emek veren bilimadamları, yaptığı işler ve kısaca hayatları Yaprak koleksiyonu ve hazırlanma metodu Böcek koleksiyonu ve hazırlanma metodu Omurgalı ve omurgasız hayvan saklama ve dondurma metodları ve numuneleri Bir biyoloji belgeselinin hazırlanmsı Vitaminlerin insan hayatındaki yeri ve önemi Bitki ve hayvan hücrelerinin benzerlik ve farklılıklarını araştırınız. Hücrenin yapısı ve çalışma sistemini araştırınız. Suyun canlılar için önemini araştırınız. Bakteri kültürü ve antibiyotik etkisini araştırınız. İnsanın genom projesi Hücrelerde madde taşınmasının araştırılması Bakterilerin biyoteknolojide kullanım alanlarının araştırılması Bitkilerin teknolojide kullanım alanlarının araştırılması Enzimlerin günlük hayatımızda kullanım alanlarının araştırılması Vitaminler ve madensel maddelerin beslenmedeki önemi Kan gruplarının özellikleri ve grupların tespit edilmesi,kan alıp verme olayı Organik bileşiklerin araştırılması

http://www.biyologlar.com/9-sinif-biyoloji-proje-odevi-konulari

Biyolojinin İlkeleri nelerdir ?

Biyoloji, bilgiye ulaşmak için bilimsel metodu kullanır. Bilimsel teoriler, bilimsel gözlemlere dayanır ve bu teoriler, yeni araştırmalarla bazen geliştirilirler.

http://www.biyologlar.com/biyolojinin-ilkeleri-nelerdir-

Aort Damarı

Aort Damarı

Aort, vücudumuzdaki en büyük atardamardır. 2.54 santimetreyi geçebilen çapıyla, sıradan bir bahçe hortumu kadar kalın olabilmektedir.

http://www.biyologlar.com/aort-damari

Tarihin En Eski Çiftçileri

Tarihin En Eski Çiftçileri

Birçok ülkeden bilim insanının yer aldığı araştırma grubu, tarımın en eski fosil kayıtlarına ulaştı. Fakat bu tarımı yapan insanlar değil, böcekler.

http://www.biyologlar.com/tarihin-en-eski-ciftcileri

Dinozorlar Çağından Kalan İlk Çiçek Tohumları Keşfedildi

Dinozorlar Çağından Kalan İlk Çiçek Tohumları Keşfedildi

SRXTM taramaları kullanılarak oluşturulan Kretase dönemine ait çiçekli bitkilerin meyveleri ve tohumları. F: Else Marie Friis

http://www.biyologlar.com/dinozorlar-cagindan-kalan-ilk-cicek-tohumlari-kesfedildi

Genetik mühendisliği bölümünün iş alanları nelerdir?

Genetik mühendisliği bölümünün iş alanları nelerdir?

Moleküler Biyoloji ve Genetik Mühendisliği Canlı hücre içindeki malzemeleri (DNA, Protein, Enzim vb.), hücre yapısının işlevini ve hücreler arasındaki etkileşimi laboratuar ortamında inceleyerek ortaya çıkaran kişidir. Görevler: Canlıları moleküler düzeyde (atom düzeyinde) inceler ve tıbbı, biyolojik ve çevresel sorunlara çözüm getirici çalışmalar yapar, Tıbbi bozukluklara neden olan geni araştırarak, tanılamada bulunur (Genetik tanı yapılması), Hücre büyümesini kontrol altına alınmasına yönelik çalışmaları yürütür, Genetik (tarım, tıp, vb alanda) değişim üzerine araştırmalar yapar, (Örn: tarımsal ıslah alanında çalışmalar yapabilir. Daha büyük ve daha sağlıklı buğday türünün yetişmesinin sağlanması gibi.) Çevreye zarar veren faktörlerin giderilmesinde iyileştirici çalışmalar yaparak bilime sürekli yenilikler getirir. Mesleğin gerektirdiği özellikler: Moleküler biyoloji ve genetikçi (moleküler biyolog) olmak isteyenlerin; Normalin üzerinde akademik yeteneğe sahip, Fen bilimlerine, özellikle biyolojiye karşı ilgi duyan ve fizik, kimya ve matematik derslerinde başarılı, Bilimsel meraka sahip, araştırmacı, Olaylar arasında neden-sonuç ilişkileri ve bağlantıları kurabilen, Görme duyusu ve belleği güçlü, İnce ayrıntıları görebilen, yoğun dikkat gösterebilen, Dikkatli ve sabırlı kimseler olmaları gerekir. Çalışma ortamı ve koşulları: Moleküler Biyoloji ve Genetikçiler (Moleküler Biyologlar); laboratuar ortamında çalışmaktadırlar. Çalışma ortamı kapalı olup, kimyasal maddelerin yaymış olduğu koku vardır. Birinci derecede verilerle uğraşır. Araştırma yaptığı konuya göre laboratuarda gece geç saatlere kadar çalışma yapılması da söz konusudur. Çalışma alanları ve iş bulma olanakları: İlgili bölüm mezunları; Sağlık hizmetleri veren kurum ve kuruluşlarda, Çevre koruma -kontrol -planlama ile ilgili alanlarda, Biyoteknolojik çalışma yapan kurum ve kuruluşlarda biyolojik ürünlerin (Aşı, ilaç hammaddeleri, serum vb.) üretiminin ve kalite kontrolünün yapılmasında ve bu tesislerin yönetiminde, İlaç ve hammaddelerin, kozmetik ürünlerin üretim ve kalite kontrol aşamasında, Hastalık taşıyan vektör canlıların mücadelesinde, Adli tıp ve kriminoloji laboratuarlarında suçlu belirlenmesinde, Tarım, hayvancılık ve sulama alanlarında verimin arttırılması ve doğaya zararlı olabilecek nedenlerin ortadan kaldırılmasına yönelik çalışmalarda (Tarım, Orman, Çevre ve Sağlık bakanlığına bağlı kuruluşlarda görev yapabilirler), Meslek eğitiminin verildiği yerler: Mesleğin eğitimi, liseden sonra girilebilen çeşitli üniversitelere bağlı Fen – Edebiyat Fakültelerinin “Moleküler Biyoloji ve Genetik” bölümünde verilmektedir. Kaynak: Genetik mühendisliği bölümünün iş alanları nelerdir? https://www.msxlabs.org/forum/cevaplanmis/216338-genetik-muhendisligi-bolumunun-is-alanlari-nelerdir.html#ixzz4PMekggok

http://www.biyologlar.com/genetik-muhendisligi-bolumunun-is-alanlari-nelerdir

Ortak Geleceğimizi Sürdürmek - BİO2020 Vizyonu

Ortak Geleceğimizi Sürdürmek - BİO2020 Vizyonu

Biyoloji, gelecek kuşaklar için sağlık, çevre, gıda ve enerji gibi önemli alanlarda sürdürülebilir bir topluma önemli katkılar sağlayan hızla gelişen bir bilimdir.

http://www.biyologlar.com/ortak-gelecegimizi-surdurmek-bio2020-vizyonu

 
3WTURK CMS v6.03WTURK CMS v6.0