Biyolojiye gercekci yaklasimin tek adresi.

Arama Sonuçları..

Toplam 20 kayıt bulundu.

“Dinlerin evrimi” mi “Evrimin dini” mi?

Sık sık duyarsınız bu iki kelimeyi “Dinlerin Evrimi.” Öyle ki pekçok kaynakta neredeyse bilimsel bir gerçeklik gibi sunulur. Nedir bu “dinlerin evrimi” meselesi? 19.yüzyılıın sonundan itibaren darwinizm, büyük bir hızla kabul gördü ve biyolojiden başlayıp ekonomi, psikoloji, sosyoloji, antropoloji ve tarih gibi hemen her alanı yaygın bir biçimde etkiledi. Bu, “din” olgusuna da “dinlerin evrimi” olarak yansıdı. Böylelikle de insanlığın son derece kısa bir zamanını kapsayan yazılı tarihine ve eldeki kısıtlı arkeolojik bulgulara dayanarak, evrim fikrinin a priori kabul görüldüğü hakim materyalist bakışla “dinlerin evrimi” düşüncesi ortaya çıkmış oldu. Bu düşünceye göre insanlığın ilk dönemlerinde hiçbir dini inanç yoktu. İlk dinler ise ölülere tapınmayla başlamıştı. Bu konuda farklı görüşler de vardı, bunlardan bazılarına göre dinin kaynağı animizme (doğaya canlılık atfetme, onda ruh olduğuna inanma), bazılarına göre ise totemizme (sembol olarak seçilen bir insan, grup ya da eşyaya tapma) dayanıyordu. Bu evrim tarihi içinde de insanlık, inanç sistemleri olarak sırayla animizm, manizm, politeizm (çok tanrıcılık) aşamalarını geçmiş son olarak da monoteizme (tek tanrıcılık) demir atmıştı. Bu temelle ilişkili olarak, pozitivizmin fikir babası A. Comte’de insanlığın inanç tarihini kategorize ederken mitolojik çağ ve metafizik çağ olarak sınıflandırma yapmış, son aşama olarakta pozitivizmi öngörerek dinlerin bu yeni dönemde ortadan kalkacağını iddia etmişti. (Zaman, Comte’nin yanıldığını açıkça gösterdi, ama bu başka bir konu.) Dinlerin evrimi düşüncesini desteklemek için kullanılan bulgularla, biyolojik evrim için gösterilen bulguların kullanım mantığı arasında büyük bir benzerlik görüyoruz. Nasıl ki biyolojik evrimde canlıların yapıtaşlarındaki benzerlikler homoloji ve anoloji gibi kavramlarla “common descent”e (ortak ata) kanıt olarak gösteriliyorsa, dinlerin evrimi düşüncesinde de aradaki benzelikler evrimlerine kanıt olarak gösteriliyor. Özetle, tek tanrılı dinlerle önceki inanışların gerek bazı ritüelleri, gerek tarihsel hikayeleri, gerekse metafizik öğeleri arasındaki benzerliklerden hareketle, zaman içinde birbirlerinden evrimleştikleri öne sürülüyor. Peki bu sonuca varılmasını sağlayan nedir? Yani bu ortak noktalar birbirlerinden evrimleşmeye mi kanıttır yoksa İlahi mesajın sürekliliğine ve zamanla bozuldukça tekrarlandığına mı? Yoksa bu ortak noktalar her iki görüş için de bakılan yere göre değişen kanıt sunabilir mi? Tarih öncesi çağlara dair elimizde çok az bulgu olduğu gerçeğini de dikkate alarak şu söylenebilir; bu benzerlikler her iki düşünceyi de desteklemek için kullanılabilir. Elbetteki a priori kabullerle başlanarak. Hangi görüşü daha kuvvetli desteklediğini görmek için ise yetersiz de olsa elimizdeki bulgulara bakmalıyız. Dinlerin evrimi düşüncesi, “bilimsellik” bağlamında düşünürsek önkabullerden ve arkeolojik kanıtların bu önkabule uygun bir biçimde yorumlanmasından başka bir şey ifade etmiyor. Bu önkabul materyalizm elbette. Bu materyalist önkabulün olmadığı bir bakışla incelendiğinde ise yaklaşık bir yüzyıldır ele geçirilen antropolojik ve arkeolojik bulgular, tarih boyunca toplumlarda önce tek Tanrı inancının var olduğunu, ancak bunun zamanla bozulduğunu gösteriyor. Bazı dinler tarihi yorumcularına göre başlangıçta herşeyi yoktan var eden, herşeyi gören ve bilen, tüm alemlerin sahibi olan tek Yaratıcı’ya inanan toplumlar, zamanla Yaratıcı’nın sıfatlarını ayrı ayrı ilahlar olarak düşünme yanılgısına düşüyor ve birden fazla ilaha tapınmaya başlıyorlar. Birkaç alıntı ile eldeki bulguların ne ifade ettiğine bakalım. Stephen H. Langdon, The Scotsman adlı dergide şunları yazmış: Tüm deliller, kesinlikle başlangıçta bir “tek Tanrı” inancının bulunduğunu gösteriyor. Semitik kökenli halkların arkeolojik ve edebi kalıntıları da en eski zamanlarda bile bir “tek Tanrı” inancının var olduğunu gösteriyor. Yahudi dininin ve diğer Semitik kökenli dinlerin, totemistik, putlara dayanan bir kökeni olduğu teorisinin tamamen geçersiz olduğu bugün anlaşılmış durumda. Axel W. Persson da “Tarih Öncesi Yunan” isimli eserinde şöyle demiş: (1) İlk baştan beri var olan tek Tanrı inancı, daha sonra Yunan dinsel mitlerinde gördüğümüz sayısız önemli önemsiz tanrısal kişiliklere dönüşmüştür. Benim görüşüme göre bu birçok ilahın varlığı, tek ve bir olan bir Tanrı’yı tanımlayan değişik isimlerin zamanla değişik yorumlanmasına bağlıdır. Antropolog Sir Flinders Petrie de bu konuda şöyle diyor:(2) Eğer ruhlara tapmak tek bir İlah’a tapmaya uzanan bir evrim sürecinin ilk basamağı olsaydı, bu durumda çok tanrılılığın gittikçe tek tanrılılığa evrimleşmesinin kanıtlarını görmemiz gerekirdi… Bunun tam aksine tek görebildiğimiz, tek Tanrı inancının her zaman ilk basamak olduğudur…[….] Çok tanrı inancını ilk oluşumuna kadar izleyebildiğimiz her yerde, bunun tek Tanrı inancının bir çeşitlemesi olduğunu görüyoruz Alıntılar çoğaltılabilir. Yani bakışa göre değişir diyorum ama darwinist önkabulden sıyrılıp nesnel bir bakış yaptığımızda da “İlahi mesajın sürekliliği ve zamanla bozuldukça tekrarlandığı” yaklaşımının daha makul olduğu ve delillerle de desteklendiği görülüyor. Hele ki çıkışından 300 yıl sonra tanınamayacak hale getirilen Hristiyanlık örneği de elimizde iken bu bozulmanın mümkün olduğunu ve çeşitli öğretilerdeki sembolizmanın ifade ettiği anlamların benzerliği sebebiyle tek ilahi köken yaklaşımının çok daha makul olduğunu düşünüyorum. Tüm kadim medeniyetlerin ve toplulukların dini öğretilerinde ilahi bir öz vardır. Büyük İslam düşünürü Seyyid Hüseyin Nasr bunu “gelenek” olarak tanımlar. Bu, bizim bildiğimiz anlamda gelenek-görenek tanımlamasına giren adet, alışkanlık, düşünce ya da motiflrin kuşaktan kuşağa aktarımı değildir. Nasr bu “gelenek” ile, Vahy-i İlahi ile inen, kaynaklarında İlahi olanın özel bir tezahürü ile özdeşleşen ilkeler dizisini ve bu ilkelerin farklı zaman birimlerinde ve farklı koşullarda belli bir insan topluluğuna indirilmesini ve uygulanmasını kasteder. (3) Hulasa edersek; bu İlahi mesaj farklı zamanlarda farklı toplumlara farklı form ve sembolizma ile indirilmiş olabilir. Bir Hindunun dini ritueli, bir Brahmanın ahlakî yaklaşımı bu mesajın o toplum için sembolize edilmiş bir tezahürü olabilir. Bu konuda S.Hüseyin Nasr ve ünlü metafizikçi düşünürlerden Frithjof Schuon, Rene Guenon, A.K. Coomaraswamy gibi isimlerin eserlerine bakılabilir. Bu eserlerde İlahi mesajın insanlığın başlangıcından bu yana iletildiği zamana ve muhatap topluma göre nasıl bir sembolizmayı kullandığına, farklı farklı formlara büründüğüne ilişkin kıyaslamalara ve mesajın tekliğine ilişkin çok detaylı bilgiler var. (4) Bu yaklaşım her ne kadar bulgularla desteklense de nihayetinde a priori kabule dayanır; ve adı üstünde bu bir inançtır. Müslümanlar ya da diğer inanç sahipleri bunun bir “inanç” olduğunu kabul ederler. Bu teolojik olarak da kendi inanç sistemleri içinde tutarlı bir bakıştır. Fakat yukarıda da bahsettiğim nedenlerle dinlerin evrimi gibi bir düşünce de inançtır. Eldeki bulgular her ne kadar çoğunlukla aksini gösterse de, yine de bu düşünce lehine yorumlanabilir. Fakat bu yorum da -tıpkı İlahi köken yaklaşımında da olduğu gibi- önkabule dayanır, mevcut bilimsellik kriterlerine göre de bilimsel bir bakış değildir. O halde “dinlerin evrimi” gibi bir yaklaşımı, bilimsel gerçeklik gibi sunmaya çabalayan bazı materyalistlerin daha dikkatli konuşması gerekiyor. Notlar: (1) Tarihi Yalan:Kabataş Devri. Alıntı: Axel Persson, The Religion of Greece in Prehistoric Times, University of California Press (2) Age. Alıntı: Sir Flinders Petrie, The Religion of Ancient Egypt, Constable, London (3) İslam and The Plinght of Modern Man. S. Huseyn Nasr. (4) Bununla ilişkili bir yazım için bakınız: Kaynak: www.derindusunce.org

http://www.biyologlar.com/dinlerin-evrimi-mi-evrimin-dini-mi

BİYOMİMETİK - Biyolojiden Teknolojiye Bir Ağ

Günümüzde teknoloji her geçen gün ilerlemekte ve böylece teknoloji harikası ürünler hizmetimize sunulabilmektedir. Teknoloji bu ilerlemeler neticesinde çok önemli bir gerçeği görebilme imkanı sunmuştur:canlılardaki olan teknolojiyi.Her canlının teknolojideki harika tasarımlara dahi gölgede bırakacak mühendislik harikası tasarımlara sahiptir.Bunu gören bilim adamları da artık doğayı taklit etmeye başlamışlardır.İlaç sektöründen,tıp,kimya,tekstil,inşaat sektörü ne kadar birçok sektör doğadaki tasarımlardan yararlanarak son derece gelişmiş ürünler meydana koymaktadırlar.Canlılardaki bu üstün tasarımda yeni bir dalın çıkmasına sebep olmuştur:Biyomimetik.Biyomimetik canlıların tasarımlarını detaylı olarak inceleyip bu şekildeki tasarımları taklit ederek insan hayatını mükemmelleştirebilmek için araştırmalar yapar.Böylece biyo-teknolojik materyaller,makineler yapılır ve insanlık hizmetine sunulur. İnşaat Sektörüne Çığır Açan Sistem-İSKELET SİSTEMİMİZ: Şimdi doğadan teknoloji ye aktarılan binlerce örnekten birkaçına örnek olarak değinecek olursak eğer, Hem dayanıklı hem de hafifliği ile inşaat sektörüne bir örnek insan iskeleti ve eşsiz tasarımı birçok mimaride halen daha kullanılmakta ve tercih edilmektedir mesela inşaat sektöründen bir örnek olarak Eiffel Kulesini verebiliriz.Son derece güçlü ve sağlam tasarıma sahip olan Eifel Kulesi vücudumuzda bulunan uyluk kemiğinden yola çıkılarak inşa edildi.Anatomist Herman Von Meyer uyluk kemiğindeki kafes şeklindeki iç içe girmiş çubuk sistemini keşfetti ve yapmış olduğu hesaplamalarla bir uyluk kemiğinin dik dururken tam 1 tonluk yükü taşıyabileceğini buldu.Karl Cullman adındaki bir mühendis de bunun inşaat sektöründe sağlamlığı artırabilecek bir tasarım olabileceğini anladı Eifel kulesinin de iç içe giren kafes seklindeki demir çubuklarla yapılmasının böyle dev bir inşaat için en uygun sağlamlığı sağlayacağına bu kule inşasındaki mühendisler karar vererek bu şekilde bir tasarımı uyguladılar.Bu sadece Eifel Kulesi için sınırlı değildir.Günümüzdeki birçok tasarım harikası mimari bu tasarımdan izler taşımaktadır.Bir başka örnek:Böcekler ve onları her dış etkene karşı koruyan kitin tabakası. Sanayi Sektöründeki Dev Buluş:KİTİN VE KAPLAMA: Günümüzde böceklerde bulunan kitin maddesi örnek alınarak sanayi sektöründe kullanılmaya başlanmıştır.Kitin dayanıklı,ince ve hafif dışarıdan gelen birçok darbeyi emebilecek kadar esnek ve sağlam yapıya sahiptir.Kesinlikle gerek içten gerekse dışarıdan hiçbir sızıntıya imkan vermeyecek derecede yalıtkan bir maddedir.Radyasyon,ısı farkı,kimyasal etkenler vb. bir madde için zarar verebilecek nitelikteki birçok dış etkene karşı son derece dayanıklıdır.Bunun için kitin örnek alınarak laboratuar koşularında yapılan kaplama materyalleri,sağlamlığa-dayanıklılığa-esnekliğe ve bir o kadar da hafiflik ve inceliğe ihtiyaç duyulan yerlerde kaplama olarak sanayi sektöründe kullanılmakta ve tercih edilmektedir.Bu şekildeki kaplamalarla ürünlerden daha fazla verim elde edilebilmiştir. Yunusların Deri Yapısısın Bir Deniz Altına Kazandırdıkları: Yunusların vücutları da teknolojiye örnek olmuş bir başka örnektir.Yunusların derileri sudaki hareketi kolaylaştırıp sürtünmeyi çok aza indirebilecek şekilde üstün bir tasarıma sahiptir.Yunuslar bu şekilde suyun derinliklerinde çok kolay hareket edebilmekte ama buna rağmen çok az bir enerji sarf etmektedirler.Bunu keşfeden bilim adamları da yunusların derilerindeki bu sırrı araştırmalar neticesinde tespit ederek bu ince tasarımın bir benzerini suni olarak laboratuar ortamlarında geliştirip denizatlılarının dış kaplamasında kullanmışlar ve büyük bir ölçüde yakıt tasarrufu sağlayabilmiş ve bunun yanında su altında daha rahat edebilme yeteneğine sahip olabilmişlerdir. Teknolojiyi Kıskandıran Uzvumuz:ELLERİMİZ Canlıların her biri birçok harika sistemle ve organla donatılmıştır.Bunlardan biri olan ellerimiz de aslında çok kompleks bir uzvumuzdur.Günlük hayatımızdaki birçok işte ellerimizin rolünü bir anlığına hayatımızdan çıkaralım.Muhtemelen günlük birçok işimizi yapamayacaktık.Böylece çoğu işimiz sekteye uğrayacaktı.Yazı yazabilmemizi,yemek yeyebilmemizi,saçımızı tarayabilmemizi,bir eşyaya kendine özgü olarak tutup taşıyabilmemizi ve hatta düğmelerimizi dahi ilikleyebilmemizi vb. birçok aslında alışılmış--ama detaylı incelersek teknikte çok zor olan -- bunun gibi günlük ve basit işlerimizi hiç zorlanmadan ve düşünmeden yapmaktayız.Bunu ellerimizin üstün tasarımına borçlu olduğumuzu ellerimizin harika yapısına yakından bakarak rahatlıkla görebiliriz. İnsan eli:kas,27kemik,yağ,tendon ve de son derece hassas liflerden oluşan tasarıma sahiptir.Ellerimizdeki bu sistem,birçok hassas işi veya birtakım günlük-ama bir o kadar da teknik olarak kompleks-işleri yapabilecek derecede koordineli çalışabilmektedir.Büyüklü küçüklü birçok kas,eklem,lif ve tendonlarla birçok kompleks hareket bizim için sıradan işleyişe dönüşmektedir.Ellerimizi ne kadar çok kullandığımız malum.Bir insanın hayatı boyunca ortalama 25.000.000 kez elini açıp kapadığı araştırmalar sonucunda elde edilmiş bir tespittir.Ancak buna rağmen böyle ince işleyişe sahip elimizin kaslarının,liflerinin son derece dayanıklı olabilmesi ve birçok işi--ister hassas isterse ağır--olsun rahatlıkla işin derecesine,esnekliğine göre koordineli bir şekilde hiç zorlanmadan tam bir uyum içinde yapabilmesi de ayrı bir mucizedir.Çünkü bu sistemin herhangi bir noktasındaki küçük bir sekte birtakım günlük--ama bizim açımızdan hayati önem teşkil eden--işlerimizi yapamayacak hasar doğurabilir. İnsan elinin hayranlık uyandıran bu mekanizmasını Biyomimetik alanında çalışmalar yürüten bilim adamları taklit etmeye ve elin birçok farklı işe aynı beceriyle adapte olabilmesini teknik aletlere uygulamalara çalışmaktalar.Fakat şimdiye kadar üretilmiş hiçbir ele benzer makine ;ne kadar gelişmiş olsa da---bir elin yapabileceği ustalıkta işlere uyum sağlayamamakta ve hatta ancak tek bir işin üstesinden acemice gelebilmektedir. Elbetteki Biyomimetik deki örnekler bunlarla sınırlı değildir.Burada her birine detayıyla değinmek mümkün olmamakta değerli kardeşlerim.Yusufçuk böceğinin tasarımının helikopterlere örnek alınmasından tutalım da bazı canlılarda bulunan sonar sisteminin birçok üst düzey araçlarda kullanılmasına,göz,kulak,kas,iskelet sistemine kadar daha binlerce biyolojik sistem ve tasarım teknolojiye harika ürünler kazandırmaktadır.Tüm bu tasarımları ve ince hesaplamalarla oluşmuş bu canlı vücudunu yakından incelemek ilim sahibi Rabbimizin tecellilerini görebilmek biz biyologlar için ne güzel bir kısmettir.Her yönüyle canlı bilimine hakim ve 21.yüzyılın bilimi olan Biyoloji de ilim tahsili yapmakta olan bizler ilmen çok şanslıyız.Bu herkese nasip olmaz.Mesleğimize,araştırma alanlarımıza ve de iş sahalarımıza sahip çıkalım artık kardeşlerim.Saygılarımla ve sevgilerimle. Biy.Murat KÖSEDAĞ

http://www.biyologlar.com/biyomimetik-biyolojiden-teknolojiye-bir-ag

Hipotez, Olgu ve Bilimin Doğası

Douglas Futuyma, çeviren Mehmet Cem Kamözüt Örneğin, DNA’nın genetik malzeme olduğundan nasıl emin olabilirsiniz? Ya bunu “kanıtlamış” olan bilimciler bir hata yapmışlarsa? Kesinlikle doğru olduğu gerçekten kanıtlanmış bir şey var mıdır? Bilim, dünyayı algılamanın farklı ve eşit derecede geçerli biçimlerinden yalnızca biri, baskın Batılı biçimi midir? Evrim bir gerçek midir, yoksa bir kuram mı? Ya da tıpkı yaratılışçıların benimseme hakkına sahip oldukları karşı görüş gibi, bu da benim benimseme hakkına sahip olduğum görüş mü? Varsayımsal bir örneği ele alalım. Bilinmeyen bir hastalıktan ölmekte olan koyunların ölüm nedenini belirlemekle görevlendirildiniz. 50 hasta, 50 sağlıklı koyundan doku örnekleri aldınız ve hasta hayvanların 20 tanesinin, sağlıklı olanların da yalnızca 10 tanesinin karaciğerinde bir tekhücreli teşhis ettiniz. Bu farklılık, iki koyun grubunun söz konusu tekhücrelinin görünme sıklığı açısından bir fark göstermediğini söyleyen SIFIR HİPOTEZİNİ reddetmeye yeterli midir? Bu soruya yanıt verebilmek için istatistiksel testler yaparak bu sayılar arasındaki farklılığın sırf şans yoluyla ortaya çıkıp çıkamayacağına bakarsınız. Ki kare (χ2) istatistiğini hesaplarsınız (burada bu değer 4,76’dır), bir ki kare değerleri tablosuna bakar ve “0,025 < p < 0,05” ifadesini bulursunuz. Benzerleriyle neredeyse tüm bilimsel veri analizlerinde karşılaştığınız bu ifade ne anlama gelir? Bulduğunuz farklılığın (hasta ve sağlıklı koyunlardan aldığınız örneklerin rastgele olduğu varsayımı altında) sırf şans eseri gerçekleşmiş olma olasılığının –yani gerçekte hasta koyunlarla sağlıklı koyunların sözkonusu tekhücreli ile enfekte olma oranları arasında bir farklılık olmaması olasılığının– 0,05’ten küçük ama 0,025’ten büyük olduğu anlamına… Bilimdeki her deney ya da gözlem daha büyük olası gözlem evreninden (bizim örneğimizde tüm koyunlar) alınan örneklemlere dayanmaktadır ve her durumda eldeki verinin bu daha büyük evrene ilişkin gerçekliği yanlış temsil etme olasılığı vardır. Yani ilişkisizlik hipotezini –koyun grupları arasında bir farklılık olmadığı, deney sonuçlarıyla oynanmasına bağlı bir etki olmadığı, ya da belirli değişkenler arasında korelasyon olmadığı hipotezini– yanlışlıkla reddetmek her zaman olanaklıdır. Ne mutludur ki bazı durumlarda, doğru bir ilişkisizlik hipotezini reddetme ve yanlış olan alternatif hipotezi doğru olarak kabul etme olasılığı 0,00001 ya da daha az olabilir. Bu durumda ilişkisizlik hipotezini güvenle reddedebilirsiniz, ama kesin olarak emin olamazsınız. O halde 100 koyunla yapılan çalışma hasta koyunlarda söz konusu tekhücrelilere rastlama olasılığımızın daha fazla olduğu varsayımını desteklemektedir; ama yalnızca zayıf bir şekilde. Ölümün nedeninin tekhücreliler olabileceğini düşünüyor ama korelasyonun yetersiz olmasından dolayı endişe duyuyorsunuz. Siz de örnekleminizi 1000 koyuna çıkardınız, karaciğer biyopsisi yaptınız; örneklerinizi tekhücreliler açısından (düşük yoğunlukta olmaları nedeniyle ilk çalışmanızda gözden kaçırmış olabileceğiniz vakarı da açığa çıkarak biçimde) daha detaylı incelediniz; ertesi yıl hangi koyunların öldüğünü kaydettiniz. Büyük bir hoşnutlukla gördünüz ki tekhücreliye rastlamadığınız koyunların yalnızca %5’i ölürken enfekte koyunların %95’i öldü. Hayatta kalanlar yıl sonunda kesildiklerinde görünürde sağlıklı olan koyunlarda hala bir enfeksiyon belirtisine rastlanmadı. Zafererinizle övünen bir biçimde danışmanınıza ölüm nedeni olarak tekhücreliyi rapor ettiniz. Doğru mu? Yanlış, dedi size. Diğer hipotezleri elememişsiniz. Belki de hastalığa, tesadüfen koyunun görece zararlı tekhücreliye karşı direncini de azaltan bir virüs neden oluyordur. Belki bazı koyunlar ömürlerini kısaltan bir gene sahip ve bu gen aynı zamanda enfeksiyon dirençlerini de azaltıyor. “Yapmanız gereken” diyor, “bir deney”. “Rastgele seçtiğiniz bazı koyunlara tek hücreliyi içeren, diğerlerine de tek hücreli dışında tüm içeriği aynı olan bir sıvı enjekte etmek”. Bunu yapıyorsunuz ve başarısız birkaç denemeden sonra koyunların tek hücreliyi oral yollardan almadıkça enfekte olmadıkları ortaya çıkıyor. Sonuçta deneysel olarak enfekte edilmiş 100 koyunun 90’ının 3 ay içinde öldüğünü, 100 “kontrol” koyununun 95’inin deneyin sürdüğü 1 yıl boyunca yaşadığını memnuniyetle rapor ediyorsunuz. Ki kare testleri p’nin 0,0001’den küçük olduğunu gösteriyor. Yani elinizdeki sonuçların şans sonucu ortaya çıkmış olması son derece düşük bir olasılık. Bu noktada tek hücrelinin hastalığa ve ölüme neden olduğuna dair dikkate değer bir güveniniz olabilir. Ama bunu hala mutlak olarak kanıtlamadınız. Koyunlara yalıtıp enjekte ettiğiniz yalnızca tek hücreli değil de görünmeyen bir virüs de olamaz mı? Koyunlara enjeksiyonu rastgele yaptığınızdan emin misiniz? Yoksa enjeksiyon için farkında olmadan zayıf görünen hayvanları seçmiş olabilir misiniz? Hipotezinize uymayan 15 hayvanın durumunu sizce ne açıklıyor? Ve her ne kadar p < 0,0001 olsa da hala kötü bir “şanslı kura” tutturmuş olma şansınız var, yok mu? Örneği uzatmaya gerek yok, buradan çeşitli dersler çıkarabiliriz. Öncelikle veriler kendi başlarına hiçbir şey anlatmazlar, önceki bilgilerimiz ve kuramımız ışığında yorumlanmalıdırlar. Bu örnekte başka bazı şeylerin yanı sıra (ki kare testi gibi istatistklerin temelinde yatan) olasılık kuramına, deneysel tasarım kuramına ve virüslerin var olduğu ve sonuçlarımızı karıştırabileceği bilgisine gereksinim duyduk. Bilim tarihi, yeni kuram ve bilgiler ışığında düzeltilmesi ya da reddedilmesi gerekmiş olan sonuçların örnekleriyle doludur. Örneğin 1950’lerin sonlarına kadar neredeyse tüm jeologlar kıtaların sabit konumda olduğuna inanıyordu; şimdi tümü levha tektoniği ve kıta kaymalarına inanıyor ve pek çok jeolojik olgunun bunun ışığında yeniden yorumlanması gerekti. İkinci olarak varsayımsal araştırma deneyimimiz güvenilir bir sonuca ulaşmak için pek çok çalışma gerektiğini göstermiştir. Ders kitaplarındaki, bir gerçeği dile getirdiğini söyleyen her tümcenin genellikle en azından bir kişinin yaşamının en az birkaç yılı boyunca büyük bir çaba harcamasını gerektirdiğini gözden kaçırmak kolaydır. Bu nedenle bilimciler sonuçlarını, birazdan tekrar söz edeceğimiz gibi dikkate değer bir güçle savunurlar. Üçüncü olarak ve bu en önemlisidir araştırma, ne kadar dikkatlice ve yorucu bir biçimde tasarlanmış ve gerçekleştirilmiş olursa olsun kanıta yaklaşır ama asla onu tam olarak elde edemez. Kabul ettiğiniz hipotezinizin günün birinde, bugün hayal edemeyeceğimiz tümüyle yeni kuramlar ya da veriler ışığında düzeltilmesi ya da reddedilmesi olasılığı –neredeyse yokmuş gibi görünebilecek olsa da– her zaman vardır. Bunun sonucu olarak neredeyse tüm bilimsel makaleler sonuçlarını, kuşkuya yer bırakan bir biçimde sergilerler. Drosophila genetiği üzerine yeni yayımlanmış bir makalede şu sonucu okudum: Deney “sperm yerdeğiştirmesinin iki bileşenini bir araya getiren farklı mekanizmalar olduğunu düşündürtüyor” (Clark et al. 1995). Aslında veriler harikaydı, deney dikkatlice tasarlanmıştı, istatistiksel analizler örnek olacak nitelikteydi, ama yazarlar görüşlerini kanıtladıklarını savlamıyorlardı. Bilimciler genellikle sonuçlarına muazzam bir güven duyarlar, ama kesinliğe sahip değillerdir. Belirsizliği yaşamın bir gerçeği olarak benimsemek iyi bir bilimcinin dünya görüşü için kaçınılmazdır. Öyleyse bilimdeki her ifade bir HİPOTEZ olarak anlaşılmalıdır. Neyin doğru olabileceğini söyleyen bir ifade. Bazı hipotezler zayıfça desteklenmektedir. Başka bazıları (örneğin dünyanın güneş çevresinde döndüğü ya da DNA’nın kalıtsal malzeme olduğu gibileri) o kadar iyi desteklenmiştir ki, onları olgu olarak görürüz. Olgu denilince, tam bir kesinlikle mutlak olarak doğru olduğunu bildiğimiz bir şey anlamak bir hatadır. Hiçbir şeyi böyle bilmiyoruz (Bazı felsefecilere göre kendimiz de dahil herhangi bir şeyin var olduğunundan bile emin olamayız. Dünyanın tanrının zihnindeki tutarlı bir düş olmadığını nasıl kanıtlayabiliriz?). Doğrusu şudur: Bir olgu bir hipotezdir, ancak delillerle o kadar güçlü desteklenmektedir ki onu doğru olarak kabul ederiz ve doğruymuş gibi davranırız. Bilimcilerin, kuvvetle desteklenmiş hipotezler ya da olgular olarak ortaya koydukları ifadelere duydukları güveni neden paylaşmalıyız? Bilimin sosyal dinamikleri yüzünden. Tek bir bilimci yanılıyor olabilir (ve çok ender de olsa bir bilimci kasıtlı olarak verileri çarpıtabilir). Ama eğer konu önemliyse, alanın ilerlemesi (örneğin bütün moleküler biyolojinin, DNA’nın yapısı ve işlevine bağlı olduğu gibi) bu konuya bağlıysa, diğer bilimciler bulguları kuşkucu biçimde sorgulayacaklardır. Bazıları bilinçli olarak deneyi yinelemeye çalışabilir; başkaları da hipotezin doğru olduğu varsayımıyla araştırmalar yürütecekler ve eğer gerçekte yanlışsa uyumsuzluklar bulacaklardır. Başka bir deyişle bu alanda çalışan araştırmacılar hataları bulmaya çalışacaktır; çünkü kendi işleri ve kariyerleri söz konusudur. Üstelik bilimciler yalnızca entelektüel merakla değil (her ne kadar başarılı olmayı nadiren umabilirlerse de) tanınma ve ünlü olma güdüsüyle de hareket ederler. Yaygın kabul görmüş bir hipotezi yanlışlamak da profesyönel alanda tanınmaya giden yolu açar. Kalıtımın DNA’ya dayanmadığını ya da AIDS’in nedeninin HIV (Human Immunodeficiency Virus, İnsan Bağışıklık Yetersizliği Virüsü) olmadığını gösterebilen bilimci, alanında ünlü olacaktır. Elbette hipotezi ilk ortaya koyanların kaybedecek çok şeyi vardır. Yatırmış oldukları yoğun bir emek –ve hatta– itibarları. Dolayısıyla tipik tutumları, görüşlerini –bazen aksi yöndeki ezici delillere rağmen– tutkuyla savunmak olacaktır. Bu sürecin sonucu her bilimsel disiplinin karşıt hipotezlerin savunucuları arasındaki tartışmalar ve entelektüel savaşlarla dolu olmasıdır. Fikirler arasında, sonucu daha çok delilin ve daha dikkatli çözümlemenin belirlediği, en inatçı skeptiklerin bile uzlaşımsal görüşe kazanılacakları (ya da ölüp gidecekleri) zamana kadar sürecek bir rekabet –bir tür doğal seçilim– vardır. Olgu ve Kuram Olarak Evrim Evrim bir olgu mudur, kuram mıdır, yoksa hipotez midir? Bilimde sözcükler genellikle kesin bir anlamda ve gündelik yaşamdaki kullanımlarından farklı çağrışımlarla kullanılırlar. Bu aşırı önemli bir durumdur ve bu kitapta pek çok örneğiyle karşılaşacağız (uyum, rastgele, korelasyon). Bu sözcükler arasında hipotez ve kuram da vardır. İnsanlar –sanki hipotez delillerle desteklenmeyen bir fikir demekmiş gibi– sıklıkla bir şeyin “sadece” bir hipotez olmasından söz ederler (“sigaranın kansere neden olduğu yalnızca bir hipotezdir” örneğindeki gibi). Ancak bilimde hipotez, neyin doğru olabileceğine ilişkin bilgi birikimimize dayanan bir ifadedir. Zayıf biçimde desteklenmiş olabilir, özellikle de başlarda. Ama görmüş olduğumuz gibi neredeyse bir olgu olacak düzeyde destek de kazanabilir. Kopernik için Dünya’nın Güneş çevresinde dönmesi orta düzeyde desteklenmiş bir hipotezdi; bizim içinse kuvvetle desteklenmiş bir hipotezdir. Benzer biçimde, bilimde bir kuram, desteksiz bir spekülasyon değildir. Bundan ziyade, usavurum ve delillere dayanan, çeşitli gözlemleri açıklayan, uyumlu, olgun, birbiriyle ilişkili bir ifadeler bütünüdür. Ya da Oxford English Dictionary’nin tanımını alırsak bir kuram “bir grup olgu ya da görüngüyü açıkladığı ya da anlaşılır kıldığı düşünülen bir fikirler ve ifadeler sistemi ya da şablonudur; gözlem ya da deneyle desteklenmiş ya da yerleşmiş ve bilinen olguları anlaşılır kıldığı söylenen ya da kabul edilen bir hipotezdir; bilinen genel yasalar, ilkeler, bilinen ya da gözlemlenmiş bir şeyin nedeninin ifadesidir”. Dolayısıyla atom kuramı, kuantum kuramı ve levha tektoniği kuramı sırf spekülasyon ya da görüş değillerdir; (sigaranın kansere yol açtığı hipotezi gibi) hatta iyi desteklenmiş hipotezler de değillerdir. Her biri delillerle kuvvetle desteklenmiş çok çeşitli olguları anlaşılır kılan, iyi işlenmiş, birbiriyle ilişkili fikirler bütünüdür. Bir kuram bir ifadeler ağı olduğundan, genellikle tek bir kritik deneye dayanarak kabul edilmez ya da çürütülmez (basit hipotezlerin başına ise sıklıkla bu gelir). Bunun yerine kuramlar, yeni görüngüler ve gözlemlerle karşılaştıkça evrilirler; kuramın bazı parçaları atılır, düzeltilir, eklemeler yapılır. Örneğin kalıtım kuramı başlangıçta Mendel yasalarından parçacıklı karakterlerin kalıtımı, baskınlık ve farklı karakterleri etkileyen “etmenler”in (genlerin) bağımsız ayrılımından ibaretti. Kısa süre içinde baskınlık ve bağımsız ayrılıma ilişkin aykırı durumlar bulundu, ama parçacıklı karakterlerin kalıtımın çekirdek ilkeleri kaldı. Genetikçiler, yirminci yüzyıl boyunca bu çekirdeği işleyerek, ona eklemeler yaparak Mendel’in düşünebileceğinden çok daha karmaşık ve ayrınıtılı bir kalıtım kuramı geliştirdiler. Kuramın bazı kısımları son derece iyi oturtulmuştur, başka bazılarıysa hala iyileştirmeye açıktır. Kalıtımın ve gelişimin mekanizmaları daha da anlaşıldıkça pek çok ekleme ve değiştirme olması beklenebilir. Yukarıdaki tartışmanın ışığında evrim bir bilimsel olgudur. Ama evrim kuramıyla açıklanır. Türlerin Kökeni’nde Darwin iki büyük hipotez ortaya koymuştur. Biri –değişiklikler yoluyla– ortak bir atadan türeme hipotezidir (kısaca değişikliklerle türeme). Bu hipotezi “evrimin tarihsel gerçekliği” olarak da anacağım. Diğer büyük hipotezi de, Darwin’in değişikliklerle türeme için önerdiği nedendir: Doğal seçilim kalıtsal çeşitlilik içinden ayıklama yapar. Darwin, evrimin tarihsel gerçekliği –yani ortak bir atadan değişerek türeme– için fazlasıyla delil sağladı. 1859’da bile bu görüşün epey desteği vardı. Yaklaşık 15 yıl içinde birkaç bağnaz dışında tüm biyolojik bilimciler bu hipotezi kabul etmişlerdi. O günden beri paleontolojiden, biyocoğrafyadan, karşılaştırmalı anatomiden, embriyolojiden, genetikten, biyokimyadan ve moleküler biyolojiden yüzbinlerce gözlem bu görüşü destekledi. Kopernik’in Güneş merkezlilik hipotezi gibi, ortak bir atadan değişiklerle türeme hipotezi de uzun süredir bilimsel bir olgu statüsündedir. Nasıl ki bir kimyacı suyun hidrojen ve oksijenden oluştuğunu gösteren bir makale yayınlamaya çalışmazsa, bugün hiçbir biyolog da “evrim için yeni kanıtlar” konulu bir makale yayınlamayı düşünmez. Yüz yılı aşkın bir süredir, bilimsel çevreler bunu tartışılacak bir konu olarak görmemektedir. Darwin, evrimin nedeninin kalıtsal çeşitlilik üzerindeki doğal seçilim olduğu hipotezini öne sürmüştü. Argümanı mantığa ve çok çeşitli dolaylı delilin yorumuna dayanıyordu ama doğrudan hiç delili yoktu. Kalıtımın anlaşılmasının ve doğal seçilim delillerinin hipotezini tam olarak desteklemesi için 70 yıldan daha uzun bir süre geçmesi gerekecekti. Üstelik bugün biliyoruz ki evrimin Darwin’in fark ettiğinden daha fazla nedeni vardır ve doğal seçilim ve kalıtsal çeşitlilik onun sandığından daha karmaşıktır. Bu kitabın büyük kısmı evrimin nedenlerine ilişkin bugünkü anlayışımızı oluşturan mutasyon, rekombinasyon, gen akışı, yalıtım, rastgele genetik sürüklenme, doğal seçilimin çeşitli biçimleri ve başka etmenlerden oluşan karmaşık düşünceler bütününe ilişkindir. Evrimin nedenleri hakkındaki bu birbiriyle ilişkili düşünceler ağı evrim kuramı ya da evrimsel kuramdır. Bu “sırf spekülasyon” değildir; çünkü tüm fikirler delillerle desteklenmiştir. Bir hipotez de değildir. Çoğu iyi desteklenmiş bir hipotezler bütünüdür. Yukarıdaki bölümde tanımlandığı anlamda, bir kuramdır. Bilimdeki tüm kuramlar gibi, tam değildir. Tüm evrimin nedenlerini henüz bilmiyor olduğumuz ve bazı ayrıntılar sonradan yanlış çıkabileceği için… Ancak evrimin ana ilkeleri o kadar iyi desteklenmiştir ki, çoğu biyolog bunları büyük bir güvenle kabul eder. www.evrimcalismagrubu.org  

http://www.biyologlar.com/hipotez-olgu-ve-bilimin-dogasi

Genom Varyasyonları ve Veri Anallizi

Genom Varyasyonları ve Veri Anallizi

Günümüzde yaşam bilimlerinde ve moleküler biyolojideki hızlı veri birikimi, bulguların analizinde matematiksel yaklaşımların kullanımını artırmıştır. Genom varyasyonlarına dayalı olarak, bu yaklaşımın artan şekildeki uygulamaları, temel biyolojiden klinik ve biyoteknolojiye kadar geniş bir yelpazede yeni bilgi üretimi ve ürüne dönüşüm için modern araçlar olarak dikkat çekmektedir. Genetik mühendisliği ve biyoteknoloji ile ilişkili farklı disiplinler arasında köprü kurma görevini üstlenen BİYOGEM tarafından dizileme teknolojileri, biyoinformatik ve veri analizini kullanan, genetik varyasyon üzerinde çalışan tüm araştırmacılar için, 15 -16 Eylül 2014 tarihlerinde İstanbul Üniversitesi’nde yapılacak bu sempozyumun önemli bir fırsat olacağını düşünmekteyiz   Sempozyum Bilimsel Sekreteri                                                      Sempozyum Başkanı Prof. Dr. Filiz Gürel                                                                               Prof. Dr. Şule Arı Genetik Varyasyonlar, Mikrobiyal Genom, Biyolojik Markerlar,    İstanbul Üniversitesi Biyoteknoloji ve Genetik Mühendisliği Uygulama ve Araştırma Merkezi (BİYOGEM) tarafından “Genom Varyasyonları: Uygulama ve Veri Analizleri Sempozyumu” 15-16 Eylül 2014 tarihlerinde gerçekleştirilecek. “Genom varyasyonları afişi“ için lütfen tıklayınız “Genom varyasyonları program broşürü” için lütfen tıklayınız “Genom varyasyonları özet formatı” için lütfen tıklayınız.

http://www.biyologlar.com/genom-varyasyonlari-ve-veri-anallizi

EVRİMİN KANITLARI

Temel bilimlerin önemli karakteri, ortaya atılan bir düşünce ya da teorinin bilimsel yöntemlere dayalı olarak yapılan gözlemlerle kanıtlanmasıdır. Buna göre, bir temel bilim olan biyolojide de teorik olarak verilen bilgilerin, laboratuvar koşullarında yapılan bilimsel gözlemlerle doğrulanması gerekmektedir. Ancak, evrimin süreklilik göstermesi ve çok yavaş ilerlemesi, bu konuda ortaya atılan teorilerin gözlemlerinin yapılmasını; bir başka deyişle evrimin laboratuvara sığdırılmasını olanaksız kılmaktadır. Ayrıca, evrime ortam koşullarındaki değişmenin neden olduğu düşünüldüğüne göre; belli bir evrimsel değişmeyi araştırırken buna neden olan ortam koşullarını veya bu koşullarda meydana gelen değişmeyi de bilmek gerekir ki bunu tam olarak bilmek bügün için olanaksızdır. Bu nedenle, evrimin kanıtları biyolojinin dalları ve jeoloji ile biyolojinin ara kesitinde yer alan paleontoloji alanında yapılan çalışmalardan elde edilmektedir. Aşağıda bu kanıtlara yer verilmiştir. 1- Sistematikten sağlanan kanıtlar Canlıların biribirlerinden meydana geldiğini ifade eden evrim düşüncesi, bitki ve hayvanların sınıflandırılmasından sonra daha çok dikkat çekmeye ve taraftar toplamaya başlamıştır. Sınıflandırmada gerçek ve esas olan kavram türdür. Çünkü, kendi aralarında çiftleşerek fertil yavrular veren canlılar aynı tür içinde kabul edilirler. Türün üstünde yer alan cins, aile, takım gibi taksonlar içindeki canlıların yeri, farklı sistematikçilere göre değişiklikler gösterebilmektedir. Örneğin, bir tür farklı sistematikçilere göre farklı cinsler içinde düşünülebilir. Bir başka örnek, canlıların günümüzde genellikle beş alem (regnum) e ayrılarak (Monera, Protista, Fungi, Plante, Animalia) incelenmelerine karşın; bazı sistematikçilere göre iki aleme (Animalia, Plante) ayrılmasıdır. Aslında iki alemli sistematikten beş alemli sistematiğe geçişin nedeni, prokaryot ve ökaryot tek hücreliler ile mantarların ne bitkilere, ne de hayvanlara sokulamıyacak kadar ortak özelliklere sahip olmaları idi. Örneğin, Euglena klorofil içermesi ve taşıdığı kamçıyla hareketli olması dolayısıyla botanikçiler ve zoologlar arasında bitki mi, yoksa hayvan mı kabul edilmesi konusunda tartışmaya neden olmuştur. Fakat, beş alemli sistematiğin kullanılmaya başlanmasıyla bu tür tartışmalar büyük ölçüde sona ermiştir. Sistematik biliminin gelişmesinde ve canlı sistematiğinin incelenmesinde evrim açısından önemli olan, ilkel canlıların bitki mi yoksa hayvan mı olduklarını tartışacak kadar basit ve benzer yapılı olmalarına karşın; sistematiğin gelişmiş olan üst grupları arasında (memeli hayvanlar ve çiçekli bitkiler gibi) farkların çok fazla oluşudur. Canlı sistematiğinde evrime delil olarak gösterilen bir başka gözlem, aynı takson içinde biribirine yakın gruplardaki canlıların biribirlerine daha çok benzemesidir. Bu durum, yakın türlerin değişerek biribirlerinden meydana geldikleri düşüncesinin kaynağı olmuştur. 2- Paleontolojiden elde edilen kanıtlar Paleontoloji, bilimler yelpazesi içinde jeoloji ile biyolojinin birleştikleri çizgide yer alır. Adeta iki bilim dalının ara kesiti durumundadır. Bugün ele geçen fosillerden, jeolojik devirlerde yaşamış olan canlıların ne kadar eskiye ait olduklarını; ortamlarıyla ve bugün yaşamakta olan canlılarla ilgilerini araştırır. Fosil, Jeolojik devirlerde yaşamış olan canlılardan veya onların bıraktıkları izlerden bugün elimize geçen kalıntılara denir. Canlılar öldükten sonra, yumuşak dokuları ayrıştırıcı olarak isimlendirilen eklembacaklılar ve mikroorganizmalar tarafından tüketilir. Şayet iyi korunmamışsa kemikler de yok olur. Fosiller, jeolojik devirlerde yaşamış olan canlıların doğal olaylar sonunda uygun şekilde korunarak günümüze kadar gelmiş olan izleridir. Suda yaşayan canlıların fosilleşme şansı, karada yaşayan canlılara oranla daha fazladır. Örneğin, deniz veya gölde akarsu ağzına yakın yerde ölen bir balık, derenin taşıdığı sel sularıyla gelen sedimantasyonun altında kalabilir. Bu şekilde fosilleşme sürecine giren balık, diğer canlıların etkisinden uzak kaldığı gibi, yer altı sularıyla taşınan silikatlar ve karbonatların sert dokularına girmesiyle taşlaşarak binlerce yıl bozulmadan kalacak bir fosil haline gelir (Şekil 6). Fosilleşmenin bir başka şekli, çevresindeki tüm canlıları örtecek bir volkanik etkinlik sonunda canlıların kalın bir lav veya tüf tabakası altında kalmasıdır. Şekil. 6. Fosillerin, yaşadıkları devirlerin eskiliğine göre jeolojik tabakalar içinde sıralanışı Yer altında değişik derinliklerde bulunan fosiller çeşitli dış ve iç kuvvetlerin etkisiyle yüzeye çıkabilirler. Dış kuvvetler heyelanlar veya akarsu ve rüzgarların meydana getirdiği erozyon; iç faktörler ise, jeolojik anlamda yer hareketleridir. Paleontologlar, bu amaçla çeşitli yöntemler kullanarak jeolojik tabakaların yaşlarını belirlerler. Radyoaktiviteden yararlanılarak yapılan yaş tayinleri bu konuda yaygın olarak başvurulan yöntemdir. Paleontolojik bulgulara göre 4,6 milyar yıl yaşında olduğu tahmin edilen yer üzerinde ilkel canlıların günümüzden 3,5 milyar yıl önce (MYÖ); ilk ökaryotların ise 1,5 MYÖ meydana geldikleri ve ilk çok hücrelilerin kambriyen devrinde ortaya çıktıkları tahmin edilmektedir. Şekil 7, sırasıyla çenesiz omurgalılar, kıkırdaklı balıklar, kemikli balıklar, amfibiler, sürüngenler, kuşlar ve memelilerin ortaya çıktıkları jeolojik devirleri ve gelişmelerini göstermektedir. Bu şekile göre, a) Şlk omurgalı hayvanlar çenesiz balıklardır. Bu canlıları zaman içinde sırasıyla kıkırdaklı ve kemikli balıklar, amfibiler, sürüngenler, kuşlar ve memeliler izlemektedir. Bu durum, zaman içinde giderek gelişmiş canlıların ortaya çıktığını göstermektedir. Herhangi bir jeolojik devirde meydana gelen bir canlı türü, belli bir sayısal büyüklüğe eriştikten sonra, yeni türler meydana getirmektedir. Örneğin, başlangıçta sayıca az olan reptiller; fert sayıları belli bir büyüklüğe eriştikten sonra, tür sayılarını artırarak tüm jura devrinin baskın canlıları olmuşlardır. Burada "fert sayısının belli bir büyüklüğe erişmesi" b) ifadesiyle, ekosistemde türe ait taşıma kapasitesinin tamamının kullanılmış olması kastedilmektedir. c) Fosillerin incelenmesi, bazı hayvan grupları arasında geçit formu olarak nitelendirilebilecek fakat bugün yaşamayan canlıların varlığını ortaya koymuştur. Örneğin, jura devrinde yaşamış olan Archaeopteryx, vücut yapısı bakımından hem sürüngenlere ve hem de kuşlara benzeyen karakterlere sahiptir. Bu yapısıyla Archaeopteryx, bugün yaşamayan bir geçiş formudur. Bir başka örnek, biribirini izleyen jeolojik devirlerde yaşamış olan ve bugünkü atın ataları durumunda olan hayvan fosilleridir. Bu fosiller de atın evrimini gösteren geçiş formlarıdır (Şekil 8). d) Canlıların evrimi sürecinde, bazı karakterlerde meydana gelen değişikliklerin aynı yönde geliştiği görülür. Atın ayağının allometri tarzında gelişmesi; Sudan karaya geçiş sürecinde rol alan balık – kurbağa – sürüngen ve daha sonra gelişen memelilerde hareket, solunum ve dolaşım sistemlerinde görülen ve giderek daha fonksiyoner olma yönündeki gelişmeler buna örnektir. 3-Morfolojiden sağlanan kanıtlar Morfoloji, bir canlının veya canlıyı meydana getiren yapıların dış görünüşünü inceleyen bilimdir. Canlıların dış görünüşleri ve bu görünüşleri meydana getiren organ morfolojileri ve işlevleri karşılaştırılırken aralarındaki benzerlikler dikkate alınmaktadır. Gözlemler, organlar arasında homologi ve analogi tarzında olmak üzere, iki şekilde benzerlik bulunduğunu ortaya koymuştur. Şekil 8. Atın soyoluşunda yer alan geçiş formları. Analog organlar arasındaki veya analogi tarzındaki benzerlikler morfolojik ve işlevsel benzerlikleri dikkate almaktadır. Örneğin, embriyonik gelişimleri birbirlerinden tamamen farklı olan böceklerin ve kuşların kanatları arasındaki benzerlik, her ikisinde de kanatların uçma işlevini yerine getirmesidir. Bu konuda bir başka örnek, deniz parlaması (yakamoz) olayına neden olan Noctiluca miliaris ile aralarında filogenetik yakınlık olan Craspedotella pileolus‟un tek hücreli hayvan olmasına rağmen, morfolojik bakımdan deniz anası (Aurelia aurita) na benzemesidir veya bir memeli hayvan olan yunus balığı ile bilinen gerçek balıklar (Pisces) arasında görülen morfolojik benzerliktir. Yunus balığı, derisinin kıllı oluşu, akciğerleriyle soluması, canlı doğurması gibi özellikleri ve embriyonik gelişimi bakımından tipik bir memeli olmasına rağmen; ortam koşullarına uyması sonucunda morfolojik olarak balık şeklindedir. Homolog organlar arasındaki veya homologi tarzındaki benzerlikler organların embriyonik gelişimleri arasındaki benzerliklere dayanmaktadır. Evrimsel gelişimleri birbirine benzer olan bu organlar adaptif radyasyon sonunda farklı amaçlara uygun olarak değişmektedirler. Homolog organlar işlevsel farklılıklar gösterse de, burada dikkate alınan embriyonik gelişimleri arasındaki benzerliktir. Örneğin, memelilerde genel olarak 5 parmaklı olan üyeler; farklı türlerin yaşam koşulları ve beslenme şekilleri (veya topluluk içindeki rolleri = niş) ne göre el, toynak, yüzgeç, pençe, kanat gibi değişik amaçlara göre farklılaşmıştır. Bu organlar işlevsel farklarına rağmen embriyonik gelişmelerindeki benzerlikler nedeniyle homolog organlardır. Yukarıda anlatılan kuşlar ve böceklerin kanatları arasındaki analogi tarzı benzerliğe karşın, kuşların ve yarasaların kanatları arasında; hem embriyonik gelişimleri bakımından ve hem de işlevsel olarak görülen benzerlik nedeniyle, hem analogi hem de homologi tarzı benzerlik bulunmaktadır. Nitekim, her iki kanat yapısında yer alan kemikler arasında önemli benzerlikler bulunmaktadır (Şekil 9). Şekil 9. Sırasıyla, Şnsan, kedi, balina ve yarasa kolları arasındaki anatomik benzerlikler Homolog organların karşılaştırılmasıyla hayvanlar arasındaki yakınlıklar daha doğru bir şekilde belirlenmektedir (Şekil 9). Hatta, dış görünüşleri bakımından farklı olan fakat filogenetik bakımdan biribirlerine yakın olan canlıların akrabalık dereceleri, homologi tarzındaki benzerliklerin değerlendirilmesiyle ortaya çıkarılmaktadır. Örneğin, Equidae ailesinden at, Felidae ailesinden kaplan ve Pongidae ailesinden maymunun ayakları arasında anatomik ve işlevsel farklar vardır. At, aslan ve maymun sırasıyla; tırnakları, parmakları ve tabanları ile yere basan hayvanlardır. Aileler arasında yere basış şekli bakımından görülen farka rağmen, aynı aile içindeki fertlerin benzer şekilde yere bastıkları görülür. Buna göre, aynı aile içinde toplanan bireyler yakın akraba olarak kabul edilmelerine karşın, farklı ailelere mensup fertler daha uzak akraba olarak kabul edilmektedirler. A-Embriyolojiden sağlanan kanıtlar. Morfolojinin bir dalı olan embriyoloji, yumurtanın döllenmesiyle meydana gelen zigotun, hayvanlarda yumurta içinde veya ananın uterusunda; bitkilerde tohum içinde filizleninceye kadar geçirdiği gelişme evrelerini inceleyen bilim dalıdır. Bu bilim dalında yapılan gözlemler, yüksek organizasyonlu canlıların geçmiş jeolojik devirlerde yaşamış olan canlıların sürekli evrimleşmeleriyle meydana geldiklerini ortaya koymaktadır. Bu düşünceye neden olan gözlemler: a) Canlıların bir bölümü (örneğin bugüne kadar soylarını devam ettirebilmiş olan süngerler) embriyonik gelişimlerinde gastrula evresinde kalırlar. Ancak daha gelişmiş canlılarda embriyonik tabakalar ve organ oluşumları belirgin olarak görülmeye başlar. b) Belli bir gelişmişlik düzeyinin üzerindeki canlılar yumurta hücreleri meydana getirirler ve bu hücrede meydana gelen bölünmelerle bulastula ve gastrula evrelerinden geçerek; sırasıyla ektoderm, endoderm ve mezoderm olarak tanımlanan embriyonik tabakaları meydana getirdikten sonra organ taslaklarını oluşturarak gelişirler. c) Gelişmiş canlıların embriyonik gelişimlerinde, daha ilkel canlıların ergin evrelerinin bulunduğu gözlenmektedir. Örneğin, kurbağa metamorfozunda; su hayatına uyarak kuyruğuyla hareket eden ve solungaçlarıyla soluyan, balığa benzer bir tetar evresinin bulunuşu, filogenez içinde kurbağaların balıklardan meydana geldiği düşüncesini kuvvetlendirmektedir. Omurgalılarda boşaltım sisteminin evrimi incelendiğinde, ilkel balıklarda görülen pronefroz tipi böbreğin yerini; sürüngenler, kuşlar ve memeliler gibi daha ileri derecede evrimleşmiş olan grupların erginlerinde metanefroz tipi böbreğin aldığı görülür. Ancak, bu grupların ve amfibilerin larvalarında daima pronefroz tipi böbreğin bulunduğu görülür (Tablo 2). Bir başka örnek olarak, insanın, embriyonik gelişiminde nöral borunun oluşumu sırasında, kısa bir süre için başın gerisinde, balıkların solungaçlarına benzer yarıkların meydana geldiği; kalbin iki odacıklı olduğu; böbreklerin pronefroz tipinde olduğu ve kuyruğunun bulunduğu bir evreden geçtiği bilinmektedir. Ayrıca, Şekil 10 da görüldüğü gibi, insanın embriyonik gelişimindeki belli evreler ile başka canlıların embriyonik gelişim evreleri arasında benzerlikler bulunmaktadır. Bir başka anlatımla, her canlı embriyonik gelişiminde, evrim çizgisinde yer alan canlıların morfolojik özelliklerini sergileyen evrelerden geçerler. Sistematikdeki yeri tartışma konusu olan canlılar arasında filogenetik yakınlıklar, bu şekildeki benzerliklerden yararlanılarak bulunmaktadır. Hatta, bazı yazarlara göre “bir canlının embriyonik gelişimi onun soyoluşunu göstermektedir”. B-Sitolojiden sağlanan kanıtlar Morfolojik ve fizyolojik bakımdan, tek ve çok hücreli canlıların hücrelerinde bulunan ortak özellikler, canlıların orijininin tek hücreli bir organizma olduğunu düşündürmektedir. Bütün hücrelerde, merkezde DNA yapısında bir kalıtım materyali ve onu saran sitoplazma ile bütün bu yapıyı çevresinden ayıran bir zarın bulunması; bütün hücrelerde çoğalmanın mitoz olarak isimlendirilen bir bölünmeyle gerçekleşmesi; eşeyli çoğalan türlerde eşey hücrelerinde kromozom sayılarının mayoz bölünmeyle yarıya indirilerek türlerin kromozom sayılarının sabit tutulması bütün bu canlıların hücrelerinde karşılaşılan ortak karakterlerdir. Şekil 10. Çeşitli düzeylerde evrimleşmiş olan canlıların embriyonik gelişim evreleri arasında görülen benzerlikler. Soldan sağa sırasıyla: Balık, Salamander, Hindi, Tavuk, Domuz, Dana, Tavşan ve Şnsan Diğer taraftan, cins ve aile gibi küçük sistematik kategoriler içindeki türler arasında biribirlerine yakın olan kromozom sayılarının, takım gibi daha geniş kapsamlı kategorilerde giderek farklılaşması; canlıların ortak bir atadan meydana geldikten sonra giderek değiştiklerini göstermektedir. Örneğin, sineklerin Chironomus cinsi içindeki türlerin hemen hepsinde haploid kromozom sayısı 4; çekirgelerin Acridiidae ailesinde 16 türde n=10, 86 türde n=12 olmasına karşın; bilinen tüm kelebekleri kapsayan Lepidoptera takımında n=11-112 arasında değişmektedir. Benzer şekilde, kromozomların metafaz düzleminde sıralanışı bakımından da büyük sistematik kategoriler içindeki fertler arasında farklar bulunmaktadır. C-Histolojiden sağlanan kanıtlar Bütün canlıların özelleşmiş hücre grupları olan dokulardan ve farklı dokuların belli bir amaca yönelik olarak bir araya gelmesinden oluşan organ ve organların bir araya gelmesinden oluşan sistemlerden meydana gelmesi ve bu hiyerarşik yapının bütün canlılarda benzer olması canlıların ortak bir başlangıcının olduğunu düşündürmektedir. Ayrıca, canlıların dokuları arasında görülen morfolojik ve işlevsel benzerlikler de bu düşünceyi kuvvetlendirmektedir. Örneğin, omurgalı hayvanların deri, kol ve mide kasları ile sinir dokuları morfolojik olarak benzer yapıdadırlar. Bu durum, canlıların ortak bir atadan meydana gelerek evrimleşmeleri sırasında, doku düzeyinde benzer şekilde farklılaştıklarını göstermektedir. 4-Fizyolojiden sağlanan kanıtlar Canlıların bir hücreden meydana geldikten sonra sürekli bir rekabet ortamında ve çevrenin koşullarına uygun olarak, gelişerek ve farklılaşarak çeşitlendiklerini gösteren kanıtlara fizyoloji bilim dalında da rastlanmaktadır. Örneğin, bütün canlılarda görülen fizyolojik gereksinimler aynıdır. Fakat bunların karşılanma şekli gelişmişlik düzeyine bağlı farklılıklar gösterir. Örneğin, bütün canlılar enerji elde etmek için beslenmek ve solunum yapmak, ortaya çıkan artıkları da organizmadan uzaklaştırmak zorundadırlar. Bu işlemleri amip gibi tek hücreli bir canlıda ozmoz, difüzyon ve aktif transport gibi işlemlerle hücre düzeyinde gerçekleştirmek mümkün olmakla birlikte; çok hücreli organizmalarda periferdeki hücreler dışında, organizmanın geri kalan hücreleri için gazların ve maddelerin taşınmasını sağlamak üzere bir taşıma sistemi gerekmektedir. Böylece solunum, sindirim ve boşaltım sistemleri ile dış ortam arasındaki iletişim dolaşım sistemiyle sağlanmaktadır. Ayrıca bu sistemler arasındaki koordinasyonun sağlanması ve ortamdaki değişikliklerin organizma tarafından algılanması ve yanıtlanması için sinir sistemi ve ona bağlı olarak duyu organları gelişmiştir. Evrim sürecinde, canlılardaki sistem ve organların da ortamın gereksinimlerine uygun olarak değiştikleri görülmektedir. Ancak, burada rekabet daima varlığını sürdürmekte; hatta, ortamın gereksinimlerinden biri olarak karşımıza çıkmaktadır. Örneğin, Dolaşım sisteminin amacı, genel olarak; gazların, besinsel elementlerin, metabolizma artıklarının ve hormonların taşınmasını sağlamaktır. Bu gereksinimi karşılamak üzere kan sıvısı, böceklerde sırtta bulunan ve emme-basma tulumba gibi çalışan bir kalp yardımıyla vücut içinde serbest olarak dolaştırılırken; solucanda kalb ödevi gören lateral damarlar yardımıyla damarlar içinde kapalı olarak dolaşmaktadır. Omurgalılarda, gereksinimlere bağlı olarak önemli ölçüde değişikliğe uğrayan kalbin; balıklarda 2 odacıklı, amfibilerde 3 odacıklı, reptillerde ventrikülü tamamlanmamış bir bölmeyle ikiye ayrılmış olarak 3 odacıklı, kuşlar ve memelilerde 4 odacıklı olmak üzere evrim sürecinde giderek pompalama kapasitesini artırdığı görülmektedir (Şekil 11). Şekil 11. Sırasıyla balıkta 2 gözlü, kurbağada 3 gözlü ve memelide 4 gözlü kalp Boşaltım sisteminin amacı başlıca üre ve ürik asit şeklindeki metabolizma artıklarını vücut sıvılarından ayırmaktır. Bu amaca ulaşmak için, yöntem temelde aynı kalmak üzere gelişmişlik düzeyine bağlı olarak boşaltım organının süzme kapasitesinin arttığı görülmektedir. Solucanda her segmentte bir çift olarak bulunan nefridium şeklindeki boşaltım organı, böceklerde arka barsağa açılan Malpighi tüpü ve omurgalılarda sırasıyla pronefroz, mezonefroz, metanefroz olarak adlandırılan böbrek tipleri şeklinde bir evrimleşme göstermektedir. Bu anlatılanların dışında, tüm canlıların sadece kimyasal haldeki enerjiyi kullanabilmeleri ve depolayabilmeleri onların ortak bir atadan meydana geldiklerini gösteren bir başka kanıttır. Bu kuralın dışına çıkarak, gün ışığıyla hareket eden veya radyoaktif maddeler kullanarak büyüyen bir canlı bilinmemektedir. 5-Endokrinolojiden sağlanan kanıtlar Endokrinoloji, iç salgı bezlerinin yapısını, salgılarını, bu salgıların etkiledikleri olayları ve etki şekillerini inceleyen bir bilim dalıdır. Bu konuda memelilerde yapılan çalışmaların sayısı, ilkel gruplarda yapılan çalışmalara göre fazla olmasına rağmen; elde edilen bulgular canlıların ortak bir soydan gelerek derece derece farklılaştıklarını göstermektedir. Örneğin, çenesiz omurgalılar (cyclostomata) dan memelilere kadar uzanan evrim sürecinde yer alan canlılarda, tiroid bezinin biyokimyasal organizasyonun aynı olduğu bildirilmektedir. Siklostom larvalarında yapılan çalışmalar, endostillerinde tiroksin ve tironin hormonlarının bulunduğu; metamorfozunu tamamlayan bireylerde endostilden tiroid foliküllerinin oluştuğu ve aynı kimyasalların tiroid bezinde bulunduğu saptanmıştır. Daha alt gruplarda yapılan çalışmalar, protokordatlardan Ascidia'ların endostillerinde ve süngerlerde skleroproteinlere bağlı olarak iyot bulunduğunu göstermiştir. 6-Biyokimyadan sağlanan kanıtlar Bilinen bütün canlılar C, H, O, N başta olmak üzere canlılık için önemli olan bazı metal ve ametallerin de içinde bulunduğu organogen elementleri kullanırlar. Büyüme, hareket, çoğalma gibi işlevleri gerçekleştirebilmek için; bu elementlerden, cansız dünyada bulunmayan şeker, yağ ve proteinleri, nükleik asitleri meydana getirirler. Önemsiz farklarla kullandıkları ve meydana getirdikleri maddelerin aynı olması, canlıların ortak bir başlangıca sahip oldukları düşüncesini kuvvetlendirmektedir. Canlılar arasındaki akrabalık derecelerinin ortaya çıkarılmasında da biyokimyasal yöntemlerden yararlanılmaktadır. Bilindiği gibi, metabolik işlemler sonunda canlılarda meydana gelen NH3 ve CO2 in organizmadan uzaklaştırılması gerekir. Paleontolojik bulgular, omurgalı hayvanların; balıklar, kurbağalar, sürüngenler ve sürüngenlerin bir kolundan kuşların, diğerinden memelilerin evrimleştiklerini göstermektedir. Bu konuda yapılan biyokimyasal çalışmalar, balıklar, kurbağalar ve sürüngenlerin kaplumbağaları kapsayan Anapsida grubu ile memelilerde amonyağın ornitinle reaksiyona sokularak, CO2 in de kullanıldığı işlemler sonunda üreye dönüştürülerek organizmadan uzaklaştırıldığını; Buna karşın, sürüngenlerin kertenkeleler ve yılanları kapsayan Diapsida grubunda amonyağın ornitin yerine ksantinle reaksiyona sokularak organizmadan ürik asit şeklinde uzaklaştırıldığını göstermektedir. Bu durumda, biyokimyasal yöntemler de, paleontolojik bulgulara uygun olarak omurgalıların evriminde reptillerin bir kolundan memelilerin, diğer kolundan kuşların evrimleştiği göstermektedir. 7-Moleküler biyolojiden sağlanan kanıtlar Biyolojinin genç bilim dallarından olan moleküler biyoloji, içinde bulunduğumuz teknoloji çağının olanaklarıyla moleküler düzeydeki biyolojik problemlere çözüm aramaktadır. Gerek bu çalışmalar sırasında elde edilen bulguların bir bölümü ve gerekse doğrudan canlılığın nasıl meydana geldiğini araştıran çalışmalardan elde edilen bulgular, evrimin yer üzerinde moleküler düzeyde başlamış olabileceğini göstermektedir. Bu düşünceye göre, metan, amonyak ve karbon di oksit bakımından zengin olan yer atmosferinde elektrik boşalmaları yardımıyla meydana gelen tepkimeler sonunda; aminli asitler, şekerler ve yağ asitleri meydana gelmiştir. Bu tepkimeler sırasında meydana gelen çok sayıdaki moleküller uç uca gelerek zincirler oluşturmuşlardır. Olasılıkla deniz suyundaki bu moleküller yağ asitleri sayesinde kümeler meydana getirerek büyümüşler ve zamanla bakterilere benzer bir bölünme yeteneğine sahip olmuşlardır. Bundan sonraki bölümde üzerinde durulacak olan Miller'in deneyi, yerin soğuma sürecinde sahip olduğu düşünülen çevre koşulları altında inorganik maddelerden organik yapıların meydana geldiğini gösteren önemli bir çalışmadır.

http://www.biyologlar.com/evrimin-kanitlari

Mozaik Evrim ve Mozaik Türler Nelerdir

Evrime karşı olanların tarihi, hemen hemen evrimsel biyolojinin tarihi kadar eskidir. Evrime karşıt olanların iddiaları, çok nadir bazı örnekler haricinde, neredeyse son 150 yılıdr hiçbir şekilde değişmemiştir. Bunun çok basit bir nedeni vardır: evrim karşıtlığının sahip olduğu iddialar, bilime değil, insanların olası ilkin şüphelerine dayanmaktadır. Bu şüpheler esasında son derece haklıdır, çünkü sadece "evrim karşıtlarının" aklına değil, bilim insanlarının da aklına gelmiştir. Ancak sorun şuradan kaynaklanmaktadır: son 150 yıl içerisinde, bu primitif olarak adlandıracağımız ilkel ve olgunlaşmamış şüpheler, bilim tarafından açıklanmış ve çözülmüştür. Bu, yeni şüpheler ve meraklar doğurmuştur ve bu şekilde bilim ilerleyişini sürdürmüştür. Ne yazık ki çeşitli programlar, yazılar ve kaynaklardan görüldüğü gibi, bilim 21. yüzyılın içerisinde hızla ilerlemesine rağmen evrime karşı olan kitleler halen 19. yüzyılda tıkanıp kalmış ve ileri gideceklerine sanki giderek geriye gitmektedirler. Argümanları hiç değişmemiş, asla güncellenmemiş ve giderek daha da karanlıklaşarak, art niyetler perdesi arkasında boğulmuştur. Günümüzde, bu bilim dışı tutumları nedeniyle evrim karşıtlarının neredeyse tamamı bilim camiasının dışında kalmış, bilim her onlara kulak asmaya çalıştığında, bu kitlelerin şahsi inançlarına dayanarak yaptıkları bilim dışı açıklamalar yüzünden yarı yolda kalmış ve giderek kendi köşelerine itilmişlerdir. Bu şekilde devam ettiği sürece, bilimin vazgeçilmezi ve en güçlü açıklamalarından biri haline gelmiş olan evrime hiçbir zaman farklı bir bakış getiremeyecekler ve kademeli olarak elenerek yok olmaya muhtaç olacaktırlar. Bu kadar uzun bir girizgahı, Mozaik Evrim ile ilgili bir yazıda neden yaptık? Çünkü bahsettiğimiz üzere, her ne kadar argümanlarının %99'una yakını son 150 yılda hiçbir şekilde değişmemiş ve gelişmemiş olmasına rağmen, çok nadir bazı durumlarda, modern bilimin bilgilerini çarpıtmak suretiyle karanlık ideolojilerini savunmayı sürdürmüşlerdir. Bu modern keşiflerden biri de, mozaik evrim konusudur. Evrimsel biyologlar ve paleontologların hummalı çalışmaları sayesinde, bugün bildiğimiz ve keşfettiğimiz türlerin istisnasız tamamının çeşitli evrimsel süreçlerden geçerek bugüne geldiklerini net olarak biliyoruz. Tekil olarak bazı türlerde elbette soru işaretleri, bilinmeyenler, gizemler bulunuyor. Ancak zaten bunlar da olmasaydı, bilimin ilerlemesi mümkün olmazdı. Fakat bu bilinmezlerin hiçbiri evrimsel biyoloji ile uyumsuz, evrimin gerçekliğine şüphe düşüren, evrim teorisini çürütebilecek nitelik ve nicelikte olan unsurlar değildirler. Zaten artık bu şekilde tekil örneklerle evrim teorisini çürütmek de olanaksızdır. Evrimin ise zaten çürütülemez bir doğa yasası olduğunu, evrim ile evrim teorisinin farklı konular olduğunu şuradaki yazımızda detaylıca ele almıştık; meraklı okurlarımız o yazıya göz atabilirler. Bu hummalı çalışmalar sayesinde yapılan keşifler, bazı ilginç gerçekleri de ortaya çıkarmıştır. Bazı türlerin, bir vücutsal bütünlük olarak, eş zamanlı bir biçimde, tüm özelliklerinin aynı anda değişimiyle evrimleşmediği, bazı parçalarının farklı zamanlarda evrimleşerek, farklı nitelikler kazandığı anlaşılmıştır. İşte bu şekilde, türlerin farklı vücut parçalarının ya da görevlerinin, farklı hızlarda ve zaman dilimlerinde, her birinin ayrı ayrı, binlerce nesilde evrimleşmesine mozaik evrim veya modüler evrim adı verilir. Bu şekilde evrimleşen türlere ise mozaik türler veya modüler türler denir. Mozaik türler genellikle büyük canlı grupları arasındaki geçişleri temsil ederler ve dolayısıyla bilim düşmanlarının "ara geçiş türü" olarak nitelemeye çalıştıkları, mitolojik yaratıklara benzerler. Esasında türler arası geçişleri görmek için mozaik türlere bakmaya gerek yoktur. Ele alacağınız her bir tür ve bu türün geçmişi, genleri, fiziksel özellikleri, fizyolojisi, anatomisi, morfolojisi, davranışları ve diğer tüm özelliklerinin değişimi, size evrimsel değişimi gösterecektir. Ancak mozaik türlerde bu daha bariz olarak ortaya çıkmaktadır. Çünkü mozaik türlerin belli yapı ve fonksiyonları, vücudun geneline göre daha fazla veya daha az evrimleşmiş olabilir. Cambridge Üniversitesi tarafından basılan Omurgalı Evrimindeki Şablonlar ve Süreçler başlıklı kitabında R. L. Carroll mozaik evrimi şu şekilde tanımlamaktadır: "Tür içerisinde ve türler arasındaki karakterlerin farklı hızlardaki evrimine mozaik evrim denmektedir." Aynı kitapta, mozaik evrimin, evrimsel biyolojinin makroevrimsel değişimlerine çok net örnekler olduğundan bahsedilmektedir. Mozaik evrim, türlerin değişimi açısından çok önemli bilgiler verdiği gibi, evrimsel tarihin köşebaşı olaylarında da kendine yer bulmaktadır. Örneğin Nature dergisinde yayımlanan bir makale, memelilerin beyinlerinde de mozaik evrimin örnekleri olduğu, bazı parçaların diğerlerinden daha hızlı ya da daha yavaş evrimleşerek geliştiğini göstermektedir. Günümüzde evrimsel biyolojiden elde edilen bu bilgi sayesinde, türlerin birbirleriyle olan ilişkisini ve beynimizin kendi içerisindeki sinirsel bağlantılarının ve gelişiminin özelliklerini çok daha net olarak algılayabilmeye başladık. Yayımlanan makalede Dr. Robert Barton ve Dr. Paul Harvey, şu sözlere yer vermektedir: "Bu makalede, mozaik değişimlerin beyin yapılarının evriminde önemli bir faktör olduğunu karşılaştırmalı veriler dahilinde analiz ediyoruz. Bazı beyin yapıları, beynin geri kalanından bağımsız olarak, tek başlarına ciddi anatomik ve fonksiyonel evrimler geçirmişlerdir. Bu, hem basit beyin alt birimleri, hem de beynin daha hassas fonksiyonel yapıları için geçerlidir. Dolayısıyla, mozaik evrimin beynin karmaşık yapıları arasındaki ilişkilerin oluşumunda önemli bir rol oynadığını görmekteyiz." Evrim karşıtları, mozaik evrim kavramını bir defa dahi okumamış olduklarını gösterir biçimde, evrimin bu kadar net bir örneğini kullanarak, az sonra bahsedeceğimiz evrimsel geçiş örneklerinin "evrimsel bir değişim göstermediğini ve sadece mozaik canlılar olduklarını" iddia etmektedirler. Bu, oldukça komik ve hoş bir hatadır. Evrimin bu kadar içinden olan bir örneği, başka türlü izah edemedikleri çok net evrimsel geçiş örneklerini "çürütmek" için kullanmak, gerçekten baş döndürücü bir yaklaşımdır. Mozaik evrim üzerinde en yoğun olarak duran araştırmacı, 2002 yılında kaybettiğimiz ünlü evrimsel biyolog Stephen Jay Gould'dur. Dawkins ve benzeri "neodarwinist" veya "adaptasyoncu evrimci" olarak tanımlanan evrimsel biyoloji ekolüne karşı olan Gould, türlerin her zaman yavaş ve kademeli bir evrimden geçmek zorunda olmadıklarını, kimi zaman meydana gelen ani değişimler etkisi altında türlerin de çok hızlı bir biçimde evrimleşebileceklerini iddia etmiştir. Günümüzde, türlerin kademeli evrimi daha yaygın olarak kabul edilen ve daha yoğun verilere sahip olan bir evrim türü olsa da, Gould'un bu yaklaşımı sayesinde birçok yeni evrimsel mekanizmanın önemi anlaşılmış ve birçok yeni evrimsel kavram geliştirilebilmiştir. Bunlardan biri olan allomorfizm, organların, yapıların ve fonksiyonların birbirlerinden farklı hızlarda gelişmesi ve olgunlaşması demektir. Yani burada evrimsel bir değişimden değil, bir bireyin doğumundan itibaren meydana gelen değişimlerin toplamı olan, gelişimden bahsetmekteyiz. Heterokronik olarak, yani birbirlerinden farklı zamanlarda olgunlaşan bu yapıların, bu farklı olgunlaşmalarına neden olan genlerindeki değişimlerin, uzun vadede önemli evrimsel sıçramalara neden olabileceği düşünülmektedir. Örneğin büyümeyi ve gelişmeyi kontrol eden bu genlerde meydana gelecek mutasyonlar, bireylerin normalde olacağından daha yavaş veya daha hızlı olgunlaşmalarına neden olabilir, bu da popülasyon içerisindeki gen dağılımını çok hızlı bir biçimde etkileyerek, birkaç nesilde önemli evrimsel değişimlere neden olabilir. Bu şekilde olan evrime, sıçramalı evrim adını veriyoruz. evrimagaci.org

http://www.biyologlar.com/mozaik-evrim-ve-mozaik-turler-nelerdir

Hipotez, Olgu ve Bilimin Doğası

Hipotez, Olgu ve Bilimin Doğası http://evrimcalismagrubu.org/ceviriler/37-ceviriler/68-hipotez-olgu-ve-bilimin-doas.html Dilara Karadeniz tarafından yazıldı Çarşamba, 30 Nisan 2008 23:12 Douglas Futuyma, çeviren Mehmet Cem Kamözüt Örneğin, DNA’nın genetik malzeme olduğundan nasıl emin olabilirsiniz? Ya bunu “kanıtlamış” olan bilimciler bir hata yapmışlarsa? Kesinlikle doğru olduğu gerçekten kanıtlanmış bir şey var mıdır? Bilim, dünyayı algılamanın farklı ve eşit derecede geçerli biçimlerinden yalnızca biri, baskın Batılı biçimi midir? Evrim bir gerçek midir, yoksa bir kuram mı? Ya da tıpkı yaratılışçıların benimseme hakkına sahip oldukları karşı görüş gibi, bu da benim benimseme hakkına sahip olduğum görüş mü? Varsayımsal bir örneği ele alalım. Bilinmeyen bir hastalıktan ölmekte olan koyunların ölüm nedenini belirlemekle görevlendirildiniz. 50 hasta, 50 sağlıklı koyundan doku örnekleri aldınız ve hasta hayvanların 20 tanesinin, sağlıklı olanların da yalnızca 10 tanesinin karaciğerinde bir tekhücreli teşhis ettiniz. Bu farklılık, iki koyun grubunun söz konusu tekhücrelinin görünme sıklığı açısından bir fark göstermediğini söyleyen SIFIR HİPOTEZİNİ reddetmeye yeterli midir? Bu soruya yanıt verebilmek için istatistiksel testler yaparak bu sayılar arasındaki farklılığın sırf şans yoluyla ortaya çıkıp çıkamayacağına bakarsınız. Ki kare (χ2) istatistiğini hesaplarsınız (burada bu değer 4,76’dır), bir ki kare değerleri tablosuna bakar ve “0,025 < p < 0,05” ifadesini bulursunuz. Benzerleriyle neredeyse tüm bilimsel veri analizlerinde karşılaştığınız bu ifade ne anlama gelir? Bulduğunuz farklılığın (hasta ve sağlıklı koyunlardan aldığınız örneklerin rastgele olduğu varsayımı altında) sırf şans eseri gerçekleşmiş olma olasılığının –yani gerçekte hasta koyunlarla sağlıklı koyunların sözkonusu tekhücreli ile enfekte olma oranları arasında bir farklılık olmaması olasılığının– 0,05’ten küçük ama 0,025’ten büyük olduğu anlamına... Bilimdeki her deney ya da gözlem daha büyük olası gözlem evreninden (bizim örneğimizde tüm koyunlar) alınan örneklemlere dayanmaktadır ve her durumda eldeki verinin bu daha büyük evrene ilişkin gerçekliği yanlış temsil etme olasılığı vardır. Yani ilişkisizlik hipotezini –koyun grupları arasında bir farklılık olmadığı, deney sonuçlarıyla oynanmasına bağlı bir etki olmadığı, ya da belirli değişkenler arasında korelasyon olmadığı hipotezini– yanlışlıkla reddetmek her zaman olanaklıdır. Ne mutludur ki bazı durumlarda, doğru bir ilişkisizlik hipotezini reddetme ve yanlış olan alternatif hipotezi doğru olarak kabul etme olasılığı 0,00001 ya da daha az olabilir. Bu durumda ilişkisizlik hipotezini güvenle reddedebilirsiniz, ama kesin olarak emin olamazsınız. O halde 100 koyunla yapılan çalışma hasta koyunlarda söz konusu tekhücrelilere rastlama olasılığımızın daha fazla olduğu varsayımını desteklemektedir; ama yalnızca zayıf bir şekilde. Ölümün nedeninin tekhücreliler olabileceğini düşünüyor ama korelasyonun yetersiz olmasından dolayı endişe duyuyorsunuz. Siz de örnekleminizi 1000 koyuna çıkardınız, karaciğer biyopsisi yaptınız; örneklerinizi tekhücreliler açısından (düşük yoğunlukta olmaları nedeniyle ilk çalışmanızda gözden kaçırmış olabileceğiniz vakarı da açığa çıkarak biçimde) daha detaylı incelediniz; ertesi yıl hangi koyunların öldüğünü kaydettiniz. Büyük bir hoşnutlukla gördünüz ki tekhücreliye rastlamadığınız koyunların yalnızca %5’i ölürken enfekte koyunların %95’i öldü. Hayatta kalanlar yıl sonunda kesildiklerinde görünürde sağlıklı olan koyunlarda hala bir enfeksiyon belirtisine rastlanmadı. Zafererinizle övünen bir biçimde danışmanınıza ölüm nedeni olarak tekhücreliyi rapor ettiniz. Doğru mu? Yanlış, dedi size. Diğer hipotezleri elememişsiniz. Belki de hastalığa, tesadüfen koyunun görece zararlı tekhücreliye karşı direncini de azaltan bir virüs neden oluyordur. Belki bazı koyunlar ömürlerini kısaltan bir gene sahip ve bu gen aynı zamanda enfeksiyon dirençlerini de azaltıyor. “Yapmanız gereken” diyor, “bir deney”. “Rastgele seçtiğiniz bazı koyunlara tek hücreliyi içeren, diğerlerine de tek hücreli dışında tüm içeriği aynı olan bir sıvı enjekte etmek”. Bunu yapıyorsunuz ve başarısız birkaç denemeden sonra koyunların tek hücreliyi oral yollardan almadıkça enfekte olmadıkları ortaya çıkıyor. Sonuçta deneysel olarak enfekte edilmiş 100 koyunun 90’ının 3 ay içinde öldüğünü, 100 “kontrol” koyununun 95’inin deneyin sürdüğü 1 yıl boyunca yaşadığını memnuniyetle rapor ediyorsunuz. Ki kare testleri p’nin 0,0001’den küçük olduğunu gösteriyor. Yani elinizdeki sonuçların şans sonucu ortaya çıkmış olması son derece düşük bir olasılık. Bu noktada tek hücrelinin hastalığa ve ölüme neden olduğuna dair dikkate değer bir güveniniz olabilir. Ama bunu hala mutlak olarak kanıtlamadınız. Koyunlara yalıtıp enjekte ettiğiniz yalnızca tek hücreli değil de görünmeyen bir virüs de olamaz mı? Koyunlara enjeksiyonu rastgele yaptığınızdan emin misiniz? Yoksa enjeksiyon için farkında olmadan zayıf görünen hayvanları seçmiş olabilir misiniz? Hipotezinize uymayan 15 hayvanın durumunu sizce ne açıklıyor? Ve her ne kadar p < 0,0001 olsa da hala kötü bir “şanslı kura” tutturmuş olma şansınız var, yok mu? Örneği uzatmaya gerek yok, buradan çeşitli dersler çıkarabiliriz. Öncelikle veriler kendi başlarına hiçbir şey anlatmazlar, önceki bilgilerimiz ve kuramımız ışığında yorumlanmalıdırlar. Bu örnekte başka bazı şeylerin yanı sıra (ki kare testi gibi istatistklerin temelinde yatan) olasılık kuramına, deneysel tasarım kuramına ve virüslerin var olduğu ve sonuçlarımızı karıştırabileceği bilgisine gereksinim duyduk. Bilim tarihi, yeni kuram ve bilgiler ışığında düzeltilmesi ya da reddedilmesi gerekmiş olan sonuçların örnekleriyle doludur. Örneğin 1950’lerin sonlarına kadar neredeyse tüm jeologlar kıtaların sabit konumda olduğuna inanıyordu; şimdi tümü levha tektoniği ve kıta kaymalarına inanıyor ve pek çok jeolojik olgunun bunun ışığında yeniden yorumlanması gerekti. İkinci olarak varsayımsal araştırma deneyimimiz güvenilir bir sonuca ulaşmak için pek çok çalışma gerektiğini göstermiştir. Ders kitaplarındaki, bir gerçeği dile getirdiğini söyleyen her tümcenin genellikle en azından bir kişinin yaşamının en az birkaç yılı boyunca büyük bir çaba harcamasını gerektirdiğini gözden kaçırmak kolaydır. Bu nedenle bilimciler sonuçlarını, birazdan tekrar söz edeceğimiz gibi dikkate değer bir güçle savunurlar. Üçüncü olarak ve bu en önemlisidir araştırma, ne kadar dikkatlice ve yorucu bir biçimde tasarlanmış ve gerçekleştirilmiş olursa olsun kanıta yaklaşır ama asla onu tam olarak elde edemez. Kabul ettiğiniz hipotezinizin günün birinde, bugün hayal edemeyeceğimiz tümüyle yeni kuramlar ya da veriler ışığında düzeltilmesi ya da reddedilmesi olasılığı –neredeyse yokmuş gibi görünebilecek olsa da– her zaman vardır. Bunun sonucu olarak neredeyse tüm bilimsel makaleler sonuçlarını, kuşkuya yer bırakan bir biçimde sergilerler. Drosophila genetiği üzerine yeni yayımlanmış bir makalede şu sonucu okudum: Deney “sperm yerdeğiştirmesinin iki bileşenini bir araya getiren farklı mekanizmalar olduğunu düşündürtüyor” (Clark et al. 1995). Aslında veriler harikaydı, deney dikkatlice tasarlanmıştı, istatistiksel analizler örnek olacak nitelikteydi, ama yazarlar görüşlerini kanıtladıklarını savlamıyorlardı. Bilimciler genellikle sonuçlarına muazzam bir güven duyarlar, ama kesinliğe sahip değillerdir. Belirsizliği yaşamın bir gerçeği olarak benimsemek iyi bir bilimcinin dünya görüşü için kaçınılmazdır. Öyleyse bilimdeki her ifade bir HİPOTEZ olarak anlaşılmalıdır. Neyin doğru olabileceğini söyleyen bir ifade. Bazı hipotezler zayıfça desteklenmektedir. Başka bazıları (örneğin dünyanın güneş çevresinde döndüğü ya da DNA’nın kalıtsal malzeme olduğu gibileri) o kadar iyi desteklenmiştir ki, onları olgu olarak görürüz. Olgu denilince, tam bir kesinlikle mutlak olarak doğru olduğunu bildiğimiz bir şey anlamak bir hatadır. Hiçbir şeyi böyle bilmiyoruz (Bazı felsefecilere göre kendimiz de dahil herhangi bir şeyin var olduğunundan bile emin olamayız. Dünyanın tanrının zihnindeki tutarlı bir düş olmadığını nasıl kanıtlayabiliriz?). Doğrusu şudur: Bir olgu bir hipotezdir, ancak delillerle o kadar güçlü desteklenmektedir ki onu doğru olarak kabul ederiz ve doğruymuş gibi davranırız. Bilimcilerin, kuvvetle desteklenmiş hipotezler ya da olgular olarak ortaya koydukları ifadelere duydukları güveni neden paylaşmalıyız? Bilimin sosyal dinamikleri yüzünden. Tek bir bilimci yanılıyor olabilir (ve çok ender de olsa bir bilimci kasıtlı olarak verileri çarpıtabilir). Ama eğer konu önemliyse, alanın ilerlemesi (örneğin bütün moleküler biyolojinin, DNA’nın yapısı ve işlevine bağlı olduğu gibi) bu konuya bağlıysa, diğer bilimciler bulguları kuşkucu biçimde sorgulayacaklardır. Bazıları bilinçli olarak deneyi yinelemeye çalışabilir; başkaları da hipotezin doğru olduğu varsayımıyla araştırmalar yürütecekler ve eğer gerçekte yanlışsa uyumsuzluklar bulacaklardır. Başka bir deyişle bu alanda çalışan araştırmacılar hataları bulmaya çalışacaktır; çünkü kendi işleri ve kariyerleri söz konusudur. Üstelik bilimciler yalnızca entelektüel merakla değil (her ne kadar başarılı olmayı nadiren umabilirlerse de) tanınma ve ünlü olma güdüsüyle de hareket ederler. Yaygın kabul görmüş bir hipotezi yanlışlamak da profesyönel alanda tanınmaya giden yolu açar. Kalıtımın DNA’ya dayanmadığını ya da AIDS’in nedeninin HIV (Human Immunodeficiency Virus, İnsan Bağışıklık Yetersizliği Virüsü) olmadığını gösterebilen bilimci, alanında ünlü olacaktır. Elbette hipotezi ilk ortaya koyanların kaybedecek çok şeyi vardır. Yatırmış oldukları yoğun bir emek –ve hatta– itibarları. Dolayısıyla tipik tutumları, görüşlerini –bazen aksi yöndeki ezici delillere rağmen– tutkuyla savunmak olacaktır. Bu sürecin sonucu her bilimsel disiplinin karşıt hipotezlerin savunucuları arasındaki tartışmalar ve entelektüel savaşlarla dolu olmasıdır. Fikirler arasında, sonucu daha çok delilin ve daha dikkatli çözümlemenin belirlediği, en inatçı skeptiklerin bile uzlaşımsal görüşe kazanılacakları (ya da ölüp gidecekleri) zamana kadar sürecek bir rekabet –bir tür doğal seçilim– vardır. Olgu ve Kuram Olarak Evrim Evrim bir olgu mudur, kuram mıdır, yoksa hipotez midir? Bilimde sözcükler genellikle kesin bir anlamda ve gündelik yaşamdaki kullanımlarından farklı çağrışımlarla kullanılırlar. Bu aşırı önemli bir durumdur ve bu kitapta pek çok örneğiyle karşılaşacağız (uyum, rastgele, korelasyon). Bu sözcükler arasında hipotez ve kuram da vardır. İnsanlar –sanki hipotez delillerle desteklenmeyen bir fikir demekmiş gibi– sıklıkla bir şeyin “sadece” bir hipotez olmasından söz ederler (“sigaranın kansere neden olduğu yalnızca bir hipotezdir” örneğindeki gibi). Ancak bilimde hipotez, neyin doğru olabileceğine ilişkin bilgi birikimimize dayanan bir ifadedir. Zayıf biçimde desteklenmiş olabilir, özellikle de başlarda. Ama görmüş olduğumuz gibi neredeyse bir olgu olacak düzeyde destek de kazanabilir. Kopernik için Dünya’nın Güneş çevresinde dönmesi orta düzeyde desteklenmiş bir hipotezdi; bizim içinse kuvvetle desteklenmiş bir hipotezdir. Benzer biçimde, bilimde bir kuram, desteksiz bir spekülasyon değildir. Bundan ziyade, usavurum ve delillere dayanan, çeşitli gözlemleri açıklayan, uyumlu, olgun, birbiriyle ilişkili bir ifadeler bütünüdür. Ya da Oxford English Dictionary’nin tanımını alırsak bir kuram “bir grup olgu ya da görüngüyü açıkladığı ya da anlaşılır kıldığı düşünülen bir fikirler ve ifadeler sistemi ya da şablonudur; gözlem ya da deneyle desteklenmiş ya da yerleşmiş ve bilinen olguları anlaşılır kıldığı söylenen ya da kabul edilen bir hipotezdir; bilinen genel yasalar, ilkeler, bilinen ya da gözlemlenmiş bir şeyin nedeninin ifadesidir”. Dolayısıyla atom kuramı, kuantum kuramı ve levha tektoniği kuramı sırf spekülasyon ya da görüş değillerdir; (sigaranın kansere yol açtığı hipotezi gibi) hatta iyi desteklenmiş hipotezler de değillerdir. Her biri delillerle kuvvetle desteklenmiş çok çeşitli olguları anlaşılır kılan, iyi işlenmiş, birbiriyle ilişkili fikirler bütünüdür. Bir kuram bir ifadeler ağı olduğundan, genellikle tek bir kritik deneye dayanarak kabul edilmez ya da çürütülmez (basit hipotezlerin başına ise sıklıkla bu gelir). Bunun yerine kuramlar, yeni görüngüler ve gözlemlerle karşılaştıkça evrilirler; kuramın bazı parçaları atılır, düzeltilir, eklemeler yapılır. Örneğin kalıtım kuramı başlangıçta Mendel yasalarından parçacıklı karakterlerin kalıtımı, baskınlık ve farklı karakterleri etkileyen “etmenler”in (genlerin) bağımsız ayrılımından ibaretti. Kısa süre içinde baskınlık ve bağımsız ayrılıma ilişkin aykırı durumlar bulundu, ama parçacıklı karakterlerin kalıtımın çekirdek ilkeleri kaldı. Genetikçiler, yirminci yüzyıl boyunca bu çekirdeği işleyerek, ona eklemeler yaparak Mendel’in düşünebileceğinden çok daha karmaşık ve ayrınıtılı bir kalıtım kuramı geliştirdiler. Kuramın bazı kısımları son derece iyi oturtulmuştur, başka bazılarıysa hala iyileştirmeye açıktır. Kalıtımın ve gelişimin mekanizmaları daha da anlaşıldıkça pek çok ekleme ve değiştirme olması beklenebilir. Yukarıdaki tartışmanın ışığında evrim bir bilimsel olgudur. Ama evrim kuramıyla açıklanır. Türlerin Kökeni’nde Darwin iki büyük hipotez ortaya koymuştur. Biri –değişiklikler yoluyla– ortak bir atadan türeme hipotezidir (kısaca değişikliklerle türeme). Bu hipotezi “evrimin tarihsel gerçekliği” olarak da anacağım. Diğer büyük hipotezi de, Darwin’in değişikliklerle türeme için önerdiği nedendir: Doğal seçilim kalıtsal çeşitlilik içinden ayıklama yapar. Darwin, evrimin tarihsel gerçekliği –yani ortak bir atadan değişerek türeme– için fazlasıyla delil sağladı. 1859’da bile bu görüşün epey desteği vardı. Yaklaşık 15 yıl içinde birkaç bağnaz dışında tüm biyolojik bilimciler bu hipotezi kabul etmişlerdi. O günden beri paleontolojiden, biyocoğrafyadan, karşılaştırmalı anatomiden, embriyolojiden, genetikten, biyokimyadan ve moleküler biyolojiden yüzbinlerce gözlem bu görüşü destekledi. Kopernik’in Güneş merkezlilik hipotezi gibi, ortak bir atadan değişiklerle türeme hipotezi de uzun süredir bilimsel bir olgu statüsündedir. Nasıl ki bir kimyacı suyun hidrojen ve oksijenden oluştuğunu gösteren bir makale yayınlamaya çalışmazsa, bugün hiçbir biyolog da “evrim için yeni kanıtlar” konulu bir makale yayınlamayı düşünmez. Yüz yılı aşkın bir süredir, bilimsel çevreler bunu tartışılacak bir konu olarak görmemektedir. Darwin, evrimin nedeninin kalıtsal çeşitlilik üzerindeki doğal seçilim olduğu hipotezini öne sürmüştü. Argümanı mantığa ve çok çeşitli dolaylı delilin yorumuna dayanıyordu ama doğrudan hiç delili yoktu. Kalıtımın anlaşılmasının ve doğal seçilim delillerinin hipotezini tam olarak desteklemesi için 70 yıldan daha uzun bir süre geçmesi gerekecekti. Üstelik bugün biliyoruz ki evrimin Darwin’in fark ettiğinden daha fazla nedeni vardır ve doğal seçilim ve kalıtsal çeşitlilik onun sandığından daha karmaşıktır. Bu kitabın büyük kısmı evrimin nedenlerine ilişkin bugünkü anlayışımızı oluşturan mutasyon, rekombinasyon, gen akışı, yalıtım, rastgele genetik sürüklenme, doğal seçilimin çeşitli biçimleri ve başka etmenlerden oluşan karmaşık düşünceler bütününe ilişkindir. Evrimin nedenleri hakkındaki bu birbiriyle ilişkili düşünceler ağı evrim kuramı ya da evrimsel kuramdır. Bu “sırf spekülasyon” değildir; çünkü tüm fikirler delillerle desteklenmiştir. Bir hipotez de değildir. Çoğu iyi desteklenmiş bir hipotezler bütünüdür. Yukarıdaki bölümde tanımlandığı anlamda, bir kuramdır. Bilimdeki tüm kuramlar gibi, tam değildir. Tüm evrimin nedenlerini henüz bilmiyor olduğumuz ve bazı ayrıntılar sonradan yanlış çıkabileceği için... Ancak evrimin ana ilkeleri o kadar iyi desteklenmiştir ki, çoğu biyolog bunları büyük bir güvenle kabul eder.      

http://www.biyologlar.com/hipotez-olgu-ve-bilimin-dogasi-1

Biyoloji'nin çalışma alanları

Biyoloji o kadar büyük bir araştırma sahası haline gelmiştir ki, genellikle bir dal olarak değil de, birbirine geçmiş birçok alt dal olarak görülür. Bu madde, dört ana grubu incelemektedir. İlk grup; hücre, gen, vb. temel yapı taşlarını inceleyen dallardan oluşmaktadır. İkincisi; doku, organ ve vücut düzeyindeki yapıları inceleyen dallardan oluşmaktadır. Üçüncüsü, organizmalar ve onların geçmişlerini incelerken, sonuncusu da onların etkileşimlerini inceler. Bu sınırların, gruplamaların ve açıklamaların sadece biyolojik araştırmanın basitleştirilmiş bir betimlemesi olduğu unutulmamalıdır. Gerçekte, bu dallar arasındaki sınırlar belirli değildir ve birçok dal, birbirinin yöntemlerini kullanırlar. Mesela, evrimsel biyoloji, DNA zincirlerini belirlemede moleküler biyolojiden fazlaca etkilenir. Başka bir örnek vermek gerekirse, fizyoloji, organ sistemlerinin görevlerini açıklarken hücre biyolojisinden oldukça yararlanır. Bunun dışında, etoloji ve karşılaştırmalı psikoloji, hayvan davranışlarının incelenmesi ve düşünsel özelliklerini incelemesiyle biyolojinin sınırlarını genişletirler. Nitekim, evrimsel psikoloji, psikolojinin de bir bioloji dalını savunmaktadır. Kaynak: biyoloji.nedir.com/#ixzz2ln6EAPZO

http://www.biyologlar.com/biyolojinin-calisma-alanlari

GEN TEKNOLOJİSİ NEDİR

1950 li yılların başlarında DNA molekülünün üç boyutlu yapısının ilk olarak 1938 de Moleküler Biyoloji adıyla anılan bilim dalında yeni bir dönemin başlangıcını oluşturmaktadır. A, C, G ve T harfleriyle sembolize edilen dört yapı taşı ( deoksiribonükleotid) nın A-T, ve G-C eşleşmeleriyle meydana getirdikleri birbirini tamamlayan iki diziden oluşmuş çift sarmal şeklindeki bu dev molekülün özelliklerinin ve işlevinin incelenmesi 1960 lı yılların ortalarına kadar kalıtsal şifreyi nasıl koruyarak kuşaktan kuşağa aktardıkları (DNA replikasyonu) ve bu kalıtsal bilgilerin nasıl yaşama geçtiği (gen ekspresyonu-protein sentezi) ve bu süreçlerde etki olan unsurların tanımlanması şeklinde devam etmiştir. Aynı dönemlerde DNA molekülünü özel diziciklere bağlanarak kesen restriksiyon enzimlerinin bulunması, DNA parçalarının birleştirme özelliğine sahip ligaz enzimlerinin tanımlanması ve bu enzimler yardımıyla bir organizmaya ait bir DNA dizisinin (genin) izole edilerek başka bir organizmanın genetik yapısına eklenebileceğinin gösterilmesi yeni bir teknolojinin, Rekombinant-yeni bileşen-DNA teknolojisinin de doğmasına yol açmıştır. Çeşitli kaynaklardan "Gen Mühendisliği", Moleküler Biyoteknoloji olarak da adlandırılan Rekombinant DNA Teknolojisi Moleküler Biyolojiden destek alan bir uygulama alanıdır. Sadeleştirilmiş bir yaklaşımla dört harfli (A, C, G, T) bir alfabe ile yazılmış dev bir metine (bir gen dizisi) izole edilerek başka bir organizmaya aktarıldığında yazım dili ve kurallarının aynı olması nedeniyle aktarılan genin işlevini aktarıldığı yeni organizmada da göstermesi olarak özetlenebilecek rekombinant DNA teknolojisi canlıların özelliklerinde değişiklikler oluşturan bir teknolojidir. Gen teknolojisi olarak ta adlandırılan bir teknolojinin ilk uygulamaları teknik avantajları nedeniyle bakteriler üzerinde yapılmıştır. Gen teknolojisinin yoğun şekilde etkilediği bir alan biyoteknolojisidir. Kısaca "Bir mal veya hizmet üretmek için canlı organizmalardan veya bu organizmaların ürünün veya proses süreçlerinden yararlanma teknolojisi" olarak tanımlanabilecek biyoteknoloji aynı zamanda insanların kullandığı en eski teknolojilerden biridir. Tek ekmeğin, şarabın, yoğurdun veya peynirin yapılışından beri var olan biyoteknolojinin gen teknolojisinden bu değin etkilenmesi bu döneme kadar üretim olanakları doğadaki (mikro) organizmalarla sınırlı iken gen teknolojisi ile bu sınırlamanın hemen hemen tümüyle yok olması bir başka deyişle (mikroorganizmalar sonsuz sayıda yeni özellikler kazandırabilinmesidir. Son 15 yıl içinde büyük gelişme gösteren moleküler biyoloji teknikleri özellikle DNA nın belli bir bölgesini milyonlarca kez kopyalayarak çoğaltan Polimeraz Zincirleme Reaksiyonu, Otomatik DNA dizi sentez ve lokalize edebilen yeni melezleme teknikleri ve başta elektronik bilgisayar ve informatik olmak üzere diğer alanlardaki başdöndürücü gelişmeler gen teknolojisinin uygulamalarının giderek artan bir ivmeyle çağ ötesi noktalara taşınmalarına neden olmuşlardır. Bakterilere gen aktarımıyla başlayan gen teknolojisi çalışmaları günümüzde ağaçtan insana kadar her organizma üzerinde yürütülmektedir. Moleküler biyolojinin ve gen teknolojisinin başdöndürücü gelişimi 1990 lardan sonra sansasyonel biyoteknoloji uygulamalarının yanı sıra büyük uluslararası projelerle de kamuoyunun en çok ilgilendiği bilimsel konular arasına girdi. Özellikle "İnsan Genomu Projesi" çerçevesinde elde edilen insanın genetik yapısına ilişkin yeni bilgiler ve bu bilgilerin sağlayacağı yeni açılımlar bütün dünya da büyük ilgi topladı. Gen teknolojisi günümüzde yaşamın her alanında etkisini göstermektedir. Özellikle tıp, tarım hayvancılık, gıda, kimya, enerji ve çevre endüstrileri gen teknolojisinden yoğun şekilde yararlanmaktadır. Kaynak:www.ttb.org.tr ,ebilge.com

http://www.biyologlar.com/gen-teknolojisi-nedir

Biyoloji Nedir ?

Biyoloji veya Canlı bilimi, canlıları inceleyen bir bilim dalıdır. Biyologlar,tüm canlıları - tüm gezegeni kaplayan küresel boyuttan, hücre ve molekülleri kapsayan mikroskobik boyuta kadar - onları etkileyen önemli dinamik olaylarla birlikte incelerler.Birçok süreci bünyesinde barındıran hayati süreçlerden bazıları; enerji ve maddenin işlenmesi, vücudu oluşturan maddelerin sentezlenmesi, yaraların iyileşmesi ve tüm organizmanın çoğalmasıdır. Hayatın gizemleri, tarihteki tüm insanları etkilediğinden; insanın fiziksel yapısı, bitkiler ve hayvanlar hakkındaki araştırmalar tüm toplumların tarihlerinde yer bulur. Bu kadar ilginin bir kısmı, insanların hayata hükmetme ve doğal kaynakları kullanma isteğinden gelmektedir. Soruların peşinden koşmak, insanlara, organizmaların yapıları hakkında bilgi kazandırdı ve de yaşam standartları, zamanla yükseldi. İlginin bir diğer kısmı ise, doğayı kontrol etme isteğinden çok, onu anlama isteğinden gelmektedir. Bu araştırmaların ilerletilmesi, bizim dünya hakkındaki düşüncelerimizi değiştirmiştir. Biyolojinin; botanik, zooloji ve tıp gibi birçok dalı eskidir. Ancak, bunları tek bir kategori altında toplayan "biyoloji", ancak 19. yüzyılda ortaya çıkmıştır. Bu bilmin gelişmesiyle, bilimadamları, bütün yaşayan varlıkların, ortak bazı özellikler taşıdıklarını anlamışlardır. Bu nedenle de varlıkların bir bütün içersinde incelenmesinin yararlarını kavramışlardır. Biyoloji, günümüzde, en önemli bilim dallarından biridir: Tüm dünyadaki biyoloji ve tıp dergilerde, yıllık bir milyon makaleden fazla yayımlanmaktadır. Aynı zamanda, biyoloji, tüm dünyadaki okullarda öğretilen ana derslerden biridir. Biyoloji, bu kadar fazla konuyu kendi kapsamı altında topladığı için birçok dallara bölünmüştür. Organizma türüne göre bu bilimdalını bölen yöntem; bitkileri inceleyen botanik, hayvanları inceleyen zooloji ve son olarak da mikroorganizmaları inceleyen mikrobiyolojiyi ana dallar olarak alır. Bazı bölme yöntemleri ise, incelenen organizmaların derecesine göre bu ayrımı yapmaktadır: Bu sistem; hayatın temel kimyasını inceleyen moleküler biyolojiyi, hayatın temel yapı taşları olan hücreleri inceleyen hücre biyolojisini, organizmaların iç organlarını inceleyen fizyolojiyi ve organizmaların ilişkilerini inceleyen ekolojiyi, biyolojinin ana dalları olarak kabul eder. Etimoloji Biyoloji kelimesi, Yunanca hayat anl***** gelen βίος (bios)'la, 'incelemesi' anl***** gelen λόγος (logos)'un, birleşmesiyle oluşmuştur. Göründüğü kadarıyla kelime, günümüzde kullanılan anlamıyla ilk defa, Gottfried Reinhold Treviranus'un Biologie oder Philosophie der lebenden Natur'unda (Biyoloji yada yaşayan Doğanın Felsefesi) (1802) ve Jean-Baptiste Lamarck'ın Hydrogéologie'sinde (Hidroloji) (1802) kullanılmıştır. Kelimenin kendisi ise 1800'de Karl Friedrich Burdach'a atfedilse de, kelime Michael Christoph Hanov'un 1766'da basılan Üçüncü Cilt'inde, Philosophiae naturalis sive physicae dogmaticae: Geologia, biologia, phytologia generalis et dendrologia başlığıyla yer bulmuştur. Tarihi Biyolojinin tek bir bilimdalı olarak ortaya çıkması 19. yüzyılda olmuşsa da, biyolojik bilimlerinden, tıp gelenekleri ve doğa tarihiyle ilgili olanlarının izi Greklere kadar sürülebilir. Rönesans ve Keşif Çağı'nda, deneyciliğin tekrar revaçta olması, bilinen organizmaların sayısının da hızla artmasıyla, biyolojik düşünceyi geliştirdi; Vesalius, fizyolojideki dikkatli gözlemin artmasını başlattı ve Carolus Linnaeus, Georges-Louis Leclerc, Comte de Buffon gibi adamlar hayatın çeşitliliğini anlamak, fosil kayıtlarında bulunmak ve organizma davranışlarını incelemek adına kavramsal çalışmalar başlattı. Mekanik felsefenin güçlenmesiyle doğa teolojisinin önem kazanması da doğa tarihinin gelişmesi açısından bir etkide bulunmuş olabilir. 18. yüzyılda, biyolojinin çoğu dalı - botanik, zooloji ve jeoloji - profesyonelleşmeye başladı ve bu bilimsel anlamda bir dal olmaları yolundaki adımları hızlandırdı. Ancak yine de 1800'lerin sonuna kadar bu işlem tamamlanmadı. Antoine Lavoisier ve diğer fizikçiler, fiziksel ve kimyasal teorilerle hayvansal ve hayvansal olmayan âlemleri birleştirmeye başladı. 19. yüzyıla doğru gidildikçe, Alexander von Humboldt gibi kâşif-doğacılar, organizmaların aralarındaki ilişkileri ve bu ilişkilerin bulundukları ortama göre nasıl farklılık gösterdiklerini inceleyerek biyocoğrafya, ekoloji ve etoloji gibi bilimdallarını başlattı. Çoğu doğacılar, organizmaların değişmediği fikrini reddetmeye başlayıp soy tükenmesi ve türlerin değişebilmesi gibi fikirlere sıcak bakmaya başladı. Embriyoloji ve paleontoloji gibi yeni alanlarla bu tarz tutumlar birleşince Charles Darwin'in doğal seleksiyon yoluyla meydana gelen evrim teorisi ortaya çıktı. 19. yüzyılın sonu; hayatın kaynağı ve hastalıklara mikroorganizmaların neden olması konularında tartışmalar, sitoloji, bakterioloji ve fizyolojik kimya gibi alanlara şahitlik yaptı. Ancak yine de kalıtım konusu tamamiyle bir gizemdi. 20. yüzyılın başında, Gregor Mendel'in çalışmaları, Thomas Hunt Morgan ve öğrencileri tarafından genetiğin hızla gelişmesini sağladı. 1930'lara gelindiğinde nüfus genetiği ve doğal seleksiyonun birleşimi, modern evrim sentezinin ve evrim biyolojisinin ortaya çıkmasını sağladı. Özellikle de James D. Watson'la Francis Crick'in DNA'yı 1953'te keşfetmesinin ardından birçok dal gelişti. Genetik kodun kırılmasının ve merkezi dogmanın (central dogma) kurulmasının ardından, biyoloji; ekoloji, etoloji, [[sistematik] paleontoloji, evrimsel biyoloji, gelişim biyolojisi ve diğer organizmalarla ilgili dalları kapsayan organizma biyolojisi ile hücre biyolojisi, biyofizik, biyokimya, nörobiyoloji, immünoloji ve birçok benzer dalı kapsayan moleküler biyoloji olarak ikiye ayrıldı. 21. yüzyılın başına gelindiğinde bu kadar ayrı parçanın oluşturduğu karışıklık ve anlaşmazlık geçmeye başladı. Organizmal biyologlar moleküler teknik ve fikirlere, moleküler biyologlar da genler ve doğal çevre arasındaki fikirlerle genetik kalıtımla ilgili fikirlere önem vermeye başladı. Biyolojinin İlkeleri Biyoloji, bilgiye ulaşmak için bilimsel methodu kullanır. Bilimsel teoriler, bilimsel gözlemlere dayanır ve bu teoriler, yeni araştırmalarla bazen geliştirilirler. Bilimsel teoriler aynı zamanda, daha gözlenmemiş bir fenomenin tahmin edilebilmesi için de kullanılabilirler. Biyolojik sistemler, bazen sistematik olarak modellenirler; ancak yine de - diğer bilim dallarında da olduğu gibi - teoriler sadece matematik kullanarak açıklanmazlar. Biyolojik bilimler, birkaç temel ilkenin altında toplanılabilirler: evrensellik, evrim, çeşitlilik, devamlılık, genetik, homeostasis, ve etkileşimler. Evrensellik Organizmalar; görüntüde, doğal ortamında ve davranışlarında fazlaca farklılık göstermelerine rağmen, aslında tüm canlılar bazı evrensel temelleri paylaşırlar. Bütün canlı yaşamının karbon bazlı bir biyokimyası vardır: Karbon, tüm canlıları oluşturan temel yapı taşıdır. Aynı şekilde, su da, temel çözendir. Dünya'daki tüm organizmalar, genetik bilgiyi depolamak için DNA ve RNA-bazlı mekanizmalar kullanırlar. Bir diğer evrensel ilke ise, virüslerin dışındaki tüm canlıların hücrelerden oluştuğudur. Aynı şekilde, tüm organizmalar, benzer büyüme süreçleri geçirirler. Tüm bu sayılanlar, Dünya'daki tüm organizmalar için geçerli olsa da, teoride alternatif bir yaşam türü de varolabileceğinden, bilimadamları, alternatif bir biyokimyayı araştırmaktadırlar. Evrim Biyolojideki temel düzenleyici içerik, tüm canlıların aynı kökten gelip, değişik süreçler sonrasında değişip geliştiğini savunan evrimdir. Burada, yukarda da anlatılan, canlılar arasındaki etkileyici benzerliklere yol açar. Charles Darwin, evrimin sürmesine sebebiyet veren doğal seleksiyonu açıklayarak, evrimi, geçerli bir teori olarak kılmıştır (Alfred Russel Wallace'ın bu içeriğin keşfedilmesinde büyük rol oynadığı da belirtilmelidir). Modern sentez teorisinde, genetik çeşitlilik de bu mekanizmada önemli rol oynar. Bir türün, ürediği tür hakkındaki bilgileri, onların özelliklerini ve türün son halinin diğer türlerle ilişkisini inceleyen bilim dalına filogeni denir. Biyolojiye birbirinden farklı birçok yaklaşım türü, filogeniyi ilerletir: Moleküler biyoloji, DNA zincirlerinin karşılaştırılmalarını yaparken fosillerin karşılaştırmalarını da paleontoloji yapar. Bilimadamları, evrim ilişkilerini, birkaç metodla inceleyip düzenlerler. Bu metodlar; filogenetik, fenetik ve kladistik olarak üç dalda toplanılabilir. Evrim teorisi, Darwin ve Wallace tarafından açıklanmasından beri, bu fikir, sonuçlara yada açıklamalara karşı olanlar tarafından sürekli kötülenmiştir. Genellikle, bu açıklamaların karşısında dini açıklamalar kullanılmıştır. Ancak, profesyonel biyologların nerdeyse hepsi, evrim teorisinin kullanılabilir ve geçerli bir teori olduğunu kabul etmişlerdir. Çeşitlilik Sistematik ve taksonominin ilgi alanı olan sınıflandırma, birbirinden farklı yöntemler izler. Taksonomi, organizmaları, taxa adı verilen gruplarda sınıflandırırken, sistematik, organizmaların birbirleriyle ilişkilerini inceler. Bu bilim dalları, kladistik ve genetik dallarında da geliştirmişlerdir. Geleneksel olarak, canlılar beş büyük aleme bölünürler: Monera -- Protista -- Fungi -- Plantae -- Animalia Ancak, çoğu bilimadamı, bu sistemi demode bulmakta ve de modern alternatifler getirmektedirler. Modern sistemler, üç-âlemli bir sistem kullanırlar: Archaea -- Bacteria -- Eukaryota Bu âlemler, hücrelerin çekirdeklerinin olup olmamasına ve hücrelerin iç yapılarının farklılıklarına göre bölünmüştür. Aynı zamanda, metabolik anlamda, daha az canlı olan bazı hücreiçi parazitler de biyolojide ayrı bir alem olarak incelenirler: Virüsler -- Viroidler -- Prionlar. Daha da ileri gidildiğinde, bütün âlemler, tüm türler ayrı ayrı sınıflandırılıncaya kadar bölünürler. Bu sıralama, şu sırayla gider: Âlem, Filum, Sınıf, Takım, Cins, Tür ve Alt türdür. Bir organizmanın bilimsel adı, onun cinsi ve türüne göre belirlenir. Mesela, insanlar Homo sapiens olarak adlandırılırlar. Homo cinsi, sapiens ise türüdür. Bilimsel isimleri yazarken, organizmanın cinsinin ilk harfini büyük yazıp türünü küçük harflerle yazmak gerekir. Ayrıca tüm adın da yana yatık yazılması bir kuraldır. Sınıflandırma için kullanılan terim, taksonomidir. Devamlılık 19. yüzyıla kadar, yaşamsal formların bazı şartlarda aniden ortaya çıkabileceği düşünülüyordu. William Harvey, bu yanlış kavramı, "tüm yaşam bir yumurtadan gelir" (Latince'de Omne vivum ex ovo) sözüyle düzeltmiş ve modern biyolojinin temellerini atmıştır. Kısaca anlatmak gerekirse, bu söz, hayatın bir kaynaktan kırılmayan bir devamlılıkla geldiğini söyler. Aynı ataya sahip birkaç organizma benzer özellikler gösterirler. Dünya'daki tüm organizmalar, ortak bir atadan yada ortak bir gen havuzundan gelirler. Tüm dünyanın en son ortak atasının 3.5 milyar yıl önce ortaya çıktığı düşünülmektedir. Biyologlar, genetik kodun evrenselliğini; bacteria, archaea ve eukaryotun hepsinin aynı atadan geldiğinin önemli bir kanıtı olarak düşünmektedirler. Homeostasis Homeostasis (denge), açık bir sistemin, bağlantılı kontrol mekanizmaları tarafından kontrol edilen dinamik eşitlikler aracılığıyla, kendi iç ortamının sabit bir hal sağlayabilmesidir. Tek hücreli yada çok hücreli tüm organizmalar, homeostasis gösterir: Hücresel düzeyde pH değerinin ayarlanması, organizma düzeyinde vücut sıcaklığının sabit tutulması ve ekosistem düzeyinde bitkilerin karbondioksit fazlalığında daha hızlı büyümesi buna örnek olarak gösterilebilir. Doku ve organlar da homeostasis sergilerler. Etkileşimler Herşey diğer organizmalar ve çevreyle etkileşim içersindedir. Biyolojik sistemleri incelemenin bir zor kısmı da, incelenen organizmanın diğer faktörlerle çok sayıda etkileşim içersinde olmasıdır. Mikroskobik bir bakterinin lokal şeker eğimine tepkide bulunması, aslında, bir aslanın Afrika savanasında yemek aramasından farklı değildir. Herhangi bir tür için, davranışlar; agresif, yardımcı, parazitsel yada simbiyotik olabilir. İşler, herhangi bir ekosistemde, birden fazla tür etkileşime girdiğinde karışır. Bu türdeki çalışmalar, ekolojinin çalışma alanındadır. Çalışma alanları Biyoloji o kadar büyük bir araştırma sahası haline gelmiştir ki, genellikle bir dal olarak değil de, birbirine geçmiş birçok alt dal olarak görülür. Bu madde, dört ana grubu incelemektedir. İlk grup; hücre, gen, vb. temel yapı taşlarını inceleyen dallardan oluşmaktadır. İkincisi; doku, organ ve vücut düzeyindeki yapıları inceleyen dallardan oluşmaktadır. Üçüncüsü, organizmalar ve onların geçmişlerini incelerken, sonuncusu da onların etkileşimlerini inceler. Bu sınırların, gruplamaların ve açıklamaların sadece biyolojik araştırmanın basitleştirilmiş bir betimlemesi olduğu unutulmamalıdır. Gerçekte, bu dallar arasındaki sınırlar belirli değildir ve birçok dal, birbirinin yöntemlerini kullanırlar. Mesela, evrimsel biyoloji, DNA zincirlerini belirlemede moleküler biyolojiden fazlaca etkilenir. Başka bir örnek vermek gerekirse, fizyoloji, organ sistemlerinin görevlerini açıklarken hücre biyolojisinden oldukça yararlanır. Bunun dışında, etiyoloji ve karşılaştırmalı psikoloji, hayvan davranışlarının incelenmesi ve düşünsel özelliklerini incelemesiyle biyolojinin sınırlarını genişletirler. Nitekim, evrimsel psikoloji, psikolojinin de bir bioloji dalını savunmaktadır. Hayatın yapısı Moleküler biyoloji, biyolojinin moleküler düzeyde yapılanıdır. Genetik ve biyokimya başta gelmek üzere, bu dal, birçok dalla iç içe geçmiştir. Moleküler biyolojinin ilgi alanı hücrenin değişik sistemleri - DNA, RNA ve protein sentezini de kapsayarak - ve bu etkileşimlerin nasıl kontrol edildiğidir. Hücre biyolojisi ise hücrenin fizyolojik, davranışsal - etkileşimleri ve hareketleri de dahil - özelliklerini inceler. Bu işlem, hem mikroskobik hem de moleküler düzeyde yapılır. Hücre biyolojisi, hem bacteria gibi tek hücreli hem de insan gibi çok hücreli organizmaları inceler. Hücre oluşumu ve görevinin anlaşılması, tüm biyolojik bilimler için hayati değer taşır. Hücre türleri arasındaki benzerlik ve farklılıkların ortaya çıkarılması ise özellikle hücresel ve moleküler biyolojinin konusudur. Bu farklar ve benzerlikler, birleştirici bir fikir oluşturmada kullanılırlar. Genetik, genlerin, kalıtımın ve organizmaların değişkenliğinin bilimidir. Modern araştırmalarda, belirli bir genin ne işe yaradığı konusunda önemli bilgiler verir. Genetik bilgi, genellikle, DNA moleküllerinin kimyasal yapılarının ifade edildiğikromozomlarda taşınır. Genler, protein sentezi için gerekli bilgiyi kodlarlar. Dolayısıyla da bir bireyin fenotipinin belirlenmesinde büyük görev alırlar. Gelişim biyolojisi, organizmaların büyüyüp gelişmesini inceler. Embriyolojiden ortaya çıkan bu dal, hücre büyümesinin genetik kontrolünü, hücresel farklılaşmayı ve değişimi inceler. Gelişim biyolojisinde kullanılan model organizmalardan bazıları Caenorhabditis elegans, Drosophila melanogaster, Brachydanio rerio, Mus musculus ve Arabidopsis thaliana'dır. Organizmaların fizyolojisi Fizyoloji, tüm yapıların birlikte nasıl çalıştığını anlamaya çalışarak, organizmaların mekanik, fiziksel ve biyokimyasal süreçlerini inceler. "Yapıdan göreve" anlayışı, biyoloji için çok önemlidir. Fizyolojik çalışmalar genellikle, bitki fizyolojisi ve hayvan fizyolojisi olarak ikiye ayrılırlar; ancak fizyolojinin ilkeleri evrenseldir ve her tür organizma üzerinde incelenilebilir. Mesela, maya hücresi hakkında öğrenilen bir özellik, insan hücresi üzerinde de incelenilebilir. Hayvan fizyolojisi, insan fizyolojisinin method ve araçlarını insan olmayan türlere taşır. Bitki fizyolojisi bile, bu türlerden bazı fikirleri ödünç alır.. Anatomi, fizyolojinin önemli bir dalıdır ve sinir, bağışıklık, hormon, dolaşım ve solunum gibi organ sistemlerini inceler. Bu daldan öğrenilenler, tıbbın nöroloji ve immünoloji gibi dallarına büyük yarar sağlar. Organizmaların çeşitliliği ve evrimi Evrimsel biyoloji, organizmaların zamanla değişmeleri de dahil, onların kökleriyle ilgilenir ve birçok taksonomiyle ilintili bilimadamını bünyesinde bulundurur. Mesela, genellikle belirli bir organizma hakkında eğitim almış - mammaloji, ornitoloji yada herpetoloji gibi - birçok bilimadamını içine alıp, evrim hakkındaki daha genel sorulara cevap arar. Evrimsel biyoloji, fosil kalıntılarını inceleyerek evrimin hızı ve türünü inceleyen paleontoloji üzerine kurulmuştur. 1990larda, daha önceden modern sentezden dışlanmış olan gelişim biyolojisi, evrim biyolojisinin sahasına, evrimsel-gelişimsel biyolojinin çalışmalarıyla tekrar girdi. Evrimsel biyolojiyle alakalı dalların bazıları; filojenetik, sistematik ve taksonomidir. Taksonomik açıdan ilintili iki büyük geleneksel bölüm, botanik ve zoolojidir. Botanik, bitkilerin bilimidir. Bu bilimdalı, bitkilerin gelişim, üreme, metabolizma, gelişim, hastalık ve evrimlerini inceleyen birçok daldan oluşmaktadır. Zooloji ise hayvanlarla ilgilidir. Bu bilim dalı, anatomi ve embriyolojinin dalları olan fizyolojiyi de kapsar. Hayvanların ve bitkilerin genel genetik ve gelişimsel mekanizmaları; moleküler biyoloji, moleküler genetik ve gelişim biyolojisi altında yapılır. Hayvanların ekolojisi ise davranışsal ekoloji ve diğer dallarla incelenilir. Hayatın sınıflandırılması Çoğunlukla kullanılan sınıflandırma sisteminin adı, rütbe ve iki isim içeren "Linnaean taksonomi"dir. Organizmaların isimlendirilmesi ise "International Code of Botanical Nomenclature (ICBN)", "International Code of Zoological Nomenclature (ICZN)", "International Code of Nomenclature of Bacteria (ICNB)" gibi uluslararası anlaşmalarla yapılır. Bu üç alandaki isimlendirmeyi standart haline getirmeye çalışan Draft BioCode 1997'de yayımlansa da resmi olarak kabul görmeyi beklemektedir. "International Code of Virus Classification and Nomenclature (ICVCN)" ise BioCode'un dışında kalmaktadır. Organizmaların etkileşimleri Ekoloji, yaşayan organizmaların dağılım ve sıklığıyla birlikte organizmaların aralarındaki ve çevreleriyle ilişkilerini de inceler. Bir organizmanın çevresi, hem onun doğal ortamını hem de iklim ve jeoloji gibi abiotik faktörlerin toplamını kapsar. Ekolojik sistemler, birçok düzeyde incelenirler: birey (individual), nüfus (population), topluluk (community), ekosistem (ecosystem) ve biyosfer (the biosphere). Tahmin edilebileceği gibi ekolojinin de birçok alt bilimdalı vardır. Etiyoloji, hayvan davranışını (özellikle de primatlar ve canidae familyaları gibi sosyal hayvanları) incelemekle beraber, bazen zoolojinin bir alt bilimdalı olarak görülür. Etyologlar, özellikle, davranışın evrimi ve doğal seleksiyon gözüyle davranışı anlamakla ilgilidirler. Bir anlamda, Charles Darwin ilk etyologtur ki kitabı The expression of the emotions in animals and men'le (Hayvan ve insanlarda duyguların gösterilmesi) birçok etyologu etkilemiştir. Biyocoğrafya, plaka tektoniği, iklim değişimleri, göç ve yer değiştirme gibi konulara özel bir yer vererek organizmaların Dünya'ya yayılışını inceler.

http://www.biyologlar.com/biyoloji-nedir-

BİYOLOJİNİN GELECEĞİ VE İNSANLIĞA KATKILARI NELERDİR

Bütün yaşam bilimleri için de tıbbın veya tarımın ayrılmaz bir parçası olarak düşünülüyordu. Çünkü insan olgunun doğaya donuk ilgisi her şeyden önce yaşamını sürdürmesi sağlayacak şeyler yönetilmişti (yaşam) anlamındaki yunanca bios ve (bilim) anlamındaki logas kelimelerinden üretilen biyoloji terimine ancak 14. yüzyılında bilim dünyasına armağan edildiyse de bu bilim ilgilendiği konular antik çağdan beri gündemdedir. Aristileos in benimsenmiş olduğu bireşimsel düşünce, canlı varlıklarla ilgili genel bir kuram hazırlamaya yönelikti ama kurumda kesin çözümler bazı yanlışlıklarla bir birine kaynamıştı. Aristileos görüşleri öylesine olumlu bir yankı uyandırdı ki orta çağda da büyük bir saygıyla karşılandı:ama bu aşırı saygı tutum, söz konusu düşünceleri tartışmayacak gerçekleri saydığı için sonuçta biyolojinin gelişmesi engellemiş oldu. İlk çağda dikkati çeken Galenos’un düşüncelerinde, 15. yüzyıl boyunca tartışmadan benimsendi. Batı dünyasında eski yunan uygarlığının yerine Hıristiyanlık aldığından bireyler hiç eleştirmeden resmi makamların öğretilerini benim sayen ve bütün yeni düşüncelere karşı çıkan bir tutum benimsediler. Böylece roma imparatorluğunun çöküşünden Rönesans ’a kadar bilimsel anlayışta hiçbir önemli gelişme olmadı.ilk büyük bilinçlenme, Rönesans‘daki düşünce devrimiyle ortaya çıktı:ana çizgileriyle (anatomiciler dönemi) diye tanımlıya bilecek bu dönemde 1542 yılında Galenos’un düşüncelerini altüst eden Belçikalı hekim Andre Vesale büyük ün yaptı.insan bedenine bir bakış açısıyla yaklaşan (o döneme kadar kilisenin cesetlerin kesilip incelenmesini yasakladığını belirtmek gerekir) de humini carporis fafabrica adlı atlası büyük tebriklere yol açtı ve çalışmalarını bırakıp, askeri hekim olarak orduya girmesine neden oldu coyüz yapıtındaki,tiziano‘nun öğrencisi olan arkadaşı calcan tarafından yapılmış çizimlerdeki kesinlik, doğa bilimciler günümüzde hala şaşırtmaktadır. Andre Vesalein ardından eski öğretilerin başarısızlığını gözler önüne serer w.harvey 1615yılında kan dolaşımını ortaya koydu.(aynı alanda çalışan öbür bilim adamları, bu buluşa inanmayarak harvey2e bir deli gözüyle baktılar) bu arada bir başka konusundaki alt üst etti: 1580 yılında doğru bulunan mikroskop başlangıçta çok ilkel olmasına karşı ilk kullanıcıları olan Malpighi, Vanleuwen, Haçk gibi bilim adamları çok sayıda buluşlar yapmasına karşın özellikle kan dolaşımı konusunda çeşitli kanıtlar ortaya konulmasına olanak verdi. Hücreleri varlığının bulunması dokulardaki düzenleri çıplak gözle görmediğimiz için o zamana kadar bilinmeyen canlılar dünyasının ortaya konması,dönemin aydınlanması arasından coşkudan çok kaygı uyandır masada bilimde yeni bir cağ başlatacak ilk adım atılması araştırmacılar, sayıları hızla artan buluşları düzenlemeye ve sınıflandırmaya koyulmuşlardır. İS 2. yüzyılda yaşayan Bergamalı Galenos, insan vücudunun yapısını daha iyi inceleyebilmek için maymunlar ve domuzlar üzerinde çalışmak zorunda kaldı. Çünkü onun yaşadığı çağda kadavraları, yani ölü insan vücudunu kesip parçalamak yasaktı. Gene de bu gözlemlerden vardığı sonuçlar 1000 yıldan daha uzun bir süre biyoloji bilimlerine egemen oldu. Galenos’tan sonra çok uzun bir süre biyoloji konusunda hemen hiçbir gelişme olmadı ve eski bilginlerin görüşleri hiç tartışmasız doğru kabul edildi. Ancak 16. yüzyılda Belçikalı anatomi bilgini Andreas Vesalius’un kadavralar üzerindeki çalışmaları biyolojide yeni bir dönemin başlangıcı oldu. Vesalius, 1543’te yayımlanan ve insan vücudunu çizimlerle anlatan ünlü yapıtında, Galenos’un verdiği bilgilerden çoğunun yanlış olduğunu kanıtlamıştı. Eski bilginlerin bütün görüşlerine körü körüne inanmayıp, doğru bilgiye deneyle ulaşmak gerektiğini ortaya koyan bu çalışma çağının bilim anlayışını da derinden etkiledi. 16. yüzyılın sonlarında mikroskobun bulunması biyolojide gerçek bir dönüm noktası sayılır. İtalya’nın kuzeyindeki üniversitelerde botanik, zooloji, anatomi ve fizyolojinin bağımsız birer bilim dalı olarak okutulmaya başladığı o dönem mikroskop sayesinde çok önemli buluşlara tanık oldu. Bitki ve hayvan dokuları böceklerin yapısı mikroskopla incelendi; bakterilerin varlığı keşfedildi. Canlıların en küçük yapısal ve işlevsel birimini tanımlamak için öneriler hücre terimi biyolojinin odak noktası oldu ve 20. yüzyılda moleküler biyolojinin doğuşuna kadar yaşamın bütün sırları hücre biyolojisiyle açıklandı. Bakterilerin bulunmasından yüzlerce yıl sonra bile, bilim adamları bu çok küçük canlıların çürüyen maddelerin içinde kendiliğinden türediğini düşünüyorlardı. 19. yüzyılın ortalarında Louis Pasteur, bakterilerin yalnız çürüyen maddelerde değil her yerde bulunduğunu, üstelik çürümenin sonucu değil nedeni olduğunu kanıtladı. Ayrıca bazı bakterilerin çeşitli hastalıklara yol açtığını açıklaması biyoloji araştırmalarına yeni bir yön verdi. Böylece biyologlar insan, hayvan ve bitkilerin yalnız sağlıklı yapılarını değil, hastalıklı bölümlerini de mikroskopla incelemeye başladılar. Aynı dönemde kimya ve fizik bilimlerinin gelişmesi de canlıların vücudundaki kimyasal ve fiziksel değişikliklerin incelenmesine yardımcı oldu. Hayvan ve bitki fosillerinin incelenmesi bir yandan paleontoloji gibi yeni bir biyoloji dalının doğuşuna, bir yandan da başlangıcı Eski Yunan düşünürlerine kadar uzanan evrim düşüncesinin pekişmesine yol açtı. Bulunan fosiller, hayvan ve bitkilerin milyonlarca yıldır çeşitli değişiklikler geçirerek bugüne kadar ulaştığını ve aralarında önemli yapısal farklar olan birçok hayvanın aynı atadan türediğini gösteriyordu. 19. yüzyılın başlarında Fransız bilgin Jean-Baptiste de Lamarck, bu olguyu açıklamak için, çevre koşullarına uyum sağlamak üzere kazanılan yeni özelliklerin kuşaktan kuşağa aktarıldığını öne sürdü. Lamarck’tan 50 yıl kadar sonra da İngiliz doğa bilgini Charles Darwin, evrimin bir “doğal seçme” sürecinin sonucu olduğunu, ancak doğaya en iyi ayak uydurabilen canlıların soyunu sürdürdüğünü açıklayarak evrim kuramını oluşturdu. Eski Mısır, Mezopotamya ve Çinliler birçok bitki türünü ilaç olarak kullandılar. Bu da onların o dönemlerde biyolojiyle uğraştıklarını göstermektedir. Ayrıca mağara insanları çeşitli canlıların resimlerini mağara duvarlarına çizerek dünyadaki ilk biyoloji eserlerini bırakmış oldular. Deneysel biyolojinin ilk öncüleri yine eski Yunanlılardır. Pliny (İS 23-79) canlılar üzerine gerçek ve düş’ün karışımından oluşan tuhaf ansiklopediler yazmıştır. Lamarck ve Darwin’in çalışmaları, bilim adamlarının kalıtım ve çevre etkenlerini incelemeye yöneltti. Bir türün bütün ayırt edici özelliklerinin kuşaktan kuşağa nasıl aktarıldığını ilk kez 1866’da Avusturyalı keşiş Gregor Mendel bezelyeler üzerinde yaptığı çalışmalarla açıklandı. O zamanlar pek ilgi çekmeyen bu çalışma, kalıtımdan sorumlu olduğu sanılan kromozomların mikroskopla görülmesinden sonra büyük önem kazandı. 20. yüzyılın başlarında, kalıtsal bilgiyi yeni döllere aktaran hücre bileşenlerinin kromozomlar değil genler olduğu kanıtlandı. Daha sonra, hücreye bu kalıtsal bilgiyi nasıl değerlendireceğini ve ne zaman, hangi proteini bireşimleşmesi gerektiğini bildiren DNA’nın (deoksiribo nükleik asit) yapısı açıklandı. Biyoloji asıl büyük gelişmesini 19. yüzyılda yaptı. Morfoloji, fizyoloji, genetik ve evrim gibi alanlarda yeni araştırmalar düşünce akımları birbirini izledi. Bu çağda Jean Babtiste de Monet Lamarck (1744-1829) ile Charles Darwin (1809-1822) arasında genetik alanında yapılan tartışma biyoloji bilimine büyük katkılar getirdi. Ayrıca biyolojik enzimlerin, vitaminlerin ve hormonların tanımlanmasıyla biyokimyanın ve endokrinolojinin doğması gerçekleşti. 1865’te Mendel’in bezelyeyle yaptığı deneyler Mendel Yasaları’nın doğmasına ve kalıtım (gen faktörlerin yapısı kuşaktan kuşağa geçişi ve kimyası) hakkında bilgileri bilim alanına kattı. Kimya, matematik, fizik dalında eğitim gören 19. yüzyıl bilim adamlarının araştırmaları özellikle Liebig, Berzelius von bayer ve Pasteur gibiler canlı varlıkların işleyişlerindeki mekanizmaları molekül düzeyine indirerek molekül biyoloji için ilk adımları attılar. 1903’e kadar Mendel’in bulgularından yeteri kadar haberdar olunmaması Cornes, de Vires, Eric von Seysenegh Tschermach’ın (1871-1962) da birbirlerinden habersizce bu alanda çalışma yapmaları sonucunu doğurdu. Daha sonraları Sutton ve Thomas Hunt Morgan’ın (1866-1945) kromozomları keşfi biyolojiye büyük atılımlar yaptırdı. 20. yüzyılda canlının molekülleri insanın bilgi alanına girdi ve moleküler biyoloji denen bir bilim dalının domasına yol açtı. Moleküler biyolojiden yararlanarak özellikle Watson ve Crick’in 1953’te DNA’nın sırlarını çözmesi yüzyılımızın en büyük olaylarından biri oldu. Bu buluşla tüm biyoloji olaylarının temel noktalarını açıklayabilme olanağı doğdu. 1970’lerde genlerin kimyasal yapıları hakkında ayrıntılı bilgiler elde edilmesi giderek bir Gen Mühendisliği alanının doğmasına yol açtı. Günümüzde elektron mikroskoplarının bulunarak geliştirilebilmesi molekül düzeyinde maddenin oluşum ve değişimlerinin duyarlı yöntemlerle saptanabilmesi biyolojiye büyük katkılar sağlamıştır. 1980’lerde başlayan çalışmalarda artık bir canlının genini alıp bir başka canlıya aktarmak olası hale geldi. Biyoloji bilimlerindeki gelişmeler tıp, eczacılık, veterinerlik ve tarım alanında yeni olanaklar getirdi. Ve ilerlemesini sağladı. Ancak binlerce canlının yapısı, işlevi, evrimi, gelişmesi ve çevresiyle ilişkilerini inceleyen biyoloji bir tek bilim dalı olarak ele alınamayacağı için biyoloji bilimleri bir çok bölüm ve bilim dallarına ayrılmıştır. Kısaca insanlar doğada var oluşlarından başlayarak yaşamlarını sürdürebilmek için canlılarla ilgilenmişlerdir ve bu da biyolojinin ve alt bilim dallarının geleceğini oluşturmuştur.

http://www.biyologlar.com/biyolojinin-gelecegi-ve-insanliga-katkilari-nelerdir

Biyolojinin Çalışma Alanları

Biyoloji o kadar büyük bir araştırma sahası haline gelmiştir ki, genellikle bir dal olarak değil de, birbirine geçmiş birçok alt dal olarak görülür. Bu madde, dört ana grubu incelemektedir. İlk grup; hücre, gen, vb. temel yapı taşlarını inceleyen dallardan oluşmaktadır. İkincisi; doku, organ ve vücut düzeyindeki yapıları inceleyen dallardan oluşmaktadır. Üçüncüsü, organizmalar ve onların geçmişlerini incelerken, sonuncusu da onların etkileşimlerini inceler. Bu sınırların, gruplamaların ve açıklamaların sadece biyolojik araştırmanın basitleştirilmiş bir betimlemesi olduğu unutulmamalıdır. Gerçekte, bu dallar arasındaki sınırlar belirli değildir ve birçok dal, birbirinin yöntemlerini kullanırlar. Mesela, evrimsel biyoloji, DNA zincirlerini belirlemede moleküler biyolojiden fazlaca etkilenir. Başka bir örnek vermek gerekirse, fizyoloji, organ sistemlerinin görevlerini açıklarken hücre biyolojisinden oldukça yararlanır. Bunun dışında, etoloji ve karşılaştırmalı psikoloji, hayvan davranışlarının incelenmesi ve düşünsel özelliklerini incelemesiyle biyolojinin sınırlarını genişletirler. Nitekim, evrimsel psikoloji, psikolojinin de bir bioloji dalını savunmaktadır. 1. Hayatın yapısı DNA sarmalı Moleküler biyoloji, biyolojinin moleküler düzeyde yapılanıdır. Genetik ve biyokimya başta gelmek üzere, bu dal, birçok dalla iç içe geçmiştir. Moleküler biyolojinin ilgi alanı hücrenin değişik sistemleri - DNA, RNA ve protein sentezini de kapsayarak - ve bu etkileşimlerin nasıl kontrol edildiğidir. Hücre biyolojisi ise hücrenin fizyolojik, davranışsal - etkileşimleri ve hareketleri de dahil - özelliklerini inceler. Bu işlem, hem mikroskobik hem de moleküler düzeyde yapılır. Hücre biyolojisi, hem bacteria gibi tek hücreli hem de insan gibi çok hücreli organizmaları inceler. Hücre oluşumu ve görevinin anlaşılması, tüm biyolojik bilimler için hayati değer taşır. Hücre türleri arasındaki benzerlik ve farklılıkların ortaya çıkarılması ise özellikle hücresel ve moleküler biyolojinin konusudur. Bu farklar ve benzerlikler, birleştirici bir fikir oluşturmada kullanılırlar. Genetik, genlerin, kalıtımın ve organizmaların değişkenliğinin bilimidir. Modern araştırmalarda, belirli bir genin ne işe yaradığı konusunda önemli bilgiler verir. Genetik bilgi, genellikle, DNA moleküllerinin kimyasal yapılarının ifade edildiğikromozomlarda taşınır. Genler, protein sentezi için gerekli bilgiyi kodlarlar. Dolayısıyla da bir bireyin fenotipinin belirlenmesinde büyük görev alırlar. Gelişim biyolojisi, organizmaların büyüyüp gelişmesini inceler. Embriyolojiden ortaya çıkan bu dal, hücre büyümesinin genetik kontrolünü, hücresel farklılaşmayı ve değişimi inceler. Gelişim biyolojisinde kullanılan model organizmalardan bazıları Caenorhabditis elegans, Drosophila melanogaster, Brachydanio rerio, Mus musculus ve Arabidopsis thaliana'dır. 2. Organizmaların fizyolojisi Fizyoloji, tüm yapıların birlikte nasıl çalıştığını anlamaya çalışarak, organizmaların mekanik, fiziksel ve biyokimyasal süreçlerini inceler. "Yapıdan göreve" anlayışı, biyoloji için çok önemlidir. Fizyolojik çalışmalar genellikle, bitki fizyolojisi ve hayvan fizyolojisi olarak ikiye ayrılırlar; ancak fizyolojinin ilkeleri evrenseldir ve her tür organizma üzerinde incelenilebilir. Mesela, maya hücresi hakkında öğrenilen bir özellik, insan hücresi üzerinde de incelenilebilir. Hayvan fizyolojisi, insan fizyolojisinin method ve araçlarını insan olmayan türlere taşır. Bitki fizyolojisi bile, bu türlerden bazı fikirleri ödünç alır.. Anatomi, fizyolojinin önemli bir dalıdır ve sinir, bağışıklık, hormon, dolaşım ve solunum gibi organ sistemlerini inceler. Bu daldan öğrenilenler, tıbbın nöroloji ve immünoloji gibi dallarına büyük yarar sağlar. 3. Organizmaların çeşitliliği ve evrimi Evrimsel biyoloji, organizmaların zamanla değişmeleri de dahil, onların kökleriyle ilgilenir ve birçok taksonomiyle ilintili bilimadamını bünyesinde bulundurur. Mesela, genellikle belirli bir organizma hakkında eğitim almış - mammaloji, ornitoloji ya da herpetoloji gibi - birçok bilimadamını içine alıp, evrim hakkındaki daha genel sorulara cevap arar. Evrimsel biyoloji, fosil kalıntılarını inceleyerek evrimin hızı ve türünü inceleyen paleontoloji üzerine kurulmuştur. 1990larda, daha önceden modern sentezden dışlanmış olan gelişim biyolojisi, evrim biyolojisinin sahasına, evrimsel-gelişimsel biyolojinin çalışmalarıyla tekrar girdi. Evrimsel biyolojiyle alakalı dalların bazıları; filojenetik, sistematik ve taksonomidir. Taksonomik açıdan ilintili iki büyük geleneksel bölüm, botanik ve zoolojidir. Botanik, bitkilerin bilimidir. Bu bilimdalı, bitkilerin gelişim, üreme, metabolizma, gelişim, hastalık ve evrimlerini inceleyen birçok daldan oluşmaktadır. Zooloji ise hayvanlarla ilgilidir. Bu bilim dalı, anatomi ve embriyolojinin dalları olan fizyolojiyi de kapsar. Hayvanların ve bitkilerin genel genetik ve gelişimsel mekanizmaları; moleküler biyoloji, moleküler genetik ve gelişim biyolojisi altında yapılır. Hayvanların ekolojisi ise davranışsal ekoloji ve diğer dallarla incelenilir. 4. Hayatın sınıflandırılması Çoğunlukla kullanılan sınıflandırma sisteminin adı, rütbe ve iki isim içeren "Linnaean taksonomi"dir. Organizmaların isimlendirilmesi ise "International Code of Botanical Nomenclature (ICBN)", "International Code of Zoological Nomenclature (ICZN)", "International Code of Nomenclature of Bacteria (ICNB)" gibi uluslararası anlaşmalarla yapılır. Bu üç alandaki isimlendirmeyi standart haline getirmeye çalışan Draft BioCode 1997'de yayımlansa da resmi olarak kabul görmeyi beklemektedir. "International Code of Virus Classification and Nomenclature (ICVCN)" ise BioCode'un dışında kalmaktadır. 5. Organizmaların etkileşimler: Doğadaki bütün canlılar birbirleriyle etkileşim içindedirler. Ekoloji, yaşayan organizmaların dağılım ve sıklığıyla birlikte organizmaların aralarındaki ve çevreleriyle ilişkilerini de inceler. Bir organizmanın çevresi, hem onun doğal ortamını hem de iklim ve jeoloji gibi abiotik faktörlerin toplamını kapsar. Ekolojik sistemler, birçok düzeyde incelenirler: birey, nüfus, topluluk, ekosistem ve biyosfer. Tahmin edilebileceği gibi ekolojinin de birçok alt bilimdalı vardır. Etoloji, hayvan davranışını (özellikle de primatlar ve canidae familyaları gibi sosyal hayvanları) incelemekle beraber, bazen zoolojinin bir alt bilimdalı olarak görülür. Etyologlar, özellikle, davranışın evrimi ve doğal seleksiyon gözüyle davranışı anlamakla ilgilidirler. Bir anlamda, Charles Darwin ilk etyologtur ki kitabı The expression of the emotions in animals and men'le (Hayvan ve insanlarda duyguların gösterilmesi) birçok etyologu etkilemiştir. Biyocoğrafya, plaka tektoniği, iklim değişimleri, göç ve yer değiştirme gibi konulara özel bir yer vererek organizmaların Dünya'ya yayılışını inceler.

http://www.biyologlar.com/biyolojinin-calisma-alanlari-1

Biyolojiye emek veren bilim adamları ve yaptığı işler nelerdir

Biyolojinin Tarihi Gelişimi Yaklaşık 2300 yıl önce Yunan bilim adamı Polibus, “İnsanın Doğası Üzerine” adlı bir kitap yazmıştır. Aristo, çalışmalarını “Hayvanların Tarihi, Hayvan Nesli Üzerine” ve “Hayvan Vücutlarının Kısımları Üzerine” adlı kitaplarında toplamıştır. Aristo, canlıların oluşumlarını ve hayvanların davranışlarını incelerken onların sınıflandırma yoluna da gitmiştir. Galen, canlıların organlarıyla bu organların görevini inceleyen fizyoloji biliminin doğmasını sağlamıştır. Galileo, 1610’da ilk mikroskobun yapımını başarmıştır. Robert Hook, 1665’de bir mantar kesitinin mikroskopta nasıl göründüğünü açıklamış ve gördüğü yapılara “Cellula” (hücre) adını vermiştir. Leeuwenhoek, 1675’de mikroskop kullanarak tek hücrelileri göstermeyi başarmıştır. Carolus Linnaeus, 1707-1778 yıllarında ilk bilimsel sınıflandırmayı yapmıştır. Charles Darwin, 1859’da “Türlerin Kökeni” adlı kitabını yayınlayarak evrimle ilgili görüşlerini ortaya koymuştur. Pasteur, mikroskobik canlıların fermantasyona neden olduğunu tespit etmiş, tavuk kolerasına neden olan mikrobu bulmuş ve kuduz aşısını bulmuştur. Gregor Mendel, bezelyelerle yaptığı deneyler sonucunda, kalıtsal özelliklerin dölden döle geçişi ile ilgili önemli sonuçlar elde etmiştir. Genetik bilimi 19. yüzyılın ortasında, biyolojide bir alt bilim dalı olan moleküler biyolojinin gelişimine olanak sağlamıştır. Beijrinck, 1899’da tütün bitkilerinin yapraklarında görülen tütün mozaik hastalığını incelemiştir. Wilhelm Röntgen, 1895’de tıpta teşhis ve tedavi amacıyla kullanılan Röntgen ışınlarını bulmuştur. Otto Mayerhof, 1992’de kastaki enerji dönüşümlerinin solunumu ve ısı akışını incelemiş. Bu çalışma ile Nobel tıp ödülünü almıştır. Alexander Fleming, 1927’de penisilini, E.A.F Ruska’da 1931’de elektron mikroskobunu bulmuştur. James Watson ile Francis Crick 1953’te günümüzde kabul edilen DNA’nın yapısına ait bir model ortaya koymuşlardır. Steven Howell, 1986’da ateş böceklerinin ışık saçmasını sağlayan maddenin yapımını kodlayan geni ayırarak tütün bitkisine aktarmış ve bu bitkilerin ışık saçtığını görmüştür. Bu olay gen naklinin başlangıcı olmuştur. Dr. Wilmut, yetişkin bir koyundan alınan vücut hücresinin çekirdeğini, başka bir koyuna ait çekirdeği alınmış bir yumurta hücresine yerleştirerek genetik ikiz elde etmiştir. Biyolojinin Alt Bilim Dalları: 1)Botanik: Bitkiler alemini inceleyen bilim dalıdır. 2)Zooloji: Hayvanlar alemini inceleyen bilim dalıdır. Biyolojinin bu bölümlerinden her biri, canlının değişik özelliklerini incelemeleri bakımından kendi içinde alt bölümlere ayrılır. Bu bölümlerin başlıcaları şunlardır; Morfoloji: Canlıların dış görünüşünü, şeklini inceleyen bilim dalıdır. Anatomi: Canlıyı oluşturan organları, bu organların birbirleri ile ilişkilerini inceleyen bilim dalıdır. Fizyoloji: Organizmadaki organ ve dokuların görevlerini, işleyişlerini inceleyen bilim dalıdır. Embriyoloji: Organizmanın gelişme devrelerini inceler. Özellikle döllenmiş yumurtadan (zigot) itibaren meydana gelen gelişme ve farklılaşmaları inceleyen bilim dalıdır. Sitoloji: Hücrenin yapısını ve çalışmasını inceleyen bilim dalıdır. Histoloji: Çok hücreli canlılardaki dokuların yapısını ve bu dokuların vücudun nerelerinde bulunduğunu, hangi organların yapısına katıldığını inceleyen bilim dalıdır. Genetik: Canlılardaki kalıtsal özelliklerin dölden döle nasıl geçtiğini inceler. Ayrıca genin yapısını, görevini ve genlerde meydana gelen değişiklikleri inceleyen bilim dalıdır. Moleküler biyoloji: Canlıların yapısını, moleküler düzeyde inceleyen bilim dalıdır. ekoloji: Canlıların birbirleriyle ve çevreleriyle olan ilişkilerini inceleyen bilim dalıdır. Ekoloji, çevre biyolojisi ile eş anlamda kullanılabilmektedir. Taksonomi (sistematik): Canlıları benzerliklerine göre sınıflandıran bilim dalıdır. Doğadaki çeşitliliği ve çevremizdeki canlıları görmemizi sağlar. Mikrobiyoloji: Gözümüzle göremediğimiz mikroorganizmaların beslenme, üreme gibi yaşam şekillerini inceleyen bilim dalıdır. Uzay biyolojisi: Uzay şartlarında canlıların karşılaştıkları yeni durumları, bunların canlı üzerindeki olumlu ve olumsuz etkilerini, canlıların uzaya uyum şartlarını araştıran bilim dalıdır. Parazitoloji: A***** olarak yaşayan canlıların yapı ve özelliklerini inceleyen bilim dalıdır. Biyokimya: Canlıların yapısındaki kimyasal maddeleri ve yaşamın temeli olan biyokimyasal tepkimeleri inceleyen bilim dalıdır. Ayrıca entomoloji böcekleri, mikoloji mantarları, bakteriyoloji bakterileri, viroloji virüsleri, ihtiyoloji balıkları, ornitoloji kuşları, mammaloji memeli hayvanları inceler. Biyolojik Uygulama Alanları: Tıp, biyoteknoloji, tarım, veterinerlik, su ürünleri, biyomekanik, genetik mühendisliği, ekoloji, fizyoloji, mikrobiyoloji, moleküler biyoloji, eczacılık, diş hekimliği biyolojinin bazı uygulama alanlarıdır. Kentleşme ve sanayileşme ise dolaylı olarak biyolojiden gelen verilere göre yönlendirilir. Alexander Fleming (1881 - 1955) antibiyotik işlevli cisim lizozomu keşfetti; ayrıca bir antibiyotik olan ve Penicillium notatum isimli mantardan üretilen penisilini buldu, bu icadıyla Nobel ödülü kazandı Fleming Lochfield, İskoçya doğumludur. Kilmarnock’taki akademide iki yıl bulundu ve ardından Birinci Dünya Savaşı çıkana dek Londra’daki St. Mary’s Hospital’da hizmet verdi. Savaş esnasında cephelerde bulundu. Cephelerdeki hizmeti sırasında askerlerin enfeksiyonlar sonucu korkunç ölümlerine şahit olmuştu, savaşın bitiminden sonra St. Mary’s Hospital’a geri döndü ve çalışmalarını antiseptikler üzerinde yoğunlaştırdı. Fleming her iki keşfini de 1920li yıllarda rastlantılar sonucu yapmıştır. İlki olan lizozom, Fleming’in içinde bir bakteri ağı olan kapların içine hapşırması sonucu bulundu. Birkaç gün sonra fark etti ki mukusla temas eden bölgedeki bakteriler ölmüştü. Fleming’in laboratuarı her zaman dağınık olurdu, fakat 1928 yılının Eylül’ünde bu durum bir avantaja dönüştü, labotatuarın dört bir yanına dağılmış türlü deneyleri bir düzene sokmaya çalışıyordu. Sıraya koyarken her birini dikkatle inceliyordu ki ilginç bir mantar kolonisi keşfetti, mantarlar Staphylococcus aureus bakterisi tarafından sarılmış kaplarda yetişmişlerdi. Fakat dikkatle incelendiğinde görünecekti ki bu mantarlar, zararlı olmaya potansiyeli olan bakterileri yıkıyordu, bunun anlamı mantarın zararlı hücreleri yok ettiğiydi. Bunun önemini hemen kavradı ve bir yıl sonra (1929da) Penisilin adını verdiği keşfi hakkında bir makale yayınladı. Fleming genellikle bahçe toprağı ile çalışırdı, bu da bir kimyager için zor bir işti, çünkü bahçe toprağını analiz etmek, elemek ve içinde doğru mantarları yetiştirmek uzun ve zahmetli bir süreçti. Fleming buluşunu buradan daha ileriye taşımadı. Buluşun bu günkü haline gelmesi iki farklı bilim ad***** kalmıştı, Howard Florey ve Ernst Boris Chain, penisilininin geliştirilip etkili bir hale getirilmesini sağladılar. Bu çalışmaları sayesinde İkinci Dünya Savaşı ve sonrasında pek çok insanın yaşamı kurtuldu. Fleming gerçekleştirdikleri sebebiyle 1944 yılında şövalyelik unvanını aldı.. Fleming, Florey, ve Chain, 1945Nobel Fizyoloji ve Tıp Ödülünü paylaştılar. Fakat İkinci Dünya Savaşında milyonların hayatını kurtarmış olmak Fleming için çok daha büyük bir onur olacaktı. Fleming, Michael H. Hart'ın kaleme aldığı “List of the Most Influential Figures in History” (En Etkin 100 - Sabah Kitapları, 1994) isimli eserde 43üncü sırada yer aldı Fleming, ressam James McNeil Whistler’ın daveti sonucu 1891de kurulmuş ve her daldan sanatkarı bünyesinde kabul eden Chelsea Sanat Kulübünün de üyelerindendir. Fleming ****** boyamalarıyla kulübe kabul edilmiştir, çünkü bakteriler görünmezdir ama Fleming onları parlak renklere boyayarak görünür kıldı ve bu yöntem bugün bile laboratuarlarda kullanılmaktadır. Fleming, 11 Mart1955 yılında 73 yaşındayken kalp krizi sonucu yaşamını yitirdi. Londra’daki St.Paul Katedralindeki anıtmezarına bir milli kahramancasına gömülmüştür. Buluşuyla modern tıbbın antibiyotiklere bakışını değiştirmiş, milyonların yaşamını kurtarmıştır James Dewey Watson James Dewey Watson (doğumu 6 Nisan 1928), 1954 yılında yaptığı çalışma ile DNA'nın ikili sarmal yapısını, araştırmacı Crick ile bularak Nobel Ödülü almış bilim adamıdır.Prof. James D. Watson, 6 Nisan 1928'de Chicago'da dünyaya geldi. Chicago Üniversitesinde zooloji öğrenimi gördükten sonra 1950 yılında Indiana Üniversitesinde Doktora yaptı. Ancak bu süreç Avrupa da geçmiştir. 1950 ve 1953 yılları arası önce Kopenhag sonrada Cambridge de DNA'nın yapı çözümü konusunda çalışmalarda bulundu. Cambridge Üniversitesinden Francis Crick ile giriştiği çalışmalar sonuç verdi ve 1953 yılında Nature dergisinde 900 kelimeden oluşan makalelerinin yayınlanmasıyla bilim adına önemli bir karanlık bölüm aydınlanmış oldu. Makale şöyle başlıyordu: Deoksiribo Nükleik Asit tuzu için bir yapı önermek isteriz. Ancak bu keşif içinde İngiltere King's Kolejinde Kristalograf olarak çalışan Rosalinda Franklin'in de katkısı büyüktür. Eğer 38 yaşında kanserden ölmeseydi o da verilecek Nobel ödülünü paylaşabilirdi. DNA'nın çift sarmal olduğunun bulunmasında Rosalinda Franklin'in X ışını resimleri kilit rol oynamıştır. Ancak kendisi X Işını resimlerini doğru yorumlayamamaktaydı. James Watson 1956'da Harvard Üniversitesinde Moleküler Biyoloji ve Biyokimya Profesörlüğüne getirildi. Bugün halen hayattadır. (27.10.2006) 1962 yılında Dr.Crick'le DNA'nın 3 boyutlu yapısını keşfetmelerinden dolayı Nobel ödülüne layık bulundular. 1967 Yılında ise orijinal adı: The Double Helix: A Personal Account of the Discovery of the Structure of DNA olan ve DNA'nın ayrıntılı çözüm öyküsünü içeren kitabını yazdı. Bu kitabı ülkemizde, Tubitak Popüler Bilim Kitapları Yayınları arasında bulabilirsiniz. Hakkında Ulaşabildiğim son haber: DNA'nın keşfinin 50'inci Yıldönümü(Şubat 2003) ABD'nin California Eyaleti'nde düzenlenen konferansta, Nobel ödüllü 5 bilim adamı da yer aldı. Nobel ödüllü bilim adamları arasında bulunan James Watson, konferansa Cumartesi günü sunduğu raporda, DNA sarmalındaki yaklaşık 30.000 genetik kodun bütünüyle çözülmesini amaçlayan Human Genome Project (HGP) çalışmasının, kanser gibi tehlikeli hastalıklar için çok yakında tedavi umudu getirmediğini savundu. Watson, bu görüşünün, çok sayıda bilim adamınca da paylaşıldığını belirtti. Watson, buna karşın HGP çalışmasından tam verim alındığında, bunun, DNA'nın keşfi kadar önemli bir açılım yaratacağını da kaydetti.

http://www.biyologlar.com/biyolojiye-emek-veren-bilim-adamlari-ve-yaptigi-isler-nelerdir

Kozmoloji

Evrenbilim, evren bilimi veya kozmoloji, bir bütün olarak evreni konu alan bilim dalının ismidir. Her ne kadar kozmoloji sözcüğü nispeten yakın zamanlı bir sözcük olsa da, evren tarih boyunca bilim, felsefe, ezoterizm ve din gibi farklı disiplinler tarafından araştırma konusu olmuştur. Kozmoloji ise bir sözcük olarak ilk kez 1730 yılında Christian Wolff'un Cosmologia Generalis isimli eserinde kullanılmıştır. Çağdaş yazında kozmoloji veya evrenbilim ile genelde fiziksel kozmoloji kastedilmektedir. Bu bağlamda, kozmologlar kozmoloji çalışmalarının içerisinde astronominin yanı sıra birçok bilim dalını da kullanırlar; biyolojiden matematiğe kadar... Kozmoloji, evrenin yapısını, tarihini ve geleceğini inceler. Fiziksel evrenin bir bütün olarak kavranıp anlaşılmasını sağlamak amacıyla doğa bilimlerini, özellikle gökbilim ve fiziği bir araya getirir.

http://www.biyologlar.com/kozmoloji

Biyolojinin İlkeleri nelerdir ?

Biyoloji, bilgiye ulaşmak için bilimsel metodu kullanır. Bilimsel teoriler, bilimsel gözlemlere dayanır ve bu teoriler, yeni araştırmalarla bazen geliştirilirler.

http://www.biyologlar.com/biyolojinin-ilkeleri-nelerdir-

Farklı Türler Nasıl Oluşur? Allopatrik Türleşme Ne Demektir?

Yazı dizimizin ilk kısmında tür tanımlarından bahsetmiştik. Bu yazımızda ise, daha da önemli bir kavram olan, türleşme kavramından ve türleşme biçimlerinden bahsetmeye başlayacağız.

http://www.biyologlar.com/farkli-turler-nasil-olusur-allopatrik-turlesme-ne-demektir

Genetiği Değiştirilmiş Organizmalar: Genel Bakış, Ürünlere Örnekler ve Dikkat Edilmesi Gereken Sorunlar

Genetiği Değiştirilmiş Organizmalar: Genel Bakış, Ürünlere Örnekler ve Dikkat Edilmesi Gereken Sorunlar

Genetiği Değiştirilmiş Organizmalar (GDO) ile ilgili tartışmalar aralıklarla gündeme gelse de, bu tartışmalardan yola çıkarak gerçek anlamıyla bilimsel bir algının halk arasında yaratılmasının oldukça güç olduğu görülmektedir.

http://www.biyologlar.com/genetigi-degistirilmis-organizmalar-genel-bakis-urunlere-ornekler-ve-dikkat-edilmesi-gereken-sorunlar

Evrim Teorisi Yeniden Değerlendirilmeli mi?

Evrim Teorisi Yeniden Değerlendirilmeli mi?

Çevirmenin sunuşu: Okuyacağınız çeviri 9 Ekim 2014 tarihli Nature dergisinde yayınlanmış, Genişletilmiş Evrimsel Sentez’i destekleyen ve karşıt bilim insanlarının karşılıklı görüşlerini alarak hazırlanmış bir tartışma yazısıdır.

http://www.biyologlar.com/evrim-teorisi-yeniden-degerlendirilmeli-mi

IV. Taksonomi Yaz Okulu

IV. Taksonomi Yaz Okulu

Değerli biyoçeşitlilik araştırmacıları, İlki 20 yıl önce Akdeniz Üniversitesi’nde düzenlenen Taksonomi Yaz Okulu'nun II. Ege Üniversitesi ve III. Cumhuriyet Üniversitesi’nde düzenlenmiştir. Katılımcılar ve diğer meslektaşlarımızdan alınan son derece olumlu geri bildirimler IV. Taksonomi Yaz Okulu'nun yapılmasındaki heyecanımızı arttırdı. Biyolojinin tüm dallarında olduğu gibi biyoçeşitlilik çalışmalarında da baş döndürücü bir hızda bilgi artışı olmakta ve hem metodolojik hem de yaklaşımlarda dönüşümler yaşanmaktadır. Klasik DNA teknolojileri yerini yeni nesil dizileme teknolojilerine bırakmaya başlamış, biyoinformatik yaklaşımlar zenginleşmiş, çeşitlenmiş ve dünün ilgi çeken bilgileri bugün sıradanlaşmaya başlamıştır. Biyoçeşitliliğin geçmişi, bugünü ve geleceğini anlamak isteyen bilim insanlarının, özellikle gençlerin, dikkatini güncel yaklaşım ve yöntemlerin anlaşılmasına yöneltmiştir. Mersin ve Hacettepe Üniversitelerinin işbirliği ile Mersin'de gerçekleşecek olan IV. Taksonomi Yaz Okulu'na biyolojiden su ürünlerine, tıptan eczacılığa, ziraattan veterinerliğe vb canlı bilimlerinin tüm alanlarından kişiler başvurabilir (lisansüstü eğitim gören öğrencilere öncelik verilecektir). Başvuru için bağlantıdaki başvuru formunun 1 Nisan 2017 tarihine kadar doldurulup, adayın özgeçmişi ile birlikte taksonomiyazokulu4@gmail.com adresine e-posta ile gönderilmesi gerekmektedir. Yaz okulu kontenjanı 60 katılımcı ile sınırlıdır. Aşağıdaki tabloda teorik ders ve uygulama içerikleri ana başlıklar halinde listelenmiştir. Ayrıntılı ders içeriği, Taksonomi Yaz Okulu'nun uygulanışı ve konaklama gibi bilgilere http://tyo.mersin.edu.tr adresinden ulaşabilirsiniz. Düzenleme Kurulu olarak sizleri IV. Taksonomi Yaz Okulu’na, birlikte öğrenmek, birlikte uygulamak ve birlikte yorumlamak için bekliyoruz…. Düzenleme Kurulu Başkanı, Prof. Dr. Süphan KARAYTUĞ TEORİK KONULAR (ÖZET) Sistematik Biyoloji: Giriş ve Kapsam Tür Kavramları, Türleşme ve Tür Taksonu: "Sonsuz Formların Sonsuz Tartışması" İsimlendirmenin İlke ve Uygulamaları Moleküler Veri Eldesi Filogeni ve Sistematiğin Temel Enstrümanı: "Karakter" Fenetik Analiz Yaklaşım ve Yöntemleri Filogenetik Analiz Yaklaşım ve Yöntemleri Populasyon Genetiği Mikrobiyal Çeşitlilik ve Metagenomik Yaklaşımlar Filocoğrafya: "Güncel Yaklaşımlar ve Analiz Yöntemleri" DNA Barkodlama Yaklaşımı ile Tür Tanımlama UYGULAMALI KONULAR (ÖZET) Biyoçeşitlilik Verileri ve Kullanımı Biyoinformatik Uygulamalar İçin Veri Setlerinin Oluşturulması Araziden Filogenetik Ağaca: Uygulama Basamakları Yeni Nesil Dizileme ve Filogenetik Kullanımı Mikrobiyal Çeşitliliğin Belirlenmesine Yönelik Uygulamalar Populasyon Genetiği Analizleri · Filogenetik Analizler Coğrafi Genetik ve Filocoğrafya Analizleri Tür Sınırlarının Belirlenmesine Yönelik Uygulamalar Geometrik Morfometri Analizleri İsimlendirme Uygulamaları http://tyo.mersin.edu.tr

http://www.biyologlar.com/iv-taksonomi-yaz-okulu

<b class=red>Biyolojiden</b> sosyolojiye ‘duygular&quot;

Biyolojiden sosyolojiye ‘duygular"

“Duygu teorilerini” evrimsel teoriler ve sosyo-kültürel teoriler olarak iki parça halinde inceleyebiliriz.

http://www.biyologlar.com/biyolojiden-sosyolojiye-duygular

 
3WTURK CMS v6.03WTURK CMS v6.0